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Titel: Characterization of Estrogen Receptor alpha in Mouse Osteoblasts 

Name: Dominique Manu 

Betreuer: Prof. Frank Gannon 

Zusammenfassung 

Östrogene sind für die Koordinierung der reproduktiven Organe verantwortlich. 

Zusätzlich beeinflussen sie nichtreproduktive Organe wie Knochen durch die 

Regulierung von Osteoblasten und Osteoklasten, die die Knochenhomöostasis 

kontrollieren. Östrogene können zwei nukleäre Rezeptoren aktivieren, Östrogen Rezeptor 

(ER) alpha und ER beta. Nach Östrogenbindung aktivieren ERs direkt die Transkription 

von Zielgenen, welche das Zellschicksal bestimmen. Osteoblasten exprimieren ER alpha 

und wurden als direktes Target und Haupteffektor von Östrogen vorgeschlagen. 

Um die Osteoblastenregulation besser verstehen zu können, wurden in dieser Studie die 

Funktion von ER alpha in primär kultivierten Mausosteoblasten und mesenchymalen 

Zellinien charakterisiert. Unsere Ergebnisse bestätigen, dass ER alpha in Osteoblasten 

exprimiert wird und dass transkriptionelle Aktivierung durch ER alpha stattfinden kann. 

Allerdings waren die Expressionslevels sehr viel niedriger als in reproduktiven Geweben. 

Zu unserer Überraschung hatte ER alpha in Osteoblasten eine hohe transkriptionelle 

Aktivität, was allerdings von niedrigen Konzentrationen von Östrogen im 

Wachstumsmedium abhing. ER alpha Expression erhöht sich wärend der 

Zelldifferenzierung. In früheren Studien wurde vermutet, dass dies die Spezifität von ER 

alpha Expression in Osteoblasten widerspiegelt. Unsere Ergebnisse zeigen allerdings, 

dass ER alpha Expression auch in anderen Zelltypen wärend der Differenzierung 

induziert wird. Ausserdem konnte kein Einfluss von Östrogen auf die 

Osteoblastendifferenzierung festgestellt werden. Zusammengefasst bestätigt diese Studie, 

dass funktionelle ER in Osteoblasten exprimiert werden. Allerdings stellen unsere 

Ergebnisse die Hypothese in Frage, dass Osteoblasten als direkte Mediatoren für 

Östrogen in der Regulation der Knochenhomöostasis agieren. 
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 Summary 

 

Estrogens are commonly known for coordinating reproductive function. However, 

they also affect the physiology of non-reproductive tissues such as bone. In particular, 

they regulate two cell types that control bone homeostasis, osteoblasts and osteoclasts. 

Estrogens can activate two nuclear receptors, Estrogen Receptor (ER) alpha and ER 

beta. After binding to estrogen, ERs directly activate transcription target genes that 

determine cell fate. osteoblasts express ER alpha and have been suggested as the 

direct target of estrogens that mediates most effects estrogens have on bone. 

To better understand Osteoblast regulation by estrogen, we characterized ER alpha in 

primary mouse osteoblasts and mesenchymal cell lines. This study confirms that ER 

alpha is expressed in osteoblasts and that it can mediate transcriptional activation. 

However, the expression level of ER alpha is very low as compared to reproductive 

tissues. Surprisingly, ER alpha in osteoblasts still has a high residual transcriptional 

activity, which depends on low concentration of estrogens in the growth medium. 

ER alpha expression increases during differentiation of mouse osteoblasts. Previous 

studies suggested that this might reflect the specificity of ER alpha expression in 

osteoblasts. However, our results demonstrate that induction of ER alpha expression 

upon differentiation is not limited to osteoblasts as differentiation of a mesenchymal 

cell line into myoblasts also increases the levels of ER alpha expression. Finally, 

Estrogens did not influence osteoblast differentiation. In conclusion, these results 

confirm the presence of a functional ER in osteoblasts, but challenge the view that 

osteoblasts act as direct mediators of estrogen action on bone homeostasis. 
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1. Introduction: a historical overview 

 

It was in the 1920’s that a hormone present in the ovaries, able to induce estrus or 

ovulation as well as a swelling of the uterus and the vagina, was isolated (Allen and 

doisy, 1923). This hormone was, as a result of its effects, termed estrogen. The 

principal physiological form of the hormone is 17-β-Estradiol (E2). It remained 

however unknown how estrogen could achieve its effects on the reproductive tract 

until the early 1960’s, when the use of radiolabeled E2 with high specific activity 

allowed the localization of an estrogen binding protein or estrogen receptor (ER) to 

target tissues mostly the uterus vagina and the anterior pituitary (Jensen and Jacobson, 

1962). Estrogens were later found to alter RNA polymerase II (RNA pol II) 

transcription in target tissues suggesting ER was a transcription factor (O'Malley and 

McGuire, 1968). Following progress in molecular biology techniques, the cDNA of 

the first ER was then cloned (Green et al., 1986;Greene et al., 1986). The cloning of 

ER followed that of other intracellular hormone receptors, namely the glucocorticoid 

receptor (Weinberger et al., 1985) and the thyroid receptor (Sap et al., 

1986;Weinberger et al., 1986) which all shared homologous sequences. Collectively, 

sequence comparisons determined the existence of a family of ligand-regulated 

transcription factors that shared a conserved sequence and apparently modular 

organization (Evans, 1988). Nuclear receptors, including ER, become 

transcriptionally active upon ligand binding. They generally bind to DNA as dimers, 

thereby recognizing a cognate palindromic DNA sequence, and thereafter recruit the 

transcriptional machinery to a target promoter (Kumar et al., 1987). 

In the late 80’s, in a process termed “squelching”, it was found that transcription 

factors could compete for limiting factors of the intermediate transcription machinery, 
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thereby inhibiting the transcriptional capacity of each other (Meyer et al., 1989). 

These shared factors required for nuclear receptor transcriptional activation were 

termed coactivators. The 90’s were dedicated to the identification of these 

coactivators. The first coactivators were isolated in 1994 (Halachmi et al., 

1994;Cavailles et al., 1994). Their cloning was achieved a year later (Cavailles et al., 

1995;Onate et al., 1995). A multitude of coactivators was subsequently cloned 

(McKenna et al., 1999). It was realized that some coactivators had enzymatic activity 

and could covalently modify histones or remodel chromatin around the binding site of 

ER (Fryer and Archer, 1998;Blanco et al., 1998). Other coactivators forming the 

mediator complex and involved in promoting the activation of polII on the promoter, 

do not contain any enzymatic activity but directly contact and recruit the 

transcriptional machinery to the remodeled chromatin (Malik and Roeder, 2000). 

Corepressors were also concomitantly identified and showed opposite enzymatic 

activity to that of coactivators thus opposing their effects (Heinzel et al., 1997;Nagy et 

al., 1997). 

The development of chromatin immunoprecipitation (ChIP) in mammalian cells 

allowed the characterization of the binding kinetics of the different factors to the 

promoter of a target gene and revealed the dynamic nature of transcription activation 

(Shang et al., 2000;Metivier et al., 2003). The use of GFP tagged nuclear receptors 

confirmed the dynamism of the interaction between nuclear receptors and a promoter 

(McNally et al., 2000). 

Cloning of a second, genetically distinct ER (coined ER β, ER α corresponding to the 

first ER cloned), raised the question as to which one of the two ERs mediated which 

effects of estrogens (Kuiper et al., 1996). The use of gene-targeting technology 

confirmed that most of the effects of estrogens on the reproductive tract are mediated 
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by ER α with ER β playing a mostly redundant function (Dupont et al., 2000). 

Additionally, knockout mice devoid of either ER α, ER β or both confirmed that the 

physiological effects of estrogens as anticipated, are mediated by estrogen receptors 

with ER α having the major physiological influence. 

 

2. Structural and functional aspects of ER α 

 

Estrogen receptor α belongs to the super-family of nuclear receptors. Nuclear 

receptors share a common modular and functional organization. This was revealed by 

multiple sequence alignment of the predicted primary sequence of nuclear receptors, 

where six different regions with different extent of sequence conservation were 

delineated. These regions correspond approximately to different functional domains 

of the receptor (Krust et al., 1986;Evans, 1988). These domains were defined as A to 

F and this terminology is used here. The numbering of residues corresponds, unless 

otherwise mentioned, to the human ER α protein. The location of the different 

domains and functions of ER α are depicted in figure 1. 

It has not, to date, been possible to determine the tertiary structure of the whole ER α 

or for that matter of any other nuclear receptor. As a result, direct structural evidence 

is not available on the interplay between different domains. Although these domains 

display a certain functional autonomy it was realized that the steroid receptor protein 

functioned as a whole and that different domains could interact either directly or 

allosterically to influence each other’s function. One example of intramolecular 

interaction will be detailed also be detailed here. 
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Figure 1. Functional Domains of ER α 

The different domains of ER α are represented with their associated functions. Residues targets of 

posttranslational modifications are indicated below. Numbering corresponds to the position of the 

domains in the human receptor in amino acids. 

 

 

2.1. ER α functional domains 

 

 Domain A (Amino Acids 1-37) 

The A domain is not found in every nuclear receptor and, previously, no function had 

been assigned to it (Metzger et al., 1995). Very recently however, it was found that 

the A domain, and more precisely a LLxxI motif within the A domain, interacts with 

the E domain, and by doing so inhibits, through direct competition, ligand-

independent recruitment of coregulatros by the activation functions of ER α (Metivier 

et al., 2002f). This motif is not found in other nuclear receptors and is not even 

present in the closely related ER β; this function therefore constitutes a unique feature 

of ER α (Metivier et al., 2002e). The interaction between the A and E domains will be 

detailed later in the introduction. 
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 Domain B (Amino Acids 38-180) 

This domain is present in most nuclear receptors; it is however very variable both in 

length and composition (Evans, 1988). The B domain contains the first activation 

function of nuclear receptors (AF-1). Although the whole receptor is generally 

inactive in the absence of hormone, the isolated A/B domain can transactivate 

constitutively when fused to a DNA binding domain (Kumar et al., 1987;Tora et al., 

1989b;Berry et al., 1990;Metzger et al., 1995). The AF-1 of ER α and other nuclear 

receptors is unlike the activation domains of other transcription factors (Tasset et al., 

1990). Despite this distinct primary structure, ER α AF-1 functions like other 

transcription factors, by recruiting coactivators and does so in a ligand independent 

manner when isolated from the rest of the receptor (Tasset et al., 1990;Webb et al., 

1998). 

Conflicting data are available as to the precise location of AF-1 within the B domain, 

but at most it spans the region from residue 38 to 127 (Metzger et al., 

1995;McInerney and Katzenellenbogen, 1996;Webb et al., 1998). The activity of AF-

1 was also shown to be entirely dependent on the integrity of an evolutionary 

conserved putative α-helix (amino acids 39-44; Metivier et al., 2000). The structural 

basis of coactivator binding is also not known and would involve a different type of 

interaction as to what as been characterized for AF-2. Different discreet binding sites 

have been mapped on ER α for different categories of coactivators and would 

encompass residues 38-127 (Webb et al., 1998;Endoh et al., 1999;Kobayashi et al., 

2000). 

The B domain also contains several residues that can be phosphorylated. Best 

characterized are serine residues 104, 106, 118 and 167. Phosphorylation of these 
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residues have been shown to be important for receptor functions ranging from 

dimerization to transcriptional activation (Lannigan, 2003).  

 

 Domain C (Amino Acids 181-263) 

The C domain is the most conserved among nuclear receptors (Evans, 1988). This 

domain contains the DNA-binding domain (DBD; Kumar et al., 1987). ER α, like 

other class I nuclear receptors, binds to a palindromic DNA sequence, consequent on 

dimerization (Kumar and Chambon, 1988;Green et al., 1988). The consensus 

sequence of the estrogen response element (ERE) to which ER α binds is 

AGAACAnnnTGTTCT, n being any nucleotide constituting the spacer (Klein-Hitpass 

et al., 1988;Klinge, 2001). 

The structure of the DBD is organized around two zinc-binding Cys2-Cys2 sequence 

motifs, known as zinc fingers. This widespread DNA binding motif is conserved in 

every nuclear receptor (Freedman et al., 1988;Schwabe et al., 1990). The structure of 

domain C was the first to be solved for ER α (Schwabe et al., 1990;Schwabe et al., 

1993). The 3D structure confirmed the presence of the two zinc fingers and revealed 

two amphipathic α-helices adjacent C-terminal to them (Schwabe et al., 1993). Each 

module, consisting of a single zinc finger and one α-helix, is joined with one β-turn. 

The binding to DNA is achieved through the first α-helix that binds in the major 

groove of target DNA. The D-box, in the C-terminal part of the second zinc finger, 

generates the dimerisation interface between two DBD monomers. 

The responsive elements within promoters influenced by different nuclear receptors 

are very similar in sequence but yet specifically associate with their respective 

receptors. The specificity of binding is achieved by the so-called P-box located in 
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helix I. Mutation of three residues changes, for instance, the binding characteristics of 

the ER α DBD into that of the glucocorticoid receptor (Mader et al., 1989). 

In terms of posttranslational modification, serine 236 has been shown to be the target 

of phosphorylation thereby affecting receptor dimerization (Chen et al., 1999). 

 

 Domain D (Amino Acids 264-302) 

This domain is also called the hinge region and is variable in size and sequence (Krust 

et al., 1986;Evans, 1988). In terms of function, the domain D harbours most of the 

constitutive nuclear localization signal, comprised between residues 256 and 303 

(Picard et al., 1990;Ylikomi et al., 1992). The C-terminal part of the hinge region in 

ER α contains part of an ill-characterized activation function called AF-2a (Norris et 

al., 1997). 

 

 Domain E (Amino Acids 303-553) 

This domain, although variable in terms of sequence, is structurally very well 

conserved among nuclear receptors (Wurtz et al., 1996). Domain E corresponds to the 

ligand-binding domain (LBD; Kumar et al., 1987) and also harbours the ligand-

dependent activation function (Kumar et al., 1987;Bocquel et al., 1989). AF-2 

interacts with coactivators in the presence of estradiol (McKenna et al., 1999) while 

in the presence of an antagonist like tamoxifen, it associates with corepressors (Smith 

et al., 1997;Metivier et al., 2002b;Liu and Bagchi, 2004). In the absence of ligand the 

AF-2 binds neither coactivators nor corepressors. The binding of coactivators and 

corepressors to ER α relies on an LxxLL motif (NR box) predicted to form an 

amphipathic helix, within the interacting protein (Heery et al., 1997;Shiau et al., 

1998;Hu and Lazar, 1999). Coactivators and corepressors associate with an 
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overlapping but distinct surface on the activated nuclear receptor and as a result their 

binding is exclusive (Nagy et al., 1999). 

The crystal structure of ER α LBD has been determined in the presence of E2 and in 

association with the antagonists tamoxifen and raloxifene (Brzozowski et al., 

1997;Shiau et al., 1998). The structure of the unliganded LBD is however not 

available. Co-crystals of E2 bound ER α LBD and of a short peptide corresponding to 

an NR box have also been obtained and the structure solved (Shiau et al., 1998). 

These structural data reveal that the LBD forms a three-layer α helical sandwich. The 

hydrophobic ligand is found within a cavity that mainly consists of non-polar amino 

acids. In the agonist bound conformation, helix 12 of the ER α LBD forms a 

hydrophobic groove into which the NR box α helix, defined by the LxxLL motif, can 

bind. However, in the antagonist bound conformation, helix 12 is displaced to cover 

this hydrophobic groove, thereby preventing interaction with the NR box. It is 

however not clear if the structural data obtained can be extrapolated to the unliganded 

LBD of ER α, although as with the antagonist bound receptor, unliganded ER α also 

bind corepressors in the absence of its N-terminal domain (Metivier et al., 2002b).  

The E domain also regulates dimerization following ligand binding (Kumar et al., 

1988). The crystal structure of E2 liganded ER α revealed that two LBDs arrange 

themselves in a head to head manner (Brzozowski et al., 1997). 

Several residues within the E domain have been shown to be the target of 

posttranslational modifications. Serine 305 can be phosphorylated, while lysines 302 

and 303 can be acetylated. These modifications affect transcriptional activation by the 

receptor (Wang et al., 2001;Wang et al., 2002;Balasenthil et al., 2004;Michalides et 

al., 2004). Threonine 311 can be phosphorylated and regulates nuclear export of the 

receptor (Bai et al., 1997). Finally tyrosine 537 has been shown to be an important 
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regulator of receptor functioning and has been shown to be phosphorylated (Arnold et 

al., 1995). 

 

 Domain F (549-595) 

This domain is very variable, even between the same nuclear receptor within different 

species, in terms of sequence but is however very well conserved in terms of length 

(Nichols et al., 1998). The F domain is not required for the transcriptional activity of 

ER α (Kumar et al., 1987). However, as it could interact with the LBD it may, in 

certain contexts, modulate the response to ER α antagonists (Montano et al., 

1995;Nichols et al., 1998).  

 

 

2.2. Interaction between N-and C- terminal domains and the basis 

of ligand dependent activity 

Although the structure of the whole receptor has not been solved, functional 

interactions have however revealed that both physical and allosteric interactions occur 

within ER α. One example of physical interaction between two distant domains is 

described here. 

As a result of the deletion of the A domain of ER α, the unliganded receptor can 

recruit coactivators to its AF-1 and corepressors to the unliganded AF-2 (figure 2; 

Metivier et al., 2002b). The ligand-independent transactivation and transrepression 

functions of the receptor are inhibited in the whole ER α, because the A domain 

interacts with the distant E domain. As a result of the folding of the protein and the 

intramolecular interactions, in the whole receptor, neither AF-1 nor AF-2 are 

accessible for protein interactions. The interaction between the two domains is 
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disrupted upon ligand binding, which then allows binding of coactivators to AF-1 and 

AF-2. On the other hand binding to a partial antagonist like tamoxifen although it 

disrupts the interaction between the A and E domains, permits binding of corepressors 

to AF-2 and binding of coactivators to the newly accessible AF-1. 

 

 

Figure 2. Interaction between the distant A and E domains 

In the absence of ligand, the A domain and the AF-2 containing E domain interact with each other. 

This interaction prevents recruitment of transcription coregulators. The binding of E2 disrupts the 

interaction and allows the AF-2 and the AF-1 to recruit coactivators. In the presence of the antagonist 

tamoxifen or after deletion of the A domain, the interaction between the A and E domains does not take 

place but the AF-2 displays a corepressor binding surface. In this case, the AF-1 can recruit 

coactivators as long the interaction between the N- and C-terminus is disrupted. Note that a receptor 

dimer only binds one molecule of coactivator or one of corepressor at a time. As a result depending on 

the concentrations of corepressor and coactivator in the cell tamoxifen will either recruit coactivators 

through the AF-1 or corepressors through the AF-2. Two molecules are represented to represent 

different possibilities. 

 

 

 

The A domain directly interacts with the C-terminal region of the receptor; this 

involves an interaction between an ELE sequence present in the A domain with a 
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KCK sequence within the E domain (Metivier et al., 2002b). The interaction between 

the A and E domains permits binding of a LLxxI putative α-helix, present in the A 

domain of ER α, into the hydrophobic groove of the E domain. The A domain would 

thereby function as an internal corepressor, competing both with helix 12 corepressors 

for binding in this cleft. Consequent to the folding of the protein, the AF-1 would not 

be accessible either to coactivators and would thus be silenced This interaction is 

predicted to be disrupted upon ligand binding. Consequently, AF-1 and AF-2 can 

recruit coactivators. 

 

3. ER α mediated transcription 

 

3.1. Mechanism of ER α mediated transcription 

When genes are silent, DNA is packaged into a highly organized and compact 

nucleoprotein structure known as chromatin, which impinge all the transcription steps. 

The basic unit of the chromatin is the nucleosome, which consists of DNA wrapped 

twice around an octamer protein core containing two copies each of four histone 

proteins, H2a, H2b, H3 and H4. Protruding from the nucleosomes are N-terminal 

histone tails whose interaction with DNA can be modulated upon covalent 

modifications (Peterson and Laniel, 2004). 
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Figure 3. Mechanism of ER α action 

Upon ligand binding, coactivators are recruited displaying histone acetyltransferase activity (HAT), 

methylstransferase, kinase or ATP-dependent remodeling (SWI/SNF) activities, that decompact 

repressive chromatin. Reruitment of the mediator complex allows entry of the basal transcription 

machinery which is followed by transcription initiation (adapted from, Bastien and Rochette-Egly, 

2004). 

 

To permit transcription, ER α, as with other transcription factors, must initially 

remodel the chromatin structure surrounding the promoter to allow binding of the 

transcriptional machinery. To effect chromatin remodeling, the liganded receptor 

recruits, directly or indirectly, coactivators which covalently modify histones and 

which induce nucleosome rearrangements (figure 3; Khorasanizadeh, 2004). The 

covalent modification of histone tails by coactivators is believed to relieve their 

interactions with the nucleosome DNA, through the acetylation of lysine residues and 

the methylation of arginine residues. p300/CBP and pCAF possess histone 

acetyltransferases (HAT) activity that acetylates lysine residues on the histone tails. 



 22

CARM-1 acts through its histone methyltransferase activity (HMT) methylating 

arginine or lysine residues on histone tails. Coactivators of the p160 family like SRC-

1, although they display a weak HAT activity, are believed to act as a scaffold protein 

that recruits other coactivators. ATP-dependent chromatin remodelers (SWI/SNF) are 

also recruited to ER α activated promoters and reposition nucleosomes at the 

promoter. The combined action of these coactivators would prepare the chromatin for 

subsequent binding of the transcription machinery (Narlikar et al., 2002;Metivier et 

al., 2003). 

Once repressive chromatin has been decondensed, the complex induced by activated 

ER α then recruits the basal transcription machinery. Although ER α can contact 

members of the RNA pol II complex, it is likely that the productive interaction is 

indirect, through a protein complex known as the mediator (Malik et al., 2000). Once 

the transcriptional initiation complex is assembled on the promoter, transcription then 

initiates. 

Kinetically, ChIP analysis performed at short intervals revealed that transcription 

factors, coregulators and the transcriptional machinery cycle on the promoter in a 

sequential way (Shang et al., 2000;Hatzis and Talianidis, 2002;Agalioti et al., 

2002;Metivier et al., 2003). Modification of local histones was also found to be 

dynamic and sequential (Metivier et al., 2003). The kinetics of ER α mediated 

coregulator recruitment was studied in details on the estrogen-responsive pS2 

promoter (Metivier et al., 2003). ER α cycles on the pS2 promoter in the absence of 

ligand confirming that ligand binding is not required for DNA binding (Reid et al., 

2003;Metivier et al., 2004). The unliganded receptor however does not recruit the 

transcriptional machinery to the pS2 promoter. Upon binding E2, cycling of ER α 

becomes slower. A first transcriptionally unproductive cycle immediately after E2 
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treatment results in the remodeling of the local nucleosomes and acts to generate a 

transcriptionally competent conformation. An initial recruitment of the ATP-

dependent remodeling factor SWI/SNF occurs, followed by recruitment of HMTs and 

HATs. Remodeling of chromatin is then followed by recruitment RNA pol II and the 

mediator complex. Following transcription initiation, ER α and chromatin remodeling 

complexes are removed from the promoter allowing subsequent cycles to proceed. 

The histones are then deacetylated by histone deacetylases (HDAC) and remodeled 

and a new cycle can begin. Inherent in these transcriptional cycles are (i) functional 

redundancy, where multiple protein complexes act sequentially to promote each stage 

in the cycle (Metivier, 2003) and (ii) limitation to the action of estrogen through a 

restriction in the duration that either ER α or polymerase act on an individual 

promoter (Reid, 2002; Reid, 2003; Metivier, 2003). This latter restriction ensures that 

estrogen responsive promoters continuously respond to fluctuations in the level of E2. 

At least two different and perhaps complementary mechanisms contribute to the 

limitation of estrogen signaling. One mechanism involves targeting of ER α for 

proteasomal degradation concomitant with transcription (Metivier et al., 2003;Reid et 

al., 2003;Metivier et al., 2004). This involves the cyclical recruitment of potential E3 

ligases to the promoter and ubiquitination of ER α (Reid, 2003). Also, a molecular 

chaperone complex consisting of heat shock proteins (HSPs) may contribute to 

clearance of the steroid receptor and associated proteins from the target promoter 

(Freeman and Yamamoto, 2002). Interestingly, components of the proteasome and of 

the HSP complex are recruited to the promoter at the end of each cycle (Reid et al., 

2003). 

ER α can access a target promoter in two ways: either through direct interaction with 

DNA or indirectly by docking onto proteins already bound to DNA, for example with 
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the AP-1 complex bound to responsive promoters (figure 4). Although the mechanism 

of transcriptional regulation through indirect promoter binding has not been studied in 

detail, it is believed to take involve the recruitment of coregulators and eventually the 

transcriptional machinery, as with ER α associating to a cognate DNA element 

(Jakacka et al., 2001;Shang and Brown, 2002). 

 

3.2. Regulation of ER α action 

 

The transcriptional output of ER α can be regulated at multiple levels as summarized 

in figure 4. This section far from being exhaustive describes a few examples of 

regulation of ER α. 

 

 ER α protein level 

Regulation of ER α activity can be achieved by regulation of its expression. The 

levels of ER α are, to certain limits, directly related to its activity (Webb et al., 

1992;Lopez et al., 1999). The response to a given amount of ER α also depends on the 

profile of interacting proteins within cell types and is, as a result, cell type dependent 

(Webb et al., 1992). Regulation of ER α expression will be detailed later in the 

introduction. 
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Figure 4. Regulation of ER α action 

Examples of steps where ER α action can be modulated starting with localization of the receptor to 

dimerization ligand binding and promoter binding. All these steps have been shown to be affected 

under specific cellular condicitons and affect the transcriptional output of ER α. 
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 Localization 

To achieve a direct effect on transcription ER α needs to locate to the nucleus. 

Following the model for glucocorticoid receptor action, it was and still is generally 

believed that nuclear receptors, including ER α, are located in the cytoplasm prior to 

ligand activation and that they translocate to the nucleus thereupon. It has repeatedly 

been shown that ER is located mostly if not exclusively in the nucleus whether or not 

complexed to its ligand. 

The localization of ER α however, is open to regulation. For instance a variant of the 

metastatic tumour antigen 1 (MTA1) lacking a nuclear localization signal, was found 

to sequester ER α in the cytoplasm of MCF7 cells (Kumar et al., 2002). This MTA1 

variant interacts directly with the AF2 of ER α through a LxxLL NR box like motif 

(Kumar et al., 2002). Posttranslational modifications of ER α have also been reported 

to affect localization. Phosphorylation of threonine 311, located in the NLS of ER α, 

by p38 MAPK, promotes nuclear localization (Lee and Bai, 2002). This data indicate 

that ER α is normally found in the cell nucleus, although, in certain cellular contexts, 

it can be present in the cytoplasm. Interestingly, localization of coactivator and 

corepressors is also the target of regulation and affects ER α transcriptional activity 

(Baek and Rosenfeld, 2004). 

 

 Dimerization 

Although the ER α DBD can bind to DNA as a monomer with low affinity in vitro 

(Kumar et al., 1988), ER α exclusively binds DNA as a dimer in vivo (Lees et al., 

1990). Ligand binding was shown not to be strictly required for dimerization, at least 

in mammalian cells (Zhuang et al., 1995). However dimer formation of ER α LBD in 

vitro is stabilized by ligands (Tamrazi et al., 2002). 
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Protein-protein interactions impact on dimerization; it was, for instance, reported that 

the orphan nuclear receptors TR2 and 4 (testicular orphan receptor 2, and 4) dimerize 

with ER α. Because TR2 and 4 recognize different DNA sequences they prevent 

binding of the heterodimer to an ERE (Shyr et al., 2002;Hu et al., 2002). 

Posttranslational modification of ER α can also affect dimerization. Phosphorylation 

of serine 239 was shown for instance to regulate dimerization (Chen et al., 1999). 

 

 DNA binding 

Perfect EREs are rarely found in estrogen responsive promoters. Several sequences 

give rise to estrogen responsivity to a promoter, ranging from perfectly palindromic 

EREs, an imperfect palindrome or even a half ERE. Most estrogen responsive genes 

contain EREs that are mostly imperfect (O'Lone et al., 2004). Although there is no 

linear correlation, the binding affinity of ER and its transcriptional output are linked 

in a given cellular environment (Klinge, 2001;Klinge et al., 2001). DNA binding is 

not strictly dependent on ligand but interaction with DNA is stabilized by ligand 

binding (Zhuang et al., 1995). Although fairly stable in vitro, association of nuclear 

receptor with DNA appears to be transient in vivo as monitored by ChIP and 

microscopy (McNally et al., 2000;Reid et al., 2003).  

High mobility group (HMG) proteins directly contact steroid receptors, and by doing 

so facilitate and stabilize the interaction between the receptor and its response 

element, allowing binding to imperfect palindromes or half binding sites (Melvin et 

al., 2004). Moreover, ER α synergizes with SP1 proteins to bind to an ERE half site 

when an SP1 site is located nearby (Porter et al., 1997;Safe and Kim, 2004). Often 

more than one ERE-like sequence is present in an estrogen responsive promoter. The 
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binding of ER α is cooperative since several EREs synergize to allow ER binding 

(Klinge, 2001). 

 

 Ligand Binding 

Ligand binding is a prerequisite in most cases for transcriptional activation, as ligand 

induced conformation stabilizes a conformation that interacts with coactivators. 

Ligand binding is also regulated. Association of ER α with an ERE stabilizes the 

ligand-ER interaction (Klinge, 1999). Protein-protein interactions also affect ligand 

binding. Coactivators stabilize the interaction of ER α with its ligand (Gee et al., 

1999;Watkins et al., 2003). The heat shock protein HSP90 and the HSP90 associated 

protein p23 also sensitize ER α to estradiol binding (Knoblauch and Garabedian, 

1999;Fliss et al., 2000). Finally, Tyrsoine 537 is involved in ligand binding, although 

it is not sure if this particular phosphorylation is indeed implicated in stabilization of 

ligand association (Arnold et al., 1997). 

 

 Coactivator recruitment 

Coactivator recruitment is necessary for ER α action as coactivators mediate 

chromatin remodeling and the eventual recruitment of the transcription machinery. 

The main determinant of coactivator binding is the generation of surfaces on ER α 

that coactivators can interact with, which is promoted by binding of ligand. However 

many other criteria influence the recruitment of coactivators to a given promoter. The 

DBD signals allosterically to the LBD and, as a result, the sequence of the ERE bound 

influences the strength and nature of the interaction of coactivators with nuclear 

receptors (Wood et al., 2001;Hall et al., 2002). 
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Posttranslational modifications of ER α also modify coactivator interactions. Indeed, 

phosphorylation of serine 118 potentiates the interaction of ER α with the AF-1 

specific coactivators p68 and p72 (Endoh et al., 1999;Watanabe et al., 2001). 

Moreover, coactivators can be themselves subject to regulation. For instance 

SRC3/AIB1, a member of the p160 coactivator family, is phosphorylated in response 

to extracellular signals and this phosphorylation is necessary for its coactivator 

function with ER α (Wu et al., 2004). Phosphorylation of SRC3/AIB1 was also shown 

to relocate the coactivator to the nucleus, were it efficiently interacts with nuclear 

receptors (Wu et al., 2002).  

Other protein interactions can interfere with the binding to coactivators. A decoy 

coactivator, REA (repressor of estrogen receptor activity), can bind to liganded ER α 

and compete with SRC-1 preventing its recruitment (Montano et al., 1999). Likewise, 

coactivators can also compete with LxxLL-motif-containing orphan nuclear receptors 

SHP and DAX1, which bind the liganded ER LBD but do not have histone modifying 

activities and thus inhibit ER transactivation (Zhang et al., 2000;Johansson et al., 

2000). 

 

 Differential recruitment of coactivators by AF-1 and AF-2 

As mentioned previously, two distinct activation functions are responsible for the 

transcriptional activation achieved by ER α. The two AFs are very different in nature 

but rely on the recruitment of chromatin remodeling coactivators to function. The 

activity of the two AFs however are cell context and promoter dependent (Tora et al., 

1989b;Berry et al., 1990;Metzger et al., 1995;Merot et al., 2004). A given context can 

be AF-1 permissive, AF-2 permissive or allow both functions to transactivate.  
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To assess the AF permissiveness of a given cell and promoter context, truncated ERs 

lacking either AF function are used. Such studies determined a good correlation 

between an AF-1 permissive context and a context in which tamoxifen works as an 

agonist (Berry et al., 1990). This situation arises as tamoxifen, while able to inactivate 

AF-2 through the recruitment of corepressors, activates AF-1 by preventing the 

repressive interaction between the A and E domains (Metivier et al., 2002b). 

Consequently, cellular or promoter contexts where tamoxifen functions as an agonist 

attests to an AF-1 context. 

One ER dimer can accommodate one molecule of coactivator or one corepressor, with 

association mutually exclusive for each dimer (Margeat et al., 2001;Germain et al., 

2002). As AF-2 complexed with tamoxifen can bind corepressors at AF-2 or 

coactivators at AF-1, competition occurs between coactivators and corepressors in 

binding to tamoxifen-liganded ER α. When excess coactivator over corepressor is 

present, tamoxifen-liganded ER α dimers preferentially associate with coactivator, 

whereas in a context where corepressors are in excess, an ER α dimer will more likely 

bind corepressor. This model has been confirmed experimentally, where it was shown 

that the over-expression of SRC-1 in cells with an AF-2 context transformed 

tamoxifen from an antagonist into an agonist (Smith et al., 1997;Shang et al., 

2002;Fujita et al., 2002). Likewise, increasing or decreasing the levels or binding of 

the corepressors N-CoR or SMRT results in a respective decrease or increase of the 

agonistic activity of tamoxifen (Lavinsky et al., 1998;Fujita et al., 2003). 

The agonist activity of tamoxifen can also be modulated through phosphorylation of 

ER α. Phosphorylation of serine 305 by PKA is absolutely required to allow 

tamoxifen to induce agonistic activity, even in the presence of elevated levels of 

coactivators (Michalides et al., 2004). 
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Although certain coactivators associate with both AF-1 and AF-2, some coactivators, 

for example p68, are AF-1 specific. Although these coactivators are ubiquitously 

present in cells their recruitment is enhanced when ER α is phosphorylated on serine 

118 (Endoh et al., 1999;Watanabe et al., 2001). However, no strict correlation 

between the phosphorylation status of ER α and the AF permissiveness has been 

established. In conclusion, the activity of the two AFs in ER α are regulated through 

coregulator expression or availability and by post-translational modifications. 

 

 Ligand independent recruitment of coactivators: ligand-

independent activity 

Treatment of cells grown in the absence of ligand with dopamine, IGF-1and EGF 

results in activation of ER α (Smith et al., 1993;Bunone et al., 1996;Ignar-Trowbridge 

et al., 1996). An intact AF-1 is required for ligand independent activation of ER α 

(Bunone et al., 1996;Ignar-Trowbridge et al., 1996), which results from 

phosphorylation of the receptor. In response to extracellular signals, ER α becomes 

phosphorylated on several residues (Ali et al., 1993). Phosphorylation of serine 118, 

by MAPK, activates the receptor in a ligand independent manner, through recruitment 

of coactivators to AF-1 (Endoh et al., 1999;Metivier et al., 2002a;Deblois and 

Giguere, 2003;Dutertre and Smith, 2003c). Furthermore, the cyclin A/CDK2 complex 

phosphorylates serine 104 and serine 106, resulting in an enhancement of the activity 

of ER α in the presence and absence of ligand (Rogatsky et al., 1999). 

Other transcription factors, exemplified by cyclin D1 and the activated dioxin 

receptor, bind to unliganded receptor and recruit coactivators, thereby conferring 

ligand independency on ER α (Zwijsen et al., 1998;Ohtake et al., 2003). Finally, 
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overexpression of coactivators, such as SRC-1, also induces ligand-independent 

activation of ER α (Kalkhoven et al., 1998). 

As previously discussed, deletion of the A domain, which contains an intramolecular 

corepressor, allows recruitment of coactivator complexes to ER in AF-1 permissive 

cell contexts (Metivier et al., 2002d). It is therefore also possible that regulation of the 

interaction between the A and E domains results in ligand-independent activity of ER 

α. 

This notwithstanding, it is important to note that in the majority of studies conducted 

it is not possible to rule out the possibility that increases observed in transcriptional 

activity results from an increase in sensitivity to residual estrogens present in the 

growth medium, rather than a genuine ligand-independent activity. ER α is sensitive 

to low concentrations of estrogens and for that matter, it is known that estrogenic 

compounds can contaminate growth media for both yeast and mammalian cells 

(Mattick et al., 1997;Liu and Picard, 1998). 

 

4. Genomic organization and expression of ER α 

 

4.1. Genomic organization of the ER α gene. 

Our appreciation of the complexity of the ER α gene unit continues to increase as time 

passes. Since the cloning of the first human ER α cDNA in 1986 (Green et al., 

1986;Greene et al., 1986), numerous cDNA variants, divergent in their 5’ untranslated 

region (UTR), have been identified. This reflects alternative promoter usage and 

extends the number of exons associated with the generation of ER α mRNA. The 

availability of the human genome sequence has revealed that the promoter regions 
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associated with the ER α gene now spans ~ 300 kb, instead of the 140 kb initially 

thought (Kos et al., 2001). Most exons and their associated promoters, including 

upstream non-coding exons, are conserved between man and mouse and extend over a 

similar genomic stretch (figure 5B; Kos et al., 2001;Swope et al., 2002). 

 

Figure 5 Genomic organization of the ER α gene 

A. The coding region of ER α spans 8 exons. B. Both mouse and human ER α genes comprise multiple 

5’ untranslated exons. All these exons splice to a common acceptor splice site in exon one either 

directly or indirectly. Most of them are conserved between the two species. 

 

 

The coding sequence of ER α comprises 8 exons, numbered 1 to 8 (figure 5A). 

Upstream exons are designated with a letter (figure 5B). These 5’ non-coding exons 

generally splice to a common acceptor splice site located in exon 1. The most 
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proximal exon, exon A, is a component of exon 1. Further complexity exists with 

exons E1 and F, as they initially splice to exon E2 prior to splicing to the common 

splice site. Consequently, the resulting 5’ non-coding sequence is a hybrid between 

two or three non coding exons; the very 5’ sequence arising from promoter activity, a 

middle sequence derived from exon E2 and the 3’ sequence downstream from the 

common splice acceptor site of exon1. A similar situation occurs in mouse where 

exon F1 the ortholog of exon F splices to exon F2 before it slices to the common 

splice site (Kos et al., 2001). 

 

4.2. Multiple promoters and the transcriptional regulation of ER α 

expression 

Very little is known about the promoters both in terms of organization and regulation. 

Most ER α promoters do not display any obvious TATA box, CCAAT box, or GC 

box, although the testis specific promoter T1, contains all of these features (Brand et 

al., 2002). As a result, the start of transcription for each variant is relatively loose and 

ER α promoters tend to show a very weak activity in transcription assays (Kos et al., 

2001 ; our own unpublished data). 

Two studies have compared the expression of different variants in different tissues. 

Although a direct quantitative methodology of promoter usage was not employed in 

these studies, it was found that most promoters were used in most tissues tested 

(Flouriot et al., 1998;Kos et al., 2000). Apart from the E promoter in human or the H 

promoter in mouse which seem to be specifically employed in liver, the other variants 

show very little specificity (Flouriot et al., 1998;Kos et al., 2000). Interestingly, it was 

also found that variants detected in the same tissues were different between mouse 

and human. The A and B variants, which are the most abundant variants expressed in 
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human tissues, are absent from mouse tissues, with the most abundant in mouse being 

the C variant. 

In human A, B, C and F mRNA variants are regulated by E2, either in a positive or 

negative way, depending on cell type (Donaghue et al., 1999;Denger et al., 2001). In 

mammary epithelial cells, it was shown that the transcription factor AP2 gamma plays 

an essential role in ER α expression (Schuur et al., 2001). In MCF-7 cells, Akt kinase 

signals to the ER α B promoter, through negative regulation of the transcription factor 

FOXO3a to downregulate ER α expression (Guo and Sonenshein, 2004). However, 

despite these tantalizing reports, little is known of the extracellular signals, the 

promoters or transcription factors that direct cell-type specific expression of ER α. 

Moreover, in all studies on ER α promoter activity, weak intrinsic expression 

compromises detailed analysis of effects. 

 

4.3. Functional implications of alternative splicing and alternative 

promoter usage 

Almost every possibility of alternative splicing of ER α has been detected at the level 

of mRNA(Lu et al., 1999;Hirata et al., 2003). Alternative splicing and exon skipping 

of non-coding upstream exons and coding exons are known to occur. Relatively few 

of the resulting transcripts can be translated into a functional protein. Accordingly, 

despite the plethora of mRNA transcripts, only few proteins counterparts are known 

to exist. 

In human however it was found that upstream exons E and F can not only splice to the 

common acceptor splice site of exon 1 but also to the acceptor splice site of exon 2 

(Flouriot et al., 2000). The variant generated can be translated into a 46 KDa protein 

using two AUGs present in exon 2. These AUGs are present in a good Kozak 
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sequence for the promotion of ribosome assembly. The corresponding  protein has the 

C-terminal sequence of the full-length ER α but lacks the first 173 amino acids, 

including AF-1. As a result this ER α isoform exhibits dominant negative activities in 

cells where the AF-1 of ER α is used (Flouriot et al., 2000). 

 

4.4. ER α protein turnover 

Every protein in the cell is subject to renewal and constant degradation. Degradation 

of short-lived molecules like transcription factors is often effected by the ubiquitin-

proteasome pathway (Ciechanover et al., 1984;Pickart, 2004). ER α is no exception to 

the rule and is also ubiquitinated and degraded by the proteasome (Alarid et al., 

1999;El Khissiin and Leclercq, 1999;Nawaz et al., 1999). Ligand binding can 

incredibly shorten the half-life of ER α and accordingly increases receptor 

ubiquitination (Nawaz et al., 1999;Reid et al., 2003). Ligand-induced proteasome 

degradation is linked to transcription as transcription is required for ligand to target 

the receptor for proteasomal degradation (Lonard et al., 2000;Reid et al., 2003). 

Every nuclear receptor analyzed so far is downregulated in a protesome-dependent 

manner after ligand activation (Zhu et al., 1999;Hauser et al., 2000;Lin et al., 

2002;Blanquart et al., 2004). Likewise transcription factors are also targeted for 

proteasomal degradation upon activation by phosphorylation (Fuchs et al., 

2000;Bauer et al., 2002). This would point out towards a general mechanism coupling 

transcription and degradation. 

A common machinery is involved in the addition of a ubiquitin chain to a protein 

target. Only the E3 ligase is believed to be specific to the substrate and recognizes the 

target to be ubiquitinated (Pickart, 2004). No E3 ligase of ER α has been identified to 

date. However MDM2 was shown to catalyse the ubiquitination of the related 
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androgen receptor (Lin et al., 2002). In any case it seems unlikely that only one E3 

ligase regulates ubiquitination of ER α. The analysis of the turnover of p53 reveals 

that many E3 ligases can regulate the turnover of a given transcription factor (Dornan 

et al., 2004). 

The ER α antagonist ICI 182,780 can not only compete with estradiol for binding to 

the LBD, thereby preventing DNA binding and transcriptional activation but was also 

found to potently decrease the half life of ER α by targeting the receptor to 

proteasomal degradation (Dauvois et al., 1992;Wijayaratne and McDonnell, 2001). 

The fact that ICI 182,780 does not allow ER α to transactivate but still targets the 

receptor for proteasomal degradation which would suggest that at least two distinct 

mechanisms of turnover exist (Wijayaratne et al., 2001). 

Extracellular signals and signal transduction pathways were reported to affect 

proteasomal degradation of ER α. TGF β was shown to decrease ER α protein 

stability in a proteasome dependent manner in breast cancer cell lines (Petrel and 

Brueggemeier, 2003). Also, the kinase ERK 7 stimulates proteasomal degradation of 

ER α (Henrich et al., 2003). Conversely, activation of PKA by the Akt/Pi3K pathway 

protects the receptor from ligand-induced degradation (Marsaud et al., 2003;Tsai et 

al., 2004). 

 

5. Physiology of estrogens 

 

5.1. Ligand nature and availability 

Recruitment of coactivators occurs when ER α is complexed to one of its agonistic 

ligands. However, the levels of estrogens are not constant in an organism and vary 
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greatly throughout time. As a result ER α is not activated to the same extent sensing 

the variations in plasma E2 levels. 

The primary source of E2 in females is the ovary. Synthesis of E2 occurs from the 

aromatisation of androgens by the enzyme P450 Aromatase. Aromatase activity has 

also been detected in extragonadal tissues and most notably in the adipose tissue. 

Extragonadal sites would be the most important source of E2 in males and in females 

after the menopause when ovaries stop producing E2 (Simpson et al., 2000). Although 

there are several different estrogens produced by the body, including estrone and 

estriol as well as E2, they all act as agonists although they bind ER α with different 

affinities (Kuiper et al., 1997). 

The plasma levels of estrogens increase at puberty and vary thereupon throughout the 

menstrual cycle, estrogen levels being highest prior to ovulation (Gruber et al., 2002). 

At the menopause, depletion of the ovarian follicles leads to a steady decline in 

ovarian E2 production. In the male, although estrogens also play a physiological role 

nothing is known of the regulation of E2 production by extragonadal tissues. 

 

5.2. Estrogen function 

Deletion of both ERs or of aromatase that synthesizes estrogens from androgens has 

allowed a detailed characterization of estrogen function. The sterility phenotype of ER 

and aromatase knockouts confirmed the importance of estrogens in the reproductive 

function (Dupont et al., 2000). Estrogens however are not involved in morphogenesis 

or sex determination. Both male and female knockout mice develop normally up to 

puberty (Dupont et al., 2000). Differentiation of the reproductive tract is impaired in 

mice deficient for either ER but no other obvious phenotype could then be 

characterized. 
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At the menopause estrogen levels drop dramatically and is concomitant with several 

dysfunctions in non-reproductive tissues. Also, the existence of gender specific 

diseases not related to the reproductive function pointed out that estrogens could have 

a broad effect on non-reproductive function. Non-reproductive tissues affected by 

estrogens include most notably the brain, the vascular system and bone (Manolagas 

and Kousteni, 2001). 

Using mouse ER deficient mice, it was determined that most responses to estrogens 

are mediated by ER α. ER β plays a compensatory role in the ovary and in the 

osteoportective action of estrogens in females, and only shows an idiosyncratic 

function in the response to anxiety in female mice (Krezel et al., 2001). 

 

5.3. Tissue distribution of estrogen receptors 

The use of high activity radiolabeled estradiol allowed the identification of the main 

estrogen binding tissues. These corresponded to the main responsive tissues namely 

the uterus, the vagina and the anterior pituitary (Jensen et al., 1962;Jensen and 

DeSombre, 1972). Since then, a multitude of approaches have been used to detect ERs 

in tissues (Warner et al., 2003). The discovery of ER β prompted the comparison of 

the tissue distribution of the two ERs (Kuiper et al., 1996;Kuiper et al., 1997). This 

was done with sensitive techniques compared to the use of radiolabeled ligands 10-20 

years earlier and led to the identifcation of the ER protein or its mRNA in a plethora 

of tissues (Kuiper et al., 1997;Couse et al., 1997;Lemmen et al., 1999). In fact there 

might not be a single tissue or cell type that has not been shown to express either or 

both ERs. 

In addition, several transgenic mice strains containing a reporter gene under the 

transcriptional control of an ERE were developed (Nagel et al., 2001;Ciana et al., 
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2001;Toda et al., 2004;Lemmen et al., 2004). This approach allowed the identification 

of tissues in which ER α or ER β can be activated by its ligand and affect 

transcription. This method confirmed that many tissues are able to respond 

transcriptionally to estrogens consistent with the expression pattern of both ERs. 

These studies were however very divergent regarding the nature of the estrogen 

responsive tissues, questioning the relevance of these results. 

 

5.4. Non-reproductive sites of action: the example of bone 

 

 Bone Physiology 

The skeleton is formed of two different tissues; cartilage and bone. Each tissue has its 

own specialized cell types: the chondrocyte in cartilage and the osteoblast and 

osteoclast in bone. Bone is mainly formed of collagen fibers (type I collagen 

represents 90% of the total protein) that fix hydroxyapatite (calcium phosphate) 

crystals that compose mineralized bone. At the cellular level, the two cell types 

present in bone have opposite roles. The osteoblast deposits and mineralizes the bone 

matrix while osteoclast readsorbs bone. Osteoblasts and osteoclasts originate from 

different stem cell lineages, with osteoblasts derived from the mesenchymal lineage 

and osteoclasts belong to the hematopoeitic compartment (Karsenty, 1999). A balance 

between anabolism and catabolism is required for the maintenance of a healthy bone 

structure. Osteoblasts and osteoclasts are present in the same environment. 

Consequently, both cell types communicate to regulate each other’s differentiation 

and function. Bone is a dynamic tissue under constant renewal with new bone being 

made, opposing the continuous resorption. Local and systemic factors impact on bone 
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remodeling and affect bone density by regulating the function of either or both 

osteoblasts and osteoclasts. 

Skeletal development starts in the embryo with the formation of mesenchymal 

condensations that prefigure the future skeletal elements they will later form (Olsen et 

al., 2000). In the case of intramembranous ossification, cells from the mesenchymal 

condensations differentiate into osteoblasts that constitute part of the skull and the 

clavicles. For the other skeletal elements, the mesenchymal cells of the condensations 

differentiate into chondrocytes that constitute a cartilage anlage of future bones. The 

anlage becomes vascularized, with chondocytes subsequently replaced by osteoblasts. 

Bone cells therefore have different developmental origins depending on the skeletal 

element they construct. Bone cells have however very similar phenotypes independent 

of which part of the skeleton they come from.  

 

 Osteoblast differentiation 

Differentiated cells are characterized by a phenotype that mirrors their function. With 

osteoblasts, the most obvious terminal phenotype is an ability to deposit calcium 

phosphate crystals. Osteoblast progenitors can be isolated from bone and 

differentiated in vitro in a manner consistent with the in vivo process. Perhaps not 

surprisingly, one of the first extracellular markers present in differentiating 

osteoblasts is collagen type I, which is laid down as an extra-cellular matrix and 

constitutes the target structure for subsequent mineralization. Additional markers have 

been identified; namely alkaline phosphatase (ALP), which appears at the early stages 

of differentiation, and osteocalcin, which is expressed later, concomitant with 

mineralization (Owen et al., 1990;Aronow et al., 1990). The function of these two 
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secreted proteins is not clear but their expression is tightly linked to osteoblastic 

differentiation and as a result characterizes the osteoblast phenotype. 

Differentiation of a progenitor cell requires triggering of specific genetic programme 

that lead to the expression of proteins required to cell-type specific function. The 

induction of a genetic programme is controlled by extracellular cues and is transduced 

by transcription factors. Many transcription factors involved in osteoblast 

differentiation have been identified although the precise although their functional 

hierarchy is still poorly understood (Stains and Civitelli, 2003). The transcription 

factor Cbfa1 is absolutely required for osteoblast differentiation and bone formation. 

It is also sufficient to induce expression of osteoblast specific genes in ectopic cell 

types (Ducy et al., 1997). Cbfa1 acts in concert with other osteoblast-specific 

transcription factors such as osterix to induce osteoblast differentiation (Nakashima et 

al., 2002). 

The expression of CBFa1 is under control of extracellular signals that are affect bone 

formation Locally produced growth factors play a pivotal function in orchestrating the 

differentiation of osteoblasts. In particular, BMP’s (bone morphogenetic proteins) are 

the most efficient promoters of osteoblast differentiation known, with BMP-2 

stimulating preosteoblast proliferation, extracellular matrix production and eventually 

mineralization. It does so, at least partly, by stimulating both CBFa1 expression and 

function (Lee et al., 2000;Lee et al., 2002). Although it exerts complex effects in vivo, 

TGF β potently and consistently inhibits osteoblast differentiation in vitro (Centrella 

et al., 1994;Alliston et al., 2001). Moreover, TGF β promotes the expression of 

collagen type I by osteoblast precursors but prevents the proceeding of differentiation 

(Centrella et al., 1994). 
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Figure 6. Differentiation of mesenchymal progenitor cells 

Mesenchymal cells can differentiate into different cell types. Differentiation triggers the expression of 

a genetic programme characterized by the expression of lineage specific transcription factors leading to 

the expression of the differentiated phenotype. Myoblasts fuse to form multinucleated myocytes, 

adipocytes store lipid  drolplets, chondorcytes deposit a collagen type X extracellular matrix while 

osteoblasts deposit a collagen type I matrix (adapted from Stains et al., 2003) 

 

 

Osteoblasts arise from mesenchymal stem cells. These cells, when cultured ex vivo 

have the potential to differentiate into numerous cell types (figure 6). With different 

extracellular cues, mesenchymal stem cells can differentiate into myocytes, 

adipocytes, chondrocytes and osteoblasts. Differentiation is however exclusive and a 

cells do not usually expresses markers of two different cell types. Undifferentiated 

osteoblast progenitors have low levels of transcription factors involved in the 
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differentiation of myocytes, adipocytes, and osteoblasts (Garcia et al., 2002). With 

differentiation, osteoblasts suppress expression of markers of other cell types (Garcia 

et al., 2002). Osteoblast and adipocyte differentiation is exclusive with suppression of 

adipocyte differentiation resulting in an increase in osteoblast differentiation (Akune 

et al., 2004). 

Members of the TGF β family of cytokines are important regulators of mesenchyaml 

cell differentiation. Among them, the BMPs (bone morphogenetic proteins) are potent 

promoters of the osteoblast phenotype. BMP2 not only increases the differentiation of 

osteoblast but also directs multipotential mesenchymal cells towards the osteoblast 

lineage (Katagiri et al., 1994;Katagiri et al., 1997). The action of BMP2 on osteoblasts 

is mediated by Cbfa1 (Lee et al., 2003). On the other hand TGF β prevents the 

expression of osteoblast specific genes like ALP and osteocalcin although it promotes 

expression of collagen type I (Centrella et al., 1994;Alliston et al., 2001). It is also a 

general inhibitor of mesenchymal cells, preventing differentiation of adipocytes and 

myoblasts (Choy et al., 2000;Liu et al., 2001). 

 

 Estrogens and bone 

After menopause, the levels of serum sex steroids, including estrogens, become 

reduced. This reduction in estrogen levels is associated with a time dependent 

decrease in bone density, that can eventually result in osteoporosis (Riggs et al., 

2002). Postmenopausal bone loss can often be improved by estrogen treatment 

(Lindsay et al., 1976;Riggs et al., 2002). This effect made it clear that estrogens are 

involved in bone homeostasis. Additionally, gonadectomy in rodents is able to 

reproduce bone loss observed in postmenopausal osteoporosis, and is also prevented 

by estrogen replacement. Gonadectomy was thereafter used as a model for 
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osteoporosis. Both menopause and gonadectomy result in an increase in osteoclast 

and osteoblast activity with an imbalance towards resorption, progressively resulting 

in bone loss. This increase in bone turnover is ameliorated by estrogen treatment, 

which suppresses the activity of both osteoclasts and osteoblasts (Riggs et al., 2002). 

The function of estrogens and their receptors in bone homeostasis has been further 

investigated using knock-out mouse models deficient either in the estrogen 

synthesizing enzyme aromatase or in ER α or β (Oz et al., 2000;Sims et al., 

2002;Sims et al., 2003). The loss of both receptors or of aromatase in female mice 

mimicked the effects of ovariectomy (Oz et al., 2000;Sims et al., 2002;Sims et al., 

2003). In female, single ER knockout mice loose bone after ovariectomy, whereas the 

double knockout shows a reduced bone density that is not further decreased by 

ovariectomy. This suggests that the maintenance of bone density is mediated by the 

two ERs in female (Sims et al., 2003). In male orchidectomy also induces bone loss 

but the phenotypes are complicated by the involvement of androgens and the 

androgen receptor as both androgens and estrogens are important for bone 

maintenance (Sims et al., 2003). Upon overiectomy or orchidectomy, both osteoblasts 

and osteoclasts are activated increasing bone trunover. Estrogen treatment of 

overiectomized or orchidectomized mice results in a decrease in activity of both 

osteoblasts and osteoclasts. This osteoprotective effect is mediated essentially by ER 

α in female mice, ER β playing a small redundant role (Sims et al., 2003). In males, 

only ER α mediates the osteoprotective effect of estrogens (Sims et al., 2003). 

However it is not possible from these studies to know whether the osteoprotective 

action of estrogens affects bone directly or if intermediary systems are involved. In 

this regard, targeted, cell type specific knockouts will be very informative to 

determine the cell types mediating this effect. 
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At high doses, estrogens not only prevent gonadectomy-induced bone loss but also act 

to increase bone density, even in intact animals. This anabolic response to estrogens 

solely relies on ER α in both males and in females (McDougall et al., 

2002;McDougall et al., 2003). This effect, as opposed to osteoprotection, is mostly 

mediated by an increase in osteoblast function (Samuels et al., 1999). Although cell-

type specific knockouts would confirm whether this effect is direct or indirect, an 

earlier study indicates that the anabolic effect of high estrogen doses is direct, as it 

affects bone density locally (Takano-Yamamoto and Rodan, 1990). However it might 

not be possible to extrapolate from this result to mice as the osteogenic response in 

rats is achieved with lower concentrations of estrogens as opposed to the 

supraphysiological concentrations needed in mice to elicit this response (Turner, 

1999). As a result the osteogenic response in mouse and rat might occur through 

distinct processes. 

 

 Estrogens and osteoblasts 

There is considerable debate about the expression of functional estrogen receptors in 

osteoblasts. Although estrogen binding sites have been reported (Komm et al., 

1988;Eriksen et al., 1988), the number of binding sites in osteoblasts are however 

very low ranging from a few hundred to a thousand sites per cell, as compared to 

known estrogen target tissues like uterus which comprise 15,000 sites/cell (Eriksen et 

al., 1988;Davis et al., 1994). Still, the number of binding sites in osteoblasts is 

significantly higher than in fibroblasts (Eriksen et al., 1988). In addition to the full 

length receptor, the N-terminally truncated 46 KDa isoform of ER α was detected in 

primary human osteoblasts at similar levels as full length receptor (Denger et al., 

2001). The receptors present in osteoblast are anticipated to be functional and 



 47

correspondingly could activate an exogenous estrogen responsive reporter gene (Ernst 

et al., 1991). It is not clear however whether the expression level of ER α in 

osteoblasts would be sufficient to allow the mediation of estrogen effects in vivo 

(Karsenty, 1999). 

ER α mRNA was found to be upregulated on development of the osteoblast 

phenotype (Bodine et al., 1998;Wiren et al., 2002;Bonnelye and Aubin, 2002). This 

observation indicated that ER α is expressed specifically in osteoblasts and that its 

expression is part of the osteoblast differentiation programme. The involvement of ER 

α in osteoblast function was further pointed out by the fact that it can interact with the 

osteoblast transcription factor Cbfa1, thereby enhancing its transcription activation 

(McCarthy et al., 2003). 

In terms of response estrogens conflicting reports exist. Estrogens could slightly 

enhance differentiation of osteoblasts cultured ex vivo while others report that 

estrogens had no effects on osteoblast differentiation (Keeting et al., 1991;Scheven et 

al., 1992;Qu et al., 1998). Estrogens have also been reported to promote osteoblast 

differentiation of mesenchymal stem cells as opposed to adipocytic differentiation 

(Dang et al., 2002;Okazaki et al., 2002). 

Although ER α is present in osteoblasts and estrogens can have a mild effect on 

osteoblast differentiation ex vivo it is not sure to what extent these results are 

physiologically relevant. It is also not sure whether ER α expression is specific to 

osteoblast considering the broad expression pattern that has been described. 
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Since their involvement in post-menopausal osteoporosis has been identified, 

estrogens have been shown to be crucial for bone homeostasis. Estrogens can affect 

both osteoblast and osteoclast function in the bone environment. ER α is present in 

osteoblasts and it was suggested to affect directly osteoblast growth and function. 

ER α expression is also upreglated during osteoblast differentiation and it can interact 

with osteoblast specific transcription factors. This made it clear, that ER α was as a 

transcription factor involved in osteoblast function. 

Nothing was known about the specificity and regulation of the 7 ER α promoters. 

osteoblasts presented the unique advantage of keeping their phenotype in vitro and of 

growing as a very homogeneous cell population. As a result, osteoblasts would have 

been ideal to examine the specificity of ER α promoter(s) usage. Confident that ER α 

expression was under the control of osteoblast specific factors, I was therefore 

planning to identify the promoter(s) responsible for osteoblast specific expression to 

then further study their regulation. 

I planned to develop an in vitro assay for osteoblast differentiation using cell lines for 

molecular studies and confirm the results obtained with mouse primary osteoblasts. I 

then wanted to develop assays that would allow detection of ER α mRNA, protein and 

activity in osteoblasts. To control for the specificity of ER α promoters in osteoblasts, 

I also wanted to use the ability of mesenchymal stem cells to differentiate into other 

cell types. 

As desribed below, as I developed the experimental system, many surprises came 

along that challenged many of the beliefs I had when I started this project. 
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 Results 
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1. In vitro differentiation of an osteoblastic cell line and of 

primary osteoblasts 

 

Several tissue culture systems have been developed to study osteoblast differentiation 

in vitro. Several osteogenic cell lines are available and it is also possible to work with 

primary cells, which can be obtained from newborn mouse calvaria by serial 

enzymatic digestions or flushed from the bone marrow of new born and adult mice. 

Committed osteogenic cells can develop the osteoblast phenotype in vitro with 

increasing cell contacts (Owen et al., 1990). A few days after confluency has been 

reached, osteogenic cells increase production of collagen type I, which constitutes the 

basic extracellular component of bone matrix. The deposition of a collagen matrix is 

followed by the deposition of non-collagenous proteins like alkaline phospahtase 

(ALP) and osteocalcin (Owen et al., 1990). The addition of ascorbic acid and of a 

phosphate source such as β-glycerophosphate allows osteoblasts to mineraliz the 

depositied collagen matrix (Owen et al., 1990;Aronow et al., 1990). 

Three histochemical markers, followed over time, were used to determine the purity 

of cultured osteoblasts and their ability to differentiate. ALP, an early differentiation 

marker, was monitored using a colorimetric assay. Additionally, the Van Giesson and 

Von Kossa assays were used to stain the extracellular collagen matrix and 

mineralization respectively. 

The three cellular systems mentioned earlier, available to study osteoblast 

differentiation in vitro were evaluated for their ability to grow and differentiate in 

vitro. The isolation of mouse bone marrow mesenchymal stem cells from adult mice 

proved difficult. Cellular survival was low as was the purity of cultures as determined 
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by alkaline phosphatase expression (data not shown). Consequently, this procedure 

was not used. 

 

Figure 7. In vitro differentiation of mouse primary osteoblasts and of 2T3 cells 

A. Primary mouse osteoblasts and B. 2T3 cells were monitored for differentiation using three different 

stains. The ALP is stained in purple. The orange Van Giesson stain shows the extracellular collagen 

matrix while the silver nitrate Von Kossa assay stains in black mineralized bone nodules. 

Differentiation occurs with growing cells contacts and is first characterized by the apparition of ALP 

positive cells. The deposition of the collagen matrix is followed by its mineralization. 
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Mouse calvarial osteoblasts have been extensively used ex vivo to study the genetics 

of osteoblasts as they recapitulate the in vivo differentiation process. Indeed, a bone 

phenotype resulting from a cell-autonomous osteoblast defect, is usually mirrored by 

deficient in vitro differentiation of calvarial osteoblasts (Li et al., 2000;Kim et al., 

2003;Kenner et al., 2004). The development of the osteoblastic phenotype in mouse 

calvarial osteoblasts is shown in figure 7A. Alkaline phosphatase expression was first 

detected 2 days after confluency was achieved. Most cells became alkaline 

phosphatase positive 8 days after confluency. Addition of β-glycerophosphate and 

ascorbic acid allowed the cells to mineralize the collagen matrix. The first collagen 

nodules (orange stain) were readily detectable 4 days post confluency. The matrix 

became more visible by day 10 and became mineralized 15 days after confluency, as 

detected by the dark silver staining. 

Osteogenic cell lines are more amenable than primary osteoblasts to generate the 

number of cells required for molecular studies; moreover, they can easily be 

transfected. The mouse 2T3 cell line has been shown to function like primary 

calvarial osteoblasts, and differentiates into osteoblasts after confluency is reached 

(Ghosh-Choudhury et al., 1996). The kinetics of differentiation and mineralization of 

the 2T3 line were assessed, as previously described for primary osteoblasts (figure 

7B). ALP positive cells were first detected 2 days after confluency. At day 4, most 

cells were ALP positive and remained positive throughout the assay period. Collagen 

nodules were first detectable at day 2 and became mineralized from day 8 with 

mineralization increasing to day 10. 

These results indicate that both 2T3 cells and primary calvarial cells differentiate into 

mineralizing osteoblasts in vitro. 2T3 cells, however, are entirely homogeneous, 

synchronized and differentiate to osteoblasts more quickly. In light of these 
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observations, we therefore chose to utilize the 2T3 cell line preferentially in the 

following experiments but to verify key results, when possible, with primary 

osteoblasts, to exclude artifacts arising from use of an immortalized cell line. 

 

2. ER alpha expression in osteoblasts 

 

2.1. Characterisation of ER α protein isoforms in osteoblasts 

The mouse ER α gene generates multiple mRNAs and protein products through 

alternative promoter usage and alternative splicing (Kos et al., 2000). In addition to 

the full-length ER α of 66 KDa, shorter isoforms have been characterized both at the 

protein and mRNA levels. Notably, two in frame ATGs located in exon 2, generate a 

46 KDa protein. In man, this isoform is produced through splicing of exon F to exon 2 

and also by internal ribosome entry (Barraille et al., 1999;Flouriot et al., 2000). 

Interestingly, expression of ER α 46 in human primary osteoblasts occurs at the same 

level as full-length ER α (Denger et al., 2001). Although the 46 KDa protein isoform 

of ER α has never been detected in mouse, its corresponding transcript has been 

identified and the two ATGs are conserved between human and mouse exon 2 

(Denger et al., 2001).  

To evaluate whether ER α or any of its shorter isoforms were expressed in osteoblasts, 

western blot analysis was performed using a mouse specific ER α C-terminal antibody 

(MC-20) of cell extracts prepared from differentiated ALP positive (6 days post-

confluency) 2T3 cells. Mouse uterus cell extracts that contain high levels of ER α and 

in vitro translated mouse ER α (mER α) 66 kDa and 46 KDa were used as controls. In 

order to identify non-specific immunoreactive products, cell extracts from the murine 
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fibroblastic NIH 3T3 cell line were also analysed. NIH 3T3 cells are ER α negative 

and do not support expression of estrogen responsive reporter constructs (Castoria et 

al., 1999). 

Three major immunoreactive species were detected by MC-20 in 2T3 cell extracts 

(figure 8A and B). A doublet running approximately at the same size as full-length 

ER α as compared to in vitro translated full length mER α or from uterus extracts, 

with another band migrating above 49 KDa. A very faint product migrated at the same 

size as the in vitro translated 46 KDa isoform of mER α (figure 8A). The product 

migrating above 49 KDa is unlikely to be derived from mER α as it is present in the 

ER α negative NIH 3T3 cells.  

ER α specifically associates with agonists (e.g. β-2-estradiol (E2)) and antagonists 

(e.g. ICI 187,780) in the ligand binding domain, located in the C-terminal half of the 

protein. Binding of either E2 or ICI 187,780 specifically targets the receptor for 

proteasomal degradation and decreases receptor half-life from 4-5 h in the absence of 

ligand to ~3 h on binding of E2 and to 30 min in the presence of ICI 187,780 

(Dauvois et al., 1992;Wijayaratne et al., 2001). This property was used to ascertain 

that the bands observed corresponded to ER α. Figure 8B shows that in 2T3 cells, 

treatment with E2 or with ICI 182,780 for 24 h induced a reduction in the doublet at 

66 KDa. The unspecific lower product was however not affected by any of the 

treatments showing that this effect is specific. As previously reported (Alarid et al., 

1999;El Khissiin et al., 1999;Nawaz et al., 1999), co-treatment with the proteasome 

inhibitor MG 132 blocked downregulation of ER α by E2 and ICI 182,780 (figure 

8B). This indicates that ligand-induced downregulation of the 66 KDa doublet is 

indeed dependent on proteasome activity. 
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Figure 8. Western blot analysis of mER α in osteoblasts 

A. western blot analysis of in vitro translated (IVT) mER α 46 and 66 KDa isforoms, mouse uterus 

protein extracts (Ut), mER α negative NIH 3T3 cells and differentiated day 6 2T3 cells. B. Western 

blot analysis of mER α in 2T3 cells treated with E2 and the antagonist ICI 182,780 (ICI) run alongside 

uterus extracts (Ut). Ligand-induced degradation was blocked using the proteasome inhibitor MG 132. 

Equal cell number (600,000) was loaded in each lane for 2T3 cell extracts C. Western blot analysis of 

endogenous mER α in day 6 2T3 cells with the N-terminal H-184 antibody and the C-terminal MC-20 

antibody. Transfected HA-tagged mER α was detected using an HA antibody (H-11). The 64 and 49 

KDa marks correspond to marker sizes. 
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The two bands migrating at 66 KDa may arise either from different transcripts or by 

post-translational modification. This was addressed by expressing epitope tagged 

transgenes of ER α in 2T3 cells. If post-translational modification gives rise to the 

different migratory forms of ER α, the tagged version should also appear as two 

forms. Conversely, the occurrence of a single migratory epitope tagged species would 

indicate that alternative transcripts or alternative translational events give rise to two 

species of slightly different molecular weight. Constructs expressing ER α, tagged N 

or C-terminally with a single HA epitope, were transfected into 2T3 cells, which were 

then analyzed 6 days after confluency occured. The two constructs had the same 

transactivation ability as wild type (WT) mER α showing that the tags did not affect 

receptor function (data not shown). In contrast to endogenous ER α, expression of the 

tagged ER α in day 6 2T3 cells did not exhibit dimorphism (figure 8C). In addition, 

we used an antibody (H-184) raised against the first 184 amino acids of ER α. This 

antibody detected only one immunoreactive band by western blot with differentiated 

2T3 samples (figure 8C). 

Together, these results indicate that ER α is expressed in mouse osteoblasts in two 

forms whose size is around 66 KDa. Both species have biochemical characteristics of 

ER α as they are specifically degraded by the proteasome after treatment with ER 

specific ligands. As only one of the two species reacts with an N-terminal antibody 

the unreactive species would differ with its N-terminus from full length ER α. The 

difference in migration is unlikely to be due to post-translational modification of the 

full-length receptor, as transfected HA-tagged ER α appeared as a single migratory 

form. These results suggest that osteoblasts express two isoforms of ER α that are of a 

similar size as known full-length ER α but would differ in their N-termini. The 46 

KDa isoform of ER α that was previously detected in human osteoblasts was not 
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readily detectable in mouse osteoblasts and is unlikely to play a significant role as 

compared to the other forms of mER α. 

 

2.2. The expression of ER α in osteoblasts is not sex specific 

Estrogens and their receptors are generally regarded as female specific. However, in 

non-reproductive tissues, such as bone, the effects of estrogens do not depend on the 

sex of the animal (McDougall et al., 2002;McDougall et al., 2003;Sims et al., 2003). 

We confirmed this observation through comparing the expression of ER α in 

differentiated male and female primary osteoblasts. Male osteoblasts did not differ 

phenotypically from female osteoblasts and had similar differentiation kinetics in 

vitro (data not shown). As shown in figure 9, no difference exists in ER α expression 

between male and female osteoblasts, indicating that the expression of ER α in 

osteoblasts is not sex specific. 

 

Figure 9. Expression of mER α in male and female mouse primary osteoblasts. 

Western blot analysis of mER α using the C-terminal antibody MC-20. Protein extracts were obtained 

from in vitro differentiated male and female primary osteoblasts 10 days after confluency. 600,000 

cells were loaded in each well. 
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2.3. ER α expression in osteoblasts is low compared to uterus 

One function of estrogens is to induce endometrial proliferation prior to implantation 

of fertilized eggs. Uterus is a direct target tissue of estrogens and ER α is absolutely 

required for this process (Dupont et al., 2000). Consequently, large amounts of ER α 

are present in the different cell types of the uterus (Jensen et al., 1972). The 

comparative level of ER α expression in extracts prepared from female mouse 

osteoblasts and from mouse uterus was estimated by western blot analysis. Loading 

was normalized to DNA content rather than protein content, thereby ensuring that 

identical cell numbers were analysed in this comparison. As shown in figure 10, ER α 

expression is, although detectable, negligible in osteoblasts as compared to the large 

quantity detected in uterus. 

 

Figure 10. Comparative expression of mER α in osteoblasts and in uterus 

Osteoblast protein extracts were from differentiated female primary osteoblasts 10 days 

postconfluency. Whole Uterus were dissected from 6 day-old female mice and protein extract prepared 

from them. 100 µg of osteoblast protein were loaded as reference. The amounts of samples loaded were 

normalized to DNA content to insure that each well contained the same number of cells.  

 



 60

3. ER alpha expression during osteoblast differentiation 

 

3.1. ER α expression increases with osteoblast differentiation 

The onset of osteoblast differentiation reflects the activation of a genetic programme 

in which transcription factors and structural proteins are sequentially induced. One of 

the earliest events, is the apparition of the transcription factor Cbfa1 which triggers 

the ordered expression of the osteoblast phenotype together with other transcription 

factors (Stains et al., 2003). Interestingly, in rat and man, ER α protein levels were 

also reported to increase with osteoblast differentiation, raising the possibility that ER 

α expression is integrated in an osteoblast specific differentiation programme (Arts et 

al., 1997;Bodine et al., 1998;Wiren et al., 2002). 

We therefore wanted to evaluate the kinetics of ER α expression throughout the 

differentiation process and functional activity of osteoblast derived from animals or 

from 2T3 cell line. Total protein was isolated from 2T3 cells one day before 

confluency and 4 and 6 days post confluency and one day before confluency and 10 

days postconfluency for primary osteoblasts. Protein prepared from an equal number 

of cells was loaded with β-actin used as a loading control. 2T3 and primary osteoblast 

protein extracts contain the same immunoreactive doublet at 66 KDa (figure 11A). 

The ER α doublet was visible in undifferentiated subconfluent primary osteblasts and 

2T3 cells. In 2T3 cells, expression of the mER α doublet increased from day -1 to day 

4 slightly decreasing at day 6. Increase in mER α expression also occurred between 

day -1 and day 10. 

To determine if increased ER α protein correlates with increased mRNA expression, 

total RNA from undifferentiated and differentiated 2T3 cells, one day prior to 
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confluency and 2,4 and 6 days after confluency, was isolated and quantitative RT-

PCR performed using primers encompassing exons 5 and 6 (figure 11B). ER α 

mRNA does indeed increase with differentiation, with a 5-fold increase in ER α 

mRNA occurring, paralleling increased protein levels. 

 

Figrue 11. mER α expression during osteoblast differentiation 

A. Western blot analysis of mER α during osteoblas differentiation. Equal number of cells (600,000) 

was loaded per well and even loading was controlled with an anti-β-actin antibody. mER α protein 

expression was assessed with MC-20 in undifferentiated and differentiated 2T3 cells. Day –1 2T3 cells 

and primary osteoblast are ALP negative while day 4 and 6 2T3 cells and day 10 are mostly ALP 

positive. B. RT-PCR analysis of mER α mRNA expression throughout osteoblast differentiation of 2T3 

cells. Primers were located in exon 5 and 6. Expression of mER α transcript increased during 

differentiation as opposed to expression of GAPDH transcript. 
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In conclusion, ER α expression increases with osteoblastic differentiation at the 

mRNA and protein levels. Expression of both protein isoforms at 66 KDa is 

upregulated with differentiation. It is however, not possible to say if upregulation is a 

direct consequence of differentiation or if the observed increase arises from non-

specific effects, such as the increased cell contact that occurs between cells as 

confluency is achieved. 

 

3.2.  Inhibiting osteoblast differentiation with TGF β does not 

impair ER α expression 

To distinguish between the possibilities that ER α is specifically up-regulated during 

osteoblast differentiation and that it is regulated by other unspecific signals, we made 

use of the impact TGF β has on osteoblast differentiation. TGF β plays indeed a 

central role in the regulation of osteoblast differentiation. Although it increases type I 

collagen production in prevents terminal differentiation and expression of ALP and 

osteocalcin (Centrella et al., 1994;Alliston et al., 2001;Sowa et al., 2002). TGF β 

however does not promote the differentiation of mesenchymal cells into other cell 

types, but acts as a general inhibitor of mesenchymal cell differentiation (Choy et al., 

2000). Although the action of TGF β on proliferation varies, depending on the origin 

of the osteogenic cells, there appears to be no direct connection between the effects of 

TGF β on differentiation and proliferation (Centrella et al., 1994). As TGF β is able to 

specifically target differentiation, it can be used to dissociate the development of the 

osteoblast phenotype from the increase in cell contacts and thereby determine if ER α 

expression is linked to differentiation. 

As seen on figure 12A, ALP expression and mineralization of 2T3 cells are both 

inhibited after continuous treatment with TGF β. In contrast, a single 24 hours of TGF 
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β treatment did not affect ALP expression in day 6 osteoblasts (figure 12A). To 

determine the effect of TGF β on 2T3 cell proliferation, cell number was assessed by 

quantifying DNA amounts. Although continuous TGF β treatment slightly increased 

cell numbers in the early stages of culture, it did not have any significant effect on cell 

number in postconfluent cells (figure 12B). 

The effect of TGF β treatment on the expression of ER α was then determined. To 

differentiate between possible direct effects of TGF β on ER α expression and the 

effects linked to TGF β induced changes in the differentiation status of the cells, 

protein were isolated both from 24h treated cells and from continuously treated cells. 

As seen earlier, ER α expression increased between day –2 and day 6 with respect to 

confluency (figure 12C). TGF β had indeed an effect on mER α protein expression 

that was unrelated to osteoblast differentiation. A 24h treatment of subconfluent 2T3 

cells or 6 days postconfluency induced a downregualtion of ER α (figure 12C). 

Continuous TGF β treatment for 6 days however did not affect ER α expression 

(figure 12C). Although differentiation is blocked with continuous (6 days) TGF β 

treatment there is no variation in ER α expression. 

The analysis of these results is complicated by the fact that ER α expression is the 

target of TGF β independently of osteoblast differentiation. Still, expression of mER α 

increases from day -1 to day 10 whether or not the cells are continuously treated with 

TGF β, that is whether the cells are ALP positive or not. As a result we can conclude 

that ER α expression does not correlate with the expression ALP, raising the 

possibility that ER α expression is not linked to osteoblast differentiation. 
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Figure 12. Inhibition of osteoblast differentiation with TGF β does not affect ER α expression 

A. Differentiating 2T3 cells in the presence or absence of TGF β were submitted to a colorimetric ALP 

assay. Subconfluent undifferentiated 2T3 cells (-1) do not express ALP. At day 6 2T3 cells are ALP 

positive (+6), continuous TGF β (5 ng/ml) treament (+ 6 days) inhibits ALP expression. A transient 24 

hr TGF β treatment (+ 24h) does not affect ALP expression. B. Cell number during 2T3 cells 

osteoblastic differentiation was assessed by quantifying DNA and shows that TGF β does not affect 

significantly cell number. C. Protein were isolated from 2T3 cells one day prior to confluency and 6 

days after confluency, run alongside uterus (Ut) extract, and submitted to western blot analysis using 

MC-20. Equal cell number (600,000) was loaded in each well. Legend is as in A. 
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TGF β induced down-regulation of endogenous ER α has been previously 

reported in several breast adenocarcinoma cell lines (Stoica et al., 1997;Petrel et 

al., 2003). However, this is the first report of TGF β induced down regulation of 

ER α expression in osteoblasts. This effect will be discussed later in more detail. 

In contrast, exposure to continuous TGF β treatment that blocks osteoblastic 

differentiation does not impair ER α expression. The discrepancy between the 

effect of a single 24h TGF β treatment and that of a continuous treatment can be 

explained by the fact that TGF β induces inactivation of its receptors and 

components of its signaling pathways (Zhang and Laiho, 2003;Shi and Massague, 

2003). A single TGF β treatment will directly and reversibly downregulate ER α 

while continuous TGF β prevents osteoblastic differentiation and also inactivates 

its signalling. As a result, continuous TGF β treatment is ineffective at 

downregulating ER α. 

 

3.3. ER α expression during osteoblastic and myogenic 

differentiation of C2C12 cells. 

The use of TGF β does not dismiss the possibility that expression of mER α in 

osteoblasts occurs in the early steps of differentiation prior to ALP expression. To 

determine whether mER α expression is genuinely osteoblast specific we used the 

ability of mesenchymal progenitor cells to differentiate into several cell-types. Indeed, 

pluripotential mesenchymal cells can not only differentiate into osteoblasts but also 

into adipocytes, myoblasts or chondroblasts (Phinney et al., 1999;Pittenger et al., 

1999). C2C12 cells are a well-characterized mesenchymal cell line, which can 

differentiate into osteoblasts in the presence of BMP2, although they preferentially 

differentiate into myoblast (Katagiri et al., 1994). High doses of BMP2 are required to 



 66

redirect C2C12 cells towards the osteoblastic lineage while they spontaneously fuse 

into myotubes in low serum medium (Katagiri et al., 1994). The resulting population 

produces an extracellular collagen matrix and express specific osteoblast 

differentiation markers, including Cbfa1, ALP and osteocalcin (Katagiri et al., 

1994;Lee et al., 2000;Maeda et al., 2004). We therefore used the dual differentiation 

potential of C2C12 cells to further evaluate the association of ER α expression and 

osteoblastic differentiation. 

C2C12 cells were grown to confluency whereupon the serum content of the growth 

medium was lowered from 15% to 5%. Under these conditions, C2C12 differentiated 

spontaneously into multinucleated myotubes. Subconfluent undifferentiated cells were 

neither multinucleated nor did they express ALP (figure 13). Figure 13A shows that 

the first multinucleated myotubes appeared 3 days after confluency while most cells 

had fused into myotubes at day 6. Nonetheless, C2C12 cells induced to differentiate 

into myoblasts did not express ALP either at day 3 or day 6 (figure 13A). In contrast, 

the addition of 300 ng/ml BMP2 at confluency induced osteoblastic differentiation. 

ALP was expressed by most cells at day 3 and day 6 and no multinucleated myoblasts 

were visible (figure 13A). Transient 24h treatment with BMP 2 did not reverse the 

formation of myotubes although it induced ALP expression in a few cells (figure 

13A). 

 

 

 

 

 

 



 67

 

Figure 13. mER α expression during osteoblast and myobast differentiation of C2C12 cells. 

A. The upper panel shows ALP assay of differentiating C2C12 cells in the presence or absence of 

BMP2 (300 ng/ml) up to 6 days after confluency. The lower panel is a close up of the wells presented 

in the upper panel. In the absence of BMP2, C2C12 cells differentiate into multinucleated myoblasts 

and do not express ALP. Transient 24h BMP2 treatment at day 3 and day 6 only induces a few cells to 

express ALP. Continuous BMP2 treatment induces ALP expression and no multinucleated myoblasts 

are visible. B. Western blot analysis of mER α using MC-20. Proteins were isolated at the different 

stages showed in A. 100 ug of protein loaded in each well for C2C12 cells and run alongside uterus 

sample (Ut). 
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ER α was detectable in C2C12 cells. Like for TGF β however, BMP2 treatment 

induced a decrease in ER α expression that was independent of the differentiation 

status of C2C12 cells (figure 13B). 24h treatment of C2C12 cells at day -1 and day 3 

dramatically decreased the levels of mER α protein, the same occurred at day 6 but to 

a lesser extent. A three-day continuous treatment with BMP2 was also able to reduce 

the level of mER α but not as much as a 24h treatment. Most importantly, a 6 day 

long BMP2 treatment did not affect the levels of mER α as compared to untreated 

cells. This last result shows that untreated C2C12 cells that have a myoblastic 

phenotype express as much mER α as ALP positive C2C12 cells. Although the 

expression of ER α increased between day -1 and day 6, the increase was not a 

specific consequence of osteoblast differentiation (figure 13B). 

As for TGF β, BMP2 is able to downregulate mER α independently of the 

differentiation phenotype. Similarly, continuous treatment attenuates the BMP2-

induced downregulation of ER α as BMP2 is less capable of downregulating mER α 

after three days of treatment and has no effect after 6 days of continuous treatment. 

The fact that continuous BMP2 treatment fails to affect mER α expression suggests 

like for TGF β that BMP2 inactivates its own signalling. BMP2 and TGF β, although 

they have divergent effects on mesenchymal cell differentiation, belong to the same 

family of cytokines and have a common mechanism of action and share common 

effectors (Lee et al., 2002;Lai and Cheng, 2002;Shi et al., 2003). 
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4. Estrogen receptor transcriptional activity in mouse 

osteoblasts 

 

4.1. The transcriptional activity of the estrogen receptor increases 

with differentiation and displays high levels in the absence of ligand 

ER α is expressed in osteoblasts, and its expression increases with differentiation 

(figure 5A). We then wished to define if ER α in osteoblasts is transcriptionally active 

and if transcriptional activity correlates with expression level. 

To monitor mER α transcriptional activity, we first isolated primary mouse 

osteoblasts from newborn transgenic mice that express β-galactosidase under the 

control of three tandem EREs (Nagel et al., 2001). The isolated osteoblasts 

differentiated in vitro as monitored by ALP activity, and ER α protein expression 

increased with differentiation, as observed with wild-type osteoblasts (figure 14A). ß-

galactosidase activity was determined in undifferentiated subconfluent and in 

differentiated osteoblast cell extracts. As ICI 182,780 not only competes with E2 in 

binding to ER but also targets the receptor for proteasomal degradation, the values 

obtained were nomalized to that of ICI 182,780 treated cells. Figure 14A shows that 

in subconfluent cells there is no difference in the induction of β-galactosidase activity 

in the presence of E2 as compared to ICI 182,780. However, in differentiated primary 

osteoblasts, a significant increase in activity occurs with both vehicle and E2 

treatments, as compared to ICI 182,780 treated cells. Surprisingly, no significant 

induction of β-galactosidase activity by E2 occurred, as compared to treatment with 

vehicle alone. 
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Figure 14. Estrogen receptor transcriptional activity in osteoblasts 

Cells were allowed to differentiate in vitro. Protein expression of mER α was assessed by western 

blotting with the H-184 antibody. The transcriptional output of mER α was assayed for the 

corresponding reporter after 24h treatment with vehicle, 10 nM E2 or 0.1 µM ICI 182,780. Activity is 

represented as fold of ICI 182,780 treated cells. A. Primary osteoblasts were isolated from transgenic 

mice containing a β-galactosidase (β-Gal) transgene under the control of 3 EREs and the minimal Tk 

promoter. Primary cells were analyzed for β-Gal activity at subconfluency or 10 days postconfluency. 

B. 2T3 cells were transfected with the ERE-tk-luciferase reporter 48h before harvest. Cells were 

analyzed for luciferase activity and activity was normalized to transfection efficiency with renilla 

activity. 
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These findings were then confirmed in 2T3 cells, transiently transfected with an 

estrogen responsive ERE-tk-luciferase construct, either at subconfluency or 5 days 

post confluency. Luciferase activity was again normalized to the mean values 

obtained from cells treated with ICI 182,780. As with primary osteoblasts in 

undifferentiated, subconfluent cells., reporter expression does not increase 

significantly above that of ICI 182,780 treated cells (figure 14B). In contrast, 

luciferase activity in differentiated 2T3 cells is significantly higher in both vehicle and 

E2 conditions than in cells treated with ICI 182,780 (figure 14B). 

The increase in transcriptional activity monitored in osteoblasts with respect to 

differentiation is likely to be consequent on the elevation of mER α levels that occurs. 

However, ligand dependent steroid receptors are generally not active in the absence of 

ligand. In contrast, orphan receptors known as estrogen related receptors (ERRs) bind 

to EREs and activate transcription in the absence of any estrogens. One of them, ERR 

α has been shown to be active in osteoblasts (Bonnelye et al., 2001). However, 

because their ligand binding domain cannot accommodate ligand, ERRs do not bind 

and therefore are not inhibited by ICI 182,780 (Vanacker et al., 1999). The results 

presented are normalized to activities seen when cells are treated with ICI 182,870, 

where a significant increase is seen in the absence and presence of E2. ERRs are, as a 

result, unlikely to be responsible for transcriptionally activating ERE dependent 

expression in osteoblasts. 

 

4.2. ER α shows high activity in the absence of ligand in 2T3 cells. 

The activity activity of estrogen responsive reporters showed high activity in the 

absence of ligand. To determine if ER α could activate responsive promoters in the 

absence of ligand, a construct expressing mER α was co-transfected with ERE-tk-
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luciferase reporter construct into subconfluent 2T3 cells. While sub-confluent, these 

cells express little ER α and consequently, induce little endogenous reporter gene 

activity (figure 14B). It is therefore possible to study a transfected ER α in this 

context without the contaminating activity of endogenous ER α. 

Transfected mER α induced transcription of luciferase without addition of E2, to ~ 

40% of the level obtained in the presence of saturating amounts of E2 (figure 15A). 

Furthermore, the human ER α receptor was also able to transactivate reporter gene 

expression in 2T3 cells, indicating that this phenomenon is not specific to the mouse 

receptor (figure 15A). 

As the context and specific sequence of individual ERE’s can greatly affect 

transactivation by estrogen receptors (Hall et al., 2002), we wondered if activity 

observed in the absence of E2 was consequent on the reporter construct used. To 

evaluate this, a construct where luciferase expression was determined by the action of 

the pS2 promoter was used. The pS2 promoter is specifically responsive to estradiol 

bound ER (Masiakowski et al., 1982). Its activation by ER arises from an imperfect 

palindromic ERE, at position -393 respective to the major transcriptional start site, 

which differs from the ERE previously used at 2 bases (Berry et al., 1989).mER α 

achieved a similar level of ligand-independent activity on the pS2 promoter as on the 

ERE-tk-luciferase reporter indicating that the high constitutive activity of ER α is 

independent the promoter used  and the ERE sequence (figure 15B). 
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Figure 15. mER α constitutive activity is not promoter dependent but varies between cell lines. 

A. Empty pSG5 vector as well as mER α, and hER α were transiently transfected in subconfluent 2T3 

cells together with ERE-tk-luciferase reporter. Cells were treated 24h before harvest with vehicle, E2 

or ICI 182,780. B. Subconfluent 2T3 cells were transiently transfected with the pGL3-pS2 promoter 

reporter construct and mER α or empty pSG5. Cells were treated as in A. C. Different cell lines were 

transiently transfected with mER α and the ERE-tk-luciferase. Results are plotted as % of maximum to 

show the variation in basal activity with vehicle alone. 
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Constitutive activity of ER has been observed in several contexts as upon growth 

factor treatment but rarely in untreated cells, at least not to such an extent. It was 

therefore of interest to determine if high constitutive activity could be obtained in cell 

lines in addition to the 2T3 line. Figure 15C depicts the percentage of ligand-

independent activity obtained when several ER α negative cells lines were transfected 

with mER α. Constitutive activity ranges from ~ 40% in 2T3 cells to 2% in HepG2 

cells. There is no apparent correlation between AF context and activity in the absence 

of ligand, as MDA-MB231 cells and 2T3 cells both support AF2 derived activity to 

similar levels (data not shown) but have yet very different reporter activities in the 

absence of ligand (47 and 12% respectively). 

These data indicate that the constitutive estrogenic activity observed in osteoblasts is 

likely mediated by mER α. Moreover, ER α mediated constitutive activity varies 

between different cell contexts, however, within all cell types evaluated, it is highest 

in osteoblasts. 

 

4.3. Molecular analysis of the “ligand-independent activity” of ER α 

As outlined in the introduction, the ligand-independent activity of ER α has been 

extensively studied. In summary, the signal transduction pathways of several growth 

factors converge to activate ER α mediated signaling either directly by 

phosphorylation of the receptor or indirectly through phosphorylation of associated 

coactivators (Weigel and Zhang, 1998;Lopez et al., 2001;Dutertre and Smith, 2003b). 

Many of the phosphorylation events that achieve ligand-independent activity occur on 

serine residues located in the N-terminal part of the receptor (Dutertre and Smith, 

2003a). In addition, a potential α-helix in the A domain was shown to preclude the 

active conformation of ER α in the absence of hormone, through occupying the 
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surface groove in the E domain that associates with the LXXLL motif of intermediate 

transcription factors (Metivier et al., 2002b). To identify regions that have a role in 

the constitutive activity of ER α, a series of deletion mutants were constructed (figure 

16). These constructs were then evaluated in transient transfection assays for their 

ability to induce estrogen dependent gene activation, using ERE-tk-luciferase as a 

reporter construct. As seen in figure 16, deletion of the A domain, although it was 

reported to increase ligand-independent activity (Metivier et al., 2002b), did not affect 

activities either in the presence or absence of ligand. Likewise, deletion of both A and 

B domains had no effect on the activity of the receptor in the absence of hormone 

(figure 16). Deletion of the F domain also failed to affect the activity of the receptor 

both in the presence and absence of E2. These data show that the constitutive activity 

of ER α is unlikely to involve the A domain or phosphorylations in the B domain 

since a truncated receptor missing these domains still exhibits activity in the absence 

of ligand. 

 

Figure 16. Ligand-independent activity of ER α truncation mutants 

Several truncation mutants of mER α were transfected in subconfluent 2T3 cells and their 

transcriptional output was analyzed using the ERE-tk-luciferase reporter as previously described. The 

values are plotted as % of maximum. 
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4.4. The “ligand independent” activity of mER α arises from 

residual estrogens the culture medium 

The constitutive activity of mER α may arise from estrogens remaining in the culture 

medium. These estrogens could come from the serum or from estrogenic 

contaminants present in the medium. Although the serum used was charcoal stripped, 

that is, estrogens and many other small, hydrophobic molecules removed by 

adsorption onto dextran-coated carbon, it is never completely devoid of steroids. It is 

possible that, in certain cell contexts, ER α is hypersensitive to little concentrations of 

contaminating estrogens. 

To determine whether the high constitutive ER α activity observed in osteoblasts 

arises from estrogens present in the culture medium, we made use of a mutant ER α. 

Mutation of glycine 400, within the ligand binding domain, to valine (hERα G400V) 

decreases hER α affinity towards ligand (Tora et al., 1989a). Although binding 

affinity is decreased, hER α G400V transactivates responsive promoters to the same 

extent as hER WT at saturating hormone concentrations, indicating that coactivator 

binding is not directly affected by the mutation (Tora et al., 1989a). Furthermore, this 

mutation was shown not to affect the induction of ligand-independent activity by EGF 

and forskoline/IBMX (Bunone et al., 1996;el Tanani and Green, 1997). Taken 

together, hER α G400V is a good tool that distinguishes between hormone sensitivity 

and ligand-independent activity, in the analysis of the constitutive activity of ER α in 

osteoblasts.  

As previously reported, mutation of Glycine 400 into valine did not affect induction 

of the reporter in the presence of saturating amounts of E2 (figure 17). However there 

was no induction of the reporter in the absence of hormone above the levels of ICI 

182,780 treated cells. This result indicates that the apparent constitutive activity of ER 
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α observed in osteoblasts comes from residual estrogens present in the growth 

medium. The high residual activtity of ER α can result from higher estrogen levels in 

the culture medium of osteoblasts because they do not metabolize estrogens as 

efficiently as other cell types. Alternatively, the residual estrogen levels present in the 

growth medium might be the same as for other cell types, but ER α in osteoblasts is 

hypersensitive to estrogens and can respond to low estrogen concentrations. 

 

 

 

Figure 17. ER α G400V does not have any basal activity 

Empty pSG5 vector, hER α G400V , and mER α were transiently transfected in subconfluent 2T3 cells 

and transcriptional activity was assessed on the reporter ERE-tk-luciferase after 24h treatment with 

vehicle, E2 or ICI 182,780. 
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5. Estrogen signalling is not necessary and does not affect 

differentiation of 2T3 cells 

 

Because osteoblasts express a functional ER α, it is expected that estrogens can 

directly affect osteoblast differentiation or function. Several studies report a positive 

effect of estrogens on osteoblast differentiation while others show no effects (Keeting 

et al., 1991;Scheven et al., 1992;Qu et al., 1998). 

We therefore wanted to investigate whether 2T3 cells were able to react to continuous 

E2 treatment. Cells were kept in low estrogenic charcoal stripped medium and 

assayed for ALP activity every second day over a period of 8 days after confluency. 

The appearance of ALP positive cells was delayed in charcoal stripped medium as 

compared to cells grown in unstripped medium (compare figure 18A and 7B). 

However the continuous addition of 10 nM E2 did not modify the kinetics of ALP 

expression. 

To determine whether estrogen signalling is necessary to osteoblastic differentiation, 

we also allowed 2T3 cells to differentiate in culture medium containing unstripped 

serum in the continuous presence 10 µM ICI 182,780. Figure 18B shows that there is 

no difference in the kinetics of ALP expression whether or not ICI 182,780 is added 

to the culture medium. We previously showed that ICI 182,780 is functional in 

inhibiting estrogen signalling in 2T3 cells as assessed by the transcription assays 

presented previously (figure 14B). 

This assay would be able to detect possible effects of estrogens on proliferation, cell 

death, and differentiation alike. Modifying proliferation or cell survival will modify 

the rate of differentiation as differentiation is governed by cell contacts (Owen et al., 

1990;Aronow et al., 1990). However, 2T3 cells are committed to the osteoblast 
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lineage and do not differentiate into other cell types in the absence of additional 

factors (Chen et al., 1998). It is therefore unlikely that the ALP assay can assess the 

possible ability of E2 to influence commitment of 2T3 cells to different mesenchymal 

cell lineages. Altogether these data indicate that estrogen signalling is not required for 

the process of osteoblast differentiation. Also, estrogens do not accelarate osteoblast 

differentiation at least as far as ALP expression is concerned. 

 

Figure 18. Estrogen signalling does not affect osteoblast differentiation 

A. 2T3 cells were assessed for ALP expression over a period of 8 days postconfluency in charcoal 

stripped medium in the presence or absence of 10 nM E2. B. ALP expression of 2T3 cells grown up to 

6 days postconfluency in normal medium containing vehicle or 1 µM ICI 182,780. 
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6. The effect of TGF beta on ER alpha expression and 

transactivation function 

 

As we have seen, transient treatment with TGF β was able to downregulate mER α in 

2T3 cells. We decided to investigate this phenomenon further. Interestingly, TGF β 

treatment was previously shown to affect ER α expression. Two different mechanisms 

have been described (Stoica et al., 1997;Petrel et al., 2003). One way would be 

through silencing of transcription from the A promoter of the ER α gene (Stoica et al., 

1997). The alternative mechanism involves increased proteasome mediated 

degradation of the receptor (Petrel et al., 2003). 

We initially determined if TGF β triggers proteasomal degradation of ER α. The 

results showed in figure 19A confirm as previously shown that degradation induced 

both by E2 and ICI 182,780 is proteasome mediated, as MG132, an inhibitor of 

proteasome activity, prevents these effects. TGF β also downregulates ER α, however, 

this downregulation is not accentuated when the cells are co-treated with E2 or ICI 

182,780. Surprisingly, Treatment with TGF β and MG 132 resulted in a complete 

disappearance of ER α. Although the disappearance of mER α upon combined TGF β 

and MG 132 treatment cannot be explained, these results show that in 2T3 cells, TGF 

β mediated downregulation of mER α does not involve proteasome activity. 

To find out whether TGF β induced downregulation correlated with decreased mRNA 

levels, total RNA was isolated from day 6 2T3 cells treated or not with TGF β. The 

result shows that treatment with TGF β decreases more than 30 folds the amount of 

ER α mRNA as compared to GAPDH mRNA (figure 19B). 

Finally we determined if a decrease in mER α transcriptional activity ensues from the 

decrease in mER α levels following TGF β treatment. Accordingly, TGF β treatment 
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was able to diminish ER α mediated induction of the ERE-tk-luciferase reporter, both 

in the absence and presence of E2 and to levels below that of cells treated with ICI 

182,780 (figure 19C). 

In conclusion, downregulation of mER α induced by TGF β is not due to increased 

proteasome mediated degradation as MG 132 fails to block this process. Further 

confirmation that the proteasome is not involved in TGF β induced downregulation of 

ER α, is illustrated by the lack of synergism between TGF β and either E2 or ICI 

182,780 in decreasing mER α levels. The TGF β-induced downregulation also occurs 

at the mRNA level and could involve transcriptional regulation of ER α expression as 

was previously suggested (Stoica et al., 1997). Decrease in mER α protein levels was 

mirrored by a decline in transactivation activity. 
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Figure 19. Decrease in mER α protein, mRNA and signalling after transient TGF β treatment. 

A. Western blot analysis of endogenous mER α expression in 2T3 cells 6 days postconfluency with 

MC-20. Cells were treated concomitantly with ethanol vehicle, E2 (10 nM) or ICI 182,780 (0.1 µM) 

and DMSO or MG132 () and TGF β (5 ng/ml). 100 µg of protein was loaded per well. B. Total RNA 

was isolated from 2T3 cells 6 days after confluency treated or not with 5 ng/ml TGF β and subjected to 

quantitative RT-PCR analysis. The values obtained were normalized to GAPDH expression. C. 2T3 

cells 6 days postconfluency were transfected with ERE-tk-luciferase reporter construct and treated for 

24h with ethanol vehicle, E2, ICI 182,780 and TGF β (5ng/ml). 
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7. Human ER alpha referenced as wild type contains the 

mutation G400V 

 

In the course of this study we analyzed the high constitutive activity of the mouse ER 

α in 2T3 cells and compared to the human receptor. We were initially using a mutated 

form of hER α thinking we were using WT receptor. The mutated hER α was mutated 

on glycine 400. The mutation G400V that we have described previously renders hER 

α less sensitive to ligand. As a result the ligand-independent activity seemed to be 

mouse specific as the mutated human receptor did not display any activity in the 

absence of E2. Unwittingly, as the reference sequence of wild type hER α cDNA 

available in databases corresponds to this mutated receptor, the G400V mutation was 

never identified after sequencing as being erroneous. This appendix describes the 

work done that led to the identification of this mutation. 

As hER G400V was used, we tried to map the apparently mouse specific high-

constitutive activity. To achieve this, a series of chimeras of mER α and hER α were 

constructed. Chimeras indicated that the E domain, encompassing residues 362 and 

533 of mER α and residues 357 and 537 of hER α, were sufficient to confer or 

abrogate constitutive activity in hER α and mER α respectively (figure 20). 
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Figure 20. The apparent ligand-independent activity of mER α is localized to the E domain 

(amino acids 362-533). 

Chimeras were constructed between hER α and mER α as depicted on the left. hER α mER α and the 

multiple chimeras were transfected in subconfluent 2T3 cells and luciferase expression assessed from 

the ERE-tk-luciferase reporter after 24h vehicle, E2 or ICI 182,780 treatment. The results are plotted as 

% of maximum. 

 

Comparison of the protein sequences in the region responsible for the different 

constitutive activities, revealed two divergent amino acids between the mouse and the 

human receptors that were responsible for the constitutive activity of the human and 

mouse ER α (figure 21A). Single and compound mutations of these amino acids to 

their human or mouse counterparts were then generated. None of the mutations either 

single or compound were able to change the activity of the receptor in the absence of 

ligand. 
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Figure 21. Mutation of the divergent amino acids between hER α and mER α to their mouse and 

human counterparts does not affect ligand-independent activity. 

A. Alignment of hER α and mER α of the region defined as necessary and sufficient for ligand-

indepdent activity showing the two divergent amino acids in red. B. Analysis of single of compound 

mutations of the two divergent amino acids. The different mutants were transfected in subconfluent 

2T3 cells and transactivation assessed on the ERE-tk-luciferase after treatment with vehicle, E2 and ICI 

182,780 as previously described. 
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Figure 22. Mouse and human ER α have the same responsivity to E2. 

A. Empty pSG5, hER α G400V, hER α WT and mER α were transfected in subconfluent 2T3 cells 

and luciferase activity from the reporter ERE-tk-luciferase assayed. B. Dose response assay of hER 

α and mER α in MDA-231 and Hela cells. Cells were transfected with WT hER α and mER α and 

increasing concentration of E2 were used. ICI 182,780 was used to determine basal level. The 

values are plotted as % of maximum. 
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Since mutations of mER α or hER α were not able to revert either of the phenotypes, 

it was hypothesized that the constructs used could have been mutated on other 

residues within the region mapped. Every construct used was sequence validated and 

found to be correct; the only possibility left was therefore that database reference 

sequences were incorrect. Alignment of the translated cDNA sequences used 

(Reference number NM_000125) to validate our constructs indeed revealed a 

divergence at residue 400 of hER α (residue 404 of mER α). This divergence does not 

appear when directly aligning the protein sequences available. 

The sequence of hER α corresponds to the original isolate that was subsequently 

shown to be mutated at position 400 from glycine to valine. This mutation was shown 

to affect affinity to the ligand and consequently sensitivity to E2 (Tora et al., 1989a). 

Using a non-mutated hER α cDNA showed that human and mouse receptors had the 

same activity in the absence of estradiol in 2T3 cells and the same sensitivity to 

estradiol in MDA-MB231 and HeLa cells (figure 22A and B). 
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1. ER alpha is expressed and is functional in mouse osteoblasts 

 

Osteoblasts are believed to be the direct target of estrogens since the discovery of a 

small number of E2 binding sites (Komm et al., 1988;Eriksen et al., 1988). The 

expression of ER α has been extensively studied at the mRNA level; however 

detection of the protein is difficult because of the low expression levels. Nevertheless, 

it is assumed that, despite the low amounts of ER α present, osteoblasts mediate some 

if not all of the effects of estrogens on bone (Spelsberg et al., 1999;Riggs et al., 

2002;Manolagas et al., 2002). It is still controversial however as to whether the 

amounts present are sufficient to respond to estrogens (Karsenty, 1999). 

Using a well-characterized in vitro differentiation system, we describe here the 

expression of ER α in murine osteoblasts. This work demonstrates that two protein 

products with the biochemical characteristics of ER α are expressed both in primary 

osteoblasts and in the osteoblastic 2T3 cell line (figure 8,). 

This endogenous ER α could specifically transactivate an ERE-tk-luciferase reporter 

construct, demonstrating that functional signalling occurs in these cell types (figure 

14). There are good indications that the endogenous activity detected in osteoblasts 

results from the presence of ER α. Indeed, there is an excellent correlation between 

ER α expression and inducibility of the reporter. Firstly, the activity in osteblasts 

increases with differentiation concomitantly with ER α expression (figure 14). 

Moreover, downregulation of ER α expression by TGF β induces a decrease in overall 

reproter activity (figure 19). The data presented does not absolutely rule out that ER β 

is involved in the transcriptional activity observed. When ER β was transfected in 2T3 

cells, it displayed the same residual activity as ER α in the absence of additional E2. 



 90

Therefore, ligand-independency could not be used to discriminate between ER α and 

ER β (data not shown). ER β expression is however low in osteoblasts and does not 

vary with differentiation and would therefore not correlate with the activity of the 

ERE-tk-luciferase reporter (Zhou et al., 2001;Wiren et al., 2002). 

On the other hand, the orphan nuclear receptor ERR α has been detected in osteoblasts 

and shown to be active (Bonnelye et al., 2001). ERRs, like ERs recognize EREs, but 

do not bind ligands and have constitutive activity (Vanacker et al., 1999). 

Interestingly, endogenous transcriptional activity detected in osteoblasts was also 

mainly constitutive. However, ERRs do not to respond pure antagonists of estrogen, 

like ICI 182,780 (Vanacker et al., 1999). However, ICI 182,780 decreased the 

transcriptional activity observed in osteoblasts, indicating that an ER is responsible 

for transactivation of ERE dependent promoters. 

Altogether, the data presented here prove that ER α is expressed and transcriptionally 

active in murine osteoblasts. 

 

2. ER alpha exists as two isoforms in mouse osteoblasts 

 

The ER α gene is a complex genetic unit consisting of several promoters and multiple 

exons. Alternative promoter usage and alternative splicing generates different 

transcripts, some of which giving rise to shorter isoforms. The best documented 

isoform of ER α is ER α 46, which has been reported to result either from the splicing 

of one of the upstream exons to exon 2, or from internal ribosome entry (Barraille et 

al., 1999;Flouriot et al., 2000). The ER α 46 protein isoform has been detected in the 

human breast carcinoma cell line MCF7 and in human primary osteoblasts (Flouriot et 

al., 2000;Denger et al., 2001). In human osteoblasts, ER α 46 is expressed at a similar 



 91

level to the full-length protein (Denger et al., 2001). ER α 46 lacks the A and B 

domains including the entire AF1. ER α 46 can still dimerize and bind to DNA. ER α 

46 can dimerize with the full-length receptor and inhibit its transcriptional activity as 

a result of the AF-1 supporting context found in human osteoblasts (Denger et al., 

2001). In addition, the transcript resulting from the splicing of upstream exon F to 

exon 2 that would code for the ER α 46 was identified in mouse bone (Denger et al., 

2001). Together, these data suggest that ER α 46 could play a major role in the 

response of osteoblasts to estrogens. 

Here, no evidence of a 46 KDa ER α isoform in murine cells was found, either in 

uterus or in osteoblasts although the corresponding transcripts were detected (figure 8 

and data not shown). It could be that in mouse osteoblasts the amounts of 

corresponding transcript are so low compared to full-length transcript that the 

corresponding protein cannot be detected. Alternatively, the two initiating AUGs in 

exon 2, which are also present in the mouse ER apha, might not be effective at 

initiating translation. These results, however, rule out a possible involvement of ER α 

46 in the regulation of osteoblast physiology in the mouse. 

This notwithstanding, mER α runs as a doublet on SDS-PAGE, suggesting that it 

exists as two molecular entities of similar molecular weight. A comparable doublet 

was also detected on a western blot of the endogenous mER α from mouse ES cells, 

using the same antibody as in this study, but was not commented upon (Perissi et al., 

2004). The doublet is not present in preparations from uterus but this may be a 

consequence of the larger amounts of mER α present in this tissue. Both bands are 

degraded in response to E2 or ICI 182,780 confirming that the two products are mER 

α (figure 8A). The nature of the two products can only be speculated upon. ER α was 

previously shown to migrate as a doublet on SDS-PAGE (Golding and Korach, 1988). 
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This was found to result, at least partly, from phosphorylation of ER α on serine 118 

induced by E2 treatment (Joel et al., 1995;Joel et al., 1998). It is however improbable 

that the dimorphism of mER α results from phosphorylation of serine 122 (the mouse 

ortholog of serine 118) as E2 treatment that would promote its phosphrylation, does 

not affect specifically one of the two bands (figure 8A). Moreover, exogenously 

expressed HA-tagged construct does not display dimorphism further indicating that it 

is unlikely that phosphorylation is responsible for the appearance of the upper band 

(figure 8C). The absence of the doublet with the HA-tagged mER α also rules out any 

other posttranslational modification as the cause of dimorphism. 

Because an N-terminal antibody recognizes both bands but only one is recognized by 

a C-terminal antibody, it is plausible that the lower band corresponds to an N-

terminally deleted form of ER α (figure 8C). No ER α mRNA variant has been 

identified to date that could account for an N-terminally-truncated isoform of this 

size. Interestingly, a similar doublet has never been observed in tissues or cells of 

human origin (unpublished observations). This mouse specific effect may be 

explained by the presence of two ATGs in exon 1 that occur in mouse but not in 

human 87 base pairs downstream of the AUGs used to produce full-length ER α. The 

use of these AUGs would give rise to a protein of 63.5 KDa, as opposed to the 67 

KDa predicted for the mouse full-length ER α. This size difference is consistent with 

what is seen on a western blot. There is evidence that translation by ribosome 

scanning occurs with the human and mouse ER α transcripts (Kos et al., 2002). As a 

result, leaky scanning of the initating AUGs would allow translation to start from the 

downstream AUGs in exon 1. It may be argued that the lower band should occur on 

expression of the HA-tagged ER αs, however theoretical considerations indicate that 

this is unlikely. Since the initiating AUG in the HA-tagged constructs is within a 
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strong consensus Kozak sequence and, if translation initiation occurs by ribosome 

scanning, the strong initiating AUG will prevent alternative scanning and translation 

initiation from the downstream AUGs thereby occluding translational initiation on 

alternative AUG’s. Interestingly, the truncated receptor would be devoid of A domain 

and would be predicted to have high levels of activity in the absence of ligand in AF-1 

promoting contexts while it would repress transcription in AF-2 permissive contexts 

(Metivier et al., 2002c). This shorter product however would not be responsible for 

the high basal transcriptional activity of ER α in osteoblasts, as deletion of the A 

domain of ectopically expressed ER α does not alter its activity in 2T3 cells (figure 

16). Although this assumption is very speculative it merits further investigation. 

 

3. ER alpha expression in the mesenchymal lineage is not 

specific to osteoblasts and is lower than in reproductive tissues. 

 

Osteoblasts arise from pluripotent mesenchymal cells. These cells differentiate not 

only into osteoblasts but also into myocytes, adipocytes and chondrocytes given 

appropriate extracellular cues. Mesenchymal stem cells differentiate in accordance 

with the multi-lineage priming model (Hu et al., 1997). This model states that pluri-

potent progenitor cells express low level of genes specific to all the lineages they can 

differentiate into. Upon differentiation into a given cell type, genes corresponding to 

other lineages are repressed, while expression of lineage specific genes increases. 

This model applies to osteoblast progenitors which express low levels of myogenic 

and adipogenic markers prior to the onset of osteoblastic differentiation (Garcia et al., 

2002). The inception of osteoblast differentiation corresponds to activation of the 
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osteoblast specific transcription factor Cbfa1 (Ducy et al., 1997). Upon activation by 

increased expression and by phosphorylation, Cbfa1 triggers an osteoblast-specific 

genetic programme, which results in the sequential expression of osteoblast-specific 

transcription factors and proteins involved in osteoblast function, such as matrix 

synthesis and mineralization (Ducy et al., 1997;Lee et al., 2000;Alliston et al., 2001). 

There are some indications that ER α could be involved in an osteoblast specific 

genetic programme and participate in the regulation of osteoblast differentiation. First, 

there are several reports showing that ER α expression is amplified with osteoblast 

differentiation both in human and rat (Komm et al., 1988;Arts et al., 1997;Wiren et 

al., 2002). This indicated that ER α is up-regulated by osteoblast differentiation 

signals and integrated in the osteoblast-specific genetic programme. Moreover, 

transfected ER α interacts with Cbfa1 to enhance its activity in osteoblasts, 

confirming the integration of ER α in osteoblast differentiation (McCarthy et al., 

2003). On the other hand, ER α expression is relatively low in osteoblasts and ER α is 

ubiquitously expressed at a low level which argues against a specificity of ER α 

expression in osteoblasts (Eriksen et al., 1988;Davis et al., 1994;Couse et al., 

1997;Karsenty, 1999). 

According to the multi-lineage priming model, we expected ER α to be expressed at a 

low level in undifferentiated osteoblasts and its expression to increase with 

differentiation. Conversely, blocking differentiation or differentiation into another cell 

type should result in the suppression of ER α expression. 

In accordance with the studies mentioned above, we found that ER α expression 

increased concomitantly with osteoblast differentiation both at the protein and mRNA 

level (figure 11A and 11B). This increase was mirrored by an increase in the 

activation of an estrogen responsive ERE-tk-luciferase reporter construct (figure 14). 
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TGF β can provide competence for early stages of osteoblastic differentiation, but it 

inhibits myogenesis, adipogenesis, and late-stage osteoblast differentiation. Although 

it promotes the expression of collagen type I, it prevents the expression of osteoblast 

markers such as ALP and osteocalcin (Centrella et al., 1994;Alliston et al., 

2001;Spinella-Jaegle et al., 2001). In preventing osteoblast differentiation, it 

functionally blocks activation of Cbfa1 on certain promoters, thereby stopping 

differentiation from proceeding (Alliston et al., 2001). Using 2T3 cells, we found that, 

continuous TGF β treatment blocks differentiation of 2T3 cells in an ALP negative 

stage without affecting cell proliferation (figure 12A and 12B). We therefore used this 

model system to investigate whether ER α expression was linked to osteoblast 

differentiation and if TGF β treatment prevented its up-regulation. TGF β was able to 

down-regulate ER α expression but only when cells were treated for 24h and not after 

long-term (6 days) continuous treatment. The effect of transient TGF β treatment on 

ER α expression will be discussed later, as it is not related to differentiation. We 

found however that ER α expression increased whether or not the cells had been 

treated continuously with TGF β, that is, independently of ALP expression (figure 

12C). This result suggests that ER α expression does not correlate with osteoblast 

differentiation. It was however still possible that ER α expression increased with the 

early stages of osteoblastic differentiation. 

To further examine the premise that ER α expression is not tied to osteoblast 

differentiation, we used the pluripotent C2C12 cell line that differentiates with 

confluency into myoblasts but can be efficiently induced to differentiate into ALP 

positive osteoblasts with high doses of BMP2 (Katagiri et al., 1994). Like TGF β, 

BMP2 down-regulated ER α protein levels after transient treatment. This phenomenon 

will be discussed later together with the effects of transient TGF β treatment on ER α 
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expression. The expression of ER α increased whether cells progressed to 

multinucleated myotubes or differentiated into ALP positive osteoblasts (figure 13B). 

There was moreover no difference in ER α expression between myoblast-

differentiated C2C12 cells and osteoblast-differentiated C2C12 cells at day 6 with 

respect to confluency (figure 13B). The increase in ER α levels during osteoblast 

differentiation is not a direct consequence of osteoblast differentiation since it also 

occurs during myoblastic differentiation. It is interesting to note that increase in ER α 

expression is not a specificity of the mesenchymal lineage as an increase in ER α 

levels has also been detected during the differentiation of the mammary epithelial cell 

line HC-11 and during the maturation of B cells (Grimaldi et al., 2002;Faulds et al., 

2004). It is not known whether a common mechanism is responsible for the 

upregulation of ER α expression in these unrelated cell types. 

Although osteoblasts contain more ER than fibroblasts (Eriksen et al., 1988), they 

nevertheless contain at least a thousand fold less than an estrogen target tissue like 

uterus (Davis et al., 1994). We confirmed these results in mouse by directly 

comparing the amounts of ER α protein in mouse primary osteoblasts and in uterus 

(figure 10). As we found here, the level of expression of ER α between an 

unambiguous target tissue like uterus and osteoblasts or myoblasts is indeed 

considerable. 

These results tally with the concept that ER α is expressed ubiquitously in an 

unspecific way at a low level. As mentioned in the introduction ER α has been 

detected in numerous if not all tissues and cell types examined so far. On the other 

hand, in specific target tissues like the reproductive tract high levels of ER α are 

present. 



 97

What could direct the ubiquitous low level expression of ER α? As detailed in the 

introduction, the ER alpha mRNA can be transcribed from at least 7 different 

promoters. Interestingly, in mouse the F promoter seems to be expressed at a similar 

level in every tissue examined included in (Kos et al., 2000). In contrast, the C variant 

although it is detectable in many tissues, constitutes the main mRNA variant in uterus 

(Kos et al., 2000). Consequently, it is plausible that the F promoter is responsible for 

ubiquitous ER α expression, while the C promoter directs the high level expression of 

ER α in tissues like uterus. It will be very informative to determine quantitatively the 

variants expressed in mouse osteoblasts. However, experimental data is still missing 

concerning the determinants of tissue-specific ER α expression. 

Independent of the fact that ER α expression in osteoblasts is unspecific, the question 

remains: Can the low levels of ER α in osteoblasts mediate a response to estrogens? 

 

4. Involvement of estrogen signalling in osteoblast 

differentiation 

 

Estrogens have two different effects on bone: The osteogenic effect in which 

estrogens affect osteoblast number and function resulting in increased bone mass and 

the osteoprotective effect in which estrogens counteract the increase in osteclast and 

osteoblast number and function following estrogen deprivation. We wanted to 

investigate whether these two effects could be directly mediated by osteoblasts. 

It is well accepted that estrogens can in vivo induce de novo bone synthesis (Samuels 

et al., 1999). This action is largely a consequence of increased osteoblastic cellular 

number and activity (Samuels et al., 1999). This so-called osteogenic effect of 
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estrogens is entirely dependent on ER α both in males and females (McDougall et al., 

2002;McDougall et al., 2003). In vitro however, conflicting results have been 

reported. It was found that estrogens could enhance the number and activity of 

purified mouse bone marrow osteoblasts however others did not monitor any changes 

(Keeting et al., 1991;Qu et al., 1998;Qu et al., 1999). Because the little effect 

estrogens can have on osteoblasts in vitro does not mirror the effects estrogens have 

on osteoblast in vivo, it is still disputed whether the osteogenic action of estrogens is 

the consequence of a direct effect on osteoblasts (Takano-Yamamoto et al., 1990). 

Having found that 2T3 cells and primary osteoblasts contained ER α that could 

transactivate, we wanted to examine whether estrogens could affect osteoblast 

differentiation. Using 2T3 cells and monitoring ALP activity over time, we were not 

able to see any effect of E2 on osteoblast differentiation (figure 18A). 

It is possible that the presence of residual estrogens in our system at near saturating 

concentrations for ER α as detected in the transcription assays would impair the 

detection of effects additional estrogens could have. However, if this were the case, 

the antagonist ICI 182,780 should have been able to counteract the effects of residual 

estrogens and consequently to inhibit differentiation, which was not the case (figure 

18B). It could be argued that estrogens affect osteoblasts at steps distinct from ALP 

expression. Estrogens can indeed increase osteoblast function by increasing cell 

number, modulating cell survival, and proliferation (Qu et al., 1998;Damien et al., 

2000;Zhou et al., 2001). Because cell number is crucial to the onset of differentiation, 

this assay should, however, be able to monitor defects upstream of differentiation, like 

proliferation and cell death (Aronow et al., 1990). Alternatively, it is possible that 

estrogens influence osteoblast differentiation at an earlier commitment step that 

cannot be appreciated using 2T3 cells. It has been proposed that estrogens promote 
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osteoblast differentiation as opposed to adipocyte differentiation of mesenchymal 

progenitor cells in the bone marrow, hence increasing the number the number of 

osteoblasts (Dang et al., 2002;Okazaki et al., 2002).  

As mentioned earlier, this result is however not entirely surprising, as estrogens were 

shown in many instances not to affect osteoblasts in vitro (Canalis and Raisz, 

1978;Keeting et al., 1991;Spelsberg et al., 1999). This raises the question as to 

whether osteoblasts are the direct mediators of estrogen action during the osteogenic 

response. In rat, the osteogenic effects of estrogens were reported to be direct without 

central relays as local estrogen application affects bone density in one limb without 

affecting the contralateral one (Takano-Yamamoto et al., 1990). It is therefore 

possible that another cell type in the bone environment signals to the osteoblasts upon 

estrogen treatment. It is however noteworthy that the osteogenic response to estrogens 

in rat requires much lower concentrations than in mice and could therefore involve an 

entirely different mechanism (Turner, 1999). 

Our study confirms however that estrogen signalling is not necessary to osteoblast 

differentiation. Indeed growth of cells in the presence of the pure antiestrogen ICI 

182,780 did not affect ALP expression in 2T3 cells (figure 18B). This supports the 

observation that ER α and ER β deficient primary mouse osteoblasts develop 

normally ex vivo (S. Dupont, personal communication). Decreasing estrogen levels by 

gonadectomy, or ablation of their two receptors results in an increase in osteoblast and 

osteoclast numbers and activities with osteoclast resorption overpowering bone 

deposition, eventually leading to bone loss (Oz et al., 2000;Sims et al., 2002;Sims et 

al., 2003). Addition of estrogens can in this low estrogen context reverse bone loss, 

decreasing both osteoblast and osteoclast activities .The osteoprotective effect is 

essentially mediated by ER α, ER β playing a small redundant role in female (Sims et 
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al., 2003). If this osteoprotective effect on osteoblasts were direct, one would expect 

that inhibition of estrogen signalling would result in an increase in osteoblast 

differentiation. It is therefore probable that the increase in osteoblast number and 

function arising from deficient estrogen signalling is not directly mediated by 

osteoblasts. 

Since the discovery of estrogen receptors in osteoblasts and osteoclasts it has been 

taken for granted that estrogens affect bone metabolism in a direct way. However 

estrogens can have pleiotropic effects and affect homeostasis by regulating the 

expression of other hormones and not necessarily in a direct way. Estrogens act on the 

pituitary, which secretes numerous hormones. Estrogens play a crucial role in 

regulating the levels of other hormones that are known to affect bone metabolism in a 

direct manner. Examples are GH (Leung et al., 2004) and Prolactin (Clement-Lacroix 

et al., 1999). There is now also good evidence that the endocrine control of 

metabolism and reproduction are interconnected (Takeda et al., 2003). Even if some 

of the effects of estrogens on bone are direct, indirect effects mediated by other 

hormones are bound to play a crucial role. Cell-type specific knockouts would help 

characterizing the place and mechanism of action of estrogens on bone. 

 

5. Activity of ER alpha in osteoblasts 

 

The ligand-independent activity of steroid receptors has been an issue for more than 

10 years, since the discovery that certain growth factors and hormones could activate 

receptors without addition of ligand (Power et al., 1991;Smith et al., 1993). This 

phenomenon was also found to occur in vivo as growth factors elicit an estrogenic 

response in the uterus requiring ER α (Ignar-Trowbridge et al., 1992;Curtis et al., 
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1996). Ligand-independent activity would involve the phosphorylation of serine 

residues in the B domain leading to ligand-independent recruitment of coactivators 

(Lannigan, 2003;Dutertre et al., 2003c). Interaction of the A and E domains of ER α is 

also important in suppressing activity of the receptor in the absence of ligand 

(Metivier et al., 2002b). Importantly, any event that triggers activity in the absence of 

ligand must directly or indirectly disrupt the interaction between the A and E domains 

to allow coactivator recruitment. 

Interestingly, the activity of ER α has high levels of activity even in the absence of 

estradiol both in primary osteoblasts and 2T3 cells (figure 14). This high constitutive 

activity was also present when ER α was transfected into undifferentiated 2T3 cells 

albeit to a lesser extent (figure15A). The high basal activity of ER is unlikely to be a 

reporter-related or transfection-related artefact. Firstly, a transiently transfected 

reporter and a stably integrated transgene showed the same high residual activity with 

the endogenous ER α (figure 14). Furthermore, the use of a different promoter 

upstream of the luciferase reporter did not influence this seemingly ligand-

independent activity (figure 15B). 

This high basal activity was neither altered by the deletion of domains A, B or F 

(figure 16). This result rules out any involvement of the serines located in the B 

domain in the constitutive activity. It also dismisses a possible role of the A domain in 

the ligand-independent activity observed in osteoblasts. 

The ligand-independent activity varied however greatly between different cell lines, 

being highest in osteoblasts and lowest in the hepatic cell line HepG2 (figure 15). 

Interestingly, HepG2 cells because of their liver origin possess the enzyme necessary 

to metabolise estrogens (Mattick et al., 1997). It was therefore possible that ER α in 

HepG2 cells does not display any ligand-independent activity because estrogens 
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present in the culture medium are efficiently metabolised, and that the high activity 

observed in the absence of ligand in osteoblasts is the result of residual estrogens. 

To examine the possibility that residual estrogens are responsible for the high 

constitutive activity in osteoblasts, we used a mutant ER α that is less sensitive to 

estrogens. The G400V mutant ER α, although it does not transactivate in the presence 

of low estrogen concentrations, can however be activated to the same extent as WT 

ER α in the presence of saturating E2 concentrations (Tora et al., 1989a). Importantly, 

the G400V mutant receptor is still activated by growth factors in a ligand-independent 

manner, indicating that this function is still active in the mutant receptor (Bunone et 

al., 1996). If the high basal activity of ER α in osteoblasts is due to residual estrogens 

the G400V mutant should not be activated by the low concentrations present in the 

culture medium. ER α G400V did not show any activity as opposed to WT in the 

absence of additional E2 strongly indicating that the basal activity is the result of 

estrogens present in the growth medium. 

The fact that osteoblasts specifically support such a high basal activity however does 

not necessarily mean that they do not metabolise estrogens and that there is as a result 

a higher estrogen concentration in the culture medium. It is also possible that ER α in 

this cell type is highly sensitive to estrogens and reacts to the low estrogen 

concentrations present in the medium. 

The sensitivity of nuclear receptors can be for instance modulated by coactivator and 

corepressor levels, which vary between different cell types (Herdick and Carlberg, 

2000). The number of receptors per cell is also an important factor and could explain 

why endogenous ER α shows higher basal activity than transfected ER α (Webb et al., 

1992). 
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Interestingly, using transgenic mice containing a estrogen responsive promoter it was 

found that non-reproductive tissues like brain and bone displayed high levels of 

luciferase reporter activity (Ciana et al., 2003). The basal activity observed was 

decreased after treating the mice with ICI 182,780. The authors concluded that ERs 

could function in a ligand-independent manner. Our results indicate however, that this 

high activity could be due to the high sensitivity of ER alpha or to higher local 

estrogen concentrations in these tissues. 

 

6. Effect of TGF beta family members on ER alpha expression 

 

The TGF β family of cytokines controls a diverse set of cellular processes. They exert 

potent effects on bone metabolism and directly affect osteoblast differentiation. While 

using TGF β to inhibit osteoblast differentiation, we found that a 24 h treatment with 

TGF β of 2T3 cells, whether differentiated or not induced a decrease in ER α protein 

levels. TGF β and estrogen signalling have long been known to interact (Knabbe et 

al., 1987). Two different mechanisms for down-regulation of ER α by TGF β in 

human breast carcinoma cell lines have been proposed. Firstly, ER α A promoter 

activity is reduced by TGF β in the human MCF7 cell line (Stoica et al., 1997). 

Secondly, using several different human breast carcinoma cell lines, it was shown that 

TGF β induced proteasome-dependent ER α downregulation by TGF β was not at the 

transcriptional level but involved proteasome-dependent degradation of the receptor 

(Petrel et al., 2003). In 2T3 cells, downregulation invoked by TGF β correlated with a 

decrease in ER α mRNA levels. In our hands, blocking proteasome activity did not 

prevent downregulation of the receptor but instead intensified the decrease in 
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intracellular level of ER α. Also, TGF β mediated downregulation of ER α protein 

levels resulted in a decrease in ER α transcriptional activity. 

Although it has not been investigated further, a single 24h treatment of C2C12 cells 

with BMP 2 also decreased ER α protein amounts, independent of the differentiation 

status of the cells. It is appealing to postulate that downregulation of ER α by BMP2 

involves a mechanism similar to that of TGF β. TGF β and BMP2 belong to the same 

cytokine family and upon binding to their receptors activate common intracellular 

effectors (Shi et al., 2003). Interestingly, although they have antagonistic effects on 

osteoblasts, BMP2 and TGF β both up-regulate Cbfa1 expression in C2C12 cells (Lee 

et al., 2000;Spinella-Jaegle et al., 2001;Lee et al., 2002). It is therefore possible that 

TGF β and BMP2 regulate ER α expression in osteoblasts through a common 

mechanism. It would be interesting to determine if this observation can be extended to 

other cell types in which ER α expression is pathological and to further characterize 

the mechanism(s) involved in ER α down-regulation. 

Chronic TGF β and BMP-2 treatments did not however affect ER α expression. 

Although it has never been reported in osteoblasts, it is known from other cell types 

that activation of the TGF β receptors results in ligand-mediated receptor inactivation. 

This is achieved either through proteasomal degradation of the receptor or of its 

downstream effectors (Shi et al., 2003). In 2T3 cells or C2C12 cells, chronic 

treatment with TGF β or BMP 2 would inactivate cognate signalling and as a result 

down-regulation of ER α would no longer occur. 
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7. Human ER alpha referenced as wild type contains the 

G400V mutation 

 

The human ER α cDNA was isolated from a cDNA library of the human breast 

carcinoma cell line MCF7 (Walter et al., 1985). In 1986, the sequence of the newly 

cloned human ER α cDNA was published by two different laboratories (Green et al., 

1986;Greene et al., 1986). Three years later however, it was reported that the original 

cDNA cloned contained the mutation G400V that renders the receptor less sensitive to 

estrogens (Tora et al., 1989a). Since then however, the most cited cDNA sequence for 

hER α still corresponds to the mutated receptor hER α G400V that was initially 

cloned (Green et al., 1986;Tora et al., 1989a). Unfortunately, the hER α G400V 

sequence also refers to the WT protein sequence in the NCBI database (reference 

number NP_000116). Conversely, the WT protein sequence in the NCBI database 

refers to the mutated receptor. 

In the course of this study, when we realized that mER α displayed such activity in 

osteoblasts without additional ligand, we compared the transcriptional output of mER 

α with that of hER α in transient transfections. We used what we thought was the WT 

hER α that was obtained by previous lab members from the Chambon laboratory. As a 

result, hER α did not display any residual activity when no ligand was added (figure 

22). We therefore thought that the mER α and hER α had a different ability to convey 

ligand-independent activity and decided to investigate further the molecular basis of 

this difference. 

Chimeras between hER α and mER α were constructed and the determinant of the 

ligand-independent activity was found to be entirely localized to a discreet region of 

domain E (figure 20). The mouse and human receptors differed in four amino acids in 
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this region when comparing the two WT sequences (figure 21A). However, single and 

compound mutations of the four divergent amino acids into their mouse or human 

counterparts failed to affect the activity of the receptor in the absence of ligand (figure 

21B). Upon comparing the translation of the cDNA sequences we realized that what 

we thought to be hER α WT was in fact hER α G400V. G400 is indeed contained in 

the region where the divergent “ligand-independent activity” was localized. 

Eventually, the comparison of WT mER α and WT hER α revealed an identical 

behaviour as far as transcriptional activation is concerned. 

It is troublesome that so many laboratories that claim to be using WT hER α refer in 

their published work to a mutated sequence. This might come from sheer carelessness 

as most labs might genuinely be working with a WT receptor. It is however also 

possible that some labs like ours used hER α G400V without being aware of it. 
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 Materials and Methods 
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 Constructs 

The ERE-tk-luciferase was a gift from Dr. Paul Webb (Webb et al., 1992). The 

Renilla expression vector was obtained from Dr. Hentze and contains the Renilla 

luciferase coding sequence cloned between the SmaI and BamHI site of pSG5. hERα 

(HEG0) and hER α G400V (HE0) were a kind gift of Prof. Chambon (Tora et al., 

1989a). The pGL3-PS2 construct has been described before (Metivier et al., 2002b). 

mERα (pMOR) was a kind gift of Dr MG Parker (Fawell et al., 1990) and was 

subcloned into the EcoRI and BamHI sites of pSG5 using the following primers: 

mERforEcoRI: 5’TCGAATTCATATGACCATGACCCTTCACACC3’ 

mERrevBamHI: 5’ . 5’ CCGGATCCTCAGATCGTGTTGGGGAAGCCC 3’ 

The resulting construct was used as a template to generate all other construct 

involving mouse ER α. 

 

Truncation mutants: 

These mutants were generated by PCR amplification using primers inside the coding 

sequence of either hER α or mER α. The primers contained adapters that allowed 

subcloning into the EcoRI and BamHI sites of pSG5. The primers used for each 

construct were as follows. 

mER α deltaA: 

mERalphab-ffor: 5’ TCGAATTCTCCACCATGCTGGGCGAGGTATACGTG 3’ 

mERrevbam: 5’ CCGGATCCTCAGATCGTGTTGGGGAAGCCC 3’ 

hER alpha deltaA:  

Obtained from Dr. Metivier (Metivier et al., 2000) 

mER alpha deltaF: 

mERforEcoRI: 5’CGAATTCATATGACCCTTCACACCAAAGCC 3’ 
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mERDeltaFrev: 5’GGATCCTCAGGCATGAAGGCGGTGGGCATCC 3’ 

hERdeltaF: 

hERforEcoRI: 5’ TCGAATTCATATGACCATGACCCTCCACACC 3’ 

hERDeltaFrev: 5’GGATCCTCACGCATGTAGGCGGTGGGCGTCC3’ 

mER alpha C-F: 

EX2-atg: 5’ TCGAATTCATGATCATGGAGTCTGCCAAG 3’ 

mERrevbam: 5’ CCGGATCCTCAGATCGTGTTGGGGAAGCCC 3’ 

hER alpha C-F: 

Obtained from Dr. Metivier (Metivier et al., 2000) 

 

HA-tagged mER α 

A 5’ or 3’ primer coding for the HA epitope was used to amplify the entire mER α. 

The resulting product was cloned into the EcoRI and BamHI sites of pSG5. The 

primers used are: 

 

mERHANterm: 

5’CCGAATTCCCACCATGTACCCATACGACGTCCCAGACTACGCTATGACC

ATGACCCTTCACACCAAAGC 3’ 

mERHACterm: 

5’CGCGGATCCTCAAGCGTAGTCTGGGACGTCGTAGGGTAGATCGTGTTGG

GGAAGCCCTCTGC 3’ 

 

all the constructs generated were sequence validated. 
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 Site directed mutagenesis 

Site directed mutagenesis was performed according to the procedure described in the 

QuickChange Site-directed Mutagenesis Kit (Stratagene). The primers used to 

generate the different point mutants are listed below: 

 

mERαN375T 

mERN375Tfor: 5’ TTGGGGACTTGACTCTTCATGATCAGGTCC 3’ 

mERN375Trev: 5’TGGACCTGATCATGAAGAGTCAAGTCCCC 3’ 

mERαG372V 

mERG372Vfor: 5’ AGGCTTTGTCGACTTGAATCTCCATGATCAG 3’ 

mERG372Vrev: 5’ TCATGGAGATTCAAGTCGACAAAGCCTGGC 3’ 

mERαG372VN375T 

mERG372VN375Tfor: 5’ AGGCTTTGTCGACTTGACTCTCCATGATCAG 3’ 

mERG372VN375Trev: 5’ TCATGGAGAGTCAAGTCGACAAAGCCTGGC 3’ 

hERαV368G 

hERV368Gfor: 5’ AGGCTTTGGAGATCTGACCCTCCATGATC 3’ 

hERV368Grev: 5’ TCATGGAGGGTCAGATCTCCAAAGCCTGGC 3’ 

 

hERαT371N 

hERT371Nfor: 5’ AGGCTTTGTGGATTTAAACCTCCATGATC 3’ 

hERT371Nrev: 5’ TCATGGAGGTTTAAATCCACAAAGCCTGGC 3’ 

hERαV368GT371N 

hERV368GT371Nfor: 5’ AGGCTTTGGGGATTTAAACCTCCATGATC 3’ 

hERV368GT371Nrev: 5’ TCATGGAGGTTTAAATCCCCAAAGCCTGGC 3’ 

mERαR507Q 
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mERR507Qfor: 5’ AGCAGCATCGCCAGCTGGCTCAGCTCCTTC 3’ 

mERR507Qrev: 5’ CCGGAATTCTCAGATCGTGTTGGGGAAGCCC 3’ 

mERαN531S 

mERN531Sfor: 5’ ATGGAGCATCTGTACAGCATGAAATGCAAG 3’ 

mERN531Srev: 5’ TGCATTTCATGCTGTACAGATGCTCCATGCC 3’ 

hERαR503Q 

hERR503Qfor: 5’ TGCAGCAGCAGCACCGCCGGCTGGCCCAGC 3’ 

hERR503Qrev: 5’ TGGGCCAGCCGGCGGTGCTGCTGCTGCAGG 3’ 

hERαS527N 

hERS527Nfor: 5’ ATGGAGCATCTTTATAACATGAAGTGCAAG 3’ 

hERS527Nrev: 5’ TTGCACTTCATGTTATAAAGATGCTCCATG 3’ 

 

 Cell culture 

HeLa, MDA-MB231, HepG2, and NIH 3T3 cells were maintained in DMEM 

supplemented with 10% FCS and 100 U/ml penicillin and 100 µg/ml streptomycin 

(Invitrogen) and glutamine (2 mM, Invitrogen) at 37ºC in a 5% CO2 incubator. The 

2T3 cell line was isolated and cloned from a transgenic mouse containing BMP-2 

promoter driving the SV-40 T antigen transgene and has been characterized 

previously (Ghosh-Choudhury et al., 1996). 2T3 cells were routinely maintained in α-

MEM supplemented with 10% FCS supplemented with antibiotics and glutamine 

never allowed to reach confluence. There differentiation status as assessed by their 

ALP expression was always determined prior to analysis. 

For analysis either by reporter assay or western blot, cells were plated at a density of 

1600 cells/cm2 for 2T3 cells, 5,000 cells/cm2 for primary calvarial osteoblasts, 8,000 

cells/cm2 for C2C12 cells, For cells that needed to be kept in culture beyond 
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confluence medium was changed every other day. Two days before analysis, cells 

were washed twice in PBS and medium was changed to phenol red free medium 

supplemented with 2.5% FCS and 100 U/ml penicillin and 100 µg/ml streptomycin 

(Invitrogen). 

 

 Isolation of primary osteoblasts 

Skulls were dissected from 4-6 day-old mice aseptically and placed in 10 ml per skull 

HBSS with pencillin (100 U/ml; Invitrogen) and streptomycin (100 µg/ml; 

Invitrogen). The skulls were cleaned from surrounding tissues in a tissue culture hood. 

Two skulls were placed in 5ml of 0.01% trypsin (Invitrogen), 0.1mM EDTA (4ml of 

gibco trypsin in 100ml HBSS) and 0.5 mg/ml collagenase P (Roche) and icubated at 

37 ºC for 10 min on a rotary shaker. The skulls were thouroughly vortexed and the 

supernatant discarded. The skulls were incubated for 10 min in 5 ml of the 

aforementioned trypsin/collagenase mix and this for another 4 cycles. Supernatants 

from the 4 cycles were pooled into to a 50 ml tube containing 10-15ml of α-MEM 

supplemented with 10% FCS (Invitrogen), 100 U/ml penicillin and 100 µg/ml 

streptomycin (Invitrogen). At the end of the 4 cycles the digested cells were spun 

down at 400xg and resuspended in 2 ml of FCS. The number of cells was counted 

using a hemocytometer and diluted to a concentration of 15,000 cells/cm2 and plated 

in an appropriate culture dish. Once the cells reached confluency they were frozen in 

FCS/10%DMSO. Primary osteoblast were thawed and amplified. Primary osteoblast 

were then only passaged once more. The differentiation potential and the purity of the 

cultures were always assessed by staining the cells for ALP expression. 
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 Assessment of cell number 

Cell number was determined in triplicate wells at various time points. The cell layer 

was washed with PBS, and the cells were then incubated with 0.1-0.5 ml of 0.05% 

trypsin-25 mM EDTA (Gibco) at 37ºC for 10-40 min (until the cells in the wells 

visibly rounded up). An equal volume of FCS was then added and the cells were then 

dispersed to a single cell suspension with 25 up/down strokes using a 1 ml automatic 

pipetting device. Cell number was determined using a hemocytometer. 

 

 Protein isolation and western blot analysis 

Cells were washed once in PBS and scraped into 1 ml of ice-cold PBS. Cells were 

peleted at 400xg for 4 min at 4ºC. 2T3 cells and primary osteoblasts were grown in 

duplicates and cell number was assessed in the duplicate culture as mentioned above. 

The supernatant was carefully removed and the cells pellet was resuspended in 30 

ul/600,000cells of RIPA buffer (50 mM Tris HCl pH 7.5, 150 mM NaCl, 1% NP40, 

0.5% Na-Deoxycholate, 0.1% SDS) with the protease inhibitor cocktail Complete 

Mini (Roche). Cells were allowed to lyse at 4ºC for 30 min and spun at 14,000 rpm 

for 15 min on a tabletop centrifuge at 4ºC. The supernatant was used immediately or 

frozen at -70ºC for later use. Proteins amount were quantified by Bradford assay 

(BioRad). Isolated uteri from 6 week-old female mice frozen in liquid N2 and kept at -

70ºC before use. Protein from uteri wAS then powdered in liquid nitrogen using 

pestle and mortar. The powdered tissue was transferred into RIPA buffer and the 

samples were processed as described for cultured cells. 

Aliquots of 100 µg protein were resolved on a 10% SDS-PAGE gel alongside the 

rainbow protein marker (Invitrogen). To separate the doublet of ER α, the gels were 

run for 24h before blotting, for standard western blot analyses, gel were run over 
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shorter time periods. Proteins were transferred on PVDF membranes (Millipore) 

overnight at 50V. 

Membranes were blocked in 5% milk PBS-T (PBS and 0.05% Tween 20, Sigma) for 

20 min. Following blocking membranes were incubated with primary antibodies in 

5% milk PBS-T. The primary antibodies used in this study and the concentrations 

used were as follows: MC-20 (1:2000, Santa Cruz), H-184 (1:2000, Santa Cruz), 

mouse monoclonal anti β-Actin (1:5000, Sigma), H-11 (1:2000, Santacruz). After 1-

4h incubation the primary antibodies were removed and the membrane washed three 

times with PBS-T. Secondary antibodies in 5% milk PBS-T were added to the 

membrane for 1.5h. The horse-radish peroxidase conjugates were purchased from 

DiaNova. 

 

 Transfections 

Subconfluent and confluent cells were transfected with Fugene 6 reagent according to 

the manufacturer’s instructions (Roche). If cells were to be used for western analysis, 

they were grown in 6-well plates (Nunc). Cells used for luciferase assays were grown 

in 24-well plates (Nunc). Transfections were performed as follows. 20 min before 

transfections cells were washed twice in PBS and growth medium was changed to 

phenol red free medium with 2.5% FCS and antibiotics. Cells were placed back in the 

incubator and the transfection mix prepared. 0.3 ug/well was transfected in 24-well 

plates while 1.5 µg/well was transfected in 6-well plates. The ratio µg DNA/ µl 

Fugene 6 was kept at 1:6 and the ratio Fugene 6/ serum free medium at 1:35. For 

luciferase assays the ratio of the different plasmids were: Estrogen receptor construct 

or empty vector: ERE-tk-luciferase: renilla, 1:50:0.06. For westerns, ERE-luciferase 

and renilla were replaced by empty vector. 
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On the following day medium was replaced for fresh phenol red free medium with 

2.5% FCS containing the appropriate concentrations of erthanol vehicle estradiol 

(Sigma), ICI 182,780 (?). MG132 (Sigma) was added concomitantly. 

 

 Luciferase assay 

Cultured cells were washed twice in PBS. Apart from subconfluent 2T3 cells which 

were lysed in 80 µl active lysis buffer (Roche), other cells were lysed in 100 µl of 

lysis buffer. Cells were allowed to lyse at room temperature for 3h in the case of 2T3 

cells and for 1h for every other cell line. 10 µl of each lysate was used in the Dual 

Luciferase assay (Promega) with 10s emission measurements and 2s delays after the 

injection of 50 µl luciferase assay reagent and injection of 50 µl Stop&Glow reagent. 

Measurement was performed in 96-well micrplates (nunc) using the EG&G Berthold 

Microplate Luminometer LB 96V. 

 

 RNA and DNA isolation 

Uteri from 6-week old female mice were frozen in liquid N2 and kept at –70ºC until 

use. Uteri were ground with pestle and mortar in liquid N2 and the powdered tissue 

was transferred into TRIzol (Invitrogen). The RNA and DNA isolation procedure 

were performed as recommended by the manufacturer. DNA was resuspended in 

water and concentration was determined by the absorbance at 260 nm. RNA was 

resuspended in water and kept at -70ºC until it was used. Concentration was 

determined by absorbance at 260 nm and quality of the RNA was assessed by agarose 

gel electrophoresis. 
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 Β-galactosidase reporter gene assay 

Primary osteoblasts from the ERE-tk-bet-Galactosidase ERIN mice (Nagel et al., 

2001) were isolated as described above. The detection of β-galactosidase was 

performed with the Galacto-starTM chemiluminescent reporter gene assay (Tropix). 

Cells were plated in 6-well plates. Subconfluent cells were used the day after for the 

assay while cells were kept up to 5 days after confluency was reached for 

differentiated cells. Cells were rinsed once with PBS and subsequently scraped into 

100 µl of lysis buffer for subconfluent cells or 500 µl for confluent cells and cells 

were incubated at room temperature for 10 min. 10 ul of each lysates were transferred 

into 96-well microplates (nunc) and measurement was performed after addition of 100 

µl of substrate with a EG&G Berthold Microplate Luminometer LB 96V for 10 sec. 

 

 Osteogenic differentiation of 2T3 and primary calvarial 

osteoblasts 

2T3 cells and primary calvarial osteoblasts were plated at 1600 cells/cm2 and 5,000 

cells/cm2 respectively in α-MEM supplemented with 10% FCS supplemented with 

antibiotics and glutamine. For cells with an undifferentiated phenotype, cells were 

washed twice with PBS and the medium was changed the day after to phenol red free 

medium with 2.5% charcoal-stripped FCS, antibiotics and glutamine. Two days 

afterwards the cells were still subconfluent and undifferentiated as assessed by their 

ALP negative phenotype. For differentiation, cells were kept in 10% α-MEM until 2 

days prior to analysis when the medium was switched to phenol red free medium with 

2.5% charcoal-stripped FCS. Differentiation was assessed by ALP staining. 

TGF β 
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 Differentiation of C2C12 cells 

C2C12 cells were plated at 8,000 cells/cm2 in DMEM with 10% FCS, antibiotics and 

glutamine. Cells reached confluence two days afterwards. The medium was then 

changed to DMEM with 5% FCS. Cells spontaneously differentiated into 

multinucleated myoblasts as soon as three days after confluency was reached under 

these conditions. To induce osteogenic differentiation, BMP2 (300 ng/ml, Genetics 

institute) was added on the day confluency was reached and thereafter every other 

day. Osteogenic differentiation was assessed by ALP staining. 

 

 Alkaline phosphatase assay 

Cells were plated at the appropriate density in 24-well plates (Nunc). The Alkaline 

Phosphatase detection kit was used and performed according to the manufacturer’s 

instructions (Sigma-diagnostics). Cells were washed twice in PBS directly in the 24-

well plates and fixed in 1ml of fixing solution. Cells were then washed twice in water 

and incubated with 1ml of substrate solution for 15 min at room temperature in the 

dark. Following staining, the cells were washed twice with water and air-dried. 

 

 Mineralized Bone Matrix Formation Assay  

Bone cell differentiation was monitored using a mineralized matrix formation assay as 

described previously (Chen et al., 1998).Von Kossa stain of mineralized bone matrix 

was performed as follows. The cell cultures were washed with PBS twice, fixed in 

phosphate-buffered formalin for 10 min and then washed with water, and serially 

dehydrated in 70, 95, and 100% ethanol, twice each, and then air dried. The plates 

were rehydrated from 100 to 95 to 80% ethanol/water before staining. The water was 

removed, a 2% silver nitrate (Sigma) solution was added, and then the plates were 
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exposed to sunlight for 20 min after which the plates were rinsed with water. 5% 

sodium thiosulfate (Sigma) was added for 3 min and the plates were then rinsed with 

water. The modified van Gieson stain was then used as a counterstain after the von 

Kossa stain. The unmineralized collagen matrix can be recognized by the yellow-red 

van Gieson stain. The acid fuchsin solution (5 parts of 1% acid fuchsin (Sigma), 95 

parts of picric acid (Sigma), and 0.25 part of 12 M HCl) was added for 5 min. The 

plates were washed with water and then with 2× 95% ethanol, 2× 100% ethanol and 

then air dried. 

 

 Quantitative RT-PCR 

RNA were prepared form sampled cells by the TriZol Reagent (Invitrogen). Reverse-

transcription using poly-dT oligos (Roche) was then performed on 8 µg RNA treated 

with DNAse (Roche). The 5’ to 3’ sequences of the primers used in the PCR (MWG 

GmbH) were: 

GAPDH:  

GAPDHup 5' GAGGCCGCCGCACGACAACCGCA 3' 

GAPDHdown 5' ACGGTGGGGAAGACTGTCCTGCCTG 3' 

mER α:  

ex5-1u: 5’ AGTGTGCCTGGCGGAGATTCTGATGATTG 

ex6-1: 5’ AGATCTCCACCATGCCTTCCACAC 3’ 

Quantitative PCR were performed using SybrGreen (Molecular Probes) as marker for 

DNA amplification on a SmartCycler (Eurogentec) with 40 cycles. Detectable 

amplification of specific products arose between 13 to 28 cycles. 
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