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Zusammenfassung

Eine Möglichkeit die erreichbare Himmelsabdeckung eines adaptiv-optischen Systems, dass die
optischen Aberrationen in astronomischen Beobachtungen, die durch atmospärische Turbulenz
erzeugt werden, kompensiert, ist die Wellenfront im nahen infraroten Wellenlängenbereich abzu-
tasten. Dort werden viele helle Sterne gefunden, die als Leitsterne benutzt werden können
und die keine Entsprechung im Sichtbaren haben. Ein Pyramiden Wellenfront Sensor wurde
gewählt wegen seiner Vorteile gegenüber eines Shack-Hartmann Sensors. Es wird ein Gewinn
an Empfindlichkeit erwartet, der die Grenzhelligkeit erhöhen kann, wenn der Sensor in einem
geschlossenen Regelkreis arbeitet. In dieser Arbeit wird die Möglichkeit ein solches Instrument
zu bauen im Rahmen eines Projektes, PYRAMIR, untersucht, welches einen neuen Wellenfront
Sensor am 3.5m Teleskop auf dem Calar Alto implementieren wird. Ein analytisches Modell für
die Erweiterung des linearen Bereiches des Sensors durch die atmosphärischen Turbulenzen, mit
dem Preis einer Verminderung der Empfindlichkeit, sowie es auch bei der üblichen Modulation
des Lichtkegels geschieht, wurde ausgearbeitet. Messungen am Teleskop, im Labor und Ergeb-
nisse numerischer Simulationen zeigen die Möglichkeit einen Pyramiden Wellenfront Sensor ohne
zusätzliche mechanische Modulation zu benutzen. Ein experimenteller Labor-Aufbau und nu-
merische Simulationen eines kompletten adaptiv-optischen Systems waren die Hauptwerkzeuge
für die Festlegung der Anforderungen an die Optik des neuen Instrumentes. Die Spezifikationen
und Anforderungen an die Pyramiden wurden ausgearbeitet, die Effekte der Modulation und
statischer Aberrationen auf die Messungen des Sensors, sowie der Einsatz räumlicher Filter wur-
den analysiert. Die Ergebnisse dieser Studie wurden direkt in PYRAMIR angewandt.

Abstract

One possibility of increasing the achievable sky coverage of an adaptive optics system compen-
sating the optical aberrations due to atmospheric turbulence for astronomical observations is
sensing the wavefront at near-infrared wavelengths, where many bright stars are found, which
can be used as guide stars and have no visible counterparts. A pyramid wavefront sensor was
chosen due to its advantages over the Shack-Hartmann sensor. It is expected to achieve a gain
in terms of sensitivity, raising the limiting magnitude, when used in closed-loop regime. In this
work the possibility of building such an instrument has been studied in the framework of a
project called PYRAMIR, which will implement a new wavefront sensor in the adaptive optics
system at the Calar Alto 3.5m telescope. An analytical model for the way in which atmospheric
turbulence increases the linear range of this sensor at the cost of lower sensitivity, as usually is
done through a mechanical modulation of the light beam, has been presented. Studies at the
telescope, in the laboratory and through simulations show the possibility of using the pyramid
wavefront sensor without any extra modulation. An experimental laboratory setup and numer-
ical simulations of a full adaptive optics system were the main tools for establishing the optical
requirements for the new instrument. Issues like the pyramid requirements and specifications,
the effects of modulation and non-common path aberrations and spatial filters and their effects
on the sensor have been analyzed in this way. The results were then directly applied in the
design of PYRAMIR.
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Chapter 1

Introduction

The study of astronomy has always been limited by the distortion due to the earth’s turbulent
atmosphere. Even through the transparent wavelength windows, where absorption is minimal,
the flat wavefront coming from the astronomical sources is distorted by the changing atmo-
sphere. There are many ways to circumvent this problem: the most obvious of them is to avoid
the atmosphere completely by the installation of space-based telescopes. Above the atmosphere,
these instruments deliver undistorted and beautiful images, limited only by the optics of the
system and the finite aperture size. However the prohibitive costs of building, launching and
maintaining these instruments is a major deterrent. Another way out is speckle interferometry,
where short exposure images are taken, allowing for diffraction limited images. This method
falls out of favor since it is limited by low sensitivity, and hence only bright targets can be used.

Adaptive optics has proven to be particularly useful in ground-based telescopes, successively
measuring and correcting for the effects of the atmospheric turbulence. Geometrically this can
be described as correcting the direction of the incoming light rays, which has been deflected
while traversing our turbulent atmosphere. It is generally desired to have a real-time correction,
which is able to follow the temporal evolution of the atmosphere, aiming to reach the diffraction
limit and full optical performance of the instruments. The demand of high temporal frequency
needed and the low photon flux coming from the weaker sources make adaptive optics projects
very challenging and often interdisciplinary. An adaptive optics system generally has two main
components: the wavefront sensor, which measures the wavefront distortion, and the wavefront
corrector, which is usually a deformable mirror conjugated to the ground turbulence layer. In
this work a new wavefront sensor is explored, which has its roots at the beginning of optical
testing.

The Foucault knife-edge can be considered as the first direct predecessor of the pyramid wave-
front sensor. Invented during the second half of the nineteenth century, described in Foucault
(1859), this test uses a knife-edge at the focus of an objective lens or mirror to determine the
direction of the light rays coming from each point of the objective. The small imperfections of
the lens or mirror can thus be detected as variations in brightness. This method revolutionized
the optical testing techniques of the period. Transposing this to a telescope pointed at a bright
star, the knife-edge can be positioned at the focus, allowing for the detection of the continuously

1



2 1 INTRODUCTION

evolving wavefront distortions due to the atmospheric turbulence. Later with the Hartmann test
(Hartmann (1900)), the predecessor of the Shack-Hartmann wavefront sensor, together with the
Foucault test, the basis for wavefront sensing for adaptive optics was established. However, the
correction of wavefront distortions took some years to catch up (Babcock (1953)).

The principle of the Pyramid Wavefront Sensor, described in Ragazzoni (1996), is an adaptation
of the Foucault knife-edge, with a four-sided glass prism, in the form of a pyramid, located at
the focus of the telescope, which divides the light into four different beams, according to their
direction when emanating from the entrance pupil. This sensor has many advantages over the
established Shack-Hartmann sensor in terms of higher sensitivity and flexibility of sampling: this
make it a very interesting alternative for astronomical light-starved applications.

Today adaptive optics systems have been implemented or planned on all major telescopes. The
ALFA system was implemented on the 3.5m telescope on the Calar Alto observatory in southern
Spain. This system uses a Shack-Hartmann wavefront sensor working at visible wavelengths and
a 97 piezo-actuator deformable mirror correcting the wavefront. The need for bright natural
guide stars, suited to wavefront sensing, limits the sky coverage of the instrument. For some
years ALFA worked with a laser guide star to overcome this problem. Ever since it has been
decommissioned, various options have been explored for its successor. There was an urgent need
to develop a wavefront sensor in the infrared to extend the sky coverage to sources bright in
the infrared, which were too weak for guide stars in the visible. The high readout noise of the
infrared detector arrays has always made this idea unfeasible. However the new generation of
infrared detectors have overcome this defect, which makes the idea of an infrared wavefront
sensor a realistic one. To date the only infrared system is NAOS, installed at one of the four
VLT telescopes, working in the southern hemisphere.

The new wavefront sensor, called PYRAMIR, combines the new pyramid wavefront sensor with
the infrared sensing capabilities to get full exploitation of the ALFA potentialities. The goal of
this thesis has been to study the possibility of building such an instrument, for possible imple-
mentation in the existing ALFA system as a complement to the visible Shack-Hartmann sensor.
A great part of this thesis has been devoted to the planning and development of this instrument.
The telescope implementation has already started and first light is planned for beginning of 2005.

In Chapter 2 the astronomical and technical motivations for this work are presented. An in-
troduction to the pyramid wavefront sensor and its measurement interpretation are elucidated
in Chapter 3, where also some of the open issues that emerged during the project are discussed.
In Chapter 4 a model for the effect of the atmospheric turbulence on the pyramid wavefront
sensors’ measurements is presented, which acts as a modulation increasing the linear range of
the sensor and establishing a limit to its sensitivity. Telescope experiments comparing a sys-
tem modulated only by the atmosphere and a conventional system modulated additionally by
mechanical means are also presented. The main techniques for the study of the sensors perfor-
mance and its characteristics have been a setup, which was built in laboratory, and numerical
modelling of a pyramid wavefront sensor integrated in a telescope adaptive optics system. These
are described in Chapter 5. A set of different glass pyramids has been characterized and related
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issues like the light loss through the pyramid edges and the effect of a roof-shaped tip of the
pyramid were analyzed, as well as the possibility to use a three-sided pyramid. Also the need
and effect of modulation, the impact of static aberrations and the effect of a spatial filter in the
focal plane have been studied. The results of these studies are given in Chapter 6. In Chapter 7
the complete instrument is described, where the setting of the requirements and the development
of the optics were a major task during the elaboration of this thesis.
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Chapter 2

Motivation

A major goal of this work, was the conceptual development and optical design of the new
PYRAMIR instrument. This new wavefront sensor, based on the pyramid principle proposed
by Ragazzoni (1996), will be installed parallel to the existing Shack-Hartmann wavefront sensor
in ALFA, providing an alternate wavefront sensor for the existing adaptive optics (AO) system
on the 3.5m telescope at Calar Alto. This new wavefront sensor will operate at near-infrared
wavelengths. In this chapter, we motivate the need of this project in terms of astronomical
objectives, and as a technical demonstrator.

2.1 The new instrument PYRAMIR

In the past few years, pyramid wavefront sensors (PWS) have been studied and tested in lab-
oratory simulations as well as real models on telescopes (Esposito et al. (2000a); Esposito and
Riccardi (2001); Vérinaud (2004); Ragazzoni et al. (2000); Ghedina et al. (2003)). PWSs are
also being implemented in other major AO projects for telescopes, like the Large Binocular
Telescope (LBT) (Ragazzoni et al. (2003)) and the CHEOPS/Planet-finder for VLT (Feldt et al.
(2003a,b,c); Claudi et al. (2004)) 1. The studies for this instrument have been made at MPIA
in the framework of a preliminary proposal made to ESO responding to a call for a second
generation VLT instrument called ”Planet finder”. CHEOPS draws a lot from the conceptual
design and experience of PYRAMIR.

One of the greatest strengths this new type of wavefront sensor is its expected increase in
sensitivity when operated in a closed loop, thus enhancing the limiting magnitude (Ragazzoni
and Farinato (1999)). This is in stark comparison to a Shack-Hartmann wavefront sensor with
the same configuration. Highest sensitivity is expected to be achieved with very little or no mod-
ulation 2, and hence PYRAMIR was designed to work without modulation (although a back-up
solution has been planned). The role and need of modulation (Esposito and Riccardi (2001);
Costa et al. (2003b)) have been further discussed, and the modulation effect of the atmosphere

1CHEOPS: Characterization of Exo-planets by Opto-infrared Polarimetry and Spectroscopy
2Modulation is a movement of the focus around the pyramid tip, which is used to increase the dynamic range

of the sensor, at the cost of lower sensitivity.

5
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Figure 2.1: The left image is an extract of one area of the sky where suitable guide stars were found.

The square area shown has 0.75◦ side length. The white fields represent the area covered by this stars.

The right image schematically shows how the calculation of the sky coverage was done.

has been analyzed (see Chapter 4 and Costa (2004)).

There has always existed an urgent need to build a wavefront sensor operating at infrared wave-
lengths, since there exist many bright sources in the infrared 1.25, 1.62 and 2.2µm bands which
do not possess visible counterparts. The main reason for the delay in its development has been
the fact that the readout noise scales with the frame rate, being too high with current infrared
detectors, at frame rates of the order of 100Hz, which are necessary for AO. These cameras
have been developed mainly for astronomical long-exposure images having a large number of
pixels. The new infrared detectors that have been developed show a big improvement in this
point. The first detector, which will be used for PYRAMIR is a 4-quadrant Hawaii-I detector
from Rockwell, each quadrant having 512×512 pixels read out in parallel through 4 independent
output channels. These detector has been tested (Ligori et al. (2004)) and the frame rates of
150Hz were achieved without significant increase of the readout noise, which stays below 10 e−.
As a next step the AO-Mux, also from Rockwell, is planned to be implemented in PYRAMIR.
It promises an even lower readout noise of 5 e−, but is unfortunately still under development.

2.2 Astronomical Motivation

One of the basic limitations of natural guide star AO systems is the achievable sky coverage. It
is defined as the percentage of sky that can be observed while fulfilling the requirements of the
AO system.

In the ALFA visible wavefront sensor, one always needs a star brighter than mV ≈ 12mag
and closer than ≈ 20′′ (in K-band) to the science target. This considerably limits the amount of
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sky observable with AO. One of the possibilities to overcome this limitation is the use of artifi-
cial, laser guide stars (LGS). However, after ALFA’s LGS facility was de-commissioned in 2000,
a new technique to extend the possible choices of sciences targets was needed. One alternative
is through multi-conjugated AO techniques, another one is an infrared wavefront sensor.

To make a direct comparison between the sky coverage of the visible wavefront sensor and
the infrared sensor the same definition of limiting magnitude had to be used in both cases.

The new PWS is designed to work in a near-infrared wavelength range, from 1.0 to 2.35µm, and
should be photon-noise limited down to mK ≈ 12mag. This is the estimated limiting magnitude
for PYRAMIR (see Chapter 7) for the system reaching a Strehl ratio of 0.1 with high order
correction (not only tip and tilt). The 2MASS Catalogue3 was used to search for suitable guide
stars. For this search random circular areas with 1◦2 radius, visible in the northern hemisphere
at Calar Alto latitude, (37.2◦) were taken. This was done in the galactic plane (|glat| < 5◦) as
well as extragalactically (|glat| > 45◦). According to the catalogue specifications, the number of
stars found close to the galactic plane may be underestimated due to the high density of stars
in that region.

A similar search was done in the Tycho2 catalogue for suitable guide stars for the visible wave-
front sensor of ALFA. This sensor has already been in use for some years and it is known that
with 1” seeing, which are normal conditions at Calar Alto, it can still close the loop sensing
with the 5×5 array and correcting high orders with a guide star of 12th magnitude in the visible
achieving Strehl ratios of the order of 0.1. The search was performed in the same random areas
as for the infrared sources.

Since the turbulence is not concentrated in a thin layer at the telescope pupil but is distributed
along the propagation path of the light through the atmosphere, the more distant the science
target and the guide source are, the more the wavefront error de-correlates. This is called the
angular anisoplanatism and constricts the science target to be within a certain angular distance
from the guide source if it is not bright enough to be self-guided. The isoplanatic angle is de-
fined as the angular distance at which the average wavefront error is 1 rad2. Usually for the
near-infrared the isoplanatic angle is given as 10” (Hardy (1998)). Experience with ALFA has
shown that it achieves the performance described in the last paragraph at an angle of 20” from
the guide star. In the following calculation this value will be taken as the ”isoplanatic angle”.

3Two Micron All-Sky Data Release, Point Source Catalogue

Sky Coverage mV < 12 mK < 12

Galactic 0.8% 27%

Extragalactic 0.2% 0.9%

Table 2.1: Achievable sky coverage for an infrared pyramid wavefront sensor as PYRAMIR, having a

limiting magnitude of 12 in K-band and for a visible wavefront sensor working with mV < 12. For the

calculation details refer to the text.
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Figure 2.2: These are pictures of the Massive Star Forming Region S106 taken with the Hubble Space

Telescope (from Bally et al. (1998)). The image on the left has been taken at optical wavelength and

the one on the right was observed at the near-infrared. In the latter a central source can be seen,

which is surrounded by ionized material and is embedded in a molecular cloud. This makes the visual

extinction so high that it can not be observed. In the near-infrared the star is very bright and can be

used as guide star for reference.

Each source, which was found, increases the sky coverage by about πθ2
0, where θ0 is the iso-

planatic angle (see Fig. 2.1). The total covered area divided by the total search area of π◦2 gives
the percentage of sky covered by the sensor in the search area.

The sky coverage in the galactic plane gives a mean value of 27% for stars brighter than 12th
magnitude in K-band. This is a considerable increase relative to the visible sensors’ coverage,
which is less than 1%. For the extragalactic region coverage of visible and infrared is 0.2% and
0.9% respectively (see Tab. 2.1).

On the other hand one of the prime science drivers for the PYRAMIR project has been the
increased sample coverage of regions of special interest. It increases the observable targets by
a large number of objects which can not be reached by any other adaptive optics system in
the northern hemisphere. In galactic star forming regions, observations generally suffer a high
extinction originating from large amounts of molecular material enshrouding the newly born
stars and effectively the complete star forming regions. This results in a high reddening of stars
inside these regions, i.e. most of the objects are invisible at visual wavelengths but bright in the
infrared. Often the interesting object can even be used as self-reference or as reference source
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Figure 2.3: Sample coverage for ALFA’s visual wavefront sensor and PYRAMIR.

for the also embedded surroundings, within the isoplanatic angle. We find this situation always
in Young Stellar Objects with very hot massive stars, but also in stars with debris disks, stars
undergoing mass loss, Novae or Peculiar Objects.

The result of a comparison of the coverage of this kind of objects by the visible and the new
infrared wavefront sensor can be seen in Fig. 2.3. Here we compare a sample of ultra-compact
Hii regions from Kurtz et al. (1990), a sample of young, massive stars from Chan et al. (1996),
and a sample of TTau and Herbig Ae/Be stars for the two wavefront sensors. It can clearly be
seen that for the massive stars, which generally develop faster than low-mass stars and are thus
more deeply embedded in dust for a considerable fraction of their lifetime, an infrared sensor
increases the chances to observe such objects from practically zero up to a respectable 20%. This
comparative estimation of the sky and sample coverage of the existing visible wavefront sensor
with the new PWS has been analyzed in Costa et al. (2003a).

2.3 Technical Motivation

The refractive-index changes produced by turbulence are almost wavelength-independent over
the range between 0.36 and 10µm. Therefore, given an optical path-length error due to turbu-
lence, it will produce smaller phase shifts at longer wavelengths. This translates into the fact
that turbulence is relatively benign at near-infrared wavelengths, having values of r0 in the range
of 0.5 to 1.0m while in the visual r0 is approximately 0.1m. This means that the degradation
effects on uncompensated images in the near-infrared are smaller than in the visible, which re-
sults in a smaller angular image diameter at longer wavelengths. A wavefront sensor working
in the near-infrared will better adapt to the spatial and temporal characteristics of the ALFA
system. The spatial sampling of the wavefront, given by the deformable mirror subaperture size,
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is 0.35m and the temporal characteristics of the adaptive optics loop, given by the loop fre-
quency, is 100-200Hz. This is hardly effective to compensate the turbulence in the visible, while
in the infrared the demands are lower. Together with the greater r0 also the proportionality of
the Greenwood frequency fG ∝ λ−6/5 allows a longer integration time at longer wavelengths.
Of course visible wavefront sensing allows a potentially greater improvement but in the near
infrared the Strehl ratios will be higher and the AO-loop is closed more easily, meaning a better
bootstrapping and a higher limiting magnitude.

On the other hand the PWS is expected to achieve higher sensitivity than the Shack-Hartmann
sensor in a closed loop, enhancing the limiting magnitude. A pyramid sensor benefits from the
closed-loop operation to its intrinsic limitation only by the diffraction by the full telescope aper-
ture (whereas a Shack-Hartmann sensor is always limited by the lenslet sub-apertures diffraction
effects). This allows the PWS to have a gain up to 2 in limiting magnitude with respect to a
Shack-Hartmann with the same configuration (Ragazzoni and Farinato (1999)).

The combination of these parameters leads to the conclusion that a PWS is better adapted
to near-infrared sensing in ALFA than a Shack-Hartmann sensor would be. In the case of
systems with deformable mirrors with more actuators and a higher loop frequency, like the AO
system for the CHEOPS/Planet Finder instrument, the PWS will be able to use its full potential
also at visible wavelengths.



Chapter 3

The pyramid wavefront sensor

This chapter begins with an introduction to the pyramid wavefront sensor and some results,
which contribute to the better understanding of the measurements given by this still quite new
technique.

The PWS was proposed by Ragazzoni (1996) as a pupil plane wavefront sensor being an alter-
native to the most commonly used sensors for astronomical purposes, like the Shack-Hartmann,
Curvature or Shearing interferometers. This new concept presents some special characteristics,
like the easily and continuously adaptable dynamic range and the variable sampling in the pupil
plane. But one of the main advantages is the improved sensitivity, compared to the Shack-
Hartmann, when used in closed loop diffraction limited in the sensing wavelength (Ragazzoni
and Farinato (1999)).

Here we present the more intuitive geometric description of this sensor as well as a diffrac-
tive analysis, which allows to get more accurate expressions for the measurement signals given
by the PWS.

There are still many open issues related to the measurements of this type of sensor and its
limitations. In the last sections some issues, which are directly related to this kind of sensor and
which were treated in this thesis, are explained.

3.1 Geometrical description

In geometric optics the incoming wavefront is focussed on top of a foursided prism, which divides
the light in four separate beams (see Fig. 3.1). Through a relay lens the entrance pupil is re-
imaged on a detector, where four pupil images are formed. If the wavefront is not aberrated the
light is equally split by the pyramid and this four pupils are equally and uniformly illuminated.
In the case of an aberrated wavefront the focussed beam can be described by a bundle of rays,
which do not all hit the pyramid tip. Rays emanating from regions of the pupil where the
wavefront presents a local slope, will hit only one side of the pyramid according to the sign of
this local slope. According to this only one of the four conjugated pupil-locations on the detector
will be illuminated, while the other three remain dark. This means that, as soon as the first

11
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derivative of the wavefront is not strictly zero, the PWS signal saturates, giving only the sign of
the local wavefront, like in the analogous Foucault knife-edge test (Foucault (1859)).

Figure 3.1: A geometrical description of the pyramid wavefront sensor.

The distance from the tip, where the ray hits the pyramid, is determined by the size of the slope.
Defining a coordinate system (xi, yi), having its origin in the entrance pupil center and being
normalized on the pupil edges, and a coordinate system (xf , yf) centered on the pyramid edge
in the focal plane, aligned with the first one, one can write:

xf = f
∂W (xp, yp)

∂xp

yf = f
∂W (xp, yp)

∂yp

, (3.1)

where W (xp, yp) is the wavefront in the pupil plane to be measured and f is the effective sys-
tem focal length. But this information is not accessible in this more simple configuration. To
overcome this limitation temporal modulations of the pupil local tilt can be introduced. More
intuitively the beam is moved over the four sides of the pyramid at least once during a single
integration of the detector. This movement can be introduced in different ways:

- Mechanically through a tip-tilt mirror in the pupil plane (Riccardi et al. (1998)).

- By moving the pyramid itself (Ragazzoni (1996)).

- Through a defocus term with sinusoidally varying amplitude, introduced by a vibrating
membrane.
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- Statically a similar effect can be achieved by a light diffusing plate introduced in an inter-
mediate pupil plane (Ragazzoni et al. (2002)).

In the first cases the modulation can be seen as the superposition of a tilt made in an incoherent
way, by temporal averaging, making the spot size larger than its original size. The second tech-
nique uses a coherent modulation by introducing some high order spatial frequencies. These have
to be selected in a way to enlarge the spot size but, simultaneously, to avoid the introduction
of perturbations on the modes that one wants to measure. In other words: the content of low
spatial frequency should be closely enough to zero so as not to perturb the measurement.

Assuming the most simple case of a circular beam movement around the pyramids’ tip, the
more aberrated rays, which hit the pyramid more distant from the tip in the static case, will
spend more time (or equivalently perform a longer path) on one of the pyramid sides during one
integration cycle. According to the length of the path the ray follows on each side, the intensity
in the correspondent conjugated pixel on the detector will be different. If the amplitude of this
modulation movement is at least as big as the biggest local tilt in the wavefront, there will
be no saturation and a quantitative estimation can be done. Calculating the path lengths in
dependence of the modulation amplitude, the relation between local wavefront derivative and
intensity ratios is (Riccardi et al. (1998)):

∂W (xp, yp)

∂xp

= a0 sin
(π

2
Sx

) ∂W (xp, yp)

∂yp

= a0 sin
(π

2
Sy

)
, (3.2)

where the quantities S, which we will call signals, are defined as:

Sx(xi, yi) ≡
(I1(xi, yi) + I4(xi, yi)) − (I2(xi, yi) + I3(xi, yi))∑4

i=1 Ii(xi, yi)

Sy(xi, yi) ≡
(I1(xi, yi) + I2(xi, yi)) − (I3(xi, yi) + I4(xi, yi))∑4

i=1 Ii(xi, yi)
, (3.3)

where Ii are the intensities in the four conjugated positions (xi, yi) in the image plane and a0 is
the angular modulation amplitude. The amplitude of the displacement of the beam in the focal
plane is a0f . For small signals sin Sx ≈ Sx and it can be written:

∂W (xp, yp)

∂xp

= a0
π

2
Sx

∂W (xp, yp)

∂yp

= a0
π

2
Sy. (3.4)

This approximation is valid for slopes smaller than 1 modulation amplitude a0 or even less and
that modulation increases the range in which there is a linear relation between the wavefront
slope and the sensor signal.

Modulation also has an effect on the sensitivity of the sensor, which we will define as the
ratio between the measured signal and the incoming wavefront slope. This ratio is inversely
proportional to the modulation amplitude. The sensitivity of the PWS will decrease with the
modulation amplitude.
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3.1.1 Error propagation

Using the expression for the signal of the sensor in Eq. 3.3 the propagation of noise due to mea-
surement noise can be estimated.

Using the fact that Sx,y are functions of I1, I2, I3 and I4 the error on the signals can be written
as:

σ2
Sx,y

= σ2
I1

(
∂Sx,y

∂I1

)2

+ σ2
I2

(
∂Sx,y

∂I2

)2

+ σ2
I3

(
∂Sx,y

∂I3

)2

+ σ2
I4

(
∂Sx,y

∂I4

)2

. (3.5)

Due to the statistical nature of photons, they can be assumed as arriving according to a poisson
distribution. For the variance associated to Ii (for i = 1, 2, 3 or 4) the assumption is made that
the aberration is already small, so that the intensities in the four pupils are all approximately
N/4, where N is the total number of photons arriving at the detector. It follows that σ2

Ii
≈ N

4

and therefore the signal error due to photon noise can be calculated as (Feeney (2001)):

σ2
Sx,y

=
1

N
. (3.6)

The reconstruction error due to photon noise in the case of a modal reconstruction reduces then
to (Feeney (2001)):

σ2
rec =

1

Nns

Mmax∑

i=1

1

σ2
i

, (3.7)

where ns is the number of pupil sampling points and σ2
i is the variance of the i-th mode in signal

space. Mmax is the number of modes used in the reconstruction.

Similarly the error on the signal due to readout noise σ2
RN can be estimated:

σ2
Sx,y

=
4σ2

RN

N2
. (3.8)

With this the total error on the slope estimation due to photon noise and detector readout noise
is

σ2
∂W
∂x,y

= (πr)2

(
1

4N
+

σ2
RN

N2

)
. (3.9)

3.2 Diffractive optical description

Some simulated images of the four pupils on the detector are shown in Fig. 3.2 for a flat wavefront
and some zernike modes. It can be seen that the intensity distribution in the four pupils can
not be described simply by geometrical optics.
As a simplified analysis of the diffraction effects on the PWS the Foucault knife-edge is recalled.
We start with the expression for the signal in the pupil of the knife-edge wavefront sensor, where
the knife-edge is located along the y-axis direction, and we only measure signals in the x-axis
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Figure 3.2: This figure shows simulated CCD images, which are obtained with a PWS, for different

incoming aberrated wavefronts. Starting at the top left, a flat wavefront, a tilt, a defocus and an

astigmatismus are represented. No modulation is used.

direction (Sx).

Starting from the expression of Linfoot (1948) and taking into account an image inversion (Wil-
son (1975)), the complex amplitude of the electromagnetic field in the image plane after diffrac-
tion at a knife-edge along the y-axis can be written as (Feeney (2001)):

u∓
i (x, y) =

1

2
u0 (x, y) ± i

2π

B(y)∫

−B(y)

dx′ p.v.
u0(x

′, y)

(x′ − x)
, (3.10)

where p.v. means the principal value distribution. Here u0(x
′, y) is the complex electromagnetic

field amplitude in the object plane and ±B(y) are the edge points of a chord perpendicular to
the knife edge at the coordinate y. The ± are the two complementary positions having the
negative or the positive side covered. Since the observable is the absolute square of the complex
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-B(y) B(y)
(x’,y) (x,y)

y

x

Figure 3.3: The signal computation for the knife-edge wavefront sensor.

amplitude, it can be calculated with:

∣∣u+
i (x, y)

∣∣2 =




1

2
u0 (x, y) − i

2π

B(y)∫

−B(y)

dx′ p.v.
u0(x

′, y)

(x′ − x)


 ·




1

2
u∗

0 (x, y) +
i

2π

B(y)∫

−B(y)

dx′ p.v.
u∗

0(x
′, y)

(x′ − x)


 , (3.11)

and similarly for
∣∣u−

i (x, y)
∣∣2. The signals in x-direction can be calculated as:

Sx(x, y) =

∣∣u−
i

∣∣2 −
∣∣u+

i

∣∣2

|u0|2
. (3.12)

Substituting the previous expressions for
∣∣u±

i

∣∣2 and u0(x, y) = E exp [−iφ(x, y)] one gets:

Sx =
2i

4π


u∗

0

B(y)∫

−B(y)

dx′ p.v.
u0(x

′, y)

(x′ − x)
− u0

B(y)∫

−B(y)

dx′ p.v.
u∗

0(x
′, y)

(x′ − x)


 , (3.13)
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and after some simplifications:

Sx(x, y) =
1

π

B(y)∫

−B(y)

dx′ p.v.
sin [φ(x′, y) − φ(x, y)]

(x′ − x)
. (3.14)

The integral is performed along a chord in the pupil, perpendicular to the knife-edge, which
contains the point (x, y), where the signal is being computed. As represented in Fig. 3.3, ±B(y)
are the edge points of the chord and φ(x, y) is the wavefront phase at point (x, y). In the integral
the contribution of the sine-term is weighted with the distance between the integration point
(x′, y) and the point where the signal is being measured (x, y).

In the simplified knife-edge case the modulation can be reduced to a linear movement of the
beam perpendicular to the edge, where the phase is increased by an oscillating tilt term with
amplitude a0 and period in time ∆t:

φ̃(x, y; t) = φ(x, y) + a0
2t

∆t
x (3.15)

for a time t. Substitution in Eq. (3.14) and integration over one period yields:

Sx(x, y) =
1

π

B(y)∫

−B(y)

dx′ p.v.
sin [φ(x′, y) − φ(x, y)]

(x′ − x)
× ∆t

sin[a0(x
′ − x)]

a0(x′ − x)︸ ︷︷ ︸
modulation

. (3.16)

The signal has been averaged over one modulation period ∆t and a0 is the modulation amplitude.
Since sin x/x → 1, for small x, the term added to the integral acts as a delta function reducing the
contribution of the more distant pupil points to the signal at (x, y) and therefore linearizing the
signal, so that, for a sufficiently large modulation amplitude, the signal measured will correspond
to the local derivative of the wavefront.

3.3 Interpretation of the measurements

The diffractive expression for the PWS signals can be used as starting point for a deeper analysis
of the sensors measurements. The slope/phase sensor duality of the modulated PWS is one of
those, which gives an insight into the interpretation of measurements given by the PWS. As
deduced in the paper of Vérinaud (2004) the sensitivity of the PWS in the frequency domain
shows characteristics of a slope sensor and of a phase sensor depending on the frequency range.
The sensitivity in the frequency domain Ξ(u) can be defined as the standard deviation of mea-
surements for an aberration of frequency u with the phase variance of 1 rad2. The result given
in the paper, stated here without proof is:

Ξ(u) =

{
−isgn(u) , |u| > α

λ

− iλ
α
u , |u| < α

λ

Here λ is the wavelength and α is the angular modulation radius. This expression shows that for
frequencies lower than α

λ
the sensors sensitivity increases linearly with the frequency, as generally
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in the case of a slope sensor. This is also the case for a Shack-Hartmann sensor. Above that
frequency, the sensitivity stays constant, what is characteristic for a phase sensor.

For frequencies lower than the Nyquist limit, the signal to noise ratio in the frequency do-
main will be higher for the PWS than for the Shack-Hartmann. This translates into an increase
up to 2 in the limiting magnitude for a 100m telescope.

Clearly there is also an advantage of the PWS in terms of aliasing noise. This noise is caused
by higher spatial frequencies which are not sensed by the sensor due to its limited sampling and
that are interpreted as lower frequencies, disturbing the measurement. The sensors sensitivity
to these higher frequencies is lower as in the case of a pure slope sensor.

The frequency where the behavior slope/phase sensor changes increases with the modulation
amplitude. This points to the conclusion that the modulation amplitude should be kept as low
as possible.

For the case of no modulation the equations can be simplified. In the case of small aberra-
tions, like is expected in closed loop, the wavefront phase φ(x, y) � 1, which allows do simplify:
sin(φ) ≈ φ and the signal expression for the non-modulated sensor can be written as:

Sx(x, y) =
1

π

B(y)∫

−B(y)

dx′ p.v.
φ(x′, y)− φ(x, y)

(x′ − x)
. (3.17)

The integrand will only be equal to the derivative of the wavefront phase φ in the limit x → x′

or if φ varies very little over the telescope diameter. Only in this case the integral will be pro-
portional to the derivative. This explains the fact that the PWS can not be strictly considered
a slope sensor.

This integral can be separated:

Sx(x, y) =
1

π




B(y)∫

−B(y)

dx′ p.v.
φ(x′, y)

(x′ − x)
− φ(x, y)

B(y)∫

−B(y)

dx′ p.v.
1

(x′ − x)


 . (3.18)

The second integral can be calculated

B(y)∫

−B(y)

dx′ p.v.
1

(x′ − x)
= ln(B − x) − ln(B + x)

= −2x

B
+ O

(( x

B

)3
)

, (3.19)

and introducing this in Eq. (3.18) the expression for the signal can be written:

Sx(x, y) =
1

π





B(y)∫

−B(y)

dx′ p.v.
φ(x′, y)

(x′ − x)
− φ(x, y)

[
2x

B
− O

(( x

B

)3
)]




. (3.20)
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For the case of an infinite telescope size B → +∞ the integral in Eq. 3.19 tends to 0 and the
signal Sx(x, y) can be written as a simple convolution:

Sx(x, y) =
1

π
φ(x, y) ⊗

[
p.v.

δ(y)

x

]

︸ ︷︷ ︸
ξ(x,y)

, (3.21)

defining ξ as the sensitivity function in direct space. Performing a fourier transform the sensi-
tivity function in the frequency space is obtained:

FT (ξ(x, y)) = Ξ(u, v) = iπsgn(u). (3.22)

This shows that the fourier transform of Eq. (3.21), giving the frequency spectrum of the signals,
is:

S̃x(u, v) =
1

π
Ξ(u, v)φ̃(u, v)

= i sgn(u)φ̃(u, v). (3.23)

The frequency spectrum of the signals is proportional to the frequency spectrum of the wavefront
aberration.

3.3.1 Error propagation in frequency space

For the one-dimensional model the reconstruction process can be written as:

φ̃(u, v) = RS̃x(u, v), (3.24)

with R = 1/ (i sgn(u)) being the reconstructor. The propagation error through the reconstruction
process can then be calculated from the measurement error σn:

σ2
φ(u) = |R|2 σ2

n

= σ2
n, (3.25)

being undefined for u = 0, where R → +∞. For this model it can be seen that the error propa-
gation is constant and equal to unity through all frequencies. This means that the reconstruction
process is not increasing the error, which is introduced into the system by the measurement, like
photon noise, for example. Note that this model does not take into account any sub-aperture
filtering effect (which has been done by (Vérinaud (2004))), which provokes an increase in the
error propagation for higher frequencies.
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3.4 Problems and open issues

The PWS still is a quite new concept, which presents open questions in terms of interpretation
of the measurements and technical limitations. In this section an overview on this questions and
problems will be given, while later in this work detailed measurements and solutions are showed.

3.4.1 Light loss

One important issue, since adaptive optics and astronomy in general are photon-starving sci-
ences, is the light loss due to the pyramid edges in the wavefront sensor. In case the beam is
modulated around the pyramid tip, the size of the latter will be less important, especially with
big modulation amplitudes. In this case, the size of the edges should be taken into account,
but since the beam is not stable on top of one edge, the damage decreases with the modulation
amplitude. For a not-modulated system, that keeps the focus fixed on the pyramid tip, the loss
of light through the tip and edges will be considerably greater (see Fig. 3.4). Through simulated
images of the pupils on the detector, the effect of non-negligible edges scattering light between
the pupils can be seen in Fig. 3.5.

Figure 3.4: Through the edges and the tip of the pyramid the light will be diffracted landing outside

of the four pupils. Since at the edges the angle of refraction varies (they are normally less tilted than

the 4 surfaces), the stray light will mostly land between the 4-pupil image.

3.4.2 Calibration amplitude

Before performing measurements with the wavefront sensor a calibration has to be performed.
This means, in practice, that a set of independent wavefront modes is introduced in the sensor
and the corresponding signals are recorded. After this the measured wavefront can be decom-
posed into the set of modes used in the calibration with a least-squares method. This implies
that the recorded signals have a linear relation with the incoming aberration. As happens with
every wavefront sensor also in the PWS there is a range where the systems response is linear
(see Section 3.1). Beyond this limit, the response is non-linear and the signal saturates, making
it impossible to make exact measurements. If the sensor is not modulated, the linear range can
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Figure 3.5: The simulated CCD images shown here correspond to a pyramid with an edge lower than

10 µm on the left and an edge size of 100 µm on the right. The simulation was done for a system with

spot FWHM of 220 µm. The square root of the intensity is shown, to make the differences more visible.

not be adapted to the conditions.

To chose the best calibration amplitude for the wavefront sensor a trade-off between two situ-
ations has to be achieved. One characteristic of the sensor, when it is used in non-modulated
regime, is the reduced dynamic range and its non-linear behavior when saturated. This is illus-
trated in Fig.3.6. The system should be calibrated within its linear range, which is in any case
smaller than ±0.5 rad. If the system is calibrated with a small amplitude of 0.1 rad the system
does not overestimate, measuring a higher aberration than the one applied. The slope of the
linearity curve is 1 at the origin. With increasing calibration amplitude the system has a range
of overestimation of aberrations, before it enters the saturation. This can be an instability factor
because in closed loop, when only small aberrations are present, these are overestimated. In case
this is known, it can be regulated through a gain factor lower than 1 in the most simple control
system, but this will also reduce the saturation level. Having a higher saturation level would be
a positive effect of higher calibration amplitudes. This effects may be taken into account with a
more complete and complex control system.

The main disadvantage of a calibration with small amplitudes occurs if the deformable mir-
ror, which is used to generate the modes, is not able to deform with high precision at small
amplitudes.

The fact that small amplitudes produce small signals increases the noise propagation coefficient
for the modes and the condition number1 of the system will increase.

1See Appendix C for the definition of condition number
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Figure 3.6: Here is shown the behavior in terms of linearity of the sensor, when calibrated with different

amplitudes. The measured amplitude is plotted as a function of the applied amplitude. The aberration

applied and measured is astigmatism.

3.4.3 Modulation

In the optical geometrical approximation the modulation of a PWS plays a central role as it
dictates the equivalent focal length of the lenslet array of the Shack–Hartmann wavefront sensor
having the same characteristics, at least if the latter is used with a four–quadrant mode to detect
the position of the various spots. No modulation translates into infinite focal length and, even in
geometrical approximation, this simply means that the signal of the PWS saturates as soon as
the first derivative of the wavefront would not be strictly flat. In other words the PWS would be
able just to give the sign of the derivative of the wavefront and not any estimation of its ampli-
tude, because, in geometrical approximation, the light spot can be arbitrarily small. Modulation
ensures a certain dynamic range prior to the saturation of the signal. In real–world of course
spot size is not arbitrarily small and, by heuristic reasoning, it has been shown that sensitivity
of a PWS without any modulation is significantly larger than for the Shack–Hartmann sensor
(Ragazzoni and Farinato (1999)). Because of the small dynamic range, however, whenever the
residual aberrations as seen on the PWS are larger than the dynamic range, some non–linearity
will occur leading to a deterioration of the performance. This interesting feature has been stud-
ied by Esposito and Riccardi (2001) and it has been shown that, at least under the conditions
simulated in the related work, it does usually exist a best modulation amplitude making the
magnitude gain the largest as possible.

While we do not investigate here the effects of non–common path aberrations that can lead
to a use of modulation to simply avoid to use the wavefront sensor in its saturated regime,
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regardless of the above–mentioned consideration, it is to be pointed out that there are some
reasons to raise the question if a PWS without modulation can still work at its best conditions,
even with a residual aberration different from zero, or, at least, with a small lack of performance.
As the absence of modulation is of course a large simplification of the PWS optical design, es-
pecially for the multi–wavefront sensors conceived for multi–conjugated AO (MCAO), this is for
sure an interesting topic.

Modulation can be seen as the superposition of a tilt made in an incoherent way making the spot
larger than its original size. The incoherence here is attained by temporal averaging and for this
reason, the spot still preserves all the wavefront information. A different technique described
in Ragazzoni et al. (2002) uses a coherent modulation by introducing some high order spatial
frequencies. These are to be selected in a way to enlarge the spot size but, simultaneously,
to avoid to introduce perturbation on the modes that one wants to measure. In other words
the content of low spatial frequency should be closely enough to zero so as not to perturb the
measurement.

3.4.4 Static aberrations

One of the questions that raise with the use of a PWS in the non-modulated regime is for sure
the effect of the presence of static aberrations in the non-common path of the sensor. These
aberrations must not be corrected, because this would introduce the inverse aberrations into the
science path, which should be avoided. It follows then, that this aberrations have to be included,
like in other WFSs, in the calibration. In case of a non-modulated PWS, the linear range of the
sensor is already reduced, if compared to a modulated one. This linear range also can not be
increased to adapt it to the measurement conditions, like in the modulated case. It can only
count on the modulating effect of the atmosphere (see Chapter 4), the one possibly coming from
other aberrations and the control system.

3.4.5 Pyramid roof

One of the main problems in the pyramid manufacture through polishing is the roof-shaped tip
(see Section 6.1). This has the effect that the amount of light which hits the pyramid tip is not
equally spread into four parts, even with a perfect airy-disk, as explained in Fig. 3.7. Two pupils,
formed by two diagonal sides of the pyramid will be more illuminated, what is demonstrated in
Fig. 3.8.

This difference in illumination will also vary with the shape and size of the PSF, which makes
it difficult to define a normalization factor for the intensities. Most aberrations produce non-
symmetric PSFs, and each aberration has a very characteristic shape. If the spot is very ex-
tended, as in the case of high aberrated systems, this effect will not be very high, but while the
system is correcting the aberrations, the spot-size decreases and the difference in illumination
increases.

If the PWS is working in modulated regime the effect of the roof will decrease with the modu-
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Figure 3.7: A roof-shaped tip of the pyramid leads to a difference in the illumination in the four

pupils on the detector, since one diagonal will have more light. This effect will be especially high in a

non-modulated PWS and will decrease with modulation amplitude.

lation amplitude and even get negligible, while this is not the case in the static regime.

3.4.6 Spatial filter

The positioning of a spatial filter in the focal plane, just in front of the pyramid, has been studied
in the laboratory. The main reason for the study of this component has been the reduction of
sky background in the PYRAMIR instrument. This has as a consequence of the limitation of the
field of view of the sensor. In the case of the CHEOPS wavefront sensor project the pinhole comes
in the form of a fully reflective mirror in the focal plane, which transmits most of the light of

Figure 3.8: A roof-shaped tip of the pyramid generates a different illumination in the four pupils

already for a flat wavefront. This effect is demonstrated in the two images above, where the CCD

image for a roof of 100 µm in the case of no modulation (on the left) and modulation of 2λ/D (on the

right) for a PSF full-width at half maximum of 107 µm. The roof is located along one diagonal of the

images.
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Figure 3.9: This image shows the geometrical approach for the calculation of the expressions for the

signals in x and y directions.

the bright central star into the wavefront sensor and reflects the surrounding light, including the
one coming from possible faint companions, to the science camera (Feldt et al. (2004)). This fil-
ter can only be used with the PWS in non-modulated regime or by also modulating the aperture.

The effect of such a spatial filter is the filtering out of spatial frequencies above a certain value
given by the size of the aperture, reducing their power. If this size is chosen according to the
wavefront sensors spatial frequency limit (due to spatial sampling), the high frequencies, which
are not seen by the sensor will be filtered out. These high frequencies have the unpleasant effect
of erroneously being seen as low frequencies, corrupting the measurement results. The attempt
of correction from the system will be biased producing errors. This effect, called aliasing, can
be significantly reduced by this filtering (Poyneer and Macintosh (2004)).

3.4.7 Three-sided pyramid

In previous sections the afforded pyramid quality in terms of edge and tip size has been esti-
mated. The specifications given to the manufacturers have been a maximum tip and edge size
of 10µm. This has not yet been achieved to my knowledge. This difficulty led to a search for
other solutions. The manufacture of a pyramid with three sides presents less difficulties in the
quality of the tip, because the over-polishing of one of the sides will not lead to a roof, like
in the four-sided case. The information about the derivative in two perpendicular directions
is especially intuitive in the four-sided case, but it is also possible to extract it from the three
pupils in the three-sided case.
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To deduce the expressions for signal calculation2, the geometrical approach of a beam mod-
ulated around the tip of a three-sided pyramid was used. Two coordinate systems are used: CS1
(x, y) centered on the tip of the pyramid and CS2 (X, Y ) having its origin on the center of the
circular movement. x0 and y0 are the coordinates of the center of the circular movement of the
spot in CS1, which are proportional to the slopes of the wavefront W in both directions. The
amplitude of modulation is r, so it can be written:

X2 + Y 2 = r2 ⇔ (x − x0)
2 + (y − y0)

2 = r2. (3.26)

The coordinates of M, the point where the beam crosses the edge between face 1 and face 2 (see
Fig. 3.9), can be found using:

Y = −
√

3︸ ︷︷ ︸
a

X −(y0 +
√

3x0)︸ ︷︷ ︸
b

(3.27)

and substituting this in Eq. 3.26. Taking the negative root one gets an expression for XM in
terms of a, b and r:

XM
− =

−ab −
√

(a2 + 1)r2 − b2

a2 + 1
(3.28)

The coordinates of N and P are found similarly. The angle subtended by the circumference
inside face 1 can be calculated as θ′1 + θ′′1 with:

θ′1 = arccos
XM

−
r

θ′′1 = arccos
XP

+

r
. (3.29)

The ratio of intensity on side 1 by the total intensity is equal to the ratio of the angles:

I1

Itotal

=
θ′1 + θ′′1

2π
. (3.30)

Similar expressions are obtained for I2 and I3. After substituting the expressions for the angles
from Eq. 3.29, performing some substitutions and applying some trigonometric relations one
gets:

2π
I1

Itotal

=
2π

3
+ arcsin

(
y0 +

√
3x0

2r

)
+ arcsin

(y0

r

)

2π
I2

Itotal

=
2π

3
+ arcsin

(
y0 −

√
3x0

2r

)
− arcsin

(
y0 +

√
3x0

2r

)
(3.31)

2π
I1

Itotal
=

2π

3
− arcsin

(
y0 −

√
3x0

2r

)
− arcsin

(y0

r

)

2Parts of the deduction of the formulas in this section have been done with the help of a private communication

of A. Riccardi.
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This allows to determine the position of the center (x0, y0), which corresponds to the slope of
the wavefront times the focal length (f δW

δx
, f δW

δy
):

x0 =
2πr

3
√

3

(
I1 − 2I2 + I3

Itotal

)

y0 =
2πr

3

(
I1 − I3

Itotal

)
. (3.32)

The signals expressions for the signals calculated from the intensities in the three pupils are
proportional to the slopes and can be defined as:

Sx ≡ 4

3
√

3

(
I1 − 2I2 + I3

Itotal

)

Sy ≡ 4

3

(
I1 − I3

Itotal

)
. (3.33)

The multiplicative constants have been chosen in a way to have

f
∂W

∂x
=

πr

2
Sx f

∂W

∂y
=

πr

2
Sy (3.34)

as in the four-sided case (see Eq. 3.4 where a0 = rf).

Error propagation

The error in the signals due to photon noise can be calculated in the same way as has been done
for the four-sided pyramid case in Section 3.1.1. The corresponding expression for the three-sided
case is:

σ2
Sx,y

=
32

27N
, (3.35)

being slightly higher than for a four-sided pyramid.

The error on the signal due to readout noise σ2
RN can be estimated:

σ2
Sx,y

=
32σ2

RN

9N2
, (3.36)

in this case being slightly lower than for the four-sided case.

The total error on the slope estimation due to photon noise and detector readout noise is in
this case:

σ2
δW
δx,y

= (πr)2

(
8

27N
+

8σ2
RN

9N2

)
. (3.37)

In case photon noise is the dominant source of error a three-sided pyramid will have a higher
total error than a four-sided pyramid.
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Chapter 4

The Modulation of the Atmosphere

The pyramid wavefront sensor in its original form works with a mechanical modulation, gen-
erally introduced by a tip-tilt mirror in the pupil plane, which moves the focus over the faces
of the pyramid at least once during a single integration of the detector. The amplitude of this
light-spreading adapts the linear range of the sensor to the seeing and sensing conditions.

In this chapter it is shown, for adaptive optics systems working in an astronomical context,
i.e., under the influence of the atmosphere, how the aberrations produced by the atmospheric
turbulence, which are not seen by the sensor due to its limited temporal bandwidth, act as a
modulation. These have the same effect of increasing the linear range and localizing the measure-
ment as the mechanical modulation. In this way the impact of residual wavefront aberrations is
estimated for some example conditions of telescope diameter, system bandwidth, wind velocity
and Fried parameter (Costa (2004)).

An astronomical verification of the ability to close the adaptive optics loop without mechan-
ical modulation and a comparison with the modulated case is described at last. It was done
with the PWS of the Telescopio Nazionale Galileo, a 4m class telescope sited at the observatory
of Roque de Los Muchachos, La Palma, Canary Islands (Costa et al. (2003b)).

4.1 Introduction

The key point in this chapter is that residual aberration can play the role of modulation in a
natural way. It is clear, from the reasoning given in section 3.4.3, that to avoid saturation and
hence non–linearity effects one would need modulation proportional to the amount of residual
aberrations in closed loop. On the other hands the residual aberrations are, by definition,
proportional to the residuals. Not all the residuals are useful, however. We can distinguish
phenomenologically the following two:

- Aberrations at temporal frequencies larger than the ones sensed by the PWS. These au-
tomatically can play the role of natural modulation and their strength is dictated by the
number of corrected modes and by the spectrum of turbulence;
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- Aberrations sensed by the wavefront sensor and only partially corrected. In this case still
these can play the role of natural modulation.

All the considerations made here alone are not, of course, enough to establish firmly if modula-
tion can be avoided at all (on the other hand it can be easily seen that by building a turbulence
spectrum ad–hoc there is clearly need of modulation in a number of occasions) but provides
some physical means on which basis a similar result can be founded.

In Section 3.2 the concept of modulation and its effect on the signals given by the sensor has been
presented. Here, in Section 4.2 a model is developed to describe how the residual aberrations,
not sensed by the PWS due to its temporal bandwidth, can act as a natural modulation. Then,
in Section 4.3 we perform a quantitative analysis, giving some examples on the size of this effect.
At last, in Section 4.4 the telescope verification results are described.

4.2 A model to describe the natural modulation

To understand the effect of modulation on the PWS it is enough to study the more simple case
of modulation on a knife-edge sensor.

One can decompose the phase in the pupil φ(x, y; t) in polynomial terms:

φ(x, y; t) =
∑

n

cn(t)An(x, y), (4.1)

where the An(x, y) are a complete set of functions, which are orthogonal over a unit circle and
cn(t) are the time-varying coefficients. We assume that the functions An(x, y) have a diagonal co-
variance matrix (like Karhùnen-Loeve polynomials). For every cn there is a gaussian distribution
with a variance σn for each cn, which gives the probability of finding a certain value:

P (cn) =
1

σn

√
2π

exp

(
− c2

n

2σn

)
. (4.2)

We know that the measured signal is obtained from the integration of the signal during an
amount of time T . So we can separate φ(x, y; t) in two parts: One which almost does not change
on time-scales smaller or equal to T and therefore is ”static” and can be measured, the other
one which changes in a statistical way in such time-scale (and can’t be measured).

Let us therefore separate φ(x, y; t) in two parts:

φ(x, y; t) = φs(x, y) +
∑

j

cj(t)Aj(x, y). (4.3)

Here φs(x, y) is the part, that can be measured (because it almost does not change during T ).
The second term is the part of the phase, which can not be measured with our sensor because
of temporal limits.
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For the mean value of the signal over one measurement cycle we get

〈Sx(x, y)〉 =
1

T

T∫

0

dt Sx(x, y; t). (4.4)

Substituting Eq. 3.14, the expression for the signals in the pupils of a knife-edge wavefront sensor,
where the knife-edge is located along the y-axis, and Eq. 4.3, and replacing the integral over time
by an integral over all possible configurations of cj, multiplied by their probability, we get:

〈Sx(x, y)〉 =
1

C

−∞∫

+∞

∏

j

dcj
1

π

B(y)∫

−B(y)

dx′ p.v.
sin [φs(x

′, y)− φs(x, y)]

x′ − x

× cos

{
∑

j

cj [Aj(x
′, y) − Aj(x, y)]

}
exp

(
−
∑

j

c2
j

2σj

)
. (4.5)

This can be written as

〈Sx(x, y)〉 =
1

π

B(y)∫

−B(y)

dx′ p.v.
sin [φs(x

′, y) − φs(x, y)]

x′ − x
× M(x′, x, y), (4.6)

where the ”modulation” M(x′, x, y) is

M(x′, x, y) ≡
∏

j

C

+∞∫

−∞

dcj exp {icj [Aj(x
′, y) − Aj(x, y)]} exp

(
−

c2
j

2σj

)
. (4.7)

It should be noted that Eq. 4.6 and Eq. 4.7 are similar to Eq. 3.16, the expression for the signals
in the pupils in the modulated case.

With
+∞∫
−∞

dc exp
(
− c2

2σ
+ icA

)
∝ exp

(
−σA2

2

)
, one gets

M(x′, x, y) = exp

{
−
∑

j

σj

2
[Aj(x

′, y)− Aj(x, y)]
2

}
. (4.8)

Clearly, the modulation function satisfies M(x, x, y) = 1 and M(x′, x, y) ≤ 1 and if σj 6=
0 for several j, M has the effect of cutting off the integral for large x′ − x, linearizing the
sin[φs(x

′, y) − φs(x, y)] in the integral, so that

〈Sx(x, y)〉 → C
dφs(x, y)

dx
, (4.9)

for a constant C. This is exactly the same as the effect of a ”mechanical” modulation.
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4.3 A quantitative estimation of the atmospheric modu-

lation effect

To make a quantitative estimate of the shape of the modulation function defined in the previous
section, we calculate the temporal power spectrum of each Zernike mode (Conan et al. (1995)),
where ν is the temporal frequency and ν/V the spatial frequency fx:

wZj
(ν) = 0.033

C2
Ndh

V
(2π)−2/3

(
2π

λ

)2
+∞∫

−∞

dfy

∣∣∣Z̃j

( ν

V
, fy

)∣∣∣
2
[( ν

V

)2

+ f 2
y

]−11/6

(4.10)

where Z̃j(fx, fy) is the fourier transform of the jth Zernike polynomial Zj(x, y), (fx, fy) is the
spatial frequency vector f , and n and m are the radial degree and the azimuthal frequency,
respectively:

|Z̃j(fx, fy)| = (n + 1)1/2 2 |Jn+1 (πDf)|
πDf






√
2 |cos (mθ)| , m 6= 0√
2 |sin (mθ)| , m 6= 0

1 , m = 0

(4.11)

The wind velocity V is taken along the x direction (to generalize to any wind direction one just
has to rotate the axes, so that the new fx is parallel to the wind direction). The Taylor hypoth-
esis of frozen turbulence is assumed. The index structure coefficient is C2

N , the layer thickness
is dh and the wavelength λ.

To get the residual variance, σj, Eq. 4.10 has to be weighted with the error transfer function
square modulus |T (ν)|2 and integrated:

σj =

+∞∫

−∞

|T (ν)|2 wZj
(ν)dν, (4.12)

nc

1

0
n

|T( )|n/nc
2

Figure 4.1: The square modulus of the error transfer function for a system with bandwidth νc.
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Figure 4.2: Normalized residual variance σj/(∆j − ∆j+1) for some Zernike polynomials as a

function of a, the ratio of the wind speed over the system bandwidth multiplied by the telescope

diameter (a = V/(νcDπ)).

where we take:

∣∣∣∣T
(

ν

νc

)∣∣∣∣
2

=

(
ν

νc

)2

θ

[
1 −

(
ν

νc

)2
]

+ θ

[(
ν

νc

)2

− 1

]
. (4.13)

Here νc is the system bandwidth and θ represents the step function, which is 0 for negative input
values and 1 elsewhere. The function T is represented in Fig. 4.1.

This means that there will be a residual contribution to the error from frequencies ν < νc.
Frequencies with ν > νc contribute with weight 1. In practice what we did was to calculate

σj =

+∞∫
−∞

|T (ν)|2 wZj
(ν)dν

+∞∫
−∞

wZj
(ν)dν

(∆j − ∆j+1) (4.14)

with ∆j given by the Zernike-Kolmogoroff residual errors (Fried (1965); Noll (1976)):

∆j ≈ 0.2944 j−
√

3/2

(
D

r0

)5/3

. (4.15)

Here D is the telescope diameter and r0 is the Fried parameter. This can be done because
+∞∫
−∞

wZj
(ν)dν = (∆j − ∆j+1) and it allows to drop all the constants outside the integrals. For
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Figure 4.3: Modulation function across the telescope aperture (in the pupil center represented

in the upper figure, and at point (x=1.5m,y=0m) in the lower figure) for different system

bandwidths νc, for a telescope diameter of 4m, wind velocity of 30m/s and an r0 of 1m.

the derivation and numerical integration of the equations refer to AppendixA at the end.

The modulation function obtained depends on a variable, that we define as a = V/(νcDπ),
and on Dr5

0 (see AppendixB). Its effect will increase with higher wind velocity V , and decrease
with bigger telescope diameters (D), higher r0 (better seeing) and higher system bandwidth νc.
This can be seen in Fig. 4.2, where the normalized residual variance for different Zernike modes,
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Figure 4.4: Integrated modulation function across the telescope aperture for different points

along the y=0 chord, normalized with the integral at (x=0m,y=0m), for different system band-

widths νc, for a telescope diameter of 4m, wind velocity of 30m/s and an r0 of 1m.

as a function of a, is plotted. We also plotted the modulation function in certain different con-
ditions, and made a mapping over the pupil for two different pupil positions (see Fig. 4.3 as an
example).

We integrated the modulation function across the pupil chord for the plots presented excluding
the point, where it has the value 1, normalizing it with the integral of the modulation function at
the pupil center, and we show the results in Fig. 4.4. The value obtained gives an estimate of the
suppression of the contribution of points on the same chord to the signal. The modulation effect
does not change more than 1−2 percent over the pupil, at least under the conditions simulated. It
shows a slightly greater modulation effect at the edges of the pupil. In future it should be further
analyzed, if this could have a physical meaning or if it could be due to numerical approximations.

Here we have used Zernike modes, neglecting the non-zero terms in the covariance matrix. The
numerical analysis is done in the same way with Karhùnen-Loeve polynomials, but we expect
no significant difference in the magnitude of the modulation obtained.

For comparison with the mechanical modulation, we plotted in Fig. 4.5 the atmospheric modu-
lation in certain conditions and the effect of a tilt modulation with different amplitudes in λ/D
units. The size of the diffraction limited spot on the pyramid tip corresponds to 1λ/D. To move
the complete spot over all the pyramid sides the smallest amplitude is 0.5λ/D. In the condi-
tions simulated, the atmospheric modulation effect is comparable to a mechanical modulation
of 0.2λ/D.
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Figure 4.5: Modulation function for a telescope with diameter of 4m, with a wind velocity of

30m/s, with r0=1m and a system bandwidth of 15Hz (for x = 0, y = 0) (solid line). For

comparison we have also plotted the mechanical modulation function for different modulation

amplitudes in λ/D units (dashed lines).

4.4 Experimental Verification with real Stars

The experimental verification was performed on sky with the PWFS of the 4m class Telescopio
Nazionale Galileo (TNG), sited at the observatory in La Palma, Canary Islands. The adaptive
optics module of TNG, AdOpt@TNG, is the only AO system that currently implements a pyra-
mid as a wavefront sensor for AO, and its latest performances show that this kind of sensor is
comparable to the wavefront sensors normally mounted on other AO systems (Ghedina et al.
(2003)).

We choose for the purposes of our test a set of 8 stars with scaling magnitudes from 5.4 to 9.2
and for each of them we took a series of closed loop images, alternatively switching off and on
the modulation of the pyramid. The pyramid of AdOpt@TNG is mounted on an XY stage, and
to introduce or not the modulation is an immediate task. In this way the elapsed time between
the two different measurements (with and without modulation) on the same star was negligible:
this assures the same overall conditions of the system during the test.

On the pin of the pyramid at the plate scale of AdOpt@TNG, being the effective F ratio F/32,
and at the effective wavelength of sensing (λ = 800nm), the modulations of ±λ/D corresponds
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Star Name mV Date Time(UT)

1 HR3951 5.4 27/04/02 21:42

2 HR4550 6.1 27/04/02 22:35

3 HR5415 6.4 27/04/02 00:50

4 HR5280 7.1 27/04/02 01:38

5 HR5414 7.6 27/04/02 02:01

6 HD149662 7.4 27/06/02 23:09

7 HD149561 8.4 27/06/02 23:35

8 HD149579 9.2 28/06/02 01:29

Table 4.1: Stars observed for the test of the Pyramid Wavefront Sensor

to a circular modulation with diameter ≈ 51µm. Amplitude and frequency of the modulation
where checked with an oscilloscope to correspond to the desired values.

Actually we split the pupil on the CCD into ≈ 8 × 8 subapertures, although correction was
performed only up to the first 14 K–L polynomials. Accordingly to the number of corrected
polynomials we could have sampled the pupil at 4 × 4 but we used the standard observational
mode of AdOpt@TNG.

The differences in performance were calculated by direct Strehl measurements on the scien-
tific cameras, and for every measurement we took several Strehl data with and without the
modulation of the pyramid, but, as we said before, within a negligible amount of time between
one measurement and the following.

Figure 4.6: Ratio of S for no modulation versus λ/D modulation. Mean value is ≈ 1.12 ± 0.04.
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To override in the analysis of the results some problems due to the change of the atmospheric and
instrumental observing conditions we decided to explore only the ratio between the Strehls and
not their absolute values, referring the no–modulation data to the data of the 51µm amplitude
as it can be seen in Fig.4.6.

A fit of the experimental data of Fig. 4.6 shows that the PWS performs marginally better,
being the mean value of the ratio 1.12 ± 0.04, when there is no dynamic modulation of the
pyramid. Anyway we have to point out that, as described in the theory, the residual of the
correction on the pin of the pyramid can be considered as a modulation itself, from which it
seems straightforward that it is better to not modulate. However we have always been during
the observations in the condition that the correction was not full but limited, that is far from
the diffraction limit on the pin of the pyramid, a regime where maybe other diffraction effects
could play an important role.

4.5 Results

It was shown through analytically and numerically that the residual aberrations of the atmo-
spheric turbulence not seen by the sensor due to the systems limited temporal bandwidth can
themselves act as a modulation, contributing to the linearization of the signal. This effect can
be numerically estimated for each condition of telescope diameter, atmospheric conditions (wind
velocity and r0) and system bandwidth. The comparison of this ”natural” modulation with
a mechanical modulation of the PWS signal shows that in certain conditions they may have
comparable effects.

It is known that modulation allows a better localization of the signal measured, approaching the
PWS to a local slope sensor. This will be naturally, and unavoidably, increased by the atmo-
spheric turbulence, with its potentially good effects, like the increased linear range of the sensor,
and bad effects, where one of them is the loss of the delocalized information. The ability to use
this information is actually one of the potential advantages of the PWS in non-modulated regime.

Here we only estimate the effect of one atmospheric layer, while it can in the same way be
generalized to more layers, what will of course increase the modulation effect.

It would be interesting to further investigate, where the point lies in which the non-linearities do
not allow to close the adaptive optics loop anymore, which is equivalent to how much modulation
is needed in each case. For every case, when the optimal modulation amplitude is estimated,
it should be taken into account the natural one, which might be enough, especially in cases
where the common path aberrations, enlarging the spot on the pyramid and therefore imposing
a greater linear range, are small.

A further analysis of the effect of modes not seen due to the spatial sampling of the sensor
would also be very interesting at this point.



4 THE MODULATION OF THE ATMOSPHERE 39

At the telescope the experiment of closing the loop and comparing the achieved Strehl Ratio
with a mechanically modulated and an only atmospherically modulated PWS was performed.
The modulation amplitude was relatively small, of the order of 0.5λ/D. Even though the results
shows a slight advantage in the mechanically non-modulated case, what supports the theory
that atmospheric modulation is at least not far from the optimum.
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Chapter 5

Laboratory setup and simulation

technique

The laboratory experimental setup has been developed with the purpose of testing the PWS
working in different conditions, as well as gaining experience for the development and construc-
tion of the PYRAMIR instrument.

First the laboratory setup and its components are described and characterized. The techniques
developed for calibration of the system and for measurement of aberrations are explained. The
system is able to perform open-loop measurements as well as static closed-loop corrections.

A simulation of a complete adaptive optics system using a PWS, which models the adaptive
optics correction loop with its different components and in different stages is described next.
The simulated adaptive optics loop works in open-loop or closed-loop real-time correction of the
atmosphere.

5.1 Description of the laboratory system

5.1.1 Optical setup and hardware

The light source for our pyramid wavefront sensor in the laboratory setup, sketched in Fig.5.1,
is the He–Ne laser connected to a Twyman–Green interferometer, providing a light beam with a
wavelength of λ = 632.8 nm, used with an objective, which has an aperture diameter of 50 mm.
A field stop with 9 mm determines the diameter of the beam. The parallel light beam illuminates
our deformable mirror (DM), wherefrom it is reflected back to the interferometer, so that the
actual shape of the mirror can be seen at any time. In this configuration the shape of the mirror
provokes a static defocus, which is corrected optically in the design by a shift of the DM along
the optical axis of the beam. The remaining static aberrations are corrected through a flattening
routine described at a later point in this chapter.

Through a 50/50 beamsplitter the light coming from the DM is separated into the WFS. A
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Laser

Field stop

Beam-
splitter

CCD

Tip-Tilt

Pyramid

DM

L1

L3

L2

Field stop

Figure 5.1: A schematic representation of the laboratory setup together with a photograph.

tip-tilt mirror allows us to use the system also with a dynamic modulation, as was done in the
previous setups (Esposito et al. (2000a)). Two lenses form an F/170 beam, which is focussed
on the tip of a glass pyramid. The choice of the F-ratio leads to a spot size of approximately
100 µm on the pyramid tip, which is comparable to the spot size in the PYRAMIR instrument.
This allows to have the same effect of light loss in both cases (refer to Section 6.2 for details
on light loss through the edges of the pyramid). The lenses used are achromatic lenses, where
the second one is a Barlow lens. This was necessary, despite the considerably higher optical ad-
justment precision necessary, because the optical setup had to be kept within certain space limits.

The pyramid surfaces form a relatively small angle of 0.57deg with the focal plane and the
material is BK7 glass. The quality of the tip and of the surfaces was measured with a profilome-
ter. The roof size has been estimated to 19µm × 46µm (see Section 6.1). There is the choice
of introducing a field stop with variable diameter immediately before the pyramid. The four
beams are re-imaged on a CCD through a third achromatic lens. Each of the four pupils has
an optically defined diameter of 80 pixels, but the camera pixels can be re-binned, so that a
different number of pixels per diameter is obtained. The camera and the DM are in conjugated
planes, so that the wavefront introduced by the mirror surface is re-imaged on the CCD.

The interferometer

The interferometer used is a µPhase 2 HR Digital Compact Twyman Green interferometer from
FISBA Optik. In the experimental setup it is used as light source and as independent reference
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wavefront sensor. The He–Ne laser provides a light beam with a wavelength of λ = 632.8 nm.
Various objectives are provided with the interferometer. For the setup the objective, with an
aperture diameter of 50 mm was used. In this configuration the interferometer image of the DM
has 175 pixels per diameter.

The deformable mirror

The DM is a micromachined membrane deformable mirror from OKO Technologies (first de-
scribed in Vdovin (1996)) with 15 mm diameter of mirror surface and 37 control actuators. It
has 7 actuators per mirror diameter. The membrane is coated with a layer of gold.
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Figure 5.2: The geometry of the actuator array of the deformable mirror. The outer circle represents

the active area under the membrane, the inner circle is the illuminated area in our set-up.

The actuators are concentrically distributed under the membrane, as can be seen schematically
in Fig. 5.2. The deformation of the membrane is driven by electrostatic forces which are provoked
by voltages applied to the actuators. These forces F can be described with:

F =
εε0V

2
c A

d2
, (5.1)

where εε0 is the effective dielectric constant of the medium between the electrodes, A is their
area, V is the control voltage and d is their distance. Since A >> d, small voltages allow to
achieve relatively high forces. To allow deformations in both directions, the mirror can be biased
to a constant non-zero voltage. This corresponds to applying an initial voltage to the actuators.
In this case, as can be seen in Fig. 5.3, a smaller applied voltage is enough to achieve the same
electrostatic force.

The output channels are provided with an 8-bit digital voltage control, which allows a range of
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Figure 5.3: On the left a schematic section of the micromachined adaptive mirror (taken from the

technical passport). On the right the force on the electrodes by applying a voltage. When biasing is

applied, a smaller voltage is enough for achieving the same electrostatic force.

0-255V for the final desired voltage for each electrode. Since the mirror response to the voltage
is not linear, but quadratic, the applied voltage (Vap) to the electrodes is scaled according to:

Vap =
√

255 Value. (5.2)

Here Value is the corresponding value calculated for a mirror having a linear behavior. During
the calibration of the sensor zernike modes are applied sequentially to the mirror. These modes
are mapped on a model of the DM, giving the height of the membrane at the position of each
actuator. The voltage applied to each actuator was calculated according to Eq. (5.2). Bias volt-
age is considered for this calculation, so that the zernike mode is centered within the dynamic
range of the mirror.

The deformable mirror is held at approximately half the dynamic range. In this configura-
tion the shape of the mirror provokes a static defocus, which is corrected optically in the design.
After applying this correction the DM has a RMS of 32µm. Since the PWS, when it is not
modulated, is very sensitive, the static aberrations left could still be seen in the CCD image
as a non-uniform illumination in the four pupils. These static aberrations, which are mainly
astigmatisms, are corrected through a flattening routine. This procedure consists in taking an
interferometer image of the DM at the position of a bias of 64. The surface of the DM is fitted
to a perfect zernike defocus and the differences between the fit and the real image are calculated.
The corresponding actuator commands are calculated and applied to the DM. This procedure
is done sequentially, till a tolerable RMS is achieved. In our case the final RMS is 7 nm. The
different images can be seen in Fig. 5.4.

The illuminated circle of the DM corresponds to ca. 56% of the active area (see Fig.5.2).
The use of ca. 60% of the active area has shown to be the best choice for the highest number
of independent modes (Prieto et al. (2000); Fernández and Artal (2003)). This implies that the
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number of actuators inside the illuminated area is only 5 per diameter.

Figure 5.4: From left to right the four pupils on the CCD for the DM biased to a constant value of

64, biased to values obtained through a flattening routine and an interferometer image of the difference

between the flattened and biased mirror surfaces.

While this mirror is very useful for laboratory use, especially because of its accessible price and
ready to use delivery, it has some drawbacks, which will become clear in the next sections, where
the characteristics of the system are described. One of them is the influence function each one
of the actuators, which spreads over the full surface. This results in cross-talk between the ac-
tuators and does not allow to reproduce accurately zernike modes on the mirror surface linearly.
To reproduce the zernike modes correctly on the mirror membrane, a closed-loop fitting routine
using the interferometer images (like it was done for flattening the DM) would be a good solu-
tion. Also possible is the measurement of the influence functions for each of the actuators with
the interferometer. These influence functions allow to construct an interaction matrix, which
can be inverted through SVD and used to calculate the voltage that has to be applied to each
actuator to achieve a given zernike mode.

On the optical bench the mount of the DM shows a slow but non-systematic permanent shift, an
effect which could not be completely eliminated. This provokes that tip and tilt increase during
the measurements. This effect can clearly be seen, especially in measurements that are extended
in time like the closed loop sequences are. This implies that during a closed loop sequence
the results of the measurements of tip and tilt are biased, because they are being corrected by
the DM itself in every loop and the accumulated correction of these two modes continuously
increases.

The tip-tilt mirror

The tip-tilt-Mirror is an ultra-fast piezo tip-tilt platform (S-330) including a circular mirror with
a diameter of 25mm from Physik Instrumente GmbH Germany. It is equipped with two pairs
of low-voltage piezo-electric linear drives operating as a unit in push/pull mode. The voltage
range from 0 − 100 V is divided into values of 0 - 4095 digital units which were applied to the
electronic device. The mirror is positioned by two piezoelectric drives, which allow to tilt it in
two orthogonal directions.
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Figure 5.5: The plot on the left side shows the displacement of the focus during one rotation cycle

for modulation amplitudes of 40, 80, 120, 160 and 1000 au (digital units). The path of the beam is not

a perfect cycle but an ellipse for all modulation amplitudes. On the right side the displacement in x

and y direction, which are the directions of the axes of the ellipsoid, is shown for the same modulation

amplitudes. The equivalent circular radius, which gives a circle with the same perimeter, is also shown.

The best fit, which is a polynomial of 2nd degree, is also represented.

The beam was aligned on the optical axis with the mirror set to 2048 digital units, permit-
ting half of the tilting range, which is 2mrad, in each direction. For modulation of the beam
over the pyramid tip, the mirror was programmed to perform circular movements with variable
amplitude around the central position. The frequency of the oscillation was dependent on the
number of steps performed during one cycle. Maximum step frequency has been used in all
experiments. According to the specifications of the tip-tilt platform this maximum frequency
is 2.4 kHz. The camera integration time was adapted to the frequency of the oscillation, when
measurements with modulation were performed. This avoided the oscillation effect that appears
when the integration time is not a multiple of the modulation period (or at least much longer).

The mirror shows a small hysteresis effect when applying sequences of increasing and decreasing
voltages to the actuators. This effect has been estimated by Stumpf (2004). It is not expected
that it has influence on the results obtained when the sensor is modulated, due to the small size
of the effect.

The displacement range of the focus on top of the pyramid is determined by the angular range
of the tip-tilt mirror and the combination of lenses before the pyramid. To test the displacement
of the beam on the pyramid, the CCD was positioned in the focal plane and images were taken
during rotation cycles with different amplitudes. The 2-dimensional displacement of the beam
is shown on the left side of Fig. 5.5. It shows that the movement of the beam is not perfectly
circular but has the form of an ellipse with the major and minor axes along the x and y di-
rections (which are coincident with the edges of the CCD). This is even more evident on the
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right side of Fig. 5.5, where the displacements in x and y-direction are shown for a number of
modulation amplitudes. Both curves diverge even for small amplitudes. Since the ellipsoidal
movement is also centered on the pyramid tip, it also stays 1/4 of cycle on each side. This is
an approximation, which is at least valid if the turbulence is not degrading the spot-shape and
spot-size too much and if the eccentricity of the ellipse is not too big. We approximated the
modulation amplitude radius as the equivalent radius of a circle which has the same perimeter
as the respective ellipse. This curve is also shown in the plot and an approximation to this curve
is given. A simply linear approximation would not be such a good approximation for the small
amplitudes, which are the ones that we used most. A quadratic polynomial fit is given, which
is very near to linear, especially for small modulation amplitudes.

The spatial filters

A choice of spatial filters can be introduced in the focal plane just before the pyramid tip,
partially masking out the outer rings of the PSF. They have been blacked to avoid reflections.
This spatial filters have diameters of 0.2mm, 0.5mm, 1.0mm, 2mm and 5mm. The filter can
also be removed, so that all the light arrives at the pyramid.

The pyramids

The pyramids tested and used in the laboratory setup were mostly pyramids, which were man-
ufactured for the PYRAMIR instrument. Our requirements, explained in Section 6.1 and in
Chapter 7, were very challenging for the standard polishing techniques. They are shown in
Tab. 5.1, together with the characteristics of the pyramid used in the setup. It is a BK7 four-
sided glass prism with a side angle of 0.57◦. This pyramid is not directly suited for PYRAMIR
on one side due to its angle, resulting in pupil overlap on the detector, and on the other hand
due to its glass type, which has reduced transmission in the near-infrared range. In the labo-
ratory neither the angle nor the glass type are problematic because the F-ratio of the beam is
big enough for the pupils not to overlap and the setup works with visible light with regulatable
intensity. The edge quality of this pyramid was by far the best from the sample tested.
For a more detailed description of the characterization of the different pyramids see Section 6.1.

The CCD

The CCD used is DVC–1412 monochrome camera from CHROMAPHOR Analysen-Technik
GmbH. This CCD has a high resolution of 1392(H) × 1040(V) pixels having 12 bits, with a pixel
size of 6.45µm × 6.45µm in square format. There is the possibility to bin the pixels in different
modes up to 8×8. The camera has a high specified quantum efficiency of 62% at 550 nm and a
readout frequency of 18MHz. The read noise is 8 e− at 18MHz.

5.1.2 Image Treatment and Software

Pupil-finding routine

The light that passes the the glass pyramid forms an image on the CCD which consists of four
illuminated circular pupils, as shown in Fig. 5.4. The quality of the pyramid edges determines
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Specifications Lab-Pyramid

Material Low-dispersion & High-

transmittance in 1-2.35µ m

BK7

Shape Square or Circular Circular

Number of Sides 4 (3) 4

Size � = 12 mm � = 12 mm

Height ≤ 5mm 5mm

Angle 1.5◦ − 1.9◦ 0.57◦

Surface Quality < 0.1 µm < 0.1 µm

Tip Size and Edge

Width

< 10 µm × 10 µm 19 µm × 46 µm

Table 5.1: Required parameters for the pyramidal optical component and the parameters of the pyra-

mid used in the laboratory setup. The edge and surface measurements were done with a profilometer.

the amount of scattered light between them.

The stray light between the pupils makes it difficult to have a completely automatized pupil
search. The routine used by default to find the pupils on the CCD used 3 points per pupil given
by the experimentalist per mouse-click directly on an image taken, to find the pupil positions
and mask them out. This had to be done at the beginning of a measurement sequence and only
had to be repeated, when the position of the optical components had been changed, changing
the pupil positions on the camera.

Signal calculation

After an image is taken with the CCD, the image can be re-binned numerically, if this has not
already been done internally with the CCD. This binning is necessary because the 80 pixels per
pupil diameter used exceed by far the degrees of freedom given by the DM, which has only 7
actuators per diameter and 5 per illuminated diameter (see Fig. 5.2). The signals are calculated
in the usual way from the intensity distribution in the four pupils (according to Eq. 3.3):

Sx(x, y) =

(
I1(xp, yp) + I4(xp, yp)

)
−
(
I2(xp, yp) + I3(xp, yp)

)

∑4
i=1 Ii(xp, yp)

and respectively for Sy.

This calculation is first done with a flat DM. The signals obtained, which are called the off-
set signals and are always non-zero, are generally subtracted from the signals of the subsequent
signals. The necessity of this subtraction is made clear in the next sections. It works as a kind
of flat-fielding of the sensor.
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Calibration

Before performing measurements with the sensor, a calibration sequence has to be done to get
a basis set of mirror modes. For a modal reconstruction this consists of introducing into the
system a sequence of deformed wavefronts, which are ideally an independent set of modes, like
the Zernike or Karhùnen-Loeve polynomials as example. Zernike modes generated by the DM
have been used. For zonal reconstruction every actuator is poked to a certain height, being this
mirror shape the independent ”mode”.

The signals calculated for each mode are written as a matrix Ip︸︷︷︸
q×z

, where q is the number

of pixels inside each pupil and z is the number of modes. This matrix is called the interaction
matrix. Through SVD (see Appendix C for a brief description of this computational technique)
this matrix is inverted, giving the reconstruction matrix of the system Rp︸︷︷︸

z×q

. As the name indi-

cates, this matrix will be used for the reconstruction of the wavefront after taking a measurement.

To generate a set of independent zernike modes on the DM one approach is to calculate the
necessary voltage for each of the actuators according to their location on the circle and applying
Eq. 5.2. Due to not-independent actuator influence functions this method produces modes with
limited independence. Another more complicated technique is to first poke every actuator and
take an interferometer image of the DM surface. The heights of each pixel of the interferom-
eter image for every actuator poked are then used to build an interaction matrix Ii︸︷︷︸

p×a

, where

p is the number of pixels of the DM-image on the interferometer and a is the number of DM
actuators. This matrix is inverted by SVD so that Ri︸︷︷︸

a×p

is obtained. Multiplying this matrix

with a theoretically calculated matrix Zi︸︷︷︸
p×z

, where the theoretical heights for the interferometer

pixels for each zernike polynomial are written, gives a matrix ZDM︸︷︷︸
a×z

. In columns are written the

best combinations of actuator voltages to obtain each zernike polynomial (best in a least squares
sense and assuming a linear behavior of the DM).

Measurements: Open-loop and closed-loop

To perform an open-loop measurement of an aberrated wavefront the signals obtained are multi-
plied with the reconstruction matrix. This gives an array with the combination of modes, which
best reconstruct the disturbed wavefront in least-squares sense.

For closed-loop sequences the DM is used to introduce aberrations into the system, as well
as to correct them afterwards. For the correction, the aberrations calculated from the PWS
signals are transformed into mirror commands and applied to the mirror. To stabilize the loop a
gain factor (generally between 0 and 1) is multiplied with the calculated modes before applying
the corrections to the DM. Since the aberrations applied to the DM are static, and not chang-
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ing in real-time, like the atmosphere, this running mode will be called a ”static closed-loop”.
To check the DM flatness achieved, an interferometer image of the DM is taken after every
correction.

5.2 Description of the simulation

The simulations describe an AO system using a PWS and were written in IDL (Interactive Data
Language). They can be divided in calibration routines, simple measurement routines and sim-
ulation of closed loop regime with successive measurements and corrections.

The basic parameters, like telescope diameter, central obscuration size, working wavelength,
F-ratio and detector pupil sampling are chosen in advance, as well as the guide star magnitude,
sky magnitude, detector characteristics and instrument optics transmission. Optional param-
eters are pyramid edge width, modulation amplitude, field stop diameter, three-sided pyramid
and static non-common path aberrations.

5.2.1 Calibration

For the calibration the initial input to the system are successive phase screens representing the
different calibration modes, like zernike polynomials. In the case of static non-common path
aberrations these are also introduced at this point. Here their sum is called W (x, y) and gives
the phase error in radians at point (x, y) in the pupil plane. The complex generalized pupil
function P (x, y) (Goodman (1996)) is obtained through:

P (x, y) = P(x, y) eiW (x,y), (5.3)

where the pupil function P(x, y) is unity inside the pupil and zero outside (masking the telescope
aperture and obscuration). Performing a Fourier Transformation (in the simulation a Fast

Fourier Transformation (FFT) was used) the electric field ~E in the focal plane is obtained. The
Point Spread Function (PSF) is calculated by squaring this field, and the Strehl Ratio (SR)
by normalizing the maximum of the PSF with the diffraction limited peak value. In the focal
plane the pyramid is introduced. This can be simulated by a phase shifting plate WPyr, which
is multiplied with the electric field:

~EPyr = ~E e−iWPyr . (5.4)

This phase shifting plate simulates the phase shifts provoked by the transversion of the glass
pyramid, taking into account parameters like refraction index, angle, edge size and glass thick-
ness. Physically this is a better model for the effect of the pyramid, than just masking out
the four pyramid sides, which results in a loss of the interference effects. Just in front of the
pyramid, also in the focal plane, a field stop, acting as a spatial filter can be introduced. This
spatial filter is centered on the tip of the pyramid and acts as a mask on the electric field. With
a second FFT the preliminary image on the detector is obtained. Generally it consists of four
(or three, in the case of a three-sided pyramid) separated pupil images with some diffracted light
between them. In case of a modulated sensor, the last steps are repeated for one full rotation of
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the focus around the pyramid tip and the intensity on the detector is integrated. The detector
model includes a rebin of the numerical pixels to the actual detector pixel size. Photon statistics
is introduced by calculating the poisson noise introduced by the calibration star photons and
the background photons, as well as the poisson noise by the dark current of the detector as well
as the read-out noise per pixel. These last parameters vary according to the detector which is
modelled. The result is then the final detector image. From the final detector image the signals
are extracted according to Eq. 3.3.

This can be modified for the case of a pyramid with different number of sides or a different
signal calculation scheme. The latter can be a change in the normalization-factor, dividing by
the total intensity on the detector, instead of by the sum of the intensities of the four conjugated
pixels.

In the next step the offset signal, i.e. the signal pattern obtained for a flat wavefront (only
static aberrations are included in case they are present) is subtracted. With this signals the
interaction matrix is built, writing in each column the signals corresponding to one mode. This
matrix is decomposed by singular value decomposition, allowing the inversion, so that the re-
construction matrix is obtained.

5.2.2 Measurements

In the case of a simple measurement the input to the system consists of a phase screen with a
pre-defined pattern of aberrations or one which simulates the atmosphere in certain conditions.
The atmospheric phase screens are calculated through a simplified version of the TurboLenz
Code (Weiss (2000)). The procedure described in the last section is followed till the signals
are obtained, which are then multiplied by the reconstruction matrix, giving a vector with the
calculated aberrations. These are obtained as a decomposition into the previously calibrated set
of modes.

5.2.3 Closed-loop operation

For the simulation of an AO system working in closed loop the measurement routines remain
basically the same, with some new features for the temporal evolution of the atmospheric tur-
bulence and the correction of the measured aberrations. The measurement is performed on a
sequence of phase screens, which are generated with a certain temporal step between them. De-
pending on the integration time of the detector, a number of pupil intensities are integrated on
the detector, before the signals are calculated. The aberrations estimated by the sensor through
multiplication by the reconstruction matrix are then used to calculate an estimated wavefront,
which is subtracted from the next phase screens. No additional model for the correction device
is introduced. At this point a system control is added, which in this simulations consists of
the multiplication of a constant factor with the measured wavefront before the subtraction is
performed. The measurement continues like before till the new wavefront is estimated. This is
summed to the previous estimated wavefront, passes the control and is subtracted from the next
phase screens. This is repeated for a predefined number of loops.
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This program allows to follow the wavefront as well as the PSF and Strehl evolution during
a closed loop correction limited by some of the wavefront sensor characteristics.



Chapter 6

Laboratory experiments and

simulations

This chapter is mainly devoted to the description and the analysis of the results from the tests
performed with the laboratory setup as well as to some interesting features found through the
modelling of a full adaptive optics setup based on this sensor. In Section 3.4 the main questions
handled in this chapter have been described.

While most of the optical components of the setup were standard, the pyramidal-shaped glass
prism had to be developed especially for the requirements. I explain our specifications and de-
scribe the main problems that were encountered to meet them. The amount of light lost through
edges of the pyramid and its imperfections have been analyzed. The manufacture of suited glass
pyramids was a difficult task for many companies. The characterization process of the pyramids
is also described and the results are shown here.

Especially the issue of the need for modulation and its effect on the performance of the sen-
sor were one of the priorities, since there might be no need for it in some cases. It is shown that
the sensor can work without modulation. Some points that require some special attention in the
case of using the sensor in non-modulated regime have been studied. This is the case for static
non-common path aberrations, which can limit the linear range of the sensor, and the effect of
big edges and tip sizes or even a roof-shaped tip of the pyramid, which is almost unavoidable
with standard polishing techniques.

The effect of a spatial filter, which is introduced in the setup just before the pyramid in the
focal plane has been tested.

As an outlook to a solution to some of the problems related to the pyramid, the use of a
three-sided pyramid is studied. Through numerical simulations this pyramid has given similar
results to the four-sided one.

53
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6.1 Pyramid characterization

One of the most critical components of this wavefront sensor is the glass pyramid, which sepa-
rates the light into four beams. The edges and the tip of this pyramid have to satisfy certain
specifications to avoid the loss of light, which could affect the limiting magnitude that this sen-
sor should achieve. Especially because the sensor is supposed to work without any modulation,
all the light will be focussed on the pyramid tip. The specification given for the tip and the
edge-sizes was 10 µm. It was estimated, that for this edge size the additional light lost through
the edges, for a F/100 beam, would stay below 10% for the working wavelength range. The
material chosen had to be a glass with high transmission in the wavelength range of PYRAMIR
(1.0-2.35µm) and low dispersion to avoid a chromatic shift of the pupils on the detector. The
chromatic shift has also been reduced by specifying a small pyramid height of 5mm. To keep
the readout time of the detector as short as possible the four re-imaged pupils have been posi-
tioned very close to each other. An angle of 1.5◦ between the sides and the horizontal plane was
specified, avoiding an overlap of the pupils and of the stray light around them. The glass types
combining these characteristics have shown to be very problematic in the polishing process, so
that compromises were done in the glass type used. PYRAMIR will work with a fused silica
glass pyramid, even though the dispersion is higher than first planned. This was corrected with
a more complicated optics in the re-imaging combination of lenses.

Many companies from Europe and USA were contacted and some of them manufactured some
pyramids on a best effort basis. These were first analyzed under a light microscope, allowing a
rough estimate of the quality (see Fig. 6.1). This first check, as well as the ”naked eye” check,
just by looking at them, allowed to classify most of them as not usable.

Achieving the small angle required and the small edge size has been a challenging task for the
polishing process. The main problem found was a big roof size. This feature is a consequence of
the polishing procedure. The four sides have to be polished one after the other, and a control of
the tip is only done afterwards. It is not possible with this technique to have all the four sides
joining at the same point. Generally a roof is formed due to an over-polishing of one of the sides
(see Fig. 6.1).

One different problem encountered were rounded faces. A pyramid, where the faces have a
certain curvature, provokes a movement of the pupils when a tilt is applied. A shift of the pupil
position during measurements would need a constant repetition of the pupil finding procedure,
which is not desirable.

There were also problems with broken pieces at the tip and deeply scratched surfaces. Some
materials with low dispersion and high near-infrared transmission were too soft, breaking easily.
The material choice was at the end fused silica, a glass with high transmission in the near-
infrared bands. The dispersion is higher than for other glass types but could be accounted for in
the optical design making it only slightly more complicated. The silica pyramids for PYRAMIR
have been observed with a light microscope, allowing as a rough estimate, that the tip quality
is at least comparable to the BK7 pyramid, that was used in the laboratory setup for testing
purposes. The silica as well as the BK7 pyramids have been manufactured by the same company.
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Figure 6.1: These images were taken with a light microscope. They show two of the first four-sided

pyramids, which were polished for this project. The roof sizes were estimated as 163 µm for the left

pyramid and 625 µm for the right pyramid. It can be seen that the first two sides that have been

polished are scratched due to the polishing of the other two sides. These were polished over the limit,

producing the typical roof.

All pyramids have been characterized with a profilometer (Tencor P-10). With this instru-
ment the surface of the pyramid was scanned in two perpendicular directions, along the roof and
perpendicular to it. This allowed a plot of the surface height (see Fig. 6.2) and an estimation
of the size of the roof at the tip, as well as the determination of the angle of the pyramid sides
to the horizontal (with the assumption that the angle has the same value on the two facing
sides). The tip was defined as the region, where the surface differs more than 0.1 µm from the
tangent plane on both sides of the scan cut on each of the four pyramid sides. The principle is
exemplified in Fig. 6.2 and the results of the measurements are tabulated in Tab. 6.1. For the
laboratory pyramid two independent measurements with two different profilometers are given.
Measurement(b), with the estimated bigger tip size, is most probably correct because measure-
ment(a) had some problems due to a small scan region in one of the directions. In any case, as
next step, the BK7 and the silica pyramid will be characterized by the same method again.

Also two three-sided pyramids have been polished for this project. As stated in Section 3.4.7
there is no problem with a roof creation in this case. This pyramids have also been characterized
with the profilometer technique. A three-dimensional plot is shown in Fig. 6.4 and the parame-
ters measured are given in Tab. 6.1. The tests in the laboratory to determine their performance
in the PWS are scheduled for very soon.
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Figure 6.2: These measurements were done with the profilometer. On the left is shown the surface plot

of the pyramid, on the right one of the line scans is plotted. The dotted lines show the fitted tangents

for angle estimation and for tip size estimation. All axes are in µm. For explanation and results see

text and Tab. 6.1. The top images correspond to the laboratory pyramid. These were done with a

profilometer that allowed to make an automatic 3-dimensional plot since it performed an automatic

2-dim scan. The second line of images are from the pyramid polished by Tom Herbst. For these and the

following a profilometer with only 1 direction of automatic scan was used. To obtain a 3-dimensional

image manual shifts were made, reducing the precision in one direction. Scans along the roof and

perpendicular to it were made. Here the perpendicular scans are shown. The third line corresponds to

the Fleige Pyramid.
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Figure 6.3: These images correspond to the two-sided prisma manufactured as a first test, where the

edge quality as well as the surface quality is very good.

Figure 6.4: This is a 3-dimensional plot of the three-sided pyramid, given by the profilometer. The

x-axis and y-axis are given in µm and the z-axis in Angström.
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A-Lab B C D-Prisma E F-3sided

Company WZW

Optic AG

(Switzer-

land)

Tom/Pre-

cision

Optics

(USA)

Fleige Op-

tik

TNO Delft

(Nether-

lands)

Applied

Optics

(USA)

Applied

Optics

(USA)

Material BK7 S-FPL53

Ohara

N-PK52 BK7 S-FPL53

Ohara

S-FPL53

Ohara

Shape Circular Square Square Square Square Square

Size � =

12 mm

8.0 mm ×
8.0 mm

20 mm ×
20 mm

- 20 mm ×
20 mm

20 mm ×
20 mm

Height 5 mm 5 mm 3.6 mm - 5 mm 5 mm

Angle 0.57◦ 0.9◦ 1.4◦ 1.12◦ 1.3◦

Surface

Quality

< 0.1 µm rounded

faces

o.k. < 0.1 µm irregular not evalu-

ated

Tip Size

(a)

3.5 µm ×
19 µm

80 µm ×
95 µm

100 µm ×
125 µm

12 µm 76 µm ×
133 µm

-

Tip Size

(b)

18.5 µm ×
46 µm

Table 6.1: Characterization of some of the pyramids tested. The first one, pyramid A, was used in the

laboratory setup and was manufactured by the same company, which delivered us the silica pyramids

for PYRAMIR. We assume that the measurement(b), with the estimated bigger tip size, is correct.

Measurement(a) had some problems due to a small scan region in one of the directions. There are also

given the parameters of some of the other pyramids. The pyramid B had the drawback of rounded

faces. Pyramid C had a very big roof size. D refers to a two-sided prisma tested, which had very good

quality. Pyramid E had a very irregular surface quality because of the deep scratches near to the edge.

This did not allow to reconstruct a three-dimensional plot, as for the other ones (see Fig. 6.2 and 6.3).

An estimation of the angle and of the tip size had to be made out of the most reliable measurements

only. The estimation of the angle for this pyramid differed by 0.3◦ in the measurements along and

perpendicular to the roof. The last column refers to the three-sided pyramid delivered (see Fig. 6.4 for

a three dimensional view). The laboratory tests of its usability for the PWS are scheduled for soon.
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6.2 Light loss

This effect was studied through numerical simulations and in the laboratory, during a collabo-
ration with Simone Esposito at the Astronomical Observatory of Arcetri in Florence, Italy.

6.2.1 Numerical estimation

The amount of light lost through the pyramid in the not modulated case could be estimated
numerically, using the simulation described in Section 5.2. The parameters used are a 3.5m
telescope, with a central obscuration ratio ε of 0.39 working at 2.2µm with an F/100 beam. The
full width at half maximum of the diffraction limited PSF is then 220µm. This reproduces the
optical conditions of the PYRAMIR instrument working at the Calar Alto 3.5m telescope. The
plot in Fig. 6.5 shows that 10% of the overall light which enters the sensor is lost at the edge if
it has a size of 50-60µm. It also shows that even if the pyramid edges are perfect and in the
diffraction limited case, 50% of the initial light is lost outside the pupils. This means that at
40µm 10% of the light that can land inside the pupils is lost.

Figure 6.5: This plot shows the proportion of light, which can still be detected inside the four pupils

on the detector after being refracted by the pyramid. This is plotted as function of different edge sizes.

Normalization constant is the amount of light in the system before refraction by the pyramid. The

simulation was done for a 3.5 m telescope, working with a 2.2 µm wavelength and a F/100 beam. The

total of light lost from inside the pupils increases with edge size.

In presence of optical aberrations the focus on the pyramid will not be diffraction limited and
therefore more extended. This will spread more light over the sides of the pyramid, resulting
in a smaller effect of the edges finite size. In Fig. 6.6 this is shown for a range of aberration
amplitudes of defocus and astigmatism. The simulated edge size is 0. It can be seen that in case
the aberrations are of the order of 0.5µm RMS, the amount of light lost decreases to less than
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20%.

Figure 6.6: Here are shown simulation results for the proportion of light, which can be detected inside

the four pupils on the detector, in relation to the amount of light present before refraction by the

pyramid, as a function of the RMS of the wavefront. Aberrations increase the PSF size and the effect

of the edges on the light lost is reduced. With an aberration of 0.5 µm RMS more than 80% of the

intensity is inside the pupils. The simulation parameters were a 3.5 m telescope, working with a 2.2 µm

wavelength and a F/100 beam.

6.2.2 Laboratory experiments

The following experiments were done with the laboratory setup in Arcetri, which is described
with great detail in (Feeney (2001)). The setup is similar to the one described before, so that
I will not refer to details here. The main difference is the F-ratio, which is 86 in this setup.
The interferometer which provided the light source is a Fizeau type one, with a wavelength of
0.63µm. After the pyramid, a photographic objective with 50mm focal length creates a four-
pupil image on the 8-bit CCD (CCD1). Each of the 4 pupils has 80 pixels diameter and the
distance between their centers is ca. 300 pixels.

The measurements performed had the main goal of quantifying the amount of light lost due
to the presence of a pyramid, and the amount of light lost, when the light was spread in four
pupils, disentangling both effects.

One problem was the laser intensity instability in time. To get a normalization factor, that
allowed to account for this effect, the light was split before being focussed on the pyramid. This
was done with a beamsplitter, which reflects ca. 10% of the light to the pyramid, the transmitted
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light being focussed on another CCD (CCD2).

The effect of introducing the pyramid was tested by comparing the intensities on the com-
plete CCD1 without pyramid and with pyramid, the latter in a position in which the light is
focussed on only one of the sides, producing only one pupil. There was no relevant light loss,
just by introducing the pyramid, if the light was not diffracted by the edges.

Sequences of measurements of each of the four pupils independently were made, having the
focus modulating only on one side of the pyramid, as well as with the beam focussed on the
tip of the pyramid, modulating around it, having four pupils on the CCD. The measurements
were normalized by the laser intensity, taken with CCD2 and the integration time, which was
longer for the four-pupil images. The main results are shown in Fig. 6.7. The light completely
lost from the CCD chip and the light lost between the pupils just by introducing the pyramid
were calculated with:

Iout of CCD = 1 − I4p
t

I1p
t

(6.1)

Iout of pupils = 1 − I4p
i

I1p
t

(6.2)

Ibetween pupils = Iout of pupils − Iout of CCD. (6.3)

It means the intensity on the complete CCD chip, Ii the intensity inside the four pupils, the
subscripts give the number of pupils of the image (1 or 4). This measurements were done for
different modulation amplitudes ranging from 0V to 7V. For this setup the correspondence of
the control voltage V to modulation amplitude size α in λ/D units is (Feeney (2001)):

α[λ/D] = 3.2V, (6.4)

corresponding to 0 − 22.4 λ/D diameter.

The greatest amount of light is lost by diffraction at the edges just by introducing the pyra-
mid. With increasing modulation amplitude this amount of light lost completely from the CCD
decreases from more than 60% to around 20%, especially steeply between 0 and 1V. This is
probably the region of the roof. The light between the pupils also decreases but more continu-
ously over the hole range.

6.3 Laboratory setup characterization

Here the tests performed on the laboratory setup for optimizing the calibration and measurement
techniques are detailed. The description of the setup is given in Chapter 5.

6.3.1 The focus on the pyramid

The PWS in the laboratory works with an F-ratio of around 170, what implies that the beam
is very narrow in the region of the focus. The position of the focus along the optical axis could
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Figure 6.7: Here is shown the light loss in percent when the light beam is focussed on or modulated

around the tip of the pyramid with different modulation amplitudes. The continuous line gives the

light lost from inside the four pupils, the dotted line represents the light lost between the four pupils,

which is still detected on the CCD and the dashed line plots the light loss completely from the detector

chip.

not be found through the optical design previously made for the setup, because the tolerances of
the lenses and the uncertainties in their positioning already provoked a shift of the focus of the
order of some millimeters (or even centimeters). The position of the focus, as well as its size and
shape were determined by placing the CCD at the pyramids position. Cuts through the image
of the focus were fitted to gaussian curves, as seen in Fig. 6.8. The flat region in the center of
the focus is due to CCD saturation at the value of 4095. A series of measurements showed that
the full width at half maximum is (104 ± 5)µm, being the focus slightly larger in horizontal
than in vertical direction (see Tab. 6.2).

FWHM

Horizontal (108 ± 2)µm

Vertical (99 ± 2)µm

Total (104 ± 5)µm

Table 6.2: Full width at half maximum of the focus of the PWS.

When the full PWS system is mounted, a defocus on the pyramid can generally be seen in the
illumination pattern of the four pupils, but very small shifts along the optical axis stay invisible
at first view. Since the PWS is very sensitive, it will nevertheless wrongly try to correct it. To
check if the pyramid was slightly defocussed, the focus point was searched with a small pinhole,



6 LABORATORY EXPERIMENTS AND SIMULATIONS 63

Figure 6.8: A horizontal cut through an image of the focus of the PWS. The central part of the focus

is saturated. A gaussian curve was fitted to the measured intensity pattern, showing a FWHM of

approximately 100 µm

which was shifted along the optical axis. The focus position is found when a maximum of light
was reaching the CCD .

6.3.2 Offset subtraction

In simulations it can be seen that in any case it is better to subtract the offset signals (which
are calculated from the CCD pupils when no aberrations are applied) and especially in case
static aberrations are present in the system it is very important. In the laboratory system this
was tested by subtracting the offset signals obtained through a measurement with the mirror in
its bias position. The results obtained in the calibration measurements confirm this, as can be
seen in Fig. 6.9. This calibration sequences were done for 9 modes and with a DM bias of 64,
which leads to an intrinsic astigmatism and to a quite high defocus, where the latter is optically
corrected in the PWS. The interferometer is also calibrated to this defocus, so that it is always
subtracted in the measurements. The calibrations were repeated for different amplitudes of the
modes applied. The amplitude of the modes is given in ”au” since no RMS can be defined
for one amplitude (see Section 6.3.4). We see in the two figures that the condition number1 is
generally lower for the calibrations with offset subtraction.

1See Appendix C for the definition of condition number



64 6 LABORATORY EXPERIMENTS AND SIMULATIONS

Figure 6.9: Both figures represent the condition number of our laboratory system for different cali-

bration amplitudes reaching from -30 to 30 au. In both cases the number of modes calibrated was 9.

On the left side the normalization radius for the zernike modes was 6mm (complete mirrored surface),

while on the right side the radius was 4.5 mm. The black and the red lines correspond to the calibration

without and with offset signal subtraction respectively.

6.3.3 Normalization diameter

The complete mirrored surface of the DM has a radius of 6mm, while the illuminated circle only
has a radius of 4.5mm. It was therefore tested which was the best normalization radius for the
zernike modes. Calibrations were made with the zernike polynomes normalized on the complete
mirror surface as well as only on the central 9mm. In this case the actuators lying outside this
radius were poked to the height given by the zernike polynomial outside the normalization radius.
In Fig.6.9 we see that for a bigger mirror, in case the offset is subtracted, the lowest condition
numbers are achieved, hence the zernike modes were always normalized on the complete mirror.

6.3.4 Quality of the modes

The modes to calibrate an AO system are desired to be independent and to have a linear be-
havior. The quality of the zernike modes used for calibration which are produced by the DM
was analyzed. This was done with the interferometer by monitoring the mirror surface when
different modes were applied to it.

The first 9 zernike modes were applied sequentially to the DM and the surface imaged with
the interferometer. In Fig. 6.10 the RMS of this surfaces is plotted as function of the applied
amplitude and of the zernike mode. It can be seen that the RMS is not constant for all the
modes at the same amplitude. Modes of lower order generate higher DM distortion, but the
RMS is nearly linearly proportional to the amplitude, having a different proportionality constant
for every mode. The amplitude will be measured in arbitrary units ”au” in the following, since
the correspondence with the RMS is not constant, but depends on the mode.
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Figure 6.10: The figures on the left side correspond to a mirror biased to a constant value of 64. On

the right side the mirror was biased to the actuator values obtained through a flattening routine. In

the top images the RMS of the mirror surface is plotted as a function of the amplitude of the mode

applied (in au). The bottom images show the RMS as function of the zernike mode (z0-z8). The dotted

lines correspond to negative calibration amplitudes.

One can see that the lower order modes have a higher RMS for the same calibration amplitude, which

generally decreases when the order increases. In the case of the flattened mirror the positive amplitudes

do not have a decrease in stages of the RMS with the amplitude. The mirror biased to 64 shows a more

linear behavior.
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Figure 6.11: For the first 9 mirror modes the corresponding surface plots measured with the interfer-

ometer were decomposed into zernike modes. For each of the mirror modes the corresponding amplitude

of zernike mode is plotted. This is shown on the left for a mirror biased to a constant value of 64 and

on the right for a flattened mirror. Although these mirror modes were calculated according to zernike

modes, due to its limited spatial sampling and non-linearity, the theoretical modes are not exactly

reproduced. The amount of zernike polynom in a mirror mode decreases in two main steps, when there

is a change in polynom order (first with defocus and then with the coma terms). Despite this steps, the

amount of ”correct” zernike mode in the corresponding mirror mode increases linearly with the applied

amplitude, with exception of the positive amplitudes applied over a flattened surface, as before.

In the case of the positive amplitudes with the DM biased to the flattened surface, there is
no linear behavior like described in the last paragraph. Very likely this is due to the fact that
the flattened mirror produces a tilt, which may affect the dynamic range and the quadratic
behavior with voltage.

The calibration amplitude should be inside the linear range of the sensor on one side, but
on the other side the condition number should also be kept low so that a tradeoff has to be
made. The amplitudes 7 au and 10 au were chosen as the most suitable, since their RMS is
mostly lower than 60 nm, which corresponds to 0.1λ. This can be seen in Fig. 6.10 where it has
to be taken into account that the interferometer measures the surface RMS, but for our PWS
the distortion has to be doubled due to the reflection.

Additionally the quality of the modes generated by the DM was tested. The mirror surface
height plots obtained with the interferometer were decomposed in theoretical zernike modes by
the following procedure: On a circular mask of the same size as the interferometer images, with q
pixels, theoretical surface plots of the first nZ zernike modes were generated. These were written
as columns of a matrix Z:

SI︸︷︷︸
q

= Z︸︷︷︸
q×nZ

CZ︸︷︷︸
nZ

. (6.5)
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SI is a vector giving the theoretical heights of all the pixels of the interferometer image. Cz is
a vector with each element being the amplitude of the zernike polynom. Z can be decomposed
through SVD (see AppendixC), and the pseudo-inverse of Z, called here Z+, can be calculated.
A least-square minimum length solution to the decomposition of a surface plot into zernike
modes can be estimated through

CZ︸︷︷︸
nZ

= Z+
︸︷︷︸
nZ×q

SI︸︷︷︸
q

. (6.6)

An analysis of the zernike modes produced by the DM can be seen in Fig. 6.11. It allowed
to establish the main modes which have cross-talk, i.e. which mirror modes are contaminated
by more than one zernike. The strongest effect of mode-mixing appears in the coma modes
with the corresponding tip and tilt terms. The figures show the calculated coefficient for each
zernike mode for different amplitudes. The coefficients have a linear behavior with the amplitude
applied, although they decrease with higher orders. This means that the higher the order of the
mode which is applied to the DM, the less of this mode is really present in the decomposition of
the surface plot but this amount increases linearly with the amplitude. The exception is again
the behavior of the flattened mirror for positive amplitudes where the linearity is disturbed.
This was expected from the previous results of the RMS.

6.3.5 Pupil sampling

To have the freedom of choosing the size of the sampling of the pupils on the CCD the pupil
diameter was set 80 pixels on the CCD, and through different binning the effective sampling could
be set. Most measurements were done with 8 pixels or 5 pixels, the latter being the sampling
better adapted to the DM actuator sampling, which has also 5 actuators per diameter of the
illuminated area (see Fig.5.2).

Figure 6.12: These three plots represent the condition numbers for a system calibrated with 5, 9 and

14 modes from left to right, as a function of the calibration amplitude in au. The black line shows the

results for 8 pixels and the red line for 5 pixels per pupil diameter on the CCD.

The system was calibrated for different number of modes having a diameter size of 5 pixels and
8 pixels. The analysis of the condition number for this calibrations is shown in Fig.6.12. For a
relatively small number of 5 modes the lower number of pixels shows a better condition number
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Array Size 1024 px

Entrance Pupil Size 80 px

Wavelength 1.0µm

Calibration Amplitude 0.06-0.6 rad

PSF size (FWHM) 12.8 px

Pupil Size on CCD 8px

Modulation Amplitude 0-2λ/D

Table 6.3: The parameters for the simulation comparing the calibration results for different modulation

amplitudes.

at all calibration amplitudes. But in both cases the condition number stays less than 10, what is
very good. A significant difference appears only for small calibration amplitudes (0-5 au), where
the sensor with 5 pixels per diameter performs better. Especially for a low order of calibrated
modes, the system with 5 pixels shows lower condition numbers.

6.4 The modulation

In this section the effects of modulation on the sensor measurements were studied through
numerical simulations as well as through laboratory verification.

6.4.1 Simulation results

The effects of modulation were studied through a numerical simulation, which models a com-
plete adaptive optics system with a pyramid wavefront sensor. A description of this simulation is
given in Section 5.2. To study the general behavior of a PWS system with different modulation
amplitudes various steps of an adaptive optics system were analyzed.

The calibration of the wavefront sensor was done by calculating the response, in terms of signals,
of the wavefronts corresponding to the first zernike modes (the calibrations were done with a
number of zernike modes from 2-35). This allows to construct the interaction matrix and to
obtain the reconstruction matrix through singular value decomposition (see AppendixC for an
explanation of this technique and the applications of it in this work). The singular values ob-
tained allow an analysis of the system in terms of sensitivity. The more sensitive a system is,
the higher the singular values are. On the other hand, if a singular value is very small, there is a
combination of modes which is very sensitive to noise and which will harm the system. Looking
at the condition number of the system gives a measure of the noise propagation through the
reconstruction process. The condition number is proportional to the sensitivity of the system to
slight perturbations in the interaction matrix or the measurements.

The main parameters used are given in Tab. 6.3. Complete calibration sequences were performed
for increasing number of modes, different calibration amplitudes and different modulation am-
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plitudes (0-2λ/D). In this simulation no photon statistics is considered and no spatial filter is
located in front od the pyramid. The edge size of the pyramid is supposed to be smaller than
13µm, the sampling size of the focal plane.

Figure 6.13: In the left figure the condition numbers of sequences of calibrations are plotted as a

function of the number of calibrated modes. Seven different modulation amplitudes, ranging from 0.25-

2.0 λ/D radius, were tested. The same set of data is plotted on the right side, but as a function of the

modulation amplitude. Here the smallest calibration amplitude of 0.06 rad was used.

As shown in Fig.6.13 the ideal modulation amplitude in terms of condition number for a small
calibration amplitude of 0.06 rad lays around 0.5 λ/D. λ/D is the angular full width at half max-
imum (FWHM) of the diffraction limited PSF. 0.5 λ/D is the smallest modulation amplitude in
which the complete diffraction-limited PSF passes through every side of the pyramid. In the
case of small calibration amplitudes, like the one used, the PSF size is almost diffraction limited
size.

For bigger calibration amplitudes the PSF size increases and the modulation amplitude, cor-
respondent to half FWHM is bigger. This explains the result that was obtained in simulations
that the optimum modulation amplitude increases with calibration amplitude.

Closed-loop simulations

To simulate the closed-loop regime a temporal sequence of measurements and corrections had to
be performed, taking into account the temporal evolution of the atmosphere. With a sequence
of phasescreens, simulating the phase-shifting properties of the atmosphere at a rate of 1 screen
per ms and over an array of 1024×1024 pixels, the influence of the atmosphere on a given (flat)
wavefront was determined. These phasescreens have been generated with the TurbuLenZ-code
(Weiss (2000)), an atmospheric turbulence simulator.

The integration time of the detector was taken into account integrating the intensity on the
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detector images for 10 successive phasescreens (this represents an integration time of 10ms).
The signals were calculated from the integrated image and the wavefront reconstructed. This
estimate of the wavefront was subtracted from the following 10 screens. A new intensity inte-
gration and reconstruction led to a new estimate of the residual wavefront.

Figure 6.14: Evolution of the Strehl Ratio and the standard deviation for different atmospheric

conditions in closed loop compensation.

This was done for 0.6 seconds, corresponding to 60 correction cycles, for seeing of 0.5′′ and 0.8′′.
The parameters of the phasescreens are a τ0

2 of 100ms, a telescope diameter of 5.7m and a
wavelength of 2.2µm. The results in terms of residual standard deviation and Strehl ratio (SR)
are shown in Fig. 6.14. The plots include the bootstrapping phase, showing that it is possible to
close the loop without modulation on sky. At least for the time period simulated, the correction
was stable for both seeing conditions.

Preliminary results from independent simulations, made for the first-light AO system of LBT
(Carbillet et al. (2003)) with a code (the software package CAOS) that permits the simulation
of a dynamical modulation, have been used for comparing different cases with and without mod-
ulation (see Costa et al. (2003b)). In Fig. 6.15 on the left side there are two cases plotted, one
with a good SNR (top) and the other one with a poor (bottom) SNR. The interaction matrices
have been recorded with ±7 λ/D for the top and ±8 λ/D for the bottom curve. During the
closed-loop different modulations were used. The curves show that, when using an interaction
matrix recorded with a given (relatively high) modulation, the differences between modulating
or not during correction is small.

In the right plot, which is to be compared to the upper case of the left plot, the same modulation
that was used during calibration, ±1λ/D, was used also for the correction, only changing the
gain. The result is that the performances could reach again the performance of the top curve in
the left plot. All the curves should be compared to the 3dot-line, which represents correction at

2τ0 is a time constant related to the Greenwood frequency fG by τ0 = 0.134/fG.
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Figure 6.15: left: Strehl ratios achieved in K-band for closed-loop compensation with different

modulation amplitudes. In the top curve we have a good SNR (mV=13.85), while in the bottom

one we have a poor SNR (mV=16.5).

right: Wavefront deviation (in arbitrary units) as a function of the increasing loop step number

for different combinations of calibration and correction modulations.

modulation ±1λ/D and interaction matrix taken at ±4λ/D, with a gain of 0.5. These param-
eters allow the best average SR in this case (SR=0.767). Then the same simulation has been
run with a modulation of ±1λ/D during calibration. With a gain of 0.5 the performance is bad,
because the temporal error is high. But for a gain of 1.25 the SR reaches 0.750, very near to the
first case. This curve essentially shows that by optimizing the gain of the loop, we retrieve, even
with a matrix recorded at low modulation, the same result as by recording at high modulation
and correcting at low modulation.

6.4.2 Laboratory verification

The laboratory setup has the possibility to work without and with modulation. This modulation
was performed by the tip-tilt mirror, which was programmed to perform a circular movement
of the beam focus around the pyramid tip. The amplitude of this movement can be varied
according to Fig. 5.5. In Fig. 6.16 images of the four pupils on the CCD in modulated and not
modulated regime are shown. When the beam is modulated the immediate main differences are
the amount of light outside the pupils, which is lower in this case, and the smoothness in the
illumination inside the pupils. The pupil illumination in the not modulated case has stronger
intensity variations, which can extend over the complete dynamic range of the CCD.

A first analysis of the systems performance was done through the analysis of the condition
numbers analogous to Section 6.4.1. The system was calibrated with different calibration am-
plitudes. In Fig. 6.17 the condition numbers for the system calibrated from 2-20 zernike modes
are shown. This was done for three different calibration amplitudes. It shows that there is a
decrease in the condition number with the modulation amplitude in every case, excluding for a
2-mode system (only tip and tilt sensing), where it keeps approximately constant. This decrease
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Figure 6.16: Images of the four pupils on the CCD, when the PWS is working in non-modulated

regime (on the left side) and in modulated regime (on the right side).

Figure 6.17: Here the condition number is plotted as function of the modulation amplitude. In each

figure this is plotted for a system calibrated with 2 (red), 5 (green), 9 (blue), 14 (pink) and 20 modes

(black) with different colors. The three figures show the system calibrated with different amplitudes

(-10, -15 and -20 au from left to right).

is not constant, the condition numbers keep approximately constant till modulation amplitudes
between 50-100µm, then decrease more or less steeply till 150µm, and remain constant after
that. The corresponding modulation amplitudes can be expressed in λ/D units, the full width
at half maximum of the diffraction limited PSF. The steep decrease starts around the size of
0.5-1.0λ/D. This is approximately the size of the focus on the pyramid or a bit less, so it is
very likely that it is the reason for the decrease. When the modulation has the size of at least
0.5λ/D the spot crosses all four sides with the FWHM. The fact that there could not be seen
any increase in the condition number after that point may have a variety of reasons like static
aberrations present in the system and the roof shaped tip of the pyramid. These issues are
analyzed in the following sections.

The difference in the condition numbers with the modulation amplitude has effect on the number
of independent modes that can be calibrated by the system. In case the condition number is too



6 LABORATORY EXPERIMENTS AND SIMULATIONS 73

high the set of modes does not allow a stable closed loop regime. This is a first indication that
the system will be able to close the loop with higher order modes if it is modulated. We see in
Fig. 6.18 five different initial pseudo-random combinations of aberrations, which are corrected
in a statical closed loop. This means that the aberrations are sent to the DM and the signals
are measured with the PWS. With the corresponding reconstruction matrix the combination of
mirror commands which is appropriate to correct these aberrations, is calculated. To achieve
more stable loops, a gain factor of 0.5 is multiplied with the mirror commands. These are sent
to the mirror and the next measurement follows. The results shown are for 40 correction loops.
After 10 loops an interferometer image is taken to check the mirror surface. The RMS of this
surface measurements is shown in the vertical axis. The correction performance of reconstructors
for two different modulation amplitudes as well as for no modulation is here demonstrated.

Figure 6.18: The RMS through different closed loop sequences of 40 cycles is shown, as a function of the

correction cycle number. The effective RMS for the PWS is twice the value in the vertical axis, because

the reflection at the mirror introduces double its deviation into the light path. The different colors

correspond to different initial deformations of the DM. The system was calibrated in each case with 14

zernike modes, with an amplitude of -10. The number of pixels per diameter is 5. The continuous line

shows the evolution of the system without modulation, the dotted line is for a modulation amplitude

of 40 µm and the dashed line for 120 µm.

On the right side the results of corrections of the same five aberrated surfaces are shown, this time for

a system calibrated only with 9 modes. The lines plotted show the evolution of the correction for the

non-modulated case.

This exemplifies the fact that with modulation the same wavefront aberration can be better
corrected and the loop does not diverge so frequently. Even for the small modulation amplitude
(which is 40µm) this stabilization shows. In the case of only 9 modes calibrated the loop closes
very easily without modulation and the DM surface gets flat, as can be seen on the right side of
Fig. 6.18. Very interesting is to note the fact that the surface RMS after the 40 cycles is lower
in this case, than in the cases of 14 modes.
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For this setup the calibrated modes without modulation have high cross-talk, especially for
modes higher than z8. They show high cross-talk especially with the astigmatisms of lower
order. Since in this measurements the mirror was not flattened, but only biased to a constant
value (see Section 6.3.4), the astigmatism is also a static aberration, which is introduced into the
system by the intrinsic deformation of the DM. This affects the estimation of the coefficients of
this modes (see Section 6.6 for discussion on the effect of static aberrations).

Figure 6.19: In these plots the amplitude measured by the PWS as a function of the applied amplitude

is shown for the first 14 modes. The straight line has a slope of 1, so that it would be the answer of a

perfectly linear sensor. The upper row shows the results for 0 modulation and the lower one corresponds

to a modulation amplitude of 85 µm. The 14 modes are distributed over 3 plots to avoid overlap of

the lines. The color sequence for increasing mode index is purple, blue, green, yellow and orange. The

linear range for the measurement of modes with modulation is bigger than with no modulation. The

behavior of the modes in terms of linearity is different for different modes in the 0 modulation case.

(The calibration amplitude was -10 au for all measurements.)

The linear range of the sensor was estimated by open-loop measurements. Sequentially the
modes were applied with increasing amplitude and measured by the PWS. This was done with
and without modulation. It can be seen in Fig. 6.19 that especially for the low order modes z0
to z4 the sensor behaves more linear in modulated regime. In the non-modulated regime the tilt
is overestimated, due to the fact that this mode has the highest RMS for a given calibration am-
plitude, in this case exceeding the linear regime. Generally the aberrations are underestimated,
which by itself should not be a severe problem. After some correction cycles the correction
should have approached the real value. Also the control system may take this effect into ac-
count, increasing or decreasing the gain in the most simple case. One other problem, which can
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also be seen in the not modulated case, is the fact that some modes do not measure correctly the
0. This leads to the result that a complete correction of the corresponding mode is not possible.
A solution may also be given by an appropriate control system, which adapts the correction of
each mode to the actually measured behavior.

6.5 Effect of the pyramid roof

In Section 3.4 the problem of a non-negligible tip or even a roof-shaped tip of the pyramid was
described. Especially in the latter case this alters the measurements made by the pyramid sen-
sor due to the non-symmetric light-spread over the four sides. It is not possible to solve this
problem by simply using a suited normalization which could be different in every pupil because
the asymmetry in illumination changes with the size and shape of the spot on the pyramid and
thus with the residual aberration, which changes during correction as long as the diffraction
limit has not been reached.

Figure 6.20: The condition number for systems modulated with modulation amplitudes of 0, 1λ/D and

2λ/D as a function of the number of calibrated modes is shown for roof sizes of 0 µm, 20 µm and 50 µm.

The system used has a λ/D=107µm, which corresponds to 12.8 pixels. The calibration amplitude is

0.1 rad.

In Fig. 6.20 the effect of roof shaped tips with different sizes is shown using a numerical sim-
ulation. For a modulation amplitude of 2λ/D the effect of the roof is negligible in terms of
the condition number. For a modulation amplitude of 1λ/D (which corresponds to 107µm) a
roof size of 50µm already increases the condition number. The effect is very pronounced in the
non-modulated case where the bigger roof size more than doubles the condition number. In this
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case, with a roof size of 50µm, like the pyramid used in the laboratory setup has, the condition
number is higher than with modulation already with only two modes calibrated. This is for sure
a reason for degradation of the measurements without modulation in the laboratory.

For an AO system working in closed loop, having an almost diffraction limited PSF, this ef-
fect may be very harmful. The pyramid roof should be smaller than 20µm for a system like
the laboratory setup or PYRAMIR, which has the same spot size on the pyramid for the lowest
wavelength range.

6.6 Static aberrations

No Stat. Ab.

Stat z5, offset in

Stat z5, offset subtr.

Figure 6.21: On the right side it is shown how a static astigmatism (z5) changes the linearity measure-

ments of the correspondent mode and of other modes like defocus (z4) or the 90◦ rotated astigmatism

(z6).

If a PWS-system has some static aberrations which are in the non-common path of the sensor
and science camera, it can not correct them without introducing aberrations into the science
path. The system has to be calibrated with the static aberrations, but they will nevertheless
increase the PSF size, so that in worst case, the sensor stays in non-linear regime even when
there are no aberrations to be corrected. Even if this is not the case, some aberration included
in the calibration will change the linear range. In Fig. 6.21 it is shown what happens when the
offset signals are not subtracted from the calibration measurements: The system gets unsensitive
to the corresponding mode and it does not measure correctly the 0. Subtracting the offset signal
changes the linearity curve for the corresponding mode. It gets unsensitive in one direction,
because it reaches the saturation in this direction. For other modes, which are not present in
the system as static aberration, the change in the linear range is very small.

The laboratory measurements also show this effect for the not modulated case. The system
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has some intrinsic astigmatism introduced by the DM is biased to a value of 64. Since the in-
trinsic defocus of the DM is not corrected, but taken into account optically, it is very likely that
there is some residual focus error left, which could not be seen in the alignment process, especially
because there are also other deformations like the astigmatism which make the pupil pattern
non-uniform. In Fig. 6.19, in the top left plot, where the linear range of the not-modulated sensor
for the first 5 modes is shown, the curves for astigmatism and defocus have this saturation effect
for positive amplitudes. This effect could be taken into account in the reconstruction process,
if the curve is measured in advance. The error in the estimation of the best correction could be
reduced.

Figure 6.22: This figure shows the effect of modulation on the condition number of the system with

different amplitudes of static aberration. Modulation amplitudes of 0 and 1λ/D are represented.

In Fig. 6.22 are plotted the condition numbers as function of the number of calibrated modes
for systems with different amplitudes of static aberration, and the effect of modulation on this
systems performance. This simulation was done for conditions similar to the laboratory setup
(pupil diameter of 4.5mm, a wavelength of 632.6 nm and an F-ratio of 170). The simulation was
done with arrays of 1024×1024 pixels and the number of pixels per FWHM of the diffraction
limited PSF is 12.8. The number of pixels per pupil diameter is 8 and the maximum number of
calibrated modes was 35. It can be seen that above a certain tolerance limit of the system, the
static aberrations increase the condition numbers, as explained in the next paragraphs.

In the case of no static aberrations present in the system, the condition number increases when
modulated, as has already been showed in Section 6.4 through numerical simulation.
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Static aberrations, which are present in the system (in the case of Fig.6.22 it is a static astigma-
tism) cause the condition numbers to increase (although there is some tolerance range in which
the increase can not be seen or there is even a decrease in the condition number as can be seen
with 0.3 rad of astigmatism.).

By introducing modulation in this kind of system, the condition number stabilizes on the level
of the modulated system without static aberration. The increase due to static aberrations can
be delayed with the use of modulation. This can be seen in the overlapping of the first three
green lines.

For PYRAMIR the requirement has been established at a maximum of 0.1λ of static aber-
ration. The optimization of the actual actual optical design predicts not more than 0.05λ of
non-chromatic static aberrations.

6.7 Spatial filter

A circular pinhole just in front of the pyramid in the focal plane acts as a spatial filter on the
wavefront signal. Spatial filters with diameters of 0.2mm, 0.5mm, 1.0mm, 2.0mm and 5.0mm
were mounted in the setup. The effect of this filtering on the CCD image is simulated in Fig. 6.23.
One can see that the pupils get blurred, due to the high frequencies, which are filtered out. In
these configurations the system was calibrated using the method described before (with 7 au)
for an increasing number of modes. The condition numbers of the matrices obtained are shown
in Fig. 6.24. It can be seen that for the 0.2mm pinhole the increase is especially steep if more
than 7 modes are calibrated. The figure also shows that the condition numbers for the 2.0mm
pinhole are higher than for other smaller diameters. This is probably due to a measurement
error and is not meaningful.

With these calibrations a set of randomly generated aberration patterns were corrected in a
static closed-loop. The number of modes used for correction were 14. The mean result of the
evolution of these corrections can be seen on the right side of Fig. 6.24, where the mean Strehl
ratio after each correction cycle is plotted. It can be seen that an almost perfect correction
could be achieved in every case, except for the smallest field stop with 0.2mm. With the 2.0mm
pinhole the system was able to correct the aberrations in most cases, but was less stable. This
worse performance can be explained by the fact that the matrices obtained in the calibration
had higher condition numbers.

The limiting size of the pinhole for the laboratory setup is between 0.2mm and 0.5mm. This
corresponds to 2-5λ/D (in terms of diffraction limited PSF size to 2-5 FWHM).

The Nyquist sampling theorem states that there can not be any frequency content with ab-
solute value above ±1/2d, where d is the subaperture size in the pupil plane. In the laboratory
setup this corresponds to ±4λ/D, where D is the entrance pupil size. This means a field stop
with a diameter of 8λ/D cuts out the frequencies, which can not be sensed due to the sam-
pling, preventing aliasing. A smaller field stop will cut out frequencies, which can be sensed and
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Figure 6.23: Simulated images of the four pupils on the CCD for field stops with different diameters.

Starting from the upper left corner the images correspond to a stop radius of 5λ/D, 2.5λ/D, 1λ/D and

0.5λ/D.

therefore corrected (if the DM has enough degrees of freedom). This means that a field stop
with less than 0.83mm of diameter cuts out reachable information. It is not noticeable any loss
in performance in the corrections done because the number of corrected modes is only 14. For
sensing 14 modes 8 pixels are already oversampling.

For the PYRAMIR instrument (see Chapter 7 for design details) the same reasoning allows
a field stop of 1.8-4.2mm diameter (J-K band) due to the 18 pixels per pupil diameter. Since the
DM has only 10 actuators per diameter, the correctable frequencies are lower than the sensed
ones, what allows a smaller size of the field-stop. In the case of 8 pixels, like it was planned
for the AO-MUX detector, the field-stop diameter would stay in the range of 0.8-1.9mm. The
pinholes available in PYRAMIR will be in the range of 2-10mm.



80 6 LABORATORY EXPERIMENTS AND SIMULATIONS

Figure 6.24: The results of the laboratory measurements using the PWS with a field stop of variable

diameter in front of the pyramid. On the left the condition numbers obtained for different calibrations

and on the right the evolution of the residual RMS during a static closed loop correction of random

aberrations.

6.8 Three-sided pyramid

Using the simulation of the full PWS the amount of light lost in the refraction process through
the pyramid was estimated. In the case of a nearly perfect edge and tip size there is no significant
difference in relation to the four-sided case, as can be seen in Fig.6.25, although the light loss
is slightly lower in the three-sided case. The proportion of light lost is reduced at a similar
rate with increasing aberrations. Having a non-negligible tip and edge size the effect of having
3 instead of four edges can be considerable, as seen on the right side of the same figure. Not
to forget also are the disadvantages of the presence of the roof, which creates an asymmetry in
the pupil illumination, as shown in Section 6.5. Since for a three-sided pyramid there is no roof
formation, this asymmetry can be avoided if the three sides of the pyramid have the same size.

A closed loop correction for a 3.5m telescope at a wavelength of 2.2µm with a non-modulated
PWS was simulated for a foursided and a threesided pyramid. The F-ratio of the beam focussed
on the pyramid was 100. Screens of 1024×1024 pixels were used and the pupil size on the
detector was rebinned to 8 pixels per diameter. The atmospheric phase screens simulate very
good seeing conditions with an r0=0.5m. The correction gain is set to 1. The simulation for
a very bright star is done with no photon statistics, a perfect detector and full transmission of
the optics. For the stars of magnitude 6 and 8 the photon statistics is included, as well as a real
detector (based on the planned AO-MUX characteristics) and a transmission factor for each of
the optical components. The results are shown in Fig. 6.26, where the result for each correction
cycle is shown. The integration time of the detector is 3ms and the turbulent phase screens
used are spaced 1ms. This means that only after 3 screens, were the detector is integrating, the
correction is applied, what explains the steps in the curves. In all cases the AO system closed
the loop and increased the Strehl ratio, only for the less bright guide star with the three-sided
pyramid it was not able to close the loop. This shows that although the threesided pyramid
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Figure 6.25: Simulation results for the proportion of light, which can be detected inside the four

pupils on the detector, in relation to the amount of light present before refraction by the pyramid, as

a function of the RMS of the wavefront (see also Fig. 6.6). The simulation parameters were a 3.5 m

telescope, working with a 2.2 µm wavelength and a F/100 beam. The edge size is almost perfect smaller

than 10 µm. The difference between a four and threesided pyramid in the amount of light lost is very

small, having a slightly lower loss in the threesided case. This is because the area around the tip which

is covered by edges is smaller, resulting in less light refracted to outside the pupils.

has some advantages from the production side, it may be more unstable especially in low-light
conditions, due to a worse propagation of the measurement noise. In Section 3.4.7 it has been
shown analytically that in the case of a low read-out noise detector and a weaker star, the four-
sided pyramid performs better than a three-sided one.

Results from simulations of a modulated PWS made by Clare and Lane (2003), where the
measured wavefront is compared to the incoming wavefront (distorted by atmospheric turbu-
lence), show less error in the reconstructed wavefront for the four-sided pyramid than for the
three-sided one. More sides translate into a smaller reconstruction error if no other effects are
taken into account.

6.9 Future developments

There is the possibility of upgrading the laboratory setup with a set of rotating phase screens
simulating the atmospheric turbulence in various conditions. These have been analyzed by But-
ler et al. (2003) and can be mounted in the setup. The rotation will be performed by a motor,
which allows to perform a rotation with different velocities. This would allow to simulate dif-
ferent seeing conditions as well as adapt the rotation to the loop bandwidth achievable in the
laboratory.
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Figure 6.26: Simulation of a closed loop correction for a 3.5 m telescope at a wavelength of 2.2 µm with

a non-modulated PWS for a threesided and a foursided pyramid. The simulated seeing is very good

(r0=0.5 m). Guide stars with two different magnitudes were used and a simulation without photon

statistics nor limitations from the detector or the optics (bright star).

The number of modes correctable without modulation can for sure be increased through a
better control of the DM. The DM should be characterized and and the quality of the modes
should be increased. This would mean that they would be more independent from each other,
the calibration would give lower condition numbers and the corrections could be more effective.
With a better definition of the modes the dynamic range of the DM could be fully used.

A set of three-sided pyramids have already been characterized with the profilometer. Mounts for
the assembly in the setup are also available and the software for the signal calculation has been
written. It is for sure very interesting to compare the performance and to get an idea, what the
advantage of a perfect tip would be. Even if the noise propagation may be worse, the fact that
there is no roof could compensate or even be more advantageous.

The laboratory system has also been used for a comparative study between Shack-Hartmann
and Pyramid Sensors3. Although there have not been published results yet, this is for sure a
very interesting project.

3Together with the research group of Biomedical Optics at the University of Heidelberg, which studies wave-

front sensing and adaptive optics in the human eye.



Chapter 7

The PYRAMIR instrument

The objective of the PYRAMIR project is to complement the Calar Alto Adaptive Optics System
- ALFA - with a new pyramid wavefront sensor working in the near IR, replacing the previous
tip-tilt tracker arm. The sensor will work at the wavelength range of J, H and K bands. Here
the optical design is described and issues like the image quality and chromatic effects due to
band sensing are discussed. To gain experience, a laboratory pyramid wavefront sensor was
set up, with its optical design adapted to PYRAMIR. This setup allowed to establish aligning
techniques and perform different tests.

Sensing the wavefront in the infrared poses particular requirements like a cooling system for the
opto-mechanical components. Most of the PYRAMIR instrument parts are kept inside a liquid
nitrogen cooled vacuum dewar to reduce thermic radiation. The mechanical design of the cold
parts is described here. The infrared detector which is planned to be used is a PICNIC-array,
the successor of NICMOS3 from Rockwell, as one option, together with the AO-Multiplexer
(AO-MUX) due to its very low read-out noise. As preliminary option a Hawaii I detector will
be integrated until the AO-MUX is available. It is described how the integration of the system
into the optical, mechanical, electronics and control architecture of ALFA is expected. Updates
on this project have been given in Costa et al. (2003a) and Costa et al. (2004b).

7.1 Optics

PYRAMIR was developed for integration in the existent adaptive optics system ALFA on the
3.5m telescope on Calar Alto in Spain, as alternative to the existent Shack-Hartmann sensor
(SHS), which is currently in use and operated with visible light (with a CCD detector). The
Pyramid wavefront sensor is going to work in the near-infrared, in a wavelength range of 1.0 µm−
2.35 µm.

The ALFA optical design In Fig. 7.1 a representation of the optical bench of the ALFA
system is shown, with the SHS and the new PWS. The optical design of ALFA (Hippler et al.
(1998)) consists of two off-axis paraboloids. The first images the telescope pupil onto the de-
formable mirror, the second re-images the telescope focus on the infrared science camera at the
same position as the telescope’s Cassegrain focus.

83
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PYRAMIR

Deformable Mirror

Parabolic Mirror

Tip-Tilt Mirror

Shack-Hartmann Sensor
Dichroic

Interferometer

Parabolic Mirror

Figure 7.1: The CAD drawing of the ALFA board, with all its optical and mechanical components. In

the upper left corner there is the cylindrical dewar where the optics of PYRAMIR is enclosed.

The DM was purchased from Xinetics Inc., USA. It has 97 PMN (lead magnesium niobate)
ceramic piezo actuators with a 2 µm interactuator stroke. There are 11 actuators per diameter
of the telescope.

The telescope can still be used without ALFA just by sliding two mirrors out of the beam.
The default focus of the telescope is F/10, which ALFA converts into an F/24 focus. Before
focussing on the science camera, part of the light is split. When using the visible wavefront
sensor, the infrared light is reflected to the science camera and the visible light is transmitted
to the wavefront sensor.

The PYRAMIR optical design A schematic representation of the PYRAMIR optical de-
sign is represented in Fig. 7.2. For PYRAMIR the visible/IR beamsplitter has been substituted.
There will be installed two new dichroics: one JH/K, which transmits J and H bands to the
science camera and K band to the wavefront sensor, the other K/JH, respectively splitting the
light. A choice of wavelength-unsensitive beamsplitters, like 10/90% and 80/20%, will be used
standardly, the first one to use the wavefront sensor for faint objects at the expense of longer
integration times on the science camera. The dichroics have a diameter of 70 mm, approximately
half of the previous ones in ALFA. The thickness of this dichroics was also reduced from 10 to
4 mm, to reduce the non-common path static aberrations. Since the dichroic is mounted in
an angle of 45 degrees, the resulting aberrations and shifts obtained in transmission had to be
compensated with a silica compensator plate.
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Figure 7.2: The PYRAMIR optical design, starting with the new dichroic, which splits the infrared

light into the sensor after passing the first components of ALFA.

The wavefront sensor will work is J, H and K band. For this reason the optical design was
optimized for the range of 1.0 − 2.35 µm. The field of view has a diameter of 4′′. For dithering
the infrared science field by moving the telescope, the PWS can be moved through a x-y-stage
by ±5′′ to follow the reference star.

To correct the system for the static aberrations produced by the dichroic, which can affect
the performance of the system, degrading the linearity of the sensor (Costa et al. (2004a)), a
tilted silica plate is positioned after the dichroic. The static aberrations remaining in the sys-
tems optical design are mainly chromatic (for a quantitative analysis see Fig. 7.3 and the next
paragraphs). The non-chromatic errors were reduced to 0.05λ.

The layout of PYRAMIR consists basically of a combination of two doublets, which focus the
beam on the tip of the glass pyramid. The F/24 beam of ALFA is transformed in a F/100
beam. The full correction for static aberrations and the telecentricity is only achieved in com-
bination with the second doublet. The latter is required because a shift of the PWS in the field
would otherwise slightly change the angle of incidence on the pyramid. PYRAMIR’s optical
components are partially outside the dewar. As can be seen in Fig. 7.2, the first doublet, a
cemented CaF2/FusedSilica lens with 20 mm is at ambient temperature, the second, an spaced
CaF2/FusedSilica combination with the same diameter, is already inside the dewar in the cold
environment at 77 K. The dewar window out of fused silica has a thickness of 3 mm. The
calculated bending through vacuum (5.9 µm) and the therefore resulting radius of curvature
(34000 mm) is negligible. Also in the cold environment, before the second lens group, a filter
wheel allows to choose the wavelength range for the sensor. This is a necessary complement to
the first dichroic due to the chromatically different refraction of the atmosphere, especially at
larger zenith distances (Costa et al. (2003a)). The thickness of the filters is 3 mm, the diameter
is 1 inch.
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Figure 7.3: In this figure one of the four pupils on the detector is represented. The pupil diameter

is 320µm. The interior square with 320µm side length corresponds to 20 pixels on the detector. The

represented image is in H band, for the complete field of view. In the small square a zoomed extract of

the pupil is shown. We see the quality of the image, which is 3.3µm for this band, along the full field

of view.

In the focal plane lies the tip of the pyramid, which separates the light in four beams. It
consists of a foursided fused silica prism, transmissible in the infrared. The angle of each of the
sides with the horizontal is 1.5◦. This angle, together with the specification for the tip quality
of 10 µm, was very difficult to achieve. Despite the considerable difficulties found in the man-
ufacturing process, we have now characterized very promising pyramids (see Section 6.1). The
thickness of the pyramid is 5 mm. Together with the small angle this reduces the chromatic
aberrations of the light traversing.

Immediately before the pyramid a field stop limits the FoV and therefore also the background
from the sky. This field stop will be changeable, ranging from 2 − 10 mm diameter. The ef-
fects on this stop on the performance of the PWS has been tested through simulations and
lab-experiments (see Section 6.7 and Feldt et al. (2004)).

The spaced triplet of CaF2/Fused Silica/LiF forms the four pupils on the detector. The separa-
tion was made as small as possible, to minimize readout time. In the actual design they have 40
pixel diagonal center to center distance. Each of them has a diameter of 320 µm. This diameter
corresponds to 18 pixels on the detector, a Hawaii-1 with 1024×1024 pixels (18.5 µm×18.5 µm)
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Figure 7.4: Modulation transfer function for the system imaging the DM on the detector. The

diffraction limit is also represented in the plot. The frequencies are transferred almost diffraction

limited at the center of the DM. For a more detailed discussion see the text.

from Rockwell. This detector has previously worked in Omega Prime at Calar Alto Observatory.
It has been tested at MPIA (Ligori et al. (2004)) and it meets the requirements of PYRAMIR in
terms of read-out noise and high frame rate. In future it is planned to upgrade PYRAMIR with
the AO-Mux from Rockwell. This update is possible without changing the optics, only changing
the detector, having instead 8 pixel per diameter pupils. One of the four pupils is plotted in
Fig. 7.3. The quality of the image ranges from 3.3 µm in H-band, 5.5 µm in J-band to 7.4 µm in
K-band. This quality corresponds to a quality of 1/10 pixel to 1/5 pixel for the AO-Mux, for
which the design was originally planned.

The analysis of the quality of the re-imaging of the deformable mirror on the detector can
be done through the modulation transfer function (MTF) of the optical system, which starts
with the DM in the ALFA adaptive optics system, has as limiting pupil the field stop in front
of the pyramid and images the DM on the detector. The MTF for a field stop of 8 mm diameter
is shown in Fig. 7.4. Having 10 mirror actuators per diameter, these will be imaged with 32 µm
per actuator on the detector. This corresponds to a frequency of 31 cycles/mm. The contrast
of the transmission of this frequency ranges from almost diffraction limited at the DM center to
35% at the edge. The diffraction limit lies at 50%.
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7.2 Laboratory setup

The laboratory setup was designed and built with the main objective of gaining experience on
building a pyramid wavefront sensor system, in matters like optical adjustment techniques and
optical quality tests (of the pyramids, for example), software routines for calibration and recon-
struction and closed loop behavior in non-modulated regime. For this purpose the optical setup
is similar to the one of PYRAMIR in some aspects. A detailed description of the setup is given
in Chapter 5.

The optical adjustment of the components of PYRAMIR is not straightforward because the
setup has to be mounted inside the dewar. This means that the detector can not be mounted at
intermediate stages of the setup during the alignment process. As an example, the knowledge
of the exact location of the focus is necessary so that the pyramid is positioned at the right
place. If this is not the case, there will always be a small static defocus, which is not directly
visible in the four pupils, but can be harmful for the system (see Section 6.6). Since the beam
has a relatively high F ratio (F=100) there is a certain range where it is not clear at naked eye
where the focus is. Using a small pinhole, the focus can be found as being the point where the
maximum amount of light falls on the detector. These and other techniques were developed
during the optical alignment in the laboratory.

The software routines for finding the pupils on the detector and signal extraction, calibration
and measurement have been developed and tested with the lab-setup. These techniques were
adopted for the PYRAMIR software.

7.3 Mechanics

Most of the optical and mechanical parts of PYRAMIR are situated inside the vacuum dewar
(see Fig.7.5). This dewar has two liquid nitrogen (LN2) tanks (volume 4.8 and 1.4 liters) which
are designed in a way that nitrogen cannot drain off at any telescope orientation, if they are filled
up only half. To guarantee a holding time of at least 27 hours three nested radiation shields are
used. Two of them are thermally connected with one of the LNs-tanks each, the third shield is
only passively cooled by the cold exhaust gas of the tanks. The cold plate is mounted directly
on the inner LN2 tank and is so cooled to a temperature of 77 K. The dewar in principle is
a diminished copy of the Omega2000 (Baumeister et al. (2002)) cryostat, which has proven to
work very well. Three sets of spacers, made from glass fiber reinforced plastic separate the warm
and cold structure and allow the cold parts to shrink and move in respect to the warm vacuum
vessel during cooling-down. The cryostat is about 950 mm long and has a diameter of 216 mm,
the total weight including nitrogen is about 30 Kg.

There are three motor driven elements inside the dewar. These are the filter wheel, the mask
wheel and the detector z-stage, which allows the detector to be moved along the optical axis by
±1 mm. Since all these elements work at a temperature of about 77 K, we use Phytron cryogenic
stepper motors together with modified Harmonic Drive gears (reduction ratio 80:1) which are
almost free of backlash (Rohloff et al. (2004)). Each filter wheel position can be checked by a
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Figure 7.5: A section through PYRAMIR.

Figure 7.6: The cold triplet in PYRAMIR.

set of micro switches.

The wheels, both cold lens groups and the pyramid are mounted to thin-walled cylindrical sup-
ports that are piled up on each other. All these supports together also serve as the inner radiation
shield.

The five cold lenses have a diameter of 20 mm and have 40◦ chamfers on both sides. They
are mounted in aluminum mounts having the same kind of chamfers. This is necessary to com-
pensate the mismatch of thermal expansion between the lens and the mount material during
cool-down and warm-up of the optics. So the lenses can slide on the chamfers. This method
is described in detail in Baumeister et al. (2002) for much bigger lenses; it works excellently in
Omega2000.
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Due to its rectangular shape, the pyramid is mounted by six copper-beryllium springs (see
Fig. 7.6).

7.4 Detector

PYRAMIR will use in a first phase an 1024×1024 Hawaii I detector from Rockwell Scientific,
which has been developed for advanced astronomy and space telescope applications. The pixel
size is 18.5µm and maximum pixel rate is 1MHz. The quantum efficiency is higher than 0.6.
The charge storage capacity is higher than 100000 electrons. It has 4 quadrants, which can be
read-out in parallel through different channels. Since the four pupils are restricted to a small
portion of one of the quadrants, a small window of 64×64 pixels is addressed. This allows to
achieve high frame rates of more than 150Hz. This small window can be located somewhere on
the detector, where the performance is best. In the best channel the read-out noise in correlated
double sampling mode (reset of the frame followed immediately by one read-out and another
read-out after the integration time) at 87Hz is less than 10 electrons (Ligori et al. (2004)).

7.5 Thermic background estimation

The estimate of the thermic background noise was made for a ’worst case’ situation, using the
optical design. The amount of thermic photons that would reach the detector pixel was estimated
for the case of all the light falling onto one pixel only (what of course is never the case), coming
through the field stop before the pyramid. Further it was assumed that the PWS is located in
an environment of 293K temperature and the black body flux from such an environment that
can optically enter the entrance window (baffle) of the infrared sensor was calculated. The result
is nevertheless very low ( 150 photons/s in a spectral band from 2–2.3 µm), and the instrument
will be limited by the detector or the sky background noise.

7.6 Limiting magnitude

The simulations of the PYRAMIR system were done using a model of the instrument pro-
grammed in IDL (see Section 5.2). The model contains all key-features of the system, which
are:

The telescope and optics which in this model are represented only by a transmission factor
of 0.45. No static aberrations were applied in the simulation described here.

The DM The deformable mirror, with its sampling of 10 actuators across the aperture, and its
finite resolution and stroke.

The pyramid A pyramidal prism with a pin-hole of 3′′ diameter in front. In this simulation
no imperfections of the pyramid’s shape were taken into account.

The detector with its flat-field accuracy, read-noise, dark-current, sensitivity, etc. In this case,
it was assumed that the four aperture images match perfectly onto the pixel grid.
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Figure 7.7: The results of the simulation: The resulting average Strehl ratio for closed loop corrections

with different star magnitudes. This simulations were done for a system calibrated with 9, 20 and 35

modes and for three different loop frequencies.

A summary of the simulation parameters is given in Tab. 7.1 and the results are shown in
Fig. 7.7. According to it the limiting magnitude can reach 12th magnitude in K-band in all
cases simulated.

Telescope transmission (incl. ALFA) 0.45

Static Strehl ratio 1.0

No. of DM actuators 100

DM act. stroke 10µm

Pin-hole diameter 3”

Aperture sampling on detector 17 pix

Detector quant. eff. 0.6

Detector flat err. 1×10−4

Detector read noise 15 e−

Detector gain 5

Seeing (K) 0.5′′

τ0 (K) 15ms

No. of calibrated modes 9, 20, 35

AO loop frequency 50Hz, 100Hz, 150Hz

Filter K

Sky background 17mag per square arcsec

Guide star mag 6, 8, 9, 10, 11, 12, 13, 14

Table 7.1: Simulation parameters.
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Figure 7.8: The PYRAMIR control system simplified block diagram. The components in dark gray are

specifically developed for the new pyramid wavefront sensor. In medium gray we see the components

from ALFA, which are still going to be used in the new WFS.

7.7 Electronics/Control

PYRAMIR will be a second high-order wavefront sensor integrated in the ALFA system. For
this integration process to be as smooth as possible, a new real time computer (RTC) will be
used, instead of the existing one (Hippler et al. (1998)). It is a Primergy R450 4-way rack server,
which has two high-speed interfaces, one to receive data from the camera read-out electronics
and another one to send data to the deformable mirror electronics, as can be seen in Fig. 7.8.
The first will be a Gigabit fiber link, the latter will be a reflective memory system with PCI
64-bit 66 MHz transfers. The RTC is connected to the user workstation through ethernet. The
workstation is connected to the deformable mirror electronics through a serial RS-232 interface.
With the same type of serial interface it can be chosen from the workstation through a coaxial
relay, which WFS to use.
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The deformable mirror, a Xinetics Inc. with 97 PMN ceramic piezo actuators, has a controller
from Cambridge Innovations, able to control up to 349 channels of this type of mirrors. The
connections to the motor controller, vacuum and temperature measurement systems are also
done through serial interfaces. The systems have been tested, the motors, compatible for use
in vacuum and cryostats, are already in-house, and the motion controller, developed at MPIA,
is ready to use. The connection through ethernet to all the different devices is done through a
NPort Server.

The tip-tilt sensor from ALFA will be replaced by PYRAMIR, and tip and tilt will be sensed
with the PWS. The previous tip-tilt-mirror electronics will also be controlled by the deformable
mirror electronics.

7.8 Telescope implementation

It is planned to start with the assembly, integration and testing of PYRAMIR in the second half
of 2004. The instrument has already been shipped to Calar Alto, where the integration is going
to start soon. The optics integration will start very shortly after. The full instrument will be
installed at the telescope in Calar Alto in December 2004. Technical first light is expected to be
in the beginning of 2005.
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Chapter 8

Conclusions and Future Prospects

In this work the use of a pyramid wavefront sensor (PWS) at near-infrared wavelengths for the
measurement of the optical aberrations produced by atmospheric turbulence, while integrated in
an adaptive optical system, has been studied. This is part of the framework of a project called
PYRAMIR, that intends the installation of a new PWS at the 3.5m telescope on the Calar
Alto observatory in southern Spain. It complements the adaptive optics system ALFA, actually
working with a Shack-Hartmann wavefront sensor at visible wavelengths.

The motivation for this work has been the potential increase of sky coverage that is obtained
because of the higher number of bright infrared sources. Especially in the galactic region, where
the new instrument is expected to give at least 27% of sky coverage, the increase is considerable
when compared to the coverage of the existing visible wavefront sensor that is less than 1%.
Also in regions of special interest, like star forming regions where the images generally suffer
high extinction at visible wavelengths, infrared wavefront sensing can increase the coverage from
almost 0 up to 20%.

From the technical point of view a PWS is better adapted for infrared wavefront sensing in
ALFA. The temporal and spatial characteristics of the system and the fact that turbulence is
less harmful to the images in the infrared allow the loop to be more easily closed at longer wave-
lengths. In closed-loop PWSs are expected to achieve higher sensitivity than Shack-Hartmann
sensors.

The PWS has generally been used with a mechanical modulation of the beam around the pyra-
mid tip, increasing the dynamic range of the sensor at the cost of lower sensitivity. A model
for the effect of the atmospheric turbulence on the pyramid wavefront sensors’ measurements
was developed, which shows that it has a similar effect to the mechanical modulation usually
employed in these systems. The model allows to estimate quantitatively the size of this effect
which linearizes the signals on one side but reduces the sensitivity on the other side. The es-
timation done shows that the effect can be a non-negligible fraction of the one of mechanical
modulations with amplitudes of 1λ/D. It has been verified at the telescope that the loop can
be closed without mechanical modulation and the Strehl ratio achieved with only atmospheric
modulation has shown to be slightly higher than with additional mechanical modulation. These
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results are still preliminary and further tests should be made at the telescope to determine the
optimum size of the modulation amplitude.

The techniques used for the analysis of adaptive optics systems working with pyramid wave-
front sensors were essentially a full-system integrated modelling that simulates a full adaptive
optics system working in open-loop and closed-loop. This model integrates the experience of
a telescope including the real-time compensation of the atmospheric turbulence. A laboratory
setup of an adaptive optics system was also used, with a pyramid wavefront sensor, a deformable
mirror to compensate the aberrations and an interferometer working as independent wavefront
sensor.

One of the objectives of the laboratory setup was to recognize problems with the optical setup.
It has been adapted to the PYRAMIR instruments’ setup so that the design of the latter could
be optimized with the knowledge achieved.

The laboratory setup was characterized and the calibration techniques were elaborated. The
experimental setup is able to perform open-loop and closed-loop corrections of 9 to 14 modes in
the actual configuration without modulation and up to 35 modes with modulation. One of the
main sources of error that have been found in the laboratory setup was the deformable mirror
control and the poor quality of the generated modes. Further optimization of the deformable
mirror modes will surely increase the number of controllable modes. Also the intrinsic deforma-
tion of the deformable mirror producing static aberration and the non-negligible roof size of the
pyramids’ tip were other relevant sources of error, that should be solved in future.

The optimum modulation amplitude in terms of reconstruction error propagation is estimated
to be between 0.5 and 0.75 λ/D (where λ/D is the PSF angular full width at half maximum)
for a system working with 35 modes, no static aberrations and a calibration amplitude within
the linear range of the sensor. Closed-loop simulations of atmospheric turbulence compensation
show that by choosing an appropriate gain factor for the correction applied a non-modulated
system may achieve the performance of a system modulated with the most appropriate ampli-
tude.

Static aberrations, which are present in the non-common path of the wavefront sensor and
the science channel, can be very harmful for the performance of a non-modulated PWS. Sub-
traction of the offset signal from the measured signals is essential in this case to maintain some
sensitivity to the modes which are also present statically. Even so the range in which the sensor
is able to measure correctly those modes is greatly reduced. To a certain degree this may be
taken into account by the control system. For PYRAMIR the static aberrations due to the
optical setup are expected to be 0.05λ. This value stays within the linear range of the sensor
and should not limit the dynamic range of measurements.

The effects of light loss through the edges and tip of the pyramid have been studied. Even
through very small edges, in the scenario of a diffraction limited spot on the pyramid tip, the
light loss is around 50%. This fraction decreases quite rapidly in case of a spot enlarged by
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aberrations, reaching less than 20% with 0.4µm root mean square aberration, for the case of
PYRAMIR. In any case, the portion of light carrying the information about the distortion will
always land further away of the pyramid tip and therefore, in case of a small tip, will land inside
the four pupils, where it can be measured. Much more harmful is the effect of a pyramid roof,
which creates an unsymmetrical illumination of the four pupils. It was estimated that the roof
should not be bigger than 20µm in the case of PYRAMIR.

Laboratory measurements give as upper limit for the diameter of a spatial filter in front of
the pyramid 2-5λ/D. One reason to use this spatial filter is to filter out higher order modes,
which cause aliasing errors. For PYRAMIR it is mainly planned for reduction of the background.
In the case the spatial filter is too small the loop does not close and the system does not reach a
stable correction. For PYRAMIR this means that the spatial filter should not be smaller than
2mm.

Different pyramids made of different glass types have been characterized and their suitability for
the PYRAMIR instrument has been tested. A manufacturer able to meet the specifications has
been found and fused silica glass pyramids have been delivered. This supplier already polished a
pyramid for the laboratory having a roof size of 46µm and the edge and surface quality needed
to test the setup. The pyramid for PYRAMIR shows a smaller roof under the light microscope.
Exact measurements with a profilometer are planned for the near future.

The possibility to use a three-sided pyramid has been analyzed. This alternative would greatly
decrease the manufacturing problems due to the strict requirements for the roof size, since there
is no roof formation in this case. In a first analysis there seems to be no reason to discard the
possibility, even though systems with three-sided pyramids seem to be less stable than four-
sided ones in closed loop simulations of atmospheric turbulence compensation, probably due to
a slightly higher photon noise error propagation. Some three-sided pyramids have been manu-
factured and will be introduced in the laboratory setup very soon.

The PYRAMIR optical setup has been developed and optimized for the range of 1.0-2.35µm, in-
cluding J, H and K bands. Specifications for the pupil image quality, static aberrations and DM
re-imaging quality have been worked out. With filters the sensing wavelength can be constricted
to combinations of bands or single band. The limiting magnitude of PYRAMIR is estimated to
be mK=12. The instrument is being implemented in the ALFA system and technical first light
is expected in the beginning of 2005.



98 8 CONCLUSIONS AND FUTURE PROSPECTS



Appendix A

Integration of the power spectrum

We describe here how to get expressions, which are easily integrable and only dependent on one
parameter. First we will rewrite the power spectrum for each zernike mode Zn:

wZj
(ν) = 4(n + 1)C1

+∞∫

−∞

dfy
|Jn+1(πDf)|2

πDf

[( ν

V

)2

+ f 2
y

]−11/6





2 cos2 (mθ) , m 6= 0
2 sin2 (mθ) , m 6= 0
1 , m = 0

(A-1)

with f =
(
f 2

x + f 2
y

)1/2

and

{
fx = f cos θ = ν/V
fy = f sin θ

Performing a variable change µ = V fy, we obtain:
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Now we will integrate the power spectrum for each mode n, changing to polar coordinates (r, θ)
with r2 = ν2 + µ2:
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Changing variables again ρ = (πDr) /V

+∞∫

−∞

dν wZj
(ν) = 2πC2
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At last we show how to integrate the power spectrum weighted with the error transfer function
(in polar coordinates as before), defining a = V/ (πDνc):
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Substituting T from Eq. (4.13) the integration can be performed numerically and we see that
the result, when normalized with Eq. (A-5), depends only on a (and on j).



Appendix B

Dependencies of the modulation

function

Here we rewrite Eq. (4.8), introducing the normalization with the telescope diameter D:

M(x′, x, y) = exp

{
−
∑

j

2σj

D2
[Pj (x′, y) − Pj(x, y)]

2

}
. (B-1)

Naming the outcome of Eq. (A-6) as fj(a), we have that

σj ∝ fj (a) j−
√

3/2

(
D

r0

)5/3

. (B-2)

We can rewrite the exponential term of the modulation function:
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− 1
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From the first exponential we see that M(x′, x, y) depends on Dr5
0. The second exponential

shows the dependence on a.
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Appendix C

Singular value decomposition

The main definitions and results related to the singular value decomposition (SVD) used through-
out this thesis are going to be resumed here. For a more detailed analysis refer to Golub and
Van Loan (1983), f.ex., or for a more brief description relating the numerical computations see
Press et al. (1992).
The wavefront reconstruction process can generally be described by a system of equations of the
type:

ŝ = Ax + n (C-1)

where ŝ is a vector of estimated or measured gradient measurements, x is a vector describing the
actual wavefront, A is a matrix depending on the geometry of the problem and n is the noise
associated with the measurement process, which is assumed as being random, uncorrelated and
equal for all gradient measurements.
The objective is to find a solution in a least square sense, what means finding x such that
(Ax − ŝ) is minimum, where A and ŝ are known.
One of the mostly used techniques to solve equation systems of the type

Ax = ŝ, (C-2)

where A is not invertible, is to find the pseudo-inverse of A through SVD.
The SVD is one of the most important decompositions in matrix computations. It is based on
a theorem, whose proof can be accessed in the given literature:

Theorem Given a matrix Am×n, there exist a column-orthogonal matrix Um×n, a diagonal
matrix Wn×n and an orthogonal matrix Vn×n, so that A can be written as

A = UWVT . (C-3)

The diagonal elements of W are called the singular values and are greater or equal to zero. The
pseudo-inverse A+ can be calculated as:
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A+ = V [diag(1/wj)]U
T , (C-4)

where [diag(1/wj)] is a diagonal matrix with the inverse values of W in the diagonal.
The condition number of the matrix (κ(A)) is defined as the ratio of the largest (in magnitude)
of the wj’s to the smallest of the wj’s. In case of a very small wj approaching the machine’s
floating-point precision it is ill-conditioned. If the smallest wj is zero the condition number is
infinite and the matrix is singular. In this case there is a subspace of x which is mapped to
zero: Ax = 0, which is called the nullspace. The range of A is the subspace of ŝ where some x
is mapped on. The SVD constructs orthonormal bases for the range (the columns of U which
have correspondent singular values that are non-zero) and the nullspace of A (the columns of V
which have correspondent singular values that are zero).
If ŝ = 0 any column of V that has a correspondent singular value that is zero is a solution. If
ŝ 6= 0 and it lies in the range of A there is a solution for the system of equations1. It can be
shown that the solution with the smallest length |x|2 of Eq.C-2 is:

x = A+ŝ, (C-5)

where the (1/wj) are replaced by zero if wj = 0.
If ŝ 6= 0 and it does not lie in the range of A the SVD will not allow to find an exact solution,
but the best solution in a least-square sense, which will minimize the residual r = (Ax − ŝ).
In the case of an over-determined system with more equations than unknowns, which is the case
in this work, generally no wj’s are zero. Even though it may be an advantage to set some very
small ones to zero, because the corresponding columns are linear combinations of x which are
very insensitive to the data and can destabilize the system pulling the solution vector in a wrong
direction and increasing the residual.
The condition number of the system is also a measure for the sensitivity of the linear system to
slight perturbations in A or ŝ (Golub and Van Loan (1983)):

∆x

x
≤ κ(A)

(
∆A

A
+

∆ŝ

ŝ

)
, (C-6)

meaning that the relative error in the solution x has as upper value the condition number times
the sum of the relative errors of A and ŝ.

1Since any of the nullspace vectors can be added to the solution it has even more than one solution.



Appendix D

Zernike polynomes

The description of optical aberrations is very often done in two-dimensional Zernike polynomes,
which allow to decompose complex wavefront shapes into a set of basis functions. They were
introduced by Zernike (1934) and their low order terms correspond to the classical aberrations
like tilt, defocus and astigmatism. They are a set of orthogonal polynomes defined on a unit
circle and every two-dimensional function can be described by a linear combination of them.
In Noll (1976) the use of zernike polynomes for a description of the turbulent atmosphere is
discussed. His notation, given in polar coordinates ρ and θ, is reproduced here:

Zjeven =
√

n + 1Rm
n (ρ)

√
2 cos(mθ) form 6= 0

Zjodd
=

√
n + 1Rm

n (ρ)
√

2 sin(mθ) form 6= 0

Zj =
√

n + 1R0
n(ρ) form = 0 (D-1)

where

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n − k)!

k!(n+m
2

− k)!(n−m
2

− k)!
ρn−2k. (D-2)

The indices n and m represent the radial order and the azimuthal frequency respectively. They
satisfy n ≤ m and n−m is even. The index j can be obtained from n and m and is an ordering
of the modes. Even values of j correspond to symmetric modes in cos mθ and odd values of j
correspond to antisymmetric modes in sin mθ. The normalization is such that each polynomial
has a root-mean-square value of 1 over the unit disk. They are represented in Tab.D.1 till j = 11
and in Fig.D.1 till j = 70.
Noll (1976) and later Wang and Markey (1978) have represented the Kolmogorov turbulence
spectrum by Zernike polynomes. They evaluated the covariance matrix of the expansion co-
efficients, which is not purely diagonal because polynomial terms having the same azimuthal
frequency m do not have 0 covariance. This implies a certain redundancy in the decomposition
which can only be eliminated by using a basis set like Karhùnen-Loeve functions (Wang and
Markey (1978)). These are defined in a way that their covariance matrix is diagonal but they
vary according to the stochastic process that they are describing. Despite the differences, the
first order Karhùnen-Loeve functions are very similar to the first order Zernike poynomes.
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Figure D.1: The first 70 zernike polynomials excluding the piston mode.

n m=0 m=1 m=2 m=3

0 Z1 = 1

(piston)

1 Z2 = 2ρ cos θ

Z3 = 2ρ sin θ

(tip/tilt)

2 Z4 =
√

3(2ρ2 − 1) Z5 =
√

6ρ2 sin 2θ

()defocus Z6 =
√

6ρ2 cos 2θ

astigmatism

3 Z7 =
√

8(3ρ3 − 2ρ)sinθ Z9 =
√

8ρ3 sin 3θ

Z8 =
√

8(3ρ3 − 2ρ)cosθ Z10 =
√

8ρ3 cos 3θ

(coma) (trifoil)

4 Z11 =
√

5(6ρ4 − 6ρ2 + 1)

(spherical aberration)

Table D.1: The first 11 zernike polynomes according to Nolls’ notation.
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