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Zusammenfassung
Komplexe und hochgradig unterbestimmte Netzwerke mit unklarer Netzwerktopologie, teilweise unzurei-
chend verstandenen Mechanismen, vielen unbekannten Parametern sowie signifikanten stochastischen Effek-
ten sind in der Wissenschaft, insbesondere in der molekularen Zellbiologie, weit verbreitet. Neue Ansätze
zur mathematischen Modellierung und Systemidentifizierung sind hierbei erforderlich. Zellen übertragen
und verarbeiten Signale durch Signaltransduktionsnetzwerke, die auf der biochemischen Wechselwirkung
zwischen den beteiligten Molekülen basieren. Die hohe Komplexität ergibt sich aus der hohen Anzahl
beteiligter Molekülsorten sowie aus der Vielzahl und Vielschichtigkeit interagierender Subprozesse. Die
Modellierung solcher Netze beschränkt sich bislang zumeist auf kleine Subsysteme oder basiert auf rein
qualitativer Information. Ein Ziel dieser Arbeit ist es, die Komplexität großer Systeme so zu reduzieren,
dass eine Systemidentifizierung auf der Grundlage experimenteller Daten möglich wird. Der hierfür ent-
wickelte Ansatz der ”Sensitivität von Sensitivitäten”, basierend auf der Auswertung stochastisch gene-
rierter Ensembles von Parametersätzen, legt zwei entscheidende, inhärente Systemeigenschaften offen: hohe
Robustheit und eine modulare Struktur der Abhängigkeiten zwischen Zustandsvariablen und Parametern.
Dies ist von entscheidender Bedeutung, um die Dimensionalität des Parameterschätzproblems deutlich zu
reduzieren. Diese Methodik wird auf CD95-induzierte Apoptose, auch programmierter Zelltod genannt,
angewendet. Fehler in der Regulierung von Apoptose haben eine Reihe schwerwiegender Krankheiten wie
Krebs zur Folge. Obwohl die molekularen Mechanismen in zunehmendem Maße untersucht werden, fehlt
bislang ein systemisches Verständnis des komplexen Signalwegs. Mit den hier geschätzten Parametern
können beobachtete Prozesse reproduziert und wichtige Systemeigenschaften vorhergesagt werden. Diese
wurden experimentell bestätigt und erlauben eine gezielte Planung weiterer Experimente. Dadurch konnte
ein neuer regulatorischer Mechanismus entschlüsselt und ein Schwellenwertverhalten zwischen Überleben
bzw. Tod einer Zelle identifiziert werden. Aufgrund hoher Fluktuationen und extrem geringer Teilchen-
zahlen zentraler Molekülsorten sind stochastisch exakte Simulationsmethoden unverzichtbar. Da diese für
Systeme, deren Reaktionen auf deutlich unterschiedlichen Zeitskalen stattfinden, jedoch nicht praktikabel
sind, wird ein effizienter Hybrid-Algorithmus entwickelt, der den exakten Gillespie-Algorithmus mit einem
System stochastischer Differentialgleichungen kombiniert und stochastisch präzise wie auch effiziente Simu-
lationen für jede Art von Markov-Prozessen erlaubt. Zusammenfassend ist die hier vorgestellte Methodik
für hochgradig unterbestimmte Netzwerke besonders geeignet und für das neu entstehende Gebiet der Sys-
tembiologie von hoher Relevanz, zumal sie Anwendungen ermöglicht, die über Apoptose weit hinausgehen.

Abstract
New approaches are required for the mathematical modelling and system identification of complex net-
works, which are characterized by a large number of unknown parameters, uncertain network topologies,
partially poorly understood mechanisms and significant stochastic effects. Networks with such properties
are ubiquitous in many fields of science, especially in molecular cell biology, where, for example, large
signal transduction networks are formed, by which cells transfer and process information, based on the
biochemical interactions between signal transduction molecules. Complexity arises from the high number
of different molecule species involved and the diversity of sub-processes interacting with each other. Pre-
vious attempts to model signal transduction were often limited to small systems or based on qualitative
data only. One goal of this thesis is to reduce the complexity to enable system identification on the basis
of experimental data. The concept of ’Sensitivity of Sensitivities’, which is presented here for the first
time and which is based on the evaluation of stochastically generated parameter set ensembles, reveals two
important inherent system properties: high robustness and modular structures of the dependency between
state variables and parameters. This is the key to drastically reduce the dimensionality of the parameter
identification problem. The approach is applied to the signalling pathway of CD95-induced apoptosis, also
called programmed cell death. Defects in the regulation of apoptosis result in a number of serious diseases
such as cancer. Despite the ever-increasing number of studies of the molecular mechanisms of apoptotic
signalling, a systemic understanding of this complex pathway is still missing. With the model and the
estimated parameters of this thesis, it becomes possible to reproduce the observed system behaviour and
to predict important system properties. The predictions have been experimentally confirmed and are
used for the planning of further experiments. Thereby, a novel regulatory mechanism was revealed, i.e. a
threshold between cell death and cell survival. High fluctuations and extremely low particle numbers of
crucial molecule species require exact stochastic simulations. Computational problems arise from the huge
differences among the timescales on which the reactions occur. Therefore, a stochastic hybrid algorithm
is developed by combining the exact Gillespie algorithm with a system of stochastic differential equations.
This enables stochastically accurate and highly efficient simulations for large reaction systems and for any
other kind of Markov processes. In summary, this thesis provides a methodology specifically suited for
highly underdetermined networks. This is of high relevance for the newly emerging field of systems biology
going far beyond the present application of programmed cell death.
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Chapter 1

Introduction

Computer simulation and mathematical modelling have become indispensable for most dis-
ciplines of natural sciences. In biology, quantitative models are established in many areas
ranging from macromolecular structures to reaction-diffusion processes and other nonlin-
ear dynamical systems [1]. However, up to now, quantitative modelling of most biological
systems, like intracellular processes, is impaired by the high complexity arising from the
diversity of different sub-processes interacting with each other and the lack of knowledge
about the underlying mechanisms, especially on the quantitative level. Here, huge numbers
of unknown parameters and large ranges of possible values for most quantities are ubiq-
uitous. Whenever information is not directly accessible by observations, an investigation
loop between hypothesis-driven modelling, simulation and experiments becomes essential
for system identification [2]. In data-based approaches, unknown system parameters are
identified based on the observed dynamical behaviour. Such approaches are, for example,
well-established in physics or chemistry. In contrast, many biological questions raise qual-
itatively different problems due to less reliable experimental data, less information about
the exact mechanisms and the high dimensionality of the space of unknown parameters.

One of the most challenging areas in cell biology is a better understanding of sig-
nal transduction networks. Cells show information processing by the biochemical interac-
tion between molecules. Signals of external stimuli are, for example, passed into the nucleus
to regulate gene expression, resulting in proliferation, mitosis (nuclear division), changes
in metabolism or cell death [3]. Interactions like phosphorylation, exchange of smaller
molecules, binding or cleavage, are the fundamental mechanisms, which form the signal
transduction networks. Complexity arises from the huge number of different molecules
and interactions between them. In eucaryotic cells, the steadily growing number of known
signalling molecule species is currently in the order of magnitude of 104 − 105 [4].

Different methods of translating signal transduction networks into the language of math-
ematics exist in order to analyse their complex and highly dynamical behaviour. Dynamic
pathway models are constructed using a diversity of mathematical and computational
methods. Petri Nets [5, 6, 7] are, for example, well suited to describe the state transi-
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tion process of distributed systems. In agent-based approaches and cellular automata [8],
macroscopic system properties emerge from the individual properties of the single entities,
interacting with each other. Other methods originate from the analysis of biochemical
systems ranging from the examination of steady states and flux modes to a large variety of
control theories [9, 10, 11]. More recently, theoretical models for describing the signalling
behaviour on systems level have been developed, using modular approaches [2, 12, 13].
Thus, simulation of signal transduction networks is either based on discrete models de-
scribing signalling as information processing, or on continuous models, where the informa-
tion flux is modelled by a biochemical control system. In the latter approach, which goes
back to the pioneering work of Garfinkel and Hess in the mid 60s [14, 15], the reaction
network is translated into a system of ordinary differential equations [16, 17]. Today, there
is a variety of sophisticated simulation methods to analyze complex biochemical reaction
systems (e.g. [18, 19, 20, 21]). However, for all methods mentioned above, a fixed set
of reaction partners and parameters is assumed in advance. Accordingly, the models are
mostly limited to well investigated signalling pathways, where the biochemical mechanisms
are even quantitatively well understood [22, 23]. As an alternative, methods for system
identification like parameter estimation [24, 25] based on reliably measured time series of
molecule concentrations, as successfully applied for chemical reaction systems [26], have
been suggested recently [27].

In contrast to well-defined chemical reaction networks, signal transduction pathways
usually cannot be regarded as isolated processes, which limits the applicability of in vitro
data or data from experiments, referring to different experimental settings, cell types or
states of cells. Moreover, the available information about signalling processes is spread
over different levels of information quality, ranging from mechanistically well understood
interactions to purely qualitative relations, like activation or inhibition. Quantitative infor-
mation on e.g. reaction rate constants is mostly missing and the range of typical parameter
values often covers several orders of magnitude. As a consequence, system identification
of signal transduction networks - and many other biological systems - is severely impaired
by the high number of unknown parameters and the curse of dimensionality, which refers
to the problem that the space of possible parameter value sets grows exponentially with
the number of unknown parameters impairing the search for the most probable set of
parameters.

1.1 This Thesis

The goal of this thesis is to introduce quantitative modelling and system identification ap-
proaches to complex, high-dimensional and partially poorly understood cellular processes.
The main objectives can be summarized as follows:

• Modelling approach for the quantitative description of mechanistically well under-
stood subsystems embedded in larger networks, given by their connectivity.
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• Introduction of a data-based approach to make the network model capable of repro-
ducing the observed system behaviour and of predicting new system properties.

• Investigation of stochastic effects in signal transduction networks by development
and application of stochastic simulation methods.

• Identification of an adequate signal transduction system as prototype application and
formation of a collaboration with an experimental group in order to establish a loop
between modelling, simulation and experiments. This is a crucial step for a better
understanding of signalling networks on systems level.

So far, only a few models of signal transduction networks exist, which have been approached
by data-based system identification methods [27]. Instead, simulations are performed using
ad-hoc set parameters (e.g. [28]) or parameters, which refer to incomparable cell types,
cell states or experimental settings. The high amount of data required for reliable system
identification is of course limiting the size of assessable systems. To approach this problem,
I make use of two important and ubiquitous system properties: modularity and robust-
ness. It is a well-accepted fact that biological systems keep their system properties stable
although they are subject to high parameter variations (e.g. [29, 30, 31]). Furthermore,
cellular systems often exhibit a modular and hierarchical structure [32]. In addition, the
effects of parameter variations on the system properties are often correlated. As a conse-
quence, the original parameter sets can be replaced by a much lower number of ’effective’
parameters. Based on these assumptions, a new systematic approach is developed to reduce
the dimensionality of the system identification problem by determination of parameters,
which are either irrelevant for certain network parts or correlated with other parameters.

Sensitivitiy of Sensitivities

Sensitivity analysis [33] plays an essential role in model reduction. However, in general,
knowledge about the parameter values is required for identification of insensitive and cor-
related parameters. On the other hand, model reduction has to be applied prior to the
determination of the unknown parameters. In this thesis, I therefore introduce the concept
of ’Sensitivity of Sensitivities’, a stochastic approach towards global sensitivity analysis,
which shows that sensitivity values of typical signal transduction networks are often highly
insensitive with respect to large variations of all parameters. On this basis, evidence about
parameter dependencies and parameter correlation can be gained even without knowledge
of the exact parameter values.

Sensitivity-based Parameter Estimation

Exploiting the latter information, a cluster-based and sensitivity-controlled parameter es-
timation framework is introduced. Typically, the sensitivities of specific molecules with
respect to specific parameters are extremely low for many parameter-molecule combina-
tions. If this property is fulfilled within the complete space of possible parameter values, at
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least for a subset of these sensitivities, the model separates into clusters of molecules, which
are dependent on a subset of parameters only. As a consequence, a hierarchical parameter
structure can be introduced. Parameters are called global if more than one cluster depends
on them, whereas local parameters are only relevant for the state variables of a single clus-
ter, which drastically reduces the dimensionality of the parameter estimation problem. To
my knowledge, this concept is demonstrated here for the first time. Furthermore, the ap-
proach is complemented by a sensitivity control within the parameter estimation algorithm
in order to account for local sensitivities and parametric sensitivity correlations.

With the previous approaches, parameter estimation becomes practicable for much
larger systems. Nevertheless, due to the current data situation, submanifolds of parameter
sets providing almost the same fit with experimental data are expected rather than a unique
solution. As a consequence, a large number of parameter estimations are performed with
randomly chosen start values. Instead of relying on a single parameter set, providing the
best fit with experimental data, I introduce the concept of ensembles of parameter fits.
For statistical evaluation of system properties, the weight of each model sample based
on a certain parameter set is given by a Boltzmann factor, which can be considered the
probability that a system with the respective parameters reproduces the experimentally
observed behaviour.

Hybrid Method for Stochastic Simulation

Another challenge in quantitative biochemical network modelling is to account for the
stochastic behaviour and the discrete nature of the molecules, since high relative fluc-
tuations and extremely low particle numbers of some species are ubiquitous [35]. As a
consequence, the system behaviour is often governed by stochastic effects, which poses
new problems for parameter estimation. Moreover, computational problems arise from the
huge differences among the timescales on which the reactions occur, causing high cost for
stochastically exact simulations [36].

In this thesis, I develop the ’General Stochastic Hybrid Method’ combining the exact
Gillespie algorithm with a system of stochastic differential equations. For this purpose, the
reaction system is dynamically divided into two subsets: stochastically critical interactions,
e.g. reactions between species of low particle numbers, are simulated as discrete events
using the exact Gillespie method, whereas the remaining reactions are approximated by
Langevin equations [37]. The interactions between both subsets are correctly considered
by propagation of a ’generalized system state’ consisting of both the state variables and
the probability densities for the discrete events. Thus, a method is provided, which is exact
in the sensitive low-particle number range, but still efficient for the fast reaction subset,
where the Gillespie approach would no longer be feasible.
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Model of Programmed Cell Death

The signal transduction network of programmed cell death, also called apoptosis [3], is a
highly relevant field of research in cell biology. In this thesis, an important subsystem of
this network is chosen as prototype application. Programmed cell death is one of the most
complex signalling pathways and an essential property of all higher organisms. Defects in
apoptosis result in a number of serious diseases such as cancer, autoimmunity and neu-
rodegeneration (e.g. Altzheimer and Parkinson) [38, 39]. To develop efficient therapies,
fundamental questions about molecular mechanisms and regulation of apoptosis remain to
be answered.

Despite the ever-increasing number of studies on apoptosis, a systemic understanding
of this complex signalling pathway is still missing. There is no experimental approach
available at present matching the complexity and allowing monitoring of immediate and
long-term changes of all affected molecules in the course of apoptosis. Instead, most exper-
iments focus on the qualitative relation between single molecules and are often measured
under conditions that are not comparable. For this purpose, I established an interdisci-
plinary collaboration with an experimental group focussing on the measurement of quan-
titatively reliable time series of molecule concentrations. A mathematical model of pro-
grammed cell death, integrating the presently distributed and heterogeneous knowledge,
is of great benefit, since it allows the identification of most sensitive signalling molecules
and predictions on the systemic behaviour of apoptotic signalling, e.g., upon stimulation
by different molecules or through interaction of chemotherapeutics. In this study, CD95-
induced apoptosis [38], which is one of the most important apoptotic signalling pathways,
is investigated. To establish an integrated model of this pathway, I introduce ’Structured
Information Models’, an approach, which integrates information on various different lev-
els in a unified form. Mechanistically well understood network parts are combined with
less specified subsystems, mainly represented as black boxes and defined by the observed
input-output behaviour. Besides the formulation of biological hypotheses, a mathematical
model is also very beneficial for experimental design by suggesting the most promising next
experiments to address a specific biological question.

Like in most signal transduction networks, quantitative information like reaction rates
are missing and for most reactions, the respective parameters are not directly accessible
in vivo. In a first attempt to theoretically describe apoptotic signalling a mathematical
model including more than 20 reactions was proposed in the study of Fussenegger et al.
[28]. However, this model was based on ad hoc fixed parameters and thus its potential for
understanding the regulation of apoptosis remains very limited.

It is shown that the methods developed in this thesis are suited to overcome present
obstacles in modelling and system identification of signal transduction networks, or, more
generally speaking, stochastic reaction systems with many unknown parameters. The
numerical simulations allow the prediction of the systemic behaviour of CD95-induced
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apoptosis. By verifying the model hypotheses experimentally, it is demonstrated how
iterations of theoretical modelling and experiments reveal new insights into the behaviour
of complex biological systems. As a result, a mechanism for the control of CD95-induced
apoptosis is identified, which answers highly debated questions about the regulation of
programmed cell death.

1.2 Outline of this Thesis

The thesis is divided into three parts. In the first part, an introduction into deterministic
and stochastic simulation methods for chemical reaction networks is given (Chapter 2) and
the problem of processes running on multiple timescales is addressed (Chapter 3). Here,
I derive the General Stochastic Hybrid Method, which combines the stochastically exact
with the approximate simulation method. The algorithm is then applied to the signal
transduction network of programmed cell death to demonstrate its efficiency and accuracy
in comparison with alternative methods.

The second part of the thesis deals with modelling and system identification of signal
transduction networks, especially with the problem of many unknown parameters. Chap-
ter 4 presents the signal transduction pathway of CD95-induced apoptosis. In Chapter 5,
I introduce the concept of structured information models in order to construct a simplified
network model of the pathway. For reduction of the effective number of parameters, a new
approach towards global sensitivity analysis is given in Chapter 6. Here, I introduce the
new concept of Sensitivities of Sensitivities. After an introduction into parameter estima-
tion in Chapter 7, I derive a cluster-based and sensitivity-controlled parameter estimation
algorithm on the basis of Chapter 6. Chapter 8 presents the software package, which inte-
grates the previous methods.

Finally, the results are given in Chapter 9. First, important characteristics of the dis-
tribution of sensitivities are shown. Then, the results of the new parameter estimation
approach are demonstrated and the model-based predictions of the biological system be-
haviour are presented. Then, it is shown that these predictions could be experimentally
verified and that detailed hypotheses about the underlying mechanisms became possible.
At the end, the stochastic system behaviour is addressed and it is shown that simulations
using the General Stochastic Hybrid Method of Chapter 3 were capable of reproducing
the observed death rates. Chapter 10 puts the approaches and results of this thesis into a
broader context and gives perspectives for future research.



Chapter 2

Simulation of Chemical Reaction
Models

The quantitative simulation of signal transduction networks originates from (bio-)chemical
reaction models. In this chapter, a deterministic simulation method for chemical reaction
networks, based on a system of ordinary differential equations, is demonstrated. In addi-
tion, two stochastic simulation methods are derived: the exact Gillespie algorithm and an
approximate method using stochastic differential equations.

2.1 Deterministic Kinetic Models

2.1.1 Definition of Reaction Systems

In the following, we assume a spatially homogeneous chemical reaction system [41] and
consider a well-stirred mixture of m molecule species Mi and n different reactions Rj be-
tween them. The state of the system is defined by the molecule concentrations of each
species

c(t) = (c1(t), . . . , cm(t)). (2.1)

These concentrations are typically given in mole per liter. Alternatively, the state can be
defined by the amount of substance, also called material quantity

n(t) = (n1(t), . . . , nm(t)), (2.2)

which corresponds to the number of particles of each species (typically given in mole)
within a given volume. Consequently, (n1, . . . , nm) are directly related to the concentra-
tions (c1, . . . , cm).

The chemical reactions {R1, . . . , Rn} between the molecules within the system are de-
fined by the stoichiometric coefficients and the respective reaction velocities. Assuming
that reaction Rj consumes K different educt species and generates L different product
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species, the so-called reaction equation has the general form

(−νi1j)Mi1 + . . . + (−νiKj)MiK → (νiK+1j)MiK+1
+ . . . + (νiK+Lj)MiK+L

, (2.3)

where i1, . . . , iK denote the indices of all educts, iK+1, . . . , iK+L the indices of all products,
and νij the stoichiometric coefficients with

νij < 0 for i ∈ {i1, . . . , iK},
νij > 0 for i ∈ {iK+1, . . . , iL}.

2.1.2 Reaction Rates

The extent of reaction ξ describes the progress of a chemical reaction and corresponds
to the number of single, molecular reaction events occurred since time t0. Considering
reaction Rj only, the respective ξj(t) is given by

ξj(t) :=
∆ni

νij

∀ i ∈ {1, . . . m} | νij 6= 0, (2.4)

∆ni = ni(t)− ni(t0).

This leads directly to the reaction velocity vj of reaction Rj, defined as the extent of reac-
tion per time and per volume. For simulation and analysis of chemical reaction systems,
knowledge of the reaction velocities vj(c(t),Φ(t)), (j = 1, . . . , n) is crucial. In general,
they depend on the molecule concentration of the species involved in the respective re-
action (Section 2.1.3) and on the parameter set (Φ1, . . . , Φq) containing reaction-specific
parameters, like rate constants, or thermodynamic variables such as temperature.

2.1.3 Time Evolution of Reaction Systems

The time evolution of the state of a reaction system can be described by a system of
ordinary differential equations (ODEs), generated as linear combination of the reaction
velocities vj. These equations are called reaction rate equations and defined by

dci

dt
=

n∑
j=1

νijvj(c(t),Φ(t)) (2.5)

with the stoichiometric matrix

ν =



ν11 . . . ν1n

...
...

νm1 . . . νmn

 .

This matrix contains the stoichiometric coefficients and links the reaction rates with the
molecules affected. The determination of reaction velocities depends on the reaction type
and is presented for elementary and enzymatic reactions in the following.
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Elementary Reactions

In general, reaction velocities cannot be derived from the chemical reaction equations.
However, in case of elementary reactions, they are determined by the concentration of the
educts [48]:

First order: For unimolecular reactions (e.g. decay processes), the velocity is
proportional to the molecule concentration of the consumed molecule

v(t) = kci(t). (2.6)

Second order: For bimolecular reactions, M1 + M2 → . . ., the velocity is
proportional to the concentration of both reaction partners

v(t) = kc1(t)c2(t). (2.7)

In general, the velocity of an elementary reaction

(−ν1j)M1 + . . . + (−νkj)Mk → . . . (2.8)

has the form

vj(t) = k
m∑

i=1

c
−νij

i (t). (2.9)

Enzymatic Reactions

In biochemical systems, enzymatic reactions are of high relevance. A simple model was
proposed by Michaelis and Menten:

E + S
k1⇀↽
k2

ES
k3−→ E + P .

Enzyme E and substrate S form the complex ES, which can dissociate, or which can
be processed to form product P . The production rate of P is derived in the following.
Obviously, the time evolution of P and ES is given by

d[P ]/dt = k3[ES], (2.10)

d[ES]/dt = k1[E][S]− (k2 + k3)[ES]. (2.11)

The Michaelis-Menten kinetic is based on the assumption that the concentration of ES
remains constant (steady state)

d[ES]/dt = 0. (2.12)

As a consequence, the relation

[ES] =
1

KM

[E][S], KM =
k2 + k3

k1

(2.13)
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is fulfilled, where KM is called Michaelis constant. The total enzyme concentration [ET ] is
defined as sum of the concentrations of uncombined enzyme E and complex ES

[ET ] = [E] + [ES].

Together with Eq. (2.10) and Eq. (2.13), where [E] can be substituted by [ET ] − [ES],
the rate V ≡ d[P ]/dt for the production of P is given by

V = k3[ES] = k3[ET ]
[S]

[S] + KM

, or

V = Vmax
[S]

[S] + KM

, Vmax = k3[ET ]. (2.14)

The latter equation is the called Michaelis-Menten equation.

Numerical Propagation of ODE Systems

Once the initial molecule concentrations are given, the time evolution of chemical reaction
systems is treated as an initial value problem [42] and the ODE system is numerically
integrated. For this purpose, there is a huge variety of ODE solvers, which propagate the
system state using finite time steps [43, 44]. Difficulties arise from the high non-linearity of
the reaction velocities, which are typical for chemical and especially biochemical systems.
Usually, there are periods, in which the time derivatives of state variables are subject to
extremely fast changes, requiring extremely small step sizes to keep the numerical exact-
ness at a constant level. For this reason, the required step sizes often differ by orders of
magnitude. As a consequence, adaptive step size control or implicit methods [45, 46, 47]
are required.

2.2 Stochastic Simulation of Markov Processes

In the previous approach, molecule populations were described by the continuous state
variables (c1, . . . , cm), although they refer to molecules, which exist in discrete numbers on
the microscopic level. Further, a predictable system was assumed for the determination
of reaction velocities and the time evolution. These two assumptions are not appropriate
for systems with extremely low particle numbers of at least some species and high relative
fluctuations due to stochastic effects. In many cases, such effects lead to a qualitatively
different system behaviour as, for example, demonstrated in Section 3.4.2. Moreover, data
from biochemical experiments often refer to a population of many cells and the observed
quantities are also influenced by variability among the individual cells. In the following,
a stochastic system with fixed (bio-)chemical parameters and fixed initial conditions is
considered.
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Let us again assume a system of m molecule species and n reactions. The state of
the system is defined by the discrete particle numbers X ≡ (X1, . . . , Xm)1 of each species,
also called molecular populations, which are random variables. Thus, all possible states
can be represented on a m-dimensional discrete lattice. Each state transition caused by a
single molecular reaction event corresponds to a jump to another lattice site according to
the stoichiometric coefficients νij. In order to describe this process stochastically, Markov
processes are introduced and the master equation [37, 50] is derived in the following.

2.2.1 The Markov Property and Markov Processes

Given a process and a set of s successive times (t1 < t2 < . . . < ts), the conditional
probability

Pr|s−r(Xr+1, tr+1; . . . ;Xs, ts | X1, t1; . . . ;Xr, tr), r < s, (2.15)

is defined as the probability density for the states Xr+1, . . . ,Xs at time tr+1, . . . , ts on
condition that the states X1, . . . ,Xr have been passed at time t1, . . . , tr.

A Markov process is defined as a stochastic process fulfilling the Markov property

P1|s−1(Xs, ts | X1, t1; . . . ;Xs−1, ts−1) = P1|1(Xs, ts | Xs−1, ts−1) (2.16)

for any time sequence (t1 < t2 < . . . < ts). P1|1 is called transition probability. Thus, in
Markov processes the transition probability from state Xs−1 at time ts−1 to state Xs at
time ts is uniquely determined by knowledge of the state at time ts−1. As a consequence,
a Markov process is fully determined by the probability density P1(X1, t1) for the states
at time t1 and the conditional probability density P1|1(X2, t2 | X1, t1). On the microscopic
level, chemical reaction processes are considered memoryless and therefore described as
Markov processes [37].

Chapman-Kolmogorov Equation

At first, a continuous system, whose state is defined by the non-discrete random variable
y, and the conditional probability density Pr|s−r is considered. From the Markov property,
the Chapman-Kolmogorov equation can be directly derived. It has the general form

P1|1(y3, t3 | y1, t1) =
∫
P1|1(y3, t3 | y2, t2)P1|1(y2, t2 | y1, t1)dy2. (2.17)

For the m-dimensional chemical reaction system with the discrete states Xi = (X1,i, . . . , Xm,i),
the equation reads

P1|1(X3, t3 | X1, t1) =
∞∑

X1,2=0

· · ·
∞∑

Xm,2=0

P1|1(X3, t3 | X2, t2)P1|1(X2, t2 | X1, t1). (2.18)

1For a system with a given volume, the concentrations ci can be directly derived from Xi.
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Since chemical reaction processes are assumed to be homogeneous in time, the transition
probability P1|1(X2, t2 | X1, t1) is not dependent on t1 and t2, but only on the time difference
τ = t2 − t1. For this reason, the transition probability Tτ is introduced as

Tτ (X2 | X1) ≡ P1|1(X2, t2 | X1, t1), τ = t2 − t1. (2.19)

A continuous system with the non-discrete state variable y, in which the conditional proba-
bility and the transition probability are denoted by P and T , can be simplified accordingly.
With the definition

Tτ (y2 | y1) ≡ P1|1(y2, t2 | y1, t1), τ = t2 − t1, (2.20)

the Chapman-Kolmogorov equation (Eq. (2.17)) can be transformed into the form

Tτ0+τ (y3 | y1) =
∫
Tτ (y3 | y2)Tτ0(y2 | y1)dy2 (τ0 > 0, τ > 0). (2.21)

2.2.2 The Master Equation

The master equation is a differential equation directly derived from Eq. (2.20) (or Eq.
(2.19), respectively) for the limit τ → 0. If the second and higher orders of τ are omitted,
Eq. (2.20) can be converted into the form

Tτ (y2 | y1) = (1− a0τ)δ(y2 − y1) + τW(y2 | y1) +O(τ 2). (2.22)

Here, W(y2 | y1) is the non-negative transition probability per time for a state transition
from y1 to y2 and (1− a0τ) the probability that the system remains in state y1, depending
on

a0(y1) =
∫
W(y2 | y1)dy2. (2.23)

Inserting Eq. (2.22) into the modified Chapman-Kolmogorov equation (Eq. (2.21)) results
in

Tτ+τ ′(y3 | y1) = (1− a0(y3)τ
′)Tτ (y3 | y1) + τ ′

∫
W(y3 | y2)Tτ (y2 | y1)dy2. (2.24)

This equation can be converted into its differential form for τ → 0, which directly leads to
the master equation

∂

∂τ
Tτ (y3 | y1) =

∫
[W(y3 | y2)Tτ (y2 | y1)−W(y2 | y3)Tτ (y3 | y1)]dy2. (2.25)

The equation can be simplified by replacing the expression Tτ (y2 | y1) with the probability
distribution P1(y2) at time τ . In the following, this probability distribution is called P(y, t),
the probability for state y at time t. Consequently, Eq. (2.25) reads

∂

∂t
P(y, t) =

∫
[W(y | y2)P(y2, t)−W(y2 | y)P(y, t)]dy2. (2.26)
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This central equation can be reformulated for the discrete molecular populations of the
chemical reaction system. If r denotes the index, which labels all possible states {Xr}, it
obtains the form

∂

∂t
P (Xr, t) =

∑
r′

[W (Xr | Xr′)P (Xr′ , t)−W (Xr′ | Xr)P (Xr, t)], (2.27)

where r′ denotes the index of all states {Xr′}, which are one molecular reaction event away
from a given Xr. In other words, the probability for state Xr increases with the probability
that a transition from another state to Xr takes place (1st term) and decreases with the
probability that the system is already in state Xr and a transition occurs (2nd term). The
states {Xr′}, to which a direct transition is possible once the system is in state Xr, are
given by the stoichiometric coefficients {νij} of the reactions {Rj} according to

(X1,r′ , . . . , Xm,r′) = (X1,r, . . . , Xm,r) + (ν1j, . . . , νmj), j ∈ {1, . . . , n}. (2.28)

Now, the question arises how Eq. (2.27) can be applied in order to simulate the time
evolution of the stochastic system once an initial probability distribution is given. In the
next sections, two different approaches will be demonstrated:

• the exact stochastic simulation of coupled chemical reactions, developed by D.T. Gille-
spie [51, 36], and

• an approximate solution using stochastic differential equations (SDEs) [55].

2.2.3 Exact stochastic simulation of chemical reaction systems

This section deals with the numerical simulation of Markov-processes. A Monte-Carlo
procedure to simulate the chemical reaction system will be demonstrated as proposed by
D.T. Gillespie [36]. In the following chapters, ’stochastically exact’ is used in the sense
of simulations driven by discrete reaction events on the molecular level. Although the
master equation of the previous section provides an exact and elegant theoretical basis for
the time evolution of the random variables, its mathematical solution is often untractable.
Instead, the time evolution is approached by a random walk starting from an initial state
and accounting for the transition probabilities of the master equation.

Reaction probabilities and propensity function

First, it is assumed that the chemical reaction system, defined by (X1, . . . , Xm), is a well-
stirred mixture (spatially homogeneous) and the probability for a single molecular reaction
Rj (j = 1, . . . ,m) is well-defined in each state. On a microphysical basis, reaction proba-
bilities can for example be derived for a gas phase, where collisions between molecules are
considered based on their velocities and cross-sections [52].



14 2. Simulation of Chemical Reaction Models

As a fundamental hypothesis about the reaction probabilities in general, the existence
of a constant cj is claimed for each reaction Rj, which is defined as follows:

cjdt : probability for the reaction Rj of a particular combination
of single molecules within the infinitesimal time interval dt,
averaged over all possible combinations of reactants for Rj on
molecular level.

Next, this probability is multiplied by the number of all possible molecule combina-
tions for reaction Rj, referred to as hj. In case of a second order elementary reaction
Rj : Mα +Mβ → . . ., for example, this number is given by hj = XαXβ. For a reaction with
identical educts (e.g. Mα + Mα → . . .), it reads hj = 1

2
Xα(Xα − 1). As a consequence,

the probability that a reaction Rj will take place somewhere in the system within the time
interval dt is described by

ajdt ≡ hjcjdt, (2.29)

where aj denotes the probability density for reaction Rj, also called propensity function,
which is defined as

aj(X1, . . . , Xm)dt : probability that, given the state (X1, . . . , Xm) at time t,
reaction Rj will occur within the time interval [t, t+dt).

Note that there is a proportional relation between the probability density aj, referring
to single molecules and the macroscopic reaction velocity vj of the deterministic model,
which refers to concentrations (e.g. Eq. (2.5)). In the Chapter 3, this property will be
applied.

In the following, the master equation (Eq. (2.27)) is reformulated by using the propen-
sities aj, resulting in

d

dt
P (X1, . . . , Xm, t) =

n∑
j=1

Bj −
n∑

j=1

aj(X1, . . . , Xm)P (X1, . . . , Xm, t). (2.30)

Here, Bj denotes the temporal probability density that state (X1, . . . , Xm) is reached
by reaction Rj starting from a state, which is exactly one transition Rj away. Thus,

Bj = bj(X1 − ν1j, . . . , Xm − νmj)P (X1 − ν1j, . . . , Xm − νmj, t) (2.31)

with the propensity function bj for the respective reaction and state. For reasons of com-
putational practicability, Eq. (2.30) is also given in the form

P (X1, . . . , Xm, t + dt) = P (X1, . . . , Xm, t)[1−
n∑

j=1

ajdt] +
n∑

j=1

Bjdt. (2.32)
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The stochastic simulation approach

For the stochastic simulation algorithm, the reaction probability density function p(τ, µ)
plays a central role. It is defined as

p(τ, µ)dτ : probability that, given the state (X1, . . . , Xm) at time t,
the next reaction will take place in the time interval [t +
τ, t + τ + dτ) and the reaction will be of reaction type Rµ,
µ = (1, . . . , n), 0 ≤ τ < ∞.

The main idea of the Gillespie approach is to define a random walk, which makes use of
this function. The time τ and the reaction type µ of the next reaction is chosen randomly
according to the probability density function p(τ, µ). Then, the reaction is executed, the
new state is generated for time t + τ , and the probability density p(τ, µ) is recalculated.
Therefore, the function p(τ, µ) is derived as

p(τ, µ)dτ = p0(τ)aµdτ, (2.33)

where p0(τ) is the probability that no reaction has taken place until the time point τ . The
time evolution of p0(τ) is consequently given by

p0(τ
′ + dτ ′) = p0(τ

′)[1−
n∑

j=1

ajdτ ′], (2.34)

leading to the simple exponential form

p0(τ) = e−
∑n

j=1
ajτ or p0(τ) = e−a0τ . (2.35)

Here, a0 denotes the probability densitiy for any of the n possible reactions, consequently

a0 =
n∑

j=1

aj. (2.36)

Substituting Eq. (2.33), we obtain the final result

p(τ, µ) = aµe
−a0τ , τ ≥ 0, µ = (1, . . . , n). (2.37)

Given the state (X1, . . . , Xm) at time t, a pair of two random variables (r1, r2) of the
interval [0,1) can be generated and mapped to the time τ of the next reaction event (at
time t + τ) and the type µ of the reaction according to the reaction probability density
function

τ =
1

a0

ln
(

1

r1

)
,

µ−1∑
j=1

aj ≤ r2 a0 <
µ∑

j=1

aj. (2.38)
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A simulation algorithm driven by this principle is stochastically exact since it is in
accordance with the reaction probability density function derived from the master equation
(under the assumption that Eq. (2.29) correctly describes the reaction probabilities). In
contrast to the deterministic approach, it fully accounts for fluctuations. The stochastically
chosen time steps are exact, whereas ODE solvers use finite time steps, always providing
approximations with a numerical error bound. However, one stochastic simulation run only
corresponds to a single realization of the total ensemble of possible time evolutions of the
system starting from a given initial state. Therefore, a large number of runs with different
sequences of random numbers is a requirement to obtain reliable values for the cumulants
of the distribution functions. Typically, the mean values 〈Xi〉t, the second moment 〈X2

i 〉t
and the cross-correlations 〈XiXj〉t−〈Xi〉t〈Xj〉t for specific times t are of interest. Note that
an adequate generation of random numbers has to be applied (Section 8.2). The algorithm
is given in the following.

The Gillespie algorithm

1. Initialize the initial particle numbers (X1, . . . , Xm) for time t0 and set t = t0.

2. Calculate the propensities aj(X1, . . . , Xm) for each reaction Rj.

3. Generate 2 random numbers (r1, r2) ranging from 0 to 1.

4. Calculate time τ and type µ of the next reaction by mapping (r1, r2) to (τ, µ) ac-
cording to Eq. (2.38).

5. Set the time t to t + τ . Update (X1, . . . , Xm) by executing reaction Rµ according to
Eq. (2.28).

6. Go to step 2 (or stop if tmax is reached).

2.2.4 Approximate solution using Stochastic Differential Equa-
tions

In the previous section, a simulation algorithm, which constitutes an exact solution of the
master equation, has been introduced. However, even a single simulation run is extremely
time-consuming for macroscopic system sizes since the algorithm acts on the molecular
level. Moreover, a high number of simulation runs is required to obtain statistically reli-
able information about mean values and higher moments of the concentrations. Therefore,
approximate solutions for the master equation and their numerical treatment, adequate
for macroscopic systems with sufficiently high molecule populations, are presented in the
following.
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Two approaches are demonstrated: the Fokker-Planck equation, by which the time
evolution of the probability density is described, and the Langevin equations providing the
time evolution of the state variables themselves. More details about the equations and
their derivation can be found in [37].

The Fokker-Planck Equation

The Fokker-Planck equation describes the time evolution of the probability densities and
can be directly derived from the master equation. First, the transition probabilityW(y | y0)
of Eq. (2.25) is substituted by

W(y0, r) ≡ W(y | y0), r = y − y0. (2.39)

The introduced variable r quantifies the size of the jump at starting point y0. Next,
the resulting master equation

∂

∂t
P(y, t) =

∫
W(y − r, r)P(y − r, t)dr − P(y, t)

∫
W(y,−r)dr (2.40)

can be simplified under the important assumption that both the transition probability
W(y−r, r) and P(y, t) itself slowly vary with the first argument. In addition, it is assumed
that the jumps are small. Then, a Taylor expansion can be applied and the master equation
reads

∂

∂t
P(y, t) =

∫
W(y, r)P(y, t)dr − P(y, t)

∫
W(y,−r)dr

−
∫

r
∂

∂y
[W(y, r)P(y, t)]dr

+
1

2

∫
r2 ∂2

∂y2
[W(y, r)P(y, t)]dr ∓ . . . . (2.41)

Note that the first two terms are identical. The remaining terms result in the so-called
Kramers-Moyal expansion, given by

∂

∂t
P(y, t) =

∞∑
q=1

(−1)q

q!

∂q

∂yq
[aq(y)P(y, t)] (2.42)

with

aq(y) =
∫ ∞

−∞
rqW(y, r)dr. (2.43)

Stopping the Taylor expansion after second order, this leads directly to the forward
Fokker-Planck equation

∂

∂t
P(y, t) = − ∂

∂y
[a1(y)P(y, t)] +

1

2

∂2

∂y2
[a2(y)P(y, t)]. (2.44)
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The coefficient a1(y) is called drift coefficient, a2(y) is called diffusion coefficient.

Note that this approximation is based on the assumption of small jumps r, which is
valid for macroscopic chemical reaction systems with high particle numbers of all species,
indicating that the transition probability W(y− r, r) is a sharply peaked function of r. In
addition, it is appropriate to assume that W(y − r, r) slowly varies with y as long as the
reaction probabilities ’smoothly’ depend on the state variables (e.g. linear or quadratic
relations for first or second order reactions).

The Langevin Equation

The Langevin equation is a stochastic differential equation (SDE), by which the state
trajectories are specified rather than the probability distribution of the stochastic process.
The Langevin equations were originally introduced to formulate the dynamics of Brownian
motion following Einstein’s explanation. They can be written in the form

ẏ = v(y, t) + b(y, t)η(t). (2.45)

The first term, also called the drift term, is deterministic, the second term consists of the
deterministic function b(y, t) and a stochastic term η(t), for which in chemical reaction
systems Gaussian white noise is typically assumed. Thus, η(t) is a rapidly and irregularly
fluctuating random function in time with the properties

〈η(t)〉 = 0 ∀ t,

〈η(t)η(t′)〉 = 0 ∀ t 6= t′,

〈ηn(t)〉 = 0 ∀ n ≥ 3.

A formal definition of η is given in Section 2.2.4. It can be shown that under certain
assumptions, the Langevin equation is equivalent to the Fokker-Planck equation [56].

The multivariate Langevin Equation

The Langevin equation can be derived in different ways [37, 53, 54]. Here, a derivation
of the multivariate Langevin equations, required e.g. for chemical reaction systems, is
outlined as suggested in [57, 58]. Let us assume a system whose state is defined by m
continuous random variables (xi(t), . . . , xm(t)), driven by a stochastic process, which fulfils
the following conditions:

1. The m-variate stochastic process is a Markov process.

2. The random variable Ξi(dt, x , t) = xi(t + dt) − xi(t), specifying the increments of
each component, given the state x at time t, is ’smoothly’ depending on dt, x and t.

3. Ξi(dt, x , t) → 0 for dt → 0 ∀ x, t.
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4. The mean and variance of each random variable Ξi is well-defined.

Then, it can be shown that the increments Ξi for such a process behave according to

Ξi(dt,x, t) = ai(x, t)dt +
m∑

j=1

bijNj(t)(dt)
1
2 . (2.46)

The statistically independent unit normal random variables Nj(t) = N (0, 1), whereN (µ, σ2)
denotes the normal random variable with mean µ and variance σ2, has the properties

〈Nj(t)〉 = 0 ∀ t,

〈N2
j (t)〉 = 1 ∀ t,

〈Nj(t)Nk(t
′)〉 = δ(t− t′)δ(j − k).

In order to derive Eq. (2.46), the time interval dt is divided into q subintervals of length
dt/q starting at the points

tk = t + k
dt

q
, (k = 0, . . . , q). (2.47)

For reasons of self-consistency of Markov processes, it is claimed that

xi(t + dt) =
q∑

k=1

(xi(tk)− xi(tk−1)), (2.48)

and consequently

Ξi(dt,x, t) =
q∑

k=1

Ξi

(
dt

q
,x(tk−1), tk−1

)
. (2.49)

Together with the upper condition 2 and 3, it can be concluded that x(tk−1) →x(t) for
tk−1 → t, and that in this case, Eq. (2.49) results in

Ξi(dt,x, t) =
q∑

k=1

Ξik

(
dt

q
,x(t), t

)
+O(dt2), (i = 1, . . . ,m), (2.50)

where Ξi1, . . . , Ξiq are statistically independent of each other. According to the central
limit theorem, the sum of the q statistically independent random variables with identical
distributions is normally distributed for q → ∞. Moreover, the mean and the variance
of the sum of the random variables Ξik is equal to the sum of the respective mean and
variance, resulting in

〈Ξi(dt,x(t), t)〉 = q · 〈Ξi(dt/q,x(t), t)〉, (2.51)

var{Ξi(dt,x(t), t)} = q · var{Ξi(dt/q,x(t), t)}. (2.52)

This can only be fulfilled if

〈Ξi(dt,x(t), t)〉 = Ai(x(t), t)dt and (2.53)

var{Ξi(dt,x(t), t)} = Di(x(t), t)dt. (2.54)
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For the covariance, it can also be shown that

cov{Ξi(dt,x, t), Ξj(dt,x, t)} = Cij(x(t), t)dt. (2.55)

Note that Ai, Cij and Di are independent of dt. In summary, the four previously given
conditions imply that the increments Ξi of the stochastic process are normal random vari-
ables with the above mean, variance and covariance. For the following, it is taken into
account that a set of random variables y1, . . . , ym, defined by

yi = αi +
m∑

j=1

βijNj, (2.56)

where N1, . . . , Nm are statistically independent unit normal random variables N (0, 1), are
normal random variables as well, which fulfil

〈yi〉 = αi, 〈y2
i 〉 − 〈yi〉2 =

m∑
j=1

β2
ij and 〈yiyj〉 − 〈yi〉〈yj〉 =

m∑
k=1

βikβjk.

As a consequence, the increments Ξi can be expressed in the form of Eq. (2.46) with the
coefficients

Ai = ai, Cij =
m∑

k=1

bikbjk, Di =
m∑

k=1

b2
ik. (2.57)

Finally, Eq. (2.46) can be directly transformed into the standard form multivariate Langevin
equation

xi(t + dt) = xi(t) + Ai(x(t), t)dt +
m∑

j=1

bij(x(t), t)Nj(t)(dt)
1
2 . (2.58)

The chemical Langevin Equation

The multivariate Langevin equations are now applied to a chemical reaction system, which
is defined by non-discrete (macroscopic) state variables (xi(t), . . . , xm(t)) for each of the
m molecule species, corresponding to the particle numbers {Xi(t)} introduced at the be-
ginning of the chapter. In addition, the system is assumed to be driven by n chemical
reactions Rj.

In order to find the correct coefficients A and b for Eq. (2.58), the propensity functions
aj, which have been introduced in Section 2.2.3, are applied [58]. These functions have
been defined as the temporal probability densities for single molecular reaction events on
the microscopic level. To derive an approximate solution for macroscopic systems, this
concept is extended by introduction of an equivalent random variable Kj(X, τ), defined as
the integer number of reaction events for reaction type Rj within a time interval of length
τ given the state (X1, . . . , Xm). Obviously, by using the stoichiometric coefficients from
Section 2.1.1, the time evolution reads

Xi(t + τ) = Xi(t) +
n∑

j=1

νijKj(X(t), τ) , (i = 1, . . . ,m). (2.59)
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In macroscopic systems with ’well-behaved’1 propensity functions aj, it is possible to
choose τ such that it is short enough to fulfil the requirement aj(X(t′)) ∼= aj(X(t)) for
t ≤ t′ ≤ t + τ on one hand, and long enough to expect many reactions within this time
interval. Then, {Kj(X(t), τ)} can be approximated by statistically independent Poisson
random variables Pj(aj(X), τ) with

〈Pj(aj(X(t)), τ)〉 = var{Pj(aj(X(t)), τ)} = aj(X(t))τ. (2.60)

Moreover, Pj is approximated by normal random variables for sufficiently high values of
aj(X(t))τ [58], leading to the relation

Pj(aj(X(t)), τ) ≈ N (aj(X(t))τ, aj(X(t))τ). (2.61)

Replacing the discrete variables (X1, . . . , Xm) by (x1, . . . , xm), specifying the non-discrete
molecule concentrations2, Eq. (2.59) results in

xi(t + τ) = xi(t) +
n∑

j=1

νijNj(aj(x(t))τ, aj(x(t))τ), (i = 1, . . . ,m). (2.62)

With the linear combination theorem

N (µ, σ2) = µ + σN (0, 1), (2.63)

it is possible to convert Eq. (2.62) into

xi(t + τ) = xi(t) +
n∑

j=1

νijaj(x(t))τ +
n∑

j=1

νij[aj(x(t))τ ]
1
2Nj(0, 1), (i = 1, . . . ,m). (2.64)

On this basis, a special form of the multivariate Langevin equations can be directly derived.
It is called the chemical Langevin equation and reads

xi(t + dt) = xi(t) +
n∑

j=1

νijaj(x(t))dt +
n∑

j=1

νija
1
2
j (x(t))Nj(t)(dt)

1
2 , (i = 1, . . . ,m), (2.65)

where Nj(t) are n statistically independent and temporally uncorrelated unit random vari-
ables as introduced in the context of Eq. (2.46).

For numerical treatment, Eq. (2.65) can be transformed into a form using the Wiener
process W [55]. It is then given by

dxi(t) =
n∑

j=1

νijaj(x(t))dt +
n∑

j=1

νija
1
2
j (x(t))dWj, (i = 1, . . . ,m), (2.66)

1In typical reaction systems, aj is dependent on non-negative powers of the molecule populations only.
2The discrete and non-discrete description of the system are considered equivalent for sufficiently high

molecule populations. However, the propensity functions aj(X) have to be replaced by aj(x).
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with the normal random variables dWj(t) = N (0, dt). The numerical solution of this sys-
tem of stochastic differential equations is addressed in the next chapter.

In conclusion, a deterministic and two stochastic methods for the simulation of chemi-
cal reaction processes were presented. The approximate stochastic method using Langevin
equations was derived for macroscopic system sizes, whereas the stochastically exact Gille-
spie algorithm is appropriate for microscopic systems only. In the next chapter, a hybrid
method will be developed, which combines the latter approaches.



Chapter 3

Hybrid Simulation Method for
Multi-Timescale Markov Processes

Due to the enormous computation time required for exact stochastic simulations, I de-
veloped the ’General Stochastic Hybrid Method’ (GSHM) [59], which combines the exact
Gillespie algorithm with the approximate numerical solution of a system of stochastic dif-
ferential equations (SDEs). The underlying algorithm, which is presented here for the
first time, propagates a ’generalized system state’ containing the deterministic terms of
the chemical Langevin equation (see Section 2.2.4) and the probability densities required
for the Gillespie method, thereby correctly considering all interactions. This method is
particularly suitable for Markov processes running on multiple timescales. In this way,
stochastically correct and reliable simulations of the large and complex signal transduction
network investigated in this thesis are enabled.

3.1 The Timescale Problem

3.1.1 Deterministic versus Stochastic Methods

Three different numerical simulation approaches for chemical reaction systems were demon-
strated in the previous chapter:

1. Deterministic Simulation Methods using Ordinary Differential Equations

The continuous molecule populations (x1, . . . , xm) in a system of m molecule species1 and n
reactions are supposed to evolve deterministically without fluctuations. The time evolution
is specified by a system of ordinary differential equations (ODEs), defined by

dxi

dt
=

n∑
j=1

νijvj(x(t)), (3.1)

1For simplicity and without loss of generality, the populations (x1, . . . , xm) are dimensionless and cor-
respond to particle numbers per cell.
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vj : reaction rate of reaction j, j = (1, . . . , n),

νij : stoichiometric coefficients, i = (1, . . . ,m),

which can be propagated starting from a set of initial concentrations.

2. Exact Stochastic Simulation Methods using Propensity Functions

A stochastically exact simulation method was proposed by Gillespie [36]. Here, the system
is defined by discrete particle numbers (X1, . . . , Xm). In a Monte-Carlo simulation [60],
random numbers are mapped to the time point and the type of the next molecular reac-
tion event according to the propensity functions aj(X), the temporal probability density
for reaction Rj. The propensities aj(X) directly correspond to the reaction velocities vj(x)
in the deterministic case.

3. Approximate Stochastic Simulation Methods using Stochastic Differential
Equations

Approximate solutions of the time evolution of stochastic processes are based on the
Langevin equations. The continuous system is driven by a set of stochastic differential
equations, which read

dxi(t) =
n∑

j=1

νijaj(x(t))dt +
n∑

j=1

νija
1
2
j (x(t))dWj, (3.2)

with a deterministic and a stochastic term (Wj: Wiener process). For high reaction rates,
the second term is negligible and this method becomes equivalent with the deterministic
method.

Simulation Methods and Timescales

The deterministic simulation methods are very efficient and return an exact and (nu-
merically) differentiable solution after one simulation run. However, the deterministic
assumption of a continuous and predictable system is not appropriate for systems contain-
ing molecule species of extremely low particle numbers. In this case, stochastic effects can
influence the system’s behaviour even qualitatively (see Section 3.4.2). On the other hand,
stochastic methods require a high number of independent simulation runs in order to re-
ceive statistically reliable information. Moreover, even one simulation run using the exact
Gillespie approach [36] requires enormous computation time since each single molecular
reaction event is simulated. The third approach, which makes use of the Langevin equa-
tions, is a good approximation for large particle numbers and high reaction probabilities
(see Section 2.2.4). In comparison with the deterministic approach, however, it is already
applicable for a much lower range, since fluctuations are not neglected.
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3.1.2 Subgroups of Reactions

Obviously, each of the three methods is adequate for a certain range of particle numbers
and/or reaction rates, but none of them is correct and feasible at the same time if the
reactions occur on different timescales, resulting in huge differences among the reaction
probabilities. This is the typical situation in biochemical reaction networks, particularly in
signal transduction systems, where reaction probability densities are separated by several
orders of magnitude and where reactions of low probabilities are often crucial.

In this thesis, the timescale problem is approached by splitting the reaction system into
three reaction subgroups, each of them corresponding to one of the simulation methods
summarized in Section 3.1.1. Since in general, the reaction subgroups are not independent
of each other, the interactions between them have to be carefully considered. In addition,
the assignment of the reactions to the subgroups has to be organized dynamically, based
on the constantly changing reaction probabilities. Furthermore, the system is partially
described by discrete particle numbers. Consequently, a dynamic transition between con-
tinuous and discrete state variables has to be realized.

3.2 Stochastic-deterministic Hybrid Method

For simplicity, I first developed a stochastic-deterministic hybrid method, which is demon-
strated in this section. Here, the Gillespie Algorithm is combined with a system of ODEs.
I extended this concept by use of SDEs, leading to the ’General Stochastic Hybrid Al-
gorithm’, which is described in Section 3.3. The stochastic-deterministic approach does
not account for stochastic fluctuations of the fast reaction subset and is therefore valid for
certain reaction systems only. In contrast, the General Stochastic Hybrid Algorithm does
not neglect these fluctuations. Instead, they are approximated by means of the Langevin
equation.

3.2.1 Threshold Criteria

In this approach, stochastically relevant reactions are separated from those ones, which are
assumed to be well-described by the deterministic method. For each system, rigorous quan-
titative criteria can be defined depending on the specific problem. Let R = {R1, . . . , Rn}
be the set of all reactions and Sk ⊆ R the subset of all reactions to be treated stochastically
exact according to criterion k. Two examples are given in the following. The first criterion,
based on relative fluctuations, is defined as

S1 =

{
Rj

∣∣∣∣∣ ∃i ∈ (1, . . . ,m)
∣∣∣∣ 1√

dt
· σ̌ij(dt)

xi

> ε1

}
, ε1 > 0 (3.3)

with σ̌ij(dt) =
√

var(x̌ij(t + dt)).
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Here, x̌ij(t+dt) denotes the particle number (or concentration, resp.) of molecule i at time
t+dt, given state x at time t, under the assumption that from time t on, it is influenced by
the reaction Rj only. Thus, a reaction is treated ’stochastically exact’ as soon as it causes
a critical relative fluctuation of the population of at least one species. For the threshold
criterion, the relative standard deviation σ̌ij(dt)/xi of this single-reaction process at time
dt is chosen and divided by

√
dt, since the variance scales with dt according to the Langevin

equation.

Obviously, (sub-)systems with extremely low particle numbers suggesting a discrete
particle system, are not adequately addressed by this criterion, since the discrete nature
causes increments, which might be much higher than the respective standard deviation.
Therefore, a second criterion is introduced by

S2 =

{
Rj

∣∣∣∣∣ ∃i ∈ (1, . . . ,m)
∣∣∣ | νij |

Xi

> ε2

}
, ε2 > 0. (3.4)

Here, νij denotes the stoichiometric coefficient of reaction Rj and Xi the discrete particle
numbers. Their ratio describes the relative state change caused by a single reaction event,
which is high for low particle numbers. Assuming no prior knowledge about the ranges of
the particle numbers (concentrations), both criteria can be applied. It is not necessary to
distinguish between subsets, for which the first or the second criterion has to be applied,
since the second one becomes irrelevant for higher particle numbers by itself. Thus the
stochastically exact subset of reactions can be defined as

S = S1 ∪ S2.

Note that fast reactions do not necessarily influence molecule species with high populations
only. However, high reaction rates usually indicate high particle numbers of educts and
products.

3.2.2 Generalized System State

In a first step, I combined the Next Reaction Method [61], an extension of Gillespie’s First
Reaction Method demonstrated in Section 2.2.3, with the deterministic method. The
discrete Next Reaction Method is applied to all reactions of the stochastic subset whereas
the remaining reactions are described by a system of ODEs, which is propagated in parallel.
Therefore, I introduced a ’generalized’ state vector describing the system of m molecule
species and n reactions

(x1, . . . , xm, p1, . . . , pn),

(s1, . . . , sn), sj ∈ {0, 1}, sj = 1 ⇔ Rj ∈ S,

(r1, . . . , rn), 0 ≤ rj < 1.

Here, {xi} represent the molecule populations and pj the probability that a discrete reaction
event of type Rj, Rj ∈ S, has not occurred since its previous occurrence. The stochastic
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flags {sj} are set for ’stochastic’ reactions and {rj} contain random numbers, which are
generated after each molecular reaction event of Rj.

3.2.3 Stochastic Reaction Subset

The state x is given at time t0. The probability pj(t0 + ∆t) that reaction Rj does not
occur within the time interval [t0, t0 +∆t) can be derived for each stochastic reaction using
the respective propensity functions aj introduced in Section 2.2.3. Accordingly, it can be
described by

pj(t + dt) = pj(t)− pj(t) · aj(x(t))dt, (3.5)

which leads to the differential form

dpj(t)

dt
= −pj(t)aj(x(t)). (3.6)

In order to stochastically simulate the reaction events, the random numbers rj are mapped
to the putative time point t0 + τj of the next reaction of type Rj in accordance with the
’probability of no reaction’ pj(t). This is equivalent to Gillespie’s Next Reaction Method
[61] and the putative time points t0 + τj are given by

pj(t0 + τj) = rj. (3.7)

Purely Stochastic Systems

Let us first regard purely stochastic systems (S ≡ R). In this case, state x and the propen-
sities aj(x(t)) remain constant until the next stochastic reaction is triggered. Therefore
the time point of the next reaction is computed according to tnext = t0 + min{τj}, based
on the propensities aj(x(t0)) at time t0

aj(x(t)) ≡ aj(x(t0)) for t0 ≤ t < tnext

⇒ pj(t) = pj(t0) · e−aj(x(t0))t with pj(t0) = 1 (3.8)

⇒ tnext = min

{
− 1

aj(x(t0))
ln rj

}
. (3.9)

Thus, for S ≡ R, the simulation algorithm is already given by Gillespie’s Next Reaction
Method.

Mixed Systems

Typically, only a subset of reactions is treated stochastically, leading to two important
limitations:
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1. In general, the propensities aj(x(t)) are also dependent on molecule concentrations
influenced by reactions of the deterministic subset. Therefore, they cannot be con-
sidered constant between two stochastic events. In fact, they might even vary on
the timescale of the ’fast’ reaction subset and it might become necessary to steadily
update them between the stochastic reaction events.

2. As a consequence, it is no longer possible to determine the real time point of the next
stochastic reaction by knowledge of state x(t0) only. Even the putative type of the
next stochastic reaction Rj, given by the order of {τj}, might change.

Thus, Eqs. (3.8) - (3.9) are not valid in general. Instead, Eqs. (3.6) - (3.7) have to be
solved numerically, taking into account the time evolution of the deterministic part.

3.2.4 Deterministic Reaction Subset

Between the stochastic reaction events, the changes caused by the deterministic subset
are determined by propagation of the ODE system of Eq. (3.1), reduced by the stochastic
reactions subset S, resulting in

dxi

dt
=
∑
j 6∈S

νijvj(x(t)). (3.10)

For the numerical propagation (see Section 2.1.3), the fourth-order Runge-Kutta method
with an adaptive stepsize control was used here [42, 45].

3.2.5 Interaction between the Reaction Subsets

The time evolution of state x is governed by both reaction subsets and in general, the
reaction rates of the deterministic subset are dependent on state variables also influenced
by the stochastic subset and vice versa. A correct handling of the interactions between
both subsets is critical and approached as follows:

1. Both parts of the generalized system state, namely the populations xi and the prob-
ability functions pj of the stochastic reactions, are propagated according to Eq. (3.6)
and (3.10) using one ODE solver for the complete ODE system

dxi(t)

dt
=

n∑
j=1

(1− sj) · νijvj(x(t)), i = (1, . . . ,m), (3.11)

dpj(t)

dt
= −sj · pj(t)aj(x(t)), j = (1, . . . , n). (3.12)

As a result, the influence of the deterministic reaction subset on the reaction prob-
abilities is entirely considered. The step size of the ODE solver is also controlled
by the probabilities pj, thus, the integration is numerically exact for both reaction
subsets.
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2. Since the propensities aj are no longer constant, the time points for the next stochas-
tic reaction events have to be determined implicitly according to

pj(t0 + τj) = rj, (3.13)

which is efficiently realized by estimating the putative reaction time points t0 + τj

within the ODE solver algorithm, according to the logarithmic equation (3.9), which
is now an approximation only. The solver is stopped as soon as the time point of the
next stochastic event is hit within a given tolerance. This is achieved by iteration.
Using the above approximation given by Eq. (3.13), it is usually not necessary to
insert more than one iteration step.

3. Once the time point of the next stochastic reaction, called Rj∗ , is reached, the reaction
is executed by updating the populations {xi} according to the stoichiometry

xi = xi + νij∗ , i = (1, . . . ,m). (3.14)

4. The continuous molecule populations {xi} are directly transformed into discrete par-
ticle numbers {Xi} whenever required for the stochastic treatment.

3.2.6 Stochastic-Deterministic Hybrid Algorithm

The algorithm for the hybrid solver, which is given in the following, can be realized with
most common ODE solvers, since only little modifications are required for the implicit
determination of the time points at which the solver has to be interrupted for stochastic
events.

1. Set the initial concentrations (x1, . . . , xm).
Set the probabilities of no reaction (p1, . . . , pn) = (1, . . . , 1).
Generate the random numbers (r1, . . . , rn).
Set t0 = tstart.

2. Determine the stochastic subset S ⊆ R according to the upper (or another user-
defined) criteria and set the stochastic flags (s1, . . . , sn).

3. Start ODE solver with the following task: Propagate the generalized system

(x1, . . . , xm, p1, . . . , pn),

according to Eqs. (3.11)-(3.12); start at t0 and stop at tstop.

Determine tstop implicitly by steadily2 updating τj for Rj ∈ S, according to Eq. (3.9)

tstop = t0 + τj∗ ,

τj∗ = min
j∈S

{τj}, Rj∗ : type of the next putative reaction event.

2The update is usually performed after one of many time steps only, depending on to the time difference
to the next putative stochastic reaction, the step size and the timescale, on which the propensity functions
change.
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Stop the ODE solver as soon as |t − tstop| ≤ tol or repeat the last time step if
tstop − t > tol with an appropriate step size (overshoot mode).

4. Execute reaction Rj∗ by updating {xi} according to Eq. (3.14).

5. Generate new random number rj∗ and set pj∗ = 1.

6. Set t0 = t and go to step 3, or to step 2, if an update of {sj} is necessary3.

This algorithm is highly efficient whenever there are subsets with extremely high and
extremely low reaction rates and/or particle numbers within one system. However, for sys-
tems whose reactions are also distributed over the timescales in-between, there are molecule
species with high particle numbers and high relative fluctuations. Thus, either a stochas-
tic simulation has to be performed for those reactions, again resulting in extremely high
computation times, or the respective fluctuations are neglected.

However, it is not correct to treat the stochastic behaviour in an exact way below
a certain threshold and to completely and abruptly ignore stochastic fluctuations above
this threshold, although the absolute fluctuations become even higher for reactions with
increased reaction rates or propensity functions. A solution to this problem is given in the
next section.

3.3 General Stochastic Hybrid Method

In this approach, stochastic differential equations are introduced to approximate relevant
stochastic effects of reactions, which have been described by ODEs so far. Therefore, an
additional reaction subset L ⊆ R is introduced for those reactions, which influence molecule
species with particle numbers in a higher range and which cause fluctuations that are not
negligible. It is assumed that the stochastic behaviour of this subset is well approximated by
Langevin equations and that an exact simulation on molecular level is therefore not required
(see Section 2.2.4). The deterministic approach can be considered a special case of the
Langevin approach for extremely fast reactions whose relative fluctuations (corresponding
to the stochastic term of the Langevin equations) become negligible. For simplicity, the
respective reactions are therefore not treated separately from the reactions of the Langevin
subset and consequently, L = R \ S.

3.3.1 Numerical Solution of the Langevin Equation

In order to numerically solve the Langevin equation

dxi(t) =
n∑

j=1

νijaj(x(t))dt +
n∑

j=1

νij

√
aj(x(t)) dWj, (3.15)

3Usually, the assignment of reactions to the stochastic or deterministic subset changes on a much slower
timescale and has to be rechecked after many executions of step 3 only.
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dWj(t) = N (0, dt), N (µ, σ2): normal random variable,

a Wiener process is generated with finite increments ∆W = N (0, ∆t) as suggested in the
Euler-Maruyama approximation [55]. Different from the Euler-Maruyama method, the
time evolution is split into a deterministic and a stochastic part: the deterministic term
dx̂i(t) and the deterministic part of the stochastic term, denoted by dx̃i(t), are propagated
like ODEs. In parallel, Wiener increments are generated, leading to

dxi(t) = dx̂i(t) + dx̃i(t) · ni, ni = N (0,1). (3.16)

This is realized in a way that enables the use of most ODE solvers and that is therefore
not restricted to the explicit Euler method:

• The step size of the ODE solver is limited to the step size ∆t introduced for generation
of the Wiener process. However, smaller sizes, proposed by an adaptive step size
control, are allowed, depending on both terms of Eq. (3.15). Thereby, I introduced a
’relaxed Wiener process’ and departed from the exact definition of a Wiener process
as a trade-off with computational feasibility.

• The solver propagates the terms

dx̂i(t) =
n∑

j=1

νijaj(x(t))dt, (3.17)

dx̃i(t) =
n∑

j=1

νij

√
aj(x(t)) · dt . (3.18)

The right hand side of Eq. (3.18) multiplied by a unit normal random variable
ni = N (0, 1) corresponds to an increment of the Wiener process for each i. In
this way, prior knowledge about the step size is not required for determination of
the Wiener-increments. The step size is therefore adaptable on the basis of the
deterministic terms and the deterministic part of the stochastic terms.

• After each completed time step, both terms are added according to Eq. (3.16) and
new random numbers {ni} are generated.

3.3.2 General Stochastic Hybrid Algorithm

The General Stochastic Hybrid Algorithm efficiently combining Gillespie’s stochastic sim-
ulation method with the approximate stochastic Langevin approach is demonstrated here.
The set of reactions R = {Rj} is divided into the respective subsets and the flags (s1, . . . , sn)
are set for all reactions Rj ∈ S (S denotes again the Gillespie subset).
The relative fluctuations defined by Eq. (3.3) and Eq. (3.4) in the previous section can
again be chosen as threshold criterion between the exact and the approximate stochastic
subset using an appropriate ε1 and ε2.
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The algorithm for the GSHM, directly derived from the stochastic-deterministic hybrid
solver is given here:

1. Set the initial concentrations (x1, . . . , xm).
Set the probabilities of no reaction (p1, . . . , pn) = (1, . . . , 1).
Generate the random numbers (r1, . . . , rn).
Generate the unit normal random variables (n1, . . . , nm).
Set t0 = tstart.

2. Determine the stochastically exact subset S ⊆ R, according to the upper (or another
user-defined) criteria and set the flags (s1, . . . , sn).

3. Start ODE solver with the following task: Propagate the generalized system

(x1, . . . , xm, p1, . . . , pn),

according to the equations

dxi(t)

dt
=

n∑
j=1

(1− sj) · νijvj(x(t)), i = (1, . . . ,m)

dpj(t)

dt
= −sj · pj(t)aj(x(t)), j = (1, . . . , n),

dx̃i(t) =
n∑

j=1

(1− sj) · νij

√
aj(x(t)) · dt , i = (1, . . . ,m), see Eq. (3.18).

Start at t0 and stop at tstop with a maximum time step size ∆t.

Add the stochastic Langevin term after each solver step:

• xi = xi + ∆x̃i · ni, i = (1, . . . ,m),

∆x̃i · ni denotes the finite increment for solver step size ∆t̃
(dt → ∆t̃ : dx̃i → ∆x̃i).

• Generate new set of unit normal random variables (n1, . . . , nm).

Determine tstop implicitly by steadily1 updating τj for Rj ∈ S, according to Eq. (3.9)

tstop = t0 + τj∗ ,

τj∗ = min
j∈S

{τj}, Rj∗ : type of the next putative reaction event.

Stop the ODE solver as soon as |t − tstop| ≤ tol or repeat the last time step if
tstop − t > tol with an appropriate step size (overshoot mode).

1The update is usually performed after one of many time steps only, depending on to the time difference
to the next putative stochastic reaction, the step size and the timescale, on which the propensity functions
change.
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4. Execute Reaction Rj∗ by updating {xi} according to Eq. (3.14).

5. Generate new random number rj∗ and set pj∗ = 1.

6. Set t0 = t and go to step 3 or to step 2, if an update of {sj} is necessary2.

Generation of Standard Gaussian Random Variables

For the generation of standard Gaussian random variables, the Box-Muller Method is ap-
plied [55], which maps two independent, uniformly distributed random variables r1, r2

between 0 and 1 to the two independent random variables

n1 =
√
−2 ln(r1) cos(2πr2), (3.19)

n2 =
√
−2 ln(r1) sin(2πr2), (3.20)

which are then normally distributed. The generation of random numbers is addressed in
Section 8.2.

3.4 Results

3.4.1 Comparison between Hybrid and Gillespie Algorithm

As a proof of principle, the accuracy and the computational efficiency of the hybrid method
I developed was tested by comparing the hybrid and the exact algorithm using the small
reaction system applied by Gillespie in [36] (see Reaction System 29) to demonstrate his
algorithm. The system is given by

X̄ + Y
k1−→ 2Y,

2Y
k2−→ Z.

(3.21)

The population of X is assumed to remain constant. Single simulation runs as shown in
Fig. 3.1 (left) were repeated 5000 times. The average time evolution of the molecule pop-
ulations and its standard deviation were computed for the complete time interval (Fig.
3.1, right). Obviously, the hybrid method provides an almost perfect approximation of the
exact result. The computation time required for this method was significantly lower, as
shown in the following table.

Method computation time relative computation time

Gillespie Algorithm 54350 sec 100 %
Hybrid Algorithm 1477 sec 2.7 %

The times refer to 5000 stochastic simulation runs on an Intel Pentium III, 1 GHz.

2Usually, the assignment of reactions to the stochastic or deterministic subset changes on a much slower
timescale and has to be rechecked after many executions of step 3 only.
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Figure 3.1: Simulation for Reaction System (3.21). Left: Single stochastic simulation run.
Right: Mean and standard deviation based on 5000 simulation runs using the Gillespie
algorithm (lines) and the hybrid method (dots). Start values: Y = 10, Z = 0, k1X = 5,
k2 = 0.005, threshold: 200 particles (fixed).

3.4.2 Exemplary Application: Hybrid Algorithm applied to
Programmed Cell Death

As demonstrated in the previous section, the Gillespie algorithm is computationally lim-
ited even in case of small reaction systems. To simulate the reaction network of the signal
transduction application of this thesis (Section 5.2), the GSHM was applied. The re-
sults were compared with the Gillespie, the pure Langevin, the pure deterministic and the
deterministic-stochastic hybrid method. As expected, the computation time for a suffi-
ciently high number of independent Gillespie simulation runs was enormous, whereas the
other alternatives led to significantly different (and wrong) results.

Stochastic Simulation of Programmed Cell Death

As an exemplary application, the reaction system of CD95-induced apoptosis (programmed
cell death), which is explained in Chapter 4, was chosen. This system exhibits high sensitiv-
ity with respect to variations of some crucial molecule species, called executioner caspases,
since a low particle number of these molecules is sufficient to trigger a positive feedback
loop, which then activates the execution of apoptosis. In this thesis, activation scenar-
ios with different ligand concentrations corresponding to different intensities of activation
signals of the pathway are of main interest. As demonstrated in Chapter 9, high ligand
concentrations always result in apoptosis, whereas extremely low concentrations do not
cause any cell death. However, the area in-between is likely to be dominated by stochastic
effects since the particle numbers of some critical molecule species are extremely low (often



3.4 Results 35

between 0 and 100 per cell). These species are interacting with an environment of much
higher molecule concentrations, suggesting the use of the hybrid method.

The simulation results for a weak activation signal (low CD95-ligand concentration) are
given in Fig. 3.2, where the concentrations of some key molecules of the pathway, which
trigger and indicate execution of the cell death process, are shown. The exact stochastic
simulations show a relatively broad period of caspase activity and an incomplete PARP
cleavage (Fig. 3.2 A). From single simulation runs, however, it is known that in the model,
either the caspase activation loop is triggered, resulting in a fast and complete cleavage of
PARP and active caspases (e.g. Fig. 3.2 C), or the execution of cell death does not take
place at all. Thus, the incomplete average PARP cleavage and the great variability of the
reactant concentrations among different simulation runs is governed by stochastic effects,
triggering the execution of cell death with a certain probability only. These effects also
cause the high variability of the time points at which the activation is triggered. The set of
independent stochastic simulation runs corresponds to an ensemble of independent cells3.
The stochastically simulated behaviour could also be observed in experiments that refer to
a population of many cells (see Section 9.4). The complete results of the simulation of cell
death rates are shown in Section 9.4.

3.4.3 Comparison with other Methods

The results of the GSHM were compared with the pure Gillespie, the Langevin, the deter-
ministic and the stochastic-deterministic hybrid algorithm. Apart from the deterministic
and the Gillespie case, 1000 simulation runs were performed with independent sets of
random numbers. On this basis, the mean time evolution and the respective standard
deviation were computed for the molecule concentrations (see Fig. 3.2). The results of the
stochastic hybrid method and the exact Gillespie algorithm converge for a sufficient num-
ber of simulation runs, however, the computation time for the GSHM is significantly lower:

Method computation time relative computation time

Gillespie Algorithm 1904 sec 100 %
Hybrid Algorithm 27.6 sec 1.45 %

Average time for a single stochastic simulation run. Intel Pentium III, 1 GHz.

The deterministic simulations do not incorporate the variability caused by stochastic
effects and do not even provide the correct averaged behaviour. In case of the pure Langevin
simulation, the increase of active caspase concentration starts much earlier than in the
deterministic case. This is caused by fluctuations of the critical molecules, which trigger
the positive feedback loop. However, due to the fact that the Langevin method does not
account for the discrete nature of molecules, this is not an adequate approach, since the

3It is assumed that interactions between the cells are not affecting the considered pathway once the
scenario is started at t = 0.



36 3. Hybrid Simulation Method for Multi-Timescale Markov Processes

regarded process is driven by reactions between molecules of extremely low particle numbers
at the beginning. As a consequence, the Langevin method results in a bias towards earlier
activation. According to both the exact and the stochastic hybrid method, cell death can
be executed in earlier or later stages with a certain probability or does not take place
at all, resulting in incomplete average PARP cleavage (Fig. 3.2 A). The results of the
stochastic-deterministc algorithm are much closer to the exact result, however, the PARP
cleavage and the death rate show differences as well (Fig. 3.2 D).
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Figure 3.2: The simulated execution of programmed cell death (initial CD95-ligand con-
centration: 7 ng), indicated by the decrease of PARP upon conversion of procaspase-8 into
active caspase-8 (see Chapter 5), shows that none of the alternative methods was capable
of correctly simulating the diversity of stochastic effects. Even the Langevin approach pre-
dicts a different activation course by neglecting the discreteness of the molecular events,
whereas the stochastic hybrid method led to the same results as the exact Gillespie simula-
tion (circles in A, dotted lines: standard deviation), thereby saving > 98% of computation
time. The concentrations are given in relative units referring to the initial concentrations.
All simulation runs are started with the same set of parameters.
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3.5 Conclusion

In summary, the General Stochastic Hybrid Method provides an algorithm, which is
stochastically exact in the sensitive low-particle number range, but still efficient for the fast
reaction subset, where the Gillespie approach would no longer be feasible. The stochastic
effects are well approximated for fast reactions and/or high particle numbers by the use of
SDEs. In general, it does not make sense to treat the stochastic behaviour in an exact way
below a certain threshold and to abruptly ignore the even higher stochastic fluctuations
above, as realized in the stochastic-deterministic method or proposed in the study of Kiehl
et al. [67], which was performed at the same time. Furthermore, a solver with adaptive
step size control was chosen, influenced by the deterministic term and the deterministic
part of the stochastic term of the Langevin equation, as well as by the ’probabilities of no
reaction’ of the stochastically exact part. This was realized by propagating one equation
system, which integrates all three sets of equations, for which I introduced the ’gener-
alized’ state vector. As a consequence, all interactions between the reaction subsets are
automatically considered. Therefore, the exactness of the algorithm is only limited by the
exactness of the numerical solution of the ODEs and by the Wiener process. Rigorous
criteria were defined to assign the reactions to the subsets in a standardized and dynamic
way. As a result, transitions of reactions from one subset to another are possible during
the simulation run.

The CD95-induced cell death signalling system was simulated for activation scenarios
close to the threshold between life and death. Here, the experimentally observed death
rate of an ensemble of many cells could be explained by stochastic effects (see also Section
9.4). The hybrid method was more than 50 times faster than the exact algorithm, whereas
the other simulation methods did not provide correct results.

To my knowledge, the combination of a stochastically exact and approximate algorithm
is presented here for the first time. Since the stochastic methods used here, are directly
derived from the master equation, the hybrid approach can be applied to any other type
of Markov processes as well.
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Chapter 4

The Signal Transduction Network of
Programmed Cell Death

In this chapter, an introduction into the signal transduction network of Programmed Cell
Death is given. Hereby, the pathway of CD95-induced apoptosis, the signalling system in-
vestigated in this thesis, will be explained in detail. In addition, I will present the network
topology, derived from databases and literature.

Programmed Cell Death, called apoptosis, is the natural and controlled death of cells,
in which the cell and its nucleus shrinks, condenses and fragments [3, 68], as opposed to
necrosis, where the cells die due to acute injury. Apoptosis is one of the most complex
signalling pathways and an essential property of all higher organisms. Defects in apoptosis
result in a number of serious diseases such as cancer, autoimmunity and neurodegeneration
[38, 39]. To develop efficient therapies, fundamental questions about molecular mechanisms
and regulation of apoptosis remain to be answered. Apoptosis is triggered by a number of
factors, including UV-light, γ-radiation, chemotherapeutic drugs, growth factor withdrawal
(’death by neglect’) and signalling from the death receptors [69, 70]. Apoptosis pathways
can generally be divided into signalling via the death receptors at the membrane (extrinsic
pathway) or the mitochondria [3] (intrinsic pathway). Both pathways imply caspases as
effector molecules [71]. Caspases belong to the family of proteases, which are enzymes that
degrade proteins by hydrolyzing some of their peptide bonds [72]. Caspases mostly exist
in their inactive proforms (procaspases) and become active after getting cleaved. Various
caspases are involved in both the initiation of the apoptotic process and the execution of
the final apoptotic program.

4.1 CD95-induced Apoptosis

CD95-induced apoptosis is one of the best-studied apoptosis pathways. A detailed overview
on this mechanism is for example given in [38] and [73]. CD95 is a member of the death
receptor family, a subfamily of the TNF-receptor superfamily (e.g. [74]). Crosslinking of
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the CD95-receptor either with its natural ligand CD95L or with agonistic1 antibodies such
as anti-APO-1 induces apoptosis in sensitive cells.

DISC, Caspases and Execution of Cell Death

Upon CD95 stimulation with CD95L or anti-APO-1, the Death-Inducing Signalling Com-
plex (DISC) is formed (see Fig. 4.1). The DISC consists of oligomerized CD95, the death
domain-containing adaptor molecule FADD, procaspase-8, procaspase-10 and c-FLIP. The
interactions between the molecules in the DISC are based on homophilic contacts. The
death domain (DD) of CD95 interacts with the DD of FADD, while the death effector do-
main (DED) of FADD interacts with the DED of procaspase-8. Once the DISC is formed,
procaspase-8 can be autocatalytically cleaved: two procaspase-8 molecules bound at the
DISC form the intermediate product p43/p41, followed by generation of an active caspase-
8 complex p18/p10 (see Fig. 5.3) [75]. This process can be inhibited by c-FLIP, which
binds to the DISC in various ways and blocks the latter mechanism [76].

After formation of active caspase-8, the apoptotic signalling cascade starts. A simplified
network topology of the CD95-induced apoptosis pathway is given in Fig. 4.2. Caspase-8
cleaves and activates caspase-3 and -7; caspase-3 itself activates caspase-6, which again
activates caspase-8, thereby establishing a self-amplifying activation loop. Caspase-3, -6,
and -7 are involved in the execution of the death process, e.g. the chromosomal degradation
of DNA [77] and, therefore, called executioner caspases, whereas the others, responsible for
transferring the death signal, are referred to as initiator caspases. The DNA degradation
plays an important role in the cell death process. It is started after ICAD gets cut off the
CAD-ICAD complex by caspase-3 and -7, thereby terminating the inhibition of CAD, which
directly fragments the DNA [78]. In parallel, PARP, a molecule, which repairs broken DNA
strands is cleaved by executioner caspases as well. Once the DNA fragmentation process
is triggered, a complete degradation of the cell starts irreversibly.

Type I versus Type II Cells and the Mitochondria

Two different CD95-signalling pathways are established in different cell types [79, 80].
Type I cells are characterized by intensive DISC formation and mitochondria independent
caspase-3 activation. In Type II cells, the formation of the DISC complex is reduced and the
activation of caspase-3 occurs downstream of the mitochondria: the active form of caspase-8
cleaves Bid, followed by translocation of the cleavage product tBid to mitochondria, which
results in the release of cytochrome-C [81]. Subsequently, apoptosome2 formation [82] takes
place, leading to the activation of caspase-9, which then activates caspase-3, triggering the
subsequent apoptotic events (see Fig. 4.1). Here, a feedback loop is established by caspase-
2: it is activated by caspase-3 downstream of mitochondria and it cleaves Bid, which in
response leads to mitochondrial cytochrome-C release (Fig. 4.2).

1An agonist is a substance that binds to a receptor and triggers a response by the cell.
2The apoptosome is a complex consisting of Apaf-1, cytochrome-C and caspase-9.
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Figure 4.1: Simplified signalling pathway of CD95-induced apoptosis. The CD95-receptors
(CD95) are activated at the membrane by CD95-ligands (CD95L), followed by DISC for-
mation (yellow box) and processing of procaspase-8, resulting in the generation of active
caspase-8 complexes. These complexes trigger the death process by activation of execu-
tioner caspases like caspase-3 directly (Type I cells), or via the mitochondria and caspase-9
(Type II cells). (Figure taken from P. Krammer [38].)

Regulation of CD95-induced Apoptosis

Furthermore, CD95-induced signalling is influenced and regulated by many other molecules,
which mostly inhibit or amplify the apoptotic process, like XIAP and IAP1/2 (inhibitors
of caspase-3,-7,-9)[83] or the BCL-2 family [84] consisting of pro-apoptotic (e.g. Bak, Bax)
and anti-apoptotic (e.g. BCL-XL) members, regulating the critical cytochrome-C release.
Even though gene regulation usually occurs on a slower time scale than the activation
of caspases upon CD95 stimulation, it might also play an important role by influencing
some of the most important inhibitors (e.g. expression of c-FLIP and IAP1/2 by NF-κ-B)
[85, 86]. An overview about the molecule families, which play an important role in this
pathway, is given in [87].
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4.2 Network Topology

Despite the ever-increasing number of studies on CD95-induced apoptosis, a systemic
understanding of this complex signalling pathway is still missing. Therefore, the net-
work topology of CD95-induced apoptosis was established by critically searching databases
[88, 89] and the literature. Molecules and reactions directly or indirectly interacting with
the main components of this pathway were incorporated, leading to a network topology
with more than 60 molecules and about 100 interactions (Fig. 4.2). This complexity can-
not be matched by experimental data at present. Moreover, a high percentage of these
interactions are known on the semantic level only (e.g. ’A activates B’) and even for those
interactions, whose biochemical mechanisms are well understood, quantitative information
is mostly missing. In the next chapter, a modelling approach will be demonstrated as a
basis for quantitative system analysis.

PLC gamma

PKC

Apo2L = TRAILCD95-Ligand
DCR1

TRAIL-R2TRAIL-R1

NF-kappa-B
(p50:RelA)

Ras

Raf

DCR2

tBid

Apaf-1

DR3

FADD

Caspase 8

Caspase 2

proCasp 3

Caspase 3

Caspase 9

Caspase 6

Release of:

XIAP

ERK1
Raf 1

TRADD

?

CD-95-Receptor

Caspase 7
proCasp 9

proCasp 10

ERK2

Smac

Cytochrome C

Bax

Bcl-XL

Bcl-2

APAF 1 Gene

?

EGFR

binding
gene expression

I kappaB

Rac1

Apoptosis =function (Caspase 3, Caspase 6, Caspase 7)

IAP 1/2

survivin

PI3K

,                            activation
,                  inhibition

Syk

Bim

TL1ACD95 TRAIL

OPG

PED FADD

proCasp 8 proCasp 10

?

IL3, EGF, ...

PKB

Bad

Bax
translocation

Bak-Bax
Oligomer

Bak

proCasp 8 FLIP FLIP

proCasp 2

TNFRSF6
(Gene)

?

?

?

AKT/PKB

Bid

?

Caspase 10

p53

Figure 4.2: Simplified network topology of the CD95-induced apoptosis signalling pathway.
The death process is executed in dependence of the activity of the executioner caspases.
Note that some of the interactions are not proven yet (question marks). The model also
contains the TRAIL- and EGF-receptor [90, 91].



Chapter 5

Modelling Signal Transduction

In the following, a quantitative modelling approach for signal transduction networks will be
demonstrated. To overcome the problem of heterogeneous information about the cellular
processes, I will introduce Structured Information Models. On this basis, a model of CD95-
induced apoptosis will be derived. To my knowledge, this is the first data-based model of
this pathway covering the complete process from activation to cell degradation. The model
will also provide the basis for system identification based on experimental data.

5.1 The Information Problem

Signal transduction networks are described on different levels of information quality (Fig.
5.1). In most cases, interactions between two molecules are known on the semantic level
only (e.g. A inhibits B or A activates B), thereby providing a network topology. For some
well-investigated molecules and interactions, the biochemical mechanism is also known
(e.g. enzymatic process, formation of complexes, . . .), which is required for quantitative
modelling. However, information about the underlying biochemical parameters like reac-
tion rate constants, Michaelis-Menten constants or dissociation rates, is mostly completely
missing. Even if quantitative information is available, its usability is limited if it refers
to different experimental settings, cell types or states of cells, since these quantities are
mostly influenced by many factors.

5.1.1 Structured Information Models

To reduce the complexity of the model without sacrificing essential components of the
network, subsystems of different information qualities were identified and incorporated:
subsystems mainly consisting of interactions with well-understood biochemical mechanisms
are modelled as chemical reaction systems, whereas all others are modelled as ’black boxes’,
defined by their experimentally observed input-output behaviour. The subsystems are
identified according to the following criteria:

• The input/output behaviour should be measurable.
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Reactions known on semantic level   
(activation, inhibition)

Reactions known on mechanistic / biochemical level 
(phosphorylation, binding, cleavage, complexes, …)

Reactions known on quantitative level
(parameters, e.g. reaction kinetics)

Figure 5.1: Information about biochemical networks is typically spread over three levels of
quality.

• The number of input/output variables should be low.

• Subsystems should represent real functional systems (e.g. mitochondria).

• The information within one subsystem should be on the same level.

As an example, the decomposition of the signalling system of Fig. 4.2 is shown in Fig. 5.2.
Notably, the black boxes do not assume knowledge of the exact underlying mechanisms.
Instead, they reproduce the behaviour of the respective subsystems in a simplified way,
e.g. by introduction of B-Splines [92] interpolating between the observed input-output
behaviour of black boxes. Moreover, minimum sets of state variables and ’effective’ pa-
rameters are introduced that do not necessarily correspond to molecule concentrations and
biochemical parameters. As a consequence, the number of unknown parameters can be
drastically reduced a priori. Note that this concept is motivated by a typical situation in
system identification of biochemical networks: due to missing information and limited ex-
perimental data, the models should be small and restricted to those network parts, which
are well understood. On the other hand, parts of biochemical networks can in general
not be regarded independently of their environment. Thus, black boxes are introduced to
reproduce the relevant effects of the surrounding network parts on a mechanistically well-
understood subsystem, rather than for system identification of the surrounding network
itself, for which the data basis would be missing anyway.

The degradation process of CD95-induced apoptosis (see Section 4.1) is, for example,
not in the main focus of the signalling pathway investigated in this thesis, however, exper-
imental data cannot be matched if it is ignored. On the other hand, the mechanism of the
degradation process is not completely known and would involve many additional molecules,
interactions and unknown parameters. Therefore, the degradation is modelled as a decay
function depending on a virtual state variable describing the ’apoptotic activity’, which
is influenced by executioner caspases. Thus, this function approximates the experimental
observations, thereby requiring a few parameters only.
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Figure 5.2: Principle of Structured Information Models based on the network topology
of Fig. 4.2. The grey scale level of the boxes corresponds to the information quality of
the subsystems. Information on a mechanistic level is available for the well-investigated
CD95-receptor and for the interactions between the caspases (white boxes). It is partially
available for the IAP/XIAP/survivin-family and the Bcl-2-family [87], which will be mod-
elled in a simplified way (Fig. 5.3). The mitochondria and the final death process (upon
activation by executioner caspases) are modelled as black boxes. The gene expression and
the proliferation [3] subsystems involved in this signalling system could also be modelled as
black boxes, however, they were taken out scope since their impact during the activation
scenarios investigated in this thesis seems to be low. Interactions between the subsystems
are indicated by arrows.

The decomposition of the complete system into subsystems is an iterative and adaptive
process. Based on new information, a subsystem might be split into further subsystems.
A great advantage of the so-obtained ’Structured Information Models’ is that it combines
heterogeneous information in one model instead of dealing with isolated models.

5.1.2 Combined Model Definition

For the mathematical description of the mechanistic part of structured information models,
interactions are modelled based on reaction rate equations (see Chapter 2). The state of this
system part is described by the concentration of l relevant signal transduction molecules
(x1, . . . , xl). The reaction rates depend on these concentrations and also on biochemical
parameters (Φ1, . . . , Φr) like binding constants. To describe the temporal behavior, a
system of ODEs is automatically generated as linear combinations of the reaction rates
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according to Eq. 2.5. Note that the initial concentrations xi(t = 0) are often unknown. In
this case, they are considered unknown parameters.

Description of Black Boxes

Black boxes are defined by their experimentally observed input-output behavior. Addi-
tional state variables (xl+1, . . . , xm) that do not necessarily correspond to molecule con-
centrations and additional parameters (Φr+1, . . . , Φs) can be introduced. The q-th black
box is represented by the function f q(x1, . . . , xl, xl+1, . . . , xm, Φr+1, . . . , Φs, t) that describes
the changes of molecule concentrations and other state variables it affects. Boundary con-
ditions like conservation laws have to be taken into account. Thus, the combination of
subsystems modelled as chemical reaction systems and black boxes leads an ODE system,
which reads

dxi

dt
=

n∑
j=1

νijvj(x1, . . . , xl, Φ1, . . . , Φr) +
N∑

q=1

f q
i (x, Φr+1, . . . , Φs, t), i = (1, . . . , l),

dxi

dt
=

N∑
q=1

f q
i (x, Φr+1, . . . , Φs, t), i = (l + 1, . . . ,m),

where n denotes the number of reactions, N the number of black boxes, νij the stoichio-
metric matrix and vj the reaction velocities.

5.2 The Model of CD95-induced Apoptosis

In this section, a quantitative model of CD95-induced apoptosis is derived from the net-
work topology of Fig. 4.2. Thereby, existing information about the respective reaction
mechanisms and the experimental accessibility are taken into account.

5.2.1 Mechanistic Subsystems

A detailed reaction mechanism could be established for the DISC- and the caspase-system.
The mechanisms at the DISC are largely described by elementary reactions (e.g. [28]),
whereas the caspase cleavage process is considered an enzymatic process (e.g. [104]). In
principle, these interactions could have been modelled in a more simplified way. The in-
fluence of caspase-3 on Bid, for example, could have been modelled directly thereby using
’effective’ parameters without accounting for the intermediate caspase-2 cleavage. How-
ever, since time series about the concentration of caspase-2 are measurable, this molecule
was kept in the system in order to gain more information for system identification. In
contrast, many molecules and interactions with equivalent properties were replaced by
’effective’ molecules and interactions based on the analysis of parameter sensitivity cor-
relations (see Section 6.3). The molecules XIAP, IAP1/2, survivin and their interactions
with caspase-3,-7, and -9 are, for example, reduced to one ’effective’ molecule called IAP
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Figure 5.3: Structured information model of CD95-induced apoptosis. In the mecha-
nistic part (DISC, caspases, IAP), interactions are modelled as elementary reactions in-
cluding competitive inhibitions [49] and enzymatic reactions. Receptors are activated by
ligands initiating the DISC formation. After binding to the DISC binding site (DISCbs),
procaspase-8 is cleaved (initiator caspase), followed by the activation of executioner cas-
pases (3, 6, 7). PARP cleavage was chosen as experimental end-point of the pathway. The
mitochondria and the degradation process, which influences all molecules, are modelled
as black boxes defined by their input-output behavior (see supp. online material). Each
reaction contains one or more unknown parameters. Since the black boxes are based on
observations, the number of unknown parameters is low here. Experimental time series
were measured for all molecules framed in red. For details on reactions and parameters see
Appendix B.1. Note that due to model simplifications some molecule species are replaced
by virtual substitutes (e.g. IAP).
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and the interactions are described by effective binding parameters. According to the ex-
perimental situation, information about the parameters belonging to the real biochemical
reactions, cannot be gained anyway.

The complete system is shown in Fig. 5.3. Details about the chemical reactions are
given in Appendix B.1. In the following, the definition of the black boxes is given.

5.2.2 Black Box Subsystems

Two subsystems with a significant influence on the signalling system are identified, whose
mechanisms are not fully understood: the degradation process and the mitochondrial
cytochrome-C release (Section 4.1). These are modelled in the form of black boxes as
described in the following.

Degradation System

The execution of cell death after activation of executioner caspases is a complex and only
partially understood process, which results in the degradation of all molecules considered in
the model of CD-95 induced apoptosis. Although the model mainly addresses the signalling
and the regulation of apoptosis, which mainly corresponds to the processes prior to degra-
dation, the degradation itself cannot be ignored since it also affects the time evolution of
the modelled signalling molecules. In order to substitute the complex degradation process
of the real system, a virtual state variable called xapop is introduced, which directly de-
scribes the velocity of the cell’s degradation. Thus, this state variable can be considered to
quantify the ’apoptotic activity’. In accordance with the network topology, xapop increases
upon activity of the executioner caspases, namely caspase-3, -6, and -7. It is assumed that
the increase of the ’apoptotic activity’ behaves similar to the experimentally observable
PARP cleavage, since this molecule is one of the main players in the execution of cell death.
Corresponding to the PARP cleavage, the increase of xapop is modelled as ’virtual’ enzy-
matic process, in which the executioner caspases are considered enzymes. Comparability
with experimental data is provided by the observable molecule degradation. In addition,
the activity itself is subject to a slow decay, corresponding to the half-live times of the real
molecules causing the degradation.

Let (x1, . . . , xl) denote the concentration of all molecules and xl+1 ≡ xapop. Thus,
according to Section 5.1.2, the time evolution of xapop is defined by

dxapop

dt
= fdegrad

l+1 (x1, . . . , xl, xapop)

=
3∑

ξ=1

kecaspξ
· (1− xapop) · xiecaspξ

Km, ecaspξ
+ (1− xapop)

−Kapop decay · xapop,

where xiecaspξ
denotes the concentrations of the three executioner caspases and kecaspξ

,
Km, ecaspξ

the rate constants and Michaelis-Menten constants (Section 2.1.3) with respect
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to the apoptotic activation. Kapop decay denotes the constant for the decay of xapop. Note
that xapop is normalized to [0, 1] and xapop = 0 for t = 0. The introduced parameters are
subject to parameter estimation.

In order to describe the degradation process affecting all molecules of the model, a
decay function is introduced depending on xapop. Based on experimental data, a quadratic
relation between xapop and the degradation rate is suggested in order to account for a
superproportional influence of the apoptotic activity. In addition, a steady degradation
of all active caspases like the caspase-8 complex (p18/p10)2 is assumed with the rate
constant kstd degrad, regardless of the apoptotic activity. The steady degradation of the other
pathway molecules like procaspases is not taken into account explicitly, since this ’non-
apoptotic’ degradation is supposed to be in equilibrium with the cell’s steady expression
of proteins. Note that the active caspase complexes are not directly expressed, but formed
by cleavage of procaspases within the regarded pathway. Consequently, the black box
behaviour describing the degradation process for all molecules of the model is given by the
function

fdegrad
i (x1, . . . , xl, xapop) = −xi·kdegrad·x2

apop−
{

kstd degrad · xi : active caspase complexes,
0 : otherwise,

where i = (1, . . . , l). For simplicity, the degradation constant kdegrad is the same for all
molecules1. This constant will also be subject to parameter estimation. The results in
Section 9.2 show that this black box is well-suited to reproduce the observed behaviour.
More details about the black box definition are given in Appendix B.2.

Mitochondrial Cytochrome-C Release

The cytochrome-C release of the mitochondria (Section 4.1) is modelled based on experi-
mental observations [93], which describe a complete release within approximately 5 minutes
as soon as pro-apoptotic substrates like tBid reach a certain level in comparison to anti-
apoptotic substrates like Bcl-2/Bcl-XL. According to the network topology, the main link
from the caspase system to the mitochondria is established by Bid. The exact mecha-
nism of triggering the cytochrome-C release is only partially understood and consequently
modelled as black box: once tBid reaches a threshold level in comparison with the anti-
apoptotic substrate concentration of Bcl-Xl and Bcl-2, cytochrome-C release is triggered
(t = ttrigger). The release rate is defined by the function frelease(t) describing a smooth
and complete release within a specified time interval [93, 94]. Thus, the time evolution of
cytochrome-C is given by

xcyt strd(t) = xcyt strd(ttrigger) · frelease(t− ttrigger),

dxcyt rel

dt
= −dxcyt strd

dt
,

1The degradation of PARP is modelled separately by introduction of kdegrad PARP, since PARP is an
active part of the degradation process itself.



50 5. Modelling Signal Transduction

where xcyt strd and xcyt rel denote the state variables of the respective cytochrome-C con-
centrations. Details are given in Appendix B.2.

5.2.3 Experimental Data and Observation Functions

Based on sensitivity analysis (Chapter 6) and on experimental feasibility, a set of experi-
ments to measure time series of concentrations of M different molecules2 after activation of
CD95-receptors was designed. The measured molecules and molecule complexes are shown
in Fig. 5.3 (red frames). Since the concentrations could be directly measured, the obser-
vation functions ymodel

ν , ν = (1, . . . ,M) (see Section 7.1) are equivalent to the measurable
state variables {xi1 , . . . , xiM}, where iν denotes the index of the state variable assessed
by the observation function ymodel

ν . Due to the fact that some concentrations cannot be
measured in absolute quantities, a scaling factor ζν is introduced and

ymodel
ν (t) = ζν · xiν (t).

Cells were stimulated with different concentrations of agonistic anti-APO-1 antibody (Sec-
tion 4.1), also referred to as ligands in the following, for various periods of time (from 5
minutes to 4 days). Each sample was evaluated by three independent approaches. See Ap-
pendix C for experimental details. In a first set of experiments, time series were measured
for a ’fast’ activation scenario with an oversaturated ligand concentration corresponding
to more than one ligand per CD95-receptor. To gain additional information about the sys-
tem’s dynamic, several experiments with much lower ligand concentrations were performed
resulting in a slower activation of apoptosis.

In summary, the resulting model consists of 41 molecules and molecule complexes, 32
reactions, and 2 black boxes. It contains more than 50 missing parameters. Therefore,
it is still too complex for reliable system identification and requires further reduction of
complexity considering the limited number of data points. Therefore, sensitivity analysis
will be applied prior to system identification, as described in the next chapter.

2Note that complexes of molecules are also considered molecules.



Chapter 6

Sensitivity Analysis of Complex
Systems

For analysing complex systems, parametric sensitivities are of high interest [33], however,
their computation usually requires knowledge of all system parameters. In the following,
I will present a new approach towards global sensitivity analysis, which is developed by
introducing the concept of ’Sensitivity of Sensitivities’. I will show that sensitivities in bio-
logical systems can be highly insensitive to parameter variations, which in general provides
a good basis for reduction of the system’s dimensionality even without knowledge of the
’true’ parameter values. The results are given in Section 9.1.

6.1 Parametric Sensitivity Analysis

The dynamics of complex biological systems are governed by many parameters. In gen-
eral, each of these parameters affects the system to different extents. Parametric sensitivity
analysis determines the changes of the system behaviour as a result of parameter variations.
This methodology is adopted by many fields of sciences like process optimization, systems
control, or cell biology. Reviews on mathematical theories about sensitivity analysis can
be found in [95, 96].

In case of a system with m state variables and n parameters, the changes of the state
variables x1, . . . , xm as a result of changes of the parameters Φ1, . . . , Φn are determined.
In the signal transduction system, which is investigated here, the state variables mostly
correspond to molecule concentrations and the parameter set consists of biochemical con-
stants related to the systems dynamic (e.g. reaction rate constants) and initial conditions
like unknown initial concentrations of some species. The absolute sensitivities are defined
by

sabs
ij (Φ) =

∂xi

∂Φj

. (6.1)
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In most cases however, the relative sensitivities sij, defined as

sij(Φ) =
Φj

xi

∂xi

∂Φj

=
∂ ln(xi)

∂ ln(Φj)
, (6.2)

are more meaningful. Consequently, the relative sensitivity matrix S will be used in the
following. The matrix is defined by

S =



s11 . . . s1n

...
...

sm1 . . . smn

 .

There are several motives for applying sensitivity analysis. On one hand, it allows
conclusions about intrinsic system properties like stability and robustness of the system
behaviour with respect to parameter fluctuations in a systematic way. On the other hand,
information about insensitive and critical system parameters and about correlations be-
tween the parameter sensitivities provides a basis for system identification. Moreover,
sensitivity analysis is required to identify those parameters which can be approached by
parameter estimation based on experimental data (Chapter 7) and to quantify the reliabil-
ity of parameter estimations. Furthermore, sensitivity analysis can be applied for optimal
experimental design [97].

6.1.1 Calculating Sensitivities

An analytical derivation of sensitivities is usually not possible for large models. In the
following, a model, whose time evolution is given by a system of ordinary differential
equations (ODEs), defined by

dxi/dt = fi(x,Φ, t), i = (1, . . . ,m), (6.3)

xi(0) = xI
i ,

is considered with the initial values {xI
i }. In general, the state variables are numerically

integrated using an ODE solver as described in Section 2.1.3. The sensitivities sij(Φ, t)
can be numerically determined in different ways, as demonstrated in the following.

Finite difference method

The absolute sensitivities are approximated by calculating the differences between two time
evolutions with small variations ∆Φj of parameter Φj

1

sabs
ij (Φ, t) ≈ ∆xi

∆Φj

=
xi(Φ + ∆Φjej, t)− xi(Φ, t)

∆Φj

, (6.4)

1A numerical refinement can be achieved by running the first time evolution with + 1
2∆Φj and the

second one with − 1
2∆Φj .
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where ej is the unit vector in j-direction. Problems arise from the fact that differences
between two propagations of the complete system are evaluated. Since the numerical
exactness of ODE solvers is always limited, a lower boundary for the parameter variation
∆Φj, namely ∆Φj,min, is introduced. This value depends on the relative errors εxi

of each
state variable xi caused by the numerical integration. According to [33], a criteria for
∆Φj,min is given by

εsij
· sabs

ij (Φ, t) =
εxi
· xi

∆Φj,min

, (6.5)

where εsij
is the allowed fractional error of sensitivity sabs

ij . Note that different magnitudes
of the variables xi require different ∆Φj in order to achieve the same accuracy. Obviously,
the minimum difference ∆Φj,min is higher for low sensitivities. Taking into account that,
on the other hand, the finite difference approximation requires small parameter variations,
∆Φj should be adapted close to the minimum.

Another problem is related to the finite time steps that are used for the integration of
ODEs. Due to adaptive step size control (see Section 2.1.3), parameter variations result
in different integration time steps causing considerable inaccuracies. In this thesis, the
problem is approached by applying the same time step sequence for both integrations.
This is realized by recording the stepping sequence chosen by the adaptive step size control
for the first integration (with parameter Φj). For the second integration (with parameter
Φj + ∆Φj), the solver is forced to step through the same sequence. Additional steps are
inserted where required. In order to make the insertion of additional steps unlikely, a
stronger step size requirement is applied for the first integration, resulting in smaller step
sizes.

Direct differential method

In this method, sensitivities are determined by their time evolution, described by a system
of ordinary differential equations, called variational equations, given by

dsabs
ij (x,Φ)

dt
=

d(∂xi/∂Φj)

dt

=
m∑

k=1

∂fi

∂xk

∂xk

∂Φj

+
∂fi(t)

∂Φj

=
m∑

k=1

Jik(t) · sabs
kj (x,Φ) +

∂fi(t)

∂Φj

(6.6)

with the Jacobian matrix J = {Jik}, Jik = ∂fi

∂xk
. Thus,

dsabs
j (x,Φ)

dt
= J(t) · sabs

j (x,Φ) +
∂f(t)

∂Φj

(6.7)
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with sabs
j = (sabs

1j , . . . , sabs
mj )

T . The initial sensitivities sabs
ij at time t = 0 are set to zero

unless they refer to an initial value, consequently

sabs
ij |t=0 =

{
1 : xI

i ≡ Φj

0 : xI
i 6≡ Φj

.

Together with the model system given by Eq. (6.3) itself, a system of (m+1)×n equations
has to be integrated for computation of the sensitivities sabs

ij of all state variables with re-
spect to all parameters. Apart from the high computational effort, step size problems may
occur if the sensitivities are propagated together with the state variables. The method can
be improved by decoupling the model equations (6.3) from the sensitivity equations and
by solving the state trajectory x(t) separately in a first step, followed by computation of
the sensitivities using interpolation of the solution x(t) for computation of the Jacobian
matrix J and ∂fi/∂Φj [98].

The choice of the appropriate method depends on the specific problem2. The finite
difference method is, for example, applied for the sensitivity-controlled parameter estima-
tion algorithm (see Chapter 7), where only the sensitivities of some state variables with
respect to some parameters are required and the computational effort of the finite differ-
ence method is much lower. However, a correct choice of the parameter variation ∆Φj is
essential. Note that the usability of the direct differential method is limited if the model
contains ’black boxes’ (see Chapter 5), since in this case, an analytical calculation of the
Jacobian matrix and of ∂fi/∂Φj is not always possible.

6.1.2 Time Dependency of Sensitivities

The time points {tk}, for which the sensitivities sij(Φ, tk) are computed, have to be chosen
carefully. In Metabolic Control Analysis [9, 99] for example, steady states depending on
parameter variations are investigated, whereas in signal transduction systems, the transient
behaviour is of high interest to analyse the system’s regulation. As a consequence, the
complete time period, during which e.g. a signalling pathway is active and exhibits a
dynamical behaviour, is considered relevant rather than a distinct time point. In this
thesis, two strategies are applied:

• For sensitivity analysis performed in the context of parameter estimation (Section
7.2.2), the time points are chosen according to the measuring points of the experi-
ments. Here, the objective sensitivity is computed, defined as the relative sensitivity
of the objective function, also called χ2-function (Section 7.1), with respect to pa-
rameter variations. The χ2-function, which has to be minimized, depends on the
differences between simulation and experimental data. As a consequence, only those
points, for which experimental data exist, are relevant.

2A third method - the Greens function method - is not explained here, since it is not efficient if there
are more state variables than parameters for which sensitivities are required [33].
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• Sensitivity analysis is also applied for model reduction prior to parameter estimation
and independently of experimental data at first. In order to avoid artefacts related
to the choice of the time points {tk}, the absolute values of the relative sensitivities3

are averaged over the complete time period of interest instead of choosing distinct
time points. These ’averaged’ sensitivities are defined by

ŝij(Φ) =
1

∆t

t0+∆t∫
t0

∣∣∣sij(t,Φ)
∣∣∣dt. (6.8)

The time period of interest starts at t0, the beginning of an investigated scenario,
e.g. the time of activation of a signal transduction pathway. The time interval
∆t corresponds to the period, in which the system shows reactions to parameter
variations, e.g. the period until equilibrium is reached. In case of the apoptosis
application investigated in this thesis, the interval ends when the cell is completely
degraded.

In the following, the sensitivity matrix S refers to the averaged relative sensitivities ŝij.

6.1.3 Local versus Global Sensitivity Analysis

In most cases, the time evolution and the sensitivities of large models can be computed
numerically only. As a consequence, a general relation between sensitivities ŝij(Φ) and
the parameter values Φ, at which the sensitivities are determined, cannot be deduced.
Instead, sensitivities are determined for specific points in parameter space only. These
are called local sensitivities. In contrast, global sensitivity analysis is required to provide
information about the sensitivities ŝij(Φ) as a function of Φ. In complex biological systems,
the parameters Φj are often unknown and only a range of possible parameter values Φj,min ≤
Φj ≤ Φj,max can be given, resulting in a high-dimensional space of possible parameter value
sets. Strictly speaking, global sensitivity analysis has to provide the local sensitivities for
the complete space of possible parameter values. A general solution to this problem does
not exist. Section 6.2 describes how this problem is approached in this thesis.

6.1.4 Sensitivity and Robustness of Real Systems

Considering the lack of information about system parameters, sensitivity analysis applied to
complex biological systems, like biochemical reaction networks, appears to be questionable.
On the other hand, it can be taken advantage of the fact that these systems are often charac-
terized by high robustness. Many biological systems keep their system properties constant,
although they are subject to high parameter fluctuations (e.g. [29, 30, 100, 101]). The re-
action kinetics and initial concentrations of real systems are, for example, not fine-tuned.

3The main goal of sensitivity analysis prior to parameter estimation is the identification of dependencies
between parameters and state variables. Thus, the absolute values are integrated in order to detect any
dependency.
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Nevertheless, complex molecular networks must operate reliably under ever-changing en-
vironmental conditions that can cause large changes in these internal parameters [102].
Robustness and low sensitivities are even proposed as a measure of plausibility in mod-
els of biochemical networks [103]. Since the adaptation property is often a consequence
of the network’s connectivity [30], appropriate models of biochemical networks are likely
to provide information about the system behaviour even without exact knowledge of the
parameters. This is an important assumption for the next section.

6.2 Stochastic Approach to

Global Sensitivity Analysis

High dimensionality of the space of unknown parameters and large ranges of possible pa-
rameter values are ubiquitous in complex biological systems. New methods for system
identification like parameter estimation are required and can be considered one of the
main challenges in this area.

In this thesis, sensitivity analysis is used as an essential tool for system identification
and model reduction. It is applied to classify the parameters into critical, correlated and
insensitive ones and to identify ’independent’ subsystems, providing a basis for efficient
parameter estimation. Consequently, these steps have to be performed prior to the deter-
mination of parameters. Therefore, the usefulness of local sensitivity analysis is limited
if there is little information about the parameters at first. In addition, global sensitivity
analysis is usually impaired by the high dimensionality of the parameter space leading to
an enormous computational effort. Moreover, general evidence cannot be provided if the
sensitivities strongly depend on unknown parameters.

6.2.1 Sensitivity of Sensitivities:
Random Walk through Parameter Space

In a virtual experiment, I performed sensitivity analysis for a large number of randomly
chosen points in parameter space within specified ranges, covering up to three orders of
magnitude. For the application investigated in this thesis, the ranges are defined for each
parameter type (e.g. bimolecular reaction rate constants, initial concentrations, Michaelis-
Menten constants, etc.), unless more precise information is available. Thereby, the robust-
ness of sensitivities with respect to large parameter variations can be tested, motivated
by two important facts: Typically, the behaviour of biological systems exhibits high ro-
bustness to parameter fluctuations (see Section 6.1.4), indicating that the area of impact
of certain parameters is limited. This suggests that the value of certain sensitivities be-
haves insensitive with respect to certain parameter variations as well. In the following,
this assumption is referred to as ’low Sensitivity of Sensitivities’. Second, structure and
connectivity of biochemical networks suggests that the influence of some parameters on
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some state variables of distant network regions is limited and that the associated sensitiv-
ities are extremely low - independent of the parameter values. Different strategies for the
generation of random parameter sets are given:

• The logarithms of the randomly generated parameter values are equally distributed
within the respective ranges [ln(Φj,min); ln(Φj,max)]. Typically, this is applied if the
orders of magnitude are the only information about the parameter values.

• If, for example, literature values are available (e.g. [104]), it is more appropriate
to generate the random parameter values according to a normal distribution around
the given value Φ∗

j with the standard deviation σj. Often, biochemical parameter
values refer to different experiments and different conditions and σj has to be chosen
sufficiently high.

The distributions of the computed sensitivities ŝij for the randomly generated points in
parameter space are plotted in the form of histograms for the sensitivity value of each (i, j)-
combination. In Fig. 9.3, histograms are shown for the signal transduction application of
this thesis. The x-axis shows the sensitivity value and the y-axis corresponds to the number
of occurrences. Thus, a sharp peak can be considered an indication that the respective
sensitivity is likely to keep about the same value, independent of the parameter set.

6.2.2 Statistical Evidence of Stochastic Sensitivity Analysis

A systematic scan of a multi-dimensional parameter space is computationally limited due to
the Curse of Dimensionality (Chapter 1). For the same reason, the significance of stochas-
tically chosen sensitivities is also questionable. However, I will demonstrate that under the
assumption that the parameter space can be projected onto an ’effective’ parameter space
of a lower dimension, it is a reasonable approach. This assumption is typically fulfilled in
case of biological systems exhibiting high robustness.

Let the sensitivity matrix S(Φ) be computed for a set of randomly chosen parameter
sets {Φq}, q = (1, . . . , N). The number N is of course limited by computational feasibility.
The space of possible parameter values is defined according to

P = P1 × P2 × . . .× Pn , Pk = [Φk,min; Φk,max].

Now, a minimum density of parameter points per volume is introduced, for which sensitiv-
ities have to be computed to provide representative information about possible sensitivity
values within space P . If ρij

k (Φ) denotes the required density for ŝij in k-direction, the
total number N∗

ij of required samples is given by

N∗
ij ≥

Φ1,max∫
Φ1,min

dΦ1 · · ·
Φn,max∫

Φn,min

dΦn

n∏
k=1

ρij
k (Φ1, . . . , Φn) (6.9)
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with

Φk,max∫
Φk,min

dΦkρ
ij
k (Φ) → 1 for

∂ŝij

∂Φk

→ 0. (6.10)

Note that ρij
k is influenced by the variation of the sensitivity matrix with respect to pa-

rameter k, thus ρij
k is dependent on Φ. Examining large systems, one is often interested in

the behaviour of a subset of state variables only4, or in observation functions (Section 7.1)
depending on a subsets of state variables. Therefore, the sub-matrix S∗, defined as

S∗ = {ŝij(Φ)}, i ∈ M∗ ⊆ M = {1, . . . ,m}, j ∈ {1, . . . , n}, (6.11)

is considered in the following. M∗ denotes the set of indices of the state variables of inter-
est, for example those state variables, which can be experimentally observed.

Now, it is claimed as a crucial system property that the behaviour and the sensitivi-
ties of each single state variable xi, i ∈ M∗, are insensitive to a considerable number of
parameters, described by the index set P0

ij ⊆ {1, . . . , n}, which is defined by

∃ P0
ij

∣∣∣∣ ∂ŝij

∂Φk

≈ 0 ∀ k ∈ P0
ij.

This assumption is motivated by the fact that biological systems typically show extremely
high robustness to most parameter fluctuations (see Section 6.1.4). Moreover, hierarchical
structures are suggested for large biochemical systems (e.g. [105, 32]), resulting in stable
interdependencies and low sensitivities of the high-level state variables with respect to pa-
rameters on the lower level. It is well-accepted that complex biological systems contain
subsystems acting as control-modules [12], providing a stable input-output behaviour on
the upper level. In addition, subprocesses often run on timescales, which are completely
different from the main process. Therefore, the behaviour of interest is mostly insensitive
towards many parameters of subprocesses within certain ranges. Aside from the general
context, there is strong evidence that the assumed system property is fulfilled in the signal
transduction application of this thesis.

Since Eq. (6.12) results in ρij
k ≈ 0 for k ∈ P0

ij, the number N∗
ij reads

N∗
ij ≈

Φk1,max∫
Φk1,min

dΦk1 · · ·
Φkl,max∫

Φkl,min

dΦkl

l∏
r=1

ρkr(Φk1 , . . . , Φkl
), (6.12)

where {k1, . . . , kl} is the index set P∗
ij := {1, . . . , n} \ P0

ij.

N∗
ij corresponds to the sample number required for an l-dimensional parameter space. Note

that l is specific to each sensitivity ŝij and that in most cases l � n. For each sensitivity,

4e.g. the key molecules in biological systems, providing the core functionality, or the subset of experi-
mentally accessible state variables in case of parameter estimation problems.
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the parameter space can thus be written as

P = P ∗
ij × P 0

ij with P ∗
ij = Pk1 × . . .× Pkl

and P 0
ij = Pk0

1
× . . .× Pk0

n−l
, k0

κ ∈ P0
ij,

and consequently, each random parameter set Φq ∈ P can be projected onto P ∗
ij.

Thus, even if the relevant dimensionality l of the parameter space with respect to the
sensitivities ŝij(Φ) is not known in advance, the set of N generated random parameter
values, for which the sensitivities of interest are computed, automatically contains N pa-
rameter sets of space P ∗

ij for all i, j of interest. Depending on dimension l, the number N
might yield a density, which reaches an adequate level to gain global information about the
sensitivity distributions. For an isotropic parameter space for example, the actual density
would result in ρij

k = l
√

N .

Another important characteristic of biochemical systems is the occurrence of coupled
parameters or parameters showing multiple correlation [106]. This means that the effects
of parameter variations on the system behaviour are correlated. In case of a reaction chain
for example, the behaviour of the final product concentration is influenced by the rate
constants of the intermediate reactions in a similar way. Such processes can be reproduced
by simplified models using a lower number of effective parameters [27]. Thus the parameter
space of correlated parameters can be mapped onto a space of ’effective’ parameters, PE,
described by

Pk1 × . . .× Pkµ → PE
kE
1
× . . .× PE

kE
ν
, ν < µ,

which has a lower dimensionality and by which the original system can be approximated
after redefining the model. Accordingly, the respective transformation of the random pa-
rameter points {Φq} results again in a higher density of samples with respect to the efficient
parameter space. A systematic approach can for example be derived from the High Di-
mensional Model Representation method [107].

In practice, the computation of sensitivities and sensitivity correlations has shown that
the dimensionality of the parameter space related to the signal transduction application
of this thesis can be drastically reduced. This is demonstrated in Section 9.1. Thus, even
without detailed prior knowledge of the dependencies of the sensitivities on the parameters
and merely under the assumption that there is a large number of parameters, which are
either correlated, or which do not influence certain sensitivities, the stochastic sensitivity
approach provides general information about S∗(Φ).

6.2.3 Data-based Weighting of Sensitivities

The distribution of the sensitivity values ŝij for all parameter sets {Φq} are visualized
as histograms (Fig. 9.3). In this first approach, all random parameter sets are equally
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weighted, independent on how much the resulting system dynamics deviate from the real
system. As an extension, I therefore incorporated information from experimental data by
introducing a weighting factor:

Based on experimental time series of molecule concentrations, an objective function Eq

(equivalent to the χ2-function in Section 7.1) is computed for each parameter set Φq. This
objective function is based on the differences between the experimental and simulation
data according to

Eq = E(Φq) =
∑
i,k

1

2

[xi(tk,Φ
q)− xexp

ik ]2

σ2
ik

, (6.13)

xexp
ik : experimental value for molecule i at time tk,

σik : standard deviation for molecule i at time tk.

Then, it is assumed that pq, the probability that a system with parameter set Φq produces
the experimental data {xexp

ik }, follows a Boltzmann distribution with the objective function
as energy term:

pq ∝ exp(−Eq/kT ). (6.14)

This assumption is motivated as follows: considering Gaussian random measurement errors,
each characterized by σik, the probability pq can be written as product [108]

pq ∝
∏
i,k

exp
(
− 1

2

[xi(tk,Φ
q)− xexp

ik ]2

σ2
ik

)
. (6.15)

Using Eq. (6.13), this relation is equivalent to Eq. (6.14) with kT = 1.

For generation of a second type of sensitivity histograms, the Boltzmann factor is
applied. It is used as weighting factor characterizing the weight of the individual contri-
butions. Thus, the histograms are computed as follows: instead of counting the number of
parameter sets with sensitivities ŝij within a certain sensitivity interval, the contribution
of each parameter set Φq is given by exp(−Eq/kT ). Note that for kT →∞, the weighted
sensitivity histograms become identical with the non-weighted histograms.

Additional information can be gained by varying kT . Starting from the equally weighted
histograms (kT = ∞), the system can be ’cooled down’, resulting in histograms based on
the Boltzmann factor. If a sensitivity behaves insensitive with respect to parameter varia-
tions, particularly within the subspace of probable solutions (areas in parameter space with
a low objective function), decreasing kT results in histograms with a much sharper peak.
Sensitivity histograms showing more than one distinct peak when the system is cooled
down, indicate that the respective sensitivity strongly depends on the exact parameter set
within the parameter subspace of probable solutions. Details are given in Section 9.1.2,
where the method is applied to the apoptotic signal transduction system.
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6.3 Analysis of Parameter Sensitivity Correlations

Apart from detecting parameters with low sensitivities, information about the parameter
correlations is also crucial to reduce the system’s dimensionality. As a consequence, I com-
puted the parameter sensitivity correlations, which were then applied for the sensitivity-
based parameter estimation algorithm (see Chapter 7.2.2).

Let us consider the state variables xi(tk), i ∈ M∗ (Eq. (6.11)), for which we assume that
experimental data are given at the time points {tk}. In complex networks, determination
of parameters based on such data typically leads to sub-manifolds, where different com-
binations of parameters result in the same values for the respective state variables [106].
Thus, only relations between the parameters of the respective subsets can be determined
since their influences on the resulting state variables are correlated.

6.3.1 Normalized Fisher Information Matrix

Let us consider a system with the unknown parameter set Φ. Information about the
parameters has to be extracted from observations y = (y1, . . . , yN). These observations can
be described as realizations of random variables, for which a probability density function
ρ(Φ, z1, . . . , zN) is given [109]. Let Φ̂(y) be the result of an estimator, such that 〈Φ̂(y)〉 =
Φ0, where Φ0 denotes the ’true’ parameter set. Then, the precision of the estimated
parameters is limited depending on the observations. A lower bound for the deviation of
any estimator (even for the estimator of the highest quality) is given by

〈
[Φ̂(y)−Φ0][Φ̂(y)−Φ0]

T
〉
≥ J−1, (6.16)

called the Cramér-Rao inequality, for which a proof is given in [109]. The matrix J is
known as the Fisher Information matrix and consists of the elements

Jpq =
〈

∂ ln ρ(Φ,y)

∂Φp

∂ ln ρ(Φ,y)

∂Φq

〉
. (6.17)

Under the assumption that the deviation of the observations is governed by Gaussian noise
[106], the information matrix can be written as

Jpq =
N∑

ν=1

ω2
ν

∂ŷν

∂Φp

∂ŷν

∂Φq

. (6.18)

The weighting factors ων correspond to the reciprocal standard deviation and ŷν denote
the model values for yν based on an estimated parameter set Φ̂. Applied to the previous
reaction system, where the observations {xi(tk)} of molecule populations are obtained, the
information matrix can be expressed by the vectors Sj containing the absolute sensitivities
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and reads

Jpq = SpSq with Sj =


ω1 ∂x̂1/∂Φj

ω2 ∂x̂2/∂Φj
...

ωN ∂x̂N/∂Φj

 . (6.19)

The index ν = (1, . . . , N) replaces the indices i and k in order to enumerate the combina-
tions of observable state variables xi at the times tk: xi(tk) → x̂ν . To identify correlated
parameters, the normalized Fisher Information matrix Jn [106] can be computed as

Jn
pq = Sn

pS
n
q with Sn

j =
Sj

|Sj|
. (6.20)

Obviously, each element of Jn corresponds to the cosine of the angle between Sp and
Sq, and Jn can be applied as a measure for parameter sensitivity correlations. Parallel
sensitivity vectors (Sn

pS
n
q = 1), for example, indicate that both parameters can be varied in

a way, which results in exactly the same effect with respect to all observed state variables
xi for the respective time points tk.

Remark: The elements of Sn
j are weighted with ων = 1/σν . If Sn

j contained the absolute
sensitivities only, the matrix elements of Jn would in general be dominated by sensitivities
of state variables with the highest absolute values, thereby neglecting correlations between
all other sensitivities. However, since the orders of magnitude of absolute standard devia-
tions are mostly proportional to the absolute value ranges of the state variables themselves,
relative standard deviations σrel

ν are more appropriate, resulting in a new form for Sn
j , which

reads

Sνj =
1

σrel
ν x̂ν

∂x̂ν

∂Φj

⇒ Sn
νj =

1

|Sj|

(
1

σrel
ν

Φj

x̂ν

∂x̂ν

∂Φj

)
=

1

|Sj|
1

σrel
ν

· sνj (6.21)

with the relative sensitivities sνj. The factor Φj could be inserted since this does not
change the normalized vector. Thus, Jn can be considered a matrix of scalar products
of the dimensionless relative sensitivities, weighted with the relative standard deviation,
which lowers the impact of those data points, for which the relative standard deviation is
high.

6.3.2 Application of Parameter Correlations

In many cases, parameter sensitivities were found to be highly correlated as an intrinsic
system property, regardless of the parameter values. If data, which is required for the iden-
tification of each single parameter, is not accessible, the respective model part is replaced
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by an ’effective’ subsystem containing less parameters (’effective parameters’), thereby
breaking down the sub-manifold of equivalent solutions. For example, reaction chains can
often be replaced by one reaction using an ’effective’ reaction rate (and time delay, where
appropriate). Different molecules with similar properties and reactions can be replaced
by one ’effective’ molecule whose reactions are described by ’effective’ reaction rates. An
example is given in Section 5.2.1, where the molecules XIAP, IAP1/2 and survivin are
replaced by the ’effective’ IAP molecule (compare Fig. 4.2 and Fig. 5.3).

Whenever parameter sensitivity correlations are detected for certain areas in parameter
space only, the model is not modified. Instead, for parameter estimation a threshold Θcorr

is introduced and correlated parameter subsets P corr
κ , defined as

P corr
κ = {Φi1 , . . . , Φir}

∣∣∣ |Sn
pS

n
q | ≥ 1−Θcorr ∀ Φp, Φq ∈ P corr

κ , (6.22)

are identified. Only the most sensitive parameter within such a subset is varied while the
rest is kept constant as long as the correlation remains above the threshold. In summary,
either the model is simplified a priori, or all parameters are kept in the system, but only a
subset of them is estimated depending on the local correlations.

The methods introduced in this chapter were applied to the signal transduction system
of CD95-induced apoptosis. The results are described in Section 9.1.
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Chapter 7

Parameter Estimation

In this chapter, a quick introduction into parameter estimation methods is given and local
estimation algorithms are demonstrated. Then, a general problem of large nonlinear sys-
tems with a high number of unknown parameters and large ranges of possible parameter
values is addressed. These features are ubiquitous in biochemical networks and impair
the search for the globally best parameter set. For this reason, I developed a sensitivity-
controlled and cluster-based parameter estimation approach. Based on the ’global’ sensi-
tivity analysis of Section 6.2, the system’s complexity is reduced a priori. This reduction
is complemented by a sensitivity-control within the parameter estimation algorithm based
on local sensitivities. Furthermore, I will demonstrate the new concept of ’ensembles’ of
estimated parameter sets.

7.1 Maximum Likelihood Estimation

In typical parameter estimation problems, a model M with m state variables x1, . . . , xm

is given, which contains a set of n unknown parameters Φ1, . . . , Φn. The goal is to find
the parameter values, for which the model predictions are in the best agreement with the
given experimental data D. In the maximum likelihood estimation [108], this is achieved by
searching for a parameter set Φ, which maximizes p(D | M,Φ), the probability that model
M with the parameter values Φ produces the given experimental data, thereby requiring
an error model for the measurements.

Typically, it is assumed that the errors of the experimental data follow a Gaussian
distribution [108]. Let ymodel

i (x1, . . . , xm, t), i = (1, . . . , r), denote observation functions
and {tk}, k = (1, . . . , s), the time points for which experimental data are measured. In
the simplest case, ymodel

i corresponds to the state variables themselves, provided that they
are directly measurable (ymodel

i ≡ xi, r = m). Due to the Gaussian distribution of the
experimental errors, the probability that the measured value for the i-th observation at
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time tk, given a parameter set Φ, lies in the interval [yik, yik + dyik] reads

p(yik | Φ) =
1√

2πσ2
ik

exp
(
− [yik − ymodel

i (tk,Φ)]2

2σ2
ik

)
dyik (7.1)

with the variance σ2
ik originating from the distribution of the experimental errors, typically

equivalent to the variance of multiple experimental measurements for each data point. Let
us assume that experimental values {yexp

ik } are given for all time points of the time series
{tk} and all observation functions1. As a consequence of Eq. (7.1) and on condition that
the measurement errors are independent of each other, the probability for a data set {yexp

ik }
fulfils the relation

p({yik} | Φ) ∝
∏
i,k

exp
(
− [yik − ymodel

i (tk,Φ)]2

2σ2
ik

)
. (7.2)

According to the maximum likelihood estimation, the goal is to find a parameter set, which
maximizes this probability. Consequently, the term

χ2(Φ) =
∑
i,k

(
[yexp

ik − ymodel
i (tk,Φ)]2

σ2
ik

)
, (7.3)

also referred to as objective function, has to be minimized.

Thus, the sum of squares of differences between experimentally measured and simulated
data, divided by the standard deviation, which lowers the impact of experimentally less
reliable data, has to be minimized in order to optimally fit the model with data from
experiments. In the signal transduction application of this thesis, the main problem arises
from the high number of unknown parameters and their highly nonlinear influence on the
system behaviour.

7.1.1 Nonlinear Least Squares

If the χ2-function depends on the parameters in a nonlinear way, a general method, which
guarantees to find the global minimum of χ2 does not exist. Instead, there is a variety
of iterative methods starting from an initial parameter guess. A review on the methods
commonly used for biochemical reaction networks is given in [25]. Most methods are based
on derivative-driven algorithms. This means that χ2(Φ) and its derivatives are evaluated
locally and the parameters are moved accordingly in order to reach the next minimum.
For this reason, computation of the gradient, whose components are given by

(∇χ2)ν =
∂χ2

∂Φν

= −2
∑
i,k

yexp
ik − ymodel

i (tk,Φ)

σ2
ik

· ∂ymodel
i (tk,Φ)

∂Φν

, (7.4)

1The assumption that experimental data are given for all observation functions at all time points {tk}
is not always fulfilled; the generalization is, however, trivial.
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is required. Furthermore, the Hessian Matrix, which is defined as the matrix of second
derivatives,

Hµν =
∂2χ2

∂Φµ∂Φν

(7.5)

= 2
∑
i,k

1

σ2
ik

[
∂ymodel

i (tk,Φ)

∂Φµ

∂ymodel
i (tk,Φ)

∂Φν

− [yexp
ik − ymodel

i (tk,Φ)]
∂2ymodel

i (tk,Φ)

∂Φµ∂Φν

]

has to be computed.

The steepest descent or gradient descent method seeks for the minimum by stepping
into the direction of the gradient

Φ(l+1) = Φ(l) − α∇χ2(Φ(l)), (7.6)

where l denotes the index of the iteration step and Φ(0) the initial parameter guess. The
step width is controlled by α.

In Newton’s method, it is assumed that χ2 can be expanded around Φ0 as

χ2(Φ) ≈ χ2(Φ0) + (∇χ2(Φ0))(Φ−Φ0) +
1

2
(Φ−Φ0)H(Φ−Φ0). (7.7)

Since ∇χ2(Φ) = 0 is fulfilled for Φ = Φ0, the iteration of Newton’s method is given by

Φ(l+1) = Φ(l)H−1∇χ2(Φ(l)). (7.8)

This algorithm converges quickly if the initial parameters are chosen close to the minimum,
whereas it is not appropriate far away from it. In the latter case, the steepest descent
method is more adequate. A robust method combining both approaches is the Levenberg-
Marquardt method [110, 111], which has also been applied and modified in the scope of this
thesis and which is demonstrated in the following.

7.1.2 Levenberg-Marquardt Method

The Levenberg-Marquardt method can be considered an interpolation between the steepest
descent and Newton’s method. For this reason, the dimensionless factor λ is introduced as
a weighting factor for the contribution of both methods. For computation of the step size
of the gradient descent, the diagonal elements of the Hessian are used since they can be
regarded as a measure for the curvature of the χ2-hyperplane. If δΦ denotes the iteration
step, the steepest descent contribution to δΦ is therefore given by the components

(δΦν)gradient = − 1

λHνν

∂χ2

∂Φν

. (7.9)
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Thus, high curvatures result in a low step width and vice versa. In order to add the
contribution of Newton’s method, the matrix M with elements

Mµν =


1
2

∂2χ2

∂Φ2
ν
· (1 + λ) for µ = ν

1
2

∂2χ2

∂Φν∂Φµ
for µ 6= ν

is introduced and the iteration steps of the Levenberg-Marquardt method are given by

δΦ = −M−1∇χ2. (7.10)

Obviously, for λ = 0 this is equivalent to Newton’s method, whereas for high values of
λ, the steepest descent contribution becomes dominant. The value of λ is controlled dy-
namically: the algorithm starts with a high value (steepest descent) and decreases λ with
decreasing values of χ2. Details about this method are given in [112].

7.2 Parameter Estimation Approach for

high-dimensional Systems

The χ2-function of nonlinear systems with many unknown parameters typically contains
many local minima. Consequently, local parameter estimation methods like the Levenberg-
Marquardt method converge to the next local minimum and cannot guarantee to find the
global minimum, unless the initial parameter guess is chosen close enough to it. Even
global estimation methods like Simulated Annealing [113], which was also applied for the
investigated signal transduction system (see study of Vacheva et al. [117]), are in general
not capable of finding the global minimum in case the number of local minima is too large.
Since this number usually grows with the space of possible parameter values and, as a
consequence, exponentially with the number of unknown parameters, it becomes crucial
to keep the number of unknown parameters as low as possible. In Chapter 6, an approach
to reduce the dimensionality of the parameter space based on sensitivities and sensitivity
correlations is given and applied for parameter estimation in the following.

The reduction of the system’s dimensionality is spread over two stages. Prior to the start
of the parameter estimation algorithm, an approach to cluster the system based on ’global’
properties of the parametric sensitivities is introduced. This approach is complemented
by a sensitivity-control based on local sensitivities and local sensitivity correlations within
the parameter estimation algorithm.

7.2.1 Clusters-based Parameter Estimation

This approach takes advantage of the fact that clusters of state variables and parame-
ters can be identified in such a way as to have subsets of state variables whose temporal
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behaviour depends on a subset of parameters only (see Section 9.1.1). For simplicity and
corresponding to the experimental situation of the signal transduction system of this thesis
(Section 5.2.3), it is assumed that the observation functions ymodel

i (x, t) are equivalent to
state variables xi(t), which mostly correspond to molecule concentrations.

Now, a sensitivity matrix S consisting of the matrix elements {ŝij} (see Chapter 6)
referring to m state variables and n parameters is considered. It is assumed that the
property

|ŝij| < Θ, Θ = Θs · 〈s〉, (7.11)

where 〈s〉 denotes the average sensitivity (averaged over all matrix elements) and Θs a
low relative threshold, indicates that the respective state variable can be considered to
be independent of the respective parameter. Whenever a high percentage of sensitivities
fulfils this property - and this is the typical case in large signal transduction systems (e.g.
Fig. 9.1) - clusters of the remaining above-threshold sensitivities can be established after
reordering the rows of the sensitivity matrix as shown in Fig. 7.1. A cluster Cq is defined as
a sub-matrix of the sensitivity matrix, whose elements cover only those parameters, whose
influence on the state variables of the same submatrix, is not negligible. Thus, Cq consists
of the matrix elements {ŝij}, i ∈ Iq, j ∈ Jq according to

Iq = {Mq, . . . ,Mq+1 − 1},
Mq : index of first state variable of cluster q (Fig. 7.1),

Jq ⊂ {1, . . . , n}
∣∣∣ j ∈ Jq ⇔

(
∃ i ∈ Iq

∣∣∣ |ŝij| > Θ
)
.

= sensitivity sij > θ

Cluster C1
Cluster C2
Cluster C3

global parameters

Parameters 

L2

l2

S
tate V

ariables

M1

M2

M3

Figure 7.1: The sensitivity matrix exemplifies the clustered dependence of state variables
(vertical axis) and parameters (horizontal axis). Red bars indicate the global parameters
on which state variables of more than one cluster are dependent on. For cluster C2, the
parameter number L2 and number of local parameters l2 is shown.
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Let Cq denote the q-th cluster and lq the number of ’local parameters’ of Cq. Local
parameters are defined as those parameters whose sensitivities are below a threshold Θ
for all state variables outside the cluster they belong to. If all parameters of one cluster
influence state variables of the same cluster only, they can be estimated independently
from all other clusters, leading to a parameter estimation of a much lower dimensionality.
However, in general this is not the case and a cluster-wise estimation would determine the
same parameters in the context of different clusters leading to inconsistencies. Therefore,
parameters are split into local and global ones: a parameter, such that the state variables
of more than one cluster depend on, is called a ’global parameter’. Consequently, the total
number of global parameters, denoted by g, is given by

g = n−
∑
q

lq.

Hierarchical Parameter Estimation Approach

To address the estimation of local and global parameters, a hierarchical approach was
designed, in which parameter estimation is performed on two levels. On the upper level,
global parameters are estimated by optimising all clusters: for each cluster, parameter
estimation is recursively called at the lower level. The χ2-function of the upper level is
based on the estimated parameters of the single clusters (lower level). On the lower level,
the local parameters are estimated separately for each cluster, depending on the values of
the global parameters proposed by the algorithm of the upper level, but independent of
the parameters of all other clusters. If W (d) denotes the cost for a parameter estimation
of dimension d, the total cost Wtot of the algorithms can be compared as follows:

unclustered algorithm: Wtot ∝ W (n),

clustered algorithm: Wtot ∝ W (g) ·
∑
q

W (lq).

Thus, the approach reduces the dimensionality from the number of all parameters n to the
sum of the number of global parameters g and the maximum number of local parameters
(max{lq}). Note that W (d) strongly increases with dimension d, a fact also known as the
curse of dimensionality. Some methods even show an exponential relationship [25]. As
a consequence, this relation reflects a drastic reduction of computational costs whenever
the relative number of global parameters g/n is low and the largest cluster is significantly
smaller than the original matrix. These properties are typically fulfilled in signal trans-
duction systems. To optimize the computation time for very large systems, it would be
adequate to choose the clusters so that g + max{lq} is minimized.

Since the clustering is applied as a basis for efficient parameter estimation and thus
before parameter values are given, there is no basis to compute a sensitivity matrix, which
is, however, required for the clustering. A solution to this problem is given by the ’global’
sensitivity analysis approach demonstrated in Section 6.2. Since the clustering method
only requires information about which sensitivities are below threshold Θ, the sensitivity
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histograms (see also Section 9.1.2) are evaluated. The clustering is then performed by
neglecting those sensitivities, whose histograms indicate that the property |ŝij(Φ)| < Θ is
probable to be fulfilled within the complete space of possible parameters (Fig. 9.3).

In order to further reduce the dimensionality of the estimation problem, sensitivities,
which are below a threshold only locally in parameter space, are taken into account within
the parameter estimation algorithm. Moreover, local sensitivity correlations (see Section
6.3) are evaluated in order to detect highly correlated parameters.

7.2.2 Sensitivity-controlled Parameter Estimation

By integrating a sensitivity-control in the parameter estimation algorithm, a method is
introduced, which adaptively reduces the dimensionality during the estimation. The local
sensitivity matrix (ŝij) and the derivations ∂χ2/∂Φj are computed and evaluated after
each iteration step. A subset of parameters, whose relative impact on the χ2-function is
significantly lower than the average impact of all parameters, is generated according to the
criterion

∣∣∣∂χ2

∂Φj

Φj

χ2

∣∣∣ < Θχ ·
〈∣∣∣∣ ∂χ2

∂Φν

· Φν

χ2

∣∣∣∣〉, (7.12)

where Θχ is a low relative threshold (e.g. Θχ = 0.01). The parameters belonging to
this subset are kept constant for the next iteration step. This prevents the algorithm
from being misguided by irrelevant parameters. Since the distinction between relevant and
irrelevant parameters is generally valid for a specific region in the parameter space only,
the sensitivities are automatically redetermined after each iteration step.

Parametric Sensitivity Correlations

In order to account for parameters with highly correlated sensitivities (see Section 6.3), the
normalized Fisher Information Matrix Jn defined in Eq. (6.20) is computed before each
iteration step. On this basis, parameters are identified, which affect the system behaviour
(almost) identically and only one of these parameters is varied for parameter estimation.

Herefore, the parameter with the highest value of | ∂χ2

∂Φj

Φj

χ2 | is chosen. The criterion to select

pairs of correlated parameters Φq, Φp is given by

|Sn
pS

n
q | ≥ 1−Θcorr,

where Sn
j denotes the normalized sensitivity vector (Eq. (6.19)-(6.20)), and Θcorr a low

relative threshold (e.g. Θcorr = 0.01). Note that only those parameters are checked for
sensitivity correlations, which do not already fulfil the previous sensitivity criterion given
by Eq. (7.12).
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To apply the previous concept, the Levenberg-Marquardt algorithm was extended by
the sensitivity- and sensitivity-correlation-control. A comparison with the unmodified al-
gorithm shows that this combined method leads to significantly better parameter fits. The
results are discussed in Section 9.2.3.

7.2.3 Ensembles of Estimated Parameter Sets

Due to the high nonlinearity of the χ2-function and the large ranges of possible parameter
values, it has to be taken into account that the χ2-function may contain many local minima
within the considered parameter space. Thus, parameter estimation algorithms are likely
to find different local minima for different initial parameter sets, as indicated in Fig. 9.6 by
the broad distribution of χ2-values associated to the resulting parameter fits. In this the-
sis, it is suggested to combine parameter estimation methods with a random multi-start
algorithm and to run a series of parameter estimations with different randomly chosen
start parameter sets. The ranges of the random parameter values correspond to those
used for the sensitivity analysis (see Section 6.2). As local parameter estimation method,
the Levenberg-Marquardt algorithm extended by the previously discussed clustering and
sensitivity control is chosen. Furthermore, the Multiple Shooting parameter estimation ap-
proach [114] using the MUSCOD software package [115] is applied (see study of Mesecke
[116]). In order to exemplify global estimation algorithms, the simulated annealing method
[113] is also examined in the study of Vacheva et al. [117].

The execution of many parameter estimation runs for the signal transduction appli-
cation of this thesis confirms that parameter estimations with different initial parameter
sets often lead to different local minima. This is also the case for the ’global’ simulated
annealing method. Moreover, the value of χ2 associated to the best parameter fit is typi-
cally not significantly lower than the χ2-values of the next best fits. Instead, a set of local
minima with well-fitting parameters is found, whose χ2-values are in the same range. A
typical distribution of these values is shown in Fig. 9.6. As a consequence, it is suggested
in this thesis, to consider ensembles of estimated parameter sets providing a good fit with
experimental data rather than to focus onto one single parameter set, which provides the
best fit. For this purpose, all estimated parameter sets, for which the χ2-function is below
a certain threshold, are selected. It is assumed that these parameter sets are elements of
the submanifold of possible solutions in the parameter space, given the experimental data.

Next, the system behaviour simulated for the selected parameter fits is evaluated in
order to gain information about the respective system properties and about their evidence.
It is suggested to preselect all those system properties and predictions for further inves-
tigation, which are found to be (at least qualitatively) identical for all parameter sets of
the ensemble. On this basis, model predictions are generated, which are subject to ex-
perimental validation. If these predictions fail, a wrong model choice is more likely than
discrepancies in the parameters. On the other hand, all those system properties, which
strongly vary between different parameter sets of the ensemble, are subject to further inves-
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tigation and provide a basis for the design of new experiments [97, 118]. These experiments
have to be planned in such a way as to reflect the investigated system properties in the
χ2-function. Typically, a sub-ensemble of the original ensemble of estimated parameters
can then be identified, for which the respective model simulations reproduce the experi-
mentally observed behaviour. If adequate parameter fits cannot be found anymore based
on data including the new experiments, a wrong model choice is indicated.

Consider, for instance, the following example. It refers to the parameter estimation
described in Section 9.2. For the fast activation scenario of the CD95-induced apoptosis
(5 µg/ml of ligand concentration), many parameter sets were found providing good fits
with the respective experimental data (Fig. 9.4 A). Model predictions based on these pa-
rameter fits for a much slower activation scenario are, however, not consistent. For one
part of the parameter fits, a slow increase of active caspase-8 is predicted, which starts
immediately after stimulating the cell with ligands. For most other parameter fits, the
model predicts no significant caspase-8 activity within a certain time period, followed by
a second period, which is also characterized by an increase of active caspase-8. As a
consequence, experiments for a slow activation scenario of 200 ng/ml were performed.
The observed behaviour confirms a significant time delay before the activity of caspase-8
increases (Fig. 9.4 B). Thereby, a subset of the latter parameter set ensemble was invali-
dated. New parameter estimations were started based on experimental data referring to
both scenarios. Good fits were found especially for those estimation runs using the delay-
predicting parameter fits as initial values. Another, more systematic application of this
concept is demonstrated in Section 9.4 in the context of the investigation of cell death rates.

Thus, a method is provided, which successively decreases the size of the solution sub-
manifold in parameter space by iteratively incorporating data from new experiments, which
are designed in a way to maximize the gain of information. As an extension to the concept
of parameter set ensembles referring to the same model, alternative models can also be
taken into account.
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Chapter 8

Software Framework

In this chapter, the software package is described, which I developed to integrate the mod-
elling, simulation and system identification methods presented in Chapter 3, 5, 6 and 7
in one common framework. An important requirement for this software was high flexibil-
ity and extensibility regarding the size and the function of user-defined network models.
Furthermore, the framework had to be designed in a way, which is extensible to different nu-
merical components like parameter estimation methods or ODE solvers. Existing software
packages for the simulation of biochemical networks, like Gepasi, ECELL, STOCHSIM and
many others [18, 19, 35], are stand-alone tools, which do not allow user-defined parame-
ter identification methods, user-defined solvers, functional subunits, or integration of new
sensitivity analysis approaches, as it was applied in this thesis.

As a result, a modular and object-oriented software package was implemented in C++,
which is capable of running any user-defined network model of nearly unlimited sizes (only
limited by memory). For this reason, the software contains a model-generator, which au-
tomatically translates a user-defined model file (see Appendix A), containing the reaction
network and functional subunits (black-boxes), if required, into a system of differential
equations. For stochastic simulation, the probability density functions and stochastic dif-
ferential equations (Section 2.2) are automatically generated as well. As an example for
the modular software design, the simulated annealing method [113] has been plugged in as
a global parameter estimation method by Dr. Ivayla Vacheva [117].

8.1 Functionality

The software can be run in seven different modes. This run mode, but also the numerical
settings, the model definition, the parameters and the experimental data (parameter esti-
mation only) have to be provided by the user in form of an input file, which is described in
Appendix A. In the following, the functionalities of the different run modes are described.



76 8. Software Framework

8.1.1 Software Modes

Single-Simulation Mode. A single simulation run is performed by either using the de-
terministic method, the Gillespie algorithm, the stochastic-deterministic algorithm or the
General Stochastic Hybrid Method. The simulation result is provided in the form of a time
series of all state variables.

Multiple Stochastic Simulations. A series of independent stochastic simulations ei-
ther using the pure Gillespie, the stochastic-deterministic, or the general stochastic hybrid
method are run. The output contains a time series of the mean values and standard devi-
ation of each state variable.

Local Sensitivity Analysis. Local sensitivity analysis is performed for a given pa-
rameter set. The output provides the sensitivity matrix.

Sensitivity Histogram Generation. A series of random parameter sets is generated
within given value ranges. For each parameter set, all sensitivities are computed and stored
in a data structure, based on which sensitivity histograms, a matrix of average sensitivities
and a matrix of the standard deviation of the sensitivities are generated. Optionally, a
Boltzmann factor based on the difference between simulation and experimental data is
applied for the generation of the sensitivity histograms. In this case, time series of experi-
mental data have to be provided through the input file.

Parameter Estimation. The parameter estimation is run for a given initial parame-
ter set according to Section 7.2. Time series of experimental data have to be provided
through the input file. Within the algorithm, a sensitivity matrix and a sensitivity cor-
relation matrix is computed. The output contains the results after each iteration step,
including the parameter values, the χ2-function (Section 7.1), the sensitivities, the final
parameter fit, and, optionally, the parametric sensitivity correlation matrix (normalized
Fisher information matrix, Section 6.3.1).

Random-Start Parameter Estimation. A series of random parameter sets is gen-
erated within given ranges of parameter values. For each parameter set, the parameter
estimation algorithm is started as described in the previous mode. Time series of experi-
mental data have to be provided. The output contains the resulting parameter values and
the corresponding χ2-functions. The parameter values are provided in a format, which can
be directly reused in the input file, e.g. for further simulation.

Cluster-based Parameter Estimation. The cluster-based parameter estimation method
as defined in Section 7.2.1 is run. Here, hierarchical clusters of parameters and state vari-
ables have to be defined as well as the global parameters. Time series of experimental data
have to be provided. The output contains the results after each iteration step, including
parameter values and χ2-function.
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Moreover, user-defined parameter estimation methods can be plugged in. All other
components of the software can thereby be accessed, especially the simulation for a certain
parameter set, the manipulation of parameter values and the generation of the χ2-function.

Parallel computing is enabled for the generation of sensitivity histograms and the pa-
rameter estimation for randomly chosen initial parameter sets, since these two modes are
extremely time-consuming.

8.1.2 Parameter Estimation based on multiple experimental
Scenarios

An important feature of the parameter estimation framework is the parameter estimation
based on multiple scenarios. I.e. experimental data referring to different initial conditions
or different experimental settings can be incorporated and the parameters are estimated to
optimally fit all scenarios. The weighting of the respective experimental data is defined by
the standard deviation and by the number of data sets. Whenever the simulation is called
within the parameter estimation algorithm, it is executed for each of the different scenarios.
All simulated scenarios are based on the same model and the same set of parameters
except for the parameter(s), by which the scenarios differ (Fig. 8.1). In case of CD95-
induced apoptosis, experimental values were provided for different activation scenarios,
corresponding to different initial ligand concentrations.

dx1 / dt = ….                       
….                                       

dxm / dt = …

initial condition 1     Exp. Data 1      
x1,exp            
….         

xN,exp

dx*
1 / dt = ….                       

….                                       

dx*
m / dt = …

Parameters     

Objective Fn 1

+

Objective Fn 2

=
Objective Function 

to minimize !

Exp. Data 2      
x*

1,exp            
….           

x*
N,expinitial condition 2     

Figure 8.1: Example for parameter estimation based on two scenarios, which only differ in
the initial conditions. Experimental data are provided for both scenarios and the objective
function (χ2-function) is computed accordingly.
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8.2 Software Structure and Components

An overview about the software structure and the workflow is given in the flowcharts
Fig. 8.2, Fig. 8.3 and Fig. 8.4. The first figure focuses on the core elements, in particular
the model generation and the simulation. The other flowcharts describe the higher level
processes for all possible modes, which were given in Section 8.1, like single or multiple
(stochastic) simulation runs, sensitivity analysis or parameter estimation.

Automatic Model Generation

Based on the input data consisting of state variables, model definition (reaction network
and functional subunits), parameters and the definition of different scenarios, where ap-
plicable (Section 8.1.2), the model is generated in the form of internal data structures for
state variables and differential equations, called Differential Equation Definition Objects
(DEDO). If parameter estimation is based on multiple scenarios, the model is multiplied,
which means that parallel models are generated, which differ according to the different
scenarios.

Model Simulation

The simulation either runs in the deterministic, stochastic, deterministic-stochastic, or in
the general stochastic hybrid mode. For parameter estimation and sensitivity analysis,
only the deterministic mode is used. The solver accesses the DEDO for propagation of
the system states. The reaction rates, on which the differential equations depend, are also
used for computation of probability density functions in the stochastic case. In addition,
the black boxes are called in order to add their contribution to the time evolution. The
solver contains an adaptive step size control.

Generation of Random Numbers

Random numbers is required for stochastic simulations as well as for the generation of
random parameter sets, e.g. for parameter estimation. The generation of random numbers
of high quality is thereby crucial (see e.g. [120]). Here, the Mersenne Twister random
number generator [121], which is based on a generalized feedback shift register generator
[122], is applied. In case of parallel computing, as it was performed for parameter estimation
and computation of sensitivities using randomly chosen parameter sets, the jobs were
started with different sequences of random numbers in order to prevent correlation.

Time Step Constraints for ODE Solver

The solver can be forced to stop at a sequence of specified time points for the following
reasons. In case of sensitivity analysis, the integral of absolute values of the differences
between simulation results for slightly varied parameters have to be computed (Section
6.1.2). For parameter estimation, the solver has to stop at the time points, for which
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experimental data are given in order to evaluate the simulation data and in case of multiple
stochastic runs, the mean and standard deviation of state variables is evaluated for a
sequence of distinct time points.

Integration of spatial Information and Diffusion Processes

As a possible future extension, simulation of spatial distribution of molecules can be inte-
grated. Therefore, the reaction system has to be replaced by a diffusion-reaction system.
For the software, the following extensions would be required:

• The state variables xi(t) describing molecule concentrations under the assumption
that the system is a ’well-stirred mixture’ have to be replaced by molecule densities
xi(r, t) depending on the time t and position r.

• The diffusion system (system of partial differential equations) has to be discretised
and transformed into a system of ordinary differential equations. The molecule
changes due to diffusion and due to reactions have to be added.

• Instead of one value for the initial molecule concentration xI
i for each species, the

initial spatial distribution xI
i (r) has to be provided, e.g. in the form of images or

image stacks containing the spatial information about molecule concentrations.

• For parameter estimation, simulated data xi(r, t) have to be compared with image
files from experiments.

In summary, the software provides a general framework for the simulation and system
identification of large, user-defined reaction networks. The software package consists of
more than 10000 lines of code, organized in 25 classes and about 250 subroutines. A high
degree of flexibility is provided by the definition of black boxes. A description of the input
files required to run the software is given in Appendix A.
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Figure 8.2: Software Structure. Pseudocode presented as flowcharts of the software frame-
work. Detailed description of the simulation part, which is called by the main program
running in one of seven possible modes.
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Figure 8.3: Flowchart for the main program running in one of the following modes: simu-
lation only, multiple stochastic simulation runs, local and ’global’ sensitivity analysis.
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Figure 8.4: Flowchart with focus on parameter estimation running in one of three modes:
fixed initial parameters, stochastic initial parameters and cluster-based approach.



Chapter 9

Results

The framework presented in Chapter 5, 6, 7 and 8, was applied to programmed cell death,
in particular to CD95-induced apoptosis, which constitutes one of the most important sig-
nalling pathways in all higher organisms (Chapter 4). Controversially discussed questions
like a possible threshold mechanism for life and death or the point of no return were thereby
addressed.

The chapter is structured as follows. After model generation based on structured in-
formation models, the results of the stochastic sensitivity analysis approach I developed in
Section 6.2 are demonstrated, especially the important fact that the ’Sensitivties of Sen-
sitivities’ are extremely low. On this basis, the parameter estimation method I derived in
Section 7.2 is applied, thereby significantly reducing the dimensionality of the parameter
identification problem. Furthermore, it is shown that the sensitivity-controlled estimation
method finds significantly better parameter fits and converges much faster then the un-
modified method. Then, it is demonstrated that the model with the estimated parameters
is capable of reproducing experimental observations referring to different scenarios and of
predicting biologically important system properties. The predictions were experimentally
verified by our biological collaboration partners and detailed hypotheses about the exact
mechanisms are generated. Finally, it is demonstrated that for certain scenarios, the system
is mainly governed by stochastic effects due to low particle numbers of critical molecules.
This suggests the use of a stochastically exact simulation method (Chapter 2.2.3). Be-
cause of the heterogeneity among the reaction time-scales, the General Stochastic Hybrid
Method I developed in Chapter 3 was applied. Thereby, the observed stochastic features
are reproduced.

Structured information model of CD95-induced apoptosis

The network topology of CD95-induced apoptosis was reconstructed by critically search-
ing databases and the literature, resulting in a model with about 60 molecules and more
than 120 unknown parameters (Fig. 4.2). Based on this topology, the concept of ’struc-
tured information models’ was applied (Section 5.1.1). The core elements of the pathway
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(e.g. DISC, caspases) were modelled mechanistically, whereas the remaining network was
described by simplified functional subunits (see Section 5.3). As a result, a model of CD95-
induced apoptosis consisting of 41 molecules (or molecule complexes), 32 interactions and
more than 50 missing parameters was established. This model system is still too large to
allow reliable parameter estimation given the limited number of experimental data points
(Section 9.2).

9.1 Reduction of System Complexity by Sensitivity

Analysis

For further reduction of complexity, the sensitivity analysis approach presented in Chap-
ter 6.2 was applied. Since in general, sensitivities can be determined for specific sets of
parameter values only (local sensitivity analysis), the usefulness of sensitivity analysis is
limited if most parameters are unknown at first. For this reason, sensitivities were de-
termined by ’randomly walking’ through the parameter space. In a virtual experiment,
local sensitivities {ŝij(Φ

q)} (see Eq. 6.8), q = (1, . . . , N), were computed for N ≈ 300000
randomly chosen parameter sets {Φq} requiring huge computational effort. Hereby, the
parameter value ranges, covering up to three orders of magnitude, were set up according
to the typical values for the respective parameter types (e.g. Michaelis-Menten constants,
bimolecular reaction rates or initial concentrations). Information about these values was
taken from the literature (e.g. [49]). Thus, for each parameter set Φq, a sensitivity matrix
S(Φq) was computed.

9.1.1 Sensitivity Matrix

Although, in general, the sensitivities depend on Φq, sensitivity matrices (see Fig. 9.1 for
an exemplary parameter set) typically show two important properties:

• Sensitivities are low in general (|ŝij| � 1 for most (i, j)) indicating high robustness
and the possibility of lowering the ’effective’ dimensionality of the parameter space
(see Section 6.2.2).

• Apparently, modular structures can be identified, i.e. clusters that contain a subset
of molecules, whose concentrations depend on a subset of parameters only. This
inherent system property is an important feature for simplification of the parameter
estimation problem.

Furthermore, the sensitivities of state variables, describing the utmost downstream
processes that capture the main function of the signalling network, are extremely low,
as shown in Fig. 9.2. The execution of programmed cell death is mainly governed by
the executioner caspases, affecting the cleavage of PARP and the ’apoptotic activity’ (see
Section 5.2.2). Once the executioner caspases become activated, the process of cell death
cannot be stopped anymore. Thus, low sensitivities of these state variables indicate a high
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Figure 9.1: The sensitivity matrix of relative sensitivities {ŝij} shows the relative changes
of each state variable i (left to right), mostly referring to molecule concentrations, with
respect to changes of each parameter j (front to back). For simplicity, the absolute values
|ŝij| of the relative sensitivities are displayed. The indices refer to the tables in Appendix
B.1. The sensitivities visualized here were computed for the parameter set providing the
best fit with experimental data as a result of parameter estimation. For different parameter
sets, however, qualitatively similar structures were found.

robustness of the system’s core functionality with respect to parameter fluctuations. This
is a biologically interesting result. It indicates that in the case of CD95-induced apoptosis
the assumption that complex molecular networks operate reliably under changing system
parameters (see Section 6.1.4) is also fulfilled.
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Figure 9.2: This diagram shows the sensitivities of Fig. 9.1 for the executioner caspases,
namely caspase-3, -6, and -7, for PARP, and for the ’apoptotic activity’ only. The com-
paratively low values indicate high robustness of the key functionality.

9.1.2 Sensitivity of Sensitivities

In order to gain information about sensitivities within the complete space of possible pa-
rameter values, the distribution of each sensitivity ŝij is plotted in the form of histograms
for all random parameter sets {Φq}. Additionally, the Boltzmann factor exp(−E/kT ),
which was introduced in Section 6.2.3, was applied in order to amplify the statistical im-
pact of sensitivities for those parameter sets that are more consistent with the experimental
observations and consequently more probable.

The Sensitivity of Sensitivities is extremely low

The most crucial outcome of this ’global’ sensitivity analysis approach is the fact that
’Sensitivities of Sensitivities’ are extremely low in most cases. This is shown in Fig. 9.3 in
the form of some exemplary sensitivity histograms. They were chosen in such a way as to
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represent typical histograms of the sensitivities ŝij for all i, j. Obviously, most distributions
show distinct and narrow peaks, indicating high robustness of the sensitivity values with
respect to large variations of the parameter values.

Whenever the sensitivity of a sensitivity ŝij is extremely low and in addition, the dis-
tribution shows a sharp peak at zero (or extremely close to zero), an indication is given
that the state variable i is likely not to be influenced by parameter j, regardless of the
exact parameter value set. In order to gain additional information, the weighting factor
exp(−E/kT ) was applied and the system was ’cooled down’ by decreasing the value of
kT , starting from kT = ∞. Note that kT = ∞ corresponds to the case, in which all pa-
rameter samples are equally weighted, regardless of the differences between the respective
simulation data and experimental data (Fig. 9.3, blue plots). The Y-axis of the histograms
therefore corresponds to the number of times this sensitivity occurs within the N param-
eter sets. In the second case (red plots), the contribution of each parameter sample to the
histogram is weighted according to the Boltzmann factor, which lowers the impact of pa-
rameter samples according to the inconsistency with experimental data. In this case, most
peaks become sharper (e.g. Fig. 9.3 R, X, Z). Histograms, whose distributions are broad in
the equally weighted case often turn into histograms showing peaks as well (e.g. C, D, E)
as a consequence to the weighting factor. In most cases, only one peak is left over. This is
a strong indication that, within the subset of samples, whose parameters result in system
behaviour more consistent with experimental data, sensitivities are even less sensitive. In
some cases however, the number of peaks increases as a consequence of the weighting fac-
tor (e.g. L, P, O), indicating that the system runs in different modes for certain areas of
the parameters space. In this case, the parameter dependency of the respective sensitivity
cannot be neglected, even if the sensitivity histogram shows one strong peak in the equally
weighted case. Thus, it might be misleading to regard equally weighted distributions only,
since small subsets of parameter samples are likely to be neglected although they might be
highly relevant since they fit the experimental data very well.

In summary, it was shown that the novel sensitivity approach applied here for the first
time is well-suited to gain important information about general parameter dependencies.
As a consequence of the low sensitivity of sensitivities, subsets of parameters can be de-
termined, which are unlikely to influence certain state variables. Considering the high
number of sensitivities with ŝij ≈ 0, this step is crucial to reduce the system dimension-
ality if knowledge of the true parameter values is missing. Thus, the method provides a
good basis for high-dimensional parameter estimation.
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Figure 9.3: Each box shows a histogram for the absolute value of a specific relative sen-
sitivity, |ŝij|, computed for a large number of randomly chosen points in the parameter
space. Parameter and molecule indices refer to the tables in Appendix B.1. The X-axis
represents the relative sensitivity values from 0 to 2 and the Y-axis corresponds to the
density of occurrences. The blue plot shows the equally weighted distribution of sensitivi-
ties, whereas for the red one, each contribution was weighted with the Boltzmann factor,
resulting in sharper and sometimes slightly shifted peaks. The histograms are exemplary
for the sensitivities of all i, j. Many histograms show clear peaks close to zero - an im-
portant property for further modularization. However, distributions like O, P, X, AB or
AC indicate that the respective sensitivities are not robust with respect to large parameter
variations and therefore not informative for modularization.
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9.2 Parameter Estimation and Experiments

In the sensitivity matrix, clusters are identifiable that contain a subset of molecules whose
concentrations depend on a subset of parameters only (Fig. 9.1). Consequently, the cluster-
based parameter estimation approach presented in Section 7.2.1 was applied. Therefore,
the matrix of sensitivities averaged over all parameter samples {Φq} was evaluated and all
(i, j)-combinations with negligible sensitivities were pre-selected. For these combinations,
histograms were evaluated and only those combinations were chosen, whose histograms
indicated that the respective sensitivity value is likely to be negligible in the complete
space of possible parameter values. On this basis, the clustering was performed. As a
result, the sensitivity matrix could be subdivided a priori into 4 clusters, which contain 16
global parameters. Thereafter, the effective system dimensionality was further reduced by
introduction of the adaptive sensitivity control within the parameter estimation algorithm
(see Section 7.2.2). Thus, the parameter identification problem reached a much lower
dimension.

9.2.1 Experiments for probing Regulatory Mechanisms of CD95-
induced Apoptosis

A set of experiments to measure time series of concentrations of 14 different molecules after
activation of CD95 receptors was designed (see Fig. 5.3, red frames). For the experiments,
the human B-lymphoblastoid cell line SKW 6.4 was chosen [123], previously classified as
type I cells by their high amount of DISC formation (see Section 4.1). These cells are
highly sensitive to CD95-mediated apoptosis. Cells were stimulated with different concen-
trations of agonistic anti-APO-1 antibody or LZ-CD95L, which can both be considered
CD95 ligands (Section 5.2), for various periods of time (from 5 minutes to 4 days). Each
sample was evaluated by three independent approaches. Cell death was determined by
flow cytometry [124], caspase activity was measured by fluorometric activity [124], and the
change of concentration of major apoptotic molecules was evaluated by western blot [124].
For all measurements, standardization of experiments was crucial. The experiments were
performed by our collaboration partner Inna Lavrik [34]. Note that quantitatively reliable
measurements in this area require a huge effort. See Appendix C for details.

In a first set of experiments, time series were measured for a ’fast’ activation scenario
with an oversaturated ligand concentration corresponding to more than one ligand per
CD95 receptor. Oversaturation was achieved by 5 µg/ml anti-APO-1 corresponding to a
ligand-receptor ratio of about 5 : 1. The ratio was determined under the assumption that
there are approximately 40000 CD95 receptors per cell. This number was estimated from
measurements by flow cytometry.
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9.2.2 Parameter Estimation based on different scenarios

A good fit between model simulation and experimental data could be achieved reproducing
the fast cleavage of procaspase-8 into its active form via the intermediate product p43/p41,
followed by activation of the executioner caspases and cleavage of Bid and PARP (Fig. 9.4
A,C,D). Due to the oversaturation of receptors, the process is very fast and PARP gets
almost completely cleaved after 10 minutes, followed by the degradation of all observed
proteins. The mathematical model is well-suited to quantitatively describe the activation
of CD95-induced apoptosis. Moreover, the black box representation of the complex degra-
dation process, reproduced by a simplified decay-function, matches the experimental data
very well.

However, the model is still underdetermined and many different parameter sets are able
to match the same experimental data. Accordingly, generalization of the model for biolog-
ical predictions is likely limited. In order to gain additional information about the system,
a different activation scenario with a lower initial ligand concentration was measured and
the parameter estimation was based on these multiple conditions as described in Section
8.1.2. Thus, an integrated model including different activation scenarios was automatically
generated. The integrated model is based on a common set of biochemical parameters but
different initial values of the ligand concentration. As a result of the combined parameter
estimation approach, the model fits several activation scenarios for the different ligand
concentrations (Fig. 9.4 A-E).

This combined parameter estimation problem required high computational effort. The
Levenberg-Marquardt algorithm (Section 7.1.2), which was mainly applied here, was run
for several thousand times with randomly chosen initial parameter values in order to find
parameter sets fitting the activation scenarios. Without prior system reduction based on
sensitivity analysis, the same algorithm did not provide any adequate parameter fit.

9.2.3 Evaluation of Sensitivity-controlled Parameter Estimation
Algorithm

By integrating a local sensitivity control in the Levenberg-Marquardt algorithm (Section
7.2.2), the number of parameters, which are considered relevant, could further be reduced
by ≈ 50% due to extremely low sensitivities in the respective areas of the parameter space.
Moreover, correlated parameters (Section 6.3) were detected. In order to show typical
parameter sensitivity correlations, the normalized Fisher Information matrix Jn (Section
6.3) is visualized in Fig. 9.5 for an exemplary parameter set. These parameter sensitivity
correlations were evaluated and taken into account after each iteration step.

The sensitivity-controlled and sensitivity-correlation-controlled algorithm was then com-
pared with the original Levenberg-Marquardt algorithm. For this reason, both methods
were run for a series of random start parameter sets. The distribution of the resulting
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Figure 9.4: A-E: Parameter estimation on the basis of two activation scenarios with ligand
concentrations of 5 µg/ml and 200 ng/ml led to a good fit between model simulations (solid
lines) and experimental data (dots) for both scenarios. A: The high ligand concentration
leads to an early activation of receptors, followed by fast DISC formation, resulting in a
high cleavage capacity of procaspase-8 via the intermediate product (p43/p41). C,D: Early
generation of active caspase-8 is followed by the cleavage of caspase-3, -7, and -2 as well as
by cleavage of Bid and PARP. After PARP cleavage, decomposition of cellular components
starts. B,E: Simulation of slower activation (200 ng/ml) using the same set of biochemical
parameters. Due to the smaller percentage of receptors activated by ligands, the capacity
of caspase-8 cleavage is much lower. However, there is still a cleavage of 100% of the
executioner caspases and PARP, resulting in apoptosis. F-H: Model prediction for a series
of lower ligand concentrations (25 ng/ml, 10 ng/ml and 1 ng/ml) using the previously
estimated parameter set. Note that for the latter activation scenarios stochastic instead
of deterministic simulations (see Section 9.4) were applied. As expected, procaspase-8
cleavage slows down (F, G). However, for 1 ng/ml (H) the death process is completely
stopped. Note that in F and G, the procaspase-8 cleavage starts after a significant delay.
Y-axis: A, B, F, G, H: relative units since the (pro-) caspase-concentrations are directly
comparable; C, D, E: arbitrary units. The standard deviation of experimental data was
≈ 20% on average (see Appendix C.2).

χ2-values (see Section 7.1) and the computation times is visualized in Fig. 9.6. Here, the
χ2-function, which corresponds to the sum of the squares of differences between experimen-
tal and simulated data, divided by the standard deviation, is used to quantify the quality of
the respective parameter fits. Obviously, the sensitivity-controlled algorithm was capable
of finding significantly more parameter sets with low χ2-values. Furthermore, the modified
algorithm required significantly less computation time (about 80% reduction).
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Figure 9.6: The performance of the sensitivity-controlled Levenberg-Marquardt algorithm
(blue points, left) is compared with the original algorithm (red squares, right). Each point
represents the result of one parameter estimation, started with a random initial parameter
set. Y-axis: Value of the χ2-function of the resulting parameter set. X-axis: Computation
time for the respective parameter estimation run. The sensitivity control also checks for
correlated parameters. In this application, ’good’ parameter fits correspond to a χ2-value
of below 10.
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9.3 Model Prediction and Experimental Validation

In the following, model predictions, generated on the basis of the estimated parameters, are
presented. Since several parameter sets were found, which provide good fits with similar
χ2-values (see Fig. 9.6 and Section 7.2.3), only those predictions were taken into account,
which were at least qualitatively consistent for all of these parameter sets1.

Both the model and the experimental data show that with decreasing ligand concen-
tration apoptosis is slowed down considerably (Fig. 9.4 A-E). However, cell death is still
achieved. To address the question whether the apoptotic process slows down continuously
with lower ligand concentrations or whether there is a threshold for induction of apoptosis
at a distinct receptor-ligand ratio, induction of apoptosis was simulated for very low ligand
concentrations (see Fig. 9.4 F,G,H). The model predicts that below a critical concentration
corresponding to a ligand-receptor ratio of approx. 1 : 102, apoptosis is completely stopped
(see Fig. 9.4 H). This prediction was then validated by experiments (Fig. 9.7 A).

9.3.1 Threshold Mechanism for CD95-induced Apoptosis

In the next step, the model was used to elucidate the exact underlying threshold mecha-
nism. It remains puzzling that even for the below-threshold scenario a sufficient number
of receptors should be activated to cleave procaspase-8, thereby triggering all subsequent
caspases. The caspase-8 cleavage capacity at the DISC is assumed to be proportional
to the number of active CD95 receptors since the DISCs are supposed to remain active
after cleaving procaspase-8 molecules. Consequently, the rate of caspase-8 cleavage con-
tinuously decreases with lower ligand concentration. Based on this fact only, it has to
be assumed that even for ligand concentrations below the threshold, apoptosis cannot be
stopped entirely, but would only be slowed down. The apparent contradiction between
model prediction and the latter considerations were addressed by revealing the responsible
molecules and molecular interactions in the model.

Binding of the short and the long variants of c-FLIP (c-FLIPS, c-FLIPL) to the DISC
competes with activation of caspase-8 [125]. According to the parameter estimation, there
are many more CD95 receptors and procaspase-8 molecules than c-FLIP molecules. Based
on the sensitivity analysis, this estimate is considered very reliable since the investigated
system behaviour and the χ2-function are highly sensitive with respect to the parameters
of this network part. In the meantime, the low c-FLIP concentration in comparison with
procaspase-8 could also be confirmed by experiments (data not shown). The cleavage rate
of procaspase-8 depends on the number of active receptors. Whenever c-FLIP binds to a
DISC, the respective binding site is blocked. The simulation of a scenario with subthresh-
old concentrations of activating ligands shows a steady decrease of active DISCs until all

1The diagrams showing the simulated behaviour are based on the parameter set providing the best fit
(lowest χ2-function).
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Figure 9.7: Experimental validation of predicted behaviour. A: The death rates are in
a good agreement with the model, which predicts triggering of the death process for the
scenarios of 10 ng/ml and above, whereas for 1 ng/ml, apoptosis is not executed at all.
However, the measured death rate for 10 ng/ml was below 100%. Note that these rates
were measured for a population of many cells. Variability of parameters and of numbers
of ligands as well as intrinsic stochastic effects due to low particle numbers might account
for significant fluctuations in scenarios close to the activation threshold. This assump-
tion is confirmed by stochastic simulations in Section 9.4. B: SKW 6.4 cells were treated
with CHX for 2 hours. Thereafter, the cells were stimulated with the indicated concentra-
tions of anti-APO-1 antibodies (corresponding to CD95-ligands) for one day. Cell death
was determined using FACS analysis. C: Caspase-8 activity: The model predictions for
slow activation scenarios (ligand concentrations between 100 ng/ml and 1 ng/ml) were
confirmed by experiments. In particular, the predicted delay of caspase activation was val-
idated. An increase of active caspase-8 was already observed after 1 hour for 100 ng/ml.
For 50 ng/ml, the activation starts significantly later. In case of 10 ng/ml, activity was
observed after more than 4 hours (data not shown) as predicted in Fig. 9.4 G, whereas no
increase occurred for 1 ng/ml. D: In the sub-threshold scenario, only a very low increase
of active caspase-8 and no increase of active caspase-3 was measured (Y-axis shows the
fold-increase). For higher ligand concentrations, the low caspase activity is due to prior
degradation (data refer to one day after stimulation). The experiments were executed by
Inna Lavrik [34].

of them are blocked by c-FLIP (Fig. 9.8).

As a consequence, the simulation shows a limited generation of the intermediate caspase-
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8 cleavage product p43/p41, mainly due to the presence of c-FLIPL (Fig. 9.8 A,B), but
no significant generation of active caspase-8 as a result of the early and complete DISC-
blockage. In contrast, the simulation for a ligand-receptor ratio above the threshold shows
an entirely different behavior: due to the higher number of active receptors, the amount
of c-FLIP is not sufficient to block all DISCs before active caspase-8 can be generated in a
quantity that is sufficient to trigger apoptosis. Thus, the c-FLIP mechanism identified in
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Figure 9.8: Simulation of threshold mechanism. The sub-threshold behaviour (A, B) is
compared with an above-threshold scenario (C, D). Below the threshold, active caspase-
8 and all the subsequent caspases cannot be generated in a number sufficiently high to
trigger apoptosis. According to the model, c-FLIP is blocking the low number of active
DISCs (see red and green curve in E) before caspase-8 can be generated in a sufficiently
high amount. Without c-FLIP, the number of active DISCs and, therefore, their cleavage
capacity would be significantly higher (dotted line in E). The simulation for c-FLIP reduced
by 75% (C,D), corresponding to an above-threshold scenario, shows a slow and steady
cleavage of procaspase-8 until caspase-3 is generated in a number sufficiently high to trigger
the feedback loop via caspase-6, accelerating the activation of caspase-8 and resulting in
apoptosis after a delay of many hours (compare B and D on a log-scale). F: A similar
effect could be simulated for IAP reduced by 75% showing the importance of this inhibitor
in case of slow activations (compare A and F).

the model can be considered a switch, which blocks the activation of caspase-8 for signals
(ligand concentrations) below a critical quantity and passes on the activation signal above
this level. Consequently, the threshold is highly sensitive to the concentration of c-FLIP
(Fig. 9.8 C,D).
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9.3.2 Experimental Validation of the Threshold Mechanism

To confirm the model predictions experimentally, the FLIP level was down-regulated using
the translation inhibitor cyclohexamide (CHX)[3]. Since proteins are steadily degraded
and regenerated, this technique mainly affects proteins with short half-life times like FLIP.
The experiments confirmed that the addition of CHX decreased c-FLIP level up to 70%
and did not change the amount of the caspases (Fig. 7 in [34]). Downregulation of c-FLIP
under these conditions resulted in cell death already occurring upon a ligand concentration
of only 1 ng/ml (see Fig. 9.7 B). This concentration was shown both experimentally and
theoretically to be below the critical value required for apoptosis without CHX. These
experiments show the important role of c-FLIP concentration in the regulation of CD95-
induced apoptosis and clearly confirm the model predictions (see Fig. 9.8 C,D).

Model-based hypothesis checking of competing threshold mechanisms

The modelling framework was then used to address the currently discussed alternative
inhibition mechanisms involving downstream inhibitors like IAP or XIAP [83, 126]. Espe-
cially in the case of a low caspase-8 activity, IAP concentration is highly relevant because
it directly influences the critical ’threshold’ value of the caspase-8 activity, above which the
positive feedback loop caspase-8 → caspase-3 → caspase-6 → caspase-8 is triggered. The
triggering of this loop is highly sensitive with respect to the concentration of active caspase-
8. Once the loop is activated via caspase-3 cleaved by caspase-8, the death process cannot
be stopped anymore. Thus, IAP is considered to induce a similar threshold mechanism
by effectively blocking caspase-3, thereby disrupting the amplification loop. According to
simulations, this is possible up to a critical quantity of caspase-8 only. Above this level, it
is predicted that caspase-3 is activated in a quantity, which cannot be effectively blocked by
IAP anymore, and thus, the irreversible death process starts. Consequently, for decreased
IAP concentrations, this loop becomes already active for lower concentrations of active
caspase-8 resulting in a complete cell death (Fig. 9.8 F), whereas high IAP concentrations
either inhibit or delay this event for many hours. Thus, IAP also influences the threshold
of ligand concentration. However, IAP alone is not sufficient to inhibit apoptosis in the
absence of c-FLIP, since it can block signalling only in the case of low caspase-8 activi-
ties. Therefore, the influence of IAP is low for ligand concentrations significantly above
the threshold. Consequently, the model suggests that the main threshold of CD95-induced
apoptosis is determined upstream in the DISC by preventing a steady increase of active
caspase-8, which would otherwise trigger the amplification loop even for sub-threshold lig-
and concentrations. Thereby, the ratio between active receptors and c-FLIP as well as the
ratio between binding rates of c-FLIP to DISC and of procaspase-8 to DISC, respectively,
are highly relevant parameters for this threshold.
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Delay of Apoptosis and Point of no Return

Another important model prediction addresses the system behavior above the threshold,
where the combination of the c-FLIP mechanism with the amplification loop does not
lead to a steadily decreased caspase cleavage rate upon a decreased ligand concentration.
Instead, the simulation shows that the caspase cleavage, the amplification loop and the
subsequent death process are delayed but still complete. As shown in Fig. 9.4 F,G and
Fig. 9.7 C for low ligand concentrations, there are no observable system changes for up to
many hours after activation of the pathway. Then, the death process suddenly starts with-
out any external stimulation of the system. This is due to an extremely slow increase of the
active caspase concentration, which reaches a critical level upon which the amplification
loop is triggered (see Fig. 9.8 C,D). Thus, for up to many hours, there is no observable
difference to cells, which are not (or not sufficiently) stimulated by ligands, however, the
death process is irreversibly started form the beginning of the stimulation on and cannot
be stopped anymore (point of no return). These predicted delays were also confirmed by
experiments (Fig. 9.7 C).

The proposed threshold mechanism was verified by testing the model predictions for
several scenarios. The caspase-8 activation was measured for a series of lower ligand
concentrations, quantitatively confirming the predicted delays, the complete cleavage of
procaspase-8 above and the blockage of the active caspase-8 generation below the thresh-
old (e.g. Fig. 9.7 C). In order to further prove the proposed mechanism, the activity of
up- and downstream molecules below the threshold was systematically scanned. The ex-
periments confirmed that a low amount of p43/41 and an extremely low amount of active
caspase-8 were generated below the critical activation threshold as predicted by the model
(Fig. 9.7 D and Fig. 9.8 B). No significant activity of caspase-3 was observed, which would
otherwise have triggered the feedback loop (Fig. 9.7 D). Furthermore, neither PARP cleav-
age nor cell death was observed. This is a clear indication that the main signal is stopped
upstream at the DISC by c-FLIP, and that IAP, the second important inhibitor, pre-
vents the sensitive caspase-3 activity from reaching a significant level upon low amounts
of caspase-8 as predicted by simulation.

9.4 Stochastic System Behaviour

As a consequence of the previously described threshold behaviour, deterministic simulation
methods yield a death rate of either 0% for ligand concentrations below, or 100% for ligand
concentration above one distinct threshold. The low particle numbers of critical molecules2

for slow activation scenarios, however, suggest that the system behaviour is also governed
by stochastic effects. Moreover, the experimentally observed death rates referring to a
population of many cells are between 0% and 100% for certain ligand concentrations (Fig.

2The simulation shows that for slow activation scenarios, the particle numbers of active caspases can
be below 100.
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9.7 A). This also indicates that due to stochastic effects, apoptosis is triggered for a subset
of all cells only. For this reason, stochastic simulations were performed for different acti-
vation scenarios with initial ligand concentrations between 0.1 ng/ml and 10 µg/ml. The
simulated activation scenarios were then scanned for stochastic effects. Multiple stochastic
simulation runs (up to 1000) were performed for each investigated activation scenario and
the time evolution of the mean molecule concentrations and of the respective standard
deviation were evaluated. Results for one specific scenario have already been discussed in
Section 3.4.2.

For activation scenarios with ligand concentrations of more than ≈ 50 ng/ml, no sig-
nificant stochastic effects could be found. The deviations between different stochastic
simulation runs for the same scenario were negligible. Furthermore, the mean values are
identical to the result of deterministic simulations. This fact confirms that the use of a de-
terministic simulation method for the parameter estimation (ligand concentrations ≥ 200
ng/ml) was appropriate. For lower ligand concentrations, however, stochastic simulations
show a system behaviour, which is qualitatively different from the deterministic results.
Thus, the deterministic simulation methods are not appropriate in this area. An example
is given in Fig. 3.2 for a ligand concentration of 7 ng/ml.

In Section 9.3.1, it was demonstrated that the concentration of active caspase-8 and
caspase-3 is highly critical since slight variations can be crucial for triggering the apoptotic
pathway resulting in cell death. It is assumed that this effect is mainly due to the self-
amplifying feedback loop (caspase-8 → caspase-3 → caspase-6 → caspase-8). The feedback
loop is triggered by active caspase-8 molecules that are generated at the DISC depending
on the number of active receptors and thus on the initial ligand concentration. Since active
caspases are subject to steady degradation and inhibition (e.g. binding with IAP), there is
a critical particle number of active caspases, above which the loop is triggered. If this num-
ber is not reached due to insufficient caspase-8 generation, apoptosis will not be executed
and the cell will survive. This case occurs for ligand concentrations below a certain level
(see Fig. 9.9). On the other hand, it can be predicted that the loop is always triggered
for much higher ligand concentrations. However, for the area between both extremes, it
cannot be predicted when the critical particle number for triggering the amplification loop
is achieved. Furthermore, it cannot even be predicted whether the loop and the subse-
quent apoptotic process is triggered at all. This is a result of the fluctuations of the active
caspase concentrations. Thus, only a probability for reaching the critical number of active
caspases and for the execution of apoptosis can be determined depending on the ligand
concentrations.

The results of the stochastic simulations performed for different activation scenarios
are visualized in Fig. 9.9. It was shown that for ligand concentrations of ≈ 1.5 ng/ml
and below, cell death is not achieved. For ≈ 20 ng/ml and above, the death rate is 100%,
whereas the area between 1.5 ng/ml and 20 ng/ml is dominated by stochastic effects re-
sulting in death rates between 0% and 100%. Thus, there is a value range of more than
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one order of magnitude, in which only a part of the cells within a cell population dies due
to fluctuations of the caspase activity.
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Figure 9.9: Cell Death Rates computed by stochastic simulation. This diagram shows
the probability that cell death is triggered depending on the CD95-ligand concentration.
A series of independent stochastic simulation runs was performed for each activation sce-
nario (ligand concentration). According to these simulations, apoptosis is always executed
above an upper threshold of ligand concentration, whereas the cells survive below a lower
threshold of ligand concentration. Between both values, the cell behaviour shows high
fluctuations either leading to cell death or cell survival. Note that a single simulation run
corresponds to the behaviour of a single cell and that the probabilities reflect the death
rates of a cell population.

As already demonstrated in Section 3.4.2, stochastically exact simulations using the
original Gillespie algorithm are impaired by the high computation time since only some of
the molecule species are of low particle numbers and reaction rates. On the other hand, it
was shown that the approximate stochastic simulation method using Langevin equations
could not provide correct results (Fig. 3.2). This is due to the fact that in this method,
interactions between molecules are not simulated as discrete events, leading to qualitatively
different results whenever particle numbers of critical molecules are low. For this reason,
the General Stochastic Hybrid Method, which was developed in this thesis (Chapter 3.3),
was used. This method applies the stochastically exact Gillespie algorithm only for the
reaction subset of molecules with critically low particle numbers, whereas the remaining
reactions are simulated using Langevin equations. As already presented in Section 3.4.2,
the method was capable of saving > 98% of computation time in comparison with the pure
Gillespie method and reliable stochastic simulations became feasible.
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Critical System Behaviour revealed by Ensembles of Parameter Sets

A very interesting result is the fact that the critical threshold area between cell death and
cell survival could also be detected by a completely different method. As an extension
of the approach of evaluating sensitivities on the basis of ensembles of parameter sets, I
suggested in Section 7.2.3 to investigate other system properties on this basis as well. This
was proposed as an alternative to the examination of distinct parameter fits. Especially
discrepancies in the predictions are thereby expected to reveal biologically interesting ar-
eas. In order to apply this concept, the concentration of important molecules like PARP,
which is an indicator for the execution of cell death, was evaluated for a large number of
parameter sets in the space of possible parameter values. On this basis, the variance of
the prediction of cell death is plotted for different ligand concentrations to detect areas of
high inconsistencies among the predictions. This plot is visualized in Fig. 9.10. It clearly
indicates that only within a distinct area, which approximately corresponds to the area
governed by stochastic effects (see Fig. 9.9), the predictions strongly vary. Thus, the ap-
proach of evaluating parameter set ensembles has proven to be capable of predicting an
area of utmost biological relevance, which is also crucial for systematic planning of new
experiments. This method can therefore be considered an enormously powerful tool for
system identification of highly underdetermined biological networks.
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Figure 9.10: The variance of predicted cell death rates (Y-axis) is plotted for different
ligand concentrations (X-axis), based on the evaluation of a parameter fit ensemble. Cell
survival and cell death of a single system is quantified by 0 and 1. The plot reveals an area
of high inconsistencies among the predictions for different parameter sets, corresponding
to an area of high biological relevance. The plots were generated by Dr. Ivayla Vacheva.



Chapter 10

Conclusions and Perspectives

The motivation of this thesis was data-based modelling and system identification of complex
networks in cell biology, which are characterized by a large number of unknown parameters,
poorly understood mechanisms, uncertain network topologies and stochastic effects. Such
systems are ubiquitous in molecular cell biology and in many other fields of science like
econometrics. For this purpose, I implemented a modelling technique integrating informa-
tion of heterogeneous quality. Furthermore, I developed a stochastic sensitivity analysis
method and introduced the concept of ’Sensitivity of Sensitivities’ based on the evaluation
of sensitivity histograms. Applied to the signal transduction network of CD95-induced
apoptosis, the method was able to reveal two important system properties even without
having knowledge about the true parameters: modularity and robustness. On this basis, I
created an efficient parameter estimation approach, leading to parameters, for which the
model has been found to be capable of reproducing the observed system behaviour and
of predicting biologically highly relevant system properties. These predictions could be
confirmed by experiments. Moreover, I developed a stochastic hybrid algorithm, which
enables stochastically accurate simulations for large reaction systems running on multi-
ple timescales, thereby revealing the stochastic systems behaviour. In conclusion, I have
demonstrated that the methods of this thesis were well-suited to identify and to elucidate
key mechanisms in the complex regulation of programmed cell death.

Data-based Modelling of complex Signal Transduction Networks

It has been shown that the mathematical model of CD95-induced apoptosis, based on
the system identification and modelling framework I developed in thesis, provides novel
insights into important regulatory mechanisms for induction of apoptosis. To overcome
the problem of heterogeneous information about cellular networks, ’Structured Informa-
tion Models’ have been introduced, which divide the network into subsystems according
to information quality. Thereby, information of different levels can be incorporated in one
model instead of dealing with isolated models. This approach provides high extensibility,
e.g. by splitting the introduced black boxes into further subsystems once new information
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becomes available. Therefore, the technique is well-adapted to uncertain network topolo-
gies and especially to the presently limited availability of reliable qunatitative data.

Parameters have been estimated based on experimental time-series and predictions
could be generated that were thoroughly validated by experiments. In comparison to
existing models of signal transduction systems, e.g. the study of Fussenegger et al. [28],
which is based on ad hoc set parameter values only, or the data-based study of Swameye
et al. [27], which addresses a rather small and isolated system, a data-based method has
been developed here, which is capable of handling large models with a large number of
unknown parameters. Two inherent system properties, i.e. modularity and high robust-
ness of parameter sensitivities have been revealed by the new stochastic sensitivity analysis
approach (Section 6.2). They were the key to drastically reduce the dimensionality of the
parameter identification problem (Section 7.2). The developed framework provides a gen-
eral basis for large-scale modelling and simulation of complex networks and can be readily
applied to other applications such as modelling of metabolic networks, cell proliferation or
differentiation. The intrinsic reduction of dimensionality proposed here is systematic and
adaptive to both the original model and the experimental data.

Biological Relevance of Mathematical Modelling

A biologically highly relevant result of the combined theoretical and experimental approach
was the finding of a ’threshold between life and death’ in the regulation of CD95-mediated
apoptosis. Model-based hypotheses about the underlying regulatory mechanism have been
generated, also addressing the highly debated question of the exact influence and interac-
tion of different inhibitors. Especially the fact that it became possible to predict scenarios,
in which the influence of certain inhibitors becomes crucial for apoptotic regulation, is of ut-
most relevance for the planning of new experiments. Detailed predictions, e.g. concerning
a shift of the threshold upon concentration changes of the inhibitors could be experimen-
tally confirmed. Furthermore, the model has elucidated the mechanism responsible for the
phenomenon that for up to many hours, no observable system change takes place in case of
low activations, followed by a sudden start of the apoptotic program (point of no return).
The threshold mechanism was predicted to be closely related to the upstream factor c-
FLIP that efficiently blocks caspase-8 activation at the DISC at low ligand concentrations
consequently stopping the apoptotic program. An important pre-condition for this mech-
anism was a significantly lower c-FLIP concentration in comparison with procaspase-8,
which was revealed by parameter estimation and has been experimentally confirmed in the
meantime. Moreover, this regulatory mechanism could be probed in silico by simulation of
alternative mechanisms [34], which were found not to be consistent with experimental data.

Despite the ever-increasing number of studies on CD95-induced apoptosis, a systemic
understanding of this complex signalling pathway is still missing. The question of a thresh-
old for induction of apoptosis plays a central role in understanding the sensitivity and resis-
tance of cells towards various chemotherapeutic agents. Abnormal c-FLIP expression has
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been identified in various diseases connected with dysregulation in CD95 signalling such as
multiple sclerosis, Alzheimer’s disease, diabetes mellitus, rheumatoid arthritis, Hodgkin’s
disease and different cancers [127, 128]. The developed mathematical framework now en-
ables simulations of the mechanism under different conditions, thereby predicting a higher
or lower resistance to apoptosis. Thus, a powerful tool for describing potential effects of
chemotherapeutics and for studying the mechanism behind the regulation of apoptosis by
drugs in treatment of cancer and other diseases is provided. As an example, the highly
debated question between IAP and c-FLIP as possible inhibitors, could be answered by
identifying IAP to be crucial for extremely low activation scenarios only.

An important role of modelling signal transduction in this thesis was related to hypoth-
esis generation and experimental design. The model predicted a delay of cell death with
decreasing stimulation strength of CD95-induced apoptosis, which surprisingly resulted in
a complete change of system behaviour, i.e. the complete stop of the cell death program.
According to the limited numbers of experimental data, it cannot be expected that the
parameters in the model are fine-tuned. However, by revealing the ranges, in which these
qualitative changes of the system behaviour are expected, a basis for the definition of new
experiments is given. Moreover, the model was capable of predicting that there is a range
of ligand concentration covering more than one order of magnitude, in which the system
is mainly governed by stochastic effects, which is a possible explanation for the observed
death rates (Section 9.4). Thus, the model has revealed mechanisms for observed system
behaviour, which have answered highly relevant questions about the regulation of pro-
grammed cell death for the first time. In this sense, mathematical modelling in the context
of programmed cell death has proven to be an indispensable part of biological knowledge
discovery.

Stochastic System Behaviour and General Stochastic Hybrid Algorithm

Stochastic simulations showed that the system behaviour is mainly governed by stochastic
effects within a threshold-close range of ligand concentrations. Due to extremely low par-
ticle numbers of important molecule species (e.g. active caspase-8), where small variations
can already be crucial for triggering the death process, exact stochastic simulations are
required. It has been shown in Section 3.4.2 that deterministic or approximate stochastic
simulations lead to qualitatively incorrect results. Exact stochastic simulations using the
Gillespie algorithm are, however, severely impaired by the enormous computation time
required in case the model also contains molecules and interactions of much higher par-
ticle numbers and reaction rates. In order to address this very general problem, I have
developed the General Stochastic Hybrid Method (Chapter 3), which combines the Gille-
spie algorithm with a system of stochastic differential equations. Using this method for
simulation of CD95-induced apoptosis, the computation time could be reduced by more
than 98% and stochastically reliable simulations for the prediction of the cell death rates
(Section 9.4) became possible. Moreover, the hybrid algorithm is a very general approach
and can be applied to any other kind of Markov processes as well.
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Distribution of Sensitivities in Parameter Space

The concept of evaluating the distribution of sensitivities in parameter space was intro-
duced to reduce the high dimension of the parameter identification problem. The common
approach of manual model simplification potentially introduces a user bias into the model,
since simplification, in general, requires an understanding of the network functionality,
which is typically not given without prior knowledge of the true parameters. Instead, the
reduction of dimensionality was based on the evaluation of sensitivity histograms, which
provide information about the distribution of sensitivities within the space of possible
parameter values (Section 6.2). This can be considered as an approach towards global
sensitivity analysis, for which a general solution does not exist. The main objective of
this procedure was to gain information about general dependencies between the temporal
behaviour of state variables and the parameters.

The fact that the sensitivity histograms provide crucial information (Section 9.1) is an
important result. As an intrinsic system property, a large percentage of sensitivities have
been found to be extremely low and extremely insensitive with respect to parameter varia-
tions. On this basis, subsets of state variables could be identified, which depend on a subset
of parameters only, regardless of the true parameter values. This is crucial for the cluster-
based and sensitivity-controlled parameter estimation method developed in Section 7.2.
In this approach, reduction of dimensionality is already achieved by a modular structure
of the dependencies between parameters and state-variables. Thereby, it is not a require-
ment to identify parameters, which are irrelevant for the complete system. As a result,
the performance of the parameter estimation has been significantly increased (Section 9.2).

Although a systematic scan of the parameter space is impaired by its high dimension
raising questions about the evidence of the latter approach, it has been shown in Section
6.2.2 that under certain assumptions, even a limited number of parameter samples pro-
vide meaningful information. These assumptions are not based on the specific sensitivity-
parameter dependencies, they are merely based on properties, which are typically fulfilled
in biochemical systems, like a high percentage of parameters, which are either correlated,
or which do not influence certain system parts.

Furthermore, the approach of evaluating the distribution of sensitivities is always cor-
rect for predicting which dependencies between state variables and parameters must not
be neglected for system identification and model simplification (even though they might
be found to be irrelevant at the end). Thereby, it can also be predicted, which areas of a
network have to be simulated quantitatively due to a strong influence of parameter values
on the system behaviour, and for which parts qualitative simulations might be sufficient
due to intrinsic and parameter-independent system properties.
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Data-based Ensembles of Parameter Sets

The approach of evaluating sensitivities for an ensemble of parameter sets instead of con-
sidering local sensitivities can be put into a broader context. First, data from observations
were incorporated by introduction of a Boltzmann factor, amplifying the impact of sensi-
tivity information according to the difference between simulation data for the respective
parameter set and experimental data (Section 6.2.3). Thereby, typical patterns were found
in the histograms, which provide additional information.

Second, the procedure of evaluating sensitivities for a large number of different param-
eter sets has been extended to the investigation of other system properties on the basis
of an ensemble of parameter fits. It has been shown in Section 9.2.3 that many different
parameter fits were found by parameter estimation, which match the experimental data
with almost the same quality. This indicates that system properties and predictions based
on one single parameter fit are not very meaningful. As a consequence, it has been sug-
gested in this thesis to consider a complete ensemble of parameter fits for the investigation
of system properties and for the generation of predictions (Section 7.2.3). Especially in-
consistencies in the predictions are of high relevance for the definition of new experiments.
In this way, the critical activation range for CD95-induced apoptosis could be identified.

Future Perspectives

The investigation and analysis of complex biological networks and mechanisms in cells is
probably one of the most challenging and fastest growing fields of science. The classic
experimental approaches, which mostly focus on the investigation of molecule interactions
in an isolated context and under specific experimental settings, cannot keep up with the
steadily increasing number of potential interaction partners and the diversity and complex-
ity of the real networks. The potential of pure experimental approaches will therefore be
limited for revealing the network functionalities in living cells. Even the outcome of DNA
sequencing remains below its potential as long as protein functions and interactions within
the life systems are not sufficiently understood.

But also from the theoretical perspective, system identification of networks, character-
ized by an enormous complexity and a lack of information about the underlying mecha-
nisms on both the qualitative and quantitative level, constitutes a new class of problems,
which has not been sufficiently approached yet. Methods to describe complex networks in
a qualitative way, e.g. as scale free networks [129, 130], are promising for revealing gen-
eral principles like robustness and fragility [131]. Their ability to describe the real system
behaviour is, however, limited, since single interactions are not quantitatively considered
although the properties of real biological networks are often related to very concrete fea-
tures of single mechanisms.

The emerging field of systems biology, which has been recently started with great en-
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thusiasm, is an important step towards the investigation of biological processes on systems
level. However, it has not proved yet that it also provides qualitatively new methods,
which address the new dimension of complexity. Instead, approaches from the field of en-
gineering and numerical mathematics are now applied to biological systems, especially to
subsystems, where they are expected to be well-suited and promising. Moreover, the ma-
jority of studies address specific applications with the goal of answering specific biological
questions. Although this is a first important step to establish systematic and theoretical
procedures in the field of cell biology, it has to be followed by a second, much more chal-
lenging step concerning the development of new theoretical approaches for the description
and particularly for the system identification of complex and highly underdetermined bio-
logical systems.

Numerical parameter identification methods, for example, which originate from disci-
plines, where experimental data are generated in huge amounts and with high precision
and where the number of unknown parameters is low, cannot be expected to be appro-
priate for the completely different situation in cell biology. Here, uncertain models and a
large number of unknown parameters are facing a low number of experimental data points
with high measurement errors. Whereas the current numerical methods are based on the
assumption that the best parameter fit corresponds to the problem’s solution, it has to
be taken into account that the data situation of biological systems typically results in a
huge solution space and that a single parameter fit should be considered rather meaning-
less. One could argue that in this situation, better experimental data should be generated
and more quantitative information concerning the single mechanisms should be obtained
at first. Considering the fact that quantitatively reliable in vivo measurements like time
series of concentrations are still enormously time-consuming, this cannot be expected in
the near future.

Instead, I believe that it would be fatal - especially concerning the great potential of
developing new theoretical methods - not to attempt to extract information from available
quantitative experimental data in the context of existing qualitative knowledge about e.g.
network topologies. Therefore, alternative ways disregarding the restrictions of current nu-
merical methods and by-passing the requirement of finding one distinct parameter set have
to be found. This is one of the main conclusions of this thesis and reflects the situation
of real biological systems, as it is well-accepted that biological systems mostly keep their
system properties constant although the real parameters are also subject to high varia-
tions. Thus, intrinsic biological properties like robustness and the fact that the function of
biological systems does not require fine-tuned parameters, indicates that the extraction of
information is possible even without exact knowledge of the true parameters. This is a new
principle, which was approached in this thesis by evaluating randomly chosen parameter
sets and by the generation of ensembles of estimated parameter fits based on randomly
chosen initial values. It has been shown that histograms of parameter sensitivities, for
example, provide enormous information, in particular by incorporation of a Boltzmann
factor based on experimental data.
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Although the huge space of unknown parameters raises questions about the evidence
of system properties claimed on the basis of evaluating ensembles of parameter fits, the
approach has proved that already based on inconsistencies in the predictions associated
to the parameter sets, it has become possible to reveal crucial areas of impact of critical
molecules and to define new experiments. So far, in most cases, this was only possible
by good intuitive guesses of experimentalists. A systematic and theoretical approach was,
however, missing.

I believe that the currently developing methods such as provided in this thesis or in
the recent study of Brown and Sethna [132] dealing with model extraction also based on
multiple parameter fits, mark the beginning of a new methodology to investigate highly
underdetermined systems. The approach of this thesis has to be further refined, e.g. by the
’High Dimensional Model Representation’ [107] for a systematic description of an ’effective’
parameter space. Furthermore, it has to be extended by the concept of also considering
alternative model choices instead of different parameter sets only, leading to model dis-
crimination, which is currently examined in the study of Vacheva, Bentele and Eils [117].
For a better understanding of the regulation of programmed cell death, the established
loop between modelling, theoretical predictions and experiments has already proved to be
highly efficient and has raised a lot of new detailed questions. These have defined further
areas of investigation of CD95-induced apoptosis, e.g. the influence of spatial aspects on
the network function (study of Ulrich, Bentele, et al. [133]) or more detailed investigation
of certain key regulatory mechanisms (study of Lavrik, Bentele, et al. [134]). The modular
and hierarchical structure of the presented modelling framework provides a high degree of
flexibility for future model extensions in various ways, either by adding additional pathways
and systems like proliferation or gene expression, or by adding more detailed biochemical
mechanisms with more information becoming available.

The prediction of molecules and mechanisms, relevant for the threshold between cell
death and cell survival, is of utmost relevance for cancer research and for the identification
of potential chemotherapeutical drugs. Thus, the methods of this thesis have proved to
be well-suited for complex and highly underdetermined networks and are therefore of high
relevance for many other research areas, going far beyond programmed cell death.
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Appendix A

Sotware Package ISLANDS

In this chapter, a user manual for the software package ISLANDS (Integrated Signal Trans-
duction Modelling and System Identification Tool), which I developed for integrating the
modelling, stochastic simulation, sensitivity analysis and parameter estimation approaches
of this thesis, is given. The software structure and functionality is outlined in Chapter 8.

The user interface is provided by an input file, in which the run mode and configuration
parameters have to be specified. Furthermore, the input file contains a section for model
definition and experimental data (parameter estimation). The output structure of the soft-
ware depends on the run mode. For simulations, a time series of all state variables is given,
for sensitivity analysis, the sensitivity matrix and sensitivity histograms are provided. In
case of parameter estimations, the parameter fits and the least square term are given.

The input file is split into several data sections, which are demonstrated in the follow-
ing. Each data section is introduced by the respective keyword. An exemplary input file
containing an explanation of each element is given at the end of this chapter.

Run Mode and Settings

The settings section contains general setting like the run mode, options for the output (e.g.
log level), configurations and numerical settings, e.g. for the ODE and hybrid solver. The
data section is introduced with the keyword SETTINGS.
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Model Definition

In this section, the model is defined by the molecules (state variables), reaction schema,
reaction rate definition, black box definition and parameters. The molecule and param-
eter names can chosen in a user-defined way. Links between initial concentrations and
parameters, between reactions and molecules, between reactions and parameters, etc., are
given by these names. The data sections are introduced by the keywords MOLECULES,
REACTIONS, RATE FACTORS, PARAMETERS and FN UNITS.

Experimental Data

For parameter estimation and data-based weighting of sensitivities, time series of experi-
mental data have to be provided. Each time series consists of four lines. In the first line,
the link to the state variable (molecule name) is given, to which the time series refer. The
second, third and fourth line contain the time points, experimental value and standard
deviation. The experimental data section is introduced by the keyword EXPERIMEN-
TAL DATA.

Multiple experimental scenarios can be included (see Section 8.1.2). For each addi-
tional scenario, an identifier has to be provided as well as the different initial conditions,
which is realized by linking initial values of the respective state variables (molecules)
to additional parameters. The experimental data have to refer to molecule names with
the identifier for the respective scenario. The data section is introduced by the keyword
MODEL MULTIPLIER.



111

Example for Input File

//////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
//         I N P U T   F I L E   (E X A M P L E) 
// 
//         S E T T I N G S   A N D   M O D E L   D E F I N I T I O N 
// 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
 
SETTINGS 
 
 
// Run Mode: 
 
RUN_MODE       0   // SIMULATION:        0 
           // MULTIPLE_STOCH_RUNS:      1 
           // SENSITIVITY_ANALYSIS:      2  
           //  STOCH. SENSITIVITY_ANALYSIS:    2  
           //    (with SENS_ANAL_MONTE_CARLO_PARAM=1) 
           // PARAMETER_ESTIMATION:      3   
           // PARAMETER_ESTIMATION MULTI-START:   3  
           //    (with PARAM_ESTIM_RANDOM_START_VALUES=1) 
           // USER_DEFINED_PARAM_ESTIM     4 
 
 
SENS_ANAL_MONTE_CARLO_PARAM  0  // stochastic sens. analysis (histograms)  
PARAM_ESTIM_RANDOM_START_VALUES 0  // random multi-start algorithm for param. estim. 
 
 
// Multiple Stochastic Runs: 
 
N_STOCH_RUNS      1000  // number of runs in multiple stochastic run mode (RUN_MODE=1) 
N_STOCH_RESULT_TIMESTEPS   1000  // number of time points for generation of stoch. result (mean+stddev)) 
 
 
// Simulation Settings: 
 
t_0        0  // start time of simulation 
t_max       200  // simulation runs from t=0 to t=t_max 
report_step_width    8  // only one of 'report_step_width' steps are reported into file. 
global_log_level     1  // log level: 0: everything  1: detailed  2: state variables only 
ConcToParticle     20000 // factor between concentration and particle number 
StochMode      0  // 1: purely stochastic (pure Gillespie, ODE solver not used at all) 
STOCH_PARTICLE_NO_THRESHOLD  0  // 0: pure ODE solver, >0 hybrid solver with thresh. for particle number 
 
 
// Model Output: 
 
PRINT_DIFF_EQUATIONS_MUSCOD  0  // print diff. equations as C-function (right hand side, MUSCOD compatible) 
PRINT_DIFF_EQUATIONS_MADONNA  1  // print diff. equations in Berkeley Madonna format 
PRINT_EXP_VALUES     0  // options for printing exp. values in MUSCOD-structure 
 
 
// Sensitivity Analysis: 
 
SENSITIVITY_CORRELATION   1  // 1: correlation of sensitivities considered in parameter estimation 
SENS_PARAM_VARIATION    0.005 // relative parameter variation (numerical default method) 
HISTOGRAM_DIM     200  // number of intervals in histogram 
N_MONTE_CARLO_PARAM_STEPS   10000 // number of random parameter sets 
REPORT_SENS_TO_FILE    1  // sensitivities (rand. walk) are written to file after each step 
DEPENDENCY_MATRIX    0  // print dependency matrix (sens. matrix, 1: sens. above threshold, 0: else  

 
kb_T_sensitivity_histogram  100  // kT for histograms 
 
 
// Parameter Estimation: 
 
N_PARAM_ESTIM_STARTS    10000 // number of parameter estimations (random multi-start) 
N_MONTE_CARLO_SAFETY_REPORT_STEPS 10  // saving results after each N_MONTE_CARLO_SAFETY_REPORT_STEPS-interval 
N_PARAMS_TO_ESTIM    17  // number of parameters to be estimated 
 
SENSITIVITY_THRESHOLD    0.01  // threshold for local parameter sensitivities (Theta_s) (sensitivity control) 
SENSITIVITY_CORRELATION_THRESHOLD 0.98  // sensitivity correlation threshold (1-Theta_corr) 
MAXIMUM_OBJ_FN_OF_FIRST_ESTIM  50000 // If the objective function of the initial values (random param. estim. mode)  
                                       // is above this threshold, estimation is skipped. 
MAXIMUM_OBJ_FN_OF_ANY_ESTIM  50000 // At any step: if the objective function of the values, estim. is skipped. 
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// Settings for ODE Solver (equivalent to Runge-Kutta solver of numerical recipes): 
 
ODE_SOLVER_EPS     0.00001 
ODE_SOLVER_H1     0.001 
ODE_SAFETY      0.9 
ODE_PGROW      -0.2 
ODE_PSHRNK      -0.25 
ODE_ERRCON      1.89e-5 
ODE_MAXSTP      1000000 
ODE_TINY       1.0e-30 
 
 
// Hybrid Solver: 
 
TOL_REACTION_TIME    0.000001   // max. tolerance for iterative determination of next  

// stoch. event 
MAX_STOCH_STEPS     10000000000   // max. number of stochastic steps 
STOCH_MODE_UPDATE_INTERVAL  5          // division of reaction system into subset is rechecked after 
                                              // STOCH_MODE_UPDATE_INTERVAL simulation steps. 
LANGEVIN_MODE     1    // 1: general stochastic hybrid solver GSHM (with Langevin) 
                                              // 0: pure deterministic-stochastic hybrid solver 
dt_max_langevin     0.05       // max. time step width for Wiener process (Langevin) 
 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
// STATE VARIABLES 
// 
// name         initial value 
 
MOLECULES 
 
L    I_L    // Ligand with initial concentration I_L (parameter) 
R    I_R    // Receptor with initial concentration I_R (parameter) 
L_R    0    // Receptor:Ligand with initial concentration 0 
FADD    I_FADD   // .... 
DISCbs   0        
DISCpCas8  0  
DISCpCas8_2  0   
... 
 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
// REACTIONS 
// 
//  A  +     B       ->     C       +     D         mode            k_ab        k_rev   ratefactor 
 
 
REACTIONS 
 
L             R            L_R            0         ELEM_REACT      K_LR            0     0 
L_R           FADD         DISCbs         0         ELEM_REACT      K_DISC          0     0 
DISCbs        proCas-8     DISCpCas8      0         ELEM_REACT      K_DISC_pC8      0     0 
 
DISCpCas8     proCas-8     DISCpCas8_2    0         ELEM_REACT      K_DISC_pC8_2    0     0 
DISCpCas8_2   0            Cas-8_IM       Cas-8_IM  ELEM_REACT      K_DISC_to_C8IM  0     0 
 
proCas-3      0            Cas-3          0         RATEFACTOR      K_Cas_8_3       0     Cas8_3 
proCas-3      0            Cas-3          0         RATEFACTOR      K_Cas_9_3       0     Cas9_3 
proCas-7      0            Cas-7          0         RATEFACTOR      K_Cas_9_7       0     Cas9_7 
proCas-2      0            Cas-2          0         RATEFACTOR      K_Cas_3_2       0     Cas3_2 
... 
 
////////////////////////////////////////////////////////////////////////////////// 
// 
//  EXPLANATION: 
// 
//  Mode = ELEM_REACT : A+B -> C+D with rate [A][B]*K_ab  and reverse reaction 
//                                 with rate [C][D]*K_rev 
// 
//  Mode = RATEFACTOR : A+B -> C+D with rate K_ab*ratefactor as defined in  
//                                 the appr. ratefactor (name RateFactorName). 
////////////////////////////////////////////////////////////////////////////////// 
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/////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
// PARAMETERS 
// 
// name             value        min      max (param. estim.)  
 
PARAMETERS 
 
K_LR     0.017748     0.01     1 
K_DISC_pC8   0.028354     0.01     1.5 
K_DISC_to_C8IM  0.913561     0.01     1 
I_FLIP    0.293669     0.02     5 
I_PARP    0.050411     0.02     5 
... 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
// RATEFACTORS 
// 
 
RATE_FACTORS 
 
RATEFACTOR Cas8_3  
proCas-3  RECIPROCAL  Km_Cas_89_3 
Cas-8   0    NONE 
 
RATEFACTOR Cas9_3 
proCas-3  RECIPROCAL  Km_Cas_89_3 
Cas-9   0    NONE 
 
RATEFACTOR Cas9_7 
proCas-7  RECIPROCAL  Km_Cas_9_7 
Cas-9   0    NONE 
 
... 

 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
// EXPLANATION OF RATE FACTORS: 
// 
// Rate factors are designed to provide felxibility in the description of reaction rates. 
// 
// Each line corresponds to a factor by which the reaction rate of the reaction referring  
// to the rate factor is multiplied.  
// A line consists of 3 elements: 
//  - First element:  molecule 
//  - Second element: mode (RECIROCAL OR 0) 
//  - Third element:  constant (reference to parameter, given by the parameter name.  
//                    'NONE' means: no further constant required 
// 
// The factor is computed as follows:  
// mode = 0:                factor = [molecule] * constant    
//                                   (if third element='NONE'(-> no const): factor = [molecule].) 
// mode = RECIPROCAL:       factor = [molecule]/(const+[molecule]) 
// 
// All factors (all lines below RATEFACTOR) are multiplied. The result is multiplied with the  
// reaction rate constant of the reaction, which refers to the rate factor. This result is the  
// reaction rate of the corresp. reaction ! 
// 
// Example for Michaelis-Menten with enzyme and substr: 
// 
// RATEFACTOR mich_ment 
// substr    RECIPROCAL   Km   
// enzyme    0            NONE  
// 
// means:  rate = k*[enzyme][substr]/(Km+[substr])   (The reaction substr->product has to refer to  
//                                                    this rate factor!) 
// 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
// DEFINITION OF BLACK BOXES 
// 
 
FN_UNITS 
 
// e.g. Mitochondria (Cytochrome-C-release): 
 
BLACK_BOX_NR 1          
INPUT   tBid   BclXL/2   CytoSmacStrd 
OUTPUT   CytoSmacStrd CytoSmac 
FNU_PARAMS C_MITO_D_BID_BCL T_MITO_CYT_REL 
 
... 
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////////////////////////////////////////////////////////////////////////////////// 
// 
//  EXPLANATION: 
// 
//  BLACK_BOX_NR: number 
//  INPUT:        input parameters 
//  OUTPUT:       output parameters 
//  FNU_PARAMS:   parameters of black box 
// 
////////////////////////////////////////////////////////////////////////////////// 
 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
// MODEL MULTIPLIER 
// 
// for parameter estimation based on multiple parameters 
// 
 
MODEL_MULTIPLIER 
 
ADDITIONAL_MODEL _slow1 
L_slow1  I_L_slow1 
R_slow1  I_R_slow1 
 
... 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
//  EXPLANATION: 
// 
//  ADDITIONAL_MODEL 'identifyer': 
//  'state variable'  'new parameter' 
//  ... 
// 
//  An additional scenario with the respective identifier (here '_slow1') is added. The name of 
//  each state variable (e.g.'proCas-8') is extended by this identifyer (-> e.g. 'proCas-8_slow1'). 
//  Experimental data referring to this scenario have contain to the new name. 
//  The list of state variables and 'new parameters' defines the new scenario by indication of the 
//  changes in comparison with the original scenario (here, the initial ligand concentration L_slow1 
//  of the scenario '_slow1' is set to the parameter 'I_L_slow1', which has to be defined in the  
//  parameter section. 
// 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
 
 
 
/////////////////////////////////////////////////////////////////////////////////////////////////// 
// 
// EXPERIMENTAL DATA FOR PARAMETER ESTIMATION 
// 
// 
// TIMESERIES moleculeName   weight number  normalization_flag 
// time data set 
// value data set 
// stddev data set 
//  
// normalization flag: that only the relative values are considered  
//  (concentrations are normalized to [0..1]) 
// weight: weighting factor (currently not used) 
 
EXPERIMENTAL_DATA 
 
TIMESERIES  proCas-8   1  7  0   
5  10  20  30  80  120  180  // time 
1.4667 1.0667 0.5833 0.2500 0.0600 0.0433 0.010 // value 
0.25  0.2  0.15  0.15  0.15  0.1  0.1  // stddev 
 
TIMESERIES  Cas-8_IM_F  1  7  0 
5  10  20  30  80  120  180  // time 
0.0106 0.0325 0.0750 0.0531 0.0187 0.0056 0.0011 // value 
0.015 0.02  0.03  0.025 0.02  0.01  0.01  // stddev 
 
TIMESERIES  Cas-8   1  7  0 
5  10  20  30  80  120  180  // time 
0.0588 0.1562 0.2063 0.1313 0.0200 0.00625 0.00625 // value 
0.02  0.04  0.04  0.03  0.02  0.02  0.02  // steddev 
 
... 
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Model Definition

In this chapter, the model presented in Section 5.2 (Fig. 5.3) is defined in more detail.
The definition consists of the reaction network, the parameters and the definition of black
boxes. Although many parameter sets were found, for which the model simulation leads
to equivalent results, the parameter set providing the best fit with experimental data is
presented here for reasons of reproducibility. All diagrams shown in Chapter 9 are based
on this parameter set.

B.1 Reaction Schema and Parameters

In this section, the reaction network is defined by a list of all reactions, a list of all molecules
and other state variables including initial values and the list of parameters. The parameter
list also contains the parameters for the black boxes.
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B.1.1 Reaction SchemaSupplemental Table 1A

Reactions Rate constants and other parameters1)

Elementary Reactions k, kb

L+R -> L:R 2) k_LR
L:R+FADD -> DISCbs k_DISCbs
DISCbc + procaspase-8 -> DISCbs:procaspase-8 k_DISC_procas8
DISCbs:procaspase-8 + procaspase-8 -> DISCbs:procaspase-8:procaspase-8 k_DISC_procas8_2
DISCbs:procaspase-8:procaspase-8 -> DISCbs:p43/p41 k_DISC_to_cas8_IM
DISCbs:p43/p41 -> DISCbs + caspase-83) k_cas8_IM_to_cas8
DISCbs + c-FLIPL -> DISCbs:c-FLIPL k_DISC_FLIP
DISCbs:c-FLIPL + procaspase-8 -> DISCbs:c-FLIPL:procaspase-8 k_DISC_procas8_2
DISCbs:procaspase-8 + c-FLIPL -> DISCbs:c-FLIPL:procaspase-8 k_DISC_FLIP
DISCbs:c-FLIPL:procaspase-8 -> blockedDISCbs + p43/p41 k_DISC_FLIP_to_cas8_IM
DISCbs + c-FLIPS -> blockedDISCbs k_DISC_FLIP
DISCbs:procaspase-8 + c-FLIPS -> blockedDISCbs k_DISC_FLIP
caspase-3 + IAP <-> caspase-3:IAP k_cas39_IAP, kb_cas_IAP
caspase-7 + IAP <-> caspase-7:IAP k_cas7_IAP, kb_cas_IAP
caspase-9 + IAP <-> caspase-9:IAP k_cas39_IAP, kb_cas_IAP
Cytochrome C(released) + Apaf-1 <-> Apaf-1:Cytochrome C k_ApafCyto, kb_ApafCyto
Apaf-1:Cytochrome C + procaspase-9 -> Apoptosome k_Apoptosom
Apoptosome -> Apaf-1:Cytochrome C + caspase-9 kb_Apoptosom
Smac/Diablo + IAP <-> IAP:Smac/Diablo k_Smac_IAP, kb_Smac_IAP

Enzymatic reaction / enzyme k, Km
4)

procaspase-3 -> caspase-3  /  caspase-8 k_cas_8_3, Km_cas_89_3
procaspase-3 -> caspase-3  /  caspase-9 k_cas_9_3, Km_cas_89_3
procaspase-2 -> caspase-2  /  caspase-3 k_cas_3_2, Km_cas_3_269
procaspase-6 -> caspase-6  /  caspase-3 k_cas_3_6, Km_cas_3_269
procaspase-8 -> caspase-8  /  caspase-6 k_cas_6_8, Km_cas_6_8
procaspase-7 -> caspase-7  /  caspase-8 k_cas_8_7, Km_cas_8_7
procaspase-7 -> caspase-7  /  caspase-9 k_cas_9_7, Km_cas_9_7
Bid -> tBid  /  caspase-2 k_cas2_Bid, Km_cas28_Bid
Bid -> tBid  /  caspase-8 k_cas8_Bid, Km_cas28_Bid
Apoptosome -> Apaf-1:Cytochrome C + caspase-9  /  caspase-3 k_cas_3_9, Km_cas_3_269
PARP -> cPARP /  caspase-3 5) k_cas36_apop_activity, Km_cas367_apop_activity
PARP -> cPARP /  caspase-7 k_cas7_apop_activity, Km_cas367_apop_activity

Black boxes Parameters

Mitochondria
    See supp. online material (black boxes). C_MITO_DELTA_BID_BCL

T_MITO_RELEASE

Degradation
    See supp. online material (black boxes). K_DEGRAD

K_APOP_ACTIVITY_FLUCT
C_APOP_EFF_ACTIVITY
K_DEGRAD_PARP
K_STEADY_FLUCT

1) The parameters refer to supp. table 2
2) Example: d[L:R]/dt= k_LR*[L]*[R] - k_DISCbs*[L:R]*[FADD]
3) caspase-8 = active form of caspase-8 (p18/p10)2
4) k*[Et] = Vmax
5) The PARP cleavage runs in parallel to the 'black box' degradation process.
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B.1.2 Molecules and State VariablesSupplemental Table 1B: Molecules

Molecule Nr. Molecule Initial Value

1 L I_L
2 R I_R
3 L:R 0
4 FADD I_FADD
5 DISCbs 0
6 DISC_procas-8 0
7 DISC_procas-8_2 0
8 blocked DISCbs 0
9 cFLIP_L I_cFLIP

10 cFLIP_S I_cFLIP
11 DISC_FLIP 0
12 DISC_FLIP_procas-8 0
13 caspase-8_IM_FINAL 0
14 procas-8 I_procas-8
15 caspase-8_IM 0
16 caspase-8 0
17 procas-2 I_procas-2
18 caspase-2 0
19 procas-3 I_procas-3
20 caspase-3 0
21 procas-6 I_procas-6
22 caspase-6 0
23 procas-7 I_procas-7
24 caspase-7 0
25 procas-9 I_procas-9
26 caspase-9 0
27 Apoptsome 0
28 Apaf-1:Cytochrome C 0
29 Cytochrome C/Smac, released 0
30 caspase-3:IAP 0
31 caspase-7:IAP 0
32 caspase-9:IAP 0
33 IAP I_IAP
34 Smac/Diablo:IAP 0
35 Bid I_Bid
36 tBid 0
37 BclXL/2 I_BclXL/2
38 Apaf-1 I_Apaf-1
39 Cytochrome C/Smac, stored I_Cytchr_Smac_strd
40 PARP I_PARP
41 cPARP 0

Other quantities

42 x_apop_activitiy
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B.1.3 Parameters
Supplemental Table 1C: Parameters

Param Nr. Parameter Value

1 k_LR 1,60E+09
2 k_DISCbs 8,39E+11
3 k_DISC_procas8 2,56E+09
4 k_DISC_procas8_2 7,43E+11
5 k_DISC_to_cas8_IM 9,14E-01
6 I_cFLIP 6,50E-08
7 k_DISC_FLIP_to_cas8_IM 1,11E-02
8 k_DISC_FLIP 1,88E+11
9 k_cas8_IM_to_cas8 4,71E+00

10 k_cas2_Bid 2,17E-01
11 k_cas8_Bid 2,14E+00
12 C_MITO_DELTA_BID_BCL 0,00E+00
13 Km_cas28_Bid 4,01E-06
14 k_cas_9_7 1,13E-03
15 Km_cas_3_269 5,56E-08
16 Km_cas_9_7 6,66E-08
17 k_cas_9_3 1,01E+00
18 k_cas_3_6 7,01E-02
19 k_cas_3_2 1,81E-01
20 k_cas_6_8 1,00E-01
21 Km_cas_6_8 2,21E-08
22 k_ApafCyto 1,92E+10
23 kb_ApafCyto 6,02E-02
24 k_Apoptosom 1,85E+09
25 kb_Apoptosom 1,61E-03
26 k_cas_3_9 2,14E-01
27 T_MITO_RELEASE 7 min
28 k_cas39_IAP 4,58E+13
29 k_cas7_IAP 9,37E+11
30 kb_cas_IAP 1,30E-03
31 k_Smac_IAP 4,77E+10
32 kb_Smac_IAP 5,83E-02
33 k_cas_8_3 1,90E+00
34 Km_cas_89_3 8,90E-08
35 k_cas_8_7 1,26E-09
36 Km_cas_8_7 1,24E-07
37 K_DEGRAD_PARP 1,45E-02
38 Km_cas367_apop_activity 5,60E-06
39 k_cas36_apop_activity 1,28E+01
40 k_cas7_apop_activity 2,56E+02
41 C_APOP_EFF_ACTIVITY 9,22E+00
42 I_Bid 2,32E-07
43 I_Apaf-1 9,14E-07
44 I_Cytchr_Smac_strd 5.11E-071)

45 I_BclXL/2 1.13E-081)

46 I_IAP 1,22E-08
47 I_PARP 1,12E-08
48 I_R 4,43E-07
49 I_L 1.99E-06, 7.96E-08 (5µg, 200ng)
50 I_FADD 2,97E-07
51 I_procas-8 4,43E-07
52 I_procas-3 1,12E-07
53 I_procas-7 1,88E-08
54 I_procas-2 1,58E-07
55 I_procas-9 2,45E-07
56 K_DEGRAD 0.891,  0.1842)

57 K_DEGRAD_steady 1,30E-02
58 K_DEGRAD_deathSub 4,47E-03

Units: First order rate constants and K_DEGRAD values: 1/min
Second order rate constants (e.g. A+B->C): 1/(M*min)
Michaelis-Menten: k-values: 1/min, Km-values: M
Initial concentrations: mol

1) The concentrations of Cytochrome C, Smac/Diablo, Bcl-XL and Bcl-2 were replaced by two 'effective' concentrations
(see supp. online material, black boxes) - the initial concentration is therefore not identical with the real one.
2) These constants refer to the fast and the slow activation scenario, since according to experimental
observations, the degradation constant of the black box varies for different activation scenarios.
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B.2 Functional Units

The definition of the functional subunits (black boxes), namely the degradation system
and the mitochondrial Cytochrome-C release is given here. The biological motivation is
provided in Section 5.2.2.

B.2.1 Degradation System

The degradation subsystem (black box 1) is dependent on:

• concentration of caspase-3, -6 and -7 (executioner caspases),

• concentration of PARP.

It affects the following state variables:

• concentration of PARP and cPARP,

• concentration of all molecules due to degradation.

Function

The virtual state variable called xapop quantifies the ’apoptotic activity’ (Section 5.2.2). It
is assumed that the velocity of the cell’s degradation is directly influenced by this activity.
It is also assumed that the activity itself is caused by active caspase-3, -6, and -7 and
that the increase of the activity runs in parallel to the experimentally observable PARP
cleavage. The PARP cleavage and the increase of the apoptotic activity are described as
enzymatic processes. In addition, it is assumed that the activity itself is subject to a slow
decay. Thus the time evolution of xapop is defined as

dxapop

dt
=

kcas36 apop activity · (1− xapop) · xcaspase−3

Km, cas367 apop activity + (1− xapop)

+
kcas36 apop activity · (1− xapop) · xcaspase−6

Km, cas367 apop activity + (1− xapop)

+
kcas7 apop activity · (1− xapop) · xcaspase−7

Km, cas367 apop activity + (1− xapop)

− Kapop activity decay · xapop

with xapop = 0 for t = 0. Note that xapop is normalized to [0; 1]. The introduced parameters
correspond to the constants of a Michaelis-Menten equation (Section 2.1.3).
The velocity of the degradation process depends on xapop influencing all molecule concen-
trations. A quadratic relation between xapop and the degradation is assumed in order to
account for a superproportional influence of the apoptotic activity. In addition, a steady
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degradation of all active caspases like the caspase-8 (p18/p10)2-complex is assumed regard-
less of the apoptotic activity. The influence of the degradation subsystem on the molecule
concentration is therefore given by

f 1
i (x, xapop) = −xi · kdegrad · x2

apop −
{

ksteady degrad · xi : for active caspase complexes,
0 : otherwise.

The degradation constant kdegrad was assumed to be the same for all molecules1.

B.2.2 Mitochondrial Cytochrome-C Release

The mitochondrial subsystem (black box 2) describes the Cytochrome-C release triggered
upon an increase of tBid. See Section 5.2.2 for details. The release is dependent on:

• Bcl-Xl/Bcl-2 (anti-apoptotic substrates),

• tBid (pro-apoptotic substrates).

It affects the concentration of:

• Cytochrome-C and Smac/Diablo, stored in mitochondria,

• Cytochrome-C and Smac/Diablo, released.

Function

As soon as tBid reaches a certain level in comparison with the anti-apoptotic substrate
concentration of Bcl-Xl and Bcl-22, cytochrome-C release is triggered:

IF xtBid(t) > x∗Bcl−Xl/Bcl−2(t) + C∆bid,bcl AND release has not been triggered yet

THEN ttrigger = t

Based on experimental observations [93, 94], the subsequent release is defined by

xcytochr−x,stored(t) = xcytochr−x,stored(0) · frelease(t− ttrigger),

xSmac/Diablo,stored(t) = xSmac/Diablo,stored(0) · frelease(t− ttrigger).

dxcytochr−x,released

dt
= −dxcytochr−x,stored

dt
dxSmac/Diablo,released

dt
= −

dxSmac/Diablo,stored

dt

The function frelease(t) describes a smooth and complete release within a time interval of
length Tmito release (see also [34]).

1The degradation of xPARP is modelled separately by introduction of kdegrad PARP, since xPARP is an
active part of the degradation process itself.

2For computation of the threshold, the concentrations of Bcl-Xl, Bcl-2 and tBid are not directly compa-
rable. The threshold is therefore defined as follows: xtBid > const1 · xBcl−Xl + const2 · xBcl−2 + C∆bid,bcl.
Since the absolute amounts of Bcl-Xl, Bcl-2 and their anti-apoptotic efficiency are not known, the expres-
sion (const1 · xBcl−Xl + const2 · xBcl−2) was replaced by an ’efficient’ concentration x∗Bcl−Xl/Bcl−2.



Appendix C

Exeprimental Procedures

The experiments presented in this thesis were performed by our collaboration partners
Inna Lavrik and Simone Stösser from the lab of Peter H. Krammer at the German Cancer
Research Center. For completeness, the experimental procedures of [34] are summarized
here. An overview about the methods can be found in [123, 124].

C.1 Cell Cultures and Reagents

To standardize the assays, SKW 6.4 cells were taken from the logarithmic growth phase.
To ensure the linear relation between the antigen and the strength of the signal in the
western blot, serial dilutions of recombinant proteins or cell lysates were probed with var-
ious antibodies. Quantification of chemiluminescence showed good linearity in proportion
to the amount of an antigen ([34], supp. Fig. 3). Thus, the following western blot experi-
ments were performed using the same concentrations of the antibodies.

The human B-lymphoblastoid cell line SKW 6.4 was cultured in RPMI 1640 medium
supplemented with 10% fetal calf serum, 50 µg/ml gentamycin and 5 mM HEPES. Anti-
APO-1 (anti-CD95) is an agonistic monoclonal antibody (IgG3) recognizing an epitope on
the extracellular part of APO-1 (CD95/Fas) [135]. The C15 mAb (mouse IgG2b) recognizes
the p18 subunit of caspase-8 [136].

Apoptosis Assays

Anti-APO-1 antibody was added to SKW 6.4 cells in a concentration range from 5 µg/ml
to 0.1 ng/ml. The density of cells was 106 cells/ml. Samples were incubated at 37oC for
various periods of time. After incubation the samples were divided into three parts. The
first part was subjected to analysis of cell viability by Flow Cytometry, the second one was
probed for caspase activity and the third one was analyzed by western blot.
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Flow Cytometry Analysis

The percentage of viable cells was determined by FSC/SSC using a FACSscan Cytometer
(BD). A minimum of 10.000 cells per sample was analyzed.

Western Blot

For western blot analysis the cells were lysed in buffer A (20 mM Tris/HCl, pH 7.4,
1 % Triton X-100, 10 % glycerol, 150 mM NaCl, 1 mM PMSF and 1 µg/ml of leupeptin,
antipain, chymostatin and pepstatin A) for 15 min. on ice and centrifuged (15 min, 14,000
g). Postnuclear supernatant equivalents of 0.5 · 106 cells or 25 µg of protein as determined
by the BCA method (Pierce) were separated on 12% SDS-PAGE and blotted onto a ni-
trocellulose membrane (Amersham). The sample corresponding to each time point was
loaded on each gel twice to estimate the error value. The western blot procedure was per-
formed as described previously [76]. Blots were quantified using the LumiImager TMF1
system and Lumi Analyst software Version 3.0 (Boehringer Mannheim GmbH, Mannheim,
Germany). For calibration of LumiImager System we used serial dilutions of the corre-
sponding recombinant proteins (from 100 fmol to 10 pmol) or cell lysates (from 1 µg to
50 µg). The measurements were always performed in the region of a linear relation be-
tween the amount of antigen and the signal strength. The light signal was measured in
Boehringer Light Units (BLU) and in relative amounts. The BLU value calculated is the
absolute integration value of the band that was evaluated. The standard deviation was
calculated from up to three independent experiments.

Caspase Activity Assays

Cytosolic lysates were incubated with 50M site-specific tetrapeptide substrates (z-IETD-
AFC for caspase-8, z-DEVD-AFC for caspase-3) in a caspase assay buffer B (50 mM
HEPES, 100 mM NaCl, 10 mM dithiothreitol, 0.1% (w/v) CHAPS, 10% (w/v) sucrose, pH
7.4) in a final volume of 200 µl. The release of the fluorogenic group AFC was determined
after 1h of incubation at 37oC by a microplate fluorescence reader Wallach 1420 (Perkin
Elmer) at the excitation wavelength of 405nm and emission wavelength of 535nm.

Cycloheximide experiments

Cycloheximide (CHX) was used at a concentration of 10 µg/ml for two hours before the
addition of anti-APO-1.

Antibodies and Recombinant Proteins

Anti-APO-1 (anti-CD95) is an agonistic monoclonal antibody (IgG3) recognizing an epi-
tope on the extracellular part of APO-1 (CD95/Fas) [135]. The C15 mAb (mouse IgG2b)
recognizes the p18 subunit of caspase-8 (Scaffidi et al., 1997). The NF6 mAB (mouse IgG1)
recognizes N-terminal part of c-FLIP (Scaffidi et al., 1997). Anti-caspase-3 (clone 19) and
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anti-caspase-2 (clone 35) mABs were from BD Transduction Laboratories. Anti-caspase-7
polyclonal antibody and anti-caspase-9 (clone F-7) mAb were from Santa Cruz Biotech-
nology (Santa Cruz, CA). Anti-Actin mAb (clone AC-40) was from Sigma (Saint Louis,
Missouri). Anti-Bid polyclonal antibody was from Biosource International (Nivelles, Bel-
gium). The HRPO-conjugated goat anti-rabbit IgG was from Santa Cruz Biotechnology
(Santa Cruz, CA). The HRPO-conjugated goat anti-mouse IgG1, IgG2a and IgG2b were
from Southern Biotechnology Associates (Birmingham, AL). Recombinant human tBid,
caspase-3, caspase-9, caspase-8 were from Apotech (Lausanne, Switzerland). Recombinant
Caspase-2 was from Sigma (Saint Louis, Missouri).

C.2 Standard Deviation

For each activation scenario, time series of molecule concentrations were measured. These
experiments were repeated several times (at least 3 times for most important molecules).
However, the quality of the biological experiments varied in some cases. In order to avoid
artifacts caused by outliers and noisy data, the parameter estimation was based on time
series of the experiment with the highest quality in these cases, instead of averaging data
of different qualities. Nevertheless, the standard deviations σij were based on deviations
between the different experiments. For most molecules, the relative standard deviation
was about 20% on average. For data points, which are close to zero after start of degra-
dation, a larger relative standard deviation was chosen. Otherwise, even small differences
between simulation and experiment of these points would already lead to unreasonably
high contributions to the least square term, misleading the parameter estimation.
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equations (Birkhäuser, Basel, 1983).

[25] P. Mendes and D.B. Kell. Non-linear optimization of biochemical pathways: appli-
cations to metabolic engeneering and parameter estimation. Bioinformatics 14, 869
(1998).

[26] H. G. Bock. Numerical treatment of inverse problems in chemical reaction kinetics.
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