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ZUSAMMENFASSUNG 
 
 
Transport von ZNS-wirksamen Arzneistoffen an der Blut-Liquor-Schranke 
 
 
Referent:  Prof. Dr. Gert Fricker 
Koreferent:  Prof. Dr. Ulrich Hilgenfeldt 
 
 
Neben dem cerebralen Kapillarendothel, der so genannten Blut-Hirn-Schranke 

(BHS), stellen die Plexus chorioidei (CP) die zweite aktive Barriere zwischen Blut und 

ZNS dar. Während die BHS in erster Linie Barrierefunktion hat, sind die CP unmittel-

bar an der Bildung der Cerebrospinalflüssigkeit (CSF) beteiligt, synthetisieren und 

sekretieren Proteine und haben verschiedene andere neurogene und endokrine 

Funktionen.  Im Gegensatz zur BHS sind die CP hinsichtlich Wirkstofftransport und 

Funktionen bzw. Expression von Carrierproteinen weit weniger gut charakterisiert. 

Seit einigen Jahrzehnten ist bekannt, dass die CP aktiv am Export von organischen 

Anionen aus der extrazellulären Flüssigkeit beteiligt sind (Pappenheimer et al., 1961; 

Villalobos et al., 2002; Miller et al., 2002; Breen et al., 2004; Baehr et al., in press). 

Organische Anionen wie auch Kationen in Form von kreislauffremden Xenobiotika, 

pflanzlichen und tierischen Giften oder auch Arzneistoffen sind von großer physiolo-

gischer, pharmakologischer und toxikologischer Bedeutung (Pardridge und Miller, 

1993; Wright und Dantzler, 2004). Eingehende Untersuchungen an CP-Gewebe sind 

jedoch schwierig auf Grund der morphologischen Komplexität, der anatomischen 

Lage und der Größe des Gewebes. Die molekularen Prozesse, die funktionelle Viel-

schichtigkeit und die Regulation des organischen Anionentransports an der Blut-

Liquor-Schranke sind daher noch weitgehend unerforscht.  

Um die Transportprozesse, die für die Elimination von organischen Anionen aus der 

CSF verantwortlich sind, genauer untersuchen zu können, wurde ein CP-

Zellkulturmodell aus Schweineepithel etabliert und auf molekularer, biochemischer 

und funktioneller Ebene charakterisiert. Alle CP-Kulturen waren frei von kontaminie-

renden Zellen, bildeten intakte Monolayer und waren vollständig differenziert. Das 

epitheliale Markerprotein für CP-Gewebe, Prealbumin, wurde durch Genexpression-

sanalysen, immunohistochemische Färbungen und Western Blots nachgewiesen. Die 

Alkalische-Phosphatase- und γ-Glutamyltransferase-Aktivität sowie das CSF-

Sekretionsvolumen wurden bestimmt.  



 
 

Weiter wurden zwei Transportproteine, das MDR1-Genprodukt P-glycoprotein (Pgp) 

und das Multidrug-Resistance Associated Protein 1 (Mrp1) genauer untersucht. Ne-

ben dem Nachweis beider Proteine durch RT-PCR wurde ein semi-quantitativer Ver-

gleich des Expressionsniveaus von Mrp1 zwischen kultivierten und frisch isolierten 

CP-Epithelzellen durchgeführt. Beide Transportproteine wurden in Immunfärbungen 

und durch konfokale Fluoreszenzmikroskopie in CP-Epithelzellen (CPEC) lokalisiert. 

Mrp1 konnte klar der basolateralen CPEC-Plasmamembran  zugeordnet werden. 

Dagegen konnte Pgp nicht eindeutig an einer der CP-Membranen lokalisiert werden, 

sondern schien subapikal und apikal ausgebildet zu sein. In weiterführenden Wes-

tern-Blot-Analysen von CP-Membranfraktionen wurde die apikale im Gegensatz zur 

basolateralen Fraktion gefärbt. In abschließenden in vitro-Untersuchungen von Pgp 

konnte jedoch keine signifikante funktionelle Aktivität des Transportproteins nachge-

wiesen werden. Der Transport von organischen Anionen wurde in einem Säugetier-

CP-Modell (Ratte), einem vergleichenden Elasmobranchii-Modell (Dornhai) und in 

Zellkultur (Schwein) mit Hilfe des Modellsubstrats Fluorescein-Methotrexat (FL-MTX) 

untersucht. Die Elimination von FL-MTX aus der CSF erfolgt spezifisch und kon-

zentrativ und ist ein metabolismus- und Na+-abhängiger Zwei-Stufen-Prozess. Des 

Weiteren konnte gezeigt werden, dass die Regulation des organischen Anionen-

transports über die Proteinkinasen (PK) PKC und PKA erfolgt. Die Identifizierung der 

verantwortlichen Hormone  bleibt zu klären.  



 
 

 

ABSTRACT 
 
Functional and Molecular Aspects of Xenobiotic Transport in Choroid Plexus  
 
Supervisor:   Prof. Dr. Gert Fricker 
Co-Supervisor:  Prof. Dr. Ulrich Hilgenfeldt 
 
The choroid plexus (CP) epithelium forms the blood-cerebrospinal fluid (CSF) barrier, 

which along with the blood-brain barrier (BBB) capillary endothelium maintains the 

fluid environment of the brain. The CP not only secretes CSF, but also transports 

potentially toxic xenobiotics and waste products of neural metabolism to the blood for 

eventual clearance in kidney and liver.  

For several decades it has been known that the CP is actively involved in removing 

organic anions and other organic compounds from the extra-cellular fluid (Pappen-

heimer et al., 1961; Villalobos et al., 2002; Miller et al., 2002; Breen et al., 2004; 

Baehr et al., in press). However, studying CP is difficult, due to complex morphology, 

anatomical location and small size of the tissue and little is known about the molecu-

lar mechanisms, functional complexity and hormonal regulation of organic anion se-

cretion.  

To further elucidate the underlying mechanisms of organic anion transport across CP 

epithelium, a primary porcine CP cell culture model was established and character-

ized on a molecular and functional basis. All cultures were free of contaminating 

cells, developed intact monolayers and were fully differentiated. Expression of marker 

protein prealbumin was demonstrated in isolated CP epithelial cells (CPEC) using 

RT-PCR, immunostaining and Western blot analyses. Alkaline phosphatase and γ-

glutamyl transferase were quantified and cerebrospinal fluid secretion was measured. 

In addition, two active transport proteins, the MDR1 gene product P-glycoprotein 

(Pgp) and the multidrug-resistance associated protein 1, were assessed by RT-PCR, 

immunohistological staining and in Western blots of isolated membrane fractions. 

Integrity of fully differentiated monolayers was ensured by TEER measurements as 

well as permeability analyses using marker compounds. Further, functional analyses 

of Pgp were carried out.  

Organic anion transport was studied in a mammalian (rat), a comparative elasmo-

branch and in the in vitro porcine CPEC culture model, using the model compound 



 
 

fluorescein-methotrexate (FL-MTX). FL-MTX transport was shown to be a specific 

and concentrative, Na+-dependent and metabolism-dependent two-step process. Fi-

nally, for the first time, these studies demonstrate that organic anion transport is 

regulated by protein kinase C (PKC) and PKA. Responsible hormones remain to be 

identified.  
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1  INTRODUCTION 
 
1.1 Barriers to the Brain 
The brain is most sensitive to changes in its surrounding environment and extracellu-

lar homeostasis is crucial to its function. Separated from blood flow it shuts out most 

water-soluble compounds, maintaining chemical stability and protecting itself from 

chemical injury. Further, endogenous metabolites and foreign chemicals (xenobiotics) 

are actively removed from the central nervous system (CNS) (Cserr, 1971; Cserr et 

al., 1980; Spector and Johanson, 1989; Segal, 2001; Zheng, 2001).  

 Treatment of certain CNS diseases and cancers is difficult. Besides compart-

mentalization and consequent poor delivery to the target, metabolism and rapid efflux 

as well as drug-drug and drug-metabolite interactions reduce the therapeutic poten-

tial of drugs in the brain (Saunders et al., 1999; Miller et al., in press). 

Anatomically, three structures separate brain and blood flow: the network of 

brain capillaries, the choroid plexus and the arachnoid membrane (Spector and Jo-

hanson, 1989). Both the endothelial cells of blood-brain barrier (BBB) and the blood-

cerebrospinal fluid barrier (BCSFB) formed by the choroid plexus (CP) actively regu-

late type and concentration of molecules transported to and from brain extra-cellular 

fluid (ECF), cerebrospinal fluid (CSF) and intra-cellular fluid (ICF) (figure 1, Nilsson, 

1992). The arachnoid membrane, located between pia and dura mater and com-

posed of 12-15 layers of flat epithelial cells, is largely impermeable for water-soluble 

compounds and does not actively regulate movement of molecules (Johanson, 

1998).  

The term “Blut-Hirn-Schranke” or blood-brain barrier was first coined in 1900 

by Lewandowsky, who studied penetration of potassium ferrocyanide into the brain. 

Further experimental evidence of this physical barrier between brain and blood was 

demonstrated by Paul Ehrlich (1885, 1906). Injecting water-soluble dyes (e.g. the 

aniline dye coerulean-S) into rats, he noted a conspicuous absence of blue stain in 

the brain and spinal cord. Experiments by Bouffard (1906) and Goldmann (1909) 

confirmed these findings. They showed that injecting trypan blue into the spine of 

animals only stained brain and cerebrospinal fluid (CSF), but not the whole animal. 

Stern and Gautier (1921, 1922) studied the routes of solutes from blood into CSF 

across the choroid plexus and coined the term “barrière hématoencéphalique”. How-



 
2  Abbreviations 
 
ever, it was not until 1941 that the blood-CSF barrier at the choroid plexus was rec-

ognized as second barrier between blood and brain (Broman, 1941).  

 

 
 
 

Figure 1: Fluid Compartments of the Brain. The blood-brain barrier separates blood stream from ex-
tra-cellular fluid (ECF) and choroid plexus separates blood stream from cerebrospinal fluid (CSF). ECF 
and CSF are separated by fenestrated ependyma and pia mater, allowing for free diffusion of mole-
cules (Nilsson et al., 1992). 
 
1.2 Choroid Plexus Structure 
Choroid plexus are reddish, highly vascularized patches of tissue located within the 

ventricular system of the brain (Spector and Johanson, 1989). CP tissue is present in 

all mammalian species, with the exception of Amphioxus (Nilsson et al., 1992). Gen-

erally, CP makes up 0.2% of total brain in weight or 2-3 g in humans, with 90% of the 

tissue equally divided between lateral and third ventricles and 10% present in the 

forth ventricle (Johanson, 1999). 

In contrast to the capillary endothelium of the BBB, CP endothelium is fenes-

trated. The blood vessel lumens form a continuous space with the adjacent extra-

cellular (interstitial) space (figure 2). The surrounding monolayer of polarized epithe-

lial cells is interconnected by tight junctions (figure 2, figure 3), separating apical and 

basolateral epithelial membranes, with apical membranes facing the ventricular 

space (CSF) and basolateral membranes facing the blood compartment (Spector and 
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Johanson, 1989; Suzuki et al., 1997). Thus, the CP epithelium, but not endothelium 

forms the barrier structure separating blood and CSF.  

Tight junctions expressed by CP epithelia form parallel strands resembling 

those of Sertoli cells of the blood-testis barrier and myelin sheaths of oligodendro-

cytes (Wolburg et al., 2001). Characteristic of CP epithelial tight junctions are zonula 

occludens protein ZO-1, occludins and claudins. Like the BBB, the BCSFB also ex-

presses ZO-1 and occludins. Claudin 1, 2 and 11 are specific to the BCSFB, 3 and 5 

specific to the BBB (Watson et al., 1991; Lippoldt et al., 2000; Wolburg et al., 2001). 

 

 
Figure 2: Endothelial Cells of the BBB (A) and Epithelial Cells of the BCSFB (B) with Neurons (N), 
Astrocytic Foot Processes (A), Endothelial Cells (En), Epithelial Cells (Ep), Tight Junctions (TJ). The 
anatomical barrier at the BBB is formed by capillary endothelial cells.  At the BCSFB, capillaries are 
fenestrated and epithelial cells express TJ, restricting movement of molecules (Spector, 1999). 

 

The CP bears resemblance to proximal tubules in its epithelial ultrastructure 

and, like the kidney, transports near isotonic fluid across its epithelium (Spector, 

1999). Like the kidney providing a stable chemical composition of blood, the CP is 

responsible for stability and conduciveness of the CSF. However, instead of only act-

ing as a filter, CSF is produced within the CP and enriched with nutrients derived 

from blood flow. Fluid and molecules move across a large surface area produced by 

tightly packed villi at the apical membrane and infoldings at the basolateral mem-

brane. CP epithelium is also equipped with high density mitochondria, a developed 

golgi-apparatus and endoplasmatic reticulum. Thus, bidirectional transport is avail-

able for a variety of brain regulatory factors, in addition to fluid and other molecules 

(Spector, 1999). 

A B 
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1.3 Choroid Plexus Function 
The CP provides a stable chemical environment for brain and CNS, ensuring nour-

ishment and protection. In addition to forming a physical barrier between blood and 

CNS, it performs vital functions, including production of CSF or liquor, synthesis and 

secretion of proteins and neurogenic and endocrine regulation (Spector and Johan-

son, 1989). The CP acts as source, supplying the brain with essential nutrients, vita-

mins and other solutes, and as sink, removing proteins and catabolites (Spector, 

1999). Crossing CP from the blood stream, compounds reach the CSF and can ac-

cess the brain and CNS. Compounds in the CSF can be taken up by CP or washed 

out with CSF into venous blood. 

 

 
 
Figure 3: Rat Choroid Plexus TEM Cross Section. The micrograph shows a CP capillary surrounded 
by a monolayer of epithelial cells, with its polarized ultrastructure, intercellular tight junctions and mi-
crovillous ventricular membranes (Villalobos et al., 1997). 
 

 One of the most important CP functions is CSF secretion (Spector and Johan-

son, 1989). CSF baths the brain and circulates between the ventricles through chan-

nels or foramina. The total CSF volume in an adult human brain is approximately 140 

ml, with fluid filling cortical and cerebellar subarachnoid spaces and basal cisterns 

(80 ml), ventricles (30 ml) and spinal regions (30 ml) (figure 4; Johanson, 1995). The 
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total volume is renewed every 4 to 5 hours, with 90% of CSF produced by CP tissue, 

the remaining 10% by extrachoroidal sources (Cserr, 1971). CSF flows from the tel-

encephalon to rhombencephalon into the subarachnoid space. From there it flows to 

the fourth ventricle and into the cisterna magna and basal cisterns, before reaching 

venous blood via arachnoid villi in superior sagittal sinus (figure 4). 

 

 
Figure 4: Brain CSF Circulation. CSF is produced by choroid plexus epithelial cells and circulates 
through ventricular cavities into subarachnoid spaces. Absorption into the venous blood (red) occurs 
through arachnoid villi in superior sagittal sinuses and along the optic, olfactory and spinal nerve 
sheaths (inset) (Fishman, 2000). 
 

CSF is a clear colorless solution (pH 7.35), consisting of 99% water and 1% 

protein and micronutrients (table 1). Major ions are Na+, Cl- and HCO3
-, concentrated 

by active secretion mechanisms (Davson, 1955). The CSF protein content of 15 to 40 

mg/100 ml corresponds to 0.3% of plasma protein (Saunders et al., 1999). Even 

though total protein content is low, relative concentrations of amino acids are compa-

rable to plasma (Davson and Segal, 1996).  
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Several proteins, including transthyrethin, ceruloplasmin and transferrin, are 

specific to the CP and CSF within the brain, synthesized and secreted by either CP 

or brain parenchyma (Nilsson et al., 1992). Other CP proteins synthesized include 

neuropeptides, growth factors and cytokines (Chodobski and Szmydynger-

Chodobska, 2001).  

Many protein receptors are expressed by the CP epithelium and polypeptides 

can access the CNS via the CP (Chodobski and Szmydynger-Chodobska, 2001; 

Smith et al., 2004). For example, there is increasing evidence that the CP is involved 

in receptor-mediated hormone signaling, with several hormone receptors more highly 

expressed in CP tissue than in other regions of the brain, including bradykinin, insu-

lin, vasopressin and endothelin receptors (Pansky and Hatfield, 1978; Baskin et al., 

1989; Kohzuki et al., 1991, Chen et al., 2000; Chodobski et al., 2000; Takano et al., 

2003). Availability of polypeptides to the brain is regulated via saturable and non-

saturable pathways, including receptor-mediated transcytosis (e.g. insulin) and pep-

tide transporters (e.g. PEPT1/2) (Reinhardt and Bondy, 1994; Thomas et al., 2001; 

Shen et al., 2003; Ocheltree et al., 2004).  

Moreover, CP not only supply the brain with proteins, but also clear circulating 

polypeptides from within the CSF (Chodobski and Szmydynger-Chodobska, 2001). 

The tissues express a multitude of receptors and metabolizing enzymes at the apical, 

CSF-facing membranes, acting like sieves within the CSF. For example, leptin and 

amyloid β-protein were shown to concentrate in CP after intracerebroventricular in-

jection (Maness et al., 1998; Monro et al., 2002).  

The CP, with its array of metabolizing enzymes and coupled transepithelial 

vectorial efflux of conjugated metabolites into the blood stream, is an effective detoxi-

fication system within the brain (Ghersi-Egea and Strazielle, 2001). In fact, the CP is 

one of the main sites of xenobiotic metabolism (el-Bacha and Minn, 1999). 

Xenobiotics metabolized at the CP follow the two-phase biotransformation and 

excretion pathway known from other biological systems (Ghersi-Egea and Strazielle, 

2001). 
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Table 1: Typical Cerebrospinal Fluid (CSF) and Plasma Composition (Fishman, 2000) 
 CSF Plasma CSF/plasma ratio 
Electrolytes (mEq/l)    

Na+  138 138 1.0 
K+  2.8 4.5 0.6 
Cl- 119 102 1.2 
HCO3

- 22 24 0.9 
Ca2+  2.1 4.8 0.4 
Mg2+  2.3 1.7 1.4 
PO4

3- 0.5 1.8 0.3 
Metabolites (mM)    

Glucose 3.3 5.0 0.7 
Lactate 1.6 1.0 1.6 
Pyruvate 0.08 0.11 0.7 
Urea 4.7 5.4 0.9 
Creatinine 0.09 0.14 0.7 

Amino acids (µM)    
Alanine 26.0 350 0.1 
Arginine 22.4 80.9 0.3 
Aspartic acid 0.2 2.0 0.1 
Asparagine 13.5 112 0.1 
Glutamic acid 26.1 61.3 0.4 
Glutamine 552 641 0.9 
Glycine 5.9 283 0.02 
Histidine 12.3 79.8 0.2 
Isoleucine 6.2 76.7 0.1 
Leucine 14.8 155 0.1 
Lysine 20.8 171 0.1 
Methionine 2.5 27.7 0.1 
Ornithine 3.8 73.5 0.1 
Phenylalanine 9.9 64.0 0.2 
Phosphoserine 4.2 8.3 0.6 
Serine 29.5 140 0.2 
Taurine 7.6 77.2 0.1 
Threonine 35.5 166 0.2 
Tyrosine 9.5 73.0 0.1 
Valine 19.9 309 0.1 

Proteins (mg/l)    
Total protein 350 70,000 0.005 
Albumin 155 36,600 0.004 
Transferrin 14.4 2,040 0.007 
IgG 12.3 9,870 0.001 
IgA 1.3 1,750 0.001 
IgM 0.6 700 0.001 

 

Phase I reactions introduce polar groups into molecules via oxidation, reduction, hy-

drolysis and also include isomerization reactions. These are followed by phase II re-

actions, resulting in conjugated products that are more polar, more hydrophilic and 
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more strongly acidic, thus more easily excreted (Abou-Donia, 1992). The CP possess 

relatively large amounts of several isoforms of phase I and phase II metabolism en-

zymes, comparable to ependyma and endothelial cells of brain capillaries (Lowndes 

et al., 1994). Phase I enzymes include epoxide hydrolase, 7-benzoxyresorufin-O-

dealkylase and several cytochromes P450 (CYP; CYP1A1 and CYP1A2), some of 

which displaying levels of activity comparable to liver (Ghersi-Egea et al., 1994; 

Morse et al., 1998). 

Among phase II metabolizing enzymes, CP tissue expresses UDP-

glucuronosyl transferase, γ-glutamyl transpeptidase and glutathione-S-transferase 

(GST; Shine and Haber, 1981; Johnson et al., 1993; Leininger-Muller et al., 1994; 

Martinasevic et al., 1998; Ghersi-Egea and Strazielle, 2001). Moreover, several 

metabolic enzyme systems are exclusively localized to CP within the brain, including 

glutathione peroxidase and microsomal GST (Tayarani et al., 1989; Otieno et al., 

1997; Graff and Pollack, 2004) 

 
1.4 Transport across the Choroid Plexus Epithelium 
Transport of xenobiotics and endogenous metabolites is highly regulated in the CNS. 

The primary interfaces between blood circulation and brain are capillary endothelial 

cells of the BBB and choroid plexus epithelial cells (CPEC) of the BCSFB (Lee et al., 

2001).  

In the past, CP size and surface area estimations led to the assumption that 

the BCSFB is much less involved in controlling the brain’s surrounding environment 

compared to the BBB and its exchange capacity was assumed to be 5000-times 

lower (Pardridge et al., 1981). However, detailed morphometrical analyses revealed a 

relatively comparable surface area for brain capillary endothelium and choroid 

plexus. In rat, calculated apical CP membrane surface area (75 cm2) is three times 

the basolateral membrane surface area (25 cm2) and only just half the brain’s endo-

thelial surface (155 cm2, Keep and Jones, 1990).  

Several in vivo, ex vivo and in vitro techniques and models have been used to 

study transport across the CP epithelium, each with its advantages and drawbacks 

(Johanson, 1999; Lee et al., 2001). In vivo techniques are difficult, as the experimen-

tal procedure is involved and requires surgical skill. Common methods include the 

serial sampling of CSF following drug administration and deconvolution of data to 
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determine transport profiles. Isolated tissue is used in extracorporal perfusion studies 

or in in situ chamber isolations of CP. In ex vivo experiments CP tissue is mounted as 

a sheet between Ussing chambers or incubated in artificial CSF (aCSF). In vitro 

methods include primary culture of isolated CPEC from a variety of different species 

or culture of immortalized epithelial cells. Both primary and cell line CPEC cultures 

develop an impermeable monolayer and display characteristics of CPEC in vivo.  

Factors influencing movement of compounds across the CP epithelium into the 

CSF and eventual brain penetration include barrier characteristics, physiological, 

physicochemical and pharmacokinetic parameters (Pardridge, 1993; Saunders et al., 

1999; Lee et al., 2001; Begley, 2004). High plasma concentrations, low volumes of 

distribution, slow metabolism and slow excretion favor uptake into the brain. Impor-

tant physicochemical parameters are size, lipophilicity and electrical charge. Gener-

ally, compounds larger 5000 kDa are restricted from entering the brain and the more 

hydrophilic and charged molecules are less likely to passage across the BCSFB. 

There are several routes for compounds to traverse the BCSFB (Suzuki et al., 1997; 

Saunders et al., 1999; Huber et al., 2001; Lee et al, 2001; Begley, 2004; Graff and 

Pollack, 2004). Some cross via paracellular diffusion, with intercellular movement 

limited by tight junctions, or transcellular diffusion, restricted by amphiphilic lipid bi-

layers and cytoplasm composition. Inorganic ions are transported through ion chan-

nels, e.g. K+-gated, or ion-symport channels, e.g. the Na+-K+-Cl--cotransporter. Some 

compounds are actively moved by facilitated diffusion, such as glucose by GLUT-1, 

by active antiport transport as Na+,K+-ATPase and A-system amino acid transport or 

receptor-mediated endocytosis, e.g. transferrin and insulin. Finally, some drugs and 

compounds are actively excreted by energy consuming efflux pumps, e.g. multidrug-

resistance and multidrug-resistance associated proteins. 

 

1.5 Transporters of the Choroid Plexus 

Most compounds cross cellular membranes via the transcellular route, with tight junc-

tions limiting entry via paracellular pathways. Levin (1980) demonstrated a positive 

correlation between lipophilicity (octanol/water partition coefficient and square route 

of molecular weight) and brain permeation across the BBB for 27 different com-

pounds. Notably, some compounds did not fit the correlation, including doxorubicin, 

epipodophyllotoxin, vincristine and bleomycin. The static wall concept alone was not 



 
10  Abbreviations 
 
able to explain the poor distribution of these compounds into the brain and the idea of 

active efflux proteins at the BBB and BCSFB was proposed (Kusuhara and Sugi-

yama, 2001).  

In general, transporters can be separated into solute carrier proteins and oth-

ers and are classified into active and passive transporters (figure 5, Hedinger et al., 

2004). In passive transport, solutes follow their electrochemical gradient. In contrast, 

active transport creates ion/solute gradients across membranes, utilizing energy. De-

pending on the directness of coupling to energy utilization, such as adenosine-

triphosphate (ATP) hydrolysis, these transporters are classified into primary or sec-

ondary active transporters.  

 

 
 

Figure 5: Solute Carrier (SLC) - and Non-SLC-Transporters Expressed in Plasma Membranes and in 
Intracellular Compartment Membranes (Hedinger et al., 2004). 

 

Distribution of xenobiotic compounds across cellular polarized membranes is 

dependent on presence, density and distribution of transporters in the tissue (Miller et 

al., in press). For example in kidney, excretory transporters are located at the baso-

lateral membrane, where they move compounds to the apical side for eventual excre-

tion into bile or urine (figure 6, Wright and Dantzler, 2004). Consistent with this func-

tional polarization, transporters of the organic anion transporter (OAT) family, e.g. 

OAT1 and OAT2, and organic cation transporter (OCT) family, e.g. OCT2, are pre-

sent at the basolateral membrane, mediating anion and cation transport, respectively 
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(Sweet et al., 1997; Sweet et al., 1999; Motohashi et al., 2002; Sweet et al., 2003; 

Denk et al., 2004; Ljubojevic et al., 2004; Wright and Dantzler, 2004; Miller et al., in 

press). Drug efflux transporters, such as the multidrug-resistance gene product P-

glycoprotein (Pgp) or the multidrug-resistance associated protein 2 (Mrp2), are lo-

cated at the apical membrane and actively excrete compounds (Harris et al., 2001; 

Mahmood et al., 2001; Nies et al., 2002; Wright and Dantzler, 2004). A similar polar-

ized distribution is seen in capillary endothelial cells of the BBB, where compounds 

are excreted from brain back into the blood stream for eventual elimination in urine 

and bile (Golden and Pollack; 2003; Schinkel et al., 2003, Sun et al., 2003; Begely, 

2004; Ohtsuki, 2004; Miller et al., in press) 

The choroid plexus is atypical in its distribution of transporters (Rao et al, 

1999; Gao and Maier, 2001; Lee et al., 2001; Sweet et al., 2001; Miller et al., in 

press).  Many transporters do not follow the functional pattern observed in kidney or 

brain endothelium; rather protein localization is reversed (figure 6). Excretory trans-

porters present at the basolateral membranes in kidney, liver or brain are localized to 

the CSF-facing side in CP epithelia and efflux transporters are found at basolateral 

membranes. Thus, not only presence and density, but also the polarized distribution 

of relevant transport proteins has to be considered when examining transport at the 

BCSFB (Miller et al., in press).  

To date, a total of eleven transporter families with almost 30 individual trans-

port proteins, of which 13 are expressed at moderate to high levels, are known to be 

expressed at the CP (Choudhuri et al., 2003). However, many are expressed at low 

levels and only 8 are localized to specific membrane (figure 6; Miller et al., in press). 

Table 2 summarizes important properties of transporters expressed in and localized 

to CP membranes. The transporters are members of the Solute Carrier family (SLC) 

and members of the active and energy consuming ATP-binding cassette (ABC) 

transporter family. Gene locus, Entrez database accession number, tissue distribu-

tion and reference summaries are listed. 
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Figure 6: Localization of Transporters in Kidney Epithelium, Brain Endothelium and Choroid Plexus. 
(r: rat and h: human, only). Notably, the expression of a number of transporters is reversed at the CP, 
when compared to expression in other barrier structures such as kidney or blood-brain barrier.  
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Table 2: Properties of Solute Carrier and ABC-Type Transporters at the Choroid Plexus 
Isoform 

 
Gene Locus 
Accession ID 

Tissue distribution Transport mode 

SLC15A2 
PEPT2 

 
 

3q13.3-q21 
 

NM_021082 

kidney, lung, brain, mammary 
gland, bronchial epithelium 

H+-dependent 
cotransport 

SLC21A5 
OATP2 

 
 
 
 

4 (r) 
6G2 (m) 

 
NM_131906 
NM_030687 

Liver, blood-brain barrier, ciliary 
body, retina 

Na+-independent 
bidirectional 

transport 

SLC21A7 
OATP3 

 
 
 
 

4q44 (r) 
6G2 (m) 

 
NM_030838 
NM_020495 

jejunum, neural cells, hypothala-
mus, thalamus, olfactory bulb, 
brain endothelium 

Na+-independent 
bidirectional 
transporter 

SLC22A2 
OCT2 

 
 
 
 
 

6q21.1-2 
 

AF210455 
AF097518 
AY050498 

human: kidney (basolateral mem-
brane of proximal tubules),  pla-
centa, brain (neurons), 
rat: thymus, choroid plexus 

membrane poten-
tial dependent,  

Na+-independent, 
facilitative diffusi-

on 

SLC22A6 
OAT1 

 
 
 

11q12.3 
 

AF057039 
AB009697 

kidney, basolateral membranes of 
proximal tubules, placenta, brain, 

Na+-dependent 
organic anion ex-

change 
 

SLC22A8 
OAT3  

 
 
 

11.12.3 
 

AF097491 
 

kidney, basolateral membranes of 
proximal tubules, liver, brain, eye, 
skeletal muscle, developing bone 

Na+-dependent 
organic anion ex-

change 
 

ABCB1 
MDR1 

 
 

7q21.1 
 

AF016535 

intestine, heart, kidney, brain (en-
dothelium, astrocytes, microglia) 

ATP-hydrolysis 
coupled efflux 

ABCC1 
Mrp1 

 

16p13.1 
 

L05628 

ubiquitous  ATP-hydrolysis 
coupled efflux 

 
1.5.1 The Solute Carrier Families of Transport Proteins 
The Solute Carrier (SLC) families of transporters include passive transporters, ion 

coupled transporters or exchangers and are classified according to the Human Ge-

nome Organization (HUGO) Nomenclature Committee Database (Hedinger et al., 
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2004). There are more than 300 SLC transporter genes identified and constantly ad-

ditional transporters are being identified. Members of several families are identified at 

the CP in humans and other mammals.  
 
1.5.1.1 The SLC15 Family  
The SLC15 family contains four members according HUGO (Hedinger et al., 2004). 

All members of this proton-oligopeptide cotransporter family are predicted to contain 

12 transmembrane domains (TMD) and transport short-chain peptides and peptide 

mimetics against concentration gradients, using proton-motive force. Two members, 

PEPT1 and PEPT2, are expressed in polarized epithelia, taking up substrates into 

cells. For example in the kidney, peptides are reabsorbed by SLC15 proteins. In the 

CP, PEPT1 and PEPT2 are expressed, but only PEPT2 was localized to the apical 

membrane by immunohistochemistry (Shu et al., 2002; Choudhuri et al., 2003). Here, 

PEPT2 is thought to mediate uptake of peptides and peptide-like compounds from 

CSF (Ocheltree et al., 2004). ,  

PEPT2, in contrast to PEPT1, is a high affinity, low-capacitance transporter 

(Daniel, 2004; Daniel and Kottra, 2004). Both PEPT, exhibiting different proton to 

substrate stoichiometry, have the ability to transport any of the 400 different dipep-

tides and 8000 different tripeptides, derived from the 20 proteinogenic L-α-amino ac-

ids, regardless of charge, in addition to any peptide-like compounds (Daniel and 

Rubio-Aliaga, 2003; Daniel and Kottra, 2004). Well-known substrates include alafos-

falin, 5-aminolevulinic acid, β-lactam antibiotics, bestatin, carnosine, cefadroxil, gly-

cylsarcosine, L-Val-ACV, nateglinide and inhibitors are, besides low temperature 

(4oC), amoxicillin, ampicillin, bestatin, cefadroxil, cefdinir, ceftibuten, cefixime, 

cephalexin, cephradine, cyclacillin, glibenclamide, L-Val-ACV, p-aminohippurate and 

quinapril (Ganapathy et al.,1995; Ganapathy et al.,1997; Ganapathy et al.,1998;  Dor-

ing et al., 1998; Sawada et al., 1999; Fujita et al., 2004; Neumann et al., 2004; Ochel-

tree et al., 2004; Teuscher et al., 2004)                              

 
1.5.1.2 The SLC21 (OATP) Family  
Two organic anion transport proteins (OATPs, SLC21 family) of the “liver”-like or-

ganic anion transport system are expressed in CP tissue, mediating bidirectional, 

sodium-independent transport of a wide range of amphipathic endogenous and ex-
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ogenous organic compounds (Gao and Meier, 2001; Hagenbuch and Meier, 2004; 

Miller et al., in press). According to HUGO, the SLC21 family series contains 11 

members (Hedinger et al., 2004). OATPs contain 12 TMDs with an extracellular loop 

between TMD 9 and TMD 10. The OATPs are organic anion exchangers, Na+- inde-

pendent bidirectional transporters, coupling uptake of anions to the export of counter 

ions such as bicarbonate, glutathione and/or glutathione-S-conjugates (Hagenbuch 

and Meier, 2004). Even though a large number of OATPs (>50) have been cloned 

from various species, only few have been identified in CP tissue (Miller et al., in 

press). Choudhuri et al. (2003) revealed high expression levels of OAPT3 and mod-

erate expression levels for OATP2, OATP8 and OATP12 in CP tissue of rat. Immu-

nohistochemical analyses revealed OAPT2 and OATP3 localization to basolateral 

and apical CP membranes, respectively (Gao et al., 1999; Ohtsuki et al., 2003; 

Ohtsuki et al., 2004). 

Substrates and inhibitors of OATP2 and OATP3 include a number of bile salts, 

hormones, amino acids and peptides (Asaba et al., 2000; Konig et al., 2000; Gao et 

al., 2000; Gao and Meier, 2001; Kusuhara and Sugiyama, 2001; Montfoort et al., 

2003; Breen et al., 2004; Hagenbuch and Meier, 2004). Interestingly, OATP2 trans-

ports the cardiac glycoside digoxin. Further, compounds include N-(4,4-azo-n-pentyl)-

21-deoxyajmalinium, biotin, bile acids, bromosulfophthalein, cholyltaurine, dehy-

droepiandrosterone, dehydroepiandrosterone sulfate, 17β-glucuronide-estradiol, es-

trone sulfate, fluorescein-methotrexate, leukotriene C4 (LTC4), monoglucuronosyl 

bilirubin, ouabain, [D-penicillamine2,5]enkephalin, pravastatin, rocuronium bromide 

and bromosulfophthalein.  

 OATP3 substrates include dehydroepiandrosterone, 17β-glucuronide-

estradiol, estrone sulfate, glycochenodeoxycholate, glycocholate, glyco-

deoxycholate, glycoursodeoxycholate, sulfotaurolithocholate, taurochenodeoxy-

cholate, taurocholate, taurodeoxycholate, tauroursodeoxycholate, thyroxine and 

triiodo-L-thyronine. Inhibitors include cholate, dehydroepiandrosterone sulfate, di-

goxin, probenecid, bromosulfophthalein, taurocholate, thyroxine and triiodo-L-

thyronine.  
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1.5.1.3 The SLC22 (OCT/OAT, OCTN) Family  
One of the most prominent families of transporters is the SLC22 family, with a total of 

18 members identified by HUGO (Hedinger et al., 2004). The family includes OCTs 

(SLC22A1-3), zwitterion/cation transporters (OCTNs, SLC22A4-5), OATs (SLCA6-

11), URAT1 (SLC22A12) as well as hCT2 not named by HUGO and several orphan 

transporters (Koepsell and Endou, 2004). The SLC22 transporter family is character-

ized by 12 predicted α-helical TMD, with a large extracellular loop between TMD1 

and TMD2. OCTs are uniporters, mediating facilitated diffusion in one direction, 

OAT1, OAT3 and URAT1 are anion exchangers and OCTN2 is a Na+/carnitine co-

transporter.  

Interestingly, in the kidney, OCT2 expression levels were gender dependent, 

with higher levels in males, but levels in females only comparable after administration 

of testosterone (Koepsell et al., 2003). In the CP, expression levels of Oct2 were low 

when compared to Oct1 and Oct3 and it is likely that other organic cation transport 

systems exist (Sweet et al., 2001; Choudhuri et al., 2003; Miller et al., in press).  

In CP tissue, OCT2 is localized to the apical membrane. In the kidney, where 

OCT2 is localized facing the interstitium, the transporter mediates the first step in 

polyspecific organic cation reabsorption via membrane-potential dependent, Na+-

independent, facilitative diffusion. Thus in the CP, OCT2 might be involved in clearing 

the CSF from organic cations (Gorboulev et al., 1997; Sweet and Pritchard, 1999; 

Sweet et al., 2001). OCT2 carries a range of compounds, including neurotransmit-

ters, drugs and other cations (Montfoort et al., 2003). Well known substrates of OCT2 

include tetraethylammonium (TEA), 1-methyl-4-phenylpyridinium (MPP), choline, N-

methylnicotinamide, norepinephrine, histamine, dopamine, serotonin, and the anti-

parkinsonian drugs memantine and amantadine (Busch et al., 1998; Miller et al., 

1999; Koepsell et al., 2003; Koepsell and Endou, 2004). Inhibitors include corticoste-

rone, cyanine 863, desipramine, decynium, KCN, quinine, procainamide, 3-O-

methylisoprenaline, tetramethylammonium.  

Of the OAT family, the “kidney”-type organic anion transporters OAT1 and 

OAT3 are localized to apical CP membranes in human tissue and rOat3 was local-

ized to apical membranes, with low levels of Oat1 and moderate levels of Oat3 ex-

pressed (Nagata et al., 2002; Choudhuri et al., 2003; Alebouyeh et al., 2003; Miller et 

al., in press). In the kidney, the first step of polyspecific organic anion excretion is 
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anion uptake by a polyspecific α-ketoglutarate/organic anion transport system, driven 

by a large α-ketoglutarate gradient, in turn maintained by a separate 

Na+/dicarboxylate co-transport system, deriving its energy from the Na+-gradient pro-

duced by basolateral Na+,K+-ATPase (Pritchard et al., 1999; Gao and Meier, 2001). 

In the CP, this organic anion transport system is reversed, with Na+,K+-ATPase and 

α-ketoglutarate/organic anion transport systems located to the apical membrane and 

OATs removing organic anions from the CSF. 

However, functional studies with rat CP tissue using p-aminohippurate and 

benzylpenicillin as substrates demonstrated that nearly all transport is mediated by 

Oat3 (Nagata et al., 2002). Conversely though, studies on an Oat3-null mouse indi-

cate that organic anion transport across the CP has not been solved in its entirety 

(Sykes et al., 2004). In the Oat3 knock-out mouse, transport of small organic anions 

was nearly completely inhibited, however, transport of estrone sulfate, a substrate 

specific for Oat3, was only reduced by 33% and transport of taurocholate was un-

changed. Evidence for partial transport on additional Na+-dependent and Na+-

independent systems were identified.  

Nevertheless, OAT1 and OAT3 carry a wide range of substrates, including a 

range of organic anions, hormones, toxins and drugs and are affected by numerous 

inhibitors (Pulaski et al., 1996; Sekine et al., 1997; Stride et al., 1997; Apiwattanakul 

et al., 1999; Hosoyamada et al., 1999; Jariyawat  et al., 1999; Lu  et al., 1999; 

Pritchard et al., 1999; Tsuda et al., 1999; Burckhardt and Wolff, 2000; Inui et al. 

2000; Sekine et al. 2000; Wada et al., 2000; Koh et al, 2000; Kusuhara and Sugi-

yama, 2001; Montefoort et al., 2003; Koepsell and Endou, 2004; Wright and Dentzler, 

2004). Substrates of OAT1 include N-acetylcysteine, acetylsalicylate, α-ketoglutarate, 

benzylpenicillin, cAMP, cephalothin, cGMP, cidofovir, dideoxynucleotides, dimercap-

topropanesulfonate, 17β-glucuronide-estradiol, folate, glutarate, indometacin, meth-

otrexate, ochratoxin A, p-aminohippurate, probenecid, prostaglandin E2, salicylates, 

urate and zidovudine. Several substrates can compete for transport and additional 

inhibitors are acetylsalicylate, furosemide, carbenicillin, cefazolin, cephaloridine, 

cephalothin, cephalexin, ibuprofen, paracetamol, benzylpenicillin, phenacetin, piroxi-

cam, salicylurate and salicylate. Substrates of OAT3 include allopurinol, benzylpeni-

cillin, cimetidine, 2,4-D, dehydroepiandrosterone sulfate, estrone sulfate, 5-
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fluorouracil, L-carnitine, 6-mercaptopurine, ochratoxin A, p-aminohippurate, pros-

taglandin E2 and prostaglandin F2α.  

 

1.5.2 ABC Transport Proteins 
Members of the ATP-binding cassette (ABC) family of transporters, including families 

B and C, are expressed at the BCSFB (Choudhuri et al., 2003; Begley, 2004). These 

efflux transporters couple hydrolyses of ATP to export of compounds out of cells or 

into cellular organelles (Dahl et al., 2004).  

 

1.5.2.1 The ABCB Family (P-Glycoproteins) 
The best characterized ABC transporter is the MDR gene product P-glycoprotein 

(Pgp). In rodents, there are three mdr genes, mdr1a, mdr1b and mdr2, in humans 

there are two, MDR1 and MDR2 (Sun et al., 2003; Begley, 2004). Of these, only 

mdr1a, mdr1b and MDR1 transport drugs and confer multidrug resistance (Ng et al., 

1989). The mdr2/MDR2 gene products transport phosphatidylcholine from liver to bile 

(Smit et al., 1993; Smit et al., 1998).  

The MDR1 gene product is a 170 kDa plasma membrane protein consisting of 

12 TMDs with two drug-binding domains and two intracellular ATP-binding domains 

(Walker domains) (Lee et al., 2001). Modeling revealed that the substrate binding 

domain is formed at two TMD/TMD interfaces, between TMD segments 3 and 11 and 

5 and 8, respectively (Pleban et al., 2004). Inserted into the membrane, both drug-

binding sites are most likely located close to each other (Begley, 2004). There are a 

number of MDR gene polymorphisms, frequently single nucleotide polymorphisms 

(SNPs), but most are silent and do not affect Pgp function (Marzolini, 2004). In some 

cases however, Pgp polymorphisms can alter drug pharmacokinetics and also sus-

ceptibility to diseases, e.g. Parkinson's disease, inflammatory bowel disease and re-

fractory seizures (Marzolini 2004; Mealey, 2004). 

In general, Pgp is localized at barrier and excretory sites (de Lange, 2004; 

Miller et al., in press). At the BBB, the efflux transporter Pgp is inserted into the lu-

minal membrane of the capillary network and responsible for removing compounds 

from endothelial cells and restricting entry of compounds from the blood stream. (fig-

ure 6; Sun et al., 2003; Begley et al., 2004).  
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In CP epithelia, Pgp expression was demonstrated by immunostaining and 

Western blot analyses (Rao et al., 1999). Pgp was stained in preparations from rat, 

human and wild type mice, but not in preparations from mdr1a/1b knock-out mice. 

Further staining experiments and functional analyses suggested sub-apical and/or 

apical localization. The localization has since been controversial (Lee et al., 2001; 

Sun et al., 2003; Begley, 2004). The opposing efflux function of Pgp and multidrug-

resistance associated protein 1 (Mrp1) are conflicting. Thus, it remains to be deter-

mined whether Pgp is actually functionally inserted into the apical membrane and or 

whether Pgp is vesicularized and removes compounds from the cytoplasm by even-

tual exocytosis across the basolateral membrane (Begley, 2004). 

The transporter is responsible for efflux of a wide range of structurally dissimi-

lar compounds ranging from approximately 300 to 2000 Da in mass, generally lipo-

philic, planar, cationic or neutral, including cytotoxic drugs, pesticides, steroid hor-

mones, peptide antibiotics, immunosuppressive agents, cardiac glycosides and oth-

ers (Begley et al., 2004; de Lange, 2004; Kimura et al., 2004). Compounds also in-

clude anthracyclines, β-adrenoceptor blockers, calcium-channel blockers, glucocorti-

coids, glucuronide conjugates, HIV protease inhibitors and vinca alkaloids such as 

aldosterone, CSA, digoxin, diltiazem, etoposide, ivermectin, loperamide, meth-

otrexate, morphine, phenytoin, ranitidine, rapamycin and rhodamine-123 (Oude Elfer-

ink et al., 1995; Kusuhara et al., 1998; Schinkel, 1999). 

The first Pgp modulators included compounds such as quinidine, verapamil 

and cyclosporine A (CSA) (Johnson, 2002; Begley, 2004). The inhibitory effect of 

CSA spurned the pharmaceutical industry’s interest and led to the search for further 

Pgp inhibitors. Second generation and third generation compounds include SDZ-

PSC833 (valspodar), LY335979 and GF120918, which are generally more specific 

and exhibit less toxic side effects. 

 

1.5.2.2 The ABCC Family (Multidrug-Resistance Associated Proteins) 
The multidrug-resistance associated proteins (Mrp) comprise a closely related family 

of gene products, with currently nine members identified. (Kruh and Belinsky., 2003; 

Begley et al, 2004; de Lange, 2004). As the MDR1 gene product Pgp, Mrps confer 

multidrug resistance and contribute to the intrinsic or acquired resistance of cells 

against drugs (Wijnholds, 2002). Mrp1 through Mrp6 were localized in human brain 
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(Nies et al., 2004). In the CP, expression of Mrp1 through Mrp6 was demonstrated in 

RT-PCR analyses, but expression levels can vary (Choudhuri et al, 2003). In rat, 

Mrp1 expression was highest, followed by Mrp4, Mrp5 and Mrp6, in contrast to levels 

of Mrp2 and Mrp3, which were low to none existent.  

Only Mrp1 was localized in CP tissue by immunohistochemistry (Rao et al, 

1999). Its membrane distribution was confirmed in numerous functional studies, in-

cluding Mrp1 (-/-) knock-out studies in mice (Nishino et al., 1999; Wijnholds et al., 

2000). The subcellular localization and functional role of the other Mrp proteins re-

mains to be identified (Miller et al., in press). 

Mrp1 is a 190 kDa plasma membrane protein, with 17 transmembrane do-

mains and two nucleotide binding domains and is the best characterized protein 

within the ABCC family (Lee et al., 2001; Begley et al., 2004). Mrp1 utilizes energy 

derived from ATP hydrolysis for transport. But, in contrast to Pgp, Mrp1 predomi-

nantly mediates efflux of anionic compounds including a number of anticancer 

agents, including anthracyclines, epipodophyllotoxins and vinca alkaloides, especially 

when conjugated to glutathione and glutathione-S-transferase (van Aubel et al., 

1999; Lee et al., 2001; Miller et al., in press). Compounds transported include 3-α-

sulfatolitho-cholyltaurine, daunorubicin, etoposide, fluorescein, fluo-3®, fluorescein-

methotrexate, glucuronosyl etoposide, leukotrienes C4, D4 and E4, methotrexate and 

vincristine (van Aubel, 2000; Sun et al., 2003; Begley, 2004). Mrp inhibitors are less 

well defined and less specific than Pgp inhibitors, with even some overlap in specific-

ity. For example, probenecid, sulfinpyrazone and benzobromarone inhibit Mrp1, but 

also Mrp2 activity and are likely to effect other ABCC family members (Begley, 2004). 

Other inhibitors include leukotriene C4, the leukotriene antagonist MK571, LY329146, 

a structural analog of raloxifene, S-(decyl)-glutathione and probenecid (van Aubel et 

al., 1999; Lee et al., 2001; Sun et al., 2003; Begley, 2004). 
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2 MATERIALS AND METHODS  
 
2.1 Materials 
All chemicals were purchased at reagent grade or better, from Sigma-Aldrich Che-

mie GmbH, Steinheim, or from similar sources. Fluorescent compounds, fluorescein-

methotrexate and BODIPY-verapamil, were obtained from Molecular Probes, 

Eugene, USA. Cyclosporine A (CSA) and PSC833 were from Novartis, Basel, Swit-

zerland, diazepam from Roche, Basel, Switzerland, MK571 from Biomol, Hamburg.  

All radioactive compounds were purchased from Amersham Pharmacia Bio-

tech, Freiburg, including [2-14C]-diazepam (2.04 GBq/mmol), [6,6´(n)-3H]-sucrose 

(348 GBq/mmol) and [U-14C]-sucrose (20.9 GBq/mmol). Radioactive samples were 

analyzed in Ultima Gold MV Liquid Scintillation Cocktail and measurements carried 

out in a Tricarb 2000 CA Scintillation Counter, both from Canberra Packard, Frank-

furt. 

 For cell culture, Dulbecco’s Modified Eagle Medium/Ham’s F12 medium, L-

Glutamine (200 mM), antibiotics Penicillin/Streptomycin (10,000 E/10,000 µg/ml) and 

Amphotericin B (50 mg/ml) were obtained from Biochrom AG, Berlin. Fetal Calf Se-

rum (FCS, Gold) was purchased from PAA Laboratories, Pasching, Austria. Laminin 

was from TEBU-Bio, Offenbach. Table 3 lists cell culture materials used. Monolayer 

electrical resistance was measured with the Millicell-ERS Electrode System STX-2 

from Millipore, Eschborn. 

For molecular biology, the RNeasy Kit® was obtained from Qiagen GmbH, 

Mannheim, the Promega Reverse Transcription System® and Ethidium Bromide 

were purchased from Promega GmbH, Mannheim and Supertaq® PCR Polymerase 

from MoBiTec GmbH, Freiburg. Primers were obtained either from GIBCO Life 

Technologies GmbH, Karlsruhe or Sigma-Ark GmbH, Darmstadt. Reverse transcrip-

tion (RT) and polymerase chain reactions (PCR) were carried out in a PCRSprint® 

PCR cycler from Thermo Hybaid, Heidelberg. 

 For protein isolation, CellLytic® for mammalian tissue was obtained from 

Sigma-Aldrich Chemie GmbH, Steinheim and Complete® protease inhibitors from 

Roche Diagnostics, Mannheim. Aqua Poly Mount® was obtained from Polysciences 

Inc., Warrington, USA. Tris-HCl pH 8.3 and pH 6.8 as well as polyacrylamide solu-

tion were obtained from Bio-Rad GmbH, Munich.  
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 Fluorescent analyses were carried out in the Ascent Fluoroscan, obtained 

from Labsystems, Helsinki, Finland. Confocal laser scanning microscopes used in-

cluded the Leica DM IRBE from Leica, Bensheim, the Olympus Fluoroview from 

Melville, NY, USA and the Zeiss Pascal from Zeiss, Jena. 

  
Table 3: Cell Culture Materials 
Equipment   Company 
Transwell Clear, 12-Well Polyester, Area 
1.13 cm2, Pore Size 0.4 µm  

 Corning Costar, Wiesbaden 

Transwell Clear, 12-Well Polycarbonat, 
Area 1.13 cm2, Pore Size 0.4 µm  

 Corning Costar, Wiesbaden 

Transwell Clear, 6-Well Polyester, Area 
2.4 cm2, Pore Size 0.4 µm 

 Corning Costar, Wiesbaden 

96-Well Plate  Corning Costar, Wiesbaden 
Cell Culture Flask, 75cm2   Corning Costar, Wiesbaden 
LabTek Chamber Slide, 8-well Permanox 
Slide  

 Nalge Nunc Corp., Naperville, USA 

 
2.2 Choroid Plexus Epithelial Cell Culture and Ex Vivo Models 
Three types of models were used to characterize and assess choroid plexus epithe-

lial cell (CPEC) function, biochemical and molecular features. The first is a primary in 

vitro cell culture model of porcine CPEC. The second and third are ex vivo models of 

a mammalian and an elasmobranch species, using excised CP tissue of Wistar rat 

(Rattus norvegicus) and of dogfish shark (Squalus acanthias). Preparation of CPEC 

cell cultures and CP tissues is described below.   

  
2.2.1 Porcine Choroid Plexus Epithelial Cell Isolation and Cell Culture 
Porcine choroid plexus epithelial cells were isolated and cultured according to Crook 

et al. (1981) and Gath et al. (1997), with minor modifications. Porcine brains were 

obtained from the local slaughterhouse in Mannheim (Germany) and placed in ice 

cold artificial cerebrospinal fluid (aCSF, in mM: 118 NaCl, 3 KCl, 0.7 Na3PO4, 

0,7mM, 18 NaHCO3, 2 Urea, 0.8 MgCl2, 1.4 CaCl2, 12 Glucose, pH 7.4) (Villalobos 

et al., 1997) with 100 µl/ml penicillin/streptomycin (10,000 E/10,000 µg/ml)   added. 

Both lateral CP were removed and the number of tissues recorded. Following me-

chanical fractionation in ice cold HBSS, magnesium and calcium free, CP were 

weighed and wet weight (ww) was recorded. Then, the tissue was degraded by cold 

trypsination in 10 ml/g ww 0.25% trypsin at 4oC for 2.5 h, followed by two 20 min in-
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cubation cycles at 37oC. Addition of an equal volume of fetal calf serum (FCS) termi-

nated the enzymatic reaction. Isolated cells were removed, both batches combined 

and centrifuged at 300 rpm for 10 min at 4oC. Cells were resuspended in incubation 

medium containing DMEM/Ham’s F12 (1:1), 100 µl/ml penicillin/streptomycin (10,000 

E/10,000 µg/ml), fetal calf serum (10%), L-glutamine (4 mM), insulin (5 µg/ml), cyto-

sine arabinoside (20 µM), epidermal growth factor (EGF, 10 ng/ml) and HEPES (10 

mM). The number of live and dead CPEC was determined by trypan blue exclusion 

using a Neubauer cell count chamber, and viability was calculated.  

After CPEC isolation, cells were seeded in 96-well plates, on 6- or 12-well 

Transwell filter plates, on 8 well chamber slides or in 75 cm2 culture flasks. All cul-

ture material was coated with 5 µg/cm2 laminin, with exception of culture flasks. 

Seeding density was at minimum 1 g ww/60 cm2. Uniform adherence was ensured 

by slow agitation of the culture vessels one hour after seeding. For the first nine days 

of culture, cells were incubated in incubation medium and medium was changed 

every three days. On the ninth day of incubation, cells were switched to serum free 

medium containing DMEM/Ham’s F12 (1:1), 100 µl/ml penicillin/streptomycin (10,000 

E/10,000 µg/ml), L-glutamine (4 mM), insulin (5 µg/ml), hydrocortisone (200 ng/ml) 

and HEPES (10 mM). Cells were washed three times and, for the next five days, cul-

ture medium was changed every two days. Throughout the culture period the incuba-

tion chamber was set at 37oC, 5% CO2 and 95% relative humidity. 

 

2.2.2 Rat Choroid Plexus Ex Vivo  

Fresh lateral CP were isolated from male Wistar rats (250 to 400 g). All rats were 

obtained from the University of Heidelberg animal facility. Animals were anaesthe-

tized by gassing with isofluran (Abbott, Wiesbaden, FRG) and sacrificed by cervical 

dislocation. Following removal of the head, first the brain, then both lateral CP were 

excised and placed in ice cold, gassed (95% oxygen/ 5% CO2) artificial cerebrospinal 

fluid (aCSF) (in mM: 118 NaCl, 3 KCl, 0.7 Na2PO4, 18 NaHCO3, 2 urea, 0.8 MgCl2, 

1.4 CaCl2, and 12 glucose, pH 7.4) (Villalobos et al., 1997) when used in transport 

experiments or directly in 95% EtOH when used in immunohistochemical analysis.  
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2.2.3 Dogfish Shark Choroid Plexus Ex Vivo 
Lateral CP were isolated from adult spiny dogfish shark (Squalus acanthias). Sharks 

(~2 kg) were collected from waters around Mount Desert Island, ME, USA and kept 

in salt water tanks for 1-7 days. Animals were decapitated and pithed and the cranial 

compartment removed. The brain was excised and placed in ice cold, gassed (1% 

CO2) elasmobranch Ringer (ER) solution (in mM: 280 NaCl, 6 KCl, 4 CaCl2, 3 MgCl2, 

1 NaH2PO4, 0.5 Na2SO4, 350 urea, 72 trimethylamine oxide, 2.5 glucose, and 8 Na-

HCO3, pH 7.8) (Villalobos et al., 2002). Both lateral CP were isolated and cleared of 

all extraneous neuronal and connective tissue before being used in functional analy-

ses.  

 

2.3 Gene Expression Analyses  
To assess gene expression, messenger ribonucleic acid (mRNA) was analyzed by 

reverse transcription - polymerase chain reaction (RT-PCR). All molecular analyses 

were carried out using either porcine tissue or cultured CPEC. Following isolation of 

total RNA, mRNA was transcribed and specific complementary deoxyribonucleic ac-

ids (cDNA) segments amplified. Qualitative and semi-quantitative analysis was car-

ried out. For semi-quantitative analyses, β-actin was used as internal standard and 

mRNA expression was compared on a relative basis. All results presented are from 

single experiments representative of at least three experiments.  

 
2.3.1 Total RNA Isolation 
Porcine tissue samples were collected from the slaughterhouse in Mannheim (Ger-

many), stored in ice cold RNALater for transport and frozen at -70oC upon arrival. 

Cultured CPEC were washed in KRB, pH 7.4, 37oC three times to remove all remain-

ing medium, before starting RNA isolation procedures. Total RNA was isolated from 

all samples according to the Qiagen RNeasy protocol. Tissues or cells cultured in 

flasks were lysed in β-mercaptoethanol containing RLT buffer according to the 

Qiagen tissue and cell lyses protocols. An equal volume of 70% EtOH was added 

and samples were transferred to supplied spin columns. Following the Qiagen wash 

and spin regimen, total RNA was finally eluted in a small volume of nuclease free 

water. The amount of isolated RNA was quantified by spectrophotometric determina-

tion, measuring OD at 260 nm, with OD of 1 corresponding to 40 µg of single 
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stranded RNA (Sambrook et al., 1987). Purity was further established by taking the 

OD ratio of 260 nm over 280 nm. Only samples with a ratio of 1.7 to 2.0 were used, 

as low ratios are characteristic of protein and high ratios of residual β-

mercaptoethanol contamination. 

 

2.3.2 Reverse Transcription  
Reverse Transcription (RT) was carried out according to the Promega Reverse 

Transcription System. In brief, 1 µg of total RNA was incubated at 70oC for 10 min 

and after adding the reaction mixture (in 20 µl: 4 µl 25 mM MgCl2, 4 µl 5X transcrip-

tion buffer, 2 µl 10 mM dNTP mixture, 0.5 µl RNasin® ribonuclease inhibitor, 0.5 µg 

oligo(dT)15 primer and nuclease free water) containing 5 units of avian myeloblasto-

sis virus reverse transcriptase (AMV-RT), further incubated at 42oC for 60 min. The 

reaction was terminated by raising the temperature to 95oC for 5 min, deactivating all 

enzymes in the reaction, and the cDNA product cooled to 4oC. Resulting cDNA was 

either used directly in further reactions or frozen at -20 oC. 

 

2.3.3 Polymerase Chain Reaction  
The polymerase chain reaction (PCR*) method, first described in 1985 (Saiki et al., 

1985), allows selective amplification of DNA fragments in vitro, thereby emulating in 

vivo cellular DNA replication. Here, the PCR reaction was used to amplify selective 

regions of generated cDNA obtained from transcribed mRNA. For each PCR reac-

tion, 10 to 100% of the cDNA generated from 1 µg total RNA was used. All reactions 

were carried out using a hot-start protocol (D’Aquila et al., 1991) in order to maxi-

mize sensitivity and specificity. Following an initial 8 min cDNA incubation in reaction 

mixture (in 50 µl: 5 µl 10 X reaction buffer with MgCl2, 0.5 µl 1 mM primer, 2 µl dNTP 

and water) at 94oC, 0.5 units of Supertaq® were added to each reaction tube. Dena-

turation, annealing and extension were optimized (Innis and Gelfand, 1990; Eckert 

and Kunkel, 1991; Rolfs et al., 1992; Douglas and Atchinson, 1993) and set at 94oC, 

50oC and 72oC for 30 sec, respectively. The samples were run for a total of 15 to 50 

cycles. Each reaction was terminated after a final extension period of 72oC for 10 

min and products were stored at 4oC for maximal 24 hours. Finally, PCR products 

were separated in a 1.5% ethidium bromide stained agarose gel at 100 V for 1 hour 

and visualized under UV-light. 
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*PCR is licensed under U.S. patent numbers 4,683,202, 4,683,195, 4,965,188 and 

5,075,216 or their foreign counterparts, owned by Hoffmann-La Roche Inc. and F. 

Hoffmann-La Roche Ltd. 

 

2.3.4 Semi-Quantitative RT-PCR 
Semi-quantitative mRNA analysis allowed RNA expression levels to be estimated on 

a relative basis. β-actin expression was used as internal standard. First, total RNA 

was isolated and transcribed, and selective regions amplified as described above. 

Then, density readings of ethidium bromide stained PCR products were obtained, 

using the Scion Image software (NIH, USA), and normalized in relation to β-actin 

expression. To determine the phase of linear amplification, a series of amplifications 

in five-cycle intervals was run. A range of concentrations was amplified to ensure 

that results were not affected by initial amounts of mRNA and cDNA in any particular 

sample.  

 

2.3.5 Primer Design 
The selection of suitable primers is a prerequisite for amplification of specific cDNA 

products. One of the difficulties in using porcine samples in PCR, however, is that for 

most targets of interest no RNA or DNA sequences are published as yet. In cases in 

which porcine sequences were not available, human sequences were used. These 

were entered in a BLAST (Altschul et al., 1990) search and conserved sequences 

within the nucleotide target were defined. Table 4 lists the individual sequences used 

in the process. After identifying conserved structures within a target, primers were 

chosen to (1) efficiently hybridize to the chosen sequence only, (2) exhibit minimal 

primer-primer interaction, (3) have the desired physical and chemical properties and 

(4) be of desired length (Persing, 1993; Hayashi, 1994; Innis, and Gelfand, 1990). All 

primers were optimized using either Primer3 (Massachusetts Institute of Technology) 

or WebPrimer (University of Stanford). A BLAST cross-search was carried out to en-

sure primers did not hybridize to any other known sequence.  

 
2.4 Enzyme and Protein Analyses 
The expression of a number of proteins expressed by CPEC was assessed. Activity 

of enzymes of interest was quantitatively determined in colorimetric assays. Expres-
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sion of TTR and ABC transport proteins Mrp1 and Pgp was examined in cultured 

CPEC and in ex vivo tissue, as well as in apical and basolateral membrane prepara-

tions by immunohistochemical staining and western blots, respectively. 

 
T able 4: Primer Nucleotide Sequences:  
Target Accession

Number 
Forward Primer 
Reverse Primer 

Product 
(bp) 

Transthyretrin 
(TTR, Prealbumin) 

X87846 TGGTCAAAGTCCTGGATGCT 
TTACATGCAAGCCTGTCCCT 

371 

β-Actin U07786 TTTGAGACCTTCAACACGCC 
TGATCCACATCTGCTGGAAG 

703 

Mrp1 L05628 TTCGTTCTCAGGCACATCAATG 
AACACAAGGATCTTCGTCTTCCTC 

436 

Pgp AF016535 GAGAGGGGCCCAGTTGAGTG 
CACAAGCCCAAGACAGAAAGC 

468 

 
2.4.1 Protein Isolation 
Tissue samples collected for total protein isolation from the slaughterhouse in Mann-

heim were stored in ice cold RNALater for transport and frozen at -70oC upon arri-

val. Cultured cells were washed in KRB, pH 7.4, 37oC three times to remove all re-

maining medium. Tissue and cultured CPEC were lysed in CellLytic and Complete 

according to protocol. The lysate was homogenized and placed on ice. After 1 hour, 

samples were centrifuged at 10,000 rpm for 30 min at 4oC. Pellets were discarded 

and the remaining protein isolates stored at -70oC until further use.  

 

2.4.2 Protein Concentration 
Protein concentration was determined according to Bradford (1976). In principal the 

assay is based on the equilibrium between the three forms of Coomassie Blue G dye 

and its proportional binding to proteins. Under acidic conditions and bound to protein, 

the dye is most stable in its unprotonated blue form detected at an OD of 595 nm. 

The more dye binds to protein, the more intensely the solution colors. One drawback 

to the assay is that the dye binds favourably to arginyl and lysyl residues, which may 

cause some variation in response to different proteins. 

For each sample 0.2 ml Bradford protein reagent was added to 0.8 ml water 

without (control) and with protein lysate added. OD was determined at 595 nm. Ab-

solute quantification was carried out with an appropriate standard curve of bovine 

serum albumin (BSA). 
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2.4.3 Alkaline Phosphatase Activity 
The alkaline phosphatase (AP) assay used is based on hydrolysis of p-nitrophenyl 

phosphate by the enzyme, yielding p-nitrophenol and inorganic phosphate. Alkaline 

p-nitrophenol is converted to a yellow complex upon its synthesis in solution, with 

developing color intensity proportional to phosphatase activity. All AP analyses were 

carried out using the Sigma AP kit according to the manufacturer’s instructions. In 

brief, 0.5 ml of 221 alkaline buffer solution was mixed with 0.5 ml stock substrate 

solution (1 mg p-nitrophenyl phosphate/ml) and added to either 0.1 ml water (control) 

or 0.1 ml cell suspension or protein lysate. The reaction mixture was incubated at 

37oC for 15 min, after which the reaction was terminated by adding 10 ml 0.05 N 

NaOH. The OD was determined at 410 nm and AP activity quantified using an ap-

propriate standard curve. Sigma units were converted to enzyme activity (EA) in 

µmol of p-nitrophenol/hour, according to Bessey et al. (1946). All measurements 

were carried out in triplicate. Results presented are from a single experiment repre-

sentative of at least three experiments.  

 

2.4.4 γ-Glutamyl Transferase Activity 

This assay is based on conversion of γ-glutamyl-p-nitroanilid to p-nitroanilin by γ-

glutamyl transferase (γ-GT). The formation of p-nitroanilin is proportional to the 

amount of enzyme present. For each reaction 0.5 ml reaction mixture (100ml con-

taining in g: 0.405 MgCl2 x 6 H2O, 0.53 glycylglycin, 0.15 L-γ-glu-nitroanalid and 7.3 

TRIS) was added to 0.5 ml protein lysate or cell suspension. Whole cells were ho-

mogenized by passing the cell suspension through a 20 gauge needle. After 40 min 

incubation at 37oC the reaction was terminated adding 0.5 ml 3 N acetic acid. Result-

ing p-nitroanilin concentrations (C) were determined by dividing adsorption (A) at 410 

nm by its molar absorption coefficient (8800 M-1 cm-1) according to (1): 

 

(1) C = A/8800    [mol/L] 

 

Amount of substrate (N) was determined according to (2): 

 

(2) N = C x 0.0015 L   [mol] 
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Finally, enzyme activity (EA) (1 nmol p-nitroanilin/ min) at 37oC was calculated (3): 

 

(3) EA = N x 109/min  [U] 

 

All measurements were carried out in triplicate. Results presented are from single 

experiments representative of at least three experiments.  

 

2.5 Immunohistological Staining 
Series of immunohistological stains were carried out to characterize CPEC at the 

protein level. Several targets were visualized, including the marker proteins preal-

bumin and f-actin as well as a number of active transport proteins. Target proteins 

were stained in freshly isolated tissue or cultured CPEC. Further, western blot analy-

sis was performed, using whole cell protein samples as well as isolated apical and 

basolateral membrane fractions. Table 5 lists the different proteins labelled, including 

source of primary antibodies. Secondary antibodies are listed in table  6. F-actin was 

visualized in cultured CPEC only, using fluorescent-labelled phalloidin (phalloidin-

FITC). Results presented are from single experiments, representative of at least 

three experiments.  

 
2.5.1 Immunocytological Staining  
Fresh rat lateral CP and porcine CPEC 13 to 15 DIC were fixed in 95% EtOH for 15 

min at RT. Cells were permeated in 0.1% Triton X-100 for 15 min. Specimens were 

then blocked in blocking buffer (1% BSA and 1% milk powder) for 1 hour. Following 

blocking, samples were incubated with target antibody at a dilution of 1:10 in block-

ing buffer at RT overnight. After washing in 0.05% Triton X-100 three times for 5 min, 

samples were incubated with a FITC-labeled secondary IgG (DakoCytomation) for 2 

hours at 1:100 in blocking buffer, with 10 µM propidium iodide (PI) added. For con-

trols, primary antibody was omitted. F-actin stained cultured CPEC were incubated 

with 10 µM phalloidin-FITC and 10 µM PI or with PI only for treatment and control, 

respectively. Samples were embedded in Aqua Polymount® and viewed through an 

inverted Leica DM-IRB confocal microscope, using a x 40 oil immersion objective 

(NA 1.2), a 488-nm argon ion laser excitation and a 500-nm long-pass emission fil-
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ter. Data are results from single experiments, representative of at least three experi-

ments.  

 
Table 5: Primary Antibodies  
Primary Antibodies  
Anti-TTR (monoclonal, human), goat IgG Sigma-Aldrich Chemie GmbH, Steinheim 
Anti-Pgp (monoclonal C219), mouse IgG Alexis, Grünberg 
Anti-Mrp1 (monoclonal Mrpr1), rat IgG Alexis, Grünberg 
 
Table 6: Secondary Antibodies  
Secondary Antibodies  
Anti-Goat IgG, FITC-labeled  Sigma-Aldrich Chemie GmbH, Steinheim 
Anti-Mouse IgG, FITC-labeled  Sigma-Aldrich Chemie GmbH, Steinheim 
Anti-Rat IgG, FITC-labeled  Sigma-Aldrich Chemie GmbH, Steinheim 
Anti-Goat IgG, HRP-labeled  DAKO, Glostrup, Denmark 
Anti-Mouse IgG, HRP-labeled  DAKO, Glostrup, Denmark 
Anti-Rat IgG, HRP-labeled  DAKO, Glostrup, Denmark 
 

2.5.2 Isolation of Apical and Basolateral Membrane Fractions 
 Methods for apical and basolateral CPEC membrane fraction isolation were 

adapted from a spinning and cation precipitation protocol for kidney membranes 

(Hilden et al., 1989). Freshly isolated lateral CP was homogenized in homogenizing 

solution (HS, in mM: 300 mannitol, 0.1 PMSF, 1 EDTA and 18 Tris HCL, pH 7.5) us-

ing 6 g CP per 50 ml HS. The homogenate was centrifuged (in a Beckmann centri-

fuge) at 5,000 rpm for 10 min 1 % of volume 1 M MgCl2 was added to the resulting 

supernatant (S1) and stirred for 20 min on ice. The solution was then centrifuged at 

4,000 rpm for 10 min. The resulting supernatant (S2) was used for isolation of baso-

lateral membrane fractions and resulting pellet (P2) for the isolation of apical mem-

brane fractions.  

For the isolation of apical membrane fractions, S2 was centrifuged at 16,500 

rpm for 20 min. The resulting pellet was resuspended in half the original volume of 

HS, and 1 M MgCl2 was added to arrive at a concentration of 10 mM MgCl2. After 20 

min on ice, the solution was centrifuged at 6,000 rpm for 12 min and the pellet dis-

carded. This procedure was repeated twice. Finally, the solution was centrifuged at 

7,250 rpm for 12 min, the pellet discarded and the supernatant further centrifuged at 

16,500 rpm for 20 min. The resulting pellet was the apical membrane fraction.  



 
Materials and Methods 31 
 

 

Basolateral membrane fractions were obtained by resuspending P2 in HS and 

further centrifuging at 20,000 rpm for 20 min. This procedure was repeated twice. 

Then the pellet was resuspended in a small volume of HS and mixed with 2 ml per-

coll per 10 ml. The mixture was centrifuged at 20,000 rpm for 30 min, after which two 

layers became evident. The upper layer was removed and remaining percoll washed 

out by adding an excess amount of PBS (without magnesium and calcium) and cen-

trifuging at 20,000 rpm for 30 min. The final pellet was taken up in a small volume of 

HS. Both membrane fractions were characterized, the apical by analysis of alkaline 

phosphatase and γ-glutamyl transferase activity, the basolateral by determination of 

Mrp1 expression in western blot analyses.  

 
2.5.3 Western Blots 
CPEC whole cell protein samples or enriched membrane fractions were studied in 

western blot analyses according to Sambrook et al. (1989). Proteins were denatured 

and reduced in a SDS-containing sample buffer (100 mM tris-Cl (pH 6.8), 4% SDS, 

2% bromophenol blue, 20% glycerol) and reduced using either β-mercaptoethanol or 

D,L-dithiothreitol. Protein samples were heated to 95oC or 60oC for 10 min or 5 min 

analyzing marker proteins and ABC-transporters, respectively. Following SDS-PAGE 

(15 to 6% polyacrylamide gels) at 80 V for 2 h in running buffer (25 mM tris (pH 8.3), 

250 mM glycine, 0.1% SDS), samples were blotted on nitrocellulose at 250 mA for 

2.5 h in blotting buffer (39 mM glycine, 48 mM tris-base (pH 8.3), 0.037% SDS, 20% 

methanol). After one hour blocking in blocking buffer, samples were incubated with 

target antibody at a dilution of 1:100 in blocking buffer at 4oC overnight, followed by 

incubation in horse radish peroxidase (HRP)-labeled secondary IgG (DakoCytoma-

tion) at a dilution of 1:1,000 in blocking buffer for two hours. Blocking and antibody 

incubation were both done in blocking buffer. The resulting bands were visualized 

with diaminobenzidine in combination with NiCl2. Porcine brain capillary endothelial 

cells, liver and kidney samples were used as positive controls. 

 

2.6 Choroid Plexus Functional Analyses  
Secretion of CNS active compounds across CP epithelium was assessed in vitro and 

correlated to ex vivo findings. A number of different functional experiments were car-

ried using cultured CPEC, with cells either cultured on Transwell® filter systems or 
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cells grown in 96-well plates. All experiments using cultured CPEC were carried out 

with cells grown for 13 DIC to 15 DIC ensuring the development of a confluent 

monolayer and full cellular differentiation. 

  Besides molecular and biochemical characterization, CSF production was 

measured in cultured CPEC, as an indicator for complex cellular differentiation. Fur-

ther, for experiments using cells grown on Transwell® filter systems, monolayer in-

tegrity was assessed measuring transepithelial electrical resistance (TEER) and run-

ning samples of the permeability marker 5-carboxyfluorescein (5-CF) simultaneously. 

Monolayers were regarded intact with TEER values greater 100 Ωcm2 and 5-CF ap-

parent permeability coefficient (Papp) values < 3 x 10-5 cm/s. To ensure monolayer 

confluence for cells grown on 96-well plates, all wells were checked by inverted light 

microscopy.  

In vitro results were correlated to in vivo data, obtained from fresh excised, 

live tissue in real time analyses, using a mammalian and an elasmobranch lateral CP 

model. Transport of substrates across CP tissue was visualized by quantitative fluo-

rescent confocal microscopy, allowing detailed analyses at the cellular and sub-

cellular level.  

All compounds used, including substrates and inhibitors, were dissolved in 

KRB, aCSF, ER or dimethylsulfoxide (DMSO). DMSO concentrations were kept be-

low 0.5%, shown to be non-detrimental to CP tissue (Breen et al., 2002).  

 
2.6.1 CPEC Cerebrospinal-Fluid Secretion  
To assess CSF secretion by cultured CPEC, cells were cultured on permeable, poly-

ester 6-well Transwell filter plates for 13 to 15 DIC. Cells were washed three times 

in CSF secretion buffer (CSFB, in mM: 122 NaCl, 4 KCL, 1 CaCl2, 1 MgCl2, 15 Na-

HCO3, 15 HEPES, 0.5 Na2HPO4, 0.5 NaHPO4 and 17.5 Glucose, pH 7.3, 37oC, with 

5 µg/ml insulin added, Hakvoort et al., 1998). Following a 1 hour preincubation with 

CSFB, 1.0 ml 1.0 µM 67 kDa fluorescent-dextran (FITC-dextran) in CSB was added 

to both apical and basolateral chambers. Filters were incubated at 37oC, 5% CO2 

and 95% relative humidity for up to eight hours. 200 µl samples were taken on the 

hour from either the apical or basolateral chamber and replaced with fresh dextran 

solution. Samples were analyzed in a fluorescent plate reader and sample concen-
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tration corrected for the sample regimen as described below (section 2.6.3). CSF 

volumes secreted were then calculated according to equation (1):    

 

(1) VCSF = (Cn corr Dex (initial) - Cn corr FD (final))/Cn corr FD (initial) x V0 

 

Where, 

VCSF   =  CSF volume       [µl] 

CDex (initial)  =  initial FITC-dextran concentration   [µM] 

CDex (final)  = final FITC-dextran concentration   [µM] 

V0   =  initial volume applied     [µl] 

Wells containing CSFB-dextran only served as control, ensuring that resulting dex-

tran concentrations were not affected by any outside factors (e.g. vaporization). A 67 

kDa fluorescent dextran standard curve was run to warrant that values obtained 

were linear over the resulting concentration range. 

 

2.6.2  Transepithelial Electrical Resistance (TEER) 
TEER values were determined for CPEC grown on permeable polyester Costar 

Transwell® membranes, using the Millicell®-ERS and STX-2 electrode system. The 

electrode system is made up of two electrode holders, containing a silver-/ silver 

chloride electrode to measure voltage and a silver electrode to measure current. 

With one of the electrode holders being 2.5 mm longer than the other, direct meas-

urements within the filter system were possible. Electrical resistance was determined 

from voltage and current values are in Ohm (Ω). Control values obtained from coated 

filters without cells (blank) were subtracted and the resulting values multiplied by the 

filter surface area, resulting in TEER values of Ωcm2.  

 

2.6.3 The Apparent Permeation Coefficient (Papp) 
Apparent permeation coefficient (Papp) values for secretion of compounds 

across CPEC grown on permeable Costar Transwell® membranes were determined 

according to Thöle (2000).  Samples were taken at defined times and quantified us-

ing an appropriate standard curve. Then, substrate concentrations were adjusted 

according to the sample regimen and corrected substrate concentrations (Cn corr) 

were calculated as follows (1): 
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n-1 

(1)  Cn corr = Cn x Vtotal + ∑ (Ci x Vsample) / Vtotal 

i=1 

Where, 

Cn corr  =  corrected concentration of sample n; n>1  [µg/ml] or [µmol/ml] 

Cn =  concentration of sample n    [µg/ml] or [µmol/ml] 

Vtotal = total volume in acceptor compartment (acceptor = compartment into  

which compounds diffuse)    [ml] 

Vsample =  sample volume     [ml] 

   

The relative amount diffused into the acceptor chamber at time (t) was then calcu-

lated according to (2): 

 

(2) St =  (Cn corr / C0) x 100 

 

Where, 

St =  compound transported at time (t)   [%] 

C0  =  concentration in donor chamber at time zero [µg/ml] or [µmol/ml] 

 

Finally, the apparent permeation coefficient (Papp) was calculated as shown in (3): 

 

(3) Papp  =  (Cn corr x Vtotal) / t x 1 / A x 1 / C0 

 

Where, 

Papp  = apparent permeation coefficient   [cm/s] 

t =  time       [s] 

A =  filter surface area     [cm2]  

 
2.6.4 Choroid Plexus Permeability Assays  
In general, permeability assays were carried out on permeable polyester Transwell® 

membranes. Before starting experiments, cells were washed in KRB, pH 7.4, 37oC 

three times and pre-incubated for 60 min, without (control) and with inhibitor added in 

an atmosphere of 5% CO2 and 95% relative humidity. Volumes were set at 0.5 ml in 
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the apical and 1.5 ml in the basolateral compartment. After substrate addition, 200 µl 

samples were drawn at 5, 10, 15, 30, 45, 60, 90 and 120 min and for each sample 

taken sample volumes were replaced with KRB, pH 7.4, 37oC.  

 Radioactive samples were analyzed in a Tricarb 2000 CA scintillation counter 

adding 5 ml Ultima Gold MV liquid scintillation cocktail, allowing for a 24 h equilibra-

tion. Fluorescent samples were analyzed using a fluorescent plate reader (Ascent 

Fluoroscan).  

 
2.6.5 Choroid Plexus Uptake Assays  
Uptake assays were carried out with CPEC cultured in 96-well plates. For all experi-

ments CPEC were cultured at least 13 DIC, but not more than 15 DIC. Before carry-

ing out experiments, cells were washed three times and then pre-incubated in KRB, 

pH 7.4, 37oC, for 30 min, without (control) and with inhibitor added in an atmosphere 

of 5% CO2 and 95% relative humidity. After 90 min incubation with substrate or sub-

strate and inhibitor for control and treatment samples, respectively, cells were 

washed five times with KRB, pH 7.4, 37oC, lysed in 1% Triton X-100 and wells ana-

lyzed in a fluorescent plate reader (Ascent Fluoroscan). Wells containing CPEC in-

cubated with KRB only served as blank. Apparent uptake was calculated by subtract-

ing blanks from fluorescent values. Fluorescent values were quantified using an ap-

propriate standard curve.  

 

2.6.6 Transport across Live Choroid Plexus Epithelia in Real-Time 
Mammalian and elasmobranch CP tissue was analyzed using rat and dogfish shark 

tissue, respectively. Lateral CP were used either whole or cut in halves. Rat and 

shark CP pieces were incubated in aCSF or ER, respective of the species, with sub-

strate and without (control) or with inhibitors added. All samples were gassed with 

99% O2/1% CO2 (rat) or 95% oxygen/5% CO2 (shark) and kept in zip-lock bags at all 

times. When inhibitors were used, CP pieces were pre-incubated in experimental 

solution for 30 min in ER or aCSF without substrate. Experiments with rat CP were 

carried out at 37oC and elasmobranch experiments at 10oC. 

To acquire images, CP segments and incubation solution were transferred to 

covered Teflon chambers with a glass cover slip bottom, and placed on an inverted 

confocal microscope (Olympus Fluoview, Zeiss Pascal or Leica DMIRB). The speci-
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mens were viewed in transmitted light, using a X 40 water or oil immersion objective 

(NA 1.2), a 488-nm argon ion laser excitation, a 505-nm dichroic filter and a 510-nm 

long-pass emission filter. Photomultiplier gain was set to yield an average fluores-

cence intensity of 20 – 200 (full scale, 255) and 200-2,000 (full scale, 2,500) for 

Zeiss or Leica and Olympus, respectively, with tissue autofluorescence being unde-

tectable. A factor of X 16 was applied to convert between both types of imaging sys-

tems. For each piece of choroid plexus, 5 to 15 undamaged areas were selected and 

a fluorescence image (512 X 512 X 8 bit frames averaged) recorded. Fluorescence 

intensities were measured from stored images using the NIH Scion Image software 

as described previously (Breen et al., 2002). Data presented are results from single 

experiments, representative of at least three experiments and reported as average 

pixel intensity. 

 

2.7 Statistics  
All values presented are means +/- SEM. Control and treatment groups were com-

pared by either student’s t-test or one-way analysis of variance, followed by either a 

Bonferroni or Dunnett’s post hoc test. Differences were considered moderately sig-

nificant at *P<0.05 and significant at **P<0.01. Regression analysis was carried out 

to analyze appropriateness of standard curves used and only linear relationships 

with an R2-value greater than 0.95 were used for transformations.   
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3 RESULTS AND DISCUSSION 

3.1 Choroid Plexus Cell Culture and Animal Models  

Choroid plexus epithelial cells (CPEC) were characterized using several different 

models. In vitro studies were carried out using porcine CP. Ex vivo studies on excised 

live tissue were performed using rat and dogfish shark. Porcine experiments were 

carried out at the Heidelberg laboratory, dogfish shark experiments at the Mount De-

sert Island Biological Laboratory, Maine, USA.  

Porcine brain is advantageous for use in cell culture, due to its free availability, 

large size and number of epithelial cells per tissue. However, due to slaughter proce-

dure and distance from laboratory to slaughterhouse the tissue was less suitable for 

ex vivo or real time analysis in live cells. In spite of the close evolutionary linkage be-

tween pig and man, the porcine genome has not been sequenced and relatively little 

molecular and biochemical information is available. Rat CP tissue on the other hand 

could be easily excised in the laboratory and live cell experiments commenced im-

mediately after sacrificing the animal. Further, the rat genome has been fully se-

quenced and comparative molecular and biochemical data is readily available (NIH, 

2004). The dogfish shark is probably least characterized, however, there are several 

advantages to using this evolutionary ancient species. Dogfish CP tissue is easily 

accessible, as the brain is enclosed by cartilage not bone, large in size and can be 

maintained intact for longer periods of time when compared to mammalian CP tissue. 

Further, with the shark being a poikilothermic animal, experiments could be carried 

out at lower temperatures.  

 

3.2 Porcine Choroid Plexus Epithelial Cell Isolation and Culture  
Several different approaches have been developed trying to establish a CPEC in vitro 

model. Crook et al. (1981) were first to publish a protocol on epithelial cell isolation 

and cultivation using CP isolated from bovine brains. Other species used thereafter 

include rabbit (Mayer and Sanders-Bush, 1993; Ramanathan et al., 1997), rat 

(Southwell et al., 1993; Strazielle and Ghersi-Egea, 1999; Tsutsumi, et al., 1989; 

Villalobos et al., 1997) and pig (Gath et al., 1997). Typically, CP tissue was removed 

from lateral ventricles and mechanically fractionated. Individual CP were digested 

using proteolytic enzymes, such as trypsin, pronase, collagenase and also DNAse, 



 
38   Results and Discussion 
 
yielding an isolate of epithelial cells. The goal is to obtain a maximum of live CPEC, 

whilst reducing the number of undesired cells, such as fibroblasts and macrophages.  

Two strategies can be used to cull unwanted cells. Fibroblasts, macrophages 

and endothelial cells attach faster to culture surfaces compared to CPEC, allowing 

cell selection based on settling speed. Second, addition of inhibitors to the medium, 

such as cis-hydroxyproline or cytosine arabinoside, favors growth of CPEC and sup-

presses fast proliferating fibroblasts.  

Isolation and culture protocols used for isolation and culture of porcine CPEC 

in the studies presented were adapted from Crook et al. (1981), with modification ac-

cording to Gath et al. (1997). Following mechanical fractionation, lateral porcine CP 

were digested by cold trypsination. Table 7 lists amount of CP tissue obtained and 

the corresponding number of live and dead cells isolated over a two year time period 

(n=25). Viability was calculated from counted live and dead cells.  

 
Table 7: Isolation of Choroid Plexus Epithelial Cells (n = 25) 
 CP Tissue  

(g) 
Live Cells 

(x107) 
Dead Cells 

(x107) 
Viability 

(%) 
Mean 4.22 2,75 1,44 65.86 
SEM 0.25 0.22 0.15 2.42 
Max 6.25 4.70 2.88 85.29 
Min 1.90 0.49 0.25 41.27 

 

Following isolation, cells were seeded on either Transwell filter systems, 96-

well plates or in culture flasks at a seeding density of at least 1g per 50 cm2 or 1.2 x 

105 cells per cm2. With the exception of culture flasks, all culture material was coated 

with 5 µg laminin per cm2. Haselbach et al. (2001) showed that CPEC grown on 

laminin not only adhere to a higher percentage, but also proliferate at a higher rate, 

compared to cells grown on BSA, fibronectin, collagen type IV or thrombospondin-1 

coated surfaces. For the first nine days of culture, cells were cultured in serum-

containing medium, with cytosine arabinoside added. After nine days in culture, cells 

were washed and incubated in serum-free medium. 

 

3.3 Characterization of Cultured Choroid Plexus Epithelial Cells 
In general, CPEC growth was slow and proliferation rates were low. Addition of cyto-

sine arabinoside suppressed growth of contaminating cells and epithelial cell cultures 
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developed into an integer monolayer within 9 days of culture (DIC), displaying the 

typical cobblestone appearance. After 9 DIC, serum was removed from the medium 

and CPEC monolayers allowed to fully differentiate. Detailed characterization of cul-

tured CPEC was carried out to ensure cellular viability, integrity and differentiation.  

Functional, biochemical and molecular function was assessed and in vitro and 

in vivo activity compared. Cultured CPEC characterization included epithelial cy-

toskeleton analyses, CP specific transthyrethin expression, cerebrospinal-fluid (CSF) 

secretion, transepithelial resistance measurements and transcellular secretion pro-

files for compounds of low and high permeability.  

Two active transport proteins, the multidrug-resistance MDR1 gene product P-

glycoprotein (pgp) and multidrug-resistance associated protein 1 (Mrp1) were as-

sessed on a molecular, biochemical and functional level. Following RNA expression 

analysis, proteins were localized by immunohistological staining and visualization 

carried out using confocal laser scanning microscopy analysis. To further provide 

evidence for preferential membrane distribution, Western blots were done on isolated 

membrane fractions.  

Last, CPEC were functionally characterized in vitro and ex vivo, using two dif-

ferent approaches. First, activity of one active transport protein was assessed meas-

uring transport of a substrate with high affinity for the protein of interest. Specifically, 

functional activity of Pgp was quantified measuring transport of Rhodamin123 into 

cells cultured in 96-well plates. Accumulation of Rho123, a specific Pgp substrate, 

provided a measure for protein expression and activity in presence and absence of 

additional transport inhibitors.  

Second, the movement of a compound with affinity for a number of transport-

ers was investigated. Transporters involved in transepithelial secretion were identified 

using a classical pharmacological approach. Movement of the organic anion fluo-

rescein-methotrexate (FL-MTX) was followed in freshly excised tissue from medium, 

through the epithelium and into CP blood vessels. Changing ionic composition and 

addition of various inhibitors to the surrounding medium allowed revealing molecular 

mechanisms governing organic anion secretion across CP tissue. Comparisons to 

transport of another organic anion, fluorescein, were made. Finally, for the first time it 

was shown that different protein kinases are involved in regulating organic anion 

transport across the CP.  
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3.3.1  Choroid Plexus Epithelial Cell F-Actin 
Actin is the most abundant protein in eukaryotic cells and highly conserved (Goodson 

and Hawse, 2002). Involved in many basic phenomena, the protein is crucial to many 

structural and regulatory cell functions (Rodriguez et al., 2003).  

The filamentous or fibrous form of actin (f-actin) is formed by polymerisation of 

globular actin (g-actin) with bound adenosine-triphosphate (ATP). Together with in-

termediate filaments and microtubules, actin filaments make up the cytoskeleton. In 

general, the cytoskeleton plays a major role in cellular differentiation, cell shape de-

velopment and intracellular trafficking. With respect to epithelial cells, its role includes 

development of polarity, formation of the apical-basolateral axis and facilitation of 

topographic contacts between cells and extracellular matrix (Bacallao, 1995; Louvard, 

1996). Further, actin filaments are associated with tight junctions and perijunctional 

actin is directly involved in controlling paracellular permeability (Anderson and Van 

Itallie, 1995). 

Isolated CPEC were grown in serum-containing medium for nine days and 

then kept in serum-free medium for an additional five days, allowing full differentia-

tion. After 14 DIC cells were washed and following fixation in 95% EtOH, cells were 

permeated with Triton-X 100. To visualize actin distribution throughout the epithelium, 

the protein was stained with fluorescent-labeled phalloidin (FITC-phalloidin). Phal-

loidin is a toxin, isolated from the toadstool "Death Cap" (Amanita phalloides), that 

binds specifically to f-actin by association with individual subunit junctions (Loew and 

Wieland, 1974; Faulstich et al., 1993). Propidium iodide (PI) was also added to per-

meated cells, staining cell nuclei.  

Figure 7 shows images of CPEC 14 DIC after incubation with FITC-phalloidin 

and PI (figure 7A) and PI only (figure 7B, control), visualized by confocal laser scan-

ning microscopy. Samples were viewed through an inverse microscope equipped 

with a X 40 water immersion objective (NA 1.2). The FITC label was excited at 485 

nm with an argon-ion laser and the resulting emissions recorded through a 505-nm 

dichroic filter and a 510-nm long-pass emission filter.   

F-actin is shown in green and cell nuclei are shown in red. Overall, cultured 

epithelial cells appeared as a confluent monolayer with individual cells of polygonal, 

cobblestone-like shape. No undesired and contaminating cells (e.g. fibroblasts or 

macrophages) were present. All CPEC abundantly expressed f-actin and, as ex-
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pected from fully differentiated cells, the stain revealed actin filaments in networks 

and bundles, some of which spanned the whole cell. 

 

Figure 7: Phalloidin Stained F-Actin (Green) in Cultured CPEC 14 DIC with PI (A) and PI Only (Con-
trol, B).  
 
 
3.3.2 The Marker Protein Prealbumin (Transthyrethin, TTR) 
Upon discovery in the 1950s, thyroxin-binding prealbumin was first known for plasma 

transport of thyroid hormones (Schonenberger et al., 1956). Later its role in vitamin A 

transport, through interaction with retinol-binding protein, was revealed (Robbins, 

2002). It was then renamed transthyrethin (TTR).  

In the mammalian brain, TTR is specifically localized to the CP, demonstrated 

by Northern analysis, in situ hybridization with specific cDNA probes and immunocy-

tochemical analysis (Dickson et al., 1985; Herbert et al., 1986; Stauder et al., 1986, 

Jacobsson, 1989). Otherwise, TTR is found in liver, pancreatic islets, in endocrine 

tumors and the eye (Inada, 1988; Jacobsson, 1989).  

Due to its specific localization within the brain, TTR is a convenient marker for 

CPEC (Gath et al., 1997; Zheng and Zhao, 1998; Zheng et al., 2002; Zheng and 

Zhao, 2002). So far TTR was used to characterize primary cultured CPEC from rat 

and pig and also an immortalized CPEC cell line. Approximately 20% of total protein 

synthesized by CPEC is TTR and 50% of protein secreted into the CSF by CPEC is 

TTR (Schreiber et al., 1990). Thus protein within cells as well as protein secreted into 

the surrounding medium can be used in CPEC characterization.  

B A 
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TTR mRNA expression was analyzed in fresh CP tissue and cultured CPEC 

14 DIC. Further, the protein was immunolocalized in cultured CPEC and visualized by 

confocal laser scanning microscopy. Finally, TTR was stained in Western blots, fol-

lowing whole cell lysate SDS-PAGE.  

 

3.3.3 TTR Analysis in Choroid Plexus Epithelial Cells 
TTR is a cytoplasmic 55 kDa, 130 amino acid tetramer comprised of identical sub-

units of approximately 15 kDa (Docherty et al., 1989). The unpublished mRNA se-

quence for porcine specific TTR, accession number X87846, was submitted to the 

Nucleotide Entrez database by Archibald et al. (1995).  

For TTR mRNA expression analysis, cells were grown for 9 DIC in serum-

containing medium and allowed to fully differentiate in serum-free medium for addi-

tional five days. Fresh porcine CP, cleared from all surrounding brain tissue, and por-

cine liver were isolated in the slaughterhouse and transferred to RNALater® storage 

solution and stored at 4oC according to the manufacturer’s directions. mRNA was 

isolated from all samples using the Qiagen RNeasy isolation kit and carried out ac-

cording to the manufacturer’s protocol. Only RNA samples with an OD ratio of 260 

nm over 280 nm of 1.7 to 2.0 were used in mRNA transcription.  

Following reverse transcription of 1.0 µg of total RNA with the Promega Re-

verse Transcription System, samples were amplified from 10% of the produced 

cDNA using TTR and β-actin specific primers (table 4). Amplification was run for 15 

to 35 cycles with annealing temperature set at 55oC at 30 sec time intervals. Result-

ing PCR products were separated on a 1.5% agarose gel and stained with ethidium 

bromide. 

Figure 8 shows amplified cDNA of liver (control), fresh CP, CP 9 DIC and CP 

14 DIC in an ethidium bromide gel visualized under UV-light. TTR amplified at 371 bp 

specific for TTR mRNA expression and is shown in the top lanes. β-Actin, used as 

internal standard, amplified at 703 bp and is shown in bottom lanes. For each sam-

ple, lanes one through five show amplification results for 15 to 35 cycles, with lanes 

corresponding to PCR products with five cycles of additional amplification (cycles 

number: lane 1, 15; lane 2, 20; lane 3, 25; lane 4, 30; lane 5, 35). 

Fresh CP (CP 0 DIC) TTR amplification produced gel bands after 15 amplifica-

tion cycles. The signal for cultured CPEC was less intense, with signals visible after 
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25 amplification cycles. β-actin amplified with similar intensity in all CPEC samples. 

Thus, TTR mRNA expression was higher in fresh CP tissue when compared to TTR 

expressed in cultured CPEC. 

 

  
Figure 8: Liver, Freshly Isolated, CPEC 9 DIC and CPEC 14 DIC RT-PCR of TTR (371 bp) and β-
Actin (703 bp).  

 

TTR protein expression was investigated in immunological staining of cultured 

CPEC 14 DIC and in Western blot analysis, using fresh and cultured CPEC 14 DIC. 

For immunohistological analysis, CPEC were grown on chamber slides for nine days 

in serum-containing medium followed by additional five days in serum-free medium. 

After fixing cells in 95% EtOH and permeation with Triton-X 100, samples were 

blocked and then incubated with TTR specific antibody (table 5). After primary incu-

bation, samples were stained with FITC-labeled secondary antibody. Following addi-

tion of fluorescence enhancer, samples were visualized by confocal laser scanning 

microscopy, using an inverted Leica DM-IRB confocal microscope, equipped with a  

X40 oil immersion objective (NA 1.2), a 488-nm argon-ion laser excitation and a 500-

nm long-pass emission filter.  

Figure 9A shows confocal images of a cultured CPEC monolayer stained with 

anti-TTR and PI in xy, xz and yz sections. Cells formed an intact monolayer and ap-

peared cobblestone-shaped. TTR is shown in green and cell nuclei in red. In cultured 

CPEC, TTR localized throughout the cytoplasm, with most intense staining around 

the cell nuclei. Fewer signals were observed towards the cell membrane. No TTR 

staining was seen in control (figure 9B) images.  
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Figure 9: TTR (Green) and PI (Red) Stained CPEC (A) and Control (B)  

 

For Western blot analysis, whole cell protein was isolated from porcine liver tis-

sue (control), fresh CP tissue and cultured CPEC 14 DIC. For protein isolation, fresh 

CP tissue and liver were collected and immediately placed in RNALater®, according 

to the manufacturer’s directions, before use. Cultured CPEC were lysed directly in 

culture flasks. All samples were homogenized in CellLytic®, with protease inhibitors 

added, denatured in SDS-buffer and reduced with β-mercaptoethanol. A total of 10 

µg whole cell protein was applied to each lane and samples were separated by SDS-

PAGE in a 15% polyacrylamide gel. Then, proteins were transferred to a 

nitrocellulose membrane, incubated with anti-TTR antibody and labelled with HRP-

secondary antibody. Finally, stains were visualized with diaminobenzidine in pres-

ence of NiCl2. 

Figure 10 shows the Western blot of TTR denatured to 15 kDa TTR fragments 

in fresh CPEC and cultured cells 14 DIC. Porcine liver was used as positive control. 

Samples without primary antibody incubation are included as negative control. Lanes 

1 and 2 are liver TTR without and with primary TTR antibody added. Lanes 3 and 4 

show freshly isolated CP TTR without and with primary antibody. Lanes 5 and 6 are 

14 DIC CPEC TTR bands without and with primary antibody added. All samples with 

primary antibody added show TTR staining. All samples with primary antibody omit-

ted remained blank. 

 

 

 

    B     A 



 
Results and Discussion 45 
 

 

 

 

 

 

 
Figure 10: TTR Western Blot of Liver (Lane 1 and 2), Freshly Isolated CP (Lane 3 and 4) and CPEC 
14 DIC (Lane 5 and 6)  
 

3.3.4 Enzyme Analysis  

Two enzymes, alkaline phosphatase (AP) (EC 3.1.3.1) and γ-glutamyl transferase (γ-

GT) (EC 2.3.2.1), were used to characterize cultured CPEC. Both membrane-bound 

enzymes are well known markers for the BBB in vivo and in vitro (Schlosshauer, 

1993; Beuckmann et al., 1995; Moller and Kummer, 2003). Both AP and γ-GT are 

present at the BCSFB in different species, including pig, and have been previously 

used to characterize CP membrane preparations (Sessa et al., 1976; Yoshioka et al., 

1988; Bourne et al., 1989; Whittico et al., 1991; De Bault and Mitro, 1994; Narisawa 

et al., 1994; Ogawa et al., 1998).  
AP catalyzes hydrolysis of phosphorylated metabolites, such as hexose and 

mono-nucleotides and controls their passage into the brain (Pino et al., 1995). And 

AP contributes to the enzymatic BCSFB, activating or deactivating enzymes by 

dephosphorylation (Meyer et al., 1990). γ-GT is critical to the γ-glutamylcycle and glu-

tathione homeostasis. It catalyzes transpeptidation in glutathione metabolism by 

transferring the γ-glutamyl moiety of a donor peptide to amino acids and peptides. γ-

GT also plays an important role in phase II detoxification processes (Caspers und 

Diglio, 1984). 

 AP activity was determined hydrolyzing p-nitrophenyl phosphate in presence of 

an amino alcohol, 2-amino-2-methyl-1-propanol. In this reaction, AP transferred the 

phosphate moiety onto the amino alcohol, yielding p-nitrophenol and inorganic phos-

phate. The resulting yellow phenolate was measured (OD 410 nm) and quantified 

using an appropriate standard curve.  

γ-GT activity was determined following a protocol by Caspers and Diglio 

(1984). γ-Glutamyl-p-nitroanilid was converted to p-nitroanilin with glycylglycine acting 

as acceptor in the reaction. p-Nitroanilin was then measured at an OD of 410 nm and 

concentrations were determined via its molar absorption coefficient. 

1 2  3  4 5 6 

  15 kDa  
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Figure 11 shows enzyme activity (EA) measured in units of nmol of substrate 

converted per min per mg of protein. Activity was determined for cultured CPEC at 9 

DIC, before serum was removed from culture medium, and at 14 DIC, after cells were 

fully differentiated. Measured enzyme activity was compared to freshly isolated CPEC 

(0 DIC).  

AP activity (figure 11A) decreased from 11.9 nmol/min/mg down to 1.5 

nmol/min/mg and 1.4 U/mg from 0 DIC to 9 DIC and 14 DIC, resembling an 88.6% 

and 87.1% decrease compared to activity measured after cell isolation. The reduction 

in γ-GT (figure 11B) was more gradual, with values decreasing from 11.4 

nmol/min/mg to 9.5 nmol/min/mg and 5.0 U/mg from 0 DIC to 9 and 14 DIC, resem-

bling a 25.0% and 45.4% decrease after 14 DIC. 

  
Figure 11: Alkaline Phosphatase (AP, A) and γ-Glutamyl-Transferase (γ-GT, B) Activity in Freshly 
Isolated and CPEC 9 DIC and 14 DIC.  

 

Enzymatic activity is often reduced in in vitro preparations when compared to 

live tissue in vivo, as culture conditions, medium and surrounding environment differ. 

For example, reduced AP and γ-GT activity was observed in primary BCEC cultures, 

with activity decreased during cell proliferation and continuingly low even after cells 

had grown into a confluent monolayer and fully differentiated (Fukushima et al., 1990; 

Meyer et al., 1990). Enzyme activity could only be regained after adding angiogenic 

and astroglial factors to the medium (Meyer et al., 1991; Roux et al., 1994) or by 

treating with 8-(p-chlorophenylthio)-cyclic 3',5'-adenosine monophosphate (C1PhS-

cAMP) (Beuckmann et al., 1995). 
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3.3.5 Cultured Choroid Plexus Epithelial Cell Cerebrospinal-Fluid Section 
The high rate of CSF secretion is fueled by rapid blood flow through the vascularity of 

the plexus (5 ml/g/min), which is about tenfold faster than average cerebral blood flow 

(Johanson, 1995). Figure 12 depicts the major elements involved in CSF production 

and their direction of vectorial transport. Two pathways determine transepithelial flow 

of water, one ion-dependent and the other ion-independent (Speak et al., 2001).  

The driving force behind the ion-dependent pathway is transport of sodium and 

potassium ions by Na+/K+-ATPase, located at the apical membrane of CPEC, produc-

ing a transmembrane Na+-gradient. Intracellular Na+-concentrations are in the range 

of 20-30 mmol/l compared to 140 mmol/l in the extracellular space. This gradient is a 

strong secondary driving force for Na+ into the cell, facilitated by Na+-H+-exchanger 

and Na+-Cl--cotransporter, both located at basolateral membranes. Thus, the transe-

pithelial osmotic gradient, following movement of Na+, is coordinated by basolateral 

Na+-influx and apical Na+-efflux. 

 
Figure 12: CSF Secretion across Choroid Plexus Epithelial Cells 
 

The ion-independent pathway is dependent mainly on aquaporin 1 (AQP1), 

previously shown to be expressed in CPEC (Nielsen et al., 1993; Nielsen et al., 1996; 

Lee et al., 1997; Venero et al., 2001). In the brain, AQP1 is specific to the BCSFB. 
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Peripheral capillary endothelial cells express AQP1, but the endothelium of the BBB 

does not (Kobayashi et al., 2001). Further, human CP AQP1 mRNA expression levels 

are very high and comparable to those of renal cortex and pancreatic ducts (Mo-

basheri and Marples, 2004). In immunostaining studies, AQP1 was found in lateral 

and forth CP of rat, predominantly localized to apical CPEC membranes, with only 

low signal at the basolateral membrane (Nielsen et al., 1993; Masseguin et al., 2000; 

Speake et al., 2001, Speak et al., 2003). In addition to AQP1, AQP4 may also be in-

volved in the transepithelial movement of water in CP tissue. However, the protein 

could not be assigned to either membrane, but was found to distribute throughout the 

cytoplasm (Speak et al., 2003). 

CPEC CSF secretion was analyzed with cells grown on 6-well Transwell fil-

ters systems coated with 5 µg/ml laminin. Cells were incubated for 9 DIC with serum-

containing medium followed by another 5 DIC in serum-free medium. After washing 

cells with CSFB, 1 µM 67 kDa FITC-dextran was added to the CSFB (2.5 ml in both 

apical and basolateral compartments). Samples were taken at 1 hour time intervals 

and volumes removed were replaced with fresh CSFB. Sample FITC-dextran concen-

trations were determined using a fluorescent plate reader equipped with 485 nm exci-

tation and 520 nm emission filters. Final concentrations were adjusted according to 

the sample regimen and secreted CSF volumes (in µl/cm2) calculated as a function of 

FITC-dextran concentration change.  

Figure 13 shows CSF volumes secreted by cultured CPEC for up to eight 

hours. Volumes of CSF secreted by the cell monolayer increased in linear fashion, 

reaching a plateau after five hours, with approximately 150 µl/cm2 produced. No fur-

ther increase in CSF volume secreted was measured thereafter. Using measure-

ments made during the first four hours of linear CSF secretion, CSF production rates 

were measured to be 46.70 ± 4.47µl/cm2/h.   

The volume of CSF produced in the model system presented compares to re-

sults obtained by Hakvoort et al. (1998). Using similar in vitro conditions, a secretion 

rate of approximately 45 µl/cm2/h was calculated over four hours of incubation. In 

another study, saturation of CSF production was reached after six hours with 12% of 

the basolateral chamber volume secreted into the apical compartment (Hakvoort et 

al., 1998). In our studies, saturation was reached after five hours with an increase of 

approximately 15% in apical volume.  
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Figure 13: CSF Secretion in CPEC 14 DIC 

 

Comparing in vitro data to in vivo CSF secretion measurements is difficult 

however, assuming a total apical surface area of 75 cm2 (rat, Keep and Jones, 1990) 

and a secretion rate of 2.2 µl/min (rat, Cserr, 1971) CSF production is at  the rate of 

approximately 1.76 µl/cm2/hour in rat. Assuming that human CSF secretion is about 

150-fold higher when compared to rat, a production rate of approximately 280 

µl/cm2/hour is calculated for humans.  

 

3.3.6 Cultured Choroid Plexus Monolayer Transepithelial Resistance Values  
The BCSFB, as all other cellular barriers, relies on membrane polarization for barrier 

function and on tight intercellular contacts. In development, epithelial cell polarization 

is a multistage process, requiring extracellular cues and reorganization of proteins in 

cytoplasm and plasma membranes (Vega-Salas et al., 1987; Rodriguez-Boulan and 

Nelson, 1989). The polarized phenotype is maintained by protein sorting and differen-

tial trafficking of proteins and lipids to apical and basolateral membrane domains 

along actin filaments (Low et al., 2000; Mostov et al., 2003). Grown on permeable 

surfaces, a number of different epithelial cell types, including CPEC, show polarized 

distribution (Mauchamp et al., 1987; Haselbach et al., 2001). 
The structural basis of cellular barrier function is expression of tight junctions 

(TJ). These protein complexes, formed between adjacent cells, allow for cell-cell con-

tact and separate apical and basolateral membranes (Kniesel et al., 1994; Van Itallie, 

2004). TJs were first described in 1965 for a number of cell linings of glands and cavi-
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tary organs and regulate paracellular diffusion of solutes and water as well as electri-

cal resistance and ionic charge selectivity (Fagqmiag and Palade, 1965; Mitic et al., 

2000). In the BBB, BCEC express TJ and form the cellular barrier. In the BCSFB the 

cellular barrier is formed by CPEC and TJ between neighboring epithelial cells (Spec-

tor and Johanson, 1989).   

Cellular polarization and TJ formation cause a vectorial distribution of charged 

inorganic ions and consequently cellular barriers in vivo and in vitro produce differen-

tial electrical resistances (Segal and Burgess, 1974; Mollgard and Rostgaard, 1978; 

Zeuthen and Wright, 1981; Smith and Rapoport, 1986; Wegener et al., 1996). Epithe-

lial cells display transepithelial resistances and endothelial barriers specific transen-

dothelial resistances. TEER values have been used extensively as a permeability 

measure determining leakiness of cellular barriers, including CPEC in vivo and in vi-

tro as well as other epithelial barriers, such as the intestine, or the other barrier to the 

brain, the BBB (Crook et al., 1981; Gath et al., 1997; Hakvoort et al., 1998; Strazielle 

and Ghersi-Egea, 1999; Haselbach et al., 2001; Zheng and Zhao, 2001). 

Cerebral capillaries are characterized by high endothelial resistance values. In 

vivo TEER values for BBB are in the range of 1500 to 2000 Ωcm2, with some meas-

urements as high as 8000 Ωcm2, compared to peripheral endothelial cells displaying 

resistance values of 3 to 33 Ωcm2 (Garberg, 1998). In vitro measurements for TEER 

values are in the range of 1000 to 2000 Ωcm2 for primary derived BCEC cultures, 

including porcine preparations, and around 100 to 300 Ωcm2 for immortalized BCEC 

cell lines from such species as pig or mouse (Nitz et al., 2003; Omidi et al., 2003; 

Lauer et al., 2004). Primary preparations of human BCEC yield TEER values of 100 

to 250 Ωcm2 (Muruganandam et al., 1997; Zenker et al., 2003). 

Transmucosal intestinal resistance determined in pigs was measured at values 

of 10 Ωcm2 to 50 Ωcm2, increasing with time after weaning of piglets (Boudry et al., 

2004). Transepithelial resistance across the intestinal barrier of humans is in the 

range of 300 Ωcm2 to 700 Ωcm2, as determined from Caco-2 cells derived from hu-

man colonic adenocarcinoma cells and is able to express differentiation features re-

sembling mature intestinal cells,  grown in the 3-day or the 21-day model (Violante et 

al., 2004).   

 Due to morphological complexity, small size and anatomical location of the CP, 

there is no data on in vivo TEER available for mammals and no TEER information on 
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lateral CP TEER for any species. IV-ventricle CP TEER measurements were carried 

out in bullfrog IV-ventricle with values at approximately 170 Ωcm2 (Saito and Wright, 

1983). Elasmobranches resistance values were measured with values of 70 to 107 

Ωcm2 (Villalobos et al., 2002).  

In primary cultures of rat CPEC, TEER values were in the range of 100-500 

Ωcm2 (Southwell et al., 1993 and Zheng et al., 1997; Rao et al., 1999; Strazielle and 

Ghersi-Egea, 1999). Porcine CPEC models displayed resistance values in the range 

of 100 to 170 Ωcm2 (Gath et al., 1997; Hakvoort et al., 1998). One research group 

reported TEER values exceeding 1500 Ωcm2, for cells grown in serum-free medium 

(Hakvoort et al., 1998; Angelow et al., 2004). However, these resistance measure-

ments were taken using a unique device.  

CPEC for use in transport studies were grown on permeable membranes until 

fully differentiated (figure 14). Permeable filter systems are routinely used for perme-

ability measurements across CP monolayers and also across various other barrier 

models (Haselbach et al, 2001; Youdim et al., 2003). CPEC TEER values were 

measured using the Millicell®-ERS and STX-2 electrode system, before starting per-

meability analyses. In the primary porcine CPEC model presented, monolayers dis-

played TEER values in the range of 100 to 150 Ωcm2 and were judged confluent at 

values > 100 Ωcm2.  

 

 
 

Figure 14: Schematic Diagram of CPEC Grown on Transwell® Filter Systems 

 

The drawback to using TEER to determine tightness of a cellular monolayer 

and subsequent permeability analyses is that resistance measurements are influ-

enced by temperature, pH, age of tissue or culture and type of culture medium or 

buffer used and that TEER values do not take toxicity considerations into account 

(Zheng et al., 1997; Mukherjee et al., 2004). Therefore, all monolayers grown for 
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permeability analyses were assessed not only by measuring TEER values, but also 

control by light microscopy and use of permeability markers. Combination of these 

methods for judging epithelial cell monolayer tightness has been used extensively in 

the past (Gath et al., 1997; Zheng and Zhao, 2002; Ancillotti et al., 2003; Yoo et al., 

2003). 

 

3.3.7 Permeability Marker Analyses 
For cells of the BBB or BCSFB and other barrier forming cells, such as epithelial cells 

of the small intestine or Sertoli cells of the blood-testis barrier, in vitro cell culture and 

experimental conditions influence cell differentiation, including TJ expression and 

complexity and thus barrier morphology (Jegou, 1992; Wolburg et al., 1994; Gath et 

al., 1997; Hakvoort et al, 1998; Behrens and Kissel, 2003; Berezowski et al., 2004). 

Comparative studies on BBB endothelial cells for example revealed that cell 

monolayers were more permeable in culture (Tao-Cheng and Brightman, 1988; 

Wolburg et al., 1994; Kniesel et al., 1994; Risau et al., 1998). Thus, even though in 

vitro endothelial models can be a good tool for assessing BBB secretion, predictions 

tend to overestimate in vivo drug movement and correlation between both types of 

data is necessary (Pardridge et al., 1990; Dehouck et al., 1992; Pardridge et al., 

1999; Terasaki et al., 2003; Zenker et al., 2003).  

Through use of marker compounds in brain permeability studies, limitations in-

herent to cell culture systems are overcome. Comparative studies provide a measure 

of cell monolayer differentiation and thus allow for comparison between different cul-

ture systems and in vivo drug permeability data (Takakura et al., 1991; Gumbleton 

and Audus, 2001; Lohmann et al., 2002; Lundquist et al., 2002; Deguchi et al., 2004; 

Lauer et al., 2004). A wide range of compounds has been used to characterize BBB 

and BCSFB membranes, including the zero permeability marker PEG-4000 (FDA, 

Biopharmaceutical Classification System: Guidance for Industry, 2000), compounds 

secreted via paracellular routes such as carboxyfluorescein (5-CF), fluorescein-

labeled dextrans, mannitol and sucrose (Gath et al., 1997; Thomas and Segal, 1998; 

Fletcher et al., 2000; Masungi et al., 2004), lipophilic transcellular markers such as 

propranolol, morphine and diazepam (Lin and Lin, 1990; Omidi et al., 2003), as well 

as markers for transport-mediated secretion, including glucose, alanine and leucin 

(Dehouck et al., 1992; Omidi et al., 2003; Deguchi et al., 2004).  
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For paracellular marker analyses, CPEC were grown on Transwell® filter sys-

tems for 9 DIC in serum-containing medium followed by another 5 DIC in serum-free 

medium. Only polyester membrane filters (pore size 0.3 µm) were used and coated 

with 5µg/cm2 laminin prior to seeding of CPEC. Marker compounds were applied from 

either the apical or basolateral chamber and accumulation was measured in the cor-

responding compartment. All markers were used at a concentration of 10 µM.  

Figure 15 shows permeability of 5-CF (0.4 kDa) and fluorescent-labeled dex-

trans ranging from 4.4 kDa to 500 kDa in size across CPEC 14 DIC monolayers, 

grown on either polyester or polycarbonate membranes of equal thickness (10 µm) 

and with equal pore size (0.4 µm), but 4 x 106 and 1 x 108 pores per cm growth area, 

respectively. Permeation was measured from apical into basolateral compartments. 

Values are presented as amount of compound transported (in percent, %). Meas-

urements were carried out over a two hour time period.  

 

 
Figure 15: 5-CF and Dextran Permeation across CPEC 14 DIC with Transport across Polyester (A) 
and Polycarbonate (B) Membranes 

 

Molecules larger in size permeated slower across cell monolayers. Whereas 

permeation was linear for all compounds across polyester membranes, permeation 

across polycarbonate membranes followed saturation-like curves. For polyester 

membranes, total amount of compound permeated for smallest and largest molecules 

was 16.00% and 4.35% after one hour and 27.36% and 7.20% after two hours, re-

spectively. In contrast, for polycarbonate membranes smallest markers (0.4 kDa) 

reached approximately equal concentrations in apical and basolateral chambers after 

 A B 
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two hours. Differences in amount of compound permeated were almost not detect-

able. Thus, only polyester membranes allowed isolated CPEC to differentiate into an 

integer CPEC monolayer suitable for permeation and secretion experiments. 

Figure 16 shows apparent permeability coefficients (Papp) of 5-CF and dex-

trans, ranging from 0.4 kDa to 500 kDa in size. Transport was quantified across 

CPEC 14 DIC grown on polyester membranes, measuring secretion from apical to 

basolateral chambers. Papp values ranged from 4.56 +/- 0.26 x 10-5 cm/s for smallest 

down to 1.42+/- 0.13 x 10-5 cm/s for largest molecules. Notably, permeation reached 

a plateau at approximately 40 kDa, with Papp values for 42 kDa dextrans not signifi-

cantly different from Papp for 500 kDa dextrans.  

 
Figure 16: Papp Values of 5-CF and Dextrans 0.4 kDa to 500 kDa 

 

Further evidence for CPEC monolayer differentiation and TJs expression was 

gained from comparing permeation across monolayers with intact or opened TJs. 

One method of opening TJs is to remove free calcium from surrounding medium. 

Previous studies on epithelia showed that following addition of EDTA and complexion 

of Ca2+, cells retracted and TJ protein ZO1 as well as actin redistributed from the 

junctional zone back into the cytoplasm (Grebenkamper and Galla, 1994; Chang et 

al., 1997). Figure 17 shows transport of 5-CF (10 µM) in CPEC 14 DIC, grown on 

polyester membranes, without and with 0.25% EDTA added to the medium. Perme-

ability of the paracellular marker is significantly higher through monolayers with 

opened TJs, with Papp values nearly doubling. 

Barrier structure development for CPEC in vitro was investigated measuring 

permeation at different time intervals during cell culture (figure 18). Transport of 5-CF 
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and dextrans, with molecules ranging from 0.4 kDa to 500 kDa in size, was quantified 

at 9 DIC, before changing growing CPEC to serum-free medium, at 14 DIC and after 

serum-free culture for up to 21 DIC. Values for 5-CF (0.4 kDa) ranged from 4.20 +/- 

0.22 x 10-5 cm/s, 3.51 +/- 0.13 x 10-5 cm/s to 4.41 +/- 0.16 x 10-5 cm/s for 9 DIC, 14 

DIC and 21 DIC, respectively. A similar pattern was observed for dextrans larger in 

size. Thus, removal of serum from the medium increased CPEC barrier tightness for 

an initial culture period before barrier function was lost with time. Results with effects 

of serum removal similar to those demonstrated were obtained previously (Chang et 

al., 1997; Hakvoort et al., 1998).  

 

 
Figure 17: Permeation of 5-CF without and with Open Tight Junctions  

 

 
Figure 18: Permeation of 5-CF and Dextrans in Cultured CPEC over Time 
 

Transport of the zero permeability marker PEG-4000, the small paracellular 

marker sucrose and the highly lipophilic transcellular marker diazepam was meas-
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ured in CPEC 14 DIC. Papp values were determined for permeation from apical to ba-

solateral compartments and vice versa. Figure 19 shows 5-CF corrected Papp values 

obtained for all three compounds. Papp values for all compounds were not significantly 

different applied to either apical or basolateral chambers. Papp values between com-

pounds were significantly different (P≤0.01), with PEG-4000 ranking lowest, followed 

by sucrose and diazepam.  

Compared to other pharmacologically relevant cellular barriers, the BCSFB cell 

culture model presented was relatively leaky, i.e. compounds permeated more freely. 

Permeation coefficients for low permeation compounds (PEG-4000) were at ap-

proximately 5 x 10-6
 cm/s, compounds of medium permeability (sucrose) at approxi-

mately 3 x 10-5 cm/s and high permeability compounds (diazepam) in the range of 5 x 

10-5 cm/s. 

 
Figure 19: Transport of Permeability Markers from Apical to Basolateral (A B) and Basolateral to 
Apical (B A) Chambers 
 

The intestinal barrier, for example, is another important epithelial barrier of the 

body. It regulates resorption of many pharmacological relevant compounds following 

oral ingestion. Caco-2 cells are commonly used as an in vitro intestinal permeation 

model to estimate drug uptake across the small intestine. A study comparing permea-

tion of 20 different drugs and peptides across Caco-2 cell monolayers cultured on 

permeable surfaces revealed permeability coefficients ranging from 5 x 10-8 cm/s to 5 

x 10-5 cm/s for compounds of low and high permeability, respectively (Artursson and 

Karlsson, 1991). Permeation values of greater 1 x 10-6 cm/s corresponded to 100% 

drug absorbed, 1 x 10-6 cm/s - 0.1 x 10-6 cm/s for more than 1% but less than 100% 
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absorption and equal to or lower than 1 x 10-7 cm/s for drugs absorbed 1% or less. 

Another study employing Caco-2 cells reported good correlations for monolayer per-

meability coefficients to drug absorbed for Papp values ranging from 1 x 10 -7 cm/s to 4 

x 10-5 cm/s, with fraction of drug absorbed for high permeability drug in the range of 

90% and higher (Pade and Stavchansky, 1998). Another study using Caco-2 cells, 

distinguishing compounds into poorly, moderately and well absorbed classes of 

drugs, determined Papp values of < 1 x 10-6, 1 -10 x 10-5 cm/s and > 10 x 10-6 cm/s for 

these classes, respectively (Yee, 1997). 

 Generally, when comparing in vitro BBB and BCSFB model permeation, BBB 

models in vitro, as in vivo, tend to be less diffuse. In an in vitro BBB model using cul-

tured BCEC grown on semi-permeable membranes, permeation of fluorescein (0.3 

kDa) and FITC-dextran (4.4 kDa) were measured with Papp values of 2.2 +/- 0.10 x  

10-6 cm/s and 0.48 +/- 0.03 x 10-6 cm/s, respectively (Gaillard and de Boer, 2000). 

Papp values obtained in the BBB model were thus approximately an order of magni-

tude lower, comparing to values of 4.56 +/- 0.26 x 10-5 and 2.9 +/- 0.20 x 10-5 for 5-

CF (0.4 kDa) and FITC-dextran (4.4 kDa). Permeability of sucrose was measured in 

different model systems using cultured Caco-2 cells (Johnson and Anderson, 1999). 

Papp values ranged from 2.8 x 10-5 cm/s measured in the Biocoat® system to 2.3 x 10-

5 cm/s across polyester and 1.8 x 10-5 cm/s across polycarbonate membranes. In 

astrocyte-BCEC co-cultures of immortalized porcine brain endothelium, sucrose Papp 

values were in the range of 5.4 x 10-6 cm/s (Lauer et al., 2004). In comparison, the 

sucrose Papp values measured across cultured CPEC were in the range of 3 x 10-5 

cm/s.  

One study comparing permeability of 15 drugs across cultured monolayers of 

BCEC, including L-dopa, glucose and albumin, measured drug permeability coeffi-

cients ranging from 6.5 x 10-5 to 4.2 x 10-3 cm/s for low and high permeability com-

pounds, respectively (Pardridge et al., 1990). Comparing in vitro measurements to in 

vivo permeability, using sucrose solution as blood volume reference, values ranged 

from 1.7 x 10-7 cm/s to 3.5 x 10-4 cm/s. Another in vitro BBB study, using compounds 

with a broad range of physicochemical characteristics, measured permeability coeffi-

cients from 0.9 x 10-5 cm/s to 7.5 x 10-5 cm/s for low and high permeability com-

pounds, respectively (Hansen et al., 2002). 
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 Notably, culture and experimental conditions affecting tightness of a monolayer 

and thus permeation of compounds across cultured cells have to be taken into ac-

count when comparing Papp values from different studies originating from different 

laboratories.  

 

3.4 Choroid Plexus ABC Transport Protein Gene Expression  
The BBB separates blood from brain and the BCSFB separates blood from cerebro-

spinal fluid, limiting access to the CNS. Effective treatment of CNS diseases and 

cancers depends on delivery of therapeutic agents across these barriers and pene-

tration into the brain. In general, the more lipophilic a molecule, the more likely it par-

titions into brain (Levin, 1980). But, for a number of compounds there is a discrep-

ancy between lipophilicity and CNS permeation, with permeation several orders of 

magnitude lower than expected (Golden and Pollack, 2003; Sun et al., 2003).  

Active excretion by ABC efflux transporters limits brain uptake and penetration 

of many therapeutic compounds (Begley, 2004). Expression of ABC transporters has 

been extensively studied at the BBB. With delivery across the CP gaining importance 

and information regarding ABC transporters at the BCSFB is limited, further investi-

gation into the role of these transporters in CPEC is crucial (de Lange, 2004). Two 

proteins contributing to multidrug resistance are of particular importance due to the 

large number and diversity of compounds transported: the MDR phenotype Pgp, part 

of the ABCB subfamily, and Mrp1, part of the ABCC subfamily (Ecker and Noe, 2004; 

Graff and Pollack, 2004; Zhang et al., 2004).  

Transport proteins, including those of the ABC families, show equal affinities 

for specific substrates, regardless in which types of cells they are expressed in. Main 

differences in function arise from differences in expression intensity and localization 

within polarized cells. Pgp and Mrp1 gene expression at the BCSFB was analyzed on 

a qualitative and quantitative basis and distribution and localization of both proteins to 

polarized CPEC membranes determined. Studies focused on gene expression of 

both proteins in vivo, before comparing Mrp1 gene expression in vivo to levels in vi-

tro. Then, protein partitioning to membranes was determined by immunohistological 

staining as well as by Western blot analyses using fractionated membrane prepara-

tions.  
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3.4.1 Choroid Plexus Pgp and Mrp1 Gene Expression  
As for all proteins, there are two steps in gene expression, transcription and transla-

tion that eventually lead to protein expression and appearance of the particular phe-

notype. First, the gene is transcribed into messenger ribonucleic acid (mRNA), with 

molecules encoded by the nucleotide sequence of the gene. In translation the mRNA 

in turn transfers the encoded information to a series of amino acids arranged in a 

polypeptide chain. This polypeptide chain then may go on to develop into a mature 

protein producing a cellular response based on the original genetic information. 

Studies on yeast showed that there is a correlation between mRNA and pro-

tein abundance and that in some cases mRNA abundance allows prediction of pro-

tein levels (Gygi et al., 1999). ABC-transporter expression can be regulated at the 

DNA, RNA and protein level and there is evidence that Pgp and Mrp1 mRNA expres-

sion correlates to protein abundance and even functional activity of mature protein 

inserted into cell membranes (Zhang and Ling, 2000; Young et al, 2001, Bauer et al., 

2004). Compared to the BBB, relatively little is known about gene expression of ABC-

transport proteins Pgp and Mrp1 in CP epithelium and data on CPEC Pgp and Mrp1 

mRNA is only available for rat (Nishino et al., 1999; Choudhuri, 2004).  

There is no data comparing CPEC ABC-transporter expression in vivo and in 

vitro. With regard to the BBB, there is one comparative study that investigated ex-

pression levels in fresh brain and cultured BCEC (Torok et al., 2003). Analyses of 

Pgp and Mrp1 in whole-brain tissue, isolated brain capillaries and cultured cells 

showed that gene expression levels varied up to 7-fold after capillary isolation and 

that expression in cultured cells can be reduced up to 5-fold. The study presented is 

first to provide data on Pgp and Mrp1 mRNA expression in porcine CPEC, and first to 

present comparative results for Mrp1 mRNA expression in freshly isolated and cul-

tured CPEC on a semi-quantitative basis.  

For Pgp and Mrp1 gene expression analyses, porcine RNA was isolated from 

fresh CP, cultured CPEC 14 DIC and liver tissue (positive control). Total RNA was 

extracted using the Qiagen RNeasy isolation kit, according to the manufacturer’s 

protocol. Only RNA with 260 nm/280 nm-OD ratios between 1.7 and 2.0 were used, 

ensuring that samples were free of protein or reducing agent contamination. Further, 

RNA quality was confirmed in negative DNA gels (data not shown).  
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RT-PCR was performed in a two-tube system. First, cDNA was synthesized by 

reverse transcription, and then an aliquot of that cDNA was used in PCR amplifica-

tion. Following target amplification, using target specific primers (table 4), amplicons 

were separated in an ethidium bromide gel and corresponding bands were visualized 

under UV light. 

To account for sample-to-sample variation, β-Actin amplification was run si-

multaneously. β-Actin, one of the first genes used as internal standard, is recognized 

as reliable reference and commonly used in quantitative RT-PCR (Kreuzer et al., 

1999). Nevertheless, the method of using housekeeping genes such as β-actin to 

standardize sample variation is prone to limitations (Bustin, 2000).  

Figure 20 shows the amplified 468 bp Pgp DNA product and β-Actin product at 

703 bp visualized under UV-light. Pgp was amplified for 50 cycles and β-actin for 35 

cycles. Fresh and cultured CPEC expressed Pgp mRNA at low levels, comparable to 

the signal obtained from liver samples (positive control). Similar results, in terms of 

expression level, were obtained in previous studies by Choudhuri et al. (2003).  

 

 
 

  
 

 
Figure 20: RT-PCR of Pgp (468 bp) and β-Actin (703 bp); From Left to Right: Liver (Lane 1 and 2), 
Fresh CP Tissue (Lane 3 and 4) and CPEC 14 DIC (Lane 5 and 6) 

 

Figure 21 shows the amplified 436 bp Mrp1 DNA product and β-actin product 

at 703 bp. Mrp1 was amplified for 50 and β-Actin (internal standard) for 35 cycles. 

Analyses revealed Mrp1 mRNA expression in fresh and cultured CPEC. Liver mRNA 

was used as positive control.  

 

 
 
 

 

 
Figure 21: RT-PCR of Mrp1 (436 bp) and β-actin (703 bp) in CPEC 14 DIC (Lane 1 and 4), Fresh CP 
Tissue (Lane 2 and 5) and Liver (Lane 3 and 6) 
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3.4.2 Semi-Quantitative Analyses of Mrp1 in Choroid Plexus 
To further assess Mrp1 expression in CPEC, semi-quantitative RT-PCR analyses 

were carried out and mRNA transcription in vivo compared to transcription in vitro. 

Generally, RT-PCR is the method of choice for mRNA quantification, as it is more 

sensitive compared to other methods, including Northern blot, ribonuclease protec-

tion, RNA blot, or solution hybridization assays (Chen et al., 1999). In contrast to ab-

solute quantification, amounts of mRNA were normalized against β-actin expression 

and relative differences between freshly isolated and cultured CPEC determined. Ab-

solute quantification relies on construction of an absolute standard curve, requiring a 

clone of the desired gene (Bustin, 2000). Clones for the targets of interest are not 

available for porcine samples yet.  

RT-PCR was carried out as described, with 1 µg total RNA used in each re-

verse transcription reaction. In a second tube, 10% of the resulting cDNA product 

was used for each PCR amplification reaction. Following target amplification, ampli-

cons were separated in an ethidium bromide gel and corresponding bands visualized 

under UV light. Band density was determined digitally, using the Scion Image Soft-

ware (NIH, USA).  

Relative differences in target transcription were judged by threshold cycle (Ct), 

the only concept allowing for accurate and reproducible quantification of mRNA in 

RT-PCR analyses (Higuchi et al., 1993). The Ct is defined as the point in amplifica-

tion at which density values are first significantly different from background levels. 

The starting amount of target mRNA is directly proportional to amplification kinetics of 

the PCR product, with more target mRNA in a sample leading to earlier detection. 

Therefore, by definition, the Ct is always in the exponential amplification phase and 

quantification is not limited by individual reaction components.  

To further provide evidence for PCR reaction accuracy, a series of known con-

centrations of total RNA was reverse transcribed, amplified for a set number of PCR 

amplification cycles and separated on an ethidium bromide gel, before determining 

absolute band densities. Starting out with 1 µg of CPEC 14 DIC total mRNA, 5%, 

10% and 15% of the cDNA synthesized was used to amplify Mrp1 and β-actin for 30 

and 20 cycles, respectively.  

Figure 22 shows density values plotted versus the initial amount of RNA (ng) 

for both targets. Resulting band densities are inversely proportional to initial amounts 
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of mRNA in a sample and increase in log-linear fashion with increasing amounts of 

mRNA. The regression coefficients obtained for Mrp1 (figure 22, A; R2 = 0.9973) and 

β-actin (figure 22, B; R2 = 0.9920) are a measure of PCR reaction accuracy and thus 

experimental consistency. 

Figure 23 shows density values plotted against the number of cycles run for β-

actin (figure 23, A) and Mrp1 (figure 23, B) amplicons from freshly isolated CPEC. 

Data for cultured CPEC 14 DIC is comparable (not shown). All mRNA targets ampli-

fied exponentially until reaching a plateau, as reaction components became limited. 

Sample variation was accounted for by normalizing Mrp1 against β-actin.  

 

 
Figure 22: Amplicon Density of Mrp1 (A, 30 Cycles) and β-Actin (B, 20 Cycles) in CPEC 14 DIC 

 

 
Figure 23: Ct Analysis of Mrp1 (A) and β-Actin (B) in Freshly Isolated CP Tissue 
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To compare expression levels in CPEC samples, the Ct for Mrp1 was set at 30 

cycles and mRNA of cultured CPEC 14 DIC was compared to freshly isolated CPEC. 

Data presented in table 8 and figure 24 show that there was no significant difference 

between Mrp1 gene expression in cultured CPEC 14 DIC and freshly isolated CPEC. 
 
Table 8: Mrp1 mRNA Expression in Cultured CPEC 14 DIC and Fresh CP Tissue 
Sample RNA (µg) Ratio (Mrp1/ß-Actin) SEM Relative (%) SEM (%) 
Mrp1 00DIC 1.0 1.10 0.0636 100,00 5,81 
Mrp1 14DIC 1.0 1.05 0.0601 95,78 6,01 
 

 
Figure 24: Relative Mrp1 Gene Expression in CPEC 14 DIC and Fresh Isolated CP Tissue  
 
3.4.3 Immunostaining and Localization of ABC-Transport Proteins  
Following gene expression, translocation of mRNA into the cytoplasm, transcription 

and modifications of the resulting polypeptides eventually lead to formation of intact 

and functional proteins. Further cellular localization within the cytoplasm or in polar-

ized membranes is critical for proteins to gain full functional activity.  

 For ABC-transporters Pgp and Mrp1 immunostaining and localization at the 

BCSFB, rat CP tissues and cultured porcine CPEC were fixed, permeated and 

stained with specific antibodies as described in the materials and methods section. 

Briefly, excised rat CP tissue and cultured porcine CPEC were fixed in 95% EtOH. 

Following permeation in Triton-X 100, tissues and cells were blocked and then incu-

bated with antibody at RT over night. After washing, tissues and cells were incubated 

with FITC-labeled secondary antibody. Immerged in fluorescence enhancer, tissues 
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placed in glass bottom Teflon chambers and cells enclosed with a glass cover slip, 

fluorescent stains were visualized by inverted confocal laser scanning microscopy.  

The technique of confocal scanning microscopy allows visualizing selective xy-

sections within tissues (limited to approximately 1µm resolution) and digital reassem-

bling of series of sections along the z-axis, resulting in a 3D-view of objects. Figure 

25 depicts a graphic representation of a single xy-section (dark green) and a digitally 

assembled stack of multiple xy-sections (light green).  

 

 

 

 

 
 
 
 
 
 
 

Figure 25: Representation of Confocal Scanning Microscopy XYZ-Sections  
 
 

Antibody stained ABC-transporters were localized within CP tissue in relation 

to epithelial cell nuclei. CPEC nuclei were stained with propidium iodide (PI). PI binds 

to nucleic acids by intercalating between bases with little or no sequence preference, 

with a stoichiometry of one molecule of dye per 4.5 base pairs of DNA (Waring, 

1965). Upon binding, PI fluorescence (max. absorption at 535 nm and emission at 

617 nm) increases 20- to 30-fold (Arndt-Jovin and Jovin, 1989). However, the dye 

does not differentiate between RNA and DNA. 

Figure 26 shows confocal microscopy xy-sections of isolated rat CP tissue in a 

transmitted light image and fluorescence, with PI staining in blue. Panels A, B and C 

show sections of single, PI stained CP capillaries, with focus moving from the top 

through an intermediate section of the lumen down to a bottom section of blood ves-

sels. 

 

3.4.3.1 Mrp1 Immunostaining and Localization in Choroid Plexus  
The 190 kDa membrane protein Mrp1 protein was visualized in freshly isolated rat CP 

and cultured porcine CPEC. Epithelial cells were stained with MRPr1 (Alexis, Grün-
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berg), previously shown to bind specifically to its antigen (Scheffer et al., 2000). Fig-

ure 27A is a transmitted light xy-section of rat CP tissue and fluorescent labeled Mrp1 

stained green and cell nuclei stained red, shown in fluorescence. Figure 27B is a 

negative control image and shows a transmitted light image with nuclei stain only.  

 

 
Figure 26: Rat CPEC Nuclei Stained with PI and Shown in Blue 

 

As can be seen, the image depicts a large single CP blood vessel, surrounded 

by a single layer of epithelial cells. All epithelial cell nuclei within the focus plane are 

shown in red. The inside of CP blood vessels appears black. Mrp1 was clearly pre-

sent in CP epithelium. Staining was most intense towards the basolateral, blood side 

of the epithelium, facing CP capillary vessels. Thus, Mrp1 is expressed and localized 

to the basolateral membrane in rat.  

 

Figure 27: Mrp1 (Green) and PI (Red) Stained Rat CP Tissue (A) and Control (B)  
 

B A   C 

 B  A 
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Mrp1 expression was also analyzed in porcine CPEC 14 DIC. Cells were 

stained with Mrp1 specific antibody (MRPr1, Alexis, Grünberg) and PI, with Mrp1 

shown in green and PI in red. Figure 28 shows one xy-section and a digitally reas-

sembled construct of 20 xy-sections taken at 1 µm intervals, showing xz- and yz-

sections.  

 

 

Figure 28: Mrp1 (Green) and PI (Red) Stained Porcine CPEC (A) and Control (B)  
 

As in fresh CP tissue, Mrp1 is highly expressed in cultured CPEC, and is con-

centrated at the basolateral membrane (figure 28A). Figure 28B is a negative control 

image.  

Other studies localized Mrp1 to the basolateral side of CPEC in vivo and in vi-

tro (Rao et al., 1999; Wijnholds, et al., 2000; Saito et al., 2001). In rat BBB, even 

though Mrp1 concentrated to the apical plasma membrane of BCEC, expression of 

Mrp1 was stronger in brain parenchymal cells and astrocytes (Regina et al., 1998; 

Decleves et al., 2000; Zhang et al., 2004). Thus, in both CPEC and BBB, clustering of 

Mrp1 is comparable, but expression levels are considerably lower in BCEC than in 

CPEC (Begley et al., 2004). 

 

3.4.3.2 Pgp Immunostaining and Localization in Choroid Plexus  
The ABC-transporter Pgp was stained with C219 (Alexis, Grünberg). C219 was pre-

viously shown to stain Pgp, but does not differentiate between MDR1 and MDR3 

(corresponding to mdr1b and mdr1a in rodents) and in fact cross-reacts between both 

isoforms (Schinkel et al., 1991; Scheffer et al., 2000). However, even though mRNA 

expression of MDR3 and MDR1 isoforms is comparable in CP tissue, the function of 

     B       A 
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MDR3 in transport has not yet been assigned and its expression may be limited to 

the level of RNA (Schinkel et al., 2000; Choudhuri et al., 1993; Duan et al., 2004). 

Figure 29A and 29B show a transmitted light image and fluorescence xy sec-

tions of C219-stained CP epithelial cells and blood vessels and control, respectively. 

Epithelial cell nuclei, stained with PI, are depicted in red and C219 stained Pgp in 

green. The Pgp stain, located between CPEC nuclei, suggests that the protein is ex-

pressed in CP epithelium. 

 

Figure 29: Rat CP Stained with PI and with Alexis C219 (A) and without (Control, B) in Transmission 
and Fluorescence 

 

To further assess Pgp localization in CPEC, a three-dimensional fluorescence 

image was recorded (figure 30). A stack of 40 xy sections was taken at 1 µm intervals 

and digitally assembled to create a three-dimensional image, to allow viewing of MDR 

expression from all perspectives. Again, CPEC nuclei were stained red and antibody-

bound Pgp green. These images show Pgp to be primarily localized at the apical 

membrane of CPEC, with some of the protein associated with the brush-border 

membrane.  

At the BBB, Pgp is one of the most studied and best characterized ABC-

transport proteins. Much less is known about Pgp at the blood-CSF barrier. In addi-

tion, Pgp expression was analyzed in fully differentiated porcine CPEC 14 DIC grown 

on chamber slides.  Figure 31A shows a three-dimensional reconstruction of 20 1 µm 

xy CP tissue slices stained with C219 and figure 31B a xy control image. Nuclei 
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stained with PI are shown in blue and C219-stained Pgp in green. Cultured porcine 

CPEC 14 DIC expressed Pgp.  

 

 
Figure 30: Stack of 40 1µm XY Sections of Rat CP Stained with PI and Alexis C219 (Digitally Recon-
structed)  

 

Interestingly, CPEC apical or CSF-facing localization is opposite to luminal lo-

calization in the BBB capillary endothelium. In BCEC stained with various specific 

monoclonal antibodies, Pgp localized to the luminal, plasma-facing membrane of en-

dothelial cells in vivo and in vitro (Sugawara et al., 1990; Biegel et al., 1995; Stewart 

et al., 1996; Bendayan et al., 2002; Virgintino et al., 2002).  

Other studies investigating Pgp expression at the BCSFB of humans, other 

primates and rodents also suggest apical or sub-apical localization of Pgp in CPEC 

Blood Vessel 
Pgp 

Cell Nuclei Brush-Border 
Membrane  
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(Rao et al, 1999; Warren et al., 2000; de Lange, 2004). Pgp may be contained in 

vesicles and ready for insertion into membranes. However, insertion of Pgp into the 

apical membrane does not match the general role of MDR1, which is to protect the 

brain against chemical insult. Would Pgp incorporate and gain functional activity, its 

substrates would be moved back into the CSF and possibly contribute to toxicity in 

the vicinity of CSF. A more likely explanation for sub-apical localization of Pgp is pro-

posed by Begley (2004). Pgp may be responsible for secretion of compounds into 

vesicles, for subsequent secretion across the basolateral membrane by exocytosis. 

Removing potentially toxic compounds from the cytoplasm, storing them in vesicles 

and eventual removal into the blood stream for subsequent elimination in bile and 

urine seems a more likely explanation in the light of Pgp’s physiological protectionist 

role. 

 

Figure 31: Cultured CPEC 14 DIC Stained with Alexis C219 (A) and with PI Only (B, Control) 
 

3.4.3.3 Characterization of Isolated Choroid Plexus Membrane Fractions 
Porcine CP membranes were enriched according to a centrifugation and cation pre-

cipitation protocol adapted from a method for kidney cortex membrane preparation 

(Hilden et al., 1989). Following tissue homogenization, apical and basolateral mem-

brane fractions were prepared from fresh porcine CP tissue.  

For apical fractions, the degree of enrichment was assessed with marker en-

zymes AP and γ-GT. Apical fractions were compared to homogenate, S1 and baso-

lateral membrane fractions. Previous analyses of isolated membrane fractions, cyto-
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chemical and immuno-electron microscopy studies demonstrated that both enzymes 

are located exclusively to the apical, CSF facing side of CPEC in CP of various spe-

cies, including pig (Sessa et al., 1976; Yoshioka et al., 1988; Bourne et al., 1989; De 

Bault and Mitro, 1994; Ogawa et al., 1998). Further, both enzymes are well-known 

markers for BCEC membranes (Schlosshauer, 1993). 

 Basolateral membrane fraction enrichment was assessed by Western blot ex-

pression analyses of Mrp1. Other enzymes commonly employed to characterize ba-

solateral membrane factions, including Na+/K+-ATPase, Na+/K+/2Cl--ATPase or ecto-

5'-nucleotidase, are not suitable for membrane differentiation in CPEC, as they are 

also localized to the apical membrane or entirely absent (Masuzawa et al., 1984; 

Braun et al., 1994; Keep et al., 1994; Marrs et al., 1994). In contrast, the well charac-

terized 190 kDa membrane protein Mrp1 is exclusively localized to the basolateral 

membranes in CPEC (Rao et al., 1999). Staining was carried out using the mono-

clonal antibody MRPr1 (Alexis, Grünberg), previously shown to stain entirely specific 

to its cognate antigen (Scheffer et al., 2000). 

Figure 32A and 32B show apical enzyme activity determined for homogenate, 

S1 and each of the prepared fractions. S1 fractions were not significantly different 

from homogenate. Basolateral membrane fractions exhibited a slight increase in ac-

tivity with 3.6 +/- 0.1 -fold and 6.9 +/- 0.6 -fold and apical membrane fractions showed 

significantly increased activity with values of 27.3 +/- 0.8 -fold and 27.7 +/- 1.0 -fold 

for AP and γ-GT, respectively.  

 

 
Figure 32: Alkaline Phosphatase (A, AP) and γ-Glutamyl-Transpeptidase (B, γ-GT) Activity in Enriched 
Membrane Fractions 
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Porcine kidney, liver and freshly isolated CP tissue protein isolates were sepa-

rated by SDS-PAGE and stained with anti-Mrp1 MRPr1 antibody (figure 33). The 

strongest Mrp1 signal was observed in the 25 µg CP samples, followed by kidney 

and liver preparations. The findings are in accordance with results obtained in quanti-

tative mRNA analyses (Choudhuri et al., 2003).  

Figure 34 shows a Western blot of enriched porcine CP apical and basolateral 

membrane fractions with MRPr1 stained protein bands. Mrp1 expression in CPEC 

apical fractions was visible at 10 µg and the signal increased when 25 µg of protein 

were applied. No signal was visible in apical membrane fraction with 10 µg applied 

and only slight staining was observed with 25 µg of protein. Results obtained are in 

accordance with other CPEC Mrp1 analyses (Rao et al., 1999). 

 

 

 
 

 

 
 

Figure 33: MRPr1 Western Blot of Kidney (Lane 1), Liver (Lane 2) and Freshly Isolated CP (Lane 3) 
 

3.4.3.4 Western Blot Analyses of Pgp in Isolated CP Membrane Fractions 
Localization of the 170 kDa ABC-transport protein Pgp (Richert et al., 1988) was 

studied in more detail. Porcine CP apical and basolateral membrane fractions were 

enriched and Pgp expression assessed in Western blot analyses (figure 35). CPEC 

apical fractions showed Pgp expression at 10 µg and 25 µg of protein, with a concen-

tration dependent increase in signal.  

 

 

 
 
 
 
 
 
 
 
Figure 34: Fresh CP Apical Membrane (Lane 1: 10 µg, Lane 3: 25 µg) and Basolateral Membrane 
(Lane 2: 10 µg, Lane 4: 25 µg) Fractions 
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No signal was visible in basolateral preparations, again confirming that Pgp was lo-

cated towards the apical side of the epithelium, only. Enriched porcine brain capillary 

endothelial cell membranes were used as control. 
 

 

 

 
 
 
 
 
 
  

 
Figure 35: Pgp (C219, Alexis, Grünberg) Western Blot with BCEC (Lane 1: 20 µg), Basolateral CP 
(Lane 2: 10 µg), Apical CP (Lane 3: 10 µg), Basolateral CP (Lane 4: 25 µg), Apical CP (Lane 5: 25 µg)  
 
3.5 Active Transport of Compounds across Choroid Plexus Epithelial Cells 
Active transport is the secretion of ions, nutrients or other molecules against a con-

centration gradient in an energy-consuming process. Compounds may be actively 

transported into cells, removed by efflux transport or affected by both, active uptake 

and efflux. Distribution of certain compounds within the body and partitioning into the 

brain is greatly affected by a number of different transporters (Lee et al., 2001; Be-

gley, 2004; Graff and Pollack, 2004).  

With regard to the BCSFB, partitioning into the brain from the blood stream is 

limited by efflux proteins located on basolateral membranes. Compounds already in 

CSF can be actively filtered out across the CP and secreted back into the blood 

stream. Transport across the BCSFB is further influenced and brain penetration can 

be limited by drug-drug and drug-excipient interactions. Finally, phenotypic variations 

in transporter gene expression arising from either pharmacogenetics (inherited, e.g. 

metabolism) or pharmacogenomics (non-inherited, e.g. point mutations) can alter the 

distribution of compounds and transport across the BCSFB. 

Thus, one of the goals of modern transport physiology is to understand at the 

molecular level the mechanisms that underlie transcellular movements of ions, water, 

nutrients and excretory products. This requires four types of information: 1) a list of 

transport proteins expressed in the tissue, 2) knowledge of their subcellular localiza-

tion, 3) their functional characterization and 4) a description of the transport charac-

teristics of the tissue.  
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For the two ABC-transport proteins investigated, RT-PCR, immunostaining 

and Western blot analyses demonstrated presence of and localized Pgp and Mrp1 in 

CPEC. However, recent PCR-based studies with rat choroid plexus detected mRNA 

of even more multidrug-resistance, multidrug-resistance associated transporters and 

organic anion transporters from the MDR, Mrp, Oat, and Oatp families (Choudhuri et 

al., 2003). Of these, less than half have been immunolocalized in the tissue and only 

few have been analyzed on a functional basis and characterized with respect to 

transport characteristics (figure 6, introduction). None have been assessed with re-

spect to functional characteristics in CPEC cultures. Figure 36 is a schematic dia-

gram for transport proteins identified and localized to date, with functional relevance 

to organic anion transport.  

Assessment of transport function is limited by a number of factors. Most impor-

tant are scarcity of truly specific substrates and the common overlap of substrate 

specificity (Borst et al., 1999; Haimeur et al., 2004). For the ABC-transporters investi-

gated, the MDR gene product Pgp preferentially transports large hydrophobic and 

positively charged molecules, whilst the Mrp family transports both hydrophobic un-

charged molecules and water-soluble anions (Bodo et al., 2003). Analyses are further 

complicated that even if transport proteins have low structural homology and different 

substrate specificity, such as Pgp and Mrp1, they still transport a similar spectrum of 

compounds (Renes et al., 2000; Nies et al., 2004) 

Strategies to circumvent limitations include analyses of transporters in systems 

allowing to assess expression and function of a single protein, such as transfected 

oocytes (Castillo et al., 1990; Morin et al, 1995; Aleu et al., 1997; Tsuruoka et al., 

2002), transfection and over-expression in cell systems (Brimer et al., 2000) or con-

versely knock-out variants of cells or animals (Lorico et al., 1996; Kusuhara et al., 

1997; Schinkel et al., 1997; Allen et al., 2000; Wijnholds et al., 2000). 

Studies attempting to describe the functional transport characteristics of a tis-

sue are most complicated. For CP analyses, limitations are posed by morphological, 

size and anatomical constraints, partially overcome using of tissue preparations or in 

vitro models. Quantitative fluorescent microscopy has proved to be a valuable tech-

nique for studying transport across CP tissue, allowing visualization of sub-cellular 

processes (Miller et al., 2000; Breen et al., 2002; Breen et al., 2004). Isolated CPEC 

can be cultured on either permeable Transwell® systems or on plastic surfaces for 
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functional analyses (Gath et al., 1997; Hakvoort et al., 1998; Angelow et al., 2003; 

Angelow et al., 2004). The advantages of in vitro cell culture systems are that vecto-

rial transport can be measured in blood to CSF direction and vice versa and that 

amounts transported can be calculated as concentrations.  

 

 
Figure 36: Schematic Representation of CPEC Transport Proteins 

 

3.5.1 Rho123 Uptake into Cultured Choroid Plexus Epithelium  
Functional characterization of Pgp was carried out in CPEC 14 DIC using the Pgp-

specific substrate Rhodamine-123 (Rho123; Diddens et al., 1987; Hegmann et al., 

1992; Nare et al., 1994; Frey et al., 1995; Schinkel et al., 1997). The fluorescent dye 

is known as multidrug-resistance phenotype substrate and has been used to assess 

Pgp activity in various models, including cultured BCEC and MDR1-type 

(MDR1/MDR3 (-/-)) knock-out mice (Schinkel et al., 1997). The molecular structure of 

Rho123 is shown in figure 37. The compound has a molecular weight of 380.83 g/mol 

and its excitation and emission spectra maxima are at 460 nm and 520 nm, respec-

tively (Molecular Probes, 2004). 

For investigations into transport of Pgp substrate Rho123 in CPEC in vitro, 

cells were grown until fully differentiated as described in the materials and methods 
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section. Uptake of various concentrations of Rho123 into CPEC 14 DIC cultured in 

96-well plates was measured and the effects of transport inhibitors with known affinity 

for Pgp assessed.  

 

Rhodamine-123  
(Rho123) 
CAS# : 62669-70-9 
C21H17ClN2O3 
MW: 380.83 

 
 
Figure 37: Molecular Structure of Rhodamine-123 (Rho123) 

 

The subapical localization of Pgp leaves room for speculation to if and how 

compounds are excluded from CPEC. Should Pgp be inserted into the apical mem-

brane of the epithelium, Pgp substrates would be transported back into the medium. 

Concomitant incubation with inhibitors would reduce efflux and lead to an increase in 

cellular substrate uptake. If Pgp localized to cytoplasmic vesicles, substrate would be 

trapped within the cellular vesicles. Exocytosis of substrate filled vesicles would re-

duce substrate concentrations. Effects of inhibitors on intracellular vesicularized Pgp 

would only alter cellular concentrations if basolateral exocytosis occurs, leading to an 

increase in cellular substrate concentrations. 

 
Figure 38: Uptake of Increasing Concentrations of Rho123 at Different Time Intervals  
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After washing CPEC 14 DIC with KRB, cells were incubated with Rho123 for 

up to 90 min at 37oC. Excess substrate was removed, cells washed and then lysed in 

Triton X-100. Fluorescence trapped in the cell was measured at 520 nm. Figure 38 

shows concentrations of Rho123 (in nM) transported into the epithelium. Uptake re-

mains linear over the range of 0.5 µM to 5 µM for incubations of 30 min up to 90 min.  

Figure 39 shows the time course of 2 µM Rho123 uptake into cultured 

CPEC14 DIC. Substrate uptake into cells remained linear (R2 = 0.99) over a 90 min 

period.  

 
Figure 39: 2 µM Rho123 Time Course 

 

To functionally characterize Pgp activity, cells were incubated with 2 µM of 

Rho123 for 1 hour with effectors or without (control). Proline was used as a secon-

dary control. Figure 40 shows that in cultured CPEC none of the effectors, including 

MK571, leukotriene C4 (LTC4), Cyclosporine-A (CSA) and its analog PSC883 caused 

a significant alteration in 2 µM Rho123 uptake over a 1-hour time period.   

In many organs, such as liver, kidney, small intestine and brain, Pgp plays a 

major role in efflux of compounds and transport into the blood stream. For example, 

at the BBB, Pgp is localized on the luminal side of BCEC and excretes xenobiotics 

and endogenous compounds into capillaries. Thus, its physiological protectionist role 

is fulfilled at the brain capillary endothelium (Schinkel et al., 2003). 

With Pgp localizing sub-apical at the blood-CSF barrier it was not clear 

whether Rho123 would efflux into CSF analogous to localization and function at the 

BBB or whether the compound would be trapped within cytoplasmic vesicles. How-

ever, Pgp did not influence CP epithelial Rho123 secretion. Besides Pgp expression 
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levels being too low to affect CP epithelial drug secretion, both proposed explana-

tions for subapical localization of Pgp may explain the lack of functional activity (Be-

gley, 2004). The protein is either not inserted into membranes of cultured CPEC fast 

enough or at rates high enough or should Pgp cluster in vesicles, the uptake in the 

vesicles is not the rate limiting step to Rho123 uptake in CPEC.   

 
Figure 40: Uptake of 2 µM Rho123 Without (Control) and With Effectors 

 

3.5.2 Organic Anion Secretion across Choroid Plexus Ex Vivo and In Vitro 
To date, available evidence implicates Oat3, Oatp3, Mrp1 and Oatp2 in the transport 

of organic anions across mouse and rat choroid plexus (figure 36, Angeletti et al., 

1997; Gao et al., 1999; Rao et al., 1999; Breen et al., 2002; Nagata et al., 2002; 

Sweet et al., 2002; Choudhuri et al., 2003; Breen et al., 2004; Nagata et al., 2004). 

Mouse and rat are the only two species for which information on molecular and func-

tional details is available and for which transporters can be assigned to individual 

transport steps for specific organic anions, e.g., PAH, benzylpenicillin, FL-MTX and 

FL, at the CP. However, although transporters responsible for individual steps can be 

identified, the complete path across the CP taken by any organic anion remains un-

known. For example, Oat3 mediates apical entry of both PAH and FL in mouse, but 

the transporter responsible for basolateral efflux has yet to be identified (Sweet et al, 

2002; Sykes et al, 2004).  

To further elucidate organic anion secretion across the CP epithelium, trans-

port was studied in two different ex vivo models, a mammalian model using male 

Wistar rats and an elasmobranch model using dogfish shark. Generally, studies on 

live CP tissue are difficult, due to the tissue’s anatomical location, complex morphol-
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ogy and small size. The advantages of using dogfish shark as comparative model are 

that the tissue of this poikilothermic animal is more accessible, less fragile and can be 

maintained intact ex vivo for longer periods of time, besides being similar to rat in 

morphology and ultrastructure (Villalobos et al., 2002). However, there is little mo-

lecular and immunohistological information available and interpretation of results is 

dependent on mammalian data. Only few members of the Oat, Oatp and Mrp families 

of transporters have been cloned from fish tissues and partially characterized. For 

example, an Oat cloned from winter flounder kidney was shown to support Na+-

dependent transport of PAH (Wolff et al., 1997). Subsequent studies suggest that 

although mammals express five Oat isoforms, fish appear to express only one, with 

transport properties of both mammalian Oat1 and Oat3 (Dudas and Renfro, 2001; 

Burckhardt et al., 2003). In little skate, both an Oatp and an Mrp were cloned (Wang 

et al., 2001; Cai et al., 2003). The Oatp is a two-part transporter, requiring coexpres-

sion of two proteins for activity. It transports ES, taurocholate and LTC4, but not PAH 

and digoxin. As with other Oatps, transport is not Na+-dependent. The Mrp resembles 

mammalian Mrp2; an ATP-driven xenobiotic export pump with wide substrate speci-

ficity.  

Both mammalian and elasmobranch species were used to functionally analyze 

organic anion transport. Two different fluorescent organic anions were investigated, 

fluorescein (FL) and fluorescein-methotrexate (FL-MTX) (figure 41). Uptake from me-

dium across apical membranes into epithelial cells and efflux from cells across baso-

lateral membranes into blood vessels was visualized and quantified in rat and shark 

CP preparations using confocal laser scanning microscopy. Steady state observa-

tions were made and results obtained from both models compared. FL-MTX transport 

was further investigated using different inhibitors and detailed transport characteris-

tics of uptake and efflux revealed are presented. 

Figure 42 compares steady state distributions of FL and FL-MTX within shark CP. 

Relative to levels in the bath, both compounds accumulated to high levels within the 

subepithelial/vascular spaces, indicating concentrative transepithelial transport. FL 

intensity was distributed with lowest intensity in the medium followed by cells and 

subepithelial/vascular spaces (figure 42C).  
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Fluorescein  
(FL) 
CAS# : 2321-07-5 
C20H12O5 
MW: 332.31 

 
Fluorescein-Methotrexate  
(FL-MTX) 
CAS# : 71016-04-1 
C46H54N14O9S 
MW: 979.08 

Figure 41: Molecular Structures of Fluorescein and Fluorescein-Methotrexate 

 

In agreement with previous studies in CP tissue from rat, mouse and shark, FL 

transport across the tissue involved two concentrative steps in series: Na+-dependent 

uptake and membrane-potential driven efflux (Breen et al, 2001; Sweet et al, 2002; 

Villalobos et al, 2002). From studies on an Oat3-null mouse, it was demonstrated that 

the Na+-dependent step was mediated by Oat3, with no detectable contribution of 

Oat1 and the molecular correlate of the efflux step remains to be identified (Sykes et 

al., 2004). 

Although FL-MTX transport from cell to subepithelial/vascular spaces was 

clearly concentrative, it was not clear from the images whether uptake at the apical 

membrane was concentrative or even mediated. Indeed, in most experiments cellular 

fluorescence intensity in control tissue was somewhat lower than that measured for 

the medium. 

 

Figure 42: Shark CP Tissue in a Transmitted Light Image (A) and Loaded with 2 µM FL-MTX (B) and 
2 µM Fluorescein (C) 
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In capillary lumens, FL-MTX was concentrated from the subepithelial/vascular 

spaces to the tight junctions at apical ends of intercellular spaces (figure 43). A simi-

lar distribution pattern for FL-MTX was shown for the rat and also reported for mouse 

(figure 43 A, B; Sweet et al, 2002; Breen et al, 2004).  

 

Figure 43: 3D Distribution of 2 µM FL-MTX in Rat (A) and Shark (B) 

 

Figure 44A shows the time course of 2 µM FL-MTX transport across rat and 

figure 44B secretion across shark CP epithelium into subepithelial/vascular spaces. 

Transport of FL-MTX across the CP was similar in both species. Fluorescence inten-

sities in subepithelial/vascular spaces increased linearly over the first 30 min and 

steady state was reached with n 45 min. In these experiments, medium fluorescence 

averaged about 400 to 600 units, so steady state fluorescence intensity of the subepi-

thelial/vascular spaces was about 5 times that of the medium. Cellular fluorescence 

increased and reached steady state levels within initial 45 min (figure 44A, B). At 

steady state, cellular fluorescence intensities averaged about 200 to 400 units, values 

that were significantly lower than medium fluorescence (P<0.01).  

Steady state FL-MTX accumulation in cells and subepithelial/vascular spaces 

of shark saturated at low substrate concentrations (figure 45). At all concentrations 

studied, subepithelial/vascular fluorescence was substantially higher than cellular 

fluorescence. These findings suggest that transepithelial transport of FL-MTX did in-

deed involve two mediated steps, but that efflux at the basolateral membrane could 

more than keep up with uptake at the apical membrane.  
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Transepithelial transport of FL-MTX appeared to be dependent on both cellular 

metabolism and transmembrane Na+ gradients. Inhibiting metabolism with NaCN de-

creased fluorescence intensity in cells and vessels by at least 70%, as did incubation 

in Na+-free medium (NaCl replacement with N-methyl-D-glucamine, figure 46 for 

shark and figure 47 for rat). 

 
Figure 44: Time Course of 2 µM FL-MTX Secretion across Rat (A) and Shark (B) CP. Triangles repre-
sent cellular and squares blood vessel values. The dashed line represents background fluorescence 
levels.  

 

When tissue was first incubated in Na+-free medium, before being returned to 

Na+-containing ER for steady state FL-MTX uptake measurements, fluorescence in-

tensities in both compartments were not significantly different from control tissue. 

Thus, effects of Na+-depletion, although substantial, were fully reversible. Consistent 

with FL-MTX accumulation being Na+-dependent, ouabain, a Na+/K+-ATPase inhibi-

tor, substantially reduced cellular and subepithelial/vascular fluorescence (figure 46). 

Finally, increasing medium K+ ten-fold (NaCl partially replaced with KCl) was 

without effect (figure 46). This maneuver depolarized rat choroid plexus cells in cul-

ture by 40 mV (Villalobos et al, 1999) and blocked cell-to-vessel transport of FL in 

intact choroid plexus from rat, mouse and shark (Breen et al, 2001; Villalobos et al, 

2002; Sykes et al, 2004). FL-MTX transport was thus driven by cellular metabolism, 

dependent on Na+, but not sensitive to electrical potential differences (PD). In addi-

tion, the lack of effect of elevated K+ on FL-MTX transport indicates that depolariza-

tion cannot underlie the reduction in transport seen with Na+ depletion and ouabain.  
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Further, several organic anions inhibited transport and reduced FL-MTX ac-

cumulation in rat CP vessels (figure 47). Organic anions included LTC4 (0.3 µM), 

MK571 (5 µM), vinblastine (10 µM), the cyclosporine analog PSC833 (10 µM) and 

verapamil (10 µM). Concurrent with the model proposed, PSC833 and verapamil had  

 
Figure 45: Transport of FL-MTX at Various Concentrations across Shark CP. Triangles represent 
cellular and squares blood vessel values.  
 
no effect. Both compounds are known Pgp inhibitors and thus do not effect FL-MTX 

secretion (Fellner et al., 2002; Kemper et al., 2003; Kemper et al., 2004). LTC4, 

MK571 and vinblastine are all Mrp1 inhibitors (Regina et al., 1998; Miller et al., 2000; 

Yan and Taylor, 2002; Gennuso et al., 2004). Results obtained with organic anions 

and effects measured with addition of NaCN support the proposed basolateral secre-

tion of FL-MTX via Mrp1. 

 
Figure 46: Ion Dependent FL-MTX Secretion in Shark CP. 
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A more detailed analysis describing effects on the FL-MTX transport in concurrent 

presence of organic anions was carried out in dogfish shark. Analyses of FL-MTX 

transported across shark CP in the presence of various organic anions at different 

concentrations revealed different and distinct inhibition patterns and provided infor-

mation about transport characteristics at both epithelial membranes. 

For probenecid, folate, MTX and taurocholate, increasing the concentration of 

inhibitor caused roughly parallel decreases in cellular and subepithelial/vessel fluo-

rescence. At the highest concentrations tested, probenecid and folate reduced FL-

MTX accumulation in both tissue compartments by at least 90% (figure 48A and fig-

ure 48B). Thus, nearly all transepithelial transport of FL-MTX was mediated and, at a 

minimum, probenecid and folate blocked all mediated uptake at the apical mem-

brane. It is not clear from the data whether one or both of these compounds also af-

fected basolateral efflux. For MTX and taurocholate (TA), cellular and subepithe-

lial/vessel fluorescence decreased in parallel, but inhibition of transport was less than 

complete (figure 48C and figure 48D): increasing the inhibitor concentration above 

100 µM for MTX and 10 µM for taurocholate did not further decrease transport signifi-

cantly. Since the data for probenecid and folate indicate that essentially all transport 

was mediated, the partial inhibition found with the highest concentrations of MTX and 

taurocholate indicates involvement of at least two apical uptake pathways for FL-MTX 

in CPEC.  
 

 
Figure 47: Organic Anion Inhibition of FL-MTX Secretion in Rat CP Blood Vessels 

 

In contrast, dose response curves for estrone sulfate (ES), p-aminohippurate 

(PAH), digoxin, LTC4 and MK571 did not show parallel decreases in cellular and 
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subepithelial/vessel fluorescence with increasing the concentrations of inhibitor. 

Among these inhibitors, two inhibition patterns were evident. First, ES and PAH par-

tially blocked transepithelial transport (reduced subepithelial/vessel fluorescence), but 

did not affect cellular fluorescence (figure 49). Thus, these compounds appeared to 

block a component of FL-MTX efflux from the cells without altering cellular accumula-

tion.  

 

 
Figure 48: Inhibition of FL-MTX Secretion in Shark CP by Probenecid (A), Folic Acid (B), Methotrexate 
(C) and Taurocholate (D) 

 

Second, for digoxin, LTC4 and MK571 subepithelial/vessel fluorescence fell 

with increasing inhibitor concentration, but at one or more of the inhibitor concentra-

tions used, cellular fluorescence increased significantly (figure 50). For example, with 

10-50 µM digoxin and 0.1-0.3 µM LTC4, subepithelial/vessel fluorescence fell to 

about 50% of control values, but cellular fluorescence increased to about double con-

trol values (figure 50A and figure 50B). With MK571, subepithelial/vessel fluores-
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cence fell rapidly with increasing inhibitor concentration and cellular fluorescence in-

creased significantly at 1 µM, but then fell; with 10 to 25 µM MK571, fluorescence in 

both compartments was nearly abolished (figure 50C). Note that in these experiments 

medium fluorescence averaged about 250 units; thus, with 10 to 50 µM digoxin, 0.1 

to 0.3 µM LTC4, and 1 µM MK571, cellular accumulation of FL-MTX was about two 

times higher than medium levels. 

 

 
Figure 49: Effects of Estrone Sulfate (ES, A) and p-Aminohippurate (PAH, B) on 2 µM FL-MTX Secre-
tion in Shark CP 
 

 

 
Figure 50: Effects of Digoxin (A), Leukotriene C4 (LTC4, B) and MK571 (C) on 2 µM FL-MTX Secretion 
in Shark CP  
 

To facilitate visualization and further characterize uptake of FL-MTX at the api-

cal membrane of CPEC, digoxin was used enhancing cellular fluorescence accumu-

lation. In the presence of 10 µM digoxin, cellular accumulation of FL-MTX was both 

Na+-dependent and ouabain-sensitive (figure 51). In both cases inhibition was incom-
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plete. Transport was reduced by probenecid and taurocholate. As in the experiments 

in which inhibitors were used singly, when used in combination with digoxin, 250 µM 

probenecid abolished cellular and subepithelial/vessel fluorescence and 10-25 µM 

taurocholate partially reduced fluorescence in both compartments (figure 52A and B 

and figure 52C and D). Finally, the effects of 10 µM digoxin plus 5-25 µM ES were 

not significantly different from the effects of ES alone, suggesting that both com-

pounds blocked the same component of basolateral efflux (figure 52E and 52F). 

 

 
Figure 51: Ionic Environment Effect and Digoxin on 2 µM FL-MTX Secretion in Shark CP 
(∗ Significantly different from control; ♦ significantly different from digoxin treatment) 
 

Clearly, in both shark and rat, certain compounds appeared to both preferen-

tially block FL-MTX efflux into the subepithelial/vessel compartment and increase 

cellular accumulation. In the absence of any molecular-level information about xeno-

biotic transporters in shark, one can only speculate about the transporters responsi-

ble for FL-MTX transport. FL-MTX efflux in shark choroid plexus could be mediated 

by an Oatp2-like transporter as indicated by digoxin sensitivity and an Mrp as indi-

cated by MK571 sensitivity. Also, the present data for shark CP suggest that at least 

one of the transporters responsible for FL-MTX uptake is Oat-like, as Oats are the 

only known family of organic anion transporters able to support Na+-dependent, con-

centrative uptake. 
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Figure 52: Effects of Digoxin and Organic Anions on 2 µM FL-MTX Secretion in Shark CP 
(∗ Significantly different from control; ♦ significantly different from digoxin treatment) 
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3.5.3 Regulation of Organic Anion Secretion at the Choroid Plexus 
The present study identifies for the first time in any species intracellular signals regu-

lating organic anion transport in CP. In renal proximal tubule, organic anion transport 

is modulated by a variety of signals, including protein kinase C (PKC) activation, 

which reduces transport on Oats and Mrp2, and mitogen-activated protein (MAP) 

kinase activation, which increases transport on Oats (Soodvilai et al., 2004). Protein 

kinase A (PKA) does not appear to modulate renal organic anion transport. Figure 

(53A) shows that, as in renal proximal tubule, FL-MTX transport across shark choroid 

plexus was reduced significantly when PKC was activated by 10-100 nM phorbol-12-

myristate-13-acetate (PMA). With 100 nM PMA, both cellular and subepithelial/vessel 

fluorescence were reduced by about 50%. Consistent with specific activation of PKC, 

the effects of PMA were abolished when tissue was exposed to the PKC-selective 

inhibitor bisindolylmaleimide (BIM), which by itself did not affect FL-MTX transport 

(figure 54). 

In contrast to PMA, which reduced FL-MTX transport, 10 µM forskolin in-

creased FL-MTX accumulation in both tissue compartments by over 50% (figure 53). 

Forskolin inhibits phosphodiesterase and increases levels of the 3'-5'-cyclic ester of 

adenosine monophosphate (cAMP) activating PKA. Forskolin activation of transport 

was abolished by the PKA selective inhibitor H-89, which by itself did not affect FL-

MTX transport (figure 54). Thus, protein-kinase based mechanisms are in place to 

both increase and decrease transport, presumably in response to hormonal expo-

sure. The identity of the hormones responsible remains to be determined. 
 

 
Figure 53: Effects of Phorbol Ester PMA and Forskolin on CP FL-MTX (2 µM) Secretion  
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Figure 54: Effects of PMA and Forskolin and Specific Inhibitors on 2 µM FL-MTX Secretion  

 

To determine the time course of forskolin action, shark CP tissue was incu-

bated with 2 µM FL-MTX until fluorescence accumulation reached steady state, be-

fore adding 10 µM forskolin and measuring changes in tissue fluorescence. Control 

experiments (not shown) demonstrated that after the initial 60 min loading period fluo-

rescence in both tissue compartments was constant for at least an additional 90 min 

of incubation. As shown in figure 55, addition of forskolin to the medium significantly 

increased cellular fluorescence within 15 min and subepithelial/vessel fluorescence 

within 30-45 min. Fluorescence in both compartments remained elevated for at least 

90 min after addition of forskolin (not shown). Thus, activation of cellular FL-MTX ac-

cumulation appeared to be rapid. After a short time lag, subepithelial/vessel accumu-

lation also increased. 
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Figure 55: Effect of Forskolin 10 µM on 2 µM FL-MTX Transport into CP Cells (A) and Blood Vessels 
(B) over Time 

 

3.5.4 FL-MTX Transport across Choroid Plexus Epithelial Cells In Vitro  
FL-MTX secretion was analyzed in cultured CPEC and fully differentiated at 14 DIC. 

Uptake of FL-MTX was measured into cells grown in 96-well plates and transport 

across CPEC grown on Transwell® filter systems was determined. One of the main 

advantages of using an in vitro model is that absolute concentration values can be 

determined. This is not possible for confocal microscopy determined fluorescence, 

constrained by the geometrical variability of biological structures. In vitro results of 

FL-MTX uptake and transport were reported as absolute concentrations calculated 

using an appropriate standard curve. Due to interexperimental variations, pooled re-

sults are presented as percent of control.  

To elucidate accumulation of FL-MTX in cultured CPEC, cells were incubated 

with increasing concentrations of FL-MTX, ranging from 1 µM to 50 µM for periods of 

30 min, 60 min and 90 min. Figure 56 shows fluorescence values of FL-MTX, applied 

at various concentrations and transported into CPEC, plotted against time. For all 

concentrations tested, uptake of FL-MTX remained linear for at least 30 min. After 60 

min, the system accumulating FL-MTX in CPEC saturated. The data thus indicates 

that FL-MTX uptake into cultured cells is transporter-mediated.  

Figure 57 shows uptake of 1 µM, 5 µM, 10 µM and 50 µM FL-MTX by cultured 

CPEC 14 DIC over a time period of up to 90 min, plotted against concentrations of 

FL-MTX (in nM) accumulated in cultured cells. Over the range of FL-MTX concentra-

tions tested, increased linear uptake was measured at 30 min, 60 min and 90 min (R2 

> 0.99). Conversely to a transport-driven system, differentiated CPEC cultured in 96-
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well plates did not show a saturable concentration curve, at least not for concentra-

tions up to 50 µM FL-MTX.  

 

 
Figure 56: Uptake of FL-MTX at Different Time Intervals 

 

 

 
Figure 57: Uptake of Various Concentrations of FL-MTX  
 

As in ex vivo analyses, altering ionic buffer environments influenced CPEC FL-

MTX transport (figure 58). In cultured CPEC, sodium (Na+) removal (NaCl replaced 

with N-methyl-D-glucamine) increased FL-MTX uptake by approximately 50%. The 

process was reversible: transport was reestablished upon the addition of sodium con-

taining medium. Notably, the increase in cellular FL-MTX in Na+-free medium was 

opposite to effects observed in ex vivo analyses.  Ex vivo Na+ removal resulted in 

significantly decreased cellular FL-MTX accumulation. Further, results were also con-
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trary to effects observed adding 0.5 mM ouabain. Inhibition of Na+-K+-ATPase affects 

cellular Na+-gradients, but opposite to Na+-removal, cellular FL-MTX accumulation 

was reduced by more than 50%. Increasing KCl 10-fold, altering the cellular mem-

brane potential, did not affect FL-MTX uptake. 

 
Figure 58: Uptake of FL-MTX in CPEC 14 DIC in Altered Ionic Environment, with Ouabain (Ouab) 
added and with KCl increased 10-fold 
 

Addition of NaCN, irreversibly inhibiting intracellular oxygen utilization, in-

creased FL-MTX uptake by more than 50% (figure 59). Again, comparable to effects 

seen removing Na+, effects on FL-MTX uptake into cultured cells were different to 

transport observed in ex vivo tissue. Only the extent to which FL-MTX transport was 

affected remained the same. In fact, effects were opposite with FL-MTX concentra-

tions increasing in cultured CPEC compared to a reduced amount of fluorescence 

measured in rat and shark CP models.  

 

 
Figure 59: 2 µM FL-MTX Uptake into CPEC 14 DIC with 1 mM NaCN Added  
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Addition of organic anions reduced uptake of FL-MTX into cultured CPEC in a 

concentration-dependent manner (figure 60). Concurrent incubation of cells with 2 

µM FL-MTX and 250 µM unlabelled methotrexate (MTX), 250 µM probenecid (Prob), 

100 µM taurocholate (TA) or 500 µM p-aminohippuric acid (PAH) added caused sig-

nificant reductions in FL-MTX accumulation. Effects were comparable to those ob-

served in ex vivo fluorescent confocal microscopy analyses.  

  
Figure 60: Uptake of 2 µM FL-MTX into Cultured CPEC in Presence of Organic Anions Methotrexate 
(MTX), Probenecid (Prob), Taurocholate (TA) and p-aminohippuric acid (PAH) 
 

Analyses of concentration curves showed that probenecid (Prob) reduced FL-

MTX uptake in a linear fashion, with fluorescent values going towards zero at concen-

trations greater 250 µM (figure 61A). Unlabelled MTX reached a plateau at concen-

trations above 250 µM (figure 61B). Addition of digoxin caused an increase in FL-

MTX accumulation in cultured CPEC: at 100 µM fluorescence accumulation doubled 

(figure 61C). Thus, for organic anions studied in cultured CPEC uptake studies, inhi-

bition patterns were comparable to those observed ex vivo. The main difference was 

that effects were seen using higher concentrations of inhibitor. Probenecid signifi-

cantly reduced FL-MTX uptake, but uptake was reduced by less than 50% even at 

250 µM. MTX effects, reaching an inhibition plateau, were seen at concentrations of 

250 µM in cultured CPEC compared to 100 µM in ex vivo analysis of CP tissue. With 

digoxin, cellular fluorescence doubled at 100 µM in cultured CPEC, compared to 10 

µM in live tissue. Whether these concentration effects were species dependent, re-

sulting from differences between the mammalian and elasmobranch species, or due 
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to culture and experimental conditions altering CPEC function remains to be deter-

mined.  

 

 
Figure 61: Uptake of 2 µM FL-MTX and Organic Anions Probenecid (Prob, A), Methotrexate (MTX, B) 
and Digoxin (C) in CPEC 14 DIC 

 

Uptake of FL-MTX into cultured CPEC was further elucidated incubating cul-

tured cells with digoxin alone and incubating with digoxin concurrent with other or-

ganic anions (figure 62). As in ex vivo investigations, digoxin increased cellular fluo-

rescence accumulation and increased accumulation was reduced, adding various 

organic anions, including probenecid (Prob), methotrexate (MTX) and p-amino-

hippuric acid (PAH). Again, the only difference was that higher concentrations of in-

hibitor were needed. Thus, FL-MTX uptake in cultured CPEC and live tissue is com-

parable, with similar transport mechanisms involved.  

Investigations of FL-MTX transport across cultured monolayers were carried 

out with fully differentiated cells grown on permeable membranes. Using Transwell® 

filter systems, transport can be determined from apical or CSF-facing to basolateral 

or blood-facing chambers and vice versa. Permeable membranes are the only ex-

perimental system allowing direct access to the blood-facing side of CPEC. 

Cells were grown until fully differentiated. After replacing medium with KRB, 

transport of FL-MTX was determined for substrate (control) or for substrate with con-

current inhibitor incubation. For all inhibitor treatments, cells were pre-incubated with 

inhibitor alone. For pre-incubation and for transport measurements, inhibitors were 

added to both apical and basolateral compartments. All transport experiments were 

carried out with 2 µM FL-MTX applied to one compartment, determining fluorescence 
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accumulation in corresponding apical or basolateral chambers. Transport at 37oC 

was followed for a 90 min period.  

 
Figure 62: Uptake of 2 µM FL-MTX with Digoxin and Digoxin plus Probenecid (Prob), Methotrexate 
(MTX) and p-aminohippuric acid (PAH)  

 

Figure 63 shows results for transport of 2 µM FL-MTX measured over a 90 min 

period with FL-MTX applied to the apical and accumulation measured in the baso-

lateral chamber. FL-MTX transport alone served as control. The metabolic inhibitor 

NaCN reduced transport of FL-MTX by more than 50%, as seen in ex vivo tissue. 

Notably, effects were similar in shark and rat confocal microscopy analyses, cultured 

porcine CPEC uptake and transport experiments, but in contrast to all other analyses 

FL-MTX accumulation increased in uptake experiments. Incubation with organic ani-

ons leukotriene C4 (LTC4), MK571 and vinblastine significantly reduced FL-MTX 

transport from apical to basolateral compartments, whilst incubation with digoxin in-

creased transport.  

 Figure 64 shows results of 2 µM FL-MTX transport measured form basolateral 

to apical chambers. Transport of FL-MTX from basolateral to apical chambers served 

as control and was not significantly different from apical to basolateral secretion. In-

cubation with other organic anions, including p-aminohippuric acid (PAH), probenecid 

(Prob) and digoxin did significantly affect transport of FL-MTX.  

 FL-MTX transport was affected by inhibitors when measured from apical to 

basolateral chambers and not vice versa. Regarding molecular and immunohisto-

chemical data, inhibitors NaCN, LTC4 and MK571 are most likely targeting Mrp1, ex-

pressed at the basolateral membrane of CPEC. Thus, transport of FL-MTX was re-

duced due to decreased efflux on Mrp1.  
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Figure 63: FL-MTX, Digoxin and Organic Anion Transport across Cultured CPEC from Apical to Baso-
lateral Compartments 
 

 
Figure 64: FL-MTX, Digoxin and Organic Anion Transport across Cultured CPEC from Basolateral to 
Apical Compartments 
 

The increased transport of FL-MTX in presence of digoxin is in contrast to ef-

fects seen in uptake studies and ex vivo analyses. Interpretation of mammalian mo-

lecular and biochemical data suggests that digoxin acts on Oatp2. Oatp2 was previ-

ously shown to locate at the basolateral membrane of CPEC (Sun et al., 2001; Graff 

and Pollack, 2004). In FL-MTX uptake studies the substrate accumulated within 

CPEC. Quantitative analyses in ex vivo studies, revealed increased cellular accumu-

lation of FL-MTX in the presence of digoxin, with transport into blood vessels signifi-

cantly reduced (>50%). The increased transport of FL-MTX in presence of digoxin 

across Transwell® filter systems may result from application of digoxin to the baso-

lateral membrane. No other experimental system allowed presenting CPEC with in-

hibitors from the blood-facing side. Assuming that Oatp2 in CPEC is a bidirectional 
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transport protein, digoxin may act as a high affinity counter ion, increasing net trans-

port efficiency of FL-MTX.  
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4 SUMMARY 

The choroid plexus forms the blood-liquor barrier and separates blood from 

CSF. Together with the BBB, the CP helps to maintain a stable environment, supply 

nutrients and protect the brain from toxic insult. Recent morphological re-analyses of 

CP surface area revealed that, taking the tissue’s apical microvilli and basolateral 

infoldings into account, the available area for exchange between blood and brain is 

much greater than previously thought. Since, the CP has gained importance, espe-

cially with regard to the pharmacology and distribution of CNS-active compounds 

into the brain. 

Studying xenobiotic transport across mammalian CP is difficult, due to the tis-

sues anatomical location, complex morphology and small size. To help overcome 

these limitations, a primary porcine CP in vitro model was established. Cells were 

isolated and grown until fully differentiated. The marker protein TTR was used as 

epithelial marker and demonstrated at the level of gene expression, localized within 

cultured cells and in Western blots. All cultures were free of contaminating cells, 

formed intact monolayers and were fully differentiated.  

Alkaline phosphatase and γ-glutamyl transferase activity was determined and 

enzyme activity over the 14-day culture period was at levels comparable to other in 

vitro cultures of barrier forming cells. Quantification of CSF production revealed that 

the established model secretes volumes at rates previously measured. Permeation 

across cells grown on permeable surfaces was validated, measuring transepithelial 

resistance and using markers for transport. Compared to in vitro models of other cel-

lular barriers, such as cultured BCEC of the BBB or Caco-2 cells of the intestinal bar-

rier, the BCSFB model was more diffuse or leaky, resembling in vivo BCSFB proper-

ties.  

Two pharmacological important transport proteins, the MDR1 gene product 

Pgp and the multidrug-resistance associated transport protein Mrp1, were investi-

gated at the level of gene expression, localized within CPEC and stained in Western 

blots. Semi-quantitative gene expression analyses of Mrp1, in freshly excised por-

cine CP tissue and fully differentiated CPEC in vitro, demonstrated that there is no 

significant difference in expression levels. Using specific antibodies directed against 

both transporters, subcellular localization was visualized by confocal laser scanning 

microscopy. Whereas Pgp localized sub-apical or apical in CPEC and membrane 
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incorporation was not confirmed, Mrp1 was clearly distributed to and incorporated in 

the basolateral plasma membrane. Thus, to further elucidate the localization of Pgp, 

membrane fractions were labeled with anti-Pgp C219 antibody. Clearly the apical 

membrane fraction stained. However, concluding functional analyses of Pgp activity 

measured in cultured CPEC using different transport inhibitors showed no significant 

difference between control and treatment. Thus Pgp was judged functionally inactive 

in CPEC in vitro. 

 Organic anion transport and active removal of compounds from CSF by the 

CP has been of interest for several decades, since these transport processes not 

only reduce CNS circulation time, but may also restrict entry into the brain altogether. 

Underlying molecular and functional processes governing transport of the FL-MTX, a 

large organic anion, were revealed. Notably, there was a marked difference in distri-

bution of FL-MTX and fluorescein, a smaller organic anion previously under investi-

gation. 

FL-MTX transport is a specific, concentrative and mediated two-step process. 

Apical uptake of FL-MTX is Na+-dependent and the powerful basolateral efflux de-

pendent on cellular metabolism. Membrane potential has no influence on FL-MTX 

epithelial distribution. Based on available mammalian molecular and immunohisto-

chemical data, a model schematically describing transport proteins involved in re-

moving FL-MTX from CSF was put forth.  

Active uptake of FL-MTX at the apical membrane is mediated by at least two 

transporters, most likely by OAT3 and Oatp3. The only type of transport proteins 

linked to Na+-dependence is the OAT family. Involvement of Oatp3 is implied, as 

OAT3 knock-outs showed no difference in FL-MTX distribution, lacking the only Na+-

dependent organic anion exchanger localized to apical CP membranes. Export at the 

basolateral membrane is also mediated by at least two transport proteins. Inhibition 

of epithelial efflux with digoxin and increased accumulation within CPEC clearly 

demonstrated participation of Oatp2. Metabolism dependence and inhibition with 

LTC4 and MK571 point towards Mrp1 being involved in the efficient efflux of FL-MTX 

into blood vessels.  

 For the first time, regulatory processes of organic anion transport at the CP 

were revealed. It was demonstrated that both PKA and PKC specifically increase 

and decrease organic anion transport, respectively. Further, PKA initiated increased 
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transport at the apical epithelial membrane with a subsequent increased cellular FL-

MTX concentration, followed by increased efflux across the basolateral membrane 

into blood vessels. Time course analyses of this regulatory process showed that the 

increase in activity could be induced within minutes. Underlying regulatory hormones 

remain to be identified. 

 
 
5 OUTLOOK 
 Detailed analyses demonstrated that CP epithelium can be isolated and cul-

tured, with cells growing into intact monolayers, fully differentiating and with proper-

ties resembling the tissue in vivo. Comparative experiments using the model com-

pound FL-MTX, which is transported via a complex interplay of at least four different 

transport proteins, revealed that these complex processes are fully functional in cul-

tured cells. Results obtained in vitro mimicked the distribution observed in vivo. 

Thus, the established primary porcine CP model, allowing investigation of complex 

transport processes, can be used as a reliable tool for analyses of xenobiotic trans-

port across the blood-liquor barrier.   

Transport processes underlying the removal of FL-MTX from CSF were visu-

alized by confocal laser microscopy.  This relatively recent technology allowed sub-

cellular visualization of transport processes in a detail not seen before. CP physiol-

ogy can now be accessed in live tissue and in real time.  

Compared to previous analyses of fluorescein, a small organic anion, removal 

of FL-MTX is characterized by different transport properties. Fluorescein and FL-

MTX are both actively transported in CP, but both compounds exhibit different pat-

terns of distribution within tissue compartments and removal involves different trans-

port proteins. However, clearance of organic anions from the CNS is even more intri-

cate. A third organic anion under investigation is Texas Red (TR, 625 g/mol), which 

is of intermediate size when compared to fluorescein and FL-MTX. TR transport 

across CP tissue was not like fluorescein or FL-MTX, even though tissue distribution 

resembled more that of fluorescein than FL-MTX (figure 65).  

TR fluorescence intensity in epithelial cells, determined by quantitative confo-

cal microscopy, was roughly half the fluorescence intensity measured in perivascu-
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lar/subepithelial spaces. In contrast, FL-MTX concentrates in blood vessels with cel-

lular fluorescence remaining low. 

 

 
Figure 65: Distribution of Texas Red (TR) within CP Tissue 

 

Transport of both fluorescein and FL-MTX was dependent upon the ionic 

composition of the incubation medium. Secretion of both fluorescein and FL-MTX 

was Na+-dependent. Epithelial efflux of fluorescein was dependent on cellular elec-

trical potential, and blocked when electrical gradients are disrupted with excess po-

tassium. In contrast, TR was handled independently of medium sodium concentra-

tions, and raising potassium ten-fold did not affect secretion.  

FL and FL-MTX react differently to the presence of organic anion transport in-

hibitors. Probenecid, a general effector of organic anion transport, inhibits accumula-

tion of cellular and perivascular/subepithelial FL and FL-MTX fluorescence. TR ac-

cumulation in cells and vessels was also inhibited. 2,4-D, an effective inhibitor of FL 

transport, had no effect on TR transport. Estrone sulfate inhibited accumulation of 

FL-MTX in the perivascular/subepithelial space, but has no effect on cellular accu-

mulation. TR accumulation in both cells and vessels was inhibited by incubation with 

estrone sulfate. Digoxin and MK571 both inhibit perivascular/subepithelial accumula-

tion of FL-MTX in CP tissue, but cause an increase in cellular accumulation. While 

both of these compounds caused significant inhibition of TR accumulation in blood 

vessels, no increase in cellular fluorescence was found. 
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The preliminary analyses of TR transport suggest that the intermediate size 

anion is handled differently from fluorescein and FL-MTX. Influx is uniquely sodium-

independent, and efflux is neither potential-dependent, like fluorescein, nor handled 

by the same transporters as FL-MTX. Thus, even though again active processes are 

involved in clearance, different organic anions are transported by different underlying 

molecular mechanisms and different transport proteins seem to be involved. Further 

analyses are necessary for complete clarification of involved complex functional 

processes. 
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