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Abstract. The mutational equations of Aubin extend dynamic systems to metric

spaces. In first–order geometric evolutions, however, the topological boundary need not

be continuous. Thus, a distribution–like extension to (timed) ostensible metric spaces

was introduced in [14, 15, 16].

Here the notion of Petrov–Galerkin is implemented additionally, i.e. “test elements” need

not belong to the same set as the values of solutions. Such a further freedom (in the gen-

eral setting of timed ostensible metric spaces) has an advantage for geometric evolutions

depending on the boundary : A new choice of timed ostensible metrics and “test sets”

(in comparison with [15]) ensures not just existence, but also uniqueness of solutions.
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1 Introduction

Whenever different types of evolutions meet, they usually do not have an obvious vector

space structure in common providing a basis for differential calculus. In particular,

“shapes and images are basically sets, not even smooth” as Aubin stated ([2]). So he

regards this obstacle as a starting point for extending ordinary differential equations to

metric spaces – the so–called mutational equations ([2, 3, 4]).

Considering the example of time–dependent compact sets in RN , Aubin uses reach-

able sets of differential inclusions for describing a first–order approximation with respect

to the Pompeiu–Hausdorff distance dl. However this approach (also called morphological

equations) can hardly be applied to geometric evolutions depending on the topological

boundary explicitly. Indeed, roughly speaking, “holes” of sets might disappear while

evolving along differential inclusions and thus, analytically speaking, the topological

boundary need not be continuous with respect to time.

This obstacle has been the motivation in [14], [16] for extending mutational equations

to a nonempty set Ẽ = R×E (supplied with a separate real component of time) and a

countable family of timed ostensible metrics, i.e. distance functions q̃ε : Ẽ× Ẽ −→ [0,∞[

(ε ∈ J ) satisfying just the timed triangle inequality and q̃ε(x̃, x̃) = 0 for each x̃ ∈ Ẽ.

The definitions leading to so–called timed right–hand forward solutions are summarized

in § 2.

Two examples have already demonstrated the general character of this concept. In [15,

Lorenz 2005], its tools are applied to both semilinear evolution equations in reflexive

Banach spaces and first–order geometric evolutions simultaneously. Considering this

geometric example in particular, the notion of solution is specified as curves of compact

subsets of RN that fulfill a fixed (structural) estimate while comparing shortly with the

evolution of every compact N–dimensional submanifolds of RN with C1,1 boundary.

However, this example also demonstrates a weakness of the concept. In regard to unique-

ness, the results of [14] require the assumption that, roughly speaking, compact sets with

C1,1 boundary do not loose their regularity too quickly (see Propositions 40, 42 in [14]

as counterparts of Propositions 3.19, 3.21 here in § 3). However these conditions are not

obvious to verify for the geometric example of [15].

This lack of uniqueness has motivated to generalize mutational equations once more.

If we cannot dispense with the condition how long “test elements” preserve this fea-

ture, then we “expand” the set of test elements. For the previous geometric example

in particular, it might be helpful to take all compact subsets into consideration (and

not just the compact N–dimensional submanifolds of RN with C1,1 boundary). Then

the missing continuity of topological boundaries forms an obstacle to timed right–hand

forward solutions, though.
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For overcoming this obstacle, we return to the basic notions when extending muta-

tional equations : Timed right–hand forward solutions (in [14], [16]) can be interpreted

as a form of distributional solution. Indeed, they do not rely on partial integration,

but preserve a fixed structural estimate while comparing with the evolutions of all test

elements shortly.

So the first essential idea now is similar to Petrov–Galerkin methods : The test elements

need not belong to the same set as the values of solutions. Just some continuity prop-

erties have to be preserved when comparing their evolutions (along timed transitions)

with each other.

Furthermore, the “mode” of comparing is changed. Indeed, timed forward transitions

ϑ̃ (introduced in [14], [16]) are characterized by a parameter α 7→ε (ϑ̃) (among other things).

It concerns the continuity with respect to the initial point and is chosen uniformly for

all test elements. Now we make this parameter depend on the test element z̃ and use it

only for comparing with all elements ϑ̃(t, z̃) for t in a small interval [0,Tε(ϑ̃, z̃)[⊂ [0, 1]

(that might also depend on ε). Such a dependence on the test element has an imme-

diate impact on other quantities (like the distance between two transitions) and on the

definition of “solution”.

So as a key point of this paper, we investigate how to take these two additional degrees

of freedom into consideration correctly. The terms “timed sleek transition” and “timed

right–hand sleek solution” are coined in § 3. Then we obtain existence and stability

results in essentially the same way as in [14], [16]. In particular, the proofs again require

us to focus on how indices and parameters depend on each other. “Timed right–hand

forward solutions” (as defined in in [14], [16]) and solutions in the sense of Aubin ([2])

are special cases. So in particular, the examples of [15] and [2] fulfill the assumptions

about “timed right–hand sleek solutions” presented here in § 3.

In § 4, the new concept is applied to first–order geometric evolutions, i.e. the evolution

of compact subsets of RN may depend on nonlocal properties of both the current subset

and its limiting normal cones at the boundary. In contrast to [15], we dispense with C1,1

regularity of the “test elements” and distinguish between the basic set Ẽ and the set D̃
of test elements by an additional component instead :

Ẽ := R× {1} × K(RN),

D̃ := R× {0} × K(RN).

This auxiliary component is just to indicate how the first component (of time) evolves

along a transition ϑ̃. Indeed, for a set–valued map F : RN ; RN and a compact set

K ⊂ RN , let ϑF (h,K) ⊂ RN denote the reachable set of K and the differential inclusion

ẋ(·) ∈ F (x(·)) (a.e.) at time h ≥ 0. Then we distinguish between

ϑ̃F (h, K̃) := (t+ h, 1, ϑF (h,K)) for K̃ = (t, 1, K) ∈ Ẽ
and ϑ̃F (h, K̃) := (t, 0, ϑF (h,K)) for K̃ = (t, 0, K) ∈ D̃.
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The real time component comes into play (only) for comparing proximal normal cones

in the new ostensible metric on D̃ ∪ Ẽ : For a closed subset C ⊂ RN , x ∈ ∂C and any

ρ > 0, let NP
C,ρ(x) ⊂ RN consist of all proximal normal vectors η ∈ NP

C (x) \ {0} with

the proximal radius ≥ ρ (thus it might be empty) and set [NP
C,ρ(x) := NP

C,ρ(x) ∩ B1(0)

(see Definition 4.1). With dl denoting the Pompeiu–Hausdorff distance between compact

subsets of RN , we define for any ε ∈ [0, 1] and (s, µ, C), (t, ν,D) ∈ D̃ ∪ Ẽ
q̃K,ε((s, µ, C), (t, ν,D)) :=

dl(C,D) +

lim sup
κ ↓ 0

∫ ∞

ε

ψ(ρ+κ+200 Λ |t− s|) · dist
(
Graph [NP

D, (ρ+κ+200Λ |t−s|), Graph [NP
C, ρ

)
dρ

with a fixed nonincreasing weight function ψ ∈ C∞
0 ([0, 2[), ψ ≥ 0, and a parameter

Λ > 0 (related with the differential inclusions inducing transitions).

This ostensible metric on D̃∪Ẽ is motivated by the features of reachable sets of differen-

tial inclusions : Roughly speaking, when considering an arbitrary compact set K ⊂ RN

while evolving along a differential inclusion ẋ(·) ∈ F (x(·)) (a.e.), its exterior spheres do

not change very much for short times if the Hamiltonian function of F is C2. To be more

precise, Appendix A provides a connection between the exterior spheres of ϑF (t,K) and

K (and vice versa) for small times t > 0 :

Lemma 1.1 Assume for the set–valued map F : RN ; RN that its values are

nonempty, compact, convex and that its Hamiltonian function is C2(RN × (RN \ {0}))
with ‖HF‖C2(RN× ∂B1) < Λ .

Then for every radius r0 ∈ ]0, 2], there exists some time τ = τ(r0,Λ) > 0 such that for

any K ∈ K(RN), r ∈ [r0, 2] and t ∈ [0, τ [ ,

1. each x1 ∈ ∂ϑF (t,K) and ν1 ∈ NP
ϑF (t,K)(x1) with proximal radius r are linked to

some x0 ∈ ∂K and ν0 ∈ NP
K(x0) with proximal radius ≥ r − 81 Λ t

by a trajectory of ẋ(·) ∈ F (x(·)) a.e. and its adjoint arc, respectively.

2. each x0 ∈ ∂K and ν0 ∈ NP
K(x0) with proximal radius r are linked to

some x1 ∈ ∂ϑF (t,K) and ν1 ∈ NP
ϑF (t,K)(x1) with proximal radius ≥ r − 81 Λ t

by a trajectory of ẋ(·) ∈ F (x(·)) a.e. and its adjoint arc, respectively.

So the difference of more than 200 Λ t (in respect to proximal radii) proves to have two

advantages. Firstly, q̃K,ε

(
ϑ̃F (s, K̃), ϑ̃F (t, K̃)

)
≤ Λ (1 + ‖ψ‖L1 (eΛ + 1)) · |t− s|

holds for every initial element K̃ ∈ Ẽ and any times 0 ≤ s < t ≤ 1 (Lemma 4.7).

Secondly, we can compare the evolution of arbitrary elements K̃1 = (t1, 0, K1) ∈ D̃,
K̃2 = (t2, 1, K2) ∈ Ẽ with t1 ≤ t2 while evolving along two set–valued maps F, G (that

satisfy the conditions of Lemma 1.1). According to Lemma 4.8, the different features of

their time components, in particular, lead to

q̃K,ε

(
ϑ̃F (h, K̃1), ϑ̃G(h, K̃2)

)
≤ eC(Λ)·h ·

(
q̃K,ε(K̃1, K̃2) + C h ‖HF −HG‖C1(RN× ∂B1)

)
.
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Thus the required continuity properties of timed sleek transitions are fulfilled — without

any regularity assumptions about the compact subsets.

In regard to q̃ε, the additional limit superior with respect to κ ↓ 0 has a geo-

metric motivation. Appendix B investigates the proximal normal subsets NP
Kn, ρ

(·) for a

converging sequence (Kn)n∈N of compact subsets. Indeed, Proposition B.1 states for

K = Limn→∞ Kn ∈ K(RN)

Limsupn→∞ Graph [NP
Kn,ρ

⊂ Graph [NP
K,ρ for any ρ > 0,

but Graph [NP
K,ρ ⊂ Liminfn→∞ Graph [NP

Kn, r
for any 0 < r < ρ

and in general, we cannot dispense with the restriction r < ρ. Thus, it does not seem

advisable to compare proximal subsets of identical proximal radii with each other (when

verifying a form of sequential compactness, see Proposition 4.11 for details). So the

comparison of proximal normal subsets is rather “epigraphical” (than pointwise) with

respect to the proximal radius.

Combining the results about first–order geometric evolutions with semilinear evolu-

tion equations in reflexive Banach spaces (see [15]), we draw the following conclusion

from timed right–hand sleek solutions :

Proposition 1.2 (Systems of semilinear evolution equations in Banach space

and timed first–order geometric evolutions in RN)

Let X be a reflexive Banach space and (S(t))t≥ 0 a C0 semigroup on X with the

infinitesimal generator A. Suppose that the dual operator A′ of A has a countable family

of unit eigenvectors {v′j}j∈J spanning the dual space X ′ and define

qj(x, y) := |〈x− y, v′j〉| for x, y ∈ X, j ∈ J = {j1, j2, j3 . . . },

pn(x, y) :=
n∑

k= 1

2−k
qjk

(x,y)

1 + qjk
(x,y)

for x, y ∈ X, n ∈ N ∪ {∞},

Pn(x, y) :=
n∑

k=1

2−k qjk(x, y).

Let LIP
(C2)
Λ (RN ,RN) denote the set of all set–valued maps satisfying the hypotheses of

Lemma 1.1. Using the abbreviations Ẽ
Def.
= R× {1} × K(RN), D̃ Def.

= R× {0} × K(RN),

assume for

f : X × (D̃ ∪ Ẽ)× [0, T ] −→ X

g : X × (D̃ ∪ Ẽ)× [0, T ] −→ LIP
(C2)
Λ (RN ,RN) :

1. ‖f‖L∞ < ∞
2. P∞(f(x1, K̃1, t1), f(x2, K̃2, t2)) ≤ ω(p∞(x1, x2) + q̃K,0(K̃1, K̃2) + t2−t1)

3.
∥∥∥Hg(x1,K̃1,t1) − Hg(x2,K̃2,t2)

∥∥∥
C1(RN×∂B1)

≤ ω(p∞(x1, x2) + q̃K,0(K̃1, K̃2) + t2−t1)

for all x1, x2∈X, K̃1, K̃2∈ Ẽ (π1K̃1≤π1K̃2), t1 ≤ t2 with a modulus ω(·) of continuity.



§ 1 INTRODUCTION 5

I.) Then for every initial data x0 ∈ X and K0 ∈ K(RN), there exists a tuple

(x,K) : [0, T [ −→ X×K(RN) such that K̃ : [0, T [−→ Ẽ, t 7−→ (t, 1, K(t)) satisfies

a) x : [0, T [−→ X is a mild solution of the initial value problem

∧

{
d
dt
x(t) = A x(t) + f(x(t), K̃(t), t)

x(0) = x0

i.e. x(t) = S(t) x0 +

∫ t

0

S(t− s) f(x(s), K̃(s), s) ds.

b) K(0) = K0 and K̃(·) is Lipschitz continuous in forward time direction w.r.t. q̃K,0,

i.e. q̃K,0(K̃(s), K̃(t)) ≤ const(Λ, T ) · (t− s) for all 0 ≤ s < t < T.

c) lim sup
h ↓ 0

1
h
·
(
q̃K,ε

(
ϑ̃g(x(t), K̃(t), t) (h, Z̃), K̃(t+h)

)
− q̃K,ε(Z̃, K̃(t)) · e10 Λ e2 Λ ·h

)
≤ c ε

for every ε ∈ ]0, 1] ∩Q, time t ∈ [0, T [ and test set Z̃ ∈ ]−∞, t]× {0} × K(RN)

(with a constant c > 0 depending only on Λ, T,K0).

In particular, lim sup
h ↓ 0

1
h
· dl
(
ϑg(x(t), K̃(t), t) (h, K(t)), K(t+h)

)
= 0 for all t.

II.) If, additionally, g : X × (D̃ ∪ Ẽ)× [0, T ] −→ LIP
(C2)
Λ (RN ,RN) satisfies∥∥∥Hg(x1,Z̃,t1) − Hg(x2,K̃,t2)

∥∥∥
C1(RN×∂B1)

≤ L · q̃K,0(Z̃, K̃) + ω̂(t2 − t1)

for all 0 ≤ t1 ≤ t2 ≤ T and Z̃ ∈ D̃, K̃ ∈ Ẽ (π1 Z̃ ≤ π1 K̃) with a modulus ω̂(·)
of continuity and a Lipschitz constant L ≥ 0, then the function K(·) is unique.

Here the uniqueness in statement (II.) is the main new feature in comparison with [15].

It results from Proposition 4.14.

Finally, let us give a brief overview of this paper and its structure. In § 2, the key

definitions presented in [14], [16] are summarized. They lead to so–called timed right–

hand forward solutions and serve as a motivation for pointing out the new features here.

Then in § 3, we introduce timed sleek transitions and follow basically the same steps

up to existence and uniqueness results about so–called timed right–hand sleek solutions.

The subsequent paragraph 4 contains the example of first–order geometric evolutions

using the timed ostensible metrics (q̃K,ε)ε∈ ]0,1]∩Q. In particular, we verify that reach-

able sets of maps in LIP
(C2)
Λ (RN ,RN) induce timed sleek transitions and investigate

some required properties of sequential compactness. Appendix A provides the key tools

of reachable sets (of differential inclusions) quoted here in Lemma 1.1. In the end,

Appendix B relates the proximal normal subsets NP
Kn, ρ

(·) of a convergent sequence

(Kn)n∈N in K(RN) with its limit K = Limn→∞ Kn.
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2 Timed right–hand forward solutions of mutational

equations : Previous definitions.

Generalizing the mutational equations of Aubin in metric spaces ([2, 3, 4]), the so–

called timed right–hand forward solutions (of order p) were defined in [14] and sufficient

conditions ensure their existence (see also [16], Chapter 2). In this section, we summarize

the main points – in preparation for a new step of generalization in § 3. This modification

is also to weaken the restriction of “uniform” continuity on transitions and leads to so–

called timed sleek transitions (of order p) in Definition 3.1.

As a first step, we specify the mathematical environment of our considerations.

Similarly to metric spaces, a nonempty set E is to be supplied with a distance function.

However, an additional real component provides the opportunity of sorting elements by

time and for the same reason, we dispense with the symmetry of distance functions.

Definition 2.1 Let E be a nonempty set and Ẽ := R× E.

q̃ : Ẽ × Ẽ −→ [0,∞[ is called timed ostensible metric on Ẽ if it satisfies :

q̃((t, z), (t, z)) = 0 (reflexive)

q̃((r, x), (t, z)) ≤ q̃((r, x), (s, y)) + q̃((s, y), (t, z)) (timed triangle inequality)

for all (r, x), (s, y), (t, z)∈ Ẽ with r≤s≤ t. (Ẽ, q̃) is called timed ostensible metric space.

General assumptions for § 2.

1. Let E denote a nonempty set, D ⊂ E a fixed subset of “test elements” and

Ẽ
Def.
= R× E, D̃

Def.
= R×D, π1 : Ẽ −→ R, (t, x) 7−→ t.

2. J ⊂ [0, 1]K abbreviates a countable index set with K ∈ N, 0 ∈ J .
3. q̃ε : Ẽ × Ẽ −→ [0,∞[ is a timed ostensible metric on Ẽ (for each ε ∈ J ).

4. Each q̃ε is “time continuous”, i.e. every sequence (x̃n = (tn, xn))n∈N in Ẽ and

x̃ = (t, x) ∈ Ẽ with q̃ε(x̃n, x̃) −→ 0 (n −→∞) fulfill tn −→ t (n −→∞).

Now we specify tools for describing deformations in the tuple (Ẽ, D̃, (q̃ε)ε∈J ). A map

ϑ̃ : [0, 1]× Ẽ −→ Ẽ is to define which point ϑ̃(t, x̃) ∈ Ẽ is reached from the initial point

x̃ ∈ Ẽ after time t. Of course, ϑ̃ has to fulfill some regularity conditions so that it may

form the basis for a calculus of differentiation. Following [14], we define

Definition 2.2 A map ϑ̃ : [0, 1] × Ẽ −→ Ẽ is a so–called timed forward transition

of order p on (Ẽ, D̃, (q̃ε)ε∈J ) if it fulfills for each ε ∈ J
1. ϑ̃(0, ·) = IdẼ,

2. ∃ γε(ϑ̃) ≥ 0 : lim sup
ε−→ 0

εp · γε(ϑ̃) = 0 and

lim sup
h ↓ 0

1
h
· q̃ε(ϑ̃(h, ϑ̃(t, x̃)), ϑ̃(t+ h, x̃)) ≤ γε(ϑ̃) ∀ x̃ ∈ Ẽ, t ∈ [0, 1[,

lim sup
h ↓ 0

1
h
· q̃ε(ϑ̃(t+ h, x̃), ϑ̃(h, ϑ̃(t, x̃))) ≤ γε(ϑ̃) ∀ x̃ ∈ Ẽ, t ∈ [0, 1[,
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3. ∃ α 7→ε (ϑ̃) : sup
z̃ ∈ D̃, ỹ ∈Ẽ
π1 z̃ ≤ π1 ỹ

lim sup
h ↓ 0

(
q̃ε(ϑ̃(h, z̃), ϑ̃(h, ỹ)) − q̃ε(z̃,ỹ)− γε(ϑ̃) h

h ( q̃ε(z̃,ỹ) + γε(ϑ̃) h)

)+

≤ α 7→ε (ϑ̃) <∞

4. ∃ βε(ϑ̃) : ]0, 1] −→ [0,∞[ : nondecreasing, lim
h ↓ 0

βε(ϑ̃)(h) = 0,

q̃ε(ϑ̃(s, ỹ), ϑ̃(t, ỹ)) ≤ βε(ϑ̃)(t− s) ∀ s < t ≤ 1, ỹ ∈ Ẽ,

5. ∀ z̃ ∈ D̃ ∃ TΘ = TΘ(ϑ̃, z̃) ∈ ]0, 1] : ϑ̃(t, z̃) ∈ D̃ ∀ t ∈ [0, TΘ],

6. lim sup
h ↓ 0

q̃ε(ϑ̃(t− h, z̃), ỹ) ≥ q̃ε(ϑ̃(t, z̃), ỹ) ∀ z̃ ∈ D̃, ỹ ∈ Ẽ, t ≤ TΘ

(t+ π1 z̃ ≤ π1 ỹ),

7. ϑ̃(h, (t, y)) ∈ {t+ h} × E ∀ (t, y) ∈ Ẽ, h ∈ [0, 1].

Remark 2.3 The term “forward” and the symbol 7→ (representing the time axis)

indicate that states at time t+h are usually compared with elements at time t for h ↓ 0.

Condition (2.) can be regarded as a weakened form of the semigroup property. It

consists of two demands as q̃ε need not be symmetric. Condition (3.) specifies the con-

tinuity property of ϑ̃ with respect to the initial point. In particular, the first argument

of q̃ε is restricted to elements z̃ of the “test set” D̃ and, α 7→ε (ϑ̃) may be chosen larger

than necessary. Thus, it is easier to define α 7→ε (·) < ∞ uniformly in some applications

like the first–order geometric example of [15]. In condition (4.), all ϑ̃(·, ỹ) : [0, 1] −→ Ẽ

(ỹ ∈ Ẽ) are supposed to be equi–continuous (in time direction).

Condition (5.) guarantees that every element z̃ ∈ D̃ stays in the “test set” D̃ for

short times at least. This assumption is required because estimates using the parameter

α 7→ε (·) can be ensured only within this period. Further conditions on TΘ(ϑ̃, ·) > 0 are

avoidable for proving existence of solutions, but they are used for uniqueness (in [14]).

Condition (6.) forms the basis for applying Gronwall’s Lemma that has been extended to

semicontinuous functions in [14] (see Lemma 3.5). Indeed, every function ỹ : [0, 1] −→ Ẽ

with q̃ε(ỹ(t−h), ỹ(t)) −→ 0 (for h ↓ 0 and each t) satisfies

q̃ε

(
ϑ̃(t, z̃), ỹ(t)

)
≤ lim sup

h ↓ 0
q̃ε

(
ϑ̃(t− h, z̃), ỹ(t− h)

)
.

for all elements z̃ ∈ D̃ with π1 ϑ̃(·, z̃) ≤ π1 ỹ(·) and times t ∈ ] 0, TΘ(ϑ̃, x̃)].

Remark 2.4 1. A set Ẽ 6= ∅ supplied with only one function q̃ : Ẽ×Ẽ −→ [0,∞[

can be regarded as easy (but important) example by setting J := {0}, q̃0 := q̃.

Considering a timed forward transitions ϑ̃ : [0, 1]× Ẽ −→ Ẽ of order 0, the condition

lim sup
ε−→ 0

ε0 · γε(ϑ̃) = 0 means 0 = 00 · γ0(ϑ̃) = γ0(ϑ̃) — due to the definition 00 Def.
= 1.

So for all x̃ ∈ Ẽ, t ∈ [0, 1[,

∧


lim sup
h ↓ 0

1
h

q̃
(
ϑ̃(h, ϑ̃(t, x̃)), ϑ̃(t+ h, x̃)

)
= 0

lim sup
h ↓ 0

1
h

q̃
(
ϑ̃(t+ h, x̃), ϑ̃(h, ϑ̃(t, x̃))

)
= 0.
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2. For a set E 6= ∅ and p ∈ R given, every ostensible metric qε : E×E −→ [0,∞[

induces a timed ostensible metric q̃ε : Ẽ × Ẽ −→ [0,∞[ according to

q̃ε

(
(s, x), (t, y)

)
:= f(ε) |s− t|+ qε(x, y) for all (s, x), (t, y) ∈ Ẽ.

with a function f(ε) = o(εp) ≥ 0 for ε ↓ 0,

Then every ϑ : [0, 1] × E −→ E satisfying the conditions (1.)–(6.) for (E,D, (qε)ε∈J )

induces a timed forward transition ϑ̃ : [0, 1]× Ẽ −→ Ẽ of order p on (Ẽ, D̃, (q̃ε)ε∈J ) by

ϑ̃
(
h, (t, x)

)
:=

(
t+ h, ϑ(h, x)

)
for all (t, x) ∈ Ẽ, h ∈ [0, 1].

So the statements of this paragraph can be applied to their counterparts without sep-

arate time component very easily. In particular, transitions on a metric space (M,d)

(introduced by Aubin in [2], [3]) prove to be a special case on (M,M, d).

Definition 2.5

Θ̃7→
p (Ẽ, D̃, (q̃ε)ε∈J ) denotes a set of timed forward transitions on (Ẽ, D̃, (q̃ε)) assuming

Q̃7→
ε (ϑ̃, τ̃) := sup

z̃ ∈ D̃, ỹ ∈Ẽ
π1 z̃ ≤ π1 ỹ

lim sup
h ↓ 0

(
q̃ε(ϑ̃(h, z̃), τ̃(h, ỹ)) − q̃ε(z̃, ỹ) · eα

7→
ε (τ̃) h

h

)+

to be finite for all ϑ̃, τ̃ ∈ Θ̃7→
p (Ẽ, D̃, (q̃ε)ε∈J ), ε ∈ J .

These definitions enable us to compare any element ỹ ∈ Ẽ with an “earlier test

element” z̃ ∈ D̃ (i.e. π1 z̃ ≤ π1 ỹ) while evolving along two forward transitions. The key

idea of timed right–hand forward solutions is to preserve the structural estimate of the

next proposition while extending mutational equations to timed ostensible metrics and

“distributional” features (in regard to a test set D̃).

Proposition 2.6 Let ϑ̃, τ̃ ∈ Θ̃7→
p (Ẽ, D̃, (q̃ε)ε∈J ) be timed forward transitions,

ε ∈ J , z̃ ∈ D̃, ỹ ∈ Ẽ and 0 ≤ t1 ≤ t2 ≤ 1, h ≥ 0 (with π1 z̃ ≤ π1 ỹ, t1+h < TΘ(ϑ̃, z̃)).

Then the following estimate holds

q̃ε(ϑ̃(t1+h, z̃), τ̃(t2+h, ỹ))

≤
(
q̃ε(ϑ̃(t1, z̃), τ̃(t2, ỹ)) + h · (Q̃7→

ε (ϑ̃, τ̃) + γε(ϑ̃) + γε(τ̃))
)
· eα 7→ε (τ̃) h

The next step is to define the term “timed right–hand forward primitive” for a curve

ϑ̃(·) : [0, T ] −→ Θ̃7→
p (Ẽ, D̃, (q̃ε)ε∈J ) of timed forward transitions. Roughly speaking,

a curve x̃(·) : [0, T [ −→ Ẽ represents a primitive of ϑ̃(·) if at each time t ∈ [0, T [,

the timed forward transition ϑ̃(t) can be interpreted as a first–order approximation

of x̃(t + · ). Combining this notion with the key estimate of Proposition 2.6, a vague

meaning of “first–oder approximation” is provided : Comparing x̃(t+ · ) with ϑ̃(t)(·, z̃)
(for any earlier test element z̃ ∈ D̃, π1 z̃ ≤ π1 x̃(t)), the same estimate ought to hold as

if the factor Q̃7→
ε (·, ·) was 0. It motivates the following definition with the expression

“right–hand” indicating that x̃(·) appears in the second argument of the distances q̃ε
(ε ∈ J ) in condition (1.).
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Definition 2.7 The curve x̃(·) : [0, T [ −→ (Ẽ, (q̃ε)ε∈J ) is called timed right–hand

forward primitive of a map ϑ̃(·) : [0, T [−→ Θ̃7→
p (Ẽ, D̃, (q̃ε)ε∈J ), abbreviated to

◦
x̃(·) 3 ϑ̃(·),

if for each ε ∈ J ,

1. ∀ t ∈ [0, T [ ∃ α̂ 7→ε (t) ≥ α 7→ε (ϑ̃(t)), γ̂ε(t) ≥ γε(ϑ̃(t)) :

lim sup
h ↓ 0

1
h

(
q̃ε(ϑ̃(t) (h, z̃), x̃(t+h)) − q̃ε(z̃, x̃(t)) · eα̂

7→
ε (t)·h

)
≤ γ̂ε(t)

for every z̃ ∈ D̃ with π1 z̃ ≤ π1 x̃(t), lim sup
ε′ ↓ 0

ε′
p · γ̂ε′(t) = 0,

2. x̃(·) is uniformly continuous in time direction with respect to q̃ε,

i.e. there is ωε(x̃, ·) : ]0, T [−→ [0,∞[ such that lim sup
h ↓ 0

ωε(x̃, h) = 0,

q̃ε(x̃(s), x̃(t)) ≤ ωε(x̃, t− s) for 0 ≤ s < t < T.

3. π1 x̃(t) = t + π1 x̃(0) for all t ∈ [0, T [.

Remark 2.8 Timed forward transitions induce their own primitives. To be more

precise, every constant function ϑ̃(·) : [0, 1[−→ Θ̃7→
p (Ẽ, D̃, (q̃ε)ε∈J ) with ϑ̃(·) = ϑ̃0 has

the timed right–hand forward primitives [0, 1[−→ Ẽ, t 7−→ ϑ̃0(t, x̃) with any x̃ ∈ Ẽ
— as an immediate consequence of Proposition 2.6. This property is easy to extend to

piecewise constant functions [0, T [ −→ Θ̃7→
p (Ẽ, D̃, (q̃ε)ε∈J ) and so it forms the basis for

Euler approximations.

Definition 2.9 For f̃ : Ẽ × [0, T [−→ Θ̃7→
p (Ẽ, D̃, (q̃ε)) given, x̃ : [0, T [−→ Ẽ is a

timed right–hand forward solution of the generalized mutational equation
◦
x̃(·) 3 f̃(x̃(·), ·)

if x̃(·) is timed right–hand forward primitive of f̃(x̃(·), · ) : [0, T [−→ Θ̃7→
p (Ẽ, D̃, (q̃ε)).

In [14, Lorenz 2005] (and [16]), these definitions form a basis for extending evolution

equations to ostensible metric spaces. A special kind of compactness (so–called timed

transitional compactness) proves to be sufficient for the existence of these solutions if the

right–hand side f̃(·, ·) is continuous. So a common environment for completely different

types of evolutions is provided as the examples of [15] show.

3 Weaker conditions on continuity and test elements:

Timed right–hand sleek solutions.

Similarly to semigroups in Banach spaces however, the assumptions about (uniform)

continuity might form severe obstacles in applications. With regard to timed forward

transitions ϑ̃, a bound of the parameter α 7→ε (ϑ̃) is often difficult to verify. Thus, we

want to weaken the “uniform” character of continuity assumptions. In particular, the

choice of α 7→ε , TΘ ought to be more flexible without losing the track to the final aim of

existence. As second key aspect, we dispense with the assumption D̃ ⊂ Ẽ (similarly to

the notion of Petrov–Galerkin methods). Finally q̃ε need not be time continuous.
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General assumptions for § 3.

1. Let E and D denote nonempty sets (not necessarily D ⊂ E),

Ẽ
Def.
= R× E, D̃ Def.

= R×D, π1 : (D̃ ∪ Ẽ) −→ R, (t, x) 7−→ t.

2. J ⊂ [0, 1]K abbreviates a countable index set with K ∈ N, 0 ∈ J .
3. q̃ε : (D̃ ∪ Ẽ)× (D̃ ∪ Ẽ) −→ [0,∞[ satisfies the timed triangle inequality

(for each index ε ∈ J ).

4. iD̃ : D̃ −→ Ẽ fulfills q̃ε(z̃, iD̃ z̃) = 0, π1 z̃ = π1 iD̃ z̃ for every z̃ ∈ D̃, ε ∈ J .

Definition 3.1 A map ϑ̃ : [0, 1] × (D̃ ∪ Ẽ) −→ (D̃ ∪ Ẽ) is called timed sleek

transition of order p on (Ẽ, D̃, (q̃ε)ε∈J ) if it fulfills for each ε ∈ J
1. ϑ̃(0, ·) = IdD̃ ∪ Ẽ,

2. ∃ γε(ϑ̃) ≥ 0 : lim sup
ε−→ 0

εp · γε(ϑ̃) = 0 and

lim sup
h ↓ 0

1
h
· q̃ε(ϑ̃(h, ϑ̃(t, x̃)), ϑ̃(t+ h, x̃)) ≤ γε(ϑ̃) ∀ x̃ ∈ D̃ ∪ Ẽ, t ∈ [0, 1[,

lim sup
h ↓ 0

1
h
· q̃ε(ϑ̃(t+ h, x̃), ϑ̃(h, ϑ̃(t, x̃))) ≤ γε(ϑ̃) ∀ x̃ ∈ D̃ ∪ Ẽ, t ∈ [0, 1[,

3′. ∀ z̃ ∈ D̃ ∃ αε(ϑ̃, z̃) ∈ [0,∞[, Tε = Tε(ϑ̃, z̃) ∈ ]0, 1] :

lim sup
h ↓ 0

(
q̃ε(ϑ̃(t+h, z̃), ϑ̃(h, ỹ)) − q̃ε(ϑ̃(t,z̃), ỹ)− γε(ϑ̃) h

h ( q̃ε(ϑ̃(t,z̃), ỹ) + γε(ϑ̃) h)

)+

≤ αε(ϑ̃, z̃) ∀ 0 ≤ t < Tε, ỹ ∈ Ẽ
(t+ π1 z̃ ≤ π1 ỹ),

4. ∃ βε(ϑ̃) : ]0, 1] −→ [0,∞[ modulus of continuity :

q̃ε(ϑ̃(s, ỹ), ϑ̃(t, ỹ)) ≤ βε(ϑ̃)(t− s) ∀ s < t ≤ 1, ỹ ∈ Ẽ,

5. ∀ z̃ ∈ D̃ : ϑ̃(t, z̃) ∈ D̃ ∀ t ∈ [0, Tε(ϑ̃, z̃)],

6. lim sup
h ↓ 0

q̃ε(ϑ̃(t− h, z̃), ỹ) ≥ q̃ε(ϑ̃(t, z̃), ỹ) ∀ z̃ ∈ D̃, ỹ ∈ Ẽ, t ≤ Tε

(t+ π1 z̃ ≤ π1 ỹ),

7′. ϑ̃(h, (t, y)) ∈ {t+ h} × E ⊂ Ẽ ∀ (t, y) ∈ Ẽ, h ∈ [0, 1],

π1 ϑ̃(h, (t, z)) ≤ t+ h nondecreasing w.r.t. h ∀ (t, z) ∈ D̃, h ∈ [0, 1].

8′. lim sup
h ↓ 0

1
h
· q̃ε(ϑ̃(h, ϑ̃(t, iD̃ z̃)), ϑ̃(h, ϑ̃(t, z̃))) ≤ γε(ϑ̃) ∀ z̃ ∈ D̃, t < Tε(ϑ̃, z̃).

So in comparison with Definition 2.2 of a timed forward transition (of order p), two

features are changed :

Firstly, in condition (3’.), the parameter αε(ϑ̃, z̃) (with any z̃ ∈ D̃ fixed) is chosen

“uniformly” for comparing the evolution of any ỹ ∈ Ẽ with the elements ϑ̃(t, z̃) ∈ D̃
(0 ≤ t < Tε(ϑ, z̃)) — whereas condition (3.) of Definition 2.2 takes all ỹ ∈ Ẽ and every

“test element” z̃ ∈ D̃ (π1 z̃ ≤ π1 ỹ) into consideration for α 7→ε (ϑ̃) <∞.

Roughly speaking, key new properties of sleek transitions ϑ̃ are that αε(ϑ̃, z̃) may depend

on the test element z̃ ∈ D̃ and Tε(ϑ̃, z̃) can depend on ε ∈ J additionally.
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Secondly, we take into account that the “test set” D̃ need not be a subset of Ẽ. In

§ 2, each distance function q̃ε was supposed to be a timed ostensible metric and thus,

reflexive in particular. To be more precise, q̃ε(z̃, z̃) = 0 for all z̃ ∈ D̃ ⊂ Ẽ formed the

basis for

1.) the triangle inequality of Q̃7→
ε (see [14, Lorenz 2005], Remarks 11, 18 (iv)) and

2.) estimating the distance between a timed forward transition ϑ̃(·, z̃) and a timed

right–hand forward solution (see [14], Proposition 27).

Although we might dispense with such a triangle inequality of transitions, the second

point will be relevant for proving estimates between solutions such as Proposition 3.19

later. So we need a further relation between every test element z̃ ∈ D̃ and its counterpart

iD̃ z̃ ∈ Ẽ — in addition to the general assumption q̃ε(z̃, iD̃ z̃) = 0. Condition (8’.)

bridges this gap for each timed sleek transition and, (only) here iD̃ z̃ ∈ Ẽ occurs in the

first argument of q̃ε whereas z̃ ∈ D̃ appears in the second one.

Finally, condition (7’.) is restricting the time component of ϑ̃(·, z̃) (for every test

element z̃ ∈ D̃) just qualitatively. This additional “degree of freedom” will prove to be

an important advantage for the geometric example in § 4.

The common aim of these different approaches is to preserve the structural estimate

stated in Proposition 2.6. So first the counterpart of Q̃7→
ε (ϑ̃, τ̃) is introduced and then

we obtain the corresponding estimate in exactly the same way as in [14].

Definition 3.2

Θ̃p(Ẽ, D̃, (q̃ε)ε∈J ) denotes a set of timed sleek transitions on (Ẽ, D̃, (q̃ε)) assuming

Q̃ε(ϑ̃, τ̃ ; z̃) := sup
t≤ Tε(ϑ̃,z̃), ỹ ∈Ẽ

t+π1 z̃ ≤ π1 ỹ

lim sup
h ↓ 0

(
q̃ε(ϑ̃(t+h,z̃), τ̃(h,ỹ)) − q̃ε(ϑ̃(t,z̃), ỹ) · eαε(τ̃ ,z̃)·h

h

)+

to be finite for all ϑ̃, τ̃ ∈ Θ̃p(Ẽ, D̃, (q̃ε)ε∈J ), z̃ ∈ D̃, ε ∈ J .

Remark 3.3 The triangle inequality for Q̃ε(·, ·; z̃) cannot be expected to hold in

general. Indeed for any sleek transitions ϑ̃1, ϑ̃2, ϑ̃3 ∈ Θ̃p(Ẽ, D̃, (q̃ε)ε∈J ) and z̃ ∈ D̃,
ỹ ∈ Ẽ, t ∈ [0,Tε(ϑ̃1, z̃)] with t+ π1 z̃ ≤ π1ỹ, the timed triangle inequality leads to

1
h
·
(
q̃ε(ϑ̃1(t+ h, z̃), ϑ̃3(h, ỹ)) − q̃ε(ϑ̃1(t, z̃), ỹ) · eαε(ϑ̃3,z̃) h

)
≤ 1

h
q̃ε(ϑ̃1(t+ h, z̃), ϑ̃2(h, iD̃ ϑ̃1(t, z̃)))

+ 1
h

q̃ε(ϑ̃2(h, iD̃ ϑ̃1(t, z̃)) ϑ̃2(h, ϑ̃1(t, z̃)))

+ 1
h
·
(
q̃ε(ϑ̃2(h, ϑ̃1(t, z̃)), ϑ̃3(h, ỹ)) − q̃ε(ϑ̃1(t, z̃), ỹ) · eαε(ϑ̃3,z̃) h

)
.

Supposing now αε(ϑ̃3, z̃) ≥ αε(ϑ̃3, ϑ̃1(t, z̃)) in addition, we conclude from condition (8’.)

on sleek transitions (Definition 3.1) and q̃ε(ϑ̃1(t, z̃), iD̃ ϑ̃1(t, z̃)) = 0

lim sup
h ↓ 0

1
h
·
(
q̃ε(ϑ̃1(t+ h, z̃), ϑ̃3(h, ỹ)) − q̃ε(ϑ̃1(t, z̃), ỹ) · eαε(ϑ̃3,z̃) h

)
≤ Q̃ε(ϑ̃1, ϑ̃2; z̃) + γε(ϑ̃2) + Q̃ε(ϑ̃2, ϑ̃3; ϑ̃1(t, z̃)).
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Proposition 3.4 Let ϑ̃, τ̃ : [0, 1]× Ẽ −→ Ẽ be timed sleek transitions of order p ∈ R
on (Ẽ, D̃, (q̃ε)ε∈J ). Furthermore suppose ε ∈ J , z̃ ∈ D̃, ỹ ∈ Ẽ and 0 ≤ t1 ≤ t2 ≤ 1,

h ≥ 0 with π1 z̃ ≤ π1 ỹ, t1 + h < Tε(ϑ̃, z̃).

Then, q̃ε(ϑ̃(t1+h, z̃), τ̃(t2+h, ỹ))

≤
(
q̃ε(ϑ̃(t1, z̃), τ̃(t2, ỹ)) + h ·

(
Q̃ε(ϑ̃, τ̃ ; z̃) + γε(τ̃)

))
· eαε(τ̃ ,z̃) h .

Proof is based on the subsequent version of Gronwall’s Lemma for semicontinuous

functions. The auxiliary function ϕε : h 7−→ q̃ε(ϑ̃(t1 + h, z̃), τ̃(t2 + h, ỹ)) satisfies

ϕε(h) ≤ lim supk ↓ 0 ϕε(h− k) due to property (6.) of Definition 3.1.

Moreover it fulfills for any h ∈ [0, 1[ with t1 + h < Tε(ϑ̃, z̃)

lim sup
k ↓ 0

ϕε(h+k)− ϕε(h)
k

≤ αε(τ̃ , z̃) · ϕε(h) + Q̃ε(ϑ̃, τ̃ ; z̃) + γε(τ̃).

Indeed, for all k > 0 sufficiently small, the timed triangle inequality leads to

ϕε(h+ k) ≤ q̃ε(ϑ̃(t1+h+ k, z̃), τ̃(k, τ̃(t2+h, ỹ)))

+ q̃ε(τ̃(k, τ̃(t2+h, ỹ)), τ̃(t2+h+ k, ỹ) )

≤ Q̃ε(ϑ̃, τ̃ ; z̃) · k + ϕε(h) e
αε(τ̃ ,z̃) k + γε(τ̃) k + o(k). 2

Lemma 3.5 (Lemma of Gronwall for semicontinuous functions [14])

Let ψ : [a, b] −→ R, f, g ∈ C0([a, b[,R) satisfy f(·) ≥ 0 and

ψ(t) ≤ lim sup
h ↓ 0

ψ(t− h), ∀ t ∈ ]a, b],

ψ(t) ≥ lim sup
h ↓ 0

ψ(t+ h), ∀ t ∈ [a, b[,

lim sup
h ↓ 0

ψ(t+h)−ψ(t)
h

≤ f(t) · lim sup
h ↓ 0

ψ(t− h) + g(t) ∀ t ∈ ]a, b[.

Then, for every t ∈ [a, b], the function ψ(·) fulfills the upper estimate

ψ(t) ≤ ψ(a) · eµ(t) +

∫ t

a

eµ(t)−µ(s) g(s) ds with µ(t) :=

∫ t

a

f(s) ds.

The structural estimate of Proposition 3.4 provides the key tool for applying the steps of

[14] — after adapting the definitions of primitive and solution to timed sleek transitions.

This modification is again based on comparing the evolutions with the initial points

ϑ̃0(s, z̃) ∈ D̃, 0 ≤ s < Tε(ϑ̃0, z̃), for any z̃ ∈ D̃ fixed (and the current transition ϑ̃0).

Definition 3.6 The curve x̃(·) : [0, T [−→ (Ẽ, (q̃ε)ε∈J ) is called timed right–hand

sleek primitive of a map ϑ̃(·) : [0, T [−→ Θ̃p(Ẽ, D̃, (q̃ε)ε∈J ), abbreviated to
◦
x̃(·) 3 ϑ̃(·),

if for each ε ∈ J ,
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1. ∀ t ∈ [0, T [ ∀ z̃ ∈ D̃ with π1 z̃ ≤ π1 x̃(t) :

∃ α̂ε(t, z̃) ≥ αε(ϑ̃(t), z̃) ∃ γ̂ε(t, z̃) ≥ γε(ϑ̃(t)) : lim sup
ε′ ↓ 0

ε′
p · γ̂ε′(t, z̃) = 0,

lim sup
h ↓ 0

1
h

(
q̃ε

(
ϑ̃(t) (s+h, z̃), x̃(t+h)

)
− q̃ε

(
ϑ̃(t) (s, z̃), x̃(t)

)
· eα̂ε(t,z̃)·h

)
≤ γ̂ε(t, z̃)

for every s ∈ [0, Tε(ϑ̃(t), z̃)[ with s+ π1 z̃ ≤ π1 x̃(t),

2. x̃(·) is uniformly continuous in time direction with respect to q̃ε,

i.e. there is ωε(x̃, ·) : ]0, T [−→ [0,∞[ such that lim sup
h ↓ 0

ωε(x̃, h) = 0,

q̃ε(x̃(s), x̃(t)) ≤ ωε(x̃, t− s) for 0 ≤ s < t < T.

3. π1 x̃(t) = t + π1 x̃(0) for all t ∈ [0, T [.

Remark 3.7 Timed sleek transitions induce their own sleek primitives — as a direct

consequence of Definition 3.1 and Proposition 3.4 (in the same way as in Remark 2.8

about timed forward transitions). Correspondingly, each piecewise constant function

ϑ̃ : [0, T [ −→ Θ̃p(Ẽ, D̃, (q̃ε)) has a timed right–hand sleek primitive that is defined

piecewise as well.

Definition 3.8 For f̃ : Ẽ× [0, T [−→ Θ̃p(Ẽ, D̃, (q̃ε)) given, a map x̃ : [0, T [−→ Ẽ is

a timed right–hand sleek solution of the generalized mutational equation
◦
x̃(·) 3 f̃(x̃(·), ·)

if x̃(·) is timed right–hand forward primitive of f̃(x̃(·), · ) : [0, T [−→ Θ̃p(Ẽ, D̃, (q̃ε)).

Considering timed right–hand forward solutions in [14], § 5 (and [16], Chapter 2),

the main steps can now be applied to the new sleek versions. Two features have to be

taken into account appropriately : firstly, D̃ 6⊂ Ẽ in general (but iD̃ : D̃ −→ Ẽ “links”

counterparts) and secondly, the dependence of parameters αε(·, z̃), Tε(·, z̃) and Q̃ε(·, · ; z̃)
on the test element z̃ and ε ∈ J .

Proposition 3.9 Suppose ψ̃ ∈ Θ̃p(Ẽ, D̃, (q̃ε)ε∈J ), t1 ∈ [0, 1[, t2 ∈ [0, T [, z̃ ∈ D̃.
Let x̃(·) : [0, T [−→ Ẽ be a timed sleek primitive of ϑ̃(·) : [0, T [−→ Θ̃p(Ẽ, D̃, (q̃ε)) such

that for each ε ∈ J , t ∈ [0, T [, their parameters fulfill

∧


sup

0≤ s≤min{t,Tε(ψ̃,z̃)}
α̂ε(t, ψ̃(s, z̃)) ≤ Mε(t),

sup
0≤ s≤min{t,Tε(ψ̃,z̃)}

γ̂ε(t, ψ̃(s, z̃)) ≤ Rε(t),

Q̃ε(ψ̃, ϑ̃(t); z̃) ≤ cε(t)

with upper semicontinuous Mε, Rε, cε : [0, T [−→ [0,∞[. Set µε(h) :=

∫ t2+h

t2

Mε(s) ds.

Then, for every ε ∈ J and h ∈ ]0, T [ with t1 + h < Tε(ψ̃, z̃), t1 + π1 z̃ ≤ π1 x̃(t2),

q̃ε(ψ̃(t1+h, z̃), x̃(t2+h))

≤ q̃ε(ψ̃(t1, z̃), x̃(t2)) · eµε(h) +

∫ h

0

eµε(h)−µε(s) (cε(t2+s) + 3Rε(t2+s)) ds.
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Proof. We follow the same track as in the proof of Proposition 3.4 and consider the

function ϕε : h 7−→ q̃ε(ψ̃(t1+h, z̃), x̃(t2+h)). Firstly, ϕε(h) ≤ lim supk ↓ 0 ϕε(h − k)

results from condition (6.) on sleek transitions (Def. 3.1) and the continuity of x̃(·).
Furthermore we prove for any h ∈ [0, T [ with t1 + h < Tε(ψ̃, z̃),

lim sup
k ↓ 0

ϕε(h+k)−ϕε(h)
k

≤ Mε(t2+h) · ϕε(h) + cε(t2+h) + 3Rε(t2+h).

In particular, this inequality implies ϕε(h) ≥ lim supk ↓ 0 ϕε(h+k) since its right–hand

side is finite. Thus, the claim results from Gronwall’s Lemma 3.5 – after approximating

Mε(·), Rε(·), cε(·) by continuous functions from above.

For all small k > 0, the timed triangle inequality and Proposition 3.4 lead to

ϕε(h+k) ≤ q̃ε(ψ̃(t1+h+ k, z̃), ϑ̃(t2+h) (k, iD̃ ψ̃(t1+h, z̃)))

+ q̃ε(ϑ̃(t2+ h) (k, iD̃ ψ̃(t1 +h, z̃)), ϑ̃(t2+h) (k, ψ̃(t1+h, z̃)))

+ q̃ε(ϑ̃(t2+ h) (k, ψ̃(t1+h, z̃)), x̃(t2 + h+ k))

≤ (Q̃ε(ψ̃, ϑ̃(t2+h); z̃) + γ̂ε(t2+h, z̃)) eMε(t2+h) · k · k
+ γε(ϑ̃(t2+h)) · k + o(k)

+ ϕε(h) e
α̂ε(t2+h, ψ̃(t1+h, z̃)) · k + γ̂ε(t2+h, ψ̃(t1+h, z̃)) · k + o(k)

≤ ϕε(h) e
Mε(t2+h) · k + |cε(t) + 3 Rε(t)|t= t2+h · k + o(k)

since t1 + h+ k < Tε(ψ̃, z̃) implies ψ̃(t1+h, z̃), ψ̃(t1+h+k, z̃) ∈ D̃. 2

With the objective of using Euler method for the existence of sleek solutions, we

first have to specify an adequate type of convergence preserving the solution property.

Assumptions (5.ii), (5.iii) of the next proposition might be subsumed under the term

“two–sided graphically convergent”. Obviously, it is weaker than pointwise convergence

(with respect to time) and consists of two conditions with the limit function appearing in

both arguments of q̃ε. Admitting vanishing “time perturbations” δj, δ
′
j ≥ 0 exemplifies

the basic idea that the first argument of q̃ε usually refers to the earlier element whereas

the second argument mostly represents the later point.

Proposition 3.10 (Convergence Theorem)

Suppose the following properties of

f̃m, f̃ : Ẽ × [0, T [ −→ Θ̃p(Ẽ, D̃, (q̃ε)ε∈J ) (m ∈ N)

x̃m, x̃ : [0, T [ −→ Ẽ :

1. Mε(z̃) := sup
m,t,ỹ

{αε(f̃m(ỹ, t), f̃(x̃(t), t)(h, z̃)) | 0 ≤ h < Tε(f̃(x̃(t), t), z̃)} < ∞,

Rε(z̃) ≥ sup
m,t,ỹ,h

{ γ̂ε(t, f̃m(x̃m, ·), f̃(x̃(t), t)(h, z̃)), γε(f̃m(ỹ, t)), γε(f̃(ỹ, t)) }

with lim sup
ε′ ↓ 0

ε′
p ·Rε′(z̃) = 0,
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2. lim sup sup ṽ = f̃(x̃(t),t) (τ,z̃)

τ < Tε(f̃(x̃(t),t),z̃)

Q̃ε

(
f̃m(ỹ1, t1), f̃m(ỹ2, t2); ṽ

)
≤ Rε(z̃)

for m −→∞, t2−t1 ↓ 0, q̃ε(ỹ1, ỹ2) −→ 0 (π1 ỹ1 ≤ π1 ỹ2),

3.
◦
x̃m (·) 3 f̃m(x̃m(·), ·) in [0, T [ , (in the sense of Definition 3.8)

4. ω̂ε(h) := sup
m

ωε(x̃m, h) < ∞ (moduli of continuity w.r.t. q̃ε)

lim sup
h ↓ 0

ω̂ε(h) = 0,

5. ∀ t1, t2 ∈ [0, T [, t3 ∈ ]0, T [ ∃ (mj)j∈N with mj ↗∞ and

(i) lim sup
j−→∞

Q̃ε

(
f̃(x̃(t1), t1), f̃mj

(x̃(t1), t1); z̃
)

≤ Rε(z̃),

(ii) ∃ (δ′j)j∈N : δ′j ↘ 0, q̃ε(x̃(t2), x̃mj
(t2+δ

′
j)) −→ 0,

π1 x̃mj
(t2+δ

′
j) ↘ π1 x̃(t2).

(iii) ∃ (δj)j∈N : δj ↘ 0, q̃ε(x̃mj
(t3−δj), x̃(t3)) −→ 0,

π1 x̃mj
(t3−δj) ↗ π1 x̃(t3),

for each ε ∈ J and z̃ ∈ D̃.
Then, x̃(·) is a timed right–hand sleek solution of

◦
x̃(·) 3 f̃(x̃(·), ·) in [0, T [.

Proof. The uniform continuity of x̃(·) results from assumption (4.) :

Each x̃m(·) satisfies q̃ε(x̃m(t1), x̃m(t2)) ≤ ω̂ε(t2 − t1) for t1 < t2 < T .

Let ε ∈ J , 0 ≤ t1 < t2 < T be arbitrary and choose (δ′j)j∈N, (δj)j∈N, for t1, t2 (accord-

ing to condition (5.ii), (5.iii)). For all j ∈ N large enough, we obtain t1 + δ′j < t2 − δj
and so,

q̃ε(x̃(t1), x̃(t2)) ≤ q̃ε(x̃(t1), x̃mj
(t1+δ

′
j)) + q̃ε(x̃mj

(t1+δ
′
j), x̃mj

(t2−δj))
+ q̃ε(x̃mj

(t2−δj), x̃(t2))
≤ o(1) + ω̂ε(t2 − t1) for j −→∞.

Now let ε ∈ J , z̃ ∈ D̃ and t ∈ [0, T [, 0 ≤ s < s+ h < Tε(f̃(x̃(t), t), z̃) be chosen

arbitrarily with s + π1 z̃ ≤ π1 x̃(t). Condition (6.) of Definition 3.1 guarantees for all

k ∈ ]0, h[ sufficiently small

q̃ε(f̃(x̃(t), t) (s+h, z̃), x̃(t+ h)) ≤ q̃ε(f̃(x̃(t), t) (s+h−k, z̃), x̃(t+ h)) + h2.

According to cond. (5.i) – (5.iii), there exist sequences (mj)j∈N, (δj)j∈N, (δ′j)j∈N satis-

fying mj ↗∞, δj ↓ 0, δ′j ↓ 0, δj+δ
′
j < k and

Q̃ε(f̃(x̃(t), t), f̃mj
(x̃(t), t); z̃) ≤ Rε + h2,

q̃ε(x̃mj
(t+h−δj), x̃(t+h)) −→ 0,

q̃ε(x̃(t), x̃mj
(t+δ′j)) −→ 0,

π1 x̃mj
(t+h−δj) ↗ π1 x̃(t+h),

π1 x̃mj
(t+δ′j) ↘ π1 x̃(t).
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Thus, Proposition 3.9 and Remark 3.3 imply for all large j ∈ N (depending on ε, z̃, t, h, k),

q̃ε(f̃(x̃(t), t) (s+h, z̃), x̃(t+ h))

≤ q̃ε(f̃(x̃(t), t) (s+h−k, z̃), x̃mj
(t+δ′j + h−k))

+ q̃ε(x̃mj
(t+δ′j + h−k), x̃mj

(t+h− δj))

+ q̃ε(x̃mj
(t+h− δj), x̃(t+h)) + h2

≤ q̃ε(f̃(x̃(t), t) (s, z̃), x̃mj
(t+δ′j)) · eMε(z̃)·(h−k) +

+

∫ h−k

0

eMε(z̃)·(h−k−σ) (Q̃ε(f̃(x̃(t), t), f̃mj
(x̃mj

, ·)|t+δ′j+σ ; z̃) + 3Rε(z̃)) dσ

+ ω̂ε(k − δj − δ′j)

+ q̃ε(x̃mj
(t+h− δj), x̃(t+h)) + h2

≤
(
q̃ε(f̃(x̃(t), t) (s, z̃), x̃(t)) + q̃ε(x̃(t), x̃mj

(t+δ′j))
)

· eMε(z̃)·(h−k) +

+

∫ h

0

eMε(z̃)·(h−σ) Q̃ε(f̃(x̃(t), t), f̃mj
(x̃mj

, ·)|t+δ′j+σ ; z̃) dσ

+ ω̂ε(k) + 2 h2 + const · h Rε(z̃)

≤ q̃ε(f̃(x̃(t), t) (s, z̃), x̃(t)) · eMε(z̃) h + ω̂ε(k) + 3 h2 + const · h Rε(z̃)

+

∫ h

0

eMε(z̃)·(h−σ)
(
2Rε(z̃)+h

2 + sup
ṽ = f̃(x̃(t),t) (τ,z̃)

τ < Tε(f̃(x̃(t),t),z̃)̃

Qε(f̃mj
(x̃(t), t), f̃mj

(x̃mj
, ·)|t+δ′j+σ ; ṽ)

)
dσ

Now j −→∞ and then k −→ 0 provide the estimate

q̃ε(f̃(x̃(t), t) (s+h, z̃), x̃(t+ h))

≤ q̃ε(f̃(x̃(t), t) (s, z̃), x̃(t)) · eMε(z̃) h + 0 + const · h (Rε(z̃) + h)

+ h eMε(z̃) h · lim sup
j−→∞

sup
0≤σ≤h

sup
ṽ = f̃(x̃(t),t) (τ,z̃)

τ < Tε(f̃(x̃(t),t),z̃)

Q̃ε(f̃mj
(x̃(t), t), f̃mj

(x̃mj
, ·)|t+δ′j+σ ; ṽ).

Finally, convergence assumptions (2.),(5.ii) and the equi–continuity of (x̃m) ensure

lim sup
h ↓ 0

lim sup
j−→∞

sup
0≤σ≤h

sup
ṽ = f̃(x̃(t),t) (τ,z̃)

τ < Tε(f̃(x̃(t),t),z̃)

Q̃ε(f̃mj
(x̃(t), t), f̃mj

(x̃mj
, ·)|t+δ′j+σ ; ṽ) ≤ Rε(z̃)

and thus,

lim sup
h ↓ 0

1
h

(
q̃ε(f̃(x̃(t), t) (s+h, z̃), x̃(t+h)) − q̃ε(f̃(x̃(t), t) (s, z̃), x̃(t)) ·eMε(z̃) h

)
≤ c·Rε(z̃).

2

Similarly to ordinary differential equations, the convergence of approximations to a

wanted solution usually results from assumptions about completeness or compactness.

Here we prefer a suitable form of compactness since more than one distance function is

involved. Still aiming to apply the Convergence Theorem 3.10 to Euler approximations,

we introduce the following term (essentially as in [14], Definition 33) :
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Definition 3.11 Let Θ̃ denote a nonempty set of maps [0, 1]× Ẽ −→ Ẽ.

(Ẽ, (q̃ε)ε∈J , Θ̃) is called timed transitionally compact if it fulfills :

Let (x̃n)n∈N, (hj)j ∈N be any sequences in Ẽ, ]0, 1[, respectively and ṽ ∈ Ẽ

with supn |π1 x̃n| < ∞, supn q̃ε(ṽ, x̃n) < ∞ for each ε ∈ J , hj −→ 0. Moreover

suppose ϑ̃n : [0, 1] −→ Θ̃ to be piecewise constant (for each n ∈ N) such that all curves

ϑ̃n(t)(·, x̃) : [0, 1] −→ Ẽ have a common modulus of continuity (n ∈ N, t ∈ [0, 1], x̃ ∈ Ẽ).

Each ϑ̃n induces a function ỹn(·) : [0, 1] −→ Ẽ with ỹn(0) = x̃n in the same (piecewise)

way as timed sleek transitions induce their own primitives according to Remark 3.7

(i.e. using ϑ̃n(tm) (·, ỹn(tm)) in each interval ]tm, tm+1] in which ϑ̃n(·) is constant).

Then there exist a sequence nk ↗∞ and x̃ ∈ Ẽ satisfying for each ε ∈ J ,
lim
k→∞

π1 x̃nk
= π1 x̃,

lim sup
k−→∞

q̃ε(x̃nk
, x̃) = 0,

lim sup
j−→∞

sup
k ≥ j

q̃ε(x̃, ỹnk
(hj)) = 0.

A nonempty subset F̃ ⊂ Ẽ is called timed transitionally compact in (Ẽ, (q̃ε)ε∈J , Θ̃)

if the same property holds for any sequence (x̃n)n∈N in F̃ (but x̃ ∈ F̃ is not required).

Proposition 3.12 (Existence of timed right–hand sleek solutions)

Assume that the tuple (Ẽ, (q̃ε)ε∈J , Θ̃p(Ẽ, D̃, (q̃ε))) is timed transitionally compact.

Furthermore let f̃ : Ẽ × [0, T ] −→ Θ̃p(Ẽ, D̃, (q̃ε)ε∈J ) fulfill for every ε ∈ J , z̃ ∈ D̃

1. Mε(z̃) := sup
t1,t2,ỹ1,ỹ2

{αε(f̃(ỹ1, t1), f̃(ỹ2, t2)(h, z̃)) | 0 ≤ h < Tε(f̃(ỹ2, t2), z̃)} < ∞,

2. cε(h) := sup
t,ỹ

βε(f̃(ỹ, t))(h) < ∞, cε(h)
h↓0−→ 0

3. ∃ Rε : sup
t,ỹ

γε(f̃(ỹ, t)) ≤ Rε <∞, ε′p Rε′
ε′↓0−→ 0

4. ∃ ω̂ε(·) : Q̃ε

(
f̃(ỹ1, t1), f̃(ỹ2, t2); z̃

)
≤ Rε + ω̂ε

(
q̃ε(ỹ1, ỹ2) + t2 − t1

)
for all 0 ≤ t1 ≤ t2 ≤ T and ỹ1, ỹ2 ∈ Ẽ (π1 ỹ1 ≤ π1 ỹ2),

ω̂ε(·) ≥ 0 nondecreasing, lim sup
s ↓ 0

ω̂ε(s) = 0.

Then for every x̃0 ∈ Ẽ, there is a timed right–hand sleek solution x̃ : [0, T [ −→ Ẽ

of the generalized mutational equation
◦
x̃(·) 3 f̃(x̃(·), ·) with x̃(0) = x̃0.

Remark 3.13 The basic notion of its proof is easy to sketch. Indeed adapting the

existence proof of forward solutions (in [14]) to sleek solutions here, we again start with

Euler approximations x̃n(·) : [0, T [−→ Ẽ (n ∈ N),

hn := T
2n , tjn := j hn for j = 0 . . . 2n,

x̃n(0) := x̃0, x̃0(·) := x̃0,

x̃n(t) := f̃(x̃n(t
j
n), t

j
n) (t− tjn, x̃n(t

j
n)) for t ∈ ]tjn, t

j+1
n ], j ≤ 2n,
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and then use Cantor diagonal construction (as J is assumed to be countable) in combi-

nation with timed transitional compactness. This leads to a function x̃(·) : [0, T [−→ Ẽ

with the property : For each ε ∈ J and j ∈ N, there exist Kj ∈ N (depending on ε, j)

and Nj ∈ N (depending on ε, j,Kj) such that Nj > Kj > Nj−1 and

∧

{
q̃ε(x̃Nj

(s− 2hKj
), x̃(s) ) ≤ 1

j

q̃ε(x̃(t), x̃Nj
(t+ 2hKj

) ) ≤ 1
j

for every s, t ∈ [0, T [. Due to Convergence Theorem 3.10 for x̃Nj
( · + 2hNj

+ 2hKj
),

the limit function x̃(·) is a timed right–hand sleek solution. (For further details, see the

proof of Proposition 36 in [14].)

Remark 3.14 Due to the fixed initial point x̃0, the compactness hypothesis can be

weakened slightly. We only need that all x̃n(t) (0 < t < T, n∈N) are contained in a set

F̃ ⊂ Ẽ that is transitionally compact in (Ẽ, (q̃ε), Θ̃p(Ẽ, D̃, (q̃ε))). This modification is

useful if each transition ϑ̃ ∈ Θ̃p(Ẽ, D̃, (q̃ε)) has all values in F̃ after any positive time,

i.e. ϑ̃(t, x̃) ∈ F̃ for all 0 < t ≤ 1, x̃ ∈ Ẽ. In particular, it does not require additional

assumptions about the initial value x̃0 ∈ Ẽ.

Considering the geometric example of § 4, however, timed transitional compactness

might be a very restrictive hypothesis. So we suggest a weaker condition of compactness

— for the particular case that each q̃ε is induced as supremum with respect to an

additional parameter κ ∈ I : q̃ε = supκ∈I q̃ε,κ.

Here q̃ε,κ : (D̃ ∪ Ẽ) × (D̃ ∪ Ẽ) −→ [0,∞[ (ε ∈ J , κ ∈ I) is a countable family of

functions that need not satisfy the timed triangle inequality separately – in contrast to

each q̃ε (ε ∈ J ). We assume instead that every κ ∈ I has a counterpart κ′ ∈ I with

q̃ε,κ(ỹ1, ỹ3) ≤ q̃ε(ỹ1, ỹ2) + q̃ε,κ′(ỹ2, ỹ3)

for all ỹ1, ỹ2, ỹ3 ∈ D̃ ∪ Ẽ with π1 ỹ1 ≤ π1 ỹ2 ≤ π1 ỹ3.

The key point now is : Supposing right–convergence with respect to each q̃ε can be

replaced by the hypothesis of right–convergence with respect to each q̃ε,κ (and the latter

might be easier to verify as in § 4, for example). In particular, assumption (5.iii) of the

preceding Convergence Theorem 3.10 is modified.

Proposition 3.15 (Convergence Theorem II)

Assume q̃ε = supκ∈I q̃ε,κ with (at most) countably many q̃ε,κ : (D̃ ∪ Ẽ)2 −→ [0,∞[

(ε ∈ J , κ ∈ I) such that each κ ∈ I has a counterpart κ′ ∈ I fulfilling

q̃ε,κ(ỹ1, ỹ3) ≤ q̃ε(ỹ1, ỹ2) + q̃ε,κ′(ỹ2, ỹ3)

for all ỹ1, ỹ2, ỹ3 ∈ D̃ ∪ Ẽ with π1 ỹ1 ≤ π1 ỹ2 ≤ π1 ỹ3.

In addition to hypotheses (1.)–(4.) of Proposition 3.10, suppose for all ε ∈ J , κ ∈ I and

f̃m, f̃ : Ẽ × [0, T [ −→ Θ̃p(Ẽ, D̃, (q̃ε)ε∈J ) (m ∈ N)

x̃m, x̃ : [0, T [ −→ Ẽ :
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5’. ∀ t1, t2 ∈ [0, T [, t3 ∈ ]0, T [ ∃ (mj)j∈N with mj ↗∞ and

(i) lim sup
j−→∞

Q̃ε

(
f̃(x̃(t1), t1), f̃mj

(x̃(t1), t1); z̃
)

≤ Rε(z̃) ∀ z̃ ∈ D̃,

(ii) ∃ (δ′j)j∈N : δ′j ↘ 0, q̃ε(x̃(t2), x̃mj
(t2+δ

′
j)) −→ 0

π1 x̃mj
(t2+δ

′
j) ↘ π1 x̃(t2).

(iii’) ∃ (δj)j∈N : δj ↘ 0, q̃ε,κ′(x̃mj
(t3−δj), x̃(t3)) −→ 0

π1 x̃mj
(t3−δj) ↗ π1 x̃(t3),

Then, x̃(·) is a timed right–hand sleek solution of
◦
x̃(·) 3 f̃(x̃(·), ·) in [0, T [.

Proof differs from the proof of Proposition 3.10 only in the additional supremum

with respect to κ ∈ I. Indeed, following the same track, the sufficiently large index j ∈ N
(of the approximating sequences) now depends on κ ∈ I and its counterpart κ′ ∈ I in

addition. 2

Now timed transitional compactness is now adapted for this modified condition on right–

convergence and, we obtain the corresponding result about existence :

Definition 3.16 Let Θ̃ denote a nonempty set of maps [0, 1] × Ẽ −→ Ẽ. Suppose

q̃ε = supκ∈I q̃ε,κ with (at most) countably many q̃ε,κ : (D̃ ∪ Ẽ) × (D̃ ∪ Ẽ) −→ [0,∞[

(ε ∈ J , κ ∈ I).

The tuple (Ẽ, (q̃ε)ε∈J , (q̃ε,κ) ε∈J
κ∈I

, Θ̃) is called suitably transitionally compact if it fulfills :

Let (x̃n)n∈N, (hj)j ∈N and ϑ̃n : [0, 1] −→ Θ̃, ỹn(·) : [0, 1] −→ Ẽ (for each n ∈ N)

satisfy the assumptions of Definition 3.11. Then there exist a sequence nk ↗∞ and

x̃ ∈ Ẽ satisfying for each ε ∈ J , κ ∈ I
lim
k→∞

π1 x̃nk
= π1 x̃,

lim sup
k−→∞

q̃ε,κ (x̃nk
, x̃) = 0,

lim sup
j−→∞

sup
k ≥ j

q̃ε (x̃, ỹnk
(hj)) = 0.

Proposition 3.17 (Existence of timed right–hand sleek solutions II)

Assume q̃ε = supκ∈I q̃ε,κ with (at most) countably many q̃ε,κ : (D̃ ∪ Ẽ)2 −→ [0,∞[

(ε ∈ J , κ ∈ I) such that each κ ∈ I has counterparts κ′, κ′′ ∈ I fulfilling

q̃ε,κ(ỹ1, ỹ3) ≤ q̃ε,κ′(ỹ1, ỹ2) + q̃ε,κ′′(ỹ2, ỹ3)

for all ỹ1, ỹ2, ỹ3 ∈ D̃ ∪ Ẽ with π1 ỹ1 ≤ π1 ỹ2 ≤ π1 ỹ3.

Furthermore let
(
Ẽ, (q̃ε)ε∈J , (q̃ε,κ) ε∈J

κ∈I
, Θ̃p(Ẽ, D̃, (q̃ε))

)
be suitably transitionally compact

and f̃ : Ẽ × [0, T ] −→ Θ̃p(Ẽ, D̃, (q̃ε)ε∈J ) fulfill hypotheses (1.)–(4.) of Proposition 3.12.

Then for every x̃0 ∈ Ẽ, there is a timed right–hand sleek solution x̃ : [0, T [ −→ Ẽ

of the generalized mutational equation
◦
x̃(·) 3 f̃(x̃(·), ·) with x̃(0) = x̃0.
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Remark 3.18 The proof is based on the same idea as for Proposition 3.12. Indeed,

starting with the Euler approximations x̃n(·) : [0, T [ −→ Ẽ (n ∈ N) of Remark 3.13,

we conclude from the compactness hypothesis in combination with Cantor diagonal con-

struction (J ={εj1 , εj2 . . . }, I={κi1 , κi2 . . . } are assumed to be countable at the most):

With QK denoting the finite set ]0, T [∩N · hK of time steps for each K ∈ N, there are

sequences mk, nk ↗∞ of indices and a function x̃ :
⋃
K∈N

QK −→ Ẽ such that mk ≤ nk,

∧


sup
l ≥ k

q̃ε,κ(x̃nl
(t), x̃(t)) ≤ 1

k

sup
l ≥ k

q̃ε(x̃(s), x̃nl
(s+

hmk

2
)) ≤ 1

k

for every K ∈ N and all ε ∈ {εj1 . . . εjK} ⊂ J , κ ∈ {κi1 . . . κiK} ⊂ I, s, t ∈ QK , k ≥ K.

In particular, q̃ε,κ(x̃(s), x̃(t)) ≤ cε(t− s) for any s, t ∈
⋃
K QK with s < t and all

ε ∈ J , κ ∈ I. The supremum with respect to κ ∈ I implies q̃ε(x̃(s), x̃(t)) ≤ cε(t−s).
Moreover, the sequence (x̃nk

(·))k∈N fulfills for all ε ∈ J , κ ∈ I, K ∈ N, t ∈ QK and

sufficiently large k, l ∈ N (depending merely on ε, κ,K)

q̃ε,κ(x̃nk
(t), x̃nl

(t+
hmk

2
)) ≤ 1

k
+ 1

l
.

For extending x̃(·) to t ∈ ]0, T [ \
⋃
K QK , we apply the compactness hypothesis

to ((x̃nk
(t))k∈N and obtain a subsequence nlj ↗∞ of indices (depending on t) and an

element x̃(t) ∈ Ẽ satisfying for every ε ∈ J , κ ∈ I

∧

 q̃ε,κ(x̃nlj
(t), x̃(t)) −→ 0,

sup
i≥ j

q̃ε(x̃(t), x̃nli
(t+

hmj

2
)) −→ 0

for j −→∞.

It implies the following convergence even uniformly in t (but not necessarily in ε, κ)

∧


lim sup
K−→∞

lim sup
k−→∞

q̃ε,κ(x̃nk
(t− 2hK), x̃(t) ) = 0,

lim sup
K−→∞

lim sup
k−→∞

q̃ε(x̃(t), x̃nk
(t+ 2hK) ) = 0.

Indeed, the first property can be verified in exactly the same way as in the proof of

[14], Proposition 36. For proving the second feature, we use q̃ε(x̃(t), x̃(t
′)) ≤ cε(t

′− t)

for every t′ ∈
⋃
K QK larger than t in combination with the corresponding convergence

for all times in
⋃
K QK .

Similarly to Remark 3.13 (and [14]), we summarize the construction of x̃(·) in the

following notation : For each ε ∈ J , κ ∈ I and j ∈ N, there exist Kj ∈ N (depending

on ε, κ, j) and Nj ∈ N (depending on ε, κ, j,Kj) such that Nj > Kj > Nj−1 and

∧

{
q̃ε,κ(x̃Nj

(s− 2hKj
), x̃(s) ) ≤ 1

j

q̃ε(x̃(t), x̃Nj
(t+ 2hKj

) ) ≤ 1
j

for every s, t ∈ [0, T [. So Convergence Theorem II (Proposition 3.15) ensures that

x̃(·) is a timed right–hand sleek solution of the generalized mutational equation
◦
x̃(·) 3

f̃(x̃(·), ·) with x̃(0) = x̃0. 2
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For concluding the existence from timed transitional compactness, we do not need

any assumptions about the time parameter Tε(·, z̃) > 0 of sleek transitions.

The situation changes however for estimating the distance between solutions. Indeed,

the definition of timed right–hand sleek solutions is based on comparisons with earlier

elements (merely) of the form ϑ̃(s, z̃) ∈ D̃ for z̃ ∈ D̃, 0 ≤ s < Tε(ϑ̃, z̃). So two sleek

solutions x̃(·), ỹ(·) of the same initial value problem can hardly be compared with each

other directly. Similarly to [14], auxiliary functions are used instead — like, for example,

ϕε(t) := inf
z̃ ∈ D̃

π1 z̃≤π1 x̃(t)

(
q̃ε(z̃, x̃(t)) + q̃ε(z̃, ỹ(t))

)
.

Proposition 3.19 Assume for the function f̃ : (D̃∪Ẽ)×[0, T ] −→ Θ̃p(Ẽ, D̃, (q̃ε)),
the curves x̃, ỹ : [0, T [−→ Ẽ and some ε ∈ J

1.
◦
x̃(·) 3 f̃(x̃(·), · ),

◦
ỹ (·) 3 f̃(ỹ(·), · ) in [0, T [ (in the sense of Def. 3.8)

π1 x̃(0) = π1 ỹ(0) = 0,

2. Mε ≥ sup
ṽ∈D̃∪Ẽ, t<T, z̃∈D̃

{αε(f̃(ṽ, t), z̃), α̂ε(t, x̃(·), z̃), α̂ε(t, ỹ(·), z̃)},

3. Rε ≥ sup
ṽ∈D̃∪Ẽ, t<T, z̃∈D̃

{γε(f̃(ṽ, t)), γ̂ε(t, x̃(·), z̃), γ̂ε(t, ỹ(·), z̃)}

4. ∃ ω̂ε(·), Lε : Q̃ε(f̃(z̃, s), f̃(ṽ, t); z̃) ≤ Rε + Lε · q̃ε(z̃, ṽ) + ω̂ε(t− s)

for all 0 ≤ s ≤ t ≤ T and ṽ ∈ Ẽ, z̃ ∈ D̃ with π1 z̃1 ≤ π1 ṽ,

ω̂ε(·) ≥ 0 nondecreasing, lim sup
s ↓ 0

ω̂ε(s) = 0.

5. ∀ t ∈ [0, T [ : the infimum ϕε(t) := inf
z̃ ∈ D̃, π1 z̃≤ t

(q̃ε(z̃, x̃(t)) + q̃ε(z̃, ỹ(t))) < ∞

can be approximated by a minimizing sequence (z̃j)j ∈N in D̃ with

π1z̃j ≤ π1z̃j+1 ≤ t,
supk> j q̃ε(z̃j, z̃k)

Tε(f̃(z̃j, t), z̃j)
−→ 0 (j −→∞).

Then, ϕε(t) ≤ ϕε(0) · e(Lε+Mε) · t + 8Rε t · e(Lε+Mε) · t.

Proof is based on a further subdifferential version of Gronwall’s Lemma quoted in

Lemma 3.20. ϕε(·) satisfies ϕε(t) ≤ lim inf
h ↓ 0

ϕε(t − h) for every t ∈ ]0, T [ due to

the timed triangle inequality and the continuity of x̃(·), ỹ(·) (in time direction).

For showing lim inf
h ↓ 0

ϕε(t+h)− ϕε(t)
h

≤ (Lε+Mε) ϕε(t) + 8Rε,

let (z̃j)j ∈N denote a minimizing sequence in D̃ such that

∧


π1 z̃j ≤ π1 z̃k ≤ t,

q̃ε(z̃j, z̃k) ≤ 1
2 j
· Tε(f̃(z̃j, t), z̃j)

for all j < k,

q̃ε(z̃j, x̃(t)) + q̃ε(z̃j, ỹ(t)) −→ ϕε(t) (j −→∞).
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Now for every h < Tε(f̃(z̃j, t), z̃j), j < k, Proposition 3.9 and assumption (4.) imply

q̃ε

(
f̃(z̃j, t) (h, z̃j), x̃(t+h)

)
≤ q̃ε

(
z̃j, x̃(t)

)
· eMε h +

∫ h

0

eMε · (h−s)
(
Rε + Lε · q̃ε

(
z̃j, x̃(t+s)

)
+ ω̂ε(s) + 3Rε

)
ds.

Setting the abbreviation hj := 1
2

Tε(f̃(z̃j, t), z̃j) > 0, the approximating properties of

(z̃j)j ∈N and the timed triangle inequality guarantee for any index k > j

q̃ε

(
f̃(z̃j, t) (h, z̃j), x̃(t+h)

)
≤ q̃ε

(
z̃k, x̃(t)

)
· eMε h + eMε h − 1

Mε

(
Lε · q̃ε(z̃k, x̃(t)) + Lε · 1

j
hj + 4Rε

)
+ 1

j
hj · eMε h +

∫ h

0

eMε · (h−s)
(
Lε · ωε(x̃, s) + ω̂ε(s)

)
ds.

The corresponding estimate for q̃ε

(
f̃(z̃j, t) (h, z̃j), ỹ(t+h)

)
and k −→∞, h := hj,

j −→∞ lead to lim inf
h ↓ 0

ϕε(t+h)− ϕε(t)
h

≤ (Lε+Mε) ϕε(t) + 8Rε.

2

Lemma 3.20 (Lemma of Gronwall for semicontinuous functions II [14])

Let ψ : [a, b] −→ R, f, g ∈ C0([a, b[,R) satisfy f(·) ≥ 0 and

ψ(t) ≤ lim inf
h ↓ 0

ψ(t− h), ∀ t ∈ ]a, b],

ψ(t) ≥ lim inf
h ↓ 0

ψ(t+ h), ∀ t ∈ [a, b[,

lim inf
h ↓ 0

ψ(t+h)−ψ(t)
h

≤ f(t) · lim inf
h ↓ 0

ψ(t− h) + g(t) ∀ t ∈ ]a, b[.

Then, for every t ∈ [a, b], the function ψ(·) fulfills the upper estimate

ψ(t) ≤ ψ(a) · eµ(t) +

∫ t

a

eµ(t)−µ(s) g(s) ds with µ(t) :=

∫ t

a

f(s) ds.

Finally, the auxiliary function ϕε(·) is modified with regard to x̃(·) :

ϕε(t) := inf
z̃ ∈ D̃, π1 z̃ ≤ π1 x̃(t)

(p̃ε(z̃, x̃(t)) + q̃ε(z̃, ỹ(t)))

Here p̃ε : (D̃ ∪ Ẽ) × (D̃ ∪ Ẽ) −→ [0,∞[ represents a generalized distance function on

D̃ ∪ Ẽ that has the additional advantage of symmetry (by assumption) and satisfies the

triangle inequality (not just the timed one). Roughly speaking, p̃ε might not take all

the properties of elements x̃, ỹ ∈ Ẽ into consideration – compared with q̃ε.

In regard to timed transitions, the assumptions about p̃ε do not consider the comparison

of two different transitions. Instead we suppose continuity properties for each transition

ψ̃ only, e.g. the distance p̃ε(ṽ1, ṽ2) between arbitrary points ṽ1, ṽ2 ∈ Ẽ may grow

exponentially at the most while evolving along ψ̃.
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Proposition 3.21 Suppose for p̃ε : (D̃ ∪ Ẽ) × (D̃ ∪ Ẽ) −→ [0,∞[ (ε ∈ J ), p ∈ R,
λε ≥ 0 and f̃ : Ẽ × [0, T ] −→ Θ̃p(Ẽ, D̃, (q̃ε)), x̃(·), ỹ(·) : [0, T [−→ Ẽ the properties :

1. (Ẽ, (q̃ε)ε∈J , Θ̃p(Ẽ, D̃, (q̃ε))) is timed transitionally compact,

2. each p̃ε is symmetric and satisfies the triangle inequality,

3. ∆̃ε(ṽ1, ṽ2) := inf
z̃ ∈ D̃,

π1 z̃ ≤ π1 ṽ2

(p̃ε(ṽ1, z̃) + q̃ε(z̃, ṽ2)) < ∞ for ṽ1, ṽ2∈ Ẽ,

4. x̃(·) is a timed right–hand sleek solution of
◦
x̃(·) 3 f̃(x̃(·), · )

constructed by Euler method according to Remark 3.13,

5. ỹ(·) is a timed right–hand sleek solution of
◦
ỹ (·) 3 f̃(ỹ(·), · ) in [0, T [

with π1 x̃(0) = π1 ỹ(0) = 0,

6. ∃ Mε <∞ : α̂ε(·, x̃(·), z̃), α̂ε(·, ỹ(·), z̃) ≤ Mε,

p̃ε(ψ̃(h, ṽ1), ψ̃(h, ṽ2)) ≤ p̃ε(ṽ1, ṽ2) · eMε h

∀ ṽ1, ṽ2 ∈ D̃ ∪ Ẽ, z̃ ∈ D̃, h ∈ ]0, 1], ψ̃ ∈ {f̃(w̃, s) | w̃∈ Ẽ, s<T},

7. ∃ Rε <∞ : γ̂ε( · , x̃(·), z̃), γ̂ε( · , ỹ(·), z̃) ≤ Rε,

lim sup
h↓0

p̃ε(ψ̃(h, ψ̃(t,ṽ)), ψ̃(t+h, ṽ))
h

≤ Rε

∀ ṽ ∈ D̃ ∪ Ẽ, z̃ ∈ D̃, t ∈ [0, 1[, ψ̃ ∈ {f̃(w̃, s) | w̃∈ Ẽ, s<T},

8. ∃ cε(·) : p̃ε(ψ̃(t, ṽ), ψ̃(t+h, ṽ)) + βε(ψ̃)(h) ≤ cε(h)

∀ ṽ ∈ D̃ ∪ Ẽ, t ∈ [0, 1[, ψ̃ ∈ {f̃(w̃, s) | w̃ ∈ Ẽ, s < T},
cε(h) −→ 0 for h ↓ 0,

9. ∃ ω̂ε(·), Lε : Q̃ε(f̃(ṽ1, t1), f̃(ṽ2, t2); z̃) ≤ Rε + Lε · ∆̃ε(ṽ1, ṽ2) + ω̂ε(t2 − t1)

for all 0 ≤ t1 ≤ t2 ≤ T, ṽ1, ṽ2 ∈ Ẽ, z̃ ∈ D̃ with π1 ṽ1 ≤ π1 ṽ2,

ω̂ε(·) ≥ 0 nondecreasing, lim sup
s ↓ 0

ω̂ε(s) = 0,

10. ∀ ṽ∈ Ẽ, δ>0, 0≤s≤ t, 0<h<1 with t+h+δ < T, h+ π1 ṽ ≤ π1 ỹ(t+h+δ) :

the infimum ∆̃ε(f̃(ṽ, s) (h, ṽ), ỹ(t+h+δ)) can be approximated by

a minimizing sequence (z̃n)n∈N in D̃ such that

π1z̃m ≤ π1 z̃n ≤ π1 ỹ(t+h+δ) for all m < n

supn>m (p̃ε(z̃m, z̃n) + q̃ε(z̃m, z̃n))

Tε(f̃(ṽ, s), z̃m)
−→ 0 for m −→∞.

Then, ϕε(t) := lim sup
δ ↓ 0

∆̃ε(x̃(t), ỹ(t+ δ)) fulfills the estimate

ϕε(t) ≤ (ϕε(0) + 5Rε t) (1 + Lε t) e2Mε t.

Remark 3.22 For verifying this estimate, we can follow exactly the same steps as

in the proof of the (slightly more general) Proposition 42 in [14] because differences

between sleek and forward timed transitions do not have any effect here (see [16], Propo-

sition 2.3.10 alternatively). Roughly speaking, this analogy is due to the fact that
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assumptions (6.), (7.), (9.) are uniform with respect to the “test element” z̃ ∈ D̃.
So let us just sketch the basic notion here :

Due to assumption (4.), there is a subsequence (x̃nk
(·))k∈N of Euler approximations

(according to Remark 3.13) with the additional property q̃ε(x̃(t), x̃nk
(t+ 2 hk)) −→ 0

(k −→∞) for every t ∈ [0, T [. So essentially, an estimate of q̃ε(x̃nk
(t+ 2hk), ỹ(t+ δ))

is now needed for large k. Such a bound is stated in the subsequent lemma and results

from Gronwall’s Lemma 3.20 in the same way as Proposition 3.19.

Lemma 3.23 Under the assumptions of preceding Proposition 3.21, choose t ∈ [0, T [,

δ > 0, ψ̃ ∈ {f̃(w̃, s) | w̃∈ Ẽ, s<T} ⊂ Θ̃p(Ẽ, D̃, (q̃ε)), ṽ ∈ Ẽ with π1 ṽ ≤ π1 ỹ(0) and,

define ξε(t) := inf
z̃ ∈ D̃,

π1 z̃ ≤ π1 ỹ(t+δ)

(
p̃ε(ψ̃(t, ṽ), z̃) + q̃ε(z̃, ỹ(t+ δ))

)
.

Then,

ξε(t) ≤ ξε(0) eMε t +

∫ t

0

eMε · (t−s)
(

lim sup
s′→ s+δ

sup
z̃∈D̃

Q̃ε

(
ψ̃, f̃(ỹ(s′), s′); z̃

)
+ 4Rε

)
ds.

Remark 3.24 The estimate of Proposition 3.21 also holds in the situation of Propo-

sition 3.17, i.e. particularly :

(i) Assume q̃ε = supκ∈I q̃ε,κ with (at most) countably many q̃ε,κ : (D̃ ∪ Ẽ)2 −→ [0,∞[

(ε ∈ J , κ ∈ I) such that each κ ∈ I has counterparts κ′, κ′′ ∈ I fulfilling

q̃ε,κ(ỹ1, ỹ3) ≤ q̃ε,κ′(ỹ1, ỹ2) + q̃ε,κ′′(ỹ2, ỹ3)

for all ỹ1, ỹ2, ỹ3 ∈ D̃ ∪ Ẽ with π1 ỹ1 ≤ π1 ỹ2 ≤ π1 ỹ3.

(ii) Let
(
Ẽ, (q̃ε)ε∈J , (q̃ε,κ) ε∈J

κ∈I
, Θ̃p(Ẽ, D̃, (q̃ε))

)
be suitably transitionally compact

in the sense of Definition 3.16 (instead of assumption (1.) of Proposition 3.21).

Indeed, Remark 3.18 guarantees that a subsequence (x̃nk
(·))k∈N of Euler approximations

has again the additional property q̃ε(x̃(t), x̃nk
(t + 2 hk)) −→ 0 (k −→ ∞) for every

t ∈ [0, T [. So the modification of its right–convergence is not relevant at all to the steps

of adapting Proposition 3.21.
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4 Example of first–order geometric evolutions

Now the concept of timed right–hand sleek solutions is applied to the evolution of com-

pact subsets of RN . As key feature of first–order geometric evolutions, they may depend

on nonlocal properties of the current compact set and its limiting normal cones at the

boundary.

In [15, Lorenz 2005], such a geometric example is given for right–hand forward solutions.

Indeed, the set K(RN) of all nonempty compact subsets of RN is supplied with the

ostensible metric

qK,N(K1, K2) := dl(K1, K2) + dist(Graph [NK2 , Graph [NK1)

with dl denoting the Pompeiu–Hausdorff distance on K(RN),

NK(x) the limiting normal cone of K ∈ K(RN) at x ∈ ∂K (Def. 4.1),
[NK(x) := NK(x) ∩ B = {v ∈ NK(x) : |v| ≤ 1}.

KC1,1(RN) consisting of all nonempty compact subsets with C1,1 boundary is used for

“test elements”. Then for any parameter λ > 0 fixed, the set–valued maps F : RN ; RN

satisfying

1. F : RN ; RN has nonempty compact convex values,

2. HF (x, p) := supv ∈F (x) p · v belongs to C1,1(RN × (RN \ {0})),
3. ‖HF‖C1,1(RN× ∂B1)

Def.
= ‖HF‖C1(RN× ∂B1) + Lip DHF |RN× ∂B1

< λ

induce forward transitions (of order 0) on (K(RN), KC1,1(RN), qK,N) by means of their

reachable sets ϑF (t,K) := { x(t) | x(·) ∈ AC([0, t], RN), x(0) ∈ K, ẋ(·) ∈ F (x(·)) a.e.}.
Under stronger assumptions about the Hamiltonian HF , the required properties of

transitional compactness are also verified in [15], § 4 and, so we obtain the existence of

right–hand forward solutions (see [16], Section 4.4.4 alternatively).

The estimates between forward solutions do not provide uniqueness though. Indeed,

the smooth sets of KC1,1(RN) stay smooth for short times while evolving along such a

differential inclusion, but there is no obvious lower bound of this period satisfying the

approximating hypothesis such as condition (5.) of Proposition 3.19.

In this section, we introduce another timed ostensible metric for describing evolutions

of compact subsets of RN in Definition 4.2. When applying the new concept of timed

sleek transitions, we benefit mainly from the facts that the time parameter Tε(·, ·) may

depend on ε and that the “test set” D̃ need not be a subset of Ẽ. Indeed, now we can

use K(RN) also for “test elements” (i.e. restricting to KC1,1(RN) is dispensable). To be

more precise, an additional index will enable us to distinguish whether a compact subset

of RN is regarded as “test element” or not :

E := {1} × K(RN),

D := {0} × K(RN)
and thus,

Ẽ := R× {1} × K(RN),

D̃ := R× {0} × K(RN).
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As a main advantage over the forward approach of [15], the estimate of Proposition 3.19

then implies uniqueness stated in Proposition 4.14.

From now on, fix a parameter Λ > 0 arbitrarily. It is used for both the timed ostensible

metrics in Definition 4.2 and the set–valued maps (whose reachable sets are candidates

for sleek transitions) in Definition 4.5.

Definition 4.1 Let C ⊂ RN be a nonempty closed set.

A vector η ∈ RN , η 6= 0, is said to be a proximal normal vector to C

at x ∈ C if there exists ρ > 0 with Bρ(x+ ρ η
|η|) ∩ C = {x}.

The supremum of all ρ with this property is called proximal radius of C

at x in direction η. The cone of all these proximal normal vectors is

called the proximal normal cone to C at x and is abbreviated as NP
C (x).

For any ρ > 0, the set NP
C,ρ(x) ⊂ RN consists of all vectors η ∈ NP

C (x) \ {0} with the

proximal radius ≥ ρ (and thus might be empty). Furthermore [NP
C,ρ(x) := NP

C,ρ(x)∩B.

The so–called limiting normal cone NC(x) to C at x consists of all vectors η ∈ RN

that can be approximated by sequences (ηn)n∈N, (xn)n∈N satisfying

xn −→ x, xn ∈ C,

ηn −→ η, ηn ∈ NP
C (xn),

i.e. NC(x)
Def.
= Limsup y−→ x

y ∈ C
NP
C (y).

Definition 4.2 Set K̃�(RN) := R×{1}×K(RN), K̃g−(RN) := R×{0}×K(RN).

For ε, κ ∈ [0, 1], define q̃K,ε,κ : (K̃g−(RN)∪ K̃�(RN))× (K̃g−(RN)∪ K̃�(RN)) −→ [0,∞[ ,

q̃K,ε,κ((s, µ, C), (t, ν,D)) := dl(C,D) +∫ ∞

ε

ψ(ρ+κ+200 Λ |t− s|) · dist
(
Graph [NP

D, (ρ+κ+200Λ |t−s|),

Graph [NP
C, ρ

)
dρ

with a fixed nonincreasing weight function ψ ∈ C∞
0 ([0, 2[), ψ ≥ 0, and set

q̃K,ε((s, µ, C), (t, ν,D)) := sup
κ∈ ]0,1]∩Q

q̃K,ε,κ((s, µ, C), (t, ν,D))

= lim sup
κ ↓ 0

q̃K,ε,κ((s, µ, C), (t, ν,D)).

In fact, the second component (being either 0 or 1) does not have any influence on q̃K,ε
and q̃K,ε,κ. Its purpose will only be to determine the evolution of the time components

for “test elements” and “normal” elements in a different way (as specified in Defini-

tion 4.6). Furthermore q̃K,ε is not “time continuous” as it was assumed in § 2.
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Lemma 4.3 q̃K,ε is a timed ostensible metric on K̃g−(RN)∪K̃�(RN) for each ε ∈ [0, 1].

Proof. Reflexivity (in the sense of Definition 2.1) is obvious. For verifying the timed

triangle inequality, choose any (t1, µ1, K1), (t2, µ2, K2), (t3, µ3, K3) ∈ R×{0, 1}×K(RN)

with t1 ≤ t2 ≤ t3. Then, we obtain for every κ, κ′ > 0

dist
(
Graph [NP

K3, (ρ+κ+κ′+200Λ (t3−t1)), Graph [NP
K1, ρ

)
≤ dist

(
Graph [NP

K3, (ρ+κ+κ′+200Λ (t3−t1)), Graph [NP
K2, (ρ+κ+200Λ (t2−t1))

)
+ dist

(
Graph [NP

K2, (ρ+κ+200Λ (t2−t1)), Graph [NP
K1, ρ

)
.

With regard to the weighted integral occurring in q̃K,ε, κ+κ′((t1, µ1, K1), (t3, µ3, K3)), a

simple translation of coordinates (for the first distance term) and the monotonicity of ψ

(related with the second distance term) imply

q̃K,ε, κ+κ′ ((t1, µ1, K1), (t3, µ3, K3)) ≤
≤ q̃K,ε,κ′((t1, µ1, K1), (t2, µ2, K2)) + q̃K,ε,κ((t2, µ2, K2), (t3, µ3, K3)).

and thus the triangle inequality of q̃ε.

2

Now we focus on the evolution of limiting normal cones at the

topological boundary and use the Hamilton condition as a key tool.

It implies that roughly speaking, every boundary point x0 of ϑF (t0, K)

and normal vector ν ∈ NϑF (t0,K)(x0) have a trajectory and an adjoint

arc linking x0 to some z∈∂K and ν to NK(z), respectively.

Although the Hamilton condition is known in much more general forms (consider, for

example, [22, Vinter 2000], Theorem 7.7.1 applied to proximal balls), we use only the

well–known “smooth” version — due to later regularity conditions on F in the appendix.

Proposition 4.4 Suppose for the set–valued map F : RN ; RN

1. F (·) has nonempty convex compact values,

2. HF (x, p) := sup
v ∈F (x)

p · v is continuously differentiable in RN× (RN \ {0}),

3. the derivative of HF (·, ·) has linear growth in RN × (RN \ B1),

i.e. ‖DHF (x, p)‖ ≤ const · (1 + |x|+ |p|) for all x, p ∈ RN , |p| > 1.

Let K ∈ K(RN) be any initial set and t0 > 0.

For every boundary point x0 ∈ ∂ ϑF (t0, K) and normal vector ν ∈ NϑF (t0,K)(x0),

there are a solution x(·) ∈ C1([0, t0],RN) and its adjoint p(·) ∈ C1([0, t0],RN) satisfying{
ẋ(t) = ∂

∂p
HF (x(t), p(t)) ∈ F (x(t)), x(t0) = x0, x(0) ∈ ∂K,

ṗ(t) = − ∂
∂x

HF (x(t), p(t)), p(t0) = ν, p(0) ∈ NK(x(0)).
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Definition 4.5 For Λ > 0 fixed, the set LIP
(C2)
Λ (RN ,RN) consists of all set–valued

maps F : RN ; RN satisfying

1. F : RN ; RN has nonempty compact convex values,

2. HF (x, p) := sup
v ∈F (x)

p · v is twice continuously differentiable in RN× (RN \ {0}),

3. ‖HF‖C2(RN× ∂B1) < Λ .

These set–valued maps of LIP
(C2)
Λ (RN ,RN) induce the candidates for timed sleek tran-

sitions on (K̃�(RN), K̃g−(RN), (q̃K,ε)ε∈ ]0,1]) in the following sense :

Definition 4.6 For any set–valued map F ∈ LIP
(C2)
Λ (RN ,RN), element (t, µ,K) ∈

R× {0, 1} × K(RN) = K̃g−(RN) ∪ K̃�(RN) and time h > 0, set

ϑ̃F (h, (t, µ,K)) := (t+ µh, µ, ϑF (h,K))

with the reachable set ϑF (h,K) ⊂ RN of the differential inclusion ẋ(·) ∈ F (x(·)) a.e.

Lemma 4.7 For every set–valued map F ∈ LIP
(C2)
Λ (RN ,RN), initial element K̃ =

(b, 1, K) ∈ K̃�(RN) and any times 0 ≤ s < t ≤ 1,

q̃K,ε

(
ϑ̃F (s, K̃), ϑ̃F (t, K̃)

)
≤ Λ (1 + ‖ψ‖L1 (eΛ + 1)) · |t− s|.

Proof. Obviously, the Pompeiu–Hausdorff distance satisfies for every s, t ≥ 0

dl
(
ϑF (s,K), ϑF (t,K)

)
≤ sup

RN

‖F (·)‖∞ · (t− s) ≤ Λ (t− s).

Let τ(ε,Λ) > 0 denote the time period mentioned in Corollary A.2. Without loss of

generality, we can now assume 0 < t− s < 1
200 Λ

τ(ε,Λ) as a consequence of the timed

triangle inequality.

For any (x, p) ∈ Graph [NP
ϑF (t,K), (ρ+200 Λ (t−s)), ρ ≥ ε with ρ + 200 Λ (t − s) ≤ 2,

Corollary A.2 and Proposition 4.4 provide a solution x(·) ∈ C1([s, t],RN) and its adjoint

arc p(·) ∈ C1([s, t],RN) satisfying{
ẋ(σ) = ∂

∂p
HF (x(σ), p(σ)) ∈ F (x(σ)), x(t) = x, x(s) ∈ ∂ϑF (s,K),

ṗ(σ) = − ∂
∂x

HF (x(σ), p(σ)), p(t) = p, p(s) ∈ NP
ϑF (s,K)(x(s))

and, p(s) has proximal radius ≥ ρ+ 200 Λ (t− s) − 81 Λ (t− s) > ρ.

Obviously, HF is (positively) homogeneous with respect to its second argument and

thus, its definition implies |ṗ(σ)| ≤ Λ |p(σ)| for all σ. Moreover |p| ≤ 1 implies that

the projection of p on any cone is also contained in B1. So finally, we obtain

dist
(
(x, p), Graph [NP

ϑF (s,K), ρ

)
≤ |x− x(s)| + |p− p(s)|

≤ sup
s≤σ≤ t

(
| ∂
∂x
HF | + | ∂

∂p
HF |

)∣∣∣
(x(σ),p(σ))

· (t− s)

≤
(
Λ eΛ t + Λ

)
· (t− s).

2
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Lemma 4.8 For any ε ∈ ]0, 1], let τ(ε,Λ) > 0 denote the time period mentioned in

Corollary A.2. Choose any set–valued maps F, G ∈ LIP
(C2)
Λ (RN ,RN), initial elements

K̃1 = (t1, 0, K1) ∈ K̃g−(RN), K̃2 = (t2, 1, K2) ∈ K̃�(RN) with t1 ≤ t2.

Then for all h ∈ [0, τ(ε,Λ)[,

q̃K,ε

(
ϑ̃F (h, K̃1), ϑ̃G(h, K̃2)

)
≤

≤ e(λH+Λ) h ·
(
q̃K,ε(K̃1, K̃2) + (1 + 4N ‖ψ‖L1) h ‖HF −HG‖C1(RN× ∂B1)

)
.

with the abbreviation λH := 9 Λ e2Λ · τ(ε,Λ).

Proof. As presented in [15], Proposition 4.3, the well–known Theorem of Filippov

provides the estimate of the Pompeiu–Hausdorff distance

dl
(
ϑF (h,K1), ϑG(h,K2)

)
≤ dl(K1, K2) · eΛh + sup

RN

dl
(
F (·), G(·)

)
· eΛ h − 1

Λ

≤ dl(K1, K2) · eΛh + sup
RN× ∂B1

|HF −HG| · h eΛh .

According to Definition 3.6, ϑ̃F (h, K̃1) ∈ {t1} × {0} × K(RN) ⊂ K̃g−(RN) and

ϑ̃G(h, K̃2) ∈ {t2 + h} × {1} × K(RN) ⊂ K̃�(RN).

So for any κ ∈ ]0, 1] ∩ Q and ρ ≥ ε with ρ + κ + 200 Λ (t2 − t1 + h) ≤ 2, we need an

upper bound of dist
(
Graph [NP

ϑG(h,K2), (ρ+κ+200 Λ (t2−t1+h)), Graph [NP
ϑF (h,K1), ρ

)
.

Choose δ > 0, x ∈ ∂ ϑG(h,K2) and p ∈ NP
ϑG(h,K2)(x) ∩ ∂B1 with proximal radius

≥ ρ+κ+200 Λ (t2− t1 +h) arbitrarily. According to Corollary A.2 and Proposition 4.4,

there are a solution x(·) ∈ C1([0, h],RN) and its adjoint arc p(·) ∈ C1([0, h],RN) fulfilling

ẋ(·) = ∂
∂p
HG(x(·), p(·)) ∈ G(x(·)), ṗ(·) = − ∂

∂x
HG(x(·), p(·)) ∈ Λ |p(·)| · B

x(0) ∈ ∂K2, p(0) ∈ NP
K2

(x(0)),

x(h) = x, p(h) = p,

and the proximal radius at x(0) in direction p(0) is ≥ ρ+ κ+ 200 Λ (t2−t1+h)− 81 Λh

> ρ+κ+100 Λh+200 Λ (t2−t1). Gronwall’s Lemma guarantees e−Λ h ≤ |p(·)| ≤ eΛh

and so, p(0) e−Λ h ∈ [NP
K2

(x(0)) \ {0}.
Now let (y0, q̂0) denote an element of Graph [NP

K1, (ρ+100Λh) with q̂0 6= 0 and∣∣∣(y0, q̂0) −
(
x(0), p(0) e−Λh

) ∣∣∣ ≤

≤ dist
(
Graph [NP

K2, (ρ+κ+100 Λh+200 Λ (t2−t1)), Graph [NP
K1, (ρ+100Λh)

)
+ δ.

As a further consequence of Corollary A.2, we obtain a solution y(·) ∈ C1([0, h],RN)

and its adjoint arc q(·) satisfying

ẏ(·) = ∂
∂p
HF (y(·), q(·)), q̇(·) = − ∂

∂y
HF (y(·), q(·)) ∈ Λ |q(·)| · B

y(0) = y0, q(0) = q̂0 eΛ h 6= 0,

y(h) ∈ ∂ ϑF (h,K1), q(h) ∈ NP
ϑF (h,K1)(y(h))

and the proximal radius at y(h) in direction q(h) is ≥ ρ+ 100 Λh − 81 Λh > ρ.
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According to [15], Lemma 4.22, the derivative of HF is λH–Lipschitz continuous on

RN × (BeΛ · τ(ε,Λ) \
◦
Be−Λ · τ(ε,Λ)) with the abbreviation λH := 9 Λ e2Λ · τ(ε,Λ). Thus. the

Theorem of Cauchy–Lipschitz leads to

dist
(
(x, p), Graph [NP

ϑF (h,K1), ρ

)
≤

∣∣∣(x, p) − (y(h), q(h))
∣∣∣

≤ eλH · h ·
∣∣∣(x(0), p(0)) − (y0, q̂0 e

Λ h)
∣∣∣ + eλH · h−1

λH
· sup

0≤ s≤h
|DHF −DHG|

∣∣∣
(x(s), p(s))

.

HF and HG are positively homogenous with respect to the second argument and thus,∣∣∣ ∂
∂xj

(HF −HG)|(x(s), p(s))
∣∣∣ ≤ eΛ h ‖DHF −DHG‖C0(RN×∂B1),∣∣∣ ∂∂pj

(HF −HG)|(x(s), p(s))
∣∣∣ ≤ 2 · ‖HF −HG‖C1(RN×∂B1).

So we obtain

dist
(
(x, p), Graph [NP

ϑF (h,K1), ρ

)
≤ e(λH+Λ) h

∣∣∣(x(0), p(0) e−Λ h) − (y0, q̂0)
∣∣∣ + eλH h h · 4N eΛh ‖HF −HG‖C1(RN×∂B1)

and, since δ > 0 is arbitrarily small and |p| = 1,

dist
(
Graph [NP

ϑG(h,K2), (ρ+κ+200Λ (t2−t1+h)), Graph [NP
ϑF (h,K1), ρ

)
≤ e(λH+Λ) h ·

{
dist
(
Graph [NP

K2, (ρ+κ+100Λh+200 Λ (t2−t1)), Graph [NP
K1, (ρ+100Λh)

)
+

+ 4N h · ‖HF −HG‖C1(RN×∂B1)

}
.

With regard to q̃K,ε,κ

(
ϑ̃F (h, K̃1), ϑ̃G(h, K̃2)

)
, integrating over ρ and the monotonicity

of the weight function ψ (supposed in Definition 3.2) leads to the claimed estimate for

all h ∈ [0, τ(ε,Λ)[. 2

Corollary 4.9 Under the assumptions of Lemma 4.8,

q̃K,ε

(
ϑ̃F (t+h, K̃1), ϑ̃G(h, K̃2)

)
≤

≤ e(λH+Λ) h ·
(
q̃K,ε(ϑ̃F (t, K̃1), K̃2) + (1 + 4N ‖ψ‖L1) h ‖HF −HG‖C1(RN× ∂B1)

)
.

for all h, t ≥ 0 with t+ h < τ(ε,Λ) and

K̃1 = (t1, 0, K1) ∈ K̃g−(RN), K̃2 = (t2, 1, K2) ∈ K̃�(RN) with t1 ≤ t2.

Proof results directly from Lemma 4.8 since

ϑ̃F (t+h, K̃1) = {t1} × {0} × ϑF (t+h,K1) = ϑ̃F (h, ϑ̃F (t, K̃1)),

ϑ̃F (t, K̃1) ∈ K̃g−(RN).
2
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Proposition 4.10 The maps ϑ̃F of all set–valued F ∈ LIP
(C2)
Λ (RN ,RN) introduced in

Def. 4.6 induce timed sleek transitions of order 0 on (K̃�(RN), K̃g−(RN), (q̃K,ε)ε∈ ]0,1]∩Q)

with αε(ϑ̃F , · )
Def.
= 10 Λ e2Λ · τ(ε,Λ),

βε(ϑ̃F ) (t)
Def.
= Λ (1 + ‖ψ‖L1 (eΛ + 1)) · t,

Tε(ϑ̃F , · )
Def.
= min{τ(ε,Λ), 1} (mentioned in Corollary A.2),

Q̃ε(ϑ̃F , ϑ̃G; · ) ≤ (1 + 4N ‖ψ‖L1) · ‖HF −HG‖C1(RN× ∂B1) .

Proof. The semigroup property of reachable sets implies

q̃K,ε

(
ϑ̃F (h, ϑ̃F (t, K̃)), ϑ̃F (t+ h, K̃)

)
= 0,

q̃K,ε

(
ϑ̃F (t+ h, K̃), ϑ̃F (h, ϑ̃F (t, K̃))

)
= 0

for all F ∈ LIP
(C2)
λ (RN ,RN), K̃ ∈ K̃g−(RN) ∪ K̃�(RN), h, t ≥ 0, ε ∈ ]0, 1] since q̃K,ε is

reflexive. Thus, condition (2.) on timed sleek transitions (in Definition 3.1) is satisfied.

As an obvious choice of iD̃ : K̃g−(RN) −→ K̃�(RN), define iD̃((t, 0, K)) := (t, 1, K).

In particular, it fulfills q̃K,ε(Z̃, iD̃ Z̃) = 0 and π1 Z̃ = π1 iD̃ Z̃ for all Z̃ ∈ K̃g−(RN).

Definition 4.6 has the immediate consequences

ϑ̃F (0, K̃) = K̃ for all K̃ ∈ K̃g−(RN) ∪ K̃�(RN),

ϑ̃F (h, Z̃) ∈ {π1 Z̃}×{0} × K(RN) ⊂ K̃g−(RN) for all Z̃ ∈ K̃g−(RN), h ∈ [0, 1],

ϑ̃F (h, K̃) ∈ {h+π1 K̃}×{1} × K(RN) ⊂ K̃�(RN) for all K̃ ∈ K̃�(RN), h ∈ [0, 1],

q̃K,ε(ϑ̃F (h, ϑ̃(t, iD̃Z̃)), ϑ̃F (h, ϑ̃(t, Z̃))) = 0 for all Z̃ ∈ K̃g−(RN), t, h ∈ [0, 1],

i.e. conditions (1.), (5.), (7’.), (8’.) of Definition 3.1 hold.

Set Tε(ϑ̃F , · )
Def.
= min{τ(ε,Λ), 1} with the time parameter τ(ε,Λ) > 0 mentioned

in Corollary A.2. Then, Corollary 4.9 guarantees for all Z̃ ∈ K̃g−(RN), K̃ ∈ K̃�(RN),

t ∈ [0,Tε(ϑ̃F , Z̃)[ with t+ π1 Z̃ ≤ π1 K̃

lim sup
h ↓ 0

(
q̃K,ε(ϑ̃F (t+h, Z̃), ϑ̃F (h, K̃)) − q̃K,ε(ϑ̃F (t,Z̃), K̃)

h q̃K,ε(ϑ̃F (t,Z̃), K̃)

)+

≤ λH + Λ ≤ 10 Λ e2Λ · τ(ε,Λ).

Furthermore Lemma 4.7 implies condition (4.) of Definition 3.1 with the modulus

βε(ϑ̃F ) (t)
Def.
= Λ (1 + ‖ψ‖L1 (eΛ + 1)) · t

and, we obtain for all Z̃ ∈ K̃g−(RN), F,G ∈ LIP
(C2)
Λ (RN ,RN) that

Q̃ε(ϑ̃F , ϑ̃G; Z̃) ≤ (1 + 4N ‖ψ‖L1) ‖HF −HG‖C1(RN× ∂B1) .

Finally condition (6.) of Definition 3.1 has to be verified, i.e.

lim sup
h ↓ 0

q̃K,ε(ϑ̃F (t− h, Z̃), K̃) ≥ q̃K,ε(ϑ̃F (t, Z̃), K̃)

for all Z̃ ∈ K̃g−(RN), K̃ ∈ K̃�(RN), t ∈ [0,Tε(ϑ̃F , Z̃)] with t+ π1 Z̃ ≤ π1 K̃.

Indeed, Lemma 4.7 guarantees dl
(
ϑF (t− h, Z), ϑF (t, Z)

)
−→ 0 for h ↓ 0 and any set

Z ∈ K(RN). So according to the subsequent Proposition B.1 (1.),

Limsuph ↓ 0 Graph [NP
ϑF (t−h,Z), ρ ⊂ Graph [NP

ϑF (t,Z), ρ
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and thus, we obtain for every Z̃ = (a, 0, Z) ∈ K̃g−(RN), K̃ = (b, 1, K) ∈ K̃�(RN), ρ > 0,

κ ∈ ]0, 1] and t ∈ [0,Tε(ϑ̃F , Z̃)] with a+ t ≤ b

lim sup
h ↓ 0

dist
(
Graph [NP

K, (ρ+κ+200 Λ |b−a|), Graph [NP
ϑF (t−h,Z), ρ

)
≥ dist

(
Graph [NP

K, (ρ+κ+200 Λ |b−a|), Graph [NP
ϑF (t,Z), ρ

)
.

Due to π1 ϑ̃F (t− h, Z̃) = a = π1 ϑ̃F (t, Z̃), this inequality implies the wanted condi-

tion (6.) of Definition 3.1 with respect to q̃K,ε. 2

In § 3, the results about the existence of timed right–hand sleek solutions are based

on appropriate forms of (transitional) compactness (see Definitions 3.11, 3.16). Consid-

ering a converging sequence of compact sets, some features of their proximal cones are

summarized in Appendix B. In particular, Graph NP
K,ρ ⊂ Limsupn→∞ Graph NP

Kn,ρ

does not hold for every radius ρ > 0 in general. For this reason, we now prefer the second

approach using “suitably transitionally compact” and Proposition 3.17.

Proposition 4.11 (K̃�(RN), (q̃K,ε,κ)ε,κ∈ ]0,1]∩Q, (q̃K,ε)ε∈ ]0,1]∩Q, LIP
(C2)
Λ (RN ,RN)) is

suitably transitionally compact (in the sense of Definition 3.16).

Proof. Applying Definition 3.16 to this tuple, the situation is the following : Let

(K̃n = (tn, 1, Kn))n∈N, (hj)j ∈N be sequences in K̃�(RN) and ]0, 1[, respectively, with

hj ↓ 0 and supn |tn| < ∞, supn q̃K,ε(K̃1, K̃n) < ∞. Furthermore suppose each

Gn : [0, 1] −→ LIP
(C2)
Λ (RN ,RN) to be piecewise constant (n ∈ N) and set

G̃n : [0, 1]× RN ; RN , (t, x) 7−→ Gn(t)(x),

K̃n(h) := {tn + h} × {1} × ϑG̃n
(h,Kn) ∈ K̃�(RN) for h ≥ 0.

We have to prove the existence of a sequence nk ↗ ∞ of indices and an element

K̃ = (t, 1, K) ∈ K̃�(RN) satisfying tnk
−→ t (k −→∞) and for every ε, κ ∈ ]0, 1] ∩ Q

lim sup
k−→∞

q̃K,ε,κ(K̃nk
(0), K̃) = 0,

lim sup
j−→∞

sup
k≥ j

q̃K,ε(K̃, K̃nk
(hj)) = 0.

Closed bounded balls in (R, |·|) and (K(RN), dl) are known to be compact. So there are

a subsequence (again denoted by) (K̃n = (tn, 1, Kn))n∈N and K̃ = (t, 1, K) ∈ K̃�(RN)

with dl(Kn, K) ≤ 1
n

and tn −→ t (n −→∞). Proposition B.1 (3.) ensures for all ρ, κ > 0

dist
(
Graph [NP

K, ρ+κ, Graph [NP
Kn, ρ

)
−→ 0 (n −→∞)

and thus, q̃K,ε,κ(K̃n, K̃) −→ 0.

Furthermore, dist
(
Graph [NP

Kn, ρ
, Graph [NP

K, ρ

)
−→ 0 (n −→∞)

results from Proposition B.1 (1.) for every ρ > 0 and so, Lebesgue’s Dominated

Convergence Theorem guarantees∫ 2

0

dist
(
Graph [NP

Kn, ρ
, Graph [NP

K, ρ

)
dρ −→ 0 (n −→∞).
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In particular, we can choose a subsequence (again denoted by) (K̃n = (tn, 1, Kn))n∈N

with the additional properties |t− tn| < hj

2
for all n > j and∫ 2

0

dist
(
Graph [NP

Kn, ρ
, Graph [NP

K, ρ

)
dρ ≤ 1

n · ‖ψ‖L∞
for all n ∈ N.

Similarly to the preceding Lemma 4.7, the Hamilton condition (of Proposition 4.4)

provides the following upper bound of q̃K,ε(K̃, K̃n(hj)) for every j ∈ N and all n > j

dl(K, ϑG̃n
(hj, Kn))

+ sup
κ>0

∫ ∞

ε

ψ(ρ+κ+200 Λ |t− tn + hj|) ·

dist
(
Graph [NP

Kn(hj), (ρ+κ+200Λ |t−tn+hj |), Graph [NP
K, ρ

)
dρ

≤ dl(K, Kn) + Λ hj

+ sup
κ>0

∫ ∞

ε

ψ(ρ+κ+200 Λ |t− tn + hj|) ·

dist
(
Graph [NP

Kn(hj), (ρ+κ+100Λ hj)
, Graph [NP

Kn, ρ

)
dρ + 1

n

≤ dl(K, Kn) + Λ hj + sup
κ>0

Λ (eΛ + 1) ‖ψ‖L1 · hj + 1
n
,

i.e. sup
n> j

q̃K,ε(K̃, K̃n(hj)) −→ 0 for j −→∞. 2

Corollary 4.12 For any R > 0, set K̃�
R(RN)

Def.
= R×{1}×K(BR(0)) ⊂ K̃�(RN)

and K̃g−
R (RN)

Def.
= R× {0} × K(BR(0)) ⊂ K̃g−(RN).

Then,
(
K̃�
R(RN), (q̃K,ε,κ)ε,κ∈ ]0,1]∩Q, (q̃K,ε)ε∈ ]0,1]∩Q, LIP

(C2)
Λ (RN ,RN)

)
is also suitably

transitionally compact. 2

Applying Proposition 3.17 to this tuple provides the existence of timed right–hand sleek

forward solutions :

Proposition 4.13

Regard the maps ϑ̃F of all set–valued F ∈ LIP
(C2)
Λ (RN ,RN) (defined in Def. 4.5, 4.6)

as timed sleek transitions of order 0 on (K̃�(RN), K̃g−(RN), (q̃K,ε)ε∈ ]0,1]∩Q) according

to Proposition 4.10.

For f̃ : K̃�(RN)× [0, T ] −→ LIP
(C2)
Λ (RN ,RN), suppose the existence of a modulus ω̂(·)

of continuity with ‖Hf̃(K̃1,t1) −Hf̃(K̃2,t2)‖C1(RN× ∂B1) ≤ ω̂
(
q̃K,0(K̃1, K̃2) + t2 − t1

)
for all 0 ≤ t1 ≤ t2 ≤ T and K̃1, K̃2 ∈ K̃�(RN) (π1 K̃1 ≤ π1 K̃2).

Then for every initial element K̃0 ∈ K̃�(RN), there exists a timed right–hand sleek

solution K̃ : [0, T [−→ K̃�(RN) of the generalized mutational equation
◦

K̃ (·) 3 f̃(K̃(·), ·)
with K̃(0) = K̃0.
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Proof results directly from Prop. 3.17. Indeed, q̃K,0 and q̃K,ε (for any ε > 0) satisfy

q̃K,ε(K̃1, K̃2) ≤ q̃K,0(K̃1, K̃2) ≤ q̃K,ε(K̃1, K̃2) + ‖ψ‖L∞ (‖K1‖∞ + ‖K2‖∞ + 2) · ε

for all K̃j = (tj, µj, Kj) ∈ K̃�(RN) ∪ K̃g−(RN) (abbreviating ‖K1‖∞
Def.
= supx∈K1

|x|).
In particular, for any element K̃0 = (t0, 1, K0) ∈ K̃�(RN) fixed, all Euler approximations

(mentioned in Remark 3.13) are uniformly bounded, i.e. ‖Kn(t)‖∞ ≤ ‖K0‖∞ + Λ t.

So setting R := ‖K0‖∞ + Λ T + 1, we combine Proposition 3.17 with Corollary 4.12

and Remark 3.14. 2

In comparison with previous results in [15], an essential advantage of sleek solutions

is that Proposition 3.19 guarantees uniqueness :

Proposition 4.14 For f̃ : (K̃�(RN) ∪ K̃g−(RN)) × [0, T ] −→ LIP
(C2)
Λ (RN ,RN),

suppose that there exist a modulus ω̂(·) of continuity and a constant L ≥ 0 satisfying

‖Hf̃(Z̃,s) −Hf̃(K̃,t)‖C1(RN× ∂B1) ≤ L · q̃K,0(Z̃, K̃) + ω̂(t− s)

for all 0 ≤ s ≤ t ≤ T and Z̃ ∈ K̃g−(RN), K̃ ∈ K̃�(RN) (π1 Z̃ ≤ π1 K̃).

Then for every initial element K̃0 ∈ K̃�(RN), the timed right–hand sleek solution K̃ :

[0, T [−→ K̃�(RN) of the generalized mutational equation
◦

K̃ (·) 3 f̃(K̃(·), ·), K̃(0) = K̃0

is unique.

Proof results from Proposition 3.19 for the same reasons as we have just obtained

the preceding Proposition 4.13. For any K̃0 = (t0, 1, K0) ∈ K̃�(RN) fixed and j = 1, 2,

let K̃j : [0, T ] −→ K̃�(RN), t 7−→ (t0 + t, 1, Kj(t))

denote timed right–hand sleek solutions of the same initial value problem.

The uniform continuity of K̃j(·) (according to Definition 3.8) ensures a common bound

R > 0 such that ‖Kj(t)‖∞ < R for all t ∈ [0, T ], j = 1, 2. So from now on, we restrict

ourselves to K̃�
R(RN) ⊂ K̃�(RN) and K̃g−

R (RN) ⊂ K̃g−(RN) respectively. Then,

‖Hf̃(Z̃,s) −Hf̃(K̃,t)‖C1(RN× ∂B1) ≤ L ‖ψ‖L∞ (2R + 2) · ε + L · q̃K,ε(Z̃, K̃) + ω̂(t− s)

for all 0 ≤ s ≤ t ≤ T and Z̃ ∈ K̃g−
R (RN), K̃ ∈ K̃�

R(RN) (π1 Z̃ ≤ π1 K̃).

In view of Prop. 3.19, the minimizing elements Z̃j :=
(
t0+t− 3

200 Λ
, 0, K1(t)

)
(j∈N)

lead to inf
Z̃ ∈ K̃g−

R (RN ), π1 Z̃≤ t0+t

(
q̃K,ε(Z̃, K̃1(t)) + q̃K,ε(Z̃, K̃2(t))

)
= dl(K1(t), K2(t))

and thus, we obtain for every t ∈ [0, T ] and ε ∈ ]0, 1] ∩Q

dl(K1(t), K2(t)) ≤ 8 · L ‖ψ‖L∞ 2 (R + 1) ε · t e(L+10 Λ e2 Λ) · t ε ↓ 0−→ 0.

2
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A Tools of reachable sets of differential inclusions

In this appendix, we investigate the proximal radius of boundary points while sets are

evolving along differential inclusions. Compact balls and their complements exemplify

the key features for short times (as stated in Proposition A.1). So they lead to the main

results about proximal radii in both forward and backward time direction as a corollary.

Proposition A.1 Let F be any set–valued map of LIP
(C2)
Λ (RN ,RN) (according

to Definition 4.5) and B := Br(x0) ⊂ RN a compact ball of positive radius r.

Then there exists a time τ = τ(r,Λ) > 0 such that for all times t ∈ [0, τ(r,Λ)[ ,

1. ϑF (t, B) is convex and has radius of curvature ≥ r − 9 Λ (1 + r)2 t,

2. ϑF (t, RN \B) is concave and has radius of curvature ≥ r − 9 Λ (1 + r)2 t,

Restricting ourselves to 0 < r ≤ 2, the time τ(r,Λ) > 0 can be chosen as an increasing

function of r. The claim of Prop. A.1 does not include however that r−9Λ(1+r)2 t ≥ 0

for all t ∈ [0, τ(r,Λ)[ (because then it is not immediately clear how to choose τ(r,Λ) > 0

as increasing with respect to all r ∈ ]0, 2]).

As an equivalent formulation of statement (1.), the convex set ϑF (t, B) has positive ero-

sion of radius ρ(t) ≥ r−9Λ(1+r)2 t, i.e. there is someKt ⊂ RN with ϑF (t, B) = Bρ(t)(Kt)

(as defined in [17, Lorenz 2003], [15], for example). The question of preserving positive

erosion has already been investigated in [17] and in [7, Cannarsa, Frankowska 2004]

under different assumptions. In fact, the results of [17] even imply that ϑF (t, B) has

positive erosion of radius ≥ const(Λ) · r
1+r t

· e− const(Λ) · t for every t ≥ 0.

So strictly speaking, statement (2.) is of more interest here. It ensures that ϑF (t,RN\B)

has positive reach of radius ρ(t) ≥ r − 9 Λ (1 + r)2 t (in the sense of Federer [12]), i.e.

for each point y ∈ ∂ ϑF (t, RN \B), there exists an “exterior” ball Bρ(t)(y0) ⊂ RN with

y ∈ ∂ Bρ(t)(y0) and ϑF (t, RN \ B) ∩
◦
Bρ(t)(y0) = ∅. Roughly speaking, the proofs

of these two statements just differ in a sign and thus, both of them are mentioned here.

Applying Proposition A.1 to adequate proximal balls, the inclusion principle of reach-

able sets and Proposition 4.4 have the immediate consequence :

Corollary A.2 For every set–valued map F ∈ LIP
(C2)
Λ (RN ,RN) and radius r0 ∈]0, 2],

there exists some τ = τ(r0,Λ) > 0 such that for any K ∈ K(RN), r ∈ [r0, 2] and t ∈ [0, τ [ ,

1. each x1 ∈ ∂ϑF (t,K) and ν1 ∈ NP
ϑF (t,K)(x1) with proximal radius r are linked to

some x0 ∈ ∂K and ν0 ∈ NP
K(x0) with proximal radius ≥ r − 81 Λ t

by a trajectory of ẋ(·) ∈ F (x(·)) and its adjoint arc, respectively.

2. each x0 ∈ ∂K and ν0 ∈ NP
K(x0) with proximal radius r are linked to

some x1 ∈ ∂ϑF (t,K) and ν1 ∈ NP
ϑF (t,K)(x1) with proximal radius ≥ r − 81 Λ t

by a trajectory of ẋ(·) ∈ F (x(·)) and its adjoint arc, respectively.
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For describing the time–dependent limiting normals, we use adjoint arcs and benefit

from the Hamiltonian system they are satisfying together with the trajectories (as quoted

in Prop. 4.4). In short, the graph of normal cones at time t, Graph NϑF (t,K)(·)|∂ ϑF (t,K),

can be traced back to the beginning by means of the Hamiltonian system with HF .

Roughly speaking, we now take the next order into consideration and, the matrix Riccati

equation provides an analytical access to geometric properties like curvature. The next

lemma motivates the assumption HF ∈ C2 for all maps F ∈ LIP
(C2)
Λ (RN ,RN).

Lemma A.3

Suppose for H : [0, T ]× RN × RN −→ R, ψ : RN −→ RN and the Hamiltonian system

∧

{
ẏ(t) = ∂

∂q
H(t, y(t), q(t)), y(0) = y0

q̇(t) = − ∂
∂y
H(t, y(t), q(t)), q(0) = ψ(y0)

(∗)

the following properties :

1. H(t, ·, ·) is twice continuously differentiable for every t ∈ [0, T ].

2. for every R > 0, there exists kR ∈ L1([0, T ]) such that the derivative of

H(t, ·, ·) is kR(t)–Lipschitz continuous on BR × BR for almost every t,

3. ψ is locally Lipschitz continuous,

4. every solution (y(·), q(·)) of the Hamiltonian system (∗) can be extended to [0, T ]

and depends continuously on the initial data in the following sense :

Let each (yn(·), qn(·)) be a solution satisfying yn(tn) −→ z0, qn(tn) −→ q0
for some tn −→ t0, z0, q0 ∈ RN . Then (yn(·), qn(·))n∈N converges uniformly to

a solution (y(·), q(·)) of the Hamiltonian system with y(t0) = z0, q(t0) = q0.

Then for every initial set K ∈ K(RN), the following statements are equivalent :

(i) For all t ∈ [0, T ],

M 7→
t (K) :=

{
(y(t), q(t))

∣∣∣ (y(·), q(·)) solves system (∗), y0 ∈ K
}

is the graph of a locally Lipschitz continuous function,

(ii) For any solution (y(·), q(·)) : [0, T ] −→ RN× RN of the initial value problem (∗)
and each cluster point Q0 ∈ Limsupz→ y0 {∇ψ(z)}, the following matrix

Riccati equation has a solution Q(·) on [0, T ]

∧


∂tQ + ∂2H

∂p ∂x
(t, y(t), q(t)) Q + Q ∂2H

∂x ∂p
(t, y(t), q(t))

+ Q ∂2H
∂p2

(t, y(t), q(t)) Q + ∂2H
∂x2 (t, y(t), q(t)) = 0,

Q(0) = Q0.

If one of these equivalent properties is satisfied and if ψ is (continuously) differentiable,

then M 7→
t (K) is even the graph of a (continuously) differentiable function.

Proof is given in [13, Frankowska 2002], Theorem 5.3 for the same Hamiltonian system

but with y(T ) = yT , q(T ) = qT given. So this lemma is an immediate consequence

considering −H(T − · , · , · ) and (y(T − · ), q(T − · )). 2
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Remark A.4 In addition to the final statement of Lemma A.3, well–known proper-

ties of variational equations (see e.g. [13, Frankowska 2002]) imply that Q(t) is the

derivative of the C1 function with graph M 7→
t (K) at the point y(t).

For preventing singularities of Q(·), the following comparison principle provides a bridge

to solutions of a scalar Riccati equation.

Lemma A.5 (Comparison theorem for the matrix Riccati equation,

[21, Royden 88], Theorem 2)

Let Aj, Bj, Cj : [0, T [−→ RN,N (j = 0, 1, 2) be bounded continuous matrix–valued

functions such that each Mj(t) :=
(
Aj(t)

Bj(t)T

Bj(t)
Cj(t)

)
is symmetric.

Assume that U0, U2 : [0, T [−→ RN,N are solutions of the matrix Riccati equation
d
dt
Uj = Aj + Bj Uj + Uj B

T
j + Uj Cj Uj

with M2(·) ≥M0(·) (i.e. M2(t)−M0(t) is positive semi–definite for every t).

Then, given symmetric U1(0) ∈ RN,N with

U2(0) ≥ U1(0) ≥ U0(0), M2(·) ≥ M1(·) ≥ M0(·),
there exists a solution U1 : [0, T [−→ RN,N of the corresponding Riccati equation with

matrix M1(·). Moreover, U2(t) ≥ U1(t) ≥ U0(t) for all t ∈ [0, T [. 2

Proof of Proposition A.1 (1) is based on applying Lemma A.3 to the boundary

K := ∂ Br(0) and its exterior unit normals, i.e. ψ(x) := x
r
, after assuming B = Br(0)

without loss of generality. Obviously, ψ can be extended to ψ ∈ C1(RN ,RN).

(Statement (2.) of Proposition A.1 is shown in the same way – just with inverse signs,

i.e. ψ̂(x) := − x
r

instead. So we do not formulate this part in detail.)

For every point y0 ∈ ∂ Br, there exist a solution y(·) ∈ C1([0,∞[,RN) and its adjoint

q(·) ∈ C1([0,∞[,RN) satisfying{
ẏ(t) = ∂

∂q
HF (y(t), q(t)) ∈ F (y(t)), y(0) = y0,

q̇(t) = − ∂
∂y

HF (y(t), q(t)), q(0) = ψ(y0)
(∗)

and, F ∈LIP
(C2)
Λ (RN ,RN) implies the a priori bounds |y(t)−y0| ≤ Λ t, e−Λ t≤ |q(t)| ≤eΛ t.

So after restricting to the finite time interval Ir (specified later), a simple cut-off function

provides a twice continuously differentiable extension of HF to RN × RN and finally,

Lemma A.3 can be applied to ∂Br, ψ and HF .

Furthermore HF (x, p)
Def.
= supv∈F (x) p · v is positively homogenous with respect to p and

thus, the second derivatives of HF are bounded by 9 ΛR2 on RN×(BR\
◦
B 1

R
) (according

to [15], Lemma 4.22). Together with the preceding a priori bounds, we obtain

‖D2HF (y(t), q(t)) ‖Lin(R2N ,R2N ) ≤ 9 Λ e2Λ t.
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Let Q(·) denote the solution of the matrix Riccati equation

∧


∂tQ + ∂2HF

∂p ∂x
(y(t), q(t)) Q + Q ∂2HF

∂x ∂p
(y(t), q(t))

+ Q ∂2HF

∂p2
(y(t), q(t)) Q + ∂2HF

∂x2 (y(t), q(t)) = 0,

Q(0) = ∇ψ(y0) = 1
r
· IdRN .

Due to the comparison principle of Lemma A.5, Q(·) exists (at least) as long as the two

scalar Riccati equations ∂t u± = ± 9 Λ e2Λ t ± 9 Λ e2Λ t u2
±, u±(0) = 1

r

have finite solutions and within this period, they fulfill u−(t) ·IdNR ≤ Q(t) ≤ u+(t) ·IdNR .
In fact, we get the explicit solutions on Ir := [ 0, 1

2 Λ
· log (1 + π

9
− 2

9
· arctan 1

r
)[,

namely u±(t) = tan (± 9
2

(e2Λ t − 1) + arctan 1
r
),

So Q(t) is positive definite with eigenvalues ≥ u−(t) for every time t of the (maybe

smaller) interval I ′r := Ir ∩ [0, 1
2 Λ

· log (1 + 2
9
· arctan 1

r
)[.

Now we focus on the geometric interpretation of Q(·).
Due to Lemma A.3, M 7→

t (∂ Br) := { (y(t), q(t)) | (y(·), q(·)) solves system(∗), |y0| = r }
is the graph of a continuously differentiable function and, Q(t) is its derivative at y(t)

(according to Remark A.4). Furthermore the Hamilton condition of Prop. 4.4 ensures

Graph NϑF (t,Br)(·) ⊂
{

(y(t), λ q(t))
∣∣∣ (y(·), q(·)) solves system (∗), |y0| = r, λ ≥ 0

}
and thus, the graph property of M 7→

t (∂ Br) implies that each q(t) is a normal vector to

the smooth reachable set ϑF (t,Br) at y(t).

As q(t) 6= 0 need not have norm 1, the eigenvalues of Q(t) are not always identical

to the principal curvatures (κj)j=1...N of ϑF (t,Br) at y(t), but they provide bounds :

e−Λ t · u−(t) ≤ κj ≤ eΛ t · u+(t) (due to e−Λ t ≤ |q(t)| ≤ eΛ t).

Thus, ϑF (t,Br) is convex for all times t ∈ I ′r and, so the local properties of principal

curvatures have the nonlocal consequence that ϑF (t,Br) has positive erosion of radius

ρ(t) ≥ 1
eΛ t · u+(t)

≥ r − 9 Λ (1 + r)2 t for all t ∈ I ′r
Indeed, the linear estimate at the end is shown by means of the auxiliary function

t 7→ 1
eΛ t · u+(t)

− r + 9 Λ (1 + r)2 t that is 0 at t = 0, has positive derivative at t = 0 and

is convex (due to nonnegative second derivative in I ′r).

Finally, the time τ(r,Λ) > 0 is chosen as minimum of 1
2 Λ

· log (1 + π
9
− 2

9
· arctan 1

r
),

1
2 Λ
· log (1 + 2

9
·arctan 1

r
). The linear estimate need not be positive in [0, τ(r,Λ)[ though.

2
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B Tools of proximal normals

Comparing the proximals normals of a converging sequence (Kn)n∈N in (K(RN), dl)

with the normals of its limit K ∈ K(RN), the following inclusion is well known

Graph NP
K ⊂ Limsupn→∞ Graph NP

Kn

(see e.g. [5, Aubin 91], Theorem 8.4.6 or [11, Cornet, Czarnecki 99], Lemma 4.1). Of

course, the equality here is not fulfilled in general. A key advantage of the subset NP
K,ρ

(for ρ > 0) now is that an inverse inclusion is satisfied. This feature is very useful for

the preceding Proposition 4.10 and for verifying the suitable transitional compactness in

Proposition 4.11.

Proposition B.1 Let (Kn)n∈N be a converging sequence in K(RN) and K its limit.

ΠKn , ΠK : RN ; RN denote the projections on Kn, K (n ∈ N) respectively. Then,

1. Limsupn→∞ Graph [NP
Kn,ρ

⊂ Graph [NP
K,ρ for any ρ > 0,

2. Limsup y→ x
n→∞

ΠKn(y) ⊂ ΠK(x) for any x ∈ RN ,

3. Graph [NP
K,ρ ⊂ Liminfn→∞ Graph [NP

Kn, r
for any 0 < r < ρ.

Proof. (1.) Choose any converging sequence ((xnj
, pnj

))j ∈N with pnj
∈NP

Knj ,ρ
(xnj

)∩
∂B and set x := lim

j→∞
xnj

∈ K, p := lim
j→∞

pnj
∈ ∂B. According to Definition 4.1, each

Knj
is contained in the complement of the open ball with center xnj

+ρ pnj
and radius ρ,

Knj
⊂ RN \

◦
Bρ

(
xnj

+ ρ pnj

)
.

As an indirect consequence, j −→∞ leads to K ⊂ RN \
◦
Bρ(x+ ρ p) , i.e. p ∈ NP

K,ρ(x).

(2.) has already been shown in [16, Lorenz 2004], Lemma 4.1.9. For the sake of

completeness, we give the full proof shortly :

Let r > 0 and n ∈ N be arbitrary. For y ∈ Br(x) given, choose any z ∈ ΠKn(y) and

ξ ∈ ΠK(z). Then, |ξ − z| ≤ dl(Kn, K) and

|x− ξ| ≤ |x− y| + |y − z| + |z − ξ|
≤ |x− y| + |y − x| + dist(x,K) + dl(K,Kn) + dl(Kn, K)

≤ 2 r + dist(x,K) + 2 dl(Kn, K).

Thus, ΠKn(y) ⊂ Bdl(Kn,K)

(
K ∩ B2 r + dist(x,K) + 2 dl(Kn,K)(x)

)
for any y ∈ Br(x).

The set–valued map [0,∞[ ; RN , r 7−→ K ∩ Br(x) is upper semicontinuous

(due to [6, Aubin,Frankowska 90], Cor. 1.4.10) and in the closed interval [dist(x,K),∞[,

it is strict with compact values.

So for every η > 0, there exists ρ = ρ(x, η) ∈ ]0, η[ such that

K ∩ Br(x) ⊂ Bη

(
ΠK(x)

)
for all r ∈

[
dist(x,K), dist(x,K) + ρ

]
.

Due to dl(Kn, K) −→ 0 (n −→ ∞), there is an index m ∈ N with dl(Kn, K) ≤ ρ
4

for

all n ≥ m. Thus we obtain for every y ∈ Bρ/4(x) and n ≥ m
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ΠKn(y) ⊂ B ρ
4

(
K ∩ B2 ρ

4
+dist(x,K)+2 ρ

4
(x)
)

= B ρ
4

(
K ∩ Bdist(x,K)+ρ(x)

)
⊂ B ρ

4

(
Bη(ΠK(x))

)
⊂ B2 η

(
ΠK(x)

)
,

i.e. Limsup y→x
n→∞

ΠKn(y) ⊂ ΠK(x).

(3.) Choose any x ∈ ∂K and p ∈ NP
K,ρ(x) 6= ∅ with |p| = 1. Then x is the unique

projection of x + δ p on K for every δ ∈ ]0, ρ[. Considering now a sequence (xn)n∈N

with xn ∈ ΠKn(x+ δ p) ⊂ Kn, the preceding statement (2.) implies xn −→ x and, the

definition of proximal normal guarantees pn := x+δ p−xn

|x+δ p−xn| ∈
[NP

Kn
(xn) converging to p.

Finally the proximal radius of pn is ≥ |x + δ p − xn| ≥ δ − |x − xn|, and thus,

(x, p) ∈ Liminfn→∞ Graph [NP
Kn, r

for every positive r < δ < ρ. 2
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