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Kosmologische Modelle im Vergleich mit
Beobachtungen

Zusammenfassung

Wir diskutieren detailliert die zugrundeliegende Theorie und den derzeitigen
Stand der Beobachtungen in der Kosmologie. Wir benutzen eichinvariante Stö-
rungsrechnung um die linearen Störungsgleichungen herzuleiten und verwen-
den einen Matrixformalismus um die Anfangsbedingungen für numerische Inte-
gration zu erhalten. Mit der Software CMBEASY können wir die Modellvorher-
sagen berechnen und mit experimentellen Daten vergleichen. Um kosmologi-
sche Modelle schnell und bequem einzuschränken verwenden wir Markov Chain
Monte Carlo Simulation. Wir beschreiben die Theorie und die spezielle Imple-
mentation in CMBEASY. Diese Werkzeuge werden dann benutzt um ein ΛCDM-
Modell sowie ein Modell mit einer nichtverschwindenden Zustandsgleichung
der Dunklen Materie einzuschränken. Wir betrachten ebenfalls die Auswirkun-
gen einer Änderung der fundamentalen Kopplungen auf die Elementhäufigkeiten
und formulieren eine modellunabhängige Herangehensweise, die verwendet wer-
den kann, um die Vorhersage für jedes Modell zu erhalten, welches die funda-
mentalen Kopplungen zueinander in Beziehung setzt.

Cosmological Models and Observation
Abstract

In this work we give a detailed discussion of the basic theory and current observa-
tional status of cosmology. We introduce gauge-invariant perturbation theory to
derive the linear perturbation equations and use a matrix formalism to find suit-
able initial conditions for numerical integration. With the cosmological software
package CMBEASY we compute model predictions and compare these with exper-
imental data. For constraining cosmological models quickly and conveniently we
employ Markov Chain Monte Carlo simulation. We describe both the theory and
the specific implementation in CMBEASY. These tools are then used to constrain
a standard ΛCDM cosmology and a model with a non-zero equation of state of
dark matter. We also consider the effect of a variation of the fundamental cou-
plings on primordial element abundances, introducing a model-independent for-
mulation that may be used to obtain predictions for any given model that relates
the fundamental couplings to each other.



The scientist does not study nature because it is useful;
he studies it because he delights in it,
and he delights in it because it is beautiful.

Jules Henri Poincaré
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Introduction

And he showed to them a vision, giving to them sight where before
was only hearing; and they saw a new World made visible before
them, and it was globed amid the Void, and it was sustained therein,
but was not of it.

J. R. R. Tolkien, The Silmarillion

Cosmology has been with us since the first humans looked at the stars and tried
to fit what they saw into a larger framework. But before the 20th century this en-
deavour to understand the universe was mainly restricted to theological or philo-
sophical considerations. While some physical theories were proposed, proper
empirical evidence was lacking and so the only progress possible in this direction
was by ’taking a shot in the dark’. Distances and timescales in the universe are
so large that only recently it has been possible to build the powerful instruments
necessary to obtain data to falsify some of the theories.

Surprisingly enough, it was before the first modern cosmological observations
were conducted that the basic theory for the description of the universe was for-
mulated. In 1917 Albert Einstein applied his theory of general relativity to cos-
mology [1]. Lacking experimental data, he proposed a static universe by intro-
ducing the cosmological constant. Then, in 1922 Aleksandr Friedmann found that
general relativity allows for an expanding universe [2]. The first cosmological ob-
servation was performed by Edwin Hubble in 1929 with the measurement of the
distance-redshift relation of galaxies [3]. These observations confirmed that the
universe was expanding and marked the beginning of observational cosmology.
A number of cosmological models have been proposed since then, and as more
and more experimental data became available, the big bang model emerged as
the generally accepted basic framework of cosmology.
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4 Chapter 1 Introduction

Figure 1.1: The final galaxy sample of the 2dFGRS survey. This is a slice of the universe
with our galaxy at the center, each point represents one galaxy. The density of galaxies
decreases with distance since the instruments can only resolve the bright objects.

During the last fifteen years cosmological observations have improved both
in scope and precision. The first measurement of cosmic microwave background
(CMB) anisotropies by the COBE satellite in 1992 [4] started a series of preci-
sion observations of the CMB, culminating with the unmatched accuracy of the
WMAP measurements [5]. At the same time, powerful telescopes such as the
Hubble telescope made it possible to look ever deeper into the cosmic past. Hun-
dreds of supernovae have been measured and the quality of data has improved to
a level where it can be used to determine the expansion history of the universe [6].
The Hubble parameter, known to a precision of about 50 % only a few years ago,
has now been determined to within a few percent of error [7]. Galaxy surveys,
observing hundreds of thousands of galaxies [8, 9], have given us an image of
the distribution of matter in the local universe ( see figure 1.1) making it possi-
ble to extract information with ever lower statistical error. All these probes have
achieved a level of accuracy that enables us to rigorously constrain cosmological
models.

Old problems were resolved, but more profound ones showed up and some
surprising new discoveries were made. The existence of dark matter was more or
less accepted two decades ago and observations indicated that matter (baryons
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and cold dark matter) cannot make up more than ≈ 30% of the energy content of
the universe. As a consequence the consensus was that the universe was open,
matter dominated and expansion was expected to slow down. Contrary to ex-
pectations it was discovered in 1998 that the expansion of the universe was ac-
celerating instead [10–13]. Measurements of the cosmic microwave background
anisotropies in 2000 showed that the spatial geometry of the universe is essen-
tially flat. However, a flat matter dominated universe is too young to be con-
sistent with observations. In addition, large scale structure measurements were
incompatible with flat CDM model predictions where the matter anisotropies col-
lapsed too quickly. Based on these findings, the present belief is that there is
another energy component in the universe, quite fittingly termed ’dark energy’.
Two main ’explanations’ were suggested. The dark energy could be due to vac-
uum energy, termed the cosmological constant, or due a scalar field, termed quin-
tessence [14, 15]. Since quintessence is a very versatile theory it cannot be easily
ruled out, but the cosmological constant can if the equation of state of dark en-
ergy turns out to be different from −1. At present, however, both explanations
agree with observation.

The amount and precision of the available data has ended the days of ’order
of magnitude’ estimation of cosmological parameters1. We have entered the era
of precision cosmology. The amount and complexity of data and models have
made it necessary to create tools for efficient and accurate computation of model
predictions and compare them with experimental data. Advances in algorithms
have made it possible to create software that can compute model predictions fast
and accurately [16–18]. Comparison with data can be achieved in a variety of
ways. Since the prediction is a non-trivial function of the model parameters, one
has to resort to numerical computation. The grid approach simply discretizes the
parameter space and computes the likelihood of each observational data set given
the parameter set at each point. While this approach is simple, it is also computa-
tionally expensive since the available parameter space grows exponentially with
the number of parameters. A better way to obtain useful and robust constraints
from the data within an acceptable time frame and without use of excessive com-
puting resources is by using Markov Chain Monte Carlo simulation [19]. The
time and effort needed to create a software that contains all necessary routines
and data sets is substantial, therefore it would be beneficial to have this software
freely available.

This work intends to introduce such a tool – the CMBEASY software and its
integrated ANALYZETHIS! package, the latter of which has been developed by
the author in cooperation with Michael Doran [18,20]. This software includes the
necessary routines to compute model predictions for ΛCDM and quintessence

1Or, as Michael S. Turner put it: “The ’go-go’ junk bond days of cosmology are over”.
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models, and can be easliy modified to accomodate other theoretical models. It
contains an optimized Markov Chain Monte Carlo routine for constraining pa-
rameters. Most current cosmological data sets are included for convenience along
with the likelihood computation routines. In addition, there is a graphical user
interface for quick data analysis, all in one integrated software. With this, one can
constrain cosmological models easily and quickly. We would like to add that we
will be concerned exclusively with ’late’ cosmology here, T . 1 MeV, and we will
not discuss issues of early cosmology such as baryogenesis.

We will start with the basic description of cosmology in chapter 2. Assuming
that the universe is homogeneous and isotropic, we derive some important equa-
tions needed later. We also describe the ’energy mix’ of the universe from the
perspective of the standard ΛCDM model. At this stage one already has all theo-
retical input that is needed to use current supernovae data. The homogeneous
case is also the starting point for cosmological perturbation theory, presented
in chapter 3. There we introduce gauge-invariant perturbation theory, which
enables us to compute the model prediction for cosmic microwave background
anisotropies and the large scale structure power spectrum. The initial conditions
are derived using a matrix formalism. In chapter 4 we describe and discuss all
the current experimental data sets which are included in the CMBEASY software.
We briefly introduce other probes which are not yet implemented in CMBEASY,
but will become increasingly important in the future such as Lyman-α forest and
weak gravitational lensing observations. The theory of Markov Chain Monte
Carlo simulation is described in chapter 5 along with the optimized implementa-
tion in our software. This method gives accurate and robust constraints on model
parameters while being computationally inexpensive. We have then all the tools
we need to constrain models. For illustrative purposes, we constrain a ΛCDM
cosmology using these techniques. In chapter 6 we investigate a cosmological
model which contains dark matter with a constant non-zero equation of state. In
constrast to previous investigations, we also consider a negative equation of state.
We show that this model, while tightly constrained, is not ruled out. Somewhat
out of the main line of our treatment we discuss the effects of a variation in funda-
mental couplings on predictions of primordial element abundances. We provide
an integrated approach that can be adapted to any model relating fundamental
couplings to each other. We finish with our conclusions in chapter 8, some ad-
ditional material can be found in the appendices. The work presented in section
3.3 was in collaboration with M. Doran, G. Schäfer and C. Wetterich, chapter 5 in
collaboration with M. Doran and chapter 7 with G. Schäfer and C. Wetterich. The
investigation of the model discussed in chapter 6 was suggested by C. Wetterich.
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The Homgeneous Universe

There is a theory which states that if ever anybody discovers exactly
what the Universe is for and why it is here, it will instantly disappear
and be replaced by something even more bizarre and inexplicable.
There is another theory which states that this has already happened.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In this chapter we will introduce the basic framework of cosmology, beginning
with the homogeneous and isotropic universe. While this may seem too simpli-
fying at first, it is nevertheless a good description at large scales. We will expand
on this treatment in subsequent chapters and make frequent use of the equations
and quantities defined here.

2.1 Basic Equations

The starting point for our considerations are the Einstein equations which relate
the energy-momentum tensor to the geometric properties of spacetime1,

Gµν = Rµν −
1
2

gµνR = M−2
p̄ Tµν. (2.1)

Usually, these equations are difficult to solve for a given energy-momentum ten-
sor, but in cosmology we can make use of symmetry. Measurements of the cosmic
microwave background (CMB) by the COBE and WMAP satellites [26, 27] indi-
cate that the CMB is isotropic to a large degree2. Large scale structure surveys

1For an introduction to the general theory of relativity and cosmology see [21–25].
2After the removal of the dipole contribution due to the motion of the solar system with respect

to the cosmic rest frame, the anisotropies in the CMB are at a level of about 10−5.
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8 Chapter 2 The Homgeneous Universe

such as the SDSS and the 2dFGRS [8, 9] also show that galaxies are evenly dis-
tributed and that there seems to be no prefererred direction on the sky. From
these observations one may conclude that, at least on very large scales, the uni-
verse is isotropic. Since we may assume that our place in the universe is in no
way special this also means that the universe is homogeneous. These basic as-
sumptions are also called the cosmological principle.

The most general form of the metric of a four-dimensional space-time which
respects these symmetries is the Friedmann-Robertson-Walker metric

ds2 = −dt2 + a(t)2
(

dr2

1 − Kr2 + r2dθ2 + r2 sin2 θ dφ2
)

, (2.2)

where K = −1, 0 or +1 if the spatial geometry of the universe is open, flat or
closed. The dynamics of the metric is contained in the scale factor a(t). Obser-
vations indicate that the universe is most probably flat [5], which is in line with
most theories of inflation. We will therefore consider only spatially flat universes
in all that follows and set K = 0. We will also use conformal time τ from now on,
which is defined by

dτ = dt/a(t), (2.3)

and all derivatives are with respect to conformal time. The metric we use for the
homogeneous and isotropic, spatially flat universe is therefore

ds2 = a(τ)2(−dτ + dx2), (2.4)

i.e. gµν = diag (−a2, a2, a2, a2). (2.5)

The scale factor a(τ) is normalized such that the scale factor today a0 = 1, and we
will use the shorthand notation H ≡ a′/a where a′ ≡ da/dτ. H is related to the
normal Hubble parameter H = ȧ/a by H = aH with ȧ ≡ da/dt.

Let us now turn to the right-hand side of equation (2.1), the energy-momentum
tensor. Here, we will work exclusively from a fluid perspective and describe all
forms of energy in the universe as fluids. The energy-momentum tensor for an
ideal fluid with energy density ρ, pressure p and four-velocity uµ is given by

Tµν = (ρ + p)uµuν + pgµν, (2.6)

or, with four-velocity uµ = (a−1, 0, 0, 0) in the cosmic rest frame:

T
µ
ν = diag (−ρ, p, p, p). (2.7)

There is no net energy or momentum flow in the cosmic rest frame, since this
would violate the isotropy and homogeneity requirement. Using energy-momentum
conservation

T
µ
ν;µ = 0, (2.8)
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yields then

ρ′ + 3H(ρ + p) = 0. (2.9)

It is worthwhile to pause a litte at this point. This equation applies to the total
energy density and the total pressure of the universe. But there is a variety of dif-
ferent forms of energy, e.g. photons, neutrinos, baryons and so on. If one species
x interacts only gravitationally with the rest then eq. (2.9) applies for this species
alone as well, since the energy-momentum tensor for this species is conserved
separately.

We need to relate pressure p and energy density ρ. This is most conveniently
done by the equation of state wx of a component x, defined by

wx ≡ px/ρx. (2.10)

For relativistic particles (e.g. photons) wγ = 1/3, and for non-relativistic particles
such as baryons wb = 0.

To determine the dynamics of the scale factor a(τ), we insert the FRW metric
(2.4) and the energy-momentum tensor (2.7) into the Einstein equations (2.1) and
find the Friedmann equation in flat space:

3M2
p̄H2a−2 = ρ(τ). (2.11)

The energy density today is given by

3M2
p̄H2

0 = ρ(0), (2.12)

with H0 the Hubble constant. One frequently expresses energy densities relative
to the total energy density as

Ωx ≡ ρx

3M2
p̄H2a−2

, (2.13)

so that Ω
(0)
x = ρ

(0)
x /ρ

(0)
tot . Since we only consider spatially flat universes, we must

have ∑x Ωx = 1. If one can determine the contributions to the energy density,
the equation of state of every component in the universe and their interactions,
one has, essentially, a complete description of the past and future of the universe.
See [28] for the currently known (and unknown) contributions.

Another very important quantity is the redshift z which is given by the mea-
sured wavelength λ1 of a source relative to the laboratory wavelength λ0

λ0

λ1
≡ 1 + z. (2.14)

It is straightfoward to relate the redshift to the scale factor

1
a

= 1 + z. (2.15)
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2.2 The Constituents of the Universe

We skipped over the problem of determining the constituents of the universe in
the previous section. There are many cosmological observations that have led
to the establishment of the so-called concordance model. Even though we will
consider these observations later in this work, this may be a good point to discuss
what is believed to be the ’energy mix’ of the universe. We need to remember
that this changes over time, and what we would like to discuss is the distribution
of energy today. We would also like to emphasize that most of the numerical
values here are model-dependent. We have taken the values from the SDSS team
plain vanilla ΛCDM model [29] (see appendix B.2 for details). Frequently, we will
employ the symbol h which is defined such that H0 = 100 h km sec−1 Mpc−1.
From measurements of the local Hubble flow one finds h = 0.72 ± 0.08 [7], for
numerical values we have used h = 0.7 in this section. The temporal evolution of
the ’energy mix’ of the universe for this ΛCDM model is depicted in Fig. 2.1.

2.2.1 Photons

When we refer to photons we mean relic photons from the big bang. In the early
universe, photons were the dominant part of the energy budget along with neu-
trons. During the era of recombination all interactions of photons with matter es-
sentially ceased and these relic photon have been traveling through the universe
ever since, redshifting as the universe expands. What we see as the cosmic mi-
crowave background is a redshifted image of the surface of last scattering. From
the measured temperature of the CMB black body spectrum T = 2.725 ± 0.002 K
as determined by COBE [30] we can conclude that the energy density of photons
today is negligible: Ωγ = (2.471 ± 0.004) × 10−5/h2. But at early times radia-
tion was the dominating form of energy. Since photons are fully relativistic, their
equation of state is wγ = 1/3.

2.2.2 Baryons

Baryons are ’ordinary’ matter such as protons and neutrons and their nuclear
bound states. Suprisingly enough, observations of the CMB and primordial el-
ement abundances from the big bang nucleosynthesis show that the amount of
baryons can only make a contribution of ΩB = 0.0228/h2, or about 5% of the en-
ergy inventory. Since baryons are non-relativistic at temperatures considered in
this work one takes their equation of state to be wB = 0.
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2.2.3 Neutrinos

Another well-known ingredient are relic neutrinos. They are believed to couple
only weakly at the energies considered here. Consequently, when the expansion
rate of the universe exceeded the weak reaction rates at T ∼ 1 MeV, neutrinos
have essentially ceased to interact and have been free streaming ever since. This
transition is also referred to as ’decoupling’. In our calculation we take the neu-
trinos to be massless wν = 1/3, though recent experimental evidence of neutrino
oscillations suggests that neutrinos have mass. In fact, one may even use cosmo-
logical probes to set upper limits on the sum of the neutrino masses [5, 31–36].
The current upper limit if the mass may not be neglected is Ων < 0.04 [29]. If the
mass may be neglected, then Ων = 1.68 × 10−5/h2.

2.2.4 Dark Matter

The contribution of baryons to the total energy budget is, as we have seen, rather
small. Present theory assumes that the matter density flucuations visible in the
CMB spectrum grow to form clusters and galaxies, but the amount of baryons is
insufficient to form the structures we see today. Also, from the rotation curves
of galaxies one can deduce that the visible mass is much too small to account
for the observed rotation. There needs to be another, invisible form of energy
that can cluster. The existence of this so-called ’dark matter’ was first postu-
lated by Zwicky [37] and has been reinforced by recent observational evidence
such as gravitational lensing. The common assumption is that dark matter is a
form of weakly interacing massive particle (WIMP) [38]. There is a number of
direct dark matter searches such as EDELWEISS [39], CRESST [40], CDMS [41]
and DAMA [42], but so far there has been no direct detection of a WIMP3. Every
bit of evidence for the existence of dark matter is of astrophysical or cosmological
origin. Given these facts, one may wonder whether dark matter is a particle at all.
We will discuss this point in chapter 6. In the concordance model, dark matter is
assumed to be cold (the CDM in ΛCDM), hence wDM = 0. The contribution to
the total energy budget is ΩDM = 0.123/h2, or about 25 %.

2.2.5 Dark Energy

As mentioned before, CMB measurements indicate Ωtot = 1, but so far we have
only ≈ 30% of that. Also, by observing the expansion history through the lumi-
nosity distance of supernovae [10–12] it was found that the expansion of the uni-
verse has accelerated recently, which requires a total equation of state w < −1/3.
A spatially flat matter dominated universe is ruled out due to its low age which

3We do not wish to discuss the reported claim of a deteced annual modulation by DAMA [42].
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is in conflict with observation. Further, large scale structure growth would be too
fast. As a consequence, one introduces a new form of energy. It does not seem
to cluster, but rather appears to be homogeneously distributed in the universe,
and has been termed ’dark energy’. In the concordance model, the dark energy
is assumed to be the cosmological constant Λ, originally introduced by Einstein
to make the universe static [1]. It can be thought of as vacuum energy and has
equation of state wΛ = −1. As good as this looks at first sight, there are uncom-
fortable theoretical problems associated with this [43]. First, from a quantum field
perspective one would expect the energy density of Λ to be precicely zero due to
some unknown symmetry or at the order of ∼ M4

p̄. However, from eq. (2.12) and

the measurement of the Hubble parameter we obtain ρΛ ∼ 10−64GeV4 which
is a long way from M4

p̄ ∼ 1073GeV4. Furthermore the energy density of Λ is
constant throughout the history of the universe, necessitating strong fine tuning
in order that it become important just today. As a consequence, there is a large
number of possible alternative models for dark energy such as scalar field dark
energy [14, 15, 44], topological defects [45] and modifications to gravity [46, 47]
to name just a few. Models with wDE < −1, so-called phantom cosmologies,
have also been proposed [48]. In this work we will only concern ourselves with
quintessence and the cosmological constant as models of dark energy. In the con-
cordance model, the dark energy makes up most of the current energy density of
the universe, ΩΛ ≈ 0.6 − 0.7. For a review of the experimental evidence for dark
energy see [49] and references therein.

2.2.6 Gravitational Waves

A very important ingredient for setting constraints on models of inflation are
primordial gravitational waves which are believed to have been generated dur-
ing inflation [50]. These gravitational waves contribute to the CMB anisotropy. In
contrast to Thomson scattering which creates only E-mode polarization, the grav-
itational waves generate also B-mode polarization. Detection of B-mode polariza-
tion in the CMB may thus be used to identify gravitational waves4. At present,
no gravitational wave signature has been identifed in the CMB, the upper limit
is ΩGW . 10−10, but this number is a bit misleading – this is already the level of
the perturbation, and hence their impact on the CMB is expected to be detectable
with near future CMB experiments such as PLANCK [52].

4Weak lensing of the CMB by large scale structure also generates B-mode polarization. It is
therefore important to distinguish these two sources of polarization [51].
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Figure 2.1: Evolution of the different contributions to the total energy density of the uni-
verse. Absolute contribution in terms of energy density (top) and relative to the total
energy density (bottom) of radiation (dashed, black), matter (straight, blue) and vacuum
energy (dotted, red). Parameters as in the ΛCDM plain vanilla model of [29] (see also
appendix B.2).

2.2.7 The Rest

There are some more contributions, such as cosmic rays and magnetic fields, post-
stellar radiation and more. These are not relevant for our purposes since they are
subdominant and have no noticable impact on current cosmological probes and
will not be treated here. The interested reader is referred to [28] for a review.

2.3 Quintessence

In the previous section we mentioned scalar field dark energy as a possible al-
ternative to model dark energy. The basic idea is to postulate the existence of a
scalar field χ with a self-interacting potential U(χ). This form of dynamical dark
energy has been termed quintessence. Unfortunately, the specific form of the
potential can – at present – only be postulated. Since quintessence was first intro-
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duced [14, 15, 53–55] a number of different models have been proposed. Many of
these models feature tracking behaviour, that is, their evolution is largely insen-
sitive to the initial conditions [56]. As a consequence, there is no excessive fine
tuning involved which makes quintessence an attractive alternative to the cos-
mological constant. Scalar fields appear in many advanced theories of physics
and quintessence is therefore well motivated. This section introduces a few ba-
sic equations and specific models. We will not discuss quintessence models that
interact non-gravitationally with other forms of energy [57] or scalar-tensor theo-
ries [58]. There are other scalar field models such as k-essence [59] and phantom
energy [48], but these will not be treated here.

The action for a quintessence field χ that is minimally coupled to gravity is
given by

S =

∫

d4x
√

−g

(

M2
p̄

2
R − 1

2
∂µχ∂µχ − U(χ)

)

+ Smatter. (2.16)

with some self-interacting potential U(χ) and the Ricci scalar R. The associated
energy-momentum tensor is given by

T
µ
(Q)ν

= ∂µχ∂νχ − δ
µ
ν

(

1
2

∂αχ∂αχ + U(χ)

)

. (2.17)

In a homogeneous universe the quintessence field depends only on time, χ = φ(τ),
so that all spatial derivatives vanish. Energy density and pressure of the homo-
geneous field are then given by

ρQ =
1

2a2 φ′2 + U(φ) and pQ =
1

2a2 φ′2 − U(φ). (2.18)

The term 1
2a2 φ′2 is commonly referred to as ’kinetic term’ and U(φ) as ’potential

term’. It is clear that the equation of state of quintessence will usually be non-
constant and is bounded −1 < wQ < 1. Since the quintessence field interacts
with other forms of energy only gravitationally, the energy-momentum tensor is
conserved separately T

µ
(Q)ν;µ = 0. From this one can derive the equation of motion

for the homogeneous field, or alternatively by starting from the action (2.16). In
either case one obtains

φ′′ + 2Hφ′ + a2U,φ = 0, (2.19)

which is commonly referred to as Klein-Gordon equation. We will now introduce
a few of the most important models.
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2.3.1 Exponential Potential

The exponential potential model was introduced by Wetterich and Ratra & Pee-
bles [14, 15] and features tracking behaviour:

U(χ)EXP = M4
p̄ exp(−λχ/Mp̄). (2.20)

The contribution to the energy budget is completely determined by λ, the only
parameter of this model, as ΩQ = 3/λ2. The equation of state of this quintessence
model is the same as that of the total equation of state of the universe, hence it
can never be negative and thus is unable to account for the accelerated expansion
of the universe. In order to overcome this deficit, the leaping kinetic term model
has been introduced.

2.3.2 Leaping Kinetic Term

In an alternative formulation of the action (2.16) one introduces a kinetic term
k(χ) [60]:

LQ = −k(χ)2∂µχ∂µχ − M4
p̄ exp(−χ/Mp̄). (2.21)

By redefining the scalar field χ → ϕ one can obtain a canonical kinetic term
k(ϕ) = 1 by inverting the expression dϕ/dχ = k(χ). This transformation will
alter the exponential potential term and thus allow for a negative equation of
state. A specific form for the kinetic term has been proposed by Wetterich and
Hebecker [60]5:

k(χ) = kmin + tanh[σ(χ − χ1)/Mp̄] + 1. (2.22)

The effect of this term is to ’kick’ the scalar field out of the tracking behaviour at
χ ≈ χ1. The parameter σ controls the steepness of this transition. The parameter
kmin determines the amount of early quintessence – a non-negligible amount of
dark energy during last scattering and structure formation [61]. This model is
very versatile and is consistent with supernovae and large scale structure obser-
vations.

2.3.3 Inverse Power Law

This very popular model has originally been introduced by Ratra and Peebles
[15, 62] and has the potential

U(χ)IPL = A

(

χ

Mp̄

)−α

, (2.23)

5We have added the parameter σ which was not present in the original paper.
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where A and α are parameters. This model is of the tracking type. When con-
fronted with recent observations, this model appears to need fine-tuning in the
parameter A in order to be consistent since α < 2.5 [63].

2.3.4 Other Models and Parametrizations

There is a large number of other models such as modified exponentials [64, 65],
SUGRA inspired models [66], double exponentials [67] and others [68, 69]. In-
stead of specifiying a specific model, one may also formulate a parametrization
of the equation of state wQ. In fact, the evolution of the scalar field can be com-
pletely derived from wQ using Eqs. (2.9), (2.11) and (2.18):

φ′ = Mp̄H
√

3ΩQ(a)[1 + wQ(a)], (2.24)

U(φ) =
3
2

M2
p̄H2a−2ΩQ(a)[1 − wQ(a)], (2.25)

where

ΩQ(a) = Ω
(0)
Q H2

0a−1H−2 exp

(

3
∫ 1

a
wQ(ã)d ln ã

)

. (2.26)

Parametrizations are therefore often used for comparison with observations. An
equation of state of dark energy different from −1 would indicate that the cos-
mological constant cannot be the dark energy6. Unfortunately there is no entirely
obvious way to parametrize the equation of state. One can do a polynomial fit in
redshift space [70,71], logarithmic expansions [72] or multi-parameter fits [73,74].

2.4 Expansion and Horizons

A very important concept in cosmology is that of the horizon. Since light speed
is finite and the universe has been expanding and has been in existence a finite
time, it follows that there is a certain length scale beyond which no causal contact
is possible. This ’particle horizon’ LH changes over time and is determined by

LH =

∫ t

0
dt′/a =

∫ τ

0
dτ′ = τ. (2.27)

The horizon size is thus determined by the conformal time. It is useful to intro-
duce the comoving wavenumber k/h defined by

L = 2π(k/h)−1 , (2.28)

6At least not all of it. It might be that dark energy consists of the cosmological constant and
dynamical dark energy, but we will not discuss this possibility further.
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horizon [Mpc] k/h [Mpc−1] scale factor a

at matter-radiation equality 1.09 × 102 5.72 × 10−2 2.85 × 10−4

at last scattering 2.71 × 102 2.32 × 10−2 8.82 × 10−4

today 1.39 × 104 4.51 × 10−4 1.00

Table 2.1: Particle horizon size, corresponding comoving k/h and scale factor a for the
plain vanilla ΛCDM model of [29] at different times.

where L is some length scale. We can relate the horizon size to the Hubble pa-
rameter. First, we note that the solution to the Friedmann equation (2.11) is

a ∝ τ, (2.29)

for a radiation dominated universe and

a ∝ τ2, (2.30)

for a matter dominated universe. For a purely matter dominated universe we
have then H = 2/τ and thus LH = 2/H0. For a universe containing a mixture
of radiation, matter and dark energy there is no such simple solution, but we can
say that the particle horizon today is of the order of the inverse Hubble constant.

LH ∼ H−1
0 . (2.31)

In order to get a feeling for the typical particle horizon sizes we give the values for
the concordance model in table 2.1. Scales that are much larger than the horizon
k ≪ H are referred to as super horizon sized while scales much smaller k ≫ H
are called sub horizon sized.

The horizon at last scattering corresponds to a scale of ∼ 1°on the sky today,
yet the CMB is isotropic to a high degree over the entire sky. How can this be? In
the horizon size computation we did not include inflation which is believed to be
responsible for the high degree of homogeneity and for the spatial flatness of the
universe. Also, the perturbations were probably seeded by inflation, see [25] for
a thorough treatment.

Another important quantity is the luminosity distance of an object of absolute
luminosity L and measured flux F defined by

d2
L ≡ L

4πF . (2.32)

This quantity can be measured if L is known. Interestingly, one may extract the
expansion history from dL since

dL = (1 + z)

∫ z

0

dz̃

H(z̃)
. (2.33)
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This concludes our treatment of the homogeneous universe. In the next chapter
we will discuss linear perturbation theory, one of the most important tools in
cosmology.



3

The Perturbed Universe

Of course a certain number of scientists have to go mad, just to keep
the tradition alive.

Matt Ruff, Fool on the Hill

We already mentioned before that the universe appears to be almost homoge-
neous on large scales. But it is not entirely homogeneous and that enables us to
extract a lot of information from the observation of inhomogeneities. In order to
be able to do that we must first consider linear perturbation theory in cosmology.
The concept is quite simple: we take the homogeneous universe to be a solution
of zeroth order of the Einstein equations (2.1), add perturbations of first order and
drop all terms of higher order in subsequent calculations. But in general relativ-
ity there is freedom in the choice of coordinates, and this leads to the difficulty
of distinguishing genuine physical effects from artifacts that may be removed by
a suitable coordinate transformation. One possibility to cope with this problem
is to fix the coordinates from the beginning – commonly referred to as fixing the
gauge. There are some gauges that do not completely fix the coordinates, such
as the harmonic and synchronous gauge, and as a consequence unphysical arti-
facts – so-called gauge modes – may appear. The other possibility, and the one
we are going to use here, is to formulate all quantities in a gauge-invariant way,
which means they do not change under gauge transformation. This approach
was pioneered by Bardeen [75], see [76–78] for a review.

3.1 Gauge Invariant Variables

We will use the notation of Kodama & Sasaki [76] in what follows. The starting
point is to decompose the metric and the energy-momentum tensor into parts

19
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that transform as scalars, vectors and tensors under spatial coordinate transfor-
mations. As it turns out, the Einstein equations keep this separation intact. To
first order, scalar parts of the metric are only connected to scalar parts of the en-
ergy momentum tensor, the same holds for vector and tensor parts, respectively.
As an example for the decomposition of a vector into scalar and vector parts con-
sider the well-known decomposition of a vector B into the divergence of a scalar
function φ and divergence-free rotational vector C:

B = grad φ + rot C. (3.1)

In the same manner a tensor may be decomposed into scalar, vector and tensor
parts. We can then fourier expand these quantities.

Scalar quantities may be expanded by a complete set of scalar harmonic func-
tions Y(k) satisfying1

(

∆ + k2
)

Y = 0. (3.2)

Scalar type components of vectors may be expanded by

Yi ≡ −k−1Y,i , (3.3)

and those of tensors by

Yij ≡
(

k−2Y,ij +
1
3

δijY

)

. (3.4)

Similarly, we may introduce vector and tensor harmonic functions. Since we will
not consider vector and tensor perturbations here, we refer the reader to [76] for
a full treatment. Vector modes decay and are not generated through interactions,
so they do not contribute and may be neglected2. The scalar part of the full metric
g̃µν may be decomposed as

g̃00 = −a2[1 + 2AY], (3.5)

g̃0j = −a2BYj, (3.6)

g̃ij = a2[δij + 2HLYδij + 2HTYij], (3.7)

and the inverse metric g̃µν to first order is

g̃00 = −a−2[1 − 2AY], (3.8)

g̃0j = −a−2BY j, (3.9)

g̃ij = a−2[δij − 2HLYδij − 2HTYij], (3.10)

1We will suppress the argument of Y in what follows.
2In second order perturbation theory the Einstein equations mix scalar, vector and tensor

modes and vector modes may therefore be generated by scalar and tensor modes. But in lin-
ear perturbation theory, we may safely neglect vector modes. A possible contribution of vector
modes is discussed in [79].
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with scalar functions A, B, HL and HT. The scalar part of the energy-momentum
tensor is

T̃0
0 = −ρ[1 + δY], (3.11)

T̃0
j = (ρ + p)(v − B)Yj, (3.12)

T̃
j
0 = −(ρ + p)vY j, (3.13)

T̃i
j = p[δi

j + πLδi
j + πTYi

j]. (3.14)

We may interpret δ as the energy density peturbation, πL as the pressure pertur-
bation, v as the velocity and πT as the anisotropic stress. However, we will later
see that there are problems with this way of interpreting these quantities. In order
to construct gauge-invariant quantities, we need to consider how A, B, δ, πL . . .
change under a gauge transformation. The scalar part of a general coordinate
transformation xµ → xµ is

τ = τ + T Y, (3.15)

xj = xj + L Y j, (3.16)

with L and T scalar functions of τ. Under a gauge transformation the metric
changes according to

g̃µν(τ, xj) =
∂xα

∂xµ

∂xβ

∂xν g̃αβ(τ − T Y, xj − L Y j). (3.17)

Note that the transformed metric g̃µν is evaluated at the same space-time coordi-
nates. Expanding to first order, this gives the following transformation proper-
ties:

A = A − T′ −HT, (3.18)

B = B + L′ + kT, (3.19)

HL = HL − k

3
L −HT, (3.20)

HT = HT + kL. (3.21)

The transformation properties of the energy-momentum tensor may be obtained
along similar lines

δ = δ + 3(1 + w)HT, (3.22)

v = v + L′, (3.23)

πL = πL + 3
c2

s

w
(1 + w)HT, (3.24)

πT = πT, (3.25)
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where we defined the background sound speed

c2
s ≡ p′/ρ′. (3.26)

The transformation properties (3.18) – (3.25) make it obvious why we need gauge-
invariant variables. Take the energy density perturpation δ as an example. This
quantity has no absolute physical meaning, since δ transforms non-trivially under
a gauge transformation, or in other words: δ in one coordinate system is not
identical to δ in another coordinate system. Only the anisotropic stress πT has a
coordinate-free meaning. But by forming suitable linear combinations we may
define variables that do not change under gauge transformations. There is no
unique way to combine these variables but one very convenient definition is

V ≡ v − k−1H′
T, (3.27)

as the gauge-invariant velocity. Let us also define

∆ ≡ δ + 3(1 + w)

[

HL +
1
3

HT

]

, (3.28)

as the gauge-invariant energy density. As mentioned before, the anisotropic stress
is already gauge-invariant

Π ≡ πT, (3.29)

while the gauge-invariant pressure perturbation may be defined by

PL ≡ πL + 3
c2

s

w
(1 + w)Hk−1σg, (3.30)

with
σg ≡ k−1H′

T − B. (3.31)

Another quantity of interest is the entropy production rate [80] defined by

Γ ≡ πL − c2
s

w
δ, (3.32)

which, roughly speaking, measures the difference between background sound
speed c2

s = p′/ρ′ and adiabatic sound speed defined by3

c2
ad ≡ p

ρ

πL

δ
. (3.33)

The metric variables may also be combined to form gauge-invariant quantities

Φ ≡ HL +
1
3

HT − k−1Hσg, (3.34)

Ψ ≡ A − k−1Hσg − k−1σ′
g. (3.35)

3Note that c2
ad is not gauge-invariant whereas c2

s is.
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One may verify from the equations (3.18) – (3.25) that the gauge-invariant quan-
tities do not change under a gauge transformation.

How do we interpret these quantities? The simplest possiblity to see the phys-
ical meaning is to choose a set of hypersurfaces, this is the same as choosing a
gauge. For instance, the synchronous gauge choice corresponds to a transforma-
tion such that

A = B = 0. (synchronous gauge) (3.36)

In this case, we have chosen the hypersurface of free falling observers. A more
convenient choice is the conformal Newtonian gauge with the requirement

σg = 0. (Newtonian gauge) (3.37)

Here we have chosen hypersurfaces of isotropic expansion rate perturbation. The
interpretation of the quantities Φ and Ψ on this kind of hypersurfaces is surpris-
ingly simple:

g̃Newton
µν = a2 diag(−1 − 2ΨY, 1 + 2ΦY, 1 + 2ΦY, 1 + 2ΦY). (3.38)

It will be shown later that if we have vanishing anisotropic stress Π = 0 then
Φ = −Ψ. The metric is then the same as in the Newtonian approximation, hence
Φ may be interpreted as Newtonian potential4.

In Newtonian gauge PL is the physical pressure perturbation as can be seen
from setting σg = 0 in eq. (3.30).

The quantity ∆ is best interpreted in a frame where HL + 1/3HT = 0, which is
the hypersurface where the perturbation of the scalar curvature of constant time
hypersurfaces vanishes. There, ∆ = δ and so on this set of hypersurfaces ∆ is the
energy density perturbation. In conformal Newtonian gauge it takes the form

∆ = δNewton + 3(1 + w)Φ. (3.39)

We would like to emphasize again that the interpretation of these variables is tied
to a certain set of hypersurfaces; on different ones the interpretation may also be
different. For later it will be convenient to formulate the entropy production rate
(3.32) in terms of gauge-invariant variables:

Γ = PL − c2
s

w
[∆ − 3(1 + w)Φ]. (3.40)

A scalar field perturbation χ = φ + χ̃ transforms as a scalar and is given by

χ̃ = χ̃ − φ′T. (3.41)

4Hence the name ’Newtonian gauge’.
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The expression
X ≡ χ̃ − k−1σgφ′, (3.42)

is gauge invariant and has the interpretation of the scalar field perturbation in
conformal Newtonian gauge. Having defined our variables we can now proceed
and obtain the evolution equations for the perturbations.

3.2 Perturbation Equations and the CMB

The way to obtain the perturbation equations is clear: insert the perturbed metric
and energy-momentum tensor into the Einstein equations and combine to form
gauge-invariant quantities – we want the resulting equations to be manifestly
gauge-invariant. Since the calculation is rather lengthly and not very instructive,
we will present only the final results. First, one obtains algebraic relations for Φ

and Ψ:

−M2
p̄k2(Φ + Ψ) = a2 pΠ, (3.43)

a2ρ∆ = 2M2
p̄k2Φ − 3a2ρ(1 + w)(k−1HV − Φ). (3.44)

The dynamical equation is

a2(ρ + p)V = 2M2
p̄k(HΨ − Φ′). (3.45)

Using energy-momentum conservation one obtains

∆′ + 3(c2
s − w)H∆ + kV(1 + w) + 3HwΓ = 0, (3.46)

for the energy density perturbation and

V ′ = H(3c2
s − 1)V + k(Ψ − 3c2

s Φ) +
c2

s k

1 + w
∆ +

wk

1 + w

(

Γ − 2
3

Π

)

, (3.47)

for the velocity. The equation of motion for the scalar field perturbation is

X′′ = φ′(Ψ′ − 3Φ′) − 2a2U(φ),φΨ −
[

a2U(φ),φφ + k2
]

X − 2HX′. (3.48)

So far, we have not split these equations into the various different forms of en-
ergy. Any such splitting will need to take into account the non-gravitational inter-
actions between the various species. For the concordance model the only impor-
tant interaction for our purposes is Thomson scattering of photons by electrons.
This entrails solving the Boltzmann equation for the baryon-photon system. Un-
fortunately, the derivation is rather lengthly and since we will not need the re-
sult directly subsequently, we will not perform the derivation here. Instead, we
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give a short sketch on how to obtain the result. For more information the reader
is referred to the literature [81, 82]. The starting point is the general relativistic
Boltzmann equation for the photon distribution function [83]. One then connects
the temperature perturbation to the perturbed distribution function. The temper-
ature perturbation is then expanded in spherical harmonics5 [86]. At this point
one may integrate the equations and find the CMB spectrum. However, there
is a further simplification which speeds up computation tremendously. The re-
sulting equations may be formally integrated over τ, along the photon past light
cone [16, 87]. The benefit of this is that instead of solving a coupled system of
∼ 2000 differential equations, we only need to solve ∼ 20. This has made it
possible to compute models quickly and efficiently for comparison with obser-
vations using dedicated numerical packages such as CMBFAST [16], CAMB [17]
and CMBEASY [18]. The computation of the effect of tensor modes on the CMB
temperature and polarization spectrum follows along similar lines [88–90].

Assuming that the distribution of perturbations is Gaussian, the complete in-
formation contained in the CMB can be expressed by the respective cross correla-
tions of the spherical harmonics coefficients aX

lm of each observational quantity X

CXY
l =

1
2l + 1 ∑

m

〈aX∗
lm aY

lm〉, (3.49)

where the variables X and Y are T for the temperature, E for E-mode polarization
and B for B-mode polarization. We will discuss the two polarization types in sec-
tion 4.2.1. The expression given above is for extracting the power spectrum from
experimental data. The brackets indicate that we should average over different
independent experiments, but there is only sky we can observe. In other words,
we observe a particular realization of the statistical distribution of the coefficients
alm. For high multipoles this is not a problem since we sum over m and the vari-
ance of Cl will be small. But for low multipoles we have to take into account
that we measure only a particular realization for the computation of likelihoods,
a problem commonly called ’cosmic variance’. The variance of Cl is largest for
the quadrupole, C2. The WMAP experiment has already measured close to the
cosmic variance limit in the low multipoles, so improvements in this regime will
not be possible due to lack of statistics.

For illustrative purposes we give the theoretical expression for the scalar part
of the CTT

l power spectrum. In order to be able to do that one needs to know how
the perturbations are distributed over the scales k. This is where the initial power
spectrum Pg(k) comes in. It is defined by

〈ξ∗(k1)ξ(k2)〉 = Pg(k)δ(k1 − k2), (3.50)

5For the polarization, the decomposition is into spin-weighted spherical harmonics. Alter-
natively, one may use a generalized expansion if one employs the angular momentum method
of [84, 85].
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where ξ(k) is a random variable characterizing the initial amplitude of the mode
and the average is again taken over different realizations. Note that we have as-
sumed ξ(k) to be a Gaussian random variable, as a consequence all information is
contained in the power spectrum. From inflation one expects the power spectrum
of the initial scalar perturbations to follow a power law [25]

Pg(k) ∝ kns−4. (3.51)

The quantity ns is called the scalar spectral index6. This is referred to as scale-
invariant power spectrum, or Harrison-Zeldovich spectrum [91, 92]. The case
ns > 1 is called a blue tilted spectrum whereas ns < 1 is a red tilted spectrum.
There is a corresponding expression for the power spectrum of tensor perturba-
tions and an associated tensor spectral index, but we will not discuss this here.
The prediction of slow-roll single-field inflation is ns ≈ 1.

We are now ready to give the the part of CTT
l coming from scalar perturba-

tions7. After a lot of computation one arrives at the expression

CTT
l = (4π)2

∫

k2dkPg(k)

[∫ τ0

0
dτST(k, τ)jl(k(τ0 − τ))

]2

. (3.52)

where jl(x) is the spherical Bessel function of order l and ST(k, τ) is a source term
containing a combination of temperature and polarization perturbation moments
and their derivatives. These need to be computed by using the Boltzmann equa-
tions. The benefit of formally integrating over τ first is apparent in eq. (3.52). We
only need to solve the Boltzmann hierarchy for the sources ST(k, τ), and these are
no more than ∼ 20 equations, depending on the desired level of accuracy. Af-
terwards, one can integrate the above equation for every l and obtain the power
spectrum. In contrast, without this integration over τ we would have to solve the
hierarchy containing as many equations as we want to have multipoles, usually
in the range ∼ 2000. This is why one uses this formal integration, also called the
line-of-sight method [16]. From a practical point of view, since CXY

l is a smooth
function of l it is not evaluated at every multipole l but at suitable intervals. The
full function is then obtained by interpolating. The resulting savings in com-
puting time are substantial while the error compared to full-fledged Boltzmann
codes is minimal [93]. We will discuss the observational status of the CMB in
section 4.2.

6Sometimes one encounters the expression ∆2(k) which is related to Pg(k) by Pg(k) =

2π2∆2(k)/k3.
7There is also a contribution to Cl coming from tensor perturbations as well, but this case is

not covered here.
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3.3 Initial Conditions for Quintessence Universes

In order to be able to solve the perturbation equations we need to know the initial
conditions. Single-field inflation predicts that the initial conditions are adiabatic
and observations of the CMB seem to confirm this expectation. However, from
a theoretical point of view there is a large number of different initial conditions
possible, but not all of them are important. All those who decay will not be rel-
evant if constant or growing modes are present. We can make this a bit clearer
and determine the suitable initial conditions by an approach that employs eigen-
vectors and eigenvalues. The approach we describe here is an abridged version
of [94]. Suppose that the vector U contains all interesting dynamical variables for
which we want to find the initial conditions. The evolution equations follow a
matrix equation

d

d ln x
U = A(x)U, (3.53)

where the matrix A(x) encodes the evolution equations and x ≡ kτ ≪ 1 is small
– we are considering super horizon sized contributions only. As we will show in
a moment, to leading order one may consider a constant matrix A0 if we take the
super horizon limit x2 → 0. The task of finding the appropriate initial conditions
boils down to finding the eigenvectors to the largest eigenvalues of the matrix A0.
Suppose we have found the eigenvalues λi and corresponding eigenvectors U(i).
The evolution of a general perturbation vector U to leading order is given by

U(x) = ∑
i

ci

(

x

x0

)λi

U(i). (3.54)

The coefficients ci specify the initial contribution towards the general perturba-
tion U. As time progresses, components corresponding to the largest eigenvalues
Re λi will dominate (’dominating modes’) while those with smaller eigenvalues
will decay (’decaying modes’). Therefore, if we are not interested in the early time
behaviour it is sufficient to specify the initial contribution ci of dominant modes.
We will now proceed to find the eigenvalues and eigenvectors of these dominant
modes. We will be very brief, for a more thorough treatment see [94, 95].

Since the initial conditions will be set deep in the radiation dominated era, we
can take a = τ, and we can use the fact that baryons and photons are tightly cou-
pled which simplifies the expressions considerably. We define reduced velocity
Ṽ = V/x and reduced shear Π̃ = Π/x2.

Quintessence

By perturbing the energy-momentum tensor for quintessence one finds that there
are no spatial off-diagonal components and hence

ΠQ = 0. (3.55)
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By comparing the perturbed energy-momentum tensor of quintessence with the
definition of ∆ and V one obtains the gauge-invariant expression [76,96] in terms
of the scalar field variables:

∆Q = (1 + wQ)

[

3Φ − Ψ +
X′

φ′

]

+ XU(φ),φρ−1
Q , (3.56)

and

VQ = k
X

φ′ . (3.57)

Taking the time derivatives of these equations and using the equation of motion
(3.48) one obtains

∆′
Q = (1 + wQ)

[

2a2U(φ),φ

φ′

(

∆Q

1 + wQ
− 3Φ

)

+

(

6aa′U(φ),φ

kφ′ − k

)

VQ

]

+
w′

Q∆Q

1 + wQ
, (3.58)

V ′
Q = k

[

∆Q

1 + wQ
− 3Φ + Ψ

]

+ 2HVQ. (3.59)

These equations depend on the specific quintessence model through U(φ) and
φ′. We can, however, make progress if wQ is constant. Many quintessence models
have solutions for which φ approaches an attractor solution irrespective of its ini-
tial value. For these tracking quintessence models [14,15,56] the equation of state
of quintessence wQ is nearly constant during radiation domination. We will use
this tracking behaviour to simplify eq. (3.58). Taking the derivative of eq. (2.24)
one obtains

φ′′

φ′ =
d

dτ
ln φ′ =

1
2

Ω′
Q

ΩQ
+

H′

H . (3.60)

where we have set w′
Q = 0 in accordance with the tracking assumption. Taking

H = τ−1 for radiation domination and inserting the resulting expression (3.60)
into the Klein-Gordon equation (2.19) one finds

a2U(φ),φ

φ′ = −3(1 − wQ)

2τ
. (3.61)

Thus, for the radiation dominated universe and a tracking quintessence model
the relevant evolution equations are

∆′
Q = 3(wQ − 1)

k

x

[

∆Q − 3(1 + wQ)Φ +

(

3 − x2

3(wQ − 1)

)

(1 + wQ)ṼQ

]

, (3.62)
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and for the reduced velocity

Ṽ ′
Q =

k

x

[

∆Q

1 + wQ
− 3Φ + Ψ

]

+
k

x
ṼQ. (3.63)

Dark Matter

Setting c2
s = w = Γ = 0 in equations (3.46) and (3.47) we obtain

∆′
c = −kxṼc , (3.64)

Ṽ ′
c =

k

x
(−Ṽc + Ψ). (3.65)

Neutrinos

The multipole expansion of the neutrino distribution function can be truncated
beyond the quadrupole at early times [86, 97]. It is given by

∆′
ν = −4

3
kxṼν, (3.66)

Ṽ ′
ν =

k

x

(

1
4

∆ν − Ṽν −
1
6

x2Π̃ν + Ψ − Φ

)

, (3.67)

Π̃′
ν =

k

x

(

8
5

Ṽν − 2Π̃ν

)

. (3.68)

Photons and Baryons

Tight coupling between photons and baryons leads to Vb = Vγ and the evolution
equations become [76, 98]

∆′
γ = −4

3
kxṼγ, (3.69)

Ṽ ′
γ =

k

x

(

1
4

∆γ − Ṽγ + Ψ − Φ

)

, (3.70)

∆′
b = −k x Ṽγ. (3.71)

Potentials

There is no anisotropic stress for quintessence and the photon quadrupole, and
all higher multipoles are suppressed due to tight coupling, it follows that only
the anisotropic stress of the neutrinos is not negligible:

Φ = −Ψ − ΩνΠ̃ν, (3.72)

and the potential is given by

Φ =

∑
α=c,b,γ,ν,Q

Ωα

(

∆α + 3(1 + wα)Ṽα

)

∑
α=c,b,γ,ν,Q

3(1 + wα)Ωα + 2x2

3

, (3.73)
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where the index α runs over all species.
Rewriting these evolution equations (3.62) – (3.73) in terms of d/d ln x and

replacing Φ by means of (3.72) we obtain the following set of equations

d

d ln x
∆c = −x2Ṽc, (3.74)

d

d ln x
Ṽc = −2Ṽc + Ψ, (3.75)

d

d ln x
∆γ = −4

3
x2Ṽγ, (3.76)

d

d ln x
Ṽγ =

1
4

∆γ − Ṽγ + ΩνΠ̃ν + 2Ψ, (3.77)

d

d ln x
∆b = −x2Ṽγ, (3.78)

d

d ln x
∆ν = −4

3
x2Ṽν, (3.79)

d

d ln x
Ṽν =

1
4

∆ν − Ṽν −
1
6

x2Π̃ν + ΩνΠ̃ν + 2Ψ, (3.80)

d

d ln x
Π̃ν =

8
5

Ṽν − 2Π̃ν, (3.81)

d

d ln x
∆Q = 3(wQ − 1)

[

∆Q + 3(1 + wQ)

×(Ψ + ΩνΠ̃ν) +

(

3 − x2

3(wQ − 1)

)

(1 + wQ)ṼQ

]

, (3.82)

d

d ln x
ṼQ = 3ΩνΠ̃ν +

∆Q

1 + wQ
+ ṼQ + 4Ψ. (3.83)

From the structure of these equations one can see that they may be formulated as
a matrix equation as in (3.53) with a perturbation vector U given by

UT ≡ (∆c, Ṽc, ∆γ, Ṽγ, ∆b, ∆ν, Ṽν, Π̃ν, ∆Q, ṼQ). (3.84)

The matrix A(x) may be read off from equations (3.74) – (3.83). We find that in
the limit x2 → 0 the matrix A has a fourfold degenerate eigenvalue λ = 0, in-
dependent of Ωc, Ωb and ΩQ

8. One may check numerically that there are no
larger eigenvalues present. This means that these modes remain constant during
radiation domination in the super-horizon regime. We must now find the eigen-
vectors corresponding to the four eigenvalues λ = 0. In the super horizon limit
in a radiation dominated universe the matrix A(x) may be taken to be constant
A(x) ≈ A0 if we ignore the evolution of the small components Ωb ∝ Ωdm ∝ x.

8For wQ = 1 we find another eigenvalue with λ = 0. We will ignore this special case in what
follows.
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Quintessence has either equation of state wQ = 1/3, implying its contribution
remains constant, or it is small at early times and may be neglected9. Further,
assuming that A0 does not diverge in the limit x → 0 we may conclude that

U(x) = U0. (3.85)

Using the fact that we want the eigenvectors to the eigenvalue 0 we obtain the
leading order equation

A0U
(i)
0 = 0. (3.86)

Neglecting the very small contributions of baryons and cold dark matter to the
energy budget and taking the superhorizon limit we set Ωc = Ωb = x2 = 0.
Then equations (3.74), (3.76), (3.78) and (3.79) are automatically satisfied. The
remaining equations (3.75), (3.77), (3.80), (3.81), (3.82) and (3.83) give nontrivial

contstraints on U
(i)
0 . Note that for quintessence, only wQ appears in these equa-

tions. There is no dependence on the scalar field or the potential as long as we
are in the tracking regime with constant equation of state.

While any basis for the subspace spanned by the eigenvectors with an eigen-
value λ = 0 can be used to specify the initial conditions, it is still worthwhile to
use a basis that is physically meaningful. Following the existing literature, we
use the gauge-invariant entropy perturbation [76]

Sα:β ≡ ∆α

1 + wα
−

∆β

1 + wβ
, (3.87)

between two species α and β. The first perturbations one would try to find are
adiabatic perturbations, which are specified by the adiabaticity conditions Sα:β =

0 for all pairs of components. In our case, this results in eleven constraints10 for

the ten components of U
(i)
0 . It is a priori not clear that this has a solution, so

we will not include the quintessence component in the adiabaticity requirement.
Requiring adiabaticity between CDM, baryons, neutrinos and photons

∆ν = ∆γ =
4
3

∆c =
4
3

∆b, (3.88)

9An expanded treatment that covers the case of wQ < 1/3 and gives the contribution of first
order as well can be found in [94, 95].

10We have six constraining equations plus four constraints from the adiabaticity requirement
plus one constraint from the overall normalization, which is fixed by choosing a specific value for
∆γ.
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and using the six constraint equations we obtain the adiabatic initial conditions
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ṼQ



































adiabatic

= C



































3/4
(−5/4)P

1
(−5/4)P

3/4
1

(−5/4)P
−P

3(1 + wQ)/4
(−5/4)P



































, (3.89)

where P = (15 +4Ων)
−1 and C is an arbitrary constant. From ∆Q/∆γ = 3(1 + wQ)/4

we conclude that quintessence is automatically adiabatic if CDM, baryons, neu-
trinos and photons are adiabatic, independent of the quintessence model as long
as we are in the tracking regime.

The remaining three eigenvectors may be determined using another condition
that makes use of the curvature perturbation ζ on hyper surfaces of uniform total
energy density [99–101] 11

ζ =
∑α ∆αΩα

∑α 3(1 + wαΩα)
. (3.90)

If ζ = 0, energy density perturbations do not generate curvature. Such a pertur-
bation is a perturbation in the local equation of state. These modes are referred
to as ’isocurvature modes’ in the literature [103, 104]. They have been investi-
gated for the case of universes containing quintessence previously [105, 106] but
our treatment differs in approach and interpretation. A somewhat similar in-
vestigation for the case of quintessence and one fluid was carried out in [107].
Isocurvature modes may be generated by multi-field inflation or curvaton mod-
els [108]. In order to distinguish different isocurvature modes from one another
we require that all species except one and quintessence are adiabatic with respect
to each other. For the neutrino isocurvature mode we require

ζ = 0, ∆c = ∆b =
3
4

∆γ. (3.91)

11The definition given here is different from that of [77]. It coincides in the super horizon limit
for a spatially flat universe [102].
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In combination with the constraint equations we obtain
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ṼQ



































neutrino iso.

= C





































3/4
ΩγP

1
(

Ωγ + Ων + 15
4

)

P
3/4

−Ωγ/Ων

−15
4 P Ωγ/Ων

−3P Ωγ/Ων

0
ΩγP





































. (3.92)

Here, quintessence is not adiabatic with respect to the rest of the species, so we
could have labled this mode ’quintessence isocurvature’ as well. The remaining
two modes are CDM isocurvature

ζ = 0, ∆γ = ∆ν =
4
3

∆b, (3.93)

which gives
UT

CDM iso. = C(1, 0, 0, 0, 0, 0, 0, 0, 0, 0), (3.94)

and baryon isocurvature, defined by the requirements

ζ = 0, ∆γ = ∆ν =
4
3

∆c, (3.95)

yielding
UT

baryon iso. = C(0, 0, 0, 0, 1, 0, 0, 0, 0, 0). (3.96)

All these vectors are linearly independent. We have therefore identified the four
dominating modes. Arbitrary initial conditions may therefore be represented by
projecting a perturbation U at initial time onto the subspace spanned by the four
aforementioned vectors, as this is the part of the initial perturbations which will
dominate as time progresses. Interestingly one sees here that adding quintessence
does not increase the number of modes. This is due to the fact that none of the
perturbation equations for quintessence (3.82) and (3.83) equate to zero in the
super horizon limit; this holds for non-tracking quintessence models as well.

There are various studies that set constraints on the presence of isocurvature
modes based on observations [109–113]. At present, there is no indication that
the initial conditions are not adiabatic, and we will therefore only use adiabatic
initial conditions in what follows.
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4

Cosmological Probes

Very strange people, physicists – in my experience, those who aren’t
dead are in some way very ill.

Douglas Adams, The long dark tea-time of the soul

In this chapter we will give a thorough discussion of all observational data sets
implemented in the ANALYZETHIS! package of the CMBEASY software. We will
briefly describe how the χ2 statistic is computed for each data set. More complete
treatments can be found in the relevant papers of the experimental results. We
will also mention other cosmological probes such as weak lensing surveys and
Lyman-α forest data which are not yet implemented in CMBEASY.

4.1 Likelihood Computation

Before we delve into the different cosmological probes it is worthwhile to discuss
how one compares these data sets with models. Usually one uses the χ2 statistic
for describing ‘goodness of fit’. If a set of measured variables y

exp
i is Gaussian

distributed with known covariance matrix Vij = cov[y
exp
i , y

exp
j ] and we want to

compare with a theoretical model yth
i then the χ2 statistic is given by [114]

χ2 = ∑
i,j

(

y
exp
i − yth

i

)

V−1
ij

(

y
exp
j − yth

j

)

. (4.1)

The likelihood of obtaining the data x given the parameters θ of the model is then

L(x|θ) = exp(−χ2/2). (4.2)

35



36 Chapter 4 Cosmological Probes

The covariance matrix Vij is usually unknown and one needs other estimators
to determine it. Sometimes the distribution of variables is non-Gaussian and is
taken to be a lognormal distribution. In such a case one performs a variable trans-
formation in order to find the likelihood. Another important concept is that of the
window function. Usually instruments have limited resolution or there is a dif-
ferent weighting of data. In such a case one needs to convolve the theoretical
prediction yth

i with the experimental window functions wij before computing the
χ2 statistic

yth,conv.
i = ∑

j

wijy
th
j . (4.3)

Sometimes there is also an uncertainty in absolute calibration (for instance in
ground-based CMB experiments), which is taken care of by considering this as
a ’nuisance parameter’ and looking for the calibration for which the χ2 statistic
is minimal. Fortunately, when using the ANALYZETHIS! package one need not
worry about these details and constraining models becomes very easy.

4.2 CMB Experiments

Perhaps the most stringent constraints on cosmological parameters come from
observations of the anisotropies of the cosmic microwave background. These
anisotropies were first discovered by the COBE satellite [4] in 1992 and are at
a level of tenths of micro Kelvin. The experimental resolution was restricted to
the low multipoles, but already a lot of information could be extracted. With the
detection of the first acoustic peak by BOOMERANG and MAXIMA [115–117]
which indicated the universe to be spatially flat and the detection of the second
peak [118,119] in the CMB TT-spectrum the age of precision measurements of the
CMB was inaugurated. E-mode type polarization was first detected in the CMB
by the DASI experiment in 2002 [120]. The analysis of the CMB was pushed to a
new level by the observations of the WMAP satellite [121, 122] which measured
the TT and TE spectrum to unprecedented accuracy. At present, there is a large
number of ground based CMB experiments such as VSA [123], CBI [124] and
ACBAR [125] with even more planned. The PLANCK satellite [52], sheduled to
launch in 2007 will measure the TT spectrum even more accurately than WMAP,
maybe even detecting B-mode polarization which would make it possible to con-
strain inflation.

4.2.1 Different Types of CMB Spectra: CTT
l , CEE

l , CBB
l and CTE

l

We will shortly describe the different forms of spectra and the difference between
E-Mode and B-Mode polarization. There is an extensive literature on how to
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physically interpret the form of the TT spectrum and how it depends on cosmo-
logical parameters [126–129]. For model comparison one has to solve the per-
turbation equations for photons in order to determine the different spectra as
discussed in section 3.2. As mentioned earlier there are two distinct polarization
types. The reader may be familiar with the usual description of polarization by
Stokes’ parameters I, Q, U, and V [130]. In cosmology it is advantageous to use
their linear combinations in order to reduce to scalar quantities B and E by us-
ing spin-weighted spherical harmonics that differ by their transformation with
respect to space inversion (parity) [87,131,132]. E type polarization has even par-
ity whereas B type polarization has odd parity. It follows that there is no cross
correlation between B and T or B and E if there are no parity-violating interac-
tions since T has even parity. This leaves us with the four spectra CTT

l , CTE
l , CEE

l
and CBB

l . What is interesting is that B type polarization can not be generated by
Thomson scattering. But gravitational waves can lead to B type polarization of
the CMB and so one may infer information about primordial gravitational waves
from measurements of CBB

l . Since inflation generates these gravitational waves
one may constrain models of inflation once the CBB

l spectrum has been measured.
At present, no experiment has been able to detect B type polarization.

4.2.2 CBI, VSA and ACBAR

In CMBEASY we have implemented the latest data sets of the experiments giving
the most stringent constraints on the CMB. These are the Very Small Array (VSA)
[123] on Tenerife, the Cosmic Background Imager (CBI) [124] in the Chilenian An-
des and the Arcminute Cosmology Bolometer Array Receiver (ACBAR) [125] at
the South Pole. The latest data of all three experiments is displayed in Fig. 4.1.
All of this data is implemented in CMBEASY. If we use the WMAP data as well,
we cannot use all the data. WMAP uses the entire sky for measurements, and if
we want to have independent data sets1 we need to exclude the l region that is
covered by WMAP l ∼ 2 − 700. But since the WMAP measurements are so accu-
rate, this is not a problem. Since the measurements in the extremely high-l region
l ∼ 2000 − 3000 do not give good constraints on models and since their compu-
tation takes an unjustified amount of time, we limit the data set to l < 2000 for
efficient and fast model comparison. We use the procedures for likelihood com-
putation described by the VSA, ACBAR and CBI collaborations, with window
functions and calibration uncertainty.

1The ground-based observations only measure the CMB anisotropy in patches on the sky.
Since there is only one sky, if one experiment takes measurements from all of it we cannot use
other experiments if we want to have independent data sets.
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Figure 4.1: A compilation of the latest ground-based CMB measurements. VSA [123]
(circles, black), CBI [124] (squares, red) and ACBAR [125] (triangles, brown), all even
binning. We have also included the concordance model prediction for comparison.

4.2.3 WMAP

The Wilkinson Microwave Anisotropy Probe (WMAP) is a satellite situated at
the second Lagrange point at a distance of about 1.5 million km. Its measure-
ments of the low to intermediate multipole region (l ∼ 2 − 700) of the CMB are
at present the most accurate available. We display the first year WMAP data TT
power and TE cross correlation spectrum [121, 122] in fig. 4.2. Looking at this
figure, it becomes clear why the WMAP measurements were such a large step in
observational cosmology. The first acoustic peak is clearly visible as is the sec-
ond. We also display the data points from ground-based CMB experiments that
we include for constraining models (see section 4.2.2). The WMAP χ2 computa-
tion routines are slightly modified C++ ports of the likelihood code [133] avail-
able at the LAMBDA web site [134]2. When computing the χ2 statistic we take
the amplitude of the power spectrum giving the optimal fit. In other words, we
marginalize over the amplitude of the power spectrum.

2It was found that the likelihood code provided by the WMAP team is inaccurate for very low
multipoles [135]. However, since the impact on parameter constraints is negligible we will use
the WMAP procedure.
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Figure 4.2: The data set of CMB experiments used for constraining models. We have
displayed the binned TT and TE spectrum of WMAP [121, 122] (diamonds, blue) and a
selection of measurements in the high-l region l ∼ 700 − 2000 from VSA [123] (circles,
black), CBI [124] (squares, red) and ACBAR [125] (triangles, brown). The concordance
model prediction is shown for comparison.

4.3 SDSS and 2dFGRS

Observations of the CMB tell us something about the distribution and amplitude
of anisotropies when the primordial photons last interacted with free electrons.
This was at a redshift of z ≈ 1100. But we can also measure the distribution of
anisotropies today and by doing so we may infer something about the growth of
these anisotropies between z ≈ 1100 and z = 0. One way to measure the distribu-
tion of anisotropies today is by large scale structure observations. One observes
objects such as galaxies and measures their redshift. This data may then be con-
densed into a power spectrum P(k) that is somewhat alike to the CMB power



40 Chapter 4 Cosmological Probes

0.01 0.1

k/h [Mpc
-1

]

10
3

10
4

10
5

P
(k

) 
[h

-3
 M

p
c3

]

2dFGRS (147,024 galaxies)

SDSS (205,443 galaxies)

ΛCDM best fit model

Figure 4.3: The galaxy power spectrum as measured by the large scale structure surveys
2dFGRS [8] (squares, brown) and SDSS [9] (circles, black) and the prediction of the con-
cordance ΛCDM model without window functions and bias (see text). The nonlinear
regime starts at k/h & 0.15 Mpc−1.

spectrum and is defined to be the fourier transform of the two-point correlation
function of the energy density perturbation

〈δ(x)δ(x + r)〉 ≡
∫

d3kP(k) exp(ik· r). (4.4)

Assuming that the anisotropies are Gaussian distributed all information is con-
tained in this spectrum as there are no higher correlation moments. Unfortu-
nately, the situation is a bit more complicated – it turns out that perturbation the-
ory is no longer valid on all scales; for instance, the structures at small scales we
see today are no longer small perturbations in the energy density. Also, gravita-
tional collapse of the anisotropies leads to the formation of galaxies and makes the
distribution of anisotropies non-Gaussian. But fortunately, on the largest scales
perturbation theory is still valid as is our assumption of Gaussianity (see [136] for
a full treatment). There are two major collaborations that measure the distribu-
tion of the galaxies: the two-degree Field Galaxy Redshift Survey (2dFGRS) [8]
and the Sloan Digital Sky Survey (SDSS) [9] whose current results we display in
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figure 4.3. What these experiments measure is the galaxy power spectrum PG(k),
but what we really would like to have is the CDM power spectrum PCDM(k). It
was found that there is a bias b ≡ PG(k)/PCDM(k) between these two spectra
that is independent of scale for large scales and that the non-linear regime starts
at about the same scale where one has scale dependent bias [137, 138]3. There-
fore we may use these galaxy power spectrum measurements for constraining
models in a linear perturbation theory setting if we only use the data at scales
where the anisotropies are linear, k/h . 0.15 Mpc−1. In order to compare the
theoretical power spectrum with the data one must compute the power spectrum
at the effective redshift of the survey, z = 0.17 for the 2dFGRS and z = 0.10 for
the SDSS. In CMBEASY we use the window functions and marginalize over bias,
alternatively the bias may be taken as another parameter.

4.4 Supernovae Ia

Another very important cosmological probe are measurements of the expansion
history H(z). It is directly connected to the constituents of the universe by the
Friedmann equation (2.11). One method to do this is by measuring the luminosity
distance dL of objects at different redshifts z and comparing with predictions of
the expansion history via eq. (2.33). For a ΛCDM cosmology, dL takes the form

dLH0 = (1 + z)

∫ z

0

[

Ω
(0)
rad(1 + z̃)4 + Ω

(0)
mat(1 + z̃)3 + Ω

(0)
Λ

]−1/2
dz̃. (4.5)

For models with a quintessence component one has to replace Ω
(0)
Λ

with the ex-
pression for a variable equation of state:

Ω
(0)
Q (1 + z)3 exp

[

3
∫ z

0

wQ(z̃)

1 + z̃
dz̃

]

. (4.6)

In order to be able to determine dL from eq. (2.32) one needs ’standard candles’,
objects whose absolute luminosity L is known. It seems that supernovae Ia (SNe
Ia) are such standard candles, they have about the same absolute luminosity, there
is little evolution over cosmological time scales and they are very bright, making
it possible to observe them over cosmological distances. The absolute luminosity
of SNe Ia is commonly determined by light-curve fitting. Observations of SNe Ia

3We would like to add that in transforming the measured galaxy power spectrum from redshift
to real space one needs a cosmological reference model for the background. Using the galaxy
power spectrum for constraining a model that differs significantly with respect to the expansion
history of the assumed reference model z . 0.2 one will get biased results. For the models we are
considering in this work we may assume that there is no problem since they are close to a ΛCDM
model at late times.
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Figure 4.4: The supernovae Ia compilation of Riess et al. [6]. We have plotted the loga-
rithm of the luminosity distance minus a fiducial model (FM) of a spatially flat universe
that neither accelerates nor decelerates, see section 4.4 for details. As a reference we also
display the luminosity distance for the ΛCDM concordance model with M = 25.18.

have frequently been used to constrain the equation of state of dark energy ever
since measurements first indicated that there is such a component in the universe
[10–12, 139]. The most complete available data set of SNe Ia is the compilation
of Riess et al. [6]. In Fig. 4.4 we display the logarithm of the luminosity distance
minus a fiducial model (FM). We have chosen a spatially flat universe that neither
accelerates nor decelerates as fiducial model, where dL is given by

dLH0 = (1 + z) ln(1 + z). (4.7)

This corresponds to a universe that contains only one fluid with equation of state
w = −1/3. We have also subtracted a constant factor C = 43.34 so that at z = 0
the difference 5 log10(dL H0)− 5 log10([1 + z] ln(1 + z)) − C = 0. Constraints from
SNe Ia require only the background cosmology and do not require solving the
perturbation equations.

The χ2 statistic for this dataset is determined as follows. First, defining

µ ≡ 5 log10(dLH0), (4.8)
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we obtain

χ2
SNeIa =

∑i(µ
exp
i + M− µtheor

i )2

σ2
i

, (4.9)

where M is a nuisance parameter describing the absolute luminosity of the SNe
Ia. By minimizing χ2 with respect to M we can remove this parameter. When
using SNe Ia for setting constraints on models, we will only use the ’gold’ set as
described in [6] with minimization with respect to M for each model4.

4.5 Lyman-α Forest

We will now turn to cosmological probes that are not yet implemented in CM-
BEASY. We have seen in section 4.3 that we may use the CDM power spectrum at
scales k/h . 0.15 Mpc−1 where we are still in the linear regime. One interesting
way to extend this range to smaller scales is by measuring the power spectrum at
high redshift. Today the perturbations at a given scale may be non-linear, but at
early times the gravitational collapse may not yet have progressed far enough for
the perturbations to become non-linear. As a consequence they may be computed
with linear perturbation theory. The problem is to measure the matter distribu-
tion at high redhift. Since the objects grow fainter with increasing redshift, it is
no longer feasible to measure the spectra of a large number of galaxies. But there
are very bright objects whose spectra may be measured: quasars. From a special
part of their spectrum, the so-called Lyman-α forest one can extract information
about the matter distribution in hydrogen gas clouds and as a consequence, one
may determine a power spectrum. The spectrum of a quasar is essentially flat at
shorter wavelengths than the Lyman-α wavelength. Since the radiation from a
quasar redshifts as it travels towards us, there will be absorption lines appearing
in this flat spectrum from the hydrogen clouds the radiation encounters on its
way towards us. These absorption lines depend on the density of the gas clouds
and on the position in redshift space. Redshifts of z ≈ 3.8 have been reached us-
ing this technique. At present, power spectra have been determined from quasars
measured by the SDSS [140] and the 2dFGRS [141]. The problem is that hydro-
dynamical simulations are needed to determine the resulting power spectrum
and it may depend strongly on the assumed cosmology. Also, there is still some
uncertainty concerning systematic effects. Nevertheless the Lyman-α forest has
already successfully been used to constrain models [142] and will be an important
cosmological probe in the near future.

4In CMBEASY it is also possible to use the full (’silver’) data set.
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4.6 Weak Gravitational Lensing

Instead of determining the power spectrum just today, we may also endeavour
to measure it at different redshifts. In this way we will get information on the
evolution of the anisotropies and thus it will be possible to constrain models, es-
pecially the evolution of the equation of state of dark energy wDE if present. This
may be accomplished by weak gravitational lensing surveys [143]. The idea is to
measure the shapes of distant galaxies that have been distorted by gravitational
lensing of massive structures that are between us and the galaxy. From the shapes
one may extract the shear field and, eventually, the power spectrum at large red-
shifts z ≈ 1. One survey that is presently taking data is the cosmic lens all-sky
survey (CLASS) [144, 145]. The data is not yet competitive with other cosmo-
logical probes but will become so in the future as a number of dedicated weak
lensing surveys are planned or currently taking data such as the CFHTLS [146].
For a review of the theory and experimental technique see [147, 148].

4.7 Primordial Element Abundances

One very restrictive cosmological probe are primordial element abundances. The
amount of the light elements such as 4He, deuterium and lithium that were gen-
erated during big bang nucleosynthesis (BBN) sets limits on the expansion his-
tory at times z ∼ 1010. This corresponds to limits on the energy density at
that time through the Friedmann equation. If one can measure the amount of
light elements that were generated during BBN one may learn something about
the composition of the universe. Based on observations one may, for instance,
compute the number of neutrino species, as more species lead to faster expan-
sion. Primordial element abundances are also useful in restricting models of
early dark energy [14, 61]. Unfortunately the measurements of abundances are
plagued by various systematic effects. The elements in question are also gener-
ated by thermonuclear reactions within stars and therefore contaminate the mea-
surements, other systematic effects also play a role. As a result, the reported
abundances vary across the groups. For instance, Izotov and Thuan [149] quote
two different values for the primordial 4He abundance for two different equiv-
alent width samples of spectra. The one is YHe = 0.2421 ± 0.0021 and the other
YHe = 0.2444 ± 0.0020. Another estimate was obtained by Fields and Olive [150]
YHe = 0.238 ± 0.002 (statistic) ± 0.005 (systematic). This discrepancy is most
likely attributable to unknown or underestimated systematic effects. At present,
there is some strain between experiment and theory, the theory consistently pre-
dicting higher abundances for 4He and lithium. We will consider this point thor-
oughly in chapter 7. Current experimental limits on the primordial element abun-



4.7 Primordial Element Abundances 45

dances may be found in [151].
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5

Markov Chain Monte Carlo

Simulation

The probability of the bread falling buttered side down is directly pro-
portional to the price of the carpet.

Murphy’s Laws

In the previous chapter we described a variety of cosmological probes that may
be used to constrain theoretical models. In this chapter we want to discuss how
one obtains these constraints. There is a number of numerical tools, such as CMB-
FAST [16], CAMB [17] and CMBEASY [18] for calculating the prediction of a given
model for the observational data. Once we have done so we can compute the
χ2 statistic for each observational data set. For each model we need a set of pa-
rameters. Suppose we have a cosmological model M with n parameters θ(i) and
we would like to obtain the distributions of these parameters for estimating con-
fidence regions and means. One could use the naive approach and perform a
grid computation: discretize each parameter range into a points and evaluate the
likelihood of the model M at each point in the resulting lattice.

The problem is that the grid approach quickly becomes computationally un-
feasable. For a grid of n parameters subdivided into a points we have to evaluate
an models, so computing time grows exponentially with the number of param-
eters. Furthermore, many models computed in this way may have negligible
weight due to low likelihood.

Markov Chain Monte Carlo (MCMC) simulation offers an alternative to this
brute-force approach. Using this technique, we can directly draw samples from
the underlying distribution and the computational effort increases only linearly

47
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with the number of parameters. Obtaining the statistical properties of the param-
eters is then a straightfoward excercise.

MCMC simulation has been widely used since it was first introduced [19,
152] for constraining various models [63, 133, 153, 154]. There are some soft-
ware packages that can set up MCMC simulations such as COSMO-MC [155] or
ANALYZETHIS! [20]. We will now describe the general idea of Markov Chain
Monte Carlo simulation and then turn to the specific implementation in the AN-
ALYZETHIS! package of the CMBEASY software.

5.1 Bayesian Inference and Markov Chains

We will give a short introduction to Bayesian inference and Markov Chains in
this section. For a more thorough treatment the reader is referred to the existing
literature [156–159]. Suppose we have a set of observed data x = (xn, . . . , x0) with
all of the xi independent and a model with parameter vector θ containing all pa-
rameters of the model. The probability of obtaining x given parameters θ is called
the likelihood L(x|θ). We may also have some knowledge of the distribution of
the parameters before x was observed. For instance, some regions of parameter
space may be excluded for physical reasons (such as a negative energy density)
or there have been other observations giving us some idea about the distribution
of θ. This knowledge prior to observing x is encapsulated in the prior distribution
P(θ) of θ. Then the probability distribution of θ given observations x and a prior
P(θ), the so-called posterior distribution π(θ|x), is given by Bayes’ theorem:

π(θ|x) =
P(θ)L(x|θ)

∫

P(θ)L(x|θ)dθ
. (5.1)

In the following, we will write π(θ) for the posterior distribution, it being under-
stood that x has been observed. From the posterior π(θ) we may then obtain the
marginalized distribution of parameter θ(i) by

π(θ(i)) =

∫

π(θ(1), . . . , θ(n))dθ(−i), (5.2)

where the integration is over all parameters except θ(i). The mean of a function
f (θ) is given by

E[ f (θ)] =

∫

f (θ)π(θ)dθ
∫

π(θ)dθ
. (5.3)

We will now turn towards MCMC simulation itself, starting with Markov Chains
in general. The general idea is to directly draw samples from the posterior dis-
tribution π(θ). The statistical properties of π(θ) such as confidence regions may
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then be estimated using this sample1. A way to directly draw samples from π(θ)

is by using a Markov Chain. Suppose we generate a series of random variables
from a state space S (in our case, different parameter vectors), (θ0, θ1, . . . , θn),
such that the next state θn+1 ∈ S in this sequence is sampled from a distribution
PT(θn+1|θn) that depends only on the present state θn of the series. This sequence
is then called a Markov Chain. If the transition probability between two states
does not depend on n the chain is said to be homogeneous. A fundamental con-
cept of Markov Chains is the stationary distribution D(y). A distribution D(y) is
said to be a stationary distribution of a chain with transition probabilities PT(z|y)

if

D(y) =

∫ ∞

−∞

D(z)PT(y|z)dz. (5.4)

From this equation it is clear why this is called the stationary distribution: once
the chain reaches a stage where D(y) is the distribution of the chain, the chain re-
tains this distribution in all subsequent stages. One can show that if the Markov
Chain has certain properties then the stationary distribution will be reached irre-
spective of the initial distribution of the chain [157, 160]. So D will be reached as
n → ∞. In this sense, it is also referred to as the limiting distribution. The task
is now to find an algorithm for the Markvo Chain that satisfies the requirements
for the existence of the limiting distribution and gives us the posterior π(θ) as the
limiting distribution. We can then let the chain run until it has reached the sta-
tionary distribution2, the chain points are then samples of the posterior π(θ) and
we can constrain our model parameters. One such algorithm is the Metropolis
algorithm.

5.2 The Metropolis Algorithm

If we generate a Markov Chain using the Metropolis-Hastings algorithm then the
limiting distribution exists and is identical to the posterior π(θ) [161,162]. In this
algorithm the transition probability PT between two states θi−1 and θi is given by

PT(θi, θi−1) = min
[

1,
L(x|θi)P(θi)q(θi , θi−1)

L(x|θi−1)P(θi−1)q(θi−1, θi)

]

, (5.5)

where q(θi−1, . ) is a proposal distribution. If the proposal distribution is symmet-
ric q(y, z) = q(z, y) then this is called the Metropolis algorithm [162]. If we use
flat priors P(θ) on the parameters the algorithm works as follows [133]:

1For instance, one can infer the mean of parameter θ(i) from the sample of parameter values

θ1, . . . , θn (the ergodic average): E[θ(i)] = 1
n ∑

n
j=1 θ

(i)
j

2In practice the stationary distribution is reached after a finite number of steps which makes
it possible to use the chain output after a certain number of steps as a sample of the stationary
distribution.
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1. Choose randomly a starting parameter vector θ0 within the flat prior P(θ)

2. Compute the likelihood L0(x|θ0) of observing the experimental data given
the parameters θ0.

3. Obtain a new parameter vector by sampling from a proposal distribution
q(θi, θi−1) ( see section 5.3 ).

4. Compute the likelihood Li(x|θi).

5. If Li > Li−1 save θi as a new point in the chain (’take the step’) and go to (3).

6. If Li < Li−1 generate a random variable u from the flat distribution [0, 1]. If
u < Li/Li−1 take the step as in (5). If u > Li/Li−1 reject θi, save θi−1 as new
point in the chain and go to (3).

If we end up with a parameter outside the prior in step (3), we assign likelihood
zero to this point. The algorithm is illustrated in figure 5.1.

The resulting chain is then a sample of π(θ) once the chain has reached the
stationary distribution. The points of the chain may then be used to estimate con-
fidence regions of the parameters. We will now discuss the specific implementa-
tion of this algorithm in the ANALYZETHIS! package of the CMBEASY software.

5.3 Convergence and the Proposal Distribution

In the above discussion we skipped over two important details: how do we know
that the chain has reached the stationary distribution, that is, when has a chain
converged? And how do we choose the proposal distribution such that the con-
vergence is optimized?

5.3.1 Convergence Testing

A chain has converged when the chain points constitute a sample from the poste-
rior. In particular, there should be no dependence on the starting points. Our task
then, is to find the point in the chain where we can assume that we are sampling
from the posterior and delete all points prior to that (the so-called ’burn-in’) from
the chain to eliminate any dependence of our parameter estimates on the starting
points.

This task can be made much easier by running more than one chain with dif-
ferent starting positions and then comparing the distribution of points of each
chain. If they all give the same distribution we can assume that they all have con-
verged and remove the burn-in from all chains to obtain the distribution of our
parameters.
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Figure 5.1: Illustrating the Metropolis algorithm with flat priors for two parameters.
Filled circles represent points belonging to the chain, empty circles are proposed but
rejected points not belonging to the chain. In this example, the chain would be
[θ0, θ1, θ1, θ3, θ4, . . .]

The convergence test used in the ANALYZETHIS! package is due to Gelman
and Rubin [163]. The idea is to run multiple chains and compare the variance
of the parameters within one chain with the variance between the chains. To be
precise, consider using the last n points of each of m chains for the test. Let ψij

label one entry of the parameter vector θ at point j = 1, . . . , n in chain i with ψi

the mean for chain i and ψ the mean of all chains. The variance between chains B

and the within-chain variance W are then given by

B =
n

m − 1

m

∑
i=1

(

ψi − ψ
)2 , (5.6)

W =
1
m

m

∑
i=1

s2
i , where s2

i =
1

n − 1

n

∑
j=1

(

ψij − ψi

)2 , (5.7)

and the quantity

R =
[(n − 1)/n]W + (1/n)B

W
, (5.8)
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should converge to one. In a realistic situation, the numerator is an overesti-
mate whereas the denominator is an underestimate of the variance of the station-
ary distribution of ψ. Gelman and Rubin suggest that a value of R < 1.2 for
all parameters indicates that the chain is sampling from π(θ), but one may take
more stringent constraints [133]3. From this point onwards one may use the chain
points for parameter estimates. This is not a mathematically stringent method to
determine convergence but it nevertheless works well in practical applications
which is why this convergence testing criterion is used in ANALYZETHIS!.

5.3.2 Optimizing the Proposal Distribution

Having described our convergence test we can now address the issue of choosing
the proposal distribution q(θi−1, θi) such that the burn-in is minimized. In princi-
ple, the proposal distribution can have any form as long as we can reach the entire
parameter space with it. However, for optimal convergence q(θi−1, θi) should be
as close as possible to the likelihood surface of the posterior π(θ). Of course, the
distribution of the posterior is not known a priori and hence we must resort to
estimation procedures. Based on previous MCMC simulations we can assume
that most of the parameters have approximately a Gaussian distribution. A first
step in obtaining a good proposal distribution is therefore to use such a Gaussian
distribution as proposal distribution with variances σi for each parameter. Before
we can use this proposal distribution, we have to specify the variances σi for each
parameter. We can make a guess and then use an adaptation scheme during the
run to optimize the acceptance of proposed points; for instance, we can estimate
the σi’s from the points of the chain.

This ’naive Gaussian sampler’ approach will work fine, but it can still be im-
proved. There may be a degeneracy between the parameters, e. g. if one increases
θ(1) and decreases θ(2) by a suitable amount one may obtain the same likelihood
for the resulting model. In this case, our sampler will not be as good as it could
be as illustrated in figure 5.2. So instead of sampling from a Gaussian distribu-
tion for each parameter separately we can sample from a multivariate Gaussian
with covariance matrix estimated from the previous points in the chain. By tak-
ing into account the full covariance matrix we essentially approximate the like-
lihood contour in extent and orientation – the Gaussian samples are taken along
the principal axis of the likelihood contour. Writing θi−1 − θi = ui for notational
convenience, the proposal distribution we use for the steps is

q(θi−1, θi) ∼ N exp
[

−1
2

uT
i S−1ui

]

, (5.9)

3In our implementation the value of R at which we assume the chains to have converged may
be chosen freely.
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Figure 5.2: The naive Gaussian sampler for two partially degenerate parameters. The
(unknown) true likelihood surface is shown along with the proposal distribution with
arrows (stylized). This proposal distribution does not take into account the degeneracy
among the parameters θ(1) and θ(2), leading to slow mixing.

where N = (2π)−K/2 (det S)−1/2 and S is the covariance matrix

S =











σ2
1 ρ12 . . . ρ1K

ρ21 σ2
2 . . . ρ2K

...
. . .

...
ρK1 . . . ρK−1K σ2

K











. (5.10)

The sampling is most easily performed by diagonalizing the covariance matrix

TTS T = D ⇐⇒ TTS−1T = D−1, (5.11)

where T is an orthogonal matrix and D a diagonal matrix with entries σ̃i. Then
equation (5.9) becomes

q(θi−1, θi) ∼ N exp
[

−uT
i TTTS−1 TTTui

]

(5.12)

= N exp
[

−1
2

vT
i D−1vi

]

, (5.13)

where vi ≡ TTui. Thus, the procedure for obtaining a sample ui is as follows:

1. Find the eigenvalues σ̃2
j and eigenvectors of S. Construct the transformation

matrix T from the eigenvectors.
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2. Draw Gaussian samples with variances σ̃2
j , thereby obtaining the vector vi.

3. Then ui = Tvi is the desired sample from the multivariate Gaussian with
covariance matrix S.

The convergence can be further improved by scaling the covariance matrix S with
a variable factor β. Using β, we can cope better in situations where the projected
likelihood takes on banana shapes such as in [154]. It also improves the conver-
gence during the early stages when the low number of points available limits the
estimate of the covariance matrix S. Using this method, convergence is speeded
up considerably relative to the naive Gaussian sampler method4.

There is a caveat, though. One can show that modifying the proposal distribu-
tion based on previous chain data during the run may lead to a wrong stationary
distribution π′(θ) [157,159]; after all, the requirement that each point in the chain
only depend on the previous point would be violated and we would no longer
have a Markov Chain. Therefore we only apply the dynamical strategy of find-
ing an optimal step proposal during the early stages of the simulation. When the
R-criterion for convergence is satisfied we ‘freeze in’ the proposal distribution,
that is, the covariance matrix S is fixed from then on. All chain points before this
freeze in should be discarded.

5.4 Model Analysis Example: ΛCDM

5.4.1 Model & Used Data Set Specification

In order to make the whole procedure a bit clearer, we will constrain a ΛCDM
cosmology using MCMC simulation. The model has five parameters: the re-
duced baryon and matter densities Ωbh2 and Ωmh2, the Hubble parameter h =

H0/(100 km s−1Mpc−1), the optical depth to the last scattering surface τ and the
spectral index of the initial power spectrum ns. The flat priors and initial stepsizes
used are displayed in table 5.1. The limits of the parameter ranges are chosen in
accordance with previous results [27,29]. The cosmological constant Λ is the dark
energy component and we limit ourselves to a spatially flat universe. We neglect
any tensor contributions and we marginalize over the amplitude of the initical
power spectrum, the bias b of the CDM power spectrum PCDM(k) and the abso-
lute luminosity of the supernovae M. The data used for constraining the model
was WMAP, ACBAR, CBI and VSA as displayed in figure 4.2, the SDSS data with
k/h < 0.15 Mpc−1 and the SNe Ia ’gold set’ data of Riess (see the previous chap-
ter for relevant details and references). In order to discuss the influence of the

4A different proposal distribution, applicable to the local Metropolis algorithm as used in the
CAMB code has been suggested in [164].
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Parameter Min Max stepsize σ

Ωbh2 0.016 0.03 0.00136
Ωmh2 0.05 0.3 0.0144

h 0.60 0.85 0.032
τ 0 0.9 0.068
ns 0.8 1.2 0.037

Table 5.1: Flat priors on the parameters and initial stepsizes used in our MCMC simula-
tion for all three runs.

different data sets on the parameter constraints, we will run three simulations
with CMB only, CMB + SNe Ia and with CMB + SNe Ia + LSS (’full set’) data
combined. The MCMC simulations were set up using four chains, with adaptive
stepsize using the full covariance matrix that freezes is as soon as convergence is
reached. The requirement for convergence was set to be R < 1.1. In the full set
simulation, convergence was reached after ≈ 1000 models, the stepsize adapta-
tion was then frozen in. After burn-in removal the total number of chain points
used for analysis was 55,548, the numbers for the two other simulations were at
the same order of magnitude. In order to illustrate convergence we have plotted
the value of h for two chains in figure 5.3 for the first 1000 models.

5.4.2 Output Analysis

We have integrated a graphical user interface (GUI) in the CMBEASY software that
allows one to quickly and conveniently process and analyze the raw chain data
files generated in a MCMC simulation. One can also plot and print directly from
the GUI.

For plotting one-dimensional marginalized distributions we fit the histograms
extracted from the chains using a fit with seven parameters ai

f1D(x) = exp

(

6

∑
i=0

aix
i

)

, (5.14)

while for plotting the two-dimensional distributions we fit the histograms using
a fifteen parameter function in two dimensions

f2D(x, y) = exp

(

∑
0≤i+j≤4

bijx
iyj

)

. (5.15)

The one-dimensional marginalized distributions for the five parameters are de-
picted in figure 5.4 for all three simulations and the two-dimensional distribu-
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Figure 5.3: The value of parameter h for the first thousand models of chains one (squares,
red) and two (circles, blue) of the five-parameter ΛCDM example run using CMB + SNe
Ia + LSS data (see text). Even though the chains start in completely different regions of
parameter space, they quickly sample from the same distribution. Convergence diagnos-
tics indicate that all chains have converged after ≈ 1000 steps.

tions for the full set simulation are shown in figure 5.5. The resulting confidence
regions for each parameter are displayed in table 5.2.

We will now discuss the impact of the different observational data sets on the
parameters. Consider figure 5.4. The CMB-only data set does not well constrain
Ωmh2. Adding supernovae improves the bounds on the total matter content con-
siderably, because the lumiosity distance depends sensitively on Ωm. Adding
large scale structure data breaks the degeneracy between matter contribution and
initial power spectrum amplitude, hence we obtain still tighter bounds. Note that
the distribution of Ωmh2 obtained from CMB-only and CMB + SNe Ia + LSS data
sets differ somewhat. This has already been noted in [29]. Even from CMB mea-
surements alone we can infer the presence of dark matter at high significance. In
contrast, the baryon contribution Ωbh2 is already well constrained by the CMB
alone, adding SNe Ia and LSS data only improves the bounds slightly. The CMB
is most sensitive to this parameter since what one observes are essentially oscilla-
tions in a photon-baryon plasma, the density of baryons is a critical parameter for
the shape of the CMB spectrum. SNe Ia and LSS measurements are more or less
insensitive to this parameter, though hints at oscillations in the power spectrum
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Figure 5.4: One-dimensional marginalized distributions for the five parameters. Con-
straints from CMB only (dashed, red), CMB + SNe Ia (dotted, blue) and CMB + SNe Ia +
LSS (straight, black).

Parameter CMB only CMB + SNe Ia CMB+ SNe Ia + LSS

Ωbh2 0.02261+0.0012
−0.0011 0.02257+0.0011

−0.0009 0.02278+0.0009
−0.0009

Ωmh2 0.1306+0.013
−0.012 0.1393+0.0076

−0.008 0.144+0.0063
−0.0066

h 0.716+0.053
−0.041 0.699+0.024

−0.024 0.682+0.021
−0.021

τ 0.1019+0.081
−0.052 0.0941+0.058

−0.043 0.0938+0.051
−0.043

ns 0.954+0.032
−0.024 0.953+0.024

−0.021 0.956+0.023
−0.019

Table 5.2: Constraints on the parameters of the ΛCDM model from a combination of data
sets. These confidence intervals were generated from the one-dimensional marginalized
distributions (errors are given at 68.3 % confidence level).
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have been detected [8].
The Hubble parameter h, is only slightly constrained by CMB measurements

alone. Adding SNe Ia data considerably improves the bounds, adding large scale
structure data does not improve the bounds very much. The bounds obtained
for the Hubble parameter for the full data set are consistent with the HST key
project value h = 0.72 ± 0.08 [7] derived from measuring the local Hubble flow
or the results from the SNe Ia Hubble diagram h = 0.73 ± 0.04 (statistical) ±
0.05 (systematic) [165]. Even though the optical depth does not directly influence
SNe Ia predictions, adding SNe Ia data tightens the bound on the optical depth τ

as seen in figure 5.4. The mechanism is somewhat indirect: SNe Ia data tightens
the bound on Ωm and thus limits the range of allowed values for τ, h and ns

from CMB measurements. As we marginalize over the bias of the SDSS data,
large scale structure does not add further to the bounds on τ. This concludes our
discussion of MCMC simulation.
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6

Constraining the Equation of State of

Dark Matter

Space is big. You just won’t believe how vastly, hugely, mind-bogglingly
big it is. I mean, you may think it’s a long way down the road to the
chemist’s, but that’s just peanuts to space.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In this chapter we would like to constrain the dark matter equation of state using
cosmological observations and Markov Chain Monte Carlo simulation [166]. The
question we want to answer is: given the information from present cosmological
observations, how sure can we be that the equation of state of dark matter is
wDM = 0? Or, phrased differently: how cold is cold dark matter?

In this context, we do not want to limit ourselves to a non-negative equation
of state since the nature of dark matter is not yet clear. There are a number of
particle dark matter candidates and numerous experiments attempting to detect
dark matter particles ( see section 2.2.4 and references therein). However, dark
matter may not be a particle at all, it may be something different, such as non-
linear fluctuations of a scalar field [167]. We will try to keep an open mind and
check if a significantly negative or positive equation of state can be ruled out
by cosmological observations. Previous studies focused on the power spectrum
properties of warm dark matter [168] and mixed dark matter models [169], but
we would like to emphasize that the present work does not consider the bounds
on warm dark matter since there, wDM changes over time whereas we keep wDM

fixed. We will consider both positive and negative equations of state wDM and
show that the equation of state of dark matter is already strongly constrained by
current observations of the CMB, SNe Ia and LSS. We will not concern ourselves
with bounds from other than cosmological observations.
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This is meant as an exploratory study, not as rigid modeling of dark matter,
and we will therefore work only from a fluid perspective and leave the question
open how one could obtain a negative equation of state of dark matter. For clarity,
we will only allow for a constant equation of state wDM. We have chosen this
approach as there is no possibility to give a model-independent formulation of
the temporal evolution of wDM.

In models where dark matter interacts with other components of the universe,
such as in coupled quintessence models [57], one may obtain a negative equation
of state for dark matter. It may be possible to obtain wDM < 0 by other methods
as well, but we are not aware of any such model. We will consider only gravita-
tionally interacting dark matter here.

We will discuss two simple models for dark matter: one with no entropy pro-
duction and one with vanishing adiabatic sound speed, both with fixed equation
of state. For this investigation we will assume that the universe is spatially flat
and contains a cosmological constant type dark energy component with equation
of state wDE = −1, dark matter with an equation of state wDM 6= 0, baryons,
photons and massless neutrinos. We do not include the tensor part in our anal-
ysis. Following our investigation we will address the issue what will change if
we relax the flatness assumption and if the dark energy has an equation of state
different from −1.

6.1 Model I: Dark Matter with No Entropy Produc-

tion

In this section, we will assume that the dark matter component does not produce
entropy, ΓDM = 0. For a constant equation of state of dark matter, the background
sound speed is given by

c2
s = p′/ρ′ = wDM. (6.1)

If we allow for negative equation of state the square of the background sound
speed may thus become negative and, through ΓDM = 0, this means c2

ad will
also be negative. There is of course a question whether or not this assumption
is reasonable, but given the unknown nature of dark matter we may consider
this case and see how well constrained wDM is. Before we discuss the numerical
solutions of the perturbation equations, it will be helpful to consider the solutions
for a universe filled only with dark matter in the sub-horizon limit, k2 ≫ H2.
Equations (3.45)-(3.47) may be combined to eliminate VDM (we will suppress the
index DM in what follows for notational simplicity):

∆′′ − (3w − 1)H∆′ + wk2∆ + k2(1 + w)(Ψ − 3wΦ) = 0, (6.2)



6.1 Model I: Dark Matter with No Entropy Production 63

0 2 4 6 8 10
τ

0

10

20

30

40

50
∆

D
M

w
DM

=0

w
DM

=-0.01

w
DM

=0.04 (x 10)

Figure 6.1: Evolution of the energy density perturbation of dark matter ∆DM in the sub-
horizon regime for several equations of state in a universe containing only dark matter
with ΓDM = 0 . In the case of wDM = 0, the energy density perturbation grows ∝ τ2

(straight, black). For 0 < wDM < 1/3 (dotted, blue) one obtains decaying oscillations
while for wDM < 0 the density perturbation grows rapidly (dashed, red).
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∆
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The background solution for a universe filled only with a modified dark matter
component yields

H =
2

τ + 3τwDM
. (6.4)

For wDM = 0 the solution of (6.2) and (6.3) in the sub-horizon limit is ∆DM =

a(τ) = τ2 and Φ = const., as is well known. For the super-horizon regime,
∆DM = const. The solutions to these equations in the sub-horizon limit if wDM 6=
0 are plotted in figure 6.1. It can be seen that for 0 < wDM < 1/3 we obtain
decaying oscillations for ∆DM while for wDM = 1/3 one gets oscillations with
constant amplitude. For wDM < 0 we find that ∆DM increases rapidly. This is ob-
viously due to the negative sound speed, which leads to a growing gravitational
potential. We can thus already see that the equation of state will be strongly con-
strained in the regime wDM < 0 since we do not observe this excess or lack of
power on small scales. Also, the growing gravitational potential would lead to
excessive lensing on small scales, which is not observed. At super-horizon scales,
∆DM = const., regardless of the equation of state.

We have computed the resulting CMB and power spectrum in figure 6.2 using
the parameters of a ΛCDM model with the following parameters: Ωbh2 = 0.230,
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Figure 6.2: CMB and matter power spectra for a ΛCDM model with modified dark mat-
ter, ΓDM = 0. The power on small scales is much larger than in the wDM = 0 case (straight,
black) if the equation of state is negative (dashed, red). One can see the decaying oscil-
lations for the case of wDM > 0 (dotted, blue). As expected, there is no difference in the
power spectra at very large scales. The impact on the CMB spectrum is not noticable at
this level.

Ωmh2 = 0.144, ns = 0.961, τ = 0.114, h = 0.69. As one can verify the impact of
varying wDM on the power spectrum is very marked on small scales. We therefore
expect to obtain tight constraints on wDM. There is hardly any impact on the CMB
spectrum at this level so constraining power cannot come from the CMB data sets.

6.2 Model II: Dark Matter with Vanishing Adiabatic

Sound Speed

Given the results of the last section and the problematic assumption of negative
sound speed, we now choose a different model. As mentioned previously, ΓDM
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Figure 6.3: CMB and power spectrum for a ΛCDM model with modified dark matter,
c2

ad = 0. For a positive equation of state (dotted, blue) the peak positions of the CMB are
shifted to smaller scales and have less power than in the wDM = 0 case (straight, black).
For a negative wDM (dashed, red), the peak positions are shifted to smaller l. Note also
the different peak ratios in these cases. The shapes of the matter power spectrum are
different in each case, but in contrast to ΓDM = 0, there is no dramatic difference at small
scales with respect to the wDM = 0 spectrum. The power spectra at very large scales are
different with respect to each other, indicating evolution of super-horizon sized modes.

measures the ’difference’ between adiabatic sound speed c2
ad and background

sound speed c2
s . In the previous example, we enforced c2

ad ≈ c2
s by the require-

ment ΓDM = 0. A different requirement would be that the adiabatic sound speed
vanishes. The first problem that arises is that c2

ad is not gauge-invariant. We must
therefore first specify what we mean by vanishing adiabatic sound speed. We
may choose a hypersurface such that c2

ad = 0 has a definite meaning. Since c2
ad = 0

implies pπL = 0 this leads to the requirement that πL = 0 on a certain set of hy-
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persurfaces. For simplicity, we choose the Newtonian slicing, giving the shear

free hypersurfaces, σg = 0. We therefore require π
(newt)
L = 0, which with the

equation for PL (3.30) gives

PL = 0. (6.5)

This is true in any gauge because PL is gauge-invariant. Hence choosing

ΓDM = 3(1 + wDM)Φ − ∆DM, (6.6)

we enforce that the adiabatic sound speed vanishes on hypersurfaces of isotropic
expansion rate. Of course, this choice is by no means preferred over any other
choice of hypersurfaces; we have chosen this one merely for computational sim-
plicity.

Solving the perturbation equations for a universe filled only with modified
dark matter, we obtain evolution of super-horizon modes if wDM 6= 0. There is
no exponential growth for sub-horizon modes if wDM < 0. We may conclude
that this model is well-behaved compared to the ΓDM = 0 case. We have plotted
the power and CMB spectra in figure 6.3 (model parameters as for the ΓDM = 0
case). As expected, the modification has a huge impact on the growth behaviour
of fluctuations.

6.3 MCMC Simulation Results

In order to quantify the bounds on the equation of state of dark matter we run a
MCMC simulation for the ΓDM = 0 and c2

ad = 0 model with the ANALYZETHIS!
package using WMAP TT and TE spectra, VSA, CBI and ACBAR data as well
as the SDSS power spectrum and SNe Ia data just as in the ΛCDM example in
section 5.4. Each run contained ∼ 50, 000 points after burn-in removal. The model
used was a ΛCDM cosmology with modified dark matter and parameter priors
as shown in table 5.1 with −4 × 10−6

< wDM < 5 × 10−6 for the ΓDM = 0 model
and −0.02 < wDM < 0.02 for the c2

ad = 0 model. The resulting one-dimensional
marginalized likelihoods are displayed in Figure 6.4. The confidence intervals for
the equation of state are displayed in table 6.1.

The equation of state is quite strongly constrained if ΓDM = 0, at a level
of 10−6. What is somewhat surprising is that the likelihood is centered not on
wDM = 0 but on a slightly negative equation of state. This may be traced to the
fact that the SDSS data set we used does not encompass very small scales and
therefore the observations are blind to the very strong increase in power at very
small scales if wDM < 0. The constraints for the c2

ad = 0 case are less stringent, in
line with our expectations. Here, wDM is only constrained at a level of 10−3.
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Figure 6.4: One-dimensional marginalized likelihoods of the MCMC simulation for the
model parameters, using CMB, SNe Ia and LSS data. The results are for the ΓDM =

0 (straight, black) and the c2
ad = 0 (dashed, red) model. We have plotted the results

for a pure ΛCDM model with wDM = 0 for comparison (dotted, blue). Note the large
difference in constraints on wDM for the two models. Also, the ΓDM = 0 model has
nearly the same parameter distributions as a pure ΛCDM model.

68.3 % 95.4 % 99.7%
wDM for Γ = 0 (×10−6) −0.114

−0.929
+0.462
−1.19

+1.133
−1.50

wDM for c2
ad = 0 (×10−3) +0.098

−3.59
+0.890
−6.58

+1.86
−8.78

Table 6.1: Confidence intervals for the equation of state of dark matter for the two models
discussed in the text.

6.4 Discussion of Results

Since this was an exploratory study we have not attempted to formulate a model
with realistic variation in the equation of state but chose to show the main ef-
fects and bounds derived from current observations using a constant equation of
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state. For the ΓDM = 0 model, it is clear that the main constraint comes from
the matter power spectrum. If we would include measurements at smaller scales,
the constraints on the equation of state would be even more restrictive. We may
conclude that the ΓDM = 0 model is unlikely to be realistic. Since it is so strongly
constrained we could just assume that wDM = 0, so we have the standard CDM
model. The situation is not so clear for the c2

ad = 0 model. More accurate measure-
ments of the CMB, especially in the large multipole region, should give tighter
constraints. Based on the data we cannot conclude that this model is ruled out.
It would be necessary for formulate a specific model before more progress can
be made concerning the question of a possible negative equation of state of dark
matter. How strongly dependent are these results on our assumption of flatness
and dark energy equation of state wDE = −1? From fig. 6.2 we can readily see that
the main constraint on the ΓDM = 0 model comes from the large scale structure
data; since the CMB spectrum does not change much in the allowed parameter
range, we may conclude that relaxing the flatness assumption would not make
much difference on the constraints. The same is true for an equation of state
of dark energy different from −1. From previous studies it is known that for
wDE > −1, structure growth is suppressed at small scales [61, 170, 171]. But for
the ΓDM = 0 model, this can only make a small difference, since the growth sup-
pression cannot ameliorate the strong deviation from the LSS measurements at
small scales as is readily apparent in figure 6.2.

The situation for the c2
ad = 0 case is different. Here, relaxing the flatness as-

sumption and allowing for open or closed universes will lead to a weaker con-
straint on wDM. The first peak position is sensitive to the geometry of the uni-
verse, but increasing or decreasing wDM can in principle shift this peak to be in
agreement with the WMAP data, as may be seen in Fig. 6.3. We therefore expect
also that the constraint on the total energy Ωtot will be weaker than in the stan-
dard ΛCDM case. Concerning the possibility that the equation of state of dark
energy may be wDE > −1 we can say that here, too, the constraints on the dark
energy equation of state and wDM will be less stringent. As mentioned above,
the main impact of wDE > −1 is through a suppression of structure growth at
small scales, but this may be compensated by decreasing wDM (see figure 6.3). It
is therefore apparent that allowing for wDE 6= −1 will result in weaker constraints
on wDM. Relaxing the flatness and wDE = −1 assumption will therefore have a
negligible impact for the ΓDM = 0 model but may lead to a significant relaxation
of constraints for the c2

ad = 0 model.
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BBN and the Variation of

Fundamental Couplings

For my ally is the Force. And a powerful ally it is. Its energy sur-
rounds us and binds us. [. . . ] You must feel the Force around you.
Here, between you, me, the tree, the rock . . . everywhere!

Yoda, The Empire Strikes Back

We mentioned in section 4.7 that there is some disagreement between theory and
experiment concerning primordial element abundances. In this chapter we will
discuss an issue that may be related to this problem: the variation of fundamental
couplings [172]. On the theoretical side, the variation of fundamental couplings
has been investigated early on [173–175]. It is a characteristic feature for cos-
mological models of quintessence. A dependence of fundamental couplings on
the value of the scalar field χ induces a time variation of couplings if χ is time
dependent. Unfortunately this coupling is of unknown strength [44, 176, 177].

On the experimental side, recent observations of quasi stellar object (QSO) ab-
sorption spectra by Webb et al. [178–180] have suggested that the electromagnetic
fine structure ’constant’ might vary over cosmological timescales, ∆αem/αem =

−0.54(12) × 10−5 for z ≈ 2. However, other groups excluded such a variation
with high statistical significance [181–186]. Also, systematic effects such as the
evolution of isotope ratios [187, 188] could have an impact on these measure-
ments. The variability of the fundamental couplings has also been investigated
using 187

75 Re →187
76 Os decay in the Oklo natural reactor [189–191]. So far, the only

measurement that indicate a variation in fundamental couplings are the QSO ab-
sorption line observations by Webb et al. mentioned above. Even though this
claim of a variation in αem is in dispute, it is nevertheless instructive to investigate
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other possible effects of a variation of the fundamental couplings on cosmological
observables.

While the reality of a variation of αem in QSO absorption lines is still in dis-
pute we need to gain an overview of other possible effects of a variation of the
fundamental couplings on cosmological observations.

In this chapter we will investigate the effect of a variation in the fundamen-
tal couplings on the big bang nucleosynthesis (BBN) of light elements, specifi-
cally 4He. In this context, the bounds on the variation of αem at z ∼ 3 do not say
much about the possible size of a variation ∆αem/αem at the time of BBN, around
z ∼ 1010. A major issue when considering BBN is the complex interplay of the
variation of several couplings on the outcome of the element synthesis. A num-
ber of recent papers [177,192–198] investigated the bounds on a variation of αem or
other single parameters from BBN. However, we will follow a different approach
which determines element abundances as a function of nuclear physics parame-
ters without specifying a model in which the fundamental constants change. For
a review of current limits on fundamental couplings see [199], a semi-analytic
treatment for constraining varying fundamental couplings from light element
abundances can be found in [200].

7.1 Constraints on Fundamental Couplings from BBN

To determine light element abundances in the absence of time varying couplings,
one needs to know the particle masses and the reaction rates of the relevant nu-
clear processes from laboratory experiments. Numerical codes for this kind of
BBN abundance computation were first created by Wagoner, Fowler and Hoyle
[201, 202], for a more recent version see [203, 204].

An essential parameter for these computations is the baryon to photon ratio
η. Taking the value from WMAP measurements [5], η = 6.14 ± 0.25 × 10−10,
yields a prediction of the helium abundance YHe = 0.2484+0.0004

−0.0005 [151], signif-
icantly higher than determinations from experiments [151]. Using the experi-
mental values, one obtains η ≈ 3 − 5 × 10−10, depending on the set of observa-
tions used. This discrepancy is likely due to systematic errors which are not fully
understood. Increasing the number of light species which are effective at BBN
(e.g. more neutrinos) would enhance YHe and only worsen the discrepancy. This
also holds for the possible presence of early dark energy [14, 61]. If a mechanism
for decreasingYHe has to be found the time variation of fundamental couplings
seems to be a particularly plausible candidate [177]. Effects of the variation of
the weak and strong scales or some dimensionless coupling on BBN have been
discussed long ago [44, 205, 206]. One may therefore try to estimate the allowed
variation of couplings at a very early time in cosmology.
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Confidence limits on the variation of couplings or parameters in the frame-
work of BBN always assume an underlying model. However, the confidence
regions determined from a model where only αem varies are meaningless if one
wants to employ a model where other couplings, such as the weak scale, are al-
lowed to change. In a Grand Unified Theory (GUT) framework, not only does
the electromagnetic interaction vary, but also weak and strong interactions. The
details of how these are connected depend on the specific GUT and the varia-
tion of the unified couplings and mass scales of spontaneous symmetry breaking.
The present BBN limits on time varying couplings are difficult to compare due to
this strong implicit model dependence. It is therefore essential to formulate the
BBN estimates in a way that is as model independent as possible. This should
facilitate the comparison between different assumptions on the time variation of
fundamental couplings. With this one may then discuss specific models which
relate the standard model parameters to the GUT parameters [177, 207–210].

We will present such a model-independent formulation below and present
an example for illustration. Since computation of the helium abundance can be
done with a simple semi-analytical approximation, we will restrict ourselves to
considering the helium abundance only.

7.2 Model-Independent Formulation

The success of BBN motivates our main assumption for the model-independent
treatment, namely that the relative time variation of the fundamental constants
between nucleosynthesis and the present epoch is small. We can then linearize
in the relative variation of the fundamental parameters ∆Gk/Gk and use values
extracted from laboratory experiments for Gk. We express the relative change of
the helium abundance as

∆YHe
YHe

=
YHe(G + ∆G) − YHe

YHe
= ∑

k

c
(G)
k

∆Gk

Gk
. (7.1)

Here YHe corresponds to the helium abundance computed in absence of a cosmo-
logical time variation of couplings, assuming that only standard model particles
(with three neutrinos) contribute to the energy density at BBN. Our aim is to

determine the coefficients c
(G)
k which relate the fundamental parameters to the

change in YHe. We emphasize that relative errors for the relative variation below
10 % are acceptable in contrast to the much higher required precision for the total
abundance.

We will consider the effects of the variation of six dimensionless quantities

Gk = (Mp̄/ΛQCD, αem, 〈φ〉/ΛQCD, me/ΛQCD, mq/ΛQCD, ∆m/ΛQCD). (7.2)
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Here ΛQCD is the characteristic mass scale of the strong interactions which dom-
inates the mass of the nucleons and the strong interaction rates. The quantity
〈φ〉 is the Fermi scale (vacuum expectation value of the Higgs field) relevant for
the weak interactions. The strength of the gravitational interactions is given by
the reduced Planck mass Mp̄ and me is the electron mass. The up- and down-
quark masses mu, md are reflected in mq = (mu + md)/2 and ∆m = md − mu.
In combination with 〈φ〉/ΛQCD the three last mass ratios could be replaced by
the relevant Yukawa couplings he, hu, hd. We emphasize that only ratios of mass
scales are observable and have cosmological significance [14, 44, 177].

For a given model for the time variation of the fundamental couplings the
variations ∆Gk/Gk are typically related to each other. For example, we may as-
sume a unified theory (GUT) and vary only the gauge coupling at the unification
scale MGUT, while keeping G3,4,5,6 fixed. This results in [177](∆G3,4,5,6 = 0)

∆(Mp̄/ΛQCD)

Mp̄/ΛQCD
= − π

11
∆αem

α2
em

= − π

11
αBBN

em − αem

α2
em

. (7.3)

Then only a single independent varying coupling is left that we may choose as
∆αem/αem.

For practical reasons we will work in a frame where we keep the strong scale
ΛQCD fixed. This can be achieved by an appropriate Weyl scaling [14, 44] and
will result in a time dependence of the reduced Planck mass Mp̄. This particu-
lar frame can be understood as a rescaling of the cosmological ’clock’ Mp̄ which
compensates for the constant strong interactions. In a frame with fixed Mp̄ the
strong interaction scale ΛQCD would vary with time.

Our computation of the coefficients c
(G)
k proceeds in two steps. We first con-

sider the dependence of YHe on the characteristic quantities for nuclear decays
and reactions, also referred to as ’nuclear physics parameters’

Xi = (Mp̄, αem, 〈φ〉, me, τn, Q, Bd), (7.4)

according to
∆YHe
YHe

= ∑
i

c
(X)
i

∆Xi

Xi
. (7.5)

Here, τn is the neutron lifetime, Q the neutron-proton mass difference and Bd the
deuteron binding energy. We keep ΛQCD fixed – otherwise the dimensionful pa-
rameters have to be multiplied by appropriate powers of ΛQCD. We emphasize
that at this stage the effect of the variation of, say, αem is computed at fixed val-

ues of X1,3,4,5,6,7. The computation of the coefficients c
(X)
i involves the details of

nuclear physics, e.g. reaction rates.
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Then we translate ∆Xi/Xi into the variation of the fundamental couplings via

∆Xi

Xi
= ∑

k

fik
∆Gk

Gk
, (7.6)

with

fik =
∂ lnXi

∂ lnGk
. (7.7)

This step involves the connection between nuclear physics and particle physics,
namely the dependence of τn, Q and Bd on the couplings G2,3,4,5,6. Obviously, one

has fik = δik for i = 1...4 and k = 1...6. For known fik the coefficients c
(G)
k follow

from c
(X)
i as

c
(G)
k = ∑

i

c
(X)
i fik. (7.8)

So the connection between fundamental particle physics and nuclear physics pa-
rameters is formulated in the form of a ’transfer matrix’ fik. The advantage of
this separation is the possibility to compute fik without invoking BBN wheras

computing the coefficients c
(X)
i does not use any assumptions about the particle

physics-nuclear physics connection. These two issues can therefore be dealt with

independently. Any improvement on the estimate of the coefficients c
(X)
i can be

propagated to the fundamental couplings by equation (7.8) without repeating the
whole calculation. A specific GUT model then gives relations between the fun-

damental couplings and may be constrained by using the coefficients c
(G)
i and

equation (7.1).

7.3 Helium Abundance

In this section we will compute the coefficients c
(X)
i of equation (7.5). For this

we need to determine the dependence of the helium abundance on the nuclear
physics parameters. We will use the semi-analytic approach of Esmailzadeh,
Starkman and Dimopoulos (ESD) [211] – estimating the primordial helium abun-
dance via quasi static equilibrium and fixed point conditions. This approach
should be sufficient for a computation of the small relative variations. Of course,
a full numerical investigation using BBN codes would improve our analysis con-
siderably. Big bang nucleosynthesis may be split into two distinct epochs. In
the first phase protons and neutrons are converted into each other via weak in-
teractions. These reactions cease (’freeze out’) as soon as the weak rate becomes
comparable to the expansion rate, Γweak ⋍ H. Then, the neutrons decay freely
until they are absorbed by nuclear reactions.
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7.3.1 Weak Reaction Freeze Out

Let us compute the abundance of neutrons left once the weak reactions freeze
out. The rate for the reactions

n + νe −→ p + e−, (7.9)

n + e+ −→ p + ν̄e, (7.10)

n −→ p + ν̄e + e−, (7.11)

is given by [21]

Γn→p =A

∫

dx

(

1 − m2
e

(Q + x)2

)

1
2

(Q + x)2(1 + e(x/T))−1(1 + e−(Q+x)/T)−1x2. (7.12)

Here, Q is the neutron-proton mass difference, me the electron mass and A the
transition amplitude. The integral runs from −∞ to +∞ with an energy gap be-
tween −Q − me and −Q + me. A ∝ 〈φ−4〉 is the four point transition probability
in Fermi-theory which depends on the axial and vector couplings cV and cA. For
simplicity we will keep cV and cA constant. We assume that this reaction freezes
out at a temperature T∗

n when the Hubble expansion is comparable to this reaction
rate1

Γn→p = b H(T∗
n). (7.13)

The shortcomings of our simple approach is accounted for by the factor b. We will
fix b such that we obtain the same YHe as predicted by the full numerical code2.

Big bang nucleosynthesis takes place at T ∼ 0.1 − 1 MeV, deep in the radia-
tion dominated era. To compute the expansion rate we may therefore ignore all
but the relativistic species in the Friedmann equation (2.11). Ignoring effects of
changing baryon or electron mass on the expansion rate, the Hubble parameter
is given by

H2 =
1

3Mp̄

π2

30
g∗T4, (7.14)

where g∗ counts the total number of effectively massless degrees of freedom [22],

g∗ = ∑
i=bosons

gi

(

Ti

T

)4

+
7
8 ∑

i=fermions

gi

(

Ti

T

)4

, (7.15)

1Note that an equally well justified assumption would be to include the reaction rate Γp→n in
this condition.

2For b = 1 we obtain a 4He abundance that deviates by about 10 percent from the value
YHe = 0.2484 found with a full numerical computation using the WMAP value for η [151]. In
order for our analytic approximation to yield the YHe predicted numerically we use b = 1.22.
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with Ti the temperature and gi the multiplicity of the respective particle species.
Before positron-electron annihilation g∗ = 10.75. The freeze out temperature of
the neutrons with no change in fundamental couplings can then be determined by
combining equations (7.12) – (7.14) as T∗

n = 0.77 Mev and the freeze out neutron
concentration Y∗

n at this temperature is

Y∗
n =

1
1 + eQ/T∗

n
= 0.158 . (7.16)

This ends our discussion of the weak reaction freeze out.

7.3.2 Light Element Synthesis

Following the ’freeze out’ of the neutron to proton ratio the free neutrons decay,
thereby further reducing Yn for T < T∗

n . After a short time the synthesis of deu-
terium and tritium starts which subsequently leads to the production of helium.
Since almost all existing neutrons end up in helium3, we need to know how many
neutrons remained when helium was synthesized in appreciable amounts.

We will assume that the neutrons decay freely until a time t f when helium
formation starts to dominate over the neutron decay process, since then helium
is formed fast relative to the neutron lifetime:

2ẎHe(t f ) = −Ẏn(t f ). (7.17)

The final 4He abundance is then estimated by

YHe =
1
2

Yn(t f ) =
1
2

Y∗
ne−(t f /τn). (7.18)

It depends on the couplings via Q, T∗
n , τn and t f . In turn, T∗

n depends on A ∝

〈φ〉−4, Q, me and Mp̄ via equations (7.12), (7.13) and (7.14).
The equation governing the abundance Yi = ni/nb of element i has the simple

form
Ẏi(t) = J(t) − Γ(t)Yi(t), (7.19)

where J(t) and Γ(t) are the time-dependent source and sink terms which depend
on the abundance of other elements and the nuclear reaction rates. As long as
the sink term is much larger than the expansion rate, Γ ≫ H, Yi follows a time-
dependent static solution (the element is then in quasi static equilibrium)

Yi =
J(t)

Γ(t)
, (7.20)

3The final abundances of elements other than 1H and 4He are at a level of ∼ 10−4 or less after
BBN.
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where source and sink terms cancel each other such that Ẏi ≈ 0. Our task now is
to find the dominant source and sink terms for each element, check for quasi static
equilibrium and solve the resulting set of algebraic equations for YHe. In figure
7.1 we demonstrate that the destruction rates for tritium and 3He are much larger
than the expansion rate and these two elements are therefore in quasi static equi-
librium. One may also check from numerical calculations [212] that deuterium
is in nuclear thermal equilibrium until T ≈ 0.07 MeV. The reaction network is
displayed in figure 7.2 to illustrate the most important reactions involved in 4He
production [213].

We will now compute the time t f at which the helium production rate exceeds
the neutron decay rate. The by far most dominant process for 4He production is
the reaction [214]

d + t → n + 4He . (7.21)

To write down the equations governing the abundances comprised of several
reactions we will adopt the notation of ESD who abbreviate a reaction rate

a + b → c + d, (7.22)

as [abcd]. Taking into account the reaction (7.21) we have then4

ẎHe = YdYt[dtnα]. (7.23)

The condition for the time until which the neutrons decay can be obtained by
using equation (7.17) and the helium production rate (7.23) as

2YdYt[dtnα] =
1
τn

Y∗
ne−t f /τn . (7.24)

To compute the freezeout time t f when this relation is satisfied we need to know
the abundance of deuterium Yd and tritium Yt as well as the reaction rate [dtnα].
In the temperature range we are considering, deuterium can be assumed to be in
thermal equilibrium and hence its abundance is given by the Saha equation [22]

Yd = 8.15
(

T

mn

)3/2

η eBd/T YnYp, (7.25)

with the proton abundance being Yp ≈ (1 − Yn) and mn the neutron mass.
The estimate of Yt is more involved and also requires knowledge of the abun-

dance Y3 for 3He. We employ the quasi static equilibrium condition (7.20) for
determining Yt and Y3. For this, we need to find the dominant source and sink
terms. The tritium concentration is established by the reactions

n + 3He → p + t,

d + d → p + t, (7.26)

4In the reaction rate notation we abbreviate 4He with α and 3He with 3.
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Figure 7.1: Destruction rates of tritium (straight, red) and 3He (dashed, green & dotted,
blue) compared with the expansion rate (dash-dot, black) as a function of temperature
in units of 109 K, with T9 = 1.0 corresponding to T = 0.086 MeV (see appendix B.3 for
conversion factors). The rates displayed here are given in appendix A.
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Figure 7.2: Network of the included reactions. We consider weak rates (dashed) and the
most important nuclear reaction rates for the lightest elements.
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creating and
d + t → n + 4He, (7.27)

annihilating tritium. Other reactions are subdominant by at least 2 orders of mag-
nitude [214] and are therefore neglected. Using the fixed point condition (7.20)
leads us to an equation for Yt of the form

Yt =
Yn Y3 [n3pt] + Yd Yd [ddpt]

Yd [dtnα]
. (7.28)

The dominant processes for the 3He abundance are the creation reactions

p + d → 3He + γ, (7.29)

d + d → n + 3He, (7.30)

and the destruction reactions5

d + 3He → p + 4He, (7.31)

n + 3He → p + t. (7.32)

Invoking the fixed point condition yields

Y3 =
Yd Yp[pd3γ] + Yd Yd[ddn3]

Yd [d3pα] + Yn [n3pt]
. (7.33)

From equations (7.25), (7.28) and (7.33) we can determine the abundance of deu-
terium, tritium and 3He as a function of T and Yn. In turn, temperature and time
are related by the background cosmology and Yn = Y∗

n e−t/τn . Equation (7.24)
now determines t f .

The dependence of YHe on the various parameters cannot be solved analyt-
ically. In the linear approximation, however, the computation of the response
coefficients c(X) is straightforward. For this purpose we assume that all strong in-
teraction rates are determined by the strong interaction scale ΛQCD. At this point
we benefit from our particular frame with constant ΛQCD which implies that we
can use constant rates [dtnα] etc., except for small electromagnetic effects which
we have incorporated. The rates needed in equations (7.24), (7.28) and (7.33)
are given in appendix A along with an explanation of the modifications due to
changes in the electromagnetic coupling αem.

When we carry through the whole analysis we obtain the ’nuclear physics’

coefficients c
(X)
i displayed in table 7.1. They are plausible in the sense that they

resemble what one would expect from simple arguments. Increasing the Planck

5We have not included the reaction [d3pα] in the 4He production computation because it is
subdominant, but for determining the 3He abdundance this is an important sink term.
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variable Mp̄ αem 〈φ〉 me τn Q Bd

c
(X)
i −0.81 −0.043 2.4 0.024 0.24 −1.8 0.53

Table 7.1: Coefficients c
(X)
i for nuclear physics parameters.

mass Mp̄ gives a slower expansion rate, resulting in a later freeze out of weak
interactions, hence less neutrons are available for helium production. Increas-
ing the decay time τn of the free neutrons leaves more neutrons to be converted
into helium since effectively all neutrons are bound in helium. Increasing 〈φ〉 re-
sults in a decrease of the Fermi interaction GF, hence weak interactions freeze out
earlier resulting in an increase in YHe. Changing Q results in a different neutron-
proton ratio at freeze out and also in modified weak rates due to changes in the
available phase space. If we exclude the changes in phase space volume, the co-
efficient is −1.4 instead of −1.8. Thus, helium abundance is a decreasing function
of the proton-neutron mass difference Q as anticipated. Increasing the binding
energy of the deuteron, Bd, results in earlier formation of helium and reduces the
amount of neutrons decaying into protons. The influence of the electron mass
is only through the phase space volume in the weak rates which is a very small
effect for our purposes.

Changes in αem affect the nuclear reaction rates with the main effects being
variations in the Coulomb barrier for charge-induced reactions, final-state in-
teractions, radiative capture and mass differences (see appendix A). Except for
electromagnetic effects we have not taken into account any other effect that may
change the reaction rates.

7.4 Determining the Transfer Matrix fik

In this section we describe the relation between the fundamental couplings Gk

and the nuclear physics parameters Xi. This relation was expressed in the form
of a matrix equation with a transition matrix fik (7.7). We will now discuss what
effects we took into account by going through each row of the matrix fik given
in table 7.2. To quantify the relation between nuclear and particle physics pa-
rameters we have to make some model dependent assumptions. Because of the
modular character of our analysis, this model dependence is clearly identifiable

and can easily be replaced with different estimates, the coefficients c
(X)
i will not

change as a result of an update on fik. Each entry in fik describes the response of
the ’nuclear physics parameter’ Xi when one varies a single parameter Gk, while
keeping the other Gl 6=k fixed. When there is no contribution at all a zero is writ-
ten. For some relations between the Gk and the Xi small effects are present but
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parameter Mp̄ αem 〈φ〉 me mq ∆m

Mp̄ 1 0 0 0 0 0
αem 0 1 0 0 0 0
〈φ〉 0 0 1 0 0 0
me 0 0 0 1 0 0
τn 0 3.86 4 1.52 − −10.4
Q 0 −0.59 − − − 1.59
Bd 0 −0.0081 − − −r/2 −

Table 7.2: The transfer matrix fik, corresponding to the coefficients relating relative
changes in Gk to relative changes in Xi. The parameters are dimensionless, but we omit-
ted the scaling by ΛQCD.

with negligible coefficients. To distinguish those from the others, we have left the
matrix entry empty. For i = 1 . . . 4 the parameters appear both in the lists of Xi

and Gk, so that fik = δik by virtue of our definition. Also τn, Q and Bd do not
depend on Mp̄ implying f1k = δ1k. The nontrivial coefficients fik for i = 5, 6, 7
account for the dependence of τn, Q and Bd on αem, 〈φ〉, me, mq and ∆m.

The nucleon masses and nuclear binding energies depend on the quark masses
and αem. The dependence of the neutron-proton mass difference on the fundamen-
tal couplings was given by Gasser and Leutwyler [215] as

Q =

[

−0.76
(

1 +
∆αem

αem

)

+ 2.05
(

1 +
∆(∆m)

∆m

)]

MeV . (7.34)

From this we can determine f62 and f66.
When we consider the deuteron binding energy Bd recent studies have sug-

gested that it may increase with decreasing pion mass [216,217]. We may parametrize
the dependence of Bd on mπ at fixed 〈φ〉 by a linear fit [194] and neglect the de-
pendence on 〈φ〉 at fixed mq, ∆m. For the electromagnetic part we use the Monte
Carlo simulation data of Pudliner et al. [218]. Hence the deuteron binding energy
may be expressed in terms of the pion mass mπ ∝ m1/2

q and αem as

Bd = B0
d

[

(r + 1) − r
mπ

m0
π

]

− 0.018
∆αem

αem

MeV , (7.35)

where r is a parameter that varies between 6 and 10 and B0
d = 2.225 MeV is the

deuteron binding energy as measured in the laboratory today.
The neutron lifetime is changed due to variations in the weak scale τn ∝ G−2

F ∝

〈φ〉4. Furthermore, a change in the phase space volume f of free neutron decay

f =

∫ Q

me

dq q2(Q − q)2
(

1 − m2
e

q2

)1/2

, (7.36)
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results in a dependence of τn on Q and the electron mass me. Because Q also
depends on αem and ∆m, ∆τn will also have contributions from the variation of
those parameters. A linear analysis then yields the corresponding entries for τn:

∆τn

τn
= 3.86

∆αem

αem

+ 4
∆〈φ〉
〈φ〉 + 1.52

∆me

me
− 10.4

∆(∆m)

∆m
. (7.37)

Having determined the transfer matrix we can calculate the dependence of
∆YHe/YHe on the fundamental parameters using equation (7.8). The results are
shown in table 7.3.

variable Mp̄ αem 〈φ〉 me mq ∆m

c
(G)
i −0.81 1.94 3.36 0.389 −1.59 −5.358

Table 7.3: Coefficients c
(G)
k for fundamental couplings.

7.5 A GUT Example

To illustrate the procedure how to obtain limits on the variation of fundamental
couplings we will present a short example. We will give a model for which we
have expressed the changes in the fundamental parameters by the variation of
only one independent coupling and computed the resulting change in YHe. The
variation of the couplings is assumed to be due to a scalar field χ [14, 44]. It is
possible that this field plays the role of quintessence [177], but here we will not
need any particular details of the evolution of the scalar field χ, except that its
value at the time of nucleosynthesis was different from its present value. For
the details of the derivation of how the fundamental constants change in a GUT
scheme we refer the reader to [177, 219]. Merely quoting the results, to one loop
order the fundamental couplings as functions of the scalar field χ are given by
[177]

α−1
s (MW) =

4πZF(χ)

ḡ2 +
7

2π
ln ζw(χ), (7.38)

α−1
w (MW) =

4πZF(χ)

ḡ2 +
5

3π
ln ζw(χ), (7.39)

α−1
em (MW) =

32πZF(χ)

3ḡ2 − 5
3π

ln ζw(χ), (7.40)

where the W-Boson mass is MW(χ) = ζw(χ)χ and ZF(χ) determines the renor-
malized grand unified gauge coupling (g2

R = ḡ2/ZF, ḡ fixed). We normalize
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χ such that MGUT(χ) = χ. In equations (7.38) – (7.40) we can replace MW =

gw〈φ〉/
√

2 by 〈φ〉. The relative variation of gw (or αw) induces only a correction
of higher order in these relations.

As mentioned before, we will work in a frame in which the scale of the strong
interaction is fixed such that the strong interaction rates are constant for our BBN
estimate. We will consider a particularly simple scenario where

Mp̄(χ)/MGUT(χ) = const.. (7.41)

Performing the Weyl scaling such that mn ≈ ΛQCD is kept fixed we find

∆Mp̄/ΛQCD

Mp̄/ΛQCD
= −∆ ln ζw + ∆ ln

(

〈φ〉/ΛQCD

)

. (7.42)

Furthermore, we also neglect the variation of the Yukawa couplings and hence
the variations in me, mq and ∆m obey

∆me

me
=

∆(∆m)

∆m
=

∆mq

mq
=

∆〈φ〉
〈φ〉 . (7.43)

The effect of the variation of the field χ can now be expressed as a varation in the
renormalized grand unified gauge coupling expressed by ZF and a variation in
ln ζw.

At this stage the two unknown quantities ∆ ln ZF and ∆ ln ζw contain all rele-
vant information about the unknown coupling of the scalar field χ to matter and
radiation. For the present investigation we can simply use the relative variation
of the GUT-coupling ∆ ln ZF and the ratio between weak and GUT scale ∆ ln ζw

as free parameters. We need to determine αem at the energy scale µ for nuclear
reactions µ ≈ me. For the running of αem at µ < MW we have the relation

αem(µ)−1 = αem(MW)−1 +
2

3π ∑
i

Q2
i ln

MW

µ
, (7.44)

where the Qi are the charges of the particles with masses in the range between
MW and µ. In our case this is given by five quarks (top lies above MW) in three
colours plus 3 leptons, i.e. ∑i Q2

i = 3 × (8/9 + 3/9) + 3. For µ = me this takes the
form

∆αem(me)

α2
em(me)

=
∆αem(MW)

α2
em(MW)

[

1 +
1

18 ∑
i

Q̃2
i

]

, (7.45)

where ∑i Q̃2
i = 2 runs only over the three light quarks whose effect on the running

of αem is cut off at µ ∼ ΛQCD. Similarly, for the running of αs below MW we include
five quarks and associate ΛQCD with the scale where the one loop expression for
αs(µ) diverges.
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We can now express αem = αem(me) and ΛQCD in terms of αem(MW) and αs(MW).
Thus they relate ΛQCD/χ and αem to ZF and ln ζw. The specific relation between
the variations of ΛQCD/Mp̄ and αem depends on the variation of the weak scale
ln ζw. In our example we will keep the relative variation between the weak and
the GUT scale fixed,

∆ ln ζw = 0. (7.46)

This corresponds to 〈φ〉/χ = const. For this we obtain

∆αem(MW)

α2
em(MW)

= −32π

3
∆ZF

ḡ2 , (7.47)

and from equation (7.42)

∆Mp̄/ΛQCD

Mp̄/ΛQCD
=

∆〈φ〉
〈φ〉 = − π

12
∆αem(MW)

α2
em(MW)

. (7.48)

In equation (7.1) we now have nonvanishing entries from ∆G3,4,5,6 related by
equations (7.43) and (7.48) to ∆αem/αem giving with (7.45)

∆(Mp̄/ΛQCD)

Mp̄/ΛQCD
=

∆〈φ〉
〈φ〉 = −32.3

∆αem(me)

αem(me)
. (7.49)

In order to get an idea of the sensitivity we compute the value ∆αem/αem which
would be needed in order to obtain a helium abuncance YHe = 0.24 for η corre-
sponding to the central WMAP value. We obtain

∆αem(me)

αem(me)
= −2.7 × 10−4. (7.50)

7.6 Some Remarks

In this chapter we have constructed a way how to separate BBN abundance pre-
diction and the dependence of the ’nuclear physics parameters’ from the ’particle
physics parameters’ and the underlying GUT model. The benefit is that improve-

ments on the BBN predictions only change the coefficients c
(X)
i . The c

(G)
i can then

be recomputed via equation (7.8). Likewise, if we have a new theory relating the
deuteron binding energy to the particle physics parameters this will change the

entries in the matrix fik, but not the c
(X)
i . Constraining GUT models with primor-

dial element abundances is now fairly simple and can be adapted quickly once
new information is available.

Excluding very particular cancellations we may infer from the approximate
agreement between the WMAP-prediction and the observations of YHe a bound
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|∆αem/αem(z = 1010)| < a few times 10−3. A typical size of a coupling variation
that could explain the present discrepancy between WMAP and the observed YHe
would be in a range ∆αem/αem ≈ (2 − 10) × 10−4.

Our scheme would of course greatly benefit from a full numerical computa-
tion of the ’nuclear physics coefficients’ in table 7.1 using a numerical BBN code.
In this case, an extension of this analysis to the other light elements deuterium,
3He and lithium would become possible and be able to break possible degenera-
cies and constraints on models would improve significantly.
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Conclusions

The most exciting phrase to hear in science, the one that heralds new
discoveries, is not “Eureka!” but rather “hmm. . . that’s funny. . . ”

Isaac Asimov

We hope that we have convinced the reader that cosmology has entered the era
of precision measurements and can no longer be termed a ’field of physics with
logarithmic error bars’. Even though each cosmological probe has its own sys-
tematics, the picture when all available data is combined is surprisingly consis-
tent. The statistical errors grow less and less as the sample sizes of supernovae,
galaxies and CMB measurements increase. A number of experiments is planned
or currently taking data to improve our knowledge of the universe. Some of
these experiments are using new approaches to determine cosmological quanti-
ties, such as weak lensing studies. Considering past experience it is possible that
our view of the universe may change dramatically in the future. The nature of
dark energy is yet unknown, and though all the data is consistent with a cosmo-
logical constant, this situation could change in a moment with new experimental
data. An equation of state different from −1 would instantly rule out the cosmo-
logical constant as the dark energy and point to something else. Quintessence is
a good candidate, as there are a lot less theoretical problems associated with it
and it also fits all present data. Another equally mysterious component is dark
matter, which has eluded direct detection to this day. Even though there are good
theoretical arguments that dark matter is a WIMP this need not mean that nature
has chosen this option. It could be something quite different.

Considering the fact that we don’t know what 95 % of the energy density
of the universe are one might be tempted to say that our model is completely
wrong and we need to look for something else. However, it is unlikely that
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we are on the completely wrong path. Current experiments probe very differ-
ent epochs and quantities. Big bang nucleosynthesis involves mainly nuclear
physics at very early times z ∼ 1010 and very high energy density. Cosmic mi-
crowave background anisotropy experiments are concerned with atomic physics
at early times z ∼ 1100 and moderately high temperatures. Lyman-α forest data
probes gravitational physics at z ∼ 3. The supernovae Ia measurements deter-
mine the expansion history up to z ∼ 1.7. Galaxy surveys test our understanding
of gravitational collapse and structure growth at times close to today z ∼ 0.1.
The Hubble flow has been measured in the local universe, at z ∼ 0. And all of
these different observations can be accomodated with only one model. It would
be a cruel trick of nature indeed if this was just a coincidence. However, what
is to be desired is a more fundamental understanding of dark energy and dark
matter. In this respect we need to be on the lookout in order not to value one
model above the other without good reason. The popularity of the ΛCDM model
is mainly due to its simplicity and goodness of fit, but, as we emphasized previ-
ously, a cosmological constant is difficult to put into a fundamental framework.
One needs to be able to compare new models with experiments and constantly
check if old models are consistent with new data. Quintessence cosmology can
also be accomodated with the data. A very good way to decide whether the dark
energy is due to a cosmological constant or something else is by measuring the
equation of state. This may be determined by observations of the expansion his-
tory by taking ’snapshots’ of the large scale structure power spectrum at different
redshifts via weak lensing or supernovae observations. Especially weak lensing
studies can place stringent constraints on the equation of state and will therefore
most likely be a very important cosmological probe in the future. Measurements
of B-mode polarization in the CMB would enable us to determine the spectrum
of primordial gravitational waves and allow to constrain models of inflation and
their energy scale.

In this work we have presented one way how to constrain models. We intro-
duced the CMBEASY software which can compute model predictions for a num-
ber of cosmological models quickly and accurately. It is written in the object-
oriented C++ programming language and its modular structure lends itself to
easy modifications of the code for new models and observable quantities. The
code is constantly upgraded and improved. In addition, the ANALYZETHIS! pack-
age included in CMBEASY contains a number of the latest data sets. We have
discussed an implementation of Markov Chain Monte Carlo simulation and the
basic theory behind it. As an illustration we discussed a ΛCDM cosmology
and showed the constraints on its five parameters, along with two-dimensional
marginalized likelihoods. But we should also mention that the CMBEASY code is
only concerned with the linear regime. A lot of information can be extracted from
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non-linear observations. For this one uses N-body codes and hydrodynamical
simulations, but the computing time required makes it impractical to determine
statistical properties of model parameters. Usually one gives a fitting formula
with a number of coefficients as result, but these are model dependent. But the
linear regime may be used to first find model parameter values and use these in
the N-body code. If there is then any strong disagreement with the simulation
results and observational data one may rule out the model.

Turning to the investigation of cosmological models we used these tools to in-
vestigate a dark matter model. We cannot be sure that dark matter is a WIMP un-
less it has been directly measured. Therefore we investigated a model where we
wanted to see whether the equation of state of dark matter is tightly constrained
by cosmological observations. In this respect we did not exclude a negative equa-
tion of state from our considerations. It turned out that there is no unique way to
model this and we had to construct two models which are more or less ad-hoc.
The model without entropy production is tightly constrained and unlikely to be
realistic. For a negative equation of state it lead to excessive growth of structures
at small scales and this is inconsistent with measurements. The reason why a neg-
ative equation of state was allowed in this model was due to the fact that we only
used the linear part of the galaxy power spectrum. Had we taken into account the
nonlinear part as well the constraints would be much tighter. But we also found
that the model with vanishing adiabatic sound speed can be accomodated with
present data, and so one should be careful when one assumes that the equation
of state of dark matter has to be zero. It would be interesting to find a motivation
how the equation of state of dark matter can be negative. This could be possible
with non-linear scalar field fluctuations.

The disagreement between theory and experiment concerning primordial el-
ement abundances, though most likely due to systematics, may indicate some-
thing deeper. There is also a (disputed) claim of an observation of a variation in
the fine structure constant over cosmological timescales. This led us to consider-
ing the effect in a variation in the fundamental couplings on predictions of light
element abundances. Since constraints on the variation of fundamental couplings
depend on the model chosen we have developed a model-independent approach
that may be readily used to determine the BBN prediction for any model relating
the fundamental couplings to each other. For illustration we considered a simple
GUT model where we kept the variation between the weak and GUT scale fixed.
Our approach can be easily modified once new data becomes available or from
improved estimates on the nuclear physics-fundamental physics parameters con-
nection.

To sum up, the future of cosmology will be very interesting given the present
problems and upcoming experiments. What the true nature of dark energy and



88 Chapter 8 Conclusions

dark matter is remains to be seen. It may be that our view of the universe will be
quite different in ten years, and yet we consider it unlikely that the basic picture
will change very much. Even though we will be looking deeper and deeper into
space, observing ever fainter objects, cosmology’s future will most likely be a
very bright one.



A

Nuclear Reaction Rates

The temperature in nuclear reaction rates for BBN computation is given in units
of 109 K which we will label here with T9. Rates are from a number of sources:
NACRE [220], Cyburt, Fields and Olive (CFO) [151] and Smith, Kawano and
Malaney (SKM) [212].

We employ the scheme of Bergström, Iguri and Rubinstein (BIR) [221] to find
the change in reaction rates with a variation of αem and we include the improve-
ments of Nollett and Lopez [222]; modification factors are labled according to the
following scheme, where δ ≡ ∆αem/αem:
(a) Coulomb normalization (1 + δ),
(b) Radiative capture process (1 + δ),
(c) Final-state Coulomb interactions (1 + n δ),
with n depending on the specific process. Since the NACRE rates have a polyno-
mial expansion in terms of T9 while BIR use an expansion in terms of T1/3

9 , we
first fit the NACRE polynomial pNACRE(T9) to a BIR polynomial pBIR(T9) in order
to be able to use the BIR treatment. We minimize the relative differences, that is
the ratio

(

pNACRE(T9) − pBIR(T9)
)

/pNACRE(T9). (A.1)

For the neutron-induced reaction n + 3He −→ p + t there is no need for the BIR
treatment, hence we do not have to fit the polynomial.
Reaction rates are given in units of cm−3s−1mole−1.

1. n + 3He −→ p + t

7.35 × 108 (1 + 0.3 δ)
(

1 − 0.776 T1/2
9 + 0.538 T9 − 0.102 T3/2

9

)

. (A.2)

source: CFO
corrections: c
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2. d + t −→ n + 4He

8.12 × 108 (1 + δ)2 T−0.712
9 exp[−0.506/T9] +

8.29 × 1010 (1 + δ)7/3 T−2/3
9 exp

[

−4.524 (1 + δ)2/3 T−1/3
9

−156.25 (1 + δ)2 T2
9
]

(

1 + 19.76 (1 + δ)−2/3 T1/3
9 − 204.4 (1 + δ)2/3 T2/3

9

+745.3 T9 − 1120.5 (1 + δ)4/3 T4/3
9 + 748.1 (1 + δ)2/3 T5/3

9

)

. (A.3)

source: NACRE
corrections: a, b

3. p + d −→ 3He + γ

2.58 × 103 (1 + δ)7/3 T−2/3
9 exp

[

−3.721 (1 + δ)2/3 T−1/3
9

]

×
(

1 + 0.107 (1 + δ)−2/3 T1/3
9 − 0.674 (1 + δ)2/3 T2/3

9 + 5.452 T9

−1.488 (1 + δ)4/3 T4/3
9 + 0.681 (1 + δ)2/3 T5/3

9

)

. (A.4)

source: NACRE
corrections: a, b

4. d + d −→ n + 3He

4.67 × 108 (1 + δ)4/3 T−2/3
9 exp

[

−4.259 (1 + δ)2/3 T−1/3
9

]

×
(

1 + 0.744 (1 + δ)−2/3 T1/3
9 − 3.538 (1 + δ)2/3 T2/3

9 + 6.770 T9

−3.663 (1 + δ)4/3 T4/3
9 + 0.672 (1 + δ)2/3 T5/3

9

)

. (A.5)

source: NACRE
corrections: a

5. d + d −→ p + t

4.66 × 108 (1 + δ)4/3(1 − 0.16 δ) T−2/3
9 exp

[

−4.259 (1 + δ)2/3 T−1/3
9

]

×
(

1 + 0.383 (1 + δ)−2/3 T1/3
9 − 1.781 (1 + δ)2/3 T2/3

9 + 3.565 T9

−1.762 (1 + δ)4/3 T4/3
9 + 0.301 (1 + δ)2/3 T5/3

9

)

. (A.6)

source: NACRE
corrections: a, c
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6. d + 3He −→ p + 4He

5.212 × 108 T−1/2
9 exp[−1.762/T9] +

5.021 × 1010(1 + δ)4/3(1 − 0.09 δ) T−2/3
9 ×

exp
[

− 7.144 (1 + δ)2/3 T−1/3
9 − (1 + δ)2 (T9/0.270)2]×

(

1 + 0.058 (1 + δ)−2/3 T1/3
9 + 0.603 (1 + δ)2/3 T2/3

9 + 0.245 T9

+6.97 (1 + δ)4/3 T4/3
9 + 7.19 (1 + δ)2/3 T5/3

9

)

. (A.7)

source: SKM
corrections: a, c
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B

Conventions, Constants and Symbols

B.1 Conventions

• We use signature (−, +, +, +) for the metric. For particles with non-vanishing
mass we have therefore ds2

< 0 and the four-velocity is normalized uµuµ =

−1.

• We only consider spatially flat universes, K = 0 and Ωtot = 1.

• c = h̄ = kB = 1 and we take the reduced Planck mass M−2
p̄ = 8πGN.

• We employ the Einstein summation convention. Greek indices run from
0 . . . 3 and latin indices (also referred to as spatial indices ) run from 1 . . . 3.

• Derivatives with respect to conformal time dτ = dt/a are labled d f
dτ = f ′

while those with respect to normal time t are labled d f
dt = ḟ .

• Quantities at present time are labled with ’(0)’ as superscript or ’0’ as sub-
script.

• The covariant derivative for a tensor f will be labled by f;µ, partial deriva-
tives by f,µ.

• For derivatives of the quintessence potential U(φ) with respect to the field

we use the shorthand dU(φ)
dφ = U,φ.

• The determinant of the metric tensor g is defined by g = det gµν.

• The Christoffel symbols are

Γ
µ
αβ =

1
2

gµσ
(

gσβ,α + gασ,β − gαβ,σ
)

, (B.1)
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and the Riemann tensor is

R
µ
νσρ = Γ

µ
νρ,σ − Γ

µ
νσ,ρ + Γλ

νρΓ
µ
λσ − Γλ

νσΓ
µ
λρ. (B.2)

The Einstein equations are given by

Gµν = Rµν −
1
2

gµνR = M−2
p̄ Tµν. (B.3)

• Except for the gauge-dependent metric quantities A, B, HT, HL, gauge-dependent
quantities are labled by lower case letters δ, v, χ . . .

• Gauge-invariant quantities are denoted by uppercase letters ∆, V, X, . . .

• The reaction rate for the reaction a + b → c + d is denoted by [abcd].

B.2 ΛCDM Concordance Model

We use a reference model (’ΛCDM best fit model’, ’concordance model’) for illus-
trative purposes throughout the text. It is a pure ΛCDM cosmology and is taken
from Table 4 column 7 of Tegmark et al. [29], except that we take h = 0.7 instead
of specifying ΩΛ as a free parameter. For all numerical computations we use the
parameters

Ωbh2 = 0.0228, (B.4)

ΩCDMh2 = 0.123, (B.5)

h = 0.7, (B.6)

τ = 0.104, (B.7)

ns = 0.966. (B.8)

The difference in parameter constraints between this reference model and our
example discussed in section 5.4 is due to the fact that Tegmark et al. used the
SNe Ia compilation of Tonry et al. [223] while we used the newer compilation of
Riess et al. [6]. We also use a different CMB data set than Tegmark et al. Never-
theless, there is no reason for concern as both results agree quite well and there
is no indication that only one data set has significant impact on the parameter
constraints.

B.3 Constants and Conversion Factors

Most of these values are taken from the Particle Data Group [114]:

Mp̄ = 2.436 × 1018 GeV
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= 3.809 × 1056 Mpc−1

Bd = 2.225 MeV

τn = 885.7 s

mn = 939.565 MeV

Q = 1.293 MeV

GF = 1.16639 × 10−11 MeV−2

me = 0.5110 MeV

H0 = 3.336 × 10−4h Mpc−1

Conversion factors:

1 Mpc = 3.086 × 1016 m

= 1.0293 × 1014 s

= 3.262 × 106 a

= 1.5637 × 1038 GeV−1

1 MeV = 11.605 × 109 K

109 K = 86.173 keV

1 s = 1.128 × 1019 MeV

= 1.309 × 1029 K

B.4 Symbols

Symbol Meaning
a scale factor
A gauge-dependent perturbation in g̃00, see eq. (3.5)
B gauge-dependent perturbation in g̃0i, see eq. (3.6)
Bd deuteron binding energy
c2

ad adiabatic sound speed, see eq. (3.33)
c2

s background sound speed c2
s = p′/ρ′

χ quintessence field
δ gauge-dependent energy density perturbation, see eq. (3.11)
∆ gauge-invariant energy density perturbation, see eq. (3.28)
dL luminosity distance, see eq. (2.32)
g defined by g ≡ det(gµν)

Γ gauge-invariant entropy production rate, see eq. (3.32)
h defined by H0 ≡ 100 h km sec−1 Mpc−1

. . . continued on next page . . .
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. . . continuted from previous page . . .

H Hubble parameter H ≡ ȧ/a

H conformal Hubble parameter H ≡ a′/a

H0 Hubble constant
HL gauge-dependent perturbation in the trace of g̃ij, see eq. (3.7)
HT gauge-dependent traceless part of the perturbation in g̃ij, see eq. (3.7)

k(χ) kinetic term, see eq. (2.21)
L Lagrangian
Lm matter Lagrangian
Λ cosmological constant

L(x|θ) likelihood of measuring x when parameters θ are given
Mp̄ reduced Planck mass M−2

p̄ ≡ 8πGN

ns scalar spectral index, see eq. (3.51)
Ωx contribution of species x to the total energy density
p pressure

P(θ) prior on the parameters θ

φ homogenous part of the quinessence field χ

Φ gauge-invariant gravitational potential, see eq. (3.34)
πL gauge-dependent pressure perturbation, see eq. (3.14)
πT anisotropic stress, see eq. (3.14)
Π anisotropic stress, Π ≡ πT

Π̃ reduced anisotropic stress, Π̃ = Π/x2

π(θ) posterior probability distribution of θ

PL gauge-invariant pressure perturbation, see eq. (3.30)
Ψ gauge-invariant gravitational potential, see eq. (3.35)
Q neutron-proton mass difference
ρ energy density
t normal time
τ conformal time defined by dτ ≡ dt/a; also optical depth
τn neutron decay constant

U(χ) quintessence field self-interaction potential
v gauge-dependent velocity perturbation, see eq. (3.13)
V gauge-invariant velocity perturbation, see eq. (3.27)
Ṽ reduced velocity perturbation Ṽ ≡ V/x

w equation of state w ≡ p/ρ

X gauge-invariant scalar field perturbation, see eq. (3.42)
Y harmonic function satisfying ∆Y = −k2Y

Yi abundance of element i

z redshift, see eq. (2.14)
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