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Abstract

In this thesis, a new approach for the reconstruction of height maps from scan-
ning white light interferometry is presented. This method unifies the conven-
tional steps of pre- and postprocessing within Bayesian inference. An adept
formulation of the prior allows for the exact computation of the height esti-
mate, obviating the need for stochastic sampling or simulation methods.
In conventional surface estimation for white light interferometry, a primary
height map is calculated pixel-wise from the raw data, followed by a post-
processing step where outliers and other measurement artifacts are removed.
Established and novel algorithms for both steps are discussed. The techniques
of Bayesian inference for 2-D image processing, on which the novel surface
estimation approach bases, are presented afterwards. For this new method,
the localization of the fringe pattern is represented by the likelihood function,
while the knowledge about the general surface properties goes into the prior
probability of local height configurations. Both the 3-D data set and this prior
are considered simultaneously in the estimation procedure, which analytically
yields the optimum surface reconstruction as a mode of the marginal posterior
probability. A method for quantitative comparison of height maps is developed
and used to assess the performance of different postprocessing algorithms.

Zusammenfassung

In dieser Dissertation wird ein neues Verfahren zur Rekonstruktion von Höhen-
karten aus der scannenden Weißlicht-Interferometrie vorgestellt, in dem die kon-
ventionell nötigen Schritte – Vor- und Nachverarbeitung – in einem Bayes’schen
Ansatz verbunden werden. Die Höhenkarte kann hier bei einer geschickten Wahl
des Priors direkt berechnet werden, so daß die üblicherweise nötigen Monte
Carlo-Methoden entfallen können.
Bei den bekannten Verfahren zur Bestimmung der Oberfläche eines Objekts
mithilfe der Weißlicht-Interferometrie wird zunächst pixelweise eine erste Höh-
enkarte bestimmt, aus der in der Nachverarbeitung Ausreißer und andere Meß-
artefakte entfernt werden müssen. Zu diesen beiden Schritten werden bekan-
nte und einzelne neue Verfahren diskutiert. Danach werden Bayes’sche Ver-
fahren aus der 2-D Bildverarbeitung vorgestellt, die die Grundlage für das
neue Schätzverfahren bilden. Hierbei wird einerseits die Lokalisierung des In-
terferenzmusters durch eine Likelihood-Funktion eingebracht, andererseits das
Vorwissen über die Oberflächengestalt in Form eines lokalen Priors geliefert.
Das Verfahren berücksichtigt zugleich den vollen 3-D Datensatz wie auch dieses
Vorwissen und bestimmt so eine im Sinne des MPM (maximale lokale Rand-
verteilung) -Schätzers optimale Oberflächenrekonstruktion. Desweiteren wird
in der Arbeit die Entwicklung einer zum Vergleichen derartiger Höhenkarten
geeigneten quantitativen Methode dargestellt und diese zur Bestimmung der
Leistungsfähigkeit verschiedener Nachverarbeitungsverfahren herangezogen.
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CHAPTER 1. INTRODUCTION

Longum iter est per praecepta
breve et efficax per exempla

(Seneca)

1. Introduction

Overview In this thesis, we will discuss a new approach for the reconstruction
of height maps obtained from scanning white light interferometry, which uni-
fies pre- and postprocessing by Bayesian inference. Compared to conventional
approaches, especially for high scanning speeds more accurate results can be
achieved.

Industrial image processing Industrial image processing is a field of sustained
and expansive growth, now continuing for almost two decades. In the begin-
ning, the possibilities were restricted to very simple tasks, like the detection
of the presence of an object, without measurement or identification. But with
both the increase in computing power and the development on side of better
imaging systems, from video cameras to CCDs and on, the possible applica-
tions have become almost countless. Today image processing, still young and
sometimes adventurous, has been established as a powerful measurement and
testing technology in manufacturing industry.

Out of the many aspects of image processing, the analysis of object surfaces
has been gaining of more and more importance, as a scientific interest as well
as from side of industrial applications [Rose, 2003]. Surfaces come into focus
not only as the primary interface of an object to its environment, i. e. by their
form, color or haptics, but also as they can bear specific technical properties,
which then can be measured and tested.

In the scope of this thesis, technical surfaces forming mechanical interfaces to
other objects are of particular interest. The exact measurement of the surface
height as a basis for inference to technical and even functional properties forms
the background of our investigations.

As an example, let us look at metallic seals. These are surface structures
turned out of a solid piece of metal and used in high-pressure fluid valves. The
sealing functionality becomes manifest across a thin ring of e. g. 1 mm width
and 20 mm diameter. Flanged to a counterpart, the junction is sealed only
when the functional surfaces are planar, smooth and intact. Planar means that
no waves, pits, humps or other larger irregularities may come up across it. The
smoothness is a mixed requirement: on one hand, the surface must be smooth
enough so that no significant leakage may occur, on the other hand it should
be so rough to allow for a tight interlock. At last, the seal must be intact, so
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no scratches, holes or tips may be present in the surface.

White light interferometry The requirement to automatically test all of these
specifications leads to exact specifications of the height measurement device for
extended surfaces. The necessary lateral resolution can typically be achieved
by a standard CCD-camera with adapted optics. However, the height resolu-
tion of 0.1 to 1µm can only be realized with a light-interferometric approach
[Bohn, 2000].

Interferometry used as a measurement tool is surely one of the oldest appli-
cations of wave optics, dating back to Michelson’s time. However, it has not
found its way into industrial application until very recently, as setups better
adapted to the rough environment of industrial manufacturing and manageable
also for non-specialists are now slowly becoming available.

White light interferometry is here of particular interest, as it fills an impor-
tant gap by allowing for the measurement of surfaces which are too rough for
laser interferometers and too smooth for mechanical testing devices (ball-point
testers). As we have experienced, it is a frequent coincidence that surfaces
manufactured in this precision range often bear crucial functionality and so are
categorically required to be tested after machining.

To fulfill this task, the data obtained from the white light interferometer
have to be very reliable. The delivered height map contains the height values
calculated for each pixel of the recording CCD-camera. To detect small defects
in the surface, this map should be highly reliable, at best down to the level of
single pixels.

This is particularly challenging because white light interferometry with rough
surfaces is intrinsically error-prone. The reason lies with the physics of reflec-
tion, as we will further discuss in the course of this work.

When noisy pixels of the height map, be they single and scattered or in small
groups, are detected faulty and assigned a wrong height, the test decision the
device has found for a manufactured piece becomes unreliable and debatable.
Therefore the height map should be either free of errors, or at least the reliability
of each height estimate should be known.

To reduce errors of the height map, postprocessing is applied (in contrast to
preprocessing, which is the primary estimation of the height values from the raw
data). Here, as we will discuss, the traditional canon of image processing tools
can be applied to height maps, augmented by specialized approaches making
use of the additional information available with interferometry raw data.

New processing approach In the center of this thesis stands the discussion
of a new approach to height estimation for white light interferometry, which
is prepared in a Bayesian estimation framework and embodies pre- and post-
processing steps of conventional approaches into one procedure. In preparation
of this, we look into Bayesian methods for image processing and reconstruction.

Conventionally, the postprocessing step has only a primary height map and
no other information available. Therefore the correction of erroneous pixels can
only be based on the neighboring pixels. In the novel approach, the height is
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CHAPTER 1. INTRODUCTION

estimated jointly from both the raw data of each pixel and of its neighbors.
Therefore an “information bottleneck” is removed and a better estimation is
possible. We will discuss both the approach and the performance in greater
detail to show what improvement is possible and when which data processing
is advantageous.

Finally, we will reason about possibilities for loose correspondences or even
links between the last developments, which were up to now focused on white
light interferometry, to some (functional) image restauration techniques with
an estimation background.

Guide to the thesis In Chap. 2, we start with the discussion of white light
interferometry and associated methods of pre- and postprocessing. Next, in
Chap. 3 Bayesian methods for image processing are presented. These two major
ingredients are brought together in Chap. 4 for the development of the new
height estimation approach for white light interferometry. Lastly, in Chap. 5
we look out for possible connections of that approach and methods from image
restauration.
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CHAPTER 2. WHITE LIGHT INTERFEROMETRY

2. White light interferometry

Overview In this chapter we briefly describe the physical and technical foun-
dations of white light interferometry. We also point out alternative approaches
and recent developments around data processing for white light interferometry.

The first section 2.1 covers the foundations of this measurement principle in
optical physics, with emphasis on the particularities when dealing with inter-
ferometric inspection of rough surfaces. A more general introduction to optical
interferometry can be found in many optics textbooks, cf. [Hecht, 2001] or
[Hariharan, 2003].

The next section 2.2 centers around the known data processing approaches
for the raw video signal from the interferometer. It is the signal process-
ing aspect that actually distinguishes white light interferometry as a mea-
surement principle from the mere optical phenomenon. The development of
white light interferometry went off from different starting points as one can
track through the early papers, like [Davidson et al., 1987] (lateral metrology
of semiconductors), [Kino and Chim, 1990] (Mirau interference microscope),
[Lee and Strand, 1990] (profilometry), [Koch and Ulrich, 1991] (displacement
sensor with fiber-optics), and [Dresel et al., 1992] (surface sensing). Until today,
the application of white light interferometry in surface metrology and profilom-
etry has come even more into focus of research—at least in part due to the
measurement requirements surfacing from the semiconductor and manufactur-
ing industries.

The physical properties of rough and smooth surface reflection are different,
therefore different data processing procedures are used. So far research with a
background in metrology application has often been focused around fast algo-
rithms from 1-D signal processing, where the data could already be evaluated
during the acquisition stage, i. e., “online”.

In the third section 2.3 we discuss current approaches to postprocessing of
height maps obtained with white light interferometry. This is an essential step
to obtain reliable height maps from interferometric scans of rough surfaces. Due
to the lack of phase information and the strong variability of the reflected inten-
sity, there is a certain probability that data points are erroneous or unreliable.

In the fourth section 2.4, after briefly touching mechanical height measure-
ment approaches, we will give a brief outlook on other optical systems as al-
ternatives to white light interferometry of rough surfaces. We discuss their
possibilities and drawbacks in comparison and point out some suggestions for
further reading.
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2.1. PHYSICS OF WHITE LIGHT INTERFEROMETRY

2.1. Physics of white light interferometry

2.1.1. Measurement principle

Setup A white light interferometry is an optical interferometer which is spe-
cialized for spatially resolved height measurement of at least diffusely reflecting
surfaces. It is usually built upon a standard Michelson interferometer setup. A
broad band light source takes the place of the laser known in the classic setup.
To enable the system for surface inspection, a video camera or digital imaging
system (CCD array) makes up the detector arm. The surface that is to be
inspected takes the place of one of the two mirrors. By use of a mechanical
translation stage, the inspected surface is moved perpendicular with respect to
the interferometer (cf. Fig. 2.2). During this scan, the data for the calculation
of the height map is acquired.

The optical focus of the imaging system in the detector arm should be get
to the inspected surface for a recording of high spatial resolution of the inter-
ference fringes. The scanning procedure however brings in a slight out-of-focus
movements of the surface. Excessive blurring can be avoided by considering
the depth of focus: The aperture of the objective lens should be limited so that
the size of the blur discs stays well below the camera’s pixel size for the whole
travel length. A further restriction exists for the diameter of the illumination
aperture, which limits the achievable lateral resolution due to the granularity
of speckle that it is directly correlated to (cf. Fig. 2.1 and Sec. 2.1.2).

Coherence In white light interferometry, the coherence properties of the light
source have a significant and limiting influence on the achievable height res-
olution. Coherence is the phenomenon which covers the spatial or temporal
correlation of waves. It is widely present and can be observed with all kinds of
waves as well as of course with light waves.

With the quantum mechanical dualism of particles and waves in mind, let
us consider the light emitted from an arbitrary source as made up from many
wavelets or wave trains. A single wave train is characterized by its determinate
phase progress and its finite length. The length of emitted wave trains is only
determined up to a probability law, which is related to the physical process
causing the emission. Therefore a wave trains ends or undergoes a random
phase shift after a certain time. The spatial correlation between wave trains
is another characteristic of the light source. It can be observed that successive
wave trains from neighboring sites of an emitting surface can have a correlated
phase. It is therefore customary to differentiate coherence phenomena into
longitudinal (timely) and spatial coherence.

Let us first discuss longitudinal coherence. The average time during which a
wave train “exists” is defined as the coherence time τc. The coherence length is
the corresponding length, depending on the speed of light cn in its propagation
medium with refractive index n: lc = cnτc. Phenomenologically, the coherence
length gives answer to the question how far two points can be apart along the
direction of propagation, while the phase of the signal at one point can still
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CHAPTER 2. WHITE LIGHT INTERFEROMETRY

Figure 2.1: Speckle—granular coherence phenomenon observed with laser illu-
mination on a rough surface (from [Dainty, 1984], with kind per-
mission of the author and the publisher).
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2.1. PHYSICS OF WHITE LIGHT INTERFEROMETRY
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Figure 2.2: Optical setup for white light interferometry.
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CHAPTER 2. WHITE LIGHT INTERFEROMETRY

be determined from a measurement at the other point. A wave train finally
ceases to “exist” when its phase progress undergoes a stochastic shift. The
frequency bandwidth of such a signal is given by ∆ν = 1/τc. This inverse
proportionality can be understood from the properties of the Fourier transform
or the Heisenberg uncertainty principle. It becomes clear that “incoherence”
cannot exist in a strict sense, for it would require a source of infinite bandwidth.
Instead, the notion of “incoherent light sources”, which covers thermal source
(e. g., a light bulb) or the sun, refers to their very short coherence length. With
these sources, subtle coherence phenomena still exist and can be made visible
[McKechnie, 1976], and interferometry is possible as well.

The concept of spatial coherence covers the characteristics of the emission
resulting from the spatial extent of an area of emission, which can be a direct
light source or, quite common, a virtual source formed by imaging a real light
source. The emission of a thermal light source is a handy example of low
spatial coherence emission: Due to spontaneous relaxation, each site of the
emitter (that could be a surface atom in a solid emitter) shows photonic emission
independent of other sites. The length of each wave train corresponds to the
relaxation time. It is directly clear that any two centers of emission that are
farther apart than about the length of the wave train cannot influence each
other. Any two wave trains emitted at the same time will be of arbitrary,
random phase difference, thus such a light source is spatially incoherent, beyond
the diffraction limit. With the same argument as in the case of longitudinal
coherence, nothing can be said from measuring the phase of one wave train
about the phase of the other wave train.

A common approach to create a source of defined spatial coherence is to
project a diffraction-limited light source onto a larger area: The resulting image
is spatially coherent to the extent given by the original source’s longitudinal
coherence length—the imaging system “transforms” longitudinal into spatial
coherence.

With the discussions in this paragraph we have seen that longitudinal and
spatial coherence can both be brought back to the question whether the light
waves measured in two points in space are in correlation of each other. Equally,
both effects can be demonstrated and measured with Young’s classical double-
slit experiment and should therefore only be seen as aspects of the wave prop-
erties [Hecht, 2001].

Optical interference We start the theoretical discussion with the most simple
case, namely the interference of perfectly monochromatic, planar waves. This
means we assume infinite longitudinal coherence and additionally consider the
problem translationally indifferent, that means we ignore any spatial effects.

In practice, a reasonable approximation to this idealization can be found
with the interferometry within a single speckle, i. e. the electromagnetic field
in a spatial volume limited by its longitudinal and spatial coherence length (see
Sec. 2.1.2).
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2.1. PHYSICS OF WHITE LIGHT INTERFEROMETRY

For our discussion, let us assume a linear homogeneous isotropic optical
medium,

ε = εrε0 µ = µrµ0 c =
1√
εµ

(2.1)

Under these settings, the basis solutions of Maxwell’s equations are simple
planar waves [Born and Wolf, 1999]. It is convenient to use the complex-valued
analytic signal notation and keep in mind that only its real part is physically
relevant:

E(r, t) = E0 e−i(kr−ωt) H(r, t) = H0 e−i(kr−ωt) with H0 =
k ×E0

ωµ
(2.2)

We define the intensity by the absolute value of the Poynting vector S:

I = |S| = |E ×H| (2.3)

In the linear case it becomes

I =
√

ε

µ
|E|2 (2.4)

In an interferometer setup, the optical waves from the two arms are recombined
in the beamsplitter, which is expressed by summation of the respective fields:

E = E1 + E2 (2.5)

The optical path length difference ∆r between the two arms leads to a residual
phase shift between E1 and E2:

E2(r, t) = E1(r + ∆r, t) (2.6)
= E1,0e−i(k(r+∆r)−ωt) = E1,0e−i(kr−ωt)e−i(k∆r) (2.7)

= E1(r, t)e−i(k∆r) (2.8)

We assign the net effect of this as a phase shift ϕ = −k∆r to the E2 arm of
the interferometer.

At this point, it already becomes clear that longitudinal coherence is a manda-
tory criterion for stable interference: If the phase difference is larger than about
the coherence length, most probably wave trains of different random phase shifts
come into interference. Thus the phase shift ϕ of the resulting signal will also
be random.

For simplicity, we consider our setup free of dispersion, thus we assume ϕ is
linear in frequency. Experience with our laboratory white light interferometer
setups however has shown that already the dispersion errors caused by propaga-
tion through thin (≈ 1mm) neutral density filters in one arm are easily visible
and significantly deteriorate the signal. The dispersion must therefore be com-
pensated, e. g. by a glass of equivalent optical properties in the other arm.
A further effect is the dampening of the electromagnetic fields originates from
optical asymmetry of the beamsplitter and differences in reflective properties
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CHAPTER 2. WHITE LIGHT INTERFEROMETRY

of the reference and object surfaces in the two arms. We can try to compen-
sate this by introducing dampening factors α ≤ 1, β ≤ 1, which however is
still only a first-order approximation. Also cf. [Pförtner and Schwider, 2001]
for influences of optical element imperfections.

With these approximations, we write the resulting field after the beamsplitter
as follows:

E′ = αE1 + βE1eiϕ (2.9)

The detector array in the CCD camera cannot follow the time-domain oscil-
lation of the interference field E′, but outputs an electric signal proportional
(within the limits of the converting electronics) to the intensity of the interfer-
ence field E′. To calculate the intensity according to Eq. (2.4), we make use of
|E|2 = (E eiϕ)(E∗ e−iϕ) and get:

ICCD = 〈|E′|2〉 (2.10)
= 〈|αE1|2〉+ 〈|βE1|2〉+ 〈|αβE1E1(e−iϕ + eiϕ)|〉 (2.11)
= 〈|αE1|2〉+ 〈|βE1|2〉+ 〈|2αβE1E1 cosϕ|〉. (2.12)

We gather up the sum of the first two terms to the fundamental intensity I0,
while the last one becomes the interference amplitude I1:

ICCD = I0 + I1 cosϕ (2.13)

Thus the first summand of Eq. (2.13) describes the intensity as measured with-
out interference effects. This is modulated by the second term with an am-
plitude I1. The two contributions I1 and I2 do not need to be equally large.
Quite the contrary, with white light interferometers I2 is often much smaller
than I1, i. e., the interferometer is not symmetric in the light paths of its arms,
cf. Eq. (2.12). Therefore the output signal of the interferometer does not drop
to zero for fully destructive interference, nor does it double for constructive
interference.

The visibility or interference contrast is defined by the following ratio of
maximum and minimum intensity:

V =
Imax − Imin

Imax + Imin
(2.14)

For the interference modulation in Eq. (2.13), this becomes simply V = I1/I0.
For a symmetric interferometer (α = β in Eq. (2.12)), one can reach visibility
V = 1.

If the light arriving at the detector is not fully coherent, which is usually due
to the properties of the light source or due to diffusely scattered (stray) light
from rough surfaces, the incoherent part can be seen as another contribution to
I0. Therefore sometimes the—slightly misleading—designations “coherent” and
“incoherent” for the two contributions of Eq. (2.13) can be found in literature
with a more empirical approach.
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2.1. PHYSICS OF WHITE LIGHT INTERFEROMETRY

Scanning procedure The first stage of the white light interferometric measure-
ment process is the systematic variation of the phase of the interference signal.
This is achieved by a controlled motion of the measurement setup perpendicular
to the surface under inspection, during which the camera continuously acquires
an image sequence, cf. the movement arrow in Fig. 2.2. The extension of one
interferometer arm by ∆z leads to a phase shift ϕ = −2k∆z.

A more or less precise correspondence between the positions of the moving
translation stage and the frame numbers exists—for some setups the frame
acquisition is even triggered by the stage movement. Based on this, each frame
number is assigned a discrete height value, ranging from 1 to hmax. The scale
is found by a calibration measurement or is known from the transmission ratio
of the translation stage used. The height of a pixel is set to that frame’s height
value, at which an algorithm (see Sec. 2.2) determines the center of interference.

Errors in the stage movement like speed variations or slip-stick-effects de-
teriorate the frame-to-height correspondence. Investigations on this have been
described in [Schraud, 2000] and [Körber, 2004]. However, for the measurement
of rough surfaces, which is the main focus of this thesis, these effects can be
ignored as they are usually much smaller than the statistical uncertainty of the
height map (cf. Sec. 2.1.4).

In a white light interferometer setup, a translation stage with either a contin-
uous or step-wise motion mode can be integrated. With continuous motion and
cameras with an asynchronous shutter, a systematic skew will be introduced by
the movement during frame acquisition. Although it could be another source
for impairment of the data quality, for our setup and field of application we
have found that this issue can safely be ignored.

Influence of the light source Interferometry is generally possible with a va-
riety of different light sources, like lasers, arc lamps and thermal light sources.
We have seen that for a Michelson-type interferometer setup, the longitudinal
coherence length is a central parameter.

The emission of a light source can be characterized by its spectrum, i. e. the
distribution of the emission over different wavelengths, dI/dλ. The coherence
length is generally inverse proportional to the spectral “width”, i. e. the broader
the spectrum, the shorter the coherence length.

In this paragraph we briefly discuss the use of some common light sources for
interferometry.

Laser source In the beginning of this chapter, we have theoretically discussed
interferometry for a single wavelength, which leads to a cosine-like intensity
modulation, Eq. (2.13), in the detector. This case is however not achievable in
practice, but is merely an idealization—a single wavelength would correspond
to an infinite coherence length. Such a light source would have an arbitrarily
low bandwidth and its emission reduced to a delta-peak spectrum. A quite fair
approximation can however be found with laser sources. A stabilized He-Ne gas
laser running on a single longitudinal mode has a coherence length of roughly
about 300 m [Saleh and Teich, 1991], [Bergmann and Schaefer, 2004]. Such a
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CHAPTER 2. WHITE LIGHT INTERFEROMETRY

quasi-monochromatic laser source is a good approximation to the idealized case
of a purely monochromatic source as described in last paragraphs. The inter-
ference modulation of the laser’s signal is almost exactly as given in Eq. (2.13),
with very good periodicity. The large coherence length reduces the interference
amplitude when the path differences reach the order of magnitude of the coher-
ence length. For practical purposes, the interference signal can be considered
strictly periodic. This restricts the range of uniqueness ∆z for the detection
of phase differences to the period length; that means, only phase shifts smaller
than 2π, or ∆z < λ

2 measured. This restriction can be a significant drawback
when using a laser of high coherence length in an height measuring interferom-
eter (cf. Sec. 2.4 for additional discussion of laser interferometer).

Heterodyne source A longer range of uniqueness for the interference signal
is generally desirable for height measurement. One approach is to introduce a
signal modulation, known as heterodyne principle: Mixing of two or more peri-
odic signals leads to a signal which has a larger period length than both of the
original signals. For the application in an interferometer, one can combine two
laser beams of slightly different wavelength with a beamsplitter. The summed
signal (known as beat in physical acoustics) of two sinusoidal with wavenum-
bers k = 2π

λ and k′ = k + ∆k has a longer periodicity, as one finds by simple
mathematics:

sin(kz) + sin((k + ∆k)z) = 2 sin
(kz + (k + ∆k)z

2
cos

kz − (k + ∆k)z
2

(2.15)

= sin
(
k̄z

)
cos

(
∆k

2
z

)
with k̄ = k +

∆k

2
(2.16)

The result in Eq. (2.16) has a high-frequency part, oscillating at the mean
wavenumber k̄, which is modulated with a slow oscillation at K = ∆k/2, the
synthetic or heterodyne wavenumber of this interferometer setup, cf. Fig. 2.3.
The periodicity of such an interferometer setup is therefore 2π/2∆k, which gives
a synthetic wavelength that can be calculated like Λ−1 =

∣∣λ−1 − λ′−1
∣∣. Half of

this wavelength is the range of uniqueness of the heterodyne interferometer.

Interferometry with a broadband source A broadband light source is any
source which features a spectrum not consisting only of line emission, i. e. a
“broad” spectrum. In particular, this includes thermal light sources and light-
emitting diodes (LEDs). Phenomenologically, the broad emission can be seen
as the superposition of very many signals of only slightly different wavelengths.
Consequently, interferometry with broadband light sources can be seen as a
step from two-wavelength (heterodyne) to multi-wavelength interferometry, or
white-light interferometry. The latter name became established even though
in many cases the light source is anything but white, for example an infrared
LED. For a mathematical description, correlation properties form a convenient
approach:
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Figure 2.3: Illustration of a heterodyne oscillation, wavenumbers k1 = 1 (λ1 =
2π) and k2 = 5/4 (λ2 = 8/5π). Beat wavenumber is K = 1/8 and
heterodyne wavelength Λ = 8π.

We look again at the two-beam interference. The optical path length differ-
ence corresponds to to a time lag for E2:

E2(r, t) = E1(r, t + τ) (2.17)

The interference term for real valued fields is then (cf. Eq. (2.12)):

I1 ∝ 〈E1(t)E1(t + τ)〉 (2.18)

The mean value 〈. . . 〉 is found by integration (the integration time should last
over at least one period of the light wave—in practice the inertia of any current
detector causes much longer integration times):

I1 ∝
∫ T

0
E1(t)E1(t + τ) dτ (2.19)

which we can identify as the auto-correlate cEE of E1, if we accept the approx-
imation

∫ T

0
. . . dτ ≈ lim

T→∞

∫ T

0
. . . dτ, (2.20)

i. e., if the integration covers the time during which the interference occurs,
which is the case if T is sufficiently large against the correlation length lc.

Using the Wiener-Khintchine theorem [Hecht, 2001], we can now form a
mathematical link between the properties of a broadband light source and its in-
terferogram. This theorem is an application of the Parseval theorem for signals
f(t) and f(t + τ) [Moon and Stirling, 2000]. In our case:

F{cEE(τ)} = |F{E(t)}|2 (
or = |F (ω)|2) (2.21)
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|F (ω)|2 is the power spectrum (spectral energy distribution) of the electrical
field of the light source. Therefore, by simple Fourier transformation of the
spectrum one can calculate the outer form of the interferogram of an arbitrary
light source.

In case of a highly coherent laser, the interferogram is a perfect sinusoid,
as we have seen in an earlier paragraph. In the white light interferometer
setup we use for our experiments, a near-infrared LED is used, which approx-
imately has a Gaussian spectrum. Therefore, the interferogram here also has
a Gaussian envelope, but with inverse width. Other common setups for white
light interferometers use ordinary light bulbs: A thermal source can be approxi-
mated reasonably with a wide Gaussian around its peak, and the corresponding
interferogram will have a rather tall Gaussian envelope. This form of the in-
terferogram allows for a more precise analysis, as the envelope is steeper, but
such a signal is also more difficult to detect within harsh noise. We will discuss
more of the analysis of white light interferograms in detail in Sec. 2.2.

Modifications to the setup A high speed of data acquisition and an increased
precision are two frequent, yet often contradictory aims for the development
of interferometer setups. This thesis covers some possibilities from the data
processing side. With changes in the technical setup however, ways to sig-
nificant improvements especially in terms of acquisition speed and robustness
against mechanical flaws of the setup, can be paved. We refer to the dissertation
[Seiffert, 2005] for a discussion of the most recent developments, like the use of
color cameras or augmentation of the Michelson-type white light interferometer
setup by an additional laser interferometer.

Besides the classic Michelson-type setup (cf. Fig. 2.2), further variations have
been devised which are applicable for more specialized applications. We take
note of the following to show the breadth of development:

• White light interferometry with specialized microscope optics for conic
surfaces [de Groot and Colonna de Lega, 2003], or a setup for inner sur-
faces hollow tubular structures [Aziz, 1998].

• A divergent beam setup, which allows for the measurement of non-per-
pendicularly polished, highly reflecting surfaces [Ammon et al., 1997].

• A non-perpendicular intrinsic movement procedure to enable the measure-
ment of very elongated objects by longitudinal scanning [Restle, 2003].

• Variants of the interferometer’s optical design to improve the zoom range
[Windecker et al., 1999] and a Linnek-type setup for the microscope range
[Windecker and Tiziani, 1999].

• Approaches how to control shifts of the optical path and to provide an
intrinsic calibration [Olszak and Schmit, 2003].
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Figure 2.4: Speckle as observed under laser illumination of a rough surface
(from [Dainty, 1984], with kind permission of the author and the
publisher).

2.1.2. Speckle

Speckle are a common phenomenon, which can be found with almost any system
dealing with waves. It is even present in daily life, as the apertures of the optical
system sun → rough surface reflection → human eye fulfills the necessary pre-
requisites, but often goes unnoticed there. If at least partial coherence between
wave packets in a spatio-temporal neighborhood exists, speckle can be observed.
Examples can be found with optical, radio and even acoustical waves, they are
of practical use in speckle interferometry (astronomy), speckle holography and
others.

Still, speckle phenomena are best known and easiest to experience with laser
sources: Most surfaces, when illuminated with a laser source, expose a granular
appearance (cf. Fig. 2.4). More precisely, if the height of a reflective surface
varies by more than the scale of the illumination wavelength, and the coher-
ence length of the light source is smaller than this variation, speckle can be
observed. In this case, the interference condition is fulfilled, therefore bright-
ness variations due to constructive and destructive interference occur. The
height variations of a rough surface lead to interference of light scattered from
many micro-facets of this surface, already on a microscopic lateral scale. Due
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(a) (b)

Figure 2.5: Situations in with (a) objective and (b) subjective speckle can be ob-
served under coherent illumination (from [Dainty, 1984], with kind
permission of the author and the publisher).

to diffraction a granular pattern of larger spatial extent, the speckles, can be
observed.

Subjective and objective speckle Speckle phenomena in optical systems are
often differentiated into objective and subjective speckle, depending on the rela-
tionship between scatterers, apertures and observer. Fig. 2.5 shows exemplary
situations in which both types can be observed.

Objective speckle arise after free propagation of coherent waves scattered at a
rough surface. The speckle pattern does only depend on the surface and
thus is independent of the individual observer. This explains its name
“static” or “objective speckle”.

Subjective speckle arise when light is scattered from a rough surface and ob-
served after propagation through an imaging system. The aperture of
this system limits the resolution that can be achieved when observing the
surface. At the same time, coherent interference is only possible for light
reflected from an area within this aperture. Therefore the size d of speck-
les is determined by the imaging aperture [Bohn, 2000], [Goodman, 1984]:

d sin θobs ≈ λ

2
(2.22)

2.1.3. Reflective properties of rough surfaces

Roughness Although the meaning of the term “roughness” seems to be clear
from everyday life, nevertheless quite a number of definitions can be found.
All the more when investigating surfaces of complex shape, it is not clear how
to discriminate roughness from other surface features such as waviness or the
overall surface profile. Even definitions that are written down in normative

17



2.1. PHYSICS OF WHITE LIGHT INTERFEROMETRY

Figure 2.6: Sketch of a typical roughness reference standard used for calibra-
tion of mechanical roughness testers. Although the standard is an
extensive piece of metal, the test structures are engraved only in
one direction in its reference surface.

documents can appear somewhat ad hoc (cf. [DIN, 1990] for German standards
concerning surface description and measurement procedures). The measure-
ment procedures defined in this document are well adapted to the requirements
of tactile mechanical testers that measure only along a line of the surface. The
procedures come into difficulties with the requirements and possibilities of opti-
cal measurement devices with spatial resolution. A good example are roughness
standards, which are used to calibrate mechanical roughness testers. As can
be seen in Fig. 2.6, the surface of such a standard shows statistical roughness
only in one dimension, while it does not vary at all along the other. This type
of standard cannot live up to the power of a spatially resolved surface mea-
surement device. We here observe a certain disequilibrium between what is
defined and what can be measured. Some discussions on how this gap in the
tool chain could be bridged can be found in the dissertation [Eberle, 2005] and
the references cited therein.

From the optics point of view, roughness cannot merely be seen as a surface
property, but has to be considered in conjunction with the surface’s influence
on the light reflection process. A widely accepted definition considers a surface
optically rough, if its height variation within a coherently illuminated area is
larger than the illumination’s mean wavelength [Fercher et al., 1985]. While
this property is easily accessible in experiments, it cannot hold for a definition
of surface roughness: An optical measurement can qualify a surface both rough
and smooth, only depending on the wavelength and the spatial coherence of
the illumination used in the measurement:

“rough”: ∆hspeckle > λmean (2.23)

We cannot offer a solution for this complex problem. But as we do not need
a tight definition in this work, we consider roughness under the optics point of
view, taking an illumination of small bandwidth at ≈ 800 nm wavelength as a
reference.
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2.1.4. Statistics of rough-surface reflection

The discussion of rough-surface reflection is quite complicated if one tries to
calculate the interaction of real surfaces and illumination from real light sources.
One then has to revert to simulation methods, which however still rely upon
some simplifications (cf. end of this section).

For the case of perfect coherence and roughness, as well as a statistically
“large” number of scattering centers, also ignoring any polarization issues, a
rather easy analytic calculation of the statistical law of reflected intensity exists.
We recite the central points laid out in [Goodman, 1984] in the next paragraph.

Random walk model In the random walk model, the reflecting rough surface
is considered to be made up from numerous planar facets (“micro-facets”) of
different size and orientation. Each facet is a unique scatterer: it is flat, and
reflects a random fraction of the incident light into a random direction. The
light field after reflection is made up from contributions of these scatterers,
of different intensity and phase across the whole surface. Each facet and its
contribution is named an elementary phasor. For the spatial area and path
differences which allow coherent superposition, i. e. the speckle extent in time
and space, the electrical fields interfere and contribute to I1. On the other side,
light that is scattered under higher angles, from other regions of the surface
and with path lengths differing by more than the coherence length, is added up
to the intensity I0.

This approach is both valid for objective and subjective speckle (cf. Sec. 2.1.2
and Fig. 2.5). For any kind of speckle, the amplitude of the electric field after
reflection is made up from contributions of a large number of phasors. They
are located in different regions of the scattering surface, therefore we assume
that the phase of their contribution is arbitrary:

E =
N∑

i=1

1√
N

Ei =
1√
N

N∑

i=1

|Ei|eiϕi (2.24)

The name “random walk model” originally describes a statistical model, in
which (in its simplest form) at each time step a particle makes a random move-
ment by one step in either possible direction. If one looks at the distance the
particle moved after some time, one finds it obeys a Gaussian probability dis-
tribution and so the model actually describes a diffusion process. This is very
similar to the summation of the electrical field vectors in Eq. (2.24) which its
contributions of different length and direction, hence the name.

We now go on with first looking at the situation arising from a single speckle,
with the reflection measured in a single point above the surface (the first-order
properties). In addition, the calculation (as detailed in [Goodman, 1984]) re-
quires validity of the theorem of large numbers, which means we have to as-
sume contributions of very many (not necessarily independent) phasors within
a speckle. This last postulate has been proven sufficient for most practical
cases [Goodman, 1984] and simulations based on it coincide with measurements
[Ettl, 2001].
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Figure 2.7: Random walk model: Random contributions for the scattered am-
plitude (after [Goodman, 1984]).

In this model, the following assumptions about the reflective properties of
the elementary phasors have to be accepted:

• The amplitude |Ei| and phase ϕi of each unique scatterer should be sta-
tistically independent of each other:

p(|Ei|, ϕi) = p(|Ei|) p(ϕi) (2.25)

Furthermore, they should be independent of any other scatterer’s ampli-
tude or phase. We will discuss the consequences of this restriction in the
course of this paragraph.

• The phases ϕi should be uniformly distributed on the interval [0, 2π]:

p(ϕi) = U(0, 2π) (2.26)

This requirement can be fulfilled best if the surface’s height differences (or,
more precisely, the phase shifts that arise thereupon) are so large that they
exceed the 2π-interval for the interferometer’s wavelength significantly.
That is, the surface height should vary by at least ±λ/4.

Note that these requirements restrict the admissable size of a unique scatterer:
On one hand, it must be so small as to ensure independence from other scat-
terers, but on the other hand, it must be so large as to cover an area of height
differences sufficient for a uniform phase distribution.
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We now can calculate the statistical law for the real and imaginary part of
the reflected field’s amplitude. We immediately find:

Re{Ei} =
1√
N

N∑

i=1

|Ei| cosϕi (2.27)

Im{Ei} =
1√
N

N∑

i=1

|Ei| sinϕi (2.28)

One sees that the averages (first order moments) of both parts are zero:

〈Re{Ei}〉 =
1√
N

∑

i=1

N〈|Ei| cosϕi〉 (2.29)

=
1√
N

∑

i=1

N〈|Ei|〉〈cosϕi〉 by assumption Eq. (2.25) (2.30)

= 0 by assumption Eq. (2.26) (2.31)

and equally we find:

〈Im{Ei}〉 = 0 (2.32)

The same way the second moments can be calculated. For the variances one
gets:

〈Re{E}2〉 = 〈Im{E}2〉 =
1
N

N∑

i=1

〈|Ei|2〉
2

(2.33)

And similarly, it can be calculated that the covariance is zero:

〈Re{E} Im{E}〉 = 0 (2.34)

The reflected electrical field is added up from contributions of many small
surface facets within one speckle (in the formulae, this corresponds to the tran-
sition N →∞). We have already discussed that the law of large numbers holds
true. So the joint probability density function of real and imaginary part must
be Gaussian:

pE(Re{E}, Im{E}) =
1

2πσ2
exp

{
−Re{E}2 + Im{E}2

2σ2

}
(2.35)

The variance σ2 is, with the results from Eq. (2.33) and (2.34), found to be

σ2 =
1
N

N∑

i=1

〈|Ei|〉
2

(2.36)

From Eq. (2.35), one can derive the probability density functions for the
directly accessible variables, namely amplitude and phase. We make use of the

21



2.1. PHYSICS OF WHITE LIGHT INTERFEROMETRY

transformation theorem for probability densities, which states for two density
functions pX to pY for the transition (cf. [Moon and Stirling, 2000]):

pY (y) = pX(g−1(y)) ||J(g)|| with the Jacobian Ji,j(g) =
(

∂gi

∂yj

)

i,j

(2.37)

In our case, the relationship

I = |Re{Ei}|2 + |Im{Ei}|2 (2.38)

tanϕ =
Im{Ei}
Re{Ei} (2.39)

is inverted, and for the Jacobian’s determinant one finds ||J || = 1
2 . Then we

get:

pI,ϕ(I, ϕ) =
1

4πσ2
exp

{
− I

2σ2

}
(2.40)

By marginalization, one finds:

pI(I) =
∫ π

−π
pI,ϕ(I, ϕ) dϕ =

1
2σ2

exp
{
− I

2σ2

}
(2.41)

pϕ(ϕ) =
∫ ∞

0
pI,ϕ(I, ϕ) dI =

1
2π

, (2.42)

each with the restriction I ≥ 0 and −π ≤ ϕ < π.
This result shows that the probability density for the intensity follows an

exponential law, so the probability to observe a certain intensity becomes expo-
nentially smaller the larger the intensity is (cf. plot for c12 = 1 in Fig. 2.8). For
the phase we obtained a constant probability density functions, so any phase is
equally probable.

In experimental setups, the ideal conditions founding this theory are not
always met:

• The scattering surface may depolarize the light, which is therefore “lost”
for the above calculations where we take only one polarization into ac-
count. For a correct result, the two polarizations involved must be cal-
culated separately. However, if the detector is blind to different polariza-
tions, the above results should still remain valid, as long as depolarization
effects do not remove the correlation.

• While the reflected intensity follows an exponential distribution, the sig-
nals obtained from bright speckles tend to be more stable than those from
darker speckles, which however dominate the image. In addition, for those
dark speckles external, typically mechanical disturbances to the interfer-
ometer setup lead to relatively larger intensity fluctuates [Ettl, 2001]. The
reason is that for these speckles, the intensity integrated over many micro-
facets is mostly compensated, thus singular additional contributions have
a large impact. With bright speckle, such extra intensity is small com-
pared to the overall signal level and has little influence.
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Figure 2.8: Incoherent sum of two speckles of equal mean intensities: proba-
bility distribution of the reflected intensity (from [Goodman, 1984],
with kind permission of the author and the publisher).
The parameter c12 describes the intensity correlation coefficient:
technically, c12 = 1 corresponds to equal σ’s as we have discussed
(Eq. (2.35)), c12 < 1 to lower correlation, as reflected in a larger
degeneracy of the coherence matrix J (Eq. (2.37)).

• If additional background illumination is present, the results can change.
Incoherent illumination simply adds an offset to the intensity distribution,
but the phase distribution remains unchanged. If the background however
is coherent, the resulting intensity distribution reflects this contribution by
broadening up from the exponential form. Accordingly, the contribution
shows up in the phase statistics as an additional peak around the phase
of the background signal (cf. [Goodman, 1984] for further details).

This scenario is also an approximate description for surfaces which are
neither ideally rough, nor smooth (as an example, cf. Fig. 4.2). These
surfaces come up frequently in industrial high-precision manufacturing,
and often exhibit a rough surface with leveled regions. The smoothed
areas account for the coherent part of the reflection, which broadens up
the exponential intensity distribution from the rough parts of the surface
(cf. the discussions in [Ettl, 2001]).

• As a secondary technical aspect, one cannot expected that speckle take
the rectangular form of camera pixels. Therefore, speckle are mostly not
imaged exactly onto the camera pixels, but a pixel sees the reflection
combined from two or more speckles. The light adds incoherently, so
the resulting intensity is the sum of the intensities of individual speckles.
If the speckles’ electromagnetic fields were added (coherent case), the
scenario would not differ from the case of a single speckle detailed above.
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White light interferometry with rough surfaces In the previous paragraph,
we have derived that for ideally rough surfaces, the backscattered intensity
follows an exponential law, with k a normalization constant (cf. Fig. 2.8):

p(I)dI =
1

2σ2
exp

{
− I

2σ2

}
dI (2.43)

The negative exponential probability distribution already explains a large part
of the challenge that interferometry is faced with rough surfaces: The intensity
directly backscattered from the object is predominantly low; most of the light
is scattered diffusely. The probability that the reflection has a high intensity
is only small. On the other hand, the light returned from the reference mirror
has an insignificant loss and is so of constantly bright intensity.

The light diffusely scattered from other areas gives another significant con-
tribution, again to the incoherent background signal and so the non-interfering
intensity (I0 in Eq. (2.12)) dominates even more against the interference ampli-
tude (I1). Therefore interferometry with rough surfaces suffers from a volatile
and often low interference contrast (visibility, cf. Eq. (2.14)).

The visibility gives a good estimate of the reliability of current approaches
for height calculation from the interference fringes: If it falls below a critical
number, it has been found that the probability of misdetecting the surface
height strongly increases [Restle et al., 2004], and outliers or missing values in
the height map occur.

Empirically, we consider those pixels as outliers (cf. Sec. 2.3.2), for which
the processing algorithm unintentionally yields a wrong height value. This will
often be a value outside the range defined by the roughness and surrounding
pixels. In contrast, missing values are those pixels, for which the processing
algorithm sees itself incapable of assigning a correct value and leaves a defined
“hole” in the height map.

Bearing the statistical nature of the scattering process in mind (cf. also
Eq. (2.43)), one sees that these errors are intrinsic to rough surface interferom-
etry and cannot be avoided. We will discuss procedures for the determination
and elimination of these errors in Sec. 2.3 and of course Chap. 4.

White light interferometry with smooth surfaces The reflection from op-
tically smooth surfaces is much more stable than from rough surfaces, which
generally simplifies interferometry. The phase shift of the reflected field can be
evaluated for the height estimation. Therefore it is simple to achieve a much
higher height resolution if only the mechanical stability is sufficient.

By definition, optically smooth surfaces impose a phase shift on the reflected
field that varies by significantly less than the wavelength λ. This is particu-
larly helpful when processing the interference signal, as the 2π-ambiguity can
be ignored, and the evaluation of the inner phase, based on the results from
neighboring pixels is possible. White light interferometry here comes into com-
petition with laser interferometry as it cannot benefit from the unique height
reconstruction when smoothness is an a priori assumption.
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The phase of the reflected signal can be calculated as before with the random
walk model. The smoothness prerequisite allows a series expansion of Eq. (2.24)
without assuming independence (cf. Eq. (2.25)):

Ei ≈ |Ei| (1 + iϕi) (2.44)

That way, one can find that the phase of the reflected signal is the average
of the (marginally different) phase shifts induced by each micro-facet within a
speckle.

2.2. Signal processing for white light interferometry

Evaluation of white light interferograms We have seen that the interferogram
of a white light source is defined by the auto-correlate, and so the spectrum
of the source, cf. Eq. (2.19). In the following, it is handy to use the following
equation for the interference fringes, which is a generalization from Eq. (2.13)
for arbitrary light sources:

I(z) = I0 + I1G(z − z0) cos(kz + ϕ0) (2.45)

Here I(z) is the intensity for a given scan position z, z0 a reference height,
G(z − z0) the envelope of the interference and ϕ0 the inner phase shift.

The envelope G is the Fourier transform of the power spectrum of the light
source. For the ideal single-frequency source with a delta-peak spectrum, the
transform is constant, thus one regains Eq. (2.13). For a broadband source,
the envelope peaks at z = z0 (cf. Eq. (2.19)), i. e. when the interferometer is
balanced. During the scanning procedure, the arm lengths and so the parameter
z is systematically changed. The aim is now to detect the maximum of the
envelope G, while this is modulated by the cosine term, the inner modulation.

This modulation carries an inner phase shift ϕ0 which is different from the
signal phase ϕ used earlier in the chapter: The former describes the shift of
the sinusoidal interference modulation against the signal’s envelope. It is the
residual of the phase shifts occurring at each micro-facet of the surface. As
these are of random height and inclination (cf. Sec. 2.1.4), their effect sums up
to a random phase shift of uniform distribution, at least for an ideally rough
surface.

Limitation of height resolution in speckles Although amplitude and phase of
the reflected signal are determined by a random process, the detectable phase
shift is not independent from the surface. The residual phase shift after re-
flection leads to a corresponding shift of the envelope in Eq. (2.45), thus the
detected height is subject to the same shift. As the height distribution of the
surface micro-facets within a speckle is limited, so are the phase shifts each can
contribute to the random sum. Therefore the highest and lowest height that
can be detected for a speckle always lie within the limits of the micro-faces’
height distribution [Ettl, 2001]. The resulting height is therefore random and
uniformly distributed, but within the minimum and maximum of the surface
patch that makes up the speckle.
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Pre- and postprocessing We use the term signal processing for the whole
chain of data processing happening around scanning interferometry, from the
raw intensity data recorded to the final height map ready for a reliable classi-
fication. The final height map should be characterized by its reliability: The
height values written down match the true height by a high reliability or even
within fixed bounds. The limits which when rough surfaces are measured due
to the speckle statistics (see Sec. 2.1.2) should have been taken into concern.

Within the conventional approach, used in most white light interferometer
setups, this procedure can be subdivided into two parts: The first step is the
preparation of a primary height map, which we name the signal preprocessing
stage. The second step is then the denoising and correction of this height map,
which we name the postprocessing or denoising stage.

The primary height map is obtained by an algorithm determining the center
of fringe contrast. To that end, each pixel is processed separately from any
other pixel. While the height in each pixel is estimated, it is also possible to
derive a confidence measure from the raw data sequence of that pixel. We
discuss the possible use of this measure later in the course of this section.

In the postprocessing stage, the aim is to free the primary height map from
errors, so that any misdetected height values are corrected. Here, the height
map can be considered as a conventional, possibly real-valued, gray value image:
The height of each pixel is encoded into a gray value, so that differences in
height translate into differences in gray values. Therefore the whole tool box of
digital image processing [Jähne, 2002] is available to help removing erroneous
and outlying values. The confidence measure acquired in the first stage can
support this: It can also be translated into a gray value image, which then can
be used for weighting operations of smoothing and restoration. We discuss the
current techniques for postprocessing in Sec. 2.3.

While during the preprocessing stage the information acquired for each pixel
is used separate from the others, during postprocessing the correlations of neigh-
boring pixels are explicitly used. The approach based on Bayesian estimation,
which we will present in Chap. 3, is significantly different, as it joins the pre-
and postprocessing stages and so keeps the dimensionality of the original data
until the very last step.

Performance of processing algorithms As we focus on postprocessing in this
thesis, the following sections discuss only the ideas and not the details and
performance of preprocessing algorithms. The diploma thesis [Schraud, 2000]
discusses several real-time enabled preprocessing algorithms, with emphasis on
the signal processing point of view. It also gives results for their performance.
The thesis [Eberle, 2005] deals with the performance of processing algorithms in
the high-precision regime and gives some newer results. Additional algorithms
and comparisons can be found in [Caber, 1993], [Deck and de Groot, 1994] and
[Fleischer et al., 2000].
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Figure 2.9: Draft sketch of the data flow for (a) conventional strategy versus (b)
Bayesian estimation approach for white light interferometry signal
processing and height map estimation.
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2.2.1. Processing for rough surfaces

For rough surfaces, only the envelope of the interferogram gives information on
the height. Therefore, preprocessing methods are aimed at a fast and precise
determination of the envelope’s center, where it takes its maximum absolute
value. However, the desired maximum of the envelope does not coincide with
the actual maximum of the interferogram due to the inner phase shift, but is
slightly displaced—unless ϕ0 is equal to 0 or π/2.

We will first go over various fast algorithms which do not take this detail into
account but accept this error. A possibility to deconvolve the envelope from
the inner oscillation to get a better estimate of its maximum is given with the
Hilbert transformation, which we discuss later in this section.

Further discussions of algorithms for the processing of rough surfaces can
be found in the references of the last section, and in [Schraud, 2000] and
[Bohn, 2000].

Maximum / minimum method The maximum / minimum method makes
use of the basic observation that the global maximum (or minimum) of the
interference signal can be found near the desired maximum of the envelope,
cf. Fig. 2.10. This approximation becomes the more robust, the higher the
wavenumber of the inner oscillation is compared to the breadth of the envelope,
so that it has several oscillations around the maximum. The figure shows the
approximate situation for the setup used in our experiments. A rough, but fast
estimate of the envelope’s center is thus given by the absolute maximum or
minimum of the interferogram:

ẑ0 = max
z

I(z) or ẑ0 = min
z

I(z) (2.46)

This very straightforward approach is easy to implement and can be set up
in real-time enabled hardware, requiring only a pixel-wise comparison for each
frame, with a temporary storage for one value per each pixel.

Even for low noise, this method bears an error due to the indeterminate
relation between the envelope’s absolute maximum and the phase shift of the
inner oscillation. This leads to an average error of this estimation of

<∆ẑ > =
λ̄

4
(2.47)

The relation between noise level and coherence length is critical for the correct
detection of the maximum: For a high coherence length, the envelope is broad,
it has a low curvature near its maximum. Therefore misclassifications of noisy
peaks occur more often and lead to jumps of multiples of 2π = λ̄/2.

A slight modified approach could use the maximum of the signal’s absolute
value as an estimator. In that case, due to the doubled wavenumber, the er-
rors and uncertainties would be half of those calculated above, however the
computational effort of a hardware implementation would be larger.
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Figure 2.10: Synthetic interference signals with different phase shifts (black: 0,
gray: 0.5π, π, 1.5π), but the same envelope, thus representing a
common height value.

Contrast method The contrast method is similar to the minimum / maxi-
mum approach mentioned in the last paragraph: Here the maximum absolute
difference of successive intensity values is used as an estimator for the envelope’s
absolute maximum:

ẑ0 = max
z
|I(z)− I(z − 1)| (2.48)

Again, this method can be implemented easily in specialized hardware. The
above formulation effects a small forward shift (in scan direction) of z0 from
the true maximum. In almost any application, such a constant overall shift of
the resulting height map is irrelevant and can be ignored.

The above filter becomes maximum where the interferogram oscillations have
a maximum gradient, which is coarsely around the maximum of the envelope.
This approach should show a slightly increased robustness compared to the
maximum / minimum method, which stems from the high-pass characteris-
tics of the difference operations: low frequencies of the noise are suppressed.
However, the characteristics of this filter are not particularly well suited to the
characteristics of the noise, which is timely uncorrelated and therefore also very
present at high frequencies.

As before, an increased number of misdetections due to a low-curvature en-
velope can occur in noisy measurements and lead to λ̄/2 jumps.

Sliding average algorithm As the raw signal is band-limited, a significant
increase of robustness against noise can be achieved by adding a low-pass filter
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characteristics. A quite simple measure which however still can be implemented
in basic real-time enabled hardware, is to average the contrast signal over a
number of successive frames after the high-pass processing:

ẑ0 = max
z
{|I(z)− I(z−1)|+ |(I(z−1)− I(z−2)| (2.49)

+ · · ·+ |I(z−k)− I(z−k−1)|} (2.50)

As with the contrast method, the asymmetric processing leads to a constant
overall shift. A generalized notation for this operation can be found by making
use of a window function B and the convolution operation ∗:

ẑ0 = max
z

(B ∗ |I(j)− I(j−1)|j=1...k)(z) (2.51)

In this case, the window function is a rectangular window, which corresponds
to an unweighted sliding average.

Hilbert transformation The Hilbert transformation (Hilbert filter) is an op-
eration which extracts the analytic phase [Oppenheim and Schafer, 1999] of a
signal.

The operator H of the Hilbert transformation imposes a π/2 shift on a signal
f(x). The phase ϕf of the signal is then easy to extract:

f ′(x) = Hf(x) ϕf(x) = arctan
(
−f ′(x)

f(x)

)
(2.52)

The Hilbert transformation does not change the amplitude of the signal, and
its transfer function is purely imaginary. It can therefore be described best by
the Fourier transform of the transfer function:

ĥ(k) =





−i for k < 0
0 for k = 0
i for k > 0

(2.53)

The Hilbert transform allows for a decomposition of the envelope and the
inner oscillation of the interference signal. So it delivers a signal for which the
detection of the maximum which here coincides with the desired maximum of
the envelope, is very easy. This can be seen easily as we write down a generalized
interferogram (cf. Eq. (2.45) and Sec. 2.2):

I(z) = I0 G(z − z0) cos(kz + ϕ0) (2.54)

The Hilbert transform shifts the phase of the signal by π/2, thus we get

HI(z) = −I0 G(z − z0) sin(kz + ϕ0) (2.55)

The analytic signal can be constructed by adding the real-valued signal I and
its π/2-phase shifted complement. Its name stems from the fact that it is an

30



CHAPTER 2. WHITE LIGHT INTERFEROMETRY

analytic function inside the complex unit circle—that is, its Fourier transform
is only non-zero for positive frequencies. It can thus be calculated like

AI(z) = I(z)− iHI(z) (2.56)
= I0 G(z − z0) (cos(kz − ϕ0) + i sin(kz − ϕ0)) (2.57)

= I0 G(z − z0) ei(kz−ϕ0) (2.58)

With |eix| = 1 the envelope can now be directly obtained as the absolute value
of the analytic signal. The height z0 is then estimated as:

ẑ0 = max
z
|AI(z)| = max

z
I0G(z − z0) (2.59)

The Hilbert transformation is analytically elegant, but for its application
as a preprocessing filter we have a higher computational effort than with the
filters mentioned earlier. Two options are possible in practice: Either, the
signal is transformed to the Fourier domain, the filter Eq. (2.53) is applied and
the result is transformed back. Or, the filter is transformed into the height
(variable z) domain and is applied directly to the signal. Its impulse response
would then have infinite terms in z and must be truncated, which leads to a
limited precision of the calculation. As well, a slight shift of the filtered signal
due to causality can be observed. These effects can be reduced by combining the
Hilbert transform with a low-pass filter or windowed/sliding average operation.

Wavelet analysis Wavelets have been proposed as a band-limited filter in
white light interferometry. They are used as filters that combine flexibility and
tunability within a sound theoretical framework and, in case of dyadic wavelets,
fast computability.

Therefore wavelets can be used as a preprocessing filter, followed with a
maximum detection to single out the center of the white light interferogram. On
the basis of synthesized interference signals, a detailed discussion and evaluation
with encouraging results has been reported in [Recknagel and Notni, 1998], cf.
also [Sandoz, 1997] and [Sandoz and Jacquot, 1997]. Within a diploma thesis,
we have performed a re-evaluation based on real interferometric data, a full
account of the results can be found in [Natter, 2003]. Here, we only give a very
brief overview of wavelets here and recite the results of this diploma thesis. A
detailed introduction to wavelet theory can be found in most signal processing
textbooks, especially [Mallat, 1999].

Overview wavelets Wavelets ψ(z) are the kernels of the wavelet transforma-
tion, a time-frequency transformation. Wavelets are defined by two properties1:

• Wavelets have zero average:
∫ ∞

−∞
ψ(z)dz = 0, (2.60)

1In this paragraph, the notation of the continuous wavelet transform is used, cf.
[Grossmann and Morlet, 1984], [Mallat, 1999].
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• they can be scaled and translated (parameters s and u):

ψs,u(z) =
1√
s

ψ

(
z − u

s

)
. (2.61)

The wavelet transform for the intensity function I(z) is calculated with this
wavelet atom:

WI(u, s) =
∫ ∞

−∞
I(z)

1√
s

ψ∗
(

z − u

s

)
dz (2.62)

Benefits of wavelet analysis Other than the kernel of the Fourier transform,
e−ikz, the wavelet atom and its Fourier transform cease to zero for large values
of z or k. The Fourier transform is global and delocalizes the original data in the
transformed domain—the whole height series is transformed into one frequency
spectrum. In contrast, the properties of the wavelet kernel ensure that the
wavelet transform depends on the magnitude of the signal and it’s Fourier
transform and so allow for a combined time-frequency analysis of the signal
[Schwarzer et al., 1996]. In the time-frequency plane, the wavelet coefficients
WI(u, s) are large where a chunk of time varying harmonic oscillation matches
the scaled and translated wavelet atom.

Procedure As we already know the shape of the interference signal to some
degree, but mainly lack its position along the height axis z, a full time-frequency
analysis is not required. Instead, only a transformation with the (discretized)
best performing wavelet is sufficient. followed by a simple maximum detection,
i. e.,

ẑ0 = max
z

WI(z, sopt). (2.63)

The wavelet transform is therefore used to set up a particular matched filter.
The M orlet wavelet is the recommended wavelet basis for white light interfer-

ogram processing [Recknagel and Notni, 1998], as it already has an appearance
very close to a interference signal. It is obtained by localizing a complex sine
wave with a Gaussian envelope [Daubechies, 1992]:

ψ(z) = C e−z2/2 cos(5z), (2.64)

with C a normalization constant. The wavelet and its scaled versions are dis-
cretized just before use in the computations.

Next, the best scaling level of the wavelet atom needs to be determined. It
shows that the interference signal is always manifest in the first three scaling
levels. For most scanning speeds, the first or second level shows the highest
energy, decreasing strongly towards higher levels. The height estimate is the
localization of maximum energy in the transformed domain.
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Results In comparison with the real-time enabled methods such as sliding av-
erage, preprocessing with the wavelet transformation leads to slightly higher
average absolute deviations for ẑ0. This approach can therefore not be recom-
mended in general, as other preprocessing approaches deliver better data with
less or equal computational effort.

2.2.2. Processing for smooth surfaces

We have seen in Sec. 2.2.1 that the height of a rough surface can only be
determined from the envelope of the interferogram (cf. Eq. (2.45)), as the
phase shift ϕ0 of the inner oscillation is random. With smooth surfaces, we can
now use this information, as the height changes only very little from microscopic
facet to facet of the surface, significantly less than the interferometer’s mean
wavelength.

The fast algorithms proposed for rough surface estimation (like contrast
method or sliding average algorithm), the envelope cannot be divided from
the inner oscillation, which gives rise to a height error of approximately λ/4.

When the information of the inner phase shift is valid, i. e. when the smooth-
ness assumption for the surface is reliable prior measurement, we can obtain a
much higher precision from processing ϕ0: The phase of a sinusoidal oscillation
can be estimated up to about 1 per cent of the wavelength, λ/100.

In order to reach this precision, inaccuracies in the physical setup have to
be treated much more serious than with rough surfaces: The most important
issues are deformations of the optical elements, namely of the reference mirror,
due to manufacturing errors and thermal stress, leading to extended artifacts.
Another spurious effect has been found originating from mismatching angles of
beam-splitter prisms, which lead to a continuous, spatially varying dispersion
error that manifests itself as “wiggles” all over the reconstructed height profile,
cf. here the investigations in [Pförtner and Schwider, 2001].

2.2.3. Processing for semi-rough surfaces

In everyday practice of measuring high-precision tooled objects one often comes
across surfaces, which can neither be considered optically smooth nor rough.
That is, the roughness is so low that the spatial speckle statistics does not follow
an uniform phase distribution, as one would expect from an ideally rough sur-
face. On the other side, phase jumps of neighboring speckle are still frequent,
something which one would not expect from smooth surfaces. Therefore, algo-
rithms devised for rough surfaces deliver a worse height resolution than nec-
essary, and algorithms for smooth surfaces fail as they oversmooth the phase
jumps from height discontinuities.

In [de Groot and Deck, 1995] a possible solution to this problem was first
published while it was even earlier implemented into these authors’ white light
interferometer. This approach (named frequency domain analysis, FDA or white
light phase-shifting interferometry, WLPSI) was independently published and
reworked in [Larkin, 1996], [Sandoz et al., 1997] and others.
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The idea behind these algorithms is to form a hybrid from a peak-detection
algorithm, working on the full-signal or the envelope, as presented for rough
surfaces (cf. Sec. 2.2.1), and a follow-up phase estimation for the inner oscilla-
tion (cf. Sec. 2.2.2). The phase estimation bears a 2π or λ/2 uncertainty, which
can be cancelled with the coarser knowledge of the peak position obtained in
the first step, therefore no elaborate phase-unwrapping procedure is necessary.

Alongside edges on these rather smooth surfaces, under large numerical aper-
tures, artifacts described as “bat-wings” due to diffraction can become the
dominant source of reconstruction errors. [Harasaki and Wyant, 2000] identi-
fied this problem and both [Harasaki et al., 2000] and [de Groot et al., 2002]
provide a solution by further refining this hybrid algorithm.

2.2.4. Confidence measure

Fig. 2.11 shows two interference measurements for two points of a metallic
surface (cf. photograph in Fig. 4.2). The points are not far apart from each
other, however are the measurement conditions very challenging due to the fast
scanning speed of 84µm/s. While the form of the upper interference signal
is significantly deteriorated due to the fast recording, the envelope and it’s
center or maximum is simple to detect. In case of the lower signal however,
the interference is completely submerged in the noise, and intensity variations
cannot be safely assigned as contributions from noise or interference signal.

As one expects intuitively, the uncertainty in determination of the envelope’s
center becomes larger the lower the signal-to-noise ratio is1. Based on this,
a characterizing parameter has been devised. It is often known as the confi-
dence measure, named like this by one of the pioneering groups in white light
interferometry, but it exists in similar form in other interferometer setups. For
the system used in our investigations the maximum difference between adjacent
minima and maxima is used to define this measure [Ettl, 2002], other defini-
tions are equally possible. With this particular definition, a calculation of the
confidence number is possible both after each data series is taken and on line, by
continuously updating the number from the most recent data. Unfortunately,
this confidence number is only poorly connected to other measures of reliability,
in particular the ensemble variance of the detected height, which has a stringent
mathematical foundation, cf. [Restle et al., 2004].

With the confidence number and the detected height, for each pixel two com-
plementary values are available. This opens up more possibilities for denoising
(postprocessing) of the height map, starting from thresholding pixels of insuf-
ficient confidence to more advances options, as we will discuss in Sects. 2.3.3
and 2.3.4.

1This statement is a main result of the detection theory, cf. [Moon and Stirling, 2000] for a
starting point of reading.
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Figure 2.11: Extreme examples of superior (upper) and almost negligible
(lower) signal-to-noise ratio in case of 8-fold subsampling of the
inner oscillation. The vertical shift of the two curves originates
from different background intensity of the reflections. Scanning
speed is 84µm/s, the scale is 1.68µm per frame.

2.3. Denoising of height maps from interferometry

As it has been stated in Sec. 2.1.4, height maps of rough or quasi-rough surfaces
necessarily contain a number of erroneous pixels, i. e. missing values or outliers.
Depending on the further use of the acquired height map, correction of these
pixels is at least desired, if not strictly required when the height map is handed
to non-robust operations.

2.3.1. Linear filtering

A linear filters in image processing returns a value that is a linear combination
of a pixel gray value and those of it’s neighborhood. The coefficients of this
polynomial characterize the filter.

Simple linear filters The calculation of the arithmetic mean is the simplest
linear filtering operation. The height value of a pixel is replaced by the mean
height of the pixel and its neighbors. With the arithmetic mean, all pixel sites
have the same weight, therefore all coefficients of this filter are equal. This
operation implicitly assumes that the height map should be smooth, at least
for the pixel and its neighbors–this assumption of course fails near edges and
irregular structures.

Mathematically, linear filtering can be expressed by operations in which filter
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masks are convolved with the height map or image to be processed. Therefore,
the matrix notation is preferable rather than writing down nested sums.

Let I be an image. Linear filters G are those image processing operators, for
which the following linearity constraint holds:

G(αI1 + βI2) = αGI1 + βGI2 (2.65)

In particular, one can see that the filter response is proportional to the size of
the input signals, which are scaled with factors α, β.

As an example let us consider the simple rectangle filter, which calculates the
arithmetic mean over all pixels within the neighborhood of any pixel. The size
of the neighborhood is determined by the filter’s size. It is common to name
the filter according to its size, e. g. the mask of a 3× 3-rectangle filter is:

Gsq =
1
9




1 1 1
1 1 1
1 1 1


 (2.66)

The filter response can be calculated by a discrete convolution:

I ′x,y =
r∑

x′=−r

r∑

y′=−r

Gx′,y′Ix−x′,y−y′ (2.67)

Another filter applied in many image denoising problems is the Gauss-filter.
Its filter mask is a discretization of the two-dimensional Gaussian curve. This
filter has two parameters: as usual the size of the filter mask, and the width
σ of the Gaussian curve that is discretized onto the filter mask. This filter
puts highest weight on the central pixel of its mask, it then becomes smaller
the farther a pixel is away from the center. For useful filter masks, these
parameters should be chosen jointly, so that the mask is large enough to cover
the distance over which the Gaussian is influential over the noise background.
For σ = 0.5 of the lattice spacing, the 3 × 3 mask is one reasonable choice for
many application:

GGauss,σ=0.5 =
1

1.64




0.02 0.14 0.02
0.14 1.0 0.14
0.02 0.14 0.02


 (2.68)

However, linear filters are generally not robust (cf. Sec. 2.3.2): After process-
ing the raw data, the errors found in the primary height map are often outliers—
pixels, whose height range is far outside the reasonable range. With a linear
filter, these (like any) pixels have a linear influence on the output of the fil-
ter. With one pixel of the input data having an arbitrarily wrong value, the
output becomes as well arbitrarily wrong. This should be illustrated with a
3×3-rectangle filter Gsq working on a 5×5-patch of an image, where an outlier
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Figure 2.12: Illustration of the effects of a 5 × 5 rectangle filter (applied in
inner area) for an image edge between two smooth and two noisy
quadrants (Gaussian white noise).

is put in the center pixel:

Gsq




1 1 1 1 1
1 1 1 1 1
1 1 2 1 1
1 1 1 1 1
1 1 1 1 1




=




. . .
1.1 1.1 1.1
1.1 1.1 1.1
1.1 1.1 1.1

. . .




(2.69)

Gsq




1 1 1 1 1
1 1 1 1 1
1 1 1000 1 1
1 1 1 1 1
1 1 1 1 1




=




. . .
112 112 112
112 112 112
112 112 112

. . .




(2.70)

A further, often undesired effect of linear filters is the blurring of image edges
or object boundaries: if a part of the pixels under the filter mask belongs to
one gray value or height domain and another part to the other, a linear filter
returns values lying in-between the two domains, cf. Fig. 2.12.

One can of course understand this situation similar to the case calculated
above, now with a series of adjoining outliers. Each is spread out over the
neighbors leading to the blurry edge. Another view is to conceive that here
the quietly underlying assumption of linear filtering, that the original image be
smooth, is simply failed. Robust filtering can be seen as a way of weakening this
assumption and still gaining better results by differentiating between outliers
and edges.
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Weighted mean filters Weighted filters are adjustable, which can be used to
take the quality of the data into account. That way, it is possible to achieve
practical robustness with this modification of linear filters.

The weighted arithmetic mean is defined as follows: For a set of data points
xi with variance σ2

i , the weighted arithmetic mean is given by

<xi >=
1
k

∑

i

xi

σ2
i

with the normalization k =
∑

i

1
σ2

i

(2.71)

For each data point weights are given, in this case we have wi = σ2
i . This idea

easily carries over to image processing where weighted filtering is also known
as normalized convolution [Granlund and Knutsson, 1995]. For an image I, an
image of weights W and a filter mask G, the operation is defined as:

I ′ =
G ∗ (WI)
G ∗W

, (2.72)

thus the name becomes obvious.
Some possibilities of choosing the the weights other than as the inverse vari-

ances are interesting. In particular, the variance of a single pixel is not directly
available in image processing, and a corresponding measure for white light in-
terferometry is problematic [Restle et al., 2004]. For smoothing interferometric
height maps, we consider the following two approaches:

1. The weights can be derived from the spatial variability on a local scale
of the image. It is assumed that the image is overall smooth. Areas
of high variability in the gray values (or height) then hint towards a
low measurement confidence, which could also be seen in the pixel-wise
variance if a sequence of image were acquired. The local variability can be
measured with numerous different filters, like gradient-based filters and
other edge detectors.

However, it should be noted that it is not obvious at all how to deduce the
variances (or at least some measure of uncertainty) of a single pixel from
the spatial variability and assumptions have to be made: If the image
were generated from an ergodic stochastic process, the spatial variance
and gray value variance a pixel would be exchangeable—this however can
almost never be assessed.

In white light interferometry, as we have discussed in Sec. 2.1.4, the sur-
face height profile, as seen by the interferometer, itself is generated by a
stochastic process. The above-mentioned assumption of general smooth-
ness is thus not valid for an image representing a height map from white
light interferometry.

2. With scanning interferometry we have the special case that the height
map is not the primary information acquired, but already product of a
prior processing step. Additional insight into the variability of each pixel
could thus be gained from looking at the raw data. One way to do this is
to derive empirical weights from the confidence values that are available
with some preprocessing algorithms. We discuss this in the next Sec. 2.3.3.
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2.3.2. Robust filtering

Within image processing, we consider all those operations as robust filters, which
do not lead to arbitrarily large results when an arbitrarily large input (like with
outliers) occurs. Borders of objects that come up as edges in an image can
be considered as outliers [Black and Sapiro, 1999]. We can thus expect that a
robust filtering algorithm can avoid to blur or wash out these features. Robust
filters can return, depending on the quality of the input signal, a response of
substantially different quality, they are therefore generally not linear.

Median filter The median filter is the best-known rank-order filter. This class
of filters have in common to perform sort and re-ordering operations on the
input set. For example, the maximum or minimum operation are primitive
rank-order filters.

The median filter, for a set K = {k1, k2, . . . , kn} of input values, chooses the
value of the middle index from the ordered list {ka ≤ kb ≤ · · · ≤ kn}1. If the
number of input values is even, by convention the mean value from the two
values next to the middle of the list is returned. The returned value is therefore
always within the range of the input set, although intermediate values not on
the input carrier may come up.

Due to its non-linearity, the median filter in image processing cannot be
expressed by a convolution with a filter mask, but a sort operation has to be
performed on each pixel. To that end, a neighborhood system is defined to set
the spatial range of the filter, often a square n × n field of pixels is used. The
gray values within the neighborhood around the pixel currently processed are
taken into a list (here, of size n2), reordered and the value at position |n2/2|+1
of the list is written into the filtered image.

The median filter shows maximum robustness against outliers in the Huber
sense [Donoho and Huber, 1983]. The filter result does not change significantly
if the list to be filtered is augmented with outliers, i. e. entries of grossly
different values, as long as the list does not contain more outliers than actual
values. Therefore the median filter is well adapted to the removal of outliers
from a height map. It preserves image edges well, from the filter’s view, these
can be seen as a group of outliers, which is ignored until it becomes the majority
of the input list.

In contrast to the weighted filters discussed below, the median filter cannot
be made adaptive to the quality of the original data it is processed on. Both in
areas with many outliers and in those with few, it performs the same filtering.
This is why the median filter has a predisposition to oversmooth in image areas
with little or no outliers. It can possibly remove image features that only appear
like outliers, but which are positively backed up by their good data quality and
hence could be saved if one could recognize this. The tendency to oversmooth
becomes greater the larger the filter mask is chosen. It therefore depends on
the properties of the image if and with which mask size a median filter should
be applied.

1Although discussing image filtering, we start adopting a simple notation of ordinal numbers.
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Adaptive median filtering Similar to the ideas that lead to weighted filters
(cf. Sec. 2.3.1), one could imagine applying a robust filter selectively only to
those pixels which are suspected to be erroneous, and to leave the others intact.

We wish to apply a smoothing filter to only those pixels in the image or
height map, which we can identify as outliers. In the realm of robust statistics,
the spatial median filter seems appropriate, and the same filter can provide us
a way of detecting outliers.

We apply the median filter to a data set that consists of a central pixel of
gray value x0 and its neighbors, x1, . . . , xk, where it yields

x̃0 = med{x0, . . . , xk} (2.73)

Let us now look at the distance |x0 − x̃0|: If the central pixel is an outlier, this
difference is outside the range of variation that we expect given the roughness
of the surface under inspection. For an optimum distinction, this threshold
should be adaptable to the fraction of outliers and the local variability in the
image or height map.

In a study on breakdown points1, Hampel [Hampel, 1985] proposed to identify
outliers by their statistical variability, which is (by the definition of outliers)
significantly larger than the variability of “normal” samples.2 The variability
of the dataset is measured with the MAD (median of absolute deviations):

MAD{x0, . . . , xk} = med{|x0 − x̃0|, . . . , |xk − x̃0|} (2.74)

The MAD-value is a robust measure for the variability; it does not change
significantly if one adds gross outliers to the dataset. The Hampel detector for
outliers can then be written:

|x0 − x̃0| ≥ c MAD{x0, . . . , xk} (2.75)

The pixels fulfilling this equation are identified as outliers and can be re-
placed by better estimates, like the median value x̃0 itself. The parameter c in
Eq. (2.75) gives freedom to tune the outlier detector: the larger it is chosen, the
more tolerant we are to values lying far-off, possibly missing out some outliers.
If the probability distribution of the dataset is known, the optimum value for c
can be found by simulation, as demonstrated by [Davies and Gather, 1993] in
case of a normal distribution for the underlying dataset. In our experiments, we
measured the quality of a reconstruction with the average absolute error of the
estimate against a reference height map (cf. Sec. 4.3.2). c was chosen to min-
imize this error, and we found optimum values slightly off the ones simulated
for a normal distribution. A computer implementation of this filter is easy, and
for our experiments we used a fast MATLAB implementation requiring about
0.8 s per height map.

It is crucial for the Hampel detector that the variability of the dataset is
measured with a robust approach like the MAD-value. Non-robust measures
would get large if outliers exist in the dataset and so automatically become
insensitive to them.

1For the theory of breakdown points, cf. also [Huber, 1981] or [Donoho and Huber, 1983].
2The author would like to thank Chr. Hennig (Seminar for Statistics, ETH Zürich) for

pointing out the possibility of using Hampel’s approach in this filtering scheme.
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2.3.3. Specialized filtering approaches

In this section we describe filtering approaches which make use of the specialties
of white light interferometry. Due to the preprocessing required, additional
information comes up during the formation process of the height map, which
we try to use for filtering.

Confidence thresholding The confidence measure, which is provided with
some white light interferometer setups, gives a coarse reflection of the relia-
bility of an obtained height value. A straightforward approach to make use of
this is to establish a threshold filtering based on the confidence value. Pixels
below the threshold are assumed to be unreliable and can be marked, either as
“invalid” to leave them out of further processing, or they can be subjected to
additional filtering as to replace those pixels. However, the first option must
often be disfavored, when afterwards additional image processing will be used,
especially neighborhood operations: Often it is not clear how to handle invalid
pixels within a filter mask, and the correct choice to mark the whole affected
neighborhood as invalid makes these regions grow with every processing step.
The data set usable for classification or feature extractions stays reliable, but
becomes smaller with each iteration. For the second option, a number of possi-
bilities exist how to estimate a missing pixel from its surroundings. E. g., one
could proceed with the median value of the neighborhood, which is similar to
adaptive median filtering (cf. Sec. 2.3.2).

Variance-weighted (nonparametric) smoothing The confidence measure can
also be used for a weighted filtering approach: One assigns low weights to
pixels of low confidence, and higher weights to those of a higher confidence
value. Intuitively, this should reduce the influence of outliers and invalid pixels
on the smoothing process if both have a rather low confidence measure.

More precisely, we weight each height value with its uncertainty which we
derive from the confidence measure. To that end, we try to relate the variance
of the calculated height values to the confidence measure obtained from the
interferometer setup. The smoothing is then done by weighted averaging over
a local neighborhood, the size of which is again chosen according to the uncer-
tainty. That way, this approach is an extension of smoothing by normalized
convolution incorporating information from the confidence measure. A detailed
description can be found in [Restle et al., 2004] and the thesis [Restle, 2003],
we here give a sketch of the basic ideas.

Relation of confidence values to variances From practice we know that a
low confidence corresponds to a high uncertainty in the obtained height value
(cf. Sec. 2.2.4). The confidence values are therefore related to the empirical
variance of the height data. To put this finding on solid ground, in the thesis
[Restle, 2003] investigations with multiple measurements of challenging surfaces
have been carried out. Based on a series of 25 height and confidence maps, for
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Figure 2.13: Robust empirical standard deviation against confidence values for
a rough, uncooperative surface (taken from [Restle et al., 2004]).

each pixel the standard deviation of the height values was calculated and plotted
against the arithmetic mean of the corresponding confidence value.

Fig. 2.13 shows the results. From the hyperbolic form of the scatter plot, one
sees saturation in two directions: First, the empirical standard deviation cannot
fall below a certain residual error. Second, the recorded confidence values have
a lower limit, and the corresponding standard deviation has an upper bound.
This however can be related to the limited scanning range and height output
range and thus limited error in the data.

The data is parameterized with a shifted hyperbola (cf. line plot in Fig. 2.13);
the functional form of the parameterization is chosen empirically. The algorithm
is not tunable by single parameters, but has full flexibility with the adaptable
interpolation function. The surface is reconstructed by local smoothing instead
of a functional fitting, which explains the naming “nonparametric smoothing”.

This function assigns each confidence value an estimated standard deviation.
From the figure it is however clear that only for large confidence values the
deviation can be deduced, for small confidence values it bears a large error. In
that sense the confidence value is a poor estimator for the ensemble standard
deviation.

Smoothing with variable-width kernels The smoothing of the height map is
performed by normalized convolution (cf. Eq. (2.72)), with the weights chosen
as the inverse empirical variances. While it is possible to fix the size of the
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smoothing kernels support to an arbitrary value, a different approach has been
investigated:

The size of the smoothing kernels is fine-tuned to the local uncertainty, so
that in areas where the expected noise (calculated from the confidence values)
is larger, a bigger smoothing mask is used, while in areas of expectedly low
noise the mask is kept narrow and blurring is avoided the best possible. By
iteratively and selectively applying a filter of increasing size, one can control
the smoothing process and reach a pre-defined target uncertainty for the whole
image.

Performance With this extension of normalized convolution smoothing one
can smooth the image so that the height values of all pixels are under a given
target variance. By the iterative approach with variable sized filter kernels,
the blurring and loss of spatial resolution, unavoidable with linear filters, is
reduced to a minimum. This approach however requires the confidence-to-
variance correspondence to be known in before, at least for the rough class of
surfaces under investigation.

On the test images in [Restle et al., 2004], the filter performs slightly better
than a 3 × 3 mask median filter, which on the other hand is much faster to
perform. Despite adapting the size of the smoothing mask, this filter increases
the error of pixels which have a very low uncertainty, probably due to estimation
errors for the variance around low confidence values (cf. Fig. 2.13).

For the sample piece we use to evaluate postprocessing algorithms in this the-
sis (cf photograph in Fig. 4.2), the actual correlation of confidence values to the
ensemble variance could not have been established. With the shifted hyperbola
standard correlation however, the algorithm generally yields a slightly inferior
average absolute error compared with the median filter and other algorithms
(cf. Sects. 4.3.4 and 4.3.5).

2.3.4. Further possibilities

Using a local parameter from the image formation process like the confidence
measure in postprocessing is not necessarily limited to white light interferom-
etry. Also other imaging systems like SAR1, MRI2 or CT3 require complex
operations on the raw data before an image can be built up. Only for MRI, an
extension which creates weights for postprocessing of noisy data is known to us
([Prüssmann et al., 1999] use the local coil sensitivity).

On the other side, there are a number of image denoising approaches that
make use of a reliability measure to weight or tune their algorithm. These algo-
rithms can possibly easily be adapted to utilizing a confidence measure instead.

A variance measure, derived from features and properties of the spatial neigh-
borhood is used in [Recknagel et al., 2000] to constrain smoothing of height
maps obtained by confocal microscopy.

1Synthetic Aperture Radar
2Magnetic Resonance Imaging
3Computer Tomography
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2.4. Alternative approaches to interferometric height
measurement

White light interferometry is a “young” technology, its application did not yet
spread wide outside laboratories, and other approaches for measuring surface
height, namely tactile mechanical testing, are still very well established.

Mechanical methods for height measurement Especially in industrial man-
ufacturing, mechanical devices which acquire line-like surface profiles with a
tactile sensor have a long tradition and are continuously being used. Discus-
sion of and comparison with these systems is however not in the scope of this
thesis. The reason is that with these systems, much time and a great effort is
needed in order to record spatial height information instead of line-like profiles.
Mechanical tactile systems always add directional artifacts and the spatial reso-
lution differs significantly alongside and perpendicular to the sensor movement
direction. Therefore they should play no role in spatial surface metrology.

In the following paragraphs, we will briefly discuss the alternatives to white
light interferometry that are based on optical measurement principles and give
some further reading.

Alternative optical approaches For white light interferometry, a height reso-
lution δz down to about 0.01 µm has been reported [Harasaki et al., 2000], here
with a hybrid algorithm, explicitly also using the phase information1. For the
resolution that is achievable with the sliding average algorithm (cf. Sec. 2.2.1)
theoretical considerations exist [Fleischer et al., 2001], but the simulations are
still too optimistic. With significantly reduced instrumental investment and
lower requirements in computational power and algorithmic complexity, trian-
gulation approaches cover the field of lower height resolution, that is, above
1µm [Bohn, 2000]. The confocal microscopy approach has a height resolution
roughly comparable to white light interferometry. For laser interferometry, res-
olutions down to approximately 0.1 nm [Wang, 2003] have been achieved. Such
a precision can only be achieved with surfaces that have a smoothness in the
same order of magnitude, as then the measurement range is correspondingly low
or an elaborate phase unwrapping procedure has to be applied subsequently.

Triangulation approaches The basic principle of triangulation is the estima-
tion of the height of a surface patch from its angle of view. Two principal
approaches can be distinguished:

Passive triangulation: The surface is illuminated diffusely and observed with
two cameras which are tilted against each other. The height is calculated
from the lateral displacement (stereo disparity). Here it is necessary to

1The two terms resolution (meant as smallest height difference that can be differentiated)
and repeatability (stability of a height measurement over a measurement sequence) are
easy to confuse. One should be aware of this when one comes across comparisons of the
capabilities of different measurement techniques.
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match corresponding surface patches from the two cameras. This is, at
least for a machine vision system, a non-trivial task requiring prior knowl-
edge [Schlesinger, 2003].

Active triangulation: A line or a geometric pattern is projected onto the sur-
face. The measurement triangle is formed between the projector, the
camera and the surface, so that the lateral displacement of a projected
feature is proportional to the height of that patch. When the projection
consists of parallel lines, the height can only be calculated for a corre-
sponding orthogonal line-like region. When a two-dimensional pattern
is used, a spatial measurement is possible. In that case it is necessary
to vary the pattern over several image acquisitions to obtain uniqueness.
Examples for realizations of this approach are Moiré triangulation and
phase-measuring triangulation (PMT), cf. [Bohn, 2000].

Laser interferometry We have already discussed that interferometry with a
laser source can technically be seen as a predecessor to white light interferom-
etry. The optical setup for both is similar, the central difference lies with the
interference signal, which in the ideal case is purely sinusoidal (for Eq. (2.45), so
the “envelope” would be constant: G ≡ 1). As the interference signal is strictly
periodic, the range of uniqueness is limited to the laser wavelength used. With-
out further assumptions on the spatial structure of the surface, the height of a
pixel can only be determined within

∆z =
λ

2
. (2.76)

This restriction limits the field of application for laser interferometry to the
inspection of de facto optically smooth surfaces, like optical mirrors, or semi-
conductor dies. Discontinuities in form of height steps larger λ

2 are folded back
to within the range of uniqueness, i. e., the signal’s phase is wrapped.

There are two main approaches to extend the range of uniqueness:

Larger wavelength One option to enlarge the unique measurement range is
the use of a larger wavelength. Precision-worked metal surfaces typically
become optically smooth with respect to a infrared source of λ & 1µm.
If the height is estimated from the local phase of the interference pattern,
one has to expect a reduction of the height resolution when using a larger
wavelength source: The slope of the signal, dI/dz is reduced as the phase
progress dϕ/dz is smaller. Therefore the phase becomes more difficult to
detect with a detector having a discretized output—that is the case for
all digital imaging systems.

Heterodyne principle We have already discussed heterodyne interferometry in
the context of multi-wavelength interferometry (cf. Sec. 2.1.1, see also
[Sodnik et al., 1991]). The synthetization of the longer heterodyne wave-
length can be done directly in the interferometer, or “virtually” by over-
laying of successive measurements (λ-shift interferometry). The detection
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of the contributions with different wavelength is then done separately. In
any case, for the synthesized wavelength we have:

1
λsynth

=
∑

i

1
λi

(2.77)

One can see that the longest heterodyne wavelength can be achieved by
combining light that differs only little in wavelength.

The differences between synthesizing on-line (directly in the interferometer) and
off-line become clear when we bring back to mind (cf. Fig. 2.3) that for little
differences in wavelength, the outer modulation becomes very slow. Thus the
challenge of the direct approach becomes the fringe order identification, which
requires thoughtful sampling of the signal with the fewest number of frames.
The main difficulty is to differentiate between neighboring sinusoidal “fringes”
that differ only slightly in height for a small ∆k, thanks to the then-slow co-
sine modulation. With noisy measurements, misclassifications become more fre-
quent and can lead to π/k̄ jumps in the height estimate [Dändliker et al., 1995].

This last issue can be circumvented if the heterodyne wavelength is only
synthesized virtually, i. e. off-line in the processing computer. This can be
done either having both wavelengths in the interferometer and making the de-
tector wavelength sensitive, so as to register the two wavelengths separately.
Another approach, based on speckle-interferometry, continuously switches be-
tween the two injected wavelength and has the detector synchronized accord-
ingly [Meixner et al., 2003]. With any these approaches, it is possible to gain
a larger range of uniqueness without compromising the depth resolution, albeit
at the price of higher system complexity.
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3. Bayesian estimation in image
reconstruction

3.1. Foundations

Bayesian image restoration A central paradigm of Bayesian approaches is the
idea of a hidden truth behind what is observable. If we move our focus on images
and image processing, this means that the visible image is then only considered
as a (often degraded) instance of the underlying true image. The degradation
process usually accounts for noise, artifacts and other unwanted features within
the data. As this process is usually both unknown and dominated by random
effects, it causes that the result is badly correlated to the original, the true
data.

Some groups of researchers (cf. [Chu et al., 1998]) consider Bayesian image
restoration as one of two principal paths to image denoising, contrasted with
filtering (linear, non-linear, robust, morphological, and others) on the other
side.

As originally defined by Hadamard in 1902 in a very general context (acces-
sible via [Tikhonov and Arsenin, 1977]), a mathematical problem’s solution is
well posed if

(a) it exists,

(b) it is unique, and

(c) it has a continuous dependency on the data.

So far, due to its non-uniqueness and discontinuous dependency on individual
measurements, we have to consider the image reconstruction problem in fact
severely ill-posed: By the high interrelation of the variables representing im-
age pixels, the optimization problem in reconstruction is usually non-convex,
which then usually requires time-consuming sampling strategies, for example
via Markov chain Monte Carlo (MCMC). The restauration problem is other-
wise simply not accessible to any attempt of brute-force solution as it represents
an overwhelmingly large computational load.

The transformation of an ill-posed problem towards a problem with a stable
inverse is known as regularization, this term has also been adopted to the field
of image restoration [Katsaggelos, 1989]. In Bayesian image restoration, this is
achieved by adding prior knowledge about the unknown truth within a Bayesian
approach.

The central and maybe most serious problem—which immediately arises
when we consider an image as a random system—is the number of possible
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configurations that could be taken into account: For a x-by-y pixel image with
z gray values and no further restrictions, zx·y configurations are possible. For
a 100 × 100 binary image, this is 210000 or ≈ 103000 configurations, by far ex-
ceeding the number of particles in our universe. For any estimation procedure
this sets up a sampling problem which is often regarded as the main drawback
of Bayesian approaches: it requires either sophisticated strategies to quickly
reach the high-probability regions of the configuration space, or specialized ap-
proaches like the one we work out in this thesis that fit into niches and cover only
selected classes problems. On the other hand, Bayesian approaches allow for
a more abstract formulation of the optimization target and so are expected to
require less experience with filter selection and their tuning [Chu et al., 1998].

The image labeling problem Under a more general point of view the image
processing problem we are discussing all through this thesis can be considered as
a labeling problem. Our task is to attach labels to sites, in our practical applica-
tion that is to attach labels of discrete height values to pixel positions. Another
image processing problem that fits into this framework is edge detection, which
is to assign the dichotomous labels “edge” and “no edge” to the dual lattice of
pixels. Some further labeling problems are stereo reconstruction, with labels
identifying the depth of recognized objects in each pixel [Schlesinger, 2003] and
the classification of ground and soil features on the basis of possibly multi-
spectral satellite images (SAR data). For earlier works in this field, yet ham-
pered by the computer power of their time, cf. [Kittler and Föglein, 1984],
[Hjort and Mohn, 1984], [Mohn et al., 1987], and also [Zhang et al., 1990], as
well as the later publication [Shekhar et al., 2002]. Obviously still before the
arrival of adequately powerful computers, the approach mostly came out focus
for geoscience.

Our height estimation task can therefore be seen as a further example of
the general labeling problem, with labels from a set of discrete height values
assigned to image sites.

Consistency of a problem For the computational treatment of the correspond-
ing optimization problem the question of consistency is important. A problem
is consistent, if its definition in local properties can be consistently transformed
into a description in global properties. Consistency is required to make use of
the Markov random field framework [Chalmond, 2003], [Li, 2001a]. However,
the height estimation task can only be solved directly if it is not formulated
consistently. In Sec. 5.1, we will discuss modifications that could build a bridge
to Markov models.

3.1.1. Setting of the problem

Throughout this and the following chapter, we adopt a notation merged from
the textbooks [Chalmond, 2003] and [Winkler, 2003], hoping it will give a legible
and not-so-cluttered symbolic description of the ideas. Furthermore, we will
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restrict ourselves in most cases to the discrete notation, which can be transfered
straightforwardly into practice.

We start off at a single pixel, or site, for which a finite number of settings is
available. These are usually identified with gray levels. The sites are usually
located in a fixed pattern, which is a rectangular matrix for most image sensors.
To identify single sites, we simply require some enumeration of pixels, be it row-
wise, column-wise, or else. A site can then be identified by its site index s, its
setting be xs ∈ Xs, with Xs the finite state space of this particular site. The
setting of site s is then a point in Xs.

The set of all sites (pixels) will be named S. Settings of several pixels taken
together make up a single point in the associated product space. For the whole
of S, X =

∏
s∈S Xs let be this state space (configuration space). Fixing the

values for all sites gives a realization of an image that is a single point in this
||S||-dimensional space: x ∈ X. Vectors and matrices will usually be written
in bold letters.

In most cases, we will not discuss settings of the whole set of sites, but
restrict ourselves to small groups of sites, which are usually neighbors. Let a set
of neighboring sites be A, with A ⊆ S. In this case, the sites take a setting in
the space XA =

∏
s∈A Xs, which can be projected onto X by means of some

mapping.
When discussing a probability distribution P of a random variable X and its

realizations x, we leave away the random variable from the notation:

P (X = x) ≡ P (x) (3.1)

This will usually go without any ambiguity. Adopting that convention, we gain
some simplicity and clarity.

3.1.2. Bayesian estimation

The Bayes theorem [Bayes, 1763] is the central idea and foundation of this work.
It is an interesting side note that it cannot be proven from very first principles,
but has to remain axiomatic. To make it more plausible in a graphical way,
Venn diagrams are often used [Stahel, 2002].

The Bayes theorem is often deduced from properties of a joint probability
distribution P (X = x,Y = y) ≡ P (x, y) of two random variables X and Y and
their respective laws. For the conditional probabilities we have:

P (a, b) = P (a|b) P (b) = P (b|a) P (a) (3.2)

The last terms from Eq. (3.2) can directly be transformed into:

P (a|b) =
P (b|a) P (a)

P (b)
(3.3)

The denominator has to be assumed non-zero, which is usually sensible in the
context of Bayesian inference (see below).
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y measured data
x hypothesis of the true image
Π(x) a priori probability / probability distribution (“prior”)
f(y|x) likelihood
P (y) evidence
P(x|y) a posteriori probability / probability distribution

Table 3.1: Naming conventions for Bayesian inference: symbols and their des-
ignation as used in Eq. 3.4.

The basis of Bayesian inference is this last equation (3.3). Traditionally, its
constituent parts are given a special naming as well as a specific notation, which
is usually similar to the following:

P(x|y) =
f(y|x) Π(x)

P (y)
Bayesian paradigm (3.4)

The names of the symbols used here are given in Table 3.1.
These particularities hint towards the origin and the special importance of

this formula, Eq. (3.4), as well as its designation as Bayesian paradigm.
The formula provides a powerful tool for statistical inference from an im-

perfect measurement and prior knowledge about the underlying truth. Both
ingredients are brought together to form the a posteriori probability. In addi-
tion, an estimation function Φ, with Φ : R+ → R+ is introduced which chooses
the “best” image hypothesis x from the a posteriori probability distribution
according to some measure. The choice for Φ can also be motivated by a min-
imization problem for the more abstract cost function (cf. Sec. 3.1.4), which
assigns costs to the estimates depending on how “far” the estimate lies off the
truth. A frequent choice for Φ is the maximum operation: here, the hypoth-
esis with the highest a posteriori probability is selected as an estimate of the
unknown truth.

In most applications, only one measurement y is considered, and the evidence
is therefore only a constant scaling parameter. From there, we can leave it away
and are thus left with a proportional expression of only the numerator and with
y fixed:

P(x|y) ∼ f(y|x)Π(x) (3.5)

The Bayesian inference problem is therefore the following:

x̂ = Φ(P(x|y)) with P(x|y) ∝ f(y|x) Π(x) (3.6)

In the following, we discuss the a priori probability or short, prior Π(x) and
the likelihood f(y|x).
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3.1.3. Prior and likelihood

Prior The prior Π(x) is the quantity that introduces our abstract prior knowl-
edge about the true image properties into the estimation process. For each im-
age hypothesis x from the hypothesis space X it assigns a value which describes
the probability of that image. The truth itself is unknown, only expected val-
ues for some of its properties exist and are implicitly contained in the prior
functional. Therefore the distance between hypothesis and truth can only be
assessed by these properties. The deviations can be weighted differently by
use of a cost function, which itself can be derived from a more abstract cost
functional (cf. Sec. 3.1.4).

The prior is a probability distribution, and so we assume semi-positivity and
a normalization,

x ∈ X : Π(x) ≥ 0 and
∑
x

Π(x) = 1, (3.7)

that is, Π is a probability distribution.
The prior is a measure for the probability of a hypothesis. For two hypotheses

xa and xb, we say xa has a higher probability, or is more favorable than xb, if
the following holds:

Π(xa) > Π(xb) (3.8)

The magnitude of distance between two images is determined by the actual cost
function implemented.

Likelihood The second ingredient to Bayesian estimation is the likelihood.
It is a probability function that forms the bridge between the data that are
actually measured, y, and the hypotheses on the truth, x. The likelihood
then states the probability of a certain measurement given a hypothesis about
the true value. For image data, the likelihood of x and y representing two
full images can rarely be quantified sensibly, as the joint configuration space
is vast. Instead, the problem is brought down to individual pixels and the
pixels in their neighborhood. Beyond the neighborhood area, pixels are then
considered independent and the likelihood can be factored into contributions
for each spatially independent pixel configuration.

With the likelihood describing the probabilities for a given hypothesis of the
true image, i. e., for a hypothetical physical situation, an access to the problem
with additional benefit is opened.

The likelihood is used to describe how a (hypothesized) true image could
be linked to its deteriorated measurements. This approach is “inverse” to the
original setting of the estimation problem, and constraints are often much easier
to quantify if they can be based on a hypothesis.

The degradation of electronically recorded images is an example: with a
likelihood function, the effect of noise sources on this measurement process can
be accounted for in its full combination, when only the physical background of
the processes is known.
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When the likelihood and the prior are formulated, the major part of the
image reconstruction problem is defined and the a posteriori probability can be
calculated.

As a next step, a cost function and a corresponding estimator for the a pos-
teriori probability are discussed, cf. Sec. 3.1.4.

The configuration space for images is extremely large, which imposes a serious
problem on the effort to draw samples from a probability distribution. When
subsampling with a uniform probability, most configurations drawn will have
a very small a posteriori probability. Estimators will easily become biased or
very volatile, strongly influenced by the few (if any) samples of high weight.
We discuss ways how to efficiently generate samples with high a posteriori
probability in Sec. 3.2.

The approaches available for efficient sampling restrict the possible choices
for prior probabilities.

A central issue for the design of image reconstruction priors is to adjust the
balance between the smoothing of noisy pixels and the preservation of edges
and solitary image features. In addition, efficient sampling from the posterior
probability imposes its own restrictions on the range of possible priors, which
will also be part of our focus in the detailed discussion of priors in Sec. 3.3.

3.1.4. Cost functions and a posteriori estimators

A mathematical description of the ideas in Sec. 3.1.2 can start with a cost
function. It gives us a measure and a simple tool at hands, with which to decide
which of the possible realizations is a more “reasonable” choice. This is done
by fixing a cost value for each decision and, as a general paradigm, the decision
should be made so that minimum costs are achieved [Moon and Stirling, 2000].

From the mathematical point of view, a cost function is a measure, which
convert the complex differences between images xa and xb into a plain number.
Mathematically, we require that an elementary cost function Γ : X ×X → R+

fulfills the following criteria [Chalmond, 2003].

1. The cost should be commutative and positive semi-definite:

Γ(xa, xb) = Γ(xb, xa) ≥ 0 (3.9)

2. The cost should be zero if and only if the images are equal:

Γ(xa, xb) = 0 ⇐⇒ xa = xb (3.10)

Costs are usually calculated in reference to the truth, which is unfortunately
unknown for the Bayesian estimation problem. This issue can be circumvented
by the introduction of Bayesian costs, which are the average costs of all pos-
terior settings in the light of a measurement y, weighted with the associated
probability:

Γ̃(x) =
∑

x′∈X

Γ(x, x′)P(x′|y) (3.11)
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As mentioned in the introduction, the best estimate is axiomatically postulated
as that of minimum cost:

x̂ = arg min
x∈X

Γ̃(x) (3.12)

In the following paragraphs, we discuss the estimators which are connected
to three cost settings frequently used.

Maximum a posteriori estimate (MAP) A simple setting of the cost func-
tion imposes constant costs on any estimate x̂ that is different from the best
choice xbest, independent from the number of erroneous pixels or how large the
differences are:

Γ(x̂, xbest) =
{

0 if x̂ = xbest

1 otherwise
(3.13)

The Bayesian costs then are

Γ̃(x) =
∑

x′∈X

Γ(x, x′)P(x′|y) (3.14)

=
∑

x′∈X

P(x′|y)− P(x′|y)|x′=x (3.15)

= 1− P(x|y) (3.16)

The cost minimization postulate corresponds to a maximization of the a poste-
riori probability:

x̂ = arg min
x∈X

{1− P(x|y)} = arg max
x∈X

P(x|y) (3.17)

Under this cost definition, the best estimate is found by choosing the image
x, which has a maximum a posteriori probability. This estimator is therefore
called maximum a posteriori estimator or short, MAP.

This estimator has one obvious shortcoming, as it can be extremely hard
to find the best estimate: By using only the cost definition in Eq. (3.13), we
have no way of knowing which one of two wrong estimates is nearer to the best
choice. Algorithms which evolve one estimate out of an other would search the
state space without knowing how far off the current estimate is. In fact, this
problem has a setting equivalent to the maximum clique problem [Flach, 2002],
which has been proven to be NP-complete.

Nevertheless and albeit the reasoning behind its cost definition is rather plain,
the MAP estimator is well-accepted and popular in application [Hunt, 1977],
[Geman and Geman, 1984], [Bouman and Sauer, 1993], [Medeiros et al., 1998].

Marginal posterior mode estimate (MPM) In some cases, finding the mini-
mum-cost estimate for the complete scene is not required. Instead, it may be
sufficient to use a minimum-cost estimate which covers only a particular site
and the sites within its proximity:

Γ(x̂, xbest) =
∑

s∈S

Γs(x̂s, xs
best) (3.18)
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When defining the costs on a per-site basis, we again set it to a constant
contribution for each deviation from the best value, regardless how large the
error is. The influence of the surroundings becomes only effective with the
a posteriori probability, which is influenced by the prior:

Γs(x̂s, xs
best) =

{
0 if x̂s = xs

best

1 otherwise
(3.19)

The Bayesian costs can be accumulated as the sum over all sites:

Γ̃(x) =
∑

s∈S

Γ̃s(xs), (3.20)

with the following contribution from each site:

Γ̃s(xs) =
∑

x′s∈Xs

Γs(xs, x
′
s)P(x′s,y) (3.21)

= 1− P(xs|y) (3.22)

By the semi-positivity of Γ̃s, minimization of Eq. (3.12) can again be achieved
site-wise. Analogous to Eq. (3.17), this yields the site-wise estimate:

x̂ = (x̂)s with x̂s = arg max
xs∈Xs

P(xs|y). (3.23)

This estimator is called marginal posterior mode, or short, MPM estimator.
The Bayesian estimation problem can be worked through independently for
each site with its neighborhood, which however in practice does not imply a
significant improvement in computability. In Chap. 4 we will discuss the direct
computability for this estimator with a certain class of priors.

Minimum mean squares estimate (MMS) For this estimator, the costs are
not constant as with the others so far, but chosen as the quadratic distance per
site. This leads to costs that grow larger with distance from the best image.
Similar to the MPM estimate, we can split up the costs for a complete image
into single-site costs:

Γs(x̂s, xs
best) =

(
xs − xs

best
)2

(3.24)

The Bayesian costs for each site s then are:

Γ̃s(xs) =
∑

x′s∈Xs

(xs − x′s)
2 P(x′s|ys) (3.25)

The costs in Eq. (3.25) should be minimum. We choose to locate that minimum
analytically:

x̂s = arg min Γ̃s(xs) (3.26)
∂

∂xs
Γ̃s(xs)

!= 0 (3.27)
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The differentiation leads to the following necessary, and also sufficient condition
for the optimum, cf. [Winkler, 2003]:

xs P(xs|ys) = x̂s P(x̂s|ys) (3.28)

With the last identity we get for the minimum mean squares, or MMS a poste-
riori estimate:

x̂ =
∑

x

x̂s P(x̂s|ys), (3.29)

This formula is actually just like Eq. (3.11), the definition of Bayesian costs.
That is why MMS estimators are the Bayesian (minimum-risk) estimators for
the case of additive, quadratic costs.

3.1.5. Deterministic approaches

In Sec. 3.1 we have discussed that the image reconstruction problem in general
is ill-posed and any brute-force approach is severely hampered by the sheer
enormity of the configuration space that needs to be searched.

Still however for some settings of the problem, specialized approaches have
been developed. In contrast to the stochastic methods discussed in Sec. 3.2.2,
these are deterministic in the sense that they need no sampling by a random
process for operation.

The algorithms discussed in this section are capable of finding the opti-
mum solution, or the minimum costs setting of the image restauration problem
within finite time. Likewise, the approach we propose for height map estima-
tion (Chap. 4) is deterministic and bound to find the optimum configuration
within the limits of its specialized settings.

Analytical integration With certain settings for the probability distributions
of prior and likelihood, a Bayesian estimation problem can take a mathematical
form that allows for a analytic integration of the posterior. Thus, the a poste-
riori probability density can be obtained directly.

In [Kendall et al., 1987], a number of examples for such “conjugate” settings
can be found:

• Gaussian likelihood + Gaussian prior −→ Gaussian posterior

• Binomial likelihood + Beta function prior −→ Beta function posterior

• Poisson likelihood + Gamma prior −→ Gamma posterior

The central drawback of this solution is of course the restriction of the proba-
bility distributions to certain settings. For some applications, the choice of the
prior probability is to a certain degree discretionary, mostly justified by lack of
prior knowledge on the problem.

But as the functional form of a prior directly influences the a posteriori
probability of an estimation problem, a prior probability function should not
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be chosen simply for the sake of a less complex computability—at least not
unless its consequences on the estimation problem are understood. For the
height estimation prior that is introduced in Chap. 4, we will discuss this issue
in Sec. 4.2.3).

Ford-Fulkerson The Ford-Fulkerson algorithm is a well known algorithm in
network theory [Mehlhorn, 1984]. It is used to solve the maximum flow problem,
which addresses the question of how to maximize the flow between a given source
and sink through a network of edges with given capacity.

To carry this over to image reconstruction, an image model must be converted
into a flow network (a directed graph). For this purpose, for each pixel a node
is set up; two more nodes are added that serve as source and sink. The source is
connected to each node, the same holds true for links from the pixel nodes to the
sink. The capacities of these links are chosen according to log-likelihoods of the
observations. The a priori knowledge sets the interdependence of neighboring
pixels which is represented by two links connecting back and forth between two
neighbors. Their capacities are set as the coefficient of the model describing
the pair interaction of the neighborhood, cf. Eq. (3.55). The Ford-Fulkerson
algorithm calculates the maximum flow through this network, which is the MAP
estimate of the original problem.

The Ford-Fulkerson algorithm has however some limitations concerning its
application to image reconstruction:

• The prior must be of a generalized Ising type (cf. Sec. 3.2.1), i. e. it can
be expressed as a sum of pair potentials.

• Edge models (line processes) for robust reconstruction (cf. Sec. 3.3) can
only be be incorporated into the Ford-Fulkerson framework if they can be
represented as a pair-potential.

• The computation requires many operations on the computer, which makes
handling of larger images intricate.

Within image processing, the Ford-Fulkerson algorithm is therefore used rarely
in actual applications and mostly serves for theoretical considerations.

GNC algorithm The GNC algorithm (Graduated Non Convexity) was in-
vented by Blake and Zisserman and is a minimization algorithm for the weak
membrane model. It incorporates an explicit edge model for edge preservation,
cf. Sec. 3.3.2. The energy function (Hamiltonian) H of this model takes the
following form [Winkler, 2003]:

H =
∑
s∼t

φ(gs − gt) +
∑

s

(ys − gs)2 (3.30)

In this formula, s and t are pixel indices, gs and gt denote gray values and ys is
the data term (the observed image), s ∼ t denotes a neighborhood relationship
between s and t.
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During the optimization, the roughness penalty φ in the Hamiltonian is ap-
proximated by convex functions. These gradually approach the original func-
tional values by variation of an overall parameter p during the course of op-
timization, hence the name GNC. With this approximation one tries to avoid
dropping into local minima of the energy function. That way, the GNC al-
gorithm shares its principal ideas with the simulated annealing approach on
Markov random fields (cf. Sec. 3.2.2), but it has the drawback that its energy
functions are restricted to the form of Eq. (3.30). An in-depth discussion can
be found in [Blake and Zisserman, 1987].

3.2. Bayesian estimation with Markov random fields

In the last section, we have discussed how to set up the prior and likelihood for
Bayesian estimation, and how the cost function for an appropriate a posteriori
estimator can be selected.

Estimates E for functions f derived from the a posteriori probability can be
calculated according to the general formula

E{f(x)} =
∑

f(x)P(x|y) (3.31)

In the strict sense, the sum should be evaluated for the full configuration space
X, which has a cardinality of zxmax ymax , z the number of gray levels. Even for
simple binary images, the associated state space is overwhelmingly large (cf.
introduction to Sec. 3.1). But not only the space contains far too many ele-
ments to be handled, but also most configurations are of very small a posteriori
probability and contribute little to the estimate, as they do not resemble the
true image at all.

It is therefore necessary to reduce the number of samples drawn. If we can
restrict ourselves for a given number of samples to the ones with a high probabil-
ity, the error for the estimator can be reduced, as only samples of low probability
are left away. This “intelligent” sampling is usually referred to as Monte Carlo
sampling [Hastings, 1970]. Still, the sampling method itself can be optimized,
by the introduction of dynamic Monte Carlo or simulation methods, which in
the course of the simulation gradually move the sampling towards regions of
higher probability and there let it “settle in”.

Markov models and in particular Markov random fields (MRFs) give a solu-
tion to the—actually very general—problem of sampling from high-dimensional
random distributions. Markov methods are used in many scientific fields, such
as speech recognition, tracking and control problems or archeometrics, cf. also
[Besag et al., 1995].

3.2.1. Markov random fields

In this section, we will discuss how to draw samples from a Markov random field.
To that end, we first consider the properties of random fields, then the sampling
from a Markov chain—the one dimensional precursor to Markov fields—in the
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next paragraphs. After the Markov chain properties, the questions of setting
the burn-in period and reliable sampling, we discuss Markov random fields with
the Ising/Potts example.

For many applications built upon Markov random fields, the efficiency of
sampling becomes the next central optimization issue. We discuss solutions
to this issue, also referred to as simulation methods, in Sec. 3.2.2. For some
methods and settings of parameters, as is the case with simulated annealing,
convergence can be strictly proven, in other cases this is not possible.

Random fields

A random field is a set of sites that each can be in a certain configuration, with
a probability distribution defined for any configuration of the set.

In a more mathematical formulation, we take the set of sites S and a config-
uration space X for this set as defined in Sec. 3.1.1. A probability distribution
Π on X is then defined as Π = (Π(x))x∈X with the restriction Π(x) ≥ 0 and
the normalization

∑
x∈X Π(x) = 1 that make it a probability measure.

If Π is strictly positive, that is, for all configuration x ∈ X we have Π(x) > 0,
then (X, Π) is called a random field.

Neighborhoods and cliques Prior knowledge on a random field is usually
available only within small neighborhoods of a site. An example: For an image
we have a common idea about the property “smoothness”. However, we cannot
deduce the gray value setting in one corner of the image from that in another,
far away corner. Instead, the notion of smoothness can only be expressed on a
local scale, this could be by assigning similar gray values of pixels in the spatial
proximity of a certain pixel a higher a probability than gray values farther
apart.

Intuitively, neighbors are sites “next” to each other, and a neighborhood
is the set of those sites, and cliques can be seen as groups formed within a
neighborhood.

Moving over to a mathematical notation, a neighborhood system for sites s
is defined as a collection ∂ of sets ∂(s) ≡ {∂{s} : s ∈ S} with the following
properties:

(a) s /∈ ∂{s} and

(b) s ∈ ∂(t) if and only if t ∈ ∂(s).

In that case all t ∈ ∂(s) are neighbors of s. We also use the notation t ∼ s if t
is a neighbor of s, then of course s is a neighbor of t. To express the set of sites
that contains the neighborhood for a site xs, we write the shorthand ∂(xs).

A subset C of the set of sites S is called a clique, if all elements of C are
neighbors: C ⊆ S : s, t ∈ C : s ∼ t. Given an appropriate neighborhood system,
it is also possible that the empty set ∅ and S itself are part of the clique.

All common imaging systems have a rectangular pixel pattern. Due to the
symmetry of this pattern, the 4-neighborhood and the 8-neighborhood are par-
ticularly important, cf. Fig. 3.1.
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(a) (b)

(c)

Figure 3.1: Examples of symmetric neighborhoods for the rectangular pixel
pattern: (a) 4-neighborhood, (b) 8-neighborhood and (c) 24-
neighborhood. The reference (center) site s is marked by a white
dot.
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Figure 3.2: Neighborhood relationships (lines) and cliques for the 4-
neighborhood case (cf. Fig. 3.1a). The rotated variants are omitted.

Figure 3.3: Neighborhood relationships (lines) and cliques for the 8-
neighborhood case (cf. Fig. 3.1b). The rotated variants are omitted.

The cliques that correspond to their neighborhood system for a particular
site s are shown: in Fig. 3.2 for the 4-neighborhood, and in Fig. 3.3 for the
8-neighborhood. The empty set ∅ clique and the symmetrically rotated cliques
are left away from the illustration. Still it is visible that the number of clique
grows fast with increasing size of the neighborhood.

Handling of image boundaries In the proximity of the outer image bound-
aries, neighborhood relationships fail and exceptions have to be introduced. A
common option is to first extend the image domain by half of the filter size
for the boundary pixels. Then the gray values of the additional pixels could
be set to zero, or all copied from the former outermost pixel, which is usually
a smoother transition. Another possibility is to mirror the gray values at the
border. The Fourier transform of an image can only be strictly invertible if the
image is continued at the border of the other side, which, applied for both axes,
effectively puts the image around a torus [Jähne, 2002]. As the original scene
is usually not periodical, this approach often leads to stronger high-frequency
artifacts in the Fourier domain.

Finally, a rather simple option we adopt for the filtering procedures discussed
in Chaps. 4 and 5, is to process only those pixels for which the filter mask does
not cross the border. Therefore the output image is reduced by half the filter
mask size along each border. This however is not a viable option if large filters
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have to be applied repeatedly, as the usable area shrinks in each iteration.

Markov processes

Markov random fields are derived from Markov processes, also known as the
Markov chain model. A Markov process is defined on sequential data, like time
series, for which transition probabilities from one state to the other are given.
Markov processes are a tools for modeling a sequential development ruled by a
statistical law.

Markov chains Let us first review the one-dimensional Markov chain model:
A Markov chain of first order describes the time development of a random
variable Xi and its realization xi, with i ∈ N being the time index.

By definition, the random variable fulfills the (first-order) Markov property,
if the following holds true:

P(xi|xi−1, xi−2, . . . , x1) = P(xi|xi−1) (3.32)

The probability distribution at time i therefore may only depend on the dis-
tribution at the latest time step, i − 1. Higher order Markov processes have
dependencies also back to distributions earlier in time. In practice, these can
only be found in special applications, as higher order interrelations are often
difficult to model.

The evolution of a Markov process can be described by the associated tran-
sition probability matrix or Markov kernel P, which specifies the transition
probabilities from any state to another:

x ∈ X, P : X ×X → [0, 1] : P(x, ·) (3.33)

A Markov transition can then be described by the probability to move from
any state x in the present distribution ν to state y; the right hand side gives a
common shorthand:

∑
x

ν(x)P(x, y) ≡ νP(y) (3.34)

A homogeneous Markov process is defined as one with a constant kernel. A
Markov kernel P is primitive, if any y can be reached from any x within a finite
number of transitions:

Pk(x, y) > 0 with k ∈ N, and for any x, y (3.35)

In this notation, multifold transitions are marked with the exponent to the
kernel P. A Markov process is aperiodic, if there is only one way to come from a
distribution back to the same, and finally, a Markov process is positive recurrent,
if in the limit of infinite cycles, any state is revisited with unit probability.

The practical impact of Markov processes arises from the limit theorem: For
a primitive Markov kernel P and its positive recurrent, aperiodic process x on
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a finite state space X, there exists a limit distribution and the Markov process
converges to this invariant distribution:

with µP = µ : lim
n→∞ νPn = µ (3.36)

With this theorem, we know that a Markov process eventually can give sam-
ples from a distribution very close and approaching to its invariant distribution.
So if we are able to define a Markov process for the probability distribution we
want to sample from, evolving the Markov process gives us the desired samples
for the calculation of estimates.

By the law of large numbers, reliable estimates of arbitrary functions can
be calculated from all samples produced by the Markov process: To make use
of this in practice however, a Markov sampler which starts from some initial
distribution should be let run for a certain time (burn in), then samples can be
drawn. This avoids unnecessary bias on the estimates while the distribution is
yet converging. Still it is often unclear, when the burn in period ends and when
sampling can begin.

The abstract procedure is therefore as follows:

1. Find a Markov kernel P which describes the system,

2. input an initial distribution into the Markov process and let it “burn in”
towards the invariant distribution,

3. approximate the MMS estimator of functions by its empirical average,
obtained from sampling a long, partial realization of the process.

Markov random fields

Transition to random fields The idea of extending the notion of Markov
processes to probability distributions of dimensions higher than one, i. e. the
Markov chain, was already discussed in early years [Dobruschin, 1968], its pow-
erful application to image restoration became widely recognized with the sem-
inal paper by Geman & Geman, [Geman and Geman, 1984].

The central difference between Markov processes and Markov random fields
lies the domain on which they “live” and the way how to evolve new states:
Markov random fields are defined on random fields, which can be two- or higher
dimensional. What makes Markov random fields of particular interest for us is
that a planar image or height map can be modeled as a Markov random field.

In a Markov process, the dependence of a new state is based on earlier states
and the development itself is also in time. On a Markov random field however,
there is no natural notion of direction as in a sequence. In this case, we also
develop the field in time, but consider the dependence of a new state only on
each site’s neighboring sites at the same instant of time. Plainly speaking,
“time indices are considered as spatial indices” [Li, 2001b].
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Local characteristics For the discussion of Markov properties for random
fields, it is helpful to define local characteristics (also known as “local spec-
ifications” [Chalmond, 2003] or “full conditionals” [Winkler, 2003]), which are
the local conditional probabilities for a neighborhood system ∂(x):

Π(xs|xt, with t ∈ ∂(s)) local characteristics, (3.37)

which is actually a shorthand form for the probability of configuration Xs = xs

at site s under the conditions that Xt = xt for all t in ∂(s).
Handling random fields by their local characteristics is useful for Gibbsian

form estimators (see below), which contain a partition function.

Markov property for random fields A Markov random field is defined as a
random field Π with a neighborhood system ∂(x) if for any two sites s, t ∈ S and
all configurations x ∈ X the following holds true for the local characteristics:

Π(xs|xt, with s 6= t) = Π(xs|xt, with t ∈ ∂(s)) (3.38)

That is, any site t′ outside of ∂(s) may not influence the conditional probability
distribution for s on a Markov random field. Its properties do only depend on
the configuration in its neighborhood.

The Markov property can also be formulated as follows: the probability laws
X{s} (i. e. for the set of site s) and X{t:t/∈∂(s)} are conditionally independent
under a given X∂(s), cf. [Lauritzen, 1996].

While for Markov processes each state only depends on its immediate pre-
cursor, for a Markov random field each site only depends on the states of a site
and its neighbors (cf. Eq. (3.38)).

Gibbs fields and Gibbs-Markov-equivalence The Gibbs formula gives a phys-
ically motivated relation between an energy or potential U1 and a probability
law or density function (see box below for this motivation):

Π(x) =
1
Z

e−βU(x) (3.39)

Here U(x) is the potential (energy) for a configuration x, β a tunable parameter
and Z a normalization parameter (partition function):

Z =
∑
x

e−βU(x) (3.40)

By specifying the potential U(x) for a configuration x, the corresponding
probability Π(x) can be found. If the potential U is a neighborhood potential,
i. e. if it can be partitioned into cliques:

U(x) =
∑

c∈C

Vc(x), (3.41)

then the probability Π defines a Gibbs random field.
1We choose the symbol U instead of H as used in some places earlier in this chapter, as we

want to reserve U for potentials that are neighborhood potentials, cf. Eq. (3.41).
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Physical motivation for Gibbs potentials [Reif, 1965]

The Gibbs potential is the probability distribution of the canonical
ensemble. This model is characterized by a constant average
energy for its statistical ensemble.

The energy of the whole ensemble is E, summed from small energy
contributions of individual elements (states). If we look at one
particular contribution s with energy Vs, we therefore have:

Vs ¿ E (3.42)

The probability for this state is the number of states available,
divided by the total number of states. The latter equals to the
microcanonical sum for the ensemble energy, Ω(E). If the particu-
lar element had energy Vs, the remaining ensemble had Ω′(E−Vs)
states available. Therefore, the element itself has Ω′(E−Vs) states
available. We get for the probability:

Π(s) =
Ω′(E − Vs)

Ω′(E)
=

1
C

Ω′(E − Vs) (3.43)

with C = Ω′(E) a constant, as the overall energy E is fixed.

A series expansion for ln Ω′(E − Vs) around E leads to

lnΩ′(E − Vs) = ln Ω′(E)− ∂

∂Vs
lnΩ′(E)Vs + . . . (3.44)

We ignore terms of higher order and use the definitions of entropy
(S = kB lnΩ(E)) and temperature (T−1 = ∂S(E)/∂E) to get:

lnΩ′(E − Vs) = ln Ω′(E)− 1
kBT

Vs (3.45)

This we put in the expression for the probability to finally get:

Π(s) =
1
Z

e−βVs (3.46)

with the partition function Z as the new normalization constant,
to be calculated like Z =

∑
s e−βVs and the inverse temperature

β = (kBT )−1.
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The formula Eq. 3.39 has a large practical importance for Markov random
fields by several aspects:

(a) there exists an exact correspondence between the definition of a random
field by its Gibbs or by its Markov properties (Hammersley-Clifford the-
orem, see below),

(b) a problem can often be better described by neighborhood potentials, as
we show in the example given at the end of this chapter,

(c) the additional parameter β allows for efficient simulation strategies, like
simulated annealing (cf. Sec. 3.2.2) and others.

The parameter Z is the normalization of the right hand side of Eq. (3.39) that
makes it a probability. The parameter β is known as the inverse temperature,
or β = (kT )−1. In the limit of lowest inverse temperature, β → 0, the right side
of Eq. (3.39) vanishes, leaving a uniform probability distribution. In the high-β
limit the exponential distribution becomes arbitrarily steep, leaving only the
lowest energy configuration with non-zero probability. This situation has the
physical correspondence of “freezing” when a system comes to zero temperature.

The Hammersley-Clifford theorem1 proves the Gibbs-Markov equivalence:
If the Gibbs field Eq. (3.39) has a potential H that is a neighborhood potential
(cf. Eq. (3.41)), then it is a Markov random field for exactly this neighborhood.

Consistency of Markov random fields In the course of the proof for the
Hammersley-Clifford theorem, one also obtains a formula relating the local
characteristics to the Gibbs energy specified by neighborhood potentials:

Π(xs|∂(xs)) =
1
z

e−U(x)+U(x−s) (3.47)

with z the partition function for a single site,

z =
∑
xs

e−U(x)+U(x−s), (3.48)

with ∂(xs) = {xt} with t ∈ ∂(s) and x−s = {x1, . . . , xs−1, xs+1, . . . , x|S|}.
With this formula, the two equivalent formulations of a Markov random field
can be transformed into each other.

One can see that in order to establish the Markov property for a Gibbs
field, it is necessary that the energy of a Gibbs field can be separated into
independent contributions U(x) (cf. Eq. (3.41)) and U(x−s), the energy for
the neighborhood of s, excluding s itself. This is a prerequisite for a system of
neighborhood potentials; if the separation is not possible, the field cannot be
Markovian.

The model for height estimation we elaborate on in Chap. 4 is unfortunately
not Markovian—at least for a locally restricted neighborhood definition—as we
will discuss also in Chap. 5.

1It remained unpublished, see also [Grimmett and Welch, 1990]; in the former eastern world
an early proof was given in [Averintsev, 1972].
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As a side note, a general construction scheme how to set up a Markov field’s
local characteristics from neighborhood potentials is presented in a proof for
the Hammersley-Clifford theorem in [Besag, 1974].

Example: The Ising/Potts models The Ising model is a simple, yet powerful
system based on a Markov random field. While its original version assumes
binary states for each site, an extension to a higher number of discrete states
in known as the Potts model.

The Ising model was originally devised by E. Ising in 1925, independent
of Markov theory, as an approach for the theoretical understanding of ferro-
magnetism (cf. [Winkler, 2003] for historical remarks). In this model, it was
assumed that each atom in the ferromagnetic crystal can take either a “spin
up” or “spin down” configuration, S = {−1, 1}, to entirely represent its mag-
netic properties. It is assumed that the forces between neighboring atoms are
such that similar settings (co-linearity of the spins) are favorable over dissimi-
lar settings. This is translated into a energy difference and incorporated in the
following pair potential :

U(xs, xt) = −β xs xt (3.49)

The parameter β is again the “inverse temperature” with β = (kT )−1, k the
Boltzmann constant.

Under expositure to an external magnetic field B (a scalar here, we consider
only one direction for all fields), the ferromagnetic material favors a spin con-
figuration co-linear to that field. The model can then be further augmented by
an external potential:

Uext(xs) = −µB xs (3.50)

Together with the potentials for single sites we obtain the energy functional, or
Hamiltonian, for the complete system:

H(x) = Upair + Uext (3.51)

= −β
∑
s∼t

xsxt − µB
∑

s

xs (3.52)

We want to calculate the corresponding local characteristics with Eq. (3.47).
To that end, we split up the energy into clique-wise contributions, we use a 4-
neighborhood. The difference U(x)−U(x−s) has a contribution for the single-
site clique C1 and the four pair-wise cliques C2

U(x)− U(x−s) = −µBxs︸ ︷︷ ︸
C1

−β
∑

xsxt︸ ︷︷ ︸
C2(s,t)

(3.53)

We then immediately obtain the local characteristics:

Π(xs|∂(xs)) =
1
z

e−µBxs−β
P

C2
xsxt (3.54)

66



CHAPTER 3. BAYESIAN ESTIMATION IN IMAGE RECONSTRUCTION

As the energy of a site within Ising model can be fully spilt into contributions
from cliques only, the Ising model is a consistent Markov random field.

The Bernoulli energy model [Chalmond, 2003] is actually very similar to the
Ising model, Eq. (3.51), but uses the “spin” configurations S = {0, 1} and then
obeys to Bernoulli’s probability laws as local characteristics.

If we further want to introduce directionality for the pair interaction, like
when it should behave different along rows and columns of a 2-D image, this
can be done with a small modification to the Ising model. The additional
parameter θs,t changes the coupling for the horizontal and vertical component
of the pair interaction:

Upair = −β θs,t xs xt (3.55)

If it is chosen homogeneously negative (θs,t < 0), an anti-linear setting of neigh-
boring spins is encouraged.

The Potts model is an extension of the Ising model allowing more configura-
tions between “up” and “down”. In the Potts model, only neighbors of same
state are assigned a low energy, any other setting is given a higher, but then
equal energy. Using the discretized delta-distance (δ(a, b) = 0 for a = b, oth-
erwise δ(a, b) = 1), in the absence of an external field this can be written like:

H(x) = −β
∑
s∼t

δ(xs, xt) (3.56)

The Ising/Potts models have been studied extensively as they can represent
most features and particularities of Markov random fields. They are part of a
broader class of Markov models, known as Besag’s auto-models [Besag, 1974].
For up to pair-wise interactions, these models take the following general form:

H(x) =
∑

s

xsGs(xs) +
∑
x∼t

βs,txsxt, (3.57)

where Gs is an arbitrary weighting function, and the βs,t give a weighting for
any pair of neighbors s and t.

3.2.2. Stochastic sampling approaches

In contrast to Sec. 3.1.5, we here describe stochastic sampling methods that
do not necessarily find the optimum solution or end after a certain time, but
rather return approximations, often with bound errors. Theses methods are
also known as Monte Carlo algorithms or Metropolis sampler or sometimes
just simulation methods.

We will first describe the classical Monte Carlo algorithms, which can gen-
erate samples from an arbitrary statistical distribution. Afterwards we discuss
the Markov chain Monte Carlo approach, which is an efficient way to sample
from Markov random fields. Finally, we briefly touch the simulated annealing
method as a modifications to this sampler.
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Metropolis algorithm The original Metropolis algorithm, introduced to calcu-
late chemical equations of state [Metropolis et al., 1953], is part of a class known
as (von Neumann) rejection algorithms. The name Monte Carlo sampler hints
towards its most-general purpose, which is to provide samples according to a
probability distribution Π(x). This algorithm is sometimes also named Monte
Carlo integration, as it can be used to numerically integrate arbitrary functions.
The Metropolis algorithm usually comes into action when the probability dis-
tribution is theoretically known, but cannot be evaluated in its general form
or is otherwise too complex to draw samples from. Instead, a better accessible
distribution Γ is used to provide samples, which are accepted by a ratio de-
termined by the target distribution. The Metropolis algorithm is sketched in
Fig. 3.4.

It can be shown that using this approach, the empirical distribution of x
when it is chosen this way is the target distribution Π. For computational effi-
ciency, a small rejection probability is critical, thus the distribution providing
samples Γ should be as similar to the target distribution Π as possible; we
assume Π(x) ≤ cΓ(x). In practice, this requirement can become difficult to
fulfill, especially with very high-dimensional distributions. Finally, the normal-
ization parameter κ provides optimal efficiency if it is chosen like κ =

∑
x

Π(x)
Γ(x)

[Chib and Greenberg, 1995].

draw a sample x from Γ1

evaluate Π(x) for this very sample2

generate a sample κ from the uniform distribution U(0, 1)3

acceptance/rejection step:4

if c Π(x)
Γ(x) > κ then5

accept x6

else7

reject x8

try another sample from Γ9

end10

Figure 3.4: Metropolis algorithm for rejection sampling.

Markov chain Monte Carlo / Gibbs sampler The Gibbs sampler is an ap-
proach for efficient sampling from a Markov random field. Its name goes back to
the paper [Geman and Geman, 1984] and suggests that the samples are drawn
from the local characteristics of the Gibbs field representation, cf. Eq. (3.47).

To that end, a Markov chain is defined which its transition probability
(Markov kernel) P made up as a composition of transitions with the local char-
acteristics for each site of the image. We here make use of the fact that Gibbs
fields are reversible and invariant for their local characteristics [Winkler, 2003].
The local characteristics can be evaluated independently from the settings out-
side their respective neighborhoods.
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The visiting scheme T defines a sequence for the sites s of the image:

T = {s1, . . . , sn} with n = |S| (3.58)

One transition of the Markov kernel for the full image is the composition of
transitions for each site, in the sequence as set in the visiting scheme T :

P(x, x′) = ΠT1 · · ·ΠTn(x,x′) (3.59)

with ΠTi designating the local characteristics for the gray value of site T (i)
given its neighborhood: Π(xi|∂(xi)).

The Markov chain Monte Carlo algorithm starts with drawing a sample from
an initial distribution ν. Within one transition of the composed Markov kernel
Eq. (3.59), every site is updated: After a given site is updated from xi to x′i,
this new configuration is used for the update at the subsequent site. This is a
valid Markov transition thanks to the localization of the Π(xi|∂(xi)).

One can finally show that the Markov kernel Eq. (3.59) fulfills all requirements
for the limit theorem (Sec 3.2.1, and Eq. (3.36)):

lim
n→∞ νPn(x) = Π(x) (3.60)

With the last formula, we know that the Markov chain Monte Carlo algorithm
samples from the Gibbs field. After the burn in period, or with a good guess as
initial configuration, we can easily obtain samples for the Markov random field
close to its actual probability distribution. This approach has the additional
benefit that it is only required to calculate the local characteristics. Therefore
we must only handle the probability distribution for each pixel and its respective
neighborhood, but do not need to work with the configuration space of the full
image.

Simulated annealing / Relaxation The parameter β (the inverse tempera-
ture) of the Gibbs field representation for a Markov random field (cf. Eq. (3.39))
can be used to tune the convergence of the sampling.

Then β is not kept fixed, but used as an additional parameter for the Gibbs
sampler:

Πβ(x) =
1

Zβ
e−βU(x) (3.61)

One can show that with increasing β the probability distribution Πβ concen-
trates more and more around its maximum modes, i. e., the global minima of
the energy function U(x) [Winkler, 2003].

The key to this is the choice of the cooling schedule which is a sequence of
temperature settings β(n). With each sweep of the Gibbs sampler, a different
β can be used, so actually the Markov random field is inhomogeneous now.

The designation as “simulated annealing” stems from the analogy to the
annealing of crystal lattices. A perfect lattice is the minimum-energy config-
uration. This optimum configuration can be reached by first heating up the
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crystal which increases the mobility of defects to cross energy barriers, and
then cooling it slowly down while it “relaxes” to the ground state.

With the following cooling schedule, Πβ “condensates” to its global optimum:

β(n) ≤ 1
∆

ln n, (3.62)

here ∆ is a scale parameter. The inverse temperature has to be increased loga-
rithmically to ensure convergence. The original simulated annealing algorithm
therefore requires a very long time to settle to the optimum.

In practice, for many problems also faster cooling schedules (like “exponential
cooling”) work reasonably, although convergence to the optimum is not strictly
ensured. The ICM (Iterated Conditional Modes) algorithm [Besag, 1986] can
be seen as a variant to simulated annealing with instantaneous cooling.

3.3. Robust priors and retaining of edges

The a priori probability is the function that gathers the prior knowledge about
the problem to be estimated. For image processing and height map estimation,
this knowledge could particularly cover aspects like:

• the general smoothness (corresponding to the roughness for height maps),

• the correlation between neighboring pixels,

• the distribution of gray values on different scales—image waviness and
overall skewness, or

• the density and characteristics of edges, corners and other image features.

A prior can be set up in an ad hoc manner, similar to the informal way prior
knowledge is described, and without a clear idea of the influence on the esti-
mation process. However, a thoughtful definition can have a large influence on
the power of an image restoration approach.

A mathematically elegant approach is of course the definition of a prior via the
specification of a cost or energy function ΓP : X → R that assigns each image
configuration x ∈ X real-valued costs (cf. Sec. 3.1.4), which of course should
be minimum for a configuration close to the design target of the prior. The
probability distribution is then derived with the Gibbs formula (cf. Eq. 3.39).

Edges are very common and frequent image features, and they often carry
important information. It is therefore particularly interesting to see how the
choice of smoothing prior can still preserve edges as far as possible.

With a prior that shows a robust behavior towards outliers, edges can be easily
handled in an implicit manner, rather than including these image features in
the prior definition. As discussed in [Black and Sapiro, 1999], image edges can
generally be regarded as an aggregation of outliers, which are not penalized
excessively by robust priors. If tuned correctly, such a robust prior suppresses
single erroneous pixels, but otherwise leaves edges intact (cf. Sec. 3.3.3 for a
short introduction to the general notion of outliers and robustness).
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(a) (b)

Figure 3.5: Binary images illustrating the notion of smoothness as a a priori
assumption: (a) shows a smooth scene, (b) a less smooth (rough)
scene.

3.3.1. Simple priors

Smoothness prior for binary images We take the following a priori assump-
tion for smoothness of a binary image: Same-colored neighboring pixels are
“more favorable” than different-colored pixels. Along this smoothness para-
digm, Fig. 3.5a shows an image of higher a priori probability than that in Fig.
3.5b.

For a simple smoothing prior, we assign unit costs or energy for every pair of
pixel that differ, and zero energy for every pair of equal color. We denote s ∼ t
the pair made of the pixels s and t. The total energy for an image then is:

H(x) =
∑
s∼t

(1− δ(xs, xt)) (3.63)

With the Gibbs formula, we find for the a priori probability:

P (x) =
1
Z

exp {−βH(x)} (3.64)

=
1
Z

exp

{
−β

∑
s∼t

(1− δ(xs, xt))

}
(3.65)

=
1
Z

∏
s∼t

exp {−β(1− δ(xs, xt))} (3.66)

The constant β is a free parameter in this context, Z is a normalization constant.
For most purposes, it can be left indefinite. By principle, it could be determined
by summation over the state space, that is, all possible settings of all pixels:

∑
x

P (x) = 1 (3.67)
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Linear smoothness prior for gray value images For gray value images, ideas
from the preceding paragraph can easily be transferred. For smoothness: The
lesser the gray value difference between two adjacent pixels, the smoother we
consider that region.

We consider a prior as linear, if its energy or cost function has a linear
dependency on gray value changes. This leads to a logarithmic formulation for
the prior itself, thanks to the Gibbs formula.

To quantify the difference between two pixels, a metric or distance measure
is required. We can use the symmetric linear distance or L1-measure:

d(xs, xt) = |xs − xt| (3.68)

Another common choice is the quadratic distance:

d(xs, xt) = (xs − xt)2 (3.69)

The associated energy function becomes:

H(x) =
∑
s∼t

d(xs, xt) (3.70)

As before, the prior can be set up like:

P (x) =
1
Z

∏
s∼t

exp {−βd(xs, xt)} (3.71)

Prior of the Ising / Potts model We have already discussed the Ising and
Potts model in the context of Gibbs/Markov fields in Sec. 3.2.1. Compari-
son of Eq. (3.51) with the energy function for the linear smoother Eq. (3.70)
immediately shows a formal correspondence:

dIsing(xs, xt) = xsxt (3.72)

Still, this expression is not a distance measure in the mathematical sense, as
for xi = ±1 we do not have dIsing(xs, xt) ≥ 0. However, for the the Potts model
distance we get:

dPotts(xs, xt) = δ(xs, xt) (3.73)

This expression takes only the values 0 (for an equal setting) and otherwise
1, regardless of the difference between the input values. Therefore it can be
considered a very robust measure (cf. Sec. 2.3.2).

3.3.2. Line processes

Line processes have been introduced by [Geman and Geman, 1984] as a method
to explicitly describe edges, or any other form of spatial discontinuities in images
within a Bayesian framework. That way, piecewise smooth surfaces can be
recovered.
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Figure 3.6: Pixel sites (circular) and activation of micro-edges on the dual lat-
tice (4-neighborhood) alongside an edge in the image.

Description of line processes Line processes describe explicitly whether there
exists an edge between two pixels or not. Between any two neighboring sites,
“micro-edges” are put which indicate the presence of an edge, cf. Fig. 3.6.

For a rectangular pixel array, the line process edges form a dual lattice,
made up from micro-edges between every two neighboring pixels (Fig. 3.6). A
indicator variable es,t describes whether there should be an edge between s and
t or not:

es,t =

{
0 no edge
1 edge exists between s and t

(3.74)

This state of the micro-edge directly triggers the smoothing between its ad-
jacent pixels and can so inhibit oversmoothing and blurring of edges.

On the other side, to avoid complete disabling of any smoothing by creating
an active line between every pair of pixels, an additional penalty is put upon
each edge created.

The following energy function balances these antagonists:

H(x) =
∑
s∼t

d(xs, xt)(1− es,t) + κes,t (3.75)

The energy is summed over every pair of neighbors, s ∼ t. d(xs, xt) is a distance
measure that enforces smoothness, but controlled by the state of es,t. The
additional summand κes,t is the penalty, here chosen simply proportional to
the number of micro-edges created.

With the Gibbs formula, the prior of this model is specified. We can now
incorporate a model for the noise and image degradation by a likelihood. To-
gether with a measurement (a recorded image), the a posteriori probability is
completed. From this we can calculate estimators for the “true” scene. How-
ever, to obtain accurate estimates, samples of high a posteriori probability are
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necessary. These we only can obtain by intelligently sampling of the configu-
ration space. As the a posteriori probability describes a Markov random field
for the original line processes, this can typically be done with the Markov chain
Monte Carlo method.

3.3.3. Robust priors

The explicit distance measure in Eq. (3.70) gives an opportunity to incorporate
robustness:

• “Small” deviations should have linear influence,

• while the influence of “large” deviations that presumably correspond to
edges should be somewhat reduced.

The energy function with a robust error norm dr then is as before:

H(x) =
∑
s∼t

dr(xs, xt) (3.76)

The influence of a prior derived from a robust energy function depends much on
the design of the error norm. The contribution of outlying data points should
be controlled, so that they contribute only little. With the means of influence
functions, which basically correspond to the derivative of the error norm with
respect to the distance xs − xt, this can be analyzed [Hampel et al., 1986].
The influence function shows the bias of an individual measurement towards
estimators if it is added to the data set.

Robust error measures can be grouped into ordinary (non-redescending) and
redescending measures, which differ by their weighting for large distances (cf.
Fig. 3.7):

• For non-redescending measures, the influence of large deviations is limited
if it exceeds a certain value. That way, each manifest edge in the image
contributes that number to the total energy of the image. Such a measure
imposes a penalty on edges similar to that in the case of line processes
(cf. Sec. 3.3.2).

The minimax estimator [Huber, 1981] is an example of a non-redescending
error measure which changes its behavior at |xs − xt| = ε to keep the
influence of large outliers constant, cf. Figs. 3.7a and 3.7b:

dr(xs − xt) =

{
(xs−xt)2

2ε + ε
2 for |xs − xt| ≤ ε

|xs − xt| otherwise
(3.77)

• For redescending measures, the influence of deviations becomes less the
larger the deviation is, once it exceeds a certain number. Deviations that
are overly large compared to that parameter tend to have smaller influence
the greater they are and are thus allowed without a larger contribution
to the overall energy.
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A well-known example of a smooth redescending error measure is the
Lorentzian estimator, cf. Figs. 3.7c and 3.7d:

dr(xs − xt) = log

(
1 +

1
2

(
xs − xt

σ

)2
)

(3.78)

The consequences that arise from one or the other choice of error norm is of
course only appreciable if the deviations in an image are actually given. Let
us at last consider the deviations we expect from a raw height map from white
light interferometry of a plain, but rough surface:

Due to the reflection processes as discussed in Chap. 2 (especially Sec. 2.1.4)
the height measurements from the surface can be expected to lie roughly within
a small, restricted interval with the errors uniformly distributed over the whole
height range. Then the parameter of the robust error norm should be chosen
in the range of mentioned data interval. In the case of a non-redescending
measure, this setting is less critical, as for a parameter too large oversmoothing
would become more favorable. On the contrary, for a parameter too small more
deviations would be turned into edges, but without an advantage for the overall
energy. In case of a redescending measure, choosing the parameter too large
would result in a similar behavior.

Also, choosing the parameter too small would likely identify more edges. At
the same time, the energy contribution from large deviations would become
somewhat smaller without explicitly favoring edges. The implicit penalty for
edges is however reduced compared to a linear measure.

One would thus consider both ordinary and redescending error norms appro-
priate for our problem setting.
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Figure 3.7: Examples of a non-redescending robust error norm, (a) Huber’s
minimax with (b) influence function and of a redescending robust
error norm, (c) Lorentzian with (d) influence function.
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HEIGHT MAPS

4. Bayesian estimation of
interferometric height maps

4.1. Overview

4.1.1. Motivation for Bayesian surface reconstruction

As we have discussed in Chap. 2.2, conventional white light interferometry data
analysis spans over three consecutive steps. In the postprocessing step, erro-
neous, unreliable or missing height values have to be replaced by values that
are the best estimates from all that can be deduced from the surroundings (cf.
Fig. 2.9). If this procedure is done by some kind of spatial smoothing over the
raw height map, implicitly some a priori information on the outcome is used.
For example, filtering with a Gaussian mask corresponds to the assumption
of normal distributed displacements for the erroneous pixels. Robust alterna-
tives to Gaussian filtering have been considered, but their respective a priori
assumptions are not as readily tractable as in the Gaussian case.

Upon this background it seems a sensible step to invert the perspective, in a
way that we now choose the filtering procedure and its parameter according to
available a priori information. To that end, we follow the approach of Bayesian
estimation for image reconstruction (cf. Chap. 3), which we modify towards
the processing and denoising of height maps from white light interferometry.
With Bayesian inference, our prior knowledge can be accounted for within a
tight statistical framework. From the statistics of height maps for the surface
under inspection (cf. Sec. 2.1), an optimized prior for their processing can be
set up. However, as very frequently with Bayesian inference, the computational
load of this inverse approach can be immense. Therefore we move our focus to
a class of priors, which is both computationally acceptable and well adapted for
rough surfaces. That way, an approach of principal novelty for the processing
of data from white light interferometry is developed.

As the data acquisition procedure in interferometry is a scanning process,
the raw data are a stack of 2-D images. This can also be seen as a 3-D data
set, with the third dimension representing the height axis and determined by
the intensity at the respective position of the scanner. Bayesian estimation in
conventional, 2-D image restoration includes the specification of a likelihood
which covers the statistical uncertainty for a pixel’s gray value. The likelihood
can describe the random effects in the image formation process with a model
for the noise and other signal deteriorations that move a pixel away from the
“true” gray value. It forms a probability distribution for each pixel which can
be considered as an additional data dimension.

With intensity time series from scanning interferometry, we already have this
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additional data dimension available. When setting up the likelihood function,
we can benefit all information in the full recorded time series for each pixel
together with our external prior knowledge.

Along this path, Bayesian inference is carried over to the height estimation
for white light interferometry in Sec. 4.2. While for the prior the examples
presented in Sec. 3.3 can easily be carried over, the likelihood requires either the
development of a statistical evaluation of the scanned time series or a practical
re-interpretation of the same.

4.1.2. Scientific context

This idea for Bayesian height estimation originates from an approach developed
by [Hartvig and Jensen, 2000] for the denoising of diachronous functional-MRI
activation maps of functional MRI (fMRI). The authors introduce contextual in-
formation into a Bayesian approach developed by [Everitt and Bullmore, 1999].
While [Beckmann and Smith, 2003] remark to the gaining attention to spatial
prior information, the procedure in [Hartvig and Jensen, 2000] so far remains
solitary.

Bayesian inference is well established for the restauration of 2-D images, as
described in Chap. 3, and the requirements for certain priors are the same as
one can use to describe height maps from interferometry (cf. the references in
Sec. 3.1). Markov random field approaches like stochastic sampling dominate
the portfolio of estimation procedures.

Besides with MRI imaging, both the image formation process and the process-
ing of the resultant 2-D image are subject of joint research with SAR1 imag-
ing, a high-resolution technique used for ground surveillance and classification.
In particular, imaging with multichannel-SAR is interesting: Here the ground
scene that should be classified is recorded by a small number of cameras (or
channels with different wavelength) in parallel. While for each channel a rough
mapping to ground features (soil, water, forest, etc.) exists, a more precise
estimate is expected from the joint analysis of all channels. The estimation
task is therefore to affix label to the pixels (cf. Sec. 3.1) for which a third data
dimension is available.

In [Hjort and Mohn, 1984] a Bayesian inference procedure is described which,
as a novelty, explicitly addresses the contextual information, which has not had
particular attention until then. The method is very similar to the one we
propose. The authors also succeed in directly calculating estimates from the
a posteriori probability, albeit at the cost of length computation time and the
restriction to very small images which a handful of channels. A comparison of
the performance of that approach can be found in [Mohn et al., 1987]. As one
can oversee, this particular direction of research was not followed any further,
probably set aside with the arrival of even more powerful computers and the
gaining acceptance of Markov random field methods.

1Synthetic Aperture Radar
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4.2. Bayesian estimation

Mathematical notation We follow the convention to distinguish vectors or
matrices from scalar variables by using bold script, as for an image we use x,
and xj for one gray value pixel with index j. For notational simplicity, we
mostly refrain from explicitly stating both spatial coordinates of an image, like
for a single channel image x{ẋ,ẏ}. Instead, we define a straight enumeration
scheme to cover the image plane and have a single-index notation, like xj , xj+1,
etc. For a rows-first enumeration scheme, the correspondence from Cartesian
coordinates can be found according to j = ẏ · ẋmax + ẋ.

The white light interferometer provides us, for each pixel j, with a sequence
of intensity values, which we denote as a vector with superscript index: xj .
This vector is indexed h = 1, . . . , hmax. What we ultimately seek is an estimate
for the height of each pixel, which we write as ĥj .

Let P (hj) be the a priori probability density function for some pixel’s height,
and P (xj) the according function for a data sequence. The likelihood of a data
sequence xj under the condition of fixed height hj is f(xj |hj), the a posteriori
probability density function for a height under the condition of a data sequence
will be written as P(hj |xj). This notation is more convenient for the discussion
of height maps, but does not comply with the conventions chosen in 2-D image
processing (cf. Eq. (3.4), e. g.).

Bayesian estimation According to the Bayesian paradigm (cf. Sec. 3.1.2 and
Eq. (3.4)), for each pixel j we can state the a posteriori probability density:

P(hj |xj) =
f(xj |hj) P (hj)

P (xj)
(4.1)

The denominator P (xj) is known as the Bayesian evidence. As discussed in
Sec. 3.1.2, our aim is to find estimates of the a posteriori probability under
given fixed data x. We are only interested in modes of the posterior, and the
evidence will remain constant, therefore P (xj) can be left out of the remainder
of the discussion:

P(hj |xj) ∝ f(xj |hj) P (hj) (4.2)

For the actual calculations on a computer, it can become helpful to use the
logarithmized equivalent of this formula to circumvent numeric underflows with
the multiplication—at the price of a numerically less stable addition:

logP(hj |xj) ∝ log f(xj |hj) + log P (hj) (4.3)

Consideration of the neighborhood Bayesian estimation draws much of its
power from the possibility to explicitly state prior knowledge about the surface.
While of course, global knowledge about surface to be measured is almost never
available, we often have local prior knowledge. Examples are the characteristics
of the microscopic height profile of a surface or knowledge of its directionality
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after a honing process. We describe the local knowledge with the joint statis-
tics of a pixel and its neighbors. The correlation strength to the neighborhood
is usually assumed to drop with increasing distance of the sites, so they are
only taken into account up to a certain distance. Common settings to mimic
this on the rectangular grid are the 4-neighborhood (Fig. 3.1a) covering min-
imum mutual, but isotropic dependency, and the 8-neighborhood (Fig. 3.1b),
which additionally takes dependencies along the diagonals into account. This
neighborhood setting is also common in conventional image processing, i. e.
whenever a 3× 3 filtering mask is used. The next larger neighborhood system,
suitable for explicitly covering larger distance dependencies, is the less common
24-neighborhood or 5× 5 mask (Fig. 3.1c), which also takes the second-to-next
neighbors into account.

We denote the set made up of a pixel j and its neighbors (according to some
neighborhood relationship which arbitrary at this point) C. The member sites
of C we will conveniently index 0, . . . , k, with the index 0 reserved for the center
pixel j and k = |C| − 1. In case of the 8-neighborhood, we would have k = 8,
in case of the 5× 5 mask’s neighborhood accordingly k = 24.

We formulate the Bayesian statement Eq. (4.2) again for the case of a group
C of pixels:

P(hC |xC) ∝ f(xC |hC)P (hC) (4.4)

After all, we are only interested in the probability distribution of the central
pixel given the data sequences of the group of pixels, P(h0|xC). This expression
may be found by marginalization, i. e. integrating “out” the other degrees of
freedom, which here is the sum over all possible height configurations of the
neighbors:

P(h0|xC) =
∑

h1

· · ·
∑

hk

P(hC |xC) (4.5)

The likelihood term f(xC |hC) in Eq. (4.4) expresses the probability density for
all the data sequences x within the neighborhood C with respect to the heights
hC in that neighborhood. We can simplify this by assuming that the probability
densities for each pixel are independent from each other. While this can only
be the case for an ideal imaging system—we have already seen in Sec. 2.1.4 that
diffraction-limited speckle do not match on rectangular image sensors—it is still
a reasonable approximation: One can consider that one can regard the speckle-
induced cross-talk as noise in the other pixel—now the common assumption
of strictly white noise cannot hold anymore. Technically however, for current
CCD sensors the active areas within a pixel are significantly smaller than the
pixel itself, which also supports the independence assumption. Accepting all
this, we now postulate that the data sequence acquired in one pixel does only
depend on the object height in the area, which is images onto that pixel. Then
the likelihoods for each pixel are independent, and the joint likelihood can be
factorized:

f(xC |hC) =
k∏

i=0

f(xi|hi) (4.6)
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The estimation of the a posteriori probability under consideration of neigh-
boring pixels can thus be written like:

P(h0|xC) ∝ f(x0|h0)
∑

h1

· · ·
∑

hk

k∏

i=1

f(xi|hi) P (hC) (4.7)

Looking at Eq. (4.7), one notices the multiply nested sums which run over small
products and then each over hmax operations. This is altogether more than
k(hmax)k operations for each pixel to be estimated: the a posteriori probability
for all combinations of height configurations of a pixel and its neighborhood
is calculated. The combinatorial task in this form bear a large computational
load, in particular, if the number of height steps hmax is high.

4.2.1. Cost functions

The height in a pixel is calculated from the a posteriori probability distribution
by an estimation function. This estimator can be chosen straight away, or by
defining a cost function.

We here go along with choosing a variation of the marginal posterior mode es-
timator, which is a kind of local maximum-a-posteriori estimator (cf. Sec. 3.1.4.
Within a local scope, the estimate is the height which locally has the highest
a posteriori probability:

ĥ0 = arg max
h0
P(h|xC) = arg max

h0

∑

h1

· · ·
∑

hk

P(hC |xC) (4.8)

As we have discussed for the general case in Sec. 3.1.4, we can deduce this
estimator from a corresponding cost function:

We do so by choosing a “hard” cost function Γ for the height of the central
pixel h0, which we however define for this pixel and its neighbors, i. e. hC . This
particularity is required for exact analogy with the estimator.

A set of height values which contains the correct (“true”) value for h0, namely
h0

true, is designated hC(true). Non-zero, constant costs for a set hC exist only
when the height of the center pixels fails the correct value. Formally:

Γ(hC , hC(true)) =
{

1, if h0 6= h0
(true)

0, otherwise
(4.9)

Also formally, it is clear that our a posteriori probability also incorporates
information about neighboring pixels, which we do not consider in our cost
calculation, i. e.:

Γ(hC , hC
(true)) = Γ(h0, h0

true) (4.10)

The average (Bayesian) costs Γ̄ are calculated by averaging over all settings of
the unknown truth, hC(true), weighted with the a posteriori probability:

Γ̄(h̃C) =
∑

h0

(∑

h1

· · ·
∑

hk

Γ(hC , hC(true))

)
P(hC |xC) (4.11)

= 1−
∑

h1

· · ·
∑

hk

P(h̃0, h1, . . . , hk|xC) (4.12)
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The Bayesian estimate is an estimate of minimum costs. Looking at the last
equation (4.12), we can fulfill this requirement by choosing:

ĥ0 = arg max
h0

∑

h1

· · ·
∑

hk

P(h̃0, h1, . . . , hk|xC) (4.13)

With the choice of Eq. (4.9) we have defined costs for a configuration C of
pixels. A fixed penalty is imposed on the center pixel if it misses the true value,
but the neighboring pixels are ignored. These costs are robust as they do not
increase with the distance from the true setting for the center pixel 0.

This cost function stands between a globally “hard” definition, like the max-
imum a posteriori estimator (cf. Eq. (3.17)), and purely locally defined “hard”
costs, as we have with the marginal posterior mode estimator (cf. Eq. (3.23)).

4.2.2. Derivation of likelihood functions

The likelihood function f(xj |hj) describes the probability of a data sequence
given a height for a single pixel. It therefore answers the question: What could
the recorded data look like if the object height were hj? In the answer to this
question, and so in the likelihood function a part of the power of Bayesian
inference lies: The question we ask here is the exact inverse of the original
setting, i. e., what the height could be when the recorded data are like this.

We consider two major paths for the derivation of the likelihood function
from the experimental settings:

1. Strict modeling of the physics of the signal formation process in white
light interferometry.

2. Phenomenological derivation from the recorded data.

Both approaches have their specific advantages and drawbacks. For the first
option, a good account of the physical processes, as well as of the technical
imperfections within the actual interferometer setup should be taken available.
It seems difficult to determine the magnitude of parameters involved. If they
however could all be fixed, a full simulation of the signal generation process
would be available. From that, with knowledge about the noise sources and
their characteristics, a likelihood function could be generated.

Sketch of a physical model for white light interferometry The knowledge
about the signal formation process for the reflection from a rough surface is only
fragmentary so far, restricted to almost ideal roughness (the research baseline
can be found in [Dainty, 1984]). For the ideal case, the signal of a white light
interferometer is of the following form (cf. Sec. 2.2 and Eq. (2.45)):

I(z) = I0 + I1G(z − z0) cos(kz + ϕ0) (4.14)

After reflection at an ideally rough surface the backscattered signal has a
random phase shift with uniform probability distribution (cf. Sec. 2.1.3 and
[Goodman, 1984]:

p(ϕ0) dϕ0 = U(0, 2π) dϕ0 (4.15)
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Also for ideally rough surfaces, the returned intensity has an exponential dis-
tribution:

p(I) dI =
1
I0

e−I/I0 dI (4.16)

If we assume that the measurement noise on the detector N (0, σ2) be i. i. d.1

with variance σ2, the likelihood can be set up as a product over the probabil-
ity density function for the noise distribution Φ, evaluated for the measured
intensity of each height value and given K:

f(xj |hj)K =
hmax∏

z=1

Φ(I(z)|K(z|h))

∣∣∣∣∣

pixel j

(4.17)

The function K consolidates the probability distribution of an expected in-
terference pattern with all known or unknown parameters. It is therefore an
expression for the location likelihood of an interferogram: K = K(z|h).... If for
example the base intensity I0 is known, and the amplitude of the inner oscil-
lation I1 can be calculated, they can be taken out of the estimation process.
At least the height location z0 of the interference pattern is unknown, probably
also the phase shift ϕ0 of the inner oscillation. When we assume a uniform
distribution for the unknown properties, K becomes (cf. Eq. (4.14)):

K(z|h)I1,ϕ0 =
hmax∑

z′=1

(
I1 + G(z − h) cos(kz′ + ϕ0)

)
(4.18)

and

K(z|h)I1 =
∫ 2π

0
K(z|h)I1,ϕ0 dϕ0 (4.19)

Due to the integrations along the full height range and the possible phase shifts,
K becomes less significant as a “pattern matching” tool for the likelihood in
Eq. (4.17).

In practice, the proper modeling of even more subtle effects like the intensity
variation due to mixing of polarizations makes this approach less efficient and
only increases the computational burden.

Phenomenological derivation The phenomenological approach is the empir-
ical route to a likelihood function. The characteristics of a properly derived
likelihood function are mimicked with the transformed raw data series.

An ideal likelihood function would feature a strong response around where
the true height value is hidden in the time series. Where noise dominates the
data, it should return only a weak response. Actually, these requirements are
fulfilled already to a high degree with the methods developed for interferogram
preprocessing (cf. Sec. 2.2.1 and references there).

1Independent, identically distributed—a common assumption in statistics, sometimes also
abbreviated ’iid’

83



4.2. BAYESIAN ESTIMATION

For the results following and the comparison in Sec. 4.3, this second path
is chosen. We use a quasi-likelihood that is derived from the sliding average
algorithm (cf. Sec. 2.2.1).

4.2.3. Choice of prior and direct a posteriori estimation

Direct estimation of the a posteriori probability Before we go into calcu-
lations with the a posteriori probability distribution, we prove the following
equation [Hartvig and Jensen, 2000], useful to rearrange the nested sums that
appear in the marginalization of the posterior probability:

∑

h1

· · ·
∑

hk

k∏

j=1

f(j, hj) =
k∏

j=1

∑

h

f(j, h) (4.20)

Proof:
By induction over k; we see for k = 1 the immediate equivalence. For k + 1, we
have

∑

h1

· · ·
∑

kk+1

k+1∏

j=1

f(j, hj) (4.21)

=
∑

h1

· · ·
∑

hk

∑

hk+1

k∏

j=1

f(j, hj)f(k + 1, hk+1) (4.22)

=
∑

hk+1


∑

h1

· · ·
∑

hk

k∏

j=1

f(j, hj)


 f(k + 1, hk+1) (4.23)

=
∑

hk+1




k∏

j=1

∑

h

f(j, h)


 f(k + 1, hk+1) (4.24)

=
k∏

j=1

∑

h

f(j, h)
∑

hk+1

f(k + 1, hk+1) (4.25)

=
k+1∏

j=1

∑

h

f(j, h) (4.26)

¤
This rearrangement can significantly reduce the computational effort for the

calculation of a posteriori probabilities. If we have hmax values for each of
the nested sums on the left side of Eq. (4.20), then the computation requires
k (hmax)k operations. The right side only accounts for k hmax operations.

Typical numbers in practice could be hmax = 1000 and k = 8. For the
left side, this adds up to 8 · 1024 operations, but for the right side only 8000
operations.
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Choice of prior and direct a posteriori estimation The third component still
remaining for the Bayesian reconstruction process is the prior probability distri-
bution, P (hC), describing the probability for the occurrence of a certain height
configuration within the neighborhood (cf. Sec. 4.1). In the prior, we can cast
our general knowledge about the surface under test, in particular on the possible
height configurations, as well as technical restrictions, especially the maximum
achievable resolution for white light interferometry with rough surfaces.

By thoughtful choice of the prior, we have seen that the exact estimation of
the posterior probability can be made feasible [Hartvig and Jensen, 2000]. So
far, estimates from the a posteriori probability have in practice always required
the use of simulation methods.

δ-prior We first look at a quite simple prior, which, as we will learn later, is
part of a certain class of priors for direct a posteriori estimation. The prior
should favor smoothness, and it should be robust. With these two ingredients,
we can reasonably well cover the global properties of rough, planar surfaces
with edges.

A very simple approach is to define a prior having only two outcomes, each
for a favorable and a unfavorable configuration:

P (hC) =

{
q1 if h1, . . . , hk = h0,

q0 otherwise
(4.27)

This can also be written like:

P (hC) = q0 + (q1 − q0)
∏

k

δ(hk − h0) (4.28)

The prior compares the height of a neighborhood pixel k, named hk with that
of the central pixel, h0. If they are unequal, the δ-function returns a zero. Due
to the product over all neighbors, the second term of the prior only becomes
non-zero when all neighbors have the same height as the center pixel, i. e.,
the surface is locally completely smooth. This is a favorable configuration,
and the prior then becomes P (hC) = q1. For other configurations, the prior is
P (hC) = q0.

The prior is a valid probability distribution if we choose q0 > 0 and q1 ≥ 0.
With q1 > q0, the desired smoothing effect is present in Bayesian inference.
This prior is also very robust, as the probability for the non-smooth case does
not depend on the actual distance of the hk from h0. The terms q0, q1 are
parameters which can be used for weighting the favorable over the unfavorable
configurations and for normalizing the whole expression.

With this—somewhat unusual, but still valid—prior, we now calculate the
a posteriori probability according to Eq. (4.7):

P(h0|xC) ∝ f(x0|h0)
∑

h1

· · ·
∑

hk

k∏

i=1

f(xi|hi)

(
q0 + (q1 − q0)

∏

k

δ(hk − h0)

)
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(4.29)

Out of the nested sum, the product of δ-functions eliminates all contributions
except for the ones with h1 = · · · = hk = h0:

P(h0|xC) ∝ f(x0|h0)

(
q0

∑

h1

· · ·
∑

hk

k∏

i=1

f(xi|hi) + (q1 − q0)
k∏

i=1

f(xi|h0)

)

(4.30)

Using Eq. (4.20), we rearrange the sums and products to get:

P(h0|xC) ∝ f(x0|h0)

(
q0

k∏

i=1

∑

h

f(xi|h) + (q1 − q0)
k∏

i=1

f(xi|h0)

)
(4.31)

In this form, the a posteriori probability distribution is rather easy to calculate.
To go a step further, we look into the particular sum

∑

h

f(xi|h) =: Sfi (4.32)

which describes the overall likelihood for a data sequence x in pixel i, taken
over all possible height values. If we use the phenomenological derivation of
likelihood values, this sum is directly related to the average visibility or signal-
to-noise of the interference signal in the full data series of a pixel.

For some a posteriori estimators, only the maximum value of the posterior
probability is needed. If the visibility sum Sfi is available from preprocessing,
the required calculations can be done very fast on ordinary computers:

arg max
h0
P(h0|xC) = arg max

h0
f(x0|h0)

(
q0

k∏

i=1

Sfi + (q1 − q0)
k∏

i=1

f(xi|h0)

)

(4.33)

The outcome of the Bayesian estimation has a large dependency on the con-
stants q0 and q1. Generally, the values of the (normalized) likelihood function
have a similar order of magnitude, therefore a balanced weighting between the
center and the neighboring pixels would require (q1 − q0) ≈ q0

k.
Let us consider two extrema for this weighting:

• q0/(q1−q0)−k À 1: In this case, the parameter (q1−q0) could be neglected.
The a posteriori probability becomes proportional to the likelihood of the
central pixel, which leads to a local maximum likelihood estimator. In
this case no smoothing is present, and the resultant height map is the
same as we could obtain when only a preprocessing that corresponds to
the likelihood is applied (cf. Sec. 4.2.2).

• q0/(q1 − q0)−k ¿ 1: Now, the parameter q0 could be neglected. The
a posteriori probability is determined by the likelihoods of all pixels within
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the neighborhood and the central pixel plays only a minor role. Therefore
a multiplicative filtering within the neighborhood takes place, and the
height map is estimated as the maximum likelihood for the filtered data.
This situation also has some resemblance to a special case of channel
smoothing (cf. Sec. 5.2).

Rectangle prior The central assumption underlying the δ-prior discussed in
the last paragraphs is complete local smoothness. This is represented by the
height values of neighboring surface points being equal within the resolution
allowed by the discrete height stepping. We can relax this constraint in a way
that we allow for somewhat larger height variation within a neighborhood, so
that we arrive naturally at the rectangle prior:

P (hC) =

{
q1 if h1, . . . , hk ∈ [−Λ + h0, Λ + h0]
q0 otherwise

(4.34)

This can be written in form of a single-line function as:

P (hC) = q0 + (q1 − q0)
k∏

i=1

WΛ(hi − h0) (4.35)

The function WΛ that replaces the δ-peak from Eq. (4.28) is a rectangle window
of width Λ defined like:

WΛ(h) =

{
1 for −Λ ≤ h ≤ Λ
0 otherwise

(4.36)

The second term of this prior only becomes non-zero in a configuration where
the height values of all neighbors of the central pixel lie within the Λ-range
around the central height, h0. The prior then becomes P (hC) = q1. If only a
single pixel is outside this range, the product becomes zero. Such a configuration
we consider as unfavorable, the prior here becomes P (hC) = q0. As before, the
restrictions q0 > 0 and q1 ≥ 0 ensure that Eq. (4.35) is a valid probability
distribution. The rectangle prior shares its robustness with the δ-prior, as also
here the co-domain is strictly bounded to only two values, whatever large the
differences between the hi and h0 gets.

With this prior, we concede variation of the height within a small range
around each pixel still as a favorable configuration. Due to the local definition,
with this prior the global properties cannot be controlled. Gradual changes,
overall tilt and large-scale deformations such as waviness are therefore also
considered favorable according to this prior.

The breadth of the rectangle WΛ should be chosen in coarse correspondence
to the range of height variation of the rough surface: As discussed in Sects. 2.1.4
and 2.2, the phase of the reflected light is arbitrary and the detected height only
a random value between the limits of each speckle. Although this is strictly true
only for perfectly rough surfaces, it seems plausible to choose Λ so that the prior
allows (favors) height variation within the presumed range of roughness.
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We now utilize this prior to calculate the a posteriori probability with the
same approach as we have demonstrated for the δ-prior. The posterior proba-
bility from Eq. (4.7) then becomes:

P(h0|xC) ∝ f(x0|h0)
∑

h1

· · ·
∑

hk

k∏

i=1

f(xi|hi)

(
q0 + (q1 − q0)

k∏

i=1

WΛ(hi − h0)

)

(4.37)

For the nested sum, the prior Wλ makes all contributions zero that lie outside
the λ-range around the height of the central pixel. Therefore we can write:

P(h0|xC) ∝ f(x0|h0)

(
q0

∑

h1

· · ·
∑

hk

k∏

i=1

f(xi|hi)

+ (q1 − q0)
h0+Λ∑

h1=h0−Λ

· · ·
h0+Λ∑

hk=h0−Λ

k∏

i=1

f(xi|hi)


 (4.38)

We again make use of Eq. (4.20) to exchange the sums and products and get:

P(h0|xC) ∝ f(x0|h0)

(
q0

k∏

i=1

∑

h

f(xi|h)

+ (q1 − q0)
k∏

i=1

h+Λ∑

h=h0−Λ

f(xi|h)


 (4.39)

For practical purposes, a fast calculation of the maximum of the a posteriori
probability distribution is helpful. Here we can make use of pre-calculated
values for the Sfi

sums Eq. (4.32) and for the sums

h+Λ∑

h=h0−Λ

f(xi|h) := f̃Λ(xi|h) (4.40)

which basically represents a moving average. This gives us finally:

arg max
h0
P(h0|xC) = arg max

h0
f(x0|h0)

(
q0

k∏

i=1

Sfi + (q1 − q0)
k∏

i=1

f̃Λ(xi|h)

)

(4.41)

The exchange operation from Eq. (4.20) is the central step to make direct
calculation of estimates from the a posteriori probability possible:

For a typical application, we have to consider in the order of 1000 height steps.
Let us further assume an 8-neighborhood (k = 8) and an interval of favorable
height variation of 11 steps (Λ = 5). To calculate the a posteriori probability for
one pixel from Eq. (4.38), the calculation of the second summand is required.

88



CHAPTER 4. BAYESIAN ESTIMATION OF INTERFEROMETRIC
HEIGHT MAPS

This makes up roughly 1000 (height range) calculations of 10k = 108 additions
of 1000 products, in total about 1014 operations per pixel.

On the other side, for Eq. (4.39), the second summand accounts for 1000
(height range) calculations of 8 products of 10 sums, or totally 8·105 operations,
which is fairly bearable for average computers nowadays.

Fig. 4.1 is a quick demonstration of the performance of Bayesian surface es-
timation with a rectangle prior. The measurement object is the turned steel
piece photographed in Fig. 4.2. The primary height map obtained from pre-
processing (Fig. 4.1a) bears a large number of outliers, which is an indication
of the very poor quality of the raw data. The reconstruction with the Bayesian
estimation procedure (Fig. 4.1b) is slightly patchy, but with sharp edges and
contains only few outliers (for a detailed discussion cf. Sec. 4.3.5).

Normalization of a prior In the last paragraphs, we skipped the question of
the properties and mutual relationship of the parameters q0, q1 and Λ.

The normalization condition for the prior P (hC) leads to a constraint on the
ratio q0/q1. The condition is such that

1 =
∑

hC
P (hC) =

∑

h1

· · ·
∑

hk

P (hC) (4.42)

i. e., the sum over the probabilities of all possible height configurations of the
set C should be equal one.

We now specify this for the priors considered so far:

• For the δ-prior, one favorable configuration in terms of smoothness ex-
ists, this is when all neighboring heights are equal to the central height
value. The latter can be anywhere in the range 1, . . . , hmax. That is, hmax

configurations exist with a probability of q1:

Pfavourable = q1 hmax (4.43)

All the other configurations have the specific probability q0. We can calcu-
late their quantity by subtracting the number of favorable configurations
from the total number, which is (hmax)k+1:

Punfavourable = q0

(
(hmax)k+1 − hmax

)
(4.44)

Altogether, this gives us the normalization condition:

1 = q1 hmax + q0

(
(hmax)k+1 − hmax

)
(4.45)

For the δ-prior, we have the freedom to choose the ratio q0/q1. As an
example, let us look into the case of only hmax = 100 height steps and
an 8-neighborhood. We choose q0/q1 = 100, that is, a 100 times larger
a priori probability for a smooth neighborhood than a rough setting. Then
we find

q0 ≈ 10−18 and q1 ≈ 10−20 (4.46)
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Figure 4.1: Reconstructions for data recorded at 84µm/s. (a) shows the height
map obtained from preprocessing only, (b) the height map from
Bayesian surface estimation. Scale is 1.68µm per frame.
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• For the rectangle prior, we can use a similar approach. The favorable
configurations cover the range h0 − Λ ≤ hi ≤ h0 + Λ, i. e. 2Λ + 1 height
steps. This range we take into account for each neighboring pixel, in
addition to the freedom to settle the central pixel over the full range.
That way we neglect minor boundary effects for the central pixel being
near the limits of the height range, in particular h0 < Λ and h0 > hmax−Λ.
Thus we have:

Pfavourable = q1 (2Λ + 1)k · hmax (4.47)

All other configurations are unfavorable concerning smoothness, and we
find their number by subtracting the favorable ones from the complete
number:

Punfavourable = q0

(
(hmax)k+1 − (2Λ + 1)k · hmax

)
(4.48)

Finally, this leads to the normalization condition:

1 = q1 (2Λ + 1)k · hmax + q0

(
(hmax)k+1 − (2Λ + 1)k · hmax

)
(4.49)

We here have the freedom to choose two out of the three parameters. This
can be ratio q0/q1 to tune the smoothing enforcement of the prior and Λ
for the favorable height range. The best ratio for q0/q1 can in practice
be found by screening through of a small range of values typical of the
particular kind of surface. We suggest choosing Λ to be in the same order
as the surface roughness. The prior will then ignore the height variation
due to roughness, but suppress gross errors such as outliers.

With the same numbers used in the δ-prior example and additionally
setting the parameter Λ = 10, we here find:

q0 ≈ 10−18 and q1 ≈ 10−20 (4.50)

One can see from the numbers for q0 and q1 that the implementation of this
estimation procedure has to take particular care for the numerical stability of
the calculations, cf. Sec. 4.3.1.

4.3. Application and assessment

In this section, we describe a pilot application and introduce methods how to
quantify the power of denoising approaches for white light interferometry. We
then prove the feasibility of the devised approach and discuss and compare the
results in detail.

4.3.1. Examples of application

Measurement object For our examples, we use the prior Eq. (4.35), which
is well adapted to the reconstruction of rough technical surfaces. As such,
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Figure 4.2: Photograph of a turned steel piece (diameter: 19.5mm) used in the
examples. The black frame indicates the approximate area of height
measurements, slightly skewed in this perspective.

we present a turned steel piece (see photograph in Fig. 4.2). This sample
piece is 19.5mm in diameter. Is carries a circular outer rim of 1mm width
and 1 mm depth. In the inside region, it additionally features three circular
areas of increasing depth towards the center. These areas are separated by
steps of 20µm height. Over a quarter sector of the piece three tracks are
visible, one on each of the three areas. The latter features were added by
using a worn turning tool, which leads to minor quality and presumably higher
roughness and less distinguished, even rounded edges. In contrast, the three
circular areas mentioned first were obtained with a new high-precision turning
tool, such that their borders have precise edges. All these curved features
represent nice challenges for the operations defined on a fixed rectangular grid.
In the rotational center of the whole piece, a tip that remained from the turning
process is barely visible. It could serve us as the experimentum crucis for an
algorithm’s discrimination power between singular surface features and outliers.

By our experience, the features exhibited by the surface of the sample piece
can be considered typical of the challenges white light interferometry faces in
industrial precision manufacturing.

Algorithmic realization The Bayesian estimation approach is implemented in
C++ on a standard PC. In its core, the algorithm contains only two nested
loops, where the a posteriori probability is calculated by multifold multiplica-
tions of small numbers.

In order to prevent underflows of variables and loss of numerical precision
for mixed summations and multiplications, several measures have been taken.
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phase feed 10%-width
scanning speed feed per frame per frame of envelope

2µm/s 0.04µm 0.09π 397 frames
14µm/s 0.28µm 0.61π 57 frames
28µm/s 0.56µm 1.36π 28 frames
56µm/s 1.12µm 2.72π 14 frames
84µm/s 1.68µm 4.07π 9 frames

112µm/s 2.24µm 5.43π 7 frames

Table 4.1: Correspondences of technical details for measurements at different
scanning speeds with a 50 Hz camera and a light source of mean
wavelength λ̄ = 825 nm (see text).

First of all, one can perform an overall rescaling, which is possible as we are
only interested in modes of the posterior probability. Some groups of critical nu-
merical operations are encapsulated and then rescaled or changed in execution
ordered to group operations with variables of the same magnitude. Particular
products of probabilities that have the tendency to get quickly too small are
logarithmized.

In spite of this tuning, for the measurements presented in this section, on a
1.2 GHz P IIIm machine, the processing time varies between 31 s for 14 µm/s
and 2.8 s for 112 µm/s, including the input of raw data from hard disk.

Data acquisition The algorithm makes use of a full 3-D set of raw intensity
measurements. These data were obtained using a white light interferometer
system, incorporating a near infrared LED light source, and produced by the
University of Erlangen and 3D Shape GmbH. It is a prototypic realization of
the approach presented in [Dresel et al., 1992] with the ability to output the
full raw data acquired during a measurement scan.

The data were obtained working with several scanning speeds, ranging from
14µm/s (which, at a frame rate of 50 Hz, corresponds to the Nyquist frequency
of the interferograms inner oscillation for this light source), to 112µm/s (which
corresponds to an 8-fold subsampling of the inner oscillation). Table 4.1 gives
some technical correspondences of this parameter.

It is of additional interest to see over how many frames the envelope of the
interference oscillation spans at a certain scanning speed. This number can give
us a rough hint about the chance to detect the interference and so about the
reliability of extracting the correct height from the data sequence. Therefore
we give the 10%-width of a Gaussian envelope, calculated with lc = 14.81 µm
and σ = lc/4 (from [Restle, 2003]) in Table 4.1. This value has no theoretical
foundation and could be somewhat optimistic. The quite common 1/e-width
would correspond to 66% of the 10%-width.

For data acquisition, the system was set up under real-world conditions, on a
vibration-isolation table in the normal laboratory environment. The room tem-
perature remained constant within less than 1 K, but vibrations to the system
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were present due to normal business traffic in the surrounding building. The
white light interferometer was optimized in terms of its optical alignment and
a sturdy fixation of the system and our sample. However, the illumination was
chosen lower and less homogeneous than optimal in order to further challenge
the processing algorithms.

4.3.2. Methods for quantitative comparison

In this section we discuss how to compare reconstructed height maps and how
to find measures for the quality of a particular reconstruction.

Our objective is to state quantitatively, which of two height map reconstruc-
tions is better, and which algorithm performs better on a certain problem. That
is, we wish to answer the question, which height map reconstruction ĥa or ĥb

is nearer to the true height distribution.
In this context, we try to refine the notion of a “true” height distribution and

discuss different measures for comparison.

A ground truth for height reconstruction Our first goal is to provide the
“truth” to which to compare our measurements. Ideally, these data should be
independent from a measurement technique, reproducible and commonly ac-
cepted. Apart from white light interferometry, a height map of comparable
resolution for a rough surface could also be obtained with confocal microscopy
and techniques of significantly higher resolution, like atomic force microscopy
(AFM) or raster tunnel microscopy (RTM). For rough surfaces laser interfer-
ometry is generally not an option, as is requires prior knowledge for unambigu-
ous reconstruction. There have been first efforts to establish a correspondence
between results from white light interferometry and tactile devices, which are
very widely spread in industry (cf. Sec. 2.4 and [Windecker and Tiziani, 1999]).
This investigation is however founded on measurements of a standardized sur-
face with highly parallel grooves, which makes it intrinsically one-dimensional.
This allows for a comparison between 2-D maps from interferometry and 1-D
profiles from the tactile device, but on the other hand, these results cannot be
expected to carry over to real-world surfaces of stochastic variations in 2-D.
For the other techniques mentioned, so far rather simple structures like binary
gratings have been investigated and “correspondences” [Recknagel et al., 1998]
for certain scalar roughness parameters have been established.

We assume that white light interferometry and confocal microscopy could
deliver comparable results, as both approaches are based on light scattering
and both share the same restrictions to lateral resolution due by the optical
imaging system. This topic could however not be investigated and must be left
to further research.

With the tools of AFM and RTM, the microstructure of technically worked
surfaces can be resolved far beyond the limits of optical methods. With the use
of tools that simulate the rough surface reflection of white light [Ettl, 2001], it
is in principle possible to calculate the signal arising from the lower resolution
of the interferometer’s optical system. But as the basic interaction process
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(induced static electrical fields in AFM and tunnel current in RTM) is different
to white light interferometry, it generally cannot be expected that height maps
were comparable in a straightforward manner. As before, this question should
be further investigated before making use of these methods.

We conclude this excursion with the finding that any “true” height map
cannot be reliably obtained at the current state of research. Instead, we choose
to revert to interferometry itself to prepare a reference height map.

Reference height map for white light interferometry The reference height
map for our interferometer has to be measured with the same device as the data
later used for comparison to cancel influences as discussed above. However, this
means that the results will be based on a partially recursive argument. We try
to decimate this issue by the following construction for the reference map:

1. Fix optimal environmental conditions (illumination, vibrations, tempera-
ture, air flow, and others) for the data acquisition process.

2. Perform a series von N measurements at a slow scanning speed in a tight
succession.

3. Calculate N height maps by a reliable preprocessing algorithm.

4. Remove overall shifts.

5. Calculate a robust average height map and perform a final outlier-detec-
tion and removal procedure.

There are of course alternatives to this specific method. However, the proposal
appears to be the best what can be done without resorting to a complex post-
processing procedure. This ought to be avoided as this could introduces new
deviations or conceal artifacts from the surface.

For the construction of the reference height map, measurements were recorded
at a slow scanning speed of 2µm/s. The data of one recording (no. 19) was
obviously spoilt due to some error during image capture, which manifested in
form of a gap in the recorded time series; it had to be removed, thus N = 24.
The remaining time series were ensured to be free of deterioration, by visual
inspection of the raw data.

We applied the sliding average algorithm (cf. Sec. 2.2.1), which is a recom-
mended linear filtering algorithm [Schraud, 2000]. Overall shifts of the height
maps were detected with an image-wise median filtering operation and suc-
cessively canceled by shifting the height maps to a common reference height.
Higher order errors such as tilts or large-scale deformations were not accounted
for. From the reconstructed maps ĥi a common average map hmed was con-
structed with the median operator, applied pixel-wise over all height maps:

hmed = med{ĥ1, . . . , ĥN} (4.51)
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Figure 4.3: Spatial distribution of logarithmized MAD(ref)-values (Eq. (4.52))
for the data used to create the reference height map.

This map exhibits a small number of invalid pixels, as can be expected for a
rough surface with a static speckle image. By visual inspection, these sites
stand out by their large variation of height values reported from preprocessing.
This observation gives a heuristic means to identify these outliers.

As a variation measure, we use the robust MAD operator (median absolute
deviation), with the following definition1:

MAD(ref){ĥ1, . . . , ĥN} = med{|ĥ1 − hmed|, . . . , |ĥN − hmed|} (4.52)

Fig. 4.3 shows the spatial distribution of MAD(ref)-values for the data sequence
used to create the reference height map. To enhance visibility, the values are
logarithmized and the gray value encoding is the darker the larger a pixel’s
value is—an approach we will use frequently in the course of this chapter. The
MAD(ref) data contain some zero values, for which the logarithm cannot be
evaluated. In that case the values not available are replaced by zero again.
Therefore values of zero fall together with those next to zero in a logarithmized
figures, provoking a little error in these visual representations.

Those pixels for which the MAD exceeds a threshold k we mark as defective
in order to replace them later. This threshold can only be chosen heuristically,
this is where the recursive nature of our bootstrapping strategy becomes appar-
ent. Fig. 4.4 shows the distribution of MAD values for hmed. If one assumes the
histogram were made up from a highly populated distribution peaking around

1Note that a variety of definitions for a MAD exists, and sometimes (notably with some
versions of MATLAB [The Mathworks, Inc., 2002]) an additional factor is introduced to
normalize the respective definition with the standard deviation of a normal distribution.
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Figure 4.4: Relative histogram of MAD(ref) in the reference height map. The
last entry shows the cumulated sum of all larger entries, the ordinate
is cut at 0.1.

3− 5 frames, dropping exponentially to the right, and a somewhat uniform dis-
tribution due to invalid pixels, the borderline can be drawn somewhere around
25 − 35 frames. Thus we choose k = 30 frames. Again, this argumentation
has to be taken cum grano salis: The possible alternative approach would be a
statistically sound estimation of the threshold with the tools of decision theory.
While not knowing the functional description for the tail of the left distribution,
this seems disproportionate in the light of the remaining uncertainties.

The pixels marked as defective are finally replaced with the median of their
spatial neighborhood within hmed. In our experiments, the invalid pixels are so
sparse that the 3 × 3 filter med3×3 seems sufficient. Thus the reference height
map is complete:

href =

{
med3×3 hmed for MAD{hmed} > k

hmed otherwise
(4.53)

In the end, we have a reference height map href which, without additional
knowledge about the true surface, we consider free of errors (see Fig. 4.5).

Removal of overall shifts, rescaling and border effects The interferometer
setup used in our experiments has no absolute scale for axial movement mea-
surements. The height values calculated are therefore based on an arbitrary
starting condition, usually the height at the start of a scanning procedure is de-
clared as the zero height level. The experiments are usually conducted in tight
sequence to avoid the influence of gradual shifts in the environment. However,
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Figure 4.5: The reference height map. (a) shows a bird view, (b) a color encoded
map of the same scene. The scale of the height axis is 0.04 µm per
frame.
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it can happen that the recording system randomly misses out a height step indi-
cated from the movement stage, which is one technical reason for deterioration
of the interference signal, in this case for the full image.

As this effect is not reproducible, we at least try to compensate for overall
shifts within a set of reconstructed height map. This is done by shifting each
map so that the map-wide height median is zero:

h′l = hl −medj(hl)j shift correction (4.54)

For comparisons with a reference map, the investigated height map is shifted
to match the median height of the reference map, respectively.

In order to reduce discretization effects and rounding errors, the data ob-
tained at higher scanning speeds where they are allocated to their coarser height
scale are rescaled to match the scanning speed of the reference height map for
the comparison. We will mostly use the plain integer unit “frames” in our com-
parison, with the correspondence ranging from 0.04µm height difference per
frame at 2µm/s scanning speed, to 2.24µm per frame at 112µm/s.

Next the borders of an image, spatial filters require special measures, as the
filter mask spans over non-existing parts outside the image. For this compar-
ison, generally 3 × 3 pixel filter masks, respective neighborhood relations are
used. Then the results for a borderline of one pixel width around each map are
removed from evaluation, also the plotted figures are cut down accordingly.

Simple comparison For an overview comparison, a detailed error map is less
practical. Instead, we compute a scalar error estimate which can be used to
both provide a coarse quality measure and to tune the respective parameters
of compared algorithms. For N measurements of each |S| pixel and a distance
measure ρ, the average error per pixel (“pp”) is:

Ēpp =
1
N
· 1
|S| ·

N∑

l=1

|S|∑

j=1

ρ
(
(href)j , (ĥl)j

)
(4.55)

The measure ρ(·, ·) can be adjusted to reflect the costs of an erroneous height
estimation in an actual application. Without, we refrain to linear costs for our
experiments:

ρ
(
(href)j , (ĥl)j

)
=

∣∣∣(href)j − (ĥl)j
∣∣∣ for pixel j (4.56)

and just plainly use the symbol Ēpp for the error from definition Eq. (4.55) cal-
culated with this measure, i. e., the average absolute error per pixel. This figure
is not a robust estimator, so it strictly penalizes left-over outliers compared to
the reference map.

Extended comparison An analysis reaching beyond the average absolute error
can possibly give some insight into the question what reconstruction approach to
follow for a given data quality. It is therefore sensible to take the original data
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quality into consideration when comparing with the performance of different
reconstruction algorithms.

We thus choose classify the data by two features:

• The magnitude of the absolute error Eabs(hj), taken as the absolute devi-
ation of the estimated height from the height fixed by the reference map:

Eabs(hj) =
∣∣∣(href)j − (ĥ)j

∣∣∣ for pixel j (4.57)

• The median absolute deviation MAD(hj), as an overall measure of the dif-
ficulty of obtaining a correct estimate of a pixel’s height by an algorithm—
its “measurability”.

Surface “measurability” assessment The latter feature should help in a more
detailed analysis of the power of an approach in particularly handling poorer
data quality caused by the surface under measure. To that end, the quality of
the raw data is assessed with the difficulty of obtaining a correct estimate for
a pixel. For each pixel site of a test surface, the differences between repeated
height reconstructions gives base to a measure of how reliable this site is to
reconstruct.

We propose to rather use a simple and less robust approach for height recon-
struction, which shows a sensitive reaction to low data quality. Our choice in
these experiments is the established sliding average algorithm. The calculated
average absolute errors displayed in Fig. 4.25 support this choice: The larger
the scanning speed during data acquisition is, the fewer frames contain the in-
terference signal (cf. Table 4.1). Consequently, one expects a strong correlation
between sample variance in height values and scanning speed for non-robust
reconstruction.

For measuring the differences, we use the reference height map (Fig. 4.5) as a
gold standard and compare pixel-wise each map reconstructed with the sliding
average algorithm against it. The differences are measured as the absolute de-
viation. Out of these numbers, the median value over the set of reconstructions
is calculated and can be visualized as a 2-D map. This is done for each scanning
speed anew, so that we obtain for each speed a map of “measurability” values.
On one hand, this makes comparisons between different scanning speeds much
less reliable, but on the other hand, we can ignore the drastic changes in the
qualitative nature of the raw data across different scanning speeds. So we focus
on what can be obtained inherently from the data at each acquisition speed
and only compare to one reference height map.

Of course, a number variations to this approach are possible and viable.
Starting with the difference measure, our use of the absolute deviation suggests
linear costs underlying, which is merely ad hoc and could be inappropriate for
other actual applications. We chose to compare against the reference height
map, recorded outside of the current measurement series and in some patches
postprocessed using spatial filters. As an alternative, one could choose a map
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synthesized for each scanning speed as the pixel-wise mean or median as a
reference. In that case however, we would be blind to systematic errors arising
within a set of reconstructions, as could be a height “needle”, then completely
missing due to poor measurability.

For assessing the surface “measurability”, we then arrive at using a formula
very similar to the one used to mark defective pixels in the reference map build-
up, cf. Eq. (4.52):

MAD{ĥ1, . . . , ĥN} = med{|ĥ1 − href |, . . . , |ĥN − href |} (4.58)

Fig. 4.6 shows maps of the MAD values obtained from reconstructions of
N = 25 measurements taken at 14µm/s, the highest speed possible for Nyquist-
sampling of the interferogram’s inner oscillation. In the linear scale diagram,
only a few points in the map call to attention: prominently in the lower right
area around to the needle (left over from the turning process), which suggests
that the measurements were spatially not perfectly aligned. Among the points
scattered all over the map a higher density can be made out along the edges of
the turned piece, which is not surprising either. From the logarithmic scale plot,
one better make out the overall level of variability in the height reconstruction.
The lower right turned area and the traces brought in by a worn turning tool
exhibit a slightly higher level of variability. For the latter feature, this of course
comes not unexpected. For the higher variability of the lower right area, the
reasons are not as clear and we assume a combination of focus shift and locally
poorer illumination.

Fig. 4.7 shows the same data, now accumulated for the equal number of
measurements taken at 84µm/s. This speed yields data of particularly poor
quality, as the 1:4-correspondence between sampling rate and periodicity of the
interferogram leads to strong suppression of the signal. One basically sees the
same features as in Fig. 4.6, now on a much larger scale, visible even though
the MAD-values are logarithmized. In addition, in the middle/upper right area
groups of very bright colored pixels poke out. These have MAD-values of around
1000 frames. Upon closer inspection of the raw data one sees that the heights
of these pixels have collectively been misdetected to similar values far off the
reference height. The reason could be a short shaking or some other transient
irregularity of the full setup. The horizontal elongation of these occurrences
can be attributed to the directionality of the turned piece under inspection,
and gives a good impression on how delicate the effects here are.

4.3.3. Settings for assessment

Interpretation of 2-D histograms With the two pieces of information available
for each pixel, the magnitude of the absolute estimation error and the median
absolute deviation as a signal quality measure, we can perform an extended
comparison of the different approaches for height reconstruction.

For visualization we choose 2-D histograms, in which the information is ag-
gregated over all pixels and encoded in gray scale density for each bin. For
further comparison, plots of difference of two histograms are created which
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Figure 4.6: Spatial distribution of the pixel-wise logarithm of MAD-values
against the reference height map for a series of N = 25 reconstruc-
tions with only preprocessing applied. Scanning speed is 14µm/s,
scale is 0.04µm per frame.
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Figure 4.7: Same as Fig. 4.6, but now with a scanning speed of 84µm/s, scale
is 0.04 µm per frame.
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show the power of an approach relative to the power of another approach. In
such a figure it is of course not visible how the magnitude of error is shifted
between individual pixels. As the MAD-value is a fixed property of the pixels
for one scanning speed, the density between two histograms compared can only
be shifted along the estimation error axis. thus the sum of occupancies for one
MAD-value bin remains constant and is zero for difference histograms.

Above all of this we should be aware that the data going into comparison
does not cover all possible combinations of features and are only sparse in some
areas—therefore the interpretations are of varying accuracy.

Algorithms under comparison For all experiments, we use raw data that was
previously recorded in N = 25 sequences for each of the recording speeds given
in Table 4.1, apart from the 2µm/s data, which is used to build up the reference
map. The data is read from hard disk, the processing times we state therefore
only cover the pre- and postprocessing stages but not the acquisition effort.

Preprocessing only We have used height maps provided with the sliding-
average preprocessing algorithm (cf. Sec. 2.2.1) to prepare the reference height
map (cf. Sec. 4.3.2). For rough surfaces, this pixel-wise approach is prone to
errors from instable reflection conditions. Especially for higher scanning speeds,
the height map obtained by this algorithm is heavily contaminated with out-
liers that ought to be removed by some kind of postprocessing, otherwise future
analysis is difficult. Hence we include these results primarily to allow for an
unbiased comparison of the other methods.

For the algorithms under comparison, Table 4.2 contains the best parameter
settings for the different scanning speeds. For the method of Bayesian estima-
tion and the approaches involving spatial filter masks, we always use a 3 × 3
pixel square mask for the neighborhood definition.

Median filter mask As we have seen in Sec. 2.3.2 filtering with the median
filter mask is a simple and common image processing approach, and as such it is
included in the comparison. The median operation provides maximum robust-
ness [Donoho and Huber, 1983] which makes it particularly suitable tor remove
outliers while preserving edges in the height map. Other than by the mask size,
which we set to 3 × 3 for all algorithms, this filter cannot be parameterized.
We use a standard MATLAB implementation of the median filter mask which
processes a height map in about 0.27 s.

Adaptive median filter Given the main drawback of the median filter, its
tendency to oversmooth valid information we include this approach into the
comparison. Only those pixels which are suspected outliers due to the larger-
than-normal MAD in their spatial surrounding are subjected to filtering, the
others are left intact (cf. Eq. (2.75)). The threshold (parameter c in the equa-
tion) for the filtering decision is chosen so that for each scanning speed the
average absolute error per pixel Ēp (cf. Eq. (4.55)) of the data sequence is
minimized.
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preprocessing adaptive median
scanning speed size of dataset window size threshold c

14µm/s 289 frames 9 frames 15.4
28µm/s 144 frames 5 frames 10.7
56µm/s 72 frames 3 frames 10.5
84µm/s 49 frames 2 frames 0

112µm/s 37 frames 2 frames 0

nonparametric Bayesian estimation parameters
scanning speed smoothing limit Λ q0/q1

14µm/s 4.9 (frames)2 6 frames 10−2

28µm/s 2.9 (frames)2 4 frames 10−2

56µm/s 1.6 (frames)2 4 frames 10−4

84µm/s 2.8 (frames)2 5 frames 10−4

112µm/s 1.3 (frames)2 3 frames 10−4

Table 4.2: Ēpp-optimum parameters for the different algorithms when applied
on the turned piece data, found by empirical screening of a small
range typical for this surface.

Nonparametric smoothing In Sec. 2.3.3 we have presented a recently devel-
oped postprocessing algorithm which uses confidence information to minimize
information loss in a linear smoothing approach by adapting and weighting the
variable width filter mask. The core algorithm does not require setting of pa-
rameters, but it uses a mapping of the confidence values as calculated by the
interferometer setup to a pre-estimated ensemble variance of the preprocessed
height map. In addition, for the recursive implementation we use the spatial
variance of the resulting height map is an adjustable termination condition. It
is selected such that a minimum average absolute error Ēpp (cf. Eq. (4.55)) is
achieved.

The nonparametric smoothing algorithm can be significantly impaired by a
poor correlation of confidence values to the variance, cf. to [Restle et al., 2004]
for a discussion. For this benchmark, we have calculated the variance of the
preprocessed ensemble separately and fed it directly into the postprocessing
algorithm. Therefore we can avoid this issue by not using the confidence values
at all.

Bayesian estimation We use the Bayesian estimation with a rectangle prior,
cf. Eq. (4.35). Its width Λ and the quotient q0/q1 are set by empirically
screening a small range of values that have been found typical of the surface to
be reconstructed. The optimum parameter set is the one with the least average
absolute error Ēpp.
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4.3.4. Detailed comparison

We discuss the N = 25 measurements taken at a scanning speed of 28µm/s,
which is double the speed that corresponds to the Nyquist rate for the setup we
used, 14µm/s. While the speed-up is not that large, at this scanning speed we
can nicely demonstrate the benefits and drawbacks of the different approaches
under comparison.

Estimation with only preprocessing applied With only preprocessing, the
first measurement is reconstructed as depicted in Fig. 4.8. One can see numer-
ous peaks, spiking both to the lower and upper end of the height range. These
are outliers, which could not be assigned a proper height value due to invalid
raw data. Depending on details of the algorithm implementation and feeble
variations of the signal, the outliers most often come up with height values at
either limits of the output range.

From the lower figure, it seems as if the outliers are somewhat more frequent
in the upper left area and the lower middle field.

The tip left-over from the piece’s manufacture is a prominent feature in the
lower right area, it is slightly larger in area than the surrounding outlier peaks.

As the preprocessing does not work with any spatial or neighborhood infor-
mation, the form of all edges of the test piece should be reconstructed very close
to the optimum. One can make out that the edges brought in by the rework
using a worn turning tool are significantly more rounded than the sharp edges
left over from the fresh tool.

The average deviation of the height maps obtained after only preprocessing
against the reference height map are registered with the respective MAD-values.
Fig. 4.9 shows the MAD-values for each pixel of the sequence of N = 25 record-
ings taken at the same scanning speed. A logarithmized scale is used to enhance
visibility of the plot. One can see that reconstructions are mostly of low MAD-
values, thus each reconstruction is reliable in general. The surface structure
of the test piece can still be made out. Outliers with a large MAD-value are
marked in dark and are scattered all over the surface. They occur more often,
but still stochastically scattered, near edges and next to the tip-like manufac-
ture artifact in the lower right corner.

The histogram in Fig. 4.10 shows the frequencies of MAD-values for this
sequence of reconstructions. For the ordinate, a logarithmic scale is chosen
to better visualize the occupancies for larger MAD-values. However, the vast
majority of pixels have a small variability in the height estimate of around 1
to 7 frames, corresponding to a height variation of 0.56 to 3.92 µm. This lies
near the upper limit of the surface roughness range we expect for metal piece
measured. One sees that the minimum MAD-value is not the most frequent
outcome.

For a more detailed analysis, we correlate for each pixel the absolute estima-
tion error throughout the sequence to the difficulty to obtain a correct result,
as measured by the pixel-wise spread of the estimates, i. e., MAD-value as given
in Fig. 4.9. The result is presented in a 2-D histogram in Fig. 4.11, with the
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Figure 4.8: Reconstruction with preprocessing only for data obtained at
28 µm/s. (a) shows a bird view, (b) a color encoded map of the
same scene. The scale of the height axis is 0.56 µm per frame.
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Figure 4.9: Robust measurement of the average reconstruction error for a series
of N = 25 measurements with only preprocessing applied: spatial
distribution of the pixel-wise logarithm of MAD-values (measured
in frames) against the reference height map. Scanning speed is
28µm/s, scale is 0.56 µm per frame.
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Figure 4.10: Logarithm of the absolute frequency of MAD-values for the se-
quence of height maps obtained after only preprocessing. Scanning
speed is 28µm/s, scale is 0.56 µm per frame.
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Figure 4.11: Distribution of errors in the sequence of height maps obtained after
only preprocessing. The occupancies of the 2-D histogram are
logarithmized and plotted as a function of the absolute estimation
error and the robust variability (MAD-value). Scanning speed is
28µm/s, scale is 0.56 µm per frame.

occupancies for each bin (in 2-D, this corresponds to a box) logarithmized for
the visual representation. That is, the histogram Fig. 4.10 is split up in a second
dimension according to the absolute error of each pixel.

One can see that the data gathers in two ridges along the axes, with a very
strong concentration in the lower left corner. Along the horizontal axis, most
of the entries have a MAD-value of 7 frames or lower, and beyond of about 30
frames, the entries become sparse. The vertical ridge is located in a region of
7 frames or lower for the MAD. The most significant contribution of entries is
estimated with an absolute error of 10 frames or smaller, the majority bears an
error of 1 to 5 frames. The entries on the vertical beyond that stem from pixels
which, at least in some measurements, show off as outliers with an overly large
estimation error. In general, we would expect entries of large absolute error
also for the high-MAD region1. These are missing, which seems to be mainly
a result of a selection effect, i. e., the data of high-MAD regions is too sparse
and the estimation of those pixels probably too volatile—and sometimes even
accurate. In Fig. 4.12 the horizontal and vertical axes are scaled logarithmically,
used to visually enhance (zoom in) the high-occupancy area in the lower left of
Fig. 4.11.

1Note that the MAD-value is calculated against the reference height (Eq. (4.58)), not intrinsic
to the data set as with MAD(ref) (Eq. (4.52)). Therefore absolute deviations smaller than
the MAD-value are possible.
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Figure 4.12: Same as Fig. 4.11, but with a logarithmic scale on both axes for
visual enhancement of the high-occupancy area.

Median-filter postprocessing With a 3 × 3 median filter mask applied as
postprocessing, the first measurement of the sequence is estimated as shown in
Fig. 4.13. As one can see, the outliers are removed and replaced by a value
from their neighborhood. The structure of the surface on small scale, especially
visible in Fig. 4.13a, is less coarse than without median filtering (Fig. 4.8a) and
appears more smooth and wavy. While the steep edges made with the new
turning tool are as crisp as in Fig. 4.8b, the edges obtained from the worn tool
are more rounded and less irregular (Fig. 4.13b).

For a more detailed discussion we look into the absolute deviation achieved
with the filtering operation. The MAD-values obtained with only preprocessing
applied (Fig. 4.9) serve us as an estimate of the “measurability” if form of
the variability in repeated recordings. Similar to the preprocessing-only case,
figs. 4.14 and 4.15 show 2-D histograms of occupancies for combinations of
absolute deviation after postprocessing and related MAD-value. Upon direct
comparison, only subtle differences can be made out. The effects of the median
filter, evident in the height map, such as removal of outliers and blurring of sharp
edges, find no obvious correspondence in the error histograms just mentioned.
However, the strong accumulation of pixels in an error range of 1 to 5 frames in
Fig. 4.15 gives again hint at the surface roughness of the piece measured. We
can expect it in the order of 0.5 to 3µm on the scale of the 3× 3 pixel patches,
that is a side length of about 100µm.

To better assess the performances, we instead inspect the differences in
occupancy of the 2-D histograms for postprocessing by median filtering and
preprocessing-only. This is done in Fig. 4.16 for the important area of highest
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Figure 4.13: Reconstruction with median filter postprocessing applied for data
obtained at 28µm/s (cf. Fig. 4.8). (a) shows a bird view, (b) a
color encoded map of the same scene. The scale of the height axis
is 0.56µm per frame.
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Figure 4.14: Distribution of errors in the sequence of height maps obtained after
postprocessing with a 3× 3 median filter. Settings of the figure cf.
Fig. 4.11.

Figure 4.15: Same as Fig. 4.14, but with a logarithmic scale on both axes for
visual enhancement of the high-occupancy area.
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Figure 4.16: Error histogram for 3× 3 median filter processing minus the error
histogram for preprocessing only. Scale is 0.56 µm per frame, the
black contours are drawn at ±20 N , with N = 25 scans.

occupancy in the lower left corner. Here, the effect of the median filter on the
bulk of ordinary pixels can be studied, the outliers do not fall in this region.
The black contour is drawn rather arbitrarily at the occupancy levels of ±20N
(N the number of scans in the data taking session) to visually emphasize the
differences. For the interpretation one has to keep in mind that the MAD-value
is fixed for each pixel, therefore the different algorithms lead to reallocations
only within columns of the same MAD.

The blue region is the error range of about 2 to 4 frames, where less pixel
are found after the median filtering compared to the case of only preprocessing.
This mass is “moved” primarily towards a larger absolute deviation, with an
error of about 6 to 12 frames. Additionally, a smaller surplus for the median
filter can be found with very small errors of 1 or zero frames. These findings
show that the height variation within a spatial neighborhood—where the me-
dian filter acts—is usually larger than the uncertainty within a single pixel, as
we have discussed above. The median filter in most cases introduces values from
mismatching probability distributions where the spatial and ensemble statistics
disagree.

In summary, we can state that the median filter not only efficiently removes
outliers, but also deteriorates the bulk of regular preprocessed height estimates,
leading to larger errors than before. The reason is excessive smoothing, per-
formed also in regions of the height map which do not require it. Linked to
this is an obliteration of the surface microstructure, as can be seen vividly in
comparison of Fig. 4.13a with Fig. 4.5a and even with Fig. 4.8a.
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Adaptive median postprocessing The adaptive median filter is particularly
suited to reduce the oversmoothing tendency of the classic median-filter. As
described in Sec. 2.3.2, the smoothing is applied only to the outliers which are
found by a Hampel detector. One can see in the reconstruction Fig. 4.17.

With very few exceptions, this postprocessing removes all outliers from the
map. In addition, the microstructure of the surface is not as smooth as after
the simple median filter. Instead it more resembles the reconstructions obtained
after preprocessing-only (Fig. 4.8) or the reference height map (Fig. 4.5). Both
the edges worked of the new and the worn turning tool are reconstructed sharply,
the blur that is partly present after application of the simple median filter
cannot be observed.

The filter threshold (Eq. (2.75) has been chosen so as to minimize the average
absolute error Ēpp. This error measure puts a linear penalty on the distance of
outliers. A quadratic measure which would penalize outliers stronger would find
its minimum at a smaller threshold. This would inhibit outliers even better,
but also more regular pixels would be identified as outliers and filtered with the
median operator. The price to pay for stronger suppression of outliers is the
oversmoothing in the bulk of pixels.

The 2-D difference histogram comparing the residual errors after the adaptive
median filter to that after only preprocessing is presented in Fig. 4.18.

Note that the color scale and the color of zero difference are individual for each
difference histogram. Comparing this figure to the case of a simple median filter
(Fig. 4.16), the overall magnitude of differences is much smaller: the adaptive
median filter changes less height values than the median filter. However, similar
to the median filter, the adaptive median still leads to larger absolute errors for
the mass of pixels with small MAD-values.

Postprocessing with nonparametric smoothing The nonparametric smooth-
ing, with its target variance chosen to minimize Ēpp, yields a crisp reconstruction
with only few outliers, shown in Fig. 4.19.

The height map resembles the map obtained by the adaptive median filter.
In Fig. 4.19a a clear representation of surface microstructure is perceptible.
The edges and the tip-like machining residue in the lower right corner are well
represented. As one can see in Fig. 4.19b, even the sharp edges introduced
by the new turning tool are crisp without blurring, which is remarkable for a
postprocessing based on linear filtering.

The 2-D histogram of occupancy differences in Fig. 4.20 (nonparametric
smoothing minus preprocessing only) is different from the diagrams presented
up to now. Here, two clear bulges are visible, but now with their signs ex-
changed, compared to before: The postprocessing is able to reduce the absolute
error for the pixels in the low-MAD region, which is the most densely occupied
region on the MAD-scale. A larger number pixels are found to have an error
of 4 or less frames, while a field with an error of 5 to 10 frames—a little more
diffuse to circumscribe—is depleted in compensation.

We can therefore expect height maps from nonparametric smoothing to be
more precise for pixels representing the surface microstructure. With the me-
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Figure 4.17: Reconstruction with the adaptive median postprocessing applied
for data obtained at 28µm/s (cf. Fig. 4.8). (a) shows a bird view,
(b) a color encoded map of the same scene. The scale of the height
axis is 0.56 µm per frame.
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Figure 4.18: Error histogram for the adaptive median filter minus the error
histogram for preprocessing only. As before, the scale is 0.56 µm
per frame, the black contours are drawn at ±20N , with N = 25
scans.

dian filter based approaches, for the removal of outliers the price of a higher
error with these pixels had to be paid.

Bayesian surface estimation The Bayesian approach introduced in Sec. 4.2
estimates the height map as shown in Fig. 4.21. The map here has a similar
appearance as the map obtained with the adaptive median filter and the non-
parametric smoothing. The roughness and small-scale variance of the surface
microstructure is close to the reference height map. The clear-cut edges worked
with the new turning tool as well as the are somewhat fuzzy edges introduced
with the worn tool are accurately represented. However, a small number of
outliers is still apparent.

It is possible to remove these residues as well by a different choice of the
parameters (the q0/q1-ratio). The parameters of the algorithm are optimal
according to the Ēpp error measure (cf. Table 4.2), and similar to the case of
the adaptive median filter such a setting would have an inferior performance
for the bulk of the whole surface.

The 2-D histogram of occupancies for the Bayesian estimation minus pre-
processing only in Fig. 4.22 differs remarkably from the plots shown for the
first three approaches, but resembles the plot obtained for the nonparametric
smoothing algorithm.

The positive bulge at very low absolute errors of 0 to 1 frame show that more
pixels are estimated with minimum error than with the preprocessing-only ap-
proach, which is different from all other postprocessing algorithms considered.
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Figure 4.19: Reconstruction with postprocessing by nonparametric smoothing
for data obtained at 28µm/s (cf. Fig. 4.8). (a) shows a bird view,
(b) a color encoded map of the same scene. The scale of the height
axis is 0.56 µm per frame.
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Figure 4.20: Error histogram for nonparametric smoothing minus the error his-
togram for preprocessing only. Scale is 0.56µm per frame, the
black contours are drawn at ±20N , with N = 25 scans.

The area where most pixels of the original reconstruction reside (cf. Figs. 4.14
and 4.15) correspondingly has, around 2 to 4 frames of absolute error, a signif-
icantly lower occupancy than after preprocessing-only.

The data basis for large MAD-values is quite sparse, therefore only a sum-
marized discussion of the error distribution is reasonable. The occupancy
differences of Bayesian estimation minus preprocessing-only are displayed in
Fig. 4.23a, now taken for the sum of MAD-values > 20 frames. In addition,
in Fig. 4.23b the cumulative sum of this graph is displayed. One can consider
these plots as originating from a line-wise summation of Fig. 4.22 for the larger
MAD-values not shown in that figure. For the high-MAD fraction, more pixels
are estimated with the Bayesian approach towards a very small absolute error
of 0 to 1 frame than after preprocessing only. For higher absolute error, the
occupancy difference is oscillating, with a bias to the negative side, this is the
region depleted after Bayesian estimation. From Fig. 4.23b we can see that
before reaching an absolute error of about 20 frames, the differences are essen-
tially completely leveled. The Bayesian estimation reduces the errors also for
the region with a higher variability of pixels difficult to estimate at all.

When we compare the analysis and the 2-D histograms for nonparametric
smoothing and this approach, the two algorithms obviously behave similar in
nature. In addition, according to the overall error measure Ēpp both approaches
perform equally well, and somewhat better than all other approaches for this
scanning speed (cf. Table 4.3).

It is interesting to see the differences in detail. In the 2-D histogram Fig. 4.24,
the difference in occupancy for the Bayesian estimation minus nonparametric

117



4.3. APPLICATION AND ASSESSMENT

(a)

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

0

50

100

150

(b)

Figure 4.21: Reconstruction with Bayesian surface estimation obtained for raw
data recorded at 28µm/s. (a) shows a bird view, (b) a color en-
coded map of the same scene. The scale of the height axis is
0.56µm per frame.
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Figure 4.22: Error histogram for Bayesian estimation minus the error histogram
for preprocessing only. Scale is 0.56 µm per frame, the black con-
tours are drawn at ±20 N , with N = 25 scans.

smoothing is plotted. The Bayesian approach shows higher occupancy for the
area of very small absolute error (0 to 1 frames), as well, to a smaller degree,
an area of about 6 frames. In contrast, the area of 2 to 4 frames is depleted.
The Bayesian estimation therefore leads often to a smaller absolute error than
the nonparametric smoothing, as well a less often to a larger absolute error.
While both approaches achieve almost the same average absolute error, the
Bayesian approach often succeeds in reconstructing the height with the min-
imum possible error—at the price of sometimes reconstructing with an error
that is larger than the average error remaining after postprocessing with non-
parametric smoothing. Looking back at Fig. 4.22, the infrequent tendency of
the Bayesian approach to fall short of the true height by some frames can be
anticipated only faintly from the plot.

Summary: Postprocessing for 28 µm/s measurements This scanning speed
provides us with preprocessed data that, on one side, carries a significant num-
ber of outliers one likes to remove, and on the other side that suffers noticeably
from conventional postprocessing, here in form of the median filter. The dete-
rioration of the surface microstructure caused by the median filter leads to an
actually larger average absolute error Ēpp then for the preprocessed only data,
in spite of its outliers. The adaptive median algorithm can circumvent this, as
is displaces height values from the bulk of pixels to a smaller degree only.

Both the nonparametric smoothing and the Bayesian estimation approach
succeed in delivering an even smaller average absolute error. They keep the
residual error small for the bulk of pixels—those that make up the bigger part
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Figure 4.23: Domain of MAD > 20 frames for the histogram in Fig. 4.22: (a)
shows the horizontal sum and (b) the corresponding cumulative
sum of the occupancy difference for Bayesian estimation minus
preprocessing only for MAD > 20 frames. Scale is 0.56 µm per
frame.
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Figure 4.24: Error histogram for Bayesian estimation minus the error histogram
for nonparametric smoothing. Scale is 0.56µm per frame, the
black contours are drawn at ±20N , with N = 25 scans.

of the surface, but also miss slightly more outliers. Finally, all approaches leave
the tip-like artifact in the lower right corner of the surface intact.

For the tunable algorithms in this comparison, the parameters as optimized
with the Ēpp-measure yield settings with do not completely abandon outliers,
although this can be made possible with other settings for all algorithms. If,
in practice, outliers are critical, one could therefore either modify the parame-
terization further towards a stronger smoothing, or on could use a measure for
parameter optimization that penalizes outliers harder.
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Scanning Preprocessing Nonparametric Median Adaptive Bayesian
speed only smoothing filter median estimation

14µm/s 0.55 µm 0.53 µm 0.69 µm 0.56µm 0.45µm
28µm/s 0.71 µm 0.68 µm 0.78 µm 0.72µm 0.68µm
56µm/s 1.27 µm 1.15 µm 1.02 µm 1.02µm 0.89µm
84µm/s 4.84 µm 2.64 µm 2.43 µm 2.43µm 1.59µm

112µm/s 2.69 µm 1.91 µm 1.64 µm 1.64µm 1.17µm

Table 4.3: Absolute error per pixel (Ēpp), cf. Eq. (4.55), for the algorithms
under comparison, cf. also Fig. 4.25. The measurements for 84µm/s
suffer from the particularly low signal-to-noise ratio for this scanning
speed (cf. Sec. 4.3.2).

4.3.5. Further results

The analysis that has been detailed in Sec. 4.3.4 for the scanning speed of
28µm/s can be performed in the same manner for the other scanning speeds.
In this section, we only discuss the central results. One can see from Table 4.3
and Fig. 4.25 that the absolute error grows the larger the scanning speed be-
comes. The main reason for this increase is that the interference signal becomes
shorter for higher speeds, but also the discretization of the calculated height
values, which gets proportionally larger with increasing speed (cf. Table 4.1)
contributes to the error. An interpolation of the raw data or, in case of Bayesian
estimation, of the a posteriori probability along the height axis could reduce
the impact of discretization.

For better readability, the figures with reconstructed height maps are all
moved to Appx. A. Similar to the discussion of the 28µm/s measurements in
Sec. 4.3.4, an analysis of the distribution of residual error versus data quality,
i. e. the 2-D histograms, leads to similar findings for other scanning speeds.
In that way, the 28µm/s measurements are fairly representative for the whole
set of scanning speeds, and we therefore omit a detailed discussion of the 2-D
histograms in a move to save paper.

Measurements with 14 µm/s scanning speed For these measurements, the
absolute errors for all four approaches lie closely together. The Bayesian esti-
mation approach shows the minimum error of Ēpp = 0.45µm, followed by the
results obtained from the nonparametric smoothing. With the preprocessing
only approach, a barely larger average error can be achieved, and only slightly
worse than this the adaptive median performs. Last is the median filter, whose
performance has a larger gap to that of the other approaches. This is however
not surprising as the Ēpp measure rewards a better representation of the bulk
of pixels higher than the removal of—at this scanning speed only few—outliers.

For data recorded at 28µm/s, the absolute errors obtained with the dif-
ferent algorithms in our comparison take the same order as for 14µm/s and
differ only little in the absolute magnitude. As we have seen in Sec. 4.3.4 for
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Figure 4.25: Graphical representation of the results from Table 4.3. The con-
necting lines are drawn only for better visual discrimination.
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28µm/s, the reconstructions still have qualitative differences, particularly for
the microstructure of the surface. The Bayesian estimation, and to a smaller
degree, also the nonparametric smoothing are more precise with the surface
representation, while it lets more outliers slip through, other than the median
filter approaches.

Measurements with 56 µm/s scanning speed The Bayesian estimation ap-
proach has the least average error in this setting. It is now followed by the
results from the median filter and the adaptive median with practically equal
absolute errors1, while the nonparametric smoothing has a larger error, followed
by at last the result obtained with the postprocessing only approach, which suf-
fers from the significantly increased number of outliers, clearly perceptible in
Fig. A.2.

A closer inspection reveals that the nonparametric smoothing leads to resid-
ual errors of about 2 frames for the bulk of pixels, similar to the 28µm/s-
measurements. The median filters however leave the postprocessed data with
one or zero frames absolute error, and therefore obtain a smaller Ēpp value.

The optimum setting for the parameter c of the adaptive median is very
close to zero (cf. Table 4.2), so that nearly all pixels are considered outliers and
thus the spatial median filter is rarely skipped. As a consequence, the errors
Ēpp of the median based approaches differ only marginally, and the reconstruc-
tions show fluctuations merely on the level of the discretization noise, with the
exception of fewer outliers left over from the adaptive median filter.

Measurements with 84 µm/s scanning speed These measurements are sig-
nificantly affected by the a resonance phenomenon between sampling rate and
periodicity of the interferogram’s inner oscillation, which leads to a very poor
signal-to-noise ratio (cf. Sec. 4.3.2). This leads to a steep rise in the number of
outliers after preprocessing (cf. Fig. A.3) and subsequently in the average error
Ēpp. Without postprocessing, the acquired height maps are not usable.

Both median filter based approaches approximately halve the absolute error.
The optimum setting of the adaptive median’s parameter c is zero, therefore
both algorithms yield equal results and no further gain is possible by restricting
the spatial median filter to fewer pixels.

The nonparametric smoothing algorithm leads to a slightly larger average
error than the median filter also for this scanning speed. A high density of
outliers impairs the performance of the nonparametric smoothing: The weighted
filter approach ignores outliers and therefore higher weights are put on the
remaining pixels. In addition, the target variance can only be reached by re-
iterating the filtering operation with a larger mask size. All this leads to a
smoother reconstruction, but at the same time reduces the reproducibility of
the original height value.

The Bayesian estimation copes best with the large number of outliers, as the
integration of pre- and postprocessing eliminates the need to assign a height

1The numbers in Table 4.3 are rounded to the second digit.
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value to spoilt data: Data series that in the conventional approach would result
in outliers show a flat or fuzzy likelihood that contributes little to the Bayesian
inference.

Measurements with 112 µm/s scanning speed This is the fastest scanning
speed used in this series. At this speed, the processed time series contain
only few samples of the actual interference pattern, therefore misdetections are
rather frequent once the signal-to-noise ratio is too low. The number of outliers
in the preprocessed data (cf. Fig. A.4 is however smaller than with 84µm/s,
but larger than with 56µm/s.

Also at this scanning speed, the Bayesian estimation performs best in terms
of Ēpp, followed by the median filter approaches. The height maps obtained
from nonparametric smoothing have a slightly larger absolute error. These
measurements do not differ essentially from the 56µm/s or 84µm/s data.

4.3.6. Conclusions and hints for application

For the measurements of the turned steel piece (Fig. 4.2), we have seen that
for all scanning speeds evaluated, out of all tested postprocessing approaches
the Bayesian estimation yields the height maps of minimum error Ēpp. The
difference to the other methods is more significant for lower signal-to-noise ratios
and higher scanning speeds. For the 14µm/s and 28µm/s measurements, the
improvement over the adaptive median filter is smaller.

All these results are strictly valid only for the test piece measured. For other
metallic surfaces of similar roughness, our findings should be transferable, as
single tests have shown. This may not be the case for surfaces of notably
different structure and local characteristics, like rubber, plastics or ceramics.

The computational cost for the Bayesian estimation is approximately lin-
early correlated to the size of a scanned data sequence (number of frames). In
contrast, the other postprocessing filters require a constant processing time.

In summary, for measurements at fast scanning speeds, particularly low data
quality and if the surface microstructure should be represented more precisely,
the Bayesian estimation is the best choice. If the measurements have a high
quality and a fast and less sophisticated postprocessing focusing around the
removal of outliers is desired, the adaptive median filter is a good alternative.
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5. Comparison with Bayesian
approaches in image processing

Overview In this chapter we discuss conceptual similarities or junctures of
the Bayesian estimation approach developed in Chap. 3 to methods of image
restauration and functional image processing.

Removal of noise, outliers and other unwanted artifacts is the common task
of what sometimes is called “early” image processing, put here in contrast to
“later” stages as image classification or image understanding. As common as
this task is, the field of restauration methods is vast. Consequently, we can only
pick out very few approaches. These either make use of Bayesian methods, or
they extend the 2-D domain of images into the third dimension, and along this
way come near to the Bayesian estimation of Chap. 3.

5.1. Relation to Gibbs field methods

Background Markov random fields are an important concept for the func-
tional image restauration (cf. Sec. 3.2.1). Image properties that can be ex-
pressed in form of a Markov field local characteristics or, equivalently, a Gibb-
sian energy operator (Hamiltonian) allow for a fast sampling of the a posteriori
probability distribution of a Bayesian inference problem, by means of the Gibbs
sampler, stochastic cooling or related methods, like ICM (cf. Sec. 3.2.2).

The Bayesian approach from Chap. 4 stands close to the Gibbs-Markov ap-
proach for the inference problem, and a mathematical link can be formed re-
garding the “dimensionality” of the data: In the Bayesian inference for inter-
ferometry, a 2-D plane is to be embedded into a 3-D data set, with the third
dimension formed by the raw data along a height scale, which are used to cal-
culate the (quasi-) likelihood (cf. Sec. 4.2.2). Within image restauration, often
a noise model is set up, which describes the likelihood of a certain gray value
given a hypothesis on the true gray value. While this model usually is assumed
for the whole image, we can augment each pixel with its gray value probability
distribution according to this likelihood. That way the analogy to interferomet-
ric data can be completed: The incoming 2-D image is embedded as a (fairly
uneven) plane into the 3-D cube, with the third dimension formed by the gray
value scale. The task of image restauration is now to “play around” with the
plane by the help of a sampling algorithm to prepare an output image that is
both denoised and close to the original data.

In Chap. 4 we demonstrated how, thanks to the choice of suitable priors
(Sec. 4.2.3), the a posteriori probability can be calculated directly. In this
section, we now study if these or similar priors can describe a Markov random
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field. If this would be the case, we could elegantly compare different Markov
random field samplers with the performance of the direct Bayesian estimation.

For a correct description of a Markov random field which makes efficient
sampling strategies possible, either the energy function has to stated explicitly
in terms of cliques [Besag, 1986], [Winkler, 2003], or is has to be proven that
the local characteristics are consistent, e. g. as shown in [Besag, 1974].

Rectangle prior The prior introduced in Eq. (4.35) is characterized in partic-
ular by its non-linearity: Its output, the results of AND operations, takes only
two values, and so is independent from the exact number of neighbors, as well as
many different configurations in the neighborhood are mapped into one value.
These characteristics allow for the highly efficient calculation of the a posteriori
probability. But they also inhibit this prior from a description compliant to a
Markov random field.

Slightly simplifying the notation from Eq. (4.35), we write the prior like:

P (hC) = a + b
∏

i∈∂h0

W (hi, h0) (5.1)

∂h0 denotes the neighborhood of pixel h0. With the requirement a > 0 for the
offset a we ensure positivity for the expression, as required for a random field.

For the Gibbs field representation the energy function must be made up from
summed contributions for each clique, cf. Eq. (3.41). The energy function
U then goes into the Gibbs formula Eq. (3.39). With that equation, we can
permissively ignore the potentiation with e for the moment, having a simple
proportionality between U and Π, or can even allow a logarithm in that place.
All these variation could be accommodated for, in particular with estimators
locating the maximum of the a posteriori probability.

For our prior however, the crucial point is the product, which is determined
by all neighbors of a pixel together only. This can be carried over to a Gibb-
sian formalism only if these neighbors together form a clique and we can define
a corresponding neighborhood relationship. This requires of course that all
other properties of cliques also be fulfilled (cf. Sec. 3.2.1). In particular the
mutual neighborhood relationship requirement which implies a kind of “trans-
lation invariance” for the neighborhood relation would let us end up with a
neighborhood relation of infinite extent. This could be a Markov random field,
but with correlations spanning over the whole image, any option for efficient
sampling is forfeit.

Along a less formal argumentation one could find this illustration: The mix-
ture of additions and multiplications in the prior definition prevents us from
setting up an ordinary Gibbs potential. Such a function should be breakable
down into (additive or multiplicative) contributions from small cliques and con-
ventional neighborhoods of few pixels, which is not possible for Eq. (5.1).

Variations of the rectangle prior If one neglects the parameter a in Eq. (5.1),
the way to a simple Gibbsian energy functions is opened up: For estimators that
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are independent from logarithmized probabilities, the following neighborhood
potentials could be used:

V{h0} = 0 (5.2a)

V{h0,hi} = log W (hi, h0) (5.2b)
V{higher order cliques} = 0 (5.2c)

Of course, setting a = 0 has a significant impact on the Bayesian estimation
approach and is problematic in general. Without the constant offset, the prior
can become zero outside the rectangle and while it is still a probability distribu-
tion, it completely disables high edges in the image. Also, positivity is required
by the Hammersley-Clifford theorem (cf. Sec. 3.2.1).

On the other side, using this modification and additionally choosing a par-
ticular setting for the window function:

W (hi, h0) = δ(hi, h0), (5.3)

we get to the potential of the Potts model (Eq. (3.56) in Sec. 3.2.1). Along
this route also the more general Gaussian and auto-logistic models could be
considered with an appropriate choice of the window function W , but all is
based on the somewhat inapt setting a = 0.

Linearization of the rectangle prior The behavior of the rectangle prior can,
at least to a certain degree, imitated by a linear replacement. “Linear” here
suggests that the prior should not decide between only two outcomes, but should
react proportionally to the number of neighbors that fall within the window
limit. This would make a representation by additive neighborhood potentials
possible. Such a prior cannot benefit from the efficient posterior estimation
developed in Chap. 4 exactly because it has too many outcomes.

A possible realization could use a smoothed replacement for the rectangle
window which never reaches zero:

Wµ(∆h) = k (tanh (µ(∆h + Λ))− tanh(µ(∆h − Λ))) (5.4)

The parameter µ tunes the steepness of the transitions, Λ is the width parameter
of the window, ∆h = hi − h0. In the limit µ → ∞ it becomes the original
rectangle window:

lim
µ→∞Wµ(h0 − hi) = W (h0, hi) (5.5)

As there always holds Wµ > 0 the prior with Wµ yields a valid probability
distribution.

With this modified window function, the settings laid out in the above para-
graph (Eqs. (5.2) could be used in a mathematically sound way. Starting with
Eq. (3.47) we the get the following local characteristics of the Markov random
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field:

Π(h|∂h0) =
1
z

exp
(−U(h) + U(∂(h0))

)
(5.6)

∝ exp

(
−

∑

c∈C

Vc(h)

)
(5.7)

= exp

(
−

∑

i with h0∼hi

log Wµ(hi − h0)

)
(5.8)

with h = {h0, ∂(h0)} the set of height values for a center pixel and it’s neigh-
borhood. The modified window function offers therefore additional possibilities
to approximate the original rectangle prior.

Conclusion The rectangle prior Eq. (5.1) cannot be represented by a Gibbsian
energy function or a Markov random field. The reason is that the nonlinear
behavior of the prior with only two output values cannot be represented with
the means of sums or products of neighborhood interaction potentials. Two
approaches, which diverge from the original prior but which can be represented
by a Gibbs energy function are developed and discussed.

5.2. Relation to channel smoothing

Background Channel smoothing is a rather novel approach to image denois-
ing by averaging a higher-dimensional representation of the original image
[Scharr et al., 2003] . It comprises the following steps:

1. Preparation of the channel representation of the original data,

2. linear filtering in the domain of the channel representation,

3. reconstruction of the smoothed image from the channel representation.

Channel smoothing has some relations to robust estimation [Chu et al., 1998],
diffusion approaches [Felsberg et al., 2002] and then indirectly to bilateral fil-
tering [Barash, 2001], which makes it interesting to study.

Channel representation The channel representation is a general concept of
mapping a signal into a space of higher dimension. It was invented as a tool
for the projection of non-trivial invariances into a linear and easier accessible
space [Nordberg et al., 1994]. This is done via an encoding function B, which
gives a local, smooth function in the channel space and centered around zero.
For computational efficiency, a limited support encoding can be used which is
shifted towards the signal value. The encoding for functional value f is given by
the corresponding channels cn, which form a vector of length N with non-zero
values only in the vicinity of f :

cn(f) = B(f − n) (5.9)
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Accordingly, a signal f(x) on an M -dimensional carrier (M = 2 for an image)
is encoded into a N -dimensional vector functional or, equivalently, a function
on M × {1, . . . , N}.

A central idea of this approach is the sparseness of representation. E. g., a
signal of discrete 8-bit range could be encoded into only 5 to 10 channels. To
avoid loss of information, these channels are real-valued. In the decoding step,
the channels are interpolated, according to the encoding function used.

Channel smoothing Channel smoothing is achieved by convoluting a smooth-
ing filter G with the channel representation of the image, that is, for each of
the n channels cn(x):

c′n(x) = G(x) ∗ cn(x) ∀n (5.10)

Each channel is therefore smoothed separate from the others. The resultant
image x′ is obtained after decoding the smoothed channel representation.

x′ =
∑

n

Bn(c′n(x)) (5.11)

In the channel representation, we have a stack of matrices rather than a single
image, one for each channel. To obtain smoothing in the channel representation,
common linear filter masks are applied separately to each matrix. The gray
value of single pixel is found encoded as a column perpendicular through the
stack.

In [Scharr et al., 2003] the use of a B2-spline encoding is proposed, which has
the advantages of a linear decoding, fast computation due to its limited support
and others more. The decoding step involves only a linear interpolation of few
terms, unless smoothing leads to the representation of several gray values within
one channel (“metamery”). In these cases, the reconstruction is centered around
the largest channel value, which, from a statistical viewpoint, can be considered
as the most reliable value.

Channel smoothing is able to preserve edges in the image, i. e., to act like
a robust estimator by removing little differences of data with small variance
and outliers of large variance, but retaining larger deviations that are sup-
ported by a small variance. Mathematically, this is supported by the influence
function one can derive (cf. Sec. 3.3.3), which in case of Scharr’s B2-spline
encoding corresponds to that of a robust error norm: It is linear for small de-
viations, reaches a maximum and falls smoothly to zero for larger differences
[Felsberg et al., 2002].

Channel smoothing and Bayesian estimation The channel representation of
an image uses a data structure that shows some similarities to that of Bayesian
inference methods, in particular with the interpretation of Sec. 5.1. Technically,
the channel encoding approach can then be compared to the noise modeling
with a likelihood function. Together with the discussion in Sec. 5.1, this corre-
spondence technically extends towards interferometric 3-D data. However, the
processing strategies and their underlying theoretical foundation differ much:
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Central to channel smoothing is that each channel is smoothed separate from
the others, cf. Eq. (5.10). Within the nonlinear decoding step, the environment
can be taken into account. On the other side, the a posteriori of the Bayesian
estimation is calculated by directly consolidating information spread across the
neighborhood and the height scale. Only in the particular case of the the δ-prior
(cf. Sec. 4.2.3) with no offset the estimation is limited to information within
one height level. We then get for Eq. (4.28):

P (hC) = b
k∏

i=1

δ(hi − h0) (5.12)

As discussed in Sec. 5.1, removing the offset (a = 0) is disfavorable. The
a posteriori probability then becomes:

P(h0|xC) ∝
k∏

i=1

f(xi|hi)|hi=h0 (5.13)

Using estimators of maximum modes of the a posteriori probability, the above
equation can be logarithmized:

P′(h0|xC) =
k∑

i=1

log f(xi|hi)|hi=h0 (5.14)

This equation is the same that can be obtained by applying a channel smoothing
approach with a special smoothing filter mask. This mask is zero for the central
pixel, i. e. for a 3× 3 neighborhood:

G(x) =




1 1 1
1 0 1
1 1 1


 (5.15)

The final decoding step that reconstructs the smoothed image from the channel
representation is then replaced by a simple maximum mode estimator.

Conclusion Akin to the case of Gibbs field methods in Sec. 5.1, a bridge
between channel smoothing and the Bayesian estimation for interferometric
data can only be built with grave concessions. The unique characteristics of
the interferometry approach to work within a 3-D domain must be cut down by
a δ-type prior. This, on the other hand, does not do justice to the peculiarities
of channel smoothing, namely the freedom to choose an encoder that balances
smoothing with robustness. The 3-D dataset from interferometry has a fixed
physical foundation that should be represented with the likelihood function and
thus it leaves little room for variations that are physically still justifiable.

5.3. Relation to robust estimation

Background Robust estimation—in its simplest form—seeks to minimize the
overall image gradient. Its “robustness” stems from the use of a robust error
measure to weight the magnitude of the image gradient.
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Generally, using a robust error measure reduces the influence of outliers
on any optimization procedure. Edges in the image often feature large gra-
dient and can as well be regarded as outliers [Black and Rangarajan, 1996],
[Black and Sapiro, 1999]. If only small error costs are imposed, the blurring
of edges is avoided. Such a degradation model favors images with smooth re-
gions, separated by a number of steps, similar to the situation we experience
with height maps from white light interferometry. The exact outcome of the
minimization procedure depends on the approximation to the spatial gradient
in the image [Jähne, 2002] and the form of the error measure used, respectively
its associated influence function (cf. Sec. 3.3.3).

The following estimation is therefore a valid criterion for edge-preserving
denoising [Black and Sapiro, 1999]:

x̂ = arg min
∫

Ω
ρ(||∇x||)dω (5.16)

Here Ω denotes the image domain, x the intensity image and ∇x the gradient
image.

Link to Bayesian estimation A discretization of Eq. (5.16) for the domain
and gradient could look like:

x̂ = arg min
x

∑
s∈x

∑

p∈∂s

ρr(xp − xs) (5.17)

with ρr a robust error measure. While we take the smoothness assumption for
height maps into account with the prior, it is here embedded in the minimum-
gradient requirement and the form of the error norm.

If we restrict the domain of the estimation in Eq. (5.17) to just the neighbor-
hood of each pixel s, we get:

x̂s = arg min
x

∑

p∈∂s

ρr(xp − xs) (5.18)

With help of a simple Bayesian cost function (cf. Sec. 3.1.4, this minimum-error
problem is turn into a local maximum a posteriori estimation (MPM):

x̂s = arg max
xs∈Xs

P (xs|yC) (5.19)

with C = ∂(xs). Its a posteriori probability is then:

P(xs|yC) =
1
Z

exp



−

∑

p∈∂(xs)

ρr(xp − xs)



 (5.20)

=
1
Z

∏

p∈∂(xs)

exp{−ρr(xp − xs)} (5.21)

As with channel smoothing in Sec. 5.2, we look at the special case of the
δ-prior with no offset (cf. Sec. 4.2.3), which limits the estimation to within the
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current height level. It gives the a posteriori probability in Eq. (5.13), which
we use to adapt the error measure for “our” robust estimation:

ρr(xp − xs) = − log f(yp|xp = xs) (5.22)

which is the negative of the log-likelihood.
We have discussed modeling the likelihood for white light interferometry in

Sec. 4.2.2. If we integrate the phase shift of the inner oscillation, the ideal
likelihood should look similar to the following, with Gσ the (Gaussian) envelope
and a notation closer to image processing:

f(y|x) = a + b ∗Gσ(y − x) (5.23)

= a + b ∗ exp
{
−(y − x)2

σ2

}
(5.24)

Then we obtain for the error measure:

ρ(z) = − log
(

a + b exp
{
− z2

σ2

})
, (5.25)

where we set z = y − x for convenience.

Discussion of the error measure Eq. (5.25) is the error measure that corre-
sponds to Bayesian surface estimation in a special restricted case, due to the
choice of the prior. Let us now see what the characteristics of this error measure
are, in the scope of robust estimation.

It is important not to ignore the summand a, which actually adds robustness.
With a > 0, Eq. (5.23) gives a residual probability even for large differences,
far away from y ≈ x, where the exponential term alone drops quickly to zero.

Leaving a out, we would obtain the ordinary, non-robust quadratic error
norm. This aspect can be seen with the series expansion of Eq. (5.25):

ρ(z) = − log(a + b) +
b

a + b

z2

σ2
+

{(
b

a + b

)2

− b

a + b

}
z4

2σ4
+O(z6) (5.26)

As the expression in curly braces is always < 0, the error function is dampened
with O(z4) for large z. The offset −log(a + b) can safely be ignored now. The
robustness can be assessed by evaluating the influence function, the derivative
of ρ(z):

ψ(z) =
b

a + b

2z

σ2
+

{(
b

a + b

)2

− b

a + b

}
2z3

σ4
+O(z5) (5.27)

The error function above is similar to the robust estimator proposed by
Leclerc (cf. [Leclerc, 1989]). It also shows a redescending influence function—
by comparison of its series expansion to Eq. (5.26), the similarity to our error
function becomes obvious:

ρ(z) = 1− exp{−z2/σ2} =
x2

σ2
− x4

σ4
+

x6

σ6
+O(x8) (5.28)

ψ(z) =
2x

σ2
exp{−z2/σ2} (5.29)
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Conclusion From the calculations one can see that Bayesian surface estimation
is very distantly related to robust estimation for 2-D images with an edge-
preserving error norm. In particular we had to accept major qualitative changes
to the Bayesian prior in order to adapt it to the framework of robust estimation.

Hints towards anisotropic diffusion The concept of anisotropic diffusion
[Perona and Malik, 1990] has widely been established as an image denoising
tool that is able to preserve edges. Based on the physical concept of diffusion
[Jähne, 2002], in an iterative algorithm of discrete time the gray values are
modified according to the diffusion equation:

∂

∂t
x = div [D∇x] (5.30)

The diffusion tensor D is chosen as a function of the current image. If one
chooses it inverse to the structure tensor of the image, one can suppress smooth-
ing across image features like edges, and enforce smoothing in regions where
untextured noise dominates [Weickert, 1998].

It has been shown that robust estimation is closely related to anisotropic
diffusion [Black et al., 1998]. Among others, the authors prove that the classical
weighting term introduced for diffusion [Perona and Malik, 1990],

g(z) = exp
{
−z2

k2

}
(5.31)

is in fact equal to robust estimation using Leclerc’s error norm:
By calculus of variations, the integral optimality criterion Eq. (5.16) can be

transformed into the general diffusion equation

∂I(x, y, t)
∂t

= div [g(||∇I||)∇I] (5.32)

The link is here given by defining the gradient’s weighting function as

g(z) =
ρ′(z)

z
(5.33)

We have seen that Bayesian surface estimation can be considered as a partic-
ular kind of robust estimation for a certain setting of the prior. Subsequently,
with these findings the loose link can be stretched towards anisotropic diffusion.
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6. Summary

Overview In this thesis, we have discussed the processing and reconstruction
of height maps that are obtained from scanning white light interferometry.
Primarily, a novel estimation approach based on Bayesian inference has been
developed, which is more accurate than the procedures we have compared it to.

White light interferometry has become an important measurement tool for
the inspection of surfaces. In particular, the focus of applications lies with
rough, but precisely worked surfaces, as those continuously gain importance in
manufacturing industry, but at the same time can almost not be measured with
more established approaches, here to mention laser interferometry and tactile
mechanical test devices. White light interferometry fills an important gap, and
we have presented the optical foundations and the physics of rough surface
reflection.

It is almost certain that with measurement or testing tasks for white light
interferometry, there coincides the requirement that the measured data be as
precise as possible and free of errors. Interferometry with rough surfaces is
however naturally error-prone, in that measurement artifacts arise. This makes
the postprocessing and denoising approaches discussed here an integral part of
a white light interferometry measurement setup.

Preprocessing for white light interferometry The height map is not a direct
outcome of the interferometric measurement, but a result from the preprocess-
ing step. The aim here is to calculate a preliminary height map from the raw
data that is fast, economic and as precise as necessary. While robust post-
processing is able to remove gross errors and outliers if they do not cluster
in large groups, it cannot recognize slight shifts in height values. Therefore
we have only the intention to provide a precise height estimate for pixels with
sufficient signal-to-noise ratio.

We have presented known preprocessing algorithms and the practical evalua-
tion of a novel approach based on a wavelet analysis. As for our test objects it
does not perform better, and sometimes even less precise than the established
algorithms, so far we cannot recommend it, based on these measurements.

Postprocessing of height maps The height map obtained from preprocess-
ing usually contains a number of outliers and other measurement artifacts,
which ought to be removed during postprocessing. At the same time however,
the height map could contain similar structure which are image features and
must persist, as well as the surface topology. This task is usually subsumed as
“smoothing” or “denoising” of the surface.
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We have touched the theory of linear and robust filtering and have given
an account of postprocessing algorithms, both derived from conventional (2-D)
image processing, and specialized for white light interferometry by taking the
confidence measure into account. In addition, we present a novel modification
to the median filter which improves its accuracy by adapting it to the local
surface quality.

Bayesian inference in white light interferometry For the conventional image
processing, Bayesian methods have turned out to be powerful tools for the
reconstruction of deteriorated images. But only with the development of the
Gibbs sampler and related methods the “inverse” problem of image restauration
has been made solvable with a reasonable effort of computation time.

We have discussed the theoretical background of Bayesian inference with
a focus on image processing and again on height map estimation. In image
processing, particular attention has been turned to robust statistics and priors
that can retain edges.

For height map estimation, we have presented a novel approach that unifies
pre- and postprocessing in a single estimation procedure. It abolishes the con-
ventional pipeline structure that reduces the raw data to a 2-D image before
postprocessing in favor of locating the optimum embedded surface in the full
3-D data set. This method is an adaptation from the Bayesian estimation for
images. By restricting the choices for prior probability distributions to a cer-
tain class with few outcomes, we have been able to to directly compute the
a posteriori probability of the inference problem.

With the Bayesian surface estimation, it is therefore not necessary to resort
to stochastic sampling or simulation methods to cope with the vast size of the
a posteriori configuration space. The optimum configuration with respect to
the marginal posterior mode estimator can be calculated analytically.

This outcome is interesting also because with such a prior, we are able to
obtain height reconstructions that have a smaller average absolute error than
what conventional postprocessing can achieve.

Comparison of postprocessing algorithms In a series of multifold recordings
with different scanning speeds, height measurement raw data have been taken of
a turned metallic piece, which we hope is a sufficiently representative sample for
at least part of the white light interferometer applications in manufacturing in-
dustry. For the comparison of different postprocessing algorithms, a procedure
for setting up a reference height map has been devised.

The postprocessing algorithms have been compared according to the average
absolute error against the reference height map and also classified by the MAD-
value as a measure of the difficulty to obtain a height estimate. The differences
in overall accuracy between the tested algorithms is larger in case of low signal-
to-noise ratio and, related to this, a fast scanning speed. For higher data quality
the differences are less pronounced. With the detailed analysis it has become
clear that the Bayesian estimation is particularly precise for the bulk of pixels
that represent the flat surface where it reproduces the surface microstructure
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best possible. The median filter based algorithms are less precise with the
microstructure, but are generally more reliable with the removal of outliers.

In summary, we would recommend the adaptive median filter for measure-
ment tasks with a high raw data quality and where the postprocessing should
be less elaborate. If a more accurate reproduction of the surface topology is
desired, or if the raw data are of low quality, the Bayesian surface estimation
appears a better choice.

Outlook The developments started in this thesis leave a number of old and
new questions open and offer some possibilities to continue and expand the
work started.

The Bayesian surface estimation developed has yet only been tested with a
handful of surfaces, a detailed comparison with other postprocessing approaches
exists for only one sample piece. More practical experience would be desirable.
The parameter setting still has to balance between the best possible recon-
struction of the surface topology. With the current optimization measure, the
average absolute error, this balance cannot be directly adapted to different ap-
plications. It could also be evaluated if and when other priors that provide
more more levels for the result could perform better.

For high scanning speeds, the Bayesian surface estimation is particularly well
suited. Currently however, the data processing is limited to the height levels
once fixed with the interferometer setup (the scanning speed together with the
frame rate of the imaging system). As a consequence, the obtained height maps
share the same, coarse step size, which is probably not always desired. This
issue could be solved with interpolation, either for the raw data, or in the course
of the height map estimation.

With the ambition to find new connections, we have briefly looked into emerg-
ing methods of image restauration, i. e., Gibbs sampling and channel smoothing.
So far, any two sides have been proven unique by their own kind, and a transfer
is only possible by putting up significant constraints. Still, if we could find
bridges, not only it could be possible to adapt these powerful image process-
ing methods for height map estimation, but also to bring the Bayesian surface
estimation closer to 2-D image processing. Some labeling problems, such as
the depth estimation from stereo disparity data, are very similar to white light
interferometry height estimation. Unfortunately, up to now we have not been
able to obtain proper results for the depth reconstruction from disparity maps.

Nevertheless, further work in all these directions has a great potential of
mutual benefit.
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APPENDIX A. ADDITIONAL HEIGHT MAP RECONSTRUCTIONS

A. Additional height map
reconstructions

In this appendix, we gather figures of height map reconstructions for scanning
speeds other than 28µm/s. These figures are referred to in Chap. 4, in particular
in Sec. 4.3.5.
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Figure A.1: Reconstruction with preprocessing only. The scanning speed is
14 µm/s, the scale of the height axis 0.28 µm per frame.

142



APPENDIX A. ADDITIONAL HEIGHT MAP RECONSTRUCTIONS

(a)

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

200

0

10

20

30

40

50

60

70

80

(b)

Figure A.2: Reconstruction with preprocessing only. The scanning speed is
56 µm/s, the scale of the height axis 1.12µm per frame.
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Figure A.3: Reconstruction with preprocessing only. The scanning speed is
84 µm/s, the scale of the height axis 1.68 µm per frame.
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Figure A.4: Reconstruction with preprocessing only. The scanning speed is
112µm/s, the scale of the height axis 2.24µm per frame.
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für Naturwissenschaftler. Vieweg, Braunschweig, 4th edition.

[The Mathworks, Inc., 2002] The Mathworks, Inc. (2002). MATLAB Version
6.5, Release 13.

[Tikhonov and Arsenin, 1977] Tikhonov, A. and Arsenin, V. (1977). Solutions
of Ill-Posed Problems. Winston, Washington, DC.

[Wang, 2003] Wang, Y. (2003). Three-dimensional profilometer for super-
smooth surface. Opt. Eng., 42(10):3013–3016.

[Weickert, 1998] Weickert, J. (1998). Anisotropic Diffusion in Image Process-
ing. B. G. Teubner, Stuttgart.

[Windecker et al., 1999] Windecker, R., Fleischer, M., and Tiziani, H. J.
(1999). White-light interferometry with an extended zoom range. J. Mod.
Opt., 46(7):1123–1135.

[Windecker and Tiziani, 1999] Windecker, R. and Tiziani, H. J. (1999). Opti-
cal roughness measurements using extended white-light interferometry. Opt.
Eng., 38(6):1081–1087.

[Winkler, 2003] Winkler, G. (2003). Image Analysis, Random Fields and
Markov Chain Monte Carlo Methods. Springer, Berlin, Heidelberg, New York,
2nd edition.

[Zhang et al., 1990] Zhang, M. C., Haralick, R. M., and Campbell, J. B. (1990).
Multispectral image context classification using stochastic relaxation. IEEE
Trans. Syst., Man, Cybern., 20(1):128–140.

159


	Title
	Abstract
	Contents
	1 Introduction
	2 White light interferometry
	2.1 Physics of white light interferometry
	2.1.1 Measurement principle
	2.1.2 Speckle
	2.1.3 Reflective properties of rough surfaces
	2.1.4 Statistics of rough-surface reflection

	2.2 Signal processing for white light interferometry
	2.2.1 Processing for rough surfaces
	2.2.2 Processing for smooth surfaces
	2.2.3 Processing for semi-rough surfaces
	2.2.4 Confidence measure

	2.3 Denoising of height maps from interferometry
	2.3.1 Linear filtering
	2.3.2 Robust filtering
	2.3.3 Specialized filtering approaches
	2.3.4 Further possibilities

	2.4 Alternative approaches to interferometric height measurement

	3 Bayesian estimation in image reconstruction
	3.1 Foundations
	3.1.1 Setting of the problem
	3.1.2 Bayesian estimation
	3.1.3 Prior and likelihood
	3.1.4 Cost functions and a posteriori estimators
	3.1.5 Deterministic approaches

	3.2 Bayesian estimation with Markov random fields
	3.2.1 Markov random fields
	3.2.2 Stochastic sampling approaches

	3.3 Robust priors and retaining of edges
	3.3.1 Simple priors
	3.3.2 Line processes
	3.3.3 Robust priors


	4 Bayesian estimation of interferometric height maps
	4.1 Overview
	4.1.1 Motivation for Bayesian surface reconstruction
	4.1.2 Scientific context

	4.2 Bayesian estimation
	4.2.1 Cost functions
	4.2.2 Derivation of likelihood functions
	4.2.3 Choice of prior and direct a posteriori estimation

	4.3 Application and assessment
	4.3.1 Examples of application
	4.3.2 Methods for quantitative comparison
	4.3.3 Settings for assessment
	4.3.4 Detailed comparison
	4.3.5 Further results
	4.3.6 Conclusions and hints for application


	5 Comparison with Bayesian approaches in image processing
	5.1 Relation to Gibbs field methods
	5.2 Relation to channel smoothing
	5.3 Relation to robust estimation

	6 Summary
	A Additional height map reconstructions
	List of Figures
	List of Tables
	Bibliography

