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Zusammenfassung

In der vorliegenden Arbeit wird eine neuartige Technik zur Messung von dreidimensionalen Strömungen
in einem porösen Medium vorgestellt, die erstmals den experimentellen Zugang zur Porenströmung in
einer Kiessohle erlaubt. Zwei faseroptische Endoskope werden in stereoskopischer Anordnung eingesetzt,
um Bildsequenzen des Strömungsfeldes innerhalb einer einzelnen Kiespore zu gewinnen. Zur Auswert-
ung der Bilddaten wird die 3-D Particle-Tracking Velocimetry (3-D PTV) verwendet. Diese ermöglicht
die dreidimensionale Rekonstruktion Lagrange’scher Partikeltrajektorien. Die zugrundeliegenden Bildver-
arbeitungsverfahren werden entscheidend weiterentwickelt und an die speziellen Verhältnisse endoskop-
ischer Bildgewinnung angepasst. Dies beinhaltet Methoden zur Bildvorverarbeitung, zur robusten Kamera-
kalibrierung, zur Bildsegmentierung sowie zur Partikelverfolgung. Nach einer Leistungs- und Genauigkeits-
analyse wird das Messverfahren in umfangreichen systematischen Untersuchungen der Strömung durch
eine Kiessohle in einer Versuchsrinne der Bundesanstalt für Wasserbau in Karlsruhe eingesetzt. Ein erweit-
erter experimenteller Aufbau ermöglicht neben der Messung der Porenströmung in drei Poren die simul-
tane Erfassung des sohlnahen 3-D Strömungsfelds in der turbulenten Kanalströmung oberhalb der Kies-
sohle sowie von Kornbewegungen in einer Sandschicht unterhalb der Kiessohle. Somit kann erstmals die
Interaktion der Oberflächenströmung mit der Strömung im Porenraum zeitlich und räumlich hoch aufgelöst
untersucht werden. Die experimentellen Untersuchungen sind Teil eines internationalen Forschungspro-
jekts des Filter And Erosion Research Clubs (FERC). Das langfristige Ziel dieses Projekts ist es, den Ein-
fluss turbulenter Geschwindigkeits- und Druckschwankungen auf die Sohlstabilität von Wasserstrassen zu
quantifizieren. Die gewonnenen Messdaten ermöglichen neue Einblicke in das Dämpfungsverhalten einer
Kiessohle und können zukünftig zum Vergleich mit numerischen, analytischen und phänomenologischen
Modellen herangezogen werden.

Abstract

In this thesis a novel method for 3-D flow measurements within a permeable gravel layer is developed.
Two fiberoptic endoscopes are used in a stereoscopic arrangement to acquire image sequences of the flow
field within a single gravel pore. The images are processed by a 3-D Particle-Tracking Velocimetry (3-D
PTV) algorithm, which yields the three-dimensional reconstruction of Lagrangian particle trajectories. The
underlying image processing algorithms are significantly enhanced and adapted to the special conditions
of endoscopic imagery. This includes methods for image preprocessing, robust camera calibration, image
segmentation and particle-tracking. After a performance and accuracy analysis, the measurement technique
is applied in extensive systematic investigations of the flow within a gravel layer in an experimental flume at
the Federal Waterways Engineering and Research Institute in Karlsruhe. In addition to measurements of the
pore flow within three gravel pores, an extended experimental setup enables the simultaneous observation of
the near-bed 3-D flow field in the turbulent open-channel flow above the gravel layer and of grain motions
in a sand layer beneath the gravel layer. The interaction of the free surface flow and the pore flow can be
analyzed for the first time with a high temporal and spatial resolution. The experiments are part of a research
project initiated by an international cooperation called Filter and Erosion Research Club (FERC). The long-
term goal of this project is to quantify the influence of turbulent velocity and pressure fluctuations on the
bed stability of waterways. The obtained experimental data provide new insight into the damping behaviour
of a gravel bed and can be used for comparison with numerical, analytical and phenomenological models.





(...) We had made many similar journeys together, but the Danube, more than any other river
I knew, impressed us from the very beginning with its aliveness. From its tiny bubbling entry
into the world among the pinewood gardens of Donaueschingen, until this moment when it
began to play the great river-game of losing itself among the deserted swamps, unobserved,
unrestrained, it had seemed to us like following the grown of some living creature. Sleepy at
first, but later developing violent desires as it became conscious of its deep soul, it rolled, like
some huge fluid being, through all the countries we had passed, holding our little craft on its
mighty shoulders, playing roughly with us sometimes, yet always friendly and well-meaning,
till at length we had come inevitably to regard it as a Great Personage. How, indeed, could it be
otherwise, since it told us so much of its secret life? At night we heard it singing to the moon as
we lay in our tent, uttering that odd sibilant note peculiar to itself and said to be caused by the
rapid tearing of the pebbles along its bed, so great is its hurrying speed. We knew, too, the voice
of its gurgling whirlpools, suddenly bubbling up on a surface previously quite calm; the roar of
its shallows and swift rapids; its constant steady thundering below all mere surface sounds; and
that ceaseless tearing of its icy waters at the banks. How it stood up and shouted when the rains
fell flat upon its face! And how its laughter roared out when the wind blew upstream and tried
to stop its growing speed! (...)

ALGERNON BLACKWOOD, THE WILLOWS (1907)

The subject of the flow of fluids, and particularly of water, fascinates everybody. We can all
remember, as children, playing in the bathtub or in mud puddles with the strange stuff. As we
get older, we watch streams, waterfalls, and whirlpools, and we are fascinated by this substance
which seems almost alive relative to solids. The behaviour of fluids is in many ways very
unexpected and interesting (...). The efforts of a child trying to dam a small stream flowing in
the street and his surprise at the strange way the water works its way out has its analog in our
attempts over the years to understand the flow of fluids. We have tried to dam the water up -
in our understanding - by getting the laws and the equations that describe the flow. We will
describe these attempts in this chapter. In the next chapter, we will describe the unique way in
which water has broken through the dam and escaped our attempts to understand it.

RICHARD P. FEYNMAN, THE FEYNMAN LECTURES ON PHYSICS (1964)
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Nomenclature

The notation used in this thesis is summarized in table 1 (related to the image processing in part II of the
thesis) and table 2 (related to the hydromechanic analysis in parts I and III of the thesis).

Following Hartley and Zisserman [2000] and Heuel [2002] we do not distinguish between projective
points and their coordinate vectors. Homogeneous vectors P ∈ IP3 ' IR4 are denoted by capital upright
bold letters, e.g. Pw = [Xw, Yw, Zw, 1]T , Euclidean vectors P ∈ IR3 are denoted by capital italic bold let-
ters, e.g. P w = [Xw, Yw, Zw]T . Euclidean vectors p ∈ IR2 and homogeneous vectors p ∈ IR3 are denoted
in lowercase letters. Homogeneous matrices are denoted in capital sans serif letters, e.g. a homography H.
Euclidean matrices, e.g. a 3-D rotation matrix R, are denoted in capital italic sans serif letters.

In cases where pixel-wise operations shall be highlighted, images are denoted by g(i, j), where i is the
row index and j is the column index.

A spatial average of a quantity q is denoted by 〈q〉, a temporal average by q̂ or q̄.

The experimental setup developed and applied in this work comprises eleven cameras, which are all
operated simultaneously to gather data from seven different positions of the flow in an experimental test
flume. To ease the assignment of particular results to their experimental setup resp. measurement position,
the seven positions are referred to by the name of the workstation that was used to acquire the data. For the
definition of the coordinate system, see section 9.1.2. In particular, we have the following seven subsystems:

1. JAGST: endoscopic stereo system, upstream artificial gravel pore at x = −18 cm

2. KOCHER: endoscopic stereo system, middle artificial gravel pore at x = 1.5 cm

3. HÖLLBACH: endoscopic stereo system, downstream artificial gravel pore at x = 26 cm

4. NECKAR: C-mount lens stereo system, near-wall free surface flow at x = 46 cm resp. x = 26 cm

5. ELBE(U): single camera at gravel-sand-interface, upstream at x = 80 cm

6. ELBE(M): single camera at gravel-sand-interface, middle at x = 130 cm

7. ELBE(D): single camera at gravel-sand-interface, downstream at x = 180 cm
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Table 1: Notation related to the image processing. Homogeneous quantities are defined only up to a scale factor α.

variable unit denoting

Pw = α [Xw, Yw, Zw, 1]
T

mm homogeneous world coordinates of 3-D point

pn = α [xn, yn, 1]
T

mm homogeneous normalized image coordinates of ideal, undistorted
2-D image point

pu = α [xu, yu, 1]
T

mm homogeneous image coordinates of ideal, undistorted 2-D image
point

pd = α [xd, yd, 1]
T

mm homogeneous image coordinates of observed, distorted 2-D im-
age point

pp = α [xp, yp, 1]
T

pix homogeneous pixel coordinates of 2-D image point

l = (l1, l2, l3)
T pix homogeneous representation of an image line

P homogeneous (3 × 4)-projection matrix

H homogeneous (3 × 3)-projection matrix (homography)

R 3-D Euclidean rotation matrix

E essential matrix

F fundamental matrix

K camera calibration matrix

C = [Cx, Cy, Cz]
T

mm Euclidean world coordinates of camera center

fx, fy pix effective focal lengths

c = [cx, cy]
T

mm 2-D Euclidean image coordinates of principal point

T = [Tx, Ty, Tz]
T

mm 3-D Euclidean translation vector

ω, φ, κ ◦ Euler angles

s camera skew factor

θd = [k1, k2, t1, t2]
T vector of lens distortion parameters

p = [xp, yp]
T

pix pixel coordinates of a particle image

viii



Table 2: Notation related to the hydromechanic analysis.

variable unit denoting

x cm or mm spatial coordinate in streamwise direction

y cm or mm spatial coordinate in vertical direction

z cm or mm spatial coordinate in spanwise direction

vx cm/s or mm/s instantaneous velocity in streamwise direction

vy cm/s or mm/s instantaneous velocity in vertical direction

vz cm/s or mm/s instantaneous velocity in spanwise direction

B m (spanwise) flume width

L m (streamwise) flume length

HS m height of sand layer

HP m height of gravel layer

dmD mm mean grain diameter of gravel

d50 mm grain diameter at 50% sieve fraction

Cc - = d60/d10, degree of non-uniformity

dS mm mean grain diameter of sand

τ0,c Pa critical shear stress of gravel

k m geometric roughness height

ks m equivalent sand roughness

Q m3/s flow rate

h m water level

U m/s mean bulk velocity of free surface flow

Re - Reynolds number

u∗ m/s shear velocity

Re∗ - roughness Reynolds number

Rep - pore Reynolds number

Reκ - permeability Reynolds number

µ kg/m/s dynamic viscosity

ν m2/s kinematic viscosity

vf m/s superficial velocity

vi m/s intrinsic velocity

φ - porosity

κ m2 permeability
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Chapter 1

Introduction

This thesis presents a new experimental approach to three-dimensional measurements of the pore flow within
a permeable and rough wall, driven by a turbulent open-channel flow on top. These measurements have been
made possible by a new experimental setup based on endoscopic imaging. Stereoscopic image sequences of
tracer particles visualizing the pore flow are acquired and analyzed by digital image processing techniques,
namely an algorithm for 3-D particle-tracking velocimetry (3-D PTV). Section 1.1 gives a motivation for
this research, showing that this particular kind of flow configuration is relevant for a number of applications.
Consequently, a large body of research has already been published on the subject. However, due to the
great complexity of experimental investigations, most studies are theoretical or numerical, and thus limited
to small Reynolds numbers. Many authors agree that there is a definite lack of experimental data, especially
for unsteady and turbulent flows. This thesis presents a step forward to fill this gap. A short summary of
related research is given in Section 1.2, pointing out the new contributions and objectives of this work. The
structure of the thesis is outlined in Section 1.3.

1.1 Motivation

1.1.1 Flow over and through permeable walls

The experimental study of flow over and through a permeable and rough wall is an interesting and chal-
lenging subject of basic hydromechanic research. In addition, the topic is of great importance for a number
of applications, with spatial scales ranging from nanometers to kilometers. On the micro-scale, permeable
walls are encountered in biochemical and medical applications. For example, blood vessels in the human
body are lined with a deformable porous wall layer affecting the gliding motion of blood cells (which inter-
estingly finds a striking analogon in a human skier or snowboarder skiing on compressed powder) [Feng and
Weinbaum, 2000]. On the macro-scale, high-density urban areas or areas with dense vegetation like forests
also represent permeable wall layers with respect to air flow in the lower atmosphere. Topics of interest
in this area are e.g. the exchange of carbon dioxide between forests and the atmosphere or the dispersion
of pollutants [Finnigan, 2000]. Other areas of application include the prediction of groundwater flow and
dissolved contaminants in hydrology, oil recovery in petroleum engineering or flow through packed-bed
reactors in chemical engineering.

All these quite different applications have one thing in common. They all seek to find models for flow
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2 1 Introduction

and transport within and/or in the immediate vicinity of porous media. Having established such models,
they shall then be used to predict the transport of mass, momentum or heat through the porous medium
and the influence of the porous medium on the flow surrounding it. Obviously, a precise description of the
flow is essential in understanding the associated transport phenomena. In the laminar flow regime (Stokes
flow), analytical approaches to flow modeling are possible, and many theories have been developed, e.g.
[Cushman, 1990; Genabeek, 1992; Feng and Weinbaum, 2000; James and Davis, 2001]. For turbulent flows
above permeable walls, some studies have been performed by Direct Numerical Simulation (DNS) [Jimenez
et al., 2001; Hahn et al., 2002; Breugem, 2004] or by combined analytical and numerical approaches using
Lattice-Boltzmann methods [Chen and Doolen, 1998; Martys and Hagedorn, 2002; Davis et al., 2003, 2004].
Koenders et al. [2000] present an analytical study of turbulent flow in a permeable filter layer.

All approaches to investigate flows in and above permeable walls, regardless if they are analytical, nu-
merical or experimental, share the great complexity of the task, which is basically the geometric complexity
of the underlying porous structure. It is highly random and disordered, making it infeasible to capture the
exact small-scale pore structure (e.g. as boundary conditions in numerical simulations). Turbulence adds
even more complexity to the problem, since it introduces dynamic processes acting on many different scales:
from the effective pore diameter resp. the Kolmogorov scales to the dimension of the porous layer resp. di-
mension of macroscopic turbulent flow structures, which in turn scale with the dimensions of the channel
flow, e.g. the water level. In such a situation, progress can only be made by introducing simplifications
regarding the small-scale structures. Towards this end, the analysis of the physical system is focused on
appropriate length and time scales. For example, in Large-Eddy-Simulations (LES) of turbulent flows,
only the large-scale motions are resolved while the properties of the small-scale eddies are described by
a turbulence model [Rodi, 1993]. Turbulence models assume some kind of relation between small-scale
phenomena (e.g. the Reynolds stresses) and macroscopic quantities, e.g. the mean flow profile or its gradi-
ent. Similarly, macroscopic bulk properties of porous media, e.g. permeability or porosity, always represent
an average over some suitably selected volume of the medium. Hence, any macroscopic description has a
characteristic length scale associated with it. An important line of research on porous media is to find the
relation between the properties of the medium on different scales, e.g. the relation of macroscopic perme-
ability to the microscopic pore structure [Sahimi, 1995]. Comparing turbulent channel flow over smooth
and impermeable walls with turbulent flow within and/or above a porous medium, additional characteristic
length scales are present in the latter case (grain diameter, pore diameter, dimensions of the porous medium).
A fundamental problem is to find out the relevant length and time scales governing the flow [Shimizu et al.,
1990; Koenders et al., 2000].

To summarize, the analysis of complex disordered and random physical systems like turbulent flows
and flows in porous media requires the introduction of physical models describing aspects of the system on
particular length and time scales. These models are defined in terms of a set of scale-dependent intrinsic
parameters which contain information about the structural and material properties of the system on the
chosen scale. The models may be derived empirically or by theoretical approaches. In either case, they
can only be verified on the basis of comparison with experimental data. The main goal of this thesis is the
development of an appropriate experimental setup to obtain this data for the particular application outlined
in Section 1.1.2.

2



1.1 Motivation 3

Table 1.1: Freight traffic in Germany in millions of tons per year (ADACmotorwelt, January 2003, p. 24).

rivers rail road

freight per year [109 kg] 242 294 982

1.1.2 River bed stability

The particular application motivating the research presented in this thesis is the study of river bed stability
in hydraulic and geotechnical engineering. Both natural river beds and man-made bed protection structures
(so-called filter layers or geofilters) typically consist of one ore more layers of porous material, such as
gravel. Depending on the properties of the gravel (grain size distribution, porosity, permeability), a river bed
represents a porous medium with more or less interconnected pores, through which fluid may flow. Thus,
the flow in gravel-bed rivers and canals represents an important example of turbulent open-channel flow that
is bounded by a permeable and rough wall below.

In flows over non-cohesive bed material like sand or gravel, the flow-induced forces acting on the upper
grain layer may approach a certain stability threshold and initiate grain motion. Above the threshold, erosion
resp. sediment transport occurs [Yalin, 1977; Thorne et al., 1987; Yalin, 1992; Clifford et al., 1993]. The
purpose of coarse gravel filter layers is to protect the fine sediment layers below from erosion. The hydro-
dynamic load is reduced because of the drag introduced by the porous medium [Köhler, 2001]. Obviously,
protection is only provided if the filter layer itself is stable.

Erosion of bed material may cause serious degradation of both natural environments and man-made hy-
draulic structures. The consequences are manifold, reaching from environmental and agricultural damages
emerging gradually over long time periods to the complete failure of hydraulic structures in extreme situa-
tions like floods. An obvious example are dams protecting populated coastal areas. But also the enduring
usage of natural rivers as waterways requires sustained maintenance work and protection measures for river
beds, embankments and hydraulic constructions. For example, 170.000 m3 of gravel feeding per year is
needed for the Iffezheim barrage at the river Rhein near Karlsruhe to avoid erosion in the downstream river
bed. The costs amount to 5 mio. EUR per year1.

The German waterway system has a total length of about 7500 km and is used by more than 2500
cargo-ships. An average cargo-ship is 80 m long, 10 m wide and carries about 1500 tons of freight (mainly
building materials like stones, gravel or sand, salt, metals, coal or oil), which is equivalent to the freight of
about 50 large lorries2. To give a concrete example, the river Neckar (which is one of the smaller rivers in
Germany) is used as a waterway on a length of ≈ 200 km between the cities of Stuttgart and Mannheim.
In the year 2002, about 9 mio. tons of goods have been transported on the Neckar3, which is equivalent to
the freight of about 500.000 large trucks. Table 1.1 compares the freight traffic in Germany on road, rail
and rivers. Only a fraction of the total potential of freight transport on waterways is currently used. This
fraction may be increased in the future, both for ecological and financial reasons (transport on waterways
is cheaper than on rail or road and creates the least environmental pollution4). Hence, erosion protection is
important for safety, economic and environmental reasons, and there is a growing need for reliable sediment

1Wasser- und Schifffahrtsamt Freiburg, 2004
2ADACmotorwelt, January 2003, p. 24
3Heilbronner Stimme, February 27th, 2003, p.22
4ADACmotorwelt, January 2003, p. 24
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transport models which accurately predict the morphodynamic development of river beds under different
loading scenarios [Jirka et al., 2001].

Since the beginning of the 20th century, research has been carried out to investigate the stability of river
beds. Shields [1936] developed the concept of a critical shear stress τoc to describe the transition from a
stable to a moving bed in the so-called Shields-diagram. This diagram basically relates the mean critical
shear stress to the mean grain diameter of the granular material. Until the present day, the majority of design
rules for filter layers are based on this ’classical work’ or empirical modifications thereof. However, since the
Shields approach is based on mean quantities (mean flow velocity and mean grain diameter), it is only valid
for stationary flow conditions and uniform bed material. The highly time-dependent dynamical processes
taking place in the turbulent boundary layer above actual river beds are not taken into account explicitly. As
a result, there is an appreciable amount of scatter in experimental measurements of the Shields curve.

To enable improved, reliable predictions of destabilisation, the stochastic nature of both the loading
forces and the geometric structure of a river bed has to be considered. A thorough understanding of the
physical mechanisms causing incipient motion of sediment material is necessary. In particular, the influ-
ence of the turbulent flow field on the beginning of grain movement is a central question. A satisfactory,
physically-founded description of river bed stability has to take into account the flow-induced fluctuating
forces (lift and drag) acting on the grains [Dittrich et al., 1996; Dittrich, 1997; Dey et al., 1999]. To derive
the probability distributions of the magnitude and frequency of these forces, information on

• the structure and dynamics of the turbulent free surface flow above the bed, including the influence
of the bed roughness and permeability,

• the structure and dynamics of the pore flow within the bed,

• and the interaction of the free surface flow and the subsurface flow

is needed. This information can only be provided by experimental measurements. In spite of the fact
that the morphodynamical evolution of a river takes place on rather large scales (kilometers resp. years),
the stability problem requires a spatially and temporally highly resolved approach, because incipient grain
motion is connected to the (turbulent) flow conditions both within and above the filter layer [Garcia et al.,
1996; Sechet and Guennec, 1999; Zanke, 2001; Koll, 2002; Hofland, 2004; Vollmer, 2005].

Dancey et al. [2002] use the probability of individual grain motion as a criterion for the experimental
characterization of the threshold of sediment motion. This threshold is specified by a fixed value of the
probability. The criterion accounts for the statistical nature of sediment movement in turbulent flow, which
is related to the typical time scale of the flow fluctuations. However, the latter is only based on a rough
estimation (flow depth divided by average flow velocity). The authors point out the need for further exper-
imental investigations of the relevant time scales for sediment entrainment at near threshold conditions on
rough surfaces. For example, precise information about the time scales resp. frequency of occurence of
burst events is needed.

Other particular open questions in this context are the following:

• In the near-wall boundary layer of the open-channel flow, the dominating pressure fluctuations are
related to the square of the instantaneous near-bed velocity [Detert et al., 2004a; Hofland, 2005]. Is it
possible to derive empirical relations between fluctuating velocities and pressure fluctuations within
the filter layer?

4



1.2 Related work and own contribution 5

• What is the influence of extra turbulence (generated by an obstacle or by surface waves) on the flow
characteristics in the filter?

• It is obvious that the nature of fluctuations is different for an open-channel flow and for the confined
flow that takes place within the gravel pores. In the pore flow, mixing mechanisms are partly intrin-
sically flow-related and partly the result of the erratic geometry. Can the latter effects be included in
standard turbulence models, e.g. described by an eddy viscosity? What are the relevant scales?

1.2 Related work and own contribution

1.2.1 Work within the Filter and Erosion Research Club

The work presented in this thesis has been carried out within an international research cooperation called
Filter and Erosion Research Club (FERC). FERC brings together different researchers (from universities,
geotechnical and hydraulic engineering consultancy industry and governmental institutions) interested in
physical mechanisms in the water-driven motion of granular matter in erosion processes5. Various disci-
plines are present in FERC: theoretical mechanics, hydromechanics, geotechnical and hydraulic engineer-
ing, experimental physics and image processing. The long-term goal of the activities within FERC is to
find general criterions for the beginning of sediment motion, which would enable the specification of more
focused filter design rules for hydraulic engineering and geotechnical applications.

In cooperation with the other FERC members, the Federal Waterways Engineering and Research Insti-
tute (Bundesanstalt für Wasserbau, BAW) in Karlsruhe has initiated two research projects:

1. FuE-Proj. Nr. 8123: Geotechnische Filter unter hydraulischer Belastung (Geotechnical filters under
hydraulic load)

2. FuE-Proj. Nr. 8140: Stabilität der Sohle von Wasserstraßen (Bed stability of waterways)

In accordance with the studies pursued by FERC, these projects have the following four goals:

• improve the understanding of the interaction between turbulent free surface flow and subsurface flow,

• explain the physical mechanisms that are responsible for bed instability resp. the damping effect of a
filter layer,

• develop and validate numerical models for flow over and through rough and permeable walls,

• in the long run: obtain more reliable sediment transport models and design criteria for hydraulic
engineering and geotechnical applications, including the influence of turbulence.

To achieve these goals, an interdisciplinary approach is taken, which is based on theoretical, numerical
and experimental research. Theoretical subsurface flow models are developed at Kingston University, e.g.
[Koenders et al., 2000; Roussell et al., 2000]. These models are also combined with Lattice-Boltzmann

5The cooperating partners are Kingston University, UK, BAW Karlsruhe and University of Karlsruhe, Germany, Rijkswaterstaat
DWW and Delft Geotechnics, The Netherlands.
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simulations of the flow over and through a filter layer [Davis et al., 2003, 2004]. LES modeling of the flow
over rough walls is carried out at Karlsruhe University [Stoesser et al., 2003, 2004].

The experimental part of the research consists of flow and pressure measurements in an experimental
flume at the BAW Karlsruhe. The experiments are carried out in close cooperation with the BAW Karlsruhe
and the Institute of Hydromechanics (IfH) of the University of Karlsruhe. A new technique to measure
pressure fluctuations has been developed at the IfH [Detert et al., 2004a]. This thesis contributes the experi-
mental technique to measure the flow within and above a gravel filter layer.

1.2.2 Related experimental approaches

Flow measurements in porous media.

Existing experimental approaches to measure flow in porous media are mainly based on x-ray tomography
[Bayer, 2005], nuclear magnetic resonance tomography [Nakagawa et al., 1993; Ogawa et al., 2001], or
refractive index matching techniques [Yarlagadda and Yoganathan, 1989; Saleh et al., 1992; Cui and Adrian,
1997; Stöhr, 2003]. Some applications of these techniques are briefly reviewed in section 2.8. While
being able to reconstruct three-dimensional velocity fields, these techniques are limited to small-scale (sub-
millimeter) flows with very low Reynolds numbers (Stokes flow). They are not feasible for large-scale
flume experiments under transitional and turbulent flow conditions. However, in the experiments aspired
here, large-scale tests are necessary to ensure both Reynolds- and Froude-similarity (especially for surface
waves) and to enable a study of macro-turbulent flow structures. The latter scale with the flume dimensions
and are considered to play an important role in the structure and dynamics of turbulence in gravel-bed rivers
[Roy et al., 2004].

White et al. [2001] show a geotechnical application of a 2-D PIV system to measure soil deformations.
This approach is similar to the method presented in section 9.2. However, only preliminary validation
experiments are reported. The PIV images are obtained using a digital still camera without the use of
endoscopes. Hofland [2004] uses a 2-D PIV setup to measure the flow structures in the near-wall boundary
layer around a large stone embedded in a gravel layer.

Endoscopic flow measurements.

Endoscopic 2-D PIV is mainly applied to observe the flow fields in internal combustion engines [Gindele
and Spicher, 1998; Dierksheide et al., 2001, 2002; Geis et al., 2002]. These applications require viewing
through a small window and at the same time covering a large spatial region of the flow. Hence, rigid
endoscopes with wide-angle lenses are used, similar to those described in section 9.2.1. Dierksheide et al.
[2002] and Tani et al. [2002] point out the two main problems in quantitative endoscopic imaging:

1. Transmission of the image through the endoscope. The image transmission through the fiber bun-
dle of a flexible endoscope resp. through the rod lens system of a rigid endoscope causes a lower
image resolution and a lower image contrast due to a degraded modular transfer function (MTF) as
compared to standard lenses.

2. Imaging by wide-angle lenses with small focal lengths. Rigid endoscopes usually have short focal
lengths and a large field of view. Radial lens distortions may be so large that the usual paraxial
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1.2 Related work and own contribution 7

approximation of geometrical optics is not valid. Hence, images of rigid endoscopes can be similar to
those produced by fish-eye lenses. The image of a planar object projected by such lenses appears on
a curved surface. The whole image area cannot be focused equally well onto the planar sensor of the
camera, and parts of the image are out-of-focus. This effect can also be seen in the calibration images
of figure 5.6.

All the endoscopic applications that have been reported in the literature so far are restricted to the standard
2-D/2-C PIV configuration, i.e. they measure 2-component vectors within a plane in space. Reeves and
Lawson [2004] propose the use of stereo endoscopic PIV to reduce errors related to perspective effects that
are particulary strong in endoscopic images due to the short focal lengths. However, they only show a test
implementation using a single camera equipped with an f = 8 mm micro video imaging lens. No real
endoscopes are used, and the stereo setup is simulated by shifting the object plane on a translation stage. To
the best of the author’s knowledge, the only application of quantitative endoscopic 3-D imaging is presented
by Mühlmann [2002]. He presents a method to reconstruct static 3-D surfaces from images obtained by a
stereo endoscope, which is used for medical applications.

3-D Particle-Tracking Velocimetry.

While it still cannot be considered a standard method like PIV, many implementations of 3-D Particle-
Tracking Velocimetry systems (3-D PTV) have been developed and successfully applied during the last 15
years. For a review, see section 3.5. Previous work on 2-D and 3-D PTV algorithms carried out at the
Interdisciplinary Center for Scientific Computing in Heidelberg is summarized in section 7.1.

1.2.3 Own contribution and objectives

This thesis presents the following new contributions:

• endoscopic 3-D PTV, i.e. the first implementation of highly resolved quantitative 3-D measurements
of a dynamic process by endoscopic stereo imaging,

• enhanced image processing algorithms for 3-D PTV adapted to the particular needs of endoscopic
imagery,

• an experimental setup enabling a synoptic view of turbulent open-channel flow above and pore flow
within a rough and permeable wall (gravel layer),

• results of the first simultaneous 3-D flow measurements within and above a gravel layer.

With regard to the expected measurement results, the FERC proposal for the research project initiated
by the BAW states the following primary goals, see also figure 1.1:

• vertical profiles of mean velocity and fluctuations in the boundary layer of the open-channel flow,

• vertical profiles of mean velocity and fluctuations within the filter layer,

• detection of potential grain movement at the interfaces water/gravel and gravel/sand,
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Figure 1.1: Streamwise/wall-normal cross-section of the experimental observation area. The basic set-up under
investigation is a horizontal gravel filter layer, a base layer of fine sand underneath it, and turbulent open-channel
flow on top of the filter layer. The primary aim of the studies is to investigate the fluid velocity profiles through the
filter layer as a result of the top flow characteristics (e.g. coherent turbulent eddy motions, indicated by the curved
arrows). These profiles consist of average (continuous line) and fluctuations (dashed lines) as a function of the position
in the filter. The experimental observation areas are indicated by the yellow boxes: (1) detection of sand motion, (2)
endoscopic 3-D PTV, (3) 3-D PTV.

• vertical profiles of pressure fluctuations,

• degree of fluctuations in the filter layer as a result of both uniform and non-uniform (extra turbulence
due to waves or an obstacle) turbulent channel flow.

The major achievement of the thesis is the design of the endoscopic 3-D PTV system for pore flow
measurements within the gravel layer (area 2 in figure 1.1). This includes both the experimental setup, the
image processing algorithms, and a performance evaluation of the system. To achieve the goals stated by
FERC, the experimental setup has been extended by another 3-D PTV system to observe the near-wall free
surface flow (area 3 in figure 1.1) and additional endoscopic setups to observe the subsoil boundary layer
and detect 2-D motion of sand grains (area 1 in figure 1.1). These additional setups are also presented in the
thesis. The same 3-D PTV algorithm is used to process both the endoscopic images and the images of the
free surface flow.

1.3 Thesis outline

The thesis is structured into three main parts: foundations (part I), digital image sequence analysis (part II),
experiments and results (part III). Part I (chapters 2–3) is concerned with all the relevant background infor-
mation on the subject. This includes both hydrodynamic resp. hydraulic engineering aspects and a review of
quantitative flow visualization techniques. The development and extension of digital image processing tech-
niques for endoscopic 3-D PTV is the topic of the second part (chapters 4–8). The algorithmic approaches

8



1.3 Thesis outline 9

used in the different modules of the 3-D PTV are detailed and their performance with respect to accuracy,
precision and efficiency is analyzed. Finally, the third part (chapters 9–10) covers the experimental setup for
endoscopic 3-D PTV and its application within a series of investigations performed at the BAW Karlsruhe.
The success of these experiments has been made possible by a careful re-design of the experimental setup
used in previous investigations [Klar et al., 2002], together with the advances in image processing presented
in part II. For the first time, results of 3-D flow measurements of the pore flow within a permeable wall,
driven by turbulent open-channel flow on top, are presented.

In the following, the individual chapters of the thesis are outlined.

Part I: Foundations.

Chapter 2 reviews some basic theory of fluid flow, introducing the governing equations and some common
notions that are used in the thesis. After the discussion of these general facts, the chapter specializes on some
important types of flow, namely turbulent flow, open-channel flow, and flow in porous media. The chapter
concludes by putting together all these components to end up with a description of the hydromechanic
system that is studied in the thesis: turbulent open-channel flow above and pore flow within a rough and
permeable wall.

Chapter 3 presents a survey of current state-of-the-art techniques for quantitative flow visualization,
starting with some general considerations on motion estimation. First, 2-C/2-D methods like Particle Image
Velocimetry (PIV) are explained. Extensions of these methods to measure three-component velocity vectors
within a plane in space (3-C/2-D methods) or even within a volume in space (3-C/3-D methods) are briefly
explained. A number of reasons are given, why PIV methods cannot be used for the measurement of flow
within a gravel pore. We will see that another flow measurement technique, Particle-Tracking Velocimetry
(PTV), is much better suited for this application. A specific implementation of 3-D PTV, adapted to the
needs of endoscopic imaging, will be the tool that is used to obtain three-dimensional flow fields in part III
of the thesis.

Part II: Digital image sequence analysis.

Part II of the thesis provides a detailed description of the algorithmic framework for three-dimensional
Particle-Tracking Velocimetry that has been developed and implemented in this work. In the third part of
the thesis, this framework is applied to compute three-dimensional flow trajectories, i.e. Lagrangian flow
fields, from stereoscopic image sequences of tracer particles suspended in the flow. Towards this end, two
prerequisites are necessary. First, in chapter 4 we take a look at the radiometric properties of the cameras
that are used to acquire the image sequences. A method to correct for the strong fixed-pattern noise in the
images is proposed. The efficiency of this method in reducing the noise level and thus improving subpixel
accuracy is demonstrated.

The second prerequisite for the computation of 3-D trajectories is a geometric calibration of the stereo
camera setup. It is the subject of chapter 5. In the proposed calibration module, the physical camera parame-
ters are computed from images of feature points with known coordinates. The camera parameters define the
relative orientation of the stereo setup and the perspective projections from 3-D space onto the image planes.
Using this information, the 3-D coordinates of tracer particles are computed within a projective geometry
framework. Under the difficult illumination conditions of endoscopic imaging, the probability for outliers
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10 1 Introduction

in the feature extraction is high. Thus, special attention is paid to achieve a robust calibration, i.e. one that
computes the correct camera parameters also in the presence of data outliers.

Chapter 7 presents the 3-D PTV algorithm. The chapter starts with an overview of previous work, show-
ing the capabilities as well as the limitations of former implementations. The following sections highlight
the significant extensions that have been developed to make endoscopic particle-tracking feasible. The pro-
posed algorithm consists of five modules, which are processed sequentially: image preprocessing, particle
segmentation, particle tracking, stereoscopic correspondence analysis of 2-D trajectories and 3-D recon-
struction. A separate section is devoted to each module. The first and second module are of particular
importance: the particle segmentation and the tracking of the particles throughout an image sequence. The
reason is that the probability for a unique 3-D reconstruction of a trajectory increases with the trajectory
length. Thus, in the ideal case, the particles should be tracked over their complete length, i.e. starting when
they enter and finishing when they leave the field of view. While previous implementations have been prone
to segmentation failures, the new segmentation module achieves a much more robust segmentation by a
combination of two steps. The first step is capable of segmenting even very faint particles, based on their
feature ’motion’. Only a statistical significance level has to be specified by the user. A local segmentation
threshold is computed, taking into account the results of the camera noise analysis in chapter 4. The second
step is a separation of overlapping particle images by a watershed algorithm. The tracking module has also
been completely redesigned. Within a Kalman filter framework, information from different low level motion
estimators (temporal smoothing, optical flow and image cross-correlation) is combined to yield the optimal
particle trajectory in a maximum likelihood sense.

The second part of the thesis is concluded with a performance evaluation of the 3-D PTV in chapter 8.
The performance is tested both on synthetic and real image sequences. The analysis shows that in practical
applications, typically 50% of the segmented particles can be reconstructed in 3-D with a relative velocity
error below 10%.

Part III: Experiments and results.

The third part of the thesis is devoted to the experiments performed in a test flume at the BAW in Karlsruhe.
In this flume, a sand layer is covered by a gravel layer. The flow in these sediment layers is driven by
open-channel flow on top of the gravel layer. Chapter 9 presents the experimental setup. The setup enables
the simultaneous acquisition of image sequences within the gravel layer and at its interfaces with the sand
layer and the free surface flow. Several subsystems are used to achieve this, which are discussed in detail.
New digital high-speed CMOS cameras are used for the image acquisition, which were among the first that
have been commercially available. A major achievement was the realtime storage of the data streams from
the cameras on RAID systems (requiring to write a sustained data rate of about 25MB/s to the disks). This
is necessary to enable the acquisition of long image sequences for a statistical analysis of flow events.

Chapter 10 describes the application of the developed experimental setup in an extensive series of sys-
tematic measurements. These measurements have been carried out in cooperation with the BAW and the
Institute for Hydromechanics of the University of Karlsruhe. For the first time, profiles of 3-D mean and
fluctuating velocities within and above a permeable and rough wall, driven by turbulent open-channel flow,
are presented.

The thesis concludes with a summary and an outlook on further research in chapter 11.
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Chapter 2

Hydrodynamic background

This chapter introduces the basic hydromechanic concepts and terminology that is relevant for this work. In
section 2.1 we start with a description of the defining properties of the medium we are interested in, namely a
Newtonian fluid. This definition also introduces the important notion of a shear stress (flow induced shear
stresses are the driving forces for sediment motion). Section 2.2 continues with the basic equations, notions
and parameters that describe different types of fluid flow. These equations may be formulated in different
reference frames. In section 2.3 we show the two basic frameworks that are used to describe flowing fluids,
the Eulerian and the Lagrangian flow field. While most of the common flow visualization techniques,
in particular PIV (section 3.2), measure the Eulerian flow field, the 3-D PTV developed here yields the
Lagrangian representation. Many geophysical and technical flows are turbulent. Thus, some important
aspects of fluid turbulence are discussed in section 2.4. In the next two sections, we look at the two
specific types of flow that are investigated in the experiments presented in this work, namely open-channel
flow (section 2.5) and flow in a porous medium (section 2.6). Finally, section 2.7 combines the previous
considerations and highlights some aspects of turbulent open-channel flow over a rough and permeable wall.
Section 2.8 contains a compilation of some experimental approaches to quantitative flow measurements in
porous media and over permeable walls. A summary of the most important facts of this chapter is given in
section 2.9.

2.1 Newtonian fluids

We consider the flow of a Newtonian fluid, i.e. a fluid in which the viscous momentum flux (i.e. the shear
stress) τxy across the xy-plane is proportional to the velocity gradient in the direction perpendicular to this
plane. The constant of proportionality is the fluid viscosity µ. If the flow is in x-direction, the mathematical
definition reads

τxy = −µ
∂vx

∂y
. (2.1)

Bird et al. [1960] give a useful interpretation of (2.1): the viscous momentum flux is in the direction of the
negative velocity gradient. Thus, momentum tends to go in the direction of decreasing velocity. In analogy,
the same behaviour is found e.g. in heat conduction, where heat flows from a hot region towards a colder
one. In this case, the temperature gradient is responsible for the heat flux. Similarly, in a viscous fluid, a
velocity gradient is the driving force for the transport of momentum.

13



14 2 Hydrodynamic background

2.2 Flow of fluids

2.2.1 Basic equations

The basic equations governing the motion of Newtonian fluids are the Navier-Stokes equations. They are
derived from the balance of forces of a fluid element, using Newton’s laws of motion, see e.g. [Tritton,
1977]. Together with the equation of continuity, these equations describe the conservation of mass and mo-
mentum of a moving fluid. If other processes are present, e.g. thermodynamic phenomena (heat conduction,
convection, radiation, chemical reactions), the mathematical description is extended by a similar equation
describing conservation of energy, see e.g. [Bird et al., 1960].

In the following, x = [x, y, z]T is the position, t is the time, v(x, t) = [vx(x, t), vy(x, t), vz(x, t)]T is
the flow velocity1, p(x, t) the pressure, ρ the density, g the gravitational acceleration, µ the viscosity and
ν = µ/ρ the kinematic viscosity. We assume that the density and the temperature are constant throughout
the flow. The Navier-Stokes equations and the continuity equation for incompressible, isothermal flow are

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p + ν∇2v + g +

1

ρ
F , (2.2)

∇ · v = 0 . (2.3)

Equation (2.2) describes the temporal change of the velocity field due to inertia, pressure, viscous, gravi-
tational and external forces, with the corresponding terms read from left to right. F is a body force term
(force per unit volume) containing external forces as e.g. a periodic forcing in a grid-stirred tank or in flows
driven electromagnetically by periodic magnetic fields. Since in the type of flow studied in this work (open-
channel flow, see section 2.5), gravity and pressure gradients are the only driving forces , we set F = 0 in
the following. Together with appropriate boundary conditions, equations (2.2) and (2.3) are a set of four
coupled non-linear partial differential equations for the four unknown variables v(x, t) and p(x, t).

2.2.2 Nondimensional parameters

Depending on the relative strength of inertial and viscous forces, the Navier-Stokes equations may be sim-
plified, which results in two particular types of fluid flow, see section 2.2.3. A non-dimensional parameter
that characterizes this proportion is the Reynolds number Re. If a typical velocity scale V0 and a typical
length scale L0 are introduced for a given flow, the corresponding Reynolds number is

Re =
V0L0

ν
. (2.4)

The Reynolds number is a measure of the relative strength of inertia and viscous forces. This can be seen
from an estimation of the corresponding terms of (2.2) using the introduced scales: v·∇v ∼ V 2

0 /L0, ν∇2v ∼
νV0/L0

2. The ratio of these two terms is the Reynolds number. Introducing non-dimensional quantities
ṽ = v/V0, x̃ = x/L0, t̃ = tV0/L0, and p̃ = p/(ρV0

2), the non-dimensional Navier-Stokes equations read

∂ṽ

∂t̃
+ (ṽ · ∇̃)ṽ = −∇̃p̃ +

1

Re
∇̃2ṽ +

1

Fr
g/g , (2.5)

1Sometimes the equivalent notations v = [v1, v2, v3]
T or v = [u, v, w]T are more appropriate. We use these notations

interchangeably in this chapter.
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2.2 Flow of fluids 15

∇̃ · ṽ = 0 , (2.6)

where
Fr = V0

2/(L0g) (2.7)

is the Froude number that quantifies the relative importance of inertia and gravity forces. The Froude
number is sometimes also defined as Fr2 = V0√

gh
, where h is the water depth. In this case, the Froude

number is the ratio of the flow velocity to the speed of shallow water waves. The influence of gravity forces
is decreasing with increasing Froude numbers. If the Froude number Fr2 is smaller than one, the flow is
called subcritical, otherwise it is called supercritical.

2.2.3 Basic types of flow

We briefly look at some important particular types of flow: viscous flow, inviscid flow and potential flow.
For these flows, the Navier-Stokes equations may be simplified, based on the assumption of very small/large
Reynolds numbers or zero vorticity. Obviously, such assumptions are not strictly valid for real flows, so
the resulting ideal flows can only approximate real flows to some degree. Nevertheless, these concepts are
also important in practical applications, since most real flows can be partitioned into areas of viscid and
inviscid flow, separated by a so-called boundary layer. A similar separation is possible between rotational
and irrotational flow areas. The concept of a boundary layer is discussed at the end of this section.

Viscous flow: Re << 1.

If the Reynolds number is small, viscous forces are dominating, resulting in a quite regular, steady flow
(laminar flow). In this case, the inertia term in (2.2) may be dropped. The resulting equations are the
(time-dependent) Stokes equations describing the slow flow of a viscous fluid (’creeping flow’):

∂v

∂t
= −1

ρ
∇p + ν∇2v + g. (2.8)

If in addition the flow is stationary, we have

0 = −1

ρ
∇p + ν∇2v + g. (2.9)

Equation (2.9) is also referred to as the Stokes equation. It is widely applied to describe slow flow through
porous media [Sahimi, 1995].

Inviscid flow: Re >> 1.

In the limit of very large Reynolds number, the viscous term in (2.2) can be neglected (see (2.5)). The
resulting flow is called inviscid flow or Euler flow, governed by the Euler equation:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p + g. (2.10)

Since viscosity is assumed to be zero, fluid undergoing Euler flow cannot sustain shear stress. Therefore, the
pressure within it is isotropic everywhere. In steady flows, the relation between the pressure and the fluid
velocity is given by Bernoulli’s theorem, which states that

p

ρ
+

1

2
v2 = const. (2.11)
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16 2 Hydrodynamic background

along a line of flow. If in addition the flow is irrotational, the constant is the same for all lines of flow.
Bernoulli’s theorem is basically an expression of the conservation of energy in inviscid, incompressible,
steady flows.

Potential flow, vorticity and Kelvin’s theorem.

Potential flows are flows where the vorticity

Ω = ∇× v (2.12)

is zero everywhere throughout the flow. Since vorticity is associated with local rotation of the fluid, potential
flows are also called irrotational. Because of their defining property, potential flow fields may be derived
from a scalar flow potential φ by

v = ±∇φ (2.13)

If the flow is also incompressible (∇ · v = 0), the potential satisfies the Laplace equation

∇2φ = 0. (2.14)

Scalar potentials that are solutions of the Laplace equation have been used for a long time to describe static
magnetic fields in free space, hence many analytical and numerical methods are known to solve the Laplace
equation subject to given boundary conditions. These methods can also be used to solve corresponding
problems in fluid dynamics [Faber, 1995]. For example, Koenders et al. [2000] and Vollmer et al. [2002]
use flow potentials to describe the flow within a gravel filter layer. Note that the theory of potential flow
may be applied to both viscous and inviscid fluids. The only conditions that must be valid are zero vorticity
∇× v = 0 and incompressibility ∇ · v = 0. In this case, the viscous term in the Navier-Stokes equation is
also zero, since ∇× (∇× v) = ∇ (∇ · v) −∇2v.

If the vorticity is zero in a fluid of zero viscosity at one particular instant of time, then Kelvin’s circu-
lation theorem states that the fluid remains free of vorticity at all later times, both in steady and unsteady
flows. For a proof of this theorem, which is valid for both incompressible and compressible flows, see e.g.
[Faber, 1995]. The theorem is of rather theoretical importance, since there are many practical applications
that violate it, for example the flow around an airfoil. The latter is steady in the beginning and becomes
turbulent as the flow velocity is increased. The reason is that Kelvin’s theorem does not take into account
the effects that are caused by the boundaries of the fluid. In any practical application, fluids are bounded
by solid walls or the flow is around some solid bodies. The flow within a permeable wall is a combination
of both. The next subsection shows that in such boundary layers that develop along fluid-solid interfaces,
viscosity may not be neglected and thus the assumption of potential flow breaks down.

Fluid-solid interfaces and boundary layers.

The so-called no-slip boundary condition states that where fluids meet solids, both must move at the same
velocity, i.e. there can be no slip between them [Faber, 1995]. It has been verified in many experiments. In
the case of flow along a solid, stationary boundary, as e.g. open-channel flow over a smooth wall, the no-slip
boundary condition requires the flow velocity to drop to zero at the wall. Hence, there must be a near-wall
region in the fluid where it is retarded and the flow velocity becomes small, so that viscous effects become
important. This idea was first formulated by Prandtl [Schlichting and Gersten, 1997], who introduced the
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2.3 Description of fluid flow fields 17

notion of a boundary layer: in a potential flow over a solid surface, vorticity is created within a boundary
layer next to the surface. In flows around solid obstacles, the boundary layer may separate from the obstacle
(flow separation), and the vorticity generated in the boundary layer gets swept downstream in the wake
created by the obstacle. Flow separation behind obstacles is one source of turbulent velocity and pressure
fluctuations in an open-channel flow over a rough wall, where roughness elements (e.g. larger stones) create
wakes downstream of them [Dittrich, 1997].

2.3 Description of fluid flow fields

The motion fields of flowing liquids may be described mathematically in two different ways. The first and
most common way is to regard the physical variables describing the state of the liquid (velocity v, pressure
p, density ρ and temperature T ) as functions of a 3-D coordinate vector x and time t. The resulting flow
field is the Eulerian flow field ve:

ve = v(x, t). (2.15)

The most common experimental approaches to flow measurement, Particle Image Velocimetry (see sec-
tion 3.2) and Laser Doppler Anemometry (see e.g. [Lading et al., 1994]), provide velocity information
within a fixed reference frame in space resp. at a fixed position in space and thus yield Eulerian flow ve-
locities. In a Eulerian flow field, a streamline is defined as a line that is tangential to the flow vectors at a
fixed time. Thus, if a streamline x(s, t = t0) is parameterized by the parameter s at a fixed time t = t0, it is
defined by the equation

dx

ds
= ve(x(s), t = t0). (2.16)

The second way to describe a flow field identifies a particular fluid element (a ’fluid particle’) at position
x0 = x(t = t0) and time t0 and follows this particle along its flow trajectory. In this case, flow velocities are
given as time derivatives of the particle positions xl = x(x0, t− t0), which corresponds to the Lagrangian
flow field vl:

vl = v(x0, t − t0) =
∂

∂t
x(x0, t − t0). (2.17)

A Lagrangian flow trajectory (a pathline) x(t) is a solution of the differential equation

dx

dt
= ve(x(t), t). (2.18)

Note the difference between streamlines (2.16) (’snapshot’ of the flow field, t fixed) and pathlines (2.18)
(time-dependent particle trajectories).

2.4 Turbulence

For higher Reynolds numbers, the smoothing influence of viscosity becomes weaker. At some critical
Reynolds number depending on the flow under consideration, a transition to another flow regime takes place,
which is unsteady and highly random in space and time: turbulent flow. Almost all geophysical flows as
well as flows occuring in hydraulic engineering are turbulent. Turbulent flows have extremely complex
spatio-temporal dynamics, with many motion patterns on a wide range of scales (vortices, ’eddies’) super-
imposed on each other and interacting. The reason for this rich structure is that at high Reynolds numbers
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Figure 2.1: a Idealized shear flow profile with discontinuity surface. b Disturbed discontinuity surface. +/- signs
indicate high/low pressure.

the nonlinear inertial terms dominate the Navier-Stokes equations (see (2.5)). The nonlinearity leads to
different kinds of instabilities and a coupling of flow structures on different scales. Due to its complexity,
fluid turbulence has been and still is the subject of extensive research [Hinze, 1975; Townsend, 1976; Frisch,
1995]. In this section, some important aspects of fluid turbulence are reviewed. Parts of the following
sections are taken from [Klar, 2001].

2.4.1 Shear flow instability and transition to turbulence

In principle, for stationary boundary conditions, exact steady solutions of the Navier-Stokes equations
should exist for arbitrary Reynolds numbers [Landau and Lifschitz, 1991]. But the formal mathematical
existence is not sufficient for these solutions to appear in nature. A further necessary condition is that the
solutions have to be stable against small perturbations, which are always present in real flows. If such per-
turbations grow in amplitude, the flow is unstable, and transition to another flow regime occurs, which may
again be unstable. Hence, a series of transitions may take place, finally resulting in fully developed fluid
turbulence, i.e. a turbulent flow field containing the full range of eddy scales with random behaviour in
time and space. The different instability stages are connected to critical Reynolds numbers which are highly
dependent on the details of the flow (initial and boundary conditions, geometry, surface roughness, level of
preexisting disturbances in the flow). A well-known example of such a series of transitions is the ’Karman
vortex street’, which develops due to flow separation in the flow around an obstacle. With increasing flow
velocity, several transitions occur: from laminar, stationary flow to quasi-periodic flow, intermittent flow
with turbulent spots and finally fully turbulent flow [Merzkirch, 1987].

There is a number of hydrodynamical instability mechanisms that occur in different physical flow sit-
uations. Important in the present context is the instability of shear flows, the so-called Kelvin-Helmholtz
instability. A shear flow is a flow in which the velocity varies principally in a direction at right angles to
the flow direction, like e.g. open-channel flow. The Kelvin-Helmholtz instability may be explained using an
idealized example of a flow with a finite discontinuity in the velocity profile [Tritton, 1977]. Such a flow is
shown in figure 2.1a in the reference frame where the two velocities are equal and opposite.

We now suppose that a wavy disturbance is imposed on the discontinuity surface separating the opposed
velocities, figure 2.1b. This means that the fluid on the convex sides (A,C) will move slightly faster than
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2.4 Turbulence 19

on the concave sides (B,D). The indicated pressure changes follow from Bernoulli’s equation (2.11), i.e. a
pressure decrease where the fluid moves faster and vice versa. Thus, the disturbances will be amplified by
the pressure forces. The flow is unstable.

A discontinuity surface is also referred to as a vortex sheet [Faber, 1995], because the vorticity Ω is
infinite on such surfaces. Of course, in reality, vortex sheets do not exist. Discontinuities are smoothed by
viscosity, and vortex sheets become rather vortex layers or shear layers. Nevertheless, the above consid-
erations deliver insight into the basic mechanisms. For example, boundary layers separating from smooth
walls or from single grains of a rough gravel surface are examples of vortex layers.

A more precise mathematical treatment shows, that instability is coupled to the existence of an inflec-
tional point in the velocity profile, see e.g. [Kundu, 1990]. Recent numerical research by Breugem [2004]
suggests that turbulence near a (highly) permeable wall is dominated by vortical structures that originate
possibly from a Kelvin-Helmholtz instability of the inflexional mean velocity profile.

2.4.2 Statistical approach

The irregularity and complexity of turbulent motion makes it impossible to describe turbulent flows in terms
of their instantaneous and local flow and pressure fields resp. functions thereof. Both theoretically and
experimentally, it is only practicable to consider mean values of functions of the instantaneous and local
values of velocity and pressure. Hence, a statistical approach is necessary.

The statistical description of turbulence starts with the so-called Reynolds decomposition of the pres-
sure and velocity fields into mean values and fluctuating parts:

p = p̄ + p′, u = ū + u′, v = v̄ + v′, w = w̄ + w′ , (2.19)

where the bar indicates temporal average values and the primed quantities are the fluctuations. In this
context, it is more convenient to use suffix notation for vectors, therefore the velocity is written as v =

[u, v, w]T = [v1, v2, v3]
T in the rest of this section.

In general, the mean values are ensemble averages, i.e. they are calculated by averaging over a large
enough number of identical experiments. If the mean values are not time-dependent, i.e. for stationary
statistical processes, the ensemble average may be replaced by a time average. Since in stationary open-
channel flow ergodicity may also be assumed in the streamwise and spanwise direction, the averaging may
also be carried out spatially over horizontal planes. This corresponds to the so-called double-averaging of
the Navier-Stokes equations that is frequently applied in investigations of open-channel flow [Koll, 2002].

By substituting (2.19) into the continuity and Navier-Stokes equations, again carrying out the averaging
process, and keeping in mind that, by definition, ū′ = v̄′ = w̄′ = p̄′ = 0, one ends up with the Reynolds
equations for a turbulent flow:

v̄j
∂v̄i

∂xj
= −1

ρ

∂p̄

∂xi
+ ν

∂2v̄i

∂x2
j

− ∂

∂xj
(vi

′vj
′) . (2.20)

These equations differ from the Navier-Stokes equations (2.2) in the last term on the right handside, which
is the gradient of the so-called Reynolds stress tensor

τij = −ρ(vi
′vj

′) . (2.21)
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20 2 Hydrodynamic background

This tensor contains additional stresses exerted on the mean flow, and the gradient of this tensor represents
additional accelerations of the fluid as compared to laminar flow. The origin of the Reynolds stresses is
turbulence. Mathematically, the stresses are correlations of the fluctuating velocity components.

The diagonal elements of the Reynolds stress tensor are used to indicate the degree of turbulence of the
flow. The square roots of these elements divided by the density, i.e. basically the standard deviations of the
mean velocities, are called the turbulence intensities vrms,i (’root-mean-square’ velocities).

The Reynolds stresses work against the mean velocity gradient and therefore transfer energy from the
mean flow to the fluctuating field. They produce the turbulent kinetic energy maintaining the turbulent eddy
motions. The eddies are steadily transferred to smaller and smaller scales (eddy cascade), and finally their
energy is dissipated into heat by viscous forces, e.g. [Frisch, 1995].

2.5 Open-channel flow

In this section, some important features of open-channel flows are reviewed. More details can be found in
[Nezu and Nakagawa, 1993].

2.5.1 Basic equations and parameters

Coordinate system.

The following coordinate system will be used. The origin in cross-stream direction is in the middle of the
channel, the vertical zero-level is on the top of the gravel layer.

coordinate velocity component direction

x u streamwise, pointing in flow direction

y v vertical, pointing upwards

z w spanwise, pointing to the right

2-D open-channel flow.

Open-channel flow can be considered two-dimensional, i.e. ∂
∂z = 0, if the ratio of channel width B to flow

depth h exceeds a certain threshold αc. Nezu and Nakagawa [1993] classify open-channel flows into two
categories:

narrow open channels: B/h ≤ αc

wide open channels: B/h > αc

with αc ≈ 5 or slightly larger. In narrow open channels, side-wall and free-surface effects generate sec-
ondary currents, whereas in wide open channels, these effects can be neglected in most cases (at least in the
central zone of the channel).

The following considerations are valid for a 2-D flow in a wide open channel. Further, v̄ = w̄ = 0 is
assumed, and the mean velocity ū is taken as a function of the vertical coordinate only: ū = ū(y).
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2.5 Open-channel flow 21

The logarithmic wall law.

The logarithmic wall law describes the vertical distribution of the mean velocity in the wall region (y/h ≤
0.2) of open-channel flow. It can be derived from the Reynolds equations using some further assumptions
(a turbulence model), e.g. [Nezu and Nakagawa, 1993]. Landau and Lifschitz [1991] give a very concise
derivation using simple physical arguments and dimensional analysis:
Open-channel flow is a quasi-steady turbulent shear flow, which means that

• the mean flow quantities are independent of time,

• the Reynolds number is high, thus viscosity may be neglected, except for a very thin layer near the
wall (the viscous sublayer),

• there is a velocity gradient dū/dy in the vertical direction.

The velocity gradient causes a momentum flow through the fluid in the vertical direction. This momentum
flow is equivalent to a friction force per unit area acting on the wall, the so-called wall or bed shear stress
τ0, see also section 2.1.

We are looking for a relation between the wall shear stress τ0 and its cause, the velocity gradient.
The only possible quantities that can enter this relation are the density ρ, the wall shear stress τ0 and the
vertical distance y (since viscosity is neglected). There is only one combination of these quantities with the
dimension of a velocity gradient, namely

√
τ0/ρ/y. Therefore, a relation of the form

dū

dy
=

1

κ

√
τ0/ρ

y
, (2.22)

must hold, where κ is a dimensionless constant, the so-called von Karman constant. The quantity
√

τ0/ρ

is defined as the friction velocity or shear velocity u∗:

u∗ =
√

τ0/ρ . (2.23)

The shear velocity is a measure for the typical velocity scales in the wall region of open-channel flow. The
von Karman constant has to be determined experimentally and was found to be

κ = 0.4 . (2.24)

Integration of (2.22) yields the logarithmic wall law

ū =
1

κ
u∗(ln(y) + c) , (2.25)

where c is an integration constant. The determination of this integration constant requires some further
physical reasoning. One of the prerequisites of the derivation so far was the disregard of viscosity. This
is a valid assumption for the major area of the flow field, except for a thin layer near the wall, the so-
called viscous sublayer. In this layer of thickness ∼ y0, viscosity plays a dominant role and cannot be
neglected. The flow field in this layer is not dominated by Reynolds stresses but by viscous stresses. Thus,
the logarithmic wall law is not valid for y ≤ y0. Instead, at y ∼ y0 it has to be matched to a different
equation describing the velocity profile in the viscous sublayer.
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22 2 Hydrodynamic background

The magnitude of y0 may be determined in the following way. In the viscous sublayer, the characteristic
length scale is ∼ y0, and the characteristic velocity scale is ∼ u∗. Thus, the Reynolds number governing the
flow at these scales is Resublayer ∼ y0u∗/ν. As explained in section 2.2.3, viscosity becomes important for
Reynolds numbers of the order of unity and smaller. Therefore, from Resublayer ∼ 1 one can determine the
size of y0:

y0 ∼ ν

u∗
. (2.26)

y0 is called the inner length scale or viscous wall unit, in contrast to the outer length scale, which is of
the order of the flow depth.

The integration constant c has to be chosen in such a way that ū ∼ u∗ for y ∼ y0, which yields
c = −ln(y0). By introducing the dimensionless vertical coordinate (normalized by the inner length)

y+ =
y

ν/u∗
, (2.27)

the logarithmic wall law may be re-written as

ū

u∗
=

1

κ
ln(y+) . (2.28)

Experimental results have shown that the logarithmic wall law yields a more precise description of measure-
ment data if empirical constants are added [Nezu and Nakagawa, 1993], e.g.

ū

u∗
=

1

κ
ln(y+) + 5.1 . (2.29)

The vertical shear stress profile in turbulent open-channel flow can be derived from the Reynolds
equations (2.20) and reads

τ(y)

ρ
=

τ0

ρ

(
1 − y

h

)
= u2

∗
(
1 − y

h

)
= ν

dū

dy
− u′v′. (2.30)

The details of this derivation can be found e.g. in [Koll, 2002]. The first term on the right handside is the
viscous shear stress τvis,

τvis/ρ = ν
dū

dy
, (2.31)

compare section 2.1. The second term is the turbulent shear stress τturb, compare (2.21). The so-called
’closure problem’ in turbulence modeling is to find a relation between the turbulent shear stresses and the
mean flow velocities. A simple approach (the so-called hypothesis of Boussinesq [Schlichting and Gersten,
1997]) is to relate the turbulent shear stress to the gradient of the mean flow in the same way as in the viscous
case (2.31):

τturb/ρ = νturb
dū

dy
. (2.32)

In (2.32), νturb is the so-called eddy viscosity or Boussinesq viscosity. A basic problem of turbulence mod-
eling is now the modeling of νturb [Rodi, 1993], in particular within porous media, compare section 2.7.2
and [Shimizu et al., 1990; Hoffmans et al., 2000; Lesage et al., 2004].
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2.5 Open-channel flow 23

Figure 2.2: Classification of flows by their hydraulic roughness. The images (from left to right) correspond to hy-
draulically smooth, transitional and fully rough beds. The viscous sublayer is indicated by straight lines. From
[Bollrich, 1996].

2.5.2 Influence of rough walls

All relations discussed so far have been derived for smooth open channels. However, most of them can
also be used in a modified form for flows over rough surfaces. To establish the necessary modifications,
one has to find a suitable parameter to represent the size of the roughness elements. Further, it is no longer
clear where the zero-level of the vertical velocity profile (y = 0) is located. One has to apply some method
of calculating a theoretical zero-level, which provides the best fit to experimental data. Most researchers
find that the zero-level has to be shifted downwards from the top of the roughness elements by a value of
y′ ≈ (0.15 − 0.3)k, where k is the height of the roughness elements [Nezu and Nakagawa, 1993; Dittrich,
1997].

Characterization of roughness.

Different parameters for roughness characterization can be found in the hydraulic engineering literature. The
simplest one is the absolute height of the roughness elements k. The so-called equivalent sand roughness
ks is also frequently used. It was introduced in pipe flow experiments by Nikuradse [1933]. For rough beds
consisting of one layer of closely-packed uniform sand grains, the equivalent sand roughness is equal to the
absolute roughness height of the sand grains. For different roughness configurations, ks has to be determined
empirically or calculated theoretically, e.g. using the method described below. In contrast to the absolute
roughness height k, which is a geometric quantity, the equivalent sand roughness reflects the influence of
the roughness elements on the flow. This influence depends not only on the geometric roughness height, but
also on the density, shape and surface properties of the roughness elements.

Flows over rough beds are further characterized by the so-called roughness Reynolds number, which
is a measure of the hydraulic roughness of a flow over a rough surface. It is defined as

Re∗ =
ku∗
ν

=
k

y0
, (2.33)

which is the ratio of the absolute roughness height to the thickness of the viscous sublayer. Two important
cases can be distinguished, see also figure 2.2:

1. Hydraulically smooth beds (Re∗ ≤ 5). In this case, the viscous sublayer is thick as compared to the
roughness height. All roughness elements are within the viscous sublayer. Thus, roughness is not
significant.
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24 2 Hydrodynamic background

2. Completely rough beds (Re∗ ≥ 70). In this case, the viscous sublayer is very thin and roughness
effects are dominant. This case is relevant for almost all natural rivers and waterways.

For completely rough beds, the logarithmic wall law (2.29) has to be modified in the following way. Since
the viscous sublayer does not exist any more, the length scale y0 cannot be used to normalize the wall
distance. Instead of y0 = ν/u∗, for example y0 = γk has to be introduced, since the length scale is now
given by k (the viscous sublayer is replaced by the so-called roughness sublayer, [Dittrich, 1997]). Then
the logarithmic wall law is

ū

u∗
=

1

κ
ln(

y

k
) + B , (2.34)

where the constant B (which is a function of the roughness Reynolds number) has to be determined from
the best fit of experimental data.

In his experiments, Nikuradse [1933] found the following modified logarithmic wall law for completely
rough beds (Re∗ ≥ 70):

ū

u∗
=

1

κ
ln(

y

ks
) + 8.5 . (2.35)

Note that this version of the logarithmic wall law (i.e. B = 8.5) is only valid if the vertical distance is
normalized by ks, not by k, and in general k 6= ks.

Determination of u∗, ks and y′.

Since the shift of the zero-level y′, the equivalent sand roughness ks, and the friction velocity u∗ are not
known for a given flow over a natural rough surface, e.g. a gravel layer, these parameters have to be
determined from the experimental velocity data and the geometric roughness height k. Dittrich [1997] gives
the following method.

First, the zero-level of the logarithmic wall law is assumed to be at the top of the roughness elements.
According to equation (2.34), a linear regression of the velocity ū against the natural logarithm ln((y +

y′)/k) is calculated. The best fit yields the value of y′. The friction velocity can then be calculated from
the slope of the regression line. The constant B of (2.34) is determined from the y-axis intercept of the
regression line and u∗. Subtracting (2.34) and (2.35) yields the relation

1

κ
ln(

ks

k
) = 8.5 − B . (2.36)

Finally, the value of ks/k resp. ks is calculated from (2.36). Typical values for the ratio ks/k are in the range
of 0.5 to 4, depending on the roughness geometry (shape and density of the roughness elements) [Dittrich,
1997].

The details of the influence of wall roughness and permeability on the structure of near-wall turbulence
and hence on the parameters of the logarithmic wall law are still subject of active research, see e.g. [Koll,
2002; Breugem, 2004].

2.5.3 Coherent structures

At the end of the 1960s, coherent structures like the bursting phenomenon have been discovered in
turbulent boundary layers [Kline et al., 1967]. Unlike motions in homogeneous, isotropic turbulence, these
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2.5 Open-channel flow 25

Figure 2.3: Model of coherent burst event according to [Kline et al., 1967].

vortex structures are not completely disorganized but appear quasi-periodically in space and time and exhibit
a remarkable degree of coherence. It was found that such coherent motions dominate the production of
turbulent kinetic energy in both smooth and rough [Grass, 1971] open-channel flows, i.e. the major part
of the turbulent shear stress is accounted for by bursting motions. These motions are responsible for the
transport of mass, momentum and heat across the boundary layer.

The presence of organized structures in the turbulent boundary layers near the walls of open-channel
flows is confirmed by a large number of experimental and numerical studies carried out in the past three
decades, e.g. [Kline et al., 1967; Corino and Brodkey, 1969; Grass, 1971; Grass et al., 1991; Robinson,
1991; Nezu and Nakagawa, 1993; Dittrich et al., 1996; Stoesser et al., 2003]. We briefly discuss two different
conceptual models of burst motions. Many more have been proposed in the literature, see e.g. [Nezu and
Nakagawa, 1993].

Burst events in boundary layers according to Kline.

Coherent structures in near-wall shear flow turbulence over a smooth surface have been reported first by
Kline et al. [1967]. It was found that there exist surprisingly well-organized spatially and temporally depen-
dent motions within the viscous sublayer (y+ <' 5). In particular, a quasi-periodic pattern of low-speed and
high-speed streaks next to the wall has been found, i.e. the streamwise velocity changes quasi-periodically
along a spanwise cross-section of the flow. The following series of events, which has later been summarized
as a burst event, could be identified as the main source of turbulence production in open-channel flows:

• The low-speed streaks start to lift up randomly in space and time.
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26 2 Hydrodynamic background

Figure 2.4: Model of coherent burst event according to [Yalin, 1992].

• At y+ ' 8 − 12 they start to oscillate.

• At 10 < y+ < 30 the oscillating streaks suddenly break up due to local, short-duration dynamic
instability of the instantaneous velocity profile near the wall.

The streak breakup results in a violent ejection of low-speed fluid from the viscous sublayer into the log-
arithmic region. For the reason of continuity, the ejections are followed by an inrush of high-speed fluid
from the logarithmic region into the viscous sublayer, which is also called a sweep. The series of ejection
and sweep events is called a burst event. Figure 2.3 shows a model of such a bursting motion according to
[Kline et al., 1967].

Burst events in rivers according to Yalin.

Yalin [1992] gives a somewhat different picture of a burst event. While the burst events as sketched by Kline
et al. [1967] are rather microscopic (taking place in a layer up to about y+ = 100, which corresponds to a
physical distance to the wall of a few millimeters), Yalin [1992] describes a macroscopic effect and refers
to it as ’burst’, see figure 2.4:

• Small-scale eddies e are produced near the bed, caused by the large velocity gradients which are
present in this area. The eddy e moves downstream along the path s and is growing in size (figure 2.4a).
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2.5 Open-channel flow 27

• Because e is moving upwards and rotating at the same time, two further rotational movements e’ and
e” are generated. The eddies e’ and e” in turn produce an ejection at the point m (figure 2.4b).

• Because e is further ascending, e” is swept away by the pressure of faster fluid elements moving from
the central part of the flow field towards the bed. The eddy e’ is finally neutralizing this ’sweep’
motion by its counter-rotating movement (figure 2.4c).

This series of events may be termed ’coherent’, because the origin of all successive processes of the series is
the eddy e, and there is a definite phase relationship between the single processes. The eddy e grows further
in size until it is reflected at the water surface. Then it breaks up into smaller and smaller eddies, the energy
of which is finally turned into heat by viscous forces (eddy cascade).

Relation between small-scale bursts and large-scale vortical motions.

Different researchers conjecture, that macroscopic eddies similar to those described by Yalin [1992] are
somehow linked to the small-scale bursts as described by Kline et al. [1967]. The details of these relations
are still the subject of research. For example, there is a debate whether the large-scale vortices develop from
the small-scale near-bed structures or whether the latter are triggered by the large-scale motions [Nezu and
Nakagawa, 1993].

Adrian et al. [2000] study the structure of energy-containing turbulence in the outer region of a turbulent
boundary layer by analysis of spatially high-resolved photographic PIV images obtained in wind tunnel
experiments. They show that the turbulent boundary layer is densely populated by velocity fields associated
with hairpin vortices (see figure 2.3). In the outer region of the flow, hairpin vortices occur in streamwise-
aligned packets. The authors show how many features of turbulent boundary layers, e.g. bursts, can be
explained in terms of hairpin vortices or coherent packets of hairpin vortices. Flow patterns that agree with
the conceptual models of Adrian et al. [2000] have also been observed by Detert et al. [2005] in 1-D Acoustic
Doppler Profiler Measurements from the flume experiments presented here.

Liu et al. [2001] carry out an analysis of 2-D PIV data of turbulent channel flow to investigate the scale
and pattern of the eddies that contribute most to the total turbulent kinetic energy and the Reynolds shear
stress. Their flow has a Reynolds number based on the channel half-height of ≈ 30000. They show that
large-scale motions (with length scales of the order of the channel width) dominate turbulent transport in all
parts of the channel except the buffer layer. These large eddies also contain a significant fraction (50% and
more) of the total Reynolds shear stress. Flow patterns are extracted by proper orthogonal decomposition of
the PIV vector fields. They are very similar to the well-known coherent structures in the near-wall boundary
layer (hairpin or horseshoe vortices), which generate the typical sequence of sweeps (fourth-quadrant Q4
events) and ejections (second-quadrant Q2 events).

Shvidchenko and Pender [2001] study the macroturbulent structure of open-channel flow over gravel
beds and find that the turbulent motion consists of large-scale eddies with a length about 4 to 5 times their
height. The eddies originate in the outer flow. Similar observations have been made recently by Roy et al.
[2004] in field studies in a natural gravel-bed river. They present a detailed investigation of the size, scale
and dynamics of macroturbulent flow structures and conclude that the latter occupy the entire depth of the
flow and scale with the flow depth. By flow visualization they study the dynamics and show how large-scale
flow structures can generate intense near-bed turbulence.
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28 2 Hydrodynamic background

2.5.4 Turbulence over rough beds

Grass [1971] and Grass et al. [1991] have found that the bursting motions as described in section 2.5.3 can
also be found in open-channel turbulence over rough surfaces. The main difference is that there is no viscous
sublayer in fully rough flows. Instead of the viscous sublayer, a retarded fluid layer forms due to penetration
of the roughness elements into the turbulent flow field [Nezu and Nakagawa, 1993], the so-called roughness
sublayer [Dittrich, 1997]. Turbulence in rough open channels is produced mainly in the roughness sublayer
as a result of a complex interplay of two different phenomena:

• Coherent structures, i.e the bursting motions, are responsible for large fluctuations of velocity and
pressure and therefore for turbulence production.

• Shear layers separating from single grains and penetrating into the flow field produce turbulent wakes
downstream of the roughness elements. These wakes typically contain high-frequency velocity fluc-
tuations due to eddy motions.

Further research has to be done in order to quantify the relative importance of these different turbulent
structures in the context of river bed destabilization.

2.6 Flow in porous media

Flow through porous media is the subject of many textbooks, e.g. [Scheidegger, 1974; Bear, 1988; Dullien,
1992; Sahimi, 1995]. Most of these treatments are limited to steady viscous flow at small Reynolds numbers
(Re << 1, Stokes flow). In this flow regime, it is possible to find analytical solutions to the Stokes equations
(2.9), e.g. for boundary conditions given by a periodic array of cylinders [James and Davis, 2001]. Clearly,
this situation is not applicable to most of the investigations in this thesis, where Reynolds numbers based
on the grain diameter and the bed shear velocity usually are of the order of magnitude of 100 to 1000.
However, in some of the experiments, Reynolds numbers based on the effective pore diameter (which is
smaller than the grain diameter) and the volume-averaged velocity in the gravel layer (which is smaller than
the bed shear velocity) are of the order of unity. In any case, the mathematical analysis of slow flow through
porous media provides an instructive starting point for a theoretical investigation. A number of more or less
empirical modifications of the theory for slow flow through porous media have been developed to extend the
description towards higher Reynolds numbers, so-called phenomenological flow models. The Forchheimer
equation described below is an important example in the context of flow through a gravel layer.

In this section, the defining parameters of a porous medium are introduced, followed by a review of
the basic equations governing flow through porous media. We focus on unconsolidated porous media, i.e.
random or regular packings of particles. A more detailed discussion of flow and transport in unconsolidated
porous media is given e.g. in chapter 13 of [Sahimi, 1995].

2.6.1 Basic equations and parameters

In principle, flows in porous media are also governed by the incompressible Navier-Stokes equations (2.2)
and (2.3). The basic difficulty in the analysis of pore flows (regardless if the approach is experimental,
theoretical or numerical) stems from the geometric complexity of the flow domain. A porous medium
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can be considered as a random system of separate pore volumes, which are more or less interconnected by
smaller and narrower tube-like structures. An exact description of such a system, e.g. to prescribe exact
boundary conditions in a numerical simulation, is not feasible. Thus, a first approach is to neglect the
detailed microscopic structure by introducing volume-averaged quantities. The averaging is carried out
over a spatial volume that is much larger than a single pore, but smaller than the overall domain where flow is
described. In this way, macroscopic (’bulk’) properties of the porous medium are derived. An important line
of research on porous media is to find the correct relation between this large-scale macroscopic description
and the microscopic structure on different scales [Cushman, 1990].

Geometry and length scales.

The geometry of a porous medium is related to the type of material and its arrangement in space. It is an
important factor that influences the bulk properties and the flow through the medium. For example, fractured
rock (a consolidated porous medium) has a geometry that is quite different from a loose packing of regular
spheres (an unconsolidated porous medium), which in turn is different from a regular array of cubes. Regular
arrays of uniform spheres or cubes are commonly used in numerical simulations, e.g. [Stoesser et al., 2004].
In theoretical studies, different arrangements of cylinders are often used as a model for a fibrous porous
medium [James and Davis, 2001].

A gravel layer (or ’filter layer’ in the context of hydraulic and geotechnical engineering) is a further
example of an unconsolidated porous medium. Since size and shape of the gravels are not uniform, it is
characterized by a grain size distribution. Usually, the mean grain diameter dmD and different uniformity
measures (e.g. the ratio d60/d10, where d60 is the mean diameter of the grains at 60% sieve fraction) are
used to describe the material.

The definition of appropriate length and velocity scales in a porous medium is not trivial. To cite
Dullien [1992], the notion of a mean pore diameter or grain diameter is ’an intuitive simplification of reality
owing to the irregular variations of pore geometry’. Nevertheless, the mean grain diameter or mean pore
diameter are frequently used to characterize a porous medium. Different formulas exist to relate the pore
diameter to the grain diameter, see [Dullien, 1992]. In general, the pore diameter is smaller than the grain
diameter, depending on the porosity. A third length scale describing a porous medium may be introduced as
the square root of its permeability, see below. The latter is called the effective pore diameter.

Porosity.

The porosity φ of a porous medium is defined as the void fraction of the total volume,

φ =
Vtotal − Vsolid

Vtotal
=

Vvoid

Vtotal
, (2.37)

whereas the packing density η is defined as the solid fraction of the total volume,

η =
Vtotal − Vvoid

Vtotal
=

Vsolid

Vtotal
. (2.38)

Thus, both quantities are related by φ + η = 1. Typical values of porosity for natural materials cover a
wide range, from ≈ 0.01 for solid granite to > 0.5 for clay and peat. The porosity of the gravel layer in
the experiments described in chapter 10 is 0.38 [Daebel, 2001]. Hence, the solid fraction is 0.62, which is
between the packing density of a hexagonal lattice of regular spheres (η = 0.6046) and the packing density
of a random arrangement of regular spheres (η = 0.64 [Jaeger and Nagel, 1992]).
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Characteristic velocities.

Akin to the definition of characteristic length scales, different characteristic velocities in a porous medium
have to be distinguished.

The first is the so-called superficial velocity vf , which is also called the Darcy velocity or the filter
velocity. The superficial velocity is the volume-averaged velocity in a porous medium, where the averaging
includes the solid phase (where the velocity is zero). The superficial velocity is equal to the flow rate per
unit cross-sectional area.

The second characteristic velocity is the intrinsic velocity vi, which is obtained as an average only over
the fluid phase. Hence, superficial and intrinsic velocity are related by vf = φvi.

Hydraulic conductivity, permeability and Darcy’s law.

Darcy’s law relates the superficial velocity vf to the gradient of the volume-averaged pressure:

∇〈p〉 = −µ

κ
vf . (2.39)

Equation (2.39) has been derived empirically by Henry Darcy in 1855, but also follows rigorously from the
volume-averaged Stokes equations (e.g. [Sahimi, 1995; Breugem, 2004]). Due to the averaging over the
microscopic structure, it is a macroscopic equation, basically expressing the conservation of momentum.
Similar transport equations are found in many other disciplines, e.g. Fourier’s law in heat conduction or
Fick’s law in the theory of diffusion [Bird et al., 1960].

In (2.39), κ is the permeability of the porous medium, in units of m2. The permeability is a measure
of the ability of a material to transmit fluids through it. It is related to another characteristic quantity, the
hydraulic conductivity kf of a porous medium, by

kf =
γκ

µ
, (2.40)

where γ is the specific gravity of the liquid (in units of force per volume) and µ is the dynamic viscosity.
The hydraulic conductivity is given in units of velocity (m/s). While the hydraulic conductivity takes into
account the properties of the porous medium and the fluid that flows through it, the permeability is a property
only of the solid phase. A natural length scale of the porous medium is given by the effective pore diameter√

κ.

2.6.2 Transition to turbulence in porous media

The range of validity of Darcy’s law is expressed in terms of the pore Reynolds number Rep, defined by
the effective pore diameter

√
κ and the intrinsic velocity vi = vf/φ:

Rep =

√
κvf

φν
. (2.41)

Note that there are different possibilities to define such a Reynolds number based on the characteristic scales
of the pore flow mentioned above. Many definitions of Reynolds numbers can be found in the literature
[Wahyudi et al., 2002]. For example, some authors define the length scale by the effective pore diameter√

κ, while others use a characteristic grain size. Both may differ by an order of magnitude.
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Darcy’s law is generally assumed to be valid for Rep < 10 [Sahimi, 1995], in spite of the fact that it is
derived from the Stokes equation (2.9), which assumes Rep << 1. For Rep > 10, a transition zone begins
where inertial forces start to be important. The turbulent flow regime is reached at Rep ≈ 100. The strict
validity of these numbers is questionable, since in general the transition to turbulence in a porous medium
is much more gradual than e.g. in pipe flow [Dullien, 1992].

Phenomenological flow models have been developed to account for the deviations from Darcy’s law in
the transitional and turbulent flow regimes. One such modification is the Forchheimer equation, which
simply adds a term quadratic in vf to Darcy’s law:

∇〈p〉 = −µ

κ
vf + avfvf , (2.42)

where a is a constant that is typically determined from a fit to experimental data. Third or higher order terms
may also be added.

2.7 Flow over a permeable wall

2.7.1 Laminar case

Another modification of Darcy’s law is the Brinkman equation. It is used to account for large gradients in
the superficial velocity, e.g. in the transitional flow field across the boundary of a porous medium, e.g. if the
latter is in contact with an open-channel flow.

Due to the macroscopic approach, Darcy’s law (2.39) is only sufficient for predicting bulk flow, i.e. the
superficial velocity in the filter. However, detailed transport phenomena near the boundary of a permeable
wall cannot be described by it. More sophisticated flow models are necessary for a precise description of
this boundary layer. Towards this end, Brinkman [1947] proposed the following equation:

∇〈p〉 = µ∗∇2 〈v〉 − µ

K
〈v〉 , (2.43)

where µ∗ is an effective viscosity (or renormalized viscosity), which is larger than the actual fluid viscosity
and depends on the porosity of the porous medium. The Brinkmann equation can be considered as a semi-
empirical interpolation between the Stokes equation (2.9) and Darcy’s law (2.39). It facilitates the matching
of boundary conditions between the porous medium and the open-channel flow.

The boundary conditions at the interface are different for flows above permeable and impermeable walls.
For impermeable walls, the usual ’no-slip’ condition holds, which states that the velocity in the mean flow
direction is zero at the wall. This is not the case at a permeable wall. At the interface with the open-channel
flow, there is a so-called slip-velocity, which is larger than the superficial velocity. The first term on the
right handside of (2.43) can be interpreted as the one which interpolates between the superficial velocity
in the porous medium and the slip-velocity at the boundary. The corresponding solution of the Brinkmann
equation is an exponential decay of the mean velocity with increasing depth in the porous wall.

2.7.2 Turbulent case

The boundary conditions at the interface between a porous medium and a turbulent flow are still the subject
of research, e.g. [Jimenez et al., 2001; Hahn et al., 2002; Breugem, 2004]. Shimizu et al. [1990] present a

31



32 2 Hydrodynamic background

Figure 2.5: Profiles of mean velocity through a filter layer according to [Hoffmans et al., 2000].

one-dimensional macroscopic model of flow through a filter layer based on the Forchheimer equation (2.42)
and a diffusive theory of fluctuations. The solution of their model equation is similar to that derived in the
laminar case, namely an exponential decay of the mean velocity in the filter:

v(y) = vf + vs exp(ay), (2.44)

where y < 0, v is the volume-averaged velocity, vf is the filter velocity and vs is the slip-velocity. The
parameter a in the exponential function is related to the characteristics of the porous medium and to the
eddy viscosity within the filter. The model is verified by experimental measurements using a salt water tracer
technique. The details of the phenomenological model by Shimizu et al. [1990], especially with regard to
the formulation of the eddy viscosity within a filter layer, are still the subject of debate [Koenders et al.,
2000; Hoffmans et al., 2000]. The eddy viscosity is an empirically introduced parameter that relates the
turbulent shear stresses to the mean velocity gradient (according to the hypothesis of Boussinesq, compare
section 2.5.1).

Hoffmans et al. [2000] carry out a very similar analysis and present some further considerations on the
modelling of the eddy viscosity in a porous medium. They assume an eddy viscosity that is proportional
to the filter velocity, while Shimizu et al. [1990] used a constant eddy viscosity. Profiles of mean velocity
resulting from the analysis of Hoffmans et al. [2000] are shown in figure 2.5. To validate different models
of the eddy viscosity in a filter layer, measurements of filter velocities in relation to loading parameters are
necessary. Such measurements are obtained in this thesis.

Koenders et al. [2000] present an analytical analysis of turbulent flow through a filter layer. Their theory
is two-dimensional and based on the Forchheimer and continuity equations. Their salient result is that long
wavelength fluctuations in the pressure in the free surface flow are mostly responsible for variations in the
superficial velocity near the bottom of the filter layer.
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Breugem [2004] presents a detailed numerical analysis of laminar and turbulent flow over permeable
walls. To classify peremeable walls, he introduces the permeability Reynolds number

Reκ =

√
κu∗
ν

, (2.45)

where u∗ is the shear velocity given by (2.23). The permeability Reynolds number can be interpreted as
the ratio of the effective pore diameter to the typical length scale of near-wall turbulence. For Reκ << 1,
the wall is effectively impermeable. For highly permeable walls with Reκ >> 1, turbulence penetrates the
permeable wall. Vice versa, the permeable wall changes the structure of near-wall turbulence. Turbulent
transport across the wall occurs. Breugem [2004] suggests that turbulence near a highly permeable wall is
dominated by relatively large vortical structures, which originate possibly from a Kelvin-Helmholtz insta-
bility of the inflexional mean velocity profile. The structures are responsible for the exchange of mass and
momentum between the top layer of the pore flow and the surface flow. For highly permeable walls, the
parameters of the logarithmic wall law are influenced by permeability. In particular, the vertical coordinate
offset is larger and the von Karman constant may be different from 0.4.

2.8 Flow measurements in/over porous media

This section reviews some results of experimental flow measurements in/over porous media. As described
above, it is difficult to define flow rates and flow geometry in irregular porous media. Phenomenological
flow models are based on volume averaging and describe uniform flow or uniform flow profiles of a macro-
scopically averaged velocity. Both the experimental studies reviewed in this section and the results of the
measurements presented in section 10 show that this is a clear simplification. The flow in a porous medium
below a turbulent channel flow is not uniform. Further, flow fields within local pores may significantly differ
from the profile of the macroscopically averaged mean velocity.

Flow within porous media.

Yarlagadda and Yoganathan [1989] investigate steady flow inside a porous medium using refraction index
matching and a 2-C Laser Doppler anemometer. They calculate the third velocity component by integrating
the continuity equation. The measured flow is laminar and stable. Their general observations and conclu-
sions are that the flow is sensitive to the local geometry. The flow direction is changing along the path of the
flow. At all locations of the flow field, the flow is three-dimensional.

Saleh et al. [1992] describe 2-D velocity measurements using a PIV technique in a refractive index
matched porous medium. The field of view is ≈ 5 cm × 5 cm, and the velocity range is 25 µm/s up
to 2.5 mm/s. Their spatial resolution is 0.5 mm. They are able to identify a number of features of the
pore flow, such as separation and stagnation points, which can provide useful information about transport
in porous materials. They also point out the three-dimensional character of the pore flow causing erroneous
results of their 2-D PIV technique, see section 3.2.

Ogawa et al. [2001] investigate the local flow through a porous medium using nuclear magnetic res-
onance imaging. The porous medium consists of crushed glass and glass beads with a diameter between
2 mm and 5 mm. The porosity is between 0.4 and 0.6, and mean velocities are in the range of 3 mm/s

to 13 mm/s. The field of view is 5 cm × 5 cm, the spatial resolution is 0.1 mm × 0.1 mm × 0.5 mm,
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34 2 Hydrodynamic background

Table 2.1: Important length and velocity scales at the interface of a porous medium and a free surface flow. The scales
are used to define corresponding Reynolds numbers.

region length
scale

velocity
scale

Reynolds number

open-channel flow h U Re = Uh
ν

rough wall region dmD u∗ roughness Reynolds number Re∗ = u∗dmD

ν

permeable wall region
√

κ u∗ permeability Reynolds number Reκ =
√

κu∗
ν

pore flow dp ui pore Reynolds number Rep =
uidp

ν

and velocities are measured with an accuracy of about 20% of the mean velocity. We summarize their main
findings. The flow is non-uniform, and the direction of flow depends strongly on the local geometry. Local
flow velocities may be larger than 6 times the mean velocity. In places, reversed flow may be induced by
the pore geometry. Flow patterns within single pores change in dependency of the mean flow velocity.

Flow over porous media.

Shimizu et al. [1990] study the flow in a porous filter that is driven by a turbulent channel flow on top
by a salt water tracer technique. They show that an appreciable interaction between the pore flow and the
surface flow takes place. This interaction results in the exchange of mass and momentum between the two
flows. As a result, they confirm the finite slip-velocity at the boundary and show by mass dispersion tests
that there is also transpiration at the boundary in the normal direction (injection and suction events). The
filter velocity follows an exponential decay with increasing depth in the filter. There is a strong gradient in
the filter velocity in the upper grain layers, and only in the deeper grain layers the velocity profile becomes
uniform as given by Darcy’s law.

Similar events have been observed by Klar [2001] and recently in the very detailed experimental studies
of Vollmer [2005].

Lesage et al. [2004] present a new measurement setup for local flow measurements within a single pore.
The system is based on an electrochemical technique and enables to study flow regimes within a pore by
analysis of signal fluctuations. They identify three flow regimes and distinguish them by the pore Reynolds
number. For Rep < 110, the local pore flow is laminar and stable. For Rep > 280, the local pore flow is
’turbulent-like’ with a high fluctuation rate. Inbetween, there is a transient region showing a sharp increase
of the fluctuation rate with increasing Rep.

2.9 Summary

In this chapter, an overview of the current knowledge about turbulent flows over rough and permeable walls
has been given, covering theoretical, numerical and experimental research. The basic equations and notions
of turbulent open-channel flow and flow in a porous medium have been introduced. Clearly there is a mutual
influence of both flows on each other in a configuration, where turbulent open-channel flow is in contact with
a permeable and rough wall.
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At the interface of a porous medium and a free surface flow, different important length and velocity
scales may be identified, which are used to define different Reynolds numbers. These Reynolds numbers
are summarized in table 2.1. They are used to characterize the influence of roughness and permeability of
the wall on the turbulent near-wall flow field.

The near-wall flow field represents a complex interaction of many effects. Two important small-scale
phenomena are turbulent burst motions (coherent structures) and fluctuations related to flow separation
from roughness elements. Co-exisiting with these small-scale motions are the large-scale vortical motions
in the outer flow. The relation between large-scale and small-scale structures is still the subject of research.
However, it is clear that both play a dominant role in the interaction of the free surface flow with the pore
flow and in the destabilization of gravel grains at a gravel surface [Hofland, 2004].

Turbulent flows over rough walls have been extensively studied experimentally, whereas much less
data is available for permeable walls. Different phenomenological flow models have been reviewed, which
describe flow profiles through a porous medium. Since these flow models also require turbulence modelling
for closure of the equations, experimental data is necessary for verification, e.g. of the assumptions for the
eddy viscosity in a porous medium.

Many researchers have shown that small-scale hydrodynamic processes in and near a porous wall in
open-channel flow have a high spatial and temporal variability. This underlines the need for a 3-D measure-
ment technique with a high temporal and spatial resolution. Such a technique is developed in this thesis.

35



36 2 Hydrodynamic background

36



Chapter 3

Quantitative flow visualization

This chapter presents an overview of current state-of-the-art techniques for quantitative flow visualization.
The purpose of the chapter is to enable a comparison of the different approaches and to elaborate their
strengths and limitations. The choice of a 3-D Particle-Tracking Velocimetry (3-D PTV) technique for
the present application will be substantiated. A detailed description of the 3-D PTV algorithm is given in
chapter 7.

The study of fluid flow is essentially the study of transport phenomena of mass, momentum and heat
resp. energy. The task of flow visualization is to make these transport processes visible, which is achieved
by introducing tracer substances into the flow, applying some kind of external illumination, and recording
images or image sequences of the tracers following the flow. The basic principle of analyzing the light
transmitted through or scattered by a fluid is illustrated in figure 3.1.

Flow visualization in a scientific sense can be traced back to the drawings of a turbulent jet made by
Leonardo da Vinci in the Late Middle Ages. Since the end of the 19th century, many researchers have
performed flow visualization experiments to study the dynamic behaviour of fluids, e.g. Reynolds, Prandtl
and Mach, to name but a few. Many nice examples of flow visualization images can be found in [Van Dyke,
1982]. Merzkirch [1987] also gives many examples and discusses the basic physical principles of flow
visualization methods. The handbook of Yang [1989] compiles all major techniques of qualitative flow vi-
sualization (e.g. smoke visualization and other tracer methods, shadowgraph and Schlieren methods, speckle
photography) and demonstrates their applications in many fields of science and technology. This book was
published in 1989, and the author states the beginning of ’a new era of quantifying the flow information’,
which has become possible due to advances in computer hardware. The increased computing power opens
the way to a completely automatic processing of flow visualization images to extract quantitative informa-
tion, i.e. the velocity field and other quantities derived from it1. Within the last 20 years, a large number
of different methods for automated quantitative flow visualization have been developed, and there is an
abundant literature on this topic (e.g. [Nieuwstadt, 1992; Lading et al., 1994; Raffel et al., 1998; Smits
and Lim, 2000]). Some of these methods have reached the status of standard experimental tools which are
commercially available and applied in many labs throughout the world. The most common examples are
Particle-Tracking Velocimetry (PTV) and, above all, Particle Image Velocimetry (PIV).

1Besides the automatic image processing, the increased computer power has also pushed the feasibility of computational fluid
dynamics (CFD). A large number of very illustrative animation sequences of different flows, which have been obtained by CFD,
can be found in the ’Virtual Album of Fluid Motion’: http://www.featflow.de/album/index.html.
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fluidincident light

transmitted light:
extinction measurements,
tomography,
shadowgraphs, schlieren method,
interferometry

scattered light:
Rayleigh scattering,
Raman scattering,
laser induced fluorescence,
LDA, PIV, PTV

Figure 3.1: Basic principle of flow visualization methods (after Merzkirch [1987]). A flow is visualized by tracer
substances, illuminated by an incident light beam, light sheet or light cone (corresponding to a 1-D, 2-D or 3-D
visualization). Information about the flow can be obtained either from the transmitted light or the scattered light. The
methods described in this section are all based on light scattering.

Different methods are distinguished by the number of components of the velocity vector they measure
(1-C, 2-C or 3-C) and the dimensions of the spatial domain in which vectors are obtained (1-D, 2-D or
3-D, i.e. a point, plane or volume in space). Hence, a Laser Doppler Velocimeter observing the mean
flow component at a single point in space is referred to as a 1-D/1-C method. In this chapter, the most
frequently used field methods are reviewed, starting from simple 2-D/2-C approaches, and following the
further development up to the most recent 3-D/3-C techniques. The focus of this chapter is on image
evaluation techniques, i.e. techniques to obtain a flow field within a 2-D or 3-D domain (multi-point or
whole-field techniques). Information on single-point techniques and other optical methods such as Laser
Doppler Velocimetry or Interferometry can be found in e.g. [Merzkirch, 1987; Lading et al., 1994]. For
information about the experimental setups of the different techniques, see the references mentioned above.

The chapter is outlined as follows. First, some general considerations on motion analysis are presented
in section 3.1, including a classification of the different methods. The classification is based on the type of
images that are acquired and on the type of evaluation algorithm that is used to process these images. The
following sections explain the most important image-based velocimetry methods, namely PIV (section 3.2),
least squares image matching (section 3.3), differential optical flow techniques (section 3.4), and PTV (sec-
tion 3.5). In recent years, the most powerful methods have been obtained by combining the advantages of
the different standard methods in so-called hybrid approaches (section 3.6). The algorithm proposed in this
work (see chapter 7) also belongs to this class. Finally, section 3.7 summarizes the chapter and constitutes
why 3-D PTV is the method of choice for the present application.

3.1 General considerations

Image-based whole-field velocimetry methods are used to measure the flow field of a fluid, based on the
analysis of an image sequence visualizing the flow under consideration. Estimates of the flow velocity
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are obtained by determining the displacements of some kind of image features in a number of successive
frames (at least two). In a computer vision context, this displacement field in the image plane is called the
optical flow f(x, t)2. Computing optical flow resp. motion analysis in general is one of the major issues
of computer vision (see e.g. [Murray and Buxton, 1990; Singh, 1991; Haußecker and Spies, 1999]), with
applications not being restricted to fluid flow but including any kind of dynamic processes and scenes (e.g.
[Frischholz, 1999]). Photogrammetrists also use image matching methods that are closely related to motion
analysis, e.g. to establish correspondences between two stereo images in order to compute a disparity map
or to locate target patterns within an image (e.g. [Baltsavias, 1991]). Accordingly, there is a huge amount
of methods, algorithms and publications spread out through the computer vision, photogrammetry and fluid
mechanics literature. The vast terminology for the different methods might confuse the unfamiliar reader,
particularly because notions like ’optical flow’, ’image matching’, ’image correlation’ and ’tracking’ are not
always used consistently by the different communities (or even within the same community).

In this section, a general overview on image-based velocimetry is given. The most important methods
are introduced and classified according to the fundamental principles, assumptions and approximations they
are based upon. In general, the task of all the methods is to compute the optical flow f(x, t), i.e. the
apparent 2-D motion of image features in the image plane3. The methods differ in the following aspects:

A) What kind of image feature is used?

A1) single particles, i.e. discrete features

A2) particle patterns, i.e. patterns of discrete features

A3) continuous features

B) What kind of input data is used for the velocity estimation?

B1) spatial information, i.e. positions of features in the image plane

B2) temporal information, i.e. more than two frames are used

B3) intensity, i.e. gray values of features

B4) intensity gradients, i.e. local gray value differences

C) What is the computational approach to solve the motion correspondence problem ?

C1) cross-correlation

C2) least squares optimization (linear or nonlinear)

C3) discrete tracking techniques (Kalman filtering, combinatorial optimization)

Algorithms using almost any combination of image features, input data and computation method can be
found in the literature. Some examples are compiled in table 3.1. A common classification is to divide the
methods into two major groups: region-based methods and feature-based methods.

Region-based methods estimate the motion of gray value patterns within small image patches, so-called
interrogation areas or interrogation windows. The most common region-based method used in fluid me-
chanic applications is Particle Image Velocimetry (PIV) (section 3.2), whereas in computer vision and
photogrammetry, differential optical flow methods (section 3.4) and least squares matching (section 3.3)
are frequently used. Since in all these methods the image is divided into a regularly spaced array of interro-
gation windows, the result is a displacement field on a regular grid. The interrogation windows are chosen

2Strictly speaking, the optical flow is the continuous apparent motion field in the image plane, and the displacement field is the
sampled version of the latter that is obtained from the discrete pixel array of a camera sensor.

3Note that the term ’optical flow’ is often used in a narrower sense, refering only to the methods described in Section 3.4
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Table 3.1: Examples of different approaches to image-based velocity analysis.

method reference features data calculation

Standard PIV Willert and Gharib [1991], A2 B1,B3 C1

Westerweel [1997]

correlation-based tracking,
Fincham and Spedding
[1997]

A2 B1,B3 C1

correlation imaging ve-
locimetry

Image correlation velocime-
try,

Tokumaru and Dimotakis
[1995],

A2,A3 B1,B3 C2

Adaptive Least Squares
Matching

Gruen [1985]

Multi-grid PIV with de-
formable

Scarano and Riethmuller
[2000]

A2 B1,B3 C1

windows

Hybrid PIV/PTV
Cowen and Monismith
[1997],

A1,A2 B1,B3 C1,C3

Bastiaans et al. [2002]

two-frame tracking Baek and Lee [1996], A1 B1, B3 C3

Ohmi and Li [2000]

four-frame tracking Hassan and Canaan [1991], A1 B1,B2, B3 C3

Malik et al. [1993]

Kalman Filtering Takehara et al. [2000] A1 B1,B2, B3 C3

optical flow techniques Haußecker and Spies [1999] A2,A3 B1,B2,
B3,B4

C2

with a certain degree of overlap, typically 50% in PIV. In optical flow computations, a velocity vector is
typically computed for every pixel in the image, i.e. the grid of velocity vectors is the pixel grid itself.

In contrast, feature-based methods (also known as token-tracking methods [Murray and Buxton, 1990;
Faugeras, 1993]) try to identify single objects in the image, segment them from the background, and follow
their motion throughout an image sequence. Thus, feature-based methods yield randomly spaced velocity
information, depending on the distribution of moving objects in the image. The most important feature-
based method for flow visualization is Particle-Tracking Velocimetry (PTV) (section 3.5), where individ-
ual tracer particle images are the objects to be tracked. In general, both classes of methods have advantages
and disadvantages, which are outlined in the following sections. Hybrid methods (section 3.6) try to combine
the advantages of region-based and feature-based approaches, and consequently have a better performance
in many cases.

In the remainder of this section, some general aspects of motion analysis are outlined, which apply
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equally to all the different approaches. A comparison of the methods is given in section 3.7.

3.1.1 Dynamic range, sampling theorem and subpixel accuracy

Dynamic range.

An important quantity characterizing the potential of a motion estimator is its dynamic range DR, which
is defined as the ratio of the maximum to the minimum displacement that can be measured:

DR =
ξmax

ξmin
, (3.1)

where ξmax and ξmin are the displacements measured in pixels/frame. Obviously, a dynamic range as high
as possible is desirable, in particular with regard to the measurement of turbulent flows, which may contain
strong velocity fluctuations.

The fundamental limits on the dynamic range of a digital imaging method are related to the discrete
nature of the image data. The measurement of large displacements is limited by the temporal sampling
theorem [Haußecker and Spies, 1999], while the measurement of small displacements is limited by the
maximum subpixel accuracy that can be achieved. The latter in turn depends on the sampling and quan-
tization of the image intensity [Jähne, 1999a]. Approaches to increase the dynamic range are outlined in
section 3.1.2. If such an approach is used together with a subpixel-accurate determination of small displace-
ments (see below), a dynamic range of 100-1000 can be achieved using standard equipment.

Sampling theorem and motion correspondence.

To estimate an object’s velocity, given two successive image frames, the motion correspondence problem
has to be solved, i.e. a unique correspondence between the two images of the same object in the two
successive frames has to be established. This can only be achieved, if the conditions given by the temporal
sampling theorem are valid. Put in simple words, the temporal sampling theorem (or Nyquist criterion)
states, that an object’s displacement between two images, i.e. the optical flow f , should be less than half the
smallest local spatial scale λg,min of the image intensity g(x, t):

|f |∆t = |f | · (1 frame) <
1

2
λg,min, (3.2)

where ∆t is the time interval between two successive images, in units of frames (thus, ∆t = 1), and f is
the optical flow in units of pixels/frame. The sampling theorem imposes a fundamental limit on the relation
between the size and intensity structure of an object and its motion, i.e. on the relation between the spatial
and temporal intensity gradients. Given just two images and no further information, the motion of an object
can only be recovered unambigously if (3.2) is valid. In this case, the motion correspondence problem
can be solved. Otherwise, temporal aliasing occurs [Jähne, 1999a], and the problem of low-level motion
estimation becomes ill-posed, i.e. there is no unique solution.

As a consequence of the sampling theorem, there is a maximum allowed displacement that can be recov-
ered by any region-based method. For example, consider a differential optical flow technique (section 3.4).
In this case, there has to be a unique relation between the spatial and temporal gray value gradients. To
estimate the motion of a single particle with a symmetrical Gaussian intensity distribution (as typical for
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PIV and PTV particle images), the maximum allowed displacement corresponds roughly to the standard de-
viation of the Gaussian resp. radius of the particle. As a second example, for a quadratic PIV interrogation
window of length L, the maximum displacement corresponds roughly to L/4, assuming that the intensity
distribution resp. particle density within the window is homogeneous and sufficiently large. The latter result
is known as the ’one-quarter-rule’ in the PIV literature [Raffel et al., 1998]. Obviously, the smallest spatial
scale within a PIV interrogation window depends on the particle distribution and density within that win-
dow. Generally, an optimal density of about 10 particles per interrogation window is recommended in the
PIV literature (e.g. [Keane and Adrian, 1990]). Assuming a homogeneous distribution, the particles form a
periodic intensity pattern of wavelength λ = L/2. Hence, the one-quarter-rule follows from the sampling
theorem. Note that these limits are not strict but should be considered as more or less accurate estimates,
since the actual spatial frequency content of the image depends on the particle distribution. The latter is a
stochastic quantity, with varying values for different interrogation windows within one image.

The situation is a bit different for feature-based tracking methods. As a simple example, consider an
image sequence with a single moving object. Its motion can be tracked with the only restriction that it
stays within the field of view, since two successive images of the object can always be related to each other
unambigously. In this case, the wavelength of the spatial image structure corresponds to the size of the
image (resp. twice this size). However, such a case is of limited practical importance in flow visualization,
since the images contain a large number of particles. With increasing object resp. particle density, the
spatial image scales become smaller, and the motion correspondence becomes more difficult, which again
is a manifestation of the sampling theorem. Nevertheless, tracking algorithms are able to track motions
violating the sampling theorem. But the latter is only possible, if further information is used (apart from
two successive images). For example, a common assumption is that object trajectories are smooth, i.e. the
direction and speed of an object does not change abruptly between two frames. In this case, it is possible
to use information from previous frames in a motion model (section 3.1.3) and predict the position of the
object in the next frame by extrapolation. If the model provides a good description of the actual motion,
much larger displacements can be handled as compared to low-level approaches using only two frames.

Subpixel accuracy.

The subpixel accuracy of a velocity estimator determines the minimum displacement that can be measured.
Since a digital image provides a sampled version of the original intensity distribution of the physical image,
with gray values defined on an integer grid (pixel positions), the position of an object, e.g. a particle image
or the correlation peak resulting from the cross-correlation of two PIV images (see section 3.2.1), can only
be determined with an accuracy of ±0.5 pixels. To achieve a higher accuracy, some kind of subpixel in-
terpolation has to be carried out. One way to do this is to use a model of the intensity distribution of the
object, and to determine the best fit of this model to the image data in a least squares sense. The most com-
mon model in PIV and PTV is a Gaussian distribution, since it provides a very good approximation to both
the image of a single tracer particle and the displacement peak in a PIV correlation. The subpixel-accurate
coordinates are introduced as parameters of the model and determined in a least squares minimization.

Another common approach to achieve subpixel accuracy in PIV and optical flow estimation is to warp
the original images according to an estimated flow model. The warping is carried out iteratively, and a
refined estimation of the velocity field is computed in each iteration. Since the warped image will generally
be defined on non-integer pixel positions, warping requires a precise method to interpolate gray values, see

42



3.1 General considerations 43

e.g. [Jähne, 1999c].

In applying subpixel interpolation, one should keep the following considerations in mind. To compute
a subpixel-accurate position within an image, the information contained in the image intensity, i.e. in the
gray values, is ’translated’ to geometric information, i.e. position in the image. This ’translation’ is based
on certain assumptions concerning radiometric aspects of the imaging process. One such assumption is the
Gaussian intensity distribution mentioned above. Further important assumptions, which are often taken for
granted, are the linearity and homogeneity of the sensor, a pixel-synchronous transfer of the image data
between sensor, frame grabber and memory, and a homogeneous illumination. If any of these assumptions
is violated, subpixel accuracy will deteriorate or even become meaningless. Thus, it is very important to
take into account the electronic and especially the radiometric properties of the cameras and illumination
system, if very high accuracy is required. For example, if the cameras suffer from strong fixed pattern noise,
a radiometric correction should be applied to the images. Such a correction is proposed in section 4.3.
Even if the image data is ’perfect’, and all the assumptions stated above are valid, the result of the subpixel
interpolation may still be biased. For example, one source of bias in PIV evaluation is the so-called ’peak-
locking’ effect, see section 3.2.1. Peak-locking mainly occurs when the images of the tracer particles are
too small, i.e. when the Gaussian intensity distribution is under-sampled.

As a general limit, for typical 8 bit images with 256 gray levels, one can expect a (theoretical) maximum
subpixel accuracy of the order of magnitude of 0.01 pixels, given optimal image data, a good object model
and an unbiased estimator [Wernet and Pline, 1993; Marxen et al., 2000]. Note that it may be very difficult
to actually achieve such ideal circumstances in real PIV or PTV applications, where measurement errors are
typically in the range of 0.05 − 0.2 pixels [Westerweel, 2000].

3.1.2 Hierarchical multigrid approaches

As explained in section 3.1.1, the maximum displacement that can be determined by region-based ap-
proaches like PIV and differential optical flow methods is limited by the smallest spatial scales of the
underlying image structure. However, images also contain information at larger scales than the neigh-
bourhood size of the interrogation windows. The basic idea of iterative, hierarchical methods is to start
the estimation of the optical flow at the largest image scales, which enable the determination of large dis-
placements in a first iteration. This first estimation may be applied to warp the second image back along
the estimated displacement field and refine the estimation at smaller spatial scales. An efficient implemen-
tation of such a coarse-to-fine strategy is a Gaussian image pyramid [Jähne, 1999b], which is basically a
multigrid representation of an image at different spatial scales. The efficiency of Gaussian pyramids is due
to the reduction of the linear image size by a factor of two at each level of the pyramid. This reduction
makes the large-scale information in the image available to small filter masks. However, at the same time
the image becomes more and more blurred. Hence, we have to take care in applying Gaussian pyramids to
PIV images, since the small particle images may soon be completely smoothed out. Large-scale informa-
tion can only be obtained if there is a certain fraction of larger particles in the image or the particle density
varies locally. Hierarchical PIV approaches are often realized by starting with large interrogation windows
and iteratively decreasing the size of the interrogation windows instead of decreasing the image size as in a
Gaussian pyramid [Scarano and Riethmuller, 1999; Hart, 2000b].
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3.1.3 Modeling of displacement fields

Given two successive images g0 = g(x, t0) and g1 = g(x, t1) of a flow field, the displacement field ξ(x, t)

can be thought of as the transformation, or mapping, of the spatial image intensity field from the first image
to the second. The optical flow is the time derivative of this mapping: f(x, t) = ∂tξ(x, t). Within a local
neighbourhood N centered at x0, the displacement field may be approximated by a Taylor expansion:

ξ(x, t) = ξ(x0, t) + (x − x0)∇ξ(x0, t) +
1

2!
[(x − x0)∇]2 ξ(x0, t) + ... (3.3)

Taking into account only the first order terms, the equivalent formulation for the optical flow reads:

f(x, t) =

[
a1 a2

a3 a4

][
x − x0

y − y0

]
+

[
a5

a6

]
= A(x − x0) + t (3.4)

In this first order approximation, the displacement field consists of a constant shift t and a linear (affine)
deformation of the local neighbourhood, described by the matrix A. Note that in such a formulation, the
spatial derivatives of the flow field are introduced as parameters:

a1 =
∂fx

∂x
, a2 =

∂fx

∂y
, a3 =

∂fy

∂x
, a4 =

∂fy

∂y
. (3.5)

This offers the possibility to estimate spatial velocity gradients without performing explicit differentiation
of the velocity field. Thus, important hydromechanic quantities like the in-plane vorticity ωz = ∂xfy−∂yfx

and the rate-of-strain tensor S can be directly estimated, since

A =

[
0 −ωz/2

ωz/2 0

]
+ S, (3.6)

with

S =

[
∂xfx

1
2(∂yfx + ∂xfy)

1
2(∂yfx + ∂xfy) ∂yfy

]
. (3.7)

Similar to this spatial modeling of displacement fields, the temporal evolution of the motion of a single
particle along its Lagrangian trajectory (see section 2.3) around the point x0 may be approximated using a
Taylor expansion in time:

ξ(x0, t) = ξ(x0, t0) + v(t − t0) +
1

2
a(t − t0)

2 + ... (3.8)

This kind of modeling is frequently applied in particle-tracking algorithms, see section 3.5 and section 7.4.2.

A more detailed discussion of the modeling of flow fields is given by Haußecker and Spies [1999].

3.1.4 Confidence measures, validation and postprocessing

As any measurement technique, a velocity estimator should not only supply the velocity field, but also
some kind of confidence measure. In order to enable a reliable interpretation of the velocity field, gross
errors have to be detected and removed. The optical flow methods discussed in section 3.4 yield confidence
measures as an integral part of the result. In PIV algorithms, typically the ratio of the tallest to the second
tallest correlation peak is used to detect unreliable measurements [Keane and Adrian, 1990]. Based on such
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confidence measures, questionable measurements are removed from the velocity field, which is typically
done in a postprocessing step after the velocity field has been computed. However, in iterative methods,
where the results strongly depend on the quality of the velocity estimates in previous iterations, the validation
should be done after each iteration. Different validation methods are discussed by Westerweel [1994] and
Hart [2000a].

After the erroneous vectors have been removed, the resulting gaps in the velocity field may be filled
by applying an interpolation technique, e.g. adaptive Gaussian windowing (AGW) [Agui and Jimenez,
1987; Spedding and Rignot, 1993]. Such techniques can also be used to interpolate the randomly distributed
velocity vectors resulting from a PTV technique to a regular grid. Basically, the interpolation corresponds to
a convolution of the velocity field using a special convolution kernel, e.g. a Gaussian in the AGW. To account
for the varying uncertainty of the computed velocity vectors, a normalized convolution may by computed,
where pixels with suspicious information (as indicated by their confidence measure) get a low weighting
factor in the convolution sum [Granlund and Knutsson, 1995]. For further information on interpolation and
convolution techniques, refer to [Jähne, 1999c,d].

3.1.5 3-D motion estimation

Most of the methods discussed in this chapter refer to the case of 2-D motion estimation within a plane,
namely the image plane. However, all of these methods can easily be extended to the case of 3-D motion
estimation within a volume in space. From an algorithmic point of view, there is no principal difference
between e.g. computing a cross-correlation in 2-D and in 3-D, see e.g. [Yamamoto et al., 1993; Pereirra
et al., 2000; Schimpf et al., 2003] for examples of volumetric 3-D cross-correlation or [Deusch et al., 2000]
for 3-D least squares matching of volumetric images obtained by Laser-Induced Fluorescence. Optical flow
algorithms and tracking methods can also be applied to the 3-D case, simply by adding a further dimension.
The challenge of 3-D motion estimation is rather a technological one: the acquistion of 3-D image data.
Most approaches to 3-D velocity measurement are based on stereoscopic or multi-view imaging using two
or more views of the same flow scene to recover the 3-D velocity field. The most prominent method applied
to measure fluid flows is stereoscopic PIV [Prasad, 2000]. Some 3-D PTV approaches are discussed in
section 3.5.3. The approach presented in this thesis also belongs to the stereoscopic techniques.

The basic new ingredient of 3-D methods as compared to 2-D methods is a geometric camera cali-
bration (chapter 5). This calibration is necessary, because perspective effects have to be taken into account
in the evaluation of stereo images. The task of the stereo evaluation is to establish stereoscopic correspon-
dences between two different views of the same scene. Thus, in addition to the motion correspondence
problem (temporal correspondence), the stereo correspondence problem (spatial correspondence) has to
be solved (chapter 6): given two views of the same scene, e.g. a flow field visualized by tracer particles,
a unique correspondence between the particle images in the two views has to be found. The camera cal-
ibration provides the geometric relationship between the two views, the so-called epipolar geometry. If
this relationship is known, the stereo correspondence problem can be solved much easier and faster. Fur-
ther, the calibration also provides the necessary geometric information to compute the 3-D position of an
object by triangulation of two or more views. Stereo algorithms can be implemented very efficiently and
transparently in terms of projective geometry. The (projective) geometry of multiple views and its implica-
tions for motion analysis are extensively discussed in the computer vision and photogrammetry literature,
e.g. [Faugeras, 1993; Faugeras et al., 2001; Xu and Zhang, 1996; Hartley and Zisserman, 2000]. [Trucco
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Figure 3.2: Example of a 2-D PIV vector field, revealing the near-wall flow structures around a large stone embedded
in a gravel layer. From [Hofland, 2004].

and Verri, 1998] is an introductory text on 3-D computer vision, and Kanatani [1996] deals with geometric
computations on a more advanced level. Camera calibration is a classic topic of photogrammetry [Slama,
1980; Atkinson, 1996; Gruen and Huang, 2001].

Another powerful but experimentally very elaborate 3-D approach is holographic imaging [Hinsch,
2002]. More information on this and other 3-D flow visualization methods can be found in [Dracos, 1996].

3.2 Particle Image Velocimetry

Since PIV is the most common flow visualization method, a large body of literature is available. Different
PIV methods are reviewed by Adrian [1991]. Information on auto-correlation PIV including film-based
acquisition and optical evaluation methods can be found in [Keane and Adrian, 1990, 1991]. The theory
of cross-correlation PIV is developed in [Keane and Adrian, 1992]. The fundamentals of digital PIV are
discussed by Willert and Gharib [1991]; Westerweel [1997] and in the books by Westerweel [1993] and
Raffel et al. [1998]. The latter give a large number of references to further information on PIV.
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3.2.1 Standard 2-D PIV

Basic principle.

Particle Image Velocimetry (PIV) is a technique to determine the 2-component displacement vectors of
tracer particle patterns in a 2-D plane (light sheet) within a flow. The result is a ’snapshot’ of the Eulerian
flow field. An example is shown in figure 3.2. The displacements are found by partitioning two subsequent
frames of a PIV sequence, g1 = g(x, t1) and g2 = g(x, t2) into interrogation windows, typically of a size
of 16 × 16 or 32 × 32 pixels, and computing the cross-correlation coefficient r(x, s) of two corresponding
windows:

r(x, s) =

∞∫

−∞

w(x − x′)g1(x
′)g2(x

′ − s)d2x′




∞∫

−∞

w(x − x′)g2
1(x

′)d2x′
∞∫

−∞

w(x − x′)g2
2(x

′ − s)d2x′




1/2
, (3.9)

where the weight function w(x − x′) represents the size of the interrogation window, and it is assumed
that the local mean gray values over the interrogation windows have been subtracted from g1 and g2. The
correlation coefficient is computed for a given 2-D range of displacements s of the interrogation window,
resulting in a so-called correlation plane.

Computation of velocity.

Because the direct evaluation of the cross-correlation coefficient (3.9) is computationally very expensive, it
is usually computed using FFT-methods, because in Fourier space, the double summation is replaced by a
simple pointwise multiplication. Once the correlation plane has been determined, the correct displacement
is given by the maximum correlation peak. Thus, the optical flow is approximated as

f(x, t) ≈ 1

∆t
arg max r(x, s), (3.10)

where ∆t is the time difference between the two successive images. Subpixel accuracy is achieved by
computing the centroid (’center of gravity’) or fitting a Gaussian to the correlation peak. Usually, in both
methods only three neighbouring correlation values in each direction are used (three-point estimators). De-
pending on the image quality and the evaluation method, the accuracy of the displacement estimation is of
the order of 0.01 to 0.1 pixels and the dynamic range of the method is of the order of 100 to 1000.

Velocity post-processing.

Since PIV is a statistical evaluation method, the obtained vector fields will contain a certain amount of
spurious vectors (’outliers’), which result from interrogation windows containing an insufficient number of
particle images or other shortcomings (see below). These outliers have to be removed prior to any further
evaluation of the velocity field. Some methods for outlier removal and interpolation of the resulting gaps
have been mentioned in section 3.1.4. After this post-processing, higher order quantities like vorticity,
divergence or rate of strain may be computed.
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Limitations.

The basic approach of PIV as discussed in this section suffers from a number of shortcomings, which limit
the accuracy, dynamic range and spatial resolution of PIV. The main origin of these shortcomings is the
fixed, finite size resp. shape of the interrogation window used in the correlation analysis, which effectively
acts as a spatial low pass filter on the estimated velocity field. Another source of error stems from the spatial
discretization of digital particle images. In detail, the following limitations exist:

• In-plane loss-of-pairs:

Particles may enter or leave the finite interrogation window between subsequent frames, in particular
those, that are faster than the mean velocity within the window. Thus, fast particles will not contribute
to the correlation peak, since they do not have a matching partner within the interrogation window in
the second frame. This results in a bias of the estimated velocity towards lower values.

• Velocity gradients:

Spatial velocity gradients within the interrogation window also contribute to the in-plane loss-of-pairs
and thereby reduce the signal-to-noise ratio in the correlation plane since not all particles within an
interrogation window correlate equally well due to their nonuniform motion. As a rule of thumb, the
degradation of the PIV result becomes significant if the displacement of tracer particles due to local
flow gradients gets larger than the image diameter of the particles.

• Out-of-plane loss-of-pairs:

Particles may enter or leave the light sheet along the optical axis during the time of two successive
exposures. Such particles are only visible in one of the images and do not have a matching partner.
Again, this results in a reduction of the signal-to-noise ratio. The out-of-plane loss-of-pairs is a prin-
cipal physical limitation of PIV that can only be overcome by adjusting the experimental parameters,
e.g. thickness of the light sheet or frame rate of the cameras.

• Computational aspects:

To reduce the computational load, the correlation is often computed in the Fourier domain using
FFT methods. However, the necessary assumption of the periodicity of the image data within the
interrogation window introduces inaccuracies as compared to a direct spatial cross-correlation, which
is principally more accurate [McKenna and McGillis, 2002].

• Peak-locking resp. pixel-locking:

The discrete nature of the PIV images introduces a bias towards integer displacements in the subpixel
evaluation of the displacement peak. Peak-locking is the result of a biased subpixel estimation, if
the input data (i.e. correlation values) is distributed asymmetrically around the maximum peak. The
degree of peak-locking depends on the size of the particle images. Peak-locking effects may dominate
the velocity errors for very small (under-sampled) particle images.

Apart from peak-locking, all limitations are a consequence of the finite extent of the interrogation win-
dows. The size of the window is given by a trade-off between dynamic range and accuracy on one hand and
spatial resolution on the other hand. Large interrogation windows can resolve large motions and provide
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good accuracy due to a high signal-to-noise ratio, given that the window contains only weak velocity gradi-
ents. Large windows are also more robust to outliers. On the other hand, smaller windows provide a better
spatial resolution and are less affected by velocity gradients, e.g. shear flows or strong vortices. However,
to enable a reliable evaluation of the cross-correlation, the windows must contain a sufficient number of
particle images and thus must have a certain minimum size, which depends on the particle density.

The limitations imposed by fixed interrogation windows can also be explained by looking at the spatial
Taylor expansion of the velocity field (3.4). The standard PIV approach can only compute a straight shift
of the interrogation windows between two frames. The velocity field within the interrogation window is
assumed to be constant. This corresponds to a zeroth order expansion of the velocity field. Linear effects
like rotation, shear and dilation or higher order deformations are not accounted for. Due to the spatial
averaging over the interrogation window, flow scales smaller than the window size cannot be recovered.

To summarize, accuracy, spatial resolution and dynamic range of the standard PIV method are coupled
by the size of the interrogation window. The performance of PIV depends on three main factors: particle
size and density, size of interrogation window and presence of velocity gradients. Particle size and density
can be controlled during the setup of the experiment and are not discussed further. Recommendations for
optimal settings are given in the PIV literature, e.g. [Raffel et al., 1998]. In the following sections, some
advanced PIV methods are discussed. The goal of these methods is to overcome the limitations of the
standard PIV approach to increase the accuracy, resolution and dynamic range. Towards this end, the latter
three performance measures have to be decoupled. Most of the advanced methods rely on the following
three major ideas: iterative methods instead of a single-pass evaluation to refine the solution, hierarchical
multigrid approaches to resolve both large and small motions, and higher order models of the velocity field
to account for velocity gradients and higher order deformations.

3.2.2 Advanced PIV image analysis

This section describes some advanced PIV image evaluation methods that aim to overcome some of the
limitations mentioned in section 3.2.1.

Multiple pass interrogation with window shifting.

To reduce the in-plane loss-of-pairs, a discrete integer window offset determined in a first interrogation
pass is introduced before doing a second interrogation using the shifted window [Westerweel et al., 1997;
Cowen and Monismith, 1997]. The increased number of matched particle pairs results in an increased
signal-to-noise ratio of the correlation peak. Iterations of the window shifting may be carried out until the
displacement determined in the final iteration is below one pixel. Due to the discrete window shifting, the
result still suffers from peak-locking, which can be reduced by applying a continuous window shifting, e.g.
[Gui and Wereley, 2002].

Correlation-based tracking.

In the standard PIV approach, the interrogation windows in the first and second frame are of the same size
and at the same location within the image. This is the major reason for the low velocity bias error due to the
in-plane loss-of-pairs. A simple modification to eliminate this error is to use a larger interrogation window in
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the second frame, centered around the smaller window in the first frame [Fincham and Spedding, 1997]. In
this case, the correlation coefficient has to be computed directly in the spatial domain for all displacements
of the small window within the large window. Fincham and Spedding [1997] have termed this approach
’correlation image velocimetry’ to distinguish it from the standard ’correlation-based interrogation’ using
equally sized windows. In a number of more recent references, the approach using differently sized windows
is referred to as ’correlation-based tracking’, since the particle pattern defined by the small interrogation
window is tracked within a search area defined by the large interrogation window.

Multiple pass with decreasing window size.

The optimal interrogation window size for PIV depends on the local flow conditions and the local seeding
particle density, which means that it is rarely constant from one region of the flow to another. Thus, instead
of using fixed window sizes, the size of the window should be dynamically adapted to the local flow con-
ditions. A simple way to implement this idea is to refine the correlation interrogation in an iterative way
by starting with large windows and decreasing the window size during the course of the iterations [Scarano
and Riethmuller, 1999; Hart, 2000b]. In such a multigrid approach, the maximum in-plane displacement
is decoupled from the interrogation window size, which increases the dynamic range without decreasing
the spatial resolution. The displacements computed with larger interrogation windows can be used as pre-
dictions for further interrogations with smaller windows to shift the windows according to the prediction
before the next interrogation is calculated. Thus, a high signal-to-noise ratio can be maintained also with
small interrogation windows. The size of the interrogation windows may be decreased down to a correlation
of single particles [Rehm and Clemens, 1999; Theunissen et al., 2004].

Since in such iterative methods, the quality of the final result depends on the results of previous itera-
tions, in particular the first iteration, validation methods (section 3.1.4) should be applied after each iteration.
Since the first iteration will generally be a standard PIV correlation and as such suffer from all the basic lim-
itations mentioned in section 3.2.1, more sophisticated methods have been developed for the first iteration,
e.g. [Lin and Perlin, 1998].

Deformable windows resp. higher order approximations of the displacement field.

In the standard PIV evaluation, interrogation windows with fixed size and shape are used, and the velocity
field is assumed to be constant within the windows, which is a zeroth order approximation of the velocity
field, see section 3.1.3. To account for spatial variations of the velocity within the windows due to velocity
gradients and higher order effects, deformations of the interrogation windows resp. of the particle images
have to be considered, corresponding to a higher order approximation of the velocity field. Towards this
end, Huang et al. [1993a,b] introduced the ’Particle Image Distortion’ technique: they use fixed interro-
gation windows, but apply an iterative deformation of the images to compensate for in-plane loss-of-pairs.
In each iteration, the image area within the interrogation window is deformed (’warped’) according to the
displacement field calculated in the previous iteration. A similar approach is proposed by Nogueira et al.
[1999]. The window deformation may also be combined with a multigrid approach [Scarano and Rieth-
muller, 2000]. To compute the deformed images, some kind of image interpolation has to be applied, e.g.
bilinear interpolation or spline interpolation [Jähne, 1999c]. Care has to be taken in the interpolation step, in
order not to spoil the accuracy gain due to the window deformation with an inaccurate interpolation scheme.
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A further advantage of the window deformation using image interpolation is the possibility to introduce
continuous window offsets, which reduces the peak-locking effect, see section 3.2.1.

Second-order correlation.

As an effective method to suppress false correlation peaks and amplify the correct one, Hart [2000a] in-
troduced the ’second-order correlation’, which is simply a multiplication of the correlation plane of an
interrogation area by the correlation plane of one or more neighbouring interrogation areas (overlapping by
e.g. 50%). Thus, it is a ’correlation of the correlation’. Since any peak that does not appear in both planes is
eliminated, correlation anomalies are suppressed, resulting in more reliable and accurate velocity estimates.
Unlike statistical PIV postprocessing methods to remove spurious vectors [Westerweel, 1994], which rely
on the accuracy and similarity of neighbouring vectors, errors are directly eliminated in the correlation data.
The second-order correlation may be applied together with any of the PIV methods discussed in this section
to validate the results already during the computation step.

3.2.3 3-D/3-C PIV

Several methods have been proposed to extend the PIV technique towards measurements of full 3-component
vectors resp. measurements within a three-dimensional volume in space. Stereoscopic PIV is the one that is
applied most frequently.

Stereoscopic PIV.

Stereoscopic PIV enables the measurement of 3-C vectors within a plane in space. Hence, it is a 2-D/3-C
method. For a review, see [Prasad, 2000]. The basic idea is to use two cameras observing the light sheet,
and to compute the third velocity component (i.e. the out-of-plane motion) from the disparity map between
the two particle images. Further, stereoscopic PIV also offers the possibility to eliminate perspective errors,
which may contaminate the in-plane measurements if perspective effects are strong, i.e. when the lateral
dimensions of the object plane are comparable to its depth. Since the latter situation is typical for endo-
scopic imaging, Reeves and Lawson [2004] suggested the use of a stereoscopic technique for quantitative
endoscopic imaging.

Stereoscopic PIV systems can be arranged in two configurations. Translational systems have parallel
optical axes, whereas in rotational systems the two optical axes are arranged enclosing a convergence angle
α. Both arrangements have advantages and disadvantages, see [Prasad, 2000].

3-C vectors are obtained by mapping the displacements from each image plane to the object plane and
combining them to obtain the third component. There are three different approaches [Prasad, 2000]:

1. Geometric reconstruction: A priori knowledge of the complete recording geometry is necessary.
This information is used to perform an explicit ray tracing of the projection rays. This method is
tedious and not very accurate, since the necessary geometric parameters (e.g. stereo baseline, depth
of the measurement plane) often cannot be measured with a sufficient accuracy.

2. 2-D calibration: A calibration is performed using one image of a calibration target, that has to co-
incide exactly with the plane of the light sheet during flow measurements. A general polynomial
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transformation (typically up to second or third order to account for lens distortions) between the ob-
ject plane and the image planes of the two cameras is estimated, based on the known correspondences
between object and image points of the calibration target. Some authors estimate a plane homogra-
phy between the object plane and the image plane, instead of a polynomial transformation (see also
section 5.3.3). The final step of determining the 3-C velocity uses reconstruction equations that still
require some knowledge of the geometry such as separation between the lenses, object distance or
angular orientation of the cameras to the object plane.

3. 3-D calibration: A full 3-D geometric camera calibration is performed, using several images of
translated calibration planes. To compute 3-C vectors, explicit knowledge of the system geometry is
not required. General higher-order polynomial transformations are also frequently applied in the 3-D
calibration. Instabilities related to over-parameterization might be introduced [Hartley and Saxena,
1997] if the measurements are noisy, since typically ≈ 40 free parameters are calibrated for each
camera. The application of photogrammetric pinhole camera models and self-calibration methods in
stereoscopic PIV is a rather recent development [Wieneke, 2003, 2004].

Defocusing PIV.

[Willert and Gharib, 1992] introduced defocusing PIV as a method to obtain 3-D/3-C velocity fields. A
volume illumination is applied, and the defocus principle is used to identify three-dimensional particle
locations. Pereirra et al. [2000] use a similar technique to obtain full 3-D information. A volumetric cross-
correlation is computed to estimate the velocity field.

Multiplane stereoscopic PIV.

The idea of multiplane stereoscopic PIV is to use several light sheets in different depths to obtain flow
information from a number of different planes within a 3-D volume. The planes may be illuminated either
simultaneously or sequentially. In the former case, several stereo camera setups are used to acquire the
images. For details, see e.g. [Kähler and Kompenhans, 2000]. A recent variant of multiplane stereoscopic
PIV is the ’XPIV’ proposed by Liberzon et al. [2004]. It combines stereoscopic PIV, multi-sheet illumination
and defocusing PIV. The latter is applied to separate the different depth planes which are all projected
simultaneously into the same camera.

Photogrammetric PIV.

Schimpf et al. [2003] describe a ’photogrammetric PIV’ system. The principle is similar to that of a 3-D
Particle-Tracking Velocimetry setup (section 3.5.3). Three cameras are used to acquire images of the flow.
The 3-D particle positions are reconstructed by triangulation, based on a geometric camera calibration that is
performed prior to the flow measurements. The 3-D/3-C flow field is obtained by computing the volumetric
cross-correlation of the particle positions in subsequent frames. The only difference between 3-D Particle-
Tracking and the ’photogrammetric PIV’ is that the former tracks single particles in 3-D, whereas the latter
computes the cross-correlation of 3-D interrogation areas, i.e. volumetric, spatial particle patterns.
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Holographic PIV.

In contrast to all the other methods discussed so far, holographic PIV [Hinsch, 2002] requires a volumetric
illumination with coherent light to record holograms of the flow. The 3-D/3-C flow field is recovered by
interrogating the holograms with coherent light beams. In principle, holographic PIV is superior to all
the other methods, but the experimental setup and the data evaluation is very complex. For these reasons,
holographic PIV does currently not provide the ability to collect large data bases for statistical analyses.
Hence, the application of holographic PIV is limited to relatively simple flow configurations.

3.3 Least squares matching

3.3.1 Basic principle

Least squares matching is an alternative approach to maximizing the cross-correlation between two image
patches to estimate the optical flow. Like correlation techniques, it also belongs to the region-based methods
of motion estimation. Given two successive images g1 = g(x, t1) and g2 = g(x, t2), an interrogation
window is selected in the first frame, and a larger search area centered around this interrogation window is
selected in the second frame. The displacement of the interrogation window is calculated by minimizing a
distance measure that quantifies the dissimilarity between the two image regions. This distance measure is
given by the sum-of-squared-differences (SSD, ’least squares’) of the gray values within the interrogation
window between the first and second frame:

d(x, s) =

∞∫

−∞

w(x − x′)[g1(x
′) − g2(x

′ − s)]2d2x′, (3.11)

where the weight function w(x − x′) represents the size of the interrogation window. The optical flow is
approximated as

f(x, t) ≈ 1

∆t
arg min d(x, s), (3.12)

where ∆t is the time difference between the two successive images. Subpixel precision may be achieved us-
ing the same methods as in correlation-based approaches, e.g. by fitting a Gaussian function to the (inverse)
displacement peak.

Least squares matching is also referred to as ’image correlation velocimetry’ [Tokumaru and Dimotakis,
1995], ’adaptive least squares correlation’ [Gruen, 1985], ’MQD method’ (minimum quadratic differences)
[Gui and Merzkirch, 1996] and ’pattern tracking’ [Maas et al., 1994; Deusch et al., 2000]. Least squares
matching techniques have also been proposed in computer vision [Anandan, 1989; Singh, 1991].

3.3.2 Relation to other region-based approaches

Least squares matching is closely related to the other region-based approaches of motion estimation, namely
optical flow techniques and correlation-based analysis.

The similarity between least squares matching and differential optical flow techniques (see section 3.4)
is revealed by approximating g2(x

′−s) in (3.11) by a truncated Taylor expansion about s = 0 and skipping
all terms above first order. The resulting expression is the gradient-based formulation of the optical flow (see
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(3.15)). For the case of subpixel motions, the equivalence of first order differential optical flow estimation
and least squares matching using bilinear interpolation is shown by [Davis et al., 1995].

Gui and Merzkirch [1996] and Gui and Merzkirch [2000] discuss the relation between least squares
matching and correlation techniques. Expanding the squared term in (3.11) shows that this expression
contains the (negative) cross-correlation coefficient as used in a PIV evaluation. But in addition, there is a
term accounting for non-uniformities in the particle image distribution and a non-uniform illumination. Gui
and Merzkirch [2000] show that this term is responsible for the superiority of the least squares matching as
compared to conventional correlation-based methods.

3.3.3 Advanced least squares matching

The real strength of least squares matching is revealed when it is combined with similar advanced evaluation
methods as outlined in section 3.2.2. In particular, iterative approaches using a coarse-to-fine strategy (sec-
tion 3.1.2) together with a higher order approximation of the displacement field (section 3.1.3) are widely
used and show good performance [Gruen, 1985; Anandan, 1989; Tokumaru and Dimotakis, 1995]. Ra-
diometric effects, i.e. intensity changes, may also be included in the model. The implementation of such
methods within a general least squares parameter estimation framework provides the possibility to directly
estimate higher order quantities like vorticity and rate of strain. Towards this end, these quantities are in-
troduced as parameters to be estimated within the least squares optimization, see section 3.1.3. Thus, no
explicit finite differences of the velocity field have to be calculated, which are very sensitive to numerical er-
rors and noise. In addition, no explicit differentiation of the image data is required. In most cases, only a few
parameters are extracted from the optimization (e.g. six parameters for a general 2-D affine transformation),
but much more data points are used for the computation (e.g. 256 pixels in a 16×16 interrogation window).
Due to this strong redundancy, the least squares matching is quite immune to image noise. Furthermore,
the precision and the reliability of the estimated parameters can be easily assessed by a covariance analysis
of the least squares result. Over-parameterization can be avoided by selecting a model of the displacement
fields based on the significance of the computed parameters. Different models can be used for different
interrogation windows, making the method adaptive to the local image structure [Gruen, 1985].

3.4 Optical flow methods in computer vision

The measurement of image velocity or optical flow (defined as the apparent motion of brightness patterns
in an image sequence4) is also one of the fundamental problems of computer vision [Horn and Schunk,
1981]. Many different approaches to recover the optical flow exist. For reviews, see [Barron et al., 1994;
Beauchemin and Barron, 1995]. In this section, we give a short description of a gradient-based technique to
compute the optical flow, namely the structure tensor technique (section 3.4.1). We use this technique to
compute the velocity of sand grains in the periscope images (section 9.2) and as a velocity estimator for the
trajectory initialization in the particle-tracking algorithm (chapter 7).

The basic assumption of optical flow techniques is that the image brightness of an object point remains
constant in a spatio-temporal neighbourhood:

g(x(t), t) = const. (3.13)
4In the sense of this definition, the PIV methods of section 3.2 and the matching methods of section 3.3 are region-based methods

to recover the optical flow, based on the computational approaches of cross-correlation resp. least squares minimization.

54



3.4 Optical flow methods in computer vision 55

This means, that gray values changes in an image are only caused by the motion of objects. Mathematically,
this assumption is expressed in the so-called brightness change constraint equation (BCCE), which is
derived by a first-order Taylor expansion of (3.13):

dg

dt
= gxfx + gyfy + gt = 0, (3.14)

where f(x, t) = [fx, fy]
T = [dx/dt, dy/dt]T is the optical flow, and gx, gy and gt are the spatial and

temporal derivatives of the image intensity. If we compute the optical flow based on (3.14), we assume that
the apparent motion in the image corresponds to the physical motion of objects in the scene. This assumption
may be violated, and we have to keep in mind the following aspects (for further details, see [Haußecker and
Spies, 1999; Jähne, 2002]:

• Aperture problem: Equation (3.14) represents one equation in two unknowns. Hence, solving the
BCCE is an ill-posed problem, and we cannot compute the full optical flow, but only the motion
component in the direction of the local gray value gradient. Translations that are parallel to lines of
constant gray values are not detectable.

• Sampling theorem: The solution for the optical flow from the BCCE is determined by relating spatial
gray value gradients to temporal gray value gradients. This relation is only unique, if the temporal
sampling theorem (3.2) is valid. Large-scale motions cannot be determined from small-scale gray
value patterns.

• Appropriate image texture: The optical flow can only be computed in regions of the image that
show sufficient spatial gray value gradients. In regions of constant gray value, we cannot determine the
motion. On the other hand, gray value gradients caused by fixed pattern noise will bias the optical flow
towards lower velocities, since image regions suffering from fixed pattern noise will be interpreted as
areas of zero image motion. Hence, a correction of fixed pattern noise (section 4.3) improves optical
flow estimations.

• Illumination changes: Variation in scene intensity that are not caused by motion violate the basic
assumption of the BCCE. Intensity changes related to physical processes may be accounted for by an
extended version of the BCCE, see e.g. [Haussecker and Fleet, 2001].

In general, the basic gradient-based optical flow techniques will yield good results for small motions in
images with a sufficient texture and constant illumination. In applications with large motions and global
illumination changes, correspondence-based methods like PIV (section 3.2) and gray value matching (sec-
tion 3.3) will perform better.

3.4.1 Structure tensor method

The structure tensor method is one particular technique to compute the optical flow based on the BCCE
(3.14). To make the problem well-posed, the motion patterns are assumed to be constant in a local neigh-
bourhood. This assumption turns (3.14) into an over-determined system of linear equations, which can be
solved by a Total Least Squares technique [van Huffel and Vandewalle, 1991]. The optical flow f(x, t) is
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estimated by minimizing an objective function pooling the BCCE constraints over a small neighbourhood,
which is also extended into the time dimension to stabilize the solution [Jähne, 1997]:

f(x, t) = arg min

∞∫

−∞

w(x − x′, t − t′)[fxgx(x′) + fygy(x
′) + gt(x

′)]2d2x′dt′, (3.15)

Haußecker and Spies [1999] present a detailed discussion of the structure tensor technique, including its
extended versions that take into account brightness variations and higher-order parametric flow models
(see section 3.1.3). The extended structure tensor techniques have been successfully applied to estimate
image velocities and physical parameters of dynamic processes in a number of scientific applications, e.g.
[Haußecker et al., 1998; Jähne et al., 1998; Garbe, 2001; Spies, 2001; Dierig, 2002].

3.4.2 Confidence measures and multiple motion

The computation of the optical flow will fail if any of the underlying assumptions, e.g. sufficient variation
in the gray values, constant motion within the local neighbourhood or constant illumination intensity, is vi-
olated. Hence, confidence measures are necessary that indicate whether the computed flow is reliable. The
structure tensor technique yields such confidence measures as an integral part of the results, see [Haußecker
and Spies, 1999].

In the context of particle-tracking images, the problem of motion discontinuities is of particular im-
portance5. The latter may be caused by the volumetric illumination used in a 3-D PTV application, see
section 3.5.3. The particles in an image sequence obtained under volume illumination represent more or
less independently moving objects. For example, particles at large depths may move in opposite direction to
particles that are closer to the lens. However, a local neighbourhood in the image may contain particles of
both groups. Since multiple motions are present within such a neighbourhood, the assumption of constant
flow is not valid, and the computation of the optical flow fails. Different methods have been proposed to
overcome this problem. One approach is to use robust estimators to detect the dominant motion and reject
the data stemming from other motions as outliers. By iterating this approach and subsequently removing
the data that is in accordance with the actual estimation, multiple motions may be detected and separated
[Bab-Hadiashar and Suter, 1998; Garbe, 2001]. Another approach relies on iterative coupling of optical
flow estimation and object-based segmentation to extract the independently moving image regions [Memin
and Perez, 1998].

The tracking algorithm presented in chapter 7 uses the basic version of the structure tensor technique
to estimate the particle velocities. This estimation is only used to initialize the tracking of a particle at the
beginning of its trajectory. To avoid motion discontinuities, the computation of the structure tensor is carried
out on small neighbourhoods, corresponding roughly to the size of the particles. Obviously, discontinuities
can also be present within small neighbourhoods. In this case, the confidence measure will be low and the
estimation is rejected. The corresponding trajectory will be initialized in a later frame.

5This problem is not restricted to differential optical flow computation but is also encountered in other region-based methods
like PIV and least squares matching.
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3.5 Particle-Tracking Velocimetry

In this section, the feature-based approaches to flow visualization are discussed: the so-called particle-
tracking or token-tracking techniques. Individual tracer particle images are the features that are tracked
throughout an image sequence. The most important tracking method used to measure fluid flow is Particle-
Tracking Velocimetry (PTV). Since we also develop a PTV technique in this work, the focus of this section
is on PTV. A detailed description of the 3-D PTV algorithm is presented in chapter 7.

Besides PTV, some area-based methods are also referred to as ’tracking’ techniques: ’correlation-based
tracking’, ’least squares tracking’ or the ’KLT-tracker’. The latter methods consider the particle resp. gray
value patterns within the interrogation windows as features that are tracked. The ’correlation-based tracking’
(see [Fincham and Spedding, 1997] and section 3.2.2) is a special PIV evaluation mode, where the interro-
gation window in the second frame (’search window’) is larger than that in the first frame, as opposed to
the standard ’correlation-based interrogation’ mode of PIV where both windows are of equal size. Thus, in
this method, the correlation coefficient is used as a tracking criterion. ’Least squares tracking’ is discussed
in section 3.3. The ’KLT-tracker’ [Shi and Tomasi, 1994] (Kanade-Lucas-tracker) is a differential optical
flow method based on the early work of Lucas and Kanade [1981] (see section 3.4). This method performs
a ’tracking’ in the sense that individual image regions are automatically selected and tracked if the image
structure within the regions is sufficient to compute the optical flow based on the BCCE (3.14).

Further information about tracking methods can be found in [Faugeras, 1993], [Murray and Buxton,
1990] and [Zhang and Faugeras, 1992] in the context of computer vision and in [Dracos, 1996] in the
context of flow measurement. [Blackman and Popoli, 1999], [Stone et al., 1999] and [Brookner, 1998] are
in-depth textbooks on Kalman filtering in the context of radar applications. Many ideas and techniques
described there can also be successfully applied in visual tracking applications like PTV.

3.5.1 Standard 2-D PTV

Basic principle.

The basic idea of Particle-Tracking Velocimetry (PTV) is to identify single particle images within an image,
segment them from the background, and track them along their trajectories throughout an image sequence.
Thus, PTV belongs to the feature-based approaches to motion estimation. A PTV algorithm has to solve the
following three tasks: particle segmentation, determination of particle position and particle matching,
i.e. solving the motion correspondence problem. Since individual particle images are very similar to each
other and cannot be distinguished reliably (e.g. by their shape or intensity), the latter task is the most
difficult, due to ambiguities occuring especially for high particle densities. Thus, the particle density in
PTV applications is generally lower than in PIV applications.

As a simple example, consider the following ’optimal’ conditions for PTV: high image contrast (bright
particles on a dark, noise-free background), low particle density, and small displacements. The latter two
conditions imply that the mean distance between particles is much larger than their motion between two
frames. In this case, a very simple PTV approach may be used: segment the particles by a global intensity
threshold, determine their position by centroiding, and match each particle in the first frame to that particle in
the second frame, which is closest to its position in the first frame (’nearest neighbour’). However, since the
optimal conditions assumed above will rarely be given in real applications, more sophisticated algorithms
are needed, in particular for the particle segmentation (see section 7.3) and the tracking (see section 3.5.2).
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a b

Figure 3.3: Comparison of typical PIV and PTV vector fields. a PIV vector field of a simulated vortex. The vectors
are distributed on a regular grid in space and correspond to a ’snapshot’ of the flow field at a fixed point in time
(Eulerian approach). b PTV vector field of the flow within a gravel pore. Flow vectors are distributed randomly in
space. Note that the plot does not show streamlines (at a fixed point in time), but particle trajectories that correspond
to an extended interval in time (Lagrangian approach).

Differences to region-based approaches.

The major differences between tracking techniques and region-based motion estimation are the following:

• Temporal scope:

To increase the reliability of the tracking, most PTV techniques use more than two successive frames
to establish the temporal correspondences (’multi-frame tracking’): e.g. three-frame tracking [Pa-
pantoniou and Dracos, 1989], four-frame tracking [Hassan and Canaan, 1991], five-frame tracking
[Wernet and Pline, 1993]. Note that there are also two-frame tracking techniques [Okamoto et al.,
1995; Baek and Lee, 1996; Kim and Lee, 2002] as well as techniques trying to find the optimal set of
trajectories by taking into account their complete (visible) length within a global optimization [Sethi
and Jain, 1987; Salari and Sethi, 1990; Veenman et al., 2003]. Most correlation-based approaches and
least squares techniques try to establish a matching between only two frames. Note that some optical
flow techniques also operate on a temporal neighbourhood of more than two frames, e.g. for a more
accurate computation of temporal gradients or to stabilize the results by temporal smoothing [Jähne,
1997].

• Particle density and spatial resolution:

Since PTV aims at identifying individual particles and finding corresponding match partners in the
next frame, the particle density is generally lower than in PIV, which results in a lower spatial resolu-
tion of the underlying flow field. On the other hand, the information given by the particle seeding is
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a b

Figure 3.4: Typical endoscopic tracer particles images of the flow within a gravel pore. These images show that the
particle images do not have a homogeneous intensity but cover the complete gray value range. Further, the size of the
particles varies considerably. Both effects are caused by the volumetric illumination that is necessary in a 3-D PTV
technique. a Slow flow. The particles are rather symmetric. b Fast flow. Due to motion blur, the particles become
larger, darker, and elongated along the direction of motion.

fully exploited without any averaging effects as in PIV (see section 3.2.1), and therefore with a higher
accuracy. For example, the motion of two particles located within one PIV interrogation window can
be resolved individually. Thus, the local spatial resolution is higher than in PIV.

• Spatio-temporal distribution of velocity vectors:

Feature-based approaches compute the Lagrangian representation of a flow field, i.e. the result of
such algorithms is a set of trajectories of the tracked objects. Thus, the velocity information is given
at random locations depending on the tracer distribution and density. In contrast to area-based meth-
ods, no dense, instantaneous flow field defined on a regular grid is computed (which is the Eulerian
representation of a flow field), see figure 3.3. On the other hand, tracking methods allow to follow
the motion of individual particles in time, enabling e.g. a Lagrangian study of diffusion, which is not
possible using PIV results.

• Large motions:

Since feature-based methods do not exploit the relation of spatial and temporal intensity gradients for
velocity estimation, they are less sensitive to violations of the sampling theorem (see section 3.1.1).
Thus, feature-based methods are more suitable for the handling of larger motions, given that the
motion correspondence problem can be solved using one of the methods outlined in section 3.5.2.
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Particle Segmentation.

In the particle segmentation step, a decision has to be made for each pixel of the image, whether it belongs to
a particle or to the image background. The result of the segmentation is a binary image in which the particle
images are marked with the value 1 and the background is marked with the value 0. Particle segmentation
is rather difficult, because most particle images do not have a bimodal gray value histogram. Therefore, a
simple segmentation by a global intensity threshold is not feasible. Particle images do not have a uniform
(mean) gray value for the following reasons (see also figure 3.4):

• Image noise: Image noise introduces false positives and false negatives, especially in the segmenta-
tion of low-contrast particles.

• Motion blur: While small and slow particles are imaged as bright circular spots, the shape of the
image of a faster particle is elongated in the direction of its motion due to the integration time of the
camera. Faster particles cover a larger area in the image, i.e. the irradiance is distributed over a larger
number of pixels. Thus, faster particles have a lower intensity and may appear as faint objects with
gray values close to the image background.

• Inhomogeneous illumination: Several factors may contribute to an inhomogeneous illumination of
the images, e.g. the general intensity distribution of the light source, glow of dirty water, or particles
reflecting light to their neighbours. In particular, for 3-D applications using a volume illumination,
inhomogeneities have to be taken into account.

• Out-of-focus imaging: In applications with volume illumination, particles may be out-of-focus,
which reduces the image contrast.

The effects of high noise levels, inhomogeneous volume illumination and out-of-focus imaging are espe-
cially relevant for miniaturized applications like micro-PIV [Meinhart et al., 1999; Olsen and Adrian, 2000;
Gui et al., 2002; Devasenathipathy et al., 2003] or the endoscopic imaging presented here. As a result of
all these effects, the (mean) gray values of particle images vary locally (dependent on the depth of the par-
ticle) and may cover the complete range from the background noise level to the saturation of the sensor.
Similarly, the size of the particle images is depth-dependent. This makes the choice of appropriate seg-
mentation thresholds difficult. A good particle segmentation algorithm should be able to adapt to the local
image contrast by using local and adaptive thresholds, e.g. [Kim and Lee, 2002]. Further, the additional
feature of the particle motion can be exploited to improve the segmentation, see section 7.3.2. All kinds
of thresholds should not be prescribed manually as constants determined empirically by the user. Instead,
optimal thresholds should be computed automatically, taking into account the statistical properties of the
image noise. Many authors have pointed out that the particle segmentation is one of the most crucial steps
in a PTV algorithm, since it is the dominating factor that controls both the reliability and the accuracy of the
tracking [Perkins and Hunt, 1989; Guezennec and Kiritsis, 1990]. Different methods for the segmentation
of particle images are discussed in section 7.3.

Another difficulty is introduced by overlapping particles. Especially in 3-D applications using volume
illumination, particle images may partly overlap, or particles may be completely occluded by others. Particle
occlusion is a principal physical limitation of 3-D techniques using a volume illumination. A trade-off has
to be made between the seeding density (i.e. spatial resolution of the flow field) and the depth of view.
Different techniques to resolve overlapping particle images are discussed by [Perkins and Hunt, 1989; Maas
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et al., 1993; Guezennec et al., 1994; Carosone et al., 1995]. In section 7.3.3, the method used in this work is
described, which is a watershed algorithm from morphological image processing.

Particle position.

Once the particle images have been segmented from the background, different methods are available for the
subpixel-accurate determination of the position of individual particles: centroiding [Guezennec and Kiritsis,
1990; Hassan and Canaan, 1991; Wernet and Pline, 1993], least squares fits, e.g. in the form of a Gaussian
three-point estimator as applied in PIV [Marxen et al., 2000], fit of extended models taking into account the
motion of the particles [Leue et al., 1996], or template matching by cross-correlation [Etoh et al., 1998].

The performance of the different methods depends on the properties of the images, e.g. particle size and
density, particle contrast, and image noise. In general, errors in the determination of the particle positions
are introduced by the discretization, noise in the signal (photon shot noise), noise related to the image
acquisition and deviations from an assumed particle shape, e.g. a symmetric Gaussian. The latter is the
most important factor. Jähne [1999a] shows that discretization errors for typical particle images are of the
order of magnitude of 0.01−0.1 pixels. Wernet and Pline [1993] show that the Cramer-Rao lower bound for
the error in determining the position of a Gaussian-shaped particle is 0.015 pixels. In practical applications
with additional noise sources related to the image acquisition and more or less asymmetric particle shapes,
the mean centroid estimation error is generally larger (0.1 − 0.2 pixels). If highest accuracy is desired, the
bias towards integer positions becomes important (’peak-locking’, as discussed in section 3.2.1). In this
case, iterative weighted least squares methods have to be applied to compute an unbiased estimate.

Computation of velocity.

If a unique particle match is found, a first order approximation of the particle’s velocity may be computed
by subtracting the positions of the particle in the two successive frames and dividing by the frame period
of the camera. Assuming that the latter is given free of error, the absolute error in estimating the particle
displacement is

√
2 times the particle position error. Therefore, errors of individual velocity vectors may

be higher than in PIV. However, Wernet and Pline [1993] have shown that an accuracy superior to PIV can
be achieved by averaging the PTV results over an area of the size of a typical PIV interrogation window.
Higher order finite differences [Malik et al., 1993] or spline fits to particle trajectories [Willneff and Lüthi,
2003] may also be used to achieve a better quality of the velocity results. Further, the errors in the particle
positions of two nearby particles in successive frames are typically highly correlated. The systematic error
cancels out in the difference of the two positions. Hence, the error in the velocity estimation will be lower
then the conservative estimate given above, see also section 8.4.

Velocity postprocessing.

Techniques to remove outliers in the velocity field and interpolate the resulting gaps as well as techniques to
interpolate randomly spaced data to a regular grid have been mentioned in section 3.1.4. Similar techniqes
may be applied to PTV data, where outliers have to be defined relative to a particle trajectory. Malik and
Dracos [1995] present dedicated interpolation schemes for three-dimensional velocity fields from scattered
data using Taylor expansions. Besides the interpolation to regular grids, the final PTV results (i.e. the flow
trajectories) enable a Lagrangian analysis of the flow field, see e.g. [Virant and Dracos, 1997].
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Limitations.

An important parameter describing the difficulty of particle tracking is the ’particle spacing displacement
ratio’ rp [Malik et al., 1993]:

rp =
Λ0

Λt
, (3.16)

where Λ0 is the average distance between the particles and Λt is the average particle displacement between
two successive frames. Tracking is easy, if rp >> 1. In this case, even simple nearest neighbour approaches
like the one described in section 3.5.1 may yield good results. The tracking difficulty increases for rp ≈ 1,
and tracking becomes virtually impossible for rp << 1. In the latter case, the probability of ambiguities in
the particle matching is very high. The motion correspondence problem cannot be solved if no additional
information about the particles or their motion (e.g. size, shape, color, intensity, direction of motion) is
available. The fundamental reason is the violation of the sampling theorem (section 3.1.1) in the case of
high particle density and large motion.

Thus, for a given particle density, the tracking difficulty is related to the maximum possible displace-
ment between two frames, which depends on the frame rate, image magnification and the flow field under
investigation. For a reliable tracking, Λt should be small, i.e. the frame rate of the camera should be suf-
ficiently high. On the other hand, a larger Λt yields a lower relative error of the velocity vector, since the
absolute error in determining particle positions is independent of Λt. The basic idea to enable a reliable par-
ticle tracking for values of rp ≈ 1 and smaller is to take into account additional information about the flow
and use this information to guide the particle matching. Towards this end, most PTV approaches introduce
a motion model (section 3.1.3). Some advanced PTV techniques based on motion models are discussed in
section 3.5.2.

Another difficulty in PTV stems from the fact, that the number of particles in two successive frames may
not be equal. Even if the number of particles is equal, the assumption that the same set of physical particles
is visible in both images is not valid. Instead, a PTV algorithm has to handle the following ’events’:

• Entry resp. trajectory initialization: Particles may enter the field of view. These particles do not
have a correspondence partner in the previous frame.

• Exit resp. trajectory termination: Particles may leave the field of view. These particles do not have
a correspondence partner in the following frame.

• False positives and false negatives: Image noise may result in spurious particle images at locations
where actually no particle is visible. Segmentation failures may result in a loss of particles, e.g.
particles are not segmented due to their low intensity.

• Overlapping particles and occlusion: Especially for high particle densities, an overlap and occlusion
handling has to be introduced.

Particle entry and exit may take place both in the lateral direction across the image border and in the depth
direction along the optical axis. In the latter case, entry and exit occur gradually with an increasing resp.
decreasing particle intensity. Since all these events and their consequences have to be considered for each
particle in each image of a sequence, PTV algorithms tend to be quite complex. In the following sections,
some advanced PTV techniques are discussed.
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3.5.2 Advanced tracking techniques

As discussed in the previous section, the most difficult step of a PTV algorithm is to find the unique, correct
solution to the motion correspondence problem: all particles in an image have to be associated to their
correct matching partners in the next frame. This association is difficult for higher particle densities, since
the probability of ambiguities becomes large, i.e. there will be several possible matching partners within
a search region in the next frame. The basic idea of advanced PTV algorithms is to use additional a priori
knowledge and assumptions about the flow field. Based on such information, a model of the flow can be
introduced. Further, kinematic constraints can be used to reduce the number of corresponding particles
and thus the number of ambiguities in the matching. The reduction of the number of ambiguities becomes
possible for two reasons. First, using a model of the flow field enables the prediction of the future position
of particles by extrapolation. Thus, the search region for the correspondence search may be located at this
predicted position. Second, if the flow model is a good approximation of the actual flow field, there will be
a high probability that the predicted position is already at the correct location of the match partner. Thus,
the size of the search region may be reduced. If there is only one particle within the predicted search region,
a unique match is established. If still several matching partners remain, one of them may be chosen as the
correct match according to certain criteria, which are again based on additional information or assumptions
on the flow.

The main assumption that is made in many tracking algorithms is the smoothness of the flow field.
It is based on the physical principle of inertia. Due to inertia, the motion of an object will not change
abruptly between two frames, given that the frame rate is sufficiently high. Inertia is related to the temporal
smoothness of particle trajectories. In addition, spatial smoothness (or spatial coherence) of the velocity
field may also be assumed. In particular, for incompressible, viscous flows, the velocity vectors within a
spatial neighbourhood will vary smoothly. Thus, velocity vectors next to each other will be similar in speed
and direction.

In addition to the basic smoothness assumptions, any a priori knowledge about the flow field may also be
incorporated into the tracking. For example, if the flow is known to have a mean bulk velocity, this velocity
can be used as an offset in the tracking algorithm. Search radii defining the area where matching particles
are supposed to be found can be defined based on hydromechanic knowledge, e.g. maximum expected
velocities or turbulence scales like the Kolmogorov scales or Taylor microscales [Malik et al., 1993; Virant,
1996]. Such considerations are particularly important for the initialization of trajectories, since for particles
entering the field of view, no velocity vector is available that can be used to predict their next position.

Another approach to resolve ambiguities in the correspondence analysis is to take into account several
possible matches and defer the decision of the correct match on later frames. Such approaches are realized
using techniques of statistical data association or combinatorial optimization. These techniques can also
deal with particle occlusion and thereby resolve crossing trajectories. This is possible, because a larger
temporal scope is taken into account when solving the correspondence problem, e.g. a temporal neighbour-
hood of three previous and three future frames. The correspondence is solved by finding an optimal set of
trajectories within this temporal neighbourhood, where optimality is expressed e.g. in terms of trajectory
smoothness.

Finally, some remarks concerning the optimal choice of thresholds and other tracking parameters, e.g.
size of search regions, shall be made. In many cases, the optimal parameters depend on the flow conditions,
i.e. particle density and flow velocity. However, the latter are not constant throughout the whole image
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resp. image sequence, but there may be significant variations of these quantities, even within a single image.
Obviously, optimal performance of a tracking algorithm cannot be achieved using a fixed set of parameters.
Instead, the parameters should adapt to the local flow conditions. For example, it does not make sense to
use a search region based on a global maximum velocity constraint within a region of the image where the
velocity is very small and the particle density is very high. In this case, a search region based on a maximum
velocity constraint will be much too large. It may also be advantageous to adapt the shape of the search
region to the flow conditions. For example, if there is a clear main flow direction, the search region should
be elongated along this direction. Malik et al. [1993] state that the search radius is the most important and
most sensitive parameter in a tracking scheme. Only an accurate choice of the search radius leads to efficient
tracking. A PTV method using adaptive tracking parameters has been presented by Kim and Lee [2002].

In the following subsections, some implementations of the ideas developed in this section are reviewed.

Two-frame tracking.

The simplest two-frame tracking technique performs a nearest neighbour search based on a minimum-
velocity constraint. Hering et al. [1997] use the spatial overlap of particle images to identify the nearest
neighbour. The overlap is caused by overlapping integration times of the even and odd fields in an in-
terlaced camera frame. If non-interlaced cameras are used, the overlap may be created artificially by a
morphological dilation. The approach is only feasible for low particle densities.

The performance of two-frame tracking can be increased towards higher particle densities by including
a spatial coherence constraint and requiring velocity vectors within a spatial neighbourhood to be similar.
For example, Perkins and Hunt [1989] propose a nearest neighbour search for all particles within a certain
neighbourhood around a ’main particle’. Corresponding particles are found by minimizing the sum of
Euclidean nearest-neighbour distances of all particles within the neighbourhood. Other approaches based
on spatial coherence are presented by Okamoto et al. [1995]; Baek and Lee [1996]; Ohmi and Li [2000].

Multi-frame tracking.

Multi-frame techniques are based on the assumption of trajectory smoothness. They use a model of the
particle motion to predict the particle positions in the next frame. This model is given by the Taylor ex-
pansion of the particle trajectory (3.8). The techniques differ in the degree of approximation in the Taylor
expansion. Three-frame techniques use the actual frame and one previous frame to compute a first order
approximation of the particle velocity. The resulting velocity vector is used to predict the particle position
in the next frame, assuming that the velocity stays constant. If several match candidates are found within a
neighbourhood around the predicted particle position, the particle with the smallest distance to the predicted
position is chosen. This choice corresponds to a minimum acceleration constraint on the particle motion. In
a similar manner, higher order terms in the Taylor expansion may be taken into account to improve the ac-
curacy of the predicted particle position, e.g. in four-frame techniques [Hassan and Canaan, 1991; Wernet
and Pline, 1993; Malik et al., 1993].

From the point of view of implementation, imposing the temporal smoothness constraint is actually
a matter of defining search areas around predicted particle positions. In most applications, circular areas
are used. The radii of these areas are chosen according to the kinematic constraints imposed by the flow
model or according to prior hydromechanic knowledge about the flow. For example, to initialize a trajectory,
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the search radius in the second frame may be defined by the maximum expected velocity. The centers of
the search areas in the third and fourth frame are predicted by extrapolating the model, while their radii
may be chosen according to the expected fluctuations in the velocity. The latter can be estimated from the
Kolmogorov scales of the flow and the imaging parameters [Malik et al., 1993].

Combinatorial optimization.

The motion correspondence problem between two sets of features in two successive frames may be for-
mulated as a combinatorial optimization problem. Based on such a formulation, results and algorithms
developed in graph theory and operations research may be applied in PTV.

Given are two sets of particle coordinates P1 and P2 (particle images in the first frame at t = t1 and
particle images in the second frame at t = t2 = t1 + ∆t):

P1 =
{
p1,i, i = 1..N1

}
, (3.17)

P2 =
{
p2,j , j = 1..N2

}
, (3.18)

where pi,j = (xi,j , yi,j) are the coordinates of particle j in frame i. The particle matching between two
successive frames may be described by an association matrix α = (αij), with αij = 1 if particle i in the
first frame is matched with particle j in the second frame and αij = 0 elsewhere. The task is to find an
optimal assignment between the elements of the first and those of the second set.

Optimality is expressed in terms of an objective function d that is linear in the associations it includes
between the two sets:

d =

N1∑

i=1

N2∑

j=1

αijcij , (3.19)

where cij is the cost for the association αij . The costs cij are chosen according to the kinematic constraints
discussed in the previous section, e.g. favouring smooth trajectories. The optimal assignment is determined
by minimizing the objective function (3.19). This formulation of the two-frame tracking is equivalent to a
so-called bipartite graph matching or assignment problem, which is a basic problem of combinatorial
optimization occuring in many applications. Efficient algorithms to solve it have been developed, see e.g.
[Cook et al., 1998; Nemhauser and Wolsey, 1999]. For an example of a PTV application based on bipartite
graph matching, see [Dalziel, 1993]. Stellmacher and Obermayer [2000] and Krepki et al. [2000] present an
interesting approach to simultaneously estimate particle correspondences and a local affine transformation
by applying a combined discrete and continuous optimization method. This method has been originally
proposed by Gold et al. [1998] for solving point matching problems in statistical pattern recognition.

If the temporal scope of the tracking is extended to three or more frames, the problem becomes a multi-
dimensional assignment problem. Such problems are known to be NP-complete, i.e. there is no efficient
algorithm to compute their solution [Nemhauser and Wolsey, 1999]. However, approximate solutions can
be found using greedy search techniques and other heuristics: [Sethi and Jain, 1987; Salari and Sethi, 1990;
Hwang, 1989; Chetverikov and Verestoy, 1999; Veenman et al., 2003]. The complexity of the correspon-
dence analysis is significantly increased due to the extended temporal scope. Therefore, combinatorial
techniques are computationally expensive. On the other hand, these techniques are able to resolve crossing
trajectories and find an optimal set of trajectories also in the presence of particle occlusions and dropouts
due to segmentation failures.
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Statistical techniques.

Statistical approaches to solve the motion correspondence problem (’statistical data association’) have
been originally developed in the context of radar target tracking and surveillance, where particle tracking is
referred to as ’multiple target tracking’. A large number of different approaches and algorithms has been
published. For an introduction, see e.g [Brookner, 1998; Blackman and Popoli, 1999; Stone et al., 1999]. A
review of statistical data association techniques in the context of computer vision is given by Cox [1993].

Statistical data association techniques are specifically developed to resolve ambiguities in motion corre-
spondences, including events like track initiation and termination, particle occlusion and false positives resp.
negatives. Like the other advanced techniques discussed so far, most of the statistical techniques are also
based on the two paradigms of prediction of an optimal search region and postponing assignment decisions
by examining subsequent frames. The difference of statistical approaches is that they model the motion of
a particle over time as a stochastic process. The optimal particle state according to the measurements and
the underlying model is then computed within the framework of Bayesian inference [Stone et al., 1999].
Within this framework, the probability distribution of the particle state is propagated over time and up-
dated by the measurements in each frame. A (stochastic) state vector is introduced, which describes the
actual state of a particle, e.g. its position, velocity and acceleration. This state vector follows a probability
distribution, the so-called prior distribution. When measurements of the particle state become available
(e.g. its position resulting from the particle segmentation), this measurement information is converted into a
likelihood function defined on the particle state space. Likelihood functions are presumed to contain all the
relevant information in the observed data. They provide a probabilistically correct method of combining all
types of sensor information and incorporating it into a tracker’s estimate of the particle state. Note that this
may include the detailed physics of the camera response and its noise characteristics. Bayes rule is applied
to combine all this information and compute the posterior distribution on the particle state by combining
the prior distribution with the likelihood function. Finally, optimal particle associations are computed from
these probability distributions. All statistical data association techniques may be formulated within this
Bayesian framework.

The simplest statistical tracking technique is the Kalman filter [Welch and Bishop, 2001; Blackman and
Popoli, 1999]. It is based on the assumptions of a linear model of particle motion (like (3.8)) and Gaussian
distributions of particle state and measurement error. The Kalman filter computes the optimal position of a
particle in the next frame by predicting its position according to a model and combining this prediction with
a measurement. Note that the prediction also includes the precision of the particle location. Optimality is
achieved by taking the errors of the prediction and the measurement into account. For example, the shape of
the search region around the predicted position may be chosen according to the covariance of the predicted
position, which typically results in elliptical search regions instead of circular ones. Examples for Kalman
filters applied in PTV are [Yagoh et al., 1992; Ohba et al., 1992; Takehara et al., 2000]. In the algorithm
developed here, we also apply a Kalman filter, which is described in section 7.4.2.

Simple Kalman filters have several drawbacks. They provide a statistically optimal estimate of particle
position and thus can guide the tracking and implicitly reduce ambiguities. However, they cannot handle
ambiguities explicitly. An extension of the Kalman filter with increased capabilities in the handling of
ambiguities is the Multiple Hypothesis Tracker (MHT) [Cox and Hingorani, 1996; Blackman and Popoli,
1999]. In the case of ambiguities, the latter takes into account the k-best hypotheses (computed by a Kalman
filter). Probabilities for all the hypotheses are computed, and the most probable hypothesis is chosen. Thus,
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the MHT is a combined approach based on statistical reasoning and combinatorial optimization.

In complex tracking problems (like turbulent fluid motion), the assumptions of the Kalman filter, i.e.
a linear model and Gaussian probability distributions, may be too simplistic. It is possible to relax these
assumptions and work with general probability distributions of arbitrary shape as well as arbitrary nonlinear
models. This general framework of Bayesian Multiple Target Tracking is discussed in the book by Stone
et al. [1999].

3.5.3 3-D/3-C tracking

PTV can be extended to 3-D measurements using the same basic techniques as in 3-D PIV, namely stereo-
scopic or multi-camera image acquisition. The stereoscopic 3-D PTV technique developed in this work is
described in detail in chapter 7 (concerning the image processing) and chapter 9 (concerning the experimen-
tal setup).

In addition to solving the motion correspondence problem (temporal correspondence), a 3-D PTV algo-
rithm has to solve the stereo correspondence problem (spatial correspondence), i.e. to find corresponding
particles in two or more images taken from different viewpoints. If a unique correspondence is established,
the 3-D position of the particle can be computed by triangulation of the projection rays. The first 3-D PTV
systems have already been implemented between 1984 and 1989 [Chang et al., 1984, 1985a,b; Racca and
Dewey, 1988; Adamczyk and Rimai, 1988]. The systems of Nishino et al. [1989] and Papantoniou and
Dracos [1989] were the first that could track several hundred 3-D vectors per frame.

There are two different approaches to 3-D PTV. They differ in the order in which the spatial and tem-
poral correspondences are solved. The first approach first performs a particle-tracking in the image planes,
resulting in a set of 2-D particle trajectories. Thus, the motion correspondence is solved first. Then, the
stereo correspondences of the particle trajectories are analyzed to find the 3-D coordinates [Guezennec
et al., 1994; Engelmann et al., 1999]. This is also the approach of the algorithm presented in chapter 7.
The other approach first solves the stereoscopic correspondences of single particles to compute their 3-D
coordinates. Afterwards, the particle tracking is performed in 3-D space [Nishino et al., 1989; Maas et al.,
1993; Malik et al., 1993]. For this approach, three or more views of the flow field are needed in order to re-
solve stereoscopic ambiguities in the determination of the particle positions. A further recent approach is to
combine spatial and temporal information and solve the motion and stereo correspondences simultaneously
(’spatio-temporal matching’) [Willneff and Lüthi, 2003].

The goal of 3-D PTV is to measure the three components of the velocity vectors within a 3-D volume in
space. Towards this end, a volume illumination has to be used instead of a light sheet that is typically used
in 2-D applications. The volume illumination introduces a number of difficulties concerning the imaging of
particles and the processing of such images:

• Particle occlusion: Particles located along the same optical ray occlude each other, which limits the
particle density resp. the depth of view. A trade-off between these two parameters has to be chosen
according to the goals of the measurement.

• Projection of a 3-D scene: A particle image obtained using volume illumination is the 2-D projec-
tion of a 3-D scene with a certain depth. Depending on the particle density, this will increase the
probability of spatial overlap of the particle images resp. trajectories crossing each other in the image
plane. In addition, the assumption of spatial coherence of the projection of the flow field is no longer
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Table 3.2: Comparison of different 3-D PTV implementations. σX/σY /σZ are the accuracies of the reconstructed
3-D coordinates in the corresponding directions. The tracking efficiency is the ratio of tracked particles to the total
number of particles.

Tokyo Zürich Heidelberg Eindhoven

cameras 3 3 − 4 2 3

frame rate [Hz] 30 30, 60 60 25

image resolution 512 × 512 640 × 480 640 × 480 512 × 512

σX/σY /σZ [µm] 25/25/60 20 − 100 30/30/80 10/10/30

vectors per frame 400 − 800 500 − 1300 100 − 300 500

tracking efficiency [%] 50 − 90 65 − 96 10 − 30 60

valid, since particles that are actually far away from each other in the 3-D volume may be projected
next to each other in the image. This may result in local motion discontinuities in the optical flow, see
section 3.4.2.

• Out-of-focus imaging: If the illuminated volume is larger than the depth-of-field of the lens, some
particles will be out of focus, resulting in a larger size and lower contrast of these particles. Such
effects have to be considered in the particle segmentation, see also section 7.3.

Table 3.2 shows an overview of some 3-D PTV systems developed by different authors at the Universities
of Tokyo [Nishino et al., 1989; Kasagi and Nishino, 1990], Zürich [Maas et al., 1993; Malik et al., 1993],
Heidelberg [Engelmann et al., 1999] and Eindhoven [Kieft et al., 2002] during the past decade. The system
of Engelmann et al. [1999] uses a previous version of the algorithm presented in chapter 7. The performance
parameters compiled in the table give a general impression of the performance of typical 3-D PTV systems.
Tracking efficiencies are typically in the range between 50% and 90%, and the relative spatial resolutions
of the object volume are typically 1 : 4000 in the lateral direction and 1 : 2000 in the depth direction.
Depending on the tracking approach, several hundred up to more than thousand 3-D vectors can be obtained
per frame (using standard CCIR or RS170 cameras).

Further developments and applications of the system of Maas et al. [1993] have been carried out by
Virant [1996], Stüer [1999], Lüthi [2002] and Willneff [2003]. The system of the University of Tokyo
has been upgraded recently by three high-definition CCD cameras with a resolution of 1920 × 1024 pixels
[Suzuki et al., 2000]. Other applications of 3-D PTV are presented by Hardalupas et al. [2000]; Ortiz-
Villafuerte et al. [2000]; Doh et al. [2000]. La Porta et al. [2001] present a PTV system based on silicon
strip detectors. This system achieves frame rates of up to 70000 Hz, enabling Lagrangian acceleration
measurements in high Reynolds number turbulence.

3.6 Hybrid methods

Clearly, the maximum amount of information contained in a particle image is the motion of the individual
particles. The number of particles within an image, i.e. the particle density, defines the maximum spatial
resolution of the velocity field that can be achieved. The approach of Particle-Tracking Velocimetry (sec-
tion 3.5), is to actually exploit the maximum resolution by identifying the individual particles and measuring

68



3.7 Summary 69

their motion. However, such an approach is not feasible in the evaluation of PIV images, since the particle
density is much higher than in PTV images. A high particle density gives rise to ambiguities in the temporal
correspondence analysis of the particle motion that can not be resolved without further information. The
idea of super-resolution PIV resp. Hybrid PIV/PTV is to combine PIV and PTV [Guezennec and Kiritsis,
1990; Keane et al., 1995; Cowen and Monismith, 1997; Kim and Lee, 2002]. Stated more general, hybrid
methods refine an initial region-based estimation with a subsequent feature-based estimation, with the goal
of combining the advantages of both approaches to achieve high spatial resolution, accuracy and dynamic
range at the same time. Typical problems of standard PIV like averaging and gradient-biasing effects are
overcome by tracking the individual particles within the interrogation windows. The initial result of a coarse
PIV interrogation is used in a predictor step to direct the particle matching algorithm in the right direction
and thereby reduce the size of the search area. With a smaller search area located near the correct match
partner, the probability of ambiguities is reduced. Bastiaans et al. [2002] present a hybrid method com-
bining a PIV prediction step with a tracking step based on combinatorial optimization to resolve remaining
ambiguities. Their method is able to track particles at rp-values (see (3.16)) as low as 0.5.

The 2-D PTV algorithm presented in section 7.4 also belongs to the class of hybrid methods. It combines
two region-based low-level motion estimators (PIV and optical flow) with a feature-based Kalman tracker.

3.7 Summary

In this chapter, a review of state-of-the-art methods to compute the apparent motion in an image sequence,
i.e. the optical flow, has been presented, focusing on quantitative flow visualization applications. In a strict
sense, the term optical flow refers to the continuous velocity field of the apparent motion in a scene that is
projected onto an image plane. The sampled and discrete version of the optical flow is the displacement
vector field. We have discussed different approaches to compute displacement vector fields. They are basi-
cally categorized into region-based and feature-based methods. The common assumption of region-based
methods is the local spatial coherence of the apparent flow field. The three main computational approaches
have been discussed: image cross-correlation (PIV), minimization of gray value differences (least squares
matching) and gradient-based optical flow techniques from computer vision. Optical flow techniques are
generally a good choice to estimate small motions, whereas correlation and matching techniques perform
better in the case of large motions and small image structures. In contrast to region-based methods, the
feature-based techniques do not necessarily assume a coherent flow field, but estimate the motion of in-
dependently moving objects. A number of different approaches to track particles throughout an image
sequence have been reviewed.

Neither region-based nor feature-based approaches can be considered as perfect choices that can solve
any motion estimation problem. They should rather be considered as complementary to each other. This is
the basic idea of hybrid methods, which try to combine the advantages of region-based and feature-based
techniques. Currently, hybrid methods achieve the highest spatial resolution, accuracy and dynamic range.

In their basic 2-D implementations, all the methods discussed in this chapter acquire information from
a planar slice of the flow field, that is illuminated by a light sheet. Strictly speaking, if we want to infer
quantitative information about a physical flow field from a series of 2-D images, we have to assume that
the flow is two-dimensional and that the images are created by orthographic projection, so that there are
no perspective distortions. Only in this case will the optical flow represent a scaled version of the original
flow. If there is significant out-of-plane motion in the flow or the images show strong perspective effects or
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Figure 3.5: Lagrangian flow trajectories of the pore flow within a gravel pore, obtained from the measurements
performed in this thesis using the algorithm of chapter 7. The different colors represent the speed of the particles:
from blue (slow) via green and yellow to red (fast). The trajectories show that the flow field is three-dimensional.
Hence, a 3-D/3-C technique is necessary to perform quantitative measurements.

other distortions, large errors will be introduced if we estimate the real flow velocities just by scaling the
image velocities. The endoscopic imaging of the confined flow in a gravel pore presented in this thesis is an
example, where both out-of-plane motion and perspective effects are significant. Because of the interaction
of the erratic pore geometry and the intrinsic (turbulent or intermittent) fluctuations of the flow, the flow
field in the pore is expected to be strongly three-dimensional. This has been confirmed by the measurement
results presented in section 10.3, see also figure 3.5. Perspective effects will be strong because of the short
focal lengths of the endoscopes. Both effects underline the need for a 3-D/3-C technique to perform accurate
quantitative flow measurements.

From an algorithmic point of view, all the methods discussed in this chapter can easily be extended
to compute three-dimensional velocity vectors within a volume in space. The challenge of 3-D motion
estimation is rather a technological one: the acquistion of 3-D image data. The state-of-the-art technique
used for 3-D flow visualization is stereoscopic resp. multi-view imaging. Both 3-D PIV and 3-D PTV
approaches have been discussed. While most 3-D PIV methods are still restricted to measurements within a
plane (or multiple planes if a scanning light sheet is used), 3-D PTV is the only method that can be realized
at relatively moderate expense in a miniaturized implementation and is capable of performing quantitative
volumetric measurements. Hence, it is the method of choice for the present application.
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Digital image sequence analysis
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Chapter 4

Radiometric image analysis

Digital images can be considered as discrete intensity values (gray values) defined on a rectangular spatial
grid. Thus, they provide a combination of radiometric and geometric measurement data. The aim of image
processing is to extract the information of interest, e.g. the 3-D coordinates of tracer particles, from these
measurements. In doing so, one has to keep in mind that digital images are sampled and noisy versions of
the underlying continuous intensity distribution of the physical image. In other words, as any measurement
data, image data are subject to statistical and systematic errors. In order to ensure an optimal performance
of any image processing algorithm in terms of precision and accuracy, it is necessary to know the statistical
properties of the measurement errors as well as the physical origin of systematic errors. Given this know-
ledge, it is possible to take into account the error statistics in the evaluation (e.g. in a weighted least squares
fit) resp. to include terms correcting for systematic errors in the mathematical model.

In this chapter, we analyze the radiometric properties of the cameras, focusing on image noise, i.e. any
deviations of the gray values from their ’true’ values. In section 4.1, the noise characteristics of the CMOS
cameras are analyzed, showing that there is a significant fixed pattern noise in the images. A comparison
with CCD cameras is presented in section 4.2. Section 4.3 proposes a method to correct for fixed pat-
tern noise. In section 4.4, we discuss a method to reduce the inhomogeneity of the illumination, both in
calibration and particle images. The chapter is summarized in section 4.5.

4.1 Analysis of CMOS camera noise

The goal of this section is to quantify the various noise sources that corrupt the digital gray values in the
images, so that

1. systematic (spatial) noise components can be removed by a radiometric correction,

2. the remaining (temporal) noise can be quantified accurately and accounted for in the image processing
algorithms.

We have to distinguish between two different types of noise. The first is fixed pattern noise (FPN), which is
the spatial inhomogeneity of the gray values in an image acquired under homogeneous illumination. Spatial
inhomogeneities of the sensor are caused by technological variations at the fabrication step of the sensor,
resulting in slightly different properties (gain, size resp. capacity) of the individual sensor pixels. Since FPN
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a b

Figure 4.1: Typical noise phenomena of CMOS cameras: a An image of a calibration grid showing strong
photoresponse-nonuniformity (PRNU). The gray values are shown as a colored 3-D surface plot. Note that this is
a temporally averaged image, thus the PRNU is the only noise source. b Temporal noise variance in an image taken at
homogeneous illumination, coded in gray values. The variance is larger in the right part of the image, probably due
to different electronic amplifier or readout circuits. Vertical stripes can be seen, which are introduced by the column
amplifiers of the camera. The two darker spots may be caused by dust particles on the sensor.

is a systematic effect producing a ’fixed pattern’ that does not change with time, it can be removed (or at
least reduced) by a radiometric correction. We distinguish between fixed pattern noise in dark images taken
without any illumination, which is also called dark-response-nonuniformity (DRNU), and fixed pattern noise
in images taken at non-zero illumination, which is also called photo-response-nonuniformity (PRNU). An
example of PRNU is shown in figure 4.1a.

The second type of noise is the temporal gray value variance of a single pixel. This temporal noise
in turn has two different origins, namely the photon shot noise and different types of electronic noise of
the cameras (readout noise, amplifier noise, thermal noise, dark current and quantization noise) [Janesick,
2001; Kamberova, 1996; Healey and Kondepudy, 1994]. An example of electronic noise of a CMOS camera
is shown in figure 4.1b. The electronic design of the different amplifiers and readout circuits of a CMOS
camera (e.g. column amplifiers) typically causes correlations between pixels.

As we can see from the last example, camera noise strongly depends on the camera type. We have
to distinguish between analog and digital cameras, and between CCD and CMOS cameras. For example,
one prominent noise source of analog cameras is the so-called line-jitter, which is caused by inaccurate
synchronization of the sampling frequencies of the camera and the frame grabber (sensor clock resp. pixel
clock) [Beyer, 1992]. Line-jitter results in random horizontal shifts of the individual lines of an image, with
displacements of up to about 0.5 pixels. Thus, line-jitter seriously jeopardizes subpixel-accuracy if there
is no possibility to reduce it by temporal averaging of several frames. Fortunately, there is no line-jitter in
digital cameras. However, CMOS cameras typically show a larger PRNU than CCD cameras, because each
individual pixel has its own electronic gain circuit, independent of the other pixels. In some CMOS cameras,
this pixel mismatch in gain (and also in offset) is corrected already in hardware, e.g. [Loose et al., 1998].
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a b

Figure 4.2: a Ulbricht sphere used to obtain a homogeneous illumination of the CMOS sensor. b Circular field of
view of an endoscope.

In this work, three types of cameras are used: digital CMOS cameras, analog interline transfer CCD
cameras and analog progressive scan CCD cameras. In this chapter, the focus is on the CMOS cameras,
which are the most important part of the experimental setup. A short comparison with the CCD cameras is
carried out in section 4.2. Further information can be found in [Klar, 2004a].

4.1.1 Radiometric sensor model

The noise analysis is based on the following linear sensor model [Jähne, 2002; Jähne and Herrmann, 2003;
Gröning, 2003]. As already mentioned, there are two principally different sources of temporal noise: photon
shot noise, which depends on the gray value, and electronic noise, which is independent of the gray value.
We assume that all the electronic noise sources are independent of each other and normally distributed. They
are summed up in a single (temporal) variance σ2

0(i, j).

The gray value dependent noise component has its origin in the Poisson-distributed photon flux. Ex-
cept for very small fluxes, when only single photons reach the sensor, the Poisson distribution is well-
approximated by a normal distribution N(Ne,

√
Ne) (i.e. the variance is equal to the mean value), where Ne

is the number of photoelectrons (photon-generated electrons) collected at a single pixel. Thus, the measured
gray value g(i, j) and its variance σ2

g(i, j) can be written in the following way:

g(i, j) = g0(i, j) + α(i, j)Ne(i, j), (4.1)

σ2
g(i, j) = σ2

0(i, j) + α2(i, j)Ne(i, j) = σ2
0(i, j) + α(i, j)[g(i, j) − g0(i, j)]. (4.2)

The constant α(i, j) is the gain factor of the pixel, in units of gray values per electron. As can be seen from
(4.2), the noise variance increases linearly with the digital gray value.

There are basically three different methods to analyze image noise statistically [Beyer, 1992]:

• Single Pixel Method: The statistics of single pixels (temporal mean and variance) are collected using
a large number of frames.
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Table 4.1: Electronic noise 〈σ0(i, j)〉 and total noise 〈σ1(i, j)〉 at 〈g1(i, j)〉 ≈ 150. of the CMOS cameras. To identify
the different cameras, we use the name of the corresponding workstation that was used to acquire the data of that
camera.

Höllbach, left Höllbach, right Kocher, left Kocher, right

〈σ0(i, j)〉min
0.0 0.0 0.0 0.0

〈σ0(i, j)〉 0.003 0.38 0.08 0.002

〈σ0(i, j)〉max
1.21 0.97 1.71 1.23

σ0(i, j) = 0 99.4% 22.6% 81.2% 99.5%

〈σ1(i, j)〉min
0.3 1.4 0.7 1.4

〈σ1(i, j)〉 1.8 1.7 1.3 1.6

〈σ1(i, j)〉max
3.6 3.2 5.0 3.3

• Patch Method: Subareas of about 20 by 20 pixels are used to analyze spatial and/or temporal statis-
tics.

• Frame Averaging Method: This method uses a large number of frames with uniform illumination
and computes the statistics from all pixels over the frames.

The basic mathematical operation in all methods is temporal and/or spatial averaging. However, the results
of each method clearly depend on the kind of data that is available (images under uniform illumination, static
scenes, sequences or single images) and on the assumptions that are made. For example, if only one image
with uniform illumination is available and all pixels share the same properties, the patch method may be
used to estimate the image noise by spatial averaging. If a sequence of a static scene is available, the single
pixel method and temporal averaging may be applied. However, if there are strong gray value gradients in
the scene, and the sequence has been acquired with an analog camera, line-jitter may introduce additional
large temporal noise components at the positions of large gray value gradients. One has to keep such effects
in mind when carrying out a noise analysis.

In the following, we use the single pixel method to obtain statistics for individual pixels by pixelwise
temporal averaging of image sequences acquired under constant, uniform illumination, so-called flatfields.
Such sequences have been obtained by removing the lens from the camera to rule out any vignetting and
radiometric falloff introduced by the lens and using an Ulbricht sphere as light source, see figure 4.2a. Since
the endoscopes’ field of view is circular (see figure 4.2b) and does not completely cover the quadratic image
area of the sensor, all black pixels are masked out and only the pixels within the circular endoscope image
are used in the image processing.

4.1.2 Temporal noise

Electronic noise σ2
0(i, j).

To measure the electronic noise, sequences of dark images with closed lens cap are acquired. From these
sequences, the pixelwise mean and variance is calculated. The variance is equal to σ2

0(i, j) in (4.2). The
spatial average of the gray value variances is used as a measure of the electronic noise. The results are
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Figure 4.3: Dependence of the total noise variance on the mean gray value. a Höllbach, left. b Höllbach, right.

shown in table 4.1. The electronic noise is quite low, with average values of below 0.5 gray values, which is
the manufacturer’s specification [Photonfocus, 2003]. Further, we see that there are pronounced differences
between the cameras, although they are of the same type and the same camera configuration has been used
for all cameras. While the electronic noise is nearly zero for the cameras (Höllbach, left) and (Kocher, right),
it is much larger for the cameras (Höllbach, right) and (Kocher, left).

Total noise variance σ2
g(i, j).

The total noise variance is analyzed using sequences of flatfields. Again, we use the spatial average of the
variance as a global noise measure of the sensor. Figure 4.3 shows the dependence of the total noise variance
on the mean gray value for the Höllbach-cameras. The dependence is not linear as (4.2) suggests. Thus, the
gain factor α(i, j) is not constant, but depends on the gray value. This effect is introduced by the skimming
mode of the cameras, which has been used to amplify the gray values on-chip before readout and other
electronic noise adds to the output, see section 9.4.3 and [Photonfocus, 2003].

Note, that again there is a different behaviour of the two cameras, as can be seen from the different
polynomial fits to the data in figure 4.3.

4.1.3 Dark-response nonuniformity (DRNU)

Gray value offset g0.

DRNU is the inhomogeneity of the gray value offsets in a dark image. DRNU is caused by processing errors
during sensor fabrication, which introduce small variations in quantum efficiency and charge collection
volume [Janesick, 2001]. The DRNU is characterized by a spatial standard deviation σspatial(g0) of the
gray values in a dark image. In figure 4.4, the DRNU is shown, coded in three intensities: black for all
pixels with deviations below σspatial, gray for all pixels with deviations between σspatial and 2σspatial, and
white for all pixels with deviations larger than 2σspatial. Both the inhomogeneity and the absolute values
of the offset (see table 4.2) are larger for the cameras (Höllbach, right) and (Kocher,left). The offset can be
neglected for the other two cameras, since the average offset is well below one gray value. However, there
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a b c d

Figure 4.4: DRNU in the dark images: a Höllbach, left. b Höllbach, right. c Kocher, left. d Kocher, right.

Table 4.2: Dark-response nonuniformity (DRNU) of the CMOS-cameras: gray value offset 〈g0〉 and its spatial in-
homogeneity σspatial(g0). In the first three lines, both the values obtained right after switching on the cameras and
after a period of 48 hours of operation are given. The latter are significantly higher. The last three lines show the
percentage of pixels within the intervals g0 ± nσspatial with n = 1, 2 and outside these intervals.

Höllbach, left Höllbach, right Kocher, left Kocher, right

〈g0〉 0.01-0.1 5-12 1-3 0.01-0.1

〈g0〉max
19-45 49-68 100-158 69-126

σspatial(g0) 0.2-1.0 (0.4%) 6.4-9.0 (3.5%) 2.3-4.8 (1.9%) 0.4-1.0 (0.4%)

±σspatial(g0) 98.6% 64.0% 85.3% 98.8%

±2σspatial(g0) 0.2% 32.4% 8.7% 0.2%

> 2σspatial(g0) 1.2% 3.6% 6.0% 1.0%

are some pixels with significantly larger offsets, with maximum values of over 100 gray values. Obviously,
these are defect pixels or so-called hotpixels. They are excluded from all further calculations and their gray
values are interpolated from the neighbouring pixels.

Warm-up effects and temporal drift.

In an analysis of camera noise it is important to take warm-up effects into account [Beyer, 1992] in order
to ensure that the noise characteristics are constant throughout different measurements, e.g. carried out
at different days. The DRNU analysis has been carried out several times during a period of 48 hours of
continuous operation of the cameras. Figure 4.5 shows the results of the Höllbach-cameras. Even after
two days, there is still a small drift in the mean gray value offset in the dark images. As mentioned above,
the offset is very small in the left camera, so we may also neglect the small drift. However, for the right
camera, the gray value offset is quite large already after switching on the camera (about 5 gray values).
During 48 hours, it increases to about 12 gray values, which is a significant effect, e.g. when subtracting a
dark image. Thus, care has to be taken that all cameras are warmed up sufficiently before the acquisition of
image sequences.
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Figure 4.5: Temporal drift in the mean gray value offset (dark image). a Höllbach, left. b Höllbach, right.
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Figure 4.6: Dependence of the PRNU on the mean gray value. a Höllbach, left. b Höllbach, right.

4.1.4 Photo-response nonuniformity (PRNU)

PRNU is the inhomogeneity of the sensitivity of individual pixels, caused by variations in the gain factor.
Even with a perfectly homogeneous illumination, the gray values in an image will not be constant but show a
certain variation, which can be characterized by a spatial variance σ2

spatial. Figure 4.6 shows the dependence
of σ2

spatial on the mean gray value for the Höllbach-cameras. These data have been obtained from flatfield
sequences acquired using the Ulbricht sphere, see figure 4.2a. There are two important conclusions which
can be drawn from these plots. First, the PRNU also reflects the difference in the cameras (compare the
different polynomial fits). Second, and more important, in a gray value range of about 100 − 150, which
is typical for endoscope calibration images, the spatial inhomogeneity σspatial is about 15 gray values or
about 6% of the maximum gray value, which is much larger than the temporal noise. Thus, the main
noise contribution in the images is the PRNU. Since this is a systematic effect, we can apply a radiometric
correction method to reduce the inhomogeneity. The benefit of such a correction for the performance of
a stereo matching algorithm is shown by Kamberova and Bajcsy [1998], where a radiometric correction
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Figure 4.7: Temporal noise of the Pulnix cameras at a frame rate of 130 Hz. a Left camera. b Right camera.

a b

c d

Figure 4.8: Dark images (a left, b right, contrast enhanced) and DRNU (c left, d right) of the Pulnix cameras.

reduces the relative error in the stereo reconstruction of a 3-D plane by 59%. The correction method applied
in this work is described in section 4.3.

4.2 Comparison with CCD cameras

Two different types of CCD cameras are used: Pulnix TM6701AN progressive scan cameras in the Neckar-
setup (free surface flow) and Sony XC73-CE interline transfer cameras in the Jagst- and Elbe-setups. All are
analog cameras, which are synchronized with the frame grabbers by PLL [Beyer, 1992]. Hence, line-jitter
has to be expected as additional noise component. In this section, we take a look at the Pulnix cameras to
provide a comparison with the effects of the CMOS cameras.

Figure 4.7 shows the temporal noise of the Pulnix cameras. The variance of the electronic noise is about
4 (gray values)2, which is significantly higher than that of the CMOS cameras. The noise variance increases
linearly with the mean gray value, as expected from (4.2). At large gray values, a maximum noise variance
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Table 4.3: Electronic noise of the CCD cameras: gray value offset g0, temporal noise σ0 and DRNU σspatial. The last
three lines show the percentage of pixels within the intervals g0 ± nσspatial with n = 1, 2 and outside these intervals.

Pulnix, left Pulnix, right Sony, left Sony, right

〈g0〉 14.9 16.1 16.3 16.5

〈g0〉max
27 30 22 22

〈σ0〉 2.0 2.1 0.9 0.8

〈σ0〉max
6.1 6.5 1.0 0.8

σspatial 0.5 (0.2%) 1.0 (0.4%) 0.4 (0.2%) 0.5 (0.2%)

±σspatial 70.8% 73.8% 84.4% 84.2%

±2σspatial 24.8% 21.0% 8.3% 8.5%

> 2σspatial 4.4% 5.2% 7.3% 7.3%

of about 11 (gray values)2 is reached. This value is roughly a factor 2 to 3 larger than the maximum noise
variance of the CMOS cameras.

Figure 4.8 shows the DRNU of the Pulnix cameras. These images show typical electronic interference
effects of analog CCD cameras. The systematic patterns can be considered as an electronic ’fingerprint’ of
the camera/frame grabber configuration [Beyer, 1992]. The mean gray value offset is about 15 gray values,
with a spatial standard deviation of 0.5 to 1 gray values. Hence, the offset is much larger than that of the
CMOS cameras. Table 4.3 summarizes the results concerning the DRNU of both the Pulnix and the Sony
cameras.

In contrast to the CMOS cameras, the Pulnix cameras show a very good homogeneity of the pixel gains.
The spatial standard deviation in flatfield images (not shown here) is always below one gray value throughout
the whole dynamic range. Hence, PRNU can be neglected.

To summarize, the dominant noise source of the CMOS cameras is fixed pattern noise, whereas CCD
cameras suffer from much larger electronic noise. Fixed pattern noise can be neglected for CCD cameras.

4.3 Correction of fixed pattern noise

The basic physical quantity which determines a pixel’s gray value is the number of photoelectrons Ne(i, j)

that have been generated at that pixel. However, the measurement data obtained from a camera are the gray
values g(i, j) of the pixels. From (4.1) we have

Ne(i, j) =
g(i, j) − g0(i, j)

α(i, j)
. (4.3)

Thus, if we assume g0(i, j) = 0 and α(i, j) = α0 = const., the gray values and the number of photoelec-
trons are proportional to each other, with the same proportionality factor at every pixel. In real images, these
assumptions are not true, which is the reason for fixed pattern noise. In particular,

• g0(i, j) 6= 0, which is the reason for DRNU or inhomogeneous offsets, and

• α(i, j) 6= const., which is the main reason for PRNU or inhomogeneous gains.
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82 4 Radiometric image analysis

Further, there may also be some deviation from linearity, which means that the gain factors α(i, j) are
not independent of the gray value. For example, most CMOS cameras have a logarithmic response. The
skimming mode of the Photonfocus cameras is also non-linear, since it amplifies low gray values stronger
than high gray values.

If we assume that the camera response is linear, combining (4.1) and (4.2) yields a simple method to
determine the gain factors:

α(i, j) =
σ2

g(i, j) − σ2
0(i, j)

ĝ(i, j) − ĝ0(i, j)
, (4.4)

where ĝ(i, j) denotes the temporal average of a flatfield sequence. Thus, taking sequences of identical flat-
field exposures at various illumination levels and plotting the variance against the mean, the gain factor for
every pixel can be determined as the slope of the resulting curve. This method is called ’photon-transfer
technique’ and is frequently applied [Mortara and Fowler, 1981; Janesick et al., 1987; Healey and Kon-
depudy, 1994; Kamberova, 1997]. If only one global gain factor for the whole sensor is to be determined,
the spatial variance of the difference of two flatfields can be plotted against the sum of the spatial means
of the two flatfields. The differencing removes pixel to pixel sensitivity variations, and the variance of the
difference is twice the variance of the shot noise of a single frame. For a linear sensor, the point at which the
curve deviates from a straight line is the full well capacity (saturation level) of the sensor. The y-intercept is
the electronic noise variance. However, electronic noise is more accurately determined from dark images.

To perform a radiometric correction, the mathematical function describing a sensor’s response to an
incident illumination has to be known. Basically, this function is given by α(i, j), described by a number
of parameters, which can be estimated for each pixel separately, e.g. using the mean and variance data as
in the photon-transfer technique. Once the parameters are estimated, we can correct a given image using
Equation (4.3). In general, this approach may be difficult, because the sensor response may be a complicated
function which is not known a priori. A common assumption for CCD cameras is α(i, j) = const., i.e. the
sensor response is linear. Many CMOS cameras have a logarithmic response. To correct the PRNU of
such cameras, the photon-transfer technique has to be adapted to the logarithmic response [Tian and Gamal,
2001; Joseph and Collins, 2002]. Gamal et al. [1998] also take into account correlations between noise
terms, which are typical for CMOS cameras.

For the CMOS cameras used in this work, attempts to reduce PRNU by modeling the sensor response
were not successful, mainly due to the lack of a good model describing the behaviour of all pixels equally
well. Thus, a different approach has been taken. In this approach, the model parameters are not recovered
explicitly, but the images are preprocessed so that the offset is zero and the photoresponse is uniform.
Unlike the photon-transfer technique, this flatfielding or shading correction does not make explicit use of
the Poisson statistics of the photon shot noise. It is explained in the remainder of this section. First, we
describe the simple (linear) flatfielding (or two-point calibration), then we extend it to non-linear sensors by
using a piecewise linear approximation of the sensor response. A similar approach is taken by Fowler et al.
[1998].

PRNU is caused by the spatial variation of the gain factors α(i, j), which we write as

α(i, j) = α0(1 + K(i, j)), (4.5)

with 〈K(i, j)〉 = 0. Plugging (4.5) into (4.1) we get

1 + K(i, j) =
ĝ1(i, j) − ĝ0(i, j)

α0N̂e(i, j)
=

ĝ1(i, j) − ĝ0(i, j)

ĝideal(i, j)
, (4.6)
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where ĝideal(i, j) is the ideal gray value of the pixel at (i, j) as it would be without any inhomogeneity
(K(i, j) = 0). To estimate the PRNU-factor K(i, j), we need an estimation of ĝideal(i, j). Such an estimate
may be calculated by spatial averaging of ĝ1(i, j) − ĝ0(i, j) using a binomial filter. The filter mask has to
be large enough, so that the mean of K(i, j) over the filter mask is approximately zero. On the other hand,
the mask has to be small enough to avoid any influence of an inhomogeneous illumination. Thus, we get an
approximation of K(i, j) by subtracting a dark image from a flatfield, smoothing the difference image with
a binomial filter of appropriate size and dividing the difference image by the smoothed version of it.

In summary, we have the following linear radiometric correction method:

Given an image g(i, j), a dark image ĝ0(i, j) and a flatfield ĝ1(i, j), preferably at maximum illumination,
but without reaching saturation:

1. Subtract the dark image from the image:

g′(i, j) = g(i, j) − ĝ0(i, j). (4.7)

2. Compute the PRNU correction factor:

c(i, j) =
B(ĝ1 − ĝ0)(i, j)

(ĝ1 − ĝ0)(i, j)
(4.8)

3. Compute the corrected image:
gcorr(i, j) = g′(i, j)c(i, j) (4.9)

In the plots of the noise variance against the mean gray value shown in figure 4.3, the slope of the curves
is not constant, i.e. there are significant deviations from linearity in the sensor response. Furthermore,
the two curves for the two cameras are qualitatively different, although the cameras are of the same type.
Thus, a simple flatfielding correction will not yield good results in general. The correction will only be
valid for gray values around the mean gray value of the flatfield used to compute the correction factor. To
overcome this problem, we approximate the sensor response resp. the noise variance function by a piecewise
linear function. Then, the linear flatfielding can be applied separately for each line segment, using several
corresponding flatfields acquired at different illumination intensities to compute the correction factors. A
similar method to parameterize the noise variance function has been proposed by Förstner [1998]. The
procedure is summarized as follows:

Given an image g(i, j), a dark image ĝ0(i, j) and several flatfields ĝk(i, j), k = 1..n, acquired at in-
creasing illumination intensities:

1. Set lower = 0. Compute g′(i, j) as in (4.7). Set gcorr(i, j) = 0.

2. For k = 1..n do:

(a) Compute the mean gray value 〈fk〉 of the flatfield. Set upper = 〈fk〉. Compute the correction
factor ck(i, j) as in (4.8).

(b) Segment all pixels with gray values in the interval [lower, upper] from g ′(i, j).

(c) Correct the segmented pixels by multiplying with ck(i, j). Add the corrected pixels to gcorr(i, j).

(d) Set lower = upper.
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a b

Figure 4.9: Histograms of the high-frequency gray value noise in a typical endoscope calibration image. The his-
togram of the original image is shown in black, the histogram of the corrected image is shown in gray. The reduction
of the PRNU, i.e. the FWHM of the histograms, can be clearly observed. a Höllbach, left. Reduction of σspatial from
10.8 to 4.3. b Höllbach, right. Reduction of σspatial from 11.0 to 3.5.

a b c

Figure 4.10: Correction of inhomogeneous background, shown as colored surface plots. a Original image with inho-
mogeneous illumination. The average gray value increases towards the right image border. b Correction (background)
image obtained by repeated smoothing and subsampling using an image pyramid. c Corrected image obtained by di-
vision of the original image by the normalized correction image. The inhomogeneity is significantly reduced.

The results of this flatfielding correction are shown in figure 4.9. The input image is an image of a
calibration grid. To extract the high-frequency noise components (corresponding to the PRNU), the images
have been smoothed using a 3-tap binomial mask and the smoothed images have been subtracted from
the original images. Figure 4.9 shows the gray value histograms of the resulting images. The correction
reduces the spatial standard deviation of the noise to less than half of the initial values. The remaining
noise amounts to about one to two percent of the dynamic range. Thus, a significant improvement can be
achieved if a radiometric correction is applied. The application of the correction to particle images is shown
in section 7.3.1.

4.4 Correction of inhomogeneous illumination

In practical applications, it is often quite difficult to obtain a homogeneous illumination of the images. The
(average) gray values are higher in some areas of the image than in others. In the case of the endoscope
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a b

Figure 4.11: Result of the radiometric flatfielding correction. a Original image showing strong fixed pattern noise. b
Corrected image. The noise is significantly reduced.

calibration images, the viewing direction is not perpendicular to the calibration grid, but tilted at an angle
of about 45◦, which is the reason for the inhomogeneous gray values, see figure 4.10a. One can compensate
for the inhomogeneity to some degree by applying an illumination correction. A low pass filtered image
(figure 4.10b) is used as a correction image. It only contains the global gray value structures (i.e. the
inhomogeneous background illumination), the fine structures of the original image (grid lines) have been
smoothed out. The low pass filter can be realized very efficiently using the highest level of a Gaussian
pyramid [Jähne, 1997]. A division of the original image by the correction image (normalized to a mean gray
value of one) reduces the illumination inhomogeneity:

gcorr(i, j) =
1

c

g(i, j)

B6g(i, j)
, (4.10)

where c is the normalization constant and B6g(i, j) is the 6th level of the Gaussian pyramid (interpolated to
the original size). The result is a more homogeneous gray value distribution in the image, see figure 4.10c.
This correction is important, since the model of the grid crossings used to extract their positions by a gray
value fit assumes a homogeneous background, see section 5.1. Any gray value gradients violate this as-
sumption and may yield biases in the resulting grid line positions [Steger, 1998].

4.5 Summary

In this chapter, the noise characteristics of the CMOS cameras used in this work have been analyzed, includ-
ing both temporal noise (photon shot noise and electronic noise) and spatial inhomogeneities (fixed pattern
noise). The most important results are summarized as follows:

• Although the four CMOS cameras are of the same type and running under the same configuration,
they have significantly different noise characteristics. Thus, each camera’s special characteristics have
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to be taken into account when evaluating images acquired by that camera.

• After switching on the cameras, the noise characteristics change with time due to warm-up effects,
which e.g. cause a drift in the mean gray value offset by up to seven gray values. Before calibrating
and performing measurements, the cameras have to be warmed up for a sufficiently long time (at least
24 hours).

• The temporal noise is dominated by the photon shot noise, the electronic noise can be neglected.
The gray value dependence of the photon shot noise has been approximated by a polynomial. Thus,
we can estimate the noise variance of a pixel, given its gray value, to assess its uncertainty. The
explicit estimation of each pixel’s expected noise variance will improve thresholding operations, e.g.
in the particle segmentation (section 7.3). However, the estimation can only provide a lower bound
on the noise, since during the measurements there are additional effects contributing to the temporal
gray value variance, e.g. flickering in the illumination, reflections and glow from dirty water or dirt
particles. The temporal noise estimated using the Ulbricht sphere is quite low, with a maximum
standard deviation of about

√
5 gray values. An alternative to taking into account the explicit gray

value dependence of the noise variance is to perform a gray value transformation of the image to
make the noise variance equal for all pixels. Such a variance equalization has been proposed e.g. by
Förstner [1998].

• The most important noise component of the CMOS cameras is the fixed pattern noise. Without any
correction, the spatial standard deviation of the gray values in an image acquired at homogeneous
illumination can reach values of up to seven percent of the dynamic range. Using the flatfielding
correction described in this chapter, the standard deviation is reduced to about one to two percent. A
visual impression of this correction is shown in figure 4.11. Since any subpixel-accurate determination
of object positions in an image is based on some form of gray value interpolation, systematic errors in
the gray values will be translated to geometric errors. Hence, to obtain the highest possible subpixel-
accuracy, a radiometric correction is necessary.
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Chapter 5

Geometric camera calibration

In order to extract metric 3-D information from image sequences, the relation between image coordinates
(i.e. pixel positions in an image) and world coordinates (i.e. positions in 3-D space) has to be known. This
relation is given by a model function f that maps 3-D world points Pw (in metric units) to their corresponding
2-D image points pp (in pixel units):

Pw 7→ pp = f(Pw; θ). (5.1)

The camera model is defined by set of camera parameters θ, which are a priori unknown. Geometric
camera calibration is essentially the task of estimating these parameters.

All calibration methods require the image coordinates pp,i of feature points in a set of calibration images
to be precisely known. Section 5.1 discusses the feature extraction, i.e. the precise determination of the
position of grid points in the image of a calibration grid. The most common camera model is a perspective
projection by a pinhole camera. This model is introduced within a projective geometry framework in
section 5.2. Different estimation methods are reviewed in section 5.3, focusing on the methods applied in
this work. Calibration results of the different experimental setups are presented in section 5.4. Section 5.5
summarizes this chapter.

5.1 Feature extraction

In any camera calibration method, the image coordinates of a sufficient number of feature points have
to be measured in the images. Circular targets, the line crossings of rectangular grids or the corners of
checkerboard patterns are used as feature points. To obtain the highest possible quality of the camera
parameters, the feature points have to be measured with subpixel accuracy [Lavest et al., 1998]. The most
common techniques used for subpixel-accurate feature detection are [West and Clarke, 1990; Luhmann,
2000]:

• Centroiding:

The weighted mean of the pixel positions of an isolated object is calculated, where the weights are
the gray values of the individual pixels (’center of gravity’). Best results are obtained for symmetric
blob-like objects.
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88 5 Geometric camera calibration

• Shape-based methods:

These methods include line, edge or corner detection as well as extraction of more complicated con-
tours, if the shape of the objects in the image is known, e.g. ellipse fitting.

• Correlation template matching:

The maximum of the cross-correlation coefficient between an image area containing the feature and
a given template of the feature is determined. This method is only suitable for the determination of a
known target in an image, since good results are only achieved if the shape of the template provides a
good match of the shape of the image feature.

• (Adaptive) least squares template matching:

The gray value residual of the image feature and a given template is minimized iteratively. During the
iterations, both geometric and radiometric transformations of the template are performed to ensure
the best possible match [Gruen, 1985].

• Model-based least squares matching:

The position of the feature is determined by fitting a 2-D model function to the image data. The model
describes the spatial gray value distribution of the feature. It is defined in terms of a parameter vector,
which includes two parameters describing the exact position of the feature relative to a given, local
coordinate origin. A model-based method is used in this work.

The performance of the different methods strongly depends on the application situation (e.g. image quality,
size, shape and contrast of the features or properties of the hardware like synchronization of camera and
frame grabber). Typical feature extraction accuracies reported in the literature are in the range of 0.01 to 0.1

pixels [West and Clarke, 1990; Beyer, 1992; Gruen, 1997; Steger, 1998; Luhmann, 2000]. Under optimal
conditions (homogeneous illumination, symmetric features of high contrast and a diameter of at least 6

pixels, pixel-synchronous sampling, warmed-up cameras), an extremely high precision of 0.004 pixels has
been attained by Beyer [1992]. This precision reaches the theoretical precision limit of feature extraction
by centroiding in 8-bit digital images [Wernet and Pline, 1993; Schaum, 1993]. It is interesting to note that
even on discrete binary images, geometric information like position and length of objects can be determined
with statistical errors of only about 0.01 pixels [Jähne, 1999a].

5.1.1 Model-based cross detection

In this work, a planar grid target is used for calibration, together with a model-based feature extraction
algorithm. To obtain subpixel-accurate positions of the grid crossings, a model of the image intensity distri-
bution F (x, y) resulting from the perspective projection of two crossing grid lines is needed. Such a model
has been proposed by Peuchot [1993]. We use a slightly modified version, which reads

fcross(x, y; θcross) = a−d·(1−e−w1((y−l2)cosθ1+(x−l1)sinθ1)2)·(1−e−w2((y−l2)cosθ2+(x−l1)sinθ2)2). (5.2)

The parameter vector θcross = [a, d, w1, w2, l1, l2, θ1, θ2]
T contains eight parameters which are described

in table 5.1. An example plot of this model function is shown in figure 5.1a.

Due to the convergent stereo setup, the calibration planes are not parallel to the image plane but are tilted
at an angle of about 45◦. Because of the strong perspective distortion, the size, shape and orientation of the
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Table 5.1: Parameters of the model function (5.2).

parameter meaning

a gray value minimum at the center of the crossing

d gray value difference between grid lines and background

w1, w2 width of the grid lines

l1, l2 subpixel displacement relative to local origin

θ1, θ2 angles between the grid lines and the sensor lines

a
b

Figure 5.1: Subpixel-accurate detection of grid line crossings. a Surface plot of the model function. b Endoscope
calibration image. The result of the subpixel-fit of nine crossings is shown inside the indicated boxes.

grid line crossings changes significantly even within one calibration image, see figure 5.1b. This makes
e.g. a simple template matching infeasible. The model-based approach is more flexible, because the model
function adapts to the different size and orientation of the crossings via the parameters w1, w2 and θ1, θ2.
The subpixel-accurate position of the grid crossings relative to a local origin (which also defines the origin
of the fitted image area) is given by the parameters l1, l2.

The first step of the algorithm is to find the positions of the grid crossings to an accuracy of about
one pixel, as well as approximate values for the other fit parameters in (5.2). The user has to specify the
origin and the basis vectors of the calibration grid interactively. Given this information, all grid crossings
visible in the image are detected automatically by an interest operator similar to the ring-operator used in
photogrammetry [Luhmann, 2000]. Due to the quite inferior quality of the endoscope images, the automatic
method sometimes detects false crossings. To remove such outliers, we perform a robust estimation of
a homography (a homogeneous, non-singular 3 × 3 matrix) between the calibration grid and its image,
see section 5.3.3. Robustness is achieved by the Least Median Of Squares estimator [Zhang, 1995], see
section 5.3.2. Applications have shown that this method (combining an interest operator with a robust
homography fit) is a very stable and reliable method to compute the initial positions of the grid crossings.
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Figure 5.2: Accuracy and precision of the feature detection for synthetic images with different noise levels. a Smoothed
example images. b Standard deviation of the image residuals in x-direction, computed using ground truth. c Left
ordinate: Standard deviation of the statistical position errors, estimated by the covariance matrix. Right ordinate: a
posteriori standard deviation of the fit result (in gray values).

A further refinement is carried out by the subsequent nonlinear fit of (5.2). A Levenberg-Marquardt
algorithm based on the implementations of Schultz [1997] and Garbe [1998] is used. The result of the
algorithm is a list of the image coordinates of the grid crossings, their precision as estimated by the standard
error and the covariance matrix of the fit parameters, and their corresponding world coordinates in the target
plane. A visual impression of the performance of the method is given in the endoscope calibration image
figure 5.1b, where the gray values given by the estimated model are plotted inside the indicated boxes.

5.1.2 Accuracy assessment

To characterize the performance of any computer vision algorithm, the following terms should be distin-
guished:

• Precision:

The precision is given by the standard deviation of the statistical measurement errors. It can be
estimated by the covariance matrix of the fit parameters. It is only a measure of the internal errors
of the method, which cannot be used to describe the absolute accuracy of the method (e.g. accuracy
of the coordinates of a calculated world point in 3-D space). If there are systematic errors in the
algorithm, the results have a low accuracy, but still might have a high precision.

• Accuracy: Accuracy is a measure of systematic errors. It can only be estimated by a comparison of
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the results of an algorithm to known ground truth.

• Reliability: The reliability of a method describes its robustness against gross errors in the measure-
ments.

Synthetic images.

In the following, the accuracy, precision and reliability of the model-based cross-detection is analyzed.
Subpixel accuracy can only be achieved if the image of two crossing grid lines is accurately modeled by
(5.2). Otherwise, systematic errors will result in a low accuracy. A number of previous applications has
shown that (5.2) is well-suited to model grid targets [Li and Lavest, 1996; Schultz, 1997; Garbe, 1998; Stöhr,
1998; Engelmann, 2000; Klar, 2001]. In [Schultz, 1997], a very high accuracy of 0.002 pixels is reported
for synthetic images without noise. In [Garbe, 1998], the accuracy has been tested both with synthetic and
real images. For synthetic images, an accuracy between 0.01 pixels and 0.05 pixels is found for noise levels
(standard deviation of gray values) between 2 and 10 gray values. The accuracy for real images has been
investigated using a precise translation stage. The reported accuracy is 0.03 pixels.

We investigate the accuracy for synthetic images, but applying higher noise levels than in [Garbe, 1998].
Synthetic grid images are generated and Gaussian noise with standard deviations of up to 100 gray values
(corresponding to a lowest signal-to-noise ratio of 3.5 dB) is added. As a simple modeling of the imaging
process, the grid images are slightly blurred using a 5 × 5 binomial filter before adding the noise. The grid
crossings are extracted from these images using the method described in section 5.1.1. The resulting image
coordinates are compared to the known ground truth by calculating the mean differences of the extracted
coordinates and their true values. The standard deviations of these differences are shown in figure 5.2. This
plot confirms the previous results of Garbe [1998]. Further, the residuals stay below 0.1 pixels for noise
levels of up to about 60 gray values. The maximum residuum for a noise level of 100 gray values is 0.16

pixels. For real images of the Photonfocus CMOS cameras (see section 9.3.4), a spatial noise level of up
to ≈ 20 gray values has to be expected (resulting from the PRNU, see Section 4.1.4). Thus, the maximum
achievable accuracy for the given cameras can be estimated to about 0.03 pixels, which again confirms the
results of Garbe [1998] (however, different cameras have been used there).

The accuracy analysis has shown that there are no major systematic errors in the model function. To
investigate the statistical errors, we use the covariance matrix of the estimated parameters as a measure of
the internal precision of the fit. Figure 5.2c shows the estimated standard deviation of the x-coordinate on
the left ordinate, together with the a posteriori standard deviation of the fit result on the right ordinate. To
reduce the influence of noise, all calculations have also been done after smoothing the simulated images
with a 5-tap binomial filter. The plot shows that the precision is very similar to the accuracy shown in
figure 5.2b. In the noisy images, the a posteriori standard deviation of the gray values reflects the applied
noise level. The simple smoothing results in a significant reduction of the gray value residuals and hence a
higher precision of the estimated positions.

In summary, the analysis of synthetic images shows that both subpixel accuracy and precision are in the
range of 0.01 to 0.05 pixels for typical noise levels of real applications.
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Figure 5.3: a Autocovariance function of the remaining image noise after radiometric correction, assuming that the
noise in the corrected images can be modeled as a homogenous random field. In this case, the 2-D autocovariance
function only depends on distance. b Histogram of the image noise after correction. The noise distribution is Gaussian.

Real images.

Compared to synthetic images with Gaussian noise, there are some additional error sources for real images,
including geometric and radiometric errors. Geometric errors may result from electronic effects (e.g. line-
jitter for analog cameras) or optical effects of the lens system (e.g. lens distortion). Radiometric errors
(i.e. noise in the pixel intensities resp. gray values) arise from inhomogeneous illumination or PRNU of
the sensor (see section 4.1.4 and section 4.4). It is important to take the radiometric errors into account
[Beyer, 1992], since in any subpixel-accurate feature extraction (which is always based on interpolation of
image intensities resp. gray values), radiometric irregularities directly translate into geometric imprecision
of the feature positions. As an example, Steger [1998] points out the influence of gray value gradients on the
subpixel-accurate extraction of lines and edges. Gradients resulting from an inhomogeneous background
introduce a bias into the extracted positions. In [Steger, 1998], a method for unbiased line detection is
developed. A subpixel accuracy of about 0.033 pixels is reported for typical industrial inspection tasks.

In this section, we analyze the precision of the feature extraction on real images. To estimate the preci-
sion, we use the covariance matrix of the estimated shift parameters l1 and l2 of (5.2). To ensure that this is
a valid measure, we first take a closer look at the parameter estimation and the statistical properties of the
image noise. A Levenberg-Marquardt algorithm is used to estimate the parameters [Press et al., 1992]. This
method minimizes the following sum of squared residuals:

χ2 =
∑

i,j∈N

(
g(i, j) − fcross(i, j, θcross)

σ(i, j)

)2

, (5.3)

where x = j∆x, y = i∆y are the pixel positions, which are assumed to be free of error. N is the
fit area (neighbourhood of a grid crossing). Each term in the sum is weighted by the pixel’s gray value
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Table 5.2: Precision of the feature extraction using different preprocessing methods. For a discussion, see the text.

method number σ0 σx σy σxy

of pts. [gray values] [pix] [pix] [pix2]

raw 32 13.54 0.10 0.10 0.0015

smo 36 7.05 0.07 0.07 0.0010

illu 37 14.08 0.11 0.11 0.0013

illu+smo 38 7.30 0.07 0.07 0.0016

fpn 38 6.29 0.04 0.04 0.0005

fpn+illu 41 6.23 0.04 0.04 0.0006

standard deviation σ(i, j). If we assume that the errors of single pixels are independent of each other
and follow a Gaussian distribution, the result of minimzing (5.3) will be optimal in the sense of maximum-
likelihood estimation, i.e. the probability of the data given the estimated parameters is maximized. A further
simplifying assumption that is frequently used is to use only one constant standard deviation for all pixels:
σ(i, j) = σg = const.. Thus, we have to check the validity of these assumptions.

The noise analysis in section 4.1 has shown that the noise variance is not the same for all pixels. First,
the temporal noise depends on the gray value. However, this is not a problem, since temporally averaged
images are used in the geometric calibration. Second, and more important, the dominant noise source is the
fixed pattern noise. FPN introduces errors, which are also gray value dependent, see figure 4.6. However,
this is a systematic effect which can be corrected using the method described in section 4.3. This correction
method takes the gray value dependence into account. Since no further information on the remaining noise
in the corrected images is available, the assumption of a constant standard deviation is justified. To check
the independence of the pixels, the autocovariance function [Jähne, 1997] of a corrected calibration image
has been calculated and is shown in figure 5.3a. This figure shows, that the pixel noise is not independent but
correlated along columns. This is a typical effect of CMOS cameras, probably introduced by columnwise
electronic amplification. However, since the correlation decreases quite quickly, we may neglect it. Attempts
to take into account the correlations by minimizing the Mahalanobis distance instead of (5.3) did not improve
the results. Finally, assuming independent identically distributed noise, a single pixel’s pdf may be estimated
by using all the pixels in an image as an ensemble and determining the ensemble’s pdf. Figure 5.3b shows
that a Gaussian distribution is a good approximation.

To summarize, we compute the maximum-likelihood estimate, assuming independent and identically
distributed Gaussian image noise (setting σ(i, j) = 1). The standard error σ0 of the estimator (i.e. the a
posteriori standard deviation of the fit) is used as a measure of the goodness-of-fit:

σ2
0 =

1

N − M

∑

i,j∈N
[g(i, j) − fcross(i, j, θ̃cross)]

2, (5.4)

where N is the number of data points (pixels in the fit area), M is the number of fit parameters (here:
M = 8), and θ̃cross is the estimated parameter vector. Further, we estimate the precision of the estimated
cross locations by the corresponding elements of the covariance matrix, i.e. the standard error ellipses, see
appendix A.
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The results of the precision analysis are shown in table 5.2. In all cases shown in the table, the cali-
bration image is the same. However, different preprocessing steps have been applied, corresponding to the
lines of the table: no preprocessing (’raw’), smoothing using a 5-tap binomial filter (’smo’), correction of
inhomogeneous illumination as outlined in section 4.4 (’illu’) and radiometric correction as explained in
section 4.3 (’fpn’). The columns of the table show the number of extracted grid crossings, the standard error
σ0, the mean errors in the grid position σx and σy and the mean covariance of the x- and y-components. As
expected, best results are achieved by applying the radiometric correction followed by the illumination cor-
rection. Using this approach, the errors are minimum while the number of extracted crossings is maximum.
The position errors are slightly larger than those estimated from the synthetic images, but still quite close to
them.

To summarize, this section has shown that the proposed feature extraction method is able to determine
the positions of grid line crossings in calibration images with a subpixel accuracy of about 1/25 pixel. To
achieve this precision, it is necessary to examine carefully the noise statistics in the images. Correction pro-
cedures have to be applied in order to make the assumptions of the applied estimator valid. Such procedures
have been proposed in chapter 4.

The feature extraction algorithm yields a list of the extracted grid positions xi, as well as their covariance
matrices Σi, which are needed in the further processing to assess the precision of the grid points.

5.2 Camera model

5.2.1 Linear pinhole camera model

In the pinhole camera model, the image pp of a world point Pw in the scene is determined by the intersection
of the image plane and the line connecting Pw with the center of projection or camera center C. In the
following, we use homogeneous coordinates Pw = [Xw, Yw, Zw, 1]T and pp = [xp, yp, wp]

T (see [Hartley
and Zisserman, 2000] and [Faugeras et al., 2001] for an in-depth introduction to projective geometry in the
context of computer vision). The Euclidean coordinates of the corresponding 3-D world point are P w =

[Xw, Yw, Zw]T , and the Euclidean pixel coordinates of the 2-D image point are pp = [xp/wp, yp/wp]
T . In

homogeneous coordinates, the perspective projection f of a pinhole camera is given by a linear mapping
f : IR4 7→ IR3 and can be written as

pp = K [R|T ]Pw (5.5)

with

K =




α s cx

0 β cy

0 0 1


 , (5.6)

T = [Tx, Ty, Tz]
T , (5.7)
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R =




cos κ − sin κ 0

sin κ cos κ 0

0 0 1







cos φ 0 sin φ

0 1 0

− sin φ 0 cosφ







1 0 0

0 cos ω − sin ω

0 sin ω cos ω




=




cos κ cos φ cos κ sin φ sin ω − sin κ cos ω sin κ sin ω + cos κ sin φ cos ω

sin κ cos φ cos κ cos ω + sin κ sin φ sin ω sin κ sin φ cos ω − cos κ sin ω

− sin φ cos φ sin ω cos φ cos ω




=




r11 r12 r13

r21 r22 r23

r31 r32 r33


 . (5.8)

The mapping is decomposed into a 3-D rotation R (parameters are the rotation angles κ, φ, ω), a 3-D trans-
lation T (parameters Tx, Ty, Tz) and a camera calibration matrix K (parameters α, β, s, cx, cy). Hence,
the parameter vector to be estimated is

θcam = [α, β, s, cx, cy, κ, φ, ω, Tx, Ty, Tz]. (5.9)

The parameters (Tx, Ty, Tz, κ, φ, ω) are called the external camera parameters or exterior orientation,
the parameters (α, β, s, cx, cy) are called internal camera parameters or interior orientation.

The external parameters describe the change of coordinates between the world coordinate system and
the camera coordinate system by a rotation and a translation. They contain the information about the relative
position and orientation of the camera with respect to a given world coordinate system. In (5.8), the rotation
is parameterized by three Euler angles. First, a rotation around the X−axis by an angle ω is carried out.
Second, a rotation around the (already once rotated) Y −axis by an angle φ follows. Finally, a rotation
around the (twice rotated) Z−axis by an angle ω is applied. From (5.8), we have

tan ω =
r32

r33
, sin φ = −r31, tan κ =

r21

r11
. (5.10)

The latter equations show that this parameterization might introduce singularities if r11 ≈ 0 or r33 ≈ 0,
which corresponds to the angles ω, φ, κ ≈ (±π/2,±3π/2, ...). However, in all experimental setups used in
this work, the angles will be approximately ω ≈ 0◦, φ ≈ ±45◦, κ ≈ 0◦. These angles are far away from the
singularities in parameter space, so the chosen parameterization is numerically well-conditioned.

The internal parameters describe the change of coordinates between the camera coordinate system
and the image coodinate system, i.e. the imaging by a perspective projection. The internal parameters of a
basic pinhole camera consist of the coordinates c = [cx, cy]

T of the principal point and the focal length
f . The principal point is the point of intersection of the optical axis and the focal plane. Equation (5.6)
corresponds to a slight modification of the basic pinhole model. This modification is frequently used in
CCD or CMOS camera applications, where the image is produced by a discrete pixel array. In this case, the
parameters α and β give the focal length in units of pixels. To account for different scale factors in the x-
and y-direction, i.e. possible deviations from a quadratic pixel shape, two focal lengths are introduced. If
f is the focal length of the lens in units of mm and px and py are the corresponding pixel sizes, we have
α = f/px and β = f/py. The parameter s is called skew and accounts for a possible non-orthogonality of
the axes in the image plane. This might be the case if the rows and columns of pixels on the sensor are not
perpendicular to each other. However, for most CCD and CMOS cameras one can assume that s = 0.
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Figure 5.4: Typical pincushion distortion introduced by the wide-angle lenses of rigid endoscopes (see Section 9.2.1).

If s = 0 and α = β = feff is the effective focal length, (5.5) is equivalent to the well-known collinear-
ity equations of photogrammetry [Slama, 1980; Luhmann, 2000]:

x − cx = feff
r11X + r12Y + r13Z + Tx

r31X + r32Y + r33Z + Tz
, (5.11)

y − cy = feff
r21X + r22Y + r23Z + Ty

r31X + r32Y + r33Z + Tz
.

These equations may be derived from the perspective geometry of the imaging process. They express that an
object point, its image point and the camera center are collinear, i.e. they lie on a straight line in space (the
projection ray). In the parameterization (5.5), the coordinates of the camera center in the world coordinate
frame are given by

C = [Cx, Cy, Cz]
T = −R−1T . (5.12)

Introducing the homogeneous (3 × 4)-projection matrix

P = K [R|T ] , (5.13)

the mapping from world to image coordinates can be written as a simple linear mapping (a projective linear
transformation):

pp = PPw. (5.14)

Like any homogeneous quantity, the (3 × 4)-matrix P is only defined up to an overall scale factor, so there
are only 11 independent parameters in P, corresponding to the 6 parameters of the exterior orientation and
the 5 parameters of the interior orientation.

5.2.2 Nonlinear lens distortion

Due to its linearity, the pinhole camera model introduced in Section 5.2.1 provides a very simple and prac-
tical formulation of the imaging process. However, it is only an approximation of real cameras, since it
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does not account for lens distortion effects exhibited by real lenses. Lens distortion changes the position of
image points from their ’true’ location as given by a linear pinhole camera model (5.14). Obviously, it also
affects distances between image points and leads to a variation of scale of an image as a function of position
in the image plane, since scale at any image point is related to the ratio of the rate of change of position
in the image plane to change of position in the object plane. Two types of lens distortion are commonly
distinguished [Slama, 1980]: (symmetric) radial distortion and (asymmetric) decentering distortion, where
symmetry means point symmetry with respect to the center of radial distortion, which is often assumed to
be the principal point.

Radial distortion is not the result of any imperfection in lens manufacturing, but a fundamental property
of any lens with a finite aperture ring. The latter results in variations in angular magnification with angle
of incidence, see e.g. [Thormählen et al., 2003]. If image points are displaced radially farther from the
distortion center, image scale is increased in the outer portion of the image plane (pincushion distortion),
see Figure 5.4. If image points are displaced radially closer to the distortion center, image scale is decreased
(barrel distortion). Radial distortion may be as large as 300 µm (corresponding to ≈ 30 pixels) at the
edges of the image and is usually an order of magnitude larger than decentering distortion [Atkinson, 1996;
Gruen, 1997]. Hence, many camera calibration methods applied in computer vision only use radial distortion
parameters, e.g. [Tsai, 1987; Lenz, 1987; Lenz and Tsai, 1989; Fryer et al., 1994].

Decentering distortion has a tangential (normal to the radial direction) and an asymmetric radial com-
ponent. Both result from the decentration of the lens and other optical elements. Any vertical displacement
or rotation of a lens element from a perfect alignment collinear to the optical axis will cause a displacement
of image points. Hence, decentering distortion might be of importance for compound systems consisting of
several lenses and other optical elements, like the endoscopes used in this work. Since decentering distor-
tion may be created by placing an appropriately oriented thin prism in front of a perfectly centered lens, it
is sometimes also called thin-prism distortion.

To achieve highest accuracy in image measurement, the systematic errors introduced by lens distortion
have to be corrected for in the mathematical model. Modeling of lens distortion has been introduced into
analytical photogrammetry by Brown [1966, 1971]. The set of camera parameters (5.9) is extended by
an additional set of distortion parameters θd, which describe the distorted image locations in terms of a
polynomial series.

In the calibration of CCD cameras, where possibly α 6= β and s 6= 0, the terms modeling lens distortion
have to be put in the right place in the projection process. To clarify this, we again decompose the projection
matrix P, following Hartley and Zisserman [2000]. The starting point of the projection is the homogeneous
vector of world coordinates of an object point Pw = [Xw, Yw, Zw, 1]T , where [Xw, Yw, Zw]T are the Eu-
clidean coordinates of the object point in a given Euclidean world coordinate frame. The end point of the
projection is the homogeneous vector of pixel coordinates pp = [xp, yp, 1]

T , with the Euclidean coordinates
of the image point (in pixels) given by [xp, yp]

T . The projection process may be considered as a series of
successive transformations of the world coordinates:

Pw −→ pn −→ pu −→ pd −→ pp. (5.15)

In (5.15), the four transformations are indicated by arrows, corresponding to the following steps:

1. a rigid body transformation from world coordinates to the so-called normalized image coordinates

pn = [xn, yn, wn]T = [R|T ]Pw, (5.16)
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2. the projection, resulting in the ideal, undistorted image coordinates (in units of focal lengths), as
computed by a linear pinhole model

pu =
1

wn
pn = [xn/wn, yn/wn, 1]T = [xu, yu, 1]T , (5.17)

3. the computation of the real, distorted image coordinates, as observed in an image of a real camera,
using a distortion model d+(pu, θd)1

pd = [xd, yd, 1]
T = d+(pu, θd), (5.18)

4. the transformation of distorted image coordinates to pixel coordinates, modeling the effects of the
discrete pixel sensor

pp = [xp, yp, 1]
T = Kpd. (5.19)

Lens distortion takes place during the second transformation, i.e. the projection onto the image plane.
Subsequently, the camera calibration matrix (5.6) describes a choice of new affine coordinates, translating
physical locations in the image plane to pixel coordinates. The distorted image coordinates are computed as
a function of the normalized image coordinates in the form (5.17) (i.e. with the third component normalized
to unity). The advantage of this method is the resulting independence of the distortion parameters θd of the
focal length.

The distortion model d+ in (5.18) computes distorted coordinates from undistorted coordinates. How-
ever, Brown [1971] originally introduced the following undistortion model pu = d−(pd, θu), which en-
ables the computation of ideal, undistorted coordinates given the measured, distorted ones:

xu = xd + ∆xd,

yu = yd + ∆yd, (5.20)

with

∆xd = xd(k1r
2
d + k2r

4
d + k3r

6
d)

+[t1(r
2
d + 2x2

d) + 2t2xdyd][1 + t3r
2
d],

∆yd = yd(k1r
2
d + k2r

4
d + k3r

6
d)

+[t2(r
2
d + 2y2

d + 2t1xdyd][1 + t3r
2
d], (5.21)

and
rd =

√
x2

d + y2
d. (5.22)

The radial distortion parameters are (k1, k2, k3), the decentering distortion parameters are (t1, t2, t3).We call
the set of parameters θu = [k1, k2, k3, t1, t2, t3]

T undistortion parameters to indicate that in general they
are different from the parameters θd in (5.18).

This undistortion model is widely applied in photogrammetric applications [Faig, 1975; Slama, 1980;
Luhmann, 2000]. However, there seems to be some confusion about distortion and undistortion models in
the computer vision literature. For example, Zhang [2000] uses the same functions as in (5.21) as a distortion

1the subscript ’+’ indicates that distortion is added to an ideal, undistorted point
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model, i.e. to compute distorted from undistorted coordinates. The same approach is taken in many other
publications, e.g. [Heikkilä and Silven, 1996, 1997; Altunbasak et al., 2003]. Tamaki et al. [2002] have
recently clarified this, showing that in almost all practical applications the same model performs equally well
both to distort and undistort image points, given that the parameters have been estimated correspondingly
(see Section 5.3.6).

Whether lens distortion should be considered and how many distortion parameters should be used in the
camera calibration depends on three aspects: the accuracy of the 3-D world coordinates of the calibration
points, the image noise in the feature detection of these points and the goodness of the distortion model.
Shih et al. [1995] derive error envelopes, comparing the errors introduced by lens distortion to the image
noise. Florou and Mohr [1996] use statistical tests to assess the significance of the distortion parameters. If
lens distortions are small, the image noise has to be smaller to enable a reliable estimation of the distortion
parameters. If errors introduced by lens distortion are comparable in size to errors due to noise in the
feature detection or inaccuracy of the calibration marks, the calibration results might be better without any
distortion modeling, since the nonlinear parameter estimaton is very sensitive to noise, and instabilities
might be introduced if higher order distortion models are used [Tsai, 1987; Florou and Mohr, 1996; Shih
et al., 1995].

Finally, we have to take into account the goodness of the distortion model. In photogrammetric ap-
plications, typically high-quality equipment is used under highly controlled conditions. In this case, the
higher-order distortion models provide a good fit to the behaviour of real lenses. On the other hand, for ex-
ample, it is known that radial distortion varies both with focus setting (magnification, focal length) and with
depth in the scene [Brown, 1971; Atkinson, 1996; Godding, 1998], the latter being especially important for
camera to object distances of under 30 focal lengths and considerable variation of depth in the scene. This
is the typical situation for endoscopic imaging. Modeling changes in lens distortion with object distance
may be significant to achieve highest subpixel accuracy (e.g. Robson et al. [1993] found differences of up
to ≈ 0.3 pixels in images of a Pulnix camera equipped with a standard lens). Hence, since the imaging
behaviour of endoscopes is complex and difficult to be predicted, it might not be possible to achieve highest
accuracy with the traditional models of the image-formation process. The same argument holds for many
lenses used in computer vision applications which do not conform with the high standards of photogram-
metry. Hence, in the computer vision literature, many authors propose to use only the first radial distortion
parameter, e.g. [Tsai, 1987; Fryer et al., 1994]. In this case, there is the additional advantage of an analytical
inverse of the distortion model [Lenz, 1987; Lenz and Tsai, 1989]. Note that also Brown [1971] originally
found that only k1 contributed significantly to the distortion correction.

5.2.3 Effects of multimedia geometry

3-D Particle-Tracking Velocimetry is a typical application where the projection ray from an object (a par-
ticle) to the sensor passes several optical media with different refractive indices. In such a multimedia
environment, additional deviations from the standard pinhole camera model are introduced by the refrac-
tion of the projection rays at the interfaces of the different media. PTV corresponds to the standard case,
where the object is situated in a liquid, the sensor is positioned in air, and a plane glass window separates
these two media. Maas [1995] presents an algorithm for the strict geometric modeling of the twice broken
projection rays. This ray-tracing module based on Snell’s law can be integrated into any standard calibration
procedure. Maas [1995] shows that using this module it is even possible to estimate the refractive indices
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Table 5.3: Comparison of the internal camera parameters for the stereo rig ’Höllbach’ (left camera), resulting from
calibration in air and calibration in water. 〈∆x〉 resp. 〈∆y〉 are the mean image residuals (mean reprojection errors)
in the x- resp. y-direction (mean ± standard deviation), 〈∆r〉 is the mean distance between the measured and projected
calibration points in the image plane.

water, no dist. air, no dist. water, k1 air, k1

fx [cm] 2.4193 1.8068 2.4902 1.8864

fy [cm] 2.4589 1.8023 2.5052 1.8755

s [−] −0.0154 −0.0113 −0.0051 −0.0034

cx [pix] 83.5436 83.2335 93.8934 95.8277

cy [pix] 93.4073 89.1152 90.3013 94.4576

k1 [−] 0 0 0.0816 0.1712

〈∆x〉 [pix] −0.02 ± 0.56 −0.01 ± 0.60 0.00 ± 0.48 0.00 ± 0.36

〈∆y〉 [pix] 0.00 ± 0.54 0.00 ± 0.93 0.00 ± 0.48 0.00 ± 0.36

〈∆r〉 [pix] 0.68 ± 0.36 0.97 ± 0.52 0.62 ± 0.27 0.45 ± 0.24

of the liquid and the glass by introducing them as unknown parameters in the estimation. Since the refrac-
tion correction depends on the depth of the object point, it has to be computed iteratively. To speed up the
computations, the refraction correction for a given experimental configuration may be computed once and
stored in a look-up table.

In the present application, we do not apply a multimedia modeling for the following reasons. Two
multimedia environments have to be distinguished. The first is that of the ’Neckar’-setup used to acquire
the free surface flow. Instead of modeling the multimedia effects, we aim for a physical reduction of the
refraction at the interfaces using liquid prisms, see section 9.4.1. Liquid prisms are also frequently used in
stereoscopic PIV applications and have been shown to be extremely efficient at reducing radial distortions
arising from a water-air interface [Prasad, 2000; van Doorne et al., 2003]. Maas [1995] mentions a number of
further effects of the multimedia environment causing a degradation of image quality and hence larger errors
in the coordinate determination of underwater objects. He concludes that image residuals of camera models
including a multimedia correction still are typically a factor two to four larger than those of applications in
air. This is also the order of magnitude of the residuals obtained using liquid prisms and a standard pinhole
model, see section 5.4.3.

The second case is endoscopic underwater imaging, where the multimedia environment is slightly differ-
ent. Since the endoscopes are completely submerged in the water, the projection rays pass through the media
water - glass (lens) - air instead of air - glass - air for lenses used in air. Lavest et al. [2000] show that im-
mersing the camera in water simply results in an increase of the effective focal length: fwater ≈ nwaterfair,
where nwater ≈ 1.33 is the refraction index of water. The increase of the focal length yields a decrease
of the field of view in water, so that the image in water is magnified by a factor of ≈ 1.33. Further, the
radial distortion in water is smaller because 1.33(x + ∆x)water ≈ (x + ∆x)air. Lavest et al. [2000] con-
clude that also for underwater applications the camera may be calibrated in air. Afterwards, the underwater
camera parameters can be computed simply by the above multiplications. Using this method together with
a bundle adjustment on real underwater images, they are able to achieve image residuals as low as 0.04
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pixels, which is comparable to the highest accuracies reported in the photogrammetric and computer vision
literature [Lavest et al., 1998; Heikkilä, 2000; Clarke and Wang, 2000; Hastedt et al., 2002].

Table 5.3 shows the results of the calibration of a flexible endoscope, both in air and in water (see
section 5.4.2 for details of the calibration procedure). Two calibrations have been carried out: the first
without any distortion parameters and the second including the first radial distortion parameter k1 (the other
distortion parameters have also been included in further tests, but were found to have no significant effect).
The results confirm the findings of Lavest et al. [2000], in particular:

• The ratio of the focal lengths fwater/fair is almost exactly equal to 1.33.

• If no radial distortion parameter is included in the model, the residuals in air are larger than those in
water. Hence, the radial distortion in water is smaller. The radial distortion parameter k1 estimated in
air is about twice as large as that estimated in water.

• For calibration in air, the inclusion of k1 in the camera model reduces the image residuals roughly by
a factor of two. For calibration in water, the reduction of the residuals is much smaller. Hence, the
residuals in water are not caused by radial lens distortion.

5.3 Estimation of camera parameters

The task of the geometric camera calibration is to estimate the camera parameters θ and possibly the ad-
ditional parameters of lens distortion θd resp. θu. A large variety of estimation methods is available, see
[Clarke and Fryer, 1998] and [Armangue et al., 2002] for reviews or [Atkinson, 1996] or [Hartley and
Zisserman, 2000] for in-depth introductions.

The basic principle of all methods is to derive constraints on the camera parameters using a sufficient
number of known correspondences between features in the 3-D scene and features in the image. These
constraints represent an over-determined system of equations that is solved by a least squares method. To-
wards this end, a cost function is introduced, which is a measure of the discrepancy between the camera
model and the observations. Depending on the parameterization of the problem, the cost function may be
expressed as an algebraic, geometric or statistical error, with different error measures possibly resulting
in different parameter estimates. Additional terms may be added to the cost function to regularize the results
or to constrain the parameters, e.g. to a certain range of values.

The minimum of an algebraic error can be found using linear least squares methods, while geometric or
statistical errors have to be minimized by nonlinear iterative methods. An example for minimizing algebraic
error is given by the Direct Linear Transformation (DLT) calibration method explained in section 5.3.1. The
calibration methods discussed in section 5.3.4 and section 5.3.5 are nonlinear approaches based on minimiz-
ing geometric errors. For more information on parameter estimation techniques in general, see [Press et al.,
1992; Gill et al., 1981; Nocedal and Wright, 1999]. Zhang [1995] gives an overview of parameter estimation
for computer vision. Textbooks on parameter estimation in the context of computer vision are e.g. [Weng
et al., 1993b; Kanatani, 1996; Hartley and Zisserman, 2000]. See especially [Hartley and Zisserman, 2000]
for a detailed discussion of algebraic, geometric and statistical errors and their relations.

The most common way of calibrating cameras in laboratory experiments is to acquire images of a ded-
icated calibration target, which is put in the observation area of the experiment. The target is either a
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three-dimensional target, e.g. a cube, or a planar target. The calibration points are usually the edges of
checkerboard patterns, the crossings of grid lines or the centers of circular markers. In this work, a planar
grid target is applied. For a reliable calibration of the complete camera model (5.5), the calibration points
have to be distributed in 3-D throughout the whole observation volume. Hence, if a planar target is used,
there are two possibilities to achieve this:

1. ’Simulated 3-D target’: A 3-D target is created artificially by fixing the planar target on a linear
positioner, moving it in precisely known steps along an axis perpendicular to the calibration plane
and acquiring several images successively. This method is applied to calibrate the endoscope stereo
rigs, see section 5.4.2. The positions of the calibration points are assumed to be precisely known
(both in the images and the world) and well distributed throughout the whole observation volume. If
lens distortion is neglected, the corresponding estimation method (DLT, see section 5.3.1) is linear
and known as camera resectioning in photogrammetry (the related problem of estimating the 3-D
structure of a scene given the camera parameters and several views is called intersection).

2. ’Multi-plane calibration: The second possibility is to acquire several images of the calibration plane
in different positions and orientations. To create the different views, the plane is freely moved in space,
without the 3-D coordinates of the calibration points being known. Only the 2-D relative position of
the points within the plane is known. Hence, in addition to the camera parameters, the positions and
orientations of the calibration planes also have to be estimated in the calibration, which calls for a
nonlinear estimation method (Section 5.3.4). The multi-plane method is used to calibrate the stereo
rig ’Neckar’ (free surface flow), see Section 5.4.3.

If at least two different views of a scene are available (as e.g. in a stereo camera setup), the most gen-
eral method to calibrate a camera is to estimate both the camera parameters and the 3-D coordinates of the
calibration points within a simultaneous full-scale nonlinear optimization. This method is called a bundle
adjustment or joint bundle adjustment with self-calibration in photogrammetry, where it has been suc-
cessfully applied for a long time [Brown, 1966; Faig, 1975; Bopp and Krauss, 1978; Slama, 1980; Luhmann,
2000]. In computer vision, the application of bundle adjustments to compute structure and motion parame-
ters has been proposed much later, e.g. [Lavest et al., 1998; Triggs et al., 2000]. Under the assumption of
independent Gaussian image noise, bundle adjustment corresponds to the maximum-likelihood estimation
(MLE) of the unknown parameters (camera calibration and 3-D structure). In this case, it is the method
obtaining the highest possible precision. Due to the well-defined statistical basis, reliable RMS errors of
all estimated quantities can be obtained, given enough redundancy in the measurements. Bundle adjust-
ment is a very general and flexible method, since any geometric constraints or a priori knowledge can be
incorporated in the estimation easily (e.g. the constraint that certain world points lie on a common plane or
line in space). If no metric information is available, a bundle adjustment can also be computed using only
implicit geometric information, i.e. corresponding image points of a static scene in at least three views. In
the computer vision literature, this approach is known as self-calibration [Faugeras et al., 1992]. In this
case, the 3-D structure of the scene can only be estimated up to a projective transformation or a similarity
tranformation, depending on the number of cameras and views [Hartley and Zisserman, 2000].

Since any type of bundle adjustment requires a nonlinear, iterative estimation method, it has to be applied
with some precautions [Luhmann, 2000]:

• Bundle adjustment requires a ’strong network geometry’, i.e. a careful arrangement of the camera
views: Several views (at least two) of the same 3-D points are required to get a high redundancy.
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Table 5.4: Overview of the different methods that are applied to calibrate the experimental subsystems (DLT: Direct
Linear Transformation, LM: nonlinear minimization by a Levenberg-Marquardt algorithm).

subsystem Jagst Elbe-u Neckar

Kocher Elbe-m

Höllbach Elbe-d

optics flexible endoscopes rigid endoscopes C-mount lenses

(’periscopes’)

location pore flow sand layer free surface flow

observation area 3-D volume 2-D cross section 3-D volume

measurement 3-C vectors 2-C vectors 3-C vectors

setup stereoscopic monoscopic stereoscopic

camera model linear pinhole linear pinhole + k1 linear pinhole

approach 3-D target single-plane multi-plane

estimation projection homography projection

(3D-2D) (2D-2D) (3D-2D)

robust DLT robust DLT robust DLT + LM

The points have to be distributed throughout the whole observation volume to stabilize the estimation.
To avoid correlations in the camera parameters, different views with the camera rotated around the
optical axis should be available.

• To start the iterative estimation, initial guesses of all parameters are required. The latter should be
close to the true values to avoid getting stuck in local minima during the minimization of the cost
function.

• Degenerate geometric configurations (e.g. all calibration points lie within the same plane in space)
have to be avoided, since they result in singularities in the estimation.

• Since all unknowns are estimated simultaneously, bundle adjustment is computationally very expen-
sive for large numbers of views resp. 3-D points. Efficient computational methods like factorization
[Sturm and Triggs, 1996] or sparse Levenberg-Marquardt optimizers [Hartley and Zisserman, 2000]
are necessary.

A very efficient variant of bundle adjustment is interleaved bundle adjustment. Instead of the simulta-
neous full-scale nonlinear estimation of all parameters, groups of parameters (typically camera parameters
and 3-D coordinates) are estimated separately within an iterated resection-intersection loop [Weng et al.,
1993a,b; Wang and Clarke, 1996; Bartoli, 2002]. The advantages are faster computation and reduced corre-
lations between parameters [Clarke et al., 1998].

The multi-plane approach to camera calibration mentioned above lies between the methods of resection-
ing and bundle adjustment, since it uses 2-D metric information (2-D relative position of the points within
the calibration planes) rather than full 3-D information (like resectioning using a 3-D target) or only implicit
geometric information (like self-calibration).
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In this work, three calibration methods are applied, see table 5.4. The reasons for using three different
methods are related to the particular conditions of the experimental setups, see section 10.2.1. The first
is resectioning by a robust DLT, outlined in sections 5.3.1–5.3.2. The second method is a 2-D calibration
using a single calibration plane, described in section 5.3.3. It is also a DLT approach. The differences to
the first method are that a plane homography is estimated, i.e. a 3 × 3-matrix instead of a 3 × 4-projection
matrix. Further, a radial distortion parameter is included in the estimation. The third method is a multi-plane
approach proposed by Zhang [2000], based on an implementation by Heikkilä [2000] (sections 5.3.4–5.3.5).
Results of the three methods including their precision are shown in section 5.4.

5.3.1 DLT by mixed OLS-TLS estimation

A very simple approach to camera calibration is the Direct Linear Transformation (DLT) [Abdel-Aziz and
Karara, 1971; Luhmann, 2000]. Since it is a linear method, it cannot account for lens distortion. The
DLT computes the parameters of the projection matrix P in (5.14) in the following way. A list of n ≥ 6

corresponding world points Pw,i and image points pp,i has to be given. We re-write (5.14) as

λ




xp

yp

1


 =




H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34







Xw

Yw

Zw

1




. (5.23)

Eliminating λ from (5.23) yields

xp =
H11Xw + H12Yw + H13Zw + H14

H31Xw + H32Yw + H33Zw + H34
,

yp =
H21Xw + H22Yw + H23Zw + H24

H31Xw + H32Yw + H33Zw + H34
. (5.24)

Re-arranging (5.24) shows, that each pair of corresponding world and image points gives two constraints on
the twelve elements of the projection matrix P:

XwH11 + YwH12 + ZwH13 + H14 − xpXwH31 − xpYwH32 − xpZwH33 − xpH34 = 0,

XwH21 + YwH22 + ZwH23 + H24 − ypXwH31 − ypYwH32 − ypZwH33 − ypH34 = 0. (5.25)

To reduce the degree of freedom in P to eleven, we set H34 = 1. This might introduce singularities if the
actual value of H34 is close to zero, but it has been checked that this is not the case in the geometries of the
stereo rigs used in this work. We obtain the following equations:

XwH11 + YwH12 + ZwH13 + H14 − xpXwH31 − xpYwH32 − xpZwH33 = xp,

XwH21 + YwH22 + ZwH23 + H24 − ypXwH31 − ypYwH32 − ypZwH33 = yp. (5.26)

Stacking up the equations for a set of n point correspondences, we obtain an over-determined system of the
form

Ah′ = b, (5.27)
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where A is the (2n × 11)-matrix

A =




Xw,1 Yw,1 Zw,1 1 0 0 0 0 −xp,1Xw,1 −xp,1Yw,1 −xp,1Zw,1

0 0 0 0 Xw,1 Yw,1 Zw,1 1 −yp,1Xw,1 −yp,1Yw,1 −yp,1Zw,1

. . . . . . . . . . .

. . . . . . . . . . .

Xw,n Yw,n Zw,n 1 0 0 0 0 −xp,nXw,n −xp,nYw,n −xp,nZw,n

0 0 0 0 Xw,n Yw,n Zw,n 1 −yp,nXw,n −yp,nYw,n −yp,nZw,n




,

(5.28)
and h′ is the vector of the remaining eleven parameters of P. Hence, we have to solve a linear least-squares
problem, where errors occur both in the data matrix A and in the right-hand-side vector b. Problems of this
kind are known as Total Least Squares2 (TLS) problems [van Huffel and Vandewalle, 1991]. In a TLS
estimation, the problem (5.27) is re-formulated as

[A|b]

[
h′

−1

]
= 0. (5.29)

The basic idea of TLS is to modify the noisy data matrix D = [A|b] into a matrix D̃ =
[
Ã|b̃

]
that is close

to the original matrix in the Frobenius norm, subject to the constraint that b̃ is in the range of Ã. In this
approach, all the data are modified in contrast to an ordinary least squares (OLS) approach, where only one
column of D is modified. Since all the columns of D contain noisy data, OLS estimation generally yields
biased results, whereas TLS does not.

A closer look at (5.28) reveals, that not all columns in the matrix A are subject to noise. The fourth and
the eighth column contain exactly known constants. In this case, the TLS estimator produces suboptimal
results. This problem can be overcome by partitioning the matrix into an OLS and a TLS subproblem in a
mixed OLS-TLS approach. Towards this end, a QR-decomposition of A is calculated. For the details of this
approach, see [van Huffel and Vandewalle, 1991]. The superior performance of mixed OLS-TLS estimation
in the case of exactly known columns in the data matrix has been shown by Garbe [2001] and Mühlich and
Mester [1998]; Mühlich et al. [1999]. The latter apply mixed OLS-TLS (among other applications) for the
computation of a DLT and the estimation of the fundamental matrix (see section 7.5), where a similarly
structured data matrix occurs. Garbe [2001] presents a detailed study of mixed OLS-TLS estimation in the
context of optical flow computations. We use the mixed OLS-TLS estimator as described in [Garbe, 2001]
to compute the DLT.

An important topic in parameter estimation is the scaling or normalization of the input data prior to
estimation. Scaling is necessary for two reasons:

1. Both OLS and TLS only produce optimal results if the noise in the data matrix is independent, of
zero mean and identically distributed (i.i.d. noise). In OLS estimation, the distribution additionally
has to be Gaussian, whereas in TLS the distribution is arbitrary. In this case, OLS and TLS are
maximum-likelihood estimators. In general, the noise in the data matrix will not be i.i.d. However,
this noise structure can be obtained by applying an appropriate scaling of the data matrix (also known
as equilibration [Mühlich and Mester, 2001].

2also known as orthogonal least squares regression or errors-in-variables regression
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Figure 5.5: a Outliers in the feature extraction of the calibration points (red circles). The positions of the grid
crossings are determined by a nonlinear gray value fit (section 5.1), which may sometimes fail due to the limited
quality of the endoscopic images. Further, the fit does not work at the border of the circular field of view (see b ),
where the grid crossings are only partially visible. In both cases, the fit gets stuck in a local minimum of the cost
function and yields completely wrong parameters. b All outliers of an endoscope calibration shown in one plot (left:
3-D view of the corresponding world points, right: image coordinates of the outliers).

2. If the numerical range of the input data covers several orders of magnitude, unscaled data may in-
troduce numerical instabilities in the TLS algorithms, where typically matrix factorizations like QR-
decomposition, Cholesky decomposition or singular value decomposition are computed [Golub and
van Loan, 1996].

Hartley [1997a] proposes the following normalization scheme: a translation of the image coordinates to
their center of gravity, followed by a scaling to make the mean square of the coordinates equal to unity. The
scaled data have zero mean and unit variance. Hartley shows the efficiency of this scaling by a number of
examples and gives some motivation for it, but does not analyze the statistical input-output relation in terms
of bias, variance and consistency. The latter is carried out by Mühlich and Mester [1998] and Mühlich et al.
[1999]. They show that the scaling prescriptions proposed by Hartley [1997a] can be derived by a statistical
analysis of the error structure in the TLS estimation and that it leads to unbiased TLS estimates. Hence, we
apply this scaling in the DLT computations in this work.

After the computation of the projection matrix P by the mixed OLS-TLS algorithm, a QR-decomposition
of P is calculated to recover the physical (internal and external) camera parameters [Hartley and Zisserman,
2000]. An equivalent decomposition may be derived by purely geometric considerations [Strat, 1984].

5.3.2 Robust DLT

In practical imaging applications, input data is often corrupted by outliers, i.e. gross errors resp. ’wrong’
observations, which do not conform to the estimated model. An example is shown in figure 5.5, where
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Table 5.5: Comparison of calibration results using robust and non-robust estimation (calibration data hmb01r, right
camera of Höllbach-setup). The first column shows the correct results. The results of the second and third columns
have been obtained from a dataset contaminated with outliers. While the non-robust approach yields completely wrong
results, LMedS is able to remove the outliers and recover the correct parameter set.

correct non-robust LMedS

fx [mm] 2.5490 1.2828 2.4869

fy [mm] 2.5234 1.2985 2.4499

s [−] 0.0751 0.1389 0.0751

cx [pix] 96.1666 96.1600 90.3455

cy [pix] 86.3097 93.4385 88.4236

Tx [mm] 0.0212 −0.3596 0.1505

Ty [mm] −0.0113 0.0857 −0.0536

Tz [mm] 5.2200 1.6930 5.0222

ω [◦] −0.6911 13.4740 0.3596

φ [◦] 47.2855 54.9056 48.5539

κ [◦] 4.5645 18.3554 5.3670

〈∆x〉 [pix] −0.00 ± 0.35 −8.33 ± 116.7 0.00 ± 0.28

〈∆y〉 [pix] −0.00 ± 0.35 9.58 ± 164.8 0.00 ± 0.39

〈∆r〉 [pix] 0.42 ± 0.26 25.9 ± 200.7 0.40 ± 0.26

outliers occur in the extraction of the grid points in an endoscopic calibration image. Estimation methods like
the mixed OLS-TLS estimator of section 5.3.1 assume that all data can be described by one model, i.e. by
one set of parameters to be estimated. All least squares estimators based on the L2-norm are very vulnerable
to the violation of this assumption [Zhang, 1995]. In some cases, even one single outlier may completely
perturb the results. Hence, estimation techniques for computer vision should be robust to outliers, i.e. they
should be able to identify bad data points automatically and remove them from the computations, so that the
resulting estimates are unaffected by outliers. Many robust estimators have been proposed in the context of
computer vision, for reviews see [Meer et al., 1991] and [Stewart, 1999]. An introduction to robust statistics
is given by Huber [1981].

The series of measurements described in chapter 10 has been carried out during a time period of about
six months. All experimental setups had to be re-calibrated before each experiment to account for possible
changes in the geometry of the stereo rigs which may evolve gradually over time. As a result, more than
2500 calibration images had to be processed. Hence, manual inspection to remove outliers was not feasible,
making a robust technique absolutely necessary. A robust DLT estimation has been implemented, based on
a random sampling technique known as Least Median of Squares3 (LMedS). The implementation is based
on the description given by Zhang [1995].

In the LMedS approach, a number of randomly selected subsamples is drawn from the data. The size
of the subsamples is defined by the minimal solution of the problem. Since there are eleven parameters

3also known as Least Median of Squares of Orthogonal Distances (LMSOD) if the estimator is based on TLS
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in the projection matrix of the DLT and each point correspondence yields two constraints, each subsample
consists of six correspondences. For every subsample, the parameter vector is estimated, and the residuum
is computed using the complete data set. The parameter vector corresponding to the minimum median of
the residuals is chosen as the correct one. Outliers are detected using a statistically robust threshold and
removed. Finally, the model is estimated again (by mixed OLS-TLS) using only the inliers. The number of
subsamples one has to draw to find the correct solution can also be estimated by statistical considerations,
assuming a certain outlier probability. For further details, see [Zhang, 1995].

We demonstrate the effectiveness of the LMedS approach by the following experiment. In a set of
18 endoscope calibration images, we exchange the X- and Y-components of the world coordinates in one
image, whereby a number of gross outliers are introduced. We estimate the camera parameters both using a
non-robust DLT and using LMedS. The results are shown in table 5.5. LMedS is able to recover the correct
camera model also in the presence of outliers. Figure 5.5b shows a further example of outlier detection
in endoscopic calibration images using the LMedS approach. In this case, the outliers are ’real’ outliers
occuring due to a failure of the feature extraction (see section 5.1) at the border of the endoscopic field of
view.

5.3.3 Estimation of a planar homography with lens distortion

In the context of projective geometry, a nonsingular linear transformation in a projective space is called a
homography. An example is the projective transformation between points pw = [Xp, Yp, 1]

T on a plane
in 3-D space (where Xp and Yp are Euclidean 2-D coordinates in a frame of reference defined within this
plane) and their (ideal, undistorted) image points pu = [xu, yu, 1]T (which lie also within a plane, namely
the image plane). In homogeneous coordinates, this homography is described by a (3 × 3)-matrix H:

p′ = Hp. (5.30)

In this thesis, homographies within IR3 are important in two respects:

1. They define the perspective projection for the periscopes (section 9.2), where observations are re-
stricted to a plane in space. In this case, the geometric camera calibration is reduced to the estimation
of a (3 × 3)-homography.

2. Homographies between planes are computed in the initialization phase of multi-plane calibration
algorithms like the one outlined in section 5.3.4.

The estimation of a (3×3)-homography is carried out in complete analogy to the estimation of the projection
matrix P, as described in section 5.3.1, including the robustification by LMedS shown in section 5.3.2. The
only difference is that we estimate a homogeneous (3 × 3)-matrix with eight degrees of freedom instead of
a (3 × 4)-matrix with eleven degrees of freedom.

Singularities and degenerate configurations.

For the geometric calibration of the periscopes, only one image of a calibration grid is necessary, since the
observations are restricted to a plane. Hence, we do not have to compute the full projection matrix P, but
only a (3 × 3)-homography H. In such a case, we have to take special care of singularities and degen-
erate configurations. Both are the result of an insufficient4 geometrical distribution of calibration points.

4with respect to the chosen camera model
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Singularities are cases where the estimation completely fails because certain parameters are not estimable.
Degenerate geometries do not determine a unique solution, because there are correlations between certain
parameters. Note that the definitions of both singularities and degeneracies involve both the geometric
configuration and the type of camera model to be estimated.

Sturm and Maybank [1999] discuss minimal cases in plane-based calibration algorithms. They show
that if only one plane is available, the following two cases have to be distinguished:

• If the calibration plane is not parallel to the image plane, the focal lengths fx and fy can be calibrated,
provided that the principal point is given. Hence, this case corresponds to a degenerate configuration
where the principal point is correlated with exterior orientation parameters, see section 5.3.6 and
[Clarke et al., 1998]. Hartley and Kaucic [2002] show that the principal point is also correlated with
the focal length.

• If the calibration plane is parallel to the image plane, a singularity is introduced. The only parameter
that can be estimated is the aspect ratio fx/fy. The focal lengths cannot be estimated, since they are
correlated with Tz (the Z-component of the translation vector).

Strictly speaking, the periscope calibration corresponds to the singular case, where the calibration plane
is parallel to the image plane. However, tests have shown that the deviations from parallelism introduced
by the experimental imprecision together with the strong radial distortion of the wide-angle lenses enable
a determination of both the focal length and the principal point. The latter is estimated as the center of the
radial distortion. For results, see section 5.4.1.

Including lens distortion.

The wide-angle lenses of the rigid endoscopes introduce a significant amount of radial distortion, see the
examples of calibration images in figure 5.6. The straight lines of the calibration grid appear more or less
curved in the images. This curvature cannot be described by a homography and hence will reduce the
accuracy of the camera model. To account for the curvature, we introduce the model (5.20) as a distortion
model, i.e. with (xu, yu) and (xd, yd) interchanged. This approach is frequently used in computer vision,
see section 5.2.2 and [Tamaki et al., 2002]. Only the parameter k1 is used, the other distortion parameters
are set to zero.

To avoid a nonlinear estimation method, we divide the model parameters into distortion (k1) and non-
distortion (H) parameters and estimate each set separately while keeping the other set fixed, using only linear
total least squares methods. The estimations are iterated until convergence. A similar multi-step iterative
estimation procedure has been proposed recently by Cornelis et al. [2002].

5.3.4 Zhang’s method for multi-plane calibration

Zhang [2000] proposed the following multi-plane calibration method (other plane-based calibration methods
are [Tsai, 1987; Lenz and Tsai, 1988; Wei and Ma, 1994; Sturm and Maybank, 1999]). Images of a planar
calibration grid are acquired from several different orientations. Either the camera or the planar pattern can
be freely moved between the acquisitions, the motion does not have to be known.

The parameter estimation is carried out in two steps. First, the homography between each calibration
plane and the image plane is computed. Towards this end, a linear method similar to that in section 5.3.1 is
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used, followed by a nonlinear optimization of the parameters for each homography. As shown in [Zhang,
2000], each homography gives two constraints on the intrinsic parameters. Hence, the five parameters of the
calibration matrix K can be computed given at least three homographies, i.e. three views of the calibration
plane in different orientations. As a result of the first step, initial values for the intrinsic (without distortion)
and all extrinsic parameters (orientations of all planes relative to the first plane) are available. The second
step of the algorithm is a refinement of the initial parameters obtained in the first step, using a nonlinear
optimization (Levenberg-Marquardt algorithm). Further, a lens distortion model is included in the second
step. For details, see [Zhang, 2000]. A Matlab implementation of this method due to J.-Y. Bouguet is
available at http://www.vision.caltech.edu/∼bouguetj/calib doc/index.html.

Zhang [2000] also carries out a performance analysis of his method. He shows that errors in the es-
timated parameters decrease with increasing number of planes. At least three views should be used. The
average error decreases until a number of about ten views is reached. Typical RMS image residuals of 0.3 to
0.4 pixels are reported. Zhang’s method assumes that the exact 2-D positions of the calibration points within
the planes are known. The sensitivity of the method with respect to violations of this assumption is checked,
both for random noise in the calibration points and systematic deviations from planarity. The method is
relatively robust to random noise. Only the radial distortion parameters become less useful for higher noise
levels. This behaviour is expected, see the discussion in section 5.3.6. Systematic non-planarity of the cali-
bration planes has more effect on the calibration precision than random noise. However, the results are still
reasonable for systematic non-planarity less than 3% (measured as the ratio of the maximum displacement
perpendicular to the plane to the size of the calibration pattern).

5.3.5 Heikkilä’s method

Heikkilä [2000] presents a nonlinear calibration method that can handle both multi-plane calibration and
calibration using a 3-D target. The multi-plane version is similar to Zhang’s method. However, instead of
computing the initial values for the interior orientation based on the constraints given by the homographies,
Heikkilä [2000] simply uses the nominal values as initial guess (focal length given by the manufacturer,
unity aspect ratio, zero skew, center of the image as the principal point). We also use the nominal values,
since it was found that this approach is more stable and reliable than estimating the initial values.

Further advantages of Heikkilä’s method are the correction of biases introduced by circular calibra-
tion points and a method to reverse the distortion model and obtain an accurate mapping in both directions
(distorted-undistorted and vice versa). However, these features were not used (because the calibration points
are crosses and distortion is neglected). Using his full camera model including the bias correction, Heikkilä
[2000] achieves rms image residuals as low as ≈ 0.05 pixels on real images obtained with standard equip-
ment. A remarkable result reported by Heikkilä is that errors of up to 0.5 pixels may be introduced if
different light sources are used for calibration and measurement (as a result of chromatic aberrations). This
underlines the importance of the radiometric information in the estimation of precise geometric positions.

At http://www.ee.oulu.fi/∼jth/calibr/, a Matlab implementation of Heikkilä’s method
is available. The nonlinear parameter optimization of all setups in this work is based on this implementation
because of its flexibility to handle both multi-plane calibration and 3-D targets.
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5.3.6 Estimating lens distortion

In this section, some further important aspects related to the estimation of lens distortion parameters are
mentioned. The discussion will substantiate the decision not to use distortion models in this work, except
for the wide-angle lenses of the periscopes.

Metric and non-metric approaches.

Methods to estimate lens distortion can be classified into two major groups: metric and non-metric ap-
proaches. In the metric approaches, the distortion parameters are calibrated along with the standard external
and internal parameters of a pinhole camera, e.g. [Weng et al., 1992; Zhang, 2000; Heikkilä, 2000]. Usually,
a dedicated calibration target with precisely known 3-D points is used. Due to the nonlinearity of the result-
ing camera model, an iterative optimization is necessary. The simultaneous estimation of all parameters may
introduce correlations between distortion and non-distortion parameters in case of degenerate configurations
or weak geometry of the calibration points, see below.

Akin to self-calibration methods, the non-metric approaches to distortion estimation only use implicit
geometric information. They are based on the fact that straight lines in the scene should also be straight in
the image of an ideal pinhole camera. In images of real lenses, straight lines in the world appear as more
or less curved lines in the images. Hence, a distortion model may be estimated by requiring these curved
image lines to become straight if transformed with the model. This approach was originally introduced into
analytical photogrammetry as the ’plumbline-method’ by Brown [1971]. The plumbline-method estimates a
set of undistortion parameters independent of the other camera parameters. Hence, correlations are avoided.
The method has been re-discovered recently in the computer vision community [Devernay and Faugeras,
2001]. Since the probability of data outliers is high in typical computer vision applications, it is important
to use robust estimation methods, e.g. Least Median of Squares [El-Melegy and Farag, 2003] or RANSAC
[Thormählen et al., 2003]. A further approach similar to the plumbline-method has been proposed for stereo
applications by Zhang [1996] and Stein [1997]. They estimate radial distortion from point correspondences
in two views by minimizing the distance of points to their corresponding epipolar lines.

Correlations between parameters.

In the case of (nearly) degenerate configurations or weak network geometry of the calibration points resp.
camera views, correlations between the following sets of camera parameters may show up in a simultaneous
least squares estimation:

• principal point cx, cy and decentering distortion parameters t1, t2, t3, coupled via the external param-
eters ω and φ,

• radial distortion parameters k1, k2, k3,

• radial distortion parameters k1, k2, k3 and focal length f .

Clarke et al. [1998] give a detailed discussion and explain the origin of these correlations. The position of
the principal point is especially sensitive. It is coupled to both the focal length and the exterior orientation
[Hartley and Kaucic, 2002; Ruiz et al., 2002]. If there is a discrepancy in the modeling between the exterior
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orientation and the principal point, it can be reduced by t1 and t2 to a significant extent. For example, if the
principal point is not estimated but set to a fixed (but possibly wrong) value, the estimated exterior orienta-
tion can compensate for image residuals created by the wrong principal point. The remaining residuals can
be compensated by t1 and t2 [Clarke et al., 1998]. El-Melegy and Farag [2003] also estimate distortion pa-
rameters using the plumbline-method while keeping the principal point fixed at the image center. They show
that deviations of the principal point from its true location under both radial and decentering distortion are
equivalent to adding two decentering distortion terms. We confirm this in the calibration of the periscopes in
section 5.4.1. Due to the high correlations, Fryer et al. [1994] recommend not to estimate both decentering
distortion parameters and the principal point simultaneously in a convergent bundle adjustment. They show
that over-parameterization can lead to poor conditioning in the numerical optimization, with adverse effects
on the finally computed 3-D coordinates of object points.

Different strategies may be applied to avoid or reduce correlations:

• Correlations between the focal length and the radial distortion parameters are reduced in the so-called
balanced distortion model [Atkinson, 1996]. In this model, a constant term ∝ k0 is added to the
radial distortion function, which is equivalent to specifying a second zero-crossing of the distortion
function. The resulting change is compensated by a shift in the focal length.

• Correlations between the principal point and the decentering distortion parameters in a bundle ad-
justment are reduced by including additional calibration images with the camera rotated around the
optical axis [Luhmann, 2000].

Clarke et al. [1998] conclude that the full parameter set including distortion can only be reasonably estimated
provided that

1. the functional model represents a good approximation of the physical effects,

2. the image coordinates are subject to only random errors,

3. a reasonably large number of well distributed 3-D targets is available and

4. several views in a highly convergent network are used.

If there are deficiencies in any of these requirements, poor parameter estimation may introduce errors in 3-D
reconstructions based on the estimated model, and alternative strategies might be more successful.

Definition of the cost function.

As explained in Section 5.2.2, there are two approaches to model lens distortion, resulting in two different
ways to compute image residuals. The difference in the approaches is that either a distortion or an undis-
tortion model is used. The distortion model d+ adds distortion to ideal undistorted points, whereas the
undistortion model d− computes ideal points from distorted ones5. The undistortion model corresponds to
the usual approach initially proposed in the photogrammetric literature [Brown, 1971]. Because analytical
inversion is not possible, the parameter vectors in the two models are not the same and have to be estimated
separately by the following procedures (we denote the ideal points as computed by a pinhole model (5.14)
with pi,i):

5Note that the distortion model d+ corresponds to the ’reverse’ model of [Heikkilä, 2000].
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• Distortion model: Take the points of an ideal pinhole model pi,i and use a distortion model to calcu-
late the distorted points pd,i = d+(pi,i; θd). The cost function C is given by the sum of squares of
the differences between the distorted points pd,i and the measured points pm,i:

C =
∑

i

∥∥pd,i − pm,i

∥∥2
. (5.31)

• Undistortion model: Take the measured (distorted) points pm,i and use an undistortion model to
calculate the undistorted points pu,i = d−(pm,i; θu). The cost function C ′ is given by the sum of
squares of the differences between the undistorted points pu,i and the ideal points given by the pinhole
model pi,i:

C ′ =
∑

i

∥∥pu,i − pi,i

∥∥2
. (5.32)

Hence, the cost function may be defined either in the distorted or in the undistorted image plane. Exam-
ples for both approaches are found in the computer vision literature. Zhang [2000] uses the first approach
and minimizes an objective function defined in terms of distorted image points. On the other hand, Willson
[1994] uses the second approach and minimizes the sum of squared errors in the undistorted image plane.
Swaminathan and Nayar [2000] also use an undistortion model in a plumbline calibration. However, they
point out that image data is always noisy, resulting in the possibility of nonlinear biases inherent to errors in
the estimated undistortion model (amplification of image noise due to the higher-order terms in the undis-
tortion model). Hence, they prefer to define the objective function in terms of the measured distorted points,
which corresponds to a maximum-likelihood estimation of the undistortion parameters together with the
’true’ distorted image points. For details, see [Swaminathan and Nayar, 2000].

Conclusion.

As the discussions in this section show, estimation of lens distortion is a tricky business. The reason is
that distortion is modeled by higher order polynomials, which are very sensitive to noise. The parameter
estimation may become unstable already at moderate noise levels, where ’noise’ means both random noise
and systematic deviations from the applied distortion model. Tests using both endoscopic and ordinary cal-
ibration images have shown that instabilities indeed occur quite often. On the other hand, if the iterations
converged, the estimated distortion parameters did not significantly reduce the image residuals (see e.g. ta-
ble 5.7), except in the case of the wide-angle lenses of the periscopes (see section 9.2 and section 5.4.1).
Several reasons might be responsible for the bad performance of the distortion modeling (see also the con-
clusions of Clarke et al. [1998] mentioned above):

• A multi-plane method is applied to calibrate the Neckar-setup (free surface flow). However, rotations
of the cameras or the calibration plane around the optical axis are not possible due to limitations of
the experimental setup. Hence, correlations resp. over-parameterization may occur.

• In the endoscopic pore flow setups, radial distortion is reduced because the endoscopes are submerged
in water (section 5.2.3). The 3-D accuracy of the calibration points might be too small to enable an
estimation of the remaining small distortions.

• The ’noise’ in the calibration points is not random. Figure 5.8 shows that there are systematic patterns
in the image residuals, which are not described by radial or tangential distortion parameters. Since
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a b c

Figure 5.6: Calibration images of the periscopes. a Elbe-d. b Elbe-m. c Elbe-u.

these patterns move with the translation of the calibration grid, they are most probably related to
systematic inaccuracy of the calibration grid, see section 5.4.2.

• For the flexible endoscopes, inaccuracies comparable to those introduced by lens distortion might also
be caused by small systematic deviations in the arrangement of the hexagonal fiber array between
the entry and exit side. In this case, the image projected onto the entry side of the fiber bundle is
systematically distorted at the exit side. A global modeling of this distortion might be possible if the
deviations are caused e.g. by a shear or twist of the whole bundle. However, deviations may also be
individual for every fiber. In this case, a global physical modeling is not possible.

For these reasons, lens distortion parameters have only been estimated for the periscopes. For the flexible
endoscopes and the free surface flow setup, standard pinhole camera models without distortion parameters
are used.

5.4 Calibration results

In this section, representative calibration results of the three different experimental setups (rigid endoscopes,
flexible endoscopes and free surface flow) are discussed, including an analysis of the calibration accuracy.

5.4.1 Subsystem ’Elbe’ (rigid endoscopes)

Setup.

A planar grid target is used for calibration. The grid has been printed on a transparency, using a laser printer
with a resolution of 1200 dpi. The distance of the grid lines is 0.5 mm, and the width of the grid lines
is 0.09 mm. We estimate the accuracy of the printer by the variance of its ’quantization’ noise, which is
(1 inch/1200)2/12 = (21.2 µm)2/12, hence the standard deviation is 6.1 µm, which is assumed to be the
accuracy of the printed grid6. The diameter of the field of view is ≈ 15 mm, hence the relative accuracy of
the given world points is approximately 6µm/15 mm ≈ 1 : 2500.

6This assumption is possibly too optimistic, since there might be larger errors introduced by non-planarity and distortions of the
transparency during the printing process.
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Table 5.6: Results of the distortion estimation and mean image residuals εrms for the periscopes. The principal point
has been fixed to (cx, cy) = (369.0, 250.0) (center of the circular field of view) in the first four lines. In the fifth line, the
principal point has been estimated together with the first radial distortion parameter ((cx, cy) = (332.65, 194.89)).

k1 k2 t1 t2 εrms [pix]

- - - - 1.365 no dist.

-0.020301 - - - 0.412 k1

-0.020315 0.000006 - - 0.412 k1, k2

-0.020251 0.000003 -1.159842 -0.714596 0.193 k1, k2, t1, t2

-0.019664 - - - 0.194 k1, cx, cy

To realize a planar surface and a high contrast of the grid lines, the transparency is attached to a white
glass plate. The glass plate is fixed in the observation plane in front of the periscopes, and calibration images
are acquired by temporally averaging 100 frames. Example images are shown in figure 5.6. The strong radial
distortion of the wide-angle periscope lenses is evident from these images. Prior to the extraction of the grid
crossings, the illumination inhomogeneities are reduced using the method outlined in section 4.4.

Method.

To compute the camera parameters, we estimate a planar homography including a radial distortion parameter
as described in section 5.3.3. The homography and the distortion model are estimated in separate linear
optimizations, which are iterated until convergence.

Results.

The monoscopic image sequences obtained from the periscopes are processed by an optical flow algorithm to
compute 2-D displacement vector fields. In this case, the relevant information from the geometric calibration
is only the distortion model, since it can be used to account for the scale variations of the displacements
introduced by lens distortion. Table 5.6 shows the results of the distortion estimation, together with the
image residuals ∆r. The image residuals are given as the rms errors of the Euclidean distance between the
extracted feature points in the calibration images and the projected points using the estimated homography
and distortion model. We obtain the following results:

• Without distortion model, the rms error is more than one pixel, which is very large. The simple
homography cannot account for the curvature introduced by lens distortion.

• Using only k1, the rms error is significantly reduced to ≈ 0.4 pixels. However, the next order distor-
tion term (k2) does not yield a smaller residuum.

• Including tangential distortion terms, the rms error is further reduced to ≈ 0.2 pixels. The same rms
error can also be obtained by using only k1, but allowing also the principal point to vary. This confirms
the correlation between the principal point and the tangential distortion parameters, as mentioned in
section 5.3.6.
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a b

Figure 5.7: Calibration by ’simulating’ a 3-D object using a linear translation stage. a Sketch of the stereo rig (top
view). The calibration plane is indicated by the red line. b Front view of the translation stage. Both the stereo rig and
the translation stage are fixed to a ground plate made of steel.

• The image diameter of the circular field of view is ≈ 520 pixels. Hence, the rms error of 0.2 pixels
yields a relative accuracy of ≈ 1 : 2600, which is in good agreement with the relative accuracy of the
calibration grid.

5.4.2 Subsystems ’Jagst’, ’Kocher’, ’Höllbach’ (flexible endoscopes)

Setup.

In his preliminary studies, Janßen [2000] mentions the infeasibility of available calibration methods for
endoscopic setups, which is mainly caused by the small dimensions. He proposes to use a plane-based
calibration method, but reports difficulties with the fixation of the calibration planes in arbitrary orientations.
With the present setup, the problems become even more serious, because the convergence angle of the stereo
rig has been increased (see section 9.3.2), and the observation volume is located very close to the endoscope
lenses. Hence, a calibration grid has to be placed very close to the stereo rig, which limits rotations of the
plane to very small angles. Larger rotation angles are necessary to obtain a stable multi-plane calibration.
For these reasons, we do not apply a multi-plane method, but use a (simulated) 3-D target instead.

A 3-D target is created by fixing a planar calibration grid to a small translation stage, shifting the target
in precisely known small steps along the Z-axis and thereby acquiring several images sequentially, see
figure 5.7 and section 10.2.1. The Z-axis is perpendicular to the calibration plane. Both the stereo rig
and the translation stage are fixed to a common ground plate made of steel, because the relative position
of the stereo rig and the translation stage has to be absolutely stable during the acquisition of the images.
Images of the same calibration points are acquired simultaneously by both endoscopes, and the origin of the
common metric coordinate system for the later 3-D reconstruction is defined in the first calibration plane.
The translation stage enables to shift the plane in minimum increments of 10 µm, with a sensitivity of
±1µm. We use Z-increments of 0.2 mm, which typically requires 15-20 calibration images to cover the
stereo volume.
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Figure 5.8: Image residuals of the calibration of the Kocher-setup (calibration kmf01, left camera). Black arrows:
reprojection errors of the estimated camera model. Blue ellipses: standard error ellipses of the feature extraction
algorithm, see section 5.1 and figure A.1 in appendix A for explanations. Note the different scales. The reprojection
errors are much larger than the feature extraction errors. a Calibration plane at Zw = 0.6 mm. b Calibration plane
at Zw = 2.0 mm.

The planar grid target is produced in the same way as that used for the periscopes, see section 5.4.1.
Hence, we assume a world point accuracy of ≈ 6 µm in the X- and Y-direction and of ≈ 1 µm in the
Z-direction. These values have to be considered as optimistic lower bounds, since additional errors are
introduced by non-planarity and non-orthogonality of the grid and deviations from straigthness and flatness
of the translation stage.

Method.

We assume that the world coordinates of the calibration points can be considered free of error and apply the
resection method (robust DLT) outlined in sections 5.3.1–5.3.2 to compute the camera parameters. Since
the introduction of lens distortion parameters (see table 5.7) did not reduce the image residuals, we do not
use any distortion modeling.

Results.

Figure 5.8 shows the image residuals for two different calibration planes at Zw = 0.6 mm and Zw =

2.0 mm. The errors seem to be correlated along columns and lines of the calibration grid. There are
systematic patterns in the error vectors, which do not correspond to radial or tangential distortion patterns.
Since these patterns move over the image plane with the translation of the calibration plane along the Z-axis,
they are most probably related to inaccuracies in the world coordinates of the calibration points (which have
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Table 5.7: Calibration results for the stereo rig ’Höllbach’ (calibration hm08, left camera), using different estimation
methods and camera models. DLT = Direct Linear Transformation. NL = Nonlinear optimization. The table is
partitioned into four parts: internal camera parameters, external camera parameters and camera center (Cx, Cy, Cz),
error measures in image space and error measures in 3-D space. For a discussion, see text.

DLT NL NL NL NL

no dist. no dist. k1 k1, k2 k1, k2, t1, t2

fx [mm] 2.4729 2.4711 2.4894 2.4706 2.4731

fy [mm] 2.4660 2.4623 2.4850 2.4653 2.4684

s [−] 0.0133 0.0155 0.0132 0.0134 0.0139

cx [pix] 87.9705 93.6124 90.8360 91.5201 93.6917

cy [pix] 86.1348 86.7716 86.5935 86.4175 90.5759

k1 [−] 0 0 0.0234 −0.0222 −0.0219

k2 [−] 0 0 0 0.0524 0.0555

t1 [−] 0 0 0 0 −0.0024

t2 [−] 0 0 0 0 −0.0017

Tx [mm] 0.4625 0.3655 0.4144 0.4030 0.3633

Ty [mm] 0.1748 0.1628 0.1660 0.1697 0.0941

Tz [mm] 4.1352 4.1406 4.1310 4.1323 4.1406

ω [◦] −2.7977 −2.7841 −2.7730 −2.8354 −1.4901

φ [◦] −41.568 −43.009 −42.321 −42.5053 −43.0977

κ [◦] 4.5107 4.5788 4.5202 4.5688 3.6617

Cx [mm] −3.0990 −3.1003 −3.0965 −3.0981 −3.0943

Cy [mm] −0.0021 0.0016 0.0012 −0.0000 0.0023

Cz [mm] −2.7822 −2.7736 −2.7706 −2.7692 −2.7702

〈εx〉 [pix] −0.00 ± 0.45 0.00 ± 0.46 0.00 ± 0.44 0.00 ± 0.44 −0.00 ± 0.44

〈εy〉 [pix] −0.00 ± 0.40 0.00 ± 0.47 0.00 ± 0.44 −0.00 ± 0.44 0.00 ± 0.44

〈ε〉 [pix] 0.53 ± 0.27 0.57 ± 0.32 0.54 ± 0.31 0.54 ± 0.31 0.54 ± 0.31

(∆X)rms [µm] 15.5 13.5 12.7 12.8 instab.

(∆Y )rms [µm] 10.4 10.0 11.0 10.8 instab.

(∆Z)rms [µm] 10.2 8.3 5.2 6.0 instab.

〈D⊥〉 [µm] 5.1 ± 4.2 5.1 ± 4.1 2.7 ± 2.5 3.2 ± 2.9 instab.

NSCE [-] 1.95 1.72 1.77 1.75 119.78

been assumed to be free of error). Note that the largest errors are aligned along particular columns and rows
of the calibration grid.

To check the performance of the calibration including distortion modeling, we compare results obtained
with different numbers of distortion parameters in table 5.7. This table shows the obtained camera parame-
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ters together with error measures both in image space and 3-D space for linear and nonlinear estimation. We
compare the following approaches: robust DLT in the first column, and different versions of the nonlinear
optimization (NL) (section 5.3.5) in columns two to five.

The following error measures are used. In image space, 〈εx〉 and 〈εx〉 are the mean differences (x- resp.
y-component) between the measured feature points and the projected points using the estimated camera
model, given as mean value and standard deviation over all calibration points. Further, we use the mean
Euclidean distance between measured and projected points 〈ε〉. In 3-D space, we compute three different
error measures. First, (∆X)rms, (∆Y )rms, (∆Z)rms are the rms component errors between the given 3-D
coordinates of the calibration target (assumed free of error) and the reconstructed 3-D coordinates using
the calibrated stereo rig (see section 6.2.2 for the reconstruction method). A second 3-D error measure is
computed by fitting planes to the reconstructed 3-D points within one calibration plane. The fit planes are
used as reference planes, and the mean distance 〈D⊥〉 of the calibration points to their reference plane is
computed. Finally, we compute the so-called normalized stereo camera error (NSCE) introduced by Weng
et al. [1992]:

NSCE =
1

n

n∑

i=1

[
(X̂i − Xi)

2 + (Ŷi − Yi)
2

Ẑi
2
(α−2 + β−2)/12

]1/2

, (5.33)

where (X̂i, Ŷi, Ẑi) are the reconstructed 3-D points, (Xi, Yi, Zi) is the known 3-D ground truth, and α, β

are the effective focal lengths in x- and y-direction in units of pixels. Looking at (5.33), we see that the
NSCE is the mean of the ratio of the lateral triangulation error to the lateral standard deviation of the pixel
digitization noise, back-projected to the depth of the corresponding 3-D point. The underlying idea of the
NSCE is that the basic factor limiting 3-D accuracy is the pixel resolution of the digital images. The NSCE
compares the obtained 3-D accuracy to the potential provided by the given image resolution. An NSCE
value of unity indicates a good calibration. Values larger than one indicate that for some reasons the highest
possible accuracy has not been achieved. The NSCE is an error measure that is independent of the stereo rig
geometry (field of view, depth range, convergence angle, length of baseline).

To compute the 3-D error measures, the reconstructed world points have been computed using the
method described in section 6.2.2. Since the image points in the left and the right camera belong to the
same calibration target with known world coordinates, the stereoscopic correspondences that are necessary
to compute 3-D points are trivially known.

We can draw the following conclusions from table 5.7:

• The image residuals (rms errors) are ≈ 0.4 − 0.5 pixels. While being only half as large as those
obtained by Janßen [2000], they are still quite large as compared to typical calibrations of C-mount
lenses in air (factor 5-10 larger). Lens distortion parameters do not reduce the residuals. Hence, the
limiting factors might be the accuracy of the 3-D world points (which are assumed free of error in
the calibration) and the limited geometric precision and image resolution of the fiber bundles in the
flexible endoscopes.

• The computed camera center is very stable throughout all methods. However, we can see slightly
different values of the principal point and the angle φ, which reveals the correlations between these
parameters.

• The estimated 3-D accuracy is ≈ 10 µm. It is larger for the X-component (≈ 15 µm). The reason
is that the X- and Z-component of a 3-D point are particularly affected by the perspective projection,
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since the optical axis is aligned with the diagonal between the X- and Z-axis of the world coordinate
frame. The smaller error in the Z-component is probably due to the higher Z-accuracy of the target
points (which is 1 µm, the sensitivity of the translation stage).

• The mean distance between the reconstructed 3-D points and their estimated reference planes is ≈
5 µm.

• Although the lens distortion parameters do no reduce the residuals in image space, they do reduce
the 3-D errors (at least in the Z-component). This means that even very small changes in the image
coordinates may yield better 3-D estimates. However, distortion parameters also introduce instabilities
in the 3-D reconstruction, since the latter is carried out numerically in the present implementation (see
section 6.2.2). For example, if the full distortion model was used, the 3-D reconstruction did not work
at all because of singularities in the estimation. Hence, we still do not use distortion parameters.

• The NSCE is always larger than one, indicating that the maximum 3-D accuracy (limited by the
image resolution) is not achieved. The reason may again be the inaccuracy introduced by endoscopic
imaging. Note also that in the computation of the NSCE we assume the given 3-D coordinates as
error-free ground truth, which is not true.

• The image diameter of the circular field of view of the endoscopes is 170 pixels, hence the relative
calibration accuracy in image space is ≈ 1 : 400. Note that the relative accuracy based on the feature
extraction accuracy (0.05 to 0.1 pixels) is much larger. The relative accuracy in object space varies
with depth, see also figure 6.4, and is approximately 1 : 200 to 1 : 400. It is lower than in image
space, which is also expressed by the NSCE values larger than one. The lower accuracy in object
space indicates shortcomings in the performance of the camera model, which are supposed to be
caused by inaccuracies of the fiber bundle.

5.4.3 Subsystem ’Neckar’ (free surface flow)

Setup.

For the geometric camera calibration of the Neckar-setup, a planar calibration target of side length ≈ 15 cm

is necessary. The target is made of a sheet of opalescent glass, on which a regular quadratic grid of grid
spacing 1 cm has been imprinted (accuracy ≈ 10 µm). To calibrate the cameras, this grid is put inside
the stereo volume and viewed by both cameras. The calibration is carried out with the target submerged in
water. Multiple images (≈ 15) of this grid in different orientations and positions are acquired. In the first
view, the grid position and orientation relative to the channel walls and the gravel bed has to be measured,
because the first calibration plane defines the coordinate system of the measurement results. In particular,
the experimental zero-level of the logarithmic velocity profile is determined by the first calibration plane.
For an exact determination of the zero-level, the calibration grid is mounted on a plane steel plate of about
25 × 50 cm2 size. The gravel surface in the measurement area is leveled using this steel plate and a spirit-
level. The vertical position (i.e. the zero-level) is measured by dropping a perpendicular on the plate.
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Figure 5.9: Three references planes obtained by fitting a plane to the estimated 3-D points of the planar calibration
target in three different orientations. The red markers show the reconstructed 3-D points, computed by the method
explained in section 6.2.2.

Method.

Camera parameters are computed by the multi-plane method explained in section 5.3.4, using the imple-
mentation of Heikkilä [2000] (section 5.3.5). As explained in section 9.4.3, image sequences of the free
surface flow are acquired in the partial scan mode, reading out only the lower 200 lines of the sensor. The
reason is the increased frame rate of 130 Hz. However, the calibration images are acquired in full scan
mode because the pinhole camera model describes the imaging process onto the complete sensor. Hence, a
good calibration can only be achieved by taking into account the whole sensor and using calibration points
distributed throughout the whole image plane. To use the full-frame calibration also for partial scan images,
we have to check that there is a unique and stable correspondence between the image lines of images cap-
tured in full resp. partial scan mode. This has been confirmed by acquiring images of the same calibration
grid both in full scan and partial scan mode without changing the relative position of the camera and the
grid. A constant offset of 269 image lines has been found between both scan modes. Hence, row numbers
in full scan mode are equal to row numbers in partial scan mode plus the constant offset.

Results.

We use the same error measures as in section 5.4.2 to assess the quality of the calibration results. However,
since a multi-plane method is used here, no ground truth is available, since the orientations of the planes are
also estimated. The 3-D coordinates are known only for the calibration points in the first plane, since this
plane defines the origin of the world coordinate system, hence Zw = 0 for all points within this plane. We
assume the world coordinates of this plane to be free of error and use only the points of the first plane to
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Table 5.8: Calibration results for the stereo rig ’Neckar’, using different camera models and the estimation method of
Section 5.3.5 (right camera of calibration nm08).

NL NL (k1) NL (k1, k2) NL (k1, k2, t1, t2)

fx [mm] 31.0442 31.0069 30.9745 31.1771

fy [mm] 31.1231 31.1122 31.0405 31.3388

s [−] −0.0643 0.3543 0.3213 −0.1587

cx [pix] 303.6818 320.0515 329.6208 415.6912

cy [pix] 275.8413 309.7256 314.2721 48.6522

k1 [−] 0 −0.00022627 −0.00019847 −0.00019188

k2 [−] 0 0 0.00000002 0.00000351

t1 [−] 0 0 0 0.00112635

t2 [−] 0 0 0 −0.000441

Tx [cm] −0.1316 −0.5547 −0.7974 −2.9602

Ty [cm] 1.0133 0.1516 0.0362 6.7907

Tz [cm] 88.0622 88.0690 87.8702 87.7557

ω [◦] −3.0376 −3.3517 −3.1543 −8.0946

φ [◦] 43.9025 43.6553 43.5783 41.87377

κ [◦] −2.9052 −2.3320 −2.2534 −6.4123

Cx [cm] 61.1970 61.2011 61.1512 61.3313

Cy [cm] 2.3517 3.5739 3.4676 2.4996

Cz [cm] −63.2882 −63.2307 −63.0104 −63.1520

〈εx〉 [pix] 0.00 ± 0.16 0.00 ± 0.16 0.00 ± 0.16 −0.00 ± 0.16

〈εy〉 [pix] 0.00 ± 0.16 0.00 ± 0.16 0.00 ± 0.16 0.00 ± 0.16

〈ε〉 [pix] 0.19 ± 0.12 0.19 ± 0.12 0.18 ± 0.12 0.19 ± 0.11

(∆X)rms [µm] 90.9 75.0 77.5 70.0

(∆Y )rms [µm] 47.1 48.8 49.5 25.4

(∆Z)rms [µm] 31.0 48.6 53.5 40.5

〈D⊥〉 [µm] 26.8 ± 23.2 79.8 ± 63.8 37.4 ± 29.2 128.7 ± 828.3

NSCE [-] 0.84 0.68 0.69 0.61

compute the 3-D error measures. Further, we also use the method of fitting reference planes and computing
the mean distance of calibration points to their reference planes. An example is shown in figure 5.9.

Table 5.8 shows the calibration results, in particular:

• The image residuals (rms errors) are ≈ 0.1 − 0.2 pixels. They are comparable to typical residuals
that are obtained using similar equipment, e.g. [Clarke et al., 1993; Wei and Ma, 1994; Willson and
Shafer, 1994; Wunsch et al., 1996; Devernay and Faugeras, 2001]. Lens distortion parameters do not
reduce the residuals. Hence, no distortion modeling is used.
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5.5 Summary 123

• The 3-D accuracy estimated from the plane fits is ≈ 30 µm. Lens distortion parameters do no sig-
nificantly improve the 3-D accuracy, but again introduce instabilities, especially if the full distortion
model is used.

• The NSCE is always lower than one, indicating that the maximum 3-D accuracy (limited by the image
resolution) is achieved.

• The relative calibration accuracy in image space is ≈ 1 : 4000 (based on the image diagonal), which is
comparable to the relative accuracy in object space and the relative accuracy of the feature extraction.
Hence, the estimated camera model provides an accurate description of the imaging process.

5.5 Summary

In this chapter, a detailed description of the camera calibration algorithms used in this work has been given.
All approaches are based on images of a planar calibration grid. The grid line crossings serve as calibration
markers. A method has been described to determine the positions of the crossings with a high subpixel
accuracy of below 0.1 pixels. The well-known linear pinhole camera is used to model both the endoscopic
imaging and the C-mount lenses. The camera model is defined in terms of a set of camera paramters,
which are estimated by least squares algorithms. The over-determined equation system that has to be solved
is given by a number of corresponding world and image points. The world coordinates are those of the
calibration points on the target, which are assumed to be free of error. The corresponding image coordinates
are determined by the feature extraction algorithm.

Different methods to estimate camera parameters have been discussed. The simplest approaches esti-
mate a perspective projection matrix by linear least squares methods. The criticism of these methods is that
they do not achieve the best possible accuracy because they minimize an algebraic error, which has no direct
physical meaning. However, it has been shown in the literature [Hartley, 1997b; Liu and Männer, 2003] and
confirmed here that in absence of degenerate configurations and using an appropriate data normalization,
linear methods can obtain results close to optimal. This has been shown by comparing results obtained by
linear estimation to those obtained by a nonlinear Levenberg-Marquardt optimizer. The latter minimizes a
physically-based geometric error, namely the sum of squared differences between the points measured in
the images and the corresponding projected points using the estimated camera model. The geometric error
is also only an approximation7 to the cost function that should actually be minimized to obtain the best
possible results. This cost function is given by the statistical error, which takes into account the statistical
error structure of the given data. Minimizing the statistical error corresponds to a maximum-likelihood es-
timation of the camera parameters and the object points (which are assumed known and free of error in the
other methods), known as bundle adjustment in photogrammetry.

The problems related to estimating lens distortion parameters have been discussed in some detail. If
lens distortion is small and there are other systematic and/or random noise sources that are responsible
for deviations comparable in magnitude to those of lens distortion, distortion models should not be used,
because of the danger of modeling the noise instead of the lens distortion. The latter may result in a worse
performance of the 3-D coordinate estimation. It has been shown that only the wide-angle lenses of the rigid

7The approximation is the assumption that the noise is Gaussian on each image coordinate with zero mean and uniform standard
deviation.
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124 5 Geometric camera calibration

endoscopes show a relatively large radial distortion that can be reliably modeled. In the other setups, lens
distortions are very small. In addition, there are other systematic error sources, namely small deviations in
the arrangement of the fiber bundle between entry and exit side in the case of the flexible endoscopes and
effects related to the multimedia geometry in the case of the free surface flow setup. For these reasons, lens
distortion is not modeled.

The accuracy of the calibration has been estimated using different error measures. With the endoscopic
stereo setups, the rms error in image space is ≈ 0.4 pixels, and the rms error in object space is ≈ 5−10 µm.
The best possible accuracy (limited by the image resolution) is not achieved due to the effects of the fiber
bundle mentioned above. In the free surface flow setup, the image residuals are ≈ 0.2 pixels, and the 3-D
error is ≈ 30 µm. Here, a better accuracy as that limited by the pixel discretization has been achieved.
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Chapter 6

Stereo vision

In this chapter, the geometric concepts related to a stereo camera setup are discussed. The task of a stereo
system is to reconstruct the 3-D coordinates of object points in a scene, given two different views of the
scene (in the following called the left image and the right image). Towards this end, the first problem to
be solved is to establish stereoscopic correspondences: for each image point in the left image, the corre-
sponding image point in the right image has to be found. Many applications aim for a reconstruction of 3-D
surfaces. They rely on a region-based matching of a stereoscopic image pair. To obtain dense disparity
maps, corresponding image points are identified by the similarity of the gray value patterns in the left and
right image. These approaches are very similar to the region-based velocity estimators described in chap-
ters 3.2–3.4. The only difference is that a disparity map between two stereo images is estimated instead of a
displacement field between two subsequent images of a monoscopic sequence. For recent examples, see e.g.
[Mühlmann, 2002] (reconstruction of static surfaces, including an endoscopic application) or [Hilsenstein,
2004; Fuß, 2004] (reconstruction of dynamic water surfaces).

In the present application, we use a feature-based matching, since we want to estimate single 3-D ob-
ject points, namely the positions of the tracer particles. The geometric constraint that makes the correspon-
dence search feasible is given by the epipolar geometry of a stereo rig, which is discussed in section 6.1.
Once the correspondence between two points in both images has been found, the 3-D position of the cor-
responding object point can be computed by triangulation of the projection rays, which is the subject of
section 6.2. For in-depth discussions of stereo vision, see e.g. [Xu and Zhang, 1996; Trucco and Verri, 1998;
Hartley and Zisserman, 2000]. A recent review of stereo methods is given by Brown et al. [2003].

6.1 Stereo correspondence and epipolar geometry

Given two views of a set of scene points and no further information, the search for corresponding points has
to be carried out throughout the whole image plane. However, if the epipolar geometry of the stereo setup is
known, the epipolar constraint can be exploited to reduce the search space to a line in the second image, the
so-called epipolar line (section 6.1.1). Hence, the search space is reduced from 2-D to 1-D. The algebraic
expression of the epipolar constraint is formulated with the fundamental matrix, which is a (3× 3)-matrix
of rank 2. It is possible to estimate the fundamental matrix only from a number of corresponding image
points (section 6.1.2). A metric calibration of the stereo rig is not necessary. However, since in general the
correspondences are a priori unknown, estimation of the epipolar geometry (i.e. the fundamental matrix)
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Figure 6.1: Epipolar geometry of a stereo camera setup. A world point P is projected into both cameras. Corre-
sponding image points are constrained to lie on the so-called epipolar lines, which are the projections of the line of
sights connecting the image point, the optical center and the world point.

is a kind of chicken-egg problem. Usually, robust methods have to be applied, which iteratively estimate
correspondences and the epipolar geometry, e.g. within a Least Median of Squares framework [Zhang et al.,
1995].

6.1.1 Epipolar lines and the fundamental matrix

Epipolar geometry.

Given a stereo pair of cameras and a 3-D point Pw
1, this point and the two projection centers of the cameras

define a 3-D plane, the so-called epipolar plane, see figure 6.1. The image lines, where the epipolar plane
intersects the image planes are called epipolar lines. The epipolar lines in the right camera are the images of
the 3-D projection rays of the left camera and vice versa. The image in one camera of the projection center
of the other camera is called epipole. All epipolar lines of one camera intersect in the camera’s epipole.
Corresponding image points in the left and the right camera are constrained to lie on conjugated epipolar
lines. This reduces the stereo correspondence problem to a 1-D search.

1Akin to chapter 5, we apply a projective framework and use homogeneous coordinates.
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6.1 Stereo correspondence and epipolar geometry 127

Essential matrix.

Consider a 3-D point Pw and its two image points in the left and the right camera, pn,l and pn,r, given
in normalized coordinates (see section 5.2.2). Then, the two projection centers, the 3-D point and the two
image points all lie within the epipolar plane. Mathematically, this coplanarity is expressed as

pT
n,rEpn,l = 0, (6.1)

with

E = RS =




r11 r12 r13

r21 r22 r23

r31 r32 r33







0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0


 , (6.2)

where the matrices R (rotation) and S (translation) define the 3-D rigid transformation between the left and
right camera coordinate system.

The matrix E is called the essential matrix. Note that computations using the essential matrix are
carried out in normalized coordinates. Since the coordinates actually measured from images are image
coordinates (or pixel coordinates), it is necessary to know the transformation from pixel coordinates to
normalized coordinates. This transformation is given by the inverse of the calibration matrix K (intrinsic
camera parameters). Thus, calculations involving the essential matrix can only be done for calibrated cam-
eras. Estimation of the essential matrix is closely related to the structure-from-motion problem in computer
vision, e.g. [Weng et al., 1993b]. In the case of uncalibrated cameras, the essential matrix is replaced by the
fundamental matrix, see below.

In summary, the essential matrix has the following properties:

• Since the matrix S is singular, the essential matrix is also singular.

• It is a homogeneous matrix, hence only defined up to scale.

• It encodes information on the six extrinsic parameters only.

• Its two non-zero singular values are equal.

• Thus, it only has five degrees of freedom (three parameters for rotation and two parameters defining
the direction of translation between the two projective centers).

• It is defined in terms of normalized coordinates, restricting its application to the case of calibrated
cameras.

Fundamental matrix.

Let K l and Kr be the calibration matrices of the internal camera parameters of the two cameras, according
to (5.6). The pixel coordinates of the two image points of Pw are given by pp,l and pp,r. Then, the
transformation from pixel coordinates to normalized coordinates is given by

pn,l = K−1
l pp,l (6.3)

and
pn,r = K−1

r pp,r. (6.4)
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128 6 Stereo vision

a b

Figure 6.2: Epipolar geometry of the Höllbach setup. A number of arbitrarily selected epipolar lines is drawn in two
corresponding particle images. The lines in the left and right image do not correspond to each other. a Left image. b
Right image. The epipoles are located outside the image borders.

Substituting (6.3) and (6.4) into (6.1), we have

pp,lFpp,r = 0, (6.5)

with
F = K−T

r EK−1
l . (6.6)

The matrix F is called the fundamental matrix. It has the following properties:

• Since the matrix E is singular, the fundamental matrix is also singular.

• It is only defined up to scale.

• It encodes information on the extrinsic parameters and on the intrinsic parameters.

• It has seven degrees of freedom.

• It is defined in terms of pixel coordinates, thus its application is not restricted to the case of calibrated
cameras. In fact, by estimating the fundamental matrix one can reconstruct the epipolar geometry of
two cameras without any knowledge of the extrinsic and intrinsic parameters of the cameras.

Note that the fundamental matrix provides an easy way of calculating the epipolar line lr corresponding
to a given image point pp,l:

lr = Fpp,l, (6.7)

and similarly
ll = F Tpp,r, (6.8)
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6.1 Stereo correspondence and epipolar geometry 129

Table 6.1: Comparison of two different methods (metric and non-metric) to compute the fundamental matrix. The
accuracy of both methods is estimated by computing the rms distance of points to their corresponding epipolar lines.
The rms distance is computed symmetrically, i.e. both in the left and in the right image plane.

setup Höllbach Jagst Neckar

drms [pix] (metric) 0.25 0.26 0.25

drms [pix] (non-metric) 0.21 0.23 0.19

where lr and ll are the homogeneous representations of the epipolar lines. Given a line l = (l1, l2, l3)
T and

a point p = (x, y, 1)T , the distance of the point to the line is

d(p, l) =
l1x + l2y + l3√

l21 + l22
. (6.9)

The epipolar constraint can be implemented by computing the epipolar line for a given image point in the
left image (using the fundamental matrix) and selecting a correspondence candidate in the right image by
imposing a threshold on (6.9). The size of the threshold has to be chosen according to the accuracy of the
feature extraction and the estimated epipolar lines. An example of the epipolar geometry of an endoscopic
stereo rig is shown by a number of epipolar lines in figure 6.2.

6.1.2 Estimation of the fundamental matrix

The computation of the epipolar geometry resp. the fundamental matrix is an important step in many
structure and motion algorithms. Hence, a lot of research on this topic has been carried out in the computer
vision community. Zhang [1998] and Torr and Murray [1997] give recent reviews, where the latter focuses
on robust estimation methods. The books by Zhang and Faugeras [1992] and Weng et al. [1993b] give
detailed analyses of recovering the epipolar geometry in dynamic scenes, i.e. from image sequences.

A very simple method to estimate the fundamental matrix has been put forward by Hartley [1997a].
While most methods require large-scale nonlinear optimization and a careful parameterization of the funda-
mental matrix (to account for its singularity), the method of [Hartley, 1997a] only uses linear least squares.
Hence, it enjoys some popularity due to its ease of implementation. If the data is properly scaled, very good
results that are close to the optimum values of the nonlinear algorithms can be obtained (see also [Hartley,
1997b, 1998] and the discussion of linear camera calibration in section 5.3.1). Recently, another (iterative)
linear method has been proposed by Liu and Männer [2003] and shown to perform equally well as nonlinear
Levenberg-Marquardt optimizers. However, several aspects have to be kept in mind, both concerning the
numerical stability of the estimation and the ill-posedness of the problem in certain geometric configura-
tions. Given that the configuration allows for a unique solution, usually linear algorithms are sufficient (e.g.
that of [Hartley, 1997a]). To achieve the highest possible accuracy, a linear estimation may be followed by
iterative nonlinear refinement. The latter might be necessary because the linear algorithms do not take into
account the constraints of the fundamental matrix, which is a singular, homogeneous (3×3)-matrix. Hence,
it has only seven degrees of freedom. To account for these constraints, special parameterizations of the
fundamental matrix may be introduced, which turn the estimation into a nonlinear least squares problem.

In this work, we use two different methods to compute the fundamental matrix. The first is the direct
computation of F , using the known camera parameters obtained from the geometric camera calibration
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(see section 5.4). Since both cameras are calibrated within the same metric world coordinate system, the
fundamental matrix can be computed analytically from the two projection matrices. For details of the
computation, see [Xu and Zhang, 1996]. We refer to this method as the metric approach. In the 3-D PTV
implementation, we do not compute the fundamental matrix, but instead perform an explicit determination
of the 3-D projection rays and hence the epipolar lines, see section 6.2.2. The results are equivalent.

The second method to compute the fundamental matrix provides a further check of the geometric camera
calibration, since the epipolar geometry is estimated independently of the calibration results. The fundamen-
tal matrix is computed using only implicit geometric information, i.e. a sufficient number of image point
correspondences without any further information on the 3-D geometry of a calibration object or properties
of the cameras (e.g. an underlying pinhole model). In the present applications, image point correspondences
are trivially given, since images of the same calibration target with known world-coordinates are available
for both cameras. We use these correspondences to estimate the fundamental matrix by the method proposed
by Boufama and Mohr [1998]. The details of the method are given there. We refer to this method as the
non-metric approach.

Table 6.1 shows that both approaches achieve the same accuracy. The rms distance of points to their
corresponding epipolar lines is ≈ 0.25 pixels. This distance is quite close to the rms image residuals of the
camera calibration. In the non-metric approach, no world coordinates are used in the computation, hence
errors in world coordinates do not influence the results of the non-metric approach. Since both metric and
non-metric approach achieve the same accuracy, the limiting factor in the metric approach is not the accuracy
of the given world points, but deviations of the imaging process from an ideal pinhole camera. The latter
are introduced by the fiber bundles in case of endoscopic imaging and by multimedia effects in case of the
C-mount lenses observing the free surface flow.

6.1.3 Calibration of a stereo rig

The most important parameters of a stereo camera system are those describing the relative orientation of
the cameras with respect to each other. The relative orientation is required for the calculation of 3-D world
coordinates by triangulation (section 6.2) and allows for a simple determination of the fundamental matrix
(see the ’metric approach’ in section 6.1.2).

There are two options to compute the relative orientation of a stereo rig. If the two cameras are calibrated
with respect to the same metric world coordinate system, the relative orientation is easily computed from the
external camera parameters, see Xu and Zhang [1996]. The second option is to perform an initial calibration
of each camera independent of the other as a first step. In a second step, the camera parameters of both
cameras are refined simultaneously in a further nonlinear optimization, taking into account the additional
constraint of the fixed relative orientation between the two cameras. Both approaches have been tested in
this work. Since the second option did not improve the final accuracy, we only use the first option. In all
stereo calibrations, the same calibration planes are projected simultaneously into both cameras. The global
world coordinate system used for both cameras is defined by the first calibration plane (with the Z-axis
perpendicular to the plane).
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6.2 3-D reconstruction 131

6.2 3-D reconstruction

In order to reconstruct a 3-D point, we have to solve the back-projection problem: given an image point
(possibly affected by lens distortion), the projection ray corresponding to this point has to be found. If
two projection rays of the two different views are available, the corresponding 3-D point is given by the
intersection of the two rays (triangulation). We discuss our triangulation approach in section 6.2.1. In
section 6.2.2, the explicit computation of the projection rays is outlined, including a method to compute
curved epipolar lines in the presence of lens distortion. An accuracy assessment is given in section 6.2.3.

6.2.1 Triangulation method

The two estimated projection rays will only meet exactly in 3-D space in the noise-free case of exactly known
camera parameters and image points. Obviously, both the camera parameters and the image points will be
noisy in practical applications. Hence, one has to find an optimum solution under the given noise level.
One common method is to choose the midpoint of the perpendicular distance between the two projection
rays. Hartley and Sturm [1997] discuss several triangulation methods. They show that the midpoint method
and linear triangulation methods do not perform well in cases where the projection matrices are only known
up to a projective ambiguity (i.e. for projective reconstructions). The reason is that geometric relations
like distance and orthogonality have no meaning in a projective reference frame. However, since we work
in a calibrated metric reference frame, this is not a critical issue here. Further, Hartley and Sturm [1997]
show that there is virtually no difference in the obtained 3-D accuracy between the midpoint method and
other more sophisticated triangulation methods for image noise levels of up to four pixels (rms). Only for
higher noise levels, the other methods perform better. Hence, we use the midpoint method due to its ease of
implementation.

6.2.2 Explicit determination of projection rays and epipolar lines

Linear case.

The first step of the triangulation is to compute the projection rays. Towards this end, we can use the
pseudo-inverse of the projection matrix P, which maps image points to their optical rays, see [Hartley and
Zisserman, 2000]. However, we choose a different approach. In a 3-D PTV application, we can choose
two planes in the world coordinate system, Z = Zmin = const. and Z = Zmax = const., corresponding
to the minimum and maximum Z-coordinate of the stereo volume, see figure 6.3. Given an image point
p = [xp, yp, 1]

T in the left camera, we can compute the two world points P0 = [X0, Y0, Z0 = Zmin, 1]T

and P1 = [X1, Y1, Z1 = Zmax, 1]T by solving two systems of two linear equations in the two unknowns
X0, Y0 resp. X1, Y1. The equations are given by inserting P0 resp. P1 and p into (5.14). The result is an
algebraic representation of the projection ray, based on the two points P0 and P1. A similar representation
of the corresponding epipolar line segment in the right camera can simply be computed by projecting P0

and P1 into the right camera.

Including lens distortion.

The backprojection problem is more difficult if a distortion model is used. The reason is that it is not
possible to compute an analytical inverse of the distortion model, which is a multi-variable polynomial
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Figure 6.3: In a PTV application, the observation volume is known to lie between two planes Z = Zmin = const.

and Z = Zmax = const.. Given an image point in the left camera, we can compute the two world points P0 and
P1, which yield a direct geometric representation of the projection ray. If lens distortion has to be considered, we can
obtain a piecewise linear parameterization of the corresponding curved epipolar line by sampling the projection ray.

function. However, to compute the projection rays linearly as outlined above, we first have to compute the
ideal undistorted image points, given the measured distorted ones. Two solutions are possible:

1. Application of an undistortion model: In addition to the distortion model that is estimated along
with the other camera parameters, an undistortion model is estimated subsequently. Towards this
end, a regular array of image points is distorted using the distortion model obtained in the camera
calibration. These point sets are then used to estimate the parameters of the undistortion model, which
maps distorted image points to undistorted ones. This approach is used e.g. by Heikkilä [2000]. Note
that it is possible to use the same function (with different numerical values of the parameters) both as
distortion and undistortion model (see the discussion in section 5.2.2).

2. Numerical inversion of the camera model: The second solution does not require an additional
undistortion model. An initial (distortion-free) solution for the projection ray is computed using the
linear method explained above, yielding the points P0 and P1. Subsequently, we refine these points
by iterative minimization of the following cost function c:

c = (p − d+ (PP0|Z0=Zmin
))2 , (6.10)

where p is the (distorted) image points, d+ is the distortion model, P is the projection matrix and P0

is the sought world point (with Z-coordinate fixed to Z0 = Zmin). Minimization of c yields refined
coordinates X ′

0 and Y ′
0 of the world point P′

0 = [X ′
0, Y

′
0 , Zmin, 1]T which is projected to p by P

followed by the lens distortion model. A similar minimzation is carried out to find the refined point
P′

1.

We use the second method, since it also provides a simple way of computing curved epipolar lines. The
minimization is carried out using Powell’s method [Press et al., 1992].
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Epipolar lines under lens distortion.

If lens distortion cannot be neglected, it also affects the epipolar geometry, since the epipolar lines are
no longer straight but become curved [Zhang, 1996]. Since we compute the projection rays explicitly as
shown above, we can easily take lens distortion into account in the following way. A 3-D projection ray is
sampled by a sufficient number of 3-D points along the ray. The number of points is chosen according to
the desired accuracy. A piecewise linear approximation of the curved epipolar line is obtained by projecting
the sampling points into the images, see figure 6.3. Hence, we can compute the distance of points to curved
epipolar lines by computing the distance of a point to the closest line segment. This method is also used
by Maas [1992] and Virant [1996] to account for influences of the multimedia environment on the epipolar
geometry.

6.2.3 3-D accuracy

In this section, we assess the accuracy of the 3-D reconstruction. Towards this end, we compute component-
wise rms errors of reconstructed calibration points, using their known 3-D coordinates as ground truth.
Further, we use the rms distance of points to their estimated reference planes as a 3-D error measure. The
detailed analysis of these error measures has already been presented in sections 5.4.2–5.4.3. Here, we carry
out an additional comparison of the results with theoretical error bounds derived in the literature. First, we
give a short description of these error bounds.

Tsai [1987] proposed a theoretical upper bound for the triangulation error (for one component of a 3-D
point) of a stereo camera setup. It is given by

εtotal = εcalib + εnoncalib, (6.11)

with

εcalib =

[
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]
Z
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· δ, (6.12)

and
εnoncalib =

Z

f

Z

|Ts|
δ + ∆q, (6.13)

where δ is the precision of the feature extraction in mm, N0 is the total number of points used for calibration,
Nf is the number of views used for calibration, |Ts| is the baseline length of the stereo rig in mm, L is the
size of the active area in the image plane in mm, ∆q is the precision of the known 3-D ground truth in mm,
Z is the depth of the measured 3-D points in mm and f is the focal length of the lens in mm. Typical values
for the stereo rigs used in this work are shown in table 6.2. As (6.11) shows, εtotal is the sum of two terms,
where the first can be made arbitrarily small by choosing a large number of calibration points resp. views.
In our calibrations, the ratio εcalib/εnoncalib is always below 3%, indicating that the number of points is large
enough.

As a lower bound on the 3-D error, we use the denominator of the NSCE, that has been introduced
in section 5.4.2. This expression gives the lateral standard deviation of the pixel digitization noise, back-
projected to the depth of the corresponding 3-D point. Hence, we assume that the best-possible 3-D accuracy
is limited by the resolution of the images.

The comparison of the estimated 3-D rms errors with the theoretical error bounds is shown in figure 6.4
(a : Höllbach-setup, b : Jagst-setup). For the Neckar-setup, a comparison is not possible, since no ground
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Table 6.2: Comparison of geometry and 3-D accuracy of three different stereo rigs. For discussion, see text.

Neckar Jagst Höllbach

fx [mm] 31.0442 4.5584 2.4729

fy [mm] 31.1231 4.7560 2.4660

Tx [cm] −0.1316 0.05744 0.04625

Ty [cm] 1.0133 0.07036 0.01748

Tz [cm] 88.0622 0.6581 0.41352

ω [◦] −3.0376 0.1732 −2.7977

φ [◦] 43.9025 33.1282 41.568

κ [◦] −2.9052 1.2982 4.5107

Cx [cm] 61.1970 −0.4091 −0.3099

Cy [cm] 2.3517 −0.0706 −0.0002

Cz [cm] −63.2882 −0.5187 −0.2782

〈εx〉 [pix] 0.00 ± 0.16 0.00 ± 0.46 0.00 ± 0.45

〈εy〉 [pix] 0.00 ± 0.16 0.00 ± 0.53 0.00 ± 0.40

〈ε〉 [pix] 0.19 ± 0.12 0.63 ± 0.32 0.53 ± 0.27

(∆X)rms [µm] 90.9 15.8 15.5

(∆Y )rms [µm] 47.1 14.1 10.4

(∆Z)rms [µm] 31.0 11.7 10.2

〈D⊥〉 [µm] 26.8 ± 23.2 6.7 ± 8.1 5.1 ± 4.2

NSCE [-] 0.84 1.94 1.95

δ [mm] 0.005 0.01 0.01

N0 1500 2500 700

Nf 13 1 1

|Ts| [cm] 100 0.5 0.5

L [mm] 5.96 3.25 1.9

∆q [mm] 0.01 0.006 0.006

truth is available. The plots show that all estimated errors are approximately within the theoretical error
bounds2. We can draw the following conclusions from the plots (see also table 6.2):

• In both endoscopic setups, the error in the Z-component is lower than in the other components. The-
oretically, the errors should be equal in a setup with 90◦ convergence angle (like the Höllbach-setup).
The higher Z-accuracy is probably related to the better precision of the calibration points in the Z-
direction, i.e. it reflects imprecisions in the calibration points perpendicular to the translation axis of

2In the discussion of these results, we have to keep in mind that both the error bounds and the experimental rms errors are
only approximate estimations since there might be systematic errors in the ground truth due to effects of non-planarity and non-
orthogonality of the calibration target.
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Figure 6.4: Comparison of rms 3-D triangulation errors with theoretical error bounds. The curves show the upper
and lower error bounds. The dots are the component-wise rms errors, computed using the triangulation results and
the known ground truth. The errors are shown in dependency of the scene depth Z. a Höllbach-setup. b Jagst-setup.

the linear stage.

• In the Höllbach-setup, both the Z-error and the X-error increase with depth. This increase is caused
by the strongly convergent stereo setup. The optical axes (along which the depth is defined) enclose
an angle of 45◦ with the world coordinate plane Zw = 0. Hence, depth-related errors are spread into
the X- and Z-components of the 3-D points.

• In the Jagst-setup, the errors are approximately constant throughout the whole depth, because the
convergence angle is smaller (30◦).

6.3 Summary

In this chapter, the geometric concepts of a stereo camera setup have been explained. To compute 3-D co-
ordinates from stereoscopic image pairs, two tasks have to be solved: the matching of corresponding image
points in the left and right image (stereo correspondence analysis) and the triangulation of the corresponding
projection rays.

The stereo correspondence analysis is based on the epipolar geometry, which constrains corresponding
image points to lie on conjugated epipolar lines. Mathematically, the epipolar geometry is parameterized
in terms of the fundamental matrix. If the cameras are calibrated, their relative orientation is known, and
the fundamental matrix can be computed from the camera parameters. However, metric information is
generally not necessary to estimate the fundamental matrix. An estimation that is based only on image point
correspondences is also possible. Such a non-metric estimation has been carried out and compared to the
results obtained from the calibrated camera parameters. This provides an additional, independent check of
the camera calibration, since no world coordinates are used in the estimation of the fundamental matrix. The
same accuracy has been obtained with both methods. This indicates that the main accuracy limitation is not
given by inaccurate world coordinates of calibration points, but rather by deviations from an ideal pinhole
model. The latter result from imprecisions due to endoscopic imaging and multimedia effects.
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136 6 Stereo vision

A simple linear triangulation method is used to compute 3-D coordinates. As already shown in sec-
tion 5.4.3, the Neckar-setup achieves a 3-D accuracy that is better than the theoretical lower bound given
by the pixel discretization (corresponding to a subpixel accuracy better than the discretization error of√

1/12 ≈ 0.29 pixels). A comparison with theoretical error measures has shown that the 3-D errors in
the endoscopic setups are larger. This is expected because of degradations related to the transmission of the
images through a fiber bundle. Nevertheless, the 3-D errors are well below the theoretical upper bound.
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Chapter 7

3-D Particle-Tracking Velocimetry

This chapter presents a detailed description of the 3-D PTV algorithm, taking a close look at all of its
components. We assume that the information from the radiometric camera analysis (chapter 4) as well as
the geometric camera calibration (chapter 5) is available and can be used as input to the 3-D PTV algorithm.
In section 7.1, we start with a review of previous work on PIV and PTV carried out in the image processing
research group at the IWR. Parts of this work provide the basis for the present implementation. Section 7.2
shows an overview of this implementation. The algorithm consists of three major parts, which are discussed
in the following sections in the order of their computation: particle segmentation (section 7.3), 2-D particle
tracking (section 7.4) and stereoscopic 3-D reconstruction (section 7.5). A summary of the algorithm is
given in section 7.6. The performance of the algorithm is analyzed in chapter 8.

7.1 Previous work at the IWR

During the last 15 years, research work on PIV and PTV has been carried out in the image processing
research group at the Interdisciplinary Center for Scientific Computing (IWR) in Heidelberg. Both exper-
imental setups and image processing algorithms have been developed and successfully applied in different
scientific applications. Some components of the current implementation are based on this previous work,
which is reviewed in this section.

Wierzimok [1990] presents an early application of 2-D particle-tracking to study transport of mass and
momentum beneath a wind-stressed wavy water surface. He uses the PTV results to compute Lagrangian
drift velocities, shear velocities at the water surface, depth-dependent velocity profiles, and turbulent kinetic
energy. Using a realtime-segmentation by a global threshold, his system is able to record a maximum of
32 binary images, resulting in a sequence length of 1.28 s. Velocities are measured with an accuracy of
±3 mm/s and resolving fluctuation frequencies of up to 12.5 Hz. To establish the temporal correspon-
dences in the tracking, the disparity between the two fields of the interlaced images is used as a velocity
estimator to define a search window in the next frame.

Hering [1996] develops the next generation of the 2-D PTV, which is also applied to study the flow
field beneath a wind-driven water surface in experimental facilities in Delft, Scripps and Heidelberg [Hering
et al., 1995a,b; Hering, 1996; Hering et al., 1997, 1998]. A laser light sheet of 1 to 5 cm thickness is used
for illumination, the size of the observation area is 14 cm × 10 cm. Image sequences of 100 to 500 frames,
with a resolution of 512 × 480 pixels and a frame rate of 30 Hz can be recorded. The velocity accuracy
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138 7 3-D Particle-Tracking Velocimetry

is ±0.8 mm/s. The system is able to track up to 1000 particles per frame (corresponding to a particle
density of ≈ 0.0041 particles per pixel), with displacements of up to 12 pixels per frame. The particle
segmentation is done by a region growing algorithm, and the tracking algorithm again uses the field overlap
of interlaced images to establish correspondences. For non-interlaced cameras, the overlap is generated
artificially by a morphological dilation of the particle images. Since unique particle overlaps are only found
for small particle densities (less than 100 particles in an image of size 256 × 256, additional features are
needed to track particles at higher densities. Hering et al. [1997] combines different features (normalized
sum of gray values, area, velocity, distance of candidates) in a fuzzy-logic approach. Further, a constant
acceleration model is used to predict the particle position in the next frame. In addition to the Lagrangian
flow trajectories, the Eulerian velocity field is also estimated by Adaptive Gaussian Windowing [Agui and
Jimenez, 1987] (which is basically a weighted averaging resp. a normalized convolution [Granlund and
Knutsson, 1995; Jähne, 2002]). The relative accuracy of this interpolation is tested by simulations and
found to be below 10% for sufficiently high particle densities (at least 300 vectors in an image of size
512 × 480).

To perform spatially high resolved measurements within the viscous sublayer at the water surface, Dieter
[1994] develops a 2-D PIV system. The size of the observation area in these experiments is only 4 mm ×
4 mm. Such an investigation of small scales at large velocities requires a high frame rate and an algorithm
that can handle very large displacements (up to about 50 pixels). Thus, a camera operating at 200 Hz is
used, and the sequences are evaluated by a multigrid PIV algorithm (see section 3.2.2), employing the first
two levels of an image pyramid [Jähne, 2002]. The image correlation is computed in Fourier space using an
FFT algorithm.

Further work has been done in the field of particle segmentation, since this is an important step in a
PTV system. The region growing algorithm of Hering [1996] tends to separate particle images into several
smaller ones if the particle velocities are large and the images become elongated (and hence larger and
darker) due to motion blur. One way to achieve a reliable segmentation of such particle streaks is to take
into account prior knowledge of the structure of the particle images. This is the approach of Leue et al.
[1996], who implement a model-based segmentation. In the first step, streaks are detected based on the
analysis of the local orientation [Jähne, 2002] in the image, resulting in a list of areas of interest. In the
second step, a model function describing the gray value distribution of a particle streak is fitted to these
areas of interest. The shape of this function (a modified Gaussian) takes into account that the underlying
physical process is the imaging of a moving particle. The model function is defined by six parameters: the
sum of the gray values, position of the particle center, streak length and width, and streak orientation. A
Levenberg-Marquardt method is used to solve the nonlinear optimization problem. Initial values for the fit
parameters are given by the first and second order gray value moments of the particle images. A further
benefit of this method is that the information of the streak length and orientation can be used to predict the
streak position in the next frame, allowing to track large displacements of up to 50 pixels. However, due to
the nonlinear, iterative parameter estimation (which has to be carried out for each particle), the method is
computationally intensive.

Borchers [1997] presents another approach to segmentation and shape analysis of elongated particle
streaks. He uses a local gray value threshold to segment the particles. The thresholding is followed by
morphological operations to fill gaps in the segmented image and to separate overlapping streaks. The latter
becomes especially important for high particle densities, which cause a high probability of overlapping
particle images. The streak separation is optimized for streaks with a pronounced elongation along their
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a b

Figure 7.1: Application of 2-D PTV to track rising bubbles in a liquid column. a Streak images of the rising bubbles.
Due to the integration time of the camera, the streaks are elongated along their direction of motion. The bubbles move
from right to left. b Corresponding trajectories of the bubbles, showing an oscillatory motion perpendicular to the
rising velocity. From [Borchers, 1997].

direction of motion, see figure 7.1a. The method is applied to perform 2-D tracking of rising bubbles in
a liquid column and to analyze the flow field around the bubbles, see figure 7.1b. von Busse [1997] also
applies the method to track rising bubbles. In his application, bubble mediated gas transfer at the air-water
interface is studied.

Netsch [1995] introduces the first basic algorithm for 3-D PTV based on stereoscopic correspondences
of 2-D trajectories. Two cameras are used to record stereoscopic image sequences, and the 2-D methods
mentioned above are used to track the particles in each sequence. Two extensions are developed that are
necessary to reconstruct the 3-D trajectories: a module for geometric camera calibration and a module
to establish stereoscopic correspondences of trajectories and perform a triangulation in 3-D space. The
efficiency of this method is shown using synthetic test images. Garbe [1998] carries out precise evaluations
of all components of the 3-D PTV and presents a first application on real image sequences from a wind-
wave-flume. Engelmann [2000] continues these analyses of flow fields induced by wind-driven water waves.
Stöhr [1998] applies the 3-D PTV to study rising bubbles in a liquid column, and Klar [2001] uses it to
investigate open-channel flow above a gravel layer.

A first prototype of a miniaturized PTV setup to study the pore flow within a gravel layer is developed
by Spies [1998]. He shows the general feasibility of using fiberoptic endoscopes to record particle image
sequences from the flow field within an artificial gravel pore, and to apply a tracking algorithm to estimate
the particle velocites. Ehrbächer [1999] carries out a study of LED illuminations to create a miniaturized
light sheet. However, the light intensity of the available LEDs is found to be too low for an endoscopic
application. Janßen [2000] returns to a conventional cold light illumination using a fiber bundle and achieves
a further miniaturization. He extends the setup by a second endoscope to enable stereoscopic measurements.
However, the signal level in the images still is very low, and a significant amount of preprocessing has
to be carried out to denoise the images and compensate artefacts introduced by the fiber structure of the
endoscopes. To reduce the noise level, a computationally very intensive anisotropic diffusion algorithm
[Scharr, 2000] is applied. Still, the image quality is too poor, and while Janßen [2000] shows some 2-D
tracking results, the available 3-D PTV algorithm is not able to compute 3-D velocities.

Stybalkowski [2001] and Klar [2001] carry on with the work on endoscopic 3-D PTV and present the
first application of this method to perform systematic measurements in an open-channel flow. To obtain a
higher signal-to-noise ratio in the endoscopic image sequences, they use a second illumination fiber, see
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Figure 7.2: 3-D Particle-Tracking within a gravel layer using artificial gravel pores. a Comparison of the artificial
pore used by Stybalkowski [2001] (right) and one of the pores used in this work (left). By re-arranging the stereoscopic
geometry, it was possible to reduce the pore volume significantly, making the artifical pore more representative of the
natural pore spaces within the gravel layer. b View of the setup of Stybalkowski [2001] and Klar et al. [2002] during
installation in the test flume at BAW Karlsruhe. To enhance the image quality and avoid the computationally very
intensive denoising applied by Janßen [2000], an additional illumination fiber is used.

figure 7.2. With this setup, a denoising of the image sequences is not necessary any more. The first 3-D
velocity measurements of the flow within the artificial pore are presented.

7.2 Overview of the 3-D PTV

In the previous section, the major milestones in the past development of the 3-D PTV have been reviewed.
The current version that is realized in this work could benefit from these developments in many respects.
The general organization of the algorithm has not been changed. A flow diagram of the algorithm is shown
in figure 7.3. A preliminary step before the acquisition of flow sequences is the geometric camera calibration
(chapter 5) that is necessary to determine the geometric structure of the stereo setup (position and orientation
of the cameras relative to each other resp. relative to a given world coordinate frame). After the calibration,
the setup is installed in the gravel layer, and flow measurements are carried out (chapter 10).

The first step of the 3-D PTV is the particle segmentation and 2-D tracking throughout the image se-
quences of both cameras. The results are two lists of 2-D trajectories, one for each camera. The next module
performs the stereoscopic correspondence analysis of the 2-D trajectories. Finally, for all trajectories with
unique correspondence partners the 3-D coordinates are reconstructed.

In summary, the 3-D PTV algorithm has a modular structure, comprising the following six modules:

1. geometric camera calibration,

2. image preprocessing,

3. particle segmentation,

4. 2-D particle tracking,
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Figure 7.3: Flowchart of the 3-D PTV algorithm. The algorithm consists of six major modules, which are processed
sequentially: image preprocessing, geometric camera calibration, particle segmentation, 2-D particle tracking, stereo-
scopic correspondence analysis and 3-D reconstruction.

5. analysis of stereoscopic correspondences,

6. 3-D reconstruction.

A description of the geometric camera calibration has been given in chapter 5. The image preprocessing
consists of a radiometric correction of the gray values that suffer from fixed pattern noise of the CMOS sen-
sors. It has been discussed in chapter 4. For the remaining modules, some parts of previous implementations
mentioned in section 7.1 could be used without relevant changes, in particular the data structures of Hering
[1996] for the efficient storage management of particle image sequences and trajectories. However, it was
also necessary to modify or extend other components significantly to adapt them to the special conditions of
endoscopic imaging. In particular, the following improvements were necessary:

• Reliable and fast particle segmentation: The segmentation algorithm should be able to segment
all kinds of particle images (including small and dark ones) reliably. Previous implementations are
sensitive to noise, since they perform a segmentation of single frames, based on some form of intensity
information. A new segmentation module has been implemented that takes into account a temporal
neighbourhood within the image sequence and uses the feature ’motion’ as a segmentation criterion.

• Separation of overlapping particle images: Previous algorithms to separate particle images as-
sumed that the images are elongated along their direction of motion. However, also slow particles
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142 7 3-D Particle-Tracking Velocimetry

may overlap, especially in setups with volumetric illumination like the present one. Here, particle
overlaps are created by the projection of particles in different depths, but with a lateral position close
to a common projection ray. A watershed algorithm has been implemented that is able to separate
both slow and fast particles.

• Reliable tracking of long trajectories: The probability of unique trajectory correspondences be-
tween the left and the right camera increases with the trajectory length. Hence, in the ideal case,
the particles should be tracked throughout the whole field of view. Previous implementations tend to
interrupt trajectories in case of segmentation failures or crossing trajectories. Further, they use the im-
age field overlap (resp. overlap created by morphological dilations) as the primary feature for solving
the temporal correspondence problem. This approach is only feasible for low particle densities and
small displacements. A Kalman tracker has been implemented that achieves a more reliable tracking
by predicting a reasonable search region in the next frame. To initialize the tracking for new particles
entering the field of view, different low-level motion estimators are integrated into the Kalman tracker.

The following sections present a detailed description of the 2-D particle-tracking algorithm implemented
in this work.

7.3 Particle segmentation

In the particle segmentation step, the individual particle images are extracted. Thus, for every pixel in the
image, a decision has to be made whether it belongs to a particle or to the background. For an image g(i, j),
the segmented image gs(i, j) is given by the following operation:

gs(i, j) =

{
1 : g(i, j) ∈ object (particle image)
0 : g(i, j) ∈ image background .

(7.1)

Thus, the result of the segmentation is a binary image in which the particles are marked with the value
one and the background is marked with the value zero. Using these particle masks, the second step is to
compute the position (pixel coordinates) and additional features (e.g. area, mean or maximum intensity,
shape parameters) for each particle.

Segmentation approaches can generally be classified into pixel-based, region-oriented, edge-oriented
and model-based methods [Jähne, 1997]. The particular problems related to the segmentation of tracer
particle images have already been discussed in section 3.5.1. As a result of the latter, the methods to
segment particle images are mostly region-oriented or model-based, e.g. region-growing methods [Maas,
1992; Hering et al., 1997], template matching [Etoh et al., 1998] or Gaussian gray value fits [Perkins and
Hunt, 1989; Marxen et al., 2000]. The fitting areas are selected by searching local gray value maxima using a
global or local threshold [Borchers, 1997], or by analyzing the local orientation [Jähne, 1997] of the images
[Leue et al., 1996]. For a comparison of different particle segmentation approaches, see also [Klar, 2001].

Two basic features can be exploited to segment particle images. The first is the intensity (i.e. the gray
value difference between particle and background), since simply speaking the particles appear as bright spots
on a dark background. Most segmentation algorithms use only this feature. The second feature that may
also be applied is the motion of the particles. In other words, we may not only use the spatial information
in a single frame, but also the temporal information in a short sequence of frames to segment particles.
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In this thesis, a region-oriented segmentation has been implemented. In contrast to most other segmen-
tations, we do not only consider spatial regions, but also temporal regions: in a first step, moving objects
within a sequence of images are identified. In a second step, the moving objects are separated from the
background and from each other by a watershed algorithm, which operates on the gray values of a single
frame.

The single steps of the segmentation algorithm are outlined as follows:

1. Image preprocessing: correction of fixed pattern noise, spatial and/or temporal smoothing, illumina-
tion correction (section 7.3.1)

2. Detection of moving objects: temporal high pass filter (section 7.3.2)

3. Separation of particle images: watershed algorithm (section 7.3.3)

4. Determination of particle position and shape: gray value moments (section 7.3.4)

7.3.1 Preprocessing

Clearly, low-level image preprocessing can only destroy or rearrange information, but cannot add new in-
formation to the images. Hence, the (ideal) basic goal of image preprocessing is a reduction of the noise
level to yield an increased signal-to-noise ratio (with unchanged signal levels). Towards this end, isotropic
smoothing filters are the simplest approach. However, they also affect the signal, since they do not only
blur noise but also small-scale image structures and edges. Hence, only very small filter kernels should
be applied to flow visualization images, since larger kernels may also destroy particle images. The prob-
lems of isotropic smoothing can be overcome by nonlinear diffusion filters [Weickert, 1998; Scharr, 2000].
However, the latter are computationally very intensive and have not been applied here.

We use the following image preprocessing steps:

• If necessary, a correction of inhomogeneous illumination is computed, as explained in section 4.4.

• In the images of the CMOS cameras, we perform a correction of the fixed pattern noise as outlined in
section 4.3. An example is shown in figure 7.4. Note that this correction is a point-operation, i.e. no
smoothing over extended neighbourhoods is involved.

• For further noise reduction, we smooth the images using a (3× 3)-binomial filter. This filter mask re-
duces single-pixel noise, while being small enough to keep small particle images unaffected. Marxen
et al. [2000] reported better results for particle images smoothed by the same filter. If the particles
do not move by more than their diameter, temporal smoothing may also be applied to enhance the
signal-to-noise ratio. An example is shown in figure 7.5.

• In the Jagst-setup, the images are over-sampled, since the endoscopes contain only 10000 fibers.
The relatively thick cladding of the fibers is visible in the images and introduces a hexagonal lattice
structure, see figure 7.6. Hence, we do not work with the original images, but compute the first level
of a Gaussian image pyramid [Jähne, 1997]. The smoothing involved in the pyramid computation
reduces the effects of the lattice structure and adapts the effective image resolution to the number of
fibers. A further preprocessing step for images of the Jagst-setup (working with interlaced analog
cameras) is the separation of the images into even and odd fields to increase the temporal resolution
from 25 Hz to 50 Hz. The missing lines are linearly interpolated.
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a b

c d

Figure 7.4: Correction of fixed pattern noise in the particle images. a , c Original images. b , d Corrected images.
Clearly, the noise level is reduced, and the gray value distributions become more regular. Note that no smoothing is
involved in the correction. The diameter of the particles is not changed, and the smallest particles are not blurred out.
In c and d , the result of the segmentaion is indicated by the red dots. The FPN correction significantly reduces the
segmentation of spurious particles (false positives).

7.3.2 Temporal highpass filter

In the first segmentation step, we apply an algorithm proposed by Haussecker [1993] for motion segmenta-
tion of moving sand grains in submerged subsoil. This method can even detect objects hardly recognizable
by the human eye, as demonstrated in [Haussecker, 1993] and confirmed here. Objects are segmented by
their feature ’motion’. For details of the algorithm, see [Haussecker, 1993]. We only give a brief sketch of
the basic ideas.

The stationary image structures, i.e. the image ’background’ (gravel layer, illumination inhomogeneities)
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a b c d

Figure 7.5: Different preprocessing operations enhance the signal-to-noise ratio of particle images. a Original image.
b Image after temporal smoothing with a 3-tap binomial filter. c Image after correction of fixed pattern noise. d Image
after correction of fixed pattern noise and temporal smoothing.

a b

Figure 7.6: a Enlarged section of a particle image acquired by the Jagst-setup. The endoscopes in this setup have
only 10000 fibers, which are arranged with a lower density than in the endoscopes of the other two setups. The
individual fibers have a relatively large cladding, which does not transmit light. As a result, the inter-fiber distances
are larger, and the hexagonal lattice structure of the fiber bundle is visible in the images. Small particle images may
temporarily disappear, if they move from one fiber to another and thereby cross the claddings. b Hexagonal lattice
structure obtained by thresholding an endoscope image of a uniform white plane.

are extracted by a temporal convolution of the image sequence. The convolution is computed using spatial
and temporal binomial masks, which can be efficiently implemented by spatial and temporal image pyra-
mids. The kernel size of the required filter masks depends on the size and the velocity of the particles to
be segmented and has been derived analytically by Haussecker [1993]. Since in our application the im-
age background is completely static throughout the whole image sequence, we can simply compute it as a
pixelwise temporal mean image over the sequence.

A comparison between the image background and the original images yields the moving objects. As a
measure of similarity S(x, t), a spatially smoothed version of the squared difference between background
and original image is used:

S(x, t) = Bnx
x [(I − Bnt

t )g(x, t)]2, (7.2)
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where nx resp. nt is the size of the spatial Bx resp. temporal Bt binomial filter masks and I is the identity
operator. Haussecker [1993] shows that S(x, t) approximates the energy of an ideal temporal high pass
filter. It is equivalent to the local temporal variance in the image sequence. S(x, t) will be large for pixels
of moving objects and low for pixels of stationary structures. Hence, moving objects can be segmented by
thresholding S(x, t), which introduces the problem of finding an appropriate threshold. Equation (7.2) can
also be written as

S(x, t) = S0(x, t) + σ2
g , (7.3)

where S0(x, t) is the value of S in a sequence without noise and σ2
g is the noise variance. Hence, if the noise

variance is known, an appropriate threshold can be chosen, e.g. a two-sigma or three-sigma threshold.

As shown in figure 4.3, the noise variance of a pixel depends on its gray value. Since we know this
dependency σ2

g(g) from the analysis in section 4.1.2, we can estimate the noise variance of each pixel and
choose a pixel-based threshold on S. Hence, we use a local threshold, which adapts to the image content.
The treshold takes into account the statistical significance of the gray value deviation between a moving
object and the image background, as compared to the expected noise level. In the practical implementation,
we estimate the local noise level as N(g) = 3σg(g) and segment those pixels with a signal-to-noise ratio
S0/N larger than two. An example of the resulting segmentation is shown in figure 7.7a.

7.3.3 Resolving overlapping particle images

Figure 7.7a,b shows that the motion segmentation presented in the previous section tends to segment several
particles as one connected object. Two effects are responsible for this. First, if two particles are close to each
other, the light reflected between them may introduce a glow of the water, since the latter is not perfectly
clear but contains a certain amount of particulate matter. Second, since a volume illumination is used, there
will always be a number of particles in different depths which overlap in the image.

Maas [1992] presents a statistical analysis to derive the probability of overlapping particle images as a
function of the imaging parameters (image size, average particle size and average particle density). Bastiaans
et al. [2002] carries out a similar investigation and gives the following formula to compute the fractional
amount of overlapping particle images for randomly distributed particles:

Poverlap = 1 − exp(−4Ns), (7.4)

where Ns is the image source density (the fraction of the total image area that is covered by particles).
The number of expected particle overlaps for the parameters of the present setups is shown in figure 7.8.
The curves are strictly valid only for symmetric particle shapes and a homogeneous particle density. Inho-
mogeneities in shape and density will increase the average number of overlaps. The plots show that up to
≈ 20% of overlapping particle images have to be expected (depending on the particle density). Hence, this
problem cannot be neglected.

Perkins and Hunt [1989] suggest using the features shape and area to separate overlapping particle
images. They use a ’sector fitting’ algorithm, which successively computes best fits of Gaussians to over-
lapping particle images. The fitted peak is removed and another fit is computed for the remaining sector
of the overlapping particle. Since both particle shape and area may be quite inhomogeneous in the case of
endoscopic imaging, this approach is not feasible here.

Maas [1992] presents an analysis of different approaches to separate particle images and introduces
an ’anisotropic thresholding operator’ to resolve overlapping particle images. This operator is basically a
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a b

c d

Figure 7.7: Particle segmentation in an endoscope image (Höllbach-setup). a Result of the segmentation-from-motion
described in section 7.3.2. In b , the local gray value maxima as given by the final segmentation results are indicated
by the red dots. This shows that the motion segmentation tends to segment several particles as one connected object.
To separate the overlapping particle images, we apply a watershed algorithm. The separation lines (’watersheds’) are
shown in c . The final segmentation result is shown in d (black areas). The size of the segmented particles is reduced
by selecting only those pixels with a gray value larger than a fraction of 1/e of the particle’s maximum gray value.

region-growing method that performs a connectivity analysis in a local neighbourhood, including a discon-
tinuity criterion to separate two local gray value maxima. The approach is very similar to a well-known and
very powerful image segmentation method known as watershed transformation in morphological image

147



148 7 3-D Particle-Tracking Velocimetry

a

0 50 100 150 200
0

10

20

30

40

50

60

number of particles

nu
m

be
r o

f o
ve

rla
ps

a=10
a=15
a=20

b

0 100 200 300 400 500 600
0

20

40

60

80

100

120

number of particles
nu

m
be

r o
f o

ve
rla

ps

a=10
a=15
a=20

Figure 7.8: Statistical estimation of the number of overlapping particles per image as a function of the total number
of particles per image, according to [Maas, 1992]. The three different curves correspond to three different average
particle sizes of a = 10, 15, 20 pixels. Depending on the flow conditions, the average particle size is between 10 and
20 pixels in all setups. a Höllbach-setup. b Neckar-setup.

processing [Soille, 1998]. We use a watershed transformation to separate overlapping particles.

The watershed transformation groups the pixels around the local image minima and separates adjacent
regions along so-called watersheds. The basic principle of the watershed transformation can be explained
using a demonstrative analogon [Dougherty and Lotufo, 2003]. If we consider the inverse of a particle image
as a topographic landscape, the local minima in this image (the local maxima in the original image, i.e. the
particles) correspond to more or less deep valleys or basins within the plateau of the image background. If
rain starts to fall onto this landscape, the water will be collected in the basins, and the water level will start
to rise in each particular basin. If two basins are adjacent to each other, there will be a point where the water
level in one of them reaches the border between them, and the two basins will start to merge. As soon as this
point is reached, we start to build a dam (a watershed) on the border to keep the two basins separated. If the
water level finally reaches the plateau, the watersheds represent a segmentation of the image. Overlapping
particle images will be separated along the curve of local gray value minima between the two maxima, see
figure 7.7c.

Belonging to the group of region-growing methods, the watershed transformation needs seeding points
to start the region-growing. In practical applications, image noise makes the computation of the watershed
transformation on the original images infeasible. Noise introduces many local gray value minima, which
will cause an over-segmentation of the image. Hence, a so-called marker image is necessary, that indicates
the relevant objects in the image and distinguishes them from the irrelevant noise minima. In our application,
we can use the segmentation mask from the motion segmentation (figure 7.7a) as marker image. The input
image for the watershed transformation is computed by multiplying the original image with the marker
image, applying a further noise reduction by smoothing with a (3 × 3)-binomial filter and inverting the
result.

After the watersheds have been computed, we finally reduce the size of the segmented areas by choosing
only those pixels with a gray value larger than a fraction of 1/e of the particle’s maximum gray value. Only
the bright pixels are statistically relevant and carry information on the position and shape of the particles.
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Further, we remove all objects with a size smaller than three pixels, since they are probably caused by noise
and do not allow for an accurate determination of their position. The final segmentation result is shown by
the black areas in figure 7.7d.

7.3.4 Position and shape by gray value moments

The next step after the segmentation is to estimate the parameters describing the shape and position of the
particles. A precise determination of the particle position is particularly important both for the particle-
tracking and the final 3-D reconstruction of the trajectories. The two most common methods to estimate
the particle positions are the computation of the gray value centroid (e.g. [Maas, 1992]) or model-based
approaches that fit a Gaussian to the image data (e.g. [Marxen et al., 2000]). [Wernet and Pline, 1993]
derive the theoretical (Cramer-Rao-) lower bound for the error in estimating a particle’s position. If the
intensity distribution is Gaussian and the only noise source is photon shot noise, a theoretical optimum
accuracy of ≈ 0.015 pixels may be achieved. [Marxen et al., 2000] find a comparable lower bound of 0.03

pixels from an analysis of synthetic images. Typical accuracies obtained on real image data are of the order
of magnitude of 0.1 pixels, both for centroiding and Gaussian fits [Maas, 1992; Wernet and Pline, 1993;
Marxen et al., 2000]. We use first and second order gray value moments to describe the shape and position
of a particle image. This basically represents a modeling of a particle image as an ellipse.

Let gp(x, y) be the intensity distribution of a particle image. The gray value moments of the particle
are defined as

mpq =

∞∫

−∞

∞∫

−∞

xpyqgp(x, y)dxdy. (7.5)

The zero-order moment m00 is the sum of the gray values of the particle:

m00 =

∞∫

−∞

∞∫

−∞

gp(x, y)dxdy. (7.6)

For a binary image b(x, y) (e.g. a segmentation mask of a segmented particle image), we have b(x, y) = 1 if
the pixel (x, y) belongs to a particle and b(x, y) = 0 otherwise. In this case, the zero-order moment is simply
the number of pixels belonging to the particle, i.e. its area. If we think of gp(x, y) as the density ρp(x, y) of
the particle, the zero-order moment becomes the total mass of the particle. Similarly, the first-order moments
define the center of mass of the particle:

m10 =

∞∫

−∞

∞∫

−∞

xgp(x, y)dxdy = 〈x〉m00 ⇒ 〈x〉 = xp =
m10

m00
,

m01 =

∞∫

−∞

∞∫

−∞

ygp(x, y)dxdy = 〈y〉m00 ⇒ 〈y〉 = yp =
m01

m00
. (7.7)

Since the shape description of the particle images should be translation invariant, we use the following
central moments, which are related to the center of mass:

µpq =

∞∫

−∞

∞∫

−∞

(x − 〈x〉)p(y − 〈y〉)qgp(x, y)dxdy. (7.8)
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Since the first-order central moments are zero by definition, µ10 = µ01 = 0, the shape description starts
with the second-order central moments:

µ20 =

∞∫

−∞

∞∫

−∞

(x − 〈x〉)2gp(x, y)dxdy,

µ02 =

∞∫

−∞

∞∫

−∞

(y − 〈y〉)2gp(x, y)dxdy,

µ11 =

∞∫

−∞

∞∫

−∞

(x − 〈x〉)(y − 〈y〉)gp(x, y)dxdy. (7.9)

Again by analogy to mechanics, these three second-order moments form the components of the inertia tensor
for rotation of the object around its center of mass resp. rotation of the particle image around its centroid.

In gray scale particle images, where gp(x, y) ∈ [0, ..., gmax], we may also regard gp(x, y) as a discrete 2-
D probability density distribution of the particle position over (x, y). In this case, we should have m00 = 1,
which can be obtained by normalizing the original image by m00:

g′p(x, y) = gp(x, y)/m00. (7.10)

Using this normalization, the inertia tensor becomes the covariance matrix of the particle position, see
appendix A.

Under ideal circumstances, the image of a tracer particle under Mie-scattering is given by an Airy
function, which is well approximated by a Gaussian gray value distribution in the image plane [Adrian,
1991; Raffel et al., 1998]. In this case of perfect rotational symmetry and hence isotropic light scattering, we
can equally well compute the particle position by fitting a Gaussian or simply by computing the gray value
centroid. However, in practical applications, there are always deviations from this ideal case. Irregularities
in the particle surface, influences of the illumination, gloom in dirty water or camera noise limit the accuracy
of the position computation.

Following Maas [1992], we estimate the influence of noisy gray values on the computation of the particle
centroid position by Gaussian error propagation. For the x-component xp (the same derivation also holds
for the y-component), the discrete version of (7.7) reads

xp =

∑
xigi∑
gi

, (7.11)

where the summation is carried out over the segmented particle area. Gaussian error propagation yields

σ2
xp

=
1

(
∑

gi)2

∑
(xi − xp)

2(σgi
)2. (7.12)

To estimate the noise component σgi
, we can use the results of the radiometric analysis in chapter 4, compare

figure 4.3. As a result, typical values for σxp
are in the range from 0.01 to 0.1 pixels. Maas [1992] also

finds a centroid error of roughly 0.1 pixels for realistic camera noise conditions. The most important factor
that influences the accuracy is the choice of the segmentation threshold, i.e. the decision which pixels
should contribute to the summation in (7.12). This choice is particularly critical if the shape of the particle
is asymmetric, e.g. in the case of overlapping particle images. Thus, the accuracy will rather be at the
upper bound of the range given above, i.e. of order of magnitude of 0.1 pixels. This is confirmed in the
performance analysis in section 8.2.2.
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Figure 7.9: Screenshot of the output windows of the 2-D PTV algorithm during the tracking of a particle sequence.
Top row: window one to five, bottom row: window six to ten (from left to right). For explanations, refer to the text in
section 7.4.

7.4 2-D particle tracking

In this section, we discuss the 2-D particle-tracking algorithm that is used to determine the particle trajecto-
ries in the image planes of the left resp. right camera. The basic task that has to be solved is the matching of
new measurements (here: particles) appearing in frame k to the features (here: trajectories) of the previous
frame k − 1. This process is called the motion correspondence problem in computer vision or the data
association problem in target tracking applications. A screenshot of the output windows of the PTV algo-
rithm during the tracking is shown in figure 7.9. The various information displayed in these windows is used
for the tracking and will be explained in the following subsections. The algorithm is a hybrid approach (see
section 3.6), which combines low-level motion estimators (optical flow and PIV) with a Kalman tracker.

7.4.1 Tracking strategy

Temporal neighbourhood.

The tracking is carried out on a temporal neighbourhood of nine frames. Within this sequence, the central
frame (number five) is the actual frame, i.e. we try to establish the particle links between frame five and
frame six, as indicated by the arrow:

[1] [2] [3] [4] [5] → [6] [7] [8] [9]

After all particles in frame five have been processed, the linked particles of frame one are appended to a list
of trajectories that is created throughout the tracking. Frame one is deleted, a cyclic shift of the sequence is
carried out, and the next frame is appended at position nine. The current trajectories are shown in window
six of figure 7.9.
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a b c

Figure 7.10: The PTV algorithm takes into account an extended temporal neighbourhood. a Confidence measure
(coherence) of the optical flow computed by the structure tensor method (black areas have a high confidence). The
confidence is high along the particle trajectories. Note that large and bright particles only have a high confidence
measure at the border, since in the inner particle area the spatial gray value gradients are too small. b Enlarged image
of a particle. c The same particle in a temporally smoothed image.

There are three reasons to work on an extended temporal neigbourhood:

1. The tracking can be stabilized by temporal smoothing. In the optical flow computation (section 7.4.3),
the structure tensor is computed taking into account a temporal neighbourhood in addition to the
usual spatial neighbourhood (temporal smoothing using a 9-tap binomial filter). As we can see in
figure 7.10a, the motion of the particles is revealed by the confidence measure [Jähne, 1997] of the
optical flow, which is high along the particle trajectories. A second benefit of temporal smoothing
is the increased particle size in the direction of motion, see figure 7.10b,c. The latter can be used to
identify the corresponding particle in the next frame by the spatial overlap of the two images (if the
local particle density is sufficiently low, so that the overlap is unique).

Temporal smoothing is only helpful, if the particles are ’slow’, i.e. if they do not move by more
than their diameter between two subsequent frames. Otherwise, temporal smoothing will create spu-
rious particles, since the smoothed particle image will have several local maxima. Hence, we have to
discrimate between slow and fast particles and apply the smoothing only to the slow ones. The dis-
crimination is achieved by computing the pixelwise temporal variance on a sequence of three frames
around the actual frame (frame four, five, six). Tests have shown that particles may be identified as
’fast’, if the temporal standard deviation of the gray values within the particle area is higher than half
of the temporal mean gray value. An example is shown in figure 7.9, second row, window ten: slow
particles are indicated by small dots, fast particles by large dots.

2. Trajectories are only considered valid if they have a length of at least four frames. Shorter trajectories
are rejected.

3. Three previous frames are necessary to compute the velocity and acceleration in the second order
kinematic model of the Kalman filter (section 7.4.2).

At the beginning of the tracking, the temporal sequence is initialized by computing the particle segmentation
for the first eight images.
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Initialization of a tracking step.

The tracking is carried out in frame-by-frame steps. Since the idea of the hybrid approach is to use infor-
mation from low-level velocity estimators to guide the tracking, we first have to compute this information
before the actual tracking is performed. Each tracking step is initialized by the following operations:

• Compute the particle segmentation of the new frame appended at position nine.

• Determine the particle displacements by spatial overlaps between particles in the actual frame (frame
five) and particles in the next frame. If the particle density and velocity is not too high, unique
overlaps can be established either directly, by temporal smoothing (see above) or by a morphologic
dilation. Further, we can use the image lag introduced by the amplifiers of the CMOS cameras (see
section 9.3.4) to establish overlaps of fast particles.

• Compute the displacement vector field of the actual frame by the structure tensor method (sec-
tion 3.4.1). The computation is carried out on a spatial neighbourhood defined by a 5-tap binomial
mask and a temporal neighbourhood defined by a 9-tap binomial mask. By choosing a small spatial
mask we try to avoid several particles occuring within the neighbourhood, which introduces motion
discontinuities.

• Compute the displacement vector field of the actual frame by a multigrid PIV algorithm (sec-
tion 3.2). The size of the basic interrogation window is 16× 16, and the first two levels of a Gaussian
pyramid are used. Since we are basically interested in the velocity of single particles, the latter should
be in the center of the interrogation window. To account for the random position of the particles, we
compute the correlation on a dense regular grid defined by every other pixel in the original image.
Then we choose the displacement vector that is closest to the particle of interest, resp. the mean
displacement vector over the area of the particle.

For each particle, a list of parameters is initialized. This list contains the following information about the
particle:

• segmentation parameters: particle position and covariance matrix (determined from the gray value
moments), area, sum of gray values, maximum gray value, noise variance (spatial mean over the
particle area) (windows one, two, seven, eight in figure 7.9),

• correspondence partner in the next frame determined from spatial overlap (if the latter is unique)
(windows three and six in figure 7.9),

• velocity determined by the structure tensor method (spatial mean over the particle area),

• confidence measure of the structure tensor (spatial mean over the particle area) (window five in fig-
ure 7.9),

• velocity determined by the multigrid PIV method (spatial mean over the particle area),

• confidence measure of the multigrid PIV method (spatial mean over the particle area) (window four in
figure 7.9, linear size reduced by a factor two since displacements are estimated for every other pixel
in the original image),
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• flag indicating slow or fast particle (window ten in figure 7.9),

• normalized signal-to-noise ratio of the particle (window nine in figure 7.9).

The discussion of flow visualization methods in chapter 3 has shown that region-based approaches like
the structure tensor method and PIV assume a spatially coherent optical flow field in the image plane. This
is the reason why such methods in general are not suitable for images obtained with volume illumination,
where particles in different depth ranges are projected simultaneously on the same image. However, if the
particle density is not too high, only a small part of the image will suffer from motion discontinuities. In the
major part of the image, the motion will be locally coherent, so that region-based methods can be applied.
Note that we try to avoid motion discontinuity by computing the optical flow on a small neighbourhood of
the order of magnitude of the particle size. Further, the results of the region-based methods are only used to
initialize trajectories if the corresponding confidence measure indicates a good estimate. Discontinuities are
detected by a low confidence. In this case, the trajectory intialization fails.

Order of trajectory processing.

With each new frame, we get a list of the segmented particles that have to be linked to the already established
trajectories. The latter are stored in a list. This rises the question, in which order the list should be processed.
To define this order, we assign a score ST to each trajectory, which is computed as follows:

ST = LT + SNR, (7.13)

where LT is the current length of the trajectory in frames and SNR is the normalized signal-to-noise ratio
of the last particle that has been linked to the trajectory (SNR ∈ [0, 1]). The first processing step for a
new frame (frame six) is to compute ST for all particles in frame five. The latter may already be linked to
a trajectory (LT > 1) or define a new trajectory (LT = 1). Subsequently, the trajectories are processed by
decreasing score. Hence, we first try to continue the tracking of long trajectories, since these are considered
to be most reliable and thus have the highest priority. If several trajectories have the same length, the one
with the highest signal-to-noise ratio will be processed first. In doing so, we prevent noisy particles from
’stealing measurements’ from the more reliable particles.

7.4.2 Kalman filter

As the basic tracking framework, we set up a Kalman filter for each trajectory. Under the usual Gaussian
noise assumptions, the Kalman filter represents a recursive version of the maximum-likelihood estimation of
the particle trajectories. It estimates the particle positions by an optimal (in a statistical sense) combination
of the measurements from the low-level image processing (segmentation and velocity estimation) with the
predictions given by a linear kinematic model. Kalman filtering is a very common and powerful method used
for tracking and other sequential state estimation problems. Hence, it is the subject of extensive research and
application [Maybeck, 1979; Gelb et al., 1992; Brookner, 1998; Blackman and Popoli, 1999; Stone et al.,
1999]. For a short introduction, see [Welch and Bishop, 2001].
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State vector and process model.

A state vector x is assigned to each trajectory, which contains the current position, velocity and acceleration
of the corresponding particle:

x = [x, y, vx, vy, ax, ay]
T . (7.14)

The process to be estimated by the Kalman filter is given by a constant acceleration model. The correspond-
ing state transition equation reads

xk = Axk−1 + wk−1, (7.15)

where A is the state transition matrix

A =




1 0 1 0 0.5 0

1 1 0 1 0 0.5

1 0 1 0 1 0

1 0 0 1 1 0

1 0 0 0 1 0

1 0 0 0 0 1




, (7.16)

and wk−1 is the process noise, which is assumed to be Gaussian with zero mean and covariance matrix Q:

wk ∼ N(0, Q). (7.17)

Measurements.

In each tracking step, we obtain new measurements, which have to be assigned to the trajectories. The
relation between the state vector xk and the measurement vector zk is given by

zk = Hxk + vk, (7.18)

with H = diag(1, 1, 1, 1, 1, 1). The vector vk is the measurement noise, which is also assumed to be
Gaussian with zero mean and covariance matrix R:

vk ∼ N(0, R). (7.19)

The form of the matrix H implies that measurements are available for all components of the state vector.
While the position measurement is always available from the particle segmentation, velocity and accel-
eration have to be computed by first resp. second order finite differences using the particle positions in
the previous frames. If only one previous frame is available, we assume zero acceleration and account
for possible errors by larger entries in the covariance matrix R of the measurement noise. If no previous
frame is available, i.e. a particle appears for the first time, we have to initialize the trajectory as outlined in
section 7.4.3.

Process noise and measurement noise.

To quote Y. Bar-Shalom, one of the leading scientists in the design of Kalman filters for tracking applica-
tions, ’tuning of a Kalman filter is an art’ [Bar-Shalom, 1987]. The word ’tuning’ refers to the choice of the
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process noise and measurement noise covariance matrices. The former represent the degree of confidence
in the kinematic model resp. the predictability of the particle motion, and the latter quantify the precision
of the measurements. In principle, both matrices can be time-dependent. For example, the process noise
should depend on the dynamics of the tracked object. Many sophisticated process noise models have been
suggested, see e.g. [Blackman and Popoli, 1999].

For our application, we choose a simplified approach, which nevertheless shows good performance.
The measurement covariance is given by the confidence ellipses obtained in the particle segmentation, see
figure 7.11b, section 7.3.4 and appendix A. We use the same confidence ellipses to assess the precision of
position, velocity and acceleration. This accounts for a higher uncertainty along the trajectory of the particle
than perpendicular to it, since the major axes of the ellipses are aligned along the trajectory. Another option
is to use constant entries for the velocity and acceleration noise, where the acceleration noise is typically
higher to account for (turbulent) fluctuations of the particle motion.

The process noise Q is also assumed to be constant. Good results are obtained with the choice Q =

diag(0.01, 0.01, 0.1, 0.1, 1.0, 1.0).

Prediction of search area.

The first step of the Kalman filter cycle is the so-called time update, i.e. the prediction of a search area or
validation region in the next frame, where the corresponding particle will be most probably found. The time
update equations are

x−
k = Axk−1, (7.20)

P−
k = AP k−1A

T + Q. (7.21)

An ellipsoidal search region around the predicted position x−
k is defined by the confidence ellipse given by

P−
k . By an appropriate scaling of this ellipse (e.g. corresponding to a three-sigma threshold), we obtain

the contours of equal Mahalanobis distance of the measurements around their predicted value. Figure 7.11c
shows the predicted search areas, together with the current end points of the trajectories (red dots).
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a b

c d

e f

Figure 7.11: The various stages of one tracking step in the Kalman filter cycle. a Particles in the current frame. b
Uncertainty ellipses of the particles. c Predicted search areas and current end points of the trajectories (red dots):
orange = predicted by optical flow, green = predicted by the kinematic model of the Kalman filter, blue = predicted by
spatial overlap. d Predicted search areas and new measurements (red dots). Note that almost all new measurements
are uniquely assigned to the search regions of the trajectories. e Trajectory update. f State update. The red areas
indicate the uncertainty ellipses of the updated particle states. Note that the updated ellipses are significantly smaller
than both the measurement noise and the size of the search regions.
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Assignment of new particles to trajectories.

After the time update step, we have to solve the particle matching, i.e. we have to look for a unique
correspondence partner within the predicted search region. If only one particle is found within the search
region, it is matched to the corresponding trajectory. However, three cases of ambiguities may also occur:

• several possible candidates are within the search region (’one-to-many’),

• several trajectories have the same search region (’many-to-one’),

• several trajectories have the same search region containing several particles (’many-to-many’).

These ambiguities occur if the particle density is high and trajectories are located close to each other or cross
each other, see also section 7.4.5. To solve the one-to-many ambiguity, we take again a simplified approach
and choose the particle with the minimum Mahalanobis distance to the predicted position. While this
approach is still simple, it will perform better than the usual nearest-neighbour strategy, which is based on
the Euclidean distance. The latter is an isotropic distance measure, while the Mahalanobis distance takes
into account the elliptical shape of the predicted search region. The many-to-one ambiguities are resolved in
a ’greedy’ fashion by the processing order of the trajectories, see section 7.4.1. Note that for typical particle
densities occuring in our application, the number of ambiguities is rather small. For example, figure 7.11d
shows that almost all new measurements are uniquely assigned to the search regions of the trajectories.
Many ambiguities can already be resolved in the segmentation step by the separation of overlapping particle
images (section 7.3.3).

Measurement update.

The final step of the Kalman filter cycle is the so-called measurement update, which computes the sta-
tistically optimal particle position by combining the position predicted by the kinematic model with the
measured position of the particle that has been assigned to the trajectory in the matching step. The measure-
ment update equations read

xk = x−
k + Kk

(
zk − Hx−

k

)
, (7.22)

P k = (I − KkH) P−
k , (7.23)

with the so-called gain matrix or Kalman gain

Kk = P−
k HT

(
HP−

k HT + R
)−1

. (7.24)

The new particle state is represented by (xk, P k). In figure 7.11f, we see that the uncertainty of the particle
position (ellipse given by P k) is smaller than both the measurement uncertainty (ellipse given by R) and the
model uncertainty (size of the search region, ellipse given by P −

k ), which is the basic effect of combining
measurements and model predictions as done in (7.23).

7.4.3 Trajectory initialization

Trajectory initialization refers to the case when a particle enters the field of view for the first time. In this
case, a new trajectory is created, and no previous information is available. We have to find a way to initialize
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the state vector (7.14), which basically means that we need some estimate of the particle velocity and
acceleration (the position is available from the segmentation). This is the place where the low-level velocity
estimators enter our hybrid tracking approach. As already mentioned in section 7.4.1, we estimate the
particle velocity by spatial overlaps, the structure tensor method and a PIV method, and use this information
to initialize the state vector. First we look for unique image overlaps. If none are found, we use the optical
flow estimation. If the latter is also not available because the confidence measure is too low, we use the PIV
estimation. The first two methods will fail if the displacements are large. In this case, we also use the PIV
result. If all low-level velocity estimators have failed, the trajectory cannot be initialized, and the particle
is rejected. If there are no discontinuities in the local displacement field in the image, the multigrid PIV
estimator is able to initialize particle trajectories with displacements of up to 20 pixels per frame.

7.4.4 Trajectory termination

A trajectory is terminated if no matching particle is found within the search region of the Kalman filter.
Trajectory termination occurs in two cases. The first (and natural one) are particles leaving the field of
view, either across the image border or along the depth direction with a decreasing signal-to-noise ratio.
The second case is a tracking failure, either caused by a segmentation failure (false negative) or a wrong
estimation of the search region. To distinguish between the two cases, we check whether the particle is close
to the image border or its signal-to-noise ratio is low and has been continuously decreasing for some frames.
If none of these conditions are given, the termination is probably the result of a tracking failure. Tracking
failures can be resolved by trying to improve either the segmentation or the definition of the search area (or
both). We only follow the first approach, see section 7.4.5.

7.4.5 Occlusions and segmentation failures

The most difficult part of a tracking algorithm is to solve the problems related to occlusions, segmentation
failures and ambiguities. In simple tracking approaches, the trajectory will be terminated in these cases,
since a (unique) matching particle cannot be found. We have already mentioned our simplified approach to
resolve ambiguities in section 7.4.2. More sophisticated tracking algorithms try to resolve ambiguities by
extending the temporal scope of the matching over several frames. One example is the ’Multiple Hypothesis
Tracker’ mentioned in section 3.5.2, that takes into account several different possible trajectories (’hypothe-
ses’) and tries to find the set of correct ones. However, the resulting combinatorial optimization problems
become very complex1 and computationally intensive.

In the present application, tests have shown that the number of trajectory terminations due to occlusions,
i.e. crossing trajectories, is rather low. Typically, less than 15% of the trajectories are terminated due to an
unresolved occlusion. In previous implementations, occlusions occured more frequently, since overlapping
particles and particles that are very close to each other were not resolved. The application of the watershed
segmentation (section 7.3.3) has significantly improved this situation. Hence, no further effort has been
spent to resolve the few remaining occlusions. According to the tracking strategy described in section 7.4.1,
in case of an occlusion, the longer trajectory will be continued, and the shorter one will be terminated. As an
option, we try to link broken trajectories in a postprocessing step. Towards this end, we look for trajectory

1the simultaneous particle matching for n frames is a multidimensional assignment problem, which is NP-complete for n ≥ 3

[Nemhauser and Wolsey, 1999]
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a b

Figure 7.12: Search for correspondences in stereoscopic particle images, utilizing the epipolar constraint. A particle
in the right image has been selected (red cross in b ). The corresponding epipolar line has been drawn in the left image
(a ). In this case, the unique correspondence partner can be easily identified. However, in general, several possible
correspondence partners will be found on the epipolar line in the left image.

ends and trajectory starts that are close to each other and compare the velocity vectors of the corresponding
end resp. start points in magnitude and direction. If the vectors are similar, the two trajectories are connected
by linearly interpolating the gap between them.

Trajectories may also be terminated due to segmentation failures, i.e. the corresponding particle is not
found in the predicted search area because it has not been segmented (’false negative’). To deal with such
cases, a feedback between segmentation and tracking has been introduced. All images are actually seg-
mented twice, using a high and a low threshold on the signal-to-noise ratio. If a tracking failure is detected,
we assume that it is caused by a false negative of the segmentation. Hence, we look for a corresponding
particle in the second segmentation image that has been obtained using the lower threshold. If a particle
is found there, we use it to continue the trajectory. In this way, the tracking becomes more robust to noise
without producing many spurious trajectories that are initialized by false positives.

7.5 Stereo correspondence analysis and 3-D reconstruction

7.5.1 Stereo correlation of trajectories

To establish the stereoscopic correspondences between the particle images in the left and the right view,
we use the epipolar constraint as described in section 6.1. Figure 7.12 shows a simple example in an
image pair of low particle density. In this case, a unique correspondence can be established, since only one
particle is located on the epipolar line. However, one can easily imagine that for higher particle densities
the correspondence will not be unique because several particles are located on the epipolar line resp. in
the epipolar plane in 3-D space. Figure 7.13a illustrates the simplest case of an ambiguity of two particles.
Since in general the particles cannot be distinguished by further individual object properties like size, shape
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Figure 7.13: a Simple example of ambiguities occuring in the stereo correlation of particle images. The colored mark-
ers represent two different possible constellations of two particles, which lie in the same epipolar plane. The resulting
ambiguity cannot be resolved without taking into account further information. b Number of expected ambiguities for
an endoscopic stereo setup.

or color, the stereoscopic reconstruction of single particles is infeasible. Maas [1992] derived the following
formula to compute the expected number of ambiguities Na in dependence of the number of particles in the
image and the geometric parameters of the stereo rig:

Na = (N2
p − Np)

2fεb(Zmax − Zmin)

AiZminZmax
, (7.25)

where Np is the number of particles in the image, f is the focal length, b is the length of the stereo baseline,
Ai is the image area, [Zmin, Zmax] is the depth range of the observation volume and ε is the width of
the epipolar search area perpendicular to the epipolar line (’epipolar window’). The latter is necessary
to account for inaccuracies in the camera parameters and the particle positions. Figure 7.13b shows the
resulting curves for the parameters of an endoscopic setup and epipolar windows of up to three pixels. It
follows that up to ≈ 10 particles are expected to lie on the same epipolar line, depending on the particle
density.

There are two possibilities to resolve the stereoscopic ambiguities. They correspond to the two different
approaches to extend 2-D PTV to the third spatial dimension (discussed in section 3.5.3). The most common
approach is to use a third camera. The additional view restricts the search area from the epipolar line to the
intersection of two epipolar lines. The number of ambiguities is significantly reduced, see e.g. [Maas et al.,
1993]. If at least three views are available, a 3-D reconstruction of single particle positions and a subsequent
tracking in 3-D space is possible.

Our algorithm is based on the second approach, which does not use an additional camera. The particle-
tracking is performed in image space, as described in section 7.4. The particles in the left resp. right image
sequence are tracked independently of each other. This results in two lists of 2-D particle trajectories. After
the 2-D tracking, the stereo correlation is solved for particle trajectories instead of single particles. This
means that the objects which are to be reconstructed into 3-D space are trajectories. The latter can be
distinguished from each other by their geometrical shape. Especially for fluctuating flow fields, the particle
trajectories are expected to differ remarkably from each other. In other words, ambiguities are reduced,
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because the epipolar constraint is not imposed on single particles, but rather on all particles forming a
trajectory.

To make the above consideration more precise, consider the set of planes in space that contain the
baseline of the stereo rig. This set is called the pencil of epipolar planes. Any two epipolar planes can
be aligned with each other by a rotation around the baseline. The positions of a particle along its trajectory
define a discrete subset out of the pencil of epipolar planes. We define a cylindrical coordinate system where
the baseline is the symmetry axis. In this coordinate system, the position vector of a particle is given by
xcyl = [z, r, φ]T , where z is the component in the direction of the baseline, r is the component in the radial
direction perpendicular to the baseline, and φ is the angular component describing the rotation around the
baseline. The necessary and sufficient condition for the 3-D reconstruction of the trajectory is the uniqueness
of the angular motion of the particle, described by the φ-component. The latter is a reasonable assumption
for a fluid flow field.

The basic principle of our method is to use the temporal information that is available from the tracking
of single particles to resolve spatial ambiguities. A similar approach is proposed by Chang and Aggarwal
[1997]. However, in their method they use spatial relations to resolve temporal ambiguities in the tracking
of a monoscopic image sequence. Willneff and Gruen [2002] present a 3-D PTV algorithm that performs a
combined simultaneous analysis of temporal and spatial correspondences.

The present algorithm for stereoscopic correspondence analysis is based on previous work by Netsch
[1995], Garbe [1998] and Engelmann [2000]. An improved version has been presented by Klar [2001]. The
latter is used here. The correspondence search starts by checking the epipolar constraint for all possible pairs
of left and right trajectories and thereby creating a list of possible correspondence partners. The algorithm
is carried out in four passes. In the first pass, a small epipolar window of 0.1 pixels is used, and only
trajectories longer than a specified minimum length are considered. If unique correspondences are found,
they are removed from the list of remaining correspondence partners and marked as matched. The search
continues by requiring lower minimum trajectory lengths up to a minimum length of four frames. As before,
all unique correspondences are removed from the list. In a second pass, we recompute the list of remaining
correspondence partners using a larger epiplar window of one pixel. The search is carried out in the same
fashion by successively lowering the required trajectory length and removing all unique matches. In the
final pass, we use an epipolar window of three pixels. In each pass, different heuristic criteria are applied to
resolve trajectory ambiguities. For the details of the implementation see [Klar, 2001].

7.5.2 3-D reconstruction of trajectories

Triangulation of 3-D points.

If a unique correspondence between the left and right image of a trajectory has been established, the 3-D
trajectory is computed by the midpoint triangulation method described in section 6.2. To obtain a confidence
measure for the triangulation, we compute the mean Euclidean distance between the two projection rays over
all points of the trajectory. If the mean distance exceeds a threshold, the trajectory is rejected. The threshold
is set according to the 3-D reconstruction accuracy that has been determined in section 6.2.3.
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Velocity computation.

Given the successive 3-D particle positions X i−1, Xi, Xi+1 along a trajectory, the particle velocity is ap-
proximated by a second order central difference scheme:

V i =
Xi+1 − X i−1

2∆t
+ O(∆t2), (7.26)

where ∆t is the frame period of the camera in seconds.

Malik et al. [1993] use the second order central scheme and state that the latter yields an accurate
estimate of the local Lagrangian mean velocity over the time interval 2∆t. They also test linear and higher
order schemes and report that they perform worse, provided that the particle acceleration is approximately
constant over the three frames. In their tracking scheme, they use the criterion of minimum change of
acceleration to resolve tracking ambiguities. A similar approach is taken here, since we use a constant
acceleration model in the Kalman filter.

Lüthi [2002] and Willneff and Lüthi [2003] do not compute velocities by numerical differentiation be-
cause of the high risk of large errors due to noise in the tracer particle locations. They fit third-order polyno-
mials in time to 21 successive particle positions along the trajectory (one polynomial for each component).
The particle velocity is computed by analytical differentiation of the polynomials. The basic effect of these
’moving cubic splines’ is a temporal lowpass filtering of the position data.

In our implementation, we apply a temporal smoothing of the position data along the trajectories before
computing the velocities. The smoothing is carried out by a convolution of the trajectories with a 3-tap
binomial filter. The half width of the transfer function of this filter is half the Nyquist frequency. In case of
the CMOS cameras, this means that noisy fluctuations with a frequency of 100 Hz and more are reduced in
amplitude by at least a factor of two. Depending on the noise level, several successive convolutions may be
applied, which increases the effective filter size resp. reduces the half width of the corresponding transfer
function.

7.6 Summary

The 3-D PTV algorithm developed in this thesis has been presented. The task of this algorithm is to compute
the 3-D particle trajectories of flow tracers, given a stereoscopic image sequence of the flow. Towards this
end, two correspondence problems have to be solved: the temporal correspondence of particles between
subsequent frames (’tracking’) and the spatial (stereoscopic) correspondence of particles between the two
views.

It is difficult to solve the stereoscopic correspondences of an ensemble of tracer particles. The reason
is that the epipolar geometry of a stereo setup only restricts the search area of a corresponding particle to a
line in the image. Except for very low particle densities, the probability that several particle images will be
found on this line is high. The resulting ambiguities cannot be resolved, since the particle images cannot be
distinguished by further features like size, shape or intensity.

In our approach, we start with a 2-D tracking of the particles in each sequence. Hence, we first solve the
temporal correspondences in image space. In a second step, we analyze the stereoscopic correspondences
of trajectories rather than of single particles. In this case, we can use an additional constraint to resolve
ambiguities, namely the geometric shape of the trajectories. Because the epipolar constraint is imposed
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on all particles of a trajectory rather than on a single particle, the number of ambiguities is significantly
reduced.

The main difficulty of our approach is the particle-tracking in image space, which is more complex than
tracking in 3-D space. The principal reason is the volume illumination that is necessary in a 3-D technique.
This has two consequences. First, the size and brightness of the particles may vary considerably because of
illumination inhomogeneities and out-of-focus imaging. Second, the motion of particles in different depth
layers is projected simultaneously onto the sensor. This creates complex optical flow patterns in the image
plane. Particles may overlap or occlude each other, which results in asymmetric particle shapes and crossing
or merging trajectories. Finally, we have to keep in mind that both the resolution and the signal-to-noise
ratio is generally lower in endoscopic images. Hence, the need for a robust tracking algorithm becomes
clear.

A powerful segmentation algorithm has been developed, that achieves a reliable determination of the
particle positions. The particles are extracted by taking into account both features that distinguish them from
the background, namely their motion and their intensity. A watershed algorithm is used to split overlapping
particle images, which reduces the number of tracking ambiguities.

The tracking is performed within a Kalman filter framework. Different low-level motion estimators are
integrated to initialize the trajectories. The reliability of both the segmentation and the tracking is increased
by taking into account an extended temporal neighbourhood around the current frame. To further reduce the
number of tracking ambiguities, the simple nearest neighbour search of previous implementations has been
improved by using the Mahalanobis distance instead of the Euclidean distance. This enables a more precise
definition of search areas, where the correct matching particle is most probably located.

The main limitation of the tracking algorithm is that the remaining tracking ambiguities are not explicitly
resolved. Only a greedy approach has been implemented. However, because of the relatively moderate
particle densities in the present application, this drawback is not too severe.

164



Chapter 8

Performance and accuracy assessment

Performance evaluation is an essential step in the design of any algorithm. Such an evaluation should proof
the correctness of the algorithm and quantify the accuracy and precision of its results. The performance
often depends on certain parameters of the input data. For example, the tracking efficiency of a particle-
tracking algorithm depends on the particle density in the images. In such cases, parameter ranges resulting
in optimal performance resp. limitations of the algorithm should be indicated. To analyze the correctness
and accuracy of an algorithm, the correct results (’ground truth’) have to be known and compared to the
results of the algorithm. Since the acquisition of image sequences with precisely known ground truth is very
elaborate and involves expensive equipment, synthetic images are commonly used instead.

This chapter provides a comprehensive performance analyis of the 3-D PTV algorithm. In section 8.1
we introduce the image parameters and the performance measures that will be used. The analysis is carried
out both for synthetic (section 8.2) and real image sequences (section 8.3). Section 8.4 presents the accuracy
analysis of the velocity measurements. The results of this chapter are summarized in section 8.5.

8.1 Image parameters and performance measures

We summarize the definitions of the image parameters and the performance measures that are used in the
evaluation. The image parameters describe the properties of the particle images, and the performance mea-
sures quantify the quality of the tracking results. The quantities described here are commonly used for
performance assessment by many authors of PIV and PTV algorithms [Adrian, 1991; Malik et al., 1993;
Kieft, 2000; Bastiaans et al., 2002].

Image source density.

The image source density Ns is the fraction of the total image area that is covered by particles:

Ns =
π

4
d2

p

Np

Ai
, (8.1)

where dp is the particle diameter, Np is the number of particles in the image and Ai is the image area. Note
that the source density is different from the particle density. The latter may be defined as the number of
particles per image or the number of particles per pixel.
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Mean particle spacing.

The mean particle spacing Λ0 (more precisely: the mean minimum particle distance between nearest neigh-
bours) is given by

Λ0 =

(
Ai

4Np

)1/2

. (8.2)

Sampling quality.

The (temporal) sampling quality rp [Bastiaans et al., 2002] is the ratio of the average particle spacing Λ0

and the average particle displacement between two successive frames Λt:

rp =
Λ0

Λt
. (8.3)

The same quantity is termed the ’particle spacing displacement ratio’ by Malik et al. [1993]. Tracking is
easy, if rp >> 1 and becomes difficult for rp ≈ 1. Tracking is practically impossible for rp << 1 due to
a large number of ambiguities in the temporal correspondence analysis. The mean particle displacement Λt

depends on the frame rate of the camera and the flow velocity.

Measures of efficiency.

Typically, the tracking efficiency of a 3-D PTV algorithm is defined as the ratio of the number of particles
tracked in 3-D to the number of reconstructed 3-D positions per time step, e.g. [Willneff and Gruen, 2002].
Since in our algorithm we track the particles in the image plane and perform a 3-D reconstruction of the
resulting trajectories, a 3-D particle position always implies that this particle is also tracked. We define the
following three efficiency measures.

The detection efficiency ηdet is the ratio of the number Nseg of segmented particles to the number NP

of particles that the image actually contains:

ηdet =
Nseg

NP
. (8.4)

The detection efficiency can only be computed if ground truth data is available, since only in this case the
actual number of particles NP is known.

The 2-D tracking efficiency η2d is defined as follows:

η2d =
Ntrack

Nseg
, (8.5)

where Ntrack is the number of tracked particles and Nseg is the number of segmented particles in the im-
age. The 2-D tracking efficiency characterizes the performance of the 2-D particle tracking described in
section 7.4. Only particles that are tracked in at least four consecutive frames are added to Ntrack.

Finally, to assess the performance of the 3-D reconstruction, we define the 3-D reconstruction effi-
ciency η3d as

η3d =
Nrec

Ntrack
, (8.6)

where Nrec is the number of particles reconstructed in 3-D.
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a b

c d e f

Figure 8.1: Example test images of the PIV-STD Project provided by the Visualization Society of Japan. a Test case
351. b Test case 352. c Detail from a . d Detail from a with additive Gaussian and Poisson noise. e Detail from b . f
Detail from b with additive Gaussian and Poisson noise.

Combining the above definitions, the total fractional vector yield ηtot is defined as the number of
reconstructed 3-D particle positions to the number of particles in the image:

ηtot = ηdet η2d η3d =
Nseg

NP

Ntrack

Nseg

Nrec

Ntrack
=

Nrec

NP
. (8.7)

Note that also in the ideal case of ηdet = η2d = 1, the total yield ηtot may be smaller than one if a
fraction of the particles is only visible in one of the two image sequences. This fraction can be minimized
by a careful design of the experimental setup. However, it will certainly not be reduced to zero in practical
applications.

8.2 Synthetic test images

8.2.1 Properties of the test images

The Visualization Society of Japan has initiated the so-called PIV-STD Project. The objective is to de-
velop PIV standards as a common basis for a comparison of different algorithms. Within this project, many
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Figure 8.2: 3-D trajectories of the jet shear flow starting in the first frame of test case 352 of the PIV-STD Project.
The color code is the same as in figure 3.5.

synthetic PIV image sequences have been generated along with the corresponding ground truth velocity
fields. The sequences are distributed via the internet1. Many of the images are designed for PIV evalua-
tion (high particle density, only two to four successive images, light sheet illumination, stationary velocity
field). However, the test cases also include some sequences which are suitable for processing by a tracking
algorithm.

Here we use the test cases 351 and 352. These images have been generated using the velocity field of a jet
shear flow, which has been calculated numerically by a Large Eddy Simulation. A volumetric illumination
has been simulated, and image sequences from three different views are provided. The images show a time-
dependent turbulent flow field containing rich three-dimensional vortex motion on many different scales, see
figure 8.2. The latter is important for an efficient evaluation of a 3-D technique. The data set also includes
calibration images for the geometric camera calibration. Thus, a full evaluation of the 3-D PTV is possible.
The camera calibration has been carried out using the same method as described in sections 5.3.1–5.3.2.

For each test case, a sequence of 145 images is provided (only 136 are used in the evaluation). The
image size is 256 × 256 pixels. The two test cases 351 and 352 used here only differ in the particle density.
Test case 351 has a high particle density, which is suitable for PIV evaluation, but is rather high for PTV.
Test case 352 has a particle density typical for PTV. To give a visual impression, figure 8.1 shows example
images of the test cases. Since the original images are free of noise, additional tests with additive noise
have also been carried out. The noise contains two different components: a Gaussian component that is
independent of the gray value and a Poisson component with a variance proportional to the mean gray

1The images can be downloaded from the website http://www.vsj.or.jp/piv.

168



8.2 Synthetic test images 169

a

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Scatter Plot of Particle Centroid Errors [∆ x, ∆ y]

∆ x [pix]

∆ 
y 

[p
ix

]

〈 ∆ x 〉 = −0.0032±0.1037

〈 ∆ y 〉 = −0.0016±0.1140

b

σ

Figure 8.3: a Scatter plot of the particle centroid errors (test case 352, particle positions from 136 images). b Noise
dependence of the particle centroid error.

value. Figure 8.1d,f shows examples with a medium noise level. More details on the PIV-STD test images
are given by Okamoto et al. [2000b] and Okamoto et al. [2000a].

8.2.2 Results

Accuracy of 2-D position determination.

We test the accuracy of the extracted particle positions by computing the rms-values of the difference be-
tween the estimated particle positions and the ground truth for all segmented particles in test case 352. The
results are shown in figure 8.3. The particle positions are estimated to an accuracy of about 0.1 pixels, which
confirms the accuracy estimation carried out in section 7.3.4. The position error increases linearly with the
noise level.

Performance of 3-D PTV.

We process the image sequences of test cases 351 and 352 with the 3-D PTV algorithm described previously
in chapter 7. The same parameter settings are used as in the processing of real flow measurements (most
relevant: epipolar windows of up to three pixels and a minimum trajectory length of four frames). The
results of the performance analysis are compiled in table 8.1. We can draw the following conclusions:

• The mean particle diameter and image source density determined by the PTV algorithm are lower
than the true values. The reason is that the segmentation only takes into account pixels with a gray
value larger than a fraction of 1/e of the particle’s maximum gray value.

• The performance in test case 352 is much better than in test case 351. The reason is the very high
particle density in case 351. Typically, image source densities in PTV applications are well below
10%. Test case 351 has a source density of 27%, which is a great challenge for a tracking algorithm
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Table 8.1: Image parameters and performance measures obtained from the synthetic test sequences. Columns two and
three contain the ground truth, columns four and five the results of the 3-D PTV algorithm. Two different reconstruction
efficiencies are shown: (A) obtained from the application of the complete 3-D PTV algorithm, (B) obtained using
ground truth 2-D trajectories and only performing the 3-D reconstruction. For a discussion, see the text in this
section.

test case 351 352 351 352

truth truth PTV PTV

particles per image NP resp. Nseg 1739 ± 56 293 ± 21 1459 293

particles per pixel [10−3] 27 ± 1 4.5 ± 0.3 22 4.5

mean particle diameter [pix] 5 ± 2 5 ± 2 4 3

image source density [%] - - 27 3.5

mean particle spacing Λ0 [pix] 3.1 7.5 3.4 7.5

mean 2-D displacement Λt[pix] 3.5 ± 2.6 3.4 ± 2.5 2.9 ± 2.4 3.3 ± 2.7

maximum 2-D displacement [pix] 19 17 18.7 16.9

sampling quality rp 0.89 2.21 1.17 2.27

mean trajectory length [frames] 36 ± 32 37 ± 33 12 26

X-range of stereo volume [−1.41, 1.41] [−1.40, 1.41] [−1.40, 1.41] [−1.40, 1.40]

Y-range of stereo volume [−1.26, 1.26] [−1.26, 1.26] [−1.24, 1.24] [−1.23, 1.23]

Z-range of stereo volume [−1.00, 1.00] [−1.00, 1.00] [−1.02, 1.02] [−1.01, 1.00]

total number of 3-D vectors 201584 34042 50707 (A) 21072 (A)

193540 (B) 32987 (B)

wrong correspondences 15% 0.5%

detection efficiency ηdet 84% 100%

tracking efficiency η2d 75% 87%

reconstruction efficiency η3d 34% (A) 60% (A)

96% (B) 97% (B)

because the particles are very close to each other. This is also expressed in a sampling quality rp

of only 0.89, which means that the average particle displacements are larger than the mean particle
distance. Keeping this in mind, the tracking efficiency of 75% has to be considered as very good.
However, as a result of occlusions and unresolved particle overlaps, the recovered trajectories are
interrupted. The mean length of the trajectories drops to about a third of the actual length. As outlined
in section 7.5, the probability of spatial ambiguities in the stereo correspondence search is higher for
shorter trajectories. Hence, the reconstruction efficiency is only 34%. Further, the fraction of wrong
correspondences is high. The latter are introduced by wrong matches of short trajectory segments.

• The images in test case 352 have a source density that is typical for PTV applications. The 3-D PTV
algorithm performs quite well: practically all particles are segmented, 87% of them are tracked in at
least four frames, and 60% of the tracked particles can be reconstructed in 3-D. This corresponds to a
total 3-D vector yield of ≈ 52%. This value is lower than in typical 3-D PTV systems with three or
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more cameras (see table 3.2). But keeping in mind that we use only two cameras, the result is very
satisfactory. Compared to the previous implementation of the algorithm by Engelmann et al. [1999],
the vector yield is increased by at least a factor of two. Note that the ratio of recovered vectors to the
number of possible 3-D vectors (with particle images visible in both image sequences) is 60%. The
lower total yield of 52% (according to definition (8.7)) implies that a certain amount of particles is
visible in only one of the two sequences.

• To find out the main limiting part of the 3-D PTV algorithm, we carry out the following two tests.
In table 8.1 the reconstruction efficiency of the two tests is indicated by (A) and (B). In test (A),
the full 3-D PTV algorithm is applied, including both the 2-D tracking and the 3-D reconstruction.
In test (B), we only compute the 3-D reconstruction from the ground truth 2-D trajectories, i.e. we
do not perform the tracking. A comparison of the resulting reconstruction efficiencies clearly shows
that the limiting factor is the 2-D tracking, especially in test case 351. If the correct 2-D trajectories
are used, a reconstruction efficiency of almost 100% is obtained in both test cases. Hence, the lower
reconstruction efficiencies of the full 3-D PTV are mainly caused by failures of the tracking algorithm.
The latter result in interrupted short trajectory fragments, which cannot be reconstructed in 3-D. In
the present applications, the particle densities are much lower than in test case 351. Hence, no further
attempts have been made to improve the tracking. Some advanced tracking techniques that aim to
achieve high tracking efficiencies at high particle densities have been mentioned in section 3.5.2.

Accuracy of 3-D position and velocity measurements.

The synthetic test sequences also provide a possibility to check the accuracy of the measurements by com-
puting the mean errors between the estimated 3-D positions resp. displacements and the known ground truth.
In these tests, we use the full 3-D PTV algorithm, including tracking and 3-D reconstruction. In test case 351,
we obtain an mean 3-D position error (mean of the Euclidean distance between the estimated position and
the true position, computed for all particles in the sequence) of ∆XY Z = (60.1±27.4) µm. The mean error
of the displacement estimation (difference of two successive particle positions) is ∆V = (10.8 ± 9.7) µm.
In test case 351, the corresponding errors are ∆XY Z = (46.5 ± 14.3) µm and ∆V = (5.4 ± 4.3) µm. The
lower displacement errors show the high degree of correlation in the position errors. The common system-
atic error in the particle positions due to miscalibration cancels out if a difference of two nearby positions is
computed to estimate the velocity, see also section 8.4.

We also estimate the errors in the geometric camera calibration. The 3-D position rms errors computed
in the calibration images are [σX,rms, σY,rms, σZ,rms]

T = [14.3µm, 7.6µm, 22.1µm]T . The mean distance
of the calibration points to their estimated reference planes is 〈D⊥〉 = (7.6 ± 5.2)µm. For the details of
the computation of these estimates, see section 5.4.2. The 3-D errors in the calibration points are lower than
those in the 3-D particle positions. This shows the influence of the determination of the particle positions.
The latter become inaccurate if the intensity distribution of a particle is not symmetric or if particles are only
partly visible due to overlaps.

Note that the calibration data supplied together with the test sequences also takes into account refraction
effects due to the multimedia environment (see section 5.2.3). The latter are not included in our camera
model. Still we obtain a good accuracy, which is comparable to the typical accuracies obtained in other 3-D
PTV implementations (see table 3.2).
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Figure 8.4: Acquisition of real test sequences with known ground truth (of the displacements). An ensemble of
particles is printed on a sheet of paper and moved using two perpendicular translation stages. a Side view. b Front
view.

Noise influence.

We test the influence of image noise on the 3-D accuracy and the total vector yield. A mixture of Gaussian
and Poisson noise is added to the images. The standard deviation of the Gaussian noise is increased from
5 to 30 gray values. The results show an approximately linear increase of the 3-D position errors with the
noise level. The triangulation error (computed as the perpendicular distance between the two projection
rays that should ideally meet in the 3-D point) increases by a factor of two, from 12 µm at zero noise to
25 µm at the maximum noise level. The vector yield is less sensitive to noise. The tracking efficiency stays
approximately constant at 90%, independent of the noise level. The relative decrease of the reconstruction
efficiency is only 15% (from η3d = 60% to η3d = 51%). This shows that the segmentation and tracking
algorithms also perform well for relatively high noise levels. The main effect of the noise is the degraded
3-D accuracy.

8.3 Real test images

8.3.1 Tests using real images with ground truth

Real test sequences with known ground truth are generated using a setup with two perpendicular translation
stages, see figure 8.4. An ensemble of particle images is printed on a sheet of paper. The paper is attached to
a planar metal surface, which is mounted on the translation stages. An endoscopic stereo rig is installed in
front of the surface. This setup allows to record image sequences with particles moving in the (lateral-) X-
direction or (depth-) Z-direction (or a combination of both). The position of the translation stages is known
to an accuracy of 1 µm. The Z-translation stage is also used to acquire several images of a planar grid
target for the geometric camera calibration of the stereo rig. The calibration is carried out as described in
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Table 8.2: Image parameters and performance measures obtained from four representative real pore flow sequences.

test case kmb39 kmb33 kmb19 kmb04

velocity ’slow’ ’slow’ ’medium’ ’fast’

particles per image Nseg 108 161 115 77

particles per pixel [10−3] 4.5 6.7 4.8 3.2

mean particle diameter [pix] 3.6 3.5 4.1 4.7

image source density [%] 5.2 6.9 5.6 4.9

mean particle spacing Λ0 [pix] 7.5 6.1 7.2 8.8

mean 2-D displacement Λt[pix] 0.15 ± 0.13 0.28 ± 0.2 0.5 ± 0.4 2.5 ± 2.1

maximum 2-D displacement [pix] 4.4 6.4 5.6 21.2

sampling quality rp 50 22 14 3.5

mean trajectory length [frames] 137 80 51 17

total number of 3-D vectors 105327 148562 113069 66147

tracking efficiency η2d 96% 97% 97% 89%

reconstruction efficiency η3d 52% 53% 52% 50%

section 5.4.2. While the true absolute 3-D coordinates still are not available, the relative 3-D displacements
of the particles within these sequences are known to a high precision and can be used as ground truth.

Accuracy of 3-D displacement measurement.

Both camera calibration and 3-D PTV are performed on the test sequences using the same algorithms and
parameter settings as in the flow measurements. These tests mainly serve as a check on the accuracy of the
velocity measurements. The following results have been obtained.

We track the motion of a set of ten particles in two sequences. In the first sequence, the true displacement
between two frames is 0.25 mm in the X-direction, Dtrue,1 = [∆X1, ∆Y1, ∆Z1]

T = [0.25, 0, 0]T . In the
second sequence, the true displacement is 0.25 mm in the Z-direction, Dtrue,2 = [∆X2, ∆Y2, ∆Z2]

T =

[0, 0, 0.25]T . Since the same displacements should be measured for all particles, we compute the mean
and standard deviation of the displacements over all reconstructed 3-D trajectories. The following mean
displacement vectors have been obtained: Dexp,1 = [0.243 ± 0.009, 0.007 ± 0.005, 0.001 ± 0.004]T for
the first sequence and Dexp,2 = [0.000 ± 0.002,−0.001 ± 0.001, 0.270 ± 0.005]T for the second sequence
(all values in mm). The results show that the statistical velocity error in these tests is well below 5% of the
mean velocity. The systematic error in the X-direction is also less than 5%, whereas there is a bias of about
8% in the Z-direction. The latter is probably caused by the lower accuracy of the stereo rig in the Z-direction
(a stereo rig with a convergence angle of 60◦ has been used).

8.3.2 Tests using real flow sequences

Performance tests on synthetic images provide valuable information because the correct results are known
and can be used for comparison. However, there is a number of additional effects (camera noise, properties
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of the optical system, illumination inhomogeneities, etc.) that influence the performance of the same algo-
rithm on real images. Hence, tests should also be carried out on real flow sequences. While obviously a
comparison with ground truth is not possible in this case, the behaviour of the algorithm and its dependence
on the image parameters can be studied.

We choose four representative pore flow sequences from the measurements described in chapter 10. All
sequences have been acquired by the Kocher-setup (CMOS cameras, 400 Hz frame rate, see section 9.3).
The image parameters and performance measures are compiled in table 8.2. The endoscopic images typ-
ically contain between 100 and 150 particles. This corresponds to an image source density of about five
percent, which is rather low.

The typical particle displacements are in the range from below one pixel for very slow flows to maximum
displacements of more than 20 pixels for fast flows. On average, the sampling quality is much larger than
one, which indicates that reasonable tracking results can be obtained without the need for sophisticated
global optimization strategies to resolve temporal ambiguities. Indeed, the tracking efficiency almost reaches
100%, except for the case kmb04, which corresponds to fast turbulent pore flow induced by large surface
waves in the open-channel flow.

The reconstruction efficiency is around 50% for all test cases. The main reason for the limited recon-
struction efficiency is not a failure of the 3-D reconstruction due to unresolved stereo ambiguities. Most of
the trajectories that cannot be triangulated do not have a correspondence partner of sufficient length at all.
There are several reasons that might be responsible for this. First, particles may be visible in only one image
sequence due to a shortcoming of the experimental setup. Second, particles may not be tracked long enough
in one of the two sequences due to unresolved occlusions or segmentation failures. Third, two actually dif-
ferent trajectories may be spuriously linked if they cross each other. Such trajectories are filtered out in the
3-D reconstruction, since they do not have a correspondence partner. Further investigations are necessary to
clarify this issue.

8.4 Velocity accuracy and dynamic range

Particle velocities are computed by the second order central difference scheme (7.26). Gaussian error prop-
agation yields the following conservative estimates of the absolute and relative errors of one velocity com-
ponent V :

σV =
1√
2

σX

∆t
,

σV

V
=

√
2

σX

∆X
, (8.8)

where σX is the error in a single particle coordinate X and ∆X = Xi+1−Xi−1. We assume that the error in
the frame period ∆t of the cameras can be neglected. Equation (8.8) shows, that the relative velocity error
decreases with increasing particle displacements. The velocity resolution is limited by the triangulation
accuracy. Due to the high frame rates of the setups Neckar, Höllbach and Kocher, the resulting velocity
errors are of the order of magnitude of one to three mm/s (see rows A and B in table 8.3), which would
limit the minimum resolvable velocities. However, since we compute velocities by the difference of two
particle positions that are close to each other, we can take advantage of the correlation between the position
errors. As shown e.g. by Förstner [1996], systematic errors due to miscalibration yield high values of
the correlation coefficient ρ. The common calibration bias will cancel out if a difference of two closely
spaced positions is computed. The standard deviation of the difference of correlated measurements (as
given by σV in (8.8)) has to be multiplied by a factor

√
1 − ρ, where ρ ∈ [0, 1] is the correlation between the

174



8.4 Velocity accuracy and dynamic range 175

Table 8.3: Compilation of different estimations of the 3-D velocity accuracy. Case A: Estimation using the rms-error
of the Z-component of 3-D positions as a measure of the 3-D position error. Case B: Estimation using the mean
distance of calibration points to their reference planes as a measure of the 3-D position error. Case C: Estimation
taking into account the correlation of the errors. All position errors have been obtained from the analysis of the
calibration accuracy in section 5.4. For further discussion, see the text.

Neckar Jagst Höllbach,

Kocher

frame period ∆t [s] 0.0077 0.02 0.0025

A σX = (∆Z)rms [µm] 31 12 10

σV [mm/s] 2.8 0.4 2.8

B σX = 〈D⊥〉 [µm] 27 7 5

σV [mm/s], ρ = 0 2.5 0.25 1.4

C σX = 〈D⊥〉 [µm] 27 7 5

σV [mm/s], ρ = 0.95 0.55 0.06 0.31

Vmin,exp [mm/s] ≈ 1 ≈ 0.3 ≈ 0.3

Vmax,exp [mm/s] ≈ 1000 ≈ 30 ≈ 150

dynamic range DRexp ≈ 1000 ≈ 100 ≈ 500

measurements. The correlation has been estimated by computing the variances and covariances of the errors
of calibration points of two successive calibration planes separated by 0.2 mm along the Z-direction. The
known positions of the calibration points have been used as ground truth (see also section 5.4.2). Correlation
values of ρ = 90% − 95% have been found. Hence, the actual velocity errors are expected to be a factor
three to five lower (row C in table 8.3). Similar findings are mentioned by other authors (a factor of two
by Virant [1996] and a factor of four by Stüer [1999]). The tests on synthetic images in section 8.2.2 have
shown that the 3-D velocity error is almost a factor ten lower than the 3-D position error.

A further check of the velocity accuracy is carried out using a real flow sequence where the flow velocity
is practically zero. This sequence has been acquired in the test flume at the BAW. Both the water level and
the flow discharge were practically zero, only the sand and gravel layer were submerged in water. Hence,
the velocities obtained from this sequence should be close to zero. The mean and standard deviation of the
absolute 3-D velocity has been computed for the Kocher and Höllbach measurements, with a resulting mean
velocity of Vmin,exp = (0.3 ± 0.2) mm/s. This is in good agreement with the accuracy obtained from the
above considerations on error propagation.

The maximum velocities that can be measured are limited by the maximum particle image displace-
ments that can be tracked by the 2-D PTV algorithm. The latter depend on the particle density. The main
difficulty is the trajectory initialization of fast particles. Initialization of fast particles can only be achieved
by the multigrid PIV method, with maximum displacements of about 20 pixels per frame. Note that larger
displacements can also be tracked if the corresponding trajectory is already initialized, so that the displace-
ment in the next frame can be predicted by the Kalman filter. The manual inspection of some of the tracking
results from the measurements described in chapter 10 has shown that displacements of up to 50 pixels per
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frame have been correctly tracked. However, to be on the safe side, we use the maximum displacement
(20 pixels per frame) of the PIV method to estimate the maximum detectable velocity of the 3-D PTV. The
resulting velocity ranges of the different setups are shown in table 8.3.

The dynamic range DR of the velocity measurement in image space is approximately 1 : 1000. This
value results from the assumed maximum possible displacement of 20 pixels and the minimum possible
displacement. The latter is given by the subpixel accuracy of the particle position determination, which has
been shown to be ≈ 0.1 pixels. Assuming a high correlation of the errors of two closely spaced successive
particle positions in the image plane (see the discussion above), the resulting accuracy of the displacement
is ≈ 0.02 pixels, which yields the dynamic range of 1 : 1000. However, some uncertainties are involved
in translating this dynamic range in image space to the 3-D object space (calibration errors, varying lateral
magnification throughout the depth of the observation volume). Hence, we estimate the dynamic range of
the 3-D velocity measurement from the minimum and maximum values obtained in the experiments. The
obtained values DRexp are also shown in table 8.3. Except for the Neckar setup, they are lower than the DR

in image space, which can basically be traced back to the lower image resolution and accuracy of endoscopic
imaging.

8.5 Summary

A performance analysis of the 3-D PTV algorithm in terms of its correctness, accuracy and efficiency has
been given. The evaluation has been carried out on synthetic images of a jet shear flow (with known ground
truth), on real test image sequences with precisely known 3-D displacements and on real flow sequences
obtained in the measurements presented in chapter 10. The results are summarized as follows:

• The two main image parameters that determine the performance are the particle density resp. image
source density and the sampling quality. The best results are achieved for particle densities below
0.01 particles per pixel and sampling qualities larger than one. Most of the flow sequences acquired
in the experiments comply with these values.

• A total 3-D vector yield of 60% is achieved on the synthetic data. The vector yield on real images
is typically 50%, which is a factor two larger than in previous versions of the algorithm. The main
limitation is the 2-D particle-tracking (problems related to occlusions and crossing trajectories) and
particles that are visible in only one image sequence due to shortcomings of the illumination setup.

• The tests on the synthetic images have shown that the 3-D reconstruction performs very well even
for high particle densities. Reconstruction efficiencies of over 95% have been obtained. However,
this is only possible if the correct 2-D trajectories are precisely known, without interruptions due to
occlusions and overlaps caused by particles crossing each other.

• In the synthetic test case 352 (corresponding to reasonable sampling quality and particle density for
PTV), 0.5% of the reconstructed 3-D trajectories were wrong. In this test, the minimum trajectory
length has been set to four. The only way to further reduce the probability of wrong correspondences
is to increase the minimum required trajectory length.

• For the typical flow conditions investigated in chapter 10 (pore flow velocity larger than 5 mm/s),
the relative velocity error is well below 10%.
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Chapter 9

Experimental setup

The following two chapters constitute the third and final part of the thesis, which is devoted to the flow
measurements carried out at the BAW in Karlsruhe. This chapter provides a detailed description of the
experimental setup that has been designed and implemented. The next chapter describes the extensive
systematic measurements that have been performed using the new setup. The obtained results provide new
insight into the flow structures within and above a permeable wall.

We start with a description of the experimental flume at the BAW Karlsruhe, where the measurements
have been performed (section 9.1). The experimental setup for flow measurement consists of three parts. A
separate section is devoted to each part: measurement of sand motion (section 9.2), pore flow (section 9.3)
and free surface flow (section 9.4). In section 9.5 we take a brief look at the pressure sensors that have
been developed and applied by the Institute for Hydromechanics of Karlsruhe University. In most of the
experiments, pressure and flow measurements have been carried out simultaneously. Some aspects of the
synchronization and the realtime data storage are discussed in section 9.6. Finally, a summary of the exper-
imental setup is given in section 9.7.

9.1 Experimental flume

All experiments have been carried out in an experimental flume located at the Federal Waterways Engineer-
ing and Research Institute (Bundesanstalt für Wasserbau, BAW) in Karlsruhe. All important parameters of
this facility are summarized in section 9.1.1. Section 9.1.2 shows the organization of the observation area
and introduces the particular subsystems of the experimental setup.

9.1.1 Flume parameters

A sketch of the experimental facility is shown in figure 9.1a. The flume is L = 40 m long and B = 0.9 m

wide. In the flume, a sand layer of height HS = 0.5 m is covered by a permeable gravel layer of height
HP = 0.04−0.2 m. The sediment layers start approximately 10 m downstream of the water inlet and have a
length of 30 m. The mean grain diameter of the gravel is dmD = 10.2 mm, with a degree of non-uniformity
of Cc = d60/d10 = 1.25, where d60 is the mean diameter of the grains at 60% sieve fraction. Hence, the
gravel material is rather uniform, as compared to natural river beds. Further parameters of the gravel and
the sand, as reported by Detert et al. [2004b], are compiled in Table 9.1.
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a

b c

Figure 9.1: a Sketch of the experimental flume at the BAW Karlsruhe (from [Detert et al., 2004b]). All distances are
given in m. The sketch is not to scale. b View along the experimental flume, downstream of the observation area. c
Movable weir at the flume outlet (top) and wave generator (bottom).

The flume is connected to the central water supply system for all the experimental models at the BAW.
Water is delivered from large reservoir tanks located on the roof of a dedicated building, at a maximum
flow rate of 0.275 m3/s. At the water inlet of the flume, the flow discharge is measured by an inductive
flow-meter. Wave dampers are used to reduce fluctuations of the water level upstream of the observation
area. The water level in the flume is adjusted by a movable weir at the water outlet, see figure 9.1b. The
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Table 9.1: Physical parameters of the experimental flume: dimensions, fluid properties and hyraulic parameters,
parameters of the sediment layers.

parameter symbol value

flume length L 40 m

flume width B 0.9 m

height of sand layer HS 0.5 m

height of gravel layer HP 0.04 m, 0.1 m, 0.2 m

gravitational acceleration g 10 m/s2

density of water ρ 1000 kg/m3

specific weight of water γw = gρ 104 N/m3

dynamic viscosity µ 10−3 Ns/m2

kinematic viscosity ν = µ/ρ 10−6 m2/s

maximum flow discharge Qmax 0.275 m3/s

water level h 0.1 − 0.4 m

maximum flow velocity vmax ≈ 1 m/s

mean grain diameter of gravel dmD 10.2 mm

mean grain diameter of sand ds 1 mm

absolute density of gravel ρabs 2.464 g/cm3

bulk density of gravel layer ρbulk 1.538 g/cm3

gravel porosity (void fraction) φ = 1 − ρbulk/ρabs 0.38

solid fraction of gravel ρbulk/ρabs 0.62

hydraulic conductivity of gravel kf ≈ 0.9 m/s

geometric permeability of gravel K = (µ/γw)kf ≈ 10−7 m2

critical shear stress of gravel τ0c 8.8 N/m2

water level is controlled by an ultrasonic gauge and two mechanical pointers upstream and downstream of
the observation area. At the outlet of the flume, the water is collected in a large tank in the basement of the
building before it is pumped back to the reservoirs. Additional monitoring of the mean velocity profiles in
the channel is carried out using a 1D Acoustic Doppler Current Profiler (ADCP), see [Detert et al., 2005].
Steady flow conditions for each experiment are provided by controlling the gate valve at the inlet and the
movable weir at the outlet automatically.

To enable the investigation of unsteady flow conditions, the flume is equipped with a wave generator
9.25 m downstream of the observation area (figure 9.1c). Waves are created by periodically dipping a
displacement body into the water. In this way, surface waves with amplitudes of up to 15 cm and periods
between one and three seconds can be generated. During the wave experiments, the water level is recorded
by an ultrasonic wave gauge.

At the observation area, optical access to the flume is given by glass windows inserted into the channel
walls on a length of 4 m. Further it is possible to access the obervation area from a pit below the flume to
insert experimental equipment through the bottom of the flume.
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a
b

Figure 9.2: Streamwise view (a ) and sideview (b ) of the obervation area (from [Detert et al., 2004b]). The experi-
mental setup consists of several subsystems: 3-D PTV to observe the free surface flow near the gravel bed (indicated
by the cameras at the flume walls), 3-D PTV to observe the pore flow in three ’artifical’ gravel pores, observation of the
sand-gravel-interface by three rigid endoscopes (’periscopes’) and several piezometric pressure sensors at different
locations.

Table 9.2: Positions of the setups for image acquisition. The coordinates given in the second and third columns
indicate the center of the observation volume. The spanwise position of all setups is at the centerline of the flume
(z = 0). Max(∆x/y/z) is the maximum inner diameter of the artificial pores resp. the maximum extension of the
observation volume in the corresponding directions.

setup x y Max(∆x) Max(∆y) Max(∆z)

[cm] [cm] [mm] [mm] [mm]

Jagst -18 -18/-6.5/-3 13 13 18

Kocher 1.5 -1.5/-5.5/-2 13 11 10

Höllbach 26 -1 12 11 12

Neckar 46 2.5 100 50 100

26 2.5 100 50 100

Elbe-u 80 -10/-4 15 15 1

Elbe-m 130 -10/-4 15 15 1

Elbe-d 180 -10/-4 15 15 1

9.1.2 Observation area

The observation area is located in the middle of the flume. Influences of the water inlet and outlet are
considered negligible, and a fully developed turbulent wall boundary layer is assumed in the observation
area. Different experimental instrumentation is installed, compare the sketches in figure 9.2. The data
acquisition is carried out simultaneously by all these subsystems, which are described in more detail in
the following sections. The synchronization is explained in section 9.6. For an easy identification of the
subsystems, we refer to them by the name of the corresponding workstation that has been used for the data
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acquisition1. In particular, the setup consists of the following parts:

• a stereo camera setup for the investigation of the free surface flow directly above the gravel layer
(’Neckar’),

• three endoscopic stereo setups to record the flow fields inside specially prepared ’artificial’ gravel
pores within the gravel layer: ’Jagst’ (upstream part of the observation area), ’Kocher’ (middle part
of the observation area) and ’Höllbach’ (downstream part of the observation area),

• three rigid endoscopes inserted from below the channel to observe the sand-gravel-interface: ’Elbe-d’
(downstream), ’Elbe-m’ (middle) and ’Elbe-u’ (upstream),

• up to ten pressure sensors2 at arbitrary locations within the gravel layer (three of the sensors are
attached to the artificial gravel pores used for the flow measurement).

To indicate the locations of the different subsystems in the flume and relative to each other, we define
the following right-handed coordinate system:

• x: coordinate in streamwise direction, increasing in flow direction, origin 1.5 cm upstream of the
middle artificial pore (’Kocher’),

• y: vertical coordinate, origin at the top of the gravel layer,

• z: spanwise coordinate, origin at the centerline of the flume, increasing to the right when viewing
downstream.

The locations of the observation points, defined in this coordinate system, are compiled in table 9.2. In all
experiments, the spanwise position of the artificial pores is at the centerline of the flume (z = 0). The table
also shows the size of each obervation volume. Note that the pore volume of the artificial pores extends
approximately 10 mm in each direction. The stereoscopic observation volume of the endoscopes, however,
is smaller, see figure 9.7. The different y-values in table 9.2 correspond to the three different heights of the
gravel layer that have been investigated.

9.2 Measurement of sand motion

Subsoil instabilities may occur at the interface between the gravel filter and the base layer of fine sand,
depending on the hydromechanic load conditions. This section presents the experimental setup used to
detect and quantify the motion of sand grains within a 2-D cross section perpendicular to the horizontal
interface layer. Both the experimental approach and the image processing techniques (see section 3.4) have
been successfully applied before in a number of projects to study hydromechanic motion in submerged
subsoil [Spies et al., 1999, 2000; Köhler and Koenders, 2003]. The setup presented here is an improved
version of the setup used in these previous studies. The improved version provides a larger field of view and
a better illumination. It has also been used in additional experiments in a wave-experiment test pit at the
BAW [Jehle et al., 2004; Klar et al., in preparation].

1All the names are actually names of German rivers or streams, which are however not directly related to the measurements
performed in this thesis.

2The pressure measurements are carried out by the Institute for Hydromechanics of the University of Karlsruhe (e.g. [Detert
et al., 2004a, 2005]) and are not the subject of this thesis.
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a b

Figure 9.3: a Sketch of a rigid endoscope. The observation direction is at right angles to the endoscope axis, hence the
term ’periscope’ is also used. b Endoscope protection head with illumination fibers in the corners of the observation
window.

9.2.1 Rigid endoscopes (’periscopes’)

Sediment movement is detected by three rigid endoscopes (figure 9.3), inserted into the flume from below
(figure 9.4). They are 110 cm long and have a diameter of 1 cm. The viewing direction of the endoscopes is
perpendicular to the endoscope axis, hence, they are also referred to as ’periscopes’. Within the periscope,
the image is transmitted through a rod lens system which consists of several tens of lens components.
With an aperture angle of 90 degrees and a viewing distance of approximately 7 mm, a circular area of
about 15 mm in diameter can be observed. The wide-angle lens introduces a significant amount of radial
distortion to the images, see section 5.4.1. CCD cameras attached to the periscopes enable the recording
of image sequences of the sand-gravel boundary, which can be analyzed by the optical flow techniques
described in section 3.4. The result is a time-resolved 2-D/2-C vector field within the observation plane.

The requirements of the endoscopic imaging are the following:

• The observation area should be as large as possible.

• A working distance of 7 mm has to be kept.

• Sufficient and homogeneous illumination should be provided.

• The sensitive optical setup has to be protected in the rough environment of the flume (sand, gravel,
water).

In order to meet these demands, special protection heads with a glass window have been designed
(figure 9.3b, figure 9.4b). To prevent the sediment from blocking the endoscope view and to keep the

184



9.2 Measurement of sand motion 185

a b

c d

Figure 9.4: a Three rigid endoscopes used to observe the sand-gravel boundary (’periscopes’). The periscopes are
110 cm long and have a diameter of 1 cm. b One of the periscopes inserted into the sand layer from below the
flume. For protection purposes, the periscope is covered by a special illumination head and a waterproof steel tube.
The direction of observation is at right angles to the periscope axis. c Top view of the observation area during the
installation of the three periscopes. d View from below the flume. A CCD camera and an illumination fiber is attached
to each periscope.

working distance of 7 mm, the endoscopes are inserted into these protection heads. Further protection of
the endoscopes is achieved by covering them with waterproof steel tubes.

9.2.2 Illumination and flow visualization

The illumination system has been integrated into the protection heads. The light from an external halogen
cold light source is coupled to the endoscope heads via a glass fiber light conductor, which separates into
four fibers within the head. The sediment is illuminated by these four fibers at the corners of the glass
window, see figure 9.3b. In this way, a small angle of incidence of the light is achieved, avoiding specular
reflections on the glass window, which have drastically reduced the image quality in previous applications
[Spies et al., 1999]. The new setup produces a relatively homogeneous illumination without any over- or
underexposed regions.
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No tracer particles are added to the flow at the sand-gravel-boundary. Hence, the water flow is not visible
in the image sequences. Only motion of sand or gravel grains or motion of gas bubbles in the subsoil will
be detected.

9.2.3 Image acquisition

Standard CCD-cameras (SONY XC-73CE) have been used for image acquisition. The analog images
delivered by the cameras are digitized by PCI-bus-framegrabbers. Two of the cameras are connected to an
ELTEC PCEye4 stereo framegrabber with two 8 bit input channels, which resides in a standard desktop PC.
The third camera is connected to one of the color channels of an ELTEC PCEye2plus color framegrabber.
The two remaining channels of the latter are used to acquire the images of one of the artifical gravel pores.

Image sequences are acquired at a resolution of 512 × 512 pixels and a frame rate of 25 Hz (full
frames). The data thruput is approximately 20 MB/s for all three periscopes. The data can be written to a
RAID system in real-time during the acquisition. The radiometric properties of the cameras are analyzed in
section 4.2, the geometric calibration is discussed in section 5.4.1.

All image acquisition systems are running on standard desktop PCs under WindowsNT or Windows2000.

9.3 Measurement of pore flow

Flow measurements inside three single pores of the gravel layer are carried out using three miniaturized
endoscope stereo setups. The basic principle of these setups is to acquire stereoscopic image sequences
of the flow field inside the pore volume by viewing it from two different directions. Towards this end, two
flexible fiberoptic endoscopes of 2.4 mm diameter (section 9.3.1) are attached to an adapted artificial gravel
pore made of grains fixed to each other (section 9.3.2). The artificial pores are installed in the gravel layer,
illuminated by a further fiber bundle connected to a cold light source (section 9.3.3), and image sequences
are acquired and stored in real-time (section 9.3.4).

Two of the pore flow setups (’Höllbach’ and ’Kocher’) have been re-designed using superior equipment,
on the basis of past experience by Stybalkowski [2001] and Klar et al. [2002]. The third setup (’Jagst’) is a
replication of the setup applied by the latter, using the same hardware.

9.3.1 Flexible endoscopes

Optical access to the flow within the gravel layer is given by flexible fiberoptic endoscopes3, see figure 9.5.
Endoscopes of this type are typically used for quality assurance in technical applications or for medical
examinations. The image is transmitted by 30000 glass fibers which are arranged in a fixed, regular array
(a so-called coherent fiber bundle). Inside every fiber, the light propagates forward by total reflection at the
fiber cladding. The fibers have a diameter of ≈ 10 µm, which is very close to the pixel size of the cameras
(see section 9.3.4). At the endoscope entrance, an objective lens system produces an image of the observed
object and projects it onto one end of the fiber bundle. At the endoscope exit at the other end of the fiber
bundle, a zoom lens system projects the transmitted image onto the sensor of a camera. The zoom is used
to adjust the number of sensor pixels covered by the image to the resolution of the fiber bundle.

3manufactured by the Eltrotec Sensor GmbH, http://www.eltrotec.com
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a b

c d

Figure 9.5: a Flexible fiberoptic endoscopes used to acquire image sequences from within the gravel layer. The
endoscopes are 80 cm long and have a diameter of 2.4 mm. The image is transmitted through a regular array of
30000 single fibers. b Enlarged view of the endoscope tips with the objective lenses (bottom of image) and the rear
ends of the endoscopes with the zoom optics (top of image). c Halogen cold light source (color temperature 3200 K).
d Short arc lamp (color temperature 5600 K).

9.3.2 Artificial gravel pores

The core of the experimental setup for flow measurement within the gravel layer is a so-called artificial
gravel pore, made of pebbles fixed to each other, see figure 9.6. The purpose of the artificial pore is to
hold the endoscopes and the illumination fiber at a fixed relative position and to keep surrounding grains in
the gravel layer from blocking the endoscopes’ views. The endoscopes are fixed in a stereo rig consisting
of two PVC spheres with drilled holes holding the endoscopes at a fixed position relative to each other.
This stereo rig in turn is attached to the artificial pore. Before and after the flow measurements, it can be
taken off for calibration purposes without changing the relative position of the endoscopes. The observation
area is defined by the interior volume of the artificial pore. The average linear dimension of this volume is
approximately 1 cm, see table 9.2. It is much smaller than the volume of the pore used by Stybalkowski
[2001] and Klar et al. [2002] (which is ≈ 8 cm3, see figure 7.2a), but still larger than the natural pore
spaces within the gravel layer. Further size reduction is not possible without major modifications of the
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Figure 9.6: a Sketch of an artificial gravel pore. b Front view of an artificial gravel pore. The endoscope stereo rig
has been removed. c Endoscope stereo rig. To perform velocity measurements in the gravel layer, this stereo rig is
attached to the artificial pore, viewing the pore volume inside. d Artificial pore with illumination fiber.

hardware (smaller endoscopes and illumination fibers, higher frame rates). Thus, an influence of the larger
pore volume has to be considered in the analysis of the measurement results.

The size reduction of the artificial pores was possible due to a change of the convergence angle of the
stereoscopic geometry from α = 60◦ (as used by Stybalkowski [2001] and Klar et al. [2002]) to α = 90◦.
Figure 9.7 shows that the larger convergence angle reduces the size of the stereo volume and moves it closer
to the objective lenses of the endoscopes. Since tracer particles may cover such a small volume very rapidly,
cameras with high frame rates are necessary, see section 9.3.4. Otherwise, the displacements of the particle
images between two successive frames become too large. Further, the depth of field of the endoscopes
has to start very close to the objective lenses. The endoscopes shown in figure 9.5 have been specially
adapted to meet this demand. The depth of field of the previous endoscopes used by Klar et al. [2002] starts
approximately 5 mm in front of the objective lenses, which is one of the reasons why a larger pore volume
with a smaller convergence angle was necessary.

To perform flow measurements, the three artificial pores are embedded in the gravel layer at different
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α = 90˚,
z0 = 1.5 mm,
z1 = 6.5 mm,
∆x = 4 mm @ z = 2.25 mm

α = 60˚,
z0 = 2.5 mm,
z1 = 18 mm,
∆x = 4.75 mm @ z = 4.5 mm

x

z

Figure 9.7: Top-view of a horizontal cross section of the stereoscopic observation volumes for two different conver-
gence angles: α = 90◦. (left) and α = 60◦ (right). In both cases, the stereo baseline has a length of 6 mm and the
angle of view of the endoscopes (in water) is θ = 40◦. z0 is the point of the observation volume that is closest to the
endoscopes, z1 is the farthest point (along the axis of symmetry of the stereo rig). ∆x is the maximum extension of the
stereo volume in the x-direction perpendicular to the axis of symmetry. The geometry with α = 90◦ is implemented in
the ’Kocher’- and ’Höllbach’-setups, in the ’Jagst’-setup the convergence angle is α = 60◦.

positions, see figure 9.8. A grid of steel rods fixed to the flume enables the precise determination of the pore
positions. The pressure sensors are also fixed to this grid. A solution of tracer particles is added locally
to the flow upstream of the pores, and particle image sequences of the two different endoscope views are
recorded simultaneously.

9.3.3 Illumination and flow visualization

Illumination of the pore volume is provided by an optical fiber-bundle guiding the light from a cold light
source into the pore. Achieving a sufficient illumination for endoscopic flow measurements is difficult for
two reasons:

1. Intensity losses due to the transmission of the images through the fibers reduce the brightness of the
images.

2. Due to the high frame rates of the cameras (400 Hz), the exposure time is only 1 ms.

Janßen [2000] implemented the first prototype of an artificial gravel pore for stereo imaging. He used a
halogen cold light source and standard CCD cameras acquiring full frames at 25 Hz. Hence, the exposure
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a b

c d

Figure 9.8: a A grid of steel rods is fixed in the flume. All artificial pores and pressure sensors are attached to this
grid, so that the relative position of the measurement equipment is exactly known. b Top view of an artificial pore
during installation in the flume. The pores are mounted upside down, so that the illumination fiber is laid in the sand
layer and enters the pore volume from below. c Installation of the three artificial pores in the gravel layer. d Top view
of one of the pores. For protection purposes, the endoscopes are covered by flexible tubes. Plastic beads of 1 cm

diameter are threaded along these tubes to make the geometry more similar to gravel.

time was much higher. Nevertheless, he reports severe illumination problems. Due to the very low signal-
to-noise ratio in his images, he was only able to apply a tracking algorithm after a computationally very
intensive denoising procedure (anisotropic diffusion [Spies and Scharr, 2001]). Klar et al. [2002] used the
same halogen cold light source to illuminate the pore volume. To achieve a higher signal-to-noise ratio and
avoid the denoising, they used an additional illumination fiber (see figure 7.2), i.e. the pore volume was
illuminated by two fibers, aligned with the two optical axes of the endoscopes. Since in the experiments
carried out in this work, three artifical pores are used simultaneously, the complexity of the experimental
setup had to be reduced as far as possible. Attaching two illumination fibers to each pore was not feasible
due to spatial limitations in the measurement area and the very laborious preparation of the experiments.
Thus, a more powerful illumination setup has been designed4.

4manufactured by the ViSiTool GmbH, http://www.visitool.de
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Improvements have been achieved in two ways. First, the active diameter of the illumination fibers
has been increased, without increasing the outer diameter of the bundle. This was possible by applying a
different protection coating. Second, the halogen light source has been replaced by a short arc lamp with
an elliptical reflector. The color temperature of the short arc lamp is ≈ 5600 K, which is almost twice as
large as that of the halogen lamp (≈ 3200 K), see figure 9.5c,d. As a consequence, the maximum emission
of the halogen lamp is at λ ≈ 900 nm, whereas that of the short arc lamp is at ≈ 500 nm, which is much
closer to the maximum spectral response of the CMOS sensors at ≈ 600 nm [Photonfocus, 2003].

The flow is visualized by adding a solution of tracer particles to the pore flow upstream of each artificial
pore. Hence, the flow was only seeded locally. With the local seeding, mixing of the highly concentrated
tracer suspension with the water in the flume obviously starts not before the suspension leaves the supply
tube some grain diameters upstream of the artificial pore. Additional stirring is not possible, since the
tracer injection has to be done without significantly disturbing the pore flow. The only mixing mechanisms
are those of the pore flow itself, which depend on the flow conditions and the local pore geometry of the
gravel layer. Therefore it was difficult to achieve a homogeneous tracer density in some of the experiments.
However, it was not possible to seed the whole water volume to achieve a homogeneous distribution of
tracer particles because of its very large size and the connection of several different experiments to the same
water supply.

Concerning the tracer particles, there are two basic requirements. The first is that they should closely
follow the fluid flow, since it is the particles’ velocity which is actually measured and assumed to be equal
to the fluid velocity. Thus, the density of the particles should be as close as possible to the density of the
fluid. The second requirement is that the particles should have a large light scattering cross section in order
to get a sufficient image contrast. The two requirements are conflicting, since the first favours small particles
while the second favours larger ones. The tracer particles used to visualize the pore flow are polystyrene
particles (Optimage), with a mean diameter of 30 µm ± 20%, a density of 1.020 g/cm3, and a refraction
index of 1.602. They have been specially designed for the use as PIV tracers and used in many previous
studies. For more information on the particles, e.g. an investigation of the scattering cross section, see [Leue
et al., 1996; Hering, 1996; Garbe, 1998; Engelmann, 2000]. The theory of light scattering at small particles
is developed in [van de Hulst, 1981], and an analysis of the motion of small particles in a turbulent flow field
can be found in [Hinze, 1975].

9.3.4 Image acquisition

As mentioned in section 9.3.2, high frame rates are necessary to keep the displacements of particle im-
ages between two successive frames within reasonable limits. Hence, two of the three artificial pores
(’Kocher’ and ’Höllbach’) are equipped with digital high-speed Megapixel-CMOS-cameras (Photonfo-
cus MV-D1024-28). These cameras were among the first of this type that were commercially available.
The new CMOS sensor technology has several advantages over the more conventional CCD technology,
e.g. blooming resistance, adjustable characteristics, selectable read-out windows (Region Of Interest, ROI),
global shutter permitting high-speed applications and low energy consumption at high data rates. The ver-
satility of the MV-D1024-28 allows for the optimization of the camera settings for a given image processing
application by the user. The camera settings are stored in an EEPROM and are loaded automatically at
bootup. All parameters can be set and stored in the EEPROM by using a command line tool [Photonfocus,
2003].
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a b

Figure 9.9: a Installation of the three stereo camera setups for the artificial pores at the flume. b The endoscopes are
attached to the cameras and inserted into the flume wall. To protect the cameras from leaking water, they are covered
by water-proof cases.

The selection of an arbitrarily sized ROI is of particular importance for the present application. Since
only a ROI of size 184× 184 pixels (which approximately corresponds to the resolution of the fiber bundles
in the endoscopes) is read out, it is possible to increase the frame rate to 400 Hz. It is only this high frame
rate that makes endoscopic particle tracking feasible at high Reynolds numbers in the open-channel flow.

The MV-D1024-28 camera provides several possibilities for amplifying the video signal on the sensor
before A/D conversion and thus increasing the sensitivity of the camera. For applications having short
exposure times and low illumination intensity (like the present one), the CMOS sensor can be operated
in skim mode, in which a nonlinear amplification, similar to a gamma correction, occurs in the pixel so
that small signals are amplified significantly more than large signals. Preceding tests have shown that this
mode yields particle images that can be segmented much easier and much more reliably than those acquired
without the skim mode. Hence, the skim mode has been used in the measurements. The disadvantage of this
mode is the nonlinearity, which deteriorates the subpixel-accurate determination of the particle positions for
asymmetric gray value distributions. However, priority has been given to a robust and reliable segmentation.
A further effect related to the skim mode is image lag in areas of high contrast, resulting in smearing of the
image. In the case of particle sequences, the image lag introduces motion blur, i.e. a blurring of the particle
images along their direction of motion. Motion blur also makes the exact determination of the particle
position more difficult. On the other hand, it introduces a spatial overlap of successive images of fast
particles, which can be used to guide the tracking, see section 7.4.

Among the many benefits of the CMOS technology, there is also one major drawback: CMOS cam-
eras typically show a much larger fixed pattern noise than CCD cameras. A detailed investigation of the
radiometric properties and the noise structure of the CMOS cameras is carried out in section 4.1.

The CMOS cameras have a digital output and are connected to Silicon Software microenable high speed
framegrabbers via the digital CameraLink interface. The framegrabbers create the timing signals to achieve
a pixel-synchronous acquisition of both cameras.

The third artificial pore (’Jagst’) is working with standard CCD cameras (Sony XC-73CE, see sec-
tion 9.2.3) running at 25 Hz. To increase the frame rate to 50 Hz, the interlaced images are separated into
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the even and odd fields and the missing lines are interpolated. The separation into the image fields also
reduces blur of fast moving objects due to the time delay between the acquisition of even and odd fields.
On the other hand, it deteriorates the vertical resolution due to the necessary interpolation. However, in the
present application, the resolution is limited by the number of fibers in the endoscope (≈ 10000), which is
much smaller than the number of pixels on the sensor, that are covered by the endoscope image (≈ 200000).
No zoom optics were available in the Jagst-setup to reduce the image size on the sensor. Hence, the images
in this setup are oversampled and therefore reduced to the first level of a Gaussian image pyramid before
processing, see section 7.3.1. Due to the low frame rate of 50 Hz, the Jagst-setup can only be used in the
lowermost position within the gravel layer, where the flow velocities are expected to be lowest.

The image data of the three setups are written to three RAID arrays (RAID level 0, providing the fastest
access rates) in real-time during the acquisition, see section 9.6. Thus, the duration of the sequence acquisi-
tion is only limited by the RAID capacity. For a single measurement, a sequence duration of 60 s has been
chosen.

The installation of the stereo camera setups at the flume is shown in figure 9.9. To protect the cameras
from dirt and water, they are covered with waterproof cases.

Before conducting flow measurements, a geometric camera calibration has to be carried out. The cali-
bration of the endoscopes is described in section 5.4.2.

9.4 Measurement of free surface flow

To study the hydromechanic interaction of the free surface flow and the subsurface pore flow, it is necessary
to measure the flow field in the near-wall region of the open-channel flow. Towards this end, a further 3-
D PTV setup is used, which is described in this section. This setup has been designed, implemented and
applied in preliminary experiments by Klar [2001]. Some modifications were necessary, since Klar [2001]
reports the following shortcomings of his setup:

• The density of the tracer particles (air bubbles) in the flume is too high, especially for high Reynolds
numbers. The reason is the production of air bubbles at the water inlet. The density and size distribu-
tion of the bubbles depends on the flow discharge and cannot be controlled independently.

• Due to strong light scattering at the gravel layer, measurements are only possible up to a minimal
distance to the gravel layer of about 0.5 cm.

• A frame rate of 60 Hz is too low to study large Reynolds number flows (Re >≈ 50000).

• More sophisticated segmentation and tracking techniques are necessary.

Concerning the last two points, the frame rate has been increased to 130 Hz (see section 9.4.3) and the
improved algorithms are described in detail in chapter 7. Concerning the first two points, to prevent the
production of air bubbles, the flume inlet has been re-designed. But also with the new inlet, it turned out
that the amount of air bubbles in the water is still very high, especially at flow rates approaching the low
mobility conditions. Further, it was not possible to reduce the light scattering at the gravel surface, see e.g.
figure 10.4. Hence, the experimental conditions for the measurement of the near-wall channel flow are still
very difficult, and optimal performance cannot be expected at high Reynolds numbers. However, no further
measures could be taken to improve the setup since the focus of this work was on the pore flow.
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a b

Figure 9.10: a Top view of the stereo camera setup for 3-D PTV above the gravel layer, with a convergence angle
of α = 90◦. The cameras view the channel in upstream direction through water-filled glass prisms attached to the
channel side walls. The purpose of the prisms is to reduce refraction and dispersion effects. b Top: View of the right
camera through the liquid prism into the flume. The photo was taken during the calibration of the setup, a calibration
grid has been placed in the observation volume. Bottom: Same view during flow measurement. The light cones of the
halogen lamps illuminating the observation volume from above are inclined towards the cameras to achieve a higher
signal-to-noise ratio.

An important advantage of the free surface flow setup is its simplicity as compared to a typical setup for
stereoscopic PIV or a 3-component LDA system. The major benefit is that no laser is used. Hence, laser
safety issues do not have to be considered. Furthermore, no special high-precision positioning devices or
similar expensive optical and mechanical components are necessary, as typically used in laser setups. Most
of the components of the setup consist of standard off-the-shelf equipment, which is also very cost efficient.

9.4.1 Optical setup

In order to acquire stereoscopic image sequences of the free surface flow, two CCD cameras (Pulnix
TM6701AN) are mounted on the left and right side of the flume, viewing the center of the channel in
upstream direction through the glass windows (figure 9.10). The optical axes of the two cameras enclose an
angle of α = 90◦. The resulting size of the stereoscopic observation volume is approximately 5 cm in all
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a b

Figure 9.11: a Top view of the three halogen lamps used to illuminate the free surface flow. To reduce light scattering
at the channel bed, the gravel in the observation area has been colored black. The white spot within the black gravel
is one of the artificial pores, mounted in the uppermost position within the gravel layer. b Side view of the observation
area during an experiment. The mean flow is from left to right. The halogen lamps are inclined towards the cameras to
reduce the scattering angle to a value below 90◦ and thereby achieve a higher signal-to-noise ratio in the images (the
cameras are beyond the right border of the image and thus not visible). At the bottom of the image, the illumination
fibers of the artificial pores can be seen.

directions5. Both cameras are equipped with Schneider Optics C-mount compact lenses with an effective
focal length of 23 mm. The lenses have a locking mechanism for both iris and focus, which is quite impor-
tant for stereo measurements, because after the system has been calibrated, the camera position, focus and
iris settings must not change.

Because the optical axes of the cameras enclose an angle of about 45◦ with the channel walls, the optical
rays are refracted at the water-glass and glass-air boundaries of the glass windows. The refraction causes a
systematic shift of the image points as compared to optical rays without such multiple media transients. One
way to reduce the systematic error introduced by the multimedia geometry is to extend the camera model
by a model of the imaging geometry. Additional parameters describing the refraction at the interfaces are
introduced, e.g. by a ray-tracing approach [Maas, 1992], see section 5.2.3.

In the present setup, the modeling of refraction effects has been avoided by attaching ’liquid prisms’
(glass prisms filled with water) to the channel windows. With the liquid prisms, the cameras continue to have
an orthogonal orientation with respect to the air-water interface. Hence, large off-axis angles are avoided
and refraction effects are minimized. In this case, the common paraxial approximation is valid and the
setup can be modeled by the usual pinhole model. Liquid prisms are also frequently used in stereoscopic
PIV applications and have been shown to be extremely efficient at reducing radial distortions arising from a
water-air interface [Prasad, 2000; van Doorne et al., 2003].
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9.4.2 Illumination and flow visualization

In the design of the illumination setup, three important aspects have to be considered: the light source, the
scattering angle between the light source and the camera, and the type of tracer particles. Three standard
off-the-shelf halogen lamps (Osram, 50 Watt) have been used to illuminate the observation volume from
above the water surface, see figure 9.11. The lamps are attached to flexible mounts that can be freely moved
in all directions. This is important to enable an optimization of the scattering angle. Light scattering at
small particles with a diameter that is comparable to or slightly larger than the wavelength of the incident
light is governed by Mie-scattering, which is highly anisotropic [van de Hulst, 1981]. The intensity of the
scattered light has a minimum for a scattering angle of 90◦ and a maximum for forward scattering, see e.g.
[Leue et al., 1996; Garbe, 1998] for measurements of the scattering cross section. To keep the scattering
angle smaller than 90◦, the halogen lamps are inclined towards the cameras, which increases the scattering
intensity significantly, see figure 9.11b and figure 9.10b. By placing the two cameras on either side of the
flume, it is possible to operate both cameras in forward scatter and thus achieve higher and equal signal-to-
noise ratios in both views.

Typically, small polystyrene or glass particles added to the flow serve as tracer particles for flow mea-
surements, see section 9.3.3. The generation of hydrogen and oxygen bubbles by electrolysis is also a
common method, see [Engelmann, 2000]. In the present measurements, small air bubbles produced in the
flume inlet have been used as tracers. The problem of the high bubble density has been mentioned above.
The re-design of the flume inlet did not help to overcome this limitation. The bubble concentration and the
distribution of bubble sizes cannot be controlled independently but depend on the flow rate. For large flow
rates, the bubble density is higher, and the bubble sizes are larger than for small flow rates because of more
turbulent inlet conditions. For most of the experiments with Reynolds number Re >≈ 100000, the bubble
density was too high to enable an optimal performance. Further, the larger bubbles have significant rise
velocities which do not represent the fluid flow field. The trajectories of such particles (having large upward
velocities over the complete trajectory length) have been removed by a threshold.

9.4.3 Image acquisition

Two CCD cameras (Pulnix TM6701AN) have been used for the imaging. The TM6701AN is a progressive
scan camera and operates in full resolution of 631 × 483 pixels at a frame rate of 60 Hz. The pixel size is
9 × 9µm2, resulting in a size of the CCD sensor of 5.83 × 4.36 mm2.

The frame rate is an important parameter with respect to the temporal resolution of the measurements.
The higher the frame rate, the higher is the maximum flow velocity that can be measured. Klar [2001]
was able to measure maximum flow velocities of about 0.3 m/s using the 60 Hz mode of the cameras.
The Pulnix TM6701AN also offers a partial scan mode, reducing the image size to 631 × 200 pixels, but
increasing the frame rate to 130 Hz. To enable particle-tracking at higher velocities, this mode has been
used for the measurements. However, due to the partial scan of only 200 image lines, the height of the
observation volume is reduced to ≈ 5 cm.

The two cameras deliver analog image signals which are synchronized and digitized by a color framegrab-
ber (Mikrotron Inspecta 2). This framegrabber has three 8 bit input channels (RGB), that are typically used

5Actually the stereo volume is larger. Since it is the cross section of two cones in space, it has an irregular shape. The maximum
cube that can be inscriped into the volume has a side length of ≈ 5 cm.
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a b

Figure 9.12: a Pressure sensor fixed at y = 10 mm above the gravel layer, facing upstream. b Pressure sensor fixed
to one of the artificial pores, facing the pore volume inside.

for the acquisition of color images. Two of the color channels have been used to grab the monochrome
stereo images of the left resp. right camera. The acquired image sequences have to be stored in the com-
puter memory before they are written to a harddisk. The data rate of one camera for the current settings
is about 16 MB/s. The memory size was 1 GB, however, only about 560 MB could be accessed by the
framegrabber. Thus, the maximum duration of one stereo image sequence of the free surface flow is about
18.8 s, limited by the PC memory.

A standard WindowsNT desktop PC is used to acquire and process the image data.

Before conducting flow measurements, a geometric camera calibration has to be carried out. The cali-
bration of the Pulnix cameras is described in section 5.4.3.

9.5 Pressure measurements

Pressure measurements have been carried out simultaneously with the velocity measurements by the Institute
for Hydromechanics of Karlsruhe University. Towards this end, Detert et al. [2004a] developed a new ex-
perimental setup to measure pressure fluctuations within and on top of the gravel layer (figure 9.12): MPPS
(Miniaturized Piezoelectric Pressure Sensors). The principle of the MPPS is based on the piezoresistive
effect. Pressure fluctuations with frequencies of up to 100 Hz can be captured, with an absolute amplitude
range of 0−6 kPa (corresponding to 0−587 mmWC at a temperature of 20◦C) and a resolution of 12 bit.
The MPPS technique has proven to be a very robust and reliable tool to determine pressure fluctuations
down to dissipative scales. For more details, see [Detert et al., 2004a].

9.6 Frame rates, real-time data storage and synchronization

Before installing the equipment at the experimental flume, some preceding tests concerning the frame rates,
real-time data storage and synchronization of the seven subsystems have been carried out. The results of
these tests are presented in this section.
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Figure 9.13: Preceding tests of the RAIDs and the cameras. a Dependence of the sustained data rate of an Infortrend
RAID-system on the filesize. For sufficiently large file sizes, a sustained data rate of over 30 MB/s can be achieved.
b Check if there are missing frames in the sequence acquisition by recording the motion of a pendulum. c Check of the
frame rates of the cameras using an LED powered with a sine wave of known frequency. The sine wave is created by
a function generator. d Check of the synchronicity of the image acquisition. A lamp (left image border) is recorded by
the cameras of two subsystems (right image border) while being switched on and off.

9.6.1 Frame rates

To check the nominal frame rates of all the cameras, image sequences of an LED connected to a function
generator have been acquired, see figure 9.13c. The function generator powers the LED with a sine wave of
a precise frequency given by the user. Hence, it is possible to determine the frame rate of the camera using
the beat frequency of the LED brightness in the image sequence. The frequency of the sine wave is adjusted
until the brigthness of the LED is stationary. Then the frequency of the sine wave is equal to the frame rate
of the camera. The results of this test are compiled in Table 9.3. No significant deviations from the nominal
frame rates have been found.
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Table 9.3: Frame rates of the cameras.

setup camera frame rate f [Hz] frame period T = 1/f [s]

Elbe Sony CCD 25 (full frames) 0.04

Jagst Sony CCD 50 (fields) 0.02

Kocher Photonfocus CMOS 400 (ROI) 0.0025

Höllbach Photonfocus CMOS 400 (ROI) 0.0025

Neckar Pulnix CCD 130 (partial scan) 0.0077

9.6.2 Real-time storage

To ensure a continuous operation during the measurements the sustained data rates (write rates) of the
RAID systems have been determined in dependency of the size of the data packets written to the disks, see
figure 9.13a. The plot shows that a sustained data rate of over 30 MB/s can be achieved for sufficiently large
file sizes. Thus, the data rate of about 25 MB/s of one stereo camera pair can be easily written to a RAID in
real-time during the acquisition. Further tests have been carried out to see if the image sequences are really
stored continuously without missing frames. Towards this end, image sequences of an oscillating pendulum
have been acquired (see figure 9.13b) and observed manually. No missing frames could be identified.

9.6.3 Synchronization

To ensure simultaneous acquisition of all subsystems, the image acquisition of all cameras should start at the
same time. If there is a time lag between the systems, it has to be constant and known in order to correct for it
afterwards. Synchronization of the subsystems has been implemented using a hardware trigger module. At
the beginning of a measurement, all PCs are sent into a waiting state. To start the image acquisition, a single
TTL pulse is created in the trigger module and sent to the waiting PCs. The trigger signal is detected via the
parallel port. To get direct access to the IO-ports, the WinIO library for Windows is used6. As soon as the
TTL pulse is detected, the image acquisition is started. Hence, we only ensure a simultaneous acquisition
start of all subsystems. After the acquisition start, all systems are running freely without any frame-based
or even pixel-based synchronization. However, the acquistion of a stereo pair is always frame-synchronous
due to the synchronization by the framegrabber.

The trigger module has been checked by acquiring image sequences of a lamp, which is switched on
and off several times. Such a sequence is acquired by two subsystems simultaneously, using the trigger
mechanism to start the acquisition, see figure 9.13d. Afterwards, the frames, in which the lamp turns from
off to on are detected and the corresponding frame numbers of the two subsystems are plotted against each
other. From the axis intercepts of the resulting straight lines, the temporal offset between the two subsystems
is determined. The result is that the subsystems Kocher, Höllbach, Elbe and Neckar start the acquisition
simultaneously to an accuracy of ≈ 1 ms. For the subsystem Jagst, there is a systematic temporal offset of
68 ms, i.e. the acquisition starts 68 ms later.

6http://www.internals.com
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Table 9.4: Summary of the seven subsystems (Elbe actually consists of three systems at three different locations) of the
experimental setup for flow measurement.

setup Pore 1 Pore 2 Pore 3 Sand Motion Free Surface
Flow

Jagst Kocher Höllbach Elbe Neckar

frame rate 50 Hz 400 Hz 400 Hz 25 Hz 130 Hz

image size 512 × 512 184 × 184 184 × 184 640 × 480 631 × 200

RAM 1 GB 1 GB 1 GB 512 MB 1 GB

speed 1.7 GHz 1.7 GHz 1.7 GHz 500 MHz 400 MHz

OS W2K W2K W2K W2K NT

Framegrabber Eltec SiliconSoftware SiliconSoftware Eltec Mikrotron

PCEye 2plus microenable microenable PCEye 4 Inspecta 2

cameras Sony Photonfocus Photonfocus Sony Pulnix

XC-73CE MV-D1024-28 MV-D1024-28 XC-73CE TM6701AN

CCD analog CMOS digital CMOS digital CCD analog CCD analog

RAID 344 GB 344 GB 344 GB 142 GB -

Tape - Sony AIT2 Sony AIT2 4 mm DDS2 -

seq. length no restriction no restriction no restriction no restriction 18.8 s

endoscopes/
lenses

Volpi Eltrotec Eltrotec Visitool Schneider
Kreuznach

f = 23 mm

illumination Visitool Visitool Visitool Visitool Osram

short arc short arc short arc Halogen Halogen

data rate 22 MB/s 25 MB/s 25 MB/s 15 MB/s 31 MB/s

9.7 Summary

We summarize the most important facts of the experimental setup, that has been described in this chapter
(see also table 9.4). The setup consists of seven subsystems with altogether eleven cameras operating at the
same time: three stereo setups to measure the 3-D pore flow within specially prepared artificial gravel pores
(setups Kocher, Höllbach and Jagst), one stereo setup to measure the 3-D near-bed free surface flow (setup
Neckar) and three monoscopic setups to observe the 2-D motion of sand grains at the sand-gravel-interface
(setup Elbe). Optical access to the subsurface flows is provided by endoscopic imaging. Rigid endoscopes
(’periscopes’) inserted from below the flume are used to observe the sand motion. Flexible endoscopes
inserted from the side walls provide image sequences of the pore flow.

The previous work by Janßen [2000], Stybalkowski [2001] and Klar et al. [2002] has shown that 3-
D particle-tracking in pore flow sequences is a difficult task in many respects, e.g. the tracking of fast
fluctuations on small spatial scales. However, the main reason is the quite limited quality of their endoscopic
images (low resolution, geometric distortions, low signal-to-noise ratio). Sophisticated and computationally
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intensive image processing had to be applied to achieve good results.

As a general rule, the first thing to do to improve an image processing method is to try to improve the
quality of the imagery in the first place, since this may save a lot of algorithmic efforts or even make the
application of certain algorithms feasible at all. Therefore, one of the first goals of this work was a re-design
of the experimental setup in order to improve its imaging performance. Significant advances have been
achieved:

• Optical quality of the endoscopes:

New flexible endoscopes have been introduced that produce images of superior quality. The en-
doscopes have a higher resolution (30000 instead of 10000 fibers) and show negligible geometric
distortion (see also section 5.4.2). The inter-fiber distances are very small and the cladding of the
individual fibers is sufficiently thin, so that no hexagonal lattice structure is visible in the images.
The endoscopes are equipped with zoom optics, providing the possibility to adjust the image size to
the size of the ROI on the image sensor. The depth of field of the endoscopes has been specifically
adapted to the application, which enabled a significant reduction of the pore size.

• CMOS cameras:

New digital CMOS cameras have been introduced. The flexibility provided by the latest CMOS
technology enables to read out a small ROI (184×184 pixels) on the sensor at a frame rate of 400 Hz.
A high frame rate is a major demand for endoscopic particle-tracking.

• Illumination:

In order to achieve a sufficient illumination using only one fiber bundle, the effective diameter of the
illumination fibers has been increased. The halogen cold light source has been replaced by a short arc
lamp, providing a higher color temperature. The resulting spectrum matches the spectral sensitivity
of the sensors. As a result, under laminar and moderately fluctuating flow conditions, particle images
with a high SNR are obtained that can be segmented easily. For high turbulence levels, motion blur
reduces the SNR.

• Real-time storage:

The experiments presented in chapter 10 require the continuous acquisition of long image sequences
to gather a sufficient data basis for a statistical evaluation. The need to record long sequences has been
mentioned in many previous works [Spies, 1998; Ehrbächer, 1999; Janßen, 2000; Engelmann, 2000;
Klar, 2001; Stybalkowski, 2001]. A reliable continuous real-time storage of the sequences has been
achieved for the first time. The images are written to a RAID system during the acquistion, and no
intermediate storage in the PC memory is necessary. Sequences of arbitrary length can be acquired,
with the only restriction being the RAID capacity.

A great advantage of the experimental setup is the exclusive use of cold light sources resp. a short arc
lamp for illumination. No lasers are necessary. Hence, laser safety issues do not have to be considered.
Further, no high precision optical and mechanical components are necessary, and the setup becomes quite
cost efficient. Note that the price of a typical commercial time-resolved 3-D PIV system7 is at least three

7as offered e.g. by LaVision or DantecDynamics, including the software
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times the price of the hardware for a complete pore flow stereo setup (light source, two endoscopes, two
CMOS cameras, PC including framegrabber, RAID and backup system, and a calibration unit). The main
expense factor of the commercial systems is the powerful laser that is necessary for a sufficient illumination.

Together with the pressure sensors developed by Detert et al. [2004a], the experimental setup enables
temporally and spatially high-resolved measurements of pressure and 3-D flow fields. For the first time, a
synoptic view of pressure and velocity fields within and above a porous gravel layer becomes possible.
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Chapter 10

Flow measurements and results

This chapter presents the application of the developed technique to study the flow within and above a gravel
layer. The recorded image sequences are processed by the 3-D PTV algorithm developed in chapter 7 to
extract the 3-D velocities of flow tracers. The simultaneous acquisition of the flow at different locations
within and above the gravel layer using the extended experimental setup described in chapter 9 has provided
a wealth of information that will be analyzed in a systematic evaluation in future. Here we only present
some of the possible approaches and illustrate the results with some examples. Nevertheless, these examples
provide new experimental insight into the flow within a porous wall that has been obtained in this form for
the first time.

We start with an overview of the experimental program in section 10.1 and a description of the experi-
mental procedure in a typical experiment in section 10.2. Section 10.3 presents the results, and section 10.4
gives a summary of the chapter.

10.1 Overview of the experimental program

The experiments are partitioned into seven major test cases. They are distinguished by the height of the
gravel layer HP , see table 10.1. In some test cases, a rubber mat has been put between the sand and the
gravel, see figure 10.1. In these cases, the periscopes for observation of sand motion are not used and the
flow in the gravel layer can be studied without hydraulic contact to the sand layer.

The seven test cases are identified by the letters ’m’, ’mb’, ’mc’, ’md’, ’me’, ’mf’, ’mg’. In test case
’me’, the gravel in the experimental test section has been replaced by glass beads of 1 cm diameter. In test
case ’mg’, an obstacle has been put on top of the gravel layer to enable a study of the influence of extra
turbulence on the pore flow.

In all cases except ’me’ and ’mg’, both stationary flow conditions and surface waves are investigated at
two different water levels of h = 0.2 m and h = 0.4 m. In the stationary flows, the mean flow velocity in
the free surface flow is typically varied between 0.31 m/s and 0.86 m/s. The highest velocity corresponds
to low mobility conditions in the gravel bed, i.e. transport of single grains occurs.

An instability criteria τ0/τ0,c is defined as the ratio of the bed shear stress to the critical bed shear stress
(where motion of gravel grains occurs). The different mean flow velocities correspond to instability criteria
between τ0/τ0,c = 0.09 and τ0/τ0,c = 0.59. The flow conditions in a typical experimental test case with
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204 10 Flow measurements and results

Table 10.1: The seven test cases that are studied in the experiments.

test case HP [m]

m 0.2 rubber mat, incl. waves

mb 0.1 rubber mat, incl. waves

mc 0.1 no rubber mat, incl. waves

md 0.04 rubber mat, incl. waves

me 0.04 rubber mat, glass beads

mf 0.04 no rubber mat, incl. waves

mg 0.04 no rubber mat, obstacle

Figure 10.1: Sketch of the different experimental boundary conditions. Two major series are distinguished. The first
corresponds to the normal configuration (sand-gravel-water). In the second, hydraulic contact between sand and
gravel is prevented by putting a rubber mat inbetween. Sketch from [Detert et al., 2004b].

increasing instability criteria at HP = 0.1 m are shown in table 10.2. The values given in the table have
been determined by Detert et al. [2004b]. The shear velocities u∗ have been determined from roughness
parameters that were identified in calibration tests. The error in the given values of u∗ is estimated to ±5%.

All measurements have been carried out in cooperation with the Institute for Hydromechanics of the
University of Karlsruhe (IfH). Simultaneously with the velocity measurements, pressure measurements have
been carried out by the IfH using the specially developed equipment described in section 9.5 [Detert et al.,
2004b, 2005].

In the test cases ’m’, ’mb’ and ’mc’, velocity profiles as a function of the vertical position in the gravel
layer have been measured. Towards this end, the Höllbach-pore has been installed in different vertical
positions throughout the gravel layer, in steps of 2 cm (’m’) resp. 1 cm (’mb’,’mc’). Flow measurements

204
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Table 10.2: Experimental conditions in the test cases ’mb’ and ’mc’ (HP = 0.1 m, h = 0.2 m).

τ0/τ0,c [−] 0.09 0.18 0.36 0.48 0.55 0.59

Q m3/s 56.0 81.8 120.5 149.8 173.0 193.4

h m 0.201 0.203 0.207 0.219 0.234 0.249

U m/s 0.31 0.45 0.65 0.76 0.82 0.86

u∗ m/s 0.026 0.040 0.063 0.078 0.073 0.085

Re∗ [−] 260 410 640 800 740 870

under different flow conditions have been conducted sequentially.

The experimental data of all the test cases has been acquired during a time period of six months (not
including the preliminary tests and the basic preparation of the flume). Altogether, more than one Terabyte
of image data has been recorded.

10.2 Experimental procedure

In this section, we describe the typical experimental procedure of one of the test cases shown in table 10.1.

10.2.1 Geometric camera calibration

The first step of the experimental procedure is the geometric camera calibration. All setups have been re-
calibrated before and after each test case to account for possible changes in the relative position of the stereo
rig, which may occur during the preparation of the experiments or evolve gradually over time. All setups are
calibrated in the flume, with the calibration targets submerged in water. The calibration of the artificial pore
setups is shown in figure 10.2. The details of the calibration have been described in sections 5.4.1–5.4.3.

10.2.2 Preparation of the experiment

After the geometric calibration, the setups are installed in the flume, see figure 10.3. All artificial pores and
pressure sensors are fixed to the grid of steel rods at their corresponding positions. The coordinate system
in the flume is defined relative to this grid. After all setups have been installed, a test run is carried out with
a low flow discharge of about 10 l/s. The test run is performed before the setups are covered with gravel
to ensure that the illumination and the tracer supply work properly. The test run is also used to saturate the
sediment layers with water slowly. The increase of the water level has to be slow, since otherwise large air
bubbles rise up through the gravel layer, which may transport sand grains into the gravel pores.

After the test run, the experimental setups are covered with gravel, the gravel layer is leveled, and the
desired flow conditions are adjusted.

10.2.3 Image acquisition

When stationary flow conditions have been obtained, the measurements are performed, typically starting
at low flow velocities and increasing them up to low mobility conditions, compare table 10.2. Figure 10.4
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a b

c d

Figure 10.2: Calibration of the flexible endoscopes in the flume. a The endoscope stereo rig is mounted on the
calibration device (i.e. the linear stage creating the simulated 3-D target, see section 5.4.2). b Side view of the
calibration device. c Since the calibration images have to be acquired with the endoscopes submerged in water, the
calibration device is put in a vessel that is filled with water. d Illumination of the calibration target from the backside
with a halogen lamp.

gives an impression of an experiment with large surface waves.

10.3 Results

10.3.1 Preliminary notes

Some important aspects have to be kept in mind when analyzing the obtained measurement data. They are
summarized here.
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a b

c d

Figure 10.3: Installation of the experimental setups in the flume. a The artificial pores are fixed to the steel grid. b
The pressure sensors are filled with water using a syringe to remove the air inside the sensor, which would otherwise
disturb the measurements. c Mounting of a pressure sensor to an artificial pore. d Prepared pore with pressure sensor
at the bottom of the gravel layer. The photos have been taken during test case ’m’. The rubber mat at the bottom of
the gravel layer can be seen.

Character of the 3-D PTV data.

In the 3-D PTV method, the underlying real velocity field is sampled at random points both in space and
time. Velocity information is available only at those positions and time instants where tracer particles could
be found and successfully tracked. If the flow is seeded homogeneously, this is not a severe limitation. Note
that in PIV (section 3.2) the distribution of tracers is also random, but the density is high and homogeneous
enough to enable the determination of velocity vectors on a regular grid.

In the experiments presented here, it was not possible to seed the whole water volume with tracer par-
ticles, as mentioned in section 9.3.3. Thus, tracers had to be added to the pore flow locally upstream of
the artifical pores. With this seeding method, a homogeneous tracer distribution could not always be ob-
tained. The seeding density in the artificial pore depends on the hydromechanic dispersion of the tracers
in the gravel layer. The latter represents a highly stochastic geometric system of channels, indirections and
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a b

c d

Figure 10.4: Wave experiments. a Surface waves propagating along the channel. b , c , d Three successive images
of a surface wave passing the observation area. These images also show a basic limitation of the free surface flow
setup: the bright light scattering at the gravel surface. Further, the instationary water surface is responsible for large
illumination inhomogeneities due to refraction.

dead-end pores. The geometry of this system is changed between the different test cases because of the
adjustment of the experimental setups. This obviously requires to remove the gravel and replace it after the
adjustment. Depending on the flow conditions and the current gravel geometry, in some experimental runs
a rather homogeneous particle density was observed in the artificial pores, while in others this was not the
case.

As a result, the number of velocity vectors per frame is not constant. In extreme cases it may also drop to
zero, i.e. there may be time periods where no velocity information is available at all since no tracer particles
reached the observation volume. Two further effects are contributing to this fluctuating information density.
First, it was observed that during some experimental runs dirt particles were temporarily deposited in the
artificial pores. Sometimes these dirt particles completely blocked one of the endoscopes’ view or reduced
the intensity of the illumination and thus the signal-to-noise ratio. The second effect is related to limitations
of the image processing. Under low mobility conditions, the turbulence intensity in the upper grain layers
becomes large. In these cases, the maximum pore flow velocities may reach values beyond the limits of
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Figure 10.5: Bimodal histogram of velocity fluctuations in the main flow direction along the flume, obtained within a
gravel pore (test case ’mb’, Höllbach-setup, τ0/τ0,c = 0.35, measurement hmb22). The red curve shows a standard
normal distribution for comparison.

the current endoscopic 3-D PTV. The interframe particle displacements in the image sequences become
too large and cannot be tracked any more. Again, the number of recovered velocity vectors drops and the
velocity statistics get biased towards lower velocities.

To summarize, the endoscopic 3-D PTV yields information that is distributed randomly in space and
time and with a fluctuating information density that may cause statistical biases. Thus, a straight-forward
analysis of this kind of data using standard statistical tools is not really suitable. More sophisticated statis-
tical analyses are necessary. The results presented in the following sections have been obtained by applying
only simple approaches to look at the data. Hence, we have to keep in mind the above considerations.

Spatial structure of the flow within the pores.

Probability density histograms and profiles of mean velocities are computed by double averaging over space
and time, compare section 2.4.2. Time series of velocity are computed by frame-wise spatial averaging of
all vectors within the artificial pores. For the free surface flow, time series are computed by spatial averaging
all vectors within a small volume close to the gravel bed.

The spatial averaging over the pore volume to obtain a time series of mean velocity neglects the spatial
structure in the flow field and considers the obtained data as a point measurement of the flow within the
pore. This introduces problems if the flow field contains eddy motions. An example is shown in figure 10.5.
In this measurement, the flow field inside the Höllbach-pore shows a swirling motion imposed on the main
flow, with particles in the upper part of the observation volume moving in the main flow direction and
particles in the lower part moving in opposite direction. The motion in the main flow direction along the
channel dominates, hence the resulting mean velocity component 〈u〉 is positive. However, the histogram
is bimodal, which shows the presence of the counter-rotating motion. If vectors of this flow are spatially
averaged at an instant of time, the u-components with opposite sign may cancel each other. The resulting
instantaneous ’point measurement’ of u will indicate a mean velocity close to zero.

The natural way to interpret the data obtained by 3-D PTV would be the analysis in a Lagrangian
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framework, see [Pope, 1994] for the theory or e.g. [Virant, 1996; Voth, 2000] for Lagrangian analyses of
experimental flow data. Note that even if we do not evaluate the data in a Lagrangian way here, this does not
question the application of a 3-D PTV approach. The latter is the only feasible method to obtain quantitative
measurements of the strongly three-dimensional pore flow at all.

Superficial, intrinsic and local velocity.

As outlined in section 2.6.1, different velocities have to be distinguished in porous media. We note here
that the velocity obtained by the 3-D PTV method is a local velocity (resp. velocity field) within a single
pore. This velocity is different both from the superficial and the intrinsic velocity, since the latter are
macroscopically averaged quantities.

We can only obtain a ’local intrinsic’ velocity by averaging over a single pore (more precise: aver-
aging over the fraction of the pore volume that is covered by the stereoscopic observation volume of the
endoscopes). To obtain superficial or intrinsic velocities, the averaging has to be carried out over at least
15 × 15 × 15 pores, which is the minimum size of a macroscopic sample according to [Dullien, 1992].
Averages over submacroscopic samples may fluctuate. This has to be kept in mind when comparing the
measurement results to macroscopic phenomenological flow models.

Size of the pore volume.

The average inner diameter of the artificial pores is ≈ 1 cm, which is larger than the natural pore spaces.
Smaller diameters are not possible due to limitations of the experimental setup. Hence, a possible influence
of the larger pore size on the measurement data has to be considered.

10.3.2 Classification of flow regimes

We give a general classification of the flow regimes that have been studied, according to some Reynolds
numbers (for the definitions, see section 2.9).

Free surface flow.

The Reynolds number in the free surface flow is always above 60000 and reaches values of up to ≈ 300000

for the fastest flow conditions. The minimum roughness Reynolds number is 260 and reaches values of
up to ≈ 1000. Hence, the flow above the gravel layer is fully turbulent and in the completely rough
regime. Typical viscous wall units are y0 ≈ 10−5 m. The viscous sublayer can be neglected, and near-wall
turbulence will be dominated by roughness effects. The permeability Reynolds number is in the range of
≈ 8 to ≈ 30. Hence, there is an influence of permeability. However, it is supposed to be much smaller than
the influence of roughness.

Figure 10.6 shows histograms of the near-wall free surface flow velocities. All components are normal-
ized by their rms-values. The lower right plot shows the histogram of the normalized 3-D speed, where
the 3-D speed is defined as s =

√
u2 + v2 + w2. The red curves show standard Gaussian distributions for

comparison, resp. a transformed χ2-distribution in case of the speed (the square of the speed follows a χ2-
distribution with three degrees of freedom, if the single components are Gaussian distributed and assumed
independent).
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Figure 10.6: Histograms of velocity fluctuations in the near-wall free surface flow (τ0/τ0,c = 0.09, HP =

0.04 m, h = 0.2 m).

The plots show that the near-wall fluctuations can be assumed to be Gaussian to a good approximation.
This confirms the results of Hofland [2005], who assumed Gaussian near-wall velocity fluctuations and de-
rived a pdf for near-wall pressure fluctuations. The latter has been confirmed in experimental measurements,
both by Hofland [2005] and in the measurements presented here [Detert et al., 2005].

The histogram of the speed fluctuations appears to be slightly shifted to the left as compared to the
theoretical curve. This indicates that the effective number of degrees of freedom is smaller than three. The
latter has to be expected, since clearly the fluctuations within a turbulent channel flow are not independent
of each other.

Pore flow.

Typical (local) mean flow speeds s measured within the artificial pores are in the range of well below
1 mm/s in the deepest grain layers and for the lowest free surface flow velocities, up to more than 150 mm/s
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Figure 10.7: Histograms of velocity fluctuations in the pore flow at y = −1 cm. (τ0/τ0,c = 0.09, HP = 0.04 m, h =

0.2 m).

in the experiments with surface waves. Typical values in the upper grain layers are in the range of ≈ 1 mm/s

up to ≈ 40 mm/s. Note that the flow in the pores is strongly fluctuating. The standard deviations of the
mean velocities are typically of the order of magnitude of the mean values. Using a mean inner diameter of
the artificial gravel pores of 1 cm, the resulting pore Reynolds numbers are between ≈ 5 for slow flow in
deeper grain layers and ≈ 1500 for flow induced by surface waves. Clearly, the latter is turbulent, which is
also observed from the image sequences. The dominant flow regime in the pore flow for stationary condi-
tions in the free surface flow seems to be a transitional one, with periods of quasi-laminar flow interrupted
by turbulent spots.

The intermittency of the pore flow is also shown in the histograms of figure 10.7 and figure 10.8. These
histograms have a much higher kurtosis and do not agree with the standard Gaussian distributions. The rea-
son is the intermittency of the pore flow, which is not fully turbulent, but rather transitional. A comparison
of the two plots shows that the kurtosis is higher for y = −2 cm than for y = −1 cm. This tendency of in-
creasing kurtosis - and hence increasing intermittency and decreasing degree of turbulence - with increasing
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Figure 10.8: Histograms of velocity fluctuations in the pore flow at y = −2 cm. (τ0/τ0,c = 0.09, HP = 0.04 m, h =

0.2 m).

depth in the gravel layer is confirmed by many other measurements.

10.3.3 Free surface flow

We determine the parameters u∗, ks and the vertical shift ∆y of the zero-level of the logarithmic wall law
by curve fits. The results are shown in figure 10.9 and figure 10.10. We use three approaches.

First, we assume a constant vertical shift of ∆y = 0.25k, as also done by [Detert et al., 2005] and
commonly done in engineering practice [Dittrich, 1997]. The fitted parameters are u∗ and ks. All fits
are performed using a robust method (Least Median of Squares, see also section 5.3.2), which automatically
removes outliers. The results are shown by the yellow curve. The regression coefficient is close to one, how-
ever the obtained values of u∗ and ks are larger than those given by [Detert et al., 2005] (u∗ = 0.026 m/s,
ks = 1.68dmD). The latter have been obtained by independently determining u∗ from roughness parameters
and subsequently fitting only ks to the logarithmic profile.
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Figure 10.9: Determination of the parameters u∗, ks and ∆y by fitting the logarithmic wall law to the experimental
data.
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Figure 10.10: Determination of the shear velocity u∗ from the ordinate intercept of the vertical Reynolds stress profile.

In a second approach, we use the method described in section 2.5.2. In this method, the vertical shift
∆y is not assumed constant but also estimated from the data. A value of ∆y = 0.17 cm is obtained. The
results are shown by the green curve. The roughness parameters are again larger than those of Detert et al.
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[2005].

The reason of the larger values of both u∗ and ks are probably correlations of these two parameters,
which are fitted simultaneously. Koll [2002] mentions the shortcomings of these fitting procedures and
introduces a new method to determine the roughness parameters and u∗. However, this method has not been
used here.

Instead, we follow a third approach. The shear velocity u∗ can also be determined from the vertical
profile of the Reynolds stress term u′v′, see section 2.5. The result is shown in figure 10.10. The obtained
value of u∗ agrees very well with that of [Detert et al., 2005]. Subsequently, we use the obtained u∗ and
∆y = 0.25k to determine only ks from the logarithmic profile. The result is ks = (1.71± 0.11) cm, which
is also in excellent agreement with the value of Detert et al. [2005].

Figure 10.10 shows that the experimental data is rather fluctuating. This shows that statistical conver-
gence has not really been reached. The data basis of this plot consists of ten image sequences, with a total
length of 188 s (ten successive recordings under the same flow conditions). Averaging is carried out over
horizontal slices with a height of 0.5 mm. These slices typically contain only ≈ 20000 vectors, which
seems to be too less to arrive at a converged estimate of the higher order moments.

Nevertheless the results shown in this section have proven that reasonable results are obtained by the
3-D PTV. The roughness parameters determined by 3-D PTV agree with those determined by [Detert et al.,
2005], who used a different, independent measurement technique (1-D Acoustic Doppler Current Profiler).
The deviations of u∗ and ks obtained in the simultaneous fits are rather related to shortcomings of the fit
method than to shortcomings of the data.

215



216 10 Flow measurements and results

−8 −6 −4 −2
−0.2

0

0.2

0.4

0.6

y/d
mD

 [−]

m
ea

n 
ve

lo
ci

ty
 [u

*]

〈 u 〉
〈 v 〉
〈 w 〉
〈 s 〉

−8 −6 −4 −2
0

0.1

0.2

0.3

0.4

y/d
mD

 [−]

rm
s 

ve
lo

ci
ty

 [u
*]

u
rms

v
rms

w
rms

s
rms

−8 −6 −4 −2
−15

−10

−5

0

5

10

15

y/d
mD

 [−]

R
ey

no
ld

s 
st

re
ss

es
 [m

m
2 /s

2 ]

τ
xy

/ρ
τ
xz

/ρ
τ
yz

/ρ

−8 −6 −4 −2
0

0.5

1

1.5

2

2.5

3
x 107

y/d
mD

 [−]

nu
m

be
r o

f v
ec

to
rs

Figure 10.11: Vertical profiles of local intrinsic velocity, rms-velocity and Reynolds stress throughout the gravel layer.
The data is taken from test cases ’mb’ and ’mc’, τ0/τ0,c = 0.09, HP = 0.1 m, h = 0.2 m.

10.3.4 Pore flow

Profiles of intrinsic velocity, rms-velocity and Reynolds stress.

To illustrate the pore flow measurements, we show vertical profiles of the local intrinsic velocity, rms-velociy
and Reynolds stress throughout the filter layer in Figs. 10.11–10.13. Velocities are normalized by u∗, and
the vertical coordinate is normalized by dmD. We show both the three velocity components and the speed.
The lower right plot shows the number of vectors that have been averaged to obtain the corresponding data
point. We average all measurements that were available for the corresponding flow conditions. The reason
why the data point at y = −5.5 cm has much more vectors is that at this position the Kocher-setup was
located. The other points of the profiles have been obtained by shifting the Höllbach-setup sequentially
throughout the gravel layer. For each measurement, a sequence of the Kocher-setup (which always resides
at the same position) has also been acquired. Hence, the data basis at this point is much larger.

In agreement with the observations of other researchers that have been reviewed in sections 2.7–2.8
there is a strong velocity gradient in the upper grain layers. The decrease of the intrinsic speed seems to be
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Figure 10.12: Vertical profiles of local intrinsic velocity, rms-velocity and Reynolds stress throughout the gravel layer.
The data is taken from test cases ’mb’ and ’mc’, τ0/τ0,c = 0.09, HP = 0.1 m, h = 0.4 m.

linear, whereas the rms-velocity and the Reynolds stress follow an exponential decay. Below y/dmD < −4,
all profiles become uniform. This is in good agreement with the results of [Detert et al., 2005], who has
shown that the high-frequency pressure fluctuations in the gravel layer (obtained simultaneously in the same
experiments) also follow an exponential decay, compare Fig. 12 in [Detert et al., 2005]. Similar observations
are reported by [Vollmer, 2005].

The data of figure 10.11 has been obtained at a water level of h = 0.2 m. In figure 10.12, we show the
profiles that have been obtained at the same instability criteria but at a water level of h = 0.4 m. The results
are very similar. A comparison of the two plots does not suggest that the fluctuations penetrate deeper into
the gravel layer at the larger water level. Hence, the dominant source of fluctuations appears to be the near-
wall turbulence, which scales with the inner variables u∗ and ks, which are the same for both plots. Note
that the data shown here has been obtained at a rather low Reynolds number of the outer flow. At larger
Reynolds numbers, the influence of large-scale vortical motions in the outer flow may also be of importance.
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Figure 10.13: Vertical profiles of local intrinsic velocity, rms-velocity and Reynolds stress throughout the gravel layer.
The data is taken from test cases ’mb’ and ’mc’, τ0/τ0,c = 0.35, HP = 0.1 m, h = 0.2 m.

In figure 10.13, we show the velocity profiles again at a water level of h = 0.2 m, but at a larger insta-
bility criteria of τ0/τ0,c = 0.35. Here, all profiles penetrate deeper into the gravel layer up to y/dmD ≈ −6.
All profiles show a rather linear decrease. The deeper penetration indicates again that the dominant fluctu-
ations originate from the near-wall turbulence. The corresponding shear velocity for this flow condition is
u∗ = 0.063 m/s, which is roughly a factor of two larger than in the plots of figure 10.11.

Figure 10.14 presents the dependency of intrinsic velocity, rms-velocity and Reynolds stress on the
instability criteria τ0/τ0,c. The data has been obtained from the Höllbach-setup, which was located at
y/dmD = −1. The water level was h = 0.2 m, and the height of the gravel layer was HP = 0.1 m. The
velocities are normalized by the ’critical shear velocity’ u∗,c, which is derived from the critical shear stress
of the gravel τ0,c = 8.8 Pa as u∗,c =

√
τ0,c/ρ. The increase of the rms-velocities with τ0/τ0,c appears to

be stronger than linear. The maximum rms-value of the streamwise velocity reaches about urms/u∗,c ≈ 2.7

at τ0/τ0,c = 0.48. Hence, turbulent velocity fluctuations may be much larger than the mean values not only
in the near-wall region in the channel, but also in the upper grain layers within the gravel.
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Figure 10.14: Dependency of local intrinsic velocity, rms-velocity and Reynolds stress on the instability criteria
τ0/τ0,c. The data has been obtained from the Höllbach-setup located at y/dmD = −1, HP = 0.1 m, h = 0.2 m.
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Figure 10.15: Simultaneous time series of the free surface flow and pore flow, obtained under instationary flow
conditions in the open-channel flow due to surface waves.

Interaction of free surface flow and pore flow.

Figure 10.15 shows simultaneous time series of free surface flow and pore flow. The time series of the free
surface flow has been obtained by frame-wise spatial averaging of all vectors within a cube of 2 cm side
length. The center of this cube is located at y/dmd = 1.5, immediately above the Höllbach-pore. The latter
is located at x/dmd = 26, y/dmd = −1, and the Kocher-setup is located at x/dmd = 1.5, y/dmd = −2.
Surface waves are propagating along the flume, with an amplitude of ≈ 8 cm and a period of ≈ 2 s.
Note that the velocity of the free surface flow is shown in cm/s (red curve, Neckar-setup) and the pore
velocities are shown in mm/s on the same y-axis. The plot clearly indicates the instantaneous penetration
of the wave-induced pressure field into the gravel layer, which in turn drives the flow fields within the pores.
Similar observations are reported for wave-induced pressure variations within a gravel layer by Vollmer
[2005] and, on a larger spatial scale, by Schwab and Köhler [2003]. They show that wave-induced pressure
fluctuations are damped exponentially with increasing depth in the gravel layer. The amplitudes of the
velocity fluctuations in the gravel shown here are approximately equal, because both pores are located in
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Figure 10.16: Partition of the periscopic observation area into four horizontal slices.

the upper grain layers. Interestingly, the mean streamwise velocity of the Höllbach-setup at y/dmd = −1 is
positive, whereas that of the Kocher-setup at y/dmd = −2 is negative.

10.3.5 Sand motion

In this final section, we show an exemplary result of the detection of sand motion using the rigid endoscopes
(’periscopes’, Elbe-setup, see section 9.2). A comprehensive analysis of the subsoil observation in the flume
experiments has been compiled in a technical report [Klar, 2004b].

In a first step, all image sequences are processed by the same motion detection algorithm that has been
used to segment the tracer particles in the 3-D PTV algorithm, see section 7.3.2. This analysis has shown
that the only flow conditions where significant motion of sand grains is observed are those with large surface
waves. In previous applications, image sequences showing hydromechanically induced subsoil motion have
been processed by an optical flow algorithm (reviewed in section 3.4), e.g. [Spies et al., 1999]. Similar
small-scale motions with slow velocities have not been observed in the present application. The entrainment
of sand grains by the wave-induced pore flow leads to fast particle motions. The resulting displacements
between two successive images are too large to be processed by an optical flow algorithm. Hence, we only
present the results of the motion detection algorithm.

Figure 10.16 shows a typical periscope image. In this image, a partition of the observation area into
four horizontal slices is indicated. In the upper part of the image, a gravel grain can be seen. The interface
between the gravel layer and the sand layer is located in slice number two. Figure 10.17 shows the results
of the motion detection. In the upper left plot, a time trace of the sand motion is shown. The plot has been
obtained by simply counting all the pixels in the image where motion has been detected and plotting the
result as a function of time. A quasi-periodic motion can be seen. This means that in some wave cycles,
sand grains have been transported, but not in all. The upper right plot also shows a time series of the motion
counts. Here, the counts have been accumulated separately for each of the horizontal slices indicated in
figure 10.16. The plot shows that the maximum motion occurs in slice one and two, where the gravel layer
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Figure 10.17: Results of the sand motion detection. For explanations, see text.

resp. the interface of sand and gravel is located.

In the lower left plot, the motion counts are shown as a function of space. The white horizontal line
indicates the approximate location of the sand-gravel-interface. The counts are color-coded. The colormap
is shown at the top of the image. Blue corresponds to ’no motion’, and red corresponds to ’maximum
motion’. The plot clearly shows that motion of sand grains occurs along the interface between the sand and
gravel layer. Grain motion in the deeper sand layers (slice three and four) only occurs for single grains,
which move periodically with a small amplitude, but are not transported away, e.g. because of a fluidization
of the sand layer. A corresponding vertical profile of the motion counts is shown in the lower right plot.

10.4 Summary

In this chapter, exemplary analyses of the 3-D flow data to study the influence of turbulent free surface
flow on the pore flow within the gravel layer have been presented. Statistical evaluations based on spatial
averaging resp. double averaging over space and time have been carried out. The difficulties in applying
such approaches to Lagrangian 3-D PTV data have been outlined.
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The observed flow regimes have been characterized by their Reynolds numbers. It has been shown that
the dominating flow regime in the pore flow is a time-dependent transitional one, with periods of quasi-
stationary flow interrupted by turbulent bursts. In the upper grain layers and for pore flows induced by large
surface waves, turbulence is also observed in the pore spaces.

The 3-D PTV technique has been verified by estimating the shear velocity u∗ and the equivalent sand
roughness ks from curve fits of the logarithmic wall law and the Reynolds stress profile. The obtained values
agree very well with those determined independently from roughness parameters and ADCP data.

Profiles of intrinsic velocity, rms-velocity and Reynolds stress in the pore flow have been computed as a
function of the vertical coordinate through the gravel layer. These profiles show the strong interaction of the
free surface flow and the pore flow in the upper grain layers. Velocity fluctuations originating from near-wall
turbulence of the open-channel flow penetrate into the gravel layer and thereby induce exchange of mass and
momentum. As a result, turbulent velocity fluctuations much larger than the mean values occur not only in
the near-wall region of the open-channel flow, but also in the upper gravel grain layers. These results are in
good agreement with the pressure measurements acquired simultaneously by Detert et al. [2005] and with
results obtained in different experiments by Vollmer [2005].
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Chapter 11

Conclusion and outlook

In this thesis a novel technique for three-dimensional flow measurements within a permeable gravel layer
has been presented. This includes both the experimental realisation and the development of an algorithmic
framework for 3-D Particle-Tracking Velocimetry. For the first time, three-dimensional measurements of
the pore flow within a gravel layer, driven by a turbulent open-channel flow on top, have been accomplished
with a high temporal and spatial resolution. This final chapter summarizes the achievements and discusses
perspectives of future work.

11.1 Summary

The following major achievements have been presented in this thesis.

First, it has been shown that precise quantitative 3-D measurements of highly dynamic processes can be
obtained from endoscopic stereo imagery, in spite of limitations concerning resolution and image quality.
This has been made possible by a careful choice of the experimental approach and a thorough design of both
the experimental setup and the image processing algorithms. A detailed survey of current state-of-the art
techniques for quantitative flow visualization (chapter 3) has shown that 3-D PTV is the method that is best
suited for the presented application, namely flow measurements within a gravel layer.

A 3-D PTV algorithm (chapter 7) has been adapted to the particular challenges of endoscopic imaging.
Image preprocessing methods have been implemented that take into account the particular noise structure of
the applied CMOS cameras (chapter 4). As a result, systematic noise patterns could be significantly reduced.
This improves both subpixel accuracy and the performance of optical flow algorithms. Nevertheless, the
possibility of blunders in the feature extraction from endoscopic images cannot be ruled out. This problem
is of particular significance for the geometric camera calibration. Hence, robust camera calibration methods
have been introduced (chapter 5), which can tolerate up to 50% of corrupted data and still obtain the correct
results.

The most difficult part of the 3-D PTV is the particle-tracking in image space. To identify the particle
images, a segmentation-from-motion approach has been combined with a watershed transformation to sepa-
rate overlapping particle images. The tracking is performed within a Kalman filter framework that integrates
different low-level motion estimators to initialize particle trajectories. A subsequent 3-D reconstruction is
based on a stereoscopic correspondence analysis of the particle trajectories, constrained by the epipolar
geometry of the stereo rig (chapter 6).
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A performance analysis on synthetic and real test sequences (chapter 8) has shown that typically 50%

of the segmented particles can be reconstructed in 3-D with a relative accuracy in object space of ≈ 1 : 300.
Due to the high correlations of systematic calibration errors, the accuracy of the velocity measurements is
much higher than the accuracy of single 3-D coordinates. The relative velocity error for the typical velocity
ranges studied in the experiments is below 10%.

Second, an extended experimental setup for flow measurements within a gravel layer and at its interfaces
with an open-channel flow on top and a sand layer below has been presented. All important issues of this
unique setup have been addressed in chapter 9. For the first time, a synoptic investigation of the flow fields
within and above a gravel layer becomes possible.

Third, the applicability of the setup has been demonstrated in an extensive series of systematic flow mea-
surements. These experiments have been carried out in cooperation with the Institute for Hydromechanics
of the University of Karlsruhe. They are part of an international research project initiated by the Federal
Waterways Engineering and Research Institute (Bundesanstalt für Wasserbau) in Karlsruhe. The main issue
of this project is to study the interaction of turbulent open-channel flow with the pore flow in a gravel bed,
in particular with respect to processes that initiate the motion of sand and gravel grains. The long-term goal
is to improve hydraulic engineering design criteria for bed protection of waterways and to validate flow and
sediment transport models.

First results of the measurements have been presented, which clearly show the penetration of velocity
fluctuations originating in the near-wall turbulence into the upper grain layers, with fluctuation amplitudes
significantly exceeding the mean values. Current approaches to describe the destabilization of single grains
only take into account the forces induced by the flow above the grain. The results obtained here show that
the flow field below the grain is also relevant.

11.2 Outlook

The data basis obtained in the measurements provides a wealth of information for further analyses. A wide
range of different flow conditions, including surface waves and flow around an obstacle, has been studied.
The main subject of further work will be the comprehensive hydromechanic analysis of this data. This
may include correlations with the simultaneously obtained pressure signals, Lagrangian analyses of the flow
fields or conditional sampling techniques to identify coherent structures. Further, a detailed comparison of
the data with numerical simulations and theoretical flow models should be made.

Apart from the further evaluation of the measurement results, the following improvements of the algo-
rithms are suggested:

• In the current implementation, linear methods are used both for camera calibration and triangulation.
The accuracy is sufficient to obtain reasonable results, but may be improved upon, especially for the
endoscope setups. The best known approach to compute 3-D coordinates is a photogrammetric bundle
adjustment. The bundle adjustment estimates an optimal solution of the set of camera parameters
and the 3-D coordinates of object points simultaneously. It provides the flexibility to incorporate
arbitrary further correction models to account for systematic deviations. For example, finite-element
approaches are used in photogrammetry to correct for sensor unflatness [Hastedt et al., 2002]. Such
an approach might also be used to model the systematic deviations between the entry and exit sides
of an endoscopic fiber bundle.
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• It has been shown that the main factor limiting the total vector yield of the 3-D PTV is the particle-
tracking in image space. The latter is very difficult for complex motions at high particle densities.
The most powerful approaches to find the particle correspondences are those that take into account
an extended temporal scope. The resulting multidimensional assignment problems are NP-complete,
but can be solved approximately by heuristic techniques of combinatorial optimization. Within such
a framework, temporal and spatial correspondences may also be solved simultaneously, similar to the
approach proposed by Willneff [2003].

• The randomly distributed Lagrangian data may be regularized in a postprocessing step. For example,
if the time-dependence of the pore flow is moderate, a physically-based interpolation may be carried
out, which enforces the Stokes equation to fill in the gaps between data points.

Finally, we note that there are many other application areas for quantitative flow visualization in confined
geometries, for example in chemical engineering and combustion diagnostics. Currently, the combustion
behaviour of spark-ignition IC engines is studied by endoscopic 2-D PIV approaches [Dierksheide et al.,
2001]. The endoscope tips of the setup presented in this thesis are resistant to both high pressures and
temperatures. Hence, they could possibly also be applied to obtain 3-D flow information of in-cylinder flow
fields in IC engines without major modifications of the setup. The main limiting factor in the investigation
of these highly turbulent reacting flows might only be the frame rate of the cameras.
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Appendix A

Multivariate Gaussian distribution

An important probability distribution of an n-dimensional random variable x = [x1, x2, ..., xn]T with mean
µ = [µ1, µ2, ..., µn]T and covariance matrix Σ is a multivariate normal or Gaussian distribution:

p(x1, x2, ..., xn) =
1√

(2π)n det(Σ)
exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
(A.1)

with

Σ =




σ2
x1

σx1x2
... σx1xn

σx2x1
σ2

x2
... σx2xn

. . ... .

σxnx1
σ2

xnx2
... σ2

xn




. (A.2)

In the one-dimensional case, (A.1) reduces to

p(x) =
1√
2πσ

exp

(
−(x − µ)2

2σ2

)
. (A.3)

The interval [µ− σ, µ + σ] is the standard confidence interval. The probability that x falls into the standard
confidence interval is about 68.27%. If µ = 0 and σ = 1, the distribution is called the standard Gaussian
(or normal) distribution.

In the following, we consider the case of the position of a 2-D point in an image: p = [px, py]
T . The

precision of the point coordinates is given by the covariance matrix

Σp =

(
σ2

px
σpxpy

σpypx
σ2

py

)
. (A.4)

Such pairs (p, Σp) are typically the result of feature extraction algorithms, as for example those described
in section 5.1 and section 7.3. The non-diagonal element, the covariance σpxpy

= σpypx
, measures to which

extent the fluctuations of px and py are related to each other. The covariance is related to the corresponding
variances by the correlation coefficient rpxpy

:

rpxpy
=

σpxpy

σpx
σpy

, (A.5)
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Figure A.1: Feature extraction using synthetic calibration grid images: a and b show the results of the subpixel-
precise determination of the grid crossings, using the method described in Section 5.1. Image b has been obtained
by rotating image a by an angle θ ≈ 17◦. c and d show the corresponding standard error ellipses with the standard
deviations σx, σy and the correlation coefficient rxy in the image coordinate frame (x, y), as well as the standard
deviations σ′

x, σ′
y in coordinate frame (x′, y′) rotated by the angle θ to align the major axis of the ellipses with the

x′-axis. In the (x′, y′)-frame, the correlation between the errors in the coordinates is zero.

with |rpxpy
| ≤ 1. Assuming that the probability distribution of p is Gaussian, the probability density is

constant on the ellipses defined by
(x − p)TΣ−1

p (x − p) = c (A.6)
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for some positive constant c. This is the equation of an ellipse centered around p. From an eigenvector
analysis of the positive definite matrix Σp, we can determine the orientation of the ellipse as well as the
minor and major axes lengths (diagonalization of Σp):

Σ′

p = UTΣpU , (A.7)

where the diagonal elements of

Σ′

p =

(
σ

′2
px

0

0 σ
′2
py

)
(A.8)

are the eigenvalues and the columns of the rotation matrix U are the eigenvectors of of Σp. In the rotated
coordinate system, (A.6) is of the form

(x′ − px)2

σ′2
px

+
(y′ − py)

2

σ′2
py

= c′, (A.9)

where

σ
′2
px

=
σ2

px
+ σ2

py
+
√

(σ2
px

− σ2
py

)2 + 4σ2
pxpy

2
, (A.10)

σ
′2
py

=
σ2

px
+ σ2

py
−
√

(σ2
px

− σ2
py

)2 + 4σ2
pxpy

2
, (A.11)

and
tan 2θ =

2σpxpy

σ2
px

− σ2
py

. (A.12)

The length of the major axis of the ellipse is given by
√

c′σ
′

px
, the length of the minor axis is given by√

c′σ
′

py
, and θ is the angle between the x−axis and the x′−axis. Statistically, there is a chance of 38% that

the true position of the point will fall within the error ellipse defined by c′ = 1. This ellipse is called the
standard ellipse or standard confidence region. Similarly, there is a 90% and 99% probability that the true
position would fall within the ellipses defined by c′ = 4.6 and c′ = 9.2 respectively.

Figure A.1a,b shows the results of the feature extraction algorithm of Section 5.1, applied to synthetic
images of a calibration grid. The extracted grid positions and their standard error ellipses are shown in
Figure A.1c,d. The width of the grid horizontal grid lines is very large, which results in a larger uncertainty
in the y−direction than in the x−direction,as can be seen from the error ellipses, which are elongated along
the y−axis. In Figure A.1b, the grid has been rotated by an angle of ≈ 17◦. This rotation introduces a
correlation (rxy = 0.2) between the errors in the x− and y−coordinates, thus the standard error ellipses are
rotated by the same angle.
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versity of Zürich, 1992.

N. A. Malik and T. Dracos. Interpolation schemes for three-dimensional velocity fields from scattered data
using Taylor expansions. J. Comput. Phys., 119:231–243, 1995.

N. A. Malik, T. Dracos, and D. Papantoniou. Particle tracking velocimetry in three-dimensional flows, Part
II: Particle tracking. Experiments in Fluids, 15:279–294, 1993.

N. S. Martys and J. G. Hagedorn. Multiscale modeling of fluid transport in heterogeneous materials using
discrete Boltzmann methods. Materials and Structures, 35:650–659, 2002.

M. Marxen, P. E. Sullivan, M. R. Loewen, and B. Jähne. Comparison of Gaussian particle center estimators
and the achievable measurement density for particle tracking velocimetry. Experiments in Fluids, 29:
145–153, 2000.

P. S. Maybeck. Stochastic Models, Estimation and Control. Academic, New York, 1979.

S. P. McKenna and W. R. McGillis. Performance of digital image velocimetry processing techniques. Ex-
periments in Fluids, 32:106–115, 2002.

P. Meer, D. Mintz, and A. Rosenfeld. Robust regression methods for computer vision: A review. Interna-
tional Journal of Computer Vision, 6(1):59–70, 1991.

C. D. Meinhart, S. T. Wereley, and J. G. Santiago. PIV measurements of a microchannel flow. Exp. Fluids,
27:414–419, 1999.

E. Memin and P. Perez. Dense estimation and object-based segmentation of the optical flow with robust
techniques. IEEE Transactions on Image Processing, 7(5):703–719, 1998.

W. Merzkirch. Flow Visualization, Second Edition. Academic Press, London, 1987.

L. Mortara and A. Fowler. Evaluations of charge-coupled device (CCD) performance for astronomical use.
Proc. SPIE, 290:28–33, 1981.
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J. Nikuradse. Strömungsgesetze in rauhen Rohren. Forsch. Arb. Ing.-Wes., 361, 1933.

K. Nishino, N. Kasagi, and M. Hirata. Three-Dimensional Particle Tracking Velocimetry Based on Auto-
mated Digital Image Processing. J. Fluid Eng., 111:384–391, 1989.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, 1999.

J. Nogueira, A. Lecuona, and P. A. Rodriguez. Local field correction PIV: on the increase of accuracy of
digital PIV systems. Experiments in Fluids, 27:107–116, 1999.

K. Ogawa, T. Matsuka, S. Hirai, and K. Okazaki. Three-dimensional velocity measurement of complex
interstitial flows through water-saturated porous media by the tagging method in the mri technique. Meas.
Sci. Technol., 12:172–180, 2001.

K. Ohba, T. Ishihara, and H. Inooka. Model-based velocity estimation using the kalman filter. In Proc. Flow
Visualization 6, pages 843–847, 1992.

K. Ohmi and H.-Y. Li. Particle tracking velocimetry with new algorithms. Meas. Sci. Technol., 11(6):
603–616, 2000.

K. Okamoto, Y. A. Hassan, and W. D. Schmidl. New tracking algorithm for particle image velocimetry.
Experiments in Fluids, 19:342–347, 1995.

K. Okamoto, S. Nishio, T. Kobayashi, T. Saga, and K. Takehara. Evaluation of the 3D-PIV Standard Images
(PIV-STD Project). J. Visualization, 3(2):115–124, 2000a.

K. Okamoto, S. Nishio, T. Saga, and T. Kobayashi. Standard images for particle-image velocimetry. Meas.
Sci. Technol., 11:685–691, 2000b.

249



250 BIBLIOGRAPHY

M. G. Olsen and R. J. Adrian. Out-of-focus effects on particle image visibility and correlation in microscopic
particle image velocimetry. Experiments in Fluids, 29:S166–S174, 2000.

J. Ortiz-Villafuerte, W. D. Schmidl, and Y. A. Hassan. Three-dimensional ptv study of the surrounding flow
and wake of a bubble rising in a stagnant liquid. Experiments in Fluids, 29:S202–S210, 2000.

D. Papantoniou and T. Dracos. Analyzing 3-d turbulent motions in open channel flow by use of stereoscopy
and particle tracking. In Advances in Turbulence 2, pages 278–285. Springer, 1989.

F. Pereirra, M. Gharib, D. Dabiri, and M. Modarress. Defocusing PIV: a three component 3-D DPIV
measurement technique. Application to bubbly flows. Experiments in Fluids, 29:S78–S84, 2000.

R. J. Perkins and J. C. R. Hunt. Particle tracking in turbulent flows. In Advances in Turbulence 2, pages
286–291. Springer, 1989.

B. Peuchot. Camera virtual equivalent model: 0.01 pixel detector. Computerized Medical Imaging and
Graphics, 17(4/5):289–294, 1993.

Photonfocus. MV-D1024-28 CMOS area scan camera, Camera User’s Manual, 2003. URL
www.photonfocus.com.

S. B. Pope. Lagrangian pdf methods for turbulent flows. Annu. Rev. Fluid Mech., 26:23–63, 1994.

A. K. Prasad. Stereoscopic particle image velocimetry. Experiments in Fluids, 29:103–116, 2000.

W. H. Press, S. A. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, New York, 1992.

R. G. Racca and J. M. Dewey. A method for automatic particle tracking in a three-dimensional flow field.
Experiments in Fluids, 6:25–32, 1988.

M. Raffel, C. Willert, and J. Kompenhans. Particle Image Velocimetry. A Practical Guide. Springer, Berlin,
Heidelberg, New York, 1998.

M. Reeves and N. J. Lawson. Evaluation and correction of perspective errors in endoscopic piv. Experiments
in Fluids, 36:701–705, 2004.

J. E. Rehm and N. T. Clemens. An improved method for enhancing the resolution of conventional double-
exposure single-frame particle image velocimetry. Experiments in Fluids, 26:497–504, 1999.

K. Robinson. Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech., 23:601–639, 1991.

S. Robson, T. A. Clarke, and J. Chen. The suitability of the Pulnix TM6CN CCD camera for photogram-
metric measurement. In Optical tools for manufacturing and advanced automation, volume SPIE 2067,
pages 66–77, 1993.

W. Rodi. Turbulence Models and their Application in Hydraulics. IAHR, Delft, 3rd edition, 1993.
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H. Spies, O. Beringer, H. Gröning, and H. Haussecker. Analyzing Particle Movements at Soil Interfaces.
In B. Jähne, H. Haussecker, and P. Geissler, editors, Handbook of Computer Vision and Applications,
volume 3, pages 699–718. Academic Press, New York, 1999.
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