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Zusammenfassung
Die vorliegende Arbeit befaßt sich mit Designoptimierungsproblemen in der Ro-
tordynamik. Bei der Rotation von starren Körpern treten Schwingungen auf, die
zu unerwünschten Geräuschen, sowie im Resonanzfall zu einer Beschädigung des
Rotors führen können. Das Optimierungsziel ist deshalb, das Design des Rotors so
zu verändern, daß bestimmte Resonanzgeschwindigkeiten vermieden werden und die
Amplitude im Resonanzfall reduziert werden kann. Der Ansatz wird dabei so formu-
liert, daß er auf eine allgemeine Klasse rotierender Körper mit verschiedenen Arten
von Lagern angewendet werden kann.
An erster Stelle im Designoptimierungsprozeß steht die Auswahl eines geeigneten
physikalischen Modells, das die für unseren Fall wichtigen Effekte der Rotations-
trägheit und der gyroskopischen Momente beinhaltet. Dann kann die Bewegungsglei-
chung für den stetigen Rotor aufgestellt werden. Die Lösung der Gleichung führt auf
ein verallgemeinertes Eigenwertproblem. Die resultierenden Eigenfrequenzen und Ei-
genmoden sind Zielgrößen unserer Optimierung. Die dazugehörigen Operatoren sind
aufgrund der gyroskopischen Terme nichtsymmetrisch. Unter geeigneten Randbedin-
gungen kann die Kompaktheit des Operators gezeigt werden, womit die Lösbarkeit
des Eigenwertproblems bewiesen wird. Es folgt die Existenz von Lösungen für das
Optimierungsproblem. Die Untersuchungen für diese Art von Optimierungsproble-
men sind eine Erweiterung bekannter Ergebnisse aus der Literatur.
Für die numerische Lösung des Problems ist eine Diskretisierung, basierend auf einer
Variationsformulierung, erforderlich. Zunächst beweisen wir dabei, daß die Lösun-
gen des diskretisierten Optimierungsproblems gegen die Lösungen des stetigen Op-
timierungsproblems konvergieren. Dann erfolgt die algebraische Formulierung der
Diskretisierung und die numerische Lösung der diskretisierten Bewegungsgleichung
wird angegeben. Im Anschluß werden geeignete Designvariablen ausgewählt und die
Strategie zur Lösung des Optimierungsproblems vorgestellt. Diese basiert auf einem
iterativen Optimierungsprozeß und der Anwendung von Algorithmen, die Gradien-
teninformationen nutzen. Die dafür benötigten Ableitungen werden bestimmt und
ein Verfahren zum Verfolgen einzelner Moden wird betrachtet. Außerdem werden
Ideen aufgezeigt, wie eine nichtleere Lösungsmenge mit Ansätzen der Mehrzielop-
timierung erreicht werden kann. Im weiteren werden die verwendeten Algorithmen
vorgestellt, die der Klasse der sequentiellen konvexen Programmierung angehören.
Im letzten Teil der Arbeit werden die numerischen Ergebnisse für zwei Turbola-
dermodelle präsentiert, deren Lager sowohl durch lineare Feder-Dämpfer-Modelle
als auch nichtlineare Flüssigkeitslager realisiert werden. Es zeigt sich, daß eine be-
deutende Reduktion der Masse des Rotors sowie der Amplitude der Zielmoden in
den betrachteten Fällen möglich ist. Weitere Verbesserungen ergeben sich durch
Änderungen der Lagerkonfiguration. Insgesamt führt dies zu einer Reduktion des
Geräuschpegels, einer geringeren Materialermüdung und einer größeren Effizienz.
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Abstract
The presented work focuses on design optimization problems in rotordynamics. The
rotation of rigid bodies causes vibrations which can lead to undesired noise, and
in the resonance case, to a damage of the rotor. Therefore, the target of the opti-
mization is to change the design of the rotor such that certain resonance frequencies
are avoided in the operating speed range and the amplitude in the resonance case
is reduced. The formulated approach can be applied to a general class of rotating
bodies with different kinds of support.
At the beginning of the design optimization process a suitable physical model is cho-
sen, which includes the important effects of rotary inertia and gyroscopic moments.
Then the equation of motion for the continuous rotor is obtained. The solution
of this equation leads to a generalized eigenvalue problem. The resulting natural
frequencies and eigenmodes are target values of our optimization. The correspond-
ing operators are non-symmetric due to the presence of the gyroscopic terms. Using
suitable boundary conditions the compactness of the operator can be shown which is
used to prove the solvability of the eigenvalue problem. The existence of solutions of
the optimization problem follows. The research for this kind of design optimization
problems extends known results of the literature.
For the numerical solution of the problem a discretization, based on a variational
formulation, is necessary. We prove that the solutions of the discretized optimiza-
tion problem converge towards the solution of the continuous optimization problem
if the discretization parameter tends to zero. Then the algebraic formulation of the
discretization and the numerical solution of the discretized equation of motion is
given. Suitable design variables are chosen subsequently and the strategy for the
solution of the optimization problem is presented. It is based on an iterative opti-
mization process and the application of algorithms which use gradient information.
The necessary sensitivities are determined and a mode tracking procedure is con-
sidered. Moreover, ideas are presented, how a nonempty set of solutions can be
achieved by multiobjective optimization approaches. Algorithms from the class of
sequential convex programming are applied to solve the numerical problems. Fi-
nally, computational results for two different turbocharger models are shown which
are supported either by linear spring and damper or nonlinear fluid-film bearings. A
significant reduction of mass of the rotor and of the amplitudes of the target modes
is achieved in the considered cases. Further improvements are obtained by changes
in the bearing configuration. All in all, the design optimization process for the ro-
tating bodies leads to a reduction of noise and fatigue of material and an increase
of efficiency.
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Chapter 1

Introduction

The research presented in this thesis deals with design optimization of rotating
bodies. The work has been motivated by a joint project between the University of
Heidelberg and the Toyota Central Research and Development Labs, Inc. (TCRDL)
in Japan which focused on modelling and optimization of a turbocharger. In this
context, the design optimization concept is formulated for a general class of rotating
bodies and the turbocharger is considered as an example for such a rotating body
in our numerical calculations.

Motivation

Rotating bodies play an important role in many industrial branches and one of them
is automotive design. In the construction of cars and in particular their engines many
such parts exist, e.g. crankshaft, gear-train and turbocharger. The rotation of these
parts causes vibrations which lead to different kinds of oscillations. The most im-
portant ones are unbalance oscillations caused by unbalance forces and self-excited
oscillations due to influence of lubricant films in fluid-film bearings. These vibrations
cause unfavourable noise and may result in fatigue of material and early mechanical
failure of engine parts. Therefore, a thorough analysis of rotor vibrations is neces-
sary and techniques how to reduce them are desired. Our research focuses on the
development of a design optimization technique to deal with these vibration prob-
lems. Having found a suitable optimization approach the cost of production could
be drastically reduced. The desired shape of rotating bodies fulfilling all necessary
constraints could be developed first on the computer such that less prototypes have
to be built in practice. Our studies use a given mathematical model for the de-
scription of the rotating body. Extensive studies focusing on an improvement of the
mathematical model in the special case of a fluid-film supported turbocharger were
done in another part of the joint project with TCRDL. This includes in particular
a prediction of the amplitudes of the vibrations. Results of this work can be found
in [51].

1
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Each rotating rigid body has an infinite number of natural frequencies and corre-
sponding eigenmodes. Problems arise for the resonance case, when the rotational
speed coincides with a certain natural frequency. Then the amplitude of the rotor
vibration becomes large and failure may occur. In the operational speed range of in-
terest only a small number of these modes is excited. We distinguish between rigid
modes and bending modes. Rigid modes leave the rotor undeformed but a whirl
around the rotational axis in the static position takes place. The most important
ones are called conical modes since they describe a conical motion. Bending modes
are modes describing a bending of the shaft (see Figure 1.1) and a deformation of
the shaft occurs. Large displacements from the static position accelerate the fatigue
of material and can lead to severe damage of the rotor. For more background about
vibration modes in rotordynamics we refer to [63].

Figure 1.1. Strongly amplified bending of rotor (Figure by TCRDL).

Our research focuses on the amplitude of conical and bending modes in the reso-
nance case excited by unbalance forces. The major source of the unbalance forces is
the geometric eccentricity of the center of gravity of a rotor from the centerline of
the shaft due to manufacturing error and material inhomogeneity. The general pro-
cedure to overcome this problem is to cut out certain pieces of the shaft or attached
blades by trial and error procedures. However, this balancing of the rotor only leads
to a limited reduction of the unbalance response and appropriate tools are desired
to optimize the shape of the rotor in order to further decrease the vibrations.

Design optimization means to improve the design of the object in a way that a
given cost functional representing certain properties of the object is maximized or
minimized subject to constraints. Therefore, a parameter-dependent model for the
description of the object has to be formulated and some of the parameters are allowed
to vary. These are our design variables. The most important optimization targets
in our case are



3

• the increase of the efficiency and

• the reduction of noise.

However, these targets are abstract targets and for the practical treatment of the
problem we need to focus on values which can be influenced directly and which lead
to the desired change of our abstract targets.

This can be achieved as follows.

• A higher efficiency would be obtained if the total mass was reduced and the
operating speed range was increased. This is possible if certain resonance
frequencies can be raised such that they are not excited when running the
rotor. The lighter weight and the higher maximum rotating speed lead to a
better response and higher aerodynamic efficiency of the rotor.

• A reduction of noise and increase of reliability could be achieved by reducing
the vibration level of the rotor. The vibration level is measured by a quantity
called unbalance response which is a measure for the amplitude of a certain
mode at its resonance rotational speed, called critical speed.

This strategy is summarized in Figure 1.2.

Reduction of mass
Increase of operating speed range

Increase of efficiency

Reduction of noiseReduction of vibration level

Figure 1.2. Considered optimization objectives and computational targets.

For the computational part we then proceed as shown in Figure 1.3. At first the
critical speed ω of the mode whose unbalance response is of interest has to be
determined. The upper diagram of Figure 1.3 shows that the natural frequency of
the mode rises with increasing rotational speed. The intersection of this curve with
the bisecting line yields the critical speed. The system is then excited with this
critical speed to determine the amplitude of the unbalance response. This is shown
by the blue curve in the lower diagram. The arrows indicate the optimization target
which is to reduce the amplitude and raise the critical speed. The yellow curve
represents the desired behaviour after the optimization process.



4 CHAPTER 1. INTRODUCTION

� ����� ������� ������� ������� �������

	 

� �
 �

��
���
��
�
�
�
�

� �
� �
��
�
��
� ��


� �
�
� �

�������

�������

�������

� �����

�����

�

ω
!#"�$ %�$ & "(' %�)+*-,+.�.�/ 021

3

354 ω

ω 6

ω 6

!#.(*7"�'�%�' 8�. 0 & 9(: .�;

<="�>2'

? ;@& $ & 8�%�)+*-,+.�.�/

Figure 1.3. Concept of vibration level optimization –
Determination of critical speed (top),

Optimization targets: decrease of unbalance response, increase of critical speed
(bottom).

Design optimization problems

The design optimization, focusing on the above mentioned targets, is essentially
treated by two optimization problems. The model problems are formulated with a
suitable objective function J and constraints on the natural frequencies and unbal-
ance response. Other formulations are also possible and discussed in the thesis.

(i) The first optimization problem considers only natural frequency constraints
and is given by

min J
subject to
λm1 ≥ λ∗m1,
λm2 ≥ λ∗m2.

The natural frequencies of certain modes λm1 and λm2 are increased above
given target values λ∗

m1 and λ∗m2. In this case the rotational speed is fixed. We
refer to this problem as natural frequency optimization problem and it
serves as kind of preparation for the following optimization problem.



5

(ii) In the second optimization problem the critical speed ω is determined first and
then for this fixed critical speed natural frequencies and eigenmodes are com-
puted yielding the expression of the unbalance response a. The corresponding
optimization problem looks like

min J
subject to
ωm1 ≥ ω∗

m1,
a(ωm2) ≤ a∗m2.

where ωm1 is the critical speed of a certain mode m1 and a the unbalance
response at the critical speed of a mode m2. The two modes may coincide. The
critical speed and the unbalance response are bounded from below and above,
respectively, by externally given target values ω∗

m1 and a∗m2. This problem is
called vibration level optimization problem.

Further details of the problem formulations are given in Chapter 5. At this point
they serve as motivation for the following work.

Purpose of research

Various design optimization problems concerning vibrating structures have been
treated in the literature [7, 39, 40]. However, work therein focuses on static vi-
bration problems and even if rotations are considered, effects of rotary inertia and
gyroscopic moments are neglected (see e.g. [6, 50]). But these effects are essential for
the class of rotating bodies to be studied here. Such systems are called gyroscopic
systems. They lack some nice mathematical properties because the underlying op-
erator is non-symmetric due to the influence of the gyroscopic term. This changes
the corresponding theory since we can no longer assume the natural frequencies and
eigenmodes to have real values but instead we have to work with complex values.

One central aim of the thesis is to prove theorems about the existence of solutions
for the given optimization problems based on a physical model including effects
of rotary inertia and gyroscopic moments. A Rayleigh beam model [44] is used
to describe the rotor and a second-order equation of motion is obtained [20, 63].
Transformation of it into a first-order system and separation of variables lead to
a generalized eigenvalue problem. The solution of this eigenvalue problem gives
natural frequencies and eigenmodes which are target of the optimization. Since
the governing operator is non-symmetric we cannot use results from the literature
(e.g. [27]) for the solution of the problem. But we are able to show that the operator
of the eigenvalue problem is compact. Then the solvability of the eigenvalue problem
can be shown and the spectrum is described. From these results the existence of
solutions of the optimization problem can also be derived. The theorems are proven
for the case of a continuous rotor.
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The second major target is to establish a method for the numerical solution of
given design optimization problems for gyroscopic systems. For this, a suitable fi-
nite element discretization based on a variational formulation is introduced. Using
results on spectral approximation of linear operators (see e.g. [4, 10, 34]) it can
be shown that the solution of the discretized optimization problem converges to-
wards the solution of the continuous problem if the discretization parameter tends
to zero. The discretized equation of motion leads to a generalized matrix eigen-
value problem. The solution of this matrix eigenvalue problem gives the critical
speeds and the eigenmodes of the vibrating body. For the optimization suitable
design variables have to be chosen and the necessary sensitivity analysis has to be
performed. Results on sensitivity analysis can be found in [25, 28, 45]. An iter-
ative optimization process is applied using algorithms from the class of sequential
convex programming to solve the optimization problem. Such algorithms are pre-
sented e.g. in [9, 25, 46, 54]. Certain modifications guarantee the convergence of
the algorithm towards a Karush-Kuhn-Tucker point of the discretized problem as
shown in [56, 66]. Since the optimization process focuses on certain modes, some
extensions to the algorithms have to be made. This comprises e.g. the inclusion of
a procedure which guarantees to follow the correct mode (see e.g. [33]). The target
values for the constraints are often set heuristically according to engineering de-
mands, where existence of solutions cannot be guaranteed. Studies were performed
how to choose them to guarantee a non-empty set of solutions to the optimization
problem. Indeed, threshold values, which can serve as bounds for the set of feasible
solutions, can be determined numerically, by reformulations of the problem into a
multiobjective optimization problem. Books on this subject include [27, 42].

For the numerical calculations a turbocharger in the engine of a passenger car is
studied as an example of a rotating body. It has to be mentioned that the presented
approach is applicable for general rotating bodies. This concrete rotor is only used as
an example for our numerical results. Nevertheless, we want to introduce it already
at this early stage since it serves as main motivation for our research and can be
kept in mind when studying the more general theory.

Example turbocharger

The efficiency of a combustion engine in a passenger car is limited by the amount of
air that can be used for combustion, i.e. the cylinder capacity. To increase efficiency
it is either possible to increase cylinder capacity or to compress the air which flows
into the cylinder. A turbocharger is a supercharging device to increase efficiency and
reduce fuel consumption based on the latter principle. It consists of a shaft to which
two blades are attached, impeller and turbine, and is supported by bearings. The
whole turbocharger is in a casing which is attached to the motorblock. A prototype
of a turbocharger of TCRDL can be seen in Figure 1.4.
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Figure 1.4. Prototype of turbocharger.

This turbocharger works as follows. Exhaust gas coming out of the cylinder drives
the turbine which is the right blade in Figure 1.4. Then shaft and disks start to
rotate and the impeller, the left blade, compresses air which is flowing into the
cylinder. Hence, the air is compressed higher as usual leading to a more efficient
combustion. Turbochargers rotate very fast with rotational speeds up to 210 000
revolutions per minute. More background about turbochargers can be found in [5].

Turbochargers are widespread for diesel engines to increase the torque and efficiency
of the engine system as well as the maximum power. Knocking phenomena do
not occur due to high pressure supercharging. This is why it can be used for a
wide range of vehicles, from small passenger cars to heavy trucks. For the gasoline
engine, the turbocharger has also gained more importance to downsize the engine
cylinder volume which leads eventually to lower fuel consumption, even though the
supercharging of gasoline engines has some difficulties to avoid knocking phenomena.

Description of the contents

This thesis is organized as follows.

In Chapter 2 the rotordynamical background including all necessary mechanics is
explained. A Rayleigh beam model is introduced as the model of our choice. Then
the equation of motion for a continuous rotor is derived which is the basis for the
forthcoming studies.

In Chapter 3 the equation of motion is considered in a functional analytical frame-
work. This is done under the assumption of mild boundary conditions. The equa-
tion of motion for free vibrations is solved by the separation of variables and an
approach with an exponential function for the time dependence which results in
a non-symmetric generalized eigenvalue problem. The operator of the generalized
eigenvalue problem is shown to be compact. The application of the Riesz-Schauder
spectral theorem yields the solvability of the equation of motion. Continuity of a
finite subset of eigenvalues and eigenvectors guarantees the existence of solutions
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for the natural frequency optimization problem and the vibration level optimization
problem.

In the first section of Chapter 4 the convergence of eigenvalues and eigenvectors of
a discretized problem towards those of the continuous problem is shown if the dis-
cretization parameter tends to zero. These results are used to show the convergence
of the solutions of the corresponding optimization problems. Then an algebraic
formulation for the discretized model is introduced. Moreover, the finite element
discretization scheme and the resulting structural matrices for the numerical treat-
ment of our problems are given. It is shown how the relevant expressions, such as
critical speed and unbalance response, are determined. An extension of the model
including nonlinear bearing forces is introduced in the last section of this chapter.

In Chapter 5 the strategy for the solution of the discretized design optimization prob-
lems is presented. Furthermore, the sensitivity analysis and crucial differentiability
questions are discussed which are necessary for the application of gradient-based
optimization algorithms. The technique of mode tracking is introduced which guar-
antees the consideration of the correct mode throughout the optimization process.
In the last section different formulations of the optimization problems using the
idea of multicriteria optimization are discussed. It is shown how this can be used to
ensure a non-empty solution set for the initial optimization problems.

Chapter 6 gives an overview about suitable algorithms for our design optimization
problems. Essentially, the class of sequential convex programming algorithms is re-
garded and the method of moving asymptotes is presented in detail. Extensions that
lead to a convergence of the algorithm towards a stationary point of the discretized
system are shown.

The numerical results are summarized in Chapter 7. It shows that the engineering
application problems can be solved satisfactorily. An increase of critical speeds
as well as a substantial reduction of mass and unbalance response are obtained.
Moreover, additional calculations yield bounds for the target values such that the
feasible domain is non-empty. These results hold for both the model with linear
spring and damper support and the model including nonlinear fluid-film forces of
the bearings.



Chapter 2

Physical model of rotating bodies

In this chapter a physical model is presented to describe the motion of our rotating
bodies. It captures the important effects of rotary inertia and gyroscopic moments
and is therefore also called gyroscopic system. Here we consider a rotor model with
distributed mass, stiffness and damping and to which rigid disks can be attached.
Such a model is called continuous rotor. In Section 2.1 the description of the rotor
by a beam model is introduced. This model serves also as basis for the finite element
model in Chapter 4. The equation of motion for the rotor based on this beam model
is derived in Section 2.2. It is obtained by using Hamilton’s principle of extremal
action and the Lagrange equations.

2.1 Beam model

Our rotor is a three-dimensional body which we want to describe by an one-dimen-
sional model based on theories of lateral beam vibrations. This approach is sufficient
to study all effects we are interested in and can be solved in moderate computational
time. Of course, this requires some form of approximation to the underlying physics.

There exist various beam theories to describe the motion of the rotor. A good
overview about different models can be found in [26] and we adopt the classification
stated there. The classical theory for the analysis of a transversely vibrating beam
is the Euler-Bernoulli beam which goes back to Jacob and Daniel Bernoulli as well
as Leonhard Euler. This model includes the strain energy and the kinetic energy
due to the lateral displacement. However, this beam model does not consider effects
of rotary inertia which are important in our case since we are dealing with rotating
bodies. These effects and the notion of gyroscopic moments are captured by an
extended model called Rayleigh beam upon which our research is based. A further
development which includes also shear deformation is the Timoshenko beam but is
not necessary for the scope of this research.

9
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We can summarize some general assumptions which hold for all mentioned models
(see e.g. [15] and [26]).

• One dimension (axial direction) is considerably larger than the other two.

• The material is linear elastic.

• The cross-sectional area is symmetric and is either constant or varies smoothly.

• Planes perpendicular to the centerline of the shaft remain perpendicular after
deformation.

• The angle of rotation is small so that the small angle assumption can be used.

We now want to derive the equation of motion for a rotating Rayleigh beam. We use
a static XY Z-coordinate system whose Z-axis coincides in the static position with
the centerline of the shaft. We consider a shaft of length l and the spatial variable
along the Z-axis is denoted by s. The motion of the rotor is described by the lateral
deflections and inclinations in each point along the Z-axis (see Figures 2.1 and 2.2).

Y
X

v(s)

Z

0

u(s)

s

l

Figure 2.1. Model of rotor in XY Z-coordinate system.

The lateral deflections in X- and Y -direction are denoted by u and v, respectively.
The inclination angle θ of the tangent to the rotor deflection curve can be decom-
posed into two components θx and θy which are the projections of θ onto the XZ-
and Y Z-plane, respectively. The deflections and inclinations also depend on the
time variable t. For the sake of simplicity this is not mentioned explicitly in each
equation.
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Z

r

θx(s)

X

s

Figure 2.2. Inclination angle in XZ-plane.

Since we assume the inclination angles to be small we have

θx(s) = u′(s) and θy(s) = v′(s), (2.1)

where a prime denotes a differentiation by s. The consideration of the inclination
motion leads to the gyroscopic moment in this system which is essential for our
further studies.

The shape of the rotor is described by a continuous function r ∈ C(I), where
I = [0, l] and r(s) is the radius of the shaft at position s. It is bounded from below
and above by fixed functions r and r̄ respectively and r, r̄ ∈ L∞(I).

2.2 Formulation of equation of motion

The derivation of the equation of motion is based upon the principle of extremal
action, also called Hamilton’s principle [20]. It is generally formulated for a system
of mass points. It says that the variation of the functional of action vanishes

δS(q) = 0, (2.2)

where the functional S is the integral over the Lagrange function L which is describ-
ing the mechanical system,

S =

∫ t2

t1

L(q, q̇, t) dt,

and q is a vector of generalized coordinates. A dot indicates differentiation by t.

It can be shown [20, 36] that (2.2) is equivalent to the Lagrange equations
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d

dt

∂L

∂q̇i
=
∂L

∂qi
. (2.3)

The Lagrange function L is given by the difference between kinetic energy T and
the potential energy U

L = T − U. (2.4)

If external forces are acting upon the rotor, an additional potential energy term Uf

appears in the system [20]. Then forced vibrations occur in contrast to the previous
case of free vibrations and we have

L = T − U − Uf . (2.5)

Moreover, we distinguish between damped and undamped systems. If the system is
damped a Rayleigh dissipation function is defined by

F (u̇, v̇) =
1

2
c(u̇2 + v̇2),

where c is a distributed damping parameter (see e.g. [63]). The Lagrange equations
are then extended as follows

d

dt

∂L

∂q̇i
−
∂L

∂qi
+
∂F

∂q̇i
= 0, (2.6)

where the Lagrange function L is given by (2.4) or (2.5). In the case of external
forces (i.e. Lagrange function (2.5)) we always consider damped systems.

Remark. In our case of a continuous rotor, which is the limit of a system of mass
points, the Lagrange equations also hold (see [20]).

Equation of motion for free vibrations

In the case of free vibrations the Lagrange function (2.4) is relevant and the expres-
sions for the kinetic energy T and the potential energy U for our system have to
be determined. The formulation of the energy terms T and U follows [63]. Then
the equation of motion is derived by determining the expressions of the Lagrange
equations (2.6).

The kinetic energy T can be decomposed into a term for translational energy Ttrans

and a term for rotational energy Trot,

T = Ttrans + Trot.
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The translational term is given by

Ttrans =

∫ l

0

µ(s)

2
(u̇2(s) + v̇2(s)) ds,

where µ(s) = r2(s)πρ is the mass per unit length and ρ the density of the shaft
material. The motion in Z-direction is neglected. The rotational term Trot is a
quadratic form of the angular velocity Ω. In our case the axes of the coordinate
system coincide with the principal axes of the moments of inertia and then we
obtain the following expression,

Trot =
1

2

∫ l

0

(
Id(s)Ω

2
X(s) + Id(s)Ω

2
Y (s) + Ip(s)Ω

2
Z(s)

)
ds,

where the moments of inertia Id about the X- and Y -axes are called the diametral
moments of inertia and are given by Id(s) = r4(s)πρ/4. The moment of inertia Ip

about the Z-axis is called the polar moment of inertia and is Ip(s) = r4(s)πρ/2.

The components (ΩX ,ΩY ,ΩZ) of the angular velocity Ω can be expressed by means
of Eulerian angles. To avoid the introduction of too much notation, which we do
not need later, we do not go into details of this technique and refer to [20] or
[36]. Instead, we immediately want to state the result which is obtained under the
assumption of small shaft inclination angles θx and θy. The rotational energy can
then be written as

Trot =

∫ l

0

(
1

2
Id(s)(φ̇

2
x(s) + φ̇2

y(s)) +
1

2
Ip(s)(ω

2 + ω(φ̇x(s)φy(s) − φx(s)φ̇y(s)))

)

ds,

where ω is the constant rotational speed of the shaft. In our gyroscopic setting a
slight modification has been made in the notation and the variables

φx = −θy and φy = θx (2.7)

were introduced. The angles φx and φy are now rotation angles in the Y Z- and
XZ-plane and the rotation is about the X- and Y -axis, respectively.

The total potential energy of a beam is the difference of internal and external en-
ergies. In the Rayleigh beam model the internal strain energy accounts only for
bending moment deformations. All other effects, notably transverse shear and axial
forces, are ignored [15]. They are captured in the Timoshenko beam theory, but this
concept is not needed in our analysis. The external energy accounts for the applied
forces and is neglected initially. The internal potential energy U is then given by

U =
1

2

∫ l

0

U(s) ds =
1

2

∫ l

0

(MXZ(s)u′′(s) +MY Z(s)v′′(s)) ds,
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where the bending moments working in the XZ- and Y Z-plane are given by

MXZ(s) = Eu′′(s)

∫

A

r2(s)dA = EIa(s)u
′′(s) (2.8)

and

MY Z(s) = Ev′′(s)

∫

A

r2(s)dA = EIa(s)v
′′(s), (2.9)

where Ia denotes the moment of inertia of the cross-section A with respect to the Z-
axis and is given by Ia(s) = πr4(s)/16. The material parameter E denotes Young’s
modulus. The product EIa is called the bending rigidity of the beam. The deformed
beam axis curvature is to first order given by u′′ and v′′, respectively.

To apply the Lagrange equations we now have to find suitable generalized coordi-
nates. It is obvious to take the above introduced lateral deflections and inclinations.

Then the generalized coordinates in each point along the Z-axis are fixed as

q1 = u, q2 = v, q3 = φx, q4 = φy

and we refer to q = (q1, q2, q3, q4) as displacement vector. The values of the general-
ized coordinates depend on s and t which is suppressed to shorten notation.

With these generalized coordinates the kinetic and potential energy can be written
as

T =

∫ l

0

(
µ(s)

2
(q̇2

1 + q̇2
2) +

1

4
Ip(s)(q̇

2
3 + q̇2

4) +
1

2
Ip(s)(ω

2 + ω(q̇3q4 − q3q̇4))

)

ds

and

U =
1

2

∫ l

0

U(s) ds =
1

2

∫ l

0

(
EIa(s)(q

′′

1)
2 + EIa(s)(q

′′

2)
2
)
ds.

The functional of action S is now [20]

S =

∫ t2

t1

∫ l

0

L(q, q̇, q′′, s, t) ds dt, (2.10)

and the integral density L is given by

L =
µ

2
(q̇2

1 + q̇2
2) +

1

4
Ip(q̇

2
3 + q̇2

4) (2.11)

+
1

2
Ip(ω

2 + ω(q̇3q4 − q3q̇4)) −
1

2
(EIa(q

′′

1)
2 + EIa(q

′′

2)
2).

The Lagrange equations at one certain point read as [20]

∂L

∂q
=

d

dt

∂L

∂q̇
−

d2

ds2

∂L

∂q′′
. (2.12)
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Then the derivative after each of the four generalized coordinates can be determined,
yielding

(I) q1 = u : µü+ (EIau
′′)′′ = 0,

(II) q2 = v : µv̈ + (EIav
′′)′′ = 0,

(III) q3 = φx : 1
2
φ̈xIp + Ipωφ̇y = 0,

(IV ) q4 = φy : 1
2
φ̈yIp − Ipωφ̇x = 0.

With φx = −v′ and φy = u′ as given by (2.1) and (2.7) we obtain

(III ′) −1
2
v̈′Ip + Ipωu̇

′ = 0,
(IV ′) 1

2
ü′Ip + Ipωv̇

′ = 0.

The units in equation (I) and (II) are [kg/s2] whereas for (III ′) and (IV ′) we have
[kg m/s2]. Therefore, we differentiate the latter two equations again by s to obtain
the same units as in the first two equations,

(III ′′)
(
−1

2
v̈′Ip
)
′

+ (Ipωu̇
′)′ = 0,

(IV ′′)
(

1
2
ü′Ip

)
′

+ (Ipωv̇
′)′ = 0.

The aim is to have one equation of motion in the end. A first step is done by reducing
the system to a system of two equations. This can be achieved by subtracting
equations (I) and (IV ′′),

µü−

(
1

2
ü′Ip

)
′

− (Ipωv̇
′)
′
+ (EIau

′′)
′′

= 0, (2.13)

and adding (II) and (III ′′),

µv̈ −

(
1

2
v̈′Ip

)
′

+ (Ipωu̇
′)
′
+ (EIav

′′)
′′

= 0. (2.14)

Finally, we introduce a complex-valued notation by setting z = u + iv and obtain
one single equation of motion.

The equation of motion governing free vibrations of a continuous rotor
without damping is given by

µz̈ −
1

2
(Ipz̈

′)
′
+ i (Ipωż

′)
′
+ (EIaz

′′)
′′

= 0. (2.15)

The next step is to add damping to the system. By differentiating the Rayleigh
dissipation function F = c(u̇2 + v̇2)/2 we obtain

∂F

∂u̇
= cu̇ and

∂F

∂v̇
= cv̇.
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The damping terms can be added immediately to the Lagrange equation (2.6).

The equation of motion governing free vibrations of a continuous rotor
with damping is given by

µz̈ −
1

2
(Ipz̈

′)
′
+ i (Ipωż

′)
′
+ cż + (EIaz

′′)
′′

= 0. (2.16)

For a complete description of the system initial values and boundary conditions due
to rotor support have to be formulated.

Rotor support and boundary conditions

In our case, simple support and linear spring and damper support are of relevance.
We want to state the boundary conditions for both cases. Conditions of order zero
and one are called essential boundary conditions whereas those of higher order are
natural boundary conditions since they are fulfilled implicitly (see e.g. [14] or [16]).

(a) Simple support at both ends.

Figure 2.3. Beam with simple support.

In this case transverse displacements are not possible, but end rotations are
permitted. The boundary conditions can be written as

z(0, t) = 0, z(l, t) = 0, z′′(0, t) = 0, z′′(l, t) = 0.

(b) Linear spring support in the center part of the rotor yields free-free boundary
conditions at the end.

Figure 2.4. Beam with spring support.

This implies that the moments and shearing forces vanish at the end points
(see also [37]). The moments MXZ and MY Z are given by (2.8) and (2.9). The
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shearing forces in our system including rotary inertia and gyroscopic moments
are [63]

Fx =
1

2
Ipü

′ + Ipωv̇
′ − (EIau

′′)′,

Fy =
1

2
Ipv̈

′ − Ipωu̇
′ − (EIav

′′)′.

The boundary conditions are then as follows

MXZ(s) = MY Z(s) = Fx(s) = Fy(s) = 0 for s = 0, s = l.

In the complex formulation z = u+ iv this reduces to

M = EIaz
′′ and F =

1

2
Ipz̈

′ − iIpωż
′ − (EIaz

′′)′

and
M(s) = F (s) = 0 for s = 0, s = l.

The case of support by fluid-film bearings is discussed later in Section 4.5.

Equation of motion for forced vibration

In practice, unbalance forces cannot be avoided. They appear due to the eccentricity
of the center of gravity from the centerline of the shaft. In this case the additional
potential energy term Uf in (2.5) has to be specified. We assume a description of
the unbalance forces by a force density funb(s) to obtain

Uf = −

∫ l

0

(u(s)funb(s) + v(s)funb(s)) ds. (2.17)

In general, unbalance forces are periodically excited and depend on mass m, eccen-
tricity e and rotational speed ω of the rotor. They are expressed as (see e.g. [63]
and [23])

funb(s) = me(s)ω2eiωt.

The integrand of (2.17) is added to the integral density of the action functional given
by (2.11). Inserting into the Lagrange equations (2.12) and proceeding as above, an
extended equation of motion is obtained.

The equation of motion governing forced vibrations of a continuous rotor
is given by

µz̈ −
1

2
(Ipz̈

′)
′
+ i (Ipωż

′)
′
+ cż + (EIaz

′′)
′′

= funb. (2.18)

Using a suitable solution technique for the introduced equations of motion these can
be transformed into an eigenvalue problem giving the natural frequencies and mode
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shapes which are the target objects of our optimization problems. This is done by
the separation of variables and a solution approach by an exponential function for
the time dependence. The physical motivation behind this approach is that the
gyroscopic moment working in the rotor leads to a deflection curve and that the
shaft whirls with a frequency keeping the mode shape constant in each mode [63].

The solution of the equation of motion for the continuous and a discretized rotor as
well as some statements about the existence of solutions are shown in Chapters 3
and 4.



Chapter 3

Existence theorems

In this chapter we prove the existence of solutions for the two optimization problems
mentioned in Chapter 1, i.e. the natural frequency optimization problem and the
vibration level optimization problem. In a first step the equation of motion for
the rotor, which is derived in Chapter 2, is solved in Section 3.1. This is achieved
by the separation of variables which leads to an eigenvalue problem and which is
giving the natural frequencies and eigenmodes. The operator in the eigenvalue
problem is shown to be compact and the spectrum is described by the theorem of
Riesz-Schauder. This result is then used to show the existence of solutions for the
optimization problem in Section 3.2. An overview about the theorems of functional
analysis which are applied can be found in Appendix A.

Similar results for the non-rotating case can e.g. be found in Haslinger and Mäkinen
[27] and Fichera [16]. The inclusion of the gyroscopic term, however, yields a non-
symmetric system and the theory of compact operators is used. Hence our approach
is an extension of existing results in the literature.

3.1 Solvability of equation of motion

Let us first consider the equation of motion for undamped free oscillations which
was deduced in the previous chapter

µz̈ −
1

2
(Ipz̈

′)′ + i(Ipωż
′)′ + (EIaz

′′)′′ = 0, (3.1)

where µ, Ip and Ia are given in Section 2.2. These parameters depend on the rotor
shape function r and hence on the spatial variable s. The function r belongs to the
set of admissible functions U which is given by

U = {r ∈ C(I), r ≤ r ≤ r̄, |r(x) − r(y)| ≤ L0|x− y|, ∀x, y ∈ I}, (3.2)

19
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where I = [0, l] as in Chapter 2. The additional Lipschitz condition with constant L0

makes U a compact subset of C(I) which follows from the theorem of Arzelà-Ascoli.
Equation (3.1) is now transformed into an eigenvalue problem by the separation of
variables and an exponential function approach for the time variable. Every solution
of the eigenvalue problem leads to a solution of the original equation of motion and
we just focus on these special solutions.

For the theoretical studies of this chapter simple support boundary conditions at
both ends of the rotating body are used, i.e.

z(0, t) = 0, z(l, t) = 0, z′′(0, t) = 0, z′′(l, t) = 0.

The separation of variables is now written as

z(s, t) = ϕ(s)ψ(t),

where ϕ and ψ only depend on one of the variables. The original equation of motion
(3.1) becomes

µϕψ̈ −
1

2
(Ipϕ

′)
′
ψ̈ + i (Ipωϕ

′)
′
ψ̇ + (EIaϕ

′′)
′′
ψ = 0 (3.3)

and the boundary conditions are satisfied if

ϕ(0) = 0, ϕ(l) = 0, ϕ′′(0) = 0, ϕ′′(l) = 0. (3.4)

Equation (3.3) can immediately be transformed into the desired eigenvalue problem.
However, before doing this, to avoid a quadratic eigenvalue problem, the second-
order-equation (3.3) is transformed into a first-order-system by writing

(

µϕ− 1
2
(Ipϕ

′)′ 0

0 µϕ− 1
2
(Ipϕ

′)′

)(

ψ̈

ψ̇

)

=

(

−i(Ipωϕ
′)′ −(EIaϕ

′′)′′

µϕ− 1
2
(Ipϕ

′)′ 0

)(

ψ̇

ψ

)

.

Setting ψ(t) = eλt we want to solve for Φ = (φ1, φ2) the equation

λA(φ1, φ2) = B(φ1, φ2), (3.5)

where

A(φ1, φ2) =

(

µφ1 −
1
2
(Ipφ

′

1)
′

µφ2 −
1
2
(Ipφ

′

2)
′

)

and B(φ1, φ2) =

(

−i(Ipωφ
′

1)
′ − (EIaφ

′′

2)
′′

µφ1 −
1
2
(Ipφ

′

1)
′

)

.

Once (3.5) is solved we may set ϕ = φ2 and obtain φ1 = λφ2 = λϕ from the second
line and the solution property for the first line.
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Proposition 3.1. Let ϕ satisfy the boundary conditions (3.4). The function ϕ(s)eλt

is a solution of equation (3.1) if and only if (λϕ, ϕ)T is a solution of system (3.5).

Proof. We assume that ϕ(s)eλt solves (3.1). Then it is obvious that ϕ(s)eλt solves
(3.3) where we set ψ(t) = eλt. This equation can be transformed into a first order
system as shown above. If we then set φ1 = λϕ and φ2 = ϕ the eigenvalue problem
(3.5) is satisfied.

For the other direction we assume that (λϕ, ϕ)T is a solution of (3.5). Then the first
line of (3.5) yields that ϕ and ψ(t) = eλt solve the first-order system (3.3). Then
z(s, t) = ϕ(s)eλt is a solution of (3.1). 2

To prove the existence of solutions of eigenvalue problem (3.5) and thus for the
equation of motion (3.1) a suitable analytical framework has to be introduced. We
define the two Sobolev spaces V1 and V2 on I = [0, l] by

V1 = {v ∈ H1(I)| v(0) = 0, v(l) = 0} = H1
0 (I),

‖v‖V1 =

(∫

I

|v(s)|2 ds+

∫

I

|v′(s)|2 ds

)1/2

and
V2 = {v ∈ H2(I)| v(0) = 0, v(l) = 0},

‖v‖V2 =

(∫

I

|v(s)|2 ds+

∫

I

|v′(s)|2 ds+

∫

I

|v′′(s)|2 ds

)1/2

and their dual spaces are denoted by V ′

1 = H−1(I) and V ′

2 , respectively. The condi-
tions on the second derivatives are not imposed but turn out to be satisfied as the
natural boundary conditions.

The formulas (3.1) and (3.5) are the classical formulation of the equation of
motion and the eigenvalue problem. This is sufficient for the existence theorems of
this chapter. For the convergence analysis of a discretized model which is done in
Chapter 4 the weak formulation is also needed and is therefore introduced now.

The weak formulation of the equation of motion is obtained by multiplying equa-
tion (3.1) by test functions η ∈ V2 and integrating the whole equation over the
interval I. Partial integration and the use of boundary conditions (3.4) yields
(∫

I

µϕη̄ ds+
1

2

∫

I

Ipϕ
′η̄′ ds

)

ψ̈ −

(

i

∫

I

Ipωϕ
′η̄′ ds

)

ψ̇ +

(∫

I

EIaϕ
′′η̄′′ ds

)

ψ = 0.

Setting ψ(t) = eλt and Φ = (φ1, φ2) the weak formulation of the eigenvalue problem
(3.5) is

λa(Φ, η) = b(Φ, η) for η ∈ V2, (3.6)
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where

a(Φ, η) = a(φ1, φ2, η) =





∫
µφ1η̄ ds+ 1

2

∫
Ipφ

′

1η̄
′ ds

∫
µφ2η̄ ds+ 1

2

∫
Ipφ

′

2η̄
′ ds





and

b(Φ, η) = b(φ1, φ2, η) =




−i
∫
Ipωφ

′

1η̄
′ ds−

∫
EIaφ

′′

2η̄
′′ ds

∫
µφ1η̄ ds+ 1

2

∫
Ipφ

′

1η̄
′ ds



 .

Remark. All lemmas and theorems formulated for the classical case then obviously
hold for the weak case as well.

The crucial point now is to transform the generalized eigenvalue problem given by
(3.5) into a standard one by inverting one of the operators A or B, then to show
the compactness of the resulting operator which allows the application of the Riesz-
Schauder spectral theorem (see Appendix A).

We consider the operator M : V1 → V ′

1 formally written as

M(u) = µu−
1

2
(Ipu

′)′ (3.7)

and for any v ∈ V1 defined by

M(u)(v) =

∫ (

µ(s)u(s)v̄(s) +
1

2
Ip(s)u

′(s)v̄′(s)

)

ds,

and the operator L : V1 × V2 → V ′

2 formally written as

L(u1, u2) = −i(Ipωu
′

1)
′ − (EIau

′′

2)
′′

and for any v ∈ V2 defined by

L(u1, u2)(v) = i

∫

ωIp(s)u
′

1(s)v̄
′(s) ds−

∫

EIa(s)u
′′

2(s)v̄
′′(s) ds.

Then eigenvalue problem (3.5) reads as

λ

(
M(φ1)
M(φ2)

)

︸ ︷︷ ︸

=A(φ1,φ2)

=

(
L(φ1, φ2)
M(φ1)

)

︸ ︷︷ ︸

=B(φ1,φ2)

, (3.8)

where A : V1 × V1 → V ′

1 × V ′

1 and B : V1 × V2 → V ′

2 × V ′

1 . Note that A and B
map into different spaces. However, if we can find an inverse operator to B we can
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construct an operator B−1A which then is well-defined since V ′

1 ⊂ V ′

2 and we have
to solve

B−1AΦ = ζΦ, (3.9)

where ζ = 1/λ.

Now the goal is to show that such an operator B−1 exists.

We first want to prove two lemmas giving us the invertibility of the operator M as
introduced above and the operator K : V2 → V ′

2 which is the second term of the
operator L and is given formally by

K(u) = (EIau
′′)′′ (3.10)

and for any v ∈ V2

K(u)(v) =

∫

EIa(s)u
′′(s)v̄′′(s) ds,

respectively. As usual in such cases the theorem of Lax-Milgram is used (see Ap-
pendix A).

CONVENTION: In this chapter the letter C stands for a generic positive constant
attaining different values at different places

Lemma 3.1. The operator M : V1 → V ′

1 given by (3.7) is invertible.

Proof. To apply the theorem of Lax-Milgram we have to show that the associated
sesquilinear form m : V1 × V1 → C given by

m(u, v) =

∫

I

µ(s)u(s)v̄(s) ds+
1

2

∫

I

Ip(s)u
′(s)v̄′(s) ds

is continuous and coercive.

The continuity and coercivity follow from the boundedness of µ and Ip. Indeed, we
have

|m(u, v)| =

∣
∣
∣
∣

∫

µ(s)u(s)v̄(s) ds+
1

2

∫

Ip(s)u
′(s)v̄′(s) ds

∣
∣
∣
∣

≤ C

∣
∣
∣
∣

∫

u(s)v̄(s) ds+

∫

u′(s)v̄′(s) ds

∣
∣
∣
∣
= C|〈u, v〉V1| ≤ C‖u‖V1‖v‖V1.

and

m(u, u) =

∫

µ|u(s)|2ds+
1

2

∫

Ip|u
′(s)|2ds

≥ C

(∫

|u(s)|2ds+

∫

|u′(s)|2ds

)

= C‖u‖2
V1
.
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Then the application of Lax-Milgram yields

m(u, v) = M(u)(v)

and the operator M : V1 → V
′

1 is invertible. 2

Lemma 3.2. The operator K : V2 → V ′

2 given by (3.10) is invertible.

Proof. The proof is as above. The associated sesquilinear form k : V2 × V2 → C

given by

k(u, v) =

∫

EIau
′′(s)v̄′′(s)ds

is shown to be continuous and coercive.

The continuity is obvious again due to the boundedness of Ia.
For the coercivity we have to apply the standard Poincaré inequality (Theorem
A.3) as well as a generalized form of it (Theorem A.4) since we have no boundary
conditions for the first derivatives. The set S in Theorem A.4 is chosen to be

S =

{

v ∈ H1(I)|

∫ l

0

v = 0

}

and having in mind that v = u′ and u ∈ V2. This set is a subspace of H1(I) and
hence a cone with apex 0. Then condition (1) of Theorem A.4 is fulfilled with
C0 = 0, since for any u0 ∈ S and ξ 6= 0, we have u0 + ξ 6∈ S. Then the estimate

∫

|u′(s)|2 ds ≤ C

∫

|u′′(s)|2 ds ∀u′ ∈ S

is obtained.
The coercivity follows immediately

‖u‖2
V2

=

(∫

|u(s)|2 ds+

∫

|u′(s)|2 ds+

∫

|u′′(s)|2 ds

)

≤ C

∫

|u′(s)|2 ds+

∫

|u′′(s)|2 ds

≤ C

∫

|u′′(s)|2 ds

≤ C

∫

EIa(s)u
′′(s)ū′′(s) ds = C k(u, u).

The first inequality holds due to the standard Poincaré inequality and the second
one due to the generalized Poincaré inequality. The remaining expression can again
be estimated due to the boundedness of Ia leading to the last inequality.
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Then, by applying Lax-Milgram,

k(u, v) = K(u)(v)

and K is invertible. 2

Knowing the invertibility of M and K we can construct an inverse operator to the
operator B given in (3.8).

Lemma 3.3. To the operator B given in (3.8) there exists an inverse operator
B−1 : V ′

2 × V ′

1 → V1 × V2.

Proof. We consider an arbitrary right-hand-side (f1, f2) ∈ V ′

2 × V ′

1 and look at the
system B(φ1, φ2) = (f1, f2)

T , i.e.

L(φ1, φ2) = −i(Ipωφ
′

1)
′ − (EIaφ

′′

2)
′′ = f1 ∈ V ′

2 , (3.11)

M(φ1) = µφ1 −
1

2
(Ipφ

′

1)
′ = f2 ∈ V ′

1 . (3.12)

From Lemma 3.1 we know that M is invertible. Hence we can write

φ1 = M−1f2 ∈ V1.

Then the equation (3.11) can be written as

−(EIaφ
′′

2)
′′ = i(Ipω(M−1f2)

′)′ + f1 ∈ V ′

2 .

Lemma 3.2 shows that the operator on the left-hand-side is invertible and we have

φ2 = −K−1(i(Ipω(M−1f2)
′)′ + f1) ∈ V2.

Thus we have found a preimage (φ1, φ2) ∈ V1 × V2. 2

The next step is to show that the operator B−1A is compact. The notion of com-
pactness requires a mapping from a certain space onto itself. We notice that the
space V1 × V2 is the correct space for which the operator B−1A compact.

Lemma 3.4. The operator B−1A : V1 × V2 → V1 × V2 is compact.

Proof. We apply the operator on an arbitrary pair (φ1, φ2) ∈ V1 × V2. Note that
we restrict the second component to be in V2 whereas A also allows V1-functions.
Then we have

B−1A(φ1, φ2) = B−1(M(φ1),M(φ2))

= (M−1(M(φ2)),−K
−1(i(Ipω(M−1(M(φ2)))

′)′ +M(φ1)))

= (φ2,−K
−1(i(Ipωφ

′

2)
′ +M(φ1))).
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We show that the mapping is compact in each component.
For the first component we have

(φ1, φ2)
B−1A
7→ φ2

id
7→ φ2,

V1 × V2 → V2

cpt
↪→ V1,

and for the second component

(φ1, φ2) 7→ i(Ipωφ
′

2)
′ +M(φ1)

id
7→ . . .

K−1

7→ −K−1(i(Ipωφ
′

2)
′ +M(φ1)),

V1 × V2 → V ′

1

cpt
↪→ V ′

2 → V2.

All operators are linear and continuous and the composition with a compact em-
bedding yields a compact operator. Hence, the operator B−1A : V1 × V2 → V1 × V2

is compact. 2

Theorem 3.1. Let T := B−1A. The spectrum σ(T ) is an at most countable set
with no accumulation point different from zero. Let σ ′(T ) be a finite system of
eigenvalues, which is separated from the rest σ ′′(T ) of σ(T ) by a closed Jordan
curve. All eigenvalues λ of σ′(T ) depend continuously on the shape function r. The
same holds for the set of corresponding eigenvectors Φ.

Proof. Since the operator B−1A is compact the spectral theorem of Riesz-Schauder
can be applied and the eigenvalue problem (3.9) has a solution with eigenvalues ζi

with at most one accumulation point at zero. This means that the values λi = 1/ζi
tend to infinity. It also implies that the spectrum can be separated into two parts
by a closed Jordan curve with the part inside the curve consisting of a finite number
of eigenvalues and not containing zero. Then from Kato [31, IV.3.5], it follows that
the eigenvalues and eigenvectors depend continuously on the closed operator B−1A
and hence also on the shape function r. 2

Remark. Our focus lies only on eigenvalues belonging to modes which are excited
in the respective operating speed range. Their number is limited and can be included
in a finite system of eigenvalues and can be separated from the accumulation point
zero. Then the continuity argument of Theorem 3.1 holds for this case.

3.2 Solvability of optimization problems

(I) Natural frequency optimization problem

As pointed out in Chapter 1, the design optimization problem we want to study for
a continuous rotor is the following: Find a thickness distribution which minimizes
a given continuous cost functional J subject to natural frequency and unbalance
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response constraints as given in the introduction. The rotor shape function r is
bounded from below and above. More precisely, r belongs to the class of admissible
functions U as in (3.2).

The first optimization problem deals with a continuous objective function J and a
constraint on the natural frequency λm of a certain mode m and is written as

minr J(r)
subject to
λm(r) ≥ λ∗m,
r ∈ U.

(P1)

In our applications the function of the total mass of the rotor is often chosen as
cost functional J . For the natural frequency λm a lower bound λ∗

m is given. The
constraint on the natural frequencies can be put into U as defined in (3.2) giving
the (new) class of admissible functions for this problem

Uc = {r ∈ U |λm(r) ≥ λ∗m}.

The theory of the last section enables us to show the existence of solutions for
problem (P1).

Theorem 3.2. Let Uc 6= ∅. Then the optimization problem (P1) has a solution.

Proof. Due to Theorem 3.1 and the subsequent remark λm is a continuous function
in r. Hence Uc is a compact subset of C(I). Moreover, the objective function
is assumed to be continuous in r. Since a continuous function on a compact set
possesses a minimum the existence of solutions is proven. 2

(II) Vibration level optimization problem

The second optimization problem deals with constraints on the vibration level. The
relevant terms are critical speed and unbalance response. In contrast to the previous
problem where the natural frequency for a given rotational speed is considered, we
focus here directly on the critical speed of the mode of interest. The system is
excited for this certain frequency and the unbalance response is calculated.

For this problem damped systems have to be studied since otherwise the amplitudes
in the resonance case are unbounded. In contrast to (3.1) the equation of motion
then contains a damping term cż and the force term f on the right-hand-side.

µz̈ −
1

2
(Ipz̈

′)′ + i(Ipωż
′)′ + (EIaz

′′)′′ + cż = f, (3.13)

where c is a (viscous) damping coefficient and f(s, t) = f̃(s)eiωt is an unbalance
force acting periodically on the rotor. The spatial force density f̃ is assumed to be
a continuous function, i.e. f̃ ∈ C(I).
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We now want to show how critical speed and unbalance response are determined
analytically and then prove the solvability of the vibration level optimization prob-
lem. The critical speed is denoted by ω since it is identical to a certain rotational
speed. Natural frequencies for the critical speed or another rotational speed are
further denoted by λ.

Critical speed

To determine the critical speeds analytically, the homogeneous equation is studied

µz̈ −
1

2
(Ipz̈

′)′ + i(Ipωż
′)′ + cż + (EIaz

′′)′′ = 0. (3.14)

Similar to the development in Section 3.1 this system can be transformed into an
eigenvalue problem by the separation of variables z(s, t) = ϕ(s)ψ(t). In this case
the natural frequency λ is equated with the rotational speed ω, such that ψ(t) =
eiλt = eiωt. We obtain

iωÃ(φ1, φ2) = B̃(φ1, φ2), (3.15)

where

Ã(φ1, φ2) =




µφ1 + 1

2
(Ipφ

′

1)
′

µφ2 −
1
2
(Ipφ

′

2)
′



 and B̃(φ1, φ2) =




−cφ1 − (EIaφ

′′

2)
′′

µφ1 −
1
2
(Ipφ

′

1)
′



 .

Again φ2 = ϕ and φ1 = iωφ2. Continuity and coercivity also holds for the operator
µφ1 + 1

2
(Ipφ

′

1)
′. Then all lemmas and theorems of Section 3.1 can be copied resulting

in the following theorem for this case.

Theorem 3.3. The spectrum σ(T̃ ) of the operator T̃ = B̃−1Ã is an at most count-
able set with no accumulation point different from zero. Every finite subset σ ′(T̃ )
which is separated from σ(T̃ ) \ σ′(T̃ ) by a closed Jordan curve depends continuously
on the shape function r.

Remark. The solution of eigenvalue problem (3.15) gives all critical speeds for a
given rotor shape function r. For the further unbalance response analysis a certain
critical speed belonging to a mode of interest is selected and taken as fixed rotational
speed. The set σ′(T̃ ) can be chosen to include this particular critical speed and hence
continuity of the critical speed function holds.

Unbalance response

A solution of the inhomogeneous equation of motion (3.13) describes the shape of
the running mode of the forced system by its lateral displacements. As unbalance re-
sponse the displacement at a certain point or an average displacement is considered.
Hence the unbalance response can be regarded as a measure for the amplitude of the
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running mode of the forced system. The solution of the inhomogeneous equation
(3.13) is determined by first solving the homogeneous system for the given critical
speed resulting in a set of natural frequencies λ and eigenmodes Φ. The proceed-
ing is similar as in Section 3.1 with the only difference in the additional damping
term. This includes the reduction of the system (3.14), the separation of variables
z(s, t) = ϕ(s)ψ(t) and setting ψ(t) = eλt. The eigenvalue problem is then written as

λÂ(φ1, φ2) = B̂(φ1, φ2), (3.16)

where

Â(φ1, φ2) =




µφ1 −

1
2
(Ipφ

′

1)
′

µφ2 −
1
2
(Ipφ

′

2)
′





and

B̂(φ1, φ2) =




−ω(iIpφ

′

1)
′ − cφ1 − (EIaφ

′′

2)
′′

µφ1 −
1
2
(Ipφ

′

1)
′



 .

Again we have Φ = (φ1, φ2), where φ2 = ϕ.

We also consider the adjoint system to system (3.16)

λ̄Â∗(ξ) = B̂∗(ξ) (3.17)

with (left) eigenmode ξ to the eigenvalue λ̄. The solution of eigenvalue problem
(3.16) and its adjoint system (3.17) gives countably many eigenvectors Φi and ξi
which are assumed to form a normalized biorthogonal system of the vector space V2

with respect to operator Â, i.e.

〈ξi, Â(Φj)〉V1×V2 = δij ∀i, j = 1, . . . ,∞. (3.18)

To calculate the general inhomogeneous solution of equation (3.13) a particular so-
lution has to be determined. Therefore, the mode shape ϕ is written as a linear
combination of functions ϕj which are solutions of system (3.16). For our def-
inition of an unbalance response term it is sufficient to consider an approxima-
tion of the solution of the inhomogeneous equation of motion. Hence only finitely
many functions ϕj, j = 1, . . . , N are taken in the linear combination, such that

z = (
∑N

j=1 zjϕj(s))ψ(t) and N is the number of considered modes. Furthermore, in

this case we set ψ = eiωt with ω being the critical speed of the relevant mode. Again
we have φ2 = ϕ =

∑N
j=1 zjϕj and φ1 = iωφ2 and we write Φ =

∑N
j=1 zjΦj with

Φj = (iωϕj, ϕj)
T . To guarantee a solution the part of the force density f̃ spanned

by the vectors ϕ1, . . . , ϕN is considered, having now f̃ =
∑N

j=1 f̃jϕj with suitable

coefficients f̃j. The problem becomes

iωÂ(Φ) = B̂(Φ) + f̂
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with f̂ = (f̃ , 0)T and can be written as

N∑

j=1

iωzjÂ(Φj) =
N∑

j=1

zjB̂(Φj) + f̂ . (3.19)

If we now multiply (3.19) successively from left by the eigenfunctions ξl of the adjoint
system we obtain N equations

N∑

j=1

iωzj〈ξl, Â(Φj)〉 =

N∑

j=1

zj〈ξl, B̂(Φj)〉 + 〈ξl, f̂〉, l = 1, . . . , N.

Due to relation (3.18) these equations can be simplified significantly

iωzl = λlzl + 〈ξl, f̂〉, l = 1, . . . , N

with λl being the eigenvalues of the homogeneous system. The zl can be determined
by

zl =
〈ξl, f̂〉

iω − λl
.

For φ2 = ϕ =
∑N

l=1 zlϕl we can write

ϕ =

N∑

l=1

〈ξl, f̂〉

iω − λl
ϕl. (3.20)

An (approximate) solution of the inhomogeneous equation of motion (3.13) is then
given by z = ϕψ, where ψ(t) = eiωt.

Remark.
(i) If the equation of motion contains a damping term the critical speed iω is not
equal to an eigenvalue λl of the homogenous equation which is then no longer purely
imaginary. Hence the denominator in (3.20) is not equal to 0 for all l.

(ii) For the definition of the unbalance response expression only the approximation
of the particular solution of the inhomogeneous equation of motion as given in (3.20)
is considered. The solutions of the homogeneous equation of motion can be neglected
since they vanish with increasing time due to the damping [23].

Definition 3.1. Based on the expression for ϕ given by (3.20) we consider as un-
balance response a either
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• the value of ϕ at a certain point

a = ϕ(s)

• or a norm of ϕ

a =

(∫

|ϕ(s)|p ds

)1/p

, p ∈ N.

For these choices of unbalance response we can state the following important lemma.

Lemma 3.5. The unbalance response a depends continuously on the rotor shape
function r.

Proof. The expression for the unbalance response is a composition of functions
which depend continuously on the rotor shape function r as shown in Theorem 3.3.
Hence the composition is also continuous. 2

Remark. In the preceding development we used ψ(t) = eλt and ψ(t) = eiωt, respec-
tively, depending on the equation we want to solve. The explanation for the different
choice is as follows. If we study the case of forced vibrations we have an unbalance
force which is given by an expression f = f̃ eiωt with real-valued rotational speed ω.
Then to determine a particular solution we set ψ(t) = eiωt such that the term of
the exponential function cancels out in the inhomogeneous equation. Another case
is the determination of the critical speed, where the real-valued rotational speed is
equated with the natural frequencies, yielding the critical speed in the real part of
the obtained eigenvalues. However, if we want to calculate natural frequencies for
given rotational speed, we always consider ψ(t) = eλt giving the frequencies in the
imaginary part of the eigenvalues λ.

Optimization problem

Having obtained the terms of critical speed and unbalance response the main op-
timization problem is formulated for a continuous objective function J and given
target values ω∗

m1 and a∗m2. The modes m1 and m2 are modes in the operating speed
range and may coincide,

minr J(r)
subject to
ωm1(r) ≥ ω∗

m1,
am2(r) ≤ a∗m2,
r ∈ U.

(P2)

The set of admissible functions Uc̃ is then

Uc̃ = {r ∈ U |ωm1(r) ≥ ω∗

m1, am2(r) ≤ a∗m2}.
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Finally, the existence of solutions for this vibration level optimization problem can
be proven.

Theorem 3.4. Let Uc̃ 6= ∅. Then optimization problem (P2) has a solution.

Proof. From Theorem 3.3 and Lemma 3.5 it follows that the functions of the critical
speed ω and the unbalance response a depend continuously on the shape function r.
Then the set Uc̃ is a compact subset of C(I). Since we have a continuous objective
function J the optimization problem (P2) has a solution. 2

We obtained a result for the existence of solutions for our chosen design optimization
problems for a continuous rotor. However, to determine solutions in practice we have
to formulate a finite element model. This is done in the next section and we can
show the convergence of the solutions of the discretized problem towards those of
the continuous problem.



Chapter 4

Finite element model

For the numerical solution of the equation of motion for our continuous rotor a
discretization procedure is necessary to describe the system by a finite number of
parameters. The continuous model is regarded as assemblage of finite elements
connected by nodes. Equations of motion for each single element are formulated and
later assembled to form the equation of motion of the whole discretized model. Then
suitable solution techniques are applied to solve the finite-dimensional problem. This
concept is known as finite element method.
A good overview about the method of finite elements in mechanics can be found in
the books of Kikuchi [32], Ishida [63] and Meirovitch [41] as well as in the paper of
Nelson & McVaugh [44]. For the mathematical background we refer to the book of
Strang & Fix [53].

In the Sections 4.1 and 4.2 of this chapter we take up the abstract setting of the
previous chapter. The infinite-dimensional operators are approximated by finite
dimensional operators which are related to a suitable discretization of the design
space. Convergence of the solutions of the approximating subproblem towards the
solution of the continuous problem is shown.

In Section 4.3 an algebraic formulation for the finite element model is presented. This
is first done for a general approximation space. Then the choice for our numerical
calculations is shown. Following the concept introduced in Chapter 2 we want to
work with one-dimensional finite beam elements. We divide our rotor shaft in several
piecewise constant finite elements bounded by nodes with the lateral displacements
and inclinations being the degrees of freedom. Every element is assumed to have a
constant cross-section and diameter and uniform material properties. This implies
that each time the diameter in the rotor changes we have to take a new element.
A formulation of the corresponding matrices for an individual beam element can
be found in Appendix B. From an engineering point of view the number of finite
elements is governed by the number of modes under consideration. It should not be

33
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too large to avoid heavy computations.

In Section 4.4 the numerical solution for the discretized model is done yielding nat-
ural frequencies and eigenmodes which are the targets of our optimization problem.
Section 4.5 considers an extension of the model about fluid-film-bearings. Some
theoretical background and the way how this type of bearings are integrated into
our finite element model is shown.

4.1 Convergence of eigenvalues of discretized prob-

lem

In a first step, the convergence of the eigenvalues and eigenvectors of discretized
generalized eigenvalue problems has to be shown. These functions appear in the
constraints of our optimization problem. Important results in spectral approxima-
tion can be found in Babuška & Osborn [4], Chatelin [10] and Kolata [34] and can
be applied to our case.

The approximation of the operators and the optimization problems is based on the
partition of the interval I = [0, l],

0 = a0 < a1 < . . . < an = l,

where h = maxi=1,...,n |ai − ai−1| is the discretization parameter. We assume a
partition such that h → 0 if n → ∞. Moreover, let Pk([ai−1, ai]) denote the space
of polynomials of degree ≤ k on the interval [ai−1, ai].

The rotor shape function r ∈ U , where U is given by (3.2), is then assumed to be
approximated by piecewise constant functions rh belonging to the set

Uh = {r ∈ L∞(I)| ri = r|[ai−1,ai] ∈ P0([ai−1, ai]), i = 1, . . . , n, r ≤ r ≤ r̄,

|ri+1 − ri| ≤ L0h, L0 > 0, i = 1, . . . , n− 1}.

The spaces V1 and V2 defined in Chapter 3 are replaced by finite dimensional ap-
proximations V h

1 and V h
2 . The exact choice of these approximations depends on the

degrees of freedom under consideration. Moreover, we set V h = V h
1 × V h

2 and we
assume a partition such that ∪h>0V

h is dense in the space V = V1 × V2.

The discretized eigenvalue problem is now obtained by replacing the continuous rotor
shape function r ∈ U by a function rh ∈ Uh. This is written as follows. At first,
the notation of the eigenvalue problem of Chapter 3 is extended about a subscript
r indicating the dependence on the continuous function r, i.e.

λAr(Φ) = Br(Φ), Φ = (φ1, φ2) ∈ V1 × V2
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and
λar(Φ, η) = br(Φ, η), η ∈ V2,

respectively. Furthermore, we write

Tr = B−1
r Ar, V1 × V2 → V1 × V2

for the operator which was shown to be compact in Lemma 3.4.

The discretized subproblem for rh ∈ Uh is then

λhArh
(Φh) = Brh

(Φh), Φh ∈ V h (4.1)

with eigenvalues λh and eigenvectors Φh in V h.
The corresponding weak formulation is then

λharh
(Φh, ηh) = brh

(Φh, ηh), ηh ∈ V h
2 . (4.2)

Following Kolata [34] we now define a projection of the space V = V1 × V2 on the
space V h. This is done by using the weak formulation.

Definition 4.1. We define a linear operator Ph : V → V h by

brh
(PhΦ, ηh) = br(Φ, ηh), ∀ηh ∈ V h

2 .

Furthermore, let Trh
: V → V h be given by

Trh
= Ph ◦ Tr

and Trh
= B−1

rh
Arh

.

The convergence of eigenvalues λh and eigenvectors Φh of the discretized problem to
those of the continuous problem is shown by applying the concept of strongly stable
convergence (see Chatelin [10]).

Theorem 4.1. Let rh → r as h→ 0 in L∞(I). Moreover, let S be a set bounded by
a closed Jordan curve which encloses exactly one eigenvalue λ of Tr with multiplicity
m. Then σ(Trh

) ∩ S consists for h small enough of exactly m eigenvalues, counting
their multiplicities.

Proof. Since ∪h→0V
h is dense in V the projection operator converges pointwise to-

wards the identity operator, Ph → I. The convergence is uniform on any sequentially
compact set. Since we know that Tr is compact it follows

‖Tr − Trh
‖ = ‖(I − Ph)Tr‖ → 0 as h→ 0.
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This implies strongly stable convergence of the sequence Trh
(see Chatelin [10, Ex-

ample 5.14]). For a definition of strongly stable convergence see [10, Chapter 5.2].
Let now λ be an eigenvalue of Tr with multiplicity m. Then the strongly stable
convergence property of Trh

guarantees that σ(Trh
) ∩ S consists for h small enough

of exactly m eigenvalues, counting their multiplicities [10, Proposition 5.6]. 2

The convergence of eigenvectors then also follows immediately by [10, Theorem 5.10].

Theorem 4.2. Let Trh
be an approximation of Tr, converging strongly stable in S.

Then for any sequence of eigenvalues λh converging to λ and for any sequence of
associated eigenvectors Φh there exists a subsequence converging to an eigenvector
Φ associated with λ.

4.2 Convergence of solutions of optimization prob-

lem

Having established the convergence of the constraint functions in Section 4.1 we now
want to show the convergence of the solutions of the natural frequency and vibration
level optimization problems for rotating bodies. Similar results for problems for the
non-rotating case can be found in [27].

For the formulation of the discretized natural frequency optimization problem the
set of admissible functions Uh is restricted about the constraint on the eigenvalues
and is

Uh,c = {r ∈ Uh|λh(r) ≥ λ∗}.

In practice the eigenvalue constraint is only set for few specific modes. Similar to
Chapter 3 we consider only one constraint function for the analysis. Other con-
straints can be included in the same way.

Then the natural frequency optimization problem with a continuous objective func-
tion J writes as

minrh
J(rh)

subject to
rh ∈ Uh,c.

(Ph1)

We now show that a sequence of optimal solutions of (Ph1) converges towards an
optimal solution of (P1).

Theorem 4.3. Let r∗h be a sequence of optimal solutions of (Ph1), h → 0. Then
one can pass to a subsequence such that there exists a function r∗ ∈ U and

r∗h → r∗ in L∞(I)
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and r∗ is an optimal solution of (P1). In addition, any accumulation point of r∗h
possesses this property.

Proof. Let rh ∈ Uh, h → 0 be an arbitrary sequence. With any rh a continuous
piecewise linear function r̂h is defined on the partition {bi}i=0,...,n+1, where

0 = b0 = a0 < b1 < a1 < . . . < an−1 < bn < an = bn+1

and bi is the midpoint of the interval [ai−1, ai],

bi =
ai + ai−1

2
, i = 1, . . . , n.

The function r̂h is given by

r̂h(bi) = rh(bi), i = 0, . . . , n and r̂h(bn+1) = rh(an)

and
r̂h|[bi−1,bi] ∈ P1([bi−1, bi]), i = 1, . . . , n+ 1.

This definition implies that
r ≤ r̂h ≤ r̄ in I

and
|r̂′h| ≤ L0 in I.

We have that r̂h ∈ U . Since U is compact there exists a subsequence r̂h and a
function r̂ ∈ U such that

‖r̂h − r̂‖L∞(I) → 0 as h→ 0.

The function rh can be viewed as piecewise constant interpolant of r̂h implying that

‖rh − r̂h‖L∞(I) ≤ L0h.

Using the triangle inequality we can now show that rh converges towards the function
r̂

‖rh − r̂‖L∞(I) ≤ ‖rh − r̂h‖L∞(I) + ‖r̂h − r̂‖L∞(I) → 0.

So far, we only have r̂ ∈ U . But of course, the constraint on the eigenvalue should
also be fulfilled for the limit function. This follows straightforwardly from the con-

tinuous dependence of λ on r, i.e λh(rh)
h→0
→ λ(r) which was shown in Theorem 3.1.

Hence we have r̂ ∈ Uc.

The density of ∪h→0Uh in U in the L∞-norm can be shown as follows.
Let r ∈ U and define rh as

rh =

n∑

i=1

(
1

|ai − ai−1|

∫ ai

ai−1

r(s) ds

)

χi,
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where χi is the characteristic function of [ai−1, ai], i = 1, . . . , n. We have rh ∈ Uh and
rh → r in L∞(I) if h → 0. Restricting both spaces about the eigenvalue constraint
the density result also holds for the spaces ∪h→0Uh,c in Uc.

We now consider a sequence of optimal solutions r∗h to problems (Ph1) and denote
its limit function by r∗. It remains to show that r∗ is an optimal solution of (P1).
Therefore we consider an arbitrary r̃ ∈ Uc. A sequence r̃h ∈ Uh,c can be found such
that

‖r̃h − r̃‖L∞(I) → 0.

Since r∗h is an optimal solution of problem (Ph1) we have

J(r∗h) ≤ J(r̃h).

Since ‖r∗h−r
∗‖L∞(I) → 0 and ‖r̃h− r̃‖L∞(I) → 0 and J is continuous in r for suitable

functions we obtain in the limit

J(r∗) ≤ J(r̃)

for any r̃ ∈ U . This shows that r∗ is an optimal solution of (P1). 2

Theorem 4.3 for the natural frequency optimization problem can be transformed
analogously to the vibration level optimization problem,

minrh
J(rh)

subject to
rh ∈ Uh,c̃,

(Ph2)

where

Uh,c̃ = {r ∈ Uh| ωh(r) ≥ ω∗, ah(r) ≤ a∗}.

Theorem 4.4. Let r∗h be a sequence of optimal solutions of (Ph2), h → 0. Then
one can pass to a subsequence such that there exists a function r∗ ∈ U and

r∗h → r∗ in L∞(I)

and r∗ is an optimal solution of (P2).

4.3 Algebraic formulation of discretized model

For the numerical calculations we develop an algebraic formulation of the discretized
problem. Then an equation of motion consisting of the structural matrices and a
vector consisting of all degrees of freedom contained in the discretized formulation
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is obtained. To achieve this we work with the two equations of motion (2.13) and
(2.14) for the real variables u and v which were introduced in Chapter 2

µü−

(
1

2
ü′Ip

)
′

− (Ipωv̇
′)
′
+ (EIau

′′)
′′

= 0,

µv̈ −

(
1

2
v̈′Ip

)
′

+ (Ipωu̇
′)
′
+ (EIav

′′)
′′

= 0.

By using the two equations with real variables complex matrix entries are avoided.
Due to the coupling we have to consider both equations simultaneously.

The matrices of the system are determined by using the weak formulation of the
equations of motion. It is formulated with respect to the spatial variable only. This
implies that the separation of variables is performed again, writing u = ϕu(s)ψ(t)
and v = ϕv(s)ψ(t). We have

µϕuψ̈ −
1

2
(ϕ′

uIp)
′ψ̈ − (Ipωϕ

′

v)
′ψ̇ + (EIaϕ

′′

u)
′′ψ = 0,

µϕvψ̈ −
1

2
(ϕ′

vIp)
′ψ̈ + (Ipωϕ

′

u)
′ψ̇ + (EIaϕ

′′

v)
′′ψ = 0.

Since the two equations are considered separately, the approximation space V h
2 is

decomposed into two spaces V h
2,u and V h

2,v describing the interpolation in each direc-
tion. In our case, we can assume that V h

2,u = V h
2,v and have ϕu, ϕv ∈ V h

2,u. Using test
functions η ∈ V h

2,u the weak formulation is obtained as

(∫

µϕuη̄ ds+
1

2

∫

Ipϕ
′

uη̄
′ ds

)

ψ̈ +

(

ω

∫

Ipϕ
′

vη̄
′ ds

)

ψ̇ +

(∫

EIaϕ
′′

uη̄
′′ ds

)

ψ = 0,

(∫

µϕvη̄ ds+
1

2

∫

Ipϕ
′

vη̄
′ ds

)

ψ̈ −

(

ω

∫

Ipϕ
′

uη̄
′ ds

)

ψ̇ +

(∫

EIaϕ
′′

v η̄
′′ ds

)

ψ = 0.

Each of these two equations can be decomposed into three components, namely the
mass component m, the gyroscopic component g and the stiffness component k. For
ϕ, η ∈ V h

2,u they are given by

m(ϕ, η) =

∫ (

µϕη̄ +
1

2
Ipϕ

′η̄′
)

ds,

g(ϕ, η) =

∫

Ipϕ
′η̄′ ds,

k(ϕ, η) =

∫

EIaϕ
′′η̄′′ ds.
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These expressions are now used to define our structural matrices. The function ϕu

is written as a linear combination of the basis vectors of V h
2,u. This basis is given by

vectors {b̃i}
m
i=1, where m = dim(V h

2,u) is indicating the number of degrees of freedom
in one direction. Then we have

ϕu =
m∑

i=1

cib̃i

and

ϕv =
2m∑

i=m+1

cib̃i−m

with a constant coefficient vector c = (c1, . . . , c2m)T ∈ R2m. Since the equations
cross-couple we have to consider them simultaneously. A basis for the space V h

2 is
given by

(
{b̃i}

m
i=1

0

)

and

(
0

{b̃i}
m
i=1

)

and we denote these basis vectors of V h
2 by {bi}

2m
i=1. They are assembled in a 2×2m-

matrix B,

B = (b1, . . . , b2m) =

(
b̃1 . . . b̃m 0 . . . 0

0 . . . 0 b̃1 . . . b̃m

)

.

Then ϕ = (ϕu, ϕv)
T can be written in matrix notation giving

ϕ = Bc.

The structural matrices M,G and K are determined straightforwardly. The i-th
column of each matrix is determined by taking the i-th basis function bi as test
function η. This yields for the mass component,

m(ϕ, bi) =

∫ (

µ(Bc)T bi +
1

2
Ip(B

′c)T b′i

)

ds = cT
(∫ (

µBT bi +
1

2
IpB

′T b′i

)

ds

)

= cTMi = MT
i c, i = 1, . . . , 2m,

where Mi is the i-th column of the mass matrix M . The elements of M are given
by

Mi,j =

∫ (

µbTi bj +
1

2
Ipb

′

i
T
b′j

)

ds, i, j = 1, . . . , 2m. (4.3)

For the stiffness component holds

k(ϕ, bi) =

∫

EIa(B
′′c)T b′′i ds = cT

(∫

EIaB
′′T b′′i ds

)

= cTKi = KT
i c, i = 1, . . . , 2m,
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with Ki being the i-th column of the stiffness matrix K and

Ki,j =

∫

EIab
′′

i
T
b′′j ds. i, j = 1, . . . , 2m. (4.4)

The most interesting term is the gyroscopic term since here the cross-coupling occurs.
Therefore, the two rows of the matrix B are divided into Bu and Bv and for one
single basis vector bi into bi,u and bi,v. This gives

g(ϕ, bi) =

∫

Ip

((
B′

v

−B′

u

)

c

)T (
b′i,u
b′i,v

)

ds = cT
(∫

Ip(B
′

v
T
b′i,u −B′

u
T
b′i,v) ds

)

= −cTGi = GT
i c, i = 1, . . . , 2m,

where Gi is the i-th column of the gyroscopic matrix. This matrix is skew-symmetric
and all its elements are given by

Gi,j =

∫

Ip(b
′

i,u
T
b′j,v − b′i,v

T
b′j,u) ds, i, j = 1, . . . , 2m. (4.5)

Assembling all columns, the mass, gyroscopic and stiffness matrices M,G and K of
the discretized system are obtained. The algebraic formulation of the equation
of motion is then given by

Mcψ̈ + ωGcψ̇ +Kcψ = 0. (4.6)

Matrices in our model

For the explicit formulation of the matrices the space V h
2 has to be defined and the

basis functions for it have to be determined. The development in our case is based
on the beam model from Chapter 2. We first do this for one beam element and later
assemble over all beam elements. The choice of space depends on the information
which we have and on which the approximation is based. Here, the behaviour of
each element is described by the lateral displacement and inclination in the nodes
which were introduced in Chapter 2. Then the displacement and inclination for
any part within a beam element is determined by certain interpolation functions
which are the same for each element. It is assumed that cross section, diameter
and material properties are uniform in each element. Our choice of space and basis
functions follows [63] and [44].

Let us consider beam element k bounded by nodes ak and ak+1 as shown in Figure
4.1. The length of this element is lk.
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ak

ak+1

lk

Y

Z

X vk
0

uk
0

vk
1

uk
1

Figure 4.1. One beam element.

For this arbitrary element we denote the displacements in X-direction in the nodes
ak and ak+1 for simplification of notation by uk

0 and uk
1 and due to our first-order

analysis the derivatives of the displacements in the nodes are the rotation angles φk
y0

and φk
y1. Knowing these four values the displacement function u(s) depending on

the spatial variable s can be approximated by a uniquely given cubic polynomial,

u(s) = as3 + bs2 + cs+ d, s ∈ [ak, ak+1].

The coefficients are determined by solving the corresponding linear system of equa-
tions. This is called Hermite interpolation. The approximation space for beam ele-
ment k is then the space of cubic polynomials P3([ak, ak+1]). We have dim(Vk) = 4
and the Hermite polynomials Lk

i , i = 1, . . . , 4, given by

Lk
1(s) = 1 − 3

(
s−ak

lk

)2

+ 2
(

s−ak

lk

)3

, Lk
2(s) = (s− ak)

[

1 − 2
(

s−ak

lk

)

+
(

s−ak

lk

)2
]

,

Lk
3(s) = 3

(
s−ak

lk

)2

− 2
(

s−ak

lk

)3

, Lk
4(s) = lk

[

−
(

s−ak

lk

)2

+
(

s−ak

lk

)3
]

are a basis of this space. The displacement function uk can then be written as

uk(s) = Lk
1(s)u

k
0 + Lk

2(s)φ
k
y0 + Lk

3(s)u
k
1 + Lk

4(s)φ
k
y1.

The same approach can be done for the lateral displacements vk in Y -direction
resulting in

vk(s) = Lk
1(s)v

k
0 − Lk

2(s)φ
k
x0 + Lk

3(s)v
k
1 − Lk

4(s)φ
k
x1.
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The vector consisting of all degrees of freedom for beam element k is given by ck =
(uk

0, v
k
0 , φ

k
x0, φ

k
y0, u

k
1, v

k
1 , φ

k
x1, φ

k
y1)

T . Considering now both equations simultaneously
the matrix notation can be used and is here

(
uk

vk

)

= Bkc
k,

with

Bk =

(
Lk

1 0 0 Lk
2 Lk

3 0 0 Lk
4

0 Lk
1 −Lk

2 0 0 Lk
3 −Lk

4 0

)

.

Mass, gyroscopic and stiffness matrices can now be determined by the expressions
(4.3), (4.4) and (4.5) and the formulation can be found in Appendix B. This yields
the equation of motion for one beam element based on Hermite interpo-
lation

Mkẍk + ωGkẋk +Kkxk = 0, (4.7)

where xk = ckψ. Since this is the equation for beam element k only, the element
matrices Mk, Gk and Kk as well as the vector xk are written with a subscript k.

Inclusion of rigid disks

Our model can be extended by rigid disks which are often part of rotating bodies
(e.g. blades). In our finite element formulation these disks are attached to certain
nodes. The corresponding matrices are derived by considering the kinetic energy of
the disk which is given by

Td =
1

2
md(u̇

2 + v̇2) +
1

2
Id(φ̇

2
x + φ̇2

y) +
1

2
Ip(ω

2 + ω(φ̇xφy − φxφ̇y)).

The only difference to the previous case is that we have the mass md of the rigid
disks and the moments of inertia Id and Ip instead of the corresponding terms per
unit length and an integral over the length of the beam element. The displacements
u, v, φx and φy are taken in the node to which the rigid disk is attached and are
collected in the vector xd = (u, v, φx, φy)

T . The values for md, Id and Ip are in our
case given by the engineer. As in Chapter 2 the technique of Lagrange equations is
used to obtain the equations

mdü+ Idφ̈x + ωIpφ̇y = 0

and
mdv̈ + Idφ̈y − ωIpφ̇x = 0.

This is in matrix notation
Mdẍd +Gdẋd = 0,
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where Md and Gd denote the mass and gyroscopic matrices of the rigid disk and are
given by

Md =







md 0 0 0
0 md 0 0
0 0 Id 0
0 0 0 Id







and Gd = ω







0 0 0 0
0 0 0 0
0 0 0 Ip
0 0 −Ip 0






.

Assembly of matrices

After having determined all beam element and rigid disk matrices they have to
be assembled to form the system matrices. This means we first have to write our
8 × 8-beam element matrices in an appropriate way into our 4n × 4n-matrix with
n being the number of nodes in the beam model. This can be done via suitable
8 × 4n-matrices Ak given by

Ak =








0 · · · 0 1 0 · · · 0 0 · · · 0
0 · · · 0 0 1 · · · 0 0 · · · 0
...

. . .
...

0 · · · 0 0 0 · · · 1 0 · · · 0







,

where the block of the 8× 8 identity matrix starts in column 4(k− 1)+1 and which
relates the element displacement vector xk to the displacement vector x of the whole
system by

xk = Akx.

The vector x of the whole system contains xk at positions (4(k − 1) + l)l=1,...,8. For
the large system it is also written as

x = c · ψ,

where c = (u1, v1, φx1, φy1, . . . , un, vn, φxn, φyn) ∈ R4n.

Assembling all beam elements the expressions for the mass, gyroscopic and stiffness
matrices for the whole system are determined by

M =
n−1∑

k=1

(Ak)
TMkAk,

G =

n−1∑

k=1

(Ak)
TGkAk,
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K =
n−1∑

k=1

(Ak)
TKkAk.

The rigid disk matrices Md and Gd are assembled as follows.
Each 4 × 4-matrix is added blockwise into M and G respectively at positions
(4(ad − 1) + i, 4(ad − 1) + j)i,j=1,...,4, where ad is the number of the node to which
the rigid disk is attached. To keep the notation simple, the structural matrices after
the inclusion of the rigid disk part are still denoted by M,G and K.

We now obtain the equation of motion for the complete system

Mẍ + ωGẋ+Kx = 0. (4.8)

Finally, we can formulate the approximation space V h
2 on the whole interval I in our

case. It consists of differentiable functions, which are piecewise cubic polynomials,
i.e.

V h
2 = {u ∈ C1(I)| u|[ak,ak+1] ∈ P3([ak, ak+1])}.

Remark. The space ∪h→0V
h
2 is dense in V2 and the convergence theorems of Sections

4.1 and 4.2 can be applied to this case.

Equation of motion with bearing and unbalance forces

For simplicity of the treatment the equation of motion was formulated without any
forces so far. But of course, unbalance forces Funb as well as forces Fb due to bearing
support have to be included for the analysis of the vibrations

F = Fb + Funb.

Here, F is a vector of length 4n. In the case of the discretized model no distributed
forces are considered but discrete (point) forces instead. Similar to the concept for
the rigid disks the forces are assumed to act on certain nodes of the rotor and the
force vectors have only entries at these nodes.

Concerning the bearings we initially limit our studies to orthotropic bearings such
that the bearing forces obey the governing equations of the form (see e.g. [44])

Fb = −Cẋ−Kbx.

The damping and stiffness matrices C and Kb are 4n × 4n-matrices having only
entries on the main diagonal at the positions corresponding to the lateral deflections
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at the bearing nodes,

C =











. . .

cu
cv

. . .
. . .











and Kb =











. . .

ku

kv

. . .
. . .











.

The matrix elements cu, cv, ku, kv are called damping and stiffness coefficients. Mul-
tiplication of the matrices with x and ẋ respectively gives a force vector having only
entries at the relevant positions.

Later the influence of the oil film forces caused by fluid film journal bearings is
integrated into the model. The entries of the damping and stiffness matrices are
then 2× 2-blocks at the positions corresponding to the lateral deflections since now
a coupling occurs. This case is shown in detail in Section 4.5.

The unbalance forces Funb are assumed to act on certain nodes k. Strictly, the
unbalances of all nodes should be considered in the rotor finite element model since
the unbalance is distributed in the direction of the rotor axis due to production
error. However, the unbalance of rigid disks is much larger than that in the other
part of the rotor. Therefore, only unbalances of the rigid disks are considered in this
case and are concentrated on the nodes next to the rigid disk. The unbalance force
is assumed to be excited harmonically such that in each node they are given by

Funb,k =

(
Fk,X

Fk,Y

)

=

(
ũkω

2ei(ωt+Θk)

ũkω
2ei(ωt+Θk−

π
2
)

)

=

(
fk,X

fk,Y

)

eiωt.

The forces fk,x and fk,y in X- and Y -direction are

fk,x = ω2ũke
iΘk , fk,y = ω2ũke

i(Θk−
π
2
).

The product of mass and eccentricity is denoted by ũ, the rotational speed again
by ω and Θ is the angle between the X-axis and the direction of eccentricity and is
called phase (see Figure 4.2). The eccentricity of the rigid disks can not be measured
directly. In the real manufacturing process, the product of mass and eccentricity is
measured by a balancing machine. Therefore, in our case values for ũk and Θk are
given by the engineer. The values for fk,x and fk,y are written into a vector f ∈ C4n,
which then has exactly 2 · nf nonzero elements, where nf is the number of discrete
force components.



4.4. NUMERICAL SOLUTION OF EQUATION OF MOTION 47

θi

ω

X

Y

ei

Figure 4.2. Unbalance of node i with eccentricity ei and phase Θi.

The equation of the system including bearing and unbalance forces is then
given by

Mẍ + (ωG+ C)ẋ + (K +Kb)x = Funb. (4.9)

4.4 Numerical solution of equation of motion

The equation of motion is solved to obtain eigenvalues and eigenvectors which are
the basis for our further calculations. All steps shown for the continuous model in
Chapter 3 can be done in the same way for the discretized model. In this section
we want to give the corresponding matrix formulations since these are used in the
numerical part following in the next chapters.

Let us first study the equation of motion for free vibrations (4.8), i.e. Funb = 0
and without any bearing forces. Then we again set ψ(t) = eλt to obtain natural
frequencies and eigenmodes of our system. The result is either a quadratic eigenvalue
problem

λ2Mc + λωGc+Kc = 0

with c ∈ CN/2 or the generalized eigenvalue problem

λAφ = Bφ,

with φ ∈ CN which is obtained by a transformation of the equation of motion into
a first-order system

λ

(
M 0
0 M

)

︸ ︷︷ ︸

=A

(
ẍ
ẋ

)

=

(
−ωG −K
M 0

)

︸ ︷︷ ︸

=B

(
ẋ
x

)
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and setting

φ =

(
λc
c

)

.

As above we have x(t) = cψ(t). Solving this eigenvalue problem, the natural fre-
quencies λ and the eigenmodes φ are obtained.

The problem for one specific mode is then written as

(B − λiA)φi = 0, i = 1, . . . , N,

with N = 2 · 4 · n being the number of modes in the reduced system, where n is the
number of nodes in the beam model.

Since the system is non-symmetric we have to calculate the left eigenvectors ξi

separately by
ξT
i (B − λiA) = 0. (4.10)

Normalization of eigenvectors

For the subsequent analysis a normalization of the eigenvectors is necessary. This
is in particular relevant for the sensitivity analysis in Chapter 5. Two different
normalizations are considered.

• In normalization (1) we want the eigenvectors to be normalized with respect
to A, i.e.

ξT
j Aφi = δi,j, i, j = 1, . . . , N. (4.11)

• Normalization (2) sets one component equal to one

φ̃i =
1

φ
(l)
i

φi → φ̃
(l)
i = 1. (4.12)

This can for example be the largest component of the absolute value, i.e. we
choose l by setting

|φ
(l)
i | = max

k
|φ

(k)
i |.

Normalization (1) is sufficient when calculating the derivatives of the natural fre-
quencies. For the unbalance oscillation, however, we need to determine the derivative
of the eigenvectors. In this case we additionally need a normalization which renders
the eigenvectors unique. This can be achieved by normalization (2).



4.4. NUMERICAL SOLUTION OF EQUATION OF MOTION 49

Critical speed

The critical speeds are determined analytically by the equation of motion for free
vibrations. In this case a damped system is studied. Setting x = cψ = ceiλt gives

−λ2Mc + (ωG+ C)iλc+ (K +Kb)c = 0.

and equating λ = ω yields

−ω2(M + iG)c+ ωiCc+ (K +Kb)c = 0. (4.13)

Solving this system gives us all critical speeds ωj. Then the equation of motion with
unbalance forces (4.9) is regarded for one certain critical speed.

Solution of inhomogeneous equation of motion

We proceed in the same way as in Chapter 3. The inhomogeneous equation of motion
is solved by determining a fundamental system of the homogeneous equation and a
particular solution of the inhomogeneous one. Then an appropriate expression for
the unbalance response can be defined. The solutions of the homogeneous system
are only used for the determination of the particular solution but can be neglected
later since they vanish with increasing time (see [23]).

Firstly, we transform the second-order equation of motion (4.9) into a first-order-
system,

(
M 0
0 M

)

︸ ︷︷ ︸

=A

ẏ =

(
−(ωG+ C) −(K +Kb)

M 0

)

︸ ︷︷ ︸

=B

y +

(
f̃
0

)

︸ ︷︷ ︸

=f̂

eiωt, (4.14)

where

y =

(
ẋ
x

)

and the expression of the unbalance forces Funb = f̃ eiωt was used. Then (4.14) reads
as

Aẏ = By + f̂ eiωt. (4.15)

We first solve the homogeneous system

Aẏ = By.

With y = φeλt we obtain the eigenvalue problem

λAφ = Bφ,
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giving us the natural frequencies λ and eigenmodes φ for the system with given
critical speed.

The particular solution is determined by a representation as linear combination of
eigenvectors and we set y = Φz in (4.15). Now Φ denotes the matrix with all
eigenvectors φ. For the time dependent component z we set

z = z̃eiωt

with a vector z̃ ∈ CN . We obtain

AΦż = BΦz + f̂ eiωt,

and
iωAΦz̃ = BΦz̃ + f̂ ,

respectively. The standard technique of multiplying the equation from the left with
the left eigenvector matrix ΞT and using normalization (1) yields

iω ΞTAΦ
︸ ︷︷ ︸

=I

z̃ = ΞTBΦ
︸ ︷︷ ︸

=Λ

z̃ + ΞT f̂ ,

where I is the N ×N -identity matrix and Λ the N ×N - diagonal matrix containing
the natural frequencies λ. We can solve

z̃ = (iωI − Λ)−1ΞT f̂ .

The solution of the inhomogenuous equation of motion is then

y = Φz̃eiωt = Φ(iωI − Λ)−1ΞT f̂ eiωt.

As in Chapter 3 the part ys only depending on the space variable is relevant for the
determination of the unbalance response,

ys = Φz̃ = Φ(iωI − Λ)−1ΞT f̂ =

nf∑

j=1

N∑

l=1

ξνj ,lf̂νj

iω − λl
φl,

where nf is the number of force components and N the number of modes. The
lower part of this vector is identical to the previously introduced vector c, i.e. c =
(yN/2+1, . . . , yN). For one certain component k the expression is

ck =

nf∑

j=1

N∑

l=1

ξνj ,lφk,lf̂νj

iω − λl
, k = 1, . . . , N/2



4.5. INCLUSION OF NONLINEAR BEARING FORCES 51

where νj are the indices of the nonzero components of f̂ . Usually, it is not necessary
to consider all N modes. Indeed, we show later that it is sufficient just to consider
one mode which saves a lot of computation time.

Within the vector c the components representing the lateral displacements are of
special interest. The displacements in X- and Y -direction are coupled so it is suf-
ficient to consider e.g. the lateral displacement in X-direction. These entries are
collected in a new vector c̃.

As unbalance response target a we now have several options. The following objec-
tives are most common.

• In some cases it makes sense to consider the displacements at a certain node k,
e.g. to bound them to avoid contact with the casing. Then we want to control

a = |c̃k|. (4.16)

• More often a norm of the vector c̃ is considered. Then the objective value is

a =

(
∑

i

|c̃i|
p

)1/p

(4.17)

for a suitable p. Usually, one uses p = 1 or p = 2, in some cases also p = ∞,
i.e. a = maxi |c̃i|.

4.5 Inclusion of nonlinear bearing forces

Often rotors, and in particular the turbochargers we look at, are supported by oil in
fluid-film bearings. The lubricant film in the bearings generates forces that strongly
influence the behaviour of the rotor. Therefore we want to extend our calculations on
a model where the linear spring support is replaced by oil film bearings. If the forces
are only in radial direction we speak of a journal bearing and this is our reference
case. For our numerical studies the generated forces which act on the rotor have to
be determined. The oil film forces are obtained by integration of the pressure field
which is governed by Reynolds’ equation. They are nonlinear functions of position
and velocity of the journal center. The derivation is done under the assumption
of an incompressible Newtonian fluid and a thickness of the oil film which is thin
compared to the rotor diameter. If we additionally assume small displacements an
approximation of the forces can be obtained by a linearization about their static
equilibrium value. Then stiffness and damping matrices are obtained which are
included into our equation of motion. More details about the background of fluid
film lubrication can be found in Childs [11], Szeri [57] and Vance [59]. A detailed
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study of a turbocharger with fluid-film bearings including a complex description of
the occurring oil film forces is done in [51]. The latter work focuses in particular on
self-excited vibrations of the rotor inherent to fluid-film bearings but which are not
considered here.

A sketch of a cylindrical journal bearing is shown in Figure 4.3. The part of the
rotor in the bearing is called journal and the cylinder supporting it is called bearing.
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Figure 4.3. Sketch of journal bearing, cross-sectional (left) and lateral (right) view.

The rotor is whirling in the fluid with angular velocity ω. The journal center is
displaced from the center of the bearing by the eccentricity e. The clearance c is the
difference between bearing radius and journal radius r. The oil film generates the
forces Fe and Fγ in the direction of the journal eccentricity and its normal direction,
respectively, where γ is the azimuthal angle of the journal center with the X-axis.

Determination of oil film forces

To determine the forces the pressure distribution in the oil film has to be known. It
is governed by Reynolds’ equation [11]

∂δ

(
h3

η
∂δp

)

+ r2∂z

(
h3

η
∂zp

)

=
6r2

c2
((ω − 2γ̇)ε sin δ − 2ε̇ cos δ), (4.18)

where h = 1 − ε cos δ is the relative oil-film thickness, ε = e/c is the eccentricity
ratio, r the shaft radius and η the viscosity of the oil. Then Fe and Fγ are obtained
by integrating the pressure field

Fe = −r

∫ w

0

∫

p>0

p cos δ dδ dζ (4.19)
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and

Fγ = −r

∫ w

0

∫

p>0

p sin δ dδ dζ, (4.20)

where w is the bearing width. In our case we use Gümbel’s boundary condition,
implying that the pressure is set to zero where it is negative, to model cavitation
and the inability of fluids to transmit drag forces (see [38]).

Since it is generally impossible to solve the Reynolds’ equation (4.18) analytically,
simplifications of the equation are necessary. One possibility is the short bearing
approximation. In very short bearings the pressure variation in axial direction is
larger than the circumferential pressure variation such that the first term on the left-
hand side of equation (4.18) can be neglected. Using this short bearing assumption,
it can be shown (see e.g. [51]) that the forces Fe and Fγ are as follows,

Fe = −
ηωrw3

2c2
(GA1 − EA2)

and

Fγ = −
ηωrw3

2c2
(GA3 − EA1).

The terms E and G are given by

E =
2

ω
ε̇, and G =

(

1 −
2

ω
γ̇

)

ε

and are introduced to obtain a non-dimensionalization of the whole approach.
The expressions A1, A2 and A3 are depending on ε and on the time derivatives ε̇
and γ̇, but not on ω,

A1 = A1(ε, ε̇, γ̇), A2 = A2(ε, ε̇, γ̇), A3 = A3(ε, ε̇, γ̇).

To be able to include the oil film forces into the framework of the previously devel-
oped equation of motion (4.8) an expression depending directly on the displacement
vector x is desired. Therefore we determine forces FX and FY in X and Y -direction.
This is done by a rotation about the azimuthal angle γ,

(
FX

FY

)

=

(
cos γ − sin γ
sin γ cos γ

)(
Fe

Fγ

)

.

The forces depend on position and velocity of the journal center x, which are im-
plicitly given via A1, A2, A3, and we write

Foil(x, ẋ) = (FX , FY )T .
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The equation of motion with unbalance and oil film forces is then written
as

Mẍ + ωGẋ+Kx = Funb + Foil(x, ẋ),

where the previous damping and stiffness matrices of the spring and damper support
are replaced by Foil.

Linearization of oil film forces

A linearization of the displacements (u, v) and velocities (u̇, v̇) about their static
equilibrium value (u0, v0, u̇0, v̇0) in the bearing nodes gives the new damping and
stiffness matrices Coil and Koil for one bearing node,

Foil(u, v, u̇, v̇) = (FX , FY )T = (4.21)

Foil(u0, v0, u̇0, v̇0) +





∂FX

∂u
∂FX

∂v

∂FY

∂u
∂FY

∂v





︸ ︷︷ ︸

=Koil

(
u− u0

v − v0

)

+





∂FX

∂u̇
∂FX

∂v̇

∂FY

∂u̇
∂FY

∂v̇





︸ ︷︷ ︸

=Coil

(
u̇− u̇0

v̇ − v̇0

)

.

At first the static equilibrium value has to be calculated (see also [51]). Therefore
we look at a rotor-bearing-system without unbalance forces, which is

Mẍ + ωGẋ+Kx = Foil(x, ẋ). (4.22)

Moreover, gravity forces are neglected which simplifies the subsequent development.
As before the system is transformed into a first-order system and we obtain

(
M 0
0 M

)(
ẍ
ẋ

)

=

(
−ωG −K
M 0

)(
ẋ
x

)

+

(
Foil(x, ẋ)

0

)

.

The static equilibrium value is characterized by (ẍ, ẋ)T = 0 which results in

0 = −Kx + Foil(x, ẋ).

The vector x can be decomposed in a part belonging to the rigid translation xr and
one belonging to the bending deflection xb, i.e. x = xr +xb. The equation Kxr = 0
holds for a rigid body motion since the second derivative of the mode shape function
vanishes in this case and hence there is no contribution to the stiffness matrix defined
by (4.4). Therefore, we obtain

Foil(x, ẋ) = Kxb.
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For the bending deflection vector xb we have zero deflection at the nodes of the
bearings. The matrices and vectors are then rearranged so that we have the zero
components of xb in the first components [41],

(
Foil(x, ẋ)

0

)

=

(
K1 K2

K3 K4

)(
0
x̃b

)

.

Due to the second line, x̃b = 0, since K4 has full rank. Then we have Foil(x0, ẋ0) = 0
which implies that x0 = 0 since the pressure is nowhere positive and hence the
integrals (4.19) and (4.20) vanish.

Knowing that the static equilibrium value (u0, v0, u̇0, v̇0) = 0 the oil film forces in
equation (4.21) for one bearing node simplify to

Foil(u, v, u̇, v̇) =

(
FX

FY

)

=





∂FX

∂u
∂FX

∂v

∂FY

∂u
∂FY

∂v





(
u
v

)

+





∂FX

∂u̇
∂FX

∂v̇

∂FY

∂u̇
∂FY

∂v̇





(
u̇
v̇

)

=

(
kXX kXY

kY X kY Y

)(
u
v

)

+

(
cXX cXY

cY X cY Y

)(
u̇
v̇

)

.

Having now determined all terms needed for the calculation of the oil film forces
FX and FY we can calculate the damping and stiffness matrices Coil and Koil by the
method of finite differences.

The equation of motion for the system including linearized oil film forces
is given by

Mẍ + (ωG− Coil)ẋ+ (K −Koil)x = Funb. (4.23)

In the case that the static equilibrium value is at x0 = 0 we can make an important
statement which leads to a simplification of the forthcoming analysis.

Proposition 4.1. If the static equilibrium value is at x0 = 0 we obtain in a neigh-
borhood of the equilibrium for the linearized damping and stiffness matrices

Foil(x, ẋ) = Coilẋ+ ωKoilx,

where the damping matrix Coil and the stiffness matrix Koil are independent of the
rotational speed ω.

Proof. The stiffness coefficients are determined by a spatial perturbation of x = 0.
Hence x 6= 0 and ẋ = 0. This implies ε = ε(x) 6= 0 and ε̇(x) = 0 = γ̇(x). Then
E = 2ε̇/ω = 0 and G = (1 − 2γ̇/ε)ε = ε 6= 0. We obtain

Fe = ω ·
ηrw3

2c2
εA1 and Fγ = ω ·

ηrw3

2c2
εA3.
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Since r, c, w, A1, A2 and A3 are independent of ω the linear dependence of Koil on ω
is shown.

Similarly, the damping coefficients are obtained by a perturbation of ẋ = 0. This
means ẋ 6= 0 and x = 0 implying ε̇(x) 6= 0 and ε(x) = 0. This gives E = 2ε̇/ω 6= 0
and G = 0. We have

Fe = −
ηrw3

c2
ε̇A2 and Fγ = −

ηrw3

c2
ε̇A1

resulting in a constant damping matrix Coil, independent of ω. 2

The equation of motion for the model with oil film forces now looks as
follows

Mẍ + (ωG− Coil)ẋ+ (K − ωKoil)x = Funb. (4.24)

The optimization problem with vibration level constraints is now solved based on
this new equation of motion. The first step is again the calculation of the critical
speeds which is done by setting x = deiωt with d ∈ CN/2 and solving the equation

ω2(−M + iG)d+ ω(−iCoil −Koil)d+Kd = 0.

The unbalance response is obtained via equation

(
M 0
0 M

)

ẏ =

(
−(ωG− Coil) −(K −Koil)

M 0

)

y,

where y = (ẋ, x)T . Then the critical modes can be determined which are target of
our optimization.

Remark. It has to be mentioned that in the case of nonlinear fluid-film bearings
instability can occur. Then the solution of the homogenous system does not tend
to 0 any longer [11]. This effect is not considered here.

We have now introduced a finite element model which serves as basis for our nu-
merical calculations. Different support conditions such as linear spring and damper
support as well as nonlinear fluid-film bearings can be included. A discretized equa-
tion of motion was presented as well as a numerical solution of it. This yields natural
frequencies, critical speeds and the unbalance response which are our optimization
objectives. We can now proceed with the development of a solution concept for our
design optimization process. This is done in Chapter 5.



Chapter 5

Optimization of gyroscopic
systems

In this chapter we present a concept to solve certain design optimization problems
based on the described physical model and finite element discretization. This work
extends research found in the literature, where mainly only non-rotating problems
are treated [27] and if rotating bodies are considered, gyroscopic effects are neglected
[6]. The aim of our research is to shift critical speeds of certain modes to avoid their
excitation in the operating speed range and to decrease the unbalance response at
certain critical speeds. We want to stress that frequencies and unbalance responses
belonging to specific modes are studied. This is different to the consideration of the
smallest natural frequency independent of the corresponding mode (see e.g. [47] or
[35]).

Engineering design optimization problems are distinguished between size, shape and
topology optimization problems depending on the geometrical design variables that
are taken. An additional classification can be made between single and multiobjec-
tive optimization problems. Details on these topics are mentioned in Section 5.1.
Due to the nonlinearity of the design optimization problem a direct solution is in
general not possible. An iterative process is required to yield an approximating
solution. A corresponding computational procedure is shown in Section 5.2. Since
gradient-based algorithms are used to determine the approximating solution, sensi-
tivities of the relevant expressions are needed. They are formulated in Section 5.3.
When optimizing eigenvalues, multiple eigenvalues might occur and the derivatives
can no longer be calculated as before. Techniques how to proceed in this case are
shown in Section 5.4. The above mentioned focus on one certain mode requires
mode tracking in every step of the optimization process. Possible methods to do
this are demonstrated in Section 5.5. The inclusion of nonlinear bearing forces leads
to modifications in the sensitivity analysis and a consideration of additional design

57
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variables. The corresponding theory is presented in Section 5.6. Finally, in Section
5.7 the single objective optimization problem is reformulated into a multiobjective
optimization problem. This is used to guarantee a non-empty feasible domain by
determining suitable target values for the constraint functions since these are often
set heuristically according to engineering demands.

5.1 Classification of optimization problems

As already mentioned in the introduction the design optimization of gyroscopic
systems includes various targets such as maximizing natural frequencies or critical
speeds, minimizing unbalance responses and all of this in combination with a reduc-
tion of mass. This can be formulated within a multiobjective optimization problem
or as a single objective optimization problem taking one target as objective function
and the others as constraints using suitable bounds for them. We opt for this latter
approach and the objective function is usually the total mass of the rotor. Other
functions are also possible such as e.g. the inertia of the rotor. This choice of ob-
jective function implies that requirements on frequencies and unbalance responses
are regarded as constraints. Later, multiobjective approaches are used to determine
suitable bounds for the constraint functions. This is explained in detail in Section
5.7.

Design optimization problems can be classified according to the geometric design
variables which are chosen. The standard classification differentiates between size,
shape and topology design variables (see e.g. [49]). Size design variables describe
cross-sectional properties of structural components, like diameters, cross-sectional
areas or moments of inertia. Shape design variables govern the shape of external
boundaries and surfaces. Topology design variables describe the type of the struc-
ture such as the number of interior holes. Considering our finite element beam
model as introduced in Chapter 4 our problem can be classified as a sizing optimiza-
tion problem with the diameters or lengths of the beam elements taken as design
variables. However, the difference to shape optimization problems is blurred since
by optimizing the diameter we also modify the shape of the rotor. This holds in
particular for a fine discretization. In addition to the size design variables, material
and support design variables are considered, depending on the concrete problem.

The optimization problems introduced in Chapter 1 can then be written in depen-
dence of a design variable vector q = (q1, . . . , qndv

), which can include diameters and
lengths of certain design variables as well as certain material and bearing properties.
The number of design variables is denoted by ndv. We obtain the following natural



5.2. SOLUTION STRATEGY 59

frequency optimization problem,

minq mass(q)
subject to
λm1(q) ≥ λ∗m1,
λm2(q) ≥ λ∗m2,
q ≤ q ≤ q̄.

(5.1)

The total mass of the rotor is minimized subject to constraints on the natural
frequency λm1 and λm2 of certain modes m1 and m2. The natural frequencies should
be increased above given target values λ∗

m1 and λ∗m2. The lower and upper bounds q
and q̄ are set due to manufacturing constraints and to prevent critical stress.

The vibration level optimization problem is given by

minq mass(q)
subject to
ωm1(q) ≥ ω∗

m1,
a(ωm2(q)) ≤ a∗m2,
q ≤ q ≤ q̄.

(5.2)

Here, constraints are set to increase the critical speed ωm1 above a target value ωm1

and to decrease the unbalance response a(ωm2) below the target values a∗m2.

Since our gyroscopic system is non-symmetric, in practical calculations care has
to be taken because complex eigenvalues and eigenvectors appear. As mentioned
in Chapter 3 it depends on the approach chosen for the time dependence, in our
case ψ(t) = eλt or ψ(t) = eiλt, whether the frequency appears in the real or in the
imaginary part of the complex eigenvalue. If only free vibrations are considered
the imaginary part of the eigenvalues represents the natural frequency. The natural
frequency optimization problem (5.1) which is actually computed looks like,

minq mass(q)
subject to
Im(λm1(q)) ≥ Im(λ∗

m1),
Im(λm2(q)) ≥ Im(λ∗

m2),
q ≤ q ≤ q̄.

For the sake of simplicity, however, we want to turn back to the previous notation,
writing simply λ and meaning either real or imaginary part.

5.2 Solution strategy

The concept of our solution process is based on the procedure applied to general
design optimization problems which can be found e.g. in [25] or [7]. We formulate
it with focus on our optimization problem for gyroscopic systems.
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To solve the nonlinear progamming problem, a sequence of subproblems is con-
structed which are solved successively. This is done as follows.

We start with a given initial design. This can be an existing prototype which should
be optimized or a guess of a good model due to the intuition of the engineer. This
might help preventing a mathematical programming algorithm to end up in a bad
local optimum which may exist due to the nonlinearities of the functions. Then the
desired finite element model is set up and the stiffness, gyroscopic and mass matrices
describing the equation of motion are determined as presented in Chapter 4. The
critical speed and unbalance response analysis is performed as in Section 4.4. This
includes the determination of the critical modes for which the unbalance response is
too high. These modes are chosen as target of our optimization. To be able to apply
a gradient-based optimization algorithm the derivatives of objective and constraint
functions are calculated. Then the approximation scheme of the original problem
can be constructed and is solved numerically. We use certain convex approximating
functions which are presented in detail in Chapter 6. At this stage a mode tracking
procedure is needed to follow the critical mode. For the obtained new design a
termination criterion is checked. If it is fulfilled the algorithm stops and yields
the final design. If not, a finite element model for the new design with new mass,
gyroscopic and stiffness matrices is calculated and a new iteration starts for the
updated model. The flowchart in Figure 5.1 summarizes this procedure.

Determination of mass, stiffness
and gyroscopic matrices

Final design

YES

Termination criterion fulfilled ?

mode tracking
Optimization routine and

Sensitivity analysis

Critical speed and
unbalance response analysis

Initial design

New design

NO

Figure 5.1. Computational algorithm to solve the introduced design optimization
problems.
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5.3 Sensitivity analysis

In order to apply gradient-based optimization algorithms, derivatives of the expres-
sions appearing in our optimization problems have to be determined. In our case
these are the functions of total mass, natural frequency, critical speed and unbalance
response. In this section analytical expressions for the sensitivities are formulated
based on a finite element discretization of the rotor model. They are determined by
differentiating the defining equations for the respective expressions. For our terms
this reduces to the determination of sensitivities of eigenvalues and eigenvectors.
Whereas the calculation of the eigenvalue sensitivity is straightforward, the deter-
mination of the eigenvector sensitivity is much more sophisticated. For eigenvalues
and eigenvectors results are known from the literature. Here we put particular em-
phasis on the sensitivities of critical speed and unbalance response which are related
to eigenvalues and eigenvectors and the corresponding expressions are derived be-
low. A detailed overview of design sensitivity analysis can e.g. be found in Haug
et al. [28] which treats also the case of a continuous rotor model with distributed
parameters.

If the calculation of the analytical expressions requires too heavy computations,
which is often the case for eigenvector derivatives, the method of finite differences
may be considered alternatively though then an additional function evaluation for
each design variable is needed.

Let us now introduce the analytical expressions of the sensitivities.

Total mass

The function of the total mass of the discretized rotor is a polynomial function of
diameter di, length li and density ρi of the beam elements,

mass =

n−1∑

i=1

(
di

2

)2

ρiπli.

This expression is easily differentiated by the length li and the diameter di which are
often taken as design variables. An important observation related to the formulation
of the optimization problems is, that the mass function is convex in the design
variables representing diameter and length.

Natural frequency

For the natural frequency λi of a certain mode φi the eigenvalue equation for this
mode

λiAφi = Bφi, i = 1, . . . , N,
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is differentiated by the design parameter qj for any j = 1, . . . , ndv to obtain
(
∂B

∂qj
− λi

∂A

∂qj
−
∂λi

∂qj
A

)

φi + (B − λiA)
∂φi

∂qj
= 0. (5.3)

Multiplying by the left eigenvector ξT
i we get

ξT
i

(
∂B

∂qj
− λi

∂A

∂qj
−
∂λi

∂qj
A

)

φi + ξT
i (B − λiA)
︸ ︷︷ ︸

=0

∂φi

∂qj
= 0. (5.4)

It should be noted that we deal with a non-symmetric system, so that we have to
distinguish between left and right eigenvectors. Making use of the normalization
of the eigenvectors with respect to A (see (4.11)) and the solution property of left
eigenvectors we finally obtain

∂λi

∂qj
= ξT

i

(
∂B

∂qj
− λi

∂A

∂qj

)

φi, (5.5)

where

∂A

∂qj
=

(
∂M
∂qj

0

0 ∂M
∂qj

)

and
∂B

∂qj
=

(

−(ω ∂G
∂qj

+ ∂C
∂qj

) −∂K
∂qj

∂M
∂qj

0

)

.

All entries of A and B are rational functions in each of the design variables.

It has to be mentioned that formula (5.5) only holds if the eigenvalue λi has mul-
tiplicity one. In case of multiple eigenvalues differentiability gets lost and special
techniques have to be applied which are discussed in Section 5.4.

Critical speed

The sensitivity for the special case of the critical speed is determined in a similar
way. The eigenvalue equation

(
(−M + iG)ω2 + iCω +K +Kb

)
c = 0

is differentiated with respect to a design variable qj resulting in
(

2ω
∂ω

∂qj
(−M + iG) + ω2

(

−
∂M

∂qj
+ i

∂G

∂qj

)

+ i
∂ω

∂qj
C + iω

∂C

∂qj

)

c

+

(
∂K

∂qj
+
∂Kb

∂qj

)

c+
(
ω2(−M + iG) + iωC +K +Kb

) ∂c

∂q
= 0.

Again we use the technique of premultiplying the equation by a left eigenvector dT

to obtain

∂ω

∂qj
=
dT
(

ω2
(

∂M
∂qj

− i ∂G
∂qj

)

− iω ∂C
∂qj

−
(

∂K
∂qj

+ ∂Kb

∂qj

))

c

dT (2ω(−M + iG) + iC) c
. (5.6)
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The expressions (4.16) and (4.17) for the unbalance response show that for the
determination of its sensitivity, the derivatives of the eigenmodes are required.

Eigenmodes

For the calculation of the derivatives of the eigenmodes there are several options.
An overview about different techniques for general complex matrices can be found
e.g. in [1] or [43]. One of them is the method by Fox [21], where the derivative is
written as a linear combination of all eigenmodes. In this case the task consists in
determining the corresponding coefficients. Extensions of this concept are discussed
e.g. in [61]. However, this method is very expensive in computational time, if all
modes are considered. A more efficient approach was introduced by Nelson [45]. It
only needs the knowledge of the eigenvalue whose derivative is calculated. This is the
method of our choice. The equation for the derivative of the generalized eigenvalue
problem is rewritten as

(B − λiA)
∂φ̃i

∂qj
=

(
∂λi

∂qj
A+ λi

∂A

∂qj
−
∂B

∂qj

)

φ̃i.

We use normalization (4.12) where the largest component l of φ̃i has been set to 1,

φ̃
(l)
i = 1.

This system is now solved directly. Care must be taken in the solution process
because B − λiA is singular [25]. Nelson’s idea is that the l-th column and row can
be deleted due to our choice of normalization, resulting in

(

∂φ̃i

∂qj

)

l

= 0.

Then the reduced system is solved. The existence of a solution of this system is
guaranteed [43]. After that the vectors can be transformed to obtain vectors φi

fulfilling the normalization (4.11) by setting

φi =
φ̃i

(ξ̃iAφ̃i)1/2
.

The derivative of the eigenvector φi is then obtained by the chain rule.

In an additional approach the eigenvector derivatives are computed by an iterative
procedure. Possible ways to do this are shown in [58].
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Unbalance response

To determine the derivative of the unbalance response a we have to know the deriva-
tive of each relevant component ck of the particular solution y of the forced system.
It is derived in Section 4.4 as

ck =

nf∑

p=1

N∑

l=1

ξνp,lφk,lf̂νp

iω − λl

.

We obtain

∂ck
∂qj

=

nf∑

p=1

N∑

l=1

(
∂ξνp,l

∂qj
φk,lf̂νp

+ ξνp,l
∂φk,l

∂qj
f̂νp

+ ξνp,lφk,l
∂f̂νp

∂qj

)

(iω − λl)
+

nf∑

p=1

N∑

l=1

ξνp,lφk,lf̂νp

(

i ∂ω
∂qj

− ∂λl

∂qj

)

(iω − λl)2
.

For the absolute value which is needed for the calculation of the unbalance response,
we have

∂|ck|

∂qj
=

∂(ck · c̄k)
1/2

∂qj
=

∂ck

∂qj
c̄k + ck

∂c̄k

∂qj

2(ck · c̄k)1/2

=
Re
(

c̄k
∂ck

∂qj

)

|ck|
.

Having calculated the sensitivities, gradient-based algorithms can be applied to solve
the natural frequency and vibration level optimization problems. Before introducing
suitable solvers in Chapter 6 the case of multiple eigenvalues has to be discussed
which requires an extension of the method.

5.4 Multiple eigenvalues

In points with multiple eigenvalues, attention has to be paid since the eigenvalue
function then is no longer differentiable. Only directional derivatives can be calcu-
lated in these points. In design optimization problems a coalescence of eigenvalues
often happens at the optimized design and in its neighbourhood. Therefore, op-
timization algorithms reaching the neighbourhood of the optimum have to use the
directional derivatives in these points. Then the input of correct sensitivities is guar-
anteed avoiding a possible source of failure for the algorithm. Research on this topic
can be found e.g. in Seyranian et al. [52], where the following method is developed.
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The directional derivatives of a multiple eigenvalue with multiplicity s in direction
e ∈ R

ndv , ‖e‖ = 1, are obtained as eigenvalues of the s× s-matrix

(gT
ije)i,j=1,...,s.

The s2 vectors gij ∈ Cndv are called the generalized gradients and their entries are
given by

gij =

(

ξT
i

(
∂B

∂q1
− λ

∂A

∂q1

)

φj, . . . , ξ
T
i

(
∂B

∂qndv

− λ
∂A

∂qndv

)

φj

)

, i, j = 1, . . . , s

and λ is the multiple eigenvalue and ξ and φ are the corresponding left and right
eigenvectors.

Another possibility was shown by Friswell [22] who works with an extension of
Nelson’s method.

The situation might occur that during an iterative optimization process modes do
not coalesce but simply cross, leading to a multiple eigenvalue only in the crossing
point. This is then simply a crossing between two or more differentiable functions
(see Figure 5.2). Indeed, in the neighbourhood of an eigenvalue with multiplicity s
there are s distinct eigenvalues and there exists a smooth ordering of the directional
derivatives of the multiple eigenvalue and the derivatives of the eigenvalues in the
neighbourhood (see Haug et al. [28]).

λ

λ1

λ2

Design change

Figure 5.2. Crossing of modes.

Our numerical calculations show that this situation often happens in our applica-
tions. We deal with this case by applying a mode tracking procedure which guar-
antees us to follow the correct mode after the crossing of eigenvalues. This method
is described in the next section. Since no coalescence happens the above mentioned
directional derivatives are not needed in our calculations, but may become relevant
when optimizing other rotating bodies.



66 CHAPTER 5. OPTIMIZATION OF GYROSCOPIC SYSTEMS

5.5 Mode tracking

When optimizing structural dynamic characteristics, specific frequencies and mode
shapes must be referenced by a number. In vibration problems, the eigenvalues and
eigenvectors are ordered by eigenvalue magnitude. When the design changes in each
iteration, frequencies will drift and mode crossings can occur (see Figure 5.3). If
the crossings are not tracked, the objective function and constraint functions can
be evaluated using modes that are different from those that were intended. Then
the design goals can no longer be fulfilled since one might follow a wrong mode (see
[13]).
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Figure 5.3. Mode crossing in vibration level optimization problem.

To track the modes of our interest we use the following strategy. From the ordered
list of eigenvalues we pick the numbers of the frequencies belonging to the modes of
interest, i.e. in our case certain rigid or bending modes. The initial shape of these
modes is taken as a reference mode shape φref . After any design change the modal
assurance criterion (MAC) value is checked [33]. It is calculated in each iteration
step k by

MAC(φref , φ
k
j ) =

|(φref , φ
(k)
j )|2

(φref , φref)(φ
(k)
j , φ

(k)
j )

, j = 1, . . . , N, (5.7)

where (·, ·) denotes the Euclidean inner product. The MAC value lies between 0
and 1. If two vectors represent the same mode, the value is large. If modes can be
distinguished clearly then we expect to have one vector φk

j for which the value is
close to one. However, in order to take into account numerical errors, we take the
vector φj that leads to the largest MAC value, assuming it represents the mode of
interest. The new mode number j∗ is thus given by

j∗ = max
j=1,...,N

MAC(φref , φj).
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The reference vector can now be left as the initial mode shape vector or updated in
each iteration. Then in iteration k the mode shape vector of iteration k − 1 is the
reference vector. In our applications we can concentrate on the neighboring modes
and do not have to calculate the MAC value for all N eigenvectors.

5.6 Extension to nonlinear bearing model

When applying the optimization method for gyroscopic systems on a model con-
sidering nonlinear oil film forces as explained in Section 4.5 certain modifications
have to be made. This requires changes in the sensitivity analysis and extensions to
include design variables of the bearing configuration.

The diameter of the shaft element, where the bearing is attached to, appears in the
expression of the oil film force and hence the derivative with respect to this shaft
element has to be modified. Moreover, additional design variables are included in
the calculations such as bearing clearance and width. We want to mention how this
is included into the optimization program.
The additional damping and stiffness terms due to the nonlinear oil film bearings are
expressed by the matrices Koil and Coil in equation (4.23). Therefore the derivatives
of these matrices have to be determined in order to include their influence in the
calculations. We want to show the proceeding exemplarily for the stiffness coeffi-
cient kXX . It is the same for the other stiffness coefficients as well as the damping
coefficients.

The formal derivative with respect to a design variable qj is given by

∂kXX

∂qj
=

∂

∂qj

(
∂FX

∂x

)

=
∂

∂x

(
∂FX

∂qj

)

.

By changing the order of differentiation, the derivatives of the expressions FX and
FY with respect to the design variables are evaluated initially. This is possible
analytically for the shaft radius and bearing width for which the terms are shown
below. For the bearing clearance the derivative is calculated by finite differences.
The derivatives of FX and FY are expressed by the derivatives of Fe and Fγ,

∂FX

∂qj
= cos(γ)

∂Fe

∂qj
− sin(γ)

∂Fγ

∂qj
,

∂FY

∂qj
= cos(γ)

∂Fe

∂qj
+ sin(γ)

∂Fγ

∂qj
.

For the shaft radius we obtain

∂Fe

∂r
=
ηωb3

2c2
(GA1 − EA2),

∂Fγ

∂r
=
ηωb3

2c2
(GA3 − EA1)
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and for the bearing width b,

∂Fe

∂b
=

3ηωrb2

2c2
(GA1 − EA2),

∂Fγ

∂b
=

3ηωrb2

2c2
(GA3 − EA1).

The subsequent differentiation by the position of the static equilibrium value x is
also determined by the method of finite differences as mentioned in Section 4.5.

5.7 Feasibility studies by multiobjective optimiza-

tion

The successful solution of the optimization problem depends on the existence of a
non-empty feasible domain. This is threatened if the target values on the constraints
are chosen too restrictive or demanding by the designer. Therefore, in this section
we want to present some ideas how to ensure the solvability of the optimization
problem. The goal of our approach is not only to find suitable target values, but
also to give the engineer some information what could be achieved best and show
the trade-off between contradicting targets in the optimization problem. Therefore
tools of nonlinear programming capable of handling several conflicting objects are
needed. These are called multiobjective or multicriteria optimization techniques and
an extensive coverage about them can be found in [42].

Multiobjective optimization problems are solved by scalarization which means con-
verting the problem into a single objective optimization problem. Then standard
techniques from nonlinear programming can be used for the solution. Because the
different objective functions can be contradictive it is generally not possible to find
a solution which would be optimal for the objectives simultaneously. It is the aim
to find a solution vector where none of the components can be improved without
deteriorating one of the other components. This concept is called Pareto optimality
and more theory about that can also be found in [42]. A formal definition is now as
follows.

Let Z ⊂ Rn be a given compact set of feasible designs. Furthermore, objective
functions fi : Z → R, i = 1, . . . , m are given.

Definition 5.1. A multiobjective optimization problem is defined as

min
x∈Z

{f1(x), . . . , fm(x)}.

Then x∗ is called Pareto optimal, if there does not exist x̃ ∈ Z satisfying fi(x̃) ≤
fi(x

∗), i = 1, . . . , m and fj(x̃) < fj(x
∗) for some j ∈ {1, . . . , m}. Moreover, x∗ is

called weakly Pareto optimal, if there does not exist any vector x̃ satisfying m strict
inequalities.
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Usually, such a problem has infinitely many Pareto optimal solutions and favourable
solutions have to be selected out of this set. Therefore, a decision maker is needed
to express preference relations between different solutions. This leads to the intro-
duction of aspiration levels that are objective function values which are favourable
to the decision maker. A vector consisting of aspiration levels is called a reference
point. We want to mention one certain reference point which is the ideal objective
vector. It is obtained by optimizing each of the objective functions individually
subject to constraints.

Definition 5.2. A vector z∗ is called an ideal objective vector, if

z∗i = min{fi(x) : x ∈ Z}, i = 1, . . . , m.

In general, this point is not feasible since the objective functions are contradictive.
Nevertheless it can serve as a reference point standing for the ideal case and we use
it below.

Let us now present two approaches which we apply to our problem in the following.

• The first one belongs to the so-called no preference methods meaning that the
opinions of the decision maker are not taken into consideration. Obviously the
solution best satisfying the requirements of the decision maker is not necessar-
ily found with this method. The advantage is that the problem can be solved
with a simple nonlinear programming method.

A standard example for such a method is the method of the global criterion
in which the distance between some reference point, in our case the ideal
objective vector, and the image of the feasible domain is minimized. The
optimization problem then is

min
x∈Z

(
m∑

i=1

(fi(x) − z∗i )
p

)1/p

,

where p ∈ N and for p = ∞

min
x∈Z

max
i=1,...,m

{fi(x) − z∗i }.

It can be shown [42] that a solution x∗ is Pareto optimal, if 1 ≤ p < ∞ and
weak Pareto optimal, if p = ∞.

• The second class of methods aims at generating several Pareto optimal solu-
tions and the decision maker selects the one most preferred. It is usually very
expensive to calculate the Pareto optimal set or even a part of it. The idea
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is to use a weighted sum of the objective functions and this is also called the
weighting method. The problem is then formulated as

min
x∈Z

m∑

i=1

wifi(x), i = 1, . . . , m,

where
∑m

i=1 wi = 1. If wi > 0, i = 1, . . . , m, then any solution is Pareto opti-
mal. Of course, only a finite number of parameter settings can be calculated
and therefore some information is hidden. But interpolation gives an approxi-
mation of the whole Pareto optimal set. A special case is, if only two functions
are considered. Then, only one weight parameter appears since

∑2
i=1 wi = 1

and a sequence of optimization problems varying the weighting parameter can
be calculated to yield a trade-off curve between the two functions.

Both methods can also be combined and give the method of weighted metrics.
The optimization problem is then given by

min
x∈Z

(
m∑

i=1

wi(fi(x) − z∗i )
p

)1/p

.

Application to vibration level optimization problem

As mentioned above it is our aim to obtain reasonable target values for our single
objective optimization problem. The model problem (5.2) is given as

minq f(q) = mass(q)
subject to
g1(q) = −ωm1(q) ≤ g∗1 = −ω∗

m1,
g2(q) = am2(q) ≤ g∗2 = a∗m2,
q ≤ q ≤ q̄,

(5.8)

with two constraint functions g1 and g2 and box constraints q and q̄ for the design
variables q. In the vibration level problem the constraint functions are chosen as
the critical speed and the unbalance response of certain modes m1 and m2. The
task is to find proper target values g∗1 and g∗2. The idea is to determine the ideal
objective vector by taking each constraint function once as objective function of
a new optimization problem. The original objective function f is now considered
as a constraint and it is demanded that it should not become worse as for the
initial design, i.e. for the above case we have f ≤ f ∗ = f(q0). The respective other
constraint is neglected. As auxiliary optimization problems we obtain for gi, i = 1, 2,

minq gi(q)
subject to
f(q) ≤ f ∗ = f(q0),
q ≤ q ≤ q̄.

(5.9)
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We have z∗i = minq gi(q), i = 1, 2, forming the ideal objective vector. It generally
is an infeasible point since no second constraint was included in the optimization
problem.

Now the above introduced multicriteria approaches are applied to find Pareto-
optimal points in our case.

The method of the global criterion then reads as

minq

(∑2
i=1(gi(q) − z∗i )

p
)1/p

subject to
f(q) ≤ f ∗,
q ≤ q ≤ q̄.

For our calculation we usually consider p = 2. This yields a Pareto optimal solution
and the decision maker has to judge whether it is satisfactory.

Using the weighting method and trying different weighting parameters gives the
decision maker a bigger choice of Pareto optimal solutions. Here, we are in the
favourable case of two parameters. We have

minq wg1(q) + (1 − w)g2(q)
subject to
f(q) ≤ f ∗,
q ≤ q ≤ q̄,

where w ≥ 0. A part of the whole Pareto optimal set can be determined in de-
pendence of the parameter w. Let q∗w be a solution of the weighting problem. For
each parameter w the Pareto optimal points (g1(q

∗

w), g2(q
∗

w)) can be drawn in a curve
which shows the trade-off (see Figure 5.4).

g1

g2

Figure 5.4. Possible curve of Pareto optimal solutions generated with the
weighting method.
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The decision maker can then set an aspiration level for one constraint and see what
can be achieved for the other constraint. Having this knowledge the formulation of
an infeasible optimization problem can be avoided.

Remark. In nonlinear programming algorithms based on a sequence of approxi-
mating solutions, the Pareto optimal points can in general also be determined only
approximately.

Based on these considerations for a numerical determination of target values we can
formulate an extended design optimization process. For a given initial design the
weighting method performed with different weighting parameters gives the decision
maker an overview of possible target values. According to his preferences a suit-
able combination of values can be chosen such that the actual design optimization
problem has a non-empty solution set. However, due to the nonlinearities of the
functions, the optimization algorithm does not necessarily reach the point where
the constraints with the new target values are active.



Chapter 6

Numerical optimization methods

In this chapter we give an overview about optimization algorithms that are used to
solve the optimization problems of interest in this work.

The treated design optimization problems belong to the class of nonlinear con-
strained programming which are in general given by

minx∈Rn f0(x)
subject to
fi(x) ≥ f ∗

i , i = 1, . . . , m,
xj ≤ xj ≤ x̄j, j = 1, . . . , n,

(6.1)

with a nonlinear differentiable real-valued objective function f0, nonlinear differen-
tiable real-valued constraint functions fi and scalar target values f ∗

i . As usual in
structural optimization problems lower and upper bounds xj and x̄j on the variables
xj are considered.

The strategy to solve the optimization problem (6.1) is to replace objective and
constraint functions by a sequence of approximating functions f̃i, i = 0 . . . , m. The
approximating subproblem can be solved directly. In iteration k it is written as

minx∈Rn f̃
(k)
0 (x)

subject to

f̃
(k)
i (x) ≥ f ∗

i , i = 1, . . . , m,

α
(k)
j ≤ xj ≤ β

(k)
j , j = 1, . . . , n.

(6.2)

and can be solved by mathematical programming algorithms. It is an important
question how the approximations should be chosen. Svanberg [56] considers the class
of conservative convex separable approximation methods and we want to follow this
approach. The convexity guarantees that dual methods can be used to solve (6.2).
Separability, meaning that no expressions of mixed variables occur, ensures that the

73
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necessary conditions of optimality do not couple the design variables which reduces
the computational effort a lot. Moreover, the approximation scheme is said to be
conservative if a sequence of steadily improved iterations is generated which provide
feasible solutions at any stage of the optimization process [12].

For each subproblem the additional bounds on the design variables xj have to be
tightened since the approximation is assumed to be good only in a small neigh-
borhood of the current iteration point. Therefore, trust region parameters αj and
βj have to be introduced for each design variable and replace the lower and upper
bounds xj and x̄j. The approximating subproblems (6.2) are then solved succes-
sively and the algorithm is stopped when the change in design variables becomes
sufficiently small.

The whole approach is called sequential convex programming (SCP) and there are
many options how to choose the convex approximations. The simplest one is the
linearization of objective and constraint functions, called sequential linear program-
ming (SLP), which is described in Section 6.1. An algorithm based on more sophisti-
cated convex approximations is the method of moving asymptotes (MMA) which is
explained in more detail in Section 6.2. Modifications of the MMA algorithm were
developed that guarantee a convergence towards a KKT point of the discretized
problem.

In some cases structural optimization problems can also be treated by semidefinite
programming methods (see e.g. [60]). This is possible if the optimization problem
can be reformulated as a problem with a linear objective function and constraints
that are written as a combination of affine symmetric, positive semidefinite matri-
ces. This works e.g. if a system without gyroscopic effects is optimized subject to
constraints on the smallest eigenvalue. The reformulation is in particular attractive
if multiple eigenvalues are involved since the algorithms can circumvent differen-
tiability problems [7]. Unfortunately, in our case it is not possible to apply this
strategy, because of the nonsymmetric matrices involved and the focus on a certain
mode which generally does not belong to the smallest eigenvalue.

6.1 Sequential linear programming

The SLP algorithm is based upon a sequential linearization of the objective function
and the constraints. We have for each iteration step k

fi(x) = fi(x
(k)) + ∇fi(x

(k))(x− x(k))
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for i = 0, . . . , m. The linearized optimization problem then looks like

minx ∇f0(x
(k))(x− x(k))

subject to
∇fi(x

(k))T (x− x(k)) ≥ f ∗

i − fi(x
(k)),

α
(k)
j ≤ x− x(k) ≤ β

(k)
j .

The SLP algorithm is often used in engineering applications and for a wide spec-
trum of problems acceptable results can be obtained. The big advantage is, that
the solution of the subproblems can be realized efficiently by linear programming
algorithms like the simplex algorithm or primal-dual interior point methods.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
1

2

3

4

5

6

7

f̃(x)

f(x)

Figure 6.1. SLP approximation f̃ of nonlinear function f .

The success of the algorithm, however, depends strongly on the choice of proper
values for the parameters α and β which are usually called move limits in this
context. Figure 6.1 shows that the approximation is only good in a very small
neighbourhood of the current iteration point. Therefore, move limit strategies have
to be applied. We used two options.

The first one is based on a large move limit in the beginning allowing big steps to
approach quickly the minimum. Then, we successively decrease the move limit to
reduce the linearization error, to avoid large oscillations around the optimum and
enable a better convergence.

Another possibility is to reduce the design interval when the design variable oscillates
and enlarge it when the convergence process is stable (see e.g. Duysinx [12]). After
choosing some initial move limit for the first two iterations the update is according
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to the following rule.

α
(k+1)
i = d · α

(k+1)
i , if (x

(k+1)
i − x

(k)
i )(x

(k)
i − x

(k−1)
i ) < 0,

α
(k+1)
i = u · α

(k+1)
i , if (x

(k+1)
i − x

(k)
i )(x

(k)
i − x

(k−1)
i ) ≥ 0

with 0 < d < 1 and u > 1. Again the choice of decrease and increase parameters d
and u is decisive. Further strategies can be found in [29].

An extension of the concept of SLP was introduced by Fleury and Braibant [19] with
the CONLIN algorithm, which works with a linearization with respect to direct and
reciprocal variables. The use of reciprocal variables is motivated by the fact that
stresses and displacements are exact linear functions of reciprocal sizing variables in
the case of a statically determinate structure and hence this turns out to be the best
approach for certain optimal sizing problems (see [18]). However, the drawback of
CONLIN is that the curvature of the approximations is fixed which may result in a
bad approximation of the original function.

6.2 Method of moving asymptotes

A method which is able to adjust the curvature of the approximation is the method
of moving asymptotes (MMA) which was introduced by Svanberg [54]. This method
is explained in detail below. It is based on a linearization in terms of the intermediate
variables

1

xj − lj
and

1

uj − xj

,

dependent on the signs of the derivatives of objective and constraint functions at the
current iteration point. The parameters lj and uj are called the moving asymptotes
giving the method its name. They are chosen individually for each design variable
xj and are usually changed in each iteration.

To guarantee that the problem always has feasible solutions the original formulation
(6.1) is replaced by the following one where additional variables yi, i = 1, . . . , m and
z are introduced.

min f0(x) + a0z +
∑m

i=1(ciyi + 1
2
diy

2
i )

subject to
aiz + yi − (fi(x) − f ∗

i ) ≤ 0, i = 1, . . . , m,
xj ≤ xj ≤ x̄j, j = 1, . . . , n,
z ≥ 0 and yi ≥ 0, i = 1, . . . , m.

(6.3)

The parameters ai, ci and di are given non-negative real numbers and are assumed
to satisfy ci + di > 0 for each i. Then e.g. setting z = 0 and yi = max{0, fi(x)− f ∗

i }
guarantees that the feasible domain is non-empty.
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The approximating subproblems are as follows

min f̃
(k)
0 (x) + a0z +

∑m
i=1(ciyi + 1

2
diy

2
i )

subject to

f̃
(k)
i (x) − aiz − yi ≥ f ∗

i , i = 1, . . . , m,

α
(k)
j ≤ xj ≤ β

(k)
j , j = 1, . . . , n,

z ≥ 0 and yi ≥ 0, i = 1, . . . , m.

The approximating functions are chosen as

f̃
(k)
i (x) =

n∑

j=1

(

p
(k)
ij

u
(k)
j − xj

+
q
(k)
ij

xj − l
(k)
j

)

+ r
(k)
i , i = 0, 1, . . . , m,

where

p
(k)
ij =

(

u
(k)
j − x

(k)
j

)2

max

{

0,
∂fi

∂xj

(x(k))

}

,

q
(k)
ij =

(

x
(k)
j − l

(k)
j

)2

max

{

0,−
∂fi

∂xj
(x(k))

}

,

and r
(k)
i is a correction term to ensure that the approximating functions f̃i equals

the original function at the current iteration point, i.e. f̃i(x
(k)) = fi(x

(k)). Either

p
(k)
ij or q

(k)
ij is equal to zero, so that only one asymptote is active and f̃i is a hyperbola

(see Figure 6.2). If lj and uj become very large the approximating function is almost
linear. Indeed, in the limit lkj → −∞ and uk

j → ∞ the algorithm is identical to the
SLP algorithm.
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Figure 6.2. MMA approximation f̃ of f .
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Moreover, this scheme guarantees that the first derivatives at the current iteration
point coincide, i.e.

∂f̃i

∂xj

(x(k)) =
∂fi

∂xj

(x(k)).

The parameters α
(k)
j and β

(k)
j play the role of move limits and are chosen for example

as

α
(k)
j = max{xj, 0.9l

(k)
j + 0.1x

(k)
j },

β
(k)
j = min{x̄j, 0.9u

(k)
j + 0.1x

(k)
j }.

For a suitable choice of the vertical asymptotes Svanberg [54] proposed a heuristic
strategy based upon the design variable oscillations. For the iterations k = 1 and
k = 2 the following default rules are adopted

l
(k)
j = x

(k)
j − s0(x̄j − xj),

u
(k)
j = x

(k)
j + s0(x̄j − xj)

with s0 = 0.5.

For k > 2, the update scheme is the following. When the design variables in previous
iterations tend in the same direction, i.e.

(x
(k−2)
j − x

(k−1)
j )(x

(k−1)
j − x

(k)
j ) ≥ 0,

the convexity can be reduced not to slow down the convergence rate. Hence the
asymptotes can be moved away from the design point

l
(k)
j = x

(k)
j − s1(x

(k−1)
j − l

(k−1)
j ),

u
(k)
j = x

(k)
j + s1(u

(k−1)
j − x

(k−1)
j )

with s1 > 1.

However, when convergence history oscillates , i.e.

(x
(k−2)
j − x

(k−1)
j )(x

(k−1)
j − x

(k)
j ) < 0,

one wants to make the design space smaller. Then

l
(k)
j = x

(k)
j − s2(x

(k−1)
j − l

(k−1)
j ),

u
(k)
j = x

(k)
j + s2(u

(k−1)
j − x

(k−1)
j )



6.2. METHOD OF MOVING ASYMPTOTES 79

are chosen with s2 < 1. The numerical studies show that the choice of the parameters
s0, s1 and s2 is crucial for the success of the algorithm. More details are mentioned
in Chapter 7.

Remark. (i) The MMA algorithm shows good convergence behaviour in many
applications. However, it does not guarantee convergence which leads to failure of
the method in certain cases.
(ii) If constraint function values strongly differ in magnitude, a normalization might
lead to an improvement of the algorithm. The original constraints fi(x) ≥ f ∗

i are
then replaced by fi/f

∗

i ≥ 1 for all i = 1, . . . , m.

Since there is no convergence theorem for the original MMA algorithm a method
is desired that converges towards a point which fulfills the first order necessary
optimality conditions for the optimization problem. These are given by the Karush-
Kuhn-Tucker conditions (see e.g. [24]) and make use of the Lagrange function L.
For our nonlinear constrained programming problem (6.1) we obtain

Definition 6.1. The Lagrange function L : Rn × Rm → C of the nonlinear con-
strained optimization problem (6.1) is defined by

L(x, λ) = f0(x) +
m∑

i=1

λi(f
∗

i − fi(x)) +
n∑

i=1

λm+i(xi − xi) +
n∑

i=1

λm+n+i(xi − x̄i).

Definition 6.2. Let us consider the nonlinear constrained optimization problem
(6.1). The conditions

∇xL(x, λ) = 0,

f ∗

i − fi(x) ≤ 0 ∀i = 1, . . . , m,

xi − xi ≤ 0 ∀i = 1, . . . , n,

xi − x̄i ≤ 0 ∀i = 1, . . . , n,

λi ≥ 0 ∀i = 1, . . . , m+ 2n,

λi(f
∗

i − fi(x)) = 0 ∀i = 1, . . . , m,

λm+i(xi − xi) = 0 ∀i = 1, . . . , n,

λm+n+i(xi − x̄i) = 0 ∀i = 1, . . . , n

are called Karush-Kuhn-Tucker (or short KKT) conditions. Every point (x∗, λ∗)
fulfilling the KKT-conditions is called KKT point of the optimization problem.

We now want to present two extensions of the MMA algorithm that guarantee
convergence towards a KKT point. The first one is by Svanberg [56] and works with a
modification of the approximating functions. Another possibility is the consideration
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of a line search scheme in the original MMA algorithm which was done by Zillober
[65, 66].

Globally convergent MMA (GCMMA)

The method proposed by Svanberg uses the following extensions of p
(k)
ij and q

(k)
ij to

create non monotonous approximations.

p
(k)
ij = (u

(k)
j − x

(k)
j )2

(

max

{

0,
∂fi

∂xj
(x(k))

}

+ κ
(k)
ij

)

,

q
(k)
ij = (x

(k)
j − l

(k)
j )2

(

max

{

0,−
∂fi

∂xj

(x(k))

}

+ κ
(k)
ij

)

,

where the additional term κ
(k)
ij =

ρ
(k)
i (u

(k)
j −l

(k)
j )

2
.

Both asymptotes l and u are used at the same time to generate the approximating
functions. We notice that the tighter the asymptotes are the steeper is the slope of
the function (see Figure 6.3).
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Figure 6.3. GCMMA approximation with different asymptotes.

The additional parameters ρ
(k)
j are chosen as follows

ρ
(1)
j = ε, ∀j ∈ {0, 1, . . . , m}, 0 < ε < 1.

The update of the parameters is for k ≥ 2 done by

ρ
(k)
j =







2ρ
(k−1)
j , if f̃

(k−1)
j (x(k)) < fj(x

(k)),

ρ
(k)
j = ρ

(k−1)
j , if f̃

(k−1)
j (x(k)) ≥ fj(x

(k)).
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For the convergence proof it is necessary to update the asymptotes like

l
(k)
j = x

(k)
j − (x

(k−1)
j − l

(k−1)
j ),

u
(k)
j = x

(k)
j + (u

(k−1)
j − x

(k−1)
j ),

if f̃
(k−1)
j (x(k)) ≥ fj(x

(k)).

Then it can be shown [56] that the algorithm converges to a KKT-point of problem
(6.3). Due to this property the algorithm is often denoted in the literature as globally
convergent method of moving asymptotes (GCMMA). However, we want to mention
that for any starting point the algorithm converges towards a KKT-point and not
necessarily towards a local or even the global optimum.

MMA with line search

Zillober [65, 66] obtains a global convergence of the MMA method by introducing a
line search with respect to the augmented Lagrange merit function LA which is for
a fixed parameter r defined by

LA(x, λ) = f0(x) +
m∑

i=1







λifi(x) + r
2
f 2

i (x), if − λi

r
≤ fi(x),

−
λ2

i

2r
, otherwise.

To keep the notation simple we just consider it for problem (6.3) without artificial
variables. The transformation to the extended case is straightforward. The line
search works as follows.

Let (x̃, λ̃) be the solution of the MMA subproblem in iteration k.

1. Let sk :=

(
x̃− xk

λ̃− λk

)

, δk = ‖x̃− xk‖, and ηk := min
i=1,...,n

ηk
i , where

ηk
i :=







(
∂f
∂xi

(xk) + τi

)
2ui−x̃k

i −xk
i

(ui−x̃k
i )2

, if ∂f
∂xi

(xk) ≥ 0,
(

τi −
∂f
∂xi

(xk)
)

−2li+x̃k
i +xk

i

(x̃k
i −li)2

, if ∂f
∂xi

(xk) < 0

and τi > 0.

2. Compute LA(xk, λk),∇LA(xk, λk),∇LA(xk, λk)T sk.
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The next step guarantees that the descent direction is sufficiently good. This is
done by an adaptation of the parameter r of the augmented Lagrangian function,
which is not changing the descent direction sk itself, but instead the merit function
for which the decrease is desired.

3. If ∇LA(xk, λk)T sk > −ηk(δk)2/2 update penalty parameter r, rnew = 10r, and
goto 2, otherwise let σ = 1.

4. Compute f0(x
k + σ(x̃ − xk)) and fi(x

k + σ(x̃ − xk)) for i = 1, . . . , m and
LA((xk, λk) + σsk).

Now an appropriate steplength has to be found. An Armijo condition is used for
this.

5. If LA(xk, λk)−LA((xk, λk) + σsk) < −cσ∇LA(xk, λk)T sk, let σ = σ ·ψ (where
0 < ψ, c < 1) and goto step 4; otherwise let σk = σ.

6. Let

(
xk+1

λk+1

)

:=

(
xk

λk

)

+ σksk. Set k := k + 1 and solve the next MMA

subproblem.

This procedure is repeated until a given termination criterion such as a sufficient
small difference between two consecutive designs is fulfilled.

Zillober shows that under certain assumptions the penalty parameters rj are bounded
and that the sequence of iteration points xj obtained by the SCP algorithm has an
accumulation point and each accumulation point is a KKT point [66]. One of the
assumptions says that in the neighbourhood of stationary points the multipliers have
to decrease with at least the same order as the primal variables. If this assumption is
not fulfilled a weaker convergence result can be proven which says that the iteration
sequence has an accumulation point and at least one of the accumulation points is
stationary.

All algorithms shown so far only used first derivatives. The drawback of these
first order approximations is that once they have reached the neighbourhood of
the optimum the convergence towards the optimum is very slow. To speed up the
convergence process better approximations are needed which are based on curvature
information. The inclusion of second order information into the approximation
scheme can improve the quality of the approximation and leads to faster convergence
rates. Svanberg extended his MMA approach by the consideration of non-mixed
second-order derivatives [55]. However, it is generally very expensive to calculate the
second derivatives and therefore this approach is often rejected. A possible remedy
is shown in [9] where information from previous iterations is used to approximate
the second derivative of the current iteration point.



Chapter 7

Computational results

This chapter presents the results of the calculations for the natural frequency opti-
mization problem (5.1) and the vibration level optimization problem (5.2). As an
example, the turbocharger in the engine of a passenger car as introduced in Chapter
1 is studied. At first, the configurations of two different finite element models are
described which serve as initial design for the optimization process. Then results for
the natural frequency optimization problem are presented in Section 7.2. The central
optimization problem with vibration level constraints is treated in Section 7.3. In
the latter case, additional calculations were performed for an extended set of design
variables, including also variables for the bearing configuration. As support linear
spring and damper support as well as nonlinear fluid-film bearings were considered.
Numerical results are presented for all cases. Section 7.4 deals with the important
question when feasible solution exists. Since the target values in the optimization
problem are often set heuristically, it is not guaranteed that feasible solutions exist
for our optimization problem. Therefore, it is our aim to determine target values
for which it can be assured that the solution set of the optimization problem is
nonempty. This is done by using the multicriteria optimization approaches which
were explained in Chapter 5.

7.1 Description of rotor models

The two rotor models presented in this section are models representing current
prototypes of turbochargers of TCRDL. They are taken as initial design for the
optimization process. Later, when evaluating the numerical results, the optimized
designs are compared with the initial ones. The complete specification of the shaft
is given in Appendix C.

83
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Model 1

Model 1 consists of 13 beam elements and two rigid disks which are attached at
nodes 3 and 12. There exists spring support at nodes 7 and 9 and unbalance forces
are assumed to act at nodes 2, 4, 11 and 13. The complete model is shown in Figure
7.1. The unbalance forces are indicated by arrows. Later this model is also studied
with four times the number of beam elements to observe the behaviour for a finer
discretization.
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Figure 7.1. Initial design of model 1 with shaft, impeller, turbine, bearings and
unbalance forces (red arrows).

For the formulation of the design optimization problem the choice of design variables
is crucial. In our case the diameters di of the beam elements and the mass mτi

and
moments of inertia Idτi

, Ipτi
of the rigid disks τi, (i = 1, 2), representing impeller and

turbine, are selected. The optimized values for mass and moments of inertia of the
rigid disk are in a subsequent step transformed into a corresponding blade geometry
by the engineer. The design variable vector q is written as

q = (d1, . . . , dn−1, mτ1 , mτ2 , Idτ1
, Idτ2

, Ipτ1
, Ipτ2

).

The lower and upper bounds on the diameter of the beam elements are given by
q = 0.003 m and q̄ = 0.05 m except in the vicinity of the bearings where we have
q = 0.004 m and q̄ = 0.008 m due to limitations of the casing size. These bounds
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are set to avoid critical stress and guarantee stability for the optimized design. For
the other design variables we have q = β · q(0) and q̄ = β̄ · q(0), where β = 0.9 and

β̄ = 1.1 and q(0) contains the values for the initial design.

Model 2

To be able to take care of different material used in the manufacturing of the rotor,
modifications of the model were made that allow an inner and an outer shaft part of
certain beam elements. In our element matrices (see Appendix B) we have to modify
the expressions for µ, Ip and EIa. The mass per unit length µ = r2πρ becomes

µ = π(r2
i ρi + (r2

o − r2
i )ρo),

where ri and ρi are radius and density of the inner shaft part and ro and ρo the cor-
responding values of the outer shaft. Analogously, we can transform the expression
for the polar moment of inertia

Ip =
π

2
(r4

i ρi + (r4
o − r4

i )ρo)

and for the bending rigidity we have

EIa =
π

4
(r4

iEi + (r4
o − r4

i )Eo),

where Ei and Eo are the values of Young’s modulus for inner and outer shaft part.
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Figure 7.2. Initial design of model 2 with shaft, bearings and unbalance forces (red
arrows). Blue shaft elements indicate design variables.
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These modifications are realized in model 2 (see Figure 7.2) which consists of 21
beam elements. No rigid disks are used here but instead turbine and impeller are
modeled by a larger diameter of the beam elements. In this model only the diameters
di (of the outer shaft) of some beam elements are selected as design variables. Those
elements are indicated in blue color in the figure. Moreover, the lengths li of certain
elements are chosen as variables. The nodes of these two elements are drawn in blue.
The design variable vector q in our concrete case is given by

q = (d8, d9, d10, d11, d12, d13, d14, d15, l9, l14).

We refer again to Appendix C for the complete specification of the shaft.

Remark. The approach presented in Chapters 1-6 holds for a general class of
rotating bodies. The physical model which is used captures effects common to all
such bodies. For certain applications, like the turbocharger as considered example,
additional effects such as aerodynamic effects, might play a role. However, in our
research we want to focus on the validity of the optimization approach for the general
class of rotors and neglect the additional effects.

7.2 Natural frequency optimization problem

We start with some calculations which were done for model 1. If the support is not
mentioned explicitly, linear spring and damper support is assumed. It is the aim
to minimize the mass while raising the natural frequencies of the first and second
bending mode (denoted with subscript bm1 and bm2) by 10%. The formulation of
this natural frequency optimization problem is then

minq mass(q)
subject to

λbm1(q) ≥ αbm1 · λ
(0)
bm1,

λbm2(q) ≥ αbm2 · λ
(0)
bm2,

q
i
≤ qi ≤ q̄i, i = 1, . . . , ndv,

where we set αbm1 = αbm2 = 1.1 and λ
(0)
bm1 and λ

(0)
bm2 are the values for the initial

design.

The mass of the initial model is 0.0929 kg and in the static case of 0 Hz we obtain
as frequency for the initial design

λ
(0)
bm1 = 1636 Hz and λ

(0)
bm2 = 2635 Hz

and the assignment is determined by drawing the modes. In Figure 7.3 it can be seen
that below the bending modes there are two other natural frequencies. These lower
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frequencies belong to rigid modes. Due to the gyroscopic terms the natural frequen-
cies depend on the rotational speed and this behaviour can be seen in the figure.
For every mode the frequency splits into two parts which are, respectively, above
and below their associated zero-running-speed natural frequency. The increasing
one represents the forward whirling direction of the mode. It is subject to unstable
whirling motion. and therefore the frequency which we study. The decreasing one
is the backward whirling direction which we neglect, since no excitation occurs (see
e.g [11]).
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Figure 7.3. Natural frequencies of first ten modes for initial design
in dependence of rotational speed and bisecting line (red).

Moreover, we added the bisecting line which represents the resonance case. The
intersection of this line with the frequencies of the modes gives us the critical speeds
of the different modes which is of major interest for us. Figure 7.3 serves as a good
illustration for the frequency and critical speed pattern. In numerical calculations
the critical speeds are of course determined analytically by the method introduced
in Section 4.4.

Calculations were done for a rotational speed ω = 1000 Hz and model 1 with 13
and 52 beam elements, respectively. The latter model is a refinement of the former
one to obtain a smoother design and every beam element is divided into four equal
parts. Initial and target frequencies for the two cases are obviously equal and are as
follows.

For the initial design we have

λ
(0)
bm1 = 2145 Hz and λ

(0)
bm2 = 3297 Hz,
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which gives the target frequencies

λ∗bm1 = 1.1 · λ
(0)
bm1 = 2359 Hz and λ∗

bm2 = 1.1 · λ
(0)
bm2 = 3626 Hz.

Model 1 with 13 beam elements

The numerical results show that we obtain the same optimized structure for SLP and
MMA. In Figure 7.4 the initial and the optimized model are drawn in one picture
to make the difference clear between both designs. The initial model is indicated by
the dashed black line and the optimized model is drawn in blue. Design variables,
where the lower bound constraint is active, are drawn in red.
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Figure 7.4. Initial and optimized structure of model 1 with 13 beam elements for
natural frequency optimization problem and ω = 1000 Hz.

We notice that the rotor becomes thin at the end parts and in the center part. The
diameters of the beam elements at the end even attain the lowest possible value.
The same holds for the mass of the rigid disks leading to a large contribution for the
reduction of the total mass. The mass of the optimized design is 0.0651 kg, which
is 70.1% of the initial mass. This reduction of weight leads to a better response and
higher efficiency of the rotor. Figure 7.5 shows the iteration history of the objective
function for the SLP and the MMA algorithm.
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Figure 7.5. History of objective function for SLP (left) and MMA (right) algorithm
for natural frequency optimization problem and model 1 with 13 beam elements.

Typical features of the algorithms can be observed. Using a proper choice of move
limits the SLP algorithm quickly reaches a design satisfying the termination crite-
rion. However, the algorithm tends to stay in the infeasible design space due to the
linearization error which becomes obvious at the iteration history of the constraint
on the second bending mode (see Figure 7.7).
The MMA algorithm immediately produces designs belonging to the feasible do-
main. After few iterations the designs are in the neighbourhood of an optimum but
some more iterations are needed until the termination criterion is fulfilled. The big
difference to SLP is that after a small number of iterations each design during the
iteration process is feasible (see Figure 7.6 and 7.7) and hence the algorithm can be
terminated earlier while satisfying all constraints.
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Figure 7.6. History of constraint function for natural frequency of first bending
mode for SLP (left) and MMA (right) algorithm and target frequency (red) as

lower bound.
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Figure 7.7. History of constraint function for natural frequency of second bending
mode for SLP (left) and MMA (right) algorithm and target frequency (red).

The numerical calculations show that for the convergence of the algorithm a proper
choice of the parameters is essential. The increase and decrease parameters given by
the move limit strategies explained in Chapter 6 have to be chosen to be quite tight
to avoid convergence to a bad point and oscillations in the convergence process.

Model 1 with 52 beam elements

Calculations for a refined model with four times the number of beam elements were
performed to consider more degrees of freedom. The calculation time then, of course,
rises. The shape of the rotor does not change significantly. As expected the design is
smoother than previously and greater jumps in diameter only occur at the position
of impeller and turbine. The initial and optimized design is shown in Figure 7.8.

0 10 20 30 40 50 60 70 80 90 100

−40

−30

−20

−10

0

10

20

30

40

Length [mm]

D
ia

m
et

er
 [m

m
]

Initial model
Optimized model

Impeller 

Turbine 

 Bearing Bearing 

Figure 7.8. Initial and optimized structure of model 1 for natural frequency
optimization problem for ω = 1000 Hz and 52 beam elements.
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Due to the finer model the flexibility is increased and the mass is further reduced.
It is now 0.0646 kg compared with 0.0651 kg in the model with 13 beam elements,
which is 69.5% of the mass of the initial design.

7.3 Vibration level optimization problem

We now turn to our central optimization problem, i.e. the minimization of the mass
of the rotor subject to constraints on the vibration level. In general it is our aim
to increase a certain critical speed by 10% and to decrease the unbalance response
of a certain mode by 20%. These percentage values are set according to experience
and desire of the engineer. In order to solve the optimization problem, the critical
speeds lying in the frequency range of interest, have to be determined at first. Then
the unbalance response which is the main target of our studies is calculated.

The first step is to look at the initial design to figure out the modes of interest. To get
an impression which modes lead to problems the unbalance responses are calculated
in a rotational speed range from 0 to 5000 Hz. This gives an overview about the
vibration levels in the relevant operating speed range. Modes with extremely high
amplitude are then selected to be targets of our optimization process and their
amplitudes need to be reduced.

I) Results for model 1 with spring support

For model 1 the Euclidean norm of the displacement vector ỹ is taken as measure
for the unbalance response (see equation (4.17)).
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Figure 7.9. Vibration level for initial design of model 1.
Large unbalance response for conical mode (left) and first bending mode (right).
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We can see that for two modes the unbalance responses in the resonance case are
extremely high. These are therefore the modes we should take care of and include in
our optimization problem. Mode shapes can be drawn since the eigenmode vector
contains information about the lateral displacements at each node. Drawing the
mode shapes shows that the two critical modes are the second rigid mode, which
is a conical mode, and the first bending mode. The critical speeds are determined
analytically by the method described in Section 4.4 and the exact unbalance response
for each critical speed is calculated by equation (4.17).

The values of the critical speeds of rigid and bending modes and the amplitudes for
the initial design are

ωrm = 523 Hz, ωbm = 3049 Hz,

arm = 0.00239 m, abm = 0.00235 m.

We study the following vibration level optimization problem and demand a decrease
of the unbalance response of the initial design by 20%,

minq mass(q)
subject to

ωbm1(q) ≥ ω∗

bm1 = 1.1 · ω
(0)
bm1,

ωrm(q) ≥ ω∗

rm = 1.05 · ω
(0)
rm ,

abm1(q) ≤ a∗bm1 = 0.8 · a
(0)
bm1,

arm(q) ≤ a∗rm = 0.8 · a
(0)
rm,

q
i
≤ qi ≤ q̄i, i = 1, . . . , ndv,

(7.1)

where ω
(0)
bm1, ω

(0)
rm , a

(0)
bm1 and a

(0)
rm are critical speeds and unbalance responses for the

initial design. The increase of the critical speed of the rigid mode is of minor
importance. Therefore we choose a factor of only 1.05. This results in the target
values

ω∗

rm = 549 Hz, ω∗

bm = 3354 Hz, a∗bm = 0.00188 m, a∗rm = 0.00191 m.

The mass of the initial model is 0.0929 kg.

As derived in Section 5.3, the expression for one component of the unbalance re-
sponse vector is given by

ck =

nf∑

j=1

N∑

l=1

ξνj ,lφk,lf̂νj

iω − λl
, (7.2)

where νj are the indices of the nonzero components of f̃ and ξ and φ are left and
right eigenmodes. In this term the sum over all modes is considered. This increases
computational time for the sensitivities a lot. Therefore we want to study whether
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the number of considered modes could be reduced. Indeed, it shows that in the
eigenvalue analysis for the critical speed of the specific mode, the natural frequency
of this mode is close to its critical speed, thus contributing to a dominating part to
the unbalance response expression (7.2). This behaviour was examined numerically
and can be seen in the Figures 7.10 and 7.11.
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Figure 7.10. Dependence of unbalance response of bending mode on number of
considered modes and close-up of left figure.
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Figure 7.11. Dependence of unbalance response of rigid mode on number of
considered modes and close-up of left figure.

We see that the decisive mode numbers for the second rigid mode and the first
bending mode are l∗ = 8 and l∗ = 14, respectively. Considering only one of these
modes for the calculations of the derivatives is sufficient and formula (7.2) becomes

ĉk =

nf∑

j=1

ξνj ,l∗φk,l∗f̂νj

iω − λl∗
.

This speeds up calculations a lot. In both cases the approximation error compared
with the full set of modes is less than 0.0001%, i.e.

|â− a|

a
< 10−4.
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The numerical calculations then yield for problem (7.1) the optimized structure
which is shown in Figure 7.12.
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Figure 7.12. Initial and optimized design for vibration level
optimization problem for model 1.

The optimized rotor in this case is slightly thicker than in the case of the natural
frequency problem. Only the design variables of the diameters at the left end and the
mass of the rigid disk hit the lower bound constraint. The values for the optimized
design are

ωbm = 3354 Hz, ωrm = 603 Hz, abm = 0.00181 m, arm = 0.00191 m

with the mass being 0.06898 kg. This corresponds to 74.3% of the initial mass. We
recognize that the constraints on the critical speed of the bending mode as well as on
the vibration level of the rigid mode are active. Figure 7.13 shows that the desired
increase in critical speed and decrease in vibration level can be achieved. Hence the
rigid and conical modes of the optimized rotor have smaller amplitudes (see small
figures in Figure 7.13) which leads to less noise and increased reliability.
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Figure 7.13. Vibration level of initial and optimized design for model 1. Initial and
optimized mode shapes of conical mode (left) and bending mode (right) can be

seen in the small figures.

The SLP and MMA algorithms show qualitatively the same behaviour as for the
natural frequency optimization problem.

Additional design variables for model 1

Bearings have a great influence on the behaviour of the turbocharger. Hence we
expect changes to the previous optimization process if we consider bearing coeffi-
cients as design variables. This is in the first step done by keeping the linear spring
and damper assumption but taking the previously constant damping and stiffness
coefficients cbi

and kbi
as design variables. The change of values of the bearing co-

efficients in the optimization process is then transformed into a different bearing
configuration. The extended design variable vector is given by

q̃ = (d1, . . . , dn−1, mτ1 , mτ2 , Idτ1
, Idτ2

, Ipτ1
, Ipτ2

, cb1, cb2 , kb1, kb2).



96 CHAPTER 7. COMPUTATIONAL RESULTS

Each matrix in the equation of motion is depending on certain design variables,
i.e. we have

M(q̃)ẍ+ (ωG(q̃) + C(q̃))ẋ + (K(q̃) +Kb(q̃))x = feiωt.

Numerical calculations indeed show that we obtain a significant reduction of the
vibration level if we additionally consider damping and stiffness coefficients as design
variables. The SLP, MMA and GCMMA algorithms are applied to this problem. It
shows that the calculations are highly dependent on the choice of parameters. Even
small changes in the move limit strategy or choice of asymptotes, respectively, lead
to different results of the optimization problem.

Figure 7.14 shows the optimized structure for the choice of parameters, which led
to the smallest mass.

0 10 20 30 40 50 60 70 80 90 100

−40

−30

−20

−10

0

10

20

30

40

Length [mm]

D
ia

m
et

er
 [m

m
]

Initial model
Optimized model

Figure 7.14. Initial and optimized design for vibration level optimization problem
under consideration of additional design variables representing bearing parameters

for model 1.

The values for the optimized design of the three algorithms are given in Table 7.1.

SLP MMA GCMMA Target values
Mass [kg] 0.06409 0.06512 0.06438
ωrm [Hz] 549 593 556 549
ωbm [Hz] 3354 3400 3400 3354
arm [m] 0.0019 0.0018 0.0018 0.0019
abm [m] 5.25 ·10−4 4.66 ·10−4 4.52 ·10−4 0.0019

Table 7.1. Values for optimized designs for vibration level optimization problem
for model 1 for SLP, MMA and GCMMA algorithm.
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We observe that the introduction of the additional design variables makes a further
reduction of mass possible which is now 0.064 kg being only 68.8% of the initial
mass. The three algorithms reach slightly different local optimums. This can be
explained by the high nonlinearity of the constraint functions. The GCMMA algo-
rithm guarantees that we indeed obtain a KKT point.

The most remarkable observation is that the amplitude of the second bending mode
is further decreased to a large extent. The unbalance response of the first bending
mode is now only 23.8% of the unbalance response of the initial design. This is
possible without changing the constraint explicitly. The behaviour can be explained
by an increased damping coefficient after the design optimization process. The new
unbalance response behaviour can be seen in Figure 7.15.
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Figure 7.15. Vibration level of initial and optimized design for vibration level
problem for model 1 under consideration of additional design variables

representing bearing parameters. Initial and optimized mode shapes of conical
mode (left) and first bending mode (right) can be seen in the small figures.
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The iteration history of the three algorithms (see Figure 7.16) show again their
typical behaviour. The SLP algorithm reaches temporarily a smaller mass, but this is
at the expense of a violation of the constraints. Compared to the previous example of
the natural frequency optimization problem (see Figure 7.5), MMA reaches faster the
neighbourhood of the optimum and needs slightly fewer iterations until termination.
The GCMMA algorithm shows a monotone decrease and is a little bit slower than
MMA.

0 2 4 6 8 10 12 14 16 18
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Number of iterations

M
as

s 
[k

g]

SLP

0 10 20 30 40 50 60
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Number of iterations

M
as

s 
[k

g]

MMA

0 10 20 30 40 50 60 70
0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Number of iterations

M
as

s 
[k

g]

GCMMA

Figure 7.16. History of objective function for SLP (upper left), MMA (upper
right) and GCMMA (bottom) algorithm for vibration level problem with extended

design variable vector.

Remark. The given optimization problem with constraints on the vibration level
can be solved successfully fulfilling all constraints and leading to a substantial reduc-
tion of mass of the rotor. The used optimization algorithms tend to reach quickly
the neighbourhood of a local optimum, though it may take a while until they ter-
minate depending on the termination criterion. MMA generates usually feasible
designs, whereas SLP happens to iterate also in the infeasible design space. By
considering additional design variables like bearing parameters better results, i.e. a
lighter structure and reduced amplitudes, can be obtained.
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II) Results for model 2 with spring support

The solution of a vibration level optimization problem is now performed for model
2 in the same way as above.

The initial mass of the turbocharger is 0.28934 kg. To determine the modes that
cause problems the unbalance response on the whole rotational speed range is cal-
culated and is drawn in Figure 7.17.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

Rotational speed [Hz]

U
nb

al
an

ce
 r

es
po

ns
e 

[m
]

Figure 7.17. Vibration level of initial design for model 2.

It can be seen that the largest amplitude occurs at ω1 = 924 Hz and ω2 = 3608 Hz.
Drawing the modes shows that these are the first and second bending mode.

In this model the unbalance response is measured by the displacement at node 1
and for the amplitude belonging to the first bending mode we obtain a value of

a(ωbm1(q)) = 4.311 · 10−4 m.

The target of the optimization is to reduce the large amplitude of the first bending
mode. Moreover, the critical speed of the second bending mode should be shifted to
a higher frequency so that it is not reached under operating conditions. The desired
target values [30] are then

ω∗

bm2 = 3900 Hz, a∗bm1 = 3.8 · 10−4 m.

Thus, the optimization problem we solve is given by

minq mass(q)
subject to
ωbm2(q) ≥ 3900 Hz,
a(ωbm1(q)) ≤ 0.38 mm,
q

i
≤ qi ≤ q̄i, i = 1, . . . , ndv.

(7.3)
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Again we speed up the calculations by simplifying the unbalance response expression.
The mode we have to consider is in this case mode number 12.

The optimized structure obtained by SLP, MMA and GCMMA is shown in Figure
7.18.

0 20 40 60 80 100 120 140 160

−60

−40

−20

0

20

40

60

Length [mm]

D
ia

m
et

er
 [m

m
]

Figure 7.18. Optimized design for vibration level optimization problem for model 2.

Again the design variables that are active at the lower bound are drawn in red.
These are the diameters of beam elements 9, 11, 12 and 13 as well as both length
design variables. The mass of the optimized structure is 0.2585 kg, which is 89.4%
of the initial mass. All values for this case are summarized in Table 7.2.

SLP MMA GCMMA Target values
Mass [kg] 0.25854 0.25858 0.25852
ωbm2 [Hz] 3900 3902 3900 3900
abm1 [m] 3.34 ·10−4 3.33 ·10−4 3.26 ·10−4 3.8 ·10−4

Table 7.2. Values for optimized design for vibration level optimization problem for
model 2.

The differences in the results for the three algorithms are smaller than in the case of
model 1 (compare Table 7.1). The critical speed constraint is almost hit exactly by
all algorithms. An interesting observation is that the important unbalance response
value a not only fulfills the constraint but can even be decreased below the target
value. The optimized values is about 77 % of the initial value. The complete
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vibration level behaviour is shown in Figure 7.19. We notice that even the second
large amplitude, in our case the second bending mode with the initial critical speed
ω2 = 3608 Hz, is significantly smaller for the optimized design. This happens without
being explicitly targeted in the optimization problem.
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Figure 7.19. Vibration level for initial and optimized design for vibration level
problem for model 2. Initial and optimized mode shape of the first bending mode

in the small figure.

Again, we want to have a look at the iteration history of the objective functions of
the three algorithms (see Figure 7.20). The fast convergence to the optimum can
be seen in all cases. For MMA we have no longer any oscillations at the beginning
and instead as in the case of GCMMA a monotone decrease to the optimum. In the
SLP algorithm the minimum is still approached from the infeasible design space.
SLP and MMA both need only around 20 iterations until termination, whereas
GCMMA needs some more iterations. An interesting alternative to the SLP, MMA
and GCMMA algorithms is the MMA with line search, also introduced in Chapter
6. It shows a nice monotone decrease towards a point, which is guaranteed to be a
KKT-point.
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Figure 7.20. History of objective function for SLP (upper left), MMA (upper
right), GCMMA (bottom left) and MMA with line search (bottom right)

algorithm for vibration level problem for model 2.

Additional design variables for model 2

Calculations for model 2 were also done for the case capturing additional design
variables. Again, a further decrease in the vibration level can be observed, which
occurs without tightening the constraint. The new value of the unbalance response
for the amplitude of the first bending mode is

a = 2.58 · 10−4 m,

which is only 60% of the initial value.
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Figure 7.21. Vibration level for initial and optimized design for vibration level
problem for model 2 in the case of an extended design variable vector including

bearing coefficients. Initial and optimized mode shape of the first bending mode in
the small figure.

We observe that also in the case of model 2 the given optimization problem can
be solved successfully while satisfying all constraints. All considered algorithms
showed fine convergence behaviour. Additional design variables representing bearing
coefficients led to a further improvement of the results.

III) Results for models including nonlinear oil film forces

Model 1

We now want to give results for the vibration level optimization problem for our
models including nonlinear bearing forces. The sensitivity analysis of the optimiza-
tion algorithms has to respect the nonlinear terms as explained in Section 5.6.

Before solving the vibration level optimization problem we have to look again at
the vibration behaviour of the initial models. We observe, that the oil film forces
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significantly change the behaviour of the shaft. Figure 7.22 shows the vibration
behaviour of this new case for model 1.
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Figure 7.22. Vibration level of initial design of model 1 with nonlinear oil film
bearings.

The critical mode is a conical mode which now has a critical speed of ωrm = 639
Hz. Over the range we plotted and which includes the operational speed range the
amplitude of this mode is by far the largest one and thus target of our optimization
program. The initial value for the unbalance response is arm = 1.39 · 10−4 m.

We now solve the following optimization problem for the oil film model. As for the
other models, we consider an increase of the critical speed by 10% and a decrease of
the unbalance response by 20%. Here, the constraints are set for the same mode.

minq mass(q)
subject to

ωrm(q) ≥ ω∗

rm = 1.1 · ω
(0)
rm ,

a(ωrm(q)) ≤ a∗rm = 0.8 · a
(0)
rm,

q
i
≤ qi ≤ q̄i, i = 1, . . . , ndv.

(7.4)

We obtain the optimized structure as shown in Figure 7.23.
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Figure 7.23. Initial and optimized model for vibration level optimization problem
for model 1 with nonlinear oil film bearings.

In this case only the design variable of the mass of the rigid disk is active, but no
diameter constraint. Nevertheless, the rotor becomes thinner at the left and right
end and remains thicker in the centre part. The mass of the optimized model is
0.06635 kg. The critical speed and vibration level constraints can be fulfilled as
shown in Figure 7.24.
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Figure 7.24. Vibration level of initial and optimized design for vibration level
problem for model 1 with nonlinear oil film bearings.

We observe, that not only the unbalance response of our target mode is reduced, but
also a further increase for higher rotational speeds is avoided. Over the considered
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speed range there is a monotone decrease of the unbalance response after passing
the peak for the conical mode.

Model 2

The critical modes in this case are a conical and a second bending mode. Our
optimization program focuses on reducing the amplitude of the bending mode which
is the larger one. The optimization problem is formulated as follows, where explicit
target values ω∗

bm and a∗bm are set.

minq mass(q)
subject to
ωbm(q) ≥ ω∗

bm = 3000 Hz,
a(ωbm(q)) ≤ a∗bm = 2.0 · 10−4 m,
q

i
≤ qi ≤ q̄i, i = 1, . . . , ndv.

(7.5)

Numerical calculations show that the MMA algorithm produces a feasible optimized
design for this case. The SLP algorithm converges even for various choice of param-
eters to an infeasible design, violating the unbalance response constraint. Using a
small move limit throughout the whole optimization process might be a remedy.
However, this would lead to a significant increase in computational time and is
therefore declined. The MMA algorithm, however, yields an optimized structure
fulfilling all constraints (see Figure 7.25). The constraint on the unbalance response
is here active.
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Figure 7.25. Vibration level for initial and optimized design for vibration level
problem for model 2 with nonlinear oil film forces.
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It shows that the suggested optimization approach works well for a model including
nonlinear oil film forces. For model 1 and 2 the given targets could be fulfilled.

7.4 Numerical determination of target values

In Section 5.7 some ideas are presented that aim at a numerical determination of
suitable target values based on multiobjective approaches. In this section numerical
results for the corresponding optimization problems are shown.

The approach is done here for our model vibration level optimization problem as
mentioned in Section 5.7. Firstly, we want to determine the ideal objective vec-
tor. The optimization problems (5.9), where the original constraint and objective
functions are interchanged are written as

minq J1(q) = −ωrm(q)
subject to
mass(q) ≤ m(0),
q

i
≤ qi ≤ q̄i, i = 1, . . . , ndv,

(7.6)

and
minq J2(q) = arm(q)
subject to
mass(q) ≤ m(0),
q

i
≤ qi ≤ q̄i, i = 1, . . . , ndv,

(7.7)

where m(0) is the mass of the intial design.
The ideal objective vector is then given by

(z∗1 , z
∗

2) = (−min
q
J1,min

q
J2).

Remark. For the optimization problems (7.6) and (7.7) the initial design is feasible
in contrast to the previous design optimization problems.

Model 1 with nonlinear oil film forces

At first, we take model 1 including nonlinear oil film forces and determine the ideal
objective vector by solving (7.6) and (7.7). Applying the MMA algorithm we obtain
for (7.6)

ωrm = 1227 Hz, arm = 1.211 · 10−4 m, mass = 0.0852 kg

and for (7.7) we have

ωrm = 450 Hz, arm = 1.97 · 10−5m, mass = 0.0929 kg.
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Our ideal objective vector is thus (z∗1 , z
∗

2) = (1227 Hz, 1.97 · 10−5 m).
Not surprisingly, we recognize that we can achieve much more if we focus on each
value separately. But we have to pay for this by an unfavourable value of the other
constraint. Indeed the minimization of unbalance response in optimization problem
(7.7) yields a large reduction. But on the other hand, the critical speed also decreases
which is against our desire.

As introduced in Section 5.7 the method of the global criterion can be used to com-
bine both functions in one objective function. Its solution yields a Pareto optimal
point for the multicriteria optimization problem. Before applying the SLP or MMA
algorithm, the objective functions are scalarized to avoid an undesired weighting in
the numerical calculations. As scalarizing factor the values in the ideal objective
vector are used and we set J̃1 = J1/z

∗

1 and J̃2 = J2/z
∗

2 .

The optimization problem for the method of the global criterion is now written as

minq

(

J̃1(q) − 1
)2

+
(

J̃2(q) − 1
)2

subject to
mass(q) ≤ m(0)

q
i
≤ qi ≤ q̄i, i = 1, . . . , ndv.

(7.8)

The numerical calculations give the values

ωbm2 = 795 Hz, abm1 = 2.87 · 10−5m, m = 0.0929 kg.

and the obtained result is very convincing since the vibration level is reduced sig-
nificantly as can be seen in Figure 7.26.
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Figure 7.26. Vibration level for initial and optimized design of method of the
global criterion for model 1 with nonlinear oil film forces.
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Of course, we are interested in as many Pareto optimal points as possible. This
can either be achieved by varying the reference vector in the method of the global
criterion or by considering the weighting method introduced in Section 5.7. The
latter approach is followed here and the optimization problem reads as

minq wJ̃1(q) + (1 − w)J̃2(q)
subject to
mass(q) ≤ m(0),
q

i
≤ qi ≤ q̄i, i = 1, . . . , ndv.

(7.9)

Now different weighting parameters can be tried. In our case 26 different parameters
from 0 to 1 were used yielding combinations of critical speed and unbalance response.
Interpolation of these points gives the trade-off-curve which is shown in Figure 7.27.
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Figure 7.27. Pareto optimal combinations of critical speed and unbalance response
for model 1 with nonlinear oil film forces.

The decision maker can now choose a suitable combination that fits best to his
preferences and take this combination as target values. Another possibility is to
select the constraint which is more important, fix the desired target value and look
what can be achieved for the other constraint. Of course, this concept can not
completely prevent that the algorithm gets stuck in a local minimum though it
is known that a feasible solution exists. Usually, the behaviour of the algorithm
depends a lot on the starting point (i.e. the initial design) and a proper choice of
parameters for the algorithms. Therefore, the introduced concept should be regarded
more as a guideline which indicates obvious unreachable aspiration levels.

The same approach shown for model 1 is also applied to model 2 with and without
oil film forces. The corresponding results are summarized briefly now. The model
without oil film forces is studied first.
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Model 2 without oil film forces

The ideal objective vector is in this case given by

z∗1 = 4487 Hz, and z∗2 = 1.978 · 10−4 m.

Figure 7.28 shows the vibration level for the optimized design obtained by the
method of the global criterion for this case. The behaviour is very similar to the
result using additional design variables (see Figure 7.21). Compared with the case
of model 1 with oil film forces (see Figure 7.26), only a smaller decrease of unbalance
response is achieved.
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Figure 7.28 Vibration level for initial and optimized design of method of the global
criterion for model 2 without oil film forces.

Model 2 with nonlinear oil film forces

Finally, the multiobjective approach which was described for model 1 with nonlinear
oil film forces is applied to model 2 with nonlinear oil film forces. Solving (7.6) and
(7.7) the ideal objective vector is

z∗1 = 3407 Hz, z∗2 = 1.956 · 10−4 m.

The application of the method of the global criterion yields a result for the vibra-
tion level behaviour (see Figure 7.29) which is similar to the result of optimization
problem (7.5) which is shown in Figure 7.25.
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Figure 7.29. Vibration level for initial and optimized design of method of the
global criterion for model 2 with nonlinear oil film forces.

The calculations for a trade-off curve of combinations of critical speed and unbalance
response with 51 different parameters from 0 to 1 show an interesting behaviour (see
Figure 7.30). A coalescence of Pareto optimal points occurs around the values (2503
Hz, 1.956·10−4 m) and (3185 Hz, 1.962·10−4 m). The first point is reached for
weighting factors w = 0 to w = 0.4 and the second point for w = 0.6 to w = 0.9,
i.e. for most of the weighting factors the optimization algorithm converges to one of
the two points.
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Figure 7.30. Pareto optimal combinations of critical speed and unbalance response
for model 2 with nonlinear oil film forces.
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We notice that the reduction of the unbalance response is dominant. Indeed, the
critical speed can be increased up to almost 3200 Hz without increase in unbalance
response. However, if the decision maker is interested in a higher critical speed, this
has to be paid for by a quick increase in unbalance response. Therefore this point,
where the kink occurs, seems to present a desirable combination of target values.

Remark. A consideration of the clearance as additional design variable showed
that a further decrease of the vibration level of the second bending mode is possible.
However, this is at the expense of the increase of its critical speed.

The calculations performed for the multiobjective optimization problem yield various
Pareto optimal points which may represent favourable designs. But it has to be
mentioned that these points are determined under the assumption that the mass
is not higher than that for the initial design. Usually, this constraint is active for
the optimized design of the multiobjective optimization problem. On the other
hand, this implies that a solution of the vibration level optimization problem with
new strict target values for the critical speed and unbalance response constraints
need not be feasible. The reason is that in the original optimization problem the
minimization of the mass is the major goal. Therefore, the reduction of mass might
lead to a violation of the tight constraints.



Chapter 8

Conclusion

In the preceding work we have developed a comprehensive design optimization ap-
proach for a general class of rotating bodies focusing on the reduction of mass
and unbalance response as well as the shift of critical speeds. We have formulated a
suitable design optimization problem which meets these targets. For rotating bodies
effects of rotary inertia and gyroscopic moments are very important. Considering
these effects changes the theoretical and numerical analysis of the problem com-
pared to existing approaches for the non-rotating case. In this regard, the presented
research extends results found in the literature. Our results include statements
about the existence and description of solutions of the considered design optimiza-
tion problems as well as their numerical solution based on a suitable finite element
discretization. The optimization goals are best treated by a design optimization
problem where the mass function is the objective function which is to be minimized.
Natural frequencies or critical speed and unbalance response are considered as con-
straints which are increased and decreased above and below certain target values,
respectively.

One central result of the thesis is the proof of the existence and the description of
solutions for this design optimization problem for a continuous rotor with simple
support boundary conditions. Hence the formulation of the optimization problem
makes sense and a solution can be determined. It is obtained numerically by using
a suitable finite element discretization of the infinite dimensional original problem.
We have shown the convergence of the optimal solutions of the discretized problem
towards those of the continuous problem by using the convergence of the correspond-
ing eigenvalues and eigenvectors. Thus, by choosing a sufficient fine discretization
scheme, results in good approximation of the solution of the continuous problem can
be obtained.

For the numerical solution of the problem the finite element discretization has been
realized by the approximation with piecewise cubic polynomials. This results in the
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algebraic fomulation of the equation of motion and the generalized discretized eigen-
value problem has been obtained. As algorithms to solve the design optimization
problem sequential linear programming (SLP) and the method of moving asymptotes
(MMA) were chosen and their performance was compared. Whereas SLP iterations
were sometimes in the infeasible design space, MMA generated usually feasible de-
signs throughout the optimization process and is therefore preferred. Modifications
of the MMA algorithm like GCMMA and MMA with line search guarantee conver-
gence towards a Karush-Kuhn-Tucker point of the discretized problem. However,
these algorithms generally need longer until they converge. Since the results often
do not differ much from SLP or MMA results, the former algorithms are chosen
due to their faster termination. Mode crossing took place in the design optimiza-
tion process but was successfully dealt with by a mode tracking procedure. No
coalescence of eigenvalues occurred in our application such that a consideration of
strategies taking care of points of nondifferentiability of the eigenvalue function was
not necessary.

The numerical results for the turbocharger application show that a substantial reduc-
tion of mass and unbalance response for the considered design optimization problems
is achieved. Moreover, certain critical speeds can be shifted out of the operating
speed range of the rotor. Hence they are no longer excited. The presented results
lead to the desired reduction of noise and less fatigue of material of the rotor. The
consideration of parameters of the bearing geometry yields a further improvement.
In addition to that, calculations for a model including nonlinear bearing forces have
shown that the developed optimization method gives good results. The application
of multiobjective optimization methods ensures feasible solutions by determining
suitable target values for the respective constraint functions. Several Pareto opti-
mal combinations of target values were computed from which the preferred one can
be chosen.

The presented approach shows good results for the design optimization problems
for two different models of the turbocharger with different support conditions. All
considered problems could be solved by the presented algorithms. However, due to
the strong nonlinearity of the critical speed and the unbalance response functions
the result of the optimization algorithms depends on move limit parameters of the
algorithms. In most cases only minor differences appeared.

The research presented in this thesis can be extended in various directions. An
extension of the theoretical work is possible by proving the existence theorems for
models with linear spring and damper support. Then discrete forces at the position
of the support have to be taken into account. For rotating bodies supported by fluid
film bearings a modified calculation of the oilfilm forces capturing further effects can
be considered. An appropriate model is currently developed in collaboration with
TCRDL [51] and can be included in our method after completion. This requires
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the modification of the sensitivity analysis and enables the consideration of further
design variables of the bearing configuration.

For the design optimization of other examples of rotating bodies, multiple eigenval-
ues might be a bigger problem than for the shown example of the turbocharger. A
coalescence of eigenvalues might occur around the optimum and not only a mode
crossing as in our case. A remedy is the inclusion of directional derivatives at these
points into the method. Another possibility is to switch to solvers of nonsmooth
optimization for such critical points.

Figure 8.1. Gear-train system (Figure by TCRDL).

The presented method is already used at TCRDL for the design optimization of
turbochargers. TCRDL plans to apply the method to other rotating bodies such as
a gear-train system in a passenger car (see Figure 8.1) in the future. This object can
also be described by the introduced physical model and the optimization approach
can be applied.
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Appendix A

Basic tools from functional
analysis

This appendix collects some results from functional analysis which are needed to
prove the theorems of the existence of solutions for the natural frequency and vibra-
tion level optimization problem. The following theorems are summarized from [2],
[62] and [64].

In infinite dimensional spaces the eigenvalue theory for matrices in finite dimensional
spaces no longer holds. A more general concept has to be introduced.

Definition A.1. Let T ∈ L(X).

(a) The resolvent set of T is

ρ(T ) = {λ ∈ K : (λ− T )−1 ∈ L(X)}.

(b) The mapping
R : ρ(T ) → L(X), Rλ(T ) := (λ− T )−1

is called the resolvent of T .

(c) The spectrum of T is given by

σ(T ) = K \ ρ(T ).

The elements of σ(T ) are called eigenvalues, an x 6= 0 with Tx = λx is called
eigenvector (or eigenfunction if X is a function space).

If K = C, then σ(T ) 6= ∅.

The class of compact operators denoted by K(X) is of special importance for our
analysis. The spectrum of these operators can be described by the following theorem.

117



118 APPENDIX A. BASIC TOOLS FROM FUNCTIONAL ANALYSIS

Theorem A.1 (Riesz-Schauder). Let T ∈ K(X). The spectrum σ(T ) is an at
most countable set with no accumulation point different from zero. Each nonzero
λ ∈ σ(T ) is an eigenvalue of T with finite multiplicity and λ̄ is an eigenvalue of T ∗

with the same multiplicity.

The theorem says that the spectrum consists of a sequence of eigenvalues λ tending
to zero.

To show the existence of solutions of linear partial differential equations of elliptic
type, the theorem of Lax-Milgram is a useful tool.

Theorem A.2 (Lax-Milgram). Let X be a Hilbert space and a : X × X → K a
sesquilinear form which satisfies for any x, y ∈ X the conditions

(i) |a(x, y)| ≤ C0‖x‖X‖y‖X (Continuity),

(ii) Re(a(x, x)) ≥ co‖x‖
2
X (Coercivity),

where 0 < c0 ≤ C0 < ∞. Then there exists a uniquely determined bounded linear
operator A with a bounded linear inverse A−1 such that

a(y, x) = (y, Ax)X for all x, y ∈ X

and

‖A‖ ≤ C0 and ‖A−1‖ ≤
1

c0
.

To verify the conditions of the Lax-Milgram theorem, the Poincaré inequality as
well as a generalized form of it might be helpful.

Theorem A.3 (Poincaré inequality). Let Ω ⊂ Rn be a bounded open set. Then
there exists a constant C0 (depending on Ω) such that

∫

Ω

|u|2 ≤ C0

∫

Ω

|∇u|2 for all u ∈ H1
0 (Ω).

Theorem A.4 (Generalized Poincaré inequality). Let Ω be a bounded, open,
connected set with Lipschitz-boundary ∂Ω. Moreover, let S ⊂ H 1(Ω) be nonempty,
convex and closed. Then the following two statements are equivalent.

(1) There exists a u0 ∈ S and a constant C0 <∞, such that for all ξ ∈ Rm

u0 + ξ ∈ S ⇒ |ξ| ≤ C0

(2) There exists a constant C <∞ such that

‖u‖Lp(Ω) ≤ C(‖∇u‖Lp(Ω) + 1) for all u ∈ S
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If S is a cone with apex 0, i.e.

u ∈ S, α ≥ 0 ⇒ αu ∈ S,

then inequality (2) can be replaced by

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω) for all u ∈ S.
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Appendix B

Structural matrices of FE model

In this appendix the formulation of the mass, gyroscopic and stiffness matrices for
one beam element with uniform cross-section and material properties is given.

The algebraic formulation of the strucutral matrices is derived in Section 4.3. With
the choice of the Hermite polynomials as basis functions the matrices for the nu-
merical applications can be formulated. They are as follows.

The mass matrix for one beam element given by (4.3) is split into a part for trans-
lational motion Mkt and one for rotational motion Mkr. For the symmetric Mkt we
obtain

Mkt =
r2πρl

420















156
0 156 Sym.
0 −22l 4l2

22l 0 0 4l2

54 0 0 13l 156
0 54 −13l 0 0 156
0 13l −3l2 0 0 22l 4l2

−13l 0 0 −3l2 −22l 0 0 4l2















,

where r is the radius and l the length of the beam element and ρ the density of
the shaft material. The symmetric mass matrix for one beam element for rotational
motion Mkr is given by

Mkr =
r2πρr2

120l















36
0 36 Sym.
0 −3l 4l2

3l 0 0 4l2

−36 0 0 −3l 36
0 −36 3l 0 0 36
0 −3l −l2 0 0 3l 4l2

3l 0 0 −l2 −3l 0 0 4l2















.
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The symmetric stiffness matrix for one beam element Kk as derived in (4.4) is given
by

Kk =
EIa
l3















12
0 12 Sym.
0 −6l 4l2

6l 0 0 4l2

−12 0 0 −6l 12
0 −12 6l 0 0 12
0 −6l 2l2 0 0 6l 4l2

6l 0 0 2l2 −6l 0 0 4l2















,

where EIa is the bending rigidity of the beam element.

The skew-symmetric gyroscopic matrix for one beam element Gk which is given by
(4.5) reads here as

Gk =
Ip
30l















0
−36 0 Skew − sym.

3l 0 0
0 3l −4l2 0
0 −36 3l 0 0

36 0 0 3l −36 0
3l 0 0 −l2 −3l 0 0
0 3l l2 0 0 −3l −4l2 0















,

where Ip is the polar moment of inertia of the beam element.

Derivatives of the matrices with respect to the radius r and length l can be deter-
mined straightforwardly.



Appendix C

Specification of turbocharger
models

In this appendix we give the concrete specification of shaft, rigid disks, bearing
support and unbalance forces for the two turbocharger models which we consider in
our numerical calculations.

The specification for model 1 (see Figure 7.1) is given as follows.

The shaft specification is given by

Element
number

Length
[mm]

Diameter
[mm]

Density
[kg/m3]

Young’s
modulus
[N/m2]

1 3.4 4.1 7800 2.10·1011

2 4.5 4.1 7800 2.10·1011

3 15.2 4.1 7800 2.10·1011

4 6.0 4.1 7800 2.10·1011

5 7.1 4.1 7800 2.10·1011

6 9.5 6.0 7800 2.10·1011

7 12.65 6.0 7800 2.10·1011

8 16.15 6.0 7800 2.10·1011

9 3.0 6.0 7800 2.10·1011

10 11.2 9.9 7800 2.10·1011

11 6.6 14.2 7800 2.10·1011

12 9.6 11.0 7800 2.10·1011

13 3.3 8.0 7800 2.10·1011

Table C.1. Specification of shaft of model 1.
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The parameters of the rigid disks are the following.

Node
number

Mass [kg]
Inertia moment Id

[kgm2]
Inertia moment Ip

[kgm2]

Impeller 3 1.3328·10−2 1.2740·10−6 2.1560·10−6

Turbine 12 4.3414·10−2 3.1360·10−6 5.8800·10−6

Table C.2. Specification of rigid disk of model 1.

The spring support coefficients of the bearing are given by

Node
number

Stiffness
kXX , kY Y [N/m]

Damping
cXX , cY Y [Ns/m]

Bearing 1 7 1.0·106 3
Bearing 2 9 1.0·106 3

Table C.3. Specification of bearing of model 1.

and the unbalance forces f = ω2ueiΘ in each node, with ω being the rotational
speed, are

Node
number

Unbalance u
[kgm]

Phase
Θ

[deg]
2 1.35·10−7 π
4 1.5·10−7 0
11 2.01·10−7 0
13 2.07·10−7 π

Table C.4. Specification of unbalance forces of model 1.

For model 2 (see Figure 7.2) which consists of an inner and outer shaft part with
different material properties for some beam elements the specification is as follows.
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Inner Shaft Outer Shaft

Element
number

Length
[mm]

Diameter
[mm]

Density
[kg/m3]

Young’s
modulus
[N/m2]

Diameter
[mm]

Density
[kg/m3]

Young’s
modulus
[N/m2]

1 3.0 6.0 7800 2.058·1011

2 5.0 6.0 7800 2.058·1011 10.2 7800 2.058·1010

3 6.0 6.0 7800 2.058·1011 12.0 2646 7.35·109

4 6.0 6.0 7800 2.058·1011 15.2 2646 7.35·109

5 6.0 6.0 7800 2.058·1011 20.0 2646 7.35·109

6 6.0 6.0 7800 2.058·1011 30.0 2646 7.35·109

7 5.4 6.0 7800 2.058·1011 42.0 2646 7.35·109

8 5.0 6.0 7800 2.058·1011 9.0 7800 2.058·1010

9 31.0 6.0 7800 2.058·1011 20.0 7800 0.98·1010

10 3.0 6.0 7800 2.058·1011 9.0 7800 2.058·1010

11 5.0 6.0 7800 2.058·1011 9.0 7800 2.058·1010

12 6.0 6.0 7800 2.058·1011 9.0 7800 2.058·1010

13 4.0 8.5 7800 2.058·1011

14 30.2 8.5 7800 2.058·1011

15 7.9 8.5 7800 2.058·1011

16 13.2 14.7 7800 2.058·1011

17 6.4 40.8 7800 2.058·1011

18 6.4 26.4 7800 2.058·1011

19 6.4 18.0 7800 2.058·1011

20 6.4 15.6 7800 2.058·1011

21 4.0 13.2 7800 2.058·1011

Table C.5. Specification of shaft of model 2.

The bearing configuration is given by

Node
number

Stiffness kXX , kY Y

[N/m]
Damping cXX , cY Y

[Ns/m]
Bearing 1 14 98000 39.2
Bearing 2 15 98000 39.2

Table C.6. Specification of bearing of model 2.

and the unbalance forces (f = ω2ueiΘ) are

Node
number

Unbalance u
[kgm]

Phase
Θ

[deg]
3 9.8·10−7 0
8 9.8·10−7 0
17 9.8·10−7 0
21 9.8·10−7 0

Table C.7. Specification of unbalance forces of model 2.



126 APPENDIX C. SPECIFICATION OF TURBOCHARGER MODELS



Bibliography

[1] M.A. Akgün. New family of modal methods for calculating eigenvector deriva-
tives. AIAA journal, 32(2):379–386, February 1994.

[2] H.W. Alt. Lineare Funktionalanalysis. Springer-Verlag, 3.Auflage, 1999.
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