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In dieser Arbeit werden die grundlegenden Konzepte beschrieben, die
für die Messung von Nervensignalen mittels der Zwei-Photon Laser
Scanning Mikroskopie und deren Miniaturisierung zur Messung von
Nervenfunktionen in freilaufenden Tieren notwendig sind.
Besonders Augenmerk wird dabei auf die Konstruktion eines Lasers mit
erhöter Repetitionsrate und der Entwicklung einer neuartigen, nicht-
resonanten Faser-Scan Technik gelegt.
Der Erhöhung der Wiederholrate des Lasers soll dabei unerwünschte
Nichtlinearitäten bei der Übertragung mittels einer Einmoden-Faser
verringern.
Durch den Einbau des nicht-resonanten Faser-Scanners in den Proto-
typen eines kopfgebundenen miniaturisierten Mikroskops wird dessen
Eignung mittels fluoreszierender Proben demonstriert. Das Einsatzge-
biet sollte sich dadurch nicht nur auf die Messung an freilaufenden
Tieren beschränken sondern allgemein für mobile abbildende Metho-
den geeignenet sein.

In this thesis I will describe the basic concepts necessary for acquiring
functional data from nerve tissue by application of two-photon laser
scanning microscopy and its miniaturization for in vivo imaging in freely
moving animals.
The construction of a laser with enhanced repetition rate and the design
of a novel non-resonant fiber scanning technique is emphasized.
The increased repetition rate of the femtosecond laser source should
decrease undesirable non-linear effects when transmitting ultra-short
pulses with a single mode fiber.
By implementing the prototype of a head-mounted microscope involv-
ing the novel fiber scanner and testing with fluorescent probes I can
demonstrate its feasibility - not only for imaging in freely moving ani-
mals but for mobile laser scanning microscopy in general.
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Preface

The basic question in neuroscience research is: how does the brain encode
sensory information and translate it into complex behavior.

In this thesis, I will describe a refined miniaturized two-photon imaging
technique which would help to address questions relating to activity at the
level of neuronal circuits in awake mammals. The present technique might
also prove useful in applied human medicine where non-invasive detection
methods are especially needed.

My thesis is divided into the following parts:

The introduction should give an overview of the developments and methods
in the field of brain research and detection methods. I will also highlight
new developments in two-photon based imaging, especially suitable for
non-invasive imaging of neuronal activity and anatomy at the circuit level
in awake mammals.

The first part is devoted to the design of a high-repetition rate Ti:sapphire
mode-locked laser for efficient multi-photon excitation. Laser cavity design,
dispersion and its compensation, fiber transmission and finally the practical
building and results of the laser will be described and discussed in different
chapters. The laser achieves high repetition rate (up to 270MHz) and sub-
30fs pulses with pure prism based dispersion compensation.

The second part will be devoted to the design of a miniature head-mounted
multi-photon laser scanning microscope using a newly developed non-
resonant fiber scanner we termed “piezo lever fiber scanner” (PLFS). By
multiple folding of the light path inside the microscope we have achieved
a small and light-weight microscope that is suitable for imaging in freely
moving animals. I will also show that the design has imaging properties
similar to the standard two-photon microscope.
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In the appendix, I have included additional information and programs, as
well as constants used in the models.
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1. Introduction

The research on the nervous system even in lower animals is accompanied
with many different technical approaches. A coarse separation in which
these techniques attack can be drawn in three groups (Geh [2004]):

(1) Large functionally grouped areas of the brain can be studied with
methods like positron-electron tomography (PET), functional magnetic
resonance imaging (fMRI), electro- and magnetoencephalography (EEG
respective MEG).

(2) In neuronal populations (hundreds of cells), for example whisker-related
barrel fields in rats, electrode and multi-electrode recording and optical
imaging techniques are suitable methods for functional analysis.

(3) Cellular functions can be observed with single electrode recording and
optical imaging (especially non-linear microscopy). In combination with
activity sensors (synthetic dyes and genetically encoded sensors) very high
spatial and temporal resolution activity signals and responses to sensory
experience can be revealed.

The major goal of the present study is to improve miniaturized two-photon
imaging methods for studying neuronal populations and single cells in
behaving, i.e. unrestrained, mammals.

1.1. Technical approaches to brain research

Earlier studies were mainly focused on electrical signals in the nervous
system. Though, the underlying signal transmission is inherently complex,
early studies starting in the 17th century could demonstrate electrical signals
by detection as well as stimulation.
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Today, extracellular electrode recording techniques enables detection of
accumulative electrical activity from several neighboring cells in living brain
slices and in vivo. It is also possible to perform intracellular recordings
from single neurons revealing fundamental insight on mechanisms of
action potential initiation and propagation (Yuste and Tank [1996]). The
development of the patch clamp technique (Sakmann and Neher [1984])
has further enabled measurements of activity in neuronal compartments or
structures (such as soma or dendrites), even single receptors or channels
in dendrites. Although the temporal resolution of these techniques is very
high (sub-millisecond), they are blind to cellular structures, i.e. they do not
provide structural information and commonly imaging techniques are used
to identify the target. Furthermore, to target a specific cell or compartment,
the risk of disrupting tissue is high, that means these methods are invasive.

Another class of detection methods is based on atomic and molecular
properties. These are for example positron-electron tomography (PET) and
functional magnetic resonance imaging (fMRI). While these methods are
non-invasive their resolution is relatively low (commonly > 1mm, > 0.25s)
and the measurement relies on secondary effects (magnetic properties of
deoxygenated haemoglobin and differential blood flow, Truner and Jones
[2003]).

Optical imaging methods basically record absorption, refraction, fluores-
cence including multi-photon absorption or other non-linear effects. A good
example of the first two is the traditional microscope currently used in
combination with advanced contrast techniques like differential interfer-
ence contrast (DIC). These techniques, however, do not provide functional
data and are rather used to identify structures in explanted tissue. In con-
trast, fluorescence and non-linear effects can be used with live cell imaging
as various effects allow for functional analysis. It is, for example, possible
to exploit endogenous cellular fluorescence (such as flavin proteins) or use
external labels (such as fluorescent antibodies, calcium sensors, etc.). Also,
illumination of cellular structures can generate complex non-linear effects
(such as second-harmonic generation). This means, structural as well as
functional information can be revealed.

For structural and functional analysis of brain it is essential to resolve fine
anatomy and activity signals with high spatial and temporal resolution at

2



different depths. Non-linear, especially multi-photon imaging techniques
accomplish this goal adequately and are becoming more widely used in
biological and medical research. Here it is interesting to note that Maria
Göppert-Mayer (Göppert-Mayer [1930]) predicted the multi-photon effect in
1930. It took nearly 30 years until it could be demonstrated experimentally
(Kaiser and Garret [1961]) and another 30 years before it was exploited in the
development of the multi-photon laser scanning microscope (MPLSM)(Denk
et al. [1990]). It is now among the standard tools for analyzing cellular
activity and neuronal circuit both in vitro and in vivo. Its increasing success
is also due to the advancements in the development of functional activity
sensors.

1.2. Neurobiological foundations

While the history of neuroscience dates back several thousand years it
is only 140 years ago that Deiters realized neuronal processes in two
categories 1865 (now called axons and dendrites). The powerful silver nitrate
staining method of Golgi (1873) lead Cajal (1889) to demonstrate neurons as
independent elements in the brain. The pioneering work of Cajal allowed
for detailed morphological analysis of neuronal circuits with dendrites as
input and axons as output.

Thereupon the research on the computation of neuronal signals in nerve cells
largely focused on dendrites. Intracellular recording of electrical signals in
nerve cells supported the view of a passive computation as explained by
cable theory (for a review see Yuste and Tank [1996]).

Today it is clear that the dendritic tree involves passive as well as regen-
erative and active components and can be regarded as the computational
center of a nerve cell. It is speculated that the non-linear properties greatly
enhance the nerve cell’s computational power (Poirazi and Mel [1999]).

While multi-electrode recording methods allow detection of activity pat-
terns in distributed neuronal circuits and single-electrode recordings allow
electrical recording down to small compartments in single nerve cells in the
brain, optical imaging, like two-photon laser scanning microscopy, allows
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detection of activity signals in populations as well as in fine neuronal com-
partments such as boutons and spines. Since these compartments are an
integral part of neuronal circuits they can reveal fundamental insight on
information processing during behavior.

1.3. Goals of this study

To understand how complex sensory information correlates to a specific
behavior, which includes learning and memory or generally the formation
of, possibly associative, memory, it is necessary to perform measurements
that provide structural as well as functional information with high spatial
and temporal resolution (compare Mehta et al. [2004]) over a long time
period. For these analyses mammalian systems are well suited as models
for behavioral paradigms, including mice, rats and cats. Activity sensors
(synthetic dyes or genetic indicators) can now be delivered, by for example
injection, breading or viral infection, into different brain substructures
for direct examination of cellular morphology and physiology using two-
photon microscopy.

The delivery of functional indicators is the most direct way to examine
functional changes in fine neuronal circuits and are most likely to reveal the
nature of plasticity in response to changes in sensory experience including
learning and memory.

The majority of previous studies carried out in anesthetized animals have
severe limitations because the brain state is highly altered (Cotillon-Williams
and Edeline [2003]). In order to overcome this limitation studies should be
conducted in awake animals.

Clearly, in vivo imaging of living animals is the next important step in
systems biology, especially brain research. Miniaturized scanning devices
are, however, not only limited to a head-mounted microscope but may
also become important in human medicine. We envision their utility in a
wide range of treatment and detection methods. For example, visualizing
cellular morphology and physiology, monitoring and controlling medical
treatments including drug delivery or radiation therapies (compare Christie
et al. [1999], Gumbleton and Stephens [2005], May et al. [2001]). A specific
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example would be, for example, endoscopic optical coherence tomography
(Aguirre et al. [2003]) that allows for direct observation of malignant changes
in cellular structure.
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Part I.

Light source development

6



2. Laser cavity design

A simple way to describe a laser cavity is the ABCD-matrix formalism which
is well described in literature (see e.g. Siegman [1986]). The treatment of
Gaussian beams with ABCD matrix formalism dates back to Kogelnik [1965]
and has bean extensively used, refined and extended (Alda et al. [1991],
Bastiaans [1992], Gatz and Hermann [1994], Kane [1994], Kalashnikov et al.
[1995], Lu et al. [1993], Nasalski [1995], Onciul [1992], Porras et al. [1993],
Salin et al. [1991], Tari and Richter [1992], Zhao et al. [1994]).

An important step in the description of lasers generating short pulses based
on mode-locking by means of a Kerr medium was the development of a
suitable ABCD-matrix representing the Kerr effect by Magni etal. (Magni
et al. [1993a,b]). While the actual dynamics in these lasers are far more
involved this simple description is useful as it deals with the starting
conditions for optimizing the geometry of the cavity (for program code
see App. C.2).

2.1. ABCD-matrix notation

2.1.1. Formalism based on Gaussian beams

The complex radius of curvature 1/q = 1/r − iλ/πnw2 (with the wave front
radius r, wavelength λ, refractive material index n and beam waist w) or its
vector q = (q, 1)T is transformed according to

q→Mq with M =

(

A B
C D

)

,q =

(

q
1

)

(2.1)
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which is analogous to the common representation (“ABCD law”)

q→
Aq + B

Cq +D
. (2.2)

The respective ABCD-matrices describing the optical elements we use in
our standard “Z”-type laser cavity (which are free space propagation, lenses
respective spherical mirrors and tilted interfaces on the crystal) are given
in Tab. 2.1. These are separated into tangential (x) and sagittal (y) plane to
account for astigmatism (Lin et al. [1995]).

Table 2.1.: ABCD-matrices used to describe a standard Z-type cavity: the
propagation in space or medium over distance l, thin lens respective mirror
with focal length f and tilt angleϕ as well as the transformation for a tilted
interface with incidence angle ϕi and angle of refraction ϕr. To account
for astigmatism of the folded cavity, the matrices have been separated in
tangential and sagittal plane.

Propagation Thin lens Tilted interface
Ml M f Mt

tangential

(

1 l/n
0 1

) (

1 0
− f−1/ cosϕ 1

) ( cosϕr

cosϕi
0

0
cosϕi

cosϕr

)

sagittal

(

1 l/n
0 1

) (

1 0
− f−1 cosϕ 1

) (

1 0
0 1

)

The ABCD-matrix of the Kerr medium is given by (adopted from Magni
et al. [1993a]):

Mk =
1

√

1 − γ

(

1 − γ/2 −γt/4n0

−γn0/t 1 − γ/2

)

(2.3)

8



with

γ =













1 +
1

4

(

2πn0w2
c

λt
− λt

2πn0w2
0

)2










−1
P

Pc
, (2.4)

where t is the length of the Kerr medium with refractive index n0, the spot
size in the center wc and at the beam waist w0 (for P = 0) and the relation of
beam power P to critical power for self-focusing Pc.

1

It should come to attention that the Kerr lens matrix is very similar to a
combination of the matrices for propagation and a thin lens (Ml/2 ·M f ·Ml/2)
with a negative length and focusing lens (referring to the effects of “self-
shortening” and “self-focusing”, respectively, in Kerr media).

2.1.2. Cavity stability limits

The cavity is described by a matrix containing all optical elements starting
at an arbitrary reference plane:

M =MN · . . . ·Mi · . . . ·M1 , (2.6)

where Mi is the matrix for the i-th optical element (see Tab. 2.1).

Depending on the mode of operation the reference plane is usually chosen
at the output coupler if a hard-aperture should be used while the center
of the crystal as reference plane yields information for soft-aperture mode-
locking and hints for the pump beam geometry. Alternatively, any plane
can be calculated by constructing a suitable matrix starting at the reference
plane.

1The critical power Pc gives an order of magnitude of the power required to get a non-
vanishing Kerr effect. An approximation in good accordance with experimental data
is

Pc =
αλ2

8πn0n2
, (2.5)

with a corrective factor α of 5.35 (see Huang et al. [1992]).
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The cavity is stable if a full cavity traversal (round-trip) yields a solution for
the complex radius of curvature. That means, with the round-trip matrix

MRT =MM−1 =

(

AD + BC 2BD
2AC AD + BC

)

with M =

(

A B
C D

)

, (2.7)

a stable configuration is reached if the condition q = MRTq is satisfied. For
the Z-type cavity (Fig. 2.1) the result are two ranges, from stability limit 1
to 2 and 3 to 4 with the folding mirror distance z as dependent variable (see
2.2).

Figure 2.1: Schematic draw-
ing of the Z-type laser
cavity without disper-
sion compensation: out-
put coupler (M1), focusing
mirrors (M2 and M3) and
Ti:sapphire crystal (com-
pare Fig. 4.1, p. 22).

Ti:sapphire

crystal

M1

ϕ2

M2

M3

M4

ϕ3

t

Figure 2.2: Unfolded beam
path with the depiction
of first to forth stability
limit (the order of stabil-
ity limits is determined by
the arm length, here L1 <
L2) of the laser cavity in
Fig. 2.1.

x

z L1L2

M1M2M3M4

1


2


3


4


A further criterion is the correction of the astigmatism in a cavity containing
non-normal interfaces (as is the case for a laser cavity with a crystal cut
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at Brewster angle). The stability condition q = MRTq then applies to both
tangential and sagittal axis. This effectively means that the stability limits
should be identical for both axes against folding mirror distance z and yields
the folding angles ϕ2 and ϕ3 (see Fig. 2.1).

Due the recursive nature of (2.4) we have refrained of including the matrix
for the Kerr medium in the calculation of the stability limits. Qualitatively
we can show, however, that a focusing lens in the center of the crystal
(which is similar to the self-focusing of the crystal as well as possibly thermal
lensing effects) influences the folding towards smaller angles (compare with
program code, App. C.2).

2.2. Small signal mode variation

To this point the calculation did not yield any information about the position
of the crystal (see Fig. 2.2). To asses its position we follow Magni etal. (Magni
et al. [1993a], see also Magni et al. [1995]) by calculating the small-signal
mode variation

δ =
1

w

∂w

∂p

∣

∣

∣

∣

p=0
, (2.8)

with the beam waist w and the factor of beam to critical power p = P/Pc.

The mode size variation characterizes the nonlinear losses in a laser cavity
and therefore the position of the maximum mode variation is optimal for
placing an element with nonlinear loss. Here, this is the placement of a
slit near the output coupler (hard-aperturing) or the mode-match with the
pump beam inside the crystal (soft-aperturing).

The results of these calculations (see App. C.2 for program code) are used
as starting point for the construction and optimization of the cavity (see
Sec. 4.2.2 and Fig. 4.3).
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3. Dispersion and compensation

Group velocity as well as higher-order dispersion is the major limiting factor
when generating or transmitting ultra-short optical pulses. In a mode-
locked type laser cavity the generation of ultra-short pulses depends on
the compensation of dispersion of the active medium as it leads to pulse
spreading which counteracts the phase-locking (commonly referred to as
mode-locking).

In the transmission of ultra-short pulses through optical fibers the dispersion
can spread the initial pulse severely. For example, a pulse of 100fs doubles
its length after about 0.3m while a 10fs doubles after about 3mm.

The cause of dispersion in an optical medium is the wavelength dependent
refractive index. In the intended working regime (visible to infrared, far
from sharp spectral features) the refractive index can be well approximated
by the Sellmeier equation (3.1). The wavelength dependence of the refractive
index in the normal dispersion regime generally causes positive group
velocity dispersion. Therefore, it is not possible by simply combining
different materials to compensate for dispersion and compensation schemes
are generally of geometric nature: that is for example the angular dispersion
that is used in grating or prism compressors or a specific layer structure with
wavelength dependent depth of penetration is used in pre-chirped mirror
designs as well as dispersion compensated fibers or Bragg gratings. A totally
different possibility is to minimize or avoid dispersion as utilized in hollow
core fibers which will, however, not be discussed here.

Prism based dispersion compensation schemes were initially developed by
Gordon and Fork (Gordon and Fork [1984]) and later extended to a double
prism sequence (Proctor and Wise [1993]). The original formulation by
Sherriff (Sherriff [1998]) to describe such prism sequences analytically is
insufficient if transmission at non-Brewster angles far from the apex should
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be treated and was therefore later extended to a truly arbitrary sequence by
Duarte (Duarte [2000a]).

While the analytical description gives valuable insights on relations such as
the inverse square dependence of the inter-prism distance on the number of
prisms per sequence (Cheng et al. [2002]), numerical ray-tracing provides,
in addition, the geometry of the system.

3.1. Dispersion in optical media

Dispersion is ascribed to the wavelength dependent refractive index n which
is commonly approximated by the Sellmeier formula (Agrawal [1995])

n2(ω) = 1 +
∑

i

B2
i
ω2

i

ω2
i
+ ω2

resp. n2(λ) = 1 +
∑

i

B2
i
λ2

λ2
i
+ λ2

(3.1)

where ωi and λi are the resonance frequency and wavelength (of the bound
electron oscillation), respectively, and Bi is the strength of the i-th resonance.
These parameters are usually fitted based on experimental data and extend
over all material resonances that contribute to the frequency range of interest
(see App. B, tables of Sellmeier coefficients are usually provided by glass
manufacturers, see also Han [1995]).

The effect of dispersion is contained in the mode propagation constant β
which is expanded in a Taylor series around the carrier frequency ω0

β(ω) = n(ω)k0 = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)2 + · · · , (3.2)

with the wavenumber k0 = ω/c and the speed of light c in vacuum.
The first expansion coefficients have the following concrete meaning: β0

denotes the propagation of the carrier frequency while β1 is the inverse
group velocity and β2 the group velocity dispersion (GVD). Higher-order
derivatives are commonly named after the order of the derivative (e.g. third
order dispersion, TOD).

With the used ray-tracing method we obtain the wavelength dependent
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optical path length (OPL) with which we obtain the absolute dispersion Dm

of order m with

Dm =

(

dmOPL

dωm

)

. (3.3)

For group-velocity dispersion compensation with a prism sequence this
means that the inter-prism distance has to be chosen so that D2 = 0.

3.2. Ray-tracing fundamentals

The ray-tracing scheme we used effectively contains three steps: 1) the
geometric path is calculated based on common ray-tracing techniques
including the refraction at an interface, 2) calculation of the optical path
length by multiplying each part of the path with the associated refractive
index and 3) the differentiation of the OPL to yield the requested order
of dispersion. In the following the important formulas used in the model
(which basically is the refraction at a flat surface) are described (see App. C.1
for program code).

In mathematical terms this means that we define a ray vector rp by its origin
P and its unit direction d0

rp = (P,d0)p (3.4)

for a specified wavelength in section section p (i.e. from a medium interface
p to p + 1). The vector rp is propagated at an optical interface into the next
section p + 1 defined by the intersection point Pp+1 and the new direction
d0

p+1
which is calculated based on the change of the refractive index and

orientation of the interface. Then, the OPL is the summation of each section
p according to

OPL =
∑

p<N

npPpPp+1 (3.5)

with np denoting the refractive index in section p. The indices 0 and N stand
for the predefined input and output planes of the optical system.
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At a medium interface with refractive index change from n1 to n2 the ray is
guided according to Snell’s law which is in vectorized form

d0 → n−1 d0 +
(

s0
p · d0 −

√
1 − n−2

)

s0
p , with n =

n1

n2

, (3.6)

where sp is the surface normal of medium interface p at the ray-interface
intersection point.

In the program code, however, we will use intermediate steps. With this, a
future implementation would allow to model the traversal of interfaces at
angles far from the Brewster angle to obtain the attenuation of the beam.
This would be necessary, for example, if other materials than fused silica
prisms would be used in the dispersion compensation in the laser cavity.
According to the Fig. 3.1 we split the incident ray i into its components
parallel and perpendicular to the surface

i⊥ = −(s · i)s
i‖ = i − i⊥ .

The transmitted beam is refracted according to Snell’s law n1 sin β = n2 sinα.
For the part of the vector parallel to the surface this means that

|sinα|
|sin β| =

|i‖|
|t‖|
=

n2

n1

.

If i is normalized we can write the parallel and orthogonal part of the

s

β

α

i‖

i⊥
i

t‖

t⊥
t

r

n1

n2

Figure 3.1: Definition of vectorized refraction:
incident i, refracted r and transmitted direc-
tion t.
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transmitted beam vector as

t‖ = n−1i‖ with n =
n2

n1

and

t⊥ = −s
√

1 − |t‖|2 .

These vectors would now allow to calculate the attenuation of the beam with
the use of the Fresnel formulas.

The only surface type necessary to describe the prism sequence is a
(rectangular) planar surface. Such a surface can be defined by its edges
Api. With the surface vector sp = Api × Apj, i , j arbitrary, the point of
intersection is

Pp+1 = Pp + dd0
p with d =

(Api − Pp) · sp

d0
p · sp

, (3.7)

where Api is an arbitrary point on surface p. Finally we have to verify that
the point Pp+1 lies on the surface p + 1. For a flat surface defined by the
polygon {Ai}p+1 this means that all sectorial products

ai = n · (∆i∆i+1) (3.8)

with ∆i = Api − Pp+1 have identical sign if Pp+1 lies inside the polygon.
In general ray-tracing schemes it is possible to reduce the number of
calculations that need to be done by excluding non-front-facing rays (d ·n <
0), however, as we expect an ordered traversal of the optical elements, a
non-intersecting ray counts as clipping.

3.3. Numerical calculation results

The program code for the dispersive ray-tracing only considers two dimen-
sions, that is the beam path on a plane. In the following an overview over
the results obtained from numerical calculations is given (see App. C.1 for
program code).

In a first example the second and third order dispersion (GVD and TOD)
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were calculated for different materials: the Ti:sapphire crystal, fused silica,
and glass types BK7, FK5 and SF20 (see Fig. 3.2). As expected, fused silica
is the material with lowest GVD as well as TOD. Based on early analytical
considerations (Sherriff [1998]) we estimated that a beam traversal of a prism
far from the apex would simply add the dispersion of the distance traveled
through the prism and therefore assumed that a material with low GVD is
optimal which is the case for fused silica prisms (it should be noted that
using fused silica as prism material is also preferred due to the small change
of refractive index and, therefore, small reflection losses for broad spectra).

Recent numerical simulations of the double-prism sequence, surprisingly,
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Figure 3.2.: Group velocity dispersion (GVD) and third order dispersion
(TOD) as calculated from numerical dispersion compensation model for
different materials: Ti:sapphire crystal (Al2O3), fused silica (SiO2) and the
glass types BK7, FK5 and SF10.
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show that better results could be obtained with BK7 glass (see Fig. 3.3). While
we, therefore, assume that an even better compensation can be achieved by
proper selection of prism materials and possibly by using a combination of
different materials in a single prism ring, the extension of the program code
to include the transmission ratio of the intensity will be required, especially
if these prism should be used in a laser cavity.
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Figure 3.3.: The results of the optimization process of the inter-prism distance
for the laser crystal of Chap. 4 for zero-GVD with different prism materials
(Fused silica, BK7, FK5 and SF10): Shown are the GVD and residual TOD
curves for a design wave length of 900nm (with a band-width of 40nm).
The apex angles were chosen at Brewster angle (69.1◦, 67.1◦, 68.1◦ and
61.0◦) and the inter-prism distances are 190mm, 176.4mm, 189.8mm and
112.3mm.
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4. Tunable Ti:sapphire oscillator with pure
prism-based dispersion compensation for
high-repetition rate and short pulses

A laser was designed and constructed with the goal of producing ultra-
short pulses at a high repetition rate as needed for certain applications of
multi-photon microscopy. With pure prism based dispersion compensation
repetition rates of up to 270MHz were achieved. The laser operates with
hard- and soft-aperturing at the third (diverging output) and the first
stability limit (parallel output), respectively. At the third stability limit
we demonstrate a near Gaussian pulse with an auto-correlation width of
37fs (FWHM) at 800nm central wavelength. At the first stability limit
broad tunability of the central wavelength from 780nm to 920nm with auto-
correlation pulse width of typically 40–50fs are demonstrated.

4.1. Introduction

Efficient multi-photon laser-scanning microscopy (MPLSM) requires pulsed
excitation because the efficiency of non-linear optical processes depends
on the averaged n-th power of the instantaneous laser intensity. For 2-
photon excitation this means that at constant average power the average
excitation rate increases with the reciprocal duty cycle (I ∝ P2

mean/ fτ, with
the average fluorescence intensity I, the repetition rate f and the pulse width
τ). While the duty cycle can, of course, be reduced by lowering the pulse-
repetition rate (Theer et al. [2003]) a high repetition rate is often desirable
or even necessary for a number of reasons, e.g. the reduction of the non-
linear pulse broadening (see below) (Denk et al. [1995]). The use of femto-
second pulses is, therefore, standard in multi-photon microscopy. In fact,
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commercially available mode-locked Ti:sapphire lasers are the excitation-
light source used for the vast majority of multi-photon microscopes in
operation. The repetition rate of such lasers around 100MHz provides a
sufficient number of pulses per pixel to avoid the need for synchronization
between pulses and acquisition clock. With an easily achievable pulse width
of around 100fs the inverse duty cycle (and hence enhancement of 2-photon
absorption) is about 105.

While for most applications such pulse parameters are appropriate, some-
times higher repetition rates are desirable or even necessary: (1) when sat-
uration due to ground-state depletion limits the achievable fluorescence
intensity (Marcano and Urdaneta [2001]), (2) when super-linear bleaching
(Patterson and Piston [2000]) or photodamage need to be minimized but a
certain fluorescence intensity is needed, such as in fluorescence correlation
spectroscopy (Dittrich and Schwille [2001]), or (3) when excitation through
optical fibers is necessary, where lowering the pulse energy by increasing the
repetition rate allows a reduction of nonlinear pulse broadening (Agrawal
[1995]). To make up for the reduction of the excitation efficiency due to the
increased repetition rate shorter pulses can be used. Somewhat surprisingly,
shorter pulses may, furthermore, reduce the severity of non-linear effects in
fibers as the length of fiber over which high peak powers persist is shorter
due to the larger spectral width (Clark et al. [2001]).

A laser suitable for multi-photon optical imaging requires wavelength
tunability to allow the excitation of different fluorophores, and, for operation
in conjunction with optical fibers, pulses substantially below 100fs and
repetition rates substantially above 100MHz. Very high repetition rates
(in the GHz regime) can be achieved by using chirped-mirror dispersion
compensation (Bartels et al. [1999],Bartels and Kurz [2002]) but usually at
the expense of broad tunability. We, therefore, custom designed a laser
optimized for high repetition rates and short pulses with pure prism-based
dispersion compensation (compare Lytle et al. [2004]).
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4.2. Design

A major factor limiting the repetition rate of mode-locked lasers is the
optical path length required for prism-based group velocity dispersion
(GVD) compensation (Brabec et al. [1991]). This is particularly true for
very short pulse durations where fused-silica prisms need to be used since
prisms made from high-dispersion materials generate too much third-order
dispersion (TOD) (Lemoff and Barty [1992], see also Chap. 3). To reduce the
required inter-prism distance we used two pairs of prisms (Proctor and Wise
[1992]), resulting in a reduction of the required apex distance by roughly a
factor of four (Cheng et al. [2002]). When using a 5mm long Ti:sapphire
crystal the required inter-prism distance for GVD compensation is ≈200mm.
Mechanical constrains add about 100mm leading to a total length of 300mm
of the L2 arm of the cavity (for a drawing of the cavity layout, see Fig. 4.1).

The L1 arm also requires a minimum length if beam propagation is not
parallel, as is the case for mode-locking near the third stability limit of the
cavity using a hard-aperture which needs to be placed near the end of L1 at
the output coupler. The theoretical lower limit for L1 is then twice the focal
length of M2, in our case L1 = 100mm. In practice we could reliably maintain
mode-locking only down to about L1 = 200mm (see below). An alternative
is to operate the laser at the first stability limit, necessarily then without
a hard aperture (Fig. 4.1, slit S1 removed and parallel ray propagation in
both arms), which places no limit on L1. We designed and operated cavity
variants for both 3rd and 1st stability limit operation.

4.2.1. Dispersion compensation

The double-prism sequence we used for GVD compensation is often
referred to as the Proctor and Wise arrangement (Proctor and Wise [1992]).
To calculate the needed inter-prism distance we initially used analytical
expressions derived by Sherriff (Sherriff [1998]) for prism sequences that
are more complicated than the original Gordon and Fork (Gordon and
Fork [1984]) arrangement. Assuming a 5mm long Ti:Al203 crystal (the
GVD introduced by the crystal was calculated using the Sellmeier formula,
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Figure 4.1.: (a) Schematic drawing of the laser cavity: output coupler
(M1), focusing mirrors (M2 and M3), Ti:sapphire crystal, dispersion
compensation consisting of four prism (P1 to P4), end mirror (M4) and
hard aperture slit (S1) and wavelength controlling vane (S2). The inter-
prism distance is measured from apex to apex (P2 to P3). The pump beam
(not shown) is focused into the crystal through M3. (b) Unfolded beam
path at the 1st and 3rd stability limit with the focusing mirrors represented
as lenses (see text for further details).

Han [1995]) and a beam that is passing 4mm of glass at each prism at the
central wave length we find an inter-prism distance (IPD, apex P2 to apex
P3) of 187mm is needed to balance the cavity GVD at 850nm, the design
wavelength of the prism arrangement. The Sherriff formulas are, however,
only valid at minimum deviation (Sherriff [1998], see also Duarte [1995,
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Figure 4.2.: Calculated intra-cavity group-delay (GVD) and third-order
dispersion (TOD) for five different wave length ranges. At the central
wavelength of each partial trace the inter-prism distance was adjusted (to
values of 239, 228, 209, 186 and 159mm, respectively) for zero GVD.

2000b]) and adjusting the prism angles to keep them at minimum deviation
while tuning the laser wavelengths is impractical. We, therefore, used a
numerical ray-tracing technique instead to calculate the dispersion (for an
analytical solution for arbitrary prism sequences see (Duarte [2000a])).

As a side-effect the ray-tracing allowed us to follow rays at the beam edges
and check for clipping: For the design of the laser we specified that a beam
with 4mm diameter and a bandwidth of±30nm should just remain inside the
prisms apexes. In this case the required IPDs become 239, 228, 209, 186 and
159mm for 750, 800, 850, 900, and 950nm, respectively. The corresponding
GVD and TOD curves are shown in Fig. 4.2. The residual TOD, which limits
the shortest achievable pulse width, is below 1700fs3 in the range from 750
to 980nm, which allow to get pulses below 30fs (Brabec et al. [1992]).
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4.2.2. Cavity optimization

The cavity was modeled using the ABCD matrix ansatz (Kogelnik [1965])
in a two-step approach (see detailed description in Chap. 2 and program
code in App. C.2): first we calculated the stability regions as a function
of the folding mirror distance (z), with L1 and L2 as parameters without,
however, taking optical non-linearity into account. Since the crystal faces
are traversed and the curved mirrors reflect at non-normal angles we have
to treat the tangential and sagittal planes separately. For the first stability
limit both folding angles have to be identical if the beam inside the crystal
is to be stigmatic (ϕ3 = ϕ2 = 17.1◦) and the folding mirror distance is then
z1 = 108mm. For the third stability limit the folding angle (ϕ3) for the
arm with the parallel beam (L2) is unchanged if the beam inside the crystal
is to remain stigmatic and we can calculate ϕ2 using again the condition
that the tangential and sagittal stability limits have to occur at the same z
(z3 = 125mm). We find ϕ2 = 13.2◦ for an arm length of L1 = 200mm (unlike
for the first stability limit, ϕ2 does depend on the arm length, with values
ranging from 8.5◦ to 14.2◦ for L1 = 100mm to 300mm).

In a second step we introduced Kerr lensing represented by an additional
ABCD matrix. We then calculated for a given z that position (x) of the
crystal for which the maximal intensity dependence of the beam diameter
at the output coupler occurs (Magni et al. [1993a]). We found x = 50.45mm
both at the first and at the third stability limit: we also found (Fig. 4.3) that
the mode variation is dominant in the tangential plane which is essential for
a vertically orientated slit aperture.

4.3. Cavity construction

The cavity focusing mirrors have a radius of curvature of 100mm; the output
coupler has a transmission coefficient of 12% (all cavity mirrors used were
from a broad-band ”X-Wave” mirror set for a Mira 900 Laser, Coherent
GmbH, Dieburg, Germany). The prisms are fused silica with an apex angle of
68.7◦ (IB-10.5-68.7-SS, CVI Laser Corporation, New Mexico, USA). The gain
medium was a short (5mm) highly doped (α = 3.4cm−1) Ti:Al2O3 crystal
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Figure 4.3: First order
Kerr-lens induced dif-
ferential mode size
variation on the output
coupler in the tangential
(top) and sagittal (bot-
tom) plane plotted as a
function on the crystal
position x near the first
(dashed) and the third
stability limit (solid).
Shown are data for three
different offsets of z:
0.3, 0.01 and 0.001mm
(increasing δ1 with
vanishing z) from the
respective limit. Note
difference in scales.

cut at Brewster’s angle (MolTech GmbH, Berlin, Germany) pumped with
up to 10.5W of the 532nm light from a diode-pumped frequency doubled
Nd:YVO4 laser (Verdi V-10, Coherent Inc.). The focusing mirror for the
pump beam was taken from a Tsunami laser (Spectra Physics).

4.3.1. Alignment

We first optimized the cavity for CW operation without the prism sequence.
The arm lengths L1 and L2 were first set to be nearly equal, at about 300mm,
with L1 slightly smaller than L2 to ensure a small spot on the OC at the third
stability limit. For operation at the third or first stability limit we started
out with z set slightly larger (1–2mm so that z is inside the stability limit)
than the theoretical values of z3 = 125mm and z1 = 108mm, respectively.
The end mirror tilts, crystal position, and pump focus were then adjusted
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for maximum output power.

For third-stability limit operation we then began to reduce L1 while keeping
the CW power maximized by making small adjustments to the end mirrors
and to x, z, and ϕ2. While the calculated values for the optimal folding
angles are ϕ2 = 13.2◦ and ϕ3 = 17.1◦ for a L1 = 200mm we found that, in
practice, the optimal folding angles seem pump power dependent. Better
results were obtained by decreasing the folding angles while increasing the
pump power, presumably due to astigmatic thermal lensing. For pump
powers between 6 and 8W good results were obtained with ϕ2 = 12◦, and
ϕ3 = 13◦. These values are not optimal, especially when L1 should be
shorter than 200mm, but due to mechanical constraints ϕ2 could not be
reduced below 12◦. Residual astigmatism can strongly affect mode-locking
because Kerr lensing is dominant in the tangential plane (see Fig. 4.3). This
means that to ensure effectiveness of the slit we have to keep the tangential
mode variation on the output coupler at least as large as the sagittal mode
variation. In practice, this can be tested by observing the size and ellipticity
of the output beam as z is decreased towards the third stability limit: with
proper astigmatism compensation the beam stays round as its diameter
increases with decreasing z.

At the first stability limit the folding angles (ϕ2 = ϕ3) were varied between
13◦ and 17◦. For a pump power of 10W an angle of 15◦ appeared to yield the
best results for mode-locking operation. As we have parallel ray propagation
in the L1 arm, L1 can be made quite small, limited only by mechanical
constraints, and was initially set to 200mm and later reduced to 95mm. As
expected from the calculations we did not observe any relation between L1

and mode-locking capability experimentally.

4.3.2. Prism sequence alignment

First we inserted only the prism pair P1/P2 into the cavity. The end-mirror
horizontal tilt was initially set so that the laser operated at the intended
wavelength. The angular orientation of prism pair P1/P2 was then adjusted
to yield the minimal wavelength. These steps were repeated until the
minimal wavelength and intended wavelength are equal. This adjustment
corresponds to the minimum-deflection orientation for P1/P2. The second
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prism pair (P3/P4) was then inserted and its angular orientation was adjusted
so that tilting the end mirror no longer produced a shift in the operating
wavelength.

4.3.3. Mode locking

Before attempting to start mode-locking at the third stability limit we had to
adjust the folding-mirror distance z and the crystal position x, which were
still set for maximum power in CW-mode (z = 118 ± 2mm, x = 51 ± 1mm).
Empirically we found that the laser started to mode-lock most easily when
(at a pump power P = 6W) z and x were increased by 0.3mm and 0.1mm,
respectively. To start mode-locking we first closed the slit in front of the
output coupler until the output power was reduced by 25%. The vane S2,
which controls the wavelength and which is located in front of M4, was
adjusted so that wavelengths above 805nm were blocked. Mode-locking
could now easily be started by briefly and quickly pushing P3/P4 away from
the beam (less glass, direction denoted by the arrow in Fig. 4.1).

To start mode-locking at the first stability limit we found that, like for the
third stability limit, the folding mirror distance z has to be increased with
rising pump power. Empirically we found that at a pump power of 10.5W
mode-locking could be achieved by increasing z by 0.5 to 1.0mm from the
maximum CW power (z = 105±2mm). The position of the crystal is selected
by constantly moving the prism pair P3/P4 in and out of the beam and set to
a position where mode-locking starts with as small as possible movement.

We observed in practice that the initial alignment of the cavity at the first
stability limit is more sensitive to misalignment, as can be expected when
operating with soft-aperturing and parallel ray-propagation in both arms,
than when working at the third stability limit. This alignment sensitivity
appeared mainly as instability of the mode-locking process (breakdown to
CW within seconds) as well as sharp frequency peaks (possibly CW). We
have, therefore, further optimized the crystal position and the end-mirror
tilt while the laser was mode-locking. Alternatively it was possible to reduce
sharp frequency components by using the S2 vane. Interestingly, we found
that the cavity is less susceptible to dust at the first stability limit with
roughly a doubled cleaning interval time (several month).
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4.4. Results

Near the third stability limit, running CW at a wavelength of 810nm the
laser had conversions efficiencies of up to 15% at a pump power of Pp = 6W
and 17% at Pp = 10W. The lasing-threshold was at Pp = 2.1W.

In mode-locked operation at a center wavelength of 800nm the conversion
efficiencies were 10% and 12.5% at Pp = 6W and Pp = 8W, respectively. A
spectral and auto-correlation trace were recorded with GVD compensation
(by two SF10 prisms) after the output coupler (Fig. 4.4). Chi-squared fits
assuming a Gaussian pulse profile (carried out with ROOT) gave a central
wave length of 797.8±0.2nm (376.1±0.1THz, mean ±SEM), a spectral width
of 41.4 ± 0.1nm (19.5 ± 0.1THz) and a pulse width of 26.5 ± 0.1fs. The time-
bandwidth product calculated from these values is 0.52, slightly larger than
the transform limit of 0.44. The pulse repetition rate was ≈240MHz.

For an inter-prism distance of 185mm the tuning range for stable mode-
locking (at the third stability limit) was 750nm to 805nm center wavelength.
Beyond 805nm the spectrum became distorted and mode-locking broke
down completely beyond 810nm. While we have not investigated this in

Figure 4.4: Auto-
correlation (top) and
spectrum (bottom)
of laser output at
the third stability
limit, Gaussian fit
(gray), and Fourier
transform of the
spectrum (dashed),
corresponds to the
auto-correlation
expected for a
transform limited
pulse.

-40 -20 0 20 40

720 760 800 840 880 λ [nm]

τ [fs]

In
te

n
si

ty
 [

a
.u

.]

28



detail as we switched to the 1st stability limit (where external compensation
of the diverging beam is dispensable, reducing the complexity of the
adjustment for fiber coupling) we assume that reducing the IPD would
allow for long wavelength (it should also be noted, that the crystal at an
angle itself adds negative dispersion, Zhang et al. [2004]).

At the first stability limit the conversion efficiencies were similar, reaching
a peak of 19% at Pp = 10W at 810nm but the lasing-threshold was slightly
higher at Pp = 2.2W. We achieved stable mode-locked operation of the
laser at a pump power of Pp = 10W, over a wider spectral range than
when operating at the 3rd stability limit. The center wavelength mainly
depended on how far the prism pair P3/P4 was inserted (observation of
how the beam travels through the prisms seems to suggest that dispersion
is the main control mechanism here; this is also supported by the fact,
that it is not possible to shift the central frequency by the use of the
wavelength controlling vane S2 without disturbing mode-locking). The
spectra typically deviate strongly from the Gaussian shape (Fig. 4.5). The
wavelength bandwidth typically reaches 40–50nm between 780 to 910nm.
At a central wavelength of 870nm a maximal bandwidth of over 100[nm] is
reached (it should be noted that this coincides with the calculated minimal
TOD, see Fig. 4.2). The auto-correlation pulse-widths (with external GVD
compensation with a pair of fused-silica prisms) were typically between 40–
50fs. By comparing the calculated (Fourier-transformed spectrum) and the
measured auto-correlation trace we see, however, that the measured pulse
width is typically twice (up to four times for the broad spectrum at 870nm
central wavelength) that of the transform-limited width. The according
pulse width should, therefore, by typically below 30fs (FWHM) based on
the comparison with the Fourier-transformed spectra (see Fig. 4.6).

The peak conversion efficiencies varied from 12% to 7% for wavelengths
between 800nm and 920nm.

4.5. Conclusions

We have demonstrated stable operation of a high-repetition rate Ti:sapphire
oscillator with pure prism based dispersion compensation in different cavity
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Figure 4.5.: Different spectra taken at different insertion depths of prism pair
P3/P4 of the laser operating at the first stability limit (compare Fig. 4.1,
wavelength increases for moving prisms in the direction of the gray
arrow). Depending on the alignment of the laser cavity additional CW
parts can be observed (spectrum at bottom).

modes. We can reach sub-30fs pulses for hard-aperture (third-stability limit)
as well as soft-aperture (first-stability limit) supported mode-locking with
up to 270MHz repetition rate. In comparison to a typical commercial laser
(80MHz, 100fs) our laser thus achieves a 3-fold higher repetition rate and a
3-fold shorter pulse length. Most important for us is that stable operation
near 930nm is possible since the xanthene dyes Xu and Webb [1996] as well
as many fluorescent proteins can be efficiently excited Xu et al. [1996].

Applications envisioned for this laser include situations where pulse ener-
gies have to be minimized, for example to reduce superlinear photobleach-

30



 [nm]
λ
600
 700
 800
 900
 1000
 1100
600
 700
 800
 900
 1000
 1100


I 
[a

.u
.]




0


0.2


0.4


0.6


0.8


1


 [THz]
ν
250
 300
 350
 400
 450
250
 300
 350
 400
 450


 [fs]
τ
-200
 -100
 0
 100
-200
 -100
 0
 100


I 
[a

.u
.]




0


0.2


0.4


0.6


0.8


1


 [fs]
τ
-200
 -100
 0
 100
-200
 -100
 0
 100


Figure 4.6.: Comparison of the measured spectrum and auto-correlation
trace by Fourier analysis (gray: original data, solid: smoothed data and
dashed: calculated data): (top left) the measured spectrum (50nm FWHM)
is transformed from wavelength to frequency (26THz rms width, top-right)
and Fourier-transformed to yield the pulse (17fs rms width, bottom left)
and compared with the auto-correlation trace (bottom right): the computed
auto-correlation width is 29fs (FWHM) compared to the measured FWHM
width of 52fs.

ing (Schwille et al. [1999], Dittrich and Schwille [2001], Eggeling et al. [1998],
Brand et al. [1997], Patterson and Piston [2000]) or for a multi-photon fiber
microscope (Helmchen et al. [2000, 2001, 2002]). Preliminary experiments
(Sawinski and Denk, unpublished data) show that when passing the output
from this laser with appropriate pre-chirping (prism sequence with 5 fused
silica prisms each) through 1m of a standard single-mode fiber we can reach
pulse lengths around 100fs for an average output power of up to 300mW at
900nm central wavelength.
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Part II.

Head-mount microscope
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5. Piezo lever fiber scanner model

In the design of the piezo lever fiber scanner (PLFS) we have to deal with
the bending of the fibers, their material limits and the actuators which are
piezo bending elements. In the following a short introduction will be given
to develop finally the scanner model used to estimate the performance of
the scanner.

5.1. Bending of a beam

5.1.1. Bernoulli bending

A beam with constant cross section under bending exhibits a linear trans-
verse tension distribution over its length (see Fig.5.1(a), this simplified ex-
amination dates back on Bernoulli, 1700, see Budó [1990]). In equilibrium
the integrated tension over the cross section is zero, which means, that if the
beam is bent downwards a neutral plane (yz) exists for which the relative
elongation (εxx) is zero (see Fig. 5.1(a)). With the theorem of intersecting lines
it is obvious that if the neutral fiber is defined for z = 0 the relative elon-
gation scales inversely with the bending radius R with εxx = −z/R (sign for
counter-clockwise orientation of R). According to Hooke’s law the normal
strain along the x-axis Pxx is thus

Pxx = Eεxx = −E
z

R
, (5.1)

with the modulus of elasticity E.

Using (5.1) the inner bending moment Mb at any position x is then

Mb =

∫

A

zPxxdA = −EI R−1 (5.2)
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Figure 5.1.: a) Definition of coordinate system (axis y, not shown, is
perpendicular to axes z and x). The bending modes involved in the design
of the scanner: b) Bending of the scanner fiber, a fixed beam with a free
end (the bending moment due to the cross connects, not shown, attacks at
the free end, compare 5.6); b) fixed beam with a rotationally free end, and
c) beam with parallel ends.

with the area moment of inertia

I =

∫

z2dA . (5.3)

Assuming small deflections the bending radius can be approximated by
R = z′′/(1 + z′2)3/2 ≈ z′′ (compare experimental results, Sec. 6) and we get
the differential equation for the static (i.e. in equilibrium with an external
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bending moment M(x)) bending of a beam:

EI z′′(x) =M(x) . (5.4)

Following Bernoulli’s description the externally applied bending moment
can be considered linear for small deflections. By separating each beam
into parts so that z(0) = z′(0) = 0 (fixed end) and further by describing the
bending moment distribution by the bending moments at the ends of each
beam part (M(x) = M0 · (1 − x/L) + M1 · x/L, with the beam length L) the
solution of the differential equation can be written in the form of a spring
equation with

ϕ := z′(L) =
K′−1

L
(M0 +M1) with K′ = 2 EI L−2 (5.5)

s := z(L) =
K−1

L

(

M0 +
1

2
M1

)

with K = 3 EI L−3 . (5.6)

The different bending modes of the beam parts are as follows (compare
Fig. 5.6): The force delivering suspension is subject to a central bending
moment due to the deflection of the fiber (rotationally free end) while
the orthogonally crossing suspension experiences a shear force (parallelly
shifted end). The excitation fiber is thus subject to a transverse force as well
as to a torque (partially free end).

Rotationally free end: If a bending moment M is applied at the rotationally
free end, the additional boundary condition (z(L) = 0) relates the moment on
the fixed end with (5.6): M0 = −M/2. Thus, with (5.5), the beam is described
by

M = ϕ · 2K′ L . (5.7)

Parallelly shifted end: The parallel shift is caused by the force F, with the
boundary condition for parallel shift (z′(L) = 0) we can express the moments
at the end with M0 = −M1 = −F · L. Thus with (5.6) we get

F = s · 2K . (5.8)
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This beam part also exhibits an axial moment due to twisting (compare
Fig. 5.6) which is described by the torque

M = ϕ
GI

L
(5.9)

with the modulus of rigidity G.

Partially free end: To describe the excitation fiber, we have to handle the
suspension that delivers the actuator force (see “Rotationally free end”) that
causes an opposing moment M at the free end of the beam part. Thus the
excitation fiber is described by

ϕ = −K′−1
(

F +
M

L

)

(5.10)

s = −K−1
(

F +
1

2

M

L

)

, (5.11)

where F is the force that deflects the fiber and M the moment caused by the
cross connects.

5.1.2. Resonant limitation

An important factor in the description of the scanner is the resonance
frequency that limits the speed of operation. The resonance frequency of a
uniform beam is according to Búdo (Budó [1990])

νn =
(αnLf)

2

2πL2
f

√

EI

ρA
with I =

∫

A

z2dA (5.12)

with the modulus of elasticity E, moment of inertia I, the density ρ and
cross-section A. The (αLf) are derived through a transcendental function
(which is the result of the boundary conditions within the solution of the
Bernoulli-Euler differential equation for bending waves in solids, see Budó
[1990]) and can be approximated by: α1Lf ≈ 1.875, α2Lf ≈ 4.694, α2Lf ≈ 7.8550
and further αnLf ≈ (2n − 1)π/2.
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5.2. Stress limits

An important part of the design of the piezo scanner is the calculation of
critical internal forces of the cross-connects and also the excitation fiber, that
is, we need to know the mechanical (elastic) limits of the structure. There are
effectively three failure modes involved: (1) bending of all fibers is limited
by their bending stress limit and (2) the tension and pressure of the cross-
connects are limited by the yield strength and (3) the cross-connects may be
subject to buckling under pressure.

5.2.1. Bending strength

The bending strength is the limit where fracture occurs and is related to the
inner bending moment Mb and the first moment of area W by

σb =
Mb

W
with W =

∫ ∗

A

xdA , (5.13)

with the cross-sectional area A∗ above or below the neutral phase.

Using (5.7) we get a bending stress of the cross-connect parallel to the applied
force (with W = πd3/32 for a circular cross-section, see Metall [1990])

σb = ϕ
2d

L
E . (5.14)

The bending stress limit yields an upper boundary for a fiber diameter. In
the case of fused silica, the maximum diameter of the cross connects would
be 308µm (assuming a maximum slope of ϕ = 0.1 of the excitation fiber and
a minimal length ls of the cross connect of 1mm, see Fig. 5.5). By comparing
(5.5) and (5.9), it is obvious that the maximum diameter of the scanner
fiber is twice that of the cross connects under the same conditions (ϕ = 0.1,
lf = 1mm). For a steel wire the maximum diameter is between 13µm and
38µm. Steel appears, therefore, not suitable as a cross connect material (see
also buckling, Sec. 5.2.3).
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5.2.2. Yield strength

The yield strength is the limit of the tensile or compressive stress σ defined
by

σ =
F

A
. (5.15)

with applied force F and cross sectional area A. It is a measure for the limit
of the elastic regime, that is, before permanent deformation occurs.

The yield strength of fused silica is about σ = 50 · 106N/m2. That means
the minimum diameter of such a fiber to support a tension force of 100mN
(blocking force of a single piezo bending element in bipolar operation) is
50µm.

5.2.3. Buckling

Another factor limiting the stability of the scanner is buckling. The buckling
force, i.e. the maximum force at which buckling can occur, is given by (see
Metall [1990])

Fk = π
2 EI

l2
k

(5.16)

with the free buckling length lk (see Fig. 5.2). The buckling length lk is related
to the beam length l by: lk = 2l for one free end, lk = l for rotationally free
ends, lk = 0.7l for rotationally free-fixed and lk = 0.5l for fixed ends. In case
of the scanner, the cross-connect point is not completely fixed, therefore, to
yield a safe limit in terms of lk we use the definition for Fig. 5.2c). Then, a
force of F = 100mN will require a minimal diameter of 33µm for fused silica
(E = 73N/m2).
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(a)
lk = 2l

(b)
lk = l

(c)
lk = 0.7 l

(d)
lk = 0.5 l

Figure 5.2.: Definition of the free buckling length lk: The hatched surfaces
represent fixed connections to the beam subject to buckling, the circles
allows a rotational degree of freedom.

5.3. Piezo bending element

Bending elements are constructed from layers of piezo electric ceramics
with electrodes in combination with structural layers, ranging from single
to multi-layered actuators. The bending of the actuator tip is achieved by
generation of strain along the bending phase which leads to a bending
moment, thus, translating the small deformation of the piezo electric
material into a large deflection.

piezo ceramic

middle vane
neutral

fiber

expansion

contraction

Figure 5.3.: Sketch of a double-layered piezo bending element (left) and its
mode of operation with applied voltage (right).

The common representation for the deflection of a bending element is
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(Kroupa and Nejezchleb [1998], Lim et al. [2001])

s

X
=

U

UX

− F

FB

, (5.17)

with the blocking force FB and free deflection X at the maximum voltage
Umax, and s is the deflection depending on the applied voltage.

An analogous ad-hoc description (to handle piezo bending elements with
a certain layer structure, see program code App. C.3) can be derived if we
assume that the piezo ceramic layers are thin in contrast to the overall height
of the layer structure. That means the field strength dependent elongation
of the piezo ceramic actually causes a constant additional bending moment
MU (where the index U denotes the voltage dependence). With a force F
applied on the end of the element the bending moments following (5.4) are
M0 = MU + Fl and M1 =MU and we obtain

3Eh3w

4l3
s = (F +

MU

l
) +

1

2

MU

l
= F +

3

2

MU

l
, (5.18)

with the width w and height h of the piezo bending element, and tip
deflection s. If we further remove any layer structure dependent variable
and regard the piezo electric moment as proportional to the applied voltage
U we get the representation

s(F,U) = cεl
2 ·U − cEI

l3

w
· F . (5.19)

The constants cEI and cε are arranged to be constant for a certain layer
structure and relate to the free deflection X and blocking force FB by

cε =
1

UX

X

l2
and cEI =

X

FB

w

l3
. (5.20)

The bending elements we used have a free deflection of 100µm and a
blocking force of 200mN for an element with a free length of 10mm and
a width of 2mm in unipolar operation at the applied maximum voltage
of 100V. This gives the required parameters for further calculations of
cε = 0.01m−1V−1 and cEI = 1m−1N−1.

40



The piezo layers have a specified voltage range of 0–100V. This range can,
however, be extended to −24V before depolarization occurs in the piezo
ceramic layers (according to the manufacturer). As these piezo bending
elements have a parallel ceramic orientation we can reach the full bipolar
deflection range by applying a bias voltage of 76V (this is causing an initial
tension allowing the bending element to bent into both directions) which is
depicted in Fig. 5.4.

Layer 1

Layer 2

U1


U2


Vane

(a)

100

50

-50

-100

U [V]

X [a.u.]
Layer 1

Layer 2

(b)

Figure 5.4.: Piezo bending element with a) parallel layer orientation and
b) the corresponding potential, utilizing that the voltage range extends
partially in the opposite direction before depolarization occurs.

The electronic drive was designed around a integrated high voltage amplifier
(PA912, APEX) following the reference design (see App. A) with a symmetric
high voltage power supply (±120V, Schuricht, Germany). The bias voltage
is generated with conventional Zener diodes. The amplification matches the
signal output of the acquisition electronics, translating ±10V into the piezo
drive voltage of ±62V with a bandwidth of 30kHz.
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5.4. Scanner model

The primary mode of operation of the scanner is non-resonant and thus
we developed a simple static model. The scanner itself is, however, not
limited to non-resonant operation only, it should be well possible to use the
scanner partially (one resonant axis) or completely (Lissajous type scanner
Helmchen et al. [2001]) resonant.

The operational scheme of the scanner is lever action, translating the small
movement of the actuator, a piezo bending element, into a large deflection
D at the excitation fiber tip:

D = ϕ · Lf + s , (5.21)

with s and ϕ the deflection and angle at the suspension and Lf the free fiber
length (see Fig. 5.5).

The different modes of bending already formulated in section 5.1 will now
be combined to yield a simple static model of the scanner. To differentiate the
properties of each element, indices for the excitation fiber (f), the suspension
(s) and the actuator (a) are added. In all cases s and ϕ will refer to the
deflection and slope of the excitation fiber at the suspension cross, yielding
the fiber tip deflection D = s + ϕLf with the free length Lf of the excitation
fiber (see Fig. 5.5).

Figure 5.5: Basic oper-
ation of the PLFS:
a small deflection by
the actuators is trans-
lated into a large fiber
tip deflection. Also
shown are lengths
used to describe the
scanner model.

Lf

Actuator (piezo bending element)

Scanning fiber
Suspension

beam

Suspension

cross (glue)

ls

la

lf

42



FaFa

Ms

Fs⊥

Ff

a)

b)

c)

a)

b) c)

Figure 5.6.: Different types of bending, a) the suspension beam parallel and b)
orthogonal to the applied force and c) bending of excitation fiber itself. The
indices of forces and momentum stand for a, actuator and s, suspension
and f, excitation fiber.

The moment created by the fibers (Fig. 5.6a) and (Fig. 5.6b) can be written
as

Ms = −ϕ · 4K′sls with K′s =
(2Es +Gs)Is

l2
s

(5.22)

with the distance ls from actuator to the excitation fiber, the elastic and
torsion module Es and Gs and the area moment of inertia Is. The retracting
force created by the perpendicular suspension beam is

Fs⊥ = s · 4Ks with Ks =
3EsIs

l3
s

. (5.23)

To describe the bending of the excitation fiber we have to handle the effect
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of the moments created by the suspension beams and write

F − M

lf

= −ϕ · K′f with K′f =
2EfIf

l2
f

(5.24)

and

F − 1

2

M

lf

= −s · Kf with Kf =
3EfIf

l3
f

. (5.25)

To eliminate the mixed dependency of deflection s and angle ϕ, we compare
(5.22) with (5.24), this yields

F f = ϕ

(

K′f + 4
ls

lf
K′s

)

(5.26)

and we get

s

ϕ
=

K′
f

Kf

+ 2
ls

lf

K′s
Kf

. (5.27)

With the equilibrium condition Ff + Fs⊥ + Fa = 0 and the simple linear
description of the piezo bending element (Sec. 5.3)

Fa = −s · Ka +U · KU with Ka =
1

cEI

wa

l3
a

, KU =
cε
cEI

wa

la
. (5.28)

we get the deflection at the suspension cross in dependence of the applied
voltage U

s = U · 2KU

Kfξ + 4Ks + 2Ka
with ξ =

K′
f
+ 4 ls

lf
K′s

K′
f
+ 2 ls

lf
K′s
. (5.29)

With (5.27) we can now calculate the deflection of the fiber tip given in
(5.21).

This model includes a few assumptions we have to consider for optimizing
the scanner properties. First, the connection between the suspension beams
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and the excitation fiber is not completely rigid as we use UV-curing epoxy
glue. Second, the bending of the beam parallel to the applied force (Fig. 5.6b)
does not handle the yielding of the piezo bending actuators. Therefore, we
additionally calculate the upper limit by ignoring the elastic properties of
the suspension beam (Ks = K‘s = 0).

5.5. Results

The results of the model described in the previous sections (for program code
see App. C.3) can be seen in Fig. 5.7 to 5.10. In addition, the maximal relation
between stress and stress limit (bending, yield and buckling strength) is
calculated and given as safety factor.

When comparing the calculations for the default piezo bending elements
we used (see Sec. 6.3, 10 × 2mm2, Fig. 5.7-5.9), it is obvious that reducing
the diameter of the cross-connects increases the fiber deflection (here we
consider the case of a rigid joint between the scan fiber and the cross-
connects). While the change from a cross-connect diameter from 80µm to
60µm promises an increased deflection of about 30%, another 20µm diameter
reduction only promises an improvement of about 15%. There, however, at a
cross-connect diameter of about 40µm the stress limits are reached (compare
Fig. 5.9).

From Fig. 5.9 it can be seen, that the maximal expected improvement of the
deflection of the current scanner concerning the cross-connects would be
20%. Using different kinds of materials or geometries will require a careful
selection and, especially near the stress limits, the fatigue failure will have
to be considered.

Another possibility to increase the deflection is to increase the performance
of the piezo bending elements, for example by using multi-layer bending
actuators, or by simply increasing their size. An increase of 40% in length
of the used piezo bending elements could lead to an increased deflection
of over 30%. The current implementation of the head-mount microscope,
however, would have to be changed (compare Fig. 6.1(a)).
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Figure 5.7.: Results of the calculation of the deflection D and the safety
factor (see text for further details) versus the attachment point lf for a
default piezo element size (10 × 20mm2), scan fiber diameter 125µm and
overall length 12.7mm, and cross-connect diameter 80µm: (dot-dashed)
maximum deflection without considering the cross-connects, (dashed)
loose and (solid) rigid joint between the cross-connects and the scan fiber.
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Figure 5.8.: Results for a cross-connect diameter of 60µm (compare Fig. 5.7).
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Figure 5.9.: Results for a cross-connect diameter of 40µm near the stress
limits of the cross-connects.
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Figure 5.10.: Results for a cross-connect diameter of 60µm (compare Fig. 5.8)
and a 40% larger piezo bending element.
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6. A random access miniature fiber scanner for
in vivo optical imaging

Multi-photon imaging allows the real-time analysis in living tissue explants
and in vivo, and has become a powerful tool for neural activity analysis.
Miniaturized multi-photon laser scanning microscopy promises to extend
such measurements to awake, freely moving animals. In this chapter we
present and demonstrate the piezo lever fiber scanner (PLFS)–an improved
fiber scanning method that, in particular, allows the selection of an image
offset and offers the prospect of random access scanning. Applications to
intravital microscopy and endoscopy are envisioned.

6.1. Introduction

Multi-photon microscopy (MPM, Denk et al. [1990]) has become an im-
portant tool in live-science imaging, especially to acquire high-resolution
images deep inside strongly scattering samples, such as neuronal tissue
(Svoboda et al. [1997]). MPM is used to measure anatomical features and, in
combination with functional dyes, neuronal activity from cell populations
(Ohki et al. [2005], Helmchen and Waters [2002]) on the one hand, and down
to small compartments of single nerve cells (Denk et al. [1994], Helmchen
and Denk [2002], Jung et al. [2004]) on the other hand. Opto-physiological
measurements are possible in vivo in anesthetized animals (Waters et al.
[2003]); however, anesthetics are known to dramatically alter the functional
state of the brain (Cotillon-Williams and Edeline [2003]). In order to ex-
amine brain function during natural behavior, it is necessary to image in
awake animals. Pioneering experiments in awake animals were performed
with in head-restrained animals (Fà et al. [2003]); measurements in awake
and freely moving animals by means of optical imaging were carried out
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with fiber bundles (Knittel et al. [2001] or fiber tip scanning, such as in the
head-mounted resonant fiber scanner (Helmchen et al. [2001]).

High spatial resolution in the sub-micron range (which is essential when
connectivity, which plays a major role, for example in consolidation of
memory, and, therefore, small compartments such as spines should be
detected) is, however, only possible with continuous scan techniques such
as micro-mirrors or fiber tip scanning (for a review see Helmchen [2002]).

Using a single-mode fiber directly for scanning is a very simple and elegant
solution. The predecessor of the PLFS uses the Lissajous scanning technique
(i.e. the fiber tip follows a two-dimensional Lissajou figure pattern, see
Helmchen et al. [2001]). As such it lacks control over the x-y–position and
thus of the image center (panning) and scan pattern orientation (rotation).
Panning capabilities are needed if particular structures, such as dendritic
branches, are to be targeted. For a resonant Lissajous scanner this means
the incorporation of an additional remotely controllable lateral translation
mechanism.

Here we report the design, implementation, and testing of the PLFS. We
can show that large deflections of the fiber tip are possible (±500µm) far
from resonances and, therefore, are able to demonstrate panning as well as
rotation of the scan pattern. We also present and describe the integration
of the scanner into a lightweight miniaturized head-mount microscope.
With this microscope we obtain imaging results, tested on slices, that are
practically comparable in all respect with the standard two-photon laser
scanning microscopes. This microscope should, therefore, allow measuring
in freely moving animals, especially in rats.

6.2. Theoretical framework

6.2.1. Design and limitations of a piezoelectric scanner

For a miniature MPM the scanner needs to: 1) have a sufficient 2-dimensional
deflection range (field of view, FOV), 2) sufficient speed of deflection (scan
speed) and 3) low weight and size. While simplicity is not a general
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requirement we favored the direct fiber scanning technique over more
complex designs like micro-electromechanical systems (Xie et al. [2003]).
The scan speed and FOV are competing requirements (as with most scanning
methods) since a longer fiber, as is needed for larger deflections, will always
have a lower scan speed due to its resonance frequency.

The resonance frequency of a fiber of the length Lf (Fig. 6.1(b), free fiber
end) is for a circular cross-section with diameter d the resonance frequency

is thus approximately ν1 ≈ 0.14 · d/L2
f

√

E/ρ (the second and third order
resonance frequencies are ν2 = 6.27ν1 and ν3 = 17.57ν1, compare Fig. 6.4(a),
see Sec. 5.1.2). If we assume a resonant limit on ν1 of 500Hz allowing a line-
scan period of 2ms (1ms for bidirectional scanning) the length of the fiber
is limited to 14mm when using a standard 125µm single-mode fiber (fused
silica: E = 73 · 109N/mm2, ρ = 2.2 · 103kg/m3, Wang et al. [2001]). Reducing
the fiber diameter reduces the resonance frequency but would also allow
larger deflections for the same applied force (see below).

To drive deflection we chose piezoelectric bending elements. Other possible
types of actuators would include electrostatic and electromagnetic deflec-
tion. While electrostatic deflection is problematic due to its high voltage re-
quirements, electromagnetic deflection would possibly require specifically
designed coils and magnets or deposition of a highly permeable material on
the fiber. Piezoelectric elements, in contrast, are simple and readily avail-
able. However, while piezoelectric elements are fast, light, and efficient
transducers of electrical into mechanical energy, they do not provide large
displacements. To translate the piezoelectric displacement efficiently into
fiber deflection we, therefore, used a double lever arrangement (see Fig. 6.1)
with the bimorph principle providing the first stage (here, ’bi’ refers to two
piezo ceramic layers including surface electrodes separated by a vane, see
e.g. Kroupa and Nejezchleb [1998], bending elements with single or multi-
ple layers are called unimorph or multi-morph, respectively). The second
stage of motion amplification is provided by connecting the moving end of
the bimorph to the fiber at a point close to the fibers anchor.

In order to optimize the deflection for a given free fiber length the mechanical
impedances must be matched. The mechanical impedances (stiffness) of the
fiber, of course, strongly depends on how far the fiber from the anchor point
is pushed or pulled. An additional factor, which is considered in Sec. 5, is
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Figure 6.1.: Design overview: a) Sketch of the head-mount microscope with
scanner, lenses, mirrors and light path of the excitation (light gray) and
fluorescence (dark gray). b) semi-technical cross-section of the piezo lever
fiber scanner (PLFS), showing deflection of the scan respective excitation
fiber (dashed) and c) view of the flattened excitation path with focal (FB),
backfocal (BFP) as well as principle planes (P) of the fiber tip, tube lens
and objective (left to right).

the stiffness contributed by the elements connecting the bimorph ends to the
fiber.

We first note that the deflection D of the fiber tip is maximal if the angle with
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which the fiber leaves the attachment point is maximized. Independent of
the free fiber length Lf (see Fig 6.1), as long as the lever ratio can be assumed
to be large this is:

Dmax = s + ϕ · Lf ≈ ϕ · Lf , (6.1)

with the displacement s and angle ϕ of the fiber at the attachment point.

The maximum deflection is reached for (see Sec. 5):

ϕ =
3FBl2

f

3E I + 2 (FBX−1) l3
f

, (6.2)

with the blocking force FB and free deflection X of the actuator, attachment
point distance lf, and modulus of elasticity E and area moment of inertia I
of the excitation fiber. As a function of lf the deflection will be maximal at
lf = (3EI/FBX−1)−1/3. For our typical piezo element (with FB = 100mN and
X = 50µm in bipolar operation) the optimal attachment point is lf = 1.1mm,
for which we would expect ±0.63mm of tip deflection for a free fiber length
of 14mm.

This calculation so far ignores the stiffness due to the necessary connects.
The model that includes the cross connect impedances was described in
detail in Sec. 5. This model shows that fused silica seems to be a very good
choice, both, concerning the material properties as well as the availability.
However, a more thorough study of other materials (for example carbon and
sapphire fibers) might also have to take fatigue into account.

6.2.2. Optical considerations

The optical design of an head-mount microscope also faces conflicting
requirements: for a given fiber-tip deflection the total FOV of the system
is inversely related to the resolution (focus size). For small structures,
in particular, the signal intensity also depends on the focus size due to
dependence of two-photon absorption on the square of the light intensity.

To reach sub-micron resolution the numerical aperture (NA) of the excitation
(NAex ≈ 2λ/πd0 · p−0.5, with fluorescence spot diameter d0 for p-photon
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excitation) must be above 0.4 for two-photon excitation around 900nm
central wavelength. With the NA of the excitation fiber of 0.12 the
demagnification of the system thus should be larger than m−1 = NAex/NAf =

3.3.

The simplest optical design of a microscope with an infinity-corrected
objective involves two elements: the objective and the tube lens (Fig. 6.1c).
The first, obvious, requirement is that the fiber tip needs to be in the back
focal plane (BFP) of the tube lens to ensure that the excitation light enters the
objective as a collimated beam (image at infinity). Another requirement is,
however, that the beam does not move laterally in the objective’s BFP. In a
conventional laser scanning microscope this is achieved by imaging the scan
mirrors into the objective’s BFP. For a fiber scanner the equivalent condition
is that the “illumination” aperture be imaged into the BFP. The illumination
aperture is a (possibly imaginary) aperture where the beam does tilt but
does not move laterally, which for the PLFS is located between the anchor
point and the point where the fiber-bending force acts (FPI, see Fig. 6.1c).
This condition is fulfilled if the distance between the illumination aperture
and BFP of the tube lens as well as the distance from the FP of the tube lens
to the objective’s BFP are equal, which is the focal length ft of the tube lens.
The focal length ft is determined by the required demagnification factor and
the objective’s focal length ft = fObj · m−1, this in turn determines the fiber
length Lf + lf ≈ ft. For a given focal length fObj = 3mm and a fiber length
of 14mm we find a demagnification factor of m−1 = 4.7. The lower limit of
m−1 = 3.3 would require a minimal fiber length of ≈ 10mm

In our actual design we have chosen a smaller distance between tube lens
and objective to allow for a more compact mechanical design. As a result the
beam moves laterally in the BFP as the fiber is scanned over the full range.
Since the objective lens is still underfilled under our conditions this does not
lead to a loss of resolution or excitation efficiency at the edges of the FOV
but scanning is no longer telecentric in the object space (see Fig. 6.1c).
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6.3. Materials and Methods

The scanner was built with piezo bending elements purchased from Argillon
GmbH, Germany. We used a standard optics communication single-mode
fiber (125µm, FS-SN-4224, Newport). The suspension fiber (UV 50/60 P) was
kindly provided by CeramOptec, Germany and the light curing epoxy glues
(UV4601, UV2271) by Wellomer GmbH, Germany. The scanner enclosure
(see Fig. 6.2) was build in two parts: the piezo bending element base and a
thin metal cylinder holding the excitation fiber. The metal cylinder contained
further holes (see also Fig. 6.3) for to glue and cure the cross connects onto
the piezo bending element tip as well as the excitation fiber.

The piezo drivers were constructed using a high voltage integrated amplifier
(PA912, APEX) and was designed to drive the center electrode of the bimorph
with up to ±62V while the outer surface electrodes were held at plus and
minus 38V (see App. A, p. 70), respectively, yielding the full bidirectional
deflection range.

The scanner was incorporated into a head-mounted microscope that con-
tained (Fig. 6.3, in sequence starting above sample): a water immersion
objective that was specifically designed for this purpose ( f ′ = 3mm in wa-

Figure 6.2: The assembled piezo
lever fiber scanner (left) with
the piezo bending element base
(right) and piezo bending ele-
ments (10×2mm2, see text for fur-
ther details).

55



Figure 6.3: Prototype of the as-
sembled head-mount microscope
with a 1′′ (25.4mm) diameter mir-
ror serving as size reference (com-
pare with Fig. 6.1).

Objective

PLFS

Detection fiber
Turning mirror

Scan fiber


ter with n = 1.33, Throl Optische Systeme, Germany), a folding mirror
(SILFLEXTM, unaxis), an achromat as a tube lens ( f = 12.7mm, LAKN22-
SFL6, ThorLabs), a hot-mirror (Calflex-X, Linos) to reflect the infrared excita-
tion laser light coming from the fiber scanner and transmit the fluorescence
toward a turning mirror used to deflect the fluorescence into the detection
fiber (1mm diameter plastic optical fiber, NA 0.63, PJU-FB1000, which was
kindly provided by Toray Deutschland GmbH, Germany). The turning
mirror was (but does not need to be) a cold-mirror (650DCRXU, Chroma
Technology Corp.) that had a very high reflectivity for the fluorescence
light.

Test samples contained 1µm fluorescent (FluoresBrite, Polysciences) and
non-fluorescent beads (PolyBead, Polysciences) embedded in 0.5% and 1%
agarose gel yielding a scattering length similiar to brain tissue (Feierabend
[2004]). To measure the point spread function 175nm diameter fluorescent
beads (PS-Spec, Polysciences) were used.

Hippocampal organotypic rat brain slices (postnatal days P6-9) were pre-
pared according to Refs. (Stoppini et al. [1991], Gahwiler et al. [1997]). To
stain the slices they were either loaded with Oregon-Green 488 BAPTA-1,
AM (Molecular Probes) diluted with culture medium and incubated for one
to four hours at 37◦C (Stosiek et al. [2003]) or infected with GFP adenovirus

56



(Michel et al. [2005]) (kindly provided by Mazahir T. Hasan).

The excitation source was the custom-built Ti:Sapphire laser as reported in
Chap. 4. To compensate for dispersion in the fiber we used a multi-prism
sequence (Duarte [2000a]) consisting of two arrays of 5 fused silica prisms
each. After the tube lens we could deliver pulses with a width of 180fs at
200mW average power (currently incomplete GVD compensation, limited
by the size of the prisms) measured, respectively, with a auto-correlator
(PulseScope, APE, Germany) and a pyro-electric detector (D10MM, Thor-
Labs).

To measure the deflection of the focal spot we used a position sensitive
detector (PSD) (2L4SP, SiTek) amplified with a custom built logarithmic
differential amplifier (OPA2277, BurrBrown with BCM8465, Infineon). The
signal was fed into a spectrum analyzer (HP35650A, 51B, 52B, 53A, 56A,
Hewlett-Packard) to measure the fiber resonances and an oscilloscope to
observe the hysteresis.

The scan generation, fluorescence detection, and data acquisition systems
were from a conventional custom-built multi-photon laser scanning mi-
croscope. It consists of a control software (CfNT, Müller [2000-2005]) on
computers equipped with a frame grabber (XPG1000, Dipix) and a sig-
nal processor (Fulcrum DT3801, Data Translation). An external interface
electronic (Tritthardt [2005]) synchronizes signals and interfaces with the
detection devices (currently either PMTs or APDs) and the galvanometer
scanners. The ramp-shaped scan signal was low-pass filtered (Frequency
Devices 900) at about 200–400Hz depending on the scan speed (5–10ms per
line). Best results were achieved for 7ms line scan period and a filter cut-off
frequency of 200Hz.

The optical components (objective, tube lens, scanner and mirrors) weigh
approximately 3g. The aluminum housing of the prototype weighs about
7g, however, the complete CAD design involves removal of several edges
and thus we expect to reach a weight of the complete microscope below
8g.
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6.4. Results

After building the scanner (with a total fiber length of 12.7mm, the attach-
ment distance is currently lf = 1.3mm, compare Fig. 5.8), we characterize the
scanner and compare it with the optimizations discussed above. The deflec-
tion could be estimated by directing the beam of the microscope (objective
removed) against a screen and driving the scanner with a slow sinusoidal
waveform. We found a fiber tip deflection of ±0.55mm. The expected val-
ues were between ±0.68mm (ignoring the impedance of the cross connects)
and ±0.57mm (assuming a completely rigid cross-connection joint). The
measured deflection corresponds to a FOV of 260µm, imaging experiments
show a FOV of 245µm due to low-pass filtering of the scan signal.

The resonance frequencies along the two axes were 783 and 790Hz (Fig. 6.4)
corresponding to a calculated free length of 11.34 and 11.40mm, respectively,
with the difference matching the diameter (60µm) of the cross-connect
fibers.

Because of the high quality factor (> 200) of the fiber resonances (Fig. 6.4),
they are easily excited by spurious driving forces near those resonances.
Accordingly we found strong resonance effects in the images (Fig. 6.5).
Surprisingly, even higher-order low-pass filtering of the ramp-shaped driver
signal did not completely suppress excitation of the fiber resonances. A
likely explanation is that non-linearities, for example the hysteresis of the
piezoelectric material (Fig. 6.6), regenerate frequency components beyond
the filter cut-offs. Additional problems may arise also from defects in
the piezo bending elements and the connections between the fibers we
experienced in earlier prototypes (an overloaded piezo bending elements
as well as insufficient adhesion at the glue points lead to jerky movement).
By careful selection of filter frequency and scan speed we could minimize
resonance effects. In future implementations it might be possible to
suppress resonances actively (see Tan et al. [1999]). One side-effect of low-
pass filtering the drive signal is, of course, a slow turn-around with the
corresponding appearance of “image-stretch effects” (Fig. 6.5).

On the main advantages of the PLFS is the ability to pan and rotate the scan
pattern. The pan-capability of the scanner is demonstrated as a small FOV
was scanned at different offsets relative to the center position (Fig. 6.7, see
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Figure 6.4.: Frequency response of the scanner: (Top) spectrum of one axis,
the peaks at 800Hz, 5kHz and 14kHz (ν1 to ν3) are the resonances of
the free fiber end. The resonance A and B possibly relate to piezo and
cross-connect resonances, respectively (A2 fits the second order resonance
frequency of A1). (Bottom) superimposed responses to driving the x and
y piezo’s, respectively. (Image was reproduced from spectrum analyzer
hardcopy Selinger [v1.7].)
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Figure 6.5.: Initial test on fluorescent beads embedded in agarose reveal
image distortions: (Left) The image shows resonances of the fiber (the
central stretches are about 1.2ms apart which is near the resonance
frequency of 800Hz). (Right) By low-pass filtering of the ramp-shaped
driver signal the resonances disappear, however, the turning points of the
fiber appear as stretches in the image.

Figure 6.6: Hysteresis of the PLFS
recorded with the PSD in the ob-
ject plane. The small horizon-
tal shift is caused by fluctuations
in the laser due to incomplete
compensation of the intensity in
the custom-built logarithmic dif-
ferential amplifier.
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50µm

Figure 6.7.: Scanning at an offset position. Shown are neurons at a depth
of 40µm in cultured brain slices that had been bulk loaded with Oregon
Green (AM), imaged with 80mW average laser power after objective and
averaging of 5 images. The image (left, 100% scan range, 512 pixels)
show two offset positions of an image sequence (right, 50% scan range,
256 pixels) recorded by manually adding an offset voltage to the scanner
signal.

also Fig. A.1): At first a reference image was taken at the full FOV. The scan
voltage is then reduced to 50% (±31V) and an image sequence was recorded
as the offset voltage was manually varied by ±15V. The capability to rotate
the FOV is demonstrated on a probe of fluorescent beads (Fig. 6.8).

To test the repeatability of offset scan positions we alternated the offset every
5s between points corresponding to ±25% of the FOV while recording an
image sequence (25% field of view with 64 × 64 pixels, 7ms per line) over
several minutes. While the offset jump excites resonances that strongly
distort a single frame following each jump the respective offset positions
appear stable (see Fig. A.2).

We finally determined the resolution of the microscope. From the optical
parameters (NA = 0.9, λ = 900nm) we expect a resolution (1/e2) of 0.8µm.
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Figure 6.8.: Demonstration of pivoting of the field of view (left: 0◦, right: 45◦)
with fluorescent beads embedded in agarose.

Experimentally we have measured a spot width of 0.9µm with 175nm
fluorescent beads (Fig 6.9) which is close to the theoretical value. The
practical optical resolution of the PLFS in the head-mount scanner is also
nicely demonstrated in Fig. 6.10 which shows spine like protrusions in
hippocampal organotypic slices expressing GFP in neurons.

Figure 6.9: Pane of an image of a single
175nm fluorescent bead to measure the
resolution (scale bar is 1µm).
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Figure 6.10.: GFP expression in neurons from organotypic hippocampal
slices.

6.5. Discussion

We have shown that a piezo-electrically driven fiber scanner, which we call
PLFS, can combine compact geometry, high scan speeds, and random access
capabilities. We have also shown that in combination with a miniaturized
microscope objective high resolution images can be recorded from inside
biological tissue. In combination with in vivo loading of neuronal cells with
synthetic and genetically-encoded calcium and voltage indicators neural
activity measurement in freely-moving mammals will enable the study of
brain function while the brain is performing it’s genuine purpose: the control
of movement.

Improvements of the scanner seem possible, for example by reducing the
stiffness of the cross-connection elements, which in the current design
contribute about 15% of the total stiffness. From the simulation it appears,
however, that this contribution cannot be reduced to below 5% due to the
material stress limits.

A different approach to increase the deflection is to use piezo bending
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elements with higher deflections. For example when using 40% longer
bending elements the deflection could be increased by about 30% (compare
Sec. 5). Then, however, it would not be possible to keep the design of the
head-mount microscope: the excitation and fluorescence path would have
to be split before the tube lens (see Fig. 6.1a, distance from fiber tip to tube
lens would decrease with increasing length of the bending elements).

While fiber resonances limit the generation of standard saw-tooth scan
patterns to well below the fundamental resonance it might be possible to
combine a Lissajou scan pattern, using either the fundamental or even a
higher order resonance, with the pan capability of the PLFS. A mixture
of static and resonant scanning will, however, require an adaption of the
software.

With regard to imaging in freely moving animals, however, further questions
have to be addressed. This is mainly the twisting of the fibers due to
movement of the animal as well as pulsation, respiration or in general
movement artifacts.

While twisting of fibers can be solved externally (either technically with
a rotatable fiber mount or by confining the movement of the animal,
e.g. Y-maze) compensating movement artifacts will require a far more
sophisticated approach which includes image stabilization on hardware and
on software side possibly including fast depth control.

6.6. Conclusions

Combining the PLFS with a miniaturized microscope can be used to image
in biological tissue. We envision that the scanner can be used also in the
wider area of intravital microscopy.

A possible application is for example endoscopic coherence tomography
(Aguirre et al. [2003]). Miniaturized scanning instruments are becoming
increasingly important in human medicine (Tozer et al. [2005]) as well
with applications from visualization of cellular morphology (Lippman and
Dunaevsky [2005]) and physiology (Jung et al. [2004]) to monitoring of
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therapeutic progress (Gumbleton and Stephens [2005]) and actual laser
treatment (May et al. [2001]).
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Part III.

Appendix
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A. Supplemental information
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Figure A.1.: Scanning with offset (panning). The graphic shows every 4th

image of a movie taken at a resolution of 256 × 256 pixels (50% scan
voltage, 7ms per line) with manually varied offset voltage. In the lower-
right corner the path is shown for clearification.
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2min

Figure A.2.: Selection of images from a 3.7min image sequence for testing
stability of instantaneous offset change. The sequence was recorded at
a resolution of 64 × 64 pixels (7ms per line) with 50% scan voltage. The
offset jump (middle row) occurs every 10s (about every 23rd image) with
25% of the scan voltage.
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Figure A.3.: Circuit diagram of the piezo amplifier.
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B. Material constants

Table B.1.: Material elasticity properties: modulus of elasticity E, modulus
of rigity G, and density ρ.

Material E G ρ
[109 N/m2] [109N/m2] [kg/m3]

Fused silica 73 32 2,200
Steel ≈ 200 792
Carbon 50–230 1, 100–2, 200
Sapphire 335 148 3,970

Table B.2.: Material stress limits: yield strength σt and bending strength σb.

Material σt σb

[106 N/m2] [106 N/m2]

Fused silica 50 4 500
Steel 500–1 000 500–1 500
Carbon 100-400
Sapphire 300 450–690

Sources: (CRC [2003–2004]), (Han [1995]), (Vedam [1950]), (Wang et al.
[2001]), (Ventures), (Kurki), SGL Carbon Group, Goodfellow, Meller Optics,
Inc.
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Table B.3.: Sellmeier coefficients for selected materials.

Material A Bi

Ci

SiO2 1 0.6961663, 0.407942610, 0.8974794
0.00467914825849, 0.01351206307396, 97.934002537921

SF10 1 1.55912923, 0.284246288, 0.968841926
0.0121481001, 0.0534549042, 112.174809

SF14 1 1.69182538, 0.285919934, 1.12595145
0.0133151542, 0.0612647445, 118.405242

Ti:sapphire 1 1.431349, 0.6505471, 5.341402
0.005279926, 0.01423826, 325.0178

BK7 1 1.03961212, 0.231792344, 1.01046945
0.00600069867, 0.0200179144, 103.560653

FK5 1 1.036330719, 0.152107703, 0.913166269
0.07762270302 , 0.1389596262 , 9.931625122

Sources: Schott catalogue, (Han [1995])
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C. Programs

C.1. Dispersion compensation

We have implemented two-dimensional ray-tracing with M (Math-
Works) which is described in this section accompanied with parts of the
code.

Refractive index: The refractive index is calculated as stated above based
on the Sellmeier formula (3.1). Due to speed concerns the refractive index is
pre-calculated for a wavelength range from 200 to 1600nm.

function n = refr_index_load(mat)
% n = refr_index_load(material_string)
%
% Return a structure containing Sellmeier coefficients and
% an array with precalculated values (refractive indices).
[A,B,C, nl] = load_opt_dat(mat);

n.coeff.A = A;
n.coeff.B = B;
n.coeff.C = C;
n.coeff.n = size(B,2);

n.precompute.bound.lower = 199e-9;
n.precompute.bound.higher = 1600e-9;
n.precompute.bound.step = 1e-9;

n.nonlinear = nl;

lambda = [n.precompute.bound.lower+n.precompute.bound .step:...
n.precompute.bound.step:...
n.precompute.bound.higher-n.precompute.bound.step];

nlambda = size(lambda,2);
ncoeff = size(B,2);
l_sqr = lambda. * lambda * 1e12;
n_sqr(1:nlambda) = A;
for k = 1:ncoeff,

n_sqr = n_sqr + (l_sqr * B(1,k))./(l_sqr-C(1,k));
end
n.precompute.values = sqrt(n_sqr);

return

function [a,b,c] = load_opt_dat(mat)
% Sellmeier coefficients for a few materials
if strcmp(mat, ’vacuum’),

a = 1.0;
b = [];
c = [];

elseif strcmp(mat, ’SiO2’),
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a = 1.0;
b = [0.6961663, 4.07942610e-1, 0.8974794];
c = [0.00467914825849, 0.01351206307396, 97.93400253792 1];

elseif strcmp(mat, ’SF10’),
a = 1.0;
b = [1.55912923, 2.84246288e-1, 9.68841926e-1];
c = [1.21481001e-2, 5.34549042e-2, 1.12174809e2];

elseif strcmp(mat, ’SF14’),
a = 1.0;
b = [1.69182538, 2.85919934e-1,1.12595145];
c = [1.33151542-2,6.12647445e-2, 1.18405242e2];

elseif strcmp(mat, ’Ti:sapphire’),
a = 1.0;
b = [1.431349, 0.6505471,5.341402];
c = [0.005279926,0.01423826,325.0178];

end

The actual calculation of the refractive index (refr_index) is then a simple
matrix lookup. For convenience, the function can also calculate the refractive
index for an arbitrary wavelength.

function n = refr_index(def, lambda)
% n = refr_index(def, lambda)
%
% Return refractive index from structure def (as returned by refr_index_load):
% Either pre-calculated value or calculate with Sellmeier

idx = floor((lambda-def.precompute.bound.lower)/def.p recompute.bound.step);
precomp = 1;

if idx < 1,
precomp = 0;

end

if lambda-def.precompute.bound.lower ˜= idx * def.precompute.bound.step,
precomp = 0;

end

if precomp,
n = def.precompute.values(idx);

else
l_sqr = lambda. * lambda * 1e12;
n_sqr(1:size(lambda,2)) = def.coeff.A;
for k = 1:def.coeff.n,

n_sqr = n_sqr + (l_sqr * def.coeff.B(1,k))./(l_sqr-def.coeff.C(1,k));
end
n = sqrt(n_sqr);

end

Tracing geometry: A beam is defined according to (3.4) by the helper
function beam_create returning a structure containing the origin (P) and di-
rection of the ray (dir). Additionally, the structure contains the wavelength
(lambda) and the index of refraction (index) for later use with calculation of
the optical path length:

function b = beam_create(P, dir, lambda, index)
b.P = P; % origin
b.dir = dir/norm(dir); % normalized direction
b.lambda = lambda; % wavelength

if nargin == 4,
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b.index = index; % index of refraction
else

b.index = 1.0;
end

Accordingly a helper function (surface_create) creates a structure for a op-
tical surface with its edges A and B, the surface normal pointing to the outside
(normal) and the material definitions as returned by refr_index_load:

function s = surface_create(normal, A, B, refr_incident, r efr_transmit)
% s = surface_create(normal, A, B, refr_incident, refr_tra nsmit)
s.normal = normal/norm(normal);
s.A = A;
s.B = B;
s.refr.incident = refr_incident;
s.refr.transmit = refr_transmit;

The central methods for ray-tracing according to previous section are the
intersection calculation (isect_surface_beam) and the refraction of a beam
(refr_beam). The latter functions returns a newly created beam. The optical
path length can be calculated by summing up all distances between the
origins of each beam evolving from a plane.

function [P, ecode] = isect_surface_beam(surface, beam)
% [P, ecode] = isect_surface_beam(surface, beam)
%
% Calculate point of intersection between beam and surface.
%
% Returns:
% P the intersection point
% ecode 0 for ok
% 1 for parallel (caller has to check for identity on his own)
% -1 for outside surface

sdir = surface.B-surface.A;

xy = sdir(1) * beam.dir(2);
yx = sdir(2) * beam.dir(1);

if xy == yx,
P = [-1e999,-1e999];
ecode = 1;
return;

end

D = beam.P - surface.A;
t = (D(1) * beam.dir(2) - D(2) * beam.dir(1)) / (xy-yx);
norm(sdir);

P = surface.A+t * sdir;
if (t<0) | (t>1.0),

ecode = -1;
else

ecode = 0;
end

function [b, side, ecode] = refr_beam(beam, surface)
% [beam, side, ecode] = refr_beam(beam, surface)
%
% Calculate refraction of a beam at a surface.
%
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% Returns:
% b the returned beam
% side 1 - beam entered surface from outside
% -1 - beam entered surface from inside
% ecode (see isect_surface_beam)
% 0 for ok
% 1 for parallel (caller has to check for identity on his own)
% -1 for outside surface
% -2 total reflection

[P, ecode] = isect_surface_beam(surface, beam);
if ecode == 1,

% beam parallel to surface... dumped b = beam_create([0 0], [ 0 1], 0);
side = 0;
return;

end

% which side of the surface are we?
i_perp_len = vecdot(beam.dir, surface.normal);
side = -sign(i_perp_len);

% disect incident beam (PERPendicular and PARAllel)
i_perp = i_perp_len * surface.normal;
i_para = beam.dir - i_perp;

% calculate refractive index factor
n1 = refr_index(surface.refr.incident, beam.lambda);
n2 = refr_index(surface.refr.transmit, beam.lambda);
if side < 0,

n = n2/n1;
else

n = n1/n2;
end

% disect transmitted beam (PERPendicular and PARAllel)
t_para = i_para * n;
t_para_abssqr = vecdot(t_para,t_para);

if t_para_abssqr > 1.0,
% total reflection
b = beam_create(P, [0 1], 0);
side = 0;
ecode = -2;
return;

end

% Return a fresh beam with its origin at previous intersectio n
b = beam_create(P, t_para - side * surface.normal * sqrt(1-t_para_abssqr), beam.lambda);

The only optical element we are interested in is a prism, more precisely a
sequence of prisms. The prism sequences are aligned in a way, so that if
sequence A has counter clock wise orientation and sequence B vice versa,
the output plane of sequence A is parallel to sequence B and the apexes of
the last prism of A as well as the first prism of B are located at the coordinate
origin (see Fig. C.3). This allows us to simply shift sequence B to align for a
certain inter-prism distance.

function seq = seq_create(apex_angle_deg, height, ...
refr_outer, refr_inner, ...
number_of_prisms, design_wave_length, ...
turn)

%seq = seq_create(apex_angle_deg, height, ...
% refr_outer, refr_inner, ...
% number_of_prisms, design_wave_len, ...
% turn)
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%
% Create a sequence of prisms with orientation:
% turn 1 counter clock wise
% -1 clock wise
%
% Returns
% seq The sequence of prisms (see seq_opl, calculation of opt ical path length)

if size(apex_angle_deg,2) > 1,
error(’Mixing of different prism materials not supported y et’);

end

ang = deg2rad(apex_angle_deg);

% the "design wavelength" determines the relative orientat ion of the prisms,
% each prism is traversed at this wavelength at minimum devia tion
seq.design.lambda = design_wave_length;
mdang = mindev(ang, ...

refr_index(refr_outer, design_wave_length),...
refr_index(refr_inner, design_wave_length));

seq.design.minimum_deviation_angle = rad2deg(mdang);
seq.design.number = number_of_prisms;

% input/output surface and orientation of the minimum devia tion beam from apex.
% (pre-allocate for index access)
seq.input.P = [0 0];
seq.input.dir = [0 0];
seq.input.A = [0 0];
seq.input.B = [0 0];
seq.output.P = [0 0];
seq.output.dir = [0 0];
seq.output.A = [0 0];
seq.output.B = [0 0];
seq.target.P = [0 0];
seq.target.dir = [0 0];

base = 2 * height * tan(ang/2); % base width of prism
rinner = base/(2 * tan(mdang/2)); % radius around which the prisms are aligned

% given by base width and minimum deviation angle
router = rinner + height; % accordingly the radius to prism ap ex

C = [0 -turn * router]; % position of the first apex, later shifted to zero

for k = number_of_prisms:-1:1,
g = turn * (pi/2 - turn * (k-1) * mdang); % minimum deviation plane angle between prisms
X = C+rinner * [cos(g) sin(g)]; % center base vector
A = C+router * [cos(g) sin(g)]; % apex vector
S = base * [sin(-g) cos(-g)]/2; % egde vector

% calculate index for ordering surfaces
if turn > 0,

idx = 2 * (number_of_prisms-k);
else

idx = 2 * k;
end

% create prism surface: input
in = surface_create([sin(ang/2+g) -cos(ang/2+g)],...

A, X-S,...
refr_outer, refr_inner);

if turn < 0,
seq.surface(idx) = in;

else
seq.surface(idx+1) = in;

end

% create prism surface: output
out = surface_create([sin(ang/2-g) cos(ang/2-g)],...

A, X+S,...
refr_outer, refr_inner);

if turn < 0,
seq.surface(idx-1) = out;

else
seq.surface(idx+2) = out;

end

77



end

function ang = mindev(apex_angle_rad, n_outer, n_inner)
% Calculate minimum deviation of a single prism
ang = 2 * asin(n_inner/n_outer * sin(apex_angle_rad/2.0))-apex_angle_rad;

Geometric layout: The validity of previous calculations is verified graph-
ically. The function seq_optimize takes two prism sequences and shifts
the second ring so that a inter-prism distance for a specified wavelength is
reached. The geometry of a double-prism sequence (fused silica prisms with
an apex angle of 69.2◦ and base width of 10mm) with a inter-prism distance
for 900nm is shown in Fig. C.3.

10mm

Figure C.1.: The geometrical result of the dispersion compensation calcula-
tion for the laser described in Sec. 4. The detailed view and description
of the dashed box can be seen in Fig. C.2. The resulting group delay and
third order dispersion is depicted in Fig. 3.3.

Figure C.2: Detail of the beam
width clipping detection.
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function [seq_first, seq_second] = seq_optimize(seq_1, s eq_2, ...
adj_middev_wave_length, wave_length_range,...
inter_prism_distance, beam_diameter, center_on_second )

%[seq_first, seq_second] = seq_optimize(seq_1, seq_2, .. .
% adj_middev_wave_length, half_width,...
% inter_prism_distance, beam_diameter)
%
% Adjust the inter-prism distance of two prism sequences, op tionally the beam
% can have a diameter (clipping is avoided) and can be centere d on the second ring.
if nargin == 6,

center_on_second = 0;
end

% show the prism sequence
h = 0;
h = draw_create;
for k=1:seq_1.design.number * 2,

draw_surface(h,seq_1.surface(k));
end

nsurf = seq_1.design.number;

% adjust the input beam
A = (seq_1.surface(nsurf).A + seq_1.surface(nsurf+1).A) /2;
B = (seq_1.surface(nsurf).B + seq_1.surface(nsurf+1).B) /2;

draw_line(h, A, B)

if nsurf/2 == round(nsurf/2),
dir = seq_1.surface(nsurf).A - seq_1.surface(nsurf+1).A ;

else
dir = seq_1.surface(nsurf).B - seq_1.surface(nsurf+1).B ;

end
M = (A+B)/2;
test_beam = beam_create(M, dir, adj_middev_wave_length) ;

% travell to input surface
[bs ecode] = beam_travell_seq(test_beam, seq_1, nsurf, -1 );
if ecode,

error(’sths wrong here’);
end
draw_beams(h, bs);

% calculate input plane (inA, inB, dirin)
Pin = bs(size(bs,2)).P;
dirin = -bs(size(bs,2)).dir;

t = vecdot(seq_1.surface(1).B-Pin, bs(size(bs,2)).dir) ;

X=Pin+t * bs(size(bs,2)).dir;
inA = seq_1.surface(1).B;
inB = 2 * X-inA;
draw_beam(h, bs(size(bs,2)), X);
draw_line(h, inA, inB);

% calculate apex top distance
test_beam = beam_create(X, dirin, wave_length_range(2)) ;
[bs ecode] = beam_travell_seq(test_beam, seq_1);
draw_beams(h, bs);
test_beam = beam_create(X+0.5 * beam_diameter * (X-inA)/norm(X-inA), dirin, wave_length_range(2));
[bs2 ecode] = beam_travell_seq(test_beam, seq_1);
draw_beams(h, bs2);
test_beam = beam_create(seq_1.surface(2 * nsurf).A+bs(size(bs,2)).P-bs2(size(bs2,2)).P,...

-bs(size(bs,2)).dir, wave_length_range(2));
draw_beam(h, test_beam);
[bs3 ecode] = beam_travell_seq(test_beam, seq_1, 2 * nsurf, -1);
draw_beams(h, bs3);

draw_cross(h, bs3(size(bs3,2)).P);
draw_cross(h, bs2(2).P);
draw_cross(h, bs(2).P);
fac = norm(bs3(size(bs3,2)).P-bs(2).P)/norm(bs2(2).P- bs(2).P);
Pin = X + fac * 0.5 * beam_diameter * (X-inA)/norm(X-inA);
draw_cross(h, Pin);
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seq_1.input.P = Pin;
seq_1.input.dir = dirin;

% the output point on last prism on first seq is also target poi nt on
% first prism in second seq (minimum wave length = stronest de viation)
test_beam = beam_create(Pin, dirin, wave_length_range(1 ));
[bs ecode] = beam_travell_seq(test_beam, seq_1);
seq_1.target.P = bs(size(bs,2)).P;
seq_1.target.dir = bs(size(bs,2)).dir;
seq_2.target.P = -bs(size(bs,2)).P;

draw_beams(h, bs);
draw_cross(h, seq_1.target.P);

% center beam of central wavelength on second prism ring
if center_on_second,

test_beam = beam_create(Pin, dirin, adj_middev_wave_len gth);
[bs ecode] = beam_travell_seq(test_beam, seq_1);
seq_1.target.P = bs(size(bs,2)).P;
seq_1.target.dir = bs(size(bs,2)).dir;
seq_2.target.P = 0.5 * (seq_2.surface(1).B - seq_2.surface(1).A);

end

%% output plane
seq_2.output.A = seq_2.surface(nsurf * 2).B+0.5 * beam_diameter * (inA-inB)/norm(inA-inB);
seq_2.output.B = seq_2.output.A + (inA - inB)-0.5 * beam_diameter * (inA-inB)/norm(inA-inB);

draw_cross(h, inA);
draw_cross(h, inB);

[seq_1, seq_2] = seq_distance(seq_1, seq_2, inter_prism_ distance);
for k=1:seq_1.design.number * 2,

draw_surface(h,seq_2.surface(k));
end
draw_line(h, seq_2.output.A, seq_2.output.B);

seq_first = seq_1;
seq_second = seq_2;

%% show design points
if h,

d = 1e-9;
mirror = surface_create([-1 -1], seq_2.output.A, seq_2.o utput.B, [], []);
for k = wave_length_range(1):d:wave_length_range(2),

test_beam = beam_create(Pin, dirin, k);
[b_seq_1 ecode] = beam_travell_seq(test_beam, seq_1);

if ecode,
continue;

end
[b_seq_2 ecode] = beam_travell_seq(b_seq_1(size(b_seq_ 1,2)), seq_2);
if ecode,

continue;
end
nbs2 = size(b_seq_2,2);
[M ecode] = isect_surface_beam(mirror, b_seq_2(nbs2));
if ecode == 1,

continue;
end
b_seq_2(nbs2+1) = beam_create(M, b_seq_2(nbs2).dir, ...

b_seq_2(nbs2).lambda, b_seq_2(nbs2).index);

draw_beams(h, b_seq_1);
draw_beams(h, b_seq_2);

end
end

To calculate the inter-prism distance for a given group velocity dispersion,
seq_optimize is called with a simple contracting inter-prism distance
interval around the desired dispersion.
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Figure C.3: Result of the algorithm,
setting a vanishing beam diame-
ter, a inter prism ring apex dis-
tance equal the base height of a
prism for a central wavelength of
900nm.

Dispersion calculation: With the previous functions, the optical path
length can be calculated per wavelength by summing up all inter-surface

beams (PiPi+1, see definition of structure of a beam beam_create). To
calculate the n-th order dispersion (dnOPL/dωn) the optical path length
is transformed into the frequency domain.

function [dout, lout] = delay_series(OPL, lambda, order)
%[beta lambda]= delay_series(OPL, lambda, order)
%
% Calculate the differentials up to a certain order.
% OPL and lambda must be matrices > 2 * order+1.

nP = size(OPL,2);
const_C = 2.99792458e8; % speed of light

% allocate result matrix
dout(1+order, nP-2 * order) = 0.0;

% reorder to differentiate over circular frequency
for k=1:nP,

P = OPL(k);
w = 2* pi * const_C/lambda(k);

b = w* P/const_C;

ob(nP+1-k) = b;
ow(nP+1-k) = w;

end

% reorder again output for [1] path length [2] phase
dN = derive(ow, ob);
for k=1:nP-2 * order,

l = nP+1-(k+order);
dout(1,k) = ob(l);
dout(2,k) = dN(l);

end

% differentiate order by order (GVD, TOD, ...)
for o=2:order,

dN = derive(ow, dN);

for k=1:nP-2 * order,
l = nP+1-(k+order);
dout(o+1,k) = dN(l);

end
end

for k=1:nP-2 * order,
l = nP+1-(k+order);
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lout(k) = lambda(k+order);
end
return

function d = derive(x,y)
% derivative
nx = size(x,2);
d(nx) = 0;

for k=2:nx-1,
d(k) = (y(k+1)-y(k-1))/(x(k+1)-x(k-1));

end

C.2. Cavity construction

The calculations for laser cavity were carried out with M (Wol-
fram Research). The following Mathematica notebook is partially shortened
for readability. The Sellmeier coefficients and formula were kindly provided
in a notebook from Winfried Denk.

Optic formulas
(Introduction)

Basic formulas
Constants

In[1]:= kilo = 103;

In[2]:= milli = 10−3;

In[3]:= micro = 10−6;

In[4]:= nano = 10−9;

In[5]:= femto = 10−15;

In[6]:= Clight = 2.99792 108

In[7]:= deg =
π

180
;

Conversions

In[8]:= Rad2Deg[α ] = α
180

π
;

In[9]:= Deg2Rad[α ] = α
π

180
;

Seilmeier coefficients from Schott catalog
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In[10]:= scSiO2 = {0.696166, 4.07943 10ˆ(−1), 0.897479, 0.0684043ˆ2,

0.116241ˆ2, 9.89616ˆ2};
In[11]:= scAl2O3o = {1.43135, 0.650547, 5.3414, 0.0726631ˆ2,

0.119324ˆ2, 18.0283ˆ2};

Optics relations
Refraction
Angle of refraction at an interface:

In[12]:= Refracted[i , ni ,nr ] = ArcSin
[ ni

nr
Sin[i]

]

;

Brewster angle
Brewster angles (incident and refracted):

In[13]:= BrewsterI[ni ,nr ] = ArcSin[nr
/

Sqrt[nr2 + ni2]];

In[14]:= BrewsterR[ni ,nr ] = ArcSin[ni
/

Sqrt[nr2 + ni2]];

Seilmeier formula

In[15]:= nSellmeier[lambda , coeff ] := Sqrt[

1 + coeff[[1]](λ/micro)ˆ2/((λ/micro)ˆ2 − coeff[[4]])+

coeff[[2]](λ/micro)ˆ2/((λ/micro)ˆ2 − coeff[[5]])+

coeff[[3]](λ/micro)ˆ2/((λ/micro)ˆ2 − coeff[[6]])];

Gaussian approximation
Classical Gaussian approximation
Connection between complex curvature q and the beam waist w resp. ra-
dius of curvature R

In[16]:= GRadius[q , λ ] =
(

Re
[ 1

q

])
−1

;

In[17]:= GWaist[q , λ ] = Sqrt
[λ

π

(

Im
[1

q

])
−1

]

;

In[18]:= CCq[w ,R , λ ] =
( 1

R
+
λ

π

1

w2

)
−1

;

Determination of a Beam with given width and curvature...

In[19]:= GBeamWaistDistance[q , λ ] := −
GRadius[q, λ]

1 +
(

λGRadius[q,λ]

π(GWaist[q,λ])2

)2
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In[20]:= GBeamWaist[q , λ ] :=
GWaist[q, λ]

√

1 +
(

π(GWaist[q,λ])2

λGRadius[q,λ]

)2

Gaussian approximation in ABCD matrix representation
Transformation of the complex curvature q→M·q

In[21]:= GTransCCq[q ,M ] :=
M[[1, 1]] q +M[[1, 2]]

M[[2, 1]] q +M[[2, 2]]
;

Matrix descriptions
In the following GMx and GMy refer to the tangential resp. sagittal plane

Free propagation

In[22]:= GMFree[l ,n ] =
(

1
l

n
0 1

)

;

Lens defined by focal length or radius of curvature

In[23]:= GMLens[f ] =
( 1 0

−1

f
1

)

;

Lens, tilted in the tangential (x-z) plane

In[24]:= GMxLens[f , α ] =
( 1 0

− 1

f Cos[α]
1

)

;

In[25]:= GMyLens[f , α ] =
( 1 0

−Cos[α]

f
1

)

;

Refractive interface (incident, refracted), tilted in the tangential plane

In[26]:= GMxInterface[i , r ] =

(

Cos[r]

Cos[i]
0

0
Cos[i]

Cos[r]

)

;

GMyInterface[i , r ] =
(1 0
0 1

)

;

Refractive interface at Brewster angle,tilted in the tangential plane
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In[27]:= GMxBrewster[ni ,nr ] =

GMxInterface[BrewsterI[ni,nr],BrewsterR[ni,nr]];

GMyBrewster[ni ,nr ] =

GMyInterface[BrewsterI[ni,nr],BrewsterR[ni,nr]];

Roundtrip matrix

In[28]:= GMRoundTrip[M ] :=M.
(M[[2, 2]] M[[1, 2]]
M[[2, 1]] M[[1, 1]]

)

In[29]:=

Laser design

Cavity design
Parameters
The CAVITY parameters are stored in a list the following way (from output,
lines in italic denote values, that are not known at design start):

1 L1 length of first arm

2 f/M2 focal length of first focusing mirror

3 α/M2folding angle of M2

4 d/M2 → Crdistance from M2to crystal

5 α/Cr tilt angle (brewster angle in respect to wave length of pump laser)

6 t/Cr Crystal rod length (geometric)

7 n/Cr Sellmeier coefficients of the crystal

8 d/Cr → M3distance from crystal to M3

9 L2 length of second arm

10 f/M3 focal length of the second focusing mirror

11 α/M3folding angle of M3

12 λ/Cavity central operation wave length

13 l/Cr The assumed position of the focal spot inside the crystal
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measured from the pump beam input side (here M3)

14 P/Cavity Assumed intracavity CW power

15 hRth/Crystal Assumed radius of curvature of thermal lense at the crystal
surface directed towards M3 (tangential)

16 vRth/Crystal Assumed radius of curvature of thermal lense at the crystal
surface directed towards M3 (horizontal)

The PUMP parameters:

1 f/Mp focal length of pump beam focusing mirror

2 α/Mptilt angle

3 d/Mp → M3distance to mirror M3

4 l/M3 width of input coupler M3

5 n/M3 Sellmeier coefficients of M3

6 λ//Pump Pump wave length

7 d/Pump Pump beam diameter

To account for astigmatism, the calculations are split in tangential and
sagittal plan, thus the matrices/calculations are prefixed with a t or s
respectively.

Additionally, there may be the suffix ”reverse”.

Helper methods
The following methods modify some single entries in the cavity or pump
property list. All methods return the {cavity, pump} list.

In[30]:= cavitySetNothing[cavity , pump ] :=

{{cavity[[1]], cavity[[2]], cavity[[3]], cavity[[4]],

cavity[[5]], cavity[[6]], cavity[[7]], cavity[[8]],

cavity[[9]], cavity[[10]], cavity[[11]], cavity[[12]],

cavity[[13]], cavity[[14]], cavity[[15]], cavity[[16]]},
pump}
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In[31]:= cavitySetCrystalTilt[cavity , pump , α ] :=

{{cavity[[1]], cavity[[2]], cavity[[3]], cavity[[4]],

α, cavity[[6]], cavity[[7]], cavity[[8]],

cavity[[9]], cavity[[10]], cavity[[11]], cavity[[12]],

cavity[[13]], cavity[[14]], cavity[[15]], cavity[[16]]},
pump}

In[32]:= cavitySetM2Tilt[cavity , pump , α ] :=

{{cavity[[1]], cavity[[2]], α, cavity[[4]],

cavity[[5]], cavity[[6]], cavity[[7]], cavity[[8]],

cavity[[9]], cavity[[10]], cavity[[11]], cavity[[12]],

cavity[[13]], cavity[[14]], cavity[[15]], cavity[[16]]},
pump}

In[33]:= cavitySetM3Tilt[cavity , pump , α ] :=

{{cavity[[1]], cavity[[2]], cavity[[3]], cavity[[4]],

cavity[[5]], cavity[[6]], cavity[[7]], cavity[[8]],

cavity[[9]], cavity[[10]], α, cavity[[12]],

cavity[[13]], cavity[[14]], cavity[[15]], cavity[[16]]},
pump}

The wave length of the pump beam is used to calculate the orientation of
the crystal

In[34]:= orientCrystal[cavity , pump ] := cavitySetCrystalTilt[cavity, pump,

Rad2Deg[BrewsterI[1, nSellmeier[pump[[6]], cavity[[7]]]]]]

Misc properties
The critical power

In[35]:= criticalPowerTiAl2O3[cavity ] :=

α (cavity[[12]])2

8π nSellmeier[cavity[[12]], cavity[[7]]] n2

/. {α = 5.35, n2 = 3 10−2}

The repetition rate of the cavity

In[36]:= repetitionRate[cavity ] :=

Clight/(2(cavity[[1]] + cavity[[4]] + cavity[[6]]/

Cos[Refracted[Deg2Rad[cavity[[5]]], 1, nSellmeier[

cavity[[12]], cavity[[7]]]]]+ cavity[[8]]+ cavity[[9]]))
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Calculation of partial ABCD matrices
The first matrix goes from M1to inside the crystal (directly behind the surface,
crystal orientation is always at Brewster angle), see (Magni et al. [1993a])

In[37]:= tM1ToCrystal[cavity , pump ] :=

GMxInterface[Deg2Rad[cavity[[5]]],Refracted[Deg2Rad[cavity[[5]]],

1, nSellmeier[cavity[[12]], cavity[[7]]]]].

GMFree[cavity[[4]], 1].

GMxLens[cavity[[2]], Deg2Rad[cavity[[3]]]].

GMFree[cavity[[1]], 1]

sM1ToCrystal[cavity , pump ] :=

GMyInterface[Deg2Rad[cavity[[5]]],Refracted[

Deg2Rad[cavity[[5]]], 1, nSellmeier[cavity[[12]], cavity[[7]]]]].

GMFree[cavity[[4]], 1].

GMyLens[cavity[[2]], Deg2Rad[cavity[[3]]]].

GMFree[cavity[[1]], 1]

and the same in reverse direction

In[38]:= tM1ToCrystalReverse[cavity , pump ] :=

GMFree[cavity[[1]], 1].

GMxLens[cavity[[2]], Deg2Rad[cavity[[3]]]].

GMFree[cavity[[4]], 1].

GMxInterface[Refracted[Deg2Rad[cavity[[5]]], 1,

nSellmeier[cavity[[12]], cavity[[7]]]],Deg2Rad[cavity[[5]]]]

sM1ToCrystalReverse[cavity , pump ] :=

GMFree[cavity[[1]], 1].

GMyLens[cavity[[2]], Deg2Rad[cavity[[3]]]].

GMFree[cavity[[4]], 1].

GMyInterface[Refracted[Deg2Rad[cavity[[5]]], 1,

nSellmeier[cavity[[12]], cavity[[7]]]],Deg2Rad[cavity[[5]]]]

The geometric path length inside the crystal for a given λ at Brewster angle
orientation

In[39]:= GPLofCrystal[cavity ] :=

cavity[[6]]/Cos[Refracted[Deg2Rad[cavity[[5]]],

1, nSellmeier[cavity[[12]], cavity[[7]]]]]
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The crystal

In[40]:= tCrystalHalf[cavity , pump ] :=

GMFree[GPLofCrystal[cavity]/2,

nSellmeier[cavity[[12]], cavity[[7]]]];

sCrystalHalf[cavity , pump ] :=

GMFree[GPLofCrystal[cavity]/2,

nSellmeier[cavity[[12]], cavity[[7]]]];

and its matrix, representing the Kerr lens

In[41]:= CrystalMk[cavity , pump , γ ] :=
1

√

1 − γ

( 1 − γ/2

−
γ cavity[[6]]/Cos[Refracted[Deg2Rad[cavity[[5]]], 1, nSellmeier[cavity[[12]], cavity[[7]]]]]

nSellmeier[cavity[[12]], cavity[[7]]]

−
γ cavity[[6]]/Cos[Refracted[Deg2Rad[cavity[[5]]], 1, nSellmeier[cavity[[12]], cavity[[7]]]]]

4nSellmeier[cavity[[12]], cavity[[7]]]
1 − γ/2

)

;

Now the matrices from the crystal to the end mirror:

In[42]:= tCrystalToM4[cavity , pump ] :=

GMFree[cavity[[9]], 1].

GMxLens[cavity[[10]], Deg2Rad[cavity[[11]]]].

GMFree[cavity[[8]], 1].

GMLens[cavity[[15]]].

GMxInterface[Refracted[Deg2Rad[cavity[[5]]], 1,

nSellmeier[cavity[[12]], cavity[[7]]]],Deg2Rad[cavity[[5]]]]

sCrystalToM4[cavity , pump ] :=

GMFree[cavity[[9]], 1].

GMyLens[cavity[[10]], Deg2Rad[cavity[[11]]]].

GMFree[cavity[[8]], 1].

GMLens[cavity[[16]]].

GMyInterface[Refracted[Deg2Rad[cavity[[5]]], 1,

nSellmeier[cavity[[12]], cavity[[7]]]],Deg2Rad[cavity[[5]]]]

and reverse
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In[43]:= tCrystalToM4Reverse[cavity , pump ] :=

GMxInterface[Deg2Rad[cavity[[5]]],Refracted[

Deg2Rad[cavity[[5]]], 1, nSellmeier[cavity[[12]], cavity[[7]]]]] .

GMFree[cavity[[4]], 1].

GMLens[cavity[[15]]].

GMFree[cavity[[8]], 1].

GMxLens[cavity[[10]], Deg2Rad[cavity[[11]]]].

GMFree[cavity[[9]], 1]

sCrystalToM4Reverse[cavity , pump ] :=

GMyInterface[Deg2Rad[cavity[[5]]],Refracted[

Deg2Rad[cavity[[5]]], 1, nSellmeier[cavity[[12]], cavity[[7]]]]] .

GMFree[cavity[[4]], 1].

GMLens[cavity[[16]]].

GMFree[cavity[[8]], 1].

GMyLens[cavity[[10]], Deg2Rad[cavity[[11]]]].

GMFree[cavity[[9]], 1]

Stability limits
The tangential and sagittal single trip matrices starting at the output coupler
are

In[44]:= tSTOutputCoupler[cavity , pump , γ ] :=

tCrystalToM4[cavity, pump].

tCrystalHalf[cavity,pump].

CrystalMk[cavity,pump, γ].

tCrystalHalf[cavity, pump].

tM1ToCrystal[cavity,pump];

sSTOutputCoupler[cavity , pump , γ ] :=

sCrystalToM4[cavity, pump].

sCrystalHalf[cavity,pump].

CrystalMk[cavity,pump, γ].

sCrystalHalf[cavity, pump].

sM1ToCrystal[cavity,pump];

The respective stability limits may be solved as follows:
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The solution of q =MRTq, with q Gaussian beam, MRT round-trip matrix can
be simplified to solve

{A=0,B=0, C=0, D=0}, where A,B,C,D are the matrix elements of the single-
trip matrix.

Application to the setup
Cavity parameters

In[45]:= mypump = {fp, δ, xp, 10 milli, scSiO2, 532 nano, 2.25 milli}

mycavity = {200 milli, 50 milli, α,

d,

0, t, scAl2O3o,

x,

290 milli, 50 milli, β,

λ, 1milli,

1/0.12,

fthh, fthv} /. {t→ 5 milli, λ→ 850 nano}

Stability limits of the unfolded, astigmatism free cavity:
The stability limits in z (folding mirror distance) are

(it should be noted, that the solution is actually independent of the position
of the crystal
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In[46]:= {tmpcavity, tmppump} = cavitySetCrystalTilt[mycavity, mypump, 0];

{(z/.Solve[Simplify[tSTOutputCoupler[tmpcavity, tmppump, 0][[2, 1]]

/. { d→ z − x − tmpcavity[[6]]/Cos[Deg2Rad[tmpcavity[[5]]]],

fthh→ ∞, fthv → ∞, α→ 0, β→ 0}
/. {x→ 0milli}] == 0, z]),

(z/.Solve[Simplify[tSTOutputCoupler[tmpcavity, tmppump, 0][[1, 1]]

/. {d→ z − x − tmpcavity[[6]]/Cos[Deg2Rad[tmpcavity[[5]]]],

fthh→ ∞, fthv → ∞, α→ 0, β→ 0}
/. {x→ 0milli}] == 0, z]),

(z/.Solve[Simplify[tSTOutputCoupler[mycavity, mypump, 0][[2, 2]]

/. { d→ z − x − tmpcavity[[6]]/Cos[Deg2Rad[tmpcavity[[5]]]],

fthh→ ∞, fthv → ∞, α→ 0, β→ 0}
/. {x→ 0milli}] == 0, z]),

(z/.Solve[Simplify[tST

Out[46]= {{0.102157}, {0.112574}, {0.118824}, {0.129241}}

Astigmatism correction
Adjust the crystal, so that the pump beam is at Brewster angle:

In[47]:= {mycavity, mypump} = orientCrystal[mycavity, mypump]

Out[47]=
{{1

5
,

1

20
, α,d, 60.5583,

1

200
,

{1.43135, 0.650547, 5.3414, 0.00527993, 0.0142383, 325.018},

x,
29

100
,

1

20
, β,

17

20000000
,

1

1000
, 8.33333, fthh, fthv

}

,

{

fp, δ, xp,
1

100
, {0.696166, 0.407943, 0.897479,

0.00467915, 0.0135121, 97.934}, 133

250000000
, 0.00225

}}

1. Stability limit
First, we will calculate the folding angles for the first stability limit. The
resulting angle will then be used, to solve the third stability limit.
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In[48]:= stla1[a , b , fth , γ ] :=

(z/.Solve[Simplify[tSTOutputCoupler[mycavity, mypump, γ][[2, 1]]

/. { d→ z − x −mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]],

fthh→ fth, α→ a, β→ b}
/. {x→ 0milli}] == 0, z])[[1]]

stlb1[a , b , fth , γ ] :=

(z/.Solve[Simplify[sSTOutputCoupler[mycavity, mypump, γ][[2, 1]]

/. {d→ z − x −mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]],

fthv→ fth, α→ a, β→ b}
/. {x→ 0milli}] == 0, z])[[1]]

φ1 = α/.Solve[Simplify[stla1[α, α,∞, 0] == stlb1[α, α,∞, 0]], α][[3]]
Out[48]= 8.52995

The folding mirror distance z is then

In[49]:= {tmpcavity, tmppump} = cavitySetM2Tilt[mycavity, mypump, φ1];

{tmpcavity, tmppump} = cavitySetM3Tilt[tmpcavity, tmppump, φ1];

z1 =

(z/.Solve[Simplify[tSTOutputCoupler[tmpcavity, tmppump, 0][[2, 1]]

/. { d→ z − x − tmpcavity[[6]]/Cos[Deg2Rad[tmpcavity[[5]]]],

fthh→ ∞, fthv → ∞, α→ 0, β→ 0}
/. {x→ 0milli}] == 0, z])[[1]]

Out[49]= 0.108019

3. Stability limit
From the previous calculation of the 1. stability limit, we know, what the
folding angle of the mirror near the dispersion compensation (parallel beam
propagation) has to be:
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In[50]:= stla3[a , b , fth , γ ] :=

(z/.Solve[Simplify[tSTOutputCoupler[mycavity, mypump, γ][[2, 2]]

/. { d→ z − x −mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]],

fthh→ fth, α→ a, β→ b}
/. {x→ 0milli}] == 0, z])[[1]]

stlb3[a , b , fth , γ ] :=

(z/.Solve[Simplify[sSTOutputCoupler[mycavity, mypump, γ][[2, 2]]

/. { d→ z − x −mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]],

fthv→ fth, α→ a, β→ b}
/. {x→ 0milli}] == 0, z])[[1]]

φ3 = α/.Solve[stla3[α, φ1, ∞, 0] == stlb3[α, φ1,∞, 0] , α][[3]]
Out[50]= 6.40264

The folding mirror distance z is then

In[51]:= {tmpcavity, tmppump} = cavitySetM2Tilt[mycavity, mypump, φ3];

{tmpcavity, tmppump} = cavitySetM3Tilt[tmpcavity, tmppump, φ1];

z3 =

(z/.Solve[Simplify[tSTOutputCoupler[tmpcavity, tmppump, 0][[2, 2]]

/. { d→ z − x − tmpcavity[[6]]/Cos[Deg2Rad[tmpcavity[[5]]]],

fthh→ ∞, fthv → ∞, α→ 0, β→ 0}
/. {x→ 0milli}] == 0, z])[[1]]

Out[51]= 0.124685

In[52]:= {tmpcavity, tmppump} = cavitySetM2Tilt[mycavity, mypump, 6];

{tmpcavity, tmppump} = cavitySetM3Tilt[tmpcavity, tmppump, 6.5];

(z/.Solve[Simplify[tSTOutputCoupler[tmpcavity, tmppump, 0][[2, 2]]

/. { d→ z − x − tmpcavity[[6]]/Cos[Deg2Rad[tmpcavity[[5]]]],

fthh→ ∞, fthv → ∞, α→ 0, β→ 0}
/. {x→ 0milli}] == 0, z])[[1]]

Out[52]= 0.124984

Thermal considerations
We express the folding angle of the 1. stability limit in the relation to the
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focal length of mirror M3 (R) and the assymetry between horizontal versus
vertical focal length of the thermal lense (a):

In[53]:= thermalFoldingAngle1[R , a ] :=

α/.Solve[Simplify[stla1[α, α,−a ∗ R ∗mycavity[[10]], 0] ==

stlb1[α, α,−R ∗mycavity[[10]], 0]], α][[6]]

In[54]:= Plot[

{
thermalFoldingAngle1[10x, 1.5],

φ1

}, {x, 1, 5}, AxesLabel→ {10R/f, Foldingangle[deg]},
Frame→ True, GridLines→ Automatic]

1 2 3 4 5
7.2

7.4

7.6

7.8

8

8.2

8.4

Out[54]= -Graphics-

In[55]:= Plot[

{
thermalFoldingAngle1[10x, 0.5],

thermalFoldingAngle1[10x, 1],

thermalFoldingAngle1[10x, 1.5],

φ1

}, {x, 1, 5}, AxesLabel→ {10R/f, Foldingangle[deg]},
Frame→ True, GridLines→ Automatic]
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Out[55]= -Graphics-

Kerr lens considerations

In[56]:= kerrlensFoldingAngle1[γ , a ] :=

α/.Solve[Simplify[stla1[α, α,∞, a ∗ γ] == stlb1[α, α,∞, γ]], α][[5]]

In[57]:= Plot[

{
kerrlensFoldingAngle1[x, 1.5]

}, {x, 0, 0.8},AxesLabel→ {γ, Folding angle [deg]},
Frame→ True, GridLines→ Automatic]

0 0.2 0.4 0.6 0.8
7.8

7.9

8

8.1

8.2

8.3

8.4

8.5

Out[57]= -Graphics-
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In[58]:= Plot[

{
kerrlensFoldingAngle1[x, 0.5],

kerrlensFoldingAngle1[x, 1],

kerrlensFoldingAngle1[x, 1.5],

φ1

}, {x, 0, 0.8},AxesLabel→ {γ, Folding angle [deg]},
Frame→ True, GridLines→ Automatic]

0 0.2 0.4 0.6 0.8
6.5

7

7.5

8

8.5

Out[58]= -Graphics-

Small signal mode variation

In[59]:= tMKtoM1[cavity , pump ] :=

tM1ToCrystalReverse[cavity,pump].

tCrystalHalf[cavity, pump]

sMKtoM1[cavity , pump ] :=

sM1ToCrystalReverse[cavity,pump].

sCrystalHalf[cavity, pump]
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In[60]:= tMKtoM4[cavity , pump ] :=

tCrystalToM4[cavity, pump].

tCrystalHalf[cavity,pump]

sMKtoM4[cavity , pump ] :=

sCrystalToM4[cavity, pump].

sCrystalHalf[cavity,pump]

In[61]:= tM1toM4[cavity , pump ] :=

tCrystalToM4[cavity, pump].

tCrystalHalf[cavity,pump].

tCrystalHalf[cavity,pump].

tM1ToCrystal[cavity,pump]

sM1toM4[cavity , pump ] :=

sCrystalToM4[cavity, pump].

sCrystalHalf[cavity,pump].

sCrystalHalf[cavity,pump].

sM1ToCrystal[cavity,pump]
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In[62]:= tAlpha1[cavity ,pump ] :=

2tMKtoM1[cavity,pump][[1, 2]] tMKtoM1[cavity,pump][[2, 2]]/

(mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]])−
tMKtoM1[cavity,pump][[1, 1]] tMKtoM1[cavity,pump][[2, 1]]

(mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]])/2

tAlpha2[cavity ,pump ] :=

2tMKtoM4[cavity,pump][[1, 2]] tMKtoM4[cavity,pump][[2, 2]]/

(mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]])−
tMKtoM4[cavity,pump][[1, 1]] tMKtoM4[cavity,pump][[2, 1]]

(mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]])/2

tS[cavity ,pump ] := tM1toM4[cavity,pump][[1, 1]]

tM1toM4[cavity,pump][[2, 2]]+

tM1toM4[cavity,pump][[1, 2]] tM1toM4[cavity,pump][[2, 1]]

sAlpha1[cavity ,pump ] :=

2 ∗ sMKtoM1[cavity,pump][[1, 2]] sMKtoM1[cavity,pump][[2, 2]]/

(mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]])−
sMKtoM1[cavity,pump][[1, 1]] sMKtoM1[cavity,pump][[2, 1]]

(mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]])/2

sAlpha2[cavity ,pump ] :=

2 ∗ sMKtoM4[cavity,pump][[1, 2]] sMKtoM4[cavity,pump][[2, 2]]/

(mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]])−
sMKtoM4[cavity,pump][[1, 1]] sMKtoM4[cavity,pump][[2, 1]]

(mycavity[[6]]/Cos[Deg2Rad[mycavity[[5]]]])/2

sS[cavity ,pump ] := sM1toM4[cavity,pump][[1, 1]]

sM1toM4[cavity,pump][[2, 2]]+

sM1toM4[cavity,pump][[1, 2]]sM1toM4[cavity,pump][[2, 1]]

tSmallSignal1[cavity , pump ] :=

−1

2
(tAlpha1[cavity,pump] + tAlpha2[cavity,pump] tS[cavity,pump])

/

(tAlpha1[cavity,pump])2
+ (tAlpha2[cavity,pump])2

+

2 tAlpha1[cavity,pump] tAlpha2[cavity,pump] tS[cavity, pump]

sSmallSignal1[cavity , pump ] :=

−1

2
(sAlpha1[cavity,pump] + sAlpha2[cavity,pump] sS[cavity,pump])

/

((sAlpha1[cavity,pump])2 + (sAlpha2[cavity,pump])2+

2 sAlpha1[cavity,pump] sAlpha2[cavity,pump] sS[cavity, pump])
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In[63]:= {tmpcavity, tmppump} = cavitySetM2Tilt[mycavity, mypump, φ3];

{tmpcavity, tmppump} = cavitySetM3Tilt[tmpcavity, tmppump, φ1]/.

{d→ z − x − tmpcavity[[6]]/Cos[Deg2Rad[tmpcavity[[5]]]],

fthh→ −1.1 2., fthv→ −2.};

Plot[

{
tSmallSignal1[tmpcavity, tmppump] /. z→ z3 + 0.001milli,

tSmallSignal1[tmpcavity, tmppump] /. z→ z3 + 0.01milli,

tSmallSignal1[tmpcavity, tmppump] /. z→ z3 + 0.3milli

}, {x, 49milli, 52milli}, Frame→ True, GridLines→ Automatic]

Plot[

{
sSmallSignal1[tmpcavity, tmppump] /. z→ z3 + 0.001milli,

sSmallSignal1[tmpcavity, tmppump] /. z→ z3 + 0.01milli,

sSmallSignal1[tmpcavity, tmppump] /. z→ z3 + 0.3milli

}, {x, 49milli, 52milli}, Frame→ True, GridLines→ Automatic]
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Out[63]= -Graphics-
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In[64]:= {tmpcavity, tmppump} = cavitySetM2Tilt[mycavity, mypump, φ3];

{tmpcavity, tmppump} = cavitySetM3Tilt[tmpcavity, tmppump, φ1]/.

{d→ z − x − tmpcavity[[6]]/Cos[Deg2Rad[tmpcavity[[5]]]],

fthh→ ∞, fthv→ ∞};

Plot[

{
tSmallSignal1[tmpcavity, tmppump] /. x → 49 milli,

tSmallSignal1[tmpcavity, tmppump] /. x → 50 milli,

tSmallSignal1[tmpcavity, tmppump] /. x → 51 milli

}, {z, z3, z3 + 0.5milli}, Frame→ True, GridLines→ Automatic]

Plot[

{
sSmallSignal1[tmpcavity, tmppump] /. x → 49 milli,

sSmallSignal1[tmpcavity, tmppump] /. x → 50 milli,

sSmallSignal1[tmpcavity, tmppump] /. x → 51 milli

}, {z, z3, z3 + 0.5milli}, Frame→ True, GridLines→ Automatic]
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Out[64]= -Graphics-
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C.3. Scanner model

The scanner model (App. 5) was implemented with the object oriented
framework ROOT in C++ (ROOT).

Properties.hh : A header file defining class for calculation of material
properties.

#ifndef THESIS_PROPERTIES_HH
#define THESIS_PROPERTIES_HH

// Material properties
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class Material
{
public:

Double_t E; // Young’s modulus
Double_t G; // torsion module FIXME NAME
Double_t kappa; // compressibility

Double_t rho; // density

Double_t sigma_t; // tensile stress
Double_t sigma_c; // compressive stress
Double_t tau; // shear stress
Double_t sigma_b; // bending stress

public:
//
Material(Double_t p1, Double_t p2, Double_t p3,

Double_t p4,
Double_t p5, Double_t p6, Double_t p7, Double_t p8) {

E = p1; G = p2; kappa = p3;
rho = p4;
sigma_t = p5; sigma_c = p6; tau = p7; sigma_b = p8;

}

Material(const class Material &m) {
E = m.E; G = m.G; kappa = m.kappa;
rho = m.rho;
sigma_t = m.sigma_t; sigma_c = m.sigma_c; tau = m.tau; sigma _b = m.sigma_b;

}

public:
Double_t PoissonRatio();

};

extern const class Material MFusedSilica;
extern const class Material MSteelLow;

// Beam properties (base class)
class Beam
{
public:

// Types of stress (used to calculate the safety factor, see d eflection.cc)
enum StressType {

UNDEFINED = 0,
FIRST = 1,

BUCKLING = 1,
TENSILE,
COMPRESSIVE,
SHEAR,
BENDING,

LAST,
};

public:
Beam(const Material &mat, Double_t length) : sMaterial(ma t), fLength(length) {}
virtual ˜Beam() {}

protected:
Material sMaterial; // Material definition
Double_t fLength; // Beam legnth

public:
Material &GetMaterial() { return sMaterial; }
Double_t GetLength() { return fLength; }
void SetLength(Double_t l) { fLength = l; }

virtual Double_t Area(); // Cross section area
virtual Double_t AreaOfMoment(); // area moment of interti a
virtual Double_t PolarAreaOfMoment(); // and the respecti ve polar moment of intertia

virtual Double_t SectionMoment();
virtual Double_t PolarSectionMoment();
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Double_t GetK(); // "K" (see model)
Double_t GetKprime(); // "K’" (without torque)

Double_t GetTprime(); // "K’" (only torque)

// Material stress factor (see deflection.cc)
Double_t StressFactor(StressType type, Double_t F_or_M) ;

};

// Implementation for a circular beam
class BeamCircular : public Beam
{
public:

BeamCircular(const Material &mat, Double_t length) : Beam (mat, length) {}
BeamCircular(const Material &mat, Double_t length, Doubl e_t r) : Beam(mat,length), fRadius(r) {}
BeamCircular(const Material &mat, Double_t length, const Double_t r) : Beam(mat,length), fRadius(r) {}
virtual ˜BeamCircular() {}

protected:
Double_t fRadius;

public:
void SetRadius(Double_t r) { fRadius = r; }
Double_t GetRadius() { return fRadius; }

virtual Double_t Area();

virtual Double_t AreaOfMoment();
virtual Double_t PolarAreaOfMoment();

virtual Double_t SectionMoment();
virtual Double_t PolarSectionMoment();

Double_t GetK();
Double_t GetKprime();

Double_t GetTprime();

Double_t StressFactor(StressType type, Double_t F_or_M) ;
};

#endif // THESIS_PROPERTIES_HH

Properties.cc : The source file implementing the interface from Proper-
ties.hh.

#include "Properties.hh"

Double_t
Material::PoissonRatio()
{

return E/(2.0 * G) - 1.0;
}

const class Material MFusedSilica(
73e9 / * avg. * /, 32e9 / * avg * /, 33e-12 / * avg * /,
2205 / * avg * /,
50e6 / * [sci] * /, 1100e6 / * [sci] * /, 0.0 / * unused * /, 4.5e9 / * [Kur] * /);

const class Material MSteelLow(
200e9 / * [Goodfellow] * /, 77e9 / * derived w 0.3 poisson ratio * /, 0.0 / * unused * /,
792 / * avg * /,
500e6 / * [met90] * /, 0.0 / * unused * /, 300e6 / * [met90] * /, 500e6 / * [met90] * /);

/ * --------------------------------------------------- -------------------------- * /
Double_t Beam::Area()
{

std::cerr << "Wrongly called virtual method (class Beam)" < < std::endl;
return 0.0;

104



}

Double_t Beam::AreaOfMoment()
{

std::cerr << "Wrongly called virtual method (class Beam)" < < std::endl;
return 0.0;

}

Double_t Beam::PolarAreaOfMoment()
{

std::cerr << "Wrongly called virtual method (class Beam)" < < std::endl;
return 0.0;

}

Double_t Beam::SectionMoment()
{

std::cerr << "Wrongly called virtual method (class Beam)" < < std::endl;
return 0.0;

}

Double_t Beam::PolarSectionMoment()
{

std::cerr << "Wrongly called virtual method (class Beam)" < < std::endl;
return 0.0;

}

Double_t Beam::GetK()
{

return 3 * sMaterial.E * AreaOfMoment()/TMath::Power(fLength, 3);
}

Double_t Beam::GetKprime()
{

return 2 * sMaterial.E * AreaOfMoment()/TMath::Power(fLength, 2);
}

Double_t Beam::GetTprime()
{

return sMaterial.G * AreaOfMoment()/TMath::Power(fLength, 2);
}

Double_t Beam::StressFactor(StressType type, Double_t F _or_M)
{

Double_t EI = sMaterial.E * AreaOfMoment();
Double_t Lim;

switch (type) {
case BUCKLING:

Lim = 2 * TMath::Pi() * TMath::Pi() * EI/TMath::Power(fLength, 2.0);
std::cerr << "LIMIT=" << 1000 * Lim << "mN"

<< std::endl;
break;

case TENSILE:
Lim = sMaterial.sigma_t * Area();
std::cerr << "LIMIT=" << 1000 * Lim << "mN"

<< std::endl;
break;

case COMPRESSIVE:
Lim = sMaterial.sigma_c * Area();
std::cerr << "LIMIT=" << 1000 * Lim << "mN"

<< std::endl;
break;

case SHEAR:
Lim = sMaterial.tau * PolarSectionMoment(); / * FIXME check * /
std::cerr << "LIMIT=" << 1000 * Lim << "mNm"

<< std::endl;
break;

case BENDING:
Lim = sMaterial.sigma_b * SectionMoment();
std::cerr << "LIMIT=" << 1000 * Lim << "mNm"

<< std::endl;
break;

}

105



if (Lim)
return TMath::Abs(F_or_M)/Lim;

else
return -1.0;

}

/ * --------------------------------------------------- -------------------------- * /
Double_t BeamCircular::Area()
{

return TMath::Pi() * TMath::Power(fRadius,2);
}

Double_t BeamCircular::AreaOfMoment()
{

return TMath::Pi() * TMath::Power(fRadius,4)/4;
}

Double_t BeamCircular::PolarAreaOfMoment()
{

return 2 * AreaOfMoment();
}

Double_t BeamCircular::SectionMoment()
{

return 2 * AreaOfMoment()/fRadius;
}

Double_t BeamCircular::PolarSectionMoment()
{

return 2 * PolarAreaOfMoment()/fRadius;
}

Double_t BeamCircular::GetK()
{

return 3 * sMaterial.E * AreaOfMoment()/TMath::Power(fLength, 3);
}

Double_t BeamCircular::GetKprime()
{

return 2 * sMaterial.E * AreaOfMoment()/TMath::Power(fLength, 2);
}

Double_t BeamCircular::GetTprime()
{

return sMaterial.G * AreaOfMoment()/TMath::Power(fLength, 2);
}

Double_t BeamCircular::StressFactor(StressType type, D ouble_t F_or_M)
{

Double_t EI = sMaterial.E * AreaOfMoment();
Double_t Lim;

switch (type) {
case BUCKLING:

Lim = 2 * TMath::Pi() * TMath::Pi() * EI/TMath::Power(fLength, 2.0);
break;

case TENSILE:
Lim = sMaterial.sigma_t * Area();
break;

case COMPRESSIVE:
Lim = sMaterial.sigma_c * Area();
break;

case SHEAR:
Lim = sMaterial.tau * PolarSectionMoment(); / * FIXME check * /
break;

case BENDING:
Lim = sMaterial.sigma_b * SectionMoment();
break;

}

if (Lim)
return TMath::Abs(F_or_M)/Lim;

else
return -1.0;
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}

deflection.cc : The implementation of the model of the scanner.

#include "Properties.hh"
#include "Properties.cc"

// Definition of the piezo bending element by its properties
class Piezo
{
public:

static Double_t c_e;
static Double_t c_EI;

Double_t W;
Double_t L;

public:
Piezo(Double_t width, Double_t length) : W(width), L(leng th) {}

};

// We only have a single type of piezo bending elements, there fore it’s static
Double_t Piezo::c_e = 0.01;
Double_t Piezo::c_EI = 1.0;

// Calculation of the deflection of the fiber
// Additionally, the safety factor (which is the relation of the stress
// to the minimal material strength (either tensile, bendin g or buckling strength)
Double_t Deflection(Double_t &safety, // Return value of t he safety factor

Double_t L_f, // Free fiber length
BeamCircular &exc, // Excitation fiber properties
Double_t coupling, // Coupling (of the glue point connectin g

// the fibers
BeamCircular &sus, // Suspension
Double_t ignore, // Flag to ignore properties of suspension completely
Double_t U, // Voltage
Piezo &pzo // Piezo element definition
)

{
// Temporary variables (anchor distance and suspension len gth)
Double_t l_f = exc.GetLength();
Double_t l_s = sus.GetLength();

// Calculate factors according to the model
Double_t K_U = pzo.c_e/pzo.c_EI * pzo.W / pzo.L;
Double_t K_a = 1/pzo.c_EI * pzo.W / TMath::Power(pzo.L, 3.0);

Double_t K_f = exc.GetK();
Double_t Kp_f = exc.GetKprime();

Double_t K_s = sus.GetK() * ignore;
Double_t Kp_s = (2 * sus.GetKprime() + sus.GetTprime()) * ignore;

Double_t xi = (Kp_f+4 * Kp_s* l_s/l_f * coupling)/(Kp_f+2 * Kp_s* l_s/l_f * coupling);

// calculate deflection and slope according to the model
Double_t s = U * 2* K_U/( K_f * xi + (2+2 * coupling) * K_s + 2 * K_a);
Double_t sp = s / ( (Kp_f/K_f + 2 * l_s/l_f * Kp_s/K_f) );

// Initialize safety
safety = 0.0;

Double_t stmp;

// Actuator force
Double_t Fa = U * K_U-s * K_a;

// Check stress
Int_t type = Beam::UNDEFINED;
if ((stmp = sus.StressFactor(Beam::BUCKLING, Fa)) > safet y) { safety = stmp; type = Beam::BUCKLING; }
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if ((stmp = sus.StressFactor(Beam::TENSILE, Fa)) > safety ) { safety = stmp; type = Beam::TENSILE; }
if ((stmp = sus.StressFactor(Beam::COMPRESSIVE, Fa)) > sa fety) { safety = stmp; type = Beam::COMPRESSIVE; }

Double_t M = -sp * l_s * 4* Kp_s;
if ((stmp = sus.StressFactor(Beam::BENDING, M)) > safety) { safety = stmp; type = Beam::BENDING; }

// Done.
return sp * L_f+s;

};
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A. Budó. Theoretische Mechanik, volume 25 of Hochschulbücher für Physik.
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Mauro Fà, Gaimpaolo Mereu, Veronica Ghiglieri, Alessandra Meloni, Paola
Salis, and Gian Luigi Gessa. Electrophysiological and pharmacological
characteristics of nigral dopaminergic neurons in the conscious head-
restrained rat. Synapse, 48:1–9, 2003.

Marcus Feierabend. Coherence-gated wave-front sensing in strongly scattering
samples. PhD thesis, Univ. of Heidelberg, Germany, 2004.

B. H. Gahwiler, M. Capogna, D. Debanne, R. A. McKinney, and S. M.
Thompson. Organotypic slice cultures: a technique has come of age.
Trends In Neurosciences, 20(10):471–477, 1997.

S. Gatz and J. Hermann. Geometrical threshold zones and gaussian modes
in lasers with radially varying gain. Optics Letters, 19(21):1696–1698, 1994.

Maria Göppert-Mayer. Über Elementarakte mit zwei Quantensprüngen.
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