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Zusammenfassung

Beriicksichtigung von Organbewegungen in der IMRT Optimierung
durch probabilistische Bestrahlungsplanung

Die vorliegende Arbeit beschreibt ein Verfahren zur Beriicksichtigung von Organbewegun-
gen in der Bestrahlungsplanung fiir die fraktionierte intensitatsmodulierte Strahlentherapie
(IMRT). Organbewegungen werden durch ein mathematisches Modell beschrieben welches
die Grundlage der Bestrahlungsplan-Optimierung darstellt. Das Modell enthélt Zufallsvari-
ablen um die stochastische Natur von Organbewegungen zu beschreiben. Die vorausgesagte
Dosisverteilung im Patienten muss daher ebenfalls als Zufallsvariable aufgefasst werden und
wird durch einen Erwartungswert der Dosis und dessen Varianz charakterisiert. Zur Op-
timierung des Bestrahlungsplans unter Beriicksichtigung des Bewegungsmodells wird der
Erwartungswert einer quadratischen Kostenfunktion minimiert, der sich als Summe der
Dosisvarianz und der quadratischen Differenz von Solldosis und Erwartungswert der Dosis
darstellen lasst. Die daraus resultierenden Bestrahlungsplane haben die Eigenschaft, dass
Bereiche in denen Tumorgewebe nur relativ selten lokalisiert ist mit einer geringeren Do-
sis bestrahlt werden. Dies wird ausgeglichen durch eine Dosisiiberh6hung in benachbarten
Bereichen, so dass sich durch den Einfluss der Bewegung im Verlauf der gesamten Therapie
eine ndherungsweise homogene Gesamtdosisverteilung im Tumor ergibt. Das Verfahren er-
laubt eine potentiell bessere Schonung von angrenzenden gesunden Geweben im Vergleich
zur Sicherheitsrand-Methode.

Abstract

Inclusion of organ motion in IMRT optimization
using probabilistic treatment planning

The presented thesis describes an off-line approach to incorporate organ motion into the
treatment plan optimization for fractionated intensity modulated radiotherapy (IMRT).
Organ movement is described in terms of a mathematical model that represents the basis
of the treatment plan optimization process. The motion model contains random variables
in order to describe the stochastic nature of organ movements. As a consequence, the
predicted dose distribution in the patient must be considered as a random variable as well.
It is characterized by the expectation value and the variance of the dose. For treatment
plan optimization incorporating the motion model, the expectation value of a quadratic
cost function is minimized, which can be expressed as the sum of the variance of the dose
and the quadratic difference of expected and prescribed dose. The resulting treatment
plans show a reduction of the dose in regions where tumor tissue is only rarely present.
This is compensated for by delivering a higher dose to neighboring regions that are mostly
occupied by tumor tissue. Due to organ movement during the course of treatment, a
widely homogeneous cumulative dose distribution is delivered to the tumor. This method,
compared to the standard safety margin approach, potentially allows for a better sparing
of healthy tissues from dose burden.
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Preface

This PhD thesis was carried out at the German Cancer Research Center (DKFZ) between
November 2002 and December 2005. The thesis describes an approach to incorporate organ
movements that occur during the course of fractionated radiotherapy into the optimization
of a treatment plan for intensity modulated radiotherapy. This approach is referred to as
probabilistic treatment planning.

The manuscript does not contain a general introduction to radiotherapy and assumes the
reader to be familiar with the concept of intensity modulated radiation therapy (IMRT).
A brief introduction to different methods to deal with organ motion in radiotherapy is
provided in order to integrate this work into the field of Adaptive Radiotherapy (section
1.1).

Parts of this work have already been published as a series of three peer-reviewed papers.
Chapter 2 is mainly covered by the papers [1] and [2], and section 3.2 is widely covered
by the paper [3]. Parts of the work were also presented at five international conferences
[4, 5, 6, 7, 8]. For the contribution at the ICCR Congress 2004 in South Korea [5], a
young investigator’s prize was awarded. Under the supervision of the author and Prof.
Uwe Oelfke, one diploma thesis was prepared which is closely related to Chapter 3 of this
work [9].
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Chapter 1

Introduction

In external beam radiotherapy to treat cancer, a tumor inside the patient body is irradiated
from multiple directions. For most clinical treatments, high energy X-ray radiation is
applied to irradiate the tumor. The radiation causes DNA damage in the cell nuclei,
leading to the death of tumor cells and patient cure in the ideal situation. In order to
achieve local tumor control with a high probability, a tumor type dependent therapeutic
dose has to be applied to the tumor. In many situations the tumor is located close to
so-called organs at risk (OAR) which are sensitive to radiation and limit the escalation of
the dose. The objective in radiotherapy treatment planning is to deliver a prescribed dose
to the tumor while minimizing the dose burden of adjacent healthy tissues. Nowadays,
intensity modulated radiation therapy (IMRT) is considered the most advanced technique
to achieve this goal. However, the precision of IMRT is to some extent compromised by
organ motion. For example, the prostate may move due to changes in the filling of the
rectum or a lung tumor may move due to the expansion of the lung during respiration.
During treatment, the tumor may not be in the same position as in the pre-treatment CT
image (computed tomography image), which is usually the basis for treatment planning.
Therefore, different strategies to deal with organ movements in radiotherapy have been
developed. This thesis focuses on a particular approach which we refer to as probabilistic
treatment plan optimization.

1.1 Organ motion in radiotherapy

1.1.1 Classification of organ movements

Organ movements in radiotherapy can be classified with respect to different criteria. Usu-
ally, a distinction is made between inter-fraction and intra-fraction motion. Intra-fraction
motion refers to organ movements that occur during the irradiation in a single fraction of
the treatment. The standard example for intra-fraction motion are lung tumors or liver
tumors that move due to respiration. Inter-fraction motion refers to the idealized case that
the anatomy of the patient is stationary during one fraction but changes between fractions.
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A standard example for inter-fraction motion is the prostate which changes its position due
to variations in rectum and bladder filling.

For inter-fraction motion, one further distinguishes between random errors and systematic
errors. A random error is a random displacement of the tumor from its mean position
which is different in different fractions. A systematic error is a shift of the actual mean
position of the tumor from its estimated mean position for treatment planning. This shift
impacts all fractions in the same way and is therefore referred to as a systematic error.

1.1.2 Dealing with organ motion

The standard method to deal with organ motion in radiotherapy is the safety margin ap-
proach. The volume that should be irradiated with the prescribed tumor dose is referred
to as the clinical target volume (CTV) and is contoured on the planning CT scan of the
patient. To account for organ motion using the safety margin approach, the CTV is ex-
panded to form a planning target volume (PTV) which is irradiated with the prescribed
dose. The size of the CTV-to-PTV margin is chosen in such a way that the PTV is ex-
pected to cover the moving tumor at almost all times during treatment. Among others van
Herk et al [10] quantified the required margin as a function of the magnitude of random
errors and systematic errors. Roughly spoken, the safety margin approach ensures that
the prescribed dose is delivered to the moving tumor by irradiating the entire area where
the tumor may be with the prescribed dose. Obviously, this method leads to an increased
dose burden of the healthy tissues adjacent to the tumor.

In recent years, image-guided radiation therapy (IGRT) or adaptive radiation therapy (ART)
have evolved into a central issue in radiotherapy research. Traditionally, radiotherapy treat-
ment planning is based on a single C'T scan which is aquired prior to treatment. Nowadays,
imaging modalities located within the treatment room allow for several CT scans of a pa-
tient prior to each fraction [11, 12, 13]. In addition, 4D CT imaging was developed to
account for respiratory motion during image acquisition. As a result, a series of CT images
(in the order of 10 images) is obtained to represent the patient’s geometry in different
phases of the breathing cycle. Repeated imaging of the patient provides the basis for an
improved way of dealing with organ motion in radiotherapy.

Regarding strategies to deal with organ motion in adaptive radiotherapy, one distinguishes
online and offline approaches. The aim of online correction methods is to directly react to
geometric changes of the patient anatomy and adapt treatment plan parameters accord-
ingly. An example would be that a CT scan of the patient performed directly before a
treatment fraction can show a displacement of the patient’s bony anatomy relative to the
planning situation. The information is subsequently used to correct for the misalignment
by shifting the treatment couch accordingly. In contrast, offline strategies incorporate
aggregated information about the patient’s organ mobility into the treatment plan opti-
mization. An example would be that during the first week of a fractionated treatment, a
CT scan of the patient is performed each day. After the first week, a new treatment plan



1.2 Philosophy of probabilistic treatment planning 3

is created that incorporates the information of all images acquired so far. Yan et al [14]
suggested to define a PTV based on the hull of the individual CTVs contoured in each
CT image. In this approach, the multiple CT images are used to reduce the volume of the
PTV by reducing the systematic error.

In the context of respiratory motion, tumor movements occur within seconds and the am-
plitude of motion can be considerably large. Especially tumors in the caudal region of
the lung are reported to move up to 2 c¢m, primarily in cranial-caudal direction [15]. The
average breathing period is typically in the order of 3 to 4 seconds. A bunch of approaches
to deal with respiratory motion are proposed in the literature. One of the most promising
approaches is referred to as gating. The idea of gating is as follows: the treatment beam
is switched on only when the patient is in a certain phase of the breathing cycle and is
blocked for the rest of the time. Usually, the exhale position is chosen as the so-called
gating window where the beam is on. In most cases, an external signal is used to determine
the breathing phase as a function of time. For example, the position of a marker on the
skin of a patient’s belly is tracked using infrared-cameras. It is then assumed that the
internal position of the tumor correlates with the external signal. The ultimate online
correction method for respiratory motion is referred to as tracking. The aim is to adapt
the treatment machine parameters in real time to the tumor motion, i.e. to track the mov-
ing tumor with the radiation beam in real time. This approach is technically the most
demanding approach and has only been investigated theoretically or applied to phantoms.
A clinical implementation is not feasible so far. In addition, some other methods have
been suggested, e.g. active breathing control (ABC) [16] or the deep inspiration breath hold
technique [17]. A problem that is common to most correction methods is the variabil-
ity of the breathing pattern. Patients usually do not breath regularly. The trajectory of
the tumor is not reproduced in subsequent breathing cycles. For an overview of clinical
studies on organ motion and its management see e.g. the review article by Langen et al [18].

In this thesis, an offline strategy to account for organ motion during treatment planning
is investigated. The method can be applied to both interfractional and respiratory motion
and can deal with both random and systematic errors. We call this approach probabilistic
treatment planning but no general naming convention has been established yet. Another
term associated with this approach is 4D optimization. The motivation and the underlying
idea of the concept is introduced in section 1.2.

1.2 Philosophy of probabilistic treatment planning

In this section, the general idea of probabilistic treatment planning is introduced and sev-
eral aspects are discussed that motivate the development of a new optimization concept of
IMRT in the presence of organ motion.

Roughly spoken, the idea of the safety margin approach is to deliver the prescribed tumor
dose to the entire area where the tumor may be located during treatment. This implies
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that the treatment planner primarily looks at the dose that is delivered to a certain point
in space independent of the tissue that is located at that point. Due to organ motion,
different volume elements of tissue can be located at a certain point in space. As a con-
sequence, the dose that is actually delivered to a certain volume element of tissue is not
investigated. However, this is the dose distribution which is of interest first of all. It is one
idea of probabilistic treatment planning to optimize the dose distribution in a coordinate
system that is attached to the moving and deforming tissue instead of optimizing the dose
distribution in a coordinate system that is fixed in space.

Interfractional motion is essentially a random process. Assuming that the rectum and
bladder filling of a patient with prostate carcinoma at the time of treatment is random,
the prostate is at a random position in each fraction. As a consequence, the dose delivered
to a volume element of tissue is a stochastic property. It can not be predicted with absolute
certainty. It is one aspect of probabilistic treatment planning that one has to deal with
the dose uncertainties and the fact that the dose that will finally be delivered can not be
predicted precisely. It has to be assessed by appropriate surrogates. This aspect motivates
the terminology probabilistic treatment planning. In principle, this applies also to conven-
tional treatment planning using the safety margin approach but the issue is usually not
addressed.

The safety margin approach leads to a significant dose burden of the healthy tissue because
even regions, where tumor tissue is located only rarely, are irradiated with the prescribed
tumor dose. It was suggested that a better sparing of the healthy tissue can be achieved
by delivering less dose to those regions. In order to ensure that each part of the tumor
receives its prescribed dose, this has to be compensated for by delivering higher doses to
regions where tumor tissue is located most of the time. In other words, the dose distri-
bution that would be delivered to a stationary geometry is inhomogeneous. However, the
inhomogeneities are shaped in such a way that initial dose inhomogeneities are leveled out
during the course of treatment due to organ motion and a widely homogeneous cumulative
dose distribution is delivered to the moving tumor. Section 1.3 provides a mathematical
motivation for this point of view.

How can probabilistic treatment planning be implemented practically? Generally, knowl-
edge about organ motion can be obtained from two sources: first, from clinical studies on
organ motion with a larger number of patients involved and second, from patient specific
imaging. Traditionally, treatment planning is based on a single CT scan of a patient and
organ motion is incorporated into the treatment planning process by the safety margin
concept. Since only a single CT scan is performed, no patient specific knowledge on his
organ mobility is available and the quantification of the required safety margin is purely
based on population based studies. Nowadays, imaging modalities within the treatment
room allow for several CT scans of a patient prior or during the course of fractionated
treatment. These multiple CT scans provide individualized knowledge on organ mobility
for the specific patient. For respiratory motion 4D CT images provide patient specific
information on organ motion. For probabilistic treatment planning, the available infor-
mation is used to derive a mathematical model that describes the organ movements of



1.3 A mathematical paradigm 5

the patient. Practically, the model of organ motion represents a probability distribution,
which describes the probability that the patient’s anatomy is in a certain geometric state.
The probability distribution of patient geometries is the basis for the optimization of the
treatment plan, i.e. the probability distribution is incorporated into the formulation of the
optimization problem for IMRT planning. Section 1.4 introduces the general framework
for the formulation of the optimization problem, which will become explicit in chapters 2
to 5. The idea of optimizing a treatment plan based on a probability distribution has been
described before [19, 20, 21, 22, 23]. This thesis significantly extends the work published
previously by assessing the uncertainties and risks of a treatment in the presence of organ
motion. The probability distribution of patient geometries has to be estimated from a small
number of images. In addition it is only sparsely sampled since the patient is irradiated in
a finite number of fractions, typically about 30. Dealing with the resulting uncertainty of
the delivered dose in the context of IMRT optimization has not been subject to detailed
investigation before.

1.3 A mathematical paradigm

This section provides a mathematical motivation for probabilistic treatment planning.
For idealized assumptions, we demonstrate that a better sparing of healthy tissue can
be achieved compared to the safety margin approach without compromising the dose to
the tumor. Let us consider a static coordinate system in space and a grid of volume el-
ements (voxels) in that coordinate system. A tumor moves within that static coordinate
system as a rigid object according to the three translational degrees of freedom. The tumor
is as well divided into a grid of volume elements of the same resolution. We assume that the
tumor can move in discrete steps of one voxel. Let Djt“t denote the dose delivered to the
voxel j in the static coordinate system. For now, it is assumed that the dose distribution
D3'e* can be realized by some external irradiation fields. We assume that D$*** remains
unaffected by the tumor motion. Let D; denote the dose that is delivered to the moving
voxel ¢ in the tumor. The relation between the dose distributions in both voxel grids is
determined by

D; =) _PyD; (1.1)

j

where Pj; is the relative frequency of finding the moving tumor voxel i at the static voxel

j during the course of fractionated treatment. Assuming that there are n moving tumor
voxels and m static voxels, equation 1.1 can be rewritten as a matrix equation

D = PD"™ (1.2)

where D € R™ and D% € R™ are vectors and P is a n X m-matrix. Given a static dose
distribution D and the frequency matrix P, the dose distribution in the tumor D can
easily be calculated.
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In the context of probabilistic treatment planning, the inverse problem of equation 1.2 is
of prior interest. The question is: given a desired dose distribution D in the tumor and
the frequency matrix P, how does D have to look like? Since the tumor is moving,
m > n holds. Consequently, P is not a diagonal matrix and therefore not invertible. The
mapping P is not injective, i.e. generally there are multiple vectors D*% that generate
the same vector D. This is not a problem but exactly the desired feature for probabilistic
treatment planning. Roughly spoken, there are different static dose fields that deliver the
prescribed dose to the tumor and the treatment planner can choose one of them according
to a second criterion. E.g. he may choose the one that is most appropriate in terms of
sparing the adjacent healthy tissue.

Let us make this point more explicit: Let D be the prescribed dose distribution in the
moving tissue. All static dose fields D% that generate D form the solution set of the
linear set of equations defined in (1.2). In order to characterize the solution set of (1.2) we
assume that the rank of the matrix P is equal to n, i.e. all rows of the matrix are linearly
independent. The solution set of (1.2) is an affine subspace of R™ denoted as

S(P,D) = D" + K(P) (1.3)

where Dg' is an arbitrary solution of (1.2) and K (P) is the kernel of the mapping P, i.e.
the set of all D" that satisfy
PD* = (1.4)

Let us assume that we want to deliver a homogeneous dose to the tumor, i.e. D; =1 (i =
1,---,n). Then we know one explicit solution of (1.2), namely D§f* =1 (j = 1,---,m).
This corresponds to the safety margin solution which delivers the prescribed tumor dose
to all static voxels where a moving tumor voxel may be located. Mathematically, this
solution holds due to the normalization condition Z;n:l Pj=1(i=1,---,n) which has
to be satisfied by each row of the matrix P. Assuming that rank(P) = n, the dimension
of the kernel is dim(K (P)) = m — n. Hence, the kernel K(P) is a (m — n)-dimensional
subspace of R™ that can be represented by a set of m —n linearly independent basis vectors
By.. Every solution of (1.2) can then be written in the form

m—n

D = D' + 3 " A By, (1.5)
k=1

The basis vectors By, correspond to inhomogeneous modes that modulate the homogeneous
safety margin solution while preserving the dose distribution D; = 1 everywhere in the tu-
mor.

Figure 1.1 illustrates the mathematical formalism above. We consider a two-dimensional
voxel grid and a quadratic tumor consisting of 25 voxels. The tumor may be in 5 different
positions: a central position and 4 additional positions in which the tumor is shifted by
one voxel towards the 4 directions up, right, down and left. The frequency of being there
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shall be equal for all 5 positions. The red lines in figure 1.1 mark the tumor in its central
position and the blue line marks the set of all static voxels. Figure 1.1a shows the safety
margin solution where the prescribed dose is delivered to each static voxel. Figure 1.1b
shows an example for an inhomogeneous mode Bj. Figure 1.1c shows an inhomogeneous
solution that preserves the homogeneous dose distribution in the moving tumor. It results
from the safety margin solution plus 0.1 times the mode in figure 1.1b.
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Figure 1.1: Illustration of the mathematical formalism in section 1.3 (a) safety margin
solution (b) example for an inhomogeneous mode By (c) inhomogeneous solution that
preserves the homogeneous dose distribution in the moving tumor

We have a look at the integral dose > 7", D3'". For the safety margin solution the integral
dose is obviously 45.0. For the inhomogeneous solution in figure 1.1c, the integral dose
is 40.8. Since the tumor receives its prescribed dose in both cases, the sparing of healthy
tissue must have improved for the inhomogeneous solution. By delivering less dose to static
voxels where only rarely a tumor voxel is located, the sparing of healthy tissue is improved.
The dose coverage of the tumor is achieved by delivering higher doses to other static voxels
where mostly or always a tumor voxel is located.

From a practical point of view, it is not realistic to apply the above concept to a clinical
IMRT treatment planning scenario. The static dose distribution cannot be chosen arbitrar-
ily but it has to be realized by external beams. Therefore, it is more practical to directly
optimize the dose distribution in the moving tissue as a function of the intensity map of
the external beams. This will be done throughout this thesis.

On a conceptual level, figure 1.1 also illustrates the intrinsic problems of the approach. In
order to be sure that the prescribed dose is delivered to each tumor voxel, the displacement
frequencies P;; must be known in the case of an inhomogeneous static dose field. Realisti-
cally, this is not the case. In a first attampt, P;; could be interpreted as a probability of
finding the tumor voxel ¢ at the static voxel 7. In this case, D; would correspond to the
expectation value of the dose in voxel i. However, the expectation value would usually not
be realized. The relative frequency of finding the tumor voxel ¢ at the static voxel ;7 would
converge to F;; only in the limit of an infinite number of fractions. For a realistic number
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of fractions the frequency would differ from the probability. Hence, even if the probabilities
P;; were known, one would have to take into account that they are not realized during the
actual treatment. The safety margin solution is more robust in terms of tumor coverage.
For the safety margin solution, it is garantied that the prescribed dose is delivered to each
tumor voxel independent of the values for P,; (as long as the set of m static voxels covers
the tumor at all times). Parts of this thesis are related to the question of how to make the
trade-off between the two contradictory objectives: first, delivering a prescribed dose to a
moving tumor, and second, optimizing the sparing of adjacent healthy tissue.

1.4 A probabilistic optimization postulate

First, let us consider IMRT optimization in general without considering organ motion.
Inverse IMRT treatment planning is usually formulated as an optimization problem. The
intensity profiles of the radiation beams are determined so that the resulting dose distri-
bution becomes optimal in the sense that it corresponds to the minimum of an objective
function. In the widely used beamlet-based IMRT optimization (also referred to as fluence
map optimization), each beam is devided into a grid of beamlets (also referred to as bixels).
It is the aim of the beamlet based optimization to determine the fluence values ®; of all
beamlets j so that the dose distribution in the patient becomes optimal. Due to the linear
relation between fluence and dose, the dose D; in voxel ¢ in the patient can be written as

D, =Y dyyo, (1.6)
J

where d;; is the dose contribution of beamlet j to voxel ¢ for unit fluence. The objective
function F is usually formulated as a function of the dose distribution in the first place and
can then be rewritten as a function of the beamlet intensities ® using equation 1.6. The
aim of IMRT optimization is to find the optimal set of fluence values ®°?* that minimizes
the objective function F(D(®)). The optimization problem is thus: determine

&' = argmin (E(D(®))) (1.7)

subject to a set of constraints. One constraint that usually applies is ®; > 0, saying that
only positive intensities make sense physically. There may be additional constraints de-
pending on the formulation of the optimization problem.

Let us now make the transition to probabilistic treatment planning and the incorporation of
organ movements into the optimization. This section is very general and different aspects
will become explicit in later chapters. At the time of treatment planning, it is unknown
how the patient will move during the course of treatment. Only estimates about the shape
and magnitude of the motion can be made. Therefore, the dose distribution in the patient
becomes a stochastic property in the presence of organ movements. The dose delivered to
the patient depends on a set of random variables G that characterize the geometric states
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of the patient during treatment. We assume that a probability distribution P(G) exists
that describes the probability of finding the patient in the geometric state characterized
by the vector G. This distribution has to be derived from clinical studies on organ motion,
measurements for the individual patient to be treated and heuristic assumptions. Due to
the stochastic properties of organ motion, the delivered dose distribution D(®, G) and the
objective function value E(D(®,G)) become random variables as well. Generally, there
are multiple options to formulate the optimization problem in the presence of motion. This
work follows one particular approach. We postulate, that the treatment of most patients
will be good if we optimize the expectation value of the objective function. We thus suggest
to solve the optimization problem

&% = argmin ((E(D(®, R)))) (1.8)

where

(E(D(®,@Q@))) = /E(D(@,G))P(G)dG (1.9)

Generally, the objective function is a weighted sum of objectives for the different tissues
and organs in the patient. A widely used objective function for the tumor is the quadratic
objective function. If DP™* is the dose prescribed to the tumor, the quadratic objective
function reads

E(D) =) (D;— D)’ (1.10)

1

where the sum runs over all voxels in the tumor. In the case of organ motion, the expec-
tation value of the objective is

o) = [ Y (0@ - ey reic

= > U (Di(G)_DW)QP(G)dG] (1.11)

%

= > {(<Di>—D’”“)2+ / (Di(G) — <Di>)2P(G)dG] (1.12)

i
where

(Dy) = / Di{(G)P(G)dG (1.13)

is the expectation value of the dose in voxel i. Equation 1.11 shows that the expectation
value of the quadratic objective function can be evaluated by considering every voxel
seperately although the movement of neighboring voxels is obviously highly correlated.
This simplifies the evaluation of the objective function compared to a more general case.
If, for example, a non-linear equivalent uniform dose (EUD) function is used, all voxels in
the tumor would be coupled. Equation 1.12 allows for an interpretation of the expectation
value of the quadratic objective function, which turns out to be the sum of the variance of
the dose and the quadratic difference of expected and prescribed dose. In order to deliver
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approximately the prescribed dose to the tumor, the expectation value of the dose has to
be close to the prescribed dose. And in addition, the variance of the dose has to be small
so that the expectation value is approximately realized in most cases. This work deals
with the evaluation of the quadratic objective function. For different types of movements,
motion models are evaluated in order to derive explicit expressions for the set of random
variables G and its respective probability distribution P(G) that describe the motion-
induced geometric changes of the patient. Chapters 2 and 3 deal with inter-fractional
motion and chapters 4 and 5 deal with respiratory motion.



Chapter 2

Probabilistic treatment plan
optimization for interfractional
motion

This chapter deals with the application of probabilistic treatment plan optimization in
the presence of interfractional motion. We develop the mathematical model of organ mo-
tion, formulate the optimization problem for inverse IMRT treatment planning and derive
the mathematical formalism to evaluate the objective function. The method is then ap-
plied to a patient model of idealized geometry in order to analyze the generic features of
the approach. An application to clinical data of a prostate patient is provided in chapter 3.

The assumptions which build the basis for this chapter have been described in section 1.2:
It is assumed that multiple CT scans of a patient exist. In addition, population based
knowledge from clinical studies on organ motion may exist. Based on that data, a model
that describes the interfractional motion is derived, which is the basis of a probabilistic
treatment planning approach. This will be done in section 2.1. It is assumed that the
interfractional displacements of the tumor can be described by a Gaussian distribution.
The concept of Bayesian inference is applied to derive probability distributions for the pa-
rameters mean and width of the Gaussian motion model. The method allows for a unified
description of random and systematic errors. In section 2.2 a patient model of idealized
geometry is introduced which originates from rotation therapy. An idealized geometry is
considered where the movement is restricted to rigid translations. In this case, one CT scan
corresponds to one measurement of the tumor position. Section 2.3 defines the optimiza-
tion problem according to the general postulate introduced in section 1.4. The expectation
value of a quadratic objective function which is customized to the geometry under con-
sideration is optimized. Sections 2.4, 2.5 and 2.6 demonstrate the results of probabilistic
optimization for the idealized patient. The generic features of the approach are analyzed.

Naturally, a number of assumptions and approximations have to be made in order to
formulate a mathematical model of the real world. In this case, we assume that the
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patient changes his geometry between fractions, i.e. we focus on the idealized case of pure
inter-fraction organ motion and neglect intra-fraction motion. The positions of the patient
in different fractions are assumed to be uncorrelated, i.e. the geometry of the latest fraction
does not have an impact on the geometry in the next fraction. Furthermore, the motion
model that describes the interfractional changes is assumed to be time-invariant, i.e the
same motion model holds for the whole course of fractionated treatment. This means we
do not consider time trends during treatment, e.g. weight loss or radiation effects on the
tumor and healthy tissues.

2.1 The motion model

2.1.1 Preliminaries

We consider interfractional rigid motion of the patient. We assume that the translations
of the patient in different spatial dimensions are statistically independent. To simplify the
notation, this section is formulated for the one-dimensional case, but the generalization to
two or three spatial dimensions is straightforward.

The patient is not always located in the same position but can be located in different
positions from day to day. We assume that M CT scans of a patient exist and that these
images can be used to determine the positions {Ap,}{? that describe the M positions of
the tumor relative to a fixed reference point. The set of M positions {Ap,}} is referred
to as the measured data.

We now assume that the data can be modelled by a deterministic law plus noise. In
this case we just assume that the measured positions scatter randomly around an average
position As, i.e. we assume the following parameterized model of the data:

Ap, = As+ 6, (2.1)

where 6 represents a random number, i.e. the noise. We further assume Gaussian noise,
i.e. the probability distribution for ¢ is given by

P(§) = ¢21_m exp (-%) (2.2)

The data model is parameterized by the parameters As and o, where the parameter of
the noise model o describes the magnitude of the random motion. From the equations 2.1
and 2.2 we find that the probability to measure a position Ag of the volume element given
both model parameters As and o is determined by

1
P(Ag|As, o) = exp (—

2ro

M) (2.3)

202
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2.1.2 Maximum likelihood estimate of the most probable data
model

We are interested in calculating the expectation value of the dose. In a first approach, this
can be done by determination of the most likely model of the data, i.e. we determine the
parameters (As*, 0*) which describe the measured data the best. A well known method to
do this is to maximize the data likelihood [24]. The likelihood is defined as the probability
to obtain the data set {Ap,}{! given the model parameterized by (As,o):

PR} 0) = [ o e (5220 ) (2.4)

Maximizing the likelihood is equivalent to minimizing the negative of the logarithm of the
likelihood, i.e. in order to determine the optimal (or most probable) data model (As*, o*)
we have to solve the optimization problem

M
B 1 (Ap, — As)?
L = —In [E o exp (— =

= MIn (@U) + i M — min (2.5)

ot 202
Solving
oL oL
—— =0 d N | 2.6
0As w90 (26)
yields the intuitive result
M
As* = i Z Ap, (2.7)
p=1
| M | M
o* = W ;(Apu ~ ; Ap,)? (2.8)

The optimal model (As*,o*) can now be used to predict the possible locations Ag of the
volume element: Ag = As* + § where the probability for obtaining a position Ag given
the optimal model is given by

*  _x 1 (Ag B As*)Q
P(Ag’AS , 0 ) = \/%o-* exp (—T (29)

The expectation value of the dose per fraction at a given point in the moving tumor can
be calculated according to

(D) = /D(Ag)P(Ag|A8*,U*)dAg (2.10)
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D(Ayg) is the dose delivered to the point in the tumor in a single fraction given a dis-
placement Ag of this tumor point. Using equation 2.10 corresponds to the widely used
convolution method to calculate the expectation value of the dose. However, equation 2.10
considers only the most likely model of the data to predict the dose. This is a reasonable
approximation if the probability distribution P(As, o[{Ap,}), that describes the probabil-
ity of a model (As, o) given the data, is sharply peaked around the optimal model. This
would be true if the number of measured positions M was large. However, the number
of CT scans of a patient will typically be small. Apart from the potentially unreliable
estimate of the expectation value of the dose there is another weakness of this approach.
When considering the optimal model alone, all information about the expected variance of
the dose due to an imperfect knowledge of the parameters As and o is lost. One can only
calculate the variance of the dose that arises from the sparse sampling of the probability
distribution 2.9 due to a finite number of fractions. This will be discussed extensively in
the result sections 2.4, 2.5 and 2.6.

The maximum likelihood approach is a very general and widely used method for model
parameter estimation. However, the maximum likelihood method does not always yield an
unbiased estimate of the model parameters [24]. For the problem considered, this applies
to the estimate of the optimal distribution width o*. Equation 2.8 underestimates the
distribution width since it does not account for the shift between the estimated mean posi-
tion and the real mean position. For the current problem, the model parameters are rather
simple since they just represent the first and second power moment of the distribution of
displacements. In this case the method of moments yields

| M | M
T — _ 2
o =0T Mgl(Ap# i ngl Apy) (2.11)

as an estimate of the distribution width which is proven to be unbiased. o' is also referred to
as the empirical standard deviation. From equations 2.8 and 2.11 we obtain o7 = 4/ %U*.

2.1.3 The concept of Bayesian inference

We will now extend the dose calculation method from the previous section 2.1.2. This will
be done by applying the concept of Bayesian inference [25]. The basic idea is as follows:
Not only the most probable model of the data shall be used to calculate the dose but all
models (As, o) weighted with their respective probabilities. This will further enable us to
calculate the uncertainty of the expected dose, often characterized by its variance. In other
words, we are now interested in the probability distribution P(Ag|{Ap,}) that describes
the probability of a position Ag given the data {Ap,}!. P(Ag|{Ap,}) is given by

P(Agl{Ap,}) ://P(Ag|AS,U)P(AS,UHAPM})CZASdU (2.12)
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To evaluate equation 2.12 one has to calculate the posterior probability P(As,o|{Ap,}),
that describes the probability for a model (As, o) given the data {Ap,}?. This is done
by using the Bayes theorem:

P({Apu}|As,0)P(As, 0)
P({Ap,})

The term P({Ap,}) is referred to as Evidence and can be considered as a normalization
factor since it is independent of As and o. The term P(As, o) is called Prior and describes
the probability of a model (As, o) without knowing the data. The Prior therefore represents
previous knowlegde about the model parameters which can for example be obtained from
a clinical study involving a population of patients.

P(As,c{Ap,}) = (2.13)

No previous knowledge:

We first consider the case that no previous knowledge exists, i.e. P(As, o) is constant.
The posterior probability P(As, o|{Ap,}) is therefore determined by the data likelihood

alone: u
1 " (Ap, — As)?
P(As,o|{Ap,}) x ———;exp —Zu*l( p,; ) (2.14)
(\/%a) 20
This can be rearranged to give
(As—7 Sl Apu)?
P(As,o|{Ap,}) x (\/2_7'(1'0')M exp (— M 2 P )
1 M _1l M 2
X eXp (_ M E/,L:I(Apk;oé\/[ 277:1 Ap’]) ) (215)
yvs
The posterior probability can be written in the form
P(As,o[{Apu}) = P(As|o, {Ap.})P(o[{Apu}) (2.16)
where equation 2.15 gives us the probability distributions
1 As— L5 Ap,)?
P(As|o,{Ap,}) = exp (—( M 20_2“1 Pu) (2.17)
271'(;4—2 2%

P(ol{Apu}) o

L (_ LS (A Y Apm) s
(2ro) 2

We introduce the parameter

1 Y 1 Y
Odata = M Z(Ap,u - M Z Apn)2 (219>

p=1 n=1
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that describes the distribution width that was estimated from the measured data. The
probability distribution for As for a given value of ¢ is a Gaussian distribution of width
o/v/'M centered at the average position = 224:1 Ap, that is obtained from the measured
data. The probability distribution for o is displayed in figure 2.1a for different values of
M, the number of measurements. For large M the distribution is sharply peaked at 74444,
the value of o that corresponds to the optimal model. For smaller M the distribution is
broader and especially allows for much larger values of . As and its associated probability
distribution describe systematic errors, i.e. a shift between the “true” mean position of
the patient and the estimated mean position based on a finite number of measurements.
A wrong estimate of the mean position influences all fractions in the same way and is
therefore called a systematic error. The probability distribution P(o|{Ap,}) describes an
uncertain knowledge of the magnitude of motion.

10 S —
(a) M=5 — (b) Prior (M=1) ——
or M=10 e ] 35 | |
8+ M=30 e
3 L
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[ 5t = 2 L
S 4t )
e a 15
il ! 1t
2]
1t N 05 /
0 . S ' Lt s, 0 Lo A ) ) ) ) ‘ ‘
0 01 02 03 04 05 06 07 08 09 1 0 04 02 03 04 05 06 07 08 09 1
o o

Figure 2.1: (a) Posterior probability distribution for o without prior knowledge according
to equation 2.18 for different values of M and 044, = 0.3. (b) Posterior probability
distribution for o with a gamma prior according to equation 2.22 for different values of M
and the parameters o441, = 0.2, 0p0p = 0.5 and 0,4, = 0.2. The solid line shows the prior.

Use of Priors:

The Bayes theorem also provides a method to incorporate knowledge about a population
of patients into the calculation of the posterior probability P(As,o|{Ap,}) when patient
specific data is sparse. In particular, this affects the parameter 0. We assume that no
previous knowledge on As exists but focus on the prior probability P(c). By analyzing
the organ movements for a very large number of patients one could in principle determine
the entire distribution P(c) empirically (see e.g. [18] for a review of existing studies). We
will assume that each patient is characterized by his individual value of ¢ and that within
the population of patients the values of o scatter around a mean value 0,,, with a width
Ovar- For the prior distribution we adopt the gamma prior [26] that is often used when the
range of a parameter is bounded on one side like the positive distribution width ¢ in this
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case:
)U(a Dexp (—Ao) (0> 0)

P(o) = { [ 0 (2.20)

otherwise

where I' is the Gamma function and a, A > 0 are parameters of the distribution. Both
parameters are relatively simple functions of the expectation value o0,,, and the standard
deviation o, of the distribution P(o):

2

% o
O, O,
a=2% A=2F (2.21)
O-'U(l'f' O-'Uar

The posterior probability is then given by

glb O
P(o|{Ap,}) x (\/2_ 1 €Xp (—Ao)exp | — 2;; (2.22)
o M

Figure 2.1b shows the posterior probability P(c|{Ap,}) for different values of M and the
parameters 0gqq = 0.2, 0pop = 0.5 and o4, = 0.2. This corresponds to the situation that
the patient specific measurements give rise to a value of o that is small compared to the
average patient. The method interpolates automatically between the patient specific data
and the population based knowledge. When only a single measurement exists (M = 1),
P(o|{Ap,}) is given by the prior P(c) alone. This corresponds to the situation where only
a single planning CT is performed which is common practice today. In this case all infor-
mation on potential organ movements is taken from population based knowledge. When
little data is available (M small) the maximum of P(o|{Ap,}) is located between 044, and
Opop- When the amount of data increases (M large) the influence of the prior is reduced
and the posterior probability distribution is determined by the data alone.

The expectation value of the dose per fraction is now calculated according to

_ / D(Ag)P(Agl{Ap,})dAg (2.23)

where P(Ag|{Ap,}) is given by equation 2.12 with the probability distributions given in
equations 2.17, 2.18, 2.22 and 2.3. By substitution we get

= [ [ pgragias.

xP(As|o, {Ap,})P(o|{Ap,}) dAgdAs do (2.24)

The more important change however is that one can now estimate the variance of the dose
due to the model parameter uncertainty. This will be discussed in detail in sections 2.5
and 2.6
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2.2 An idealized geometry

To gain some basic understanding of inverse planning based on probability distributions of
patient geometries, we consider a model of idealized geometry that originates from rota-
tion therapy with high energy photons. We consider the planar irradiation of a circularly
shaped CTV of radius Ry with a rotating gantry. The CTV is surrounded by a healthy
tissue of radius R (see Fig. 2.2).

patient contour
Z
r X
¢
Ar Ry R
Ad
P X

¢

fluence profile

Figure 2.2: Geometry of the model

Organ movements are simulated by rigid translations of the entire body for simplicity.
This allows us to track each point of the body during movement and to calculate the cu-
mulative dose in each point. The geometry of the patient can then be parameterized by a
single vector Ar = (Ar, Agp) denoting the position of the center of mass. In the following
text, vectors in two spacial dimensions are denoted by bold characters and scalars by italic
characters. The interfractional displacements (Ar, Ay) of the patient are described by the
motion model derived in section 2.1. To retain the rotational symmetry of the system we
assume that the displacements in both spatial directions are uncorrelated and that the
probability distribution for the displacements is of equal width in both directions. This
means, the parameter ¢ of the Gaussian motion model is not a vector.

For the dose calculation we adopt the BRL approximation (Brahme, Roos, Lax) of the
photon beam [27], i.e. the beam is assumed to be parallel, lateral scattering of the photons
is neglected, and the photon fluence in the medium is assumed to attenuate exponentially
according to exp(—pz) with increasing depth 2z and constant attenuation coefficient p. To
calculate the dose at point » = (r, ) for a given displacement (Ar, Ap) the following
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equation applies:

1 2
D(rglarag) = 5o [ @ @) exp (<) (2.25)
where x and z are given by
z(r, 0, Ar, Ap, 1) = rsin (¢ — ¥) + Arsin (Ap — 1) (2.26)
2 (rypatb) = /B2 — 12sin’ (p — ) — rcos (o — 1) (2.27)

as illustrated in figure 2.2. The gantry angle is denoted by ¢ and ®(z) is the fluence
profile. Due to the rotational symmetry of the system we restrict ourselves to fluence
profiles which are symmetric (®(x) = ®(—=z)) and are independent of the gantry angle
1. For the objective functions used later in this thesis it can be shown that the global
minimum corresponds to a state of i-independent fluence profiles. This simplification is
thus valid for our purpose. For the results presented in this chapter we adopt the following
set of dimensionless parameters if not stated differently: = 0.1, Rr =1, R = 3.

2.2.1 The static solution of the inverse problem

For the static situation without motion, i.e. Ar = 0, the inverse problem of radiotherapy
treatment planning can be solved analytically [27, 28]. We prescribe a constant dose
Dpres = 1 (r < Rr) to the CTV whereas the dose to the surrounding normal tissue is
unspecified. The solution for the fluence profile is then given by

B (z) = { cos (ux) exp (uV/R? — %) (|z| < Rr)

0 otherwise (2.28)

The analytical fluence profile and the corresponding dose distribution are shown in figure
2.3.
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dose D(r)

Figure 2.3: (a) Static fluence profile according to equation 2.28, (b) corresponding dose
distribution
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2.3 The optimization problem

The standard quadratic objective function for a static geometry in the inverse planning
process can be written in the form

R
B = /0 a (1) [D () = Dppes (7)) rdr (2.29)

for a dose distribution of rotational symmetry. The factor r is due to the integration with
respect to the radial coordinate r in polar coordinates. a and D,,.s are a penalty factor
and a prescribed dose, respectively. For the results presented in this thesis we chose the
standard parameter values

1 (7’ < RT)

alr) = {0.001 (r > Rp) (2.30)
Dypes (1) = {(1) E:;g;; (2.31)

Calculating the fluence profile that minimizes 2.29 gives a close approximation of the an-
alytical solution 2.28.

For probabilistic treatment planning we consider the cumulative dose distribution delivered
to the patient in N fractions:

N

D.(r) =Y D(r|Ag,) (2.32)

p=1

where D(r|Ag,,) is the dose delivered to point r given a displacement Ag,. For a static
geometry, the cumulative dose distribution is just a multiple of the dose per fraction.
Therefore, objective function 2.29 would be identical when formulated in terms of the
cumulative dose. For probabilistic treatment plan optimization we optimize the expectation
value of 2.29 for the cumulative dose, which is the sum of the variance of the cumulative
dose and the quadratic difference of expected and prescribed dose:

B~ [ alr) [0 () = VD) + [(D2) () = (D )] v (233)

The following sections will evaluate objective function 2.33 using the motion model derived
in section 2.1. Section 2.6 considers the most general case where all parameters Ag, As and
o are random variables. Section 2.4 starts with a simplified version which only considers
random errors.
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2.4 Probabilistic treatment planning incorporating ran-
dom errors

This section considers a simplified version of the motion model derived in section 2.1. The
distribution width o and the mean position As of the patient are assumed to be known
exactly. This means, we only deal with random errors and neglect systematic errors and
uncertainties in the knowledge of the magnitude of motion. In this case the calculation of
the expectation values (D,) and (D?) is given by

(D) = N(D) (2:34)
(D?) = N(D?*)+ N(N —1)(D)? (2.35)
(D) = /D(r|Ag)P(Ag|As,a)dAg (2.36)
(D?) = /Dz(r\Ag)P(Ag]As,a)dAg (2.37)

with the probability distribution

1 Ag — As)?
P(Ag|As, o) = 503 OXP <—%> (2.38)
A derivation of the expectation values in 2.36 and 2.37 can be found in appendix A.1. For
the mean position, one would usually choose As = As*. Without loss of generality we
assume As* = 0, i.e. we place the isocenter at the mean position of the patient. For the
distribution width one could also choose the optimal model value ¢ = ¢*. In general, es-
pecially when population based knowledge exists, one could derive the value of ¢ from the
distribution P(c|{Ap,}) in equation 2.22. One could for example choose the expectation
value of o, i.e. 0 = [ P(o'|[{Ap,})do’. Here, we choose o = 0.2.

Using equation 2.34 to 2.37 the objective function 2.33 can be rewritten as

B [ o) [{0) ()~ Dy + 3 (D () = DF )| rar - 239)

Both terms, (D) and (D?) can be expressed as a function of the fluence and the optimiza-
tion can be performed using a standard gradient method (see appendix A.2). Equation
2.39 shows explicitly that the objective function depends on the number of fractions N.
Therefore, we obtain different optimal fluence profiles ®(z) for different numbers of frac-
tions.

Figure 2.4a shows the optimal fluence profiles for 1, 10 and 30 fractions. The optimization
for N = 1 reproduces a safety margin like solution. The profile is essentially flat within the
tumor and the irradiated region is expanded towards the healthy tissue to account for the



22 Probabilistic optimization for interfractional motion

1.8 ; ; ; 35
@ e | ()

' 30
<
= © 25 ¢
3 8 20 |
5 ©
=i 15
*= 04 —— 30 fractions 10|

02 10 fractions

- 1 fraction :
0 : B —— 5 : : : : :
0 0.5 1 1.5 2 0 0.5 1 1.5 2 2.5 3
X r

Figure 2.4: (a) fluence profiles that minimize objective function 2.39 for different numbers
of fractions, (b) expectation value of the dose and its standard deviation for 30 fractions:
for the fluence profile that minimizes 2.39 for N — oo (black solid line) and N = 30 (red
dashed line). The three lines show the expectation value N (D) and the expectation value
plus and minus one standard deviation /N ((D?) — (D)2), respectively.

positioning uncertainty of the tumor. The optimization automatically chooses an appro-
priate size of the margin based on the probability distribution of the displacements. For
N = 30 the optimal fluence profile shows a moderate peak near the edge of the tumor. Ini-
tial dose inhomogeneities within the tumor resulting from this peak are likely to be leveled
out during later fractions when the patient is in different positions. Points near the edge
of the tumor may move out of the high dose region in some fractions. This is compensated
for by delivering higher doses than the prescribed dose in other fractions. The peak in the
fluence profile allows for a reduction of the irradiated area compared to the solution for
N = 1. For N =1 the fluence profile is smooth since initial dose inhomogeneities could
never be compensated for by later fractions. For N = 10 an intermediate result is obtained
which shows a slight peak near the edge of the tumor but less pronounced than for N = 30.
Figure 2.5 shows the expectation value of the dose and the corresponding variance as a
function of the radial coordinate r for the fluence profiles in figure 2.4a. The expectation
values indicate a better sparing of the healthy tissue when the fluence profile is optimized
for a larger number of fractions. The variance in 2.5b is normalized to 30 fractions, i.e.
the different values N = 1, N = 10 and N = 30 were used in the optimization but for
recalculating the variance after the optimization, 30 fractions are assumed for all profiles
to allow for a meaningful comparison. The peak in the fluence profile for N = 30 leads to
a larger variance at the edge of the tumor compared to the safety margin like solution for
N = 1. The largest dose uncertainties arise in the adjacent healthy tissue since the largest
dose gradients are located in this region.
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Figure 2.5: (a) expectation values of the dose distribution for the fluence profiles in figure
2.4a and 2.6a (b) corresponding variance distributions, normalized to 30 fractions

2.4.1 Optimization of the expectation value

In the limit N — oo the variance term in equation 2.39 vanishes. If an infinite number of
fractions was delivered, the expectation value of the dose would be realized. In this case,
the objective function is easier to evaluate since only the expectation value of the dose
has to be considered. We investigate the question whether the limit N — oo provides a
useful approximation for inverse treatment planning. Mathematically, this corresponds to
approximating the expectation value of the objective function by the objective function
evaluated at the expectation value of the random variable, i.e. (E(D)) ~ E((D)).
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Figure 2.6: (a) fluence profile that minimizes objective function 2.39 for N — oo, (b) cor-
responding expectation value of the dose per fraction (thick solid line) and three examples
for realistic dose distributions for N = 30 fractions (colored dashed lines)

The result for the respective optimal fluence profile is depicted in figure 2.6a. Figure
2.6b shows the corresponding expectation value of the dose distribution (solid line). The
fluence profile is characterized by a sharp peak near the edge of the tumor that allows
for an optimal sparing of the healthy tissue. However this optimize expectation value
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would only be achieved for an infinite number of treated fractions. In this case, initial
dose inhomogeneities that result from the sharp peaks in the fluence profile would be
smoothed out by later fractions. For a realistic number of 30 fractions this process can
only partly occur. Figure 2.6b shows three cumulative dose distributions as a function of
the radial coordinate r for ¢ = 0 and N = 30 randomly chosen treatment positions from
the distribution 2.38. This plot clearly demonstrates that patients do not benefit from the
optimized expectation value. For the fluence profile optimized for N = 30, the profile is
also peaked near the edge of the tumor but the peak is less pronounced. The complete
objective function including the variance term allows for the correct compromise between
an acceptable expectation value of the dose and a small value for its corresponding variance
which can be seen from 2.4b. Compared to the optimization for N = 30, optimizing 2.39
in the limit N — oo yields a slightly steeper dose gradient in the expectation value of the
dose at the edge of the tumor (figure 2.5a). This indicates a potentially better sparing
of the healthy tissue. For the individual patient this is, however, not beneficial since the
expectation value is not realized for a realistic number of fractions as indicated by the large
standard deviation. Also figure 2.5b shows the dramatically increased variance that results
from neglecting the variance term during the optimization. The standard deviation is in
the order of 7% of the prescribed dose for points within the tumor.

2.5 Incorporating systematic errors into the optimiza-
tion

In this section we still consider the distribution width ¢ of the motion model as a fixed
parameter, but we allow for uncertainties in the estimated mean position As of the patient,
i.e. we account for systematic errors. In this case, the expectation values (D.) and (D?)
are given by (appendix A.1)

(D) = N(D) (2.40)
(D2) = N(N-—1)(DD)+ N{(D?) (2.41)
(D) = //D(r!Ag)P(Ag\As,0)P(As|a,{Apu})dAgdAs (2.42)
(D* = //DQ(r|Ag)P(Ag|As,U)P(As|a,{Apu})dAgdAs (2.43)

(DD) = / / / D(r|Ag,)D(r|Ag,)P(Ag,|As, ) P(Ag,|As, o)
xP(As|o,{Ap,}) dAg, dAg, dAs (2.44)
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with the probability distributions

1 Ag — As)?
P(AgAs,0) = o exp (—%) (2.45)
As— LM Ap,)?
P(Aslo{Ap)) = — o exp 28T 2t AP (2.46)

Objective function 2.33 can be rearranged to give

E = / 6 () [(D) () — Diyrea ()] rdr

+/0 a(r) [% (DD) (r) + % (D?) (r) —(D)* (r)] rdr (2.47)

Concerning the expectation value of the dose, there is no real discrimination between
random error and systematic error. The expectation value would be identical for a pure
random error with a distribution width (1 + ﬁ)a. In other words, two averaging processes
are mixed up: first, the averaging over the random displacements during the course of
treatment for a single patient. And second, the averaging over the systematic displace-
ments for a population of patients. The distinction between random errors and system-
atic errors in the optimization is warranted by the variance term and becomes manifest
in the expectation value (DD). The systematic error in equation 2.44 leads to a cou-
pling of the displacement Ag, in fraction p and the displacement Ag, in another frac-
tion 1. The total probability for obtaining the displacements Ag, and Ag, given by
P(Ag,, Agylo{Ap,}) = [ P(Ag,|As,0)P(Ag,|As,0)P(As|o, {Ap,})dAs does not fac-

torize.

For the simulation in this section we again assume ﬁ Zi\le Ap, = 0, i.e the isocenter is
placed at the estimated mean position of the patient. For the distribution width we choose
o = 0.2 and we assume N = 30 fractions. Figure 2.7a depicts the optimal fluence profiles
for different values of M, the number of position measurements. M essentially determines
the width of the Gaussian probability distribution for the systematic error (equation 2.46).
For M — oo, the systematic error is eliminated and the simplified case discussed in section
2.4 is obtained. For M = 1, which corresponds to common practice today, the distribution
width of the systematic error is as large as for the random error, i.e. 0. As expected the
fluence profile is expanded while the systematic error increases. All profiles are character-
ized by a peak at the edge of the tumor which arises due to the random error that is the
same for all profiles. Figure 2.8 shows the corresponding expectation values of the dose
and the variances. The expectation values in figure 2.8a show that the sparing of healthy
tissue is significantly improved when the systematic error is reduced (M > 1). In case of a
large systematic error (M = 1) the high dose region is significantly expanded. Figure 2.8a
shows also that five measurements of the patient position (M = 5) already provide a strong
improvement compared to M = 1, whereas a further increase of the number of measure-
ments yields only minor benefits. The variance in figure 2.8b shows that the optimization
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Figure 2.7: (a) fluence profiles that minimize objective function 2.47 for different numbers of
position measurements M prior to treatment and N = 30 fractions (b) fluence profiles that
minimize objective function 2.33 for three different methods to evaluate the expectation
values (D.) and (D?) according to sections 2.4, 2.5 and 2.6 for N = 30, M = 5 and
Odata = 0.2

makes the uncertainty small within the tumor. The large variance in the healthy tissue
adjacent to the tumor is due to the steep dose gradients which arise in the transition region.
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Figure 2.8: (a) expectation values of the dose (D.) for the fluence profiles in 2.7a (b)
corresponding variances (D?) — (D,)?

It should be noted that the expectation value of the dose is not a good surrogate for the dose
distribution delivered to the patient. It includes the averaging over the systematic error
which only occurs among a population of patients but not for the individual patient. The
expectation value has to be interpreted pointwise. For every point r, the expectation value
provides the best estimate for the dose delivered to that point. The variance provides the
uncertainty of that prediction. If the variance is small, the delivered dose will be close to
the expectation value. However, the spatial distribution of expectation values as depicted
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in figure 2.8 can never be realized at each point simultaneously. Realistically, the delivered
dose distribution will not be radially symmetric.

2.6 Accounting for an uncertain magnitude of motion
In this section we allow for uncertainties in all model parameters, i.e. a random displace-

ment Ag in every fraction, a systematic displacement As and an uncertainty in the distri-
bution width o. In this case, the expectation values (D.) and (D?) are given by

(D) = N<D> (2.48)
(D?) = N(N-1)(DD)+ N (D?) (2.49)
(D) — ///Dr\Ag (Ag|As, o)
% P(As|o, {Ap, ) P(o|{Ap,}) dAg dAs do (2.50)
@ = [ [ [ perisgp@aglss.a)
< P(Aslo, {Ap, ) P(o/{Ap,}) dAg dAs do 2.51)

(DD) = / / / / D(r|Ag,) D(r|Ag,) P(Ag,|As, 0)P(Agy| As, o)
xP(As|o,{Ap,})P(c|{Ap,}) dAg, dAg,dAsdo  (2.52)

with the probability distributions

P(Ag|As,0) = 27302 exp (—W) (2.53)
As— LM Ap,
P(As|o, {Ap,}) = %1& exp <—< MZO__;‘— P )> (2.54)
A{l A 7 ﬁ 1 "
P(cl{Ap,}) o We}{p< 2 2yu=1 (AP - 2 p)) (255)

The parameter

Odata = ]\14 Z(Apu Y Z Apn (256)

p=1

now refers to the motion in two spatial dimensions, whereas the parameter o refers to the
distribution width in one spatial dimension. A parameter value 044 = V2-0.2 corresponds
to an estimated distribution width of 0.2 in each spatial dimension. For the simulations in
this section we chose ogua = V2 X 0.2.

Figure 2.7b shows the optimal fluence profiles that account for an uncertain o (black solid
line) for the parameters N = 30 and M = 5. For comparison the corresponding results
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from sections 2.5 and 2.4 are shown, i.e. the optimal fluence profile that accounts for
random and systematic errors (dashed line) and the profile that only accounts for random
errors (dotted line). All profiles are characterized by a moderate peak at the edge of the
tumor that is due to the random error. The first planning strategy that considers random
errors only leads to the least expanded fluence profile (®,4n40m(x)). The second planning
strategy that incorporates systematic errors leads to a more expanded profile (Pgy4(z)).
The third method that in addition allows for an uncertain ¢ again expands the fluence
profile (Ppayes(z)). This can be understood by regarding the dashed line in figure 2.12b
that shows the posterior probability distribution for . When only M = 5 measurements
are performed, the value for o that actually describes the movement of this patient could
be significantly larger than o4ua/v/2. This in turn makes larger systematic errors and
larger random errors possible and hence requires a larger volume to be irradiated.
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Figure 2.9: (a) expectation values (D.) for the fluence profile ®,4n4om(z) while taking
into account different uncertainties according to sections 2.4, 2.5 and 2.6, respectively (b)
corresponding values of the variance (D?) — (D,)?

Accounting only for random errors during the optimization leads to an underdosage of the
tumor edge for many patients. Figure 2.9a shows three times the expectation value of
the dose distribution obtained for the same fluence profile ®,,,40m () but using the three
different methods to calculate the expectation values. Figure 2.9b shows the corresponding
variances. The dotted lines represent the planned dose, i.e. expectation value and variance
obtained by consideration of random errors alone (equations 2.34-2.38). The dashed lines
show the expectation value and the variance when systematic errors are considered (equa-
tions 2.40-2.46). This leads to a minor effect concerning the expectation value, however the
variance is significantly underestimated when only random errors are included. The solid
line corresponds to the third method that additionally allows for uncertainties in the dis-
tribution width. Uncertainties in o result in a distinct flattening of the expectation value
and a further increase of the variance. The flattened expectation value indicates that on
average the tumor edge is significantly underdosed. In other words, when a large number
of patients from that population are irradiated with that fluence profile, most patients will
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Figure 2.10: Both pictures show the probability Py; that a point at radial coordinate r
recieves a cumulative dose higher than 95% of the prescribed tumor dose (N = 30) (a) for
the fluence profile ®,4p40m () while taking into account different uncertainties according
to sections 2.4, 2.5 and 2.6, respectively (b) for the three different fluence profiles in figure
2.7b while taking into account uncertainties in both parameters o and As

show an underdosage on parts of the tumor edge. To clarify the risk of underdosing, one
can also look at the probability that at a given point the delivered dose exceeds a certain
threshold. Figure 2.10a shows the probability Pys; that at a point with radial coordinate r
the delivered cumulative dose exceeds 95% of the prescribed tumor dose. Again all lines
correspond to the same fluence profile ®,.4,40m (), but different uncertainties during treat-
ment are considered. The planned dose seems to guarantee a satisfying target coverage
(dotted line). However, when systemetic errors (dashed line) and additional uncertainties
in the distribution width (solid line) are taken into account, the probability that the edge
of the target receives the desired dose becomes very low. The calculation of the probability
Py5 is discussed in appendix A.3.

The planning strategy defined in equations 2.48 to 2.55 accounts for uncertainties in both
parameters As and o already in the optimization process. Figure 2.10b shows the prob-
ability Pys that the dose at a given point r exceeds 95% of the prescribed tumor dose
for the three different fluence profiles in figure 2.7b. All Py5 curves were calculated by
allowing for systematic errors and an uncertain o (equations 2.48 to 2.55). Figure 2.11
shows the corresponding expectation values of the dose and the variance. The planning
strategy defined in this section automatically shifts the dose gradient between tumor and
normal tissue towards the normal tissue (figure 2.11a) and therefore leads to a better dose
coverage of the tumor (figure 2.10b).

Figure 2.11b allows for a comparison of the total variance for the three planning proce-
dures. The total variance of the dose in the adjacent healthy tissue cannot be reduced too
much, although the planning strategy defined in this section minimizes the variance due to
an uncertain o and As in the optimization process, which is not the case for the planning
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strategies in sections 2.4 and 2.5. The variance at the edge of the tumor is an intrinsic con-
sequence of the movement and the steep dose gradient at the edge of the tumor. Therefore
the variance in the healthy tissue can only to a limited extent be reduced by shaping the
fluence profile.
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Figure 2.11: (a) expectation values (D,) for the three different fluence profiles in figure 2.7b
while taking into account uncertainties in both parameters o and As (equations 2.48-2.52)
(b) corresponding values of the total variance (D?) — (D,)?

2.6.1 Inclusion of population based knowledge

The concept of Bayesian inference provides a method to interpolate between patient specific
data on organ motion and knowledge that was gathered for a larger population of patients.
We now demonstrate the impact of prior knowledge on inverse planning. We substitute
the probability distribution in equation 2.55 by

O'(O‘_l)

Plolap.) o e o (Ao e (—2—_) (2:57)

where a and A are given by equation 2.21. We choose the parameters ogge = V2 X 0.2,
Opop = 0.15, 0yqr = 0.075, N = 30 and M = 5. This corresponds to the situation that the
5 measurements for the patient give rise to a larger organ mobility when compared to the
average patient. Figure 2.12b compares the posterior distributions for ¢ with and without
prior. Figure 2.12a shows the corresponding optimal fluence profiles. The profile that was
optimized by incorporating the prior knowledge is less expanded and leads to an irradiation
of a smaller volume compared to the fluence profile optimized without incorporating prior
knowledge. This can easily be understood by considering the posterior distributions in
figure 2.12b. When prior knowledge is used, large values of ¢ become much more unlikely.
Figure 2.13 shows the probability Pys; that the dose at a point at radial coordinate r exceeds
95% of the prescribed dose. The curves where calculated by using the fluence profiles in
figure 2.12a together with the corresponding posterior distributions in figure 2.12b. The
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optimization leads to a similar expected target coverage in both cases. In this example the
inclusion of population based knowledge justifies the reduction of the irradiated volume
and hence allows for a better sparing of the adjacent healthy tissue.
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Figure 2.12: Comparison between optimization incorporating and not incorporating prior
knowledge. (a) Optimal fluence profiles resulting from inverse planning using the different
posterior distributions for o as displayed in figure 2.12b. (b) Posterior distributions for
o according to equations 2.55 and 2.57 for parameters ggu, = V2 x 0.2, opop = 0.15,
Opar = 0.075 and M = 5.
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Figure 2.13: Comparison between optimization incorporating and not incorporating prior
knowledge. The curves show the Py5 probabilities for the fluence profiles in figure 2.12a.
To calculate these curves uncertainties in As and o were allowed and the posterior distri-
butions in figure 2.12b were used. Parameters: 044, = V2 % 0.2, Opop = 0.13, 0ygr = 0.075
and M = 5.
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2.7 Adapting fluence profiles

In this section, we consider again the simplified case that the magnitude of motion ¢ is fixed
and only random errors and systematic errors are considered. In section 2.5 we assumed
that the same fluence profile is applied in every fraction. However, the evaluation of the
objective function 2.33 does not depend on the assumption that in all fractions the same
fluence profile is used. In principle it is possible to allow for a different fluence profile
in each fraction. If the systematic error is equal for all fractions, the global minimum of
2.33 corresponds indeed to a treatment plan with a fluence profile that is equal for all
fractions, as can be shown analytically. However, if the systematic error is reduced during
treatment, the situation changes. Let us consider the case that one position of the patient
Apy is measured before treatment and until fraction M another M — 1 measurements of the
positions Ap,, are performed. We now allow for two different fluence profiles, one for the
first M —1 fractions and the other for the remaining N — M + 1 fractions. The strategy for
the adaptation of the treatment plan is as follows: For the first fraction the best estimate
for the isocenter is Apg. This position is kept for the first M — 1 fractions. In fraction M
the fluence profile is changed and the isocenter is shifted to ﬁ Efy;ol Ap,,. This position
is kept for the remaining fractions.

Let us assume that the “true” mean position of the patient is 0 and that Apg is the
“planning CT measurement” of the tumor position. We place the isocenter for irradiation
at Apo which means that the systematic error for the first M — 1 fractions is As, = —Apy.
The probability for As, equals the probability to measure Apy, i.e

1 As?
P(A = = 2.58
(@silo) = e (558 ) (2.58)
In the meantime, we measure another M — 1 positions Ap,, of the patient and place the
isocenter at % Zﬂ/:)l Ap,. The systematic error is hence As, = —ﬁ ﬁ/[: Bl Ap,, for the
remaining fractions and its distribution is
1 As?
P(As.|lo) = —5—exp | — Ze (2.59)
21 L o2 2L 52
M M

In this special case, both fluence profiles can be optimized prior to treatment because the
actual values of the position measurements Ap,, are only needed for shifting the isocenter
in fraction M but not for inverse planning. For the optimization of the fluence profiles,
the information that the distribution width of the systematic error is reduced by a factor
1/ V/M is needed, but this is independent of the actual values of P, which are not known
at that time.

We want to minimize objective function 2.33 under the assumption of different systematic
errors and different fluence profiles for both parts of the treatment. In this case, the
expectation value of the cumulative dose can be written as

(De) = (M = 1)(Dy) + (N — M +1){D¢) (2.60)
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where the expectation values

(Dy) = [ | Dy(r|Ag)P(Ag|Asy, 0)P(Asylo) dAg dAs,, (2.61)
(De) = [ [ Dc(r|Ag)P(Ag|As.,0)P(As.|o)dAgdAs, (2.62)

describe the expectation value of the dose per fraction for the first M — 1 fractions and
the remaining N — M + 1 fractions, respectively. The expectation value of the cumulative
dose is thus M — 1 times the expectation value of the dose per fraction in the first part of
the treatment plus N — M + 1 times the expectation value of the dose per fraction in the
second part of the treatment. Dy(r|Ag) and D.(r|Ag) refer to the dose calculation using
the two fluence profiles ¢, and ¢., respectively. The probability distributions in equations
2.45, 2.58 and 2.59 apply. Further details for the evaluation of the expectation values can
be found in the appendix of [1]. The expectation value (D?) can be rewritten as

(D2) = (M —1)(Dg) + (N = M+1)(D)
+(M = 1)(M = 2)(DyDy)
+(N — M + 1)(N — M)(D.D,)

+2(N — M + 1)(M — 1){DyD,) (2.63)

with the following definitions of expectation values:
@ = [ [ Dirisg)P(dglas, a)P(aslo) dAgds, (2.64)
(D?) = //Dg(r]Ag)P(Ag\Ase, 0)P(As.|o) dAg dAs, (2.65)

o) = [ [ [ Dirisg)piiriag,)

X P(Agu|Asy, 0)P(Ag,|Asy, 0)P(Asy|o) dAg,, dAg, dAs, (2.66)

(D.D.) = ///D (r|Ag,)D.(r|Ag,)

xP(Agu|Ase, 0)P(Agy,|Ase, 0)P(As.|o) dAg, dAg, dAs. (2.67)

(DyD.) = ////Db r|Ag,)D.(r|Ag,)P(Ag,|Asy, 0) P(Ag,|As,, o)
X P(Asy|lo)P(As.|Asy, 0) dAg, dAg, dAsydAs, (2.68)

To calculate the expectation value (D, D.) we need the conditional probability P(As.|Asy, o)
for a systematic error As, in a fraction n > M given a systematic error As, in fraction p <
M. Since the measurement Ap, influences both systematic errors, As, and As, are not sta-
tistically independent. To derive P(As.|Asy, o) note that As, = —ﬁ[—AsbJery;ll Ap,].

Defining A§ = —ﬁ "' Ap, we can rewrite A§ = —[As.—-Asy]. The probability

distribution for As is glven by

- 1 As?
P(A8]r) = - exp (——2 1 02)
1 —
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We can now interpret the probability P(AS§|o) as the conditional probability P(As.|Asy, o),
i.e. P(A8|o)dAs = P(As.|Asy,0)dAs,. This gives

2 2
dAs 1 M7 (As, — LAs
P(Ase‘ASb,O') = det ( s) 5 exp <_ (Mfl) ( - M b) )
2M—l

. 2
dAs. ) 2m5r=0 o

1 (Ase — iAsb)2
S <_ ~ (2.69)

2T 25502

In the evaluation of (D,.) and (D?) it is assumed that the systematic errors As, and As,
are statistically independent of the random errors Ag, —As,,. This describes the situation
that all M measurements of the position, which are used to estimate the mean position,
are independent of the actual treatment positions, i.e. the measurements are performed at
arbitrary instants of time before fraction M. This assumption would not hold if the M — 1
position measurements were identical to the treatment positions in fraction 1 to M — 1.
In this case As. would depend on Ag, for u < M and the evaluation of the expectation
values (D.) and (D?) would be different.

Figure 2.14a shows the fluence profiles that minimize objective function 2.33 for M = 5
and N = 30. The optimization results in a dramatic dose reduction for the first M — 1
fractions where the mean position of the patient is poorly known. This is compensated for
by increasing the dose per fraction for the remaining fractions where the mean position is
more clearly defined.
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Figure 2.14: Adaptive inverse planning: (a) fluence profiles that minimize objective func-
tion 2.33 allowing for two different fluence profiles for both parts of the treatment (b)
fluence profiles for both periods of the treatment that minimize the modified objective
function 2.70

This result arises from the objective function that only considers the physical dose but not
the biological effect. In other words, optimising the cumulative physical dose alone is not
consistent with the well established fractionation scheme in the framework of an adaptive
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treatment planning. One could try to solve this problem by introducing a more biologically
motivated objective function based on cell survival models. However, we restrict ourselves
to the dose domain. We do not only want the total dose to be close to the prescribed
total dose but also the dose per fraction shall approximately be the same for all fractions.
We therefore consider the following heuristic modification of the first term in objective
function 2.33:

N

b= /0 a(r) [NZ [<Du> (r) — DpreS(r)]Q + [<D3> (r) — <DC>2 (T)} rdr

p=1

= /0 a(r)N(M — 1)[(Dy)(r) — Dpres(r)]Q’rdT‘
+/0 a(r)N(N — M 4 1)[(D)(r) — Dppes(r)]rdr

+ [ o) [(02) () = (0 ()] e (2.70)

This modified objective function combines the objective of a minimal variance of the total
dose and the demand that the expectation value of the dose per fraction is close to the
prescribed dose per fraction for every single fraction. As a boundary condition the modified
objective function 2.70 reduces to objective function 2.33 if the fluence profile is required
to be equal for all fractions. Figure 2.14b depicts the optimal fluence profiles according to
2.70 for M = 5 and N = 30. The result is now consistent with the fractionation scheme
and corresponds to what one would intuitively expect. The fluence profile for the early
fractions is more expanded than the one for later fractions, since the systematic error is
larger for the first part of the treatment. However, the fluence profile for fraction 1 to
4 is less expanded compared to the fluence profile in 2.7a for M = 1, although in both
cases the same systematic error is expected. In addition, the profile is quite different from
the result one would obtain if objective function 2.47 was evaluated for a total number of
N = 4 fractions. In this case the fluence profile would be much smoother. In summary:
To determine the optimal fluence profile for fraction 1 to 4 one has to take into account
that the treatment is continued for another 26 fractions with a reduced systematic error.

2.7.1 Comparison to section 2.5

Finally, we would like to compare the adaptive strategy described above to the planning
concept in section 2.5, i.e. we compare three different scenarios:

1) adapting the isocenter and the fluence profile in fraction 5
(fluence profiles in figure 2.14b),

2) preparing only a single measurement of the position
(fluence profile in figure 2.7a for M = 1) and
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3) preparing all 5 measurements before treatment
(fluence profile in figure 2.7a for M = 5).

Figure 2.15 shows the expectation values of the total dose und their variances for the
three different scenarios and N = 30. As expected the reduction of the systematic error
by preparing more than one measurement of the position significantly improves the dose
distribution. However, preparing all measurements before the first fraction does not lead
to a major benefit compared to the adaptive strategy. Both planning procedures end up
with almost the same expectation value of the dose and the same variance. This can be
interpreted as a positive result since the adaptive strategy will be more convenient for an
implementation in a clinical environment. The additional measurements of the position
(corresponding to the additional CT scans of the patient) can be performed at arbitrary
times before fraction M (and not necessarily before treatment planning) without major
deterioration of the dose distribution.
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Figure 2.15: Comparison of the planning conceps in section 2.5 and 2.7: (a) expectation
values of the dose for three different treatment procedures (b) corresponding variances of
the dose

2.7.2 Further comments

Different papers tried to determine the optimal point in time when to adjust the treatment
plan for a single adaptation strategy. Bortfeld et al [29] minimized the overall expectation
value of the systematic error and concluded that an adaptation in fraction 5 is optimal for
typical cases. Birkner et al [23] considered an adaptive planning strategy for prostate cases
that starts with a conventional 1cm uniform CTV-to-PTV extension for the first M — 1
fractions. In fraction M a new treatment plan is optimized based on a probability distribu-
tion of patient geometries that is predicted from the M CT scans. They also came to the
conclusion that M = 5 is an adequate number of images, since for a later adaptation the
improved treatment plan affects a smaller number of fractions. Yan et al [14] defined a new
planning target volume (PTV) for fraction M to N on the basis of the convex hull of the
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daily CTVs in the first M —1 fractions. They also found that M = 5 is adequate to signifi-
cantly reduce the additionally required safety margin to fulfil a certain dosimetric criterion.

Our described concept optimizes both fluence profiles prior to the process of gathering im-
age data. This is possible in this particular case because the actual values of the position
measurement are not explicitely needed for treatment planning. In general this is not pos-
sible. Generally, one would like to update the knowledge about the magnitude of motion
o, which is based on population based knowledge when only the planning CT exists. For
the second fluence profile one would like to incorporate the patient specific parameter g4
which requires the actual values of Ap,. Therefore, a second optimization step before
fraction M may be required.

In this section the measurements Ap,, are used to shift the isocenter. Realistically, proba-
bilistic treatment planning will possibly not deal with setup errors which can be corrected
by a shift of the patient, but with non-rigid internal organ motion. In this case one may
not want to correct for the systematic error by shifting the patient but by adapting the
fluence profiles.

In summary, this section demonstrated an adaptive inverse planning approach by rigor-
ously evaluating quadratic objective functions based on expectation value and variance of
the dose. This was done for idealized assumptions, i.e. a rigid translation of the patient
and a known magnitude of motion, which allowed us to analyze generic features of the
approach. The application to real clinical situations is, however, not straightforward.






Chapter 3

Application to prostate cancer

This section deals with the application of probabilistic treatment planning to prostate can-
cer. The movement of the prostate is considered as interfractional motion. The concept
developed in chapter 2 is now transferred to clinical data. Probabilistic treatment planning
was implemented into a research version of the inverse planning tool “KonRad” developed
at the german cancer research center [30, 31]. Since the major conceptual ideas have been
discussed in chapter 2, the focus of this chapter is the presentation of results for clinical
data.

3.1 Preliminaries

We consider IMRT treatments with a 6 MV linear accelerator with an internal multi leaf
collimator (MLC). The resolution of beamlets (bixels) is (10 mm)? at the isocenter plane,
the resolution of volume elements (voxels) is (2.6 mm)3. We assume that several CT scans
of the patient exist, one planning CT scan and several verification images. For all results
presented in this chapter we consider the same patient and an identical irradiation ge-
ometry. We optimize a treatment plan with 7 coplanar beams with equidistant angular
separation at 0°, 52°, 103°, 154°, 206°, 257° and 309°.

In the presence of internal organ movements and deformations we distinguish two coordi-
nate systems:

1) The static coordinate system: This coordinate system is fixed in the treatment room.
When the patient is deformed, a certain volume element of tissue is changing its
coordinate in the static coordinate system, i.e. it is moving with respect to the static
coordinate system.

2) The anatomy-based coordinate system: This coordinate system is attached to the
deforming tissue. The anatomy-based coordinate system is warped with respect to
the static coordinate system when the patient is deformed. A certain volume element
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of tissue always remains at the same position with respect to the anatomy-based
coordinate system.

The planning CT scan will represent a reference image, i.e. for the planning CT both
coordinate systems are identical. To display a dose distribution in the anatomy-based co-
ordinate system we adopt the planning CT. The warping of the anatomy-based coordinate
system with respect to the static coordinate system will not explicitely be considered or
parameterized. However, it formulates the idea behind the concept.

The dose distribution in the static coordinate system will in general change when the pa-
tient changes his geometry. In this paper, we will neglect changes of the dose distribution
in the static coordinate system. The validity of this approximation depends on the clinical
indication and the type of radiation. E.g. the approximation will be poor and invalid if the
treatment of lung tumors with proton beams is considered. However, for treating prostate
patients with photons the approximation seems to be reasonable. Air cavities in the rec-
tum cause the largest modifications of the dose distribution in the static coordinate system.

At the german cancer research center (DKFZ) prostate patients can be immobilized using
body casts made of self-hardening bandages [32, 33]. Therefore, the outer patient contour
is considered equal for all fractions. A laser system is used for patient positioning. In
addition, the Siemens CT-on-Rails system located within the treatment room can be used
for online correction of setup errors. In summary: we finally want to deal with movements
of the prostate that are purely due to internal tissue movements and deformations. The
tissue deformation in turn mainly arises from changes in the filling of rectum and bladder.

We use the Gaussian motion model derived in section 2.1 to model the interfractional
movements of the prostate. Chapter 2 considered rigid translations of the entire patient
and the geometric state of the patient could be parameterized by the random variables Ag,
As and o. For the prostate, we finally want to be able to deal with internal deformations
of the tissue. This can be realized by assuming a seperate Gaussian motion model for
each individual voxel. The movement of each individual voxel is described by a Gaussian
distribution parameterized by the mean position of the voxel and a voxel-dependent co-
variance matrix to describe the random motion of the voxel in three spatial dimensions.
The Gaussian model is not only applied for simplicity purposes but can be “derived” from
an extremum principle. In terms of information theory, the Gaussian distribution satisfies
Jaynes principle of the unbiased guess, also referred to as the maximum entropy principle
[26]. This means the Gaussian distribution minimizes the Shannon information under the
assumption that the requested distribution can be described by an average value and a
mean deviation from the average value. Hence, the application of a different type of prob-
ability distribution would have to be justified by detailed experimental data.

As mentioned in section 1.4, the quadratic objective function 1.11 can be evaluated by
considering each voxel seperately. The expectation value and the variance of the dose in a
moving voxel only depend on the movement of this individual voxel. They do not depend
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on the movement of any neighboring voxel !. Therefore, correlations between the movement
of different voxels do not need to be considered. In fact, the movement of different voxels
is of cause highly correlated. This means, the probability distribution for finding a certain
patient geometry, i.e. a set of positions for all voxels {r;}, does not factorise:

Pg(r1,79,73,...) # Pi(r1)Pa(ry) P3(rs3) . .. (3.1)

For the calculation of expectation value and variance that does not cause problems since
only the marginal probability distributions

Pz(rz) :/"'/Pg(Tl,TQ,Tg,...)drl...dri_ldri+1... (32)

occur, where P;(r;) is assumed to be Gaussian. When non-local objective functions, e.g. a
non-linear EUD or TCP based objective functions shall be applied, the current implemen-
tation had to be modified. In this case it may be necessary to parameterize the probability
distribution of patient geometries as a whole instead of looking at the movement of in-
dividual voxels. An approach to parameterize tissue deformations based on a principal
component analysis (PCA) of volume element displacements was presented [34, 35]. It is a
feature of the quadratic objective function that it can be evaluated without consideration
of the patient geometry as a whole.

3.2 Accounting for random errors

In this section, we consider the simplified case which neglects systematic errors and un-
certainties in the magnitude of motion. Only random errors are considered. Section 3.2.1
describes the implementation of the motion model into the inverse planning programm
and the evaluation of the objective function. Sections 3.2.2 to 3.2.7 provide the results
obtained. The content of this section has been published as a paper [3].

3.2.1 Implementation of probabilistic optimization for random
errors

We describe the evaluation of the expectation value of the dose, the variance and the
objective function. Integrals to calculate expectation values are transformed into sums
which are evaluated on the relatively course voxel grid, leading to an approximation of the
Gaussian motion model. From a practical point of view, the integration of the variance
term into the gradient optimization may be the most interesting part.

IThis requires the approximation that the dose distribution in the static coordinate system is constant
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The expectation value of the dose distribution

The dose distribution in the static coordinate system is determined by the fluence maps
alone. Dose calculation is performed on the planning CT scan. To calculate the expectation
value of the dose distribution in the anatomy-based coordinate system it is sufficient to
consider every volume element (voxel) independently. Let i denote the index of a voxel
in the anatomy-based coordinate system. The voxel i is moving within the static dose
distribution during the course of treatment. The expectation value of the dose in the
moving voxel ¢ is approximately given by

(D;) => Di'py; (3.3)

Djmt denotes the value of the static dose distribution in the static voxel j and P;; is the
probability for finding the moving voxel ¢ at the position of the static voxel j. We assume
that voxels move according to a Gaussian distribution. The probability for finding the
voxel ¢ at position 7 in the static coordinate system is given by

Pr) = Y4 o (—%(Si eV — 'r)) (3.4)

S, denotes the estimated mean position of the moving voxel i in the static coordinate
system and C; ' denotes the inverse of the covariance matrix C; of the displacements of
the voxel i. The probability F;; is hence determined by

Pij = %exp (-%(Sl — ’l"j)TC;I(SZ' — ’l"j)) (35)

with the normalization constant Z; = >, exp (—=3(S; —r))TC;'(S; — r;)). The vector r;
denotes the central position of the static voxel j.

Estimating motion model parameters

To evaluate equation (3.5) one has to estimate the 3-dimensional vectors S; for the mean
position of every moving voxel and 6 components of the covariance matrix C;. For a
reasonable application, these parameters have to be estimated from patient specific mea-
surements, i.e. the estimation should be based on the planning CT and the verification
CT scans of the patient. An elastic image registration algorithm could be used to map
the additional CT scans onto the planning CT. The algorithm provides measured positions
p! for all moving voxels. These positions are used to estimate the mean position of every
voxel as

1 M
L= E H
SZ M le pz (36)
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where M is the number of CT scans including the planning CT. The estimate of the
covariance matrix is given by

M
J— 1 H_ g, b g\T

where (p!' — S;)- (p}' — S;)T is the matrix product of a three dimensional column vector and
a row vector which yields a 3 x 3-matrix. Due to ongoing work on elastic image registration
algorithms in our department, we have not yet implemented this approach. In this thesis,
we choose constant values for the covariance matrix for all voxels in order to emphasize
the generic features of the inverse planning concept. However, the current implementation
allows for voxel dependent covariance matrices and is not in principle limited to constant
movements for all voxels. For the results presented in section 3.2.3 to 3.2.5 we assume a
standard deviation of 8mm in AP-direction and 5mm in both CC- and LR~direction. The
mean position of a voxel is assumed to be identical to the position in the planning CT.
In section 3.2.6 we additionally consider the cases of very large and rather small motion
amplitudes.

The variance of the dose distribution

The expectation value of the dose in the anatomy-based coordinate system will not be
realized after the actual treatment. The dose distribution is uncertain, i.e. the expectation
value of the dose in each moving voxel is associated with a standard deviation. The variance
of the dose is due to the sparse sampling of the probability distribution for the random
error during a finite number of fractions. The variance of the dose in the moving voxel ¢ is
given by

V= — ((D?) — (D3)?) (3.8)

where NN is the number of fractions and
(D7) => (Dj*)P; (3.9)
J

Equation 3.8 defines the variance of the expected cumulative dose after the treatment of N
fractions. The standard deviation of the dose in vovel i that will be displayed on various
pictures in sections 3.2.3 to 3.2.6 is defined as the square root of the variance, i.e.

SD, = V¥ = (D)~ (D) (3.10)
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The objective function

For the optimization of the fluence maps we adopt the following quadratic objective func-
tion:

E = Z Qcry [((Dz> - DCTV)2 + Vi}
1€CTV
31 YT an (D) — Dy (3.11)
n i€OAR,

where ((D;) — D**) . = ((D;) — D**) for (D;) > D*** and ((D;) — D***); = 0 for
(D;y < D™ Dery is the dose prescribed to the tumor, D" is a maximum dose for the
organ at risk (OAR) with index n and acry and o, are penalty factors for the CTV and
organs at risk, respectively. Contoured organs at risk are rectum, bladder and the pelvic
bones. The unclassified tissue that surrounds the CTV and the contoured organs at risk
is also treated as an organ at risk.

The first term in objective function 3.11 aims to securely deliver a homogeneous dose to
the CTV. It represents the sum of the variance of the dose and the quadratic difference
of expectation value and prescribed dose. The second term aims to minimize the dose
in the adjacent organs at risk. In the limit N — oo the variance term in the objective
function 3.11 vanishes. This corresponds to optimizing the expectation value of the dose
in the anatomy-based coordinate system alone. The variance term is incorporated only for
the CTV but not for the OARs. There are different motivations for that. First, the dose
delivered to the OARs should be as low as possible. One does not want to ensure that a
certain dose is delivered to the OARs. Second, the variance in the healthy tissue adjacent
to the tumor is an intrinsic consequence of the large dose gradients which are desired at
the edge of the tumor. It cannot be reduced significantly anyhow. Section 6.1 outlines the
evaluation of a modification of objective function 3.11.

Evaluation of the objective function

We discuss the numerical methods used to evaluate and minimize the objective function
3.11. For the dose calculation, we adopt a dose contribution matrix concept, i.e. the dose
contribution of a beamlet to a voxel for unit fluence is precalculated and stored as a matrix
element. We consider the static dose distribution first: Let G54 be the dose contribution
of the beamlet a to the static voxel j so that

Dyt =Y " Gt (3.12)

a

holds, where ®, is the fluence of beamlet a. The expectation value of the dose in the
anatomy-based coordinate system can be calculated by precalculating an effective dose
contribution matrix G;, according to

Gio =Y Gil'Py; (3.13)

J
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so that

= Gia®a (3.14)
holds.
Taking into account the variance in the optimization is the most challenging part. The

variance of the dose in the anatomy-based coordinate system can be expressed as a function
of the beamlet weights by defining a variance contribution tensor @;ns. From

1
Vo= 5 (0h- o))
- (Z(Dm ) (Z G ) (3.15)
|\ J
X -
= N (Z (Z G;?tq)a)(z GStat ) (Z Gzaq) ) <Z Gz,@q)ﬁ)]
L\ J o B B
we obtain |
Vi=+ Zﬁ Qiap®p®a (3.16)
with the definition
Qia,@’ — Z (Gstathtat ) - GiaGi,B (317>

J

The variance contribution tensor ();s stores the variance contribution of a beamlet pair to
a voxel for unit fluence. The dose itself is a linear function of the fluence but the variance
is a quadratic function of the dose. Therefore, the evaluation of (D?) leads to a coupling
of two beamlets.

The objective function (3.11) can now be written in the form

2
Z acrv (Z Gia®o — DCTV> + % Z QiapPaPs
«a a,B

1€CTV
2
21 D o (Z Gia®o — DZ““) (3.18)
n 1€OAR, @ +

The objective function is a quadratic function of the beamlet weights ®, and the mini-
mization problem can be solved by standard gradient methods.

The number of elements in the variance contribution tensor is in the order of “Number of
voxels” times “Number of bixels squared”. Due to limitations of RAM storage capacity
and computation time we do not store the variance contribution tensor for all voxels. We
restrict ourselves to 5% of the CTV voxels that are randomly extracted. The contribution
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to the variance term in the objective function is then multiplied by a factor of 20. The
required RAM storage capacity for the prostate case discussed in this chapter is in the
order of 1GB. The fraction of CTV voxels which is incorporated into the variance term
was increased to up to 20%. Naturally, the sampling of the CTV voxels in the variance
term has some impact on the optimization result. However, deviations between two static
dose distributions occurred mainly in the outer regions and were small within the CTV
where the dose kernels of many beamlets intersect. The optimization results presented in
this chapter can be considered representative.

Treatment plan evaluation

The evaluation of a treatment plan, even in the absence of organ motion, is inherently
a difficult task. In the presence of organ movements, the evaluation of a treatment plan
becomes much more complex. In the static case without motion, one has to evaluate a
single 3D dose distribution. Probabilistic treatment planning to account for random errors
as presented in this section yields three 3D distributions:

1) The expectation value of the dose distribution in the anatomy-based coordinate sys-
tem.

2) The standard deviation of the dose distribution in the anatomy-based coordinate
system.

3) The static dose distribution in the static coordinate system.

Basically, one would like to consider the dose distribution in the anatomy-based coordinate
system that will actually be delivered to the patient. It is an intrinsic consequence of the
statistical nature of the problem that we do not precisely know this distribution. It has to
by assessed by appropriate surrogates. Each of the three distributions listed above provides
some information on how the dose distribution that will actually be delivered may look
like.

First of all, one may evaluate the expectation value of the dose distribution in the anatomy-
based coordinate system since this represents the best estimate of the dose that will be
delivered to the patient. However, it is of limited use to look at the expectation value
only. An optimal expectation value is beneficial only when the related variance is small.
Otherwise, the actually delivered dose may differ significantly from the expectation value.
Therefore, one should also look at the standard deviation of the dose. Finally, the static
dose distribution assesses some kind of worst case scenario. The static dose distribution
displays the dose that would be delivered if the patient was always in the same configuration
than in the planning CT. In the optimization process only the dose in the anatomy-based
coordinate system is considered explicitly. The optimization results in fluence maps that
yield a homogeneous expectation value of the dose in the CTV under the assumption that
internal organ motion is present. In general, this leads to an inhomogeneous static dose
distribution.
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Additional remarks

The dose-volume histogram (DVH) is a global property of a dose distribution. To calculate
the “expectation value of the DVH”, one has to consider the geometry of the patient
as a whole. Therefore, the expectation value of the dose distribution and the variance
distribution do not contain the information about the expected DVH. One can easily
calculate the DVH of the expectation value of the dose in the anatomy-based coordinate
system and the DVH of the static dose distribution. In addition, one can calculate a
standard-deviation-volume histogram (SDVH) of the standard deviation distribution in
analogy to the classical DVH. These histograms can be used to evaluate the obtained
treatment plan but they will not provide the “expectation value of the DVH”.

3.2.2 Treatment planning for prostate patients

In the following subsections 3.2.3-3.2.5 we demonstrate the results of probabilistic treat-
ment planning accounting for random errors when applied to prostate patients. We assume
uncorrelated movements of 8 mm standard deviation in AP-direction and 5 mm in both
CC-direction and LR-direction for all voxels in the region of interest near the prostate. The
mean position of all voxels is assumed to be identical to the position in the planning CT.
The variance and hence the objective function (3.11) depends on the number of fractions
N. Therefore, we obtain different treatment plans for different numbers of fractions. We
compare three different cases: N =1, N = 30 and the limit N — oo which corresponds to
the optimization of the expectation value alone without consideration of the dose variance.
All treatment plans shown in section 3.2 are optimized for the same set of optimization
parameters, i.e. penalty factors and maximum dose constraints are kept the same. Only
the parameter N is varied.

3.2.3 Results: N = 30

Figure 3.1 shows the obtained treatment plan that was optimized for N = 30 fractions.
Figure 3.1a and 3.1b show the expectation value of the dose in the anatomy-based coordi-
nate system for a transversal slice and the central slice in sagittal view, respectively. Due
to the movement, dose gradients at the edge of the tumor are less steep when compared
to conventional treatment planning based on a static geometry. The expectation value of
the dose can be interpreted as the best prediction for the dose that will be delivered to a
moving voxel.

However, after the actual treatment of 30 fractions the expectation value of the dose will
not be realized. Figure 3.1c and 3.1d show the standard deviation of the dose due to a
finite number of fractions for a treatment course consisting of 30 fractions. The standard
deviation is large where steep dose gradients occur. Therefore, the largest values appear
at the edge of the tumor and the adjacent healthy tissue. The largest value corresponds
to approximately 7% of the prescribed tumor dose. However, figure 3.1c and 3.1d provide
only a lower boundary for the standard deviation since uncertainties in the knowledge of
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the model parameters As; and o; are not considered. In analogy to the dose-volume his-
togram, figure 3.2a shows the standard-deviation-volume-histogram (SDVH). The dashed
line corresponds to figure 3.1c and 3.1d, i.e. N = 30. The median standard deviation in
the CTV is in the order of 2% of the dose prescribed to the tumor. For a large population
of identical patients, the standard deviation can be interpreted as the average variation of
the dose in moving voxels among different patients of the population. For the individual
patient, the standard deviation can be interpreted as the uncertainty of the dose prediction
provided by the expectation value.

Figure 3.1e and 3.1f show the corresponding static dose distribution. This dose distribution
would be delivered if the patient was not moving during the actual course of treatment,
although assumed in the treatment planning process. The static dose distribution is inho-
mogeneous within the CTV. Within 30 fractions, these inhomogeneities are partly averaged
out when the prostate is in different locations in different fractions. Figure 3.3a shows a
dose profile in AP-direction in the lower part of the prostate. In this region, the static dose
distribution is characterized by a dose peak at the edge of the CTV near the transition to
the rectum. The amplitude of the peak is in the order of 120% of the prescribed tumor
dose. The dose peak helps to deliver the prescribed dose to the CTV without shifting
the dose gradient of the static dose distribution too much towards the rectum. To avoid
overdosage inside the CTV, the peak is followed by a dose valley of approximately 90% of
the prescribed dose. The modulation pattern of the static dose distribution is determined
by the magnitude of motion and the geometry of the CTV, i.e. the shape and location
of inhomogeneities is essentially determined by the first term in objective function 3.11
that minimizes the difference of expected and prescribed dose. The amplitude of the inho-
mogeneities is mainly determined by the variance term since large inhomogeneities cause
large dose variances in the CTV. The variance term automatically limits the amplitude of
modulation. The DVH of the static dose distribution provides averaged information on the
magnitude of modulation. Figure 3.2b shows the DVH of the static dose distribution for
the CTV (dashed line). The amplitude of dose peaks goes up to approximately 125% of
the prescribed dose. The smooth drop-off of between approximately 90% and 115% marks
the dose range of prevalent modulations. In contrast, a steep drop-off near 100% would
indicate the absence of modulations.

Due to the static dose modulations, the dose delivered to a certain element of tumor tissue
will not be the same in each fraction. This changes the established fractionation scheme,
however, the related biological effect is not discussed in this thesis. The biological effect
of the non-uniform fractionation could e.g. be assessed in the framework of the linear-
quadratic cell survival model by approximating the expectation value of the equivalent
uniform fraction dose as the sum of the expectation value of the physical dose and a
variance-dependent perturbation [36].

3.2.4 Results: N =1

Figure 3.4 shows the 3D distributions for a treatment plan that was optimized for a single
fraction, i.e. N =1 was used as a parameter value in the objective function 3.11 applied
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Figure 3.1: 3D distributions for a treatment plan optimized for 30 fractions (a-b) expec-
tation value of the dose (c-d) standard deviation of the dose (e-f) static dose distribution
(dose legend: see figure 3.8a)
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Figure 3.2: (a) Standard-deviation-volume-histogram (SDVH) of the CTV for the treat-
ment plans optimized for N =1, N = 30 and N — oo (b) Dose-volume-histogram of the
static dose distribution for the CTV for the treatment plans optimized for N =1, N = 30
and N — oo

for the optimization. However, realistically the patient will still be irradiated with 30
fractions. Therefore, the standard deviation in figure 3.4c and 3.4d is normalized to 30
fractions to facilitate a comparison with figure 3.1, i.e. after the optimization we recalculate
the standard deviation based on the static dose distribution while setting N = 30 in
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Figure 3.3: Profiles in AP-direction for the treatment plans optimized for N =1, N = 30
and N — oo located in the central slice in sagital view and the transversal slice shown in
figure 3.1a: (a) for the static dose distribution (b) for the distribution of the expectation
value of the dose

equation 3.10. We start with a discussion of the static dose distribution in figure 3.4e
and 3.4f. The characteristic dose inhomogeneities in figure 3.1e and 3.1f have disappeared.
Instead, the static dose distribution represents a safety margin like solution. The widely
homogeneous high dose region is expanded towards the normal tissue, especially at the
transition to the unclassified normal tissue. However, a decrease of the penalty factor for
the rectum would also shift the dose gradient towards the rectum. For a single fraction,
initial dose inhomogeneities could never be compensated for by later fractions. This is
measured by the variance term in the objective function that hence effectively suppresses
dose modulations. The homogeneity of the static dose distribution is also clarified by the
dose profile in AP-direction in figure 3.3a (solid line). The absence of modulation of the
static dose distribution reduces the standard deviation of the dose in the anatomy-based
coordinate system (figure 3.4c-d). This can also be seen in the standard-deviation-volume-
histogram in figure 3.2a (solid line). For roughly 70% of the CTV, the standard deviation
due to a finite number of 30 fractions is no greater than 1% of the prescribed dose. The
dose delivered to the CTV is well predictable which clearly is a favorable feature. However,
the downside of the lower standard deviation is a worsening of the expectation value of
the dose. Dose gradients at the edge of the tumor are smoother, leading to a worse target
coverage and a worse sparing of healthy tissues. This can be seen from the isodose lines
in figure 3.4a and 3.4b when carefully compared to 3.1a and 3.1b. The observation is
supported by figures 3.3b and 3.5. Figure 3.3b shows a dose profile of the expectation
value of the dose in AP-direction. The dose gradients are significantly flattened for the
treatment plan optimized for N = 1 (solid line) when compared to the treatment plan
optimized for N = 30 (dashed line). Figure 3.5 shows the dose-volume-histogram of the
expectation value of the dose. Comparing the DVH for N = 1 and N = 30 in particular
shows the increase in dose delivered to the rectum.
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Figure 3.4: 3D distributions for a treatment plan optimized for one fraction (a-b) expec-
tation value of the dose (c-d) standard deviation of the dose (e-f) static dose distribution
(dose legend: see figure 3.8a)
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Figure 3.5: Dose-volume-histogram (DVH) of the expectation value of the dose distribution
for the treatment plans optimized for N =1, N =30 and N — oo

3.2.5 Results: N — oo

Figure 3.6 shows the 3D distributions for a treatment plan that was optimized while the
variance term was omitted in the objective function. This corresponds to the limit N — oo.
The standard deviation in figure 3.6b is, however, normalized to 30 fractions. The static
dose distribution (figure 3.6¢) shows that the amplitude of modulation is increased when



52 Application to prostate cancer

compared to the optimization for N = 30. This becomes obvious also in the static dose
profile in AP-direction in figure 3.3 (dotted line). Dose peaks rise up to 135 % of the
prescribed dose, valleys go down below 80 %. This increase in modulation increases the
standard deviation of the dose (see figure 3.6b in comparison with 3.1d and 3.4d). The
standard-deviation-volume-histogram in figure 3.2a clearly shows the increase of the median
standard deviation in the CTV. On the other hand, the expectation value of the dose
distribution is improved. When compared to the optimization for N = 30 fractions, dose
gradients at the transition between CTV and healthy tissue become slightly steeper (see
the expectation value dose profile in figure 3.3b). The DVH of the expectation value
(figure 3.5) indicates better sparing of the rectum for similar target coverage. However,
the improvement is rather small and the increase of the variance of the dose makes the
assumed benefit of the improved expectation value quite questionable.

Figure 3.6: 3D distributions for a treatment plan where only the expectation value is
optimized (limit N — o) (a) expectation value of the dose (b) standard deviation of the
dose (c) static dose distribution (dose legend: see figure 3.8a)

3.2.6 Results: small and large organ movements

For illustrative purpose we also discuss the two extreme cases of very large amplitudes of
organ movements and rather small amplidudes of motion. For the large movement sce-
nario we adopt standard deviations for voxel displacements of 10 mm in AP-direction and
8 mm in both CC- and LR-direction. Figure 3.7 compares the static dose distributions
for treatment plans optimized for N = 30 (3.7a,c,e) and N — oo (3.7b,d,f). It turns out
that the magnitude of inhomogeneities is much higher now for N — oo when compared to
N = 30. The amplitude of the most pronounced dose peak exceeds 200% of the prescribed
tumor dose. Dose valleys go down below 50% of the prescribed dose. Figure 3.9a shows the
respective DVH of the static dose distributions. The increase in modulation causes larger
standard deviations of the dose as depicted in the standard-deviation-volume-histogram in
figure 3.9b and the 3D distributions in figures 3.7c-d. For organ movements of 8 mm and
5 mm motion amplitude as discussed in sections 3.2.3-3.2.5, such large modulations of the
static dose distribution did not occur. When comparing the static dose distributions in
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figure 3.1f and 3.6¢, the difference is rather moderate, i.e. the variance term in objective
function 3.11 has a limited impact on the optimization result. This changes if large organ
movements are considered. In this case, the treatment plans optimized for N = 30 and
N — oo differ dramatically. For such large movements, the optimization of the expectation
value alone would clearly be insufficient since it produces inhomogeneities in the static dose
distribution that would not be fully compensated for by later fractions.

For the small movement case we adopt standard deviations for voxel displacements of 3 mm
in AP-direction and 2 mm in both CC- and LR-direction. Figures 3.8b and 3.8c compare
the static dose distributions for treatment plans optimized for N = 30 and N — oo. There
are only minor differences between the two static dose distributions. The treatment plans
optimized for N = 30 and N — oo are almost identical, i.e. the variance term in the
objective function has a negligible impact on the optimization result for such values of N.
Figure 3.9a shows the DVH of the static dose distributions. The DVH of the treatment
plan optimized for N = 30 can not be distinguished from the DVH of the treatment plan
optimized for N — oo. Since the static dose distributions are almost identical, the expec-
tation values and the standard deviations of the respective treatment plans are almost the
same as well. Figure 3.9b shows the standard-deviation-volume-histogram, where there is
again no visible difference between the treatment plans optimized for N = 30 and N — oo.
In summary, we observe that treatment plans optimized for N = 30 and N — oo differ
strongly for large amplitudes of organ motion, but for small movements both treatment
plans are almost identical. We suppose that this effect can to some extent be explained by
the resolution of beamlets which was (10 mm)? in this study. The length scale on which
modulations in the static dose distribution have to occur is determined by the magnitude
of movements. The required distance of a dose peak from a dose valley is in the order of
the standard deviation of the voxel displacements so that initial inhomogeneities can be
compensated for by later fractions. With a beamlet resolution of (10 mm)?, dose modula-
tions can not be shaped sufficiently precise as required for small movements even though 7
beams are assumed for treatment planning. Hence, large inhomogeneities are not formed
in the optimization, independent of the variance term in the objective function. We hy-
pothesize that the optimization process would be more sensitive to the parameter N if a
smaller beamlet resolution was applied, even for relatively small amplitudes of motion. At
the current stage, we could not verify this hypothesis by simulations due to limitations of
RAM storage capacity. For sufficiently small movements, the ability to form modulations
of the static dose distribution is of course limited due to lateral scattering of photons.

3.2.7 Discussion

Section 3.2.3 to 3.2.6 intend to emphasize the generic features of probabilistic treatment
planning as an off-line strategy to incorporate organ movements in inverse planning. With
the objectives of sparing healthy tissues from dose burden while the dose coverage of the
tumor is not compromised, the optimization concept leads to inhomogeneous dose distribu-
tions in the static coordinate system. If the internal organ movements during the treatment
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Figure 3.7: 3D distributions for a treatment plan incorporating large tumor motion: (a,c,e)
optimized for N = 30 (b,d,f) optimized for N — oo (a-b) expectation value of the dose
(c-d) standard deviation of the dose (e-f) static dose distribution (dose legend: see figure
3.8a)
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Figure 3.8: (a) color coding for dose and standard deviation (in % of prescribed dose)
(b-c) static dose distributions for a treatment plan incorporating small tumor motion (b)
optimized for N = 30 (c) optimized for N — oo

course occur as predicted at the time of treatment planning, these dose inhomogeneities
will be smoothed out. Consequently, a more or less homogeneous dose distribution in the
anatomy-based coordinate system will be delivered to the patient, characterized by the
expectation value of the dose. In reality, the expectation value of the dose will not be
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Figure 3.9: (a) Dose-volume-histograms of the static dose distribution for the CTV for
treatment plans incorporating large/small movements, optimized for N = 30 and N — oo
(b) corresponding standard-deviation-volume-histogram (SDVH) of the CTV

realized. We have characterized the uncertainty of the treatment plan by the standard de-
viation of the dose distribution. The standard deviation within the CTV is closely related
to the magnitude of modulation of the static dose distribution. The parameter N, the
number of fractions, can be used to control the standard deviation of the dose during the
optimization process, which in turn controls the modulation of the static dose distribution.
Modulations of the static dose distribution potentially allow for a better sparing of healthy
tissue since they lead to steeper dose gradients in the expectation value of the dose. On
the other hand, these modulations bear risks. When organ movements during the actual
treatment are significantly smaller than assumed at the time of treatment planning, the
delivered dose distribution in the patient may be strongly inhomogeneous. In the limit
that no movements occur, the static dose distribution will be delivered to the patient. The
treatment planner has to find a reasonable trade-off between risk and potential benefit. By
including the variance of the dose into the objective function, we, in principle, define the
optimal trade-off mathematically when N is the actual number of fractions. From a math-
ematical point of view, the optimal treatment plan is simply defined by the minimum of
the objective function. However, optimizing the expectation value of a quadratic objective
function corresponds to optimizing the average treatment outcome. This is not necessarily
appropriate to avoid worst case scenarios, i.e. bad cumulative dose distributions for some
patients. From this point of view, the parameter N could be considered as a regulariza-
tion parameter which is used to control the trade-off between potential benefit and risk -
although this does not represent the initial intention.

For small amplitudes of internal prostate movements in the order of 2-3 mm standard de-
viation, the inverse planning concept based on probability distributions is less sensitive to
the parameter N when a beamlet resolution of (10 mm)? is applied. This may indicate
that the variance term in objective function (3.11) is less important for most patients and
that an optimization of the expectation value of the dose may be sufficient. However,
we hypothesize that the situation may change if IMRT was planned for a multi leaf col-
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limator with smaller leaf width. In this case, modulations of the static dose distribution
could be shaped more precisely and may strongly depend on N even for relatively small
movements. In addition, the inclusion of the variance in the objective function allows for
generalizations, i.e. uncertainties in the magnitude of motion and systematic errors can be
incorporated (sections 3.3-3.6).

In chapter 2.4 we analyzed probabilistic treatment planning to incorporate random errors
for an idealized geometry. The prostate patient study in this section has now reinforced
the major results of the previous chapter.

3.3 Dose calculation in the presence of systematic er-
rors and an uncertain magnitude of motion

This section describes the inclusion of systematic errors and an uncertain magnitude of
motion into the calculation of the expected dose and its variance. Two seperate tools
have been developed or modified for this purpose. In order to incorporate these additional
uncertainties into the optimization of the treatment plan, the inverse planning tool Kon-
Rad was extended. In addition, an external program was implemented which calculates
expected dose and variance based on the static dose distribution of a previously optimized
treatment plan. This tool is independent of the optimization of the treatment plan. The
implementation of this program was achieved by a diploma thesis at DKFZ [9].

3.3.1 A simulation and visualization tool for assessing dose un-
certainties

We briefly describe the mathematical basis and the output of the simulation tool. The
mathematical basis is mainly governed by section 2.1 and this section will only recall
the results but not their derivation. One aim of the simulation tool is the calculation
of expected dose and variance which is done by simulating a large number of treatment
scenarios. Mathematically, this corresponds to a Monte Carlo integration of the respective
integrals.

The incorporation of uncertainties in the magnitude of motion was implemented for uncor-
related movements in the three spatial dimensions, i.e. the covariance matrix C; is assumed
to be diagonal for each voxel:

o2 0 0
Ci=| 0 0% 0 (3.19)
0 0 o
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The expectation value of the cumulative dose in the moving coordinate system is given by

/ /( ZDW ’“u)HPTu\ASZ,GZ) (3.20)

x P(As;|o;, S;)P(o:|%) H dr,dAsdo;

p=1

The dose D*!(r) refers to the dose value of the static dose field at position r = (x,y, 2)T.
The static dose distribution is assumed to be constant within a static voxel, i.e. no in-
terpolation between neighboring voxels was implemented. The three dimensional vector
Si = (Suis Syis Sz ;)T denotes the estimated mean position of the voxel i and the three
components of 3; denote the estimated distribution widths of the Gaussian based on the
patient data. As; is the systematic error, the deviation of the estimated mean position S;
from the real mean position. The components of o; denote the magnitudes of motion in
the three directions realized by the patient. The distributions for r,, As; and o; factorize
with respect to the three spatial coordinates:

P(r,|As;,0;) = P(xu|Asg, 02i) P(yu|Asyi, 0yi) P(2,|As2, 02:) (3.21)
P(ASZ|O'Z,SZ) = P(Asxi|gxi7Sxi)P(Asyi|inaSyi)P(Aszi|0zi75zi) (322)

The probability distributions for each spatial coordinate are derived in section 2.1 and are
only repeated here:

1 (J} — Aszi)2
P(2,|Aszi, 00i) = 5—5 exp (‘T) (3.24)
1 A xi Szz 2
P(AS$Z|szanZ) = 3 €XpP _# (325)
27 Zai 2%
1 »2
P(Um‘|2:m) X Y Xp | — = (3-26>
(2mo2;) 2%

The variance of the cumulative dose is given by
Vi = ((D3) — (D)%) (3.27)
where
| XN 2N
(D?) — // (NZDSW r, ) [ P(ruasi, o) (3.28)
pn=1 p=1

N

p=1
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The integrals in equations 3.20 and 3.28 can be evaluated by Monte Carlo simulation. The
steps of such a simulation are as follows:

1. Randomly select the three components of the distribution width o; from the distri-
bution 3.26 with the appropriate values of X; for each spatial direction.

2. Randomly select the three components of the systematic error As; from the distribu-
tion 3.25 with the appropriate values of S; for each spatial direction and the values
of o; chosen in the first step.

3. Randomly select a set of NV positions 7, from the distribution 3.24 with the appro-
priate values of As and o chosen in the first and second step.

4. Calculate the cumulative dose
N
Dy =3 D" (r,) (3.20)
pn=1

and the cumulative dose squared

D}, = (Z %D““t(m)) (3.30)

p=1
where the index n refers to the number of the simulation.

After the simulation of a large number of treatments ng;,,, the expectation value of the
dose can be estimated as

1 Nsim
D;) ~ Dy, 3.31
(D)~ -3 (331)

and the variance can be estimated as

Nsim Nsim 2
Vin (nl ZD?n> - ( ! ZDm) (3.32)
s n=1

Nsim

The simulation procedure allows for the output of additional surrogates to assess the dose
delivered to a voxel. For example one can estimate the probability that the dose delivered
to a voxel is within a predefined dose interval. For example, the probability that the dose
delivered to voxel i is within a 5% tolerance interval around the prescribed dose DP™®* is
approximately given by

1 Nsim
3957105 ~ — Z @(1-05DCTV - Dm)@(Dm - 0-951)0TV) (333>
Nsim
n=1

with the Heavyside step function ©.
The simulation tool allows for an analysis of the impact of the different uncertainties, i.e.
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random errors, systematic errors and uncertain magnitude of motion. When uncertainties
in the magnitude of motion are neglected, the first step in the simulation procedure is
omitted and the same values for the distribution widths are applied in each treatment
simulation. Formally, this corresponds to replacing the probability distribution P(o;|3;)
by a Dirac é6-function located at the desired value of o;.

3.3.2 Implementation into the optimization tool KonRad

Most aspects of the optimization are similar or identical to the methods introduced in
section 3.2.1 for random errors. We still use objective function 3.11 for the optimization
of the fluence maps. The only difference is that the expected dose (D) and the variance
V' now involve systematic errors and uncertainties in the magnitude of motion according
to the definitions in equation 3.20 and 3.27/3.28, respectively. The expectation value of
the dose and the variance can be written as a function of the beamlet weights using a dose
contribution matrix and the variance contribution tensor.

Exemplarily, the calculation of the variance contribution tensor is described here. The
variance V; in voxel 7 is

1
Vi= Zﬁ Qiap®s®, (3.34)

The tensor element ();,s is calculated according to

Qiap = [// (%ZGfat(r“> (NZGSW )HP(TM|Asi,0'i) (3.35)

p=1

X P(ASZ‘O'Z, SZ)P(O'Z‘EZ) H d’l"#dASidO'i — GiaGi,B

p=1

where the effective dose contribution matrix element G, is given by

/ /( ZGSM Tu)HP"“u\ASwGZ) (3.36)

p=1

G&*(r,) is the dose contribution of beamlet o to the point 7, in the static coordinate
system. The integrals in 3.35 are evaluated by Monte Carlo calculation for the dose distri-
butions of all pairs of beamlets a and (8 using the procedure described in section 3.3.1.
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3.4 Difficulties in treatment plan evaluation and vi-
sualization

Before we analyze the impact of different uncertainties on the result of treatment plan
optimization in section 3.5 and 3.6, we focus on the problem of treatment plan evaluation
in general. It was already discussed in section 3.2 that the dose distribution is a random
variable and treatment plan evaluation thus complicated. The difficulty is enlarged when
additionally systematic errors and an uncertain magnitude of motion are taken into ac-
count.

We consider a treatment plan that was optimized by incorporating uncertainties in the mag-
nitude of motion (P(o|X)), systematic errors (P(As|o, S)) and random errors (P(r,|As, 0)).
It is assumed that M = 5 CT scans are performed prior to treatment and that the following
set of motion model parameters was estimated from these images for all voxels 4:

3Imm
M -1
Y, = dmm (3.37)
M
Imm

where the x-coordinate corresponds to the LR-direction, the y-coordinate to the AP-
direction and the z-coordinate to the CC-direction. The factor % is introduced in order
to make 3 mm and 4 mm the unbiased estimates of the standard deviation of voxel dis-
placements whereas 3J; refers to the maximum likelihood estimate (2.1.2). The estimated
mean position S; is assumed to be identical to the position in the planning CT for all
voxels. The treatment plan is optimized for N = 30 fractions.

Figure 3.10a shows the static dose distribution of the optimized treatment plan. As ex-
pected, the static dose distribution shows some moderate dose peaks at the edge of the
tumor. The highest dose peaks are approximately 110% of the prescribed dose. In figure
3.10b, the modulation pattern of the static dose field is illustrated in more detail. It shows
the difference of the static dose and the prescribed dose in each voxel. The static dose
distribution is important to understand the generic features of the probabilistic treatment
planning approach. However, it is per definition not the dose distribution we expect to
be realized in the patient. In the context of treatment plan evaluation we are primarily
interested in assessing the dose that is finally delivered to the patient. We can look at the
expectation value of the dose (figure 3.10c) which provides the best estimate of the deliv-
ered dose for each voxel. The overall expectation value of the dose is relatively difficult to
interpret because the expected dose can never be realized at all voxels simultaneously. The
expectation value involves averaging over the systematic error and different magnitudes of
motion. This averaging process occurs only for a population of patients but not for the
individual patient. The spatial 3D distribution of dose expectation values is therefore not
a good surrogate for the delivered dose distribution as a whole. It has to be interpreted
for each voxel separately. Since we know that the expectation value is not realized, we can
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Figure 3.10: 3D distributions for treatment plan evaluation in the presence of interfractional
organ movements: (a) static dose distribution (b) difference of static dose and prescribed
dose (c) overall expectation value of the dose (d) overall standard deviation of the dose (e)
probability that a voxel receives a dose within a 5% tolerance interval around the prescribed
dose (f) probability that a voxel receives a dose above 75% of the prescribed dose (g)
expectation value of the dose for a certain realization of the motion model parameters (h)
probability that a voxel receives a dose within a 5% tolerance interval around the prescribed
dose given a certain realization of the motion model parameters (i,j,k) color coding for
dose/probability, standard deviation and dose difference, respectively (in percent of the
prescribed dose)

in addition look at the overall uncertainty of this dose prediction, too, i.e. the standard
deviation in figure 3.10d. The dose uncertainty is relatively small in the inner region of the

CTV (in the order of 1-2% of the prescribed dose). At the edge of the CTV, the standard
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deviation is approximately 5% of the prescribed dose. The largest values occur in the
adjacent healthy tissue above and below the CTV, with peaks of 10-15% of the prescribed
dose.

One aspect of treatment plan evaluation is to ensure a sufficient target coverage. To assess
the target coverage, the treatment planner has to combine the information of the expecta-
tion value and the standard deviation. When the expected dose in a voxel is close to the
prescribed dose and the standard deviation of the dose is small, this voxel will very likely
receive a sufficient dose. Figure 3.10e shows the probability that a voxel receives a dose
within a 5% tolerance interval around the prescribed dose. Such an illustration allows for
directly assessing the probability of sufficient target coverage. It may be a valuable tool for
treatment plan evaluation. Similar pictures can be used to estimate the risk for overdosing
an organ at risk. Figure 3.10f shows the probability that a voxel receives a dose above 75%
of the prescribed dose.

Figure 3.10g shows the expectation value of the dose for a certain realization of the motion
model parameters. We choose As = 0 and o = %2. Thus, the blurring of the static
dose distribution is due to the random error only. Figure 3.10g is therefore a better surro-
gate for the 3D dose distribution which may approximately be realized (in contrast to the
overall expectation value in figure 3.10c). However, it does not contain the information
about the systematic error. Figure 3.10h shows the probability that a voxel receives a
dose within a 5% tolerance interval around the prescribed dose given the realization of the
motion model parameters As = 0 and o = %E. It can, for example, be observed that
voxels in the most caudal part of the prostate will probably be overdosed. Figure 3.10h
shows, that the probability for delivering a dose within the 5% tolerance interval is quite
low and combination with figure 3.10b one can conclude that these voxels will mostly be
overdosed. This information is not that obvious in figure 3.10e which involves the averaging
over the systematic error and different magnitudes of motion.

In summary it can be stated that a large variety of pictures can be used to assess the dose
distribution delivered to the patient. None of them seems to be perfect or even sufficient
all alone. At the current stage, it is not clear which type of illustration will turn out most
useful in a clinical environment.

3.5 The impact of systematic errors on the optimized
treatment plan

In this section, we focus on the impact of systematic errors on treatment plan optimization
and neglect uncertainties in the magnitude of motion. We assume motion amplitudes of
4 mm in AP direction and 3 mm in both LR and CC direction for all voxels and optimize a
treatment plan for N = 30 fractions. We optimize treatment plans for different systematic
errors und compare the three cases M = 1 (only a single CT scan), M = 5 (5 CT scans
provided) and M — oo (no systematic error). All parameters of the optimization are kept
constant, except the number of CT scans M.
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Figure 3.11: 3D distributions for treatment plans incorporating different systematic errors.
The columns show the treatment plans optimized for M = 1 (a,d,g), M = 5 (b,e,h) and
M — oo (c,f,i). The three rows show the static dose distribution (a,b,c), the expectation
value of the dose (d,e,f) and the standard deviation of the dose (g,h,i), respectively. For
the color coding, the legends in figures 3.12c-d apply.

Figure 3.11 shows the treatment plans optimized for M =1, M = 5 and M — oco. The
pictures in the upper row show the static dose distributions. In the static dose distribution
for M =1 (figure 3.11a), the high dose region is more expanded compared to M = 5 (figure
3.11b) and M — oo (figure 3.11c). This is also emphasized in figure 3.12a which shows the
difference of the static dose distributions for M = 1 and M = 5. In the transition region
between CTV and healthy tissue, the dose for M = 1 is up to 25% of the prescribed dose
higher compared to M = 5. Figure 3.12b shows the difference of the static dose fields for
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Figure 3.12: (a) Difference of the static dose distributions optimized for M = 1 (figure
3.11a) and M = 5 (figure 3.11b) (b) Difference of the static dose distributions optimized
for M =5 (figure 3.11b) and M — oo (figure 3.11c) (c) color coding for dose distributions
(d) color coding for the standard deviation (e) color coding for the dose difference plots

M =5 and M — oo. The high dose region is more expanded for M = 5 compared to the
case where systematic errors are eliminated. However, the difference between M = 1 and
M = 5 is significantly larger compared to the difference between M = 5 and M — oo.
This result is confirmed in figure 3.13a which shows profiles of the static dose distributions
in AP direction in the lower part of the prostate.
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Figure 3.13: Dose profiles in AP direction for different systematic errors (located in the
central slice in sagittal view in the lower part of the prostate) (a) for the static dose

distributions in figure 3.11a-c (b) for the expectation value of the dose distributions in
figure 3.11d-f

Figures 3.11d-f show the corresponding 3D distributions of expectation values of the dose
in each voxel. Corresponding dose profiles in AP direction are depicted in figure 3.13b.
The distributions of expectation values reflect the more expanded high dose region for
large systematic errors. In order to make the expected dose close to the prescribed dose
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Figure 3.14: Profiles for the standard deviation of the dose in figures 3.11g-i (located in
the central slice in sagittal view in the lower part of the prostate)

for voxels at the edge of the tumor, the irradiated area has to be expanded significantly
for the large systematic error (M = 1). Figures 3.11g-i show the standard deviations of
the dose. Generally, the optimization shapes the static dose distribution in such a way
that the dose uncertainty is small within the CTV. The large systematic error for M =1
causes a relatively large region in the adjacent healthy tissue where the dose is not very
well predictable and different dose values may be realized. The enlarged region of uncertain
dose values is also illustrated in figure 3.14 which shows profiles of the standard deviation
in AP direction.

3.6 The impact of different sources of uncertainty on
the optimized treatment plan

In this section, we analyse the impact of the three sources of uncertainty (magnitude of
motion, systematic errors, random errors) on the optimized treatment plan. We compare
the three different cases:

1. Incorporating all three sources of uncertainty into the optimization

2. Incorporating systematic errors and random errors:
constant o: P(o|%) = é(o — 175 %)

3. Incorporating only random errors:
constant o: P(o|¥) = §(o — 7L %)
no systematic error: P(As|o, S) = 6(As — S)
We consider the same parameter set as in section 3.4, i.e. N = 30 fractions, M = 5 CT

scans, estimated amplitudes of motion of 4mm in AP and 3mm in LR/CC direction. No
prior knowledge about the amplitude of motion is incorporated.
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(b)

Figure 3.15: Modulation pattern of the static dose distributions for the three treatment
plans. The difference of static dose and prescribed dose is shown (the color code legend in
figure 3.10k applies): (a) for the treatment plan incorporating random errors, systematic
errors and an uncertain magnitude of motion (figure 3.10a) (b) for the treatment plan
incorporating random errors and systematic errors (figure 3.11b) (c) for the treatment
plan incorporating only random errors (figure 3.10c)

Figure 3.16: Probability that a voxel receives a dose within a 5% tolerance interval around
the prescribed dose, taking into account all three types of uncertainties (a) for the treatment
plan incorporating random errors, systematic errors and an uncertain magnitude of motion
(figure 3.10a) (b) for the treatment plan incorporating random errors and systematic errors
during the optimization (figure 3.11b) (c) for the treatment plan incorporating only random
errors (figure 3.10c). The color code legend in figure 3.10i applies.

The respective static dose distributions were already presented in figures 3.10a, 3.11b and
3.11c. In figure 3.15a-c the differences of the static dose distributions and the prescribed
dose are depicted. It is observed that the modulation pattern of the static dose distribution
is similar for all three treatment plans. The major difference between the three treatment
plans is that the high dose region is more expanded into the healthy tissue when more
uncertainties are taken into account. It is intuitive that the inclusion of systematic errors
should not change the modulation pattern too much. For the individual patient, the
averaging process that levels out the static dose inhomogeneities is only due to the random
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error which remains the same. Figure 3.17 shows dose profiles in AP direction for the static
dose distributions and the expectation values of the dose. These profiles show the expansion
of the irradiated volume around the prostate when additional sources of uncertainty are
considered.

When systematic errors or uncertainties in the magnitude of motion are neglected during
the optimization process, this may result in an insufficient target coverage. Figure 3.16a-c
shows the probability that a voxel receives a dose within a 5% tolerance interval around
the prescribed dose for the three treatment plans. For the retrospective calculation of
these probabilities, all three types of uncertainties were incorporated (in contrast to the
treatment planning process). Figure 3.16¢ shows the risk of underdosing the edge of the
CTV when only random errors are taken into account during the optimization. Figure 3.18
shows the corresponding profiles in AP direction.
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Figure 3.17: Dose profiles (located in the central slice in sagittal view in the lower part of
the prostate) for the treatment plans incorporating a different amount of uncertainty (a) of
the static dose distributions in figures 3.10a, 3.11b and 3.11c (b) of the expectation values
of the dose distribution in 5% tolerance probabilities in figures 3.10c, 3.11e and 3.11f
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Figure 3.18: Profiles (located in the central slice in sagittal view in the lower part of the
prostate) of the 5% tolerance probabilities in figure 3.16



Chapter 4

Dealing with respiratory motion

This section deals with the application of probabilistic treatment planning to respiratory
motion as for the case of lung tumors. It is again the aim to determine the dose distribution
that minimizes the expectation value of the quadratic objective function 1.12. The major
difficulty in the context of respiratory motion is the evaluation of the variance term. For
inter-fractional motion, the variance of the dose is independent of the dose delivery process.
It is determined by the static dose distribution but independent of the way the static dose
distribution is realized in practice. For respiratory motion, temporal aspects of the dose
delivery process come into play. In this chapter a motion model is introduced which is
applied to model respiratory motion. Like for inter-fractional motion, an idealized geometry
is considered first in order to demonstrate the mathematical formalism and generic features
of the approach. In chapter 5, the concepts developed in this chapter are transferred to a
clinical lung case.

4.1 The idealized geometry

In order to develop a concept to incorporate respiratory motion in IMRT optimization, a
one-dimensional geometry is considered. A one-dimensional line of tissue is assumed to
move as a rigid object within a static dose field. Similar to the approximation in chapter 3,
the static dose field is assumed to be unaffected by the movement of the tissue. Dose
distributions are again described in two coordinate systems, the static coordinate system
and the tissue-fixed coordinate system. Both coordinate systems can be transformed into
each other by a time-dependent rigid translation. The trajectory of a tissue point r within
the static coordinate system is described by some function r/(r,t) specified by the motion
model in section 4.2. r’ refers to a point in the static coordinate system. Section 4.3 consid-
ers the motion of the tissue in the static dose field shown in figure 4.1a. The situation may
model the movement of a tumor in the dose field of an open beam, where the direction of
motion is perpendicular to the beam direction. The static dose distribution was generated
by convolving a step function that is 1.0 in the interval [0.0,2.0] and 0.0 elsewhere with a
Gaussian distribution of width 0.2 in order to model the penumbra of the beam.
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Figure 4.1: (a) Dose distribution of an open field in the static coordinate system (b)
Expectation value of the dose in the tissue fixed coordinate system

4.2 The respiratory motion model

For this study, it is assumed that the tumor trajectory resulting from respiratory motion
can be parameterized by a model proposed by Lujan et al [37]. Let r be a point in the
moving tumor and let ' be a point in the static coordinate system. The trajectory of a
volume element at point r in the static coordinate system is described by

P (r,t) = ro + 1+ Acos™ (W(HT@)) (4.1)

where t is the time, A is the amplitude, ry is the exhale position, 7" is the period of
motion, ¢ is the starting phase and n is an integer parameter that determines the shape
of the motion trajectory. Figure 4.2a shows the trajectory of a tissue element at r = 0 for
different values of n and the parameters A =1, 19 =0, o =0 and T'= 3.0. For n = 1 the
motion is symmetric with respect to the exhale and the inhale state. For n > 2 the tumor
spends more time in exhale position than in inhale position.

If the tissue is irradiated in the time interval [0, 7] with a beam that produces the static
dose rate field D% (r"), the dose

D(r|T, A, ro, 0) = /OT Detat (¢ (r,t)) dt (4.2)

is delivered to the moving tissue. Assuming that the dose rate is constant in time at each
point 7’ in space, this yields

1 T

D(r|t, A o, 0) = —/ D (¢! (1, 1)) dt (4.3)

T Jo
when D®% (/(r,t)) = 7D (y'(r,t)) is the total static dose delivered during time 7. The
delivered dose depends on the parameters of the motion model. Realistically, these pa-
rameters are not known exactly. To a first approximation, the starting phase ¢ is random
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and uniformly distributed. The exhale position ry and the amplitude A may have some
average values but they also fluctuate since the breathing is usually irregular. Hence, the
delivered dose is uncertain.

In order to quantify the expected dose and the associated uncertainty, the following as-
sumptions are applied:

1) During the irradiation of a single field, tissue moves according to equation 4.1 with
a particular realization of the parameters A, ry and .

2) The starting phase ¢ is randomly distributed according to a uniform distribution,
ie.
1

Plo)=7  (vel0,T) (14)

3) The amplitude A is randomly distributed according to a Gaussian distribution with
mean (A) and width o4, i.e.

1 (A—(4)*
P(A) = N exp (T) (4.5)

4) The exhale position r¢ is also randomly distributed according to a Gaussian distri-
bution with mean (rq) and width o, i.e.

Plro) = ——— exp (LW) (4.6)

The breathing period T" which generally would be variable as well is considered as a constant
for now. This issue will be further discussed in section 4.3.3. The random variables
amplitude A and exhale position ry are assumed to be statistically independent. Due to
the first assumption, the motion model is not designed to model the tumor trajectory for
long periods of time. However, the irradiation of a single field is usually relatively short.

4.3 Uncertainties due to a finite irradiation time

First, the simplified case is considered where the amplitude and the exhale position are
known exactly. In this case, the dose uncertainty is only due to the finite irradiation time
7. Because the irradiation time is finite and will usually not be a multiple of the period T,
the delivered dose depends on the starting phase ¢.
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Figure 4.2: (a) Trajectories of a tissue element according to the motion model in equation
4.1 for different values of n (b) Probability density to find the tissue point 7 = 0 at posi-
tion 7’: (red) for fixed amplitude and exhale position (black) including amplitude/exhale
uncertainties

4.3.1 The expectation value of the dose

In a first step, the expectation value of the dose (D|A, ro) given the parameters A, ro and
7 is defined:

(DI, ro)(r) — / D(rir, A, 70, ) P(¢)dsp (47)

T 1 T
_ / - / Dstat (TI<T, t, A, ro, gp))P((p)dtdQO
o TJo

1 T 1 g stat (.1
= - 0 f 0 D (T (T’,t,A,T‘O’QO))dQOdt

T

The integration over ¢ yields an expression that is independent of ¢ since the function r’

is periodic in ¢ and ¢ and the integration range is a full period. We thus obtain

1 T
(D|A, ro)(r) = ?/ D (' (7,1, A, 1o, @) )dep
0

The integration over the starting phase can be transformed into an integration over the
spatial coordinate r’. Equation 4.1 yields

1) = L arccos [(MTO_T) L] — (4.8)

™

and the derivative with respect to r’
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The expectation value of the dose becomes

(DA, o) (r) = / T Dt () Pl ) A, )i (4.10)

r+ro+A

where P(r,1'|A, 1) can be interpreted as the probability density for finding the point r at
position 7’. Equation 4.9 yields

-1
2n—1
P(r,r"|A ) = MLA [(T _QO—_T)( i) 1— /=3 _20_’"] (r' € [r+mro,r+ro+ A])

0 otherwise

(4.11)
Figure 4.2b (red line) shows the probability density P(r,r'|A,rg) for parameters A = 1,
ro = 0 and n = 2. The distribution is sharply peaked at the exhale position and the inhale
position which results from the feature that the velocity of the tissue element is zero at
the turning points.
The expectation value would be realized in the limit 7 — oo, i.e. the irradiation time is
long compared to the breathing period. The expectation value would also be realized if the
irradiation time is a multiple of the breathing period. In all other cases the delivered dose
differs from the expectation value. Figure 4.1b shows the expectation value of the dose for
the motion parameters A = 1, 1y = 0 and the static dose field in figure 4.1a.

4.3.2 The variance due to a finite irradiation time

In order to quantify the uncertainty of the expected dose, the variance is calculated. The
variance is defined as

V(r,T|A,rg) = <(D(7’\A, ro) — (D|A, 7’0>)2> = (D? A, 7o) (r,7) — (D] A, 10)*(r) (4.12)

where the brackets refer to the integration over the starting phase ¢. Since the expectation
value of the dose is realized when the irradiation time is a multiple of the breathing period,
the total irradiation time 7 is devided into two parts according to

T=kKI+1 (4.13)
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where t € [0,7]. Hence, kT represents the completed breathing cycles that fit into 7 and
t is the remainder. Evaluating (D2 A, ro)(r, ) yields

T
(DA, ro)(r,7) = / D2(r|A, ro, 7, ) P(0)dip
0
2

1 (TTkT ¢ .
= ?/0 [T<D\A,7’O)(7’)+;D(r!A,ro,t,go) dy

_ %/OT (kTT)2<D\A,7’O)2(r)dg0

1 (T kTt -
+f/ 27<D|A7 ro)(r)D(r|A, o, t, p)dp
0

1 (T /E\? .
+T/O (;) D2(T|A77’0,t780)d90

_ U“T)—E2H“T<D|A,ro>2(r)+<§) (DA, 7o) (r ) (4.14)

-
with
. 1 [T -
PAm) i) = 1 [ Dl e
0
I i
= —/ :/ DS (! (r t, A v, ))dt | dip (4.15)
T Jo |tJo
The variance is thus given by
i‘ 2
Vr,7|A, ) = (;) [(D2|A,r0>(r, t) — <D|A,r0)2(r)} (4.16)

and the standard deviation is given by the square root of the variance:

SD(r, 7|4, 70) = (DA, ) (1, 8) — (DI A, 10)2(r) (4.17)

Lets name the term [(D?|A,ro)(r, 1) — (D|A, r0)*(r)] in equation 4.16 the characteristic
variance function. The characteristic variance function does not depend on the total irra-
diation time 7 but only on the remainder ¢. Hence, if the characteristic variance function
is calculated for the time interval [0, 7] for each point r of the moving tissue, the dose
variance can be reconstructed from that for all times 7.

Figure 4.3a shows the square root of the characteristic variance function for different points.
The results were generated by solving the integrals in equation 4.15 numerically for the
static dose field in figure 4.1a and A = 1.0. For { — T the characteristic variance function
approaches zero since the expectation value is realized. The limit £ — 0 corresponds to the
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hypothetical case of an infinitesimally short irradiation time. Figure 4.3a shows the stan-
dard deviation for larger values of 7 according to equation 4.17. The standard deviation
as a function of irradiation time equals zero for 7 = kT

The dashed blue line in figure 4.1b shows the spatial dependence of the standard deviation
for an infinitesimal irradiation time 7 — 0. As expected, the largest dose uncertainties
occur at steep dose gradients.
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Figure 4.3: (a) Square root of the characteristic variance function for different points r (b)
Standard deviation of the dose as a function of irradiation time 7 for different points r

4.3.3 Approximation of the standard deviation

The calculation of the characteristic variance function is computationally extensive and
unhandy. Particularly with regard to the application in probabilistic treatment planning,
an approximation of the standard deviation of the dose is desirable. Fortunately, the
extreme points of the characteristic variance function can be calculated relatively easily.
On one side, V(r,T|A,19) = 0 holds. On the other side, the variance for an infinitesimal
irradiation time Vj(r|A,ro) can be calculated according to

Vo(r|A,ro) = V(r,0|A, 1) m (<D2\A,7’0)(7’, dr) — (D|A, 7“0)2(7“))

=1
dr—0

1 [T
— lim (T/ D?(r|A, ro, dr, @)d@—(D\A,T0>2(T))
0

1 (T11 [+ 2
— 3 _ _ stat (,./ _ 2
= lim (T A [d’r o D (’T’ (’T’, t7 Aa To, @))dt} ng <‘D|A7 TO) (’I”))

= %/0 [DSt“t(r'(r,O,A,ro, go))}zdgo — (D|A, r)%(r)
= /: ”iA [Dstat(,,,/)fP(r, | A, ro)dr’ — (D|A, ro)2(r) (4.18)
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Vo assesses both the magnitude of the variance and its spatial dependence. Looking at
figure 4.3 suggests that the square root of the characteristic variance function can be
approximated as a linear function:

SD(r,t|A, o) = SDy(r|A, o) (1 — %) (4.19)

This linear approximation neglects details of the characteristic variance function, but it
should provide a reasonable estimate. The red line in figure 4.4a shows the time-dependence
of the standard deviation that results from the linear approximation in equation 4.19.

Realistically, the breathing period will be subject to variations. Hence, the application of
the variance term in its current form would be questionable. Especially, the zeros of the
variance function at times 7 = k7" seem unrealistic. One way of dealing with the problem is
to use the envelope of the variance function instead of the variance function itself. For ¢ =
T'/2 the standard deviation in linear approximation is SD(r, 7| A, o) = SDy(r|A,10)T/(47)
with (7 = (k+1/2)T). Since t(1—t/T) < T/4 (t € [0,T)), the function SDy(r|A,ro)T/(47)
is the envelope of the standard deviation (blue dashed line in figure 4.4a). Since that would
result in a singularity at 7 = 0 we define

SDo(r|A,ro) (1= %) (1<

SD(r,7|A, 1) = { <SD0(TLA,TO)T> 1 (r > (4.20)
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as an upper bound for the standard deviation in linear approximation of the characteristic
function.
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Figure 4.4: Standard deviation as a function of the irradiation time in linear approxima-
tion of the characteristic function (a) for fixed amplitude/exhale position (b) including
amplitude/exhale uncertainties



4.4 Uncertainties due to variations in amplitude and exhale position s

4.4 Uncertainties due to variations in amplitude and
exhale position

In section 4.3 amplitude and exhale position were considered fixed parameters. In this
section, the calculation of expectation value and variance is generalized to uncertainties
in the amplitude of motion and the exhale position. Uncertainties in both parameters are
modeled by Gaussian distributions as described in section 4.2.

4.4.1 The expectation value of the dose

In the presence of amplitude and exhale position uncertainties, the expectation value of
the dose is given by

(D)(r) = ///0 D(r|A,ro, 7, 0)P(p)P(A)P(ro)dpdAdrg (4.21)

where the realized dose D(r|A,rg, T, ) is still given by equation 4.3. Transforming the
integration over ¢ into an integration over r’ yields

(D)(r) — / / / Dt (Y P(r|r, A, ro) P(A)P(ro)dr' dAdrg (4.22)

where P(r'|r, A,rg) is given by equation 4.11. Since D*'**(r’) only depends on the spatial
coordinate 7/, this can be rearranged to give

(D)(r) = /DSt“t(r')P(r’|r)dr’ (4.23)
where
P(r'lr) = //P(r'|r,A,TO)P(A)P(ro)dAdTO (4.24)

is the total probability density for finding the tissue point r at position r’. The black line
in figure 4.2b shows the total probability for the parameters (A) =1, 04 = 0.1, (ro) =0
and o,, = 0.1.

Figure 4.5a shows the overall expectation value of the dose for the same parameters. The
difference when compared to calculating the expectation values for fixed parameters A =
(A) and o = (ro) (figure 4.1b) is relatively small. For the irradiation of a single field, the
expecation value in equation 4.21 would never be realized at all points simultaneously. It
involves averaging over different amplitudes and exhale positions which would only occur
if the same field was irradiated in infinitely many fractions.
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4.4.2 The variance of the dose

The variance of the dose is defined as
V(r,7) = (D*)(r,7) — (D)*(r) (4.25)

where the expectation value is given by equation 4.21. Evaluating

(D*(r,7) = ///0 D?(r|A, ro, 7, 0)P(0)P(A)P(ro)dpd Adrg (4.26)

yields

(D*)(r,7) = //(@) (D|A,10)*(r)P(A)P(ro)dAdrg

2

1 (T
+ //—/ — [/ D (¢! (r,t, A, rg, @))dt | dpP(A)P(ro)dAdrg
TJy 7 0
Substituting this into the variance term yields

Vir,7) = //<D|A,r0>2(T)P(A)P(r0)dAdro—<D>2(7‘) (4.27)

-~

Va(r)

+ (é)Q//[<D2|A,r0)(r,f)—(D\A,m)Q(r)} P(A)P(ro)dAdry (4.28)

(. J

v~

V¢ (TvT)

The second variance term V,,(r, 7) describes the dose uncertainty due to a finite irradiation
time. The first term V4 (7) describes the uncertainty due to variations in the amplitude and
the exhale position. The starting phase contribution V,,(r, 7) vanishes in the limit of large
irradiation times 7 — oo. The amplitude contribution V4(r) is independent of 7 since the
motion model assumes that A and ry are constant during the irradiation of a single field.

4.4.3 Approximation of the standard deviation

Again, the variance for an infinitesimal short irradiation time can be calculated easily.
Evaluating the variance for the limit 7 — 0 yields

Vo(r) = V(r,0) :/[DSt“t(r/)}QP(fr, r)dr' — (D)?(r) (4.29)

In order to simplify the calculation of the variance due to a finite irradiation time, it is again
assumed that the square root of the characteristic variance function can be approximated
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by a linear function, i.e.

ven = (5[ [iotaen -
ke ~

~ (F) (Vo(r) = Va(r)) (1 _ %) (4.30)

The red line in figure 4.4 shows the time dependence of the total standard deviation
SD(r,7) = /V(r,7) as a function of 7 for the point » = 0 in linear approximation.
For short irradiation times the uncertainty is dominated by the starting phase contribu-
tion V,(r, 7), whereas for large irradiation times the standard deviation converges towards
v/Va(r). The blue line shows the corresponding envelope.

(D|A,r0)*(r)] P(A)P(ro)dAdry

The red line and the blue line in figure 4.5a show /Va(r) and 1/V,(r,0) as a function
of the position r, respectively. For an infinitesimal treatment time, the uncertainty is
dominated by the starting phase dependence of the delivered dose. The red and blue lines
in figure 4.5b show the spatial dependence of the variances V4(r) and V,(r, 7) for 7 = 1.5T,
respectively. For the standard motion parameters chosen here, both variance contributions
are of similar importance if the irradiation time is one and a half breathing cycles. This
would obviously change for other parameters of 04 and o,.
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Figure 4.5: (a) expectation value of the dose (black), standard deviation due to a finite
irradiation time (blue) and standard deviation due to amplitude/exhale uncertainties (red)
(b) relative importance of the variance contributions V(r) (red) and V,(r,7) (blue) for
T = 15T

4.5 Incorporating respiratory motion into treatment
plan optimization

In this section, respiratory motion shall be incorporated in inverse planning by means
of probabilistic treatment planning. It is the aim to minimize the expectation value of
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the quadratic objective function 1.12 using the expressions for the expectation value of
the dose and the variance derived in section 4.3 and 4.4. Generally, an IMRT treatment
plan consists of multiple beams. For step-and-shoot IMRT delivered using a multi leaf
collimator, each beam consists of multiple segments. Sections 4.3 and 4.4 quantified dose
uncertainties for the irradiation of a single field and the generalization to multiple fields
is not straightforward. This issue will be discussed further in the context of application
to clinical data in section 5.1. For the idealized geometry considered in this chapter, a
simplified optimization problem is considered. Instead of optimizing fluence values for
multiple fields, the dose distribution in the static coordinate system is optimized. It is
assumed that the static dose distribution is realized at all times during the irradiation in
the time interval [0, 7], i.e. it is not decomposed into multiple fields which are delivered one
after another. The optimization determines the optimal static dose distribution D% (r’),
so that the dose distribution in the tissue, that moves within the static dose distribution,
becomes optimal in the sense of minimizing objective function 1.12. The model is therefore
oversimplified for two major reasons. First, because the temporal aspects of the dose
delivery process are not included. And second, the optimized static dose distribution can
usually not be realized by external fields. The purpose of this investigation should be
understood as follows: The model should provide some general understanding and some
guidelines on what to expect when applying probabilistic treatment planning to respiratory
motion.

We consider a tumor of size 2.0 that is surrounded by a healthy tissue of size 2.0 on either
side. For the optimization of the static dose field, we apply the quadratic objective function

B= [ a0) (D))~ D70+ (D) - P a3

with standard parameters

1 (relo,2])
pres o )
DFres(r) = { 0 otherwise

a(r):{ 1 (reln2) (4.33)

0.01 otherwise

(4.32)

4.5.1 Incorporating a finite irradiation time

In a first step, amplitude A and exhale position rq are considered as fixed parameters, i.e.
section 4.3 is applied to quantify the expected dose and the variance. For the expectation
value of the dose, equation 4.10 is applied. For the variance, the square of the approxima-
tion of the standard deviation in equation 4.20 is used. The motion parameters are A = 1
and ro = 0.

Figure 4.6a shows the optimized static dose fields for different irradiation times 7. Let us
first consider the realistic case 7 = 2T, i.e. the irradiation time is two times the breathing
period (red solid line). In this case, the optimized static dose field shows a moderate peak
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at ' ~ 2. This corresponds to the position where the right edge of the tumor is located
at exhale. This allows for a dose reduction near r’ ~ 3 where the right edge of the tumor
is at inhale. The red line in figure 4.6b shows the corresponding expectation value of the
dose in the moving tissue.
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Figure 4.6: (a) optimized static dose field for different irradiation times (b) corresponding
expectation values of the dose in the moving tissue

For the extreme case of an infinitesimal short irradiation time, a safety margin like dose
field is reproduced (black solid line in figure 4.6a). The entire region where the tumor
may be is irradiated with the prescribed dose (apart from the field edges where the dose
is reduced due to penalizing the healthy tissue dose in the objective function). Comparing
the expectation values in figure 4.6b shows that larger inhomogeneous static dose field
allow for a better sparing of the healthy tissue on the right hand side of the tumor if the
expectation value is realized.

The dashed green line in figure 4.6a shows the optimal static dose field for the hypothetical
case of an infinitely long irradiation time 7 — oo. In this case, the variance term in the
objective function vanishes and only the expectation value of the dose is optimized. The
dose profile shows a very steep peak near ' = 2 and a substantially reduced dose is
delivered to points between ' = 2 and ' = 3. The corresponding expectation value
shows a significantly improved sparing of the healthy tissue that would be achieved if the
expectation value was realized. For short treatment times, initial dose inhomogeneities
that result from the steep peak would not be compensated for during the irradiation and
the realized dose distribution in the moving tumor would show hot and cold spots.
Figure 4.7a shows the standard deviation of the dose for an infinitesimal treatment time
for the different static dose fields in figure 4.6a. For the safety margin like solution (7 = 0),
the dose uncertainty is restricted to the healthy tissue outside the tumor since the tumor
itself moves within an almost homogeneous dose field. Generating inhomogeneous static
dose fields for 7 > 0 causes dose uncertainties within the tumor. The largest uncertainties
are caused by the peak in the static dose field and therefore occur in the right half of the
tumor. For the static dose profile optimized for 7 = 27" (red lines), the standard deviation
for infinitesimal irradiation time shows maximum values of SDy ~ 0.4 at the edge of the
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tumor. If 7 = 2T is the actual treatment time, the standard deviation is reduced by a
factor of 8.0 according to equation 4.20. This yields a dose uncertainty of approximately
5% of the prescribed dose at the edge of the tumor, but significantly lower values for most
parts inside the tumor.
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Figure 4.7: (a) Standard deviation SDy(r) for the different static dose fields in figure 4.6a
(b) Static dose profiles optimized including uncertainties in amplitude and exhale position
for different irradiation times

4.5.2 Incorporating uncertainties in the amplitude and exhale
position

In the next step, uncertainties in amplitude and exhale position are included into the
optimization of the static dose field. The following set of motion parameters is applied:
(A) =1, (ro) =0, 04 = 0.1 and 0,, = 0.1. This means, the motion is still dominated
by the breathing itself and not by variations of exhale and inhale position, i.e. A is much
larger than o 4.

Figure 4.7b shows optimized static dose profiles for 7 = 27 and 7 = 0. For comparison, the
static dose fields from figure 4.6a are shown which are optimized for fixed values for A and
ro. Considering the case 7 = 27T it is observed that the dose peak near r’ = 2 is smoothed if
A and ry are considered uncertain. The case 7 = 0 still reproduces a safety margin like so-
lution. However, compared to figure 4.6a, the high dose region is extended on both sides in
order to provide an additional margin for the uncertainty in amplitude and exhale position.

Let us now consider the extreme case of optimizing the expectation value of the dose
alone. In this model, the patient would have to be irradiated in infinitely many fractions
and the irradiation time would have to be infinitely long in order to realize the expectation
value. This is of course unrealistic, but the investigation of this extreme case provides some
further insight into the optimization problem. Figure 4.8a compares the optimization of the
expectation value of the dose while including or not including uncertainties in amplitude
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and exhale position. It shows the optimized static dose profiles. In both cases, the shape of
the dose field is similar on a “large length scale”. Both profiles show high doses near r’ = 2
and low doses near v’ = 1. In the presence of uncertainties of the parameters A and rg, the
profile is superimposed by a “high frequency modulation”. These sharp hot and cold spots
account for the interfractional changes of amplitude and exhale position. The same effect
was observed in section 2.4. The variation of the exhale position practically corresponds
to an interfractional random error. Obviously, a large number of fractions with different
A and ¢ is required in order to level out initial dose inhomogeneities resulting from this
modulation. For a realistic clinical situation such “high frequency modulations” in the
static dose field could of course not be realized with external fields. However, this section
analyzes general features of the optimization problem.
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Figure 4.8: Optimized static dose fields (a) optimization of the expectation value of the
dose without the variance term (b) comparison of the optimization for 30 fractions and 1
fraction

Let us consider a realistic number of N fractions. We assume that the random variables
A, ro and @ are statistically independent for different fractions. In this case, the larger
number of fractions simply leads to a factor 1/N in the variance term. The expected cu-
mulative dose D, after N fractions is (D.) = N(D) whereas the standard deviation of the
cumulative dose is SD, = VNSD.

Figure 4.8b shows the optimized static dose profile for 30 fractions in comparison to the
optimization for one fraction for 7 = 27". As expected, significantly larger inhomogeneities
arise in the static dose profile when 30 fractions are assumed instead of a single one since
remaining dose inhomogeneities within the tumor after the first fraction can be compen-
sated for in later fractions.

Figure 4.9 shows the expectation value of the dose and its standard deviation for the static
dose profiles in figure 4.8b. The standard deviation is normalized to 30 fractions for both
plans in order to allow for a meaningful comparison. It can be seen that the increase in
modulation of the static dose field potentially improves the sparing of healthy tissue. But
at the same time, the uncertainty of the dose increases. Within the tumor, the standard
deviation is significantly higher for the static dose field optimized for 30 fractions. Figure
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4.10 shows the relative weight of the variance contributions V4 (r) and V,,(r) for both plans.
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Figure 4.9: Comparison between the optimization for 30 fractions and 1 fraction (a) ex-
pectation value of the dose (b) standard deviation of the dose
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Figure 4.10: Relative importance of the two variance contributions: (a) optimized for a
single fraction (b) optimized for 30 fractions



Chapter 5

Application to lung tumors

This chapter deals with probabilistic treatment planning for lung tumors. In chapter 4 a
mathematical model to describe respiratory motion was introduced and equations to cal-
culate the expectation value of the dose and its variance were derived. These concepts are
now applied to clinical data. In the case of interfractional movements, the transition from
the idealized model (chapter 2) to clinical data (chapter 3) was widely straightforward.
This is not fully true for respiratory motion. As already mentioned in section 4.5, the vari-
ance of the delivered dose depends on temporal aspects of the dose delivery process and
consequently on the application technique. In section 5.1, we generalize the variance calcu-
lation to multiple irradiation fields which are statistically independent with respect to the
random variables of the motion model. Practically, this allows for a description of IMRT
treatments delivered with compensators. Based on the variance calculation for compen-
sator IMRT, an approximation of the variance for step-and-shoot IMRT is discussed, which
represents one clinically relevant treatment technique. In section 5.2, aspects concerning
the implementation are discussed. Section 5.3 presents results for a clinical case.

5.1 Estimation of the dose uncertainty for IMRT treat-
ments

In section 4.3 and 4.4 we calculated the expectation value of the dose and the variance for
the irradiation of a single field. We now generalize the respective equations to multiple
fields. We consider the idealized geometry introduced in chapter 4.

5.1.1 Statistically independent random variables

We consider the irradiation of K fields that produce the static dose distributions D' (")
during the irradiation times 7. Each field k is characterized by a set of random variables
(g, Ak, Tor) Which denote the starting phase, the amplitude and the exhale position for
this field. In this section, we consider the simplified case that all random variables are
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statistically independent, i.e.

K

P({on, Arsror}ioy) = [ [ Plor) P(AR)P(ror) (5.1)

k=1

and that P(gg), P(Ax) and P(rox) are given by equations 4.4, 4.5 and 4.6, respectively.
For the calculation of the expectation value of the cumulative dose, the correlation of the
random variables is irrelevant, only the variance generally depends on the correlation.

The expectation value of the dose

The cumulative dose for all K fields is given by

( {TkaﬂpkaAkaTOk}k 1 7_/ Dsm Tf@kaAkaTOk))dt (5-2)
&

and the expectation value of the cumulative dose turns out to be the sum of the dose
expectation values of the individual fields, i.e.

r) =Y (Dy)(r) (5.3)

k=1
where
/// |: / DStat< (TtAk,Tok,QOk))dt
Tk
XP SOk (Ak) (T‘Qk)dgodede‘ok (54)

can be evaluated according to sections 4.3.1 and 4.4.1.

The variance of the dose

The variance of the cumulative dose is

V(r,{n}) = (D*)(r.{me}) — (D)*(r) (5.5)

Evaluating (D?)(r, {7}) yields

(D?)(r, {7}) i[/// U Ditet(r (TtAk,rok,gok))dt}

1

2

K

X P(pr) P(A) P(roe)deprd Ardror | + > (Di)(r){Di)(r)  (5.6)

k=1
k#l
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Equation 5.6 only holds for statistically independent random variables. The variance of
the cumulative dose is hence the sum of the variances of the individual fields:

vitnn = 30| [ [ [ 5[ ot ta]

X P (i) P(Ar) P(rox)derd Ardror, — <Dk)2(7”)] (5.7)

5.1.2 Compensator based IMRT delivery

IMRT treatment plans can be realized using compensators. A compensator usually con-
sists of a block of lead of variable thickness in order to realize the fluence modulation in
the lateral direction to the beam. For compensator treatments, the irradiation consists of
K intensity modulated fields when K is the number of beam directions. Each intensity
modulated field is realized at once, i.e. a static dose rate field D§*(r) is realized which
is constant in time during the irradiation time 74 (neglecting the pulsed time structure on
a millisecond scale). The time interval between the start of irradiation for two successive
fields is usually much larger than one breathing cycle. We may, therefore, assume that
the random variables starting phase ¢y, amplitude A; and exhale position rg, are statis-
tically independent for different fields. Therefore, the variance calculation for statistically
independent random variables in section 5.1 may provide a reasonable description for com-
pensator based IMRT. The irradiation time 74 is mainly determined by the dose rate of
the linac and the maximum weight of the fluence map.

5.1.3 Step-and-Shoot IMRT

For Step-and-Shoot IMRT, the situation is more difficult. An intensity modulated field is
decomposed into a large number of segments. The irradiation time for a single segment is
short, often shorter than one breathing cycle. In addition, the time between the irradiation
of two successive segments is short, usually significantly shorter than the breathing period.
Therefore, it would not be realistic to assume all segments to be statistically independent.
The starting phase of one segment would clearly correlate with the starting phase of the
previous segment.

An additional difficulty arises since the shapes of the segments are usually not known
during the optimization. IMRT inverse planning tools usually perform a beamlet-based
optimization. In the first step, a fluence map is optimized, which is, in a second step,
decomposed into a set of segments using a sequencer. One appraoch to tackle this problem
would be Direct Aperture Optimization (DAO) [38]. In this IMRT optimization approach
for Step-and-Shoot dose delivery, the shape of a limited number of segments is optimized.
The Direct Aperture Optimization problem is expected to be np-complete, i.e. the com-
putational complexity increases exponentially with the number of apertures. It cannot be
solved by standard gradient methods. Shepard et al [38] have used simulated annealing to
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obtain clinically acceptable solutions, Li et al [39] applied genetic algorithms. Although
this optimization approach would directly provide all segments that will be delivered, there
would still be the problem that these segments are not independent.

We therefore investigate the possibility of using the beamlet-based optimized fluence maps
to estimate the variance of the dose for Step-and-Shoot IMRT. It would be of particular
interest to derive an upper bound for the variance for Step-and-Shoot IMRT based on the
fluence maps, however, this has not been done so far. The following arguments in this
section remain to some extent handwavy. We start with a discussion of the impact of cor-
relations of random variables on the variance of the cumulative dose (subsection 5.1.4) and
suggest an approximation of the variance for Step-and-Shoot IMRT in subsection 5.1.5.

5.1.4 The impact of correlations

We consider the irradiation of two segments that cause the static dose fields D5"(r') and
D3t (r"). We assume that the delivery time is equal for both segments. For simplicity, we
assume the amplitude and the exhale position fixed so that only the starting phases ¢; and
9 are random variables. We denote the delivered doses for the two fields by D;(r|¢;) and
Dy (r|ps). Generally, @1 and ¢y are correlated: P(p1,¢2) = P(p1)P(pa]p1). We consider
two extrem cases:

1. P(g1,¢2) = P(¢1)P(p2) = 75 (1 and ¢, are uncorrelated)

2. P(palgr) = 6(p2 — 1) and P(p;) = 7 (g2 is already determined when ¢ is chosen,
ie. gy = 1)

In both cases we ensure that [ P(p1,p2)dpr = [ P(p1,¢2)dps = 7 holds for the total
probability. The second case is equivalent to compensator based IMRT delivery. If the
irradiation starts at the same point in the breathing cycle for both fields, this is equivalent
to delivering both fields at the same time.

We look at the cumulative dose D(r|p1,p2) = Di(r|e1) + Da(r|p2) and calculate the
expectation value and the variance according to the equations in section 4.3. We obtain

(D)(r) = / / (D (rlgn) + Dalrlon)) P, w2)diordipy
(D1)(r) + {Da)(r) (5.8)

and
(DA (r) = / / (D (rlgn) + Da(rlon) 2 P(or, o2)dgrdios

— (DA)(r) + (D2)(r) +2 / / Dy (rlo) Dalrli2) P, @2)diordipy (5.9)
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The variance of the cumulative dose is hence

V(r) = Vi(r)+Va(r)

12 [ /0 /0 D (r[92) Da(r|i02) P01, 02)diprdips — (D1)(r) (Do) (r) | (5.10)

For uncorrelated random variables the non-diagonal term in the variance vanishes so that

V(r) = Vi(r) + Va(r) (section 5.1.1).

Dose uncertainties occur near dose gradients. We therefore consider three different relative
positions of the two segments so that the relative location of the gradients is different each
time. Figure 5.1a shows the static dose distributions that may result from two segments.
Figure 5.1b shows the corresponding expectation value of the cumulative dose and its
variance for the parameters A, =1, 7912 =0, n = 2 and 71, = 0.57". In this example, the
dose gradients of the static dose fields are located at different places. As a consequence, the
variance of the cumulative dose is approximately the same no matter whether the starting
phases ¢; and @y are uncorrelated or identical. Figure 5.2 illustrates another example
where the right edges of both fields coincide. In this case, the variance is approximately
twice as large if the random variables are correlated. Figure 5.3 illustrates the opposite
case, where the variance is much larger for uncorrelated random variables. In this example,
the right edge of the first field coincides with the left edge of the second field. For ¢y = ¢,
this corresponds to a single large field so that the variance in the center is almost zero.
For uncorrelated random variables, a significant dose uncertainty arises in the center. In
summary, the correlation between the two random variables can both increase or decrease
the dose uncertainty.
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Figure 5.1: (a) Static dose distributions that may result from two segments. (b) corre-
sponding expectation value of the cumulative dose and its variance for uncorrelated and
coupled random variables
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Figure 5.3: (a) Static dose distributions that may result from two segments. (b) corre-
sponding expectation value of the cumulative dose and its variance for uncorrelated and

coupled random variables

5.1.5 The variance of the dose for Step-and-Shoot IMRT

Generally, the variance of the cumulative dose distribution depends on the sequencing
algorithm. We do not go into details of specific sequencing methods and adopt the as-
sumptions made by Bortfeld et al [40]. We assume that the fluence map is discretized into
F' equidistant fluence levels. The discritized fluence map can be decomposed into deliver-
able MLC segments using the sliding window technique. An example for this decomposition
is illustrated in figure 5.4.

Working hypothesis

Let F} be the number of fluence levels of the discretized fluence map of beam k and let
®* be the maximum beamlet weight in the fluence map for beam k. The time to deliver
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€Y (b)

Figure 5.4: Tllustration of the sequencing of a fluence profile using the sliding window
technique (a) fluence profile in the direction of leaf travel (b) delivered segments

a segment with fluence weight ®7**/F}, will approximately take the time 74 /F}, where 7y
is the delivery time for compensator treatments. We claim that we can use the variance
derived for compensator treatments as a rough estimate of the variance for Step-and-Shoot
treatments if we replace the irradiation time 7 by 73/ Fy.

Arguments

The set of deliverable segments generated by the sequencer is of course closely related to
the fluence map. In particular, the fluence map determines the location of dose gradients
which are most important for the estimation of the dose uncertainty. The dose gradients
in the fluence map reflect the locations of the field edges of the MLC segments. If the
sequencing process is performed in a “reasonable way”, the sequencer should avoid placing
field edges at positions where there is no gradient in the fluence map. Looking at the
sequencing example in figure 5.4 suggests that the variance of the cumulative dose will be
overestimated in most cases. At most positions, the case illustrated in figure 5.2 occurs
where the left or right field edges of two segments coincide. In this situation, the variance
is overestimated by assuming compensator based delivery with a reduced irradiation time.
If only the case illustrated in figure 5.1 occured, this approximation of the variance would
perform well. The case illustrated in figure 5.3 where the variance is strongly underesti-
mated should usually not occur. An overestimation of the variance makes the treatment
plan more conservative, i.e. modulations of the static dose distribution are reduced and
the treatment plan becomes more safety margin like (section 5.3). This may be desirable.

Realistically, the situation is more complex than the idealized examples in figures 5.1-5.3.
The amplitude of motion may be larger than the penumbra of the field and the resolution
of the beamlets. Step-and-Shoot IMRT is possibly not well described by neither of the
two extreme cases discussed in section 5.1.4. The starting phases for different segments
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are neither identical nor uncorrelated. Further investigation may be required to justify
the suggested approximation of the variance for Step-and-Shoot IMRT. We are primarily
interested in the variance term because it controls the robustness of the treatment plan in
the optimization (section 5.3). A preferably accurate quantification of the dose uncertainty
as an end in itself is not the primary interest.

5.2 Implementation

This section describes the implementation of probabilistic treatment planning for lung
tumors into the inverse planning tool KonRad. The current implementation is provisional
and not meant to be suitable for clinical application in its present form. It shall allow the
presentation of generic results. We apply several limitations that shall be overcome in the
future. Nonetheless, most of these limitations may not be relevant for the generic features
of the resulting treatment plans presented in section 5.3.

1. We still apply the approximation that moving tissue elements move within a static
dose distribution which is unaffected by the tissue deformation. This approximation
was described in section 3.1. In the future, all phases of a 4D CT data set could be
incorporated into the dose calculation.

2. Amplitude and exhale position are fixed. Only the uncertainty due to a finite irradi-
ation time is considered. The starting phases ¢, are the only random variables.

3. We consider motion in CC-direction only and the amplitude A is assumed to be a
multiple of the voxel resolution.

5.2.1 Calculation of the expectation value and the variance of
the dose

We consider the moving voxel i. Let S; = (S, Syz, S.;)T denote the position of the center
of the voxel in its exhale state. Let r; = (z;,y;,2;)" denote the position of the center of the
static voxel j. Since we deal with motion in CC-direction only, it is sufficient to consider
the z-coordinate. The probability density for finding the voxel i at position r = (z,y, 2)T

is given by P(r|S;) = 6(Su — )0(Syi —y)P(2|S.;) where 6 is the Dirac-Delta function and

P(2|S.) = (5.11)

1 SziJrAz—z SZ,+Az—z
™A A

for z € [S,i+Az—A,S,;+Az| and P(z|S,;) = 0 otherwise. Az denotes the voxel resolution
which is 2.6 mm in all spatial directions. The probability to find the center of the moving
voxel ¢ within the static voxel j is given by

zj—l—%Az
P = / P(z|S,:)dz (5.12)

1
j— 50z
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We assume the dose distribution within one static voxel to be constant like we did in
section 3.2.1 so that the expectation value of the dose for field k is given by

(D}) = 3 D, (5.13)
J

where D7 is the value of the static dose distribution of field & in voxel j. For the calcu-
lation of the variance, we assume that the random variables for the intensity modulated
fields from different beams are statistically independent, so that the variance resulting
from each field can be calculated independently. We apply the linear approximation of
the characteristic standard deviation function introduced in section 4.3.3. The variance
for the real irradiation time is approximated based on the variance that would arise for an
infinitesimally short irradiation time. The variance for field k for an infinitesimal treatment
time is

Vi(me = 0) = (D)) (7 — 0) — (D})* (5.14)

with
(DL)*) (7 — 0) =Y (D)’ Py (5.15)

J

The standard deviation for the real irradiation time is calculated according to equation
4.20:

) Vit — 0) (1—%’“)2 (e < £
Vi) = i (10 —0)T2 5.16
k( k) { (Vk( k42 0)T ) % (Tk > %) ( )

The expectation value and the variance can be evaluated as a function of the beamlet
weights using the concept of a dose contribution matrix and a variance contribution tensor
as introduced in section 3.2.1. The expectation value of the total dose is the sum over the
dose expectation values of the individual fields:

(D) =) (Dj) (5.17)

k=1

The variance of the total dose is the sum over the variances of the individual fields:

K
Vi=> Vi (5.18)
k=1

A field k represents the intensity modulated field for beam k£ and the number of fields K
equals the number of beam directions. For compensator based dose delivery, 7 is the time
required to deliver field k. For Step-and-Shoot IMRT, 7, is the time needed to deliver field
k with a compensator divided by the number of fluence levels in the discretized fluence map.
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5.2.2 Optimization

For the optimization of the treatment plan, we apply the quadratic objective function 3.11
that is also applied for the prostate case:

E = Y acrv [((Di) = Dorv)’ + Vi
ieCTV
| D an({Di) = DY) (5.19)
n 1€OARy,

A complication, which arises in the context of respiratory motion, is as follows: The
variance for field £ depends on the irradiation time 7, for this field. The irradiation
time, in turn, depends on the maximum beamlet weight in the fluence map for beam k.
Hence, the variance term is not simply a quadratic function of the beamlet weights any
more. In the evaluation of the gradient of the objective function, we do not account for
this dependency. For the calculation of the derivative of the variance with respect to the
beamlet weights, 75, is considered a constant. After the update of the beamlet weights
in one gradient optimization step, the irradiation time is then recalculated according to
the new beamlet weights. Therefore, the presented results may not exactly represent the
minimum of the objective function. The impact on the optimized treatment plan has not
been investigated yet.

5.3 Results of probabilistic treatment planning for
lung tumors

We consider a patient with a relatively small lung tumor of about 2 cm in diameter. We
optimize a treatment plan with five coplanar beams at 0°, 60°, 120°, 210° and 325°. The
resolution of voxels is (2.6 mm)? and the resolution of beamlets is (5mm)?. In order to
specify the irradiation time, we assume a dose rate of 600 monitor units per minute. The
irradiation time 7 for the delivery of an intensity modulated field with a compensator is
assumed to be given by the monitor units of the maximum beamlet weight divided by the
dose rate of the linac. For the estimation of the variance for Step-and-Shoot IMRT we
assume that the fluence map is discretized into five equidistant fluence levels so that the
imaginary treatment time for Step-and-Shoot IMRT is one fifth of the compensator based
treatment time. The CT scan used for the dose calculation is assumed to show the tumor
in its exhale position. The amplitude of motion is assumed to be 2.3 cm in CC direction.

We compare four different cases:
1. optimization of the expectation value of the dose (7, — 00)
2. compensator based IMRT delivery
3. Step-and-Shoot IMRT
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4. optimization assuming an infinitesimally short irradiation time (7, — 0)

All treatment plans are optimized for a single fraction, i.e. we demand that a widely ho-
mogeneous dose is delivered to the tumor in each fraction. Blurring of the static dose
distribution is due to respiratory motion within one fraction only.

Figure 5.5 shows on a sagittal CT slice the static dose distribution, the expectation value of
the dose and the standard deviation for these four scenarios. Let us first compare the static
dose distributions. For the treatment plan optimized under the assumption that the five
intensity modulated fields are delivered using compensators, the static dose distribution
(figure 5.5a) shows a dose peak in the region where the caudal edge of the tumor is located
at exhale. Qualitatively, this was also observed in section 4.5.1 for the idealized model.
The height of the peak is approximately 130% of the prescribed dose. This allows for a
dose reduction in the area where the tumor is located at inhale, where the values of the
static dose field are in the order of 80-90% of the prescribed dose. For the treatment plan
optimized for Step-and-Shoot IMRT (using the variance estimation described in section
5.1.5), the static dose distribution (figure 5.5d) shows a similar modulation pattern, how-
ever, the dose peak is less pronounced (approximately 120% of the prescribed dose). The
dose profiles in CC direction depicted in figure 5.6a show the difference of the two static
dose distributions. This result is in agreement with our intuition, since the estimated dose
uncertainty is much higher for Step-and-Shoot IMRT than for compensator based IMRT.
When only the expectation value of the dose is optimized, the static dose distribution (fig-
ure 5.5g) shows a very steep dose peak (approximately 170% of the prescribed dose) and
a more dramatic dose reduction in the region where the tumor is at inhale (in the order
of 50% of the prescribed dose). In contrast, when we assume an infinitesimal irradiation
time for each beam, the static dose distribution represents a safety margin like solution
(figure 5.5j). Qualitatively, the results found in section 4.5.1 for an idealized model are
reproduced for the considered lung tumor.

The second column in figure 5.5 shows the corresponding expectation values of the dose
(figures 5.5b,e,h k). Dose profiles in CC direction are depicted in figure 5.6b. The expecta-
tion values show the potentially better sparing of the lung tissue for increased modulations
of the static dose distribution. The third column in figure 5.5 shows the standard deviation
of the dose for an infinitesimal irradiation time for each beam (figures 5.5¢,f,i,1). The stan-
dard deviation for an infinitesimal irradiation time is not the dose uncertainty estimated for
the actual treatment. It only depends on the static dose distribution but not on the dose
delivery method and is therefore helpful for a plan comparison. The standard deviation
distributions illustrate the increased dose uncertainty as a consequence of stronger static
dose modulations. Figure 5.5i shows the relatively large dose uncertainty within the tumor
when only the expectation value is optimized. In contrast, the dose uncertainty is pushed
into the lung tissue for the safety margin like treatment plan (figure 5.51). This becomes
obvious also in the profiles in CC direction (figure 5.7a). Figures 5.8a,b show the absolute
values of the standard deviation estimated for compensator based IMRT (figure 5.8a) and
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Figure 5.5: 3D distributions for treatment plans optimized for different irradiation times:
(a-c) optimized for compensator based IMRT delivery (d-f) optimized for Step-and-Shoot
IMRT (g-i) optimization of the expectation value of the dose (infinite treatment time) (j-1)
optimized for an infinitesimal short irradiation time. The three columns show: (a,d,g,j)
the static dose distribution, (b,e,hk) the expectation value of the dose and (c,fi,l) the
standard deviation for an infinitesimal irradiation time. The color code legends in figures
5.8¢c,d apply.
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Figure 5.6: Profiles in CC direction through the center of the tumor for the dose distri-
butions in figure 5.5: (a) for the static dose distributions (b) for the expectation values of
the dose
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Figure 5.7: Profiles in CC direction through the center of the tumor: (a) for the standard
deviation distributions for an infinitesimal irradiation time shown in figures 5.5¢,f,i,1 (b)
for the standard deviations in figures 5.8a.b

Step-andShoot IMRT (figure 5.8b). For compensator based IMRT, the dose uncertainty
for one fraction is in the order of 0.5% of the prescribed dose within the tumor and ap-
proximately 1.0% of the prescribed dose at the cranial and caudal edge of the tumor. For
Step-and-Shoot IMRT the estimated uncertainty is considerably higher due to the reduced
virtual irradiation time (figure 5.7b). However, rather crude approximations were made in
section 5.1.5, so figure 5.8b is a rough estimate for the standard deviation of the dose. The
irradiation time for compensator based IMRT is in the order of 10 seconds per beam. The
virtual irradiation time for Step-and-Shoot IMRT is in the order of 2 seconds.
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Figure 5.8: (a) Standard deviation of the dose for compensator based IMRT (for the
corresponding static dose distribution in figure 5.5a) (b) standard deviation of the dose
for Step-and-Shoot IMRT (for the corresponding static dose distribution in figure 5.5d)
(c) color code legend for the dose distributions in figure 5.5 (d) color code legend for the
standard deviation for an infinitesimal irradiation time in figure 5.5 (e) color code legend
for the standard deviation in figures 5.8a.b

5.4 Discussion and future work

The amplitude of motion for lung tumors can be larger than the interfractional movements
of the prostate. In addition, the inhomogeneities in the static dose distribution are partly
leveled out within a single fraction and not only after a large number of fractions. There-
fore, the modulation of the static dose distribution can be more pronounced, which, in
turn, allows for a larger improvement compared to the safety margin approach. On the
other hand, the description of respiratory motion is more complex and approximations
have to be made in order to evaluate the expectation value of the quadratic objective
function. One of these approximations is the linear approximation of the characteristic
standard deviation function (section 4.3.3). A second one, possibly the most questionable
one, is the estimation of the variance for Step-and-Shoot IMRT based on the variance for
compensator based IMRT (section 5.1.5).

In order to improve the implementation of probabilistic treatment planning for lung tumors,
a number of questions should be addressed in the future. Some are listed below:

1. A 4D CT data set of the patient should be the basis of probabilistic treatment
planning. Based on the 4D CT, the tumor trajectory has to be estimated using
appropriate image processing methods. In addition, the dose calculation should be
improved by incorporating the CT images for different breathing phases not only into
the estimation of the tumor trajectory, but also into the dose calculation.

2. The implementation should allow for arbitrary tumor trajectories and should be able
to deal with variations in amplitude and exhale position.
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3.

A single 4D CT data set does not provide all parameters of the motion model.
In particular the magnitude of variations of the exhale position and the amplitude
cannot be derived from a single 4D CT scan. Other methods like fluoroscopic imaging
should be established to estimate the respective parameters.

These three issues are mainly practical aspects that have to be solved in order to come
closer to a clinical application. In addition, several conceptual aspects could be subject to
further investigation:

4.

The approximation of the variance of the dose for Step-and-Shoot IMRT should be
further justified or improved (section 5.1.5). In particular, further investigation of
this question should include variations in amplitude and exhale position which was
not performed in section 5.1.5.

The dependency of the irradiation time on the maximum beamlet weight in the flu-
ence map should be treated correctly during the IMRT optimization process (section
5.2.2).

Probabilistic treatment planning competes with gating as a strategy to deal with
respiratory motion in radiotherapy. In principle, one could combine these two ap-
proaches, i.e. incorporate the residual motion within the gating window into the
optimization using probabilistic treatment planning.






Chapter 6

Extensions and relations to other
approaches

In this chapter, possible extensions and modifications of probabilistic treatment planning
as analyzed in chapters 2 to 5 are discussed. Section 6.1 discusses the possibility of eval-
uating a modified objective function. Section 6.2 shows relations to other approaches to
incorporate uncertainties in inverse planning.

6.1 Another objective function

A widely used objective function for treatment plan optimization (without considering
organ motion) is [41]

max max
E agry (Di — DCTV)

1€CTV

+ > amm, (D - Di)
€CTV

+Y 1 D> a — Dary? (6.1)
n i€COAR,

In chapters 2 to 5, we considered the special case that af%%, = ot and DEIE, = DEn

When we make the transition to probabilistic treatment planning, the expectation value
of the objective for the CTV can, in this case, be written as the sum of the variance and
the quadratic difference of expected and prescribed dose. As a consequence, overdosing
the CTV is penalized as much as underdosing the CTV. This may not always be desired.
Avoiding cold spots within the CTV may be more important than avoiding hot spots. In
chapters 3 and 5, we minimized the objective

S au (D) — Doy’ (6.2)

1€OAR,
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for each organ at risk. This is obviously not the expectation value of the OAR-term in
objective function 6.1. In sections 2 and 4, this problem was avoided by setting D]"** = 0.
In this section, we want to discuss the possibility of evaluating directly the expectation
value of objective function 6.1 for general parameters.

Objective function 6.1 is still a voxel-based objective function. It is therefore sufficient to
consider a single voxel . Let us consider the penalty for a potential overdosage of the voxel
in the presence of motion:

E; = ((D;—D™)3)
= / (D; — D™*)?O(D; — D™*) P(D;)dD; (6.3)

where O is the Heavyside step function and P(D;) is the probability that a certain dose
D; is absorbed in voxel i. Generally, we can not easily calculate P(D;). However, in cer-
tain cases, we can assume that P(D;) is a Gaussian distribution with expected dose (D;)
and variance V;. If we consider the irradiation of a single fraction, P(D;) will generally
not be Gaussian distributed. However, for a realistic number of 30 fractions it can be a
good approximation. If we, for example, consider interfractional movements and consider
random errors only, P(D;) will be extremly close to a Gaussian according to the central
limit theorem. However, as soon as systematic errors are taken into account this is not
fulfilled any more (see also Bortfeld et al [36] for a discussion of this issue in the context
of respiratory motion).

We make the approximation that P(D;) is Gaussian. The probability distribution can
thus be parameterized by the expectation value and the variance. Both parameters can be
calculated from the fluence profiles with the tools provided in this thesis. The objective
for voxel ¢ becomes (the index 7 is omitted)

E = /:(D — D™*)2Q(D — Dmax)\/;ﬂ_v exp (-L — <D>)2) dD

_ /O:M(D ~ Dmax)QJ;w—V exp <—7(D — <D>>2> dD

Introducing the new variables D = D — D™ and

(D) = (D) — D™ yields
E = ! /00 D?exp (—w) dD

\VorV
— 1 exp (—@) \/WF(S)Z;; (—@) (6'4)

V2TV 4V VV

where Z,, is a parabolic cylinder function [42, 43] which obeys the equation

/0 Tl exp (—%) dz = exp (-48722) o T(=n) 2, (—g) (6.5)



6.2 Coverage probability, delineation errors and organ motion 103

The gradient of the objective with respect to the bixel weight &, is given by

oE © D2 9 1 (ﬁ—<D>)2 ~
E = . i ob, \/Vexp (—72‘/ )] dD (6.6)

Evaluation of the derivative yields
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which can also be expressed in terms of parabolic cylinder functions. Both the objective
function itself and its derivatives with respect to the bixel weights can explicitely be writ-
ten as a function of the bixel weights. In principle, this allows for an evaluation of the
expectation value of objective function 6.1 by standard gradient methods (assuming that
the objective function is well behaved and does not show local minima).

6.2 Coverage probability, delineation errors and or-
gan motion

Let us assume that NV CT scans of a patient exist and that CTV and OARs are contoured
in each image. To make it explicit, let us consider interfractional motion of the prostate.
Based on the N CT scans, one can estimate the probability that a certain voxel is covered
by a certain structure. Assuming that in N of N CT scans, voxel i is covered by the
tumor, we can estimate that the probability to find tumor tissue in voxel i is C; = NI /N
when we assume that each CT scan is a priori equally likely. We could also assume that
there is a single CT scan of a patient and different physicians independently delineated
the tumor. As a result, one may obtain multiple contours for the tumor which are not
identical and can be used to estimate the probabilities C; to find tumor tissue at voxel i.
In a paper by Baum et al [44] it was suggested that this probability can be incorporated
into a voxel-based objective function as a voxel-dependent penalty factor. In this section,
we will define this approach for the quadratic objective function and we show that under
certain assumptions the approach is mathematically equivalent to two other approaches
that start from entirely different perspectives.

6.2.1 The coverage probability approach

We consider a one-dimensional geometry like in chapter 4 and focus on a boundary between
the tumor and an OAR. The boundary is uncertain, either because of motion effects or
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because of delineation uncertainties. We assume that the probability to find tumor tissue at
position r is given by C(r), the coverage probability. We heuristically suggest the objective
function

B - / arC(r) [D(r) — Dyl dr

+/aOAR(1 — C(r))D?(r)dr (6.8)

where the integration range covers the transition region of tumor and OAR. When C(r)
is the Heavyside step function objective function 6.8 reduces to the standard quadratic
objective function applied in section 4 and 2.

6.2.2 Delineation errors

In this section, we assume that there are no organ movements but a static geometry.
We focus on the boundary of the tumor and the adjacent OAR. Let us assume that the
boundary is delineated at the coordinate r = (3. The quadratic objective function in the
region of interest is

E(9) = [ a(r,3) D) = Dyl ) dr (6.9)

where
a(r,B) = aoar+ (ar —apar)O(B —71) (6.10)
Dpres(r7 ﬁ) = DT@(ﬁ - T) (611)

where ©(r) is the Heavyside step function, i.e. ©(r) = 0 (r < 0) and ©(r) = 1 (r > 0).
Let us now assume that the boundary between tumor and OAR is uncertain, i.e. the
parameter (3 is uncertain and P(f) is the probability density that a particular value of
[ is the “true” boundary. We apply the same postulate as in section 1.4, which means,
we optimize the expectation value of the objective function in order to incorporate the
delineation uncertainty into the optimization:

() = [ E@P©)s (6.12)
Evaluating the objective function 6.12 yields
E) = [ [alr.)D0) = Dyl 9 drP(3)d5 (6.3
- / {DQ(T) / a(r, 3)P(B)d3 (6.14)
~2D(r) [ (1) Dyl P35 (6.15)

+ / a(r, B)D2,.(r, B)P(B)d3 | dr (6.16)
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The integral over 3 in the first term 6.14 can be rearranged to give

/ afr,B)P(B)dB = aoar+ (ar — aoar) / o(r, B)P(B)d3 (6.17)
= apar(l = C(r)) + arC(r) (6.18)

where

C(r) = / o(r, B)P(8)dp (6.19)

can be interpreted as the coverage probability since for every position r, C(r) gives the
probability that 3 is larger than r, i.e. that there is tumor tissue at position r. Evaluation
of the integrals over § in 6.15 and 6.16 yields

/ a(r, B) Dyres(r, B)P(B)dB = DrarC(r) (6.20)
[ 81D}, 0)P(3)d5 = DiarC(r) (6.21)
Substituting this into equation 6.13 gives us
E) = [ aomD )1 Cr)yir (6.22)
+ / ar [D*(r) — 2D(r)Dr + D7) C(r)dr (6.23)

which is equivalent to the coverage probability approach in equation 6.8. Optimizing the
expectation value of the objective function in the presence of delineation uncertainties is
thus equivalent to the coverage probability approach which was introduced in section 6.2.1
without further justification.

6.2.3 Motion-induced uncertainties

Let us reconsider interfractional organ motion and the incorporation of random errors into
the optimization. We need two coordinate systems: let v’ denote a position in the static
coordinate system and let r denote a position in the tissue which moves as a rigid object.
As discussed in section 2.4, the expectation value of the quadratic objective function can
be written as

)= [a0) [<<D><r>—Dpres<r,ﬁ)>2+%(<D2><r>—<D>2<r>) dr (6:24)
where

) = aoar+ (ar —aoar)O(B — 1) (6.25)
) = DrO(—r) (6.26)
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The boundary (8 between tumor and OAR in the moving coordinate system is assumed to
be known, i.e. we consider purely motion effects and no delineation errors. The expectation
values (D) and (D?) are given by

(D)(r) = /D(r')P(r —r')dr' (6.27)
(D*)(r) = /DQ(T‘,)P(T —r)dr’ (6.28)
where D(r') refers to the dose delivered to the static point 7’ and P(r—r') is the probability

to find the tissue element r at position r’. For the special case that only a single fraction
is considered (N = 1) equation 6.24 simplifies to

(E) = /a(r, B) [{D?)(r) = 2Dpres(r, B){(D)(r) + D2, .(r, 3)] dr (6.29)

When we substitute 6.27 and 6.28 into 6.29 we get
E) = [a8)| [ [D°6) =20 )P + D)) Pl = 0|
= / U D?(r"a(r, B)P(r — r')dr
—/2D(r’)a(r, B)Dpres(r, B)P(r — r'")dr
+ /a(r, 6)Dﬁm(r, B)P(r — r’)dr} dr’
— [ aoarD? )1 - )
+ / ar [D*(r') — 2D(r")Dr + D3| C(r', B)dr’

where
C(r',p) = /@(ﬁ —7r)P(r —1r")dr

is the probability that a point r, which is smaller than (3, is at position 7/, i.e. it is the
coverage probability.

We thus find that optimizing the expectation value of the objective function in the pres-
ence of a random displacement of the tumor due to interfractional motion is equivalent to
the coverage probability approach. However, this equivalence only holds when the dose
distribution is optimized for a single fraction. For the more general case where the cu-
mulative dose for multiple fractions is optimized, this equivalence does not apply. Thus,
probabilistic treatment planning defined in chapters 2 and 3 is the more general approach
to incorporate interfractional organ movements into IMRT optimization. The coverage
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probability approach can only reproduce the safety margin like solution, characterized by
a homogeneous dose distribution delivered to the tumor in each fraction. However, the
coverage probability approach is computationally less complex. Therefore, the equivalence
of the coverage probability approach and probabilistic treatment planning for the special
case N = 1 is helpful if one is only interested in reproducing the safety margin like solution.






Chapter 7

Conclusions

7.1 Summary of concepts and results

General concept

The thesis presents an off-line strategy to incorporate organ movements into inverse IMRT
treatment planning. We refer to this approach as “probabilistic treatment planning”. Fol-
lowing this approach, the optimization of the fluence maps is based on a mathematical
model of organ motion which describes the possible geometric variations of the patient’s
anatomy. Organ motion is to a large extent a stochastic process. This especially applies
to interfractional movements, but also to respiratory motion. The motion model involves
a set of random variables that parameterize the anatomical state of the patient and their
associated probability distributions. Consequently, the dose delivered to the patient be-
comes a random variable too and is characterized by an expectation value of the dose and
its variance. In order to incorporate the motion model into the optimization, we optimize
the expectation value of a quadratic objective function. This objective can be written as
a sum of two terms: first the variance of the dose, and second, the quadratic difference of
the expectation value of the dose and the prescribed dose (section 1.4).

Interfractional motion

In chapters 2 and 3, interfractional motion is considered. Chapter 2 derives a motion model
for interfractional motion (section 2.1) and analyzes the concept of probabilistic treatment
planning for an idealized patient geometry. Chapter 3 provides an application to clinical
data of prostate patients. The underlying assumption of the motion model is that inter-
fractional displacements of tissue elements can be described by a Gaussian distribution
with parameters mean position and distribution width. The distribution width determines
the magnitude of motion. The displacement of the tissue element from its mean position
may be different in different fractions and is referred to as the random error. The mean
position of the tissue element has to be estimated from tomographic images of the patient.
Typically, the number of images is small and, therefore, the estimate of the mean position



110 Conclusions

is uncertain. This is referred to as a systematic error. The magnitude of motion can also
be estimated from patient specific images. In addition, clinical studies on organ motion
may provide prior knowledge derived from a larger population of patients. The concept
of Bayesian inference is applied to derive probability distributions for the mean position
and the magnitude of motion based on contributions of the patient specific data and pop-
ulation based knowledge. Bayesian inference, in particular, allows for an interpolation
between knowledge from the patient’s images and knowledge from clinical studies, which
is relevant since the number of CT scans of the individual patient is usually small. The
motion model allows for a unified description of random errors and systematic errors.

Probabilistic treatment planning for interfractional motion is first analyzed for an idealized
two-dimensional patient geometry (chapter 2). This allows us to demonstrate the mathe-
matical formalism and to discuss the generic features of probabilistic treatment planning.
The concept is then implemented into a research version of the inverse planning tool Kon-
Rad (chapter 3). The basic features of probabilistic treatment planning observed for the
idealized model were mostly reproduced for the application to a clinical prostate case.

The variance of the cumulative dose depends on the number of fractions. Therefore, we
obtain different optimal treatment plans for a different number of fractions. For the treat-
ment plan optimized for 30 fractions, the dose distribution delivered to a static patient
geometry is characterized by inhomogeneous patterns (sections 2.4, 3.2.3). These inhomo-
geneities are shaped in such a way that regions where tumor tissue is located only rarely
is irradiated with a lower dose than the dose prescribed to the tumor. In order to ensure
a sufficient target coverage, this is compensated for by delivering a higher dose to regions
that are mostly occupied by tumor tissue. After 30 fractions, a widely homogeneous dose
distribution is delivered to the tumor. Optimization of the fluence map for a single frac-
tion reproduces a safety margin like solution, characterized by a homogeneous high dose
region in the dose distribution delivered to a static patient geometry (sections 2.4, 3.2.4).
For a single fraction, initial dose inhomogeneities could never be compensated for by later
fractions. This is “measured” by the variance term which suppresses a modulation of the
dose distribution. Inhomogeneities in the dose delivered to a static patient geometry allow
for an improved expectation value of the dose distribution compared to the safety margin
like solution, i.e. dose gradients at the transition between tumor and healthy tissue are
steeper. On the other hand, the standard deviation of the dose increases and makes the
dose delivered to the CTV less predictable. An optimization of the expectation value of
the dose alone further increases the standard deviation of the dose and makes the assumed
benefit of the optimized expectation value questionable (sections 2.4.1, 3.2.5).

The inclusion of systematic errors and an uncertain magnitude of motion into the optimiza-
tion mainly leads to an extension of the high dose region towards the normal tissue. It does
not lead to a major change of the modulation pattern (sections 2.5, 3.6). The inclusion
of systematic errors into the optimization demonstrates a general problem in treatment
evaluation (section 3.4). In the presence of systematic errors, the expectation value of the
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dose is not a good surrogate for the dose distribution as a whole that may be delivered
to the patient. It can never be realized at each voxel simultaneously. In the framework
of a diploma thesis, a simulation and visualization tool was depeloped, which allows the
display of probabilities for an appropriate dose delivery. For each voxel, the probability
that the delivered dose is within a predefined dose interval is displayed. Generally, a large
variety of distributions can be displayed in order to characterize the dose delivered to the
patient. None of them seem to be perfect or sufficent all alone.

For small motion amplitudes in the order of 2 mm or less, the treatment plan optimiza-
tion becomes widely insensitive to the number of fractions and a mainly safety margin
like treatment plan is generated. The distance of hot spots and cold spots in the dose
distribution delivered to a static patient geometry has to be in the order of the magnitude
of motion. For small motion amplitudes this is not possible due to lateral scattering of the
photons and a limited resolution of the MLC.

Respiratory motion

Chapters 4 and 5 deal with the application of probabilistic treatment planning to lung
tumors. We model the trajectory of the moving tumor during respiratory motion using a
cosine function to the power of four (section 4.2). In order to model the variability of the
breathing pattern, we assume that the model parameters amplitude and exhale position
are random variables. The irradiation time of one field is generally not a multiple of the
breathing cycle. Therefore, the delivered dose depends also on the breathing phase at the
time when the irradiation starts. In chapter 4 we derive equations to calculate the expec-
tation value of the dose (sections 4.3.1, 4.4.1) and the associated variance (sections 4.3.2,
4.4.2) for the irradiation of a single field and a one-dimensional geometry. An exact calcu-
lation of the variance (within the framework of the motion model) is relatively unhandy.
Therefore, we introduce an approximation of the variance where the variance for arbitary
irradiation times of the field is approximated based on the variance for an infinitesimal
irradiation time (sections 4.3.3, 4.4.3).

The application of this concept to probabilistic treatment planning for lung tumors (chap-
ter 5) is not straightforward. The variance of the dose depends on temporal aspects of the
dose delivery process. The entire dose field is not applied at once. For Step-and-Shoot
IMRT, an intensity modulated field is realized by a large number of ML.C segments which
are applied one after another. In order to assess the dose uncertainty for clinical IMRT
treatments, we first consider dose delivery with compensators (sections 5.1.1, 5.1.2). Based

on the variance for compensator based dose delivery, an approximation of the variance for
Step-and-Shoot IMRT is suggested (sections 5.1.3-5.1.5).

The concept is partly implemented into the inverse planning tool KonRad (section 5.2)
and applied to a lung tumor (section 5.3). Four different treatment plans are compared:
compensator based IMRT, Step-and-Shoot IMRT, treatment planning assuming that the
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expectation value of the dose is always realized, and treatment planning assuming an
infinitesimal irradiation time. The treatment plans for compensator based IMRT and
Step-and-Shoot IMRT show characteristic modulation patterns in the dose distribution
that would be delivered to a stationary patient geometry. Roughly speaking, the dose
delivered to regions where the tumor is located at exhale is increased. This allows for a
reduction of the dose delivered to regions where the tumor is at inhale. The magnitude of
modulation is higher for the compensator based IMRT treatment plan compared to Step-
and-Shoot IMRT because the estimated dose variance is larger for Step-and-Shoot IMRT.
If an infinitesimal irradiation time is assumed for treatment plan optimization, a safety
margin like solution can be reproduced. The dose distribution delivered to a stationary
patient geometry is homogeneous within the entire region where the tumor can be located.
The expectation values of the dose distributions indicate that the modulations of the dose
distribution delivered to a stationary patient geometry allow for a better sparing of the
healthy tissue compared to the safety margin like treatment plan.

Extensions

The last chapter of this thesis outlines a possible modification of the objective function and
shows relations to another approach to deal with uncertainties in radiotherapy. In section
6.2, we discuss the relations between the so called coverage probability approach, the
inclusion of delineation uncertainties, and probabilistic treatment planning to incorporate
organ motion. In section 6.1, a modification of the quadratic objective function is outlined.
This modification would allow for different penalties for overdosage and underdosage of the
tumor.

7.2 Discussion and conclusions

The motivation for probabilistic treatment planning can be seen from different perspec-
tives. One aspect is that it seems to be natural to incorporate organ motion into the
optimization of an IMRT treatment plan. In the framework of the traditional safety mar-
gin approach, organ motion effects are incorporated into the delineation process instead.
Based on the available knowledge on organ motion, the appropriate size of the margin has
to be determined. Generally, the minimal margin required to expand the CTV to the PTV
is non-isotropic and it is not easy to determine the “optimal” margin that allows for the
best possible sparing of the adjacent healthy tissue. In the IMRT optimization step, the
dose distribution in the artificial PTV is optimized without assessing the dose distribution
in the moving tumor itself, which would be of primary interest. Probabilistic treatment
planning eliminates the extra step of choosing an appropriate safety margin. The available
knowledge on organ motion is incorporated into the optimization of the dose distribution
and the optimization routine determines the required expansion of the irradiated volume
automatically. In addition, the concept assesses the dose distribution delivered to the
anatomical structure and not only the dose delivered to a certain point in space, regardless
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of what type of tissue is mostly located at this point.

Apart from that, one can ask for the dosimetric improvements that probabilistic treatment
planning can provide in comparison to the safety margin approach. For small amplitudes of
motion, probabilistic treatment planning can only reproduce treatment plans that deliver
a widely homogeneous dose to the region where the tumor is located. The advantage is
that the optimization automatically determines the appropriate expansion of the high dose
region around the tumor. For larger amplitudes of motion, probabilistic treatment plan-
ning generates treatment plans which are qualitatively different and cannot be produced
by a safety margin approach. For such treatment plans, the dose distribution delivered to
a stationary patient geometry would be inhomogeneous within the region where the tumor
is located. Regions where tumor tissue is expected to be located only rarely are irradi-
ated with a lower dose than the dose prescribed to the tumor. This is compensated for
be delivering higher doses to regions where mostly tumor tissue is located. Due to organ
movements during the course of treatment, initial dose inhomogeneities level out and a
widely homogeneous dose is delivered to the tumor. This modulation allows for a better
sparing of the adjacent healthy tissue compared to a safety margin like solution.

On the other hand, treatment plans that would deliver an inhomogeneous dose to a sta-
tionary patient geometry bear risks. If organ movements during the course of treatment
do not occur in a similar way as assumed in the treatment planning process, the dose
distribution applied to the tumor may remain inhomogeneous. The treatment planner has
to find a trade-off between the potential benefit and an increased risk. The benefit would
be the better sparing of healthy tissues, the risk would be an inhomogeneous cumulative
dose distribution within the CTV. By including the variance of the dose into the objective
function, the optimal trade-off is in principle defined mathematically. By changing the
relative weight of the variance term in the objective function, the treatment planner can
control the trade-off between benefit and risk.

It has been suggested previously by other authors that organ motion can be incorporated
into IMRT treatment planning via optimizing the objective function evaluated at the expec-
tation value of the dose distribution. For the quadratic objective function this corresponds
to a minimization of the quadratic difference of expected and prescribed dose while the
variance term is neglected. In this thesis, it was demonstrated that this approach fails for
considerably large amplitudes of motion.

7.3 Outlook and future work

This section outlines several aspects of probabilistic treatment planning that could be
subject to further investigation in the future. Some aspects are of practical importance in
order to implement a clinical application. But there are also a number of conceptual issues.
Some aspects apply to both interfractional and respiratory motion, others mainly refer to
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interfractional motion. For respiratory motion, a seperate outlook section is provided
(section 5.4).

Practical issues

For a clinical application of probabilistic treatment planning, the parameters of the mo-
tion model have to be estimated from the available image data of the patient. In order
to perform this estimation, elastic image registration tools are required (also referred to
as deformable registration methods). Elastic image registration provides the positions of
a tissue element in different images, which forms the basis to estimate parameters of the
motion model.

In this thesis, the optimization of a treatment plan was performed via a beamlet based
optimization which yields an intensity modulated fluence map for each beam. In order to
deliver the intensity modulated field in practice using Step-and-Shoot IMRT, the fluence
map has to be discretized and decomposed into deliverable apertures using a sequencer.
One may hypothesize that treatment plans which deliver a modulated dose distribution
to a stationary patient geometry are more sensitive to the discretization of the fluence
map and that more MLC segments are needed in order to approximate the beamlet based
optimized fluence map sufficiently well. This issue has not been investigated yet.

Conceptual issues

For probabilistic treatment planning incorporating the interfractional movements of the
prostate, it was assumed in chapter 3 that a set of CT images is available for treatment
planning before the first fraction. In a clinical environment this may not be realistic. The
number of CT images increases during the course of treatment. Section 2.7 outlines a
concept to optimize two fluence maps simultaneously in order to adapt the treatment plan
during the course of treatment. However, an application to clinical data is not straight
forward as discussed in the last paragraph in section 2.7. Further work concerning this
issue may be beneficial for both practical and conceptual questions.

Probabilistic treatment plan optimization was performed for the quadratic objective func-
tion. The quadratic objective function has the advantage that it can be evaluated by
considering the movement of each tissue element separately. Practically, the movement of
neighboring tissue elements is of course highly correlated. A principal component analysis
(PCA) provides a method to parameterize the geometric changes of the patient as a whole
[34, 35]. A PCA provides the prevalent deformation modes of the tissue and the entire
geometric change of the patient anatomy can be parameterized by a small set of random
variables. Although this is not necessary to evaluate the quadratic objective function, it
may be beneficial for other reasons. First, it provides a more consistent description of
geometric changes. Second, it would be possible to overcome the limitation to objective
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functions that are separable with respect to the movement of different tissue elements.
And third, it could be used to generate random samples of the cumulative dose distribu-
tion and the DVH. The simulation tool described in section 3.3.1 calculates the expectation
value and the variance of the dose by simulating displacements for each voxel seperately.
This does not allow for generating a realistic sample of the cumulative 3D dose distribution.

When the dose delivered to a static patient geometry is inhomogeneous within the CTV,
the dose delivered to an element of tumor tissue is not the same in each fraction. As a
consequence, the biological effect is different compared to a uniform fractionation. The
biological effect of the non-uniform fractionation could e.g. be assessed in the framework
of the linear-quadratic cell survival model by approximating the expectation value of the
equivalent uniform fraction dose as the sum of the expectation value of the physical dose
and a variance-dependent perturbation [36].

In the future, probabilistic treatment planning could also be investigated for other objec-
tive functions. One drawback of the quadratic objective function is that overdosage und
underdosage of the tumor are considered equally bad, which may not always be desired.
Section 6.1 outlines a modification of the quadratic objective function that can overcome
this limitation.






Appendix A

Evaluation of the rotation therapy
model

In this section we discuss practical aspects of the evaluation of the expectation value of the
dose, its variance and the minimization of the objective function for the idealized model
in section 2.

A.1 Calculation of expectation values

In this section we derive the expectation values in equations 2.48-2.52 that are used to
calculate the expectation value of the dose and its variance in the presence of systematic
errors and an uncertain distribution width. Equations 2.34-2.37 for dose calculations based
on random errors alone and equations 2.40-2.44 for systematic errors are simplifications of
the general case and can be derived similarly. Further details can be found in the appendix
of [1].

The random errors in different fractions are statistically independent. In other words, the
probability distribution for a set of displacements {Ag,}} given the model parameters
(As, o) factorizes:
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where P(Ag,|As, o) is given by equation 2.53 for all ¢ = 1,..., N. For the expectation
value of the cumulative dose we obtain

@y = [ [iD(rrAgw

xP(As|o,{Ap,})P(c|{Ap,}) dAg: - - - dAgn dAs do

= é///D(T!Agu)P(AgM\As,U)

xP(As|o,{Ap,})P(c|{Ap,}) dAg, dAs do

P(Agh . ‘7AgN‘A870-)

which yields equations 2.48 and 2.50. For the expectation value of the cumulative dose
squared we obtain

o3e) = [ lémrmgu)

xP(As|o,{Ap,})P(c|{Ap,}) dAg; - - - dAgn dAs do

= é///DQ(rIAgM)P(Angs,U)

xP(As|o,{Ap,})P(c|{Ap,}) dAg, dAs do

+i////D(r|AgM)D(r|Agn)P(Agu|AS,U)P(Agn|As,U)

=1
N

2
P(Agh . ‘7AgN‘A870-)

xP(As|o,{Ap,})P(c|{Ap,}) dAg, dAg, dAs do

which yields equations 2.49, 2.51 and 2.52. All expectation values are radially symmetric
functions and do not depend on the azimuthal angle ¢ but only on the radial coordinate r.

A.2 Numerical aspects

In this section we discuss the numerical evaluation of the rotation therapy model in sec-
tion 2. For simplicity, we consider the optimization problem in section 2.4 which includes
random errors only. The objective function in sections 2.5 and 2.6 can be evaluated in a
similar way.

For numerical evaluation of the model we discretize the fluence profile, i.e. the fluence
is constant on intervals [iAz, (i + 1)Az] (i € Np). Each segment of the fluence profile is
referred to as a bizel. To calculate the dose contribution of a bixel ¢ to a point (r,¢) in
the patient given a displacement Ag = (Ag, Ayp) the following integral has to be solved
numerically:

1 2
di (T,QO|AQAQO) = %/0' @(%balﬂ’, 2 AgaASO) eXp (_NZ(TaSD,ZD)) d,lvb (Al)
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where

(lz (r, 0, Ag, Ap, ¥)| € [iAz, (i + 1)Az])

otherwise

O (Y, i,r, ¢, Ag, Ap) = { é (A.2)

and x and z are given by equation 2.26 and 2.27, respectively. The dose distribution can
now be rewritten as a sum:

D (r,¢|AgAg) = > di (r, 0| AgAp)
where ®; is the fluence in bixel i. To calculate the expectation value of the dose
D))= [ [T D0elaene P(ag Adlas o) Agadgine (A9
an effective dose contribution function d;(r) is defined as

27 o0
di (r) = / / d: (r, | AgAQ) P (Ag, Ag|As, o) Ag dAg dAg
0 0

which is independent of ¢, so that

holds. To calculate the expectation value

2m 00
<D2> = / / D? (r, | AgA) P (Ag, Ap|As, o) AgdAgdAyp (A.4)
o Jo
for a single fraction, we define the variance contribution function g;; (r) by
2m 00
a5 = [ [ dilrelgD0) d (olB9A0) P (Ag. Apls.0) Agdgdg (A5
o Jo
so that

(D*)(r) = Z ij (1) 295 (A.6)

applies.

The optimisation problem can be solved by a standard gradient method since the objective
function can explicitly be written as a quadratic function of the fluence in each bixel. The
objective function 2.39 can now be expressed as

E = /a('r’) [Z di(r)®; — Dpres(r)] rdr
—l—/oz(r)% izj(jij('r’)@@j — (; Ji("r’)@i) rdr



120 Evaluation of the rotation therapy model

and the gradient is hence

gg; - /O‘(T)Mi(r) (2]: d;(r)®; — Dpres(/r)) rdr

+ / oz('r’)% [2 2]: Gij(r)®; — 2d;(r) (2]: JJ-(r)cpj)] rdr

A.3 Calculation of Py; probabilities

We want to calculate the probability Pos(r) that the cumulative dose at a point with a
radial coordinate r exceeds 95% of the prescribed tumor dose. We consider the most general
case which accounts for systematic errors and uncertainties in the magnitude of motion
(section 2.6). The calculation of Pys for considering random errors only is a straightforward
simplification. To calculate Pys(r) we simulate the treatment of a large number n of patients
according to the following steps:

1) Randomly choose o from the distribution 2.55 or 2.57.

2) Choose a systematic error As from the distribution 2.54. Without loss of generality
set Z,Jl/le Ap,, = 0.

3) Choose a set of N treatment positions {Ag,} from the distribution 2.53.
4) Calculate the cumulative dose D’(r) according to equation 2.32.

The probability Pys(r) is then approximately given by
I :
Pos(r) = Pos(r) ~ — > O (Di(r) — 0.95N Dy, (A7)
i=1

where i is a patient index and © is the Heavyside step function, i.e. ©(D) =1 (D > 0)
and ©(D) =0 (D < 0).
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