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We read that the Swedish author August Strindberg was once caught blowing pipe smoke into a tub of 

water to see whether he could produce gold. And we say to ourselves: Look what an insane idea 

emerged from such a brilliant mind! But isn’t it more correct to say: Wasn’t it Strindberg who 

experimentally proved that releasing tobacco smoke into water does not produce gold? Someone had 

to try it. Someone had to examine that dead end of human knowledge and alert the world: Not this 

way, my friends! 

 

Jara Cimrman, Czech genius 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

words like violence 
break the science 

 
wows are spoken 

to be broken 
 

feelings are intense 
words are trivial 

 
pleasures remain 
so does the pain 

 
words are meaningless 

and forgettable 
 

all I ever wanted 
all I ever needed 

is here in my arms 
words are very unnecessary 

they can only do harm 
 
 
 

Thank you all, 
Jiri, Sarah, Radka, Eugi and Chef 



ABSTRACT 
 
Lukasova, Martina; pharmacist     oral examination on 22nd February 2006 
 
INVESTIGATION OF DIFFERENT BLOOD PRESSURE REGULATING SYSTEMS IN KININOGEN-
DEFICIENT BNK RATS 
 
Referees: Prof. Dr. Ulrich Hilgenfeldt; Prof. Dr. Gert Fricker 
 
The kininogen-deficient BNK rats were shown to progressively develop salt-sensitive 
hypertension by accumulation of Na+. It was believed that the kininogen-deficiency is 
responsible for the defective NaCl excretion leading to a cardiovascular damage. In addition 
to the kallikrein-kinin system (KKS), endothelin (ET) and aldosterone have important 
implications in the regulation of salt homeostasis. 
 
To precisely characterize the relations between the KKS, ET and aldosterone male BN and 
BNK rats were given standard or high salt diet in presence or absence of spironolactone for 
10 days. Besides for experiments with metabolic cages the rats were characterized by tail-
cuff measurements of blood pressure. Kininogens, bradykinin (BK), kallidin-like peptide 
(KLP), ET-1, deoxycorticosterone (DOC), corticosterone and aldosterone were measured by 
specific RIAs in plasma and 24h urine. Corticoids were additionally determined in brain 
tissue. Activity of plasma and urinary kallikrein was measured with chromogenic substrates. 
Expression analysis of adrenal steroidogenic enzymes 11ß-hydroxylase and aldosterone 
synthase was performed by real-time RT-PCR in LightCycler. Functional cardiac parameters 
were assessed in isolated hearts perfused according to Langendorff technique. Acute effects 
of 30min global ischaemia with or without previous ischaemic preconditioning (IPC) were 
investigated. Myocardial damage was judged by the creatine kinase activity in the coronary 
effluent measured with a specific kit. 
 
BNK rats are characterized by plasma kininogen deficiency that is reflected in lower levels of 
plasma kallikrein activity and consequently in lower plasma BK and KLP levels. The renal 
KKS of BNK rats was almost identical to that of wild type BN rats. Plasma and urinary KLP 
was found to be the major kinin responsible for most physiological effects mediated by the B2 
receptor in both rat strains. We found that the deleterious effects of salt diet in BNK rats are 
in fact attributable to enhanced mineralocorticoid action. The renal mineralocorticoid receptor 
(MR) displayed an overexpression and several mutations that might be responsible for 
altered affinity and responses toward aldosterone and other ligands, e.g. DOC and 
corticosterone. Moreover, the BNK rats have increased levels of plasma and urinary ET-1, 
which may contribute to the deleterious effects of Na+ during high salt diet. In vitro 
investigation of ischaemic preconditioning in isolated hearts revealed no significant findings. 
Missing plasma components are necessary for the overall protective effects of IPC. 
Nevertheless, long-lasting effects like attenuation of plasma kinins or antagonism of the MR 
seemed to be of importance for the regulation of cardiac function. The absence of plasma 
KLP during high salt diet was found to be responsible for the enhanced deleterious effects of 
Na+ leading to cardiac hypertrophy. In BNK rat hearts aldosterone was found to be 
responsible for the higher heart rate and increased contractility besides for the impairment of 
coronary flow. Aldosterone is also involved in the acute response to ischaemia and 
consequently in response to IPC. In case of an enhanced mineralocorticoid action like in 
BNK rats aldosterone may account for the increased sensitivity to ischaemia whereby 
attenuating the protective effect of IPC. 
 
We conclude that in BNK rats the higher blood pressure, increased cardiac sensitivity to 
ischaemia and diminished effects of IPC are not attributable to the kininogen deficiency but 
rather caused by the enhanced mineralocorticoid action. 



ZUSAMMENFASSUNG 
 

Lukasova, Martina; Apothekerin             mündliche Prüfung am 22.02.2006 
 

UNTERSUCHUNGEN VERSCHIEDENER BLUTDRUCKREGULIERENDER SYSTEME IN KININOGEN-
DEFIZIENTEN BNK RATTEN 
 

Gutachter: Prof. Dr. Ulrich Hilgenfeldt; Prof. Dr. Gert Fricker 
 

Kininogen-defiziente BNK Ratten entwickeln einen progressiven salz-sensitiven 
Bluthochdruck und ein erhöhtes kardiovaskuläres Risiko, das durch eine verminderte NaCl 
Ausscheidung verursacht wird. Neben dem Kallikrein-Kinin System (KKS) sind auch 
Endothelin (ET) und Aldosteron an der Regulation der Salz-Wasserhomöostase beteiligt. 
 

Um die Wechselwirkung zwischen den KKS, ET und Aldosteron genauer zu untersuchen, 
wurden männliche BN und BNK Ratten 10 Tage lang mit einer Standard- oder Hochsalz-Diät 
gefüttert und gleichzeitig mit oder ohne Spironolacton behandelt. Vor und nach Beendigung 
der Behandlungsperiode wurde der Blutdruck gemessen und die Ratten 24h auf 
Stoffwechselkäfige gesetzt. Wir bestimmten Kininogene, Bradykinin (BK), Kallidin-like Peptid 
(KLP), ET-1, Deoxykortikosteron (DOC), Kortikosteron und Aldosteron im Plasma und im 24h 
Urin mit spezifischen RIAs sowie die enzymatische Aktivität von plasmatischem und 
urinärem Kallikrein. Ferner konnten zusätzlich Kortikoide im Gehirn bestimmt werden. 
Expressionsanalysen der adrenalen 11ß-Hydroxylase und Aldosteronsynthase führten wir 
mit Hilfe von real-time RT-PCR im LightCycler durch. Mittels Langendorff Technik wurden im 
Modell des isoliert-perfundierten Rattenherzen primäre kardiale Parameter und Akuteffekte 
nach 30min Ischämie mit und ohne ischämische Präkonditionierung untersucht. Die Aktivität 
der Kreatinkinase in koronaren Perfusaten diente zur Evaluierung myokardialer Schäden. 
 

BNK Ratten weisen eine Kininogen-Defizienz im Plasma auf, verbunden mit einer geringeren 
Kallikreinkonzentration und deutlich verminderten BK und KLP Konzentrationen.  Das renale 
KKS von BNK Ratten zeigte im Vergleich mit BN Kontrollratten beinahe identische Werte. In 
beiden Rattenstämmen erwies sich das Kallidin-Äquivalent, KLP, als primäres Kinin, das für 
die meisten physiologischen Effekte verantwortlich ist, die über den B2 Rezeptor vermittelt 
werden. Die negativ Effekte von Hochsalzdiät in BNK Ratten wurden vor allem durch eine 
verstärkte mineralokortikoide Antwort verursacht. Wir konnten zeigen, dass in BNK Ratten 
der Mineralokortikoid Rezeptor (MR) überexprimiert wird und mehrere Mutationen besitzt, die 
eine veränderte Affinität für Aldosteron und andere Liganden, wie z.B. DOC und 
Kortikosteron, nach sich zieht. Daher zeigten BNK Ratten auch höhere plasmatische und 
urinäre ET-1 Spiegel, die an den negativen Effekten der Hochsalzdiät beteiligt sind. In vitro 
Untersuchung der ischämische Präkonditionierung zeigte keine signifikante Unterschiede 
zwischen den beiden Rattenstämmen. Wir führen das auf das Fehlen plasmatischer 
Komponenten zurück, die eine wichtige Rolle bei der Vermittlung der protektiven Effekte bei 
der IPC spielen. Dennoch war durch die unterschiedliche Vorbehandlung die 
Ausgangssituation der isolierten Herzen unterschiedlich, da die kardiale Funktion durch die 
niedrigere plasmatische Kininkonzentration oder den Antagonismus des MR beeinflusst wird. 
Während eine Hochsalzdiät erhöhte der Mangel an KLP das Risiko des negativen 
Salzeffektes und führte zu einer kardialen Hypertrophie. Bei den BNK Ratten stand 
Aldosteron im Zusammenhang mit einer erhöhten Herzrate, erhöhten Kontraktilität und 
einem verringerten Koronarfluss. Es konnte gezeigt werden, dass Aldosteron an der 
Akutantwort der Ischämie und der IPC beteiligt ist. 
 
Zusammenfassend konnten wir zeigen, dass in BNK Ratten nicht primär die Kininogen-
Defizienz, sondern die verstärkte mineralokortikoide Wirkung für den erhöhten Blutdruck, die 
erhöhte kardiale Sensitivität bei Ischämie und die verminderte Protektion infolge einer 
ischämischen Präkonditionierung verantwortlich ist. 
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1. INTRODUCTION 
 
1.1. DIETARY SODIUM AND CARDIOVASCULAR EFFECTS 
 

The importance of dietary sodium chloride (NaCl) in the regulation of blood pressure 

has received much attention over the past few years. It is generally accepted that the 

role of the kidney in handling sodium (Na+) is a key to the long-term regulation of 

blood pressure. The relationship between renal handling of Na+ and blood pressure 

is apparently influenced by a complex combination of many factors, e.g. nutritional, 

genetic, neurohormonal and metabolic (Jones, 2004). Furthermore, dietary Na+ may 

contribute to cardiovascular target organ injury. Recently published studies provide 

evidence for blood pressure-independent effects of an excess of Na+ on blood 

vessels, the heart, and the kidney, such as cardiac hypertrophy and perivascular 

fibrosis (Jones, 2004). 

 

Among various putative genetic markers, reduced urinary kallikrein excretion has 

been used as a marker of salt sensitivity in normotensive subjects as well as in 

essential hypertensive patients, suggesting that depressed activity of the renal 

kallikrein-kinin system (KKS) could contribute in the pathogenesis of salt-

dependent hypertension. It was hypothesized that the enhanced blood pressure 

sensitivity to salt is due to Na+ retention and total volume expansion attributed to the 

effects of kinins on renal filtrations and/or tubular handling of Na+. In addition, the 

KKS-deficient phenotype might be particularly susceptible to develop renal damage 

as a consequence of modest elevation in blood pressure levels (Madeddu et al., 

1997). 

 

Importance of Na+ accumulation in the development of hypertension and the role of 

the renal KKS was studied in mutant kininogen-deficient Brown-Norway Katholiek 
(BNK) rats. The mutant BNK rats have no apparent symptoms. However, they are 

sensitive to ingested salt, so that 2% NaCl in the diet cause an increase in the 

systemic blood pressure accompanied with an increased intake of water, reduced 

urine volume, reduced urinary Na+, and accumulation of Na+ in the erythrocytes. The 

accumulation of Na+ in the cerebrospinal fluid causes an increase in the sympathetic 

discharge from the central nervous system (CNS). Elevated levels of Na+ in the cells 
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increase sensitivity of the arterioles against noradrenaline and angiotensin (Ang) II.  

Accordingly blood pressure can raise without an increase in the plasma levels of 

vasoconstrictors (Majima et al., 1993). 

 

 
 

Fig.1 Role of the kallikrein-kinin system in the kidney. In normal rats, the KKS safely excretes 

Na+ after excess salt intake or Na+ accumulation by release of Ang or aldosterone, while in the 

kininogen deficient rats BNKa KKS does not work and excess Na+ is easily accumulated. In 

SHR, KKS may insufficiently work and excess Na+ will tend to be accumulated. BN-Ki, Brown 

Norway Kitasato rats; WKY, Wistar Kyoto rats; BN-Ka, Brown Norway Katholiek rats; SHR, 

spontaneous hypertensive rats; Ald, aldosterone (Katori et al., 2001). 

 

Under normal physiological conditions the contribution of the KKS to Na+ excretion in  

the renal tubules may be minimal. Once excess Na+ is ingested or shows a tendency 

to be accumulated in the body, the kinin generated in the renal tubules is thought to 

inhibit reabsorption or accelerate secretion of Na+. The renal KKS acts as a sort of 

floodgate against Na+ retention. When this gate is completely closed, as in mutant 

BNK rats, the loading of Na+ or Na+ accumulation through release of aldosterone by 

Ang II may cause accumulation of Na+ in the body. In spontaneous hypertensive rats 

(SHR), the reduction of kallikrein production causes hypertension with Na+ 

accumulation (Fig.1). In normal rats, although renal kallikrein may be released 

basolaterally and kinin released in the interstitial space may play some role in 
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vasodilation, luminal kinin has a much more important function in preventing the 

development of hypertension (Majima and Katori, 1995). 

 

Another useful biological marker for the prediction of salt-sensitive hypertension may 

be the urinary excretion of endothelin (ET). The kidney expresses both endothelin 

ETA and ETB receptor subtypes. ETA is localized primarily in the renal vasculature, 

whereas ETB receptors are of particular abundance in the epithelial cells of the inner 

medullary collecting duct (Kohan, 1997). As in peripheral blood vessels, ET-1 of local 

or systemic origin mediates vasoconstriction via ETA receptor in renal vasculature 

causing a decrease in renal blood flow and glomerular filtration rate and 

subsequently diminishing Na+ and water excretion. On the contrary, locally produced 

ET-1 in the medulla provokes vasodilation and promotes salt and water excretion via 

ETB receptors (Abassi et al., 2001). Similar patterns of plasma and urinary ET-1 

levels have been found in patients and animals with hypertension. Enhanced 

synthesis of this peptide, especially by the cortical renal vasculature in proximity to 

ETA, may result in renal vasoconstriction, which is known to influence systemic blood 

pressure (Schiffrin, 1999). Despite the importance of ET-1 levels, differences in the 

vascular sensitivity between normotensive and hypertensive subjects may result in 

enhanced activity of ET-1, regardless of its concentration. The enhanced sensitivity 

of the renal vasculature to ET-1 may stem from increased ETA receptor expression. 

Decreased renal clearance (through ETB receptors or enzymatic) of ET-1 has also 

been implicated in the hypersensitivity (Markewitz and Kohan, 1995). On the 

contrary, reduced renal ET generation or impaired abundance of ETB receptors in the 

medullary tissue diminishes salt and water excretion, leading to salt-dependent 

hypertension through volume-overload (Fig.2). Activation of ETB receptors leads to a 

variety of intracellular events, of which nitric oxide (NO) release is the major one. NO 

plays an important role in the regulation of medullary blood flow (Abassi et al., 1998). 

Impairment of NO production may reduce intrarenal blood flow and subsequently 

reset the pressure-natriuresis relationship, leading to prompt Na+ retention and 

contributing to high blood pressure (Abassi et al., 2001). 
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Fig.2 Effects of renal tubular ET-1 on reabsorption of Na+ and water in (a) normotensives and 
(b) hypertensives. Under physiological circumstances, renal tubule epithelial cells generate 

ET-1  that acts on epithelial cell ETB receptors to inhibit reabsorption of Na+ (less activity of 

Na+/K+- ATPase) and reabsorption of water (less activity of ADH). In hypertension, less renal 

 generation of ET-1 than normally occurs, which results in less tonic inhibition of tubular 

 reabsorption of Na+ and water and thus leads to retention of Na+. ADH, antidiuretic hormone; 

 Na+/K+-ATPase, sodium, potassium-adenosine triphosphatase (Haynes and Webb, 1998). 

 

In addition to its direct vascular effects, ET-1 has inotropic and mitogenic properties, 

alters central and peripheral sympathetic activity and stimulates the renin-

angiotensin-aldosterone system (RAAS). It also appears likely that ET-1 participates 

in the adverse cardiac and vascular remodelling of hypertension, as well as in 

hypertensive renal damage (Haynes and Webb, 1998). 

 

The RAAS plays a central role in the development of hypertension and the 

progression of end-organ damage. Aldosterone has acute and long-term effects that 

impair endothelial function and promote necrosis and fibrosis of both the vasculature 

and the heart (Stier et al., 2002). As previously recognized the incidence of primary 

aldosteronism is more common and may be as high as 7-12% in patients with 

essential hypertension (Fardella et al., 2000). Most of these patients have no signs of 

hypokalemia, which indicates excessive mineralocorticoid action on the kidney. 

Although angiotensin-converting enzyme (ACE) inhibitors and Ang II receptor 
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antagonists can initially suppress plasma aldosterone, it is now well established that 

aldosterone escape may occur, whereby aldosterone levels return to or exceed 

baseline levels (Stier et al., 2002). Aldosterone and salt induce a proinflammatory 

phenotype at least in part by increasing oxidative stress. Chronic aldosterone and 

salt treatment increases the expression and activity of myocardial nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase. This enzyme catalyzes the 

formation of superoxide anion, which can react with NO to form peroxynitrite (Sun et 

al., 2002). Interestingly, extraadrenal expression of aldosterone synthase in the CNS 

can be regulated by manipulation of Na+ intake (Ye et al., 2003). 

 

1.2. MYOCARDIAL ISCHAEMIC PRECONDITIONING 
 

Ischaemic heart disease is a major cause of mortality in industrialized societies. It is 

characterized by insufficient blood supply to regions of the myocardium, which leads 

to tissue necrosis (infarction). Ischaemic heart disease may develop as a 

consequence of many diseases, including hypertension and atherosclerosis. 

Occasionally, cardiologists report that patients with at least one episode of prodromal 

angina showed less severe ischaemic damage after subsequent exposure to a 

longer period of ischaemia. In 1986, Murry et al. first documented this phenomenon 

experimentally in a dog model and termed it ischaemic preconditioning (IPC). They 

reported that brief periods of ischaemia accompanied by reperfusion occurring just 

prior to a sustained ischaemic episode could paradoxically lead to the protection of 

tissues against longer ischaemia. Subsequently, numerous studies were performed 

using various tissues (liver, kidney, brain, endothelial cells) and animals. All of them 

showed that short period(s) of ischaemia or anoxia enable tissues to survive a 

subsequent period of longer ischaemia that would have otherwise been lethal 

(reviewed by Sanada and Kitakaze, 2004). 

 

Ischaemia rapidly produces profound metabolic, functional and morphological 

changes within myocardium. The severity of these changes is ultimately determined 

by the duration of impaired oxygenation and substrate delivery. The principal 

metabolic changes centre around the failure of adequate adenosine triphosphate 

(ATP) generation by oxidative phosphorylation and the accumulation of byproducts of 

anaerobic glycolysis, particularly H+. The functional consequences of ATP depletion 
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are rapidly manifested as a decrease in contractility and disturbances of host 

homeostatic processes, including the activities of ion channels and exchangers, cell 

volume regulation and enzyme reactions. The electrical properties of ischaemic 

myocardium may be altered to the point where arrhythmogenic mechanisms can 

promote life-threatening tachyarrhythmias. Ultrastructural changes may be detectable 

within several minutes of the onset ischaemia. Without reperfusion to salvage 

myocardium, the most extreme manifestation of irreversible injury is tissue necrosis 

(myocardial infarction). Prompt reperfusion of the occluded vessel is required to save 

ischaemic myocardium from irreversible injury, but paradoxically, reperfusion may be 

associated with further cellular stress resulting in “reperfusion injury” (Baxter and 

Ebrahim, 2002). 

 

At present, the definition of IPC has been expanded to any kind of protection afforded 

by brief periods of ischaemia against damage caused by a subsequent sustained 

ischaemic insult (Sanada and Kitakaze, 2004). The phenomenon of IPC has been 

recognized as “the strongest form of in vivo protection against ischaemic injury other 

than early reperfusion” (Kloner et al., 1998). This powerful protective effect of 

antecedent ischaemia was not explained by changes in coronary collateral flow, 

suggesting a fundamental cellular alteration in the response to ischaemia. 

Unfortunately, induction of ischaemia is not a realistic treatment for patients with 

ischaemic heart disease. The development of therapeutic strategies that can 

attenuate ischaemia-reperfusion injury has been a keen area of research for more 

than 30 years (Baxter and Ebrahim, 2002). 

 

IPC is associated with two forms of protection: a classical form (early phase) lasting ~ 

2h after the preconditioning ischaemia followed a day later by a second window of 

protection (late phase) lasting ~ 3 days. Both types of preconditioning are reported to 

share some triggers, mediators, and effectors, although different mechanisms may 

be involved in the mediation of cardioprotection. The early phase is dependent on 

reactions that occur very rapidly, such as activation of ion channels or 

phosphorylation of enzymes, whereas the late phase involves processes that require 

modulation of the genes regulating channel proteins, receptor proteins, enzymes, 

molecular chaperon proteins, or immune factors (Sanada and Kitakaze, 2004). 
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Fig.3 Schematic representation of the major identified pathways of early and delayed forms 
of preconditioning (Baxter and Ebrahim, 2002). 

 

IPC is receptor mediated. Any Gi-coupled receptor can trigger the preconditioned 

state. In fact, multiple receptors work in parallel to provide redundancy to the 

preconditioning stimulus. During a brief ischaemic period, the heart appears to 

release several autocrine/paracrine triggers. Population of respective receptors then 

mediates the preconditioned state through activation of Gi protein resulting in the 

acquisition of tolerance to further ischaemia. Blockade of a single receptor type acts 

only to raise the ischaemic threshold required to trigger protection rather than 
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completely block it (Yellon and Downey, 2003). The triggers include adenosine 

released from myocytes during ischaemia as a result of ATP breakdown, bradykinin 

(BK) released from vascular endothelium and mediators of neural origin 

(noradrenaline and opioid peptides). Reactive oxygen species, especially superoxide 

anion generated as a result of mitochondrial uncoupling, may also act as upstream 

mediators. A complex signal cascade is activated which involves activation of protein 

kinase C (PKC) isoenzymes, tyrosine kinases and mitogen-activated protein kinases 

(MAPK). On the mitochondrial inner membrane, the phosphorylation cascade is 

thought to result in activation of the ATP-sensitive potassium (KATP) channel. The 

participation of other cytoprotective proteins has been proposed, including proteins 

that suppress or modulate apoptosis and proteins associated with cytoskeletal 

integrity (αB-crystallin and 27 kDa heat shock protein). Although endogenous NO (of 

endothelial or neural origin) has been linked to the trigger and end-effector phases of 

delayed preconditioning (possibly as a signalling intermediate downstream of BK), 

evidence for its role in early preconditioning is limited or even questionable. It 

appears that in early preconditioning, NO may lower the threshold for the protection 

observed, even though in itself it may not be a direct trigger of early preconditioning. 

 

Many endpoints of ischaemic injury have been adopted to assess the extent of 

protection conferred by preconditioning, including development of necrosis (infarct 

size), severity of arrhythmias, post-ischaemic recovery of contractile function and 

cardiac enzyme release (reviewed by Baxter and Ebrahim, 2002). 
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1.3. KALLIKREIN-KININ SYSTEM 
 

The KKS consists of the precursor kininogens, the proteolytic kallikrein enzymes, the 

kinin peptides (which are produced through cleavage of kininogens by kallikreins) 

and two G protein-coupled receptors termed B1 and B2 receptors that mediate the 

biological effects of kinin peptides (Fig.4). 

 

 
 

Fig.4 Schematic representation of the kallikrein-kinin system. AM, aminopeptidase M; CP, 

 carboxypeptidases N and M (=kininase I); HK, high molecular weight kininogen; LK, low 

 molecular weight kininogen; PK plasma kallikrein; TK, tissue kallikrein (Marceau and Regoli, 

 2004). 

 

With respect to functional aspects, the KKS can be divided into plasma KKS and 

tissue (glandular) KKS. Plasma KKS generates the biologically active peptide BK, 

tissue KKS generates the biologically active peptide kallidin (KAL) (Hilgenfeldt et al., 

1998). The tissue KKS works independently from the plasma KKS in various organs 

and body fluids (Katori et al., 2001). 
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Components of the KKS have been under investigation since 1909, when a 

hypotensive principle was found in urine (this was later identified as tissue kallikrein). 

In 1949, the active peptide BK was isolated from plasma globulins treated with 

trypsin. Since this time, research has shown that kinin peptides are implicated in a 

wide range of biological phenomena, including pain, inflammation, vasodilation, 

increased vascular permeability and natriuresis (Marceau and Regoli, 2004). 

 

1.3.1. KININOGENS 
 

Kininogens are defined as circulating proteins that include the kinin sequence, as 

well as domains, which possess other different functions. Circulating kininogens are 

primarily synthesized by hepatocytes. As typical secretory proteins they undergo 

posttranslational glycosylation prior to secretion into the circulation. Three types of 

kininogens have been described: high molecular weight (HMW) kininogen 

(present in blood), low molecular weight (LMW) kininogen (occur in blood and 

localises in various tissues) and an acute phase protein called T-kininogen that is 

unique to the rat. The HMW and LMW kininogens are coded by a single K gene and 

are produced by alternate splicing of the gene transcript (reviewed by Bhoola et al., 

1992). 

 

Kininogens are single-chain glycoproteins with a common amino-terminal heavy 

chain (about 64 kDa) and smaller, variable carboxy-terminal light chains with the 

kinin moiety intervening. Separate functions are being deduced for each domain of 

the molecules, e.g. HMW kininogen binds calcium (Ca2+) via domain 1, inhibits 

important cysteine proteinases such as cathepsin and calpain via domains 2 and 3, 

binds to surfaces such as endothelium via domain 5, just downstream of BK in 

domain 4, and binds plasma prekallikrein and factor XI via domain 6 of the light chain 

(Margolius, 1995). After active kallikrein is formed, the HMW kininogen light chain 

continues to participate as an essential cofactor, promoting amplification of the 

activation cascade. In contrast to the light chain of HMW kininogen, which is about 45 

to 58 kDa, the light chain of LMW kininogen is only 4 to 5 kDa and lacks the contact 

activation and prekallikrein-binding sites. After synthesis, HMW kininogen in platelets 

is transported to the plasma membrane. Specific receptors for HMW kininogen were 

found on the cell membrane of platelets, endothelial cells and neutrophils. HMW 
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bound to endothelial cells is a substrate of plasma kallikrein, which releases BK, a 

nonapeptide from domain 4 by proteolytic cleavage. Much less is known about the 

localization, regulation and role of LMW kininogen (reviewed by Bhoola et al., 1992). 

 

Although rat HMW kininogen is similar in structure to the human molecule and 

subserves the known functions, a minor difference in amino acid sequence has been 

observed at the cleavage site of kallikreins. In rat HMW kininogen, at the amino-

terminal sequence of BK, an Arg-Arg dipeptide replaces the Lys-Arg residue in the 

human sequence (Kato et al., 1985). 

 

Mutant BNK rats show congenital deficiency of HMW and LMW kininogens and 

moderate absence of plasma prekallikrein. They carry negligible levels of HMW and 

LMW kininogens in their plasma. BNK rats produce normal levels of both kininogens 

in the liver, but the point mutation of Ala163 to Thr in the heavy chain of the molecules 

prevents the release of kininogens into the plasma. The defect seems to reside also 

in the terminal domain that complexes plasma prekallikrein; the uncomplexed form 

may be unstable and could account for the reduced concentration of plasma 

prekallikrein in the circulation of the BNK rats (Hayashi et al., 1993). 

 

1.3.2. KALLIKREINS 
 

The kallikreins are a group of serine proteases. They are divided into two main 

groups: tissue and plasma kallikrein. The two enzymes differ in their molecular 

weight, pI, substrate specificity, immunological characteristics, type of kinin released 

and functional importance. A single gene codes for plasma kallikrein, whereas tissue 

kallikrein is a member of a multigene family that shows different patterns of tissue 

specific gene expression and seems to be widely expressed. 

 

Plasma prekallikrein is synthesized in the liver. This single-chain glycoprotein is 

secreted by hepatocytes as an inactive molecule that circulates in plasma as a 

heterodimer complex bound to HMW kininogen (Mandle et al., 1976). Both 

prekallikrein and coagulating factor XI are bound to domain 6 of HMW kininogen. 

Thus, following vascular damage, HMW kininogen settles on the endothelial and 

tissue surfaces by anchoring via the positively charged, histidine-rich region of 



INTRODUCTION 

 12 

domain 5. It orientates both molecules toward Hageman factor, so that, once 

activated, Hageman factor can form active kallikrein and factor XI. The mature 

plasma kallikrein molecule (EC 3.4.21.34) releases BK from HMW kininogen by 

hydrolysis of Lys-Arg and Arg-Ser bonds to give a nonapeptide with an Arg residue at 

both amino- and carboxy-terminals. This serine protease is also considered to 

participate in the conversion of prorenin and renin (reviewed by Bhoola et al., 1992). 

Tissue kallikreins belong to a large family of cell-secreted zymogens. They are 

synthesized as prokallikreins with an attached activation peptide sequence that must 

be cleaved to activate the enzyme. The tissue kallikreins are acidic glycoproteins, 

variably and extensively glycosylated (Margolius, 1995). The primary physiological 

substrate for tissue kallikrein (EC 3.4.21.35) is LMW kininogen. Tissue kallikrein 

represent a unique class of enzymes that hydrolyse one arginyl and one methionyl 

bond in the kininogen molecule to release KAL. Apart from its kininogenase activity, 

tissue kallikrein has been implicated in the processing of renin, growth factors, and 

peptide hormones. The cellular storage and synthesis sites of tissue kallikrein have 

been determined in a number of tissues. Tissue kallikrein has been characterised in 

pancreas, salivary glands, vascular tissue, intestinal tissues, skeletal and cardiac 

muscles, spleen, pituitary, ureter, adrenal glands and aorta. The presence of tissue 

kallikrein has been shown in a variety of body fluids, namely, saliva, urine, bile, 

plasma, sweat, cerebrospinal and synovial fluids and bronchoalveolar lavage fluid 

(reviewed by Bhoola et al., 1992). Tissue kallikrein activity can be inhibited by 

kallistatin, a physiological specific tissue kallikrein inhibitor that forms a covalently 

linked complex with tissue kallikrein. Independent of its binding to tissue kallikrein, 

kallistatin has also been found to have direct actions, such as reduction of blood 

pressure, stimulation of neointima formation and inhibition of angiogenesis and 

tumour growth (Chao et al., 1986). 

 

The levels of tissue kallikrein are reduced in humans and animal models with 

hypertension, cardiovascular and renal disease. Recently, experiments with tissue 

kallikrein gene transfer or protein infusion showed beneficial effects in blood pressure 

reduction, attenuation of renal injury, cardiac infarction and cardiac remodelling, and 

reduction of stroke-induced mortality, cerebral infarction and neurological dysfunction 

(Chao and Chao, 2004). 
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1.3.3. KININS 
 

Kinins are potent bioactive peptides formed by the enzymatic action of kallikreins on 

kininogens in various organs. They are detectable in secretory products (e.g. urine, 

saliva, sweat), interstitial fluid, and even in venous blood. Kinins influence the main 

mediators of inflammation as well as a number of cellular functions, including blood 

pressure and local blood flow, electrolyte and glucose transport and cell proliferation. 

 

There are at least four main biochemically different kinins - BK, KAL, des-Arg9-BK 

and des-Arg10-KAL (Fig.4). It is generally accepted that KAL is released from LMW 

kininogen by tissue kallikrein and BK from HMW kininogen by the action of plasma 

kallikrein. Some conversion of KAL (Lys-BK) to BK may occur through removal of the 

amino-terminal Lys by aminopeptidases (Bhoola et al., 1992). The removal of the 

carboxy-terminal Arg of BK and KAL by carboxypeptidases leads to the formation of 

des-Arg metabolites that occur mostly in pathological states. Kinins are local 

hormones (autacoids) that are active only close to their site of formation in a 

paracrine manner (Marceau and Regoli, 2004). The effects of kinins in biological 

fluids are often very short-lived because they are rapidly destroyed by several 

pathways. In blood, the half-life of BK and KAL is estimated to be < 30s (Bhoola et 

al., 1992). 

 

Kinin levels are very difficult to measure accurately, in part because, e.g. the blood 

contains all components necessary to generate and destroy these peptides in vitro 

(Marceau and Regoli, 2004). For years, kinins were overestimated by assays using 

inadequate enzyme inhibition or non-specific antisera (Margolius, 1995). 

Commercially available BK assays apply antibodies that cannot distinguish between 

BK and KAL, as they are directed against the identical carboxy-terminus of both 

peptides and crossreact also with larger and smaller analogues. Unfortunately, there 

are no reliable data concerning the contribution of BK and KAL to various 

physiological effects, although there is evidence for a clear distinction of both 

systems concerning their regulation and physiological properties. It is a general 

practice to address most kinin actions to BK. Using highly sensitive and specific 

antisera directed against both free carboxy- and amino-terminal ends developed in 

our laboratory, BK and KAL can be detected separately (Hilgenfeldt et al., 1995). 
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In rat, the analysis of kinins is even more complex. Until now only BK but no KAL was 

detected. This observation was explained by structural differences in the sequence of 

rat HMW and LMW kininogens containing an Arg residue instead of Lys residue in 

front of the amino-terminus of the BK sequence (Fig.5). Recently, a KAL equivalent, 

kallidin-like peptide (KLP), was isolated from rat plasma and urine and detected 

with a specific KAL antiserum suggesting that in rats, like in other mammals the 

tissue KKS mediates its physiological effects via the KLP (Hilgenfeldt et al., 2005). 

 
HUMAN 

-Leu-Met – Lys1-Arg2-Pro3-Pro4-Gly5-Phe6-Ser7-Pro8-Phe9-Arg10 – Ser-Ser- 

 

Rat 

-Val-Ile – Arg1-Arg2-Pro3-Pro4-Gly5-Phe6-Ser7-Pro8-Phe9-Arg10 – Ala-Pro- 

 

Fig.5 Structural differences between the human and rat kininogen with KAL and KLP 
sequence, respectively. 

 

CARDIOVASCULAR ACTIONS OF KININS 
 

In the cardiovascular system, the classical action of kinins is vasodilation, mediated 

in several vascular beds by the release of NO and prostacyclin (Wirth et al., 1997). In 

the heart, exogenously administered BK is a potent coronary artery vasodilator, 

although the contribution of endogenous BK to the regulation of coronary vascular 

tone is unclear. Other actions of kinins in the heart include the modulation of cell 

growth and division in the heart and the modulation of myocardial responses to 

ischaemia-reperfusion (Baxter and Ebrahim, 2002).  

 

Schoelkens et al. (1988) were the first to report the cardioprotective effects of 

exogenously administered BK. The ability of exogenous BK to mimic IPC has been 

confirmed by numerous investigators in a variety of models. Later, Wall et al. (1994) 

provided evidence for a primary role of endogenous BK in mediating IPC. BK 

released during ischaemia has been shown to primarily originate from endothelial 

cells but the precise molecular pathological mechanism leading to BK generation 

during brief ischaemia is not fully understood (Linz et al., 1996). It has been proposed 



INTRODUCTION 

 15 

that isolated cardiac myocytes can synthesize kinins but this possibility has to be 

investigated in more detail (Matoba et al, 1999). The availability of an intact KKS is 

necessary for the achievement of cardioprotection as the rats deficient in HMW 

kininogen (BNK rats) were unable to develop the preconditioning response (Yang et 

al., 1997). Kinins are efficiently and rapidly degraded by several enzymes, especially 

ACE and neutral endopeptidase (NEP). Inhibition of these enzymes increases the 

availability of kinins at B2 receptors on cardiac myocytes. During very brief periods of 

ischaemia, interstitial kinin concentrations may be insufficient to initiate the 

preconditioning mechanism. However, in the presence of an ACE or NEP inhibitor, 

augmentation of kinin concentration is sufficient to initiate preconditioning. The ability 

of ACE inhibitors to potentiate subthreshold ischaemic stimuli has been 

demonstrated for both early and delayed forms of preconditioning (reviewed by 

Baxter and Ebraim, 2002). 

 

Furthermore, kallikrein gene delivery is associated with significant limitation of infarct 

size through attenuated apoptosis in the ischaemic zone and attenuated severity of 

ventricular fibrillation. These beneficial effects of kallikrein overexpression were 

abolished by icatibant (B2 receptor antagonist), implying a role for the B2 receptor 

(Yoshida et al., 2000). Nevertheless, the role of B1 receptor cannot be ruled out, 

particularly in the late phase of preconditioning. 

 

Surprisingly, most of the investigators suggested that BK is the only kinin mediating 

the cardioprotection, although it is generally accepted that in tissue KAL is the 

biologically active peptide. Recently, we showed that the both, BK and KLP are 

released during IPC from the rat heart and that the cardioprotective effect could be 

blocked by administration of a specific antiserum against KAL/KLP, suggesting that 

KLP is the cardioprotective kinin in the rat heart (Liu et al., 2005). 

The mechanisms underlying the acute protective actions of kinins are not well 

understood. Interestingly, it is unlikely that the beneficial cardiac effect of kinins is 

related to their hemodynamic actions, such as increasing coronary blood flow or 

decreasing vascular resistance. A number of agents have been proposed to 

participate in the protection including NO, prostaglandin I2, PKC and tyrosine kinases. 

PKC activation is thought to be central in the preconditioning phenomenon and it has 

been proposed that once activated, it determines the phosphorylation of distal kinase 
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and end effector proteins. Opening of the mitochondrial KATP channel has been 

proposed as distal mediator of preconditioning (reviewed by Baxter and Ebrahim, 

2002). 

 

1.3.4 KININ RECEPTORS 

 

Two pharmacologically distinct kinin receptor subtypes have been identified and 

characterized, which are termed B1 and B2. They belong to the family of G protein-

coupled receptors (GPCR). The B2 receptor has a high affinity for “native” kinins 

(those generated by either plasma or tissue kallikrein), BK and KAL. The most 

discriminative structural determinant for high affinity binding at B1 receptors is the 

removal of the carboxy-terminal Arg residue by carboxypeptidases. At the same time, 

des-Arg9-BK and des-Arg10-KAL are losing the affinity toward the B2 receptor. An 

order of agonist potency widely valid for mammalian kinin receptors could be: B1, 

des-Arg10-KAL > KAL ~ des-Arg9-BK >> BK; B2, BK ~ KAL >> des-Arg9-BK and des-

Arg10-KAL. The B2 receptor is ubiquitous and constitutively expressed and rapidly 

down-regulated to a very limited extent even after prolonged agonist exposure (days) 

(Bachvarov et al., 2001). The B1 receptor is expressed at a very low level in healthy 

tissues. It is induced in pathological states, particularly in inflammation or after 

exposure of tissue to noxious stimuli. Both receptor subtypes can be expressed by 

the same cell types: vascular cells (endothelial, smooth muscle) (Figueroa et al., 

2001), nonvascular smooth muscle cells, fibroblasts, epithelial cells, nervous 

(afferent sensory) cells, and various tumour cells (reviewed by Leeb-Lundberg et al., 

2005). 

 

The B2 receptor protein structure is typical of that of a GPCR consisting of a single 

polypeptide chain that spans the membrane seven times, with the amino-terminus 

(N-terminal domain) being extracellular and the carboxy-terminus (C-terminal 

domain) being intracellular, and with three extracellular loops and three intracellular 

loops. The B1 receptor is homologous to the B2 receptor (36% identity at the amino 

acid sequence level). Kinin receptors undergo multiple post-translational 

modifications including glycosylation and disulfide bridge formation in their 

extracellular domains as well as acylation and phosphorylation of their intracellular 

domains. At the cellular level, the stimulation of the B2 receptor leads to a rapid 
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desensitisation of the receptor response (Blaukat et al., 2001). Kinin binding triggers 

a rapid redistribution of B2 receptors to plasma membrane caveolae. 

 

The B1 receptor differs from the B2 receptor in that it is desensitised only to a very 

limited degree. Furthermore, the B1 receptor is not internalised to any appreciable 

extent in response to agonist exposure. The difference in the extent of 

desensitisation of the B2 and the B1 receptor may contribute to the rather distinct 

patterns of receptor signalling through common effector pathways in different cells 

(reviewed by Leeb-Lundberg et al., 2005). 

 

 

 

 
 

Fig.6 Intracellular signalling cascades triggered by kinins. Following binding of kinins to the 

receptor the associated heterotrimeric G protein complex dissociates. The α subunit stimulates 

PLC which in turn catalyses the breakdown of phosphatidylinositol-4,5-bisphosphate (PIP2) 

into 1,2-diacylglycerol (DAG) and inositol-1,4,5-trisphosphate (IP3). IP3 reacts with Ca2+ 

channels in the endoplasmatic reticulum (ER) releasing Ca2+ into the cytosol. The increase in  

 intracellular Ca2+ levels activates protein PKC, which translocates to the plasma membrane, 

anchoring to DAG and phosphatidylserine (Offermanns and Rosenthal, 2003). 

 

The B2 receptor is generally described as signalling through Gq (Fig.6), even though 

this receptor interacts with several other G proteins as well including Gi, and Gs. 

Besides of kinin-stimulated Gq-sensitive phospholipase C (PLC), stimulation of a 

phospholipase A2 (PLA2) activity appears to occur through Ca2+- and 
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phosphorylation-dependent activation of the cytosolic isoform of PLA2, whereas 

phospholipase D (PLD) activation can be mediated via Ca2+ influx, and PKC 

activation (reviewed by Leeb-Lundberg et al., 2005). Kinins are efficacious 

stimulators of endothelial nitric oxide synthase (eNOS) and NO production through 

Ca2+-mediated mechanisms in endothelial cells (Fig.7) (Busse and Fleming, 1995). 

Depending on the cell type, BK induces proliferative or antiproliferative responses. 

The proliferative response involves many of the typical growth-promoted pathways 

(stimulation of MAPK, transactivation of the epidermal growth factor receptor or the 

combined actions of the protein tyrosine kinases) (Blaukat et al., 2000). The 

antiproliferative actions of BK may be prostaglandin-mediated, involve activation of a 

tyrosine phosphatase, or occur via further downstream mechanisms. BK activates 

multiple transcription factors that regulate the induction of several cytokines. These 

are involved in tissue injury and inflammation as well as in B1 receptor induction. 

 

The B1 receptor directly interacts with Gq and Gi through which it mediates agonist 

stimulation of many of the same signalling pathways as the B2 receptor. Although the 

B1 and B2 receptors seem to couple to similar cellular signal transduction pathways, 

the patterns of signalling are different. In vascular smooth muscle cells, the 

stimulation of B2 receptor leads to a transient increase in phosphatidylinositol (PI) 

hydrolysis that exhibits little dependence on extracellular Ca2+, whereas B1 receptor 

stimulation is more sustained and significantly dependent on extracellular Ca2+. 

Furthermore, the B2 receptor elicits a sustained signal, which is characterized by a 

plateau of elevated Ca2+ or baseline oscillation, that are dependent on extracellular 

Ca2+ influx. 

 

Most circulatory effects of kinins are determined by the stimulation of endothelial cells 

from which secondary mediators are released to affect the vascular smooth muscle. 

Kinins are one of the agonists that release NO (Fig.7). NO is metabolically derived 

from L-arginine by eNOS. NO-dependent relaxation is a prominent role of kinin 

action. NO diffuses from the endothelium to the smooth muscle where it activates 

guanylate cyclase. Prostaglandin I2 (prostacyclin) is another secondary mediator 

frequently released by kinins from the endothelium. Prostacyclin stimulates cyclic 

adenosine 3´,5´-monophosphate (cAMP) production in the smooth muscle cells 

(reviewed by Leeb-Lundberg et al., 2005). Other mechanisms are also assumed, 
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such as the activation of a number of NO-independent ion channels located in the 

smooth muscle cells that may account for “endothelium-dependent hyperpolarization” 

(Batenburg et al., 2004). 

 

 
 

Fig.7 Molecular mechanisms governing the kinin-NO-cGMP pathway in mammalian cells. 
cGMP, cyclic guanosine monophosphate 

 

1.3.5. KININASES 
 

The turnover of kinins depends on both, the rate of formation and the rate of 

destruction. Peptidases that hydrolyse kinins are known as kininases, although none 

are known to be specific for kinins. The relative importance of each of the peptidases 

in controlling kinin levels varies with species, type of biological fluid, and tissue site of 

formation of the peptide. The kininase I family comprises carboxypeptidase N (CPN) 

and carboxypeptidase M (CPM) and the kininase II family ACE and NEP. Additional 

kinin-hydrolysing enzymes are aminopeptidases. 

 

Carboxypeptidases cleave the carboxy-terminal Arg of BK and KAL, resulting in the 

formation of des-Arg9-BK and des-Arg10-KAL, B1 receptor agonists. CPN is 

synthesised by the liver, is secreted into the circulation. CPM is a cell membrane 

enzyme that is located in kidney, lung and fibroblasts, endothelial cells of pulmonary 
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arteries and the placenta. Both CPN and CPM are not capable of degrading the kinin 

molecule further. The release of Arg by CPN and CPM either close to or within the 

endothelial cells or in synaptic clefts could provide the primary substrate for the 

formation of NO by nitric oxide synthase (NOS) (reviewed by Bhoola et al., 1992). 

 

The two peptidylpeptidases ACE and NEP hydrolyse the Pro-Phe bond at the 

carboxy-terminus of the kinin molecule. ACE appears to be the most important within 

the cardiovascular system or kidney, with the exception of rat urine where NEP is the 

major kinin-destroying enzyme. In contrast to humans, ACE is the most potent kinin-

degrading enzyme in rat plasma (Margolius, 1995). ACE (EC 3.4.15.1) is a single-

chain transmembrane zinc metallopeptidase that cleaves carboxy-terminal dipeptides 

from several peptides. A soluble form of the enzyme is found in plasma, which is 

presumably derived from the membrane-bound form by proteolytic cleavage. ACE is 

expressed in great amount in vascular endothelial cells (Linz et al., 1999). The 

enzyme occurs in abundance at the brush border of the inner cortical proximal renal 

tubules (Schulz et al., 1988). ACE hydrolyses two separate bonds on the carboxy-

terminal end of the kinin molecule. First, it removes the dipeptide Phe-Arg and next 

splits the Ser-Pro bond, which leads to fragments that are inactive on either receptor 

type (Erdös, 1990). ACE plays a major role in the regulation of the vascular tone by 

converting the biological inactive decapeptide Ang I into the vasoconstrictor and 

proliferative octapeptide Ang II. In experiments using isolated ischemic rat hearts, 

beneficial effects were observed with ACE inhibitors on reperfusion arrhythmias, 

cardiac functions and metabolism. These functional improvements were believed to 

be due to both, accumulation of endothelium-derived kinins and the inhibition of Ang 

II formation (Linz et al., 1999). Furthermore, ACE is also thought to directly interact 

with the B2 receptor in the membrane (Hecker et al., 1994). Like ACE, NEP (EC 

3.4.24.11) inactivates kinins by removing the carboxy-terminal Phe-Arg dipeptide. 

NEP is present in high concentrations in the brush border of proximal tubules of the 

kidney. Further sites of location are in the intestine, lung, skin, placenta and brain. 

Although NEP is generally embedded in cell membrane, it also seems to occur in 

biological fluids (reviewed by Bhoola et al., 1992). 

 

Another important pathway of kinin inactivation in the tissue is provided by 

aminopeptidases. Two aminopeptidases are mentioned concerning the kinin 
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metabolism, aminopeptidase M (APM) and aminopeptidase P (APP). Proud et al. 

(1987) have reported that APM is able to cleave the amino-terminal Lys of des-Arg10-

KAL and KAL into des-Arg9-BK and BK, respectively. APM represents an inactivation 

pathway for the potent natural B1 receptor agonist des-Arg10-KAL since its metabolite, 

des-Arg9-BK, is a much less potent B1 receptor agonist (Pelorosso et al., 2005). APM 

is a transmembrane zinc metallopeptidase, found in endothelium and smooth muscle 

cells (Palmieri et al., 1989). APP is the only peptidase known to remove Arg from the 

amino-terminal end of BK and contributes to the degradation of intravascular as well 

as interstitial BK (Dendorfer et al., 1997). APP has been detected in soluble form in 

serum, and contributes as a membrane-bound enzyme to the degradation of BK in 

the lung (Ward et al., 1992; Pesquero et al., 1992). The distribution of APP has been 

established in various organs. In the rat heart, nearly identical kinin-degrading 

activities of ACE and APP have been demonstrated (Dendorfer et al., 2000). APP is 

known to reside as an extracellular enzyme on endothelial membranes. It colocalizes 

in membrane domains with ACE, and possibly also with B2 receptors (Ryan et al., 

1996). 

 

1.4. ENDOTHELIN SYSTEM 
 

The endothelins are group of vasoconstrictor peptides derived from vascular 

endothelial cells that acts as autocrine/paracrine regulators. Three ETs have been 

identified, ET-1, -2, and -3, all consisting of 21 amino acids (Fig.8). 

 

ET peptides are produced within the cells from large precursors, preproendothelins 

(~200 residues), which undergo two proteolytic cleavages by NEP to form 

intermediate-inactive big ETs (37-39 amino acids). The last step in the biosynthesis 

of mature/active ET requires the conversion of big ET into ET, which is catalyzed by 

one or more zinc-binding membrane bound metalloproteinases, endothelin-

converting enzymes (ECE). 
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Fig.8 Amino acid sequences of the three members of the ET family and of the structurally 

related  snake venom toxin sarafotoxin. Each isoform contains two intra-chain disulphide 

bridges linking paired cysteine amino acid residues, thus producing an unusual semi-conical 

structure. Shaded circles indicate where amino acids differ from those of ET-1 (Haynes and 

Webb, 1998). 

 

ET-1 is the most potent natural mammalian vasoconstrictor yet discovered. Mature 

ET-1 acts on the cardiovascular system and other target organs by binding to two 

types of receptors, ETA and ETB. Although ETA has affinity primarily to ET-1, ETB has 

equal affinity to all ETs. High abundance of ETA receptors has been detected in the 

aorta, heart and the kidney, whereas ETB receptors are expressed mainly in the 

endothelial cells. Activation of ETA receptors on vascular smooth muscle cells 

(VSMC) increases intracellular Ca2+ levels, leading to prolonged vasoconstriction and 

cell proliferation. In contrast, activation of ETB receptors, present on endothelial cells, 

induces the release of NO and prostaglandins, thus provoking transient vasodilation 

(Fig.9) (Levin, 1995). 
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Fig.9 Vascular actions of ET (Haynes and Webb, 1998). 

 

The ET receptors are classical GPCRs. Binding of ET to ETA receptor leads to 

activation of the G proteins Gs and Gq, and ET binding to ETB receptor leads to Gq 

and Gi activation. Gq activates the PLC to cause hydrolysis of PI and generation of 

cytosolic inositol-triphosphate (IP3) and membrane-bound diacylgylcerol (DAG). IP3 

causes an early rapid increase in Ca2+ through its release from intracellular stores. 

DAG activates PKC, increasing the sensitivity of the contractile apparatus to Ca2+ as 

well as inducing intracellular signalling mechanisms that promote long-term cellular 

responses (proliferation and migration) through the MAPK cascade. In addition, ET 

activates PLD and PLA2, the latter increasing the production of arachidonic acid and 

hence cyclooxygenase products (prostaglandins and thromboxanes) and 

lipooxygenase products (leukotriens and lipoxines) (Remuzzi et al., 2002). 

 

Although ET-1 is produced predominantly by the endothelial cells, remarkable 

amounts of this peptide are generated in several tissues/organs such as kidney, 

heart, brain, and VSMC (Levin, 1995). ET-1 exerts a broad range of actions on these 

tissues, aimed modulating blood pressure and controlling extracellular fluid volume. 

Independent of its direct effect on the vasculature that contributes to the regulation of 

vascular tone and blood pressure, ET may affect blood pressure indirectly by 

modulating renal hemodynamics and excretory functions of the kidney (Abassi et al., 

2001). ET-1 has positive chronotropic and inotropic effects and is a potent constrictor 
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of coronary vessels, causing myocardial ischaemia and fatal ventricular arrhythmias 

(Ezra et al., 1989) (Fig.10). 

 

 
 

Fig.10 Potential pathways by which ET-1 might contribute to the pathophysiology of 
hypertension or its complications. *An increase in vascular activity of ET-1 could cause 

retention of Na+ through ETA receptor-mediated renal vasoconstriction. There is also 

persuasive evidence that there is a deficiency of tubular generation of ET-1 in hypertension 

that could attenuate ETB receptor-mediated facilitation of tubular excretion of Na+ and water. 

VSM, vascular smooth  muscle; SNS, sympathetic nervous system (Haynes and Webb, 

1998). 

 

ETs are known to be involved in the functional regulation of neuroendocrine axes, 

among which is the hypothalamo-pituitary-adrenal axe, acting on either their central 

or peripheral branch (Fig.11). ET genes and their receptors are expressed in adrenal 

glands, the function of which they variously modulate. Locally synthesized ETs are 

involved in the autocrine/paracrine control of the secretion and growth of steroid-

secreting tissues. ETs stimulate both aldosterone and glucocorticoid secretion by the 

adrenals, probably acting on early and late steps of steroid synthesis. This effect 
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appears to be mediated by both ETA and ETB receptors and may occur through direct 

and indirect mechanisms. ET binding to its adrenocortical receptor activates multiple 

signalling mechanisms, including PLC/PKC cascade, opening of Ca2+ channels, and 

stimulation of tyrosine kinase and Na+/K+-ATPase. ET affects the secretory activity of 

the cortex by eliciting the release of catecholamines by medullary chromaffin cells. 

Catecholamines in turn stimulate steroid secretion in a paracrine manner, and/or by 

modulating intra-adrenal blood flow. This latter effect seems to be mediated by both 

PKC-coupled ETA- and NOS-coupled ETB-receptors, which raise and lower 

intraglandular vascular resistances, respectively (Nussdorfer et al., 1999). 

 

 
 

Fig.11 Main feedback mechanisms currently thought be involved in the ET-mediated 
 autocrine/paracrine tuning of adrenocortical secretion (Nussdorfer et al., 1999). 

 

ETs enhance basal aldosterone production without changes in the activity of the 

renin-angiotensin-system (RAS). ET-1 was found to potentiate the aldosterone 

response to adrenocorticotropic hormone (ACTH), but not to Ang II and potassium 

(K+). Moreover, evidence indicates that ETs inhibit rather than stimulate the renin 

release by kidney juxtaglomerular cells. ET-1 did not change plasma corticosterone 

concentration (reviewed by Nussdorfer et al., 1999). 
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1.5. ALDOSTERONE 
 

Aldosterone, which is the most physiologically important mineralocorticoid, is 

primarily responsible for electrolyte transport across epithelia, particularly in the 

kidney, but also in other tissues, such as salivary glands and colon. Aldosterone 

increases Na+ (and consequently water) resorption and K+ excretion directly or 

indirectly by increasing the activity of epithelial Na+ channels and Na+/K+-ATPase 

(White, 1994). Aldosterone is secreted by the zona glomerulosa of the adrenal cortex 

in response to the activation of the RAS and/or increased plasma K+ levels (Firsov 

and Muller, 2003). Spironolactone, aldosterone antagonist, has been successfully 

used for more than 30 years as K+ sparing diuretics in the therapy of hypertension. 

Interestingly, the long clinical use of aldosterone antagonists raised new questions 

about its role in pathological states such as myocardial infarction or congestive heart 

failure. RALES trial - Randomized Aldactone Evaluation Study - showed that patients 

with severe heart failure have a 30% reduction in morbidity and mortality when given 

spironolactone, in addition to conventional therapy of an ACE inhibitor, digoxin and 

furosemide. The dose of spironolactone used in this study (25mg) had no 

incremental effect on blood pressure, suggesting a direct cardioprotective effect (Pitt 

et al., 1999). 

 

The most remarkable effect of aldosterone on the cardiac tissue is perivascular 

fibrosis of small arteries and arterioles with associated interstitial fibrosis. However, 

other effects such as myocardial necrosis, vascular stiffening and injury, and 

production of cardiac arrhythmias were also attributed to aldosterone (Stier et al., 

2002). The increased stiffness of large arteries is the main cause of the increase of 

systolic and pulse pressures, important independent cardiovascular risk markers 

(Benetos et al., 1997). Interestingly, aldosterone effect on cardiac fibrosis is 

dependent on Na+ load, thus indicating that aldosterone may promote the entry of 

Na+ into cardiac cells. Furthermore, aldosterone can induce cardiac fibrosis without 

involvement of the RAS (reviewed by Firsov and Muller, 2003). In ventricular 

cardiomyocytes, aldosterone increases Ca2+ current, which is mediated through 

mineralocorticoid receptor (MR). Increased intracellular Ca2+ might ultimately 

cause cardiac hypertrophy by increasing the expression of calcineurin, a 

calcium/calmodulin-dependent protein phosphatase that is well documented to cause 
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cardiac hypertrophy. Indeed, aldosterone increases calcineurin mRNA and activity. 

Aldosterone stimulates ACE and increases AT1 Ang II receptor expression. Increased 

ACE activity should increase local levels of Ang II, which is known to cause cardiac 

hypertrophy and fibrosis (reviewed by White, 2003). 

 

 
 

Fig.12 Multiple mechanisms by which aldosterone dysregulation may contribute to 
cardiovascular disease. LVH, left ventricular hypertrophy; PAI-1, plasminogen activator 

inhibitor-1 (Struthers and MacDonald, 2004). 

 

Aldosterone also inhibits NO formation and inducible NOS (iNOS) mRNA in VSMC. 

Besides its vasodilatory effect, NO may also diminish mitochondrial respiration and 

cardiac oxygen metabolism resulting in a decrease in heart work and, consequently, 

myocardial oxygen demand. Thus, aldosterone’s abrogation of NO formation or its 

actions would impair not only vascular but also myocardial function. Aldosterone may 

also be involved in enhanced mitochondrial oxidative phosphorylation and oxygen 

free radical generation by markedly stimulating myocardial citrate synthase, a Krebs 

cycle enzyme, or Na+/K+-ATPase. Aldosterone causes hypokalemia, which can 

directly stimulate free radical formation (reviewed by Stier et al., 2002). Furthermore, 

aldosterone affects the electrophysiology of the myocardium. Although aldosterone 

up-regulates Na+/K+-ATPase in kidney, the Na+/K+ pump current is decreased in 

cardiomyocytes, apparently due to a decrease in the Na+ affinity of the pump. 
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Aldosterone slowly increases the force of contraction (positive inotropic effect). It 

prolongs monophasic action potentials indicating inhibitory effect on myocardial 

repolarization which may increase the risk of arrhythmia in congestive heart failure 

(reviewed by White, 2003). Furthermore, the myocardial action of aldosterone may 

be mediated, in part, via stimulation of the ß-adrenergic pathway. Mineralocorticoids 

have been reported to sensitize markedly the myocardium of rats to the 

arrhythmogenic action of ß-adrenergic stimulation. Aldosterone has also been 

reported to decrease myocardial noradrenaline uptake by 24% (Stier et al., 2002). 

 

1.5.1 ALDOSTERONE ACTIONS 
 

Aldosterone is supposed to mediate genomic and non-genomic mechanisms of 

action. The genomic action of aldosterone requires binding to the MR, a member of 

the steroid/thyroid/retinoid family of nuclear receptors. This binding happens in 

cytoplasm. The aldosterone-MR complex is then translocated into the nucleus where 

it acts as ligand-dependent transcriptional factor. Changes in transcriptional rate of 

aldosterone-target genes and their physiological effects are detectable from ~30 min 

to several hours after aldosterone stimulation (Farman, 1999). The MR is present in 

kidney, colon, brain, heart and lung. In heart, it occurs in myocytes, VSMC, and in the 

endothelial wall of large arteries (i.e. aorta and pulmonary artery) but not in smaller 

vessels (Farman and Rafestin-Oblin, 2001). 

 

MR has an equivalent high affinity for corticosterone, cortisol and aldosterone. 

Moreover, plasma aldosterone levels range from 0,1 to 1nM, 100-1000-fold lower 

that those of the glucocorticoid hormones (0,1-1µM). In classical aldosterone target 

tissues, the MR is protected from the illicit glucocorticoids’ occupancy by 11ß-

hydroxysteroid dehydrogenase type 2 (11ß-HSD2), an enzyme that converts cortisol 

into cortisone (or corticosterone to 11-dehydrocorticosterone in rat). Cortisone (or 11-

dehydrocorticosterone) has a low affinity to MR and is thus unable to induce 

significant MR transactivation (Firsov and Muller, 2003). The colocalization of 11ß-

HSD2 and MR in cells is crucial for aldosterone’s specificity of action and besides in 

the kidney, it is also present in the heart (Heymes et al., 2004). However, the 

enzymatic activity of cardiac 11ß-HSD2 is far too low to protect the MR from 

glucocorticoids (Farman and Rafestin-Oblin, 2001). 
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Fig.13 Model of aldosterone action in cardiac cells. Aldosterone binds intracellular MR and/or 

 glucocorticoid receptor (GR). Transactivation of MR/GR receptor results in change of 

 transcription rate of aldosterone-induced transcripts (AITs) and aldosterone-repressed 

 transcripts (ARTs). Protein products of these transcripts (aldosterone-induced proteins, AIP; 

 and aldosterone-repressed proteins, ARP) are responsible for the long-term effects of 

 aldosterone in cardiac tissue (Firsov and Muller, 2003). 

 

In the brain, MRs are expressed at high levels only in distinct regions, e.g. in the 

hippocampus where they seem to play a role in the control of thirst and Na+ intake 

(Heymes et al., 2004). On the contrary, glucocorticoid receptors (GR) are expressed 

at high levels throughout the brain. Glucocorticoids can influence cognition and have 

either neuroprotective or neurodegenerative properties depending on the local 

conditions via both MR and GR. Furthermore, the MR occupancy is nonselecetive for 

the most part of adult brain, because the 11ß-HSD2 displays high expression only in 

distinct regions, which are important for the cardiovascular control (Ye et al., 2003). 

 

Interesting question of the differentiation between protected and unprotected MRs is 

whether the physiological glucocorticoids act as agonists or antagonists upon MR 

binding. In kidney and VSMC glucocorticoids seem to act as agonists, since their 

action is indistinguishable from that of aldosterone. In contrast, in most non-epithelial 

tissues, the physiological glucocorticoids act as aldosterone antagonists at MRs. This 

between-tissue distinction in glucocorticoid action is presently not fully understood. 
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Finally, in a variety of tissues, including VSMC and cardiomyocytes, rapid, non-

genomic effects of aldosterone have emerged. Such actions are of < 1min latency, 

and characteristically reach plateau levels within 5min of aldosterone application. 

These effects were ascribed to an action via a putative membrane receptor, distinct 

from the classical MR. Surprisingly, at least some rapid, non-genomic effects are 

mediated via classical MRs, both protected by 11ß-HSD2 (VSMC) and non-protected 

(cardiomyocytes) as in these cells aldosterone acts rapidly (< 15min). This effect can 

be blocked by water-soluble MR antagonist K+ canrenoate (spironolactone 

metabolite) (Young and Funder, 2002). Post-receptor mechanisms established 

include the activation of PKC, and increases in intracellular cAMP and Ca2+, leading 

to the activation of Na+-hydrogen exchange in VSCM, for example, and of 

Na+/K+/2Cl- cotransport in cardiomyocytes (Funder, 2001). 

 
1.5.2. STEROIDOGENIC ENZYMES 
 

Fig.14 illustrates all of the enzymes involved in the biosynthesis of the adrenal steroid 

hormones, corticosterone, cortisol and aldosterone; and the gonadal steroid 

hormones, progesterone, estradiol, and testosterone. These enzymes fall into two 

major classes of proteins: the cytochrome P450 heme-containing proteins and the 

hydroxysteroid dehydrogenases. In the process of biosynthesis of steroid hormones, 

cytochrome P450 enzymes catalyse the hydroxylation and cleavage of the steroid 

substrate. They function as monooxygenases utilizing reduced NADPH as electron 

donor for the reduction of molecular oxygen. 

 

Distinct enzymes are involved in the adrenal biosynthesis of corticosterone and 

cortisol and the biosynthesis of aldosterone. Curnow et al. (1991) identified a second 

isoform of CYP11B in human, CYP11B2. This enzyme was found to be the only 

enzyme catalysing both 11ß-hydroxylation and 18-hydroxylation and thus being 

essential for the biosynthesis of aldosterone. 
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Fig.14 Biosynthesis of steroid hormones in adrenal glands and gonads (Payne and Hales, 

2004). 

 

 

 
 

Fig.15 Enzymatic reaction catalyzed by 11ß-hydroxylase (Payne and Hales, 2004). 

 

CYP11B1 (11ß-hydroxylase) and CYP11B2 (aldosterone synthase) are located in 

the inner mitochondrial membrane. 11ß-hydroxylase catalyzes the 11ß-hydroxylation 

of 11-deoxycortisol yielding corticosterone or cortisol, respectively (Fig.15). 11ß-

hydroxylase also has the capacity to hydroxylate C18 of 11-deoxycorticosterone 

(DOC) or corticosterone to form 18-hydroxycorticosterone. However, 11ß-

hydroxylase cannot catalyze the oxidation of the 18-hydroxy group to form 



INTRODUCTION 

 32 

aldosterone. Aldosterone synthesis from DOC is catalyzed by aldosterone synthase, 

which catalyzes three sequential reactions, each utilizing one molecule of NADPH 

and one molecule of oxygen and the mitochondrial electron transfer system. The 

three sequential reactions are: the 11ß-hydroxylation of DOC, the hydroxylation of 

C18, followed by oxidation of the C18 hydroxyl group to yield the C18 aldehyde group 

resulting in the formation of aldosterone (Fig.16). In rat, third CYP11B form was 

characterized, CYP11B3, however it lacks the 18-oxidase activity and cannot 

synthesize aldosterone (Mellon et al., 1995). 

 

 
 

Fig.16 Enzymatic reaction catalyzed by aldosterone synthase (Payne and Hales, 2004). 

 

The two genes are highly homologous, with nucleotide sequences of CYP11B1 and 

CYP11B2 exhibiting 95% identity in the coding sequence in human and 88% in rat 

(Mornet et al., 1989). In adrenals, CYP11B2 appears to be expressed exclusively in 

adrenal zona glomerulosa, whereas the major site of CYP11B1 expression is in the 

zona fasciculata/reticularis. Some expression of CYP11B1 is also observed in the 

mitochondria of the zona glomerulosa. Expression of CYP11B1 appears to exceed 

several-fold that of CYP11B2 (Curnow et al., 1991). Chronic stimulation by pituitary 

ACTH in the adrenal zona reticularis and zona fasciculata is acting via GPCRs. It 

activates adenylate cyclase thereby increasing cAMP, which in turn, leads to 

increased synthesis of steroidogenic P450 enzymes specific for these cells. The 

expression of CYP11B2 in the adrenal cortex is mainly controlled by body Na+ status 

via the RAS. The transcription of CYP11B2 is enhanced by Na+ deficiency and K+ 

ions that act by increasing the intracellular concentration of Ca2+ (Ye et al., 2003). It 

was reported that cAMP can independently increase CYP11B2 transcription. In 
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contrast, CYP11B1 expression is determined by physiological variations of ACTH 

reviewed by Payne and Hales, 2004). 

 

Recent studies provided evidence that aldosterone is also produced in extra-adrenal 

tissues such as cardiac tissue, blood vessels and brain. Aldosterone has been 

demonstrated in the perfusate of the ex situ rat heart and heart homogenates; 

however the origin of aldosterone in the heart is controversial. Some authors report a 

primary role for extraadrenal synthesis within the heart, and other report that all of the 

aldosterone in the heart is sequestered form the circulation (Gomez-Sanchez et al., 

2004). In 1998 Silvestre et al. first demonstrated that aldosterone synthase is 

expressed in rat cardiac tissue, albeit at levels that are ~500-fold lower than that of 

the adrenal glands. Mizuno et al. (2001) have shown that aldosterone productions 

are increased in the failing human hearts. These observations led to a highly 

attractive “intracrine” hypothesis of aldosterone action in the heart. It has been 

proposed that locally produced aldosterone exerts its influence on cardiac cells 

without being released into the extracellular space. 

 

The expression of mRNA for all enzymes of aldosterone synthesis has been 

described in the heart and vascular system. In normal adult humans, the enzymes 

required to synthesize aldosterone are probably expressed in the vasculature, but not 

in the heart. However, their expression may increase in pathological states such as 

congestive heart failure and myocardial infarction (White, 2003). The role of Na+ is 

crucial since moderate increase of Na+ intake decreases plasma aldosterone but 

stimulates cardiac aldosterone synthesis. This paradoxical response might contribute 

to the development of cardiac hypertrophy from salt-loading that occurred 

independently of blood pressure (Takeda et al., 2000). In rat species, strain and 

pathophysiological differences have been partially responsible for confusion 

concerning the existence of aldosterone synthase in the heart. Aldosterone synthase 

mRNA is expressed in some strains of rat. Wistar and SHR rat hearts express 

aldosterone synthase mRNA under basal and stimulated conditions. It was not found 

in Sprague Dawley rat hearts. 

 

In addition to the source of active steroid hormones derived from the circulation there 

are several reports suggesting that the heart is capable of synthesizing significant 
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amounts of aldosterone, yet the heart cannot replace the failing or absent adrenal 

gland. The concentration of mRNA for all steroidogenic enzymes in rat heart and 

vascular tissue is much lower than that in the adrenal. The combined mass of the 

heart, endothelial and VSMC is very large, certainly much larger than the cell mass of 

the zona glomerulosa. However, conversion rates of DOC to aldosterone and 

corticosterone in heart homogenates were shown as high as those in zona 

glomerulosa, even though expression of aldosterone synthase is 1000-fold less 

(reviewed by Gomez-Sanchez et al., 2004). 

 

Evidence for expression of steroidogenic enzymes in brain includes also CYP11B1 

and CYP11B2. To date, there is no evidence for the expression of CYP21 in the 

brain indicating that the de novo synthesis of adrenal steroid hormones does not take 

place in the nervous system. However, this does not rule the possibility that 

circulating DOC or deoxycortisol could function as substrate for neural CYP11B1 or 

CYP11B2 (Mellon and Griffin, 2002). The levels of both enzyme transcripts detected 

in the brain were consistently much lower than those in the adrenal cortex. It was 

suggested that this reflects high expression in a very few cells within special brain 

regions, representing a very small fraction of the total cerebellar mass. With this 

pattern of expression, extraadrenal hormones may act in a paracrine or an autocrine 

manner on the abundant GR and MR within the brain. CYP11B1 and CYP11B2 also 

colocalize within the CNS. This does not occur in the adrenal cortex due to its strictly 

separated zonation. This colocalization raises some important questions whether 

CYP11B1 and CYP11B2 compete for the DOC as a substrate and whether the 

product of CYP11B1 can be used by CYP11B2, which was demonstrated in vitro. 

Local expression of CYP11B2 in the CNS can be regulated by alteration of Na+ 

intake (Ye et al., 2003). 
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2. OBJECTIVES 
 

The aim of this work was to characterize the relations between the KKS, ET and 

aldosterone. These hormonal systems have important physiological and pathological 

implications in the cardiovascular system, especially during high dietary salt intake. 

 

We have focused on: 

 1. precise characterization of kininogen-deficient BNK rats in comparison to

  wild type BN rats under standard diet. 

 2. characterization of basic effects of spironolactone (aldosterone antagonist) 

  in BN and BNK rats under standard diet. 

 3. investigation of the handling and actions of Na+ in BN and BNK rats under 

high salt diet 

 4. characterization of spironolactone effects in BN and BNK rats under high 

salt diet 

 

Besides basic physiological characteristics and hemodynamics, we have focused on 

the characterization of the components the KKS, ET-1 and corticoid hormones in 

plasma, urine and relevant tissues under all experimental conditions. 

 

Additionally, basic functional cardiac parameters were assessed in Langendorff 

experiments of isolated rat hearts. We have investigated acute effects of 30min 

global ischaemia with or without previous ischaemic preconditioning in hearts of BN 

and BNK rats. 
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3. MATERIAL & METHODS 
 
3.1. MATERIAL 
 
3.1.1. EXPERIMENTAL ANIMALS 
 

Brown-Norway (BN) rats, males, 200 - 250 g (Charles River Laboratories Germany, Sulzfeld) 

Brown-Norway Katholiek (BNK) rats, males, 200 – 250 g (University of Kiel) 

Standard diet, 0,5% NaCl (Altromin, Lage) 

High salt diet, 5% NaCl, C1051 (Altromin, Lage) 

 

3.1.2. INSTRUMENTS 
 

Analytical balance, 1364MP (Sartorius, Goettingen) 

Analytical balance (Mettler, Zürich, Switzerland) 

Blood pressure monitor, 208001 with pressure cuff, inner diameter 13mm  

and pulse transducer, inner diameter 8mm (TSE Systems, Bad Homburg) 

Centrifugal vacuum concentrator, Jouan RC 10.22 

with refrigerated condensation trap, Savant RT100 (GMI, USA) 

and vacuum pump, vacuubrand (vacuubrand, Wertheim) 

Gamma counter, Berthold  LB 2111 (EG&G Berthold, Bad Wildbach) 

Gel Doc 2000 System (Bio-Rad, Munich) 

Incubator for microtiter plates, thermocult (Clinicon Int., Keltern) 

Light Cycler System 1.0 with LightCycler Software 3.5 (Roche Diagnostics, Mannheim) 

Liquid scintillation counter, Wallac 1410 (Perkin Elmer, Milano, Italy) 

Magnetic mixer, temperature controlled (IKA, Staufen)  

Megafuge 1.OR (Heraeus, Hanau) 

Metabolic cages for rats over 300g (Techniplast, Varese, Italy) 

Microanalytical balance, 708501 (Sartorius, Goettingen) 

PCR Minicycler PTC 150 (MJ Reaserch Bio-Rad, Munich) 

pH Meter 766 Calimatic (Knick, Berlin) 

Power Supply LKB 2002 (LKB, Bromma, Sweden) 

RIA Decanter (fine mechanics dept., University of Heidelberg) 

RIA Roller (fine mechanics dept., University of Heidelberg) 
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RIA Shaker (fine mechanics dept., University of Heidelberg) 

Spectrophotometer NanoDrop ND-1000  

with software V3.1.0 (Nanodrop, Wellington Delware, USA) 

Spectrophotometer Spectramax 250  

with SOFTmaxPRO software (Molecular Devices, Munich) 

Table centrifuge, 4515D (Eppendorf, Hamburg) 

Test tube thermostat TCR 100 (Carl Roth, Karlsruhe) 

Ultrasonic bath, Bandelin Sonorex RK 102P (Schalltec, Mörfelden-Wall) 

Ultra-turrax disperser, TP 10-10 (IKA, Staufen) 

Vacuum manifold (Varian, Darmstadt) 

Vacuum pump and compressor, Laboport (neoLab, Heidelberg) 

Vortex (Heidolph Instruments, Heidelberg) 

Water bath, thermomix 1440 (B.Braun, Melsungen) 

Wide Mini-SUB Cell GT for electrophoresis (Bio-Rad, Munich) 

 

LANGENDORFF APPARATUS (PERFUSION EQUIPMENT) 

ECG Electrodes (Ingenieurbüro Jäckel, Hanau) 

Iso-DAM8 & Bridge8 amplifier (World precision Instruments, Berlin) 

Latex balloon, size 3, 73-3478 (HSE-Harvard Apparatus, March-Hugstetten) 

Organ chamber (glassblowing dept., University of Heidelberg) 

Oxygenating chamber (glassblowing dept., University of Heidelberg) 

Perfusion chamber, temperature controlled (fine mechanics dept., University of Heidelberg) 

Perfusion Control BMT 9032 (BMT Messtechnik, Berlin) 

Peristaltic pump Masterflex, 7015 (Masterflex, Gelsenkirchen) 

Statham Pressure transducer with cardiac catheter (World precision Instruments, Berlin) 

Water bath, thermomix 1460 (B.Braun, Melsungen) 

 

SOFTWARE 

BeMon and AMon Software 3.4 (Ingenieurbüro Jäckel, Hanau) 

GeneFisher, interactive PCR primer design (University of Bielefeld) 

Microsoft Office – Word, Excel, PowerPoint, Internet Explorer (Microsoft, USA) 

REST-384 (Technical University, Munich) 

SigmaPlot 8.0, SigmaStat 2.03 (Systat Software, USA) 

Statistica 5.5(StatSoft, USA) 
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3.1.3. MATERIALS 
 

Biozym pipets (Biozym, Hessisch Oldendorf) 

Cannulas 27G, 23G, Microlance 3 (BD GmbH, Heidelberg) 

Combitipps (Brand, Wertheim) 

Eppendorf pipets (Eppendorf, Hamburg) 

Filter holder FR 050/0 (Schleicher& Schuell, Dassel) 

Filter pipette tips, low-retention (nerbe-plus, Winsen/Luhe) 

Glass reaction tubes for RIA (neoLab, Heidelberg) 

Glass tubes, round bottom, for homogenisation (neoLab, Heidelberg) 

Hand dispenser Handy Step (Brand, Wertheim) 

LightCycler capillaries (Roche Diagnostics, Mannheim) 

LightCycler cooling block (Roche Diagnostics, Mannheim) 

Membrane filters ME27, diameter 0,8µM (Schleicher& Schuell, Dassel) 

Microtiter plates, 96-well (Carl Roth, Karlsruhe) 

Parafilm (Brand, Wertheim) 

PCR reaction tubes, thin-walled (Eppendorf, Hamburg) 

Pipette tips, low-retention (nerbe-plus, Winsen/Luhe) 

Polyethylene centrifuge tubes, 15, 50 ml (Greiner, Frickenhausen) 

Rat operation table (fine mechanics dept., University of Heidelberg) 

RIA test tubes with caps (Hormuth, Heidelberg) 

Safe-lock reaction tubes, low retention, 0,6;1,5;2,0 ml (nerbe-plus, Winsen/Luhe) 

Scintillation tubes (neoLab, Heidelberg) 

Sep-Pak C18 cartridges (Waters, Eschborn) 

Silicone tubing (Masterflex, Gelsenkirchen) 

Surgical tools - tweezers, scissors, forceps, clamp, scalpel, aortic cannula  

Syringe, 1ml, Plastipak (BD GmbH, Heidelberg) 

Syringe, luer lock, 5ml, Plastipak (BD GmbH, Heidelberg) 

T-connector with stopcock (neoLab, Heidelberg) 
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3.1.4. CHEMICALS 

 

Acetic acid (JTBaker, Deventer, Holland) 

Acetonitril, 1605 (AppliChem, Darmstadt) 

Agarose, electrophoresis grade, 15510-027 (Invitrogen, Karlsruhe) 

Aldosterone, A2136 (Sigma-Aldrich, Taufkirchen) 

3H-aldosterone (Amersham Biosciences, Freiburg) 

Aldosterone antiserum (Steroid lab, University of Heidelberg) 

Anti-Endothelin, E1645 (Sigma-Aldrich, Taufkirchen) 

Anti-rabbit IgG, R0881 (Sigma-Aldrich, Taufkirchen) 

Beriglobin, human immunoglobulin (Aventis, Frankfurt)  

Boric acid (JTBaker, Deventer, Holland) 

Bovine serum albumine, A7906 (Sigma-Aldrich, Taufkirchen) 

Bradykinin (Bachem, Weil am Rhein) 

Bradykinin antiserum (Lab Hilgenfeldt, University of Heidelberg) 

Calcium chloride (JTBaker, Deventer, Holland) 

Carbogen (Theoretikum, University of Heidelberg) 

Celite 545 AW coarse, 22141 (Sigma-Aldrich, Taufkirchen) 

Chloramine T, C9887 (Sigma-Aldrich, Taufkirchen) 

Chloroform (JTBaker, Deventer, Holland) 

Corticosterone, C2505 (Sigma-Aldrich, Taufkirchen) 

3H-corticosterone (Amersham Biosciences, Freiburg) 

Corticosterone antiserum (Steroid lab, University of Heidelberg) 

dATP, U1201 (Promega, Mannheim) 

dCTP, U1225 (Promega, Mannheim) 

Deoxycorticosterone, D7000 (Sigma-Aldrich, Taufkirchen) 

3H- deoxycorticosterone (Amersham Biosciencies, Freiburg) 

Deoxycorticosterone antiserum (Steroid lab, University of Heidelberg) 

DEPC, A0881 (AppliChem, Darmstadt) 

Dextran T70 (Serva, Heidelberg) 

D-Glucose, 8342 (Merck, Darmstadt) 

dGTP, U1211 (Promega, Mannheim) 

Dichloromethane (Riedel-de Haen, Hanover) 

DNA Loading Dye 6x, R0611 (Fermentas, St.Leon-Roth) 
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DNA-OFF, A2860 (AppliChem, Darmstadt) 

Dry ice (Theoretikum, University of Heidelberg) 

dTTP, U1231 (Promega, Mannheim) 

EDTA, 8417 (Merck, Darmstadt) 

Endothelin-1, E7764 (Sigma-Aldrich, Taufkirchen) 

Ethanol absolute (Riedel-de Haen, Hanover) 

Ethidium bromide, 15585-011 (GIBCO BRL Div. of Invitrogen, Karlsruhe) 

Ethylacetate (Merck, Darmstadt) 

Ethylene glycole (Merck, Darmstadt) 

Gelafundin, 4% (B.Braun, Melsungen) 

Heparin-Natrium B.Braun 25 000 I.E. (B.Braun, Melsungen) 

Hydrochloric acid, 9057 (Merck, Darmstadt) 

Hyperladder I, DNA Marker, 555868 (Bioline, Luckenwalde) 

Isooctane (Acros, Geel, Belgium) 

Liquid nitrogen (Theoretikum, University of Heidelberg) 

Lysozyme, L6876 (Sigma-Aldrich, Taufkirchen) 

Kallidin (Bachem, Weil am Rhein) 

Kallidin antiserum (Lab Hilgenfeldt, University of Heidelberg) 

Kallidin-like peptide (Lab Metzler-Nolte, University of Heidelberg) 

Kallikrein from human plasma, K2638 (Sigma-Aldrich, Taufkirchen) 

Kaolin, K7375 (Sigma-Aldrich, Taufkirchen) 

Magnesium sulphate, 0168 (JTBaker, Deventer, Holland) 

ß-Mercaptoethanol (Acros, Geel, Belgium) 

Methanol absolute (Riedel-de Haen, Hanover) 

Narcoren, sodium pentobarbital (Merial, Hallbergmoos) 

Norit A, charcoal, 30890 (Serva, Heidelberg) 

Normal rabbit IgG carrier, 3050 (Linco Res; Biotrend, Cologne) 

Olive oil, 75348 (Sigma-Aldrich, Taufkirchen) 

o-Phenanthroline, P9375 (Sigma-Aldrich, Taufkirchen) 

Polyethylene glycol, MW 8000 (Sigma-Aldrich, Taufkirchen) 

Potassium chloride, 4936 (Merck, Darmstadt) 

Potassium iodide, 30315 (Riedel-de Haen, Hanover) 

Potassium metabisulfite, P2522 (Sigma-Aldrich, Taufkirchen) 

Potassium phosphate, 30407 (Riedel-de Haen, Hanover) 
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Primers for PBGD, CYP11B1, CYP11B2 (Invitrogen, Karlsruhe) 

Rat tissue kallikrein (BioAss, Diessen) 

RNAlater, 76104 (Qiagen, Hilden) 

RNase-OFF, A2861 (AppliChem, Darmstadt) 

S-2266, chromogenic substrate for glandular kallikrein (Chromogenix, Milano, Italy) 

S-2302, chromogenic substrate for plasma kallikrein (Chromogenix, Milano, Italy) 

Scintillation reagent, Ultima Gold (Perkin Elmer, Milano, Italy) 

Silicone solution, 35130 (Serva, Heidelberg) 

Sodium azide, S2002 (Sigma-Aldrich, Taufkirchen) 

Sodium carbonate, 31437 (Riedel-de Haen, Hanover) 

Sodium chloride, 6404 (Merck, Darmstadt) 

Sodium citrate, 6447 (Merck, Darmstadt) 

Sodium hydroxide, 9137 (Merck, Darmstadt) 

Sodium iodide, 3129 (Riedel-de Haen, Hanover) 

Sodium-125 I (Hartmann Analytic, Braunschweig) 

Sodium phosphate dibasic, S0876 (Sigma-Aldrich, Taufkirchen) 

Sodium phosphate monobasic, S0751 (Sigma-Aldrich, Taufkirchen) 

Sodium pyruvate, 15220 (Serva, Heidelberg) 

Spironolactone, S3378 (Sigma-Aldrich, Taufkirchen) 

Taq DNA polymerase 5U/µl, 

with 10x reaction buffer and 25mM MgCl2, D4545 (Sigma-Aldrich, Taufkirchen) 

Trasylol ®, 500 000 KIU (Bayer, Leverkusen) 

Triethylamine, T0886 (Sigma-Aldrich, Taufkirchen) 

Tris, 4855 (Carl Roth, Karlsruhe) 

Trypsin agarose, T1763 (Sigma-Aldrich, Taufkirchen) 

Tyr8-BK (Bachem, Weil am Rhein) 

Tyr6-KLP (PolyPeptideLaboratories, Wolfenbüttel) 

 

ASSAY KITS 

CK NAC, activated (Rolf Greiner BioChemica, Flacht) 

LightCycler Fast Start DNA Mater SYBR Green I, 12239264001 (Roche Diagnostics, 

Mannheim) 

Quantitect Reverse Transcription Kit, 205311 (Qiagen, Hilden) 

RNeasy Mini Kit, 74104 (Qiagen, Hilden) 
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3.2. METHODS 

 
3.2.1. ANIMAL EXPERIMENT 
 

All experiments were performed in accordance with the FELASA guidelines for 

animal experimentation. All rats were kept under standard conditions with free 

access to food and water. 

 

Male Brown-Norway (BN) rats (a total of 56 rats) and kininogen-deficient Brown-
Norway-Katholiek (BNK) rats (a total of 56 rats) of 300–350g were used. Animals of 

each strain were randomly divided into four experimental groups and underwent 

following treatment for 10 days: 

 

 1. NS - normal salt diet (standard diet - 0,5% NaCl) 

 2. NS SPI - normal salt diet (0,5% NaCl) + spironolactone (20mg/day s.c.) 

 3. HS - high salt diet (5% NaCl) 

 4. HS SPI - high salt diet (5% NaCl) + spironolactone (20mg/day s.c.) 

 

Spironolactone (100mg) was suspended in 1ml olive oil and before each application 

properly mixed in ultrasonic bath and vortexed. Rats received a subcutaneous 

injection of 200µl of spironolactone per day for 10 days. 

 

Following experiments with metabolic cages were performed with 32 BN rats and 38 

BNK rats. These rats underwent blood pressure and heart rate measurements and 

were used for the Langendorff heart experiments. Additional 24 BN rats and 18 BNK 

rats were used for the acquisition of plasma and supplementary organs. 

 

In the beginning of the experiment, the rats were weighed, so that differences in body 

weight change after each treatment could be determined. During the experiment, the 

rats were gradually trained in individual metabolic cages. On the 9th day, they were 

put into metabolic cages for 24h. The next day, body weight, food and water intake, 

and urine volume were recorded. During the 24h, urine was collected into urine 

collection tubes that were cooled with an ice bath. The tubes as well as the lower part 

of metabolic cages were treated with silicone solution to avoid peptide adsorption. 
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Urine was then centrifuged (6000rpm, 15min, 4°C) to remove food contamination. 

Aliquots of urine in special low-retention tubes were stored at -20°C until assayed. 

Afterwards, the animals had one day to recover before they were used for terminal 

blood pressure measurement and final heart perfusion. 

 
3.2.2. BLOOD PRESSURE AND HEART RATE MEASUREMENTS 
 

Mean blood pressure and heart rate were measured simultaneously by means of a 

tail cuff method in conscious animals. The rats were trained for the measurements 

during the whole experiment. Each pressure and heart rate value was obtained by 

averaging four to six individual readings. 

 

For measurements, the animals were held in hands, always by one person. The tails 

were passed through the pressure cuff that was placed at the base of the tail in front 

of the pulse sensor (transducer). Both sensor and pressure cuff were connected to 

the control unit. This unit featured an integrated pressure generator for cuff inflation. 

Alterations in the diameters of the arteries caused by variations in blood pressure 

resulted in an altered mechanical force, which was recognized by the piezo-

transducer and converted to electrical signal. The heart frequency was calculated 

form the pulse signal. 

 

3.2.3. SURGERY 
 

The first set of rats, used for the heart perfusion, was anaesthetized and 

heparinized with a mixture of pentobarbital sodium (60mg/kg) and heparin (500IU), 

administered intraperitoneally. Pentobarbital was washed out from the myocardium 

within the first minutes of perfusion, so that it did not impair measurements. Heparin 

was used to prevent blood clotting, which would injure cardiac tissue. 

 

Surgery was not started until the rats completely lost consciousness. Animals were 

then fixed on an operating field filled with ice. The skin was incised in the middle of 

the abdomen by a transversal cut. The diaphragm was incised at the edges and was 

cut out from the ribs. The pericardium was incised from the bottom up to the top. At 

this time, the thoracic cavity was filled with ice-cold saline solution to cause 
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bradycardia and reduce energy and oxygen consumption. Thereafter, the thorax was 

opened by long cuts at the right and left side so that the complete anterior thoracic 

wall was turned upwards. In the region of the ascending aorta, the rest of the 

pericardium and thymus were removed. By use of forceps, the ascending aorta was 

gently separated from the pulmonary artery and connective tissue. The aorta was 

undermined and a thread was positioned around the aorta with a prepared surgical 

knot (Fig.17). Next, the aorta was incised transversely as far cranially as possible 

and the aortic cannula (3mm outer diameter) was inserted. The cannula was 

connected to an auxiliary reservoir of cold perfusion solution. Prior to the insertion, 

the stopcock of the perfusing system was opened so that there was already some 

flow through the aortic cannula, which helped to avoid air bubbles entering the 

coronary arteries. After insertion, the knot was tightened and flow from the auxiliary 

perfusion system was completely opened. Now the heart was retrogradely perfused 

at constant pressure (the hydrostatic pressure of the auxiliary system) and all 

remaining blood was washed out. The heart was then cut off and removed from the 

body. It was immediately transferred to the Langendorff apparatus and connected via 

the aortic cannula to the stopcock. The whole preparation was performed within 2min 

(starting with the incision of the diaphragm until positioning of the heart on the 

apparatus). Spontaneously beating started within few seconds of reperfusion with 

warmed and oxygenized perfusion medium. Now, the remaining tissues such as 

excessive connective tissue, remains of vessels, lungs or fat were removed. 

 

 
 

Fig. 17 Preparation of the heart. The scheme shows the insertion of the aortic cannula (Dhein et al., 

 2005) 
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After the heart was removed, other organs were quickly harvested. Firstly, the 

adrenals were separated and immediately put into pre-chilled tube with RNA 

stabilization reagent (RNAlater). The right kidney was removed and cut into pieces 

before it was submerged in RNAlater. The left kidney was removed, weighed and 

immediately frozen in liquid nitrogen. The brain was excised, weighted and quickly 

frozen in liquid nitrogen. The frozen samples were then stored in -40°C till 

processing. To ensure absolute permeation of RNAlater through the tissue, the 

samples in RNAlater were first overnight incubated at 2-8°C and then transferred to -

20°C for archival storage. The heart weight was determined after the heart perfusion. 

 

In the second series, rats were used for plasma and organs acquisition. For 

narcosis, only sodium pentobarbital (60mg/kg i.p.) was used. Heparin was omitted 

because it would influence plasma quality. 

 

Animals were anaesthetized until a complete loss of consciousness. They were fixed 

on a flexible operational table used for exsanguinations. The skin in the upper part of 

throat was excised with scissors. By use of tweezers, the tissue was spread to sides 

to expose the left carotid artery. It was then carefully undermined with forceps and 

slightly lifted. A pre-chilled siliconized plastic tube with 1ml 3,8% sodium citrate was 

placed under the artery, so that after cutting, the blood could directly run into it. The 

blood (around 10ml) was then properly mixed with the citrate to prevent coagulation 

and immediately centrifuged (6000rpm, 10min, 4°C). Plasma supernatant was then 

aliquoted into low-retention tubes and stored in -20°C until assayed. 

 

Immediately after the rats were killed by bleeding, additional organs were harvested. 

Adrenal glands were separated and put into pre-chilled tubes with RNAlater. The 

right kidney was removed, cut into pieces and submerged in RNAlater. The left 

kidney was removed, weighed and quickly frozen in liquid nitrogen. The heart was 

carefully excised and washed in DEPC treated water (RNase free) to remove 

remaining blood. Then the atria were separated and submerged in cold RNAlater. 

The ventricle was cut into smaller pieces and put into pre-chilled tube with RNAlater. 

The brain was excised, weighted and frozen in liquid nitrogen. The frozen samples 

were stored in -40°C till processing. The samples in RNAlater were overnight 

incubated at 2-8°C and then transferred to -20°C for further storage. 
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3.2.4. LANGENDORFF PERFUSION OF ISOLATED RAT HEART 
 

This method is based on the basic investigation of Oscar Langendorff who in 1895 

developed a method for investigation of the isolated heart. The basic principle is to 

maintain cardiac activity by perfusing the heart via the coronary arteries using an 

aortic cannula inserted into the ascending aorta. Perfusion solution is delivered to the 

heart in a retrograde manner via this cannula. This retrograde perfusion closes the 

aortic valve and flows into the coronary arteries during the diastole (Fig.18). After 

passing through the coronary circulation, the perfusate enters the right atrium via the 

coronary sinus and is driven out via the right ventricle and the pulmonary artery. 

 

 
 

Fig. 18 Scheme of the isolated perfused heart according to Langendorff. Perfusion solution is 

 flowing  retrogradely within the aorta and then orthogradely within the coronary arteries during 

 diastole. A prerequisite is that the aortic valve is closed by the perfusion pressure of the 

 perfusion solution (Dhein et al., 2005). 

 

The key components of a Langendorff apparatus (Fig.19) were represented by a 

glass double-walled heat exchanger and oxygenating chamber in one and a 

perfusion controller. Perfusion controller transported the perfusion solution to the 

heart via the aortic cannula and acted as a feedback system to regulate perfusate 

flow. The aortic cannula with the heart was fixed to the stopcock at the end of the 

tubing of the perfusion controller. 

 
The oxygenating chamber was formed from 4 linked spheres that provided maximal 

surface area for warming and oxygenating the nutrient solution. The solution was 

infused at the top of the oxygenator from a reservoir via additional peristaltic pump. 
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The bottom of the chamber, where the solution accumulated, had an inlet for 

carbogen that bubbled through the solution. Perfusion controller combined a 

peristaltic pump and a pressure transducer which was directly connected to the heart 

via a T-connector at the level of the aortic cannula. Both, constant perfusion flow or 

constant perfusion pressure were achieved by the perfusion controller. Coronary 

perfusion pressure (indicator of coronary resistance) was measured continuously and 

as the coronary vessels autoregulated (dilated or constricted) and the vascular 

resistance changed, the changes in coronary pressure were registered and the 

perfusion controller regulated the function of the pump, so that constant perfusion 

pressure was maintained. For the investigation of complex situation of ischaemia and 

reperfusion, constant perfusion pressure was advantageous as ischaemia enhanced 

the energy and oxygen consumption and so the flow rate could be adjusted to 

additional supply of oxygen and energy to the heart. In case of crystals or 

contamination in the perfusion solution that could injure the heart tissue, the medium 

passed through 0,8µm filter before entering the heart. Around the heart there was a 

second double-walled chamber in the form of a cylinder which provided a warm and 

moisturised atmosphere around the heart. 

 

 
 

Fig.19 A complete Langendorff apparatus. Temperature controlled perfusion chamber maintains 

 inner temperature of 38°C. 
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The perfusion solution consisted of a modified Krebs-Henseleit buffer (Tab.1). The 

solution was always fresh prepared and aerated with a 95% O2 + 5% CO2 mixture 

and equilibrated for pH 7,4 and 38°C. 

 

Chemicals 
MW 

(g/mol) 

Concentration 

(mmol/l) 

    1. NaCl 58,44 118 

    2. NaHCO3 84,01 24 

    3. KCl 74,56 4 

    4. KH2PO4 136,09 1,2 

    5. MgSO4 246,47 1 

    6. D-Glucose 180,16 11 

    7. Sodium Pyruvate  110,00 2 

    8. CaCl2 147,02 2,5 

 

Tab.1 Krebs-Henseleit medium for ischaemia experiments in Langendorff heart perfusion. 

 
As described above, the heart was rapidly excised and mounted on the Langendorff 

apparatus (Fig.20). At the beginning, the heart was allowed to equilibrate as it was 

perfused at a constant flow rate of about 10-12ml/min. 

 

 
 

Fig. 20 Perfused isolated rat heart on the Langendorff apparatus, with intraventricular balloon 
 catheter and ECG electrodes. 

 



MATERIAL & METHODS 

 49 

For the isovolumetric measurement of force, a balloon was inserted via the left 

atrium into the cavity of the left ventricle (Fig.21). The balloon size fitted the size of 

the left ventricular cavity and gave an impression of the developed force of the whole 

left ventricle. The balloon was compressed during the systole. Since during diastole 

the aortic valve was closed and during systole the intraventricular pressure was 

higher than the perfusion pressure, there was no flow fluid into the ventricular cavity. 

 

 
 

Fig.21 Measurements of functional cardiac parameters in Langendorff heart perfusion 

 (Aventis). 

 

Before insertion into the ventricle, the balloon was evacuated. In the right position, it 

was filled with distilled water until the desired end-diastolic pressure was achieved. It 

had to be free from air bubbles which would affect and falsify the measurement. 

Filling of the balloon was realized via a syringe connected via a three-way stopcock 

to a Statham pressure transducer connected to a bridge amplifier. 

 

The correct balloon pressure was determined by measurement of the Frank-Starling 

mechanism. For that purpose, the balloon pressure (LVPmin, diastolic pressure) was 

increased in small steps of about 5mmHg. It was seen that as the LVPmin increased 

the maximum left ventricular pressure (LVPmax, systolic pressure) also increased up 

to a certain point. Further increase in balloon pressure now resulted in no more 

increase in LVPmax. The balloon pressure with the maximum developed force of the 

ventricle indicated the optimal preload (left ventricular end-diastolic pressure 

(LVEDP)). 
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Epicardial measurement of the electric activity of the heart (electrocardiogram (ECG)) 

was achieved by using a bipolar circuit. For the recording of ECG an amplifier was 

used. One electrode (AgCl) was positioned at the left ventricle (Fig.20), the other 

electrode at the right ventricle. An amplifier was used for the recordings. Steel aortic 

cannula helped electrical grounding. 

 

After the stabilization period, the flow rate was adjusted to obtain a coronary 

perfusion pressure of approximately 65mmHg and was held constant, except of 

ischaemic periods during which the flow was stopped (no-flow ischaemia). 

 

HEMODYNAMIC MEASUREMENTS 
 

Data of the coronary flow rate were obtained indirectly as they reflected the action of 

peristaltic pump of the perfusion controller. As mentioned above the function of the 

pump was adjusted to the momentary demand of the heart according to the constant 

perfusion pressure of 65mmHg measured by a pressure transducer attached to the 

side arm of aortic cannula. 

 

The intraventricular balloon was used for measurements of the left ventricular 

developed pressure (LVDP) and left ventricular end-diastolic pressure (LVEDP). 

LVEDP is represented by LVPmin and left ventricular developed pressure (LVDP) is 

defined as the maximum left ventricular pressure (LVPmax) minus LVPmin (LVEDP). 

The LVP signal was applied to the inputs of a differentiator and displayed the derived 

parameters maximum contraction and relaxation velocity (dp/dtmax and dp/dtmin, 

respectively). The heart rate was derived from the left ventricular pressure trace. 

 

ECG parameters served for a real time control of stable cardiac function. 

 

The analogue signals from transducers and electrodes were amplified and then 

processed by a BeMon32 V3.4 software and stored for subsequent analysis with the 

AMon32 software. 
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Fig.22 BeMon software. Important functional cardiac parameters were displayed during the heart 

 perfusion. In the upper panel down from top: LVPmax and LVPmin, heart rate (HR), dp/dtmax and 

 dp/dtmin, perfusion pressure and coronary flow. In the lower panel: the pulse wave and ECG 

 signals. 

 

EXPERIMENTAL PROTOCOL 
 

Each pre-treatment group was randomly subdivided into controls (without 

preconditioning) and preconditioned hearts. The hearts in both groups were 

subjected to 30min equilibration period. 

 

The control group was then subjected to a 30min sham period of normal perfusion 

followed by 30min of global ischaemia (no-flow) before a 60min reperfusion period. 

 

In the preconditioned group, the hearts were first exposed to three cycles of 5min 

global ischaemia separated by three reperfusion cycles of 5min duration. Three 

cycles of IPC were employed, since it has been documented, that multiple cycles of 

preconditioning are needed to achieve protection. After 30min of global ischaemia 

(no-flow) the hearts were reperfused for another 60min. 
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Coronary venous effluent (à 2ml) was collected continuously during the perfusion, 

except of the no-flow periods, as indicated in Fig.23. The samples were stored at 4°C 

until assayed. 

 

Coronary effluent was used for the measurement of the creatine kinase (CK) activity 

that served for evaluation of the cardiac damage caused by ischaemia. Before 

sample collection following ischaemia, a short washout period was performed to 

avoid collecting of the CK accumulated in the heart during the no-flow period. Later, 

all evaluated hemodynamic data were chosen to be matched to the same time points 

as the collection of the coronary effluent which also excluded the immediate reflective 

respond of the heart to ischaemia. 

 

 
 
Fig.23 Experimental protocol. Green fields indicate perfusion, red fields indicate global ischaemia 

 (no-flow). Coronary effluent started to be collected at the end of equilibration (20min after the 

 beginning of the experiment), a mean value of all three measurements was used as initial 

 value. During the IPC effluent was collected in the middle of each reperfusion cycle. After 

 ischaemia, it was first collected four times after 5min of reperfusion; later after 10min and 

 finally after 20min. The hemodynamic data respond to the same time scheme. 

 

 

 
 

  

 

control experiment

ischemic preconditioning experiment

  equlibration    ischaemia  reperfusion 

  equlibration         IPC    ischaemia  reperfusion 
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3.2.5. RADIOIMMUNOASSAYS 
 

Radioimmunoassay (RIA) is a high sensitive, competitive protein-binding method 

where antibodies are used as specific reagents that selectively bind the substance to 

be measured in a native and radioactively labeled form. It is used for measurements 

of hormones and other substances present in minute quantities in biological fluids. It 

is possible to determine quantity as small as 10-14g (10-12M) with good precision. The 

technique was introduced in 1960 by Berson and Yalow as an assay for the 

concentration of insulin in plasma. 

 

Specific antibody is directed against the peptide to be measured. Tracer (the same 

peptide labeled with radionuclide) and measured peptide are added to the incubation 

mixture. During the incubation step, the reactants come to equilibrium, as there is a 

competition between the measured peptide and tracer for a specific binding site. The 

bound antigens are separated from the unbound ones and the radioactivity of each is 

determined in a radiation counter. Separation methods are mostly based on 

differences in immunologic determinants, solubility or adsorption to solid material 

(Thorrel and Larson, 1978). 

 

 
 

Fig.29 Principle of radioimmunoassay. 

 

Standard curve is created by running few samples at known concentrations of 

measured antigen. At increasing concentrations of unlabeled antigen, an increasing 

amount of tracer is displaced from the antibody molecules and after separating, the 

radioactivity of each is measured. The ratio of bound and free antigen (B/B0) in each 
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standard is plotted against logarithm of respective concentration. The samples to be 

assayed are run in parallel. After determining the ratio of bound to free antigen in 

each unknown, the antigen concentrations can be read directly from the standard 

curve. 

 

3.2.5.1. MEASUREMENT OF PLASMA KININOGENS 
 

The residual levels of kininogens in plasma were measured according to a modified 

method published by Uchida and Katori in 1979. The assay is based on kininogen’s 

enzymatic breakdown by plasma kallikrein and trypsin. By this process generated BK 

was measured by RIA. 

 

For HMW kininogen, plasma was incubated with kaolin suspension in the presence 

of o-phenanthroline (kininase inhibitor). HMW kininogen was converted to kinin by 

activation of plasma prekallikrein through activation of coagulation factor XII. 

Released BK was measured by RIA. 

 

Digestion was performed in low-retention plastic tubes to reduce the surface 

adsorption of proteins and peptides. Mixture of 160µl 0,06M Tris-HCl buffer, pH 7,8 + 

0,6 mg/ml o-phenanthroline, 40µl kaolin suspension (2,5 g/l kaolin, 9 g/l NaCl, 0,2 g/l 

NaN3 in distilled water), and 40µl citrate plasma was incubated for 30min at 37°C. 

Afterwards, proteins were precipitated with 880µl ethanol absolute and the mixture 

was cooled on ice. After centrifugation (10min, maximum speed), supernatant with 

BK was transferred into new test tube. Pellet was resuspended with 440µl ethanol 

absolute and centrifuged 10min at maximum speed. Both supernatants were then 

collected and carefully evaporated under vacuum. Samples were resuspended in 

1000µl RIA buffer (0,1M Tris-acetate buffer, pH 7,4 containing 0,1% Gelafundin) and 

stored at -20°C until assayed. For RIA, triplicates of 50µl were used for measurement 

of BK in samples of kininogen-deficient BNK rats and triplicates of 50µl after dilution 

of 1:50 in samples of BN control rats. 

 

For LMW kininogen, plasma was incubated with kaolin suspension in absence of o-

phenanthroline. Thus kinins converted from HMW kininogen by plasma kallikrein 

were destroyed by kininases in plasma. The HMW kininogen-depleted plasma was 



MATERIAL & METHODS 

 55 

acidified to pH 2,0 (kininase inactivation) and was incubated with trypsin after 

neutralisation. BK released from LMW kininogen by trypsin were assayed by RIA. 

 

Digestion was performed in low-retention plastic tubes. Mixture of 160µl 0,06M Tris-

HCl buffer, pH 7,8; 40µl kaolin suspension (2,5 g/l kaolin, 9 g/l NaCl, 0,2 g/l NaN3 in 

distilled water), and 40µl citrate plasma was incubated for 30min at 37°C. Afterwards, 

the mixture was acidified with 10µl 1M HCl and further incubated for 15min at 37°C. 

The sample was neutralised with 10µl with 1M NaOH and mixed. A volume of 20µl of 

insoluble trypsin (1,6 U/ml Tris-HCl buffer) was added and the mixture was incubated 

for further 60min at 37°C. Subsequently 1ml ethanol absolute was added and the 

mixture was incubated next 10min at 70°C to efficiently inactivate and precipitate 

proteins. Sample was cooled on ice and centrifuged 10min at maximum speed. 

Supernatant with kinins was transferred into a new test tube. Pellet was resuspended 

with 440µl ethanol absolute and centrifuged 10min at maximum speed. Both 

supernatants were then collected and carefully evaporated under vacuum. Samples 

were resuspended in 1000µl RIA buffer (0,1M Tris-acetate buffer, pH 7,4 containing 

0,1% Gelafundin) and stored at -20°C until assayed. For RIA, triplicates of 50µl were 

used for measurement of BK in samples of kininogen-deficient BNK rats and 

triplicates of 50µl after dilution of 1:25 in samples of BN control rats. 

 
3.2.5.2. MEASUREMENT OF URINARY KININOGEN 
 
For urinary LMW kininogen, urine was incubated with trypsin. Released BK was 

determined by RIA. 

 

Digestion was performed in low-retention plastic tubes. Mixture of 180µl 0,06M Tris-

HCl buffer, pH 7,8; 20µl urine and 10µl of insoluble trypsin (1,6 U/ml Tris-HCl buffer) 

was incubated for 60min at 37°C. Subsequently 1ml ethanol absolute was added and 

the mixture was incubated next 10min at 70°C to efficiently inactivate and precipitate 

proteins. Sample was cooled on ice and centrifuged 10min at maximum speed. 

Supernatant with kinins was transferred into a new test tube. Pellet was resuspended 

with 440µl ethanol absolute and centrifuged 10min at maximum speed. Both 

supernatants were then collected and carefully evaporated under vacuum. Samples 

were resuspended in 500µl RIA buffer (0,1M Tris-acetate buffer, pH 7,4 containing 
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0,1% Gelafundin) and stored at -20°C until assayed. For RIA, triplicates of 150µl 

were used for measurement of BK in all samples. 

 

3.2.5.3. RADIOIMMUNOASSAY FOR THE AMOUNT OF BRADYKININ AND KALLIDIN-LIKE-
 PEPTIDE IN BIOLOGICAL FLUIDS 
 

PREPARATION OF SPECIFIC ANTIBODIES 
 

In the preparation of specific BK and KAL antibodies, both Cys6-BK and Cys7-KAL 

derivatives were first conjugated to a bovine serum albumin. The coupling products 

containing the kinin with both free amino- and carboxy-terminal ends were used as 

immunogens in rabbit. Obtained antisera were simultaneously directed against both 

free ends and therefore highly specific and sensitive. Both antisera displayed very 

low crossreactivity with other various kinins (Hilgenfeldt et al., 1995). KAL antiserum 

displayed approximately 80% crossreactivity with KLP which enabled reliable 

measurements of KLP in rat (Liu et al., 2005). 

 

PREPARATION OF THE TRACER MOLECULES – IODINATION OF TYR8-BK AND TYR6-KLP 
 

 

     Chloramine T   
I-     I+      I 

 
 

Fig.25 Principle of iodination. Iodide is oxidized to the positive form with chloramine-T and enters 

 the ring structure of the tyrosyl residue of the peptide chain. Reaction is stopped by addition of 

 reducing agent sodium metabisulfite. (modified after Thorrel and Larson, 1978). 

 

Because kinin molecules do not contain Tyr, whose ring structure may easily 

incorporate one or two atoms of iodine, Tyr8 derivative of BK and Tyr6 derivative of 

KLP were used for tracer molecules. Iodination was performed according to the 

chloramine-T oxidation method of Greenwood and Hunter from 1961 (Fig.25). 
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2,5µg peptide (Tyr8-BK or Tyr6-KLP), in a low-retention test tube, was dissolved in 

25µl 0,1M sodium phosphate buffer, pH 7,4. 10µl Na125I (37MBq) was added. The 

reaction was started by oxidation with 1µl chloramine-T (2,5µg/µl 0,1M sodium 

phosphate buffer, pH 7,4) and was stopped after 20s by addition of 5µl of a reducing 

agent potassium metabisulfite (5µg/µl 0,1M sodium phosphate buffer, pH 7,4). 

Unreacted iodide was removed from the labeled peptide by use of a C18 Sep-Pak 

cartridge. The cartridge was equilibrated with methanol absolute and loaded with an 

excess of KI (0,1% in 0,1M sodium phosphate buffer, pH 7,4 containing 0,1% BSA). 

In the presence of unlabeled iodide, free Na125I was separated from 125I-Tyr8-BK and 
125I-Tyr6-KLP within the first fraction of elution with 3ml of 0,1% KI in 0,1M sodium 

phosphate buffer, pH 7,4 containing 0,1% BSA . After washing with 20% methanol in 

phosphate buffer, the purified labeled peptide was eluted into siliconized tubes within 

two main 0,5ml fractions with 60% methanol in phosphate buffer (Hilgenfeldt et al., 

1995). The quality of the new tracer was assessed in a binding test where also the 

appropriate antiserum dilution was determined. The highest assay sensitivity was 

achieved with a dilution by which approximately 50% of the tracer in absence of 

unlabeled peptide was bound (B0, maximum binding). The sensitivity was found to be 

0,5pg BK and 5pg KLP per tube. 

 

ASSAY PERFORMANCE 
 

Assay was performed at low temperature to minimize proteolysis. Deep frozen 

reagents were carefully thawed on ice. Initially, triplicates of total amount of added 

radioactivity (Tc, total count), maximum binding of tracer to antiserum (B0,) and blank 

tubes without antiserum (NSB, non-specific binding) preceded. Triplicates of reaction 

mixtures as seen in Tab.2 were prepared in siliconized RIA tubes. After all reagents 

were simultaneously pipetted, each tube was mixed for few seconds and then 

covered with parafilm. Assay tubes were incubated overnight in ice-water bath at 

4°C. Afterwards, 150µl properly mixed charcoal suspension (5g Norit A in 100ml 

0,1M Tris-acetate buffer, pH 7,4 containing 50ml 4% Gelafundin) was added to the 

reaction mixture and mixed. Free kinins were adsorbed to charcoal, whereas 

antibody-bound kinins remained in solution. After centrifugation (15min at 4°C, 

6000rpm) the supernatant from single tubes was removed by means of a vacuum 

pump and the free charcoal-bound tracer was measured with a gamma counter. For 
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standard curve, data were plotted as the ratio of bound activity to bound activity in 

the zero standard (B/B0) against the logarithm of concentration. After determining this 

ratio in each unknown, the antigen concentration was read directly from the standard 

curve. All samples within an experiment were measured in the same assay. 

 
Volume (µl) 

Reagents 
BK KLP 

I. Standards or 

BK: 0,5; 1; 2; 4; 8; 16; 32; 64; 128 pg 

KLP: 5; 10; 20; 40; 80; 160; 320; 640; 1280 pg 

50 50 

I. Sample:   

Plasma or 5 5 

HMW kininogen plasma digest or 50 - 

LMW kininogen plasma digest or 50 - 

LMW kininogen urine digest or 150 - 

Urine 20 20 

RIA buffer (if needed to complete sample volume) 

0,1M Tris-acetate buffer, pH 7,4; containing 0,1% 

Gelafundin 

ad 50 ad 50 

II. Tracer (5000cpm) 
125I-Tyr8-BK 

125I-Tyr6-KLP 

50 50 

III. Antiserum 

BK: working dilution 1:96000 

KAL: working dilution 1:60000 

500 500 

 

Tab.2 Reaction mixtures in BK and KLP RIA. Gelafundin was used as protective colloid against 

 undesirable adsorption of peptides. All reagents were diluted in RIA buffer. Samples, tracer, 

 aliquots of standard curve, and dialysed antiserum in dilutions 1:100 were stored at -20°C. 
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3.2.5.4. RADIOIMMUNOASSAY FOR THE AMOUNT OF ENDOTHELIN IN BIOLOGICAL FLUIDS 
 

PREPARATION OF THE TRACER MOLECULE - IODINATION OF ET-1 
 

Cys-Ser-Cys-Ser-Ser-Leu-Met-Asp-Lys-Glu-Cys-Val-Tyr-Phe-Cys-His-Leu-Asp-Ile-Ile-Trp 

 

Fig.26 Molecule of ET-1. Tyr in position 13 allows direct iodination. 

 

ET-1 was iodinated according to a protocol for iodination of kinins with slight 

modification in the purification steps. After the free Na125I was separated, the 

cartridge was washed with 20% methanol in water. The labeled ET-1 was then eluted 

with 60% methanol in water. The assay sensitivity was found to be 50pg ET per tube. 

 

ASSAY PERFORMANCE 
 

ET assay was performed similarly to kinin RIA. Second antibody technique was used 

for the separation of bound (antigen-antibody complex) and free radioactivity. 

Commercial antiserum Anti-Endothelin (developed in rabbit) did not distinguish 

between rat ET-1, ET-2 and ET-3. 

 

Triplicates of reaction mixtures were prepared according to the scheme in Tab.3. 

After the overnight incubation at 4°C, 2nd antibody Anti-Rabbit IgG (developed in 

goat) was added. After mixing, test tubes were covered with parafilm and allowed to 

incubate for another 3h at room temperature. Upon completion the second incubation 

step, normal rabbit carrier (secondary antibody precipitating system) and 10% PEG 

8000 solution was added. The antibody-antigen complex containing labeled and 

unlabeled ET precipitated. The tubes were properly mixed and centrifuged at 

4800rpm for 15min at 4°C. Supernatant was carefully removed from each tube and 

the amount of radioactivity present in the precipitate was counted in a gamma 

counter. All samples within an experiment were measured in the same assay. 
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Volume (µl) 

Reagents 
Tc B0 NSB Standards Samples 

I. Standards 

ET-1: 0,05, 0,1; 0,2; 0,4; 0,8; 1,6; 3,2; 

6,4; 12,8 ng 

- - - 50 - 

Samples 

plasma / urine 
- - - - 50 

Na-P Puffer 

0,1M sodium phosphate buffer, pH 7,4 
- 500 500 450 450 

Anti-Endothelin 

working dilution 1:16 250 
- 100 - 100 100 

RIA Puffer 

0,1M sodium phosphate buffer, pH 7,4 + 

0,1% BSA 

- - 100 - - 

Tracer (5000cpm) 
125I-ET-1 

50 50 50 50 50 

II. Anti-Rabbit IgG 

reconstituted in 0,1M sodium phosphate 

buffer, pH 7,4 

- 100 100 100 100 

III. Normal Rabbit Carrier 

reconstituted in 3% PEG 8000 in 0,1M 

sodium phosphate buffer, pH 7,4 

- 100 100 100 100 

10% PEG 8 000 

in 0,1M sodium phosphate buffer, pH 7,4 
- 1 000 1 000 1 000 1 000 

 

Tab.3 Reaction mixtures in ET RIA. BSA was used as protective colloid against undesirable 

 adsorption. Standards, Anti-Endothelin and tracer were diluted in RIA buffer. Samples, tracer, 

 aliquots of standard curve, antibodies and carrier were stored at -20°C. Tc, total count; B0, 

 maximum binding; NSB, non-specific binding; Na-P Puffer, sodium phosphate buffer; BSA, 

 bovine serum albumin; PEG 8000, polyethylene glycole, MW 8000. 

 

 



MATERIAL & METHODS 

 61 

3.2.5.5. RADIOIMMUNOASSAY FOR THE AMOUNT OF DEOXYCORTICOSTERONE, 
 CORTICOSTERONE AND ALDOSTERONE IN BIOLOGICAL FLUIDS AND BRAIN TISSUE 
 

Production of antisera with adequate specificity to measure DOC, corticosterone and 

aldosterone in presence of similar compounds is usually not achievable, as the 

steroid derivatives display only small differences in their structure. 

 

     
      11-deoxycorticosterone      corticosterone           aldosterone 

 

Fig.26 Structural similarities in corticoid hormones. 

 

The RIA required several preparatory steps; solvent extraction and chromatographic 

purification to isolate the compound to be measured from those causing undesired 

cross-reactions. 

 

SAMPLE PREPARATION 
 

All procedures were performed in glass test tubes to avoid steroids’ adsorption to 

plastic. 

 

A volume of 500µl plasma / urine was diluted in 500µl water containing 0,2% 

ethylene glycole (EGW). 100µl (3000cpm) of each tritiated steroid (3H-DOC, 3H-

corticosterone and 3H-aldosterone, generated commercially) were added to the 

sample before it was subjected to extraction to correct for losses during extraction 

(recovery). Steroids were then 1h extracted in 3ml 10% chloroform in ethylacetate 

containing 0,1% triethylamine in slowly rolling tubes. Afterwards, the tubes were left 

at -20°C for 30min. The liquid organic phase was separated from the frozen lower 

water phase by decanting. The organic extract was evaporated and properly 

reconstituted in 1ml 10% ethylacetate in isooctane containing 0,1% triethylamine 

during 1h shaking. 
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The brain was properly homogenized, two-times, each in 3ml of methanol by means 

of an Ultra-Turrax disperser. During homogenisation the tube was held on ice. After 

centrifugation (10min at 3500rpm) the supernatants were collected and 100µl 

(3000cpm) of each tritiated steroid (3H-DOC, 3H-corticosterone and 3H-aldosterone) 

were added to calculate recovery. Brain homogenate was then evaporated and 

reconstituted in 4ml EGW. Steroids were then extracted in 5ml dichloromethane 

containing 0,1% triethylamine during 30min tubes’ rolling. The organic phase was 

dried and during 30min shaking redissolved in 1ml 10% ethylacetate in isooctane 

containing 0,1% triethylamine. 

 

PURIFICATION BY PARTITION CHROMATOGRAPHY  
 

DOC, corticosterone and aldosterone were separated in a 600 mg Celite 545 AW 

column pre-washed with 300µl 80% ethylene glycole/water under vacuum. The 

organic extracts were slowly passed through the cartridge during which the steroids 

bound to the matrix. First, DOC was eluted with 8ml of 10% ethylacetate in isooctane 

containing 0,1% triethylamine. Subsequently, corticosterone was eluted with 10ml 

30% ethylacetate in isooctane containing 0,1% triethylamine. Lastly, aldosterone 

was eluted with 7ml 70% dichloromethane in isooctane containing 0,1% 

triethylamine. The eluates were evaporated. DOC was reconstituted in 3ml EGW, 

corticosterone was redissolved in 6ml 5% ethanol/water and aldosterone was 

resuspended in 1ml EGW. The method recovered approximately 88% of DOC, 60% 

of corticosterone and 47% of aldosterone. 
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Fig. 27 Elution profile of DOC, corticosterone and aldosterone from Celite column. 
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ASSAY PERFORMANCE 
 

Levels of aldosterone, corticosterone, and deoxycorticosterone were determined in 

duplicates by RIA using rabbit polyclonal antibodies. The cross-reactivity of DOC 

antiserum with corticosterone was 9%. Corticosterone antiserum displayed 6,7% 

cross-reaction with DOC. The cross-reactivity of aldosterone antiserum with 

corticosterone was determined to be 0,15%. The sensitivity of the RIA for DOC was 

1pg / tube; for corticosterone, it was 2,5pg / tube and for aldosterone, it was 1pg / 

tube. 

 

Reaction mixtures were prepared according to the Tab.4 at room temperature. The 

tubes were mixed and covered with parafilm. After overnight incubation at 4°C, the 

charcoal suspension was added (Tab.4). During the tubes were properly shaken by 

hand, free steroids were adsorbed to charcoal. Following 10min centrifugation at 

6000rpm the supernatant with antibody-bound steroids was decanted into a 

scintillation tube. A scintillation reagent (Tab.4) was added and after mixing, the 

tubes were counted in a beta-counter. Data were plotted as the ratio of bound activity 

to bound activity in the zero standard (B/B0) against the logarithm of concentration. 

Value of each sample was corrected with respective recovery. The antigen 

concentration in unknown samples was read from the standard curve. All samples 

within an experiment were measured in the same assay. 
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Volume (µl) 

Reagents 
Tc Standards Samples 

Sample 

Recovery 

Standards 

DOC, corticosterone, aldosterone (each): 

0; 1; 2,5; 5; 10; 25; 50; 100; 250; 500; 

1000 pg 

- 100 - - 

DOC, aldosterone: EGW 

corticosterone: 5% ethanol/water 
100 100 - - 

Samples 

plasma / urine / brain homogenate 
- - 200 

DOC, aldost.: 

50 

B: 200 

Tracer (3000 cpm) 
3H-DOC 

3H-corticosterone 
3H-aldosterone 

100 100 100 - 

Antiserum 

DOC: end-dilution 1: 42500 

corticosterone: end-dilution 1: 37500 

aldosterone: end-dilution 1: 140000 

- 200 200 - 

Charcoal suspension 

10g Norit A, 600mg dextran T70 in 640ml 

0,1M borate-KCl buffer, pH 7,4 containing 

0,63% Beriglobin 

- 100 100 - 

Scintillation reagent 2500 2500 2500 2500 

 

Tab.4 Reaction mixtures in DOC, corticosterone and aldosterone RIA. Samples were pre-diluted 

 1:50 for DOC measurement in brain homogenate, 1:10 for corticosterone measurement in 

 plasma and 1:100 for corticosterone measurement in brain homogenate. DOC and 

 aldosterone standards were diluted in EGW. Corticosterone standards were diluted in 5% 

 ethanol/water. Tracers and antibodies were diluted in LBP buffer (0,1% lysozyme in 0,1M 

 borate-KCl buffer, pH 7,4) Standards, tracer and antibody dilution were stored at 4°C. Tc, total 

 count. 
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3.2.6. ENZYME ASSAYS 
 
3.2.6.1. DETERMINATION OF KALLIKREIN-LIKE ACTIVITY IN PLASMA 
 

The plasma kallikrein-like activity catalyses the splitting of p-nitroaniline (pNA) from 

the substrate H-D-Pro-Phe-Arg-pNA (S-2302) (Fig.28). The rate of pNA formation, 

i.e. the increase in absorbance per second at 405nm, is proportional to the enzymatic 

activity. After stopping the reaction with acetic acid, the absorbance is determined 

with a photometer. The method for the determination of activity is based on the 

differences in absorbance between the pNA formed and the original substrate. 

 

     plasma kallikrein 

    H-D-Pro-Phe-Arg-pNA       H-D-Pro-Phe-Arg-OH + pNA 

 

Fig.28 Principle of measurement of kallikrein-like activity in plasma. 

 

ASSAY PERFORMANCE 
 

Citrate plasma, stored at -20°C, was thawed on ice. For standard curve, kallikrein 

from human plasma in concentrations 1,5; 3; 6; 12,5; 25; 50 and 100mU/ml 0,05M 

Tris - 0,113M NaCl - HCl buffer, pH 7,8 was used. 

 

A sample (standard or citrate plasma in duplicates) volume of 20µl was incubated 

with 50µl 0,05M Tris - 0,113M NaCl - HCl buffer, pH 7,8 and 20µl S-2302 (25mg 

dissolved in 20ml sterile water, stored at 4°C) for 10 min at 37°C in a 96-well 

microplate. The reaction was stopped with 20µl acetic acid, 20%. Plasma blanks 

were prepared by adding the reagents in reverse order without incubation. The 

absorbance of the sample was read against its blank in a photometer at 405nm. The 

kallikrein-like activity in plasma samples was calculated from the standard curve. 
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3.2.6.2. DETERMINATION OF KALLIKREIN ACTIVITY IN URINE 

 

Kallikrein in urine splits the substrate H-D-Val-Leu-Arg-pNA (S-2266) and the rate of 

pNA formation increases linearly with increasing of kallikrein (Fig.29). By adding 

aprotinin (Trasylol®), a potent inhibitor of glandular kallikrein, to the same blank, 

protease activities not inhibited by aprotinin as well as the colour from the urine itself 

can be subtracted. After stopping the reaction with acetic acid, the absorbance at 

405nm is determined with a photometer. 

 

     tissue kallikrein 

    H-D-Val-Leu-Arg-pNA       H-D-Val-Leu-Arg-OH + pNA 

 

Fig.29 Principle of measurement of kallikrein activity in urine. 

 

ASSAY PERFORMANCE 
 

As the kallikrein concentration in urine may vary during the day, the total volume 

collected during 24h was pooled. After centrifugation, the supernatant was stored at -

20°C. Before analysis, the urine was thawed on ice and 1:6 pre-diluted in 0,2M Tris-

HCl buffer, pH 8,2. For standard curve, rat tissue kallikrein in concentrations 16, 32, 

63, 125, 250, 500 and 1000mU/ml 0,2M Tris-HCl buffer, pH 8,2 was used. 

 

A volume of 40µl sample (standard or urine in duplicates) was incubated with 50µl 

0,2M Tris-HCl buffer, pH 8,2 and 20 µl S-2266 (25mg dissolved in 28,8ml sterile 

water, stored at 4°C) for 30 min at 37°C in a 96-well microplate. The reaction was 

stopped by acidification with 10 µl acetic acid, 50%. Blanks were prepared by adding 

50µl of Trasylol® (aprotinin, 20KIU/ml 0,2M Tris-HCl buffer, pH 8,2) prior to the 

incubation. The absorbance of the sample was read against its blank in a photometer 

at 405nm. The activity in samples was read from the standard curve. The activity of 

kallikrein in urine excreted during 24h was calculated by multiplying with the 24h 

urine volume. 
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3.2.6.3. MEASUREMENT OF CREATINE KINASE ACTIVITY IN CORONARY EFFLUENT 

 

Measurement of CK activity was used for assessment of the severity of myocardial 

damage. Creatine kinase (EC 2.7.3.2.) is located in the heart muscle. Cardiac muscle 

injury following myocardial infarction results in a rise in CK activity. CK activity was 

measured in the coronary effluent using a specific kit from Rolf Greiner BioChemica. 

 

CK catalyzes the reaction between creatine phosphate and adenosine diphosphate 

(ADP), forming creatine and ATP. The ATP formed is utilized to phosphorylate 

glucose, producing glucose-6-phosphate in the presence of hexokinase. 

Subsequently, glucose-6-phosphate is oxidised to 6-phosphogluconate in the 

presence of nicotinamide adenine dinucleotide phosphate (NADP). This reaction is 

catalysed by glucose-6-phosphate dehydrogenase. During this oxidation, an 

equimolar amount of NADP is reduced to NADPH increasing the absorbance at 

340nm (Fig.30). The rate of change in absorbance is directly proportional to CK 

activity. 

 

           CK 

     creatine phosphate + ADP    creatine + ATP 
 

      hexokinase 

      ATP + glucose     ADP + glucose-6-phosphate 
 

    glucose-6-phosphate dehydrogenase 

  glucose-6-phosphate + NADP         6-glucophosphonate + NADPH + 

H+ 

 

Fig.30 The enzymatic reactions involved in the assay. 

 

ASSAY PERFORMANCE 
 

The vial of enzyme/substrate was reconstituted with 3ml assay buffer and was 

warmed to 30°C. A volume of 100µl of coronary effluent was added to the 96-well 

quartz microplate and was brought to incubation temperature of 30°C. Afterwards, 

100µl of working reagent was added to the effluent and the microplate was pre-
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incubated 2min at 30°C in a temperature controlled chamber of the 

spectrophotometer. Initial absorbance (A) at 340nm was read against water as 

reference. The incubation continued at 30°C and absorbance was recorded at 30s 

intervals for a period of 180s to check the linearity of the reaction rate. The final 

absorbance was read and the ∆A was calculated. The CK activity was calculated by 

use of millimolar absorptivity of NADPH, which is 6,22 at 340nm. The activity of the 

sample was calculated according to the formula: 

CK (U/l) = (∆A x total volume of 0,2ml x 1000) / (6,22 x sample volume of 0,1ml) 

 

3.2.7. MOLECULAR BIOLOGY 
 

For expression analysis of 11ß-hydroxylase and aldosterone synthase total RNA was 

isolated from adrenal gland. mRNA was reverse transcribed into copyDNA (cDNA). 

With use of specific primers for respective CYP11B1 and CYP11B2 genes, the 

expression was quantitative determined by means of real-time - polymerase chain 

reaction (PCR) in LightCycler®.  

 

3.2.7.1. RNA STABILIZATION 
 

After the adrenals were harvested, they were immediately put into pre-chilled 2ml 

tubes with 0,3ml RNAlater. RNAlater is a tissue storage reagent that rapidly 

permeates tissues and stabilizes and protects cellular RNA. To ensure absolute 

permeation of RNAlater through the tissue, the samples in RNAlater were first 

overnight incubated at 4°C and then transferred to -20°C for archival storage. This 

process efficiently preserves the expression profile of the sample at the time of 

harvesting to ensure reliable gene-expression analysis. 

 

3.2.7.2. RNA ISOLATION AND PURIFICATION 
 

The total RNA was isolated with the Qiagen RNeasy Mini Kit. The samples were first 

lysed and homogenized. Ethanol was added to the lysate to provide ideal binding 

conditions. The lysate was then loaded onto the RNeasy silica-gel membrane of a 

spin column. RNA was selectively adsorbed to the silica-gel membrane in presence 

of chaotropic salts, which removed water from hydrated molecules in solution and 
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separated RNA within certain size parameters. Polysaccharids and proteins were not 

adsorbed and were removed. After a wash step, pure and concentrated RNA was 

eluted under no-salt condition in a small volume of water. 

 

DISRUPTION AND HOMOGENISATION OF ADRENAL TISSUE 
 

The adrenals in RNAlater were shortly thawed on ice, further steps were quickly 

performed at room temperature. One adrenal gland, weighing approximately 30mg, 

was homogenized in 600µl lysis buffer (1%14,3M ß-mercaptoethanol in RLT buffer) 

in appropriate RNase-free glass tube with an Ultra-Turrax homogeniser. The tissue 

was 1min thoroughly disrupted and simultaneously homogenized. To achieve 

complete disruption of cells walls and plasma membranes of cells and organelles, 

tissue lysates were additionally homogenized using a syringe and needle. The 

lysates were 10 times passed through a 27-gauge needle, attached to a sterile 

plastic syringe. 

 

RNA ISOLATION AND PURIFICATION 
 

The lysate was centrifuged for 3min at maximum speed and the supernatant was 

mixed with 600µl 70% ethanol. Sample aliquots were subsequently applied to an 

RNeasy mini column placed in a 2ml collection tube and were shortly centrifuged. 

The flow-through was discarded after each centrifugation step. The column was 

washed with 700µl RW1 buffer, shortly centrifuged and the flow-through was 

discarded. The column was placed on a new 2ml collection tube and was washed 

twice with 500µl RPE buffer. After centrifugation, the flow-through was discarded. 

The RNeasy silica-gel membrane was dried from residual ethanol by 2min 

centrifugation. The tube was transferred to a new 1,5ml collection tube. A volume of 

70µl RNase-free water was pipetted directly on the membrane and RNA was eluted 

by 1min centrifugation at 10000rpm. 

 

RNA QUANTIFICATION AND QUALITY CONTROL 
 

The concentration of RNA was determined by measuring the absorbance at 260nm 

(A260) in NanoDrop® spectrophotometer using 1µl of RNA solution. Water was used 
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to zero the spectrophotometer. An absorbance of 1U at 260nm corresponds to 40µg 

of RNA per ml. The concentration of RNA sample was calculated according to the 

formula: 

 RNA (ng/µl) = 40 x A260. 

 

Three readings were performed for each sample and an average RNA concentration 

was calculated. The RNA concentrations ranged from approximately 600 - 1100ng/µl. 

The yield of the isolation from 30mg adrenal tissue was about 40 - 80µg total RNA. 

 

 
 

Fig.31 An example of RNA analysis with NanoDrop®. A secondary measure of RNA purity in 

 260/230 ratio indicate absence of co-purified contaminants.  

 

The ratio of absorbance at 260 and 280nm was used to assess the protein 

contamination in the RNA preparation. The values were usually about 2,15 indicating 

high purity of RNA preparation. 

 

STORAGE OF RNA  
 
Purified RNA was stored at -70°C in water until further downstream application. 
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3.2.7.3. CDNA SYNTHESIS 
 

cDNA is a single-stranded DNA copy synthesized from mRNA. The mRNA composes 

approximately 1 - 5% of the total RNA preparation. The enzyme used is reverse 

transcriptase, an RNA-dependent DNA polymerase isolated from a retrovirus. As with 

other polymerases a short double-stranded sequence is needed at the 3' end of the 

mRNA which acts as a start point for the polymerase. This is provided by the poly(A) 

tail found at the 3' end of mRNA to which a short complementary synthetic 

oligonucleotide (oligo dT primer) is hybridized. Together with all 4 deoxynucleotide 

triphosphates (random primers), magnesium ions and at neutral pH, the reverse 

transcriptase synthesises a single-stranded complementary DNA on the mRNA 

template (Fig.32). 

 

Qiagen QuantiTect Reverse Transcription Kit was used for the cDNA synthesis 

with integrated removal of genomic DNA (gDNA) contamination for use in real-time, 

two step reverse transcription (RT) - PCR. Quantiscript Reverse Transcriptase is a 

novel blend of Omniscript and Sensiscript Reverse Transcriptases. 

 

 
 

Fig.32 Synthesis of the first strand of cDNA using an oligo(dT) primer and reverse 
 transcriptase. 
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ELIMINATION OF GENOMIC DNA AND REVERSE TRANSCRIPTION 
 

To obtain accurate results in downstream quantitative real-time RT-PCR gene 

expression assays, it is important that only cDNA is amplified and detected. It is 

essential that the starting RNA sample is free of gDNA. 

 

Reverse transcription was performed with Quantiscript Reverse Transcriptase, 

Quantiscript Reverse Transcription Buffer, and Reverse Transcription Primer Mix. 

The RT Primer Mix contained a mix of oligo-dT and random primers that enabled full-

length cDNA synthesis from all regions of RNA transcripts, even from 5' regions. For 

in vitro reverse transcription, two activities of reverse transcriptase were utilized to 

produce single-stranded cDNA. First, the RNA-dependent DNA-polymerase activity 

transcribed cDNA from an RNA template (reverse transcription) and second, RNase 

H activity specifically degraded only the RNA in RNA-DNA hybrids. 

 

PERFORMANCE 
 

The template RNA and kit reagents were thawed on ice. All reactions were set up on 

ice. The volume of 2µg RNA was calculated according to the respective RNA 

concentration in each sample. 

 

Initially gDNA was eliminated by 2min incubation of 2µl of gDNA Wipeout Buffer, 2µg 

RNA and RNase-free water, ad 14µl total volume at 37°C. Afterwards, the tubes were 

immediately placed on ice. The RNA sample was then used directly in reverse 

transcription. 

 

14µl of template RNA were added to the tube containing the master mix prepared 

from 1µl of Quantiscript Reverse Transcriptase, 4µl of Quantiscript Reverse 

Transcription Buffer, and 1µl of Reverse Transcription Primer Mix. The tube was 

mixed and incubated for 15min at 37°C. Finally, the Quantiscript Reverse 

Transcriptase was inactivated at 95°C for 3min. 

 

Synthesized cDNA was stored at -20°C until PCR. 
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3.2.7.4. AMPLIFICATION OF CDNA - POLYMERASE CHAIN REACTION 
 

The PCR is an in vitro method for enzymatically synthesizing defined sequences of 

DNA (Fig.33). The reaction uses two oligonucleotide primers that hybridise to 

opposite strands and flank the target sequence that is to be amplified. The elongation 

of the primers is catalyzed by a heat-stable DNA polymerase. A repetitive series of 

cycles involving template denaturation, primer annealing, and extension of the 

annealed primers by the polymerase results in exponential accumulation of a specific 

DNA fragment (Mullis et al., 1986). 

 

 
 

Fig. 33 Schematic diagram of PCR (Roche). 

 

RNA cannot serve as a template for PCR, so it must be first reverse transcribed into 

cDNA (e.g. with reverse transcriptase from Moloney murine leukaemia virus or avian 

myeloblastosis virus). In 1987 Powell et. al., first described a combined technique, 

commonly known as RT-PCR, in which reverse transcription is coupled with PCR 

amplification of the resulting cDNA. 
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CDNA QUALITY CONTROL - PBGD PCR 
 

The quality of synthesized cDNA was tested in a PCR with primers for a rat gene for 

porphobilinogen deaminase (PBGD); genebank accession number X06827. PBGD is 

a housekeeping gene with constant expression (Technical Notes No. LC 15/2002, 

Roche). 

 

The primers for PBGD were designed with GeneFisher software. Lyophilized primers 

(synthesized commercially) were dissolved in RNase-free water to final concentration 

of 100µM (stock solution). Aliquots of 5µM working solution were prepared and both 

were stored at -20°C. Working solutions of dNTPs (100µl mixture of 125mM of each 

nucleotide) and 25mM MgCl2 were also stored at -20°C. Mg2+ ions form soluble 

complexes with dNTPs and template DNA to produce the actual substrate that the 

polymerase recognizes. 

 

Reagent 
Volume 

(µl) 

Final 

concentration 

10x PCR reaction buffer 

100mM Tris-HCl; pH 8,3; 500mM KCl 
5 1x 

dNTP mix, 12,5mM each 

dTTP, dGTP, dATP, dCTP in water 
2 50µM each 

MgCl2, 25mM 6 3mM 

PBGD reverse primer (5’ to 3’), 5µM 

GCA ACA CAC CCA CTA GGT CCA AG, position 720 - 688 
1 0,1µM 

PBGD forward primer (5’ to 3’), 5µM 

GGA GTT CAG TGC CAT TAT CCT GGC, position 548 - 571 
1 0,1µM 

Template cDNA 

1:10 dilution in water 
3 - 

Taq DNA polymerase 0,5 0,05U/µl 

H2O 31,5 - 

Total volume 50  

 

Tab.5 Pipetting scheme for 1 reaction in PBGD PCR. Reagents were pipetted into thin-walled 

 PCR tubes, gently vortexed and briefly centrifuged. The samples were placed into thermal 

 cycler and the program was started. 
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 Temperature Time Cycle number 

Initial denaturation 94°C 4min 1 

Denaturation 94°C 45s 

 Primer annealing 60°C 45s 

Elongation 72°C 45s 

40 

Final elongation 72°C 4min 1 

Cooling 4°C for ever 1 

 

Tab.6 Temperature and time profile for PBGD PCR. 

 

The PCR results were analysed on 1% agarose gel using 1x TAE (40mM Tris-

acetate, 1mM EDTA, pH 8,0) as running buffer. The gel was stained with ethidium 

bromide and the PCR products were estimated by comparing the product size with 

that of the DNA molecular weight marker (Fig.34). 
 

 

Fig.34 An example of PBGD PCR with cDNA samples from adrenal glands of few BN rats. 
 PBGD PCR product size – 172bp. 

 

Detection of Genes Coding for 11ß-Hydroxylase and Aldosterone Synthase - 
CYP11B1 and CYP11B2 PCR  
 

The primers specific for rat CYP11B1 and CYP11B2 genes (genebank accession 

numbers - D14091 and D14097) were synthesized according to the sequence 

published by Gomez-Sanchez in 2004 (Tab.7). Lyophilised primers were dissolved in 

RNase-free water to final concentration of 100µM. Aliquots of 5µM working solution 

were prepared and stored at -20°C. Primers were tested in PCR performed equally to 

that of PBGD. 

200bp
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Primer (5’ to3’) 

Gene 
Reverse Forward 

PCR product 

size 

CYP11B1 GAT GGC ATC CAT TGA CAG AGT A AAG AAC ACT TTG ATT CCT GGG ATA 

position 909 - 888 761 - 784 
148bp 

CYP11B2 AGT CAA GCT TCT GGG TAA GAA CAG TAT AGA AGC CAG CA ACTT TGC AC 

position 712 - 735 588 - 610 
147bp 

 

Tab.7 Sequences of primers for 11ß-hydroxylase and aldosterone synthase (Gomez-Sanchez 

 et al., 2004). 

 

3.2.7.5. QUANTITATIVE REAL-TIME PCR WITH LIGHTCYCLER® 
 

The real-time PCR is based on simultaneous amplification and detection of specific 

nucleic acid sequences via fluorescence-detecting thermocyclers. 

 

The LightCycler® System combines two instruments in one: a PCR thermal cycler 

with high speed cycling capabilities and an integrated fluorescence detection device 

that allows fluorescence monitoring either continuously or once per cycle, as well as 

on-line computer analysis of results. The instrument offers a broad dynamic range 

and superior sensitivity. The LightCycler® instrument can detect from 10 to 1010 

copies in a single run. Detection sensitivity using SYBR Green I dye in 2-step RT-

PCR is 0,1pg total RNA. 

 

  
 

Fig.35 LightCycler® Instrument with sample carousel. PCR occurs in specially designed borosilicate 

 glass capillaries (Roche). 
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The PCR is monitored with the SYBR Green I DNA binding dye. The SYBR Green I 

dye emits a fluorescence signal at 530nm when bound to double-stranded DNA 

(dsDNA) (Fig.36). Fluorescence emission is measured at the end of each elongation 

phase throughout a PCR. The fluorescence signal is proportional to the increasing 

amount of dsDNA in the sample. 

 

 
 

Fig.36 SYBR Green I (Roche). 

 

QUANTIFICATION 
 

 
 

Fig.37 Quantification of PBGD in rat adrenal cDNA. Standard curve (highlighted) was performed 

 with different starting amount of one rat adrenal cDNA. Crossing points (cycle numbers) were 

 plotted  against the logarithmic concentration of the standard (lower panel). Left panel displays 

 crossing points of log-linear correlations with the baseline and calculated concentrations of the 

 samples. 
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The amount of PCR product increases logarithmically in the first few PCR cycles. 

Identifying the first cycle of the PCR run, in which the log-linear signal can be 

distinguished from the background, makes it possible to quantify the initial target 

concentration. After completion of PCR, the LightCycler® software sets a baseline x-

axis that intersects these cycles. The x-axis crossing point (number of cycle) of 

each standard is determined and plotted against the logarithm of concentration to 

produce a standard curve. The concentrations of target sequence in samples are 

extrapolated from the standard curve. 

 

MELTING CURVE ANALYSIS 
 

 
 

Fig.38 Melting curve analysis of PBGD PCR product. The melting temperature of this fragment is 

 visualizes by taking the first negative derivative (-dF/dT) of the melting curve. The turning point 

 of the melting curve results in a peak which permits easy identification of the fragment-specific 

 Tm. 

 

Each dsDNA product has its own specific melting temperature (Tm), which is 

defined as the temperature at which 50% of the DNA becomes single stranded and 

depends on its sequence, length and GC content. Determination of Tm of PCR 

products allows confirmation of the PCR product identity and differentiation of 

specific PCR product from non-specific ones, such as primer-dimers. 



MATERIAL & METHODS 

 79 

At the end of the PCR, the temperature in the thermal chamber is slowly raised. 

During this process the fluorescence in each tube is measured in continuous mode. 

As soon as the dsDNA starts to denature, the SYBR Green I dye is released, 

resulting in a decrease of fluorescence. 

 

RELATIVE QUANTIFICATION OF mRNA EXPRESSION LEVELS 
 

Each cDNA sample may exhibits an individual variation, caused by e.g. tissue 

harvesting, total RNA isolation and reverse transcription that influence the final 

absolute quantification of the target gene. Compensation of sample to sample 

variation is achieved by the relative quantification. Target concentration is expressed 

relative to the concentration of a reference (housekeeping gene) in the same sample 

omitting the need for a standard with known concentrations. 

 

Relative quantification normalises the expression of the target gene by an 

endogenous non-regulated reference gene expression, derived from housekeeping 

genes. The Relative Expression Software Tool - 384 (REST©) software computed an 

expression ratio, based on the PCR efficiencies (E) and the crossing point deviation 

(∆CP) of a group of unknown samples versus a control group according to the 

following formula: 

     (Etarget) ∆CP
target

 (mean control – mean sample) 

 Ratio =  
     (Ereference) ∆CP

reference
 (mean control – mean sample) 

 

The PCR efficiencies were determined from the slope of the standard curve given in 

the LightCycler® 3.5 software. The efficiency was calculated according to the 

equation: 

 E = 10 (-1/ slope). 

 

The theoretical maximum and optimum efficiency is 2 (each template is duplicated) 

which correspond to a slope of -3,32. Investigated transcripts showed PCR efficiency 

rates for PBGD (E=1,89), CYP11B1 (E=1,89) and CYP11B2 (E=2,03). Subsequently, 

differences in expression between control and treated samples were tested for 

significance by a randomisation test. 
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PERFORMANCE OF REAL-TIME PCR IN LIGHTCYCLER® 
 

Conditions for real-time PCRs were optimised in a gradient cycler with regard to 

primer concentrations, MgCl2 concentrations (2,5 - 4,0mM) and various annealing 

temperatures (55-65°C). PCR products were separated on a 1% agarose gel 

electrophoresis visualized with ethidium bromide. Optimised conditions were 

transferred to the following LightCycler® real-time PCR protocol. 

 
Reagents PBGD CYP11B1 CYP11B2 

H2O 

PCR grade 
8,8µl 11,2µl 9,6µl 

MgCl2 

25mM 
3,2µl (5mM) 2,4µl (4mM) 2,4µl (4mM) 

Reverse primer 

5µM 
2µl (0,5µM) 1,2µl (0,3µM) 2µl (0,5µM) 

Forward primer 

5µM 
2µl (0,5µM) 1,2µl (0,3µM) 2µl (0,5µM) 

FastStart DNA Master 

SYBR Green I 
2µl 2µl 2µl 

cDNA template 2µl 2µl 2µl 

 

Tab.8 Reaction mixtures for real-time PCR (volumes per reaction). LightCycler® FastStart Master 

 SYBR Green I was prepared by pipetting LightCycler® FastStart Enzyme to LightCycler® 

 FastStart Reaction Mix SYBR Green I. It contained FastStart Taq DNA polymerase, reaction 

 buffer, dNTP mix (with dUTP instead of sTTP), SYBR Green I dye, and 10mM MgCl2. 
 

A master mix was prepared from all reagents except of the cDNA template according 

to the Tab.8. A volume of 18µl of master mix was filled in the glass capillaries and 2µl 

of cDNA were added as PCR template. Adrenal cDNA from BN control rat was used 

for standards. Four sequential 10-fold cDNA dilutions were used to construct a 

standard curve. cDNA from unknown samples was used in 1:10 dilution. A negative 

control (without cDNA template) was included in each run. Capillaries were closed, 

centrifuged and placed into a carousel in LightCycler. A four-step experimental run 

protocol was used as described in Tab.9. A single fluorescence measurement was 

performed at the end of each elongation phase. Specificity of PCR products was 

documented with melting curve by continuous fluorescence measurement. Analysis 
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resulted in specific Tm of 90°C for PBGD (Fig.37), 84°C for CYP11B1 (Fig.38) and 

86°C for CYP11B2 PCR product. No primer-dimer formation was generated during 

any of the PCR. 

 
PBGD CYP11B1 CYP11B2  

 Temperature 

(°C) 

Time 

(s) 

Temperature 

(°C) 

Time 

(s) 

Temperature 

(°C) 

Time 

(s) 

Denaturation 95 600 95 600 95 600 

Amplification       

Denaturation 95 10 95 10 95 10 

Annealing 69 10 60 5 60 10 

Elongation 72 7 72 6 72 6 

Add. segment - - 83 1 - - 

Melting curve       

Segment 1 95 0 95 0 95 0 

Segment 2 72 15 65 15 65 15 

Segment 3 95 0 95 0 95 0 

Cooling 40 30 40 30 40 30 

 

Tab.9 LightCycler experimental protocols for PBGD, CYP11B1 and CYP11B2 PCR. 

 

Melting curve analysis revealed non-specific CYP11B1 PCR product. To improve 

SYBR Green I quantification, a fluorescence measurement at higher temperature at 

the end of additional fourth segment was performed. The non-specific PCR products 

were melted before the fluorescence signal was detected which ensured accurate 

quantification of the desired PBGD PCR product (Fig.39). 

 

 
 

Fig.39 Melting curve analysis of CYP11B1 PCR product. A non-specific PCR product with Tm of 

 81°C was detected. 
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For the data evaluation we used the recently established REST© software that 

computed an expression ratio based on a real-time PCR efficiency and the crossing 

point deviation of an unknown sample versus a control (Pfaffl et al., 2002). For CP 

determination, the second derivative maximum method was performed using the 

LightCycler 3.5 software. The relative expression of CYP11B1 and CYP11B2 was 

normalized by the expression of the housekeeping gene PBGD. 

 

 

 
 

Fig.40 Detection of PBGD PCR product amplified form rat adrenal cDNA in LightCycler. The 

 samples yielded crossing points a in the range of 23-26 cycles, confirming the constant 

 expression of a  housekeeping gene. 

 

     
 

Fig.41 Detection of CYP11B1 (left) and CYP11B2 (right) PCR products amplified form rat 
 adrenal cDNA in LightCycler. Most samples yielded crossing points a in the range of 20-25 

 cycles in CYP11B1 PCR and 19-30 in CYP11B2 PCR. 
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3.2.8. RESULTS EXPRESSION AND DATA ANALYSIS 
 

The effect of treatment and differences between BN control rats and kininogen-

deficient BNK rats were analysed with the use of SigmaStat 2.03 statistical software 

except of the LightCycler data that were analysed with REST© software, as 

mentioned above. 

 

Statistical significance of differences in groups of BN and BNK rats was determined 

with either a one way analysis of variance (ANOVA), if normality test passed or a 

Kruskal-Wallis ANOVA on ranks, if the normality test failed. All Pairwise Multiple 

Comparison Procedures within one strain were determined with Dunn's Method after 

a significant difference was identified with Kruskal-Wallis ANOVA on ranks. All 

Pairwise Multiple Comparison Procedures within one strain were performed with the 

use of Tukey Test after a significant difference was identified by an ANOVA. 

Student’s t-test was used to compare mean values of groups between both strains if 

normality test passed. Mann-Whitney Rank Sum Test was used to compare groups 

between both strains if normality test failed. Pearson’s correlation test was used to 

determine correlations between experimental groups. Graphic presentation was 

performed either with Statistica, SigmaPlot 8.0 or Microsoft Office Excel 2003 

software. Data are presented as mean ± SEM or as median and quartiles according 

to the distribution of values which was evaluated in normality test. Probability values 

(p) smaller than 0,05 were considered to be statistically significant. 
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4.  RESULTS 
 

The experiments were carried out with BN control rats and kininogen-deficient BNK 

rats. The animals received standard or high salt diet in presence or absence of 

spironolactone (20mg/day s.c.) for 10 days. 

 

General animal characteristics are described in chapter 4.1., followed by 

hemodynamic data (4.2.). The components of KKS, ET and aldosterone with its 

precursors are defined in plasma (4.3.) and urine (4.4). The steroids are 

characterized also in brain tissue. The expression of two steroidogenic enzymes in 

adrenal glands is described in chapter 4.5. Basic cardiac parameters investigated 

during experiments of IPC in Langendorff heart perfusion are presented in chapter 

4.6. 

 

Generally, first the effects of treatment (standard diet ± spironolactone, high salt diet 

± spironolactone) in each strain are shown in separated diagrams followed by 

graphic comparison of both strains. 

 

 

4.1. ANIMAL CHARACTERISTICS 
 

The rats used in the experiment were described by general physiological 

characteristics. Data of body weight, gain or loss of body weight, food and salt 

consumption, and water balance were obtained in experiments with metabolic cages. 

In addition, the final weight of the heart and left kidney is reported. 

 

4.1.1. BODY WEIGHT 
 

The effect of treatment on final body weight was investigated. The initial body weight 

was identical within each strain. Reported values represent final body weight 

determined in the last day of the experiment. The rats were weighed before sacrifice. 
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 Treatment 

rat 
strain 

normal salt 
(NS) 

normal salt & 
spironolactone 

(NS SPI) 

high salt 
(HS) 

high salt & 
spironolactone 

(HS SPI) 

BN 297 ± 2,95 303 ± 6,01 296 ± 3,64 293 ± 6,11 

BNK 354 ± 8,31 358 ± 11,6 370 ± 6,57 365 ± 9,29 

 

Tab.10 Body weight (g) in BN control rats and kininogen-deficient BNK rats fed with normal and high 

salt diet in presence or absence of spironolactone. Values are expressed as the mean ± SEM, 

n=14 in all BN groups and BNK HS, n=20 in BNK NS, and n=11 in BNK NS SPI and BNK HS 

SPI. 

 

Tab.10 shows the final body weight of rats used in each experimental group. In both 

strains, neither high salt diet nor treatment with spironolactone influenced the body 

weight. Experiments were conducted with BN rats, weighing about 300g, and BNK 

rats, weighing approximately 350g. Because of this relative different initial body 

weights, groups of BN and BNK rats were not compared. 

 

4.1.2. CHANGE IN BODY WEIGHT 
 

The effect of ten days treatment on body weight gain or loss (∆BW) in BN and BNK 

rats is shown in Fig.42. The rats were weighed in the beginning of the experiment 

and after ten days of treatment and/or diet. 

 



RESULTS 

 86 

-25

-20

-15

-10

-5

0

5

10

15

20

25

BN BNK

∆ 
BW

 (g
/1

0 
da

ys
)

NS

NS SPI

HS

HS SPI
°°°

 ++
§§§

°

***
**

 
 

Fig.42  Changes in body weight in BN control rats and kininogen-deficient BNK rats after ten days of 

normal or high salt diet in presence or absence of spironolactone. Values are expressed as 

the mean ± SEM, n=8 in all groups except of BNK NS, where n=14. ** p<0,01; *** p<0,001 
BNK rats vs. BN rats; ° p<0,05; °°° p<0,001 NS SPI vs. NS in rats of the same strain; ++ 

p<0,01 HS SPI vs. NS in rats of the same strain; §§§ p<0,001 HS SPI vs. HS in rats of the 

same strain. 

 

Under standard diet all rats gained weight of about 12g (Fig.42). Following ten days 

of high salt diet, BN control rats gained weight of approximately 15g. On the contrary, 

kininogen-deficient BNK rats lost weight of about 7g. This effect could be explained 

neither by the loss of appetite nor by the loss of body fluids. Food intake did not 

change in any group (data not shown) and water balance appeared identical in both 

strains (Fig.43c and Tab.11). 

 

The treatment with spironolactone significantly reduced body weight in all groups, 

independently of salt diet. This effect was possibly derived from the diuretic activity of 

spironolactone. In BN rats, spironolactone did not influence salt appetite. In BNK rats, 

spironolactone reduced food intake (data not shown), which contributed to the 

greater body weight loss. 
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4.1.3. URINE VOLUME 
 

The effect of high salt diet and spironolactone on daily urine production of BN and 

BNK rats was investigated. Rats were placed into separate metabolic cages. After 

24h, the volume of collected urine was registered. 
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Fig.43a  Urine volume in BN rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=8. # p<0,05 HS vs. NS; + p<0,05 HS SPI vs. NS; $ p<0,05 HS SPI vs. NS 

SPI. 
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Fig.43b  Urine volume in BNK rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=8 except of NS, where n=14. # p<0,05 HS vs. NS; + p<0,05 HS SPI vs. NS. 
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 COMPARISON OF BN AND BNK RATS 
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Fig.43c Urine volume in BN control rats and kininogen-deficient BNK rats fed with normal and high 

salt diet in presence or absence of spironolactone. Values are expressed as the median, n=8 

in all groups except of BNK NS, where n=14. *** p<0,001 BNK rats vs. BN rats; # p<0,05 HS 

vs. NS in rats of the same strain; + p<0,05 HS SPI vs. NS in rats of the same strain ; $ p<0,05 

HS SPI vs. NS SPI in rats of the same strain. 

 

High salt diet increased thirst and water intake that consequently caused an increase 

in urine production in both strains (Fig.43c). The diuretic effect of spironolactone was 

more effective in BNK rats than in BN rats fed with standard diet. This effect could 

have contributed to the larger decline of body weight in BNK rats (Fig.42). 

Spironolactone could not exert further diuretic effects in rats fed with high salt diet. 

The antagonising effect of spironolactone was attenuated due to minimal aldosterone 

levels (Fig.65c). 

 
4.1.4. WATER INTAKE 
 

The effect of treatment on daily water intake in BN and BNK rats is shown in Tab.11. 

Animals stayed 24h in individual metabolic cages. At the end, water consumption 

was registered. 
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 Treatment 

rat 
strain 

normal salt 
(NS) 

normal salt & 
spironolactone 

(NS SPI) 

high salt 
(HS) 

high salt & 
spironolactone 

(HS SPI) 

BN 5,5 5,5 5,5 10,0 

BNK 16,5 11,5 7,5 5,5 

 

Tab.11 Water intake (ml/24h) in BN control rats and kininogen-deficient BNK rats fed with normal and 

high salt diet in presence or absence of spironolactone. Values are expressed as the median, 

n=8 in all groups except of BNK NS, where n=14. 

 

Water intake displayed no significant changes, possibly due to the relatively large 

variances in single rats. 

 

4.1.5. HEART WEIGHT 
 
The effect of high salt diet and spironolactone on heart weight of BN and BNK rats 

was investigated. The hearts were weighed after the termination of the heart 

perfusion. 
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Fig.44a  Heart weight in BN rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=8. # p<0,05 HS vs. NS. 
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Fig.44b Heart weight in BNK rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=8 except of NS, where n=14. 

 

The basal heart weight reflected the different initial body weight in each rat strain 

(Tab.11). Accordingly, groups of BN and BNK rats were not compared. In BN control 

rats, the heart weight was significantly higher after ten days of high salt diet 

(Fig.44a). This change may refer to the slightly increased body weight in BN rats fed 

with high salt diet (Fig.42). In BNK rats, the heart weight was not significantly altered 

by any experimental conditions (Fig.44b). 

 

4.1.6. LEFT KIDNEY WEIGHT 
 
The effect of high salt diet and spironolactone on the left kidney weight of BN and 

BNK rats was investigated. The kidneys were weighed immediately after harvesting. 
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Fig.45a Left kidney weight in BN rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=14. ° p<0,05 NS SPI vs. NS. 
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Fig.45b  Left kidney weight in BNK rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=20 in NS, n=14 in HS, and n=11 in NS SPI and HS SPI. 

 

The final left kidney weight reflected the differences in initial body weight in both rat 

strains (Tab.11). Because of the different initial body weight of BN and BNK rats, the 

strains were not compared. In BN control rats, the left kidney weight was significantly 

lower after ten days of spironolactone treatment (Fig.45a). This change may derive 

from the body weight loss in this group. In BNK rats, the left kidney weight was not 

significantly altered by any experimental conditions (Fig.45b). 
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SUMMARY OF ANIMAL CHARACTERISTICS 
 

During the ten days of treatment with spironolactone, the body weight significantly 

decreased in both strains. This effect could be explained by the diuretic action of 

spironolactone that was confirmed by an increased urine volume. BN control rats lost 

about 5g and kininogen-deficient BNK rats about 15g of body weight. This difference 

between the strains originated in the action of spironolactone. The potency of 

spironolactone to increase urine volume was significantly greater in BNK rats. 

 

Following ten days of high salt diet, body weight increased in BN rats but decreased 

in BNK rats. Water balance, described by water intake and urine volume, displayed 

no differences between both strains. Spironolactone treatment caused a decrease in 

body weight also in rats fed with high salt diet. This effect did not originate in the 

diuretic action of spironolactone because no further increase in urine volume 

occurred. Spironolactone influenced salt appetite of BNK rats, which augmented the 

loss in body weight. 

 
 
4.2. HEMODYNAMICS 
 

Mean blood pressure (MBP) and heart rate (HR) were investigated in BN and BNK 

rats fed with standard or high salt diet in presence or absence of spironolactone. 

Both, mean blood pressure and heart rate, were measured simultaneously by tail cuff 

method in conscious animals. 
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4.2.1 MEAN BLOOD PRESSURE 
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Fig.46a  Mean blood pressure in BN rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=8. ## p<0,01 HS vs. NS; §§ p<0,01 HS SPI vs. HS. 
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Fig.46b  Mean blood pressure in BNK rats fed with normal and high salt diet in presence or absence 

of spironolactone, n=8 except of NS, where n=14. ## p<0,01 HS vs. NS. 
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Fig.46c Mean blood pressure in BN control rats and kininogen-deficient BNK rats fed with normal 

and high salt diet in presence or absence of spironolactone. Values are expressed as the 

mean ± SEM, n=8 in all groups except of BNK NS, where n=14. * p<0,05 BNK rats vs. BN 
rats; ## p<0,01 HS vs. NS in rats of the same strain; §§ p<0,01 HS SPI vs. HS in rats of the 

same strain. 

 

Basal mean blood pressure was similar in BN control rats and kininogen-deficient 

BNK rats (Fig.46c). Spironolactone, currently used as antihypertensive drug, did not 

change blood pressure in rats fed with standard diet. Ten days of high salt diet 

significantly increased mean blood pressure in both, BN and BNK rats. Blood 

pressure elevation did not originate in an increase of body fluids. Animals in this 

experimental group did not gain body weight and water balance remained constant. 

The elevated blood pressure, caused by high salt diet, was reduced by 

spironolactone. In BNK rats, the reduction was not as effective as in BN rats, where 

blood pressure decreased to basal levels. The reduction of blood pressure was not 

caused by spironolactone’s diuretic activity, since urine volume did not increase.  
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4.2.2 HEART RATE 
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Fig.47a  Heart rate in BN rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=8. 
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Fig.47b  Heart rate in BNK rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=8 except of NS, where n=14. 
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Fig.47c Heart rate in BN control rats and kininogen-deficient BNK rats fed with normal and high salt 

diet in presence or absence of spironolactone. Values are expressed as the mean ± SEM, n=8 

in all groups except of BNK NS, where n=14. * p<0,05 BNK rats vs. BN rats. 

 

Basal heart rate was similar in both, BN and BNK rats (Fig.47c). Following treatment 

with spironolactone, heart rate increased in BN control rats and decreased in 

kininogen-deficient BNK rats. 

 

SUMMARY OF HEMODYNAMIC PARAMETERS 
 

Both, basal blood pressure and heart rate were slightly higher in kininogen-deficient 

BNK rats than in BN control rats. In rats fed with standard diet, treatment with 

spironolactone did not alter blood pressure. Spironolactone mediated an opposite 

effect on heart rate in both strains; an increase in BN rats and a decrease in BNK 

rats. In both, BN and BNK rats, high salt intake caused a significant increase in blood 

pressure that was assigned to increased Na+ concentration. No changes occurred in 

the heart rate. Under the conditions of high Na+ intake, spironolactone was able to 

reduce blood pressure, more effectively in BN rats. Among the classical action of 

aldosterone in the kidney these data suggest local direct actions of aldosterone in the 

cardiovascular system. 



RESULTS 

 97 

4.3. PLASMA ANALYSIS 
 

The components of KKS, ET-1, aldosterone and its precursors were characterized in 

plasma of BN control rats and kininogen-deficient BNK rats. The effects of standard 

or high salt diet in presence or absence of spironolactone on the plasma KKS and 

corticoid hormones were analysed in both strains. For the measurement of ET-1 only 

supplementary plasma samples from control animals were available, therefore any 

effect of treatment could be determined. 

 

4.3.1. PLASMA KALLIKREIN-KININ- SYSTEM 
 

The main components of the KKS, namely plasma HMW and LMW kininogen, 

plasma kallikrein, and plasma kinins, BK and KLP, were analysed. These 

measurements should reveal differences between both rat strains derived from the 

kininogen-deficiency of BNK rats. The effects of standard or high salt diet in presence 

or absence of spironolactone were determined in both, BN control rats and 

kininogen-deficient BNK rats. 

 

4.3.1.1. PLASMA HMW KININOGEN 
 

In particular, measurements of HMW kininogen in plasma should confirm the 

kininogen deficiency in BNK rats. Plasma digestion preceded the measurement. BK 

was released from HMW kininogen after activation of plasma kallikrein. BK was then 

determined by a specific RIA. Results are presented in ng BK equivalent per ml 

plasma. 
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Fig.48a Plasma HMW kininogen in BK equivalent in BN rats fed with normal and high salt diet in 

 presence or absence of spironolactone, n=6. 
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Fig.48b Plasma HMW kininogen in BK equivalent in BNK rats fed with normal and high salt diet in 

 presence or absence of spironolactone, n=6 in NS and HS, and n=3 in NS SPI and HS SPI. 

 +++ p<0,001 HS SPI vs. NS; §§§ p<0,001 HS SPI vs. HS; $$$ p<0,001 HS SPI vs. SPI. 
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Fig.48c Plasma HMW kininogen in BK equivalent in BN control rats and kininogen-deficient BNK 

 rats fed with normal and high salt diet in presence or absence of spironolactone. Values are 

 expressed as the mean ± SEM, n=3-8. *** p<0,001 BNK rats vs. BN rats; +++ p<0,001 HS SPI 

 vs. NS in rats of the same strain; §§§ p<0,001 HS SPI vs. HS in rats of the same strain; $$$ 

 p<0,001 HS SPI vs. SPI in rats of the same strain. 
 

Determination of HMW kininogen in plasma confirmed the kininogen deficiency of 

BNK rats (Fig.48c). The HMW kininogen in plasma was approximately 35-fold lower 

in BNK rats than in BN rats (20ng BK equivalent vs. 700ng BK equivalent per ml 

plasma). In BN control rats, treatment with spironolactone tended to increase HMW 

kininogen in plasma (Fig.48a). In kininogen-deficient BNK rats fed with high salt diet 

in presence of spironolactone, plasma HMW kininogen significantly increased 

(Fig.48b). Nevertheless, the levels remained significantly lower (30-fold) than in BN 

control rats. 

 

4.3.1.2. PLASMA LMW KININOGEN 
 

Determination of plasma LMW kininogen should describe differences between BN 

control rats and kininogen-deficient BNK rats. Measurement of LMW kininogen was 

preceded by plasma digestion. BK was released from LMW kininogen by trypsin 
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added to the incubation reaction. BK was then determined by a specific RIA. Values 

are presented in ng BK equivalent per ml plasma. 
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Fig.49a Plasma LMW kininogen in BK equivalent in BN rats fed with normal and high salt diet in 

 presence or absence of spironolactone, n=6. ++ p<0,05 HS SPI vs. NS; §§ p<0,01 HS SPI vs. 

 HS; $ p<0,05 HS SPI vs. SPI. 
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Fig.49b Plasma LMW kininogen in BK equivalent in BNK rats fed with normal and high salt diet in 

 presence or absence of spironolactone, n=6 in NS and HS, and n=3 in NS SPI and HS SPI. 

 ++ p<0,05 HS SPI vs. NS; § p<0,05 HS SPI vs. HS; $ p<0,05 HS SPI vs. SPI. 
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Fig.49c Plasma LMW kininogen in BK equivalent in BN control rats and kininogen-deficient BNK 

 rats fed with normal and high salt diet in presence or absence of spironolactone. Values are 

 expressed as the mean ± SEM, n=3-8. *** p<0,001 BNK rats vs. BN rats; ++ p<0,01 HS SPI 

 vs. NS in rats of the same strain; § p<0,05 HS SPI vs. HS in rats of the same strain; $ p<0,05 

 HS SPI vs. SPI in rats of the same strain. 
 

Determination of LMW kininogen in plasma acknowledged kininogen deficiency of 

BNK rats (Fig.49c). The LMW kininogen in plasma was about 10-fold lower in BNK 

rats than in BN rats (15ng BK equivalent vs. 150ng BK equivalent per ml plasma). In 

both strains, combination of high salt diet and spironolactone significantly increased 

plasma LMW kininogen. Nevertheless, in BNK rats the levels remained significantly 

lower. 

 

4.3.1.3. PLASMA KALLIKREIN ACTIVITY 
 

Plasma kallikrein (pKLK) precursor circulates bound to HMW kininogen. Therefore, 

activity of plasma kallikrein should also reflect the kininogen deficiency. 

Measurements reveal differences between BN control rats and kininogen-deficient 

BNK rats. Plasma kallikrein activity was determined amidolyticallly using a selective 

chromogenic substrate. Absorbance was then measured in a spectrometer. 
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Fig.50a Plasma kallikrein activity in BN rats fed with normal and high salt diet in presence or 

 absence of spironolactone, n=7 in NS, n=6 in NS SPI and HS, and n=5 in HS SPI.   
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Fig.50b Plasma kallikrein activity in BNK rats fed with normal and high salt diet in presence or 

 absence of spironolactone, n=8 in NS, n=5 in HS, and n=3 in NS SPI and HS SPI. 
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Fig.50c Plasma kallikrein activity in BN control rats and kininogen-deficient BNK rats fed with normal 

 and high salt diet in presence or absence of spironolactone. Values are expressed as the 

 mean ± SEM, n=3-8. * p<0,05; ** p<0,01 BNK rats vs. BN rats. 

 

Measurement of plasma kallikrein activity confirmed that kininogen deficiency 

influences also the plasma concentration of plasma kallikrein. In BNK rats, the 

activity of plasma kallikrein was about 2-fold lower in BNK rats than in BN rats 

(Fig.50c). Neither high salt diet nor spironolactone influenced the activity of plasma 

kallikrein in both strains. The activity of plasma kallikrein seemed to be highly 

conserved and not involved in responds to high salt diet and treatment with 

spironolactone. 

 

4.3.1.4. PLASMA BRADYKININ 
 

It is believed that BK is cleaved from HMW kininogen through plasma kallikrein. 

Measurements of plasma bradykinin should reveal potential differences between BN 

control rats and kininogen-deficient BNK rats. BK levels in plasma were measured by 

means of a specific RIA. 
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Fig.51a Plasma BK levels in BN rats fed with normal and high salt diet in presence or absence of 

 spironolactone, n=6. 
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Fig.51b Plasma BK levels in BNK rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=6 in NS and HS, and n=3 in NS SPI and HS SPI. + p<0,05 HS SPI vs. NS; § 

p<0,05 HS SPI vs. HS. 
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Fig.51c Plasma BK levels in BN control rats and kininogen-deficient BNK rats fed with normal and 

 high salt diet in presence or absence of spironolactone. Values are expressed as the mean ± 

 SEM, n=3-6. ** p<0,01; *** p<0,001 BNK rats vs. BN rats; + p<0,05 HS SPI vs. NS in rats of 

 the same strain; § p<0,05 HS SPI vs. HS in rats of the same strain. 

 

Plasma BK levels reflected kininogen deficiency of BNK rats (Fig.51c). BK 

concentration in plasma was approximately 2,5-fold lower in BNK rats than in BN 

control rats (6ng vs. 16,5ng BK per ml plasma). The difference in plasma BK levels 

between BN and BNK rats was notably smaller than the difference in both 

kininogens. BK levels in plasma correlated with the activity of plasma kallikrein that 

was about 2-fold lower in BNK rats. Neither high salt diet nor spironolactone altered 

plasma BK levels. In BNK rats, plasma BK levels significantly increased following 

high sat diet and spironolactone. The same increase was seen in both, HMW and 

LMW kininogen levels (Fig.48c and 49c) but not in plasma kallikrein activity (Fig.50c). 

 

4.3.1.5. PLASMA KALLIDIN-LIKE-PEPTIDE 
 

Until quite recently, KLP (KAL equivalent in rat) has been found. Generally, it is 

believed that KAL is cleaved from LMW kininogen by tissue kallikrein. First, 

measurements of plasma KLP should characterize this kinin in rat. Second, they 
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should reveal potential differences between BN control rats and kininogen-deficient 

BNK rats. Third, the effect of treatment should zoom into its functional importance. 

Plasma KLP was determined with a specific RIA for KAL/KLP. 
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Fig.52a Plasma KLP levels in BN rats fed with normal and high salt diet in presence or absence of 

 spironolactone, n=6. ## p<0,01 HS vs. NS; § p<0,05 HS SPI vs. HS. 
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Fig.52b Plasma KLP levels in BNK rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=6 in NS and HS, and n=3 in NS SPI and HS SPI. ° p<0,05 NS SPI vs. NS; + 

p<0,05 HS SPI vs. NS; § p<0,05 HS SPI vs. HS. 
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Fig.52c Plasma KLP levels in BN control rats and kininogen-deficient BNK rats fed with normal and 

 high salt diet in presence or absence of spironolactone. Values are expressed as the mean ± 

 SEM, n=3-6. * p<0,05; ** p<0,01 BNK rats vs. BN rats; ° p<0,05 NS SPI vs. NS in rats of the 

 same strain; ## p<0,01 HS vs. NS in rats of the same strain; + p<0,05 HS SPI vs. NS in rats of 

 the same strain; $ p<0,05 HS SPI vs. NS SPI in rats of the same strain. 

 

Measurement of KLP confirmed newly published data, that rats are capable in 

production of this peptide. The kininogen-deficient BNK rats displayed significantly 

lower levels of KLP in plasma than the BN control rats (Fig.52c). The difference in 

plasma KLP concentration was less pronounced than that of BK (Fig.51c). In BNK 

rats, treatment with spironolactone, independently of salt diet, significantly reduced 

plasma KLP levels. This effect was not seen in BN rats. In BN rats fed with high salt 

diet, plasma KLP levels significantly decreased to those of BNK rats. 

 

4.3.2. PLASMA ENDOTHELIN-1 
 

Basal ET-1 levels in BN control rats and kininogen-deficient BNK rats were 

investigated. Plasma concentrations of ET-1 were determined by means of a specific 

RIA. 
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Fig.53 Plasma ET-1 levels in BN control rats (n=3) and kininogen-deficient BNK rats (n=6). * p<0,05. 

 

Kininogen-deficient BNK rats displayed significantly higher plasma ET-1 levels than 

BN control rats (Fig.53). The effect of salt diet or spironolactone on plasma ET-1 was 

not analysed. 

 

4.3.3. ALDOSTERONE AND ITS PRECURSORS IN PLASMA 
 
Aldosterone is formed from deoxycorticosterone (DOC). The conversion involves 

three consecutive reactions and is catalyzed by aldosterone synthase. In parallel, 

DOC is converted to corticosterone by the action of 11ß-hydroxylase. Plasma 

concentrations of aldosterone, DOC and corticosterone were investigated in BN 

control rats and kininogen-deficient BNK rats. The effects of salt diet or 

spironolactone in presence or absence of spironolactone on these corticoid 

hormones were determined in both rat strains. 

 

4.3.3.1. PLASMA DEOXYCORTICOSTERONE 
 

DOC is a mineralocorticoid hormone and a substrate for 11ß-hydroxylase and 

aldosterone synthase that catalyse the formation of corticosterone and aldosterone, 

respectively. DOC levels were determined by RIA after its selective extraction from 

plasma. 
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Fig.54a Plasma deoxycorticosterone levels in BN rats fed with normal and high salt diet in presence 

 or absence of spironolactone, n=6. 
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Fig.54b Plasma deoxycorticosterone levels in BNK rats fed with normal and high salt diet in 

 presence or absence of spironolactone, n=3-6. ° p<0,05 NS SPI vs. NS; $ p<0,05 HS SPI vs. 

 NS SPI. 
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Fig.54c Plasma deoxycorticosterone levels in BN control rats and kininogen-deficient BNK rats fed 

 with normal and high salt diet in presence or absence of spironolactone. Values are expressed 

 as the mean ± SEM, n=3-6. ° p<0,05 NS SPI vs. NS in rats of the same strain; $ p<0,05 HS 

 SPI vs. NS SPI in rats of the same strain. 

 

Basal plasma DOC levels were lower in kininogen-deficient BNK rats than in BN 

control rats (Fig.54c). In BN rats, neither spironolactone nor high salt diet altered 

DOC levels in plasma (Fig.54a). In BNK rats, treatment with spironolactone 

significantly increased plasma DOC levels. High salt diet slightly elevated DOC 

concentration in plasma that reached the levels of BN control rats. In rats fed with 

high salt diet, spironolactone decreased elevated plasma DOC (Fig.54b). 

 

4.3.3.2. PLASMA CORTICOSTERONE 
 

Corticosterone is the main glucocorticoid hormone in rat. Corticosterone is an end-

product of 11ß-hydroxylation and an intermediate during aldosterone synthesis. 

Corticosterone concentrations were determined by RIA after its selective extraction 

from plasma. 
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Fig.55a Plasma corticosterone levels in BN rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=6. § p<0,05 HS SPI vs. HS. 
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Fig.55b Plasma corticosterone levels in BNK rats fed with normal and high salt diet in presence 

 or absence of spironolactone, n=3-6. ° p<0,05 NS SPI vs. NS; $$$ p<0,001 HS SPI vs. HS. 
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Fig.55c Plasma corticosterone levels in BN control rats and kininogen-deficient BNK rats fed with 

 normal and high salt diet in presence or absence of spironolactone. Values are expressed as 

 the mean ± SEM, n=3-6. * p<0,05 BNK rats vs. BN rats; ° p<0,05 NS SPI vs. NS in rats of 

 the same strain; § p<0,05 HS SPI vs. HS in rats of the same strain; $$$ p<0,001 HS SPI vs. NS 

 SPI in rats of the same strain. 

 

Basal plasma corticosterone levels were identical in BN and BNK rats (Fig.55c). 

Corticosterone, as the main glucocorticoid and an end-product of the 11ß-

hydroxylation, displayed much higher plasma concentrations than DOC and 

aldosterone. Treatment with spironolactone caused a significant increase in plasma 

corticosterone levels in BNK but not in BN rats. On the contrary, high salt diet 

increased plasma corticosterone in BN but not in BNK rats. In BN and BNK rats fed 

with high salt diet, spironolactone significantly decreased elevated corticosterone 

concentrations. 

 

4.3.3.3. PLASMA ALDOSTERONE 
 

Aldosterone is the main mineralocorticoid hormone. The formation of aldosterone 

from DOC is catalysed by aldosterone synthase. Aldosterone levels were measured 

by RIA after its selective extraction from plasma. 
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Fig.56a Plasma aldosterone levels in BN rats fed with normal and high salt diet in presence or 

 absence of spironolactone, n=6. $ p<0,05 HS SPI vs. NS SPI. 

 

Min-Max
25%-75%
Median value

al
do

st
er

on
e 

(p
g/

m
l)

0

400

800

1200

1600

2000

2400

2800

NS NS SPI HS HS SPI

$

 
 

Fig.56b Plasma aldosterone levels in BNK rats fed with normal and high salt diet in presence or 

 absence of spironolactone, n=3-6. $ p<0,05 HS SPI vs. NS SPI. 
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Fig.56c Plasma aldosterone levels in BN control rats and kininogen-deficient BNK rats fed with 

 normal and high salt diet in presence or absence of spironolactone. Values are expressed as 

 the mean ± SEM, n=3-6. $ p<0,05 HS SPI vs. NS SPI in rats of the same strain. 

 

Basal aldosterone levels in plasma were identical in both strains (Fig.56c). In both 

strains, spironolactone displaced aldosterone form the mineralocorticoid receptor 

(MR), which led to a substantial increase of free aldosterone in plasma. In BNK rats, 

this free plasma aldosterone was higher than that of BN rats. Following high salt diet, 

plasma aldosterone was markedly reduced in both rat strains. Consequently, in rats 

fed with high salt diet spironolactone did not increase plasma aldosterone. 

 

SUMMARY OF PLASMA PROFILE 
 

The kininogen deficiency of BNK rats was confirmed by measurements of all 

components of the KKS. In BNK rats, all components of the KKS were significantly 

reduced when compared with BN control rats. The most pronounced difference was 

found in the plasma HMW kininogen. The BNK rats displayed approximately 35-fold 

lower levels than BN rats. The LMW kininogen concentration in plasma was 10-fold 

lower in BNK rats than in BN rats. The kininogen deficiency influenced also the 

concentration of plasma kallikrein as confirmed by its 2-fold lower activity in plasma 
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of BNK rats. The activity of plasma kallikrein was not altered by any of the 

experimental conditions. Consequently, the plasma concentration of BK and KLP 

was significantly reduced in BNK rats. BK levels correlated with the activity of plasma 

kallikrein. The measurements revealed that plasma KLP levels were approximately 

10-fold higher than those of BK. 

 

The levels of both kininogens and BK were not altered by high salt diet or 

spironolactone. In BNK rats, the combination of high salt diet and spironolactone 

increased the plasma levels of HMW kininogen and consequently also the BK 

concentration in plasma. LMW kininogen increased in both strains but the elevation 

was not reflected in KLP levels. In BN rats, high salt diet caused a significant 

decrease in plasma KLP levels. In contrast, they were not altered in BNK rats. In both 

strains, treatment with spironolactone tended to decrease plasma KLP levels. 

 

Differences between BN control rats and kininogen-deficient BNK rats were found 

also in plasma concentrations of ET-1. Plasma levels of ET-1 were significantly 

higher in BNK rats than in BN rats. 

 

Similarly, measurements of plasma corticoid hormones revealed differences between 

kininogen-deficient BNK rats and BN control rats. In BNK rats, basal plasma levels of 

DOC were lower than those of BN rats. Plasma corticosterone and aldosterone were 

identical in both strains. 

 

In BNK rats, spironolactone treatment significantly increased plasma DOC and 

corticosterone levels. On the contrary, in BN rats these corticoids remained 

unchanged. In both strains, spironolactone significantly increased the free fraction 

aldosterone in plasma, which demonstrated spironolactone’s binding to the MR. In 

BN rats fed with high salt diet, plasma DOC levels remained unchanged but the 

corticosterone levels increased. Opposite effects were found in BNK rats. High salt 

diet slightly increased DOC plasma levels and corticosterone concentration was not 

altered. In both strains, high salt diet decreased aldosterone concentration. In rats 

fed with high salt diet, spironolactone treatment slightly decreased plasma DOC and 

corticosterone levels. Aldosterone concentration remained unaltered. 
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4.4. URINE ANALYSIS 
 

Analogous to plasma, the KKS, ET-1, aldosterone and its precursors were 

characterized in urine of BN control rats and kininogen-deficient BNK rats. The 

effects of standard diet or high salt diet in presence or absence of spironolactone 

were analysed in both strains. Urine from individual rats was collected on ice bath 

during the experiments with metabolic cages. With aid of the information about 

urinary volume, the results are presented as daily excretion of the respective 

substance. 

 

4.4.1. RENAL KALLIKREIN-KININ- SYSTEM 
 

Renal KKS is independent from plasma KKS. It is believed that kininogens or 

kallikreins present in plasma are not filtered into primary urine to a reasonable 

extend. Filtered kinins are rapidly destroyed in the brush border of the proximal 

tubule by various peptidases. The amount of LMW kininogen, tissue kallikrein activity 

and concentrations of KLP and BK in urine should describe in particular the activity of 

the renal KKS. Measurements of these parameters should reveal potential 

differences between BN control rats and kininogen-deficient BNK rats. The effects of 

standard diet or high salt diet in presence or absence of spironolactone were 

determined in both, BN and BNK rats. 

 

4.4.1.1. URINARY LMW KININOGEN 
 

Determination of urinary LMW kininogen should describe potential differences 

between BN control rats and kininogen-deficient BNK rats. Measurement of LMW 

kininogen was preceded by urine digestion. BK was released from LMW kininogen by 

trypsin added to the incubation reaction. BK was then determined by a specific RIA. 

Values are presented in ng BK equivalent per 24h. 
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Fig.57a Urinary LMW kininogen in BK equivalent in BN rats fed with normal and high salt diet in 

 presence or absence of spironolactone, n=8. # p<0,05 HS vs. NS; ++ p<0,05 HS SPI vs. NS; $ 

 p<0,05 HS SPI vs. SPI. 
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Fig.57b Urinary LMW kininogen in BK equivalent in BNK rats fed with normal and high salt diet in 

 presence or absence of spironolactone, n=8 except of NS, where n=14. ° p<0,05 NS SPI vs. 

 NS; ### p<0,001 HS vs. NS; +++ p<0,001 HS SPI vs. NS; $ p<0,05 HS SPI vs. SPI. 
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Fig.57c Urinary LMW kininogen in BK equivalent in BN control rats and kininogen-deficient BNK 

 rats fed with normal and high salt diet in presence or absence of spironolactone. Values are 

 expressed as the mean ± SEM, n=8 in all groups except of BNK NS, where n=14. ° p<0,05 NS 

 SPI vs. NS in rats of the same strain; # p<0,05; ### p<0,001 HS vs. NS in rats of the same 

 strain;  ++ p<0,01; +++ p<0,001 HS SPI vs. NS in rats of the same strain; $ p<0,05 HS SPI vs. 

 NS SPI in rats of the same strain. 
 

Determination of LMW kininogen in urine revealed no significant differences between 

BN control rats and kininogen-deficient BNK rats (Fig.57c). In both strains, the 

excretion of urinary LMW kininogen increased following treatment with 

spironolactone. Also high salt diet led to a significant increase in urinary LMW 

kininogen levels. The urinary LMW excretion was further enhanced in rats fed with 

high salt diet and simultaneously treated with spironolactone. In BNK rats, the 

elevation of LMW kininogen excretion following high salt diet, independently of 

spironolactone, was less pronounced than that of BN rats. 

 
4.4.1.2. URINARY KALLIKREIN ACTIVITY 
 

Urinary kallikrein (tKLK) represents renal tissue kallikrein that is secreted into urine 

where it is generating urinary kinins. It is believed that tissue kallikrein generates KLP 
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from the renal LMW kininogen. Tissue kallikrein activity in urine was measured 

amidolyticallly using a selective chromogenic substrate. Absorbance was then 

measured in a spectrometer. 
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Fig.58a  Urinary kallikrein activity in BN rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=8. ### p<0,001 HS vs. NS; +++ p<0,001 HS SPI vs. NS; $$$ 

p<0,001 HS SPI vs. NS SPI. 
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Fig.58b Urinary kallikrein activity in BNK rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=8 except of NS, where n=14. ### p<0,001 HS vs. NS; +++ p<0,001 

HS SPI vs. NS. 
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Fig.58c Urinary kallikrein activity in BN control rats and kininogen-deficient BNK rats fed with normal 

and high salt diet in presence or absence of spironolactone. Values are expressed as the 

mean ± SEM, n=8 in all groups except of BNK NS, where n=14. *** p<0,001 BNK rats vs. BN 
rats; ### p<0,001 HS vs. NS in rats of the same strain; +++ p<0,001 HS SPI vs. NS in rats of the 

same strain; $$$ p<0,001 HS SPI vs. NS SPI in rats of the same strain. 

 

The results of daily tissue kallikrein activity (U/24h) were calculated by multiplying the 

measured activity (U/ml) with urine volume (ml/24h). Daily activity of urinary kallikrein 

(Fig.58c) remarkably agreed with daily urine production (Fig.43c). 

 

A correlation between daily tissue kallikrein activity and 24h urine volume is shown in 

Fig.59. Pearson’s correlation test calculated the correlation coefficient (r) of 0,95 and 

p value of 1,080E-036; n=70. It confirmed that both, daily tissue kallikrein activity and 

24h urine volume increased together (the more urine volume, the more urinary 

kallikrein). 
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Fig.59 Correlation of daily urinary kallikrein activity and 24h urine volume with a regression line. 

 

It can be assumed that the urinary activity represented the concentration of tissue 

kallikrein in urine. From this point of view, it seemed that the renal tissue kallikrein 

was produced at a constant rate and its urinary secretion was influenced by the 

urinary flow. 

 

4.4.1.3. URINARY KALLIDIN-LIKE-PEPTIDE 
 

As already stated, the description of KLP existence in rat is very recent. It is believed 

that KLP is cleaved from LMW kininogen by tissue kallikrein. Measurements of 

urinary KLP should describe this new rat kinin and reveal potential differences 

between BN control rats and kininogen-deficient BNK rats. Characterisation of the 

effects of treatment will describe its importance in the regulation of renal functions. 

Urinary KLP was determined with a specific RIA. 
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Fig.60a  Urinary KLP excretion in BN rats fed with normal and high salt diet in presence or absence 

of spironolactone, n=8. ° p<0,05 NS SPI vs. NS; § p<0,05 HS SPI vs. HS. 
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Fig.60b  Urinary KLP excretion in BNK rats fed with normal and high salt diet in presence or absence 

of spironolactone, n=8 except of NS, where n=14. ° p<0,05 NS SPI vs. NS; $ p<0,05 HS SPI 

vs. NS SPI. 
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Fig.60c Urinary KLP excretion in BN control rats and kininogen-deficient BNK rats fed with normal 

and high salt diet in presence or absence of spironolactone. Values are expressed as the 

median, n=8 in all groups except of BNK NS, where n=14. * p<0,05 BNK rats vs. BN rats; ° 

p<0,05 NS SPI vs. NS in rats of the same strain; § p<0,05 HS SPI vs. HS in rats of the same 

strain; $ p<0,05 HS SPI vs. NS SPI in rats of the same strain. 

 

Under standard conditions, the KLP was detectable only in urine of BNK rats. In BN 

rats, the KLP concentration in urine was below the detection limit of the assay. 

Treatment with spironolactone caused a significant elevation of urinary KLP levels in 

both strains. Spironolactone’s effect was more pronounced in BNK rats. In BN rats 

fed with high salt diet, the KLP levels in urine stayed below the detection limit. On the 

contrary, urinary KLP concentration slightly increased in BNK rats. In rats fed with 

high salt diet and simultaneously treated with spironolactone, the urinary KLP levels 

increased in BN rats but decreased in BNK rats (Fig.60c). 

 

4.4.1.4. URINARY BRADYKININ 
 
The origin of BK in rat urine is unclear. It is believed that tissue kallikrein cleaves KLP 

from LMW kininogen. Hence it seems likely that urinary BK is derived from KLP by 

the action of urinary aminopeptidases. Measurements of urinary bradykinin should 
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define the amount of this kinin and reveal potential differences between BN control 

rats and kininogen-deficient BNK rats. BK levels in urine were measured by means of 

a specific RIA. 
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Fig.61a Urinary BK excretion in BN rats fed with normal and high salt diet in presence or absence of 

spironolactone, n=8. # p<0,05 HS vs. NS; + p<0,05 HS SPI vs. NS. 
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Fig.61b Urinary BK excretion in BNK rats fed with normal and high salt diet in presence or absence 

of spironolactone, n=8 except of NS, where n=14. ° p<0,05 NS SPI vs. NS; # p<0,05 HS vs. 

NS; + p<0,05 HS SPI vs. NS. 
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Fig.61c  Urinary BK excretion in BN control rats and kininogen-deficient BNK rats fed with normal and 

high salt diet in presence or absence of spironolactone. Values are expressed as the median, 

n=8 in all groups except of BNK NS, where n=14. ** p<0,01 BNK rats vs. BN rats; ° p<0,05 

NS SPI vs. NS in rats of the same strain; # p<0,05 HS vs. NS in rats of the same strain; + 

p<0,05 HS SPI vs. NS in rats of the same strain. 

 

The basal excretion of urinary BK was similar in BN and BNK rats (Fig.61c). In both 

strains, treatment with spironolactone elevated urinary BK levels. Similarly, BK 

excretion significantly increased in rats fed with high salt diet. These effects were 

more pronounced in BN rats than in BNK rats, which was in contrast to urinary KLP. 

Similarly to urinary excretion of KLP, spironolactone treatment during high salt diet 

further increased BK concentration in urine in BN but not in BNK rats. 

 

4.4.2. URINARY ENDOTHELIN-1 
 
Basal urinary levels of ET-1 in BN control rats and kininogen-deficient BNK rats were 

investigated. Measurements should reveal relations between ET, KKS and 

aldosterone, following standard diet or high salt diet in presence or absence of 

spironolactone. Concentrations of ET-1 in urine were determined by a specific RIA. 
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Fig.62a Urinary ET-1 excretion in BN rats fed with normal and high salt diet in presence or absence 

of spironolactone, n=8. # p<0,05 HS vs. NS; +++ p<0,001 HS SPI vs. NS; $$$ p<0,001 HS SPI 

vs. NS SPI. 
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Fig.62b  Urinary ET-1 excretion in BNK rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=8 except of NS, where n=14. ° p<0,05 NS SPI vs. NS; ### 

p<0,001 HS vs. NS; +++ p<0,001 HS SPI vs. NS; $$$ p<0,001 HS SPI vs. NS SPI. 
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Fig.62c Urinary ET-1 excretion in BN control rats and kininogen-deficient BNK rats fed with normal 

and high salt diet in presence or absence of spironolactone. Values are expressed as the 

mean ± SEM, n=8 in all groups except of BNK NS, where n=14. *** p<0,001 BNK rats vs. BN 
rats; ° p<0,05 NS SPI vs. NS in rats of the same strain; # p<0,05; ### p<0,001 HS vs. NS in rats 

of the same strain; +++ p<0,001 HS SPI vs. NS in rats of the same strain; $$$ p<0,001 HS SPI 

vs. NS SPI in rats of the same strain. 

 

Basal urinary ET-1 levels were similar in BN control rats and kininogen-deficient BNK 

rats (Fig.62c). In all experimental groups, urinary ET-1 was significantly higher in 

BNK rats than in BN rats. In BNK rats, treatment with spironolactone significantly 

elevated urinary ET-1 levels suggesting that aldosterone may inhibit urinary ET-1 

secretion. In BN rats, urinary ET-1 levels did not change from their respective basal 

levels. High salt diet significantly increased urinary ET-1 excretion. In BNK rats, ET-1 

levels in urine were higher than following spironolactone and almost twice as high as 

in BN rats. In BN and BNK rats fed high salt diet in presence of spironolactone, 

urinary ET-1 levels further increased. 
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4.4.3. ALDOSTERONE AND ITS PRECURSORS IN URINE 
 
Aldosterone is formed from DOC. The conversion involves three consecutive 

reactions and is catalyzed by aldosterone synthase. In parallel, DOC is also 

converted to corticosterone by the action of 11ß-hydroxylase. Basal corticoid 

concentrations in BN control rats and kininogen-deficient BNK rats were investigated. 

The effects of standard salt diet or high salt diet in presence or absence of 

spironolactone were determined in both strains. 

 

4.4.3.1 URINARY DEOXYCORTICOSTERONE 
 
DOC is a mineralocorticoid hormone and a substrate for 11ß-hydroxylase and 

aldosterone synthase that catalyse the formation of corticosterone and aldosterone, 

respectively. DOC levels were determined by RIA after its selective extraction from 

urine. 
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Fig.63a  Urinary deoxycorticosterone levels in BN rats fed with normal and high salt diet in presence 

or absence of spironolactone, n=8.  
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Fig.63b  Urinary deoxycorticosterone levels in BNK rats fed with normal and high salt diet in 

presence or absence of spironolactone, n=8 except of NS, where n=14. ### p<0,001 HS vs. 

NS. 
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Fig.63c Urinary deoxycorticosterone levels in BN control rats and kininogen-deficient BNK rats fed 

with normal and high salt diet in presence or absence of spironolactone. Values are expressed 

as the mean ± SEM, n=8 in all groups except of BNK NS, where n=14. * p<0,05 BNK rats vs. 
BN rats; ### p<0,001 HS vs. NS in rats of the same strain. 
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Basal DOC levels in urine were similar in BN control rats and kininogen-deficient 

BNK rats (Fig.63c). In BNK rats, spironolactone elevated urinary DOC levels. High 

salt diet significantly increased urinary DOC levels. Combination of both, high salt 

diet and spironolactone restored elevated DOC levels back to basal values (Fig.63b). 

In BN rats, neither spironolactone nor high salt diet altered urinary DOC levels 

(Fig.63a). 

 

4.4.3.2. URINARY CORTICOSTERONE 
 
Corticosterone is the main glucocorticoid hormone in rat. Corticosterone is an end-

product of 11ß-hydroxylation and an intermediate during aldosterone synthesis. 

Corticosterone levels were determined by RIA after its selective extraction from urine. 
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Fig.64a Urinary corticosterone levels in BN rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=8. °°° p<0,001 NS SPI vs. NS; # p<0,05 HS vs. NS; +++ p<0,001 

HS SPI vs. NS; §§§ p<0,001 HS SPI vs. HS; $ p<0,05 HS SPI vs. NS SPI. 
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Fig.64b Urinary corticosterone levels in BNK rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=8 except of NS, where n=14. °°° p<0,001 NS SPI vs. NS; # 

p<0,05; ### p<0,001 HS vs. NS; +++ p<0,001 HS SPI vs. NS. 
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Fig.64c Urinary corticosterone levels in BN control rats and kininogen-deficient BNK rats fed with 

normal and high salt diet in presence or absence of spironolactone. Values are expressed as 

the mean ± SEM, n=8 in all groups except of BNK NS, where n=14. * p<0,05; ** p<0,01 BNK 
rats vs. BN rats; °°° p<0,001 NS SPI vs. NS in rats of the same strain; # p<0,05; ### p<0,001 

HS vs. NS in rats of the same strain; +++ p<0,001 HS SPI vs. NS; §§§ p<0,001 HS SPI vs. HS; $ 

p<0,05 HS SPI vs. NS SPI. 
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Basal corticosterone levels in urine were almost identical in BN control rats and 

kininogen-deficient BNK rats (Fig.64c). Treatment with spironolactone and high salt 

diet caused a significant increase in corticosterone levels in both rat strains. These 

changes were significantly more pronounced in kininogen-deficient BNK rats. 

 

4.4.3.3. URINARY ALDOSTERONE 
 

Aldosterone is the main mineralocorticoid hormone. The formation of aldosterone 

from DOC is catalysed by aldosterone synthase. Aldosterone levels were determined 

by RIA after its selective extraction from urine. 
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Fig.65a Urinary aldosterone levels in BN rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=8. ° p<0,05 NS SPI vs. NS in rats of the same strain; § p<0,001 

HS SPI vs. HS. 
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Fig.65b  Urinary aldosterone levels in BNK rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=8 except of NS, where n=14. ° p<0,05 NS SPI vs. NS; # p<0,05 

HS vs. NS; $ p<0,05 HS SPI vs. NS SPI. 
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Fig.65c Urinary aldosterone levels in BN control rats and kininogen-deficient BNK rats fed with 

normal and high salt diet in presence or absence of spironolactone. Values are expressed as 

the median, n=8 in all groups except of BNK NS, where n=14. * p<0,05; ** p<0,01 BNK rats 
vs. BN rats; ° p<0,05 NS SPI vs. NS in rats of the same strain; # p<0,05 HS vs. NS in rats of 

the same strain; § p<0,001 HS SPI vs. HS in rats of the same strain; $ p<0,05 HS SPI vs. NS 

SPI in rats of the same strain. 
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Basal urinary aldosterone levels were identical in BN control rats and kininogen-

deficient BNK rats (Fig.65c). In both strains, spironolactone markedly increased 

urinary aldosterone levels showing that spironolactone replaced aldosterone at its 

receptor binding sites. The increase in urinary aldosterone levels was significantly 

greater in BNK rats than in BN rats. In both strains, high salt diet decreased urinary 

aldosterone levels to a minimum. In BNK rats, aldosterone levels were still 

significantly higher than in BN rats. In rats fed with high salt diet in presence of 

spironolactone, the measurements of urinary aldosterone revealed that even under 

conditions of high Na+ intake, the MR is occupied by residual aldosterone. 

 

SUMMARY OF URINE PROFILE 
 

Analysis of urine revealed no significant between-strain differences in the activity of 

renal KKS with the exception of KLP. The basal urinary excretion of LMW kininogen 

was similar in both strains. Spironolactone treatment as well as high salt diet caused 

an increase in urinary LMW kininogen levels in both, BN and BNK rats. Also the 

activity of urinary kallikrein was almost identical in both rat strains. The excretion of 

renal kallikrein was primarily influenced by the urine volume. Spironolactone and high 

salt diet increased urine volume that consequently led to an increase in the urinary 

kallikrein activity. Under standard conditions, the urinary KLP was undetectable in BN 

rats in contrast to BNK rats. Spironolactone treatment significantly increased the 

renal excretion of KLP in both strains. High salt diet elevated urinary KLP levels in 

BNK rats but not in BN rats. In rats fed with high salt diet, treatment with 

spironolactone caused an increase in KLP excretion in BN rats and a decrease in 

BNK rats. In both strains, the basal BK excretion was similar. Spironolactone 

elevated BK urinary levels, to a less extent than those of KLP. Also in rats fed with 

high salt diet, urinary BK excretion significantly increased. Combination of high salt 

diet and spironolactone further increased BK excretion in BN rats but not in BNK rats. 

 

Urinary excretion of ET-1 was analogous in both rat strains. Spironolactone treatment 

caused a significant increase in urinary ET-1 levels in BNK rats but not in BN rats. In 

both strains, high salt diet increased the ET-1 levels in urine, in BNK rats to a 

significantly greater extent than in BN rats. 
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The urinary excretion of all three corticoid hormones, DOC, corticosterone and 

aldosterone, was identical in both rat strains. In BN rats, the DOC levels in urine 

remained unchanged in all experimental groups. In BNK rats, spironolactone as well 

as high salt diet increased the urinary excretion of DOC. Similarly, urinary 

corticosterone increased following spironolactone and high salt diet in both strains. 

This increase was more pronounced in BNK rats. Treatment with spironolactone 

substantially increased urinary levels of aldosterone in both strains. In BNK rats, 

spironolactone replaced significantly more aldosterone from the MR. In both strains, 

high salt diet decreased aldosterone levels to a minimum. Nevertheless, urinary 

aldosterone was significantly higher in BNK rats than in BN rats. In rats fed with high 

salt diet, residual aldosterone was replaced from the MR by spironolactone. 

 

 

4.5. TISSUE ANALYSIS 
 

In the brain tissue, a local steroid synthesis was described with a role in the salt 

sensitive hypertension. Therefore the concentrations of aldosterone and its 

precursors in the brain were investigated. The expression of 11ß-hydroxylase and 

aldosterone synthase was investigated in adrenal gland. Both enzymes catalyse the 

terminal stages of corticosterone and aldosterone production. This investigation 

should reveal potential differences in the synthesis of aldosterone between BN 

control rats and kininogen-deficient BNK rats. Brains and adrenals were harvested 

after sacrificing the animals. Brains were immediately frozen in liquid nitrogen and 

stored at -20°C until analysed. Adrenal glands were collected into RNA stabilising 

solution and stored frozen until processed. 

 

4.5.1. BRAIN ALDOSTERONE AND ITS PRECURSORS 
 

Measurements of DOC, corticosterone and aldosterone should characterize potential 

differences between both strains of rats and describe effects of treatment with salt 

diet and spironolactone. Steroids were extracted from brain homogenates and after 

selective extraction measured by RIA. 
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4.5.1.1. BRAIN DEOXYCORTICOSTERONE 
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Fig.66a Deoxycorticosterone levels in brain of BN rats fed with normal and high salt diet in presence 

or absence of spironolactone, n=8. § p<0,001 HS SPI vs. HS. 
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Fig.66b Deoxycorticosterone levels in brain of BNK rats fed with normal and high salt diet in 

presence or absence of spironolactone, n=8 except of NS, where n=6. ° p<0,05 NS SPI vs. 

NS. 
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 COMPARISON OF BN AND BNK RATS 
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Fig.66c Deoxycorticosterone levels in brain of BN control rats and kininogen-deficient BNK rats fed 

with normal and high salt diet in presence or absence of spironolactone. Values are expressed 

as the mean ± SEM, n=8 in all groups except of BNK NS, where n=6. * p<0,05 BNK rats vs. 
BN rats; ° p<0,05 NS SPI vs. NS in rats of the same strain; § p<0,05 HS SPI vs. HS in rats of 

the same strain. 

 

DOC levels in brain tissue were lower in BNK rats than in BN rats (Fig.66c). The 

same impairment appeared in plasma and urine of BNK rats (Fig.54c and 63c). In 

BNK rats, spironolactone caused a significant elevation of brain DOC levels. 

Similarly, following high salt diet the DOC concentration in the brain tended to 

increase. In BN rats, neither spironolactone nor high salt diet influenced DOC 

concentration in the brain. In contrast, following both, spironolactone in combination 

with high salt diet, the DOC levels in brain tissue significantly increased.  
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4.5.1.2. BRAIN CORTICOSTERONE 
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Fig.67a Corticosterone levels in brain of BN rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=8. 

 

±Std. Dev.
±Std. Err.
Mean

co
rti

co
st

er
on

e 
(n

g/
g)

0

20

40

60

80

100

120

140

160

NS NS SPI HS HS SPI

°

 
 

Fig.67b Corticosterone levels in brain of BNK rats after normal and high salt diet in presence or 

absence of spironolactone, n=8 except of NS, where n=6. ° p<0,05 NS SPI vs. NS. 
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 COMPARISON OF BN AND BNK RATS 
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Fig.67c Corticosterone levels in brain of BN control rats and kininogen-deficient BNK rats fed with 

normal and high salt diet in presence or absence of spironolactone. Values are expressed as 

the mean ± SEM, n=8 in all groups except of BNK NS, where n=6. ° p<0,05 NS SPI vs. NS in 

rats of the same strain. 

 

Basal corticosterone concentration in the brain was lower in kininogen-deficient BNK 

rats than in BN control rats (Fig.67c). In BNK rats, spironolactone significantly 

increased corticosterone levels in the brain. Also following high salt diet, 

independently of spironolactone, brain corticosterone tended to increase (Fig.67b). In 

BN rats, neither spironolactone nor high salt diet influenced the corticosterone 

concentration in the brain. Following high salt diet and spironolactone, brain 

corticosterone tended to increase (Fig.67a). 
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4.5.1.3. BRAIN ALDOSTERONE 
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Fig.68a Aldosterone levels in brain of BN rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=8. ° p<0,05 NS SPI vs. NS. 
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Fig.68b Aldosterone levels in brain of BNK rats fed with normal and high salt diet in presence or 

absence of spironolactone, n=8 except of NS, where n=6. 
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Fig.68c Aldosterone levels in brain of BN control rats and kininogen-deficient BNK rats fed with 

normal and high salt diet in presence or absence of spironolactone. Values are expressed as 

the median, n=8 in all groups except of BNK NS, where n=6. ° p<0,05 NS SPI vs. NS in rats of 

the same strain. 

 

In brain tissue, aldosterone levels were identical in BN control rats and kininogen-

deficient BNK rats (Fig.68c). In both strains, following treatment with spironolactone, 

aldosterone concentration in the brain significantly increased, which demonstrated 

aldosterone’s displacement from the MR. High salt diet lowered brain aldosterone 

concentration almost to the minimum. Additional administration of spironolactone 

restored aldosterone levels in the brain tissue to basal levels. These results 

demonstrated that even under conditions of increased Na+ intake the MR is occupied 

by residual aldosterone. 
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SUMMARY OF BRAIN ALDOSTERONE AND ITS PRECURSORS 
 
Measurements of DOC, corticosterone and aldosterone in the brain revealed no 

significant differences between BN control rats and kininogen-deficient BNK rats. 

Although between-strain differences appeared, they hardly reached statistical 

significance because of relative great variance among single values. Generally, 

results from measurements of brain corticoids were in approximate accordance with 

the investigation of their urinary levels. Also the effect of salt diet or spironolactone 

on concentration of these hormones was similar in brain and in urine, with one 

exception. Following high salt diet, DOC levels significantly increased in urine but 

remained unaffected in the brain. In BNK rats, treatment with spironolactone caused 

a significant increase in brain levels of DOC and corticosterone. Similar effect was 

demonstrated also following high salt diet when aldosterone levels were minimal.  

 

4.5.2. EXPRESSION OF GENES CODING FOR 11ß-HYDROXYLASE AND ALDOSTERONE 

 SYNTHASE IN ADRENAL GLAND 
 
The 11ß-hydroxylase catalyses the conversion of DOC to corticosterone. In parallel, 

the aldosterone synthase catalyses three consecutive reactions forming aldosterone 

from DOC. Using the real time RT-PCR the expression of CYP11B1 (gene coding for 

11ß-hydroxylase) and CYP11B2 (gene coding for aldosterone synthase) mRNAs in 

adrenals was quantified in LightCycler®. Graphs display the relative expression ratios 

of CYP11B1 or CYP11B2, which represents the expression of these genes 

standardized by a non-regulated housekeeping gene PBGD. 

 

Fig. 117 and 118 show relative expression ratios of CYP11B1 and CYP11B2 mRNA 

in adrenal gland of BN control rats and kininogen-deficient BNK rats, respectively. 

Scale x represents the basal relative expression of these genes in the groups of 

standard diet. Scale y in log2 emphasizes the down- or up-regulation of these two 

genes in comparison to basal levels. 
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Fig.69a Relative expression ratio of 11ß-hydroxylase (CYP11B1) and aldosterone synthase  

 (CYP11B2) in adrenal gland of BN control rats fed with normal and high salt diet in presence 

 or absence of spironolactone. Values are expressed as the mean ± SE in reference to 

 standard diet, n=8. ° p<0,05 NS SPI vs. NS; ### p<0,001 HS vs. NS. 
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Fig.69b Relative expression ratio of 11ß-hydroxylase (CYP11B1) and aldosterone synthase 

 (CYP11B2) in adrenal gland of kininogen-deficient BNK rats fed with normal and high salt diet 

 in presence or absence of spironolactone. Values are expressed as the mean ± SE in 

 reference to standard diet, n=8 except of NS, where n=20 and HS, where n=14. °° p<0,01 NS 

 SPI vs. NS; ### p<0,001 HS vs. NS. 
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In both, BN and BNK rats, spironolactone significantly down-regulated adrenal 

expression of 11ß-hydroxylase. In contrast, the expression of aldosterone synthase 

remained unchanged (Fig.69a and 69b). High salt diet did not influence the adrenal 

expression of 11ß-hydroxylase, but significantly down-regulated aldosterone 

synthase expression in BN and BNK rats. Combination of high salt diet and 

spironolactone normalize the expression of these enzymes in adrenals of both 

strains. 

 

 COMPARISON OF BN AND BNK RATS 
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Fig.69c Differences in relative expression ratio of 11ß-hydroxylase (CYP11B1) and aldosterone 
 synthase (CYP11B2) in adrenal gland of kininogen-deficient BNK rats in reference to BN 

 control rats after normal and high salt diet in presence or absence of spironolactone. Values 

 are expressed as the mean ± SE, n=8 in all groups except of BNK NS, where n=20 and BNK 

 HS, where n=14. 

 

Comparison of adrenal expression of 11ß-hydroxylase and aldosterone synthase 

between BN and BNK rats is shown in Fig.69c. Scale x represents the expression 

ratios of both steroidogenic enzymes in BN control rats. The bars display the 

difference in expression in BNK rats in reference to BN rats. 
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Expression of adrenal 11ß-hydroxylase was identical in BN and BNK rats under all 

experimental conditions. The expression of aldosterone synthase was found to be 

lower in BNK rats than in BN rats, especially under standard conditions and following 

spironolactone. 

 

SUMMARY OF EXPRESSION ANALYSIS OF 11ß-HYDROXYLASE AND ALDOSTERONE 

SYNTHASE IN ADRENAL GLAND 
 
The expression of genes coding for 11ß-hydroxylase was identical in both rat strains. 

The basal expression of genes coding for aldosterone synthase tended to be lower in 

kininogen-deficient BNK rats than in BN control rats. The adrenal expression of 11ß-

hydroxylase was significantly down-regulated by spironolactone, which was in 

contrast to the measurements of urinary corticosterone that increased following 

treatment with spironolactone. The adrenal expression of aldosterone synthase was 

significantly down-regulated by high salt diet, which agreed with minimal aldosterone 

levels in urine. High salt diet in combination with spironolactone restored the 

expression of both enzymes, CYP11B1 and CYP11B2, to basal levels. 

 

 

4.6. LANGENDORFF HEART PERFUSION 
 
The Langendorff perfusions were performed with hearts isolated from BN control rats 

and kininogen-deficient BNK rats fed with standard and high salt diet in presence or 

absence of spironolactone for 10 days. Basal cardiac parameters and the effects of 

30min ischaemia, with or without antecedent IPC, on basic cardiac parameters were 

characterised in rats of both strains. 

 

Line graphs show changes in heart rate (4.6.1.), left ventricular developed pressure 

(LVDP) (4.6.2.), left ventricular end-diastolic pressure (LVEDP) (4.6.3.), dp/dtmax 

(4.6.4.), dp/dtmin (4.6.5.), coronary flow (4.6.6.), and creatine kinase activity (4.6.7.) 

during the heart perfusion. Results are presented in two different ways: 
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I. COMPARISON OF BN AND BNK RATS 

This type of presentation emphasizes the between-strain differences in the effects of 

ischemia and IPC on cardiac function. The results are shown separately for each 

experimental group:  a) standard diet 

    b) standard diet & spironolactone 

    c) high salt diet 

    d) high sat diet & spironolactone 

In each graph, the same four legends occur: 

 BN CO – control experiment in BN hearts 

 BN IPC – IPC experiment in BN hearts 

 BNK CO – control experiment in BNK hearts 

 BNK IPC – IPC experiment of BNK hearts 

 

II. EFFECT OF SALT DIET AND SPIRONOLACTONE 

This type of presentation emphasizes the effect of salt diet or/and spironolactone on 

cardiac function after ischemia and IPC. The results are shown separately for each 

strain and perfusion protocol: a) control experiment in BN hearts 

     b) IPC experiment in BN hearts 

     c) control experiment in BNK hearts 

     d) IPC experiment in BNK hearts 

In each graph, the same four legends occur: 

 NS – group of standard diet (normal salt) 

 NS SPI – group of standard diet & spironolactone 

 HS – group of high salt diet 

 HS SPI – group of high salt diet & spironolactone 

 

4.6.1. HEART RATE 
 

The heart rate (HR) was derived from the left ventricular pressure trace measured by 

an intraventricular balloon catheter. 
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 COMPARISON OF BN AND BNK RATS 
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Fig.70a Time course of heart rate during perfusion of hearts from BN and BNK rat fed with normal 

salt diet, mean ± SEM, n=4-6. * p<0,05; ** p<0,01 BNK hearts vs. BN hearts. 
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Fig.70b Time course of heart rate during perfusion of hearts from BN and BNK rats fed with normal 

salt diet and treated with spironolactone, mean ± SEM, n=4. # p<0,05 IPC vs. control 

experiment. 
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Fig.70c Time course of heart rate during perfusion of hearts from BN and BNK rats fed with high salt 

diet, mean ± SEM, n=4. * p<0,05 BNK hearts vs. BN hearts. 
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Fig.70d Time course of heart rate during perfusion of hearts from BN and BNK rats fed with high salt 

diet and treated with spironolactone, mean ± SEM, n=4. *** p<0,001 BNK hearts vs. BN 

hearts. 

 

Basal heart rate was significantly lower in the hearts of kininogen-deficient BNK rats 

than in those of BN control rats. In BN hearts, but not in BNK hearts, IPC caused an 

increase in the post-ischaemic heart rate (Fig.70a). In BN rats, spironolactone 
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treatment lowered the heart rate whereby diminished the difference in the basal heart 

rate of BN and BNK hearts. In spironolactone treated BN rats but not BNK rats, IPC 

caused an increase in post-ischemic heart rate (Fig.70b). In both strains, high salt 

diet caused a decrease of heart rate. Hearts from BNK rats displayed no change in 

heart rate during the periods of IPC as it appeared in hearts from BN rats fed with 

high salt diet. Post-ischaemic heart rate was almost identical in all experimental 

groups (Fig.70c). Heart rate of BNK rats fed with high salt diet and simultaneously 

treated with spironolactone was significantly lower than that of BN control rats. 

Following ischaemia, the heart rate was similar in all experimental groups (Fig.70d). 

 

 EFFECT OF SALT DIET AND SPIRONOLACTONE 
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Fig.71a Time course of heart rate during control experiment of BN hearts after normal and high salt 

diet in presence or absence of spironolactone, mean ± SEM, n=4. °° p<0,01 NS SPI vs. NS; 
### p<0,001 HS vs. NS; ++ p<0,01 HS SPI vs. NS. 
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Fig.71b Time course of heart rate during IPC experiment of BN hearts after normal and high salt diet 

in presence or absence of spironolactone, mean ± SEM, n=4. ° p<0,05; °° p<0,01; °°° p<0,001 

NS SPI vs. NS; # p<0,05; ## p<0,01; ### p<0,001 HS vs. NS; + p<0,05; ++ p < 0,01 HS SPI vs. 

NS; §§ p<0,01; §§§ p<0,001 HS SPI vs. HS. 
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Fig.71c Time course of heart rate during control experiment of BNK hearts after normal and high 

salt diet in presence or absence of spironolactone, mean ± SEM, n=4-6. ° p<0,05 NS SPI vs. 

NS; + p<0,05; ++ p<0,01 HS SPI vs. NS; § p<0,05; §§ p<0,01; §§§ p<0,001 HS SPI vs. HS. 
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Fig.71d Time course of heart rate during IPC experiment of BNK hearts after normal and high salt 

diet in presence or absence of spironolactone, mean ± SEM, n=4-5. ° p<0,05 NS SPI vs. NS; # 

p<0,05 HS vs. NS; + p<0,05; +++ p<0,001 HS SPI vs. NS; § p<0,05 HS SPI vs. HS. 

 

In BN hearts of both, spironolactone and high salt diet treated rats, the basal heart 

rate significantly decreased (Fig.71a and 71b). Following 30min ischaemia, the heart 

rate was similar in all non-preconditioned BN hearts. IPC significantly lowered the 

post-ischemic heart rate of BN hearts from rats treated with spironolactone when 

compared with BN hearts from untreated rats. The decrease developed already 

during the IPC periods. High salt diet caused a moderate decrease in the post-

ischaemic heart rate of preconditioned BN hearts in comparison to untreated hearts. 

 

Independently of salt diet, spironolactone significantly decreased the basal heart rate 

also in hearts of kininogen-deficient BNK rats (Fig.71c and 71d). This reduction in 

heart rate was more pronounced after 30min ischaemia in non-preconditioned BNK 

hearts (Fig.71c). IPC did not alter the post-ischaemic heart rate in any group of BNK 

hearts. Hearts from BNK rats fed with high salt diet displayed significantly reduced 

heart rate during the IPC periods (Fig.71d) 
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SUMMARY OF HEART RATE 
 

Taken together, it was confirmed, that KKS plays an important role in the protective 

mechanism of IPC, as kininogen-deficient BNK rats did not respond to it. Concerning 

the heart rate, the respond to 30min ischaemia was identical in preconditioned and 

non-preconditioned hearts of BNK rats fed with standard diet. Neither spironolactone 

nor high salt diet could recover the effects of IPC on heart rate in BNK hearts. 

 

Aldosterone seems to play an important role in the regulation of heart rate, as hearts 

from spironolactone treated rats, independently of salt diet, displayed significantly 

decreased heart rate in both rat strains. In BN hearts, the decline developed already 

during the IPC periods, which reduced the effect of IPC on heart rate during the 

reperfusion. These data suggest that aldosterone may increase the heart rate. Hearts 

from rats treated with high salt diet displayed a decline in heart rate whereby the 

effect of IPC was abolished, especially in BN hearts. In BNK but not in BN hearts, the 

heart rate was reduced also during the IPC periods. 

 

4.6.2. LEFT VENTRICULAR DEVELOPED PRESSURE 
 

The isovolumetric measurement of myocardial force was determined by means of an 

intraventricular balloon catheter. Left ventricular developed pressure (LVDP) is 

defined as the maximum left ventricular pressure (LVPmax) minus LVPmin (LVEDP). 
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 COMPARISON OF BN AND BNK RATS 
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Fig.72a Time course of left ventricular developed pressure during perfusion of BN and BNK hearts 

on standard diet, mean ± SEM, n=4-7. *** p<0,001 BNK hearts vs. BN hearts. 
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Fig.72b Time course of left ventricular developed pressure during perfusion of BN and BNK hearts 

after spironolactone upon standard diet, mean ± SEM, n=4. * p<0,05; ** p<0,01 BNK hearts 

vs. BN hearts. 
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Fig.72c Time course of left ventricular developed pressure during perfusion of BN and BNK hearts 

on high salt diet, mean ± SEM, n=4. 
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Fig.72d Time course of left ventricular developed pressure during perfusion of BN and BNK hearts 

after spironolactone upon high salt diet, mean ± SEM, n=4. ** p<0,01 BNK hearts vs. BN 

hearts; # p<0,05 IPC vs. control experiment. 

 

Prior to ischaemia, the basal LVDP was significantly higher in BNK hearts than in BN 

control hearts. The post-ischaemic LVDP was not significantly different among the 

four groups, although it was slightly higher in BNK hearts than in BN hearts. In both 
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strains, IPC was accompanied by a reduction of LVDP (Fig.72a). In BNK hearts, 

spironolactone reduced the basal LVDP to the levels of BN hearts. Spironolactone 

inhibited the fall of LVDP during the IPC periods in BN hearts but not in BNK hearts. 

The post-ischaemic LVDP was increased in preconditioned hearts of BNK rats 

treated with spironolactone but remained unchanged in hearts of spironolactone 

treated BN rats (Fig.72b). Similarly to spironolactone, the basal LVDP decreased in 

hearts of BNK rats fed with high salt diet to the levels of BN hearts whereby 

abolished the differences in post-ischaemic LVDP between preconditioned and non-

preconditioned BN and BNK hearts (Fig.72c). Treatment with spironolactone upon 

high salt diet significantly decreased the basal LVDP in BNK hearts in comparison 

with BN hearts. In BNK hearts, IPC significantly increased the post-ischaemic LVDP. 

Similar effect was observed also in BN hearts (Fig.72d). 
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Fig.73a Time course of left ventricular developed pressure during control experiment of BN 

hearts after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, 

n=4. ° p<0,05; °° p<0,01 NS SPI vs. NS; + p<0,05; ++ p<0,01 HS SPI vs. NS; $$$ p<0,001 HS 

SPI vs. NS SPI. 
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Fig.73b Tim course of left ventricular developed pressure during IPC experiment of BN hearts 

after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. ° 

p<0,05 NS SPI vs. NS; # p<0,05 HS vs. NS; + p<0,05; ++ p<0,01; +++ p<0,001 HS SPI vs. NS; § 

p<0,05; §§§ p<0,001 HS SPI vs. HS; $ p<0,05; $$$ p<0,001 HS SPI vs. NS SPI. 
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Fig.73c Time course of left ventricular developed pressure during control experiment of BNK 

hearts after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, 

n=4-7. § p<0,05 HS SPI vs. HS; $$ p<0,01; $$$ p<0,001 HS SPI vs. NS SPI. 
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Fig.73d Time course of left ventricular developed pressure during IPC experiment of BNK hearts 

after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. ° 

p<0,05 NS SPI vs. NS; ## p<0,01; ### p<0,001 HS vs. NS; + p<0,05 HS SPI vs. NS; §§ p<0,01 

HS SPI vs. HS; $ p<0,05 HS SPI vs. NS SPI. 

 

In hearts of BN rats fed with high salt diet and simultaneously treated with 

spironolactone the basal as well as post-ischaemic LVDP significantly increased. 

Spironolactone caused a moderate, not significant increase in LVDP during the 

reperfusion. In contrast, hearts of rats fed with high salt diet displayed a significant 

increase in immediate post-ischemic recovery of LVDP (Fig.73a). In BN hearts of rat 

additionally treated with spironolactone, IPC significantly increased the post-

ischaemic LVDP (Fig.73b). 

 

In contrast hearts from BNK rats fed with high salt diet and treated with 

spironolactone displayed no increase in the basal LVDP. Spironolactone as well as 

high salt diet caused a decline of the LVDP of BNK rat hearts (Fig.73c). In BNK rats, 

spironolactone caused an increase in the LVDP following IPC. High salt diet 

significantly diminished the decrease of LVDP during the IPC periods (Fig.73d). 
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SUMMARY OF LEFT VENTRICULAR DEVELOPED PRESSURE 
 

These data suggest that aldosterone may alter the LVDP as in both strains, the 

LVDP was increased by spironolactone, high salt diet as well as combination of both. 

This increase was less pronounced in kininogen-deficient BNK hearts. In BNK but not 

BN hearts IPC caused an increase in LVDP. This mechanism was influenced by 

aldosterone, as spironolactone treatment increased the post-ischaemic LVDP. In 

non-preconditioned BNK rats, LVDP tended to decrease. 

 

4.6.3. LEFT VENTRICULAR END-DIASTOLIC PRESSURE 
 

The left ventricular end-diastolic pressure (LVEDP) was determined with an 

intraventricular balloon catheter. 
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Fig.74a Time course of left ventricular end-diastolic pressure during perfusion of BN and BNK 

hearts on standard diet, mean ± SEM, n=4-7. * p<0,05; ** p<0,01; *** p<0,001 BNK hearts vs. 

BN hearts; # p<0,05 IPC vs. control experiment. 
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Fig.74b Time course of left ventricular end-diastolic pressure during perfusion of BN and BNK 

 hearts after spironolactone upon standard diet, mean ± SEM, n=4. ** p<0,01 BNK hearts 

 vs. BN hearts. 
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Fig.74c Time course of left ventricular end-diastolic pressure during perfusion of BN and BNK 

 hearts on high salt diet, mean ± SEM, n=4. ** p<0,01 BNK hearts vs. BN hearts. 

 



RESULTS 

 160 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

min

LV
E

D
P

 (m
m

H
g) BN CO

BN IPC
BNK CO
BNK IPC

ischaemia IPC      IPC      IPC

 ***

 #

 #   # #
 #

 #

 #
 #

 
 

Fig.74d Time course of left ventricular end-diastolic pressure during perfusion of BN and BNK 

 hearts after spironolactone upon high salt diet, mean ± SEM, n=4. *** p<0,001 BNK hearts 

vs. BN hearts; # p<0,05 IPC vs. control experiment. 

 

The basal LVEDP was significantly lower in hearts of BNK rats than in those of BN 

rats. In non-preconditioned hearts of both strains, the LVEDP substantially decreased 

during the 60min of reperfusion. In both, BN and BNK hearts, IPC increased the post-

ischaemic LVEDP (Fig.74a). The basal LVEDP was significantly lower in hearts of 

BNK rats than in hearts of BN rats treated with spironolactone (Fig.74b). This 

between-strain difference in LVEDP was smaller than in hearts from untreated rats 

(Fig.74c). The post-ischaemic LVEDP was almost identical in preconditioned and 

non-preconditioned hearts of both strains. In hearts of BNK rats fed with high salt diet 

the basal LVEDP significantly increased. In hearts of BN rats, IPC caused a 

significant increase in post-ischaemic LVEDP in comparison to non-preconditioned 

hearts (Fig.74c). In hearts of BNK rats fed with high salt diet and treated with 

spironolactone the basal LVEDP was significantly higher than in hearts of BN rats. In 

non-preconditioned hearts of both strains, the post-ischaemic LVEDP continuously 

decreased. In both strains, IPC recovered the LVEDP during the reperfusion 

(Fig.74d). 
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 EFFECT OF SALT DIET AND SPIRONOLACTONE 
 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

min

LV
E

D
P

 (m
m

H
g) NS

NS SPI
HS
HS SPI

ischaemia

°

 +++ $

 
 

Fig.75a Time course of left ventricular end-diastolic pressure during control experiment of BN 

hearts after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, 

n=4. ° p<0,05 NS SPI vs. NS; +++ p<0,001 HS SPI vs. NS; $ p<0,05 HS SPI vs. NS SPI. 
 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

min

LV
E

D
P

 (m
m

H
g) NS

NS SPI
HS
HS SPI

 IPC       IPC       IPC ischaemia

+++
 §§§
$$$

+++
 § $ +++ +++ +++

++

 ##

+++
 § $

+++ $ +++ $
+++ +++

 
 

Fig.75b Time course of left ventricular end-diastolic pressure during IPC experiment of BN hearts 

after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. ## 

p<0,01 HS vs. NS; ++ p<0,01; +++ p<0,001 HS SPI vs. NS; § p<0,05; §§§ p<0,001 HS SPI vs. 

HS; $ p<0,05; $$$ p<0,001 HS SPI vs. NS SPI. 
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Fig.75c Time course of left ventricular end-diastolic pressure during control experiment of BNK 

hearts after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, 

n=4-7. ° p<0,05 NS SPI vs. NS; # p<0,05; ### p<0,001 HS vs. NS; + p<0,05 HS SPI vs. NS. 
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Fig.75d Time course of left ventricular end-diastolic pressure during IPC experiment of BNK 

hearts after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, 

n=4. ° p<0,05; °° p<0,01; °°° p<0,001 NS SPI vs. NS; # p<0,05; ### p<0,001 HS vs. NS; + 

p<0,05; +++ p<0,001 HS SPI vs. NS; §§§ p<0,001 HS SPI vs. HS. 
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In hearts of BN rats fed with high salt diet and treated with spironolactone the basal 

LVEDP was significantly increased. In non-preconditioned BN hearts, the post-

ischaemic LVEDP was higher in all experimental groups when compared with hearts 

from untreated rats (Fig.75a). In all hearts of BN rats IPC abolished the decrease of 

post-ischaemic LVEDP (Fig.75b). 

 

In hearts of BNK rats fed with high salt diet the basal LVEDP was significantly 

increased. In non-preconditioned BNK hearts, the post-ischaemic LVEDP was 

significantly higher under all experimental conditions (Fig.75c). Also in preconditioned 

hearts BNK rats treated with spironolactone the LVEDP was higher during the 

reperfusion period (Fig.75d). 

 

SUMMARY OF LEFT VENTRICULAR END-DIASTOLIC PRESSURE 
 

The hearts of kininogen-deficient BNK rats displayed significantly higher basal 

LVEDP than the hearts of BN control rats. Spironolactone increased LVEDP of 

hearts from BNK rats but not from BN rats. The LVEDP significantly increased in 

hearts of BNK rats fed with high salt diet. The most pronounced changes occurred in 

rats fed with high salt diet and simultaneously treated with spironolactone. In hearts 

of BNK rats, the basal LVEDP significantly increased. In hearts of BN rats, LVEDP 

significantly decreased. The LVEDP during the reperfusion period was always linked 

to the initial LVEDP. In non-preconditioned hearts of both strains 30min ischaemia 

caused a substantial decrease in LVEDP during the 60min of reperfusion. The post-

ischaemic decrease of LVEDP was attenuated by high salt diet as well as by 

spironolactone. Independently of experimental conditions, IPC recovered the post-

ischaemic LVEDP.  

 

4.6.4 MAXIMUM CONTRACTION VELOCITY (dp/dtmax) 
 

Maximum contraction velocity (dp/dtmax) was determined by means of an 

intraventricular balloon. 
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 COMPARISON OF BN AND BNK RATS 
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Fig.76a Time course of maximum contraction velocity during perfusion of BN and BNK hearts on 

standard diet, mean ± SEM, n=4-7. 
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Fig.76b Time course of maximum contraction velocity during perfusion of BN and BNK hearts after 

spironolactone upon standard diet, mean ± SEM, n=4. * p<0,05; ** p<0,01 BNK hearts vs. 

BN hearts; # p<0,05; ## p<0,01 IPC vs. control experiment. 
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Fig.76c Time course of maximum contraction velocity during perfusion of BN and BNK hearts on 

high salt diet, mean ± SEM, n=4. ** p<0,01; *** p<0,001 BNK hearts vs. BN hearts; # p<0,05 

IPC vs. control experiment. 
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Fig.76d Time course of maximum contraction velocity during perfusion of BN and BNK hearts after 

spironolactone upon high salt diet, mean ± SEM, n=4. * p<0,05; ** p<0,01 BNK hearts vs. 

BN hearts; # p<0,05; ## p<0,01 IPC vs. control experiment. 

 

Following ischaemia the contractility rapidly decreased already during the IPC 

periods. In hearts of BN rats, the negative inotropic effect of ischaemia was more 
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pronounced and the contractility remained reduced also during the reperfusion. In 

BNK hearts 30min ischaemia did not influence the post-ischaemic contractility 

(Fig.76a). In hearts of BN rats spironolactone inhibited negative inotropic effect of 

ischaemia that appeared in untreated rats. In hearts of BNK rats treated with 

spironolactone IPC had significant positive inotropic effect during IPC periods as well 

as during reperfusion (Fig.76b). In hearts of BN rats fed with high salt diet the basal 

contractility significantly increased. During IPC periods, the contractility substantially 

decreased. IPC mediated positive inotropic effects on post-ischaemic contractility of 

hearts from BN rats fed with high salt diet (Fig.76c). In hearts of BN rats fed with high 

salt diet and simultaneously treated with spironolactone the basal contractility 

significantly increased. In both strains IPC mediated positive inotropic effect during 

reperfusion (Fig.76d). 

 

 EFFECT OF SALT DIET AND SPIRONOLACTONE 
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Fig.77a Time course of maximum contraction velocity during control experiment of BN hearts 

after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. # 

p<0,05 HS vs. NS; § p<0,05 HS SPI vs. HS; $ p<0,05; $$ p<0,01 HS SPI vs. NS SPI. 
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Fig.77b Time course of maximum contraction velocity during IPC experiment of BN hearts after 

normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. # 

p<0,05; ### p<0,001 HS vs. NS; + p<0,05; ++ p < 0,01 HS SPI vs. NS; § p<0,05; §§ p<0,01 HS 

SPI vs. HS; $ p<0,05; $$$ p<0,001 HS SPI vs. NS SPI. 
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Fig.77c Time course of maximum contraction velocity during control experiment of BNK hearts 

after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4-7. 

° p<0,05; °° p<0,01 NS SPI vs. NS; + p<0,05 HS SPI vs. NS; $ p<0,05; $$ p<0,01 HS SPI vs. 

NS SPI. 
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Fig.77d Time course of maximum contraction velocity during IPC experiment of BNK hearts after 

normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4-6. ° 

p<0,05 °°° p<0,001 NS SPI vs. NS; # p<0,05 HS vs. NS; + p<0,05; +++ p<0,001 HS SPI vs. NS; 
§ p<0,05 HS SPI vs. HS; $ p<0,05 HS SPI vs. NS SPI. 

 
Although treatment with spironolactone caused negative inotropic effects on the 

myocardium of BN rats, the contractility remained unaffected by ischaemia (Fig.77a). 

High salt diet increased contractility that remained higher also during reperfusion if 

compared with untreated hearts. High salt diet significantly increased the post-

ischaemic contractility in preconditioned hearts of BN rats (Fig.77b). Treatment with 

both, high salt diet and spironolactone, mediated positive inotropic effects that 

significantly increased contractility also after 30min ischemia, particularly in 

comparison with hearts of rats treated with spironolactone. 

 

In hearts of kininogen-deficient BNK rats, 30min ischaemia did not influence 

contractility (Fig.77c). High salt diet mediated a significant increase in the basal 

contractility of hearts of BNK rats. On the contrary, spironolactone significantly 

reduced contractility, especially after 30min ischaemia. In pre-conditioned hearts of 

BNK rats, none of the experimental conditions influenced contractility during the 

reperfusion (Fig.77d). 
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SUMMARY OF MAXIMUM CONTRACTION VELOCITY 
 
The basal contractility was similar in hearts of untreated BN and BNK rats. IPC had 

negative inotropic effect in hearts of BN rats but not in those of BNK rats. Contractility 

remained unaffected by ischaemia in hearts of BN and BNK rats treated with 

spironolactone. High salt diet mediated positive inotropic effect, especially in 

preconditioned hearts of BN rats. 

 
4.6.5 MAXIMUM RELAXATION VELOCITY (dp/dtmin) 
 

Maximum relaxation velocity (dp/dtmin) was determined by means of an 

intraventricular balloon. 
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Fig.78a Time course of maximum relaxation velocity during perfusion of BN and BNK hearts on 

standard diet, mean ± SEM, n=4-7. * p<0,05 BNK hearts vs. BN hearts; # p<0,05; ## p<0,01 

IPC vs. control experiment. 
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Fig.78b Time course of maximum relaxation velocity during the perfusion of BN and BNK hearts 

after spironolactone upon standard diet, mean ± SEM, n=4. # p<0,05 IPC vs. control 

experiment. 
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Fig.78c Time course of maximum relaxation velocity during perfusion of BN and BNK hearts on 

high salt diet, mean ± SEM, n=4. *** p<0,001 BNK hearts vs. BN hearts; # p<0,05 IPC vs. 

control experiment. 
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Fig.78d Time course of maximum relaxation velocity during the perfusion of BN and BNK hearts 

after spironolactone upon high salt diet, mean ± SEM, n=4. * p<0,05; ** p<0,01 BNK hearts 

vs. BN hearts; # p<0,05 IPC vs. control experiment. 

 

Under standard conditions the hearts of BNK rats displayed a higher rate of 

relaxation than those of BN rats. In both strains, IPC mediated negative lusitropic 

(affecting rate of relaxation) effects (Fig.78a). In both strains, spironolactone 

decreased the basal rate of relaxation. In hearts of BN rats, spironolactone abolished 

differences in the post-ischaemic maximum relaxation velocity between 

preconditioned and non-preconditioned hearts. In hearts of BNK rats, IPC mediated 

positive lusitropic effect, already during the IPC periods (Fig.78b). In hearts of BN 

rats fed with high salt diet the basal relaxation velocity significantly increased. IPC 

was able to recover the rate of relaxation after ischaemia, even if the dp/dtmin 

markedly decreased during the IPC (Fig.78c). The basal rate of ventricular relaxation 

was identical in rats of both strains fed with high salt diet and treated with 

spironolactone. The maximum relaxation velocity significantly decreased during the 

IPC periods in BN hearts but not in BNK hearts. IPC mediated positive lusitropic 

effect in hearts of both strains (Fig.78d). 
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Fig.79a Time course of maximum relaxation velocity during control experiment of BN hearts after 

normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. ° 

p<0,05 °° p<0,01 NS SPI vs. NS; $ p<0,05; $$$ p<0,001 HS SPI vs. NS SPI. 
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Fig.79b Time course of maximum relaxation velocity during IPC experiment of BN hearts after 

normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. ° 

p<0,05; °° p<0,01; °°° p<0,001 NS SPI vs. NS; # p<0,05 HS vs. NS; §§ p<0,01 HS SPI vs. HS; $ 

p<0,05; $$$ p<0,001 HS SPI vs. NS SPI. 
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Fig.79c Time course of maximum relaxation velocity during control experiment of BNK hearts 

after normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4-7. 

° p<0,05; °°° p<0,001 NS SPI vs. NS; $ p<0,05; $$$ p<0,001 HS SPI vs. NS SPI. 
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Fig.79d Time course of maximum relaxation velocity during IPC experiment of BNK hearts after 

normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4-6. °° 

p<0,01 NS SPI vs. NS; # p<0,05 HS vs. NS; + p<0,05; +++ p<0,001 HS SPI vs. NS; $ p<0,05; $$$ 

p<0,001 HS SPI vs. NS SPI. 
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In hearts of BN rats fed with high salt diet the basal rate of ventricular relaxation 

increased. In hearts of rats treated with spironolactone the maximum relaxation 

velocity was significantly reduced during the whole perfusion period but it was not 

reduced after ischaemia as in other experimental groups of BN hearts (Fig.79a). Also 

in the preconditioned hearts of BN rats treated with spironolactone the most negative 

lusitropic effects in comparison with untreated rats was observed. In general, IPC 

mediated positive lusitropic effects in all BN hearts. High salt diet mediated significant 

increase in dp/dtmin during the whole perfusion (Fig.79b). In BNK hearts, treatment 

with spironolactone significantly reduced both, the pre-ischaemic and post-ischaemic 

rate of ventricular relaxation (Fig.79c). In BNK rats fed with high salt diet and 

simultaneously treated with spironolactone a positive lusitropic effects was observed. 

These effects were more pronounced following IPC (Fig.79d). 

 

SUMMARY OF MAXIMUM RELAXATION VELOCITY 
 
In hearts form kininogen-deficient BNK rats, the basal relaxation velocity was 

significantly reduced. Hearts from BN rats but BNK rats fed with high salt diet 

displayed an increase in the rate of relaxation. Spironolactone mediated the most 

negative lusitropic effects in both strains. Treatment with spironolactone and high salt 

diet mediated negative lusitropic effect in hearts of BN rats and positive lusitropic 

effect in hearts of BNK rats. In hearts of untreated rats, IPC did not alter the post-

ischaemic rate of ventricular relaxation. In general already the first short ischaemic 

stimulus caused an intense negative lusitropic effect. The decrease was more 

pronounced in hearts of BN rats and was reversed by spironolactone in hearts of 

BNK rats. Positive lusitropic effects during reperfusion were observed in 

preconditioned hearts of BN rats but not in those of BNK rats fed with high salt diet. 

Additional treatment with spironolactone mediated significant positive lusitropic 

effects in preconditioned hearts of BNK rats but not in those of BN rats. 

 
4.6.6. CORONARY FLOW 
 

Coronary flow (CF) was determined by means of the perfusion controller. The values 

reflected the action of the peristaltic pump that was adjusted to the constant 

perfusion pressure of 65mmHg. 
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 COMPARISON OF BN AND BNK RATS 
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Fig.80a Time course of coronary flow during perfusion of BN and BNK hearts on standard diet, 

mean ± SEM, n=4-6. * p<0,01 BNK hearts vs. BN hearts. 
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Fig.80b Time course of coronary flow during perfusion of BN and BNK hearts after spironolactone 

upon standard diet, mean ± SEM, n=4. 
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Fig.80c Time course of coronary flow during perfusion of BN and BNK hearts on high salt diet, 

mean ± SEM, n=4. # p<0,05 IPC vs. control experiment. 
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Fig.80d Time course of coronary flow during perfusion of BN and BNK hearts after spironolactone 

upon high salt diet, mean ± SEM, n=4. 

 

In both strains the initial coronary flow was identical. The post-ischaemic coronary 

flow was significantly higher in hearts of BNK rats than in those of BN rats. IPC did 

not alter the coronary flow in any group (Fig.80a). In hearts of BNK rats, treatment 

with spironolactone slightly increased basal and post-ischaemic coronary flow. IPC 
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mediated a moderate increase in the post-ischaemic coronary flow in hearts of BN 

rats but not in those of BNK rats (Fig.80b). 

 

High salt diet abolished all differences in the coronary flow between the strains and 

between preconditioned and non-preconditioned hearts (Fig.80c). In hearts of BNK 

rats fed with high salt diet and simultaneously treated with spironolactone the basal 

coronary flow significantly increased. Moreover, coronary flow was significantly 

higher already during IPC periods and remained higher during the reperfusion when 

compared with hearts of BN rats. Following IPC, coronary flow increased in hearts of 

BNK rats but not in those of BN rats (Fig.80d). 

 

 EFFECT OF SALT DIET AND SPIRONOLACTONE 
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Fig.81a Time course of coronary flow during control experiment of BN hearts after normal and high 

salt diet in presence or absence of spironolactone, mean ± SEM, n=4. + p<0,05 HS SPI vs. 

NS; $$$ p<0,001 HS SPI vs. NS SPI. 
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Fig.81b Time course of coronary flow during IPC experiment of BN hearts after normal and high salt 

diet in presence or absence of spironolactone, mean ± SEM, n=4. + p<0,05; ++ p<0,01; +++ 

p<0,001 HS SPI vs. NS; § p<0,05; §§ p<0,01; §§§ p< 0,001 HS SPI vs. HS. 
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Fig.81c Time course of coronary flow during control experiment of BNK hearts after normal and 

high salt diet in presence or absence of spironolactone, mean ± SEM, n=4-6. 
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Fig.81d Time course of coronary flow during IPC experiment of BNK hearts after normal and high 

salt diet in presence or absence of spironolactone, mean ± SEM, n=4-5. § p<0,05 HS SPI vs. 

HS. 

 

In hearts of BN rats, treatment with spironolactone significantly decreased the initial 

coronary flow (Fig.81a). This effect was more pronounce in rats fed with high salt 

diet. IPC mediated further reduction of the post-ischaemic coronary flow (Fig.81b). In 

hearts of BNK rats, any of the experimental conditions influenced the basal coronary 

flow (Fig. 81c). High salt diet slightly decreased the post-ischaemic coronary flow in 

preconditioned BNK hearts (Fig.81d). 

 

SUMMARY OF CORONARY FLOW 
 

The basal coronary flow was identical in hearts of BN and BNK rats. In hearts of BNK 

rats any experimental condition altered the coronary flow. In hearts of BN rats 

treatment with spironolactone slightly reduced coronary flow. Spironolactone in 

combination with high salt diet significantly decreased coronary flow. The post-

ischaemic coronary flow markedly increased during the first minutes of reperfusion 

but within 15min decreased to initial pre-ischaemic levels. Hearts of untreated rats of 

both strains showed no response to IPC. In hearts of BN rats fed with high salt diet 

and additionally treated with spironolactone IPC significantly reduced the post-

ischaemic coronary flow. 
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4.6.7. CREATINE KINASE ACTIVITY IN CORONARY EFFLUENT 
 

The measurement of the creatine kinase (CK) activity was performed in order to 

evaluate cardiac damage caused by ischaemia. Creatine kinase was measured in 

the coronary effluent that was collected during the perfusion. The activity of creatine 

kinase was determined spectrophotometrically at 340 nm after an enzymatic 

reaction. 

 

 COMPARISON OF BN AND BNK RATS 
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Fig.82a Time course of creatine kinase activity during perfusion of BN and BNK hearts on standard 

diet, mean ± SEM, n=4. * p<0,01; ** p<0,01; *** p<0,001 BNK hearts vs. BN hearts; # p<0,05 

IPC vs. control experiment. 
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Fig.82b Time course of creatine kinase activity during perfusion of BN and BNK hearts after 

spironolactone upon high salt diet, mean ± SEM, n=4. # p<0,05 IPC vs. control experiment. 
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Fig.82c Time course of creatine kinase activity during perfusion of BN and BNK hearts on high salt 

diet, mean ± SEM, n=4. * p<0,01 BNK hearts vs. BN hearts; # p<0,05; ## p<0,01 IPC vs. 

control experiment. 

 



RESULTS 

 182 

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130

min

C
K

 (U
/l)

BN CO
BN IPC
BNK CO
BNK IPC

#

#

#

#
# #

*##

*

*

ischaemia IPC         IPC        IPC

 
 

Fig.82d Time course of creatine kinase activity during perfusion of BN and BNK hearts after 

spironolactone upon high sat diet, mean ± SEM, n=4. * p<0,05 BNK hearts vs. BN hearts; # 

p<0,05 IPC vs. control experiment. 

 

Initial creatine kinase activity was slightly higher in coronary effluent of hearts of BNK 

rats showing that these animals are more sensitive to ischaemia or cardiac damage 

caused during the surgical procedure. In hearts of BNK rats ischaemia significantly 

increased the creatine kinase activity and IPC was even more detrimental, according 

to the creatine kinase activity. In untreated hearts of BN rats ischaemia caused a 

small increase in the creatine kinase activity (Fig.82a). In hearts of both strains 

treatment with spironolactone was linked with a marked increase in creatine kinase 

activity. In hearts of spironolactone treated BN and BNK rats IPC mediated protective 

effects on myocardium. Nevertheless, this effect may not be relevant as the levels of 

creatine kinase activity were significantly higher than in hearts of untreated rats 

(Fig.82b). In hearts of BN rats fed with high salt diet an increase in post-ischaemic 

creatine kinase activity was found. In hearts of BNK rats high salt diet mediated 

positive myocardial effects as the creatine kinase activity was markedly reduced in 

both, preconditioned and non-preconditioned hearts (Fig.82c). In hearts of both 

strains fed with high salt diet and treated with spironolactone a substantial increase in 

the post-ischaemic creatine kinase activity was observed. Although IPC showed to 

be protective and decreased the creatine kinase activity in these experimental 

groups, it was irrelevant at these creatine kinase activity levels (Fig.82d). 
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Fig.83a Time course of creatine kinase activity during control experiment of BN hearts after 

normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. ° 

p<0,05; °° p<0,01; °°° p<0,001 NS SPI vs. NS; # p<0,05 HS vs. NS; + p<0,05; ++ p<0,01; +++ 

p<0,001 HS SPI vs. NS; § p<0,05; §§ p<0,01; §§§ p< 0,001 HS SPI vs. HS. 
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Fig.83b Time course of creatine kinase activity during IPC experiment of BN hearts after normal 

and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. ° p<0,05; °° 

p<0,01; °°° p<0,001 NS SPI vs. NS; # p<0,05 HS vs. NS; + p<0,05; +++ p<0,001 HS SPI vs. NS; 
§ p<0,05 HS SPI vs. HS. 
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Fig.83c Time course of creatine kinase activity during control experiment of BNK hearts after 

normal and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. °°° 

p<0,001 NS SPI vs. NS; # p<0,05; ## p<0,01 HS vs. NS; § p<0,05; §§ p<0,01; §§§ p< 0,001 HS 

SPI vs. HS. 
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Fig.83d Time course of creatine kinase activity during IPC experiment of BNK hearts after normal 

and high salt diet in presence or absence of spironolactone, mean ± SEM, n=4. ° p<0,05 NS 

SPI vs. NS; # p<0,05 HS vs. NS; § p<0,05 HS SPI vs. HS. 
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In hearts of BN rats fed with high salt diet and treated with spironolactone the initial 

creatine kinase activity significantly increased. The post-ischaemic creatine kinase 

activity significantly increased in all experimental groups when compared with hearts 

of untreated BN rats (Fig.83a). Although IPC reduced creatine kinase activity in each 

experimental group, it was still too high to be judged as protective (Fig.83b). 

 

Also in hearts of BNK rats spironolactone significantly increased the creatine kinase 

activity. High salt diet mediated even protective effects, as the creatine kinase activity 

was significantly reduced if compared with hearts of untreated rats (Fig.83c). IPC 

modestly reduced the post-ischaemic creatine kinase activity in hearts of all treated 

BNK rats (Fig.83d). 

 

SUMMARY OF CREATINE KINASE ACTIVITY 
 

The hearts of kininogen-deficient BNK rats displayed higher initial creatine kinase 

activity than the hearts of BN rats. The hearts of untreated BN rats were significantly 

less damaged than the hearts of BNK rats. Furthermore, hearts of untreated BNK 

rats were even more injured after IPC by additional ischaemic stimuli. In hearts of 

BNK rats fed with high salt diet the creatine kinase displayed lower levels. The most 

striking results revealed that treatment with spironolactone might be deleterious to 

the myocardium. It may suggest that aldosterone exerts cardioprotective actions 

following ischaemia. 
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5. DISCUSSION 
 

The kallikrein-kinin system is generating the vasodilating peptides bradykinin and 

kallidin by the proteolytic enzymes plasma and tissue kallikreins, respectively, from 

precursor proteins HMW and LMW kininogens. The importance of the KKS has been 

discussed in the development of salt sensitive hypertension. Furthermore, the KKS 

has been shown to act cardioprotective, especially during ischaemic preconditioning. 

The development of mutant BNK rats, which have a congenital deficiency in plasma 

kininogens and a lower level of plasma prekallikrein, has enabled investigation of the 

role of KKS in these issues. 

 

Although BNK rats have already been extensively studied, we have revised and 

completed previous results, especially after having detected KLP (KAL equivalent) in 

rats (Hilgenfeldt et al., 2005). The KAL/KLP specific antiserum developed in our 

laboratory (Hilgenfeldt et al., 1995) provided a good tool to analyse the levels of BK 

and KLP independently, not only in kininogen-deficient BNK rats but also in wild type 

BN rats. Furthermore, the fact that the deleterious effects of Na+ accumulation 

induced either by higher Na+ intake or aldosterone following Ang II infusion were 

entirely abolished by spironolactone (Majima and Katori, 1995), has inspired us to 

investigate the precise role of aldosterone in BNK rats. 

 

EXPERIMENTAL DESIGN 

 

The following experiments were designed in order to compare the kininogen-deficient 

BNK rats with the BN control rats. The primary experimental group (NS) of both rat 

strains remained without any treatment. The rats were given standard diet (0,5% 

NaCl) and served for general characterization and comparison of both strains. In the 

second experimental group (NS SPI) both rat strains were treated with 

spironolactone (20mg/day) for 10 days. This experiment should describe basic 

effects of spironolactone in both strains under standard conditions. In the third 

experimental set the BN and BNK rats (HS) were fed with a high salt diet (5% NaCl) 

for 10 days. These experiments should investigate the handling and actions of Na+ in 

both strains under conditions of increased salt intake. In the fourth experimental 

group (HS SPI) both rat strains were given high salt diet (5% NaCl) and 
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simultaneously treated with spironolactone (20mg/day) for 10 days. This combination 

should preferentially characterize local effects of spironolactone under conditions of 

high Na+ intake when aldosterone levels are significantly diminished. 

 

Besides general characterization of experimental animals, we have focused on the 

characterization of the KKS, ET-1 and corticoid hormones in plasma, urine and 

relevant tissues. All these hormonal systems were found to play important role in 

cardiovascular diseases. Additionally, functional cardiac parameters were assessed 

in isolated rat hearts. Subsequently, the effects of ischaemic preconditioning in 

reperfused heart following 30min of global ischaemia were investigated. 

 

5.1. GENERAL DESCRIPTION OF BN AND BNK RATS 
 

It is generally accepted that under normal conditions the kininogen-deficient BNK rats 

show no apparent syndromes. Similarly, we found only moderate differences 

between BN and BNK rats. Due to different suppliers of both rat strains the body 

weight of BNK rats was slightly higher than that of BN control rats. The weight 

difference was also reflected in a higher heart weight and left kidney weight of BNK 

rats. The BNK rats excreted slightly more urine than BN rats, which originated in a 

higher water intake. Both rat strains gained with a standard diet on average 12g of 

body weight in 10 days. The basal mean blood pressure and heart rate, measured by 

tail cuff method, were slightly higher in BNK rats. 

 

Obviously, the analysis of the components of the plasma KKS revealed significant 

differences between the wild type BN rats and mutant BNK rats. Oh-ishi & colleagues 

(1982) described complete congenital deficiency in HMW and LMW kininogen in BNK 

rats. Consequently, negligible levels of kinins were observed in their plasma and 

urine. A point mutation of Ala163 to Thr in the common part of the gene coding for 

both kininogens was found to be responsible for a defective secretion of HMW and 

LMW kininogens from hepatocytes of BNK rats (Hayashi et al., 1993). On the 

contrary to other investigators (Majima et al., 1991) we were able to detect both, 

HMW and LMW kininogens also in BNK rats, possibly due to the very careful 

handling of the samples and our very specific RIA. Of course, in BNK rats both 

plasma kininogens were substantially reduced. The levels of plasma HMW kininogen 
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were 35-fold lower so as the levels of LMW kininogen were 10-fold lower in BNK rats 

than in BN rats. 

 

Kininogens were determined indirectly. BK was measured after the kininogens were 

digested with trypsin. The digestion conditions were optimised to avoid production of 

T-kinin from T-kininogen (Majima et al., 1991). Trypsin is specific for the cleavage of 

peptide bonds after Lys and Arg. Similarly to HMW kininogen, Arg is the BK 

preceding amino acid in the LMW kininogen sequence. Therefore the method should 

be equally sensitive to both kininogens. However, the LMW deficiency was less 

pronounced than that of HMW kininogen. Unfortunately, there is not great knowledge 

about the localisation and function of LMW kininogen in plasma. Lower levels of 

LMW kininogen in plasma may be attributed either to higher tissue kallikrein activity 

or to higher occurrence of LMW kininogen in a bound form. 

 

The measurements of plasma kallikrein activity revealed a 2-fold reduction in BNK 

rats in comparison to BN rats. This impairment originated in the kininogen deficiency. 

The HMW kininogen acts as a carrier protein for plasma prekallikrein (Mandle et al., 

1976). Lower HMW kininogen levels attenuated the binding of plasma prekallikrein 

and uncomplexed plasma prekallikrein was unstable and accounted for the reduced 

concentration of plasma kallikrein. In comparison to the HMW kininogen deficiency 

the range of plasma kallikrein activity reduction in BNK rats was markedly smaller. 

We may suggest that under normal conditions not all HMW molecules transport a 

molecule of prekallikrein. The low levels of HMW kininogen in BNK rats were 

definitely not sufficient to bind all prekallikrein molecules. Plasma kallikrein was found 

to have a high affinity to HMW kininogen. Similarly, the LMW kininogen is the primary 

substrate for tissue kallikrein. Unfortunately, as no specific substrate for tissue 

kallikrein in plasma is available, we were unable to analyse its activity. 

 

The deficiency in kininogens and plasma kallikrein led to a significant reduction of 

kinin levels in plasma of BNK rats. Plasma BK, a product of the plasma kallikrein 

cleavage of the HMW kininogen, reached in BNK rats only 35% of BK in BN control 

rats. This result is rather consistent with the plasma kallikrein activity that was 

reduced in a similar order than with the amount of the HMW kininogen. It 
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demonstrates that not the amount of the substrate but the activity of plasma kallikrein 

is essential for the kinin generation. 

 

One of the reasons why we were interested in the revision of the formal data, not 

only of BNK rats, was the discovery of kallidin-like-peptide (KLP) (Hilgenfeldt et al., 

2005). Originally, it was believed that rats are able to generate only BK. The rat 

sequence of LMW kininogen displays little differences, especially in the kinin domain. 

It contains an Arg residue instead of a Lys in the human molecule in front of the BK 

sequence (Fig.6). By means of our highly specific antiserum for the KAL molecule, 

we could easily detect KLP in rat plasma and urine. Lys and Arg, exchanged in the 

amino-terminus, are both basic amino acids similar in their properties, which provided 

a cross-reaction of KAL-antiserum with KLP of about 80%. 

 

However, the isolation of KLP turned out to be extremely difficult. Due to Arg, the 

basic properties of KLP in comparison to KAL are more pronounced. This fact 

accounted for the complications during the sample handling and measurements. The 

urine and plasma samples had to be treated very carefully. Under usual conditions in 

pH range from neutral to acidic KLP is charged and easily and quickly disappears by 

retention to the material walls. Furthermore, the half time of kinins in biological 

materials was described to be very short. Therefore the urine samples were collected 

on ice bath to reduce the enzymatic degradation. Similarly, plasma was collected into 

pre-chilled tubes. After the collection they were aliquoted to avoid repeated thawing 

and freezing. The samples were immediately frozen and were kept always on ice 

during analysis. Furthermore, the samples were in contact only with siliconized 

material or with special low retention tubes that helped to reduce the adsorption to 

the walls. Both, this very special handling and specific antisera that were able to 

distinguish between BK and KAL (KLP) (Hilgenfeldt et al., 1995) were essential for 

the detection of KLP in rat. 

 

It is assumed that KLP is cleaved from LMW kininogen by tissue kallikrein. 

Unfortunately, as mentioned above, we have no information about the activity of 

tissue kallikrein in plasma. These data would help to understand the origin of plasma 

KLP. In BN control rats the KLP levels were approximately 10-fold higher than those 

of BK. Although we have not determined or specifically inhibited the enzymatic 
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degradation of kinins we believe that due to the careful sample handling the data 

reflect the physiological important levels of both kinins. According to previously 

reported amounts of HMW kininogen, plasma kallikrein and BK we suggest that the 

activity of tissue kallikrein responsible for the generation of KLP may be significantly 

higher than that of plasma kallikrein. Due to the lack of specificity of the most kinin 

assays the distinct physiological roles of KAL and BK were not described until now. 

On the basis of our results it seems likely that for most physiological functions KLP is 

more important than BK. In BNK rats the plasma KLP levels reached 65% of the 

levels of BN control rats. The tissue kallikrein activity should not be affected by the 

kininogen-deficiency, which may explain the smaller difference in the amount of KLP 

between both strains. If the hypothesis were true that KLP is the major 

physiologically important kinin it would help to explain no apparent syndromes in 

BNK rats under normal conditions. 

 

Measurements of the components of KKS in urine showed mostly no significant 

differences between BN and BNK rats. In contrast to other investigators, we were 

able to detect urinary kininogen as well as kinins in urine of BNK rats. Kininogens 

and kinins found in urine are supposed to be of renal origin. Kinins filtered from the 

glomeruli are probably destroyed immediately in the proximal tubules where the 

kininases, e.g. NEP and ACE are located. The collecting tubules are equipped with 

full repertoire of the tissue KKS, which is distinct from plasma KKS (Majima and 

Katori, 1995). The LMW kininogen is synthesised in the principal cells of the 

collecting duct and is believed to be the main source of renal kinins. Similarly, tissue 

kallikrein was found in adjacent connecting tubule cells. The close proximity of these 

cells suggests that kinins are generated within the lumen of the initial segment of 

collecting duct (Figueroa et al., 1988). 

 

It seems probable that the defect in secretion of kininogens is relevant only for the 

hepatic cells and therefore the kininogen-deficiency is present only in plasma. As 

typical secretory proteins kininogens undergo glycosylation prior to secretion from 

hepatic cells (Bhoola et al., 1992). Whether the mutation to Thr163 in the kininogen 

molecule of BNK rats provides a new site for glycosylation or it impairs original 

glycosylation hereby it may influence the kininogen secretion. The glycosylation 

depends on the enzymatic equipment of each cell. It is generally accepted that 
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glycosylation is not necessary for the secretion of proteins in different tissues. In case 

the renal LMW kininogen is secreted without a glycosylation this might be a possible 

explanation for the normal kininogen levels in urine of BNK rats although the 

kininogen molecule is mutated. The measurement of urinary LMW kininogen 

revealed comparable levels in both strains. Similarly, no major differences were 

found in the activity of urinary kallikrein. In BNK rats the kallikrein activity was slightly 

higher which correlated with the moderate increase in urine volume. Also Majima & 

colleagues (1993) found such a correlation. Their interpretation suggested that an 

increase in urinary kallikrein activity was accompanied with an increase in urine 

volume. Anyway the regulation of urine volume is a very complex mechanism and we 

believe it cannot be so strongly influenced by only one component. On the contrary, it 

seems likely that the urinary kallikrein activity depends on the urine volume. In vitro 

experiments revealed that K+ is one of the few regulators that release renal kallikrein 

(Lauar et al., 1982). Our previous data showed a slightly lower urinary excretion of K+ 

in BNK rats than in BN rats, which suggest an increased extracellular K+ levels in 

BNK rats and may be linked with the higher urinary kallikrein activity. 

 

Consequently, no significant differences were found in BK urinary excretion of both 

strains. Interestingly, urinary KLP was detectable in BNK rats but not in BN rats. It is 

generally accepted that KAL/KLP is the representative kinin of tissue KKS. Because 

any component of the plasma KKS is present in the urine we suggest that urinary BK 

is a metabolite of KAL/KLP generated by urinary aminopeptidases. Unfortunately, 

there are very little experimental data about the differences between BK and KAL. 

This was in part caused by the availability of only unspecific commercial assays for 

kinins. BK and KAL are usually detected together but the data are often presented as 

BK. Furthermore, theoretically KAL could be investigated only in human or mice 

because it was believed that rats generate only BK. Consequently, almost no data 

about rat urinary aminopeptidases exist that could be responsible for the cleavage of 

N-terminal Arg. We may only suggest that BNK rats have different renal enzymatic 

equipment, rather the KLP degrading than the KLP generating system. 

 

Supplementary investigations revealed no between-strain differences in the 

expression of the renal B2 receptor (data not shown) that is responsible for the most 

physiological actions of kinins. B2 receptor was shown to be constitutively expressed 
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and highly conserved (Bachvarov et al., 2001). KAL and BK exert equal affinity to the 

B2 receptor. We suggest that rat KLP have similar properties in binding to the B2 

receptor, but precise data are not available yet. 

 

The KKS system counterbalances the effects of the RAAS. The RAAS is known to be 

of great importance in many physiological and pathological situations, e.g. regulating 

blood pressure and salt homeostasis. In fact, it was awaited that the KKS is of similar 

importance. In recent years the scientific progress provided the possibility to work 

with knockout mice lacking the B1, B2 or both receptors. Surprisingly, the phenotype 

of these animals did not notably differ from that of wild type animals (Bader, 2003). At 

present there is a general believe that the KKS is not involved in the regulation of 

blood pressure under normal conditions but is activated in pathological states, e.g. at 

an excess of salt intake and inflammation. Anyway this finding has left some doubts 

about the role and importance of kinins. 

 

Kinins were shown to inhibit Na+ reabsorption and accelerate its urinary excretion 

whereby antagonising the renal effects of aldosterone. Therefore we focused on the 

investigation of aldosterone and its precursor molecules in kininogen-deficient BNK 

rats. Deoxycorticosterone (DOC) is the precursor molecule for the synthesis of 

corticosterone and aldosterone. The conversion of corticosterone, which is the main 

glucocorticoid in rat, is catalysed by 11ß-hydroxylase, encoded by CYP11B1 gene. 

Aldosterone is synthesised in three sequential steps by aldosterone synthase, 

encoded by CYP11B2 gene. Both enzymes are members of the cytochrome P450 

family and in rat are to 88% homologous. Recently, local steroid synthesis was 

described in the brain tissue, which is believed to be relevant in hypertensive states. 

Still controversial remains the existence of aldosterone synthase and aldosterone 

generation in the cardiac tissue. 

 

We have analysed the concentration of DOC, corticosterone and aldosterone in 

plasma, urine and brain tissue. These data revealed only moderate differences 

between BN and BNK rats under standard conditions. The DOC levels were slightly 

reduced in plasma, urine and brain of BNK rats. Basal corticosterone concentration 

was almost identical in all three sample types. Corticosterone represents the last 

molecule in the glucocorticoid synthesis. Its concentration is about 100 and 1000-fold 



DISCUSSION 

 193 

higher as that of DOC and aldosterone, respectively. Therefore a moderate alteration 

of its concentration would not be reflected in the final values. Majima et al. (1993, 

1994) showed in experiments with BNK rats that they are very sensitive to the 

actions of aldosterone antagonist spironolactone. Therefore we speculated whether 

BNK rats operate with higher aldosterone levels. On the contrary, the BNK rats 

displayed rather a modest reduction of urinary aldosterone in comparison with BN 

rats. None of the measurements in plasma, urine and brain revealed significant 

differences in aldosterone concentration between the BN and BNK rats.  

 

These results were based on measurement of the free fraction of these hormones. 

We investigated also the expression of genes coding for the 11ß-hydroxylase and 

aldosterone synthase in the adrenal gland. The most suitable method for the 

expression analysis is the detection and quantification of mRNA carrying the 

information about respective proteins. After the isolation the mRNA was reverse 

transcribed and a specific part of cDNA coding for the protein was quantified with aid 

of specific primers in a real-time PCR performed in LightCycler®. As already 

mentioned, the sequences of genes coding for these two enzymes are highly 

homologous. To ensure specificity, the primers used in the PCR were chosen 

according to the publication of Gomez-Sanchez (2004). According to Romero (2005) 

the primers were controlled for the specificity for each of the genes separately. The 

method of relative quantification is based on comparing expressions of a target gene 

and a housekeeping gene that is expressed in standard amounts under respective 

experimental conditions. Until recently, commonly used housekeeping genes were 

GAPDH or ß-actin. Experiences revealed that both of them are strongly regulated in 

common experiments. Furthermore they belong to a group of pseudogenes that are 

strongly present in genomic DNA, which can falsely influence the quantification. A list 

of new potential housekeeping genes was suggested by Roche, e.g. 18S, PBGD. It 

was shown that any gene can be up or down-regulated. Therefore it is necessary to 

prove the suitability of each housekeeping gene in every experiment. We used PBGD 

as the housekeeping gene, especially because the expression of this gene was in the 

same order of magnitude like those of 11ß-hydroxylase and aldosterone synthase. 

The stable expression of PBGD was tested in all experimental groups and neither 

spironolactone nor high salt diet altered its expression. Similarly to corticosterone 

levels, the expression of 11ß-hydroxylase, which is responsible for corticosterone 
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generation, was almost identical in both strains. Expression analysis of genes coding 

for aldosterone synthase revealed a moderate reduction in BNK rats. This result was 

consistent with the measurements of aldosterone that displayed a moderate 

reduction of aldosterone levels of BNK rats. 

 

Such a well-established method was necessary to be able to investigate the 

expression of aldosterone synthase in the cardiac tissue. Cardiac expression of 

aldosterone synthase was described to be extremely low in case that it at all exists. 

Similarly to Ye et al. (2005), we attempted to detect expression of the CYP11B2 gene 

using rat ventricles and atria of BN and BNK rats. On the contrary to the one-step 

RT-PCR performed by Ye et al. (2005), our two-step approach could increase the 

sensitivity of RT-PCR. Nevertheless, even that method failed to perform consistent 

and reproducible data. In our previous experiments with isolated rat hearts we could 

observe that the longer the heart was perfused the less aldosterone was found in the 

cardiac tissue. Consequently, we were able to detect eluted aldosterone in the 

coronary effluent in the beginning of the perfusion but later on its detection failed. We 

can agree that, however the CYP11B2 gene is not expressed or it exists at such a 

low levels, any physiological significance of local aldosterone synthesis in the cardiac 

tissue is extremely unlikely. 

 

The principal effector of the cellular response to mineralocorticoids is the 

mineralocorticoid receptor (MR). Although the MR primarily acts as a transcription 

factor recent evidence suggests that it may also mediate non-genomic activation of 

second messenger pathways. In addition there is a growing body of evidence that 

some actions of aldosterone may involve a receptor other than the MR (Fuller and 

Young, 2005). In 2004 new discoveries about a mutation of the MR in BN rats were 

published by Marissal-Arvy et al.. They found a Tyr to Cys substitution (Y73C) in the 

N-terminal part of the BN MR, a change from GGT to GGC in codon 221 leading to 

no amino acid substitution and an Asp to Gly (N487G) exchange. In vitro studies 

further revealed that the Y73C substitution induces greater transactivation of the MR 

by aldosterone and surprisingly by progesterone as well. Thus progesterone could 

substitute for aldosterone after adrenalectomy in BN rats. In vivo they found 

increased progesterone levels in BN rats that partially compensated for aldosterone 

in adrenalectomy. It was necessary to confirm or disconfirm such a MR mutation in 
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BN rats used in our experiments. Furthermore, we were interested whether the BNK 

rats share this mutation. Very recent data really confirmed respective mutations in 

the MR gene sequence of BN rats. Furthermore, we found an additional fourth 

mutation of Ala to Gly (A771G). In BNK rats the gene sequence coding for the MR 

shared the same mutations like that of BN rats but they displayed two other 

mutations in codon 632 and 636 leading to Val to Leu and His to Leu exchange 

respectively (Engel, 2006). The precise consequences of these mutations have to be 

investigated in binding studies. Theoretically, we may expect different MR properties 

in either strain.  

 

Generally, the classical MR shows the same high affinity for aldosterone and 

corticosterone. As the circulating levels of glucocorticoids are at least 100-fold higher 

than those of aldosterone Mihailidou and Funder (2005) tried to answer the question 

of how aldosterone can access MR in mineralocorticoid target tissues. The MR 

function is in part regulated at a prereceptor level. At least in epithelial tissues the MR 

is coexpressed with the enzyme 11ß-hydroxysteroid dehydrogenase (11ß-HSD2), 

which in rat metabolises corticosterone to 11-dehydrocorticosterone. The enzyme 

reduces intracellular glucocorticoid levels from about 100-fold those of aldosterone to 

about 10-fold. These data suggest that even in epithelial tissues where it is protected 

by 11ß-HSD2, the MR is occupied but not activated by glucocorticoids. When the 

enzyme is inhibited or deficient the glucocorticoid-MR complex is activated, possibly 

caused by decreased levels of NADH, which change the intracellular redox state and 

possibly activates other corepressors. Similarly, in tissues in which the MR is 

expressed in the absence of 11ß-HSD2 differential effects of corticosterone and 

aldosterone may be the result of interactions with ligand-specific coactivators. These 

observations indicate a degree of plasticity of the receptor allowing the conformation 

to be in part dictated by the ligand (Fuller and Young, 2005). 

 

Additionally to the KKS and corticoid hormones we investigated plasma and urinary 

levels of ET-1 in both rat strains. There are several known relationships between 

aldosterone and ET-1. ET-1 is a potent vasoconstrictor generated especially in 

endothelial cells. Furthermore, it is also produced by the heart, kidney and CNS. The 

synthesis and release of this peptide can be stimulated by many factors including 

Ang II and mineralocorticoids (Lüscher et al., 1993). ET-1 stimulates release of 
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aldosterone. Furthermore, ET-1 stimulates endothelial ACE activity whereby 

stimulating kinin degradation. The overall cardiovascular effect of endogenous ET-1 

depends on the balance between ETA and ETB mediated effects. Activation of 

vascular smooth muscle ETA receptors causes vasoconstriction and tends to elevate 

blood pressure. Activation of endothelial and renal ETB receptors promotes 

vasodilation and natriuresis and tends to decrease blood pressure. Locally produced 

ET-1 plays an important role in modulation of renal excretion of Na+ and water. ET-1 

blocks reabsorption of Na+ by inhibiting the tubular Na+/K+-ATPase activity in the 

proximal tubule and collecting duct and blocks the reabsorption of water in the 

collecting duct by inhibiting the effects of ADH on tubular osmotic permeability 

(Haynes and Webb, 1998). Plasma ET-1 levels are in picomolar range, lower than 

those required to evoke vasoconstriction. These concentrations may stem from the 

efficient clearance of this potential harmful peptide, mainly by ETB receptors localized 

within the lung, liver, and kidney as well as by NEP present in the renal, pulmonary, 

and vascular tissues (Abassi et al., 2001). We found that kininogen-deficient BNK 

rats have significantly higher plasma ET-1 levels than the BN rats. The excretion of 

urinary ET-1 was also increased but only moderately. Whether this between-strain 

difference originates in the misbalance of ETA and ETB receptors in BNK rats call for 

detailed investigation. 

 

All these findings opened us a new insight into the regulation of salt homeostasis in 

the kininogen-deficient BNK rats. Until now especially the role of the renal KKS was 

emphasized. The knowledge about the mutation in the MR and higher ET-1 levels in 

BNK demanded a careful revision of previous results. 

 

The kininogen-deficient BNK rats were extensively used in experiments investigating 

the mechanism of myocardial ischaemic preconditioning. Ischaemic preconditioning 

(IPC) was found to be the strongest protective mechanism against ischaemic injury. 

The understanding of these mechanisms would provide an access to a new spectrum 

of therapeutics treating myocardial infarction and cerebral stroke. After a series of 

experiments three most important candidates triggering the protection were found. 

Besides adenosine and the mediators from neural origin, e.g. noradrenaline and 

opioids, BK was described to be involved. Therefore the kininogen-deficient BNK rats 

should be a suitable and convenient experimental model for the investigation of the 
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role of kinins in IPC. The widespread usage of spironolactone as antihypertensive 

and its positive cardiovascular effects exceeding its diuretic potential suggested new 

roles of aldosterone in the cardiovascular system. On the basis of our recent 

knowledge about the MR in BN and BNK rats, we were interested in the cardiac 

consequences. Nevertheless, also increased levels of ET-1 in BNK rats may 

influence cardiac physiology. ET-1 has potent positive chronotropic and inotropic 

effects. It is a potent constrictor of coronary vessels, causing myocardial ischaemia 

and ventricular arrhythmias. The Langendorff model of isolated perfused heart 

served for the determination of basic cardiac parameters. Furthermore we have 

investigated the effects of 30min global ischaemia with or without IPC in hearts of 

both strains. 

 

In experiments with BNK rats Liu et al. (2000) showed that under normal conditions 

endogenous kinins play only a minor role in maintaining basal blood pressure and 

cardiac homeostasis. Basal cardiac hemodynamics and function as well as histology 

were not different from rats with intact KKS. A local KKS exists in the heart, which 

enables it to synthesise and release kinins (Nolly et al., 1994). Several studies 

showed that kinins are rapidly released from the heart during acute myocardial 

ischaemia. Recently, we could show that both BK and KLP are released during IPC 

from the rat heart and that the cardioprotective effect could be blocked by 

administration of a specific antiserum against KAL suggesting that KLP is the 

cardioprotective kinin in the rat heart (Liu et al., 2005). In vivo models of myocardial 

infarction and heart failure revealed no differences in myocardial ischaemia-

reperfusion injury between kininogen-deficient BNK rats and rats with intact KKS (Liu 

et al., 2000) However, in response to stimuli such as ischaemic preconditioning or 

administration of ACE inhibitors, the cardioprotective effect was almost abolished in 

BNK rats (Linz et al., 1996). These findings showed that increased release or 

decreased degradation of kinins might have profound cardioprotective significance. 

We have not explicitly investigated the cardiac KKS but according to our findings 

about the renal KKS it seems likely that the cardiac KKS is also not affected by the 

kininogen-deficiency in contrast to the plasma KKS and therefore comparable in both 

strains. In vivo the plasma KKS naturally contributes to the cardiac effects of kinins 

as the heart operates with a very high blood circulation. However, in in vitro 

Langendorff experiments of isolated hearts the plasma is removed and the heart is 
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perfused with a perfusion medium supplying only necessary ions and substrates. 

Accordingly, from this point of view we could determine rather the long-termed 

consequences of the plasma kininogen-deficiency on the myocardium. 

 

The basal heart rate of BNK rats was significantly lower than that of BN rats. On the 

contrary, the heart rate measured in vivo during the blood pressure measurement 

displayed a moderate elevation in BNK rats. As previously mentioned ET-1 exerts 

chronotropic effects and stimulates the activity of the sympathetic nervous system. 

Therefore the higher plasma ET-1 levels in BNK rats may be also responsible for the 

increased heart rate, besides for the higher blood pressure. In vivo the heart rate 

generated in the sinus node is controlled by the parasympathetic and sympathetic 

activity of the nervous system. In isolated hearts the innervation is abolished after the 

removing of the pericardium. Therefore the fall of the heart rate in BNK rats following 

the isolation of the heart may suggest a higher reactivity of BNK rats to sympathetic 

stimuli. Another explanation would be a higher sensitivity of BNK rat hearts to the 

ischaemic damage caused even during the short time of the heart isolation.  

 

Immediately after the first 5min stimulus of IPC the heart tried to supplement the 

missing substrates and the heart rate reflectively increased. After these short 

ischaemic insults the heart rate always returned to basal levels. Following 30min 

global ischaemia the heart rate immediately increased and after a stabilisation period 

remained slightly lower than the basal values. In non-preconditioned hearts the post-

ischaemic heart rate was similar in both strains. IPC showed to be protective in BN 

but not in BNK rat hearts. Indeed, the hearts of BN rats that underwent IPC displayed 

higher post-ischaemic heart rate than the non-preconditioned hearts, which was not 

found in BNK rats. In this context, higher heart rate could be considered as protective 

because it assures delivery of oxygen and substrates to the myocardium and 

particularly confirms the functionality of the sinus or AV nodes and also that of the 

cardiac conduction system. Nevertheless, it should be mentioned that higher heart 

rate, which also increases oxygen consumption, might be too high to allow sufficient 

substrate and oxygen distribution in post-ischaemic circumstances. 

 

The contractile function of the hearts was evaluated by dp/dtmax and dp/dtmin which 

represent the capacity of the left ventricle to contract during systole and its ability to 
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relax during diastole. Moreover, the left ventricular developed pressure (LVDP) and 

left ventricular end-diastolic pressure (LVEDP) were assessed. The BNK rat hearts 

were characterised by a higher LVDP and a lower LVEDP. Anyway the contractility 

was identical in both strains. The rate of the myocardial relaxation was significantly 

lower in BNK rats, which may have been partially responsible for the higher blood 

pressure in intact BNK rats. ATP depletion caused by ischaemia led to a decrease in 

the myocardial contractile function. After the onset of ischaemia the contractility 

rapidly decreased. In BNK rat hearts the dp/dtmax decreased to a lesser extent than in 

BN rat hearts and remained reduced also during the reperfusion period. Similarly, the 

LVDP was slightly higher in BNK rat hearts, probably due to the differences in the 

initial values. Ischaemia impaired also the rate of myocardial relaxation and the 

LVEDP. IPC turned out to be rather harmful as the contractility even more decreased 

in preconditioned BN rat hearts.  

 

The perfusions were performed at constant perfusion pressure, which is 

advantageous in experiments investigating the effects of ischaemia. The coronary 

arteries were allowed to autoregulate during the reperfusion according to the 

momentary demand of the ischaemic heart. The lacking oxygen and substrates were 

then compensated by an increase in the coronary flow. The basal coronary flow was 

identical in hearts of both rat strains. Immediately after the 30min ischaemia the 

coronary flow naturally increased as the heart tried to deliver more substrates. The 

later post-ischaemic coronary flow was higher in BNK rat hearts than in BN rat 

hearts, which actually described greater relaxation of the coronary arteries in BNK 

rats. We may only speculate about the molecular basis of this finding. This result is 

rather contradictory as kinins are substances with vasodilating properties. As 

mentioned above we believe that the BNK rats are comparably equipped with the 

cardiac KKS as the BN rats. It is known that ET-1 may also mediate vasodilation 

through ETB receptors on endothelial cells via generation of NO. Based on the 

findings that BNK rats displayed higher ET-1 levels this might be a possible 

explanation. Even though a prompt reperfusion is required to save the ischaemic 

myocardium, paradoxically, increased coronary flow may cause reperfusion injury, 

which may in part explain the worse response of BNK rat hearts to ischaemia. It is 

known that the ischaemic tissue releases mediators stimulating processes leading to 

tissue damage and necrosis. During the reperfusion these mediators are distributed 
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even to the healthy tissue and possibly initiate pathological processes as well. IPC 

did not alter the post-ischaemic coronary flow in any of the strains. In accordance, 

Baxter and Ebrahim (2002) reported that the cardiac response to IPC is not attributed 

to changes in coronary flow. 

 

The myocardial damage caused by ischaemia was assessed by the measurement of 

creatine kinase (CK) activity in the coronary effluent. CK is an intracellular enzyme 

that is secreted after tissue damage. It is routinely used for the diagnosis of 

myocardial infarction. The CK activity was significantly higher in the effluent of BNK 

rat hearts than in that of BN rat hearts. It suggests that the BNK rat hearts were 

indeed more sensitive to ischaemia and were more injured already during the 

isolation of the heart, which may correlate with the increased post-ischaemic 

coronary flow of BNK rats. BN rat hearts displayed only small ischaemic damage that 

was slightly improved by IPC. On the contrary, preconditioned BNK rat hearts 

displayed even larger ischaemic damage than the non-preconditioned ones. The 

release of creatine kinase from the tissue is depending on the cellular integrity. 

Therefore, it seems probable that the BN and BNK rat hearts may also differ in their 

microstructure. 

 

These results are in accordance with previous reports on BNK rats showing 

diminished response to myocardial IPC of these rats. So far, these effects were 

explained by the lack of functional KKS in BNK rats. We suggest that the cardiac 

KKS is similar in both strains. The question is to which extent the deficient plasma 

KKS influenced the cardiac tissue. We could show that there may be other mediators 

that could contribute to the differences between BN and BNK rats, not only in 

mediating the effect of IPC. 

 

5.2. EFFECTS OF SPIRONOLACTONE IN BN AND BNK RATS 
 

Previous experiments showed that the kininogen-deficient BNK rats display 

increased sensitivity to the actions of spironolactone (Majima et al., 1993 and 1994). 

Spironolactone is a specific antagonist of aldosterone acting primarily through 

competitive binding to the MR. This mechanism of action could be confirmed by the 

measurements of corticoid hormones. Although recent investigations suggest rather 
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wide occupancy of the MR by glucocorticoids we found that aldosterone levels in 

plasma, urine and brain tissue substantially increased following spironolactone 

treatment. The antiserum used in aldosterone assay displayed no crossreactivity with 

spironolactone. Therefore these data demonstrate that aldosterone was replaced 

from its binding sites at the MR, which increased the free fraction of aldosterone that 

was then assessed. In case of MR occupancy by glucocorticoids, aldosterone would 

not increase in this order of magnitude. 

 

We found that following spironolactone plasma and urinary aldosterone was 

significantly higher in BNK rats in comparison to BN rats. Under standard conditions 

the expression of aldosterone synthase and aldosterone levels were rather lower in 

BNK than in BN rats. In accordance with the mutation analysis of the renal MR in BN 

and BNK rats it opens the possibility of a different sensitivity of the MR to 

aldosterone. The physiological consequence of these additional mutations has to be 

determined in binding studies. Furthermore, additional expression analysis revealed 

an overexpression of the MR in kidneys of BNK rats (Engel, 2006). These findings 

may explain not only the higher levels of aldosterone in BNK rats following 

spironolactone but also the differences between BN and BNK rats that could not be 

accounted for the kininogen-deficiency. 

 

Spironolactone caused a modest increase in the expression of aldosterone synthase 

in adrenal tissue. In BNK rats, similarly to standard conditions, the expression was 

slightly lower. Spironolactone also known as K+ sparing diuretics increases 

extracellular K+ levels. Production of aldosterone is acutely sensitive to very small 

changes in extracellular K+ concentrations. Increased extracellular K+ concentration 

causes a membrane depolarisation leading to the opening of voltage depending Ca+ 

channels and a rapid rise in Ca2+ concentration.  This leads to the activation of 

calmodulin and Ca2+/calmodulin-dependent protein kinases, which phosphorylate 

transcription factors that stimulate CYP11B2 gene transcription (Spat & Hunyady, 

2004). 

 

As the BNK rats overexpress the MR it seems likely that the additional mutations of 

the receptor alter the signalling cascade, possibly by changing the affinity to various 

steroids, which leads to different effects of spironolactone in these rats. 
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Spironolactone caused also a significant increase in DOC levels in urine, plasma and 

brain tissue of BNK rats. In BN rats the levels of DOC were not altered. DOC is a 

potential ligand on the MR. According to the mutation and overexpression of the MR 

in BNK rats, these results suggest that the excess of MR was occupied, besides 

aldosterone, also by DOC. Spironolactone significantly down-regulated the 11ß-

hydroxylase to the same extent in both strains. By contrast, in both strains we found 

increased levels of corticosterone following spironolactone treatment. In BNK rats 

corticosterone levels in urine, plasma and brain tissue were significantly higher than 

those of BN rats. Spironolactone can also act as a weak glucocorticoid receptor (GR) 

antagonist and therefore may be responsible for the increased corticosterone levels 

in BN rats. Nevertheless, although we have not investigated the GR in these rats the 

higher corticosterone levels of BNK rats may also refer to the higher number of MR in 

this strain. In fact, corticosterone was found to exert higher affinity to MR than to GR 

(Funder, 2005). The consequences of this additional binding of DOC and 

corticosterone to MR in BNK rats, caused by mutation and overexpression of the MR, 

will have to be analysed in more detail. The mutations of the MR found in BNK rats 

may influence the signalling cascade as well. Under normal conditions 

glucocorticoids act as MR antagonists but when the protective enzyme 11ß-HSD2 is 

blocked or deficient corticosterone becomes a MR agonist. The same antagonist-to-

agonist change is seen when intracellular redox state is altered by generation of e.g. 

reactive oxygen species, which may be enhanced during ischaemia (Funder, 2005). 

 

We may hypothesise that the overexpression of the MR in BNK rats is present also in 

the brain tissue. Under normal conditions both, brain DOC and corticosterone were 

significantly lower in BNK rats. On the contrary, following spironolactone 

administration their levels were significantly higher than those in BN rats. In 

comparison to GR that is widely distributed throughout the CNS in neurons and glial 

cells there are fewer MR and these are localized predominantly in the hippocampus, 

the septum and the granular cells of the cerebellum. Generally, MR in the CNS do 

not colocalize with 11ß-HSD2 and the majority of brain MR is occupied by 

glucocorticoids. 

 

Brain MR may play a key role in a number of homeostatic mechanisms including 

blood pressure regulation, regulation of sympathetic tone, thirst and salt appetite, 
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learning and memory and hypothalamic/pituitary adrenal axis regulation. 

Nevertheless, it is often difficult to distinguish between glucocorticoid and 

mineralocorticoid effects on the MR (Connell and Davies, 2005). Steroid biosynthesis 

in the CNS is a well documented phenomenon. All of the key genes involved in the 

corticosteroid biosynthesis are expressed at fairly high levels in specific CNS regions 

where it correlates with areas with high MR expression. This is consistent with an 

autocrine or paracrine model of corticosteroids actions in the brain. Although there is 

a strong evidence to support the production of aldosterone of CNS it is much more 

difficult to establish whether locally produced aldosterone exerts any significant 

physiological or pathophysiological effects. Aldosterone production within the brain 

may suggest regulation of blood pressure (Gomez-Sanchez et al., 1990). It is 

necessary to mention that as steroids are lipophilic and able to cross the blood-brain 

barrier it is not surprising that most of the corticoid hormones present in the normal 

brain are derived from the circulation (Gomez-Sanchez et al., 2005). 

 

During the 10 days of spironolactone treatment the body weight decreased even 

below the initial body weight at the beginning of the experiment. It was accompanied 

also by the loss of kidney weight. It is likely that the loss in body weight was caused 

by the diuretic activity of spironolactone. The diuretic effect of spironolactone was 

stronger in BNK rats than in BN rats, which might be caused by the mutation and 

overexpression of the MR in BNK rats. Consequently, the body weight loss was more 

pronounced in BNK rats. Even though spironolactone is successfully used in the 

therapy of hypertension in humans the mean blood pressure after the 10 days of 

spironolactone treatment displayed a very moderate increase in both rat strains. 

Under normal conditions the BNK rats displayed higher heart rate then the BN rats. 

The expression of the MR in the cardiac tissue of BNK rats has to be first analysed 

but according to the data we may propose that the number of MR in the myocardium 

will be increased. Similarly, artificial overexpression of the human MR in mice 

produced a significant increase in heart rate but no change in systolic blood pressure 

(Ouvrard-Pascaud et al., 2005). Consequently, spironolactone decreased the 

elevated heart rate of BNK rats. On the contrary in BN rats spironolactone caused an 

increase of the heart rate. 
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In general, spironolactone influenced the plasma KKS only moderately. In 

comparison to BN rats all of the components of plasma KKS were significantly lower 

in BNK rats. Following spironolactone treatment plasma HMW and LMW kininogens 

slightly increased in both strains, which suggests that aldosterone may inhibit the 

synthesis or release of kininogens. In both, BN and BNK rats plasma kallikrein 

activity remained unaltered. Consequently, the kinin levels in plasma of BN rats 

stayed constant. In BNK rats plasma BK slightly increased but plasma KLP was 

significantly reduced. As the plasma kallikrein activity was unchanged we may 

suggest that spironolactone influenced the degradation of BK in BNK rats. 

Aldosterone was found to up-regulate the expression of ACE mRNA in rat endothelial 

cells (Sugiyama et al., 2005). ACE is known to have higher affinity for BK than for 

Ang I, resulting in more favourable kinetics for BK degradation than for Ang II 

generation (Zisman, 1998). Therefore we may suggest that spironolactone 

decreased the activity of ACE, which was more pronounced in BNK rats due to the 

MR properties and overexpression in BNK rats. Unfortunately, as we have no 

information about the activity of tissue kallikrein in plasma we cannot interpret the 

decreased KLP levels in BNK rats. 

 

The effects of spironolactone on the renal KKS were more pronounced than those on 

plasma KKS. Indeed, kidney is the main target tissue of aldosterone. Treatment with 

spironolactone caused an increase in urinary LMW kininogen, apparently significant 

in BNK rats. Spironolactone increased also urinary kallikrein activity, which again 

correlated with urine volume and was significantly more pronounced in BNK rats. As 

spironolactone increases extracellular K+ these results are in accordance to the 

above mentioned mechanism of renal kallikrein release by K+ ions. Independently of 

increased urine volume the levels of BK and KLP in urine increased, which may be a 

consequence of increased urinary kininogen. In both strains spironolactone caused a 

significant increase in urinary KLP, which was more pronounced in BNK rats. 

Similarly, the excretion of urinary BK increased, which was found significant in BNK 

rats. In comparison to BN rats, the BNK rats excreted more KLP and less BK. 

Similarly to plasma, these findings suggest that spironolactone influenced the 

degradation of kinins. It is believed that the kininases in urine are different from those 

in plasma which may explain the opposite effects. It is likely that spironolactone 

inhibited the genomic actions of aldosterone mediated by the MR. These findings 
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suggest that aldosterone down-regulates the transcription of renal LMW kininogen. 

Furthermore, aldosterone indirectly inhibits the release of renal kallikrein by the 

decrease of extracellular K+. These data also suggest that KLP is the main kinin in 

urine responsible for the diuretic and natriuretic actions and that urinary BK is a 

metabolite of KLP. 

 

Spironolactone caused a significant increase in urinary ET-1 in BNK rats, which 

suggests that aldosterone decreases the urinary ET-1 excretion in BNK rats. In BN 

rats urinary ET-1 excretion remained unchanged. These data are in contrast to 

findings of Lüscher et al. (1993) who found that the synthesis and release of ET-1 is 

stimulated by aldosterone. Also patients with primary aldosteronism have increased 

circulating ET-1 levels that contribute to the pathophysiology of hypertension (Letizia 

et al., 1996). It seems likely that the mutation in the MR of BNK rats may influence 

different signalling mechanism. We could show that the excess of the MR in BNK rats 

is also occupied by DOC and corticosterone. And these ligands possibly mediate 

rather antagonistic effects, at least in the renal tissue. In this context, plasma ET-1 

levels following spironolactone have to be analysed. 

 

It is now well accepted that aldosterone has physiological and pathophysiological 

effects in non-epithelial tissues including the heart. The MR are present in 

cardiomyocytes and blood vessel wall (VSMC and endothelial cells). Cardiomyocytes 

normally express very low levels of 11ß-HSD2. The receptor is effectively occupied 

by endogenous glucocorticoids, which have opposing effects to aldosterone. In 

contrast, VSMCs express the MR and show 11ß-HSD2 activity. The inhibiting of 11ß-

HSD2 activity allows physiological levels of glucocorticoids to activate MR, which 

produce similar responses to aldosterone. In addition to the steroid receptor 

modulation of transcription there is an increasing evidence of rapid non-genomic 

effects that involve activation of second messenger pathways. They have recently 

been reviewed in extension. However, whether aldosterone acts via the classical MR 

to mediate these effects or via a novel receptor, as is the case for progesterone and 

estrogen, remains controversial. The non-genomic actions of aldosterone are varied 

and mediated by a multitude of second messenger systems depending on the cell 

type involved (Fuller and Young, 2005). 
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Similarly to the heart rate measured in vivo in BNK rats following spironolactone in 

the Langendorff experiment the basal heart rate decreased in both strains. These 

findings may be explained by inhibiting the non-genomic actions of aldosterone, 

possibly mediated by the MR. Aldosterone was found to increase IP3, DAG and 

subsequent Ca2+ concentration. These stimulate then the translocation of PKC from 

the cytosol to the membrane. PKC inhibits the rapid activation of the Na+/H+ 

antiporter by aldosterone, which increases the intracellular pH. Furthermore, 

aldosterone also increases cAMP levels, which activate PKA. This seemingly 

opposing action of aldosterone on smooth muscle second-messenger system 

normally associated with both contraction and relaxation may be a mechanism by 

which the cells are primed for rapid contraction/relaxation cycles (Connell and 

Davies, 2005). The heartbeats of atria were eliminated and remained only in the 

ventricles. It appeared that spironolactone caused AV blockade. The RALES study 

provided convincing evidence that patients with severe heart failure treated 

additionally to conventional therapy with spironolactone showed a 30% reduction in 

mortality. Much of this benefit was due to a reduction in sudden cardiac death, 

suggesting that aldosterone blockade reduced the incidence of cardiac rhythm 

disturbances (Connell and Davies, 2005). Heart rate remained reduced also during 

the whole perfusion and did not display such a variation following ischaemia as in the 

untreated hearts. In BN rats IPC remained protective. The protective effect of IPC on 

heart rate was not altered by spironolactone. Therefore it seems likely that the MR 

does not play a role in the mechanism of IPC by regulating the heart rate. In BNK rat 

hearts IPC remained without an effect. 

 

Aldosterone administration in perfused hearts was shown to increase cardiac 

myocytes contractile force (Barbato et al., 2004). Spironolactone treatment caused a 

reduction of the LVDP in BNK rat hearts. The higher basal LVDP and contractility in 

BNK rat hearts was reduced by spironolactone to the levels of BN rat hearts. These 

findings assume an overexpression of the cardiac MR in BNK rats, which remains to 

be determined. Interestingly, the LVDP and contractility of spironolactone treated BN 

rat hearts remained unaffected by ischaemia. Also the effect of IPC in BN rat hearts 

was abolished. On the contrary, in spironolactone pre-treated BNK rat hearts IPC 

increased the post-ischaemic LVDP and contractility. Final effectors of the non-

genomic aldosterone actions include K+ channels. K+ channels play an important role 
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in the protective mechanism of IPC. These finding would suggest that aldosterone 

may be involved in the mechanism of IPC by its non-genomic actions mediated by 

the MR. Similarly, spironolactone pre-treatment led to and increase in the basal 

LVEDP in BNK rat hearts. Post-ischaemic LVEDP increased in hearts of both strains. 

The effects of IPC remained unchanged. Spironolactone reduced also the rate of 

myocardial relaxation in both strains. 

 

Spironolactone did not alter the coronary flow in any strain. Except of that the basal 

coronary flow was slightly decreased in spironolactone treated BN rat hearts, it 

remained unaltered during the perfusion vs. untreated ones. In spironolactone 

treated BNK rat hearts the post-ischaemic coronary flow was slightly higher than that 

of BN rat hearts. These finding are consistent with those of Fujita & colleagues 

(2005). They found that aldosterone administration rapidly decreased coronary flow 

in ischaemic as well as in non-ischaemic heart in vivo. Moreover, aldosterone further 

worsens the contractile and metabolic functions, which was blunted by PKC inhibitor 

but not MR antagonist. 

 

All these data suggest that aldosterone non-genomically induces vasoconstriction via 

PKC-dependent pathways possibly through membrane receptors, which leads to the 

worsening of the cardiac contractile and metabolic function in the ischaemic heart. 

There are some reports that eNOS is a PKC substrate and PKC-mediated 

phosphorylation inhibits eNOS activity. Because NO is a widely known vasodilative 

agent decreased NO activity could attenuate the vascular tone leading to a decrease 

in coronary flow (Fleming et al., 2001). Aldosterone can also suppress iNOS and NO 

in cardiomyocytes in a post-transcriptional manner. The decrease in NO synthesis 

may also account for the known cardiovascular effects of aldosterone (Chun et al., 

2003). Elevated levels of aldosterone may worsen myocardial ischaemia via non-

genomic as well as genomic pathways in the ischaemic heart. This knowledge may 

explain above mentioned higher sensitivity of BNK rat hearts to ischaemia as seen in 

the pronounced reduction of the heart rate and an increase of CK activity already 

following the isolation of the heart. 

 

The most surprising and striking results were found after measuring the activity of the 

CK activity in the coronary effluent of hearts treated with spironolactone. The CK 
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activity significantly increased already prior to ischaemia. No similar result was found 

describing that spironolactone could be harmful to the myocardium. There might be a 

relation, linked with the MR properties, to the increased coronary flow following 

spironolactone, which may worsen the reperfusion injury. Nevertheless, the precise 

mechanism remains unclear and should be further investigated. It may possibly show 

that treatment with spironolactone could be rather deleterious in patients that will 

suffer from myocardial infarction. 

 

Unfortunately, the interpretation of the Langendorff experiments is based only on 

suggestions and hypothesis. Additional experiments with a second series of rats that 

underwent identical treatment are already in progress. The atria and ventricles of 

these rats were collected for subsequent expression analysis. Relevant components 

of tested hormonal systems will have to be investigated to get a basic insight into the 

molecular basis of these effects. 

 

5.3. EFFECTS OF HIGH SALT DIET IN BN AND BNK RATS 
 

The kininogen-deficient BNK rats were often used in experiments with high salt diet 

because they easily develop hypertension. Majima et al. (1993) demonstrated that 

the BNK rats showed an increase in blood pressure after receiving a diet containing 

2% of NaCl whereas under the same conditions the blood pressure of wild type BN 

rats remained unaffected. The authors suggested that the absence of renal KKS is 

responsible for the insufficient excretion of an excess of Na+. Consequently, Na+ 

accumulation leads to hypertension (Fig.1). They achieved similar effects in BNK rats 

with non-pressor doses of Ang II. Although these effects were completely abolished 

by spironolactone and therefore mediated by aldosterone, they emphasized the role 

of renal KKS in the development of the hypertension. Nevertheless, under standard 

conditions, we found no substantial differences in the renal KKS between the BN and 

BNK rats. Moreover, on the basis of the discovery of MR mutation and 

overexpression in BNK rats our data suggest that the role of the renal KKS was 

overestimated and falsely interpreted.  

 

In details, Majima & colleagues (1993) could show that increases in the dietary salt 

content from 3-8% caused rapid and significant increases in the blood pressure in 
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BNK rats. In contrast, in BN rats the raise of blood pressure was mild and gradual. 

Nevertheless, the final value of blood pressure was identical in both strains. It was 

suggested that the KKS plays a role in modulating the initiation and rate of the blood 

pressure increase. Based on the knowledge of the MR properties we suggest that 

these effects were rather caused by the enhanced mineralocorticoid activity in BNK 

rats. Indeed, they found for aldosterone typical significant elevations of the Na+ 

concentration in the serum, erythrocytes and cerebrospinal fluid of BNK rats. 

Accumulation of Na+ in the cells increased the pressor sensitivity of the arterioles 

against noradrenaline and Ang II. Furthermore, the accumulation of Na+ in 

cerebrospinal fluid caused increases in the sympathetic discharge from the CNS. 

 

In accordance to Majima et al. (1993), we have also detected a significant increase in 

blood pressure following 10 days of high salt diet (5% NaCl). Despite the kininogen-

deficiency in BNK rats blood pressure of both strains did not differ. We suggest that 

the elevated blood pressure may have been in part caused by fluid retention resulting 

in total volume expansion. In both strains high salt diet naturally increased thirst, 

consequently water intake and urine volume to the same extent. As we measured 

blood pressure as late as after 10 days of high salt diet we cannot speculate whether 

the raise was more rapid in BNK rats. A number of studies explored the mechanisms 

explaining the dietary Na+-blood pressure relationship. Besides previously mentioned 

modulation of vasoreactivity and sympathetic nervous system the role of NO and its 

precursors was highlighted among which the RAAS, KKS and ET system might be of 

great importance (Jones, 2004). Nevertheless, the increase in blood pressure was 

found to be of minor importance regarding the multiple deleterious effects of high salt 

diet. 

 

Increased salt intake reduced the heart rate of BNK rats. On the contrary, in BN rats 

the heart rate tended to increase. As described in detail in following section 

aldosterone levels were substantially reduced under increased Na+ intake. The 

absence of aldosterone on the MR is comparable with the action of spironolactone 

that inhibits the binding of aldosterone to MR. These findings are in accordance with 

the previous hypothesis that aldosterone may be responsible for the higher heart rate 

in kininogen-deficient BNK rats. Likewise, Majima et al. (1994) demonstrated that the 
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increase in heart rate of BNK rats following an infusion of a non-pressor dose of Ang 

II was completely abolished by spironolactone.  

 

Measurements of aldosterone levels confirmed the classical effect of a high salt diet. 

Increased levels of Na+ reduce the release of renin and consequently Ang, which is 

the main stimulator of aldosterone synthesis. We found that high salt diet significantly 

down-regulated the expression of aldosterone synthase, which resulted in minimal 

aldosterone levels and hereby facilitated the excretion of an excess of Na+. In BN 

rats aldosterone was almost undetectable. Even though in BNK rats the levels of 

aldosterone were also minimal they were still higher than those of BN rats. In urine 

this difference was more pronounced confirming the key role of kidney in handling 

increased levels of Na+. These results correlate with the expression of aldosterone 

synthase that was slightly higher in BNK rats. This finding is rather contradictory to 

higher Na+ levels of BNK rats that should lead to lower Ang. We have not determined 

whether the BNK rats display defective sensitivity of RAS to Na+ leading to higher 

Ang levels. Nevertheless, the stimulation of aldosterone synthase expression is 

dependent on increased intracellular Ca2+, which may be caused also by other 

mediators. As mentioned previously ET was found to stimulate aldosterone secretion. 

In this context we showed that the BNK rats showed significantly higher ET-1 levels. 

These data suggest that even under condition of high Na+ intake the BNK rats 

operate with higher aldosterone levels, which may be further intensified by the 

possibly higher number of MR and account for the elevated intracellular Na+ levels in 

BNK rats. This mechanism is of major importance because it describes the reasons 

for the deleterious effects of high salt diet in BNK rats. 

 

Volpe et al. (1993) described comparable findings in stroke-prone spontaneously 

hypertensive rats (SHRSP). In male SHRSP a high salt intake was associated with 

malignant development of hypertension, severe vascular injury and premature death 

by stroke, which was not fully accounted for the higher blood pressure. They found 

that during high salt diet plasma aldosterone levels remained significantly higher in 

SHRSP than in SHR rats, which was associated with reduced Na+ excretion. The 

blunted aldosterone suppression was dissociated from the levels of circulating renin 

since its activity showed comparable suppression in both strains. The unfavourable 

vascular consequences of high salt intake could be prevented by ACE inhibitor, 
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which would suggest involvement of the KKS in preventing these deleterious effects. 

Recent knowledge about the broad spectrum of aldosterone effects in the 

cardiovascular system may help to define molecular mechanisms leading to these 

effects. Presumably, the presence of both, aldosterone and increased intracellular 

Na+ may open the possibility for investigating of new signalling schemes of 

aldosterone that may be specifically inhibited by kinins. 

 

High salt diet significantly increased DOC levels in urine and plasma in BNK but not 

in BN rats. We found also increased corticosterone in urine but not in plasma of BNK 

rats. In BN rats both plasma and urinary corticosterone levels increased. These 

findings are rather confusing because the expression of 11ß-hydroxylase remained 

unaffected by high salt diet in both strains. Therefore we may only suggest that these 

differences originated in the different expression and affinity of the MR in BN and 

BNK rats, which remains to be investigated in details. As described in following 

chapter 5.4., additional administration of spironolactone should help to determine at 

least the binding of these ligands to the MR. 

 

Following high salt diet the BN rats achieved comparable body weight like the control 

rats on standard diet. In contrast, the BNK rats lost few grams of body weight. This 

loss of body weight in BNK rats was not caused by reduced food intake. On the 

contrary, in BNK rats the food and consequently salt intake was slightly higher which 

resulted in slightly higher diuresis. It seems likely that this between-strain difference 

originated in the overexpression of the MR in the brain tissue of BNK rats (see 

chapter 5.2.). Brain MR and especially the amygdala MR may play a key role in the 

control of thirst and salt appetite, respectively. As the brain MR is not coexpressed 

with the 11ßHSD2 it is believed to be predominantly occupied by glucocorticoids 

(Connell and Davies, 2005). Indeed, additionally we found significantly higher DOC 

and corticosterone levels in the brain tissue of BNK rats. Nevertheless, the precise 

effects, agonistic or antagonistic, of these MR ligands are difficult to determine. 

 

As kinins were shown to exert natriuretic effects the higher urine volume and body 

weight loss in BNK rats may correlate with the significantly higher KLP levels in these 

rats. In comparison to standard conditions high salt diet slightly increased urinary 

KLP levels in BNK rats, which was possibly caused by significantly higher LMW 
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kininogen levels in urine and increased urinary kallikrein activity (correlating with the 

urine volume).  

 

Similarly to standard conditions, in BN rats urinary KLP was almost undetectable 

while urinary LMW kininogen and renal kallikrein activity significantly increased. The 

precise mechanism of an increase in the urinary excretion of LMW kininogen 

following high salt diet is unclear. To the best of our knowledge there are no studies 

on the selective release of kininogen from any renal cells. In both strains high salt 

diet significantly increased urinary excretion of BK. Unfortunately, we can only 

speculate about the origin of BK. We have already suggested that the BNK rats might 

have different renal enzymatic system than the BN rats. These data show that high 

salt diet did not alter the renal degradation of kinins. Although the kinin levels 

increased, which correlated with increased kininogen and kallikrein, the proportion 

between KLP and BK remained unchanged. Furthermore, preliminary data revealed 

unchanged expression of the renal B2 receptor following high salt diet in both strains. 

 

The experiments with high salt diet revealed no significant changes and between-

strains differences in the plasma KKS, except of significantly reduced plasma KLP in 

BN rats. Kinins are known to have a half-life of about 30s and act in autocrine-

paracrine manner. It is not defined to what extent the measured levels reflect actual 

and local concentrations of kinins. We did not follow enzyme concentration neither 

that of generating KLP (tissue kallikrein in plasma) nor that of degrading KLP. 

Therefore we may only speculate about these effects of high salt diet in BN rats. 

 

High salt diet significantly increased urinary excretion of ET-1. In BNK rats the levels 

of ET-1 in urine were significantly higher than those of BN rats. Similarly to kinins, 

clearance studies revealed that urinary ET-1 is of renal origin. ET-1 is generated in 

tubular epithelial cells of renal medulla, mainly in the inner collecting duct, where it 

acts in autocrine/paracrine fashion. It is involved in tubular handling of Na+ and water 

through ETB receptor subtype (Fig.2). Furthermore, activation of ETB receptors 

stimulates the release of NO, which plays a crucial role in the regulation of renal 

hemodynamics and excretory functions (Abassi et al., 2001). The increase of ET-1 is 

necessary to handle the excretion of an excess of Na+. The higher ET-1 levels of 

BNK rats might have compensated for the increased Na+ retention caused by the 
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enhanced mineralocorticoid action. Independently of its indirect effects on blood 

pressure by modulating renal functions ET exerts direct effects on the vasculature 

through ETA receptors. As both strains developed the same increase in blood 

pressure following high salt diet we suggest that the renal ET-1 did not directly 

influence the blood pressure. Whether there is a correlation of blood pressure and 

plasma ET-1 in BN and BNK rats remained to be investigated. Nevertheless, high 

salt diet was shown to increase plasma levels of ET-1 (Sasser et al., 2002). The role 

of ET in vascular homeostasis is rather complex because ET receptors have both 

pressor and depressor effects in vivo. The activation of ETB receptor in endothelial 

cells is known to reduce the vascular reactivity and thereby counterbalance ET-

induced enhancement of the mechanisms of vascular smooth muscle contraction. A 

possible role of ET in salt-sensitive hypertension was investigated by Smith & 

colleagues (2003). They demonstrated that low-dose infusion of ET in rats fed with 

high salt diet increased vascular reactivity that involved Ca2+ entry from extracellular 

space. The enhanced Ca2+ influx, particularly during high salt diet, suggested 

activation of other mechanisms possibly involving PKC (a downstream molecule of 

ET receptors). These could be ET induced up-regulation of Ca2+ channels in VSMC 

and an increase in the myofilament force sensitivity to Ca2+. 

 

Dietary Na+ was shown to mediate blood pressure-independent effects leading to 

cardiac hypertrophy and perivascular fibrosis. Structural changes may be related to 

Na+ itself and/or to the subsequent hormonal changes associated with the diet. The 

vascular and cardiac structure could be normalized with e.g. ETA antagonist or 

spironolactone (Schiffrin et al., 1999; Jones, 2004). Partovian et al. (1998) 

demonstrated that administration of B2 antagonist in SHR rats fed with high salt diet 

mediated synergistic effect and enhanced extracellular matrix (elastin and collagen) 

accumulation. Accordingly, we found that heart weight tended to increase following 

10 days of high salt diet. Precisely, the BN rats displayed significant increase in their 

heart weight. This finding correlate with the significantly reduced plasma KLP levels 

in BN rats. Even though 10 days of high salt diet might be too short to allow 

progression of greater structural changes the absence of KLP on the cardiac B2 

receptor might in part be responsible for the increased heart weight of BN rats. As in 

BNK rats the heart weight did not increase and they showed high plasma levels of 
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KLP this hypothesis could be potentially proven by administration of B2 antagonist to 

these rats fed with high salt diet. 

 

The consequences of high salt diet for cardiac functions were investigated in 

Langendorff experiments with isolated rat hearts. High salt diet caused a decrease in 

the basal heart rate of isolated hearts. In BNK rats the reduction of heart rate was 

moderate, which was comparable with values measured in vivo. These data confirm 

the role of aldosterone in the regulation of heart rate in BNK rats as discussed above. 

In contrast, the heart rate of isolated BN rat hearts significantly decreased. In 

accordance with the increased heart weight of BN rats the reduction of the heart rate 

may be associated with structural changes of the cardiac tissue. Interstitial fibrosis 

leads to physiologic and morphologic disorganisation of the ventricle, which includes 

impairment of the electrical synchronization (De Mello, 2004). In BNK rat hearts high 

salt diet abolished the reflective increase of heart rate during IPC. High salt diet 

diminished differences between BN and BNK rat hearts especially in the post-

ischaemic heart rate and hereby abolished the post-ischaemic effect of IPC in BN 

rats. 

 

In BN rat hearts excess of dietary Na+ increased contractility that was accompanied 

by an increase in LVDP. These effects might have been a consequence of a 

decreased heart rate. Except the increased intracellular Na+ concentration alterations 

in microscopic cardiac anatomy, e.g. cardiomyocyte hypertrophy may alter the 

contractile process. Moreover, these findings are in accordance with increased 

vascular reactivity mediated by ET-1 through increased sensitivity to Ca2+ (see 

chapter 5.1.). Both parameters significantly increased following ischaemia, especially 

in preconditioned hearts, showing that high salt diet impaired the ability of the 

ischaemic myocardium to recover. Additionally, the rate of relaxation, characterized 

by dp/dtmin, especially in preconditioned BN rat hearts significantly increased. 

Interestingly, the contractility and LVDP of BNK rat hearts remained unchanged 

following increased Na+ intake. Both parameters were not altered by ischaemia and 

remained constant during the whole experiment. As described in detail in above 

chapter 5.2. aldosterone was found to worsen the contractile and metabolic function 

in ischaemic heart through genomic and non-genomic pathways. The contractility 

and rate of relaxation of BNK rat hearts were found to be significantly lower than 
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those of BN rat hearts. In accordance, in BNK rat hearts the basal and post-

ischaemic LVEDP was significantly higher than in BN rat hearts. On the basis of 

these adverse findings we may conclude that the increase in blood pressure does not 

originate in changed cardiac parameters because in both strains the increase in 

blood pressure was identical.  

 

In accordance, high salt diet diminished the moderate between-strain difference in 

coronary flow, which may be in accordance with the hypothesis concerning the role 

of aldosterone in the regulation of coronary flow. High salt diet increased the creatine 

kinase activity in coronary effluent of BN rats. Likewise to untreated hearts, creatine 

kinase activity was significantly reduced in preconditioned BN rat hearts vs. the non-

preconditioned ones, which lose on significance due to too high levels in comparison 

to untreated group. On the contrary, coronary effluent of post-ischaemic BNK rat 

hearts displayed significantly lower creatine kinase activity than that of untreated 

hearts. Furthermore, in BNK rats the creatine kinase activity was lower than that of 

BN rat hearts. 

 

It is evident that high salt diet caused severe changes predominantly in BN rat hearts 

whereby also abolished the effects of IPC in these rats. These data highlight 

especially the cardioprotective role of endogenous KLP under conditions of an 

excess of dietary Na+. It seems likely that kinins through B2 receptors are able to 

counterbalance the unfavourable effects of high salt diet. In BNK rats most of the 

measured cardiac parameters remained unchanged following high salt diet. The 

ability of BNK rat hearts to exert a reaction to ischaemia was abolished whereby also 

the response to IPC was disabled. According to the CK activity these data suggest 

that high salt diet made the BNK rat heart resistant against the deleterious effects of 

ischaemia. It is plausible that these findings are attributable to the absence of 

aldosterone under condition of an excess of dietary Na+ and confirms the dominant 

role of the MR in BNK rats. 

 

5.4. EFFECTS OF SPIRONOLACTONE IN BN AND BNK RATS FED WITH HIGH SALT DIET 
 

The rational of this set of experiments seems to be at first rather incomprehensive 

and unsubstantiated as under conditions of a high salt intake aldosterone is down-
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regulated. Therefore there seems to be no need to antagonise its effects. 

Nevertheless, as we found higher aldosterone levels in BNK rats in comparison to 

BN rats following high salt diet the blockade of its effects on the MR gained on 

significance. Moreover, even though the potential of spironolactone to antagonise 

aldosterone effects is significantly limited under conditions of high salt diet 

spironolactone by binding to the MR replace also other important ligands of this 

receptor. As described in chapter 5.2., the mutation and overexpression of the MR in 

BNK rats allowed significant binding of DOC and corticosterone. Even though the BN 

rats are similarly characterised by a mutation of the MR, which was found to be 

distant to that of BNK rats, under standard conditions they do not share additional 

binding of DOC and corticosterone. Nevertheless, based on the knowledge about the 

affinity of the MR to various ligands under conditions of very low levels of aldosterone 

it is more than virtual that the MR is occupied by other corticoid hormones whose 

levels are not diminished under conditions of an excess of Na+. Furthermore, recent 

studies have raised the questions concerning the kind of effects (agonistic or 

antagonistic) mediated by these ligands and what are the critical conditions switching 

the mechanisms. 

 

We found that even under conditions of high salt diet aldosterone mediate important 

effects via the MR. Although plasma aldosterone levels remained substantially 

reduced we found that spironolactone replaced residual aldosterone from the renal 

and brain MR. Administration of spironolactone under high salt diet increased 

expression of aldosterone synthase to comparable levels as under standard 

conditions. We believe that aldosterone levels slightly increased as a consequence of 

both, increased synthesis and displacement from the MR. These findings describe a 

negative feedback mechanism between the MR and aldosterone synthase activity. 

Besides stimulation of ACTH, the precise molecular mechanism possibly involves K+ 

ions altered by spironolactone. Even though high salt diet significantly reduced the 

expression of aldosterone synthase it is evident that residual aldosterone levels are 

necessary to exert essential aldosterone effects. 

 

The BN rats displayed slightly higher aldosterone levels in urine and brain than the 

BNK rats. It would be too simple if these results would correspond with our previous 

findings under standard dietary conditions. The MR of BN rats was predominantly 
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occupied by aldosterone whereby in BNK rats the MR was supposed to be 

simultaneously occupied also by other corticoids. Accordingly, these hormones, 

whose levels are significantly higher under increased dietary Na+ than those of 

aldosterone, would hinder aldosterone binding. Nevertheless, measurements of DOC 

and corticosterone levels, potential ligands of the MR, following spironolactone 

administration under high salt diet revealed in part confusing, exact opposite findings. 

 

In BN rats, neither high salt diet nor additional administration of spironolactone 

altered the DOC levels in plasma and urine. This finding might demonstrate that DOC 

did not bind to the renal MR of BN rats. In BNK rats high salt diet did not alter the 

DOC levels in plasma but increased its urinary excretion. In contrast to findings under 

standard conditions following spironolactone both, plasma and urinary DOC levels 

even decreased, which definitely excludes binding of DOC to the MR and suggest 

additional mechanisms lowering DOC levels. In the brain of BN rats DOC levels 

significantly increased following spironolactone showing that under conditions of 

increased dietary Na+ the brain MR are occupied by DOC, naturally by a significantly 

higher rate than by aldosterone. On the contrary, administration of spironolactone did 

not change the levels of DOC in the brain tissue of BNK rats suggesting no binding of 

DOC to brain MR. This finding is opposite to what was found under standard 

conditions. 

 

We showed that in BNK rats but not in BN rats under standard conditions even the 

corticosterone binds to the renal and brain MR, additionally to GR. Similarly to DOC, 

levels of corticosterone displayed opposite effects. In BN rats high salt diet increased 

plasma corticosterone levels that were lowered by spironolactone. Simultaneously, 

the urinary excretion of corticosterone increased. In the brain tissue corticosterone 

levels increased after displacement from receptors (MR or GR) by spironolactone. In 

BNK rats plasma levels of corticosterone slightly decreased but remained unchanged 

in urine and brain tissue. 

 

Similarly to high salt diet, additional administration of spironolactone did not alter the 

basal expression rate of 11ß-hydroxylase. If spironolactone was administered under 

standard dietary conditions the expression of 11ß-hydroxylase decreased. These 

results are rather contradictory to the negative feedback mechanism whereby the 
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steroid hormones inhibit their own secretion. One would expect rather an increase of 

11ß-hydroxylase expression following spironolactone treatment. However, in case of 

11ß-hydroxylase, which is predominantly controlled by ACTH, it seems likely that 

even in case of glucocorticoids, this mechanism depends on the actual salt status. 

This effect may be caused or accompanied by changes in the MR expression or MR 

properties. Besides for the changes in the amount of MR under unchanged rate of 

synthesis the lower plasma and urinary levels of DOC and corticosterone following 

spironolactone under high salt diet raised a question, whether spironolactone, 

especially in BNK rats, could have stimulated the degradation of these corticoids. 

DOC, as a primary substrate for both aldosterone synthase and 11ß-hydroxylase, is 

degraded into corticosterone or aldosterone. Nevertheless, the expression of both 

enzymes was not altered and the levels of respective products were not increased. 

Corticosterone, especially in epithelial tissues, is degraded by 11ß-HSD2 that is 

predominantly known to assure aldosterone specificity. Mutations of this enzyme 

have important pathological implications, e.g. causing syndrome of apparent 

mineralocorticoid excess leading to hypertension (Connell and Davies, 2005). 

Unfortunately, there is not a distinct knowledge about the regulation of activity and 

expression of this enzyme. Nevertheless, the tissue levels of corticosterone did not 

decrease and it seems improbable that this mechanism could have significantly 

influenced plasma corticosterone concentration. 

 

Although in the brain a local steroid synthesis was described the amount of the 11ß-

hydroxylase and aldosterone synthase mRNA in the brain was found to be 

exceedingly small and concentrated only in distinct regions. Therefore it is believed 

that the circulation is one of the most likely sources of brain steroids (Gomez-

Sanchez et al., 2005). Nevertheless, our data suggest that the brain tissue regulates 

the concentrations of these hormones, as the brain levels did not reflect those of 

plasma. The access of mineralocorticoids to central MR has important implications. 

An increased activation produces hypertension through an increase in the release of 

ADH and central sympathetic drive to the kidneys, heart and vascular smooth muscle 

(Gomez-Sanchez, 1997). 

 

The higher aldosterone and DOC levels in brain of BN rats were linked with a more 

pronounced reduction of blood pressure than in BNK rats. In both strains the 
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combination of high salt diet and spironolactone tended to normalize the increased, 

in case of BN rats, or decreased heart rate, in case of BNK rats, which may again 

highlight the role of MR in the regulation of cardiovascular functions. Spironolactone 

could not exert its diuretic effect under conditions of high salt diet. The urine volume 

remained comparably high as following high salt diet alone. It seems likely that under 

high salt diet the regulation of diuresis is not controlled by the MR. Furthermore it 

confirms that the blood pressure lowering effect of aldosterone is not related to its 

diuretic action.  

 

The higher blood pressure in BNK rats was linked with an increased heart weight. 

This effect could not originate in higher body weight. Spironolactone decreased salt 

appetite and consequently reduced water intake and body weight. All these effects 

were significantly more pronounced in BNK rats and may confirm the overexpression 

of the central MR in BNK rats, as suggested in chapter 5.2. These in part 

contradictory data may be related to the mutations of the MR in both rat strains that 

are supposed to cause an altered affinity of the receptor to different steroid ligands, 

which will be investigated in details in further studies. 

 

We showed that spironolactone increased the secretion of plasma kininogens and 

suggested that aldosterone may up-regulate the expression or stimulate the 

secretion of both HMW and LMW kininogens. This effect of spironolactone was 

intensified by high salt diet, especially in BNK rats, although the levels of kininogens 

were substantially lower than those of BN rats. Like in other experimental groups 

plasma kallikrein activity was not influenced by any of these conditions. The higher 

kininogen levels were linked with an increase of plasma BK concentration. In BNK 

rats BK reached almost the levels found in BN rats. Increased dietary Na+ inhibits the 

activity of the RAS, whereby inhibits also the activity of ACE that is one of the most 

important plasma kininases. According to our data we hypothesize that the BNK rats 

overexpress the MR, which may be responsible for the increased effect of 

spironolactone. In this context a more pronounced inhibition of ACE may account for 

the significant increase in plasma BK. In BN rats spironolactone inhibited the effect of 

high salt diet and increased plasma KLP levels. This effect may have contributed to 

the higher BK levels. Unfortunately, as already noted we have no information about 

the activities of respective generating and degrading enzymes. In BNK rats an 
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opposite effect was observed, which may confirm the role of aldosterone in regulating 

the KLP levels in plasma via the MR. 

 

Simultaneous administration of spironolactone during high salt diet exerted 

synergistic effects on the regulation of the renal KKS activity. The urinary LMW 

kininogen excretion further increased, which was more pronounced in BN rats and 

correlated with higher levels of aldosterone. These findings confirmed the property of 

aldosterone to down-regulate the expression of kininogens as mentioned above. 

Following spironolactone under high salt diet urinary kallikrein activity moderately 

increased in BN rats but decreased in BNK rats. It is likely that this effect is linked 

with the ability of spironolactone to increase extracellular K+ ions and is possibly 

related to the amount of binding sites for spironolactone in the kidney. Increased 

amount of substrate and enhanced enzymatic activity may have caused a significant 

increase in urinary kinin levels in BN rats. In BNK rats spironolactone reversed the 

effects of high salt diet as it has also been shown for other parameters. Urinary KLP 

was almost undetectable whereas BK levels remained comparable to those under 

high salt diet. We have suggested that the BNK rats are characterized by different 

enzymatic equipment. It seems likely that spironolactone stimulated the degradation 

of KLP in plasma and urine. These data point to a possible key role of the MR in BNK 

rats. It is likely that not only the overexpression but also different affinity of the MR to 

various ligands is leading to diverse effects and may be responsible for these 

findings. Paradoxically, this kininogen-deficient rat strain has enabled us to 

investigate the direct relationship between the aldosterone and kinins. Besides for 

ACE, which simultaneously regulates the levels of Ang II and kinins, aldosterone 

fulfils another comparable connective link between the RAAS and KKS that gain on 

importance especially in mediating local tissue effects. 

 

Likewise to the KKS, the combination of spironolactone and high salt diet mediated 

synergistic effects on the urinary excretion of ET-1. These results are contradictory to 

generally accepted mechanism of stimulation of ET-1 secretion by aldosterone. On 

the contrary, from a functional point of view ET-1 mediates natriuretic effects and 

therefore the synergism of high salt diet and spironolactone does not seem to be 

meaningless. In accordance with the hypothesis that higher urinary ET-1 of BNK rats 

correlates with increased intracellular levels of Na+ the BNK rats excreted 
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significantly more ET-1 than the BN rats, which may again correlate with the 

overexpression of the renal MR in BNK rats. Similarly, as we found that 

spironolactone mediated an attenuation of the negative feedback mechanism 

between the MR and ACTH it seems plausible that spironolactone did not always 

exert antagonistic effect on the MR. 

 

In BNK rats fed with high salt diet spironolactone caused a significant increase in the 

heart weight. Similar results were found in BN rats following high salt diet and were 

attributed to the lower plasma KLP levels. Additional administration of spironolactone 

increased the levels of KLP and consequently normalized the heart weight. Likewise, 

the higher heart weight of BNK rats correlated with reduced KLP levels following 

administration of spironolactone. These experimental conditions were comparable to 

conditions that would be obtained by administration of B2 receptor antagonist as 

previously suggested. The absence of KLP in plasma turned out to be responsible for 

the deleterious effects of Na+ leading to cardiac hypertrophy. Protective effect of 

endogenous kinins in the development of cardiac hypertrophy was demonstrated in 

studies using ACE inhibitors. The antihypertrophic effect of ACE inhibitors or chronic 

administration of BK was abolished by coadministration of a B2 receptors antagonist 

(Schoelkens, 1996). This finding highlights the cardioprotective role of KLP under 

conditions of increased dietary Na+. The velocity of the increase of heart weight 

following high salt diet was remarkable. It remains unclear whether this effect is 

specifically mediated by aldosterone. Under standard condition the BN and BNK rats 

do not differ in their heart weights although the BNK rats are supposed to 

overexpress the MR. Gu et al. (1998) showed that Na+ might have a direct effect to 

induce cellular hypertrophy in both heart and vasculature, which was only enhanced 

by aldosterone via increasing intracellular Na+ levels. 

 

The cardiovascular effects of MR blockade following high salt diet were evaluated in 

final Langendorff experiments. These experiments also revealed the primary role of 

aldosterone in controlling the heart rate. In both strains we found that spironolactone 

reduced heart rate possibly by inhibiting the rapid non-genomic effects of 

aldosterone. Recent data suggest that also these rapid effects may be mediated via 

the MR (Connell and Davies, 2005). The precise mechanism of this reduction was 

already described in details in chapter 5.2.. Aldosterone was suggested to be 
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involved in the response to cardiac ischaemia. Especially it was proposed that 

aldosterone may impair cardiac functions. Nevertheless, aldosterone may play a role 

in mediating the effects of IPC via the same mechanism. We found that IPC did not 

alter the post-ischaemic heart rate in any of the strain whereby the effect of IPC on 

heart rate was abolished. 

 

Following spironolactone treatment under high salt diet the LVDP increased in both 

strains to significantly higher levels than in other experimental groups. Moreover, the 

differences between both strains in LVDP were abolished. The higher LVDP was 

linked with a significant increase in contractility, especially in BNK rat hearts, which 

was comparable with the higher contractility of hearts from BN rats fed with high salt 

diet. BNK rat hearts displayed significantly higher LVEDP than the BN rat hearts, 

which was affected neither by ischaemia nor by IPC. This finding may in part explain 

the higher blood pressure in BNK rats. Similarly, even though the rate of ventricular 

relaxation was almost identical in both strains it was significantly increased in BNK 

rats but rather decreased in BN rats if compared with the high salt diet group. 

 

The most significant changes in coronary flow were found following spironolactone 

treatment and high dietary Na+. The coronary flow moderately increased in BNK rats 

but significantly decreased in BN rats. It was reduced especially during the IPC 

periods, showing the important role of aldosterone in mediating the response to 

ischaemia.  

  

All these data suggest different actions of spironolactone in BN and BNK rat hearts. 

Unfortunately, we have no data about the amount of the MR, which would 

characterize the cardiac tissue in more detail and help to understand these effects. 

Nevertheless, these findings confirm the important role of aldosterone in cardiac 

tissue that may be influenced by the actual salt status either directly or through other 

mediators. 

 

Strikingly, this experimental group displayed the most deleterious effects on the 

myocardium as concluded from the CK activity in the coronary effluent. The CK 

activity was substantially higher following spironolactone treatment under high salt 

diet than in other groups. In BNK rat hearts the activity was similar to that found 
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following spironolactone alone. In BN rat hearts this effect was more pronounced 

already prior to ischaemia. These findings confirmed the deleterious effect of 

spironolactone during ischaemia, described in section 5.2., that was further 

enhanced by high salt diet. These data may suggest that aldosterone is an important 

regulator of cardiac functions also during and following ischaemia. The presence of 

cardiac aldosterone should not always be estimated as detrimental. From this point 

of view treatment with spironolactone may be unfavourable in some patients. Even 

though in present there is no doubt about the beneficial effects of treatment with 

spironolactone if we understand the precise mechanism of our findings it might 

contribute to even better therapeutical impact of spironolactone. 
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6. SUMMARY 
 

BNK rats are characterized by plasma kininogen deficiency that is reflected in lower 

levels of plasma kallikrein activity and consequently in lower plasma BK and KLP 

levels. In contrast to other investigators, with a specific assay system we found that 

the renal KKS of BNK rats was almost identical to that of wild type BN rats. Plasma 

and urinary KLP, rat kinin discovered and characterized in our laboratory, was found 

to be the major kinin responsible for most physiological effects mediated by the B2 

receptor in both rat strains. We found that the deleterious effects of salt diet in BNK 

rats are in fact attributable to enhanced mineralocorticoid action. Originally they were 

believed to be caused by the kininogen deficiency. The renal mineralocorticoid 

receptor (MR) displayed several mutations that might be responsible for altered 

affinity and responses toward aldosterone and other ligands, e.g. DOC and 

corticosterone. Furthermore, it seems likely that these effects are enhanced by the 

overexpression of the MR in BNK rats in kidney as well as in the brain and possibly 

other tissues. These findings are important for the salt sensitive hypertension 

because the central MR was found to control salt appetite. Moreover, the BNK rats 

have increased levels of plasma and urinary ET-1, which may contribute to the 

deleterious effects of Na+ during high salt diet. 

 

Investigation of ischaemic preconditioning (IPC) in isolated hearts revealed no 

significant findings. Plasma components contribute to a great extent to the acute 

protective effects of IPC in vivo. In vitro experiments without any direct 

pharmacological treatment cannot describe the molecular mechanism responsible for 

the protective effects of IPC in all details. Nevertheless, long-lasting effects like 

attenuation of plasma kinins or antagonism of the MR seemed to be of importance for 

the regulation of cardiac function. The absence of plasma KLP during high salt diet 

was found to be responsible for the enhanced deleterious effects of Na+ leading to 

cardiac hypertrophy. In BNK rat hearts aldosterone was found to be responsible for 

the higher heart rate and increased contractility besides for the impairment of 

coronary flow. Aldosterone is also involved in the acute response to ischaemia and 

consequently in response to IPC. In case of an enhanced mineralocorticoid action 

like in BNK rats aldosterone may account for the increased sensitivity to ischaemia 

whereby attenuating the protective effect of IPC. 
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