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Dynamische Simulation aktiver und inaktiver Chromatin Domänen

Zusammenfassung: In dieser Arbeit wird ein neues Modell vorgestellt, welches
mit Hilfe der Polymerphysik zum ersten Mal die Bildung höherer Organisa-
tionsstufen von Chromatin beschreibt. Es handelt sich um ein mesoskopis-
ches Block-Copolymer Modell der 30nm Chromatin Fiber. Verschiedene Sub-
stanzen, welche eine Kondensierung bewirken, können als ein effektives attrak-
tives Potential bestimmter Kettenglieder modelliert werden. Auf diese Weise
beobachtet man die Entstehung von einzelnen 1Mbp Rosetten aus einer linearen
Kette. Ferner wurden mehrere Mbp simuliert, bis hin zu einen ganzen Chromo-
som und schließlich wurde die Simulation eines ganzen Zellkerns von Drosophila
Melanogaster durchgeführt. Die Simulationsdaten wurden mit Experimenten
verglichen und lieferten eine gute Übereinstimmung. Die Ergebnisse wurden
unter anderem bereits in den Zeitschriften Eur. Biophys. J., Int. J. Mod.
Phys. C, Int. J. Biol. Phys. und Biophys. Rev. Lett. veröffentlicht. Eine
detailierte Liste befindet sich im Anhang. Simulationen wurden unter anderem
auch auf dem IBM Blue Gene/L Supercomputer im Forschungszentrum Jülich
durchgeführt.

Dynamic Simulation of active/inactive Chromatin Domains

Abstract: In this thesis a new model is presented, which describes the formation
of higher order chromatin structures with the help of polymer physics for the
first time. It is a block-copolymer model for the compactification of the 30nm
Chromatin fiber into higher order structures. The idea is that basically every
condensing agent (HMG/SAR, HP1, cohesin, condensin, DNA-DNA interac-
tion...) can be modelled as an effective attractive potential of specific chain
segments. This way the formation of individual 1Mbp sized rosettes from a
linear chain could be observed. Furthermore several Mbp of fiber were simu-
lated, up to an entire chromosome and finally the entire nucleus of Drosophila
Melanogaster. The simulation results were compared to experimental data and
good agreement was found. The results have been published in the journals
Eur. Biophys. J., Int. J. Mod. Phys. C, Int. J. Biol. Phys. and Biophys. Rev.
Lett. A detailed list can be found in the appendix. Part of the computation
was done on the IBM Blue Gene/L supercomputer at the Forschungszentrum
Jülich.
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Chapter 1

Background

The size of a typical animal cell is about 10−30µm. A human eye is capable of
resolving about 100µm, thus cells could only be investigated after the invention
of the light microscope. Robert Hooke coined the term cell in 1660 and in 1683
Leeuwenhoek discovered the first bacteria. Subsequently, the cell was studied
in great detail and more and more organelles were discovered. In 1833 Robert
Brown concisely described nuclei of epidermal orchid cells. Henceforth living
organisms could be divided into eukaryotes, which possess a nuclear membrane
and prokaryotes with a lack thereof. The idea that cells emerge from other cells
was first postulated by Schleiden and Schwamm in 1838-39 and later manifested
by Virchows phrase ’omnis cellula a cellula’ [1].

Chromosomes as carriers of information were recognized by van Beneden
in 1883 and Sutton realized in 1903 that they were linked to Mendels ’laws’
of inheritance, which date back to 1865 and have pretty much taken a back
seat for nearly 40 years. The jump to chemistry was performed in 1944 by
Avery. MacLeod and McCarty by realizing that DNA was the carrier of genetic
information. The next milestone came 9 years later when Watson and Crick
discovered the double helical structure of DNA [2, 3].

Of course cell biology and in particular the biology of the nucleus doesn’t
stop after 1953 and this little historical overview is far from complete, but the
gap between chromosomes and the DNA double helical structure with regards
to the scale is already apparent. That is exactly the realm of this thesis, trying
to bridge the gap between the macroscopic (chromosomes) and the microscopic
(DNA), the realm of chromatin and its higher order structures.

1.1 Scale, packing and the microscope problem

Let me give a short overview of the scales involved in the biology of the cell.
As I already mentioned, an average animal cell has a diameter of about 10µm,
its nucleus about 5µm. A human chromosome ranges from 1µm to 5µm in
length, the chromatin fiber about 30nm and finally the diameter of the DNA
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double helix is about 2nm. If one were to hypothetically stretch out the entire
human genome, one would have a string of about 1m length. Thus we have
1m of double stranded DNA in every nucleus of almost every cell in our body
(∼ 1014). Obviously there have to be various levels of compactification to
explain a packing factor of 10.000 [4].

The necessity of computer simulation arises from the problems and limita-
tions of microscopy in living cells on the scale below about 200nm (about half
the excitation wavelength of the light microscope). Electron microscopy yields
a resolution of about 0.1nm but is not possible on living cells. When investi-
gating samples with an EM, these samples have to be fixated somehow. The
fixation procedure is by definition highly invasive and it remains questionable
whether structures observed by EM are actually unaltered from their native
states [5]. Moreover, the capability of EM to label specific structures, e.g. by
gold particles, is presently still limited.

However, light microscopy has come a long way and ingenious inventions
have been made. The SMI microscopy for example uses so-called point spread
function (PSF) engineering methods. It modifies the PSF of a microscope in
such a way, that information of an object below the classical resolution limit
will gained. In the case of the SMI microscope this is accomplished by the fact
that the illumination intensity is not homogeneous in the object area but is
spatially modulated. Two laser beams propagating in opposite directions and
interfering in axial direction are used to set up a standing wave field with in-
tensity modulation along the optical axis. The principle of spatially modulated
wavefield has been developed in 1993 by Bailey et al. In the SMI microscopy
approach in C. Cremers group in Heidelberg, the object is moved in highly
precise steps through the wave field. From this an increase in the axial size-
and distance-resolution is gained [6, 7, 8, 9, 10, 11, 12].

Fluorescence-Resonance-Energy-Transfer (FRET) allows the determination
of distances in biomolecules. It tracks the fluorescence of inserted markers by
measuring their resonance energy transfer. Fluorescence in situ hybridization
(FISH) allows the direct localization of DNA and RNA sequences on chromo-
somes, in cells and in tissue. This technology is based on the hybridization
between target sequences of the single-strand DNA of chromosomes or cell nu-
clei with labelled complementary specimens. The signal is intensified by means
of specific fluorochrome-labelled antibodies and visualized in the microscope.
This technique allows, for example, the localization of genes and also the direct
morphological detection of genetic defects causing hereditary diseases.

Using the concept of stimulated emission depletion (STED) Stefan Hell et
al. were able to go beyond the classical diffraction barrier. Unlike in the light
microscopes, in a STED microscope, the relevant focal fluorescence spot can,
in principle, be reduced in size to the size of a molecule (2− 5nm). This is due
to the fact that the spot size is no longer subject to Abbe‘s formula, but to a
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new law that differs from Abbe‘s original formula in a crucial factor:

∆d =
λ

2n sinα
√

1 + I/Isat

. (1.1)

The key to this method is that one stops the fluorescence, which is in essence
spontaneous emission, by stimulated emission, thus increasing the intensity
ratio in 1.1. Stefan Hell et al. have proven this method theoretically as well as
experimentally [13, 14, 15, 16].

1.2 Nuclear structure and Chromatin

As mentioned earlier, life is either eukaryotic meaning its cells possess a nu-
clear membrane and hence a nucleus or prokaryotic with a lack thereof. I will
only focus on eukaryotic cells as found in most animals. The main structural
component of the cell nucleus is chromatin. Chromatin is a complex of DNA
and nucleosomes. The nucleosome is formed by the wrapping of DNA around
the histone octamer [17]. The nucleosomes provide the first level of compaction
and restrict transcription from unnecessarily accessing unwanted promoter re-
gions. The word chromatin meaning colored material indicates that it received
its name from the staining methods used to make it visible. Fig. (1.1) illus-
trates the different levels of compaction. The DNA nucleosome complex form
the so called 11nm fiber, which is basically a string with beads. The 11nm
fiber then forms a zig-zag pattern and compactifies into the 30nm fiber. It
has been an ongoing dispute for the last 20 years if the 30nm fiber is ordered
linearly in a solenoidal fashion or in a star shaped zig-zag structure. Current
research clearly favors the zig-zag model [18]. The next level of compaction is
still actively investigated. This thesis supports the rosette-model [19, 20]. The
details will be explained in the chapters to come.

Chromatin is historically divided into two types: euchromatin and hete-
rochromatin. Heterochromatin is densely packed and often found at the nuclear
membrane, whereas euchromatin is relatively loose and can be found through-
out the nucleus. Indeed it basically fills most of the nuclear volume. Hete-
rochromatin itself is divided into two types: constitutive and facultative hete-
rochromatin. Constitutive HC is never expressed, meaning it contains no active
genes, whereas facultative HC is expressed in some cell lines but not in others.
In female humans, for example, one copy of the X chromosome is almost en-
tirely facultative HC and transcriptionally inactive, whereas the other copy is
euchromatic and transcriptionally active [21].

1.3 Gene Expression and Silencing

There are many mechanisms involved in gene expression and silencing, such as
the binding of activator/repressor proteins to specific DNA sequences at the
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Figure 1.1: The levels of chromatin compaction. Image source: NIH Talking
Glossary of Genetics
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level of nucleosome [17]. DNA methylation is important for the inactivity of
heterochromatin. The methyl group probably prevents the binding of tran-
scription factors and even cause the wrong proteins to bind to the specifically
methylated sites [22]. This is therefore directly linked to the gene density and
transcriptional activity and will be studied thoroughly in chapters 5 and 6.

In drosophila, however, there is no DNA methylase, so methylation cannot
be responsible for the heterochromatization. Here the polycomb group proteins
(PcG) are important for gene regulation, especially in homeotic genes. Muta-
tion in these genes causes the replacement of homologous body parts such as
legs and antennae [23].

1.4 The Cell Cycle

Most of the cells lifetime, the so called interphase, chromatin forms a single
dense mass, the so called chromosome territories. Only during the cell division
(mitosis) it condenses into chromosomes. A newly born cell rapidly grows (G1)
and gets ready for protein synthesis. The so called S phase stands for synthetic,
meaning that proteins can be synthesized. After the synthesis the cell prepares
(G2) for mitosis. During mitosis (M) the entire genome is duplicated and the
cell division is facilitated by the mitotic spindle. However, most adult cells
do not cycle, but enter a resting state G0 without replicating their DNA. An
illustration of the cell cycle is shown in Fig. (1.2). The possibility of apoptosis,
the cellular death is not shown.

1.5 Replication and Transcription

During replication the DNA double strand is separated into two individual
strands which are then copied into a new complimentary partner. This copy-
ing process is the basis for inheritance. An enzyme called DNA polymerase is
responsible for this process and many DNA polymerases copy different parts of
a chromosome simultaneously. The entire process involves separating parental
strands, copying small segments, glueing them together and verifying if ev-
erything was done correctly [24]. DNA synthesis is restricted to the S phase
of the cell cycle. During S phase the DNA synthesis occurs semiconserva-
tively, meaning that each daughter DNA molecule contains one original and
one copied strand. Replication does not start at the end of the chromosome
and works its way through, but starts at many sites known as origins, spaced
apart about every 50kbp [25]. The replication of many parts occurs simultane-
ously in large immobile replication factories, where the necessary molecules are
concentrated [26, 27]. Until recently it was believed that the DNA polymerase
moved along the DNA and copied it as it goes along [28].

While replication copies genetic information, transcription decodes this in-
formation into a sequence of amino acid residues in a protein. The principles
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Figure 1.2: The cell cycle of a typical mammalian cell. A new cell can pass
through G1, S and G2 before it divides at mitosis (M) or it can exit from the
cycle by going into a resting state G0. The possibility of apoptotic death is not
shown.
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of transcription are in some aspects similar to replication. Transcription is
carried out by RNA polymerase. Not the entire DNA is transcribed, only the
parts that lie between short control sequences called promoters and termina-
tion signals [29]. As in replication there are two competing models: immobile
RNA polymerases in large transcription factories or dynamic tracking of RNA
polymerase along the DNA [30, 31, 28].





Chapter 2

Modeling

2.1 The Biological model

The genome content of a typical human chromosome is on the order of about
100Mbp (e.g. 245Mbp for Chromosome 1). To handle this amount of data on a
computer, course-graining is mandatory. On a large scale one identifies a coiled
state of a chromatin fiber as a 1Mbp bead. Experimental data yield a diameter
of a 1 Mbp domain of about 300 to 800nm [32]. The aim of this analysis will
be to see whether computer simulations of chromatin fibers in interphase yield
the known size and assumed structure of such a coil.

On a more detailed level it is interesting to see the inner structure of such
a coil. For a pure 30nm chromatin fiber one assumes there are about 40 seg-
ments of about 30kbp per bead. One instance of the model would be the ‘10
loop model‘, where the segments form a rosette of 10 loops. Each loop consists
of 120kbp, so that each segment has 30kbp. The 10 loop domains are inter-
connected by 120kbp linkers. Thus, every 4 segments there are believed to be
attraction sites which couple the segments and thus lead to the formation of
a non-random structure. The MLS model [19] and simulations thereof assume
a rosette structure from considerations of the bead diameter and weight. It
consideres the attractive sites to be connected in the center of the rosette at
the base segments of the loops.

My model is more general than the MLS-model. I will look into the forma-
tion of any possible higher order structure by starting out with a linear chain.
This chain has repulsive and attractive segments. The attractive segments cor-
respond to that part of the chromatin fiber which is affected by some condensing
agent. I model the chain such that rosette formation is possible, but not a priori
assumed and compulsory. Furthermore, I believe it to be too restrictive not to
allow the breaking up of bonds between attraction sites. Therefore, I assume
a Lennard-Jones potential. Since there is no reliable data for the Kuhn length
of the 30nm fiber, I simulate the two extreme cases (150 and 300nm [33]) and
see whether there are any significant differences in the results of the interesting
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Figure 2.1: Left: Course-grained model of a chromosome. A typical bead is
about 300 − 800nm in diameter, the linker segment length is around 300nm
and consists of 30kbp. Chromosome 1 has approximately 245 such coils. Right:
Detailed structure of a bead. The 10 loop model suggests a rosette like struc-
ture.

observables.
The assumption of attractive sites is biologically justified. For G/Q - R

bands one has shown that HMG/SAR binding proteins act as mediators of at-
traction [34, 35]. For hetero/euchromatin the HP1 protein has been associated
with chromatin linking [36, 37]. Furthermore, cohesin and condensin play a
crucial role in chromosome compaction [38, 39]. The type of condensing agent
is not my primary concern, though. My model also holds if the attraction is
mediated by DNA-DNA interaction [40, 41]. Thus, I do not claim that the
formation of higher order structures can only occur with a certain type of con-
densing agent, but rather I look at the general aspect of all agents, namely that
they make a certain part of the chromatin fiber effectively attractive.

My model extracts the underlying idea in every case, namely that the chro-
matin fiber can be modeled as a multiblock copolymer. Whether you associate
the different polymer blocks with GC rich and AT rich [42] or with other chro-
matin characteristics is not of primary importance for my model. A multiblock
copolymer containing two alternately located types of blocks can form a single-
chain string of loop clusters called micelles [43]. A micelle consists of a certain
number of loops. The ends of the loops formed by blocks of one type are located
close to each other.

2.2 Computational Model

In this section I would like to describe the concept and the realization of course-
graining. An outline of the program used for the simulation can be found in
chapter 9, as well as in the appendix. Course-graining focuses on the important
aspects of the underlying problem and neglects other factors such as atomistic
or molecular states. It is absolutely mandatory for all non-atomistic computer
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Figure 2.2: After the course graining complex and dense structures may be
simulated.

simulations. Atomistic simulations above the level of relatively simple molecules
is computationally impossible for all practical reasons. Therefore one lumps
together a multitude of atoms in a single entity. This allows the simulation of
comlex and dense macroscopic structures (see Fig. (2.2)).

In this work the continuous backbone mass model [44] is used. The model
interpolates between the united atom model and the bead-spring model. In
contrast to these two models it uses non-spherical force fields for the non-
bonded interaction. The main idea of this approach with a more general form
of the force field is to generalise the united atom model in a way that larger atom
groups are combined into one construction unit, but the possible anisotropy of
these groups is still taken into account. The simplest anisotropic geometrical
object one can think of is an ellipsoid of rotational symmetric form and thus it
is considered as the interaction volume of the chemical sequences in my model
(see Fig. (2.2)).

As one wants the force field to degenerate into a sphere with increasing
distance, I use a confocal force field inside this interaction volume:

Uinter = Uabs

(
d

(p)
1 + d

(p)
2

2
− c

)
, (2.1)

where d
(p)
1 and d

(p)
2 denote the distance of the point p to the focal points of

the ellipsoid and Uabs is the absolute potential. For convenience I use only a
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Figure 2.3: An ellipsoid with an intrinsic spring. The spring symbolizes the
harmonic bond potential.

repulsive part

Uabs(r) ∼ r−6 . (2.2)

The mass of the building units is distributed between the focal points of the
ellipsoids in the hard core region of the confocal potential.

The main ingredient of the model is the mass matrix of the rod-chains.
In order to construct it one, must first calculate the Lagrangian of a single
rod Li = Ti − Vi with the kinetic energy Ti and the potential energy Vi. The
subindex i marks the position of the rods in the chain. This one-dimensional
homogeneous rod i has the length li starting at ~ai and ending at ~bi. If one
supposes that the rods all have the same mass m and that the velocity of the
rod mass scales linearly with the position between the boundaries of the rod,
the kinetic energy can be written as

Ti =
1
2

∫ li

0

m

li

(
(li − x) ~̇ai + x~̇bi

li

)2

dx

=
1
6
m( ~̇ai

2
+ ~̇ai

~̇bi + ~̇bi

2

).

Adding the single terms of the rods building the chain one gets the Lagrangian
L of the whole rod chain. The equations of motion of the chain can be calculated
from the Lagrange equations of the second kind. Since the equations of motion
separate in each direction, one only has to solve three tridiagonal (N + 1) ×
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(N + 1) matrices per chain which consist of N rods per time step of the form

W~̈x = ~F (2.3)

m

6




2 1 0 0 . . .
1 4 1 0 . . .
0 1 4 1 . . .
...

...
...

...
. . .







ẍ0

ẍ1

ẍ2
...


 =




F10

F11 + F21

F22 + F32
...


 (2.4)

with the force Fij on the coordinate j of the flexible point i of the chain

Fij = −∂Vi

∂j
(2.5)

and ẍi denote the accelerations of the flexible points of the chain. The flexible
points are the linking points of the ellipsoids and the end points of the rod chain.
The sub-indices mark the positions in the chain: 0 and N +1 are the end-points
of the chain and the numbers between them denote the linking points of rods
in the chain.

The bonded interactions between neighboring units are given by harmonic
length and angle potentials:

Ubond =
1
2
k(r − r0)2 (2.6)

Uangle =
1
2
kθ(cos θ − cos θ0)2 (2.7)

with the bond lengths r and the bending angles θ. Here r0 and θ0 denote the
mean values.

The ellipsoidal model therefore maps polymers onto focally joint ellipsoids
with a confocal hard-core potential, i.e. the polymers cannot penetrate each
other. The half-axis can be altered individually. The ellipsoids have an intrinsic
harmonic bond-potential as well as an angle and torsion potential. This allows
a chemically and biologically realistic mapping of different substances while at
the same time maintaining computational feasibility.

2.2.1 Integration Scheme

In order to integrate the equations of motion in molecular dynamics (MD), the
simulation program uses the velocity Verlet algorithm. A Taylor expansion of
the position at discrete time steps yields

r(t + ∆t) = r(t) + v(t)∆t +
f(t)
2m

∆t2 +
∆t3

3!
d3r

dt3
+O(∆t4) .

Doing the same expansion for r(t−∆t) and summing these two equations yields

r(t + ∆t) = 2r(t)− r(t−∆t) +
f(t)
m

∆t2 +O(∆t4) ,

therefore only giving an error of the order ∆t4, ∆t being the time step used in
the simulation.
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2.2.2 Dissipative Particle Dynamics

For the part of this thesis dealing with diffusion, the dissipative particle dynam-
ics (DPD) method was used. It is very similar to MD, only that the force now
contains a dissipative and a random component in addition to the conservative
component

~Fi =
∑

j 6=i

[
~fC(~rij) + ~fD(~rij , ~vij) + ~fR(~rij)

]
.

The dissipative force corresponds to a frictional force that depends on the po-
sitions and relative velocities of the particles:

~fD(~rij , ~vij) = −γωD(rij)(~vij · r̂ij)r̂ij ,

where r̂ij is the unit vector in direction of ~rij and ωD(rij) describes the depen-
dence of the friction coefficient γ with distance. The random force is of the
form:

~fR(~rij) = σωR(rij)ξij r̂ij ,

where σ determines the magnitude of the random force and ωR(rij) its distance
dependence. ξij is a random variable with a Gaussian distribution. Note that
the following relations must hold, in order to guarantee a proper Boltzmann
weight:

ωD(rij) = [ωR(rij)]
2 and

σ2 = 2kBTγ .

The detailed justification of this method and its superiority over regular Brow-
nian dynamics, especially for block copolymers can be found in [45].

2.3 Physical Model

Micellar structures have been thoroughly studied for diblock copolymers and
ionomers [46, 47]. Large multiblock copolymers form single-chain micelles, and
small diblock copolymers form multichain micelles. The formation of loops
and their organization into micelles are basically an entropically unfavorable
process, because the number of possible polymer conformations decreases, but
it occurs nonetheless in multiblock copolymers because of the energetically fa-
vorable processes of repulsion between unlike monomer units and/or attraction
between like monomer units [48, 49]. In an aqueous solution, for example, this
means that the hydrophobic parts of the copolymer concentrate in the center
of the micelle and the hydrophilic parts form the loops.

With the abstraction to multiblock copolymers this leads to the potentials
and parameters I use in my simulation:

• Segment diameter: 30nm
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• Segment length: 2 different simulations

1. 30kbp = 300nm each

2. 15kbp = 150nm each

• The harmonic bond potential is taken to be

Ubond(l) =
kT

2δ2
(l − l0)2 (2.8)

with δ = 0.1 and l0 = 300nm at 310.15K.

• The angular and torsional potentials are taken to be 0. On this scale the
chain is flexible.

• Repulsive segments potential

Urep(r) = ε

(
σ

r − rsegment

)6

(2.9)

with ε = 0.14kbT at body temperature, σ = 15nm and rsegment = 15nm
being the fiber radius.

• Cutoff for the repulsive potential is rc = 8nm (after the 15nm fiber ra-
dius).

• Attraction segments potential

Uattr(r) = 4ε

[(
σ

r − rsegment

)12

−
(

σ

r − rsegment

)6
]

(2.10)

with ε = 7kbT at body temperature and σ = 30nm.

• Cutoff for the Lennard-Jones potential is rc = 80nm (after the 30nm fiber
diameter).

The spring constant δ = 0.1 was chosen, such that the 300nm segment
was reasonably stiff and at the same time soft enough to ensure a reasonable
integration time step. For the Lennard-Jones potential ε = 7kbT was chosen
because this proved to be the smallest potential depth for which the segments
remain attractive at body temperature. The analogous reasoning applies to the
ε = 0.14kbT for the repulsive potential.





Chapter 3

Polymer Theory

In this chapter I would like to address some basic concepts of polymer physics
and diffusion. This will be the theoretical foundation of the following chap-
ters on simulation. Starting out with elementary statistical physics of chain
molecules I will continue with real chains and conclude with the theory of dif-
fusion.

3.1 General Chains

3.1.1 End-to-End Distance

A chain with n vertices and n − 1 segments of the length ~li has the vector
end-to-end distance of

~r =
n∑

i=1

~li (3.1)

as well as the square distance

r2 = ~r · ~r =
n∑

i,j=1

~li ·~lj =
n∑

i=1

l2i + 2
∑

0<i<j≤n

~li ·~lj (3.2)

The distance between the two vertices i and j (with i < j) is thus

~rij
2 =

j∑

i′=i+1

l′2i + 2
∑

i<i′<j′≤j

~l′i ·~l′j (3.3)

and for the ensemble average

〈r2〉 =
n∑

i=1

〈l2i 〉+ 2
∑

i<j

〈~li ·~lj〉 (3.4)

Assuming all segments to be of length l, one obtains

〈r2〉 = nl2 + 2
∑

i<j

〈~li ·~lj〉 (3.5)
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3.1.2 Radius of Gyration

The radius of gyration s2 is defined by the coordinates ~si in the chains center-
of-mass system.

s2 =
∑n

i=0 mi~si
2

∑n
i=0 mi

=
m

∑n
i=0 ~si

2

m(n + 1)
=

1
n + 1

n∑

i=0

~si
2 (3.6)

The radius of gyration is thus connected to the end-to-end distance by ~rij =
~sj − ~si. Using (3.6) and (3.3) one obtains

s2 =
1

(n + 1)2
∑

0<i<j≤n

~rij
2 (3.7)

and for the ensemble average

〈s2〉 =
1

(n + 1)2
∑

0<i<j≤n

〈 ~rij
2〉 . (3.8)

3.2 Freely Joint Chains

In the case of freely joint chains, all bond lengths are the same and all bond
angles are distributed with equal probability. There is no preferred orientation
and every configuration is eventually achieved. For the scalar product of the
individual chain segments one thus gets

〈~li ·~lj〉 = l2〈cos θij〉 = 0 i 6= j (3.9)

This simplifies the two quantities to

〈r2〉 = nl2 (3.10)

~rij
2 = |j − i| · l2 (3.11)

and (3.8) yields

〈s2〉 =
l2

(n + 1)2
∑

0<i<j≤n

(j − i) . (3.12)

By complete induction one proves that the ratio of radius of gyration to end-
to-end distance is

〈r2〉
〈s2〉 =

6(n + 1)
n + 2

(3.13)

for n →∞ yielding (〈r2〉
〈s2〉

)

∞
= 6 . (3.14)



3.3 Freely Rotating Chain 27

3.2.1 Distribution of the End-to-End Distance

In a freely joint chain, the vector end-to-end distance ~R corresponds to the sum
of N independent randomly distributed orientations ~ui. By the central limit
theorem such quantities exhibit a Gaussian distribution.

PN (~R) =
(

3
2πNl2

)3/2

exp

(
− 3~R2

2Nl2

)
(3.15)

Moments

Using the distribution function one can calculate the moments.

〈(~R2)n〉 =
∫

(~R2)nPN (~R)d3R = (Nl2)n[
(2n + 1)!!

3n
] (3.16)

The double factorial !! is the factorial over next to nearest neighbors n · (n−2) ·
(n−4)·. . . . The identity (2n+1)!! = (2n+1)!/(2nn!) relates the double factorial
to the regular factorial. The averaged odd powers of ~R are 0, since the Gaussian
distribution is even. Therefore the second moment 〈~R2〉 =

∫
~R2PN (~R)d3R =

Nl2 is identical to (3.10). Notably one can use (3.16) to calculate the relative
magnitude of the fluctuations ~R2.

〈(~R2 − 〈~R2〉)2〉
〈~R2〉2

=
〈~R4〉 − 〈~R2〉2

〈~R2〉2
=

2
3

(3.17)

This means that the fluctuations of R2 are of the same order of magnitude as
its mean. A Gaussian chain is thus a strongly fluctuating system.

3.3 Freely Rotating Chain

We now look at a chain with fixes bond angles and a free rotation around this
angle. Let θij be the bond angle between the segments i and j. We still have

〈r2〉 =
n∑

i=1

〈l2i 〉+ 2
∑

i<j

〈~li ·~lj〉 = nl2 + 2
∑

i<j

l2〈cos θij〉 (3.18)

and for 〈cos θij〉 we have

〈cos θi,i+1〉 = cos γ

〈cos θi,i+2〉 = cos γ cos γ = cos2 γ

For k segments we thus obtain

〈cos θi,i+k〉 = cosk γ (3.19)
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Therefore yielding for (3.18)

〈r2〉 = nl2 + 2l2
N∑

i=0

N∑

k=0

−i〈cos θi,i+k〉

= nl2 + 2l2
N∑

i=0

−1
N∑

k=0

−i cosk γ

= nl2 + 2l2
N∑

i=0

−1
cos γ

1− cos γ

= nl2 + 2Nl2
cos γ

1− cos γ

Thus the end-to-end distance turns out to be

〈r2〉 = nl2
1 + cos γ

1− cos γ
(3.20)

This is modulo a constant factor identical to the freely joint case. For the
radius of gyration and the corresponding ratio a rather lengthy calculation [50]
shows that for long chains the Gaussian case is approached. One can show
that correlations and orientation decay exponentially. Thus for long chains,
the freely joint chain is a justified model.

3.4 Characteristic Quantities of Polymers

3.4.1 Persistence Length

Rewriting (3.19) one obtains

〈cos(θi,i+k)〉 = cosk γ

= exp(k ln(cos γ)

= exp(− kl

l/| ln(cos γ)|)

= exp(−s

l̃
)

with l̃ = l/| ln(cos γ)| and s = kl as the contour length between two monomers
along the chain. As a result one writes:

〈cos(θ~u(0),~u(s))〉 ∝ exp(−s

l̃
) (3.21)

Although the result for the persistence length l̃ was derived for a freely rotating
chain, it is valid for all chains due to the exponential decay of the correlations
and orientations. For s ¿ l̃ the chain is nearly straight, for s À l̃ all memory
of the orientation of the chain is lost.
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3.4.2 Kuhn Segment

For an ideal chain we have 〈~R2〉 ∼ nl2 (see 3.10). The Kuhn Segment is defined
as

l̂ =
~R2

nl2
(3.22)

The advantage of the Kuhn segment l is that is experimentally easier accessi-
ble, while the persistence length l̃ has a direct microscopic interpretation. It is
always l ∼ l̃. For the freely joint chain, one can easily calculate the proportion-
ality.

l̂

l̃
= | ln(cos γ)|1 + cos γ

1− cos γ
(3.23)

3.5 Excluded Volume

Previously only Gaussian chains were treated. These chains may penetrate each
other freely, therefore possess no excluded volume. This is obviously not the
case for real chains. In reality the individual chain segments have an excluded
volume, given by their potential (typically repulsive or Lennard-Jones-type)
and thus repell each other during collisions. Fortunately the stated equations
can be modified to take the excluded volume into account.

3.5.1 Flory Theory

Take a chain with an unknown radius R and an internal monomer concentration

cint
∼= N

Rd
in d−Dimensionen (3.24)

There is a repulsive Energy due to the monomer-monomer interaction. Let c
be the local monomer concentration, then the repulsive energy per unit volume
is proportional to the number of pairs, thus c2.

Frep =
T

2
v(T )c2 (3.25)

where v(T ) has the dimension of a d-dimensional volume. The key to the Flory
theory is the mean field approach [51, 52]: all correlations between monomers
are neglected.

〈c2〉 −→ 〈c〉2 ∼ c2
int (3.26)

After the integration over the entire volume Rd the entire repulsive energy turns
out to be

F tot
rep

∼= Tv(T )c2
intR

d = Tv
N2

Rd
(3.27)

Therefore large R are preferred, so the chain swells. However, if R gets too
large, it is entropically unfavorable.
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Now one takes the elastic energy into account

Fel
∼= T

R2

Nl2

and obtains for the free energy

F

T
∼= v

N2

Rd

R2

Nl2
(3.28)

The free energy is minimal for the radius R = RF . Considering all numerical
factors, one gets the following relation

Rd+2
F

∼= va2N3 (3.29)

i.e.
RF ∼ Nν mit ν =

3
d + 2

(d ≤ 4) (3.30)

Interestingly for d = 4 dimensions this yields the ideal Flory exponent ν = 1/2.
For dimensions larger than 4 ν is always equal to 1/2. In 3 dimensions the
Flory exponent is ν = 3/5.

3.5.2 Corrections to the Flory Theory

The Flory theory is amazingly precise although it makes strong simplifications.
Indeed, two effects nearly compensate each other:

• the repulsive energy is overestimated

• the elastic energy is also overestimated

One can us an analogy to magnetic systems in order to obtain a more precise
value for ν [53]. From the theory of second order phase transitions one gets the
corresponding formula

ν = 1/2+ε(n+2)/[4(n+8)]+ε2(n+2)(n2 +23n+60)/[8(n+8)3]+ . . . (3.31)

with ε = 4− d = 1 and n = 0 this yields

ν = 1/2 + 1/16 + 15/512 + . . . ≈ 0.592 (3.32)

3.5.3 Real End-to-End Distances

The end-to-end distance for the free chain has already been calculated previ-
ously. The distribution for a chain with excluded volume looks qualitatively
different. At short distances a new critical exponent γ appears, which describes
the end effects and is independent of ν. At long distances the critical exponent
ν governs the behavior.
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The size R of the polymer determines its intrinsic scale. Generally the
distribution is of the type

PN (~R) =
1

Rd
φ(

~R

R
) (3.33)

where R−d is a normalization resulting from
∫

PN (~R)ddR = 1. This is indeed
also true for a free chain. (3.15) A stretched real chain then behaves as

φ(x) ∼ exp(−|x|δ) mit δ =
1

1− ν
(3.34)

(in three Dimensions δ = 5/2). The distribution thus approaches zero faster
for large x than the ideal chain (δ = 2 (3.15)).

When the ends come very close, |x| ¿ 1. Obviously PN (0) = 0 because the
ends cannot touch due to the excluded volume. For small |x|, PN (x) must be
small as well beacause the neighbors of the end points also possess an excluded
volume and therefore also decrease the probability of a collision. At the end
points the screening of the neighbors acts differently, because there is only one
neighbor. Therefore a new critical exponent g is introduced which takes these
end effects into account. Traditionally one uses the exponent γ from the theory
of self-avoiding random walks, which is connected to g by γ = νg + 1. For the
self-avoiding walk one knows that γ ≈ 7/6 in 3 dimensions. It thus follows that
g ≈ 5/18 ≈ 0.28. For small probabilities a the probability is

PN (|~R| ∼ a) = R−3φ(a/R) ∼ a−3N−3ν−γ−1 ∼ N−1.97 (3.35)

It therefore approaches zero almost like N−2 as compared to the ideal chain
which goes like N−3/2.

3.6 Finite Size Scaling

Most of the analytical results deal with infinitely long chains. Computer sim-
ulations cannot calculate infinitely long chains, therefore one must deal with
finite chains and consequently the size effects that go along with them. In order
to be able to compare the results from computer simulation to theory one has
to scale the chain length. The original theory dealt with phase transitions, due
to its general nature, however, it can also be applied in this case.

The most simple illustration of finite size scaling (FSS) is done using the
percolation problem [54]. Take an infinite lattice whose vertices are occupied
with a probability p and remain empty with 1 − p. Adjacent occupied sites
are called a cluster. There exists a critical concentration pc, such that for
p < pc only finite clusters exist, for p ≥ pc, however, one infinite cluster exists.
For finite lattices there is a corresponding cluster that spans from one end
of the lattice to the other. The quantities of interest are among others the
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percolation probability P∞(p) which states the probability of a site being part
of the percolating cluster, or the percolationsusceptibility

χ =
∞∑

l=1

l2nl(p)/p , (3.36)

where the largest cluster isn’t included in the sum. These quantities possess a
singularity in the infinite case. In finite systems, there is also a finite height
of the maximum. In order to compare results from different size lattices, one
scales with the exponent ν i.e. 1/ν. The critical exponent ν operates on the
linear dimension L of the lattice. In order to scale other quantities, one must
take into account the appropriate powers of ν.

3.7 Diffusion

The terms diffusion and Brownian motion are closely linked. In 1828 Robert
Brown discovered the random motion of tiny pollen under a microscope. This
is of course due to the constant bombardment of the pollen by very many
molecules that make up the stochastic force. The equation of motion for such
a particle in a fluid is

M
d~v

dt
= F(t) , (3.37)

where M is the particle mass, ~v the particle velocity and F(t) the force act-
ing upon the particle due to the impacts from the fluid molecules. Langevin
suggested that F(t) can be split up in two parts: a viscous drag −~v/B and a
rapidly fluctuating part ~F (t) which averages to zero over long intervals. This
leads to

M
d~v

dt
= − ~v

B
+ ~F (t) , (3.38)

leading to the ensemble average

M
d

dt
〈~v〉 = − 1

B
〈~v〉 , (3.39)

whence
〈~v(t)〉 = ~v(0) exp(−t/τ) (τ = MB) . (3.40)

Then (3.38) can be rewritten as

d2

dt2
〈r2〉+

1
τ

d

dt
〈r2〉 = 2〈v2〉 . (3.41)

If the particle is in equilibrium, then one can use the equipartition theorem and
obtain after integration

〈r2〉 =
6kTτ2

M

[
t

τ
−

(
1− e−t/τ

)]
. (3.42)
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For t À τ one obtains
〈r2〉 ' 6kTτ

M
t = 6BkTt (3.43)

yielding
D = BkT . (3.44)

which is known as the Einstein relation.





Chapter 4

The 1Mbp Domain

4.1 Introduction

The structure formation of chromatin is studied on many different scales [55].
Interesting properties can already be obtained from models of the formation of
the 30nm fiber [56, 57, 58, 59, 60, 61]. Chromatin structures beyond the level of
the linear array of nucleosomes play an essential role in gene regulation, repair
processes and pathogenic rearrangements in eukaryotes. Changes in functional
activity are assumed to be tightly coupled to changes in the chromatin struc-
ture. Thus, a full understanding of genome function is not possible without
detailed investigations of the functional chromatin structure and its control,
requiring appropriate tools for quantitative analysis.

The exact details of the 3D folding of the chromatin fiber of a chromosome
are still controversial. Experiments are highly difficult due to the following
limitations. The aggregation is promoted by the high cellular concentration
and charge of those genomes. Furthermore, many structures are smaller than
the resolution of the light microscope (roughly 200nm) and therfore can only
be seen by electron microscopy, which in turn causes problems associated with
preserving structure and recognition of the 3D folding of specific chromatin
structures.

It is generally agreed upon that in eukaryotes the double helix is coiled
locally around nucleosomes and globally into distinct nuclear territories [62].
The levels in between are still under discussion [21]. There are several models
for the different stages of compactification: (i) structures, in which strings are
coiled into solenoids (of roughly 30nm diameter) or zig-zag tubes [56], which
in turn again form higher-order structures [63]; (ii) loops of about 50-150kbp
which are attached to the peripheral lamina or other internal structures, such
as skeletons / scaffolds [38] or factories [64]; and (iii) combinations of the above
for example, of helical coils and radial loops [65] or helical coils and random
folding [66].

To investigate the folding and accessibility of virtual active/inactive chro-
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matin domains within the nuclear volume, my model assumes attractive sites
at some locations along the chain. The results of my simulation favor the
‘Multi Loop Subcompartment (MLS)’ model developed in the group of J. Lan-
gowski [19, 20] for the overall structure of chromosome territories.

According to the MLS model, the experimentally observed foci structure of
chromosomes (for an overview see [32, 62]) is described by rosettes of several
100kbp loops assuming a 30nm chromatin fiber. Adjacent rosettes are con-
nected by chromatin linker segments with the same DNA content as one loop.
Approaches based on the isochore model also predict the formation of rosettes
of about 1Mbp [42].

It has not yet been understood how these rosettes form dynamically. I
have developed a model that not only shows that the higher order structures
formed are indeed rosettes, it also explains the formation process and predicts
quantitative results for certain quantities of interest such as formation time
and rosette diameter. Finally the model predictions will be compared with
experimental light optical data.

4.2 Simulation

The first point of interest is the structure formation of a 1Mbp domain in
interphase. The final structure turns out to always be a rosette. I take 2 non-
reactive linkers at the end and an attraction site after n successive segments.
The number n of segments is the varying parameter. The diameter of the
rosettes will be analyzed as a function of this parameter. One then gets a
starting configuration as shown in Fig. (4.1). The attraction agents are marked
as spheres. The attractive sites are of the same length as the repulsive ones.
The intermediate and final structure can be seen in the same figure.

The following patterns have been simulated

1. 300nm segment

• attractive site every segment
• attractive sites every 3 segments
• attractive sites every 5 segments
• attractive sites every 7 segments
• attractive sites every 9 segments

2. 150nm segment

• attractive site every segment
• attractive sites every 6 segments
• attractive sites every 10 segments
• attractive sites every 14 segments
• attractive sites every 18 segments
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Figure 4.1: Left: The starting configuration of a 60 segment chromatin fiber.
The spheres represent the condensing agents. Center: An intermediary config-
uration. This state of mainly two clusters of approximately equal size turns out
to be a metastable state. Right: In the final state all attractive segments are
concentrated in the center. A rosette has formed.

4.3 Results

In Fig. (4.2) one sees the average formation time of a rosette. Plotted are
the minimum, average and maximum distance of the attractive Lennard-Jones
segments. The minimum distance drops almost instantly, implying that two
attractive segments immediately find each other. After an initial rise, which
is due to the random and hence mostly unphysical starting configuration, the
maximum distance decays over a time of about 10,000 MD-Steps. After this
amount of time the distance drops no more. Hence all attractive segments have
found each other. Therefore the fully equilibrated structure is shown to be a
rosette. With the given parameters of ε and σ, one observes a formation time
of about 48 ms. Note that this is the formation time based on the simulation
of a single rosette. It remains to be seen how this time changes when a larger
region is analyzed.

A crucial question is obviously how many attractive sites are required to
form rosettes of the size observed under a microscope. In order to analyse this
I have done simulations for regular patterns of attractive/repulsive segments. I
am aware of the fact that a regular pattern is a severe restriction but it allows
drawing conclusions with less statistics than for random patterns. Furthermore,
it should provide a first insight whether rosettes of the required size are possible
in the first place.

In Fig. (4.3) I have plotted the radii of gyration for different regular patterns
and different Kuhn lengths. The circles represent the 300nm segment and the
squares the 150nm segment. This is the accepted range for the Kuhn length of
the 30nm fiber. Thus, by taking the two extreme cases I can study the effect
of the stiffness of the chain.

As expected one sees a clear increase in the radius of gyration with larger
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Figure 4.2: Shown is the average formation time of a rosette. From the minimal
distance one can conclude that two segments ‘snap’ very fast. After about
10,000 MD Steps a complete rosette is formed.
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Lsegment Nattractive Nintermediary Loop Size

300 7 to 19 7 to 3 90 to 210kbp
150 7 to 19 14 to 6 90 to 210kbp

Table 4.1: Loop Sizes for different Kuhn lengths

Number of intermediary Segments  / Total Number of Segments
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Figure 4.3: The diameter of the rosettes depends on the number of attractive
sites. The different Kuhn lengths are only of minor importance.

loop sizes. For example, for the 300nm Kuhn length with a loop size of 7
segments (with a total number of 60 segments per rosette one gets a ratio of
about 0.12) one obtains a radius of gyration of about 800nm. One will see
later that the radius of gyration corresponds very well to the actual size. So
for a given experimental size of 300 to 800nm [67] one needs 7 to 19 attractive
segments, i.e. every 3rd to every 8th segment, for the 300nm Kuhn segment.
Therefore one has loop sizes of 90 to 210kbp (i.e. 3 to 7 segments), with
the optimal value around 120kbp (4 segments) per loop. This result is well
supported by the literature [64, 68, 69, 70]. The different Kuhn lengths produce
only a slight difference in the size. The main parameter is clearly the number
of attractive segments. Table 4.1 illustrates the optimal values for rosette sizes
of 300 to 800nm. Lsegment indicates the segment length, Nattractive the total
number of attractive segments per rosette and Nintermediary the number of
repulsive segments between the attractive ones.

Plotting the two-dimensional average monomer concentration yields Fig.
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Figure 4.4: Left: Projection of the average monomer concentration of a rosette
with a diameter of about 600nm. Right: Projections of virtual microscopy
image data stacks of one simulated rosette (before convolution with a measured
confocal point spread function (bottom) and after convolution (top)).

(4.4). The average is taken from 10.000 uncorrelated configurations. The data
in the figure corresponds to the 300nm segment with an attractive site every
5 segments. One sees that the 1Mbp domain has a diameter of about 600nm.
It is clear that the center cannot be the most likely position for the monomers
since one has excluded volume effects. Furthermore, the attractive sites are all
within each other’s potential minimum so that there is a smeared out center
where the attractive sites are. Moving farther out to the periphery one observes
a higher monomer concentration. This is the region dominated by the loops.

To compare the modeled configurations with the outcoming of optical light
microscopy, in Fig. (4.4 top) projections of virtual microscopy image data
stacks are shown. This approach consisted of a digitization of the 30nm thick
segments (about 10 points per 30kbp sized segment were digitized) by a grid
of 4.9x4.9x10.5nm voxel spacing and a convolution of the digitized stacks with
a measured confocal Point Spread Function (PSF) (with a full width at half
maximum (FWHM): FWHMx=279nm, FWHMy=254nm, FWHMz=642nm).

In order to determine the sizes of gene-like structures, David Baddeley of C.
Cremers group has convoluted my simulation data of 180kpb segments with a
Spatially Modulated Illumination Microscope PSF (point spread function) and
then performed a line scan in axial direction. By determining the modulation
contrast one can then calculate the axial extension of the 180kbp segment. Fig.
(4.5) shows the 180kbp segment as well as the PSF fit and Fig. (4.6) shows
the virtual SMI image and the size distribution. Therefore the typical size of a
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Figure 4.5: Size determination of a 180kbp gene-like segment. The left shows
the simulation data and the right side the SMI-PSF fit.

Nattractive a b

5 177.74 ± 0.86 0.1535 ± 0.0014
7 148.05 ± 0.76 0.2075 ± 0.0015
11 106.97 ± 0.68 0.3031 ± 0.0019
19 66.60 ± 0.53 0.4425 ± 0.0024
50 46.06 ± 0.38 0.5509 ± 0.0024

Table 4.2: Fit Parameters for y = axb

180kpb gene-like segment is about 180± 20nm.

To further narrow the number of possible attraction sites per 1Mbp domain
I have plotted the spatial versus the genomic distance in Fig. (4.7). The data
are fitted against the power law y = axb for the 300nm/segment chains, where
y is the spatial distance, x the genomic distance and a and b the fit parameters.
The results of the fits are shown in table 4.2.

The exponents yielded by the fits show that about 11-12 attractive segments
per 1Mbp domain are needed in order to exhibit a non-random walk behavior
with an exponent of about 1/3. Therefore, the number of attractive sites sug-
gested by the evaluation of the diameter, namely about 11 per 1Mbp domain,
is consistent with the number proposed by the exponent. The exponent of
0.32(2) was obtained by Münkel [19] based on the experiments by Yokota et
al. [71] for genomic distances of several Mbp. The parameter range yielded by
my simulation results is therefore in good agreement with experiment.
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Figure 4.7: Shown is the spatial vs. the genomic distance of a 1Mbp domain.
The exponents yielded by the fits clearly favor about 11 attractive sites per
1Mbp domain. The oscillations in the data are due to the rosette nature of the
1Mbp domain.
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4.3.1 Free Energy

In order to see if the observed structures are stable it is necessary to look at the
free energy of the system. The calculation of free energies of biomolecules is
usually no simple task and many elaborate methods have been devised [45]. In
this case, however, I use the straight forward approach and use the definition
of statistical mechanics.

F = −kB lnZ = −kB ln
∑

r

exp [−βEr(x)] (4.1)

where β = 1/kbT and Z is the canonical partition function.
First one evaluate the total energy with respect to time. I took 100 uncor-

related starting configurations and let them equilibrate for the same amount of
time. This is shown in Fig. (4.8). Here one can already make the intersting
observation that there seems to be a metastable state with a relatively long
lifetime before a rosette is finally formed. Then for each time interval one gets
an energy distribution which is shown in Fig. (4.9). Finally one only needs to
sum over all times for every energy interval and take the negative logarithm to
arrive at the free energy. The result is shown in Fig. (4.10). One may observe
that there are several metastable states. The one metastable state with a par-
ticular long lifetime is a state of two clusters of roughly the same size. That
is because the more loops there are on a cluster the larger the entropy barrier
that must be overcome in order to form a final cluster.

This method for calculating the free energy is obviously computationally
very intensive because a large number of uncorrelated starting configurations
must be equilibrated for the same amount of time. This can only be done for rel-
atively short chains. However, this method uses only the statistical definitions
and is therefore not susceptible for any bias. However, one should observe that
the strict definition of the free energy as used above only holds for equilibrium
processes. Since one integrates over time for each energy, one obviously also
includes all transients of non-equilibrium mechanics. These transients, how-
ever, become negligible for longer and longer times. The true free energy then
becomes infinitely deep. Formally this is the only valid domain for term free
energy. Nevertheless, I find that the usage of the term free energy is justified
since it represents the main idea of the process.
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Figure 4.8: Shown is the total energy with respect to the number of simulation
steps. The red line represents the average of 100 runs. Only a few individual
runs are shown for clarity.
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Chapter 5

Diffusion

5.1 Motivation

In this chapter I will investigate the diffusive properties of various substances
into the 1Mbp chromatin domains. This is particularly interesting for replica-
tion and transcription. In essence the detailed dynamics of replication are still
unknown. Modern theories no longer cling to the idea of a sequential reading
and duplicating of the genetic information by a zipper-like machine from start
to finish. Moreover it is believed that replication starts at multiple sites within
one chromosome simultaneously[72]. At these sites replication machinery is as-
sembled of various different components. Thereafter, the secondary chromatin
structure, i.e. the rosettes, is locally decondensed. After the local replication,
the structure recondenses and the replication procedure starts over elsewhere.
Hence, these components need to be able to access these sites. It is therefore
of great importance to know whether certain substances are able to arrive at
these sites by regular diffusion, or if some kind of driving mechanism needs to
exist in order for these substances to reach the replication site.

Replication is not the only process that requires accessibility for certain
molecules. For transcription the process is very similar. Transcription Factor
Complexes (TFC’s) need to access the genome, i.e. the chromatin fiber, in order
to read the genes and produce proteins. The active genes must not necessarily
lie on easily accessible regions of the chromosome[21, 73]. Hence, the question
remains the same as for replication.

5.2 Experiment

The ultimate goal of computer simulation in biological physics is to produce
results which are in agreement with actual experiments and to be able to make
useful and verifiable predictions. I was fortunate enough to be able to collab-
orate with Cristina Cardoso and her group at the Max-Delbrück Centrum in
Berlin. They have done outstanding state-of-the-art experiments which were
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PC                 MeCP2-GFP     NLS-SAv-Cy5         merge

A                              

B                               

C

Figure 5.1: Cy5 fluorescently labelled complexes of Streptavidin (SAv) were mi-
croinjected into the cytoplasm. (A) A cell immediately after microinjection, (B)
The same cell as in A) but 12 min later, the complexes have been transported
into the nucleus, (C) A cell with aggregations of MeCP2 labelled centromeric
heterochromatin structures (C. Cardoso, unpublished data).

compared to the simulation results.
The Cardoso-lab has performed the NLS-Streptavidin-Cy5 steady state dis-

tribution in mouse cells expressing MeCP2-GFP to label heterochromatin. The
results of the experiments can be seen in Fig. (5.1) and Fig. (5.2).

The experimental procedures were as follows:

• 10 nuclei were selected showing different FI of NLS-SAv-Cy5 in
cyto/nucleoplasm

• MeCP2 labelled structures were selected according to GFP fluorescence
label

• nucleoli were selected according to phase contrast (PC) images

• determination of intensity range and background level in individual im-
ages
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Figure 5.2: The linescan analysis (D) shows that the concentration of the NLS-
SAv-Cy5 complexes is decreased in the nucleoli and that some decrease of the
complex concentration can also be seen in MeCP2 labelled heterochromatin (C.
Cardoso, unpublished data).

• determination of mean fluorescence intensity (FI) for selected structures
in each image

• background substraction for individual images and transfer FI value data
in percentage values

• calculation of mean percent values for all cells and standard deviation
for NLS-SAv-Cy5 fluorescence intensity in MeCP2 labelled heterochro-
matin,nucleoli and remaining nuclear regions

and from Fig. (5.2) one can see that:

1. NLS-SAv-Cy5 fluorescence decreases about 30% in MeCP2 labelled het-
erochromatin

2. NLS-SAv-Cy5 fluorescence decreases 50% in nucleolar regions

The conclusion of this experiment is that the concentration of the NLS-SAv-
Cy5 complexes is drastically decreased in the nucleoli and the concentration is
in the GFP labelled heterochromatin is also decreased, but to a lesser extent.
Thus Streptavidin should easily penetrate most of the volume of the chromatin
rosettes. The question is if larger substances, such as GFP PCNA Trimer,
RNA Polymerase II and Ribosomes can also penetrate the rosettes and thus
the heterochromatin.

The Cardoso lab has also done Single-Molecule-Tracking (SMT) and
Fluorescence-Correlation-Spectroscopy (FCS) experiments with Streptavidin.
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Figure 5.3: The simulated substances shown are not drawn to scale.

They have measured a diffusion coefficient of 80 ± 5µm2/s with SMT and
87 ± 10µm2/s with FCS. These results are in good agreement with the theo-
retical prediction for the diffusion in aqueous solution, which yields a value of
81µm2/s.

5.3 Simulation

I have studied the diffusive properties of four different substances: Streptavidin,
GFP PCNA Trimer, RNA Polymerase II and Ribosomes. The masses and
dimensions as well as the force fields and their respective cutoffs are given
in Table 5.1 and Table 5.2. For the chromatin fiber the same mapping was
used as in chapter 4, especially the loop size was chosen to be 120kpb and the
rosette size was 1.2Mbp, which corresponded best with the required genetic vs.
spatial distance exponent of [19, 71] (see chapter 4). Also four different intra-
rosette-spacings were investigated, i.e. the distances of the attractive sites.
This corresponds to 4 different σ in the Lennard-Jones force-field mappings,
ranging from 2.5nm to 27.3nm.

The 1.2Mbp chromatin rosette was put in a simulation box of 1x1x1 µm3

with periodic boundary conditions. The chromatin rosette had a diameter of
about 800nm. Thus the average distance between rosettes was about 200nm. A
closer packing of rosettes, i.e. a smaller simulation box was not possible because
of the necessity to generate a feasible starting configuration. The starting
configuration was generated as follows. First an already condensed rosette
was moved to the center of the simulation box. Then a spherical shell with a
radius of 900nm was tessellated into a 1024-on. At each vertex of the 1024-on
a particle was placed. This starting configuration was then equilibrated with
Dissipative Particle Dynamics until a random distribution was achieved. This
configuration was then the new starting configuration for one DPD run. The
prior configurations were discarded. This was the only feasible way to generate
a working starting configuration. Other approaches were initially tried and then
discarded. For instance, randomly distributing the substances lead to very close
distances either between the substances themselves or between the substance
and the chromatin fiber. In turn this automatically produced large forces and
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Substance Mass Ellipsoid half-axis (hard core) [nm3]
Ribosome 4.200 kDa 30 x 20 x 20
RNA Polymerase II 500 kDa 26 x 14 x 14
GFP PCNA Trimer 180 kDa 11 x 11 x 11
Streptavidin 53 kDa 5 x 4 x 4
Chromatin segment 19.500 kDa 300 x 30 x 30

Table 5.1: Mass and dimensions of the simulated substances. 1 Da = 1 u (in
SI-Units).

Substance Potential Cutoff [nm]
Ribosome r−6 7nm
RNA Polymerase II r−6 4nm
GFP PCNA Trimer r−6 3nm
Streptavidin r−6 1nm

Chromatin segment r−6 8nm

Table 5.2: Parameters for the substances. The potential starts at the hard core
and ends after the cutoff.

the simulation was not stable. Setting all force fields initially to zero and then
gradually increasing them until their final state lead to a decondensation of the
rosette, since the Lennard-Jones force-fields were also decreased and the rosette
thus lost coherence.

One simulation consists of one substances at one intra-rosette spacing. Ten
runs were computed for each simulation, each run consists of 7.000 uncorrelated
configurations. Simulations were done for all substances at all intra-rosette-
spacings.

5.4 Results

First of all the diffusion of Streptavidin throughout rosettes of different intra-
rosette-spacings is looked at. Simulations were done for spacings of 2.5nm,
10.0nm, 21.1nm, and 27.3nm. Fig. (5.4) shows the behavior of Streptavidin
for the different spacings and the calibration run for the aqueous solution.
Qualitatively the straight lines describe regular diffusion for all spacings. Fur-
thermore the diffusion constants differ only slightly for the different spacings.
This behavior was observed for all of the simulated substances, hence the plot
for Streptavidin is exemplary and the ones for the other substances are omitted.
The different diffusion constants for the different spacings for all substances are
shown in Tab. 5.3.

Fig. (5.5) shows the diffusive behavior for all of the simulated substances.
Again one observes regular diffusion only. Obviously the Streptavidin diffuses
much faster than the Ribosomes, but even the large Ribosomes diffuse regu-
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Figure 5.4: The diffusion constants of all the substances vary only slightly with
respect to the intra-rosette-spacing. Shown is the diffusion of Streptavidin.
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Figure 5.5: All substances show regular diffusion. The diffusion constants are
stated for a intra-rosette-spacing of 27.3nm.
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Figure 5.6: Mean square displacement divided by t for the first 0.006 seconds.
Note that the time scale is 1/100 of the total simulated time.

27.3nm 21.1nm 10.0nm 2.5nm
Substance D[µm2/s] D[µm2/s] D[µm2/s] D[µm2/s]
Ribosome 1.60 ± 0.02 1.61 ± 0.02 1.64 ± 0.02 1.69 ± 0.05
RNA Polymerase II 9.44 ± 0.04 9.46 ± 0.04 9.51 ± 0.05 9.73 ± 0.17
GFP PCNA Trimer 24.2 ± 0.1 24.3 ± 0.1 24.4 ± 0.1 24.4 ± 0.3
Streptavidin 81.3 ± 0.4 81.0 ± 0.4 80.5 ± 0.4 83.0 ± 0.8

Table 5.3: Diffusion constants for different intra-rosette-spacings.

larly. A complete overview of all the diffusion constants for all substances and
spacings is shown in Tab. 5.3. The table shows that for the same substance and
different spacings the diffusion constant do not differ much, within errors they
are essentially the same. The errors for the 2.5nm spacing is larger because the
sample size is smaller.

In order to see whether the diffusion is truly regular over the entire scale,
Fig. (5.6) shows the MSD divided by t for the first 0.006 seconds. One can
observe that the regular diffusion is quickly attained. The first approximately
10 points grow increasingly larger, for smaller times. This is due to the fact
that at this time scale one can see the distinct DPD steps that only decorrelate
after a certain number of steps. Therefore one can conclude that all particles
diffuse regularly throughout the entire time scale.
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Figure 5.7: The probability density of the Streptavidin from the center-of-mass.
In the inner core of the rosette the density is lower than that of the water-only
simulation. Beyond about 180nm the density is equal to the bulk density.

5.4.1 Accessibility

Another interesting point to look into is the accessibility of the rosettes. To
shed light on this matter I looked at the density of the substance at different
z-slices around the core of the rosette. Tab. 5.4 shows these slices for the two
extreme intra-rosette-spacings of 2.5nm on the left-hand side and 27.3nm on
the right-hand side. Slices at z = −100nm, z = 0nm and z = 100nm from the
core are shown. One can observe that the core of the small spacing remains
compact while the one of the large spacing is more smeared out. Thus the core
of the larger spacing is a bit larger, but its boundaries less well defined than
the one for the smaller spacing.

A more quantitative analysis is done by looking at the radial monomer
distribution from the center of the rosette in Fig. (5.7). In this plot the dis-
tribution for the 27.3nm spacing is compared to the regular behavior for the
water-only run. Up until about 180nm the density is significantly lower than
in the aqueous solution, after that the density is the same as the bulk density.

The relative density of the Streptavidin particles in the 27.3nm rosette with
respect to the water-only run is shown in Fig. (5.9). As one approaches the
center of the rosette it becomes less and less accessible. The innermost part is
absolutely inaccessible. If one fits the density with

ρ/ρbulk = 1− e
− r−∆r

r0 (5.1)
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Table 5.4: 2 dimensional density plot. The images on the left show a compact
2.5nm core while the ones on the right show a 27.3nm core. For larger intra-
rosette-spacings the rosette-core is smeared out and more penetrable.
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Figure 5.8: The cumulative genome content with respect to the center of the
rosette. One can observe 3 regions of different accessibility.

one obtains a fit value of ∆r = 20.1±3nm and r0 = 69.0±6nm. Therefore the
excluded volume in the center of the rosette is a sphere of about 40nm diameter.
This volume comprises 6 ± 2kbp of the rosette-fiber. If one associates r0 with
an average penetration depth, then the DNA between 20nm and 69nm from
the core is difficult to access. This corresponds to 79± 8kbp of DNA which is
difficult to access, as Fig. (5.8) illustrates.

It is obviously also interesting to see how ribosome-like proteins can pene-
trate the rosette. All the values of r0 and ∆r for Streptavidin and Ribosomes
are listed in Tab. 5.6. There is one trend independent of the substance. For
the larger core the particles seem to be able to penetrate into the deep core
more easily while the average penetrability is less than for the dense core. This
means that a larger core has a greater extension but is less dense and thus
particles can occasionally reach further into the core but are in general further
away from it. A dense core is basically concentrated at the center and no par-
ticles can penetrate deep inside the core. For the larger Ribosomes the r0 and
∆r obviously also increase. Therefore for the D27.3nm rosette approximately
12 ± 3kbp are totally inaccessible to Ribosomes, while 190 ± 8kbp of DNA is
difficult to access.
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Figure 5.9: The relative density from the center of the D27.3nm rosette. As one
approaches the inner core, the density continually decreases. The fit function
and values are stated in the text.

The average density drop-offs (a drop-off of e.g. 0.3 means that the intensity
under a microscope would drop from 1.0 to 0.7) is shown in Tab. 5.5. These
results are in excellent agreement with the experiments.

5.5 Conclusion

The simulations have revealed several noteworthy results. First of all, regular
diffusion was observed for all substances and for all intra-rosette-spacings. If
particles diffuse anomalously in the nucleus then it is not due to the physical
restriction of the rosettes and their cores. At least not on the scale of a single
rosette. Even the relatively large Ribosomes access nearly as much of the rosette

Intra-Rosette-Spacing [nm] Average Density Drop-off
27.3 0.33 ± 0.05
21.1 0.38 ± 0.05
10.0 0.30 ± 0.05
2.5 0.23 ± 0.04

Table 5.5: Average density drop-off for the different intra-rosette-spacings.
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Substance D27.3nm ∆r D27.3nm r0 D2.5nm ∆r D2.5nm r0

Streptavidin 20.1± 3nm 69.0± 6nm 26.21± 3nm 60.9± 5nm
Ribosome 27± 5nm 143± 6nm 32± 5nm 110± 6nm

Table 5.6: ∆r and r0 for Streptavidin and Ribosome-like proteins for the
D27.3nm and D2.5nm rosettes.

as the smaller particles. This is supported experimentally by [74], although they
measured anomalous diffusion on a larger scale. Furthermore the size of the
spacing was basically irrelevant for the diffusion constants.

The second part of the analysis focused on the accessibility of the rosette. I
have shown that the center of the rosette is inacessible for all spacings. Experi-
mentally Streptavidin decreases in the heterochromatic regions (see Fig. (5.2))
and from the simulation results one can conclude that intra-rosette-spacings
from 2.5nm to 27.3nm yield density drop-offs between 23% and 38%, which is
good agreement with the experiments.

Even though the most part of the rosette is accessible even to large molecules
such as Ribosomes, a small region in the center of the rosette is not. A promoter
region is 3kbp, which is comparable to the inaccessible genome in the center
of the rosette. Therefore if exactly this promoter region is inaccessible, the
RNA polymerase may not bind and the entire gene may not be transcribed.
Therefore, unlike [75], my results show that the silencing of genes in the 1Mbp
Chromatin domains could possibly be caused solely by physical inaccessibility.



Chapter 6

Chromosome Mapping

6.1 Motivation

Two chapters back the formation of 1Mbp domains with a regular AnBm pat-
tern was observed. The obvious next step is to investigate longer sequences of
randomly distributed A and B with a certain probability. That is what is done
in this chapter. In addition I compare the simulational results to experimental
ones. This serves as a real test for the model and it will be shown here that it
holds really well.

This chapter deals with the human chromosome 1, in both simulation and
experiment. It is the largest of all human chromosomes with 246Mbp [76].
Along with a multitude of syndromes, it is associated with Alzheimer’s dis-
ease, Leukemia, Glaucoma and Cataracts. It is obvious that, at this stage, no
polymer-type model can explain the occurrences of these diseases, however, the
analysis of structure-formation may be fundamental for further understanding.

Fig. (6.1) shows the average transcription vs. genomic distance for the
human chromosome 1. The blue areas indicate little transcriptional activity, so
called ridges, while the pink ones represent vigorously transcribed regions, so
called anti-ridges. Ridges are characterized by high gene density and high GC
content, anti-ridges exhibit fully opposite characteristics [77, 78]. The exper-
iment and the simulation deal with about 3Mbp of the chromosome, marked
by the red and green arrows. Genomic vs. spatial distance measurements are
performed in vitro and in silico and compared to one another.

6.2 Experiment

The experiments were conducted by Sandra Goetze in R. van Driels Lab at the
Swammerdam Institute for Life Sciences at the University of Amsterdam [79].
In order to understand what kind of treatment is involved experimentally, a
short synopsis of the experimental procedures is given here, for details please
see [79].
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Figure 6.1: Transcriptional activity of chromosome 1. The abscissa shows the
genomic distance and the ordinate the transcriptional activity. The ridges are
areas of high gene density whereas the anti-ridges are such of low gene densities.
(Courtesy of J. Koster and R. Versteeg, Academic Medical Center, University
of Amsterdam, unpublished data)
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As the cell culture, human female primary fibroblasts were used. For the
Fluorescence in situ hybridization (FISH) markers were selected with an av-
erage distance of 400kbp between their centers. This resulted in a contiguous
and homogeneous set of probes with an average gap-distance of approximately
220kbp. In short, cells were incubated with a 30 min pulse of 25 µM BrdU to
label replicating DNA prior to fixation. Denaturation was carried out at 78oC.
Hybridization was allowed to proceed overnight at 37oC. Post-hybridization
washes were then performed at 45oC. All incubations for probe detection were
performed at room temperature. Conjugated antibodies and conjugated strep-
tavidin were used to visualize the signals.

All experiments were performed in duplicate. For each experiment 40 to
60 nuclei were imaged. S phase, as well as cells in G2 were excluded. Twelve-
bit images were recorded using an LSM 510 confocal laser-scanning microscope
equipped with a 63x/1.4 NA Apochromat objective. An Ar laser at 488nm,
a He/Ne laser at 543nm and a He/Ne laser at 633nm were used to excite the
fluorochromes simultaneously. Fluorescence was detected with the appropri-
ate bandpass filters. Images were scanned as 512x512x32 voxel images with a
sampling rate of 50x50x100nm.

Image analysis was carried out with Argos software. To identify and quan-
titatively analyse FISH-labelled areas, 3D images were treated with a bandpass
filter and subsequently segmented using a fixed threshold. The center of gravity
was calculated for each signal using the original unfiltered data set.

6.3 Simulation

The chapter on the 1Mbp domain indicated that a Kuhn length of 150nm is
better suited for modeling the 30nm chromatin fiber. Thus I now use a 150nm,
i.e. 15kbp Kuhn segment for my simulation. The potential parameters for the
repulsive and attractive segments remain unchanged:

• Segment diameter: 30nm

• Segment length: 15kbp = 150nm each

• Total chain length: 3Mbp = 200 15kbp segments

• The harmonic bond potential is taken to be

Ubond(l) =
kT

2δ2
(l − l0)2 (6.1)

with δ = 0.1 and l0 = 300nm at 310.15K.

• The angular and torsional potentials are taken to be 0. On this scale the
chain is flexible.
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• Repulsive segments potential

Urep(r) = ε

(
σ

r − rsegment

)6

(6.2)

with ε = 0.14kbT at body temperature, σ = 15nm and rsegment = 15nm
being the fiber radius.

• Cutoff for the repulsive potential is rc = 8nm (after the 30nm fiber di-
ameter).

• Attraction segments potential

Uattr(r) = 4ε

[(
σ

r − rsegment

)12

−
(

σ

r − rsegment

)6
]

(6.3)

with ε = 7kbT at body temperature and σ = 30nm.

• Cutoff for the Lennard-Jones potential is rc = 80nm (after the 30nm fiber
diameter).

The difference to the 1Mbp domain simulation is that one now has a chain
three times as long and the block-copolymer pattern is no longer of the regular
AnBm type, but randomly distributed. I have simulated 5 different NA/NB

ratios, NA being the number of repulsive segments and NB the number of
attractive segments: 0, 0.2, 0.4, 0.6 and 0.8. For example, an AB sequence for
a ratio of 0.4 would be:

AAABABAABAABBAABAAABBABAAABBAABBABABBABAABAAAAAABBBBABBABAAA
BAABBAAAAABABABAABBAAAAAABBAABAABABAAAAABABBAAAAAAAAABAABAAA
AABBBBBBBAABAAABABBABAAABABAAABABAAABAAAAAAAAAAABBBAABAAAAAB
AAAAAAAAAABBABAAAAA

For each ratio, 150-200 different random AB distributions were equilibrated,
in order to make statistically sound statements. The equilibrated structures
were then analyzed.

6.4 Results

At first, the experimental data for chromosome 1 were compared to the 1Mbp
domains with 30kbp Kuhn segments of the previous chapters. The result can be
seen in Fig. (6.2). I would like to point out that these were the rosettes with a
regular AnBm pattern. The slightly oscillatory behavior of the 210kbp loop line
represents the regular loop structure. The oscillations are not so pronounced
because for the shorter distances because the spatial distance was averaged over
all possible segments. Looking closely, one can still make out 6 maxima in the
210kbp line representing the 6 210kbp loops totaling to the 1.3Mbp rosette.
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Figure 6.2: Comparison with the simulated rosette sizes for the genomic vs.
spatial distance measurements for chromosome1.

The ridge data is in good agreement with the dense cluster line (i.e. only
attractive sites) from about 500kbp on. The anti-ridge data fits the simulation
from about 800kbp on. For small distances, the simulation data doesn’t hold
up very well. Furthermore, since roughly 1Mbp domains were simulated, it
is impossible to predict a trend for the congruency for larger distances. It is
clear that a regular loop rosette was a good starting point for simulations, but
doesn’t hold up to the entire range of the experimental data. This lead to the
idea of randomly distributed attractive sites and longer chains.

In Fig. (6.3) the results are displayed for the different NA/NB ratios. From
a ratio of about 60% on, there is no further compaction, which puts a natural
limit on the possible number of attractive sites, since more do not produce a
more compact structure. Furthermore one can observe that 20% attractive sites
already reduce the spatial distance by a factor of 0.5, compared to the chain
without attractive segments.

The simulation results only reveal their full significance when compared to
the experimental data, as shown in Fig. (6.4). The experimental ridge is in
excellent agreement with a free chain (in the sense of free from attractive sites,
excluded volume is still present). The experimental anti-ridge data is bounded
by the 20% and 40% attractive lines, suggesting good compatibility to a 30%
attractive line. Furthermore for both lines the congruency is excellent down
to the very small genomic distances, the difference observed for the regular
patterns is gone. This proves that the modifications to the model were justified
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Figure 6.3: Simulation of the genomic vs. spatial distance for different numbers
of attractive sites for chromosome 1. The errors are omitted for clarity, they
are approximately 10%.
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Figure 6.4: Genomic vs. spatial distance measurements and simulations for
chromosome 1.

and a more realistic model was obtained.
In summary one can conclude that areas of low transcriptional activity

(anti-ridges), i.e. with low gene density have a NA/NB ratio of about 30%.
Therefore the higher compaction of these areas could be explained by a higher
concentration of condensing agents. The ridges, i.e. highly transcribed areas
basically behave like a free real polymer chain (with excluded volume). I find
this result very intuitive, because the actively transcribed regions need to be
more readily accessible. However, the anti-ridges are not entirely compact, as
the ratio of 30% emphasizes. Recall that the highest compaction starts at about
60%. Thus there is still room for transcription factors to access these areas.
Overall I find the agreement of simulation and experiment striking and believe
that comprises strong evidence for the claim of being a realistic model.

It would perhaps be interesting if future studies could correlate this model to
a metascale model based on the Peyrard-Bishop model [80]. In their model they
investigate the statistical mechanics of the denaturation of two DNA strands
given by the Hamiltonian

H =
∑

n

1
2
m

(
u̇2

n + v̇2
n

)
+

1
2
k

[
(un − un−1)

2 + (vn − vn−1)
2
]

+ V (un − vn) ,
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where
V (un − vn) = D (exp [−a (un − vn)]− 1)2

i.e. a Morse potential is used as a pair potential.



Chapter 7

Chromosome 22

7.1 Motivation

In the previous chapter I have analyzed a 3Mbp region of the human chromo-
some 1. The next logical step is to simulate an entire chromosome. Obviously
one then chooses the smallest, the chromosome 22. It has 49Mbp of DNA and
is thus one the smallest of all chromosomes. Interestingly it was the first human
chromosome to be sequenced. It was completed in December 1999 [81]. Associ-
ated genetic defects include the Cat Eye Syndrome and the 11/22 Translocation.
In this defect a marker chromosome is made up of the upper (p section) and
part of the lower (q section) arms of chromosome 22, and a small portion of
the lower (q section) arm of chromosome 11.

As before my model doesn’t claim to resolve any medical issues. The aim
is to see if the experimentally determined size of chromosome 22 can be repro-
duced by the model without any further assumptions. This would already be
a great success for the model because it then holds on many different scales.

7.2 Simulation

For the simulation of the chromosome I am still using the same block-copolymer
model as before, only that I now resort back to a regular distribution of attrac-
tive sites. This is done because of the computational complexity of simulating
an entire chromosome. If one were to take random distributions one would
need to take many different distributions to obtain proper statistics. This is
not possible because the equilibration of one run took about 3 Months on one
Athlon64 processor at 2 GHz. For this analysis 10 different starting configura-
tions were equilibrated and 4.000 configurations were sampled for each starting
configuration.

Using the simular parameters as in the previous section, we now simulate
the chromosome 22. With a segment length of 300nm we obtain 1667 segments.
A visualization is shown in Fig. (7.1). The detailed parameters are as follows:



68 Chromosome 22

Figure 7.1: The chromatin fiber condensed into the human chromosome 22.
The condensing agents are shown as blue spheres.

• Segment diameter: 30nm

• Segment length: 30.0kbp = 300nm each

• Total chain length: 49Mbp = 1667 30.0kbp segments

• The harmonic bond potential is taken to be

Ubond(l) =
kT

2δ2
(l − l0)2 (7.1)

with δ = 0.1 and l0 = 300nm.

• The angular and torsional potentials are taken to be 0. On this scale the
chain is flexible.

• Repulsive segments potential

Urep(r) = ε

(
σ

r − rsegment

)6

(7.2)

with ε = 0.14kbT , σ = 15nm and rsegment = 15nm being the fiber radius.

• Cutoff for the repulsive potential is rc = 8nm (after the 30nm fiber di-
ameter).
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Figure 7.2: A virtual light nanoscopy image of a the simulated chromosome.
Plotted is the two-dimensional projection of the monomer concentration.

The attractive sites are positioned at every 5th monomer, this yields a ratio
of 20% attractive sites. This was the optimal value yielded by the simulation
of the 1Mbp domain. The individual rosettes then have loop sizes of about
120Kbp. As can be seen in Fig. (7.1) the rosettes are no longer restricted
to 1Mbp domains, some are larger, some smaller. The different sizes of the
rosettes is a natural consequence of the interplay between the attraction of the
sites and the repulsion due to the unfavorable decrease in entropy.

7.3 Results

Applying the same analysis techniques as in the previous section we obtain the
monomer concentration plot shown in Fig. (7.2).This is merely a concentration
plot of one configuration, namely the one depicted in Fig. (7.1). In order to
obtain the diameter I have analyzed the radius of gyration.

The distribution of the radius of gyration of the 40.000 sampled config-
urations is shown in Fig. (7.3). The simulation yields an average radius of
gyration of 3272± 360nm. The experimentally observed value for the diameter
is 2000nm (M. Branco, A. Pombo, MRC London, unpublished results). There-
fore the size predicted by the simulation is off by a factor of 1.6. However, one
has to recall that no further restrections were imposed, especially no external
pressure. Thus a chain in ’free’ space without interference from other objects
was simulated. In particular no nucleus and no other chromosomes were sim-
ulated. In a real nucleus, the presence of 45 other chromosomes are a major
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Figure 7.3: The distribution of the radius of gyration of the chromosome 22.

constraint and result in an external pressure on the nucleus but also on the
individual chromosomes. Therefore a difference by a factor of 1.6 is acceptable.
Most of the compaction was achieved by the attractive segments, an additional
factor of 1.6 can easily be facilitated by the external pressure due to the limited
space.

Another point of interest is to see at what temperature the chromosome
condenses. Having attractive Lennard-Jones potentials, one expects to see a
phase transition from a free state to a collapsed state at a certain tempera-
ture. This transition is shown in Fig. (7.4). The radius of gyration is chosen
as the indicator of the size. Clearly at low temperatures one observes the col-
lapsed state, while for higher temperatures we see the free state. The transition
between the two states is very sharp, as expected for the Lennard Jones system.

In summary for the chromosome 22 the simulations yield approximately
the correct size just by the assumption of having attractive condensing agents,
which were thought only to be important for the formation of the rosettes.
Clearly the role of the condensing agents is far greater.
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Figure 7.4: The temperature dependence of the radius of gyration. At a tem-
perature of about 2300 one sees the transition form the condensed to the de-
condensed state.





Chapter 8

Drosophila

8.1 Motivation

The process of gene silencing is a crucial building block for the picture geneti-
cists developed during the last decade about the functioning of genes within all
kinds of organisms. Gene silencing is a highly complex area of research, and
several mechanisms have been identified that inhibit gene expression within the
nucleus.

The simplest molecular model to explain gene silencing postulates that spe-
cific repressors regulate the onset of transcription, by binding directly to specific
DNA sequences and counteracting the action of activators and of the transcrip-
tional machinery. A second possibility is that repressors, bound at specific se-
quences called silencing elements, might act by regulating the structure of the
chromatin. The structure of the chromatin reduces the accessibility of DNA to
the transcriptional machinery, and repressors might prevent transcription by
stabilizing the binding of histones to DNA, or the folding of nucleosomes in
compact higher-order chromatin structures.

Beside these levels of regulation, another level exists: namely the three-
dimensional organization of chromosomal domains in the cell nucleus during
cellular differentiation and development [82, 83]. In several cases, gene silenc-
ing has been correlated with relocation of chromosomal domains. In most of
the published studies, gene silencing correlated with gene positioning close to
heterochromatic compartments. Heterochromatin represents a highly compact
region of chromatin where genes are stably repressed.

Another case of gene silencing that shares common features with heterochro-
matin silencing involves the proteins of the Polycomb group (PcG) [84]. PcG
proteins are highly conserved regulatory factors that are responsible for the
maintenance of the silent state of important developmental genes, such as
homeotic genes. In Drosophila melanogaster, PcG proteins form multimeric
complexes and regulate their genes through binding to chromosomal regulatory
elements named PcG response elements (PREs). This silencing involves repres-
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sive modifications on the target chromatin. In addition, it has been observed
that silencing via PcG proteins and PREs is enhanced by the presence of mul-
tiple copies of PRE-containing elements in the nucleus. These copies may, but
do not have to be on the same chromosome. Long-distance pairing between
these two loci, which brings them closer together than they would usually be,
leads to strong repression of the genes they control (Bantignies et al [84]). This
type of regulation represents silencing by geometrical closeness, established in
interphase nuclei (see Fig. 8.3).

The goal of this part of my thesis is to build a predictive model for proxim-
ity and interactions of chromosomal domains. Within the model, chromosomes
were assigned a Rabl configuration [85] in the nucleus, a situation which is
present in Drosophila embryonic nuclei. I calculated the expected distance dis-
tribution of the investigated loci and compared this distribution to experimental
results.

8.2 Experiment

Frédéric Bantignies, Virginie Roure and Giacomo Cavalli from the Cavalli Labs
in Montpellier have performed the experiments on the movement of a chromoso-
mal domain induced by PREs and PcG proteins. I would like to briefly explain
their experiment.

A double transgenic Fab-X,2L; Fab-7′ line, which carries two transgenic Fab-
7 and no endogenous copy is used to study the movement of a chromosomal
domain in the nucleus. In this line, one Fab-7 copy is located in the sd locus,
at cytological position 13F, in the middle of the X chromosomal arm, the other
one is located in the 38 F locus, cytologically close to heterochromatin, on the
left arm of chromosome 2 (chr.2L). Preliminary observations using 3D FISH
indicated that, while the 38F locus stays close to the heterochromatin com-
partment in the double transgenic line, the sd locus changes dramatically its
nuclear position and becomes relocalized closer to heterochromatin and to 38F
in a large fraction of nuclei. Now it is interesting to analyse if the sd movement
toward heterochromatin influences the mobility of other loci located along the
chr.X. Besides the sd probe, two additional probes along the chr.X have been
produced, 2Mbp apart from the sd locus. One is located at cytological position
12C, more distal to the centromere, the other one is located at cytological posi-
tion 16D, closer to the centromere. Another probe is a peri-centromeric probe
that corres pond to the histone gene cluster locus, located at position 39D-E,
above the 38F locus in chr. 2L. Three-color 3D FISH experiments on whole
mount embryos were performed, and the relative 3D distances between sd, 12C
or 16D loci, and the peri-centromeric histone locus were measured. These dis-
tances were measured in the double transgenic line, and compared to a control
line containing only one Fab-7 element at the 38F locus (Fab-2L; Fab-7′ line).

Measurements were done in both lines, the Fab-X2L; Fab7’ and the Fab-2L;
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Figure 8.1: The yellow rectangles represent the position of the Fab-7 element:
a) in the Fab-X2L; Fab7’ line, there is two copies of the Fab-7 element: one at
the sd locus (13F), one at the 38F locus. b) in the control Fab-2L; Fab7’ line,
there is only one copy of the Fab-7 element: the one at the 38F locus.
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Figure 8.2: 3D-FISH experiment in the Fab-2L; Fab-7′ control line (top), and
the Fab-X2L; Fab-7′ line (bottom) mapping the distance between the different
loci (top: sd, middle: H, bottom: G) and the pericentric region of chromosome
2 (indicated by ’histone’), since a probe from the histone locus was used.(Roure,
Bantignies and Cavalli, unpublished data)
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Figure 8.3: The different loci are repositioned close to the heterochromatin
when two Fab-7 transgenes are present at the genomic loci.

Fab7’ control line, 5 different distances in 210 nuclei:

1. Distance sd (13F) locus - Histone locus (39D-E)

2. Distance H (16D) proximal locus - Histone locus (39D-E)

3. Distance G (12C) distal locus - Histone locus (39D-E)

4. Distance sd (13F) locus - H (16D) proximal locus

5. Distance sd (13F) locus - G (12C) distal locus

It is observed that the distance between sd and the peri-centromeric histone
locus is significantly lower in the line with two Fab-7 copies than in the control
line, which confirm that the sd locus move toward the heterochromatin region
in the Fab-X2L; Fab-7′ line. The same phenomena was observed for both the
distal and the proximal loci, indicating that these loci move also toward the
heterochromatin region in the Fab-X2L; Fab-7′ line. However, the relative 3D
distances between sd and the distal locus, or sd and the proximal locus do not
significantly change in the Fab-X2L; Fab-7′ line compared to the Fab-2L; Fab-
7′ control line. All together, these results demonstrate that the movement of
the chr.X, dependent on the presence of two Fab-7 sequences, is not restricted
to the sd locus, but involves a large chromosomal domain of at least 4Mbp.
Experiments are now in progress to define if the movement is restricted to
4Mbp of the chr.X, or if the entire chromosome is changing its nuclear position.

8.3 Simulation

The simulation of an entire genome inside a nucleus involves a greater level of
course-graining than for smaller systems, in order to limit the computational
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Figure 8.4: Geometry of the simulation. On the left one sees the impenetrable
heterochromatin as a shaded area. On the right one sees the location of the
grafting points of the individual chromatids.

complexity to a reasonable level. The drosophila nucleus was modelled as fol-
lows. The nucleus has a diameter of 5µm. The heterochromatin occupies an
impenetrable spherical cap of 700nm height. The complete geometry of the
simulation is depicted in Fig. (8.4). The four chromosomes have the following
characteristics:

• Chromosome X: One arm, 22Mbp

• Chromosome 2: Two arms, 2L (Left arm) 23Mbp and 2R (Right arm)
21.4Mbp

• Chromosome 3: Two arms, 3L of 24.4Mbp, 3R of 28Mbp

• Chromosome 4: One very short arm of 1.2Mbp

The ends of the chromosomes are anchored at the heterochromatin, which is
modeled as a short range repulsive wall. The grafting points of the chromo-
somes are illustrated in Fig. (8.4). The chromosomes themselves are mod-
elled as chromatin fibers. If one considers the DNA to be naked:, then 1 nu-
cleotide = 0.33nm, 60kbp (60.000 nucleotides) will then represent approxima-
tively 20, 000nm, 20Mbp will represent 6.600 micrometers. However, the DNA
is not naked in the interphasic nucleus since one has the histones that form the
nucleosomes that are the functional unit of the chromatin. So considering the
11nm chromatin fiber then 200 nucleotides = 66nm of naked DNA, but in this
case, 60kbp will represent approximatively 3300nm, the degree of compaction
thus being 6 to 11. If one considers the 30nm chromatin fiber, then 60kbp will
represent approximatively 1000nm, the degree of compaction then being 35.

Therefore I will model the chromosomes as a 30nm chromatin fiber, then
20Mbp will measure 333 micrometers backbone length. The segment length is
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taken to be 1 micrometer. This is about a factor of 6 too large compared to
measurements of the persistence length of the 30nm fiber, but allows simulation
within a reasonable time span. The potential parameters for the simulated
30nm fiber in this case are as follows:

• Segment diameter: 30nm

• Segment length: 60kbp = 1000nm each

• The harmonic bond potential is taken to be

Us(l) =
kT

2δ2
(l − l0)2 (8.1)

with δ = 0.1 and l0 = 300nm at 310.15K.

• The angular and torsional potentials are taken to be 0. On this scale the
chain is flexible.

• Repulsive segments potential

Urep(r) = ε

(
σ

r − rsegment

)6

(8.2)

with ε = 0.14kbT at body temperature, σ = 15nm and rsegment = 15nm
being the fiber radius.

• Cutoff for the repulsive potential is rc = 8nm (after the 30nm fiber di-
ameter).

As a first step only repulsive segmets are used, therefore producing fibers
which only interact via excluded volume effects. At this first step no attractive
segments are taken into account because the larger cutoff for the Lennard-Jones
segments dramatically augments the compution time. The equilibration of a
starting configuration was quite cumbersome. Fig. (8.5) shows such an equi-
librated starting configuration. It is clear that there are a lot of interacting
fibers inside the spherical nucleus. Randomly distributing grafted chains inside
such a spherical volume turned out to be impractical. With approximately
2.000 segments inside the sphere, a random starting configuration always pro-
duced several monomers that were extremely close or even intersecting. No
matter how slowly the potentials were turned on, the simulation was not sta-
ble. Therefore I resorted to the following procedure. First the chromosomes
were set up as straight chains, orthogonal to the grafting sites. These straight
chains were then equilibrated without the presence of a constraining nuclear
envelope. After they were equilibrated, the nuclear envelope was slowly added.
The nucleus is modelled as a radial force field, which acts inward with a cutoff at
R0 = 2500nm from the center, i.e. inside this radius there is no inward pushing
force. Outside of this radius there is a force proportional to R − R0, allowing
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Figure 8.5: The simulated drosophila nucleus. The different colors indicate the
different chromosomes. The heterochromatin is shown as the solid spherical
cap, the nuclear envelope is not drawn.
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a little elasticity of the nucleus. After every chromosome was contained inside
the nucleus, the obtained configuration was used as a starting configuration for
the simulation runs. With this procedure about 500 independent configurations
were produced.

The genomic contents of the individual chromatids is as follows:

• Chromosome X: 22Mbp

• Chromosome 2L = 23Mbp

• Chromosome 2R = 21.4Mbp

• Chromosome 3L = 24.4Mbp

• Chromosome 3R = 28Mbp

• Chromosome 4 = 1.2Mbp

where L and R indicate the left and right homologues.
The experimental distance markers are then implemented at the following

locations:

• Locus sd (13F): at 6.35Mbp from the grafting point of chromosome X (ap-
proximatively one third of the chromosomal length from grafting point)

• Locus H (16D): at 4.35Mbp from the grafting point of chromosome X

• Locus G (12DC): at 8.35Mbp from the grafting point of chromosome X

• Histone Locus (38F): 4Mbp from the grafting point of chromosome 2
(approximatively one sixth of the chromosomal length from the grafting
point)

8.4 Results

The goal of this chapter is to see how the model compares to the experimental
distance measurements. As a first step only excluded volume interaction was
taken into account, therefore the model is extremely simplified. Nonetheless it
serves as a reasonable starting ground, in order to see what effects can be ex-
plained just by excluded volume interaction. Since the simulational procedures
are quite complex, I have compared the excluded volume simulation to a sim-
ulation without excluded volume, in order to see how prominent the excluded
volume effect is in this constrained volume. Fig. (8.6) shows the excluded vol-
ume and the phantom chain case. As expected the excluded volume produces
a swelling, as can be seen by the shift to the right.

Obviously, one is interested how the simulated distance distribution of the
excluded volume case compares to the experiment. In Fig. (8.7) to Fig. (8.11)
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Figure 8.6: Simulation of the Locus-Histone distance with and without excluded
volume.

one sees the aforementioned distances 1) - 5) both the experimental and the
simulational ones. The errors in the r direction are due to the binning. In
order to compare the simulation with the experiment, I have used the same
number of bins. Therefore the error in r direction of 0.5µm is caused by using
10 bins. The plots also include the case with two copies of Fab-7, which causes
a contraction as shown by the experimental distances. The green (experiment)
and black (simulation) curves of Fig. (8.7) to Fig. (8.9) are already quite close
to each other in width, height an mean. This means that the organization of
the chromosomes in the drosophila nucleus is almost like a random chain with
excluded volume and therefore has no significant higher order structure. In
principle all interchromosomal distances are compatible with random packing.
The slight offset to the left could be explained by the formation of very loose
chromosome territories. This could be achieved by a sparse distribution of
attractive sites along the chromosomes.

Fig. (8.10) and Fig. (8.11) show the intrachromosomal distances. Here
one finds a quantitatively and qualitatively significant difference. The exper-
imental distance distribution is much more compact than the one yielded by
the simulation. However, one must keep in mind that the course graining for
these simulations was quite extensive. In order to be able to calculate the en-
tire nucleus on a small Linux cluster (25 nodes), I set the Kuhn length of the
chromatin fiber to 1000nm. Therefore the resulting fiber is quite stiff. A more
realistic Kuhn length would be a factor of 10 smaller.
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Figure 8.7: Interchromosomal Histone Locus - Locus sd experimental and sim-
ulational distances with excluded volume.

Another possibility for the intrachromosomal compaction is the formation
of chromosome territories. As already mentioned, this could be achieved by a
sparse distribution of attractive segments along the chromatids. If these attrac-
tive sites are specific to the individual chromosomes, then the attraction would
be mutually exclusive, resulting in the formation of individual chromosome ter-
ritories. The size and interpenetrability of these territories would be governed
by the number and distribution of the attractive sites, much like in chapter 3.

If one closely examins the plot of the excluded volume runs and the phan-
tom chains (Fig. (8.6)) and compares it to Fig. (8.7), one notices a possible
agreement between the experimental run with one copy Fab-7 and the phantom
chain run. In order to investigate this further, I have plotted all experimental
distances against the phantom chain runs. These can bee seen in Fig. (8.12)
to Fig. (8.16). Indeed the quality of the agreement is striking for all interchro-
mosomal distances. If one thinks about this seriously, then the only possible
explanation is that topoisomerases do play a significant role in this stage of the
cell cycle [86].

Topoisomerases possess the amazing feature of being able to cut and mend
the chromatin fiber so that topological inconveniences can be corrected. If it is
not only used for transcription and replication, but actually functional through-
out the entire cell cycle, The interpenetration of the chromosomes could be far
greater then expected. This would also facilitate the attractive process of the
experiment with two copies of Fab-7, since the interchromosomal mobility would
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Figure 8.8: Interchromosomal Histone Locus- Locus H experimental and simu-
lational distances with excluded volume.
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Figure 8.9: Interchromosomal Histone Locus- Locus G experimental and simu-
lational distances with excluded volume.
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Figure 8.10: Intrachromosomal Locus H - Locus sd experimental and simula-
tional distances with excluded volume.
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Figure 8.11: Intrachromosomal Locus G - Locus sd experimental and simula-
tional distances with excluded volume.
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Figure 8.12: Interchromosomal Histone Locus - Locus sd experimental and
simulational distances without excluded volume interaction.

be far greater. The intrachromosomal distances, however do not improve sig-
nificantly, suggesting that territory formation is indeed a possible explanation.
This is not a contradiction, because individual chromosomes could form terri-
tories and at the same time penetrate territories from other chromosomes more
easily.

In summary I would conclude that the phantom chain simulation is indeed
realistic, since the agreement with the experimental one copy of Fab-7 run is
excellent within errors for all interchromosomal distances. As stated this could
be explained by Topoisomerases. This would also explain why the Locus sd
approaches the histone locus relatively easy in the experiment with two copies
of Fab-7. Since shutting off the excluded volume causes the chromosomes to
penetrate each other but does not soften the chain, for it does not reduce the
segment length, it is not surprising that the intrachromosomal distances do not
improve. Therefore one can conclude that active Topoisomerases could be a
major factor in the organization of the nuclear structure in drosophila.
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Figure 8.13: Interchromosomal Histone Locus - Locus H experimental and sim-
ulational distances without excluded volume interaction.
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Figure 8.14: Interchromosomal Histone Locus - Locus G experimental and
simulational distances without excluded volume interaction.
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Figure 8.15: Intrachromosomal Locus H - Locus sd experimental and simula-
tional distances without excluded volume interaction.
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Figure 8.16: Intrachromosomal Locus G - Locus sd experimental and simula-
tional distances without excluded volume interaction.



Chapter 9

Scientific Computing

I would like to briefly address the simulation program in the main part of this
dissertation. An short overview, I feel is appropriate since all of the simulations
were done with it. Most of the details can be found in the appendix.

9.1 History of DePoSiTo

The program DePoSiTo (Dense Polymer Simulation Tool) already has a reputed
history and is still extensively used for current simulations. The original version
was based on the programs PolyHMC (1994) of Prof. D. W. Heermann and
DePoSiTo 1.0 (1995) of Dr. K. Zimmer. It has since been modified and extended
by Dipl. Phys. T. Hapke, Dr. A. Linke, Dr. G. Päzold, Dipl. Phys. T. Wang,
Dipl. Phys. N. Goncalves, Dipl. Phys. M. Brill and Dr. Gunther Schöppe in
their respective thesis.[87, 88, 89, 90] Those extensions were among others, the
possibility of scratching polymer surfaces and quenching simulations.

All of my predecessors have used this program to simulate dense polymer
systems in the field of material science. In this thesis I have used the program to
simulate biopolymers. Furthermore I have added several functions, such as the
two types of Lennard-Jones Potentials, the confinement to a spherical volume
and the grafting to a surface.

9.2 Parallelization

As the computational demands grew due to increasingly larger systems it be-
came necessary to use high performance parallel computers. The technical
parallelization of the code was done by R. Reilen-Russ and M. Schwind in G.
Rüngers group at the TU Chemnitz.

To develop efficient parallel applications which are adaptable to the comput-
ing power and communication performance of a specific parallel platform we use
a two level model (TwoL model). It requires an application to be partitioned
into separate modules which can be executed consecutively or concurrently on



90 Scientific Computing

124 8 16 32 64 128
# Processors

0

10

20

30

40

S
pe

ed
up

Short run
Long run

Speedup on Jump
for Drosophila

Figure 9.1: Speedup on Jump

groups of processors. On the upper model level dependence relations between
modules are specified. Such a specification is transformed stepwise into a coor-
dination code which controls the execution of module calls. This also includes
the construction of processor groups as well as organizing data copying and
redistributions. The lower model level provides different module versions to
support different data distributions and kinds of parallelism. To assure the
derivation of an efficient coordination code the transformation process is based
on cost models.

The model is currently implemented as a compiler tool suite consisting
of several components. Each component realizes a specific model part and
provides well-defined interfaces for tool and user interactions. It supports the
generation of different coordination codes for a specified algorithm to exploit
the features of different parallel platforms.

The first platform the program was tested on was the IBM p690-Cluster
Jump at the Forschungszentrum Jülich. Fig. (9.1) shows the speedup for up
to 128 Processors. The difference in the two runs is mainly the computational
time alloted for each processor before an I/O task. Obviously the less I/O tasks
the more efficient the parallel computing becomes. For the Jump runs, a config-
uration from the drosophila simulation was used with about 2.000 monomers.

Fortunately we also succeeded in obtaining computation time on the IBM
Blue Gene/L supercomputer at Jülich with a total of 8192 Processors. Due
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Figure 9.2: Speedup on BlueGene compared to 32 processors

to the improved technical design and infrastructure, a much better scaling was
achieved (see Fig. (9.2)). The superlinear speedup visible at 512 processors
is probably due to cache-effects. Processor caches have much less latency and
higher bandwidth than ordinary memory. With an increasing number of proces-
sors more local data fits into the caches and no slow memory access is necessary.
Also 512 processors make up one complete rack and a complete rack has a dif-
ferent geometry. Using 512 processors the geometry is a torus, anything below
512 processors is implemented as a mesh. For the Blue Gene runs, a configu-
ration from the drosophila simulation was used with about 20.000 monomers,
a factor of 10 larger than on the Jump. Not only is the scaling much better on
the Blue Gene, but also due to the increased number of monomers we were able
to bring down the simulational persistence length to match the experimental
persistence length.





Chapter 10

Conclusion

The aim of this thesis was to see how far a simple polymer model of chromatin
would be valid. Using only an AnBm block copolymer model with attractive
A and repulsive B segments I was able to show that this leads to secondary
structure formation in the form of rosettes. These rosettes were thoroughly
investigated. The number of attractive sites was analyzed with respect to the
rosette diameter and it was found that 6 to 16 loops of 80kbp to 200kbp pro-
duced 1Mbp rosettes of about 300 − 800nm. Diffusion was also investigated
in rosettes of these sizes and it was found that all of the simulated substances
diffuse regularly, so the rosette-structure cannot cause anomalous diffusion.
Furthermore the accessibility was studied and I found out that 20− 27nm, i.e.
6kbp to 12kbp of DNA are absolutely inaccessible, depending on the substance.
This is direct evidence that structural properties can regulate gene expression
and silencing.

The next step was to simulate larger structures. Comparing longer sim-
ulated domains to two regions of about 3Mbp of the human chromosome 1
yielded astounding agreement. I have shown that the ridge data corresponds
to a free polymer chain without any higher order structure beyond the 30nm
chromatin fiber. The anti-ridge data corresponded to a ratio of attractive seg-
ments of about 30% and thus loop sizes of roughly 120kbp. This is exactly the
loop size suggested in the first part of my thesis.

Using the same principles as before, namely only the AnBm block copoly-
mer model, I then simulated an entire human chromosome. The chromosome
condensed to about 3.2µm, which is a factor of 1.6 too large compared to ex-
perimental values. However, the condensation occurred just by the presence of
the attractive sites. No external pressure was imposed on the simulated chro-
mosome. I therefore find it reasonable to assume a greater compaction when
the chromosome is surrounded by other chromosomes and bound by a nucleus.
Thus the factor of 1.6 may be explained by the lack of external pressure.

Finally I have simulated the entire genome of drosophila melanogaster. The
most outstanding result of this simulation was that the experimentally mea-
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sured distances were in good agreement with a simulation without excluded
volume interaction. Therefore Topoisomerase, which cuts and mends the chro-
matin fiber, could be a major factor in chromosomal interactions.

In summary I conclude that the simple polymer model is justified and it
explained the structure of 1Mbp domains and the accessibility thereof as well
as the compaction of larger sequences up to an entire chromosome. The second
major discovery is that the role of Topoisomerase may have to be redefined from
merely a helpful tool for unknotting fibers to a major player in chromosomal
organization in drosophila.

Future simulations could use the mapping I have provided, relating the tran-
scriptional activity to the percentage of attractive sites. In this way, an entire
human chromosome, indeed even the entire human genome could be properly
mapped. It would be extremely interesting to see how this mapping relates
to experimentally measured chromosome territories. Furthermore, if excluded
volume effects are negligible in dense biological systems due to Topoisomerases,
then much more efficient code could be implemented for simulating them. The
present approach originates from polymer physics, where the substances can
be isolated and are not as interdependent of their surroundings. In living sys-
tems there is an inherent intelligence which one needs to incorporate into ones
models. The astounding result is, that this could make simulations simpler.
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Appendix A

The simulation program
DePoSiTo

In this appendix I would like to mention the technical details of the simulations
so that they can be reproduced. Since the program in not open source, please
contact Prof. Heermann for permission to use or access the program. The de-
posito simulation framework consists of three parts, which are briefly explained
in the following sections.

A.1 Setup

The setup program of the deposito framework requires 2 ASCII files: mapping
and ini files. The mapping files contain substance specific parameterizations.
The example shown here is from the drosophila simulation. The first one is for
repulsive segments, the latter for attractive segments.

#mapping for drosophila - Date: 21.07.2005 Time: 10:50 Uhr

MOVEPOINTS
NUMBER 2
0 CLU 000
1 CLU 000

INTERPARAM
# sigma Epsilon Rcoff rel_hc
# ABSFORCE UNITINDICES kcal/mol Angstroem Angstroem
# ------- ------- ------- -------
ELLIPSOID R6 0 1 1.0 1.0 1.5333 0.6522 1.0 0 GAUSS 10

BOND
# E = 0.5 * K2 * (R - R0)^2
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# RO K2
# ------- ------
0 1 HARMONIC 1000.0 100.0

ANGLE
# E = 0.5 * K2 * (cos(Theta) - cos(Theta0))^2
# cos(Theta0) K2
# ---------- -------

TORSION
# E = SUM(n=1,3) { V(n) * [ 1 + cos(n*Phi - Phi0(n)) ] }
# Phi0 = 1 or -1 {for 0 or 180 degree)
# V1 Phi0 V2 Phi0
# ------- ---- ------ ----

PREVMONOMERBOND
# E = 0.5 * K2 * (R - R0)^2
# RO K2
# ------- ------

PREVMONOMERANGLE
# E = 0.5 * K2 * (cos(Theta) - cos(Theta0))^2
# cos(Theta0) K2
# ---------- -------

PREVMONOMERTORSION
# E = 0.5 * K2 * (cos(Theta) - cos(Theta0))^2
# cos(Theta0) K2
# ---------- -------

#end

#mapping for drosophila - Date: 21.07.2005 Time: 10:50 Uhr

MOVEPOINTS
NUMBER 2
0 CLU 000
1 CLU 000

INTERPARAM
# sigma Epsilon Rcoff rel_hc
# ABSFORCE UNITINDICES kcal/mol Angstroem Angstroem
# ------- ------- ------- -------
ELLIPSOID LJ 0 1 2.0 500.0 153.33 0.006522 1.0 0 GAUSS 10
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BOND
# E = 0.5 * K2 * (R - R0)^2
# RO K2
# ------- ------
0 1 HARMONIC 1000.0 100.0

ANGLE
# E = 0.5 * K2 * (cos(Theta) - cos(Theta0))^2
# cos(Theta0) K2
# ---------- -------

TORSION
# E = SUM(n=1,3) { V(n) * [ 1 + cos(n*Phi - Phi0(n)) ] }
# Phi0 = 1 or -1 {for 0 or 180 degree)
# V1 Phi0 V2 Phi0
# ------- ---- ------ ----

PREVMONOMERBOND
# E = 0.5 * K2 * (R - R0)^2
# RO K2
# ------- ------

PREVMONOMERANGLE
# E = 0.5 * K2 * (cos(Theta) - cos(Theta0))^2
# cos(Theta0) K2
# ---------- -------

PREVMONOMERTORSION
# E = 0.5 * K2 * (cos(Theta) - cos(Theta0))^2
# cos(Theta0) K2
# ---------- -------

#end

The ini file contains information for the simulation infrastructure, such as
simulation box dimensions, temperature, confinement and many more. The
following ini file from the drosophila configuration is somewhat typical.

Program_name deposito
Format DePoSiTo2
Creation_date 18-Jan-06_16.24

Substance_num 1
Substance_type0 rep
Substance_prob0 1
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Number_chains 6
Longest_chain 450
Number_monomers 1920
Number_movepoints 2
Branching 0
Phi 0
Side_x 5000
Side_y 5000
Side_z 5000
Tool_type None
Support 0
Trough 0
Plates 0

Microarray 1
Microarray_cutoff 1
Microarray_epsilon 1
Microarray_sigma 1
Microarray_bottom 700
Microarray_displacement 0
Toparray 0
Confinement 1
Confinement_strength 1e-06
Confinement_SQradius 6.25e+06
Confinement_init 0

Seed 531477613
Algorithm MD_VS
Brown_Drag 0
Brown_Rand 0
Temperature 3000
Pressure 0
Thermostat_Q 0
Pressure_Mass 0
Steps_prev 0
Steps_MD 2000
Steps_MC 10000
Steps_NPT 1
Ana_sweeps 1
Save_sweeps 1
New_veloc 1
Int_stepsize 0.01
Verlet_skin 0.1
Relax_cutoff 0.1
Boxsize 5000
ENDPARAM
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The setup program takes these two files and generates a starting configu-
ration. If the simulated system is very complex, a manual construction of a
starting configuration may be necessary.

A.2 DePoSiTo

The deposito2005 program is the heart of the simulation package. It allows
molecular dynamics and dissipative particle dynamics simulations. The dissi-
pative particle dynamics was used for the diffusion of the transcription factors.
It produces files like the ini files but with 6N additional numbers for the location
and momentum of the N simulated particles.

A.3 Analysis

The analysis was done using C-routines that I have implemented myself. I have
added them to the existing deposito analysis framework. The plots were done
with xmgrace and ‘ROOT‘, developed by CERN and available at http://root.cern.ch.
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[89] G. Schöppe. Untersuchungen an einem anisotropen Polymermodell und
Kratzsimulationen an amorphen Polymeroberflächen. PhD thesis, Univer-
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