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Abstract. In shape analysis, the so-called velocity method (or speed method) has been a useful
tool for avoiding regularity assumptions about the admitted shapes. The key idea is to “deform” the
current set according to the flow of a Lipschitz vector field. Making this vector field dependent on the
current shape leads to the so-called morphological equations. They can be regarded as a counterpart of
evolution equations beyond the traditional border of vector spaces, namely for compact subsets of RN

(supplied with the Pompeiu-Hausdorff metric).
Here we focus on the situation that more than one vector field is admitted for each compact subset,

i.e. the morphological equation is replaced by a morphological “inclusion”.
Our aim now is to give necessary and sufficient conditions for the existence of (at least) one solution
whose values always satisfy a given constraint. Drawing parallels with differential inclusions in RN , the
main result is a viability theorem for morphological inclusions (using bounded Lipschitz vector fields as
transitions). Finally an application to shape optimization under state constraints is sketched.
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1 Introduction

State constraints provide challenging questions in any form of dynamic system. Asking for sufficient
and necessary conditions on the set of constraints, the first complete answer for ordinary differential
equations was given by Nagumo in 1942 ([23]) and, this characterization (using the Bouligand tangent
cone) has been rediscovered many times during the last decades.
If solutions of any given initial value problem are not unique, then two versions of this question are
to be distinguished from each other: Either we demand all solutions to have their values in the fixed
set of constraints or (just) at least one solution with this property has to exist. In the first case, the
corresponding set of constraints is called invariant and, in the latter case, it is viable or weakly invariant.
For autonomous differential inclusions in RN , the results are presented in Aubin’s monography Viability
theory [7], for example.

The main goal of this paper is a necessary and sufficient characterization of viability for shapes.
To be more precise, we leave the familiar Euclidean space RN and consider evolutions of nonempty
compact subsets of RN instead. Correspondingly, the trajectory x : [0, T ] −→ RN (of a differential
inclusion) is now replaced by a curve K : [0, T ] −→ K(RN ) with K(RN ) denoting the set of nonempty
compact subsets of RN (usually supplied with the Pompeiu–Hausdorff distance dl). The state constraints
are again formulated as a subset, i.e. now V ⊂ K(RN ) (instead of V ⊂ RN for differential inclusions).

Autonomous Lipschitz vector fields for specifying time derivatives of curves in (K(RN ), dl)

For formulating the viability problem in the metric space
(
K(RN ), dl

)
, we have to specify how

compact subsets of RN are “deformed”. The so–called velocity method or speed method has led Céa,
Delfour, Zolésio and others to remarkable results about shape optimization (see e.g. [10, 12, 29, 32]
and references there). It is based on prescribing a vector field v : RN × [0, T ] −→ RN such that the
corresponding ordinary differential equation d

dt x(·) = v(x(·), ·) induces a unique flow on RN . Indeed,
supposing v to be sufficiently smooth, the Cauchy problem

d
dt x(·) = v(x(·), ·) in [0, T ], x(0) = x0 ∈ RN

is always well–posed and, any compact initial set K ⊂ RN is deformed to

ϑv(t, K) :=
{

x(t) ∈ RN
∣∣ ∃ x(·) ∈ C1([0, t], RN ) : d

dt x(·) = v(x(·), ·) in [0, t], x(0) ∈ K
}

after an arbitrary time t ≥ 0. As a key advantage, this concept of set evolution does not require any
regularity conditions on the compact set K or its topological boundary (but only on the vector field v).
Roughly speaking, v can be interpreted as a “direction of deformation” for (K(RN ), dl).

Aubin seized this notion for extending ODEs to this metric space of compact subsets. The so–called
morphological equations are sketched in [6] and then presented in [4, 5] in more detail. For a given curve
K(·) : [0, T ] −→ K(RN ), autonomous Lipschitz vector fields RN −→ RN are used
for specifying the counterparts of time derivatives. To be more precise, a Lipschitz
continuous field g : RN −→ RN represents a first–order approximation of K(·) at
time t ∈ [0, T [ if

lim sup
h ↓ 0

1
h · dl

(
K(t + h), ϑg(h, K(t))

)
= 0. (∗)

Of course, such a field g(·) need not be unique and thus, all bounded Lipschitz vector fields with this

property (∗) form the so–called mutation
◦
K(t) of K(·) at time t ∈ [0, T [. It is a subset of all bounded

Lipschitz functions RN −→ RN and extends the time derivative to curves in the metric space (K(RN ), dl).
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Solving a morphological equation with state constraints: Aubin’s adaptation of Nagumo’s theorem

The step from specifying a time derivative (of a curve) to formulating a (generalized) differential equation
is rather small. It is based just on prescribing the time derivative as a function of the current state.
In connection with nonempty compact subsets of RN , a function f : K(RN ) −→ Lip(RN , RN ) is given
with Lip(RN , RN ) denoting the set of all bounded and Lipschitz continuous functions RN −→ RN .

For any initial set K0 ∈ K(RN ), we are looking for a curve K(·) : [0, T ] −→ K(RN ) satisfying

1. K(·) is Lipschitz continuous with respect to the Pompeiu–Hausdorff distance dl,

2. f(K(t)) ∈
◦
K(t) for almost every t∈ [0, T [, i.e. lim sup

h↓0

1
h · dl

(
K(t+h), ϑf(K(t))(h, K(t))

)
= 0,

3. K(0) = K0.

Then, K(·) is called solution of the (autonomous) morphological equation
◦
K(·) 3 f(K(·)) in [0, T ]

with initial value K0.

Considering now additional state constraints, the question about existence of a solution has been
answered completely by Aubin in [5], Theorem 0.1. In particular, the assumptions about constraints
and f(·) justify its interpretation as a counterpart of Nagumo’s theorem.

Proposition 1.1 (Nagumo’s theorem for morphological equations [4, 5])
Suppose V ⊂ K(RN ) to be nonempty and closed with respect to dl.

Let f : (K(RN ), dl) −→
(
Lip(RN , RN ), ‖ · ‖∞

)
be a continuous function satisfying

1. supM ∈K(RN ) Lip f(M) < ∞,

2. supM ∈K(RN ) ‖f(M)‖∞ < ∞.

Furthermore suppose for every M ∈ V : f(M) ∈ Lip(RN , RN ) is contingent to V at M in the sense
that 0 = lim inf

h ↓ 0

1
h · dist

(
ϑf(M)(h, M), V

) Def.= lim inf
h ↓ 0

1
h · inf

C ∈V
dl

(
ϑf(M)(h, M), C

)
.

Then, from any K0 ∈ V starts a solution K(·) : [0,∞[−→ K(RN ) of the morphological equation
◦
K(·) 3 f(K(·)) which is viable in V, i.e. K(t) ∈ V for all t.

The new step to morphological inclusions

This paper focuses on the corresponding conditions (of viability) if more than one Lipschitz field is
admitted for each compact set, i.e. the single–valued function f : K(RN ) −→ Lip(RN , RN ) is replaced
by a set–valued map F : K(RN ) ; Lip(RN , RN ).
This modification of given data leads directly to the following definition: A curve K(·) : [0, T ] −→ K(RN )

is called solution of the morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ in [0, T [ with initial value K0 if

1. K(·) is Lipschitz continuous with respect to the Pompeiu–Hausdorff distance dl,

2. F(K(t))∩
◦
K(t) 6= ∅ for almost every t, i.e. there exists some w ∈ F(K(t)) ⊂ Lip(RN , RN )

with lim sup
h↓0

1
h · dl (K(t+h), ϑw(h, K(t))) = 0,

3. K(0) = K0.

Considering now additional state constraints on K(·), Doyen [18] has given sufficient conditions on
F (·) and V ⊂ K(RN ) for the invariance of V (i.e. all solutions starting in V stay in V). His key notion
is first to extend Filippov’s existence theorem from differential inclusions (in RN ) to morphological
inclusions (in K(RN )) and then to verify dist(K(·),V) ≤ 0 (by means of Gronwall’s inequality).
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The main result here concerns sufficient conditions on F(·) and V ⊂ K(RN ) for the viability of V,

i.e. at least one solution has to stay in V. This question (in a more general environment) was pointed
out as open in § 2.3.3 of [4] and, to the best of my knowledge, it has not been answered even for the
special case of morphological inclusions so far.
In fact, the following statement is very similar to the viability theorem for differential inclusions in RN

(as it is discussed in Aubin’s monography Viability theory [7] and quoted here in Theorem 3.3). Roughly
speaking, F is supposed to be upper semicontinuous with closed, convex values — after specifying a
suitable topology on Lip(RN , RN ) in a moment — and, we require (at least) one “contingent direction”
in the value F(K) ⊂ Lip(RN , RN ) for each K ∈ V.

Theorem 1.2 (Viability theorem for morphological inclusions)
Let F : K(RN ) ; Lip(RN , RN ) be a set–valued map and V ⊂ K(RN ) a nonempty closed subset
satisfying :

1.) all values of F are nonempty, convex and closed (with respect to locally uniform convergence),
2.) sup

M∈K(RN )

sup
f∈F(M)

Lip f < ∞, sup
M∈K(RN )

sup
f∈F(M)

‖f‖∞ < ∞,

3.) the graph of F is closed (with respect to locally uniform convergence in Lip(RN , RN )),

4.) for each K ∈ V, some w ∈ F(K) ⊂ Lip(RN , RN ) is contingent to V at K in the sense that

0 = lim inf
h ↓ 0

1
h · dist

(
ϑw(h, K), V

) Def.= lim inf
h ↓ 0

1
h · inf

C ∈V
dl

(
ϑw(h, K), C

)
.

Then for every initial element K0 ∈ V, there exists at least one solution K(·) : [0, 1] −→ K(RN )

of the morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ with K(0) = K0 and K(t) ∈ V for all t ∈ [0, 1].

The new analytical aspects are closely related to the proof of this theorem. Indeed, Haddad and others
realized the theorem of Alaoglu as a powerful tool for constructing solutions of differential inclusions
in RN under state constraints. The counterparts of time derivatives here, however, form a bounded
sequence in L∞

(
[0, 1], Lip(RN , RN )

)
which cannot be identified with a dual space in an obvious way.

So results of Ülger and Kisielewicz come now into play for characterizing weakly compact subsets of
L1([0, 1], X) and C0(K, X) with a real Banach space X and a nonempty compact set K ⊂ RN [20, 30].

Sketching an application to shape optimization under state constraints

In shape optimization, the aim is to detect a minimizer of a given shape functional J : K(RN ) −→ R.

Seizing the velocity method, a necessary and sufficient condition on the wanted minimizer K̂ ∈ K(RN )
is easy to formulate: J(ϑv(h, K̂)) − J(K̂) ≥ 0 for every Lipschitz field v : RN −→ RN and h ≥ 0.

Several numerical concepts restrict themselves to a necessary condition and thus, consider the so–called
shape derivative δJ(K)(v) := lim

h↓0
1
h · (J(ϑv(h, K)) − J(K)) for K ∈ K(RN ), v ∈ Lip(RN , RN )

— assuming the limit to exist.
The gradient methods, alias methods of steepest descent, start at an approximation K ∈ K(RN ) of
the wanted minimizer and then focus on detecting the Lipschitz field v(·) (in a ball of Lip(RN , RN ))
minimizing its shape derivative δJ(K)(·). If δJ(K)(v) < 0, then v(·) indicates the field of deformation
along which h 7→ J(ϑv(·,K)) is decreasing at maximal speed for short times. So ϑv(h, K) ∈ K(RN )
ought to provide better approximations of the wanted minimizer (for small h > 0).
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Let us now take state constraints into consideration additionally. Then, restricting the iterations
always to the deformation of steepest descent might fail because the state constraints are violated.
Alternatively, the notion here is to specify subsets of all “Lipschitz fields of descent”

F : K(RN ) ; Lip(RN , RN ), K 7→ F(K) ⊂
{
v ∈ Lip(RN , RN )

∣∣ δJ(K)(v) ≤ 0
}

satisfying the assumptions of Theorem 1.2. In particular, the values of F(·) ought to be nonempty,
convex and closed (with respect to the topology of locally uniform convergence in Lip(RN , RN )).
For this purpose, a morphological counterpart of Clarke’s generalized directional derivative is preferred
to the shape derivative δJ(K)(v) :

δCJ(K)(v) := lim sup
h↓0, M→K

(M∈K(RN ))

1
h · (J(ϑv(h, M)) − J(M)) .

is called Clarke’s generalized shape derivative of J(·) at K ∈ K(RN ) in direction v ∈ Lip(RN , RN ).
Then δCJ(K)(v) < 0 implies that even for every set M ∈ K(RN ) sufficiently close to K, the
composition h 7→ J(ϑv(h, M)) is strictly decreasing for short times. Furthermore, the set{

v ∈ Lip(RN , RN )
∣∣ ‖v‖∞ + Lip v ≤ 1, δCJ(K)(v) ≤ c

}
proves to be convex and closed for every c ∈ R and K ∈ K(RN ). Now a suitable bound c is chosen
as a function of the set K, namely the upper semicontinuous function ιJ : K(RN ) −→ ]∞, 0]

ιJ(K) := lim sup
M−→K

(M∈K(RN ))

inf
{

δCJ(M)(v)
∣∣∣ v ∈ Lip(RN , RN ), ‖v‖∞ + Lip v ≤ 1

}
.

Setting F(K) :=
{

v ∈ Lip(RN , RN )
∣∣∣ ‖v‖∞ + Lip v ≤ 1, δCJ(K)(v) ≤ 1

2 · ιJ(K)
}

(where the

factor 1
2 is rather arbitrary), we obtain

Proposition 1.3 Suppose J : K(RN ) −→ R to be Lipschitz continuous with respect to the Pompeiu–
Hausdorff distance dl and bounded from below. F : K(RN ) ; Lip(RN , RN ) is assumed to have closed
graph (with respect to locally uniform convergence on Lip(RN , RN )).
Let V ⊂ K(RN ) be nonempty and closed such that for every set K ∈ V, the value F(K) contains a
vector field contingent to V at K.

Then there exists a Lipschitz continuous solution K : [0,∞[ −→ V ⊂ K(RN ) of the morphological

inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ such that

1. [0,∞[−→ R, t 7−→ J(K(t)) is nonincreasing,
2. every set C = Limn→∞ K(tn) ∈ K(RN ) (with some sequence tn ↗∞) satisfies the following

necessary condition on minimizers of J(·) : ιJ(C) = 0.

This introduction (§ 1) is reflecting the structure of the paper: Aubin’s theory of morphological
equations is summarized in § 2. In particular, we mention the counterparts of Filippov’s and Nagumo’s
theorems for evolutions in the metric space

(
K(RN ), dl

)
. Then, § 3 provides the step to morphological

inclusions. It starts with the viability theorem about differential inclusions (in § 3.1) and extends this
result to morphological inclusions (in § 3.2). Finally, in § 4, we present the analytical details of the
application to shape optimization sketched recently.
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2 A brief introduction to morphological equations

Morphological equations provide a typical geometric example of so–called mutational equations. First
presented in [6] and then elaborated in [5, 4], mutational equations are to extend ordinary differential
equations to a metric space (E, d). In a word, the key idea is to describe derivatives by means of con-
tinuous maps (called transitions) ϑ : [0, 1]× E −→ E, (h, x) 7−→ ϑ(h, x) instead of affine–linear maps
(h, x) 7−→ x + h v (that are always used in vector spaces). Strictly speaking, such a transition specifies
the point ϑ(t, x) ∈ E to which any initial point x ∈ E has been moved after time t ∈ [0, 1]. It can
be interpreted as a generalized derivative of a curve ξ : [0, T [−→ E at time t ∈ [0, T [ if it provides a
first–order approximation in the sense of

lim sup
h ↓ 0

1
h · d

(
ξ(t + h), ϑ(h, ξ(t))

)
= 0.

The so–called morphological equations apply this concept to the set K(RN ) of nonempty compact
subsets of RN supplied with the Pompeiu–Hausdorff distance dl,

dl(K1,K2) := inf
{
ρ > 0

∣∣ K1 ⊂ K2 + ρ B1, K2 ⊂ K1 + ρ B1

}
Here B1 always denotes the closed unit ball in RN , i.e. B1 := {x ∈ RN | |x| ≤ 1}. This is a very
general starting point for geometric evolution problems as there are no a priori restriction in regard to
regularity. Motivated by the velocity method (often used in shape optimization), ordinary differential
equations are here to lay the basis for transitions.

Definition 2.1 Lip(RN , RN ) consists of all bounded and Lipschitz continuous functions RN −→ RN .

Definition 2.2 Choosing any function f : [0, T ] × RN −→ RN , the so–called reachable set
ϑf (t, K) of the initial set K ∈ K(RN ) at time t ∈ [0, T ] is defined as

ϑf (t, K) :=
{

x(t) ∈ RN
∣∣∣ ∃ x(·) ∈ AC([0, t], RN ) : x(0) ∈ K,

d
dτ x(τ) ∈ f(τ, x(τ)) for almost every τ ∈ [0, t]

}
(and correspondingly for f : RN −→ RN ).

Lemma 2.3 For every f ∈ Lip(RN , RN ), the map ϑf : [0, 1]×K(RN ) −→ K(RN ), (h, K) 7−→ ϑf (h, K)
is well–defined and satisfies the four conditions on a transition on the metric space (K(RN ), dl) (in the
sense of Aubin), i.e.

1. ϑf (0,K) = K for all K ∈ K(RN ),
2. lim sup

h ↓ 0

1
h · dl (ϑf (t+h, K), ϑf (h, ϑf (t, K))) = 0 for all K ∈ K(RN ), t ∈ [0, 1[,

3. α(ϑf ) := max
(
0, sup

K1 6=K2

lim sup
h ↓ 0

dl(ϑf (h, K1), ϑf (h, K2)) − dl(K1,K2)
h · dl(K1,K2)

)
< ∞

4. β(ϑf ) := sup
K∈K(RN )

lim sup
h ↓ 0

1
h · dl(K, ϑf (h, K)) < ∞.

In fact, α(ϑf ) ≤ Lip f and β(ϑf ) ≤ ‖f‖∞ .

Furthermore, the “transitional” distance between ϑf , ϑg for any f, g ∈ Lip(RN , RN ),

i.e. dΛ(ϑf , ϑg) := sup
K ∈K(RN )

lim sup
h ↓ 0

1
h · dl (ϑf (h, K), ϑg(h, K))

is bounded from above by ‖f − g‖∞
Def.= supx∈RN |f(x)− g(x)| < ∞.

In particular, dl (ϑf (h, K1), ϑg(h, K2)) ≤ eα(ϑf )·h (dl(K1,K2) + h · ‖f − g‖∞).
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The proof is presented in [4], Proposition 3.5.3 – as a consequence of Cauchy–Lipschitz Theorem (about
trajectories of ordinary differential equations). In particular, this lemma justifies calling ϑf a shape
transition on (K(RN ), dl) (or morphological transition – in accordance with [4], Definition 3.7.2). For
the sake of simplicity, f ∈ Lip(RN , RN ) is sometimes identified with its shape transition ϑf .

These reachable sets provide the tools for specifying (generalized) shape derivatives of a compact–
valued tube K(·) : [0, T [ ; RN , i.e. a curve K(·) : [0, T [−→ K(RN ). So the next step will be to solve
equations prescribing such shape derivatives.

Definition 2.4 For any compact–valued tube K(·) : [0, T [ ; RN , the so–called shape mutation
◦
K(t) at time t ∈ [0, T [ consists of all functions f ∈ Lip(RN , RN ) satisfying

lim sup
h ↓ 0

1
h · dl (ϑf (h, K(t)), K(t + h)) = 0.

Definition 2.5 For any given function f : K(RN ) × [0, T [ −→ Lip(RN , RN ), a compact–valued
tube K(·) : [0, T [ ; RN is called solution of the morphological equation

◦
K(·) 3 f(K(·), · )

if 1. K(·) : [0, T [ ; RN is Lipschitz continuous with respect to dl and

2. for almost every t ∈ [0, T [, f(K(t), t) ∈ Lip(RN , RN ) belongs to the shape mutation
◦
K(t)

of K(·) or, equivalently, lim sup
h ↓ 0

1
h · dl

(
ϑf(K(t),t)(h, K(t)), K(t + h)

)
= 0.

As an essential result of [4, 5], the Euler algorithm can be applied in the environment of morpho-
logical equations and so, the Cauchy–Lipschitz Theorem (about ordinary differential equations) has the
following counterpart (proven in [4], Theorem 4.1.2 in a more general form):

Theorem 2.6 Suppose f : (K(RN ), dl) −→
(
Lip(RN , RN ), ‖ · ‖∞

)
to be λ–Lipschitz continuous

and to satisfy M := sup
K ∈K(RN )

Lip f(K) < ∞.

For every initial set K0 ∈ K(RN ), there exists a unique solution K(·) : [0,∞[ ; RN of the morpho-

logical equation
◦
K(·) 3 f(K(·)) with K(0) = K0.

Furthermore every Lipschitz compact–valued tube Q : [0,∞[ ; RN with
◦
Q(t) 6= ∅ for every t ≥ 0

satisfies the following estimate at each time t ≥ 0

dl(K(t), Q(t)) ≤ dl(K0, Q(0)) · e(M+λ) t +
∫ t

0

e(M+λ) (t−s) · inf
g∈

◦
Q(s)

‖f(Q(s)) − g‖∞ ds.

In particular, the solution K(·) depends on the initial set K0 and the right–hand side f in a Lipschitz
continuous way.

Existence under (additional) constraints proves to be a very interesting question for many applica-
tions. In the particular case of ordinary differential equations, Nagumo’s Theorem gives a necessary and
sufficient condition on the set V of constraints for existence of local solutions. It uses the contingent
cone (in the sense of Bouligand) and has served as a key motivation for viability theory (see e.g. [1, 7]).
In fact, Nagumo’s Theorem also holds for morphological equations as shown in [4], Theorem 4.1.7 (for
a more general case of morphological equations):
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Definition 2.7 For any nonempty subset V ⊂ K(RN ) and an element K ∈ V,

TV(K) :=
{

f ∈ Lip(RN , RN )
∣∣∣ 0 = lim inf

h ↓ 0

1
h ·dist

(
ϑf (h, K), V

) Def.= lim inf
h ↓ 0

1
h · inf

C ∈V
dl

(
ϑf (h, K), C

)}
is called contingent transition set of V at K.

Remark 2.8 The “geometric” background of reachable sets implies an additional property of shape
transitions in TV(K) ⊂ Lip(RN , RN ). Indeed, for any f ∈ TV(K), every function g ∈ Lip(RN , RN )
with f(·) = g(·) in a neighborhood of ∂K is also contained in TV(K). So in other word,
the criterion of TV(K) depends only on an arbitrarily small neighborhood of the boundary ∂K.

Theorem 2.9 (Nagumo’s theorem for morphological equations [4])
Suppose V ⊂ K(RN ) to be nonempty and closed with respect to dl.

Let f : (K(RN ), dl) −→
(
Lip(RN , RN ), ‖ · ‖∞

)
be a continuous function satisfying

1. supM ∈K(RN ) Lip f(M) < ∞,

2. supM ∈K(RN ) ‖f(M)‖∞ < ∞.

Then from any initial state K0 ∈ V starts at least one Lipschitz solution K(·) : [0, T [ −→ K(RN )

of
◦
K (·) 3 f(K(·)) viable in V (i.e. K(t) ∈ V for all t) if and only if V is a viability domain of f

in the sense of f(M) ∈ TV(M) for all M ∈ V. 2

3 The step to morphological inclusions

The main aim now is to prove such a viability theorem for morphological inclusions, i.e. the single–
valued function f : K(RN ) −→ Lip(RN , RN ) of the right–hand side is to be replaced by a set–valued
map F : K(RN ) ; Lip(RN , RN ).

3.1 The (well–known) Viability Theorem for differential inclusions in RN

The situation has already been investigated intensively for differential inclusions in RN (see e.g. [1, 7]).
For clarifying the new aspects of morphological inclusions, we now quote the corresponding result from
[7], Theorems 3.3.2, 3.3.5 after specifying the required terms (according to [7], Definitions 1.1.3, 2.2.4).

Definition 3.1 Let X and Y be normed vector spaces. A set–valued map F : X ; Y is called
Marchaud map if it has the following properties:

1. F is nontrivial, i.e. Graph F 6= ∅,
2. F is upper semicontinuous, i.e. for any x ∈ X and neighborhood V ⊂ Y of F (x),

there is a neighborhood U ⊂ X of x with
⋃

z∈U F (z) ⊂ V,

3. F has compact convex values,

4. F has linear growth, i.e. sup
x∈X

(
1

|x|+1 · sup
y∈F (x)

|y|
)

< ∞.

Definition 3.2 Let X be a normed vector space, V ⊂ X nonempty and x ∈ V. The contingent
cone to V at x is the set TV (x) :=

{
u ∈ X

∣∣ lim inf
h ↓ 0

1
h · dist(x + h u, V ) = 0

}
.
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Theorem 3.3 (Viability theorem for differential inclusions [7]) Consider a Marchaud map
F : RN ; RN and a nonempty closed subset V ⊂ RN with F (x) 6= ∅ for all x ∈ RN .

Then the following two statements are equivalent:

1. For every point x0 ∈ V, there is at least one solution x(·) ∈ AC([0,∞[, RN ) of x′(·) ∈ F (x(·))
(almost everywhere) with x(0) = x0 and x(t) ∈ V for all t.

2. V ⊂ RN is a viability domain of F in the sense of F (x) ∩ TV (x) 6= ∅ for all x ∈ V.
2

The implication (1.) =⇒ (2.) is rather obvious. For proving (2.) =⇒ (1.), a standard approach uses an
“approximating” sequence

(
xn(·)

)
n∈N in W 1,∞([0, 1], RN ) such that supt dist(xn(t), V ) n→∞−→ 0 and(

xn(t), d
dt xn(t)

)
is close to Graph F ⊂ RN× RN for almost every t. Then the theorems of Arzela–

Ascoli and Alaoglu provide a subsequence
(
xnj

(·)
)
j∈N and limit functions x(·) ∈ C0([0, 1], RN ),

w(·) ∈ L∞([0, 1], RN ) with xnj
(·) −→ x(·) uniformly, d

dt xnj (·) −→ w(·) weakly* in L∞([0, 1], RN ).
Due to the continuous embedding L∞([0, 1], RN ) ⊂ L1([0, 1], RN ), we even obtain the convergence
d
dt xnj

(·) −→ w(·) weakly in L1([0, 1], RN ). Thus, w(·) is the weak derivative of x(·) and, x(·) is Lipschitz.

Furthermore, Mazur’s Lemma implies w(t) ∈
⋂
ε>0

co
( ⋃

z∈Bε(x(t))

F (z)
)

= F (x(t)) for almost every t.

Considering now morphological inclusions on (K(RN ), dl) (instead of differential inclusions), an
essential aspect changes: The derivative of a curve is not represented as a function in L1([0, 1], RN )
any longer, but rather as a function [0, 1] −→ Lip(RN , RN ). So the classical theorems of Arzela–Ascoli,
Alaoglu and Mazur might have to be replaced by their counterparts concerning functions with their
values in a Banach space (instead of RN ).

3.2 Adapting this concept to morphological inclusions

Theorem 3.4 Let F : K(RN ) ; Lip(RN , RN ) be a set–valued map and V ⊂ K(RN ) a nonempty
closed subset satisfying :

1.) all values of F are nonempty, convex and closed (with respect to locally uniform convergence),
2.) A := sup

M∈K(RN )

sup
f∈F(M)

Lip f < ∞, B := sup
M∈K(RN )

sup
f∈F(M)

‖f‖∞ < ∞,

3.) the graph of F is closed (with respect to locally uniform convergence in Lip(RN , RN )),
4.) TV(K) ∩ F(K) 6= ∅ for all K ∈ V.

Then for every initial element K0 ∈ V, there exists a compact–valued Lipschitz continuous solution
K(·) : [0, 1] ; RN of the morphological inclusion

◦
K(·) ∩ F(K(·)) 6= ∅ with K(0) = K0 and

K(t) ∈ V for all t ∈ [0, 1].

Lemma 3.5 (Constructing approximative solutions) Choose any ε > 0. Under the assump-
tions of Viability Theorem 3.4, there exist a B–Lipschitz continuous function Kε(·) : [0, 1] −→ K(RN )
and a piecewise constant function fε(·) : [0, 1[−→ Lip(RN , RN ) satisfying

a) Kε(0) = K0,

b) dist
(
Kε(t), V

)
≤ rε(t) with rε(t) := ε eA t t for all t ∈ [0, 1],

c) fε(t) ∈
◦
Kε(t) ∩ F

(
BRε(Kε(t))

)
6= ∅ with Rε := ε eA for all t ∈ [0, 1[.

Proof follows the same track as [4, Aubin 99], Lemma 1.6.5 and uses Zorn’s Lemma: For ε > 0
fixed, let Aε(K0) denote the set of all tuples (TK , K(·), f(·)) consisting of some TK ∈ [0, 1], a
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B–Lipschitz continuous function K(·) : [0, TK ] −→ (K(RN ), dl) and some piecewise constant function
f(·) : [0, 1[−→ Lip(RN , RN ) such that conditions (a) – (c) are satisfied for all t ∈ [0, TK [.
Obviously, Aε(K0) is not empty since it contains (0, K(·) ≡ K0, f) with arbitrary f ∈ Lip(RN , RN ).
Moreover, an order relation � on Aε(K0) is specified by
(TK , K(·), f(·)) � (TM , M(·), g(·)) :⇐⇒ TK ≤ TM and M(·)

∣∣
[0,TK ]

= K(·) and g(·)
∣∣
[0,TK [

= f(·).
So Zorn’s Lemma guarantees the existence of a maximal element

(
T, Kε(·), fε(·)

)
∈ Aε(K0).

Assuming T < 1 for a moment, we obtain a contradiction if Kε(·), fε(·) can be extended to a
larger interval [0, T + δ] ⊂ [0, 1] (δ > 0) preserving conditions (b), (c).
Since closed bounded balls of (K(RN ), dl) are compact, the closed set V contains an element Z ∈ K(RN )
with dl(Kε(T ), Z) = dist(Kε(T ), V) ≤ rε(T ) and, assumption (4.) of Viability Theorem 3.4 provides
some g ∈ TV(Z) ∩ F(Z) ⊂ Lip(RN , RN ). According to Definition 2.7 of TV(Z), there is a positive
δ̂ < 1−T such that dist(ϑg(h, Z), V) ≤ ε h for every h ∈ [0, δ̂]. Now set

Kε(t) := ϑg

(
t− T, Kε(T )

)
, fε(t) := g for each t ∈ [T, T + δ̂].

Obviously, Lemma 2.3 (2) implies g ∈
◦
Kε(t) for all t ∈ [T, T + δ̂[. Furthermore, Lemma 2.3 leads to

dl
(
Kε(t), Z

)
≤ dl

(
ϑg(t− T, Kε(T )), ϑg(t− T, Z)

)
+ dl

(
ϑg(t− T, Z), Z

)
≤ dl

(
Kε(T ), Z

)
· eA·(t−T ) + B · (t− T )

≤ ε eA T T · eA·(t−T ) + B · (t− T ) ≤ Rε

for every t ∈ [T, T + δ[ with δ := min
{
δ̂, ε eA 1− T

1 + B

}
(i.e. condition (c) is fulfilled) and,

dist
(
Kε(t), V

)
≤ dl

(
ϑg(t− T, Kε(T )), ϑg(t− T, Z)

)
+ dist

(
ϑg(t− T, Z), V

)
≤ dl

(
Kε(T ), Z

)
· eA·(t−T ) + ε · (t− T )

≤ ε eA T T · eA·(t−T ) + ε · (t− T ) ≤ rε(t),

i.e. condition (b) is also satisfied. So Kε(·)
∣∣
[0, T+δ]

and fε(·)
∣∣
[0, T+δ[

provide the wanted contradiction
and thus, T = 1. 2

Lemma 3.6 (Selecting an approximative subsequence) Under the assumptions of Viability
Theorem 3.4, there are sequences Kn(·) : [0, 1] −→ K(RN ), fn(·) : [0, 1[ −→ Lip(RN , RN ) (n ∈ N)
and functions K(·) : [0, 1] −→ K(RN ), f(·) : [0, 1[−→ Lip(RN , RN ) such that

a) K0 = Kn(0) = K(0) for every n ∈ N,

b) K(·) and Kn(·) are B–Lipschitz continuous with respect to dl for each n ∈ N,
c) fn(·) is piecewise constant for each n ∈ N,

sup
n,t

Lip fn(t) ≤ A < ∞, sup
n,t

‖fn(t)‖∞ ≤ B < ∞,

d) dist
(
Kn(t), V

)
≤ 1

n for all n ∈ N, t ∈ [0, 1],

e) fn(t) ∈
◦
Kn(t) ∩ F

(
B1/n(Kn(t))

)
6= ∅ for all n ∈ N, t ∈ [0, 1[,

f ) dl
(
Kn(·), K(·)

)
−→ 0 uniformly in [0, 1] for n −→∞,

g) fn(·)| eKj
−→ f(·)| eKj

weakly in L1
(
[0, 1], C0(K̃j , RN )

)
for each j ∈ N

with the abbreviation K̃j := Bj+B(K0)
Def.=

{
x ∈ RN

∣∣ dist(x,K0) ≤ j + B
}
∈ K(RN ).

Proof is based on the approximative solutions of Lemma 3.5, of course.
Indeed, for each n ∈ N, Lemma 3.5 provides Kn(·) : [0, 1] −→ K(RN ), fn(·) : [0, 1[−→ Lip(RN , RN )
corresponding to ε := 1

n e−A. Obviously, they satisfy the claimed properties (a) – (e).
In particular, these features stay correct whenever we consider subsequences instead and again abbre-
viate them as (Kn(·))n∈N, (fn(·))n∈N respectively.



10 § 3 MORPHOLOGICAL INCLUSIONS

The B–Lipschitz continuity of each Kn(·) has two important consequences, i.e.
1. all Kn(·) : [0, 1] −→

(
K(RN ), dl

)
(n ∈ N) are equi–continuous and

2. the union
⋃

n∈N
t ∈[0,1]

{
Kn(t)

}
is contained in the compact subset BB(K0) of

(
K(RN ), dl

)
.

So, the Theorem of Arzela–Ascoli provides a subsequence (again denoted by) (Kn(·))n∈N converging
uniformly to a function K(·) : [0, 1] −→ (K(RN ), dl). In particular, K(·) is also B–Lipschitz continuous
with K(0) = K0, i.e. properties (a) – (f) are fulfilled completely.

In regard to feature (g), we cannot follow the same track as for differential inclusions any longer.
Indeed, the functions fn(·) of shape transitions have their values in Lip(RN , RN ) which cannot be
regarded as a dual space in an obvious way. So Alaoglu’s Theorem (stating that closed balls of dual
Banach spaces are weakly* compact) cannot be applied immediately.
Alternatively, we restrict our considerations to a compact neighborhood K̃ of

⋃
n∈N
t ∈[0,1]

Kn(t) ⊂ RN

and use a sufficient condition on relatively weakly compact sets in L1
(
[0, 1], C0(K̃, RN )

)
. Here

C0(K̃, RN ) (supplied with the supremum norm ‖ · ‖∞) denotes the Banach space of all continuous
functions K̃ −→ RN . According to subsequent Proposition 3.7, if W ⊂ C0(K̃, RN ) is weakly
compact then the subset{

h ∈ L1
(
[0, 1], C0(K̃, RN )

) ∣∣∣ h(t) ∈ W for (Lebesgue) almost every t ∈ [0, 1]
}

is relatively weakly compact in L1
(
[0, 1], C0(K̃, RN )

)
.

In fact, the set
{
fn(t)

∣∣n ∈ N, t ∈ [0, 1]
}
⊂ C0(RN , RN ) is uniformly bounded by B and equi–continuous

(due to property (c)). So according to the Theorem of Arzela–Ascoli, the set of their restrictions to K̃

W :=
{

fn(t)
∣∣ eK

∣∣∣ n ∈ N, t ∈ [0, 1]
}
⊂ C0(K̃, RN )

is even relatively compact with respect to ‖ · ‖∞. Thus,
{
fn(·)| eK ∣∣n ∈ N

}
is relatively weakly compact

in L1
(
[0, 1], C0(K̃, RN )

)
and, we obtain a subsequence (again denoted by) (fn(·))n∈N and some

g(·) ∈ L1
(
[0, 1], C0(K̃, RN )

)
with fn(·)| eK −→ g(·) weakly in L1

(
[0, 1], C0(K̃, RN )

)
.

Now this construction of subsequences is applied to K̃j
Def.= Bj+B(K0) ⊂⊂ RN for j = 1, 2, 3 . . .

successively. In combination with Cantor’s diagonal construction, we obtain a subsequence (again de-
noted by) (fn(·))n∈N and some gj(·) ∈ L1

(
[0, 1], C0(K̃j , RN )

)
(for each j ∈ N) such that for all j,

fn(·)| eKj
−→ gj(·) weakly in L1

(
[0, 1], C0(K̃j , RN )

)
.

As this subsequence is constructed independently of j ∈ N, its weak convergence implies for any j < k

gj(t)(·) = gk(t)(·)| eKj
∈C0(K̃j , RN ) for almost every t ∈ [0, 1]

and so (gj(·))j∈N induces a single function f : [0, 1[−→ C0(RN , RN ) defined as

f(t)(x) := gj(t)(x) for x ∈ K̃j and almost every t ∈ [0, 1[.

Finally, we verify f(t) ∈ Lip(RN , RN ), Lip f(t) ≤ A and ‖f(t)‖∞ ≤ B for almost every t ∈ [0, 1[.
Indeed, as in the case of differential inclusions (§ 3.1), Mazur’s Theorem ensures for each j ∈ N (fixed)

f(·)| eKj
∈

⋂
n∈N

co
{
fn(·)| eKj

, fn+1(·)| eKj
. . .

}
in L1

(
[0, 1], C0(K̃j , RN )

)
.

Thus, f(·)| eKj
can be approximated by convex combinations of

{
f1(·)| eKj

, f2(·)| eKj
. . .

}
with respect to

the L1 norm. A further subsequence (of these convex combinations) converges to f(·)| eKj
almost every-

where in [0, 1]. So, for almost every t ∈ [0, 1], f(t)| eKj
belongs to the same compact convex subset of(

C0(K̃j , RN ), ‖ ·‖∞
)

as f1(t)| eKj
, f2(t)| eKj

. . . , namely
{
w ∈ Lip(K̃j , RN )

∣∣Lip w ≤ A, ‖w‖∞ ≤ B
}
.

2
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Proposition 3.7 ([30], Proposition 7) Let (Ω,Σ, µ) be a probabilistic space, X an arbitrary Banach
space and L1(µ,X) the Banach space of Bochner integrable functions Ω −→ X equipped with its usual
L1 norm (as in [15]).
For any weakly compact subset W ⊂ X, the set

{
h ∈ L1(µ,X)

∣∣ h(ω) ∈ W for µ–almost every ω ∈ Ω
}

is relatively weakly compact.

Remark. An earlier version of this result is presented in [13] and, [14] considers weak compactness
of Bochner integrable functions with values in an arbitrary Banach space under weaker assumptions.

Lemma 3.8 (The limit function is a solution) Under the assumptions of Viability Theorem 3.4,
consider Kn(·),K(·) : [0, 1] −→ K(RN ) and fn(·), f(·) : [0, 1[−→ Lip(RN , RN ) specified in Lemma 3.6.

Then K(·) is a solution of the morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ with K(0) = K0

and K(t) ∈ V for all t ∈ [0, 1].

Proof. K(t) ∈ V for all t ∈ [0, 1] results directly from properties (d), (f) of Lemma 3.6 because

V is assumed to be a closed subset of
(
K(RN ), dl

)
. So f(t) ∈

◦
K(·) ∩ F(K(·)) is still to prove for a.e. t.

As each fn : [0, 1[ −→ Lip(RN , RN ) is piecewise constant, it can be regarded as a measurable/
Lipschitz function [0, 1[×RN −→ RN , (t, x) 7−→ fn(t)(x) in the sense of [8], Definition 9.5.1, i.e.

fn(·)(x) : [0, 1[−→ RN is Lebesgue measurable for every x ∈ RN and
fn(t)( ·) : RN −→ RN is A–Lipschitz continuous for every t ∈ [0, 1[.

In addition, ‖fn(t)(·)‖∞ ≤ B for every t ∈ [0, 1[, n ∈ N.

Moreover, each compact set Kn(t) ⊂ RN coincides with the reachable set ϑfn
(t, K0) of the initial set

K0 and the function fn(·)(·) : [0, 1[×RN −→ RN (due to the uniqueness stated in Theorem 2.6).

Now we show K(t) ⊂ ϑf (t, K0) for every t ∈ [0, 1]. Indeed, Lemma 3.6 (f) implies
K(t) = Limn→∞ Kn(t) = Limn→∞ ϑfn

(t, K0).
For every x ∈ K(t), there is a sequence

(
xn(·)

)
n∈N of functions in AC([0, t], RN ) satisfying

x′n(s) = fn(s)(xn(s)) for a.e. s ∈ [0, t],
xn(0) ∈ K0,

xn(s) ∈ ϑfn(s,K0) ⊂⊂ B1+B(K0)
Def.= K̃1 for each s ∈ [0, t],

xn(t) −→ x for n −→∞ .

Seizing the notions of [7], Convergence Theorem 2.4.4, the theorems of Arzela–Ascoli and Alaoglu
provide a subsequence

(
xnj (·)

)
j∈N and functions x(·) ∈ C0([0, t], RN ), v(·) ∈ L1([0, t], RN ) such that

xnj (·) −→ x(·) uniformly in [0, t], x′nj
(·) −→ v(·) weakly in L1([0, t], RN )

implying the absolute continuity of x(·) with x′(·) = v(·). For verifying x′(·) = f(·)(x(·)) (a.e.),
we now prove fnj (·)(xnj (·)) −→ f(·)(x(·)) weakly in L1([0, t], RN ) for j −→∞.

For any g ∈ L∞([0, t], RN ) ∼=
(
L1([0, t], RN )

)∗
, the A–Lipschitz continuity of each fnj

(s) implies∫ t

0

g(s) fnj
(s)(xnj

(s)) ds ∈
∫ t

0

g(s) fnj
(s)(x(s)) ds + t · ‖g‖L∞ A ‖x(·)− xnj

(·)‖∞ · B1

−→
∫ t

0

g(s) f(s)(x(s)) ds + 0 for j −→∞

because L1
(
[0, 1], C0(K̃1, RN )

)
−→ R, h 7−→

∫ t

0

g(s) h(s)(x(s)) ds is continuous and linear.

Thus, x = x(t) ∈ ϑf (t, K0).
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The next step is to verify that the tube K(·) : [0, 1] ; RN is invariant under f, i.e. for every initial
point x ∈ K(t) (with t ∈ [0, 1[), the unique solution x(·) ∈ AC([t, 1], RN ) of x′(·) = f(·)(x(·)) (a.e.)
with x(t) = x satisfies x(τ) ∈ K(τ) for any τ ∈ [t, 1]. Due to K(0) = K0, this property implies
ϑf (t, K0) ⊂ K(t) for every t ∈ [0, 1].
Indeed, existence and uniqueness of this solution x(·) result from (generalized) Filippov’s Theorem
because [0, 1] × RN , (s, y) 7−→ f(s)(y) is measurable/Lipschitz (in the sense of [8], Definition 9.5.1).
Each x ∈ K(t) = Limn→∞ Kn(t) is limit of a sequence (xn)n∈N with xn ∈ Kn(t) and there
exist corresponding solutions xn(·) ∈ AC([t, 1], RN ) (n ∈ N) of x′n(·) = fn(·)(xn(·)) (a.e.) with
xn(t) = xn. For the same reasons as before, we obtain a subsequence

(
xnj (·)

)
j∈N and a limit function

y(·) ∈ AC([t, 1], RN ) satisfying
xnj (·) −→ y(·) uniformly in [t, 1],
x′nj

(·) −→ y′(·) weakly in L1([t, 1], RN ),
fn(·)(xn(·)) −→ f(·)(y(·)) weakly in L1([t, 1], RN ).

So y(·) is identical to the uniquely determined solution x(·) of x′(·) = f(·)(x(·)) (a.e.) with x(t) = x

and, these convergence properties hold even for the whole sequence
(
xn(·)

)
n∈N.

In particular, x(τ) = lim
n→∞

xn(τ) ∈ Limn→∞ Kn(τ) = K(τ) for every τ ∈ [t, 1].

Thus, K(t) = ϑf (t, K0) for every t ∈ [0, 1].

Describing K(t) as reachable set of f(·)(·) : [0, 1[×RN −→ RN implies that f(t) ∈ Lip(RN , RN )

belongs to the shape mutation
◦
K(t) for a.e. t ∈ [0, 1], i.e. lim sup

h ↓ 0

1
h ·dl

(
ϑf(t)(h, K(t)), K(t+h)

)
= 0.

Indeed, f(·)(·) : [0, 1[×RN −→ RN is measurable/Lipschitz and thus, subsequent Proposition 3.9 ensures
the following (slightly modified) Scorza–Dragoni property: For any ε > 0, there exists a closed subset
Jε ⊂ [0, 1− ε] with L1([0, 1] \ Jε) < 2ε such that the restriction of f(·)(·) to Jε ×RN is continuous.
Seizing an idea of proving [19], Lemma 2.6, let J̃ε the subset of all density points of Jε that are also
Lebesgue points of the characteristic function χ[0,1]\Jε

(·). Then, L1(J̃ε) = L1(Jε) > 1− 2ε, due to a
well–known result of measure theory.
For any t ∈ J̃ε and x ∈ K(t), there exist unique solutions x(·), y(·) ∈ Lip([t, 1], RN ) of

x′(·) = f(·)(x(·)), y′(·) = f(t)(y(·)) almost everywhere in [t, 1],
respectively, with x(t) = x = y(t). Then, we obtain for every τ ∈ ]t, 1]∣∣x(τ)− y(τ)

∣∣
=

∣∣∣ ∫ τ

t

(
f(s)(x(s))− f(t)(y(s))

)
ds

∣∣∣
≤

∣∣∣ ∫
[t,τ ]∩Jε

(
f(s)(x(s))− f(t)(y(s))

)
ds

∣∣∣ + 2 B · L1([t, τ ] \ Jε)

≤
∫

[t,τ ]∩Jε

∣∣f(s)(x(s))− f(t)(x(s))
∣∣ ds + A

∫
[t,τ ]∩Jε

|x(s)− y(s)| ds + 2 B · L1([t, τ ] \ Jε).

For δ > 0 arbitrarily small, the construction of Jε and J̃ε provide some T ∈ ]t, 1] satisfying

sup
s∈ [t,T ]∩ Jε

sup
z: dist(z,K0)≤B

|f(s)(z)− f(t)(z)| < δ, sup
s∈ [t,T ]

L1([t,s]\Jε)
|s−t| < δ

and thus,
∣∣x(τ)− y(τ)

∣∣ ≤ A

∫
[t,τ ]

|x(s)− y(s)| ds + δ
(
1 + 2 B

)
|τ − t| for any τ ∈ ]t, T ].

Gronwall’s Lemma implies
∣∣x(τ)− y(τ)

∣∣ ≤ δ
(
1 + 2 B

)
eA |τ−T | |τ − t| for any τ ∈ ]t, T ].

As x ∈ K(t) is chosen arbitrarily and T does not depend on x, the reachable sets ϑf(t)(h, K(t))
and K(t + h) = ϑf (h, K(t)) satisfy for any h ∈ [0, T−t]

dl
(
ϑf(t)(h, K(t)), K(t + h)

)
≤ δ

(
1 + 2 B

)
eA h h,

i.e. lim sup
h ↓ 0

1
h · dl

(
ϑf(t)(h, K(t)), K(t + h)

)
= 0 for every t ∈ J̃ε.
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Finally, we prove f(t) ∈ F(K(t)) for almost every t ∈ [0, 1[.
According to Lemma 3.6 (e),(g), fn(·)| eKj

−→ f(·)| eKj
weakly in L1

(
[0, 1], C0(K̃j , RN )

)
for each

compact set K̃j := Bj+B(K0) (j ∈ N) and, fn(t) ∈ F
(
B1/n(Kn(t))

)
for every n ∈ N, t ∈ [0, 1[.

Fixing the index j ∈ N of compact sets arbitrarily, subsequent Proposition 3.10 provides a sequence(
hj,n(·)

)
n∈N with hj,n(·) ∈ co

{
fn(·)| eKj

, fn+1(·)| eKj
. . .

}
⊂ L1

(
[0, 1], C0(K̃j , RN )

)
such that

for L1 almost every t ∈ [0, 1], hj,n(t) −→ f(t)| eKj
(n −→∞) weakly in C0(K̃j , RN ).

The following Proposition 3.11 and assumption (2.) of Viability Theorem 3.4, i.e.
sup

M∈K(RN )

sup
f∈F(M)

Lip f ≤ A < ∞, sup
M∈K(RN )

sup
f∈F(M)

‖f‖∞ ≤ B < ∞,

imply hj,n(t) −→ f(t)| eKj
uniformly in K̃j for n −→∞ and almost every t ∈ [0, 1[.

Let Cj ⊂ [0, 1[ denote the set of full measure for which this uniform convergence holds. Then
C :=

⋂
j ∈N Cj ⊂ [0, 1[ is also a set of full measure, i.e. L1([0, 1] \ C) = 0.

Choose t ∈ C arbitrarily. Then for each j ∈ N, there exists an index nj > j such that nj > nj−1

and
∥∥hj,nj

(·)| eKj
−f(·)| eKj

∥∥
∞ < 1

j . Due to hj,n(·) ∈ co
{
fn(·)| eKj

, fn+1(·)| eKj
. . .

}
, each hj, nj (t)| eKj

has a continuation to RN in co
{
fn(t), fn+1(t) . . .

}
⊂ C0(RN , RN ) (that again is denoted by hj,nj (t))

and, hj, nj
(t) −→ f(t) locally uniformly in RN for j −→∞.

Furthermore, co
{
fn(t), fn+1(t) . . .

}
⊂ co F

(
B1/n

( ⋃
m≥n Km(t)

))
. So finally, dl(Kn(t),K(t)) −→ 0

and the assumption (3.) about the closed graph of F (with its convex values) imply
f(t) ∈ F(K(t)). 2

Proposition 3.9 ([27], Theorem 1) Let S be a compact Hausdorff topological space, µ a Radon
measure on S and X, Y two metric spaces. Suppose X to be separable.
Then every Carathéodry function g : S ×X −→ Y satisfies the so–called Scorza–Dragoni property, i.e.
for every ε > 0, there exists a closed subset Sε ⊂ S with µ(S \ Sε) < ε such that the restriction
f |Sε×X is continuous. 2

Proposition 3.10 ([30], Corollary 5) Let (Ω,Σ, µ) be a probabilistic space, X an arbitrary Banach
space and L1(µ,X) the Banach space of Bochner integrable functions Ω −→ X equipped with its usual
L1 norm (as in [15]). Set W :=

{
g ∈ L1(µ,X)

∣∣ |g(ω)| ≤ 1 for µ–almost every ω ∈ Ω
}
.

A sequence
(
gn(·)

)
n∈N in W ⊂ L1(µ,X) converges weakly to g ∈ L1(µ,X) if and only if for any

subsequence
(
gnk

(·)
)
k∈N given, there exists a sequence

(
hk(·)

)
k∈N with hk ∈ co

{
gnk

, gn(k+1) . . .
}

such that for µ–almost every ω ∈ Ω, hk(ω) −→ g(ω) (k −→∞) weakly in X. 2

Proposition 3.11 ([20], Theorem 3) Let S be a compact Hausdorff space and X an arbitrary
Banach space. C0(S, X) denotes the Banach space of continuous functions S −→ X supplied with the
supremum norm ‖ · ‖∞.

A sequence
(
gn(·)

)
n∈N in C0(S, X) converges weakly to g ∈ C0(S, X) if and only if

∧

{
sup

n

∥∥gn

∥∥
∞ < ∞ and

gn(s) −→ g(s) weakly in X (n −→∞) for every s ∈ S.
2
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4 An application to shape optimization under constraints

Let J : K(RN ) −→ R be a shape functional that is Lipschitz continuous with respect to the Pompeiu–
Hausdorff distance dl. Moreover, V ⊂ K(RN ) denotes a nonempty closed set of constraints.
Detecting a minimizer K̂ ∈ V of the optimization problem

inf
{
J(K)

∣∣ K ∈ V ⊂ K(RN )
}

usually proves to be rather complicated. Thus, we prefer here to isolate candidates (for a minimizer)
constructively by means of a necessary condition. Viability Theorem 3.4 for morphological inclusions is
then to lay the basis for a curve K(·) : [0,∞[−→ V ⊂ K(RN ) such that

(i) t 7→ J(K(t)) is nonincreasing and

(ii) every compact set C = Limn→∞ K(tn) ∈ V (for some sequence tn ↗∞) satisfies a necessary
condition on minimizers (in the form of Fermat’s rule).

In regard to Viability Theorem 3.4, the first step is to specify the map F : K(RN ) ; Lip(RN , RN )
satisfying the following conditions on its values:

1.) all values of F are nonempty, convex and closed (with respect to locally uniform convergence),
2.) sup

M∈K(RN )

sup
f∈F(M)

(‖f‖∞ + Lip f) < ∞,

Essentially, the choice of F is to guarantee that the composition t 7→ J(K(t)) is nonincreasing for

every compact–valued solution K : [0, 1] ; RN of the morphological inclusion
◦
K(·) ∩ F(K(·)) 6= ∅.

For combining this aim with the conditions on its values, we seize the notion of Clarke’s generalized
directional derivative in a Banach space (see [11], for example) and extend it to shape transitions:

Definition 4.1 Let J :
(
K(RN ), dl

)
−→ R be a Lipschitz continuous shape functional.

Clarke’s generalized shape derivative of J(·) at K∈K(RN ) in direction v∈Lip(RN , RN ) is defined as

δCJ(K)(v) := lim sup
h↓0, M→K

(M∈K(RN ))

1
h · (J(ϑv(h, M)) − J(M)) .

Moreover, set ιJ(K) := lim sup
M−→K

(M∈K(RN ))

inf
{

δCJ(M)(v)
∣∣∣ v ∈ Lip(RN , RN ), ‖v‖∞ + Lip v ≤ 1

}
.

Remark 4.2 1. Let Λ ≥ 0 denote the Lipschitz constant of J :
(
K(RN ), dl

)
−→ R. Then, due

to Lemma 2.3 about shape transitions, |J(ϑv(h, K)) − J(K)| ≤ Λ · dl (ϑv(h, K), K) ≤ Λ · ‖v‖∞ h

for every v ∈ Lip(RN , RN ) and thus,
∣∣δCJ(K)(v)

∣∣ ≤ Λ ‖v‖∞, ιJ(K) ≥ −Λ.

2. ιJ(·) : K(RN ) −→ R can be regarded as upper semicontinuous envelope of the minimal gener-
alized shape derivative δCJ(·)(·) (within the unit ball of Lip(RN , RN )). Furthermore, δCJ(K)(0) = 0
implies ιJ(K) ≤ 0 for all K ∈ K(RN ).

Definition 4.3 Using the notation of Definition 4.1, set F : K(RN ) ; Lip(RN , RN ),

F(K) :=
{

v ∈ Lip(RN , RN )
∣∣∣ ‖v‖∞ + Lip v ≤ 1, δCJ(K)(v) ≤ 1

2 · ιJ(K)
}

.

Lemma 4.4 1. Let K(·) : [0, 1] ; RN be any compact–valued Lipschitz solution of the morpho-

logical inclusion
◦
K(·) ∩ F(K(·)) 6= ∅. Then, [0, 1] −→ R, t 7−→ J(K(t)) is nonincreasing.

2. Suppose infK(RN ) J(·) > −∞ and assume K(·) : [0,∞[ ; RN to be a compact–valued

solution of
◦
K(·) ∩ F(K(·)) 6= ∅ in [0, T ] (with every T > 0). Let C belong to the ω–limit set of

K(·) in K(RN ), i.e. dl(K(tn), C) −→ 0 for some tn ↗∞. Then ιJ(C) = 0.
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Proof 1. results obviously from the Lipschitz continuity of [0, 1] −→ R, t 7−→ J(K(t)) and the
generalized chain rule.

2. Assume the contrary, i.e. κ := ιJ(C) < 0. Then, there exists some small ρ > 0 such all sets
M ∈ K(RN ) with dl(M,C) ≤ 2 ρ satisfy ιJ(M) < κ

2 < 0. For all n ∈ N sufficiently large, K(tn) has
the Pompeiu–Hausdorff distance < ρ from C and thus, dl(K(s), C) < 2 ρ for all s ∈ [tn−ρ, tn+ρ].
Now the definition of F(·) implies

J(K(s2)) ≤ J(K(s1))− κ
2 · (s2 − s1) for all tn−ρ ≤ s1 ≤ s2 ≤ tn+ρ and large n ∈ N

— contradicting the hypothesis inf J(·) > −∞. 2

Lemma 4.5 Consider Lip(RN , RN ) with the topology of locally uniform convergence.
All values of F : K(RN ) ; Lip(RN , RN ) are nonempty, convex and closed.

Proof. For every K ∈ K(RN ), the value F(K) is a nonempty subset of Lip(RN , RN ) because
either ιJ(K) = 0 and then, 0 ∈ F(K)
or ιJ(K) < 0 and then there exists some v ∈ Lip(RN , RN ) with ‖v‖∞ + Lip v ≤ 1 and

δCJ(K)(v) ≤ 3
4 · ιJ(K) < 0 (due to the def. of infimum), i.e. v ∈ F(K)

induces a shape transition along which J(·) is strictly decreasing for short times.

Furthermore, F(K) ⊂ Lip(RN , RN ) is convex. Indeed, choose any v, w ∈ F(K) and λ ∈ ]0, 1[.
According to the subsequent Lemma 4.6, there exists some µ ∈ L1([0, 1]) satisfying

1
t ·

∫ t

0

(µ(s)− λ) ds −→ 0 (t ↓ 0), µ(·) ∈ {0, 1} piecewise constant in ]0, 1[.

Now we compare the evolution of an arbitrary set K ∈ K(RN ) along the autonomous Lipschitz field
u : RN −→ RN , x 7−→ λ · v(x) + (1− λ) · w(x)

and along the nonautonomous vector field
g : RN × [0, 1] −→ RN , (x, t) 7−→ µ(t) · v(x) + (1− µ(t)) · w(x).

The reachable sets satisfy dl (ϑu(t, M), ϑg(t, M)) ≤ o(t) for t ↓ 0 uniformly in M ∈ K(RN ).
Indeed, as each g(·, t) is Lipschitz continuous (with Lipschitz constant ≤ 1), Filippov’s Theorem about
differential inclusions guarantees that the Cauchy problem

∧

{
y′(·) = g(y(·), ·) almost everywhere in [0, 1]
y(0) = y0 ∈ RN

has always an absolutely continuous solution. Let x(·) ∈ C1([0, 1], RN ) denote the (unique) solution of
x′(·) = u(x(·)) with the same initial value x(0) = y0. Then due to ‖v‖C0,1 , ‖w‖C0,1 ≤ 1, we obtain

|x(t)− y(t)| =
∣∣∣ ∫ t

0

(
λ v(x(s)) − µ(s) v(y(s)) + (1− λ) w(x(s)) − (1− µ(s)) w(y(s))

)
ds

∣∣∣
≤

∣∣∣ ∫ t

0

(
(λ− µ(s)) v(x(s)) + (µ(s)− λ) w(x(s))

)
ds

∣∣∣
+

∫ t

0

µ(s) · Lip v · |x(s)− y(s)| ds +
∫ t

0

(1− µ(s)) · Lip w · |x(s)− y(s)| ds

≤
∣∣∣ ∫ t

0

(λ− µ(s)) ·
(
v(y0)− w(y0)

)
ds

∣∣∣ +
∫ t

0

∣∣λ− µ(s)
∣∣ (Lip v + Lip w)

∣∣x(s)− y0

∣∣ ds

+
∫ t

0

|x(s)− y(s)| ds

≤ 2
∣∣∣ ∫ t

0

(λ− µ(s)) ds
∣∣∣ +

∫ t

0

1 · 2 · s ds +
∫ t

0

|x(s)− y(s)| ds

and Gronwall’s Lemma ensures

|x(t)− y(t)| = 2
∣∣∣ ∫ t

0

(λ− µ(s)) ds
∣∣∣ + t2 +

∫ t

0

es

(
2

∣∣∣ ∫ s

0

(λ− µ(r)) dr
∣∣∣ + s2

)
ds = o(t)

for t ↓ 0 uniformly in y0 ∈ RN . Thus, for any initial set M ∈ K(RN ), the reachable sets satisfy
dl (ϑu(t, M), ϑg(t, M)) ≤ o(t) for t ↓ 0 uniformly in M ∈ K(RN ).



16 § 4 APPLICATION TO SHAPE OPTIMIZATION

According to the proof of Lemma 4.6, we can suppose to have a sequence sn ↘ 0 in ]0, 1[ such that
µ(·) ∈ {0, 1} is constant in [sn+1, sn[ for each n ∈ N. So for every M ∈ K(RN ) and t ∈ [sn+1, sn],
the reachable set ϑg(t, M) is either ϑv

(
t−sn+1, ϑg(sn+1,M)

)
or ϑw

(
t−sn+1, ϑg(sn+1,M)

)
. Thus,

J(ϑu(h, M)) − J(M) (with h ∈ ]sm, sm−1])

≤ J(ϑg(h, M)) − J(M) + Lip J · o(h)

= J(ϑg(h, M))− J(ϑg(sm,M)) +
∞∑

n=m

(
J(ϑg(sn,M))− J(ϑg(sn+1,M))

)
+ o(h)

≤ (h− sm) ·
( ιJ(K)

2 + ε
)

+
∞∑

n=m

(sn − sn+1) ·
( ιJ(K)

2 + ε
)

+ o(h)

= h ·
( ιJ(K)

2 + ε
)

+ o(h)

for all h > 0 sufficiently small and M ∈ K(RN ) sufficiently close to K (after fixing ε > 0 arbitrarily
small). So we conclude δCJ(K)(u) ≤ ιJ(K)

2 + ε with any ε > 0, i.e. u
Def.= λ v + (1− λ) w ∈ F(K).

Finally, we verify that F(K) is closed. Let (vn)n∈N be a sequence in F(K) ⊂ Lip(RN , RN )
converging to v ∈ Lip(RN , RN ) locally uniformly. Obviously, ‖v‖∞ + Lip v ≤ 1.

Moreover, similarly to Lemma 2.3, Filippov’s Theorem implies

sup
M ∈K(RN )
dl(K,M)≤ 1

dl
(
ϑvn(h, M), ϑv(h, M)

)
≤ h eh · sup

B2(K)

|vn(·)− v(·)| −→ 0 for n −→∞

uniformly in h ∈ [0, 1] and for every set K ∈ K(RN ). So due to the Lipschitz continuity of J(·),
Clarke’s generalized shape derivative satisfies

δCJ(K)(v) Def.= lim sup
h↓0, M→K

(M∈K(RN ))

1
h ·

(
J(ϑv(h, M)) − J(M)

)
≤ lim sup

h↓0, M→K

(M∈K(RN ))

1
h ·

(
J(ϑvn(h, M)) − J(M)

)
+ Lip J · sup

B2(K)

|vn(·)− v(·)|

≤ 1
2 · ιJ(K) + Lip J · sup

B2(K)

|vn(·)− v(·)|

n −→∞ reveals v ∈ F(K). 2

Lemma 4.6 For every λ ∈ ]0, 1[, there exists a function µ ∈ L1([0, 1]) satisfying

1
t ·

∫ t

0

(µ(s)− λ) ds −→ 0 (t ↓ 0), µ(·) ∈ {0, 1} piecewise constant in ]0, 1[.

Proof is based on defining µ(·) on each interval
[

1√
n+1

, 1√
n

[
(n∈N) in a piecewise constant way.

Set µ(t) :=

{
0 for 1√

n+1
≤ t < λ√

n+1
+ 1−λ√

n

1 for λ√
n+1

+ 1−λ√
n

≤ t < 1√
n

for each n ∈ N.

Then,
∫ 1√

n

1√
n+1

(µ(s)− λ) ds = 0 and thus,
∫ 1√

n

0

(µ(s)− λ) ds = 0.

Moreover,
∫ 1√

n

1√
n+1

|µ(s)− λ| ds = 2 λ (1− λ)
(

1√
n
− 1√

n+1

)
implies

sup
1√

n+1
≤ t≤ 1√

n

1
t ·

∣∣∣∣∫ t

0

(µ(s)− λ) ds

∣∣∣∣ ≤
√

n + 1 ·
∫ 1√

n

1√
n+1

|µ(s)− λ| ds
n→∞−→ 0. 2

Remark 4.7 In regard to Viability Theorem 3.4, the graph of F : K(RN ) ; Lip(RN , RN ) ought
to be closed (still using the topology of locally uniform convergence on Lip(RN , RN )). This feature is
closely related with the lower semicontinuity of δCJ(·)(v) : K(RN ) −→ R (with v ∈ Lip(RN , RN ) fixed)
and, it will be dealt here as an additional assumption about J.
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Proposition 4.8 Suppose J : K(RN ) −→ R to be Lipschitz continuous with respect to the Pompeiu–
Hausdorff distance dl and bounded from below.
Seizing Definition 4.1 and 4.3, F : K(RN ) ; Lip(RN , RN ) is assumed to have closed graph.
Let V ⊂ K(RN ) be nonempty and closed such that for every K ∈ V, the intersection F(K)∩ TV(K)
is nonempty.

Then there exists a Lipschitz continuous solution K : [0,∞[ −→ V ⊂ K(RN ) of the morphological

inclusion
◦
K(·) ∩ F(K(·)) 6= ∅ such that

1. [0,∞[−→ R, t 7−→ J(K(t)) is nonincreasing,
2. every element C ∈ K(RN ) of its ω–limit set in K(RN ) satisfies the following necessary condition

on minimizers of J(·) in K(RN ) : ιJ(C) = 0.
2
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of the Carathéodory type. I, Differ. Equations 31, No.6, pp. 901-910

[25] Panasyuk, A.I. (1992): Properties of solutions of a quasidifferential approximation equation and
the equation of an integral funnel, Differ. Equations 28, No.9, pp. 1259-1266

[26] Panasyuk, A.I (1985): Quasidifferential equations in metric spaces, Differ. Equations 21, pp. 914-
921

[27] Ricceri, B. & Villani, A. (1983): Separability and Scorza–Dragoni’s property, Le Matematiche,
37, No.1, pp. 156–161

[28] Scorza-Dragoni, G. (1948): Un teorema sulle funzioni continue rispetto ad una e misurabili
rispetto ad un’altra variabile, Rend. Semin. Mat. Univ. Padova, 17, pp. 102–108

[29] Sokolowski, J. & Zolésio, J.-P. (1992): Introduction to Shape Optimization. Shape Sensitivity
Analysis, Springer, Series in Computational Mathematics 16
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