Elke Christina Stier

Dr.med.

Zellen Oberfläche unterschiedlicher Aktivierung mononukleärer an der

Dialysemembranen: in vitro Untersuchungen

Geboren am 28.10.1965 in Heidelberg

Reifeprüfung am 12.06.1985 in Wiesloch

Studiengang der Fachrichtung Medizin vom WS1985 bis WS1992

Physikum am 25.08.1987 in Homburg/Saar

Klinisches Studium in Heidelberg

Praktisches Jahr in Bruchsal

Staatsexamen am 13.05.1992 an der Universität Heidelberg

Promotionsfach: Innere Medizin

Doktorvater: PD Dr. med. M. Zeier

Es war das Ziel der vorliegenden Untersuchungen, in einem neu erarbeiteten, gut standardisierten in vitro-Testsystem, bei statischem Membrankontakt mit Blutzellen nierengesunder Spender, drei Prüfparameter als Indikatoren der Zellaktivierung abzufragen:

A) Die akute Transkription von aktivierungsrelevanten Genen wie c-fos, c-myc etc. (nucleäre

Run on-Reaktion)

B) Die Produktion von Mediatorsubstanzen wie PGE2, IL-1β, TNF α und TXB2

C) Zell-Morphologie und Expression von aktivierungsrelevanten Oberflächenmarkern

Verglichen wurde Cuprophan (CU), Polyacrylnitril (AN69) und Polycarbonat/Polyether (PC/PE)-Membranen. Hierbei stellt die erstere typische Hydrogel-Struktur, die letztere eine Mikrodomänen-Struktur mit hydrophilen und hydrophoben Bezirken dar.

Im Einzelnen wurden folgende Befunde erhoben:

1. Transkription

Der serumfreie Kontakt mononukleärer Zellen mit Cuprophan führte bei Inkubation mit 32P-UTP im unterschiedlichen Zeitgang zur Transkription der Gene von IL1ß, IL6, c-fos, c-myc, c-june, t-PA, u-PA und HMWK (high molecular weight kininogen). Die Methodik erwies sich insgesamt, wegen der hohen Sensitivität gegenüber Zellaktivierung während das Präpariervorganges, als Prüfmethode ungeeignet.

2. Freisetzung von PGE2 und Zytokinen

Sowohl in Monozyten , als auch in Präparationen mononukleärer Zellen nierengesunder Spender führte statischer Kontakt mit Cuprophan und Polyacrylonitril, weit weniger ausgeprägt der Kontakt mit Polycarbonat/Polyether, zu einem reproduzierbaren Anstieg von PGE2 in den Zellüberstand.

Für die Zytokine TNFα und IL-1ß konnte eine gleiche Reihung nach kurzem Kontakt mit den Dialysemembranen gesehen werden, und zwar Cuprophan>AN69>PC/PE. Die Werte waren wiederum bei verschiedenen nierengesunden Spendern reproduzierbar.

3. Zellmorphologie

Sowohl in der Phasenkontrastmikroskopie nach Trypanblau-Färbung, wie in der Elektronenmikroskopie, Cryosputtering, als auch im APAAP-Nachweis zeigten sich übereinstimmend zu den oben genannten Ergebnissen bei den untersuchten Membranen unterschiedliche Adhäsions- und Vitalitätsmuster. Dies zeigte sich zum Einen in vermehrter Sedimentation der mononukleären Zellen auf einer Cuprophan-Membran, weniger auf der Membran mit Mikrodomänen-Struktur. Vermehrte Ausbildung von Podozyten als Zeichen der Zellaktivierung war bei der Cuprophanmembran deutlicher als bei der PC/PE-Membran.

In allen Ebenen der Zellaktivierung wurde die Biokompatibilität der verschiedenen Dialysemembranen untersucht. Es zeigt sich, daß Membranen mit Hydrogelstruktur (wie die in der Routine noch häufig benutzte Cuprophan-Membran) eine deutlich schlechtere Biokompatibilität aufweisen, als die Membranen mit Mikrodomänen-Struktur (wie die PC/PE-Membran Gambrane). In Zukunft werden somit aufgrund der erzielten Ergebnisse die Membranen mit Hydrogel-Struktur wohl von den biokompatibleren Membranen mit Mikrodomänen-Struktur verdrängt werden.