
Dissertation

submitted to the Combined Faculties for the Natural

Sciences and Mathematics

of the Ruperto – Carola University of Heidelberg

for the degree of
Doctor of Natural Sciences

presented by
Diplom-Physiker Sebastian Diehl

born in Ludwigshafen, Germany

Oral Examination: 24. October 2006





The BCS – BEC Crossover

in

Ultracold Fermion Gases

Referees: Prof. Dr. Christof Wetterich
PD Dr. Jan M. Pawlowski



iv



Der BCS – BEC Crossover in ultrakalten Fermiongasen

Zusammenfassung

Der kontinuierliche Crossover eines Bardeen-Cooper-Schrieffer (BCS)-artigen Supraflu-
ids aus Fermionpaaren zu einem Bose-Einstein Kondensat (BEC) aus fest gebundenen
bosonischen Molekülen kann auf die spontane Brechung der globalen U(1)-Eichsymmetrie
zurückgeführt werden, die beiden Quanten-Kondensationsphänomenen zugrunde liegt.
Dem Problem wurde in den letzten Jahren viel Aufmerksamkeit zuteil, da Feshbach-
Resonanzen die experimentelle Realisierung der Crossover-Physik ermöglichen. Die starke
Wechselwirkung nahe der Resonanz erfordert eine Analyse jenseits von Mean Field Theo-
rie. Wir entwickeln einen systematischen Funktionalintegral-Zugang für die Beschreibung
dieses Phänomens. Ausgehend von einem yukawaartigen Atom-Molekül-Modell erlaubt es
eine Symmetriebetrachtung, sowohl die Zustandsgleichung zu konstruieren als auch die
thermodynamischen Phasen einheitlich zu klassifizieren. Der Übergang in das suprafluide
Regime wird durch die Entstehung einer masselosen Goldstonemode angezeigt, die mit
der gebrochenen kontinuierlichen U(1)-Symmetrie assoziiert ist. Jenseits von Mean Field
berücksichtigen wir selbstkonsistent Molekülfluktuationen durch die Lösung geeigneter
Schwinger-Dyson Gleichungen. Das Phasendiagramm wird berechnet, und eine Vielzahl
universeller Eigenschaften etabliert. Eine neue Form von Crossover – von einem exakt
lösbaren Schmalresonanz-Limes hin zu breiten Resonanzen oder punktförmigen Wech-
selwirkungen – wird aufgezeigt. Unsere Resulate stimmen bei niedriger Temperatur gut
mit Quanten Monte Carlo Simulationen sowie einem kürzlich durchgeführten Experi-
ment überein. Unser Zugang wird im Rahmen von funktionalen Renormierungsgruppen-
Gleichungen weiterentwickelt. Während die effektive bosonische Theorie im BEC-Regime
die charakteristischen Eigenschaften einer Bogoliubov-Theorie bei tiefer Temperatur
aufweist, ist der Phasenübergang zweiter Ordnung.

The BCS – BEC Crossover in Ultracold Fermion Gases

Abstract

The continuous crossover between a Bardeen-Cooper-Schrieffer (BCS)-type superfluid of
fermion pairs and a Bose-Einstein condensate (BEC) of tightly bound bosonic molecules
can be attributed to the spontaneous breaking of global U(1) gauge symmetry which un-
derlies both quantum condensation phenomena. Recently much attention has been paid
to this problem, since Feshbach resonances allow for an experimental implementation of
crossover physics in cold fermion gases. The strong interactions close to resonance call for
an analysis beyond Mean Field Theory. We develop a systematic functional integral ap-
proach for the description of this phenomenon. Starting from a Yukawa-type atom-molecule
model, a symmetry analysis allows to both construct the equation of state and to classify
the thermodynamic phases in a unified way. The onset of superfluidity is signalled by the
emergence of a massless Goldstone mode associated with the broken continuous U(1) sym-
metry. Beyond Mean Field, we include fluctuations of the molecule field self-consistently
via the solution of suitable Schwinger-Dyson equations. The phase diagram is computed,
and a variety of universal features are established. A new form of crossover from an exactly
solvable narrow resonance limit to broad resonances or pointlike interactions is found. At
low temperature our results agree well with quantum Monte Carlo simulations and recent
experiments. Our approach is further developed in the frame of functional renormalization
group equations. While the effective bosonic theory in the BEC regime shows the charac-
teristics of a Bogoliubov theory for small temperatures, the phase transition is of second
order.
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Chapter 1

Introduction

There are two cornerstones for the description of quantum condensation phenomena.
The simplest scenario occurs in bosonic systems. At low enough temperature, bosons
populate a single quantum state macroscopically: A Bose-Einstein condensate (BEC)
forms [1; 2]. This collective quantum phenomenon can be macroscopically observed
[3–5]. In principle, this condensation is a purely statistical effect and does not rely on
interactions. The situation is different in fermionic systems. Here, Pauli’s principle
forbids the macroscopic population of a single quantum state. However, in case of
weak attractive interactions a many-body fermion system exhibits the famous BCS
instability at low temperature, discovered by Bardeen, Cooper and Schrieffer [6; 7].
In a very basic physical picture, two fermions form a “Cooper pair”, which is a
bosonic entity. These bosonic objects can successively condense.

Although the underlying pictures are thus quite different, both phenomena share
a decisive feature in common: They can be described as the spontaneous breaking
of the global symmetry of phase rotations, U(1). Due to this similarity concerning
the macroscopic properties of fermionic and bosonic systems, it is plausible that the
two scenarios sketched above are connected by some smooth transition or crossover.
The theoretical description of the crossover phenomenon was pioneered by Eagles,
Leggett and Nozières et al. [8–10], and put into a functional integral formulation in
[11]. The authors showed that, in a fermionic system whose interaction is uniquely
characterized by the scattering length a, a crossover from BCS- to BEC-type physics
takes place as a function of the inverse scattering length evolving from large negative
(BCS regime) to large positive (BEC regime) values, passing a strongly interact-
ing “crossover region”. Again evoking a simple physical picture, the position-space
delocalized Cooper pairs characteristic for the BCS regime undergo a localization
process throughout the crossover, ending up as effectively pointlike bosonic particles
or strongly bound molecules in the BEC regime.

At this point, ultracold fermion gases come into play [12–14]. The experimental
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2 Chapter 1. Introduction

progress in trapping, cooling and manipulating such systems has been breathtaking
throughout the last few years. The presence of Feshbach resonances in systems like
6Li or 40K is at the heart of recent developments. This phenomenon offers the unique
possibility to tune the interaction strength between the atoms to arbitrary positive
and negative values, thereby allowing for an experimental realization of the crossover
[15–20]. This sparked a number of theoretical investigations, for which two major
strategies can be identified.

In the spirit of the early approaches, Strinati et al. propose a purely fermionic or
single-channel description of the crossover problem within the operator formalism
[21–25]. A similar approximation scheme is advocated in [26].

Inspired by the observables of concrete physical systems, other approaches for-
mulate the problem microscopically in terms of a Yukawa theory for fermionic atoms
and bosonic molecules [27–38]. These two-channel models are, in part, motivated by
a functional integral [28; 35; 36]. Approaches of this type feature more microscopic
parameters, but are well suited for dealing with nonlocal interactions.

From a field theoretical perspective, ultracold quantum gases constitute a very
attractive area of research. The microscopic physics is well under control and pre-
cisely known – this situation is very different from many high energy physics issues
or condensed matter systems, where the microphysics is usually inaccessible to ma-
nipulations and/or only poorly known. For the many-body system, one can therefore
hope to assess not only universal quantities as e.g. critical exponents, but also non-
universal, i.e. system specific observables, examples being the critical temperature
or the condensate fraction in the superfluid phase. In particular, the strong inter-
actions in cold gases near a Feshbach resonance clearly motivate an analysis with
advanced methods beyond mean field theory. Reversing the perspective, the wealth
of experimental data can provide a benchmark for the predictivity and accuracy of
modern field theoretical methods.

The aim of the investigation presented in this thesis is to provide a universal
field theoretical description of the crossover problem. Microscopically, we start from
the Yukawa-type model (3.1). The basic ingredient is the formulation of the full
quantum mechanical problem in terms of a functional integral for the effective ac-
tion. This enables us to fully exploit the power of symmetry considerations, allowing
for both a systematic construction of the equation of state and the classification of
the thermodynamic phases of the system. At the same time, it makes the crossover
problem accessible to the wealth of techniques available in quantum field theory and
statistical mechanics, as e.g. Schwinger-Dyson equations (chapt. 5) or functional
renormalization group methods (chapt. 7). Among many other issues, our func-
tional integral approach also reconciles the two strategies for modelling the problem
discussed above, by showing in which limit they are equivalent.

In more detail, this thesis is organized as follows.
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In chapt. 2, we discuss the relevant scales and interactions encountered in cold
atom gases. Further, we sketch the basic features of Feshbach resonances, which
constitute the microphysical basis for the experimental resolution of the crossover
in cold fermion gases.

In chapt. 3 our microscopic model in terms of a Yukawa-type action for non-
relativistic fermion (atom) and boson (composite molecule) fields is motivated. An
efficient set of parameters for the description of the thermodynamics of the crossover
problem is pointed out, which is related to a dimensionless “scaling form” of our
model.

Chapt. 4 comprises the basic field theoretical construction for the analysis of the
crossover. It is based on a functional integral representation of the effective action.
By a successive elimination of fermion and boson modes, we evaluate the functional
integral in a systematic one-loop approximation for both fermion and molecule fluc-
tuations. This procedure already gives a full picture of the transition from BCS-to
BEC-type physics. In this framework, we construct the equation of state from a
symmetry consideration, and show how the important concept of dressed bosonic
fields emerges naturally from our derivation. We also settle the connection to the
thermodynamic construction of the equation of state, introducing the notion of an
effective chemical potential. After some technical details concerning the ultraviolet
renormalization of our theory, we pass to the classification of the thermodynamic
phases in the effective action formalism. The superfluid regime is described in terms
of spontaneous breaking of the global U(1) symmetry.

In chapt. 5 we refine our approximation scheme by the use of suitable Schwinger-
Dyson equations for the effective boson (or molecule) propagator. We give explicit
formulae determining the observables in this approximation in the different ther-
modynamic phases. Applications are presented, and we find good agreement with
Quantum Monte Carlo data at zero temperature, cf. fig. 5.5. We also discuss short-
comings of the Schwinger-Dyson approach which are most severe in the superfluid
phase close to the critical temperature – in particular, the phase transition is of
first order. We then pass to the discussion of a low density limit for the effective
action in the Schwinger-Dyson approach. This allows to make contact to concrete
atomic systems investigated experimentally, as 6Li or 40K. Furthermore, we success-
fully compare the predictions of our formalism to a recent experiment focusing on
the “bare molecules”, cf. fig. 5.11.

Chapt. 6 encompasses several aspects of “enhanced universality” which we have
identified in the crossover problem. This notion refers to the irrelevance of different
microscopic parameters in the sense of statistical mechanics. We first discuss en-
hanced universality qualitatively, taking our result for the phase diagram (fig. 6.1)
as an example. We then make our statements more quantitative, considering the
functional integral in certain limiting cases for the model parameters. Our analysis
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covers narrow and broad resonances and a thorough discussion of BCS, BEC and
resonance regime, and we investigate the validity of the approximations used. As a
main result, we find a new form of crossover from narrow to broad resonances, phys-
ically interpreted as a crossover from weak nonlocal to strong pointlike interactions.
For narrow resonances we provide an exact solution of the many-body problem, while
we can establish the equivalence of our two-channel model with a purely fermionic
approach in the broad resonance limit.

In chapt. 7 the first steps for the systematic analysis of the crossover problem in
the frame of the functional renormalization group (FRG) are taken. First we analyze
the two-body problem in detail. We can establish a substantial improvement for the
ratio of molecular vs. fermionic scattering length compared to the Schwinger-Dyson
approach. Concerning the many-body problem, we focus on the BEC regime. As
a first success, we can establish the features of a Bogoliubov-type theory at low
temperature, while the phase transition is of second order.

The last chapter contains a discussion of the results obtained in this thesis. It
further points out the issues that should be attacked next, and gives a perspective
where the formalism developed here could be applied in the future.

Large parts of this thesis are based on the references [39; 40].



Chapter 2

Interactions in Ultracold Gases

2.1 Scales and Interactions

In atomic physics, the true position space interaction potentials are, in general,
complicated functions of the interparticle distance between the interacting atoms.
However, at sufficiently low energies, the atoms behave like point particles with
short-range interactions. In this section we will argue qualitatively why this is so,
and introduce the most important length or momentum scales for interacting atoms
at low temperature and density.

For neutral atoms, both the generic short-range and long-range behavior can be
easily understood in terms of electromagnetic interactions: At small separations of
the nuclei, the Born-Oppenheimer potential provided by the ground state energy
of the electron clouds results in a short-range hard core repulsion. The length scale
associated with this repulsion is the atomic radius rA which is of the order of mag-
nitude of several Bohr radii aB = 5.29177 · 10−11m, e.g. for 6Li rA ≈ 3aB. This
provides an ultraviolet cutoff Λ = π/rA in momentum space. At distances much
larger than the extent of the electron cloud of each of the atoms, the interaction
energy is dominated by van der Waals interactions which arise from the polarizabil-
ity of the electron clouds – the electric dipole-dipole interactions cause a power-law
behavior with the asymptotic form

V (r) → −C6

r6
for r →∞. (2.1)

The shape of a typical position space interaction potential is depicted in fig. 2.1
(where we plot potentials characteristic for a Feshbach resonance). At the low ener-
gies available in an ultracold gas (see below), the interactions are dominated by the
van der Waals tails of the potential. A characteristic length scale for the interaction
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6 Chapter 2. Interactions in Ultracold Gases

can be obtained from balancing kinetic and potential energy of the two particles 1,

1

Mr2
≈ C6

r6
, (2.2)

(M the atomic mass) resulting in the so-called van der Waals length or characteristic
range

lvdW = (MC6)
1/4. (2.3)

The van der Waals length for alkali atoms is roughly two orders of magnitude larger
than the atomic radii (e.g. 6Li : 62.5aB,40 K : 130aB). The van der Waals momentum
is given by kvdW = 1/lvdW . It sets a natural scale for the interaction parameters which
characterize the scattering of two particles.

The most important parameter describing low momentum scattering is the scat-
tering length a. This quantity is extracted from the zero energy limit of the scattering
amplitude in the center-of-mass system (cf. app. A for detailed definitions). At the
low energies available in ultracold gases, scattering in higher angular momentum
states is suppressed and the scattering is purely s-wave (angular momentum l = 0).
If a momentum dependence of the s-wave scattering length needs to be included,
this is parameterized to lowest order by the effective range (see appendix A for
more precise definitions of these quantities). Importantly, the scattering length can
be strongly enhanced compared to the natural scale lvdW . This takes place when
a bound state in the interaction potential is close to the scattering threshold and
requires very particular circumstances, as realized e.g. near a Feshbach resonance.

Let us consider the typical length and momentum scales that appear in trapped
dilute ultracold gases. They are set by the thermodynamic properties of the sys-
tem, i.e. temperature (mean kinetic energy of a particle) and particle density. The
latter are in the range of 1013...1015cm−3, if we take the peak densities in a trap
as a measure. This corresponds to typical particle interspacings d = (3π2n)−1/3 be-
tween (600...3000)aB. The corresponding momentum scale is the Fermi momentum
2 kF = 1/d. A length scale characterizing the temperature is set by the thermal
de Broglie wavelength λdB =

√
2π/(MT ), which is in the range of (5...40)103aB,

i.e. roughly an order of magnitude larger than the interparticle spacing. “Ultracold”
means λdB/d À 1 or k2

dB/k2
F = T/(4πεF ) ¿ 1, with kdB = 1/λdB the de Broglie

wave number and εF = k2
F /2M the Fermi energy. This is the regime where the sta-

tistics of the particles matter, and quantum effects play a crucial role. Finally, the
trap is parameterized by the oscillator length losc, (3...300)103aB. The characteristic
oscillator momentum is again defined as the reciprocal length scale kosc = 1/losc.

1Our units are ~ = c = kB = 1.
2In bosonic systems, kF is not related to the Fermi surface, but the definition kF = (3π2n)1/3

as a measure of typical inverse interparticle spacings is still sensible.
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length rA/aB lvdW /aB d/aB λdB/aB losc/aB

2..4 50..200 (0.6..2.8) · 103 (8.8..39) · 103 (2.9..290) · 103

momentum Λ/eV kvdW /eV kF /eV kdB/eV kosc/eV
(0.5..2) · 103 19..75 1.3 .. 6.1 0.1 .. 0.4 0.01 .. 1.3

Table 2.1: Typical length and momentum scales in ultracold atom systems. For
a momentum k, the corresponding energy is given by k2/2M ¿ k. Energies and
momenta should therefore not directly be compared for a nonrelativistic problem
(aB = 5.29177 · 10−11m, 1eV=̂(3.7290 · 103aB)−1. 1eV corresponds to a density n =
4.4 · 1012cm−3.).

Obviously, these momentum scales are much below the typical scales for the in-
teraction. In position space, this means that the atoms do not resolve the shape of
the potential at much lower distances than the de Broglie wave length or the inter-
particle spacing. In turn, it is clear that the details of the short range interaction
cannot play a role for the interaction in the ultracold gases. It is sufficient to charac-
terize the interaction potential by a few numbers, and in many cases, the scattering
length alone is enough. Furthermore, the precise shape of the potential at distances
smaller than the characteristic range is irrelevant. Instead, the true interaction po-
tential can be replaced by a model potential with the only constraint to reproduce
the low energy observables as the scattering length and the effective range as mea-
sured in experiment. To see this, we consider a contact potential V (~r) = λΛδ(~r)
characterized by a single number λΛ and compute the effective two-body interaction
for fermionic particles by summing up all the particle-particle diagrams, regularizing
the momentum space integrals with a sharp ultraviolet cutoff Λ,

a =
M

4π
λeff =

MλΛ

4π(1 + MλΛΛ/(2π2))
. (2.4)

Clearly, the low energy scattering properties strongly depend on the choice of λΛ, and
by tuning the microscopic contact interaction for a fixed cutoff Λ, arbitrary positive
and negative values of the scattering length can be reached. On the other hand, a
single parameter λΛ is sufficient to mimic the effects of a complicated interaction
potential featuring the same scattering length a. This is the reason why the latter
can be replaced by the very simple model potential. Much of the information on
the way down to low momentum scales is lost. The fact that nature is organized in
scales which do not “see” each other is called universality. In this work, we will also
consider aspects of this phenomenon in chapt. 6.

A particularly interesting situation occurs when the scattering length a is tuned
to values where it exceeds all other length scales in the problem. In this case, the
length scale a drops out and the physics should become independent of a. For a
thermodynamic situation at finite density and temperature, a large scattering length
is already realized if the diluteness parameter a/d = akF À 1 with d the mean
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interparticle spacing. This is another aspect of universality which we deal with in
chapt. 6. In that sense, systems with large akF are not dilute, and akF cannot
be used as an expansion parameter for any calculation as done for akF ¿ 1 (e.g
BCS and Bogoliubov theory, cf. the next chapter). For the two body problem, the
condition for a large scattering length is a/lvdW À 1. Such circumstances can indeed
be created in systems exhibiting Feshbach resonances.

In this work, we consider systems whose basic constituents are fermions. Unlike
for bosons and caused by Pauli’s principle, two identical fermions cannot interact
via s-wave collisions (their scattering cross section vanishes, cf. app. A). Hence the
observed scattering length is related to scattering of distinguishable fermions, which
can be discriminated by their spins.

We finally note that the mass M of the particles does not set a true scale for
the problem. It corresponds to a much larger momentum than all other scales in the
problem, comparing it e.g. to the ultraviolet cutoff we get M ∼ 106Λ. This reflects
the fact that we are dealing with a nonrelativistic problem. It sets the classical
dispersion relation for the atoms, E = k2/2M – energy and momentum scale very
differently in the nonrelativistic setup. We can account for this fact by rescaling
energy and momentum differently. For a Fermi gas, we measure momenta in units of
the Fermi momentum kF and energies in units of the Fermi energy εF = k2

F /(2M).
This yields a dimensionless version of the problem where all numbers are O(1).

A review on effective field theories for nonrelativistic few-body systems is given
in [41].

2.2 Feshbach Resonances

Feshbach resonances constitute the microphysical phenomenon which make the res-
olution of the crossover from BCS to BEC in cold fermion systems accessible to ex-
periments. They allow to tune the effective interaction strength between the atoms
to arbitrary values in a controlled way.

We consider the scattering of two alkali atoms whose internal states are charac-
terized by the eigenvalues of the spin of the valence electron S and the nuclear spin
I. The fermionic or bosonic nature is determined by the total spin of the atoms.

The occurrence of a Feshbach resonance is related to the spin of the valence
electron. The picture described in the following therefore applies to both fermions
and bosons. In a rough approximation, a single atom can viewed as an eigenstate
of the spin operator S of the electron. Two atoms can either form a spin singlet
or a triplet. The position space interaction potentials are very different for both
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r

“open channel”

energetically inaccessible
“closed channel”

εM↙l

µ̄B

↑
||
↓

|εM , T | ¿ |µ̄B|

V (r)

Figure 2.1: Interaction potentials for a Feshbach resonance. A resonance phenomenon
is observed when the zero of energy in the open channel hits the energy level of a
bound state in the closed channel. If the bound state level is below the zero of energy,
a two-body bound state with binding energy εM forms.

two-body states. The singlet interaction potential is usually much deeper than the
triplet potential due to Pauli’s principle for the electron spins 3.

When the atoms are put in an external magnetic field, the zeroes of energy
of the two internal states are shifted against each other due to Zeeman’s effect
by an amount µ̄B, where B is the magnetic field and µ̄ is related to the dif-
ference between the magnetic momenta of the triplet and singlet channel with
µB = 5.788 · 10−11 MeV/T = 0.2963 MeV−1 the Bohr magneton, a rough estimate
for the difference in magnetic moments is µ̄ ≈ 2µB – this just reflects the difference
between the magnetic moments of singlet and triplet state. The energy difference
between the two states is usually much larger than the typical energy scales in ul-
tracold gases characterized e.g. by the temperature, T ¿ |µ̄B|. The upper channel
is therefore energetically inaccessible for atoms making up ultracold gases.

In real physical systems, singlet and triplet states are not orthogonal, but coupled
to each other. The origin of this coupling is the hyperfine interaction ∝ S · I, which
can cause spin flips in each of the atoms. This effectively mixes singlet and triplet
states and might cause deviations from µ̄ = 2µB. Indeed, while for 6Li the latter
approximation is rather accurate [42], in 40K one finds µ̄ = 1.57µB [43]. We refer to
the modified states for the two-body problem as the “open” and “closed” channel
states. This situation is illustrated in fig. 2.1. The central ingredient for a Feshbach
resonance is the existence of a bound state in the closed channel.

3An important exception is 6Li, which we will consider in this work. Here the triplet potential
is much deeper, having an anomalously large background scattering length adding to the Feshbach
resonance.
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To see this, we consider the atoms in the open channel at large interatomic
separations. The resonance, as observed by the divergence of the scattering length
4, takes place when the zero of energy in the open channel hits a bound state
level in the closed channel. Qualitatively, this can be understood from considering
perturbation theory for the scattering amplitude, where the perturbation parameter
is the coupling (squared transition matrix element) between the open and closed
channel. The zero order contribution describes the non-resonant scattering in the
open channel. The first order contribution vanishes, since the continuum states of
the closed channel are energetically inaccessible as argued above. To second order,
there is a contribution, exhibiting the characteristic resonance energy dependence
1/(E − E0). The total scattering length takes the form

a(B) = abg +
κ

E − E0

= abg +
κ

µ̄(B −B0)
= abg

(
1 +

∆B

B −B0

)
. (2.5)

Here abg represents the energy-independent non-resonant or “background” scatter-
ing in the open channel. κ is the (squared) transition matrix element between the
scattering state in the open channel and the bound state in the closed channel. The
dependence on the magnetic field relies on the assumption of a linear dependence
of the energy on the magnetic field, with µ̄ the difference in magnetic moments for
open channel and closed channel atom pairs (again, µ̄ ≈ 2µB if the mixing between
singlet and triplet states is not very strong). This contribution is called the resonant
scattering length. It is worth noting that the contributions to the total scattering
length – which parameterize the coupling strength between the fermionic atoms –
are physically clearly distinguished by the energy dependence of the second con-
tribution. They describe different physical effects, which will motivate the model
presented in the next section.

As mentioned above, the scattering length is associated to scattering at very low
momenta. If the true interaction is pointlike, the scattering length indeed is sufficient
to fully characterize scattering processes, and only the ratio ∆ = κ/µ̄ is a physical
quantity. However, for non-local interactions (for nonrelativistic collisions, the sim-
plest modification is through the effective range), a further scale is introduced in the
problem and the information encoded in the scattering length alone is insufficient.

The last expression in (2.5) is the standard parameterization of a Feshbach res-
onance in terms of three parameters: background scattering length abg, width of

4In practice, the divergence of the scattering length is not observed, since at some point, the
momentum dependence of the scattering amplitude cannot be neglected. The scales of these mo-
menta are set by the de Broglie wavelength and the oscillator length. Indeed, the unitarity of the
S-matrix does not allow for a diverging cross section. This has been observed in [44; 45]. The diver-
gence of the scattering length can, however, be concluded on the BEC side of the resonance from
the measurement of the binding energy vanishing as εM = −1/a2 in approaching the resonance
[46].
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Figure 2.2: Schematic plot of the scattering length a and binding energy εM as a
function of magnetic field B close to a Feshbach resonance. The observed scattering
length is characterized by three parameters as described in the text.

the resonance ∆B and the resonance position B0. Clearly, these parameters are not
independent – the width of the resonance is characterized by the ratio κ/µ̄.

The key to create large scattering lengths is the fine-tuning of the interaction
potentials close to a two-body bound state. As argued above, the divergence of the
scattering length is a generic feature that can be observed for very simple contact or
single-channel square well potentials. Here, the fine-tuning is provided by a variation
of the strength of the potential, and the phenomenon is known as a shape resonance.
It is, however, not easy to manipulate the shape of a given interaction potential in
practice. The remarkable point about Feshbach resonances is to provide a means
to manipulate the interaction strength by tuning an external parameter, i.e. the
magnetic field B.

As mentioned in the introduction, it is the aim of this thesis to develop a quantum
field theoretical description for the crossover problem. In the spirit of effective field
theories, we do not ask for the microscopic mechanism responsible for the Feshbach
resonance. Instead, we take a set of independent parameters which fully character-
izes the two-body system as an input for our theory. Additionally, thermodynamic
scales as temperature and particle density enter our formalism. All these parame-
ters must be determined experimentally. The observables which we want to predict
will then be expressed in terms of these variables. Most of these observables will be
thermodynamic quantities (e.g. the condensate fraction or the critical temperature),
but we can also focus on two-body observables as the effective molecule-molecule
scattering length on the BEC side of the resonance, which is not an independent
observable, but fully determined by the measured parameters indicated below.

For more extensive reviews on Feshbach resonances, cf. [36; 47; 48].



Chapter 3

Microscopic Model

With the physical picture from the last chapter in mind, we can write down the
euclidean Yukawa-type bare microscopic action in position space [27–38]:

S[ψ̄, φ̄] =

∫
dτ

∫
d3x

[
ψ̄†

(
∂τ − 4

2M
− σ

)
ψ̄ +

λ̄ψ,Λ

2
(ψ̄†ψ̄)2 (3.1)

+φ̄∗
(
∂τ − Ā

(cl)
φ 4+ ν̄Λ − 2σ

)
φ̄− h̄φ,Λ

2

(
φ̄∗ψ̄T εψ̄ − φ̄ψ̄†εψ̄∗

)]
.

Here, ψ̄ and φ̄ can be viewed as classical fields – they will be quantized by the means
of a functional integral in the next chapter. We refer to the fields with a bar on top
as bare fields. In this work, we will also encounter “dressed” or “renormalized” fields
which are related to the bare fields by a rescaling with a wave function renormaliza-
tion factor. For those we omit the bar. In the following, we motivate this action in
more detail. In particular, we explain the field and parameter content of this object.
Further, we perform some preparations in the view of the thermodynamic situation
which we analyze in the following chapters.

3.1 Field Content and Symmetries

Fermion Field

The fermion field ψ̄ represents the stable atoms. It is a Grassmann valued non-
relativistic 2-spinor ψ̄ = (ψ̄1, ψ̄2)

1. The dagger operation is implemented by
ψ̄† = ψ̄∗T . The spin components ψ̄1, ψ̄2 represent eigenstates to the total spin op-
erator F = S + I. In experimental setups, one uses the two lowest hyperfine states

1The bar has nothing to do with a multiplication by the Dirac matrix γ0 for relativisic 4-spinors.

12
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|1〉, |2〉 (e.g. |1〉 = |F = 1/2,mF = −1/2〉, |2〉 = |F = 1/2,mF = 1/2〉 for 6Li 2 and
|1〉 = |F = 9/2,mF = −9/2〉, |2〉 = |F = 9/2,mF = −7/2〉 for 40K).

Boson Field

A composite boson field φ̄ is coupled to the fermion fields in the Yukawa term
in the second line. The resonant interaction between the fermions is modelled as
an exchange of a boson. The corresponding tree-level process is depicted in fig. 3.1.
The boson field, representing the closed channel molecules, is given a classical inverse
propagator term according to simple symmetry considerations, see below.

Current σ

The current σ enters linearly in the microscopic action. It couples to both the op-
erator ψ̄†ψ̄ and 2φ∗φ. Its physical meaning depends on the situation we intend to
analyze. For example, it plays the role of an effective chemical potential in the ther-
modynamic context. In the two-body system, which can also be described in the
effective action formalism, it represents the binding energy of a molecule. It couples
with double strength to the boson field due to their compositeness as mentioned
above.

The theory has a global 3 U(1) symmetry,

ψ̄ → exp(iθ)ψ̄, φ̄ → exp(2iθ)φ̄. (3.2)

The corresponding conserved charge is the particle number. We will come back
to this point in the next chapter. The double coupling strength of the bosons to
the chemical potential is directly related to the double phase for φ̄ in (3.2) – the
composite objects have atom number 2.

A second symmetry is global SU(2), reflecting invariance of (3.1) under spin
rotations. The φ field is invariant under this transformation, i.e. it represents a spin
zero particle. Further, the kinetic terms for both the fermions and the bosons are
Galilean invariant as appropriate for nonrelativistic particles.

The closed channel does not need to be included in our model by an extra fermion
field, since its weight is suppressed by a factor exp−ψ̄†clµ̄Bψ̄cl relative to the open

2Lithium (6Li) is usually probed at high magnetic fields in the Paschen-Back regime (B À 30G)
where the nuclear and the electronic spin decouple completely. Hence better quantum numbers are
|1〉 = |S = 1/2,mS = −1/2, I = 1,mI = 1〉, |2〉 = |S = 1/2,mS = −1/2, I = 1, mI = 0〉. Here the
triplet state is energetically below the singlet, unlike most other types of atoms.

3Do not expect a local gauge symmetry, though the true physical interactions are mediated by
the electromagnetic field. Those interactions are “integrated out” from the outset, and replaced by
the microscopic parameters of our model.
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h̄φ

φ̄∗

ψ̄1 ψ̄2

Figure 3.1: Tree exchange of a molecule.

channel atoms in the functional integral. The closed channel enters only implicitly
in our formulation, giving rise to the resonant interaction between the open channel
atoms.

The action (3.1) is local in position space. However, when two fermions ψ̄1, ψ̄2

in the hyperfine states |1〉, |2〉 interact to form a boson at X1 = (t1, ~x1), this object
can propagate to another position X2 = (t2, ~x2) and decay into two fermions again.
Hence this form of the interaction allows for effectively non-local processes. To be
more precise, it is advantageous to consider the action (3.1) in momentum space
– “momentum” here means frequency and spacelike momenta. Our conventions for
momenta are

Q = (ω, ~q),

∫

Q

=
∞∑

n=−∞
T

∫
d3q

(2π)3
. (3.3)

The trace over frequency is a discrete sum over the Matsubara modes for finite
temperature applications due to (anti-) periodic boundary conditions for fermion
(boson) fields in timelike direction (ωF = (2n + 1)πT, ωφ = 2nπT for fermions resp.
bosons 4). For the Fourier transforms we define

ψ̄(X) =

∫

Q

exp(iQX)ψ̄(Q), ψ̄†(X) =

∫

Q

exp(−iQX)ψ̄†(Q), (3.4)

and analogous for φ̄(X), φ̄∗(X). We treat σ as a constant which is not Fourier trans-

4At zero temperature, the Matsubara sum is replaced by a continuous integration, T
∞∑

n=−∞
→

∫
dq0
2π .
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formed. Eq. (3.1) reads in momentum space

S =

∫

Q

ψ̄†(Q)
(
iωF +

~q 2

2M
− σ

)
ψ̄(Q) + φ̄∗(Q)

(
iωφ + Ā

(cl)
φ ~q 2 + ν̄Λ − 2σ

)
φ̄(Q)

− h̄φ,Λ

2

∫

Q1...Q3

δ(Q1 − (Q2 + Q3))
[
φ̄∗(Q1)ψ̄

T (Q2)εψ̄(Q3)− φ̄(Q1)ψ̄
†(Q2)εψ̄

∗(Q3)
]

+
λ̄ψ,Λ

2

∫

Q1...Q4

δ(Q1 −Q2 + Q3 −Q4)(ψ̄
†(Q1)ψ̄(Q2))(ψ̄

†(Q3)ψ̄(Q4)). (3.5)

In order to investigate the momentum structure of the interaction, we can now
integrate out the quadratic boson field by formally solving the field equation for φ̄,
δS/δφ̄ = 0, for nonvanishing ψ̄T εψ̄. This solution becomes then a functional of ψ̄.
Reinserting it into S yields the “tree contribution” to the four-fermion vertex, whose
contribution to the action reads

Sint,R =
1

4

∫

Q1...Q4

δQ1+Q3,Q2+Q4

(
ψ̄T (Q1)εψ̄(Q3)

)(
ψ̄†(Q2)εψ̄

∗(Q4)
) h̄2

φ,Λ

P̄φ,cl(Q1 + Q3)

(3.6)

(δK,P = δ(K − P )) with the classical inverse boson propagator

P̄φ,cl(Q) = iωφ + Ā
(cl)
φ ~q 2 + ν̄Λ − 2σ. (3.7)

This shows the equivalence of our Yukawa type theory (3.1) to a purely fermionic
model with a particular frequency and momentum - dependence for the (resonant)
four-fermion coupling λ̄R(Q1...Q4). Importantly, we learn from eq. (3.6) that the
propagation is strongest for opposite fermion momenta (for fixed mass term 5), as
it should be for a bound state. We will therefore often refer to the composite boson
as a “molecule”, though we are not always dealing with stable particles. This issue
is treated in detail in chapts. 4 and 7.

We can rearrange the discrete index structure in (3.6) and collect the pieces of
the effective four-fermion interaction together:

Sint =
1

2

∫

Q1...Q4

δQ1+Q3,Q2+Q4

(
ψ̄†(Q1)ψ̄(Q2)

)(
ψ̄†(Q3)ψ̄(Q4)

){
λ̄ψ,Λ −

h̄2
φ,Λ

P̄φ,cl(Q1 + Q3)

}
.

(3.8)

5In this expression we give the classical, not UV renormalized mass term. In a more thorough
treatment, one should of course solve the field equation for φ of the effective action taking fluctua-
tions into account, which always features a positive mass term. We will comment on this in chapts.
4 and 7.



16 Chapter 3. Microscopic Model

In case of pointlike interactions (kinetic terms in (3.7) unimportant), the resonant
and background interaction can be separated by measuring the interaction as a
function of magnetic field, see below. This resolves the Feshbach resonance from the
B-independent background scattering as parameterized in eq. (2.5).

3.2 Parameter Content and Choice of Variables

The “bare” quantities displayed in the microscopic action cannot directly be related
to their corresponding parameters measured in the physical vacuum. This is due to
vacuum fluctuations which are not included in (3.1). Relating the bare to the ob-
servable parameters is known as ultraviolet (UV) renormalization. We postpone this
issue to the next chapter and chapt. 7 and point out the meaning of the observable,
UV renormalized quantities here.
(i) The Yukawa or Feshbach coupling h̄φ measures the width of the Feshbach reso-
nance. It represents the coupling of open and closed channels,

h̄2
φ = κ. (3.9)

(ii) The detuning parameter ν̄ indicates the distance from the resonance. It is related
to the magnetic field by

ν̄ = µ̄(B −B0). (3.10)

The zero of ν̄ yields the position of the Feshbach resonance. This parameter makes
the interaction (3.8) energy (magnetic field) dependent. Tuning B allows to sweep
across the Feshbach resonance.
(iii) The pointlike four-fermion “background” interaction λ̄ψ,0. This term models
the non-resonant scattering in the open channel and does not depend on external
parameters as the magnetic field to a good approximation. It is therefore physically
distinct from the resonant interaction, which corresponds to an explicit energy de-
pendence (through the magnetic field) of an effective four-fermion interaction (cf.
the next subsection). Its sign can be both negative (6Li) and positive (40K).

(iv) The classical gradient coefficient Ā
(cl)
φ for the bosons. It is related to an effective

range by

rs = 2Ā
(cl)
φ /h̄2

φ, (3.11)

cf. app. A, eq. (A.8), and eq. (3.8). By a simple symmetry consideration one would

conclude Ā
(cl)
φ = 1/(4M) – the bosons then have double fermion mass. No UV

renormalization is needed for Ā
(cl)
φ , such that we do not need to distinguish between

Ā
(cl)
φ and Ā

(cl)
φ,Λ.
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The choice of 1 as coefficient of the frequency dependence in the classical boson
propagator normalizes to a standard time evolution (in Minkowskian position space)
of the closed channel molecules. This choice can also be viewed as measuring all the
couplings in the boson propagator in units of the coefficient of iω.

The space of model parameters for the crossover problem is hence
spanned by {ν̄, h̄2

φ, λ̄ψ,0, Ā
(cl)
φ }. However, another equivalent set of parameters,

{a−1, h̄2
φ, λ̄ψ,0, Ā

(cl)
φ }, where a is an appropriately defined in-medium scattering length

(see below), describes the system more efficiently and reveals the aspects of univer-
sality (chapt. 6) more clearly.

In the pointlike limit 6 the momentum dependence in eq. (3.8) can be neglected
and the effective coupling is replaced by the “local interaction approximation”

λ̄ψ = − h̄2
φ

ν̄ − 2σ
+ λ̄ψ,0. (3.12)

Using the relation between four-fermion coupling λ̄ψ and a scattering length a for dis-
tinguishable fermions (cf. app. A, eq. (A.12)), we can define an effective in-medium
resonant scattering length aR(σ) and a background scattering length abg,

aR(σ) =
Mλ̄R

4π
= − Mh̄2

φ

4π(ν̄ − 2σ)
, abg =

Mλ̄ψ,0

4π
. (3.13)

σ introduces a medium dependence on the resonant scattering length. The total
in-medium scattering length reads

a(σ) = aR(σ) + abg. (3.14)

In the important case abg = 0 (which we will analyze most thoroughly in this work),
we obviously have aR = a.

The impact of the choice of variables {a−1, h̄2
φ, λ̄ψ,0, Ā

(cl)
φ } instead of

{ν̄, h̄2
φ, λ̄ψ,0, Ā

(cl)
φ } is twofold. First, it absorbs a good deal of the h̄φ-dependence

in the final results. In the language of critical phenomena, the scattering length
a is a relevant parameter, whereas h̄φ is marginal. A more systematic discussion
of the importance of the Feshbach coupling h̄φ is given in chapt. 6. Second, the
choice of a relates our formulation based on a Yukawa model more closely to an
interacting fermion system, where the effective scattering length is a crucial para-
meter as discussed above. However, a careful analysis of the vacuum properties of
the crossover system shows that the physical fermionic scattering length is given by

6Later we will argue that the pointlike limit can be established by h̄φ → ∞, ν̄ ∝ h̄2
φ. This

settles the connection between broad Feshbach resonances and the pointlike limit, for which a
purely fermionic description as discussed by Strinati et al. [21–25] is appropriate.
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a′ = a(σ = 0) (and not the in-medium scattering length a(σ)), cf. sects. 5.5.2, 5.6.1.
For the important case of broad resonances, this subtle distinction is quantitatively
unimportant.

In sum there are five numbers that characterize the situation (two of them, µ̄ and
B0, appear in ν̄), though the full scattering length (2.5) was determined by three
numbers only. However, as argued above, this quantity is the low frequency and
momentum limit of the scattering amplitude only. Thus it contains no information
on the frequency and momentum dependence of the interaction, parameterized by
Āφ and the normalization of the frequency coefficient. Our model allows for the
description of the more general situation of non-local, i.e. frequency and momentum
dependent couplings in the Feshbach channel. This will be important for “narrow”
resonances (small Yukawa couplings, cf. sect. 6).

3.3 Scaling Form

Adding to the microphysical parameters, further scales are introduced by the ther-
modynamic variables temperature T and particle density n. Since we are mainly
interested in analyzing the thermodynamics of the crossover system in this work, it
is sensible to perform another manipulation of the action in order to better adapt to
our needs. We recall from sect. 2.1 that the Fermi momentum sets a natural scale for
momenta in a thermodynamic situation. We measure momenta in units of the Fermi
momentum kF = (3π2n)1/3, and energies in units of the Fermi energy εF = k2

F /2M .
This fixes the canonical scaling behavior of all couplings and fields.

Indeed we can bring the action (3.1) to a dimensionless form by rescaling coor-
dinates and fields according to

~̃x = kF~x, τ̃ = εF τ, T̃ = T/εF , q̃ = q/kF , (3.15)

ψ̃ = k
−3/2
F ψ̄, φ̃ = k

−3/2
F φ̄, σ̃ = σ/εF .

This yields the scaling form of the bare microscopic action

S[ψ̃, φ̃] =

∫
dτ̃d3x̃

[
ψ̃†

(
∂̃τ − 4̃ − σ̃

)
ψ̃ + φ̃∗

(
∂̃τ − Ã

(cl)
φ 4̃+ ν̃Λ − 2σ̃

)
φ̃

− h̃φ,Λ

2

(
φ̃∗ψ̃T εψ̃ − φ̃ψ̃†εψ̃∗

)
+

λ̃ψ,Λ

2
(ψ̃†ψ̃)2

]
. (3.16)

Due to the different scaling of energy and momentum, the canonical scaling dimen-
sion of time is minus two and therefore the nonrelativistic Lagrangian has scaling
dimension five and not four as for a relativistic quantum field theory.
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According to eq. (3.16) all quantities derived from the partition function can be
brought to a scaling form and can only depend on the dimensionless parameters (we
display the UV renormalized quantities)

ν̃ = ν̄/εF , h̃φ = 2Mk
−1/2
F h̄φ, λ̃ψ,0 = 2MkF λ̄ψ,0, Ã

(cl)
φ = 2MĀ

(cl)
φ . (3.17)

The dimensionless version of the in-medium scattering length (3.13) is

c = akF = − h̃2
φ

8π(ν̃ − 2σ̃)
+ cbg (3.18)

with cbg = abgkF = λ̃ψ,0/(8π). We will refer to c as “concentration”. Indeed, with
the inverse Fermi momentum setting the scale for the average interparticle spacing
d, the concentration c is a measure for the ratio between the in-medium scattering
length a and the average distance, c ∼ a/d. This defines “large” scattering lengths in
the thermodynamic context. Note that through σ, this in-medium scattering length
depends on the density. A more complete list of the relation between dimensionful
and dimensionless parameters is given in app. B.

This scaling form shows a first important aspect of universality. All computations
can be performed at a fiducial kF = 1eV. Contact to a concrete physical situation
is only made at the end by rescaling the results, using the value of kF = (3π2n)1/3

appropriate for the density n of a given experiment. For a homogeneous situation all
dimensionless physical observables can be expressed in terms of the dimensionless
variables c−1, h̃φ, cbg and T̃ ! The scale is then introduced by n.

To summarize this section and to get an impression of the physics connected to
the various parameter ranges, we show a “cube of scales” with axes T̃ , c−1, h̃−2

φ in
fig. 3.2 (we omit a further axis for cbg). We find the following regimes:

• The ultracold regime where the fermion system becomes degenerate, in this
way allowing quantum effects to play a role at all, is determined by the con-
dition T̃ < 1 (or T̃ /(4π) ¿ 1 as stated in chapt. 2).

• For a small concentration |c| the gas is dilute in the sense that scattering can
be treated as a perturbation. For weak attractive interactions c−1 < −1 the
system is in the “BCS regime”. Weak repulsive interactions c−1 > 1 define the
“BEC regime”. In these ranges mean field theory is expected to work reason-
ably well and we provide quantitative arguments supporting this statement in
chapt. 6.

• For strong interactions |c−1| < 1, the in-medium scattering length exceeds
the average distance between two atoms and fluctuation effects beyond mean
field may play a crucial role. The crossover from BCS to BEC regime takes
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Figure 3.2: Cube of scales for the crossover problem.

place when evolving on this axis. c−1 is indeed the right variable – though
the in-medium scattering length diverges at resonance, all thermodynamic
observables behave continuously as we will see in the next chapters.

• The third axis discriminates between the broad (h̃2
φ À 1) and the narrow

resonance regime (h̃2
φ ¿ 1). In the narrow resonance limit we will establish

an exact solution of the theory – controlled by the smallness of h̃φ – where
mean field theory becomes valid for arbitrary couplings or scattering lengths
a. Such a solution is not possible for broad resonances – which are investigated
in current experiments in 6Li and 40K.

The challenge is hence posed in the region around the origin of the cube of scales,
where we deal indeed with a strongly interacting quantum field theory.



Chapter 4

Functional Integral for the
Crossover Problem

4.1 Functional Integral and the Effective Action

4.1.1 Effective Action

We start from the functional integral representation of the partition function for the
grand canonical ensemble Z[J ]. For a brief review of the derivation of the functional
integral representation from the Hamiltonian operator formalism, see e.g. [49]. We
include a complex valued scalar bosonic field φ̂, φ̂∗ as well as a Grassmann valued
fermionic two-spinor ψ̂ = (ψ̂1, ψ̂2)

T as appropriate for the theory we intend to an-
alyze. In this section, which provides some basic formalism, we do not distinguish
between bare and dressed fields to be introduced in (4.2.2). Here, it is more important
to clearly distinguish between fluctuating fields (with hat) which are quantized by
the means of the functional integral, and “classical” fields of field expectation values
(without hat, cf. eq. (4.8) for a definition). We further work in the Nambu-Gorkov
formalism, i.e. we plug the fields together in a “superfield vector” 1,

χ̂(X) =




φ̂

φ̂∗

ψ̂

ψ̂∗


 (X), χ̂T (X) =

(
φ̂, φ̂∗, ψ̂T , ψ̂†

)
(X). (4.1)

1We follow the conventions from [50], adjusting them to the nonrelativistic fermionic two-
spinors. In the reference, real valued fields are included as well.

21
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Here φ̂, φ̂∗ and ψ̂, ψ̂∗ are considered as independent field variables. Hence χ̂, χ̂T carry
the same information 2. The generalized (transposed) source term reads

JT (X) =
(
j∗, j, η†, ηT

)
(X) (4.2)

and similar for the column term. The bosonic entries j, j∗ are complex valued, the
fermionic sources η, η∗ are Grassmann valued.

For later convenience, let us also introduce fermionic and bosonic Nambu fields,

Ψ̂(X) =

(
ψ̂

ψ̂∗

)
(X), Φ̂(X) =

(
φ̂

φ̂∗

)
(X) (4.3)

and corresponding sources Jψ, Jφ which are Grassmann (complex) valued.

The partition function can now be written in a compact way,

Z[J ] =

∫
Dχ̂ exp

(− S[χ̂] + JT χ̂
)
. (4.4)

Here we adopt a matrix notation for both discrete and continuous indices, i.e.

JT χ =

∫

X

Ji(X)χ̂i(X). (4.5)

The partition function formulates a quantum field theory in terms of an external
source J : Successive derivatives with respect to the source term, evaluated at J = 0,
generate an expansion of the partition function in terms of Green functions. It
is often more practicable to organize the expansion in terms of connected Green
functions, which is generated by considering the logarithm of the partition function,

W [J ] = log Z[J ]. (4.6)

This object, the Schwinger functional, still formulates the theory in terms of the
source J ,

W [J ] = JT χ +
1

2
JT W (2)J + ... (4.7)

The first two derivatives are of particular importance. The classical field, i.e. the
vacuum field expectation value 3 or one-point function is defined as

χi(X) := 〈χ̂i(X)〉 =
δW [J ]

δJi(X)

∣∣∣
J=0

. (4.8)

2Sticking to the convention for the Fourier transform (3.4), χ̂(X) =
∫

Q
exp(iQX)χ̂(Q) we now

find for the components χ̂(Q) = (φ̂(Q), φ̂∗(−Q), ψ̂(Q), ψ̂∗(−Q)) (column vector) and χ̂T (−Q) =
(φ̂(−Q), φ̂∗(Q), ψ̂T (−Q), ψ̂†(Q)) (row vector). The minus sign in χ̂T (−Q) is introduced by hand
to get the correct momentum structure of the bilinears.

3“Vacuum” refers to J = 0 here.
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For fermions, due to Pauli’s principle (on the level of fields: Grassmann valuedness),
a fermion state can only be populated once such that a macroscopic occupation
cannot occur,

ψ = ψ∗ = 0. (4.9)

The connected two-point function is given by

W
(2)
ij (X,Y ) =

→
δ

δJi(X)
W [J ]

←
δ

δJj(Y )

∣∣∣
J=0

(4.10)

= 〈χ̂∗i (X)χ̂j(Y )〉c = 〈χ̂∗i (X)χ̂j(Y )〉 − χ∗i (X)χ(Y )

with the two-point Green function

〈χ̂∗i (X)χ̂j(Y )〉 =
1

Z[0]

→
δ

δJi(X)
Z[J ]

←
δ

δJj(Y )

∣∣∣
J=0

. (4.11)

We can now construct the effective action via a Legendre transform with respect to
the classical field (4.8),

Γ[χ] = −W [J ] + JT χ, J = J [χ]. (4.12)

Here J [χ] is to be understood as a solution of eq. (4.8). This corresponds to a change
of the active variable J → χ, formulating the field theory in terms of the classical
field χ. The vertex expansion

Γ[χ] =
∑
N

1

N !

∫

X1...XN

Γ
(N)
i1...iN

(X1...XN)χi1(X1) · ... · χiN (XN) (4.13)

= χT Γ(1) +
1

2
χT Γ(2)χ + ...

generates the one-particle irreducible (1PI) Green functions (see, e.g., [51]).

From this definition of Γ we immediately derive the field equations

δΓ[χ]

δχi(X)
= −

∫

Y

δJj(Y )

δχi(X)

δW

δJj(Y )
+

∫

Y

δJj(Y )

δχi(X)
χj(Y ) + MijJj(X) (4.14)

= MijJj(X) = Jj(X)Mij

where we have introduced the “metric” in the space of discrete field indices (Nambu
space) 4,

M = MT = diag(1, 1,−1,−1). (4.15)

4The signs in the fermion sector are necessary since we work with a left-derivative and
δ(JT

ψ Ψ)/δΨ = −JT
ψ .
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For vanishing sources J = 0, the effective action promotes the classical action prin-
ciple to full quantum status,

δΓ[χ]

δχ
= 0. (4.16)

This motivates the names “classical field” and “effective action”. Eq. (4.16) is the
equation of motion for the field χ.

Using (4.4) and (4.12), we can write the effective action in a more elegant way

exp−Γ[χ] =

∫
Dχ̂ exp−S[χ̂] + JT (χ̂− χ),

δΓ[χ]

δχ
= (MJ)T . (4.17)

This is a functional integro-differential equation for the effective action, connecting
the effective action and its derivative w.r.t. the classical field. On the level of the
effective action, a vanishing source term gives an additional constraint on the effec-
tive action. Evaluating (4.17) with this constraint fixes the value of the field χ as
the solution of the equation of motion (4.16).

Now we decompose the full field in a background or classical (not necessarily
homogeneous) and a fluctuating part,

χ̂(X) = χ(X) + δχ̂(X). (4.18)

Eq. (4.8) shows that this implies

〈δχ̂(X)〉 = 0. (4.19)

Further making use of the shift invariance of the functional measure,

Dχ̂ = Dδχ̂, (4.20)

we observe that the formulation (4.17) leads to the background field formalism in a
natural way,

exp−Γ[χ] =

∫
Dδχ̂ exp−S[δχ̂ + χ] + JT δχ̂ (4.21)

with J [χ] determined by the second eq. in (4.17). For later convenience, we note the
important identity (omitting the continuous indices and integrations for simplicity)

Γ
(2)
ij W

(2)
jk = Mjl

δJl

δχi

δχk

δJj

= Mik, (4.22)

stating that the second functional derivative of the effective action is the inverse
propagator.
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4.1.2 Symmetries

A continuous symmetry of the classical action yields a (classical) conserved charge
– this is Noether’s theorem. In the absence of anomalies, there is also a conserved
charge for the full quantum theory. Here we briefly review the formalism for the
construction of the conserved Noether charge from the effective action. We will need
this formalism for the construction of the equation of state in the following section.

We consider a global symmetry transformation α acting on the field χ̂ → χ̂α. We
further want to consider transformations whose linear piece in the transformation
parameter α is at most linear in the field χ̂. A typical example is a global U(1)
symmetry, χ̂ → eiαχ̂ ≈ (1+ iα)χ̂. Invariance of the classical action is then expressed
as

S[χ̂] → S[χ̂α] = S[χ̂]. (4.23)

This statement holds at least to linear order in the symmetry transformation α. We
can formalize this by (S =

∫
X
L)

∂L[χ̂α]

∂α

∣∣∣
α=0

= 0. (4.24)

The Schwinger functional can be expressed in terms of χα as

exp W [J ] =

∫
Dχ̂α exp−S[χ̂α] + JT χ̂α. (4.25)

Assuming the invariance of the functional measure under α - transforms, the last
equation takes the form

exp W [J ] =

∫
Dχ̂ exp−S[χ̂α] + JT χ̂α. (4.26)

This assumption holds if the transformation α is unitary 5. α-invariance of the
Schwinger functional can be expressed as

δW [J ]

δα

∣∣∣
α=0

= 0 or JT δχα

δα

∣∣∣
α=0

=
〈δS[χ̂α]

δα

∣∣∣
α=0

〉
(4.27)

where the expectation values are evaluated at arbitrary sources J . The symbol “δ”
stands for the full variation or functional derivative, while “∂” denotes a partial
derivative. Switching to the effective action by a Legendre transform relates the
source J to the field derivative of the effective action:

〈δS[χ̂α]

δα

∣∣∣
α=0

〉
=

( δΓ

δχα

)T δχα

δα

∣∣∣
α=0

=
δΓ

δα

∣∣∣
α=0

(4.28)

5There are cases where this assumption does not hold. One then deals with anomalies, which
entail that the transformation α is not unitary.
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where we use the chain rule for functional derivatives in the second step. Inserting
the equation of motion (4.16), the last equation reads

δΓ

δα

∣∣∣
δΓ/δχ=0,α=0

= 0. (4.29)

We recover the standard formulation of Noether’s theorem by specializing to a
class of microscopic actions which depend only on the fields and their first deriva-
tives, S = S[χ̂, ∂µχ̂]. We carry out the functional derivative w.r.t. α explicitly,

0 =
δS

δα

∣∣∣
α=0

= −∂µ
∂L

∂(∂µα)

∣∣∣
∂µα=0

+
∂L
∂α

∣∣∣
α=0

= 0. (4.30)

The first equality holds for the field equation, in analogy to eq. (4.28). The second
term on the rhs vanishes for global symmetries (cf. eq. (4.24)), while the first one
can be interpreted as the divergence of the classical Noether current,

jµ
(cl) = − ∂L

∂(∂µα)

∣∣∣
∂µα=0

, (4.31)

For the Noether current of the full theory, we consequently get 6

Jµ = −
〈 ∂L

∂(∂µα)

∣∣∣
∂µα=0

〉
= − ∂Γ

∂(∂µα)

∣∣∣
∂µα=0

. (4.32)

These are closed explicit expressions for the Noether current. The conserved charge
is related to the timelike component of the current, more precisely

Q =

∫
d3xJ0 = −

∫
d3x

∂Γ

∂α̇

∣∣∣
α̇=0

. (4.33)

This scheme can easily be generalized to microscopic actions depending on higher
powers of derivatives – one simply has to figure out the generalization of eq. (4.30).
E.g. for an action additionally depending on ∂ν∂µχ the additional term in (4.30)
reads ∂ν [∂S/∂(∂ν∂µα)].

For the global U(1) symmetry relevant in the crossover problem, the conserved
charge is the particle number, Q = N . We will use the above construction to com-
pute the particle number for the crossover problem in the next section. The central
ingredient for the concrete implementation is the representation of the effective ac-
tion as a functional integral, which means to choose the particular basis of coherent
states to represent the thermodynamic trace.

6In principle, one gets the rhs of (4.32) plus a quantity cµ with ∂µcµ = 0. For massive theories,
inducing an exponential decay of cµ for large distances, one can ignore this contribution.
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4.2 Unified Description for the Crossover Prob-

lem

We present the derivation of our unified effective action description for the crossover
problem. Special emphasis is put on the appropriate equation of state and the clas-
sification of the phases of the system via the field equation for the boson field
expectation value.

We further introduce the notion of dressed (bosonic) fields, in distinction to the
bare fields. As exposed in chapt. 3, the latter are defined as those fields which appear
in the classical action and are subsequently quantized by the functional integral (or
by an alternative quantization procedure, as e.g. by canonical commutation rela-
tions). The dressed (bosonic) fields are the right degrees of freedom to characterize
the thermodynamic situation as we argue below. In order to clearly distinguish these
objects, we denote the bare fields with a bar on top and omit this for the dressed
fields.

4.2.1 Assembling the Functional Integral: Bogoliubov-type
Theory

We start with the effective action written down in terms of the fermionic and bosonic
Nambu fields (4.3),

Γ[Ψ̄, Φ̄] = − log

∫
Dδ ˆ̄ΨDδ ˆ̄Φ exp−S[ ˆ̄Ψ, ˆ̄Φ] + JT

φ δ ˆ̄Φ + JT
ψ δ ˆ̄Ψ. (4.34)

Throughout this chapter, we consider the situation of negligible background inter-
actions and set

λ̄ψ = 0. (4.35)

In this case, the action (3.1) is quadratic in the fermions, such we can integrate them
out in one step 7. Inserting the physical fermion field expectation value Ψ̄ = 0, this
yields a purely bosonic theory,

Γ[Ψ̄ = 0, Φ̄] = − log

∫
Dδ ˆ̄Φ exp−S̄[δ ˆ̄Φ + Φ̄] + JT

φ δ ˆ̄Φ (4.36)

with an intermediate action S̄ depending on the fluctuating field φ̂ = φ + δφ̂, and
given by the exact expression

S̄[ ˆ̄Φ] = S
(cl)
φ [ ˆ̄Φ]− 1

2
log det S(ψψ)[ ˆ̄Φ] = S

(cl)
φ [ ˆ̄Φ]− 1

2
Tr log S(ψψ)[ ˆ̄Φ]. (4.37)

7Additionally, the equation of motion for the fermions be satisfied, i.e. Jψ = 0.
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The second field variation with respect to the fermion fields appearing in the inter-
mediate action S̄ is given by

S(ψψ)(Q,K; ˆ̄Φ) =

→
δ

δ ˆ̄ΨT (−Q)
S

←
δ

δ ˆ̄Ψ(K)
(4.38)

=

( −εαβh̄φφ̄
∗ −P̄F (−Q)δαβ

P̄F (Q)δαβ εαβh̄φφ̄

)
δ(Q−K)

+

(
−εαβh̄φδ

ˆ̄φ∗(−(Q−K)) 0

0 εαβh̄φδ
ˆ̄φ(Q−K)

)

with the frequency and momentum dependent part of the classical fermion propa-
gator

P̄F (Q) = i ωF +
q2

2M
− σ. (4.39)

In (4.38) we have decomposed into a “propagator part” P̄F and a “fluctuating field”
contribution F̄ . P̄F is diagonal in momentum space and depends on the background
field Φ̄ which we treat as momentum independent (homogeneous in position space).

F̄ depends on the fluctuating, momentum dependent fields δ ˆ̄φ(Q−K), δ ˆ̄φ∗(K−Q).

The determinant over the discrete indices of the propagator part of this matrix
reads

det
4×4

(P̄F ) =
(
P̄F (Q)P̄F (−Q) + h̄2

φφ̄
∗φ̄

)2
=

(
ω2

F + (q2/2M − σ)2 + h̄2
φφ̄

∗φ̄
)2

=:
(
P̄
|2|
F (Q)

)2
. (4.40)

We can now make progress by expanding the intermediate action in powers of
the fluctuation δφ̂,

S
(cl)
φ [ ˆ̄Φ] = S

(cl)
φ [Φ̄] +

(δS

δ ˆ̄Φ

)T

δ ˆ̄Φ + S
(cl)
φ [δ ˆ̄Φ], (4.41)

−1

2
Tr log

(P̄F + F̄)
= −1

2
Tr log P̄F − 1

2
TrP̄−1

F F̄ +
1

4
Tr(P̄−1

F F̄)2

−1

6
Tr(P̄−1

F F̄)3 +
1

8
Tr(P̄−1

F F̄)4 ∓ ...

As it turns out, even for the qualitative description of the crossover problem it
is crucial to keep the momentum dependence of the fermion loops. We find for the
zero order contribution

S
(cl)
φ [Φ̄]− 1

2
Tr log P̄F [Φ̄] = S

(cl)
φ [Φ̄]− V

∫

Q

log P̄
|2|
F (Q). (4.42)
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This is an explicit formula for the Gaussian integral for the fermions in a bosonic
background Φ̄. For the symmetry consideration we will perform in the next section,
it is preferable to have the explicit functional integral representation,

−1

2
Tr log P̄F [Φ̄] = − log

∫
D ˆ̄Ψ exp−1

2

∫

Q

ˆ̄ΨT (−Q)P̄F (Q) ˆ̄Ψ(Q). (4.43)

Truncating the expansion after this term yields the fermionic mean field effective
action. It is already enough to describe the BCS mechanism and we will come back
to this issue in chapt. 6. This part factorizes from the functional integral (4.36),
which consequently can be written as

Γ[Ψ̄ = 0, Φ̄] = S
(cl)
φ [Φ̄]− 1

2
Tr log P̄F [Φ̄] (4.44)

− log

∫
Dδ ˆ̄Φ exp

(− {(δS

δ ˆ̄Φ

)T

δ ˆ̄Φ + S
(cl)
φ [δ ˆ̄Φ]

−1

2
TrP̄−1

F F̄ +
1

4
Tr(P̄−1

F F̄)2 − 1

6
Tr(P̄−1

F F̄)3

+
1

8
Tr(P̄−1

F F̄)4 ∓ ...
}

+ JT
φ δ ˆ̄Φ

)
.

In the remainder of this section, let us evaluate the functional integral (4.44) in
a Bogoliubov approximation. This provides a motivation for the truncation of the
bosonic inverse propagator, and gives an ideal starting point for the construction of
the equation of state for the crossover problem.

In Bogoliubov theory, interactions are not completely neglected, but treated
in a mean field sense. For example, an interaction (φ̂∗φ̂)2 is expanded around the
expectation value φ∗, φ, and truncated at second order in the expansion parameter,
the fluctuating field δφ̂∗, δφ̂. This is precisely what we obtain in the Tr log expansion
in the background field formalism: We recover the Bogoliubov approximation for the
effective action (4.44) by neglecting terms O((P̄−1

F F̄)3). In this case the functional
integral is again Gaussian and can be performed analytically.

To make further progress, we note that the terms linear in δ ˆ̄Φ in (4.44) precisely
fulfill the equation of motion in a quadratic truncation of the exponent, and thus

cancel with the source term JT
φ δ ˆ̄Φ. In the next step, we rewrite the remaining trace

in a more explicit way by rearranging the field indices according to the Nambu
formalism:

1

4
Tr(P̄−1

F F̄)2 =
V 2

2

∫

K

δ ˆ̄ΦT (−K)P̄φ(K)δ ˆ̄Φ(K) (4.45)

=
V 2

2

∫

K

(
δ ˆ̄φ(−K), δ ˆ̄φ∗(K)

) (
λ̄φ(K)φ̄∗φ̄∗ P̄φ(K)
P̄φ(−K) λ̄φ(K)φ̄φ̄

) (
δ ˆ̄φ(K)

δ ˆ̄φ∗(−K)

)
.
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The effective inverse propagator for the bosons has the explicit entries (ρ̄ = φ̄∗φ̄)

P̄φ(K) = P̄ ∗
φ(−K) = P̄

(cl)
φ (K)− h̄2

φ

∫

Q

P̄F (−Q−K)P̄F (Q)

P̄
|2|
F (Q)P̄

|2|
F (Q + K)

= P̄
(cl)
φ (K)− h̄2

φ

∫

Q

1

P̄F (−Q)P̄F (Q + K)
+ ρ · h̄4

φ

∫

Q

1

P̄
|2|
F (Q)P̄

|2|
F (Q + K)

,

λ̄φ(K) = λ̄φ(−K) = h̄4
φ

∫

Q

1

P̄
|2|
F (Q)P̄

|2|
F (Q + K)

(4.46)

and we note the appearance of λ̄φ(K) in the first expression. (Explicit expressions
for these fermionic diagrams after Matsubara summation are provided in the next
chapter where we specify the approximation scheme beyond renormalization with
fermion diagrams only, which we use for our numerical results.) These matrix el-
ements feature a complex momentum dependence. In order to make progress, we
perform a “derivative expansion”, i.e.

P̄φ(K) = M̄2
φ + iZφω + Ȳφω

2 + Āφ
~k2 + ...,

λ̄φ(K) = λ̄φ(0) + L̄ω
φω2 + L̄k

φ
~k2 (4.47)

where the coefficients are defined as the derivatives w.r.t. the respective variables
evaluated at zero momentum and frequency, e.g.

M̄2
φ = P̄φ(0), Zφ = Im

∂P̄φ(K)

∂ω

∣∣∣
ω=~k=0

, Āφ =
∂P̄φ(K)

∂~k2

∣∣∣
ω=~k=0

, λ̄φ = λ̄φ(0).

(4.48)

The effective coupling λ̄φ starts quadratically in the frequency since it is an even
function of K (cf. (4.46)). We might further decompose the mass term in a direct
and a condensate part which is nonzero only in the case of spontaneous symmetry
breaking (cf. sect. 4.2.4),

M̄2
φ = m̄2

φ + λ̄φρ̄,

m̄2
φ = ν̄Λ − h̄2

φ

∫

Q

1

P̄
|2|
F (Q)

. (4.49)

Keeping only the leading terms in frequency and momentum for the off-diagonal
entries, and only frequency and momentum independent terms for the anomalous
(diagonal) terms, we get

P̄φ(K) =

(
λ̄φφ̄

∗φ̄∗ Zφiω + Āφ
~k2 + m̄2

φ + λ̄φρ̄

−Zφiω + Āφ
~k2 + m̄2

φ + λ̄φρ̄ λ̄φφ̄φ̄

)
. (4.50)
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This expansion is accurate to O(∂τ ) since λ̄φ(K) is even, cf. eq. (4.46). Indeed,
this matrix precisely has the structure of the inverse propagator in a Bogoliubov
approximation for a complex nonrelativistic boson with φ4 interactions! It is crucial
to note that the frequency and momentum dependence of the fermion loops (4.46)
dictate the frequency and momentum dependence of the effective inverse boson
propagator - this is the origin of the crossover from a BCS to a BEC-type state
described by an effective bosonic theory with the above inverse propagator, and we
discuss this issue in detail in chapt. 6. However, the coefficients are not fundamental
microscopic quantities: On top of the classical part stemming from the classical
inverse boson propagator, they feature a piece obtained from integrating out the
fundamental fermionic constituents of the underlying theory. At this point we note
that the renormalization procedure in our Bogoliubov approximation only involves
fermionic diagrams. In the next chapter, we will go beyond this scheme, where
also effective bosonic fluctuations will be included. They modify the effective boson
propagator.

We can rescale the bosonic fields ˆ̄Φ in (4.45) as

ˆ̄Φ → Φ̂ = Z
1/2
φ k

−3/2
F

ˆ̄Φ, ρ̄ → ρ = Zφk
−3
F ρ̄. (4.51)

The fields Φ̂ (without a bar) are the “dressed” fields [36; 39; 52] – those are the
right effective degrees of freedom for the description of the thermodynamics of the
crossover system. Additionally, we have rescaled with kF in order to arrive at the
dimensionless formulation appropriate for the thermodynamic system, cf. chapt. 3.
Requiring invariance of the effective boson propagator (4.45), the rescaling transform
(4.51) generates the “dressed” dimensionless inverse propagator

Pφ(K) =
P̄φ(K)

ZφεF

=

(
λφφ

∗φ∗ iω̃ + Aφk̃
2 + m2

φ + λφρ

−iω̃ + Aφk̃
2 + m2

φ + λφρ λφφφ

)
.

(4.52)

The rescalings of the matrix entries are listed in app. B. For later convenience,
we introduce the momentum and frequency dependent part of the effective inverse
boson propagator similar to the fermions,

Pφ(K̃) = Pφ(K̃)/(ZφεF ) = iω̃ + Aφk̃
2 + m2

φ, (4.53)

P
|2|
φ (K̃) = Pφ(K̃)Pφ(−K̃) + λφρ(Pφ(K̃) + Pφ(−K̃)).

The dressed bosons have a standard time evolution, as signalled by the coefficient
1 for the frequency term. The impact of dressed bosonic fields is further clarified in
the next section.

We can now evaluate the functional integral (4.44) in the combined Bogoliubov
and derivative expansion. This yields a one-loop bosonic contribution to the effective
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action

Γ
(B)
1 =

V

2
Tr logPφ =

V

2

∫

Q̃

log
(
P
|2|
φ (Q̃) + λφρ(Pφ(Q̃) + Pφ(−Q̃))

)
. (4.54)

Throughout this work we will deal with homogeneous situations. (Though the
effective action formalism is well suited for extensions to weak inhomogeneities as
encountered in a trap, cf. [40].) It therefore makes sense to work with the effective
potential Ū instead of the effective action Γ,

Ū =
Γ

V
. (4.55)

Further we can perform the Matsubara sums in eqs. (4.42) and (4.54) using eqs.
(D.34) and (D.41), and omitting an infinite constant which is irrelevant for the
thermodynamics since it does not involve any physical scale. Let us put the results
together here. We write, working with the dimensionless effective potential ũ =
k−3

F ε−1
F Ū ,

ũΛ = ũMFT
Λ + ũ

(B)
1,Λ = ũ

(cl)
Λ + ũ

(F )
1,Λ + ũ

(B)
1,Λ , (4.56)

where the summands on the right abbreviate the classical, one-loop fermionic, and
one-loop bosonic part of the effective potential. The classical plus fermionic con-
tribution represent the mean field approximation. The index Λ indicates that the
integrals are formally divergent and have to be regularized, e.g. by an upper limit
Λ for the momentum space integrals. Our renormalization prescription is presented
in sect. 4.2.3. The contributions read explicitly

ũ
(cl)
Λ = φ̃∗(ν̃Λ − 2σ̃)φ̃, (4.57)

ũ
(F )
1,Λ = −2T̃

∫
d3q̃

(2π)3
log cosh γφ,

ũ
(B)
1,Λ = T̃

∫
d3q̃

(2π)3
log sinh αφ.

with the dimensionless, Zφ - rescaling invariant functions

γφ =
1

2T̃

[
(q̃ − σ̃)2 + h2

φρ
]1/2

, (4.58)

αφ =
1

2T̃

[
(Aφq̃

2 + m2
φ)

2 + 2λφρ(Aφq̃
2 + m2

φ)
]1/2

.

These and some further useful functions are discussed in app. D.4.3.
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4.2.2 Equation of State: Bare and Dressed Fields

Derivation from a symmetry consideration

Let us derive the equation of state for the crossover problem by applying the for-
malism presented in sect. 4.1.2 to the effective action (4.34). We will proceed in two
steps: First, we give an exact, but impracticable expression for the particle density,
and then derive an expression which is adapted to the approximation scheme dis-
cussed above. This will introduce the concept of dressed bosonic fields in a natural
way.

The infinitesimal U(1) transform is given by

ψ → ψα = (1 + iα)ψ, ψ† → ψ†α = (1− iα)ψ†, (4.59)

φ → φα = (1 + 2iα)φ, φ∗ → φ∗α = (1− 2iα)φ∗.

The double phase for the bosons is required by invariance of the Yukawa terms in the
classical action (3.16). The zero component of the classical Noether current obtained
via (4.31) reads

j0 = ˆ̄ψ†(X) ˆ̄ψ(X) + 2 ˆ̄φ∗(X) ˆ̄φ(X) (4.60)

such that the conserved charge 8 is given by (〈 ˆ̄φ∗ ˆ̄φ〉 = 〈 ˆ̄φ∗ ˆ̄φ〉c + φ̄∗φ̄)

N =

∫
d3x

(
〈 ˆ̄ψ†(X) ˆ̄ψ(X)〉c + 2〈 ˆ̄φ∗(X) ˆ̄φ(X)〉c + 2φ̄∗(X)φ̄(X)

)
, (4.61)

or, in a homogeneous situation

n =
N

V3

= 〈 ˆ̄ψ† ˆ̄ψ〉c + 2〈 ˆ̄φ∗ ˆ̄φ〉c + 2φ̄∗φ̄

= n̄F + 2n̄M + n̄C . (4.62)

These equations are exact. They express the equation of state in terms of the bare
fields. We stress that the use of “bare” in this context is of course not related to the
absence of fluctuations. n̄F is the full bare fermion density, n̄M the full bare boson
density, and n̄C the contribution from the full bare condensate.

In the presence of interactions it is hard to evaluate the full bare correlation
functions in the above form explicitly – it premises the solution of the full quantum
field theory. Therefore, a more practicable form for the equation of state is desirable.

8All the connected density contributions in this section are formally divergent and thus need
UV renormalization. In order not to overload the notation, we choose here the abbreviations used
later for the UV renormalized objects.
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In the following, we present a derivation of such a formulation of the equation of
state based on the effective action in the form (4.44), which gives the notion of
dressed fields a more formal footing.

Again we reduce the problem of the construction of the equation of state to the
computation of the zero component of the Noether current (4.31,4.32). We work with
the Bogoliubov plus derivative expansion for the functional integral (4.44) specified
in the last section. In this case, the intermediate action in (4.44) is indeed of the

type S̄[ ˆ̄Φ, ∂µ
ˆ̄Φ] such that eqs. (4.32,4.33) are directly applicable.

The U(1) transform acts both on the classical and the fluctuating fields. The
classical part of the effective action yields the following contribution to the Noether
current,

j0
cl = 2φ̄∗φ̄, (4.63)

i.e. it involves the expectation value of the bare field. There is no fermionic contri-
bution since Ψ̄ = 0. The fluctuation part reads

j0
fluct = 〈δ ˆ̄ψ†(X)δ ˆ̄ψ(X)〉MFT + 2Zφ〈δ ˆ̄φ∗(X)δ ˆ̄φ(X)〉. (4.64)

Using 〈δ ˆ̄φ∗δ ˆ̄φ〉 = 〈 ˆ̄φ∗ ˆ̄φ〉c, eqs. (4.63, 4.64) finally yield an approximation to the
equation of state,

N =

∫
d3x

(
〈 ˆ̄ψ†(X) ˆ̄ψ(X)〉MFT

c + 2Zφ〈 ˆ̄φ∗(X) ˆ̄φ(X)〉c + 2φ̄∗(X)φ̄(X) + ...
)
, (4.65)

or, in the homogeneous case,

n = 〈 ˆ̄ψ† ˆ̄ψ〉MFT
c + 2Zφ〈 ˆ̄φ∗ ˆ̄φ〉c + 2φ̄∗φ̄

= nMFT
F + 2nM + n̄C . (4.66)

Here we introduce the density contributions

nMFT
F = 〈 ˆ̄ψ† ˆ̄ψ〉MFT

c , nM = Zφ〈 ˆ̄φ∗ ˆ̄φ〉c = 〈φ̂∗φ̂〉c (4.67)

and we see that the approximation of the equation of state features the full bare
condensate density n̄C . Our equation of state involves the full bare connected boson

correlator n̄M = 〈 ˆ̄φ∗ ˆ̄φ〉c – the precise form of both n̄C and n̄M will depend on the
concrete evaluation of the remaining functional integral for the boson field (4.44)
and is improved beyond the Bogoliubov approximation in the next chapter.

Further our approximation implies the mean field fermion density nMFT
F , where

the standard free Fermi distribution function is modified by the presence of a con-
densate or gap in the case of spontaneous symmetry breaking. This contribution
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also appears in BCS theory. Interestingly, the modification of the fermion density
through the one-point function φ̄ is already present in the mean field or Gaussian
part of the equation of state – this is a rooted in the use of the background field
formalism. Had we organized our expansion with the fermion propagator appropri-
ate for the normal gas phase and no background field, obtaining this result would
require an infinite summation. At zero temperature, where boson correlations play
a subleading role, a qualitative picture of the crossover can therefore already be ob-
tained in mean field theory. On the other hand, it completely fails above Tc, in the
absence of a condensate. Indeed, the expected bosonic nature of the thermodynamic
system in the BEC regime is then fully contained in the effective bosonic two-point
function.

In the view of a physical interpretation in terms of dressed bosonic fields, we
decompose the fermion contribution into a piece from unbound fermions described
by the standard Fermi distribution and an appropriately defined “condensate part”,

nMFT
F (ρ̄) = n′F + 2∆Z ′

φρ̄, (4.68)

n′F = nMFT
F (0), ∆Z ′

φ =
1

2

nMFT
F (ρ̄)− nMFT

F (0)

ρ̄
.

n′F can be interpreted as the density contribution from unbound fermions. We refer
to it as “dressed fermions”. The dressed condensate then involves both the bare
condensate and the fluctuation induced part,

n′C = (1 + ∆Z ′
φ)ρ̄. (4.69)

∆Z ′
φ yields an alternative , but very similar definition of the fluctuation part of the

wave function renormalization (4.48). We can compare (4.68) with the definition via
a derivative expansion (4.47,4.48) by rewriting

Zφ = Im
∂P̄φ(Q)

∂ω

∣∣∣
ω=~q=0

= 1 + ∆Zφ (4.70)

with

∆Zφ = Im
∂∆P̄φ(Q)

∂ω

∣∣∣
ω=~q=0

= −1

2

∂∆P̄φ(Q)

∂σ

∣∣∣
ω=~q=0

= −1

2

∂m̄2
φ

∂σ
(4.71)

= −1

2

∂2UMFT (ρ̄)

∂σ∂ρ̄
=

1

2

∂nMFT
F (ρ̄)

∂ρ̄
.

The second equality holds since ∆P̄φ depends solely on the combination

iω − 2σ. (4.72)

In the next equality, we use the decomposition (4.46) and the evenness of λ̄φ(K) in
K. For small ρ̄, or if the the piece linear in ρ̄ dominates the mean field potential,
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both definitions (4.68) and (4.71) coincide. The latter situation actually occurs in
the BEC regime, the first in the BCS regime, cf. chapt. 6. For our results, we prefer
working with Zφ instead of Z ′

φ, and therefore define the dressed condensate and
dressed fermion density as

nC = 2Zφρ̄, nF = n− nC − 2nM . (4.73)

Expressed in these quantities, the approximate equation of state reads

n = nF + 2nM + nC , (4.74)

where nM and nC are expressed in terms of dressed boson fields (4.51). The dressed
molecule density and condensate fraction are now multiplicatively related to their
bare counterparts,

nM = Zφ〈 ˆ̄φ∗ ˆ̄φ〉c = Zφn̄M , (4.75)

nC = = 2Zφ〈 ˆ̄φ∗〉〈 ˆ̄φ〉 = Zφn̄C .

We can also express the equation of state (4.74) in a dimensionless version, obtained
by dividing by the total particle number n = k3

F /(3π2),

1 = ΩF + ΩM + ΩC , (4.76)

ΩF = nF /n, ΩM = 2nM/n, ΩC = nC/n.

This discussion reveals a certain degree of arbitrariness in the definitions of dressed
molecule density and dressed condensate fraction. We oppose the alternative defi-
nitions of the wave function renormalization, Z ′

φ (4.68) and Zφ (4.71) which enter
the condensate fraction Ω′

C , ΩC in fig. 4.1. As expected the deviation is strongest
in the crossover region. (All the plots in this chapter are obtained in the frame of
Schwinger-Dyson equations discussed in the next chapter.) The concept of dressed
fields is, however, physically sensible if the system is probed macroscopically, at
scales much larger than the typical interparticle spacing k−1

F . At these scales, one
should indeed observe the effective bosonic low energy degrees of freedom described
by the dressed, bosonic fields φ∗, φ which are invariant under a rescaling with the
wave unction renormalization Zφ (see below). Such observations are implemented in
measurements of the condensate fraction in [15; 16]. Further, in the deep BEC regime
we can prove that the dressed fields are indeed the appropriate degrees of freedom
corresponding to dynamically generated bound states as discussed in chapts. 5 and
6.

On the other hand, a number of observables – e.g. the critical temperature – is
of course not affected by the precise definition of dressed and bare quantities, but
only depends on the sum of the density contributions. Even without the physically
appealing interpretation in terms of dressed and bare fields, our approximation (4.66)
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Figure 4.1: (a) Contributions to the total particle density in the large h̃φ limit at
T = 0: The fraction of dressed molecules ΩM (dashed line) is largest in the crossover
regime. The condensate fraction ΩC (solid line) grows to one in the BEC regime.
The solid line corresponds to ΩC = ZφΩ̄C whereas the dashed-dotted line uses Z ′

φ

instead of Zφ. (b) Fractions of the bare or closed channel molecules. In contrast to
the dressed molecules, they are O(h̃−2

φ ). The dominant contribution arises from the

condensed bare molecules Ω̄C (solid line). The contribution from noncondensed bare
molecules Ω̄M at T = 0 remains small.

based on a systematic derivative expansion yields an unambiguous starting point for
the determination of these quantities.

We can get further insight into the status of eq. (4.66) by decomposing the
wave function renormalization Zφ into the classical part (already present at the
microscopic level) and a piece induced by the fermion fluctuations as done in eq.
(4.70). We can then rewrite eq. (4.66) as

n = (nMFT
F + 2∆Zφn̄M) + 2n̄M + n̄C (4.77)

and we see that the density of “fluctuation induced molecules” 2∆Zφn̄M can be
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viewed as a correction to the full fermion two point function,

n̄F = nMFT
F + 2∆Zφn̄M . (4.78)

The presence of fundamental molecules is not necessary for the BCS – BEC crossover.
In this case the equation of state obtained by the symmetry consideration simply
reads

n = n̄F , (4.79)

and the effective boson correlations are generated purely dynamically by the fermion
fluctuations. We will discuss this limit in chapt. 6.

In the general case, we can now also formulate the equation of state in appropri-
ately defined “bare” density fractions as

1 = Ω̄F + Ω̄M + Ω̄C , (4.80)

Ω̄F = n̄F /n, Ω̄M = 2n̄M/n, Ω̄C = n̄C/n.

The use of “bare” for the fermions might be slightly misleading since n̄F includes
fluctuations beyond mean field even. It is used here since this quantity is closest to
the exact equation of state (4.62).

The procedure described above allows for a practically implementable approxi-
mation for the equation of state. It can be systematically improved in the sense of a
derivative expansion. The “zero order” contribution consists in the mean field Fermi
density. To first order in the derivative expansion we get the dressed molecules. From
our derivation it is clear that the emergence of dressed molecules is associated to the
importance of the frequency and momentum dependence of the interactions induced
by fermion fluctuations.

Improvements can be made in two directions: First, one can go to higher orders
in the derivative expansion for the effective boson fluctuation matrix P̄φ by consid-
ering higher frequency powers in the inverse propagator. Second, higher orders in
the correlation functions can be taken into account, by considering the frequency
dependence of the higher order terms in F̄ . However, power counting arguments
suggest that these expansions yield less and less important contributions to the par-
ticle density – only the wave function renormalization Zφ is a marginal operator in
the sense of naive power counting for the classical action, dim(Zφ) = 0. The next
contribution in the derivative expansion has dimension −2 (dim(ω) = 2), the first
nontrivial contribution from higher correlations even has dimension −3.

We finally note that the fermion fields are not affected by a rescaling transfor-
mation with a nontrivial wave function renormalization Zψ, i.e. Zψ = 1. This is of
course rooted in the fact that they are integrated out in the present approximation
scheme. In the frame of the functional renormalization group, the mode elimination
for fermions and bosons is performed simultaneously. In this case, also a nontrivial
wave function renormalization can emerge, driven by mixed boson-fermion loops.
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Connection to Thermodynamics: Effective Chemical Potential

The derivation of the equation of state via a symmetry consideration bares close
similarity to the thermodynamic construction from the grand canonical ensemble
where the particle number density is obtained from

n =
1

V

∂W

∂σ
= −∂U

∂σ
, (4.81)

where the last equality holds because the current σ is a spectator of the Legendre
transform only. The symmetry consideration, however, reveals the status of our equa-
tion of state as a derivative expansion more clearly and underlines the importance of
a dynamically generated term linear in the frequency as the basic mechanism driving
the BCS - BEC crossover. For example, the derivative w.r.t. σ acts on all matrix
entries in (4.45, 4.46) in the same way, not being sensitive to the actual frequency
dependence of these entries. On the other hand, we can define an “effective chemical
potential” σ by (4.81) for both fermionic and bosonic contributions to the effective
potential, requiring that it acts such that the correct equation of state (4.66) is
reproduced. This is implemented by the conditions

∂P̄F

∂σ
= −1,

∂U
(B)
1

∂σ
=

∂m̄2
φ(σ)

∂σ

∂U
(B)
1

∂m̄2
φ

,
∂m̄2

φ(σ)

∂σ
= −2Zφ (4.82)

The first condition is satisfied automatically (cf. eq. (4.39)) in our approximation
based on an expansion in the inverse fermion propagator. The conditions for the
boson potential are nontrivial. They state that the σ - derivative must act exclusively
on the m2

φ - piece of the effective boson propagator (4.50) in order to match the result
from the symmetry derivation. It follows from an inspection of eq. (4.71). This is
actually anticipated by our ansatz for the bare microscopic action (3.1) from simple
symmetry considerations.

Having established the connection of the conserved charge with the thermody-
namic construction of taking the derivative w.r.t. the effective chemical potential
once, the latter has the crucial advantage of not relying on the explicit functional
integral representation of the thermodynamic trace. Instead, one can perform the
functional integrations, and simply take the σ derivative of the remaining momen-
tum space integrals.

Rescaling Transformations: Gap Parameter and Condensate Fraction

We have introduced dressed boson fields by the rescaling transformation

Z : φ̃ → φ = Z
1/2
φ φ̃. (4.83)
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Requiring invariance of the effective action under the rescaling transform Z induces
transformations of the couplings. A one-parameter transformation leaving the effec-
tive action invariant is also called a renormalization group transformation, therefore
the rescaled couplings and fields are also termed “renormalized”. The rescaled cou-
plings and fields are invariant under a further Z transform – in other words, Z is
involutory, Z2 = Z. A complete list for the rescaling of the couplings is given in
app. B. Here we discuss some particular objects only.

We observe that the fermionic determinant (4.40) only depends on the combina-
tion

r̃ := h̃2
φφ̃

∗φ̃ = h2
φφ

∗φ = h2
φρ. (4.84)

This combination plays the role of the (squared) dimensionless gap parameter ∆̃ =
∆/εF =

√
r̃. The second equality reveals that the squared gap is an invariant under

the rescaling transformation Z, cf. eqs. (B.5,B.6).

On the other hand, the equation of state in the form (4.74) involves the dressed
or renormalized boson density and condensate. We focus on the latter quantity,

ρ = φ∗φ = Zφφ̃
∗φ̃. (4.85)

The appearance of a condensate in the equation of state is characteristic for the
BEC mechanism. Gap and dressed condensate are, however, related by (4.84). The
dressed condensate also is invariant under a rescaling transformation due to the fact
that Z is an involution (note Z[Zφ] = 1).

Within our Yukawa formalism, we can also compute the bare condensate fraction
as

k−3
F ρ̄ =

ρ

Zφ

=
r̃

h2
φZφ

=
r̃

h̃2
φ

. (4.86)

This quantity is obviously not rescaling invariant, but scales ∝ Z−1
φ or ∝ h̃−2

φ . For

objects of this type, Zφ or h̃φ are obviously crucial quantities. This is reflected
in fig. 4.1 where we compare the fraction of dressed (a) and bare (b) molecules.
While the dressed quantities are quite insensitive w.r.t. the value of h̃φ (for a more
thorough discussion of this issue, cf. chapt. 6, sects. 6.2,6.3), the bare quantities
scales directly with h̃−2

φ . For the large values of h̃φ appropriate for the Feshbach
resonances investigated in current experiments, the bare density fractions are small.

We finally note that the concentration c is another invariant under the Z -
transformation.
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4.2.3 UV Renormalization

In this section we present our scheme to deal with the ultraviolet divergencies present
in this nonrelativistic quantum field theory. The bare microscopic action (3.1) de-
pends explicitly on the bare microscopic parameters, but an additional parameter is
introduced implicitly by the ultraviolet cutoff Λ in order to regularize the momentum
space integrals. (Besides this, the results depend on the thermodynamic variables T
and n. However, these low energy scales do not affect the UV renormalization.)

In the approximation scheme presented above, where the fermions are integrated
out in one step, it turns out that it is sufficient to perform the ultraviolet renormal-
ization in two instances. The first one concerns the connected correlation functions
〈ψ̂†ψ̂〉c and 〈φ̂∗φ̂〉c. Carefully relating these field expectation values to their counter-
parts in the operator formalism shows that the divergences ∝ Λ3 are due to a zero
point shift of the density [40] 9. The second divergence for Λ → ∞ is associated to
the bare detuning ν̄Λ.

When switching on the pointlike four-fermion interaction, we encounter the ne-
cessity for an UV renormalization in two further instances: First, λ̄ψ,Λ needs to be
renormalized, and second, such a coupling induces renormalization of the Yukawa
coupling h̄φ,Λ, which also exhibits a divergence for Λ →∞ and consequently needs
UV renormalization. These issues are discussed in sects. 5.6.1 and 7.3, while we re-
strict to the renormalization of the two-point functions and the bare detuning here.
h̄φ,Λ plays the role of a free parameter.

Two-point function

We can illustrate the problems with the two-point function by considering the
fermion fluctuation contribution to the effective potential Ū

(F )
1 . Taking the σ - deriv-

ative yields, for φ = 0 10,

n̄Λ = −∂Ū
(F )
1,Λ

∂σ
= −

∫
d3q

(2π)3
tanh γ ∝ Λ3, γ =

q̃2 − σ̃

2T̃
. (4.87)

We can clarify the relation between the “naive” particle density n̄Λ obtained in
this way and the physical particle density. For this purpose we consider a single
fermionic degree of freedom first. The expectation value 〈ψ†ψ〉 can be related to the

9In our setting the contributions of the fermionic fluctuations are cancelled by the bosonic
(molecule) fluctuations and no renormalization is necessary in this respect. This, however, should
be seen as a funny coincidence.

10Similar to T and kF , the condensate affects the infrared sector of our theory, such that a
nonvanishing condensate cannot alter the UV renormalization procedure.



42 Chapter 4. Functional Integral for the Crossover Problem

expectation values of products of the usual annihilation and creation operators a, a†,
which obey the anticommutation relation a†a + aa† = 1,

〈ψ†ψ〉 =
1

2
〈ψ†ψ − ψψ†〉 =

1

2
〈a†a− aa†〉

= 〈a†a〉 − 1/2 = n− 1/2. (4.88)

Here the second equality holds since this combination of operators is invariant with
respect to permutations of the ordering. Applying this idea to our nonrelativistic
atoms, the relation between the true fermion density n and the naive fermion density
n̄Λ becomes

n̄Λ(~x) = 〈ψ†(~x)ψ(~x)〉 (4.89)

=
1

2
〈
∫

y

∑
i,j

[
ψ†i (~x)ψj(~y)− ψj(~y)ψ†i (~x)

]
δijδ(~x− ~y)〉

=
1

2
〈
∫

y

∑
i,j

[
a†i (~x)aj(~y)− aj(~y)a†i (~x)

]
δijδ(~x− ~y)〉

=
1

2
〈
∫

y

∑
i,j

[
2a†i (~x)aj(~y)− δijδ(~x− ~y)

]
δijδ(~x− ~y)〉

= 〈a†(~x)a(~x)〉 − δ(0) = n(~x)−
∫

d3q

(2π)3

= n(~x)− n̂.

The volume factor in momentum space, δ(0), diverges in the limit of infinite mo-
mentum cutoff. The physical particle density n(~x) and the naive particle density
n̄Λ(~x) = 〈ψ†(~x)ψ(~x)〉 are therefore related by an additive shift that depends on the
momentum cutoff.

The physical fermionic particle density now reads

nF = −
∫

d3q

(2π)3
{tanh γ − 1} = 2

∫
d3q

(2π)3

1

e2γ + 1
(4.90)

which features the standard Fermi distribution.

We can now modify the fermionic contribution of the effective potential such
that the physical particle number is generated by the σ - derivative (here we work
in the dimensionful version),

Ū
(F )
1 = −2T

∫
d3q

(2π)3
log

(
eγφ−γ + e−γφ−γ

)
(4.91)

where we have dropped another irrelevant infinite constant.
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The very same considerations can be applied to the bosonic effective potential
and the corresponding particle number. The modified Bogoliubov effective potential
reads

Ū
(B)
1 = T

∫
d3q

(2π)3
log

(
eαφ−α − e−αφ−α

)
. (4.92)

Detuning

The second divergence for Λ →∞ is associated to the bare detuning ν̄Λ. Let us first
consider the mean field potential ŪMFT = (ν̄Λ + 2σ)ρ̄ + Ū

(F )
1 (σ, ρ̄). We can project

on the bosonic mass term m̄2
φ (in MFT and in the symmetric phase) by

m̄2
φ =

∂ŪMFT

∂ρ̄

∣∣∣
ρ̄=0

= (ν̄Λ + 2σ)− h̄2
φ

4T

∫
d3q

(2π)3
γ−1 tanh γ. (4.93)

The integral exhibits an UV divergence ∝ Λ. The divergent term also involves the
Yukawa coupling h̄φ. However, in the case of vanishing background scattering, it is
not renormalized and constitutes a free parameter of the theory. In this case, the
UV divergence can be absorbed by a renormalization of the detuning,

ν̄ = ν̄Λ −
h̄2

φMΛ

2π2
. (4.94)

This prescription corresponds to a renormalization of the effective (resonant) atom
interaction strength λ̄R, which is directly related to the (resonant) scattering length.
We will describe this connection in detail in the next chapter, where we will also
relate our model parameters to physical observables.

Expressing the effective potential ŪMFT in terms of ν̄ the momentum integral
becomes ultraviolet finite and reads

ŪMFT = (ν̄ − 2σ)ρ̄ + Ū
(F )
1 ,

Ū
(F )
1 = −2T

∫
d3q

(2π)3

[
ln

(
eγφ−γ + e−γφ−γ

)− h̄2
φρ̄M

2Tq2

]
. (4.95)

The remaining cutoff dependence is O(Λ−1), the precise value of Λ therefore being
unimportant.

In sum, expressed in terms of ν̄ and h̄φ the effective potential becomes very
insensitive to the microscopic physics, i.e. the value of the cutoff Λ. Without much
loss of accuracy we can take the limit Λ →∞ for the computation of ŪMFT .

We note that the bosonic potential exhibits the same problem with a linear UV
divergence for its ρ - derivative. As usual this is rooted in an insufficient treatment of
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the high momentum modes. In our formalism, we can even trace this back to an ex-
plicit artifact of our approximation scheme, more precisely the derivative expansion.
If we had kept the full momentum dependence in eqs. (4.45,4.46), then the corre-
sponding integrals would be smoothly cut off by the momentum dependence of the
effective propagator obtained from integrating out the underlying fermionic modes.
Actually, this is a nice explicit example of how effective field theories work, and
how the appearance of ultraviolet divergencies can be understood. We will present
a (rather crude) remedy to this UV problem for the bosonic effective potential in
the next chapter, and refine this point in chapt. 7.

4.2.4 Classification of Thermodynamic Phases

We can use the effective action formalism to classify the phases of the system.
In a homogeneous situation, we can consider the effective potential (not necessarily
bound to the approximation specified above) which can only depend on the invariant
ρ = φ∗φ. The field equation reads

∂ũ

∂φ∗
=

∂ũ

∂ρ
(ρ) · φ = m2

φ(ρ) · φ = 0. (4.96)

We have defined a bosonic mass term as the derivative of the full effective potential.
This generalizes the definition (4.49), where the mass term is defined as the derivative
of the mean field effective potential. This simple equation can be used to classify
the phases of the system (ρ0 denotes the solution of the field equation (4.96)):

Symmetric phase : ρ0 = 0, m2
φ > 0, (4.97)

Symmetry broken phase : ρ0 > 0, m2
φ = 0,

Phase transition : ρ0 = 0, m2
φ = 0.

In the symmetric phase (SYM), we deal with a normal gas: there is no condensate,
ρ0 = 0, and the bosonic mass does not vanish. The precise determination of the
boson mass is obviously a central requirement for any approximation scheme. It
can be done in a self-consistent manner in the frame of Schwinger-Dyson equations
which will be presented in the next section. The symmetry broken phase (SSB) is
characterized by a nonvanishing field expectation value. For the field equation (4.96)
to be satisfied, this requires the vanishing of the mass term m2

φ. The massless mode
reflects Goldstone’s theorem and is responsible for superfluidity, the diverging inverse

mass being associated with the spatial correlation length ξ =
√

Aφ/m2
φ. The roles

of m2
φ and ρ0 are exchanged compared to the symmetric phase – now ρ0 should be

determined self-consistently. The complex scalar boson corresponds to two degrees
of freedom (O(2) model). In an appropriate basis in field space, one of them can be
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associated with the massless Goldstone mode (angular mode), while the other one
is massive (radial mode). It is this Goldstone mass which is represented by m2

φ, but
our approximation scheme also accounts for the radial mode. The phase transition
is characterized by the simultaneous vanishing of the mass term and the condensate.
The additional constraint allows to solve (4.96) for the critical temperature.

Let us discuss Goldstone’s theorem for our nonrelativistic effective bosonic model
in more detail. The symmetries and the momentum dependence of eq. (4.50) show
that we deal with a nonrelativistic O(2) (or U(1)) model. There is a subtlety associ-
ated with the characteristic frequency dependence for the nonrelativistic setup which
contrasts the generic behavior of relativistic O(N) models. We change the basis in
field space in order to make Goldstone’s theorem manifest, starting from eq. (4.45)
in the derivative expansion (4.50). Again, in the following we are constrained to the
derivative expansion which determines the form of the frequency dependence of the
inverse propagator, but the couplings and ρ can be determined in approximation
schemes beyond the Bogoliubov approximation. This is implemented by choosing
the basis of real fields φ̂1, φ̂2.

φ̂(Q) = (φ̂1(Q) + iφ̂2(−Q))/
√

2, φ̂∗(Q) = (φ̂1(−Q)− iφ̂2(Q))/
√

2,

ρ = (φ2
1 + φ2

2)/2 (4.98)

which decomposes into a radial part (φ̂1) and a “phase” part: without loss of gener-
ality the vacuum expectation value can be chosen real such that φ2 = 0, see below.
The generalized field vector now reads

Φ̂r(Q) =

(
φ̂1(Q)

φ̂2(−Q)

)
, Φ̂T

r (−Q) =
(
φ̂1(−Q), φ̂2(Q)

)
. (4.99)

The index “r” stands for real. The unitary transformation matrix between the bases
reads

U =
1√
2

(
1 i
1 −i

)
, (4.100)

acts as

UΦ̂r(Q) = Φ̂(Q), Φ̂T (−Q) = Φ̂T
r (−Q)UT (4.101)

and we note UT = (U †)∗ = (U−1)∗. SYM and SSB phases are now characterized by
the field expectation values at the minimum of the potential

SYM : φ1,0 = φ2,0 = 0,

SSB : φ1,0 =
√

2ρ0, φ2,0 = 0. (4.102)
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In SSB, φ1,0 points in the radial direction of the potential, φ2,0 in the degenerate
angular direction. At the minimum of the potential, the inverse propagator hence
reads

(
Aφq̃

2 + m2
φ + 2λφρ0 −ω̃

ω̃ Aφq̃
2 + m2

φ

)
. (4.103)

The δφ̂2, δφ̂2 entry reflects the massless Goldstone mode in SSB (m2
φ = 0), while

δφ̂1, δφ̂1 is massive in the presence of the condensate. In SYM ρ0 = 0 and the inverse
propagator is degenerate. Importantly, the off-diagonal matrix entries feature the
frequency dependence of the propagator and couple the δφ̂1, δφ̂2 modes, such that
the determinant does not factorize. This is different in relativistic O(N) models
where the dependence on frequency and momentum is of the form ω̃2 + q̃2 and
consequently appears on the diagonal entries only.

For given matrix entries Aφ, λφ, and ρ0, we can compute the dispersion relation
for the bosons as

detPφ
!
= 0, (4.104)

ω̃ =
√

Aφq̃2(Aφq̃2 + 2λφρ0),

and we can read off the dispersion for low momenta (q̃ → 0) characteristic for
nonrelativistic bosons in the presence of spontaneous symmetry breaking,

ω̃ ≈
√

2Aφλφρ0 q̃. (4.105)

The existence of this “phonon mode” is often referred to as Goldstone’s theorem
in condensed matter literature – indeed it is a direct consequence of the massless
mode.

The classification (4.97) for the phases of the system reveals the universality
of the condensation phenomenon itself: One and the same criterion can be used
throughout the whole crossover. Indeed the “macroscopic” characteristic of super-
fluidity, the spontaneous breaking of the global U(1) symmetry, is the same for all
values of the coupling. This is the reason why we merely deal with a crossover in-
stead of a sharp phase transition when tuning the inverse scattering length from
large negative (BCS regime) to large positive (BEC regime) values. Interestingly,
this crossover terminates in a sharp second order phase transition if density and
temperature are lowered down to zero at fixed scattering length – physically, this
situation describes the vacuum limit. (However, since there is no condensation in
vacuum, an order parameter different from ρ0 must be chosen. This is discussed in
sect. 5.5.)



Chapter 5

Schwinger-Dyson Analysis

Before embarking the derivation, let us briefly motivate the need for the use of
Schwinger-Dyson equations (SDEs) by considering the mass term in the Bogoliubov
approximation. The functional integration of the fermion field generates a (Gold-
stone) mass term (4.49), which we now denote with a further index signalling that
here only fermion fluctuations are included,

m̄
(F ) 2
φ = ν̄Λ − h̄2

φ

∫

Q

1

P̄
|2|
F (Q)

. (5.1)

On the other hand, the mass term can also be computed from the field equation for
the effective action resp. effective potential (4.96), which in the Bogoliubov approx-
imation reads

m̄2
φ = m̄

(F ) 2
φ +

∂U
(B)
1

∂ρ̄
. (5.2)

The mass term is obviously modified by the effective boson fluctuations – it is not
determined self-consistently in the frame of Bogoliubov theory. This shortcoming
can be remedied by the use of SDEs.

If the effective boson fluctuations are small (∂U
(B)
1 /∂ρ̄ ¿ m̄

(F ) 2
φ ), then the Bo-

goliubov approximation works well since the self-consistency problem is weak. This is
the case for small temperatures as we will see below. On the other hand, close to the
phase transition where the theory is approximately massless, the boson fluctuations
should not be ignored.

47
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5.1 Schwinger-Dyson Equations: General Formu-

lation

Schwinger-Dyson equations (SDEs) [53; 54] are a simple consequence of the shift
invariance of the functional integral. From this point of view, they are a symmetry
of the functional integral itself. Since they give an explicit representation of the
derivative of the effective action with respect to the classical field, they are often
referred to as the “quantum equations for motion”. We will first give the general
form of the SDEs following the formalism provided in [55], and then apply it to the
crossover problem.

The shift invariance of the functional integral for a bosonic theory in the Nambu
representation which we have analyzed on the Bogoliubov level in the last chapter
reads

0 =
1

Z[J ]

∫
D(δΦ̂)

δ

δΦ̂
exp−S[Φ̂] + JT δΦ̂ (5.3)

=
1

Z[J ]

∫
D(δΦ̂)

(
− δS

δΦ̂
+ J

)T

exp−S[Φ̂] + JT δΦ̂.

Switching to the effective action, i.e. requiring J = δΓ/δΦ, the above equation turns
into

δΓ

δΦ
=

〈δS

δΦ̂

〉∣∣∣
J=δΓ/δΦ

. (5.4)

This is the SDE for the effective action. The field Φ is the classical field defined
as an expectation value Φ = 〈Φ̂〉, cf. eq. (4.8). It does not a priori satisfy the
equation of motion. The classical action for our problem is the intermediate action
S̄ (4.37) obtained by integrating out the fermions. We can write down the classical
action in a vertex expansion about the classical field, Φ̂ = Φ + δΦ̂, analogous to
(4.13). In order to make the notation more concise, we choose a representation with
multiindices where both discrete (Nambu) and continuous (spacetime or momentum
space) indices are collected in a single index, denoted with a Greek letter. Summation
over double indices is understood:

S[Φ̂] = S +
Nmax∑
N=1

1

N !
S(N)

α1...αN
δΦ̂α1 · ... · δΦ̂αN

, (5.5)

δS

δΦ̂β

=
δS

δ(δΦ̂β)
=

Nmax∑
N=1

1

(N − 1)!
S

(N)
α1...αN−1βδΦ̂α1 · ... · δΦ̂αN−1

.

S and S(N) still depend on the classical field Φ. Plugging the vertex expansion into
eq. (5.4) relates the field derivative of the effective action to 1PI Green functions up
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to order Nmax. For the intermediate action S̄ (4.37), Nmax = ∞. We can turn the
SDE into a manifestly closed equation, i.e. an equation which is expressed solely in
terms of the effective action and its functional derivatives. For this purpose, we note
the identity

〈δΦ̂α1 ... δΦ̂αi
... δΦ̂αN−1

〉
∣∣
J [Φ]

=
δ

δJαi

〈δΦ̂α1 ... 1 ... δΦ̂αN−1
〉
∣∣
J [Φ]

(5.6)

=
δΦκi

δJαi

δ

δΦκi

〈δΦ̂α1 ... 1 ... δΦ̂αN−1
〉
∣∣
J [Φ]

=
(
Γ(2)−1

)
αiκi

δ

δΦκi

〈δΦ̂α1 ... 1 ... δΦ̂αN−1
〉
∣∣
J [Φ]

where we have used the chain rule for functional derivatives and (4.22) 1. For nota-
tional convenience, we introduce the full propagator,

Gαβ = W
(2)
αβ =

(
Γ(2)−1

)
αβ

. (5.7)

Iterating eq. (5.6), we can write, for N ≥ 4,

[ N−1∏
i=3

Gαiκi

δ

δΦκi

]
〈δΦ̂α1δΦ̂α2〉 =

[ N−1∏
i=3

Gαiκi

δ

δΦκi

]
Gα1α2 (5.8)

again making use of (4.22). For N = 4 the derivative operator in the squared brackets
is just the unit matrix. Hence the SDE reads

δΓ

δΦβ

= S
(1)
β + S

(2)
α1β〈δΦ̂α1〉+

1

2!
S

(3)
α1α2βGα1α2 (5.9)

+
∞∑

N=4

1

(N − 1)!
S

(N)
α1...αN−1β

[ N−1∏
i=3

Gαiκi

δ

δΦκi

]
Gα1α2 .

The second term in the first line vanishes due to the definition of the fluctuation
(4.18,4.19) 2. Of course, also the full propagator depends on the classical field, G =
G[Φ].

This is an exact functional differential equation for the effective action. Unfortu-
nately, it cannot be solved in a closed form for most interacting theories. However,
it is well suited for truncations and we will specify our procedure in the next sec-
tion. Further, it interesting to note that the SDE features the classical vertices from
the classical action S quantized by the functional integral. In our case, the classical
vertices (i) stem from the classical inverse boson propagator and (ii) are generated
by the fermion fluctuations.

1Since we are dealing with bosonic fields here, we do not need to care about the order of the
functional derivatives.

2Had we expanded about another field configuration, this term would be present.
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5.2 Application to the Crossover Problem

5.2.1 Truncation

With the Bogoliubov results from the last chapter in mind, we can specify a reason-
able truncation scheme for the SDE (5.9) for our practical computations:

• We only consider terms up to fourth order in the field for the intermediate
action. This is an effective φ4 theory with non-local (frequency and momentum
dependent) effective classical vertices. With this approximation, we can go
beyond the Gaussian Bogoliubov theory of the last chapter and, in particular,
solve the self-consistency problem for mass and coupling terms exposed above.
This approximation implies S(N) = 0 for N ≥ 5.

• For these classical vertices, we perform the derivative expansion (4.50). In par-
ticular, we only consider the leading frequency and momentum dependencies
for the effective inverse propagator term, i.e. for the “φ2 - vertices”. The φ3, φ4

vertices are treated in a zero momentum approximation.

• We work in a one-loop approximation, i.e. we omit the two-loop graph in
fig. 5.1. This approximation (loop expansion) might be questionable close to
the second order phase transition, where one generically deals with strong
fluctuation effects.

• We also impose the φ4 truncation plus derivative expansion for the full theory.
This scheme exploits that the effective action shares the symmetries of the
“classical” (or intermediate) action.

The truncation advocated here results in an effective action for the boson field

Γ[φ∗, φ] = k3
F εF V

∫

Q̃

(
φ̃∗(Zφiω̃ + Ãφ

~̃q 2)φ̃ + ũ[ρ̃]
)
, (5.10)

ũ = m̃2
φ(ρ̃− ρ̃0) +

λ̃φ

2
(ρ̃− ρ̃0)

2 =

{
m̃2

φρ̃ + 1
2
λ̃φρ̃

2 + ... SYM
λ̃φ

2
(ρ̃− ρ̃0)

2 + ... SSB
.

Here we work in the representation in terms of complex scalar fields φ∗, φ. In the sec-
ond line, we have written down the effective potential in SYM and SSB phase after
inserting the conditions (4.97). This expresses that our expansion is about the min-
imum of the effective potential. It is maybe worth stressing that the classical fields
(expectation values) φ∗, φ are just another, equivalent representation to Φ = (φ, φ∗)
in the SDE (5.9), while ρ̃0 has the status of a parameter similar to m̃φ. However,
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φ λ̄φ

λ̄
(F )
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φ λ̄φ

h̄φ h̄φ

Figure 5.1: Schwinger-Dyson equation for the inverse molecule propagator (double
dashed line). The first two terms on the rhs denote the “mean field inverse prop-
agator” after integrating out the fermionic fluctuations with a dashed line for the
classical inverse molecule propagator and a solid line for the fermion propagator. The
terms in the second line account for the one-loop molecule fluctuations. Here λ̄

(F )
φ

is the molecule self-interaction induced by the fermion fluctuations. The two-loop
term is neglected in our calculations. We omit combinatoric factors here.

the construction is such that at the minimum of the potential, or equivalently at the
solution of the field equation for Γ, we have ρ = ρ0.

The truncation obviously implies that the four-boson coupling is characterized
by a single number, i.e. the discrete index structure is very simple,

1

2
λφρ

2 =
1

8
λφδαβδγδΦαΦβΦγΦδ (5.11)

when expressed the basis of bosonic Nambu fields (4.3) appropriate for the above
derivation of the SDE. This of course leads to a simple index structure of S(3), S(4)

and Γ(3), Γ(4) as well.
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5.2.2 Schwinger-Dyson Equation for the Boson Propagator

Eq. (5.9) now reads 3

δΓ

δΦβ

= S
(1)
β +

1

2!
S

(3)
α1α2βGα1α2 (5.12)

− 1

3!
S

(4)
α1α2α3βGκ3α3Gα1δ1Γ

(3)
δ1δ2κ3

Gδ2α2 .

Here we have kept the two-loop term in the second line in order to show the structure
of the full SDE for the effective φ4 theory. In our approximation scheme, we will
ignore it. At this stage of the approximation the above equation involves the full
one-loop boson propagator Gαβ, which in general differs from the effective boson
propagator modified by fermion fluctuations only. We can now compute the full
one-loop propagator in a parametric sense, and we choose the φ1, φ2 basis for this
purpose since this separates radial and Goldstone mode in a clear way. Here we need
to consider arbitrary classical field configurations and find from eq. (5.10)

Γ(2)[φ̃1, φ̃2]

εF V
(5.13)

=


 Ãφq̃

2 + m̃2
φ + λ̃φ(

3
2
φ̃2

1 + 1
2
φ̃2

2 − ρ̃0) −Zφω̃ − 2λ̃φφ̃1φ̃2

Zφω̃ − 2λ̃φφ̃1φ̃2 Ãφq̃
2 + m̃2

φ + λ̃φ(
1
2
φ̃2

1 + 3
2
φ̃2

2 − ρ̃0)


 .

Here we work in dimensionless, but not renormalized units since we also want to
determine Zφ explicitly. Inserting the conditions at the minimum of the potential
(φ1 =

√
2ρ0, φ2 = 0) this equation reduces to (4.103).

We can asses all the parameters of the truncation (5.10) by applying a further
field derivative to eq. (5.12). This actually gives the desired self-consistency condition
on the full effective boson propagator G:

G−1
γβ = S

(2)
γβ +

1

2
S

(4)
βγα1α2

Gα1α2 −
1

2
S

(3)
βα1α2

Gα1δ1Γ
(3)
γδ1δ2

Gδ2α2 . (5.14)

The one-loop contribution features a single full inner bosonic line and is therefore
frequency and momentum independent.

We can now assess the above couplings by appropriate projection prescriptions
applied to (5.12). Further, we can exploit the conditions (4.97) which character-
ize SYM and SSB phases. For example, inspection of (5.13) reveals that the mass

3The differentiation rule for matrix inverses is

∂

∂x
A−1 = −A−1 ∂

∂x
A A−1.

.
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term m2
φ can be obtained from the φ2, φ2 entry at zero external frequency and mo-

mentum ω̃ = q̃ = 0 and at the minimum of the potential φ1,0 =
√

2ρ0, φ2,0 = 0.
The momentum and kinetic terms involve appropriate derivatives w.r.t frequency
and momentum analogous to (4.48). The four-boson coupling is e.g. obtained from
applying

1

εF V

∂2Γ
(2)
11

∂φ̃2∂φ̃2

∣∣∣
ω̃=~̃q=0,φ̃1,0=

√
2ρ̃0,φ̃2,0=0

=
∂4ũ

∂φ̃1∂φ̃2∂φ̃1∂φ̃2

∣∣∣
φ̃1=

√
2ρ̃0,φ̃2=0

=
∂2ũ

∂ρ̃2

∣∣∣
ρ=ρ̃0

.

(5.15)

Here ũ is the Schwinger-Dyson improved effective potential, in contrast to the Bo-
goliubov potential from the last chapter. Indeed the above prescription corresponds
to a projection on the four-boson vertex at zero external frequency and momentum.

In the symmetric phase, the structure of the SDE (5.14) is particularly simple,
since S(3) ∝ ρ0 = 0 in this case. In SSB the importance of this term is subdominant
as we have checked numerically, and we neglect it for the computation of the fre-
quency and momentum dependent pieces in the inverse boson propagator. Since the
loop contribution in the first and line of (5.14) are frequency and momentum inde-
pendent, the wave function renormalization and gradient coefficient are the same as
in Bogoliubov theory.

In the one-loop approximation, the SDE (5.12) can actually be integrated w.r.t.
to the field Φ [56]. This yields an effective action (or effective potential) which has
precisely the form of (4.57). However, the coefficients entering the bosonic part are
different from the Bogoliubov approximation – the modification stems from the
inclusion of effective boson fluctuations and is called the “one-loop improvement”
of the bosonic vertices. With this insight, we can demonstrate that the approxi-
mate equation of state remains valid, provided we replace the couplings modified by
fermion fluctuations by the “full” couplings extracted from the solution of (5.14).
This procedure has, however, some problems associated to the derivative expansion
which are discussed below.

In the following we give the explicit gap equations obtained by applying the
above projection prescriptions and carrying out the discrete and continuous index
contractions in (5.14) in the different phases of the system. We discuss some struc-
tural aspects of their solution analytically, and present results of their numerical
solution in some applications. The equations given below also form the basis for the
results presented in the next chapter.

In addition to the SDEs we additionally have to satisfy the equation of state for
the particle density. Conceptually, this equation determines the effective chemical
potential σ̃ which is an a priori free parameter in eqs. (5.14). The physical value of
the effective chemical potential throughout the crossover is displayed in fig. 5.2 at
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Figure 5.2: Crossover at the critical temperature in the broad resonance limit: Ef-
fective dimensionless chemical potential σ̃ at the critical temperature as a function
of the inverse concentration c−1. We compare the results for two versions of the gap
equation as discussed in the text (solid and dashed line). Additionally, the result for
the narrow resonance limit is indicated (dashed-dotted).

the critical temperature and in 5.5 (a) at T = 0. In the BCS regime it approaches
σ̃ = 1 as expected for a weakly interacting Fermi gas at low temperature, while it
behaves σ̃ ∝ −c−2 → −∞ in the deep BEC regime (cf. also sect. 6.4).

5.3 Exploring the Phase Diagram

For the results presented in this section, we work in the limit of broad resonances
h̃φ →∞. This limit physically corresponds to pointlike interactions as discussed in
detail in chapt. 6.

5.3.1 Symmetric Phase

The gap equation for m2
φ takes the form

m2
φ = m

(F ) 2
φ + m

(B) 2
φ , (5.16)

m
(F ) 2
φ =

ν̃ − 2σ̃

Zφ

+
∂ũ

(F )
1

∂ρ

=
ν̃ − 2σ̃

Zφ

− h2
φ

4T̃

∫
d3q̃

(2π)3

[1

γ
tanh γ − 2T̃

q̃2

]
,

m
(B) 2
φ =

∫
d3q̃

(2π)3
λ

(F )
φ coth α. (5.17)
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with γ defined in eq. (D.45) and

α =
Aφq̃

2 + m2
φ

2T̃
. (5.18)

We see how m2
φ “feeds back” in the above equation since it appears both on the lhs

and rhs. m
(F ) 2
φ is precisely eq. (4.49) after the UV renormalization has been carried

out – this is the “classical” vertex in (5.14). In order to distinguish fermion from

boson fluctuation contributions, we append the indices “F” and “B” here. Here λ
(F )
φ

is the effective vertex induced by the fermion fluctuations. It is specified below in
eq. (5.22). Inspection of m

(B) 2
φ in eq. (5.16) reveals that the boson loop is plagued

with a linear UV divergence – this is similar to the fermion loop. We can trace it
back to the derivative expansion. In principle, (5.14) features a term

m
(B) 2
φ = 2

∑
n

T̃

∫
d3q̃

(2π)3
λ

(F )
φ (q̃, ω̃n)P−1

φ (q̃, ω̃n)

≈
∫

d3q̃

(2π)3
λ

(F )
φ (q̃) coth α (5.19)

where the approximate equality holds if we neglect the ω̃n - dependence, i.e. we
replace λ

(F )
φ (q̃, ω̃n) → λ

(F )
φ (q̃) ≡ λ

(F )
φ (q̃, ω̃n = 0). In this case we can perform the

Matsubara sum. We have not yet computed the momentum dependence of λ
(F )
φ (q̃)

but a simple qualitative consideration of the relevant diagram shows that for large
q̃2 one has a fast decay λ

(F )
φ (q̃) ∝ q̃−4. This makes the momentum integral (5.19)

ultraviolet finite. It will be dominated by small values of q̃2. For our purpose we
consider a crude approximation where we replace λ

(F )
φ (q̃) → λ

(F )
φ ≡ λ

(F )
φ (q̃ = 0).

Of course, we have now to restrict the momentum integration to low momenta.
This can be done efficiently by subtracting the leading UV divergence similar to the
computation of nM , i.e. replacing coth x by coth x− 1. This yields

m
(B) 2
φ = 2λ

(F )
φ

∫
d3q̃

(2π)3

(
exp 2α− 1

)−1

. (5.20)

We recognize on the rhs of eq. (5.20) the expression for the number density of dressed
molecules nM and obtain the gap equation

m2
φ = m

(F ) 2
φ +

λ
(F )
φ ΩM

3π2
(5.21)

where we recall that ΩM = nM/n depends on m2
φ. Our gap equation has a simple

interpretation: The bosonic contribution to m2
φ vanishes in the limit where only very

few dressed molecules play a role (ΩM → 0, BCS side) or for vanishing coupling

λ
(F )
φ ∝ c in the BEC regime. Hence boson fluctuations are strongest in the crossover
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Figure 5.3: Temperature dependence of the bosonic mass term m2
φ for c−1 = 0, h̃φ →

∞. The vanishing of the mass term m2
φ is approached continuously (solid line).

We also plot the separate contributions from “mean field” (classical plus fermions,
dashed) and boson fluctuations (dashed-dotted). For T > Tc the latter become
unimportant away from the phase transition.

regime. The importance of boson fluctuations contributing to the mass term in
this region of the phase diagram is assessed in fig. 5.3. As expected, the bosonic
fluctuations are strongest close to Tc where the massless bosonic mode develops.

We are aware that our treatment of the suppression of the high momentum con-
tributions is somewhat crude. It accounts, however, for the relevant physics of the
many body system 4 and a more reliable treatment in the frame of SDEs would
require a quite involved computation of λ

(F )
φ (q̃, ω̃). This complication is an inherent

problem of gap equations which often require the knowledge of effective couplings
over a large momentum range. As an alternative method one may employ functional
renormalization [57; 58], where only the knowledge of couplings in a narrow momen-
tum interval is required at every renormalization step. The UV renormalization is
successfully implemented in this framework in chapt. 7.

The molecule fluctuations give a positive contribution to m2
φ, opposite to the

fermionic fluctuations. This has a simple interpretation. The fermion fluctuations
induce a self-interaction between the molecules ∼ λ

(F )
φ . In turn, the fluctuations of

the molecules behave similarly to interacting fundamental bosons and modify the
two point function for the molecules. We emphasize that an additional microscopic
molecule interaction could now easily be incorporated by adding to the mean field
value for λ

(F )
φ a “classical part” λ

(cl)
φ . In this case the renormalization of ν̄Λ discussed

in sect. 4.2.3 would be modified. For a constant λ
(cl)
φ the UV - divergent part would

4In the physical vacuum (discussed below) it fails, since it eliminates the effects of bosonic
vacuum fluctuations contributing to the renormalization of the effective bosonic scattering length.
This is cured in chapt. 7 in the frame of functional renormalization group equations.
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contribute to m2
φ(T = 0, n = 0) and a nonvanishing ∆ν would modify the relation

(4.94). Incorporating ∆ν into ν̄Λ one would again end up with a contribution of the

form (5.20), now with λ
(F )
φ replaced by λ

(cl)
φ + λ

(F )
φ . Our approximation (5.20) deals

the interactions of dressed molecules similar to fundamental interacting bosons.

The four-boson coupling λφ is determined by the SDE

λφ = λ
(F )
φ + λ

(B)
φ = λ

(F )
φ + λφ · Iλ.

with

λ
(F )
φ =

∂2ũ
(F )
1

∂ρ2
=

h4
φ

32T̃ 3

∫
d3q̃

(2π)3
γ−3

[
tanh γ − γ cosh−2 γ

]
, (5.22)

λ
(B)
φ = −3λ

(F )
φ λφ

2T̃

∫
d3q̃

(2π)3
α−1

[
(exp 2α− 1

)−1
+ 2α sinh−2 α

]
.

In the symmetric phase, eq. (5.22) decouples from the gap equation for the mass
(5.16), and the solution reads

λφ =
λ

(F )
φ

1− Iλ

. (5.23)

For m2
φ → 0 the last term in eq. (5.22) becomes infrared divergent. Divergences of

this type of quantum corrections to quartic couplings are familiar from quantum
field theory and statistical physics of critical phenomena. Indeed, the point m2

φ = 0
corresponds to the critical line (or hypersurface) for the phase transition to superflu-
idity - for negative m2

φ the symmetric phase becomes unstable. The remedy to this
infrared problem has been well understood from the solution of functional renor-
malization group (FRG) equations: the strong fluctuation effects drive λφ to zero at
the critical line [59–61]. We will come back to this issue in chapt. 7 in the frame of
FRG equations.

Our gap equations recover this important feature in a direct way. As m2
φ ap-

proaches zero the negative last term in eq. (5.22) becomes more and more important
as compared to λφ on the left hand side. The solution to eq. (5.22) implies

lim
mφ→0

λφ(mφ) → 0. (5.24)

For small values of m2
φ in the vicinity of the phase transition we can expand the

integral in eq. (5.22) as

Iλ = −15T̃ λ
(F )
φ

∫
d3q̃

(2π)3

(
Aφq̃

2 + m2
φ

)−2
. (5.25)
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One infers the characteristic scaling λφ ∝ mφ according to

λφ =
8π

15T̃
A

3/2
φ mφ. (5.26)

As argued above, the kinetic coefficients are only renormalized by fermion diagrams
in our approximation. They read, in the dimensionless version,

Zφ =
h̃2

φ

16T̃ 2

∫
d3q̃

(2π)3
γ−2

[
tanh γ − γ cosh−2 γ

]
, (5.27)

Ãφ =
1

2
+

h̃2
φ

48T̃ 3

∫
d3q̃

(2π)3
q̃2γ−3

[
tanh γ − γ cosh−2 γ

]
.

The explicit appearance of the wave function renormalization Zφ can be eliminated
by applying the rescaling transform Z (4.83) to the couplings of the theory, cf. eqs.
(B.5,B.6). To make our approximation scheme complete, we need to specify the
equation of state,

1 = ΩMFT
F + ΩM (5.28)

which uses the dressed density fractions. Here

ΩMFT
F = 6π2

∫
d3q̃

(2π)3

(
e2γ + 1

)−1
, (5.29)

ΩM = 6π2

∫
d3q̃

(2π)3

(
e2α − 1

)−1

=
3Γ(3/2)

2

( T̃

Aφ

)3/2

Li3/2

(
e−m2

φ/T̃
)
. (5.30)

5.3.2 Superfluid Phase

The location of the minimum ρ0 is determined by the condition

m̂
(F ) 2
φ + m̂

(B) 2
φ = 0, m̂

(B) 2
φ =

∂ũ
(B)
1

∂ρ

∣∣∣
ρ=ρ0

. (5.31)

This defines the gap equation for ρ0, which is the equivalent of eq. (5.21) for the

superfluid phase. The computation of the bosonic contribution m̂
(B) 2
φ encounters the

same problems as for m
(B) 2
φ in the symmetric phase. Again we replace λ

(F )
φ (q) by

a constant λ
(F )
φ evaluated for q = 0 and subtract the leading UV divergence of the

momentum integral the gap equation for ρ0

m
(F ) 2
φ + 2λ

(F )
φ

∫
d3q̃

(2π)3

α + κ/2

αφ

(
exp 2αφ − 1

)−1
= 0 (5.32)
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Figure 5.4: Temperature dependence of the gap ∆̃ =
√

r̃ at the resonance. The role
of molecule fluctuations and the uncertainties in their treatment for T → Tc are
demonstrated by four choices of λφ in the gap and density equation. The critical
temperatures are indicated by vertical dashed lines, with values T̃c = 0.255, 0.292.

with α, κ, αφ specified in app. D.4.3, eq.(D.45).

The quantity αφ contains a mass term 2λφρ0 which involves the “full” vertex

λφ = λ
(F )
φ + λ

(B)
φ – the equation for mass and coupling term do not decouple in the

broken phase. The SDE for λφ reads

λφ = λ
(F )
φ − 3λ

(F )
φ λφ

2T̃

∫
d3q̃

(2π)3
α−3

φ

[(
α− κ

)2(
exp 2αφ − 1

)−1
(5.33)

+2
(
α + κ/2

)2
αφ sinh−2 αφ

]
.

For zero momentum q̃ → 0 we find that λφ vanishes in the superfluid phase. The
Goldstone boson fluctuations renormalize λφ to zero, as found in [59–61]. This is,
however, only part of the story since the gap equation involves a momentum depen-
dent vertex λφ(q̃). In order to demonstrate the uncertainty arising from our lack of
knowledge of λφ(q̃) we present in fig. 5.4 our results for different choices of λφ in the
gap eq. (5.32).

Furthermore, the contribution from the fluctuations of the radial mode in eqs.
(5.22) and (5.33) are not treated very accurately. The φ2

1φ
2
2 vertex contains in prin-

ciple a contribution ∝ νφρ0 (νφ the coefficient of the contribution ∝ (ρ−ρ0)
3) which

shifts λ
(F )
φ → λ

(F )
φ + 2ν

(F )
φ ρ0 and is neglected here.

Finally, we are now in the position to discuss the relevance of the second term
in the second line in fig. 5.1. It is only present in the superfluid phase, manifesting
itself ∝ λρ

1/2
0 . This term contributes to the Schwinger-Dyson equation for m2

φ, but
vanishes for λφ = 0. Nevertheless, for a momentum dependent λφ one has to take it
into account, as well as similar corrections to the Schwinger-Dyson equation for λφ.
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In detail, we show in fig. 5.4 four approximation scenarios: (i) the “standard” BCS

gap equation (long dashed) neglects the molecule fluctuations, i.e. λφ = λ
(F )
φ = 0

in both the gap and the density equation. This yields a second order transition but
disagrees with QMC results for T → 0. (ii) Bogoliubov density (short dashed) with

λ
(F )
φ in the density equation, while the molecule fluctuations in the gap equation

are neglected. This improves the behavior for T → 0, but induces a fake first order
phase transition for T → Tc. (iii) Neglection of molecule fluctuations in the effective

coupling λφ (dashed-dotted), i.e. we use λφ = λ
(F )
φ in the density and gap equation.

(iv) Our best estimate (solid line) includes also corrections from molecule fluctua-
tions for λφ. As described in this section we use λφ in the propagator of the diagram

in the gap equation, whereas the coefficient multiplying the diagram is given by λ
(F )
φ .

The first order nature is weaker than in (iii), but still present.

For the results in the Schwinger-Dyson analysis, we use λ
(F )
φ in the density equa-

tion. This is inspired by the fact that the vanishing of the boson coupling only takes
place in the very deep infrared, i.e. for momentum modes which are not relevant
for the bosonic particle density – the importance of these low momentum modes is
limited since they are weighted by a momentum space volume factor ∝ d(log q)q3

5. We encounter here a central challenge posed by the crossover problem: We have
to work at fixed particle density, which is an intrinsically nonlocal observable – it is
the momentum space trace of the full propagator. In principle, this needs knowledge
of the full momentum dependence of all couplings entering the trace in the relevant
range (for high momenta, the trace is cut off exponentially by the Bose distribution).
If the momentum dependence is strong, the derivative expansion is not expected to
be quantitatively precise. Especially for the molecule fluctuations, a more accurate
treatment seems mandatory before the behavior near Tc in the superfluid phase
can be definitely settled. A resolution of this issue is possible in the frame of FRG
equations as discussed in chapt. 7.

At low temperature the shortcomings of our approximation scheme are by far
less severe than close to Tc – the approximation schemes (ii) – (iv) coincide at
T = 0. In fig. 5.5 we plot the effective chemical potential and the gap parameter at
zero temperature, obtained within the scheme (iv). The inclusion of the molecule
density nM is important for quantitative accuracy even for T = 0 – this effect is
generically absent in a mean field treatment which neglects the bosonic two-point
function from the outset. Additionally we plot in fig. 5.5 (b) the crossover for the
gap ∆̃ as a function of c−1. The agreement with quantum Monte Carlo simulations
[62] is substantially improved as compared to mean field theory.

For completeness, we give the formulae for the dimensionless kinetic coefficients

5This consideration holds as long as the bosons are not completely massless. In the massless
case ate the phase transition, the suppression is ∝ d(log q)q only.
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Figure 5.5: Solutions of the coupled gap and density equations at T = 0, (a) effective
chemical potential, (b) gap parameter ∆̃ =

√
r̃. We also show (dashed)the mean field

result (obtained by setting the bosonic contribution nM = 0 in the density equation).
Our result can be compared to QMC calculations [62] performed at c−1 = 0 which
find σ̃ = 0.44, ∆̃ = 0.54. Our solution yields σ̃ = 0.50, ∆̃ = 0.53, and improves as
compared to the MFT result σ̃ = 0.63, ∆̃ = 0.65.

in SSB,

Zφ = 1 +
h2

φ

16T̃ 2

∫
d3q̃

(2π)3
γγ−3

φ

[
tanh γφ − γφ cosh−2 γφ

]
, (5.34)

Aφ =
1

2
+

h2
φA

2
ψ

288T̃ 3

∫
d3q̃

(2π)3
q̃2γ−7

φ

[
3(5γ4 − 5γ2γ2

φ + 2γ4
φ)[tanh γφ − γφ cosh−2 γφ]

+2γ2γφ(γ
2 − γ2

φ)[γφ cosh−4 γφ − 6 tanh γφ − 2γφ tanh2 γφ]
]
. (5.35)

For our practical computations in SSB, we work in the form (4.66) for the equation
of state,

ΩMFT
F + ΩM + Ω̄C = 1 (5.36)
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Figure 5.6: Molecular correlation length ξ̃M as a function of the reduced temperature
(T −Tc)/Tc. We consider three regimes: crossover (c−1 = 0, solid), BCS (c−1 = −1.5,
dashed), BEC (c−1 = 1.5, dashed-dotted) and the broad resonance limit h̃φ →∞.

where the individual terms are given by

ΩMFT
F =

3π2nMFT
F

k3
F

= −3π2

∫
d3q̃

(2π)3

( γ

γφ

tanh γφ − 1
)
, (5.37)

ΩM =
6π2nM

k3
F

= 3π2

∫
d3q̃

(2π)3

(α + κ

αφ

coth αφ − 1
)
,

Ω̄C =
6π2r̃

h̃2
φ

.

5.3.3 Phase Transition

For T = Tc the gap equations (5.21,5.22) and (5.32,5.33) match since ρ0 = 0, αφ = α,
κ = 0. Also the expression for the molecule density becomes particularly simple

nM = k3
F

Γ(3/2)ζ(3/2)

4π2

( T̃

Aφ

)3/2

. (5.38)

5.4 Correlation Length and Scattering Length for

Molecules

In this section we provide further applications of our formalism.
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Figure 5.7: Effective potential in the crossover region, T̃ = 0.33, h̃φ → ∞ . The
solid line expresses the quartic coupling λφ in terms of the renormalized molecule
scattering length obtained with aMkF = λφ/(4π). The short dashed line neglects the

molecule fluctuations and shows a
(F )
M kF = λ

(F )
φ /(4π). Large renormalization effects

are observed in the crossover regime. In the BEC limit, the bosons are only weakly
interacting. In addition, we plot the renormalized mass term for the molecule field
m2

φ (dashed-dotted) and the renormalized gradient coefficient Aφ (long dashed).

In the symmetric phase the static effective molecule propagator reads (for zero
Matsubara frequency)

Ḡφ(q) = P̄−1
φ (ω = 0, ~q) =

1

Āφ~q 2 + m̄2
φ

. (5.39)

We approximate here Āφ as a constant. The Fourier transform of Ḡφ decays for large
distances r exponentially

Ḡφ(r) ∼ exp(−ξMr) (5.40)

with spatial correlation length

ξM =

√
Āφ

m̄2
φ

. (5.41)

(More precisely, ξ−2
M corresponds to the location of the pole of the propagator for

negative q2 and therefore Āφ should be evaluated at the location of the pole instead
of q2 = 0 as approximated here.) At the critical temperature Tc the correlation
length ξ diverges since m̄φ = 0.

In the superfluid phase the propagators for the radial and Goldstone modes dif-
fer. The correlation length for the Goldstone fluctuations (φ2) is infinite according
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to eq. (5.31). In the “radial direction” (φ1) the effective mass term for the fluctua-
tions around the minimum reads 2λ̄φρ̄0. It vanishes (at zero momentum) since our
approximation based on Schwinger-Dyson equations [40] yields λ̄φ = 0 for the deep
infrared value of the molecule coupling. Hence we obtain in our approximation a
diverging correlation length for the radial mode. Nevertheless, the pole is actually
not located at q2 = 0 - using a momentum dependent λ̄φ(q

2) in m̄2
φ or taking this

effect into account in the form of Āφ(q
2) would be a better approximation. Here we

do not discuss further the effects that render the radial correlation length finite for
T < Tc.

The dimensionless molecular correlation length in the symmetric phase

ξ̃M = ξMkF = A
1/2
φ /mφ (5.42)

is expressed in terms of the dimensionless renormalized quantities Aφ and m2
φ

ξ̃−2
M = A−1

φ

{
ν − 2

σ̃

Zφ

+ ∆m
(F ) 2
φ +

λ
(F )
φ

3π2
ΩM

}
. (5.43)

The renormalized boson mass, displayed in curly brackets in eq. (5.43), was plotted
in fig. 5.3.

The condition ξ̃−2
M = 0 defines the critical temperature where the molecule corre-

lation length diverges. Fig. 5.6 displays ξ̃M in the BEC, crossover and BCS regime.
We observe that the molecular correlation length remains larger than the average
distance between atoms or molecules ∼ k−1

F even rather far away from the criti-
cal temperature. This feature is quite independent of the BEC, BCS and crossover
regime. It indicates the importance of collective phenomena.

For ξ̃M À 1 the correlation length exceeds by far the average distance between
two atoms. We do not expect the loop expansion to remain accurate in this limit.
This is the typical range for the universal critical behavior near a second order phase
transition which is known to be poorly described by MFT or a loop expansion. A
proper renormalization group framework is needed for ξ̃M À 1. In contrast, for
ξ̃M ¿ 1 the molecules are essentially uncorrelated.

Let us define an effective “many-body” molecule scattering length aMkF for the
dressed molecules in analogy to the two-body case extensively discussed in sect. 7.3,
eq. (7.60)

aMkF =
λφ

8πAφ

, a
(F )
M kF =

λ
(F )
φ

8πAφ

. (5.44)

A second possible criterion for the validity of the loop expansion is the smallness
of the molecular self interaction λφ. Typically, a one loop expression becomes ques-
tionable for aMkF À 1.



5.5. Two-body Limit 65

0 1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

(T − Tc)/Tc

a
(F )
M kF

aMkF

Figure 5.8: “Many-body” scattering length for molecules aMkF as a function of the
reduced temperature (T − Tc)/Tc in the crossover regime (c−1 = 0, h̃φ → ∞, T̃c =
0.255). Boson fluctuations renormalize the bosonic many-body scattering length
down to zero in the vicinity of the critical temperature. This may be compared to
the increase of the fermion fluctuation induced part a

(F )
M kF .

We plot aMkF and a
(F )
M kF in fig. 5.7 as a function of c−1 and in fig. 5.8 as a

function of temperature. Both plots are for the broad resonance limit. While a
(F )
M kF

grows large near Tc the “full” molecule scattering length aMkF goes to zero. The
reader should be warned, however, that for T → Tc the momentum dependence of
λφ(q) becomes crucial - for T = Tc one has λφ(q) ∝

√
q2 such that λφ vanishes

only for q = 0. At Tc the interaction between the dressed molecules cannot be
approximated by a pointlike interaction.

As a last application of our formalism we compute the speed of sound as ex-
tracted from the low energy dispersion relation ω = vm|q|, cf. eq. (4.105). In the
dimensionless formulation ṽs = 2Mvs/kF it takes the form

ṽs =
√

2λφρ0Aφ. (5.45)

For the broad resonance limit the result is plotted at T = 0 throughout the crossover
in fig. 5.9. Here we also use λφ = λ

(F )
φ .

5.5 Two-body Limit

So far we have developed a rather complete formalism for the phase diagram for
ultracold fermionic atoms in terms of the parameters c and h̃φ. In order to make
contact with experiment we should relate these parameters to observable quantities.
In particular, we will see how the concentration c is related to the magnetic field. As
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Figure 5.9: Dimensionless speed of sound ṽs for the molecules at T = 0. In the
extreme BEC regime it approaches ṽs → 2

√
c/(3π). This limit (plotted dashed) is

obtained by neglecting the contribution from the boson density in the equation of
state.

discussed in the introduction, one of the great goals for ultracold atom gases is the
realization of systems with well controlled microscopic parameters. This is a central
advantage as compared to solids or liquids for which usually the precise microscopic
physics is only poorly known. In order to achieve this goal the “microphysical pa-
rameters” should be fixed by the properties of the individual atoms and molecules,
e.g. by scattering in the vacuum or by the determination of binding energies. The
microscopic parameters are then a matter of atomic or molecular physics and do not
involve collective effects of many atoms or molecules.

Our functional integral approach relates the microscopic parameters to “macro-
scopic observables”. It can be used for arbitrary values of the density and tem-
perature. In particular, it can be employed for the computation of properties of
excitations in the vacuum at zero density and temperature. Within one formalism
we can therefore not only compute the properties of many-body systems, but also
the scattering behavior of individual atoms or molecules in the vacuum. This enables
us to relate our bare microscopic parameters (appearing in the bare microscopic ac-
tion (3.1)) to observables in atomic or molecular physics. What is needed for this
purpose is a computation of binding energies and scattering cross sections in an ap-
propriately performed limit T → 0, n → 0. This will be done in the present section.
First we concentrate on the situation λ̄ψ = 0 or abg = 0, c = aR(σ̃)kF , i.e. we only
deal with resonant scattering. In sect. 5.6.1, we generalize our results to arbitrary
λ̄ψ.
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5.5.1 Atom and Molecule Phase

We are interested in the limit where the density goes to zero while T̃ = T/εF is kept
fixed at some value T̃ > T̃c. Of course, then also T goes to zero, but we do not have
to bother with condensation phenomena or critical phenomena (for T̃ sufficiently
larger than T̃c). In the limit n → 0, kF → 0 also the concentration c vanishes.
Actually, we have to consider two limits |c| → 0 separately, one for positive and
the other for negative c. For positive c the low density limit corresponds to a gas of
molecules, while for negative c one obtains a gas of fermionic atoms. If the scattering
length is much smaller than the average distance between two atoms or molecules,
the properties of the dilute gas are directly related to the physics of individual atoms
or molecules.

First we focus on the “fermion gas limit” or “atom phase”. It is realized for
positive ν̄ or negative resonant in-medium scattering length aR (or negative c).
In this case the molecular binding energy is positive such that the excitation of
“molecule resonances” requires energy. Since for fixed T̃ and kF → 0 the temperature
becomes very low, T = T̃ εF , the excited states become strongly suppressed and
can be neglected. In this limit one finds σ̃ → 1 and therefore σ → εF → 0 and
aR → −h̄2

φ/(4πν̄). At fixed ν̄ and h̄φ the concentration vanishes c = aRkF → 0.

Therefore the interaction effects are small. In particular, T̃c vanishes in the limit
c → 0+, cf. fig. 6.1.

The discussion of the “molecule phase” obtained for a negative molecular binding
energy or ν̄ < 0 in the low density and temperature limit is more involved. Now the
number density of the fermionic atoms is suppressed since for zero momentum their
energy is higher as compared to the molecules. We will show that this “molecule
phase” is characterized by a nonzero negative value of σ.

Let us consider the quadratic term for φ̄ in the effective potential or the term
linear in ρ̄ = φ̄∗φ̄,

m̄2
φ =

∂U

∂ρ̄
(0) = ν̄ − 2σ +

∂U
(F )
1

∂ρ̄
(0) +

∂U
(B)
1

∂ρ̄
(0). (5.46)

According to eq. (5.29) or 6

nM =

∫
d3q

(2π)3

[
exp

(Āφ(q)q
2 + m̄2

φ

ZφT

)
− 1

]−1

(5.47)

the “mass term” m̄2
φ dominates the behavior for T → 0 unless it vanishes. Our limit

corresponds to nM ∝ k3
F → 0, T ∝ T̃ k2

F → 0 or nM ∝ T 3/2 → 0. This requires that

6Eq. (5.47) becomes exact if the frequency dependence of the correction to Āφ can be neglected
(cf. the appendix in [40]) and m̄2

φ + Āφ(q2)q2 is used to parameterize the exact inverse propagator
at zero frequency.
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m̄2
φ must vanish ∝ k2

F . In consequence, the chemical potential σ reaches a nonzero
negative value

lim
kF→0

σ = σA =
1

2

(
ν̄ +

∂Ū
(F )
1

∂ρ̄
(0) +

∂Ū
(B)
1

∂ρ̄
(0)

)
. (5.48)

Here
∂Ū

(F )
1

∂ρ̄
(ρ̄ = 0) and

∂Ū
(B)
1

∂ρ̄
(ρ̄ = 0) have to be evaluated for σ = σA. We will see

below that (∂U1/∂ρ̄)(ρ̄ = 0) does not vanish for σA < 0, n → 0, T → 0 due to the
fermionic contribution. We arrive at the important conclusion that for ν̄ < 0 the
vacuum or zero density limit does not correspond to a vanishing effective chemical
potential but rather to negative σA < 0.

In the molecule phase the nonzero σA < 0 adapts the additive constant in the
energy such that the molecular energy level is a zero. In consequence, −σA appears
as a positive energy (gap or mass term) in the propagator of the fermionic atoms.
As it should be this suppresses the relative number of fermionic atoms in the limit
T → 0 and we end with a dilute gas of molecules. The two low density limits (with
ν̄ 6= 0) therefore both correspond to the limit of vanishing concentration |c| → 0.
Positive and negative c correspond to pure gases of molecules or fermionic atoms,
respectively.

In sum, the conditions projecting on the physical vacuum read

kF → 0 for T̃ > T̃c and such that n ∝ k3
F → 0. (5.49)

These prescriptions result in the following constraints,

BCS (a−1 < 0) : σA = 0, m̄2
φ > 0, (5.50)

BEC (a−1 > 0) : σA < 0, m̄2
φ = 0,

Resonance (a−1 = 0) : σA = 0, m̄2
φ = 0.

The constraints σA = 0 in the BCS phase and m̄2
φ = 0 on the BEC side are exact

properties which have to be met in any approximation scheme. The precise values of
m̄2

φ, σA in the respective regimes can, instead, depend on the approximation which
we choose. Note the close analogy to the constraints (4.97) which characterized
the thermodynamic phases of the system. In the language of thermodynamics, eqs.
(5.50) describe the “phase transition” between the atom - and the molecule phase.
We will comment on this issue below.

5.5.2 Fermionic Scattering Length and Molecular Binding
Energy

In this section we discuss the scattering of atoms in vacuum, and extract the phys-
ical fermionic scattering length as well as the molecular binding energy from an
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appropriate on-shell limit of the scattering amplitude. For this purpose we first
have to reconstruct the scattering amplitude from our partially bosonized setting.
The discussion will clarify the relation between the in-medium resonant scattering
length aR(σ) (3.13) and the physical resonant scattering length on both sides of the
resonance.

Once the effective action Γ is computed it contains directly the information on
the one-particle irreducible Green functions including corrections from fluctuations.
Therefore the scattering amplitudes can be extracted without much further calcula-
tion. Contact to the observable parameters can directly be established in the vacuum
limit of our approach.

The amplitude for the elastic scattering of two atoms corresponds to the effective
four-fermion amplitude. In presence of a field for the molecules we have two contri-
butions: from the tree exchange of molecules and from the one-particle irreducible
four-fermion vertex. We focus on the resonant part here and again set λ̄ψ = 0. The
tree exchange contribution can be obtained formally by solving the field equation for
φ for nonvanishing ψεψ. This solution becomes then a functional of ψ. Reinserting
this solution into Γ yields the “tree contributions” to the four-fermion amplitude,
as already discussed in sect. 3.1.

The general expression for the resonant part of the scattering amplitude reads

λ̄ψ,R(ω, ~q) = − h̄2
φ

P̄φ(iω,−2σA, ~q)
. (5.51)

All quantities are evaluated at the physical value for the chemical potential, σA. Here
P̄φ(ω,−2σA, ~q) is the full (fluctuations included) bare (not rescaled with Zφ) inverse
boson propagator with σA determined by the vacuum conditions (5.50). The boson
propagator computed in our formalism corresponds to an euclidean version and
must be analytically continued to Minkowski space in order to describe propagating
particles [39], justifying the factor “i” in the inverse propagator. Further h̄2

φ denotes
the full Yukawa coupling. It is affected by fluctuation corrections only in the presence
of a pointlike four-fermion coupling (cf. eq. (C.25)). In our present scheme it is a free
parameter, but we will consider renormalization effects in sect. 5.6.1 in the frame of
Schwinger-Dyson equations and in sect. 7.3 with the functional RG.

In the present scheme we approximate the full boson propagator by the classical
plus one-loop term. The frequency and momentum dependent one-loop correction
to the boson propagator can be read off from (C.23) in app. C. In the vacuum
limit, the integrals can be performed analytically for arbitrary external (Minkowski-
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) frequency and momentum. We write

P̄φ(iω,−2σ, ~q) = P̄
(cl)
φ (iω,−2σ, ~q) + ∆P̄φ(iω,−2σ, ~q), (5.52)

P̄
(cl)
φ (iω,−2σ, ~q) = −ω − 2σ +

~q 2

4M
,

∆P̄φ(iω,−2σ, ~q) =
h̄2

φM
3/2

4π

√
−ω − 2σ +

~q 2

4M
.

~q = ~q1 + ~q2 and ω = ~q1
2/(2M) + ~q2

2/(2M) are the total momentum and total
kinetic energy of the molecule. In the following another decomposition of P̄φ in a
zero momentum part and a piece containing the momentum dependence is more
useful,

P̄φ(iω,−2σ, ~q) = m̄2
φ + δP̄φ(iω,−2σ, ~q), (5.53)

m̄2
φ = P̄φ(0,−2σ,~0) = ν̄ − 2σ + ∆P̄φ(0,−2σ,~0),

δP̄φ(iω,−2σ, ~q) = −ω +
~q 2

4M
+ ∆P̄φ(iω,−2σ, ~q)−∆P̄φ(0,−2σ,~0)

such that

δP̄φ(0,−2σ,~0) = 0,

δP̄φ(−2iσ,−2σ,~0) = ν̄ − m̄2
φ (5.54)

for arbitrary σ. Expressing the boson mass in terms of ν̄ instead of ν̄Λ takes care of
the UV renormalization, and the mass reads explicitly

m̄2
φ = ν̄ − 2σ +

h̄2
φM

3/2

4π

√−2σ (5.55)

with magnetic field dependent detuning ν̄ = µ̄(B − B0). Here we have absorbed
the linear term −2σ from the classical molecule energy in the definition of the mass
term.

This scattering amplitude has to be evaluated under an appropriate on-shell
condition for frequency ω and total momentum ~q to yield the physical resonant
scattering length for a given physical vacuum condition (σ = σA). In the center of
mass frame, we have ~q = 0. For the further discussion we have to distinguish atom
and molecule phase.

Atom Phase a−1 < 0

Here we have σA = 0 and m̄2
φ > 0. The first constraint implies the vanishing of the

loop correction to the mass term (5.55). If we want to extract the physical resonant
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scattering length a′R, we further have to consider the zero kinetic energy limit ω → 0
– since σA = 0, a fermion at rest is already at the scattering threshold. Hence we
end up with

m̄2
φ = ν̄, δP̄φ(0, 0,~0) = 0, (5.56)

a′R =
Mλ̄ψ,R(0,~0)

4π
= −Mh̄2

φ

4πν̄
= aR(σA = 0).

where we use the relation between four-fermion vertex and scattering amplitude for
non-identical fermions, eq. (A.12). The physical scattering length extracted in this
way coincides with our definition of aR (3.14) derived from the classical action for
vanishing chemical potential – the absence of renormalization effects reflects our
choice of UV renormalization conditions (σ = 0, T = 0).

As a remark on the side, we note that our formalism can also account for re-
alistic atom-atom scattering at non-zero energy and momentum. We find resonant
scattering with a Breit-Wigner form [39].

Molecule Phase a−1 > 0

Now we have σA < 0 and m̄2
φ = 0. The situation is more complex: σA has to be

computed as a function of the microscopic parameters ν̄ and h̄φ.

Before doing the calculation, we provide a physical interpretation of the “chem-
ical potential in vacuum”, σA, as half the molecular binding energy in vacuum, εM ,

εM = 2σA. (5.57)

We may find this relation by comparing the densities of molecules and fermionic
atoms in the low density limit. For small enough density and temperature the in-
teractions become unimportant and the ratio nF /nM should only depend on the
binding energy in vacuum. Indeed, in our limit σ̃ is negative and diverges

lim
kF→0

σ̃ → 2MσA

k2
F

. (5.58)

This simplifies the momentum integrals in the loops considerably. For large neg-
ative σ̃ one finds Aφ = Ãφ/Zφ = 1/2. One therefore has Āφ/Zφ = 1/4M and nM

corresponds to a gas of dressed molecules with mass 2M . On the other hand, the
small fraction of fermionic atoms obeys

nF,0 = 2

∫
d3q

(2π)3

[
exp

{ 1

T

( q2

2M
− σA

)}
+ 1

]−1
. (5.59)
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In the low density limit the interactions become negligible and nF,0 should reduce to
the density of the free gas of atoms with mass M . However, even for zero momentum
the energy of a single atom does not vanish - it is rather given by half the binding
energy that is necessary for the dissociation of a molecule. This corresponds precisely
to eq. (5.59), provided we identify εM = 2σA. We conclude that the binding energy
is not simply given by ν̄ (which is defined for σ = 0 and in the absence of molecule
fluctuations) but rather obeys

εM = ν̄ +
∂Ū1

∂ρ̄

(
ρ̄ = 0, σ = σA, T = 0

)
= ν̄ + ∆P̄φ(0,−2σA,~0) (5.60)

= ν̄ +
h̄2

φM
3/2

4π

√−2σA.

A measurement of the binding energy of molecules in vacuum, εM , can relate ν̄ to
observation.

For σ < 0 the non-analytic behavior ∝ √−σ has an interesting consequence for
the threshold behavior near εM = 0. The equation determining σA in the molecule
phase (i.e. m̄2

φ(σA) = 0) reads

ν̄ +
h̄2

φ

4π
M3/2(−2σA)1/2 − 2σA = 0. (5.61)

Independently of the value of σA and h̄φ eq. (5.61) can be transformed into

εM = 2σA = −16π2(ν̄ − 2σA)2

h̄4
φM

3
= − 1

Ma2
R(σA)

. (5.62)

where we use the definition (3.13) in the last step. Hence we recover the well known
universal result for the scattering length aR(σA) [35; 36]. This result is independent
of the value of the Feshbach coupling. One concludes εM(ν̄ → 0) → 0. This is,
however, only a universal relation between the appropriately defined resonant in-
medium scattering length aR(σ) and the binding energy – the rhs of (5.62) still
involves σA. If one is interested in the relation of ν̄(B) = µ̄(B−B0) and the binding
energy (i.e. the magnetic field dependence of the binding energy), one must solve
(5.62) for ν̄. We find two distinct regimes. Close to the threshold (σA → 0), the
last term in eq. (5.61) becomes subdominant and the fluctuation term dominates,
implying a quadratic behavior

εM ≈ − 1

MaR(σ = 0)2
= −16π2ν̄2

h̄2
φM

3
∝ (B −B0)

2. (5.63)

In contrast, far away from threshold the fluctuation term is negligible and the binding
energy equals the “classical binding energy”,

εM ≈ ν̄ ∝ (B −B0). (5.64)
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For broad resonances, the linear regime will only be approached far away from the
resonance when

√−σA À (2M)3/2h̄2
φ/(16π) – the fluctuation dominated regime

extends over a broad domain of magnetic fields. The deviation from the quadratic
behavior can be viewed as a scaling violation induced by the finite size of h̄φ – in
other words by the classical energy dependence of the four-fermion interaction as
will become clear in the next chapter. The quadratic dependence of the binding
energy on the magnetic field close to the resonance and the linear behavior far off
resonance are in agreement with experiments. This is an important check for both
our calculation and the modelling.

Coming back to the computation of the physical scattering length on the BEC
side, we first observe that each of the scattering fermions must carry a kinetic energy
ω1,2 = −σA in order to reach the scattering threshold, such that ω = −2σA. Hence
we have to work with the second line in eq. (5.54),

m̄2
φ = 0, δP̄φ(−2iσA,−2σA,~0) = ν̄, (5.65)

a′R =
Mλ̄R(−2σA,~0)

4π
= −Mh̄2

φ

4πν̄
= aR(σ = 0).

The roles of m̄2
φ and ∆P̄φ are reversed compared to (5.56).

Eqs. (5.56) and (5.65) state that both on the atom and on the molecule side of
the resonance the physical resonant scattering length is given by

a′R = −Mh̄2
φ

4πν̄
= aR(σ = 0). (5.66)

While this relation is obvious for the atom side σA = 0, it is maybe unexpected
on the BEC side for the nontrivial vacuum σA < 0. However, in this case the
physical scattering length is not a vacuum property any more – the fermions need
to be excited to the scattering threshold by a finite kinetic energy ω = −2σA.
Since the boson propagator (5.52) depends on the combination ω − 2σA only, this
precisely compensates for the binding energy εM = −2σA, and only the magnetic
field dependent classical part ν̄(B) remains.

On the other hand, aR(σA) is the relevant combination for the description of
vacuum properties of the system. It is the right quantity to reveal universal aspects
most clearly. For example, had we chosen (aR(σ = 0)kF )−1 instead of the full con-
centration parameter c−1 = (aR(σ)kF )−1 in fig. 6.1, broad and narrow resonance
limit could not be compared in a single plot. This is the reason for our choice of the
concentration c−1 as the universal interaction variable.

If we want to make contact to experimental observation (e.g. resolve a magnetic
field dependence, cf. the next section) we have to solve the universal concentration
parameter for ν̄(B). This is discussed below in the last paragraph of the next section.
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In the broad resonance limit, and not too far off the resonance, the concentration and
the dimensionless physical fermionic scattering length are almost indistinguishable.

As argued in [39], the inverse boson propagator in eq. (5.51), together with the
explicit result (5.52), can be used to determine the molecular dispersion relation on
the BEC side σA < 0 without an expansion in frequency and momentum. Indeed we
can read off

ω =
q2

4M
(5.67)

corresponding to the dispersion relation of pointlike bosonic particles of mass 2M .
This is another sign for the formation of a true molecular bound state. As to the
classical part in the boson propagator, the dispersion relation has been introduced
“by hand” in our ansatz for the classical action. The fluctuation part, however, car-
ries this information as a consequence of the frequency and momentum dependence
of the fermion loop.

Quantum Phase Transition at a−1 = 0

We finally comment on the resonance limit a−1 → 0 in vacuum. The value of εM

could, in principle, differ between the two limits n → 0 with negative or positive
εM , due to the different ground state values of σ. It is interesting to address in
more detail the question of continuity as the magnetic field switches between the
two situations. In fact, we may view this qualitative change as a “quantum phase
transition” in vacuum as a function of B. The corresponding “order parameter” is
the value of σ. For B > B0 the “atom phase” is characterized by σ = 0 and the
mass term m̄2

φ = ∂U/∂ρ̄(ρ̄ = 0, σ = 0) is positive (positive “binding energy”). The
“molecule phase” for B < B0 shows a nonvanishing order parameter σ = σA. Now
the mass term vanishes, m̄2

φ = 0, whereas the atoms experience a type of gap |σA|.
The binding energy is negative, εM < 0. We find a continuous (“second order”)
transition where −σA approaches zero as B approaches B0. In this case one has
εM(B0) = 0 and m̄2

φ(B0) = 0 for B approaching B0 either from above or below. (As
a logical alternative, a discontinuous first order transition would correspond to a
discontinuous jump of σ at B0. Then also εM may jump and not be equal to zero at
B0.) As common for second order phase transitions we find a non-analytic behavior
at the transition point B = B0.

5.5.3 Relation to Experimental Parameters

So far we have described the universal crossover physics in terms of two parameters
c and h̃φ. For comparison with experiment these parameters have to be related to
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the microphysical properties of a given atomic system and to the external magnetic
field B. More precisely, the three parameters in the bare microscopic action (3.1),
ν̄Λ, h̄φ,Λ and λ̄ψ,Λ have to be known as functions of B and the effective UV cutoff Λ.
The dependence on Λ can be eliminated by trading the cutoff dependent parameters
for appropriately renormalized quantities. In this section we treat again a situation
where the background scattering is neglected. In this case the Yukawa coupling is
not affected by direct renormalization effects and we can set h̄φ,Λ = h̄φ,0 where h̄φ,0

is measured in vacuum. Neglecting the background scattering is good close to the
resonance and we can extract our parameters ν̄ and h̄φ,0 there. The mass term ν̄Λ

instead needs to be replaced by its renormalized, magnetic field dependent counter-
part ν̄(B) connected to the atomic physics of individual atoms, i.e. evaluated for
vanishing density and temperature. Furthermore, ν̄ can be replaced by the physical
resonant scattering length which thereby becomes B dependent,

a′R = aR(σ = 0; B) = − h̄2
φ,0M

4πν̄(B)
. (5.68)

The situation is more complex in the presence of a residual pointlike four-fermion
interaction which can be related to the background scattering length. This issue is
addressed in the next section and in chapt. 7.

Concentration

We may use the measurements of εM(B) in order to gain information about our
parameters. Consider 6Li in a setting where the “open channel” consists of two
atoms in the lowest energy states with nuclear spin mI = 1 and mI = 0, respectively.
(These two lowest hyperfine states correspond to our two component fermion ψ.)
The binding energy near threshold has been measured [46] for four different values
of B and fits well in this range with

εM = −β(B −B0)
2, (5.69)

where, for 6Li,

β(Li) = (7.22 · 1013G2/eV)−1 = (27.6keV3)−1,

B
(Li)
0 = 834.1G = 16.29 eV2. (5.70)

The corresponding values for 40K are [15]

β(K) = (4.97 · 109G2/eV)−1 = (1.89 · 10−3keV3)−1,

B
(K)
0 = 202.10G = 3.95 eV2. (5.71)

From eq. (5.62) it is clear that β could also be extracted from scattering experiments
as described in the appendix of [39]. However, spectroscopic measurements probing
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the binding energy have proven to be most precise. Close to the resonance we can
therefore relate the concentration parameter c = aR(σA)kF with the magnetic field
7 by

c−1(B) = −
(βM

k2
F

)1/2

(B −B0) = −τB(B −B0). (5.72)

The relation (5.72) remains actually also valid for the “atom gas”, B > B0. In
this case one has σ = 0 and

ν̄ = µ̄(B −B0) = − h̄2
φ,0M

4πaR(σ = 0)
(5.73)

implies

kF c−1(B) =
4πµ̄

h̄4
φ,0M

(B0 −B). (5.74)

It is experimentally verified that the relation a−1 =
√

βM(B0 − B) holds with
the same value of β (5.70) as extracted from εM and we can confirm this by a
“computation from microphysics”, cf. eqs. (5.56,5.65). This establishes the relation

β =
16π2µ̄2

h̄4
φ,0M

3
(5.75)

such that eqs. (5.72) and (5.74) coincide.

The definition of β (5.75) does not involve the scale kF , while τB as fixed by
eq. (5.72) does. In principle, there is no need to associate kF with the physical
particle density – in this case the fiducial choice kF = 1eV just sets the units. In a
thermodynamic situation, kF = (3π2n)1/3 and τB is the appropriate dimensionless
quantity for our computations.

The relation (5.72) permits direct experimental control of our concentration pa-
rameter for T = 0 and n = 0. For 6Li and 40K one finds in the (here arbitrary) unit
kF = 1eV

τLi
B = 0.0088G−1 = (113.1G)−1 = 0.45eV−2, (5.76)

τK
B = 2.745G−1 = (0.36G)−1 = 140.55eV−2.

This will be easily extended to T 6= 0 and arbitrary n below. The microscopic
relation that is independent of T and n involves β according to

4πν̄

Mh̄2
φ,0

= (βM)1/2(B −B0) = τBkF (B −B0). (5.77)

7More precisely, c(B) stands for c(B, kF , σA).
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We emphasize that the determination of τB in eq. (5.72) does not require knowledge
of h̄φ since we can use directly the experimental determination of β from eq. (5.69).

We note that our parameter β relates to the parameter ∆ in the standard para-
meterization (2.5) for Feshbach resonances as

∆ = −a−1
bg (βM)−1/2. (5.78)

However, from an inspection of (2.5) it is clear that the characteristic quantity for
resonant scattering is β, making sense in the absence of background scattering also.
The values for ∆ are

∆Li = 300G, ∆K = −7.8G. (5.79)

Yukawa Coupling

Let us denote the effective Yukawa coupling in vacuum in the atom phase by h̄φ,0

or h̃φ,0 for the dimensionless counterpart. From eq. (5.75) and the experimental
determination of β in the atom phase we can extract the ratio

h̄2
φ,0

µ̄
=

4π

(M3β)1/2
= 2.516 · 10−7eV−2G = 4.915 · 10−9. (5.80)

(Here the numerical value is given for 6Li.) For the broad Feshbach resonance in the
6Li system the molecule state belongs to a singlet of the electron spin, resulting in
µM ≈ 0. The microscopic value of µ̄ = ∂ν̄/∂B obtains its essential contribution from
the magnetic moment of the atoms in the open channel, which is well approximated
[42] by the Bohr magneton µB = 5.788 · 10−11MeV/T = 0.2963MeV−1. For 40K we
take µ̄ = 1.57µB [43]. With

µ̄(Li) = 2µB, µ̄(K) = 1.57µB, (5.81)

and kF = 1eV this yields high values

h̃Li
φ,0 = 610, (h̃Li

φ,0)
2 = 3.72 · 105,

h̃K
φ,0 = 79, (h̃K

φ,0)
2 = 6.1 · 103. (5.82)

Using the broad resonance criterion h̃2
φ > 100, we see that indeed 6Li and 40K belong

to this class, cf. fig. 6.2.

Though we will only need it in the next section, we display the values of the
background coupling cbg = abgkF = λ̃ψ,0/(8π) for kF = 1eV,

cLi
bg = −0.380, cK

bg = +0.0466. (5.83)
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Finally we discuss an alternative possibility to determine the Yukawa coupling.
The determination of εM = 2σA amounts to the condition

m̄2
φ(σA)

h̄2
φ

=
ν̄ − 2σA

h̄2
φ

+
∂Ū1

∂r
(r = 0, σA) = 0. (5.84)

The bosonic fluctuation contribution vanishes for T → 0 and ∂Ū
(F )
1 /∂r only depends

on σ, but not on h̄φ or µ̄. This is the reason why the behavior for B → B0 can be used
to determine c and the ratio (5.80), but not h̃φ separately. In principle, independent
experimental information on h̃φ,0 can be gained from measurements of the binding
energy outside the resonance. Indeed, for εM < 0 the general relation between εM

and ν̄ reads

εM = ν̄ − γ̄(1−
√

1− 2ν̄/γ̄), (5.85)

γ̄ =
h̄4

φ,0M
3

32π2
.

Measurement of εM(B) over a wide enough range allows for the extraction of both
h̄2

φ,0 and ν̄ independently 8. Far away from the resonance one has |γ̄/ν̄| ¿ 1 such that
εM = ν̄. From this range we extract the B - dependence of ν̄, ∂εM/∂B = ∂ν̄/∂B = µ̄.
On the other hand, close to the resonance the opposite limit |γ̄/ν̄| À 1 applies. Then
εM = −ν̄2/(2γ̄) involves the concentration c, and, using ν̄ = µ̄(B − B0), one can
extract h̄φ,0 from γ̄ = −ν̄2/(2εM). A further alternative for the extraction of ν̄(B)
and h̄φ,0(B) is provided from a detailed investigation of the atom scattering near
the resonance, as discussed in the appendix of [39].

General Relation between c−1 and B

Above we have related the physical scattering length aR(σ = 0) in the atom vacuum
with the detuning magnetic field B −B0. This can be used directly for establishing
the relation between the concentration c and B − B0 for nonzero T and n (or kF ),
using the definition (3.13) and the relation between dimensionful and dimensionless
parameters (B.1),

c−1 = k−1
F

(
a−1

R (σ = 0) +
8πσ

h̄2
φM

)
. (5.86)

One finds

1

c
− 16πσ̃

h̃2
φ

= −τB(B −B0) = −b̃. (5.87)

8This consideration holds for abg = 0.
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Employing the relation

b̃ =
8πν̃

h̃2
φ

(5.88)

we may also write eq. (5.86) in the form

ν̃ = 2σ̃ − h̃2
φ

8πc
=

2Mµ̄(B −B0)

k2
F

. (5.89)

For practical calculations we use the relation (5.89) between ν̃ and B −B0.

In the broad resonance limit for large values of h̃2
φ of the same order of magnitude

as the vacuum values (5.82) the terms ∼ h̃−2
φ in eq. (5.87) can be neglected if |σ̃| is

not too large. This yields the simple expression

c−1 = −b̃. (5.90)

We recall, however, that this formula should not be used far in the BEC regime where
σ̃ takes large negative values which diverge in the vacuum limit. For moderate or
small values of h̃φ the term ∝ σ̃ in eq. (5.87) should always be included.

5.6 Dressed and Bare Molecules: Comparison to

Experiments

5.6.1 Renormalization of Feshbach and Background Cou-
pling

So far we have considered situations where the background coupling λ̄ψ was ne-
glected. For the Feshbach resonance which is most actively experimentally inves-
tigated – 6Li at B0 = 834.1G – the background coupling is, however, substantial
and cannot be neglected. The associated scattering length has been determined to
be abg = −0.38eV−1. A systematic treatment of the background coupling does not
allow for an integration of the fermionic fluctuations at the Gaussian level. However,
the experiment described below is carried out at very low dimensionless tempera-
ture, where we have established that bosonic fluctuations are subdominant except
for the bosonic two-point function. This is, however, already captured in a Gaussian
treatment of the boson fluctuations. Hence, our strategy here is based on a simple
one-loop treatment of the boson fluctuations (implying that the couplings in the bo-
son propagator are only renormalized by fermion fluctuations), while we now treat
the renormalization of the Feshbach coupling h̄φ and the background interaction λ̄ψ



80 Chapter 5. Schwinger-Dyson Analysis

=

= _

= _

_

Figure 5.10: Graphical representation of the one-loop Schwinger-Dyson equations
(5.91) for the Yukawa theory with additional background interaction. Additional ef-
fective boson fluctuations are neglected in this approximation. Small circles (squares)
signal bare Yukawa (background) couplings, large shaded symbols represent the full
vertices.

by suitable Schwinger-Dyson equations. A similar strategy has been followed in [52].

In principle, the SDE’s can be evaluated at arbitrary (analytically continued)
frequency iω and momentum ~q. This is necessary if we are not only interested in
vacuum properties, but also in excitations. The most important object in this respect
is the physical fermionic scattering length on the BEC side, where the vacuum
is nontrivial, the ground state being a bound molecule. We have seen that the
fermionic fluctuation integrals depend on the combination e = −ω− 2σ only, hence
we introduce this object as the energy variable. Further, we work in the center of
mass frame with total momentum ~q = 0. Under these circumstances, the couplings
λ̄ψ, h̄φ now depend on e, i.e. on ω and σ 9.

Before UV renormalization, the set of SDEs reads

P̄φ = ν̄Λ + e− h̄φ,Λh̄φJ̄Λ, (5.91)

h̄φ = h̄φ,Λ − λ̄ψ,Λh̄φJ̄Λ,

λ̄ψ = λ̄ψ,Λ − λ̄ψ,Λλ̄ψJ̄Λ

with

J̄Λ(e, T, r) =
1

4T

∫
d3q

(2π3)

tanh γφ

γφ

. (5.92)

9Note that for analytically continued external frequency, the couplings can still be factored out
of the frequency integrals (or Matsubara sums).
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This integral is well known from the evaluation strategy implemented above – the
equation for the mass term m̄2

φ reduces to the result (4.49,4.93) if one replaces the
full Yukawa coupling in (5.91) by the bare one. From the discussion in sect. 4.2.3
we know that the integral is linearly UV divergent. In chapt. 4 we have performed
a “perturbative” UV renormalization where the physical detuning was fixed by an
observable. This was concretized in the last section, where we have specified the
actual low energy observables in particular atomic systems. Now we generalize this
procedure by eliminating the Λ - dependent couplings by their observable coun-
terparts. This amounts to a “nonperturbative” UV renormalization procedure. As
argued above, we assume that the couplings are measured in the physical vacuum
in the atom phase of the system, i.e. for ω = σ = T = 0 (cf. eq. (5.50)). The cou-
plings which we introduce in this way thus have the status of full “renormalized”
couplings on the atom side – no renormalization effects can alter their values on the
BCS side in the two-body limit. On the other hand, we have seen that the vacuum
has a different structure on the BEC side, such that one can expect renormalization
effects in this regime even in the two-body limit!

For the practical implementation of the UV renormalization procedure we con-
sider the ground state (ω = 0, e = −2σ). Let us decompose J̄Λ in the UV divergent
part and a physical part encoding the dependence on T, σ and r which vanishes in
the atom vacuum and is very insensitive to Λ (such that we can formally work with
Λ = ∞),

J̄Λ(−2σ, T, r) = J̄(−2σ, T, r) + kΛ, kΛ =
MΛ

2π2
, J̄(0, 0, 0) = 0. (5.93)

Now we have to eliminate λ̄ψ,Λ, h̄φ,Λ, ν̄Λ and Λ in favor of the vacuum observables
λ̄ψ,0, h̄φ,0, ν̄. As argued above, the conditions determining the observables can be
extracted from the full equations (5.91) in the limit ω = σ = T = r = 0,

m̄2
φ,0 = ν̄Λ − h̄φ,Λh̄φ,0k̄Λ, (5.94)

h̄φ,0 = h̄φ,Λ − λ̄ψ,Λh̄φ,0k̄Λ,

λ̄ψ,0 = λ̄ψ,Λ − λ̄ψ,Λλ̄ψ,0k̄Λ.

For ω = 0 the bosonic propagator in (5.91) reduces to the mass term. We observe
a hierarchy in eqs. (5.91,5.94): The third equation decouples from the first two,
and the second from the first for given solution of the last one. Hence we follow a
consecutive strategy: First we solve the last equation in (5.94) for λ̄ψ,0 and use this
result to express the last equation in (5.91) in terms of λ̄ψ,0 and J̄ only. This provides
the UV renormalization of the background coupling. These equations, together with
the condition in the second line of (5.94), allow for the UV renormalization of the
second line in (5.91). The same procedure is then applied to the first equation. The
couplings λ̄ψ,0, h̄φ,0 are assumed to be independent of the magnetic field B. The mass
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term instead parameterizes the crossover and we decompose, according to eq. (5.73),

ν̄Λ = ν̄(B) + δν̄Λ, ν̄(B) = µ̄(B −B0) (5.95)

which fixes the resonance at ν̄(B0). The result of our nonperturbative renormaliza-
tion procedure is very simple and reads

m̄2
φ = ν̄(B)− 2σ − h̄2

φ,0J̄

1 + λ̄ψ,0J̄
, (5.96)

h̄φ =
h̄φ,0

1 + λ̄ψ,0J̄
,

λ̄ψ =
λ̄ψ,0

1 + λ̄ψ,0J̄
.

In addition to the UV renormalization, this set of equations gives explicit expressions
for the full couplings m̄2

φ, h̄φ, λ̄ψ as a function of the vacuum observables, i.e. it solves
(5.91) as a function of the vacuum observables.

With these preparations in mind, we are now in the position to generalize the
discussion of the physical fermionic scattering length. Now h̄φ and λ̄ψ contain a
dependence on frequency ω and binding energy εM . The general expression for the
scattering amplitude reads, in the center of mass frame

λ̄(ω,~0) = λ̄R(ω,~0) + λ̄ψ(ω,~0) (5.97)

= − h̄2
φ(ω,~0)

P̄φ(ω,−2σA,~0)
+ λ̄ψ(ω,~0).

We must use the full, renormalized couplings in the two-body limit here.

On the BCS side, our construction implies that there are no renormalization
effects modifying the couplings m̄2

φ,0, h̄φ,0, λ̄ψ,0 since J̄(0, 0, 0) = 0. The full physical
scattering length thus reads

a′ =
Mλ̄R(0,~0)

4π
+

Mλ̄ψ(0,~0)

4π
=

Mh̄2
φ,0

4πν̄(B)
+

Mλ̄ψ,0

4π
= aR(σ = 0) + abg = a(σ = 0).

(5.98)

Note that there is no problem with the Fierz ambiguity – we have uniquely fixed
the parameters by observation at low energies.

On the BEC side, the situation is more complex since σA < 0. Defining

J̄0 = J̄(e = −2σA, 0, 0) = −M

4π
(−2MσA)1/2 = ∆P̄φ(0,−2σA,~0), (5.99)
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we can give the set of equations determining the vacuum. The equation for the mass
now reads

0 = m̄2
φ = ν̄ − 2σA −

h̄2
φ,0J̄0

1 + λ̄ψ,0J̄0

. (5.100)

The full couplings in the BEC vacuum are given by

h̄φ(ω = 0, σA) =
h̄φ,0

1 + λ̄ψ,0J̄0

, (5.101)

λ̄ψ(ω = 0, σA) =
λ̄ψ,0

1 + λ̄ψ,0J̄0

. (5.102)

If we want to extract the physical fermionic scattering length, we have to evaluate
the integrals as ω = −2σA or e = 0 to put the fermions on shell. Hence, the
renormalization effects are compensated by the finite excitation energy, and we end
up with the full physical fermionic scattering length

a′ = a′R + abg = a(σ = 0) (5.103)

as on the BCS side.

We can have a look at the behavior of the gap parameter r̃ if we take a background
scattering into account. In our approximation, the gap is given by the solution of

0 = ν̄(B)− 2σ − h̄2
φ,0J̄

1 + λ̄ψ,0J̄
. (5.104)

Using dimensionless variables, this can be transformed into

J̃(−2σ̃, T̃ , r̃) = − 1

8πc
(5.105)

where c = aRkF + cbg is the full concentration, including the in-medium effect
from σ̃. Hence, the solution r̃ of this equations transforms as r̃(aRkF ) → r̃(c) if
aRkF → c. There is no separate dependence on aRkF and cbg, r̃ only depends on the
renormalization group invariant full concentration c. Obviously, the concentration
is the right quantity as far as the universal vacuum properties of the crossover
are concerned. It is thus the natural generalization of the dimensionless resonant
concentration parameter of sect. 5.5.2.

5.6.2 Bare Molecules

We are now in the position to compare the findings of our formalism to experiments.
The fraction of closed channel molecules is given by Ω̄B = Ω̄M + Ω̄C . It has been
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Figure 5.11: Fraction of closed channel molecules Ω̄B = Ω̄C + Ω̄M , compared to
experimental values [63], for T = 0 and kF = 0.493eV=̂250nK. On the BEC side, we
find that our results are quite insensitive to the precise choice of kF . The strongly
interacting region c−1 < 1 is indicated by vertical lines, where the center line denotes
the position of the resonance. The dashed line omits the renormalization effects
discussed in the text.

measured by a laser probe that induces a transition to an excited molecular level
- the quantity Z in [63] equals Ω̄B. Indeed, the laser probe couples directly to the
total number of “bare molecules” 〈φ̂∗φ̂〉. Importantly, we will shortly see that this
quantity involves the Yukawa h̃φ coupling explicitly. In fig. 5.11 we compare our re-
sults with the measured value for Li, using T = 0, kF = 0.493eV=̂250nK. The solid
line uses c = kF (aR(B) + abg) (5.103) for the whole range of B. The agreement with
the measured value is very convincing. We emphasize that the inclusion of the renor-
malization (5.91) for the Yukawa coupling is crucial. Omitting this effect (dashed
line) for B < B0 in fig. 5.11 results in a clear discrepancy from the observations
sufficiently far away from the resonance.

At this place we may give a few more details of our computation of Ω̄B,

Ω̄B = Ω̄M + Ω̄C = 3π2
(k−3

F nM

Zφ

+ 2
r̃

h̃2
φ,0

)
=

3π2

h̃2
φ,0

(
k−3

F h2
φnM + 2r̃

)
. (5.106)

We use the Yukawa coupling as defined in (5.91) in the place where it appears ex-
plicitly. The renormalized Yukawa coupling hφ is very insensitive to h̃φ,0 for broad
resonances. All other quantities are taken from the solution of the equations deter-
mining the crossover problem in the superfluid phase in the approximation advocated
here, eqs. (5.36,5.37,5.91). The formula for Ω̄C ,

Ω̄C =
6π2

k3
F

|φ̄0|2 = 6π2(1− abg/a)2 r̃0

h̃2
φ,0

(5.107)
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relates the closed channel condensate fraction to the superfluid order parameter r̃0.
In that sense Partrigde et al. indirectly measure the superfluid order parameter!
From Ω̄C we can infer Ω̄B = Ω̄C(1 + Ω̄M/Ω̄C) by extracting the ratio Ω̄M/Ω̄C from
fig. 4.1. In the BEC limit Ω̄M/Ω̄C becomes negligible, while at resonance (c−1 = 0)
we find Ω̄M/Ω̄C = 1.89.

Let us briefly comment on the density dependence of our result. This is particu-
larly simple in our dimensionless formulation. Since r̃0 is taken from the solution of
the crossover problem it does not depend on kF if c is kept fixed. However, in order
to find the right dimensionless value h̃φ = 2Mh̄φ/k

1/2
F , kF must be inserted. For

fixed c this yields Ω̄C ∝ kF . The ratio Ω̄M/Ω̄C depends also on c. The dependence of
Ω̄B on c introduces an additional density dependence of Ω̄B if the scattering length
a is kept fixed. (Only for fixed akF one always has Ω̄B ∝ kF in the broad resonance
limit.)

In the scaling limit c−1 = 0 the value r̃0 and the ratio Ω̄M/Ω̄C are independent of
kF if we assume the broad resonance limit h̃φ →∞. In this limit we thus can confirm
the simple scaling law at resonance advocated by Ho [64], Ω̄B ∝ kF . A similar result
has been obtained by Levin et al. [65], though neglecting the contribution Ω̄M which
is of the same order of magnitude at the resonance, cf. fig. 4.1 (b).

In the BEC limit Ω̄M/Ω̄C becomes negligible. Furthermore, since r̃0 ∝ c−1 ∝ k−1
F ,

one finds that Ω̄B becomes independent of kF . Note that this result is only valid for
kF which respect the BEC regime condition, c−1 = (akF )−1 > 1 or kF < a−1.

In the deep BCS regime |c|−1 = |akF |−1 À 1, we also find numerically that
Ω̄M/Ω̄C ¿ 1. Using the standard BCS result relating the superfluid order parameter
at T = 0 and c−1, our scaling form yields Ω̄B ∝ kF exp(−π/(akF )). Again, in order
to stay in the desired regime, kF must be restricted to values kF ¿ |a|−1. In sum,
we find the following scaling behaviors with kF

Ω̄B ∝




const. BEC
kF Resonance
kF e−π/(akF ) BCS

. (5.108)

Note that the naive power counting n̄B ∝ k3
F (or Ω̄B = const.) is only valid in the

deep BEC regime. Substantial deviations from this scaling are found when evolving
away from this region.

5.6.3 Dressed Molecules

The condensate fraction measured in [15; 16] qualitatively refers to the condensation
of “dressed molecules” or di-atom states. At the present stage, however, the precise
relation between the measured observables and the condensate fraction ΩC has not
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Figure 5.12: Condensate fraction ΩC and total fraction of dressed molecules ΩB =
ΩM +ΩC at T = 0, for 6Li (a) and 40K (b). Due to the nonlinear relation of c−1 and
B − B0 which is particularly strong for 6Li due to the large background scattering
value, the curves are twisted compared to the Ω(c−1) plots. We adjust kF to the
values found in [15] (kF = 1.50eV=̂(2500aB)−1) and [16] (kF = 1.39eV=̂(2700aB)−1).
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yet been established with sufficient quantitative accuracy. As argued in sect. 4.2.2,
ΩC (4.76) is given by the expectation value of the renormalized field

ΩC = 6π2Zφρ̃ = 6π2ρ. (5.109)

In fig. 5.12 we plot our result for the condensate fraction of dressed molecules at
zero temperature as a function of magnetic field, for both the 6Li (fig. 5.12 (a)) and
the 40K system (fig. 5.12 (b)). Unlike the condensate fraction of bare molecules, the
contribution from the dressed condensate is an O(1) quantity.

We find qualitative agreement with the observations [15; 16] whereas for a quan-
titative comparison one would need a more accurate relation between the measured
observables and the condensate fraction ΩC as defined in our setting. First, the
scales of the magnetic field B for which ΩC decreases from rather large values to
small values match the scales found in the experiments. This is another confirmation
of our universal relation between B, the particle density (or kF ) and the quantities
c−1, h̃φ. We find that in the BEC limit, the condensate fraction approaches 1 very
slowly. The observed condensate depletion is the effect of the interaction between
the dressed molecules, as expected for a weakly interacting Bogoliubov gas.

An interesting quantity is the value of the condensate fraction at the location of
the resonance, B = B0. For T = 0 we find a universal value Ω0

C = ΩC(T = c−1 =
0) = 0.30, which therefore should apply both 10 for 6Li and 40K. In order to judge
the reliability of this universal result we may consider the relation

ΩC =
6π2r̃0

h2
φ

(5.110)

which involves the renormalized Yukawa coupling h2
φ = h̃2

φ/Zφ. In the broad reso-
nance limit and for T = 0 the value r̃0

0 = r̃0(T = c−1 = 0) = 0.28 is universal. The
size of Ω0

C is therefore determined by h2
φ, Ω0

C = 16.85h−2
φ . In the same limit we find

h−2
φ =

1

8π2

∞∫

0

dq̃
q̃2(q̃2 − σ̃)

[(q̃2 − σ̃)2 + r̃0]3/2
(5.111)

where σ̃0 = σ̃(T = c−1 = 0) = 0.50. This yields h−2
φ = 0.018, Ω0

C = 0.30 as seen in
fig. 5.12. Away from the resonance both r̃0 and σ̃ depend on c. In the BEC limit
the scale set by the gap drops out and the value of the renormalized coupling is
governed by the scaling behavior

h−2
φ =

c

32π
or h2

φ = 32πc−1. (5.112)

10If one would identify the “condensate fraction” quoted in refs. [15; 16] with our definition of ΩC

one obtains at the resonance ΩC(T̃ = 0.08, c−1 = 0) = 0.13 for 40K [15] and ΩC(T̃ = 0.05, c−1 =
0) = 0.7 for 6Li [16].
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Figure 5.13: Renormalized Yukawa coupling h2
φ as a function of c−1 at zero temper-

ature in the broad resonance limit.

In fig. 5.13 we show h2
φ as a function of c−1 for T̃ = 0. The linear scaling in the BEC

regime is obvious from this plot.

To judge the robustness of this statement we can consider the generalization of eq.
(5.111) when relaxing the broad resonance condition, i.e. h̃φ,0 now is finite. For this
purpose we have to generalize the expression for the wave function renormalization
Zφ, h−2

φ = Zφ/h̃
2
φ,0. Instead of simply computing it from the fermion loop, we now

extract it from the frequency and momentum dependent Schwinger-Dyson equation
for the bosonic propagator (graphically represented in the first line of fig. 5.91),
and projecting on the piece linear in the frequency by an appropriate derivative. At
T = 0, the calculation yields

h−2
φ = L̃ +

(1 + λ̃ψ,0J̃)2

h̃2
φ,0

(5.113)

where L̃ is the integral in eq. (5.111). We can now discuss how deviations from com-
plete universality emerge for hφ, being an example of a dressed quantity. Deviations
are of order h̃−2

φ,0: Interestingly, corrections induced by the background scattering ap-

pear only in connection with an incomplete broad resonance limit – for h̃−2
φ,0 → ∞,

they are absent! We note that this statement is not bound to zero temperature –
the integrals L̃, J̃ may in general depend on T̃ and σ̃.

In the strict broad resonance limit the value of the renormalized Yukawa cou-
pling only depends on c−1 and T̃ . This universal value h2

φ(c
−1, T̃ ) is reminiscent of

the existence of a partial infrared fixed point as some suitable infrared cutoff scale
is lowered. The value of hφ at the fixed point typically depends on c−1 and T̃ , but
otherwise the memory on the initial conditions of the flow (e.g. h̄φ,Λ) is lost. Eq.
(5.113) suggests that the fixed point associated to h̃φ → ∞ also causes a loss of
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memory concerning other couplings – for example the effects of a background cou-
pling on the dressed quantities vanish in this limit. If this picture is true, the precise
location of the fixed point may change as the approximation method is improved, for
example by taking the molecule fluctuations into account for the computation of Zφ.
Nevertheless, if both the 6Li and the 40K system are within the range of attraction of
the fixed point, the value of ΩC for T = c−1 = 0 must be the same! Inversely, if the
observations should establish different values of Ω0

C this would imply that either no
such fixed point exists or that one of the systems is not yet close enough to the fixed
point. Only in this case the system could keep additional memory of the microscopic
Yukawa coupling (e.g. h̄φ,0) or the background scattering length abg such that Ω0

C

could depend on these parameters. Our findings so far, however, strongly suggest
the universal behavior predicting for broad resonances a universal curve ΩC(c−1) for
T = 0.



Chapter 6

Universality

6.1 Universality and Enhanced Universality:

Qualitative Discussion

Universality refers to the “loss of memory” concerning details of the microscopic
physics of a system. A prominent example, which is often identified with the notion
of universality, is the universal long-range behavior of thermodynamic systems close
to a second order phase transition. The long distance physics is then governed by a
few numbers, called critical exponents, which are in turn determined by the basic
symmetries of the underlying theory, but independent of the precise values of the
couplings in the microscopic theory. This allows to group theories from very differ-
ent branches of physics into universality classes – for example, the U(1) or O(2)
symmetry of our bosonic degrees of freedom suggest that the universal long range
behavior should be the same as for the XY model in condensed matter physics (in
three dimensions).

In this work we use the idea of universality in a wider sense. Actually, we have
already encountered two examples of this phenomenon: First, the UV renormaliza-
tion procedure (in its most general form presented in sects. 5.6.1 and 7.3), provides
an effective low energy formulation which is very insensitive to the physics at the
UV scale Λ. This reflects the fact that nature is organized in scales, as argued in
chapt. 2. Second, the scaling form of the classical theory (3.16), which directly gen-
eralizes to the full effective action, allows for density independent statements, if we
express our observables in dimensionless units (cf. e.g. the phase diagram fig. 6.1).
As a practical advantage, one can perform all computations with a fiducially chosen
kF = 1eV. The scale set by the density only enters in the end, when we compare our
results to a particular experimental situation for an observed kF = (3π2n)1/3. We
can then rescale the axes of fig. 6.1 to arrive at absolute values for our observables.
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Figure 6.1: Crossover phase diagram. The dependence of the critical temperature
T̃c = Tc/εF on the inverse concentration c−1 = (akF )−1 is shown for the broad
resonance limit h̃φ →∞ (solid and short-dashed line) and for the narrow resonance
limit h̃φ → 0 (dashed-dotted line). We also indicate the standard BEC (dashed
horizontal line) and BCS (dashed rising line) limits which do not depend on the
choice of the Yukawa coupling. For the broad resonance limit we plot two different
approximations which are specified in the last chapter.

These universal features concern our formulation of the crossover problem as a
whole. Further aspects of universality can be found when considering specific para-
meter regimes in the cube of scales 3.2. We refer to them as “enhanced universality”.
This phenomenon occurs in situations where one of the two parameters c, h̃φ becomes
irrelevant (or fixed). This concerns the limits of narrow and broad Feshbach reso-
nances (“narrow resonance limit”, h̃φ → 0 and “broad resonance limit”, h̃φ → ∞),
the BCS and BEC regimes, c → 0, and the scaling limit, c →∞. For a given T̃ the
crossover for narrow and broad Feshbach resonances can be described by a single
parameter c−1. Results for the BCS, BEC and scaling limit can only depend on h̃φ

and become parameter free for narrow or broad resonances.

We can qualitatively discuss the limits of enhanced universality taking the phase
diagram in fig. 6.1 as an example. The values of c−1 and h̃φ determine the phase dia-
gram completely, i.e. the critical temperature depends only on these two parameters,
Tc = Tc(c

−1, h̃φ). We display the dimensionless critical temperature T̃c as a function
of c−1 and compare the limits h̃φ → 0 (dashed) and h̃φ →∞ (two approximations,
solid and short dashed, cf. the preceding chapter). For intermediate values of h̃φ,
a monotonic change between the two limits is found, cf. also fig. 6.2. Though the
impact of the marginal parameter h̃φ is moderate, the precise value of h̃φ influences
the details of the crossover and will be important for precision estimates for con-
crete physical systems, in particular when narrower resonances than those presently
investigated in 6Li or 40K will be explored.
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Fig. 6.1 clearly reveals an h̃φ - independent approach to the limiting BCS and
BEC regimes: for |c−1| → ∞, h̃φ becomes an irrelevant parameter and the system can
be described in terms of the concentration only. For comparison, we have also plotted
the extrapolated standard BCS (dashed, rising line) and BEC (dashed, horizontal
line) results.

The narrow resonance limit corresponds to an exact solution of the many-body
problem. It requires h̃φ → 0 and additionally a vanishing four-fermion background
interaction, but is free of further approximations. The broad resonance limit, instead,
corresponds to a strongly interacting field theory, whose approximate solution still
involves quantitative uncertainties, in particular close to the critical temperature
(cf. the preceding chapter). This is reflected by the two critical lines obtained in
different approximations in the broad resonance limit. The difference between the
solid line and the short dashed line reflect the uncertainty in the treatment of the
molecule fluctuations. For the solid line our result at the resonance T̃c = 0.292 is in
agreement with the theoretical value obtained in [66; 67] and compatible with the
measurements reported in [67] T̃c = 0.31± 0.04. Including the molecule fluctuations
in the gap equation (short dashed line) yields T̃c(c

−1 = 0) = 0.255. The maximum of
T̃c(c

−1) has a similar value for both approximations. Recent Quantum Monte Carlo
simulations suggest an even smaller value of the critical temperature in the broad
resonance limit and on resonance, T̃c = 0.152(7) [68].

We find a new form of crossover from the narrow to broad resonance limit in
dependence on the Yukawa or Feshbach coupling h̃φ. This is shown in fig. 6.2, where
we plot T̃c (fig. 6.2 (a)) as a function of h̃φ for c−1 = 0. (The curves for other
values of large |c| are similar.) One clearly sees a smooth interpolation between the
regimes. Within the broad resonance regime the precise value of h̃φ is not relevant
for T̃c or, more generally, for all quantities not involving explicitly the microscopic
constituents (“bare fields”). Renormalization effects for h̃φ even as large as a factor
of ten do not matter. In contrast, in the “crossover regime” of intermediate h̃φ ≈ 10
the physical results depend on the value of h̃φ. Now renormalization effects must
be taken into account carefully for a reliable computation. Furthermore, we have
seen in sect. 4.2.2, and more explicitly in 5.6.1, that observations related to “bare
observables” like the fraction of closed channel atoms (or microscopic molecules) can
depend strongly on h̃φ even in the broad resonance regime. We also show in fig. 6.2
(b) the gradient coefficient Aφ for T = Tc, c−1 = 0.

Let us now discuss in more detail the status of the different limits of enhanced
universality.
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Figure 6.2: Enhanced universality for large and small h̃φ. For c−1 = 0 we plot
the dependence on h̃φ of (a) the dimensionless critical temperature T̃c and (b) the
gradient coefficient Aφ for T = Tc . For small h̃φ < 1, a stable universal narrow
resonance limit is approached. For large h̃φ we find a very pronounced insensitivity
of T̃c and Aφ to the precise value of h̃φ – note that we plot on a logarithmic scale. The
“crossover” regime interpolates smoothly between the universal limits. The dashed
lines correspond to the actual value of h̃2

φ for 6Li and 40K, cf. sect. 5.5. Indeed they
belong to the class of broad resonances.

6.2 Exact Narrow Resonance Limit

A nontrivial exact limit exists for which h̃φ → 0 and λ̃ψ → 0 while c and T̃ are
kept fixed. It applies to the symmetric phase including the location of the critical
line. This exact limit remains valid for arbitrary concentration c, even if the scat-
tering length a is arbitrarily large. The molecules and fermionic atoms decouple in
the limit h̃φ → 0 such that the Gaussian (one-loop) approximation becomes exact.
Nevertheless, our limit can describe the full BCS-BEC crossover as visible from fig.
6.1. In practice, the applicability of this limit corresponds to a narrow resonance,
much narrower than the ones currently investigated for lithium or potassium. Alter-
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natively, we can interpret this limit as describing a situation with a large effective
range.

We learn from eq. (3.13) that our limit corresponds to ν̄ − 2σ ∝ h̄2
φ → 0. Due to

the simultaneous vanishing of ν̄ − 2σ and h̄φ our limit is not the trivial limit of a
mixture of a noninteracting atom gas plus a noninteracting molecule gas. Neverthe-
less, we will see that in the narrow resonance limit an appropriate mean field theory
becomes exact and can describe the high temperature phase including the approach
to the critical temperature of the phase transition. (This mean field theory differs
from standard BCS mean field theory results, cf. fig. 6.1.) The existence of this limit
guarantees that mean field theory remains valid as long as h̃φ remains small, say
h̃φ < 1. This is confirmed in fig. 6.2.

In order to establish the exact results for this limit we first perform in eq. (4.34)
the functional integral for the fermions ψ, which for λ̄ψ = 0 can be done exactly –
this strategy has also been implemented in chapt. 4. As shown there, the Gaussian
integral yields an intermediate action S̄[Φ̂] depending only on Φ̂, with

Γ[Φ] = − log

∫
DΦ̂ e−S̄[Φ̂]+JT δΦ̂. (6.1)

Let us discuss the properties of S̄[Φ̂] in the limit h̃φ → 0. This is most easily done
by considering (4.44). The effective potential ũ in (4.44) corresponds to the mean

field potential and we note that ũ = −r̃/(8πc(σ̃)) + ũ
(F )
1 (r̃, σ̃) depends on the gap

parameter r̃ = h̃2
φφ̃

∗φ̃ but not explicitly on h̃φ (for the explicit mean field formula
cf. eq. (4.95)) The loop correction to the inverse boson propagator P̄φ(Q) in the

remaining functional integral for Φ̂ vanishes for h̃φ → 0 due to the overall factor

h̃2
φ. In consequence, the inverse bosonic propagator for φ̂ is precisely given by the

classical part P
(cl)
φ = 2πinT + Ā

(cl)
φ q2 + ν̄−2σ. This is the inverse propagator for free

bosons with an effective mass associated to Ā
(cl)
φ – a simple symmetry consideration

as done in chapt. 3 suggests Ā
(cl)
φ = 1/(4M). In the more general case, Ā

(cl)
φ should

be associated to an effective range rs = 2Ā
(cl)
φ /h̄2

φ, cf. chapt. 3. All terms in S̄[Φ̂]

with more than two powers of Φ̂ also involve powers of h̃φ and therefore vanish in

our limit. In consequence, the functional integral for Φ̂ becomes Gaussian in the
limit h̃φ = 0 and we can solve (6.1) exactly. In our limit it should be evaluated
for σ = ν̄/2. The number density of microscopic molecules n̄M then corresponds to

the density of free nonrelativistic bosons of effective mass 2M (or 1/(2Ā
(cl)
φ ) in the

general case) with vanishing bosonic “chemical potential”, as given by the canonical
partition function.

In the narrow resonance limit the mean field approximation for the effective
potential becomes exact. This yields exact estimates for the critical temperature and
all quantities of the symmetric phase for T ≥ Tc. In contrast, the low temperature
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phase has only a partially meaningful limit for h̃φ → 0. For nonzero r̃ the bare
condensate fraction Ω̄C = 6π2r̃/h̃2

φ (cf. sect. 4.2.2) diverges. The constraint Ω̄C ≤ 1

then implies that r̃ has to vanish ∝ h̃2
φ.

In summary, the limit h̃φ → 0 corresponds to a universal phase diagram in
the narrow resonance limit, as given by the lowest curve in fig. 6.1. For small h̃φ

this universal curve is smoothly approached (fig. 6.2). All corrections to the “narrow
resonance universality” are proportional to the dimensionless quantity h̃2

φ. Obviously,

for h̃φ → 0 all exact results depend only on the parameters c and T̃ , whereby every
point in the (c, T̃ )-plane may be realized by different combinations of a (or ν̄), n (or
σ) and T .

At this point a comment on the interpretation of the narrow resonance limit is in
order. The choice of the classical values for the coefficients in the boson propagator
on the microscopic level corresponds to an intrinsically nonlocal situation. The actual
values used in the figures are found by simple physical considerations, i.e. Ā

(cl)
φ =

1/4M as the gradient coefficient for bosons of mass 2M and chemical potential −2σ
for particle number two. This should, at least, give the right order of magnitude
for the effective range. The association rs = 2Ā

(cl)
φ /h̄2

φ (3.11) reveals that for h̄φ →
0 at fixed gradient coefficient Ā

(cl)
φ and rescaled field ϕ̂ = h̄φφ̂, we deal with a

diverging effective range, while the concentration remains also fixed by construction.
The diverging effective range provides a (momentum dependent) large mass term
weighted as 1

∼ exp−
∫

rs

2
ϕ̂∗~q 2ϕ̂, rs →∞, (6.2)

making the remaining functional integral Gaussian. The functional integral formu-
lation hence shows the mechanism controlling the approximation in the narrow res-
onance limit in a very clear way, at the same time demonstrating that the narrow
resonance limit can be physically interpreted as a situation with large effective range.
This consideration holds irrespective to the actual value of c−1 and is in particular
applicable close to the resonance – this has actually been used in [69] which advo-
cates a controlled approximation scheme at the resonance for large effective ranges.
It is worth noting that our narrow resonance limit is not scale free. The precise
choice of Ā

(cl)
φ influences the results of our calculations; in this work we always use

Ā
(cl)
φ = 1/(4M) for definiteness. For realistic narrow Feshbach resonances additional

physical features, such as a nonvanishing λ̄ψ, may become important as well. This
situation is different from the broad resonance limit, which is indeed scale-free at
resonance and therefore lacks an obvious ordering principle.

1Of course, also the frequency term diverges ∝ h̄−2
φ . What is actually kept fixed is the ratio of

the classical gradient coefficient and the classical wave function renormalization, Ā
(cl)
φ /Z

(cl)
φ ; here

we have normalized Z
(cl)
φ = 1 for the bare boson fields as appropriate for “fundamental” particles.
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Figure 6.3: Crossover at the critical temperature: Contributions to the total particle
number, showing the crossover from fermion to boson dominated physics. (a) Frac-
tions of “dressed” densities in the large h̃φ limit. We compare the results for two
versions of the gap equation as in fig. 6.1. (b) Fractions of “bare” densities in the
exact narrow resonance limit h̃φ → 0. Though the pictures are similar, the physical
interpretation of the two plots differs as described in the text.

In fig. 6.3 we compare the results for the density fractions defined in eqs. (4.76,
4.80) as a function of c−1 in broad and narrow resonance limits. The broad resonance
case (fig. 6.3 (a)) is discussed below. Fig. 6.3 (b) shows the bare density fractions
Ω̄F and Ω̄M as a function of the inverse concentration c−1 for T = Tc. For small
h̃φ . 1 the BEC-BCS crossover is indeed the crossover from small to large Ω̄F ,
since fluctuation effects modifying the classical boson propagator are suppressed as
argued above. The density fractions are insensitive to the fluctuation modifications,
but depend on the classical values entering the boson propagator.
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6.3 Broad Resonance Limit

The broad resonance limit obtains for h̃φ →∞ while keeping c fixed. We will see that
it corresponds to a model for fermionic atoms with local interaction and without
explicit molecule degrees of freedom. For h̃φ → ∞ all quantities depend only on
c and T̃ . The broad resonance limit therefore shows a particularly high degree of
universality. For fixed c and finite σ̃ the limit h̃φ → ∞ is accompanied by ν̃ → ∞
according to eq. (3.13)

c = − h̃2
φ

8πν̃
. (6.3)

This relation is independent of σ̃. For finite σ̃ the resonant in-medium scattering
length aR(σ) coincides with the reduced resonant scattering length aR(σ = 0). In

the simultaneous limit |ν̃| → ∞, h̃φ → ∞, the “classical” terms Ã
(cl)
φ

~∇φ̂∗~∇φ̂ and

φ̂∗∂τ φ̂ become subdominant and can be neglected. In the fermionic language (3.8)
our model therefore reduces to a purely local four-fermion interaction. Our partially
bosonized description has to match the purely fermionic description with a pointlike
interaction term.

As the scale set by h̃φ drops out in this limit, we can express the crossover
in terms of a single parameter, the inverse dimensionless scattering length c−1. In
the superfluid phase we can use for the order parameter the squared dimensionless
fermionic mass gap r̃ = h2

φρ. These are precisely the generic parameters used in
a purely fermionic description. They characterize the system uniquely in the strict
limit h̃φ →∞, but also remain very efficient for h̃φ À 1. Corrections will be O(h̃−2

φ )
or less.

The systems currently investigated experimentally are 6Li and 40K. Both range
in the broad resonance regime, as can be seen from fig. 6.2 and discussed in sect.
5.5. This clearly motivates the theoretical investigation of this regime.

In contrast to the narrow resonance limit the broad resonance limit cannot be
solved exactly. It still corresponds to an interacting fermion model, as discussed
in detail by Strinati et al. [21–25]. Nevertheless, it allows us to make a detailed
matching with a purely fermionic description and to compare all physical results
directly by computing the concentration c in both approaches. Furthermore, the
broad resonance limit can be used as a starting point for a systematic investigation
of corrections beyond a local four-fermion interaction.

Our present calculations in the broad resonance limit still involve quantitative
uncertainties related to our approximation scheme. The shortcomings are most se-
vere in the crossover regime due to the absence of an obvious ordering principle.
This differs from the exactly solvable narrow resonance limit. On the other hand,
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due to the “loss of memory” concerning the details of the microscopic interaction
vertex (3.8), this limit has a higher degree of robustness as compared to the narrow
resonance limit, where the details of the microscopic interactions must be known.

Finally, we would like to point out that a further “crossover problem”, i.e. the
crossover from small to large h̃φ, emerges from the above discussion as anticipated in
the introduction to this chapter. We leave this exciting field, physically describing the
crossover from nonlocal to pointlike interactions, for future work. Our interpretation
of the narrow and broad resonance limits is confirmed in the numerical study [70]
comparing different types of interaction potentials.

For the large values of h̃φ encountered in the broad Feshbach resonances in 6Li
and 40K the contributions from the closed channel molecules Ω̄M , Ω̄C become very
small (cf. fig. 4.1 (b)). The dressed molecules differ substantially from the bare
molecules (large Zφ) and the “macroscopic” crossover physics is better described in
terms of dressed molecules (4.76). We display in fig. 6.3 (a) the fraction of dressed
unbound atoms ΩF and dressed molecules ΩM (cf. eq. (4.76)) for large values of h̃φ

and T = Tc. The fractions are not sensitive to the precise value of h̃φ in the broad
resonance limit h̃φ →∞, similar to the behavior found for small h̃φ.

This discussion reconciles the evaluation in a purely fermionic setup (single-
channel model) with the evaluation of the crossover problem starting from a Yukawa
type model (two-channel model). A comparison of purely fermionic vs. Yukawa-
type approach based on the computation of several observables in both models has
recently been performed [71]. Working with the microscopic parameters appropriate
for 40K, almost no difference is found between the two approaches. This is consistent
with our investigation, classifying 40K in the broad resonance regime where the two
approaches become indeed equivalent.

6.4 BCS and BEC Regimes

The BCS and BEC regimes correspond to the limits c → 0− and c → 0+. In the limit
of small |c|, the marginal parameter h̃φ turns irrelevant. Formally, this can be seen
form the microscopic four-fermion vertex (3.8): In these limits, the absolute value of
|ν̃ − 2σ̃| becomes large compared to the momentum dependent terms. Indeed, the
temperature and momentum dependent terms in the denominator of eq. (3.8) are
typically of the order εF = k2

F /(2M) whereas |ν̄ − 2σ| ∼ εF h̃2
φ/|c|. For |c| → 0 the

interaction becomes therefore effectively pointlike for any given nonzero value of h̃2
φ.

In consequence, the results can only depend on λ̄ψ or c, but not on h̃φ separately.

Though an intuitively expected result, this kind of universality is interesting
from a conceptual point of view. It is associated to a loss of memory concerning
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field degrees of freedom: On the BCS side, the molecules could have been omitted,
and the BCS picture of a weakly interacting Fermi gas exhibiting the formation of
Cooper pairs becomes valid. On the BEC side, we end up with an effective theory
for the “dressed” molecules. They behave exactly like weakly interacting pointlike
fundamental bosons (see below), whereas atom degrees of freedom are completely
negligible for the macroscopic features.

The reason for this behavior can be seen directly from the functional integral
(4.34) and the microscopic action (3.1). We can introduce the variables c−1 and

ϕ̂ = h̄φ
ˆ̄φ 2 (ϕ∗ϕ = r), which is an exhaustive set to describe these limits. With these

preparations, let us sketch the basic picture for the limiting cases: For c−1 → −∞
(BCS limit), the classical contribution to ∂ũ/∂r̃ acts as a large positive mass term
∝ −c−1 for the bosons, and the correlation functions associated to ϕ̂ are heavily sup-
pressed. On the other hand, for c−1 → +∞ (BEC limit), the solution of the crossover
problem implies for the effective chemical potential σ̃ → −∞, and −σ̃ constitutes
a mass term for the fermions, similarly suppressing their propagation. Though the
interaction between fermions and bosons remains strong through ϕ̂ψ†εψ∗, the overall
role of one of the two different degrees of freedom becomes unimportant in the two
respective limits. In the next two sections, we discuss the BCS and BEC regimes in
more detail. In particular, we will comment on the mechanisms which provide for an
ordering principle in these regime. This discussion can possibly give some guidance
for future extensions of the present work.

6.4.1 BCS

As argued above, c−1 → −∞ provides a mass term for the bosons. More precisely,
boson fluctuations are suppressed as long as the “classical” mass term c−1 in the re-
maining bosonic functional integral (4.44) is much larger than the contribution from
fermion fluctuations ∂ũ/∂r̃. In this case, the fermionic mean field theory becomes
well controlled and we can safely neglect bosonic correlations encoded in (4.44). As
an immediate consequence, the equation of state reduces to the mean field result.

As a caveat to keep in mind, we note that the criterion for the phase transition
in BCS theory is the vanishing of the effective mass term,

− 1

8πc
+

∂ũ1

∂r̃
= 0. (6.4)

Hence close to the phase transition, the bosonic fluctuations cannot be neglected
as expected. A similar problem is encountered in the superfluid phase in presence
of a massless Goldstone mode, which is actually responsible for the phenomenon of

2Note the close analogy to the rescaling transform Z (4.83).
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superfluidity. Our Schwinger-Dyson approach generates a term ∝ λ
(F )
φ nM (cf. eq.

(5.21)) - since nM is small in the BCS regime, we find no significant deviation from
the BCS results.

As an orientation for future work, we note that deviations from the BCS result
can be expected from the inclusion of the ψ†ψ interaction channel on top of the ψψ
channel, which we have investigated with our partial bosonization strategy imple-
mented in chapts. 4 and 5. Indeed, a careful inclusion of fluctuations in this channel
lowers the dimensionless critical temperature of BCS theory by a factor of ≈ 2.2 as
shown by Gorkov and Melik-Barkhudarov [72] (for a review see e.g. [47]),

T̃BCS
c = $e

π
2

c−1 → T̃G
c = (4e)−1/3T̃BCS

c . (6.5)

(Here the prefactor $ = 8γ/(πe2) ≈ 0.61.) This result, known as Gorkov’s correc-
tion, does not seem to be in reach with the evaluation strategy presented in chapts.
4 and 5 – we find precisely T̃BCS

c in the BCS regime, cf. fig. 6.1. On the other hand,
it constitutes an interesting challenge for the analysis in the frame of the functional
renormalization group in a more extended truncation.

So far we have argued with the large value of c−1 providing an ordering principle
in the BCS regime. However, it is possible to argue in a different way, based on a
consideration of the chemical potential. Inspection of figs. 5.2, 5.5 reveals that in
the BCS regime, the chemical potential σ̃ is very close to the value characteristic
for the free Fermi gas, σ̃ = σ/εF = 1; at low T̃ , the Fermi surface therefore is very
sharp, σ̃/T̃ = σ/T À 1. This, in turn, makes it plausible why the dressed molecules
do not play a role in the BCS regime: Available momenta are strongly confined to
the Fermi surface, and therefore all interactions can be taken effectively momentum
independent. The density of dressed molecules counts the available frequency and
momentum modes and therefore is a measure of the non-locality induced by the
interaction. Hence the equation of state is strongly dominated by the fermionic
mean field density. In our approximation this is reflected by the kinetic coefficients
for the bosons growing large in the BCS regime – this leads to a suppression of
bosonic modes. The kinetic coefficients are plotted in fig. 6.4. In sum, the sharpness
of the Fermi surface gives an complementary justification for the validity of BCS
mean field theory, which is not directly based on the smallness of the coupling c.
This statement can be made more rigorous in a renormalization group framework,
where a power counting different from our naive scaling analysis (3.15) is established
[73]. As it turns out, in this power counting scheme the four-fermion interaction at
zero external momentum is a marginal operator. A “derivative expansion” of the
fully momentum dependent interaction which separates momenta tangential and
perpendicular to the Fermi surface generates marginal operators for the tangential
components and irrelevant operators for the perpendicular components. It is worth
noting that Gorkov’s result is obtained by a careful treatment of these momentum
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Figure 6.4: (a) Dimensionless gradient coefficient Ãφ = 2MĀφ and wave function
renormalization Zφ. We divide by h̃2

φ in order to get numbers O(1) and use h̃2
φ =

3.72 · 105 as appropriate for 6Li. (b) Dimensionless renormalized gradient coefficient
Aφ = Ãφ/Zφ for T = 0, as a function of the inverse concentration. In the BCS limit,
Aφ grows large, suppressing the propagation of dressed bosons. In the BEC limit,
Aφ takes the classical value 1/2 for elementary bosons of mass 2M .

dependent interactions; in particular it involves an averaging over the tangential
momentum components.

6.4.2 BEC

In the BEC regime the coupling becomes small as well, c−1 → −∞ and we ex-
pect a simple mean field description to become valid. Indeed we can identify an
ordering principle also in this limit. From figs. 5.2, 5.5 we infer that the effective
chemical potential σ̃ → −∞. More precisely, the two-body result (5.62) suggests a
scaling behavior σ̃ ∝ −c−2 and we will see that this formula is also extends to the
thermodynamic situation.
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Based on this observation, we consider the functional integral (4.44) again in the
limit σ̃ → −∞ and concentrate on the quadratic piece (4.45) first. More precisely
we consider a situation where we can ignore terms

O
( T̃

−σ̃

)
, O

( r̃

−σ̃

)
(6.6)

or higher in (−σ̃)−1/2. In this limit we can evaluate the fermionic momentum space
integrals (4.46, 4.49) analytically. We separate the momentum dependent from the
zero momentum part and find for the mass term (in dimensionless units, the UV
renormalization has been taken into account, cf. eqs. (4.93,4.94) 3)

m̃2
φ = ν̃ − 2σ̃ +

h̃2
φ

√−σ̃

8π
. (6.7)

The momentum dependent part reads

P̃φ(K̃)− m̃2
φ = iω̃ + q̃2/2 +

h̃2
φ

8π
√

2

(√
iω̃ + q̃2/2− 2σ̃ −√−2σ̃

)

= iω̃ + q̃2/2 +
h̃2

φ

32π
√−σ̃

(
iω̃ + q̃2/2

)
+ ... (6.8)

= Zφ

(
iω̃ + Aφq̃

2
)

+ ...

with

Zφ = 1 +
h̃2

φ

32π
√−σ̃

, Aφ =
Ãφ

Zφ

=
1

2
(6.9)

for our choice A
(cl)
φ = 1/2. In the second step in (6.8) we have additionally assumed

that the negative chemical potential is much larger than all relevant frequencies and
momenta (for a thermodynamic situation, these are restricted by the thermal dis-
tribution functions which are strongly suppressed for high momenta). The diagonal
entries in eq. (4.45) read

λ̃φ(K) =
h̃4

φ

128π
√−σ̃

3 +O(q̃2/
√−σ

5
) = ∆Z2

φ

8π√−σ̃
+ ... (6.10)

The frequency and momentum dependence of λ̃φ(K) is suppressed by an additional
power of (−σ̃)−1 compared to the momentum independent part such that we can
neglect it here.

3We assume that still
√−σ ¿ Λ.
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The integrals evaluated in the BEC limit (6.6) depend on a single dimensionful
parameter σ only 4. As an important consequence, we observe that the naive scaling
with kF , εF expected from power counting holds, very similar to (3.15). In this sense,
the effective “microscopic” couplings (induced by the fermion fluctuations) become
independent of the thermodynamic scales like density (kF ) and temperature – they
can be treated on the same grounds as the classical couplings in a quantum theory
for fundamental bosons!

Eq. (6.8) shows that our derivative expansion becomes exact in the limit σ̃ →
−∞. The appearance of Zφ in the above formula demonstrates that the concept of
dressed fields is very efficient in this limit.

Further, in the BEC limit interactions are suppressed. For example, the φ4 cou-
pling of the remaining bosonic integral is O(

√−σ̃ ∼ c) and thus becomes unim-
portant. Hence the Bogoliubov approximation becomes well controlled in the sense
of an expansion in c. However, there is (at least) one quantity which necessitates
resummation of larger classes of diagrams – even in the vacuum limit where the
scales set by temperature and density drop out! The ratio of molecular and fermi-
onic scattering length is found to obey aM/a = 2 in the Bogoliubov approximation
advocated above (this result was first obtained by Haussmann in [74]), while a solu-
tion of the Schrödinger equation for the four-body problem [75] suggests a universal
scaling coefficient aM/a = 0.6. Of course here one focuses on a relative quantity
measured in units of a, such that the smallness of a itself is useless. We will come
back to this issue in the next chapter, where we also define the bosonic scattering
length, eq. (7.60).

The Schwinger-Dyson equation for the mass reduces to the standard BCS gap
equation in this regime: The bosonic term is suppressed ∼ λ̃

(F )
φ Ω̃M = O((−σ̃)−1),

which has to be compared to the fermionic contribution O(
√−σ̃). Here the unim-

portance of the molecule fluctuations is due to the small value of the coupling, unlike
the BCS regime where the boson density is small. In the approximation (6.6), the
BCS equation then reduces to

c−1 =
√−σ̃ or 2σ = εM = −1/(Ma2) (6.11)

where we have divided out kF in the second equality. I.e. the gap equation reduces
to the density independent two-body result (5.62), in line with the above scaling
arguments.

The equation of state (5.36,5.37) also simplifies considerably,

1 = 3π2
( r̃

16π
√−σ̃

+ 2nM

)
= 3π2

(
2
Zφr̃

h̃2
φ

+ 2nM

)
= ΩC + ΩM . (6.12)

4This is different in the general case, where the fermionic integrals are additionally functions of
the gap and temperature
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In the first line of eq. (6.12) the first term is the explicit result for ΩMFT
F . In the next

step we use the explicit result for Zφ (6.9) and we recover the definition of ΩC which
can be read off from the second line of (4.75) and (4.76). In this approximation
scheme the mean field fermion density hence implies the condensate fraction in
the BEC regime. Interestingly, this will be quite different in the FRG treatment
presented in the next chapter. Eq. (6.12) precisely has the form of the equation of
state for Bose-Einstein condensation – obviously the system has lost all its memory
of the fermionic constituents if one considers thermodynamic observables as the
particle density. The density contribution ΩM is of Bogoliubov type. Indeed we can
compare our expression for the particle density in SSB with the standard Bogoliubov
form,

nM =
1

2

∫
d3q

(2π)3

(
|vq|2 +

|uq|2 + |v−q|2
exp 2αφ − 1

)
(6.13)

when identifying the Bogoliubov transformation coefficients and our expressions
(listed in app. D.4.3, eq. (D.45))

|vq|2 =
1

2

(α + κ

αφ

− 1
)
, |uq|2 + |v−q|2 =

α + κ

αφ

. (6.14)

Let us now perform the broad resonance limit h̃φ → ∞ on top of the BEC limit
to see the relation to standard Bogoliubov theory most clearly. In this case, the
classical pieces for the kinetic terms become unimportant such that ∆Zφ = Zφ and
the inverse propagator matrix reads, in dimensionful renormalized units in SSB

P̄φ(K)

Zφ

=




4πa
M

φ̄∗φ̄∗ iω +
~k 2

4M
+ 4πa

M
ρ̄

−iω +
~k 2

4M
+ 4πa

M
ρ̄ 4πa

M
φ̄φ̄


 . (6.15)

The dimensionful renormalized bosonic coupling λ̄φ/Z
2
φ = 4πa/M can be related to

the scattering length for identical composite bosons of mass 2M yielding aM = 2a,
cf. eq. (7.60) in sect. 7.3. Hence this is precisely the inverse propagator matrix for
fundamental bosons of mass 2M , interacting through an effective scattering length
2a.

In SYM the diagonal entries vanish and the mass term m̄2
φ appears in the off

diagonal parts. It then plays the role of an effective chemical potential and has the
derivative

∂m̄2
φ

∂σ
= −2Zφ, (6.16)

as expected for the chemical potential of composite particles, and as advocated in
(4.82).
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We emphasize that we can perform first the limit h̃φ → ∞ where we recover a
purely fermionic model with pointlike interaction and no explicit molecule degrees of
freedom. Subsequently we may consider large c−1 where the approximations leading
to eq. (6.13) become valid. This shows that the Bogoliubov formula for weakly
interacting “fundamental” bosons can be recovered from a purely fermionic model! In
our approach, this result emerges in the simultaneous limit c−1 →∞ (BEC regime),
h̃φ → ∞ (broad resonance regime). Our Zφ - renormalization procedure generates
precisely the macrophysics we would have obtained when starting microscopically
with a purely bosonic action. The bosons emerge dynamically. We do not require the
assumption of microscopic bosons. A similar result has been established by Strinati
et al. [21–25] who work in a purely fermionic setting, or, in our language, in the broad
resonance limit h̃φ →∞ from the outset. On the other hand, we are not limited to
the broad resonance case, and we can compute corrections to it. For example, for
large h̃φ the contributions from the bare molecules are suppressed ∼ h̃−2

φ .

From a conceptual point of view, the BEC regime is very interesting: the large
negative value of the chemical potential leads to a decoupling of the basic fermi-
onic constituents and the effective molecular degrees of freedom. This is an example
of scale separation which finally underlies effective field theories in any branch of
physics. Here we can study this phenomenon explicitly. The double chemical poten-
tial −2σ in this region should be interpreted as the binding energy for the dynam-
ically generated molecules. In an energetic picture, propagation of the fermions is
suppressed by a gap −σ compared to the zero of energy determined by the molecules
on the BEC side, cf. eq. (5.50). This, in turn, suppresses all fermionic correlation
functions. In a position space picture, the molecules are strongly localized entities,
whose internal structure is not resolved at low temperature. They can therefore be
considered as fundamental particles, for which correlation functions can be extracted
from the remaining bosonic functional integral.

We finally note that a large negative chemical potential acts as a mass term for
both the fermions and the bosons, if we consider σ as a free parameter and do not
fix the particle density a priori. In other words, it acts as an infrared regulator.
This, together with the observation that the σ - derivative of the effective action
as constructed in sect. 4.2.2 generates precisely the structure of the exact renor-
malization group equation derived in [57] (for a larger class of infrared regulators),
motivates the choice of σ as the cutoff function for the functional renormalization
group analysis presented in the next chapter.
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6.5 Unitary Limit

A further interesting form of universality was pointed out by Ho [64] in the limit
c−1 → 0 5. It is argued that if the scattering length drops out, then the only remain-
ing scales are the density (or kF ) and the temperature T , and the thermodynamics
of the system should be governed by simple scaling laws.

In this form the argument is not complete since it assumes in addition a strictly
pointlike interaction. Deviations from the pointlike structure, as reflected in the Fes-
hbach coupling h̄φ, introduce new scales and therefore new dimensionless parameters
as h̃φ. This is clearly seen by the h̃φ dependence of the quantities T̃c and Aφ (ef-
fective gradient coefficient for the dressed bosons) in fig. 6.2, which indeed refers to
the resonance c−1 = 0. For example, a given h̄φ corresponds to a particular density

k
(cr)
F for the crossover from a broad to a narrow resonance. (We may define k

(cr)
F by

the condition h̃φ(h̄φ, k
(cr)
F ) = 10.) In this sense the unitary limit does not exhibit

complete universality since it depends on an additional parameter.

Nevertheless, for a broad resonance the actual value of h̃φ is irrelevant for the

dressed quantities (as long as we are in a range of kF sufficiently away from k
(cr)
F ).

Thus Ho’s argument becomes valid in the double limit 6 c−1 → 0, h̃φ → ∞: For
dressed quantities all dimensionless numbers and ratios can be predicted completely
independently of the microphysical details of the system!

Our results for a broad Feshbach resonance extend this argument also away from
the location of the resonance. Universality holds not only for one particular value of
B at the Feshbach resonance. For arbitrary B in the whole crossover region a single
parameter c−1 describes all relevant macroscopic properties of the dressed quantities.
The concrete microphysics of a system is only needed to relate c to B, i.e. it is only
reflected in one function c(B) which varies from one system to another.

The unitary limit (also called resonance or scaling limit) for broad resonances at
moderate and low temperatures is the most challenging region of the crossover phase
diagram, and our approximations are plagued with the most severe uncertainties in
this regime. This can be understood qualitatively by the absence of an obvious
ordering principle – both in the BEC and BCS regime we can establish such a
principle based on the large value of |c−1| which suppresses either fermion or boson
correlations. This is most prominent in the discrepancy of our estimate for the
critical temperature at unitarity (fig. 6.1), and the QMC result T̃c = 0.152(7) [68].
We might speculate that this is due to a medium effect similar to Gorkov’s correction
reducing the BCS critical temperature by a factor 2.2, see above. This conjecture

5A similar argument was proposed even earlier in the context of bosonic systems in [76].
6In our approach this also holds for the narrow resonance limit c−1 → 0, h̃φ → 0, λ̄ψ → 0.

However, in practice λ̄ψ or similar terms will not vanish and induce scaling violations.
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is based on the simple observation that at low temperatures at the resonance, one
still deals with a substantial Fermi surface, cf. figs. 5.2, 5.5 (Quantum Monte Carlo
simulations confirm this size of the chemical potential, cf. [62] at T = 0 and [68]
at T = Tc.), such that the Gorkov correction, which is known to be important for
quantitative accuracy even in the BCS regime, could be important in this regime
also. Interestingly, the pronounced Fermi surface at low temperature could provide
an approximate ordering principle at the resonance which does not rely on the large
size of the inverse coupling c−1. We believe that the above effect can be captured by
a proper rebosonization treatment [50] in the frame of functional renormalization
group equations.



Chapter 7

Renormalization Group Analysis

In this chapter we present the results obtained so far in the frame of Functional
Renormalization Group (FRG) equations.

In the two-body limit, we can substantially improve our result for the ratio
aM/a for bosonic and fermionic scattering length (cf. sect. 6.4.2) and provide an UV
renormalization procedure which is equivalent to the one presented in the frame of
Schwinger-Dyson equations in sect. 5.6.1. We stress that there is a basic difference
in our problem and many high energy applications of the FRG. In high energy
physics, especially QCD, one deals with a situation where the high energy limit
is well controlled (asymptotic freedom) and experimentally accessible in collider
experiments. Starting from a well-known classical action at a high momentum scale,
one can then follow the RG evolution to low momentum scales. In ultracold gas
physics instead, the low temperatures and densities do not allow for a resolution
of the high energy sector of the theory as argued in chapt. 2. Instead, low energy
properties are extracted from two-particle scattering in the physical vacuum, i.e.
at zero temperature and density. Our UV renormalization prescription encompasses
precisely this issue.

For the many-body problem, our focus is on the BEC regime. Here, we deal
with a well-controlled situation which is therefore well suited for the development
of the most important conceptual advances. The results presented here still have a
preliminary character and have to be consolidated in ongoing work, but are quite
promising. We recover an effective Bogoliubov theory as in the Schwinger-Dyson
analysis, which however quantitatively differs from our earlier results. We now obtain
very good agreement with QMC calculations performed at T = 0 in the BEC regime
[77]. As a further important improvement of the Schwinger-Dyson approach, at
higher temperature we now obtain a second order phase transition, instead of a
first order as typical in Bogoliubov-type approximation schemes. As an important
conceptual result, our approach reconciles the generic infrared freedom of bosonic
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O(N) models in the spontaneously symmetry broken phase [60] with Bogoliubov
theory, which implies that remnants of interactions on higher momentum scales
manifest themselves via a condensate depletion at zero temperature.

In the next step, the whole phase diagram should be mapped out. A quantita-
tively accurate completion of this task might also need an extension of the truncation
presently used.

The FRG which we use [57] is conceptually very close to the block-spin idea of
Kadanoff [78], which was later further developed and put into practical use in the
context of statistical mechanics by Wilson [79] and Wegner [80].

In order to sketch the basic idea, we consider the functional integral for a classical
action SΛ depending on the scalar field ϕ and parameterized by a set of couplings gi

Λ,
which are defined at some high momentum scale Λ. We then divide the functional
integration in an integration over high momentum modes (Λ > q ≥ Λ′) collected in
the field ϕ>, and over low momentum modes q < Λ′, encoded in ϕ<:

∫
Dϕ exp−SΛ[ϕ] =

∫
Dϕ<Dϕ> exp−SΛ[ϕ<, ϕ>] (7.1)

=

∫
Dϕ< exp−SW

Λ′ [ϕ<]

where the fields ϕ>/< vanish in the complementary domain of momenta. SW
Λ′ is the

“Wilsonian effective action” 1 includes the effects of fluctuations which have been
integrated out

exp−SW
Λ′ [ϕ<] =

∫
Dϕ> exp−SΛ[ϕ<, ϕ>]. (7.2)

The impact of this formalism is twofold: First, it explains how fluctuations cause
the couplings of a theory to change with scale, gi

Λ → gi
Λ′ . This gives rise to a “coarse

graining” picture of the renormalization program: Lowering the cutoff Λ′ at fixed Λ,
the functional integration averages over more and more extended domains in position
space. The interpolation between the “microphysics” defined at a scale Λ and the
“macrophysics” approached for Λ′ ¿ Λ is mirrored in a change of the couplings with
scale, and done in a smooth and beautifully intuitive way. Second, it sheds light on
the status of effective theories defined at the scale Λ, which can always be interpreted
as resulting from an averaging process operative on even higher momentum scales.

Of course, eqs. (7.1,7.2) do not yield a practical prescription of how to perform
the mode elimination. For this purpose, the functional integral is projected on the
couplings gi

Λ′ . The process of the successive inclusion of fluctuations is highly nonlin-
ear – therefore a sequence of infinitesimal renormalization group steps is necessary.

1Conceptually, it is closer to the generating functional of the connected Green functions W than
to the 1PI effective action Γ.
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This gives rise to a coupled set of first order differential renormalization group equa-
tions for the couplings gi

Λ′ , where the response of the couplings w.r.t. the change of
scale Λ′ is studied. The rhs of these equations are the famous β-functions.

We use a functional renormalization group equation for the effective (average)
action Γk [57]. It is based on the concept of the effective action Γ as introduced in
chapt. 4, i.e. the generating functional of the 1PI Green functions. The difference
between Γ and Γk originates from an artificially introduced k-dependent mass term
which acts as an infrared regulator – only modes q & k are included in Γk. The
FRG then studies the reaction of Γk w.r.t. the change of the scale k. One then deals
with an exact partial functional differential equation for Γk, where exact refers to
the fact that the solution of the FRG for k → 0 is the full quantum effective action,
Γk→0 = Γ. The FRG thus is a fully nonperturbative concept, and may be viewed
as a formulation of a quantum theory complementary to the functional integral.
It has a simple interpretation in terms of coarse graining: Starting the flow at high
momentum scale k or small length, fluctuations are completely suppressed. Evolving
to smaller values of k, fluctuations (thermal and quantum) are smoothly included –
in position space, this corresponds to an averaging over larger and larger domains.
Finally, for k → 0 one reaches a macroscopic probe size, and all fluctuations are
taken into account. The derivation of this equation is presented in the next section.
Of course, a closed solution for nontrivial applications is in general not possible –
it would constitute an exact solution of a quantum theory. However, the choice of
a sensible truncation makes this concept a very powerful computational tool. For a
review including practical guidance cf. [58].

The problem of pairing in nonrelativistic many-fermion systems at zero temper-
ature has been investigated in the frame of the FRG by Krippa et al. [81–83].

7.1 Effective Average Action and Flow Equation

In this section we derive the FRG equation for the effective average action, working
in the Nambu-Gorkov formalism introduced in chapt. 4. The starting point is again
the generating functional for the connected Green functions (4.6). We modify the
classical action in this functional by a scale (k) dependent cutoff or regulator term,

S[χ̂] → Sk[χ̂] = S[χ̂] + ∆Sk[χ̂], (7.3)

where the cutoff term is quadratic in the fields and reads in momentum space

∆Sk[χ̂] =
1

2

∫

Q

χ̂T (Q)Rk(Q)χ̂(Q). (7.4)
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The cutoff function Rk can be chosen momentum (Q) dependent in general. It should
not be confused with the UV cutoff Λ. For fixed Q we require

Rk(Q) ≥ 0, Rk(Q) = 0 ⇔ k = 0, (7.5)

lim
k→0

Rk(Q) → 0, lim
k→∞

Rk(Q) →∞.

Here Q is a typical physical momentum for a given problem. The limit condition in
the second constraint in line two can as well be replaced by k → Λ, since for an UV
cutoff Λ one has Λ/

√
Q2 À 1 – the cutoff scale is far beyond all available momenta.

We will supplement this discussion by further remarks after having derived the FRG
equation.

The regulator term introduces an artificial scale dependence on the generating
functional,

Wk[J ] = log

∫
Dχ̂ exp−Sk[χ̂] + JT χ̂ (7.6)

– seen from another perspective, we now consider a theory with classical action Sk

instead of S. The first constraint in eq. (7.5) implies that in the limit of completely
removed cutoff k → 0, we recover the original generating functional

lim
k→0

Wk → W (7.7)

encoding the full information of the quantum field theory.

We can now define the effective average action Γk by a modified Legendre trans-
form,

Γk[χ] = Γ̂k[χ]−∆Sk[χ] (7.8)

which involves the standard Legendre transform of Wk,

Γ̂k[χ] = −Wk + JT
k χ. (7.9)

HereΓ̂k is the k-dependent effective action corresponding to Wk. The use of the
modification of the standard Legendre transform will become clear below. The field
equation for the effective average action reads

δΓk[χ]

δχT
+ Rkχ = MJk. (7.10)

Eqs. (7.3,7.6,7.8) and (7.10) allow for a functional integral representation of the
effective average action,

Γk = − log

∫
Dδχ̂ exp−Sk[χ̂] + JT

k (χ̂− χ) + ∆Sk[χ] (7.11)

= − log

∫
Dδχ̂ exp−S[χ + δχ̂] +

δΓk

δχT
δχ̂ + ∆Sk[δχ̂].
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Note the appearance of the fluctuation δχ̂ = χ̂− χ in the first line – the full field χ̂
comes from the functional integral representation of Wk (7.6), while the expectation
value stems from the Legendre transform (7.8). In the second step we have used
(7.10) and the identity

∆Sk[χ̂] = ∆Sk[χ] +

∫

Q

(
χT Rk(Q)δχ̂ + δχ̂T Rk(Q)χ

)
+ ∆Sk[δχ̂]. (7.12)

The cutoff function Rk enters (7.11) only through a piece depending on the fluctu-
ation δχ̂ – this would be different for the k-dependent effective action Γ̂k.

We discuss the limiting cases for the effective average action defined through
(7.11). In the limit k → 0 the cutoff is removed by the first constraint in (7.5), such
that we end up with the full effective action, defined by the microscopic action S
and fully including all fluctuations similar to (7.7),

lim
k→0

Γk = Γ. (7.13)

Obviously, the k-dependent effective action Γ̂k has the same property, limk→0 Γ̂k = Γ.

In the limit k → ∞, fluctuations are suppressed – indeed exp−∆Sk[δχ̂] acts as
a δ-functional ∼ δ[δχ̂]. Neglecting fluctuations at all 2 we find

lim
k→Λ

Γk = S. (7.14)

The definition (7.8) ensures that the classical action is approached. The standard
Legendre transform of Wk, instead, approaches limk→0 Γ̂k → S + ∆Sk. Hence, if the
classical action S is known, Γk is the appropriate quantity setting an initial condition
for the flow. The flow equation to be derived next then directly interpolates between
the classical and the full quantum effective action Γ.

In next to leading (quadratic) order in the fluctuation δχ̂, we can evaluate the
Gaussian integral and recover the structure of one-loop perturbation theory in the
form (the “supertrace” is defined in app. C, eq. (C.21))

lim
k large

Γk ≈ S +
1

2
STr

(
S(2) + Rk

)
. (7.15)

From this perspective, a large cutoff provides an ordering principle (small fluctua-
tions) guaranteeing the validity of perturbation theory. However, this result does not
have too much physical impact since the a priori unphysical cutoff function appears
in (7.15). In the case of perturbatively relevant couplings (like the mass term in our
problem), the corresponding perturbation term will be present even for Rk →∞.

2This might not be justified in the presence of perturbatively relevant couplings as discussed
below.
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Now we derive the flow equation for the effective average action Γk. First we
study the reaction of Γ̂k to a change of the artificial cutoff scale – this yields the
flow equation for Γ̂k:

∂kΓ̂k = −eΓ̂k∂ke
−Γ̂k = eΓ̂k

∫
Dχ̂ ∂kSk[χ̂] exp−Sk[χ̂] + JT

k δχ̂

=
1

2

∫

Q

∂kRk

(
〈χ̂T χ̂〉c,k + χT χ

)
. (7.16)

In the second line we have used that the classical source terms from Γ̂k and the
functional integral in the first line cancel such that the correctly normalized two-
point function appears. We have written down the decomposition in connected and
disconnected part for this object in the second line. Now, since Γ̂k is nothing but the
usual Legendre transform of Wk, we can use the identity for their second functional
derivatives eq. (4.22),

〈χ̂T χ̂〉c,k = W
(2)
k =

(
Γ̂

(2)
k

)−1
=

(
Γ

(2)
k + Rk

)−1
. (7.17)

Using the definition (7.8), we thus find for the flow of the effective average action

∂kΓk =
1

2

∫

Q

∂kRk

(
Γ

(2)
k + Rk

)−1

. (7.18)

This is a closed functional differential equation – it only involves Γk and its second
functional derivative. By construction, its solution for k → 0 yields the full quantum
effective action Γ and therefore is an exact flow equation. It has a simple one-loop
structure, where the cutoff derivative is represented by the insertion of a dot.

Finally we discuss the role of the cutoff function in more detail. In the IR regime
|Q| ¿ k, the cutoff function acts as a mass term regulating possible IR divergences,
since it is positive for k > 0 (cf. eq. (7.5)). This implies that only modes with
|Q| & k can contribute to the flow. The FRG therefore is an appropriate tool for
the investigation of situations which are plagued with IR divergences, as we have
encountered them in the frame of Schwinger-Dyson equations.

In the UV regime, Rk can be chosen to act as a regulator, too. For this purpose,
one requires in addition to the constraints (7.5)

lim
|Q|→∞

∂kRk(Q) → 0 sufficiently fast (7.19)

for fixed k. The appearance of ∂kRk in eq. (7.18) then ensures the UV finiteness
of the flow equation. Together with an “initial condition” Γk=Λ = S, this defines a
regularization scheme (“ERGE scheme”).
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Eq. (7.19) leads to a local flow in momentum space. Since Rk acts as a mass
term in the IR and ∂kRk cuts off in the UV, the contribution to the flow at a scale
k comes from a narrow window in momentum space only. Further identifying the
scale k with the physical momentum scale Q, one can argue that the flow resolves a
good part of the momentum dependence of the couplings.

In this work we use a cutoff which does not depend on the momentum Q and
consequently does not respect (7.19). It has the conceptual advantage of a physical
flow as discussed below. On the other hand, it is not optimized for the resolution
of the momentum dependence of the couplings, and alternative cutoff functions
respecting (7.19) should be studied in the future.

7.2 Flow Equations for the Crossover Problem

7.2.1 Truncation

In the spirit of the effective average action, we allow for a scale dependence of the
coefficients of the microscopic action (3.5). This leads to the following ansatz for the
effective average action on a scale k,

Γk =

∫

X̃

[
Zψψ̃†

(
∂̃τ − Aψ4̃ − σ̃

)
ψ̃ + Zφφ̃

∗(∂̃τ − Aφ4̃
)
φ̃ + u(φ̃∗φ̃)

− h̃φ

2

(
φ̃∗ψ̃T εψ̃ − φ̃ψ̃†εψ̃∗

)
+

λ̃ψ

2
(ψ̃†ψ̃)2

]

=

∫

X̃

[
ψ†

(
∂̃τ − Aψ4̃ − σ̃

)
ψ + φ∗

(
∂̃τ − Aφ4̃

)
φ + u(φ∗φ)

−hφ

2

(
φ∗ψT εψ − φψ†εψ∗

)
+

λψ

2
(ψ†ψ)2

]
. (7.20)

Here we work in the dimensionless version where all couplings are expressed in
terms of suitable combinations of the Fermi momentum kF and the Fermi energy
εF = k2

F /(2M). After the second equality, we have additionally switched to the
renormalized version of the couplings. The relations between dimensionful, dimen-
sionless, and dimensionless renormalized quantities are summarized in app. B. All
couplings are now k-dependent quantities; the renormalized fields acquire a scale
dependence through the premultiplication with the square root of the respective
wave function renormalization factors.

As we have done in the Schwinger-Dyson approach, we choose a quartic trunca-
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tion for the effective potential,

u(ρ) =

{
m2

φρ + 1
2
λφρ

2 + ... SYM
λφ

2
(ρ− ρ0)

2 + ... SSB
(7.21)

where SYM and SSB denote the symmetric and superfluid (spontaneously
symmetry-broken) phases. Both ansätze are continuously connected at the critical
line ρ0 = 0,m2

φ = 0.

7.2.2 Choice of the Cutoff Functions: Flowing with the
Chemical Potential

In order to choose cutoff functions for the crossover problem, we study the off-
diagonal entries of the dimensionless renormalized fermion and boson propagators
(C.7,C.11). Those parts of the propagators contain the frequency and momentum
dependence in our truncation and need to be regularized by the scale-dependent
cutoff functions RF , Rφ. It is sufficient to restrict to the symmetric phase,

PF (Q̃)−1 =
(
i (2n + 1)πT̃ + Aψ q̃2 − σ̃ + RF

)
, (7.22)

Pφ(Q̃)−1 =
(
i2nπT̃ + Aφq̃

2 + m2
φ + Rφ

)−1
.

We first discuss the infrared regularization of the propagators. Due to the odd Mat-
subara frequencies, the fermion propagator is not plagued by infrared divergencies
except for T̃ = 0. The boson propagator, on the other hand, has a zero mode n = 0
which potentially causes infrared problems. As usual, the propagation is suppressed
for large mass terms σ̃, m2

φ. We can mimic this effect by choosing the cutoff functions

RF = −σ̃c, Rφ = −2σ̃c. (7.23)

The chemical potential can play the role of an infrared regulator. This choice of the
regulator is a very physical one – the effective average action at a scale σ̃c describes
a physical system at the chemical potential

σ̃tot = σ̃ + σ̃c. (7.24)

However, the physical situations of interest to us require one additional condition as
discussed below. It can always be formulated as a condition for the “physical part”
σ̃ of the total chemical potential σ̃tot. This allows us to stop the flow for σ̃c → 0.

The cutoff functions have mass dimension 2 (σ̃=̂k2) and can be viewed as ana-
lytically continued frequencies. The regularization affects, however, both frequency
and momentum modes in the infrared – there is no need to choose galilean invariant
cutoff functions regularizing explicitly both frequency and momentum modes from
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the infrared point of view. Since they do not modify the structure of the Matsubara
frequencies, they allow for an analytical treatment of the Matsubara sums.

Our cutoff functions (7.23) feature coefficient 1 in the renormalized (Zψ, Zφ -
rescaled) propagators – this corresponds to the use of R̄F = −Zψσ̃, R̄φ = 2Zφσ̃ in
the “bare” dimensionless propagators. This ensures the use of renormalization group
invariant cutoff functions and will generate anomalous dimension terms in the scale
derivatives of the propagators.

The cutoff functions (7.23) are momentum independent and therefore do not
fulfill the usual requirement (7.19) ∂kRk → 0 for q À k (or σ̃ here). Instead, they
are simple mass terms with

∂σ̃cRF = −1, ∂σ̃cRφ = −2. (7.25)

Cutoff functions of this type are called Callan-Szymanzik regulators and can cause
problems in the ultraviolet, necessitating explicit ultraviolet regularization. We note,
however, that the frequency (Matsubara sum) and momentum space integrals for
our particular problem are finite for any of the running couplings we are going
to consider. The flow of the effective action itself can be made finite by the same
argument as we have used to render the particle densities finite – this will become
apparent below. Hence there is no particular need to choose cutoff functions that
regularize the ultraviolet momentum and frequency modes. As argued above, our
choice has the conceptual advantage that the flow equations can be given a physical
interpretation at any scale – the flow directly explores the thermodynamic space of
different particle densities. Further, by choosing the chemical potential as a cutoff,
fermion and boson propagators are regularized in a completely symmetric way. On
the other hand, by choosing a Callan-Szymanzik regulator, we loose the technical
advantage of locality in momentum space as argued above. In the future, cutoff
functions ensuring the latter property should also be investigated.

7.2.3 Flow Equations

The most important flow equations for the crossover problem can be obtained from
derivatives of the field dependent effective potential which is discussed in app. D.4.
We consider the flow of the field dependent one-loop effective potential

∂σ̃cũ1 = ∂σ̃cũ
(F )
1 + ∂σ̃cũ

(B)
1 (7.26)

where we separate the fermionic and the bosonic contribution. The fermionic part
reads

∂σ̃cũ
(F )
1 (σ̃, ρ̂) = −2T̃

∫
d3q̃

(2π)3

(
∂σ̃cγφ tanh γφ − 1

)
(7.27)

= (1− ηψ)

∫
d3q̃

(2π)3

( γ

γφ

tanh γφ − 1
)
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where we have used eq. (D.32) and the ultraviolet renormalization procedure for the
two-point function motivated in sect. 4.2.3, rendering the momentum space integral
for the flow of the fermionic part of the effective potential finite. Clearly this property
will also hold for all couplings obtained by derivatives of the effective potential. The
second line holds for our particular choice of truncation and cutoff function. The
dimensionless field dependent functions γφ, γ and their scale derivatives read in our
truncation

γφ =
((Aψq̃2 − σ̃ − σ̃c)

2 + h2
φρ)1/2

2T̃
, ∂σ̃cγφ = −(1− ηψ)

γ

2T̃ γφ

, (7.28)

γ =
Aψ q̃2 − σ̃ − σ̃c

2T̃
, ∂σ̃cγ = −(1− ηψ)

1

2T̃
.

The fermion anomalous dimension is defined as

ηψ = −σ̃c∂σ̃c log Zψ = −∂t log Zψ (7.29)

with the dimensionless scale derivative 3

∂t = σ̃c∂σ̃c , t = log(−σ̃c). (7.30)

Using t as the flow variable represents the flow on a logarithmic scale, thereby
allowing for a compact plot of solutions of the flow equations over many orders of
magnitude and a high resolution of the infrared flow where the interesting physics
is expected to happen.

The bosonic contribution to the flow of the effective potential reads

∂σ̃cũ
(B)
1 = T̃

∫
d3q̃

(2π)3

(
∂σ̃cαφ coth αφ − 1

)
(7.31)

= −(1− ηφ)

∫
d3q̃

(2π)3

(α + κ

αφ

coth αφ − 1
)
.

3“Dimensionless” here alludes to the fact that the canonical dimension of ∂t is 0, while that
of ∂σ̃c is −2 since the canonical dimension of σ̃c is 2. We usually use the term “dimensionless” in
another sense throughout this work, e.g. σ̃c is dimensionless in the sense that it is measured in
units of the Fermi energy k2

F /2M .
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Here we use the dimensionless functions αφ, α, κ and their scale derivatives

αφ =
1

2T̃

[
(Aφq̃

2 + m2
φ − 2σ̃c)

2 (7.32)

+2λφ(2ρ− ρ0)(Aφq̃
2 + mφ − 2σ̃c) + λ2

φ(3ρ
2 − 4ρ0ρ + ρ2

0)
]1/2

,

∂σ̃cαφ = −(1− ηφ)
α + κ

T̃αφ

,

α =
Aφq̃

2 + m2
φ − 2σ̃c

2T̃
, ∂σ̃cα = −(1− ηφ)

1

T̃
,

κ =
λφ(2ρ− ρ0)

2T̃
, ∂σ̃cκ = 0.

with the boson anomalous dimension

ηφ = −∂t log Zφ. (7.33)

The flow of the couplings we are interested in are obtained by projection with
appropriate derivatives, and setting the fields to their values at the minimum of
the potential.

Flow equations from the effective potential

With these preparations, we can specify the flow equations for the mass term and
the four-boson coupling. In SYM, they read (

∫
q̃

= (2π)−3
∫

d3q̃ = 1/(2π2)
∫

dq̃q̃2)

∂tm
2
φ = −et

{
(1− ηψ)

h2
φ

8T̃ 2

∫

q̃

γ−2
(
γ cosh−2 γ − tanh γ

)
+ (1− ηφ)

λφ

T̃

∫

q̃

sinh−2 α
}

+ηφm
2
φ, (7.34)

∂tλφ = −et
{
(1− ηψ)

h4
φ

64T̃ 4

∫

q̃

γ−4
(
3 tanh γ − γ cosh−2 γ(3 + 2γ tanh γ)

)
(7.35)

−(1− ηφ)
λ2

φ

4T̃ 2

∫

q̃

α−2
[
coth α + α sinh−2 α + 8 coth α sinh−2 α

]}
+ 2ηφλφ.

The factors of −et = σ̃c (eq. (7.30)) account for the use of the dimensionless scale
derivatives. This shows that the flow is suppressed for very small cutoff or t → −∞.
In SSB with ρ0 6= 0 , we can infer the flow of the minimum of the potential ρ0

from the scale dependent field equation for the effective potential (ũ′ = ∂ũ/∂ρ and
analogous for ũ′′),

∂ũ

∂φ∗

∣∣∣
ρ=ρ0

=
∂ũ

∂ρ

∣∣∣
ρ=ρ0

· φ0
!
= 0

SSB⇔ ũ′ = 0 (7.36)

⇒ d

dt
ũ′ = ∂tũ

′ + (∂tρ0) ũ′′ = 0,
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where in our truncation

ũ′′ = λφ. (7.37)

The relevant flows read

∂tρ0 =
et

λφ

{
(1− ηψ)

h2
φ

8T̃ 2

∫

q̃

γγ−3
φ

(
γφ cosh−2 γφ − tanh γφ

)
+ (7.38)

(1− ηφ)
λφ

2T̃

∫

q̃

α−3
φ

[
αφ(2α

2 + 3ακ + κ2) sinh−2 αφ + κ(κ− α) coth αφ

]}− ηφρ,

where λφ is determined by

∂tλφ = −et
{
(1− ηψ)

h4
φ

64T̃ 4

∫

q̃

γγ−5
φ

[
3 tanh γφ − γφ cosh−2(3 + 2γφ tanh γφ)

]
(7.39)

−(1− ηφ)
λ2

φ

4T̃ 2

∫

q̃

α−5
φ

[
αφ(α

3 − 5α2κ + ακ2 + 3κ3) sinh−2 αφ

+ coth αφ(α
3 − 5α2κ + ακ2 + 3κ3 + 2α2

φ(α + κ)(2α + κ)2 sinh−2 αφ)
]}

+2ηφλφ.

Technically important, both the scale derivative and all field derivatives can be
expressed in terms of six dimensionless functions γ, γφ, β and α, αφ, κ. We will call
them basis functions. They allow for a compact notation. For a more general choice
of γ, γφ, β and α, αφ, κ, the truncation can easily be extended beyond the quartic
approximation, still keeping the functional form of eqs. (7.27,7.31). Further, different
cutoff functions can easily be implemented, if the regularization affects the spacelike
momenta only.

At this point we note that the bosonic one-loop diagrams included in the flow
equations are precisely the ones which we have taken into account in the Schwinger-
Dyson equations for the boson mass and coupling. The fermionic diagrams are the
“mean field” contributions already present from integrating out the fermions. In
the frame of partially bosonized functional RG equations, a systematic inclusion of
boson diagrams in the flow of further couplings is straightforward, which would be
hard in the Schwinger-Dyson approach.

Anomalous dimensions

The choice of renormalized fields and couplings (rescaled with the WFRs) leads to
a set of flow equations which does not explicitly involve Zφ, Zψ as running couplings
– the corresponding information enters the flow via the anomalous dimensions. This
has the technical advantage to reduce the set of flow equations by two, since the
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anomalous dimensions are loop integral expressions depending on the running cou-
plings.

According to our truncation, the anomalous dimension is extracted from the
flow of the frequency dependent one-loop correction to off-diagonal entries of the
propagators (∝ ψ†ψ, φ∗φ)

ηψ,φ = −∂t log Zψ,φ = −∂t
∂Im∆PF,φ(ω̃, ~̃q = 0)

∂ω̃

∣∣∣
ω̃=0

(7.40)

where ∆PF,φ(ω̃, ~̃q) is specified in app. C, eqs. (C.22, C.23). Here we need to consider
the imaginary part of the loop correction in order to accommodate the fact that the
operators ψ†iωψ, φ∗iωφ are purely imaginary 4

The scale derivatives produce factors (1 − ηψ) and (1 − ηφ) when acting on the
fermionic or bosonic basis functions, respectively. Hence eq. (7.40) gives only an
implicit definition of the anomalous dimensions, still depending on ηψ, ηφ. On the
other hand, the coupled system of linear equations is easily solved for ηψ, ηφ, giving
the desired explicit results. In the case ηψ = 0, which is relevant in the BEC regime,
(7.40) is an explicit definition for ηφ.

We do not display the results of performing the cutoff derivatives explicitly –
this produces very lengthy results. Using the cutoff derivatives (7.28,7.32), the com-
putation of the anomalous dimensions is, however, implemented straightforwardly
from the loop expressions eqs. (D.4,D.5) for ηψ and (D.6,D.7) for ηφ.

Similarly, for the flow equations of the gradient coefficients, we refer to eqs. (D.21
- D.23), for the Yukawa coupling hφ to (D.24), and for the four-fermion coupling λψ

to (D.26).

7.3 Two-body Limit and the Choice of Initial

Conditions

7.3.1 Flow Equations

The measured two-body observables can be viewed as quantities which are modified
by “vacuum fluctuations” compared to their “bare” counterparts. Clearly we want to
formulate our results in terms of the measured quantities. In (5.49) we have specified
how to project on the two-body limit in the effective action formalism. The flow

4Here we do not distinguish between a wave function renormalization for the radial and the
Goldstone mode. The same is true for the gradient coefficient. This should be included in a future
treatment.
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equations in this limit, supplemented with the constraints (5.50), provide us with
the means to continuously connect the bare (ultraviolet) with the physical (infrared)
quantities. Therefore, we choose our initial conditions such that the flow matches
these values in the infrared. The infrared limit, i.e. the point where we have to stop
the flow, is defined by the constraints (5.50) being fulfilled. This constitutes an UV
renormalization procedure. It is fully nonperturbative and allows to UV-renormalize
all couplings simultaneously. It can be seen as the FRG analog to the Schwinger-
Dyson procedure provided in sect. 5.6.1. On top of an efficient UV renormalization, it
also allows us to substantially improve the approximation for the four-boson coupling
(or the bosonic scattering length aM) in vacuum.

This UV renormalization procedure also forms the basis for the description of
the many-body system. Here the task is to compute observables as a function of
the microscopic observables (h̄φ, a, abg), and additionally the thermodynamic scales
T̃ , kF = (3π2n)1/3. In this case we use the mapping between bare and observed
quantities in order to eliminate the bare quantities from our computation. The
procedure is described in more detail in the next section.

Adding to these practically motivated issues, it is well known that the two body
problem involving only two-body interactions as described by a four-fermion cou-
pling (single-channel model) can be solved analytically (cf. e.g. [41]). We can con-
firm this result in our two-channel model in the frame of the renormalization group
equations, and generalize it to the case that pointlike four-fermion interactions are
included.

In the two-body limit, the system of renormalization group equations greatly
simplifies since a number of diagrams vanish identically. This can be seen by the aid
of the residue theorem, and we can put it in the form of the following theorem:

All diagrams whose inner lines point in the same direction (thereby forming a
closed tour) do not contribute to the flow in vacuum.

To prove this theorem, we first note that for T = 0 the Matsubara sums turn
into continuous integrations,

iω̃F/φ → iq̃0,
∑

n

T̃ →
∫

dq̃0

2π
. (7.41)

Further there is no spontaneous breaking of the U(1) symmetry in the physical
vacuum such that ρ0 = 0. Hence both fermionic and bosonic regularized propagators
are fully characterized by the functions

PF (Q̃) = iq̃0 + Aψ q̃2 − σ̃ − σ̃c,

Pφ(Q̃) = iq̃0 + Aφq̃
2 + m2

φ − 2σ̃c. (7.42)
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Lines pointing in the same direction represent integrals over products of P−1
F , P−1

φ

with the same sign of the frequency and momentum variable Q̃; without loss of
generality, we can choose it positive.

In the presence of a nonzero cutoff, the spacelike part of the propagators including
the mass terms are always positive. Hence, the poles all lie in the upper half of the
complex plane. One then closes the integration contour below, such that no residues
are picked up, showing that these integrals vanish. The cutoff derivative increments
the number of inner lines P−1

F , P−1
φ by one (it changes the multiplicity of the poles),

but does not affect the sign of the momentum variable, such that our argument
is valid for both the regularized loops and their cutoff derivative entering the flow
equation.

The consideration is strictly valid in the presence of a nonzero cutoff. For σ̃c → 0
we have the constraints σ̃ = 0,m2

φ > 0 on the BCS side and σ̃ > 0,m2
φ = 0 on

the BEC side of the resonance. Our argument strictly applies to diagrams with less
than two inner lines with a zero mass entry (σ̃ < 0 constitutes a mass term for the
fermions); for two and more, there are IR divergences at ~̃q = 0. On resonance, where
simultaneously σ̃ = m2

φ = 0, IR divergences are even enhanced. However, since the
flow vanishes identically for all σ̃c > 0, it seems physically sensible to discard these
diagrams from our system of flow equations in vacuum.

Let us now discuss different types of diagrams explicitly which do not contribute
to the vacuum flow.

• The mixed diagram with two inner lines, driving the renormalization of the
fermion propagator, does not contribute. This implies

Zψ = 1, ηψ = 0, Aψ = 1, ∆m2
ψ = 0. (7.43)

• The box diagram with two inner boson and fermion lines, in principle gener-
ating a four-fermion interaction even for vanishing background coupling, does
not appear. For λψ,0 = 0 we thus have

λψ = 0 (7.44)

at all scales. In a vague sense, this means that partial bosonization is very
efficient in this limit – fluctuations are completely absorbed into the bosonic
sector, and there is no “backreaction” on the fermion propagator.

• The diagrams involving solely one inner fermion or boson line 5 are zero. This
is directly related to the fact that the particle density vanishes by construction

5Strictly speaking, the residue theorem can only be applied for the cutoff derivative of the
diagram, since a single inner line does not have sufficient convergence properties for its applicability.
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– diagrammatically, the trace over the full propagator is represented as a closed
loop coupled to an external current, the chemical potential (tadpole graph).
This is relevant for the bosonic contribution to the boson mass which thus
vanishes – the renormalization of the boson mass in the physical vacuum is
purely driven by the fermion loop.

• The “bubble diagrams” (involving two inner boson or two inner fermion lines
forming a closed tour) vanish.

The “ladder diagrams” instead, which have lines pointing in the same direction,
contribute. Due to the opposite signs of the momentum variables in the propaga-
tors, the poles of these diagrams are located in both the upper and the lower half
plane. It is worth noting that the four-boson coupling receives such a bosonic ladder
contribution. This is the only bosonic diagram in our truncation which survives the
vacuum limit. The formal IR divergence of the diagram for mφ = 0 is regulated by
the cutoff function to give a finite result for the four-boson coupling in the physical
limit σ̃c → 0 (cf. fig. 7.1).

Adding to the massive structural simplifications, the remaining loop integrals
can be performed analytically. We find for the remaining system of renormalization
group equations

∂tm
2
φ = − h2

φ

16π

σ̃c

(−σ̃c − σ̃A)1/2
+ ηφm

2
φ, (7.45)

∂th
2
φ = −λψh2

φ

8π

σ̃c

(−σ̃c − σ̃A)1/2
+ ηφh

2
φ,

∂tλψ = − λ2
ψ

16π

σ̃c

(−σ̃c − σ̃A)1/2
,

∂tλφ =
3h4

φ

256π

σ̃c

(−σ̃c − σ̃A)5/2
− (1− ηφ)

λ2
φ

8π

σ̃c

A
3/2
φ (m2

φ − 2σ̃c)1/2
+ 2ηφλφ,

∂tAφ =
h2

φ

128π

σ̃c

(−σ̃c − σ̃A)3/2
+ ηφAφ

with the anomalous dimension

ηφ = − h2
φ

64π

σ̃c

(−σ̃c − σ̃A)3/2
. (7.46)

We denote the “chemical potential” in vacuum (half the binding energy of a mole-
cule) with σ̃A as in sect. 5.5. Here we have already inserted the simplifications
resulting from the non-renormalization of the fermion propagator. The “core” of
flow equations for the mass m2

φ, Yukawa coupling h2
φ and four-fermion coupling λψ

constitute a closed set of equations in our truncation. The RG equations for λφ, Aφ

decouple from this core.
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7.3.2 Solution of the Core System and Initial Conditions

The core system can be solved analytically by consecutive integration. To see this, we
rewrite these equations in the “bare” form (without Zφ-rescaling, s̃ = −(σ̃c + σ̃A)),

∂σ̃cm̃
2
φ = − h̃2

φ

16π

1

s̃1/2
, (7.47)

∂σ̃ch̃
2
φ = − λ̃ψh̃2

φ

8π

1

s̃1/2
,

∂σ̃cλ̃ψ = − λ̃2
ψ

16π

1

s̃1/2
.

The solution of the last equation matches the corresponding result from solving the
Schwinger-Dyson equations presented in sect. 5.6.1, eq. (5.102),

λ̃−1
ψ = λ̃−1

ψ,Λ +
1

8π

(√
s̃Λ −

√
s̃
)

= λ̃−1
ψ,0 −

√−s̃

8π
(7.48)

(s̃Λ = −(σ̃Λ + σ̃A)). This structure renders λ̃ψ almost independent of s̃ if
√

s̃ ¿√
s̃Λ + 8π/λ̃ψ,Λ. Here we assume implicitly that λ̃ψ,Λ is not too much negative such

that λ̃ψ remains finite in the whole s̃ - range of interest. For positive λ̃ψ the self-
consistency of the flow requires an upper bound λ̃ψ,0/(8π) < 1/

√
s̃Λ. In contrast,

the solution for the renormalized h2
φ = h̃2

φ/Zφ for λ̃ψ = 0

h−2
φ = h−2

φ,Λ +
1

32π

(
s̃−1/2 − s̃

−1/2
Λ

)
(7.49)

is dominated by small s̃.

For λ̃ψ 6= 0 the flow of hφ is modified, without changing, the characteristic
behavior for σ̃c → 0. Indeed, in the limit s̃ → 0 (close to the resonance) the term
∼ λ̃ψ becomes subdominant for the evolution of h2

φ. The flow for the ratio h2
φ/
√

s̃

reaches a fixed point 32π. With x =
√−s̃ one obtains

h̃2
φ = h̃2

φ,Λ exp
{
− 1

4π

√
s̃Λ∫

√
s̃

dxλ̃ψ(x)
}

= h̃2
φ,Λ

(
1− cbg

√
s̃Λ

)2 (
1− cbg

√
s̃
)−2

= h̃2
φ,0

(
1− cbg

√
s̃
)−2

. (7.50)

Again comparing to sect. 5.6.1, this fits with eq. (5.101) (for removed cutoff σ̃c = 0).
For the wave function renormalization one gets

Zφ = Zφ,Λ +
1

32π

s̃−1/2∫

s̃
−1/2
Λ

d(x−1)h̃2
φ(x

−1) (7.51)

= Zφ,Λ +
h̃2

φ,0

32π

{ 1√
s̃

(
1− cbg

1/
√

s̃− cbg

)
+ 2cbg ln

1/
√

s̃− cbg

cbg

− (s̃ → s̃Λ)
}
,
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with 1/
√

s̃ > cbg = λ̃ψ,0/(8π). Obviously, for s̃ → 0 the ratio h̃2
φ/h̃

2
φ,Λ reaches a

constant depending on λψ,Λ, s̃Λ whereas Zφ diverges ≈ h̃2
φ,0/(32π

√
s̃), consistent

with the fixed point behavior h2
φ ≈ 32π

√
s̃. The values h̃2

φ,0 = h̃2
φ(s̃ = σ̃A = 0) and

λ̃ψ,0 = λ̃ψ(s̃ = σ̃A = 0) can be extracted from atom scattering in vacuum or the
dependence of the molecular binding energy on the magnetic field (cf. sect. 5.5.3).

We finally investigate the flow equation for m̃2
φ (7.47). The solution reads 6

m̃2
φ =

2Mµ̄

k̂2
(B −B0)− 2σ̃c + δν̃ − 1

8π

√
s̃Λ∫

√
s̃

dxh̃2
φ(x). (7.52)

2Mµ̄
k2 (B − B0) − 2σ̃c = m̃2

φ,Λ is the initial condition for the mass. The mass shift δν̃
is an integration constant which we can fix by the requirement that the boson mass
vanish at the resonance, m̃2

φ(σ̃c = σ̃A = 0, B = B0) = 0 – this is analogous to the
procedure presented in sect. 5.6.1. It implies

δν̃ =
1

8π

√
s̃Λ∫

0

dx h̃2
φ(x) (7.53)

such that

m̃2
φ =

2Mµ̄

k̂2
(B −B0)− 2σ̃c +

h̃2
φ,0

8π

√
s̃

1− cbg

√
s̃
. (7.54)

This is in accordance with eq. (5.100) in the Schwinger-Dyson framework (for σ̃c =
0). Due to the equivalence of the Schwinger-Dyson results eqs. (5.102,5.101,5.100)
and eqs. (7.48,7.50,7.54) (the order is such that the equations correspond to each
other), we can follow the same route in order to reconstruct the fermionic scattering
length from the result of the FRG computation.

In our practical computations, we initialize the system with vanishing or negative
background coupling with s̃Λ = 106. If the background coupling is positive, we have
to ensure 1/

√
s̃Λ > cbg.

In fig. 7.2 we compare the sensitivity of various couplings w.r.t to the value of the
Yukawa coupling h̃φ,0 in the two-body limit. As expected from our earlier results,
h̃φ,0 sets the scale for the absolute value of the wave function renormalization Zφ (cf.
fig. 7.2 (a)). An appropriate rescaling with Zφ, as carried out for the renormalized
quantities, produces a pronounced insensitivity of these couplings w.r.t. a variation
of h̃φ,0 (cf. fig. 7.2 (c),(d)). This reflects the validity of our universality hypothesis
for broad Feshbach resonances in the FRG framework.

6We write the fiducial momentum unit k̂ instead of kF in order to prevent confusion with the
physical Fermi momentum associated to the particle density.
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7.3.3 Bosonic Scattering Length on the BEC Side

We consider the bosonic scattering length in vacuum on the BEC side. For simplicity
we work in the broad resonance limit and at zero background coupling (a = aR). As
we have seen in sect. 6.4, renormalization with fermionic diagrams then yields the
result

aM

a
= 2. (7.55)

However, the solution of the Schrödinger equation for the four-body problem under
the assumption that the particles are grouped into two pairs with small interparticle
spacing indicates [75]

aM

a
≈ 0.6. (7.56)

The above assumptions obviously describe the deep BEC regime with strongly bound
molecules. This result has subsequently been confirmed in the frame of Quantum
Monte Carlo simulations [84] and in a very sophisticated diagrammatic approach
[85]. The Camerino group finds aM/a ≈ 0.75(4) from a resummation of the effective
boson-boson interaction ladder [21]. All these approaches necessitate a very high
numerical effort.

In this section we will analyze the problem in the frame of FRG equations in
the BEC limit. Our implementation amounts to a resummation similar to the one
performed in [21] and indeed we find aM/a ≈ 0.81, while the numerical effort is
negligible and only involves the numerical solution of a single nonlinear differential
equation. Additionally, relying on the simplified diagrammatic structure in vacuum,
we can give an estimate for the effective boson-boson interaction not only deep in
the BEC regime, but also close to and on the resonance. On the BCS side of the
resonance, we also find a certain scaling behavior as will be discussed below. In the
future, it remains to be seen if the value aM/a ≈ 0.6 can be obtained in an extended
truncation involving a fermion-boson vertex ∼ ψ†ψφ∗φ and a generalized Yukawa
term ∼ φ∗ψT εψφ∗φ in addition to the fermion-fermion (described as a tree level
exchange of a molecule) and boson-boson vertex. Indeed there are one-loop graphs
contributing to these vertices which survive the vacuum limit.

The bosonic scattering length can be obtained from the four-boson scattering
amplitude at zero external momenta as described in app. A, eq. (A.12). In contrast
to the fermions, the bosonic composite objects are indistinguishable particles such
that the second relation in (A.12) has to be used,

aM =
MM

8π

∣∣∣ δ4Γ

δφ∗R(p1)δφR(p2)δφ∗R(p3)δφR(p4)

∣∣∣
p1=...=p4=0

=
MM λ̄φ

4πZ2
φ

. (7.57)
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Figure 7.1: (a) Flow of the reduced bosonic scattering length on the BEC side,
aM(t)/a(t) = λφ(t)

√
et − σ̃A/(8πAφ(t)). There is a pronounced insensitivity with

respect to the initial condition. The dashed lines omit the bosonic contribution
to the flow of λφ, leading to an infrared fixed point at aM/a = 2. Including this
contribution shifts the fixed point to aM/a = 0.814. (b) The scaling function R
across the resonance (cf. eq. (7.62) for a definition). It reduces to the ratio aM/a
on the BEC side of the resonance – the boson coupling vanishes ∝ a. In the BEC
regime, the system settles to a fixed point whose value is given above. Evolving to
the resonance, the ratio aM/a moves away from the BEC fixed point and we find
aM/a = 1.542 at resonance – the boson coupling diverges ∝ a. Beyond the resonance
on the BCS side, the interpretation of R as the ratio of scattering lengths does not
hold.

The field variations are performed w.r.t. dimensionful renormalized fields φR, such
that the effective bosons have a standard time evolution. This amounts to calculating
the dimensionful renormalized four-boson vertex 2λ̄φ/Z

2
φ – the factor of 2 comes from

our choice of truncation U 3 λφ/2(φ∗φ)2, λφ = ∂2U/∂ρ∂ρ. The effective mass MM

of the molecules can be extracted from the gradient term in the bosonic propagator
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7,

P̄φ

Zφ

3 Āφ

Zφ

q2 = Aφ
q2

2M
=:

q2

2MM

. (7.58)

In sum we find for the molecular scattering length

aM =
Mλ̄φ

4πZ2
φAφ

, (7.59)

or, in dimensionless variables,

aM k̂ =
λφ

8πAφ

. (7.60)

In order to calculate Aφ and λφ we consider the last two equations in (7.45). The
flow for Aφ can be written as

∂σ̃cAφ =
h2

φ

64π

1

s̃3/2
(1/2− Aφ) (7.61)

and exhibits a fixed point at Aφ = 1/2 – there is no deviation from the result obtained
in our previous approach taking into account fermion diagrams only. Indeed there
is no bosonic contribution to Aφ from boson fluctuations in vacuum. The numerical
solution in the broad resonance limit shows that the fixed point is approached very
quickly, cf. fig. 7.2 (c).

The equation for λφ is more involved. In this work we present the (trivial) nu-
merical solution of the corresponding differential equation. We note, however, that
finding the ratio aM/a may alternatively be formulated as a fixed point problem in
the RG framework. Finding the solution of a differential equation is then replaced
by solving an algebraic equation. We will present this calculation elsewhere.

To analyze the flow of the four-boson coupling we define the function

R = lim
t→−∞

λφ(t)
√

et − σ̃A

4π
. (7.62)

On the BEC side of the resonance, −σ̃A = 1/c2 > 0 and for t →∞ we find with eq.
(7.60) and the fixed point Aφ = 1/2

R =
λφ

4πc
=

aM

a
. (7.63)

7Alternatively, it can be obtained from the bosonic dispersion relation ω = q2/(4M) (cf. eq.
(5.67) and related comments). This procedure does not rely on an expansion in the external mo-
mentum q, but gives the same result.
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The scaling behavior aM/a = 0.814 in the BEC regime is clearly seen in fig. 7.1
(b), in particular in the inset where we focus on a more extended range of c−1 =
(ak̂)−1. Very close to the resonance, one observes deviations from this number. The
interpretation of R as the ratio of scattering lengths can be extrapolated up to the
resonance c−1 =

√−σ̃A = 0+. One still observes a scaling behavior at resonance,
indicated by the finite value of the ratio aM/a, but instead of vanishing ∝ a, aM

now diverges ∝ a−1 when approaching the strongly interacting region, terminating
in aM/a = 1.542 at c−1 = 0. On the BCS side, one has σ̃A = 0 and R does no
longer describe a ratio of scattering lengths. Instead, one observes an IR divergence
of λφ for t → −∞ which is compensated by the exponential term in (7.62). For
large |c−1|, the bosonic contribution to the flow of λφ is suppressed since m2

φ > 0
on the BCS side. The divergence of the four-boson coupling is now driven by the
fermion loop, which is reflected by the fact that R → 2 for c−1 → −∞, cf. eq. (7.55).
Approaching the resonance, R(t → −∞) remains continuous. In any case, a scaling
behavior is expected since the fermionic scattering length is the only scale for the
vacuum problem.

7.4 Many-body System in the BEC Regime

In the two-body limit we exclusively had to consider observables like the scattering
length for fermions and molecules which are local in momentum space. This situ-
ation is different in the many-body context. Here we generically have to deal with
a nonlocal observable, the particle density. More precisely, the connected two-point
functions entering this quantity (cf. eq. (4.62)) involve traces of the full fermionic
and bosonic propagators over frequency and momentum space. If the couplings en-
tering these full propagators depend on the momentum scale in a substantial way,
then the use of local couplings – taken e.g. in the infrared limit – might lead to
quantitatively inaccurate results. As we have argued qualitatively in the context
of Schwinger-Dyson equations in sect. 5.3, such a situation is met for the boson
propagator. It is therefore desirable to resolve the momentum dependence of the
couplings entering the full propagators. In the following we will demonstrate that
this is feasible in the frame of functional renormalization group equations. Roughly
speaking, the momentum dependence is translated to the scale dependence of the
couplings in the flow equations. As an important conceptual result, in this way it
is possible to reconcile the generic infrared freedom of bosonic O(N) models in the
symmetry broken regime [60] with the fact that remnants of interactions at higher
momentum scales indeed manifest themselves e.g. through a condensate depletion
at zero temperature – if the theory were completely free, no depletion could be ob-
served (λφ = 0 at all momentum scales). In this setting, we find a Bogoliubov-type
theory at low temperature agreeing quantitatively with QMC simulations, while the
phase transition at higher temperature is of second order.
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Figure 7.2: Upper Row: (a) Flow of the wave function renormalization Zφ for different
two-body values of h̃φ,0 (h̃2

φ,0 = 3.72 · 105 (dashed), h̃2
φ,0 = 3.72 · 104 (dashed-dotted)

and h̃2
φ,0 = 3.72 · 103 (long dashed)). Zφ involves h̃φ,0 directly, such that its final

infrared value strongly depends on this scale. (b) Flow of the anomalous dimension
ηφ = −∂t log Zφ. By its definition, ηφ is highly insensitive to h̃φ,0 and the plots for
different values of h̃φ,0 coincide. The solid line again shows many-body effects in
the SSB phase, respectively. Deviations from the two-body result which are driven
by the bosonic loops ∝ ρ are observed. Lower row: The renormalization with Zφ

produces quantities which are insensitive to a variation of h̃φ,0, in accordance with
our earlier findings (cf. chapt 6). This is manifest in the flow of the bosonic gradient
coefficient Aφ (a) and the reduced Yukawa coupling (b). Only for the smallest value
of h̃φ,0 a deviation from the broad resonance limit is visible for the renormalized
gradient coefficient and reduced Yukawa coupling. The solid line represents again
the flow in the many-body system (for h̃2

φ,0 = 3.72 · 105).

For this purpose we consider the BEC regime −σ̃/T̃ À 1 in the broad resonance
limit h̃φ → ∞ and for λψ = 0. As we have argued in chapt. 6 our approximation
scheme is well under control in this regime and we can concentrate on the above
aspects. In particular, the effects from mixed bubble diagrams renormalizing the
fermion propagator as well as box diagrams which would require rebosonization [50]
are exponentially suppressed for−σ̃/T̃ À 1 – the large negative chemical potential in
the fermion propagator acts to strongly suppress these diagrams. We can thus ignore
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the flow of Zψ, Aψ and possible modifications on the chemical potential appearing in
the fermion propagator. Similarly, for a physical value λψ = 0 in the two-body limit,
the flow of λψ is generated by mixed bubble diagrams only, which are exponentially
small as well. This greatly simplifies the system of flow equations and we have a
well-controlled truncation. The concrete truncation can be read off from (7.20, 7.21)
with Zψ = Aψ = 1, λψ = 0 at all scales.

7.4.1 Regimes in the Renormalization Group Flow

In the last section we have solved the two-body problem with renormalization group
equations. This allows us to fix the “microscopic” couplings for the many-body prob-
lem by an appropriate choice of the initial conditions for the flow equations. Two-
and many-body problem are treated on completely equal footing in our framework.
In the situation specified above, the only microscopic interaction scale is set by
the scattering length a for the fermions. However, we can easily incorporate more
microscopic information as discussed in the preceding section

We can identify three major regimes for the renormalization group flow.

Ultraviolet regime: Fixing initial conditions

The UV regime is characterized by the cutoff being much larger than all thermo-
dynamic scales, σc À T̃ k̂2/(2M), k̂2/(2M) (we will discuss below how the fiducial
k̂ is related to the physical kF = (3π2n)1/3 in the many-body context; for the sim-
ple scale arguments presented here we can think of k̂ ∼ kF ). Physically speaking,
the fluctuations included by evolving the flow equations act on much smaller wave
lengths than the size T−1 of the Matsubara torus or the typical interparticle spacing
k−1

F . It is therefore obvious that the thermodynamic scales “decouple” and the flow
of the many-body system coincides with the one of the two-body system in this
regime, which can be clearly seen in figs. 7.3, 7.2, 7.7. These plots nicely visual-
ize our strategy to fix the two-body observables: In a first run we tune the initial
conditions at the UV scale Λ to match the desired two-body low energy observ-
ables for the thermodynamic scales T, kF switched off. We then reverse the flow and
switch on the thermodynamic scales at the initial scale. In the next step we run the
system down to the infrared again; for a long “renormalization group time” t the
new trajectory coincides with the two-body trajectory, and only for a low cutoff the
thermodynamics manifests itself by deviations of the couplings from the two-body
results.
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Figure 7.3: (a) Reduced four-boson coupling in the two-body limit and for the many-
body situation. In the UV regime, both plots coincide. Deviations become visible
in the thermodynamic regime starting at t ∼ −2. The scale for spontaneous sym-
metry breaking is t = −5.15 – the value of the reduced bosonic scattering length is
substantially below the two-body result. We also plot the flow of the connected
bosonic density fraction (dashed-dotted), receiving its dominant contribution in
the thermodynamic regime. This shows that a phenomenological Bogoliubov the-
ory which uses the two-body result for λφ is quantitatively inaccurate away from
zero temperature (T̃ = 0.15 here), cf. also fig. 7.9. (b) Resolving the universal
deep IR regime. Independently of the many-body scales the flow of the logarithm
of the four-boson coupling converges to the dashed-dotted line parameterized by
t/2 + 2π in the symmetry-broken phase. The further parameters for this plot are
σ̃ = −7.65, c−1 = 2.77, ΩC = 0.42, ΩM = 0.58, ΩF = 1.8 · 10−4.

Thermodynamic regime: Many-body effects and spontaneous symmetry
breaking

The thermodynamic regime is entered when the cutoff becomes comparable to the
thermodynamic scales, σc ≈ T̃ k̂2/(2M), k̂2/(2M). For some quantities, this leads to
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Figure 7.4: Solution of the flow for the three RG invariants involving the bosonic field
expectation value ρ: Condensate fraction ΩC(t) (solid; the condensate fraction can
be read off in the IR, ΩC = ΩC(−∞) = 0.41), fermionic mass gap r̃ = h2

φρ and 2λφρ,
giving rise to a radial mass for the bosons in the SSB phase. While the condensate
and the fermion gap approach nonvanishing saturation values as expected in three
spacelike dimensions, the bosonic radial mass term vanishes due to the IR freedom
of the O(2) theory.

substantial deviations from the two-body results even in the BEC regime, especially
in the symmetry-broken phase. Approaching the resonance, many-body effects are
expected to be even more pronounced. Subdividing this regime again, we observe
that the flow is first generated by the fermionic diagrams. These saturate quickly
to their final infrared values. In the following, the flow is dominated by bosonic
diagrams – they are “initialized” by the fermion fluctuations. This nicely illustrates
the generation of an effective bosonic theory from the renormalization group point
of view.

In this regime we also deal with the phenomenon of spontaneous symmetry break-
ing, which is the most prominent many-body effect for our system and takes place at
low enough temperature. Its onset is marked by the physical boson mass hitting zero
at some finite cutoff scale, as will be made more precise below. A condensate forms,
which is a local contribution to the equation of state. It quickly saturates to its final
infrared value. This is quite different in two dimensions, where the Mermin-Wagner
theorem [86] forbids long-range order associated to a broken continuous symmetry
8, such that spontaneous symmetry breaking can only be a finite size effect [87].

8The Kosterlitz-Thouless transition circumvents the Mermin-Wagner theorem in two dimen-
sions.
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Deep infrared sector: Universal behavior

Most of the couplings saturate to stable infrared values in the thermodynamic
regime. There are, however, quantities which “never stop running” even for the cut-
off scale σc ¿ T, k̂2/(2M). Prominent examples for such a situation are anomalous
dimensions: Close to a second order phase transition, the massless mode causes the
wave function renormalization to diverge in such a way that η = − limt→−∞ ∂t log Z
acquires a nonzero value 9. We encounter a very similar effect for the “many-body
four-boson coupling” λφ in the symmetry broken phase as visible in fig. 7.3 (b) where
we show λφ in a double logarithmic plot. We can directly read off the scaling

lim
t→−∞

∂t log λφ =
1

2
. (7.64)

It expresses the IR behavior λφ ∝ 1/
√−σ̃c independent of temperature, density and

coupling strength as we have verified numerically for several points in the T̃ − c−1−
plane in the BEC regime.

The sign of this quantity is opposite to the anomalous dimension – λφ is con-
tracted to zero. This is the infrared freedom in the symmetry broken phase previ-
ously observed in relativistic bosonic O(N) models [60; 61] and determined by the
structure of the flow equation in this regime,

∂tλφ = −λ2
φI(t, λφ) (7.65)

with a positive integral I which exhibits an IR divergence for t → −∞,m2
φ = 0.

However, the wave lengths of the fluctuations included by the renormalization group
flow in this regime are much larger than the lengths set by thermodynamic scales
as stated above. Similar to the UV regime, this leads to a decoupling from these
scales, such that we approach indeed a universal domain in the sense of statistical
mechanics, which has no memory of the precise thermodynamic scales and the two-
body interaction strength.

We note that in presence of a trap, this deep infrared regime is never approached:
The length scale set by the trap is comparable to those of temperature and particle
density in a typical experimental setup, cf. tab. 2.1. Unlike temperature and particle
density, it acts as quite a sharp infrared cutoff, since it eliminates the possibility of
fluctuations on length scales larger than the trap size. It is hence questionable if
critical behavior will be observable in trapped quantum gases in the future.

9We have not yet investigated this effect in detail for our model; in the O(2) model in three
dimensions, the anomalous dimension is known to be very small anyways (η = 0.038), cf. [60] and
references therein.
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Figure 7.5: Flow and solution of the flow for the density fractions ΩM , ΩC (ΩF =
O(10−4) in this regime). The scale for SSB at t = 5.15 is indicated by a vertical line.
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add up to one.

7.4.2 Reconstructing the Particle Density

The most severe complication in the many-body regime compared to the two-body
limit is the intrinsic need to accurately determine the particle density n = k3

F /(3π2)
– eventually we want to provide dimensionless results which are all written in units
of kF or εF . The particle density is composed of the connected fermionic and bosonic
two-point functions plus a disconnected bosonic part in the superfluid regime. Exact
expressions for the two-point functions are given by the trace over the full propaga-
tors 10,

nF/φ = Tr P−1
F/φ(gi(Q); Q) (7.66)

where the trace runs over the discrete matrix entries and over momentum space. Con-
sequently, in order to reconstruct these nonlocal observables, there is a need to re-
solve the momentum dependence of the couplings entering the propagators, here col-
lectively denoted by gi(Q). As we have discussed in the context of Schwinger-Dyson
equations in sect. 5.3, especially the effective, i.e. fluctuation induced bosonic cou-
plings might exhibit a substantial momentum dependence. For example, it is obvious
that the deep infrared value λφ = 0 is not the right one to insert into the bosonic
propagator. This is most clearly visible in fig. 7.3 where λφ(t)(exp t − σ̃)1/2/(4π)
(≈ λφ/(4πa) for t ¿ 0 and in the BEC regime) and the flow of the connected
bosonic density fraction ∂tΩM(t) are plotted. Instead, the coupling at intermediate
scales where ∂tΩM(t) is peaked should be relevant. This picture strengthens the ad

10A zero point shift has to be subtracted, cf. sect. 4.2.3.
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hoc procedure used in the Schwinger-Dyson framework in chapt. 5 where we em-
ployed the intermediate fermion-induced coupling λ

(F )
φ , though the solution of the

system of SDEs yielded the infrared value λφ = 0. However, λ
(F )
φ includes only renor-

malization with fermion diagrams, while fig. 7.1 shows that there is a substantial
effect from boson fluctuations in the BEC regime – λ

(F )
φ strongly overestimates the

true four-boson coupling.

Both of the shortcomings of our earlier approach can be cured by a successive
reconstruction of the connected particle density contributions from the flow equa-
tion. We obtain the connected part of the particle density (including the connected
fermion and boson two-point function) from the full one-loop effective potential,

Ωconn = −∂ũ1

∂σ̃
= −∂ũ

(F )
1

∂σ̃
− ∂ũ

(B)
1

∂σ̃
(7.67)

where the partial derivative is taken w.r.t. to the physical chemical potential (and
not the cutoff). Since in our truncation the fermion propagator is not modified by
fluctuations, the derivative is carried out straightforwardly. For the bosonic con-
tribution, we use a prescription analogous to eq. (4.82), generating the trace over
the dressed boson propagator, i.e. the dressed connected boson density. Since we
know the flow equation for the effective potential (7.18), the flow equation for the
connected part of the particle density is directly available – our procedure is analo-
gous to the strategy embarked on for obtaining the boson mass and the four-boson
coupling, where we projected on the couplings using ρ-derivatives. The desired flow
equation reads

∂tΩconn = −et
{ 1

2T̃

∫

q̃

γ−3
φ

[
γφγ

2 cosh−2 γφ + β2 tanh γφ

]
(7.68)

+
1

T̃

∫

q̃

α−3
φ

[
αφ(α + κ)2 sinh−2 αφ + κ coth αφ

]}
,

reducing in the symmetric phase to

∂tΩconn = −et
{ 1

2T̃

∫

q̃

cosh−2 γ +
1

T̃

∫

q̃

sinh−2 α
}
. (7.69)

These equations decouple from the remaining FRG equations – while they depend on
the remaining set of flow equations, they do not feed back. In practice, one can even
consider separate flow equations for nF and nM , since these contributions do not
couple to each other. In this way, it is possible to differentiate between the fermion
and the boson density contribution similar to the Schwinger-Dyson analysis, cf. fig.
4.1. Importantly, our prescription includes the effects of a scale dependence of the
couplings via their implicit t-dependence. Associating the cutoff scale with momen-
tum scales, we can interpret this procedure as resolving the momentum dependence
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of the couplings – in each renormalization group step, the appropriate coupling is
feeded into the respective density contributions. The importance of such an effect
is clearly visible for the four-boson coupling entering the bosonic density fraction
(cf. fig. 7.3 (a)): Naively inserting the deep infrared value λφ = 0 would produce
a quantitatively inaccurate result, since λφ differs substantially from zero in the
thermodynamic regime where the bosonic two-point function picks up its dominant
contribution. Finally, we note that the accuracy of such a procedure could be en-
hanced in the future by the use of a momentum dependent cutoff which additionally
acts as a regulator for high momentum modes, since this achieves stronger locality
of the flow in momentum space.

The flow of the disconnected (or “classical”) part contributing to the particle
density as a condensate in the superfluid phase does not appear in the one-loop flow
equation for the effective average action (7.18). It would be present if we worked with
the flow equation for Γ̂, eq. (7.16). We obtain the total particle number by simply
adding up the disconnected and connected contributions (the proper normalization is
discussed below). This procedure is inspired by the fact that each of the contributions
(also nF and nM separately) forms an RG invariant (invariant under the rescaling
with the wave function renormalization factors; for the fermions, we have Zψ = 1 in
the BEC regime). It differs from the derivation in chapt. 4 where we obtained the
equation of state via a systematic expansion of the functional integral. In this scheme,
the equation of state was composed of a mixture of bare and renormalized quantities
(cf. eq. (4.66)). It could then be written in terms of RG invariants after appropriate
manipulations (eqs. (4.74,4.75)), still leaving a certain degree of arbitrariness in
the definition of the wave function renormalization. In the renormalization group
framework, one works with renormalized quantities from the outset. However, our
definition of the total particle number in the context of FRG equations has not yet
been proven with the same rigor as its counterpart in sect. 4.2.2. A strong hint for
the correctness of our procedure is provided by the observation that the dressed
condensate acquires a substantial value in the BEC regime (cf. fig. 7.5) and has the
correct characteristic temperature dependence of a Bose-Einstein condensate in the
BEC regime (cf. fig. 7.9), while the dressed fermion density contribution is negligible
(cf. fig. 7.5). This is very different from the approximation scheme advocated in sect.
4.2.2, where the dressed condensate was “hidden” in the fermionic mean field two-
point function, cf. eq. (4.78). There, adding the dressed condensate to the equation
of state would clearly result in a double counting. This would imply an incorrect
result for the condensate fraction as a function of temperature. The result presented
in fig. 7.9 thus strengthens the faith in our prescription.

There is presently still a weak point in our scheme which we do not want to
hide. If we work with a scale dependent mass in eqs. (7.68,7.69), then the critical
temperature for Bose-Einstein condensation is notoriously too low. This is even true
in the limit c−1 → ∞ where the critical temperature for the tightly bound mole-
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Figure 7.6: Scan of the parameter space performed so far. The critical temperature
for Bose-Einstein condensation is plotted, T̃BEC

c = 0.218. Our most accurate fine
tuning (seven decimal digits; second trajectory from the left) allows to narrow the
critical interval down to T̃c ∈ (0.217, 0.219).

cules should indeed take the value T̃BEC
c = 0.218 characteristic for a free Bose gas.

Technically, our problem is easily understood by noting that the connected bosonic
contribution to the particle density is very sensitive to the value of the boson mass,

∼ Li3/2(e
−m2

φ/T̃ ) (Li the polylogarithmic function). The mass is a relevant parameter
according to naive power counting, exhibits a strong running in the infrared, cf. fig.
7.7, and is always positive during the flow for T > Tc. At Tc, it reaches zero only
for t → −∞, i.e. it has positive values in the thermodynamic regime of the flow.
Due to the high sensitivity of the boson density w.r.t the mass, we substantially
underestimate T̃c in the naive procedure. Our ad hoc remedy to this problem is to
put in front of the bosonic contribution in (7.68,7.69) a factor of

1− ∂σ̃cm
2
φ/2. (7.70)

This effectively eliminates the memory of the mass term on higher cutoff scales in
the bosonic contribution (similar to the removal of the cutoff itself for σ̃ → 0), such
that only the infrared value of the mass term is relevant for the connected boson
density. By this token, the theory is indeed effectively massless at all scales at the
phase transition. In particular, this ensures the correct critical temperature in the
deep BEC limit c−1 →∞. We stress that such a procedure can be omitted if one is
not interested in the absolute value of kF (or the particle density). For example, kF -
independent ratios (as displayed e.g. in fig. 7.8) can be computed without knowledge
of kF . Further, the system can be tuned to criticality without this information. On
the other hand, in order to determine the correct dimensionless critical temperature,
or the position of a certain observable in the phase diagram (cf. fig. 7.6) the value
of kF is needed.
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Our procedure to reconstruct the particle density differs from the approach pre-
sented in [81] which advocates to keep the particle density fixed during the flow,
adjusting the chemical potential accordingly. In our approach, the particle density,
which comprises two-point correlations, builds up continuously during the flow. This
seems to be more natural – at high cutoff scales the effective action reduces to the
classical action containing no correlation effects. The two-point functions in ques-
tion are exponentially suppressed for large values of the cutoff. Furthermore, the UV
renormalization is done independently of the FRG analysis in [81] and restricted to
a single parameter (the scattering length), very different from our approach.

7.4.3 Thermodynamic Observables in the BEC Regime

In this section we present the many-body results obtained so far in the frame of
FRG equations. In particular, we focus on the condensate fraction as a benchmark
for the quality of our approach.

Scanning the parameter space

Our practical procedure to compute thermodynamic observables in the crossover
problem relies on the scaling form introduced in chapt. 3. Having fixed the micro-
scopic physics in the way described above, we choose c−1 = (ak̂)−1 and T̃ = 2MT/k̂2

where k̂ is an a priori arbitrary unit as in the two-body limit. A third quantity which
has to be chosen to initialize the system of flow equations is the physical chemical
potential σ̃ = 2Mσ/k̂2 appearing explicitly in the fermion propagator, which we
have to distinguish from the flow variable σ̃c. The fermion and boson propagator
now feature scale dependent mass terms

PF 3 −σ̃ − σ̃c, Pφ 3 m2
φ(σ̃, σ̃c)− 2σ̃c (7.71)

where the mass terms couple to the renormalized fields 11.

Eventually we want to fix the particle number for the crossover problem. So far
all quantities are measured in units of an arbitrary k̂. It can be given a physical
meaning by requiring a relation analogous to (4.74), defining the physical impact of
kF = (3π2n)1/3 in the many-body context:

Ωconn + ΩC = ΩF + ΩM + ΩC
!
= k3

F (7.72)

where the density contributions are extracted from the t → −∞ limit of flow as
described above. According to their canonical scaling behavior (cf. eq. (B.1)), we

11Due to Zψ = 1 in the BEC regime, the multiplicative renormalization of the fermion field is
trivial.
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Figure 7.7: Fine tuning for the scaling form of the boson mass. In the UV regime, the
flow of the mass is indistinguishable for all sets of initial values considered here. The
highly nonlinear nature of the dependence on the initial conditions is only revealed in
the IR. We compare two-body limit (long dashed) and many-body regime. The two-
body limit is driven by the fermion loop only, and has the scaling −m2

φ(σ̃c)/σ̃c = 2 as
expected (in order to produce the scaling behavior, a fine tuning in the 8th decimal
digit is necessary). The many-body regime involves a bosonic contribution to the
running of the mass. The two trajectories differ in the 7th digit and describe the
system close criticality. The dashed line corresponds to the symmetric phase. The
solid line ends in the symmetry-broken phase at small cutoff. Expressed in physical
units we have c−1 = 2.41, T̃ = 0.217, ΩC = 6.8·10−3 (solid) and c−1 = 2.42, T̃ = 0.219
(dashed). The dashed-dotted line corresponds to a situation deeper in the SSB phase
(c−1 = 1.66, T̃ = 0.10).

can then rescale all observables with the absolute number obtained for kF in order
to arrive at the desired normalization in units of kF = (3π2n)1/3 and εF = k2

F /(2M).

This procedure has an important technical advantage: we do not need any match-
ing for the particle density in the infrared, which would necessitate to run the system
several times in order to arrive at the intended density. Contact to the desired nor-
malization of all quantities in units of kF can be made by a simple rescaling of our
input parameters.

Fig. 7.6 shows the scan of the phase diagram performed so far. Practically, we
choose a certain combination T̃ , c−1 and vary the chemical potential σ̃. In the BEC
regime a good initial guess for the chemical potential is σ̃ ≈ −c2 which is exact in
the two-body limit. We then write σ̃ = −c2 + δσ̃ and vary δσ̃ > 0 to produce the
trajectories in fig. 7.6.

In the BEC regime, we find that for a small positive δσ̃crit we can tune the system
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Figure 7.8: The reduced chemical potential −σ̃/c2 = −σ/a2 in the BEC regime
for two different temperatures (solid: T̃ = 0.13, dashed: T̃ = 0.04). Deep in the
BEC regime the two-body result −σ/a2 = 1 is approached. For low temperatures
and closer to the resonance, substantial deviations from this scaling behavior are
observed.

to criticality, i.e.

lim
t→−∞

m2
φ(t) = 0+. (7.73)

Here we encounter the typical fine-tuning problems associated to a second order
phase transition, which is reflected in fig. 7.7 where we choose two values of δσ̃
which differ in the seventh digit only. For values δσ̃ < δσ̃crit the mass terms remains
positive during the flow and we end up in the symmetric phase. For δσ̃ > δσ̃crit the
mass term m2

φ vanishes at a finite negative tSSB and we use this as a criterion to
enter the symmetry broken regime. Note that the full scale dependent mass term
m2

φ + 2et is always positive, protecting the system from potential IR divergences.
Below tSSB we switch to a set of flow equations adapted to this phase, defined in eq.
(7.36) et sqq, which is initialized by the values of the couplings at tSSB. In particular,
eq. (7.36) guarantees m2

φ = 0 for t < tSSB.

The values slightly above δσ̃crit correspond to the points close to the critical
temperature for Bose-Einstein condensation, T̃BEC

c = 0.218, and we can reproduce
this result (using the prescription to deal with the mass term described above):
The endpoints of the trajectories in fig. 7.6 thus map out the phase diagram. Our
most precise fine-tuning up to seven decimal digits (second trajectory from the
left) delimits the temperature interval including the critical temperature to T̃c ∈
(0.217, 0.219). This corresponds to the behavior of the mass in fig. 7.7. The small
condensate fraction ΩC = 6.8 · 10−3 for the temperature slightly below Tc strongly
suggests a second order phase transition. So far we do not find a shift in Tc away from
the “critical” temperature of Bose-Einstein condensation in the noninteracting gas
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Figure 7.9: Condensate fraction as a function of temperature for c−1 = 1.96. We
compare a free Bose gas (dashed), a Bogoliubov theory with phenomenologically
inserted molecular scattering length aM = 0.6, and the result of our RG calculation.
For low temperature, we find excellent agreement with the Bogoliubov theory. Our
results strongly suggest a second order phase transition (cf. the text also), while
Bogoliubov theory becomes grossly inadequate in the vicinity of Tc. Our result for
the condensate fraction is close to the free gas in this regime.

12. Such a shift (∆Tc/T
BEC
c = κan1/3 = κ/(3π2)1/3c, strictly valid for 0 < c ¿ 1) was

found by Blaizot et al. [88]. Later they computed the coefficient κ ≈ 1.3 with FRG
methods, focusing on the resolution of the momentum dependence of the interaction
[89–91]. Establishing this shift constitutes an interesting problem for future, more
thorough investigations of the region close to Tc, but premises a better understanding
of the correct treatment of the mass term.

The main results of this section are given in figs. 7.8, 7.9. They correspond to
cuts in the phase diagram scanned in fig. 7.6. For fig. 7.8, we fix the temperature
and study the behavior of the ratio −σ̃/c2 = −σ/a2. Deep in the BEC regime we
observe the expected scaling of the chemical potential with the squared scattering
length, expressed in the saturation of this ratio at 1. σ̃ is uniquely determined by
the scattering length and its canonical scaling ∝ k2

F , with no implicit dependence
on the thermodynamic scales kF and T̃ . To a very good approximation, σ behaves
like the binding energy in vacuum in this regime. This is in line with our discussion
of the BEC regime in sect. 6. In future work we shall investigate if tiny scaling
deviations from −σ/a2 = 1 due to the thermodynamic scales can be established. In
contrast, coming closer to the resonance, the deviations from −σ/a2 = 1 become
more pronounced, in particular at low temperature.

In fig. 7.9 we fix the coupling strength at a moderate BEC value (c−1 = 1.96)

12Of course, there is no true phase transition in a free gas. In particular, all critical exponents
are trivial.
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and plot the condensate fraction as a function of temperature. At temperatures close
to T̃c, we find a second order phase transition as expected for an effective bosonic
theory, while an effective Bogoliubov theory which artificially uses the correct two-
body value for the bosonic scattering length aM = 0.6a yields a grossly inadequate
result. The FRG formalism might cure our problems with a (presumably fake) first
order phase transition which we encountered in the vicinity of the Feshbach reso-
nance. The condensate fraction is close to the result for a free Bose gas, which is
quite satisfactory at moderate interaction strength. For low temperatures we find
excellent agreement with the effective Bogoliubov theory – this is the regime where
the latter scheme is expected to be good. This demonstrates that our formalism
indeed correctly resolves the scale or momentum dependence of the four-boson cou-
pling as anticipated above (cf. also fig. 7.3). Though the infrared value of λφ is zero,
the nonzero value of λφ on the relevant thermodynamic scales leads to a condensate
depletion at low temperatures. This reconciles the generic infrared freedom of the
effective bosonic theory in the superfluid phase for the BEC regime with the fact
that remnants of interactions on higher momentum scales are still visible at low
temperature as a condensate depletion.



Chapter 8

Conclusions and Outlook

The basic mechanism for the crossover from BCS-type to BEC-type physics can be
understood by considering the frequency and momentum dependence of the effective
four-fermion interaction – this gives a complementary view to the position space
picture provided in the introduction. For small attractive interactions or c−1 =
(akF )−1 → −∞ the BCS mechanism is operative: We deal with effective momentum
independent or pointlike interactions, where the confinement of momenta to a narrow
region in momentum space is due to the presence of a sharp Fermi surface at low
temperature. The strong localization in momentum space translates to a highly
delocalized situation in position space – this gives rise to the picture of Cooper pairs.
Increasing the coupling or sending c−1 → 0, fermionic fluctuations induce a shrinking
of the Fermi surface. The frequency and momentum dependence of the effective
interaction in the “Cooper channel” ∼ ψψ becomes less restricted. In our formalism,
this is mirrored by the onset of an effective bosonic density adding to the fermionic
two-point correlations – the effective bosonic two-point function counts frequency
and momentum modes in the ψψ channel. Indeed, in the crossover regime one deals
with a mixture of the characteristics of fermionic and bosonic systems, reflected
by the fact that both fermionic and effective bosonic correlations are of the same
order of magnitude. Evolving further to the BEC regime c−1 → ∞, the chemical
potential becomes negative. The absence of a Fermi surface strongly suppresses
fermionic correlations at low temperature, and there is no longer a restriction of the
momentum dependence in this limit. Instead, controlled by the large negative value
of the chemical potential, the effective interaction acquires a momentum structure
which can be directly related to the emergence of an effective molecular propagator
in our formalism. On the level of renormalization with fermion diagrams only, this
effective propagator precisely exhibits the properties expected from simple symmetry
considerations, as e.g. the double fermion mass and double scattering length. The
delocalization in momentum space, in turn, translates to the existence of strongly
localized bosonic molecules in position space. Indeed, the chemical potential can be
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interpreted as the binding energy of a molecule in this regime.

Our functional integral approach for the effective action allows you to estab-
lish this picture in a direct way. It exhibits a high degree of analyticity and treats
fermionic and bosonic fluctuations on equal footing. This is most obvious in the Bo-
goliubov approximation presented in chapt. 4, where the functional integral for both
fermionic and bosonic fluctuations is solved in a two-step procedure at the one-loop
level. This construction combines BCS theory for the fermions with a Bogoliubov-
type approximation for the bosons, and forms the basis for the picture described
above.

Besides the practical advantages, the effective action formalism allows you to
fully exploit the presence of the global U(1) symmetry. The equation of state for
the particle number is obtained as the conserved Noether charge of the full nonrela-
tivistic theory. The construction hinges on a systematic derivative expansion of the
functional integral. The concept of dressed bosonic fields emerges naturally from
this derivation. A reasonable approximation to this nonlocal object – it involves
momentum space traces over the fermionic and effective bosonic propagators – is
crucial for a description of crossover physics.

The thermodynamic phases can be classified by a symmetry consideration as
well. While the thermodynamic equilibrium state exhibits the full symmetry of the
effective action in the normal gas phase above Tc, it has a spontaneously broken
U(1) symmetry for T < Tc. The associated massless bosonic mode gives rise to
superfluidity. An order parameter is provided by the dressed bosonic condensate
which comprises both fermion-fermion correlations and the expectation value of
classical bosons present in our two-channel model. This makes close contact to the
description of Bose-Einstein condensates. Alternatively, one can use the concept
of a fermionic mass gap for the whole range of interaction strengths, in analogy to
BCS theory. Both quantities are proper renormalization group invariant observables.
In our Yukawa formalism, both objects are intimately connected by the renormal-
ized Feshbach coupling. This, together with the classification of the thermodynamic
phases via a symmetry analysis, reveals the universality of the condensation phe-
nomenon in a clear way, and underlines the fact that the transition from BCS to
BEC is indeed a crossover and not a sharp phase transition.

Our functional approach to the crossover problem is highly scalable and opens the
toolbox of many sophisticated techniques from quantum field theory and statistical
mechanics. We go beyond the exactly solvable Bogoliubov approximation using suit-
able Schwinger-Dyson equations. This allows for a systematic inclusion of effective
bosonic fluctuations beyond mean field and solves certain self-consistency problems.
As a result, we find good agreement with Quantum Monte Carlo simulations for
the gap parameter and the chemical potential at resonance and zero temperature.
We compare our findings to recent experiments focusing on bare and dressed mole-
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cule fields. Excellent quantitative agreement is found for the bare molecules, while
dressed molecules show only qualitative consistency. Limitations of the Schwinger-
Dyson approach mainly emerge in the superfluid phase close to the critical line.
They can be traced back to an insufficient treatment of the momentum dependence
of the effective interactions, together with the requirement to reconstruct a nonlocal
observable, the particle density.

The physics extracted from the Yukawa model (3.1) exhibits several aspects of
universality. The scaling form of the effective action is a first example, allowing for
density independent calculations in the crossover. Further aspects are associated to
the irrelevance of model parameters in different limiting cases. In detail, we establish
an exact solution of the many-body problem in the limit of narrow resonances, phys-
ically equivalent to interactions with a large effective range. In the broad resonance
limit, we demonstrate the equivalence of our model to a purely fermionic setting
with pointlike interaction and no physical bosonic degrees of freedom on the micro-
scopic level. We also discuss the BCS and BEC limits where the Feshbach coupling
becomes irrelevant. From the point of view of field theory, both limits correspond
to a “loss of memory” of field degrees of freedom – either the boson (BCS regime)
or the fermion (BEC regime) degrees of freedom are irrelevant in the respective re-
gions. Even in a situation where no microscopic degrees of freedom are present in
the model, we obtain an effective Bogoliubov theory for composite bosons of double
fermion mass in the BEC limit, as expected from a simple symmetry consideration.
Besides this, we use the opportunity to discuss the validity of our approximations,
and show how ordering principles emerge in our functional integral formalism in the
various limits. As it is expected, the pointlike limit in the vicinity of a Feshbach
resonance does not exhibit an obvious ordering principle.

In the view of a realistic description of concrete atomic systems as 6Li or 40K,
the effective action approach proves to be useful. In one and the same framework,
we can make contact to experimental observables by a prescription which projects
the effective action on the physical vacuum, where the 1PI vertices encoded in this
object can directly be interpreted as the amputated scattering functions. Physically,
the procedure implies diluting the system by sending the mean interparticle spacing
to infinity. As a byproduct, this projection provides an elegant UV renormalization
procedure, trading the “bare” model parameters for the physical low energy vacuum
observables. We further find that the crossover terminates in a sharp second order
“phase transition” in the vacuum limit. In the view of realistic modelling of Feshbach
resonances, so far we have considered a classical energy dependence of the interac-
tion, an effective range and a pointlike background scattering, but in the future even
more microphysical information can be systematically included if necessary.

Finally we provide the framework for an analysis of the crossover problem with
functional renormalization group equations. In a first step we investigate the two-
body limit where we can massively reduce the system of renormalization group
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equations by a simple diagrammatic argument. We find a substantial improvement
of the ratio of molecular vs. fermionic scattering length aM/a = 0.81 in the BEC
regime, and we find that this scaling coefficient is shifted to aM/a = 1.54 in the
unitary limit.

For the many-body problem we concentrate on the BEC regime where our trun-
cation is quantitatively reliable. We achieve control over the whole regime of tem-
peratures, including the low temperature phase where a condensate forms. Though
still preliminary, our results are very promising. In particular, we can make progress
in view of the proper determination of the particle density as a nonlocal observable
by a successive reconstruction from the flow. Important from a technical point of
view, this allows to reconcile the generic infrared freedom of bosonic O(N) theories
in the symmetry broken or superfluid phase with the fact that remnants of interac-
tions are manifest e.g. through a condensate depletion at low temperature. As to the
physical results, our approach shows the features characteristic of a Bogoliubov-type
approximation at low temperatures, while yielding a second order phase transition
at higher temperature.

The crossover problem still holds some challenges for future work. In particular,
the strongly coupled regime close to unitarity lacks an obvious ordering principle for
broad resonances. Close to the phase transition, the problem combines the difficulties
of criticality with the need for an appropriate treatment of a microscopically massless
bosonic theory strongly coupled to the fermions. This is mirrored by the discrepancy
of our result for the critical temperature at unitarity and recent QMC calculations
[68]. We might speculate that the relevant physics in this region could be captured
by taking into account an effect analogous to Gorkov’s famous improvement of BCS
theory. A proper rebosonization program [50] could pave the way to achieve this task.
In the BEC regime, an even more precise determination of the ratio aM/a seems
possible by the inclusion of additional boson-fermion and generalized Yukawa terms.
Indeed there is a class of diagrams surviving the vacuum limit which we did not
consider so far. Additional scaling relations could possibly be identified in the many-
body context in the BEC regime. It will also be interesting to see to what extent the
inclusion of further microphysical scales induces scaling violations which are visible
in the macrophysics of atomic systems, in particular against the background of our
universality hypothesis. It remains to be seen if future experiments will be able to
resolve critical behavior in trapped quantum gases – the first steps for quantifying
correlations have already been taken [92]. In this case a proper renormalization group
treatment should allow for theoretical investigations.

Another aspect which has not yet been considered in much detail is the possibility
to explore the macrophysics of condensates in cold atom gases beyond the Thomas-
Fermi approximation with our formalism. If fluctuations are operative on much
smaller length scales than the characteristic length scale of a trap – which should
be true except very close to the phase transition – a scale separation argument



148 Chapter 8. Conclusions and Outlook

applies, allowing to solve the fluctuation problem in a homogeneous setup. The
effect of a trap can then be incorporated in a straightforward manner by promoting
the homogeneous (condensate) fields φ to dynamical fields φ(t, ~x). In a second step,
one can solve the field equations obtained from the effective action in presence of
a trap, which plays the role of a source term. In particular, nontrivial topological
configurations such as vortices [93] could then be studied on a firm theoretical basis.
This, in turn, underlines again the flexibility of the concept of the effective action,
ranging from the description of two-body scattering processes to the solution of
effective field equations analogous to Maxwell’s theory of electromagnetism.

The theoretical framework developed in this thesis provides us with the means
to attack different setups in cold atom physics as well. One example involves optical
lattices: a cold gas is loaded in a trap where standing light waves induced by counter-
propagating laser beams provide a lattice-like position space structure for the atoms
[94–96]. This allows to implement a number of models proposed in the context
of condensed matter physics, as e.g. the Hubbard model [97; 98] for both bosons
and fermions, in cold atom systems [99; 100]. In this sense, cold atom physics can
provide a testground for theoretical methods applied in condensed matter physics.
The controlled microphysics makes the cold gases much cleaner than their condensed
matter counterparts, where the microscopic physics is usually only poorly known.
On the other hand, there are also obvious differences, such as the fact that a generic
experimental setup for trapped gases works at a fixed particle number instead of a
fixed chemical potential as usual in a condensed matter context. Here, the formalism
developed in this work should prove useful.

Another upcoming area of both experimental and theoretical research are imbal-
anced fermion systems, i.e. mixtures of fermions with an unequal number of spin-up
and spin-down constituents. This implies different chemical potentials for the two
species, and a wealth of new interesting phenomena, as e.g. phase separation of the
superfluid and normal gas component [101] or exotic forms of superfluidity [102–
104]. Recent experimental progress for such systems [101; 105; 106] has already
triggered a number of theoretical investigations [107–109; 109–111], but the picture
is still inconclusive. Due to the different chemical potentials, Quantum Monte Carlo
simulations are plagued with a severe sign problem, clearly necessitating the use
of nonperturbative techniques beyond mean field theory in the strongly interacting
regime.

Cold atom gases thus provide us with a remarkable wealth of possibilities for
creating and manipulating intriguing physical situations. Due to the central role
of Feshbach resonances, a quantitatively accurate theoretical understanding of the
crossover problem seems to be at the heart of future progress in ultracold fermion
physics. This, together with the fact that the microphysics of these systems is well-
known, makes such systems prime candidates for both the test and further develop-
ment of modern nonperturbative field theory techniques.



Appendix A

Basic Definitions for Scattering

In this section, we review some basic definitions of elastic scattering in the frame
of quantum mechanics, and relate them to the objects that appear in quantum
field theory. More complete compilations of definitions for scattering in quantum
mechanics can be found in [41; 112]

We consider atoms of mass M interacting through a short-range potential in the
center of mass frame (opposite momenta (or wave numbers) ±~k and total kinetic

energy (or frequency) ω = ~k2/M). The wave function for this system is stationary
and depends on the interatomic distance vector ~r. For r → ∞, the wave function
acquires the asymptotic form

χ(~r) = eikz + fk(θ)
eikr

r
. (A.1)

This defines the quantum mechanical (qm) scattering amplitude fk(θ), which de-
pends on the scattering angle θ and the wave number k :=

√
2Mω. We note that

this word is often used in field theory for another object, related to the quantum
mechanical scattering amplitude by a dimensionful factor, see below. For clarity we
therefore add “qm” here. The differential cross section can be expressed in terms of
the qm scattering amplitude as

dσ

dΩ
= |fk(θ)± fk(π − θ)|2. (A.2)

In order to compute the differential cross section for given qm scattering amplitude,
one has to distinguish four cases: For distinguishable particles (irrespective if fermi-
ons or bosons), the second term has to be omitted. For spinless bosons (spin 1/2
fermions) the plus (minus) sign holds (irrespective if distinguishable or identical /
polarized particles). These prescriptions arise from the fact that the statistics of the
particles have to be introduced in quantum mechanics “by hand”, via the (anti-)
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symmetrization of the wave function. In quantum field theory, this is built in from
the outset. The elastic cross section σ(ω) is obtained by

σdist(ω) =

∫
dΩ

dσ

dΩ
, σid(ω) =

1

2

∫
dΩ

dσ

dΩ
. (A.3)

Here the convention is to integrate over half the solid angle for identical (irrespective
if fermions or bosons), and over the full solid angle for distinguishable particles
(irrespective if fermions or bosons). This is to avoid double counting of identical
particles, whose scattering in the solid angle element around the scattering angle θ
cannot be distinguished from a process in π−θ. This is purely conventional and has
to be considered when reconstructing the cross section from field theory.

The scattering length is defined as the zero energy (or momentum) limit of the
qm scattering amplitude,

fk→0(θ) → −a. (A.4)

Scattering becomes isotropic in this limit. From this definition, it is obvious that the
concept of the scattering length is directly meaningful in quantum mechanics only
– it is extracted from 1/r decay of the wave function (A.1). Hence the relation to
quantities accessible in field theory can merely be made by a sensible definition, see
below. According to (A.3), one has

σdist(ω → 0) = 4πa2, σid(ω → 0) = 8πa2. (A.5)

Let us pause for a moment with our task of relating the scattering length to field
theoretical quantities and briefly discuss how an energy dependence of scattering
processes can be included in the quantum mechanical treatment. To organize the
qm scattering amplitude, one expands e.g. in the complete set of eigenfunctions of
definite angular momenta l (partial wave expansion), such that it takes the form

fk(θ) =
∞∑

l=0

2l + 1

k cot δl(k)− ik
Pl(cos θ), (A.6)

where δl(k) are the phase shifts for the lth partial wave and Pl are the Legendre
polynomials. For elastic scattering, the phase shifts are real valued. The cross section
obtained in this way is

σ(ω)dist =
4π

k2

∑

{l}
(2l + 1) sin2 δl(k), σ(ω)id =

8π

k2

∑

{l}
(2l + 1) sin2 δl(k). (A.7)

For identical bosons (fermions), only even (odd) eigenvalues l = 0, 2, 4, ...(1, 3, 5, ...)
contribute to the cross section which is indicated by {l}. Specializing to short-range



151

interactions, one can compute the phase shifts in the low energy limit and finds
δl(k → 0) ∝ k2l+1. This allows for a systematic expansion of the cross section in
powers of k. As an important consequence, s – wave scattering (l = 0) dominates
the low energy scattering, except for identical fermions where the p – wave (l = 1)
dominates (starting at O(k4) in the cross section). At low energies, the relevant
expression involving the s – wave phase shift has an expansion

k cot δ0(k) = −1

a
+

1

2
rsk

2 + ... (A.8)

This is called the effective range expansion, with the effective range rs. This number
characterizes the lowest order momentum dependence of the scattering processes.

In the case of interactions with a long range part ∝ 1/rn (e.g. van der Waals
interactions, n = 6), the phase shifts do not scale like k2l+1. The effective range
expansion to the order written down in (A.8) is, however, still valid.

In the frame of quantum field theory, the basic object to describe scattering
processes are the amputated Green’s or 1PI vertex functions (cf. chapt. 4). A two-
body scattering process is uniquely characterized by the off-shell four-point vertex.
Putting all momenta on-shell and working in the cm frame, this object reduces to
what is often called scattering amplitude A(ω) in field theory. There is, however, a
mismatch in definition with the qm scattering amplitude fk(θ). A can be directly
computed by appropriate derivatives of the effective action Γ w.r.t. the fields,

A(ω) = Γ(4)
∣∣
on−shell,cm

. (A.9)

This object takes care of the statistics of the scattering particles, and of the their
(in-) distinguishability (via the quantum numbers other than position carried by the
field). Specializing to nonrelativistic field theory, the differential cross section reads
in terms of A [113]

dσ

dΩ
(ω) =

M2|A(ω)|2
16π2

. (A.10)

In order to compute the total cross section, we apply the above conventions (A.3),
such that

σdist(ω) =

∫
dΩ

dσ

dΩ
(ω)

ω→0−→ M2|A(0)|2
4π

, (A.11)

σid(ω) =
1

2

∫
dΩ

dσ

dΩ
(ω)

ω→0−→ M2|A(0)|2
8π

.

As explained above, the relation to the scattering length can only be made by an
appropriate definition. Using the quantum mechanical results for the cross section



152 Chapter A. Basic Definitions for Scattering

(A.5), we can figure out the relation up to the sign. Further defining the sign of a
by the sign of A, we get

a =
MA(0)

8π
for identical particles, (A.12)

a =
MA(0)

4π
for distinguishable particles.

For this work, the first result is relevant for the scattering length of the composite
spin 0 particles which emerge dynamically in the BEC regime, while the second
one is relevant for the scattering length of the spin 1/2 fermions - they can be
distinguished by their spin quantum number.



Appendix B

Dimensionful, Dimensionless and
Renormalized Couplings

As argued in sects. 2.1,3.3, the Fermi momentum sets a natural scale for momenta
in a thermodynamic situation. Hence it is favorable to measure momenta in units
of the Fermi momentum kF = (3π2n)1/3 and energies in units of the Fermi energy
εF = k2

F /2M . This fixes the canonical scaling behavior of all couplings and fields. We
display the relations between dimensionless (with a tilde) and dimensionful (with a
bar for the couplings, without modification for momenta and energies) units (εq =
q2/(2M), εF = k2

F /(2M)),

q̃2 = q2/k2
F = εq/εF , T̃ = T/εF , ρ̃ = ρ̄/k3

F , (B.1)

Ãψ = 2MĀψ, σ̃ = σ/εF , h̃φ = 2Mh̄φ/k
1/2
F , λ̃ψ = 2MkF λ̄ψ,

Ãφ = 2MĀφ, m̃2
φ = m̄2

φ/εF , λ̃φ = 2MkF λ̄φ.

The quantities hσ and Zψ, Zφ are left unchanged, they scale ∝ k0
F .

Further we display the relation between “renormalized” (i.e., rescaled with the
appropriate power of the wave function renormalization) and “bare” dimensionless
quantities. The wave function renormalizations (WFRs) Zψ, Zφ are defined as the
coefficients of the time derivative operator in the effective action,

Γ 3
∫

Q

ψ̄†(Q)ZψiωF ψ̄(Q),

∫

Q

φ̄∗(Q)Zφiωφφ̄(Q). (B.2)

We compute the WFRs in a derivative expansion in momentum space from

Zψ · 12×2 = Im
∂

∂ω

→
δ

δψ̄†(Q)
Γ

←
δ

δψ̄(Q)

∣∣∣
ω=~q=0

, (B.3)

Zφ = Im
∂

∂ω

→
δ

δφ̄∗(Q)
Γ

←
δ

δφ̄(Q)

∣∣∣
ω=~q=0

.
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The fermionic WFR is diagonal in spinor space. We can absorb the wave function
renormalizations by rescaling the fields according to

ψ̄ → ψ =
√

Zψψ̄, φ̄ → φ =
√

Zφφ̄. (B.4)

We call the fields before the rescaling (with a bar) “bare” and the rescaled fields
“renormalized”. If we rotate back to Minkowski space, our rescaling induces a stan-
dard time evolution for the renormalized fields.

The effective action must be invariant under such a rescaling and we conclude the
following transformation laws for the various couplings, defining the “renormalized
couplings”. First we note that obviously under a rescaling with the WFRs

Zψ → 1, , Zφ → 1. (B.5)

The other couplings transform as

Aψ = Ãψ/Zψ, h2
φρ = h̃2

φρ̃/Zψ, λψ = λ̃ψ/Z2
ψ

Aφ = Ãφ/Zφ, m2
φ = m̃2

φ/Zφ, λφρ = λ̃φρ̃/Zφ. (B.6)

The current σ̃ is left untouched under the Zφ, Zψ rescaling. From the last formula
we can read off

hφ = h̃φ/(ZφZ
2
ψ)1/2, λφ = λ̃φ/Z

2
ψ, ρ = Zφρ̃. (B.7)

Two particularly important invariants under the rescaling transformation Z (cf.
chapt. 4.2.2) are the absolute square of the renormalized boson field (condensate)
and the fermion gap,

ρ = Zφρ̃, , r̃ = h̃2
φρ̃. (B.8)



Appendix C

Computation of the 1 PI Vertex
Functions

In this section present a way to systematically compute the loop corrections for the
coefficients of the effective action. This is particularly important for the coefficients
which cannot be deduced from the effective potential. These are all couplings in
the effective action involving frequency or momentum dependencies, or external
fermion fields. We work with renormalized, dimensionless fields and couplings. For
the momentum variables, we omit the tilde’s in this section in order not to overcharge
the notation.

We introduce a generalized field and its transposed by

χ̂(X) =




φ̂

φ̂∗

ψ̂

ψ̂∗


 (X), χ̂T (X) =

(
φ̂, φ̂∗, ψ̂T , ψ̂†

)
(X). (C.1)

Here φ̂, φ̂∗ and ψ̂, ψ̂∗ are considered as independent field variables. Hence χ̂, χ̂T carry
the same information. Sticking to the convention for the Fourier transform (3.4),
χ̂(X) =

∫
Q

exp(iQX)χ̂(Q) we now find for the components

χ̂(Q) =




φ̂(Q)

φ̂∗(−Q)

ψ̂(Q)

ψ̂∗(−Q)


 , χ̂T (−Q) =

(
φ̂(−Q), φ̂∗(Q), ψT (−Q), ψ†(Q)

)
. (C.2)

The minus sign in χ̂T (−Q) is introduced by hand to get the correct momentum
structure of the bilinears. These conventions have been introduced in [50], where
the case of real fields is also treated.

155



156 Chapter C. Computation of the 1 PI Vertex Functions

The fluctuation matrix is defined as

Γ(2)(Q1, Q2) =

→
δ

δχT (−Q1)
Γ

←
δ

δχ(Q2)
. (C.3)

We write the fluctuation matrix as

Γ(2) = P + F (C.4)

with F the part that depends on the fluctuating fields, while P contains the in-
verse propagators including background fields. The decomposition is implemented
by inserting the ansatz

χ̂(Q) = χδ(Q) + δχ̂(Q) (C.5)

with a homogenous background value χ (ψ = 0 for fermions) and a fluctuating
part δχ(Q) that still contains an arbitrary momentum dependence. P(Q1, Q2) =
P (Q1)δ(Q1−Q2) is then diagonal in momentum space, block diagonal in its discrete
index structure and hence easily invertible. This yields

P(Q1, Q2) =

( Pφ(Q1) 0
0 PF,αβ(Q1)

)
δ(Q1 −Q2). (C.6)

It is inverted by inverting the submatrices. These submatrices and their inverses
read

PF,αβ(Q1) =

( −εαβhφφ
∗ −δαβPF (−Q1)

δαβPF (Q1) εαβhφφ

)
, (C.7)

P−1
F,αβ(Q1) =

1

P
|2|
F (Q1)

(
εαβhφφ δαβPF (−Q1)

−δαβPF (Q1) −εαβhφφ
∗

)
,

with

PF (Q) = i ωF + Aψq2 − σ = i ωF + f1, (C.8)

P
|2|
F (Q) = PF (−Q)PF (Q) + h2

φρ = ω2
F + F 2

1 , F 2
1 = f 2

1 + h2
φρ.

(The fermionic Matsubara frequencies are given by ωF = (2n + 1)πT and we abbre-
viate ρ = φ∗φ.) These functions have the obvious properties

PF (−ω, ~q) = P ∗
F (ω, ~q), PF (ω,−~q) = PF (ω, ~q), (C.9)

P
|2|
F (−Q) = P

|2|
F (Q).

The relation between bare dimensionful and renormalized dimensionless fermion
propagator reads

PF = (ZψεF )−1P̄F . (C.10)
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In the symmetric phase (SYM, φ = φ∗ = 0) the matrix is purely off-diagonal.

Similarly, the inverse boson propagator can be written as

Pφ(Q1) =

(
λφφ

∗φ∗ Pφ(−Q1)
Pφ(Q1) λφφφ

)
, (C.11)

P−1
φ (Q1) =

1

P
|2|
φ (Q1)

( −λφφφ Pφ(−Q1)
Pφ(Q1) −λφφ

∗φ∗

)

with

Pφ(Q) = iωφ + Aφq
2 + m2

φ + λφρ = i ωφ + f2, (C.12)

P
|2|
φ (Q) = Pφ(−Q)Pφ(Q)− (λρ)2 = ω2

φ + F 2
2 , F 2

2 = f 2
2 − (λρ)2 ≥ 0.

(The bosonic Matsubara frequencies are given by ωφ = 2nπT .) These functions have
the obvious properties

Pφ(−ω, ~q) = P ∗
φ(ω, ~q), Pφ(ω,−~q) = Pφ(ω, ~q), (C.13)

P
|2|
φ (−Q) = P

|2|
φ (Q).

The relation between bare dimensionful and renormalized dimensionless boson prop-
agator reads

Pφ = (ZφεF )−1P̄φ. (C.14)

The mass matrix for the bosons is degenerate and purely off-diagonal in SYM. In
SSB, we have ρ 6= 0 and Goldstone’s theorem dictates m2

φ = 0. “Off-diagonalization”
1 yields the eigenvalues (2λρ, 0) – the zero eigenvalue signals the Goldstone mode
characteristic for superfluidity. (This of course also holds in an extended truncation
with higher order φ – terms.) We refer to sect. D.4.2 for a detailed discussion of the
boson propagator. For practical purposes it is useful to implement the transition
from SSB to SYM by Fi → fi, φ = φ∗ = 0.

We further decompose the fluctuation part according to the field contents 2:

F(Q1, Q2) = F̄ φ(Q1, Q2) + F̄ φ∗(Q1, Q2)

+F̄ψ(Q1, Q2) + F̄ψ†(Q1, Q2)

+Ḡφ∗φ(Q1, Q2) + Ḡφ∗φ∗(Q1, Q2) + Ḡφφ(Q1, Q2)

+Ḡψ†ψ(Q1, Q2) + Ḡψ†ψ†(Q1, Q2) + Ḡψψ(Q1, Q2)

= F φδφ(Q1 −Q2) + F φ∗δφ∗(−(Q1 −Q2))

1Conventions could also be chosen such that a diagonalization procedure has to be implemented.
2The bars here have nothing to do with the notation for the bare fields and couplings.
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+Fψ
α δψα(Q1 −Q2) + Fψ†

α δψ†α(−(Q1 −Q2))

+Gφ∗φ
∫

Q

δφ∗(Q)δφ(Q + (Q1 −Q2))

+Gφ∗φ∗
∫

Q

δφ∗(Q)δφ∗(−Q− (Q1 −Q2))

+Gφφ

∫

Q

δφ(Q)δφ(−Q + (Q1 −Q2))

+Gψ†ψ
αβ

∫

Q

δψ†α(Q)δψβ(Q + (Q1 −Q2))

+Gψ†ψ†
αβ

∫

Q

δψ†α(Q)δψ†β(−Q− (Q1 −Q2))

+Gψψ
αβ

∫

Q

δψα(Q)δψβ(−Q + (Q1 −Q2)) (C.15)

In the second line, the momentum dependence is separated from the discrete index
structure. We find explicitly:

F φ =




0 2λφφ
∗ 0 0

2λφφ
∗ 2λφφ 0 0

0 0 0 0
0 0 0 hφεκρ


 , (C.16)

F φ∗ =




2λφφ
∗ 2λφφ 0 0

2λφφ 0 0 0
0 0 −hφεκρ 0
0 0 0 0


 ,

Fψ
α =




0 0 0 0
0 0 −hφεακ 0
0 hφεαρ 0 0
0 0 0 0


 ,

Fψ∗
α =




0 0 0 hφεακ

0 0 0 0
0 0 0 0

−hφεαρ 0 0 0


 .

The bosonic G matrices have nonzero entries only in the 2× 2 φ – sector. We only
display these blocks:

Gφ∗φ 3
(

0 2λφ

2λφ 0

)
, Gφ∗φ∗ 3

(
λφ 0
0 0

)
, Gφφ 3

(
0 0
0 λφ

)
. (C.17)
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The fermionic G matrices have nonzero entries only in the 4× 4 ψ – sector. We only
display these blocks (mind the position of the indices in the first matrix!):

Gψ†ψ
αβ 3

(
0 λψ(δγαδδβ − δγδδαβ)

−λψ(δαδδγβ − δγδδαβ) 0

)
, (C.18)

Gψ†ψ†
αβ 3

( −λψδγαδδβ 0
0 0

)
, Gψψ

αβ 3
(

0 0
0 −λψδγαδδβ

)
.

We further define the matrices

N̄χ(Q1, Q2) = P−1(Q1)F̄
χ(Q1, Q2), (C.19)

Nχ(Q1) = P−1(Q1)F
χ,

M̄φ(∗)φ(∗)
(Q1, Q2) = P−1(Q1)Ḡ

φ(∗)φ(∗)
(Q1, Q2), (C.20)

Mφ(∗)φ(∗)
(Q1) = P−1(Q1)G

φ(∗)φ(∗)
.

and analogous for M̄ψ(†)ψ(†)
αβ . The matrices with bars are supermatrices while those

without are not. The supermatrices are constructed in order to properly account
for the Grassmann nature of the fermion fields. Most importantly, an appropriately
defined “supertrace” (STr) accounts for the relative minus sign for the traces over
the purely fermionic (FF) and the purely bosonic (BB) blocks in the supermatrices,

STrA = TrABB − TrAFF . (C.21)

Supertrace and “superdeterminant” (Sdet) obey the usual rules for trace and de-
terminant manipulation (cyclicity under the supertrace, product rule for the su-
perdeterminant etc.). For the detailed manipulation rules of supermatrices, see the
appendix of [49].

With these preparations we can compute the necessary supertraces running over
products of the supermatrices. The following expressions always include the pref-
actors from the log expansion, and we use a sum convention for repeated discrete
indices. The matrix multiplication for the ordinary matrices Nχ is understood; note
that they cannot be manipulated according to the rules for STr; str just runs over
the discrete indices, accounting for the appropriate overall sign for the fermion sec-
tor and is not a supertrace in the above sense. In the following, we first display the
general formulae in terms of the supermatrices. Then, we rearrange the indices in
such a way that we get an explicit representation in terms of traces over the fields.

Fermion Propagator

We consider the one-loop corrections to the off-diagonal components of the fermion
propagator (cf. eq. (C.7)). This part involves the momentum dependence from which
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we can extract the kinetic coefficients Zψ, Aψ.
∫

K

δψ†(K)∆PF (K)δψ(K) (C.22)

= −1

2
STr

[
N̄ψ†N̄ψ − M̄ψ†ψ]

= −1

2

∫

K

δψ†α(K)
{
str

∫

Q

Nψ†
α (Q)Nψ

β (Q + K)−Mψ†ψ
αβ (Q)

}
δψβ(K)

=

∫

K

δψ†α(K)δψβ(K)
{∫

Q

[h2
φ

2

(Pφ(−Q−K)PF (−Q)

P
|2|
φ (Q + K)P

|2|
F (Q)

+
Pφ(Q)PF (Q + K)

P
|2|
φ (Q)P

|2|
F (Q + K)

)

−λψ

2

PF (Q) + PF (−Q)

P
|2|
F (Q)

]
δαβ

}
.

The term ∝ λψ is momentum independent, representing a tadpole graph. We stress
that for diagrams involving both internal fermion and boson lines, on must be very
careful when applying transformations on the momentum arguments such as re-
flections Q → −Q, or shifts Q → Q + K. Matsubara sums over both frequencies
∼ 2n and ∼ 2n + 1 do not respect the usual invariance properties of continuous
integrations.

Boson propagator

Again the momentum dependence we are interested in arises in the off-diagonal
components of the boson propagator (cf. eq. (C.11)). Hence we consider

∫

K

φ∗(K)∆Pφ(K)φ(K) (C.23)

= −1

2
STr[N̄φ∗N̄φ − M̄φ∗φ]

= −1

2

∫

K

δφ∗(K)
{
str

∫

Q

Nφ∗(Q)Nφ(Q + K)−Mφ∗φ(Q)
}
δφ(K)

=

∫

K

δφ∗(K)δφ(K)
{ ∫

Q

−h2
φ

PF (Q)PF (−Q−K)

P
|2|
F (Q)P

|2|
F (Q + K)

+λφ

[Pφ(Q) + Pφ(−Q)

P
|2|
φ (Q)

− 2λφρ
(
2

Pφ(Q)Pφ(Q + K)

P
|2|
φ (Q)P

|2|
φ (Q + K)

+
Pφ(−Q)Pφ(Q + K)

P
|2|
φ (Q)P

|2|
φ (Q + K)

)

+4(λφρ)2Pφ(Q + K) + Pφ(−Q)

P
|2|
φ (Q)P

|2|
φ (Q + K)

− 4(λφρ)3 1

P
|2|
φ (Q)P

|2|
φ (Q + K)

]}
.
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The φ propagator receives a frequency and momentum dependent correction from
the fermion fluctuations. In SYM, the bosonic fluctuations yield a momentum in-
dependent part only. Momentum dependent bosonic parts are compatible with the
symmetries in SSB. The graphs ∝ (λφρ)2, (λφρ)3 in SSB involve 4 and 6 inner bo-
son lines, thus corresponding to more and more irrelevant coupling. We omit these
contributions in practical computations. The graphs ∝ λφρ play a subleading role
as we have verified numerically. The higher order graphs might play an important
role for the computation of critical exponents.

Yukawa coupling

The symmetries of our theory are not compatible with a diagram involving two inner
fermion and an inner φ – boson line in SYM. Indeed we find

1

2
STrN̄φN̄ψ†N̄ψ† = 0. (C.24)

In SSB this result remains true if we ignore contributions starting at λφρ
2. Interest-

ingly, terms ∝ φ2ρ and ∝ φ∗2ρ arise from φψ†ψ† and φ∗ψψ – U(1) invariance is only
ensured if both terms are considered. In the following, we restrict to the correction
to φψ†ψ†. A direct contribution to the renormalization of the Yukawa coupling is,
generated in the presence of a pointlike four-fermion coupling and reads

−1

2
STrN̄φM̄ψ†ψ† (C.25)

= −1

2

∫

K1,K2,K3

δφ(K1)δψ
†
α(K2)δψ

†
β(K3)δ(K1 − (K2 + K3))

{
str

∫

Q

Nφ(Q + K1)M
ψ†ψ†
αβ (Q)

}

=

∫

K1,K2,K3

δφ(K1)δψ
†
α(K2)δψ

†
β(K3)δ(K1 − (K2 + K3))

{− λψhφ

2

∫

Q

PF (Q)PF (−Q + K1)

P
|2|
F (Q)P

|2|
F (Q + K1)

εαβ

}
.

In the absence of a pointlike background coupling, direct renormalization effects on
hφ are expected to be weak – in this case, λψ can only be generated by “rebosoniza-
tion” graphs. A strong renormalization effect comes, however, from the anomalous
dimension terms.
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Four-fermion coupling

−1

4
STr

{
N̄ψ†N̄ψ

[
N̄ψ†N̄ψ + 2N̄ψN̄ψ†] + M̄ψ†ψM̄ψ†ψ + 2M̄ψ†ψ†M̄ψψ

}
(C.26)

+
1

2
STr

[(
N̄ψN̄ψ† + N̄ψ†N̄ψ

)
M̄ψ†ψ + N̄ψN̄ψM̄ψ†ψ† + N̄ψ†N̄ψ†M̄ψψ

]

=

∫

K1...K4

δψ†α(K1)δψβ(K2)δψ
†
γ(K3)δψδ(K4)δ(K1 + K3 − (K2 + K4))

{
str

∫

Q

−1

4

{
Nψ†

α (Q)Nψ
β (Q + K1)

[
Nψ†

γ (Q + K1 −K2)N
ψ
δ (Q + K1 + K3 −K2)

−2Nψ
δ (Q + K1 −K2)N

ψ†
γ (Q + K1 − (K2 + K4))

]

+Mψ†ψ
αβ (Q)Mψ†ψ

γδ (Q + K1 −K2)−Mψ†ψ†
αγ (Q)Mψψ

βδ (Q + K1 + K3)
}

+
1

2

{[
Nψ†

α (Q)Nψ
β (Q + K1)−Nψ

β (Q)Nψ†
α (Q−K2)

]
Mψ†ψ

γδ (Q + K1 −K2)

−Nψ
β (Q)Nψ

δ (Q−K2)M
ψ†ψ†
αγ (Q− (K2 + K4))

−Nψ†
α (Q)Nψ†

γ (Q + K1)M
ψψ
βδ (Q + K1 + K3)

}}

SY M
=

∫

K1...K4

δψ†α(K1)δψβ(K2)δψ
†
γ(K3)δψδ(K4)δ(K1 + K3 − (K2 + K4))

{
− 1

2

∫

Q

{1

2

[ h4
φ

Pφ(−Q)PF (−Q−K1)Pφ(−Q−K1 + K2)PF (−Q−K1 + K2 −K3)

+
h4

φ

PF (Q)Pφ(Q + K1)PF (Q + K1 −K2)Pφ(Q + K1 −K2 + K3)

]

+
[ λ2

ψ

PF (Q)PF (−Q−K1)
+

λ2
ψ

PF (Q)PF (Q + K1)

]

+
[ λψh2

φ

PF (−Q)Pφ(−Q + K2)PF (−Q−K1 + K2)

+
λψh2

φ

PF (Q)Pφ(Q + K1)PF (Q + K1 −K2)

]}
δαβδγδ

+
1

2

∫

Q

{ λψh2
φ

PF (−Q)Pφ(−Q + K2)PF (−Q−K1 + K2)

+
λψh2

φ

PF (Q)Pφ(Q + K1)PF (Q + K1 −K2)

}
εαγεβδ

}
.
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We display the result of the summation over the discrete indices only in the sym-
metric phase – the full expression in the broken phase extends over several pages
already at this level of tracing out the indices, if the full momentum dependence is
kept! Note that we do not apply shift and reflection operations on the momenta for
mixed diagrams as argued above.

We display the loop result for zero external momenta in SSB,

Re

∫

Q

{
− h4

φ

2

Pφ(Q)2PF (Q)2 + (λφρ)2PF (Q)PF (−Q)

(P
|2|
φ (Q)P

|2|
F (Q))2

(C.27)

−λ2
ψ

2

PF (Q)PF (−Q) + PF (Q)2

P
|2|
F (Q)2

−λψh2
φ

Pφ(Q)PF (Q)2 − h2
φρ(Pφ(Q) + Pφ(−Q)) + h2

φλφρ
2

P
|2|
φ (Q)P

|2|
F (Q)2

}
δαβδγδ

+
{
− h4

φ

2

h2
φρPφ(Q)Pφ(−Q)

(P
|2|
φ (Q)P

|2|
F (Q))2

− λ2
ψ

2

h2
φρ

P
|2|
F (Q)2

+ λψh2
φ

Pφ(Q)PF (Q)2

P
|2|
φ (Q)P

|2|
F (Q)2

}
εαγεβδ.

Taking the real part only compensates for imaginary parts generated from only
considering particular sign arrangements in PF , Pφ.



Appendix D

Explicit Loop Results

D.1 Wave Function Renormalization Factors

According to the definition (B.3), the one-loop corrections to the wave function
renormalization (WFR) factors Zψ, Zφ can be computed from the imaginary part of
the bare loop corrections to the propagators,

∆Zi = lim
ωe→0

Im
∆P̄i(ωe, ~k

2 = 0)−∆P̄i(ωe = 0, ~k2 = 0)

ωe

. (D.1)

The index i in (D.1) stands for either F (fermionic WFR) or φ (bosonic WFR). The
fact that the operators ψ†iωψ, φ∗iωφ are imaginary implies that we only have to
consider the imaginary part of the loop correction.

In app. B we have defined the “renormalized” quantities by a rescaling with the
wave function renormalizations Zψ, Zφ. In these units one finds ∆Zi ∝ Zi such that
we can conveniently write

∆ log Zi =
∆Zi

Zi

=
∂Im∆Pi(ωe, ~q = 0)

∂ωe

∣∣∣
ωe=0

. (D.2)

Taking the negative cutoff derivative then produces the anomalous dimensions for
fermions and bosons,

ηi = −∂t log Zi = −∂t∆ log Zi. (D.3)
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The desired loop correction for the fermions reads

∆ log Zψ =
h2

φ

16T̃ 2

∫
d3q̃

(2π)3
[(π/2)4 + 2(π/2)2(α2

φ + γ2
φ) + (α2

φ − γ2
φ)

2]−2 (D.4)

×{
2γ−1

φ

[
(π/2)6γ − (α2

φ − γ2
φ)

2(α2
φγ + (2α + γ)γ2

φ)

+(π/2)4(α2
φγ + (6α + γ)γ2

φ)− (π/2)2(α4
φγ − 2α2

φ(2α + 5γ)γ2
φ

+(γ − 4α)γ4
φ

]
tanh γφ −

[
α ↔ γ, αφ ↔ γφ, tanh αφ ↔ coth αφ

]

+[(π/2)2(α− γ) + (α + γ)(α2
φ − γ2

φ)]

×[(π/2)4 + 2(π/2)2(α2
φ + γ2

φ) + (α2
φ − γ2

φ)
2][sinh−2 αφ − cosh−2 γφ]

}

reducing in SYM to

∆ log Zψ =
h2

φ

16T̃ 2

∫
d3q̃

(2π)3
((π/2)2 + (α− γ)2)−2 (D.5)

×[
2[(π/2)2 − (α− γ)2][tanh γ − coth α]

+(α− γ)[(π/2)2 + (α− γ)2][sinh−2 α− cosh−2 γ]
]
.

The bosonic expression is given by

∆ log Zφ =
h2

φ

16T̃ 2

∫
d3q̃

(2π)3
γγ−3

φ

[
tanh γφ − γφ cosh−2 γφ

]
(D.6)

−λφρ
λφ

8T̃ 2

∫
d3q̃

(2π)3
αα−3

φ

[
coth αφ + αφ sinh−2 αφ + 4α2

φ coth αφ sinh−2 αφ

]

where we omit terms O((λφρ)2). In SYM this reduces to

∆ log Zφ =
h2

φ

16T̃ 2

∫
d3q̃

(2π)3
γ−2

[
tanh γ − γ cosh−2 γ

]
. (D.7)

D.2 Gradient Coefficients

The one-loop correction to the gradient coefficients can be obtained as

∆Ai = lim
~k2→0

Re
∆Pi(ωe = 0, ~k2)−∆Pi(ωe = 0, 0)

~k2
. (D.8)

We note that there is no first order contribution due to the identity

∫
ddq (~q · ~k) f(~q 2) = 0. (D.9)



166 Chapter D. Explicit Loop Results

The index i in (D.8) stands for either F (fermionic gradient coefficient) or φ (bosonic
gradient coefficient). Reality of the operators ψ†q2ψ, φ∗q2φ implies that we only have
to consider the real part of the loop correction. Using the properties (C.9,C.13) and

restricting to the real part, the general form of ∆Pi(0, ~k
2) can be written as (cf. eqs.

(C.22,C.23))

∆Pi(0, ~k
2) = ci

∞∑
n=−∞

T

∫
d3q

(2π)3

Pj(ω, ~q)

P
|2|
j (ω, ~q)

Pl(±ω, ~q + ~k)

P
|2|
l (ω, ~q + ~k)

. (D.10)

Note the appearance of either + or − sign in the second factor – they correspond to
“bubble” or “ladder” type contributions. ci stands for the prefactor of the integral.
For the fermionic gradient coefficient Aψ, we have

i = F, ci = h2
φ, Pj = PF , Pl(ω, ~q + ~k) = Pφ(ω, ~q + ~k) (D.11)

with the positive sign in front of the Matsubara frequency in Pφ, while for the bosonic
expression Aφ one finds

i = φ, ci = −h2
φ, Pj = PF , Pl(−ω, ~q + ~k) = PF (−ω, ~q + ~k) (D.12)

with the negative sign in front of the Matsubara frequency in PF .

In SSB, there are both ladder and bubble type contributions to Aφ ∝ ρ stemming
from boson fluctuations. They can be computed from the above formula with

i = φ, ci = −2λ2
φρ, Pj = Pφ, Pl(−ω, ~q + ~k) = Pφ(−ω, ~q + ~k) (D.13)

(ladder piece) and

i = φ, ci = −4λ2
φρ, Pj = Pφ, Pl(ω, ~q + ~k) = Pφ(ω, ~q + ~k) (D.14)

(bubble piece).

The following considerations only refer to the integration over the spacelike mo-
menta. They can be performed for any fixed Matsubara mode. We slightly generalize
the discussion to d spacelike dimensions.

We have to perform an expansion of ∆Pi(0, ~k) at O(~k2). Since (~q + ~k)2 = ~q 2 +

2~q~k + ~k2 there will be contributions from (~q~k)2 and ~k2. It is, however, possible to
express (D.8) in terms of first order derivatives only 1. To see this, we first write

Gm(~k) ≡ Pj(±ω, ~q + ~k)

P
|2|
j (ω, ~q + ~k)

= G(0)
m + G(1)

m (~q · ~k) + G(2)
m

~k2. (D.15)

1Thanks to Holger Gies for pointing this out to me!
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(The sign of ω must be taken care for in the concrete calculation.) Now consider,
for an arbitrary Matsubara mode,

∫
ddq

(2π)3
Gj(0)Gl(~k) =

∫
ddq

(2π)3
Gj(−~k)Gl(0) =

∫
ddq

(2π)3
Gj(−~k/2)Gl(~k/2) (D.16)

which at the order k2 implies

∫
ddq

(2π)3
G

(2)
j G

(0)
l

~k2 =

∫
ddq

(2π)3
G

(0)
j G

(2)
l

~k2 (D.17)

= −1

4

∫
ddq

(2π)3
G

(1)
j G

(1)
l (~q · ~k)2 +

1

4

∫
ddq

(2π)3

(
G

(2)
j G

(0)
l + G

(0)
j G

(2)
l

)
~k2.

Each of these expressions can be taken to compute the gradient coefficient (D.8).
On the other hand, the last equations can be used to eliminate the second order
terms from the practical computation of Ai. Using the identity

∫
ddq(~q · ~k)2f(~q 2) =

~k2

d

∫
ddq~q 2f(~q 2) (D.18)

we can write down the formula for the computation of ∆Ai,

∆Ai = − ci

2d
Re

∞∑
n=−∞

T

∫
d3q

(2π)3
~q 2 G

(1)
j G

(1)
l . (D.19)

For practical reasons, it is preferable to perform the Matsubara sum before expand-
ing Gj to first order. With G

(1)
j = 2Aj∂Gj(y)/∂y|~k=0, y = (~q +~k)2, we can write the

last equation as

∆Ai = −2AjAlci

d
Re

∫
d3q

(2π)3

∂

∂y

∂

∂x

∞∑
n=−∞

T~q 2 Gj(y)Gl(x). (D.20)

The resulting loop expressions are quite lengthy. E.g. Aψ extends over some pages
in SSB. For this coupling we only display the result in SYM,

∆Aψ =
AφAψh2

φ

24T̃ 3

∫
d3q̃

(2π)3
q̃2((π/2)2 + (α− γ)2)−3 (D.21)

×[
2[(α− γ)2 − 3(π/2)2)(α− γ)][tanh γ − coth α]

+[(α− γ)4 − (π/2)4][cosh−2 γ − sinh−2 α]
]
.
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The bosonic gradient coefficient reads

∆Aφ =
h2

φA
2
ψ

288T̃ 3

∫
d3q̃

(2π)3
q̃2γ−7

φ

[
3(5γ4 − 5γ2γ2

φ + 2γ4
φ)[tanh γφ − γφ cosh−2 γφ]

+2γ2γφ(γ
2 − γ2

φ)[γφ cosh−4 γφ − 6 tanh γφ − 2γφ tanh2 γφ]
]

+λφρ
λφA

2
φ

144T̃ 3

∫
d3q̃

(2π)3
q̃2α−7

φ

[
3 coth αφ

{
α2(−19α2

φ + 15κ2)

+15α4 + 6α4
φ + 30α3κ− 20αα2

φκ− α2
φκ

2
}

+αφ sinh−2 αφ

{
18α4

φ + 3α4(15 + 4α2
φ) + 4αα2

φ(−15 + 2α2
φ)κ

+6α3(15 + 4α2
φ)κ + α2

φ(−3 + 4α2
φ)κ

2

+α2(45κ2 + α2
φ(−57 + 4α2

φ + 12κ2))

+36ααφ(α + κ)(−α2
φ + α(α + κ)) coth αφ

}

+6α3
φ(3α

2 + α2
φ)(α + κ)2 sinh−4 αφ

]
, (D.22)

where we omit terms O((λφρ)2). In SYM this reduces to

∆Aφ =
h2

φA
2
ψ

48T̃ 3

∫
d3q̃

(2π)3
q̃2γ−3

[
tanh γ − γ cosh−2 γ

]
. (D.23)

D.3 Yukawa and Four-Fermion Coupling

The loop corrections for the Yukawa and the four-fermion coupling are evaluated at
zero external frequency and momentum.

From eq. (C.25), we find for the loop correction to the Yukawa coupling, after
performing the Matsubara sum,

∆
hφ

2
= −hφλψ

16T̃

∫
d3q̃

(2π)3
γ−3

φ

[
γφ(γ

2
φ − γ2) cosh−2 γφ − (γ2

φ + γ2) tanh γφ

]
(D.24)

Our truncation features a term (cf., e.g., (3.5) or (7.20))

Γ 3
∫

K1,K2,K3

φ(K1)ψ
†
α(K2)ψ

†
β(K3)δ(K1 − (K2 + K3))

{hφ

2
εαβ

}
. (D.25)

Comparison of the coefficients reveals that the loop integral in eq. (C.25) corresponds
to ∆hφ/2. Since we are further mainly interested in ∆h2

φ = 2hφ∆hφ, the above loop
correction has to be premultiplied with 4hφ in order to get the desired expression.
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From eq. C.27, we find for the loop correction to the four-fermion coupling, after
performing the Matsubara sum and in SYM,

∆
λψ

2
= −λ2

ψ

8T̃

∫
d3q̃

(2π)3
γ−1

[
tanh γ − γ cosh−2 γ

]
(D.26)

+
3λψh2

φ

8T̃ 2

∫
d3q̃

(2π)3

(
(π/2)2 + (α− γ)2

)−2

×[(
(π/2)2 − (α− γ)2

)(
coth α− tanh γ

)

+
(
(π/2)2 + (α− γ)2

)
(α− γ) cosh−2 γ

]

− h4
φ

32T̃ 3

∫
d3q̃

(2π)3

(
(π/2)2 + (α− γ)2

)−3

×[
2
(− 3(π/2)2 + (α− γ)2

)
(α− γ)

(
coth α− tanh γ

)

+
(
(α− γ)4 − (π/2)4

)(
sinh−2 α− cosh−2 γ

)]
.

For the term ∝ λψh2
φ we have grouped the term with ε2-structure together with

the term featuring δ2-structure (cf. eq. C.27) by an appropriate Fierz rearrange-
ment. Similar to the discussion for the Yukawa term, the loop integral has to be
premultiplied with a factor 2 since our truncation involves λψ/2.

D.4 Effective Potential

The effective potential is formally obtained by setting δψ̂ = 0 from the outset. In
this case, the fluctuation matrix Γ(2)|δψ̂=0(Q1, Q2) is block diagonal in the discrete

indices. If we assume homogeneous fields 2 and momentum independent couplings,
the matrix is further diagonal in momentum space, Γ(2)|δψ̂=0(Q1)δ(Q1 −Q2). Hence
the corresponding determinants can be performed explicitly for fluctuating boson
fields and the effective potential can be computed straightforwardly. A large number
of diagrams relevant for our problem can then be computed by field variation of the
effective potential. Due to the block diagonal structure of the fluctuation matrix, we
can split up the one-loop contribution to the effective potential into a fermionic and
a bosonic contribution,

Ū1 = Ū
(F )
1 + Ū

(B)
1 . (D.27)

The dimensionful and dimensionless version of the effective potential Ū = Γ/V are
related by

ũ = (k3
F εF )−1Ū = (k5

F /(2M))−1Ū , (D.28)

2Homogeneous fluctuating fields do not make sense from the physics point of view, but this is
used here as a computational trick.
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in accordance with the different scaling of energies and momenta in our nonrela-
tivistic problem. As the effective action, the effective potential is invariant under
rescaling transformation Z, cf. chapt. 4.2.2.

D.4.1 Fermionic Contribution

Omitting the δ-function, we find for the fermionic sector of the fluctuation matrix

Γ
(2)
F (σ̃, φ̂∗, φ̂) =

( −εαβhφφ̂
∗ −δαβPF (−Q̃)

δαβPF (Q̃) εαβhφφ̂

)
. (D.29)

The determinant w.r.t. the discrete indices of this matrix depends only on the in-
variant ρ̂ = φ̂∗φ̂ and reads

det
4×4

(Γ
(2)
F ) =

(
PF (Q̃)PF (−Q̃) + h2

φρ
)2

= (P
|2|
F (Q̃))2 (D.30)

=
(
ω̃2

F + (Aψ q̃2 − σ̃)2 + h2
φρ̂

)2
. (D.31)

The one-loop potential reads

ũ
(F )
1 (σ̃, ρ̂) = −1

2
log det(Γ

(2)
F ) = −

∫

Q̃

log P
|2|
F (Q̃) (D.32)

= −2T̃

∫
d3q̃

(2π)3
log cosh γφ

= −2T̃

∫
d3q̃

(2π)3
log

(
eγφ−γ + e−γφ−γ

)
+ const.

γφ(σ̃, ρ̂), γ(σ̃) are dimensionless, field dependent functions which are additionally
invariant under the rescaling with the WFRs. They read

γφ(σ̃, ρ̂) =
((Aψ q̃2 − σ̃)2 + h2

φρ̂)1/2

2T̃
, (D.33)

γ(σ̃) =
Aψ q̃2 − σ̃

2T̃
.

Their “equilibrium values”, obtained by setting ρ̂ → ρ0, are discussed in the subse-
quent appendix. In the last step we have omitted an infinite quantity which depends
only on σ̃ (through γ(σ̃)). Its omission is justified in sect. 4 by a comparison of the
operator vs. the path integral formalism.

In the second line we have performed the Matsubara sum using

2 ln cosh(x) =
∞∑

n=−∞
ln

(
1 +

x2

(n + 1/2)2π2

)
(D.34)
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and omitting another infinite constant, which is irrelevant for the thermodynamics.

The potential minimum is reached by setting ρ̂ = ρ0. Further, the SYM phase
is obtained by considering the symmetric vacuum state ρ0 = 0, and the effective
potential reduces to the standard form from statistical mechanics,

ũ
(F )
1 = −2T̃

∫
d3q̃

(2π)3
log

(
1 + e−2γ

)
. (D.35)

The coefficients entering the function γ can, however, be modified by fluctuations.

D.4.2 Bosonic Contribution

The bosonic sector of the fluctuation matrix is given by

Γ
(2)
φ (σ̃, ρ0, φ̂

∗, φ̂) =

( −λφφ̂φ̂ Pφ(−Q) + λφ(2ρ̂− ρ0)

Pφ(Q) + λφ(2ρ̂− ρ0) −λφφ̂
∗φ̂∗

)
.

(D.36)

Both fluctuating fields (with hat) and background values appear in this formula.
Again the determinant of this matrix depends only on the invariants ρ̂ = φ̂∗φ̂, ρ and
reads

det(Γ
(2)
φ ) = ω̃2

B + (Aφq̃
2 + m2

φ(σ̃))2 + 2λφ(Aφq̃
2 + mφ(σ̃)2)(2ρ̂− ρ0)

+λ2
φ(3ρ̂

2 − 4ρ̂ρ0 + ρ2
0). (D.37)

Here we work with a σ̃-dependence for m2
φ. This is motivated by the discussion of

the effective chemical potential in sect. 4.2.2. A σ̃-derivative acts on the mass term
as

∂m2
φ

∂σ̃
= −2, (D.38)

while it does not act on the other couplings (Aφ, λφ). Our prescription produces the
dressed connected molecule density, if applied to the bosonic effective potential.

This one-loop effective potential reads

ũ
(B)
1 (σ̃, ρ̂) =

1

2
log det(Γ

(2)
φ ) (D.39)

= T̃

∫
d3q̃

(2π)3
log sinh αφ

= T̃

∫
d3q̃

(2π)3
log

(
eαφ−α − e−αφ−α

)
+ const.
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Similar to the fermionic case, αφ(σ̃, ρ̂), α(σ̃) are dimensionless, field dependent func-
tions which are additionally invariant under the rescaling with the WFRs. They
read

αφ(σ̃, ρ̂) =
1

2T̃

[
(Aφq̃

2 + m2
φ(σ̃))2 (D.40)

+2λφ(2ρ̂− ρ0)(Aφq̃
2 + m2

φ(σ̃)) + λ2
φ(3ρ̂

2 − 4ρρ̂0 + ρ2
0)

]1/2
,

α(σ̃, ρ̂) =
Aφq̃

2 + m2
φ(σ̃)

2T̃
.

In the calculation we use the same arguments as above in order to deal with the
infinite constants. In the second line we have performed the Matsubara sum using

2 ln sinh(x) =
∞∑

n=−∞
ln

(
1 +

x2

n2π2

)
. (D.41)

As stated above, m2
φ(σ̃) contains a dependence on the current σ̃. As for the

fermionic contribution, the potential minimum is reached by setting ρ̂ = ρ. Further,
the SYM phase is obtained by setting ρ = 0, in SSB we can make use of Goldstone’s
theorem implying m2

φ = 0.

We can now generate all momentum independent couplings which do not involve
derivatives w.r.t. the fermion fields from these formulae,

ũ(n) =
∂nũ

∂ρ̂n

∣∣∣
ρ̂=ρ0

. (D.42)

Since we work in a quartic truncation, we are especially interested in

m2
φ = ũ(1), λφ = ũ(2). (D.43)

With our conventions for the effective chemical potential, we can also obtain the
particle number by a derivative,

k−3
F n = − ũ

∂σ̃
(D.44)

where we have to consider eqs. (4.82,D.38) for a practical implementation.

D.4.3 The functions γφ, γ, β and αφ, α, κ

In order to characterize the loop integrals at the minimum of the effective potential
(ρ̂ = ρ0), we need six functions, γφ, γ, β for the fermionic sector and αφ, α, and κ for
the bosonic sector (after having performed the Matsubara summation). Note that
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the effective potential (D.30,D.39) cannot be written in terms of these functions – it
still involves the fluctuating fields. The use of these functions makes only sense after
having performed the derivatives with respect to the fluctuating fields and having
set the fields to their background values.

The functions have two important properties: First, they are dimensionless (in-
variant under kF rescaling), such that all entries can be written both in dimensionful
or dimensionless units. Second, they are invariant under a rescaling with the wave
function renormalizations Zψ, Zφ. We display these functions expressed in dimen-
sionless renormalized units,

γφ(σ̃, ρ0) =

[
(Aψ q̃2 − σ̃)2 + h2

φρ0

]1/2

2T̃

γ(σ̃) =
Aψ q̃2 − σ̃

2T̃
, β(ρ0) =

h2
φρ0

2T̃
, (D.45)

αφ(σ̃, ρ0) =

[
(Aφq̃

2 + m2
φ(σ̃))2 + 2λφρ0(Aφq̃

2 + m2
φ(σ̃))

]1/2

2T̃

α(σ̃) =
Aφq̃

2 + m2
φ(σ̃)

2T̃
, κ(ρ0) =

λφρ0

2T̃
(D.46)

We have the following relations between these functions,

γ2
φ = γ2 + β2, (D.47)

α2
φ = α2 + 2κα.

The two phases are characterized by

• SYM

β = 0, γφ = γ, (D.48)

κ = 0, αφ = α.

This leads to great simplifications especially for the bosonic contributions in-
volving a lot of free κ’s.

• SSB

m2
φ = 0, α =

Aφq̃
2

2T̃
. (D.49)

In the presence of a cutoff, the functions α and γ are modified by additional mass
terms, while all algebraic properties are preserved.
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[43] J. Chwedenczuk, K. Goral, T. Köhler, and P.S. Julienne. Phys. Rev. Lett.,
93:260403, 2004.

[44] S. Jochim, M. Bartenstein, J. Hecker Denschlag, G. Hendl, A. Mosk, M Wei-
demüller, and R. Grimm. Phys. Rev. Lett., 89:273202, 2002.

[45] S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C. H.
Schunck, E. G. M. van Kempen, B. J. Verhaar, and W. Ketterle. Science,
300:1723, 2003.

[46] M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin,
J. Hecker Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and
P.S. Julienne. Phys. Rev. Lett., 94:103201, 2005.

[47] C. J. Pethick and H. Smith. Bose-Einstein Condensation in Dilute Gases.
Cambridge University Press, Cambridge UK, 2002.
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