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Abstract

Gravitational instability and fragmentation of self-gravitating accretion
disks — We know from observations that supermassive black holes (SMBH) of
masses up to 1010 M¯ existed in quasars when the universe was only about 109

years old. The rapid formation of SMBHs can be understood as the outcome
of the collision of two large gas-rich galaxies followed by disk accretion. This
model relies on a large enough turbulent viscosity in the disk. We show in a lin-
ear stability analysis of thin self-gravitating viscous disks that the gravitational
instability can drive a turbulence generating the β-viscosity. For simulating a
self-gravitating accretion disk in polar coordinates the hydrodynamics code NIR-
VANA2.0 is adapted for our needs which includes cooling. The results are disk
fragmentation, strong accretion at the inner radial boundary of the calculation
domain and strong outflow at the outer boundary which both come about by in-
teractions between clumps. The accretion time scale for a disk mass of 6·108 M¯

in a radial extent of 29 pc to 126 pc is about 1.2·107 a, corresponding to a vis-
cosity parameter β ≈ 0.04. We can confirm the β-viscosity interpretation by the
turbulent velocity and length scale and by the scaling of the accretion time scale.
All this supports the SMBH-formation model.

Zusammenfassung

Gravitationsinstabilität und Fragmentation von eigengravitierenden
Akkretionsscheiben — Wir wissen von Beobachtungen, dass supermasserei-
che Schwarze Löcher (SMBH) mit Massen von bis zu 1010 M¯ schon in Quasaren
existierten als das Universum nur etwa 109 Jahre alt war. Das schnelle Entstehen
der SMBHs kann als Produkt einer Kollision zwischen zwei großen gasreichen
Galaxien mit anschließender Scheibenakkretion verstanden werden. Dieses Mo-
dell braucht eine turbulente Viskosität der Scheibe, die groß genug ist. Wir zeigen
mittels einer linearen Stabilitätsanalyse für dünne eigengravitierende viskose
Scheiben, dass die Gravitationsinstabilität eine Turbulenz antreiben kann, die
die β-Viskosität erzeugt. Um eigengravitierende Akkretionsscheiben in Polarko-
ordinaten zu simulieren haben wir den Hydrodynamik Code NIRVANA2.0 für
unsere Zwecke umgeändert, was auch Kühlung beinhaltet. Die Ergebnisse sind
Scheibenfragmentation, starke Akkretion am radialen Innenrand und starker
Ausfluss am Außenrand des Rechengebietes. Beides kommt durch Wechsel-
wirkung zwischen Klumpen zustande. Die Akkretionszeitskala für Scheiben-
massen von 6·108 M¯ in radialer Ausdehnung von 29 pc bis 126 pc liegt bei etwa
1.2·107 a, was einem Viskositätsparameter β ≈ 0.04 entspricht. Wir können die β-
Viskositätsinterpretation durch die turbulente Geschwindigkeit und Längenskala,
und dadurch wie die viskose Zeitskala skaliert, bestätigen. Dies alles stützt auch
das SMBH-Entstehungsmodell.
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Chapter 1

Introduction

It is amazing how much we can know about the distant past universe. With
telescopes we can see light of objects for which it took it almost 13 billion years
to reach us, that is more than 90 % of the age of the universe! It is also a wonder
that we know the age of the universe and its cosmological parameters. Indeed
partly we know these things because we see light that comes almost directly from
the beginning of the universe itself when it was a mere few hundred thousand
years old. It was the new technology of telescopes and space borne instruments
that made these discoveries possible. But what is maybe even more amazing is
that we already understand many of these things and how they work. Perhaps
in the future we will understand them all. This is achieved mainly by theoretical
studies (helped by the always growing computational power) like the present one
but also by more observations and experiments. This thesis is an attempt to shed
a little more light on the processes that build up quasars and on the process of
disk accretion itself. Quasars are some of the most powerful and oldest objects
in the cosmos that we know of, and disk accretion is not only the driver of these
quasars but also responsible for the build up of completely different kinds of
objects like stars or planets.

1.1 Quasars and cosmology

A short introduction to cosmology can be found, e.g., in Unsöld and Baschek
(2002) or with more detail (although without the particle physics) in any book
about General Relativity like Fliessbach (1995). From observations we know
today that the further a galaxy is away from us the more the wavelengths of
lines and other features in the electromagnetic spectrum are shifted to longer
wavelengths. This is called redshift z, or cosmological redshift in this context,
defined by

z =
∆λ

λ0

=
λ − λ0

λ0

, (1.1)

where λ0 is the wavelength of the line or feature measured in the laboratory, and
λ the wavelength in the spectrum of the galaxy. This is interpreted in a way that
space itself is expanding with the current rate H0 = Ṙ0 · R−1

0 (where R0 is the

1



2 CHAPTER 1. INTRODUCTION

current scalelength of the universe) such that for z ¿ 1

z =
H0r

c
. (1.2)

Here r is the distance to the galaxy, c = 2.9979·108 m s−1, the speed of light,
and H0 is called the Hubble constant. This also means that any cosmological
redshift corresponds to a well defined time after the Big Bang, i.e., the hot
beginning of the universe. The theory of General Relativity with some additional
assumptions like isotropy of the universe leads directly to a description of it,
leaving only a few parameters to be measured. When these parameters are fixed,
the cosmological evolution is fixed, too. Mainly from measurements of the cosmic
microwave background (CMB) (Spergel et al. (2006) where references to other
cosmological measurements can be found also) and supernovae of type Ia we can
fix the cosmological parameters of our universe pretty tightly today. The CMB
is interpreted as the reminder of the Big Bang1, while supernovae Ia are huge
explosions in galaxies that can be used as a kind of standard candle (i.e., they
have, after a well defined simple correction, intrinsically the same brightness,
see, e.g., Riess et al. 2005). From this data follows not only that the universe
has a flat, i.e., of Euclidean geometry, but also that its expansion is accelerated.
Its age is measured to be 13.73+0.13

−0.17 Ga and H0 = 74 ± 3 Mpc−1 km s−1. These
measurements also tell us that the energy density of the universe consists of about
72 % dark energy, 24 % dark matter and only 4 % ordinary matter also called
baryonic matter. Up to now it is not clear what the dark energy is; and there
is no consensus about what dark matter is, but we know that it is not baryonic,
and it could be well explained by yet undetected heavy elementary particles.

General Relativity can also describe the objects that will be important in the
next paragraph, i.e., black holes (BHs). These are objects of extreme density
such that not even light can escape their gravitational field. Their size is one
Schwarzschild Radius

RS =
2GM

c2
≈ 3 km

M

M¯

, (1.3)

where G = 6.6742·10−11 m3 kg−1 s−2 is the gravitational constant, M¯ = 1.99·1030

kg is the solar mass, and M is the mass of the object. For non-rotating black
holes, a sphere of radius RS is the event horizon, i.e., the surface beyond which
nothing can escape the gravity of the BH. For rotating BHs, the event horizon
becomes a prolate ellipsoid with Rs being its semi-major axis.

Quasars are point like sources, mainly of high redshift and as far as we know
today, intrinsically extremely bright extra galactic objects. It is now a well ac-
cepted model that they are just the most powerful active galactic nuclei (AGN)
known (see, e.g., Antonucci, 1993) and as such harbor a supermassive black hole
(SMBH), i.e., a BH with a mass of more than 106 M¯. AGNs are centers of
galaxies with unusual spectral properties often containing strong radiation from
different spectral regions like the radio, visible or X-rays. They often have a

1The Microwave Background is a relic of the recombination (combination rather) of the
electrons with the protons to neutral hydrogen when the universe cooled down to about 3000
K at z = 1100, and thus it became transparent for electromagnetic radiation. Today the
temperature of this radiation is about 2.7 K due to redshift.
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bright core with jets coming out of it that sometimes lead to huge lobes of radio
emission. The extreme luminosity of quasars of up to almost 1041 W (see, e.g.,
Vestergaard, 2004) is thought to come about by accretion of matter onto the
SMBH probably with a conversion factor of radiated energy to rest mass energy
of around 0.1 (Frank et al., 2002). There are now quasars known with redshifts
of z > 6, especially one of z = 6.4 corresponding to a time when the universe was
only about 840 Ma old, having a SMBH mass of more than 109 M¯ as inferred
by Barth et al. (2003). More masses of high redshift SMBHs can be found in
Vestergaard (2004) and are mostly of the same order of magnitude. The masses
of SMBHs with low redshift can be inferred from line widths applying the virial
theorem. The distance of the region where the emission lines are produced to the
center can be estimated by the time difference of the variability in the continuum
directly seen from the central source and the variability in the emission lines.
From such measurements a heuristic relation is established between the size of
the so called broad line region (a region from which the atomic lines have a large
width) and the intrinsic luminosity of the AGN. This in turn is used to get masses
of high redshift quasars. We also know from X-ray observation (Hasinger et al.,
2005) that against naive expectations the large SMBHs formed much faster than
the small ones. This is called anti-hierarchic growth. So how can these objects
accrete so much mass in such a small period of time, and why is the growth
anti-hierarchical? There are some models proposed to solve this puzzle, see, e.g.

Duschl and Strittmatter (2006) or Begelman et al. (2006) for recent ones. Both
models involve an accretion disk in some way.

1.2 Accretion disks

Accretion disks are very common in the universe. They are directly observed
not only around AGNs like in Fathi et al. (2006), but also around other types of
objects among which are forming stars (O’dell et al., 1993). They are indirectly
inferred in the case of cataclysmic variables (CVs) (Frank et al., 2002), which
are double star systems where one star is a white dwarf accreting material from
its companion. Disks always seem to come about in the case of accretion. The
reason is that the accreted material cannot get rid of all its angular momentum.
The effective Newtonian potential in the two body system is given by (see, e.g.,
Kuypers, 1997)

Ueff = −Gm1m2

r
+

pϕ

2mr2
, (1.4)

where r is the distance between the two bodies with masses m1 and m2, m is the
reduced mass m = m1m2 · (m1 + m2)

−1 (which is approximately the mass of the
minor body) and pϕ is the conserved third component of the angular momentum.
From Equation (1.4) it is obvious that the effective potential becomes positive
infinity as r → 0 which means that no particle with non-zero angular momentum
can get to the center, and thus it must lose all its angular momentum to be
accreted. This is not true in general if the potential falls off at least as steep as
Φ ∝ R−2 which is true for the General Relativistic potential very close to a black
hole. In the direction parallel to the angular momentum vector, on the other
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hand the material can collapse, which is the reason that the material forms a flat
disk with the disk axis aligned with the angular momentum vector.

The theory of accretion disks can be found, e.g., in Frank et al. (2002) or
Pringle (1981). The main and still open question is the viscosity which gives rise
to accretion by redistributing the angular momentum. What happens is that due
to the viscosity some material loses its angular momentum and thus can be ac-
creted. Some other material on the other hand takes up this angular momentum
and gains distance to the center. But in the end most of the mass gets accreted
and only a small fraction of the mass gains all the angular momentum and is lost
for the accretion process. The usual molecular viscosity is far too small giving
time scales longer than the age of the universe in almost all astrophysical situa-
tions. The standard viscosity in disks is the so called α-viscosity by Shakura and
Sunyaev (1973) which is a heuristic ansatz. It is thought to come about by turbu-
lence although at the time it was proposed there was no instability known in disks
that could drive the turbulence. But in the meantime a magneto-hydrodynamic
instability was found in the case of slightly ionized non-self-gravitating disks by
the magneto rotational instability (MRI) of Balbus and Hawley (1991) that drives
the turbulence and generates the α-viscosity. But as will be shown in the next
section, this viscosity prescription might not fit all kinds of accretion disks.

1.3 A model for supermassive black hole forma-

tion

This model is described in Duschl and Strittmatter (2006). As we know from
simulations, see, e.g., Barnes and Hernquist (1996), Barnes and Hernquist (1998)
and Barnes (2002), in a major merger of two gas rich galaxies a large fraction of
the gas – which can be more than 109 M¯ – is collected in the central few 100
pc of the merger and can form a disk. This takes place in a few hundred Ma.
Similar massive disks are found around AGNs as in Scoville (1999), and there
is observational evidence that there is a connection between galaxy interactions,
indicated by the morphology of the galaxies, and AGNs (see e.g., Veilleux et al.
(2006) and references therein). The idea is now that the gas forms an accretion
disk which transports the gas into the very center to form and then feed the black
hole. The problem with this scenario is that the time scale of the α-viscosity is
too large to do the job. Since in addition to the time scale problem Duschl et al.
(2000) and independently Richard and Zahn (1999) found a principle problem
to describe self-gravitating disks – i.e., disks in which the gravitational potential
of the disk is not negligible – using the α-viscosity, they proposed the so called
β-viscosity which turns out to have the right time scale. It is also thought to be
a turbulent viscosity. In addition the anti-hierarchic growth of the SMBHs comes
about naturally in this model. There are still two major issues. One is that it is
not clear whether star formation in a massive and thus probably gravitationally
unstable disk is not effective enough to strongly deplete the gas in the disk and
thus slow down accretion. The other one is that the nature of the instability
driving the turbulence by which the viscosity comes about is still unclear. These
two issues will be addressed in this work by linear stability analysis as well as by
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two dimensional hydrodynamic simulations of a self-gravitating disk.

1.4 Layout of the thesis

After an introduction to the necessary theoretical basics in Chapter 2, Chapter 3
will deal with the gravitational instability of α- and β-disks using linear stability
theory. This will lead to a new route to β-viscosity via turbulence driven by
gravitational instability. In Chapter 4 the changes to the NIRVANA2.0 code
that is used for this work are presented and tested. Then in Chapter 5 the
code with the changes as a whole is tested for different numerical parameters.
Chapter 6 then presents the simulations done and their results. We will see in
this chapter that there is a strong accretion due to clump-clump interactions in
the inner part of the disk while the same mechanism leads to a strong outflow
at the outer part. In the discussion in Chapter 7 we show that this accretion
takes place independently of all physical or numerical parameters tested and is
well described by the β-viscosity that comes about by gravitational instability.
The thesis closes with conclusions and outlook in Chapter 8.
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Chapter 2

Theoretical basics

In this chapter the theoretical background necessary for this work will be pre-
sented. This includes the basics of fluid dynamics, also called hydrodynamics, the
theory of accretion disks and its viscosities as well as theory and recent numerical
work on the gravitational instability of accretion disks. Since cooling is important
for the instability of disks, it will be discussed, too. The chapter closes with a
section about numerics.

2.1 Hydrodynamics equations

An introduction to the theory of hydrodynamics can, e.g., be found in Landau and
Lifshitz (1959). The main equations of hydrodynamics are the conservation equa-
tions for mass (called the continuity equation), momentum (the Navier-Stokes
equation) and the energy (conservation) equation. These are partial differential
equations although they can be derived from an integral formulation that is more
general as it circumvents the problem of discontinuities at which the differential
equations become mathematically undefined. For brevity we will show here how
the continuity equation is derived and only state the other equations since the
way to derive these is then similar. Only the viscosity term will be examined
more closely.

We start with the conservation of mass within any simply connected time
independent volume V0 with an oriented surface ∂V0, where we postulate that
there are no sources or sinks of mass

dm

dt
=

∂m

∂t
=

∮

∂V0

(ρ~v) · d ~A. (2.1)

Here t is time, m is the mass in V0, ρ is the mass density of the fluid and ~v is
the velocity vector of the flow. ~j = ρ~v is the mass current density as well as the
momentum density. Using the definition of the density we have m =

∫

V0
ρdV on

the left hand side and use Gauss’s law on the right hand side of Equation (2.1),
so we get

∂

∂t

∫

V0

ρdV =

∫

V0

~∇ · (ρ~v)dV, (2.2)

7
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or, since this must be true for all volumes V0,

∂ρ

∂t
= ~∇ · (ρ~v). (2.3)

This is the continuity equation. The Navier-Stokes equation then is

∂ρ~v

∂t
= −~∇ · (ρ~v~v) − ~∇P + ~∇ · σ̃ − ρ~∇Φ, (2.4)

which is, using Equation (2.3), equivalent to

ρ
∂~v

∂t
= −ρ(~v · ~∇)~v − ~∇P + ~∇ · σ̃ − ρ~∇Φ. (2.5)

Here ~v~v is the dyadic product of the velocity with itself (which is in Cartesian
coordinates defined as the tensor vivj), P is the pressure, σ̃ is the viscous stress
tensor and Φ is the gravitational potential. In Equation (2.4) the first term on
the right hand side is the so called advection term that comes about simply due
to the movement of the fluid. The second term is the pressure term and the
third is the viscous term examined in more detail below. Without the viscous
term Equation (2.4) or (2.5) is called the Euler equation. The last term is the
gravitational acceleration. The energy equation reads

∂ẽ

∂t
= −~∇ · (ẽ~v) − P ~∇ · ~v + σ̃ : ~∇~v + ~∇ · (κ̃~∇T ), (2.6)

where ẽ is the internal energy density, the colon (:) denotes the tensor contraction
(which in Cartesian coordinates is defined by A : B := AijBij), κ̃ is the thermal
conductivity and T is the temperature. The last term, i.e., the thermal conduc-
tion term, is not used in this work and is only stated for completeness. The first
term on the right hand side is again the advection term, the second is the volume
work W = PdV and the third is the heating term due to viscous dissipation. In
addition to these terms there can be a sink term for radiative cooling as described
later in Sections 2.6 and 4.6.1.

The viscous terms in Equation (2.4) and Equation (2.6) can only be inferred if
we make some postulates about the nature of viscosity. Since we define viscosity
to act only when there is a fluid element moving relative to a neighboring fluid
element, σ̃ must be a function of the space derivatives of the velocity. We postu-
late that the viscosity is small, thus all higher-order derivatives and all non-linear
terms must be zero. Constant terms (in ∂vi

∂xk
, where the indices indicate one of

the three components) must also vanish to give σ̃ = 0 for ~v = constant. Then we
require the viscosity to be zero for rigid rotation. All this leads to the form of
the viscous stress tensor in Cartesian coordinates

σ̃ij = η̃

(

∂vi

∂xk

+
∂vk

∂xi

− 2

3
δik

∂vl

∂xl

)

+ ζ̃δik

∂vl

∂xl

(2.7)

where δik is the Kronecker delta. Here the Einstein sum convention has been
used, i.e., all indices of which happen to be more than one in the same product
are summed over from 1 to the number of dimensions, i.e., 3 in this case. η̃ and
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ζ̃ are scalars that can be shown to be positive. They are called first and second
viscosity or shear and bulk viscosity, respectively. They are called the dynamic
viscosities and the combinations

ν =
η̃

ρ
and ξ =

ζ̃

ρ
(2.8)

are called the kinematic viscosities. The shear viscosity is well examined but
the bulk viscosity, since it vanishes for incompressible fluids, is not known so
well. Thus under many circumstances like in the accretion disk theory the bulk
viscosity is neglected.

In our case the equations of motion will be used in cylindrical coordinates
{R,ϕ, z} in which the continuity equation becomes

∂ρ

∂t
+

1

R

∂

∂R
(ρvRR) +

1

R

∂

∂ϕ
(ρvϕ) +

∂

∂z
(ρvz) = 0. (2.9)

The viscous stress tensor using only shear viscosity gets

σ̃RR = 2η̃

(

2

3

∂vR

∂R
− 1

3

( 1

R

∂vϕ

∂ϕ
+

∂vR

∂R
+

∂vz

∂z

)

)

, (2.10)

σ̃ϕϕ = 2η̃

(

2

3

( 1

R

∂vϕ

∂ϕ
+

∂vR

∂R

)

− 1

3

(∂vR

∂R
+

∂vz

∂z

)

)

, (2.11)

σ̃zz = 2η̃

(

2

3

∂vz

∂z
− 1

3

(∂vR

∂R
+

1

R

∂vϕ

∂ϕ
+

∂vR

∂R

)

)

, (2.12)

σ̃Rϕ = σ̃ϕR = η̃

(

∂vϕ

∂R
− vϕ

R
+

1

R

∂vR

∂ϕ

)

, (2.13)

σ̃Rz = σ̃zR = η̃

(

∂vR

∂z
+

∂vz

∂R

)

, (2.14)

σ̃zϕ = σ̃ϕz = η̃

(

1

R

∂vz

∂ϕ
+

∂vϕ

∂z

)

. (2.15)

This as well as the following relations for the derivatives in cylindrical coordinates
can be found, e.g., in Spurk (1996). The gradient of a scalar Φ becomes

~∇Φ =
∂Φ

∂R
~eR +

1

R

∂Φ

∂ϕ
~eϕ +

∂Φ

∂z
~ez, (2.16)

where ~ei is the unity vector in the i-direction. The divergence of a vector ~v
becomes

~∇ · ~v =
1

R

(

∂(vRR)

∂R
+

∂vϕ

∂ϕ
+

∂(vzR)

∂z

)

, (2.17)

and the divergence of a tensor σ then is given by

~∇ · σ =

(

1

R

∂(σRRR)

∂R
+

1

R

∂σϕR

∂ϕ
+

∂σzR

∂z
− σϕϕ

R

)

~eR+

+

(

1

R

∂(σRϕR)

∂R
+

1

R

∂σϕϕ

∂ϕ
+

∂σzϕ

∂z
+

σRϕ

R

)

~eϕ+

+

(

1

R

∂(σRzR)

∂R
+

1

R

∂σϕz

∂ϕ
+

∂σzz

∂z

)

~ez.

(2.18)
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There is still an equation missing that establishes the thermodynamics. We
are using the ideal gas law

P =
ρRT

µ
, (2.19)

where R = 8.3145 J mol−1 K−1 is the universal gas constant and µ the mean molar
mass. Using the formula for the kinetic energy per molecule

E =
f

2
kBT, (2.20)

where kB = NAR is the Boltzmann constant, NA = 6.0221·1023 mol−1 is the
Avogadro number and f is the number of degrees of freedom of the molecules,
we get to the relation

P = (γ − 1)ẽ. (2.21)

γ is the ratio of the specific heats that in this context comes about by the relation
γ = (f + 2) · f−1.

2.2 Accretion disk equations

Here the one dimensional accretion disk equations for thin disks in non-self-
gravitating disks are presented. They are described, e.g., in Frank et al. (2002)
or Pringle (1981) although for their derivation we will proceed in a different way
described in Illenseer (2002).

2.2.1 The time-dependent equations

The idea is to describe accretion in a thin disk using Equations (2.3) to (2.6)
and only using the radial direction. This works only if the disk is azimuthally
symmetric so all dependence on the ϕ-direction can be neglected, i.e., ∂·

∂ϕ
= 0.

The equations are then all integrated over z from negative infinity to infinity and
the height of the disk h, as defined later, is used where necessary. Derivatives with
respect to z usually can be dropped since they become boundary terms under the
integral, and we expect all variables to be zero at infinity. So we get

Σ :=

+∞
∫

−∞

ρ(z)dz (2.22)

as the surface density. The velocities are usually thought not to change with z.
Thus Equation (2.9) can be integrated over z and using the above mentioned
simplifications, we get

∂Σ

∂t
+

1

R

∂

∂R
(ΣvRR) = 0. (2.23)

The angular momentum equation can be derived from the ϕ-component of Equa-
tion (2.4) using Equations (2.13) and (2.18) and using the above mentioned simpli-
fications (including the skipping of terms that will become zero when integrating
over z anyway). With the abbreviation Tij = σij − ρvivj, we get

∂(ρvϕ)

∂t
=

1

R

∂(TRϕR)

∂R
+

TRϕ

R
=

1

R2

∂

∂R
(R2TRϕ), (2.24)
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or after integration

∂(Σvϕ)

∂t
= − 1

R2

∂

∂R

(

R2Σ
(

−ν
(∂vϕ

∂R
− vϕ

R

)

+ vϕvR

)

)

(2.25)

or

R2 ∂

∂t
(Σvϕ) +

∂

∂R
(R2ΣvϕvR) =

∂

∂R

(

Σν R3 ∂

∂R

(vϕ

R

)

)

. (2.26)

Next, under the assumption of a fixed gravitational potential, i.e., that ∂vϕ

∂t
= 0,

we write the left hand side as

R2vϕ

∂Σ

∂t
+ Rvϕ

∂

∂R
(RΣvR) + RΣvR

∂

∂R
(Rvϕ) = RΣvR

∂

∂R
(Rvϕ) (2.27)

using Equation (2.23). Differentiating Equation (2.26) with respect to R and
again using (2.23) we get to

∂Σ

∂t
= − 1

R

∂

∂R

[

1
∂

∂R
(Rvϕ)

∂

∂R

(

ΣνR3 ∂

∂R

(vϕ

R

)

)

]

. (2.28)

This is the one dimensional time evolution equation for thin disks in fixed grav-
itational potentials. For completeness it shall be mentioned that this can be
simplified more for non-self-gravitating disks by inserting the Keplerian velocity,
neglecting pressure gradients in the centrifugal equilibrium,

vϕ ≈ vK :=

√

GM∗

R
. (2.29)

M∗ is the mass of the central object.
For an order of magnitude estimate we set ∂Σ ∼ Σ, ∂t ∼ tν and ∂R ∼ R,

where tν is the viscous time scale, and get

Σ

tν
=

Σν

R2
⇒ tν =

R2

ν
, (2.30)

from (2.28). The viscous time scale gives us an estimate on how fast the accretion
takes place. Since (2.28) has the form of a diffusion equation the distance at which
a perturbation has an influence is ∝

√
t, thus the R2 dependence in (2.30).

2.2.2 The equations for stationary disks

We are now examining the time-independent disks, i.e., we set all terms ∂·
∂t

= 0.
From Equation (2.23) we get directly

RΣvR = constant =: −Ṁ

2π
, (2.31)

with the constant mass accretion rate Ṁ which is defined to be positive for
accretion.
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On the other hand integrating the angular momentum equation in the form
of Equation (2.26) (without the time derivative), using an integration constant
C
2π

, and the angular velocity Ω := vϕ

R
, we get

ΣνR3 ∂Ω

∂R
=

C

2π
− R2ΣvϕvR (2.32)

or

νΣ =

(

∂Ω

∂R

)−1(
C

2πR3
− ṀΩ

2πR

)

, (2.33)

where (2.31) has been used. The integration constant C
2π

is determined by the
boundary conditions at the inner rim of the disk Ri since its influence vanishes
for large R with respect to the other term. This term should be negligible for
R À Ri. In this case we can derive

vR =
R

Ω

∂Ω

∂R

ν

R
(2.34)

from Equation (2.32), which is the missing equation for the radial velocity.

2.2.3 Vertical hydrostatic equilibrium of a non-self-gravi-
tating disk

For the z-direction we use hydrostatic equilibrium, i.e., the z-component of the
Euler equation, setting ∂·

∂t
and all velocities to zero. For a non-self-gravitating

disk this gives
1

ρ

∂P

∂z
=

∂

∂z

(

GM∗√
R2 + z2

)

≈ −GM∗z

R3
, (2.35)

where the approximation is valid for thin disks, i.e., z ¿ R. For an isothermal
equation of state this can be integrated to give, using the isothermal sound speed
c2
s = P

ρ
,

ρ(R, z) = ρc(R) exp

( −z2

2Rcsv−1
ϕ

)

=: ρc(R) exp

(−z2

2h

)

, (2.36)

where
h =

cs

ΩK

R (2.37)

is the scaleheight of a non-self-gravitating disk and ρc(R) is the density at z = 0.
Equation (2.37) tells us that a thin disk needs to have an azimuthal velocity that
is much higher than the speed of sound, which means that the pressure force is
negligible with respect to the centrifugal force, and thus is consistent with the
assumption vϕ ≈ vK in a non-self-gravitating disk. Calculating Σ from Equation
(2.36) we get

Σ =

+∞
∫

−∞

ρ(z)dz = 2h

√

π

2
ρc, (2.38)

which is, regarding all the approximations and assumptions, usually approxi-
mated by setting

Σ = 2hρ (2.39)



2.2. ACCRETION DISK EQUATIONS 13

where the index of ρ is skipped. Since the most important disk equations in the
time-dependent (2.28) and in the time-independent case (2.33) are equations in
Σ and not in ρ, we see that the height h of the disk is necessary to get the volume
density. ρ in turn is needed for the equation of state.

2.2.4 Self-gravitating disks

Thin accretion disks can be divided into three groups according to the importance
of self-gravity. First there is the group of the non-self-gravitating (NSG) disks
which we encountered above. The most inner part of self-gravitating disks is of
course such a disk.

Then there are the so called Keplerian self-gravitating (KSG) disks for which
vϕ ≈ vK holds as shown below. The self-gravity in these disks does not change
the radial behavior of the disk, but it does change the height profile. We need
the solution of the Poisson equation for gravity

∆Φ = 4πGρ ⇔ −~∇ · ~g = 4πGρ, (2.40)

where ~g is the gravitational acceleration, for the z-direction of the disk. For this
we take the mass to be distributed in an infinite stratified sheet with constant
surface density Σ. Using Gauss’s Law it is easy to show that in such a case the
acceleration (which has only a z-component) is

gsg = −2πGΣh ≤ −2πGΣ where Σh =

h
∫

−h

ρ(z)dz. (2.41)

Thus using Equation (2.35), the gravitational acceleration due to the disk and
due to the star become equal when

gsg ≈ −πGΣ ≈ −G
Md(R)

R2
= −GM∗

R2

z

R
, (2.42)

where in the second equation Md(R) ≈ πΣR2 has been used for an approximation
of the mass of the disk inside R. This leads for h = z to

Md(R) >
h

R
M∗ (2.43)

for the disk mass region of the KSG part of a disk.
The third group of self-gravitating disks, which of course have NSG and KSG

regimes below certain radii, are the fully self-gravitating (FSG) disks. In these
both the radial behavior and the height profile are dominated by self-gravity. We
adopt here the monopole approximation by Mineshige and Umemura (1997), i.e.,
the approximation where the Poisson equation for gravity is solved by neglecting
material outside R (the radius at which we calculate ~g) and take the material
inside R to be spherically distributed, i.e.,

gR = −G(M∗ + Md)

R2
. (2.44)

Using this approximation we see immediately that vϕ 6= vK for Md(R) & M∗.
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The height of a fully self-gravitating disk

Similar to the calculation of the height for a non-self-gravitating disk by using
hydrostatic equilibrium (see Section 2.2.3), the same is possible for the fully self-
gravitating case, as shown in Kippenhahn and Weigert (1990). Using P = c2

sρ,
they get a solution for the equations of the isothermal infinite self-gravitating
sheet:

∂2Φ

∂z2
= 4πGρ, (2.45)

∂P

∂z
= −ρ

∂Φ

∂z
, (2.46)

⇒ c2
s

∂ ln ρ

∂z
= −∂Φ

∂z
, (2.47)

⇒ ∂2 ln ρ

∂z2
= −4πG

c2
s

ρ, (2.48)

which is solved by

ρ(z) =
ρc

(cosh ( z
h
))2

, ρ(±∞) = 0, (2.49)

where

h =

√

RT

2πµGρc

=
cs√

2πGρc

. (2.50)

We rewrite this equation using the result for isothermal disks by Paczyński (1978)
for the same case:

ρc =
πGΣ2µ

2RT
(2.51)

to get

h =
c2
s

πGΣ
. (2.52)

This gives

Σ =

∞
∫

−∞

ρc

(cosh ( z
h
))2

dz = 2ρch, (2.53)

Σh =

h
∫

−h

ρc

(cosh ( z
h
))2

dz = 2ρch tanh (1) ≈ 0.762 · 2ρch. (2.54)

So the approximation Σ = 2ρh is again reasonable.

2.3 The heating of the disk

As we have seen in the last section, h depends on the temperature of the disk, so
here we deal with the heating while in Section 2.6 we will deal with the cooling
of the disk.
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Using the energy equation (2.6), we get for heating by viscous dissipation1

∂ẽ

∂t
= νρ

(

R
∂Ω

∂R

)2

⇒ ∂e

∂t
= νΣ

(

R
∂Ω

∂R

)2

, (2.56)

where e is the internal energy per unit area.
In addition, the disk is heated by the PdV work and by shocks. These terms

are usually very small and neglected for one dimensional disk equations, but they
are included in our numerical setup for self-gravitating disks where the shocks
are important. The numerical technique to deal with these terms involves an
artificial kind of viscosity which is explained in Section 2.7.3.

2.4 Viscosity in disks

As stated above, the viscosity is very crucial on the one hand and on the other
hand it is still not well understood. The most successful description of viscosity
is the α-viscosity by Shakura and Sunyaev (1973). The ansatz for this turbulent
viscosity is that the kinematic viscosity can be written as the product of a tur-
bulent velocity vt and a turbulent length scale lt. To avoid extreme dissipation
which would stop the viscosity if there is no energy source that can make up for
the losses, the turbulence is thought to be subsonic, i.e., vt . cs. On the other
hand to have isotropic turbulence, we require lt . h giving

ν ∝ vtlt ⇒ ν = αcsh, (2.57)

where α is a parameter of value less than one and typically is of order α ∼
O(10−2 − 10−1).

For the reasons stated already in Section 1.3 Duschl et al. (2000), and inde-
pendently by Richard and Zahn (1999), proposed the β-viscosity. It works in the
same way as the α viscosity, but the isotropy of the turbulence is dropped and the
limitation of the turbulent velocity by the speed of sound is handled differently.
Here vt ∝ vϕ and lt ∝ R are the typical velocity and length scale in the disk. We
also get this result from a different argument. Turbulence comes about at a high
Reynolds number R = vϕR

ν
which is called the critical Reynolds number Rcrit. So

this gives

ν =
1

Rcrit

vϕR =: βvϕR, (2.58)

which is the formula for the β-viscosity. Since from experience the typical critical
Reynolds number is around Rcrit ∼ O(102 − 103) this gives an estimate for the

1Here the gradient of a vector in cylindrical coordinates, which is not easy to find in text-
books, is needed. In order to avoid calculating it by ourselves, we see that the so called “De-
formationsgeschwindigkeitstensor” E = ~∇~v + (~∇~v)T (where T indicates the transposed tensor)
can be used from Spurk (1996) where its form in cylindrical coordinates is given. Here we state
only the component we need, namely

ERϕ = EϕR =
1

2

(

R
∂Ω

∂R
+

1

R

∂vR

∂ϕ

)

. (2.55)

Since σ̃ is a symmetric tensor σ̃ : ~∇~v = 1
2 σ̃ : E .
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value of β. From (2.58) it follows, using (2.30), that the time scale for the β-
viscosity is

tν =
1

βΩ
. (2.59)

Duschl et al. (2000) are also able show that in the limit where the turbulent
velocity is limited by the speed of sound, called the dissipation limit, the β-
viscosity leads to the α-viscosity with α being in the correct range of values.

It can even be inferred that

vt ≈
√

βvϕ, lt ≈
√

βR. (2.60)

This becomes evident if we look at the turbulent velocity as being also the typical
change in velocity ∆vϕ over the typical length scale ∆R which is the turbulent
length scale. So we can write

∆vϕ =

∣

∣

∣

∣

∂vϕ

∂R

∣

∣

∣

∣

∆R ≈ vϕ

R
∆R. (2.61)

Then putting (2.61) into the formula for the β-viscosity (Equation (2.58)), we get

ν ≈ ltvt = ∆vϕ∆l ≈ ∆R
vϕ

R
∆R. (2.62)

This leads to
βRvϕ ≈ vϕ

R
(∆R)2 ⇔ βR2 ≈ (∆R)2 (2.63)

and thus
lt = ∆R ≈

√

βR ⇒ vt ≈
√

βvϕ. (2.64)

Hydrodynamic instability in a disk

In order to have turbulence in the disk that gives rise to viscosity, we need an
instability which drives the turbulence. For partly ionized non-self-gravitating
disks, this is the MRI as shown by Balbus and Hawley (1991). In contrast to this
the β-viscosity was claimed by Duschl et al. (2000) and Richard and Zahn (1999)
to arise from a purely hydrodynamic instability in the disk. This is mainly in-
spired by laboratory experiments of the Taylor-Couette flow which is the fluid flow
between two rotating concentric cylinders (see, e.g., Taylor, 1923, 1936; Wendt,
1933; Richard, 2001). In these experiments the flow became unstable at regimes
where it was thought to be stable. The instability condition used for the linear
stability of disks is the Rayleigh instability condition

∂

∂R

(

(R2Ω)2
)

< 0. (2.65)

This is not fulfilled for Ω = ΩK. It can be rewritten as

κ2 < 0 with κ2 :=
1

R3

d

dR

(

(R2Ω)2
)

, (2.66)

where κ is the epicyclic frequency which is equal to the angular velocity for
Keplerian orbits. κ is the frequency at which a mass oscillates around a circular
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orbit when disturbed. This condition can be derived using a linear stability
analysis in the R-direction as we will use later for viscous disks in Section 3.1.
We are using the radial and azimuthal parts of the Euler equation (Equation
(2.5) without the viscous term, in cylindrical coordinates) and set ρ = constant
for simplicity. Here we take the ansatz for each variable X = vR, vϕ (usually also
for the variables Σ and Φ which is not necessary here)

X = X0 + δX, δX = X1 exp i(ωt + kR), δX ¿ X0, (2.67)

omitting quadratic terms of small values (derivatives of small values are also
assumed to be small) and terms of ∂·

∂ϕ
. Since there is no viscosity, we can also set

vR0 = 0. This leads to the two equations

∂δvR

∂t
= 2

δvRvϕ

R
, (2.68)

∂δvϕ

∂t
= −δvR

∂vϕ

∂R
− δvRvϕ

R
(2.69)

and thus

iωδvR = 2
δvRvϕ

R
, (2.70)

iωδvϕ = −
(

∂vϕ

∂R
+

vϕ

R

)

δvR. (2.71)

So we are searching for the eigenvalue λ = iω of a matrix, i.e.,
∣

∣

∣

∣

∣

−λ 2vϕ

R

−
(

vϕ

R
+ ∂vϕ

∂R

)

−λ

∣

∣

∣

∣

∣

= 0. (2.72)

The solution is

λ = ±
√

−2
vϕ

R

(

vϕ

R
+

∂vϕ

∂R

)

. (2.73)

This means we have instability for the case when δX grows exponentially with
time which translates here to λ = iω ∈ R and λ > 0, i.e.,

vϕ

R

(

vϕ

R
+

∂vϕ

∂R

)

< 0 ⇔ ∂

∂R

(

(R2Ω)2
)

< 0, (2.74)

which had to be shown.
There is theoretical work like Grossmann (2000), Tevzadze et al. (2003) and

Chagelishvili et al. (2003) showing the possibility of a non-linear instability in
a Keplerian disk. On the other hand there are people trying to investigate this
instability numerically, but they cannot find it for Keplerian flow in their simula-
tions as shown in Balbus et al. (1996). They do find an instability in a different
regime of linear stability though. In a recent paper by Lesur and Longaretti
(2005) they are able to show that on the one hand today’s computing power does
not allow one to simulate the instability in the Keplerian flow correctly but that
on the other hand by extrapolating their numerical simulations to this regime
even with very favorable extrapolations, the critical Reynolds number becomes
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very large. This would lead to a forbiddingly small value for α or β. This would
even lead to laminar disks for less favorable extrapolations. The experiments are
also not unproblematic. As stated by Richard (2001), it is possible that their ex-
periments that showed an instability in the Keplerian regime suffer from pollution
by the linearly stable regime which lies close by in parameter space. Therefore
this is a highly controversial topic and is still undecided.

For self-gravitating disks an alternative to a hydrodynamic instability would
be a gravitational instability as discussed in the next section.

2.5 Gravitational instability of disks

Toomre (1964), Goldreich and Lynden-Bell (1965) have shown that the criterion
for the gravitational stability in a non-viscous gas disk is given by the condition

Q :=
csκ

πGΣ
> 1, (2.75)

where Q is the Toomre parameter. Q can be interpreted as the ratio of the
stabilizing forces of pressure and shear in the numerator and the destabilizing
force of gravity in the denominator.

Using the Toomre parameter Q as defined in Equation (2.75), solving for cs

and substituting this into Equation (2.52), leads to

Q2 =
hκ2

πGΣ
. (2.76)

Again using the monopole approximation in the form Ω =
√

GMd

R3 =
√

πGΣ
R

, we

get

κ2 = 3
πGΣ

R
⇒ κ =

√
3 Ω. (2.77)

Using (2.77) and the monopole approximation in Equation (2.76), we get:

Q2 = 3
h

R
. (2.78)

This means that, neglecting viscosity, any really thin fully self-gravitating accre-
tion disk is Toomre unstable. On the other hand disks not quite so thin can be
stable as shown by Mestel (1963) for stellar disks and for gas disks by Bodo and
Curir (1992) and Bertin and Lodato (1999) in which the marginally stable full
self-gravitating disks are of height h = 1

4
R.

Most of the work done to answer the question of under what conditions disks
become Toomre unstable and what happens if they do is done for inviscid KSG
protoplanetary disks. Heating terms for PdV and shocks are usually included.
The main question in this discussion turns out to be under what conditions the
disk fragments and thus can possibly form a giant gas planet in relatively short
time (see, e.g., Boss (2000) and Durisen et al. (2006) and references therein).
One answer is given by numerical simulations with a grid based code in a local
approximation by Gammie (2001) and with global particle based code simulations
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by Rice et al. (2003) and Lodato and Rice (2004), Lodato and Rice (2005). They
all use a simplified cooling function of the form

∂e

∂t
= − e

tcool

where tcool = bΩ−1 (2.79)

with some constant b of order unity. As expected they find that fragmentation
happens when the cooling is efficient enough. This is understood since in Equation
(2.75) the cooling can easily control Q via cs. More accurately the result is that
fragmentation always takes place if and only if

b < 3, (2.80)

where the exact numerical value depends on γ as discussed below. In the case
where b & 3 the disk settles into a quasi steady state with Q ≈ 1 in a wide
radial range forming a transient spiral structure. This can be understood such
that as the spirals are formed, gravitational energy gets transferred by shocks to
heat which in turn prevents Q from dropping below one. As Q = 1 is reached,
the heating stops, cooling is still efficient enough to keep a small value of Q.
Rice et al. (2005) could show that the correct condition for fragmentation can be
expressed by a constant αmax (see also below) as

b <
4

9γ(γ − 1)

1

αmax

. (2.81)

This quasi steady state was examined with regard to steady accretion due to
the self-gravity by Gammie (2001) and in more detail by Lodato and Rice (2004),
Lodato and Rice (2005), Rice et al. (2005). They find that accretion in these
systems can be described by the α-viscosity with

α =
4

9γ(γ − 1)

1

b
(2.82)

and thus using Equation (2.81) there must be a maximal value of α which turns
out to be αmax ≈ 0.06. A similar formula can be derived when assuming that in
a self-gravitating disk the energy freed by accretion is all radiated away as shown
below.

The results above are amazing even though the cooling function seems rather
artificial. Actually Duschl et al. (2000) found that self-gravitating steady α-disks
must have an artificial cooling law that maintains isothermality throughout the
whole disk in order to work, so it seems that the cooling law described above is
quite special and maybe unphysical. Mej́ıa et al. (2005) use a cooling function
that is constant throughout the disk. Using this cooling function which is possibly
more realistic, they show that the accretion, which is not steady in this case,
cannot be described by α-viscosity using Equation (2.82). In a paper by Johnson
and Gammie (2003) they use a more sophisticated cooling function very similar
to the one used for the present work described in Section 4.6.1. They do not
deal with the accretion but with fragmentation only, showing that with the more
realistic cooling function in some temperature regimes Equation (2.80) is changed
dramatically due to the change in the cooling time.



20 CHAPTER 2. THEORETICAL BASICS

The behavior of a disk in a quasi steady state keeping Q ≈ 1 and having a
viscosity due to gravitational turbulence is already discussed by Paczyński (1978).
Other authors like Lin and Pringle (1987) or Ebert (1994) describe a turbulent
viscosity coming about by a gravitational instability in a KSG disk. A proposition
for a viscosity from turbulence driven by gravitational instability in FSG disks
can be found in Duschl and Britsch (2006) which is a short version of Chapter
3 of this work. At this point one might also pose the question of whether there
can be thin self-gravitating disks at all. As shown above they are highly Toomre
unstable, and should thus fragment into clumps in a short time. It is a well known
problem for the outer parts of AGN disks since the cooling would make those disks
thin (see, e.g., Goodman, 2003). But in Scoville et al. (1997) the model of a thin,
i.e., unstable disk, fits the observed data well for a fully self-gravitating several
100 pc radius disk of Arp 220. And Kumar (1999) is able to show for an observed
case of another AGN disk that if it is an α-disk, it has a higher mass than the
BH in the center and has a very small value of Q ∼ 10−3. They conclude that the
α-prescription breaks down. The disk fragments into clumps and those clumps
interact to give rise to accretion. In this clumpy disk model the disk has a lower
mass than the BH, but it is still self-gravitating and fragments. Their model gives
an accretion rate of

Ṁ = ηΩMR

(

MR

πMt

)2

, (2.83)

where

η =
R

lc

(

MR

πMt

)−1

(2.84)

is a geometrical factor, including the size of the clumps lc and is thought to be of
order unity. MR is the mass of the disk inside R and Mt is the axisymmetrically
distributed mass inside R, i.e., not including the clumps but including the star.
The accretion timescale thus is determined to be

tclump =
MR

Ṁ
=

1

η
(

MR

πMt

)2

1

Ω
(2.85)

and thus has the same form as the time scale of the β-viscosity tν = 1
βΩ

with

β = η
(

MR

πMt

)2
= R

lc

(

MR

πMt

)

which can be larger than one.

Let us now assume that in a disk where accretion is driven by a gravitational
instability, the gravitational energy (per unit time) heating the disk due to accre-
tion is dominating over the heating by fragmentation or spiral formation. Then
we can equate the energy production rate by accretion in a small radial range
∆R which is

∆
∆E

∆t
=

1

∆t

∂

∂R

(

GM∆m

R

)

∆R = − 1

∆t
gR∆m∆R, (2.86)

where M = M∗ + Md, to the energy loss by cooling

∆Ėth =
e

tcool

∆A =
e

tcool

2πR∆R. (2.87)
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Using

Ṁ =
∆m

∆t
= δπΣν (2.88)

from Equations (2.31) and (2.34) where δ = −2R
Ω

∂Ω
∂R

which is always of the order
of unity and 3 in the case of Keplerian disks, we get

ν = −2

δ

R3

GM

e

Σ

1

tcool

= −2

δ
Ω−1ε

1

Ωtcool

(2.89)

where ε is the internal energy per unit mass which is ε =
f
2
RT

µ
. Using γ = f+2

f

and c2
s = RT

µ
, we get

ν =
2

δ

1

γ − 1

1

Ωtcool

c2
s

Ω
(2.90)

or with ν = α c2s
Ω

from Equations (2.57) and (2.37),

α =
2

δ

1

γ − 1

1

Ωtcool

. (2.91)

Equation (2.91) is very similar to Equation (2.82) and would be more similar if
we had used the adiabatic instead of the isothermal speed of sound which was
used for consistency reasons. This formula is not thought to give exact values,
rather it is an approximation to the time averaged behavior; and as such is less
exact but more general than Equation (2.82) in the sense that it might also hold
for non-steady flows. It is also a local argument which might be its weakness as
stated already for Equation (2.82) by Mej́ıa et al. (2005).

The instability of viscous disks

As shown by many authors (e.g., Mishurov et al. 1976, Kato and Kumar 1960,
Kumar 1960, Stephenson 1961 and in more detail Hunter and Schweiker 1981,
Hunter and Horak 1983) the infinite rotating viscous medium is Jeans unstable,
which means that the Jeans criterion for instability

k <
2πGΣ

c2
s

=: kJ (2.92)

is valid, where k is the wave number. kJ is called the Jeans wave number, or
λJ := 2π

kJ

the Jeans wavelength. This relation can also be shown for rigidly
rotating viscous disks, see, e.g. Lynden-Bell and Pringle (1974). A more detailed
discussion on viscous disks can be found in Gammie (1996) and Antonov and
Kondratyev (1995). All of this implies that the Toomre criterion for the stability
of an inviscous disk (see Equation (2.75)) is not a valid criterion for stability
in viscous disks. Although in the above mentioned papers, in the Navier-Stokes
equation the term ∂η

∂R
= ∂η

∂Σ
∂Σ
∂R

, where η := νΣ, is missing, which can be of
importance (see, e.g. Schmit and Tscharnuter (1995), Fridman and Polyachenko
(1984) and Section 3.2).



22 CHAPTER 2. THEORETICAL BASICS

2.6 The cooling mechanism

As we saw in the last section, cooling is crucial for the question of stability and
fragmentation in a disk. The energy equation (2.6) can be completed with a
cooling term using some cooling function Λ (in the z-integrated form), such that

∂e

∂t
= −Λ. (2.93)

To get a handle on this cooling function it is necessary to know how the radiation
gets influenced by the disk material when it tries to escape. An introduction to
basic radiation theory can, e.g., be found in Unsöld and Baschek (2002). Here
we need the transport equation for radiation neglecting emission and scattering

dIν

ds
= −κνρIν , (2.94)

where Iν is the frequency dependent intensity, s is the length of the light-path
and κν is the opacity which is a property of the material. This equation can be
integrated to give

Iν = Iν0e
−τν with τν =

s
∫

0

ρκνds′, (2.95)

where τν is called the optical depth. Especially for the disk of height h we get

τν =

h
∫

0

ρκνds =
1

2
Σκν . (2.96)

There are two limiting cases of Equation (2.96). The first is the optically thin
case where τν ¿ 1 and the second is the optically thick case where τν À 1.
In these cases a mean frequency weighted opacity can be found which are the
Planck mean opacity in the optically thin and the Rosseland mean opacity in the
thick case. These opacities are tabled for different temperatures, densities and
element contents. Bell and Lin (1994) found that using such tables and applying
theoretical ansatzes, interpolation formulae for the Rosseland mean opacity of
the form

κi = κi,0ρ
aiT bi , (2.97)

for 8 regions i with different exponents ai and bi, can be used. These formulae
were used by Gail (2003) for a single interpolation formula

1

κR

= 4

√

1

κ4
1

+
T 10

0

T 10
0 + T 10

1

κ4
2 + κ4

3

+ 4

√

1

κ4
4 + κ4

5 + κ4
6

+
1

κ4
7 + κ4

8

, (2.98)

where T0 = 3000 K and the κs are set according to Equation (2.97) and Table 2.1.
This formula is meant to be a simple formula used to reproduce the experimental
values as well as possible. It might not be perfectly physical especially in the
transition regions between the power laws.
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Region κi,0 ai bi

Ice grains 2·10−4 0 2

Evaporation of ice grains 2·1016 0 -7

Metal grains 0.1 0 1
2

Evaporation of metal grains 2·1081 1 -24

Molecules 1·10−8 2
3

3

H-scattering 1·10−36 1
3

10

Bound-free and free-free 1.5·1020 1 -5
2

Electron scattering 0.348 0 0

Table 2.1: Base opacities and exponents for the use of Equation (2.97), taken
from Bell and Lin (1994). In the first column the material or physical processes
dominating the opacity are listed.

2.7 Numerics

Here the most important numerical background is presented. An introduction to
numerical methods in general can be found in Press et al. (1992). An introduction
to numerical fluid dynamics can be found, e.g., in Hirsch (1988) and Hirsch (1990).

2.7.1 Finite difference and finite volume schemes

The code used for this thesis is a grid-based code, i.e., the calculation domain is
divided into grid cells to do the discretization that is necessary for the numerical
approximation. The most simple grid-based method to solve differential equations
is the so called finite difference method where derivatives are approximated using
differences. The most simple finite difference method is the Euler method which
is first order, i.e., its uncertainty is of the order O(∆x2) where the ∆x is the
spacing of the grid or the time step size if x is the time. The idea is to start at
the cell number one, solve the discetized equation for that cell, go on to the next
cell and so on. If we have the one dimensional differential equation

df

dx
= F (f(x), x) (2.99)

the corresponding discretization of the derivative is

∆f

∆x
=

f(xi+1) − f(xi)

xi+1 − xi

. (2.100)

The x in F on the right hand side of Equation (2.99) can be either be xi or xi+1

(or any combination of them which would lead to other methods). xi means the
value of x of the ith cell and fi means f(xi). This leads to the two possibilities

f(xi+1) = F (fi, xi)fi∆x (2.101)

or
f(xi+1) = F (fi+1, xi+1)fi∆x. (2.102)
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The first equation is the explicit Euler method because fi is given explicitly while
in the second one, the implicit Euler, fi+1 is given implicitly since according to
our stepping method fi+1 is not calculated yet and must be obtained by solving
Equation (2.102) numerically. This becomes more obvious if x represents the
time. Of course implicit methods are more demanding to implement, but they
have the important advantage that they are unconditionally stable, i.e., no matter
how large the grid size or more important the time step (if x is time) is taken, the
errors do not blow up. Explicit methods on the other hand need to choose the
grid or time step size according to a formula like the Courant condition presented
below.

As stated in Section 2.1 the differential form of the hydrodynamics equations
are not the most physical one but rather the volume integrated forms are. Thus
using this form of the equation to get a discretization is better than the simple
finite difference method and is called the finite volume method. Actually this can
be seen as a special type of finite difference method. Since the understanding of
how the finite volume method works in detail is not essential for this work, we do
not describe it in detail here but ask the interested reader to refer to the above
cited literature.

2.7.2 The Courant condition

The condition for the stability of an explicit numerical scheme mentioned above
is called the Courant or Courant-Friedrichs-Levy (CFL) condition in the case of
an advection equation for any conserved scalar or vector quantity u

∂u

∂t
= ~∇ · (u~v). (2.103)

The Courant condition for the time step size ∆t for a first order scheme is

∆t = CCFL min
i

(

∆x

|vi| + cs

)

(2.104)

where the i is the dimension and the constant CCFL < 1 is the CFL number. This
constraint can be interpreted, such that the maximal speed at which information
can travel in the direction ~n, i.e., vmax(~n) = cs ± ~v · ~n where the sign is chosen
to get the maximal value, must not be limited by numerics. Therefore the sound
cone (in the case of ~v = 0) must lie within the cone of ∆x

∆t
as depicted in Figure

2.1. To put it another way the numerical speed with which information can travel
must hold

∆x

∆t
≥ C−1

CFL(|vi| + cs). (2.105)

A similar argument leads to a CFL-like condition for the viscous term of the form

∆t ≥ Cν

4
min

i

(

(∆x)2

ν

)

, (2.106)

where Cν is again a CFL-like number. This formula includes (∆x)2 since the
viscous term is a diffusion term with a spread that increases like

√
t.
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i−1 i+1

n

n+1

n+2

t

velocity c

∆c c tt
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∆

∆x ∆x

i

A

Figure 2.1: The Courant condition demands that the domain from which infor-
mation travels to point A at xi, tn+1 (i.e., the region at time tn from xi−1 to xi+1)
must include the region from which, by physical processes, information travelling
with the maximal wave speed (and thus the maximal speed at which information
can travel) c can reach point A (which is xi − c∆t to xi + c∆t).

2.7.3 Artificial viscosity

When using first-order advection schemes for hydrodynamics there is a problem
with shocks since they get smeared strongly. In second-order schemes on the
other hand, shocks lead to strong oscillations. Von Neumann and Richtmyr
(1950) found a solution for this problem with second-order schemes, which does
not require the knowledge of the position of the shock. The way this is done is by
introduction of an artificial viscosity which becomes very low in regions outside
of shocks. Tscharnuter and Winkler (1979) introduce a similar method which can
treat especially accretion processes very well. In the code used for this work the
artificial viscous tensor is split into two parts, one is the part described in von
Neumann and Richtmyr (1950) called the anisotropic artificial viscosity and the
other part is the viscosity described by Tscharnuter and Winkler (1979) called
the tensor artificial viscosity of which the diagonal elements are taken only to
inhibit artificial momentum transport. As a formula this gives for the artificial
viscosity tensor (given in Cartesian coordinates here)

σ̄ij = −l2T(∆xi)
2ρ min(0, ~∇ · ~v) ·

(

(~∇~v)ii −
1

3
~∇ · ~v

)

δij+

+ l2Aρ
(

∆xi · min(0, (~∇~v)ii)
)2

δij, (2.107)

where lT is the shock smearing length for the tensor viscosity in units of the
grid spacing ∆xi and lA is the same for the anisotropic part. These expressions
are of order unity. The terms min(0, ~∇ · ~v) and min(0, (~∇~v)ii) help ensure that
the artificial viscosity only acts where it is needed. This tensor is included in
the momentum and energy equation as well as in the calculation of the CFL
condition.
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Chapter 3

Gravitational instability of a
viscous disk

In this chapter we perform a linear stability analysis for thin viscous disks in-
cluding self-gravity. First we apply this analysis to non-self-gravitation α-disks
to show that not all of these disks are stable without introducing a second vis-
cosity. Then we examine self-gravitating β-disks to show not only that they are
unstable but in addition our calculation leads to the proposition of an instability-
driven turbulence that can give rise to the β-viscosity.

3.1 The dispersion relation

In this section, we derive the full dispersion relation for axisymmetric waves in
a thin viscous disk for wavelengths λ ¿ R. The continuity equation and the
R- and ϕ-dimensions of the Navier-Stokes equation in cylindrical coordinates are
Equation (2.9) and

∂vR

∂t
+ vR

∂vR

∂R
+

vR

R

∂vR

∂ϕ
−

v2
ϕ

R
=

− 1

Σ

∂

∂R
(c2

sΣ) − ∂Φ

∂R
+ ν

(∂2vR

∂R2
+

1

R

∂vR

∂R
− vR

R2

)

+
ν

3

∂

∂R

( 1

R

∂vRR

∂R

)

, (3.1)

∂vϕ

∂t
+ vR

∂vϕ

∂R
+

vϕ

R

∂vϕ

∂ϕ
+

vϕvR

R
=

− 1

ΣR

∂

∂ϕ
(c2

sΣ) − 1

R

∂Φ

∂ϕ
+ ν

(∂2vϕ

∂R2
+

1

R

∂vϕ

∂R
− vϕ

R2

)

, (3.2)

where terms of ∂η̃

∂R
and ∂η̃

∂ϕ
have been omitted for clarity but will be taken care of

separately as follows. After some minor algebra using Equations (2.10) to (2.15)
and (2.18) where again ∂·

∂ϕ
= ∂·

∂z
= vz = 0 is used, we get

~∇ · σ =

{

νΣ
4

3

(∂2vR

∂R2
+

1

R

∂vR

∂R
− vR

R2

)

+
∂νΣ

∂R

(4

3

∂vR

∂R
− 2

3

vR

R

)

}

~eR

+

{

νΣ
(∂2vϕ

∂R2
+

1

R

∂vϕ

∂R
− vϕ

R2

)

+
∂νΣ

∂R

(∂vϕ

∂R
− vϕ

R

)

}

~eϕ. (3.3)
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The first term in the radial and azimuthal components respectively are the terms
for ∂η̃

∂R
= 0.

Using the ansatz as in Section 2.4 for each variable X = Σ, vR, vϕ, Φ and with
the same omissions, we arrive at

iωδΣ +
1

R

∂

∂R
(RΣ0)δvR + Σ0ikδvR +

1

R

∂

∂R
(ΣvR0)δΣ + vR0ikδΣ = 0, (3.4)

iωδvR + δvR

∂vR0

∂R
+ ikvR0δvR − 2vϕ0

R
δvϕ =

− c2
s

Σ0

ikδΣ +
c2
s

Σ2
0

∂Σ0

∂R
δΣ − ikδΦ − 4

3
νχ2δvR, (3.5)

iωδvϕ + δvR

∂vϕ0

∂R
+ ikvR0δvϕ +

vϕ0

R
δvR +

vR0

R
δvϕ = −νχ2δvR, (3.6)

where χ2 := k2−i k
R

+ 1
R
. The solution for the Poisson equation ∆δΦ = 4πGΣδ(z),

where δ(z) is Dirac’s delta function, is given by

δΦ = −2πG
δΣ

|k| (3.7)

for k À 1
R

(see, e.g., Binney and Tremaine, 1987). For the additional terms
in Equation (3.3), we get AδvR + BδΣ for the radial and Cδvϕ + DδΣ for the
azimuthal part, with

A :=
4

3

( ∂ν

∂R
+

ν

Σ0

∂Σ0

∂R

)

ik − 2

3

( ∂ν

∂R

1

R
+

ν

Σ0

1

R

∂Σ0

∂R

)

, (3.8)

B :=
(4

3

ν

Σ0

∂vR0

∂R
− 2

3

ν

Σ0

vR0

R

)

ik −
(4

3

ν

Σ2
0

∂vR0

∂R

∂Σ0

∂R
− 2

3

ν

Σ2
0

vR0

R

∂Σ0

∂R

)

, (3.9)

C :=
( ∂ν

∂R
+

ν

Σ0

∂Σ0

∂R

)

ik−
( ∂ν

∂R

1

R
+

ν

Σ0

1

R

∂Σ0

∂R

)

, (3.10)

D :=
(1

2

κ2

Ω
− 2Ω

) ν

Σ0

ik −
(1

2

κ2

Ω
− 2Ω

) ν

Σ2
0

∂Σ0

∂R
, (3.11)

where ∂vϕ0

∂R
+ vϕ0

R
= −2B̃ = 1

2
κ2

Ω
(B̃ is Oort’s second constant and Ω is the angular

frequency, see e.g., Binney and Tremaine 1987). Calculating the determinant of
the combined system, we get for k > 0

(iω + ikvR0 +
1

R

∂

∂R
(vR0R))(iω + ikvR0 +

4

3
νχ2 − A)(iω +

vR0

R
+ ikvR0 + νχ2 − C)

+ κ2(iω + ikvR0 +
1

R

∂

∂R
(vR0R))

− (iω + ikvR0 +
vR0

R
+ νχ2 − C)(

c2
s

Σ0

ik − c2
s

Σ2
0

∂Σ0

∂R
− 2πGi − B)

· (∂Σ0

∂R
+

Σ0

R
+ ikΣ0) + 2ΩD

( 1

R

∂

∂R

(

RΣ0

)

+ Σ0ik
)

= 0,

(3.12)
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or using

ω̄ := ω + kvR0, (3.13)

a :=
∂vR0

∂R
+

4

3
νχ2 − A, (3.14)

b :=
vR0

R
+ νχ2 − C, (3.15)

c :=
c2
s

Σ0

ik − c2
s

Σ2
0

∂Σ0

∂R
− B, (3.16)

d :=
∂Σ0

∂R
+

Σ0

R
+ ikΣ0, (3.17)

V :=
1

R

∂

∂R
(vR0R)) =

∂vR0

∂R
+

vR0

R
, (3.18)

the result is

−iω̄3 − (b + a + V )ω̄2 + (i(ab + κ2 − cd + V b + V a) − 2πGd)ω̄

− bcd + 2πiGbd + κ2V + abV + 2ΩdD = 0.
(3.19)

Since the stability depends only on the imaginary part of ω and since =(ω̄) =
=(ω), linear stability is given if =(ω̄) > 0.

When we set (now omitting the index 0 and the bar over the ω) ν ≡ 0, vR ≡
0, ∂Σ

∂R
≡ 0, χ2 = k2, ∂η̃

∂R
≡ 0 and neglect the geometric term involving Σ

R
, we get

the usual Toomre stability criterion via the dispersion relation of Binney and
Tremaine (1987) p. 362.

When we set vR ≡ 0, ∂Σ
∂R

≡ 0, χ2 = k2, ∂η̃

∂R
≡ 0 and omit the term involving

Σ
R
, which is not present in Cartesian coordinates, the result is Equation (16) of

Gammie (1996) (calculated in the local Cartesian coordinate system) with s = iω.

3.2 A thin non-self-gravitating α-disk

Here we consider the case of a thin non-self-gravitating α-disk, i.e., ν = αhcs =

α c2s
Ω

, h
R
¿ 1 and Md ≈ ΣR2π < h

R
M∗ ⇒ πGΣ < h

R3 M∗G = csΩ (see also Section
2.2.4) where in the last relation the monopole approximation was used. Although
the disk is non-self-gravitating in the sense discussed above, we will not disregard
the self-gravitating term right from the beginning since it can have an effect on
the result as we will see. Neglecting boundary terms, using the first equation
above and κ = Ω ∝ R− 3

2 for Keplerian rotation this leads to ν ∝ R
3

2 and thus

∂ν

∂R
=

3

2

ν

R
. (3.20)

Since Σν = Ṁ
3π

from Equation (2.33)

⇒ Σ ∝ R− 3

2 ⇒ ∂Σ

∂R
= −3

2

Σ

R
(3.21)

for Ṁ = constant and using Equation (2.34)

vR = −3

2

ν

R
⇒ ∂vR

∂R
= −vR

R
. (3.22)
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With these relations, we get A = 0, B = 0 and C = 0, whereas

D = −3

2
Ω

ν

Σ
ik − 9

4
Ω

ν

Σ

1

R
. (3.23)

Substituting this into Equation (3.19), and neglecting terms of higher order in
Rk with regard to terms of lower order, we get

s3 +
7

3
νk2s2 +

(4

3
ν2k4 + Ω2 + c2

sk
2 − 2πGΣk

)

s

+ νk2
(

c2
sk

2 + 3Ω2 − 2πGΣk − 3
ν2

R2
k2

)

= 0, (3.24)

where s := iω̄. Thus we have linear stability, if <(s) < 0.
Using the Routh-Hurwitz theorem (see, e.g., Gradshteyn and Ryzhik, 2000,

p. 1076), one can determine the sign of the (real) root. If a1, a2 and a3 are the
coefficients of s2, s and the constant term respectively, then the root is negative

if
a1 > 0, (3.25)

∣

∣

∣

∣

∣

a1 1

a3 a2

∣

∣

∣

∣

∣

> 0. (3.26)

and
∣

∣

∣

∣

∣

∣

∣

a1 1 0

a3 a2 1

0 0 a3

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a1 1

a3 a2

∣

∣

∣

∣

∣

· a3 > 0. (3.27)

The first condition holds trivially since 7
3
νk2s2 > 0. The second condition leads

– after neglecting higher order terms – to

28

9
ν2k4 − 2

3
Ω2 +

4

3
c2
sk

2 − 8

3
πGΣk > 0 (3.28)

for stability. If we neglect the third term in Equation (3.28), i.e., the self-gravity
term which should be negligible for non-self-gravitating disks, we can prove sta-
bility for a wide range of accretion disks. Please note that this would not be
the case if we had set ∂η̃

∂R
≡ 0. In that case we would come to the same conclu-

sions as the authors mentioned in Section 2.5, namely that the Jeans criterion
holds and thus any disk with a radius above the Jeans length is unstable. On
the other hand please mind that the above mentioned authors were examining
self-gravitating disks while this section is about a non-self-gravitating disk.

Coming back to the calculation, we get

28

9
ν2k4 +

4

3
c2
sk

2 >
2

3
Ω2 (3.29)

for stability. With y = k2 and replacing the greater than sign with an equals
sign, we get the positive solution

y =
3

14

c2
s

ν2

(

√

1 +
14

3

ν2Ω2

c4
s

− 1

)

. (3.30)
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Using Equations (2.57) and (2.37), we get ν2Ω2

c4s
= α2 ¿ 1 and thus (with

√
1 + ε ≈

1 + 1
2
ε for ε ¿ 1)

k2
min = y ≈ 1

2

c2
sα

2

ν2
=

1

2
h2, (3.31)

leading to a minimum wavelength for instability of

λmin =
2π

kmin

=
√

22πh ≈ 8.9h. (3.32)

Or – since λ ¿ 2πR – we have stability at least for R <
√

22πh, or

h

R
=

cs

vϕ

>
1

2
√

2π
≈ 0.11, (3.33)

which would mean stability for a wide range of disks, especially since λ < 2πR
was used instead of λ ¿ 2πR, meaning that 0.11 is a very conservative limit.
This still implies instability for some non-self-gravitating disks while we have
even neglected (the small) self-gravity.

But first, the third condition (3.27) must be fulfilled which is the case if a3 > 0,
i.e.,

f := c2
sk

2 + 3Ω2 − 2πGΣk − 3
ν2

R2
k2 > 0. (3.34)

Setting ∂f

∂k
= 0 to find a minimum (∂2f

∂k2 > 0, since c2
s > 3 ν2

R2 = 3α2 h2

R2 c
2
s) at k0,

we get

k0 =
πGΣ

c2
s − 3 ν2

R2

. (3.35)

Inserting this into Equation (3.34) after some algebra we get as an equivalent
condition

c2
sΩ

2

(πGΣ)2

(

1 − 3
h2

R2
α2

)

≈ Q2 > 1. (3.36)

This is always fulfilled for thin NSG α-disks, since Q = Ωcs

πGΣ
> Ωcs

Ωcs
= 1 (see the

conditions at the beginning of this section).
All of this can change, if we implement a second kinematic viscosity ξ as

introduced in Section 2.1, of the same order of magnitude as the first viscosity as
is believed to exist due to turbulence in the same way as the first viscosity (see,
e.g., Papaloizou and Pringle, 1977). Equation (3.24) becomes

s3 +
(

ξ +
7

3
ν
)

k2s2 +
(

(

ξ +
4

3
ν
)

νk4 + Ω2 + c2
sk

2 − 2πGΣk
)

s

+ νk2
(

c2
sk

2 + 3Ω2 − 2πGΣk − 3
ν2

R2
k2

)

= 0. (3.37)

Using ξ = xν, after some algebra and neglecting higher-order terms, we find

(

x +
7

3

)(

x +
4

3

)

ν2k4 +
(

x − 2

3

)

Ω2 +
(

x +
4

3

)

c2
sk

2 −
(

x +
4

3

)

2πGΣ > 0 (3.38)

for the second condition (Equation (3.26)). Even by neglecting the third term in
finding the minimum of this expression (which makes the expression smaller, since
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the third term is a positive one), we get after a lot of algebra the conservative
condition

1

q

1

2
(

x + 7
3

)
1

3

α− 2

3 > 1, (3.39)

(where q = 8
3

(

3
14

)
1

3 − 28
9

(

3
14

)
4

3 ≈ 1.2) which for x = 1 comes to about

0.28α− 2

3 ≈ 1.3 > 1 for α = 0.1 (3.40)

for stability. The third condition (3.27) does not change and is thus met. So
for x = 1 and α < 0.15 all thin NSG α-disks are linearly stable even using this
conservative condition. Unfortunately the second viscosity is hardly discussed
in the accretion disk literature, as a rare exception, see Papaloizou and Pringle
(1977).

3.3 A thin self-gravitating β-disk

To get disk parameters to probe the dispersion relation of a thin self-gravitating
β-disk, we take the equations of a thin stationary accretion disk (see Section
2.2.2), neglecting the boundary terms

νΣ = − Ṁ

2πR
Ω

(

∂Ω

∂R

)−1

, (3.41)

Ṁ = −2πRΣvR. (3.42)

Using the monopole approximation for the potential with a negligible central

mass vϕ =
√

MdG
R

=
√

πGΣR and the β-parameterization of the viscosity (2.57),

we get after some algebra

Σ =

(

Ṁ

2πβ

1√
Gπ

)
2

3

R−1, (3.43)

∂Σ

∂R
= −

(

Ṁ

2πβ

1√
Gπ

)
2

3

R−2, (3.44)

ν =

(

GṀ

2

)
1

3

β
2

3 R, (3.45)

vR = −
(

GṀ

2

)
1

3

β
2

3 , (3.46)

κ =
√

3

(

GṀ

2β

)
1

3

R−1, (3.47)

cs = constant (= 1000
m

s
typically), (3.48)

Ṁ = (2π)
3

2

√

G

2
βR

3

2

OΣ
3

2

O (3.49)

with ΣO being the surface density at the outer rim of the disk. A similar analysis
as in Section 3.2 can be carried out for a fully self-gravitating β-disk. Using
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Equations (3.43) to (3.49) and κ2 = 3Ω2 (see Equation (2.77)), we get A = C = 0
and

B =
ν2

ΣR2
ik +

ν2

ΣR3
, (3.50)

D = −1

2
Ω

ν

Σ
ik − 1

3
Ω

ν

ΣR
. (3.51)

This leads – after neglecting higher-order terms – to

s3 +
7

3
νk2s2 +

(4

3
ν2k4 + 3Ω2 + c2

sk
2 − 2πGΣk

)

s

+ νk2
(

c2
sk

2 + Ω2 − 2πGΣk − 3
ν2

R2
k2

)

= 0. (3.52)

The first condition for stability (Equation (3.25)) again is met trivially. From
condition (3.27) we investigate

a3(k) = c2
sk

2 + Ω2 − 3
ν2

R2
k2 − 2πGΣk > 0 (3.53)

for stability. Actually this is necessary for stability since, if a3 < 0 by (3.27),
(a1a2 − a3) < 0 must hold for stability which in turn would violate condition
(3.26). Thus a3 > 0 is necessary for stability. Searching for an extremum k0, we
find

k0 =
πGΣ

c2
s − 3 ν2

R2

. (3.54)

There are two possible cases:

∂2a3

∂k2
= 2c2

s − 6
ν2

R2
= 2(c2

s − 3β2v2
ϕ) > 0 ⇒ cs > 3βvϕ (3.55)

and
∂2a3

∂k2
< 0 ⇒ cs < 3βvϕ. (3.56)

If Equation (3.55) holds k0 is a minimum and by some algebra the condition for
stability can be rewritten as

1

3
Q2 −

ν2Ω2

R2

(πGΣ)2
> 1, (3.57)

which cannot be fulfilled, since the second term is negative and 1
3
Q2 ¿ 1 by

Equation (2.78). On the other hand if Equation (3.56) holds, then obviously
a3(k → ∞) < 0, and all large k, i.e., small λ, are unstable. Thus all thin FSG
β-disks are unstable. But please note the comments at the end of this section.

In Figures 3.1 and 3.2 the imaginary part of ω is shown for the parameters
R = 1·1018, RO = 3 · 1018 m, ΣO = 30 kg

m2 and cs = 1000 m
s

using Mathematica
(Wolfram Research, 2005). In Figure 3.1 the imaginary part of solution two is
plotted with β = 5·10−3, while in the other graph β = 5·10−4. Solutions one
and three seems to be stable always, i.e., =(ω) > 0. Please mind that Equations
(3.43) to (3.49) are not self-consistent, since in the monopole approximation Σ =
constant was used. Thus these equations must be seen as a simple approximation.
Since the disk is probably not stationary, a better approximation would not be
of use here.



34 CHAPTER 3. GRAVITATIONAL INSTABILITY OF A VISCOUS DISK

3.·1016 1.·1017 2.·10173.·1017 6.·1017 1.·1018
Λ@mD

-7·10-13

-6·10-13

-5·10-13

-4·10-13

-3·10-13

-2·10-13

ImHΩL@1�sD

Figure 3.1: =(ω) for β = 5·10−3. Parameters are: R = 1 · 1018 m, RO =
3·1018, ΣO = 30 kg

m2 and cs = 1000 m
s
.
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Figure 3.2: =(ω) for β = 5·10−4, R = 1 · 1018 m, RO = 3·1018, ΣO = 30 kg
m2 and

cs = 1000 m
s
.
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3.4 A new route to β-viscosity

The original idea presented in Section 2.4 was that a hydrodynamic instability
drives the turbulence and thus β = 1

Rcrit
. The new idea is that the gravitational

instability is the main driver of the turbulence. So we look for a characteristic
length in the self-gravitating viscous disk. Neglecting pressure and shear, a char-
acteristic length is the wavelength where the time scale of viscosity equals the
time scale of gravity, i.e., the corresponding term in Equation (3.52) which can
be interpreted as being approximately the dynamical time scale for a clump with
surface density Σ at distance λ. So we require that νk2 =

√
2πGΣk. This leads,

using again the monopole approximation and neglecting a possible central source
to

λmin = (4π3)
1

3 β
2

3 R (3.58)

which evaluates to 1.5·1017 m for the conditions of Figure 3.1 and 3.1·1016 m for
the conditions of Figure 3.2. Obviously our calculated characteristic wavelength
corresponds, up to a factor of 1.5, to the minimum of the imaginary part of
ω – which is rather independent of all the other parameters – and thus is the
predominant size of structure in the system.

This ansatz leads to

lt =
√

βR = λmin = (4π3)
1

3 β
2

3 R (3.59)

which gives the number

β =
1

16π6
= 6.5·10−5 (3.60)

close to the expected order of magnitude (see Section 2.4). Due to the approxima-
tions used, the correspondence cannot be expected to be very good considering
that any error in the most unstable wavelength enters to the 6th power. This
calculation changes a little bit, if we include a non-negligible central mass, giving

β =
1

16π6

(

1 +
M∗

πΣR2

)−2

= 6.5·10−5

(

1 +
M∗

πΣR2

)−2

(3.61)

altering the value of β at the rim to the Kepler self-gravitating regime to β = 1
4

1
16π6

at the radius where the central mass M∗ = πΣR2.
So if a thin self-gravitating disk is thought to be laminar in the beginning,

we would have no turbulent viscosity, but (see Equation (2.76)) we would have
gravitational instability. If this instability leads to a turbulence and hence a
viscosity, using the β-parameterization of the viscosity, for consistency the β-
value has to lie in the above mentioned order of magnitude and thus is about as
large as expected.

It is expected that the self-gravity that drives the turbulence has enough
potential energy to drive a supersonic turbulence. Thus for such a viscosity the
dissipation limit would not hold.
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Chapter 4

Simulation techniques

In this chapter the program NIRVANA2.0 and the necessary further developments
to it for our special purposes are described. In Section 4.1 the program and some
changes to the hydrodynamics are described. Section 4.2 discusses the changes
to the self-gravitation algorithm which are evaluated in Section 4.3. Section 4.4
analyzes the convergence and the time behavior which show a major problem with
the used CPU time. Thus in Section 4.5 we introduce the multi-grid method that
was implemented to increase the speed of the gravity solver. We describe the
implementation of the cooling function in the last section of this chapter.

4.1 Using NIRVANA2.0 to simulate an accre-

tion disk

4.1.1 NIRVANA2.0

NIRVANA2.0 is described in Ziegler (1998) and Ziegler (1999) and can be down-
loaded from Ziegler (2003) including more detailed descriptions. It is a non-
relativistic computational fluid dynamics code including MHD (magneto hydro
dynamics), viscosity, thermodynamics, heat conduction and self-gravity written
in C. Cartesian, cylindrical and spherical coordinates are implemented in three
and partly in two dimensions. In NIRVANA2.0 an AMR (adaptive mesh refine-
ment) algorithm is implemented. This is a method where the computational grid
can be made finer where necessary, e.g., in regions where clumps are found, and
coarser where the resolution is not needed (e.g., in low-density regions). MHD,
AMR and heat conduction are not used in the present work.

The algorithm is a finite difference with a finite volume scheme using operator
splitting on a staggered grid, where scalar values and diagonal elements of tensors
are defined in the center of a cell, vectors are defined face-centered and off-diagonal
elements of tensors are defined edge-centered (see Figure 4.1). The operators can
be switched on or off using an input file. The time integration is an explicit Euler
scheme.

After some initialization the different functions for the differential operators
are called at every time step in the following ordering:

• gravity.c computes the gravitational potential

37
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ρ

Figure 4.1: The staggered grid of NIRVANA2.0 in 2D for simplification. Depicted
is the cell at position i, j. Scalars like ρ, e or P but also diagonal elements of
tensors are defined in the cell center. Vector components like vx and vy are defined
on the face-centers and off-diagonal elements of tensors like σ̃xy are defined at the
centers of the edges.

• sourceMomentum.c is the momentum source operator

• viscosity.c contains the physical and artificial viscosity

• sourceEnergy.c includes the sinks and sources of heat apart from the heat
by viscous dissipation which is done in viscosity.c

• advection.c performs the advection for all variables.

The gravitational force due to the central point mass is included in source-

Momentum.c.

Hydrodynamics and energy equation

The advection is a second-order accurate finite-volume scheme by van Leer. The
code is conservative for mass and angular momentum, though for the disk it is
important to rotate it in the negative direction; otherwise angular momentum
conservation might not be perfect at the boundary ϕ = 0, 360◦. The problem is
that the advection scheme used needs three ρ values, i.e., three cells, upstream
of the point where the velocity is calculated. The boundary conditions give only
two such cells. This third upstream ρ value gives only a minor contribution to
the advection and is negligible for small gradients in ρ in the ϕ-direction. Since
the azimuthal velocity at ϕ = 0 is included in the calculation domain (instead of
vϕ at ϕ = 360◦), the transport is not perfect in the positive rotation direction at
this boundary.

The energy equation is used in the thermal energy density form. The source
terms are implemented as central differences and are thus second order in space.
Apart from the physical viscosity which is implemented as a finite difference
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scheme there is also the possibility to use a tensor or an anisotropic artificial
viscosity in the case of shocks as described in Section 2.7.3.

The self-gravity algorithm

The self-gravity algorithm of NIRVANA2.0 is a recursive ADI (Alternative Di-
rection Implicit) method, described in Douglas, Jr. (1962). It consists of the
source files gravity.c, sourceGravity.c and adiLevel.c. From the first file
adiLevel.c is called, which implements the ADI solver every pseudo-time step.
In the second file the source function is defined. An ADI solver for parabolic
partial differential equations works by calculating an intermediate result at each
(pseudo-)time step, using a finite difference scheme, where only the differential op-
erator in one direction (say the x-direction) is handled implicitly. The differential
operators in the other directions are handled explicitly. In the next intermediate
step a similar thing is done for the y- and eventually for the z-direction (for a
detailed description see e.g., Smith 1970 or Douglas, Jr. 1962). The ADI solver
of NIRVANA2.0, which can also handle the heat conduction equation, solves the
equation

~∇ · (f ~∇(hu)) =
du

dt
+ s, (4.1)

where f, h, u and s are some functions. In the case of self-gravity s = 4πGρ,
u = Φ, h ≡ f ≡ 1. It is solved recursively with a special method of choosing the
pseudo-time steps dt. This way a solution for the Poisson equation ∆Φ(~x) = 4πGρ
is obtained.

The boundary conditions for the ADI solver are taken from the boundary
condition files of NIRVANA2.0, but they are also partly implemented directly in
the ADI solver. Please note that in NIRVANA2.0 the cylindrical coordinates are
{x, y, z}=̂{z,R, ϕ}, i.e., the z-direction is the first direction in the ADI solver.
Since the z-direction is of special interest for us, here are the relevant equations
(in Cartesian notation for simplification):

∆x(fn+ 1

2

∆x(hu∗
n+1)) −

2

∆t
u∗

n+1 = dx, (4.2)

dx :=

−
[

∆x(fn+ 1

2

∆xhun) + 2∆y(fn+ 1

2

∆yhun) + 2∆z(fn+ 1

2

∆zhun) +
2

∆t
un − 2sn

]

,

(4.3)

where

∆x(fn+ 1

2

∆xhun) :=

fi+ 1

2
,j,k,n+ 1

2

(hui+1,j,k,n − hui,j,k,n) − fi− 1

2
,j,k,n+ 1

2

(hui,j,k,n − hui−1,j,k,n)

(∆x)2
. (4.4)

The equations for the y- and z-directions look similar. Here i, j and k are the
space indexes and n is the time index. The asterisk indicates the value at the
next intermediate step, i.e., after the intermediate step in the x-direction is done.
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Boundary conditions

The boundary conditions of density, velocity, thermal energy density and gravita-
tional potential are set in bcrho.c, bcv.c, bce.c and bcphi.c respectively. For
the potential, there is also the file bcphiMultipol.c for calculating the multipole
expansion of the potential. The boundary conditions are implemented by ghost
cells, i.e., the grid has two additional cells at each boundary, called ghost cells.
In these cells the boundary values are set. The numbering of the cells starts at
zero, so cell number two is the first of the computational grid and numbers zero
and one are ghost cells.

4.1.2 Modifications of NIRVANA2.0

Modifications of the hydrodynamics

NIRVANA2.0 does not support a polar grid. To have such a grid for the hy-
drodynamics, the code has been changed to use only one layer of cells in the
z-direction of the calculation. Any flow through the z = constant-planes of the
cells is set to zero by the boundary conditions. The ϕ-boundary conditions are
straightforwardly set by copying the values.

The calculation of the centrifugal term was changed, such that four instead
of two values of vϕ in the radial direction were taken to calculate an average by
Lagrange polynomial interpolation (see, e.g., Press et al., 1992). This change was
necessary for stabilization in this version. When using self-gravity, this could not
be used and thus leads to radial velocity oscillations as discussed later in Section
7.1.1.

This was the state of the program mainly used in this chapter. Later two
dimensional hydrodynamics using a surface density Σ and a scaleheight h was
implemented. That process also leads to changes in the self-gravity algorithm,
described below.

To do this, the equations of continuity, internal energy and the Navier-Stokes
equations were integrated over the z-direction as in Section 2.2.1. The one-zone
approximation is used, i.e.,

∂·
∂z

≡ 0, (4.5)

∞
∫

−∞

Xdz = 2hX, where X is any simple variable, (4.6)

vz ≡ 0. (4.7)

Thus the continuity equation takes the form

∂Σ

∂t
= ~∇ · (~vΣ) (4.8)

and so the only change in the code is to replace ρ with Σ. The Navier-Stokes
equation is split into the advection, the source term and the viscosity part (op-
erator splitting). The advection and source terms do not change (setting ρ = Σ

2h
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where necessary):

Σ
∂~v

∂t
+ Σ(~v · ~∇)~v = −2h~∇(P + Φ) +

∫

~∇ · σ̃dz. (4.9)

For advection and source terms, we get

⇒ ∂~v

∂t
+ (~v · ~∇)~v = −2h

Σ
~∇(P + Φ). (4.10)

In the viscosity case, we have, using σ̃ij = νρ
(

(~∇~v)ij + (~∇~v)ji − 2
3
~∇ · ~vδij

)

,

Σ
∂~v

∂t
=

∫

~∇ ·
(

νρ
(

(~∇~v)ij + (~∇~v)ji −
2

3
~∇ · ~vδij

)

)

dz

= ~∇ ·
(

νΣ
(

(~∇~v)ij + (~∇~v)ji −
2

3
~∇ · ~vδij

)

)

(4.11)

⇒ ∂~v

∂t
=

1

Σ
~∇ · σ, (4.12)

where σ is the viscosity tensor with η̃ = νρ exchanged with η := νΣ.
Similarly the internal energy equation is expressed in the internal energy per

unit area e = 2hẽ.

Modifications of the self-gravity algorithm

The self-gravity is handled in 3D, i.e., a small odd number of cells are used in
the z-direction.

The file bcphiMultipol.c was rewritten completely to allow for the boundary
conditions described in Section 4.2.

Since the idea for the boundary conditions for the potential in the z-direction
is to give the derivative with respect to z (which can be non-zero), some changes to
the original code were necessary. Firstly the von Neumann boundary conditions
as implemented in adiLevel.c work only for vanishing gradients. If we set the
derivative of the potential with respect to x at the x-boundary:

(

∂u
∂x

)

x=0
= a, i.e.,

u1 = −a∆x + u2, we get for the first cell in the computational domain (i.e., the
cell number 2) in x (i.e., z), using equations (4.2) and (4.4):

f 5

2

h3
1

∆x2

−(f 5

2

h2 + f 3

2

(h2 − h1))
1

∆x2 − 2
∆t

u∗
3 + u∗

2 =
dx + a∆xf1h1

1
∆x2

−(f 5

2

h2 + f 3

2

(h2 − h1))
1

∆x2 − 2
∆t

,

(4.13)
where dx also contains boundary conditions. While the denominator has already
been implemented in NIRVANA2.0, the second part of the numerator had to be
added to allow for non-zero gradients for von Neumann boundary conditions.

Secondly, the boundary conditions had to be set by calling bcphi.c in gra-

vity.c every pseudo-time step to make the von Neumann boundary conditions
in the z-direction work properly, otherwise the boundary values do not change
and are thus effectively Dirichlet boundary conditions.

In addition, it was necessary to multiply the pseudo-time step by a large
number, depending on the grid in use, to get it to converge reasonably fast. For
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the grid mentioned below (see Section 4.3.1), this number is 200,000 as obtained
by trial and error. The reason is probably that the grid is spaced very differently
in the (R,ϕ) and z-directions.

At the start-up of NIRVANA2.0 some additional initializing steps are done,
see, e.g., Section 4.2.4.

Later, a multi-grid algorithm for the ADI-solver was implemented as described
in Section 4.5.

Modifications of the self-gravity algorithm due to 2D hydrodynamics

To adapt the self-gravity algorithm to the two-dimensional hydrodynamics, the
following has been done. The ADI-solver needs the mean density in every grid
cell. For the ith cell in the z-direction (where the central layer of cells is counted
as i = 1) and grid spacing in the same direction of hg = ∆z

2
, we get using Equation

(2.49)

ρ̄i =

∫ (2i−1)hg

(2i−3)hg
ρdz

2hg

=
ρch(tanh (2i−1)hg

h
− tanh (2i−3)hg

h
)

2hg

. (4.14)

It can happen, especially where the surface density is very low and thus the
height h is large, that h > zmax (zmax being the upper boundary of the calculation
domain) and thus the main part of the mass is not included in the self-gravity
calculations. This is circumvented by setting ρgrav = Σ

zmax
in that case. Please

note that only the density used in the self-gravity algorithm is changed; ρ for
thermodynamics does not change.

Using Equation (2.52) to calculate the height of the disk at some position
assumes that the disk is locally self-gravitating meaning that the height is mainly
determined by the surface density and temperature at that location. If the disk
becomes inhomogeneous this may not be the case since a location of low surface
density may be gravitationally dominated by a near region of high surface density.
As long as the height is much smaller than the resolution of the grid, a wrong
density profile might not be critical. But if the height is in the range of the
resolution or higher this might pose a problem. To overcome this problem, the
height, if it is not too small, can be approximated by using the gravitational
acceleration in the z-direction, gz, at the top of the calculation domain. This
calculation only holds near this point since gz is assumed to be constant. This
procedure is practical since for the boundary conditions, gz is calculated anyway.
So we have using P = c2

sρ:

dP

dz
= c2

s

dρ

dz
= −ρgz, (4.15)

⇒ ln ρ = −gz

c2
s

+ C, (4.16)

⇒ ρ = ρ0 exp
(

−gz

c2
s

|z|
)

with h =
c2
s

gz

, (4.17)

where C is a constant and ∆z is the grid spacing in the z-direction. To prevent
a jump in the height when it changes from one form to the other, a factor of two

was inserted, so we set h = 2 · c2s
gz

when the disk is not locally self-gravitating at
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this point which should not be too bad regarding all of the approximations. The
z-profile (Equation (2.49)) is kept the same since a better solution is not known
and hardly necessary for low z-resolution. To decide which height shall be used,
the criteria are that this alternative height is used whenever

c2
s

πGΣ
> ∆z and 2πGΣ < gz. (4.18)

The first guarantees the approximate validity of this alternative height since gz

is calculated at a point some ∆z above the disk, while the other guarantees that
local self-gravity (Σ is the local value) is not a good approximation here.

4.2 Using NIRVANA2.0’s self-gravity algorithm

The self-gravity algorithm of NIRVANA2.0 is described in Section 4.1.1.
The boundary conditions for the potential as implemented in NIRVANA2.0

which uses Cartesian multipoles to the fourth order, are not adequate in the case
of a disk, where the boundaries are close to the disk. Consequently boundary
conditions had to be found. As stated above, the basic idea is to use ∂Φ

∂z
as

boundary conditions in the z-direction.
To exclude non-convergence by extremely low ρ-values above and below the

central plane, a ρ-value of 10−4ρc is added to these cells, where ρc is the density
in the central-plane cell. For the following we first need some formulae.

4.2.1 The potential of a cylinder

From Jackson (1967), we get for a cylindrical symmetric mass distribution:

1

|~x − ~x′| =
4

π

∞
∫

0

cos[k(z − z′)]·

·
{

1

2
I0(kR<)K0(kR>) +

∞
∑

m=1

cos[m(ϕ − ϕ′)]Im(kR<)Km(kR>)

}

dk. (4.19)

Here Im and Km are modified Bessel functions and R< (R>) is the smaller (larger)
value of {R,R′} (~x = (R,ϕ, z)). For ϕ = 0 and a homogeneous cylinder ring of
inner and outer radii Ri and Ra and height h the potential

Φ(~x) =

Ra
∫

Ri

2π
∫

0

h
2

∫

−h
2

Gρ(~x′)

|~x − ~x′|dz′dϕ′dR′

leads to:

Φ(~x) = 8Gρ0

Ra
∫

Ri

∞
∫

0

cos(kz)
1

k
sin (

kh

2
)I0(kR<)K0(kR>)R′dkdR′. (4.20)
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4.2.2 Evaluating the integral for the potential of a cylin-

der

For comparison it is practical to evaluate the integral in Equation (4.20), or its
derivative with respect to z. This has been done numerically to get the potential
Φ(~x) in the mid-plane of the disk (z = 0) in the following way.

As algorithms, the numerical recipes Press et al. (1992)1 function midpnt.c

and midinf.c were used in a simple adaptive way. These functions use the
extended midpoint rule, i.e.,

xN
∫

x1

f(x)dx ≈ ∆x
(

f
(1

2
(x2+x1)

)

+f
(1

2
(x3+x2)

)

+· · ·+f
(1

2
(xN+xN−1)

))

(4.21)

(where ∆x = xi+1 − xi has to be equal for all i) to evaluate integrals and thus
can be used to compute improper integrals where midinf.c is for the case when
one integral boundary is infinite. The integral over k is improper at the lower
and upper limits. It is improper at the lower limit, since K0(x) → ∞ for x → 0.
The integral over k had to be split into two parts, one from k = 0 to a point
k = kmid and one from k = kmid to k = ∞, where the first was computed using the
midpnt.c program and the second using the midinf.c program. In the second
part, the modified Bessel functions had to be exchanged by their asymptotic
behavior for large arguments (see, e.g., Jackson, 1967):

In(x) → 1√
2πx

ex,

Kn(x) →
√

π

2x
e−x. (4.22)

The splitting point kmid = 1 · 10−16 m−1 is reasonable and practical, making the
argument of the modified Bessel functions kR ∼ O(102) (for x = 100 the error
when using the asymptotic values instead of the correct ones is about 0.01% for
the product I0(x)K0(x)). Ri = 7.5·1017 m and Ra = 4.05·1018 m were used. The
result can be seen in Figure 4.3 as the dashed line.

The z-derivative of the potential (at a height z 6= 0) makes a sin(kz) from
the 1

k
cos(kz). Unfortunately, this makes it impossible for the numerical recipes

routines to evaluate the integral in the case of Ri . R . Ra. Nevertheless, it can
be used to calculate the appropriate derivative. gz = −∂Φ

∂z
can be evaluated for

an infinite plane parallel matter distribution which is constant in each plane, as
in Section 2.2.4 to give

gz = −∂Φ

∂z
= −2πGΣh. (4.23)

Now it is possible to compute the above integral in the case of a cylinder of radius
Ri and a cylinder of very large radius (R À Ra), where a cylinder of radius Ra

is cut out of the middle. The correction for the infinite case can be calculated in
the case of a constant density in a cylinder ring and no density elsewhere. This
correction is of the order O(10−5) relative only, but not correcting the boundary

1The precision of all numerical recipes functions has been changed from single to double.
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Figure 4.2: The integration to get the solid angle of a cell on the polar grid,
bounded by R0, R1, ϕ0 and ϕ1, as seen from point P.

conditions in this way leads to an incorrect shape for the potential as we will see
below. Using another method, assuming the mass distribution is a thin sheet,
it can be done very quickly. The difference between the corrections calculated
according to these two methods are typically of the order 0.1% and always smaller
than about 2%. This method is the solid angle method of Section 4.2.3. As we
will see later in Section 4.3, using Equation (4.23) with corrections – let’s call it
the 2π-method with corrections – does not give adequate results in the case of
non-constant surface densities in the disk.

4.2.3 The solid angle method

As described in MacMillan (1958), the acceleration in the z-direction (i.e., normal
to the plane) due to a plane of constant surface mass density Σh, can be written
as

gz = −ΩGΣh, (4.24)

where Ω is the solid angle covered by the surface as seen from the point where gz

is evaluated. Assuming the mass density is a thin sheet and by calculating the
solid angle of a grid cell of NIRVANA2.0 as seen from the point above another
cell, gz above this other cell can be calculated.

4.2.4 Calculating the solid angle

The solid angle of an infinitesimal surface element seen from a point P is

dΩ =
dA cos α

~r2
, (4.25)
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where dA is the surface element, cos α = ~r~n
|~r|

, ~r is the difference vector of the two

points, ~n is the surface normal and α is obviously the angle between the two
vectors. Using Figure 4.2 and Equation (4.25), we get

dΩ =
dA~r′~ez

|~r′|

~r′2
=

RadϕadRa~r
′~ez

|~r′|3 . (4.26)

After some algebra, and applying ϕP = 0, we get

Ω =

R1
∫

R0

ϕ1
∫

ϕ0

zPRadRadϕa

(R2
P + R2

a − 2RPRa cos ϕa + z2
P)

3

2

(4.27)

for the solid angle of a cell on the polar coordinates grid. Using Mathemat-
ica (Wolfram Research, 2005), this can be evaluated partly to yield

Ω =

ϕ1
∫

ϕ0

[

2zp(R
2
p + z2

p − RaRP cos ϕa)
√

R2
P + R2

a − 2RPRa cos ϕa + z2
P)(−R2

P − 2z2
P + R2

P cos(2ϕa))

]Ra=R1

Ra=R0

dϕa.

(4.28)
These integrals in turn are evaluated numerically at the start of NIRVANA2.0
using the numerical recipes Press et al. (1992) function qromb.c for which the
maximal error has been set to 10−10. qromb.c is an integral solver that is based
on the Romberg integration which is a special adaptive way to use the trapezoidal
rule

∫ b

a
f(x)dx ≈ 1

2
(a − b)(f(b) + f(a)). In addition to this, an integral for the

solid angle of the inner disk, i.e., the disk which is supposed to be inside the inner
boundary of the simulated disk, is calculated for every radius. This is used in an
additional term for the influence of the inner disk on the simulated disk using the
supposed mean surface density of the inner disk.

4.2.5 The boundary condition in the R-direction

The boundary conditions for the potential in the R-direction are implemented by
direct summation of the point mass potentials of all cells in the 2D grid. The
monopole approximation of the potential of the inner disk is added.

4.3 Evaluating the methods

In this section we evaluate the different implementations of the boundary condi-
tions for self-gravity. In Chapter 5 test runs to check the entire code with different
parameters are done. Some of the problems discussed here will appear again in
Chapter 5.

4.3.1 The setup

To evaluate the methods, the following setup has been chosen. The disk is a
cylinder of constant density ρ0 = 2·10−8 kg

m3 of which a cylinder of equal height
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Figure 4.3: Potential for constant density in a cylinder ring with NIRVANA2.0
using the 2π-method, i.e., Equation (4.23), without correction (see Section 4.2.2,
solid line with +-symbols) in comparison to the result of the integration of Equa-
tion (4.20) (see Section 4.2.2, dashed lines with ×-symbols).
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Figure 4.4: Potential for constant density in a cylinder ring with NIRVANA2.0
using the solid angle method (see Section 4.2.3, solid line with +-symbols) in
comparison to the result of the integration of Equation (4.20) (see Section 4.2.2,
dashed lines with ×-symbols).
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Figure 4.5: Same as Figure 4.4, but for the derivative of the potential. The
agreement is acceptable.
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Figure 4.6: Same as Figure 4.4, but with raised density in one cell only (by a
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Figure 4.7: Same as Figure 4.6, but in addition, the result for the 2π-method with
corrections shown (see Section 4.2.2, short dashed line with ∗-symbols) which
gives a significantly different result.

but smaller radius is cut out of the middle to make a cylinder ring. The inner
radius is Ri = 7.5·1017 m, the outer radius is Ra = 4.05·1018 m, the height is
h = 1.5·1013 m which is the height of one cell. The dimensions of the equidistant
grid in NIRVANA2.0 are nR × nϕ × nz = 20 × 48 × 7 (where the disk is one cell
wider at each boundary in the radial direction). In this first setup the influence
of the inner disk is obviously neglected.

In a second slightly different setup, the density of one cell has been raised by
a factor of 103 to check the behavior of non-constant density.

In a third setup, the first setup was changed such that the cylinder was a full
one and thus the inner disk, inside the inner radius of the numerical domain, was
taken into account.

4.3.2 Comparison of the methods

In Figure 4.3, the result of NIRVANA2.0 using Equation (4.23) for the boundary
condition of the potential can be seen at z = 0 as the solid line with +-symbols,
also shown is the potential by integrating Equation (4.20) (see Section 4.2.2,
dashed line with ×-symbols). Obviously, the correction, as described in Section
4.2.2, is necessary. The solid angle method to calculate the boundary conditions
of Section 4.2.3 gives, for constant mass distributions in the disk, results so similar
to the 2π-method with correction that the two curves could not be distinguished
in a plot like Figure 4.4. Using NIRVANA2.0 with the solid angle method gives
a result as shown in Figures 4.4 and 4.5 as the solid line with +-symbols in
comparison to the results of integrating Equation (4.20) as described in Section
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Figure 4.8: Potential for a cylinder with constant density with NIRVANA2.0
using the solid angle method (see Section 4.2.3, dashed line with ×-symbols) in
comparison to the result of the integration of Equation (4.20) (see Section 4.2.2,
solid line with +-symbols).

4.2.2 shown as the dashed line with ×-symbols. In Figure 4.6, the same is done
for the solid angle method, though in one cell the density has been raised by a
factor of 103. The comparison is the result of NIRVANA2.0 as shown in Figure 4.4
plus a point mass potential. In Figure 4.7, the same is shown and in addition the
result of NIRVANA2.0 using the 2π-method with corrections (see Section 4.2.2,
short dashed line with ∗-symbols). So the corrected 2π-method gives a potential
that is not acceptable.

In Figures 4.8 (potential) and 4.9 (negative acceleration) the result of the
integration and the solid angle method using NIRVANA2.0 is shown for the full
cylinder again. The two curves agree acceptably well. The small fluctuations
in the acceleration for the integration is due to the high precision needed and
the fact that the calculations took a lot of CPU-time for this double integral.
We demanded an error of less than 10−4 and 10−6 for the R- and k-integration
respectively.

4.3.3 Using different heights

We also allow a Gaussian profile for the mass distribution in the z-direction. If
this is done using the solid angle method and a scaleheight of h = 3·1012 m, the
potential at z = 0 does not change. Even if the height is changed in the middle
of the disk from h = 3·1013 m to filling the mid-plane cells only (not changing
the surface density), this does not affect the potential. Although for a higher
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Figure 4.9: Same as Figure 4.8, but for the derivative of the potential.

resolution2 of nR × nϕ × nz = 40× 100× 7, the potential changes completely for
a Gaussian profile3, as shown in Figure 4.10. With 23 instead of 7 cells of the
same size in the z-direction, this effect vanishes and results in the usual potential.
This is an indication that the method is not good in the case that a large mass
is distributed over the whole height of the calculation domain.

4.3.4 The case h > zmax

To verify that the alternative height calculation in Section 4.1.2 does not introduce
a large error, we calculated the potential of a cylinder of radius R = 5·1016 m,
density ρ1 = 1·10−17 kg

m3 and height of h1 = 1·1016 m, using the program introduced
in Section 4.2.2. The radius roughly corresponds to half the radial extent of a
cell in NIRVANA2.0 for the resolution nR × nϕ = 31 × 63, an inner radius of
Ri = 9·1018 m and an outer radius of Ra = 3.9·1018 m, i.e., we use a cylinder as a
simple model for the complex geometry of a cell in a cylindrical grid. Then the
same is done for a cylinder of the same radius but with a height h2 = 1.2·1014 m
and density ρ2 = h2

h1
ρ1 = 83.3 kg

m3 , i.e., with the same mass but different height, as

would happen in NIRVANA2.0 if the calculated height h in a cell is 1·1016 m but
zmax = 1.2·1014 m. The relative deviation between the two potentials can be seen
in Figure 4.11. Obviously the error is very small. But what about the z-derivative
of the potential at zmax that is used for the boundary condition? This is plotted
in Figure 4.12 at z = zmax = 6·1013 m. It is the relative deviation for a cylinder of
h1 = 1·1016 m and for one with h2 = 1.5·1013 m and the corresponding ρ. Again

2The pseudo-time step size had to be multiplied by 2000 in this case (see Section 4.1.2)
3This happens for the solid angle method as well as for the corrected 2π-method (where the

solid angle method was used for corrections) the same way.
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Figure 4.10: Potential for constant density in NIRVANA2.0 using the solid angle
method and a higher resolution of nR × nϕ × nz = 40 x 100 x 7 (see text).

the error is small. Running NIRVANA2.0 two times with an isothermal equation
of state, once with the correction described here and the second time without
the correction, showed no qualitative differences. The reason is that h > zmax

happens only for very small Σ and thus for cells that do not have strong gravity
and no influence on the dynamics in the disk.

4.4 Behavior of the method

4.4.1 Convergence

For the resolution as used in Section 4.3.1, the convergence to a residual4 smaller
than 10−4 takes about 700 pseudo-time steps and a CPU-time on a 2 GHz PC for
each time step of about 12 s. For a higher resolution of nR×nϕ×nz = 40×100×7,
a time step takes about 23,000 pseudo-time steps and 30 minutes. Of course, it is
possible that the pseudo-time step size is not chosen optimally in spite of many
trials.

As a comparison, for a cube-like grid, it only takes about O(10) pseudo-time
steps and the default maximal number of pseudo-time steps in NIRVANA2.0 is
300. The reason for the bad convergence seems to be the high aspect ratios of
the grid cells.

4The residual is defined by max~x

∣

∣

∆Φ
4πGρ(~x) − 1

∣

∣.
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Figure 4.11: The relative deviation for the potential of two different cylinders.
One with height h1 = 1·1016 m the other with h2 = 1.2·1014 m. Both have the
same mass.
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other with h2 = 1.5·1013 m. Both have the same mass.
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4.4.2 Time complexity and a faster computation of the

z-boundary condition

Obviously, the time complexity for calculating the radial boundary conditions
for the potential is O(nRn2

ϕnz), whereas for the z-boundary conditions using the
corrected 2π-method, it is O(nRnϕnz) and O(n2

Rn2
ϕnz) for the solid angle method.

Each recursive pseudo-time step of the ADI solver has the complexity O(nRnϕnz).
Thus as long as the convergence is good, using the solid angle method, the z-
boundary conditions calculation is the limiting algorithm for time. With the
grid as described in Section 4.3.1, the time difference between the corrected 2π-
method and the solid angle method is smaller than 1%. The reason is that the
convergence is not good (see Section 4.4.1), such that the ADI solver takes much
more time than the calculation of the boundary conditions.

For higher resolutions, the time performance of the solid angle method may
become too slow. To circumvent this, the z-boundary condition has been altered
in a way that the summation in the ϕ-direction was done by the convolutions
theorem and a fast Fourier transform (FFT) (see, e.g., Press et al., 1992). Un-
fortunately, the usual FFT needs to have the number of elements N = 2n, n ∈ N,
while the multi-grid method of Section 4.5 needs N = 2n − 1, n ∈ N. Here, a
C-subroutine taken from Engeln-Müllges and Reutter (1996) is used that uses the
convolution theorem to be able to use any number of elements N for an FFT.
Since this method has to perform three instead of one convolution and one has
additional calculational costs, it was measured to need about three to four times
as much time as a simple convolution. Nevertheless, it reduces the time complex-
ity for calculating the z-boundary conditions to O(n2

Rnϕ log (nϕ)nz) which pays
off for higher resolutions.

4.5 A multi-grid algorithm for the ADI-solver

To overcome the problems described in Section 4.4.1, a multi-grid algorithm for
the ADI-solver in NIRVANA2.0 has been implemented.

4.5.1 The multi-grid method

An introduction to the multi-grid method can be found, e.g., in Hackbusch (1985).
It is a theoretically understood observation that most grid methods for the so-
lution of differential equations converge faster on small scales (compared to the
grid size) than on large scales. For this reason the idea is to perform a step with
a known grid method (which in our case is the ADI method) first. Then we
perform a step using the same method on a coarser grid. This is done for every
(pseudo-)time step. It helps to reduce the error on larger scales, i.e., for lower
frequencies. It can be iterated to coarser and coarser grids until the calculation
domain consists of a single cell only.

May the discretized equation to solve be

Llul − fl = 0 (4.29)
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as defined on the fine grid labeled l, where Ll is the discretized differentiation
operator and ul is the searched solution. Writing the error as

vl = ūl − ul (4.30)

(ūl being the approximate solution of the iteration step on the fine grid), ex-
changing ul by ūl in Equation (4.29) we define the so called defect

dl := Llūl − fl. (4.31)

It is a measure for the error. Since Llvl = Llūl − Llul = Llūl − fl = dl, we get

Llvl = dl. (4.32)

This has the same form as (4.29) and can thus be solved with the same method.
The problem is mapped on to the coarser grid to be solved there. This is done
since the error is known to contain more low than high frequencies (after the
iteration on the fine grid), and the low frequencies converge better on a coarser
grid, as stated before. This mapping is called restriction or just r and results in

Ll−1vl−1 = dl−1 with dl−1 = rdl. (4.33)

After solving this equation, the result has to be interpolated on the finer grid
again. This is called prolongation or just p:

ṽl = pvl−1, (4.34)

giving us a new approximate solution for the next (pseudo-)time step

unew
l = ūl − ṽl. (4.35)

Using recursive functions, a multi-grid algorithm in pseudocode could look
like this (taken from Hackbusch, 1985):

multi-grid iteration MGM (ν1,ν2) for solving Llul = fl

procedure MGM(l, u, f); integer l; array u, f ;
if l = 0 then u := L−1

0 ∗ f else
begin array d, v; integer j;

u := S(ν1)
l (u, f);

d := r ∗ (Ll ∗ u − f);
v := 0;
for j := 1 step 1 until γ do MGM(l − 1, v, d);
u := u − p ∗ v;
u := S(ν2)

l (u, f);
end;

Here S(ν)
l is the solver on the l-grid, performing ν steps and L−1

0 is the inverse
differential operator on the grid consisting of a single cell. Thus on each grid, ν1

steps are performed, and then the procedure is called recursively γ times for the
coarser grid and after that ν2 steps are performed.
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Figure 4.13: Two grids of a multi-grid method. The finer grid is depicted as
the full circles and the coarser grid as the open ones. The green circles are the
boundary cells.

4.5.2 Implementation for the NIRVANA2.0 ADI-solver

The simplest way to implement such a scheme as done here is to use a grid of
2l − 1, l ∈ N, number of cells in each direction. Figure 4.13 shows how this looks
in two dimensions. If the grid has different numbers of cells in each direction the
lowest l may not be zero.

Since in the present case the z-direction has only a minor number of cells and
in addition it is very small, it was observed that the coarsening in this direction
did not help to improve convergence. Thus only in the R- and ϕ-directions the
multi-grid method is used. For this a file multigrid.c was written with the main,
recursive function multigrid, called from the gravity function. As restriction
the nine-point formula was used. It is a weighted average of the next and next-
to-next neighbors, written in the matrix form like this:

1

16







1 2 1

2 4 2

1 2 1






, (4.36)

i.e., the center cell is weighted by 1
16
· 4, the next neighbors are weighted by 1

16
· 2

and the next-to-next neighbors are weighted by 1
16

· 1. A very similar method is
used for the prolongation, the so called nine-point prolongation. Let the points
(0,0), (0,2h), (2h,0), (2h, 2h) be on the coarse grid, where h is the mesh size of
the finer grid. On the mentioned points, vl = vl−1 is set trivially. For the other
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points, we set:

vl(0, h) =
1

2
vl−1(0, 0) +

1

2
vl−1(0, 2h), (4.37)

vl(h, 0) =
1

2
vl−1(0, 0) +

1

2
vl−1(2h, 0), (4.38)

vl(2h, h) =
1

2
vl−1(2h, 0) +

1

2
vl−1(2h, 2h), (4.39)

vl(h, 2h) =
1

2
vl−1(0, 2h) +

1

2
vl−1(2h, 2h), (4.40)

vl(h, h) =
1

4
vl−1(0, 0) +

1

4
vl−1(0, 2h) +

1

4
vl−1(2h, 0) +

1

4
vl−1(2h, 2h). (4.41)

Symbolized by a stencil this is







1
4

1
2

1
4

1
2

1 1
2

1
4

1
2

1
4






. (4.42)

This represents a linear interpolation.

4.5.3 Parameters and performance

For resolutions of, e.g., nR×nϕ×nz = 31×63×7 and nR×nϕ×nz = 63×127×7, the
typical number of iteration steps needed to reach a residual of 10−4 was around 10
to 40, which is up to three orders of magnitude better than described in Section
4.4.1 although the chosen parameters in that section where not optimal. Actually
finding the best parameters is still a problem and the parameters depend greatly
on the resolution and size of the grid.

When performing a run of the simulation, the number of iterations necessary
can temporarily grow significantly above the cited level and even become larger
than the maximum set to 1000 steps in which case the program stops. The
reason is related to strong density gradients leading to differences of many orders
of magnitude (∼ 6 to 10) between neighboring cells.

4.6 The cooling function and its implementa-

tion

4.6.1 The used cooling function

The energy Equation (2.6) is solved in NIRVANA2.0 by first-order finite differ-
ence, where a predictor-corrector method is used for the compressional heat part.
A cooling part as in Equation (2.93) is not implemented in NIRVANA2.0.

Here a radiative cooling part is implemented following Hubeny (1990) using
a total effective optical depth τeff where

Λ =
16

3
σT 4

eff, T 4
eff =

T 4

τeff

(4.43)
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with

τeff := τR +
2√
3

+
2

3τP

, τR/P =
1

2
ΣκR/P, (4.44)

where σ is the Stefan-Boltzmann constant, Teff is the effective temperature, T
is the central temperature, τR/P is an optical depth with κR/P being its corre-
sponding opacity. τR and τP are the Rosseland and Planck mean optical depths
as described in Section 2.6. An effective optical depth description is chosen here
to describe the transition from optically thin to thick. There are also other ef-
fective optical depths in use, e.g., one from Artemova et al. (1996), that can be
written as τeff = τR + 4

3
+ 2

3τP
(see Mayer, 2004). The two descriptions are not

identical although the difference is never larger than about 6%, and the difference
vanishes in the optically thick and thin regimes. For this work the main question
concerning cooling is whether a clump, which usually is optically thick, can cool
efficiently enough to collapse. Thus the choice of the effective optical depth does
not affect the main point of this thesis.

For the opacities, an interpolation formula for Rosseland opacities by Gail
(2003) is used. This is also used for the optically thin case which is not a bad
approximation for temperatures below a few 100 K (Biermann, 2001).

4.6.2 The numerical implementation

Unfortunately, the cooling times turn out to be much smaller than the typical
time step size calculated from the CFL condition (see Section 2.7.2). Thus a sim-
ple explicit Euler method does not work and can even give negative values for the
temperature. Only first-order implicit methods can guarantee positivity for arbi-
trary step sizes (Sandu 2001 and references therein), but here the implicit Euler
method does not give results accurate enough. Thus an implicit Euler scheme (as
described in Section 2.7.1) with an adaptive step size has been implemented, i.e.,
during one NIRVANA2.0 time step the cooling subroutine can carry out several
time steps to calculate the cooling for that NIRVANA2.0 time step. The implicit
Euler scheme is implemented by the method of bisection (see below) to guarantee
convergence even if opacity tables, and therefore non-continuous opacities, would
be used. An adaptive step size method taken from Engeln-Müllges and Reutter
(1996) is used as follows. The a-posteriori error of a finite difference scheme solv-
ing the equation ẏ(t) = f(y, t), where the dot indicates the time derivative, with
the numerical solution Yh(t) for the step size h, can be approximated by

eh := y(t) − Yh(t) ≈
Yh(t) − Yh̃(t)

(

h̃
h

)q − 1
, (4.45)

where q is the order of the method. This can be used in the following way. Carry
out two time steps with ∆t = h and one (starting at the same point in time)
of ∆t = h̃ = 2h using the implicit Euler rule. Then calculate the error using
Equation (4.45) giving eh ≈ Yh(t) − Y2h(t). If the relative error is smaller than
the demanded one, go to the next time step. Otherwise repeat this time step
with half the time step size. In addition we allowed the time step size to grow
by a factor of two if the relative error was an order of magnitude smaller than
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demanded. In this program a relative error of 10−2 was demanded. Due to CPU-
time restrictions this was not set to be smaller. The first step size chosen is the
current time step size of NIRVANA2.0.

Using this setup, where the cooling is due to the operator splitting calculated
in a different function (namely sourceEnergy.c) than the heating by artificial
and physical viscosity – which is the dominating part of the heating – there turned
out to be some problems due to operator splitting. Following LeVeque (1997), if
we have an operator splitting method for the equation

∂y

∂t
= (A + B)y, (4.46)

where the equation is split into the equations ẏ = Ay and ẏ = By, it can be
shown that the splitting error, i.e., the error introduced by the splitting method
alone, is

y(∆t) − Y (∆t) =
1

2
∆t2[A,B]−y(0) + O(∆t3), (4.47)

after one time step of size ∆t, where [A,B]− := AB − BA is the commutator,
y is the solution of Equation (4.47) and Y is the approximate solution when
the operators are split. In our case, we have y = e, e ∝ T and A ∝ − T 3

τeff
,

B ∝ C
T
, where C is the heating calculated for the artificial and physical viscosity

in viscosity.c. Since the two operators both change and use T , they do not
commute. It turns out that this would reduce the possible time step in addition
to the CFL conditions. For some opacity regions this would restrict the time step
size extremely even if the relative error was allowed to be as much as 10%.

Thus in the case of heating by viscosity and cooling, the above mentioned
implicit adaptive step-size method was used instead of the operator splitting,
i.e., the equation

∂e

∂t
= −Λ + C (4.48)

is solved instead of the equation of cooling alone.
Bisection (see, e.g., Press et al., 1992) is the simplest root finding algorithm.

For the equation f(x) = 0, if for an interval
[

a, b
]

in x, f(x) is known to have
different signs at the boundaries, the middle of this interval a+b

2
is used as a

new boundary. Then the new interval is
[

a, a+b
2

]

or
[

a+b
2

, b
]

such that f(x) again
changes sign in the interval. This can be iterated as far as necessary every time
which decreases the error by a factor of two in each iteration. This method is
guaranteed to converge to one solution when starting with different signs at the
interval boundaries. As starting points e1 = 1·10−37 and e2 = 10 · e are used.
The factor of 10 in the second boundary is used to allow e to rise. The bisection
is iterated 20 times, guaranteeing an accuracy of 2−20, i.e., 6 digits. Expecting e
not to change its order of magnitude in one time step, this gives a relative error
of O(10−5) (due to the above additional factor of 10).
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Chapter 5

Testing the setup

The goal of this chapter is to show that the main outcome of the simulations
does not depend critically on the chosen numerical parameters. It will be shown
that the details do change with the parameters but the main points remain, i.e.,
clumps form of the same order of magnitude in size and after a short period
of quiescence a fast accretion at the inner boundary of the calculation domain
and a strong outflow at the outer range is established. This happens due to the
interaction between the clumps. The mass accretion and outflow is roughly the
same in all runs. As we have seen in Chapter 3, the system is linearly unstable.
Thus we cannot expect the details of different runs to be the same even if the
parameters are changed only slightly.

5.1 Changing the resolution

As a check of the influence of resolution on the simulation results we made two
runs with different resolutions but exactly the same parameters otherwise. The
higher resolution is also used for the main simulation (see Section 6.1), i.e., nR ×
nϕ = 63 × 127. The lower resolution run has nR × nϕ = 31 × 63. The number
of cells in the z-direction, nz, stayed the same, i.e., 7. In Figure 5.1 (a) we show
the integrated accreted mass at the inner radial boundary for the high (solid
line) and low (dashed line) resolution runs. In Figure 5.1 (b) the same is shown
for the integrated mass that passed the outer radial boundary of the calculation
domain. Both graphs show that there is a difference but also that the curves
agree qualitatively.

On the other hand, Figure 5.2 shows the surface density distribution of both
runs after 9.4·105 years when the turbulence has fully developed, and there is still
a lot of mass in the disk. Differences are obvious when comparing the two graphs.
The clumps in the high-resolution run are more compact, have higher density and
they are more numerous. This indicates that the resolution is not high enough to
follow the fragmentation in detail. Truelove et al. (1997) have shown that to follow
the fragmentation, a resolution of ∆x

λJ

= 0.25 is needed. This resolution is not

reasonable using this code without AMR since λJ = O(1013) m = O(10−4) pc ¿
∆R = 4.76·1016 m = 1.54 pc here. Therefore our aim in this work cannot be to
follow the fragmentation. On the other hand the qualitative appearance is similar
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Figure 5.1: The integrated accreted mass in solar masses at the inner boundary
of the calculation domain (a) and the integrated outflow mass of the calculation
domain at the outer radial boundary (b) versus time in years. The solid line is
for the high-resolution run with 63 × 127 grid points, the broken line is for the
low-resolution run with 31 × 63 grid points.
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and the accretion rates do not differ too much.

5.2 Using different heights for the calculation

domain

In this section we compare the low-resolution run of the last section with two
runs that have a height for the calculation domain which is higher by a factor of
three and lower by a factor of five, i.e., 9·1013 m = 2.9·10−3 pc and 6·1012 m =
5.8·10−3 pc, respectively. It is expected that heights of the calculation domain
that are too low do not give good results since even for the cells that include high
masses (which have small heights and contribute most to the potential) a large
part of the height profile of the density is cut off. This gives an incorrect profile
and introduces the problems for the numerical method described in Section 4.3.3.
In Figure 5.3 (a) again the integrated accreted mass that passed the inner bound-
ary inwards is plotted, where the solid line is for the thin calculation domain, the
long dashed line is for the normal case and the short dashed line is for the thick
case. In Figure 5.3 (b) with the line styles corresponding to the same cases as
before, the integrated mass that passed the outer boundary outwards is shown.
The differences between the three curves are small in both graphs.

Looking at Figure 5.4 where the surface density distributions at t = 9.4·105 a
is shown for the thick and thin case, we see that they do not match well. But
comparing the thick case with the normal case in Figure 5.2 (b), it is obvious
that their match is good. This indicates that the results do not depend on the
height of the calculation domain as long as it is much larger than 6·1012 m.

5.3 Changing the parameters of the artificial

viscosity

For these tests two high-resolution runs were performed with changed artificial
viscosity parameters for the tensor viscosity and the anisotropic viscosity (see
Section 2.7.3). These parameters, i.e., the smearing lengths in units of the grid
spacing lA and lT, are typically set to l2T = 1.5 and l2A = 2 respectively as done in
all the other runs. We compare the runs of this section with the high-resolution
run in Section 5.1 which differ only by their artificial viscosity parameters. In
Figure 5.5 again the integrated accreted mass (a) and the integrated outflow mass
(b) are shown. The solid line is for the run with artificial viscosity parameters of
l2T = 3 and l2A = 4, the long dashed line is for the normal run and the short dashed
line is for artificial viscosity parameters of l2T = 0.75 and l2A = 1. Again the three
curves do not differ much. The curve for the lower parameters stops at around
1.7·106 a due to non-convergence of the gravity solver. This in turn most likely
has to do with the unphysically high velocities in this run as shown in Figure
5.6 where the radial velocity at t = 9.4·105 a is plotted. The velocities become
larger than 108 m s−1 while in the other runs it stays mainly below 106 m s−1.
When looking at Figure 5.7 (b), we see that the position of the extreme velocities
is close to a point with a strong density gradient. Thus we conclude that the
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Figure 5.2: The decadic logarithm of the surface density in units of kg m−2 at t
= 9.4·105 a for the higher resolution of 63 × 127 (a) and the lower resolution of
31×63 grid points (b). The clumps are more numerous and more compact in the
higher-resolution case.
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(b) Lost mass due to outflow

Figure 5.3: The integrated accreted mass at the inner boundary of the calculation
domain (a) and the integrated outflow mass of the calculation domain at the
outer boundary (b) versus time in years. The solid line is for the smaller height
of the calculation domain of 6·1012 m, the long dashed line is for the run with
1.5·1013 m height, and the short dashed line is for the run with a larger height
of the calculation domain of 9·1013 m. The long dashed line in this graph is the
same as the dashed line in Figure 5.1.
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Figure 5.4: The decadic logarithm of the surface density at t = 9.4·105 a for the
run with a smaller height of the calculation domain of 6·1012 m (a) and with a
larger height of the calculation domain of 9·1013 m (b). The corresponding graph
for the run with a height of 3·1013 m is shown in Figure 5.2 (b).
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extreme velocities are due to the artificial viscosity parameters chosen to be too
low.

In Figure 5.7 we show the surface density distributions for the two runs which
agree qualitatively with each other, while the graph for normal artificial viscosity
parameters is shown in Figure 5.2 (a).

5.4 Testing the commutability of the advection

and the energy sources/sinks

As pointed out in Section 4.6.2 the operator splitting method can introduce an
error when the operators do not commute. This is easily shown for the heating
term which is an ordinary differential equation but the energy advection equation
is a partial differential equation. This makes it much harder to calculate the
commutator and thus the error. The energy advection equation is

∂e

∂t
= −~∇ · (e~v) = −e~∇ · ~v − ~v · (~∇e). (5.1)

The first term of the last expression is proportional to e and thus T . This means
that this part of the operator would keep A constant as used in Section 4.6.2, i.e.,
if the temperature is independent of the position in the disk, A commutes with any
other operator and the error vanishes. But it might not commute in the case that
a temperature gradient exists. Fortunately, the strongest temperature gradients
are expected and observed where the clumps form, i.e., where ~∇·~v is large. Thus
we can hope that the first term in the last expression of Equation (5.1) dominates
and the error stays small. Actually it is sufficient that the temperature changes
by the same factor due to heating and cooling everywhere in the vicinity of the
position where equation (5.1) is evaluated, which means that ~∇e is proportional
to T and thus A = constant again.

We see that we have reason to believe that the error due to the operator
splitting method is small. To double check this, we take a more phenomenological
approach here. Two runs have been performed where the order in which the two
operators are evaluated, i.e., the heat source/sink and the advection, is reversed.
In Figure 5.8 the integrated accretion rate at the inner boundary (a) and the
integrated outflow mass at the outer boundary are plotted for the two runs.
There is no difference visible. Also the surface densities (see Figure 5.9) and the
temperatures (see Figure 5.10) match extremely well even at time t = 2.3·106 a.
This time was chosen to be later than for the figures of the other sections in
this chapter in order to show the agreement even at such a late time. This
confirms the above reasoning that the error due to the operator splitting in this
case stays small. This is of course not a proof but a strong indication justifying
our approach.
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(b) Lost mass due to outflow

Figure 5.5: The integrated accreted mass in solar masses at the inner boundary
of the calculation domain (a) and the integrated outflow mass of the calculation
domain at the outer boundary (b) versus time in years. The solid line is for the
run with higher artificial viscosity parameters of l2T = 3 and l2A = 4, the long
dashed line is for the run with normal parameters of l2T = 1.5 and l2A = 2 and the
short dashed line is for the run with lower parameters of l2T = 0.75 and l2A = 1.
This last run stops early due to non-convergence of the gravity solver (see text).
The long dashed line in this graph is the same as the solid line in Figure 5.1.
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Figure 5.6: The radial velocity in m s−1 at t = 9.4·105 a for the run with lower
artificial viscosity parameters of l2T = 0.75 and l2A = 1. Please refer to the text
for a discussion.
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Figure 5.7: The decadic logarithm of the surface density in kg m−2 at t = 9.4·105 a
for the run with artificial viscosity parameters of l2T = 3 and l2A = 4 (a) and the
run with those of l2T = 0.75 and l2A = 1 (b). The corresponding graph for the
normal run with parameters of l2T = 1.5 and l2A = 2 is shown in Figure 5.2 (a).
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Figure 5.8: The integrated accreted mass in solar masses at the inner boundary
of the calculation domain (a) and the integrated outflow mass of the calcula-
tion domain at the outer boundary (b) versus time in years. The solid line is
for the normal order of evaluating heat sink/sources and advection, i.e., heat
sources/sinks first. The dashed line is for the run with reversed evaluation order.
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Figure 5.9: The decadic logarithm of the surface density in kg s−2 at t = 2.3·106 a.
In (a) the heat sources and cooling is evaluated in the code before the advection
is done. In (b) it is vice versa.
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Figure 5.10: The decadic logarithm of the temperature in Kelvin at t = 2.3·106 a.
In (a) the heat sources and cooling is evaluated in the code before the advection
is done. In (b) it is vice versa.
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Chapter 6

Simulations

In this chapter the simulations done for this work are described starting in Sec-
tions 6.1 and 6.2. The physical and numerical conditions of the standard simu-
lation are described first and then the results are presented. In Section 6.3 the
additional simulations which all differ significantly from the standard simulation
by only one parameter are described and their results are compared with those
of the standard one. A CD with movies of the different variables for all the runs
can be found in Appendix A.

6.1 Description of the standard simulation

6.1.1 Physical and numerical conditions

Here the physical and numerical conditions for the standard simulation are de-
scribed. The simulations are done with NIRVANA2.0 with the changes described
in Chapter 4 using the β-viscosity description. The simulated disk is an FSG
disk with a mass in the calculation domain Md = 6·108M¯ around an SMBH
of M∗ = 7.5·107M¯. At the beginning the disk inside the inner boundary of
the calculation domain at radius Ri, called the inner disk, has a mass of Md,i =
7.9·107M¯. The computational domain stretches from Ri = 9·1017 m = 29 pc to
Ra = 3.9·1018 m = 126 pc with a half height of zmax = 1.04·1014 m = 3.5·10−3 pc.
The resolution is nR×nϕ×nz = 63×127×7. The viscosity parameter is β = 0.005.
The ratio of specific heats and the molar mass are set differently in two temper-
ature regimes. They are γ = 7

5
and µ = 0.002 kg mol−1 where T < 2000 K to

represent a molecular gas, and γ = 5
3

and µ = 0.001 kg mol−1 for larger tem-
peratures to represent an atomic gas. Since γ and µ are used to compute the
temperature itself, the mean of the two temperatures is taken, in the case that
the temperature using the atomic values (giving a lower temperature) is lower
than 2000 K and it is above 2000 K using the molecular temperature. The same
is done for the pressure which is the only other value affected directly by γ and
µ. These values and how the are handled are only crude approximations to the
very complex physics of formation and destruction of molecules in the interstellar
gas which cannot be taken into account here. Later it must be checked that the
results do not depend crucially on these choices. The simulation took about one
week of CPU time on a PC and reached a physical time of 9.8·1013 s = 3.1·106 a

75
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with 56,200 time steps. The time corresponds to 5.9 outer dynamical time scales
of 1.7·1013 s = 5.3·105 a. An outer dynamical time scale is the inverse angular
velocity at the outer boundary here taken at the beginning of the run.

6.1.2 Initial conditions

At the start of a simulation the variables are initialized using the following values.
Σ as inspired by the model in Section 3.3 is set to be proportional to R−1 with
random white noise of a maximal amplitude of 6 kg m−2 corresponding to about
10 to 30 %. The azimuthal and radial velocities are set after the first calculation
of the potential. vϕ is set to balance gravity and the centrifugal forces while vR

is set by using Equation (2.34). The internal energy per unit area is set to a
constant value of estart = 107 J m−2 giving temperatures of 15 to 55 K which are
in the order of magnitude reached (independent of estart) within the first few time
steps of the simulation.

6.1.3 Boundary Conditions

Due to self-gravity, it is quite difficult to find boundary conditions for which
the material neither crowds nor evacuates the regions close to the boundaries,
especially at Ri. Working boundary conditions have been found by trial and error
and they are set as follows. The mass of the inner disk which can increase and
decrease due to the flow at the inner boundary is thought to be evenly distributed
in its domain and this way the inner boundary value for Σ is set. This mass also
influences the z-boundary conditions for the potential as explained in Section
4.3.1. In Section 4.2 the boundary conditions for Φ are described already. At the
outer boundary the surface density is set to a constant value of 14.4 kg m−2, so
at the beginning Σ is smooth at the outer boundary.

e is set at the inner boundary to its initial value of estart = 107 J m−2 and
set to have a vanishing gradient at the outer boundary, i.e., the value at the
outermost computation cell is copied into the first ghost cell and the value of
the second but last outer cell is copied into the second most outer ghost cell.
The azimuthal velocity at the inner boundary is set to balance gravity where
the monopole approximation is used. At the outer boundary the same is done
but the derivative of the potential is used. In the rare case that the derivative
is negative, vϕ is set to zero at the outer boundary. vR at the last most outer
computation cell is simply copied to the ghost cells of the outer boundary. The
radial velocity at the inner boundary is treated in a very special way which is
necessary since it can give rise to a self-enhancing flow otherwise. As soon as
material flows into the calculation domain at the inner boundary at one point
there will be an enhancement of material close to it. Thus due to self-gravity the
velocity of the flow increases. Since the density in the ghost cell does not drop this
process is self-enhanced and leads to unwanted velocities and clumps or even a
to ring around the inner boundary. To understand how this is prevented we have
to remember the staggered grid as described in Section 4.1. From that section,
and from Figure 6.1, it is obvious that vR has three instead of two boundary
values at the R-boundaries. This is purely due to using ghost cells and the
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ghost cells calculation domain

v v v
R,0 R,1 R,2

v
R,3j j j j

Figure 6.1: The two ghost cells and the first cell in the computational domain
at the inner boundary for the jth cell in the ϕ-direction. Obviously vR has three
boundary values vR,0j, vR,1j and vR,2j.

staggered grid. A third boundary condition is in principle not needed for solving
the equations. The trick is now that vR,0j and vR,1j (where the first index is the
index for R and the second one is for ϕ) are set to zero while vR,2j is not set by
the boundary conditions but defined to be included in the calculation domain and
thus computed like all other non-boundary variables. This way in the case of a
flow into the computational domain the velocity vR,2j is diminished by advection
from the boundary.

6.2 Results of the standard Simulation

6.2.1 Fragmentation and dynamics

After one outer dynamical time scale

In Figures 6.2 to 6.7 the azimuthal average of the most interesting dynamic
variables, the surface density and the height of the disk are plotted versus radius
at t = 1.7·1013 s = 5.3·105 a, n = 3200, where n is the number of time steps. This
time corresponds to the outer dynamical time scale Ω−1

O of the disk. From the
start of the simulation until shortly after the time for which Figure 6.2 is done,
the shape of Ω stays similar, except for the most inner part. vϕ is slowly rising
with R as can be seen in Figure 6.3. In Figure 6.4 the azimuthal average of the
Mach number in the azimuthal velocity, Maϕ := vϕ

cs
, is plotted which shows that

the flow is highly supersonic in the ϕ-direction. At this early time the absolute
value of the radial velocity is already much higher than at the beginning when it
was of the order of 1000 m s−1. The azimuthal average of vR is plotted in Figure
6.5. This already tells us that the accretion due to the hydrodynamical viscosity
(which has not changed much since the start of the run) does not play a role here.
Knowing ΩO we can also estimate the viscous time scale from Equation (2.59) to
be tν ∼ 3.3·1015 s = 1.1·108 a which is much longer than the time of the whole
simulation. In Figure 6.6, Σ is plotted azimuthally averaged which shows strong
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signs of fragmentation. The plot of the height of the disk in Figure 6.7 verifies
that our choice for the height of the calculation domain is – up to that point in
time – appropriate.
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Figure 6.2: The azimuthal average of the angular velocity in the standard simu-
lation at t = 1.7·1013 s = 5.3·105 a, versus the radius in pc. The values are given
in units of 10−14 s−1.
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Figure 6.3: Same as Figure 6.2 but for the azimuthal velocity in m s−1. Although
the gas rotates in the mathematically negative direction, it is plotted positively
for convenience.
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Figure 6.4: Same as Figure 6.2 but for the Mach number in the ϕ-direction Maϕ.
As in Figure 6.3, it is plotted positively. This shows that the flow is highly
supersonic in the azimuthal direction.
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Figure 6.5: Same as Figure 6.2 but for the radial velocity in m s−1. The absolute
values of vR are already much higher than at the beginning of the run indicating
that the hydrodynamic viscosity (which has hardly changed by that time) does
not drive this flow. The strong oscillations at the inner boundary are still due to
the initial conditions.
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Figure 6.6: Same as Figure 6.2 but for the surface density in kg m−2. It shows
signs of fragmentation.
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Figure 6.7: Same as Figure 6.2 but for the height of the disk in pc. The height is
still smaller than the half height of the calculation domain of 3.5·10−3 pc.
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From Figure 6.8 which shows the distribution of the surface density in the
disk at the same time as in Figure 6.6, it is obvious that at one dynamical outer
time scale the disk already fragments at the inner boundary. Of course the same
can be concluded looking at Figure 6.9 where the volume density is plotted. The
gradients in the volume density are much steeper since regions of high Σ are much
thinner than regions of low surface density which follows from Equation (2.52).
Figure 6.10, where vR is plotted, shows that the flow at this time is already
turbulent. In Figure 6.11 the Toomre parameter Q is plotted in 2D. First of all
we see that the disk is unstable everywhere with 0.3 < Q < 10−3. The white
spaces are cells with Q /∈ R, i.e., κ2 < 0 which is the condition for Rayleigh
instability (see Equation (2.66)). This means that in these regions the disk is not
only gravitationally unstable but in addition linearly dynamically unstable.
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Figure 6.8: The decadic logarithm of the surface density in kg m−2 at t =
1.7·1013 s = 5.3·105 a. There is already fragmentation occurring at the inner
rim.
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Figure 6.9: Same as Figure 6.8 but the for decadic logarithm of ρ in kg m−3. The
gradients are much steeper than in Σ since the height is smaller for large Σ (see
Equation (2.52)).
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Figure 6.10: The radial velocity in m s−1 at t = 1.7·1013 s = 5.3·105 a. There are
already signs of turbulence at the inner rim.
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Figure 6.11: The decadic logarithm of the Toomre parameter at time t =
1.7·1013 s = 5.3·105 a. The white spaces are cells where Q /∈ R, i.e., κ2 < 0.
This means that the whole disk is either Toomre unstable (Q < 1) or dynami-
cally unstable (κ2 < 0), see text for more explanations.
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After a few outer dynamical time scales

Later the disk fragments more and the flow becomes more violent. As long as the
mass in the calculation domain dominates over the mass in the inner disk and the
central point mass the details change but the overall picture stays the same, so
here we show plots at t = 5.6·1013 s = 1.8·106 a ≈ 3.3Ω−1

O and n = 24000 except
where stated otherwise. This time is more or less representative for this phase,
i.e., starting from about t = 106 a away from the very end when the disk has lost
almost all of its mass.

In Figure 6.12 where the azimuthal average over vR is plotted we see that there
are high negative radial velocities inside of R = 60 pc while beyond this radius
the velocities point outwards in the mean. This radius of 60 pc moves to larger
radii with time. We will see in the next section that material is really accreted at
the inner boundary and that it is lost at the outer boundary. In Figure 6.13 the
azimuthal average of the surface density is plotted. Apart from strong variations,
it seems to be constant over the radius in the mean.

While the surface density profile stays roughly constant with R which is dif-
ferent from the model used in Section 3.3, the angular velocity and thus also the
azimuthal velocity profile changes with time. As we see from Figure 6.14(a) where
the Ω profile is shown in a double logarithmic plot the angular velocity is roughly
proportional to R− 1

2 at t = 1.6·106 a (and actually most of the time before also)
which is what the monopole approximation predicts for a constant Σ profile. But
later on at t = 1.8·106 a already, the profile steepens for smaller radii as shown in
Figure 6.14(b). In Figure 6.14(c) the same is plotted for t = 2.3·106 a from which
we see that the inner parts of the disk have become Keplerian. This happens
since the disk loses mass and the inner disk, the influence of which is included
using the monopole approximation, gains mass. So at some point in time around
t = 2·106 a the gravitational influence of the inner disk is the main dynamic driver
at the inner edge of the calculation domain giving the disk a Keplerian rotational
profile at small radii.

An observable for turbulence is the root mean square (RMS) over the radial
velocity (corrected by the mean radial velocity at the corresponding radius) which
is a measure for the turbulent velocity. This divided by the azimuthal velocity is
plotted in Figure 6.15. It fluctuates between 0.1 and 0.4.

Now in Figures 6.16 and 6.17 the surface and the volume density distribution
is plotted and shows strong fragmentation. If we compare this with Figure 6.18
where the height distribution is shown with the Σ = 10 kg m−2 contour as the
white dashed line, we see that the height in the higher-density regions stays
below the height of the calculation domain. From Figure 6.19 where again the
vR distribution over the disk is plotted, we can estimate the vortex size which is
another observable for the turbulence. Roughly the vortices are 0.1 to 0.3 times
their radial coordinate R.

In Figure 6.20 Q is plotted. Now there are some regions that are gravitation-
ally stable but still most parts are either gravitationally or dynamically unstable.
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Figure 6.12: Similar to Figure 6.5 but at time t = 5.6·1013 s = 1.8·106 a. Within
∼ 60 pc the velocity points inwards, beyond that radius it points outwards.
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Figure 6.13: Similar to Figure 6.6 but at time t = 5.6·1013 s = 1.8·106 a. Apart
from fluctuations Σ stays constant with radius.
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Figure 6.14: Similar to Figure 6.2
but at different times t. The long
dashed line is ∝ R− 1

2 and the short
dashed line is ∝ R− 3

2 . In (a) Ω
is roughly fit by proportionality to
R− 1

2 . In (b) the radial profile already
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calculation domain is roughly fit by
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Figure 6.16: Similar to Figure 6.8 but at time t = 5.6·1013 s = 1.8·106 a. The
fragmentation is now obvious in the whole disk.
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Figure 6.17: Similar to Figure 6.8 but the decadic logarithm of the volume density
in kg m−3 at time t = 5.6·1013 s = 1.8·106 a. Again the gradients are much steeper
than in Σ.
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Figure 6.18: Similar to Figure 6.8 but the decadic logarithm of the height of the
disk in pc at time t = 5.6·1013 s = 1.8·106 a. The green dotted line is the contour
of Σ = 1 kg m−2, the white dashed line is the contour of Σ = 10 kg m−2. From this
figure it is evident that in low-density regions the height becomes much larger
than the half height of the computational domain of 1.05·1014 m = 3.5·10−3 pc;
but in high-density regions, the height stays smaller.
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Figure 6.19: Similar to Figure 6.10 but at time t = 5.6·1013 s = 1.8·106 a. The
flow looks turbulent and the size of the eddies is around 0.1 to 0.3 R.
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Figure 6.20: Similar to Figure 6.11 but at time t = 5.6·1013 s = 1.8·106 a. Al-
though some regions have become stable, most of the disk is still unstable. The
dashed circle marks the outer calculation domain boundary.
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6.2.2 Thermodynamics and cooling

As can be seen from Figure 6.21, where the azimuthal average of the temperature
versus radius for the times t = 1.6·106 a, t = 1.8·106 a and t = 2.3·106 a are
plotted, the temperature profile is constant in radius and time at ∼ 20 K despite
some fluctuations. The same is then of course true for the azimuthal average of the
speed of sound which is plotted versus the radius in Figure 6.22 for t = 1.8·106 a
from which we see that cs ≈ 260 − 340 m s−1. The temperature itself actually
varies quite a bit as can be seen in Figure 6.23 where the temperature is plotted
in 2D. From this plot we see that the temperature range is roughly from 1 K to
3000 K where the main part of the disk is at ∼ 10 K while the clumps (if compared
with the surface density in Figure 6.16) have temperatures around 1000 K.

Since the optical depth (which is the Rosseland mean taken to be equal to the
Planck mean, see Section 4.6.1) strongly depends on the temperature, it behaves
similarly. In Figure 6.24 the azimuthal average of the optical depth is plotted
versus the radius at t = 1.8·106 a which shows that it is fluctuating but constant
in the mean at τ ≈ 0.02 − 5. Without averaging, we see in Figure 6.25 where
the optical depth is shown in 2D that the main part of the disk is optically thin.
In the clumps in the other hand where the densities and the temperatures are
higher, the material becomes optically thick. The whole range is 10−5 < τ < 103.

Except for the surface density, the temperature and the optical depth are the
variables determining the cooling time tcool = e

Λ
with Λ from Equation (4.43)

giving

tcool =
1

γ − 1

16RΣ

3µσ

τeff

T 3
, (6.1)

where the relation T = (γ − 1) µe

RΣ
is used. In Figure 6.26 the azimuthal average

of tcool is plotted versus the radius for the times t = 1.6·106 a, t = 1.8·106 a and
t = 2.3·106 a, respectively. In Figures 6.26(a) and 6.26(b) it seems to be constant
with radius except for a small break at around R = 60− 70 pc. In Figure 6.26(c)
at later times, the constancy is not very clear anymore. As we have seen in Section
2.5, the interpretation of the accretion as an α-disk predicts the value of tcoolΩ
to be constant which cannot be true if tcool is constant and Ω is not. In Figure
6.27 the azimuthal average of tcoolΩ is plotted versus radius for t = 1.8·106 a.
This is indeed not too far from being constant but this is mainly due to the fact
that Ω is almost constant from R = 70 pc upwards for that instant (see Figure
6.14(b)). Below R = 70 pc, a constant function does not fit tcoolΩ well. This plot
again shows that the cooling time is much smaller than the dynamical time scale.
In Figure 6.28 the cooling time is plotted in 2D. This Obviously shows strongly
varying values again, mainly of 108 s = 3.2 a < tcool < 3.2·104 a = 1012 s which
are well below the dynamical time scale of t = 1.7·1013 s = 5.3·105 a. Figure 6.28
also shows that the regions of clumps have cooling times in the lower range if
compared with Figure 6.16.
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Figure 6.21: Azimuthal average of
the temperature in Kelvin versus ra-
dius in pc at different times t. The
temperature seems to stay constant
with radius despite some fluctua-
tions .
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Figure 6.22: The azimuthal average of the speed of sound in m s−1 versus radius
in pc at time t = 5.6·1013 s = 1.8·106 a. It stays roughly constant at values of
260 − 340 m s−1.
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Figure 6.23: The decadic logarithm of the temperature in Kelvin at t =
5.6·1013 s = 1.8·106 a. T stays between 1 K and 3000 K where most of the disk is
cool at ∼ 10 K, and the clumps heat up to 1000 K and above.
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Figure 6.24: Same as Figure 6.22 but for the azimuthal average of the (Rosseland
mean) optical depth. Despite some fluctuations, is remains constant around 0.02
to 5.
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Figure 6.25: Same as Figure 6.23 but for the decadic logarithm of the (Rosseland
mean) optical depth. It stays at 10−5 < τ < 103. The disk material is optically
thick in the clumps and optically thin elsewhere.
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Figure 6.26: Azimuthal average of
the cooling time in seconds versus ra-
dius in pc at different times. In (a)
and (b) it is roughly constant with
R except for a break at R ≈ 70 pc
where it drops from 4·109 s to 2·109 s.
This is not true for (c).
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Figure 6.27: Same as Figure 6.22 but for the cooling time divided by the local
dynamical time scale Ω−1. This again shows that the cooling time is much shorter
than the dynamical time scale. tcoolΩ is not quite constant but the deviations are
small, see also the remark in the text.
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Figure 6.28: Same as Figure 6.23 but for the decadic logarithm of the cooling
time in seconds. It is very small compared to the dynamical time scale of t =
1.7·1013 s = 5.3·105 a and smallest (108 − 109 s) in the clumps.
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6.2.3 Accretion

The solid line in Figure 6.29 is the mass that has passed the inner boundary of
the calculation domain inwards, i.e., accreted to the inner disk. This is plotted
versus time. Except for the first 5·105 a, the slope is mainly positive indicating
accretion. At the end of the run at about only 3·106 a, almost 1.5·108 M¯ have
been accreted to the inner disk giving a mean accretion rate of Ṁ = 50 M¯

a
. From

this we get an estimate for the accretion time scale of

tacc ≈
Md

Ṁ
≈ 1.2·107 a. (6.2)

This accretion happens mainly in steps indicating that clumps fall into the inner
disk. We will see below that this is what actually occurs. The dashed line in
Figure 6.29 on the other hand is the mass that has passed the outer calculation
boundary outwards plotted versus time. At the end of the run this is by a factor
of about two more than what is accreted. In contrast to the accretion, this line is
much smoother. From Figure 6.30, where the mass of the gas in the calculation
domain is plotted versus time as the solid line, we see that at the end of the run
more than 70 % of the disk is lost. The dashed line shows the mass of the inner
disk versus time which becomes equal to the disk mass at around t = 2.7·103 a.
This means that from that time on, the dynamics is dominated by the influence
of the inner disk. We have seen above that at t = 2.3·106 a already about half of
the disk is Keplerian. Following the same reasoning, at some instant the whole
disk must become Keplerian. The gravitational influence of the inner disk is
not perfectly modeled especially because it does not contain clumps. Thus the
simulation was stopped shortly after t = 2.7·103 a.

In Figure 6.31, which is a time sequence of the surface density from t =
1.4·106 a to t = 2.1·106 a with slightly varying time steps of about 1.5·105 a, we
can follow the interaction between two clumps that formed due to gravitational
instability. The clumps are marked by arrows. In Figure 6.31(a) they approach
each other where one of the clumps is in the process of merging with another
clump. In Figure 6.31(b) the two clumps get closer and then collide in Figure
6.31(c). Then in Figures 6.31(d) to 6.31(f) one of the clumps is flung inwards while
some diffuse gas is blown outward. The inward moving clump eventually passes
the inner calculation domain. In the other parts of the disk similar interactions,
mostly including more than two clumps, can be seen. This explains the accretion,
especially the steps in the accretion, and the absence of such steps in the mass
that passes the outer rim in Figure 6.29.
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Figure 6.29: The mass that passed the inner rim inwards (solid line) and the outer
rim outwards (dashed line) in solar masses versus time in years for the standard
run. The solid line shows strong accretion at the inner rim while the dashed line
shows even stronger decretion at the outer rim.
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Figure 6.30: The mass in the calculation domain (solid line) and the mass of the
inner disk (dashed line) in solar masses versus time in years for the standard run.
At the end of the run, the disk has lost more than 70 % of its mass, partly to the
inner disk as seen by the rise of the dashed line. At about 2.7·106 a, the mass of
the disk (in the calculation domain) equals that of the inner disk.
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Figure 6.31: The decadic logarithm of the surface density in kgm−2 ranging from
-1 to 5. Shown are the time steps n = 15000 to n = 30000 with a step size of 3000
from the upper left to the lower right. These correspond to the times t = 1.4·106 a,
t = 1.5·106 a, t = 1.6·106 a, t = 1.8·106 a, t = 2.0·106 a, t = 2.1·106 a. In the upper
left of the disk a collision of two clumps which are marked with arrows can be
seen. While one of the clumps is sent to the inner disk, diffuse material gets
blown outwards.



100 CHAPTER 6. SIMULATIONS

Comparison with predictions

If we interpret the accretion to be due to the β-like viscosity that comes about by
the turbulence driven by gravitational instability, we can estimate the resulting
βgrav (where the subscript is used to distinguish it from the hydrodynamic viscos-
ity used in the simulation) using the accretion time scale from Equation (6.2) to
get βgrav = 1

taccΩO

≈ 0.04. On the other hand, if the β-viscosity can really describe
the accretion, then the turbulent velocity and the turbulent length scale must fol-
low the relations of (2.60). In Section 6.2.1 we found that vt ∼ (0.1− 0.3)vϕ and
lt ∼ (0.1 − 0.4)R agreeing well with each other and giving βgrav ∼ 0.01 − 0.16
which agrees with the value above from the accretion time scale. Of course there
is a large discrepancy with the value predicted by the linear stability analysis in
Section 3.4.

If we assumed instead that the gravitational instability leads to some kind of
α-disk like accretion as discussed in Section 2.5, we would get for R = RO using

(2.88) (with δ ≈ 1 for Ω ∝ R− 1

2 ) and ν = α c2s
Ω

from (2.57) and (2.37)

α =
ṀΩO

Σδπc2
s

= 7.5·103, (6.3)

where Σ = 20 kg m−2 and cs = 300 m s−1 were used (see Figures 6.13 and 6.22).
But if we take a value for tcoolΩ from Figure 6.27 of 2·10−4 (which hardly changes
with time), we get

α ≈ 1

tcoolΩO

≈ 5·103, (6.4)

which is of the same order of magnitude. If we had used ν = αhcs with the
real height of the disk, we would have a much larger α in Equation (6.3) since
the height of the disk is much smaller than cs

Ω
, leading to a much more serious

disagreement.

To compare the accretion time scale of our simulation to the predictions for the
clumpy disk model in 2.5, we arrive at the question what the axisymmetrically
distributed mass in our model is. From Figure 6.16, we see that the minimal
surface density is Σmin ∼ 10−2 kg m2 which is three orders of magnitude smaller
than the mean surface density. Thus Mt is dominated by the star. This would
mean that MR ≈ 10Mt. With this value and an estimated lc

R
∼ 1

10
, we get using

Equation (2.85)

tclump =
lc
R

1
(

MR

πMt

)

1

Ω
∼ 1

25Ω
, (6.5)

which is orders of magnitude different compared to tacc ≈ 1
0.04Ω

the result from
our simulation in Section 6.2.3. The disagreement becomes even worse for the
case of no central object which approximately the same accretion time scale (see
Section 6.3.5).
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number β Σ ∝ Md[M¯] Md

M∗
other

1 0.005 1
R

6·108 8 —

2 0.001 · · · —

3 0.01 · · · —

4 5·10−4 · · · —

5 · · 6·109 · —

6 · · 6·107 · —

7 · const. 3.5·108 4.7 —

8 · · · ∞ —

9 · · · · factor 10 in cooling

10 · · · · CMB heating

11 · · · · γ = 5
3
, µ = 0.001 kg mol−1

Table 6.1: This table lists the parameters used for the different simulations. The
first column gives the simulation a reference number. The second column lists the
β-viscosity parameter is listed, and the third column lists the radial dependence
of the surface density at the beginning of the simulation. Columns four and five
show the mass of the disk in the calculation domain and the ratio of the SMBH
mass to the disk mass, respectively. The last column lists any other changes
made to the simulation. A dot (·) means that the parameter is the same as
in the standard simulation (simulation 1). In simulation 9, τeff was divided by
10 to reduce the cooling time by a factor of 10 for the same temperature and
surface density. Simulation 10 restricted the temperature to values larger then
30 K which is the temperature of the cosmic microwave background at z = 10.
In simulation 11, γ = 5

3
and µ = 0.001 kg mol−1 were set for all temperatures.

6.3 Comparison with the additional simulations

6.3.1 Description of the additional simulations

As stated above, the additional simulations differ from the standard simulation
mainly by one parameter each. A listing of all the simulations with their param-
eters can be found in Table 6.1. Simulation 1 is the standard run described in
Section 6.1. The other simulations are described in more detail in the sections
below.

6.3.2 Different viscosity parameters β

There are four different viscosity parameters used: β = 0.01 (run number 3),
β = 0.005 (run number 1), β = 0.001 (run number 2) and β = 5·10−4 (run
number 4). In Figure 6.32, the surface density is plotted for the extreme runs
(3 and 4) at the same point of time as Figure 6.8 (t = 1.7·1013 s = 5.3·105 a).
Obviously the three plots look differently, especially because the clumps are more
compact for lower viscosity. This effect is predicted by the linear theory for the
typical scale length (see Equation (3.58)) although the dynamics at this time are
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probably not linear anymore.
Even at later times, e.g., t = 5.6·1013 s = 1.8·106 a, the simulations with differ-

ent viscosity parameters look different from each other. In Figure 6.33 the surface
densities of simulation 3 and 4 are plotted for that time and can be compared
with Figure 6.16 for the standard run. Still the gradients in the densities are
much more pronounced for the less viscous case. This causes numerical problems
in solving the Poisson equation, as mentioned before, and prohibits a simulation
with very low or no physical viscosity.

In Figure 6.34 the mass accreted into the inner disk is plotted versus time for
all the runs with different viscosities. In Figure 6.35 on the other hand the mass
that was lost at the outer calculation domain is plotted versus time for the same
runs. From these plots, it is obvious that in spite of the different surface densities
seen above, their accretion and decretion behavior is very similar.
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Figure 6.32: The decadic logarithm of the surface density in kgm−2 for simulation
3, where β = 0.01 (a) and for simulation 4, where β = 5·10−4 (b), at t =
1.7·1013 s = 5.3·105 a. Figure 6.8 shows the same for the standard run. There are
obvious differences, see text for the details.
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Figure 6.33: The same as Figure 6.32 but at time t = 1.7·1013 s = 5.3·105 a.
Figure 6.16 shows the same for the standard run. There are obvious differences,
see text for the details.
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Figure 6.34: The mass in solar masses that passed the inner rim inwards versus
time in years for the runs with different viscosity parameters.

-5 · 107

 0

 5 · 107

 1 · 108

 1.5 · 108

 2 · 108

 2.5 · 108

 3 · 108

 0  500000  1 · 106  1.5 · 106  2 · 106  2.5 · 106  3 · 106  3.5 · 106

m
 [M

so
l]

t [a]

β = 0.01
β = 0.005
β = 0.001

β = 0.0005

Figure 6.35: The mass in solar masses that passed the outer rim outwards versus
time in years for the runs with different viscosity parameters.
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6.3.3 Changing the mass

There are three runs with significantly different disk masses: run number 6 with
Md = 6·107 M¯, run number 1 with Md = 6·108 M¯ and run number 5 with
Md = 6·109 M¯. The initial mass of the inner disk, the amplitude of the noise
in Σ, as well as the boundary condition for Σ at the outer boundary had to
be changed accordingly in order to produce white noise with the same relative
amplitude and smooth transitions at the boundaries. Since the disk in run number
5 gets relatively warm estart (which is used as initial and boundary value) was set
to 108 J m−2. In Figure 6.36 the mass accreted into the inner disk is plotted
versus time for these runs. In Figure 6.37 the same is done for the mass that
was lost from the calculation domain at the outer boundary. As expected, the
three simulations show very different mass and time scales. To compare them
with each other in Figures 6.38 and 6.39, they are plotted again but this time
the line for the Md = 6·109 M¯ simulation and the line for the Md = 6·107 M¯

simulation are scaled as follows. We scale the mass mhigher → 1
10

mhigher in the
higher mass case and mlower → 10mlower in the lower mass case to account for
the mass difference. The time is scaled thigher → 3thigher in the higher mass case
and tlower → 1

3
tlower in the lower mass case to account for the difference of the

dynamical time scale with respect to the standard run (which is Ω−1 ≈
√

R
πGΣ

in the monopole approximation giving a factor
√

10
−1 ≈ 1

3
for Σ a factor of ten

higher). The angular velocities indeed differ by a factor of about three each and
can be seen in Figure 6.40 where they are plotted versus radius for the three
runs. From these plots we see that the scaled accretion and decretion behave
very similarly except for the start of simulation 5 with Md = 6·109 M¯ that starts
accreting at the inner boundary and decreting at the outer boundary earlier than
in the other simulations. The slope is again similar to the others. It follows that
the accretion and evolution time scales of these disks are roughly proportional to
the dynamical time scale as predicted by the β-viscosity (see Equation (2.59)).

In Figure 6.41, the azimuthal average of the temperature in the Md = 6·109 M¯

simulation (short dashed line with ∗-symbols), that of the standard run with
Md = 6·108 M¯ (long dashed line with ×-symbols) and that of the simulation
with Md = 6·107 M¯ (solid line with +-symbols) is shown at t = 5.9·105 a =
1
3
· 1.8·106 a, t = 1.8·106 a and t = 5.3·106 a = 3 · 1.8·106 a respectively versus

radius. t = 1.8·106 a is the time for Figure 6.21(b) where the same is plotted for
the standard run. The temperature in the high mass disk run is about a factor
of five higher than in the standard run and roughly by a factor of two lower in
the low mass disk run.

In Figure 6.42, the azimuthal average of the cooling time for the Md =
6·109 M¯ simulation (short dashed line with ∗-symbols) and the Md = 6·107 M¯

simulation (solid line with +-symbols) is plotted versus radius at the correspond-
ing times as it was done in Figure 6.26(b) (again shown here as the long dashed
line with ×-symbols) for the standard run. Analogously the cooling time divided
by the dynamical time scale in Figure 6.43 can be compared with Figure 6.27.
In the higher mass disk, the cooling time is by a factor of three lower than in
the standard run and divided by the dynamical time scale there is no consistent
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difference over all radii. The cooling time in the lower mass run is about a factor
of larger than ten higher and tcoolΩ is about a factor of five higher.

At the same radius, the viscous time scale is proportional to the inverse of
the viscosity (see Equation (2.30)). For the α-viscosity interpretation described
in Section 2.5 this means that

tν ∝ Ω

αc2
s

∝ tcoolΩ
Ω

T
. (6.6)

From Figure 6.38 we see that the accretion time was approximately three times
shorter than for the standard run for a disk mass 10 times higher. While the
accretion time was a factor of three longer for a disk mass ten times lower. If
we put in the numbers from above for the factors by which Ω, T and tcoolΩ have
changed, we see that the α-viscosity interpretation predicts the viscous and thus
the accretion time scale to be a factor 1.7 instead of 3 shorter in the high mass
disk and a factor of 7.5 instead of 3 longer in the low mass disk, each compared
with the standard disk.

In Figure 6.44 the azimuthal average of the root mean square of the radial
velocity is plotted for the higher mass (short dashed line with ∗-symbols), lower
mass (solid line with +-symbols) and the standard mass (long dashed line with ×-
symbols) simulations. It can be seen that like in the standard run (already shown
in Figure 6.15), the turbulent velocity is about the same in all three simulations
with around 0.1− 0.5 vϕ. From Figures 6.45 and 6.46, where the radial velocities
are plotted for the higher and lower mass simulations, we can again conclude as
in Section 6.2.1 from Figure 6.19 that the turbulent length scale is about the
same in all three simulations with about 0.1 − 0.3 R. This is necessary for the
β-viscosity interpretation.
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Figure 6.36: The mass in solar masses that passed the inner rim inwards versus
time in years for the runs with different disk masses.
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Figure 6.37: The mass in solar masses that passed the outer rim outwards versus
time in years for the runs with different disk masses.

-5 · 107

 0

 5 · 107

 1 · 108

 1.5 · 108

 2 · 108

 0  500000  1 · 106  1.5 · 108  2 · 108  2.5 · 108  3 · 108  3.5 · 108

m
 [M

so
l]

t [a]

Md = 6 · 107 Msol (scaled)
Md = 6 · 108 Msol

Md = 6 · 109 Msol (scaled)

Figure 6.38: Same as Figure 6.36 but for the line for Md = 6·107 M¯ is scaled by
a factor of 1

3
in time and a factor of ten in mass and the line for Md = 6·109 M¯

is scaled by a factor of three in time and a factor of 1
10

in mass. The line for
Md = 6·108 M¯ was not scaled. The three curves agree qualitatively except that
the simulation with Md = 6·109 M¯ starts the accretion phase early.
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Figure 6.39: Same as Figure 6.37 but for the line for Md = 6·107 M¯ is scaled by
a factor of 1

3
in time and a factor of ten in mass and the line for Md = 6·109 M¯

is scaled by a factor of three in time and a factor of 1
10

in mass. The line for
Md = 6·108 M¯ was not scaled. They behave similarly but again the curve for
Md = 6·109 M¯ starts early.
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Figure 6.40: The azimuthal average of Ω in 10−14 s plotted versus radius in pc
for the run with Md = 6·109 M¯ at t = 5.9·105 a = 1
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Figure 6.41: The azimuthal average of T in Kelvin plotted versus radius in pc
for the run with Md = 6·109 M¯ at t = 5.9·105 a = 1

3
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t = 5.3·106 a = 3 · 1.8·106 a. See text for more details and interpretation.
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Figure 6.45: The radial velocity in m s−1 for run number 5 with Md = 6·109 M¯

at t = 1.9·1013 s = 5.9·105 a = 1
3
· 1.8·106 a which is the time of Figure 6.19 where

the same is plotted for the standard run with Md = 6·108 M¯. From this plot the
turbulent length scale can be estimated as done in Section 6.2.1 for the standard
run.
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Figure 6.46: The same as in Figure 6.45 but for simulation 6 with Md = 6·107 M¯

at time t = 1.7·1014 s = 5.3·106 a = 3 · 1.8·106 a.
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6.3.4 A different initial condition

In Simulation 7 the radial Σ-profile at the beginning of the simulation is set to be
constant instead of proportional to the inverse radius as in the standard run. The
value of the boundary condition for Σ at the outer boundary had to be changed
for a smooth transition. The mass of the disk changed to Md = 3.5·108 M¯ but
stayed in the same order of magnitude while the mass of the central object was the
same as in the standard run. Again the mass of the inner disk at the beginning
had to be adapted in this case to Md,i = 2.1·107 M¯. In Figures 6.47 and 6.48 the
accretion at the inner rim and decretion at the outer rim is shown in comparison
to the standard run. This comparison shows that the behavior is still very similar
despite the fact that at the first 1.5·108 a the flow into the calculation domain
at the inner boundary is much smaller and the outflow at the outer boundary
is smaller overall. Please note that the mass in the disk is about a factor of 1.7
different in the two simulations (see Table 6.1).
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Figure 6.47: The mass in solar masses that passed the inner rim inwards versus
time in years for run number 7 where Σ was initialized to be constant compared
to the standard run where initially Σ ∝ R−1. Except for the very slow decretion
at the first 1.5·106 a the two curves are not very different.
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Figure 6.48: The mass in solar masses that passed the outer rim outwards versus
time in years for run number 7 where Σ was initialized to be constant compared
to the standard run where initially Σ ∝ R−1. They agree qualitatively, but the
solid line lies significantly lower. Note that Md is also slightly different.
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6.3.5 A simulation with M∗ = 0

In this section we compare simulation 8 where the central mass is set to zero to
the standard run where M∗ = 7.5·107 M¯. In Figures 6.49 and 6.50 the accretion
at the inner rim and decretion at the outer rim are shown for run number 8 in
comparison with the standard run. From Figure 6.50 we see that the behavior at
the outer rim is almost the same in both simulations whereas in Figure 6.49 we
see that at the inner edge the evolution of the simulation without a central mass
is the same at first but then slower up to t ≈ 2.3·106 a. At this point it becomes
similarly as fast as the evolution of the standard run and maybe even faster.
This behavior can be understood as the disk mass dominating the dynamics at
the outer boundary while at the inner boundary the dynamics are dominated by
the central mass and inner disk mass. At the beginning the inner disk has about
the same mass as the central mass in the standard run and thus the dominating
masses at small radii differ by a factor of two in the two runs.
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Figure 6.49: The mass in solar masses that passed the inner rim inwards versus
time in years for run number 8 where M∗ = 0 compared to the standard run where
M∗ = 7.5·107 M¯. The two curves behave similarly, see text for the explanation
of the difference.
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Figure 6.50: The mass in solar masses that passed the outer rim outwards versus
time in years for run number 8 where M∗ = 0 compared to the standard run
where M∗ = 7.5·107 M¯.
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6.3.6 Changing the cooling time

In simulation 9, the cooling time for the same conditions, mainly the same tem-
perature and surface density, was reduced artificially by a factor of ten by dividing
the effective optical depth by ten. The accretion at the inner boundary and the
decretion at the outer boundary are plotted in Figures 6.51 and 6.52 with com-
parison to the standard run. From these plots we see that the accretion at the
inner rim and the outflow at the outer rim do not change significantly. The only
obvious difference is the stronger steps in the accretion in Figure 6.51.

In Figure 6.53 the temperature at t = 1.8·106 a in run number 9 is plotted
versus the radius as the solid line. The dashed line is the same for the standard
run as in Figure 6.21(b). We see that the temperature is hardly different for
the two runs; maybe it is a small factor (say 1.2) lower in run number 9. The
cooling time as well as the cooling time per dynamical time scale is depicted in
Figures 6.54 and 6.55, the solid line for run number 9 and the dashed line for the
standard run. Both values seem to be about a factor of five lower in the run with
the reduced cooling time.

As in Section 6.3.3 using Equation (6.6), we can estimate the prediction for
the viscous time scale for the α-disk interpretation. The accretion time scale does
not change when changing the cooling time (see Figure 6.51). From the above
estimates for the changes in T and tcoolΩ, we see that the α-viscosity in this form
predicts the accretion time scale to change by a factor of four.
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Figure 6.51: The mass in solar masses that passed the inner rim inwards versus
time in years for run number 9 with changed cooling and the standard run.
The two curves behave very similarly except for the steps which are much more
pronounced in the case of stronger cooling.
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Figure 6.52: The mass in solar masses that passed the outer rim outwards versus
time in years for run number 9 with changed cooling and the standard run.
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Figure 6.53: The azimuthal average of T in Kelvin versus radius in pc for the
run number 9 with changed cooling at t = 5.8·1013 s = 1.8·106 a. The dashed line
corresponds to Figure 6.21(b).
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Figure 6.54: The same as in Figure 6.53 but the azimuthal average of the cooling
time in seconds. The dashed line is the same as in Figure 6.26(b).
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Figure 6.55: Same as Figure 6.53 but for the azimuthal average of the cooling
time multiplied by the angular velocity. The dashed line is the same as in Figure
6.27.
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6.3.7 Including heating by the CMB

In run number 10 the minimal temperature was set to the temperature of the
CMB at z = 10, i.e., (z + 1)TCMB = 30 K (where TCMB is today’s value). In
Figures 6.56 and 6.57, the accretion at the inner boundary and the decretion at
the outer boundary of the calculation domain is plotted where the solid line is
run number 10 and the broken line is the standard run. The differences are very
small. The curve for run number 10 ends early due to CPU-time restrictions.

Figures 6.58 to 6.60 show the azimuthal average of the temperature, the cool-
ing time and the cooling time per dynamical time scale for this run (solid line with
+-symbols) in comparison to the standard run (dashed line with ×-symbols). We
see that the temperature is about a factor of 1.5 higher when including the CMB
and the cooling time and the cooling time per dynamical time scale is about a
factor of 15 lower. This means, using the same reasoning as in Sections 6.3.3 and
6.3.6, that the accretion time scale should be by a factor of more than 20 different
in the α-viscosity interpretation. We have just seen above that the accretion time
scale is the same as in the standard run.
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Figure 6.56: The mass in solar masses that passed the inner rim inwards versus
time in years for run number 10 where a minimal temperature of 30 K was set
compared to the standard run.
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Figure 6.57: The mass in solar masses that passed the outer rim outwards versus
time in years for run number 10 where a minimal temperature of 30 K was set
compared to the standard run.
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Figure 6.58: The azimuthal average of T in Kelvin plotted versus radius in pc for
run number 10 with a minimal temperature of 30 K at t = 5.8·1013 s = 1.8·106 a.
The dashed line corresponds to Figure 6.21(b).
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Figure 6.59: Same as Figure 6.58 but for the azimuthal average of the cooling
time in seconds. The dashed line is the same as in Figure 6.26(b).
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Figure 6.60: Same as Figure 6.58 but for the azimuthal average of the cooling
time multiplied by the angular velocity. The dashed line is the same as in Figure
6.27.
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6.3.8 Changing γ and µ

In simulation 11 γ and µ were held at γ = 5
3

and µ = 0.001 kg mol−1, i.e.,
the atomic values, throughout the simulation and they were not changed to the
molecular values where T < 2000 K as in the other runs. From Figure 6.23 we
see that this affects almost the whole disk. In Figures 6.61 and 6.62 again the
accretion at the inner rim and decretion at the outer rim is plotted for run number
11 (solid line) and the standard run (dashed line). The differences in both plots
are small.
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Figure 6.61: The mass in solar masses that passed the inner rim inwards versus
time in years for run number 11 where γ and µ were held at the atomic values
compared to the standard run.
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Figure 6.62: The mass in solar masses that passed the outer rim outwards versus
time in years for run number 11 where γ and µ were held at the atomic values
compared to the standard run.



Chapter 7

Discussion

7.1 Quality of these models

Of course some approximations had to be made in our model. Nevertheless these
calculations seem to give some robust results. In the last chapters we have seen
that one main result of the model has never changed no matter what parameter
we had changed. This result was the high accretion rate at the inner boundary of
our calculation domain and the high decretion rate at its outer boundary. In this
section we are revisiting some of these parameter changes to see how sensitively
the system has reacted to them and how this can affect the conclusions.

7.1.1 Numerical issues

The z-profile and h

As described in Section 4.1.2 the height profile is not always known exactly.
Even in the simple case where the z-profile for the local fully self-gravitating case
is calculated, this is done under the assumption of an isothermal gas which is
probably not completely accurate. Nevertheless with such a thin disk and such
low resolution in the z-direction, the deviations cannot be very important.

Similar arguments hold for the height of the disk. But there is an additional
issue which is the problem of having the correct Φ boundary condition at z = zmax.
This can lead to an incorrect potential if the height of the disk is larger than zmax

for a high-density region as we have seen in Sections 4.3.3 and 5.2. We have seen
in Section 6.2.1 that the heights of the high-density regions have always stayed
below zmax.

Resolution

We have seen already in Section 5.1 that the simulations are unable to follow
the fragmentation correctly due to the resolution. This becomes more serious as
the viscosity is reduced and smaller clumps form. On the other hand we were
also able to show that a factor of two in resolution does not change the accretion
and decretion behavior of the disk. Nevertheless it is reasonable that a higher
resolution will possibly reduce the accretion rate since the eddies then have the
chance to decrease in size. In the turbulent viscosity picture this would reduce
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the viscosity as follows from Equation (2.60). Nevertheless the results are all
consistent and agree well with the β-viscosity interpretation (see more about this
below). The technical problem with high resolution is of course primarily large
CPU-time.

Boundary conditions

As stated in Section 6.1.3 where the boundary conditions are described, the
boundary conditions are rather arbitrary and are chosen in a way not to pro-
duce spurious flows and clumps at the boundary.

One could argue that the boundary condition that decreases the mass of the
inner disk when material is decreted from it at the beginning of a simulation
decreases the density and with it the pressure at the boundary, introducing a
pressure gradient that sucks the gas into the inner disk and leads to the rapid
accretion. But as we have seen in Section 6.2.3 the accretion is mainly due to the
clumps, and it continues at the end of the simulations when the density at the
inner boundary is orders of magnitude higher than in the disk.

Towards the end of a simulation the boundary conditions for the gravitational
potential must become incorrect at some point. The reason is already stated in
Section 6.2.1, the mass that dominates the dynamics gravitationally is the mass of
the inner disk towards the end of a run. This mass is thought to be spread equally
in a disk of radius Ri which is of course a reasonable oversimplification as long as
the mass of the inner disk does not dominate the dynamics. This was the reason
why the runs were mainly stopped around t = 3·106 a. Already around t = 2·106 a,
the radial angular velocity profiles change as shown in Section 6.2.1. Thus to be
conservative, the last one million years are not taken into account which does
not change the main results of the model,i.e., the strong accretion, if we look
at Figure 6.29. A similar argument can be put forward about the correctness of
the height calculation towards the end of a simulation since it depends on the
disk being fully self-gravitating. Even when the inner disk dominates gravity
the height should be calculated approximately correctly since in that case, the
gravitational influence of the inner disk is taken into account in the calculation
of the height (see Sections 4.1.2 and 4.2.4).

Oscillations in the radial velocity

As already mentioned in Section 4.1.2, the balance between gravitational attrac-
tion and centrifugal forces are numerically demanding since it is a subtraction of
two very similar large values. This leads to spurious fluctuations in the radial ve-
locity when the flow is in the balance of gravity and centrifugal forces. In Figure
7.1 the radial velocity versus cell number is shown in the case of M∗ = 1010 M¯,
no self-gravity, no physical or artificial viscosity and initial conditions such that
the flow is Keplerian, i.e., in balance. The radial range is the same as in the
models used before. The fluctuations have amplitudes of up to about 60 m

s
. Since

this scales with the central mass, these kinds of fluctuations are smaller in our
simulations because we used a maximal value of M∗ = 6·109 M¯. In addition the
artificial viscosity damps the fluctuations. Finally the amplitude is much smaller
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Figure 7.1: The radial velocity in m s−1 versus cell number for a run with no self-
gravity, no physical or artificial viscosity and a central object mass of 1010 M¯.
The radial range is the same as in the models of Chapter 6, i.e., 29 pc to 126 pc.
The initial conditions are such that vR = 0 and the flow is Keplerian. The radial
velocities come from the numerical problem of subtracting similar large numbers
which are the gravitational force and the centrifugal force in this case.

than the typical radial velocity in our simulations as shown in Figure 6.5 with
even higher velocities at later times (see Figure 6.12). We conclude that such
fluctuations do not change the results of the simulations.

Advection at the ϕ = 0 boundary

As stated already in Section 4.1.1, there is an imperfection for the angular momen-
tum transport at the ϕ = 0 boundary of the calculation domain if the transport
is in the positive direction. This problem is the reason why the disk is set to
rotate in the negative direction. Unfortunately, the flow becomes turbulent and
there are even small regions where the azimuthal velocity becomes positive as can
be seen in Figure 7.2 where vϕ is plotted for the standard run at t = 1.8·106 a,
and the dashed line shows the contours of vϕ = 0. The third upstream cell gives
only a minor correction, the problem occurs only at the ϕ = 0 boundary and no
anomalies were observed at this boundary. Thus we conclude that this cannot
influence the overall results of our simulations.
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Figure 7.2: The decadic logarithm of the azimuthal velocity in m s−1 is plotted for
t = 5.6·1013 s = 1.8·106 a. The dotted line encloses regions where vϕ > 0. When
such a region passes the ϕ = 0 boundary, there might be small imperfections in
the angular momentum transport.
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7.1.2 Physical issues

Additional heating and star formation

We could show in Section 6.3.7 that heating by the CMB at a redshift of z = 10
to T = 30 K does not change our main results. Another question would be the
heating by hot stars and supernovae that come about due to star formation in
the clumps. This can heat up the gas much more and it could in principle change
some of our results. It probably would not puff up the disk so that it would
become gravitationally stable as we will show in Section 7.1.3. In addition, the
supernovae would also introduce more turbulent dynamics. This could also lead
to stronger radial and vertical outflows that could affect the accretion.

The third dimension

Our simulations are conducted in two dimensions only. Even when starting from
a very thin disk, the clumps that form in it would also scatter into the third
dimension when interacting1. This is definitely an interesting possibility; but
on the other hand, since the disk is very thin, the clumps would need many
interactions to give a large effect. Since the clumps have only a few interactions
per dynamical time scale and our standard run ran for less than 6 dynamical time
scales, the effect would probably be relatively small or only important towards
the end of the lifetime of the disk.

Thermal equilibrium

The cooling and the thermodynamics of our simulations are done under the im-
plicit assumption of thermodynamic equilibrium. Here we make a rough estimate
to see whether thermal equilibrium is given in the coolest, least dense regions in
the standard simulation where there is a chance that it is violated. The thermal
equilibrium is given if the typical collision time of the molecules tcoll is much
smaller than the typical evolution time of the system. First we note from Figure
6.17 that the least dense regions have ρ ∼ 10−18 kg m−3 and from Figure 6.23
T > 1 K which gives cs ∼ 60 m s−1 using the ideal gas law and c2

s = P
ρ

with a
molecular mean molar weight. With a rough estimate of the collision cross section
for a hydrogen molecule or atom of

σH2
∼ πa2

0 ≈ 0.05 nm = 2.5·10−21 m2, (7.1)

where a0 is the Bohr radius, we can estimate the mean free path

l =
1

nσH2

∼ 1.4·1012 m = 4.7·10−5 pc. (7.2)

Here we used the number density n = ρ

mH2

= 2.9·109 m−3 with the lower bound

for the density from above and a hydrogen molecule mass of mH2
= 2mH with

mH = 1.7·10−27 kg being the mass of a hydrogen atom. From this we already
see that the mean free path is much smaller than the typical size in our model.

1I thank Prof. Dr. Mitchell C. Begelman for pointing this out to me.
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Looking at Figure 6.18 where the height in the disk is plotted, which is usually the
smallest extent by far, we can see that it can be as small as the mean free path.
Those values are reached in high-density regions while in low-density regions the
height is always orders of magnitude larger than 10−4 pc. Thus one of the main
prerequisites for using hydrodynamics and for the hydrostatic equilibrium, i.e.,
that the mean free path is much smaller than the smallest extent of the calculation
domain is given everywhere in the disk.

Coming back to the thermal equilibrium, we need

tcoll =
l

vk

≈ l

cs

= 2.3·1010 s, (7.3)

where vk is the kinematic velocity of the gas particles which is approximated
by the speed of sound. This number is orders of magnitude smaller than the
dynamical time scale of 1.7·1013 s of our models. Looking at Figure 6.28 we see
that the cooling time for low density regions is mainly of the order of 1010 s to
1012 s. Thus we cannot guarantee thermal equilibrium for all parts of the disk.
On the other hand, it can only be violated in the coolest, least dense regions that
are scarce and not the most relevant for our model.

Material constants and optical depths

As shown in Section 6.3.2 a viscosity parameter change of almost two orders of
magnitude does change the details of the fragmentation, but it does not change
the main, i.e., the strong accretion at the inner boundary and the decretion at
the outer boundary. Even the differences in Figure 6.35 where the curves for the
simulation with β = 0.01, and to a less extent that with β = 0.005, lie somewhat
higher than the others, might be explained by the fact that β = 0.01 is already
close to βgrav ≈ 0.04 which we got for the accretion in Section 6.2.3. The two
values of the same order of magnitude could change the dynamics.

The choices of µ = 0.001 kg mol−1 in the atomic case and µ = 0.002 kg mol−1

in the molecular case as well as the jump from a molecular to an atomic state at
T = 2000 K are of course relatively crude. There are more realistic numbers for
µ depending on the ionization and molecular state etc. but as stated before, the
physics of molecule destruction and creation are very complex and so we decided
to stick to these relatively crude values and method. In addition, the ratio of
specific heats and the molar weight have been changed radically in Section 6.3.8
for the molecular case and thus for almost the whole disk but the accretion and
decretion were not really different.

The mean opacities for our disk are similarly uncertain and again they are
only used in some approximate form as described in Section 4.6. In addition,
the used prerequisite of thermal equilibrium might not be given as we have seen
above. On the other hand in Section 6.3.6, we could show that the main result
does not change even when changing the cooling time by a factor of ten. Therefore
we cannot fully rely on the details of the cooling, but this does not change our
qualitative results.
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7.1.3 Issues with prerequisites

It was previously stated in Section 2.5 that the gravitational instability of the
outer parts of quasar disks is a known problem and also that there are some
observations which can be explained by thin self-gravitating disks. We have also
seen in the same section that the disk must be thick (h & 1

3
R) to be stable.

Thus our presumption that the disk is thin is not unreasonable. In addition, we
calculate heating, cooling and the height of the disk and we see that indeed it
stays thin (see Section 6.2.1). What if there was additional heating, e.g., by star
formation? What temperature do we need to make the disk marginally stable?
If we require Q = csκ

πGΣ
= 1, we get

T ≈ 1.2·10−4c2
s = 1.2·10−4

(

πGΣ

κ

)2

≈ 5·105 K (7.4)

using the same relations for cs as above. We took the following values from the
plots in Section 6.2.1: Σ ≈ 30 kg m−2 and κ ≈ Ω ≈ 10−13 s−1. It is hard to
imagine a physical process that heats the whole disk to 5·105 K at such a long
distance from the quasar (which is not necessarily there yet). On the other hand,
maybe the disk becomes only stable locally. The star formation that can heat
the gas would occur at the clumps; but near and at their location Σ is higher
than 30 kg m−2. Even for a value of Σ = 100 kg m−2, which is almost two orders
of magnitude below the maximal value in Figure 6.16, the required temperature
for stability is 5·106 K. So it seems unrealistic that large parts of the disk can
become stable.

It can also be shown that the instability of thin fully self-gravitating gas disks
is not contradicted by the existence of thin galactic stellar disks as shown by
Fuchs (2006). This is due to differences in the physics of gas and star dynamics
and because of the existence of a dark halo in galaxies.

Although we could show in Section 6.3.4 that changing the radial Σ-profile at
the beginning of the run does not change the qualitative result, we cannot exclude
that significantly different initial conditions would give different results. And the
initial conditions are obviously not known well, which leads to a phase of adjust-
ment before the accretion at the inner boundary takes over. This adjustment is
actually somewhat different when changing the initial conditions (see Figure 6.47,
the first 1.5·106 a). In order to be conservative and to have a result independent
of the details of the initial conditions, one would not take into account this first
phase. As stated in Section 7.1.1, being conservative we do not trust the last
106 a either; therefore we stick to 106 a < t < 2·106 a which still does not change
our qualitative results.

7.2 Comparison with different predictions

7.2.1 The clumpy disk model

Although this model predicts the right scaling of the accretion time scale equal
to 1

βΩ
with some constant β, we have seen in Section 6.2.3 that the order of

magnitude does not come out right. This comes about since the proportionality
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factor turns out to be β = R
lc

MR

πMt
. R

lc
is always larger than one and MR

πMt
cannot

be much smaller than one either. So in this model, β can never really be smaller
than unity which it obviously is.

7.2.2 α-viscosity

From Section 6.2.2, we know that the prediction of the α-disk interpretation
that the temperature is constant with radius seems to be in agreement with
our models. Actually for a self-gravitating α-disk, it is not the thermodynamic
temperature of the disk that is constant with radius but the temperature of the
radiation. The prediction that tcoolΩ is constant with R is not fulfilled very well
but still not completely wrong. We have tested the predictions for the accretion
as introduced in Section 2.5 in different ways. First in Section 6.2.3 we could
show that the prediction for the viscous time scale fits the value in the model
well. This might only be a coincidence since we could show in Section 6.3.3 that
when the disk mass is changed, the accretion time scale does not scale as the
α-viscosity interpretation predicts; the factors are a factor of two off. Changing
the cooling time artificially as done in Section 6.3.6 even shows that the accretion
time scale does not change while it would do so in the α-viscosity interpretation
by a factor of four. We observed in Section 6.3.7 that the heating by the CMB
should change the accretion rate by a factor of 20 when it didn’t change at
all. All this taken together lets us conclude that the α-viscosity interpretation
does not fit our models. The reasons are probably that first, the process is not
local and second that the idea in Section 2.5 that the heating is mainly due to
accretion and not fragmentation is not true. We conclude that the viscosity is
not dependant on the heating time scale but on the dynamical time scale due to
the clump-clump-interaction.

7.2.3 β-viscosity

In different sections we could show that the β-viscosity interpretation fits our
results well. In Section 6.2.3 we showed that the accretion time scale gives a
β-value that agrees with the value we got for the turbulent velocity which in turn
agrees with the value for the turbulent length scale even in the case of higher
or lower disk masses (see Section 6.3.3). Unfortunately, these values are orders
of magnitude off compared to the value we got in Section 3.4 using the linear
stability analysis. Then again as already argued in that section, this value is
highly uncertain and thus the discrepancy is not serious although it is large.
Then in Section 6.3.3 we have seen that the scaling of the accretion time scale
with disk mass is well explained by the β-viscosity interpretation.

In Mej́ıa et al. (2005) a self-gravitating protoplanetary disk with M∗

Md

= 7.1 and

tcool = constant was simulated. If we use Equation (3.61), replacing the value
6.5·10−5 which is highly uncertain with βgrav = 0.04 from Section 6.2.3, we can
predict the β-value for this disk which gives βpredict = 6.1·10−4. On the other hand
for the run they did where the cooling time was smaller than three dynamical
time scales we get βmejia = 1.9·10−4 by using Equations (2.88) (with δ = 3 for
Keplerian flow) and (2.58). This is a factor of about three off which is not too bad
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regarding the uncertainties. The values from the papers used are for R = 20 AU:
Ṁ = 4·10−6 M¯ a−1, Σ = 1000 kg m−2 and vϕ = 470 m s−1. For the runs where
the cooling time is much larger than three times the dynamical time scale, they
get accretion rates that are lower and dependant on the cooling. It would be
interesting to see runs with different cooling times for the same model which all
are smaller than three times the dynamical time scale. A strong dependence of the
accretion rate on the cooling time would rule out the β-viscosity interpretation
for these disks and strengthen it otherwise. Summarizing it seems that the β-
viscosity interpretation can describe self-gravitating accretion in the case that the
cooling time is smaller than three dynamical time scales.

Interestingly for the β-viscosity arising from gravitational instability, the dis-
sipation limit does not exist as expected in Section 3.4 since the turbulent velocity
(see, e.g., Section 6.2.1) was measured to be around vt ∼ 0.2vϕ and the Mach
number in the ϕ-direction was several hundreds. Thus the turbulence is highly
supersonic.

7.3 Comparison with observations

We could not find direct observations of clumpy disks in literature, only models
like in Kumar (1999) or Scoville et al. (1997) where clumpy disk models can fit
the observations. The problem is still the resolution of the observations. The
real massive disks of that kind which are in ultraluminous infrared galaxies like
the one in Arp 220 examined by Scoville et al. (1997) and Scoville (1999) are far
away (more than 100 Mpc in the case of Arp 220), and thus the resolution of the
mm-observations is about 300 pc which is far too low to resolve the clumps. On
the other hand, the disk lifetimes in our models are rather small and thus the
probability of observing such a disk is relatively low.

In Scoville et al. (1997) the disk is actually thin in the sense that h ≈ 16 pc
which is much smaller than the radius of 250 pc for which this was calculated,
corresponding to h

R
= 0.064. This is too thin for a fully self-gravitating disk to

be stable (see Section 2.5) and indeed in this model, the disk is Toomre unstable
at R < 400 pc. The disk is much thicker than our model disk with 0.02 > h

R
>

10−6 depending on the surface density. The height of the Arp 220 disk was
inferred using the velocity dispersion and the assumption that the clumps are in
a hydrostatic equilibrium. In section 7.1.2, we have argued against the clumps
being in hydrostatic equilibrium in the vertical direction to puff up the disk, so
maybe that is the reason for the difference.

The measured velocity dispersion from Scoville et al. (1997) is 90 km s−1 which
is of the same order of magnitude as in our models as can be seen in Figure 7.3
where the RMS of vR (corrected by the mean vR at each radius) is plotted in
km s−1 for the Md = 6·109 M¯ run. The mass of the disk in the Arp 220 model
below R = 130 pc, i.e., corresponding to our model, is about 2.5·109 M¯ which is
between our standard and our most massive model.

Scoville et al. (1997) have also measured the temperature of the molecular disk
which comes out to be about 50 K which lies between the mean temperatures of
our standard (20 K) and the most massive model (100 K) which fits very well. On
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Figure 7.3: The azimuthal average of 〈vR〉RMS in km s−1 corrected by the mean
radial velocity at each radius for the run with Md = 6·109 M¯. The value is of
the same order of magnitude as the value measured for Arp 220 of 90 km s−1.

the other hand they measure the filling factor of the molecular gas to be about
0.25 which seems very high compared to what one would estimate, e.g., from
Figure 6.16. The clumps which make up the material and are not volume filling
might actually be mostly atomic and not molecular. Because the Arp 220 disk
seems to be dominated by the molecular gas, such massive clumps of atomic gas
are ruled out. Consequently there seems to be a discrepancy between the model
and the observation in this point.

Nevertheless our model can indeed explain many of the observed properties
of such disks.

7.4 The relevance of our model for the SMBH-

formation model

First of all, the models in this work show an accretion whose time scale behavior
fits that of the viscous time scale of the β-viscosity on which the SMBH-formation
model relies.

As we have seen in Section 6.3.5 where a model with a central mass of M∗ = 0
was presented, the accretion to the inner disk does not depend on the existence
of a point mass at the center. This indicates that the SMBH-formation model of
Section 1.3 can indeed not only account for the growth but also for the formation

of SMBHs.
The time scales of the lifetime of such a disk are between a million and ten

million years depending on its mass and are much shorter than expected. This
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would mean that the time scale of the SMBH-formation would be dominated by
the time scale of the galaxy merger and not by that of the disk accretion. Thus
the disk accretion could not explain the anti-hierarchical growth of the SMBH
(see Sections 1.1 and 1.3) if there was no massive mass flow onto the disk from
outside. On the other hand as mentioned in Section 7.1.1, it is possible that the
time scale would become larger for higher resolution.
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Chapter 8

Conclusions and outlook

8.1 Summary and conclusions

In Chapter 3 we have examined the stability of viscous accretion disks using the
linear stability analysis. We arrived at the results that even non-self-gravitating
α-disks can become unstable under certain conditions. This is not the case if the
turbulence that is responsible for the viscosity not only creates a shear but also
creates a bulk viscosity of the same order of magnitude.

For thin fully self-gravitating β-disks, we have been able to show that they are
gravitationally unstable. We have also been able to show that if this gravitational
instability drives a viscosity, the β-ansatz for this viscosity is a consistent one.

From Chapters 5 and 6 where we ran 2D simulations of fully self-gravitating
accretion disks, we have not only seen that these disks indeed become unstable
and fragment but also that using any of the tested numerical and physical param-
eters for the models, we get a strong accretion at the inner rim of the simulation
domain and a strong outflow at the outer rim. Although a dependence of the
main results on resolution was not observed, the details of the fragmentation
cannot be correct with such low resolution. The same is true for the not well
constrained viscosity parameter. The accretion time scale for the Md = 6·108 M¯

disk was of the order of tacc ≈ 1.2·107 a which is much shorter than the time
scale for the merger of the galaxies of about 108 a in which such a disk is cre-
ated. In addition, by comparing runs with different disk masses, we found that
the accretion time scale scales roughly with Ω−1 as predicted by the β-viscosity
interpretation. The β-viscosity also correctly predicts the turbulent velocity and
length scale with respect to the accretion time scale. Only the β-value derived
from the accretion time scale differs by orders of magnitude from the prediction
by the linear calculations, but the numbers of these are highly uncertain so this
is not a contradiction. Possibly the β-viscosity can explain the accretion rate for
any self-gravitating disk with tcoolΩ < 3.

The clumpy disk model on the other hand, although predicting correctly the
Ω−1 dependence of the accretion time scale, does not give the correct accretion
time scale derived from the clump and disk geometry. The α-disk interpretation
indeed does a good job predicting the accretion time scale in the standard run.
Rather, this turns out to be a coincidence since these predictions are wrong by
a factor of 2 to 20 when using different disk masses, a changed cooling law or

137
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including the CMB. So the β-viscosity interpretation is much more favorable.
The azimuthal average of the surface density, temperature and thus also the

cooling time stay constant except for fluctuations when plotted versus radius. It
is not clear why this comes about, but it is consistent.

We have been able to show that the SMBH-formation model described in
Section 1.3 can indeed account for forming SMBHs without the need of a seed
BH as well as growing them to the size at which they are observed.

Still missing is the star formation which will not only use up part of the gas
in the disk but also heat it and introduce an additional turbulence. Due to the
fragmentation, it is quite obvious that star formation will take place.

8.2 Outlook

From this it is obvious that a main point of future work will be the inclusion of
star formation. An additional important point is to increase the resolution. To
achieve this there are two possibilities that should be made use of. First the code
should be parallelized to be run on several processors in parallel. In addition, the
AMR method mentioned in Section 4.1.1 can be used. This technique is already
included in NIRVANA2.0 although it is not tested for curved coordinate systems.
The changes described in Chapter 4 would have to be rewritten accordingly.

It would be good to push the inner boundary of the calculation domain as
far as possible to smaller radii in order to include the inner parts where the disk
becomes Keplerian and to follow the clumps all the way down to the non-self-
gravitating disk. To do this, it is necessary to change the z-profile calculation of
ρ as well as that of the height of the disk for the Keplerian regime. Then one
could also think about using this program to simulate protoplanetary disks; and
to examine the accretion in the Keplerian case, with different cooling times in the
regime where the cooling is smaller than three times the dynamical time scale as
mentioned in Section 7.2.3.

Another interesting question that could be tackled using this code is that of
the initial mass function of stars that are formed in circumnuclear disks. There
are indications (see, e.g., Nayakshin and Sunyaev, 2005) that the mass function
of such stars might be shifted towards the high-mass end.



Appendix A

The movies on a CD

In this appendix, you will find a CD with movies created from the simulations.
There are 11 directories on this CD, one for each simulation named accordingly.
They contain movies in avi files in the mpeg4 format. The file names start with
“sigma”, “T”, “rho” or “velocity” for the movie showing the surface density,
the temperature, the volume density and the velocity respectively. The physical
time is always shown at the top of the movie. It is obvious that the frames are
not equidistant in physical time but the time between two frames depends on
the time step size in the simulation. When the movie slows down due to time
step restrictions, the film showing the velocity features very high velocities at
some location that are responsible for the small time step sizes. These extreme
velocities appear at the same locations where extreme density gradients appear
that are responsible for the convergence problems of the self-gravity algorithm.
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A. Unsöld and B. Baschek. Der Neue Kosmos. Springer Verlag Heidelberg,
seventh edition, 2002.

S. Veilleux, D.-C. Kim, C. Y. Peng, L. C. Ho, L. J. Tacconi, K. M. Dasyra,
R. Genzel, D. Lutz, and D. B. Sanders. A Deep Hubble Space Telescope H-
Band Imaging Survey of Massive Gas-rich Mergers. ApJ, 643:707–723, June
2006.



BIBLIOGRAPHY 147

M. Vestergaard. Early Growth and Efficient Accretion of Massive Black Holes at
High Redshift. ApJ, 601:676–691, February 2004.

J. von Neumann and R. D. Richtmyr. A Method for the Numerical Calculation
of Hydrodynamic Shocks. J. Appl. Phys., 21:232–237, 1950.

F. Wendt. Ing. Arch., 4:577, 1933.

Wolfram Research. Mathematica5.1. Wolfram Research, 2005.

U. Ziegler. Nirvana+: An adaptive mesh refinement code for gas dynamics and
mhd. Comp. Phys. Comm., 109:111–134, 1998.

U. Ziegler. A three-dimensional cartesian adaptive mesh code for compressible
magnetohydrodynamics. Comp. Phys. Comm., 116:65–77, 1999.

U. Ziegler. Nirvana2.0,
http://nirvana-code.aip.de/nirvana2.0.tar.gz as of, October 2003.



148 BIBLIOGRAPHY



Danksagung
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Themen. Es war sehr angenehm mit Dir das Büro zu teilen.
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