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Abstrakt 

 

de Hatten Xavier               Dipl.-Chem.                  15. Juni 2006 

 

„Drei neue Konzepte für strukturelle und funktionelle Hydrogenase-Modelle“ 

 

In dieser Arbeit wird die schwierige Aufgabe, Hydrogenase zu modellieren, drei 

verschiedenen Ansätzen unterworfen. 

Die erste Strategie die verwendet wird ist bioorganometallische. Eine Reihe 

Ferrocen-peptid Verbindungen wurde synthetisiert und völlstandig charakterisiert. Die 

Thiol-Schutzgruppe wurde nachher entfernt und wurde danach durch complexierung mit 

Eisen carbonyl eine neue Klasse Fe-only hydrogenase Strukturmimetika mit Ferrocen-

Peptid Rückgrat erlangt. Umfassende elektrochemische Untersuchung offenbart eine 

potentielle Elektronenübertragung zwischen den zwei Eisenenheiten des Moleküls.  

Im zweiten Ansatze wird eine theoretische Untersuchung des Ferrocen-Peptids 

durchgeführt. Um eine breiteres Feld von Ferrocen-Peptiden als molekulares Gerüst zu 

untersuchen, wurde ein molekulares Kraft-Feld erfolgreich erzeugt und in CHARMM 

implementiert. Nach der notwendigen Validierung mit bekannten experimentellen 

Strukturen wurde das erhaltene Kraft-Feld verwendet, um mehrere Modellsysteme auf ihre 

Durchführbarkeit für das präsentierte Projekt zu untersuchen. Deshalb, wurden sterische 

Hindernisse und die Gestalt des Schwefels Ligande analysiert. Es wird gezeigt dass die 

erhaltenen Resultate, für viele Aspekte der Synthese nützlich sind. 

Als ein drittes Ansatze wurde organische übergeordnete Struktur von oligoquinoline, 

als potentielle Ligand für Eisen-carbonyl hydrogenasemimetika studiert. Die gut definierte 

gefaltete Struktur erlaubte uns die Positionierung des Schwefel Monomers in der Sequenz 

vorauszusagen. Die vorausgesagte Struktur wurde synthetisiert und vollständig 

charakterisiert. Nach dem Entschützen der Thiol-Gruppe, wurde auch die complexierung 

mit Eisen-carbonyle durchgeführt. 

In dieser Arbeit, wurde über die synthetischen, spektroskopischen und theoretischen 

Leistungen, die Effizienz des multidisziplinarischen Ansatzes an ein einzigartiges Ziels 

demonstriert. 

 



Abstract 

 

de Hatten Xavier               Graduate Student                  15. June 2006 

 

„Toward Hydrogenase mimicry: Subjecting the problem to three different 

approaches“ 

 

In this work, the challenging task of modelling Hydrogenase is subjected to three 

different approaches. The first strategy used here is bioorganometallic. A wide range of 

sulfur containing ferrocene-peptide derivatives were synthesized and fully characterized. 

The thiol group was subsequently removed and after complexation with iron carbonyl, a 

new class of structural mimic of Fe-only hydrogenase with ferrocene-peptide backbone 

was obtained. A comprehensive electrochemical study led on these new derivatives reveal 

a potential electron transfer between the two iron sites of the molecule.  

In the second approach, a theoretical computational study of the ferrocene-peptide 

derivatives is led. In order to investigate a wider range of ferrocene-peptide as a molecular 

scaffold, a molecular force field was successfully implemented in CHARMM. After the 

necessary validation step on experimental structures, thus obtained force field was used to 

investigate several model systems by mean of their feasibility for the presented project. 

Therefore, the sterical hindrance and the shape of the sulfur chelating shell were analysed 

during dynamic simulations. Results obtained are shown to be helpful for many aspects of 

the synthesis. 

As a third approach, organic self-assembled oligoquinoline were studied as potential 

scaffold of hydrogenase mimics. The predictability of the well-defined folded structure 

allowed the positioning of sulfur modified monomer in the sequence. Thus predicted 

structure, were synthesized and fully characterized. After the deprotection of the thiol 

group, the free SH group were used as ligand for iron-carbonyl. 

In this work, above the synthetic, spectroscopic and theoretic achievements we have 

demonstrated the efficiency of the multidisciplinary approach to serve a unique goal. 

 



Zusammenfassung 

 

 

„Drei neue Konzepte für strukturelle und funktionelle Hydrogenase-Modelle“ 

 

Bei seinen Untersuchungen zu Gärungsprozessen im Flußschlamm entdeckte der 

deutsche Biochemiker Ernst Felix Immanuel Hoppe-Seyler Ende des 19. Jahrhunderts 

erstmals, daß Bakterien molekularen, gasförmigen Wasserstoff (H2) aufnehmen und 

abgeben. Im Jahre 1931 beschrieben Marjory Stephenson und Leonard Hubert Stickland 

ein für diese Prozesse verantwortliches Enzym und nannten es Hydrogenase. In der 

folgenden Zeit wurden Hydrogenasen in zahlreichen Bakterienarten gefunden. Der 

deutsche Biochemiker und Pflanzenphysiologe Hans Gaffron entdeckte bei seinen 

Untersuchungen der Stoffwechselleistungen einzelliger Grünalgen in den dreißiger Jahren, 

daß auch diese eukaryotischen Mikroorganismen Wasserstoff umsetzen. Außerdem 

erkannte er, daß der Wasserstoffmetabolismus bei Algen mit der Photosynthese im 

Zusammenhang steht. Lange Zeit war die biologische Wasserstofforschung nur ein Feld für 

Spezialisten. Erst durch die Ölpreiskrisen 1973/74 und 1979/80 und der damals gestarteten 

Suche nach neuen Energiequellen sowie durch die seit einigen Jahren aktuelle 

Umweltdiskussion mit der damit verbundenen Notwendigkeit, die Verwendung 

umweltgerechter Energieträger zu fördern, erlangte dieses Arbeitsgebiet auch öffentliches 

und politisches Interesse. 

Hydrogenasen (H2asen) sind bakterielle Enzyme, die die reversible Umwandlung von 

molekularem Wasserstoff in Protonen und Elektronen katalysieren. Je nach dem aktiven 

Zentrum unterscheidet man drei verschiedene Typen metallhaltiger H2asen: nur Eisen 

enthaltende ([Fe-only]), hetero-bimetallische ([Ni-Fe]) und [Ni-Fe-Se] H2asen, in denen ein 

Selenocystein an das Ni-Zentrum koordiniert ist. Die erste Röntgenstrukturanalyse einer 

H2ase wurde von Volbela et al. 1995 publiziert, das Enzym wurde aus dem Sulfat-

reduzierenden Bakterium Desulfovibrio gigas isoliert. Inzwischen sind mehrere weitere 

Röntgenstrukturanalysen metallhaltiger H2asen veröffentlicht worden. Das folgende Bild 1 

zeigt das aktive Zentrum einer [Ni-Fe]-H2ase. 

 



 

 

Bild 1 Tertiäre Struktur und das aktive Zentrum der [Ni-Fe]-H2ase von Desulfovibrio 

Gigas 

 

Alle Hydrogenasen weisen gemeinsame Eigenschaften auf, die als essentiell für die 

Funktion dieser außergewöhnlichen Enzymklasse angesehen werden können. 

• Zweiatomige Liganden (vor allem CO und CN-) um ein Eisenatom 

• Low-spin Fe(II) Elektronenkonfiguration für dieses Eisenatom 

• Eine Kette von Fe-S-Clustern verbindet das aktive Zentrum, welches im Inneren des 

Enzyms liegt, mit der Oberfläche. 

Uns fasziniert besonders die metallorganische Koordinationsumgebung des 

Eisenatoms mit Cyanid- und Carbonylliganden. Beide Liganden sind zwar in der 

synthetischen metallorganischen Chemie ubiquitär, in der Natur ansonsten jedoch völlig 

unbekannt und stellen für sich genommen sogar starke Zellgifte dar. Trotz zahlreicher 

spektroskopischer und theoretischer Arbeiten sind der genaue Mechanismus der 

Hydrogenasen und die Funktion der Fe(CN)2(CO)-Gruppe bisher unbekannt. Anorganische 

Verbindungen vermögen einzelne Schritte der Hydrogenasen wie z. B. den 

H/D - Austausch zu modellieren oder dienen als spektroskopische oder strukturelle 

Modelle. Es gibt nur sehr wenige Arbeiten zu Modellsystemen von Metalloenzymen, in 

denen die natürlich vorkommenden Aminosäuren oder kleine Peptide als Liganden für die 

Metallatome eingesetzt werden.  



In diesem Projekt wollen wir drei neue Konzepte für strukturelle und funktionelle 

H2ase-Modelle umsetzen. Die drei Ansätze kommen aus drei verschiedenen Bereichen der 

Chemie. 

 

 

Erster Ansatz 

 

Die Kernpunkte unseres Konzeptes sind a) die Verwendung von kleinen Peptiden mit 

Cysteinen als Liganden für die Metalle im aktiven Zentrum und b) die Verwendung eines 

metallorganischen Rückgrates (Ferrocen) als strukturgebendes Merkmal, zur sterischen 

Abschirmung und als Elektronenrelay. Eisencarbonyl wird in diesen Modellverbindungen 

an die Schwefelliganden eines Cysteins koordiniert 

 

 
Bild 2 In dieser Arbeit dargestellte Hydrogenase-Modellkomplexe 
 

Im Rahmen dieses Projektes konnten wir über zwei Dutzend Biokonjugate aus 

Peptiden mit S-haltigen Aminosäuren (Cys und Met) mit Ferrocen mono- und di-

carbonsäure synthetisieren und vollständig charakterisieren. Von fünf Verbindungen 

konnten Einkristall-Röntgenstrukturanalysen erhalten werden. Die Eisencarbonyl-

Komplexe in Bild 2 wurden auch vollständig spektroskopisch charakterisiert, insbesondere 



mit Elektrochemie und Mössbauer Spektroskopie zur Untersuchung der elektronischen 

Eigenschaften der Eisenatome. 

 

 

Zweiter Ansatz 

 

Da die strukturellen Voraussetzungen zur Umsetzung unseres Konzeptes korrekt zu 

sein schienen, entschlossen wir uns, mittels Molecular Modelling die Durchführbarkeit 

dieses Projektes zu überprüfen. Es mussten zunächst im Programmpacket CHARMM die 

Parameter für substituierte Ferrocene implementiert und optimiert werden. Zunächst 

wurden die Partialladungen der Atome des Cp-Rings mitteln quantenmechanischen 

Methoden bestimmt (DFT, doppelt ξ Basissatz, B3LYP Korrelations-Austausch). Die van-

der-Waals-Parameter der Cp-Sauerstoff-Atome wurden adjustiert. Die van-der-Waals-

Parameter der Eisenatome wurden von dem parametrisierten Häm-Eisen übernommen. 

Schließlich wurden die Bindungslängen restrained und die Cp-Ringe mit dem Eisen durch 

eine externe Kraftkonstante zusammengehalten. Dieses Vorgehen garantiert die freie 

Drehbarkeit der Cp-Ringe gegeneinander, die ein zentrales Paradigma dieses Projektes 

darstellt. Die experimentell ermittelte Rotationsbarriere von Ferrocen (0.9 kcal mol-1) 

wurde durch Veränderung der van-der-Waals-Parameter der Wasserstoffatome reproduziert 

(0.8 kcal mol-1). 

 

 
 
Bild 3 Überlagerung der Festkörper- (blau) bzw. berechneten (Molecular Modelling, 

rot) Strukturen von Ferrocenoyl-Peptiden. 

 

Das derart erhaltene Modell für substituierte Ferrocene ist in der Lage, die 

strukturellen Eigenschaften verschiedener Modellverbindungen präzise zu reproduzieren. 

Als Beispiel zeigt Abbildung 3 eine Überlagerung der Kristallstrukturen von Fe[C5H4-CO-



Ala-Pro-OEt]2 in Seitenansicht und Aufsicht, wie sie im Festkörper bestimmt (blau) bzw. 

durch Molecular Modelling (rot) erhalten wurden. Die mittlere Abweichung der 

wesentlichen Atome ist < 0.5 Å, was ein ausgezeichnetes Ergebnis darstellt. 

Nach Etablierung eines geeignetes Modells und dessen Evaluierung wurden 

umfassende Berechnungen (Modelling und Molecular Dynamics Simulation) an den für 

diese Arbeit relevanten Ferrocenoyl-Peptiden durchgeführt. Die folgenden zwei Ergebnisse 

waren für die weitere Entwicklung dieses Projektes wesentlich. Auf der Grundlage eines 

elektrostatischen Modells ist es energetisch nicht möglich, daß vier Cysteinliganden an ein 

Ni(II) Zentrum koordinieren. Dabei ist es unerheblich, ob die Verbindungen Fe[C5H4-CO-

Cys-Cys-OMe]2 betrachtet wird oder das Ferrocen mit zwei verschiedenen Peptiden 

substituiert wird, die exakt den Aminosäure-Sequenzen in Hydrogenasen entsprechen 

(Strang I: Pro-Cys-Ile-Ala-Cys-Thr; Strang II: Ala-Cys-Gly-Val-Cys-Gly). Wie die 

folgende Abbildung (linkes Bild 4) zeigt, ist das System zu gespannt und eine der Cys-

Seitenketten dissoziiert vom Metallatom ab. Das rechte Bild 4 zeigt die energieminimierte 

Struktur nach 1 µs Moleküldynamikrechnung.  

Andererseits ist es problemlos möglich, diese beiden Peptide an einem Ni-Atom 

koordiniert zu halten (Startkoordinaten nach Entfernung des Ferrocens und Absättigung 

freier Valenzen mit H-Atomen). Die Molecular Dynamics Simulation (Bild 5) zeigt für 

diesen Fall jedoch, daß die N-Termini der Peptide auseinander driften und in der 

energieminimierten Form im Gegensatz dazu die C-Termini in räumliche Nähe kommen. 

Der C-C-Abstand in der minimierten Struktur beträgt nur etwa 4 Å. Dieses Ergebnis, 

welches durch eine Vielzahl weiterer Berechnungen abgesichert wurde, ist von zentraler 

Bedeutung für das Design neuer Modellsysteme in diesem Projekt.  

 
 

Bild 4 Energieminimierte Struktur nach 1 µs Moleküldynamikrechnung 
 



 
Bild 5 Die C-C und N-N Abstände der minimierten Strukturen 
 

 

Dritter Ansatz 

 

Als ein dritter Ansatz wurde die Struktur von Schwefel-substituierten 

Oligoquinolinen als rein organischer potentieller Ligand für Eisencarbonyl 

Hydrogenasemimetika studiert.  

Die Strukturen wurden aus den Einheiten 2,8-Aminoquinolinecarbonyl und 1,10-

Phenantrolinedicarbonyl gebildet. Wasserstoff-Brücken zwischen aufeinander folgenden 

Amid-Gruppen produzieren eine Selbstorganisation in der helicalen Struktur.  

Diese gut definierte gefaltete Struktur erlaubte uns, Propeller zu planen, die sich 

vollkommen an das Bedürfnis der Synthese anpassen. In dieser Strategie wurde zuerst das 

"Design" der Strukturen geplant, um die Positionierung des Schwefelatoms in der Sequenz 

vorauszusagen.  

Anhand einer molekularen Simulation mit dem Kraftfeld MM3 aus der Macromodel-

Software wurden die Oligomerstrukturen berechnet und vorausgesagt. In Bild 6 sind die 

berechneten Strukturen des Pentamers Chinolin-Chinolin-Phenantrolin-Chinolin-Chinolin 

(links) bzw. des Chinolin-Hexamers (rechts) dargestellt. Die Positionen der 

Thiolfunktionen sind gelb hervorgehoben. 

 



 
Bild 6 Vorhersage der Chinolin-Oligomere, berechnet mit Macromodel 

 

 

Die vorausgesagten Strukturen wurden anschließend im Labor synthetisiert und 

vollständig charakterisiert. Bei der Synthese haben wir uns aus technischen Gründen auf 

das Pentamer B24 und B23 konzentriert. Die synthetisierten Verbindungen wurden 

vollständig durch Massenspektrometrie und NMR-Spektroskopie charakterisiert. Drei 

Pentameres konnten im Festkörperzustand durch Röntgenanalyse charakterisiert werden, 

die Struktur von B24 ist als Beispiel in Bild 7 gezeigt. 

Nach dem Entschützen der Thiol-Gruppe wurde auch die Komplexierung mit Eisen-

carbonyl durchgeführt. 

 
Bild 7 Kristallstruktur eines synthetisierten Oligomers (B24). 

 



Résumé 

 

 

„Modèle structurel et fonctionnel pour le site actif de l’Hydrogénase : Etude 

menée selon trois approches différentes“ 

 

Dans les années 1900, le chercheur Hoppe-Seyler découvrit une nouvelle variété de 

bactéries responsables de la décomposition de l’acide formique en dihydrogène et en 

dioxyde de carbone. Après l’isolation d’une culture de bactéries productrices de 

dihydrogène et d’une culture de bactéries oxydatrices de dihydrogène, l’hypothèse a été 

émise selon laquelle la molécule de dihydrogène pourrait avoir un rôle important dans le 

métabolisme des bactéries. Les enzymes responsables de l’activation du dihydrogène ont 

été nommées "hydrogénases" (contraction de « Hydrogen acceptor oxydo-réductase ») par 

le groupe de recherche dirigé par les professeurs Stephenson et Stickland en 1931. Depuis, 

les hydrogénases ont été détectées dans un grand nombre de micro-organismes. 

Les enzymes de la catégorie des hydrogénases sont capables de catalyser l’oxydation 

réversible du dihydrogène en protons et en électrons. Par définition le potentiel standard à 

l’équilibre est de -413 mV à pH=7.0 sous 1 bar de pression en dihydrogène. Les électrons 

ainsi obtenus permettent à la bactérie de réduire plusieurs types de substrats, dont l’acide 

formique et le dioxyde de carbone, et de générer suffisamment d’énergie pour la synthèse 

de l’ATP. 

Cette oxydation réversible produit des électrons au faible potentiel (H2/H
+=-414 mV 

au pH=7.0 à la pression de 1 atm par rapport à l’électrode NHE), Mais l’activation du 

dihydrogène est énergétiquement non favorable au vu de la très faible acidité de la liaison 

H-H (pKa=35). Cependant, en liant cette dernière à un centre métallique tel qu’un noyau 

ferrique, la barrière énergétique serait réduite et le clivage hétérolytique de H2 en H
+ et H- 

en serait grandement facilité. 

La plupart des hydrogénases connues à ce jour contiennent du fer, du nickel et du 

soufre. Elles sont classées selon leur composition en métaux ; on distingue trois catégories: 

[NiFeSe], [NiFe], [Fe]-only. L’enzyme la plus couramment rencontrée est la [NiFe], elle 

contient 1 atome de Nickel et 12 atomes de fer. Il s’agit aussi de la structure la plus étudiée. 

La structure cristalline de la [NiFe]-hydrogénase issue de la bactérie Desulfovibrio Gigas 

(D. Gigas) a été publié par Volbeda et coll. en 1995. Une de ses formes inactives a été 

caractérisée par rayon X (Schéma 1). Cette enzyme est une protéine hétérodimérique 



périplasmique comportant deux sous unités, une petite (28 kDa) et un grande (60 kDa). Le 

centre actif (Schéma 1) de l’enzyme contient un centre bimétallique dans lequel l’atome de 

Nickel et lié à 4 atomes de soufre, deux d’entre eux forment un pont entre le Nickel et un 

atome de fer. L’atome de Fer est lui-même lié à trois ligands bimoléculaires non 

protéiques: un ligand carbonyl et deux ligands nitrile. Le nickel et les ligands bi-atomiques 

sont très rarement observés dans les systèmes biologiques naturels 

 

 
Schéma 1 Site actif de l’enzyme [NiFe]-Hydrogénase du Desulfovibrio Gigas and the 

active form of its active center in red 
 

Jusqu’à présent le mécanisme et le mode de fonctionnement de cette enzyme restent 

inconnus. De plus, de nombreux groupes de recherche ont essayé en vain de dévellopper 

des modèles de cette enzyme, aussi bien sur le plan structurel, que sur le plan fonctionnel. 

Pourtant il existe de gros intérêts politico-commerciaux au développement d’un modèle de 

ce genre. Après la crise pétrolière de 1973, l’intérêt porté aux hydrogénases s’est accru. 

Ceci étant du aux multiples applications possibles de cette enzyme. Une des idées alors 

émises est, que les hydrogénases, en combinaison avec la capacité du système de 

photoactivation des chloroplastes ou des cyano-bactéries d’oxyder l’eau en oxygène, et en 

dihydrogène pourraient être employée à la fabrication d’un réacteur de biophotolyse de 

l’eau fonctionnant à l’énergie solaire. Les produits ainsi formés pourraient être utilisés pour 

retrouver l’énergie stockée simplement en brûlant le dihydrogène en eau. Plusieurs tests 

préalables attestent de la faisabilité de cette approche. 



Ces réactions chimiques, qui sont très difficiles à reproduire de façon synthétique (cf. 

catalyseur à base de poudre de platine stabilisée sur une couche de carbone), sont réalisées 

naturellement dans des conditions «normales» de température et de pression par des 

systèmes enzymatiques. La mise au point de petits modèles mimétiques, aisément 

synthétisables en laboratoire, et reproduisants parfaitement les caractéristiques 

structurelles, mais aussi fonctionnelles de cette enzyme, pourrait permettre de comprendre 

le mécanisme d’action, jusqu’alors indéterminé, de cette classe d’enzyme. De plus, de tels 

modèles fonctionnels, synthétisables à grande échelle en industrie, pourraient avoir un 

énorme impact sur l’économie mondiale de l’hydrogène, et donner une réponse efficace 

aux problèmes de production de gaz carbonique, dus à la combustion de dérivés du pétrole, 

et à l’épuisement des gisements de fuels fossiles. 

Depuis la résolution de la structure cristallographique du site actif de cette enzyme, 

de nombreux modèles structuraux ont été élaborés mais aucun ne présente d’activité 

satisfaisante. Le travail présenté traite du design et de la synthèse de modèles synthétiques 

des sites actifs des hydrogénases. Pour ce faire trois techniques d’approches ont été 

développées dans trois domaines différents de la chimie. 

 

 

Première approche 

 

La première approche développée est une approche bioorganometallique. En effet, 

nous avons pensé utiliser des complexes métalliques de type métallocène afin de servir 

d’échelle moléculaire pour la fabrication de modèles synthétiques de sites actifs d’enzyme. 

Plusieurs groupes à travers le monde, ont observé la pré-organisation en feuillet bêta 

de petits peptides fixés sur les deux cyclopentadiènes formant le ferrocène. Cette faculté de 

pré-organisation du ferrocène, combinée à son activité électrochimique, fait de ce composé 

un candidat idéal pour l’élaboration de modèles électro-actifs. 

La première partie du travail effectué est le développement de la synthèse de 

complexes bio conjugués de ferrocène et de peptide contenant des résidus soufrés (présence 

de cystéine dans la séquence). De petits peptides ou des acides aminés ont été greffés sur 

les noyaux aromatiques de type cyclopentadiène composant le ferrocène. Les méthodes de 

couplages classiques ont été utilisées pour faire réagir de petits peptides avec le ferrocene 

acide carboxylique; activation de l’acide carboxylique puis couplage avec une amine 

primaire. Après une étape de déprotection qui permet de recouvrer le thiol présent dans la 



séquence, une étape de complexation avec un complexe fer-carbonyle a été effectuée afin 

de reproduire le centre bimétallique constituant le centre actif de l’enzyme à l’état naturel. 

Les complexes obtenus lors de l’application de cette méthode sont schématisés ci-dessous 

(Schéma 2). 

 

 
Schéma 2 Complexes fer carbonyles mimique du site actif de l’enzyme hydrogénase 
 

Les complexes obtenus ont été caractérisés par spectroscopie RMN (1H et 13C), 

spectrométrie de masse (FAB, EI), spectroscopie infrarouge, électrochimie (Cyclique (CV) 

et linéaire (SW)), spectroscopie UV, analyse élémentaire et spectroscopie EPR. Les 

complexes obtenus sont de très bons modèles structuraux du site actif de l’enzyme 

hydrogénase. La synthèse d’un complexe de fer-carbonyle coordonné à une séquence 

peptidique est rapportée ici pour la première fois. De plus la présence du ferrocène dans la 

structure comme centre électro-actif et comme agent d’organisation structurale ajoute une 

composante supplémentaire au mimétisme étant donné que dans les structures naturelles 

ces deux facteurs sont existants; d’une part par la présence des clusters {FeS} pour le relais 

d’électrons et d’autre part par l’organisation tertiaire des protéines pour la dimension 

structurale. Néanmoins, la fonctionnalité de ces complexes n’a pas encore été validée à ce 

jour. 

 

 



Deuxième approche 

 

Lors de la deuxième approche développée dans ce travail, l’aspect théorique est traité. 

Dans un premier lieu, un champ de force de mécanique moléculaire pour les dérivés 

ferrocène-peptide est crée et implémenté dans le logiciel CHARMM. Parmis les méthodes 

utilisées, l’« Automated Frequency Matching Method » (AFMM) qui consiste à ajuster un 

set de paramètre de dynamique moléculaire sur les données obtenu par calcul quantique par 

projection des eigenvectors dans le même espace, s’est révélée particulièrement efficace. 

Le champ de force ainsi crée est, d’abord testé sur des structures expérimentales connues. 

La spectaculaire précision des résultats obtenus lors des calculs dynamiques effectués sur le 

réseau cristallin du dérivé Fc-(Ala-Pro)2, nous permette de valider le champ de force (voir 

Schéma 3). 

 

 
 
Schéma 3 Superposition des réseaux cristallins de Fc-(C5H5-COO-Ala-Pro)2. En rouge le 

réseau obtenu expérimentalement par diffraction des rayons X et en bleu le 
réseau obtenu après 0.5 ms de dynamique moléculaire. 

 

Le champ de force validé est utilisé pour l’étude de dérivé de type ferrocène-peptide, 

avec des séquences peptidiques fonctionnalisées par des groupements thiols. Les modèles 

crées sont analysés comme potentielle échelle moléculaire pour le site actif de l’enzyme 

hydrogenase. A ce propos, la taille et la forme du ligand chelate formé par les soufres 

présents dans la structure, sont analysés et comparés aux résultats expérimentaux obtenus 

sur des molécules similaires ou alors mesurés directement sur la structure cristalline du site 

actif de l’enzyme.  

La coordination d’un métal par ces ligands a aussi été testée de manière théorique par 

l’introduction d’un modèle pour l’atome de nickel dans la poche chélate lors des 

simulations. Les résultats obtenus démontrent en principe la faisabilité du model proposé, 



mais d’un point de vu stérique et géométrique uniquement. Ainsi, sur la figure de gauche 

du Schéma 4 un atome de nickel est virtuellement connecté aux atomes de soufres du 

dérivé Fc-(C5H5-COO-Cys-Cys-OMe)2. Les caractéristiques géométriques du ferrocène 

sont suivies durant 1 ms de calcul dynamique à température ambiante. La structure reste 

stable durant cette période, aucun changement dramatique n’intervient dans la structure du 

ferrocène durant la période de simulation. 

 
 

Schéma 4 Structure minimisée de Fe[C5H4-CO-Cys-Cys-OMe]2 (à gauche) avec un 
nickel coordonné aux atomes de soufre. A droite une minimisation de la 
séquence du site actif de l’enzyme [NiFe] coordonnée avec un atome de 
soufre 

 

 
 

Graph 1 Distance N-N entre les deux N-terminations et C-C entre les deux C-terminations 
mesurées sur 2 ns de simulation dynamique  

 

La figure de droite du Schéma 4 et le Graph 1 montre une autre expérimentation 

menée sur les modèles dynamique: les séquences peptidiques environnantes du site actif de 

l’enzyme à l’état naturelle ont été modélisées. Un atome de nickel a été inclus dans la 



« poche » créée les atomes de soufres. Les distances entre les extrémités N-ter et C-ter de 

ces deux peptides ont été mesurées pendant 2 ns de dynamique moléculaire et il en résulte 

que les extrémités C-ter des brins peptidiques ont une distance moyenne plus courte que les 

deux extrémités N (voir Graph 1). Nous en déduisons que la fixation d’un ferrocene sera 

plus facile du cotés C de la séquence peptidique que du coté N. Ce résultat nous as aidé a 

réorienté notre stratégie de synthèse. 

 

 

Troisième approche 

 

La deuxième approche présentée dans cette thèse, est l’étude et l’application 

d’oligoamides aromatiques, portant des chaînes soufrées comme échelle moléculaire pour 

la synthèse de mimiques du site actif de l’enzyme hydrogénase. Des brins moléculaires 

constitués d’unités 2,8-aminoquinolinecarbonyle et 1,10-phenantrolinedicarbonyle 

alternées ont été conçus dans le but d’induire une auto-organisation en structure hélicoïdale 

par formation de liaisons hydrogènes intramoléculaires entre les groupements amides 

successifs et de recouvrements intramoléculaires entre les groupements aromatiques 

périphériques. Il a été démontré par le passé la grande prédictibilité de ces systèmes, ce qui 

a permis de concevoir des hélices s’adaptant parfaitement au besoin de la synthèse.  

La stratégie est d’abord le « design » des structures afin de déterminer les positions 

des fonctions thiols en vue d’obtenir une géométrie favorable à l’incorporation d’un métal 

ou d’un noyau métallique. Des prévisions de molécules faites à partir d’une simulation 

moléculaire avec le champ de force MM3 implémenté dans le logiciel Macromodel, sont 

schématisées ci-dessous (Schéma 5), à gauche un pentamère quinoline-quinoline-

phenantroline-quinoline-quinoline, à droite un hexamère quinoline uniquement. Les 

positions marquées par la couleur jaune ont été choisies pour le placement des thiols. 

La deuxième étape est la synthèse des oligomères en commençant par la 

fonctionnalisation des monomères par des chaînes contenant des fonctions thiols, protégées 

par le groupement tertio-butyl. Suivi de l’oligomérisation par étape, selon une stratégie 

convergente afin d’arriver à la pré-organisation des noyaux soufrés dans la configuration 

souhaitée. Lors de la synthèse nous nous sommes orientés vers le brin pentamérique, pour 

des raisons techniques, de synthèse et de rendement. Dans cette configuration, les 

monomères modifiés devront occuper les positions 2 et 4 de la séquence, c’est-à-dire 

accolés de part et d’autre du motif phénantroline central.  



Les conformations en hélices ont été caractérisées par spectrométrie de masse et par 

spectroscopie NMR. Quatre de ces composés pentamériques ont été caractérisés à l’état 

solide par diffraction des rayons X. la structure cristalline de l’un des brin moléculaire 

synthétisé est montrée sur le Schéma 6.  

 

 
Schéma 5 Prévisions moléculaire de suprachelate à base d’oligoamides contenant des 

chaînes soufrées 
 

La troisième étape est une étape de déprotection pour recouvrer les thiols libres afin 

d’obtenir un ligand S-S de type suprachelate en vue de l’introduction d’un noyau fer-

carbonyle, mimique du site active de l’enzyme hydrogénase. 

 
Schéma 6 Structure cristallographique d’un brin moléculaire pentamérique et des 

molécules de solvants co-cristallisés, créee avec Ortep (avec 20 % de 
probabilité) 
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1. Introduction 

 

 

 

1.1 Biomimetism of enzymes 

 

Chemists dream of catalyzing reactions the way enzymes do: working at room 

temperature and low pressure, using simple starting materials like nitrogen to make only 

useful products and benign by-products like ammonia and water. The only ways that 

researchers can currently duplicate many enzyme-catalyzed reactions are by applying high 

temperatures and pressures, or by using exotic (and often toxic) metals.  

Besides, scientists have been extending Nature’s achievements for centuries. For 

chemistry, this has taken the form of producing new compounds that did not exist in 

nature, new remedies, new colorants, new polymers, and more generally new materials. At 

this point less than 1/10 of all known chemical substances are natural products. 

Nevertheless, new chemicals were often developed by imitating the general style of natural 

substances. Many reasons could motivate this approach, as curiosity for instance, but the 

major one is that a useful new property might emerge. “Biomimetic chemistry” describes 

chemistry that is inspired by that done in living systems. Artificial enzymes are an 

important part of this field, in which one tries to imitate the catalytic process that occurs in 

the wild type of an enzyme, and not just the substances of biology.  

Materials found in nature combine many inspiring properties such as sophistication, 

selectivity, efficiency, resistance, and adaptability. We hope to achieve these properties, 

which are typical of enzymatic conversions by imitating the general principles; in 

particular the well-defined geometry of enzymes, but not every detail as, e.g. the exact 

peptide sequence.  

Increasing our understanding of natural processes is another important goal of 

biomimetic chemistry. One of the obstacles to understand enzymes is their large size. Each 

enzyme comprises thousands of atoms, with various sections of an enzyme performing 
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different functions. At a specific location within the enzyme, called the "active site," 

reacting molecules come together, break apart, and recombine as they interact with the 

enzyme, and then leave as different molecules. Other sections of the enzyme can block the 

active site, allowing only certain molecules access, or permitting approaches to the active 

site from only one direction. The studies of artificial enzymes help us to understand and to 

evaluate the properties of natural enzymes. One great challenge to be achieved using 

artificial enzymes is the outstanding catalytic activity that the best natural enzymes can 

achieve on reactions that are not available to chemists.  

One example is the reversible reduction of proton to dihydrogen. This is deceptively 

the simplest reaction but also one that requires multistep catalysis to proceed at practical 

rates. However, in the wild type, the members of an enzyme class called Hydrogenases 

easily perform this reaction. The biological processing of hydrogen performed by 

Hydrogenases is exceptionally efficient, with rates for proton production in the range of 

6000 - 9000 turnovers per second and dihydrogen production of 10000 turnovers per 

second [1, 2]. Fancy extrapolation suggest that 1 mole of Hydrogenase could produce 

enough hydrogen to fill the airship Graf Zeppelin in ten minutes, or the main liquid-

hydrogen tank of the Space Shuttle in two hours. Although this calculation disregards the 

time required to transfer hydrogen from solution to the gas phase, it illustrates quite well 

the economical interest, notably to storage of solar energy. The feasibility of such an 

approach as already been extensively reviewed in the early seventies [3]. This economic 

aspect but also the fact that the active site of Hydrogenases resembles well-known species 

currently observed and synthesized by inorganic chemists around the world has attracted 

specific attention of the modelling community [4-6].  

 

 

1.2 Hydrogenases 

 

Hydrogenases were first discovered in 1931 [7] in colon bacteria. They are found in 

diverse microorganisms as methanogenic, acetogenic, nitrate and sulphate reducing 

bacteria and numerous archaebacteria. Hydrogenases have the ability to control H2 

concentration and reduction activity by facilitating the uptake and the oxidation of H2 to 

protons with release of electrons; or its production, according to the reverse reaction [8, 9]. 

They provide a reversible sink for multi-electron transfer. Reducing equivalents thus 
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obtained enable bacteria to reduce a variety of substrates, and to generate sufficient energy 

for ATP synthesis. The reversible oxidation of H2 provides electrons at a low potential 

(H2 / 2H
+: E0 = -414 mV at pH 7 and 1 atm of H2 versus NHE) [10], but H2 activation is 

energetically unfavourable due to the low acidity of the H-H bond (pKa = 35). 

All of the 80 known Hydrogenases are rich in sulfurs and in iron. They are divided in 

three classes according to their metal content; [Fe] -only, [NiFe], [NiFeSe] -H2ases 

(depicted in Figure  1.1). In addition, existence of a metal-free Hydrogenase has been 

reported [11] but its existence is still a matter of controversy and discussion. 

 

 
 
Figure  1.1 Tertiary structures of the three different types of hydrogenases (a) Fe-only (b) 

NiFeSe (c) NiFe. α-helices are depicted in blue, 3,10-helices in red, π-helices 
in pink, extended β-sheets in green, bridged β-sheets in purple, turns in orange 
and coils in yellow 

 

The most common Hydrogenase, [NiFe], has focused the interest of biologists, 

biochemists, and chemists for 25 years. In 1995, impressive protein crystal structures of the 
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[NiFe]-H2ase enzyme, isolated from the sulfate reducing bacterium Desulfovibrio Gigas, 

have been determined by X-ray crystallography at resolutions 2.85 Å and 2.54 Å [12]. As 

isolated, in an oxidised and inactive form, the enzyme is a heterodimeric periplasmic 

protein consisting of two subunits: one large (60 kDa) and one small (20 kDa) as it is 

depicted in Figure  1.2. The protein contains a total of 12 iron atoms, 12 acid labile sulfides 

and one atom of nickel. Eleven of the twelve Fe atom are incorporated within the three 

Fe-S cluster, one [3Fe-4S]+1/0 and two [4Fe-4S]2+/+ moieties [13]. The active site comprises 

a truly organometallic, heterobimetallic centre, in which the Ni centre is ligated by four 

cysteinates, two of which are terminal, and two of them bridge to Fe. The Fe centre is 

ligated further by three non-protein diatomic ligand (cyanide and carbon monoxide), with a 

third bridging ligand that has been assigned to oxo-oxygen. This is rarely observed in 

biological systems since the cyanide and the monoxide are normally associated with 

inhibition and poisoning.  

 

 

 

Figure  1.2 [NiFe] - H2ase and the hydrogen evolution within its active site. Enlargement 
of the heterobimetallic center in its active form 

 

X-ray crystallographic data of Fe-only hydrogenases from Desulfovibrio 

desulfuricans and Clostridium pasteurianum together with the spectroscopic data on 

Fe-only hydrogenase from Desulfovibrio vulgaris show that the active site at which 

protons are reduced to dihydrogen (or dihydrogen oxidised to protons), can be viewed as a 

conventional {4Fe4S}-cluster linked by a protein backbone bridging cysteinyl sulfur 

ligand to a {2Fe3S}-subsite [14-16]. The Fe-atom distal to the {4Fe-4S}-cluster has a 
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coordinated water molecule (or vacancy) in the paramagnetic oxidised state of the 

molecule, {Hox}. This site is occupied by carbon monoxide in the CO inhibited form of the 

enzyme {Hox} and this is where hydride / dihydrogen are likely to be bound during 

turnover [17]. 

Finally, both classes of hydrogenases are able to catalyse either proton reduction, or 

hydrogen oxidation, but it is commonly claimed, according to their different affinities for 

molecular hydrogen that Fe-only hydrogenases have greater activity for H2 production, 

while [NiFe]-Hydrogenase are more efficient for hydrogen uptake. 

 

 

1.3 Designing and modelling Hydrogenase’s active site 

 

1.3.1 Specifications sheet for molecular model for Hydrogenases 

One of the main directions of study, among many others, of a bioinorganic chemist, 

is to prepare synthetic, low molecular weight metal analogues of the active site of metal-

containing enzymes, in order to reproduce its catalytic activity. The advantage of such 

models is that they are smaller and therefore easier to handle in terms of isolation and 

spectroscopic data collection, than the enzyme itself. 

The success of a synthetic catalyst is based on three characteristics: cost, efficiency 

and robustness: 

• A good catalyst is a cheap catalyst; hydrogenase are fascinating because they 

catalyse the fundamental [2H+ + 2e- / H2] interconversion at high rate and small 

overpotentials from equilibrium, using cheap first row transition metals at the active sites. 

Mimicking the functions of the active site of an enzyme could lead to the replacement of 

unsustainable platinum electrocatalyst in electrolyser/fuel cell applications. The 

replacement of platinum with inexpensive materials is critical to the large-scale use of 

hydrogen as a clean energy vector. 

• A good catalyst is an economically viable catalyst; application of an electrocatalyst 

in large-scale electrolyser or fuel cell obviously requires high turnover frequencies to 

achieve high currents and low overpotential. From the viewpoint of solar energy 

conversion the development of photocatalysis, for overall water splitting, is an attractive 

goal. 
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• A good catalyst is a robust catalyst; the crucial point for any technological 

application is the robustness of the catalyst, which means both thermodynamic and kinetic 

stability under normal atmospheric conditions and high turnover numbers. Up to now, all 

promising molecular chemical systems for proton reduction or hydrogen uptake, have been 

abandoned because they were not reliable enough. The following points should be 

considered: (1) involvement of two electron transfers in the catalytic cycle implies that the 

selected catalysts, at the deprotonated or hydridic state (depending on the mechanism), 

should display electrochemically and chemically reversible redox features occurring at a 

relatively mild potentials, to avoid any irreversible ligand decomposition. (2) The chelate 

effect has been widely used as a general strategy for the design of robust complexes. By 

preventing ligand exchange in the active intermediate states, this indeed ensures the 

conservation of the entire set of ligands governing the reactivity of the metallic centre over 

the catalytic cycle. Note that the biomimetic approach could be in contradiction with this 

strategy, since the carbonyl ligand could be likely subjected to irreversible displacement 

during catalysis. 

 

1.3.2 State of the art 

In the mid 1980’s, the first biomimetic studies concerning iron-only [18] and 

nickel-containing [19] hydrogenases were reported. Great efforts have been directed 

towards the preparation of model complexes mimicking the structure as well as the activity 

of the natural system (for an comprehensive review see ref. [20]). For example, the 

simplest structural model: the propyldithiolate (PDT)-bridged [(µ-PDT)Fe2(CO)6] has been 

synthesized and elaborated. Similar complexes have been prepared where carbonyl ligands 

were replaced by isonitriles [21], cyanides [22], thioethers [23], and phosphines [24]. 

Darensbourg and co-workers have reported that [(µ-H)(µ-PDT)Fe2(CO)4(PMe3)2]
+ is a 

catalyst for H2/D2 scrambling [25], whereas Rauchfuss et al. demonstrated that 

[(µ-PDT)Fe2(CO)4PMe3(CN)]- serves as a catalyst for electrochemical hydrogen evolution 

[26]. In addition, Sun and co-workers have reported about 

[µ-SCH2-NHR-CH2-S)Fe2(CO)6]
+ which catalyzes the electrochemical reduction of 

protons at a moderately negative potential [27]. Recently, a model of the [Fe]-Hydrogenase 

active site has been reported, which concomitantly carries a proton and a hydride [28]. The 

electron-donating ligands at the di-iron core carry the hydride, and an azadithiolate linker 

carries the proton. This double protonated structure is reduced at a mild potential that is 
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considerably more positive than that of any other iron hydrogenase mimic ever reported. 

Finally yet importantly, Pickett et al. have reported the assembly of the iron-sulfur 

framework of the active site of iron-only hydrogenase [29], and that it functions as an 

electrocatalyst for proton reduction. Through linking a di-iron subsite to a {4Fe4S} cluster, 

the first synthesis of a metallosulfur cluster core involved in small-molecule catalysis was 

achieved. 

A purely biomimetic approach of [Fe]-only hydrogenases [30] has been exquisitely 

and successfully developed where the two iron nuclei are coordinated by cysteinyl ligands 

the complex was obtained by an oxidative addition of cysteine to [Fe3(CO)12] and is 

accessible as a mixture of e,e and e,a isomers. However, no catalytic activity is presented 

for this model compound. 

 

Nickel complexes are also possible candidates for the construction of small 

functional models of the active site of hydrogenases. Soon after it became apparent that 

some of the hydrogenases contained nickel in their active site, the first corroborative 

models were reported. The synthesis, X-ray structure, reactivity and electrochemistry of 

the homoleptic nickel thiolate complex [Ni(SR)4]
2- was reported, and the Ni2+ -> Ni3+ 

oxidation potential was compared with those of the hydrogenases [19]. A series of 

substituted arene thiolates have been used, among which are p-MeC6H4S−, m-MeC6H4S−, 

p-ClC6H4S− and p-NO2C6H4S− [31]. Nearly at the same time, Rosenfield et al. have 

reported the synthesis and properties of the mononuclear (R4N)2[Ni(SAr)4] complex with 

Ar =C6H5, p-C6H4Cl, p-C6H4CH3 and m-C6H4Cl [32]. After the first reports of homoleptic 

complexes of nickel with monodentate thiolate ligands, the focus shifted to the use of 

chelating bidentate thiolate ligands such as ethane-1,2-dithiol or butane-2,3-dithiol and 

benzene-1,2-dithiol [33]. 

Nickel complexes have been synthesised with a variety of thiolatothioether ligands, 

some of them including heteroleptic ligand containing nitrogen and oxygen donors in S6, 

S5, OS4, NS4, S4, and S3 donor sets [34, 35].  

Despite the fact that phosphanes are not naturally occurring ligands, phosphane 

groups have been successfully used as chelating ligands to stabilise various oxidation states 

of nickel. Some of those complexes show interesting catalytic activities. For example, the 

reaction of Et2PCH2NMeCH2PEt2 (PNP) with [Ni(CH3CN)6](BF4)2 results in the formation 

of [Ni(PNP)2](BF4)2, which possesses both hydride- and proton-acceptor sites. This 

complex has been found to be an electrocatalyst for the oxidation of hydrogen to protons, 
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and stoichiometric reaction with hydrogen occurs. Another example is the 

[HNi(PNP)(PNHP)](BF4)2 in which a hydride ligand is bound to Ni and a proton is bound 

to a pendant N-atom of one PNP ligand. The hydride ligand and the NH proton undergo 

rapid intramolecular exchange with each other and intermolecular exchange with protons 

in solution. [[HNi(PNP)(PNHP)](BF4)2 undergoes reversible deprotonation to form 

[HNi(PNP)2](BF4) [36]. 

 

Another topic of interest is the possibility to link covalently a photosensitizer to a 

small mimic of the hydrogenase active site to produce a single macromolecule with two 

active sites [27, 37, 38]. This homogeneous systems for hydrogen photoproduction consist 

in a photosensitizer S, held in an excited state S* upon irradiation. Then, S* transfers 

electrons to a relay R capable to effect proton reduction. For example, a binuclear iron 

complex, related to the active site of Fe-hydrogenases, has been covalently linked to a 

redox active ruthenium tris-bipyridine type photosensitizer as it is depicted in Figure  1.3. 

This approach is the first attempt to link iron hydrogenase mimics in supramolecular 

systems. 

 
Figure  1.3 Principle of photoinduced electrocatalytic production of protons and the 

photosentizer that undergoes this conversion 
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However, despite these significant achievements in the structural modelling of the 

hydrogenases active site, the new biomimetics show a relatively small activity associated 

with high overvoltages so that immediate optimization perspectives appear quite limited 

for this kind of approach. 

 

1.3.3 Emerging ideas 

Enlightened by this literature review, it appears that the actual biomimetic models for 

hydrogenase lack in a major resemblance with the wild type complex; in nature, the chelate 

effect of the sulfur ligand pocket is at a supramolecular level. One of the new ideas 

developed in this thesis is to design and to synthesize supramolecular sulfur containing 

chelate ligands that could be used as new scaffolds for the next generation of hydrogenase 

mimics. The new orientations chosen for this purpose are first a ferrocenoyl-peptide 

scaffold thought to act as an electroactive scaffold, and the second is a folded aromatic 

oligoamide ligand system, which will act as self-organized proteomorphic structure as 

proteins. Two potential scaffolds are depicted in Figure  1.4. 

 

 
Figure  1.4 Theoretical rationalizations of the two molecular scaffolds that were studied 

as S-ligand for iron carbonyl core; (a) the ferrocenoyl-peptide approach (b) 
the aromatic oligoamides approach 

 



Chapter 1 
 

10 

 

1.4 Ferrocene as a molecular scaffold for hydrogenase mimics 

 

In 1951, Kealy and Paulson [39] tried to obtained fulvalene by the oxidation of 

cyclopentadienyl magnesium bromide with anhydrous Iron(III) in ether. But the reduction 

of the Iron(III) to Iron(II) by the Grignard species led to the formation of orange crystals 

that were analysed to be of the general formula C10H10Fe. The ferrocene was thus 

discovered by serendipity. Only few months after, the particular “sandwich”-like structure 

was predicted from its NMR and IR [40] and then confirmed by X-ray crystallography in 

1954 by E. O. Fisher. The term ferrocene was coined by Woodward [41] owing to its 

physical and structural resemblance with benzene. The discovery of ferrocene led to an 

explosion of interest in d-block metal carbon bonds and brought about development and 

the now flourishing study of organometallic chemistry. The rapid growth in the study of 

organometallic compounds by research groups around the world led to the Nobel Prize 

awarded in 1974 to Ernst Otto Fisher and Geoffrey Wilkinson for their contribution to the 

field. 

 

1.4.1 Bio-organometallic chemistry of ferrocene 

In recent years, bio-organometallic chemistry has developed as a rapidly growing 

area which links classical organometallic chemistry to biology, medicine and molecular 

biotechnology [42, 43]. The stability of the ferrocenoyl group in aqueous and aerobic 

media, the accessibility of a large variety of derivatives through ring substitution, along 

with its particular electrochemical properties, have made ferrocene and its derivatives a 

very popular molecule for biological applications and for conjugation with biomolecules 

such as peptides. Ferrocene exhibits interesting properties as an anti-anaemic agent [44, 

45], as biomolecular markers [46], but also, for the vectorisation of small peptides through 

the blood brain barrier [46] or through the nuclear membrane of cells [47]. Conjugates of 

ferrocene with well-known drugs were reported e. g. with antibiotics such as penicillin and 

cephalosporin [48-50]. In addition, structural variations of established drugs with the 

ferrocenoyl moiety were also reported such as ferrocenoyl aspirin [51], the anti-malarial 

drugs chloroquine [52], quinine, mefloquine [53], and finally the anti-cancer drug 

tamixofen to give ferrocifen [54]. 
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Lastly ferrocene has been shown to have good catalytic properties notably 

Ferrocenophane shows high activity in photoelectrochemical production of hydrogen. The 

coating of a platinum electrode with conducting polypyrrole containing ferrocene sulfonate 

as counter-ion or with polypyrrole covalently bound to 1,1-ferrocenophane indeed induces 

a 0.27 V anodic shift for proton reduction in molar sulfuric acid and a sevenfold 

amplification of current density when poised at −0.44 V / SHE [55]. 

 

1.4.2 Ferrocene-bearing peptide derivatives 

The first ferrocenoyl amino acid derivative has been reported in 1957, by Schlögl 

[56]. From the many existing possibilities to couple the ferrocene to amino acids, the most 

extensively reported is the amide formation between ferrocene carboxylic acid and the 

terminal amino group. Up to now about 70 different amino acids and peptides were 

successfully coupled to ferrocene carboxylic acid and comprehensively characterized (for a 

comprehensive review see ref. [57]). In the solid state, hydrogen bond interactions are a 

dominant feature [58]: zigzag [58, 59], sheet-like and helical packing have been observed 

[60]. In solution, most of these derivatives do not appear to have an ordered structure. 

In addition to mono-substituted ferrocenoyl amino acids, a large amount of 

1,1’-disubstituted peptide derivatives have been prepared. In 1996 [61], Herrick et al. 

found that compounds of general formula Fe(C5H4-CO-Aaa-OMe)2, have an ordered 

structure in solution. This order is comprised of two symmetrically equivalent hydrogen 

bonds between the amide NH and the carbonyl of the methyl ester moiety of the other 

strand.  

Structural studies in the solid state have shown that two kinds of hydrogen-bonding 

patterns have been experimentally observed in parent molecules as it is depicted in Scheme 

 1.1; the “Herrick’s” [61] conformation, with two H-bonds connecting both strands and the 

“van Staveren’s” [62] conformation with one H-bond connecting the peptide strands. 

When both substituents are trans, no intramolecular H-bonds are observed and this 

conformation is called “open” conformation [63-65].  
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Scheme  1.1 The three different conformation of Fc-peptide derivatives (a) Herrick, (b) 
van Staveren and (c) open conformation 

 

Seeing ferrocene’s capacity of pre-organisation of peptide strands combined with its 

electrochemical activity and motivated by the multiple successful use of ferrocene in 

biological systems, we became intrigued by the possibility of linking covalently a 

biomimetic model of the hydrogenase active site to a ferrocene moiety. The design and the 

synthesis of these supramolecular organometallic derivatives are discussed along this 

work. Three majors parts are developed here: (1) the synthesis and the characterization of a 

wide range of ferrocene-bearing sulfur containing peptides derivatives. (2) The 

computational simulation of these new derivatives and theoretical investigation of those as 

chelate for hydrogenase mimics. (3) The synthesis through coordination of iron carbonyl 

core in S-ligand pocket and the characterization of these novels hydrogenase mimics are 

also presented. 

 

This successful design and synthesis of supramolecular scaffold based on ferrocene 

peptide derivative led us to investigate other supramolecular assembly to the same purpose. 

Therefore, as a second major part of the presented PhD thesis, and based on the same 

strategy, self-assembled aromatic oligoamides were studied as a second potential scaffold 

for hydrogenase active site. 
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1.5 Aromatic helical oligoamides  

 

1.5.1 Peptidomimetic Foldamers 

The definition of a foldamer is any oligomer that folds into a conformationally 

ordered state in solution, the structures of which are stabilized by a collection of 

non-covalent interactions between nonadjacent monomer units. There are two major 

classes of foldamers: single-stranded foldamers that only fold (peptidomimetics and their 

abiotic analogues) and multiple-stranded foldamers that both, associate and fold 

(nucleotidomimetics and their abiotic analogues). 

 

The field of peptidomimetics aims at mimicking peptide structure through substances 

having controlled spatial disposition of functional groups. A peptidomimetic is a protease 

resistant unnatural substance mimicking the structural and potentially the functional 

behaviour of a peptide. Peptidomimetics have general features analogous to their parent 

structure, polypeptides, such as amphiphilicity. They have been largely developed for 

replacing peptide substrates of enzymes or peptide ligands of protein receptors. 

Peptidomimetic strategies include the modification of amino acid side chains, the 

introduction of constraints to fix the location of different parts of the molecule, the 

development of templates that induce or stabilize secondary structures of short chains, the 

creation of scaffolds that direct side-chain elements to specific locations, and the 

modification of the peptide backbone. 

 

1.5.2 Designing a foldamer 

Synthetic oligomers that fold into well-defined helical secondary structures are of 

considerable interest in supramolecular chemistry but also for mimicking the secondary 

structures of biopolymers. Consequently, great efforts have been made in the development 

of helical oligomers during the past decade [66]. Series of aliphatic β-, γ-, and δ-

homologues of α-peptides have been reported, comprising various linkages such as 

amides, sulfonamides, sulfoximines, N-oxo-amides, ureas or hydrazides [67-70]. Several 

families of aromatic oligoamides have been shown to adopt stable linear, bent, and helical 
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conformations stabilized by hydrogen bonds between amide groups and donor / acceptor in 

the aromatic rings [66]. 

Although a wide range of different supramolecular structures have been reported, few 

applications such as biological, catalytic or polymeric properties were studied. Research in 

this field is still largely devoted to structural studies. Most of the work led on these 

oligoamides deals with conformational and structural properties of the three dimensional 

arrangement as double helix formation [71] and molecular cages [72].  

 

1.5.3 Aromatic oligoamides 

The path to creating useful foldamers involves several daunting steps. (i) One must 

identify new polymeric backbones with suitable folding propensities. This goal includes 

developing a predictively useful understanding of the relationship between the repetitive 

features of monomer structure and conformational properties at the polymer level. (ii) One 

must endow the resulting foldamers with interesting chemical functions, to complete a 

specific goal. (iii) For technological utility, one must be able to produce a foldamer 

efficiently, which will generally include preparation of the constituent monomers in 

stereochemically pure form and optimization of heteropolymer synthesis. Each of these 

steps involves fascinating chemical challenges. 

Two kinds of monomers are used along this work to design aromatic oligoamide 

foldamer; the 2-amino-8-quinoline carboxylic acid with a side chain in position 4 and 

disubstituted 1,10-phenantroline-dicarboxylic acid, as depicted in Scheme  1.2. Once 

assembled in a sequence, these monomers form a H-bonds network and induce folding into 

helical structures as depicted in Figure  1.4 (b). 

 

 
Scheme  1.2 Building blocks of aromatic  oligoamide backbones versus a building block of 

a peptide backbone. The numbering correspond to the number of carbon 
constituting the backbone 
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1.6 Objectives of this thesis 

 

1.6.1 Supramolecular chelates for hydrogenase mimics 

Hydrogenases active site is electrochemically active; its role is to produce electrons, 

which are further used as reducing equivalents. These electrons have first to be transferred 

through the peptide to the location where the reduction has to occur. It has been suggested 

that ferrocene could replace the Fe-S clusters by performing electron relay using reversible 

conversion of iron II to iron III [73]. The idea is to synthesize small peptide sequences 

containing cysteine residues as mimics of this active site and to connect them to ferrocene. 

The complexes thus obtained serve as a chelate for a nickel and/or for an iron-carbonyl 

core, thus mimicking the Hydrogenase active site. Ferrocene will hopefully act 

ambivalently as an electron pathway but also as a scaffold using its original geometrical 

properties as a β-turn inducer. 

We propose that helical oligoquinolines could be used as a molecular scaffold for 

mimicking hydrogenase active sites using their predefined arrangement to design new 

supramolecular sulfur-containing ligand for organometallic complexes. To step from 

peptidomimetic to enzymomimetic, the aromatic oligoamides require the introduction of an 

orthogonal functionalization that mimics peptide side chains. The quinoline monomer 

depicted on Scheme  1.2 was functionalized with sulfur containing side chains as a mimic 

of natural cysteine. The synthesis of this modified monomer was followed by the 

oligomerisation to obtain a folded helical arrangement. The modified side chain placed at 

key positions, previously determined by theoretical prediction, affords a new kind of 

suprachelate that is further used for coordination with a bimetallic iron core mimicking the 

active site of Fe-only hydrogenase. 

 

1.6.2 Objectives 

 

The goals of this PhD thesis are numerous. 

First the synthesis and the characterization of ferrocene-peptide derivatives with 

sulfur containing amino-acid was performed. Therefore, a protecting group strategy for 

cysteine has to be found and optimized. This strategy will subsequently be adapted to the 
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organometallic solution phase synthesis. The free thiols thus obtained will serve as a 

chelate for iron carbonyl core.  

Second, this issue will be theoretically studied by molecular mechanics calculations. 

Since no available force field is parameterized for ferrocene-peptide derivatives, we will 

have to create this force field and to test it on independent structures before we start 

simulating potential scaffolds for hydrogenase mimics. 

Third, experience gained in sulfur chemistry will serve for a third approach, as two 

sulfurs will have to be placed at key position of an oligomer sequence and subsequently 

deprotected in order to afford free thiol. Complexation on this free thiol will also be tested. 

 

1.6.3 Techniques 

Elucidating the basic components and building principles of hydrogenases selected 

by evolution to propose reliable, efficient and environment respecting materials requires a 

multidisciplinary approach [74]. In this work the design, the synthesis, and the properties 

of structural models for hydrogenase are studied from two different synthetic approaches. 

The bioorganometallic approach consists of using the particular geometry and properties 

of ferrocene-bearing peptide derivatives to create a scaffold and an electron relay to mimic 

small model of hydrogenases by using the different techniques of inorganic chemistry. In 

the bioorganic approach, quinoline-derived foldamers will serve as pre-organised organic 

scaffolds. Their preparation involves multistep organic syntheses. These two different 

projects were both tightly connected to theoretical rationalization, this third approach is 

coined as theoretical; both bioorganometallic and bioorganic structures were predicted and 

studied in term of feasibility for the challenging project presented in this work. 
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2. Sulfur Protecting Groups and Peptide Syntheses 

 

 

 

One of the most challenging tasks for the modern synthetic chemist is to find a 

suitable protective group strategy. It is essential to find a group, which is stable under the 

reactions conditions, but easy to remove during the last step of the synthesis, which is only 

feasible by using specific reagent.  

Protection for the thiol group is very important for many areas of chemistry; for 

example for the protection of the thiol group in β-lactam chemistry [75], for the synthesis 

of coenzyme A, in which a carboxylic group is converted into a thioester [76], and last but 

not least in peptide synthesis, which often involve cysteine [77]. This field has been, 

therefore extensively studied and can be traced back to the beginning of the century. Up to 

now, about 80 different groups are referenced in literature for the protection of thiol [78, 

79], and about two dozens for the protection of cysteine have hitherto been described. 

Nevertheless, the problem of cysteine protection remains unsolved. The preferred 

protecting group is obviously dependent on the nature of the synthesis and in fact more 

dictated by preparative aspects such as compatibility of the cleavage conditions, ease of 

purification, and technical and/or commercial availability.  

 

 

2.1 Protective groups tested 

 

A free –SH group can be protected as a thioether, a thioester or oxidized to a 

symmetrical or unsymmetrical disulfide [79]. Thioethers are, in general, formed by 

reaction of the thiol with a halide in a basic media. They are cleaved by reduction, by 

acid-catalyzed hydrolysis, or by a reaction with a heavy metal such as Ag(I) or Hg(II), 

followed by hydrogen sulfide treatment to recover the free thiol. Thioesters are formed and 

cleaved as oxygen esters. However, they are more reactive to nucleophilic reduction, as 
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indicated by their use as “activated ester.” The disulfide protecting groups are usually 

prepared by substitution from a thioether. Besides, several miscellaneous protective 

groups, including thiazolidine, dithio acetal, and phosphine-sulfur derivatives are reviewed 

in literature [80]. A summary of the most commonly used protecting group for cysteine in 

peptide synthesis is shown in Table  2.1 along with their conditions of formation and 

cleavage. 

 

Table  2.1 The most commonly used thiol protecting group in peptide chemistry along 
with their formation and cleavage conditions 

 

Groups 
Name 
Type 

Reference 
Formation Cleavage 

 

benzyl 
Thioether 
[81, 82] 

1) PhCH2Cl, Cs2CO3, DMF 
2) PhCH2Br, n-BuLi, THF 

1) Na, NH3 
2) HF, anisole 
3) Electrolysis 

O
 

p-methoxybenzyl 
Thioether 
[82, 83] 

1) 4-MeOC6H4CH2Cl, Na/NH3 
2) 4-MeOC6H4CH2OH, 
TFA/DCM 

1) Hg(OAc)2, TFA 
2) TFA, reflux 
3) NpySCl, AcCOOH 

H
N

CH3

O

 

acetamidomethyl 
Thioether 

[84] 

1) AcNHCH2OH, HCl conc 
2) AcNHCH2OH, TFA 

1) Hg(OAc)2, H2S 
2) NpSCl, AcCOOH, NaBH4 

3) TFA, TIS 

CH3

CH3

CH3  

tertiobutyl 
Thioether 

[85] 

1) Isobutylene, H2SO4, DCM 
2) t-BuOH, HCl conc 

1) Hg(OAc)2, TFA, anisole 
2) HF, anisole 
3) NpSCl, AcCOOH, NaBH4 

S

CH3

CH3

CH3  

S-tert-butyl 
Disulfide 

[86] 

1) CH3OC(O)SCl, t-BuSh, 
MeOH 
2) t-BuO2CNHN(S-t-Bu), H2O 

1) NaBH4 
2) Bu3P, trifluoroethanol/water 

 

trityl 
Thioether 

[87] 

1) OHC(C6H5)3, TFA 
2) ClC(C6H5)3, TFA 

1) HCl, AcCOOH, TIS 
2) TFA, TIS 

S

N

O2N  

3-nitro-2-pyridine sulfenyl 
Disulfide 
[88-90] 

1) Thioether, NpySCl, 
AcCOOH 

1) CH2H5SH 
2) Bu3P, H2O 

S

O2N  

2-nitro-phenyl sulfenyl 
Disulfide 

[91] 

1) Thioether, NpSCl, 
AcCOOH 

1) CH2H5SH 
2) Bu3P, H2O 

O

O

 

fluorenomethyl 
Thioester 

[92] 
1) FmocCl, TEA, CH2Cl2 1) 20 % piperidine in CH2Cl2 
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Several protecting group, chosen among the mostly used for peptide chemistry, were 

tested by means of their suitability for our synthetic project. Except the H-Cys(Bzl)-OMe, 

which has been purchased from Novabiochem, the methyl ester protection was performed 

by using standard procedure described in ref. [85].  

 

 

2.2 Synthesis 

 

2.2.1 Preparation of the amino acids 

Most of the cysteine derivatives presented herein were bought from commercial 

sources in their S-protected form, excepted for the nitro-phenyl derivatives and the 

fluorenomethyl derivatives, which were synthesized according to literature protocols [93-

95].  

The 9-fluorenylmethoxycarbonyl group, introduced first introduced in 1970, has 

become one of the most widely used protecting group in peptide chemistry. Fmoc is often 

used to protect nitrogens and alcohols, but Fmoc protecting group has been recently 

reported for the protection of thiol [92]. This protective group is labile under mild basic 

conditions, which is interesting for peptide chemistry, since its cleavage is orthogonal to 

the one of Boc for example. This is also of a great interest for the S-protection of cysteine 

since no basic labile protective group is available from commercial sources. The 

H-Cys(Fmoc)-OH was synthesized according to the protocol described in ref. [92]. The 

Fmoc-Cl reacts with both; the amino group and the sulfhydryl group to give the 

Fmoc-Cys(Fmoc)-OH. The Fmoc that protect is the amino group is subsequently cleaved 

by using 20 % Piperidine in CH2Cl2 at 0°C to control the reaction, the Fmoc S-protection 

remains untouched through this selective cleavage step. The carboxyl group was then 

esterified with a methyl ester to afford 6b (see Scheme  2.1) in relatively good yield. The 

synthesis of Fluorenylmethyl (Fm) as another basic labile S-protective group has also been 

described in literature, but we were not able to obtain the product by following the 

protocols described in ref. [95, 96]. The tert-butyl protective group [97] is commercially 

available, but expensive. It has been found that within one day work and spending less then 

20 € we were able to obtain about 20 g of the H-Cys(tBu)-OH for a commercial value of 

200 €, by a simple addition tert-butyl alcohol on cysteine in acidic media as described in 

ref. [85]. A summary of the synthesis performed on cysteine is depicted in Scheme  2.1. 
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Scheme  2.1 Synthetic pathway for synthesis of protected cysteine; (a) Fmoc-Cl; CH2Cl2, 
4 h; (b) tBuOH, 2 N HCl, 12 h, reflux; (d) 20 % piperidine in CH2Cl2, 1 h, rt; 
(e) SOCl2, MeOH, 90°C reflux 

 

The cysteine synthetically or commercially obtained was subsequently transformed 

into a methyl ester, using a standard procedure involving thionyl chloride and methanol, 

either refluxed overnight or at room temperature over 48 h [85] (see Scheme  2.1). For all 

amino acids, the yield was quantitative, except for the disulfide derivatives for which the 

yield varies between 70 % and 80 %. It is interesting to note that this procedure also 

provides good results for acid labile protecting group such as Trityl, even though the 

reaction of esterification releases HCl gas in the medium. 

However, other protecting groups are available. It has been reported in literature that 

most of the conventional S-protecting group of cysteine could be selectively converted to 

the 3-nitro 2-pyridine-sulfenyl [85] group after treatment with the corresponding halide. 

The tert-butyl derivative of cysteine is placed in glacial acetic acid in presence of either 

3-nitro 2-pyridine-sulfenyl or 3-nitro benzene-sulfenyl for a complete conversion of Bu in 

either NpyS or NbS. This part is discussed in details in Chapter 5. 
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2.2.2 Peptide synthesis 

All of the peptides have been synthesized via solution phase synthesis. A peptide 

bond is generally formed by nucleophilic attack of the amine nitrogen of on amino acid on 

the carbon of the activated carboxylate group of the other amino acid. The reagent that 

transforms the carboxylate group to a better leaving group are called coupling reagent. 

Solution peptide coupling agents include several classes of reagents, 

N,N’-dicyclocarbodiimid, isobutyl chloroformate, phosphonium reagent, or benzotriazole 

derivatives. The most attractive coupling method for the synthesis of dipeptides in solution 

appeared to be the mixed-anhydride method [98] depicted in Scheme  2.2. 

 

 
 
Scheme  2.2 Mixed anhydride coupling strategy used for dipeptide synthesis; (a) NMN, 

IBCF, THF, 1 h; rt; (b) H-Cys(PG)-OMe, THF, 4 h, rt. 
 

First, the carboxylic acid is deprotonated by N-methylmorpholine; the carboxylate is 

subsequently transformed into a mixed anhydride derivative through a reaction with IBCF, 

yielding a reactive intermediate. Upon nucleophilic attack, of the amine nitrogen atom, the 

dipeptide is formed under elimination of isobutanol and CO2. To prevent the 

polymerization of homopeptides, and unwanted reaction with the side chain the amino 

group of one of the amino acid is protected with either a Boc or an Fmoc protecting group 

and the carboxylate function of the other amino acid is was protected with a methyl ester. 

The side chain is protected with the protecting groups depicted before. These three kind of 

protecting groups could be, in the ideal case, selectively cleaved while leaving the other 

unaffected.  
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The dipeptides presented in Table  2.2 were synthesized using the mixed anhydride 

strategy. Boc group has been removed, with quantitative yield, by the reaction in pure TFA 

yielding the trifluoroacetate ammonium salt, the volatile isobutylene and CO2 [99]. The 

N-Fmoc group can be easily cleaved with the mixture Piperidine / DCM (1:1) [100]. 

Methyl esters can be efficiently hydrolysed under basic condition in MeOH / THF mixture 

or 1,4-dioxane in presence of KOH as it is described in ref. [101] for example. 

 

Table  2.2 Synthesized dipeptides in their N-protected and deprotected forms, along 
with the yield of the coupling and their numbering. 

 

Dipeptides 
Yield[a] 

Number[b] 
N-deprotected form 

Yield[c] 
Number[b] 

H
N

O

N
H

Boc

O

O

S

S

Bzl

Bzl

 

93 % 
13 

H2N

O

N
H

O

O

S

S

Bzl

Bzl

 

Quant 
19 

H
N

O

N
H

Boc

O

O

S

S

pOMeBzl

pOMeBzl

 

90 % 
14 

H2N

O

N
H

O

O

S

S

pOMeBzl

pOMeBzl

 

89 % 
20 

H
N

O

N
H

Boc

O

O

S

S

tBu

tBu

 

87 % 
17 

H2N

O

N
H

O

O

S

S

tBu

tBu

 

Quant 
21 

H
N

O

N
H

Fmoc

O

O

S

S

Trt

Trt

 

72 % 
16 

H2N

O

N
H

O

O

S

S

Trt

Trt

 

61 % 
22 

[a] Yields obtained either for the coupling step  
[b] Numbers are consistent with the experimental part 
[c] Yields for the Boc / Fmoc deprotection step 
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2.2.3 Removal of side-chain protective groups 

Removal of the side chain protective groups was tested on these dipeptides in their 

N-protected form. The different reaction conditions are summarized in Scheme  2.3. 

Isolation of the free thiol from the reaction mixture was performed by liquid 

chromatography on silica gel using most of the time a mixture of ethyl acetate and n-

hexane as eluting system. In several cases product was difficult to purify due to the polarity 

of thiol combined with its instability in basic media. 

 

 
Scheme  2.3 Cysteine side chain protecting group removal procedure; (a) TFA 1 % in 

CH2Cl2, 1 h, rt; (b) n-tributylphosphin, acetone/water, 4 h, rt; (c) liquid NH3, 
Na, 1 h, -73°C; (d) NpyS, acetic acid, 2 h, rt; (e) liquid NH3, Na, 1 h, -73°C 

 

From this first experiment about cleavage of cysteine side chain we were able to 

classified the protecting group in terms of the ease of cleavage, the criteria were yield, ease 

of purification and stability of the obtained thiol. Resulting in a stability classification: Trt 

> NpyS > NbS > tBu > pOMeBzl > Bzl. Unfortunately, the easier is the cleavage step, the 
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more sensitive is the protecting group. Further tests are necessary to determine the stability 

of these groups during ferrocene derivatization. 

 

 

2.3 Concluding remarks 

 

In the selection of a protective group, it is of a paramount importance to know the 

reactivity of the resulting protected functionality toward various reagent and reactions 

conditions of the synthesis. The numbers of protective groups available is large and their 

availability either commercial or technical is broad. In this first Chapter we have pursued 

to browse the most well known protective group for thiol that are used for peptide 

synthesis. These protecting groups were subsequently tested in term of stability, ease of 

cleavage, as well as commercial availability and price. From this technical review, we have 

found two potential candidates for the following work: (1) The trityl group, which is quite 

stable and easily removable, but certainly bulky (2) the tert-butyl, which is extremely 

stable but cleavable in two steps. Others tested protective groups had some drawbacks; S-

StButhio is too sensitive and Acm too expensive. Benzyl and paramethoxy benzyl, which 

are, extremely stabile and therefore their cleavage conditions may be too harsh that is why 

their compatibility with the reactions conditions used along this work has to be further 

tested in the next Chapter.  
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3. Ferrocene-Peptides Derivatives 

 

 

 

Conjugates of ferrocene and amino acids or peptides have been intensively studied in 

recent years [102]. The resulting conjugates were mostly investigated as electrochemical 

sensors for organic substrates [60, 103] or for anions [104]. In addition, such systems may 

serve as organometallic mimics of turn structures in peptides as first suggested by Herrick 

and co-workers [105]. Real organometallic turn mimics with anti-parallel peptide strands 

can be realized by use of the organometallic amino acid 1’-aminoferrocene-1-carboxylic 

acid [106-108] as demonstrated in a recent communication [109]. However in most cases 

studied so far, ferrocene carboxylic acid or ferrocene 1,1’-dicarboxylic acid 2 were coupled 

to the N-termination of the biomolecules. In those compounds, the question of structural 

organization through hydrogen bonds has been investigated in detail in the solid state by 

X-ray crystallography and IR spectroscopy as well as in solution by IR, NMR and CD 

spectroscopy, notably through the work of Moriuchi et al. [110-113]. 

A literature survey reveals that most compounds studied so far were composed of 

lipophilic amino acids without functional groups in the side chain [57]. These compounds 

are straightforward to prepare because no protecting groups are required. However, it is 

certainly desirable to provide additional functionality for further derivatization. In this 

work, we present results on the synthesis and characterization of ferrocenoyl derivatives 

with sulfur-containing amino acids and dipeptides, such as methionine and cysteine. 

The amino acids and peptides described in Chapter 2 were coupled to ferrocene 

moiety, either to ferrocene mono carboxylic acid or to ferrocene 1,1’-dicarboxylic acid. A 

large range of novel ferrocene-peptide derivatives containing protected sulfhydryl residue 

were synthesized and fully characterized. They were subsequently investigated as potential 

scaffold for Hydrogenase active site. 
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3.1 Synthesis of ferrocene bearing sulfur containing peptide 

 

Most of the differently protected amino acids or dipeptides were coupled to ferrocene 

moiety via a standard peptide coupling procedure. Ferrocene carboxylic acid or ferrocene 

1,1’-dicarboxylic acid 2 were activated either with EDC and HOBt or with DIPEA, TBTU. 

Subsequent addition of either Met or Cys amino acid ester yields the amino acid 

conjugates. Enantiomerically pure L amino acids were used in all cases. The thiol of the 

cysteine derivatives were protected by either benzyl (Bzl), p-methoxy-benzyl (p-OMe-

Bzl), trityl (Trt) or tertiobutyl (tBu) groups. Ferrocene-dipeptide conjugates were obtained 

the same way, after addition of the dipeptides H-Cys(PG)-Cys(PG)-OMe. However, this 

synthesis scheme did not work satisfactorily for the methionine and the Trityl dipeptides. 

Instead, the methyl ester in ferrocene-methionine conjugates 25a and 25b were hydrolyzed 

to yield the free acids Fe[C5H4-CO-Met-OH]2 25a’ and Fc-CO-Met-OH 25b’. Activation 

of the acid and coupling to H-Met-OMe yielded the desired methionine dipeptides 25c and 

25d in good yield. This iterative strategy also failed in the case of Trityl dipeptide, we 

assumed that Trityl is too bulky and therefore induce a steric hindrance that prevents 

dipeptide to be coupled to ferrocene moiety. However, coupling of the protected amino-

acid cysteine-trityl has worked without any problems. A summary of the synthesized 

compounds with the numbering is presented in Scheme  3.1 along with the reactions 

conditions and synthetic strategy. 

 

Derivatives 33a, 33b, 33c and 33d, were prepared from the deprotection of 

corresponding derivatives 27a, 27b, 28c, and 28d (these syntheses are detailed in Chapter 

6). All compounds were purified by column chromatography on silica. Crystallisation 

yielded orange crystals, which were suitable for X-ray crystal determination in the case of 

23b, 23c, 25a and 25d.  
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Scheme  3.1 Reaction conditions and synthetic pathway for the synthesis of ferrocene peptide 
derivatives (a) HOBt, EDCl, Ipr2NEt, CH2Cl2; (b) H-(AA)n-OMe, CH2Cl2; (c) NaOH, 
dioxane/water (1:1); (d) IBCF, NMN, NEt3, CH2Cl2; (e) H-Met-OMe, CH2Cl2. 

 

3.1.1 Helical chirality 

Dipeptides derivatives of ferrocene were found to have a helical chirality du to the H-

bonds that interconnect both peptide strands. This helicity can be detected by CD-

spectroscopy (results are presented later). It’s interesting to point out that the for the 

Herrick and van Staveren conformation, L-amino acids were so far always found to induce 

P-helical chirality of the ferrocene moiety, while D-amino acids induce M-chirality. M and 

P refer respectively to the helicity of the ferrocene, for this type of ferrocene peptide; P 

helicity will lead to a positive cotton effect in CD spectroscopy as it is shown in Scheme 

 3.2. In unsymmetrical D,L-amino acids substituted ferrocene derivatives mixture of P and 

M helical conformer is formed. In this work, the absolute configuration used for all amino 

acids used is the L-configuration unless otherwise noted. The helical chirality of ferrocene 

is usually not taken in account unless specified. 
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Scheme  3.2 Helical chirality of ferrocene bearing peptides derivatives in (A) Herrick (B), 

van Staveren and (C) Xu conformations 
 

 

3.2 Characterization 

 

All new compounds were extensively characterized using the standard spectroscopic 

method. Electron ionization (EI) mass spectrometry clearly confirms the composition of all 

new compounds. Indeed, the M+ peak is one of the strongest signals in many compounds. 

Naturally, the dipeptide conjugates with higher mass were less volatile and therefore, the 

M+ peak is lower in intensity, although still clearly detectable. The orange colour is 

attributed to an absorption in the visible region around 445 nm. The UV properties were 

not extensively studied at this stage of the work. 

 

3.2.1 Infra Red Spectroscopy 

The question of hydrogen bonding can be elucidated by a variety of techniques as IR 

spectroscopy. IR studies appears to be interesting in this case since the both, solid state and 

solution phase structure can be studied by the same method. We thus measured IR spectra 
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as KBr disks but also in chlorinated solvents, either CHCl3 or CH2Cl2, which are known to 

enhance H-bond character. From these too sets of measurement, we have extracted the NH 

stretching vibration and deformation, the ester carbonyl stretching vibration and the amide 

carbonyl stretching vibration. The amide carbonyl stretching vibration and the amide-

bending mode are also frequently referred as “amide I” and “amide II”. These bands are 

among the strongest absorptions in the spectra, along with the ester carbonyl stretching 

vibration. It is well established that NH stretching vibrations below 3400 cm-1 indicate 

hydrogen bonding of the amide proton [114, 115]. In solution, this is the case for all 

disubstituted compounds as it has been reported previously [64]. For monosubstituted 

derivatives, the intermolecular hydrogen bonds, which exist in the solid state, are broken 

up in solution and NH-stretch values above 3400 cm-1 are observed for this class of 

compounds. For the bis-(dipeptide) derivatives two bands should be observed which are 

assigned to the two amide bonds, one, which is engaged in hydrogen bonding, and the 

other, which is not. It is surprising; however, that most of the compounds show only one 

NH band. This seems to suggest that also the other amide proton is engaged in a hydrogen 

bond most probably intermolecular. For a comprehensive study, Kraatz and co-workers 

have also discussed the significance of other IR bands in relation to amide hydrogen 

bonding [116].  

In this study, eighteen different derivatives are listed in Table  3.1. It have been 

hitherto reported that only the NH deformation (“amide II”) in solution is of any diagnostic 

value, in that a shift of 30 cm-1 to higher wavenumbers indicates hydrogen bonding. Values 

around 1540 cm-1 do indeed correlate with hydrogen bonding, whereas in non-hydrogen 

bonded derivatives values of 1500 – 1510 cm-1 are observed. However in this case, it 

seems that in solid state all measured derivatives a NH bending band between 1530 cm-1 

and 1550 cm-1, which account for hydrogen bonding. 

Nevertheless, some trends can be deducted from data collected for the amide 

carbonyl stretching vibration. Values around 1650 – 1670 cm-1 do indeed correlate with 

hydrogen bonding, whereas in non-hydrogen bonded derivatives values of 1620 –

 1630 cm-1. For the bis-(dipeptide) derivatives two bands are observed as for compounds 

28b, 28d, 33b, 33d, and 34b, which are assigned to the two amide bonds, one which is 

engaged in hydrogen bonding, and the other which is not. They are the first clues of 

intramolecular H-bonding for these derivatives in the solid state. On the contrary, for 

compounds 25b, 25d, and 23b, 23d just a single band is observed in the NH bending 

region (see Table  3.1). Similar results are obtained in solution. 
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Table  3.1 Infra red data collection on synthesized ferrocene derivatives in solid phase  

 

Compounds ν (ν (ν (ν (NH valence) [a] 
ν (ν (ν (ν (C=Oester 

valence) [a]    

ν (ν (ν (ν (C=Oamide 

valence) [a] 

ν (ν (ν (ν (NH deformation) 

[a] 

23a[*] 3278 1734 1628 1541 

23b 3273 1745 1627 1540 

23c 3272 1747 1629 1550 

23d 3275 1745 1627 1541 

25a 3269 1747 1625 1530 

25b 3306 1739 1634 1539 

25c 3267 1744 1647 1545 

25d 3279 1744 1628 1545 

28a 3274 1754 / 1735 1631 1542 

28b 3304 1744 1654 / 1628 1535 

28c 3294 1752 1635 1542 

28d 3288 1750 1664 / 1635 1539 

33a[b] 3299 1745 1635 1531 

33b[b] 3294 1752 1654 / 1628 1542 

33c[b] 3284 1747 1654 / 1624 1539 

33d[b] 3293 1745 1671 / 1626 1542 

34a 3298 1744 / 1730 1629 1532 

34b 3265 1749 1663 / 1644 1543 
[*] reported by Kraatz et al. in ref.[117], [a] in cm-1, [a] syntheses of these derivatives are 
discussed in Chapter 6 

 

3.2.2 NMR 

NMR spectroscopy also confirms the composition of the compounds even at first 

glance. All signals for the amino acid side chains are readily assigned by 2D spectroscopy 

or comparison to literature values. Ester hydrolysis (in 25a’ and 25b’) is evident from the 

disappearance of the singlet for the methyl ester at about 3.8 ppm. The amide protons 

appear between 7.0 – 8.5 ppm in CDCl3 solution as a doublet due to coupling with the CHα 

proton. Their position is indicative for the presence or absence of hydrogen bonding, as 

will be discussed below. The ferrocene groups show characteristic patterns between 

4.0 - 4.5 ppm in all compounds (see Figure  3.1). Signals with respective intensity 5:2:1:1 

are observed for the mono-substituted ferrocene derivatives. In contrast, the disubstituted 
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derivatives show four signals, with the same intensity, for the Cp rings between 4.2 –

 4.4 ppm. 

 

 
 
Figure  3.1 NMR spectra of 23a (top) and 23b (bottom), Cp and aromatic/amide region 

only. Cp signals are marked with “o”, “x” denotes an impurity. 
 

Depending on solvent and sample concentration, broad signals in the 1H NMR 

spectra are observed for some compounds in CDCl3 even still after addition of small 

amount of MeOD to cleave intermolecular H-bonds. This may be due to intermolecular 

interactions in solution through hydrogen bonding, especially in higher concentrations for 

the dipeptide derivatives. On the other hand, some of the disubstituted derivatives do 

indeed show extremely well-resolved 1H NMR spectra as it is the case for 23b for 

example. By manual iterative simulation, we were able to extract all coupling constants for 

one derivative as shown in Figure  3.2 (see legend of Figure  3.2 for values). The numbering 

of the protons of the Cp-ring is given in Scheme  3.3. 
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Scheme  3.3 Numbering of the different type of proton of the Cp-ring in disubstituted 
ferrocene 

 

In combination with 2D-NOESY spectra, we were able to assign signals A – D 

(Scheme  3.3), assuming a 1,2' conformation of the substituents in solution (see below for 

discussion of this point). The two signals A and B at lower field are both ortho to the 

amide substituents, as deduced from their chemical shift and coupling constant pattern. A 

strong NOE is observed between the Cp amide proton and proton B, which is therefore 

assigned. From there, coupling constants suggest the order of protons given in Scheme  3.3, 

which is also supported by the 2D NMR data.  

 

 
Figure  3.2 Cp region of the NMR spectrum of 23b (top) and simulation with MestreC 

(bottom). The following parameters were used in the simulation: δA = 4.88; 
δB = 4.72; δC = 4.54; δD = 4.39; JAB = 1.2 Hz; JAC = 2.5 Hz; JAD = 1.1 Hz; 
JBC = 1.3 Hz; JBD = 2.7 Hz; JCD = 2.5 Hz. see discussion for assignment of 
signals. 

 

A second criterion for hydrogen bonding is a significant downfield shift of the amide 

proton in the 1H NMR spectrum of about 1 ppm [118]. This is confirmed for all 

compounds in this study as it is shown in Table  3.2. Indeed, two amide resonances are 

observed for dipeptide derivatives, suggesting two different amide protons with and 

without hydrogen bonding. The resonances observed around 6.4 ppm observed in the case 
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of 23a and around 8.5 ppm in the case of 25d. This acknowledges the difference in 

H-bonding pattern with respect to the size of the podand peptide. 

A value of 3JHαααα-NH coupling constant > 8 Hz is also indicative for hydrogen bonding, 

although this is not a stringent criterion. In the case of compound 28c the down field shift 

of the amide proton (7.35 ppm) that suggests a low H-bond character and the 3JHαααα-NH 

coupling constant (9.9 Hz) are not consistent. 

 

Table  3.2 NMR data collection for some ferrocene-peptide derivatives 

 

Compounds δδδδNH
[a] 3

JHH
[b]
 Compounds δδδδNH

[a] 3
JHH

[b]
 

23a 6.43 7.2 28b 7.48 8.4 

23b 7.54 8.3 28c 7.35 / 6.67 9.9 / 6.0 

23c 7.12 / 6.55 7.4 / 7.0 28d 8.19 / 7.45 8.5 / 7.9 

23d 8.21 / 7.23 8.0 / 7.7 33a 6.58 7.2 

25a 6.57 7.8 33b 7.55 8.5 

25b 7.8 8.7 33c 7.20 / 6.64 -[c] / 7.3 

25c 7.2 / 6.32 -[c] / -[d] 33d 8.10 / 7.2 8.0 / -[c] 

25d 8.55 / 7.81 8.7 / 6.0 34a 6.63 6.7 

28a 6.48 7.6 34b 7.34 6.9 

[a] in ppm; [b] in Hz; [c] could not be determined because the signal overlapped the residual solvent signal [d] 
could not be determined because the signal was too broad 

 

3.2.3 Circular Dichroism 

We have also recorded CD spectra of compounds from the families 23, 25, 38, 33 

and 34. Representative examples are depicted in Graph  3.1. Spectra were recorded in 

CH2Cl2 at concentrations of about 1.0 mM and 0.1 mM. Ellipticity maxima, λmax and 

Ellipticity minima, λmin are given in nm. Molar ellipticity coefficients, Mθ, were calculated 

as described in Equation 1. 
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lc
M

×
×

=
θ

θ
100

    1 

 

Where the ellipticity θ is given in is in deg, concentration c in mol.L-1 and path length 

l in cm, thus giving deg L mol-1 cm-1 for Mθ [119, 120]. 

 

 

Graph  3.1 CD spectra of 25b (A, conc. is 0.15 mM in CHCl3), 25a (B conc. is 3.2 mM in 
CHCl3) and 25a (C conc. is 3.2 mM in CHCl3:MeOH (9:1)). Please note the 
different concentration for 25b and 25a, see discussion for explanations. 

 

In this experiment, the concentration for 25b was chosen ten times lower than for 25a 

in order to display both spectra on the same absolute ellipticity scale in Graph  3.1. 

Naturally, molar ellipticity coefficients are much higher for 25b than for 25a [121]. Metal-

centred transitions are expected in the region above 400 nm. For the disubstituted 

derivatives a strong positive Cotton effect is observed around 480 nm (25b: 

Mθ = 38950 L.mol-1.cm-1 at 485 nm). A 100 fold weaker positive band is seen for the 

mono-substituted derivatives around 460 nm (25a: Mθ = 402 L mol-1 cm-1 at 460 nm), 

followed by a weak negative band around 500 nm (25a: Mθ = -1610 L mol-1 cm-1 at 

500 nm). A spectrum of 25a was also recorded in CHCl3 / MeOH (9:1) in order to clarify 
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whether the ferrocene-based bands above 400 nm in monosubstituted compounds originate 

from inter- or intramolecular hydrogen bonding interactions (spectrum C, 3.2 mM). In the 

region below 400 nm, which is attributed mainly to transitions of the amino acids, all 

spectra are rather comparable. 

The CD spectroscopic measurements correlate nicely with results from Hirao and co-

workers [59, 111]. A positive Cotton effect at 480 nm is indicative for a P-helical 

arrangement of the substituents on the Cp rings in disubstituted derivatives as compound 

23b (Graph  3.1, spectrum A). A similar conclusion was also drawn for a tetrapeptide 

containing the unnatural amino acid 1-aminoferrocene-1'-carboxylic acid [109]. It is 

interesting to note that also the monosubstituted derivatives as compound 25a show an 

appreciable CD signal above 400 nm. It is, however, much weaker than in derivatives 25b, 

and has a different appearance. One might argue that this signal is due to the proximity of 

the chiral centre (Cα) on one Cp ring, which induces a polarization in the metal-centred d-d 

or metal-to-ligand transitions and thus a CD signal at low wavelength. Alternatively, it 

might be due to intermolecular hydrogen bonding interactions. To test this hypothesis, we 

have added 10 % MeOH to the solution of 25a in CHCl3 (spectrum C) and the resulting 

results is that spectra B and C look very similar. Therefore, we conclude that the observed 

CD bands above 400 nm are an intrinsic property of a single molecule and not due to 

intermolecular hydrogen bonding interactions. 

In a second experiment, the effect of the protecting group is studied. Therefore, the 

family 33 and the 28 were measured and their Molar Ellipticity were plotted. The results 

are discussed in Chapter 6. 

 

3.2.4 X-ray 

Single crystals suitable for X-ray analysis were obtained by slow diffusion of pentane 

in a solution of ethyl acetate for 23b. Single crystal for both 23c and 25a were obtained by 

slow evaporation of CH2Cl2 from a CH2Cl2 / heptane mixture. Single crystals for 25d were 

obtained by slow evaporation of CHCl3 from a CHCl3 / heptane mixture. In order to 

determine the conformation and possible hydrogen bonding interactions, the X-ray single 

crystal structures of those derivatives were determined (see Experimental section for 

experimental details). All compounds crystallize in chiral space groups, as expected and 

frequently observed before for metallocene amino acid derivatives [105, 122]. Ortep plots 

are depicted with 50 % probability in Figure  3.3. 
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All structures confirm the proposed composition of the compounds. Excepted for 

25d, none of the compounds shows any intramolecular hydrogen bonding. However, all 

amide protons are engaged in intermolecular hydrogen bonding. In compound 25a, only 

one amide bond per molecule is present, and this leads to extended chains in the solid state 

through hydrogen bonding between the amide proton and the carbonyl oxygen atom of the 

amide group of the neighbouring molecule (N(7)H-O(26) and N(27)H-O(6A)). For both 

other compounds, several amide bonds are present and a more complicated three-

dimensional intermolecular hydrogen-bonding pattern is observed. It is noteworthy that the 

disubstituted derivative 23b shows a 1,3’-substitution pattern of the ferrocene moiety. 

Consequently, the distance between the two Cys residues is too large for intramolecular 

hydrogen bonding. 

 

 
 
Figure  3.3 Ortep plot of the asymmetric units of 25d, 25a, 23c, 23b. Thermal ellipsoids 

are depicted at 50 % of probability. In the case of 25d only the major isomer 
is depicted. 

 

In the case of 25d; the compound crystallizes in orthorhombic space group P212121. 

An ORTEP plot of one molecule is shown in Figure  3.3. Metrical parameters of the 
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ferrocene moiety are comparable to those of other ferrocenoyl dipeptides reported 

previously and will therefore be discussed only briefly [62, 64].  

The Cp(centroid)-Cp(centroid) distance is 3.302 Å and the dihedral angle θ between 

the two Cp rings is 0.7°. With a torsion angle C(5)-Cp(centroid)-Cp(centroid)-C(35) of 

ω = 67.5°, the two Cp rings are in a nearly eclipsed conformation. The carbonyl groups are 

slightly tilted from the mean plane of the Cp rings with dihedral angles β of 1.7° and 9.0° 

(see Figure  3.4 for a definition of these parameters).  

 

 

Figure  3.4 Some important structural parameters in 1,n’-disubstituted ferrocene peptides 
derivatives 

 

The molecule 25d adopts the "Herrick conformation" with two symmetrically 

equivalent hydrogen bonds between the amide NH on one and the proximal (relative to the 

Fc moiety) methionine carbonyl group on the other peptide chain [61]. In addition, the 

carbonyl group O(6) adjacent to one Cp ring is bridged to the methyl-ester carbonyl atom 

O(20) on the same peptide chain by a water molecule O(60) forming a 12-membered ring. 

The distal amide NH on this peptide chain is involved in an additional intermolecular 

hydrogen bond with a bridging water molecule of an adjacent molecule with a distance of 

N(40) ··· O(60) of 2.782 Å, thus forming a zig-zag chain along the crystallographic b axis. 

Even more remarkable is the stereochemistry of the helical chiral ferrocene moiety. 

As mentioned above, all ferrocenoyl dipeptides studied so far with the "Herrick 

conformation" in the solid state were found to have P helicity at the ferrocene moiety for L 

amino acid side chains and M helicity when using D amino acids instead, thus leading 

preferentially to L,P,L or D,M,D isomers, respectively [123-125]. In contrast to all other 

ferrocenoyl dipeptides characterized so far, 25d is a mixture of two isomers in the solid 

state: L,D,M,D,L (major isomer, > 80 %) and L,D,M,L,L (minor isomer). Both isomers are 

depicted in Scheme  3.4. This finding can be explained if a partial racemisation of the two 

Met residues directly bound to the ferrocene during the deprotection of the ester groups in 

basic media is assumed. The two bands observed in IR and the weak CD signals (see 

Graph  3.1) are consistent with a mixture of diastereomers.  
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Scheme  3.4 Schematic representation of both isomers of 25d observed in the crystal lattice 
 

 

3.2.5 Electrochemistry 

In order to elucidate another interesting feature from this kind of compound, several 

experiments of square wave and cyclic voltammetry were performed on some of these 

compounds. All measured compounds containing ferrocene show a reversible one-electron 

oxidation for the ferrocene moiety in solution. Ferrocene moiety undergoes a simple outer 

sphere one-electron redox process. Influence of the substituents was also estimated, a 

maximum difference of 50 mV between the various amino acids is observed.  

 

At the start of the experiment, the bulk solution contains only the reduced form of the 

redox couple namely, in this case (Figure  3.5) Fc, 25a, 25b so that at potentials lower than 

the redox potential, i.e. the initial potential, there is no net conversion of reduced state R 

into oxidised state O. As the redox potential is approached, there is a net anodic current, 

which increases exponentially with potential. As R is converted into O, concentration 

gradients are set up for both R and O, and diffusion occurs down these concentration 

gradients. At the anodic peak, the redox potential is sufficiently positive that any R that 

reaches the electrode surface is instantaneously oxidised to O. Therefore, the current now 



Ferrocene-Peptide Derivatives 
 

39 

depends upon the rate of mass transfer to the electrode surface and so the time dependence 

is “qt” resulting in an asymmetric peak shape. Upon reversal of the scan, the current 

continues to decay with “qt” until the potential nears the redox potential. At this point, a 

net reduction of O to R occurs producing a cathodic current, which eventually causes a 

peak-shaped response.  

 

 

 

Figure  3.5 Cyclic voltammogram of a mixture of Fc, 25a and 25b measured in pure 
acetonitrile using Bu4NPF6 (0.1 M) as a supporting electrolyte; comparison of 
the one electron process of the non-substituted, the monosubstituted and the 
disubstituted ferrocene. This spectra is not calibrated to Fc/Fc+ 

 

The redox potential for some ferrocene derivatives are shown in Table  3.3. The 

substituted derivatives display higher oxidation potential than ferrocene (set to 0.00 V by 

definition); the oxidation potentials for mono-substituted derivatives are observed around 

200 mV vs. Fc / Fc+, whereas they are observed around 400 mV (see Table  3.3) for the 

disubstituted derivatives. It appears that the substituents effect are additive, because the 

redox potential difference between ferrocene and the monosubstituted derivatives is 

approximately equal to the difference between the later and the disubstituted derivative. 

The increase of the oxidation potential upon substitution of the Cp ring by amide groups 

can be explained by the withdrawal of electron density from the ferrocene moiety by these 

substituents, resulting in a derivative that is more difficult to oxidise. A molecular orbital 

treatment of the interaction between the orbitals of the ferrocene and the orbitals of 
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ferrocene with several electron-withdrawing substituents has already been reported [117]. 

The authors of that publication stated that one of the components of the e2g set (the 

HOMO) has a higher interaction with the orbitals of the substituents. This results in the 

stabilization of one of the components of the e2g set, with the other component remaining 

about identical in energy and thus, this component becomes the HOMO of the compound. 

Although the authors could correlate trends in bond-lengths observed for various 

substituted ferrocene derivatives, this molecular orbital treatment does not provide an 

explanation for the shift of oxidation potential, because the new HOMO of the system is at 

nearly the same energy as the previous e2g set. Nevertheless, photoelectron spectroscopic 

investigations clearly demonstrate that the HOMO shifts to lower energy upon addition of 

electron withdrawing substituents on the Cp-rings.  

 

Table  3.3 Half-wave potential determined from cyclo-voltammogramm for compounds 
and calculated versus Fc/Fc+ potential. 

 

Compounds Fc/Fc+E1/2 (mV) Compounds Fc/Fc+E1/2 (mV) 

Fc(COOH) 238 2 456 

23a 187 23b 448 

23c 182 23d 387 

28a 193 28b 395 

28c 202 28d 448 

33a 199 33b 417 

33c 196 33d 396 

 

From the data summarized in Table  3.3 it is difficult to extract a relationship between 

the size or the nature of the substituents and a shift in the oxidation potential. However, it 

is interesting to note that the oxidation potential is shifted from about 40 - 50 mV from the 

simple ferrocene carboxylic acid (238 mV) or 1,1’-dicarboxylic acid (456 mV) to the 

peptide derivatives (monosubstituted around 200 mV, disubstituted around 400 mV). This 

can be attributed to the fact that a carboxylic acid group is more electron withdrawing than 

an amide group. 
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3.3 DFT study of H-bonds patterns 

 

Density functional theory is the method of choice to study the electronic and 

geometrical structure of transition metal-based systems [126]. It has already been 

successfully applied to investigate the conformational preference of substituted ferrocene 

derivatives [108, 127]. All calculations of this part of the work were performed using the 

Gaussian98 commercial package [128]. The coordinate files were prepared and worked-up 

with Molden 4.3 software facilities [129]. The B3LYP [130, 131] exchange 

correlation-functional and the level of theory Lanl2DZ were used [132, 133]. Effective 

core potentials theory was used for the heavy atoms during the geometry optimizations. All 

converged geometries were characterized as stationary points by analytical calculation of 

vibrational frequencies due to the absences of imaginary frequencies.  

Three different conformation were considered for ferrocene-1-glycine-1’-glycine, the 

“Herrick conformation”, with two symmetrically equivalent hydrogen bond, the “van 

Staveren conformation”, with only one hydrogen bond and the “Xu conformation” without 

intramolecular H-bonds. The glycine was chosen because of its achirality, to simplify the 

calculation and the subsequent output. Models of all three structures with truncated side 

chains to reduce the calculation time were built from available crystal structure obtained 

from CCDC. The geometries of the models were fully optimized without symmetry 

constraints. The results are compared to the experimental data from the X-ray structure. 

The main geometry is obviously conserved, distances and angles are accurately reproduced 

even though the well-known overestimation of metal-ligand bond lengths in DFT 

calculations [134]. It is assumed that the model chemistry used is able to reproduce the 

important geometrical feature of ferrocene-glycine derivative.  

The relative energy of the three different conformation of a same node was 

compared. The Herrick’s conformation A (see Figure  3.6) appear to be the most stable 

conformation, followed by the van Staveren’s conformation B (see Figure  3.6) with an 

energy difference of about 33.9 kJ mol-1 and finally the Xu’s conformation C (see Figure 

 3.6) with an energy difference of 29.7 kJ mol-1. These results are in good agreement with 

the hydrogen bonding enthalpy of water, which has been estimated to be 23 kJ mol-1. This 

is also in the line with the fact that the Herrick’s conformer is the only detectable species in 
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solution, in most of the case. We thus confirm that intramolecular H-bonding is a 

stabilizing factor in this family of compounds. 

 

 
Figure  3.6 Relative stability of conformers A, B, C of Fe[C5H4-CO-Gly-NH2]2, 

calculated by DFT B3LYP/LanIDZ. 
 

However, in the solid state, the most stable conformation seems to be determined by 

a delicate balance of the relative strength of the various intra- and intermolecular possible 

H-bonds.  

 
 
Figure  3.7 Relative stability of conformers D L,P,L; E L,P,D; F D,P,D of 

Fe[C5H4-CO-Ala-NH2]2, calculated by DFT B3LYP/LanIDZ. 
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A second calculation was performed on ferrocene-1-(L)alanine-1’-(L)alanine, Using a 

chiral amino acid, an additional three diastereoisomeric conformations are possible for the 

Herrick conformer depending on the helical chirality of the ferrocene moiety and the 

chirality of the amino acids. Their conformational preference was investigated using 

Fe[C5H4-CO-Ala-OCH3]2 as model compound, as it is depicted in  

Figure  3.7). The energy differences between the three conformations are in the range 

of 8.5 to 8.8 kJ mol-1. It is not possible to predict any general trend from such small energy 

differences. 

 

3.4 Discussion 

 

The synthesis of mono- and disubstituted amino acid and peptide derivatives of 

ferrocene carboxylic acid and ferrocene 1,1’-dicarboxylic acid proceeds without problems. 

Coupling of the dipeptide is possible as well as two sequential couplings. The preferred 

sequence is obviously dependent on the nature of the amino acids and in fact mostly 

dictated by preparative aspects such as ease of purification. In our hands, the Met-Met 

dipeptide derivatives 25c and 25d were best prepared in the latter fashion, whereas the 

Cys-containing peptides were most easily obtained by direct coupling of the dipeptide. The 

Cys derivatives only differ slightly in the protecting group (benzyl vs. p-methoxy-benzyl) 

and are indeed almost identical in their chemical and spectroscopic properties. Most 

compounds in this study are crystalline solids and as such easily obtained in high purity. 

Full characterization is possible, and all analytical data corroborate the proposed 

composition of the compounds. Compound 23a has been previously prepared by Kraatz 

and co-workers [116]. This group has also reported sulfur-containing ferrocene derivatives, 

although not with amino acid but cystamine substituents [135]. Finally, a Chinese group 

has recently reported the synthesis of the S-ethyl protected derivative Fe[C5H4-CO-

Cys(SEt)-OMe]2 [136]. Unlike in this derivative, the Cys protecting groups that were 

chosen in this work may be removed under reductive conditions. 

In most disubstituted compounds studied so far, a 1,2’ substitution pattern of the Cp 

rings was observed. This conformation is stabilized by hydrogen bonds between the two 

amino acid esters involving the Cp amide hydrogen atom and the carbonyl oxygen atom of 

the ester group ("Herrick conformation") [61]. In all those cases, cysteine was the first 

amino acid on the Cp-ring. We have recently observed a different hydrogen bonding 
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pattern in the bulkier phenylalanine derivative Fe[C5H4-CO-Phe-OMe]2 [119], involving 

the amide hydrogen of one Cp ring and the amide carbonyl oxygen atom of the other Cp 

ring in the same molecule ("van Staveren conformation") [62]. For compound 23b in this 

study, the situation is again different. This compound has a 1,3’ conformation in the solid 

state, and therefore does not show any intramolecular hydrogen bonding in the solid state. 

All spectroscopic data measured in solution, however, are similar to previously reported 

data and thus a 1,2’ conformation with "Herrick-like" intramolecular hydrogen bonding is 

likely. This hydrogen bonding interaction is very strong indeed. CD spectra of 23a look the 

same in CHCl3 and in pure MeOH, which may compete for hydrogen bonds. In particular, 

the strong positive Cotton effect at 480 nm is observed in both solvents. One might argue 

that the 1,3’ conformation in the solid state is due to steric interactions of the bulky 

Cys(Bzl) side chains. However, a 1,3’ conformation in the solid state has also been 

observed for the glycine ethyl ester derivative Fe[C5H4-CO-Gly-OEt]2 by Kraatz and co-

workers. In fact, the related free acid Fe[C5H4-CO-Gly-OH]2 shows the well-known 1,2’ 

"Herrick conformation" in the solid state [137]. It seems therefore reasonable to summarize 

that the factors governing the solid-state structures are not yet fully understood and further 

studies are needed. 

Nevertheless, we have demonstrated that a supramolecular self-assembly occurs in 

ferrocene-peptide derivatives containing cysteine. The question we would like to answer 

next is: What assembly is the more adapted to connect a late transition metal to the sulfur 

atom present in the sequence? 
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4. Molecular Dynamic Simulations 

 

 

 

A wide range of compounds containing ferrocene and cysteine with different 

protecting groups have been synthesized and fully characterized in Chapter 3 [64]. These 

compounds are seen as potential chelate for nickel and iron. Therefore, some questions 

arise concerning sterical and mechanical interactions that occur in this family of 

compounds. It is assumed that one of the major limiting factors in the synthesis of these 

compounds is the steric hindrance upon incorporation of the metal in the tetra-dentate 

sulfur ligand pocket, where all cysteine residues are connected to the same ferrocene 

moiety. We have pursued the answers to these questions using Molecular Dynamics (MD) 

simulations, in order to determine from a geometrical point of view the feasibility of such a 

synthesis.  

 

The application of computational methods to inorganic chemistry has developed at a 

slower pace than other branches, due to the complexity that arises from modeling d-block 

elements [138]. Ligand-metal bonds can adopt multiple conformations, determined by the 

ligand-ligand and ligand-metal interactions that are difficult to accurately model. 

Nevertheless, the application of computational methods to inorganic chemistry remains 

attractive as a means of investigating the formation and the stability of new complexes. 

Molecular Mechanics (MM) has been widely used in organic and bioorganic chemistry. 

Most common MM simulation packages, such as CHARMM [139], are equipped with 

parameter sets for biomolecules but not for transition metal complexes. Only few attempts 

using CHARMM for modeling of metallocenes have been reported [140-142]. 

In this work, the development and the implementation of a new MM force field for 

ferrocene-bearing peptides in CHARMM are presented. The resulting force field was first 

tested on independent experimental crystal structures. Secondly, potential synthetic models 

of the hydrogenase active site are studied with molecular dynamics (MD) simulation. The 

structural and dynamic features of different model systems are thus explored. 
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4.1 Methods 

 

To complete this study several model systems (depicted in Figure  4.1) were designed 

and implemented in CHARMM.  

 

4.1.1 Model Systems 

 

 
 
Figure  4.1 Schematic representation of the molecules studied 
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The structures of model systems αααα and ββββ (see Figure  4.1) have been solved by X-ray 

diffraction, and thus these were chosen in order to test the parameter set. The initial 

coordinates were taken from the experimental X-ray structures obtained from the CCDC 

database [40, 62]. System χχχχ was crystallized as a diastereomer mixture as described in 

Chapter 3. As the crystal structure obtained was a weighted average between two 

enantiomers, attempts of MD simulation were ambiguous. System δδδδ was synthesized and 

fully characterized in our laboratory, but has not been crystallized yet. However, very 

strong spectroscopic evidence of its formation has been obtained (results not published). 

Model system εεεε represents the next step of the synthesis after system δδδδ, in which the nickel 

atom is incorporated in the sulfur ligand pocket. The synthesis of this compound has not 

yet been successful. Model systems εεεε, φφφφ, γγγγ, ηηηη, ιιιι were chosen as hydrogenase so as to 

examine any present unfavourable steric interactions that might hinder the synthesis of 

these compounds. In model systems φφφφ and γγγγ, the ferrocene is bonded to two 6-mer peptides 

with identical peptide sequences that surround the metal core in the natural active site of 

the [Ni-Fe]-Hydrogenase of Desulfovibrio Gigas. Systems ηηηη and ιιιι were constructed with 

the same double 6-mer strands as models φφφφ and γγγγ, but without including ferrocene. Two 

disulfide bridges hold both strands together in the model ηηηη and a nickel atom has the same 

role in model ιιιι. The model systems δδδδ, εεεε, φφφφ, γγγγ, ηηηη were constructed starting from the crystal 

structures obtained from CCDC or PDB databases and corrected with the graphical 

interface software Insight II [143]. Model ιιιι was constructed from the crystal structure of 

Hydrogenase from Desulfovibrio Gigas [12] by isolating the active site with the program 

Insight II. 

 

4.1.2 Computational details 

All molecular mechanics calculations were performed using the CHARMM package 

[139]. Except for the new parameters derived here, the existing CHARMM parameters 

were used [144]. The molecular mechanics minimizations were carried out using the 

Steepest Descent (SD) algorithm for initial minimization and then followed by the Adopted 

Basis Newton-Raphson (ABNR) minimization with a convergence criterion for the energy 

gradient of 10-6 kcal mol-1Å-1. A 13 Å cut-off distance was applied to non-bonded 

interactions using the CHARMM shifted potential [139]. 

In CHARMM, the potential energy of a molecule is considered to be the sum of 

contributions from the energy terms associated with bond stretching, angle bending, 
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dihedral rotation, out-of-plane bending, non-bonded, van der Waals and electrostatic 

interactions. Equation 2 gives the empirical potential energy function: 
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where kb, kub, kθ, kχ, kψ, are: the bond, Urey-Bradley, angle, dihedral and improper 

dihedral force constants, and l, s, θ, χ, ψ  the bond lengths, Urey-Bradley 1-3 distances, 

dihedral angles and improper torsion angles, respectively. Non-bonded interactions 

between pairs of atoms are described by the Lennard-Jones (LJ) 6-12 term for the van der 

Waals and by the Coulomb interaction. ri,j and εi,j are the distance between atom i and j at 

which the Lennard-Jones potential minimum and the depth of the potential well for the 

same pair of atoms, respectively. D is the effective dielectric constant which was set to 1 

and qi is the partial charge on atom i. Where missing, hydrogens were constructed using 

idealized geometric parameters from the HBUILD module in CHARMM. 

All quantum mechanical (QM) calculations were performed with the NWChem 4.5 

package [145]. The Hartree-Fock and the MP2 levels of theory provide poor results for the 

description of metallocenes [146]. On the other hand DFT calculations have been shown to 

give accurate results in the optimization of metallocene geometry [147]. Therefore, the 

structure optimizations and normal mode analyses of ferrocene and of ferrocene-1-

(L)alanine-1’-(L)proline in vacuum were performed using the DFT/B3LYP level of theory 

with a triple zeta valence basis plus double polarization (DZVP2) [148]. The geometry 

optimizations were performed to a maximum gradient of 0.00045 a.u. and a root mean 

square (rms) gradient of 0.0003 a.u. in Cartesian coordinates. The frequencies were 

calculated numerically. A frequency scaling of 0.97 was used to compensate for the use of 

the harmonic approximation to the potential energy surface [149].  

The partial atomic charges were calculated for the ferrocene structure with the 

CHELPG method [150] on the DZVP2-optimized structure. CHELPG employs a least 

squares fitting procedure to determine the set of atomic partial charges that best reproduces 

the quantum mechanical electrostatic potential at selected grid points. The grid was 
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extended to 3 Å from any of the atomic centers and the grid spacing was set to 0.1 Å. The 

grid points for which the QM electrostatic potential was evaluated and used in the fitting 

procedure of the partial atomic charges, all lie outside the van der Waals radii of the atoms 

and within a cut-off distance from the atomic centers. In this study, all grid points lying 

within a distance of less than 2 Å from any of the atomic centers were discarded. The 

fitting was subjected to the constraint that the sum of the charges should be equal to the net 

charge on the molecule. To ensure that the charges on symmetrically equivalent atoms are 

equal, additional constraints on the partial atomic charges were imposed during the fitting 

procedure: the iron was constrained to have a charge of +2 and each of the 

cyclopentadienyl groups were constrained to have a total charge of –1. 

Following energy minimizations, the MD simulations were performed using the 

Verlet algorithm [151] and an integration time step of 0.001 ps. For the isolated molecule 

calculations, MD simulations were performed on the model systems (Figure  4.1) in the 

microcanonical (NVE) ensemble. Initially, the systems were heated to room temperature 

(298 K) in 5 K temperature increments. Then, equilibration for 10 ps using velocity 

rescaling followed, with a second phase of equilibration without velocity rescaling for 

another 10 ps at the same temperature. Finally, production dynamics followed for 1 µs at 

298 K. 

For calculations including the crystal environment, the MD simulations were 

performed at constant pressure and temperature with periodic boundary conditions in all 

directions. Starting from experimental coordinates and after minimization, the system was 

heated to the desired temperature in 5 K steps. Subsequently, the structures were 

equilibrated for 50 ps at this temperature using velocity rescaling followed by a second 

phase of equilibration without velocity rescaling for another 10 ps. Finally, production 

dynamics followed for 100 ns for the ferrocene-1-(D)alanine-(D)proline-1’-(D)alanine-

(D)proline crystal and 10 ns for the ferrocene crystal. The unit cell dimensions were 

allowed to vary during both the energy minimization and the MD calculation.  

 

4.1.3 Ferrocene Topology 

The topology of bis-cyclopentadienyl complexes of the type [M(Cp)2]
n+ requires the 

description of the metal-ligand π-bond. Four different approaches have been used in the 

literature to model ferrocene with MM (Figure  4.2). 
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Figure  4.2 Representative scheme of the four different approaches to reproduce 
ferrocene molecular topology: (A) “Fe–C bonds” (B) “Rigid-Body” (C) 
“dummy atom” (D) “electrostatic” 
 

The first method, uses 10 harmonic springs connecting each carbon of the Cp-ring to 

the iron centre (Figure  4.2 (A)) [152]. The second, called the ‘Rigid-Body’ approach treats 

the Cp ligand as a single pentagon rigid unit. The third method introduces a massless 

‘dummy’ atom placed at the centre of geometry of each of the Cp rings. The metal is 

connected with a spring to the dummy atom, which is in turn connected with springs to the 

five carbon atoms around it (Figure  4.2 (C)). This dummy atom approach has been shown 

to give fairly accurate results for ferrocene simulation in CHARMM [153]. However, for 

this approach unrealistic force constants are needed to maintain the dummy atom at the 

centroid during minimization and spurious vibrational modes are generated when the force 

field is used to calculate the vibrational spectra [140]. The last method (Figure  4.2 (D)) is a 

non-bonded approach in which, the ferrocene aromatic moieties are held together by 

electrostatic and van der Waals interactions [141]. 

In the present work, a modified electrostatic model was implemented. It is known 

that due to the partly-covalent nature of the d-block metal-carbon bonds [154] the forces 

that maintain ferrocene cannot be solely described with MM Coulombic electrostatic 

interactions. Since current force fields are unable to describe fully the metal-ligand bond, 

an additional constraint is required. Therefore, in the present model the substituted Cp-

rings and the iron atom interact with each other not only via non-bonded terms but also via 

harmonic springs hold together the Cp and iron moieties. All atoms on the Cp-rings were 

constrained to be equidistant from the central iron (0.64 Å) with a harmonic constraint 

force constant of 100 kcal mol-1Å-2. 

For the models containing nickel, the special nature of Ni-S carbon bond cannot be 

only described by electrostatic interactions in MD simulations. Therefore, harmonic 

springs were introduced between each of the four sulfur atoms and the nickel atom. The 
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four sulfur atoms were constrained to be equidistant from the nickel core (2.25 Å) using 

100 kcal mol-1Å-2 harmonic constraints. It was found that for model system ιιιι, the active 

site of hydrogenase, no additional spring was needed to hold the nickel atom in the 

chelating pocket. 

 

4.1.4 Parameters refinement 

The reliability of an MM calculation is dependent on the functional form of the 

potential energy function and on the numerical values of the parameters incorporated in it. 

Therefore, the values of the various parameters in Eq.1 have to be determined. For the 

derivation of the missing intramolecular parameters we used the AFMM method [155]. 

AFMM optimizes the parameters by adjusting the eigenvalues and eigenvectors of normal 

modes calculated with CHARMM to fit the normal modes calculated with high-level 

quantum chemistry methods. This method has been successfully used to derive parameters 

for a range of biologically-important compounds [156-159]. 

An efficient way to check simultaneously for both eigenvector orthonormality and 

frequency matching is to project each of the CHARMM eigenvectors onto the reference set 

of QM eigenvectors, to find the frequency, max
jν , that corresponds to the highest overlap, 

and to compare this frequency with the corresponding QM frequency, iν . In the ideal case 

iν  = max
jν  and M

iχ . Q

iχ  = ijδ  (where ijδ is the Kroenecker delta, { M

iχ } is the set of the 

MM eigenvectors and { Q

iχ } is the reference set of eigenvectors). AFMM is based on 

iteratively minimizing the sum-of-squares, Y2, of the deviations from the ideal situation as 

follows: 

 

2max

63

2 )( j

N

iY νν −= ∑
−     
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where N is the number of atoms in the molecule and there are 3N-6 independent 

vibrational frequencies. 

The LJ parameters εi,j and Ri,j depend mostly on the atomic properties and are 

relatively insensitive to changes in the molecular environment. Here, these were directly 

transferred from original CHARMM values and were not modified during refinement. Iron 

is parameterized in CHARMM and has been implemented in numerous heme calculations 
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[160, 161]. However, in CHARMM, the ε value of the LJ potential that governs the depth 

of the potential well was set to zero to avoid unwanted repulsive interactions between the 

iron and the heme group. This approximation, although valid within the heme group, 

cannot be used in the present study, where the repulsive and attractive van der Waals 

interactions within ferrocene are of crucial importance. Sets of non-bonded parameters for 

the iron and nickel were supplied by Bredenberg (personal communication – unpublished 

results) [162]. The nickel-coordination equilibrium bonds, angles and dihedrals were 

derived from the available crystal structure [163]. Nickel can adopt numerous geometries 

[164-170], but for the current study, only the hydrogenase active site conformation was 

taken into account. Equilibrium values for bonds (l0), angles (θo) and dihedrals (χ0) that 

were not existing in the original CHARMM force field parameter file [171, 172] were 

determined from the crystal structure and were not further optimized. Before refinement of 

the unknown parameters, an initial set of parameters was determined, based on similar, 

already-existing CHARMM parameters and on chemical intuition, carefully considering 

the equilibrium values and hybridization of the atoms.  

A desirable property of an MM force field is the transferability of the parameter set. 

Therefore, when designing a new parameter set, the addition of new atom types to the 

force field should be limited to those specific cases in which existing type cannot be used. 

Because of the particular geometry of present ferrocene compounds and the characteristic 

distribution of the partial charges of the atoms along the Cp-rings, it was found necessary 

to introduce a new CHARMM atom type (CA2) for the carbons in ferrocene belonging to 

five-membered aromatic rings. The van der Waals parameters for the new atom type CA2 

were taken to be the same as those for aromatic carbons (type CA). The nickel atom type 

(Ni) also did not exist in CHARMM and was therefore added with a partial charge of +2 

(see Appendix). For the nickel coordination centre, the existing cysteine residue (CYS) 

was used as a starting point to develop a new cysteine residue (CYN) (see Appendix), 

which was adapted to a cysteine that can accommodate a coordinating bond with nickel. 

This residue was used only for the model systems containing nickel. In the CYN residue, 

the proton of the thiol group was removed and thus the total charge for this residue was set 

to -0.50. The rest of the negative charge was transferred to the sulfur atom, which was set 

to -0.57. 

For the hydrogen atoms of the Cp-ring, the existing atom type HP was used with a 

modified partial charge (see Appendix) as calculated from QM. The charge of the oxygen 

atoms on the carbonyl group of the first amide bond connected to ferrocene was changed 
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from -0.51 to -0.61 to maintain the total charge at -1 for the Cp-ring residue (FEC residue, 

see Appendix). It was therefore necessary to determine new parameters also for the energy 

terms involving the newly-created atom types. 

The initial parameter set was used for minimization and calculation of normal modes 

(eigenvalues and eigenvectors) with CHARMM. The parameters were optimized by 

comparing the normal modes thus obtained with reference normal modes calculated with 

the quantum chemistry methods, by employing the AFMM method [157]. AFMM uses an 

iterative procedure to refine the parameters to reproduce the quantum-chemical reference 

normal modes (both eigenvalues and eigenvectors). An efficient way to check 

simultaneously for both orthonormality and frequency matching is to project each of the 

CHARMM eigenvectors onto the reference set of eigenvectors and to find the frequency 

vj
max corresponding to the highest projection. Plotting this frequency against the 

corresponding frequency vi, would in the ideal case, give a one-to-one relationship: vi/vj
max. 

Points that deviate from the ideal plot may indicate exchanged or mismatched frequencies. 

AFMM is based on iteratively minimizing the sum-of-squares, Y2 of the deviations from 

the ideal situation as follows: 
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During the automated parameter refinement, the range over which force constants 

were allowed to vary was 10 – 500 kcal mol-1Å-2 for bonds, 1 – 200 kcal mol-1rad-2 for 

angles, 0.1 – 100 kcal mol-1 for dihedrals and 0.1 – 100 kcal mol-1rad-2 for improper 

torsions. It was observed that by restarting the calculation by using the optimized force 

constants that were obtained from the previous optimization and by limiting the range each 

time around the new optimized parameter value, the normal-mode matching was 

significantly improved. In this manner the optimizations for all force constants were ran 

four times. For the first run, the convergence of the function Y2
 was set to 10000 steps for 

which the value of Y2 remained unchanged. The last three optimizations were allowed to 

run until the value of Y2 remained constant for at least 1000 steps. The root-mean-square 

deviation, σ, from the reference case was also calculated. 
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4.2 Parameterization 

 

4.2.1 Parameterization of ferrocene-1(L)proline-1’(L)alanine 

For the synthesis of a ferrocene-bearing peptide, a ferrocene carboxylic acid is 

connected to the N-termini of two amino acids via a peptide bond. This special peptide 

bond has the same topology for all amino acids except for proline. Thus, to derive a 

complete parameter set for the present purposes, ferrocene-1-(L)proline-1’-(L)alanine 

(Figure  4.3 (A)) was chosen for the parameterization of ferrocene-bearing peptides as this 

compound contains both proline and non-proline connections to ferrocene. 

 

 
Figure  4.3 (A) Topology of ferrocene-1-proline-1’-alanine showing the CHARMM 

atom types, (B), (C) its DFT/B3LYP energy-minimized structure viewed 
along the b and the c axes, respectively 

 

Parameters for ferrocene-1-(L)proline-1’-(L)alanine were developed using a two-step 

procedure. Firstly, the charges on ferrocene were calculated on the QM optimized structure 

as described in “Methods”. The AFMM method was then used to obtain a complete set of 

parameters. The resulting νmax versus νi plot is shown in Figure  4.4. The corresponding 

value of σσσσ = 77.2 cm-1 is within the range of previous benchmark studies [155, 159]. 
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Figure  4.4 Frequency-matching plot (νmax vs. νi) for ferrocene-1-alanine-1’-proline. 

The line is the ideal case where νmax = νi, i.e. of perfectly matched 
frequencies and eigenvector projections. Symbols refer to optimized 
parameters. (σ = 77.2 cm-1) 

 

Atom type assignments and atomic partial charges, as well as the parameters obtained 

from AFMM are listed in the Appendix. Only the newly-derived CHARMM parameters 

are reported. 

 

 

4.3 Testing of the parameters 

 

4.3.1 Fc-(D-Ala-D-Pro)2 crystal simulations 

Final testing of a parameter set should be performed against independent 

experimental and/or theoretical data. The present force field was tested on the available 

crystal structure of Fc-(D-Ala-D-Pro-OEt)2, a ferrocene-peptide derivative [111-113]. MD 

simulations of the isolated molecule and its enantiomer, Fc-(L-Ala-L-Pro-OEt)2, were 

performed.  

Fc-(D-Ala-D-Pro-OEt)2 crystallizes in a tetragonal crystal, I-centered lattice with 

group symmetry I41 and with four molecules into the unit cell. The crystal structure was 

determined at 296 K. The MD calculations were performed for the whole crystal using 

periodic boundary conditions. The crystal was defined as tetragonal and the unit cell 

dimensions were allowed to vary during both the energy minimization and the MD 
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calculation. The energy minimized and the experimental cell vectors are reported in Table 

 4.1 as well as their average values after 0.1 µs MD. The crystal lattice parameters are 

conserved over the simulation. After minimization, the cell volume was computed to be 

3175.9 Å3, within 0.001 % of the experimental volume of 3175.6 Å3. 

 

Table  4.1 Unit cell dimensions of Fc-(D-Ala-D-Pro-OEt)2 crystal structure 
 

Terms Experimental a Minimized b Dynamics c 

a 14.573(2) Å 14.466 Å 14.8(1) Å 

b 14.573(2) Å 14.466 Å 14.8(1) Å 

c 14.953(2) Å 15.176 Å 15.2(2) Å 

αααα    90° 90° 90° 

ββββ    90° 90° 90° 

γγγγ    90° 90° 90° 

(a) Measured on the crystal structure geometry (b) Measured on the minimized 
crystal unit cell after 10000 steepest descent steps followed by 10000 Newton-
Raphson minimization steps (c) Mean values calculated over 0.1 µs dynamics at 
298 K using the new CHARMM force field. Standard deviation in parentheses 

 

Ferrocene-bearing dipeptide chains are known to adopt a chiral organization in the 

solid state via a novel H-bond pattern, which interconnects both peptide strands. As 

already explained, two kinds of intramolecular H-bond patterns have been experimentally 

observed: the “Herrick” [61] conformation, where two H-bonds connecting both strands 

and the “van Staveren” [62] conformation where only one H-bond connects the peptide 

strands. When both substituents are trans, no intramolecular H-bonds are observed and this 

was coined as the “open” conformation [64]. The experimentally-observed H-bond pattern 

in the Fc-(D-Ala-D-Pro-OEt)2 crystal is of Herrick’s type. This H-bond pattern introduces 

two C2-symmetric intramolecular hydrogen bonds between the CO of alanine and the NH 

of the other alanine of each dipeptide chain thus introduces a chiral structure. Although, 

due to the free rotation of the Cp-rings a wide range of relative orientations is possible. The 

two dipeptide chains are always arrayed in the same direction during the MD, as two 

intramolecular hydrogen bonds induce an ordered structure.  

To examine the stability of the intramolecular H-bond patterns, the distances between 

the hydrogen-bonded heavy atoms (O…N distance) were calculated. The MD H-bonds are 

slightly longer (0.2 Å on average) than those reported experimentally. However, the H-

bonding pattern remains stable throughout the 100 ns simulation. The time series of the 

hydrogen-bond, namely N - O distances, is plotted in Figure  4.5.  
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Figure  4.5 Time series of d1(N-O) (here NO1), where N is the nitrogen of the first 

amide bond of the first peptide strand and O the carbonyl oxygen of the 
second amide bond of the second peptide strand. For d2(N-O) (here NO2) 
distances N is the corresponding nitrogen of the second peptide and O the 
carbonyl oxygen of the first peptide strand 

 

Another interesting feature of this crystal is that the ferrocene moieties are packed in 

a helically-ordered arrangement with one turn of 14.95 Å pitch height (see Figure  4.6 (c)), 

within which the distance between the closest ferrocene unit is 4.46 Å. The helical pitch 

was monitored during the MD simulations and is plotted as a time series in Figure  4.6 (d). 

The mean value of the pitch height was 14.24 ± 0.15 Å, a value within 5% of the 

experimentally-measured helical pitch. 

A further feature is that the ferrocene adopts a herringbone motif arrangement, in 

which the proline and the ethyl ester moieties individually form the columns (Figure  4.6 

(a) and (b)). The dipeptide chains (-Ala-Pro-OEt) induce this molecular aggregation 

through the stacking of the intramolecular H-bond sites formed between the two alanines 

and also through the stacking of the hydrophobic proline rings. In this way, both the 

hydrophilic and the hydrophobic parts of molecule stack to form the columns of the 

herringbone motif. The herringbone motif was preserved throughout the MD simulation. 

Both the proline and ethyl ester moieties remain stacked during the dynamics (see Figure 

 4.6 (b)). The supramolecular assembly remained stable throughout the 100 ns simulation. 

 

 

 

 



Chapter 4 
 

58 

 

 

 

 

 

 

 

   (a)       (b) 

 

   (c)       (d) 

Figure  4.6 (a) and (b) superimposition one and a half unit cell of the minimized and 
experimental structures [113] seen along the b and the c axes, respectively. 
(c) Time series of the helical pitch during 100 ns MD (d) Crystal seen along 
the a axis showing the helical pitch. 

 

As shown on Figure  4.6, the minimized and experimental structures are very similar. 

The RMS deviation calculated on the four molecules of the primary cell was found to be 

1.35 Å (for this calculation, all non-hydrogen atoms were taken into account). The atoms 

of the side chains of the dipeptide and the C-termini of both strands are flexible and exhibit 

more freedom of movement than the backbone atoms, as evidenced by the crystallographic 

temperature factors (B-factors),which are larger (10 to 15 Å2) in the side chain than in the 

backbone atoms (2 to 9 Å2). The RMSD between the calculated and experimental 

backbone atoms structures of a single molecule in the crystal lattice was 0.32 Å. 

The atoms of the C-termination of the molecule are more flexible than the atoms that 

are directly attached to Cp-ring atoms of ferrocene. Therefore, they are expected to exhibit 

more freedom of movement, corresponding to spreading of the probability distribution of 

each atom over a small region of space. Diffraction is affected by this spreading out of the 
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atomic positions, as manifested by temperature factors (B-factors), assigned to each atom. 

Assuming isotropic, harmonic dynamics, the B-factors is given by the Equation 5: 

 

〉〈= 22

3
8

uBeq π      5 

 

where <u2> is the mean-square fluctuation of the positif an atom. 

 

 
Figure  4.7 Experimental vs. the calculated B-factors for the carbon and iron atoms. 
 

In Figure  4.7, the average experimental and calculated isotropic B-factors for the 

carbon and the iron atoms of Fc-(D-Ala-D-Pro-OEt)2. This representation indicates parts of 

the molecule that are particularly flexible and parts that are particularly rigid. The C-

terminal B-factors are larger and more varied than those of the Cp-ring atoms. The 

B-factors obtained from MD are smaller than those experimentally derived. These 

differences might arise from the use of isotropic, harmonic approximation in the 

experimental refinement. Nevertheless, general trends are respected. 
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4.3.2 Fc-(D-Ala-D-Pro)2 and Fc-(L-Ala-L-Pro)2 single molecules in vacuum 

To assess the stability of Fc-(D-Ala-D-Pro-OEt)2 and Fc-(L-Ala-L-Pro-OEt)2 in 

vacuum and to estimate the role of the crystal environment in conferring the stable 

intramolecular H-bond pattern in these molecules, a 1 µs MD simulation of the isolated 

molecules was performed. As these two structures are enantiomers all the results have been 

found to be equivalent for the two structures. For simplicity, only the results for the D 

conformation are shown. 

 

 
Figure  4.8 Superimposed minimized single molecule and crystal structure of 

ferrocene-1,[(D)alanine-(D)proline]-1’,[(D)-alanine-(D)proline] [113], 
along the a and c axis respectively. The vacuum MD calculations were 
performed for both the L and D isomers. 

 

As shown in Figure  4.8, the superimposition of minimized and experimental 

structures is very close. The RMSD of the peptide backbone atoms with respect to the 

crystal structure was found to be 0.58 ± 0.14Å.  

 

Table  4.2 Geometrical features of hydrogen bond pattern for Fc-Ala-Pro 
 

H-bonds 
d1(H-O) 

[Å] 
d2(H-O) 

[Å] 
d1(N-O) 

[Å] 
d2(N-O) 

[Å] 
a1(N-H-O) 

[deg] 
a2(N-H-O) 

[deg] 

Experimental a 2.053 2.053 2.98(1) 2.98(1) 146(5) 146(5) 

Crystal MD b 2.2(2) 2.0(2) 3.2(2) 3.0(2) 158(10) 162(9) 

Vacuum MD c 2.1(2) 2.1(2) 3.0(2) 3.0(2) 153(11) 153(11) 
(a) Average distances measured on the crystal structure [113], (b),(c) distances calculated over the 
simulations, in parentheses the standard deviation. 

 

The geometrical properties of the two intramolecular H-bonds were monitored 

during the MD and the results are shown in Table  4.2. In , the H-bond, distances are shown 
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as a time series over 1 µs. The MD reproduces the C2-symmetric intramolecular H-

bonding network to within 2 % of the experimentally-observed distances. The H-bond 

pattern remains stable over the simulation and is not significantly affected by the absence 

of the crystal environment. Again, although a wide range of relative conformations and 

orientations of the dipeptide chains are in principle possible, due to the free rotation of the 

Cp rings, the hydrogen bonds are not broken at any time of the simulation. This implies 

that these interactions confer additional stability to the complex and that the thermal 

motions at room temperature are not strong enough to break these bonds.  

 

 
Figure  4.9 Time series of d1(N-O) (here NO1), where N is the nitrogen of the first 

amide bond of the first peptide strand and O the oxygen of the second 
amide bond of the second peptide strand. For d2(N-O) (here NO2) distances 
N is the corresponding nitrogen of the second peptide and O the oxygen of 
the first peptide strand 

 

This result is in good agreement with the experimental solid-state structure observed 

in the crystal, and with liquid-phase experiments such as NMR studies. It has been reported 

that in the 1H NMR spectra of Fc-(Ala-Pro)2 only one kind of N-H resonance was detected 

at a lower field (8.96 ppm) (the two H-bonds are equivalent because of the plane of 

symmetry) [110]. Moreover, this N-H resonance was not perturbed by the addition of 

aliquots of DMSO-d6 to CDCl3. This indicates that the two identical intramolecular 

hydrogen bonds between the dipeptide chains, observed during the simulation, are present 

also in the solution phase. 
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4.3.3 Fc-[(D)Met-(L)Met]2 in the crystal lattice 

Fc-[(D)Met-(L)Met]2 crystallizes in orthorhombic lattice symmetry with the space 

group P212121. The unit cell contains four molecules. The crystal data was collected at 

T = 100 K. For this study, the newly-developed parameter set was tested on an 

enantiomerically pure compound, built with only L-methionine and based on the data of 

the experimental crystal lattice. The crystal was obtained by applying the symmetry 

operations using the experimental unit cell vectors and starting from an enantiomerically 

pure molecule. Cell vectors calculated after minimization are reported in Figure  4.10 and 

Table 6, along with the experimental and MD results. The size and the shape of the crystal 

unit cell are mainly respected. However an expansion of about 2 Å was observed along the 

b axis and a slight reduction of 1 Å along the a axis. The volume of the unit cell was also 

monitored as a time series and was shown to decrease along the MD run. The energy of the 

system was calculated after each minimization. The energy of the crystal lattice shows a 

convergence over the different minimization steps (Figure  4.10). The newly-developed 

parameter set allowed the disordered system to escape from the local minimum.  

 

 
Figure  4.10 Total energy calculated after the four sequential minimizations of the 

crystal lattice 
 

The infrared (IR) spectrum of 25d measured in dichloromethane [119, 173], shows 3 

amide bands for N-H stretching over 3500 cm-1 which provide evidence for three different 

kinds of hydrogen atom and therefore, three different conformations (Figure  4.11 (b)). 

Circular Dichroism (CD) spectra also show a mixture of H-bond interactions, (Figure  4.11 

(c)) [173]. In the solid state, an enantiomeric mixture of Fc-(L-Met-L-Met)2, Fc-(D-Met-L-

Met)2 and (Met-D-Met-L)-Fc-(D-Met-L-Met) is observed. Two of these conformers 
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co-crystallized in the same crystal lattice (ca. 20% (Met-L-Met-L)-Fc-(D-Met-L-Met) and 

80% Fc-(D-Met-L-Met)2) [173]. The X-ray structure we obtained is a weighted average 

between these enantiomers. The presence of these two structures during the measurement 

leads to uncertainty in the position of the peptide atoms, and therefore the crystal lattice 

obtained was disordered. 

The above experimental observations are clear evidence of different conformations, 

as is the simulation. However, no clear trends can be deducted from the calculation. 

Further investigation may involve a mixture of racemate in order to increase the quality of 

the model. 

 

 

(a)       (b) 

 

      (c) 

Figure  4.11 (a) Time series of intermolecular H-bonds over 1 µs dynamics (b) 
Experimental IR spectra (c) Experimental CD spectra 
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Table  4.3 Unit cell dimension of Fc-(D-Met-L-Met)2 crystal structure 
 

Terms Experimental a Minimized b Heated b Rescaled b Dynamics c 

a 19.88 Å 18.70 Å 18.69 Å 18.9(7) Å 18.5(3) Å 

b 11.33 Å 12.82 Å 13.15 Å 13.3(2) Å 13.2(1) Å 

c 17.60 Å 17.70 Å 17.31 Å 18.2(7) Å 17.9(4) Å 

αααα    90° 90° 90° 90° 90° 

ββββ    90° 90° 90° 90° 90° 

γγγγ    90° 90° 90° 90° 90° 

 (a) Measured on the crystal structure geometry (b) Measured on the fourth minimized, heated, 
rescaled crystal unit cell (c) Measured after 0.1 µs dynamics at 100 K. Standard deviation in 
parentheses 

 

4.3.4 Fc-[(D)Met-(L)Met]2 single molecule in vacuum 

As the crystal, simulation cannot be correlated to the experimental results because 

they are too ambiguous. The single molecule simulation was tried on Fc-[(D)Met-

(L)Met]2. The simulation was performed at the temperature of 100 K. A time series of the 

H-bond pattern is shown in Figure  4.12. The backbone RMSD between calculated isolated 

molecule and experimental structures was 1.2 Å (for this calculation, side chain atoms 

were removed). This confirms a poor structural similarity between the simulation and 

experimental results. 

 

       (a)      
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  (b)       (c) 

Figure  4.12 (a) time series of intermolecular H-bonds over 1 µs dynamics on the single 
molecule simulation (b) and (c) top and side views of the minimized 
structure of the derivative ferrocene-1-[(D)methionine-(L)methionine]-1’-
[(D)-methionine-(L)methionine] 

 

Table  4.4 H-bond geometrical properties; experiment versus calculation, d1(N-O) 
represents NO1 d2(N-O) represents NO2 

 

H-bonds 
d1(H-O) 

[Å] 

d2(H-O) 

[Å] 

d1(N-O) 

[Å] 

d2(N-O) 

[Å] 

a1(N-H-O) 

[deg] 

a2(N-H-O) 

[deg] 

Experimental a 2.152 2.017 2.992 2.913 137.8 159.6 

Minimized 2.029 1.896 2.862 2.889 138.8 172.2 

Calculated b 3.3(5) 2.3(4) 3.8(4) 3.1(4) 128(3) 144(13) 

 (a) average distances measured on the crystal structure, (b) distances calculated from mean structures on a 
1 µs dynamics scale. Standard deviation in parentheses 

 

An interesting feature is observed; during the heating, an H-bond, d1(N-O), is 

unstable and shows a deviation that can reach up to 1 Å from its starting position (Figure 

 4.12). Here again, accuracy of the simulation cannot be properly evaluated because of the 

ambiguous nature of the experimental results. 

 

4.3.5 Ferrocene crystal simulation 

The new force field was further tested by performing an energy minimization and 

MD simulation of ferrocene in its crystalline state. This crystal was obtained by 

crystallization at room temperature and determined at 173 K. It has a monoclinic symmetry 

and belongs to the P21/a space group with two molecules of ferrocene in the unit cell. The 

cohesion of the crystal is maintained by π-stacking of the Cp unit along the a and b axes. 

The MD calculations were performed for the whole crystal using periodic boundary 

conditions at T = 173 K for 10 ns dynamic. The unit cell dimensions were allowed to vary 

during both the energy minimization and the MD calculation. The energy minimized, and 
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the average dynamics cell vectors are reported in Table  4.5 along with the experimental 

values. The Root Mean Square Deviation (RMSD) was not calculated as the Cp rings are 

very mobile due to their free rotation along the Cp-Fe axis. To the best of our knowledge 

this is the first time that the ferrocene crystal packing has been modeled. However, the 

dynamics of the ferrocene lattice at 173 K, as well as the parameters measured as the 

volume and crystal cell vectors (shown in Table  4.5) show that the crystal changes 

(expands) along the run. This variation could be explained by the fact that ferrocene is 

known to adopt different geometries depending on the experimental conditions of the 

crystal grown and the temperature; a transition state occurs around 164 K. Seiler and 

Dunitz report an orthorhombic geometry at 98 K [174], an F-centered triclinic cell at 101 K 

[175], and a monoclinic symmetry at 173 K.  

 

Table  4.5 Unit cell dimensions of the ferrocene crystal structure 
 

Terms Experimental a Minimized b Dynamics  c 

a 10.45 Å 12.95 Å 11.2(4) Å 

b 7.58 Å 6.94 Å 7.1(3) Å 

c 5.81 Å 5.82 Å 6.2(3) Å 

αααα    90° 90° 90° 

ββββ    120.9° 117.5° 124(2)° 

γγγγ    90° 90° 90° 

(a) measured on the experimental crystal [174] (b) measured on the minimized crystal 
unit cell after 10000 Steepest Descent followed by 10000 Newton-Raphson 
minimization steps, (c) mean value calculated over 10ns dynamics at 173 K. Standard 
deviation in parentheses. 

 

It is known that, even at low temperatures, at which Cp rotation is hindered, 

ferrocene adopts an eclipsed conformation rather than a staggered one. This is because of 

the C5h symmetry, which corresponds to the eclipsed conformation, confers an additional 

stability compared to the D5 symmetry of the staggered conformation. According to solid 

state studies, the barrier for the internal rotation along the axis connecting the centers of the 

two Cp rings was estimated to be 3.8 ±  1.3 kJ.mol-1 (ca. 0.9 ± 0.3 kcal.mol-1) [176]. To 

date activation energies for rotation have only been determined in the solid state or from 

relaxation measurements and these energies appear to be dominated by intermolecular 

interactions rather than internal electronic constraints [176]. The energy difference 

between the staggered and the eclipsed form of a single molecule of ferrocene calculated in 

vacuum was found to be 0.05 kcal.mol-1. This value is, by a factor of 20, smaller than the 
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experimentally-observed barrier. Precision of energy calculation in CHARMM are around 

0.1 kcal.mol-1, this value measured for the rotational barrier is below the accuracy of the 

calculator and can therefore not be trust. However, the same rotational energy barrier 

calculation for a molecule of ferrocene in the crystal environment yielded an energy 

difference of 0.7 kcal.mol-1 between the staggered and eclipsed conformations. Table 4 

contains the calculated energies associated with the two forms. This result demonstrates 

the importance of the environment on this rotational barrier. Decomposition of the 

rotational energy barrier in the ferrocene crystal (see Table  4.6) shows that the van der 

Waals interactions, rather than electrostatics, govern the rotational barrier of the Cp-ring. 

 

 

Table  4.6 Comparison of the different energy terms for the eclipsed and staggered 
conformation of ferrocene 

 

 
Bond 

[kcal.mol-1] 
Angle 

[kcal.mol-1] 
Torsion 

[kcal.mol-1] 
VDW 

[kcal.mol-1] 
Elect. 

[kcal.mol-1] 
Total 

[kcal.mol-1] 

Eclipsed a 0.245 0.003 1.893 160.391 -315.973 -153.441 

Staggered a 0.245 0.003 1.893 160.423 -315.955 -153.391 

Eclipsed b 0.297 0.021 1.121 157.839 -246.119 -86.841 

Staggered b 0.297 0.021 1.121 158.471 -246.118 -86.208 

(a) Energy term of a single molecule of ferrocene in vacuum (b) Energy terms of a single molecule of 
ferrocene in the crystal lattice 

 

 

Results obtained for the validation of the parameter set are very encouraging 

especially for Fc-(D-Ala-D-Pro-OEt)2. In the case For the Fc-(D-Met-L-Met-OMe)2 and 

ferrocene alone, the nature of the experimental results prevent us to compare the simulation 

and the experiment. Nevertheless, the quality of the parameter set is assumed to be good 

enough to use it for prediction about new unsynthesized model systems. 
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4.4 Prediction 

 

4.4.1 Model systems δδδδ, εεεε, φφφφ and γγγγ 

General structural and geometrical features of the models ββββ, χχχχ, δδδδ, εεεε, φφφφ and γγγγ 

characteristics for the shape of ferrocene, such as the distance between the Cp-ring carbons 

and the iron and dihedrals in the Cp-ring, and for the shape of H-bond pattern between 

both peptide stands (bond length, angle dihedrals of the H-bonds) are shown in Table  4.7.  

 

Table  4.7 Summary of geometrical data monitored over 1 µs vacuum MD 
 

Models 
CCp-Fe 

[Å] 

H-O 

[Å] 

H-O 

[Å] 

N-H-O 

[deg] 

N-H-O 

[deg] 

O-C-N 

[deg] 

CCp-CCp-CCp-CCp 

[deg] 

CCp-CCp-C-N 

[deg] 

ββββ    2.06(3) 2.1(2) 2.1(2) 153°(11) 153°(11) 119°(3) 0°(3) 3°(5) 

ββββ’(a) 2.06 2.053 2.053 145.5° 145.5° 119° 0.3° 5.2° 

χχχχ    2.07(2) 2.2(5) -(b) 114°(11) -(b) 118°(3) 0°(2) 7°(5) 

χχχχ’(a) 2.06 2.02 -(b) 138.2° -(b) 121.9° 0.2° 0.6° 

δδδδ    2.07(2) 2.1(3) 2.1(3) 149°(12) 149°(12) 119°(3) 0°(2) 1°(3) 

εεεε    2.08(2) 2.2(2) -(b) 150°(11) -(b) 119°(4) 0°(2) 6°(6) 

φφφφ    2.05(2) 2.4(3) -b 134°(14) -b 122°(3) 0°(2) 7°(6) 

γγγγ    2.10(2) -(b) -(b) -(b) -(b) 119°(3) 1°(3) 7°(5) 

(a) experimental data [62] (b) no H-bond observed. Standard deviations in parentheses 
 

From comparison of models ββββ with ββββ’ and χχχχ with χχχχ’ one can conclude that the 

calculated geometries are in overall good agreement with the experimental geometries 

observed in ferrocene-peptides. In all instances both Cp-rings remained parallel and the 

first amide bond attached to the ferrocene remained coplanar with the Cp-ring. It is 

interesting to note that model δδδδ (2-mer peptide) has one intramolecular H-bond, while the 

longer peptide in model φφφφ (6-mer peptide) has none. This is probably due to the steric 

hindrance resulting in the proximity of two 6-mer peptides strands. The size of the peptide 

might have an effect in the H-bond formation and potentially on the degree of freedom of 

the strands. 

Model δδδδ forms two intramolecular H-bonds, while model εεεε forms just one, the only 

difference between these two structures being the nickel atom chelated by the sulfur atoms. 
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A similar difference is observed in comparing models φφφφ and γγγγ (model φφφφ form one 

intramolecular H-bond and model γγγγ none), as no H-bond forms between the two peptide 

strands when nickel is incorporated. The formation of a chelating pocket for nickel hinders 

the formation of H-bond between the two strands (see Table  4.7). Nevertheless, it is 

encouraging to see that in model system δδδδ, which is synthetically the ligand for nickel 

complexation, the two strands remain H-bonded, since the open conformation would have 

meant the unfeasibility of the chelation of metal between these both strands. The size and 

the shape of this chelating pocket are studied below. 

 

Model system δδδδ was subsequently synthesized and corresponds to the derivative 33d 

(numbering of this thesis). Unfortunately, it has not yet been crystallized. The calculation 

on compound 33d (Figure  4.13 (b)) shows that two Herrick-type H-bonds are formed. We 

therefore performed an NMR experiment and a CD measurement (Circular Dichroism) on 

compound δδδδ to validate this result. From the downfield shift of the amide protons (Figure 

 4.14 (c)) observed in NMR, we were able to deduct that two types of proton amide 

displacement are observed in this spectrum (δ = 8.22 ppm and δ = 7.46 ppm). This means 

that there are only two different kinds of amide bonds present, probably the one connected 

to ferrocene and the one connecting two cysteines in a dipeptide. Therefore, only one type 

of H-bonding is present in the compound. This NMR proton downfield shift is typical for 

the Herrick-type H-bond. On the CD spectra shown in Figure  4.14 (d), a positive Cotton 

effect around 485 nm is observed. This is known to be characteristics from a Herrick type 

H-bond pattern between both peptide strands in this type of derivatives. These two 

experimental measurements clearly show that compound 33d adopts a Herrick 

conformation in solution. This is consistent with the calculations, since the simulation 

predicts a Herrick conformation for this model in vacuum.  
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   (a)      (b) 

 
Figure  4.13 Representative scheme of (a)”Herrick” H-bond pattern (b) model δδδδ after minimization 
 

To examine the influence of the length of the peptide strands on the shape and the 

flexibility of the sulfur chelating shell the distances between the sulfur atoms, in the 

simulations of models δδδδ and φφφφ, are plotted as time series (Figure  4.15).  

The results are also shown in Table  4.8, revealed an unexpected feature: the distances 

between the sulfur atoms are in the same range for both models. The standard deviations of 

these distances indicate that the degree of flexibility is even larger for the shorter sequence.  

 

(a) 
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(b) 

Figure  4.14  (a) NMR spectra of compound 33d (model δδδδ)(*) chloroform residual peak 
(b) Experimental CD spectra of compound 33d measured in CH2Cl2 

 

Table  4.8 Averages Sulfur-sulfur atomic distances for models δδδδ and φφφφ. 
 

Models 
S1-S2 

[Å] 
S1-S3 

[Å] 
S1-S4 

[Å] 
S2-S3 

[Å] 
S2-S4 

[Å] 
S3-S4 

[Å] 

4 6.7(9) 7.0(9) 8.0(9) 8.2(10) 12.1(9) 6.1(11) 

6 12.7(6) 8.0(5) 12.7(9) 7.9(6) 6.1(10) 6.7(7) 

Standard deviation in parentheses 

 

 

(a)       (b) 

Figure  4.15 Time series of the distances between sulfurs, in molecules (a) δδδδ and (b) φφφφ 
monitored over 1 µs 
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The distances between any two sulfur atoms, in the active site of the experimental 

crystal structure of the enzyme are in the range of 4.5 - 6 Å [177]. The time series plotted 

in Figure  4.15 indicates that for model δδδδ thermal energy alone is high enough to bring two 

sulfurs as close as 4 Å at some instances during the MD and therefore to bond to a nickel 

atom, or at least to create favorable conditions for coordination. Therefore, there is no 

steric hindrance and the coordination of nickel seems feasible from the steric view point.  

The next step was to include a nickel core in the ligand pocket of models δδδδ and φφφφ, so 

as to obtain models εεεε and γγγγ. The nickel atom was implemented in CHARMM using a 

harmonic energy term between the sulfur atoms and nickel. We do not intend to reproduce 

neither the d-orbitals of the nickel nor the ligand field stabilization of the sulfur atoms. The 

model presented here is hold by an electrostatic harmonic force and is therefore a purely 

steric and geometric approximation. 

Simulation in vacuum was performed on each molecule with the same protocol as 

described in the “Methods”. Resulting structures are shown in Figure  4.16. Mean values 

for Ni-S atomic distances and S-Ni-S angles are reported over 1 µs MD in Table  4.9. 

 

 

 

 

(a)      (b) 

 
Figure  4.16 Simulation of (a) model εεεε and (b) model γγγγ after 1 µs MD in vacuum at 

298 K 
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Table  4.9 Parameters of Nickel-sulfur center 
 

Models 
S1-Ni 
[Å] 

S2-Ni 
[Å] 

S3-Ni 
[Å] 

S4-Ni 
[Å] 

S1-Ni-S2 

[deg] 
S1-Ni-S3 

[deg] 
S1-Ni-S4 

[deg] 

Exp(a) 2.51 2.37 2.49 2.48 93.3° 181.8° 74.6° 

εεεε    2.31(5) 2.25(4) 2.30(5) 2.27(6) 96°(4)° 160°(5) 94°(4) 

γγγγ    2.33(6) 2.29(5) 2.28(5) 2.28(5) 90°(3) 173°(3) 89°(3) 

ιιιι    2.33(7) 2.32(7) 2.34(7) 2.37(0.8) 96°(4) 95°(4) 95°(8) 
(a) Experimental values are measured on the hydrogenase active site from experimental crystal 
structure [163]. Standard deviation in parentheses 
 

For model systems εεεε and γγγγ, there was no apparent distortion of the peptides during 

the simulation. No steric hindrance due to the connection of the nickel in the sulfur ligand 

pocket is observed. Nickel-sulfur complexes connected to an aliphatic carbon chain are 

rare in the literature; only about 30 crystal structures have been published. In the present 

simulation, the S-Ni bonds, are in the range of 2.25 Å to 3.0 Å (see Table  4.9), similar to 

the size of data measured in the crystal structures [163] which are in the range of 2.37 Å to 

2.51 Å. These results are also in good agreement with DFT/B3LYP optimizations 

performed on different nickel complexes [178]. 

 

4.4.2 Simulation of the Hydrogenase active center (models ηηηη and ιιιι) 

For this study, only the two peptides strands without ferrocene were simulated in 

CHARMM, using the commercial CHARMM parameter and topology files, except for the 

nickel, which was implemented as described in the section “Methods”. The sequence that 

surrounds the metal core in the natural enzyme active site are: 

-NH-Ala-Cys1-Ile-Ala-Cys2-Thr-CO- and –NH-Pro-Cys3-Gly-Val-Cys4-Gly-CO- (see 

Figure  4.17). In Model ηηηη, Cys1 is connected to Cys4 and Cys2 to Cys3 via two disulfide 

bridges. In Model ιιιι, a nickel atom is incorporated between the sulfurs and bridges the 

cysteine residues on opposite peptide chains. In the latter case, it was found that no 

additional harmonic constraint was needed for holding the nickel atom in the sulfur ligand 

pocket; non-bonded interactions were sufficient to hold the structure together over the time 

of the MD run. An MD simulation of these two systems in vacuum was performed for 

500 ns. 
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(a)       (b) 

 
Figure  4.17 Hydrogenase active site; (a) calculated versus (b) experimental structure 

(active site obtained from PDB database and worked-out with Insight II) 
 

 

Table  4.10 Cter-Nter distances in models ηηηη and ιιιι. 
 

Models 
Cter1-Cter2 

[Å] 
Nter1-Cter1 

[Å] 
Nter1-Cter2 

[Å] 
Nter1-Nter2 

[Å] 
Nter2-Cter1 

[Å] 
Nter2-Cter2 

[Å] 

ηηηη    5.3(2) 5.3(7) 6.6(3) 9.6(8) 8.1(11) 5.1(7) 

ιιιι    10.0(0.58) 10.4(1.48) 6.5(2.61) 12.19(1.80) 6.25(1.31) 14.2(1.45) 

Cter1 belongs to the threonine on the first strand; Cter2 belongs to the glycine of the second 
sequence. Nter1 is attached to the alanine of the first strand and Nter2 to the proline of the 
second one. Standard deviation in parentheses 
 

The distances between the C and N termini of the two strands were monitored for 

systems ηηηη and ιιιι as time series over 500 ns dynamics at room temperature (results are 

shown in Table  4.10). As it is shown in Figure  4.18, in both cases, the mean distance 

between both N-termini (about 9 - 12 Å) is longer than mean distance between C-termini 

(5 - 10 Å). Since the Cp-Cp distance in ferrocene is about 3.3 Å, this indicates that 

ferrocene could be attached more easily to the C-termini than the N-termini. The Nter-Cter 

distances are also in the range of 3 - 5 Å. Therefore, anti-parallel incorporation of the 

peptides on ferrocene with the C-terminus of one strand and the N-terminus of the other 

strand attached to ferrocene is also a possible synthetic route. We assume that the 

connection of ferrocene to either the C-termini or anti-parallel to the C- and N-termini is 

geometrically more favourable and induces less strain in the molecule. The asymmetric 
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synthetic path has already been published by us [109, 179]. Its synthesis is technically 

challenging and tricky. 

 

 

 (a)       (b) 

Figure  4.18 Time series of the distances between C and N termini in model system (a) 
ηηηη and (b) ιιιι monitored over 0.5 µs 

 

4.4.3 New direction for the synthetic work 

Based on the simulation results, the synthetic pathway for the connection of 

ferrocene to C-termini instead of the N-termini has been investigated. Therefore, it is 

required to attach two amines to the ferrocene moiety, so as to enable the carboxylic acid 

termination of the peptides to react. The synthesis and the application of 

1,1’-diaminoferrocene in peptide synthesis have already been reported [180]. One of the 

steps for the synthesis of 1,1’-diaminoferrocene is the formation of 1,1’-diazidoferrocene 

[109], which is extremely temperature sensitive, and prohibits the reaction from being 

scaled up, which is certainly desirable since this derivatives will be further used as building 

blocks. Another possible synthetic pathway has therefore been pursued and consists of the 

intercalation of an ethylendiamine linker. The ethylene diamine could be coupled with 

ferrocene carboxylic acid to afford the desired product. In this manner, the diazido 

intermediate is avoided and the addition of the linker enhances the flexibility of the 

molecule. Three different synthetic approaches were tested; the Boc-protected, the 

Fmoc-protected or the unprotected ethylendiamine (EDA) were attached to ferrocene with 

standards coupling conditions. The protecting groups were subsequently cleaved as it is 

depicted in Figure  4.19. 
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Figure  4.19 Synthetic pathway for the new orientation of experimental work (a) HOBt, 

DCC, DIPEA, CH2Cl2, 1 h, 20°C NH2-(CH2)2-NH-R, 4 h, 20°C (b) 
Piperidine/CH2Cl2, 30 min, 20°C c TFA/Phenol 1 h, 20°C 

 

Each of these different pathways includes some drawbacks; the Fmoc cleavage in 

solution produces pyridine salts and Fluorenomethyl polymers [100]. Cleavage of the Boc 

protecting group takes place in TFA with a large excess of phenol to avoid the side 

reactions observed when ferrocene is in prolonged contact of a strong acidic media. For the 

third synthetic path, activation of the ferrocene carboxylic acid and its isolation from the 

activation reagent is needed. Subsequently, in a second, independent step, coupling with 

ethylene diamine (EDA) follows. The reaction mixture has to be largely diluted to avoid 

chain polymerization. Even so, about 20 % of the ferrocene-EDA macrocycle and/or 

polymers were isolated, when both extremities of EDA connect both Cp-rings that belong 

either to the same ferrocene moiety or to two different molecules. The large excess of 

phenol, that has to be used for the Boc strategy in order to avoid side reactions as well as 

the large dilution necessary for the unprotected strategy, increases preference for the use of 

the Fmoc strategy. The synthesis is described in the experimental section. The ferrocene 

ethylene diamine 31 thus obtained was fully characterized and its synthesis was optimized. 

This compound will be further used as starting material for coupling with amino acids and 

peptide derivatives. This part of the work is not discussed here. 

 

 

 

 

 

 

 

 



Molecular Dynamics Simulations 
 

77 

 

4.5 Conclusion 

 

A parameter set for ferrocene-bearing peptides has been developed for the all-atom 

CHARMM molecular mechanics force field. Fitting of the molecular mechanics potential 

to that derived by quantum chemical calculation produced a good matching of normal 

modes for ferrocene-1-proline-1’-alanine. This molecule was used to derive the parameters 

for ferrocene and for the connection between ferrocene and the first amide bond of the 

peptide sequence. 

The new parameters were subsequently tested on independent, experimental 

structures and the results obtained are overall in good agreement with experimental data. 

Energy minimization and molecular dynamics of the Fc-(D-Ala-D-Pro)2 crystal structure 

led to unit cell dimensions and volume being reproduced within less than 0.1 % of the 

experimental values. Intrinsic structural features of the crystal, such as the intramolecular 

H-bond pattern and the helical ferrocene arrangement are also accurately reproduced.  

The structures and dynamics of possible hydrogenase mimics were subsequently 

studied. MD simulations of the model systems exhibited the formation of intramolecular 

hydrogen bonds between the two peptide strands on models ββββ, χχχχ, δδδδ, εεεε and φφφφ that are 

consistent with the available experimental data. Our MD studies show that longer peptide 

sequences such as -NH-Ala-Cys1-Ile-Ala-Cys2-Thr-CO- and –

NH-Pro-Cys3-Gly-Val-Cys4-Gly-CO- attached to a ferrocene moiety result in multiple 

steric and stability hindrances. In contrast, small peptide sequences attached to a ferrocene 

moiety (such as model systems δδδδ, εεεε, φφφφ, γγγγ) have a much more promising behavior. This led 

us to the conclusion that, from a steric view point, the metal coordination seems to be 

feasible for this type of compound. Finally, two non-ferrocene hydrogenase mimics (model 

systems ηηηη and ιιιι) were studied, and the time series of the distances between the termini of 

both strands were monitored. The mean distance between the C-termini of the peptides 

during the MD was smaller than that of the N-termini; suggest that ferrocene attachment 

might be easier on the C-termini of the peptides rather than on the N-termini, as is the 

synthetic strategy hitherto followed. A novel synthetic strategy using diamino-ferrocene 

instead of ferrocene dicarboxylic acid was thus developed. Preliminary synthetic results, 

i.e. the synthesis of the first building block of this new synthesis, demonstrate the technical 

feasibility of this new approach. 
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5. Functionalized Aromatic Oligoamides 

 

 

 

In the following, we present the theorical prediction, the synthesis, the 

functionalization and the structural study of a family of quinoline derived amide oligomers 

with appended thiols. The following results illustrate the efficiency of computational 

rationalization, and the relative ease of synthetic production of oligoamides that mimic the 

folding of peptides. The potential suitability of these molecules as ligands for an iron-

carbonyl metal core and therefore as scaffolds for mimicking hydrogenase active site is 

also demonstrated. 

 

 

5.1 Design of the structures 

 

The predictability of the folding of oligomeric molecules is largely increased when 

multiple stabilizing intramolecular interactions, such as hydrogen bonds and aromatic π-

stacking, take place between the different units constituting the structures. When 

conformational preferences arise locally at every rotatable bond, as in the oligomers 

discussed hereafter, computational and / or experimental studies provide accurate data on 

the relative positioning of consecutive units that, in many cases, may be extrapolated to 

longer oligomers.  

Oligoamides of some meta-substituted pyridine- and benzene-derived amines and 

acids have been shown to fold into crescent and helical structures [181, 182]. In principle, 

a meta substitution defines an orientation of 120° between substituents and should lead to 6 

units per turn in these bent conformations. In practice, intramolecular hydrogen bonding 

has an effect on the bending of the strands, and helices of meta-substituted aromatic 

oligoamides comprise from 4.5 to 8 units per turn, to compare with the 2 - 4 units per turn 

encountered in helices of aliphatic α, β, and γ peptides. Our group has recently reported 



Chapter 5 
 

80 

that aromatic oligoamides with substituents oriented at 60° (for example, ortho 

substituents) are more bent, and give rise to helices with 2.5 units per turn [183]. Quinoline 

monomers were designed for this purpose; 8-amino-4-isobutoxy-2-quinolinecarboxylic 

acid and 8-amino-4-tertbutylthiopropoxy-2-quinolinecarboxylic acid were used as building 

blocks for the preparation of oligoamides. The alkoxy substituents in position 4 diverge 

from the helices and determine their solubility and potential functions. Moreover, we 

became intrigued with the use of 1,10-phenantroline-2,9-diacid as monomeric unit. Indeed, 

the two acids groups also define an angle of 60°, which leads to the same bending of the 

strand as observed for quinoline oligomers. Thus, the units depicted in Figure  5.1 were 

incorporated in oligomers. 

 

 

(a)   (b)   (c) 
 

Figure  5.1 Single units incorporated in oligomers exhibit structural similarity. (a) 
Isobutoxy quinoline, named B4 in its nitro-ester form; (b) tert-butylthio-
isobutoxy quinoline named B5 in its nitro-ester form; (c) 1,10-phenantroline 
named B22 in its bis-(acid chloride) form.  

 

In oligomers of B4, B5 and B22, intramolecular hydrogen bonding between the 

amide hydrogen and both adjacent quinoline nitrogens stabilize a bent shape, and give rise 

to a helix for strands as short as a trimer. This well-defined three-dimensional geometry 

can be accurately predicted by molecular modelling by using commercial force fields, as 

demonstrated for quinoline oligomers [183]. A simple energy minimization using the 

standard MM3 force field in Macromodel [184], was performed on sequences of 

quinolines, and quinolines and phenantroline (see Figure  5.2 and Figure  5.3). The aim of 

these simulations was to find the most suitable position of the S-functionalized quinoline 

units in the sequence so as to create a sulfur chelate pocket capable of complexation with a 
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diiron carbonyl core. Therefore, the ligand should have similar size and shape than those 

observed in the wild-type or already reported in literature [31, 185].  

 

 

(a)     (b) 
Figure  5.2 Side view (a) and top view (b) of a hexameric quinoline-oligomer structure 

bearing thiol side-chains in position 1 and 6, obtained from a simple energy 
minimization (MM3 force field in Macromodel) 

 

In the simulation of the hexameric quinoline oligomer depicted in Figure  5.2, the 

distance between both sulfurs placed on residues 1 and 6 of the sequence is of about 4.0 Å 

this is of good agreement with the distance measured between two different sulfur atoms in 

the crystal structure of the wild-type complex of the hydrogenase active site. The 

calculated hexamer is centro-symmetric; two identical trimers are connected via a urea 

cross-link.  

 

(a)      (b) 
 

Figure  5.3 Side view (a) and top view (b) of a pentameric structure, with a phenantroline 
as central unit, obtained from a simple energy minimization (MM3 force field 
in Macromodel) 
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In a second step, theorical predictions performed on the same basis on a mixed 

phenantroline-quinoline sequences, led us to investigate oligomers with a 1,10-substituted 

phenantroline as central unit connecting to two identical quinoline dimers. 

As shown in Figure  5.3, we focused on a pentameric oligomer having two thiol-

functionalized quinoline units placed at the key positions “2” and “4” of the sequence 

(starting from one end), right besides the central phenantroline, so as to produce a 

convenient chelating pocket. In this case, the thiol side-chains are expected to lye right 

above each other and diverge from the helix. As comparison the synthesis of a second 

pentamer, in which the modified monomers are in places 1 and 6, was also performed and 

discussed later. The phenantroline carboxamide building block has already been 

successfully used in the design of supramolecular assemblies [186] and presents some 

advantages. The features that allow it consistent incorporation in quinoline oligomers are 

the following: (i) The 1,10 diacid units define angle of 60°, which leads to the high 

bending of the strands and therefore strong π-π stacking interactions between the 

phenantroline and adjacent aromatic units. (ii) Two nitrogen atoms in the phenantroline 

unit are hydrogen-bond acceptors that can form intramolecular hydrogen bonds with 

adjacent amide hydrogens to restrict the conformation of the strands. (iii) When the strands 

fold into helical structures, aromatic stacking interactions between different units can 

further stabilize the conformation. (iv) The symmetry of the phenantroline introduces a C2-

symmetry axis perpendicular to the helix. Symmetry allows a convergent synthetic scheme 

and simplifies the (NMR) spectroscopic signature. 

At this point, we would like to emphasize the fact that prediction was here a powerful 

tool, which allow us to screen, virtually, a wide range of possible structures and sequences. 

 

 

5.2 Synthesis 

 

5.2.1 Monomers and dimers 

The preparation of monomer B4 was easily carried out in three steps (Scheme  5.1), as 

described in literature [187]. The addition of 2-nitro-aniline to dimethyl acetylene 

dicarboxylate affords B2, which can be isolated by crystallisation from cold MeOH with 

yields above 85 %. The subsequent conversion of enamine B2 to quinolinone B3 was 

carried out by ring closure in polyphosphoric acid (yield: < 70 %) [188, 189]. The 
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isobutoxy monomer B4 was subsequently obtained by the alkylation of the oxygen in 

position 4 of B3, which was achieved under Mitsunobu conditions with isobutanol. The 

tertiobuthiolpropoxy monomer B5 was obtained by the O-alkylation of B3 with 3-(tert-

butylthio)propan-1-ol B1 which was prepared by nucleophilic substitution of 3-

chloropropan-1-ol with sodium 2-methylpropane-2-thiolate as described in ref. [190]. Both 

B4 and B5 can be isolated by crystallisation from chloroform / methanol mixtures in 90 % 

yield and were used without further purification. No trace of N-alkylation of the 

quinolinone nitrogens was detected in these reactions, contrary to other compounds studied 

in the laboratory (e.g. hydroxy-naphthyridines). 

 

 
 
Scheme  5.1 Synthetic pathway leading to the monomers isobutoxy and tertbutyl-

thiopropoxy. (a) dimethyl acetylenedicarboxylate, MeOH, rt; (b) 
polyphosphoric acid, 130°C; (c) CH2Cl2, rt; (d) DEAD, PPh3, THF, rt; (e) 
iBuOH, DEAD, PPh3, THF, rt. 

 

As it is depicted in Scheme  5.2, the saponification with potassium hydroxide and 

reduction of the nitro groups by hydrogenation on Palladium catalyst of B4 and B5 under 

standard conditions gave quantitative yields of nitro-acid B6, B7, and amino-esters B10, 

and B11, respectively. Nevertheless, it has been noted that the reduction of the sulfur 

containing monomer can be problematic. The thiol group, with its strong affinity for late 

transition metals, may pose some problems. Because of the poisoning of the catalyst, the 

amount of catalyst and the reaction time was increased. Only few publications address this 

problem and no better solution was found in the literature since, in general, thioethers 
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(sulfides) groups are known to be among the most compatible with the use of palladium 

catalysts [191]. The activation of B6 proceeded smoothly in refluxing SOCl2 over 15 min 

to yield quantitative amount of acid chloride B8. Activation of acid B7 in SOCl2 gave raise 

to multiple side reactions, which were avoided using activation with a chlorenamine 

(Ghosez’s reagent) in dichloromethane to give B9 in good yield.  

The subsequent condensations of either B8 on B10, B8 on B11, or of B9 on B10 in 

dry dichloromethane in presence of diisopropyl ethylamine yielded the dimers nitro-ester 

B12, B13 and B14, respectively, in excellent yield. With drastic reaction control, the 

dimers can be obtained in good purity by crystallisation from methanol / chloroform 

mixtures. When the reactions are carried out on larger scales, the yields tend to be higher.  

 

 
 
Scheme  5.2 Synthetic pathway leading to the dimers. (a) KOH, MeOH/THF, overnight, rt; 

(b) H2, Pd/C, EtOAc, 4 h, rt; (c) either SOCl2, reflux, or chlorenamine, 
CH2Cl2, 2 h, rt; (d) DIEA, CH2Cl2, overnight, rt. 

 

The hydrogenation, saponification, activation, and coupling were applied 

successfully to the different dimers with slightly different reaction time and concentration. 

Indeed, we observed that hydrogenation and the saponification step require increasing 

reaction time and / or higher temperature as the length of the oligomers increases. The 
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oligomer with an S-quinoline unit should be treated with the special care described above 

to prevent the side reactions of the thioether group during the synthesis. 

 

5.2.2 Oligomerization 

The mostly used synthetic approach to longer oligomers in our laboratory is a 

semi-iterative approach. Coupling reactions are known to work better when one of the 

reagents has a folded structure and the other is short and unhindered than when both 

reagents are large and folded. Though less efficient then a convergent strategy, an iterative 

approach, where small (monomeric or dimeric) units only are coupled at time, should be 

effective to incorporate a series of different monomers in a sequence as it is the case for 

peptide solid phase synthesis. To prepare sequences including protected thiol side-chains 

such those shown in Scheme  5.1 and Scheme  5.2, syntheses may proceed first with the 

coupling of two monomers to give a dimer. An additional monomer is then coupled to this 

dimer, the resulting trimer may be condensed to itself to afford a hexamer. Alternatively, a 

divergent strategy may be envisaged where two dimers are coupled to a phenantroline 

central unit. The synthetic pathways that led to the relevant oligomers are described in 

Scheme  5.3. 
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Scheme  5.3 Synthetic pathway leading to pentameric structures; (a) KOH, MeOH/THF, 

overnight, rt; (b) either SOCl2, reflux, or chlorenamine, CH2Cl2, 2 h, rt; (c) 
Pd/C, EtOAc, 12 h, rt (d) DIEA, CH2Cl2, overnight, rt. (e) trisphosgene, 
CH2Cl2, 24h rt. 

 

The first synthesis that was investigated was the synthesis of the hexamer. This 

synthesis involve; first the formation of the nitro-ester heterotrimer B20 by reaction of the 
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monomer amino-ester B11 on the activated nitro-acid dimer B16. The resulting B20 was 

subsequently reduced by catalytic hydrogenation to form the amino-ester B21. 

Unfortunately, the reaction of urea cross-linking between both N-terminations of the trimer 

in presence of trisphosgene described in ref. [192], failed in our hands. B21 could be 

recovered from the reaction mixture after purification of the reaction mixture. 

The synthetic pathway including the phenantroline as a central unit was then 

investigated. The synthesis of pentamers B23 and B24 were performed by condensation of 

the carbonyl chloride B22 with two equivalents of the dimers B18 or B17, respectively, 

with yields in the range of 70 %. The activation of the phenantroline dicarboxylic acid can 

be performed in refluxing thionyl chloride during 3 h. Reaction times has to be multiplied 

by 10 in comparison with the isobutoxy-quinoline monomer because of the poor solubility 

of the diacid in the SOCl2. 

 

5.2.3 Deprotection step 

The tert-butyl group was selected to protect the thiol functions during synthesis 

because it was thought to be the most adapted to the various reactions conditions. Tert-

butyl thioethers are resistant to strong acids, strong bases, nucleophilic reagents, as well as 

electrophilic reagents. This group is convenient for the investigated synthetic pathways, 

because of the harsh reaction conditions that are used here, such as activation in refluxing 

thionyl chloride or saponification with potassium hydroxide. The tertio-butyl groups 

present in compound B5, B23, B24, were cleaved in a two-steps procedure depicted in 

Scheme  5.4 and Scheme  5.5. 

 

 
 
Scheme  5.4 Deprotection steps on the monomers: (a) either NpySCl (X = N) or NbSCl 

(X = C), acetic acid, 2 h rt; (b) tri-n-butylphosphine, acetone/water, 12 h, rt. 
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The derivatives B25a, B27, B28, were synthesized by substitution of sulfenyl halides 

on compounds B5, B23, B24, in acidic medium with yields within the range of 70 %. It has 

been found that both para-nitropyridine sulfenyl chloride and para-nitrobenzene sulfenyl 

chloride work properly for this substitution. However, reaction with para-nitropyridine is 

faster. For the second step of the synthesis, the para-nitrosulfenyl group was reduced to 

thiol in presence of tri-n-butylphosphine and water to yield final compounds B26, B29, 

B30. Free thiols derivatives are, in general, air sensitive and they rapidly form intra or 

intermolecular disulfide bridge. They should be handled carefully and used within couples 

of days. 

 

 
 
Scheme  5.5 Deprotection steps on the pentamer: (a) NpySCl, acetic acid, 6 h rt; (b) tri-n-

butylphopshine, acetone/water, 12 h, rt. 
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5.3 Characterization 

 

All synthesized product were comprehensively characterized using standard 

analytical method such as elemental analysis, mass spectrometry, high resolution mass 

spectrometry for longer derivatives, and NMR (1H and 13C). In the case of compounds 

B23, B24 and B29 crystal diffraction data were also collected. The crystallographic data 

are listed in the experimental part along with the rest of the analysis. 

 

5.3.1 Solution phase structural analysis by NMR 

The conformation of pentamers B23, B24, B27, B28, B29 and B30 were investigated 

in solution by NMR spectral methods. All of the intermediates and target compounds have 

good solubility in non-polar solvents such as chlorinated solvents, but they are almost 

insoluble in protic solvent such as methanol. NMR spectra were recorded in CDCl3 at 

ambient temperature. As expected from the C2-symmetry of the pentamers, the two 

quinoline dimers placed beside the phenantroline core are magnetically equivalent. 

Therefore, only one set of signals observed in NMR for the two quinolines dimers. 

However, the NMR spectra are too complicated to be unambiguously assigned without 

additional correlation experiments. Protons signals can be tentatively attributed based on 

literature data and comparison with assigned spectra of related molecule [193]. In Figure 

 5.4, partial NMR spectra of a monomer, dimer, trimer, tetramer, and pentamer, are stacked 

so as to compare the difference in chemical shifts. 

The 1H NMR spectra of the synthesized pentamer are sharp and show no indication 

of hybridization into double helices or other types of aggregates, as was observed for 

pyridine derived oligoamides [71, 194]. The signals are spread over a large range of 

chemical shift despite the repetitive nature of the sequences suggesting different 

environments of each unit. Amide protons are deshielded to 11.7 - 12.8 ppm, as is expected 

for a hydrogen-bonded structure. NMR analyses also show a strong shielding of aromatic, 

amide and ester protons that can be attributed to tight contacts between aromatic rings. For 

example, the signal of the ester shifts from 4.23 ppm in the dimer B13 to 3.20 ppm for the 

pentamer B23, and the singlet assigned to the protons in position 3 of the quinoline are 

found at 7.99 and 7.67 ppm in B13 and at 6.87 and 6.40 ppm in B23. Another interesting 

feature is that signals assigned to the OCH2 groups of the alkoxy side chains (either 
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isobutoxy or tert-buthiopropoxy) at 3.7 – 4.1 ppm in the pentamers, show diastereotopic 

patterns, which are consistent with the intrinsic chirality of a helical conformation. The 

right and left-handed helical conformers are in slow exchange on the NMR time scale. 

Moreover, swapping the isobutoxy and the tert-butylthiopropoxy residues (from 

pentamer B29 to pentamer B30) does not significantly affect the folding of the oligomer. 

 

 

 
 
Figure  5.4 Comparison of partial 1H NMR spectra for (a) monomer B5, (b) dimer B18, 

(c) trimer B20, (d) tetramer isobutoxy, (e) pentamer B23; in CDCl3 
 

The formation of the aromatic oligoamide-based helical foldamers reported so far is 

driven by intramolecular hydrogen bonds, which are strong in solvents of low polarity such 

as CHCl3. However, we have found that the pentamers B23, B24, B27, B28, B29 and B30 

could fold into the same helical structure in the presence of methanol, which is known to 

disrupt H-bonds assembly. As it is shown in Figure  5.5, no obvious spectral changes of 

B23 in methanol-d4 and in chloroform-d occurred. These observations imply that strong 

aromatic stacking interactions that exist between the units of the pentamer are able to hold 

the structure in its helical conformation without the help of the H-bonds. Hu et al. have 

reported a structure based on 1,10-phenantroline diacid and o-phenyldiamine which were 

found to have a more stable helical conformation in methanol than in chloroform. They 
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attributed this enhanced stability of the helical structures in methanol to the intermolecular 

hydrogen bonds between the methanol molecule and the helices [186]. 

 

 
 
Figure  5.5 Comparison of 1H NMR spectra for (a) B23 in CDCl3, (b) B23 in 

CDCl3/MeOD (1:3) 

 

5.3.2 Solid state structural studies by X-Ray analysis 

Single crystals of B23, B24, and B29 suitable for X-ray analysis, were respectively 

obtained by crystallisation from the liquid / gas system Toluene / Methanol, the 

liquid / liquid system Dichloromethane / n-Heptane and the liquid / gas system 

Chlorobenzene / n-Hexane at room temperature.  

 

The structures of B23, B24 and B29, are helical. The five units of the pentamers are 

needed to complete two helical turns (see Appendix for detailed pictures). This is among 

the highest curvature reached by helical aromatic oligoamides. The terminal quinoline 

units of each pentamer indeed overlap with the central phenantroline unit. The pitch of the 

helix is consistent with the pitch of other helical aromatic oligoamides and corresponds 

approximately to the thickness of one aromatic ring (3.5 Å). The inner rim of the helix 

accomplishes exactly one turn every 15 main chain atoms and adopt a conformation 

similar to that of a pentaaza-15-crown-5 macrocycle, with alternating amido and pyrido 

nitrogens, as it has already been shown for quinoline only oligomers. The amido protons 
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fill the helix hollow, and completely prevent penetration of solvent molecules. They are all 

involved in two hydrogen bonds with the adjacent quinoline nitrogens that set the 

orientation of the amido and quinoline moieties. The relative inclination of consecutive 

units can be estimated from the torsion angles between the N(1)–C(2) bond of a quinoline 

and the C(8)–C(9) of the next quinoline or between the C(9)-C(10) bond of a 

phenantroline. With a range of 147.7° to 167.38° for two adjacent quinoline and 159° to 

168.4° for the torsion between the phenantroline and the quinoline unit. The sulfur 

containing side chain adopt various conformations according to the free rotation along the 

CH2-CH2-CH2 moieties, but the position of the first –O–CH2 carbon always point away 

from the hydrogen in position 5 of the quinoline as it is the case for isobutoxy side chains. 

The anisotropic displacements calculated during the parameter refinement of pentameric 

structures were too large to assign properly the position of the tertbutyl group. This 

uncertainty probably results from the free rotation of this group leading to disorders in the 

crystal lattice.  

The core of the helix (see Figure  5.6) has a very regular structure. This is illustrated 

by almost constant distances between the same atom in symmetrical units and constant 

distance of the H-bond pattern within the rim, with hydrogens bonds measured on the 

crystal, in the range of 2.15 Å to 2.25 Å for the length, and 138.25° to 138.9° for the angle. 

Bending is even along the strand and does not depend upon the central or terminal position 

of the units, or the conformation of the side chain or interactions associated with crystal 

packing. 

 

 
Figure  5.6 Top view of the crystal structure of B24; Included solvent molecules have 

been omitted for clarity. The blue arrow shows that –O–CH2 carbon always 
point away from the hydrogen in position 5 of the quinoline 
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The principles used to design the folded conformation of these oligomers essentially 

are the hydrogens bonds between consecutive units within the sequence. However, the 

solid state structure shows extensive aromatic overlap which plays an important role in the 

stabilization of the helix. This is consistent with the results obtained in the solution phase 

NMR studies in polar and protic solvent. Computational studies may provide an estimation 

of the strength of interaction between these stacked aromatic, but have not yet been 

undertaken. Nevertheless, a simple observation of the structure reveals that intramolecular 

π-stacking is extensive in B23, B24 and B29. As depicted in Figure  5.7, the aromatic ring 1 

of the first quinoline matches perfectly above the ring 3 of the phenantroline. So as the ring 

2 of the quinoline in position 5 match perfectly with the ring 1 of the central phenantroline 

(in position 3) and finally, the ring 1 of quinoline in position 2 is exactly above the ring 2 

of the quinoline in position 4. This suggests that the curvature of the strand is also 

governed by the π-π interactions. However, it is interesting to note that in the case of B23, 

the match is not perfect, probably due to steric hindrance due to the presence of the S-tertio 

butyl protective group. 

 

 

 
Figure  5.7 Crystal structure of B24; solvent molecules, hydrogens, side chains and 

methyl ester termination have been omitted for clarity. In red the aromatic 
rings that match perfectly one upon the other. 

 

Derivative B24, crystallize in the space group P-1 with a simple inversion center as 

unique symmetry operation. It was found to pack in stacks of helices of the same 
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handedness at regular 10.78 Å intervals (see Figure  5.8). This arrangement seems to be 

held by intermolecular π-stacking interactions since no hydrogen bonds connect two 

consecutive pentameric units, thus creating parallel supramolecular nano-tube in the solid 

state. This demonstrates again the important role of aromatic interaction in this 

phenantroline containing oligomers. Furthermore, the pentameric units arrange in a 

herringbone motif, where the quinoline side chains, isobutoxy and tert-thiobutoxy, 

individually form the columns. Indeed, as it is shown in the top view of Figure  5.8, in the 

crystal lattice the side chains stack one upon the other. 

 

 

 
Figure  5.8 (a) Side view (b) Top view of a portion of a layer containing the helical 

arrangement of crystal packing of B24 (a) pitch height (b) herringbone motif  

 

The structure obtained for B24, also allows us to rate the quality of the prediction 

made by very simple molecular modelling methods as explained before. Figure  5.9 shows 

the superimposition of the helix of B24 in the solid state, and the helix predicted for B24 

by an energy minimization using the MM3 force field in Macromodel. A side view of the 

helix shows an almost perfect prediction of its diameter and of the pitch, within a root 

mean square deviation of less than 5 %. The top view shows something even more 

remarkable; the aromatic π-stacking has been predicted, even thought it has not been 

explicitly implemented during the simulation. However, the experimental structure looks 
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more bent than the calculated one, the aromatic effect is certainly underestimated in this 

case. 

 

 

Figure  5.9 Superimposition of experimental (blue) and simulated (red) structures 
 

 

5.4 Concluding remarks 

 

In light of the remarkably consistent reliance of biological systems on polymeric 

agents to perform complex chemical tasks, it is very tempting to conclude that unnatural 

polymeric agents will also prove to be capable of performing useful functions, such as 

mimicking the structure and the functionality of enzymes active site. In this chapter, we 

have demonstrated that the great ability to design foldamers open the way to structures 

with well-defined and predictable shapes, notably through computational simulation based 

on simple molecular mechanics force field. We were able to determine a sequence of 

monomeric building block to design the shape of a sulfur suprachelate in order to obtain a 

complexation shell capable of reaction with d-block metal.  

In this Chapter, the synthesis and the characterization of the pre-designed foldamer 

are presented and the solid-state conformation of the experimental structure confirms the 

theorical prediction. Conformations of the helices were studied in solution and in the solid 

state and they show a strong helical character. We also demonstrated that, the helices are 

held merely by π-stacking interactions in the solid state as well as in solution. This is of a 

major importance since most of the helical arrangements reported in literature are held by 

hydrogen bond interactions. The thiol functions deprotection step was successfully 

performed and reported. Free SH groups are readily prepared for further functionalization. 
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Preliminary results obtained about complexation of iron-carbonyl core on the free thiol 

chelate thus, obtained are presented in the next chapter. 
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6. Iron-Carbonyls Complexes 

 

 

 

Although known for more than 75 years [195], the sulfur-containing binuclear 

complexes of iron have recently experienced a renaissance as interesting synthetic targets 

as they closely resemble the active site of iron hydrogenase. Model complexes that exhibit 

catalytic features related to those of the iron hydrogenases have so far relied solely on 

propyldithiolate (PDT) or azadithiolate (ADT) bridges. For example, Rauchfuss and 

co-workers have demonstrated that [(µ-PDT)Fe2(CO)4PMe3(CN)]
- serves as a catalyst for 

electrochemical hydrogen evolution [196]. In parallel, Darensbourg and co-workers have 

reported that [(µ-H)(µ-PDT)Fe2(CO)4(PMe3)2]
+ is a catalyst for H2 / D2 scrambling [25] 

and Ott et al. have recently reported that [(µ-ADT)2Fe2(CO)6] serves as a catalyst for 

electrochemical hydrogen production [27]. For a comprehensive review on abiological 

iron-carbonyl cluster see ref. [197]. 

In this chapter, we have pursued to use the compounds synthesized in Chapter 3 and 

5 as new classes of ligand for binuclear iron complexes. We thus open a new field of 

investigation, using supramolecular self-assembly as chelate for d-block metal to mimic 

the active site of hydrogenase.  

 

 

6.1 Ferrocene-cysteine/iron-carbonyls derivatives 

 

6.1.1 Deprotection of side chain protective groups 

The experience gained in Chapters 2 and 3 about protection of thiol led us to use Trt 

group as protective group because it is the easiest to cleave. Unfortunately, as explained in 

chapter 3, attempts to couple trityl-protected dipeptide to ferrocene mono or dicarboxylic 

acid failed. Therefore, for dipeptide derivatives the tert-butyl protective group was chosen 
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as protective group. Tert-butyl is the better compromise between stability, availability, 

steric hindrance, and ease of synthesis. However, the cleavage, in two steps synthesis, is 

not as straight forward as the one-step deprotection of trityl group. 

Free thiol derivatives 33a, 33b, 33c and 33d were prepared from the deprotection of 

27a, 27b, 28c and 28d respectively (see Figure  6.1). Compounds 27a and 27b, are 

protected with the Trityl group. This group is easily removable, in one-step, in TFA, to 

yield 33a and 33b. An excess of triisopropylsilane (2 eq.) is also added to the mixture to 

quench the resulting carbocation. However, the first attempts to obtain the free thiol failed 

because of degradation of ferrocene. We assume that this degradation is due to the 

oxidation of iron(II) to iron(III) catalyzed by the acidic media. This challenge can be easily 

overcome by the addition of a large excess of Phenol (10 eq.) in the reaction mixture. 

Indeed, presence of phenol prevents ferrocene to be spoiled, acting as an anti-oxidant.  

 

 
 
 
Figure  6.1 Deprotection of (A) trityl and (B) tertio-butyl protective groups on ferrocene-

peptides derivatives. Reactions conditions are: (a) TFA, TIS (2 eq.), Phenol 
(10 eq.), 2 h, rt; (b) NpySCl, acetic acid, 6 h rt; (c) tri-n-butylphopshine, 
acetone/water, 12 h, rt. 

 

Compounds 28c and 28d are protected with tert-butyl group; this protective group is 

cleavable in two steps involving: (i) the substitution reaction in presence of para-nitro-
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pyridine sulfenyl chloride, in glacial acetic acid and, (ii) the subsequent reduction of the 

disulfide bridge with tri-n-butylphosphine in aqueous media. The free thiols thus obtained 

should be carefully handled (protection from oxidation sources such as water and oxygen) 

and preferably used within a couple of days. 33a, 33b, 33c and 33d were extensively 

characterized using all standard analytical methods along with electrochemical 

measurement. Results are discussed partly in this chapter and partly in chapter 3. 

 

6.1.2 Complexation with Iron-carbonyls 

The preparation of diiron dithiolate complexes by oxidative addition of thiol to 

iron(0) carbonyl compounds can be traced back more than half a century [198]. Many 

diiron complexes with the general formula [(µ-SR)2Fe2(CO)6] can be obtained by using the 

traditional protocol described in ref. [18, 199, 200]. Iron carbonyl dissolved in dried CHCl3 

is added to the sulfur containing ligand dissolved in MeOH. The resulting mixture is 

refluxed for 1 h at 90°C. A change in colour from deep green to deep red, consistent with a 

change in oxidation degree of iron, indicates that reaction occurs. The work-up varies with 

the type of the sulfur ligand used for complexation. If a column chromatography 

purification step is needed it was performed by flash chromatography on silica gel. Other 

groups [38] reported purification on Al2O3, but in our hand the separation was not accurate 

enough. The Fe-CO complexes thus obtained are air-stable and more generally relatively 

stable in the solid state but decompose slowly in solution and especially in chlorinated 

solvents such as chloroform. We assumed that one of the reactions that occurs in 

chlorinated solvents is the oxidation of iron(I) to iron(II) or (III) followed by the 

precipitation of iron chloride. Moreover, we have also noticed that compounds are not 

stable at vacuum for a long time. It is assumed that carbonyls are probably pumped out of 

the coordination sphere by reduced pressure. 

[Fc-Cys-OMe]2(Fe2(CO)6) 35 was synthesized according to the protocol previously 

described. The purification step consists of precipitation from cold methanol. After 

filtration, the product was obtained in good yield, as a dark-red crystalline powder. 

Fe[C5H4-CO-Cys-OMe]2(Fe2(CO)6) 36 was synthesized in a diluted system so as to 

avoid polymerization. Unfortunately, in diluted system the reaction is hindered. However, 

we were able to isolate product from a complex reaction mixture by column 

chromatography. 

[Fc-Cys(Fe(CO)3)-Cys(Fe(CO)3)-OMe]2 37 was synthesized according to a similar 

procedure. Nevertheless, in this case, an additional purification step was also needed since 
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the precipitation from cold methanol yielded a mixture. Purification by column 

chromatography yielded a deep red solid. At this point of the work, it is not possible to 

determine the exacte composition of the product with standard analytical methods, since no 

mass peak were detected by ESI masse spectrometry (the different possibilities for the 

structures are presented in Figure  6.9. 

One of the major side product obtained during the complexation step are the 

disulfide-bridged compounds. Indeed, either intermolecular or intramolecular S-S bond, 

easily form by oxidation. Two of these side products, 34a and 34b, have been isolated and 

characterized as depicted in Scheme  6.1. 

Initial attempts to synthesize Fe[C5H4-CO-Cys-Cys-OMe]2(Fe2(CO)6) from reaction 

of the bis-dipeptide 33d with stoichiometric amount of iron carbonyl precursor in refluxing 

methanol were not successful as the target product could not be separated from the 

complex reaction mixture. It is assumed that chain polymerization took place and multiple 

products are formed even when reaction takes place in large dilution. No further attempts 

were tried to get products from this reaction. 

 

 
 
Scheme  6.1 Reaction of free thiol-containing compound with iron carbonyl with three 

different sulfur ligand. (a) Fe3(CO)12, MeOH, reflux, 1 h. 
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6.1.3 Characterization 

Compounds were fully characterized using standard spectroscopic techniques. The 

signals of the carbon of the metal carbonyl are observed at 208 ppm in 13C NMR in CDCl3, 

and thus confirmed the complexation with the diiron core. The 1H and the 13C NMR 

spectra both show that the bis(ferrocenoylcysteinyl-S) diiron complex obtained is a mixture 

of three different conformation e,e (35a) e,a (35b) a,a (35c) isomers (e, equatorial; a, 

axial). The e,e : e,a : a,a ratio is about 1:6:1 as determined by integration on the 1H NMR 

spectrum. We assumed that the major isomers is the e,a since the geometry seems to be 

less hindered. This kind of geometrical isomerization, derived from the orientation of the 

Cα atom on the bridging thiolates, has previously been reported for [(µ-RS)2Fe2(CO)6] 

complexes (R = CH3, CH2CH3, CH2C6H5) by King [198] and Seyferth [201, 202]. No 

isomeric effects were observed for derivatives 36 and 37. 

EI mass spectrometry measurements also give clues about the composition of this 

compound. Indeed, the [M]+ peak is one of the strongest signal and the base peak is a 

fragment of the composition [M - 6CO]+ this kind of fragmentation has already been 

reported for iron carbonyl complex [203].  

The UV / Vis spectra of 35, 36 and 37 are dominated by a strong absorption in the 

visible region respectively at 334 nm, 333 nm, and 336 nm (as it is shown in Figure  6.2). 

The red colour is attributed to this absorption in the visible region with a maximal 

extinction coefficient of 9881 L.mol-1.cm-1 for 36 and 6111 L.mol-1.cm-1 for 37 which is 

characteristic from metal-to-ligand charge-transfer transitions in iron-carbonyl core [204]. 

Intense absorption in the 330 – 380 nm region is characteristic of both {2Fe2S}- and 

{2Fe3S}- systems possessing metal-metal bonds. A second intense absorption is visible 

around 450 nm, attributed to metal-to-ligand charge transfer in ferrocene moiety. Thereby 

suggesting that, these spectra can be regarded as a linear combination of the spectra of 

ferrocene-peptide derivatives and iron carbonyl complex. 
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Figure  6.2 Comparison of UV Absorption spectra for ferrocene-peptide and ferrocene-

iron-carbonyl complexes.  
 

IR spectrum measured as KBr disks also confirms formation of sulfur-iron-carbonyl 

complexes with strong CO stretch bands observed around 2000 cm-1, this vibration is 

characteristic from terminal carbonyls in iron-carbonyls derivatives, no bridging CO 

stretch vibration are observed in the IR spectra. For example, in the IR spectra of 35, five 

C=O stretch vibration bands were observed at 2073, 2031, 2001, 1976 and 1957 cm-1 (as it 

is shown in Figure  6.3). Even though CO scrambling is known to be extremely fast in iron-

carbonyls type complexes, the time scale of IR measurement is even faster and therefore, 

allow us to conclude that the multiple CO bands confirm the presence of different isomers. 

 

Table  6.1 Summary of selected IR and NMR data for 33a, 33b, 33c, 35, 36 and 37 

 

Compound ν (ν (ν (ν (NH valence) (a) 
ν (ν (ν (ν (C=Oester 
valence) (a)    

ν (ν (ν (ν (C=Oamide 
valence) (a) 

δδδδNH
(b) 

33a 3299 1745 1635 6.58 

33b 3294 1752 1654 / 1628 7.55 

33c 3284 1747 1654 / 1624 7.20 / 6.64 

35 3401 1748 1636 6.63 

36 3327 1753 / 1729 1649 7.04 / 6.46 

37 3284 1745 1644 7.71 / 7.53 

Measured as KBr disks for IR and in CDCl3 for NMR and given (a) in cm-1 (b) in ppm 
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A summary of IR data of peptide region for 35, 36, 37 are given in Table  6.1 along 

with the data collected for their precursors: 33a, 33b and 33c. NH stretch bands are 

observed below 3400 cm-1 for 36 and 37, this indicates that peptide strands seems to be H-

bonded. Nevertheless, amide vibration band is significantly shifted to larger values in the 

case of 35 and 36, which seems to indicate a change in the pattern. Signals for 37 are 

broader. It is therefore difficult to point out clear trends. 

 
Figure  6.3 Comparison of IR spectra of 33a and 35; the presence of carbonyl band 

confirms formation of the target compound. 
 

Questions arise about the intramolecular H-bond pattern discussed in chapter 3 and 

observed for 33b. We attempt to answer these questions by using Circular Dichroism (see 

Figure  6.4). No Cotton effect, and therefore, no chiral activity are observed for compound 

36. The disubstituted ferrocene 33b, which is a chiral compound according to the strong 

cotton effect observed around 450 nm, seems to lose its chirality during the complexion 

with the iron carbonyl core. We assume that the intramolecular H-bonds, which results in 

the helical chirality, are broken during the complexation step. This hypothesis is supported 

by the shift of vibrational NH bands observed in IR, meaning a change in H-bond pattern 

probably from intramolecular to intermolecular. 

Nevertheless, a weak negative Cotton effect is observed at 366 nm in the CD spectra 

of 36, this is attributed to iron carbonyl core. 
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Figure  6.4 Comparison of CD spectra of 33b and 36. Disubstituted ferrocene lost its 

chirality after complexation with iron-carbonyls 
 

 

6.2 Electrochemical properties 

 

6.2.1 Electrochemistry 

To assess a potential electron transfer from the Fe(II) core of the ferrocene to the 

Fe(I) core of the iron carbonyl, cyclic and square wave voltammograms were recorded for 

35, 36 and 37. This is of particular interest since no electrochemical data concerning 

electron transfer between ferrocene and iron carbonyl core have been reported in the 

literature to date. Nevertheless, peak frequency shifts during redox processes in iron 

carbonyl-attached biferrocene and terferrocene have already been monitored by the IRAS 

technique, the authors suspect electron communication between the two metal cores [205].  

 

The cyclic voltammogram of 36 in CH3CN with tert-butyl ammonium as supporting 

electrolyte shows one anodic redox process at 0.468 V (vs. Fc / Fc+) with an intensity of 

34.8 µA and three cathodic redox processes at -1.73 V, -0.642 V and 0.358 mV with 

respective intensity of 50.1 µA, 10.1 µA and 0.9 µA. The cathodic process at 0.358 mV 

and the anodic process at 0.468 mV correspond to the results obtained for 33b, which is the 

precursor of 36. These signals are attributed to the one-electron oxydo-reduction of 
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disubstituted ferrocene. This process is assumed reversible when the current is reversed at 

0 mV as it is shown as insert on Figure  6.6. Moreover, the process completes the rule of 

Randles-Sevcik (see Equation 6). As it is shown as insert on Figure  6.5 the intensity of the 

redox wave at 0.468 mV proportionally decreased with √ν, with a ∆Ep = 45(5) mV. 

 

 
Figure  6.5 Shape of the CV of 36 with different scan rate. In insert, the Randles-Sevcik 

plot (black) of 36 and its linear fit (red) 
 

 
 
Figure  6.6 Cyclic voltammogram of 36 measured between -2.4 V – 1.6 V in CH3CN with 

Bu4NPF6 as supporting electrolyte. The insert represent the cyclic 
voltammogram of 36 when the potential varied between -2.4 V – 0 V (bottom) 
and 0 V – 1.6 V (top) 
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The cyclic voltammogram of 37 in CH3CN shows one anodic redox process at 

0.250 V (vs. Fc / Fc+) with an intensity of 15.8 µA and three cathodic redox processes at 

-1.56 V, -0.89 V and 0.163 mV with respective intensity of 6.3 µA, 4.6 µA and 8.4 µA. 

The main redox process is attributed to the one electron oxydo-reduction of 

monosubstituted ferrocene. This signal is assumed to be reversible when the current is 

reversed between 0 and 1 V with a ∆Ep = 44(5) mV. 

 

 
 
Figure  6.7 Cyclic voltammogram of 37 measured between -2.4 V – 1.6 V in CH3CN with 

Bu4NPF6 as supporting electrolyte. The insert represent the cyclic 
voltammogram of 37 when the potential varied between -2.4 V – 0 V (bottom) 
and 0 V – 1.6 V (top) 

 

 

In both cases, the reversible one-electron redox process of ferrocene is still present. 

However in both cases, the E1/2 is slightly shifted to higher potential from 398 mV, 

observed for 33b, to 420 mV, observed for 36, and from 196 mV, observed for 33a, to 

210 mV, observed for 35 in the case of the monosubstituted derivative. This shift seems to 

indicate that an additional electron withdrawing effect occurs for the ferrocene moiety 

when the iron carbonyl core is present in the molecule. However, because of the small 
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variations observed, no clear trends could be isolated from this experiment. Further 

electrochemical measurement has to be done in order to elucidate whether or not electronic 

communication occurs between ferrocene and iron carbonyl core. One of the methods of 

choice often used for the evaluation of electronic properties of iron-containing compound 

is the Moessbauer spectroscopy. 

 

6.2.2 Moessbauer Spectroscopy 

Moessbauer parameters for the derivatives 35, 36 and 37 are given in Table  6.2. A 

rigorous analysis shows a better fit of the spectrum by two, overlapping, subspectra with 

different I.S. and Q.S. (i) The first subspectrum (depicted in green colour in Figure  6.8, for 

other spectra see Appendix) as the typical value observed for Fe(I) carbonyl complexes 

and are consistent with those reported earlier [18, 23, 206]. However, the authors reported 

a better fit of the spectrum, by two, overlapping, quadrupole split doublet with similar I.S. 

but different Q.S. (see Table  6.2). They assumed that the origin of the differentiation of the 

iron sites in the solid state is due to the positioning of the ethanethiolate CH2 above one of 

the iron atoms. (ii) The second subspectrum corresponds to the Cp-Iron complex. The 

isomer shifts are in the range of those measured for ferrocene in previous studies. The 

value of quadrupole split measured on these subspectra are also consistent with the one 

obtained for ferrocene. However, the values of the quadrupole splitting are lower than for 

ferrocene-peptides derivatives. It has been noted before that the quadrupole splitting of 

ferrocene decrease when ferrocene is substituted with electron-withdrawing substituents. 

These results are consistent with the shift observed for electrochemical measurement; the 

presence of iron carbonyl in the molecule has an influence in the electronic environment of 

the iron of the ferrocene moiety. However, here again, the shifts observed are not large 

enough to conclude. 
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Table  6.2 Moessbauer parameters (mm.s-1) of {2Fe2S}-carbonyl assemblies 
 

Compounds Isomer shift (I.S.) quadrupole split (Q.S.) 

[Fe2(SC3H6S)(CO)6]
 (a), (b) 0.041 0.871 

[Fe2(SC3H6S)(CO)6]
 (a), (b) 0.031 0.702 

[Fe2(SCH2C(CH2OH)S)(CO)6]
 (a), (c) 0.011 0.950 

[Fe2(SCH2C(CH2OH)S)(CO)6]
 (a), (c) 0.011 0.750 

Subspectra 1 of 35 (a) 0.046 0.942 

Subspectra 2 of 35 (a) 0.531 2.332 

Subspectra 1 of 36 (a) 0.045 0.893 

Subspectra 2 of 36 (a) 0.512 2.295 

Subspectra 1 of 37 (a) 0.048 0.980 

Subspectra 2 of 37 (a) 0.527 2.324 

(a) Measured as solid samples at 80 K, (b) from ref. [18], (c) from ref. [23]. 

 

 
Figure  6.8 Selected Moessbauer spectrum of 36 recorded at 80 K as solid state samples 

 

From the relative intensity of the signal, it is possible to deduct the relative 

proportion of the different iron sites in a same molecule. It is interesting to note that in the 

case of 37, a 1:1 ratio was measured (see Table  6.3) as is the case for 35. Even though we 

had to go through several approximations and uncertainties, such as the Debye-Waller 

factor for the position of iron, the statistical fit errors and the saturation effect we had to 
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correct our structural prediction. We assume that the compound 37 has a dimeric structure 

as it is depicted in Figure  6.9. Three equivalent possible structures are represented. The 

iron carbonyl core can be chelated either by the first cysteines attached to the ferrocene 

371,1’ or by the second cysteines of peptide strands 372,2’or by both, the first and the second 

371,2’ (see Figure  6.9). In the later conformation, both ferrocene-peptide residues are not 

equivalents and therefore this possibility can be eliminated too. Indeed, according to the 

NMR spectra, the molecule has a plane of symmetry. Unfortunately, the mass peak is not 

visible in mass spectra, and until now we were not able to grow single crystal of X-ray 

quality, the structure remains unsolved yet. 

 

Table  6.3 Moessbauer relative peak intensities 
 

Compounds Area [%] Relative intensity [%] 

Fe-CO part of 35 7.15 54.98 

Fe-Cp part of 35 6.69 45.02 

Fe-CO part of 36 15.84 62.49 

Fe-Cp part of 36 10.45 37.51 

Fe-CO part of 37 7.54 51.71 

Fe-Cp part of 37 8.08 48.29 

 

 
 
Figure  6.9 Structural prediction revised according to Moessbauer measurements 

correlated with elemental analysis collected on 37 
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After this relative success obtained from the complexation of iron carbonyl core to 

the ferrocene-peptide ligand, we were intrigued by the possibility of transferring this 

technique for complexation of the iron-carbonyl core to the oligoquinoline ligand. 

 

 

6.3 Complexation with Quinoline derived oligomer 

 

Several synthetic problems not solved yet prevent us to finish this part of the work. 

However, some preliminary results can be presented. For derivatives B13, B29 and B30 

(see chapter 5) complexation with iron carbonyl derivatives was tried as it is depicted in 

Figure  6.10. Unfortunately, these reactions were performed only one time and therefore 

optimization of the yield and the isolation remain necessary. However, some promising 

trends have been observed. 

 

 

 
Figure  6.10 Synthesis of iron-carbonyl derivatives for the quinoline series. With standards 

reaction conditions (a) Fe3(CO)12, 2 h, MeOH reflux. 
 

B31 was isolated without majors difficulties. The spectroscopic analysis, notably 13C 

NMR, along with the ESI-TOF mass spectrometry validates the formation of the desired 

product. As for the ferrocene derivatives, characteristics signal of the carbon of the 

carbonyl group are observed around 200 ppm. ESI-TOF High resolution mass spectra 

confirm the composition of the proposed compounds. This reaction was considered as a 

test reaction; therefore, electrochemical properties of B31 were not extensively studied as 

it was the case for 35, 36 and 37. 



Iron-Carbonyls Complexes 
 

111 

Reaction of the pentamers with Fe3(CO)12 yield a complex reaction mixture. Analysis 

by mass spectroscopy confirms that iron carbonyl derivatives are formed. From NMR data 

we also suspect that a major part of the starting materials is converted to disulfide-bridged 

derivatives; either intermolecular bridges or intramolecular disulfide bridges are formed. 

These very exciting preliminary results led us to push further the investigations. At the first 

place, synthesis of the pentamers has to be scaled up and then reactions conditions for the 

complexation and purification steps have to be optimized.  

 

 

6.4 Concluding remarks 

 

In this part, we have presented the synthesis and the characterization of a new class 

of sulfur rich iron carbonyl cluster with ferrocene as scaffold. The protective group 

strategy for derivatives 28a, 28b, 28c prepared in Chapter 3 was optimized and it appears 

that for steric reasons, two different protections are needed, the Trityl group for amino acid 

derivatives 27a and 27b and the tertiobutyl for dipeptide derivatives 28c and 28d. The iron 

carbonyl complex were subsequently synthesized by a simple stoichiometric oxidative 

addition of Fe3(CO)12 on 33a, 33b, 33c and 33d to yield respectively 35, 36, 37, and a 

complex reaction mixture in the case of 33d. Cyclic and square wave experiment led on 

these compounds reveal that the one electron redox process of ferrocene might be slightly 

affected by the presence of the iron-carbonyl core. The same trends are observed in 

Moessbauer spectroscopy. It is suspected that iron-carbonyl core have an electron 

withdrawing effect on the ferrocene moiety. However, for infrared spectroscopy, the 

spectra of Ferrocene-iron-carbonyl conjugates can be regarded as a linear combination of 

Ferrocene-peptides derivatives and sulfur rich iron-carbonyl derivatives. 

Besides, the same reaction of complexation was performed on oligoamides, and 

promising preliminary results were observed. A quinoline iron carbonyl derivatives has 

been isolated and fully characterized and traces of pentameric derivative of iron carbonyl 

has been seen. However, this part of the work has still to be continued. 
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7. Summary & Conclusion 

 

 

 

7.1 Summary 

 

Along this PhD, the challenging project of modelling hydrogenase active site was 

investigated using a multidisciplinary approach; three different techniques were used and 

the results obtained by these three approaches were interconnected and used in tight 

relationship. The first one deals with potential scaffolds based on ferrocene-peptide 

derivatives, therefore coined as organometallic approach. The second deals with folded 

aromatic oligoamides, which was also seen as potential scaffold for hydrogenase mimicry; 

this part of the work is purely organic. Finally, the theoretical predictions by molecular 

dynamics, performed on these both systems represent the third approach coined as 

theoretical. These three approaches were led in parallel, and a tight connection was kept so 

as experience gained in one field serves the progression of the other field. 

 

After a brief introduction, the second Chapter of this work deals with the study about 

different sulfhydryl protecting groups. They were tested in terms of their suitability for the 

organometallic solution phase synthesis, their technical and commercial availability. This 

has resulted in the elimination of some of them such as S-tertiobutyl (StBu), and 

Acetamidomethyl (Acm) because of the stability in the first case and because of the price 

in the second case. Besides, the carboxylic acid protecting group -methyl esters- was 

optimized for the different amino acid derivatives. Subsequently, a variety of dipeptides 

was prepared using the mixed anhydride coupling strategy. They were characterized with 

either N-Boc protected group or Fmoc. Subsequent removals of the N-terminal protective 

group yield the free amine dipeptides as methyl esters.  
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Protected amino acids and dipeptides prepared and tested in chapter 2 were coupled 

either to ferrocene mono carboxylic acid or to ferrocene 1,1’dicarboxylic acid. For this 

coupling it is has been found that TBTU and HOBt coupling reagents provided better yield 

than the mixed-anhydride coupling strategy using DCC or EDCl. A wide range of 

ferrocenoyl amino acids or peptides with sulfur-containing side chains derivatives was 

synthesized and fully characterized. A comprehensive study was subsequently carried out. 

The most interesting observations relate to the question of intramolecular hydrogen 

bonding and chirality organization around the metallocene backbone, which acts as a 

template for the organization of the peptide strands, particularly in the disubstituted 

derivatives. In the solid state, intra- and intermolecular hydrogen bonds are of similar 

strength and hence other factors may dominate the molecular conformation. In solution, 

however, intramolecular hydrogen bonding is strongly promoted and the same pattern 

seems to emerge for most disubstituted compounds ("Herrick conformation"), namely a 

symmetrical 1,2’ orientation of the amide substituents on the Cp ring with two strong 

intramolecular hydrogen bonds. NMR, IR and CD spectroscopic investigations all support 

this assumption. However, the spectroscopic and crystallographic properties of Fe[C5H4-

CO-Met-Met-OMe]2 clearly suggest that a racemisation has occurred during the synthesis, 

presumably in the deprotection step with KOH. The two H-bonded amide groups observed 

in the IR spectrum and the weak CD signal at about 480 nm support the presence of a 

diastereomeric mixture. While racemisation is a well known problem in peptide chemistry, 

this is the first report in the field of ferrocene peptides. 

 

Besides, DFT calculations (B3LYP/LanlDZ) on model ferrocenoyl peptides Fe[C5H4-

CO-Gly-NH2]2 and Fe[C5H4-CO-Ala-OMe]2 were performed in order to elucidate the H-

bond pattern in terms of energy. The calculations reveal that conformers with different 

hydrogen bonding patterns have significantly different stabilities, with a stabilization of the 

system by about 30 kJ mol-1 per hydrogen bond. The “Herrick conformation” with two 

hydrogen bonds is the most stable one, which is in agreement with solid state (X-ray) and 

solution (CD, NMR, IR) studies. On the other hand, conformers Fe[C5H4-CO-Ala-OMe]2, 

which differ only in the amino acid chirality, have similar stabilities with ∆E < 10 kJ mol-1. 

Due to the small energy differences and the large number of different conformations 

possible, it is difficult to predict the most stable one by DFT calculations. 
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The ready preparation of ferrocene peptides with functional side chains opens the 

way to further derivatization. In particular, thiol derivatives provide easy access to further 

conjugation, for example with fluorescent dyes, by reaction with maleiimide or iodo acetic 

acid reagents or with metal from the d-block entail. In our group, these compounds are 

seen as potential chelate for nickel or iron. Therefore, some questions arise concerning 

sterical and mechanical interactions that occur in this family of compounds. We have 

pursued the answers to these questions using Molecular Dynamics (MD). In chapter 4, 

parameter set for ferrocene-bearing peptides has been developed for the all-atom 

CHARMM molecular mechanics force field. The development of this parameter was 

performed on the basis of chemical best guess corrected with quantum mechanic 

calculations using AFMM.  

 

The new parameters were subsequently tested and validated on independent, 

experimental structures and the results obtained are overall in good agreement with 

experimental data. Impressive energy minimization and molecular dynamics of the 

Fc-(D-Ala-D-Pro)2 crystal structure led to unit cell dimensions and volume being 

reproduced within less than 0.1 % of the experimental. Intrinsic geometrical properties of 

the molecules, such as the intramolecular H-bond pattern were also accurately reproduced. 

The force field thus obtained was used in order to study the structures and dynamics 

of possible hydrogenase mimics. To this end, different model systems were created and 

simulated. The size of the peptide strands and the incorporation of a nickel core were 

specifically tested in terms of their geometry and possible steric hindrance. It has been 

found that ferrocene podand shorter peptides exhibit a larger potential as chelate for nickel. 

Other experiences demonstrated that from a steric point of view, the attachment of peptides 

to the ferrocene moiety should be performed to the C-terminus of the peptide strands 

instead of to the N-terminus as it is done in our labs. This has led to a reorientation of the 

synthetic route. An ethylene diamine linker was attached to the carboxylic group of 

ferrocene in order to change the C-termination to an N-termination, but also to provide 

more flexibility to the structure. We assume that preliminary synthetic results are very 

encouraging. 

 

In chapter 5 of this thesis, another potential scaffold for hydrogenase active site is 

investigated. Oligoamides based on quinoline and phenantroline amide assembly are 

known to form well-defined helical arrangements in the solid state as well as in solution. 
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This ordered arrangement is highly predictable by using commercial MM force fields and 

this predictability has been used to design folded sulfur-rich ligands for iron carbonyl core. 

The synthesis, functionalization and structural study of a family of quinoline-derived 

oligomers was achieved. We emphasize the efficiency of computational prediction and the 

relative ease of the synthetic production. Solid state and solution phase structural studies, 

performed on several pentameric derivatives, validate the theoretical prediction performed 

with Macromodel. Deprotection of thiol moieties is also a success, even though we had to 

go through several synthetic dilemmas. Conformational study in solution phase and in the 

solid state reveals strong helical propensities of the pentameric structures, as predicted. 

NMR experiments demonstrate that helicity is conserved even if H-bonds are broken; 

helices are then held by π-π interactions. 

 

Finally, folded oligomers with free thiols obtained and characterized in chapters 3 

and 5 were used as chelates for an iron-carbonyl core. This part of the work is described in 

chapter 6. Three ferrocene-peptide-iron-carbonyls derivatives were successfully 

synthesized and fully characterized. The reaction conditions and the characterizations are 

presented along with spectro-electrochemical studies on the hydrogenase active site 

mimics thus obtained. Three different iron-carbonyl complexes were successfully 

synthesized and characterized. IR, NMR, Voltammetry, UV, and mass spectroscopic 

analysis all confirm the formation of sulfur iron complexes. Results obtained from 

Moessbauer spectroscopy gave hints to the structural determination of derivative 37. 

Preliminary hints about potential intramolecular electron transfer between the ferrocene 

moiety and the iron-carbonyl core were observed during the electronic analysis by cyclic 

voltammetry and Moessbauer spectroscopy. However, the electronic communication 

between the iron carbonyl core and the ferrocene moiety is not as strong as expected. Set 

up of electrochemical experiments has to be improved. 

The work about metal complexation with oligoquinolines remains in progress, only 

promising preliminary results are presented. 
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7.2 Concluding remarks and Outlook 

 

In this thesis, besides synthetic and spectroscopic achievements, we have 

demonstrated the efficiency of the multidisciplinary approach towards a unique goal; the 

synthesis of hydrogenase active site mimics. Techniques of one field are being used with 

great success in another field of research; as theoretical prediction was useful for the 

design of the supramolecular scaffold, or dynamic studies was useful to understand steric 

hindrance and gave clues to optimize or to change experimental synthetic pathways. 

However, the set up of different techniques is surely more time consuming than focusing 

on one strategy. This work has to be continued. Therefore, we planned to push further 

theoretical investigation by performing simulation in explicit solvent. X-ray diffraction 

analysis of derivatives 35, 36 and 37 could also be helpful for an eventual reorientation of 

the synthesis in order to synthesize a second generation of mimics. Finally, the reaction 

conditions for complexation of iron carbonyl cores with oligoamides foldamer will be 

improved. To perform these achievements, a tight relationship between these three 

different approaches will be kept. 
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8 Experimental Section 

 

 

 

8.1 Materials and Methods 

 

8.1.1 Materials 

Elemental Analysis 

Elemental analyses were performed on a Foss Heraeus Vario EL Elementar Analysator in 

C, H, N mode. 

 

Infrared spectroscopy 

Infrared spectra were recorded at 20°C either on Bruker Equinox55 FT-IR spectrometer, or 

on a Perkin Elmer 1600 series FTIR, in dried CHCl3 or CH2Cl2, or between NaCl windows 

and / or as KBr discs, with a spectral resolution of 2.0 cm-1. The concentration was about 

10-2 M to 10-4 M, unless otherwise noted. Wavenumbers, ν, are given in cm-1. 

 

NMR spectroscopy 

NMR spectra of the compounds in Chapters 1, 2, 3 and 6 were determined either on Bruker 

AM 360 spectrometer, 1H operating at 360.14 MHz and 13C operating at 95.56 MHz, or on 

a Varian Mercury plus 1H operating at 300.07 MHz and 13C operating at 75.46 MHz. 2D 

spectra were recorded on a Varian Unity 400 spectrometer with an inverse probe and z-

gradients. 2D-NOESY spectra were recorded with 0.5 s and 1 s mixing time and compared.  

NMR spectra of the compounds in Chapter 5 were determined either on a Bruker 400 

Ultrashield spectrometer 1H operating at 400.13 MHz, 13C operating at 100.62 MHz, or on 

a Bruker 300 Ultrashield Advance II Spectrometer 1H operating at 300.13 MHz, 13C 

operating at 75.46 MHz. 

Spectra of peptides only are referenced to the residual MeOH signal (3.31 ppm for 1H, 

49.0 ppm for 13C). All others compounds are referenced to the TMS signal for 1H or of the 
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residual CHCl3 signal (7.26 ppm for 1H, 77.2 ppm for 13C). Coupling constants, J, are 

given in Hz. Concentration of samples are about 10-2 M. Spectra are measured at room 

temperature (293 K) unless otherwise noted. 

 

Mass spectrometry 

Mass spectra were measured on a Mat 8200 instrument, EI (70 eV) and FAB (glycerol or 

NBA were used as a matrix), or on a Finnigan TSQ 700 for ESI-MS. Only the mass peak, 

the base peak and the characteristic fragments with possible composition are given in 

brackets. For fragments containing metals, only the isotopomer with highest intensity was 

described. High Resolution ESI-TOF mass spectra, were recorded on Waters LCT Premier 

spectrometer in positive modus. Calibration was performed with Leucine Enkephaline. 

 

UV-Visible spectroscopy 

UV / VIS spectra were measured in dried CH2Cl2 on a Varian CARY 100 instrument in 

1 cm quartz Suprasil cells thermostated at 20°C. Absorption maxima, λmax, and molar 

absorption coefficients, ε, are given in nm and L.mol-1.cm-1, respectively. 

 

Circular Dichroism spectroscopy 

Circular Dichroism spectra were recorded in dried CH2Cl2 on a JASCO J-810 

Spectropolarimeter in 1 cm quarz Suprasil cells thermostated at 20°C under inert 

atmosphere. 

 

Electrochemistry 

Cyclic voltammograms and square wave voltammograms in CH3CN solutions with 

NBu4PF6 as supporting electrolytes were recorded on a Perkin Elmer BES 

Potentiostat / Galvanostat. A three-electrode cell was employed with a glassy carbon of 

1.5 mm diameter as the working electrode, a platinum-wire as the auxiliary electrode and 

an Ag / Ag+ as the reference electrode. For determination of the redox potentials, ferrocene 

was added as internal standard. Measurements were performed in a copper Faraday cage. 

The oxidation potentials are given as anodic peak potential Epa, and the reduction 

potentials are given as cathodic peak potentials Epc. Cyclic voltammograms were obtained 

for 0.5 mM solutions of the analyte in dry acetonitrile, containing 0.1 M 

tetrabutylammonium hexafluorophosphate at a scan rate of 100 mV.s-1, unless otherwise 

noted. E1/2 were calculated from the cyclic voltammograms and are given in mV. 
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Mössbauer spectroscopy 
57Fe Mössbauer spectra were recorded on an Oxford Instruments Mössbauer spectrometer 

in the constant acceleration mode, by using 57Co / Rh as the radiation source. The 

measurements were performed on solid samples at 80 K containing a natural abundance of 
57Fe. The minimum experimental line width was 0.24 mm.s-1. Isomers shifts were 

determined relative to α-iron at 300 K.  

 

Mössbauer spectroscopy 
57Fe Mössbauer spectra were recorded on an Oxford Instruments Mössbauer spectrometer 

in the constant acceleration mode, by using 57Co / Rh as the radiation source. The 

measurements were performed on solid samples at 80 K containing a natural abundance of 
57Fe. The minimum experimental line width was 0.24 mm.s-1. Isomers shifts were 

determined relative to α-iron at 300 K.  

 

X-Ray crystallographic data collection and refinement of the structures 

For compounds of then Chapter 3, the crystals were coated with perfluoropolyether, picked 

up with a glass fibber and mounted in the nitrogen cold stream of a Bruker-Nonius Kappa-

CCD diffractometer. Intensity data were collected at 100 K using graphite monochromated 

Mo-Kα radiation (λ = 0.71073 Å) of rotating anode setup. Final cell constants were 

obtained from least squares fit of a subset of several thousand strong reflections. Data 

collection was performed by hemisphere runs taking frames at 1.5° and 1.0° in ω. Crystal 

faces were indexed and the Gaussian type absorption correction routine embedded in 

XPREP was used to correct for absorption. The ShelXTL software package [207] was used 

for solution and artwork of the structures. Refinement was performed with ShelX97 [208]. 

The structures were readily solved by direct methods and difference Fourier techniques. 

Absolute structure parameters were checked by refining the inverse structure and are 

reliable. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms bound to 

carbon were placed at calculated positions and refined as riding atoms with isotropic 

displacement parameters. Hydrogen atoms bound to amide nitrogens were located from the 

difference map and were isotropically refined with a displacement parameter being 1.2 

times the value of Ueq of the amide nitrogen atom.  

For compound of the Chapter 5, data were collected using a Rigaku Rapid diffractometer 

equipped with an MM007 micofocus rotating anode generator with monochromatized Cu-
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Kα radiation (1.54178 Å) and varimax optics. The data collection, unit cell refinement and 

data reduction were performed using the CrystalClear software package. The positions of 

non-H atoms were determined by the program SHELXS 87 and the position of the H atoms 

were deduced from coordinates of the non-H atoms and confirmed by Fourier Synthesis. H 

atoms were included for structure factor calculations but not refined. Selected single 

crystal were mounted on a cryloop under oil and frozen into a N2 stream at 140 K. 

Crystallographic data can be obtained free of charge at http://www.ccdc.cam.ac.uk/cgi-

bin/catreq.cgi or from the Cambridge Crystallographic Data Centre, 12 Union Road, 

Cambridge CB2 1EZ, UK; Fax: (internat.) ++44-1223-336-033; E-mail: 

deposit@ccdc.cam.ac.uk. 

 

Computational details 

A comprehensive description of computational details is given in Chapter 4. 

 

8.1.2 Standard procedures 

CH2Cl2, Et3N, DIEA were dried over CaH2 and distilled under argon prior to use, THF was 

dried over Na / benzophenone and distilled under argon prior to use. All chemicals as well 

as other solvents were obtained from commercial sources and used without further 

purification, unless otherwise noted. All reactions were carried out under inert gas 

atmosphere in thoroughly dried glassware. The synthesis of the iron-carbonyl complexes 

were performed under an atmosphere of argon using standard Schlenk techniques. For 

gravity column chromatography, columns were packed with 0.040 - 0.063 mm silica gel 60 

(VWR). For flash chromatography, columns were packed with 0.063 - 0.200 mm silica gel 

60 (VWR). For TLC, either plates coated with silica gel F254 or plates coated with 

aluminium oxide were used.  
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8.2 Syntheses and Characterization of ferrocenoyl compounds 

 

8.2.1 Synthesis of literature compounds 

The two steps synthesis of ferrocene 1,1’-dicarboxylic acid 

Ferrocene dicarboxylic acid was obtained according to a modified protocol described in 

ref. [209] for the synthesis of ferrocene monocarboxylic acid. 

 

Fe-(η-C5H4-COPhCl) (1): A thoroughly dried 1 L three-necked round bottom flask was 

equipped with an inert gas inlet and an over pressure outlet. Throughout the ensuing 

reaction a positive pressure of dry argon was applied to the system through the gas inlet. 

The flask was charged with 18.6 g (100 mmol) of ferrocene, 73.75 g (250 mmol) of 

2-chlorobenzoyl chloride and 300 mL of dichloromethane. Flask was then placed in a 

water bad equipped with a thermometer. Besides, 35.0 g (250 mmol) of anhydrous 

aluminium chloride were weighted in a glove box and stocked in a dried Schlenk. When 

the solution has been chilled thoroughly, the aluminium chloride was added in small 

portions at such a rate that the reaction remains at room temperature. Appearance of a deep 

blue colour indicates that the reaction is occurring. This addition required approximately 

20 min, and after this completion stirring was continued for 4 h at room temperature. 

400 mL of water were added cautiously to quench the reaction, and the resultant 2 phases 

mixture was stirred vigorously for 30 min. The layers were separated, and the aqueous 

layer was extracted two times with 100 mL CH2Cl2. The combined organic layers were 

washed with 100 mL of distilled water and 100 mL NaOH 1 M. The organic layer was then 

dried over MgSO4 and rotary evaporated to yield viscous red oil, which gradually 

solidified to a dark red solid. Yield: 61 %. C24H16Cl2FeO2 = 463.13 g.mol-1. Elemental 

analysis calc. for C24H16Cl2FeO2: C, 62.24; H, 3.48; found: C, 61.70; H, 3.66. MS (EI): 

m/z = 462 [M]+. 1H NMR (CDCl3): δ 7.45 - 7.30 (8H, m, CHcb-ar), 4.81 (4H, s, CHCp-ortho), 

4.69 (4H, s, CHCp-meta). 

 

Fe(η-C5H4-COOH)2 (2): A dry, 250 mL, three necked, round bottomed flask was equipped 

with a magnetic stirrer and a reflux condenser topped with an Argon inlet tube and then 

charged with 25 mL of 1,2-dimethoxyethane and 8.4 g (74 mmol) of potassium tert-

butoxide [2-Propanol,2-methyl-potassium salt]. An argon atmosphere was established in 
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the system, and approximately 2 mL of Millipore water were added under a continuous 

stirring, resulting in slurry. Beside, the crude (2-chlorobenzoyl)-ferrocene (1) was 

dissolved in 1,2-dimethoxyethane (50 mL) and subsequently added to the slurry, giving a 

dark red solution. Reaction mixture was stirred at reflux under inert atmosphere for 3 h 

(84°C), and then cooled and poured into 200 mL of water. The resulting aqueous layer was 

washed 3 times with 50 mL diethyl ether; organics layers were combined and back-

extracted two times with 20 mL of NaOH (1 M). The aqueous layers were then combined 

and acidified to pH 1 with fuming hydrochloric acid, resulting in the formation of a 

precipitate. The precipitate was collected by filtration dried to yield ferrocene dicarboxylic 

acid as a dark orange solid. Yield: 93 %. C12H10FeO4 = 274.05 g.mol-1. MS (EI): 

m/z = 274 [M]+. 1H NMR (MeOD): δ 12.4 - 12.3 (bs, COOH), 4.70 (4H, m, CHCp-ortho), 

4.46 (4H, m, CHCp-meta).  

 

Activation of ferrocene carboxylic acid with Isobutylchloroformate 

To a stirred suspension of either ferrocene carboxylic acid or ferrocene 1,1’-dicarboxylic 

acid in freshly distilled THF an equimolar amount of N-methylmorpholine was added. 

Isobutyl chloroformate was then added dropwise, at room temperature, to this suspension. 

The resulting mixture was stirred at ambient temperature until the disappearance of starting 

material was observed by TLC (2 h). Solvents were then removed by rotary evaporation 

and the residue was triturated in cold pentane and subsequently filtered to yield red oil, 

which can be stored for months in the fridge.  

 

Fe[η-C5H4-COCOCH2CH(CH3)2]2 (3): Yield: 86 %. C22H26FeO8 = 474.28 g.mol-1. 

Elemental analysis calc. for C22H26FeO8: C, 55.71; H, 5.53, found: C, 56.45; H, 5.29. 

MS (EI): m/z = 474 [M]+, 274 [Fe(COO)2]
+. 1H NMR (CDCl3): δ 4.79 (4H, m, CHCp-ortho), 

4.67 (4H, m, CHCp-meta), 4.10 (1H, d, JHH = 6.7 Hz, CH2-IBF), 2.06 (2H, sep, JHH = 6.7 Hz, 

CHIBCF), 1.00 (12H, d, JHH = 6.7 Hz, CH3-IBCF).
 13C NMR (CDCl3): δ 165.2 and 

149.4 (C=Oanhydride), 75.6 (CH2-IBCF), 69.8 (Cq-Cp), 74.8, 72.6 (CHCp), 27.7 (CHIBCF), 

18.8 CH3-IBCF). 

 

Activation of ferrocene carboxylic acid with TBTU 

A stirred suspension of ferrocene carboxylic acid (1 mmol; 230 mg) or ferrocene-1-1’- 

dicarboxylic acid (2) (1 mmol; 274 mg) in freshly distilled CH2Cl2 (30 mL) was degassed 

over a period of 15 min. To this suspension, stoichiometric amounts of O-(Benzotriazol-1-
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yl)-N,N,N’,N’-tetramethyluronium tetrafluoroborate (TBTU) (either 1 mmol;  321.1 mg, or 

2 mmol; 622.2 mg ) and DIPEA (either 1 mmol; 386 µL or 2 mmol; 772 µL) were added. 

The resulting suspension was stirred at ambient temperature for 30 min. The reaction 

mixture was subsequently filtered to remove unreacted materials and solvents were rotary 

evaporated to yield red solids. 

 

Fc-(C6H4N3) (4a): Yield: Quant. C17H13FeN3O2 = 347.15 g.mol-1. Elemental analysis calc. 

for C17H13FeN3O2: C, 58.82; H, 3.77; N, 12.10, found: C, 59.08; H, 3.94; N, 11.91. 

MS (EI): m/z = 347 [M]+, 213 [FcCOO]+. 1H NMR (CDCl3): δ 8.09 (1H, d, JHH = 8.4 Hz, 

CHar-bt), 7.55 – 7.26 (3H, m, CHar-bt), 5.09 (2H, m, CHCp-ortho), 4.69 (2H, m, CHCp-meta), 

4.44 (5H, m, CHCp-unsub). 
 13C NMR (CDCl3): δ Cq-amide signal is missing, 128.6, 124.7, 

120.5, 108.4 (CHar-bt), 73.4, 70.9 (CHCp-sub), 70.8 (CHCp-unsub), 33.6 (Cq-bt). 

 

Fe[η-C5H4-C6H4N3]2 (4b): Yield: Quant. C24H16FeN6O4 = 508.27 g.mol-1. Elemental 

analysis calc. for C24H16FeN6O4: C, 56.71; H, 3.17; N, 16.53, found: C, 58.10; H, 5.49; N, 

14.78. MS (FAB): m/z = 508 [M]+. 1H NMR (CDCl3): δ 8.08 (2H, s, 
3
JHH = 8.3 Hz, CHbt), 

7.57 – 7.38 (6H, m, CHbt), 5.35 (4H, m, CHCp-ortho), 5.00 (4H, m, CHCp-meta). 
 13C NMR 

(CDCl3): δ 144.5 (Cq-amide), 129.7, 128.3, 126.6 (CHar-bt), 70.1 (CHCp), 34.1 (Cq-bt). 

 

Protection of the thiol 

H-Cys(tBu)-OH (5) was obtained according to the protocol described in ref. [85] and 

Fmoc-Cys(Fmoc)-OH (6) was obtained according to the protocol described in ref. [92]. 

 

H-Cys(tBu)-OH (5): Yield: 20 %. C7H13NO2S, HCl= 211.75 g.mol-1. MS (EI): 

m/z = 175 [M]+. 1H NMR (MeOD): δ NH2 signal is missing, 4.04 (1H, t, JHH = 4.05 Hz, 

CHα), 2.99 (2H, d,
 
JHH = 5.59 Hz, CH2-β), 1.27 (9H, s, CH3-tBu). 

 

Fmoc-Cys(Fmoc)-OH (6): Yield: 82 %. C33H27NO6S = 565.64 g.mol-1. MS (EI): 

m/z = 566.2 [M + H]+. 1H NMR (CDCl3): δ 7.80 – 7.25 (16H, m, CHFmoc-ar), 4.50 –

 4.00 (7H, m, CHFmoc, CH2-Fmoc and CHα), 3.50 – 3.20 (2H, m, CH2-β). 

 

Formation of the methyl ester 

H-Cys(Bzl)-OMe and H-Met-OMe were purchased from Novabiochem. Other methyl ester 

protected amino-acids were prepared following the protocole described in ref. [85]: 
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amino-acids of the general formula H-Cys(PG)-OH were refluxed overnight in MeOH in 

presence of SOCl2 (10 eq.). After evaporation of all volatiles, the product was purified by 

precipitation from cold diethyl ether and dried under reduced pressure. The obtained 

products were used without further purification. 

 

H-Cys(pOMeBzl)-OMe (7): Yield: 98 %. C12H17NO3S, HCl = 291.07 g.mol-1. MS (EI): 

m/z = 255 [M]+. IR (KBr): 3477 (br, νNH), 3000 – 2840 (br, νOH and νCH-Bzl), 1744 (s, νC=O), 

1511 (s, νNH-deformation). 
1H NMR (MeOD): δ 7.25 (2H, m, CHar-pOMeBzl), 6.90 (2H, m, 

CHar-pOMeBz), 3.76 – 3.74 (3H, s, CH3-pOMe and 3H, s, CH3-ester), 4.65 (1H, m, CHα), 

3.40 (2H, s, CH2-Bzl), 3.0 – 2.90 (2H, m, CH2-β). 

 

H-Cys(S-tBu)-OMe (8): Yield: 81 %. C8H17NO2S2, HCl = 259.82 g.mol-1. MS (EI): 

m/z = 167 [M – tBu]+, 223 [M]+. 1H NMR (CDCl3): δ 8.80 (2H, bs, NH2), 4.56 (1H, t, 

JHH = 5.6 Hz, CHα), 3.85 (3H, s, CH3-ester), 3.44 (2H, d, JHH = 5.84 Hz, CH2- β), 1.33 (9H, s, 

CH3-tBu). 

 

H-Cys(Trt)-OMe (9): Yield: 98 %. C23H22NO2S, HCl = 412.5 g.mol-1. MS (FAB): 

m/z = 247 [Trt]+, 378 [M + H]+. 1H NMR (CDCl3): δ 8.58 (2H, bs, NH2), 7.45 – 7.10 (15H, 

m, CHar-Trt), 3.54 (3H, s, CH3-ester), 3.37 (1H, m, CHα), 2.92 (2H, m, CH2- β). 

 

H-Cys(tBu)-OMe (10): Yield: 99 %. C8H17NO2S, HCl = 226.29 g.mol-1. MS (EI): 

m/z = 191 [M]+. 1H NMR (MeOD): δ NH2 are missing, 4.28 (1H, dd, JHH = 2.05, 4.78 Hz, 

CHα), 3.84 (3H, s, CH3-ester), 3.11 (2H, m, CH2-Bzl), 3.0 – 2.90 (2H, m, CH2- β), 1.35 (9H, s, 

CH3-tBu). 

 

H-Cys(Acm)-OMe (11): Yield: 90 %. C7H14N2O3S, HCl = 238.72 g.mol-1. MS (EI): 

m/z = 147.6 [M – NHCOCH3]
+. 1H NMR (MeOD): δ NH2 signal is missing, CHα and 

CH3-Acm signal are obscured by residual H2O signal, 4.48 (2H, d, JHH = 9.21 Hz, CHα-Acm), 

3.88 (3H, s, CH3-ester), 3.58 – 3.40 (2H, m, CH2- β). 

 

[H-Cys-OMe]2 (12): Yield: 88 %. C8H16N2O4S2, 2×HCl = 341.28 g.mol-1. MS (EI): 

m/z = 268 [M]+. 1H NMR (MeOD): δ NH2 are missing, 4.70 (2H, m, CHα), 3.98 (6H, s 

CH3-ester), 3.57 – 3.44 (4H, m, CH2- β). 
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8.2.2 Solution phase peptide synthesis 

Boc-Cys(Bzl)-Cys(Bzl)-OMe (13): To a stirred solution of Boc-Cys(Bzl)-OH (3.12 g; 

10 mmol) in THF (75 mL), N-methylmorpholine (1.02 g; 1.10 mL; 10 mmol) and isobutyl 

chloroformate (1.39 g; 1.32 mL; 10 mmol) were added, resulting in the formation of a 

precipitate. Beside, in another flask, H-Cys(Bzl)-OMe, HCl (2.62 mg; 10 mmol) was 

suspended in THF (50 mL) followed by addition of NEt3 (1.11 g; 1.39 mL; 10 mmol). The 

suspensions were mixed and the resulting slurry was stirred overnight at ambient 

temperature. Reaction mixture was subsequently filtered to remove unreacted materials. 

Solvents were evaporated at reduced pressure. The residue was dissolved in CH2Cl2 

(150 mL) and the organic layer was washed with distilled water (100 mL). After the phases 

were separated, the aqueous layer was back-extracted with CH2Cl2 (3×70 mL). The 

combined organic layers were dried over MgSO4. Evaporation of the solvent yield the 

dipeptide as a white solid which can be purified by flash column chromatography, using 

EtOAc / Hexane (1:2); (Rf = 0.25) as eluant. Yield: 93 %. C26H34N2O5S2 = 518.19 g.mol-1. 

MS (EI): m/z = 518 [M]+. MS (FAB): m/z = 519 [M + H]+, 419 [M – Boc + H]+. IR (KBr): 

3331 (s, νNH), 3100 – 2900 (m, br, νOH and νCH-Bzl), 1743 (s, νC=O-ester), 1688 (s,  νC=O-amide), 

1643 (s, νC=O-amide and s,  νC=O-Boc), 1511 (s, νNH-deformation). 
1H NMR (CDCl3): δ 7.3 –

 7.2 (10H, m, CHar), 7.23 (1H, d, JHH = 7.0 Hz, NH), 7.03 (1H, d, JHH = 7.5 Hz, NH), 

4.75 (1H, m, CHα), 3.92 (1H, m, CHα), 3.76 (4H, s, CH2-Bzl), 3.73 (3H, s, CH3-ester), 2.95 –

 2.70 (4H, m, CH2-β), 1.46 (9H, s, CHBoc). 
13C NMR (CDCl3): δ 170.5 (C=Oester and 

C=OBoc), 137.6 (C=OCys), 129.0, 128.9, 128.6, 128.5, 127.3, 127.2 (CHCp-ar and CHar-Bzl), 

Cq-Boc and Cq-Bzl signals are missing, 52.7 (CHα), 51.8 (CH3-ester), 36.6 (CH2-Bzl), 

33.3 (CH2-β), 28.3 (CH3-Boc). 

 

Boc-Cys(pOMeBzl)-Cys(pOMeBzl)-OMe (14): was prepared via a similar procedure as 

described for Boc-Cys(Bzl)-Cys(Bzl)-OMe (13) using Boc-Cys(pOMeBzl)-OH (1.4 g; 

4.1 mmol) and H-Cys(pOMeBzl)-OMe, HCl (7) (1.05 g; 4.1 mmol). The product was 

chromatographed on silica gel using EtOAc / Hexane (1:2); (Rf = 0.20) as eluant. 

Yield: 90 %. C28H38N2O7S2 = 578.21 g.mol-1. MS (EI): m/z = 578 [M]+. MS (FAB): 

m/z = 579 [M + H]+, 479 [M – Boc + H]+. FT-IR (KBr): 3329 (s, νΝΗ-amide), 3100 –

 2900 (br, νOH and νCH-Bzl), 1744 (s, νC=O-ester), 1688 (s,  νC=O-amide), 1642 (s, νC=O-amide and 

νC=O-Boc), 1511 (s, νNH-deformation). 
1H NMR (CDCl3): δ 7.30 – 7.21 (4H, m, CHar-pOMeBzl), 
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7.05 (1H, d, JHH = 7.0 Hz, NH), 6.80 – 6.70 (4H, m, CHar-pOMeBzl), 5.28 (1H, bs, NH), 

4.75 (1H, m, CHα), 3.78 – 3.64 (10H, m, CH3-ester, CH3-ether, CH2-Bzl and CHα), 2.88 –

 2.82 (4H, m, CH2-β), 1.45 (9H, s, CH3-Boc). 

 

Boc-Met-Met-OMe (15): was prepared as described for Boc-Cys(Bzl)-Cys(Bzl)-OMe (13) 

using Boc-Met-OH (2.5 g; 10 mmol) and H-Met-OMe, HCl (2.0 g; 10 mmol). The product 

was purified by column chromatography, EtOAc / Hexane (1:1); Rf = 0.30. Yield: 92 %. 

C16H30N2O5S2 = 394.54 g.mol-1. Elemental analysis calc. for C16H30N2O5S2: C, 48.71; H, 

7.66; N, 7.10, found: C, 48.90; H, 5.74; N, 6.93. MS (EI): m/z = 394.1 [M]+, 320.2 [M –

 OtBu]+, 264.1 [M – NHBoc – CH3]
+. 1H NMR (CDCl3): δ 6.87 (1H, d, JHH = 6.5 Hz, 

NHBoc), 5.23 (1H, d, JHH = 6.8 Hz, NH), 4.70 (1H, m, CHα), 4.27 (1H, m, CHα), 3.72 (3H, 

s, CH3-ester), 2.55 (4H, m, CH2-β), 2.20 – 1.60 (10H, m, overlapping of SCH3, CH2-γ), 

1.42 (9H, s, CH3-Boc).
 13C NMR (CDCl3): δ 171.8, 171.2 (C=Oester and C=OBoc), 

155.3 (C=OMet), 80.0 (Cq-Boc), 52.7, 51.8 (CHα), 51.2 (CH3-ester), 31.7, 31.2, 31.1, 

29.8 (CH2-β  and CH2-γ), 28.8 (CH3-Boc), 15.2, 15.9 (SCH3). 

 

Fmoc-Cys(Trt)-Cys(Trt)-OMe (16): was prepared from Fmoc-Cys(Trt)-OH (8.0 g; 

13.7 mmol) and H-Cys(Trt)-OMe, HCl (5.6 g; 13.7 mmol) (9). The product was purified 

by column chromatography, with EtOAc / Hexane (1:3) as eluant (Rf = 0.30). Yield: 72 %. 

C60H52N2O5S2 = 945.20 g.mol-1. Elemental analysis calc. for C60H52N2O5S2: C, 76.24; H, 

5.55; N, 2.96, found: C, 75.68; H, 6.00; N, 2.77. MS (FAB): m/z = 945.0 [M]+, 701 [M –

 Trt]+. 1H NMR (CDCl3): δ 7.78 – 7.11 (38H, m, overlapping of CHar-Trt and CHFmoc), 

6.33 (1H, d, JHH = 7.7 Hz, NH), 5.00 (1H, d, JHH = 7.9 Hz, NH), 4.47 – 4.26 (3H, m, 

overlapping CH2-Fmoc and CHα), 4.17 (1H, t, JHH = 7.0 Hz, CHFmoc), 3.78 (1H, dt, JHH = 1.9, 

5.7 Hz, CHα), 3.71 (3H, s, CH3-ester), 2.69 – 2.51 (4H, m, overlapping of CH2-β).
 13C NMR 

(CDCl3): δ 170.1, 169.6 (C=Oester), 144.3, 143.8 (C=OFmoc and Cq-Fmoc), 141.2 (C=OMet), 

127.7, 127.1, 125.1, 120.0 (CHFmoc and CHTrt), 52.5, 51.2 (CHα), 47.0 (CH3-ester), 33.9, 

33.5 (CH2-β). 

 

Boc-Cys(tBu)-Cys(tBu)-OMe (17): was prepared identically as for 

Boc-Cys(Bzl)-Cys(Bzl)-OMe using Boc-Cys(tBu)-OH (6.38 g; 23.0 mmol) and 

H-Cys(tBu)-OMe, HCl (10) (5.24 g; 23.0 mmol). The product was purified by column 

chromatography, with EtOAc / Hexane (1:2) as eluant (Rf = 0.25). Yield: 87 %. 
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C20H38N2O5S2 = 450.65 g.mol-1. Elemental analysis calc. for C20H38N2O5S2: C, 53.36; H, 

8.51; N, 6.22; found: C, 53.35; H, 8.51; N, 6.15. MS (FAB): m/z = 451 [M + H]+. 1H NMR 

(CDCl3): δ 7.11 (1H, d,
 
JHH = 5.9 Hz, NH), 5.35 (1H, bs, NH), 4.80 (1H, m, CHα), 

4.27 (1H, m, CHα), 3.76 (3H, s, CH3-ester), 3.01 – 2.95 (3H, m, CH2-β), 2.83 (1H, dd, 

JHH = 6.6, 13.0 CH2-β), 1.46 (9H, s, CH3-Boc), 1.34 (9H, s, CH3-tBu), 1.30 (9H, s, CH3-tBu). 
13C NMR (CDCl3): δ 170.6 (C=Oester), 170.4 (C=Oamide), Cq-Boc is missing, 52.6, 

52.2 (CHα), 42.9, 42.6 (Cq-tBu), 30.9 (CH3-ester), 31.1, 31.0 (CH3-tBu), 30.3, 30.2 (CH2-β), 

28.3 (CH3-Boc). 

 

Fmoc-Cys(tBu)-Cys(tBu)-OMe (18): was prepared using Fmoc-Cys(Trt)-OH (4.0 g; 

10 mmol) and H-Cys(Trt)-OMe, HCl (2.27 g; 10 mmol) (10). The product was purified by 

flash column chromatography on silica, with EtOAc / Hexane (1:3) as eluant (Rf = 0.30). 

Yield: 95 %. C30H40N2O5S2 = 572.78 g.mol-1. Elemental analysis calc. for C30H40N2O5S2: 

C, 62.91; H, 7.04; N, 4.89, found: C, 62.58; H, 7.07; N, 4.77. MS (FAB): 

m/z = 573.1 [M]+. 1H NMR (CDCl3): δ 7.80 – 7.28 (8H, m, CHFmoc), 7.2 (1H, bs, NHFmoc), 

5.78 (1H, d, JHH = 6.2 Hz, NH), 4.81 (1H, dt,
 
JHH = 5.1, 7.8 Hz, CHα), 4.45 – 4.32 (3H, m, 

CH2-Fmoc and CHα), 4.23 (1H, t, JHH = 7.1 Hz, CHFmoc) 3.75 (3H, s, CH3-ester), 3.1 –

 2.76 (4H, m, CH2-β), 1.36 (9H, s, CH3-tBu), 1.28 (9H, s, CH3-tBu).
 13C NMR (CDCl3): δ 

170.5, 169.9 (C=Oester and C=OFmoc), 141.3 (C=OMet), 141.3 (Cq-Fmoc), 127.7, 127.1, 125.1, 

120.0 (CHFmoc), 67.3 (Cq-tBu), 52.6, 52.3 (CHα), 47.0 (CH3-ester), 30.8 (CH3-Boc), 30.9, 

30.8 (CH2-β). 

 

8.2.3 Removal of Boc and Fmoc 

General procedure for Boc deprotection 

Boc protected derivative were dissolved in a 1:1 (v:v) solution of TFA in CH2Cl2 at a 

concentration of approximately 0.1 M. The resulting mixture was stirred at room 

temperature for 30 min (reaction completion checked by TLC). The solvents were 

subsequently removed by rotary evaporation and the product was thoroughly dried. The 

residue was precipitated from cold diethyl ether and filtered to yield a white solid. Products 

were used without further purification unless otherwise noted. 

 

H-Cys(Bzl)-Cys(Bzl)-OMe (19): Yield: Quant. C21H26N2O3S2 = 418.57 g.mol-1. MS (EI): 

m/z = 418 [M]+, 294 [M – SBzl + H]+. 1H NMR (CDCl3): δ 7.69 (1H, d, JHH = 7.5 Hz, 
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NH), 7.40 – 7.18 (10H, m, CHar-Bzl), 4.65 (1H, q, JHH = 7.3 Hz, CHα), 3.92 (1H, t,
 

JHH = 6.1 Hz, CHα), 3.76 (3H, s, CH3-ester), 3.65 (4H, s, CH2-Bzl), 2.96 – 2.80 (4H, m, 

CH2-β). 

 

H-Cys(pOMeBzl)-Cys(pOMeBzl)-OMe (20): Yield: 89 %. C23H30N2O2S2 = 478.62 g.mol-1. 

MS (EI): m/z = 479 [M + H]+, 294 [M – pOMeBzl]+. 1H NMR (CDCl3): δ 7.45 –

 6.91 (10H, m, NH and CHar-Bzl), 7.03 (1H, d, JHH = 7.5 Hz, NH), 4.56 (1H, q, 

JHH = 7.6 Hz, CHα), 3.98 (1H, t,
 
JHH = 6.2 Hz, CHα), 3.81 – 3.67 (13H, m, CH3-ester, 

CH3-ether and CH2-Bzl), 2.98 – 2.78 (4H, m, CH2-β). 

 

H-Cys(tBu)-Cys(tBu)-OMe (21): Yield: Quant. C15H30N2O3S2 = 350.54 g.mol-1. Elemental 

analysis calc. for C15H30N2O3S2, 2.5×CF3COOH: C, 37.78, H, 5.15, N, 4.41, found: C, 

36.47, H, 5.56, N, 4.74. MS (FAB): m/z = 351.4 [M + H]+. 1H NMR (CDCl3): δ 7.94 (1H, 

d, JHH = 7.7 Hz, NH), 4.80 (1H, m, CHα), 4.07 (1H, m, CHα), 3.76 (3H, s, CH3-ester), 3.14 –

 2.90 (4H, m, CH2-β), 1.36 (9H, s, CH3-tBu), 1.30 (9H, s, CH3-tBu). 
13C NMR (CDCl3): δ 

170.2 (C=Oester), 167.7 (C=Oamide), 54.5, 52.8 (CHα), 44.3, 42.9 (Cq-tBu), 31.0, 

30.6 (CH3-ester and CH3-tBu), 29.7, 28.8 (CH2-β). 

 

General procedure for Fmoc deprotection 

H-Cys(Trt)-Cys(Trt)-OMe (22): Fmoc-Cys(Trt)-Cys(Trt)-OMe (16) (5 mmol, 5.0 g) was 

dissolved in 150 mL of a solution of piperidine / CH2Cl2 1:2 (v:v). The resulting mixture 

was stirred at room temperature for 1 h. The solvents were subsequently removed by rotary 

evaporation. The residue was purified by column chromatography (EtOAc / n-Hexane 2:1, 

Rf = 0.15) to yield a white solid (m = 2.2 g). Yield: 61 %. C45H42N2O3S2 = 722.96 g.mol-1. 

MS (FAB): m/z = 722.6 [M]+, 243 [Trt]+. 1H NMR (CDCl3): δ 7.39 – 7.24 (30H, m, 

CHar-Trt), 5.98 (2H, bs , NH2), 3.11 (2H, m, CHα), 2.85 (2H, m, CH2-β), 2.85 (2H, m, 

CH2-β), 2.45 (3H, s, CH3-ester).
 13C NMR (CDCl3): δ 165.6 (C=Oester), 144.0 (C=Oamide), 

129.4, 128.1, 127.2, 127.0 (CHar-Trt), 67.4, 64.3 (Cq-Trt), 53.1, 52.9 (CHα and CH3-ester), 

36.0 (CH2-β). 

 

8.2.4 Peptide coupling with ferrocene 

A stirred suspension of ferrocene carboxylic acid (1 mmol; 230 mg) or ferrocene 1,1’-

dicarboxylic acid (2) (1 mmol; 274 mg) in freshly distilled CH2Cl2 (30 mL) was degassed 



Experimental Section 
 

131 

over a period of 15 min. To this suspension stoichiometric amounts of HOBt monohydrate 

(1 mmol; 153.5 mg of the mono acid, or 2 mmol; 307 mg of (2)), EDC (1 mmol; 191.7 mg, 

or 2 mmol; 383.4 mg) and DIPEA (1 mmol; 386 µL, or 2 mmol; 772 µL) were added. The 

resulting suspension was stirred at ambient temperature for 30 min, followed by filtration 

to remove unreacted materials. A stoichiometric amount of corresponding amino acid or 

dipeptide methyl ester (either 1 mmol for reaction with monoacid or 2 mmol for reaction 

with diacid) was added to this solution and stirring was resumed for an additional 12 h. 

The disappearance of starting material was observed by TLC using EtOAc / n-Hexane 

(1:1). The reaction mixture was then diluted to 100 mL with CH2Cl2 and the organic layer 

was consecutively washed with 50 mL distilled water, 50 mL HCl (0.1 M), 50 mL distilled 

water, 50 mL saturated NaHCO3 and 50 mL distilled water. The organic phase was dried 

over MgSO4, filtered and the solvent removed by rotary evaporation to yield the crude 

product, usually yellowish in the case of monosubstituted derivatives and orange in the 

case of disubstituted derivatives.  

 

Fe[C5H4-CO-Cys(Bzl)-OMe]2 (23b): Chromatographed on silica, EtOAc / n-Hexane (1:1) 

Rf = 0.4 as eluant. Yield: 75 %. C34H36FeN2O6S2 = 688.14 g.mol-1. Elemental analysis calc. 

for C34H36FeN2O6S2: C, 59.30; H, 5.27; N, 4.07, found: C, 59.12; H, 5.36; N, 3.96. MS 

(EI): m/z = 688 [M]+, 564 [M – Bzl - OMe]+. UV/Vis (CHCl3): 442.4 (254). E1/2 = 448 mV 

(vs. Fc/Fc+). FT-IR (KBr): 3273 (br, νNH), 3084 – 2840 (m, νOH and νCH-Bzl), 1745 (s, 

νC=O-ester), 1627 (s, νC=O-amide), 1540 (s, νNH-deformation). FT-IR (CHCl3): 3378 (s, νNH), 3076 –

 2856 (br, νOH and νCH-Bzl), 1731 (s, νC=O-ester), 1648 (s, νC=O-amide), 1533 (s, νNH-deformation). 
1H NMR (CDCl3): δ 7.54 (2H, d, JHH = 8.3 Hz, NH), 7.31 - 7.20 (10H, m, CHar-Bzl), 

4.99 (2H, m, CHα), 4.88 (2H, ddd, JHH = 1.1, 2.5, 2.5 Hz, CHCp-ortho), 4.72 (2H, ddd, 

JHH = 1.1, 2.5, 2.5 Hz, CHCp-ortho), 4.54 (2H, ddd, JHH = 1.3, 2.6, 2.6 Hz, CHCp-meta), 

4.39 (2H, ddd, JHH = 1.3, 2.6, 2.6 Hz, CHCp-meta), 3.73 (10H, m, CH3-ester and CH2-Bzl), 

2.85 (4H, m, CH2-β). 
13C NMR (CDCl3): δ 172.7 (C=Oester), 169.3 (C=Oamide), 137.6 (Cq-ar), 

128.0, 127.5, 126.2 (CHar), 74.8 (Cq-Cp), 71.0, 70.6, 69.7, 69.2 (CHCp), 51.9, 50.6 (CHα and 

CH3-ester), 35.7, 31.2 (CH2-Bzl and CH2-β). 

 

Fc-Cys(Bzl)-Cys(Bzl)-OMe (23c): Chromatographed on silica with EtOAc / Hexane (1:2) 

as eluant (Rf = 0.3). Yield: 83 %. C32H34FeN2O4S2 = 630.13 g.mol-1. Elemental analysis 

calc. for C32H34FeN2O4S2: C, 60.95; H, 5.44; N, 4.44, found: C, 60.68; H, 5.58; N, 4.35. 

MS (EI): m/z = 630.2 [M]+. UV/Vis (CHCl3): 443.2 (229). E1/2 = 182 mV (vs. Fc/Fc+). FT-
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IR (KBr): 3272 (s, νNH), 3070 - 2900 (br, νOH and νCH-Bzl), 1747 (s, νC=O-ester), 1629 (s, 

νC=O-amide), 1550 (s, νNH-deformation). FT-IR (CHCl3): 3409 (s, νNH), 3069 – 2925 (m, νOH and 

νCH-Bzl), 1746 (s, νC=O ester), 1678 (s, νC=O-amide-Fc), 1645 (s, νC=O-amide), 1495 (s, νNH-

deformation). 
1H NMR (CDCl3): δ 7.43 – 7.25 (10H, m, CHar-Bzl), 7.12 (1H, d, JHH = 7.4 Hz, 

NH), 6.55 (1H, d, JHH = 7.0 Hz, NH), 4.78 – 4.65 (4H, m, CHCp-ortho and CHα), 4.38 (2H, 

m, CHCp-meta), 4.22 (5H, s, CHCp-unsub), 3.86 (2H, m, CH2-Bzl), 3.74 (3H, s, CH3-ester), 

3.70 (2H, s, CH2-Bzl), 3.0 – 2.77 (4H, m, CH2-β). 
13C NMR (CDCl3): δ 177.5 (C=Oester), 

177.6 (C=Oamide), 137.5 (Cq-ar-Bzl), 129.1, 128.9, 128.7, 128.6 (CHar-Bzl), 74.9 (Cq-Cp), 70.8, 

69.9, 68.5, 68.1 (CHCp), 52.7, 52.0 (CHα and CH3), 36.5, 33.7, 33.1 (CH2-Bzl and CH2-β). 

 

Fe[C5H4-CO-Cys(Bzl)-Cys(Bzl)-OMe]2 (23d): Chromatographed on silica gel with 

EtOAc / Hexane (1:1) as eluant (Rf = 0.25). Yield: 70 %. 

C54H58FeN4O8S4 = 1074.25 g.mol-1. Elemental analysis calc. for C54H58FeN4O8S4: C, 

60.32; H, 5.44; N, 5.21, found: C, 60.02; H, 5.61; N, 5.19. MS (EI): m/z = 1074 [M]+, 

630 [M – COCys(Bzl)Cys(Bzl)OMe]+. UV/Vis (CHCl3): 445.2 (402). E1/2 = 387 mV (vs. 

Fc/Fc+). FT-IR (KBr): 3275 (s, νNH), 3084 – 2840 (br, νOH and νCH-Bzl), 1745 (s, νC=O-ester), 

1627 (s, νC=O-amide), 1541 (s, νNH-deformation). FT-IR (CHCl3): 3378 (s, νNH), 3086 – 2847 (br, 

νOH and νCH-Bzl), 1731 (s, νC=O-ester), 1648 (s, νC=O-amide), 1533 (s, νNH-deformation). 
1H NMR 

(CDCl3): δ 8.21 (2H, d, JHH = 8.0 Hz, NH), 7.41 – 7.19 (20H, m, CHar-Bzl), 7.23 (2H, d, 

JHH = 7.7 Hz, NH), 4.84 (2H, m, CHCp-ortho), 4.65 (6H, m, CHα and CHCp-ortho), 4.45 (2H, 

m, CHCp-meta), 4.30 (2H, m, CHCp-meta), 3.80 – 3.60 (14H, m, CH2-Bzl and CH3), 2.88 –

 2.69 (8H, m, CH2-β). 
13C NMR (CDCl3): δ 172.7 (C=Oester), 170.7 (C=Oamide), 137.7, 

137.5 (Cq-ar), 129.0, 128.7, 127.3 (CHar-Bzl), 75.9 (Cq-Cp), 71.8, 71.3, 70.7, 70.1 (CHCp), 

52.5, 52.1 (CHα and CH3-ester), 36.0, 32.5 (CH2-Bzl and CH2−β). 

 

Fc-Cys(pOMeBzl)-OMe (24a): Chromatographed on silica EtOAc / Hexane (1:2); Rf = 0.3. 

Yield: 82 %. C23H35FeNO4S = 477.16 g.mol-1. Elemental analysis calc. for C23H35FeNO4S: 

C, 57.86; H, 7.39; N, 2.93, found: C, 57.82; H, 7.20; N, 2.89. MS (EI): m/z = 467 [M]+, 

213 [FcCO]+. E1/2 = 240 mV (vs. Fc/Fc+). FT-IR (KBr): 3278 (s, νNH), 3082 – 2834 (br, 

νOH and νCH-Bzl), 1737 (s, νC=O-ester), 1628 (s, νC=O-amide), 1538 (s, νNH-deformation). 
1H NMR 

(CDCl3): 7.20 (2H, m, CHar-ortho-pOMeBzl), 6.80 (2H, m, CHar-meta-pOMeBzl), 6.45 (1H, d, 

JHH = 7.34 , NH), 4.95 (1H, m, CHα), 4.73 (2H, m, CHCp-ortho) 4.67 (2H, m, CHCp-meta), 
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4.25 (5H, s, CHCp-unsub), 3.78 (5H, m, CH3-pOMeBzl and CH2-pOMeBzl), 3.71 (3H, s, CH3-ester), 

2.91 – 2.76 (2H, m, CH2-β). 

 

Fe[C5H4-CO-Cys(pOMeBzl)-OMe]2 (24b): Chromatographed on silica gel 

EtOAc / Hexane (1:1): Rf = 0.22. Yield: 76 %. C36H40FeN2O8S2 = 748.16 g.mol-1. 

Elemental analysis calc. for C36H40FeN2O8S2: C, 57.91; H, 5.13; N, 3.75, found: C, 57.67; 

H, 5.42; N, 3.63. MS (EI): m/z = 748 [M]+. UV/Vis (CHCl3): 443.5 (219). E1/2 = 402 mV 

(vs. Fc/Fc+). FT-IR (KBr): 3287 (s, νNH), 3085 – 2835 (m, νOH and νCH-Bzl), 1740 (s, 

νC=O-ester), 1631 (s, νC=O-amide), 1511 (s, νNH-deformation). FT-IR (CHCl3): 3378 (s, νNH), 3002 –

 2838 (m, νOH and νCH-Bzl), 1731 (s, νC=O-ester), 1648 (br, νC=O-amide-Fc and νC=O-amide), 

1536 (s, νNH-deformation). 
1H NMR (CDCl3): 7.55 (2H, d, JHH = 8.0 Hz, NH), 7.20 (4H, m, 

CHar-ortho-pOMeBzl), 6.80 (4H, m, CHar-meta-pOMeBzl), 4.99 (2H, m, CHα), 4.88 (2H, m, 

CHCp-ortho), 4.72 (2H, m, CHCp-ortho), 4.54 (2H, m, CHCp-meta), 4.39 (2H, m, CHCp-meta), 

3.78 – 3.68 (9H, m, CH3-pOMeBzl and CH3-ester), 3.01 – 2.80 (8H, m, CH2-Bzl and CH2-β). 
13C 

NMR (CDCl3): 173.7 (C=Oester), 170.3 (C=Oamide), 158.8 (Cq-ar--pOMeBzl), 

130.0 (CHar-meta-pOMeBzl), 129.3 (Cq-ar-pOMeBzl), 113.6 (CHar-ortho-pOMeBzl), 76.0 (Cq-Cp), 72.0, 

71.6, 70.7, 70.2 (CHCp), 55.2 (CH3-pOMeBzl), 52.9, 51.6 (CHα and CH3-ester), 35.5, 

32.2 (CH2-Bzl and CH2-β). 

 

Fc-Cys(pOMeBzl)-Cys(pOMeBzl)-OMe (24c): Chromatographed on silica EtOAc / Hexane 

(1:2); Rf = 0.2. Yield: 72 %. C34H38FeN2O6S2 = 690.15 g.mol-1. Elemental analysis calc. 

for C34H38FeN2O6S2: C, 59.13; H, 5.55; N, 4.06, found: C, 58.94; H, 5.62; N, 3.86. MS 

(EI): m/z = 690 [M]+, 626 [M – OMe]+. UV/Vis (CHCl3): 441.2 (562). E1/2 = 192 mV (vs. 

Fc/Fc+). FT-IR (KBr): 3278 (s, νNH), 3083 – 2900 (m, νOH and νCH-Bzl), 1738 (s, νC=O-ester), 

1628 (s, νC=O-amide), 1535 (s, νNH-deformation). FT-IR (CHCl3): 3434 (s, νNH), 3015 – 2976 (m, 

νOH and νCH-Bzl), 1740 (s, νC=O-ester), 1653 (s, νC=O-amide-Fc), 1609 (s, νC=O-amide), 1511 (s, 

νNH-deformation). 
1H NMR (CDCl3): δ 7.19 (4H, m, CHar-pOMeBzl-ortho), 6.78 (4H, m, 

CHar-pOMeBzl-meta), 6.55 (2H, d, JHH = 7.3 Hz, NH), 4.79 – 4.68 (4H, m, CHCp-ortho and CHα), 

4.38 (2H, m, CHCp-meta), 4.22 (5H, s, CHCp-unsub), 3.78 – 3.65 (9H, m, CH3-pOMe and 

CH3-ester), 3.0 – 2.75 (8H, m, CH2-Bzl and CH2-β). 
13C NMR (CDCl3): 174.8 (C=Oester), 

170.3 (C=Oamide), 158.8 (Car-pOMeBzl), 130.0 (CHar-Bzl-meta), 129.3 (CHar-pOMeBzl), 

113.6 (CHar-ortho), 76.3 (CCp-q), 70.8, 69.9, 68.5, 68.1 (), 55.2 (CH3-pOMe), 52.9, 51.6 (CHα 

and CH3-ester), 35.5, 32.2 (CH2-pOMeBzl and CH2-β). 
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Fc-Met-OMe (25a): Chromatographed on silica EtOAc / Hexane (7:1); Rf = 0.25. Yield: 

87 %. C17H21FeNO3S = 375.06 g.mol-1. Elemental analysis calc. for C17H21FeNO3S: C, 

54.41; H, 5.64; N, 3.73, found: C, 54.14; H, 5.67; N, 3.71. MS (EI): m/z = 375 [M]+, 

213 [Fc – CO]+. UV/Vis (CHCl3): 442.7 (211). E1/2 = 190 mV (vs. Fc/Fc+). FT-IR (KBr): 

3269 (s, νNH), 3100 – 2916 (m, br, νOH and νCH-ar), 1747 (s, νC=O-ester), 1625 (s, νC=O-amide), 

1530 (s, νNH-deformation). FT-IR (CHCl3): 3432 (s, νNH), 3100 – 2849 (m, br, νOH and νCH-ar), 

1738 (s, νC=O-ester), 1655 (s, νC=O-amide), 1509 (s, νNH-deformation). 
1H NMR (CDCl3): δ 

6.57 (1H, d, JHH = 7.8 Hz, NH), 4.86 (1H, m, CHα), 4.75 (2H, m, CHCp-meta), 4.36 (2H, s, 

CHCp), 4.24 (5H, s, CHCp-unsub), 3.81 (3H, s, CH3-ester), 2.6 (2H, t, JHH = 7.2 Hz, SCH2), 

2.2 – 2.0 (2H, m, CH2-β), 2.13 (3H, s, SCH3). 
13C NMR (CDCl3): 172.6 (C=Oester), 

170.3 (C=Oamide), 75.0 (CCp-q), 70.5, 69.7, 68.4, 68.0 (CHCp), 52.1, 51.2 (CHα and CH3-

ester), 31.3, 30.1 (SCH2 and CH2-β), 15.4 (SCH3). 

 

Fe[C5H4-CO-Met-OMe]2 (25b): Chromatographed on silica gel with EtOAc / Hexane (8:1) 

as eluant (Rf = 0.3). Yield: 85 %. C24H32FeN2O6S2 = 564.11 g.mol-1. Elemental analysis 

calc. for C24H32FeN2O6S2: C, 51.06; H, 5.71; N, 4.96, found: C, 50.96; H, 5.76; N, 5.08. 

MS (EI): m/z = 564 [M]+. UV/Vis (CHCl3): 443.6 (413). E1/2 = 390 mV (vs. Fc/Fc+). FT-IR 

(KBr): 3306 (s, νNH), 3085 – 2844 (br, νOH and νCH-ar), 1739 (s, νC=O-ester), 1634 (s, 

νC=O-amide), 1539 (s, νNH-deformation). FT-IR (CHCl3): 3369 (s, νNH), 3003 – 2850 (br, νOH and 

νCH-ar), 1727 (s, νC=O-ester), 1644 (s, νC=O-amide), 1537 (s, νNH-deformation). 
1H NMR (CDCl3): δ 

7.80 (2H, d, JHH = 8.75 Hz, NH), 4.95 (4H, m, CHα and CHCp-ortho), 4.75 (2H, ddd, 

JHH = 1.2, 2.4, 2.4 Hz, CHCp-ortho), 4.55 (2H, ddd, JHH = 1.6, 1.6, 2.7 Hz, CHCp-meta), 

4.35 (2H, ddd, JHH = 1.6, 1.6, 2.7 Hz, CHCp-meta), 3.83 (6H, s, CH3-ester), 2.70 (2H, m, 

CH2-γ), 2.55 (2H, m, SCH2- γ), 2.15 (2H, m, CH2-β), 2.11 (6H, s, SCH3), 1.85 (2H, m, 

CH2-β). 
13C NMR (CDCl3): 175.9 (C=Oester), 170.7 (C=Oamide), 75.8 (CCp-q), 72.3, 71.7, 

70.5, 70.4 (CHCp), 53.2, 51.6 (CHα and CH3 ester), 31.0, 30.9 (SCH2 and CH2-β), 

15.8 (SCH3). 

 

Fc-Cys(StBu)-OMe (26a): Chromatographed on silica gel EtOAc / Hexane (1:2); Rf = 0.25. 

Yield: Quant. C19H25FeNO3S2 = 435.38 g.mol-1. Elemental analysis calc. for C19H25NO3S2: 

C, 52.41; H, 5.79; N, 3.22, found: C, 52.18; H, 5.87; N, 3.12. MS (EI): 

m/z = 435 [M + H]+, 213 [FcCO]+. E1/2 = 190 mV (vs. Fc/Fc+). FT-IR (KBr): 3284 (s, νNH), 
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3084, 2965 (br, νOH and νCH-ar), 1747 (s, νC=O-ester), 1629 (s, νC=O-amide), 1534 (s, 

νNH-deformation). 
1H NMR (CDCl3): δ 6.60 (1H, d, JHH = 7.6 Hz, NH), 5.01 (1H, dt, JHH = 2.5, 

7.6 Hz, CHα), 4.73 (2H, m, CHCp-ortho), 4.37 (2H, m, CHCp-meta), 4.27 (5H, s, CHCp-unsub), 

3.81 (3H, s, CH3-ester), 3.27 (2H, d, JHH = 4.7 Hz, CH2- β), 1.35 (9H, s, CH3-tBu).
 13C NMR 

(CDCl3): δ 171.1 (C=Oester), 170.2 (C=Oamide), 75.0 (CCp-q), 70.6, 69.9, 68.4, 68.2 (CHCp), 

52.5, 52.0 (CHα and CH3-ester), 48.4 (CH2-β), 42.5 (Cq-tBu), 15.4 (CH3-tBu). 

 

Fe[C5H4-CO-Cys(StBu)-OMe]2 (26b): Chromatographed on silica gel EtOAc / Hexane 

(1:2); Rf = 0.15. Yield: Quant. C28H40FeN2O6S4 = 684.73 g.mol-1. Elemental analysis calc. 

for C28H40FeN2O6S4: C, 49.11; H, 5.89; N, 4.09, found: C, 49.74; H, 6.04; N, 4.32. 

MS (EI): m/z = 684 [M + H]+, 213 [FcCO]+. E1/2 = 404 mV (vs. Fc/Fc+). FT-IR (KBr): 

3311 (bs, νNH), 2960 – 2890 (br, νOH and νCH-ar), 1747 (s, νC=O-ester), 1635 (s, νC=O-amide), 

1534 (s, νNH-deformation). 
1H NMR (CDCl3): δ 7.59 (2H, d, JHH = 6.5 Hz, NH), 5.12 (2H, m, 

CHα), 4.89 (2H, m, CHCp-ortho), 4.78 (2H, m, CHCp-ortho), 4.55 (2H, m, CHCp-meta), 4.40 (2H, 

m, CHCp-meta), 3.86 (6H, s, CH3-ester), 3.22 – 3.05 (2H, m, CH2- β), 1.36 (18H, s, CH3-tBu).
 13C 

NMR (CDCl3): δ 173.2 (C=Oester), 170.3 (C=Oamide), 76.0 (CCp-q), 72.8, 72.5, 71.6, 

71.2 (CHCp), 52.9, 52.2 (CHα and CH3-ester), 48.14 (Cq-tBu), 42.2 (CH2-β), 29.8 (CH3-tBu). 

 

Fc-C5H4-CO-Cys(Trt)-OMe (27a): Was prepared the same way as described above, the 

reaction mixture was stirred at ambient temperature for 48 h. Purification by 

flash-chromatography on silica gel with EtOAc / Hexane (1:4) (Rf = 0.3) as eluant. Yield: 

70 %. C34H31FeNO3S = 589.52 g.mol-1. Elemental analysis calc. for C34H31FeNO3S: C, 

69.27; H, 5.30; N, 2.38, found: C, 69.14; H, 5.60; N, 2.95. MS (EI): m/z = 589 [M]+. 1H 

NMR (CDCl3): δ 7.43 – 7.17 (15H, m, CHar-Trt), 6.25 (1H, d, JHH = 8.0 Hz, NH), 4.77 (1H. 

m, CHCp-ortho), 4.76 (1H, m CHα), 4.70 (1H. m, CHCp-ortho), 4.36 (2H. m, CHCp-meta), 

4.23 (5H, s, CHCp-unsub), 3.75 (3H, s, CH3-ester), 2.71 (2H, m, CH2-β). 
13C NMR (CDCl3): δ 

171.6 (C=Oester), 169.3 (C=Oamide), 144.3 (Cq-ar), 129.5, 127.9, 126.9, 126.6 (CHar), Cq-Cp 

signal is missing, 70.9, 70.6, 69.9, 68.3 (CHCp), Cq-Trt signal is missing, 52.6, 50.8 (CHα 

and CH3-ester), 34.1 (CH2-β). 

 

Fe[C5H4-CO-Cys(Trt)-OMe]2 (27b): Was prepared as described above, the reaction 

mixture was stirred at rt for 48 h. Chromatographed on silica gel, EtOAc / Hexane (1:4) 

Rf = 0.4. Yield: 65 %. C58H52FeN2O6S2 = 993.02 g.mol-1. Elemental analysis calc. for 
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C58H52FeN2O6S2: C, 70.15; H, 5.28; N, 2.82, found: C, 69.82; H, 5.21; N, 2.71. MS (EI): 

m/z = 993 [M]+, 750 [M – Trt]+. E1/2 = 396 mV (vs. Fc/Fc+). FT-IR (KBr): 3326 (br, νNH), 

3056 – 2925 (νOH and νCH-Bzl), 1781 (s, νC=O-ester), 1740 (s, νC=O-amide), 1653 (s, νNH-

deformation). 
1H NMR (CDCl3): δ 7.47 (2H, d, JHH = 8.3 Hz, NH), 7.37 - 7.20 (30H, m, CHar-

Trt), 4.83 (2H, m, CHCp-ortho), 4.73 (4H, m, CHα and CHCp-ortho), 4.50 (2H, m, CHCp-meta), 

4.34 (2H, m, CHCp-meta), 3.55 (6H, s, CH3-ester), 2.73 (2H, m, CH2-β), 2.52 (2H, m, CH2-β). 
13C NMR (CDCl3): δ 173.4 (C=Oester), 170.3 (C=Oamide), 144.6 (Cq-ar), 129.7, 128.2, 

127.0 (CHar-Trt), 76.0 (Cq-Cp), 72.2, 71.8, 70.8, 70.4 (CHCp), 67.3 (Cq-Trt), 53.1, 51.9 (CHα 

and CH3-ester), 33.5 (CH2-β). 

 

Fc-Cys(tBu)-OMe (28a): Chromatographed on silica gel with EtOAc / Hexane (1:2); 

Rf = 0.35 as eluant. Yield: 72 %. C19H25FeNO3S = 403.32 g.mol-1. Elemental analysis calc. 

for C19H25FeNO3S: C, 56.58; H, 6.25; N, 3.47, found: C, 55.82; H, 6.07; N, 3.95. 

MS (FAB): m/z = 403.2 [M]+, 213 [FcCO]+. UV/Vis (CH2Cl2): 441.6 (285). E1/2 = 193 mV 

(vs. Fc/Fc+). FT-IR (KBr): 3274 (s, νNH), 3086 – 2965 (br, νOH and νCH-ar), 1754, 1735 (s, 

νC=O-ester), 1631 (s, νC=O-amide), 1542 (s, νNH-deformation). 
1H NMR (CDCl3): δ 6.48 (1H, d, 

JHH = 7.6 Hz, NH), 4.97 (1H, m, CHα), 4.72 - 4.68 (2H, m, CHCp-ortho), 4.34 (2H, m, 

CHCp-meta), 4.25 (5H, s, CHcp-unsub), 3.78 (3H, s, CH3-ester), 3.11 – 3.01 (2H, m, CH2- β), 

1.31 (9H, s, CH3-tBu).
 13C NMR (CDCl3): δ 173.6 (C=Oester), 170.4 (C=Oamide), 76.2 (CCp-q), 

72.2, 71.8, 70.9, 70.4 (CHCp), 53.1 and 52.9 (CHα and CH3-ester), 42.5 (Cq-tBu), 

31.1 (CH3-tBu), 30.1 (CH2-β). 

 

Fe[C5H4-CO-Cys(tBu)-OMe]2 (28b): Chromatographed on silica gel EtOAc / Hexane 

(1:2); Rf = 0.25. Yield: 55 %. C28H40FeN2O6S2 = 620.60 g.mol-1. Elemental analysis calc. 

for C28H40FeN2O6S2: C, 54.19; H, 6.50; N, 4.51, found: C, 54.55; H, 6.99; N, 5.02. 

MS (FAB): m/z = 620.5 [M]+, 374.1 [Fe(C5H4-CO)(Cys(SH)-OMe]+. UV/Vis (CH2Cl2): 

442.5 (304). E1/2 = 395 mV (vs. Fc/Fc+). FT-IR (KBr): 3304 (br, νNH), 2959 – 2900 (br, 

νOH and νCH-ar), 1744 (s, νC=O-ester), 1635 (s, νC=O-amide), 1535 (s, νNH-deformation). 
1H NMR 

(CDCl3): δ 7.48 (2H, d, JHH = 8.4 Hz, NH), 5.00 (2H, m, CHα), 4.86 (2H, m, CHCp-ortho), 

4.78 (2H, m, CHCp-ortho), 4.52 (2H, m, CHCp-meta), 4.37 (2H, m, CHCp-meta), 3.83 (6H, s, 

CH3-ester), 3.08 – 2.90 (2H, m, CH2- β), 1.33 (18H, s, CH3-tBu).
 13C NMR (CDCl3): δ 

171.6 (C=Oester), 170.4 (C=Oamide), 75.3 (CCp-q), 70.8, 70.1, 68.5 (CHCp), 52.9, 51.9 (CHα 

and CH3-ester), 42.9 (Cq-tBu), 31.1 (CH3-tBu), 30.9 (CH2-β). 
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Fc-Cys(tBu)-Cys(tBu)-OMe) (28c): To a stirred suspension of ferrocene carboxylic acid 

(1.14 g, 4.96 mmol) in freshly distilled and degassed CH2Cl2 (50.0 mL) stoichiometric 

amounts of TBTU (1.59 g, 4.96 mmol) and DIPEA (0.95 mL, 2.49 mmol) were added. In 

another flask, H-Cys(tBu)-Cys(tBu)-OMe (21) (1.96 g, 4.96 mmol) was suspended in 

distilled and degassed CH2Cl2 (50.0 mL), followed by addition of DIPEA (0.95 mL, 

2.49 mmol). The suspensions were mixed, and resulting slurry was stirred overnight at 

ambient temperature. The reaction mixture was subsequently filtered to remove unreacted 

materials and diluted with 30.0 mL CH2Cl2. The organic layer was consecutively washed 

with 100 mL distilled water, 100 mL saturated NaHCO3, 100 mL distilled water, 100 mL 

HCl (0.1 M), and 100 mL distilled water. The organic phase was dried over MgSO4, 

filtered and the solvent was removed at reduced pressure to yield the crude product. The 

product was purified by column chromatography with EtOAc / Hexane (1:1) as eluant 

(Rf = 0.3). Yield: 46 %. C26H38FeN2O4S2 = 562.16 g.mol-1. Elemental analysis calc. for 

C26H38FeN2O4S2: C, 55.51; H, 6.81; N, 4.98; found: C, 55.42; H, 6.71; N, 5.01. MS (FAB): 

m/z = 562 [M]+. UV/Vis (CH2Cl2): 442.1 (249). E1/2 = 202 mV (vs. Fc/Fc+). FT-IR (KBr): 

3294 (bs, νNH), 3080, 2962, 2863 (s, νOH and νCH-ar), 1752 (s, νC=O-ester), 1654, 1628 (s, 

νC=O-amide), 1542 (s, νNH-deformation). 
1H NMR (CDCl3): δ 7.35 (1H, d, JHH = 9.9 Hz, NH), 

6.67 (1H, d, JHH = 6.0 Hz, NH), 4.83 – 4.78 (1H, m, CHα), 4.72 – 4.66 (3H, m, overlapping 

CHα and CHCp-ortho), 4.37 (2H, m, CHCp-meta), 4.25 (5H, m, CHCp-unsub), 3.77 (3H, s, 

CH3-ester), 3.13 (1H, m, CH2-β), 3.02 (2H, m, CH2-β), 2.86 (1H, m, CH2-β), 1.40 (9H, s, 

CH3-tBu), 1.29 (9H, s,
 
tBu). 

13C NMR (CDCl3): δ 170.5 (C=Oester), 170.4 (C=Oamide), 

75.6 (Cq-Cp), 70.6, 69.8, 68.3, 68.2 (CHCp), 53.0, 52.6 52.4 (CHα), 43.3, 42.7 (Cq-tBu), 31.0, 

30.8 (CH3-tBu), 30.6, 30.2 (CH2-β). 

 

Fe[Cys(tBu)-Cys(tBu)-OMe]2 (28d): To a stirred suspension of ferrocene 1,1’-dicarboxylic 

acid (290 mg, 1.05 mmol) in freshly distilled and degassed CH2Cl2 (20.0 mL) 

stoichiometric amounts of TBTU (675 mg, 2.1 mmol) and an excess of DIPEA (347 µL, 

2.1 mmol) were added. In another flask, H-Cys(tBu)-Cys(tBu)-OMe (21) (2.0 g; 2.1 mmol) 

was suspended in distilled and degassed CH2Cl2 (20.0 mL), followed by addition of 

DIPEA (347 µL, 2.1 mmol). The suspensions were mixed, and resulting slurry was stirred 

overnight at ambient temperature. The reaction mixture was filtered to remove unreacted 

materials and diluted with 60.0 mL CH2Cl2. The organic layer was washed with 500 mL 

distilled water, 50 mL saturated NaHCO3, 50 mL distilled water, 50 mL HCl (0.1 M), and 
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50 mL distilled water. The organic phase was dried over MgSO4, filtered and the solvent 

rotary evaporated to yield the crude orange product. The product was additionally purified 

by column chromatography (EtOAc / Hexane (1:1); Rf = 0.2). Yield: 95 %. 

C42H66FeN4O8S4 = 939.10 g.mol-1. Elemental analysis calc. for C42H66FeN4O8S4: C, 53.72; 

H, 7.08; N, 5.97; found: C, 53.19; H, 6.93; N, 6.21. MS (FAB): m/z = 938.3 [M]+, 

748.2 [M – Cys(tBu)OMe]+. UV/Vis (CH2Cl2): 448.5 (347). E1/2 = 420 mV (vs. Fc/Fc+). 

FT-IR (KBr): 3288 (bs, νNH), 2960, 2863 (s, νOH and νCH-ar), 1750 (s, νC=O-ester), 1664, 

1635 (s, νC=O-amide), 1539 (s, νNH-deformation). 
1H NMR (CDCl3): δ 8.19 (2H, d, JHH = 8.5 Hz, 

NH), 7.45 (2H, d, JHH = 7.9 Hz, NH), 4.90 – 4.74 (6H, m, CHα and CHCp-ortho), 4.50 (2H, 

m, CHCp-meta), 4.35 (2H, m, CHCp-meta), 3.78 (3H, s, CH3-ester), 3.13 (4H, m, CH2-β), 3.13 –

 2.98 (4H, m, CH2-β), 2.88 (4H, m, CH2-β), 1.35 (9H, s, CH3-tBu), 1.34 (9H, s, CH3-tBu). 
13C 

NMR (CDCl3): δ 170.3 (C=Oester), 170.6, 169.9 (C=Oamide), 76.2 (Cq-Cp), 71.8, 71.3, 70.9, 

70.1 (CHCp), 53.5, 52.8, 52.5 (CHα), 43.3, 42.8 (Cq-tBu), 31.0, 30.8 (CH3-tBu), 30.4, 

30.3 (CH2-β). 

 

8.2.5 Preparation of methionine derivatives 

Either Fc-Met-OMe (25a) (2.4 mmol; 895 mg) or Fe[C5H4-CO-Met-OMe]2 (25b) 

(1.2 mmol; 676 mg) were dissolved in 40 mL dioxane/water (1:1) and a stoichiometric 

amount of NaOH (100 mg; 2.4 mmol) was added at 0°C (ice bath). The mixture stirred at 

0°C for 10 min and then for an additional 60 min at room temperature. Disappearance of 

the starting material was observed by TLC using EtOAc / Hexane (9:1) as eluant. The pH 

was adjusted to 1 by addition of 1 M HCl. The reaction mixture was extracted with EtOAc 

(3 × 70 mL). The combined organic layers were dried over MgS04, filtered, and the solvent 

was subsequently removed by rotary evaporation to yield the orange crude product. 

 

Fc-Met-OH (25a’): was purified by crystallisation from cold diethyl ether. Yield: 98 %. 

C16H19FeNO3S = 361.04 g.mol-1. Elemental analysis calc. for C16H19FeNO3S: C, 53.20; H, 

5.30; N, 3.88, found: C, 53.09; H, 5.34; N, 3.55. MS (EI): m/z = 361 [M]+, 213 [FcCO]+. 

UV/Vis (CHCl3): 445.3 (275). FT-IR (KBr): 3260 (s, νNH), 3110 – 2923 (br, νOH and νCH-

ar), 1718 (s, νC=O-acid), 1609 (s, νC=O-amide), 1545 (s, νNH-deformation). FT-IR (CHCl3): 3432 (s, 

νNH), 3089 – 2836 (br, νOH and νCH-ar), 1731 (s, νC=O-acid), 1652, 1601 (s, νC=O-amide), 

1511 (s, νNH-deformation). 
1H NMR (CDCl3): δ 4.84 (1H, m, CHα), 4.54 (2H, s, CHCp-ortho), 

4.40 (2H, s, CHCp-meta), 4.36 (5H, s, CHCp-unsub), 3.42 (2H, m, SCH2), 2.74 (2H, m, CH2-β), 
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2.26 (3H, s, SCH3). 
13C NMR (Acetone d6): δ 172.3 (C=Oester), 170.2 (C=Oamide), 

76.4 (CCp-q), 69.9, 69.2, 67.8, 67.6 (), 50.8 (CHα), CH2-γ, SCH2 and CH2-β signals are 

obscured by solvent signal, 14.6 (SCH3). 

 

Fe[C5H4-CO-Met-OH]2 (25b’): was purified by crystallisation from cold diethyl ether. 

Yield: 97 %. C22H28FeN2O6S2 = 536.1 g.mol-1. Elemental analysis calc. for 

C22H28FeN2O6S2: C, 49.26; H, 5.26; N, 5.22, found: C, 49.24; H, 5.56; N, 4.91. MS (EI): 

m/z = 536 [M]+. FT-IR (KBr): 3338 (s, νNH), 3096 – 2017 (br, νOH and νCH-ar), 1718 (s, 

νC=O-ester), 1616 (s, νC=O-amide), 1545 (s, νNH-deformation). FT-IR (CHCl3): 3366 (s, νNH), 3003 –

 2850 (br, νOH and νCH-ar), 1721 (s, νC=O-ester), 1601 (s, νC=O-amide), 1538 (s, νNH-deformation). 
1H 

NMR (CDCl3): δ 4.95 – 4.80 (6H, m, CHα and CHCp-ortho), 4.58 (2H, m, CHCp-meta), 

4.47 (2H, m, CHCp-meta), 2.70 (2H, m, SCH2), 2.55 (2H, m, SCH2), 2.15 (2H, m, CH2-β), 

2.09 (6H, s, SCH3), 1.91 (2H, m, CH2-β). 
13C NMR (Acetone d6): δ 174.6 (C=Oester), 

169.1 (C=Oamide), 76.2 (CCp-q), 70.9, 70.6, 70.0, 69.2 (), 50.6 (CHα), CH2-γ, SCH2 and CH2-β 

signals are obscured by solvent signal, 13.8 (SCH3). 

 

To a stirred solution of either Fc-Met-OH (25a’) (722 mg; 2 mmol) or Fc-(Met-OH)2 

(25b’) (536 mg; 1 mmol), in THF (20 mL) N-methylmorpholine (203 mg; 221 µL; 

2.0 mmol) and isobutyl chloroformate (277 mg; 264 µL; 2.0 mmol) were added, resulting 

in formation of a precipitate. In another flask, H-Met-OMe, HCl (400 mg; 2.0 mmol) was 

suspended in THF (20 mL), followed by addition of NEt3 (222 mg; 277 µL; 2.0 mmol). 

The suspensions were mixed, and resulting mixture was stirred overnight at ambient 

temperature. The reactor was then filtered to remove unreacted materials. The solvent was 

removed under reduced pressure, the residue was then dissolved in CH2Cl2 (100 mL) and 

the organic layer was washed with distilled water (70 mL). After the phases were 

separated, the aqueous layer was extracted with CH2Cl2 (3×30 mL), and the combined 

organic solutions were dried over MgSO4. Evaporation of the solvent under reduced 

pressure yield either Fc-Met-Met-OMe (25c) or Fc-(Met-Met-OMe)2 (25d) as orange 

solids. 

 

Fc-Met-Met-OMe (25c): Chromatographed on silica gel (EtOAc / Hexane (2:1); Rf = 0.4) 

Yield: 86 %. C22H30FeN2O4S4 = 506.45 g.mol-1. MS (EI): m/z = 596 [M + 80]+. UV/Vis 

(CHCl3): 445. FT-IR (KBr): 3267 (s, νNH), 3075 – 2954 (br, νOH and νCH-ar), 1744 (s, 
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νC=O-ester), 1628 (s, νC=O-amide), 1545 (s, νNH-deformation). FT-IR (CHCl3): 3416 – 3316 (two s, 

νNH), 3033 – 2879 (br, νOH and νCH-ar), 1741 (s, νC=O-ester), 1647 (s, νC=O-amide), 1534 (s, νNH-

deformation). 
1H NMR (CDCl3): δ 7.20 (2H, m, NH), 4.80 – 4.75 (2H, m, CHα), 4.52 –

 4.20 (9H, m, CHCp), 4.00 (3H, s, CH3-ester), 2.10 – 1.95 (8H, m, SCH2 and CH2-β), 

1.51 (6H, m, SCH3). 
13C NMR (CDCl3): δ 172.5 (C=Oester), 170.8 (C=Oamide), 

170.1 (C=Oamide), 76.4 (CCp-q), 72.04, 71.2, 70.1, 70.0 (), 53.7, 52.9, 52.7 (CHα and CH3-

ester), 43.6, 43.1 (CH2-γ), 31.2, 31.1 (CH3-ester), 30.6, 30.3 (SCH2 and CH2-β), SCH3 signal is 

missing. 

 

Fe[C5H4-CO-Met-Met-OMe]2 (25d): Chromatographed on silica gel (EtOAc / Hexane 

(2:1); Rf = 0.3) Yield: 67 %. C34H50FeN4O8S4 = 826.89 g.mol-1. MS (EI): m/z = 826 [M]+. 

UV/Vis (CHCl3): 448. FT-IR (KBr): 3279 (s, νNH), 3082 – 2918 (br, νOH and νCH-ar), 

1744 (s, νC=O-ester), 1628 (s, νC=O-amide), 1545 (s, νNH-deformation). FT-IR (CHCl3): 3416 (s, 

νNH), 3316 (s, νNH), 3034 – 2878 (br, νOH and νCH-ar), 1741 (s, νC=O-ester), 1640 (s, νC=O-

amide), 1529 (s, νNH-deformation). 
1H NMR (CDCl3): δ 8.55 (2H, d, JHH = 8.8 Hz, NH), 

7.81 (2H, d, JHH = 6.0 Hz, NH), 4.80 (8H, m, CHα and CHCp-ortho), 4.52 (2H, s, CHCp-meta), 

4.29 (2H, s, CHCp-meta), 3.74 (6H, s, CH3-ester), 2.60 (8H, m, SCH2), 2.28 – 1.92 (20H, m, 

SCH3 and CH2-β). 
13C NMR (CDCl3): δ 174.3 (C=Oester), 172.1 (C=Oamide), 

170.7 (C=Oamide), 75.5 (CCp-q), 71.8, 71.2, 70.1, 70.0 (), 52.8, 52.4, 51.8 (CHα and CH3-

ester), 31.3, 30.6 (SCH2, CH2-γ and CH2-β), 15.4 and 15.3 (SCH3). 

 

8.2.6 Preparation of ethylendiamine derivatives 

Fe[C5H4-CO-EDA-Fmoc]2 (29): To a stirred suspension of ferrocene 1,1’-dicarboxylic 

acid (2.6 mmol; 719 mg) in freshly distilled and degassed CH2Cl2 (50 mL) stoichiometric 

amount of TBTU (5.2 mmol; 1.67 g), and DIEA (2.5 mmol; 1.0 mL) were added. The 

resulting mixture was stirred at ambient temperature for 15 min (until everything 

dissolved). Reaction mixture was filtered to remove unreacted materials. The filtrate was 

cooled to 0°C. In parallel, another flask was charged with 

(9H-fluoren-9-yl)methyl-2-aminoethylcarbamate (2.0 eq., 5.2 mmol,  1.12 g) and 20 mL 

CH2Cl2 and DIEA (2.5 eq.,  1.0 mL) were added. After 5 min at room temperature, this 

mixture was transfered to the other flask via a stainless steel canula. Reaction mixture was 

subsequently stirred for 4 h at ambient temperature. Reaction mixture was then diluted 

with 100 mL CH2Cl2 and the organic layer was washed subsequently with 50 mL distilled 
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water, 50 mL saturated NaHCO3, 50 mL water, 50 mL 0.1 M HCl and 50 mL distilled 

water. The organic layer was then dried over MgSO4, filtered and rotary evaporated to 

yield an orange solid (m = 1.98 g). Yield: 95 %. C46H42FeN4O6 = 802.69 g.mol-1. 

Elemental analysis calc. for C46H42FeN4O6: C, 68.83; H, 5.27; N, 6.98; found: C, 68.68; H, 

5.44; N, 6.73. MS (FAB): m/z = 803.3 [M + H]+. FT-IR (KBr): 3300 (br, νNH), 3050 –

 2850 (br, νOH and νCH-ar), 1699 (s, νC=O-ester), 1634 (s, νC=O-amide), 1540 (s, νNH-deformation). 
1H 

NMR (CDCl3); δ 7.73 (4H, d, JHH = 7.5 Hz, CHFmoc), 7.57 (4H, d, JHH = 7.7 Hz, CHFmoc); 

7.37 (4H, t, JHH = 7.4 Hz, CHFmoc), 7.24 (4H, t, JHH = 7.2 Hz, CHFmoc), 7.07 (1H, bs, NH), 

6.06 (1H, bs, NH), 4.52 (4H, bs, CHCp-ortho). 4.35 – 4.45 (8H, m, CHCp-meta and CH2-Fmoc), 

4.18 (2H, t, JHH = 4.2 Hz, CHar-Fmoc), 3.48 (8H, m, CH2-EDA). 
13C NMR (CDCl3): δ 143.8, 

141.2 (C=Oamide and C=OFmoc), Cq-Fmoc signal is missing, 127.7, 127.0, 127.8, 

125.1 (CHar-Fmoc), 71.1, 70.7 (CHCp), 66.7 (Cq-Cp), 47.2 (CHFmoc), 40.9, 40.6 (CH2-EDA). 

 

Fe[C5H4-CO-EDA-Boc]2 (30): the Boc derivative was obtained via a similar procedure, 

using the commercial Boc-EDA-NH2 (1.0 g; 5.2 mmol) as starting material. Yield: Quant. 

C26H38FeN4O6 = 558.45 g.mol-1. MS (FAB): m/z = 557 [M]+. 1H NMR (CDCl3); δ 

7.32 (2H, bs, NH), 5.90 (2H, bs, NH), 4.52 (4H, m, CHCp-ortho), 4.34 (4H, m, CHCp-meta), 

3.65 – 3.47 (8H, m, CH2-EDA), 1.41 (18H, s, CH3-tBu). 
13C NMR (CDCl3): δ 

170.8 (C=Oamide), 156.8 (C=OBoc), 79.4 (Cq-tBu), 71.0, 70.7 (CHCp), 40.7 (CHq-Boc), 34.0, 

34.9 (CH2-EDA), 28.4 (CH3-tBu). 

 

Fe[C5H4-CO-EDA-H]2 (31): The protecting groups were removed using standard 

procedure for Fmoc or Boc cleavage to yield an air sensitive red solid. Yield: 74 %. 

C16H22FeN4O2 = 358.11 g.mol-1. MS (EI): m/z = 358.2 [M]+. 1H NMR (CD3OD): δ 

4.79 (4H, t, JHH = 1.71 Hz, CHCp-ortho), 4.47 (4H, t, JHH = 1.74 Hz, CHCp-meta), 3.54 (4H, t, 

JHH = 5.8 Hz, CH2-EDA), 3.08 (4H, dt, JHH = 0.5, 5.88 Hz, CH2-EDA), NH2 signals are 

obscured by H-D exchange with water. 13C NMR (CD3OD): δ 172.9 (C=Oamide), 

78.8 (Cq-Cp), 73.2, 71.5 (CHCp), 41.5, 40.0 (CH2-EDA). 

 

8.2.7 Deprotection of sulfur protective groups 

Deprotection of the Trityl group 

In a 100 mL round-bottomed flask, either Fc-Cys(Trt)-OMe (27a) or 

Fe[C5H4-CO-Cys(Trt)-OMe]2 (27c) (1.0 mmol) were dissolved in TFA (20 mL), an excess 
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of phenol (2.2 g) and TIS (1.0 mL) were added. The reaction mixture was subsequently 

stirred at ambient temperature, under an inert atmosphere, for 30 min. Reaction mixture 

was then by rotary evaporation and the residue chromatographed on silica gel using 

CH2Cl2 / MeOH (99:1) as eluant. In both cases an orange solid was obtained. 

 

Fc-Cys(SH)-OMe (33a): Yield: 68 %. C15H17FeNO3S = 347.21 g.mol-1. Elemental analysis 

calc. for C15H17FeNO3S: C, 51.89; H, 4.94; N, 4.03, found: C, 51.55; H, 4.95; N, 3.94. 

MS (EI): m/z = 347 [M]+. UV/Vis (CH2Cl2): 443.5 (226). E1/2 = 199 mV (vs. Fc/Fc+). FT-

IR (KBr): 3299 (bs, νNH), 3092, 2950 (bs, νOH and νCH-ar), 1745 (s, νC=O-ester), 1635 (s, νC=O-

amide), 1531 (s, νNH-deformation). 
1H NMR (CDCl3): δ SH signal are missing, 6.58 (1H, d, 

JHH = 7.2 Hz, NH), 4.76 (1H, dt, JHH = 4.1, 7.42 Hz, CHα), 4.77 – 4.70 (2H, m, CHCp-ortho), 

4.39 (2H, m, CHCp-meta), 4.26 (5H, s, CHCp-unsub), 3.82 (3H, s, CH3-ester), 3.19 – 3.02 (2H, m, 

CH2-β). 
13C NMR (CDCl3): δ 171.4 (C=Oester), C=Oamide and Cq-Cp signals are missing, 

71.0, 70.1, 68.7, 68.5 (CHCp), 53.0, 51.9 (CHα and CH3-ester), 41.3 (CH2-β). 

 

Fe[Cys(SH)-OMe]2 (33b): Yield: 56 %. C20H24FeN2O6S2 = 508.39 g.mol-1. Elemental 

analysis calc. for C20H24FeN2O6S2: C, 47.25; H, 4.76; N, 5.51, found: C, 46.25; H, 4.86; N, 

5.97. MS (EI): m/z = 509 [M + H]+. UV/Vis (CH2Cl2): 442.1 (249). E1/2 = 398 mV (vs. 

Fc/Fc+). FT-IR (KBr): 3294 (bs, νNH), 3080, 2962, 2863 (bs, νOH and νCH-ar), 1752 (s, 

νC=O-ester), 1654, 1628 (s, νC=O-amide), 1542 (s, νNH-deformation). 
1H NMR (CDCl3): δ SH 

signals are obscured by solvent exchange, 7.55 (2H, d, JHH = 8.5 Hz, NH), 5.14 – 5.06 (2H, 

m, CHα), 4.88 (2H, m, CHCp-ortho), 4.79 (2H, m, CHCp-ortho), 4.55 (2H, m, CHCp-meta), 

4.42 (2H, m, CHCp-meta), 3.84 (6H, s, CH3-ester), 3.05 – 2.92 (4H, m, CH2-β). 
13C NMR 

(CDCl3): δ 171.4 (C=Oester), C=Oamide is missing, Cq-Cp is missing, 71.0, 70.1, 68.7, 

68.5 (CHCp), 53.0 and 51.9 (CHα and CH3-ester), 41.3 (CH2-β). 

 

Substitution of the tertiobutyl with NbSCl or NpySCl 

Boc-Cys(NbS)-Cys(NbS)-OMe (17a): Boc-Cys(tBu)-Cys(tBu)-OMe (17) (1.00 g, 

2.22 mmol) was dissolved in acetic acid (40.0 mL) and a stoichiometric amount of 

2-nitrophenylsulfenyl chloride (0.84 g 4.44 mmol) was added. The mixture was stirred for 

2 h at ambient temperature, followed by filtration to remove a yellow solid. The solvent 

were removed at vacuum and the residue was subsequently dissolved in CH2Cl2 (70 mL). 

The organic layer was washed 2 times with distilled water (30.0 mL) and dried over 

MgSO4. Evaporation of the solvent by rotary evaporation yield the crude Boc-Cys(NbS)-
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Cys(NbS)-OMe as a yellow oilish residue. The product was purified by column 

chromatography with EtOAc / Hexane (1:1) (Rf = 0.3) as eluant. Yield: 34 %. 

C24H28N4O9S4 = 644.07 g.mol-1. Elemental analysis calc. for C24H28N4O9S4: C, 44.71, H, 

4.38, N, 8.69, found: C, 45.26, H, 4.60, N, 8.30. MS (FAB): m/z = 645 [M + H]+. 1H NMR 

(CDCl3): δ 8.22 – 8.30 (4H, m, CHar-NbS), 7.72  (2H, tdd, JHH = 1.3, 3.1, 7.7 Hz, CHar-NbS), 

7.38 (2H, tt, JHH = 1.3, 7.7 Hz, CHar-NbS), 4.82 (1H, m, CHα), 4.43 (1H, m, CHα), 3.76 (3H, 

s, CH3-ester), 3.38 – 3.16 (4H, m, CH2-β), 1.48 (9H, s, CH3-tBu). 
13C NMR (CDCl3): δ 

169.8 (C=Oester), 169.8 (C=Oamide), 145.6 (C=Oamide), 136.7, 136.7, 134.3, 134.3 (Cq-ar-NbS), 

127.19, 127.16, 126.54, 126.47, 126.26 (CHar-NbS), Cq-Boc signal is missing, 52.9, 

52.2 (CHα), 39.7(CH2-β), Cq-tBu is missing, 28.3 (CH3-tBu). 

 

Boc-Cys(Npys)-Cys(Npys)-OMe (17b): Boc-Cys(tBu)-Cys(tBu)-OMe (17) (457 mg, 

1.0 mmol) was dissolved in glacial acetic acid (30.0 mL) and a stoichiometric amount of 3-

nitro-2-pyridylsulfenyl chloride (382 mg, 2.0 mmol) was added. The mixture was stirred 

for 2 h at ambient temperature. The disappearance of starting material was observed by 

TLC using EtOAc / Hexane (1:2) as eluant. The solvent was removed under reduced 

pressure and the residue was subsequently dissolved in CH2Cl2 (100 mL). The organic 

layer was washed 2 times with distilled water (50.0 mL), dried over MgSO4. After 

filtration, the solvent was evaporated to yield the crude Boc-Cys(Npys)-Cys(Npys)-OMe 

as a yellow oil. The product was purified by column chromatography using 

EtOAc / Hexane (1:1) (Rf = 0.2) as eluant. Yield: 16 %. C22H26N6O9S4 = 646.06 g.mol-1. 

Elemental analysis calc. for C22H26N6O9S4: C, 40.90; H, 4.06; N, 13.01; found: C, 42.34; 

H, 4.61; N, 12.21. MS (FAB): m/z = 647 [M + H]+. 1H NMR (CDCl3): δ 9.07 – 8.92 (2H, 

m, CHar-NpyS), 8.51 (2H, m, CHar-NpyS), 8.14 (1H, d, JHH = 6.1 Hz, NH), 7.43 – 7.36 (2H, m, 

CHar-NpyS), 7.17 (1H, d, JHH = 4.3 Hz, NH), 4.91 (1H, m, CHα), 3.71 (1H, bs, CHα), 

3.71 (3H, s, CH3-ester), 3.65-2.97 (4H, m, CH2-β), 1.47 (9H, s, CH3-tBu). 
13C NMR (CDCl3): 

δ 170.3 (C=Oester), 170.2 (C=Oamide), 157.0 (C=Oamide), 143.1, 142.8 (Cq-ar), 134.4, 134.0, 

121.9 (CHar), 80.9 (Cq-Boc), 52.9, 52.4 (CHα and CH3-Boc), 43.0, 40.2 (CH2-β), 

28.6 (CH3-Boc). 

 

Fc-Cys(Npys)-Cys(Npys)-OMe (32c): Fc-Cys(tBu)-Cys(tBu)-OMe (28c) (844 mg, 

1.50 mmol) was dissolved in glacial acetic acid (40.0 mL) and 3-nitro-2-pyridylsulfenyl 

chloride (572 mg, 3.0 mmol) was added. The mixture was stirred for 2 h, until the 

disappearance of starting material spot was observed on TLC, using EtOAc / Hexane (1:1) 
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as eluant. Evaporation of the solvent under reduced pressure yield the crude product as an 

orange solid. The product was purified by column chromatography with EtOAc / Hexane 

(1:3); Rf = 0.3. Yield: 47 %. C28H26FeN6O8S4 =758.64 g.mol-1. Elemental analysis calc. for 

C28H26FeN6O8S4: C, 44.33; H, 3.45; N, 11.09; found: C, 44.75; H, 3.90; N, 10.50. MS 

(FAB): m/z = 758 [M]+. MS (MALDI): m/z = 758 [M]+. FT-IR (KBr): 3408 (s, νNH), 

3078 – 2944 (br, νOH and νCH-ar), 1744 (s, νC=O-ester), 1640 (s, νC=O-amide), 1582 (s, 

νNH-deformation), 1514 (s, νΝ=Ο), 1340 (s, νΝ=Ο). 
1H NMR (CDCl3): δ 8.40 – 7.40 (4H, m, 

CHar-NpyS), 7.43 - 7.16 (4H, m, NH and CHar-NpyS), 4.93 (2H, m, CHα), 4.74 (1H, bs, 

CHCp-ortho), 4.68 (1H, bs, CHcp-ortho), 4.36 (2H, bs, CHCp-meta), 4.26 (5H, s, CHCp-unsub), 

3.74 (3H, s, CH3-ester), 3.47 – 3.20 (4H, m, CH2-β). 
13C NMR (CDCl3): δ 170.1 (C=Oester), 

170.0 (C=Oamide), 145.9 (C=Oamide), 136.9 (Cq-ar), one Cq-ar signal is missing, 127.4, 126.6, 

126.4 (CHar-NpyS), 71.9, 71.1, 70.7, 69.5 (CHCp), 53.2, 52.4 (CHα), 39.9 (CH2-β). 

 

Fe[Cys(NbS)-Cys(NbS)OMe]2 (32d): Yield: 34 %. C50H46FeN8O16S8 = 1327.31 g.mol-1. 

Elemental analysis calc. for C50H46FeN8O16S8: C, 45.24; H, 3.49; N, 8.44; found: C, 44.97; 

H, 3.11; N, 8.76. MS (FAB): m/z = 1327 [M]+, 1173 [M – NbS]+. 1018 [M – 2NbS]+. 

775 [M – 3NbS]+. 1H NMR (CDCl3): δ 8.30 (2H, d, JHH = 8.2 Hz, NH), 8.20 (4H, d, 

JHH = 8.9 Hz, CHar-NbS), 8.05 (2H, d, JHH = 7.6 Hz, NH), 7.98 (4H, d, JHH = 10.6 Hz, 

CHar-NbS), 7.68 (4H, d, JHH = 8.7 Hz, CHar-NbS), 8.56 (4H, d, JHH = 8.7 Hz, CHar-NbS), 5.05 –

 4.93 (2H, m, CHα), 4.84 – 4.76 (2H, m, CHα), 4.74 (2H, m, CHCp-ortho), 4.55 (2H, m, 

CHCp-ortho), 4.41 (2H, m, CHCp-meta), 4.32 (2H, m, CHCp-meta), 3.82 (6H, s, CH3-ester), 3.36 –

 3.04 (8H, m, CH2-β). 
13C NMR (CDCl3): δ 172.9 (C=Oester), 170.8 (C=Oamide), 

170.0 (C=Oamide), 146.7, 146.3, 145.4, 145.0 (Cq-ar-NbS), 126.4, 126.2, 124.4, 

124.1 (CHar-NbS), 74.8 (Cq-Cp), 72.2, 71.9, 70.5, 69.9 (CHCp), 53.2, 52.9, 52.5 (CHα), 39.5, 

38.9 (CH2-β), 28.6 (CH3-tBu). 

 

Removal of NbS or Npys 

Boc-Cys(H)-Cys(H)-OMe (17c): To a stirred solution of Boc-Cys(NbS)-Cys(NbS)-OMe 

(17a) (0.40 g, 0.62 mmol) in acetone (40.0 mL) and distilled water (10 mL), n-

tributylphosphine (0.25 g, 308 µL, 1.24 mmol) was added. The suspension was stirred for 

4 h at ambient temperature, followed by TLC (EtOAc / Hexane (1:2)). Solvent was rotary 

evaporated to yield a yellowish solid. The product was purified by column chromatography 

with EtOAc / Hexane (1:2); Rf = 0.2. Yield: 48 %. C12H22N2O5S2 = 338.44 g.mol-1. 

Elemental analysis calc. for C12H22N2O5S2: C, 42.59; H, 6.55; N, 8.28; found: C, 42.56; H, 
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5.94; N, 7.74. 1H NMR (CDCl3): δ 7.71 (1H, m, NH), 7.28 (1H, m, NH), 4.99 – 4.53 (2H, 

m, CHα), 3.78 (3H, s, CH3-ester), 3.83 – 3.75 (1H, m, CH2-β), 3.26 – 2.97 (3H, m, CH2-β), 

1.45 (9H, s, CH3-tBu). 
13C NMR (CDCl3): δ 171.5 (C=Oester), 170.9 (C=Oamide), 

80.5 (Cq-Boc), 53.0, 52.3, 51.9 (CHα and CH3-ester), 40.5 (CH2-β), 28.6 (CH3-tBu). 

 

Fc-Cys(H)-Cys(H)-OMe (33c): To a stirred solution of Fc-Cys(Npys)-Cys(Npys)-OMe 

(250 mg, 0.33 mmol) in acetone (40.0 mL) and distilled water (10 mL), 

n-tributylphosphine (167 µL, 0.66 mmol) was added. The suspension was stirred for 3 h at 

ambient temperature. The disappearance of starting material was observed by TLC using 

EtOAc / Hexane (1:1) as eluant. After evaporation of the solvent the product was purified 

by flash chromatography, using EtOAc / Hexane (1:1) (Rf = 0.1) as eluting system. Yield: 

81 %. C18H22FeN2O4S2 = 450.35 g.mol-1. Elemental analysis calc. for C18H22FeN2O4S2: C, 

48.00, H, 4.93, N, 6.22, found: C, 47.34, H, 5.01, N, 6.17. MS (FAB): m/z = 451 [M + H]+. 

UV/Vis (CH2Cl2): 443.1 (266). E1/2 = 196 mV (vs. Fc/Fc+). FT-IR (KBr): 3284 (bs, νNH), 

3082, 2946 (s, νOH and νCH-ar), 1747 (s, νC=O-ester), 1654, 1624 (s, νC=O-amide), 1539 (s, 

νNH-deformation). 
1H NMR (CDCl3): δ 7.20 (1H, s, NH), 6.64 (1H, d, JHH = 7.3 Hz, NH), 

4.91 – 4.78 (2H, m, CHα), 4.74 (2H, m, CHCp-ortho), 4.41 (2H, t, JHH = 2.0 Hz, CHCp-meta), 

4.25 (5H, s, CHCp-unsub), 3.81 (3H, s, CH3-ester), 3.24 (1H, m, CH2-β), 3.06 (2H, m, CH2-β), 

2.83 (1H, m, CH2-β). 
13C NMR (CDCl3): δ 171.2 (C=Oester), 170.3 (C=Oamide), 

170.2 (C=Oamide), 75.0 (Cq-Cp), 71.2, 70.1, 68.8 (CHCp), 54.1, 53.2 (CHα and CH3-ester), 

27.0, 26.8 (CH2-β). 

 

Fe[C5H4-CO-Cys(H)-Cys(H)-OMe]2 (33d): To a stirred solution of Fe[C5H4-CO-

Cys(NbS)-Cys(NbS)-OMe]2 (1) (320 mg, 0.24 mmol) in 40.0 mL acetone and 10 mL 

distilled water n-tributylphosphin (250 µL, 1.00 mmol) was added. The resulting 

suspension was stirred for 4 h at ambient temperature. The reaction was followed by TLC 

using EtOAc / Hexane (1:1). After rotary evaporation of the solvent, the residue was 

flash-chromatographed with EtOAc / Hexane (1:1) (Rf = 0.1). Yield: 30 %. 

C26H34FeN4O8S4 = 714.68 g.mol-1. MS (FAB): m/z = 714 [M]+. UV/Vis (CH2Cl2): 

440.8 (282). E1/2 = 398 mV (vs. Fc/Fc+). FT-IR (KBr): 3293 (bs, νNH), 2955, 2945, 2870 (s, 

νOH and νCH-ar), 1745 (s, νC=O-ester), 1671, 1626 (s, νC=O-amide), 1542 (s, νNH-deformation). 
1H 

NMR (CDCl3): δ 8.10 (2H, d, JHH = 8.0 Hz, NH), 7.28 (2H, m, NH), 4.98 – 4.78 (4H, m, 

CHCp-ortho and CHα), 4.78 – 4.58 (4H, m, CHCp-ortho and CHα), 4.53 (2H, m, CHCp-meta), 
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4.38 (2H, m, CHCp-meta), 3.84 (6H, s, CH3-ester), 3.11 (2H, dd, JHH = 4.4, 8.8 Hz, CH2-β), 

2.89 (2H, m, CH2-β). 
13C NMR (CDCl3): δ 170.5 (C=Oester), 167.9, 166.5 (C=Oamide), 71.2, 

70.7, 70.5, 68.9 (CHCp), 54.7, 53.1, 52.9 (CHα), 44.5, 42.9 (CH2-β), 31.3, 30.9 (CH3-ether). 

 

8.2.8 Preparation of disulfide bridged derivatives 

To a stirred suspension of ferrocene di-carboxylic acid (1) (2.0 mmol; 548 mg) in freshly 

dried and degassed benzene (100 mL) PCl5 was added and the reaction mixture was stirred 

at ambient temperature for 90 min. The reaction mixture was then filtered and the solvent 

was rotary evaporated. The residue was subsequently dissolved in a large volume of 

dichloromethane (800 mL) and [H-Cys-OMe]2 (12) was added in small portion. The 

resulting mixture was stirred overnight at ambient temperature. The volume of solvent was 

subsequently reduced to 100 mL and the organic layer was washed consecutively with 

50 mL distilled water, 50 mL HCl (0.1 M), 50 mL distilled water, 50 mL saturated 

NaHCO3 and 50 mL distilled water. The organic phase was dried over MgSO4, filtered and 

the solvent removed at vacuum to yield orange solids. 

 

Fc-Cys(OMe)-S-S-Cys(OMe)-Fc (34a): Yield: 49 %. C30H32Fe2N2O6S2 = 692.4 g.mol-1. 

Elemental analysis calc. for C30H32Fe2N2O6S2: C, 52.04; H, 4.66; N, 4.05, found: C, 51.49; 

H, 4.74; N, 3.96. MS (FAB): m/z = 691.9 [M]+, 347.1 [M]2+. UV/Vis (CH2Cl2): 444 (211). 

E1/2 = 238 mV (vs. Fc/Fc+). FT-IR (KBr): 3298 (s, νNH), 2951 (s, νCH-ar), 1744, 1730 (s, 

νC=O-ester), 1629 (s, νC=O-amide), 1532 (s, νNH-deformation). 
1H NMR (CDCl3): δ 6.63 (2H, d, 

JHH = 6.7 Hz, NH), 5.02 (2H, m, CHα), 4.76 (1H, m, CHCp-ortho), 4.72 (1H, s, CHCp-ortho), 

4.37 (2H, s, CHCp-meta), 4.26 (5H, s, CHCp-unsub), 3.80 (6H, s, CH3-ester), 3.32 (4H, m, CH2-β). 
13C NMR (CDCl3): δ 171.4 (C=Oester), C=Oamide and Cq-Cp are missing, 71.0, 69.7, 

68.5 (CHCp), 70.1 (CHCp-unsub), 53.1, 51.9 (CHα and CH3-ester), 41.3 (CH2-β). 

 

Fe[Cys(OMe)-S-S-Cys(OMe)] (34b): Yield: 72 %. C20H22FeN2O6S2 = 506.37 g.mol-1. 

Elemental analysis calc. for C20H22FeN2O6S2: C, 47.44; H, 4.38; N, 5.53, found: C, 47.54; 

H, 5.06; N, 5.08. MS (FAB): m/z = 506 [M]+. UV/Vis (CH2Cl2): 446 (259). E1/2 = 378 mV 

(vs. Fc/Fc+). FT-IR (KBr): 3390, 3265 (s, νNH), 2951 (s, νCH-ar), 1749 (s, νC=O-ester), 1663, 

1644 (s, νC=O-amide), 1543 (s, νNH-deformation). 
1H NMR (CDCl3): δ 7.34 (2H, d, JHH = 7.0 Hz, 

NH), 5.12 (2H, dt, JHH = 4.7, 7.1 Hz, CHα), 4.84 (2H, m, CHCp-ortho), 4.60 – 4.54 (4H, m, 

CHCp-ortho and CHCp-meta), 4.44 (2H, m, CHCp-meta), 3.80 (6H, s, CH3-ester), 3.49 – 3.34 (4H, 
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dd, JHH = 4.0, 10.1 Hz, CH2-β). 
13C NMR (CD3OD): 175.8 (C=Oester), 174.9 (C=Oamide), 

80.9 (Cq-Cp), 78.5, 74.7, 73.9, 70.8 (CHCp), 55.0, 54.2 (CHα and CH3-ester), 48.3 (CH2-β). 

 

8.2.9 Complexation with Iron carbonyl 

[Fc-Cys-OMe]2(Fe2(CO)6) (35): To a stirred suspension of Fc-Cys(H)-OMe (33a) 

(208 mg, 0.6 mmol) in distilled MeOH (2.0 mL), a solution of Fe3(CO)12 (100.7 mg, 

0.2 mmol) in distilled CHCl3 (2.0 mL) was added dropwise. The mixture was refluxed for 

90 min at 90°C, which resulted in formation of a dark-red solution. The solvents were 

removed at reduced pressure and the residue was triturated in cold MeOH and 

subsequently filtered to yield a dark red solid. Yield: 90 %. 

C36H32Fe4N2O12S2 = 972.17 g.mol-1. Elemental analysis calc. for C36H34Fe4N2O12S2: C, 

44.48; H, 3.32; N, 2.88, found: C, 43.39; H, 3.62; N, 2.88. MS (FAB): m/z = 973 [M + H]+, 

804 [M – 6*CO]+. FT-IR (KBr): 3401 (bs, νNH), 3124 – 2933 (br, νOH and νCH-ar), 2073, 

2031, 1992 (s, νFe-C=O), 1748 (s, νC=O-ester), 1636 (s, νC=O-amide), 1526 (s, νNH-deformation). 
1H 

NMR (CDCl3): δ 6.63 (2H, d, JHH = 7.9 Hz, NH), 5.03 (2H, m, CHα), 4.78 (1H, m, 

CHCp-ortho), 4.77 (1H, m, CHCp-ortho), 4.38 (2H, m, CHCp-meta), 4.25 (10H, s, CHCp-unsub), 

3.81 (6H, s, CH3-ester), 3.45 – 3.28 (4H, m, CH2-β). 
13C NMR (CDCl3): δ 208.8, 208.7, 

208.0, 207.9 (C=OFe-CO), 170.8, 170.7 (C=Oester), 170.5, 170.3 (C=Oamide), 75.0, 

74.8 (Cq-Cp), 71.5, 71.4, 71.2, 71.1, 71.0, 70.8, 70.7, 70.5, 70.4, 68.9, 68.7, 68.5 (CHCp), 

53.7, 53.6, 53.5, 53.3, 53.1 (CH3-ester and CHα), 41.3, 40.9 (CH2-β). 

 

Fe[C5H4-CO-Cys-OMe]2(Fe2(CO)6) (36): Was prepared as described above starting from 

Fe[Cys(SH)-OMe]2 (33b). Chromatographed on silica gel with EtOAc / Hexane (2:1), 

Rf = 0.2. Yield: 50 %. C26H22Fe3N2O12S2 = 786.12 g.mol-1. Elemental analysis calc. for 

C26H22Fe3N2O12S2: C, 40.39; H, 3.00; N, 3.62, found: C, 40.98; H, 3.53; N, 3.58. 

MS (FAB): m/z = 786.9 [M + H]+, 617.9 [M – 6×CO]+. UV/Vis (CH2Cl2): 336 (9881), 

450 (1638). E1/2 = 418 mV (vs. Fc/Fc+). FT-IR (KBr): 3327 (s, νNH), 2930 (bs, νCH-ar), 

2074, 2034, 1993, 1976, 1961 (s, νFe-C=O), 1753, 1729 (s, νC=O-ester), 1649 (bs, νC=O-amide), 

1543, 1512, 1493 (s, νNH-deformation).
1H NMR (CDCl3): δ 7.04 (1H, d, JHH = 6.9 Hz, NH), 

6.46 (1H, d, JHH = 7.2 Hz, NH), 5.07 (1H, m, CHα), 4.85 – 4.77 (3H, m, CHα and 

CHCp-ortho), 4.59 – 4.34 (6H, m, CHCp-ortho and CHCp-meta), 3.94 (3H, s, CH3-ester), 3.78 (3H, 

s, CH3-ester), 3.21 (1H, dd, JHH = 4.7, 13.7 Hz, CH2-β), 2.98 (1H, dd, JHH = 3.0, 13.7 Hz, 

CH2-β), 2.80 (1H, dd, JHH = 5.1, 13.3 Hz, CH2-β), 2.54 (1H, dd, JHH = 3.2 Hz, 
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JHH = 13.3 Hz, CH2-β). 
13C NMR (CDCl3): δ 207.7 (C=OFe-CO), 170.0, 169.8, 

169.6 (C=Oester and C=Oamide), 79.5 (Cq-Cp), 72.0, 71.9, 71.8, 71.5, 71.4, 69.7, 68.8 (CHCp), 

53.3, 53.0, 52.8 (CH3-ester and CHα), 41.3, 25.0 (CH2-β). 

 

Fc-Cys(FeCO3)-Cys(FeCO3)-OMe (37): To a stirred suspension of Fc-Cys(H)-Cys(H)-

OMe (33c) (250 mg, 0.56 mmol) in degassed MeOH (12.0 mL), Fe3(CO)12 (186 mg, 

0.37 mmol) in of CHCl3 (2.0 mL) was added dropwise via stainless steel canula. The 

mixture was refluxed for 90 min at 90°C, which resulted in formation of a deep-red 

solution. The solvent were removed under reduced pressure giving the crude product as a 

dark red solid. The complex was isolated by column chromatography using 

EtOAc / Hexane (9:1) Rf = 0.3 as eluant. Yield: 40 %. C42H46Fe4N4O14S4 = 1181.93 g.mol-

1. Elemental analysis calc. for C42H46Fe4N4O14S4: C, 42.66; H, 3.92; N, 4.75, found: C, 

42.90; H, 3.82; N, 4.37. MS (MALDI): m/z = 727 [M – H]+. UV/Vis (CH2Cl2): 333 (6111), 

450 (1068). E1/2 = 210 mV (vs. Fc/Fc+). FT-IR (KBr): 3284 (bs, νNH), 2926 (bs, νCH-ar), 

2074, 2037, 1994 (s, νFe-C=O), 1745 (s, νC=O-ester), 1644 (bs, νC=O-amide), 1512 (s, 

νNH-deformation). 
1H NMR (CDCl3): δ 7.71 (1H, dd, JHH = 3.3, 5.7 Hz, NH), 7.53 (1H, dd, 

JHH = 3.3, 5.8 Hz, NH), 4.80 – 4.69 (2H, m, CHα), 4.45 – 4.10 (12H, m, CHCp, CH3-ester), 

3.85 – 3.74 (4H, m, CH2-β). 
13C NMR (CDCl3): δ 208.1, 208.0, 207.9 (C=OFe-CO), 

171.4 (C=Oester), 170.0 (C=Oamide), second C=Oamide signal is missing, 74.7 (Cq-Cp), 70.2, 

70.1, 70.0 (CHCp), 53.2 (CH3-ester), 32.0 (CHα), 29.9 (CH2-β). 

 

 

8.3 Syntheses and Characterization of Oligoamides 

 

NMR signals were attributed on the basis of literature review and chemical best guess 

and are given only for the monomers. The acid chloride are air sensitive and they were 

produced in situ and used without further purification they are considered as reactionnal 

intermediate and therefore their fully characterization is not presented here. 
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8.3.1 Synthesis of the monomers 

The monomer quinoline with isobutoxy side chain was synthesized as it is described in ref 

[183] However some modifications in work up were performed in order to ease the 

purification and therefore to upscale the synthesis 

 

3-(tert-butylthio)propan-1-ol (B1) is not commercially available and was therefore 

prepared according to the modified literature protocol described in ref. [190] 2-methyl-2-

propanthiol (5.61 g; 50 mmol) was dissolved in methanol (50 mL), 3-chloro-propanol 

(4.18 mL; 50 mmol) was added, and the solution was left at room temperature for 1 h. The 

reaction mixture was then refluxed for 1 h. Precipitated sodium chloride was filtered off 

and washed with methanol. The solvent was removed from the filtrate at vacuum. Diethyl 

ether (50 mL) was added to the residue, and a small amount of sodium chloride was 

filtered off. The product was isolated by distillation under vacuum; bp 48 –

 50°C / 0.1 mmHg. Yield: 73 %. C7H16OS = 148.09 g.mol-1. MS (EI): m/z = 149 [M + H]+, 

57 [tBu]+. 1H NMR (CDCl3): δ 3.73 (2H, m, CH2-α), 2.61 (2H, t, JHH = 7.1 Hz, CH2-γ), 

2.05 (1H, t, JHH = 5.2 Hz, OH), 1.85 (2H, m, CH2-β), 1.28 (9H, s, CH3-tBu). 

 

Formation of the maleate 

dimethyl 2-(2-nitrophenylamino)maleate (B2): 2-nitroaniline (13.8 g; 100 mmol) was 

dissolved in methanol (150 mL), an equimolar amount of dimethylbut-2-ynedioate 

(100 mmol; 14.2 g; 12.25 mL) was added and the resulting mixture was heated at reflux for 

24 h. The solution was then cooled and the volume of solvent was reduced to 

approximately 70 mL by rotary evaporation. The flask was then placed at -18°C for 

precipitation. The resulting yellow prisms were collected by filtration, and washed several 

times with cold methanol and dried at reduced pressure. Yield: 85 %. 

C12H12N2O6 = 280.23 g.mol-1. Elemental analysis calc. for C12H12N2O6: C, 51.43; H, 4.32; 

N, 10.00, found: C, 51.20; H, 4.39; N, 9.99. MS (FAB): m/z = 281 [M + H]+, 249 [M –

 OMe ]+. 1H NMR (CDCl3): δ 11.11 (1H, bs, NH), 8.14 (1H, dd, JHH = 1.4, 8.3 Hz, 

CHar-ortho), 7.46 (1H, t, JHH = 8.8Hz, CHar), 7.08 (1H, t, JHH = 8.4 Hz, CHar), 6.78 (1H, dd, 

JHH = 1.3, 8.4 Hz, CHar), 5.04 (1H, s, CHmaleate), 3.81 (3H, s, CH3-ester), 3.76 (3H, s, 

CH3-ester). 
13C NMR (CDCl3): δ 167.9, 164.3 (C=O), 143.4 (Car), 136.8 (Cmaleate), 134.1, 

126.1, 121.4, 120.3 (CHar), 102.9 (CHmaleate), 52.9, 51.7 (CH3-ester). 
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Intramolecular cyclisation 

Methyl 1,4-dihydro-8-nitro-4-oxoquinoline-2-carboxylate (B3): A mixture of 2-(2-

nitrophenylamino)maleate (B2) (17.8 g; 63 mmol) and polyphosphoric acid (PPA) (90 g) 

was placed in a 1 L round bottom flask equipped with a condenser and a mechanic stirrer. 

Reaction mixture was heated at 130°C for 4 hours. The solution was then cooled and 

quenched slowly by addition of an oversaturated solution of NaHCO3 at 0°C. The resulting 

precipitate was filtered through a fine sintered glass funnel and washed several times with 

distilled water. The brown solid was precipitated from cold MeOH and subsequently 

filtered to yield a yellow solid after evaporation of residual solvents. Yield: 65 %. 

C11H8N2O5 = 248.19 g.mol-1. Elemental analysis calc. for C11H8N2O5: C, 53.23; H, 3.25; 

N, 11.29; found: C, 52.71; H, 3.40; N, 11.21. MS (EI): m/z = 248 [M]+, 188 [M – NO2 ]
+, 

154 [C10H4NO]
+. 1H NMR (CDCl3): δ 11.80 (1H, bs, NH), 8.74 (2H, m, CHar-ortho), 

7.47 (1H, t, JHH = 8.8 Hz, CHar-para), 7.08 (1H, s, CHquinone), 4.09 (3H, s, CH3-ester). 
13C 

NMR (CDCl3): δ 170.2 (C=O), one carbonyl signal is missing, 146.9, 145.4 (Cq-ar), 143.2, 

139.1, 136.2, 130.8, (CHar), 121.4 (CHquinone), 62.1 (CH3-ester). 

 

Mitsunobu’s reaction [210] 

Methyl 4-isobutoxy-8-nitroquinoline-2-carboxylate (B4): In a flame-dried 250 mL round-

bottom-flask placed in an inert atmosphere, methyl 1,4-dihydro-8-nitro-4-oxoquinoline-2-

carboxylate (B3) (20.5 mmol; 5.08 g), freshly distilled 2-methyl propanol (1.1 eq.; 

22.5 mmol; 2.09 mL) and triphenylphosphine (1.05 eq.; 21.5 mmol; 5.64 g) were dissolved 

in 45 mL anhydrous THF. Flask was then hermetically closed and remains under 

protecting gas during the reaction time. Reaction mixture was then cooled to 0°C and 

diisopropyl azodicarboxylate was added. Resulting slurry was stirred at 0°C for 30 min and 

then at rt for an additional 4 h. Solvent was removed by rotary evaporation and residue was 

subsequently precipitated from cold Methanol. The yellow crystalline powder was 

collected by filtration. Yield: 83 %. C15H16N2O5 = 304.3 g.mol-1. Elemental analysis calc. 

for C15H16N2O5: C, 59.21; H, 5.30; N, 9.21; found: C, 58.79; H, 5.34; N, 9.14. MS (FAB): 

m/z = 305 [M]+, 249 [M – CH2CH(CH3)2]
+, 154 [C10H4NO]

+. 1H NMR (CDCl3): δ 

8.48 (1H, dd, JHH = 1.3, 6.7 Hz, CHar-ortho), 8.11 (1H, dd, JHH = 1.3, 6.0 Hz, CHar-para), 

7.67 (2H, m, CHar-quinone and CHar-meta), 4.09 (2H, d, JHH = 6.2 Hz, CH2-α), 4.02 (3H, s, 

CH3-ester), 2.25 (1H, m, CHβ), 1.14 (6H, d, JHH = 6.7 Hz, CH3-γ). 
13C NMR (CDCl3): δ 

165.7 (C=O), 162.7, 151.3, 140.0, 106.7 (Cq-ar), 126.2, 125.9, 125.0 (CHar), 

102.2 (CHquinone), 75.6 (CH2-α), 53.2 (CH3-ester), 28.1 (CHβ), 19.1 (CH3-γ). 
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Methyl 4-(3-(tert-butylthio)propoxy)-8-nitroquinoline-2-carboxylate (B5): was prepared 

via a similar protocol involving freshly distilled 3-(tert-butylthio)propan-1-ol (B1) instead 

of the 2-methylpropanol. Yield: 87 %. C18H22N2O5S = 378.44 g.mol-1. Elemental analysis 

calc. for C18H22N2O5S: C, 57.13; H, 5.86; N, 7.40; found: C, 57.11; H, 5.86; N, 7.36. 

MS (FAB): m/z = 379 [M]+, 249 [M –CH2CH2CH2SC(CH3)3]
+, 154 [C10H4NO]

+. 1H NMR 

(CDCl3): δ 8.48 (1H, d, JHH = 8.4 Hz, CHar-ortho), 8.11 (1H, d, JHH = 7.4 Hz, CHar-para), 

7.66 (2H, m, CHar-quinone and CHar-meta), 4.44 (2H, d, JHH = 6.1 Hz, CH2-α), 4.04 (3H, s, 

CH3-ester), 2.80 (1H, t, JHH = 7.0 Hz, CH2-γ), 2.26 (1H, q, JHH = 6.5 Hz, CH2-β), 1.34 (9H, s, 

CH3-tBu). 
13C NMR (CDCl3): δ 162.7 (C=O), 151.5, 123.4 (Cq-ar), 126.5, 126.2, 

125.3 (CHar), 102.5 (CHquinone), 68.4 (CH2-α), 53.2 (CH3-ester), 42.6 (Cq-tBu), 31.1 (CH3-tBu), 

29.3 (CH2−γ), 24.8 (CH2-β). 
13C NMR (CDCl3): δ 164.0 (C=O), 163.5, 162.7, 151.3, 

106.7 (Cq-ar), 127.0, 126.6, 126.2 (CHar), 100.3 (CHquinone), 77.2 (CH2-α), 68.8 (CH3-ester), 

30.9 (CH2-β), 28.9 (CH2-γ), 24.5 (CH3-tBu). 

 

Saponification of the Monomers 

4-isobutoxy-8-nitroquinoline-2-carboxylic acid (B6): In a 500 mL round bottomed flask 

equipped with a large magnetic stirrer, Methyl 4-isobutoxy-8-nitroquinoline-2-carboxylate 

(B4) (16.0 mmol; 4.85 g) and THF / MeOH (2/1) (200 mL) were mixed. KOH (2.5 eq., 

40 mmol; 2.24 g) was then added and resulting mixture was stirred overnight. Apparition 

of slurry indicates that the reaction was occurring. Reaction was then quenched by addition 

of acetic acid, and solvents were rotary evaporated. Residue was dissolved in 150 mL 

dichloromethane and organic layer was washed 3 times with 75 mL distilled water ans 

saturated NaCl. Combined aqueous layers were back extracted with dichloromethane 

(50 mL). Combined organic layers were then dried over MgSO4 and filtered. After 

evaporation, isobutoxy-8-nitroquinoline-2-carboxylic acid was obtained as an off-white 

solid. Yield: 99 %. C14H14N2O5 = 290.27 g.mol-1. MS (FAB): m/z = 291 [M]+, 235 [M –

 CH2CH(CH3)2]
+, 154 [C10H4NO]

+. 1H NMR (CDCl3): δ 8.54 (1H, dd, JHH = 1.4, 8.5 Hz, 

CHar-ortho), 8.22 (1H, dd, JHH = 1.4, 7.5 Hz, CHar-para), 7.74 (2H, m, CHar-quinone and CHar-

meta), 4.13 (2H, d, JHH = 6.5 Hz, CH2-α), 2.33 (1H, m, CHβ), 1.15 (6H, d, JHH = 6.7 Hz, CH3-

γ). 

 

4-(3-(tert-butylthio)propoxy)-8-nitroquinoline-2-carboxylic acid (B7): was prepared via a 

similar protocol starting from Methyl 4-(3-(tert-butylthio)propoxy)-8-nitroquinoline-2-
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carboxylate (B5). Yield: 99 %. C17H20N2O5S = 364.42 g.mol-1. MS (FAB): 

m/z = 365 [M + H]+, 307 [M – tBu]+, 154 [C10H4NO]
+. 1H NMR (CDCl3): δ 8.58 (1H, dd, 

JHH = 1.4, 8.5 Hz, CHar-ortho), 8.24 (1H, dd, JHH = 1.4, 7.5 Hz, CHar-para), 7.82 (1H, s, CHar-

quinone), 7.77 (1H, t, JHH = 8.5 Hz, CHar-meta), 4.49 (2H, t, JHH = 6.2 Hz, CH2-α), 2.80 (1H, t, 

JHH = 6.9 Hz, CH2-γ), 2.28 (1H, q, JHH = 6.3 Hz, CH2-β), 1.34 (9H, s, CH3-tBu). 

 

Carboxylic acid activation 

4-isobutoxy-8-nitroquinoline-2-carbonyl chloride (B8): 4-isobutoxy-8-nitroquinoline-2-

carboxylic acid (B6) (4.6 g, 16.0 mmol) and SOCl2 80 mL were introduced in a 250 mL 

round bottomed flask equipped with a magnetic stirring bar and a reflux condenser. The 

round bottomed flask was placed in an oil bath previously heated to 90°C. Reaction 

mixture was then stirred at 90°C for 20 min and subsequently cooled by addition of 

Toluene (80 mL). Solvents were azeotroped by rotary evaporation and residue was dried at 

reduced pressure to yield a yellowish solid. Yield: Quant. C14H13N2O4Cl= 308.72 g.mol-1. 
1H NMR (CDCl3): δ 8.53 (1H, d, JHH = 8.4 Hz, CHar-ortho), 8.17 (1H, d, JHH = 7.4 Hz, CHar-

para), 7.79 (1H, t, JHH = 7.8 Hz, CHar-meta), 7.57 (1H, s, CHar-quinone), 4.14 (2H, d, 

JHH = 6.4 Hz, CH2-α), 2.37 (1H, m, CHβ), 1.20 (6H, d, JHH = 6.6 Hz, CH3-γ). 

 

4-(3-(tert-butylthio)propoxy)-8-nitroquinoline-2-carbonyl chloride (B9): was prepared 

from 4-(3-(tert-butylthio)propoxy)-8-nitroquinoline-2-carboxylic acid (B7) as described 

previously. Yield: Quant. C17H19N2O4SCl = 382.86 g.mol-1. 1H NMR (CDCl3): δ 8.51 (1H, 

d, JHH = 8.5 Hz, CHar-ortho), 8.17 (1H, d, JHH = 7.4 Hz, CHar-para), 7.78 (1H, t, JHH = 8.0 Hz, 

CHar-meta), 7.60 (1H, s, CHar-quinone), 4.49 (2H, t, J = 6.1 Hz, CH2-α), 2.84 (1H, t, 

JHH = 6.9 Hz, CH2-γ), 2.32 (1H, q, JHH = 6.5 Hz, CH2-β), 1.38 (9H, s, CH3-tBu). 

 

Reduction of the monomers 

Methyl 8-amino-4-isobutoxyquinoline-2-carboxylate (B10): In a 250 mL round bottomed 

flask, Methyl 4-isobutoxy-8-nitroquinoline-2-carboxylate (B4) (4.48 g; 14.7 mmol) was 

dissolved in ethyl acetate (150 mL). A catalytic amount of Pd / C (10 %) catalyst (450 mg) 

was then added and the mixture was placed at a 4 bar atmosphere of hydrogen and stirred 

at ambient temperature for 4 h. Reaction mixture was then filtered through Celite and 

solvent was rotary evaporated to yield a flashy green solid. Yield: 98%. 

C15H18N2O3 = 274.32 g.mol-1. MS (FAB): m/z = 275 [M + H]+, 154 [C10H4NO]
+. 1H NMR 

(CDCl3): δ 7.5 (1H, dd, JHH = 1.3, 8.3 Hz, CHar-ortho), 7.48 (1H, s, CHar-quinone), 7.35 (1H, t, 
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JHH = 7.5 Hz, CHar-meta), 6.93 (1H, dd, JHH = 1.3, 7.5 Hz, CHar-para), 4.02 (3H, s, CH3-ester), 

4.00 (2H, d, JHH = 6.5 Hz, CH2-α), 2.32 – 2.20 (1H, sep, JHH = 6.7 Hz, CHβ), 1.12 (6H, d, 

JHH = 6.7 Hz, CH3-γ). 
13C NMR (CDCl3): δ 166.4 (C=O), 162.6, 145.8, 144.8, 122.9, 

107.0 (Cq-ar), 128.5, 110.7, 109.5 (CHar), 100.7 (CHquinone), 74.8 (CH2-α), 52.7 (CH3-ester), 

28.2 (CHβ), 19.2 (CH3-γ). 

 

Methyl 4-(3-(tert-butylthio)propoxy)-8-aminoquinoline-2-carboxylate (B11): was prepared 

with 4-(3-(tert-butylthio)propoxy)-8-nitroquinoline-2-carboxylic acid (B5) as starting 

material, the resulting dark green solid is not air stable and should be used within a day and 

manipulated under inert atmosphere. Yield: Quant. C18H24N2O3S = 348.46 g.mol-1. 

MS (FAB): m/z = 349 [M + H]+, 154 [C10H4NO]
+. 1H NMR (CDCl3): δ 7.60 – 7.50 (1H, 

m, CHar-ortho and CHar-quinone), 7.41 (1H, t, JHH = 8.2 Hz, CHar-meta), 6.99 (1H, dd, JHH = 1.0, 

6.5 Hz, CHar-para), 4.40 (2H, t, JHH = 6.0 Hz, CH2-α), 4.07 (3H, s, CH3-ester), 2.86 (1H, t, 

JHH = 7.1 Hz, CH2-γ), 2.26 (1H, q, JHH = 6.4 Hz, CH2-β), 1.38 (9H, s, CH3-tBu). 

 

8.3.2 Dimers 

Coupling to dimers, general procedure for coupling 

Methyl 8-(4-isobutoxy-8-nitroquinoline-2-carboxamido)-4-isobutoxyquinoline-2-

carboxylate (B12): In a 250 mL round bottomed flask methyl 8-amino-4-

isobutoxyquinoline-2-carboxylate (B10) (2.36 g; 8.6 mmol) and N,N-

Diisopropylethylamine (5.5 eq.; 47.3 mmol; 8.23 mL) were dissolved in 60 mL of freshly 

distilled dichloromethane. The flask was then cooled to 0°C and placed in an inert 

atmosphere. In a separate flask, 4-isobutoxy-8-nitroquinoline-2-carbonyl chloride (B8) 

(1.05 eq.; 9.03 mmol, 2.78 g) was dissolved in 40 mL of freshly distilled dichloromethane 

and placed in an argon atmosphere. Solution of 4-isobutoxy-8-nitroquinoline-2-carbonyl 

chloride was then added via a stainless steel canula to the solution of methyl 8-amino-4-

isobutoxyquinoline-2-carboxylate over a period of 30 min at 0°C. Resulting mixture was 

taken away from the ice bath and stirred at ambient temperature overnight. Reaction 

mixture was subsequently diluted with 40 mL dichloromethane and organic layer was 

washed successively with 50 mL distilled water, 50 mL saturated NaHCO3, 50 mL distilled 

water, 50 mL 0.1 M HCl, 50 mL distilled water. Organic layer was then dried over MgS04, 

filtered and rotary evaporated. Crude product was recrystallized from cold MeOH / CHCl3 

mixture to yield yellow needles. Yield: 76 %. C29H30N4O7 = 546.57 g.mol-1. Elemental 



Chapter 8 
 

154 

analysis calc. for C29H30N4O7: C, 63.73; H, 5.53; N, 10.25; found: C, 63.25; H, 5.65; N, 

10.11. MS (FAB): m/z = 546 [M]+, 301 [C16H17N2O4]
+, 154 [C10H4NO]

+. 1H NMR 

(CDCl3): δ 11.86 (1H, bs), 9.09 (1H, d, JHH = 6.8 Hz), 8.51 (1H, d, JHH = 8.3 Hz), 

8.18 (1H, d, JHH = 7.3 Hz), 8.00 (1H, d, JHH = 8.3 Hz), 7.94 (3H, m), 4.23 (3H, s), 

4.15 (2H, d, JHH = 6.2 Hz), 4.07 (2H, d, JHH = 6.3 Hz), 2.30 (2H, qu, JHH = 6.9 Hz), 

1.16 (12H, m). 13C NMR (CDCl3): δ 166.9, 163.2, 162.7, 162.5, 154.0, 148.3, 147.8, 

139.7, 139.3, 134.9, 127.8, 126.6, 125.3, 123.4, 122.3, 118.7, 116.7, 101.5, 100.2, 75.7, 

75.1, 53.6, 28.3, 28.2, 28.1, 19.2, 19.1. 

 

Methyl 4-(3-(tert-butylthio)propoxy)-8-(4-isobutoxy-8-nitroquinoline-2-carboxamido)-

quinoline-2-carboxylate (B13): was prepared the same way as described above using 

methyl 4-(3-(tert-butylthio)propoxy)-8-aminoquinoline-2-carboxylate (B11) and 4-

isobutoxy-8-nitroquinoline-2-carbonyl chloride (B8). Yield: 85 %. 

C32H36N4O7S = 620.72 g.mol-1. Elemental analysis calc. for C32H36N4O7S: C, 61.92; H, 

5.95; N, 9.03; found: C, 61.59; H, 6.06; N, 8.96. MS (FAB): m/z = 621 [M + H]+, 

375 [C19H23N2O4S]
+. 1H NMR (CDCl3): δ 11.88 (1H, bs), 9.11 (1H, dd, JHH = 1.2, 7.8 Hz), 

8.54 (1H, dd, JHH = 1.3, 8.4 Hz), 8.20 (1H, dd, JHH = 1.4, 7.4 Hz), 8.01 (1H, dd, JHH = 1.2, 

8.4 Hz), 7.99 (1H, s), 7.67 (3H, m), 4.41 (2H, t, JHH = 6.0 Hz), 4.23 (3H, s), 4.17 (2H, d, 

JHH = 6.5 Hz), 2.82 (2H, t, JHH = 7.1 Hz), 2.40 – 2.20 (3H, m), 1.35 (9H, s), 1.16 (6H, d, 

JHH = 6.8 Hz). 
13C NMR (CDCl3): δ 166.8, 166.7, 163.2, 162.4, 153.9, 148.3, 147.8, 139.7, 

139.3, 134.9, 127.9, 126.6, 126.5, 125.3, 123.4, 123.3, 122.1, 118.7, 116.5, 101.5, 100.2, 

75.7, 67.6, 53.6, 42.2, 31.0, 30.9, 29.3, 28.1, 24.8, 24.7, 19.2. 

 

Methyl 8-(4-(3-(tert-butylthio)propoxy)-8-nitroquinoline-2-carboxamido)-4-isobutoxy-

quinoline-2-carboxylate (B14): was prepared starting from Methyl 8-amino-4-

isobutoxyquinoline-2-carboxylate (B10) and 4-(3-(tert-butylthio)propoxy)-8-

nitroquinoline-2-carbonyl chloride (B9). Yield: 54 %. C32H36N4O7S = 620.72 g.mol-1. 

Elemental analysis calc. for C32H36N4O7S: C, 61.92; H, 5.95; N, 9.03; found: C, 62.03; H, 

5.89; N, 9.18. MS (FAB): m/z = 621 [M + H]+. 1H NMR (CDCl3): δ 11.86 (1H, bs), 

9.08 (1H, d, JHH = 7.6 Hz), 8.51 (1H, d, JHH = 8.2 Hz), 8.18 (1H, d, JHH = 7.1 Hz), 

7.98 (2H, m), 7.60 (3H, m), 4.50 (2H, t, JHH = 6.0 Hz), 4.21 (3H, s), 4.06 (2H, d, 

JHH = 6.4 Hz), 2.81 (2H, t, JHH = 7.0 Hz), 2.27 (3H, m), 1.34 (9H, s), 1.16 (6H, d, 

JHH = 6.6 Hz). 
13C NMR (CDCl3): δ 171.1, 166.9, 163.0, 162.8, 162.4, 154.0, 148.3, 147.9, 
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139.7, 139.4, 134.8, 127.8, 126.6, 125.4, 123.3, 122.3, 118.8, 116.7, 101.5, 100.3, 75.2, 

68.3, 53.6, 30.9, 29.1, 28.2, 24.7, 19.2. 

 

Saponification of a dimer nitro-ester 

8-(4-isobutoxy-8-nitroquinoline-2-carboxamido)-4-isobutoxyquinoline-2-carboxylic acid 

(B15): Methyl-8-(4-isobutoxy-8-nitroquinoline-2-carboxamido)-4-isobutoxyquinoline-2-

carboxylate (B12) (1.0 mmol; 546 mg) and of THF / MeOH (3 / 1) (30 mL) were 

introduced in a 100 mL round bottomed flask equipped with a large magnetic stirrer. KOH 

(2.5 eq., 2.5 mmol, 140 mg) was subsequently added to this mixture. Resulting slurry was 

stirred 3 h at 40°C. Reaction was quenched by addition of acetic acid, and solvents were 

rotary evaporated. Residue was then dissolved in 20 mL dichloromethane and the organic 

layer was washed with 15 mL distilled water and 15 mL of saturated NaCl. Combined 

aqueous layers were then back extracted with 10 mL dichloromethane. Combined organic 

layers were dried over MgSO4 and filtered. Solvents were removed by rotary evaporation 

to yield a yellowish solid. Yield: Quant. C28H28N4O7 = 532.54 g.mol-1. Elemental analysis 

calc. for C28H28N4O7: C, 63.15; H, 5.30; N, 10.52; found: C, 62.94; H, 5.43; N, 10.47. 

MS (FAB): m/z = 533.2 [M + H]+, 154 [C10H4NO]
+. 1H NMR (CDCl3): δ 11.67 (1H, bs), 

9.13 (1H, d, JHH = 7.6 Hz), 8.51 (1H, d, JHH = 8.1 Hz), 8.25 (1H, d, JHH = 7.4 Hz), 

8.05 (1H, d, JHH = 8.2 Hz), 7.91 (1H, s), 7.77 (1H, s), 7.67 (2H, t, JHH = 8.0 Hz), 4.16 (2H, 

d, JHH = 6.5 Hz), 4.11 (2H, d, JHH = 6.4 Hz), 2.35 – 2.25 (2H, m), 1.25 – 1.12 (12H, m). 
13C NMR (CDCl3): δ 164.9, 164.0, 163.7, 162.3, 153.5, 147.5, 146.9, 139.4, 138.7, 134.3, 

128.5, 127.3, 126.1, 125.8, 123.6, 123.1, 119.6, 117.3, 100.4, 100.2, 76.1, 75.8, 28.3, 19.4. 

 

Activation of a dimer carboxylic acid 

8-(4-isobutoxy-8-nitroquinoline-2-carboxamido)-4-isobutoxyquinoline-2-carbonyl chloride 

(B16): The 8-(4-isobutoxy-8-nitroquinoline-2-carboxamido)-4-isobutoxyquinoline-2-

carboxylic acid (B15) (532 mg; 1.0 mmol) was dissolved in SOCl2 (10 mL). The resulting 

solution was introduced in a 50 mL round bottomed flask equipped with a magnetic 

stirring bar and a reflux condenser. The round bottomed flask was placed in an oil bath 

previously heated to 90°C. Reaction mixture was stirred at 90°C under protecting gas for 

20 min and subsequently cooled by addition of 20 mL of dry Toluol. Solvents were 

azeotroped by rotary evaporation and residue was thoroughly dried under reduced pressure 

to yield the air-sensitive carbonyl chloride as a brownish oily residue. Yield: Quant. 

C28H27ClN4O6 = 550.16 g.mol-1. 1H NMR (CDCl3): δ 11.82 (1H, bs), 9.11 (1H, d, 
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JHH = 7.4 Hz), 8.53 (1H, d, JHH = 7.9 Hz), 8.16 (1H, d, JHH = 7.9 Hz), 8.02 (1H, d, 

JHH = 7.9 Hz), 7.96 (1H, s), 7.73 (1H, t, JHH = 8.1 Hz), 7.66 (1H, t, JHH = 7.9 Hz), 

7.51 (1H, s), 4.18 (2H, d, JHH = 6.4 Hz), 4.07 (2H, d, JHH = 6.5 Hz), 2.30 – 2.40 (2H, m), 

1.13 – 1.20 (12H, m). 

 

Reduction of dimers 

Methyl 8-(4-isobutoxy-8-aminoquinoline-2-carboxamido)-4-isobutoxyquinoline-2-

carboxylate (B17): In a 500 mL round bottomed flask, Methyl 8-(4-isobutoxy-8-

nitroquinoline-2-carboxamido)-4-isobutoxyquinoline-2-carboxylate (B12) (2.47 g; 

4.52 mmol) was dissolved in ethyl acetate (300 mL). A catalytic amount of Pd / C (10 %) 

catalyst (180 mg) was added to this mixture. Mixture was subsequently placed at a 4 bar 

atmosphere of hydrogen and resulting mixture was stirred at ambient temperature for 4 h. 

Reaction mixture was then filtered through Celite and solvent was rotary evaporated to 

yield a green solid. Yield: 99 %. C29H32N4O5 = 516.59 g.mol-1. Elemental analysis calc. for 

C29H32N4O5: C, 67.43; H, 6.24; N, 10.85; found: C, 67.25; H, 6.48; N, 10.11. MS (FAB): 

m/z = 517 [M]+. 1H NMR (CDCl3): δ 12.67 (1H, bs), 9.04 (1H, dd, JHH = 1.2, 7.7 Hz), 

7.94 (1H, dd, JHH = 1.3, 8.4 Hz), 7.75 (1H, s), 7.67 (1H, t, JHH = 8.2 Hz), 7.56 – 7.52 (2H, 

m), 7.37 (1H, t, JHH = 7.5 Hz), 6.99 (1H, dd, JHH = 1.2, 7.5 Hz), 5.51 (2H, bs), 4.15 –

 4.11 (8H, m), 2.35 – 2.21 (2H, m), 1.17 – 1.13 (12H, m). 13C NMR (CDCl3): δ 165.6, 

163.4, 163.3, 163.1, 148.5, 147.0, 144.9, 144.0, 139.8, 137.6, 135.4, 128.7, 128.3, 123.2, 

122.4, 117.4, 115.8, 111.1, 109.7, 104.9, 101.5, 98.4, 75.3, 75.2, 53.1, 28.4, 28.3, 19.5. 

 

Methyl 4-(3-(tert-butylthio)propoxy)-8-(4-isobutoxy-8-aminoquinoline-2-carboxamido) 

quinoline-2-carboxylate (B18): Was prepared the same way as described before using 

Methyl 4-(3-(tert-butylthio)propoxy)-8-(4-isobutoxy-8-nitroquinoline-2-carboxamido)-

quinoline-2-carboxylate (B13) as starting materials. However, 12 h stirring at ambient 

temperature were required to reach reaction completion. Yield: 99 %. 

C32H38N4O5S = 590.73 g.mol-1. Elemental analysis calc. for C32H38N4O5S: C, 65.06; H, 

6.48; N, 9.48; found: C, 64.26; H, 6.49; N, 10.22. MS (FAB): m/z = 591 [M]+. 1H NMR 

(CDCl3): δ 12.66 (1H, bs), 9.04 (1H, dd, JHH = 1.0, 7.6 Hz), 7.91 (1H, dd, JHH = 0.9, 

7.5 Hz), 7.74 (1H, s), 7.67 (1H, t, JHH = 8.1 Hz), 7.58 – 7.50 (2H, m), 7.36 (1H, t, 

JHH = 7.8 Hz), 6.99 (1H, dd, JHH = 0.8, 7.5 Hz), 4.39 (2H, t, JHH = 6.0 Hz), 4.11 – 4.06 (5H, 

m), 2.82 (2H, t, JHH = 7.0 Hz), 2.35 – 2.20 (3H, m), 1.35 (9H, s), 1.15 (6H, d, 

JHH = 6.7 Hz).  
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Methyl 8-(4-(3-(tert-butylthio)propoxy)-8-aminoquinoline-2-carboxamido)-4-

isobutoxyquinoline-2-carboxylate (B19): Was prepared the same way as described above 

using methyl 8-(4-(3-(tert-butylthio)propoxy)-8-nitroquinoline-2-carboxamido)-4-

isobutoxy quinoline-2-carboxylate (B14). Yield: 99 %. C32H38N4O5S = 590.73 g.mol-1. 

Elemental analysis calc. for C32H38N4O5S: C, 65.06; H, 6.48; N, 9.48; found: C, 64.47; H, 

6.39; N, 9.99. MS (FAB): m/z = 591 [M]+. 1H NMR (CDCl3): δ 12.67 (1H, s), 9.03 (1H, d, 

JHH = 7.7 Hz), 7.95 (1H, d, JHH = 7.5 Hz), 7.77 (1H, s), 7.67 (1H, t, JHH = 8.1 Hz), 7.55 –

 7.47 (2H, m), 7.38 (1H, t, JHH = 8.0 Hz), 7.01 (1H, d, JHH = 7.4 Hz), 4.42 (2H, t, 

JHH = 6.1 Hz), 4.09 (3H, s), 4.06 (2H, d, JHH = 6.4 Hz), 2.82 (2H, t, JHH = 7.2 Hz), 2.31 –

 2.19 (3H, m), 1.34 (9H, s), 1.16 (6H, d, JHH = 6.7 Hz).  

 

8.3.3 Trimers 

Coupling to trimers 

Trimer nitro-isobutoxy-isobutoxy-tertbutylthiopropoxy-methylester (B20): was prepared 

according to the general procedure for coupling, using methyl 4-(3-(tert-

butylthio)propoxy)-8-aminoquinoline-2-carboxylate (B11) and 8-(4-isobutoxy-8-

nitroquinoline-2-carboxamido)-4-isobutoxyquinoline-2-carbonyl chloride (B16). Product 

was purified by flash-chromatography on silica gel with 0.1 % MeOH in DCM as eluant. 

Yield: 86 %. C46H50N6O9S = 862.99 g.mol-1. Elemental analysis calc. for C46H50N6O9S: C, 

64.02; H, 5.84; N, 9.74; found: C, 63.81; H, 5.81; N, 9.65. MS (FAB): m/z = 862.9 [M]+. 
1H NMR (CDCl3): δ 12.36 (1H, s), 12.20 (1H, s), 9.03 (1H, dt, JHH = 0.6, 8.2 Hz), 

8.47 (1H, dd, JHH = 1.3, 8.2 Hz), 8.05 (1H, dd, JHH = 1.2, 8.4 Hz), 7.91 – 7.87 (3H, m), 

7.83 (1H, s), 7.72 (1H, t, JHH = 8.2 Hz), 7.67 (1H, t, JHH = 8.2 Hz), 7.55 (2H, dd, JHH = 1.3, 

7.5 Hz), 7.46 (1H, t, JHH = 7.8 Hz), 6.77 (1H, s), 4.23 – 4.13 (6H, m), 3.45 (3H, s), 

2.84 (2H, t, JHH = 6.8 Hz), 2.45 – 2.15 (4H, m), 1.38 (9H, s), 1.21 (6H, d, JHH = 6.7 Hz), 

1.17 (6H, d, JHH = 6.7 Hz). 
13C NMR (CDCl3): δ 164.7, 163.8, 163.5, 163.0, 162.8, 162.2, 

154.4, 151.1, 145.8, 145.6, 140.2, 139.3, 139.3, 135.8, 134.7, 129.1, 129.0, 128.9, 127.7, 

127.5, 126.0, 125.0, 123.6, 122.6, 122.0, 118.3, 118.2, 117.0, 115.7, 104.9, 100.4, 99.7, 

99.4, 76.0, 75.6, 67.3, 52.6, 49.8, 42.6, 31.2, 29.3, 28.4, 24.8, 23.2, 19.5, 19.4. 
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Reduction of a trimer 

Trimer amino-isobutoxy-isobutoxy-tertbutylthiopropoxy-methylester (B21): In a 50 mL 

round bottomed flask, the trimer nitro-isobutoxy-isobutoxy-tertbutylthiopropoxy-

methylester (B20) (420 mg, 0.49 mmol) was dissolved in ethyl acetate (200 mL). A 

catalytic amount of Pd / C (20 %) catalyst (84 mg) was added. Solution was subsequently 

placed at a 4 bar atmosphere of hydrogen and resulting mixture was stirred at ambient 

temperature for 24 h. Reaction mixture was then filtered through Celite and solvent was 

rotary evaporated to yield a yellow solid. Yield: Quant. C46H52N6O7S = 833.01 g.mol-1. 

Elemental analysis calc. for C46H52N6O7S: C, 66.33; H, 6.29; N, 10.09; found: C, 66.32; H, 

5.82; N, 9.74. MS (FAB): m/z = 833.3 [M]+. 1H NMR (CDCl3): δ 12.37 (1H, s), 12.35 (1H, 

s), 9.02 (1H, dd, JHH = 1.3, 7.7 Hz), 8.90 (1H, dd, JHH = 1.2, 7.7 Hz), 8.00 (1H, dd, 

JHH = 1.3, 8.4 Hz), 7.91 (1H, dd, JHH = 1.3, 8.4 Hz), 7.74 (1H, s), 7.72 (1H, t, 

JHH = 8.2 Hz), 7.67 (1H, t, JHH = 8.2 Hz), 7.55 (1H, dd, JHH = 1.3, 7.5 Hz), 7.72 – 7.63 (2H, 

m), 7.53 – 7.48 (1H, m), 7.42 (1H, dd, JHH = 0.9, 8.4 Hz), 7.04 (1H, t, JHH = 8.2 Hz), 

6.79 (1H, s), 5.93 (1H, dd, JHH = 0.8, 7.5 Hz), 4.22 – 4.07 (9H, m), 3.45 (3H, s), 2.82 (2H, 

t, JHH = 7.0 Hz), 2.40 – 2.14 (4H, m), 1.37 (9H, s), 1.21 (12H, d, JHH = 6.7 Hz). 
13C NMR 

(CDCl3): δ 164.7, 163.9, 163.8, 163.5, 163.0, 162.8, 162.2, 154.4, 151.1, 145.7, 145.6, 

140.2, 139.3, 135.7, 134.8, 134.7, 131.1, 129.0, 128.9, 127.8, 127.6, 127.5, 126.0, 125.0, 

123.6, 122.6, 122.0, 118.5, 118.4, 118.2, 117.0, 115.7, 100.4, 99.7, 99.4, 76.0, 75.6, 67.3, 

52.6, 42.6, 31.2, 29.3, 28.4, 24.8, 19.6, 19.4. 

 

8.3.4 Pentamers 

1,10-phenanthroline-2,9-dicarboyl dichloride (B22): 1,10-phenanthroline 2,9-dicarboxylic 

acid (135 mg; 0.5 mmol) and SOCl2 (10 mL) were introduced in a 50 mL round bottomed 

flask equipped with a magnetic stirring bar and a reflux condenser. The round bottomed 

flask was placed in an oil bath previously heated to 90°C. Reaction mixture was stirred at 

90°C for 1 h and subsequently cooled by addition of dry Toluol (20 mL). Solvents were 

then azeotroped by rotary evaporation and residue was dried under reduced pressure to 

yield 1,10-phenanthroline 2,9-dicarboyl dichloride as a brownish solid. Yield: Quant. 

C14H6O2Cl2= 305.11 g.mol-1. 1H NMR (DMSO d6): δ 9.07 (2H, d, JHH = 8.2 Hz), 

8.76 (2H, d, JHH = 8.3 Hz), 8.56 (2H, s). 
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Coupling to pentamers 

Methylester-tertbutylthiopropoxy-isobutoxy-phenantroline-isobutoxy-tertbutylthio 

propoxy-methylester (B23): was prepared following the general procedure for coupling, 

using 1,10-phenanthroline 2,9-dicarboyl dichloride (B22) and two equivalents of Methyl 4-

(3-(tert-butylthio)propoxy)-8-(4-isobutoxy-8-aminoquinoline-2-carboxamido)quinoline 2-

carboxylate (B18). Product was purified by flash-chromatography on silica with 

EtOAc / Hexane (1:1). Yield: 73 %. C78H80N10O12S2 = 1413.66 g.mol-1. Elemental analysis 

calc. for C78H80N10O12S2: C, 66.27; H, 5.70; N, 9.91; found: C, 65.91; H, 5.57; N, 10.00. 

MS (FAB): m/z = 1413.8 [M]+. TOF MS ES+ (HR-MS): calc. for [M + H]+: 

1413.5477 g.mol-1; found for [M + H]+: 1413.5470 g.mol-1. 1H NMR (CDCl3): δ 

12.78 (2H, s), 11.80 (2H, s), 8.93 (2H, dd, JHH = 1.4, 7.3 Hz), 8.81 (2H, dd, JHH = 1.3, 

7.3 Hz), 7.88 – 7.71 (8H, m), 7.64 – 7.52 (4H, m), 6.87 (2H, s), 6.40 (2H, s), 4.12 –

 3.79 (8H, m), 3.21 (6H, s), 3.00 – 2.74 (4H, m), 2.36 – 2.14 (4H, m), 1.45 (18H, s), 

1.20 (6H, d, JHH = 6.7 Hz), 1.17 (6H, d, JHH = 6.6 Hz). 
13C NMR (CDCl3): δ 164.2, 162.6, 

161.8, 161.6, 161.1, 149.0, 148.9, 144.8, 142.4, 138.7, 138.4, 136.0, 134.6, 134.2, 127.9, 

126.8, 121.4, 120.5, 119.7, 118.9, 118.8, 115.8, 115.4, 100.2, 97.9, 75.3, 67.2, 67.1, 52.6, 

49.5, 42.7, 31.3, 31.2, 29.6, 29.5, 28.4, 24.9, 24.8, 19.6, 19.5. 

 

Methylester-isobutoxy-tertbutylthiopropoxy-phenantroline-tertbutylthiopropoxy-isobutoxy-

methylester (B24): was prepared following the general procedure for coupling, using 1,10-

phenanthroline 2,9-dicarboyl dichloride (B22) and two equivalents of methyl 8-(4-

isobutoxy-8-aminoquinoline-2-carboxamido)-4-isobutoxyquinoline-2-carboxylate (B17). 

Product was purified by flash-chromatography on silica with EtOAc / Hexane (1:1). 

Yield: 58 %. C78H80N10O12S2 = 1413.66 g.mol-1. Elemental analysis calc. for 

C78H80N10O12S2: C, 66.27; H, 5.70; N, 9.91; found: C, 65.97; H, 5.68; N, 10.05. 

MS (FAB): m/z = 1413.8 [M]+. TOF MS ES+ (HR-MS): calc. for [M + H]+: 

1413.5477 g.mol-1; found for [M + H]+: 1413.5442 g.mol-1. 1H NMR (CDCl3): δ 

12.76 (2H, s), 11.78 (2H, s), 8.92 (2H, dd, JHH = 1.6, 7.1 Hz), 8.81 (2H, dd, JHH = 2.0, 

6.8 Hz), 7.84 – 7.71 (8H, m), 7.61 – 7.52 (4H, m), 7.42 (2H, s), 6,87 (2H, s), 6.34 (2H, s), 

4.32 – 4.20 (4H, m), 3.74 – 3.62 (4H, m), 3.21 (6H, s), 2.95 – 2.72 (4H, m), 2.36 –

 2.14 (4H, m), 1.39 (18H, s), 1.22 (6H, d, JHH = 6.7 Hz), 1.16 (6H, d, JHH = 6.7 Hz). 
13C 

NMR (CDCl3): δ 164.1, 162.1, 161.4, 161.4, 161.1, 148.7, 144.5, 142.2, 138.5, 138.2, 
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135.8, 134.4, 134.0, 128.3, 128.2, 127.9, 126.4, 121.0, 120.4, 119.6, 118.7, 115.6, 115.3, 

100.0, 97.7, 74.8, 71.1, 67.7, 52.4, 42.4, 31.0, 29.5, 28.1, 24.8, 21.8, 19.5, 19.2. 

 

8.3.5 Deprotection of tertio butyl group 

Deprotection steps on the monomer 

Methyl 4-(3-(2-(3-nitropyridin-2-yl)disulfanyl)propoxy)-8-nitroquinoline-2-carboxylate 

(B25a): Methyl 4-(3-(tert-butylthio)propoxy)-8-nitroquinoline-2-carboxylate (B5) and 

Nitropyridine sulfenyl chloride were dissolved in acetic acid (20 mL). Resulting mixture 

was stirred at ambient temperature overnight (apparition of a precipitate). The solvent was 

subsequently removed by rotary evaporation and the residue was chromatographed on 

silica using 100 % dichloromethane as eluant, to yield a yellow solid. Yield: 69 %. 

C19H16N4O7S2 = 476.48 g.mol-1. Elemental analysis calc. for C19H16N4O7S2: C, 47.89; H, 

3.38; N, 11.76; found: C, 47.11; H, 3.86; N, 11.36. MS (FAB): m/z = 477 [M + H]+, 

307 [C14H13NO3S2]
+, 154 [C10H4NO]

+. 1H NMR (CDCl3): δ 8.81 – 8.79 (1H, m, CHar-Npys), 

8.48 (1H, d, JHH = 8.2 Hz, CHar-ortho), 8.11 (1H, d, JHH = 7.4 Hz, CHar-para), 8.40 (1H, d, 

JHH = 8.5 Hz, CHar-Npys), 7.70 (1H, s, CHar-quinone), 7.62 (1H, t, JHH = 8.4 Hz, CHar-meta), 

7.35 – 7.31 (1H, m, CHar-Npys), 4.52 (2H, m, CH2-α), 4.04 (3H, s, CH3-ester), 3.16 (1H, t, 

JHH = 6.6 Hz, CH2-γ), 2.41 (1H, q, JHH = 6.4 Hz, CH2-β).  

 

Methyl 4-(3-(2-(2-nitrophenyl)disulfanyl)propoxy)-8-nitroquinoline-2-carboxylate (B25b): 

was prepared via a similar protocol using Nitrophenyl sulfenyl chloride. Yield: 60 %. 

C20H17N3O7S2 = 475.49 g.mol-1. Elemental analysis calc. for C20H17N3O7S2: C, 50.52; H, 

3.60; N, 8.84; found: C, 49.30; H, 3.70; N, 8.51. MS (FAB): m/z = 476 [M + H]+, 

307 [C14H13NO3S2]
+, 154 [C10H4NO]

+. 1H NMR (CDCl3): δ 8.42 (1H, d, JHH = 8.4 Hz, 

CHar-ortho), 8.32 (1H, t, JHH = 8.9 Hz, CHar-Nbs), 8.16 (1H, d, JHH = 7.4 Hz, CHar-para), 7.71 –

 7.65 (4H, m, CHar-quinone, CHar-Nbs and CHar-meta), 7.40 (1H, t, JHH = 7.8 Hz, CHar-Nbs), 

4.48 (2H, d, JHH = 5.5 Hz, CH2-α), 4.09 (3H, s, CH3-ester), 3.06 (1H, t, JHH = 6.7 Hz, CH2-γ), 

2.45 (1H, q, JHH = 6.6 Hz, CH2-β).  

 

methyl 4-(3-mercaptopropoxy)-8-nitroquinoline-2-carboxylate (B26): To a solution of 

either methyl 4-(3-(2-(3-nitropyridin-2-yl)disulfanyl)propoxy)-8-nitroquinoline-2-

carboxylate (B25a) or ethyl 4-(3-(2-(2-nitrophenyl)disulfanyl)propoxy)-8-nitroquinoline-2-

carboxylate (B25b) (10 mmol; 4.7 g) in acetone (80 mL) and water (20 mL), a 
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stoichiometric amount of tri-n-butylphosphine (2.02 g; 10 mmol) was added at room 

temperature with continuous stirring. The resulting mixture was stirred for 4 h at ambient 

temperature. The acetone was removed at vacuum and the residue was dissolved in 

dichloromethane (300 mL), followed by successive washing with 5 % citric acid and 

water. The organic layers were dried over MgSO4 and filtered. After removal of the solvent 

at vacuum, the residue was chromatographed on silica gel using 0.5 % MeOH in 

dichloromethane, to yield a yellowish solid. Yield: 66 %. C14H14N2O5S = 322.34 g.mol-1. 

Elemental analysis calc. for C14H14N2O5S: C, 57.12; H, 4.38; N, 8.69; found: C, 57.11; H, 

3.86; N, 8.36. MS (FAB): m/z = 322 [M]+. 1H NMR (CDCl3): δ 8.44 (1H, d, JHH = 8.4 Hz, 

CHar-ortho), 8.11 (1H, d, JHH = 7.1 Hz, CHar-para), 7.70 – 7.63 (2H, m, CHar-quinone and CHar-

meta), 4.46 (2H, m, CH2-α), 4.04 (3H, s, CH3-ester), 2.83 (2H, m, CH2-γ), 2.29 (1H, m, CH2-β). 
13C NMR (CDCl3): δ 163.0 (C=O), 151.6, 122.9 (Cq-ar), 127.4, 126.7, 122.3 (CHar), 

102.3 (CHquinone), 60.9 (CH2-α), 53.4 (CH3-ester), 30.7 (CH2−γ), 27.9 (CH2-β).  

 

Deprotection steps on the pentamer 

Methylester-(NpyS)thiopropoxy-isobutoxy-phenantroline-isobutoxy-(NpyS)thiopropoxy-

methylester (B27): To a solution of methylester-tertbutylthiopropoxy-isobutoxy-

phenantroline-isobutoxy-tertbutylthio propoxy-methylester (B23) (100 mg; 62.5 nmol) in 

acetic acid (3 mL) a slight excess of sodium para-nitro-pyridine sulfenyl chloride was 

added (0.15 mmol, 26 mg) and the reaction was stirred 24 h at ambient temperature, 

resulting in the apparition of a precipitate. Acetic acid was subsequently removed at 

vacuum and the residue was purified by flash-chromatography on silica with 

dichloromethane as eluant. Yield: 67 %. C80H68N14O16S4 = 1609.74 g.mol-1. MS (ESI+): 

m/z = 1609.38 [M + H]+, 1631.37 [M + Na]+. TOF MS ES+ (HR-MS): calc. for [M + H]+: 

1609.3899 g.mol-1; found for [M + H]+: 1609.3881 g.mol-1. 1H NMR (CDCl3): δ 

12.86 (2H, s), 11.81 (2H, s), 8.96 – 8.83 (6H, m), 8.57 (2H, dd, JHH = 1.5, 8.0 Hz), 

7.91 (2H, d, JHH = 8.1 Hz), 7.88 – 7.71 (6H, dqu, JHH = 1.5, 7.4 Hz), 7.64 (2H, s), 

7.60 (2H, t, JHH = 7.6 Hz), 7.51 (2H, d, JHH = 8.0 Hz), 7.44 (2H, dd, JHH = 3.4, 8.2 Hz), 

6.90 (2H, s), 6.46 (2H, s), 4.31 – 4.22 (2H, m), 4.14 – 4.05 (2H, m), 4.02 – 3.94 (2H, m), 

3.90 – 3.82 (2H, m), 3.37 – 3.17 (10H, m), 2.43 – 2.25 (8H, m), 1.23 (6H, d, JHH = 6.5 Hz), 

1.20 (6H, d, JHH = 6.4 Hz). 
13C NMR (CDCl3): δ 163.9, 162.5, 161.6, 161.4, 160.8, 153.7, 

153.5, 148.8, 148.7, 144.5, 142.9, 142.2, 138.4, 138.2, 135.9, 134.4, 134.0, 133.6, 128.5, 

128.3, 127.7, 121.2, 120.8, 120.2, 119.5, 118.8, 118.6, 115.7, 115.1, 100.1, 97.7, 75.1, 

66.2, 52.5, 34.5, 28.2, 27.6, 20.4, 19.4, 19.3. 
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Methylester-isobutoxy-(NpyS)thiopropoxy-phenantroline-(NpyS)thiopropoxy-isobutoxy-

methylester (B28): was prepared as described for the (B27) starting from Methylester-

isobutoxy-tertbutylthiopropoxy-phenantroline-tertbutylthiopropoxy-isobutox-methylester 

(B24). Yield: 74 %. C80H68N14O16S4 = 1609.74 g.mol-1. MS (ESI+): 

m/z = 1299.41 [M + H – 2×Npys]+, 1609.38 [M + H]+, 1631.37 [M + Na]+. TOF MS ES+ 

(HR-MS): calc. for [M + H]+: 1609.3899 g.mol-1; found for [M + H]+: 1609.3973 g.mol-1. 
1H NMR (CDCl3): δ 12.83 (2H, s), 11.76 (2H, s), 8.91 (2H, dd, JHH = 1.2, 7.4 Hz), 

8.81 (2H, dt, JHH = 2.5, 6.6 Hz), 7.85 – 7.51 (18H, m), 7.42 (2H, s), 7.36 (4H, d, 

JHH = 4.4 Hz), 6.91 (2H, s), 6.36 (2H, s), 4.70 (2H, s), 4.34 – 4.25 (4H, m), 4.23 –

 4.15 (3H, m), 4.02 – 3.94 (2H, m), 3.75 – 6.61 (2H, m), 3.25 – 3.08 (7H, m), 2.55 –

 2.18 (8H, m), 1.22 (6H, dd, JHH = 2.0, 8.7 Hz), 1.16 (6H, dd, JHH = 2.8, 6.7 Hz). 
13C NMR 

(CDCl3): δ 164.0, 162.4, 161.6, 161.4, 160.8, 148.8, 148.8, 144.6, 138.5, 138.2, 135.7, 

134.5, 134.0, 128.5, 128.3, 127.6, 126.5, 121.2, 120.3, 119.5, 118.8, 118.6, 115.6, 115.1, 

100.0, 97.7, 77.2, 75.1, 65.9, 52.4, 32.5, 31.9, 29.7, 29.3, 28.2, 22.7, 21.2, 19.4, 19.3, 14.1, 

13.6. 

 

Methylester-thiopropoxy-isobutoxy-phenantroline-isobutoxy-thiopropoxy-methylester 

(B29): To a solution of methylester-(NpyS)thiopropoxy-isobutoxy-phenantroline-

isobutoxy-(NpyS)thiopropoxy-methylester (B27) (200 mg; 0.15 mmol) in acetone (10 mL) 

and water (2 mL), two equivalents of tri-n-butylphosphine (60 mg; 0.15 mmol) was added 

at rt with continuous stirring and the resulting mixture was stirred overnight. After removal 

of the solvent at vacuum, the residue was chromatographed on silica gel using 2 % MeOH 

in dichloromethane as eluant to yield a yellowish solid. Yield: 80 %. 

C70H64N10O12S2 = 1301.45 g.mol-1. MS (ESI+): m/z = 1301.42 [M + H]+, 

1324.41 [M + Na]+. TOF MS ES+ (HR-MS): calc. for [M + H]+: 1301.4225 g.mol-1; found 

for [M + H]+: 1301.4244 g.mol-1. 1H NMR (CDCl3): δ 12.81 (2H, s), 11.78 (2H, s), 

8.90 (2H, dd, JHH = 1.4, 7.3 Hz), 8.82 (2H, dd, JHH = 1.0, 7.2 Hz), 7.91 – 7.46 (16H, m), 

6.86 (2H, s), 6.41 (2H, s), 4.78 – 3.76 (12H, m), 3.20 (6H, m), 2.92 (3H, q, JHH = 7.0 Hz), 

2.28 (5H, qu, JHH = 6.0 Hz), 1.18 (6H, d, JHH = 6.6 Hz), 1.16 (6H, d, JHH = 6.4 Hz). 

 

Methylester-isobutoxy-thiopropoxy-phenantroline-thiopropoxy-isobutoxy-methylester 

(B30): was prepared as described for the (B29) starting from Methylester-isobutoxy-

(NpyS)thiopropoxy-phenantroline-(NpyS)thiopropoxy-isobutoxy-methylester (B28). 
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Yield: 69 %. C70H64N10O12S2 = 1301.45 g.mol-1. MS (ESI+): m/z = 1301.42 [M + H]+, 

1324.41 [M + Na]+. TOF MS ES+ (HR-MS): calc. for [M + H]+: 1301.4225 g.mol-1; found 

for [M + H]+: 1301.4226 g.mol-1. 1H NMR (CDCl3): δ 12.82 (2H, s), 11.76 (2H, s), 

8.91 (2H, dd, JHH = 2.6, 6.2 Hz), 8.81 (2H, dt, JHH = 2.4, 6.4 Hz), 7.83 – 7.70 (8H, m), 

7.59 – 7.56 (2H, m), 7.41 (2H, s), 6.90 (2H, s), 6.36 (2H, s), 4.37 – 4.19 (6H, m), 3.69 (4H, 

q, JHH = 6.9 Hz), 3.21 (6H, m), 2.90 (4H, sep, JHH = 8.0 Hz), 2.37 – 2.19 (8H, m), 

1.22 (6H, d, JHH = 6.7 Hz), 1.16 (6H, d, JHH = 6.7 Hz). 

 

 

8.3.6 Iron carbonyls complexation 

Complexation of the monomer 

Methyl 4-(3-mercaptodiironhexacarbonyl)-8-nitroquinoline-2-carboxylate (B31): To a 

solution of methyl 4-(3-mercaptopropoxy)-8-nitroquinoline-2-carboxylate (B26) 

(0.54 mmol, 170 mg) in 5 mL of dried methanol, a stoichiometric amount of triiron 

dodecarbonyl  (181 mg, 0.26 mmol) in dried chloroform was added at room temperature 

via a stainless steel canula. The chloroform is subsequently distilled off and the resulting 

mixture was refluxed at 90°C for 1 h. The methanol was removed in vacuum and the 

residue was purified on silica gel with MeOH / CH2Cl2 as the eluant to yield the desired 

product as a dark red crystalline powder. Yield: 27 %. C34H28Fe2N4O16S2 = 924.42 g.mol-1. 

MS (ESI): m/z = 925 [M + H]+, 944 [M + Na]+, 643 [M – 6CO – 2×Fe]+. TOF MS ES+ 

(HR-MS): calc. for [M + H]+: 925.62 g.mol-1; found for [M + H]+: 925.9597 g.mol-1. 1H 

NMR (CDCl3): δ 8.38 (2H, t, JHH = 8.5 Hz, CHar-ortho), 8.11 (2H, d, JHH = 7.5 Hz, CHar-para), 

7.71 – 7.64 (4H, m, CHar-quinone and CHar-meta), 4.45 (3H, m, CH2-α), 4.35 (1H, t, 

JHH = 5.1 Hz, CH2-α), 4.04 (6H, s, CH3-ester), 2.72 (2H, q, JHH = 7.0 Hz, CH2-γ), 2.45 –

 2.25 (6H, m, CH2-γ and CH2-β). 
13C NMR (CDCl3): δ 209.1, 208.2, 198.3 (C=OFe-CO), 

161.1 (C=Oester), 148.5, 122.9 (Cq-ar), 1126.1, 125.1, 122.9 (CHar), 102.2, 100.0 (CHquinone), 

67.6, 67.3, 67.1 (CH2-α), 53.4 (CH3-ester), 35.3, 34.1, 31.9, 31.9, 31.8, 31.2 (CH2−γ and 

CH2-β). 
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8.4 Crystallographic Tables 

 

Table  8.1 

 23b 23c 25a 25d . H2O 

chemical formula C34H36FeN2O6S2 C32H34FeN2O4S2 C17H21FeNO3S⋅ C34H52FeN4O9S4 

Fw 688.62 630.58 375.26 844.89 

Crystal size, mm 0.10 × 0.06 × 0.02 0.24 × 0.12 × 0.04 0.163 × 0.050 × 
0.045 

0.26 × 0.26 × 0.23 

crystal system Monoclinic Tetragonal Orthorhombic Orthorhombic 

Space group P21 (No.4) P43 (No.78) P212121 (No.19) P212121 (No.19) 

a, Å 9.7500(6) 13.5835(3) 10.5221(3) 19.8819(3) 

b, Å 12.4980(9) 13.5835(3) 16.5013(4) 11.3307(2) 

c, Å 13.9735(9) 16.6873(4) 19.6449(6)(12) 17.6048(3) 

β, deg 105.74(1) 90 90 90 

V, Å3 1638.90(19) 3079.00(12) 3410.91(16) 3965.94(11) 

Z 2 4 8 4 

D (calcd.), g/cm3 1.395 1.360 1.462 1.415 

temp. (K) 100(2) 100(2) 100(2) 100(2) 

2θmax, ° / total no. 
of refl. coll. 

62.14 / 42167 62 / 81349 62.08 / 82966 62 / 99604 

abs. coeff. (mm-1) 0.635 0.664 1.020 0.647 

R1 (I > 2σ(I)) [a] 0.0352 0.0304 0.0385 0.0426 

wR2 (all data) [b] 0.0757 0.0720 0.0744 0.1015 

data/restraints/ 
parameters 

10397 /1 / 406 9800 / 2 / 377 10885 / 1 / 425 12634 / 35 / 508 

GooF on F2 [c] 1.035 1.071 1.040 1.140 

Min. / Max. res. 
density, eÅ-3 

0.519 / -0.291 0.293 / -0.202 0.471 / -0.382 1.193 / -0.568 

Flack parameter -0.003(8) 0.001(7) 0.000(9) 0.029(10) 

[a] R1 = Σ||F0|-|Fc||/Σ|F0| 

[b] wR2 = [Σ[w(F0
2-Fc

2)2]/Σ[w(F0
2)2]

1/2, where w = 1/σ2(F0
2)+(aP)2+bP, P = (F0

2+2Fc
2)/3 

[c] GooF = [Σ[w(F0
2-Fc

2)2]/(n-p)]1/2 where n = no. of reflections and p = no. of refined parameters. 
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Table  8.2 

 B23* B24* B29* 

chemical formula C94H98N10O12.5S2 C93.5H85N11O14S2 C90H59N10O12S2 

Fw 1631.94 1650.85 1536.59 

Crystal size, mm 0.15 × 0.10 × 0.10 0.30 × 0.30 × 0.30 0.20 × 0.40 × 0.40 

crystal system Monoclinic Triclinic Orthorombic 

Space group P21/c (No.4) P-1 Pbcn (No.60) 

a, Å 11.2360(10) 10.7380(10) 41.6850 

b, Å 20.1960(10) 19.218(2) 20.2560 

c, Å 39.8870(2) 20.879(2) 20.1800 

β, deg 92.001(3) 103.717(6) 90 

V, Å3 9045.7(10) 4185.7(7) 17039.4 

Z 4 2 8 

D (calcd.), g/cm3 1.198 1.310 1.198 

temp. (K) 296(2) 193(2) 293(2) 

2θmax, ° / total no. 
of refl. coll. 

17376 / 96205 14476 / 58658 16452 / 16452 

abs. coeff. (mm-1) 1.061 1.174 1.101 

R1 (I > 2σ(I)) [a] 0.1339 0.1189 0.1525 

wR2 (all data) [b] 0.4415 0.4014 0.4129 

data/restraints/ 
parameters 

17376 / 52 / 999 14476 / 0 / 1045 16452 / 1 / 1033 

GooF on F2 [c] 1.028 1.064 1.703 

Min. / Max. res. 
density, eÅ-3 

0.613 / -0.643 0.726 / -0.469 1.436 / -3.090 

Flack parameter -0.00001(7) 0.0005(2) 0.00000(5) 

[a] R1 = Σ||F0|-|Fc||/Σ|F0| 

[b] wR2 = [Σ[w(F0
2-Fc

2)2]/Σ[w(F0
2)2]

1/2, where w = 1/σ2(F0
2)+(aP)2+bP, P = (F0

2+2Fc
2)/3 

[c] GooF = [Σ[w(F0
2-Fc

2)2]/(n-p)]1/2 where n = no. of reflections and p = no. of refined parameters. 

[*] including solvents molecules 
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10. Appendix 

 

 

10.1     Appendix of Chapter 4 

 

 

Dihedral Angles 
kχχχχ 

[kcal.mol-1] 
n 

χχχχo 

[deg] 

HP–CA2-CA2-HP 1.222 2 180.0 

CA2–CA2-CA2-HP 4.281 2 180.0 

CA2–CA2-CA2-CA2 19.575 2 180.0 

CA2–CA2-CA2-C 3.230 2 180.0 

HP–CA2-CA2-C 5.793 2 180.0 

CA2–CA2-C-O 4.290 2 180.0 

CA2–CA2-C-O 1.501 1 0.0 

CA2–CA2-C-NH1 24.562 2 180.0 

CA2–CA2-C-NH1 85.976 1 0.0 

H-NH1-C-CA2 2.470 2 180.0 

H-NH1-C-CA2 5.086 1 0.0 

CA2–C-NH1-CT1 40.904 2 180.0 

CA2–C-NH1-CT1 70.212 1 0.0 

CA2–CA2-C-N 2.550 2 180.0 

CA2–CA2-C-N 1.860 1 0.0 

CA2–C-N-CP1 74.529 2 180.0 

CA2–C-N-CP1 50.494 1 0.0 

CA2–C-N-CP3 13.222 2 180.0 

CA2–C-N-CP3 41.515 1 0.0 

CP3–N-CP1-CD 3.664 3 0.0 

Table 1 CHARMM dihedral angle parameters for the ferrocene, the 
ferrocene-peptide connection, and the nickel-sulfur ligand pocket. 
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Bonds 
kb 

[kcal.mol-1.Å-2] 

bo 

[Å] 

HP–CA2 390.47 1.080 

CA2–CA2 322.31 1.420 

CA2-C 265.85 1.464 

Table 2 CHARMM bond parameters for ferrocene and the ferrocene-peptide 
connection. 
 

 

 

 

Angles 
kθθθθ 

[kcal.mol-1.rad-2] 

θθθθo 

[deg] 

CA2–CA2–CA2 50.575 108.0 

HP-CA2–CA2 24.032 126.0 

CA2–CA2-C 148.990 125.0 

CA2–C-O 75.251 120.0 

CA2–C–NH1 2.149 120.0 

CA2–C-N 118.073 120.0 

CT3–CT1-CD 96.177 108.0 

Table 3 CHARMM angle parameters for ferrocene, the ferrocene-peptide 
connection, and the nickel-sulfur ligand pocket. 

 

 

 

Improper torsions 
kψψψψ 

[kcal.mol-1.rad-2] 

ψψψψo 

[deg] 

CA2–C-NH1-O 13.316 180.0 

CA2–C-NH1-CT1 31.050 180.0 

CA2–C-N-O 74.845 180.0 

CA2–C-N-CP1 71.034 180.0 

Table 4 CHARMM improper torsion parameters for the ferrocene, the 
ferrocene-peptide connection and the nickel-sulfur ligand pocket. 
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Atom type 
εεεε 

[kcal.mol-1] 

Rmin/2 

[Å] 

Charge 

[eV] b 

CA2 -0.070 1.9924 -0.10 

HP -0.030 1.3582 -0.10 

Fe -0.020 1.4443 +2.0 

Ni -0.010 1.4125 +2.0 

Table 5 CHARMM non-bonded parameters (LJ parameters and partial atomic 
charges). For the atoms constituting the ferrocene moiety (i.e. atom types CA2 and 
HP) the standard LJ parameters included in CHARMM were used. For the iron and 
nickel atoms, LJ parameters were taken from Ref. [33] (personal communication).  

 

 

10.2     Appendix of Chapter 5 

 

 
Figure  10.1 Crystal structure of B29, side view and top view of the entire structure. 

Included solvent molecules have been omitted for clarity. 
 

 
Figure  10.2 Crystal structure of B24, side view and top view of the entire structure. 

Included solvent molecules have been omitted for clarity. 
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Figure  10.3 Crystal structure of B23, side view and top view of the entire structure. 

Included solvent molecules have been omitted for clarity. 
 

 

 

10.3     Appendix of Chapter 6 

 

 
Figure  10.4 Moessbauer spectra of 35 measured as solid-state samples 
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Figure  10.5 Moessbauer spectra of 36 measured as solid-state samples 

 
Figure  10.6 Moessbauer spectra of 37 measured as solid-state samples 

 
 
 
 


