
DISSERTATION

submitted to the
Combined Faculties for the Natural Sciences and for Mathematics

of the
Ruperto-Carola-University of Heidelberg, Germany

for the degree of
Doctor of Natural Sciences

presented by
Dipl.-Phys. Martin Albrecht Trefzer

born in Lörrach, Germany

Date of oral examination: 13.12.2006

Evolution of Transistor Circuits

Referees: Prof. Dr. Karlheinz Meier

Prof. Dr. Fred A. Hamprecht

Evolution von Transistor Schaltungen

Der Entwurf von analogen Schaltungen ist ein Bereich der Elektronikentwicklung, der dem Entwickler ein hohes
Maß an Wissen und Kreativität beim Lösen von Problemen abverlangt. Bis heute gibt es nur rudimentäre analy-
tische Lösungen um die Bauteile von Schaltungen zu dimensionieren. Motiviert durch diese Herausforderungen,
konzentriert sich diese Arbeit auf die automatische Synthese analoger Schaltungen mit Hilfe von Evolutionären
Algorithmen. Als analoges Substrat wird einfield programmable transistor array (FPTA)benutzt, das ein Feld von
konfigurierbaren Transistoren zur Verfügung stellt. Der Einsatz von echter Hardware bietet zwei Vorteile: erstens
können entstehende Schaltungen schneller getestet werden als mit einem Simulator und zweitens funktionieren die
gefundenen Schaltungen garantiert auf einem echten Chip. Softwareseitig eignen sich Evolutionäre Algorithmen
besonders gut für die Synthese analoger Schaltungen, da sie keinerlei Vorwissen über das Optimierungsproblem
benötigen. In dieser Arbeit werden neue genetische Operatoren entwickelt, die das Verständnis von auf dem FPTA
evolutionierten Schaltungen erleichtern und außerdem Lösungen finden sollen, die auch außerhalb des Substrates
funktionieren. Dies ist mit der Hoffnung verbunden, möglicherweise neue und ungewöhnliche Schaltungsprinzi-
pien zu entdecken. Weiterhin wird ein mehrzieliger Optimierungsalgorithmus implementiert und verfeinert, um
die Vielzahl von Variablen berücksichtigen zu können, die für die gleichzeitige Optimierung von Topologie und
Bauteiledimensionierung notwendig sind. Die vorgeschlagenen genetischen Operatoren, sowie die mehrzielige
Optimierung werden für die Evolution von logischen Gattern, Komparatoren, Oszillatoren und Operationsverstär-
kern eingesetzt. Der Ressourcenverbrauch der durch Evolution gefundenen Schaltungen wird damit vermindert
und es ist möglich in einigen Fällen einen übersichtlichen Schaltplan zu erstellen. Ein modulares System für die
Evolution von Schaltungen auf konfigurierbaren Substratenwurde entwickelt. Es wird gezeigt, dass mit diesem
System FPTA-Architekturen modelliert und direkt für Evolutionsexperimente verwendet werden können.

Evolution of Transistor Circuits

Analog circuit design is a discipline of electronic design,that demands a lot of knowledge and experience as
well as a considerable amount of creativity in solving diverse problems from the designer and there are to date
only rudimentary analytical solutions for parameterizingcircuit topologies. Motivated by the latter challenges, this
thesis focuses on the analog design automation for FPTA architectures by means of evolutionary algorithms (EAs).
The advantages of using real hardware for circuit evolutionare the significantly faster evaluation of candidate
solutions compared to a simulator and the fact that found solutions are guaranteed to work on a real-world substrate.
On the software side EAs are particularly well suited for analog circuit synthesis since they do not require prior
knowledge of the optimization problem. New genetic operators are developed within this thesis aiming to facilitate
the understanding of evolved FPTA circuits and to find solutions that can be transfered to other technologies. A
great hope is thereby to possibly discover unusual, new design principles. Furthermore, a multi-objective algorithm
is implemented and refined, in order to allow for taking the numerous variables into account, that are required for
optimizing the topology and the dimensioning of transistorcircuits. The proposed genetic operators and the multi-
objective approach are successfully applied to the evolution of logic gates, comparators, oscillators and operational
amplifiers. It is achieved to reduce the resource consumption of evolved circuits and in some cases it is possible
to generate clear schematics of good solutions. A modular framework for the evolution of circuits on configurable
substrates has been developed, which is used to perform the experiments and is further demonstrated to be useful
for modeling FPTA architectures and subsequently using them in evolution experiments.

Contents

Introduction 1

I Foundations 5

1 CMOS Analog Circuit Design 7
1.1 Physical Representation of the CMOS Transistor 8

1.1.1 Operation Regions . 11
1.1.2 Parasitic Capacitances . 12
1.1.3 Large Signal and Small Signal Model.13
1.1.4 Possible Configurations . 14

1.2 Realizing Switches with Transmission Gates 15
1.2.1 Parasitics of Transmission Gates 15

1.3 CMOS Transistor Modeling . 16
1.3.1 SPICE LEVEL3 Simulation Model 17
1.3.2 BSIM3v3 Simulation Model . 17

1.4 CMOS Design Flow . 18

2 Evolutionary Algorithms 21
2.1 Inspiration from Natural Evolution 22

2.1.1 Darwinian Evolution . 22
2.1.2 The Genetic Level . 23
2.1.3 From Genotype to Phenotype 25

2.2 Building Evolutionary Algorithms on Nature’s Concepts. 25
2.2.1 Historical Roots and Current Subareas 26
2.2.2 Modules of Evolutionary Algorithms27
2.2.3 Extensions to Evolutionary Algorithms 29

2.3 Characterization of Evolutionary Algorithms 29
2.3.1 Features for Global Optimization30
2.3.2 Is Any Convergence Guaranteed? 30
2.3.3 Model-Free Heuristics . 31
2.3.4 No Free Lunch Theorem . 32
2.3.5 Feasible and Infeasible Solutions 32

I

Contents

II Analog Circuits Evolution Framework 35

3 The FPTA: an Analog Evolvable Hardware Substrate 37
3.1 The FPTA’s Architecture . 39

3.1.1 Configurable Transistor Cell . 39
3.1.2 Transistor Cell Array . 40
3.1.3 Comparison with the JPL FPTA 42
3.1.4 An Overview of FPAAs from Industry 43

3.2 The Hardware Evolution Setup .44
3.2.1 The Controller: a Standard PC Hosting a FPGA-Based PCICard . 44

3.3 Characteristics of the FPTA and the Hardware Environment 45
3.3.1 Bandwidth . 45
3.3.2 Noise, Distortion and Accuracy 46
3.3.3 Influence of Configuration Circuitry 47

3.4 Why Hardware in the Loop for Circuit Evolution? 49

4 Analog Circuit Simulator 51
4.1 Introduction to Circuit Simulators 51
4.2 Operation Principle of Analog Circuit Simulators 52

4.2.1 CMOS Device Modeling . 52
4.2.2 The SPICE Netlist: Circuit Description and Simulation 53
4.2.3 Floating Nodes and Initial Conditions 55

4.3 Simulator in the Loop: Berkeley SPICE3f5, NGSPICE 56
4.4 Extracting Netlists from FPTA Results 57

4.4.1 Level 1: Simulation with Plain Transistors 58
4.4.2 Level 2: Simulation Including Resistances of Switches 58
4.4.3 Level 3: Simulation Including the Whole ConfigurationCircuitry 58

4.5 Cadence Design Framework . 59
4.5.1 Circuit Simulation in Cadence 59
4.5.2 Automatic Schematic Generation Using SKILL 60

5 Evolution Software Environment 65
5.1 Operation Principle of the Modular Evolution Software Framework . . . 66
5.2 The Algorithmic Side of the Evolution Software 66

5.2.1 Class Structure of the Evolutionary Algorithm 68
5.2.2 Derivation of Custom Evolutionary Algorithms 68
5.2.3 Implementation of Modular Genetic Operators 69

5.3 Analysis and Evaluation of the Genomes 70
5.3.1 Class Structure of the Testmode-Based Experimental Setup 70
5.3.2 Targeting Different Evolution Substrates 71
5.3.3 Implementation of Fitness Functions and Fitness Calculation . . . 72

5.4 Implementation and Customization of the Genotype 72
5.4.1 Class Structure of the Genetic Representation of Analog Circuits . 72
5.4.2 Derivation of Custom Circuit Components 73
5.4.3 Modular Genetic Representation of Custom FPTA Architectures . 74
5.4.4 The Genetic Representation of the Current FPTA 74

II

Contents

5.5 Control Software and User Interface for the Evolution Software 74

III Experiments and Results 77

6 Evolution of Transferable Circuits on the FPTA 79
6.1 Development of the Evolutionary Algorithm 80

6.1.1 The Basic GA . 80
6.1.2 The Turtle GA . 82
6.1.3 Shortcomings of the Basic GA 86
6.1.4 Improvements of the Turtle GA Compared with the Basic GA . . 86

6.2 Experimental Setup . 86
6.2.1 Test Modes for the Logic Gates 87
6.2.2 Test Modes for the Comparators 88
6.2.3 Simulator Setup . 89
6.2.4 Fitness Measure . 89
6.2.5 Estimation and Setup of the EA Parameters 90

6.3 Measuring the Performance of the Variation Operators ofBoth GAs . . . 93
6.4 Results for the Evolution of Logic Gates and ComparatorsUsing Both EAs 95

6.4.1 Comparison of the Results of Both Algorithms 96
6.4.2 Verifying the Evolved Circuits in Simulation 100
6.4.3 Performance of the Evolved Circuits on Different FPTAs 106
6.4.4 How the Algorithm Does FPTA Tricks 107
6.4.5 Understanding Schematics of the Evolved Circuits 109

6.5 Concluding Remarks . 112

7 Multi-Objective Optimization of the Transistor Circuits 115
7.1 The Multi-Objective Evolutionary Algorithm 116

7.1.1 Variation Operators of the MO-Turtle GA 116
7.1.2 Non-Dominated Sorting and Crowding Distance 117
7.1.3 Selection Scheme . 121
7.1.4 The Evolutionary Step . 121

7.2 A First Benchmark: the Comparators 122
7.2.1 Experimental Setup . 122
7.2.2 Results and Conclusions . 123

7.3 A Truly Multi-Objective Result: Oscillators from Scratch 126
7.3.1 Experimental Setup . 126
7.3.2 Test Modes and Fitness Calculation127
7.3.3 Implications of Multi-Objective Optimization 127
7.3.4 Results and Conclusion . 128

7.4 A Circuit with Numerous Demands: an Operational Amplifier 132
7.4.1 Setup and On-chip Test Bench 132
7.4.2 Test Modes for the Measurements on the FPTA133
7.4.3 Performance of the Multi-Objective Approach 135
7.4.4 Solutions for the Operational Amplifier 140

III

Contents

7.4.5 Schematic Extraction of Good Solutions: Deriving NewDesign
Principles? . 147

7.4.6 Concluding Remarks . 147

8 Modeling FPTA Architectures 151
8.1 A Simulation Model of the Current FPTA 152

8.1.1 Performing Experiments with the Simulation Model 152
8.1.2 Time Consumption for Different Evolution Experiments 153
8.1.3 Influence of the Parasitic Effects and its Consequences 154

8.2 Comments on the Current Architecture 155
8.2.1 Advantages . 155
8.2.2 Shortcomings and Desired Features155

8.3 A Proposal for Improvements .156
8.3.1 New Configurable Architecture 156
8.3.2 Alternative Genotype Representation for the CurrentFPTA 161

Summary and Outlook 163

Acronyms i

Appendix iii

A Pseudocode v
A.1 Evolution Software Framework .. vi
A.2 Variation Operators . x

B Additional Schematics of Evolved Circuits xii
B.1 Logic Gates . xii
B.2 Comparators . xii
B.3 Operational Amplifiers . xii

C Tracking the Course of Evolution: a Side-Result xxii

D Algorithmic Take-Outs xxiv
D.1 Logic Crossover Operator .xxiv
D.2 Subpopulation of ’Mutants’ .. xxiv

Bibliography xxv

Danksagung (Acknowledgements) xxxv

IV

Introduction

Analog circuits are the basis for any electronic device and have thereby tremendously
influenced our lives during the last decades. Electronic equipment like satellites, mobile
phones or digital cameras would simply not exist, if the technology for integrating hun-
dreds of millions of transistors, which represent the building blocks of analog circuits,
was not available. The success story of the transistor beganwith its invention in 1947 by
William Shockley, John Bardeen and Walter Brattain and withits successful integration
into a receiver circuit in 1958 [98]. Only the advent of the field effect transistor in 1971
has been the final breakthrough, due to this technology rendered the first microproces-
sor possible, namely the Intel 4004, which was built of 2.300transistors. According to
Moore’s Law [61], the transistor count has exponentially grown during the last 35 years
and this lead, for instance, to the Itanium 2 processor [38],which consists of the impres-
sive number of more than half a billion transistors.

An inevitable consequence of the rapidly increasing density of transistors is the devel-
opment of concepts and tools to effectively and efficiently organize such a great number
of components. As a consequence, large circuit designs are usually divided into smaller
subcircuits, which can be independently developed and facilitate the description of entire
systems. Furthermore, an important low level solution to the problem is to introduce logic
circuits as an abstraction layer over the transistors, which, on the one hand, greatly facil-
itates the design of digital circuits and, on the other hand,makes it possible to describe
digital circuits independent from the technology. However, in practice, the underlying
analog circuits define the specifications of the digital layer, e.g. speed, input voltage
range and noise. According to the differentiation between analog and digital design, both
approaches aim for different applications. Analog circuits are needed for any interaction
with the real world, e.g. controlling valves or a motor, creating sounds or measuring
physical quantities like light intensity, whereas almost every signal processing task can
be more easily carried out with digital hardware.

As the need for fast, customizeable signal and data processing units further increased,
field programmable gate arrays (FPGAs) emerged, which are meanwhile widely used in
various applications. FPGAs are providing a huge number of various building blocks for
logic circuits on a single substrate, which can be interconnected with a complex config-
urable routing scheme, in order to build large digital circuits. The design software, that
comes along with those chips, indeed unfolds their real power as it is possible to describe
a logic circuit with a hardware description language (HDL) on an abstract level and sub-
sequently the FPGA can be configured in a way that it becomes a physical representation
of this circuit. Additionally, it is possible to reconfigurethe device an indefinite number
of times, which offers the possibility to develop highly customizeable hardware. Once

1

Introduction

a circuit is described in a HDL, it will immediately benefit from improvements of new
technologies, if an appropriate new FPGA is available.

Driven by the intention of further automating the circuit design process, yet aiming for
reducing it to merely a specification of the desired task alongside with a suitable heuristic,
which is able to develop a solution circuit, field programmable transistor arrays (FPTAs)
entered the discipline of evolvable hardware in the 1990s. The algorithms, that are applied
for problem solving in the field of evolutionary computation(EC), derive their operation
principles from natural evolution and are widely used as model-free heuristics for solving
complex optimization tasks. Thus, they are denoted as EAs. In the case of evolvable elec-
tronics, the candidate solutions will be either represented by a configuration bit string, if
real configurable hardware is targeted (intrinsic evolution), or by a netlist, if a simulator
is used (extrinsic evolution). Moreover, the model-free nature of EAs is an advantageous
property, since this makes it possible to apply them to a great variety of problems without
including prior knowledge about possible solutions into the algorithm. As Higuchi stated
in 1992 [34], the combination of configurable hardware and evolutionary algorithms sug-
gests itself, as EAs rely on a great number of evaluations of candidate solutions, which
can be performed at high speed with a hardware evolution system. Although a real chip
is inherently limited by its fixed constraints, it offers considerable advantages: first, eval-
uation speed is significantly faster than in simulation and,second, it ensures an intrinsic
realism of the found solutions, which are bound to work at least on their particular evo-
lution platform. It shall be thereby mentioned that the fieldof evolutionary hardware
is not restricted to electronics, but also exhibits examples of the successful evolution of
e.g. antennas [7, 57, 58], that are put on a space mission, wing shapes for supersonic
aircrafts [63,66] and orbit trajectories with minimal coverage blackout for telecommuni-
cation satellites [99].

Eventually, the initial spark, that set especially the community of evolutionary elec-
tronics on fire, has been ignited by Thompson in 1999 [84–86],who not only achieved
to successfully evolve a tone discriminator on a Xilinx FPGA, but happened to find a cir-
cuit with astonishing properties. For one thing the circuitoperated without a clock signal,
which is quite unusual from a human designer’s point of view,and for another thing evolu-
tion seemed to exploit parasitic effects of the substrate inorder to get the circuit working.
Thompson found unconnected subcircuits which were nevertheless essential for proper
operation. Inspired and encouraged by this work, researchers developed various ideas for
using configurable architectures as evolution platforms for electronic circuits, e.g. cer-
tainly all sorts of field programmable analog arrays (FPAAs)(Anadigm, Cypress, Zetex
and [52,53,76,79,107]) and even a liquid crystal display inthe sense of a programmable
matter array [30,31,60]. Additionally, EAs offered new possibilities for researching fault
tolerance, build-in self test (BIST), self-recovery and adaptability [10,29,43,44,88,104]
to the field of evolutionary electronics.

The aforementioned efforts and results within this research field motivate the imple-
mentation of FPTAs as the analog counterparts to the alreadywell-elaborated FPGAs and
finally lead to the conception and design of the Heidelberg FPTA in 2001 [50–52], which
represents the analog configurable evolution substrate forthe experiments in this the-
sis. It is manufactured in a 0.6 µm complementary metal oxide semiconductor (CMOS)
process and provides 256 configurable transistor cells, which can be variously intercon-
nected and by this means it is possible to realize a great variety of transistor circuits

2

Introduction

on the Heidelberg FPTA. Aside from application specific FPAAs, where the behavior
can be tweaked, but the topology is fixed and an FPTA from the NASA Jet Propulsion
Laboratory (JPL) [76,79,107], which already consists of high-level building blocks (con-
figurable amplifier architecture), the Heidelberg FPTA is the only fine-grained substrate—
in the sense of configurable on the transistor level—in the world. The philosophy behind
preferring one of those architectures differs: the use of comparably complex cells aims
to quickly find robust solutions for problems that fit the predefined structures, but those
solutions are always bound to the constraints of the topology. Contrary to that, the single
transistor cells provide a higher degree of freedom to the evolving circuits and therefore
offer the possibility to discover new or unusual circuit topologies. However, it has to be
kept in mind that finer-grained substrates suffer from increasing parasitic effects although
this is not necessarily a shortcoming, as Thompson’s results suggest.

Analog circuit design is a discipline of electronic design,that demands a lot of knowl-
edge and experience as well as a considerable amount of creativity in solving diverse
problems from the designer. Motivated by the latter challenges, new genetic operators
are developed within this thesis aiming to facilitate the understanding of evolved transis-
tor circuits and to make it possible to transfer them to othertechnologies, that is to verify
them in simulation. Thereby, a great hope is to possibly discover any kind of new or inno-
vative design principle. Furthermore, a multi-objective approach is adapted and refined,
in order to allow for taking the numerous variables into account, that are required for op-
timizing the topology and the dimensioning of CMOS transistor circuits. It is shown that
the proposed genetic operators and the multi-objective approach can be successfully ap-
plied to the evolution of logic gates, comparators, oscillators and operational amplifiers.
It is achieved to significantly reduce the resource consumption of evolved circuits and in
some cases it is indeed possible to generate a clear schematic of good solutions. Within
this thesis, a modular framework for the evolution of circuits on configurable substrates
has been developed, which is used to perform the various experiments and is further
demonstrated to be useful for modeling FPTA architectures and subsequently assessing
their evolvability.

The thesis is organized as follows: part I introduces the principles of CMOS design
and modeling (chapter 1) and provides the ideas behind evolutionary algorithms while
emphasizing the topics, that are relevant to this thesis (chapter 2). All components of the
setup are described in part II: first, the architecture and the properties of the Heidelberg
FPTA are shown in chapter 3. Second, chapter 4 provides an introduction to the simu-
lation environment, which is used for off-chip verificationof the found solutions. Third,
the modular evolution software framework is presented in chapter 5 alongside with a
description of how to customize it. Finally, the conducted experiments and the results
are discussed in part III. Following the course of research,the new genetic operators are
introduced in chapter 6 and their performance in evolving logic gates and comparators
is compared to a straight forward implementation of the EA. Owing to the increasing
complexity of the tackled problems, i.e. the evolution of oscillators and operational am-
plifiers, a multi-objective algorithm has been developed and is discussed in chapter 7.
To conclude, the algorithm is applied to extrinsic evolution of comparators with a sim-
plified simulation model of the real hardware in chapter 8. Based on these results and
the experience gained during this thesis a proposal for an improved FPTA architecture is
presented.

3

Part I

Foundations

5

Chapter 1

CMOS Analog Circuit Design

This chapter introduces the basic concepts of CMOS analog circuit design, which
are relevant to this thesis. The focus is set on metal oxide semiconductor (MOS)
transistors and transmission gates, since those are the basic building blocks of
the field programmable transistor array (FPTA), namely the Heidelberg FPTA,
which is extensively used for the experiments in this thesisand is described in
chapter 3. Characteristics and parasitic effects of the latter devices are discussed,
due to mainly the transmission gates (switches) significantly influence the circuits
that are realized on the FPTA. Moreover, it is shown how MOS transistors can
be used—to a certain extent—as capacitances and resistors,hence, can replace
passive components. The reason for this is that no such components are directly
provided by the configurable transistor array. An additional aim of this thesis is
to verify FPTA circuits in simulation. Thus, CMOS transistor models, which are
used by simulators for calculating the behavior of analog circuits are described.
Thereby, in analog circuit design, since the aim is to reliably fabricate a fully
operational chip, it is crucial to use a suitable and sufficiently accurate model of
the respective process for simulation. Lastly, an overviewof the CMOS design
flow is given, since this work aims at automating several design steps by means
of evolutionary algorithms.

During the last two decades, CMOS processes gained importance in the field of very large
scale of integration (VLSI) technology, due to some great advantages: on the one hand,
the structures in CMOS processes are steadily shrinking andtherefore the density of tran-
sistors increases. Current technology makes it possible tointegrate millions of transistors
on one single die (chip). On the other hand, field effect transistors feature a zero cur-
rent gate, thus, can be successfully applied as well for highly intergrated digital designs.
The latter feature has become crucial for implementing systems on a chip, which consist
of both, analog and digital circuits on the same substrate. Such systems are denoted as
mixed-signal systems. The information presented in this chapter is mainly based on the
foundations from [4,81,82].

7

1.1 Physical Representation of the CMOS Transistor

1.1 Physical Representation of the CMOS Transistor

MOS transistors are four terminal electrical devices, which are either used as voltage
controlled resistors or current sources in analog circuitsand can be realized either as
n-channel or p-channel devices in CMOS technology. A lightly dopedp− substrate isp-channel or n-channel

devices used in CMOS technology, thus, the n-channel transistor canbe directly formed with two
heavily dopedn+ regions, as can be seen from figure 1.1. In the case of the p-channel
transistor, which is realized with two heavily dopedp+ regions, an additional lightly

Figure 1.1: Top: the symbolic view of a PMOS and an NMOS transistor.Middle: a substrate
cross section through a PMOS and an NMOS transistor.Bottom:the parasitic device capacitances
are shown, using the NMOS transistor as an example. Parts of the illustration are taken from [49].

8

CMOS Analog Circuit Design

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

V
DS

 [V]

I D
 [u

A
]

BSIM 3v3
LEVEL 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

−V
DS

 [V]

−
I D

 [u
A

]

BSIM 3v3
LEVEL 3

Figure 1.2: Example output characteristics of a PMOS (left) and an NMOS transistor (right) with
W = L = 2µm are graphed forVGS = 1,2,3,4,5 V. Thereby, the source voltage of the NMOS
was gnd and the source of the PMOS was tied to vdd. Furthermore, the iD− vDS characteristics
for two simulation models, namely the SPICE level 3 model andthe industrial standard BSIM3v3,
are compared.

dopedn− well is necessary. The heavily doped regions are named source (S) and drain
(D), while the substrate resp. the n-well is named bulk (B). At the surface, a gate electrodefield effect transistor

with isolated gate(G), which is separated from the substrate by a dielectric material (silicon dioxide) lies
between source and drain.

Considering the n-channel transistor with all four terminals connected to ground, at
equilibrium, the source and drain are separated by the depletion regions of the two back-back-to-back pn

junctionsto-back pn junctions. Hence, the resistance between sourceand drain is very high (>
1012 Ω). Thereby, the gate and the substrate form a capacitor (COX), enclosing the silicon
dioxide as dielectric. If a positive potentialVGS is applied between gate and source, holes
will be pushed away from the Si−SiO2 interface, thereby forming an additional depletion
region, that is inverse to those from the pn-junctions. Considering the one-dimensional
case, the charge densityρ of the latter depletion region is given by

ρ = q(−NA), (1.1)

with the carrier chargeq and the doping strengthNA. The resulting electric field can beelectric field

obtained by applying Gausses law and determining the integration constant C by evalu-
atingE(x) at the boundaries of the depletion region (x = 0 at Si−SiO2 andx = xd at the
depth of the depletion region in the bulk).

E(x) =

∫ x

0

ρ
ε

dx=

∫ x

0

−qNA

εSi
dx=

−qNA

εSi
x+C (1.2)

with C =
−qNA

εSi
xd (1.3)

E(x) =
qNA

εSi
(xd−x) (1.4)

Relating the electrical field to the Fermi potential (ΦF) and the surface potential (ΦS)
yields

−
∫ xd

0
E(x)dx=

∫ ΦF

ΦS

dΦ =−qNAxd
2

2εSi
= ΦF −ΦS, (1.5)

9

1.1 Physical Representation of the CMOS Transistor

thereby, the Fermi potentials of the semiconductor are given as

p-type: ΦF = −Vt ln

(

NA

ni

)

(1.6)

n-type: ΦF = Vt ln

(

NA

ni

)

. (1.7)

Further, assuming|ΦS−ΦF ≥ 0|, xd can be calculated from equation 1.5.

xd =

√

3εSi|ΦS−ΦF |
qNA

(1.8)

The charge underneath the gate can be calculated by inserting the immobile charge of the
acceptor ions

Q =−qNAxd =−
√

2qNAεSi|ΦS−ΦF | (1.9)

If a threshold voltageVTS is applied to the gate, the substrate between source and drain
will become inverted, hence, a n-type channel exists, that allows carriers to flow. This
condition is referred to asstrong inversion. In order to achieve this, the surface potentialstrong inversion

must become at leastΦS =−ΦF . Thus, ifvGS = VT , Qb0 will be

Qb0 =−
√

2qNAεSi|−2ΦF | (1.10)

and in case of a reverse biased pn junction with an accordingvSB, this becomes

Qb =−
√

2qNAεSi|−2ΦF +vSB| (1.11)

Finally, an expression for the threshold voltage can be given by taking the components ofthreshold voltage

VGS into account that are necessary to achieve inversion: first,the difference in the work
functions between the gate material (polysilicon) and the bulk silicon, denoted asΦPOLY.
Second, the gate voltage of−2ΦF− Qb

COX
, which is necessary to change the depletion-

layer charge. Third, there is an additional voltage−QSS
COX

, taking the additionalVGS into
account that is caused by material impurities. Thus, using equations 1.10 and 1.11,VT

can be expressed as

VT = VT0 + γ
(

√

|−2ΦF +vSB|−
√

|−2ΦF |
)

(1.12)

with VT0 = ΦPOLY +−2ΦF −
Qb0

COX
− Qimpurities

COX
(1.13)

and γ =

√
2qεSiNA

COX
, (1.14)

which is defined as the body-effect coefficient or the bulk-threshold parameter.
Consequently, if inversion is achieved and a voltagevDS is applied between drain andinversion of the

substrate type source, a currentiD will be able to flow across the channel. Example I-V characteristics
are depicted in figure 1.2. It is now assumed that the channel has the width W andvDS is
small. The charge per unit areadl of the channel length can then be expressed by

Qiy = COX (vGS−v(y)−VT) (1.15)

10

CMOS Analog Circuit Design

and therefore, the voltage drop along the channel length is

dv(y) = iDdR=
iDdy

µnQi(y)W
. (1.16)

Thereby,µn is the average carrier mobility in the channel. Solving the latter equation and
integrating along the channel from 0 to L, resp. 0 tovDS, results in

iD =
µnCOXW

L

[

(vGS−VT)vDS−
v2

DS

2

]

, (1.17)

which is called the Sah equation and has been developed by Shichman and Hodges [81] asthe Sah equation, drain
currenta model for computer simulation. Note that equation 1.17 is only valid whenvGS≥VT and

vDS≤ (vGS−VT). Thereby, the factorµnCOX is defined as the device-transconductance
parameter, given as

K′ = µnCOX =
µnεOX

tOX
. (1.18)

For a detailed description of the physical CMOS model, especially consequences of
latch-up, temperature and noise, the reader is referred to [4, 81, 82]. Note, that the n-NMOS and PMOS

transistorschannel devices are generally denoted as NMOS transistors,whereas the p-channel de-
vices are denoted as PMOS transistors.

1.1.1 Operation Regions

Furthermore, the relation betweenvGS
1 andvDS defines the operation region of the tran-

sistor. Note that the conditions forvGS andvDS in the following are valid for an NMOS
transistor, thus, in the case of a PMOS transistor, the relational symbols have to be in-
verted. A number of 4 operation regions are distinguished: first, thecutoff region, where cutoff

vGS = 0 V and the channel resistance is greater than 1012 Ω. Hence, there is no inversion
at all andiDS = 0 A. Second, theweak inversionregion, for which 0< vGS < VT +nVth

2, weak inversion and
strong inversionthus, the absolute drain currents are relatively low and they are exponentially depending

on the gate source voltage. Third, forvGS≥VT + nVth, the substrate is actually inverted
and the transistor is in thestrong inversionstate, which features a parabolic character-
istic for vDS ≤ vGS−VT . This operation region is also calledlinear or ohmic region,
since the drain source current is almost linear for smallvDS. As the termohmicalready
suggests, the transistor can be used as voltage controlled active resistor in this operation
mode. Fourth, ifvDS≥ vGS−VT > 0, iDS will not further increase and the transistor is in
saturation. In this case, the transistor resembles a voltage controlled current source. saturation

The influence of the different operation regions is not limited to the so-called large sig-
nal model presented above. Higher order effects, dynamic behavior and the various intrin-
sic device capacitances are also depending on the operationmode of the transistor. Some
important small signal parameters, e.g. the channel transconductancesgm = ∂ iD/∂vGS

andgds = ∂ iD/∂vDS strongly depend on the transistor’s operation mode. Further, even

1 A lower case letter indicates that the quantity is variable,whereas an upper case letter stands for a constant
value.

2 n is the so-called subthreshold slope parameter. It is process specific and it is needed for modeling the
exponential behavior of the I-V characteristic inweak inversion.

11

1.1 Physical Representation of the CMOS Transistor

Figure 1.3: Left: the large signal model of a transistor, which is used to find the DC operating
point. Right: a linearized small signal model, on which the equations for computer simulations
are based. Note that the small signal model equations are depending on the DC operating point.

device mismatch on the silicon die3 causes threshold voltage variations, that may lead to
infeasible strong sensitivity to small variations ofvGS.

1.1.2 Parasitic Capacitances

The presented large signal model includes several characteristics of the MOS transistor,large signal model

such as parasitic capacitances of boundaries, channel resistance and noise. A complete
large-signal model is depicted in figure 1.3. Thereby, the diodes are used for modeling
the leakage currents and must always be reverse-biased for proper transistor operation.
The leakage currents are given by

iBD,BS = Is
[

exp
(qvBD,BS

kT

)

−1
]

(1.19)

whereIs is the saturation current of a pn junction, q is the charge of an electron, k is the
Boltzmann constant and T is temperature in Kelvin units.

The resistorsrD and rS correspond to the ohmic resistance of source and drain and
are only important for high drain currents. Typically, their resistances are in the order
of 10Ω. The capacitors, formed by the several interfaces, are depicted in figure 1.1 and
in figure 1.3. There are three types of such capacitances: first, CBD andCBS, whichcapacitance of the

depletion region are formed by the depletion regions of the reverse-biased pnjunctions of source and

3 A ’die’ is a small piece of silicon, on which the fabricated circuit is located and which is cut out of the
wafer. The dye has to be put in a package and to be connected to its pins, in order to operate it. The wafer,
in turn, is a slice of an artificially grown silicon mono-crystal, on which the circuit is built by means of
photo lithography and chemical deposition of the differentlayers (metal, polysilicon, silicon-oxide).

12

CMOS Analog Circuit Design

drain respectively. Those capacitances are a function of the reverse-bias voltage and are
additionally influenced by their side boundaries to the depletion region, which is denoted
assidewall effect, and can be described with

CBD,BS =
WLdiff

(1+VD,S/Φb)MJ ·CJ+
2(W +Ldiff)

(1+VD,S/Φb)MJSW ·CJSW, (1.20)

where, W andLeff define the geometry of the terminal diffusion andVD,S denotes the
terminal potential. The parameters MJ, MJSW, CJ, CJSW, CGXO4 andCOX are process
dependant constants andΦb is the working potential of the bulk. The first addend of 1.20
accounts for the area junction at the surface of the terminaldiffusion, while the second
addend represents the sidewall effects.

Second, the capacitors related to the gate, which are dependent on the operating regionparasitic gate
capacitancesof the transistor, namelyCGD,CGS andCGB. Those capacitances, in turn, can be calculated

from COS, COX andCOD according to

CGB =











COXWeffLeff +CGS+CGD = COXWeffLeff +LeffCGBO off

CGS+CGD = LeffCGBO saturation

CGS+CGD = LeffCGBO nonsaturated

(1.21)

CGS =











COSWeffLeff = WeffCGSO off

COSWeffLeff +
2
3COXWeffLeff = WeffCGSO+ 2

3COXWeffLeff saturation

COSWeffLeff +
1
2COXWeffLeff = Weff(CGSO+ 1

2COXLeff) nonsaturation

(1.22)

CGD =











CODWeffLeff = WeffCGDO off

CODWeffLeff +
2
3COXWeffLeff = WeffCGDO+ 2

3COXWeffLeff saturation

CODWeffLeff +
1
2COXWeffLeff = Weff(CGDO+ 1

2COXLeff) nonsaturation

(1.23)

(1.24)

and account for the gate-source and gate-drain overlap as well as for the gate-bulk capac-gate-source and
gate-drain overlapitor. Again, the values CGSO, CGDO, CGBO andCOX are process dependent parameters

with the unit F
m. Thereby,COX represents the third type of capacitance, which is depend-

ing on the device geometry—the polysilicon of the gate and the bulk silicon form a plate
capacitance, with theSiO2 as dielectric—, but not on the operation mode.

1.1.3 Large Signal and Small Signal Model.

As yet, the large signal model of MOS transistors is considered, which is used for finding
the DC conditions, hence, the DC operating point of the device. Additionally, a linearized linearized model

small-signal model, graphed in figure 1.3 is available, in order to simplify calculations
after the DC operating point is found. The parameters of bothmodels are closely related
albeit the small-signal model is only valid for small changes in the vicinity of a given
operating point. Consequently, the values of the small-signal parameters strongly depend
on the given DC operating point and can take on several alternate forms. Note that the

4 MJ=bulk-source/drain grading coefficient, MJSW=MJ for sidewalls, CJ=zero bias, bulk-source/drain ca-
pacitance and CJSW=CJ for sidewalls.

13

1.1 Physical Representation of the CMOS Transistor

corresponding large-signal subscripts will be lowercase in the small-signal case. Thus,
the small signal channel transconductances are given as

gm =















∼=
√

2K′ID W
L DC current

— DC current and voltage
∼= K′W

L (VGS−VT) DC voltage

(1.25)

gmbs =























— DC current
γ
√

(2IDβ)

2
√

2|ΦF |+|VSB|
DC current and voltage

γ
√

β(VGS−VT)

2
√

2|ΦF |+|VSB|
DC voltage

(1.26)

gds =











∼= λ ID. DC current

— DC current and voltage

— DC voltage

(1.27)

(1.28)

Thereby,K′ = µCOX is the transconductance,γ is the bulk threshold, 2|ΦF | is the strong
inversion surface potential,λ is the channel length modulation andn is the subthreshold
slope process parameter. In practice, process parameters are obtained from measuring
the properties of the target technology and fitting the numerical model. The process
parameters will be provided by the chip manufacturers, if a chip is fabricated with one of
their processes.

1.1.4 Possible Configurations

a) NMOS−T e) shortedb) diode c) capacitor d) open

Figure 1.4: As can be seen from the figure, a CMOS transistor can be configured as diode,
capacitor or as pass transistor (switch, open/closed).

In practice, the bulk of a transistor is connected to vdd (PMOS) or to gnd (NMOS),
whereas the three remaining terminals source, drain and gate are used for assembling
transistors to circuits. Possible configurations of the MOStransistor are depicted in fig-
ure 1.4. Transistors can be configured as diodes or capacitors, although those componentsdiodes, capacitors and

active resistors could also be fabricated without using a transistor structure. Examples for the different
configurations are depicted in figure 1.4. Contrary to that, it is not possible to integrate
resistors with a sufficiently high resistance on the dye, dueto the fact that the sheet resis-
tance of polysilicon is very low in standard CMOS processes.If resistances greater than
a few kΩ are desired, either a specialized process will have to be chosen, that features an

14

CMOS Analog Circuit Design

additional layer of high-resistive polysilicon, or transistors will have to be used as active
resistors, as described in section 1.1.1. Thereby, the transistor has to be operated in the
linear region, in order to achieve the desired I-V characteristic. Furthermore, it is possible
to realize resistors as switched capacitors, which providea high degree of linearity, al-
though such circuits require nonoverlapping clock signalswith a much higher frequency
than the voltage variations. Switched capacitors are mostly used in telecommunication
applications.

1.2 Realizing Switches with Transmission Gates

Transmission gates are one of the most important circuits ofthe FPTA chip, which is used
for the experiments in this thesis and is introduced in chapter 3. The reason for this is that
the manifold configuration options of the transistor array are provided by a large number
of switches, hence, transmission gates. Thus, it is possible to realize a great number ofrealizing the

configurability of the
FPTA

almost freely scalable circuits on the FPTA simply by opening or closing the according
switches. One pass transistor, which is closed by applying vdd/gnd (NMOS/PMOS) and
opened by applying gnd/vdd to the gate (NMOS/PMOS), as depicted in figure 1.4, is
the most simple realization of a switch. A major drawback of the latter approach is the
limited input voltage range, due to the constraintVGS>VT (NMOS) orVGS<VT (PMOS).
This can be overcome by combining both, NMOS and PMOS, in order to compensate
the limitedVGS of the respective other transistor. Consequently, as can beseen from
figure 1.5, transmission gates consist of a PMOS and an NMOS transistor in parallel,
which are opened and closed with gate voltages of opposite polarity respectively.

1.2.1 Parasitics of Transmission Gates

As can be seen from the small signal model of transmission gates in figure 1.5, these
switches possesses several parasitic capacitances and, inthe on state, a finite parasitic
resistance. Since, in the case of a transmission gate, the gate voltages are either vdd or
gnd, the transistors can be considered to be either in the cutoff or in the linear operation
mode. The on-resistance of a transmission gate can be obtained from equation 1.17:

ron = rDS =

(

∂ iD
∂vDS

)−1

=

(

K′
W
L

(vdd−vS−VT −vDS)

)−1

. (1.29)

Thereby, the channel length modulationλ is omitted. The total parasitic capacitance is
obtained by simply adding the according parasitic capacitances from section 1.1.2.

The parasitics of transmission gates are of great importance to this thesis, due to the
fact that they are extensively used as switches for realizing the configuration options of
the FPTA, which is used for the presented experiments and is introduced in chapter 3.
The on-resistance is considered to greatly influence the circuits, that are configured onon-resistance

the transistor array, since the mean on-resistance of the switches is about 330Ω5. Due to
this fact, the latter resistances have to be considered for testing FPTA circuits in SPICE
simulations, in order to obtain the correct behavior. The SPICE simulations are described

5 The mean on-resistance of the gate switches is 2310Ω. However, the influence of the gate resistance is not
as significant as the source and drain resistances.

15

1.3 CMOS Transistor Modeling

Figure 1.5: The realization of an open and a closed CMOS switch as transmission gates is de-
picted. Additionally, small signal models of an open and a closed switch are provided respectively,
in order to illustrate the parasitic capacitances and resistances of such switches.

in chapter 4, section 4.4. Contrary to that, it is assumed that the parasitic capacitances
are negligible, since their signal bandwith is estimated tobe f-3 dB = 66.7 MHz (see [49],parasitic capacitances

chapter 1), while the configured circuits are operated at a maximum speed of 4 MHz.

1.3 CMOS Transistor Modeling

The large-signal model of the MOS transistor, which is previously described in sec-
tion 1.1, is useful for getting an insight into the operationprinciples of those devices and
for hand calculations, although important second-order effects are not covered. Thus,
more accurate simulation models are required for successfully fabricating application
specific integrated circuits (ASICs). Consequently, the fabrication facilities provide ac-
cording simulation parameters for their target processes to the designer. As yet, SPICE
simulators support more than 60 different models, which cover different technologies and
complexity levels. Each model consists of parameterized mathematical equations and ac-
cording target technology dependent parameters, that are extracted by researchers at the
respective fabs. While the mathematical model is included in the SPICE simulator and is
most often public domain, the parameters themselves are company property.

The main shortcoming of the large-signal model from section1.1 is the fact that it is no
longer valid for small device sizes down to 0.8 µm and moreover does not include effects
like velocity saturation and intrinsic parasitic resistances. Consequently, more complexsimulation models with

increasing complexity
and accuracy

models have been developed, which provide the possibility to accurately describe the
behavior of devices with sizes down to 0.1 µm. Thereby, important models are: first,

16

CMOS Analog Circuit Design

the SPICE level 3 model, which covers the range down to about 0.8 µm. Second, the
BSIM3v3 model, which covers the range down to 0.25µm and, finally, the BSIM4v4
model, which is valid for device sizes down to about 0.1 µm. Two models are briefly
introduced in the following, namely the SPICE level 3 model,which is already quite
accurate and is not yet too complex, and the BSIM3v3 model, which is used for the
process, with which the FPTA of chapter 3 is fabricated. The BSIM model is not presented
in detail, due to the volume of complex equations, that are necessary to describe it. A
more detailed description of the BSIM equations can be foundin [9,24].

1.3.1 SPICE LEVEL3 Simulation Model

Contrary to the basic large-signal model of the MOS device, narrow and short channel ef-
fects (< 3µm) as well as temperature effects are considered in the SPICElevel 3 model.
Therefore, numerous additional parameters have to be takeninto account for the calcula-
tions and also the equations have to be accordingly modified.The main parameters and
considerations of the level 3 model are shown in table 1.1. Despite the fact that the level 3
model already includes numerous process parameters, like substrate properties and oper-
ating conditions, e.g. temperature and saturation, it is only valid for structures not smallervalid down to0.8 µm

than 0.8 µm. Consequently, as structures of up-to-date processes areshrinking down to
60 nm and also the FPTA chip, which is used for the experimentsin this thesis, is fabri-
cated with a smaller 0.6 µm process, the BSIM3v3 model is briefly introduced in the next
section.

1.3.2 BSIM3v3 Simulation Model

The equations of the BSIM3v3 model are far more complex, due to the fact that all
relevant parasitic effects down to structures of 0.25µm are included. As a consequencevalid down to0.25µm

of this, 93 parameters are necessary to describe a PMOS or NMOS transistor with the
BSIM3v3 model. In addition to the device parameters, capacitances and resistances of
metal lines are also taken into account for the parasitic extraction of circuits. Moreover,
the BSIM3v3 model can be successfully applied for simulating both analog and digital
circuits and therefore has become the industry standard MOStransistor model. The most
important deep-submicron effects, that are included in theBSIM model are listed in the
following:

• threshold voltage reduction
•mobility degradation due to a vertical field
• carrier velocity saturation effects
• drain-induced barrier lowering
• channel length modulation
• subthreshold (weak inversion) conduction
• parasitic resistance of source and drain
• hot-electron effects on output resistance

17

1.4 CMOS Design Flow

characteristic considerations

drain current

W/L is replaced with the effective size of the device,
by subtracting the gate overlap regions. For the cal-
culation of the effective drain-source voltage (veff

DS),
the narrow-width threshold adjustment factor for the
channel, the substrate doping concentration and the
actual extent of the diffusion and metallurgical junc-
tion is taken into account.

threshold voltage

In addition to the geometrical implications, which are
described for the drain current calculation, the intrin-
sic threshold, based on the work function of the sub-
strate and the static feedback threshold adjustment is
considered.

effective carrier mobility

Depending onveff
DS, the mobility of the minority

charge carriers degrades. Thus, it is accounted by an
effective carrier mobility. Moreover, the carrier mo-
bility is temperature dependend, which is considered
by a temperature coefficient.

saturation voltage
Again, the implications ofveff

DS are presumed. Addi-
tionally, the reduced charge carrier mobility is con-
sidered for the calculation of the saturation voltage.

channel length modulation
The channel length variation depends on the differ-
ence betweenveff

DS andvsaturation
DS and therefore a satu-

ration field factor is included in the model.

weak inversion

The transition between thecutoff and thestrong in-
version region of a transistor, namely theweak in-
version is also included in the level 3 model. This
is achieved by providing additional equations and a
subthreshold slope factor, which are used to model
the exponential behavior ofiD in the weak inversion
region. Thereby,weak inversionwill be reached, if
vGS is close to the threshold voltage (VT).

Table 1.1: The main parameters and considerations of the level 3 model are shown. Although, the
level 3 model already considers numerous process parameters, it is only valid for processes above
0.8µm.

1.4 CMOS Design Flow

Nowadays, there are actually four independent ’realities’in which a circuit exists: a be-
havioral model, the schematic, the layout and the final ASIC.First, the behavioral modelbehavioral model

describes the desired properties of the circuit in an abstract modeling language. Second,
the schematic is a symbolic sketch of interconnected components. It contains the informa-schematic

tion about the circuit architecture, the type of the components and their basic component
parameters, e.g. the W/L ratio of transistors and the valuesfor capacitors and resistors.

18

CMOS Analog Circuit Design

Figure 1.6: The design flow for an ASIC is shown. The first step represents the conceptional
stage, where the desired behavior of the chip is described. The necessary types of circuits are
designed and are divided and structured in hierarchical schematics in the second step. First simu-
lations can be performed with both the behavioral model and the schematics, hence, with the first
two design loops it is achieved to remove conceptional faults. Subsequently, an according layout
of the circuit has to be drawn, in order to define the physical representation of the ASIC and to
be able to extract the whole parasitic information from it. Thereby, the third design loop will be
closed, if all specifications are met. Finally, after the manufacturing facilities have fabricated the
real chip, it can be tested in the real world and shipped, oncethe fourth design loop of testing is
completed.

At this level, it is already possible to predict the behaviorof the drawn circuit by using
the equations from section 1.1, although the circuit is not yet specified for all physical
properties of a target technology in the real world. Third, the layout of a circuit is a floor- layout

plan of the different layers of metal, silicon-oxide, polysilicon and diffusion, that shall be

19

1.4 CMOS Design Flow

piled up on a silicon substrate (wafer), in order to fabricate the fourth representation of the
circuit, namely the actual ASIC. For a successfull transferof a circuit from the schematic
to an operational chip, powerfull design tools are available, in order to deal with the—
still increasing—high complexity of current systems, for which millions of transistors are
intergrated on one single die. Those tools consist of editors for creating schematics, CAD
tools for drawing the layout and comprehensive simulation environments, which allow for
creating various test benches and for considering all significant parasitic effects. In order
to achieve this, numerous steps are necessary: first, a validity check of the schematic and
a design rule check (DRC) have to be successfully performed.Second, the components
of the schematic have to be identified in the layout. This process is denoted as layout ver-
sus schematic (LVS). Subsequently, all device parasitics can be extracted from the layout
with the layout parameter extraction (LPE). If the LVS and the LPE are done, simulations
of back-annotated layouts6 can be carried out and therefore crosstalk, parasitic layerand
wire capacities as well as device mismatching are included in the simulation. Those ex-
tensive simulation and verification methods provide an elaborate design flow, graphed in
figure 1.6, that reliably yields fully operational ASICs.real world chip

6 The term ’back-annotated layout’ denotes a layout in which,on the one hand, each component is identified
with its respective representation in the schematic and, onthe other hand, all parasitic effects, which are
extracted from the layout, are provided for simulation.

20

Chapter 2

Evolutionary Algorithms

The operation of an EA is inspired by the principles of natural evolution. This
chapter introduces these principles on the macroscopic level, where organisms
have to cope with the challenges of their environment, and onthe microscopic
level, which provides and develops the construction plans for building those
organisms. Furthermore, it is shown how the ideas, which aredrawn from
the mechanisms of natural evolution, can be formulated as anevolutionary
algorithm. The main constituents of such an algorithm are described and some
extensions to the basic principle are presented. Theoretical considerations of
desireable properties of an evolutionary approach are made, in order to substan-
tiate their suitability for a great variety of tasks. The performance of evolutionary
approaches as global optimizers and their properties as model-free heuristics are
discussed. Moreover, the consequences of feasible and infeasible solutions are
described and it is shown how infeasible solutions can be handled. A solution,
of which not all properties can be tested in a given environment, is thereby de-
noted as infeasible solution. The focus is set on analog circuit evolution whenever
examples are given in this chapter.

Evolutionary algorithms became very popular during the last 20 years, due to their rep-
utation for being general purpose automated problem solvers. The advent of genetic
programming (GP) [47] even lead to the opinion that EAs can beused as sources of in-
vention. Indeed, EAs have been successfully applied to a great variety of optimization
problems as, for instance, search, engineering design, scheduling and neural network
training. The most intriguing advantage of using EAs is their generality, i.e. good solu-
tions can be found without prior knowledge about the tackledproblem. The latter gen-
erality will be an important property, if either the problemis too complex to be able to
develop a simple solution, or it is desired to find unconventional or alternate designs.

21

2.1 Inspiration from Natural Evolution

2.1 Inspiration from Natural Evolution

The manifold algorithmic approaches within the field of EC are inspired from natural
evolution mechanisms. Hence, the vocabulary is also borrowed from natural genetics.
Natural evolution achieved to produce an enormous variety of species, which are perfectlythe variety of species

matched to their ecological niches. It is noticeable that about 2 million different species
are currently living on earth and it is estimated that, including those which already again
vanished, there existed in the order of a billion more. Natural evolution has obviously
been able to develop these species in a manner that they are able to coexist by fitting
into different ecological niches. However, there is interference and concurrence between
different species. Moreover, the environment is steadily changing and therefore, each
species has to be continuously adapted, in order to be able tosurvive. Looking at nature’s
achievements from an algorithmic point of view, evolution found solutions, represented
by the individuals of the different species, to a given problem specification, namely to
survive in a present environment. Thus, it is an interestingidea to see natural evolutionnatural evolution as a

general optimizer as a general optimization algorithm. The question is now, onthe one hand, how the
natural concepts can be implemented in an algorithm and, on the other hand, if such an
evolutionary algorithm will be suitable for solving problems. First of all, it is necessary
to take a more detailed look at how natural evolution actually works and to derive its main
principles.

2.1.1 Darwinian Evolution

Charles Darwin proposed his theory”On the Origin of Species”in 1859 which is, along-
side with the insights of molecular genetics, the foundation of evolutionary biology. An
essential statement of Darwin’s model of natural evolutionis the survival of the fittest, i.e.natural selection:

survival of the fittest those individuals, which are best adapted to their environment will more likely reproduce
and survive. This phenomenon is denoted as natural selection and will necessarily occur,
if a population of individuals has to compete for a limited amount of ressoures and has
to escape from the same predators. Thereby, the basic driving forces of reproduction and
the will to survive is presumed to exist—at least to a certainextent—in all individuals.

Furthermore, if there was always only the same pool of individuals producing off-
spring, the individuals would, on the one hand, be able to specialize to their ecological
niche but, on the other hand, the population would not be ableto develop truly new fea-
tures in order to adapt to a changing environment, since no really new genetic information
would arise within the individual’s genomes. Nevertheless, species are able to adapt to
changing or different environments, due to a second important phenomenon, that actually
introduces random changes to the individuals, namely mutation. The latter effect takesvariation through

mutation place with a certain probability during reproduction and results in a variation of traits in
the offspring generation. As a consequence of iterated reproduction, mutation and natural
selection, the traits of the individuals of the current generation, which produce offspring,
are preserved. Thus, their traits are newly combined and slightly modified present in the
next generation. The various individuals of the new generation then have to face the chal-
lenges of their environment, hence, solely the advantageous traits of those, which survive
long enough to again produce offspring, are preserved, while other features are discarded.

All higher life-forms reproduce by sexual mating. Thus, allindividuals, which are

22

Evolutionary Algorithms

able to produce offspring with each other belong to the same species. Consequently, it
will be principally possible that new species arise, if the diversion of subpopulations of
one species reaches a point where sexual reproduction between those subpopulations is
no longer possible. Geographical separation can be a reasonfor the latter effect. It is
believed that fundamental diversification of the species has already taken place at a varydiversification of the

speciesearly stage of life and once there were no free ecological niches left, there was no room
for new species. Therefore, nowadays it has become unlikelyalbeit not impossible that
entirely new species evolve.

Concluding, a species evolves by means of reproduction, random variations and natu-
ral selection. Thereby, natural selection affects the individuals, while the population as
a whole is evolved. The three stated mechanisms of evolutionare already featuring al-
gorithmic characteristics, due to the presence of an iterated evolution loop, modification
and selection operations. The individuals can be considered as candidate solutions to a
given problem, although the suitable data structure can only be delivered by looking at
the construction plan of the individuals themselves that istheir genome.

2.1.2 The Genetic Level

The Darwinian principles, that describe a macroscopic viewon evolution, go together
with molecular genetics, which describe the evolution mechanisms from the microscopic
point of view. First of all, it is an important fact that all living organisms actually feature
two representations of themselves: first, the physiological and morphological appearance,genotype and phenotype

representation of
organisms

conjoined with the organisms behavioral traits is denoted as phenotype. Second, the
genotype, which contains the genetic encoding of the complete information of how to
develop the phenotype from one single zygote1 . All information about the organism,
which is stored in the genotype, resp. the genome, can be inherited by its offspring and is
thereby subject to random crossover and mutation. Additional skills, that the phenotypevariation of the

genotype, selection of
the phenotype

gains during its lifetime, are not influencing the genome andare therefore lost by its death.
Its genetic information will also be lost unless the organism produces again offspring and
passes its genome to the next generation. Thus, from molecular genetics point of view,
the organism with its skills and experiences is merely a prototype, the construction plan
of which will only be worthy to be preserved, if the organism succeeds in the challenges
of the natural environment.

The genome consists of a set of genes, which are linearly arranged in several chromo-genes and chromosomes

somes. The number of chromosomes may vary from species to species, e.g. the human
genome features 23 of them. Depending on the number of copiesof the chromosomes,
which are kept within each cell of an organism, it is called haploid (one copy) or diploid
(two copies). Higher life-forms usually include two copies—a maternal and a paternal
copy—of each chromosome in their cells, except for the gametes, which contain either
only the paternal or only the maternal copy. Note that the gametes are haploid cells, i.e.haploid gametes

egg cells and sperms, which are specialized to reproductionand contain only one version
of the chromosome of the otherwise diploid cells. As a consequence of this, the repro-
duction mechanisms of haploid and diploid organisms differ. In the first case, the haploid

1 A zygote is the haploid stem cell, which is formed by the course of fertilization where the haploid sperm
cell and the haploid egg cell are merged.

23

2.1 Inspiration from Natural Evolution

Figure 2.1: The process of meiosis is illustrated in 4 steps, which are clockwise arranged.(1) The
gametes of the mother and the father form a new cell, which then contains maternal and paternal
genomes.(2) Subsequently, the chromosomes are split into chromatides and are aligned in that
way that the same genes form pairs.(3) In this state, the chromosomes are subject to crossover
processes between maternal and paternal genes, which is marked with the box. Additionally,
mutations occur due to a certain probability as indicated with the ellipse.(4) The chromatides are
completed with the respective base pairs and finally yield chromosomes for 4 new haploid cells.
Note that the genetic information is typically stored as a long DNA chain, which, in turn, consists
of four base pairs: guanine (G)-cytosine (C), thymine (T)-adenine (A), C-G and A-T.

cell first duplicates its genome and subsequently divides itself into two genetically iden-
tical cells, by providing each half one copy of the genome respectively. This process is
denoted as mitosis. Reproduction is a little bit more complex for haploid cells, due to a
female and a male organism are necessary for sexual mating. The latter process is called
meiosis and is shown in figure 2.1. Meiosis takes place in several steps: first, a female andmeiosis

a male gamete have to combine their chromosomes, in order to form a new diploid cell,
which contains both a maternal and a paternal chromosome. Second, the chromosomes
are duplicated and are aligned, i.e. those, which contain the same genes, form pairs.
Third, the aligned chromosomes are split into identical halves (chromatides) and subse-
quently, genes are swapped between maternal and paternal chromosomes copies by means
of crossover. Thereby, the crossing points are chosen randomly. Finally, the 4 counter-
parts to the chromatides are built and are recombined to fourchromosomes, hence suffice
for either four haploid or two diploid cells. Furthermore, during meiosis, the duplication
and recombination processes of the chromosomes are subjectto infrequent errors, caus-
ing slight random modifications in the genes of all four resulting chromosomes. Those
various types of modification processes are denoted as mutations.

24

Evolutionary Algorithms

2.1.3 From Genotype to Phenotype

As described in the previous section, recombination (crossover) and mutation affects ex-
clusively the genome, whereas only the phenotype is subjectto natural selection. It is im-
portant to realize that information is only passed from genotype to phenotype and neverone-way information

passingvice versa. Thus, the developmental process from genotype to phenotype is itself of
utmost importance to the success of natural evolution. Verycomplex self-organization
processes, which are not yet fully understood, are buildingthe phenotype with the infor-
mation stored in the genome. It is amazing that the set of rules for development are orga-rules for development

nized in a manner that the complete set of genetically encoded properties is reflected by
the resulting phenotype. However, due to the inherent randomness of self-organization,
no phenotype will turn out exactly like any other, even if their genomes are similar or
even identical. The latter process provides rich possibilities for natural selection to sort
out the fittest individuals.

This developmental process is denoted as ontogenesis and isdriven by amino acids.
Those amino acids are generated by first transcribing snippets of the genetic encoding,
i.e. creating copies of it. Note that the genetic information is most often referred to as the
desoxyribonucleic acid (DNA), whereas the copied parts arecalled messenger ribonucleic
acid (RNA). Subsequently, the RNA is translated into different amino acids, which are
then concatenated to a great variety of proteins. An important property of those proteinsproteins cause

self-organizing cell
differentiation

is their ability to perform various tasks within the cell by taking on different shapes. The
generation of proteins is a self-organized process; A certain concentration of a protein
may excite or inhibit the generation of other proteins. By this means, the cells are able
to differentiate, thus, become e.g. a liver, blood or skin cell, which is crucial for creating
complex organisms. Since this genotype phenotype mapping is a fascinating process,
albeit equally complex, a lot of research in the field of evolutionary computation is done
to create suitable rule sets for self-organization.

2.2 Building Evolutionary Algorithms on Nature’s Concepts

From an algorithmic point of view, the achievements of natural evolution suggest to use
its principles for solving optimization problems, since this is what evolution successfully
did and still does: optimizing organisms in order to empowerthem to best cope with theorganisms as candidate

solutionschallenges of their environment. In order to transfer the mechanisms of evolution, an
algorithmic counterpart has to be defined. Thereby, the individuals represent candidate
solutions and are, according to natural evolution, optimized in groups of various different
individuals. This group is called the population. The test environment for the individuals
is given by a fitness function, which measures their performance and assigns an accordingfitness function as model

for the environmentfitness value. Most often, better performance results in a greater fitness value, although,
especially in the field of evolvable hardware, the fitness will sometimes be minimized,
if it represents the deviation from a desired behavior. Furthermore, in the case of multi-
objective optimization, more than one fitness value is assigned to each individual. For
the reason that multi-objective optimization is a topic of this thesis, it is more closely
described in chapter 7, section 7.1. Based on their fitness values the individuals are ranked
and subsequently, the parents, that shall produce offspring, are selected. Offspring itself
is produced by applying crossover and mutation variation operators to the genotype of

25

2.2 Building Evolutionary Algorithms on Nature’s Concepts

Figure 2.2: A generic operation principle of evolutionary algorithms is shown in the figure. The
implementations of the different modules are described in section 2.2.2.

the parents. Consequently, in analogy to natural optimization of organisms, the algorithm
continuously improves the ability of the individuals to solve problems, defined by the
fitness functions. The algorithm stops as soon as a predefinedtermination condition is
fullfilled, e.g. the desired target fitness is reached by one (or more) individuals or simply
a maximum number of generations is exceeded (iteration limit is reached). The operation
principle of an EA is illustrated in figure 2.2.

2.2.1 Historical Roots and Current Subareas

The roots of evolutionary computation are reaching back to the forties of the 20th cen-
tury and then, since the 1960s the research field started to grow and spawned 4 main ap-dialects of evolutionary

computation proaches to evolutionary computation. Three of them have been independently developed
very early, namely evolutionary programming [12,22,23], genetic algorithms [27,37] and
evolutionary strategies [11]. However, genetic programming, the fourth branch, was in-
vented around 1990 by Koza [47]. Initially, evolutionary programming aimed for gener-
ating artificial intelligence by simulating learning processes, whereas genetic algorithms

26

Evolutionary Algorithms

and evolutionary strategies have been developed for parameter optimization. In that sense,
genetic programming can be seen as an extension of genetic algorithms, due to the genetic
encoding itself is designed for directing a developmental post-process in order to create
the phenotype. For a survey of the current entire research field, the reader is referred
to [21].

2.2.2 Modules of Evolutionary Algorithms

This section gives an overview of the main constituents of evolutionary algorithms and
points out some examples of possible extensions to the basicmodules. Five modules
of the EA have to be specified, in order to define a particular implementation: first, the
genotype, which is represented by a data structure, that contains all relevant parame-genotype & phenotype

ters for expressing a candidate solution. This part is subject to the actual optimization.
Second, a mapping algorithm, which is able to build the complete phenotype from its
genotype. Alternatively, the phenotype can be created by a developmental process. In the
latter case, the mapping algorithm is implemented as a set ofrules for self-organization.
Third, the variation operators, namely crossover and mutation, that describe how genesvariation operators

from parent individuals are combined in order to produce offspring and which random
perturbations are introduced. Fourth, the fitness functionis an important part of the al-fitness & selection

gorithm, since it describes on the one hand the individuals test environment and, on the
other hand assesses their performance by assigning fitness values. Last, an implemented
selection scheme chooses the individuals, which shall be allowed to survive or to produce
offspring, according to their fitness values. An overview ofthose modules and some ex-
amples are provided in the following and in figure 2.2. According to the focus of this
thesis, given examples are biased towards analog circuit synthesis.

Genotype.
The genotype contains all variables and parameters, that are necessary to completely de-encoding candidate

solutionsscribe a candidate solution to a given problem. Usually, data types are chosen, that allow
for an efficient encoding, i.e. in the case of analog components, an integer identifier for
the component type and for the target nodes respectively, and float values for the com-
ponent size and properties. In the case of configurable hardware, it is also possible to
directly work with configuration bit strings for the target substrate.

Phenotype mapping.
The genotype-phenotype mapping has to perform the task of constructing the phenotypebuilding the phenotype

representation of an individual, based on its genetic information.
Fixed architecture.Consider configurable hardware as an example of this. In thiscase,

the architecture is fixed and the task for the mapping function is to activate or deactivate
features of the particular hardware.

Self-organization.In the case of a general circuit, the components and the connectiv-
ity of a circuit is given, but a place and route algorithm has to realize it with available
ressources.

Variation operators.
Variation operators define the way in which parent individuals produce offspring and to

27

2.2 Building Evolutionary Algorithms on Nature’s Concepts

which random perturbations the genomes are subjected. There are two types of variation
operators, namely crossover (recombination) and mutation. A great variety of implemen-crossover

(recombination) and
mutation

tations is possible with respect to the data structure of thegenotype. Thus, examples of
popular, general approaches are given.

N-point crossover.The genomes are aligned and N randomly positioned crossing points
are selected. Subsequently, the genome is cut inton+ 1 pieces, which are recombined
after exchanging all odd (or even) parts.

Uniform crossover.Again, the genomes A and B are aligned and two new genomes A’
and B’ are created by successively randomly deciding whether the geneAn is added to A’
andBn is added to B’, orAn is added to B’ andBn to A’.

Block crossover.Randomly sized and positioned blocks of genes are exchangedbe-
tween A and B. Note that generally the blocks are randomly sized, but the size is the
same for A and B.

Fitness function.
The fitness function evaluates the individuals by assessingtheir performance and there-assessing the

performance of
individuals

fore it also contains the description of the problem to be solved. In the case of analog
circuits, the problem is often specified by a desired target voltage characteristic and the
fitness value is calculated as the deviation from the currentbehavior of a candidate solu-
tion. It is an important and at the same time difficult task to implement a suitable fitness
function. This is due to the various possible shapes of the fitness landscape. If, for in-
stance, the fitness landscape features numerous local optima, it will be unlikely to find the
global optimum, although EAs are considered to relatively efficiently sample the search
space, at least if the population is randomly initialized and sufficiently large. During the
course of evolution, the whole population improves towardsbetter fitness. Thus, it is
on the one hand important to avoid premature convergence andon the other hand, it is
desired to quickly find a solution. Consequently, the evolution process is inherently split
into two phases: the phase of exploration, where the individuals are randomly spread over
the whole search space and the phase of exploitation, where all individuals have already
converged, hence, are sampling a region of good fitness.

Selection Schemes.
The selection scheme chooses individuals, that shall be allowed to survive or to produceparent and survivor

selection offspring. Thereby, selection is based on the fitness valuesof the individuals. The parent
selection picks two or more individuals for producing offspring, whereas the individuals,
which are passed unchanged to the next generation are pickedby the survivor selection
scheme. Principally, it is possible to perform numerous mathematical operations on the
fitness values, resulting in a great variety of imagineable selection schemes. Thus, only
the selection schemes, which are relevant to this work are presented.

Fitness proportional.In this case, the fitness values are mapped to the interval[0,1]
thereby stretching and compressing different regions of fitness. The selection pressure
can be manipulated with arbitrary mapping functions. The individuals are then selected
according to equally distributed random numbers between 0 and 1. As a consequence of
that, it is possible to emphasize desired regions of fitness.

Rank based.The rank based selection does not take into account whether the fitness
values are spread over wide ranges or are all similar. Once the ranking is done, selection

28

Evolutionary Algorithms

depends only on this rank.
Tournament.According to the tournament size, a number of individuals israndomly

picked and the champion is determined by comparing their fitness values. Only the cham-
pion is finally selected, whereas all unsuccessfull competitors are discarded, although the
latter individuals can still participate in other tournaments.

Diversity. A metric for measuring the diversity between the individuals of the popu-
lation is introduced and selection is based on this crowdingdistance within the fitness
landscape. The aim is to maintain diversity within the population and thereby efficiently
explore the search space.

Elitism. Elitism is a simple and popular possibility to ensure that the best individual
always survives. After the offspring generation is createdand evaluated, the worst N in-
dividuals are replaced with the best N individuals of the parent generation.

Non-dominated sorting.This selection scheme works only with multiple fitness values
per individual. The aim is to assess different tasks with different fitness values and allow
individuals to survive as long as they are superior in at least one task. Since this selection
scheme is used and refined in this thesis, it is described in detail in chapter 7, section 7.1.

2.2.3 Extensions to Evolutionary Algorithms

In addition to the basic modules of an evolutionary algorithm, described in the previ-
ous section, numerous extensions are investigated in the research field. An interesting
approach is to implement different population models, e.g.island models or deme (sub-alternative population

modelspopulation) models. If such an alternative population model shall be implemented, the
selection scheme will have to be changed accordingly. In thecase of island models,
the algorithm has to independently evolve multiple separated populations, whereas the
selection mechanism—to a certain extent—exchanges individuals between those island
populations (migration) [72,73,97]. The difference between the island and deme model is
that the demes are partly overlapping and mating is always restricted to the same subpop-
ulation. Thus, individuals can only get to a fitter (or less fit) deme by diffusing through
the overlapping region.

Another possibility is to replace the generation based evolution loop with a steady-statea steady-state evolution
loopmodel. Therefore, individuals of different ages coexist inthe same population and are

able to produce offspring. The evolution loop is modified in away that only a couple of
individuals are replaced for each generation. In this case,an additional selection module
has to decide, which individuals shall be discarded. Principally, it is also possible to
manage populations with a variable population size as long as memory and computation
limits are not exceeded.

2.3 Characterization of Evolutionary Algorithms

As natural evolution, and therefore EAs, are considered as robust algorithms, that can
be easily applied to find solutions for a great variety of problems, this section intends
to point out general properties of such algorithms within the field of optimization. Due
to the basic concepts of EAs, there are inherent limitationsfor what can be expected to
achieve with an evolutionary approach. General propertiesof evolutionary algorithms are:general properties

first, the population based approach allows for simultaneously sampling different points

29

2.3 Characterization of Evolutionary Algorithms

within the fitness landscape. Second, crossover, mutation and selection contain random
decisions. Third, it is expected that, with a probability greater zero, recombination forms
improved individuals and mutation introduces slight beneficial changes. Consequently,
those three features influence the course of the optimization process.

2.3.1 Features for Global Optimization

In general, the shape of the fitness landscape defines the complexity of a given problem.
Thus, only if it is possible to state a fitness function, whichlinearly depends on the input
parameters, it will be possible to deterministically find the global optimum. Since this is
usually not the case, hill-climbing algorithms and gradient-based approaches most likely
get stuck in local optima. This will not necessarily happen,if an evolutionary algorithm
is used. As described in section 2.2.2, the course of evolution has two phases, namely
the exploration phase and the exploitation phase. If the population is carefully initialized,exploration and

exploitation phase i.e. the individuals are uniformly spread over wide ranges of the search space, it will be
more unlikely that the EA gets stuck in a local optimum duringthe exploration phase.
Although, as the population continuously improves by meansof selection, all individuals
sooner or later end up in the vicinity of a good solution, which is not necessarily the global
optimum. Thus, the probability of finding the over-all best solution can be increased by
maintaining diversity within the population and thereby avoiding the so-called prematurepremature convergence

convergence of the solutions by prolonging the explorationphase.
EAs will be a good choice, if multi-objective problems shallbe tackled, due to the

fact that the population is able to provide numerous solutions with different properties.the population as a
source of various
solutions

Thus, if a clearly defined global optimum does not exist, because the problem will only
be solved by trade-off solutions, it will become even more difficult to distinguish those
solutions from local optima. In order to achieve this, it is necessary to implement a
selection scheme, that in fact preserves different solutions (see chapter 7).

2.3.2 Is Any Convergence Guaranteed?

It will be important to know, if at least any convergence of anEA can be guaranteed. On
the one hand, it is desired to quickly find a good solution, while on the other hand, it is
equally important to know if any solutions can be found at all. It is difficult to understandunderstanding the

optimization process the optimization process of an EA as a whole, whereas it is easy to track the application
of the variation operators for one generation.

Thus, one possibility is to model EAs as finite Markov Chains,which are defined as aMarkov Chains

set of all possible states= 1, . . . ,k and startε [0,1]k with ∑k
i=1 starti = 1 are the probabili-

ties for all states to be the initial state. Note that in Markov Processes, the state at the time
t only depends on the state oft−1 and is independent from any earlier state, just like the
new population is created from only the current one. The probability for statei to directly
become statej is given by∑k

i=11, . . . ,k×1, . . . ,k = 1. As shown in [96], it can be proven
that for a simple EA with a population size of 1 and a linear fitness function the optimum
is found after≤ O(nlogn) steps.

A second possibility is to use stochastic arguments, in order to predict convergence [96].stochastic predictions

Considering a population of infinite size, the initial fitness values are distributed accord-
ing to the Gaussian distribution. After creating the offspring population by applying the

30

Evolutionary Algorithms

variation operators once, the variation of the moments of the assumed Gaussian distri-
bution can be calculated. Thus, it will be possible to predict the course of optimization
to a certain extent, even if the implications of populationsof limited size are taken into
account. In the simplest case, the success rate of the variation operators can be obtained
by comparing the number of improved individuals with the number of worsened individ-
uals. Based on the latter considerations, the performance of the variation operators of
chapter 6, section 6.3 is tested.

Admittedly, reliable statements can yet only be made for simple problems. Despite
this, the latter considerations are useful for developing the nose for assessing problema nose for convergence

specific implementations of variation operators. Furthermore, the fact that convergence
can indeed be guaranteed for simple problems suggests that also for complex ones at least
a local optimum can always be found.

2.3.3 Model-Free Heuristics

Only two of the modules of EAs, that are introduced in section2.2.2, have indeed to be
implemented in a problem specific way, namely the representation of the phenotype and
the fitness function. Every other module is completely independent from the problem
definition. Thus, neither further information about the optimized system nor prior knowl- no problem specific

knowledge is includededge about how a candidate solution actually works is included in the algorithm. Due
to this, EAs are often denoted as model-free heuristics or black-box approaches. As a
consequence of this, unlike most other heuristics, which rely on such problem specific
knowledge, EAs can be successfully applied to a great variety of optimization problems,
although the performance is possibly not as good in special cases.

In the case of the evolution of analog circuits, the usage of model-free evolutionary
algorithms is motivated by two main reasons: first, it is not genrally possible to formu- two reasons for using an

evolutionary approachlate an optimization strategy for all tasks of analog circuit synthesis. Second, an uncon-
strained search could possibly discover previously unknown design principles or unusual
solutions, which are intersting to investigate.

Aside from EAs, there are other model-free heuristics as, for example, random search,
hillclimbing and simulated annealing [21, 59, 96]. Simulated annealing can be consid-comparison with other

optimizersered as a special implementation of an EA, since it is principally possible to implement
the modules of the algorithm in a way that the cooling function is represented by a vari-
able selection pressure and a population size of 1 is chosen.Random search samples the
search space randomly and does not take any information of the fitness landscape into ac-
count, whereas hillclimbing, that always follows the steepest ascent in the neighborhood,
is only suitable for performing local searches. The comparison between the different
algorithms reveals additional advantages of the evolutionary approach, which optimizes
a whole population of candidate solutions in parallel. On the one hand, it is possible
to efficiently sample the search space during the exploration phase, as described in sec-
tion 2.3.1. On the other hand, the modularity of EAs and the independently processed
candidate solutions allow for an easy parallelization.

31

2.3 Characterization of Evolutionary Algorithms

2.3.4 No Free Lunch Theorem

During the last decades, various implementations of EAs have been successfully applied
to a great variety of tasks and are therefore rightly considered as general problem solvers,
which are only outperformed by dedicated algorithms for particular tasks. Nevertheless,
it has to be mentioned that evolutionary approaches are not proven to always find a suf-
ficiently good solution in a reasonable amount of time. The NoFree Lunch theorem byaveraging over all

problems, model-free
algorithms perform
equal

Wolpert and Macready [100], however, states that, if averaged over the space of all pos-
sible optimization problems, all nonrevisiting, model-free algorithms will perform equal.
Thereby, algorithms, that are sampling the same point in thesearch space only once, are
denoted as nonrevisiting. The latter constraint can be easily implemented in evolutionary
algorithms with a sufficient amount of memory. In simple terms, if any algorithm is bi-
ased towards a particular set of problems, there will alwaysbe another set of problems for
which it will perform accordingly worse. Moreover, it is only possible to break the limi-
tations of the No Free Lunch theorem by incorporating problem specific knowledge into
the algorithm, hence, by dismissing its model-free properties. Besides, numerous imple-
mentations of EAs can anyway not be considered as model-free, since it is questionable,
in how far the problem specific design of the genotype and the variation operators already
violates the model-free nature of the algorithm.

On the one hand, theoretical analyses of the performance of EAs are as yet either only
available for too simple problems or the drawn conclusions remain on a too general level.
On the other hand, the heretical question can be asked, if it is in practice relevant that ais practical application

impeded? particular EA will perform bad on certain problems, since generally, it is rather important
to quickly and reliably find good solutions for a specific task, than being able to solve all
possible problems at once.

2.3.5 Feasible and Infeasible Solutions

The fitness function serves as the only link between the problem and the algorithm in evo-
lutionary computation approaches. As a consequence of this, it is necessary to ’perfectly’’perfectly’

characterizing the
problem

characterize the problem with the fitness evaluation process. In particular, it is important
to correctly handle feasible and infeasible solutions. Thepopulation may contain such in-
feasible individuals, due to the fact that, in many cases, the genetic encoding offers richer
possibilities than can be correctly handled in the given environment. Very clear examples
from the field of circuit evolution are solutions, that contain unconnected components,
are not even connected to an input/output terminal or are divided into unconnected parts.
Nevertheless, such solutions possibly contain useful, well operating parts or, as in the
case of the experiments in this work, represent feasible solutions in one test environment,
but are infeasible in another. In general, the genotype mapsto a set of solutions which isfeasibility depends on

environment divided into the subset of feasible and infeasible solutions. Thus, it is moreover possible
that the path to the desired feasible solution leads throughthe subset of infeasible ones.
Note that the feasibility of an individual is not necessarily correlated to its fitness value
in a given environment.

There are several ways of handling infeasible solutions: the simplest possibility is to
reject infeasible solutions, which is a popular technique,although not very satisfying.reject infeasible

solutions Furthermore, in the case of non-convex feasible search spaces, it is only possible to reach

32

Evolutionary Algorithms

the feasible optimum by crossing infeasible regions. It is also possible to repair infea-repair infeasible
solutionssible solutions in a post-processing stage before actuallyevaluating them, although it

has to be mentioned that this implies additional problem specific algorithms. The latter
process is related to a combination of evolution and learning and is denoted asBaldwin
effect[59]. In this case, the question is whether the infeasible individuals are replaced
with their repaired version or not (Lamarckian evolution[59]). Further, it is possible to
use an aggregated fitness value, where infeasible solutionsget a penalty offset. However,aggregated fitness /

multi-objective
optimization

it is quite difficult to balance and implement aggregated fitness values effectively. Hence,
if feasible and infeasible properties are separately evaluated, it will be more elegant to use
a multi-objective optimization approach. Finally, one of the most reasonable heuristics
for dealing with feasibility is to use specialized genetic representations and variation op-design care-taking

genome and variation
operators

erators to inherently maintain the feasibility of individuals. Thereby, it is either possible
to include according constraints in the genotype or the operators, or even encode a build
instruction for the phenotype in its genes. Evolutionary programming and genetic pro-
gramming techniques are examples of the latter category, whereas feasibility maintaining
variation operators are developed in this thesis (see chapter 6, section 6.1.2).

33

Part II

Analog Circuits Evolution
Framework

35

Chapter 3

The FPTA: an Analog Evolvable
Hardware Substrate

This chapter introduces the architecture and the operationprinciple of the Hei-
delberg FPTA, a field programmable transistor array (FPTA) consisting of
16×16programmable transistors. The ASIC1 is fabricated in CMOS technology.
Furthermore, the hardware environment is described in which the chip is oper-
ated. It is possible to realize a great number of transistor circuits on the FPTA,
simply by loading an appropriate configuration bit string into the chip. Due to
the fact that reconfiguring the FPTA and subsequently measuring the character-
istics of the configured circuit can be performed much fasterthan a simulation
of the same circuit, the chip is a well suited substrate for highly iterative chip-
in-the-loop measurements. Thus, in this thesis, the FPTA isoperated for cir-
cuit evaluation alongside with an evolutionary algorithm,which requires a great
number of evaluations of candidate solutions. The aim is to synthesize transistor
circuits from scratch and—in the ideal case–without prior knowledge of analog
electronics. Unfortunately, the prize for using real configurable hardware for
circuit testing instead of a simulator, is the increasing influence of parasitic ef-
fects. The consequences of this are discussed in section 3.3. As yet, there are
two research groups using custom made configurable ASICs foranalog circuit
synthesis, namely the JPL and the Electronic Vision(s) group from Heidelberg. A
short comparison of the two approaches is given in section 3.1.3.

There are yet two main approaches to evolvable analog arraysin the research field: first,
the one of the group of Adrian Stoica at the JPL labs, who focusses on architectures that
provide programmable and interconnectable cells of high complexity2 [75, 76, 79, 106,
107]

2 Every single cell contains as much complexity as to be configured as one operational amplifier (OP).

37

Figure 3.1: Top: a photograph of the packaged FPTA chip, mounted on a test board. The test
board can be attached to the PCI real-time test environment,described in section 3.2.Bottom:an
enlarged view of the FPTA chip. The array of16×16configurable transistor cells (red area), the
IO circuitry (green area) and the bond wires are recognizeable. The FPTA chip is a full-custom
ASIC designed by Jörg Langeheine [49].

38

The FPTA: an Analog Evolvable Hardware Substrate

and second, the one of the Electronic Vision(s) group of Professor Meier at the Univer-
sity of Heidelberg, where the Heidelberg FPTA was built, consisting of a large number
of basic transistor cells. For convenience, I will refer to the Heidelberg FPTA simply as
the FPTA throughout the remainder of this thesis. FPAAs3 from other groups are marked
with the name of the respective group. The idea of the latter topology is to provide a
fine-grained substrate serving as aSilicon Primordial Soup[52]4. The philosophy behind
the two approaches differs: while the use of comparably complex cells aims to quickly
finding robust solutions for problems that fit the predefined structures, the single transis-
tor cells provide a higher degree of freedom to the evolving circuits and therefore offer
the possibility to discover new circuit topologies. Nevertheless, finer grained substrates
suffer from increasing parasitic effects and—due to the larger search space—slower con-
vergence of the optimization algorithm.

3.1 The FPTA’s Architecture

The very idea of the FPTA arose from the successful evolutionof tone discriminators
by Thompson [84, 85, 87] who achieved to distinguish two square waves of different
frequencies by exploiting parasitic effects of a FPGA by means of an evolutionary al-
gorithm. Since the underlying analog nature of the FPGA is the origin of its parasitic the very idea of the

FPTAeffects, Thompson’s results suggest that a configurable analog substrate is possibly even
more suitable for evolution experiments. The FPTA chip, which is used for all presented
intrinsic hardware evolution experiments in this thesis, is a full-custom ASIC designed
by Jörg Langeheine [49,50,52]. Fabrication technology ofthe FPTA is the Austria Micro
Systems International AG (AMS) 0.6 µm CMOS process. A photograph of the chip is
shown in figure 3.1.

3.1.1 Configurable Transistor Cell

The configurable transistor cell is the basic building blockfor circuit synthesis on the
FPTA. Each cell contains a matrix of either 20 differently sized NMOS or PMOS transis-
tors, which behave like one single variable transistor to the outside world. Internally, the
transistors are arranged in 4 columns with increasing width(W) and 5 rows with increas-
ing length (L). Hence, it is possible to select one of the (almost) logarithmically spacedinternals of the

configurable transistor
cell

values 0.6,1,2,4,8 µm for the transistor length, by enabling the corresponding row of
the transistor matrix. Due to the four transistors of one roware connected in parallel, the
resulting width is programmable by enabling different combinations of those transistors.
Since the selectable transistors feature the values 1,2,4,8 µm, the resulting width can
take on linearly spaced values between 1 and 15µm. Note that it is possible to connect
transistors in parallel in order to achieve a similar characteristic as one transistor with the
sum of the sigle widths, whereas the length is not properly scalable by just serializing
components.

3 Field Programmable Analog Arrays consist of configurable analog building blocks, that can be intercon-
nected in various ways and are usually arranged as a matrix. These substrates aim at providing the analog
counterpart to the widely applied FPGAs.

4 For a more detailed summary about both approaches and analogdesign automation in general, the reader
is referred to [26,28,49,53].

39

3.1 The FPTA’s Architecture

CTD =
665...847

R1 = 1.8...7.2 k

gnd

vdd

N

W

S

E

CTS =
606...814

gnd

vdd

N

W

S

E

R2 = 236...390

gnd

vdd

N

W

S

E

W

S

E

N

SWN E

CN =
595

(804)

CW =
688

(897)

CS =
574

(783)

CE =
581

(790)

R2

R2

R2

R2
R2

R2

R2 = 236...390

CTG =
273...347

analog
multiplexer

analog
multiplexer

analog
multiplexer

TG

CG =
16...31

MSR1 = 1.8...7.2 k

TS

TDprogrammable
transistor

Figure 3.2: Small signal equivalent circuit model of the complete programmable transistor cell.
All drawn switches are assumed to be ideal. The resistor and capacitor values are understood to
be quantified inΩ and fF respectively. The figure is taken from [49].

All inner transistors that are not contributing to the resulting W/L ratio are electrically
turned off by pulling the gate to gnd (NMOS) or to vdd (PMOS). According to figure 3.2,
all source and drain terminals of the inner transistors are directly connected to a common
source and drain node that can be connected to one of the four available outside connec-
tions (N,S,W,E), vdd or gnd. Additionally, the FPTA cells provide 6 routing switches,terminal connections

and routing switches which offer the possibility to directly connect any of two outside connections (nodes).
The transistor array is designed in a way that the configuration of short-circuits is inher-
ently impossible, thus, the substrate is self-destructionsafe.

A consequence of the high configurability of an FPTA cell is the presence of a con-
siderable amount of configuration circuitry, namely transmission gates, logic gates and
analog multiplexers, as depicted in figure 3.2. Hence, the programmable transistors, rep-parasitic configuration

circuitry resented by the FPTA cells, feature a different behavior than a standard transistor with
equal W/L. Example characteristics5 are depicted in figure 3.5. The consequences arising
from this for the whole chip are discussed in 3.3. Further details about the configuration
circuitry and the cell layout can be found in [49,50].

3.1.2 Transistor Cell Array

The transistor cell array represents the actual evolvable substrate and consists of an array16×16 NMOS/PMOS
cells, arranged in a
checkerboard pattern

of 16× 16 configurable CMOS transistor cells. As can be seen from figure 3.3, half of
the cells are designed as NMOS transitors and the other half is designed as PMOS tran-

5 The characteristics are obtained from simulation using theAMS 0.6 µm process parameters with which the
FPTA is manufactured.

40

The FPTA: an Analog Evolvable Hardware Substrate

N

S

W E

N

S

W E

N

S

W E

N

S

W E

QD

Q

QD

Q

C
configuration/readuout of
S

R
A

M
 bits in the array

S&H

IO
−

cells: w
rite/read

to/from
 transistor array

0

S&H

15

S&H

IO
−

ce
lls

: w
rit

e/
re

ad
to

/fr
om

 tr
an

si
st

or
 a

rr
ay

47

15

N

S

W E

N

S

W E

N

S

W E

N

S

W E

S&H

32

S
&

H

IO−cells: write/read
to/from transistor array

16

S
&

H

31

S
&

H

IO−cells: write/read
to/from transistor array

63 15
S

&
H

48

T−BJT Buffer T−BJT

T−BJT T−BJT

1/1 2/1
N

S

W E

3/1
N

S

W E

16/1

N

S

W E

N

S

W E

1/2 2/2 3/2

1/3 2/3 3/3

1/16 16/16

Figure 3.3: A simplified architecture of the FPTA is depicted above. PMOScells are colored light
red whereas NMOS cells are colored light blue. The transistor array is enclosed by IO cells which
are connected to the border transistor cells. Input voltagepatterns as well as measured voltages
are buffered in the IO cells and subsequently applied to the transistor array resp. read out by the
controller. The figure is taken from [49].

sistors. The latter two types of cells are arranged in a checkerboard pattern. External
nodes (N,S,W,E) of adjacent cells are hard-wired. Combinedwith the abilities of the con-
figurable transistor cells (section 3.1.1), it is possible to realize a great variety of CMOS
transistor circuits on the FPTA. All possible circuits are represented by a corresponding
configuration bit string. FPTA circuits are

represented by
configuration bit strings

Furthermore the transistor array is enclosed by sample and hold IO cells, which can
either apply input voltage patterns to every outer node of the border cells, or measure
the output voltage characteristics of a configured or evolved, circuit. Up to 8 of these IO

border cells for voltage
IOcells can be used at the same time, while the remaining, unused IO cells are switched

to ’passive mode’—which means their internal sample and hold amplifiers are powered
down and disconnected from the transistor cell array—in order to minimize their thermal
and parasitic effects.

The IO cells are consecutively configured with new voltage samples or read out by the
controller. As a consequence, the maximum sample and hold frequency with which the

41

3.1 The FPTA’s Architecture

sampling frequency [MHz]
input(s) 1 2 6
output(s) 1 2 6 1 2 6 1 2 6

fastest settings 20.00 10.00 3.33 8.00 5.71 2.67 2.35 2.11 –
slowest settings 0.17 0.08 0.03 0.08 0.06 0.02 0.03 0.02 –

Table 3.1:An overview of example IO setups for the FPTA and the resulting sampling frequencies
for a system clock of40 MHz. The possible values between the lower and the higher sample
frequency cannot be programmed continuously but depend on the FPTA’s timing scheme.

input test patterns can be applied or voltages can be measured depends on the maximum
settling times of the IO cells. Therefore, the maximum sample frequency decreases with
increasing number of IOs cells. Thus, a trade-off between sampling time and accuracy
has always to be found. In general, slowly varying voltage patterns can be applied withsampling time for IO

a higher frequency due to the fact that the sample and hold stages have to perform only
small voltage changes in this case. Timing diagrams and an exhaustive description of
the FPTA’s internals can be found in [49]. Typical sample frequencies, used for the
experiments of this thesis, are listed below in table 3.1. The system clock is set to 40 MHz
for all presented experiments.

3.1.3 Comparison with the JPL FPTA

Since, to the author’s knowledge, the JPL FPTA is to date the only reconfigurable analog
substrate that has been designed with the same intentions asthe Heidelberg FPTA, it is of
particular interest to present a short comparison of those two ASICs. Obvious similari-configurable analog

arrays ties are that both chips are analog, highly reconfigurable and consist of basic cells, which
are interconnected and arranged in a matrix. Thus, both substrates—presumed that the
respective FPTA is attached to a suitable controller, whichis able to perform reconfigura-
tion, application of input voltage patterns and measuring of the outputs—are suitable for
hardware evolution experiments, although both approachesfeature considerably different
architectures. An overview of the most important similarities and differences between
both chips is given in table 3.2, in order to facilitate comparison. The answer to thecomplex cells vs. fine

grained substrate question, which approach is more suitable depends on the goals that shall be reached. If
higher convergence speed, complexity and robustness of theevolving circuits is desired,
the JPLs approach will probably be the better choice, despite of the fact that the resulting
circuits will inherently always be biased towards already known solutions. However, with
the intention of finding entirely new design concepts, that might actually exploit parasitic
effects of a particular substrate instead of suffering fromthem, the Heidelberg FPTA is
more suitable. Additionally, a freely configurable substrate can still be pre-structured by
software to enhance the applied search algorithm, e.g. withthe possibility to use prede-
fined building blocks [49, 54]. Yet, this will not diminish the higher amount of parasitic
devices in the resulting circuits.

42

The FPTA: an Analog Evolvable Hardware Substrate

JPL FPTA2 Heidelberg FPTA

no. of programmable cells 8×8 16×16

no. of transistors per cell
available to the
synthesized circuits

44
1 programmable transistor
which is realized with 20
real transistors

basic cell structure

fixed and predefined to-
pology and components
which are based on ap-
proved human (OP) de-
signs

one programmable tran-
sistor, either NMOS or
PMOS

components used
transistors, capacitors and
resistors

exclusively transistors

configurability
the topology is configura-
ble by opening or closing
numerous switches

inner-cell routing capabili-
ties as well as the possibil-
ity to select various differ-
ent values for W/L ratio of
the programmable transis-
tor

total no. switches per cell 44 28

interconnection of cells in both cases each cell is connected to the nearest
neighbor in all four directions (N,S,W,E)

input / output
inputs and outputs can be
applied to arbitrary cells

inputs and outputs can
only be connected to the
border cells of the transis-
tor array

signal flow
due to dedicated inputs
and outputs the signal flow
is constrained

free signal flow

Table 3.2: A short summary of the most important similarities and differences between the JPL
and the Heidelberg FPTA. The considered FPTA from the JPL is already in its third generation
and is referred to as JPL FPTA2. Predecessors of the FPTA2, namely FPTA0 and FPTA1, featured
similar architectures, although there were less programmable cells available.

3.1.4 An Overview of FPAAs from Industry

Table 3.3 provides an overview of some examples of FPAAs soldby industry. These
chips consist of reconfigurable analog circuitry, which canbe readily applied to various
problems of analog signal processing. Most often, the respective manufacturer also pro-
vides a design tool, which is able to generate configurationsfor the respective component.
Although it is hardly possible for the FPTA to compete with those solutions from indus-
try in the specific tasks, for which they are designed, there is no other substrate than the

43

3.2 The Hardware Evolution Setup

manufacturer device capabilities

Anadigm
AN221E04,
AN10E40

cells can be configured as: OPs, filters, DACs,
ADCs and signal generators are present

Cypress
CY8C21x-
XX, CY8C29-
XXX

analog cells can be configured as: OPs, filters,
DACs, ADCs
digital cells can be configured as: counters,
timers, PWMs, UARTs

Ilmenau patent (D)
a German patent for a configurable transistor ar-
ray architecture

Lattice ispPAC10 configurable OPs and tunable filters
Motorola MPAA-XXX various different types of configurable filters
Zetex TRAC* configurable analog arithmetic functions

Table 3.3: An overview of some examples of FPAAs which are sold by industry. There is some
work in the field, where the FPAA from Zetex [69] and the FPAA from Motorola [70] are used for
intrinsic hardware evolution. *TRAC stands for: totally reconfigurable analog circuits.

FPTA, which provides the possibility of interconnecting single transistors. Consequently,industrial strength and
suitability for research the FPTA is more valuable in the case of research on unconventional and new circuit

topologies.

3.2 The Hardware Evolution Setup

The hardware evolution setup consists of the FPTA chip and a standard personal computer
(PC) that runs the EA and organizes the voltage test patterns. Additionally, a custom
made Peripheral Component Interconnect (PCI) interface card, which is referred to as
DarkWing and described in [13], represents a flexible FPGA based controller for the
FPTA and provides an interface between the configurable transistor array and the PC. The
EA is implemented in a flexible manner using the C++ programming language, combined
with the gnu C compiler (gcc) and is more closely described inchapter 5. Therefore, thea realtime measurement

system for hardware
evolution

combination of the components above provides a flexible realtime measurement system
for hardware evolution experiments. Since the generation,variation and management of a
pool of configuration bit strings can be performed by an EA, the FPTA is, alongside with
the latter measurement system, a suitable substrate for chip-in-the-loop analog hardwarechip-in-the-loop

evolution.

3.2.1 The Controller: a Standard PC Hosting a FPGA-Based PCICard

TheDarkWingprovides power supply voltages (3.3 V and 5 V) to the custom made ASIC
in use. Furthermore, a digital-to-analog converters (DACs) offers the possibility to apply
analog voltages to the chip and an analog-to-digital converter (ADC) is available for mea-
suring analog voltages from the chip. Main controlling entity is a Xilinx Virtex-E FPGA
with a total of 2 Mbyte of on-board static random access memory (SRAM) at hand. The
latter components provide a real-time mixed signal test environment for various custom

44

The FPTA: an Analog Evolvable Hardware Substrate

made ASICs. As yet, theDarkWingboard is successfully used within three different re-FPGA-based controller
for custom made ASICssearch projects of the Electronic Vision(s) group, namely the training of neural network

chips [35,67,68], high dynamic range sensors [14] and analog hardware evolution ([49]
and this thesis). For all presented experiments in this thesis the programmable system
clock of the PCI board is set to 40 MHz.

The PC contains an Intel Pentium 4 processor at a clock frequency of 2.4 GHz and
the operating system is SuSE Linux 8.2 running kernel version 2.4.216 . Additional
software, which provides a device driver (linux kernel module) calledWinDriver6 [41]
from JUNGO7 , is needed for the communication with theDarkWingboard via the PCI
bus. setup of the host PC

Any communication between the EA (actually the PC) and the FPTA is carried out by
calling the respective methods of a state machine, which is running on the FPGA. The
source code for the state machine is written in very high speed integrated circuit (VHSIC)
hardware description language (VHDL) and subsequently compiled with the appropriate
tools from Xilinx [101, 102] for the FPGA used. Both, PC and FPGA, access the local
SRAM of theDarkWingboard where the input voltage patterns, configuration data for the
FPTA and the measured results are stored. As a consequence ofthis, one measurement
loop is carried out in 3 steps: first, the PC writes configuration data and input voltagecommunication between

PC, controller and
FPTA

patterns for the FPTA to the local SRAM of the PCI card. Second, those methods of
the state machine which configure the FPTA and use the on-board DACs and ADCs to
perform the measurements and write the results to the local SRAM are carried out. Third,
the measured results are read back by the PC and are provided to the EA for evaluation.
It is also possible to read back the current configuration of the transistor array using the
same mechanisms, which is an essential feature for debugging.

3.3 Characteristics of the FPTA and the Hardware Environ-
ment

The following section shall give a short overview over the characteristics of the FPTA,
that are of concern for the presented experiments. Accuracyand speed of the whole mixed
signal measurement system is predetermined by the ADCs and DACs on theDarkWing
board (section 3.2.1) and the accuracy of the FPTA’s sample and hold buffers. For a
detailed description of internal functionality and performance of the chip, please refer
to [49].

3.3.1 Bandwidth

The bandwith of the evolving circuits is measured by applying an input voltage pattern of
sine waves with increasing frequency to the west side and measuring the output at the east
side of the FPTA. Input and output cell are interconnected byusing the routing capabili-
ties of the transistor array, i.e. the west-east routes of the 16 transistor cells between input

6 For more information about the SuSE Linux distribution or the installation and usage of Linux kernels, the
reader is referred to www.suse.com and www.kernel.org.

7 The JUNGO windriver module provides a communication library for PCI communication via the PLX90xx
chipset family [64]. Further information is available on www.jungo.com and www.plxtech.com.

45

3.3 Characteristics of the FPTA and the Hardware Environment

-3 dB frequency = 3.1 MHz

frequency [MHz]

at
te

nu
at

io
n

[d
B

]

0 1 2 3 4
-14

-12

-10

-8

-6

-4

-2

0
Figure 3.4: Left: attenuation of sinusoidal
input signals for frequencies between1 kHz
and 4 MHz. The maximum expedient fre-
quency for experiments is3.1 MHz where
the attenuation reached−3 dB. Below:both
graphs show a FFT of a sine input wave.
The result for a fundamental frequency of
50 kHz is depicted in the lower right graph,
whereas the lower left graph shows the re-
sults for a fundamental frequency of1 MHz.

THD = -51.18 dB
noise = -91.87 dB

frequency [kHz]

at
te

nu
at

io
n

[d
B

]

0 100 200 300 400 500

-140

-120

-100

-80

-60

-40

-20

0
THD = -43.35 dB
noise = -83.91 dB

frequency [MHz]

at
te

nu
at

io
n

[d
B

]

0 1 2 3 4 5 6 7 8 9 10

-120

-100

-80

-60

-40

-20

0

and output cell are enabled. It can be seen from figure 3.4 thatthe maximum expedient
frequency, at which the synthesized circuits are supposed to work, is about 3.1 MHz. Yet,maximum expedient

frequency for
synthesized circuits

a maximum frequency of 1 MHz is chosen for the experiments in this thesis, for the rea-
son that total harmonic distortion and noise significantly increase at higher frequencies,
as can be seen from figure 3.4, right.

3.3.2 Noise, Distortion and Accuracy

Experimental setup and input voltage patterns are equal to those of the previous section
(section 3.3.1). Values for total harmonic distortion (THD) and THD + noise (THD+N),
which are defined as the root mean square (rms) sum of all harmonics, divided by the am-
plitude of the fundamental frequency, are obtained by performing an FFT on the measured
data and by calculating

THD =
1

|M(k0)|

Nk0
/2

∑
l=2

√

M2(lk0) , (3.1)

THD+N =
1

|M(k0)|

mNk0
/2

∑
k=1
k6=k0

√

M2(k) , (3.2)

noise =
1

|M(k0)|

mNk0
/2

∑
k=1

k6=km

√

M2(k) . (3.3)

46

The FPTA: an Analog Evolvable Hardware Substrate

Thereby,M(k0) represents the fundamental frequency component of the input sine wave
and theM(km) are the frequencies of the harmonics. The absolute amplitude of the input
signal is 2.5 V. Assuming a linear behavior of the system, only the first 5 to 9 harmonics
are considered for the calculation of the THD. In this case, the contributions of higher
orders are negligible. Contrary to the THD, where only harmonics are taken into account,THD and THD+N

the value for THD+N is calculated from all fourier components, for the reason that noise
is present in all frequency components whereas distortion effects are merely present in
the harmonics.

Since the FPTA is bound to the hardware environment described in section 3.2, the
measurements, depicted in figure 3.4, include the contributions of noise and distortion
of the whole mixed-signal hardware setup. Consequently, the measured values for THDfeasible bandwith

and noise represent the over-all performance of the hardware evolution system. THD and
noise are measured for the two example frequencies 50 Hz and 1MHz and the results can
be seen from figure 3.4, right. Due to the fact that the value for THD already increased
by about 8 dB at 1 MHz, the latter frequency is chosen as maximum for the experiments
within this thesis. The value for noise is significantly below the value for THD in both
cases. An additional reason for limiting the bandwidth to 1 MHz is the maximum sam-
pling frequency of 20 MHz (see table 3.1) per sample. This will imply a maximum input
signal frequency of 4 MHz, if the minimum number of 4 samples for one period is chosen,
which is not sufficient to form an input sine wave. Hence, if a minimum of 20 samples sampling a sine wave

per period is desired the maximum frequency is moreover limited for technical reasons.
An easy specification for the accuracy of the hardware measurement system is to cal-

culate the equivalent no. of bits (ENOB). This specificationis originally used to provide ENOB: specification for
over-all accuracy of the
measurement system

an overall performance measure for data acquisition boardsusing an ADC [5, 56]. The
ENOB will be obtained by evaluating the output of the system under test, if a sinusoidal
input is applied and subsequently the FFT of the output is calculated. One way of ex-
pressing ENOB is through a correlation to signal-to-noise-ratio (SNR), given in dB as

1
THD+N

≡ SNR (3.4)

SNR = ((ENOB·6.02)+1.76) dB , (3.5)

error =

((

1
2

ENOB)

·100

)

% . (3.6)

Using the results for THD+N from figure 3.4 as a measure for SNR, a value of ENOB=8.2
bits for 50 kHz and a value of ENOBs=8.0 bits for 1 MHz is calculated using equation 3.5.
As a result, an error of 0.39 % can be obtained using equation 3.6, thus, an accuracy ofsystematic voltage error

+/- 20 mV∆V = error· 5 V = 20 mV is assumed for the entire measurement system for a power
supply voltage of 5 V.

3.3.3 Influence of Configuration Circuitry

The output characteristic of plain transistors differs from the output characteristic of con-
figurable FPTA transistors. Examples for different W/L ratios and transistor types are
illustrated in figure 3.5. The I-V characteristic of a plain transistor is compared to a
configurable transistor with transmission gates and to a configurable transistor where the

47

3.3 Characteristics of the FPTA and the Hardware Environment

transmission gates are approximated by their mean on-resistance. The deviation of the
latter characteristics significantly increases for greater W/L ratios.

VDS [V]

I D
S
[µ

A
]

trans. gates

plain
resistors

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

VDS [V]
I D

S
[µ

A
]

-5 -4 -3 -2 -1 0
0

0.5

1

1.5

2

2.5

VDS [V]

I D
S
[µ

A
]

0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

50

VDS [V]

I D
S
[µ

A
]

-5 -4 -3 -2 -1 0
0

2

4

6

8

10

12

14

16

18

VDS [V]

I D
S
[µ

A
]

0 1 2 3 4 5
0

20

40

60

80

100

120

VDS [V]

I D
S
[µ

A
]

-5 -4 -3 -2 -1 0
0

5

10

15

20

25

30

35

40

Figure 3.5: The characteristics of NMOS (left) and PMOS (right) transistors are graphed above.
In all cases, the characteristics are plotted for differentgate-source voltages. Furthermore, the
characteristics of plain transistors are compared to thoseof the actual transistor matrix on the
FPTA. In the latter case, two types of simulations are carried out: one with all transmission gates
included and one with transmission gates replaced with their mean on-resistance. The W/L ratios
of bothtop graphs are 1/8, those of both graphs in themiddleare 1/1 and those of both graphs at
thebottomare 15/8.

48

The FPTA: an Analog Evolvable Hardware Substrate

3.4 Why Hardware in the Loop for Circuit Evolution?

In contrast to the domain of digital circuits, where FPGAs have already reached a high
level of complexity and provide a great number of ressourcesin combination with pow-
erful software tools, which are capable of efficiently synthesize high-performance digital
circuits for those substrates, the analog counterparts, namely FPAAs, are still in their
infancy. Although configurable field programmable analog arrays for dedicated tasks,
as shown in section 3.1.4 are already available, there is still a lack of multi-purpose sub- lack of multi-purpose

FPAAsstrates which could be used either as OP, filter or controllerby simply using the according
configuration bit-string.

Other important applications for (re)configurable analog hardware are fault tolerance
and BIST [10, 25, 44, 83, 104]. Fault tolerance can be easily implemented by reconfigur-robustness and

fault-toleranceing damaged circuits using spare ressources. In the case of aBIST, the candidate circuit
can be consecutively extended with various test circuitry with the intention of reducing
ressource consumption of redundant test structures. Moreover, there are two main argu-
ments for using hardware-in-the-loop for evolution experiments of analog circuits instead
of an analog circuit simulator: first, a circuit, that is evolved on a real chip is obviouslyintrinsic reality of real

hardwareproven to work at least on just that substrate. Second, the simulation of complex analog

faster circuit evaluation
than in simulation

circuits is highly non-trivial, thus, a very time consumingtask. Unlike the simulator, once
the inputs are applied to the FPTA, its outputs can be almost instantly measured. Nev-
ertheless, the price that has to be paid using real hardware is to forgo the unconstrained
configuration possibilities of simulation. Although, considering the smaller search space
resulting from less configuration options, this can also be an advantage as long as the
given topology does not inherently exclude desired solutions. Unfortunately, the latter
question can not be answered until experiments that investigate evolvability of a given
substrate have actually been carried out.

49

Chapter 4

Analog Circuit Simulator

This chapter intends to give an overview over the operation principle of analog
circuit simulators. Different types of analyses, e.g. DC, transient or alternat-
ing current (AC), are introduced as well as SPICE netlists themselves, which
represent circuits in a format that can be processed by circuit simulators. Impor-
tant goals of this thesis are, first, to use the Berkeley SPICE3f51 analog circuit
simulator as simulator-in-the-loop for the extrinsic2 evolution of analog cir-
cuits and, second, to use it for verifying and further testing of the circuits, which
are evolved on the FPTA. Thereby, extrinsic and intrinsic hardware evolution
are terms which have been created by researchers from the JPLlabs: intrinsic
hardware evolution denotes experiments which are carried out on real hardware,
whereas evolution experiments, in which a hardware simulator is used, are de-
noted as extrinsic. Additionally, a brief introduction to the Berkeley SPICE3f5
simulator is given and the Cadence analog design framework is shortly intro-
duced. Furthermore, the procedures of automatically generating SPICE netlists
and simplified schematics from intrinsically evolved circuits are described in this
chapter. The automatic creation of schematics is realized with the silicon com-
piler interface language (SKILL), which is included in the Cadence software for
the purpose of design automation.

4.1 Introduction to Circuit Simulators

The development of VLSI technology makes it possible to integrate millions of transistorsVLSI technology for
CMOS processeson one single die (chip). Further, CMOS processes facilitate the combination of analog

and digital subcircuits on the same substrate. The termmixed-signalis widely accepted
mixed-signal systemsfor such systems. With increasing complexity, it becomes more and more important to

accurately verify circuit designs in computer simulationsbefore fabricating expensive

51

4.2 Operation Principle of Analog Circuit Simulators

chips. This task is carried out by using circuit simulators,which are mostly based on
SPICE. The original SPICE was developed by Larry Nagle and Donald Pederson in 1975simulation program with

integrated circuits
emphasis

at the Electronics Research Laboratory of the University ofBerkeley and the current re-
lease is SPICE3f5 [65]. Since the first versions of SPICE are implemented in Fortran, a
Fortran-like circuit description is still remaining and most of the commercial SPICE ver-
sions are compatible with the Berkeley syntax, although extended with vendor specific
features which limit the compatibility to concurrent products. Important commercial, in-
dustry standard simulators are offered byCadence Design Systems(PSPICE, Spectre, Ul-
traSim),Synopsys(HSPICE),Silvaco(SmartSpice) andMentor Graphics(Eldo) and are
often integrated into a comprehensive mixed signal design framework. Additionally, free
SPICE versions (open source) are available for non-commercial use, namely NGSPICE,
tclSPICE and SPICE3f5.

4.2 Operation Principle of Analog Circuit Simulators

Circuit simulators are using nodal analysis to predict the behavior of circuits. Thereby,nodal analysis of
circuits all nodes of the circuit are enumerated and the voltage of each node is stored in a vari-

able. The first step is to determine initial values for each node. Those nodes, which are
directly connected to a voltage source, are initialized with the voltages provided by the
respective voltage source. For the remaining nodes, the voltages are found by solving the
corresponding simultaneous equations, obtained from Kirchhoff’s Laws. This procedure
is iterated until the solutions for all nodes converge. Different algorithms (mesh analysis,
current branch method) are used to partition the circuit analysis problem into multiplepartitioning large

circuits simpler problems of calculating an operating point of a linear circuit which can be de-

calculation of the
operating point and
linearization

scribed by linear simultaneous equations. Once the operating point is calculated, non-
linear components—in this case transistors—can be linearized by replacing their large
signal model with a linearized small signal model, suitablefor the determined operating
region.

4.2.1 CMOS Device Modeling

Before a circuit can be successfully integrated in CMOS technology, it is necessary to
verify its functionality in simulation. The quality of the prediction of the circuits behavior
depends on the accuracy, with which the model of the target technology describes the
physical substrate. Models of current technologies achieve a high degree of reliabilitypredicting a circuits

behavior with a physical
model

and the prediction of simulation is, even for circuits consisting of thousands of transistors,
within a feasible range of measuring. Possible representations of CMOS models are
parameterized mathematical equations, behavioral descriptions or lookup tables. There
are more than 60 different SPICE models available, referredto as SPICE level, which
cover different technologies and levels of complexity. Examples for models of increasingdifferent SPICE levels

for different
technologies and levels
of complexity

accuracy and therefore high complexity are SPICE level 1, SPICE level 3 and BSIM.
While the level 1 model is quite simple, the level 3 model already includes many parasitic
effects that have to be considered in short-channel technologies down to about 0.8 µm
as well as subthreshold conduction. Finally, the BSIM3v3.2.4 model has become theindustry standard: the

BSIM models current standard for computer simulations of deep sub-micron processes down to 0.25µm
and accurately describes physical effects of small structures. For device sizes down to

52

Analog Circuit Simulator

0.1 µm some physical mechanisms need to be characterized even better and consequently
BSIM4v4 has been developed, which provides a geometry-dependent parasitics model
and, for instance, considers carrier quantization effects. A complete description of the
SPICE models can be found in [1].

An example of a simple CMOS model is given in part I in chapter 1, section 1.1 and 1.3.
The equations of the BSIM models are far more complex, due to the fact that all relevant
parasitic effects are included. As a consequence of this, a total of 93 parameters are nec-
essary to describe a PMOS or NMOS transistor with the BSIM3v2model. In addition to
the device parameters, capacitances and resistances of metal lines, vias and metal-poly-
oxide contact areas are included in the technology model in order to perform a parasitic
extraction of the whole layout. The process parameter files can be obtained from the man-CMOS parameters for

different fabrication
processes

ufacturer of the target technology, whereas the model has tobe provided by the respective
circuit simulator. Unlike the actual process parameters, which may not be published, the
models are most often public domain, for the reason that communication, simplifying
technology and sharing productivity is desired. Thus, in order to characterize a circuit for
a specific process, the correct SPICE level (model) has to be selected and the parameter
file has to be included in the simulation.

4.2.2 The SPICE Netlist: Circuit Description and Simulation

Most of the current analog circuit simulators are compatible with the original SPICE
syntax. Thus, the basic syntax ofBerkeley SPICE3f5is chosen to describe the structure
of an analog circuit netlist. Furthermore, the SPICE3f5 simulator is used as simulator-in-
the-loop for the experiments in this thesis. The full SPICE netlist can be divided into four
main parts: first, the header, where the voltage sources and inputs are defined. Second, the
circuit components and subcircuits. Third, the setup and execution of circuit analysis and
fourth, the CMOS model definition. An example netlist, whichrepresents an operationalthe structure of a SPICE

netlistamplifier and carries out an open-loop DC analysis is discussed in fig. 4.2.
In addition to this, the SPICE syntax for CMOS transistors and example setups for DC,

AC and transient simulations are described, which are mainly used for the experiments in
this thesis. According SPICE netlist code is provided for all examples after the respectivedescription of the

SPICE syntaxparagraph. For a full description of the SPICE functionality, the reader is referred to the
SPICE manual [65] or theCadencedocumentation [16].

In case of transistors, the syntax is reduced to the relevantparameters, that are widthrepresentation for a
transistor in SPICEand length. Additional parameters, e.g. the areas of drain and source diffusions, are

determined by the respective device model. Transistors arelabelled with anm followed
by a unique device number.source, drain, gate andbulk take on node numbers,
depending on their position within the circuit. Thedevice model determines the sim-
ulation model (PMOS or NMOS) of the target technology, whilewith andlength
specify the gate/channel dimensions.

mxxx source gate drain bulk device model length width

A DC analysis can be performed by sweeping either one or two input voltages, hence,DC analysis: setup and
initial conditions

53

4.2 Operation Principle of Analog Circuit Simulators

either one resulting transfer curve or a set of resulting transfer curves can be measured.
The DC analysis is carried out with capacitors open and inductors shorted. First, the input
voltage sourcesvoltage_sourceandvoltage_source2 have to be defined. This
is done by assigning two nodes and a voltage value, which represents the voltage differ-
ence between those two nodes, to the respective source. Mostoften, one of the nodes of
a voltage source is set to gnd. Second, in the case of non-convergence, initial conditions,
exclusively for the DC analysis, can be set for each node withthe.nodeset statement.
Finally, the.dc line defines the voltage sources to sweep, the sweep limits and the volt-
age increment, hence, the number of samples and, in case of two inputs, the number of
curves.

voltage source node1 node2 voltage
voltage source2 node3 node4 voltage2

.nodeset voltage(node1)=value1 voltage(node2)=value2 ...

.dc voltage source v start v stop v incr [voltage source2
v2 start v2 stop v2 incr]

Principally, the number of varying input voltage sources isnot limited in case of thetransient analyses:
setup and initial
conditions

transient analysis, thus, this type of analysis offers the highest degree of freedom in cre-
ating custom input voltage patterns. Although several types of time dependant voltage
and current sources (exponential, sinusoidal, pulse) are available, the piece-wise linear
(pwl) source is considered as example. A set of time/voltage or time/current pairs, withdefinition of input

voltage patterns increasing time, define the input voltage pattern for thepwl source by using linear inter-
polation on the input values. Analog to the.nodeset statement for the DC analysis,
the.ic statement can be used to specify initial conditions exclusively for the transient
analysis in case of convergence problems. Thereby, the initial conditions will be only
considered, if theuic statement is added to the.tran line. Finally, the.tran line
defines the setup for the transient analysis by setting start, stop and increment values for
the time. Additionally, a time precisiontime_prec can be specified, in order to ensure
a minimum precision for calculation.

voltage source pwl node1 node2 voltage pwl(time1 voltage1
[time2 voltage2 ...])

.ic voltage(node1)=value1 voltage(node2)=value2 ...

.tran time step time stop [time start [time prec]] [uic]

54

Analog Circuit Simulator

If an AC analysis is desired, the keywordac has to be added to at least one indepen-AC analysis: setup

dent voltage/current source in combination with values formagnitude and phase of the
AC input signal. In the given example, the independent source can also be used for a tran-
sient analysis with sinusoidal input. The.ac line specifies, whether the input frequency
is varied in decades, octaves or linearly as well as the number of samples per interval and
the frequency range.

voltage source sin node1 node2 voltage ac magnitude phase
sin(v0 vampl freq delay damping)

.ac dec (oct,lin) no samples freq start freq stop

4.2.3 Floating Nodes and Initial Conditions

The extraction of a given circuit into a valid SPICE netlist is a crucial precondition for
carrying out a successful simulation. However, this is not always possible for evolved
circuits. If the circuit, and therefore the netlist, contains floating nodes—i.e. nodes which
are neither connected to any other component, nor to any independent voltage/current
source—or the initial state of a node cannot be determined, e.g. if two gates are connected
to nothing but each other, the circuit analysis will not converge, i.e. the simulation will
fail. Usually, floating nodes are avoided by the designer, since circuits, which contain reasons for simulation

failurefloating nodes, are generally meaningless. Nevertheless, in the case of automated circuit
synthesis, it is necessary to be able to successfully simulate even such invalid circuits
in the following cases: first, for circuit synthesis by meansof evolutionary algorithms
where it is desired not to abandon partly good solutions, i.e. a complete circuit would
be lost due to only one faulty subcircuit. Second, for circuits that have been developed
on a complex configurable hardware and shall be verified by using a simpler simulation
model, which lacks some specific substrate properties and therefore possibly fails. The
latter case is of particular importance to this thesis, due to the evolution of transferrable
circuits is tackled.

The initial conditions are usually calculated or approximated by the simulator and are
necessary for solving the simultaneous equations of the respective model. If the simula-
tion does not converge due to nodes in undefined or ambiguous states, initial conditions avoiding ambiguous

states by defining initial
conditions

for each node (voltage or current value) can be included intothe netlist of the respective
circuit or subcircuit by adding a.nodeset line for DC analysis and a.ic line for tran-
sient analysis:

55

4.3 Simulator in the Loop: Berkeley SPICE3f5, NGSPICE

.nodeset v(node0)=value0 v(node1)=value1 v(node2)=value2

...

.nodeset i(node0)=value3 i(node1)=value4 i(node2)=value5

...

.ic v(node0)=value6 v(node1)=value7 v(node2)=value8 ...

.ic i(node0)=value9 i(node1)=value10 i(node2)=value11 ...

Contrary to that, it is not as obvious how to handle floating nodes, since usually the
designer would have to connect those nodes in order to carry out a successful simulation.overcoming the problem

of floating nodes Basically, there are three possibilities to solve this: first, the simulation model has to be
more complex, i.e.—in case of the FPTA—all switches and configuration circuitry, hence,
all parasitic effects have to be considered for simulation.This often solves the problem
of floating nodes, due to the fact that those nodes are connected to structures on the chip,
which were previously not included in the simplified netlist. Second, although a node
is connected on the chip, it is not intended to include the configuration circuitry in the
netlist. Most often, the target circuitry is a multiplexer or a closed switch and therefore,replacing configuration

circuitry with drain-bulk
diodes

such floating nodes can be connected to a reverse-biased drain-bulk diode:

mxx floating node 0 0 0 nmos w=small l=large

Consequently, the simulation of the circuit succeeds and, albeit simplified, the parasitic
influence of e.g. a closed switch is modelled. Furthermore, from a designers point of
view, it is always a good idea to use structures, that can be easily realized on a chip,
because it should be possible to integrate automatically synthesized circuits on an ASIC.considering ASIC

integration of
synthesized circuits

An example of using an NMOS transistor as a reverse-biased bulk diode is shown above.
Third, since, again, the worst case of a really floating node can only be solved by con-
necting it to at least one minimal conductance, the only possibility in this case is to make
a good guess of where to connect it. Consequently, it is recommended to inherently avoid
the third type of floating nodes, regardless of which technology is used for circuit synthe-
sis: either configurable hardware or a software simulation3 .

4.3 Simulator in the Loop: Berkeley SPICE3f5, NGSPICE

TheBerkeley SPICE3f5[65] andNGSPICE[2] are chosen for practical reasons: first, both
simulators are available as open source or can be used under the GNU Public License.freely available circuit

simulators Second, both simulators are freely available for a great variety of operating systems (in
this caseLinux). Finally, state-of-the-art BSIM3v3 CMOS device models (SPICE level

3 There are some exceptional cases in the area of analog circuit design, for which it possibly makes sense to
leave a node unconnected; e.g. if the goal is to shield components from the noise of surrounding potentials.

56

Analog Circuit Simulator

8,49,53 depending on the simulator) are included in both packages and therefore, compo-
nents of the FPTA can be accurately simulated by using the corresponding AMS 0.6µm
process parameters, that are describing the technology theFPTA is designed in.

Unfortunately, to the author’s knowledge, there is yet neither a C++ SPICE library, nor
one for any other programming language, which can be directly linked to the hardware
evolution framework application, which is written in C++. As a consequence, SPICEASCII files are used for

data exchangehas to be run as an external process(es) and ASCII4 files are used for data exchange
with the evolution software. In simpler words, the evolution software generates netlists
and runs external SPICE processes which use those netlists.After a simulation is com-
pleted, SPICE saves the simulation results to an ASCII file, which is read by the evolution
software. Since the simulation time usually dominates the time overhead of file commu-
nication, it is not a great slow-down to use ASCII files for data transfer.

NGSPICEhas to be mentioned as an alternative toBerkeley SPICE3f5, due to the
fact that it is fully compatible withBerkeley SPICE3f5and additionally includes the lat-
est BSIM4v4 CMOS device models. Furthermore, for the reasonof licensing conflicts,
ratherNGSPICEinstead ofBerkeley SPICE3f5is innately included in current LINUX
distributions.

4.4 Extracting Netlists from FPTA Results

Three different levels of complexity for the conversion of the FPTA circuit representation
to a SPICE netlist are defined in this section, which must not be mixed up with the SPICE three levels of

complexity for netlist
extraction

level of the CMOS model: first, on the simplest level, the active programmable transistors
are considered as directly connected single transistors, which is useful for quick checks
and for investigating the operation principle of the evolved circuit. The second complexity
level takes the mean on-resistances of the active transmission gates into account. Those
transmission gates are, on the one hand, connected to the transistor terminals and, on the
other hand, used for realizing the routing within the FPTA cells. Finally, the simulation
on the third and highest complexity level includes both, thetransistors that represent
the actual configurable transistor and the transistors thatare needed for configuration
and routing. Thus, the latter simulation level reproduces the measurement on the FPTA
with the highest precision. Yet, the disadvantage of more complex simulations is the
significantly increasing simulation time.

It has to be remarked that the highest possible accuracy of the simulation would be
achieved by using the back-annotated layout with full parasitic extraction and the simu-
lator from the design software. This is not done in this thesis for the reason that, on the
one hand, the accuracy of the level 3 simulations is sufficient for the current experiments
and, on the other hand, such simulations are complicated andtime consuming and thus,
go beyond the scope of this work.

4 A file format for text: american standard code for information interchange (ASCII).

57

4.4 Extracting Netlists from FPTA Results

4.4.1 Level 1: Simulation with Plain Transistors

On the least complex simulation level, the active FPTA cellsare considered as singleplain transistors

transistors of given W/L ratios, hence, any parasitic effects of additional configuration
circuitry are neglected. An example for such a plain netlistis created by algorithm 4.1.

Algorithm 4.1: This algorithm converts circuits from the FPTA to basic netlists, in which all
active configurable transistors are considered as directlyconnected plain transistors.

find all transistors, that are connected to the active circuit
enumerate and create a list of those active transistors 0..K
for all active transistors← 0 to K do

for all transistor terminals← 0 to 2 do // source,drain,gate
follow wires and find target node
if target node has a node numberthen

assign the target node number to the current terminal
else iftarget node has no node numberthen

create a new unique node number
assign this node number to the current terminal

end if
end for

end for
detect input and output nodes of the circuit
create a netlist using the list of all active transistors

4.4.2 Level 2: Simulation Including Resistances of Switches

The medium complexity level takes the mean on-resistances of the active transmission
gates into account. Transmission gates are used for connecting the transistor terminals
to one of the cell’s four outside connections (N,S,W,E) and for directly connecting any
of those outside connections, which provides the routing capabilities. The accordingtransmission gates

modeled as resistors algorithm 4.2, that creates this kind of netlist, is listed in the following. The values for the
resistances between the transistor terminals and the outside connections are taken from
the thesis of Jörg Langeheine ([49]), who designed the FPTA.

4.4.3 Level 3: Simulation Including the Whole ConfigurationCircuitry

Level 3 represents the highest level of netlist complexity.Consequently, both, the tran-transistor matrix and
transmission gates are
included in simulation

sistors that represent the actual configurable transistor and the transistors that are needed
for configuration and routing are included in the netlist. This is realized by creating sub-
circuits for the FPTA’s PMOS and NMOS cells, that contain theconfiguration circuitry
as well as the transistor matrix which represents the configurable transistor. Those sub-
circuits feature a great number of inputs/outputs, namely the four outside connections
(N,S,W,E), 40 nodes for the configuration of the switches that select the W/L ratio, 36
nodes for the connection of the transistor terminals to one of the four outside connections
and 12 nodes for the configuration of the routing. The total number of those nodes does
not correspond to the number of configuration bits for one cell, but to twice the number of

58

Analog Circuit Simulator

Algorithm 4.2: This algorithm converts circuits from the FPTA to netlists of medium complexity,
in which the resistances of all active switches are included. N,S,W and E (north, south, west and
east) are the external nodes of the FPTA cells.

create a list of all FPTA cells used 0..K
n = 16 transistor cells per row
for all FPTA cells used← 0 to K do

assign node numbers to N S W E,
depending on the x/y position within the transistor array
N = y· (2n+1)+x+1;
S= N+2n+1;
W = N+n;
E = N+n+1;
connect the gate to its target (NSWE) via 2310Ω
connect source and drain to its targets (NSWE) via 330Ω
insert routing by connecting according nodes (NSWE) via 330Ω
create a subcircuit netlist entry for the current FPTA cell

end for
detect input and output nodes of the circuit
create a netlist using the subcircuit entries of all FPTA cells used

actual switches—transmission gates need two voltages, either vdd-gnd of gnd-vdd—that
have to be opened or closed for realizing a certain configuration. Consequently, once the
subcircuits for the PMOS and the NMOS cell are available, only the configurations for
their inputs have to be created for the netlist, according tothe desired configuration.

4.5 Cadence Design Framework

The Cadence software is a comprehensive design framework, which provides industry
standard design and verification tools for custom analog anddigital VLSI design. Besides, industry standard

design tools for VLSI
design

the FPTA chip has been designed with the Cadence design framework and the process
setup for AMS 0.6 µm. Thus, the Cadence software is used to validate the simulation
results, obtained from the SPICE simulator for the experiments in this thesis. It has to
be remarked that simulations are exclusively performed with schematics, i.e. no layouts
are generated from the resulting circuits of the presented experiments. Nevertheless, if a
schematic for a new design was found, it could be adapted to a certain technology and
realized on a chip in the next step.

4.5.1 Circuit Simulation in Cadence

Cadence is able to work with a great variety of circuit simulators, e.g.cdsSPICE, HSPICE,
Spectreor UltraSim, to name just some important ones. It is possible to create flexible
simulation test benches as a combination of schematics, HDLand netlists. Principally,
it is possible to consider all environmental conditions—such as noise, temperature andenvironmental influence

worst/best case design corners—that are covered by the process model in simulation.
Device matching effects on the die are considered with aMonte Carloanalysis. Further-

59

4.5 Cadence Design Framework

more, simulations of back-annotated schematics can be carried out and therefore parasitic
effects like crosstalk, parasitic layer and wire capacities can be included in the simulation.simulation of

back-annotated
schematics

Thereby, the term ’back-annotated schematic’ denotes a schematic in which, on the one
hand, each component is identified with its respective representation in the layout and, on
the other hand, layout dependent parasitic effects are added to the schematic. The lay-
out has to successfully pass three tests before a valid back-annotation is achieved: First,
a DRC has to be performed to ensure that no geometrical constraints of the fabrication
process are violated. Second, a successful LVS check guarantees that all devices of thedesign rule check and

layout parameter
extraction

schematic are present in the layout and vice versa. Third, all relevant electrical param-
eters are calculated from the LPE. Those extensive simulation and verification methods
target at maximizing the yield of fully operational ASICs.

4.5.2 Automatic Schematic Generation Using SKILL

SKILL 5 is a very powerful scripting language, which is included in the Cadence designa scripting language for
Cadence framework and allow to automate any functionality of the Cadence software. The manual

is part of theCadence Open Book[15]. Thus, it is possible to implement custom macros
that generate e.g. a parameterized layout block which is frequently needed or certain
schematic building blocks. In this thesis, the SKILL language is used for automaticallyautomatic schematic

generation generating schematics for Cadence from circuits that are evolved on the FPTA. Due to the
fact that the visualization of the resulting circuits, which is provided by the circuit editor
of the evolution software (fig. 4.1), is rather based on the transistor array architecture than
on readability. Consequently, it is necessary to reorganize the evolved circuits in order
to improve their readability and understandability, although this is not an easy task, since
the genetic algorithm often produces unconventional circuits. In this case, the reorgani-
zation of the schematic is carried out in four steps: First, asimple netlist is generated
from the FPTA circuit where all nodes and transistor terminals are enumerated. Second,
all transistors are placed on a 2-dimensional grid, with thenode number of the gate as
x-coordinate and the node number of the source as y-coordinate. Third, all gates can
be connected with straight vertical wires and all sources can be connected with straight
horizontal wires. Fourth, the remaining drain terminals are connected to their respective
vertical or horizontal target net. As can be seen from fig. 4.1, the resulting schematic can
be more easily analyzed. Despite this, more intelligible schematics are manually drawn
for particular example results, which are presented in chapter 7. The schematic-creating
SKILL script is automatically generated by the evolution software. Example SKILL com-
mands are listed below. Those commands are combined in a script file with the extention

*.il, which then provides the new functionality encapsulated inmacros:

5 ”The name was originally an initialism for silicon compilerinterface language (SCIL), pronounced ’SKIL,’
which then morphed into ’SKILL,’ a plain English word that was easier for everyone to remember.” From
John Gianni, usenet: comp.cad.cadence.

60

Analog Circuit Simulator

procedure(CreateSchematic()

/* create a new schematic view */
cv=dbOpenCellViewByType("FPTA EVO" "Test exp" "schematic"
"schematic" "w");
...
) /* end of procedure */

New functionality is encapsulated in procedures, which canbe executed within theCa- implementing custom
macrosdencesoftware. In this case the new macro is namedCreateSchematic() and

the first commanddbOpenCellViewByType(...) creates a new, empty schematic
view namedTest_expwithin theCadencedesign libraryFPTA_EVO.

netID=dbOpenCellViewByType("analogLib" "vdd" "symbol");
inst=dbCreateInst(cv netID "Vdd" X:Y "rotation");
netID=dbOpenCellViewByType("analogLib" "gnd" "symbol");
inst=dbCreateInst(cv netID "Gnd" X:Y "rotation");

cmosID=dbOpenCellViewByType("PRIMLIB" "nmos" "symbol"
"" "r");
inst = schCreateInst(cv cmosID "instance name" X:Y
"rotation");
dbSetq(inst 12u w);
dbSetq(inst 1u l);

The above examples show how to insert new components (vdd,gnd,nmos) into the
active schematic. ThedbCreateInst andschCreateInst insert, place and addinserting components

labels to the respective component and create a handleinst which is used to change
component parameters with the commanddbSetq, e.g. a transistor’s W and L. Thereby,
a uniqueinstance_name, the X:Y position and therotation=R0(0◦), R1(90◦),
R2(180◦), R3(270◦) must be specified.

wireID=schCreateWire(cv "route" "full" list(X0:Y0 X1:Y1)
0.0625 0.0625 0.0);
wireID=schCreateWire(cv "route" "flight" list(X0:Y0 X1:Y1)
0.0625 0.0625 0.0);
wireID=schCreateWire(cv "draw" "direct" list(X0:Y0 X1:Y1)
0.0625 0.0625 0.0);

There are three different possibilities for adding a wire from X0:Y0 to X1:Y1 to the
schematic: First, the optionsroute,full adviseCadenceto carry out auto-routing for interconnecting

components

61

4.5 Cadence Design Framework

the new wire. Second, the optionsroute,flight use a direct rubber band connection,
which is fully functional for simulation but has to be manually routed in order to obtain
a plain schematic. Third, a fixed straight connection can be forced by using the options
draw,direct.

pinCVID = dbOpenCellViewByType("basic" "ipin" "symbol" ""
"r");
pinId = schCreatePin(cv pinCVID "In0" "input" X:Y
"rotation");
pinCVID = dbOpenCellViewByType("basic" "opin" "symbol" ""
"r");
pinId = schCreatePin(cv pinCVID "Out0" "output" X:Y
"rotation");
pinCVID = dbOpenCellViewByType("basic" "iopin" "symbol"
"" "r");
pinId = schCreatePin(cv pinCVID "Out0" "in/output" X:Y
"rotation");

Finally, the circuit has to be connected to other subcircuits or the outside world. This
is achieved by inserting input/output pins into the schematic and by connecting them to
the respective nodes. The commandschHiCheckAndSave()has to be invoked at thecreating IO pins

end of the procedure in order to verify the resulting schematic and to save all changes.

62

Figure 4.1: Top: A screenshot of the circuit editor of the evolution softwareis juxtapositioned to
(bottom:) a schematic which is automatically generated by an according SKILL script in Cadence.
As can be seen by comparing the two figures, the readability ofthe schematic on the right hand
side is greatly improved. This becomes even more important for more complex circuits, which
consist of a greater number of transistors.

* Title:OpAmp open-loop DC
vcc 4 0 5v
vin0 1 0 0.00v
vin1 2 0 0.00v

*vout0 3

Voltage sources and circuit inputs are
described in the header by specify-
ing two nodes and the voltage value
between them. By definition, the
value of each voltage source is fixed.
The ground potential (0 V) is always
represented by the node number 0
and needs no further specification,
whereasvdd (or vcc) are defined as
voltage sources. Comments are pre-
ceded by an asterisk.

x0 1 2 3 4 OpAmp

.subckt OpAmp 5 4 8 10
m1 3 4 6 10 modp l=1u w=2u
m2 3 5 7 10 modp l=1u w=2u
m3 6 6 0 0 modn l=1u w=4u
m4 7 6 0 0 modn l=1u w=4u
m5 10 2 3 10 modp l=1u w=3u
m6 8 7 0 0 modn l=1u w=10u
m7 10 2 8 10 modp l=1u w=5u
m8 10 2 2 10 modp l=1u w=3u
m9 8 10 9 0 modn l=1u w=10u
m10 8 0 9 10 modp l=1u w=10u
r1 2 0 100k
c1 7 9 6p
.ends OpAmp

In this example, the OP is realized
within a subcircuit, which, once
defined, behaves like a component
and can be accessed throughx0.
The node numbers defined in the
x0 line are global, whereas all node
numbers within the sub-circuit are
local, except for the ground net.
Hence, the enumeration of the nodes
of the subcircuit is independent from
the top-level circuit. It is possible
to insert components either into
a subcircuit, or directly into the
netlist. Furthermore, the command
.include filename.cir al-
lows to create hierarchical netlists in
combination with the possibility of
defining subcircuits.

.dc vin0 0 5 .02 vin1 1 4 .25

.save v(1) v(2) v(3)

.end

The .dc command carries out a
DC simulation of the circuit. In
this case a set of 13 curves with
vin1= 1,1.25,1.5. . . 4 V is mea-
sured by sweepingvin0= 0. . .5 V
for eachvin1. The voltages for the
global nodes 1, 2 and 3 are saved to
the result file.

.model nmos modn level=3

.model pmos modp level=3

Finally, it is essential to define the
CMOS device models that are used
for simulation. In this example, a ba-
sic model (SPICE level 3) is used.

Figure 4.2: Example SPICE netlist, which represents an operational amplifier and carries out an
open-loop DC analysis.

Chapter 5

Evolution Software Environment

This chapter introduces the evolution software environment, denoted as EvoPoly,
which has been developed in C++, in order to perform the experiments in this
thesis. The operation principle and the implementation of the EA, the genetic
representation of the circuit and the testmode based experimental setup are de-
scribed. Since all components of the software environment are implemented in
a modular manner, it is possible to easily extend the evolution system with cus-
tomized algorithms and genome representations as well as tocompose flexible
setups. Besides, the measurement (evaluation) of the genomes and the fitness
calculation is entirely independent from the EA, thereby offering the possibility
to target different evolution platforms, namely configurable hardware and circuit
simulators, by implementing according interfaces. Hence,a comprehensive and
customizable evolution software framework is achieved, which lends itself for be-
ing developed by numerous programmers in parallel, due to the modularity of the
implementation. Finally, the user interface is briefly described.

For the experiments in this thesis, the originaldarkGAQTsoftware, described in [49] has
been further developed and included into theHANNEEsoftware framework, described
in [35]. Both software projects have been developed in theElectronic Vision(s)group at
the Kirchhoff-Institute for Physics in Heidelberg. The EA framework has been developed
during this thesis, whereas the hardware access modules areadapted fromdarkGAQTand
the GUI is based on theHANNEEframework.

65

5.1 Operation Principle of the Modular Evolution Software Framework

5.1 Operation Principle of the Modular Evolution Software
Framework

The modular evolution software framework is implemented inC++ [39, 80] and consists
of three main parts: the evolutionary algorithm engine, themeasurement setup and theevolutionary algorithm

and hardware
abstraction layer

hardware abstraction layer of the evolution substrate. Allthree parts are implemented
as independent modules which are communicating through generic interfaces. Hence,
it is possible to easily operate different genetic algorithms and to extend and customize
the experimental setup. Additionally, the developed algorithms and genomes are not ex-
clusively bound to one particular evolvable substrate, since the substrate itself can be
replaced with another one. In this thesis, two substrates are used for the evolution of ana-targeting different

substrates for evolution log circuits, namely the FPTA, which is described in chapter3, and a SPICE simulator,
which is described in chapter 4. Due to the fact that this workis focused on the evolu-
tion of analog circuits on FPTA architectures, specializedgenome classes are designed
to implement circuit components and FPTA cells. Consequently, the derived genome
and substrate classes do depend on each other in practice, although the base classes are
independent from each other.

5.2 The Algorithmic Side of the Evolution Software

The implementation of the evolutionary algorithm engine isbased on the GALib of
Matthew Wall [95] and entirely independent from the measurement and the hardware
modules. Hence, the developed algorithms can be easily adapted to any other optimiza-
tion problem, which is a nice example of the advantages of object oriented programming.the GALib

Since evolutionary algorithms operate on at least one population of possible solutions,
represented by a set of genomes resp. individuals, the algorithm base class already pro-
vides an empty population. The evolution is carried out stepwise by applying variation
operators, namely mutation and crossover, to the current genomes. Subsequently, the
arisen new candidate solutions are evaluated and finally thefittest individuals are carried
to the next generation due to a given selection scheme. The variation operators represent
the interface between the evolutionary algorithm and the evolution substrate and are spe-
cialized to certain kinds of target substrates, although the evolutionary algorithm itself
does not need to know their respective implementation. All operators of the evolutionarymodularized

implementation algorithm, depicted in figure 5.1, are implemented as independent modules which can be
linked to the base algorithm. Thus, the algorithm can be customized by assembling the
desired operators and modules. Furthermore, the population, the genomes and the evolu-
tionary algorithm itself can be easily extended or modified by deriving new classes, while
the basic functionality is maintained.

66

GABaseGA

- maximizeFitness : bool = false

- useElitism : bool = false

- noGenerations : int

- mutationRate : float

- crossoverRate : float

- randomSeed : int = system_time

- population : GABasePopulation

+ GABaseGA()

+ initialize()

+ step()

+ evolve()

GABasePopulation

- genome[1..N] : GABaseGenome

- populationSize : int

- initializer : Initializer::InitPopulation

- scaler : Scaler::ScaleFitness

- select : Selector::SelectGenome

+ GABasePopulation()

+ GABasePopulation(newGen : GABaseGenome)

+ initialize()

+ analyze()

+ evaluate()

+ scale()

+ sort()

+ select() : GABaseGenome

+ diversity() : float

+ best() : GABaseGenome

+ worst() : GABaseGenome

+ individual(whichGenome : int) : GABaseGenome

GABaseGenome

- fitnessSum : float

- fitnessMO : vector<float>

- fitnessHistory : vector

- nonDominationLevel : int

- crowdingDistance : float

- initializer : Initializer::InitGenome

- mutator : Mutator::MutateGenome

- crossover : Crossover::CrossGenome

- comparator : Comparator::CompareGenomes

- analyzer : Analyzer::AnalyzeGenome

- evaluator : Evaluator::EvaluateGenome

+ GABaseGenome()

+ initialize() : int

+ clone() : GABaseGenome

+ mutate(out noMutations : int) : int

+ cross() : int

+ analyze()

+ evaluate()

+ compare(gen : GABaseGenome) : float

+ convergence() : float

Initializer::InitPopulation

- configData : configuration

+ InitPopulation(configData : configuration)

+ initialize(pop : GABasePopulation)

Scaler::ScaleFitness

- configData : configuration

+ ScaleFitness(configData : configuration)

+ scale(pop : GABasePopulation)

Selector::SelectGenome

- configData : configuration

+ SelectGenome(configData : configuration)

+ select(pop : GABasePopulation) : GABaseGenome

Initializer::InitGenome

- configData : configuration

+ InitGenome(configData : configuration)

+ initialize(gen : GABaseGenome) : int

Mutator::MutateGenome

- configData : configuration

+ MutateGenome(configData : configuration)

+ mutate(gen : GABaseGenome) : int

Crossover::CrossGenome

- configData : configuration

+ CrossGenome(configData : configuration)

+ cross(gen1 : GABaseGenome, gen2 : GABaseGenome) : int

Comparator::CompareGenomes

- CompareGenome : configuration

+ CompareGenome(configData : configuration)

+ compare(gen1 : GABaseGenome, gen2 : GABaseGenome) : float

Evaluator::EvaluateGenome

- configData : configuration

+ EvaluateGenome(configData : configuration)

+ evaluate(gen : GABaseGenome)

Analyzer::AnalyzeGenome

- configData : configuration

+ AnalyzeGenome(configData : configuration)

+ analyze(gen : GABaseGenome)

Figure 5.1: The diagram of the fundamental classes of the evolutionary algorithm is depicted
above. As can be seen from the class diagram, the evolutionary algorithm contains one or more
populations, which, for their part, consist of a number of genomes. Both, the populations and
the genomes, include references to evolutionary operators, which are implemented as indepen-
dent methods respectively. Hence, the evolutionary operator can be freely combined and can even
be swapped at runtime. The base classes of the evolutionary algorithm, the population and the
genome already provide methods, that are necessary to operate the algorithm. Consequently, it is
easy to derive new evolutionary algorithms by simply overload theinitialize() and thestep()meth-
ods of theGABaseGA. Additionally, a custom genome has to be derived fromGABaseGenome
and according genetic operators have to be implemented. Thefunctionality of the actual evolution
process and the book-keeping are provided by the base classes. This structure provides a flexible,
modular evolutionary algorithm library.

5.2 The Algorithmic Side of the Evolution Software

5.2.1 Class Structure of the Evolutionary Algorithm

As can be seen from the unified modelling language (UML) diagram in figure 5.1, -
GABasePopulation,GABaseGA andGABaseGenome are base classes, which pro-
vide fundamental methods and data structures for running the evolutionary algorithm.
TheGABaseGA class contains a population, global configuration parameters (variation
probabilities, no. of generations, random seed) and the methods that carry out the evo-
lution run. Thereby, important methods are the evolutionstep(), whereas the methodinitialization and

evolutionary step evolve()is provided for convenience and merely repeatedly callsstep(), and theinitial-
ize() method which successively calls the initializer of each population. Further, global
settings, as for example whether the fitness is to be maximized or minimized and whether
to enable elitism or not, are made in theGABaseGA class. Note that the EA is referred
to as genetic algorithm (GA) in the names of classes and methods.

TheGABasePopulation class consists of an array of genomes and provides meth-
ods for managing the population. It is for example possible to sort the individuals ac-
cording to their fitness or to directly access those individuals with the best or worst per-
formance. Three main operators are linked to the population: first, the initializer, whichpopulation management

initializes the population and, if necessary, successively carries out the local initializer
of each genome. Second, the scaling scheme, which is not mandatory, but can be used
to post-process the fitness score before ranking the individuals as e.g. proposed in [27].
Third, the selection scheme, which defines the rules for selecting and abandoning indi-
viduals. Additionally, thediversity()method, which uses thecompare()function of the
GABaseGenome class to calculate a value, which represents a measure for the diversity
of the genomes within the current population.

Finally, theGABaseGenome class is the base class for an individual. Data, which is
specific for each genome, is stored in this class and respective genetic operators as well
as methods for analyzing and evaluating the genome are linked to this class. Thereby, themanipulating and

evaluating the
individuals

variation operators are carried out by the methodsmutate()andcross(), while the methods
compare(), analyze()andevaluate()are performing the measurement and the evaluation
of the genome. As the initialization process is carried out hierarchically, theinitialize()
method performs the initial setup of the genome. Each individual is assigned a vector of
fitness values (fitnessMO), depending on the number of objectives in which the individual
is to be improved. For further calculation, thefitnessSumand thefitnessHistoryof the past
N generations are also recorded in theGABaseGenome class. Additionally,—aiming
to multi-objective optimization experiments—the value for thenonDominationLeveland
the crowdingDistanceof the individual are stored. The latter values are more closely
described in chapter 7, section 7.1.2. TheGABaseGenome class does not yet contain
any genetic information or coding, thus, it is mandatory to derive a specialized genome
in order to be able to use it. Depending on the desired experiments, the genome has to be
extended with a suitable data structure, which contains thegenetic information.

5.2.2 Derivation of Custom Evolutionary Algorithms

Starting with the base classes of the evolution framework shown in figure 5.1, it is rel-
atively easy to derive new classes and to customize the EA: first, a new GA has to be
derived fromGABaseGA. As an example, the new GA is referred to asGAExampleGA.customizing the

evolutionary step

68

Evolution Software Environment

operator range (data type) meaning of return value
initializer 0. . .N (int) number of generated components
scaler 0. . .N (int) error code / success=0
selector & (GABaseGenome) a reference to the selected individual
mutator 0. . .N (int) no. of performed mutations
crossover 0. . .N (int) error code / success=0
comparator 0. . .1 (float) measure for equality: 0=equal, 1=tot. different
analyzer 0. . .N (int) error code / success=0
evaluator 0. . .N (float) fitness values

Table 5.1: The meanings of the return values of the genetic operators are described in the above
table. Those values are used by the evolutionary algorithm for calculating statistics and for book-
keeping, and as such have to be properly implemented.

In order to achieve this, it is merely necessary to (re-)implement (overload) theinitial-
ize()and thestep()method of the base class. Theinitialize() function is responsible for
properly initializing all populations and all of their individuals, while thestep()function
represents one evolutionary loop. Hence, the user has any freedom to design the course
of the evolutionary algorithm. Second, a customGAExampleGenome has to be derived
from GABaseGenome and must be extended with a datastructure which contains the
genetic information. Third, if necessary, the mapping fromgenotype to phenotype has
either to be implemented as an additional method in theGAExampleGenome class, or
can be sourced out to theanalyzeroperator. For this work, the mapping functions are
added to the genome class, since, if differentanalyzersare used, it is advantageous to
implement it in only one place. Contrary to that, if a varietyof different genomes are
analyzed with the sameanalyzer, it will make more sense to put the mapping method
into this module. Finally, as can be seen from figure 5.1, appropriate operators have to
be created, which are able to process the custom genomes. Unlike the algorithm and the
genome, the population base class can be used without further specialization, although, if
extra functionality is desired,GABasePopulationcan be derived as well. An example
application is given in algorithm A.2 in appendix A.

5.2.3 Implementation of Modular Genetic Operators

In addition to the customized evolutionary algorithm, it isnecessary to implement varia-
tion operators, which are compatible with the genome used. That is, in case of a genome
encoding an analog circuit, the initialization, mutation and crossover operators have to
be designed for varying such circuits and need to know about the available, changeable
elements. The operators are implemented in separate classes, which can be linked at
runtime to either a population or a genome. Each of those classes has to implement aswitchable genetic

operatorsmethod with a predetermined name, e.g. the mutator has to provide the method+mu-
tate(gen:GABaseGenome):int. The names of the access member function for all genetic
operators can be seen from figure 5.1. As a consequence of this, it is possible to create a
whole set of independent and reusable genetic operators, which can even be switched at
runtime by just linking them to a specific genome. Apart from the latter constraints, all

69

5.3 Analysis and Evaluation of the Genomes

features of the C++ language can be used to derive or to extendthe genetic operators.
Furthermore, the programmer has to assure that correct return values are passed back

by the genetic operators, since they are needed by the EA for calculating statistics and
for bookkeeping. The meanings of the respective return values are listed in table 5.1. For
illustration, an example implementation for an initializer-mutator-crossover set is shown
in algorithms A.3 and A.4 in appendix A. The selector, scalerand comparator classes
provide the same interface—although the methods areselect(), scale()andcompare()—
and therefore have to be implemented in the same manner.

5.3 Analysis and Evaluation of the Genomes

Generally, in evolution experiments, the entire process ofmapping the genome to the
phenotype, performing any measurement, further analyzingand finally assigning an ac-
cording fitness value, is referred to as evaluation. Despitethis, especially in the case of
analog circuit evolution, it makes sense to divide the latter process in two procedures:separation of analysis

(substrate dependent
measurement) and
evaluation (fitness
calculation)

first, the mapping of the genome to the target substrate and the measurement of the con-
figured substrate. Second, calculating the fitness value based on the measured results and
the desired specification. By doing so, the substrate dependent part of evaluation remains
separated from the pure fitness calculation, which should actually not depend on the given
problem or target technology. Consequently, the first step is referred to asanalysisof the
individual and the second step is referred to as theevaluationof the individual for the
remainder of this thesis.

The experiments are organized in test modes, that each represent one circuit analysis.test modes

One test mode contains the input and the target voltage pattern, the definition of the inputs
and outputs, the type of analysis that shall be carried out and the information of which
fitness function shall be used. Therefore it is possible to set up a great variety of complex
experiments by combining desired test modes.

5.3.1 Class Structure of the Testmode-Based Experimental Setup

As can be seen from figure 5.2, theMeasuringSetup class, which is linked to the
genomes, contains on the one hand a vector ofTestModeBase classes, which represent
the actual experiments and, on the other hand, theCalculationBase class, which is
responsible for the fitness calculation. Thereby, theanalyze()method ofGAGenomeBaseanalyze

performs the configuration of the target substrate, the genotype-phenotype mapping and
the measurement. The measured results, as well as the input and target patterns, are tem-
porarily stored in aMeasuringData object. The latter result object can be accessed
by theGAGenomeBase’s evaluate()method, which calculates separate fitness values forevaluate

each test mode; it delivers a vector of fitness values for multi-objective optimization in ad-
dition to the sum of all fitness values. Besides, in the case ofmulti-objective optimization,multiple fitness values

for multi-objective one test-mode can deliver more than only one fitness, although the number of fitness val-
ues is constant during the course of the experiment. Additionally, theMeasuringData
object also provides various IO methods, such as importing data from different file for-
mats, e.g. SPICE, and exporting data to different file formats.

70

Evolution Software Environment

MeasuringSetup

- testmode[1..N] : TestModeBase

- result : MeasuringData

+ MeasuringSetup()

+ measure(gen : GABaseGenome) : TestModeBase::MeasuringData

TestModeBase

- measuring : MeasuringData

- fitnessFunctions : CalculationBase

+ TestModeBase()

+ configTargetSubstrate()

+ mapGenomeToSubstrate(gen : GABaseGenome)

+ measure(tp : testpattern) : result

MeasuringData

- input : testpattern

- target : result

- measuring : result

+ loadData() : testpattern

+ saveData() : result

+ accessData(which : result) : vector<float>

+ accessData(which : testpattern) : vector<float>

TMFPTA

TMFPTATrans

TMSpice3

TMSpice3DC TMSpice3AC

«interface»

AccessFPTA

«interface»

AccessSPICE3

TMSpice3Trans

CalculationBase

+ CalculationBase()

+ calcFitness(data : TestModeBase::MeasuringData) : vector<float>

+ bestFitness(noSamples : int) : vector<float>

+ worstFitness(noSamples : int) : int

CalcSquareDevCalcLogThresholds CalcOffset

CalcOffsetDeviation

CalcRMSError

Figure 5.2: The relevant classes for setting up an experiment are depicted. TheTestModeBase
class and theCalculationBase class are base classes, that need further specialization inorder
to use them. Thereby. theTMFPTA class, is extended with an interface to the FPTA chip and is
dedicated to perform transient measurements on the hardware, whereas theTMSpice3 provides
an interface to the SPICE circuit simulator. Furthermore, the setup of the fitness function and the
actual fitness calculation is carried out with the classes, derived fromCalculationBase.

5.3.2 Targeting Different Evolution Substrates

Both, theTestModeBase class and theCalculationBase class are, as the names
suggest, base classes, that need further specialization inorder to use them. As de-
picted in figure 5.2, for the experiments in this thesis, two main branches are derived
from TestModeBase: first, theTMFPTA class, which is extended with an interfacespecializing test modes

to substratesto the FPTA chip and is dedicated to perform measurements on the hardware at differ-
ent sampling frequencies. Second, theTMSpice3 class, which provides an interface to
Berkeley’s SPICE3f5 circuit simulator. Due to the fact that, in addition to the transient
analysis, other kinds of simulation (e.g. DC, AC, noise) canbe carried out with the simu-
lator, theTMSpice3 class itself needs to be further specialized according to the desired
type of analysis. Three example classes are given in figure 5.2, namelyTMSpice3DC
TMSpice3TransandTMSpice3AC. Since theTestModeBase class can be special-
ized for other simulators or new hardware substrates in the future, it is easily possible to
extend the current evolution system with additional evolution platforms.

71

5.4 Implementation and Customization of the Genotype

5.3.3 Implementation of Fitness Functions and Fitness Calculation

A set of fitness functions, represented byCalculationBase objects, is assigned to
each test-mode. Thereby, theCalculationBase class is the base class for any fitness
function. Thus, a new fitness function can be added by deriving it from Calculation-
Base and simply overloading three methods, namelybestFitness(), worstFitness()and
calcFitness(). The first two methods have to deliver the best and worst possible fitness
value, respectively. Those values are used by the EA, e.g. for fitness scaling or in case
the measurement fails. Again, this class structure allows for conveniently adding new
fitness functions to the evolution system, while no changes have to be made in other code
sections, since the interface classes remain the same.

5.4 Implementation and Customization of the Genotype

The genetic representation of the phenotype—in the case of this thesis an analog circuit—
is equally important as accessing different substrates forhardware evolution. Hence, there
are important demands on the genetic representation: first,it should describe an analog
circuit on a high abstraction level, which allows for mapping it to different evolution
substrates (e.g. FPTAs, simulators). Second, it should be possible to easily extend it and
to add new components. Third, an expedient trade-off between memory consumption and
convenience has to be found.

Basically, there are two slightly different ways of geneticencoding and manipulating
the genetic encoding for EAs. In the first case, the genes are represented by a bit string,
which is changed by the genetic operators without prior knowledge about the meaning
of the respective bits. Contrary to that, in the second case,the variation operators are
designed to rather change properties of the phenotype, which implies that, to a certain
extend, the structure of the phenotype is known by those operators. It is possible to
include either encoding in the presented framework, although the second approach is
preferred for the experiments in this thesis.

5.4.1 Class Structure of the Genetic Representation of Analog Circuits

The evolutionary algorithm framework, introduced in section 5.2, provides the genome
base class from which the actual genome, which is used for thepresented experiments,
is derived. Since the focus of this work is set to analog circuit evolution, the first step
is to derive aGACircuitGenome class fromGABaseGenome, as depicted in fig-
ure 5.3, and include a pointer to the experiment module (MeasuringSetup), which is
described in section 5.3. Furthermore, the circuit genome is extended with theCircuit-customizing the circuit

genome Structure, which is a flexible genetic representation, that contains the construction
plan for the respective analog circuit. Again, theCircuitStructure contains a vec-
tor of ComponentBase objects and each of them represents one configurable compo-
nent or building block of the whole circuit. As can be seen from figure 5.3, any desiredmapping to different

target substrates circuit component can be derived from theComponentBase class by using the given
data structures together with according implementations of the genotype-phenotype map-
ping functionsgetMySubstrateRepresentation(). TheComponentBase class provides
four different data structures for creating a custom, configurable circuit component: first,

72

Evolution Software Environment

CResistor

CFPTA_X_Cell CCapacity

CFPTACell

CCMosTransistor

GACircuitGenome

- configData : configuration

- experiment : MeasuringSetup

+ GACircuitGenome(configData : configuration)

+ clone() : GACircuitGenome

+ accessExperiment() : MeasuringSetup

+ getFPTARepresentation() : representationFPTA

+ getSPICERepresentation() : representationSPICE

+ save()

+ load()

ComponentBase

- switches : map<name,bool>

- internalNodes : map<name,int>

- externalNodes : map<name,int>

- parameters : map<name,float>

+ ComponentBase()

+ ComponentBase(config : configuration, parm : parameters)

+ clone() : ComponentBase

+ getFPTARepresentation() : representationFPTA

+ getSPICERepresentation() : representationSPICE

+ getSchematicRepresentation() : representationSchematic

+ mutate() : configuration

+ editMethods()

CircuitStructure

- components : ComponentBase

+ CircuitStructure()

+ clone()

+ insertComponent(comp : ComponentBase) : ComponentBase

+ removeComponent(comp : which) : ComponentBase

+ accessComp(comp : which) : ComponentBase

+ editMethods()

GABaseGenome

- fitnessSum : float

- fitnessMO : vector<float>

- fitnessHistory : vector

- nonDominationLevel : int

- crowdingDistance : float

- initializer : Initializer::InitGenome

- mutator : Mutator::MutateGenome

- crossover : Crossover::CrossGenome

- comparator : Comparator::CompareGenomes

- analyzer : Analyzer::AnalyzeGenome

- evaluator : Evaluator::EvaluateGenome

+ GABaseGenome()

+ initialize() : int

+ clone() : GABaseGenome

+ mutate(out noMutations : int) : int

+ cross() : int

+ analyze()

+ evaluate()

+ compare(gen : GABaseGenome) : float

+ convergence() : float

Figure 5.3: The fundamental classes of the genome as well as their specialization for analog cir-
cuits are depicted. Thereby, theCircuitStructure, contains the actual analog circuit, which
consists of various possible components, e.g.CFPTACell andCCMosTransistor. The latter
classes are, on their part, derived from theComponentBase class. TheGACircuitGenome
represents the interface to the EA library.

a map, containing the external nodes, which define the connections to other components.
Second, a map, that contains the internal nodes, which can beused to define the in-
ternal topology. Third, switches can be defined, in order to interconnect two nodes.
Fourth, a map, for storing the parameter set which is necessary to characterize the re-
spective component. All of those four data structures are realized as standard template
library (STL) [40] maps, due to the fact that each node, switch and parameter can be
assigned to an additional identifier, which improves the manageability of those items and
the readability of the code. Since the derived components can be freely combined in
the final circuit structure, this class system provides a flexible framework for encoding
circuits of any kind and subsequently use them for evolutionexperiments.

5.4.2 Derivation of Custom Circuit Components

In order to derive a custom circuit component, its particular initial setup and configuration
has to be done in the respective constructor, while the interpretation of the stored config-
uration has to be implemented in thegetFPTARepresentation()and thegetSPICERep-
resentation()functions. The specialization of aComponentBase to a configurable implementation of

circuit components

73

5.5 Control Software and User Interface for the Evolution Software

transistorCCMosTransistor is chosen as an example and shown in algorithm A.1
in appendix A. Assuming the final circuit consists of severalsuch transistor components,
the information which ones are interconnected, is stored byassigning the same node
number to one of the external nodes of both. Consequently, inthe resulting netlist, those
components will be connected. Since a transistor features three terminals (gate, source,
drain), three corresponding internal nodes are created, which can be attached to one of
the available external nodes, by simply assigning the respective identifier of the external
nodes. In addition to the external nodes, the terminals can be connected to vdd, which is
set to a predefined unique number, or gnd, which is always denoted by the node number
0. Two parameters W and L are created and initialized with sensible float values, which
define the transistor size. Furthermore, the configurable cell can be switched from PMOS
to NMOS, by changing theCMOSTYPEswitch fromtrue to false.

5.4.3 Modular Genetic Representation of Custom FPTA Architectures

Keeping in mind that the genetic circuit representation shall be mapped to either the cur-
rent FPTA, or even new FPTA architectures in the future, the first approach is to structure
the representation according to such topologies. Presuming that FPTAs are generallyarranging components

in regular patterns composed of a regular pattern of configurable basic cells, custom architectures can be
easily created by first, deriving the configurable basic cells fromComponentBase, add
the desired amount of those cells to the circuit structure and configure the respective ex-
ternal nodes according to the desired topology. In principle, as long as a corresponding
mapping function is provided, the genetic representation has not necessarily to be a one-
to-one copy of the hardware, although this is the case for therepresentations in this thesis.

5.4.4 The Genetic Representation of the Current FPTA

The genetic representation of the current FPTA is close to the hardware and is imple-
mented as a specialization of the modular representation ofsection 5.4.3. It consists of
an array of data structures, that contain the configuration data for the cells: the x- and
y-coordinates, 6 boolean variables for the routes and two float variables for the W/L ratio.
Thus, the design of the basic cell equals the architecture ofthe configurable transistor
cell of the chip, which is described in section 3.1.1. The greatest advantage of a direct
genotype-phenotype mapping is that no complex place and route algorithm is needed for
the configuration of the transistor array. Contrary to that,it might be disadvantageous
to constrain the connectivity of possible circuits in advance, although the smaller search
space, that results from the latter constraints, may lead tofaster convergence of the EA.

5.5 Control Software and User Interface for the Evolution Soft-
ware

The control software is basically the superstructure of theEA library, the genetic repre-
sentation and the analysis and evaluation classes, which provides the user interfaces and
configures the library modules. For the experiments in this thesis, the originaldarkGAQTdarkGAQT software

software, described in [49] has been further developed and included into theHANNEE

74

Evolution Software Environment

software framework, described in [35]. Both software projects are developed in theElec-
tronic Vision(s)group at the Kirchhoff-Institute for Physics in Heidelberg. The reasons
for adapting the original software to theHANNEEframework are: first, theHANNEE HANNEE software

frameworkframework provides a factory system for easily creating modular user interfaces for con-
figuration. Second, the software automatically stores its current state and data in an ex-
tensible markup language (XML) configuration file, from which it can be fully restored.
Third, it is possible to run the program in command line mode,which is useful for run-
ning experiments on remote computers, which has exhaustively been used for the pre-
sented experiments. Fourth, theHANNEEsoftware provides so calledobserverclasses,
which make it convenient to display any desired data during the experiment by auto-
matically creating the according plot windows. Finally, itis a great advantage to share
implemented functionality with others. An example screenshot of the user interface of
the evolution software is depicted in figure 5.4.

Figure 5.4: A screenshot of the GUI of the evolution software.

75

Part III

Experiments and Results

77

Chapter 6

Evolution of Transferable Circuits
on the FPTA

The aim of this chapter is to develop an evolutionary algorithm, which is able to
synthesize circuits on the FPTA, which are transferable to other technologies and
can therefore be validated with a simulator outside the chip. In order to achieve
this, new variation operators are developed, which make it at least technically
possible to derive and reuse new concepts of electronic design from the evolved
circuits. It is shown that the developed algorithm performsequally well as a
straight forward implementation of the EA (Basic GA) in finding good solutions
for logic gates and for comparators. The newly developed algorithm is referred
to as the Turtle GA throughout the remainder of this thesis. Furthermore, the
circuits, which are evolved with the Turtle GA, are extracted into SPICE netlists
and the performance of the on-chip measuring is compared to the simulation
results. In addition to this, the circuits are measured on different FPTA sub-
strates, in order to investigate to what extent the circuitsare bound to the chip,
on which they are evolved. For all experiments, basic manually made designs,
taken from [6, 90], are realized on the configurable transistor array and used as
references for the evolved circuits. Finally, schematics are automatically gener-
ated from the best solutions, using the algorithm from chapter 4, section 4.5.2,
and it is shown that in the case of some circuits with a good performance, it is
possible to understand how they actually work.

79

6.1 Development of the Evolutionary Algorithm

6.1 Development of the Evolutionary Algorithm

The aim is to develop an EA, which is able to synthesize circuits on an FPTA chip, whichoff-chip circuit
validation are transferable to other technologies. In this case, thoseother technologies are in the first

place either other FPTA substrates or a SPICE simulator. If it is possible to validate cir-
cuits, which are evolved on the transistor array, with a simulator outside the chip, it will be
at least technically possible to derive and reuse new concepts of electronic design, which
are possibly found by means of evolution. Additionally, thesynthesized circuits can be
more accurately analyzed with a simulator. This is helpful,since most evolved circuits
are difficult to unterstand. To achieve this, an algorithm with new variation operators has
been developed: theTurtle GA. It is desired that the new algorithm performs equally wellnew genetic operators

than theBasic GA, which has been successfully applied in previous experiments [49,55].
Both algorithms are used for the evolution of logic gates andcomparators, in order to
assess and to compare their performace. Additionally, statistical performance tests are
carried out with all variation operators. The variation operators of both algorithms are
designed to operate with the genetic representation of the FPTA, that is introduced in
section 5.4.3. This representation is used for all experiments in this chapter. Tournament
selection is used as selection scheme and in order to preserve arising good solutions,tournament selection

and elitism elitism is applied to the two best parents by replacing them unchanged with the two worst
individuals of the offspring population. The implementation of the evolutionary step and
the selection scheme is given in figure 6.1.

6.1.1 The Basic GA

The Basic GAis based on the simple genetic algorithm introduced in [27].A straight
forward implementation of this algorithm has previously been used in [49,55] for analog
circuit evolution experiments on the FPTA. Hence, it is—with slight changes—used as a
reference for the performance of theTurtle GA, which is developed in this thesis. Since
adaptations of the simple genetic algorithm are widely usedin the field of evolvable hard-
ware [42,60,71,77,84,108], it is a suitable benchmark for newly developed algorithms.

Implementation of the variation operators.
Themutation operatorrandomly changes the properties of the FPTA cells accordingmutation operator

(Basic GA) to the defined mutation probabilities. There are three features of the FPTA cell, that can
be modified by the mutation operator, namely the routing, theconnection of the transistor
terminals and the size of the configurable transistor. Thus,a separate mutation probabil-
ity can be configured for each of the three features. Mutationis carried out in a straight
forward way by consecutively addressing all transistor cells, which are used for the re-
spective evolution experiment. Thereby, due to the given probabilities, the six possible
routes are flipped and the three transistor terminals are (re-)connected to another target
node. Contrary to that, the W and L is not randomly changed, but increased or decreased
about up to 3 steps for each application of the mutation operator. It is randomly decided,
with a probability of 0.5, whether to increase or to decrease W and L. The actual number
of steps is obtained from a gaussian distribution, which is based on the mutation proba-
bility. Therefore W/L remains most likely unchanged, whilethe probability for one (two,
three) step(s) are given by the probabilities represented by 1σ (2σ , 3σ) of the Gaussian

80

Evolution of Transferable Circuits on the FPTA

Algorithm 6.1: This algorithm describes the course of the evolutionary step, which is used for
both, theBasic GAand theTurtle GA. The evolutionary step creates the offspring population
by selecting individuals from the parent population and by subsequently applying crossover and
mutation to those individuals. Tournament selection is used as selection scheme. After the new
population is created, all individuals are evaluated and ranked. In the next generation, the current
offspring becomes the new parent population. Elitism is used for the two best parents by replacing
them unchanged with the two worst individuals of the offspring population, in order to increase
the probability of preserving good solutions.

procedure GATOURNAMENTSELECTOR::SELECT()
select a randomchampion from the parent population
for i← 1 to tournament sizedo

select a randomcompetitor from the parent population
if fitness ofcompetitor < fitness ofchampion then

competitor becomes newchampion
end if

end forreturn currentchampion
end procedure

procedure GAGENETICALGORITHM::STEP()
for i← 1 to hal f population sizedo

select ind1 from parent population
select ind2 from parent population
if random float [0..1]< crossover probabilitythen

cross ind1 with ind2→ ind1’, ind2’
else

unchanged ind1, ind2→ ind1’, ind2’
end if
mutate ind1’ according to mutation probability
mutate ind2’ according to mutation probability
add ind1’, ind2’ to the offspring population

end for
measure and evaluate offspring population
perform elitism: copy best two parents to worst two offspring
save statistical data

end procedure

distribution.

In all experiments, a rectangular area ofn×m FPTA cells (m,n < 16) is provided to
the GA for circuit evolution. Thus, thecrossover operatorsimply exchanges two ran-crossover operator

(Basic GA)domly sized and randomly positioned rectangular areas of transistor cells of two selected
individuals. While it is possible to delimit the maximum size of the exchanged blocks of
cells, the position can be freely chosen by the GA within the available area of the transis-
tor array. The operation principle of both variation operators are visualized in figure 6.1
and figure 6.2.

81

6.1 Development of the Evolutionary Algorithm

Figure 6.1: The operation principle of the mutation operator of theBasic GAis depicted above.
Mutation is carried out by (re-)connecting randomly selected transistor terminals, switching ran-
dom routes on or off and randomly changing the W/L ratio of arbitrary transistors. An according
crossover operator is shown in figure 6.2

6.1.2 The Turtle GA

The operation principle of theTurtle GAis inspired by growing networks like the nervous
system or blood vessels. Despite those growing processes are based on randomly created
paths, furcations and interconnections, the overall process is directed by developmental
rules. In the case of blood vessels, possible developmentalrules could be to ensure a
minimum volumetric flow rate, a minimum coverage of all partsof the body and the con-
straint that branches have always to be less in diameter thanthe main trunk. The circuitrecursive or rule-based

circuit creation creating meachanisms of theTurtle GAare inspired by developmental rules of the latter
kind. A rule-based developmental stage is supposed to be most efficient in combination
with genetic encodings, for which the phenotype is not a one-to-one mapping of the geno-
type, e.g. in the case of GP [47]. Nevertheless, in this case,the variation operators work
on a genetic representation, that is close to the phenotype.The nameTurtle GAis inspired
by the turtle graphicslanguage, with which a graphics cursor can be directed to create
a plot1 . Analogous to creating a graph, the variation operators of theTurtle GAdraw a
circuit on the configurable transistor array, based on random decisions for direction and
component sizing.

1 The turtle graphics language has originally been developedfor sending commands to a plotter. A basic set
of instructions is available and each command (pen up, pen down, move n steps forward, rotate n degrees)
is directly carried out by the graphics cursor (turtle).

82

Evolution of Transferable Circuits on the FPTA

Figure 6.2: The picture illustrates the operation principle of the crossover operators of theBasic
GA (top) and theTurtle GA(bottom) respectively. Principally, the first step (top) of exchanging
a randomly sized and positioned block of cells between two selected individuals is the same for
both algorithms. While the operation is thereby already completed in the case of theBasic GA,
a second stage (bottom) takes care of fixing the occurring floating nodes in the case of the Turtle
GA.

83

6.1 Development of the Evolutionary Algorithm

Implementation of the variation operators.
The random wires mutationoperator randomly selects an outside node of an arbitraryrandom wires mutation

operator (Turtle GA) FPTA cell as starting point for the algorithm. For such a node, both the current cell and
the adjacent neighbor cell provide three possible routing connections to the remaining
outside nodes (N, S, W, E) and three connections to the transistor terminals (gate, source,
drain). There are two operation modes of therandom wires mutation, namely the create
mode and the erase mode. In case the create mode is active, once the starting point is
selected, the algorithm randomly chooses one of the unconnected, possible target nodes,
connects it to the current node and subsequently the target node becomes the new starting
point. Connections are recursively established until the target node features more than 1
connections, including the new connection. If a transistorterminal is selected as target
node, the algorithm is recursively carried out with the two remaining terminals as starting
points. In the latter case, the four outside nodes of the current transistor cell are possible
target nodes, to which the transistor terminal can be connected. The algorithm works the
same way in erase mode, although the stop criterion will be reached, if, after erasing the
chosen connection, the target node features either 0 or morethan 2 connections. In erase
mode, transistors are rewired instead of removed with a probability of 0.5, by switching to
create mode after detaching the current terminal. As a consequence of this, the mutation
operator inherently avoids floating nodes and terminals, thus, produces valid circuits for
simulation.

Thereby, the selection of the target node can be influenced with two configuration
parameters: first, it can be configured, whether it is more likely to select a target node of
the current cell, or to proceed to the neighbor cell (0.5 means both is equally probable).
Second, the probability of connecting a transistor terminal, instead of an outside node,
and the maximum number of transistors used can be specified. Furthermore, a maximum
number of routing connections per cell can be set, which, if exceeded, will cause the
operator to switch more likely to erase mode. Finally, the probability, with which it is
decided whether to start in create mode or in erase mode can beconfigured.

The W and L of a transistor is randomly configured, immediately after the mutation
operator has inserted it into the active circuit. During thecourse of evolution, the sizes of
all transistors are varied in the same way as for theBasic GA, described in section 6.1.1.

Since the relatively complexrandom wires mutationis yet available, the operation
principle of theimplanting crossoveroperator is simpler. Analogous to theBasic GA, twoimplanting crossover

operator (Turtle GA) randomly sized and randomly positioned rectangular areas of FPTA cells are exchanged
between two different individuals. It is possible to delimit the maximum size of the
exchanged blocks of cells, while the position can be freely chosen by the GA within the
available area of the transistor array. Since this operation in general breaks the layout
of the previously intact circuits, a postprocessing stage takes care of fixing the occurring
floating nodes by applying therandom wires mutationoperator to each of them. As
a consequence, the validity of the circuit is restored. The operation principle of both
variation operators is visualized in figure 6.2 and figure 6.3. Additionally, it is described
in pseudocode A.5 and A.6 in appendix A.

84

Figure 6.3: The operation principle of therandom wires mutation operatorof the Turtle GA
is depicted above. Transistors and wires are recursively inserted (or removed) into (from) the
active circuit. Pictures 1-10 show an example where a starting point is randomly selected and
subsequently a new transistor is attached to the circuit, while in pictures 11-15 the deletion of a
wire is illustrated. Further, the W/L ratio of all transistors is randomly changed. The mutation
operator is designed in a way that the resulting circuits contain no floating nodes.

6.2 Experimental Setup

6.1.3 Shortcomings of the Basic GA

Some important shortcomings of theBasic GAcan already be seen from figure 6.1, in
which a section of a typical genotype is depicted. As can be seen from this figure, the
FPTA allows for circuit configurations, that contain unconnected nodes and transistor ter-
minals. Those floating nodes are actually connected to closed transmission gates, whichunconnected nodes and

transistor terminals are part of the configuration circuitry of the chip, hence, are not really unconnected. As a
consequence of this, if an evolved circuit shall be successfully tested in simulation outside
the FPTA, it will be necessary to consider the entire configuration circuitry of the chip.no verification outside

the FPTA Thus, the simulation time is significantly increased to up to1 day, in the case of a large
circuit. Furthermore, it is—even if they are found—neitherfeasible to derive new design
concepts from the evolved circuits, nor practical to transfer found solutions to other tech-no transfer to other

technologies nologies. The reason for this is that the circuits, which aresynthesized by theBasic GA,
may sensitively depend on the influence of the parasitic effects of the configuration cir-

sensitive dependency on
the evolution substrate

cuitry of the FPTA. Thus, in some cases, it is not even guaranteed that an evolved circuit
performs equally well on another FPTA chip of the same kind.

6.1.4 Improvements of the Turtle GA Compared with the Basic GA

The design of the variation operators of theTurtle GAaims for overcoming the short-
comings of theBasic GA. Hence, the fact that floating nodes and floating terminals are
inherently avoided, makes it possible to simulate the evolved circuits outside the FPTAsimulation and

verification outside the
FPTA

without obligatory considering the influence of the configuration circuitry of the transistor
array. Although the parasitic capacitances of the closed transmission gates and the inac-
tive parts of the configurable transistor are still present and influence the evolving circuit,
the strength of this dependency is significantly reduced, since there are no longer floatingreduced dependency on

parasitic effects nodes of incompletely connected transistors. In addition to this, it is a great improvement
that schematics can be automatically generated from the circuits that are evolved with the
Turtle GA, by using the SKILL language as described in section 4.5.2. The latter achieve-
ment is a great step towards facilitating the understandingof transistor circuits, which are
evolved on the FPTA.

6.2 Experimental Setup

All experiments within this chapter are performed with theBasic GAand theTurtle GA
respectively. For the evolution of the set of logic gates, anarea of 7× 7 configurable
transistor cells is used, whereas for the evolution of comparators an area of 8× 8 cells
is provided to the EA. As can be seen from figure 6.2, a testbench with randomly vary-
ing capacitive load is connected to the circuit’s input in both cases, in order to promotetestbench with randomly

varied capacitive load circuits, which are able to drive different capacitive loads. The chip-in-the-loop setup in-
herently provides exclusively the possibility of transient measuring. Therefore, in order to
obtain a quasi-DC characteristic of the evolving circuit, relatively long settling times arequasi-DC measuring

chosen for each voltage sample in conjunction with randomizing the order of the voltage
test pattern.

86

Evolution of Transferable Circuits on the FPTA

Figure 6.4: Left: the FPTA setup for the evolution of logic gates is shown. In this case, an area
of 7×7 transistor cells can be changed by the algorithm.Right: an area of8×8 FPTA cells is
provided to the EA for the evolution of comparators. In both cases, a capacitive load is realized
with the transistors on the chip and is attached to the circuit’s output. Thereby, the advantage is
that this capacitive load can be randomly varied by the EA during the course of evolution.

6.2.1 Test Modes for the Logic Gates

Vsweep[V] Vset [V] AND NAND OR NOR XOR XNOR
< 2 (low) < 2 (low) 0 1 0 1 0 1
< 2 (low) > 3 (high) 0 1 1 0 1 0
> 3 (high) < 2 (low) 0 1 1 0 1 0
> 3 (high) > 3 (high) 1 0 1 0 0 1

Table 6.1: The truth table for all six symmetric logic gates is depictedabove. Providing a better
overview, on the right hand side, the logiclow and logichighare represented by zeroes and ones.
Despite this, in the output voltage pattern, a logic 0 indicates that the target output voltage is0 V,
while a logic 1 indicates that the target output voltage is5 V.

Each of the two test modes for the logic gates features two inputs (Vsweep, Vset) and
one target output (Vtar) respectively. The input voltage pattern is given byVsweep=
0. . .2,3. . .5 V for each of the 10 values ofVset= 0,0.5,1,1.5,2,3,3.5,4,4.5,5 V. Thus,
each test mode consists of a set of 10 sample curves and a totalof 640 voltage samples.
Note that the transition regions atVsweep,Vset = 2.5±0.5 V are not considered, with the
aim to facilitate the search for logic gates. The target voltages are either set to 0 V or to
5 V, depending on the result of the desired logic calculation. According to the transistor-
transistor logic (TTL) definition, the voltage range of 0. . .0.8 V represents a logiclow
and the range of 2. . .5 V represents a logichigh. Thus, from this point of view, the spec-
ification of the target voltage pattern is even more restrictive for the presented evolution
experiments. The timing scheme of the chip is configured in a way that the sampling
frequency is 0.91 MHz. Therefore, randomizing the sample voltage sequenceassures a
settling-time of at least 1.1µs. Since logic gates shall deliver the same output, if the in-

87

6.2 Experimental Setup

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

V
sweep

 [V]

v se
t [V

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

V
sweep

 [V]

v se
t [V

]

Figure 6.5: The schemes of the input voltage pattern for the evolution oflogic gates (left) and
comparators (right) are depicted above. While, in the case of the logic gates, the transition regions
of Vsweep,Vset = 2. . .3 are not considered, in order to facilitate the search for good solutions,
in the case of the comparators, the density of the voltage samples is even increased towards the
switching points, in order to emphasize it.

puts are swapped, two test modes are necessary to cover both input configurations. A
visualization of the input voltage pattern is given in figure6.5 and the truth table for the
logic gates is listed in table 6.1. In the section 6.4, the transition region is included in the
measuring (Vsweep= 0. . .5 V) but not considered for fitness calculation, in order to obtain
nicer plots of the output voltage characteristics of the logic gates.

6.2.2 Test Modes for the Comparators

Again, there are two inputs present (Vsweep, Vset) and one output (Vtar). In the case of the
comparators, the voltage test pattern features a set of 7 curves withVsweep= 0. . .5 V and
Vset= 1,1.5,2,2.5,3,3.5,4 V. Vsweepconsists of 100 sample voltages, resulting in a total
of 700 samples for each test mode. The values ofVsweepare not uniformly distributed
between 0 V and 5 V, but with increasing density towards the respectiveVset, in order
to emphasize the switching points for the fitness calculation. Thereby, the smallest dif-
ference between two consecutive voltage samples is never smaller that 20 mV, owing to
the resolution of the measuring system, discussed in chapter 3, section 3.3.2. The input
pattern is illustrated in figure 6.5 (right) and the target voltages are calculated according
to

Vtar =

{

5 V Vsweep≤Vset

0 V Vsweep> Vset
. (6.1)

Since the design of a comparator, which performs well withinthe whole voltage range,
is a difficult task,Vset takes on values between 1 V and 4 V, in order to help the genetic
algorithm in finding good solutions. The order of the voltagesamples is randomized,
which ensures, alongside with the selected sampling frequency of 0.77 MHz, a minimum
settling-time of about 1.3µs. Since it is expected that a comparator will produce the
inverse output voltage characteristic, if the inputs are swapped, two test modes—one
with swapped inputs and inverse target voltages—are used toassess the evolving circuit’s
performance.

88

Evolution of Transferable Circuits on the FPTA

0 2 4 6 8 11 14 16 18 20 22 25
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

rm
s

er
ro

r
[V

]

fitness
0 0.2 0.4 0.6 0.8 1 1.2

0

0.2

0.4

0.6

0.8

1

rm
s

er
ro

r
[V

]

fitness

quadratic fitness
discrete fitness − 1 sample
discrete fitness − 20 samples

Figure 6.6: In order to make the fitness values more meaningful in the fieldof circuit design, the
fitness is—for some graphs—translated to the according rms error in volts. The according map-
ping of fitness←→ RMS error is depicted above. Contrary to the squared fitness,the fitness used
is discrete, which provides two advantages: first, the measured voltage values are less sensitive
to the noisy hardware measurement and the resolution of about 20 mV of the hardware evolution
system. Second, the resolution of the fitness measure is refined towards small voltage changes,
while improvements of large voltage changes are robust.

6.2.3 Simulator Setup

The simulations are carried out with the SPICE simulator, described in chapter 4 and
in [65]. BSIM3v3 transistor models of the AMS 0.6 µm process, with which the FPTA isthe fabrication process

of the FPTAdesigned, are used for simulation. SPICE netlists are extracted from the circuits that have
been evolved on the transistor array and the input voltage patterns correspond to those
used for the on-chip measurements. In cases where the simulation delivers more output
voltage samples than the measuring on the FPTA, only the common subset of samples
is considered for fitness calculation. Additionally, the fitness values, calculated from the
simulation results, are obtained by using the same fitness functions as are used throughout
evolution.

SPICE Netlists of the resulting circuits are extracted as described in chapter 4, sec-
tion 4.4. Level 2 netlists are used for comparing the resultsfrom the chip to those ob-
tained from simulation. Furthermore, a load-capacity of 10pF is attached to the circuit’s
output in simulation, owing to the randomly varied capacitive load, which is present at
the circuit’s output during evolution.

6.2.4 Fitness Measure

The same fitness measure is used for all experiments in this chapter, in order to be able
to compare them. Both the setup for the logic gates and the setup for the comparators
consist of two test modes respectively and each test mode delivers a separate fitness value.
Additionally, a third fitness value is obtained by quantifying the ressource consumption.accumulated fitness

valueThe latter three fitness values are added up to the total fitness of an individual, which is
denoted asaccumulated fitness. It is a great problem if circuits, which use less ressources,
are preferred right in the beginning of the experiment, since evolution will get more often
stuck in the local optimum of using no transistors and no routes at all after only a few

89

6.2 Experimental Setup

generations. To overcome this problem, a widely used approach is to assign the worst
fitness for the ressource consumption as long as the fitness, calculated from the output
voltage characteristics, is not below a certain threshold.Hence, the latter approach is also
applied for the experiments in this chapter. The worst ressource consumption of 2048 is
thereby calculated by considering all 256 transistors and 256× 6 routes of the FPTA in
equation 6.7 and all fitness values are calculated as follows:

∆Vi = |Vtargeti −Vmeasuredi | (6.2)

N = no. of voltage samples (6.3)

discrete fitness =
1
N

N

∑
i=1

50

∑
j=1

{

j · 11
1275 ∆Vi −20 mV> 0.1· (j−1)

0 ∆Vi −20 mV≤ 0.1· (j−1)
(6.4)

squared fitness=
1
N

N

∑
i=1

∆V2
i (6.5)

rms error =
√

squared fitness (6.6)

ressource consumption= 2× transistors used+1× routes used. (6.7)

(6.8)

Furthermore, for the purpose of making the fitness values more meaningful in the field
of circuit design, the fitness is—for some graphs—translated to the according rms error
in volts. The mapping of fitness←→RMS error is depicted in figure 6.6. For illustration,mapping the fitness to

the corresponding rms
error

rms error and fitness are calculated for one single voltage sample and for 20 randomized
voltage samples respectively. Contrary to the squared fitness, the fitness used is discrete,
which can be seen from the curve for 1 voltage sample in figure 6.6 and is referred to
asdiscrete fitness. In the case of hardware evolution, the discrete fitness features some
advantages compared with the squared fitness: first, the measured voltage values are
less sensitive to the noisy hardware measuring and the resolution of about 20 mV of the
hardware evolution system (chapter 3, section 3.3.2). Second, the resolution of the fitness
measure can be refined towards small voltage changes by decreasing the distances of the
fitness steps, while improvements of large voltage changes are more robust and therefore
preserved.

6.2.5 Estimation and Setup of the EA Parameters

As can be learned from publications about scanning the parameter space and finding op-
timal parameters for EAs ([36]) and from test runs of evolution experiments, carried out
for this thesis, optimally tweaking the EA is a difficult and time-consuming task. Actu-
ally, there are two approaches for finding the optimal EA parameters for a certain a certain
task: the first possibility, which surely finds the global optimum, is simply to sample the
whole parameter space by performing according experimentsand subsequently pick the
parameters of the setups, that have lead to the best results.However, a great disadvantage
of the latter approach is the immense time consumption, since the EA’s parameter set
consist of at least 4 independent variables, which have to beoptimized, namely muta-
tion rate, crossover rate, population size and selection pressure. The influence of custom
fitness functions and genetic encodings is thereby not yet even taken into account. In

90

Evolution of Transferable Circuits on the FPTA

practice, for a customized implementation of an EA, about 20-30 independent parame-
ters, rather than only 4, have to be optimized. As a consequence of this, assuming the
simplest case, 10 samples for each parameter (which is quitecoarse) and a statistics of
only 10 runs for each parameter set, a total of 10×104 = 100000 experiment runs would
have to be performed, in order to find a good set of parameters for one specific problem.
The second possibility is to make an educated guess for finding a good parameter set,
although this will possibly not lead to the global optimum.

Since the focus of this work is rather set on improving the EA and finding solutions for
various problems, than to exhaustively sampling the parameter space, the parameter set
used is found by an educated guess. Important parameters of theBasic GAand theTurtle an educated guess for

the EA parametersGAare listed in table 6.2 conjoined with their numerical valueand the considerations, on
which the respective value is based.

In order to substantiate the chosen set of parameters, 20 evolution experiments—for
which the task is to evolve a logic AND–are carried out with those parameters. Further-
more, another 20 evolution runs are carried out for certain variations of the chosen pa-
rameter set respectively. Variations of the parameter set are thereby obtained by slightly
increasing or decreasing certain parameters. Only one parameter is changed at the same
time, hence, the results obtained with the varied parametersets deliver information about
the vicinity of the respective variable and are listed in table 6.2. Concluding those re-
sults, it can be stated that a parameter set, with which a goodperformance of the EA is
achieved, is found, although it cannot be claimed that the global optimum is found.

91

parameter which smaller< used< greater success rate success rate educated guess, considerations
GA value rms< 200 mV rms< 500 mV

mutation rates The mutation rates used are picked by
dividing 1 by the number of
configurable routes (6×256), terminals
(3×256) and W/L (256). Thus, the
rates are set to values, with which, on
average, one of each kind of cell
features is changed per individual and
generation.

routing Basic 0.15 %< 0.3 %< 0.6 %
10 %> 5 %> 0 % 30 %< 60 %> 55 %

terminals Basic 0.3 %< 0.6 %< 1.2 %
W/L both 0.8 %< 1.6 %< 3.2 %

turtle rate Turtle 0.5 < 1 < 2

10 %< 25 %> 20 % 45 %= 45 %= 45 %
erase/create Turtle 40 %/60 %
reconnect Turtle 50 %

to old/new cell Turtle 30 %/70 %
crossover rate Basic 10 %

About 10 % of the individuals are
subject to a crossover operation.

Turtle 5 %< 50 %< 20 % 5 %< 25 %< 30 % 40 %< 45 %> 65 %
cross. block size both 0. . .4×0. . .4

elitism both keep 2 best ind. The significant value is #evaluations=
pop. size×no. generations. An
adequate selection pressure is achieved
by setting the tournament size to about
5 % of the pop. size.

tournament size Basic 3
Turtle 2< 3 < 4 20 %< 25 %> 10 % 40 %< 45 %> 25 %

population size Basic 50
Turtle 25< 50< 100 20 %< 25 %> 15 % 30 %< 45 %< 55 %

no. generations both 10000

Table 6.2: The GA parameters for theBasic GAand theTurtle GA, which are used for most of the experiments in this thesis, are listed in the table
above. The FPTA consists of16× 16 = 256 configurable transistor cells, each of them featuring six possible routes, three transistor terminals and one
W/L ratio. Since it is desired that the individuals are varied without destructive impact on useful structures, it makessense to set the basic mutation rates
to values that, on average, only one of the individual’s features is changed per generation. These conservative rates donot allow for effective exploration
of the search space in the beginning of evolution. Therefore, the basic mutation and crossover rates are multiplied witha factor1 ≤ multiplier ≤ 5,
multiplier∈ N |current best fitness< worst fitness

2·τmultiplier−1 , 1 < τ < 2, that depends on the current best fitness.

Evolution of Transferable Circuits on the FPTA

6.3 Measuring the Performance of the Variation Operators of
Both GAs

Although theTurtle GA features many eligible improvements compared with theBasic
GA, it has to be assured that the new variation operators perform equally well as the basic
operators. Thus, in order to measure the performance of the variation operators of both
GAs, they are applied to the same individual for one evolutionary step and the differences
between the previous fitness and the respective new fitness isrecorded. Thereby, owing
to the noisy output of the hardware, only those fitness differences are considered, that
exceed a certain threshold. This threshold, in turn, is obtained by performing multiple
measurements of the same circuit without changing it and subsequently calculating the
gaussian width of the distribution of the obtained results.Due to the fact that measuring
only one single individual is not representative, a set of different individuals with similar
fitness is measured.

For carrying out this measuring, different individuals with different fitness values are
collected during the evolution of logic gates (AND, XOR) andare stored in a repository.creating a repository of

individualsThis repository is divided into 100 equally sized fitness intervals, that cover the range
of resulting fitness values between 0.5. . .5.5, which corresponds to rms errors between
0.8. . .3.4 V. The fully populated repository features 100 different genomes for each fit-
ness interval and therefore contains a total of 10000 individuals. This repository makes it
possible to reproducible generate predefined initial populations for evolution experiments.
In the case of measuring the performance of variation operators, two fitness intervals are

which which rms error success failure success failure
task GA interval rate mutation [%] rate crossover [%]

AND
Basic

1.5 V 25.6 11.7 27.8 6.2
2.5 V 25.7 6.0 27.2 4.7

Turtle
1.5 V 25.7 12.1 26.5 5.5
2.5 V 30.8 9.7 30.2 6.3

XOR
Basic

1.5 V 7.2 39.0 7.9 8.2
2.5 V 19.8 23.4 6.0 11.4

Turtle
1.5 V 15.7 49.9 4.2 47.7
2.5 V 7.5 27.2 5.1 17.0

Table 6.3: The success rate and the failure rate of the mutation and crossover operator of theBasic
GA and theTurtle GAare opposed in the table above. Thereby, the success rate (failure rate) is
calculated fromno. of runs with fitness below (above) threshold

no.o f totalruns=100000 . It can be seen that the variation operators
of both EAs perform equally well for both, populations of individuals with a relatively good
fitness and populations of individuals with a bad fitness respectively. In the case of the XOR, it is
surprising that the mutation success rates and the crossover failure rates show an inverse behavior.
A possible reason for the latter behavior could be the fact that, first, the XOR turns out to be hard to
evolve on the FPTA and second, contrary to the AND, the outputvoltage characteristic of the XOR
is symmetric. Thus, the performance of the operators for corresponding fitness intervals is not
necessarily the same. Besides, greater success rates suggest faster convergence of the individuals
in the case of the AND.

93

6.3 Measuring the Performance of the Variation Operators ofBoth GAs

σ = 0.023

χ2 = 4105

BGA
no

.
of

in
di

vi
du

al
s

[×
10

3]

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

2

2.5

3

σ = 0.011

χ2 = 3440

TGA

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

pos. 7180

neg. 39002

no
.

of
in

di
vi

du
al

s

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

300

350

400

450
pos. 15705

neg. 49948

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600

700

pos. 7916

neg. 8181

∆ fitness [rms voltage]

no
.

of
in

di
vi

du
al

s

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

100

200

300

400

500

600
pos. 4183

neg. 47669

∆ fitness [rms voltage]
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

200

400

600

800

1000

1200

Figure 6.7: For illustration, the distributions of the results from theXOR individuals with a fitness
of 1 are depicted above. The results for theBasic GA(BGA) are depicted on the left hand side,
while those for theTurtle GA(TGA) are shown on the right hand side. Thereby, the graphs ontop
show the measuring of the unchanged individuals, those in the middle show the influence of the
mutation operator and those at the bottom show the influence of the crossover operator. Further,
a positive∆fitness means that the individual is improved, while a negative∆fitness means that the
individual is degraded.

selected for the setup: one fitness interval of individuals with a relatively good fitness of
1 (resp. an rms error of 1.5 V) and another interval of individuals with a bad fitness of
3 (resp. an rms error of 2.5 V). Subsequently, each individual of a selected interval isrepeatedly applying the

genetic operators tested 1,000 times, resulting in 100,000 for the mutation operator, the crossover opera-

94

Evolution of Transferable Circuits on the FPTA

tor and the unchanged genome respectively. The Gaussian Width of the distribution of
the latter measurements is used as a threshold, that has to beexceeded when the genome
is changed, in order to distinguish fluctuations of the output from real improvement or
degradation of the individuals. Finally, the ratio of measurements, where the application
of a genetic operator lead to better fitness, resp. worse fitness, can be used to express the
efficiency of the applied variation operator. The results for the success rates of mutationsuccess rates of the

genetic operatorsand crossover of theBasic GAand theTurtle GAare compared in table 6.3 and, for il-
lustration, the distribution of the results from the XOR individuals with a fitness of 1 is
depicted in figure 6.7.

As can be seen from table 6.3, the variation operators of bothGAs perform equally well
for populations of individuals with a relatively good fitness and populations of individuals
with a bad fitness respectively. In the case of the XOR, it is surprising that the mutation
success rates and the crossover failure rates show an inverse behavior. Possible reasons for
the latter behavior are: first, the XOR turns out to be hard to evolve on the FPTA. Second,
contrary to the AND, the output voltage characteristic of the XOR is symmetric. Thus,
the performance of the operators for corresponding fitness intervals is not necessarily the
same. Concluding, the results of the performance measuringsuggest that both GAs will
show comparable performance for the following evolution experiments. Besides, as long
as the success rate is> 0 %, the individuals are further improved by means of selection.
Thereby, the greater the success rate, the faster converge the individuals.

6.4 Results for the Evolution of Logic Gates and Comparators
Using Both EAs

A total of 50 evolution runs is carried out with theBasic GAand theTurtle GArespec- experimental setup

tively, in order to find solutions for all six logic gates (AND, NAND, NOR, OR, XOR,
XNOR) and the comparators. The population size is always 50 individuals, which are
processed for 10.000 generations in the case of the gates andfor 20.000 generations in
the case of the comparators. A complete list of the EA parameters is given in table 6.2.
The output fitness value range is 0. . .11. Thereby, 0 is the best fitness which would only
be obtained by the target voltage pattern itself and 11 is theworst fitness value, which
would be produced by a circuit with the inverse target voltage characteristic. The in-
dividuals of all evolution runs are randomly initialized and it is observed that the best
individual of the initial generation in most cases producesa straight line as output voltage
characteristic. Hence, the best initial rms error is about 2.5 V resulting in a best initial fit-
ness in the range of 3..4. Thus, for a better overview, the x-axis of the fitness histograms
of the resulting populations ranges between 0 and 3, insteadof between 0 and 11. As a
short remainder, the main questions, that shall be answeredby looking at the following
results are:

• How do theBasic GAand theTurtle GAperform in finding solutions for logic
gates and comparators?

• Are both EAs performing equally well?
• Do the circuits work on different substrates?

• How well does theTurtle GAperform its new features: transfer to other tech-
nologies, reduced ressource consumption and schematic generation?

95

6.4 Results for the Evolution of Logic Gates and ComparatorsUsing Both EAs

6.4.1 Comparison of the Results of Both Algorithms

On-chip Results for the Logic Gates
For theBasic GAand theTurtle GA, the best fitness of the resulting population of each

run is depicted in histogram 6.9. It can be seen that both EAs end up in similar regions
of fitness for the same logic gate respectively. Thus, in the case of the logic gates, bothlogic gates: equal

on-chip performance of
both EAs

algorithms perform equally well. Furthermore, histogram 6.9 shows that there are three
difficulty levels for the evolution of logic gates on the FPTA: first, the NAND and the
NOR are the easiest gates to evolve, since the resulting bestfitness of almost all runs is
below 0.25 (rms error< 700 mV). Second, the AND and the OR gates, which are more
difficult to evolve, due to the fact that, in this case, only2

3 of the runs feature a fitness
below 0.25, while the remaining part features fitness valuesbetween 0.25 and 1. Addition-
ally, there are 2. . .3 runs with a fitness between 1.5 and 2.5 (1.3 V < rms error< 2.5 V).
Third, the XOR and the XNOR are the hardest to evolve, since the resulting best fit-
ness values of the experiment runs are distributed between 0and 3. Nevertheless, for
the XOR and the XNOR, at least 2 out of 50 runs achieved a fitnessbelow 0.25. It can
be seen that, with increasing complexity (NAND,NOR=4 transistors, AND,OR=6 tran-more complex circuits

are harder to evolve sistors, XOR,XNOR=14 transistors), the circuits get harder to evolve. Concluding this
so far, both algorithms are able to reliably find good solutions for all six logic gates on
the FPTA. Measured output voltage characteristics of the best solutions are shown in fig-
ure 6.14.

On-chip Results for the Comparators
The fitness of the best individual of each evolution run is shown in histogram 6.10 for

both algorithms. In the case of the comparators, the resulting fitness values of both EAs
are ranging between 0.1 and 1 (50 mV< rms error< 1.5 V), although the distribution of
the fitness values indicates that theBasic GAperforms better in finding good solutions:comparators: on-chip

performance of Basic
GA is slightly better

about half of the runs achieved a best fitness below 0.25 (rms error < 700 mV). Contrary
to that, only 25% of the runs of theTurtle GAfeature a best individual below a fitness of
0.25. Despite this, four runs reached the best fitness bin in both cases. It is interesting to
see that, considering the complexity of 7 transistors of a basic comparator circuit, the dis-
tribution of the fitness values is similar to those of the AND and the OR, which are equally
complex. As a consequence of this, it is suggested that the probability, with which a goodfinding good solutions

rather depends on no. of
transistors, than on
problem

solution is found, rather depends on the number of transistors and their connectivity, than
on the particular problem or the type of circuit. To conclude, it can be stated that both
algorithms are able to reproducible synthesize comparators with a good performance on
the chip. According output voltage characteristics of the best circuits found are depicted
in figure 6.15.

Considering the Ressource Consumption
The first significant advantage of theTurtle GA, compared with theBasic GA, can be

seen from figure 6.8 and figure 6.11, where the rms error of the best individual of all
experiments is graphed over the resource consumption (no. of transistors used) of the
respective circuit. For drawing the figures 6.8 and 6.11 the rms error is chosen, instead
of the fitness, since this makes it easier to qualify the electrical performance of the re-

96

Evolution of Transferable Circuits on the FPTA
rm

s
er

ro
r

[V
]

AND
reference

Basic GA
Turtle GA

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5
NAND

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

rm
s

er
ro

r
[V

]

NOR

turtle g

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5
OR

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

replacements

no. used transistors

rm
s

er
ro

r
[V

]

XOR

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

no. used transistors

XNOR

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

Figure 6.8: The fitness from the test modes is plotted over the no. of transistors used. As can be
seen from the graphs, theTurtle GAfeatures reduced ressource consumption, compared with the
Basic GA. Furthermore, both EAs achieved to find solutions for the logic AND, NAND, NOR,
OR and XOR, which perform equally well as the respective manually made reference designs,
which are realized on the FPTA.

sulting circuits. In both experiments, the evolution of logic gates and the evolution ofthe Turtle GA
significantly reduces
ressource consumption

comparators, theTurtle GAproduces circuits, which use less transistors than theBasic
GA. Reducing ressource consumption is desireable insofar that, on the one hand, freed

advantage: (re-)using
ressources

ressources can be (re-)used by the EA for the development of additional features and, on
the other hand, a smaller number of transistors increases the probability of understanding
evolved circuits.

97

AND
Basic GA

AND
Turtle GA

n
o

.
o

fr
u

n
s

NAND
Basic GA

NAND
Turtle GA

NOR
Basic GA

n
o

.
o

fr
u

n
s

NOR
Turtle GA

OR
Basic GA

OR
Turtle GA

n
o

.
o

fr
u

n
s

XOR
Basic GA

XOR
Turtle GA

XNOR
Basic GA

n
o

.
o

fr
u

n
s

fitness

XNOR
Turtle GA

0 0.5 1 1.5 2 2.5 3
0
6

12
18
24

6
12
18
24

6
12
18
24

6
12
18
24

6
12
18
24

6
12
18
24

6
12
18
24

6
12
18
24

6
12
18
24

6
12
18
24

6
12
18
24

6
12
18
24

Figure 6.9: The distribution of the fitness of the best resulting individual of all 50 evolution runs is
graphed. The outcome of both EAs, namely theBasic GAand theTurtle GAare depicted for all 6
logic gates. It can be seen that the number of good solutions decreases with increasing complexity
of the circuits.

Evolution of Transferable Circuits on the FPTA

n
o

.
o

fr
u

n
s

Comparator
Basic GA

n
o

.
o

fr
u

n
s

fitness

Comparator
Turtle GA

0 0.5 1 1.5 2 2.5 3
0

4

8

12

4

8

12

Figure 6.10:The distribution of the best fitness for comparators of each of the 50 evolution runs is
shown in the above histograms. Thereby, both theBasic GAand theTurtle GAachieve to reliably
find good solutions for comparators, although the over-all performance of theBasic GAis slightly
better in this case.

no. used transistors

rm
s

er
ro

r
[V

]

reference

Basic GA
Turtle GA

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5 Figure 6.11: Once more, for
the comparators, the fitness
from the test modes is plot-
ted over the no. of transis-
tors used. Thereby, it can be
seen that in the case of the
comparators, theTurtle GA
achieved to significantly re-
duce the ressource consump-
tion, compared with theBa-
sic GA. For comparison, the
performance of a manually
made reference design on the
FPTA is marked with a trian-
gle.

99

6.4 Results for the Evolution of Logic Gates and ComparatorsUsing Both EAs

6.4.2 Verifying the Evolved Circuits in Simulation

The second important feature of theTurtle GAis the possibility of extracting the resulting
circuits into SPICE netlists, as described in section 4.4, and therefore it is possible to
validate them with a simulator outside of the chip. Since theaim is to proof that good so-
lutions, which are evolved on the FPTA, are working outside the chip without including
the whole configuration and controlling circuitry of the transistor array into simulation
(level 3), the simulations of the circuits are carried out with netlists of level 2, in which
only plain transistors and the mean parasitic on-resistance of the switches are included.
Contrary to that, level 1 simulations, which represent eachtransistor cell as plain transis-
tor, are not used, due to the fact that it has been observed in preliminary experiments that
the level 1 simulations generally fail. One individual of each run, which features the best
performance on the chip, is measured on the FPTA, in a DC SPICEsimulation and in a
transient SPICE simulation respectively.

Simulation of the Logic Gates
The results for the logic gates are compared in histogram 6.12. It can be seen that,

although the performance of many solutions decreases in theDC simulation, at least 1the Turtle GA finds logic
gates, which perform
well in simulation

out of 50 individuals with a good fitness performs equally well as on the chip. DC volt-
age characteristics of the on-chip measuring of the best solutions of both GAs and the
DC voltage characteristic of the simulation of the bestTurtle GAsolution are depicted
in figure 6.14. Contrary to the DC simulation, the performance of the circuits is getting
significantly worse in the transient simulation. Nevertheless, this is expected, since para-transient performance is

worse than DC
performance

sitic capacitances are not included in the netlist. Despitethe worse rms error, the transient
voltage characteristics, graphed in figure 6.16, show the expected behavior of the respec-
tive logic gate, which is a positively surprising result.

Simulation of the Comparatorsthe Turtle GA finds
comparators, which
perform equally well in
simulation

In the case of the comparators, the rms errors obtained from simulation and from the
measurement on the chip are similar. The results are shown infigure 6.13. Once more, 1
out of 50 evolution runs features an individual with a good performance, which performs
equally well in the DC simulation and on the FPTA. The output voltage characteristics
are depicted in figure 6.15. For the comparators, the output of both test modes is shown,
since, contrary to the logic gates, the curves will be inverted, if the inputs are exchanged.
Furthermore, although the rms error of the majority of solutions gets significantly worse,
the over-all best individual performs well in a transient simulation, as can be seen from
figure 6.17. Thus, it is possible to synthesize circuits on the FPTA that are not bound togood solutions are not

bound to the FPTA the architecture of the configurable transistor array.

100

AND
rm

s
e

rr
o

r
[V

]

NAND

NOR

trans. simulation

OR

rm
s

e
rr

o
r

[V
]

XOR

best individual of run

XNOR

FPTA measuring
DC simulation

0 10 20 30 40 50
0

2

4

2

4

2

4

2

4

2

4

2

4

Figure 6.12: The perfor-
mance of the best solutions
for the logic gates on the
FPTA are compared with
their performance in a DC
and a transient SPICE sim-
ulation for all 50 evolution
runs respectively. For a bet-
ter overview, the results are
sorted by their fitness, ob-
tained with the FPTA, in as-
cending order. It can be seen
that about50. . .70 % of the
circuits are failing in simu-
lation. Despite this, in all
cases, at least one good solu-
tion is found, which performs
equally well on the chip and
in simulation.

rm
s

e
rr

o
r

[V
]

best individual of run

Comparators trans. simulation

FPTA measuring
DC simulation

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Figure 6.13: The on-chip performance of the best comparators of all 50 evolution runs is com-
pared with their performance in a DC and a transient SPICE simulation. Again, for a better
overview, the results are ascending sorted by their fitness,obtained with the FPTA. Thereby,
about half of the circuits are not working in a DC simulation and about 3/4 of them fail in a tran-
sient simulation. Despite this, at lest 4 solutions are found, which achieve a similar fitness in all
three cases.

101

AND
BasicV

o
u

t

0 1 2 3 4 5
0

1

2

3

4

5

AND
Turtle

0 1 2 3 4 5
0

1

2

3

4

5

AND
Turtle Sim

0 1 2 3 4 5
0

1

2

3

4

5

NAND
BasicV

o
u

t

0 1 2 3 4 5
0

1

2

3

4

5

NAND
Turtle

0 1 2 3 4 5
0

1

2

3

4

5

NAND
Turtle Sim

0 1 2 3 4 5
0

1

2

3

4

5

NOR
Basic

V
o

u
t

0 1 2 3 4 5

0

1

2

3

4

5

NOR
Turtle

0 1 2 3 4 5
0

1

2

3

4

5

NOR
Turtle Sim

0 1 2 3 4 5
0

1

2

3

4

5

OR
BasicV

o
u

t

0 1 2 3 4 5
0

1

2

3

4

5

OR
Turtle

0 1 2 3 4 5
0

1

2

3

4

5

OR
Turtle Sim

0 1 2 3 4 5
0

1

2

3

4

5

XOR
BasicV

o
u

t

0 1 2 3 4 5
0

1

2

3

4

5

XOR
Turtle

0 1 2 3 4 5
0

1

2

3

4

5

XOR
Turtle Sim

0 1 2 3 4 5
0

1

2

3

4

5

XNOR
Basic

Vsweep

V
o

u
t

0 1 2 3 4 5
0

1

2

3

4

5

XNOR
Turtle

Vsweep

0 1 2 3 4 5
0

1

2

3

4

5

XNOR
Turtle Sim

Vsweep

0 1 2 3 4 5
0

1

2

3

4

5

Figure 6.14: The output characteristics, obtained from theBasic GA, theTurtle GAand the DC
simulation for all 6 logic gates are depicted above.

Evolution of Transferable Circuits on the FPTA

Vsweep[V]

V
o

u
t[

V
]

0 1 2 3 4 5
0

1

2

3

4

5

Vsweep[V]

V
o

u
t[

V
]

0 1 2 3 4 5
0

1

2

3

4

5

Vsweep[V]

V
o

u
t[

V
]

0 1 2 3 4 5
0

1

2

3

4

5

Vsweep[V]

V
o

u
t[

V
]

0 1 2 3 4 5
0

1

2

3

4

5

Vsweep[V]

V
o

u
t[

V
]

0 1 2 3 4 5

0

1

2

3

4

5

Vsweep[V]

V
o

u
t[

V
]

0 1 2 3 4 5

0

1

2

3

4

5

Figure 6.15: The output voltage characteristics of the best comparators, evolved with theBasic
GA (top) and theTurtle GA(middle and bottom) are depicted. In the case of theTurtle GA the
output voltage characteristic from the FPTA is additionally compared to the DC simulation result
(bottom).

103

6.4 Results for the Evolution of Logic Gates and ComparatorsUsing Both EAs

V
ou

t AND

0 100 200 300 400 500
0

1

2

3

4

5

NAND

0 100 200 300 400 500
0

1

2

3

4

5

NOR

0 100 200 300 400 500
0

1

2

3

4

5

time [ns]

V
ou

t OR

0 100 200 300 400 500
0

1

2

3

4

5

time [ns]

XOR

0 100 200 300 400 500
0

1

2

3

4

5

time [ns]

XNOR

0 100 200 300 400 500
0

1

2

3

4

5

Figure 6.16: In addition to the DC voltage characteristic of the logic gates, shown in figure 6.14,
it is interesting to see that the transient output voltage characteristic of the over-all best solutions,
depicted above, shows the desired behavior.

time [ns]

V
o

u
t[

V
]

0 50 100 150 200 250 300 350
0

1

2

3

4

5

time [ns]

V
o

u
t[

V
]

0 50 100 150 200 250 300 350
0

1

2

3

4

5

Figure 6.17: In addition to the voltage characteristic of the best comparator, obtained with a DC
simulation, the measuring of an according transient simulation is depicted above. It can be seen
that the best coparator, which is found by theTurtle GA, performs equally well on the FPTA, in a
DC simulation and in a transient simulation.

104

AND
Basic GA

FPTA 7

n
o

.
o

fr
u

n
s

AND
Turtle GA

NAND
Basic GA

n
o

.
o

fr
u

n
s

NAND
Turtle GA

NOR
Basic GA

n
o

.
o

fr
u

n
s

NOR
Turtle GA

OR
Basic GA

n
o

.
o

fr
u

n
s

OR
Turtle GA

XOR
Basic GA

n
o

.
o

fr
u

n
s

XOR
Turtle GA

XNOR
Basic GA

n
o

.
o

fr
u

n
s

fitness

XNOR
Turtle GA

FPTA 13*
FPTA 6

0 0.2 0.4 0.6 0.8 1
0
5

10
15
20
25
0
5

10
15
20
25
0
5

10
15
20
25
0
5

10
15
20
25
0
5

10
15
20
25
0
5

10
15
20
25
0
5

10
15
20
25
0
5

10
15
20
25
0
5

10
15
20
25
0
5

10
15
20
25
0
5

10
15
20
25
0
5

10
15
20
25

Figure 6.18: The best individual of all 50 evolution runs is measured on three different FPTAs.
Thereby, the ’home’ chip is marked with an asterisk. As can beseen from the above histograms,
all solutions for the logic gates perform equally well on allthree FPTA chips.

6.4 Results for the Evolution of Logic Gates and ComparatorsUsing Both EAs

fit
ne

ss
Comparator
Basic GAFPTA 13

fit
ne

ss

best individual of run

Comparator
Turtle GA

FPTA 7*
FPTA 6

0 10 20 30 40 50
0

1

2

30

1

2

3

Figure 6.19:As can be seen from the graphs above, the best solutions for the comparators perform
equally well on all three FPTA substrates. Again, the chip, on which the comparators are originally
evolved, is marked with an asterisk.

6.4.3 Performance of the Evolved Circuits on Different FPTAs

A further question is whether the circuits, which are evolved on a certain substrate, can
be successfully operated on different FPTAs. For this thesis, 3 identical, independenttesting on three different

FPTAs FPTA-in-the-loop evolution systems are available for carrying out experiments. The three
different chips are named after the number of the respectivehost PC: FPTA6, FPTA7 and
FPTA13.

Measurement of the Logic Gates
The evolution results for the logic gates are obtained with FPTA13. Thus, for compar-

ison, the best circuits of each run are measured on FPTA6 and FPTA7. It is seen from
figure 6.18 that the circuits of all 50 evolution runs performequal on all three transistorlogic gates perform

equally well on all
FPTAs

arrays. In the case of the logic gates, the results obtained from different chips are depicted
in a histogram, instead of a scatter plot, in order to providea better overview of the nu-
merous plots.

Measurement of the Comparators
The comparators are evolved with FPTA7 and the best individuals of each run are tested

on FPTA6 and FPTA13 for comparison. The results for the comparators are depicted in
figure 6.19. Unlike in the case of the logic gates, the fitness distribution is shifted to
slightly worse values (+0.05. . .0.1), corresponding to an additional rms error of aboutcomparators perform

slightly worse on other
FPTAs

150. . .250 mV. The reason for this is the importance of the switchingpoint of the com-
parator. While the transition region atVsweep= 2. . .3 V is not considered for the logic

106

Evolution of Transferable Circuits on the FPTA

gates, the no. of samples is even increased near the switching points of the comparators,
as described in section6.2.

Based on the latter results, it is suggested that the fabrication variations between differ-
ent chips are not exploited by the EA for optimizing evolvingcircuits. On the one hand,
this is a positive result, since the solutions feature a certain robustness by not depending
on a particular substrate. On the other hand, the hope that the EA could be able to cre-no hidden parasitic

features are exploitedate and optimize circuits by using some kind of ’hidden’ features of the hardware is not
corroborated.

6.4.4 How the Algorithm Does FPTA Tricks

There are two different views on the parasitic effects of evolvable hardware substrates
in the research field. On the one hand, some groups try to evolve circuits beyond usualexploiting parasitic

effects: yes or no?application by exploiting the parasitic effects of a particular substrate as much as possi-
ble [30,60,85]. On the other hand, the aim is to evolve robustcircuits that are independent
from the substrate on which they are evolved, resistant to environmental influences like
temperature or pressure or even transferable to other technologies. In the first case, the
aim is to maximize the performance for one particular deviceby using the parasitic effects
for tweaking the circuit, although the circuit generally performs poor on other substrates,
even of the same kind. In the second case, it is desired that the synthesized circuits work
on various platforms and that new design principles can possibly be learned from evolu-
tion.

Since this thesis is rather following the second approach, it is desired to reduce thethis thesis: rather
reducing the influence of
parasitic effects

Figure 6.20: An example circuit (screenshot of the circuit editor of the evolution software), for
which the EA mixed the input voltages without previously connecting them to a transistor is
depicted. This kind of solution is not wanted, since it does not fail in simulation, but performs
different in simulation and on the chip. There are examples of the latter effect for any signals
within the circuit, which should—from a designers point of view—rather be used to control the
gates of different transistors, than being interconnected.

107

6.4 Results for the Evolution of Logic Gates and ComparatorsUsing Both EAs

Vsweep[V]

V
o

u
t
[V

]

FPTA

0 1 2 3 4 5
0

1

2

3

4

5

Figure 6.21: As can be seen from the depicted
voltage characteristics, some of the evolved cir-
cuits show a very different behavior for different
levels of simulation. The circuit pretends to be a
kind of comparator on the FPTA and the level 2
simulation, where the mean on-resistance of the
switches is considered. Contrary to that, in the
case of the level 1 simulation, where only plain
transistors are included, the graph shows merely
the characteristic of an inverter. It is suggested
that mixing the input signals—which is quite
likely done by the EA—is the main reason, for
which evolved circuits do not work correctly in
simulation.

replacements

Vsweep[V]

V
o

u
t
[V

] DC Sim.
plain

0 1 2 3 4 5
0

1

2

3

4

5

Vsweep[V]

V
o

u
t
[V

] DC Sim.
parasitic

0 1 2 3 4 5
0

1

2

3

4

5

Vsweep[V]

V
o

u
t
[V

] TRANS Sim.
plain

0 1 2 3 4 5
×10−7

-1

0

1

2

3

4

5

6

Vsweep[V]

V
o

u
t
[V

] TRANS Sim.
parasitic

0 1 2 3 4 5
×10−7

-1

0

1

2

3

4

5

6

influence of parasitic effects and to avoid circuits, which are bound to their host sub-
strate. The first step to achieve this, was the development ofthe Turtle GA, with which
it is possible to evolve circuits, that can be validated in simulation. Despite this, while
carrying out the experiments of this chapter, two important’features’ of theTurtle GA
are observed, which still lead to circuits, that strongly depend on the architecture—i.e.
the parasitics—of the FPTA: first, two gates are interconnected, resulting in a ’floatingdespite this, parasitic

’features’ are observed gate’, which leads to the failure of simulation. Although those circuits can be simulated

108

Evolution of Transferable Circuits on the FPTA

by considering all configuration switches, their behavior is different in simulation than on
the chip. Most often, such a ’floating gate’ configuration depends on the previous state
of the FPTA, from which random charges are left. Thus, such circuits are most likely un-
stable an therefore automatically dismissed by the selection mechanism. Second, the EA
connects the circuits inputs without previously routing those signals through a transistor.
This is bad, since such circuits do not fail in simulation, but nevertheless perform differ-different characteristics

in simulation and on the
chip

ent in simulation and on the chip. The latter effect is not restricted to the input voltages,
but occurs also for different signals within the circuit, which should—from a designers
point of view—rather be used to control the gates of different transistors, than being in-
terconnected. An example circuit for such input violation is shown in the screenshot of
the transistor array 6.20. As can be seen from the measuring respectively the simulation
results of this circuit, shown in figure 6.21, the circuit pretends to be a kind of comparator
on the FPTA and the level 2 simulation, while the level 1 simulation (see section 4.4)
shows only the characteristic of an inverter. It is suggested that this signal mixing is the
main reason, for which evolved circuits do not work in simulation. Additional examples
of the discussed effects can be found in appendix B. However,it is interesting to see that,unusual configurations

work equally well on
different FPTAs

independent from the EA used, the evolved circuits perform equally well on different
substrates.

6.4.5 Understanding Schematics of the Evolved Circuits

The developed software framework offers the possibility toautomatically generate schemat-
ics from circuits, which are evolved with theTurtle GA. The according procedure is in-
troduced in chapter 4, section 4.5.2. It is intended to transfer good solutions into a more
human readable format and to possibly understand the operation principle of evolved cir-
cuits. Furthermore, the task is to find solutions, that are, as far as possible, independent
from parasitic effects of the substrate, i.e. the level 1 simulation, where only plain tran-
sistors are considered, has to result in a similar voltage characteristic as the measuring on
the FPTA. Schematics are generated from the best logic gatesand comparators of thiscreating schematics

from good solutionschapter and it is found that, indeed, the NAND, AND and the OR gate are working out-
side the chip in a simulation with only plain transistors. The schematics are shown and
discussed in figures 6.22, 6.23 and 6.24. In the case of the NOR, XOR, XNOR and the
comparators, the examined examples did not work in a level 1 simulation and therefore,
the according schematics are shown in appendix B.

It is interesting to see that in all three cases, where the circuits are actually working out-
side the chip, evolution came up with a similar kind of solution: there is one critical node
present in all circuits, which is pulled towards vdd (5 V) by attached PMOS transistors orNMOS and PMOS in

tug of war for the
critical node

towards gnd (0 V) by attached NMOS transistors. The balance of strength between those
pulling transistors is depending on the input voltages. Subsequently, the logic decision

decision of the inverteris taken by an inverter, which is always connected to the circuit’s output and tuned in a
way that it fits the states of the critical node and the correctresult is computed. Example
voltage outputs for the critical node, the inverter and the final output of the NAND gate
are graphed in figure 6.25. Despite the presented circuits are working well in simulation,
they might cause problems, if they were embedded into a real-world circuit, since the in- issues in real-world

circuitsputs are often mixed or influenced themselves by the criticalnode. This is no problem, as
long as the inputs are strong enough to drive the input voltage, which is always the case in

109

6.4 Results for the Evolution of Logic Gates and ComparatorsUsing Both EAs

I0 I1 I2 I3 I4 I5 I7 I8
type P P N P N P P P

W/L [µm] 10
1

4
2

9
1

15
4

14
4

1
8

5
2

10
1

Figure 6.22: Once more, for the logic OR, the output inverter (I4 and I8) isunderlayed with a
grey box and the critical nodes, which actually represent the same net, are marked with a circle.
In this case, I1, I3, I5 and I7 are always open. Thus, I3 is pulling the critical net towards vdd,
while I5 (which is comparably weak) is pulling the output towards gnd. Furthermore, I1 and I7
are mixing the input voltages and are controlling the gate ofI2, which is pulling the critical net
towards gnd. The higher the mixed input voltage is, the stronger is I2 pulling the critical net
towards gnd, resulting in a high output voltage. Contrary tothat, if both inputs are low, I2 will
become weaker than I3, causing the critical net to be pulled towards vdd and therefore the output
to be low. The resulting output voltage characteristic is that of a logic OR.

110

Evolution of Transferable Circuits on the FPTA

I0 I1 I2 I3 I4 I5 I6 I7 I8
type P P P N P P N P N

W/L [µm] 4
0.6

15
0.6

14
1

15
0.6

15
0.6

3
2

5
1

15
1

4
4

Figure 6.23: Again, in the case of the AND gate, the output inverter (I0 andI3) is underlayed
with a grey box and the critical node is marked with a circle. In this case, the critical node is, on
the one hand, pulled towards vdd by the transistors I1, I4 andI7 with variable strength, depending
on both input voltages. On the other hand, I8 is always open and pulls the critical node towards
gnd. Thereby, as long as one of the two inputs has a low voltage, the voltage of the critical node
is rather high, I2 and I5 are closed and the output is low. Contrary to that, if the inputs are high,
I1, I4 and I7 will be closed and the critical node voltage is pulled to gnd. Additionally, the latter
effect is emphasized, since I2 and I5 are opened and are pulling the inputs further towards vdd
(which should be rather deprecated from a designers point ofview), causing the output to be high.
Hence, the resulting output voltage characteristic is thatof an AND gate.

simulation and also on the FPTA, where strong enough input OPs are applying the input
voltage pattern. However, the latter dependency is not wanted in practice, where such
circuits are usually designed with a high input resistance,i.e. the inputs are connected
only to gates.

To conclude, it can be learned from the schematics that the EAseems always to follow
the same strategy for finding solutions: first, a lot of transistors with various sizes are in-
serted into the circuit until the output characteristic is changing in a desired way. Second,

111

6.5 Concluding Remarks

I0 I1 I2 I3 I4 I5
type N N P P N N

W/L [µm] 8
1

14
2

3
2

15
0.6

15
4

3
4

Figure 6.24: In the case of the NAND gate, the transistors I1 and I4 are always open and used
for mixing both input voltages. The inverter (I3 and I5) at the output is underlayed with a grey
box and the critical node is marked with a circle. Depending on both input voltages, the critical
node is, with a certain strength, pulled towards vdd by I2 (which is opened by I0), thus, as long
as one of the inputs has a low voltage, the critical node is also below the switching voltage of the
inverter and therefore the output Out0 is vdd. If both inputshave a sufficiently high voltage, Out0
becomes gnd, resulting in the output characteristic of a NAND gate.

it is very likely that a NMOS and a PMOS transistor are combined to an inverter, which
pulls the output towards vdd or gnd, depending on the voltagecharacteristic of a critical
node (a critical net). Finally, the circuit is tweaked by balancing the W/L ratio (strength)
of the transistors, which define the voltage of the critical node.

6.5 Concluding Remarks

The experiments in this chapter show that theBasic GAand theTurtle GAare able tocomparing the Basic GA
and the Turtle GA

112

Evolution of Transferable Circuits on the FPTA

Vsweep

V
o

u
t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
1

1.5
2

2.5

3

3.5

4

4.5

5

Vsweep

V
o

u
t

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
1

1.5
2

2.5

3

3.5

4

4.5

5

Vsweep

V
o

u
t

0 0.5 1 1.5 2 2.5 3 3.5 44.5 5
0

0.5
1

1.5
2

2.5

3

3.5

4

4.5

5

Figure 6.25: Upper left: the voltage charac-
teristic of the critical node is depicted.Upper
right: the output voltage of the inverter at the
circuit’s output is shown.Left: the resulting out-
put voltage characteristic for a NAND gate.

successfully synthesize transistor circuits—in this caselogic gates and comparators—on
the FPTA. Furthermore, the best solutions perform equally well (or at least similar in
the case of the XNOR) and use a comparable amount of transistors as manually made
circuits, that are realized on the configurable transistor array. The quality of the output
voltage characteristics of the found solutions will not getworse, if they are measured on
other substrates, than the one on which they are evolved.

Additionally, it is possible to extract SPICE netlists fromthe evolved circuits and val-achievements of the
Turtle GAidate them in simulation, by using theTurtle GA. It is also possible to create schematics

from the best results, in order to facilitate understandingof the found solutions.
Concluding, theBasic GAis slightly more successful in tweaking the performance of

certain circuits on the chip than theTurtle GA, although it lacks the ability of creating
circuits that can be transferred to other technologies or which are easy to understand.
Furthermore, as the example in section 6.4.4 shows, it is relatively easy to generate ageneral observations

’good looking’ output on the FPTA, based on an elsewhere useless circuit structure. Due
to these results, further experiments of this thesis are carried out with theTurtle GA.

An additional interesting perception of this chapter is that the difficulty level of finding
good solutions for a given problem is only depending on the complexity (no. of necessary
transistors and connectivity) of the desired circuit (section 6.4.1), which is not the case
for a human designer, who creates solutions with the knowledge about the behavior of
the transistors and how they are supposed to be connected. Thus, it is suggested that the
routing architecture of the current chip is the main limiting factor for further improvement
of the circuits, since either two paths are quite likely shorted or a huge number of routing
switches is necessary to connect two distant transistor terminals.

113

Chapter 7

Multi-Objective Optimization of the
Transistor Circuits

In this chapter, a multi-objective (MO) EA, based on the work, presented in the
previous chapter and in [91], is developed and successfullyapplied for the syn-
thesis of comparators, oscillators and OPs on the Heidelberg FPTA [50]. Hence,
it is referred to as the MO-Turtle GA, throughout the remainder of this thesis.
A multi-objective approach is chosen, in order to be able to include the various
specifications of e.g. an operational amplifier into the process of circuit syn-
thesis. Moreover, the presented algorithm is designed to preserve the diversity
within the population troughout the course of evolution andis therefore able to
efficiently explore the design space. In the case of the comparators and the OPs,
the evolved circuits are proven to work on the chip as well as in simulation outside
the FPTA. Additionally, the results for the comparators arecompared with the
non-MO results from the previous chapter. Automatically generated schematics
of good solutions are presented and their characteristics are compared to those
of basic manually created OPs. Furthermore, oscillators are evolved with the
multi-objective approach, which was previously not achieved. The latter oscilla-
tors are an example of a truly multi-objective result, sinceit is possible to harvest
solutions with different frequencies from successfull evolution runs. Nevertheless,
the synthesis of OPs is the most challenging task in this chapter.

To date, as to the authors knowledge, only a few analytic solutions for analog design
automation are available. Examples, in which previously known topologies are tested
while the sizing of the components is done by an optimizationalgorithm, are given in
[10,33]. In a great number of approaches, the topology is also to be found automatically,
therefore, developmental strategies [45,46,74,94] or heuristic interconnection of building
blocks [48] are applied, in order to deal with the high complexity of amplifiers. An
alternative possibility is to choose a multi-objective evolutionary algorithm [17, 18], in

115

7.1 The Multi-Objective Evolutionary Algorithm

order to face the fact that, for the solution of almost every complex problem, numerous
variables have to be taken into account for optimization. Operational amplifiers, as well as
other transistor circuits, found to this point by means of hardware evolution in conjunction
with multi-objective optimization (MO), are reported in [32, 92, 103, 109]. Other results,
obtained with the FPTA, can be found in [25]. Furthermore, a multi-objective approach
provides the designer with a variety of choices instead of only one more or less good
solution. This is a great advantage, especially in cases where trade-offs have to be made,
e.g. between gain and speed of an amplifier.

7.1 The Multi-Objective Evolutionary Algorithm

Since the evolution of transistor circuits is a challengingtask, where numerous variables
have to be taken into account for optimization, theTurtle GA is extended with a multi-
objective strategy, first proposed in [27], for the experiments in this chapter. TheTurtle
GA itself is introduced in chapter 6, section 6.1.2. This allows for a separate evalua-simultaneous

optimization of different
circuit properties

tion and optimization of different properties of the evolving circuits, which would not be
possible with a single objective algorithm. The multi-objective Turtle GA, referred to as
the MO-Turtle GAthroughout the remainder of this thesis, consists of a non-dominated
sorting algorithm and a crowding distance measure, which are described in the follow-
ing and are based on those from the non-dominated sorting genetic algorithm, presented
in [18,19]. Using an MO approach offers two important advantages: first, the populationmaintaining diversity of

the population is of great diversity during the whole course of evolution, for the reason that individu-
als with a bad over-all performance survive as long as they are superior in at least one
objective. Thus, on the one hand, crossover gains importance by combining differently
specialized individuals and, on the other hand, premature convergence of the population
is widely avoided. Second, due to the presence of ’specialist’ individuals for each ob-numerous trade-off

results jective in the resulting population, numerous results—representing trade-off solutions for
the different objectives—can be harvested from the non-dominated front (NDF) instead
of only one.

7.1.1 Variation Operators of the MO-Turtle GA

The variation operators of theMO-Turtle GA, namely theRandom Wiresmutation and
the Implanting Block of Cellscrossover, are those from theTurtle GAand are reported in
the previous chapter, section 6.1.2 and in [91]. The implementation of both operators is
adapted to the FPTA’s architecture and, as a remainder, briefly described in the following.
Note that the most important feature is that the resulting circuits contain no floating nodes,
thus, can be validated off-chip.random wires mutation

Random Wires (Mutation). The mutation operator consists of the create mode and the
erase mode. The create mode connects random nodes within theFPTAs transistor array
and thereby randomly inserts components into the active circuit. Contrary to that, the
erase mode randomly disconnects nodes and removes transistors. The mutation operator
is carried out recursively until the resulting circuit contains no dangling nodes and no
floating transistor terminals. The width and length of all active transistors is mutated due
to a configurable probability.implanting cells

crossover

116

Multi-Objective Optimization of the Transistor Circuits

fitness for objective 1

fit
ne

ss
fo

r
ob

je
ct

iv
e

2

NDF3

NDF1
NDF2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

p

overcrowded area

fitness for objective 1

fit
ne

ss
fo

r
ob

je
ct

iv
e

2

NDF1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Figure 7.1: Left: An example set of individuals—which shall be optimized for two objectives—is
depicted. The first three NDFs, obtained by evaluating equations 7.1 and 7.2, are drawn in. It is ex-
pected that the NDFs propagate towards better fitness valuesthroughout evolution. Additionally,
the rank of the NDF is equal to the level of non-domination foreach individual of the respective
NDF. Right: In this example, the individuals are not distributed uniformly over the NDF. There-
fore, in order to be able to drive evolution towards such a uniform distribution, a partial order of
the individuals within an NDF is defined by the crowding-distancecdist. The value ofcdist for an
example individualp is derived from the distance to the next neighbors ofp.

Implanting a Foreign Block of Cells (Crossover). The implantingcrossover operator
is carried out in two stages. The first stage exchanges randomly sized and positioned
rectangular blocks of transistor cells between two randomly selected individuals. While
the size of both blocks has to be the same for each individual,the positions of the blocks
may differ. Since this operation in general breaks the layout of both previously intact
circuits, the second stage fixes the occurring floating nodesby executing therandom
wires mutationoperator for each of them. Thus, again, the resulting circuits contain no
floating nodes.

7.1.2 Non-Dominated Sorting and Crowding Distance

In order to include multi-objective optimization into the current evolutionary algorithm, MO extensions

a new evaluation and selection scheme has to be implemented.In the case of MO, sepa-
rate fitness values are assigned to the individuals for theirperformance in different tasks,
resulting in a vector of fitness values, instead of only one aggregated fitness value. Note
that in the MO language, the different tasks are referred to asobjectives, thus, this is also
the case throughout the remainder of this thesis. As a consequence of this, it is no longer
possible to decide whether an individual is better or worse than another, by simply com-
paring their single fitness value. Therefore, before selection, a ranking of the individuals ranking and selection by

level of non-dominationis achieved by applying thenon-dominated sortingalgorithm. A fast implementation of
the non-dominated sorting algorithm, is shown in pseudocode 7.1. Note, that for simplic-
ity in some cases the fitness value for a certain objective is referred to as objective value,
which means the same.

117

7.1 The Multi-Objective Evolutionary Algorithm

Non-Dominated SortingAll individuals are classified by calculating their level ofnon-
domination, as shown in figure 7.1, due to their objective valuespi . An individual p is said
to dominateq, denoted byp� q, if and only if p is partially less thanq (equation. 7.1).

∀i ∈ (1, . . . ,n), pi ≤ qi ∧ ∃i ∈ (1, . . . ,n) : pi < qi (7.1)

NDF := {p∈ P | ∄p′ ∈ P : p′ � p} (7.2)

All p satisfying equations 7.1 and 7.2 provide the first non-dominated front NDF1. The
succeeding NDFs are found by removing the individuals of NDFk from the population
P′ = P\NDFk and by recalculating equations 7.1 and 7.2 for the new population P′ until
NDFk+1 is empty. Consequently, the level of non-domination replaces the aggregated
fitness value, which is used in the previous chapter, for selection. The main advantage of
the non-domination measure is the fact that also partly goodsolutions survive, thus, the
search space is more efficiently sampled and premature convergence is avoided.

As yet, there are possibly a great number of solutions withinthe same NDF, thus, it
cannot easily be decided which one should get a higher probability to survive. Due to this
fact, a second measure is introduced: thecrowding distance. The algorithm for calculat-
ing this value is also given in pseudocode 7.2.

Crowding DistanceThe crowding distance (cdist) is a measure for the density of solutions
within the vicinity of a particular individualp within the fitness landscape (figure 7.1) and
is calculated for the members of each NDF respectively. All objective values are consid-maintaining the

diversity of the
population

ered for calculating the quantitycdist which represents an average distance to the nearest
neighbors ofp and is assigned to each individual of the respective NDF. Therefore, since
the aims are to provide a great diversity within the population and to steer the evolution
towards a uniform distribution of the individuals over the NDF, cdist is used as an addi-
tional ranking criterion for the individuals within the respective NDF.

Lexical Order of the Objectives
There is some work in the field, where the objectives themselves are ranked due to their

suggested importance. This ranking is considered during the calculation of the NDFs, by
omitting objectives of less importance in case there is no solution with a sufficiently good
performance for the objectives of higher importance. Such lexical ranking is considered
to be useful for saving computation time of the non-dominated sorting algorithm and for
emphasizing good results in major objectives. Despite this, such explicit lexical order is
not employed in this thesis due to the following reasons: first, an importance ranking ofinherent ranking of the

objectives the objectives is nevertheless inherently present, since,it is not possible to assign another
than the worst fitness for the objective of minimizing e.g. settling-time as long as the
objective, that aims at producing a voltage step, is not fullfilled. Second, to the authors
opinion, the idea of multi-objective optimization will be violated, if it is necessary to
define problem specific thresholds for the activation of additional objectives. Finally, one
cannot be sure to not exclude possible pathways within the search space, that lead to a
good solution.

118

Multi-Objective Optimization of the Transistor Circuits

Algorithm 7.1: The non-domination sorting algorithm, which is used to classify the individuals
into non-dominated fronts, according to their level of non-domination. This level depends on
how many other individuals are dominated by an individual p and on how many other individuals
dominate p. If no other individual dominates p, p belongs to the first NDF.

procedure NONDOMINATEDSORTING()
for p ← 1 to population sizedo

np = 0 // no. of individuals, which dominate p
Sp = 0 // list of individuals, which are dominated by p
for q ← 1 to population sizedo

assumep dominatesq
assumeq dominatesp
for ob j← 1 to no.o f ob jectivesdo

if pobj > qobj then
p does not dominateq!

else if pobj < qobj then
q does not dominatep!

end if
end for
if p still dominatesq andq still dominatesp then

neitherp dominatesq, norq dominatesp!
end if
if p dominatesq then

addq to Sp = 0
else if qdominatesp then

incrementnp = 0 by 1
end if

end for
if np equals 0then

addp to NDF0

end if
end for // first NDF is found!

i=0
while NDFi is not emptydo

for all p in NDFi do
for all q in Sp do

decrementnq by 1
if nq equals 0then

addq to NDFi+1

end if
end for

end for
increment i by 1

end while // all NDFs are found!
end procedure

119

7.1 The Multi-Objective Evolutionary Algorithm

Algorithm 7.2: The algorithms which calculates the ranking of the individuals within the NDFs,
by assigning a value for thecrowding distance(cdist) to each of them.cdist is a measure for the
density of solutions within the vicinity of a particular individual p within the fitness landscape.

procedure ASSIGNCROWDINGDISTANCES()
initialize cdist of all individuals with 0
for all non-dominated fronts NDFi do

for ob j← 1 to no. o f ob jectivesdo
sort individuals of NDFi by objectiveobj
normalize objective values
assigncdist(ind0 = #objectives
assigncdist(ind#individuals= #objectives //extrema are preserved
for i← 1 to no. o f individuals− 1 do

cdist(indi)+ = cdist(indi-1)+cdist(indi+1)
end for

end for
end for

end procedure

Algorithm 7.3: The tournament selection scheme, which is used for creatingthe new population
from the current repository generation, is described in pseudocode. The randomly picked com-
petitors have to compete in two disciplines: the level of non-domination and, in case they belong
to the same NDF, the convergence of their fitness, which is calculated according to equation 7.3.
Thereby, the tournament size is 3.

function SELECTINDIVIDUAL ()
randomly select champion from repository population
for i← 1 to tournament size−1 do

randomly select competitor from repository population
if NDF of competitor< NDF of championthen

champion = competitor
end if
if NDF of competitor = NDF of championthen

if fitness convergence of competitor> convergence of championthen
champion = competitor

end if
end if

end for
end functionreturn champion

120

Multi-Objective Optimization of the Transistor Circuits

7.1.3 Selection Scheme

Two equally sized populations are used in the case of MO: first, the repository population,
which is directly created from the unchanged individuals ofthe intermediate population in
the first step of the MO algorithm. In this case, as described in the previous section (7.1.4),tournament selection

the decision, which individuals survive is based on their level of non-domination and
their crowding distancecdist. Second, the new population, which is generated by applying
mutation and crossover to selected individuals from the repository generation. In the latter
case, tournament selection with a tournament size of 3 is used as selection mechanism.
Thereby, champion and challengers are randomly picked fromthe repository population
and the one with the higher non-domination level wins. If both competitors feature the
same level of non-domination, hence, belong to the same NDF,the convergence of their
fitness

conv.= ∑
objectives

fitness(geni−5)

fitness(geni)
. (7.3)

is additionally taken into account. The convergence is calculated from their previous
fitness values using equation 7.3. Furthermore, the selection mechanism for creating the
new generation is described in pseudocode 7.3.

7.1.4 The Evolutionary Step

As can bee seen from figure 7.2, three populations are used in the evolution loop: a repos-
itory populationRP, a new populationNPof sizeN and an intermediate populationIP of
size 2N. The first step is to initialize the algorithm by randomly generating individuals

Figure 7.2: As can be seen from the figure, three populations are used in the evolution loop. NDFs
and crowding distance are calculated for the intermediate population. Subsequently, the repository
population is created and thereby, NDFk is allowed to occupy at most1

2k of the available space.
Finally, the new population is created from the repository by applying selection and the genetic
operators.

121

7.2 A First Benchmark: the Comparators

for IP, to perform measuring and to calculate fitness values for allobjectives of the latter
individuals. Subsequently, the evolutionary loop is started by performing non-dominated
sorting and by calculating crowding distances (cdist) for all individuals ofIP. Thus, a non-
domination level (membership in the according NDF) and a value forcdist is assigned to
each individual ofIP. The next step is to fillRPwith the best individuals ofIP. Thereby,MO ranking and

selection scheme NDFk is allowed to occupy at most1
2k of the available space inRP. In case the size of

NDFk is less than or equal to the available space, the whole NDFk is copied toRPand
the remaining free space is additionally provided to the successing NDF. If an NDF con-
tains more individuals than space provided inRP, only those individuals with the best
cdist ranking are copied. Consequently, since the first NDF is allowed to occupy 50 %keeping the best for

each objective of the space inRP and, due to thecdist ranking, the superior individuals of each objec-
tive survive—as long as the size ofRP is at least twice the number of objectives—it is
guaranteed that the best solutions always survive. Once therepository population is cre-
ated, the new population is generated from this repository by using tournament selection,
described in the following subsection 7.1.3, and by applying mutation and crossover to
the selected individuals. Subsequently,NP is measured and evaluated and the next evo-
lutionary step (generation) is prepared by combiningRP andNP to a new intermediate
populationIP=RP∪NP.

7.2 A First Benchmark: the Comparators

As a first benchmark, the evolution of comparators with theMO-Turtle GAis tackled, inexperimental setup

order to compare the results with those from the previous chapter 6. The consequences of
employing the multi-objective approach are investigated and compared with theBasic GA
and theTurtle GA, where an aggregated fitness value is used. Again, a total of 50 evolution
runs is carried out, each with a population of 50 individuals, which are processed for
20.000 generations.

7.2.1 Experimental Setup

The setup for the test modes, the simulations and the fitness calculation is identical to the
experimental setup for the comparators, described in the previous chapter, section 6.2.
Although, in this case, the aggregated fitness value is replaced with a vector of 3 fitnessaggregated fitness is

replaced with a fitness
vector

values. Thereby, both test modes deliver one fitness value respectively, which assesses the
deviation from the respective target voltage pattern and the third fitness value represents
the ressource consumption (no. of transistors used).

TM objective fitness description

TM1 dev. fromVtar min. calc. with equation 6.4
TM2 dev. fromVtar min. inverse inputs, calc. with equation 6.4
— resource consumption min. sum of transistors used

Table 7.1: An overview of all TMs and their corresponding objectives. In TM2, the inputs are
exchanged, thus, in the case of the comparators, the output voltage pattern is inverted. The aim is
to minimize the fitness.

122

Multi-Objective Optimization of the Transistor Circuits

Furthermore, the same EA parameters are used as in the previous comparator experi-
ments, whereas the new selection scheme (subsection 7.1.3), the non-dominated sorting
algorithm and thecdist measure (subsection 7.1.2) of this chapter is used. A short overview
over the test modes is given in table 7.1.

7.2.2 Results and Conclusions

On-chip measuring and simulation
In the first histogram 7.3, the individuals of each run with the best sum of MO fitness
values are depicted and the axes have the equal scaling as in histogram 6.10, in order to
be able to compare the results to the experiments from the previous chapter, where only
one aggregated fitness value is used. As can be seen from histogram 7.3, the distribution
is flatter, than in the non-multi-objective experiments, i.e. the solutions are almost equallyflatter distribution of

resulting runsdistributed between fitness values of 0.1. . .1.5 (rms error= 50 mV. . .1.75 V) and there
are some solutions present with a fitness of up to 3 (rms error= 2.5 V). Thus, from a
single fitness value’s point of view, the over-all performance of the MO approach seems to
be worse, than in the non-MO case, at least if the algorithms are run for the same number
of generations. Nevertheless, the best runs ended up in the same regions of fitness for
both approaches. Therefore, it is supposed that the multi-objective approach convergesslower convergence in

the case of MOslower than the non-MO approach, but will produce as many good solutions if it is run
for a greater number of generations.

Despite the fact that, as shown in figure 7.4, the rms errors for the measuring on the
chip are shifted towards worse values, the results for the DCand transient simulations
are not worse than those obtained with theTurtle GAand theBasic GA. Once again, it
can be seen that a good performance on the FPTA is not necessarily correlated with a
good performance in simulation. Output voltage characteristics of the best individual are
depicted in figure 7.5.

n
o

.
o

fr
u

n
s

fitness

Comparator
Turtle GA

0 0.5 1 1.5 2 2.5 3
0

4

8

12

Figure 7.3: The individuals of each run with the best sum of MO fitness values are depicted in
the histogram and the axes have the equal scaling as in histogram 6.10. As can be seen from the
graph, the distribution is flatter , than for the non-multi-objective experiments and ranges up to a
fitness of 3. Thus, from a single fitness value’s point of view,the over-all performance of the MO
approach seems to be worse, than in the non-MO case. Nevertheless, since the best runs ended up
in the same regions of fitness for both approaches, it is supposed that the multi-objective approach
converges slower than the non-MO approach, but will produceas many good solutions if run for
a greater number of generations.

123

7.2 A First Benchmark: the Comparators

rm
s

e
rr

o
r

[V
]

best individual of run

Comparators MO

trans. simulation

FPTA measuring
DC simulation

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

Figure 7.4: It can be seen from
the graph, that the performance of
the circuits is again worse in sim-
ulation than for the measuring on
the chip. Nevertheless, the results
for the DC and transient simula-
tions are not worse than those ob-
tained with theTurtle GAand the
Basic GA. Thus, it can be seen
once again that a good perfor-
mance on the FPTA is not neces-
sarily correlated with a good per-
formance in simulation. Finally,
there are at least 6 solutions, that
perform similar in simulation and
on the chip.

Vsweep

V
ou

t

0 1 2 3 4 5
0

1

2

3

4

5

Vsweep

V
ou

t

0 1 2 3 4 5
0

1

2

3

4

5

time [ns]

V
ou

t

0 50 100 150 200 250 300 350
0

1

2

3

4

5

time [ns]

V
ou

t

0 50 100 150 200 250 300 350
0

1

2

3

4

5

Figure 7.5: Output voltage characteristics for the MO comparators are shown. Top: DC simula-
tion and on-chip measurement.Bottom:transient simulation.

124

Multi-Objective Optimization of the Transistor Circuits

Pointing out the advantages of the multi-objective approach
The strength of the multi-objective approach is to make it possible to successfully evolve
circuits, where numerous—maybe even contradicting—objectives need to be considered.
In order to achieve this, it is necessary that, on the one hand, a population of individuals
of great diversity in each objective is maintained by the algorithm and, on the other hand,
the individuals are continuously improved in all objectives. The great diversity of the
population is, mainly in those objectives, where the circuit improves comparably slow,
important for avoiding premature convergence. As can be seen from figure 7.6, in the uniformly distributed

fitness values: great
diversity

case of theMO-Turtle GA, the fitness for all objectives is uniformly distributed over the
feasible range, while, in the case of theTurtle GA, most solutions are clustered either
near the best solution, or near the worst solution. Further,it can be seen from the depicted
example experiment that, in the non-MO case, there are no individuals in the branch
‘better fitness for TM2, worse fitness for TM1’, which indicates premature convergenceavoiding premature

convergencein TM1 (objective 1). The scenario is similar, in case the number oftransistors used is
plotted over the fitness of TM1 and the fitness of TM2, respectively. Concluding, theMO-
Turtle GAsuccessfully found solutions for the comparator and, at thesame time, achieved
to maintain great diversity for all objectives within the population. This is a promising
result, since the aim is to tackle problems with higher dimensional objective spaces in the
following experiments.

no. used transistors

rm
s

er
ro

r
[V

]

reference

Turtle GA
MO-Turtle GA

0 10 20 30 40
0

0.5

1

1.5

2

2.5

fitness TM1

fit
ne

ss
T

M
2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

no
.

us
ed

tr
an

si
st

or
s

fitness TM1
0 0.5 1 1.5 2 2.5 3

5

10

15

20

25

no. used transistors

fit
ne

ss
T

M
2

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

Figure 7.6: The first picture shows the over-all rms over the resource consumption, while in the
other three pictures the marked with a cross experiments aredepicted as an example: each possible
objective over each possible objective.

125

7.3 A Truly Multi-Objective Result: Oscillators from Scratch

7.3 A Truly Multi-Objective Result: Oscillators from Scrat ch

The successfull evolution of oscillator circuits from scratch has not yet been achieved with
any single-objective approach on the FPTA. To the author’s knowledge, there is even no
other example—except for the work in [3, 93]—for successfull evolution of oscillators
in the research field, where no predefined inverting or gain stages are provided to theno predefined gain

stages algorithm. Since there are no such predefined structures used on the FPTA, the term
’evolution from scratch’is emphasized. Furthermore, it is a challenging task to evolve
oscillating circuits, due to the fact that, at some point, the EA has to modify the circuit
in a way that it in fact starts to oscillate. Rendering thingsmore difficult, in the case of
an oscillating output, there are some important consequences for the fitness calculation:implications of

oscillation first, a possibly present transient effect has to be considered. Second, it is usually neither
the case that the circuit immediately starts oscillating atthe desired frequency, nor that the
oscillation is stable. Third, the phase is shifted for each measuring, which would, in the
case ofφ = π, result in the worst fitness for the desired target output voltage, if not taken
into account. Finally, amplitude and frequency have to be considered independently.
Concluding, if the performance of the candidate circuits inall those objectives are to be
considered in solely one aggregated fitness, this value willnot decrease monotonically
with an improving solution. Hence, oscillators are a predestinated problem for multi-
objective optimization.

7.3.1 Experimental Setup

An area of 10×10 transistor cells is provided to the evolving circuit and the population
size is 100 individuals, which are evolved for 5000 generations. A total of 100 evolution
runs is carried out. Crucial for this setup is the fact that there is no input and only one out-neither input present,

nor fixed constraints for
the output

put present in the evolving circuit and further, the output is not bound to fixed constraints,
in terms of a target voltage pattern. Rather the output voltage behavior, than a fixed output
voltage pattern is assessed with the test modes and their respective fitness functions, as
described in the following subsection. The FPTA setup is shown in figure 7.7.

Figure 7.7: Left: the FPTA test
bench for the evolution of oscillators
is graphed. An area of10×10transis-
tor cells are provided to the algorithm.
A capacitive load is realized with the
transistors on the chip and attached to
the circuit’s output. Thereby, the ad-
vantage is that this capacitive load can
be randomly varied during evolution
by the EA.

126

Multi-Objective Optimization of the Transistor Circuits

7.3.2 Test Modes and Fitness Calculation

One testmode, containing 480 samples with a sampling frequency of 10 MHz, is used for
the synthesis of oscillators, hence, possible output frequencies of the evolving circuits are
ranging within 21 kHz..2.5 MHz. In this setup, rather than comparing the measured out-
put voltage samples to a predefined target voltage pattern, more general characteristics
of the output are evaluated by the fitness functions. The fitness measure does not con-
strain the frequency, phase and signal shape of the circuit’s output to fixed values, since
it is supposed that this would implicitly exclude useful pathways for evolution towards
oscillating circuits. Consequently, a total of 6 more open and phenomenological fitnesspathways for evolution

through open fitness
criteria

criteria are used for these experiments and are listed in table 7.2. The equations, that are
used for the fitness calculation are listed below:

N = no. of voltage samples (7.4)

Vmean =
1
N

N

∑
i=1

Vi (7.5)

DC offset =

{

(2.5 V−Vmean)
2 Vmean≤ 3 V ∨Vmean≥ 3 V

0 2 V < Vmean< 3 V
(7.6)

dev. fromVmean =
N

∑
out=1

(Vout−Vmean)
2 (7.7)

amplitude span = max{Vout}−min{Vout} (7.8)

zero cross.:Z = {∀out∈ N < N |Vout = Vmean} (7.9)

no. of zero cross. = #{Z } (7.10)

no. of periods = ⌊#{Z }/2⌋ (7.11)

periodmean =

{

2
#periods∑

#periods
i=2 Zi−Zi−1 #periods> 0

N #periods= 0
(7.12)

perioddeviation =

{

∑#periods
i=2 ((Zi−Zi−1)−periodmean)

2 #periods> 0

N #periods= 0
(7.13)

(7.14)

7.3.3 Implications of Multi-Objective Optimization

The presented approach for multi-objective optimization inherently maintains great di-
versity of the individuals in all objectives. Due to this fact, it is expected that, in addition
to finding over-all good solutions for oscillators, it will be possible to harvest multiple
different results from one single evolution run: e.g. individuals with differentno. of zero expecting oscillators

with different
frequencies

crossingsrepresent oscillators with different frequencies. Thus, it will be a great benefit,
if such solutions can be found, which feature an equally wellperformance in the other
objectives.

Furthermore, it is neither expected to obtain solutions with a specific curve shape,
nor to obtain solutions with specific frequencies, since both parameters are as yet notno constraint curve

shape and phaseconstraint. More precisely, there is a technical limit for the minimum and maximum

127

7.3 A Truly Multi-Objective Result: Oscillators from Scratch

TM objective fitness description

TM1 DC offset min. dev. ofVmean, according to eq. 7.6
TM1 dev. fromVmean max. penalize straight lines, eq. 7.7
TM1 amplitude span max. the whole voltage range shall be used, eq. 7.8
TM1 no. of zero crossings max. rewarding oscillation, eq. 7.10
TM1 period deviation min. dev. of the detected period lengths, eq. 7.13
— ressources used min. sum of transistors used

Table 7.2: A list of all objectives, that are used for the multi-objective evolution of oscillators
from scratch. Zero crossings and amplitudes are always measured relative to the mean output
voltage (Vmean). Occurring periods are calculated from those zero crossings and shall feature the
same period lengths.

frequency, given by the number of samples and the sampling frequency, as described
in section 7.3.2 (480 samples,fsample= 10 MHz, thus, freq. range= 21 kHz..2.5 MHz).
Besides, it is observed in example experiments that a certain frequency and curve shape
can be relatively easy achieved by postprocessing suitablefound solutions by means of
evolution, although this is not systematically done in thisthesis. The test mode and fitness
function, which are used to evaluate the phase shift of the sine wave in section 7.4.2, are
a suitable setup for this task.

Last but not least, an important consequence of the multi-objective approach is that—partly good solutions
survive: crossover gains
importance

on purpose—also numerous only partly good, or even bad solutions can be found in the
resulting populations. This is, on the one hand, again a consequence of the extensive
diversity preserving behavior of the algorithm, which is, in the case of keeping bad so-
lutions, not obviously useful. On the other hand, there are approaches in the field of
EAs, where, inspired from natural genome structures,’genetic garbage’with no explicit
meaning is added to the genomes on purpose, in order to find hidden pathways (tunnels)
towards good solutions within the fitness landscape [89]. The inactive garbage genes can
thereby be repeatedly mutated without affecting the fitnessof an individual and, with a
certain probability, will become meaningful, if the crossover copies them into an active re-
gion of the genome. Despite the fact that such’genetic garbage’is not voluntarily present
in the genomes used in this thesis, maintaining whole’garbage individuals’probably has
the same effects. As a consequence of this, the crossover operator gains importance, since
it is able to create a greater variety of combinations.

7.3.4 Results and Conclusion

The distribution of the fitness values for all 6 objectives ofthree resulting populations are
depicted in figure 7.8, in order to give examples of possible results. In principle, three
different scenarios are observed: it can be seen from the graph on the top, which depicts
the outcome of a successfull run, that the fitness values for all objectives are spread over
wide ranges within the population. This indicates that the MO algorithm succeeded inconvergence in only

some objectives converging towards good fitness and in maintaining diversity. Contrary to that, the graph
in the middle and the graph at the bottom illustrate the results of failed runs, where the
fitness for all objectives is stuck at bad values.

128

Multi-Objective Optimization of the Transistor Circuits

1

fit
ne

ss

2 3

4

fit
ne

ss

individual no.

5

individual no.

6

individual no.

0 25 50 75 1000 25 50 75 1000 25 50 75 100

0 25 50 75 1000 25 50 75 1000 25 50 75 100

0

12

24

36

48

0

0.576

1.152

1.728

2.304

0

5

10

15

20

0
1
2
3
4
5

0

1500

3000

4500

6000

0

2

4

6

1

fit
ne

ss

2 3

4

fit
ne

ss

individual no.

5

individual no.

6

individual no.

0 25 50 75 1000 25 50 75 1000 25 50 75 100

0 25 50 75 1000 25 50 75 1000 25 50 75 100

0

11

22

33

44

0

0.576

1.152

1.728

2.304

0

5

10

15

20

0
1
2
3
4
5

0

1500

3000

4500

6000

0

2

4

6

1

fit
ne

ss

2 3

4

fit
ne

ss

individual no.

5

individual no.

6

individual no.

0 25 50 75 1000 25 50 75 1000 25 50 75 100

0 25 50 75 1000 25 50 75 1000 25 50 75 100

0

10

20

30

40

0

0.576

1.152

1.728

2.304

0

5

10

15

20

0
1
2
3
4
5

0

1500

3000

4500

6000

0

2

4

6

Figure 7.8: Distribution of fitness of all individuals for runs 4,14,11.Fitness values are sorted for
plotting.

129

7.3 A Truly Multi-Objective Result: Oscillators from Scratch

zero crossings

am
pl

itu
de

sp
an

NDF gen.5000

NDF gen.2000
NDF gen.3000
NDF gen.4000

0 5 10 15 20

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

zero crossings

am
pl

itu
de

sp
an

NDF 2-dim.
NDF n-dim.

0 5 10 15 20

-1

0

1

2

3

4

5

zero crossings

de
v.

ta
rg

et
vo

lta
ge

NDF gen.3000

0 5 10 15 20

4400

4600

4800

5000

5200

5400

5600

5800

zero crossings

de
v.

ta
rg

et
vo

lta
ge

0 5 10 15 20

4500

4600

4700

4800

4900

5000

5100

5200

5300

zero cross

am
pl

itu
de

sp
an

0 5 10 15 20
-0.05

0.0

0.05

0.1

0.15

0.2

0.25

Figure 7.9: Histories of NDFs and the projec-
tions /recalculations of the resulting NDFs of ex-
ample runs 4 and 84. For example 4 the NDF
shows, which results are picked for depicting the
output voltage characteristic.

Despite the fact that the fitness of two objectives—theDC offset and the ressource
consumption—converges in the case of the run, which is depicted in the middle, this run
is not to be considered partly successfull, since none of theresulting circuits actually
oscillates. The reason for this is that achieving a sufficiently good fitness in the objectives
amplitude spanandno. of zero crossingsis crucial for an oscillating circuit: a good fitness
for amplitude spanindicates that there are at least two extrema in the output voltage and
a good fitness for theno. of zero crossingsstands for the presence of a periodical zero
crossing.

For these experiments, only 6 out of 100 resulting evolutionruns feature oscillating
circuits, while the other 94 runs did not converge. Nevertheless, those populations that
did converge show a truly MO behavior, as can be seen from figure 7.9 and 7.10, in

130

Multi-Objective Optimization of the Transistor Circuits
V

o
u

t[
V

]

0 10 20 30 40 50
0

1

2

3

4

5

0 10 20 30 40 50
0

1

2

3

4

5

0 10 20 30 40 50
0

1

2

3

4

5

V
o

u
t[

V
]

0 10 20 30 40 50
0

1

2

3

4

5

0 10 20 30 40 50
0

1

2

3

4

5

0 10 20 30 40 50
0

1

2

3

4

5

time [µs]

V
o

u
t[

V
]

0 10 20 30 40 50
0

1

2

3

4

5

time [µs]
0 10 20 30 40 50

0

1

2

3

4

5

time [µs]
0 10 20 30 40 50

0

1

2

3

4

5

Figure 7.10: Output voltage characteristics for the MO comparators:Basic GA, Turtle GAand
DC simulation.

which typical results of a successfull run are depicted. As an example, for the objec-
tives amplitude spanandperiod deviationover no. of zero crossings, the improvement
of the respective non-dominated front over time (generation 2k, 3k, 4k and 5k) is de-
picted on the left hand side, while the resulting NDF (generation 5k) is shown on the
right hand side. Note that, for illustration, the resultingNDFs are recalculated by con-
sidering only the two actually plotted objectives. Thus, onthe right hand side, a projec-
tion of the respective multi-dimensional NDF, as seen by thealgorithm, is additionally
shown. Finally, one of the main achievements of the MO approach is that the success-harvesting different

solutions from one
successfull run

full runs feature numerous solutions for an oscillator instead of only one. Thereby, re-
sulting circuits are found that oscillate at various different frequencies 57 kHz, 107 kHz,
127 kHz,161 kHz,200 kHz,233 kHz,281 kHz,328 kHz and 450 kHz, which can be nicely
seen from figure 7.10.

Concluding, oscillators with different frequencies are successfully evolved with the
MO-Turtle GA, although it seems to be hard for evolution to get any initialoscillation
started. Thus, the yield of good solutions is comparably low. Additionally, none of the it is hard to get an

oscillation startedresulting oscillators is working in simulation. It is observed that, as soon as any kind
of oscillation is achieved, the populations converge further very quickly. Moreover, it is
supposed that the non-restrictive formulation of the objectives is crucial for the evolution
of certain properties of analog circuits, e.g. phase-shift, frequency or curve shape.

131

7.4 A Circuit with Numerous Demands: an Operational Amplifier

7.4 A Circuit with Numerous Demands: an Operational Am-
plifier

In this chapter, the aim is to evolve an operational amplifier, since it is a challenging task
in the regime of analog circuit design and it moreover combines various properties of the
circuits from the previous experiments of this thesis. Further, some important character-what can be measured

on-chip? istics of an amplifier (gain, common-mode rejection ratio (CMRR)) cannot be measured
directly on the chip, due to the lack of configurable constantresistors, lossless feedback
and the possibility of performing an AC analysis of the candidate circuits. Thus, it will
be interesting to investigate, if those properties, described in the setup for the test modes
(subsection 7.4.2) that actually can be measured on the FPTA, provide a sufficiently suit-
able test environment for the successfull evolution of amplifying circuits. Lastly, sincethe challenge of

opposing properties an amplifier is a circuit with various, sometimes even opposing properties (e.g. gain and
slew-rate), it represents once more a typically multi-objective problem for evolution.

7.4.1 Setup and On-chip Test Bench

The experiments are conducted with a population size of 200 for the intermediate pop-
ulation and a number of 10.000 generations per evolution run. Individuals are mutatedexperimental setup

according to the probabilities for theMO-Turtle GA, given in table 6.2 (mean mutation
rate: 1 turtle/individual, erase/create: 40 %/60 %, reconnect 50 %) and crossover is car-
ried out with a probability of 10 % and a maximum block-size of4×4 transistor cells. An
area of 9×9 transistor cells is provided to the evolving circuit. Due to the lessons learned
from the previous experiments (section 6.4.4), both, the non-inverting (I+) and the invert-predefined input

configuration ing (I-) input of the circuit are statically connected to the gates of transistors of the same
flavor, in order to avoid meaningless amplifiers. The W and L ofthose input transistors
are always equal, although, during evolution, their size can be varied by the EA. Thereby,
it is intended to provide some kind of differential pair as input to the evolving circuit and
to avoid ‘misuse’ of the input voltages at the same time.

Two series of experiments, each of 50 evolution runs, are carried out using PMOS input
transistors in the first case and NMOS input transistors in the second case. Further, freetwo testbenches: open

loop and full feedback resources of the transistor array are used to attach a randomly (by mutation) variable ca-
pacitive load to the circuits output and to implement two test benches for the circuit under
test: one for open loop testing and another one with full feedback to the inverting input,
for which a resulting gain of 1 is assumed. The on-chip test benches for the test modes
of the measuring, described in the following subsection 7.4.2, are graphed in figure 7.11.
Since the feedback is realized using only the configuration capabilities of the transistor
array—where no constant resistors, capacities or current sources are available—it is not
feasible to measure properties like gain or common-mode rejection ratio CMRR directly
on the chip. Despite this, it is possible to measure and evaluate important properties of
an amplifier, namely open-loop behavior, slew-rate, settling-time, DC offset, harmonic
distortion and phase-shift, directly on the FPTA.

The FPTA is configured with manually created circuits, one with PMOS and one withmanually made
reference designs NMOS input respectively, in order to be able to assess the quality of the synthesized

circuits compared with human-made solutions. The reference designs are taken from
[6, 90] and consist of a differential input stage and a simpleinverter-output stage. The

132

Multi-Objective Optimization of the Transistor Circuits

Figure 7.11: The FPTA test benches for the evolution of operational amplifiers are graphed. Two
series of experiments are carried out using preconfigured PMOS input transistors in the first case
and NMOS input transistors in the second case. In both cases,an area of9×9 transistor cells
and the W/L of the fixed input transistors can be changed by thealgorithm. Like in the previous
experiments, a variable capacitive load is attached to the circuit’s output. This capacitive load is
randomly varied by the EA during the course of evolution.

fitness values are measured for both reference designs, using exactly the same setup as
throughout evolution, and are compared to those of the evolved circuits.

7.4.2 Test Modes for the Measurements on the FPTA

Five different test modes (TMi) are used for the synthesis of operational amplifiers,five testmodes deliver 12
fitness valuesdelivering fitness values for a total of 12 objectives, including ressource consumption.

Thereby, the measuring of TM1 and TM5 is performed with the open-loop test bench,
while the full feedback test bench is used in the case of TM2-4. An overview over the
objectives is given in table 7.3 and the test modes are more closely described in the fol-
lowing: open-loop behavior,

offset
TM1 and TM5: open-loop behavior, offset. The task is to pullVout to Vtar = 5 V if

VI+ > VI- and toVtar = 0 V if VI+ < VI- and to keep the offset voltageVos low or at least
constant. A set of nine curves atVI+ = 1.5,1.75, . . . ,3.5 V, each consisting of 100 sample
voltages forVI- = 0. . .5 V, is used as test pattern for both test modes. Contrary to TM5,
the test pattern of TM1 is randomized. Thus, TM1 delivers one fitness value (pull to rails
(rand)), which characterizes the quasi-DC behavior of the circuit, while TM5 provides
a corresponding fitness value (pull to rails) for the non-randomized case. Both values
are calculated according to equation 7.17 and are actually representing the rms error of
the measured output voltages. Additionally, theDC offsetanddeviation of DC offsetare

133

7.4 A Circuit with Numerous Demands: an Operational Amplifier

calculated from the measuring results of TM5 using equations 7.19 and 7.20.

N = no. of voltage samples (7.15)

S = no. of curves (7.16)

pull to rails =

√

1
N

N

∑
out=1

(Vout−Vtarget)2 (7.17)

offset pos.:O = {Visweepi ∈ N < N |Viout ≤ 2.5 V∧Vi+1out > 2.5 V} (7.18)

abs. offset =
1
S

S

∑
set=1

|Oi −Viset| (7.19)

∆offset =

√

1
S

S

∑
set=1

(Oi −Viset)
2 (7.20)

(7.21)
slew-rate, settling-time

TM2: Slew-Rate, Settling-Time. The challenge for the output is to follow four voltage-
steps fromVI+ = 0 V to 5 V, from VI+ = 5 V to 0 V, from VI+ = 0 V to 3 V and from
VI+ = 3 V to 2 V in tstep= 0.25µs, respectively. Fitness values for theslew-rateand the
settling-timeare calculated from the period of time between the step and the point of
time whenVout has settled at the new target voltageVtar≡VI+. An additional objective is
given by thedeviation of Vtar from Vout, which is once more calculated from the rms error
equation (7.17). The equations that are used for the fitness calculation ofslew-rateand
settling-timeare listed below:

Vlow = Vmin + 10 %of(Vmax−Vmin) (7.22)

tlow = {t ∈R < T |Vtout ≤Vlow ∧ Vt+1out > Vlow} (7.23)

Vhigh = Vmin + 90 %of(Vmax−Vmin) (7.24)

thigh = {t ∈R < T |Vtout < Vthigh ∧ Vt+1out ≥Vhigh} (7.25)

slew-rate =
Vshigh−Vslow

tshigh− tslow

(7.26)

Vtar =

{

Vmin for step down

Vmax for step up
(7.27)

settling-time1 = {t ∈ R < T |Vtar−0.05 V < Vtout < Vtar+0.05 V} (7.28)

settling-time2 = {t ∈ R < T |Vtar−0.25 V < Vtout < Vtar+0.25 V} (7.29)

settling-time3 = {t ∈ R < T |Vtar−0.5 V < Vtout < Vtar+0.5 V} (7.30)

offset = | tlow + thigh

2
− tstep| (7.31)

(7.32)
magnitude, phase-shift
and THD+N TM3 & TM4: Magnitude, Phase-Shift, Harmonic Distortion. A further demand on

an OP is to distort and damp the input signal as less as possible and to keep the phase-
shift constant below at least 180◦, in order to cause the amplifier to remain stable. These
properties are measured in TM4 by applying three different sinusoidal signals withf =
5,50and500 kHz to the input and comparing them to the circuits output Vtar ≡ VI+. A

134

Multi-Objective Optimization of the Transistor Circuits

TM objective fitness description

TM1 pull to rails (random) min. quasi-DC behavior, according toeq. 7.17
TM2 slew-rate max. mean slew-rate of all steps (eq. 7.26)
TM2 settling-time min. meantsettleafter trans. step (eq. 7.28-7.30)
TM2 deviation fromVtar min. rms error, according to eq. 7.17
TM3 phase-shift min. phase-shift of sin betweenVout andVI+

TM3 sin-curve deviation min. rms error, according to eq. 7.17
TM4 magnitude max. damping of the fund. freq. at unity gain
TM4 harmonic distortion min. sum of ampl. of harmonics if above−60dB
TM5 pull to rails min. rms error, according to eq. 7.17
TM5 DC offset min. DC offset of the set of 9 curves (eq. 7.19)
TM5 dev. of DC offset min. std. deviation of the DC offset (eq. 7.20)
— resource consumption min. sum of transistors used

Table 7.3:An overview of all test modes TM1-5 and their corresponding objectives is given above.
Generally, the aim is to minimize the fitness. Thus, in the cases where the objective value is to be
maximized, the reciprocal (slew-rate) or absolute value (magnitude) is used as fitness.

discrete fourier transform is used to calculate the power spectrum of the output signal for
each frequency. Subsequently, fitness values formagnitudeandTHD are calculated from
the resulting power spectrum. A description of THD+N is given in chapter3, section 3.3.2.
Additionally, the output of a sinusoidal input signal off = 20 kHz is used in TM3 to
obtain values for thephase-shiftand thedeviation of VI+ from Vout. Thereby, thephase-
shift is calculated from the difference of the zero crossings of the target voltage pattern
and the zero crossings of the measured voltage pattern, while thedeviation of VI+ from
Vout is, again, simply the rms error of the measured voltage pattern, with respect to the
phase-shift.

7.4.3 Performance of the Multi-Objective Approach

A first indicator, whether an evolution run is successfull ornot, is the shape of the re-
sulting fitness distribution for the different objectives.Thus, the fitness distributions ofconvergence in all

objectivestwo typical evolution runs—one with NMOS and one with PMOS input—are depicted
in figure 7.12. Contrary to the oscillators, the fitness values for all objectives of all 50
evolution runs are spread over the wide ranges. Thus, in the case of the OPs, the MO
algorithm achieved that each resulting population contains individuals, which converged
in at least one objective and to maintain great diversity of the individuals at the same time.

Due to the numerous objectives, the NDFs, which are calculated and optimized by themulti-dimensional
NDFsEA, are multi-dimensional. Thus, projections of example NDFs into the plane spanned by

the respective objectives are plotted in figure 7.13. Thereby, all objectives are taken into
account for computation. Additionally, the subsets, whichare obtained by recalculating
the NDF considering only the two graphed objectives, are shown, in order to illustrate,
on the one hand, the relation to the example NDF in figure 7.1 and, on the other hand, to
show the origin of the NDFs, depicted in figure 7.14. It is interesting to see that there are
two different signatures of the distribution of the solutions within the search space: eithertowards better fitness

135

7.4 A Circuit with Numerous Demands: an Operational Amplifier

the depicted objectives can be independently optimized as e.g. in the case ofmagnitude,
DC offsetandsettling-time, where the individuals are spread over large areas of the fitness
landscape, or the objectives are more closely correlated ase.g.magnitudeanddistortion,towards greater

diversity where only trade-off solutions are possible. According to the latter observation, as can be
seen from figure 7.14, the respective NDF rather improves towards better fitness values
over time in the first case, whereas in the second case, ratherthe diversity is improved by
spreading the solutions over wide ranges of fitness.

136

Multi-Objective Optimization of the Transistor Circuits

1

fit
ne

ss

2 3 4

5

fit
ne

ss

6 7 8

9

individual no.

fit
ne

ss

10

individual no.

11

individual no.

12

individual no.

0 100 2000 100 2000 100 2000 100 200

0 100 2000 100 2000 100 2000 100 200

0 100 2000 100 2000 100 2000 100 200

0

100

200

0

0.05

0.1

0

0.05

0.1

2

4

-40

-20

0

0
20
40
60
80

0

2

4

0

5

10

×10−5

2

4

0.5
1

1.5
2

2.5

×10−5

0

0.02

0.04

2

4

1

fit
ne

ss

2 3 4

5

fit
ne

ss

6 7 8

9

individual no.

fit
ne

ss

10

individual no.

11

individual no.

12

individual no.

0 100 2000 100 2000 100 2000 100 200

0 100 2000 100 2000 100 2000 100 200

0 100 2000 100 2000 100 2000 100 200

0

100

200

0

0.05

0.1

0

0.05

0.1

2

4

-40

-20

0

0
20
40
60
80

0

2

4

0

5

10

×10−5

2

4

0.5
1

1.5
2

2.5

×10−5

0

0.02

0.04

2

4

Figure 7.12: The distribution of the fitness values for all objectives of two example evolution
runs are depicted above. Thereby, a typical run with PMOS input (bottom) and a typical run with
NMOS input (top) is shown. Furthermore, the fitness values are sorted in ascending order for
illustration. For all 50 evolution runs, the fitness values cover wide ranges of the output range.
The position of a manually made OP (reference) is marked by a triangle.

137

7.4 A Circuit with Numerous Demands: an Operational Amplifier

magnitude (TM4)

se
ttl

in
g-

tim
e

(T
M

2)

A 0 20 40 60 80

0.5

1

1.5

2

2.5

magnitude (TM4)

se
ttl

in
g-

tim
e

(T
M

2)

B

reference

NDF n-dim.
NDF 2-dim.

0 1 2 3 4 5 6

0.5

1

1.5

2

2.5

magnitude (TM4)

D
C

of
fs

et
(T

M
5)

C 0 20 40 60 80

0

0.05

0.1

0.15

magnitude (TM4)

D
C

co
m

po
ffs

et
(T

M 5
)

D 0 1 2 3 4

0

5

10

15

pull to rails (random) (TM1)

re
ss

ou
rc

e
co

ns
um

pt
io

n

E 0 1 2 3 4 5

0

50

100

150

200

250

300

pull to rails (random) (TM1)

re
ss

ou
rc

e
co

ns
um

pt
io

n

F 0 0.5 1 1.5 2

0

10

20

30

40

50

60

magnitude (TM4)

ha
rm

on
ic

di
st

or
tio

n
(T

M 4
)

G 0 20 40 60 80 100

-60

-50

-40

-30

-20

-10

0

10
Figure 7.13: Projections of example NDFs into
the plane spanned by the respective objectives
are graphed above. In the case ofmagnitude, DC
offsetandsettling-timethe respective objectives
can be independently optimized. Therefore, the
individuals are spread over large areas of the fit-
ness landscape. Contrary to that, the shape of
the NDF for more closely correlated objectives
(distortion, ressources, magnitude) suggests that
merely only trade-off solutions are possible. The
position of a manually made OP (reference) is
marked by a triangle.

138

Multi-Objective Optimization of the Transistor Circuits

magnitude (TM4)

se
ttl

in
g-

tim
e

(T
M

2)

A 0 1 2 3 4 5 6 7

0.5

1

1.5

2

2.5

magnitude (TM4)

se
ttl

in
g-

tim
e

(T
M 2

)

B

reference

NDF gen.2800
NDF gen.3400
NDF gen.6000
NDF gen.9000
NDF gen.10000

0 1 2 3 4 5 6

0.5

1

1.5

2

2.5

replacements

magnitude (TM4)

de
v.

of
D

C
of

fs
et

(T
M 5

)

C 0 0.5 1 1.5 2 2.5 3

0

0.05

0.1

0.15

magnitude (TM4)

de
v.

of
D

C
of

fs
et

(T
M 5

)

D 0 1 2 3 4

0

5

10

15

pull to rails (random) (TM1)

re
ss

ou
rc

e
co

ns
um

pt
io

n

E 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

5

10

15

20

25

30

35

40

pull to rails (random) (TM1)

re
ss

ou
rc

e
co

ns
um

pt
io

n

F

reference

NDF gen.1800
NDF gen.4900
NDF gen.6600
NDF gen.7800
NDF gen.9400

0.5 1 1.5 2

0

10

20

30

40

50

60

magnitude (TM4)

ha
rm

on
ic

di
st

or
tio

n
(T

M 4
)

G 0 10 20 30 40 50 60 70

-60

-50

-40

-30

-20

Figure 7.14:The development of the fitness over
time is depicted above. Thereby, the NDFs of the
depicted example runs are recalculated by con-
sidering only the two objectives shown in the
respective plot for illustration. The 4 graphs
on the top depict results from the best PMOS
run, whereas the three remaining graphs show
results from the best NMOS run. The NDF for
offset/settling-timeovermagnitudeconverges to-
wards better fitness over time. In contrast to this,
the NDF for distortion/ressourcesover magni-
tudeis spread over wide ranges of fitness. Again,
the position of a manually made OP (reference)
is marked by a triangle.

139

7.4 A Circuit with Numerous Demands: an Operational Amplifier

7.4.4 Solutions for the Operational Amplifier

Measurement on the FPTA.
In order to assess the performance of the resulting OPs, human-made reference designs
are manually realized on the configurable transistor array and are measured with the same
test modes as are used for the evolution experiments. Subsequently, the obtained fitnesscomparison with

reference designs values for all objectives can be compared to those from the solutions, found by the EA. It
is tested for how many objectives the performance of the evolved circuits is better, resp.
less than 10 % worse, than the performance of the according reference designs (PMOS or
NMOS input). Thereby, it is recorded how many resulting populations feature at least one
individual, which beats the manual design inN objectives. As can be seen from Tab. 7.4,at least one solution

beats 6 objectives of the
reference design

in which the results of the latter measuring are listed, almost each run contains at least one
individual that outperforms the respective reference OP inup to 3 objectives and about
half of the runs feature similar performance in up to 6 objectives. Finally, for both setups,
with NMOS and PMOS input, at least one evolution run featuresan individual, which
performs equally well in 9 objectives.

In addition to this, the likelihood with which a certain objective of the reference designs
is outperformed by the individuals of all resulting populations is listed in table 7.5. It
can be seen thatressource consumption, magnitude, pull to rails (random), DC offsetandwhich objectives are

more likely beaten? deviation from Vtar are barely beaten by evolved solutions. This is not surprising, since the
human-made design contains only relevant components and it’s differential input stage is
designed to minimize the offset, while an additional gain stage—despite it is represented
by a simple inverter in this case—provides sufficient magnitude. Contrary to that, it
has not been expected that achieving a good fitness forsettling-time, phase-shiftand
harmonic distortionseems to be relatively easy for evolution. The reason for this is
probably that there is a large amount of individuals, which manage to propagate the input
voltage pattern directly to the output, resulting in a lowphase-shift, settling-timeand
harmonic distortion. An additional hint for this is the fact that all ’easy’ objectives are
covered by test modes, where the input voltage pattern corresponds to the (inverse) output
voltage pattern. Thus, the tasks could be fulfilled best by a simple inverter, if there were
no other objectives.

Simulating the test modes used for evolution.
The next task is to test the resulting circuits in simulation. Therefore, one individual of
each population, which performs equally well as the reference design in most objectives
on the chip is evaluated in simulation. For comparison, the same test mode setup, which
is used for the evolution experiments on the FPTA, is used forsimulation. TM1 and TM5

are represented by DC simulations, while TM2, TM3 and TM4 are set-up as transient
simulations. Thereby, in the case of TM4, magnitude and distortion are obtained by
performing a fast fourier transform on the output values. Further, the simulations aresimulating on level 1

and 2 performed with extracted netlists of level 1 and level 2 (chapter 4, section 4.4). It can be
seen from table 7.6 that the EA was able to find at least about 3 circuits, which perform

at least three solutions
beat 6 objectives of the
reference design

equally well as the manually made OP in up to 6 objectives in the case of a simulation
with plain transistors. This is a promising result insofar that, from a netlist with plain
transistors it should be relatively easy to obtain a clear schematic and possibly understand
the operation principle of the evolved solution. The outputvoltage characteristics of the

140

Multi-Objective Optimization of the Transistor Circuits

no. of objectives
1 2 3 4 5 6 7 8 9 10 11 12

NMOS, on-chip
better than ref. 50 50 46 39 32 18 5 2 1 0 0 0
max. 10 % worse than ref. 50 50 48 42 35 32 17 6 1 0 0 0
PMOS, on-chip
better than ref. 50 49 42 26 15 3 0 0 0 0 0 0
max. 10 % worse than ref. 50 50 46 34 27 14 5 2 1 0 0 0

Table 7.4: The no. of runs that contain at least one individual that achieved a better (or not more
then 10% worse) fitness value than the manually made circuitsfor a given no. of objectives. About
half of the runs feature a similar performance as the manually made design in up to 6 objectives
and at least one evolution run features an individual, whichperforms equally well as the reference
design in 9 objectives. The likelihood with which a certain objective of the reference designs is
outperformed by the individuals of the resulting populations is listed in table 7.5.

TM objective
ref. beaten by % of evo. individuals
NMOS, on-chip PMOS, on-chip

TM1 pull to rails (random) 2.1 3.3
TM2 slew-rate 12.9 7.5
TM2 settling-time 25.7 1.4
TM2 deviation fromVtar 3.5 2.5
TM3 phase-shift 23.6 21.1
TM3 sin-curve deviation 6.7 1.4
TM4 magnitude 2.1 4.2
TM4 harmonic distortion 58.9 68.9
TM5 pull to rails 4.8 3.5
TM5 DC offset 3.6 2.8
TM5 dev. of DC offset 9.7 8.2
— resource consumption 0.7 0.9

Table 7.5: The likelihood with which a certain objective of the reference designs is outperformed
by the individuals of all resulting populations is listed above. It can be seen thatresource con-
sumption, magnitude, pull to rails (random), DC offsetanddeviation from Vtar are barely beaten
by the evolved solutions, while achieving a goodsettling-time, phase-shiftandharmonic distor-
tion seems to be relatively easy for evolution.

NMOS and the PMOS OP with the best performance are graphed in figures 7.16, 7.17
and 7.15. The results from the FPTA are thereby compared to those from simulation and
the evolved circuits are compared with the manually made designs.

141

7.4 A Circuit with Numerous Demands: an Operational Amplifier

no. of objectives
1 2 3 4 5 6 7 8 9 10 11 12

NMOS, simulation
level 1
±10 % of ref. fitness 7 7 7 6 5 5 3 1 0 0 0 0
level 2
±10 % of ref. fitness 23 21 20 20 15 10 4 4 0 0 0 0
PMOS, simulation
level 1
±10 % of ref. fitness 7 7 6 5 5 4 1 0 0 0 0 0
level 2
±10 % of ref. fitness 23 19 19 17 12 11 4 1 0 0 0 0

Table 7.6:The individual of each run, which performs equally well as the reference design in most
objectives, is evaluated in simulation and therefore considered in this table. The no. of individuals,
which achieved a comparable fitness value as the corresponding reference OP in simulation for a
certain no. of objectives, is listed above. Simulations areperformed with plain transistors (level
1) and with mean switch resistance included (level 2), respectively. It is a promising result that
the EA was able to find at least about 3 circuits, which performequally well as the manually made
OP in up to 6 objectives in the case of a simulation with plain transistors.

Testing typical OP characteristics.
The circuits with the best performance in the simulation with plain transistors—one with
NMOS and one with PMOS input—is further examined in the following. Opposite to the
competition with the reference circuits on the FPTA, the evolved circuits will come off
worse, if typical characteristics of OPs are compared in simulation. As can be seen fromassessing evolved

circuits in real-world
application

table 7.7 especially those properties that cannot be measured directly on the transistor
array during evolution—thus, cannot be evaluated by a fitness function (e.g. open-loop
gain)—return rather poor results. Contrary to that, the characteristics that are represented
by an objective, perform similar, e.g.offset, slew-rateand settling-time, despite they
turned out to be hard to evolve, as observed in table 7.5. Since the output voltage swing
and the 0dB bandwidth are correlated to a good open-loop gain, those values are also not
as good as those of the manually made OPs.

In both cases, the phase-margin of the evolved solution is higher than those of the refer-
ence OPs. This is interesting insofar, that it is on the one hand a good result, since the aim
of the corresponding objective is to minimize the phase-shift. On the other hand, forcing
the phase-shift towards too small values could possibly thwart the evolution of output
gain stages. If this was the case, it would be better to allow for a greater phase-margin in
the objective function. Output voltage characteristics for open-loop gain, CMRR, phase-
margin and output voltage swing/range are graphed in figure 7.18.

142

Multi-Objective Optimization of the Transistor Circuits

parameter NMOS (evo) NMOS (ref) PMOS (evo) PMOS (ref)

open-loop gain 37 dB 57 dB 29 dB 65 dB
0dB bandwidth 8 MHz 77 MHz 6 MHz 33 MHz
offset 40 mV 28 mV 80 mV 20 mV
slew-rate (+) 40V

µs 100 V
µs 15 V

µs 25 V
µs

slew-rate (-) 15V
µs 30 V

µs 35 V
µs 45 V

µs

settling-time 0.4 µs 0.2 µs 0.3 µs 0.2 µs
phase-margin 91◦ 50◦ 92◦ 50◦

common mode rejection 56 dB > 50 dB 45 dB > 40 dB
out voltage swing 2.2 V 4.8 V 2.8 V 4.8 V
input common mode range 4.8 V 4.2 V 4.0 V 4.3 V

Table 7.7: Comparison between characteristics of evolved circuits with a good performance and
the reference circuits (NMOS and PMOS input). The values areobtained from SPICE simulations.

frequency [Hz]

m
ag

ni
tu

de
/d

is
to

rt
io

n
[d

B
]

100 105
-100

-80

-60

-40

-20

0

frequency [Hz]

m
ag

ni
tu

de
/d

is
to

rt
io

n
[d

B
]

100 105
-100

-80

-60

-40

-20

0

frequency [Hz]

m
ag

ni
tu

de
/d

is
to

rt
io

n
[d

B
]

100 105
-100

-80

-60

-40

-20

0

frequency [Hz]

m
ag

ni
tu

de
/d

is
to

rt
io

n
[d

B
]

100 105
-100

-80

-60

-40

-20

0

Figure 7.15: Upper left: magnitude and distortion of a good evolved solution with NMOS input
are depicted.Upper right: magnitude and distortion of the reference design with NMOS input are
depicted.Lower left, lower right:the according graphs for circuits with PMOS input are shown.
The measuring on the FPTA (straight line) is compared with the simulation result (dashed line)
and the target voltage pattern (gray dashed line).

143

7.4 A Circuit with Numerous Demands: an Operational Amplifier

Vset [V]

V
o

u
t
[V

]

0 1 2 3 4 5
0

1

2

3

4

5

Vset [V]

V
o

u
t
[V

]

0 1 2 3 4 5
0

1

2

3

4

5

replacements

Vset [V]

V
o

u
t
[V

]

0 1 2 3 4 5
0

1

2

3

4

5

Vset [V]

V
o

u
t
[V

]

0 1 2 3 4 5
0

1

2

3

4

5

time [µs]

V
o

u
t
[V

]

0 50 100 150 200 250
0

1

2

3

4

5

time [µs]

V
o

u
t
[V

]

0 50 100 150 200 250
0

1

2

3

4

5

time [µs]

V
o

u
t
[V

]

0 20 40 60 80 100
0

1

2

3

4

5

time [µs]

V
o

u
t
[V

]

0 20 40 60 80 100
0

1

2

3

4

5

Figure 7.16: Left: Output voltage characteristics of a good evolved solution with NMOS input
are depicted.Right: Output voltage characteristics of the reference design withNMOS input
are depicted. The measuring on the FPTA (straight line) is compared with the simulation result
(dashed line) and the target voltage pattern (gray dashed lines).

144

Multi-Objective Optimization of the Transistor Circuits

Vset [V]

V
o

u
t
[V

]

0 1 2 3 4 5
0

1

2

3

4

5

Vset [V]

V
o

u
t
[V

]

0 1 2 3 4 5
0

1

2

3

4

5

replacements

Vset [V]

V
o

u
t
[V

]

0 1 2 3 4 5
0

1

2

3

4

5

Vset [V]

V
o

u
t
[V

]

0 1 2 3 4 5
0

1

2

3

4

5

time [µs]

V
o

u
t
[V

]

0 50 100 150 200 250
0

1

2

3

4

5

time [µs]

V
o

u
t
[V

]

0 50 100 150 200 250
0

1

2

3

4

5

time [µs]

V
o

u
t
[V

]

0 20 40 60 80 100
0

1

2

3

4

5

time [µs]

V
o

u
t
[V

]

0 20 40 60 80 100
0

1

2

3

4

5

Figure 7.17:Left: Output voltage characteristics of a good evolved solution with PMOS input are
depicted.Right: Output voltage characteristics of the reference design withPMOS input are de-
picted. The measuring on the FPTA (straight line) is compared with the simulation result (dashed
line) and the target voltage pattern (gray dashed lines).

145

7.4 A Circuit with Numerous Demands: an Operational Amplifier

frequency [Hz]

ga
in

[d
B

]

100 101 102 103 104 105 106 107

-10
-5
0
5

10
15
20
25
30
35
40

frequency [Hz]

ph
as

e
[◦]

100 101 102 103 104 105 106 107 108
-200

-150

-100

-50

0

50

input+ [V]

in
pu

tc
om

m
on

m
od

e
ra

ng
e

[V
]

pmos

target
nmos

0 1 2 3 4 5
0

1

2

3

4

5

input+ [V]

ou
tp

ut
vo

lta
ge

sw
in

g
[V

]

0 1 2 3 4 5
0

1

2

3

4

5

frequency [Hz]

cm
rr

[d
B

]

100 101 102 103 104 105 106 107 108 109 1010
-10

0

10

20

30

40

50

60

Figure 7.18:Real world characteristics—namely open-loop gain, phase-margin, CMRR and out-
put voltage swing/range—of good evolved OPs with NMOS and PMOS, respectively, are depicted
above. The results for the NMOS solution is graphed as blue straight line, while the result for the
PMOS case is graphed as green straight line. Again, the target voltages are pictured as gray dashed
line.

146

Multi-Objective Optimization of the Transistor Circuits

7.4.5 Schematic Extraction of Good Solutions: Deriving NewDesign Prin-
ciples?

Due to the lessons learned by looking at the schematics of logic gates and comparators in
chapter 6, section 6.4.5, the evolution setup for the OPs is designed in a way that the input
voltages are always connected to the gate of either a NMOS or aPMOS transistor pair. As
a consequence of this, the algorithm cannot simply mix the input voltages in an unwanted
way, as it occurred in the case of the logic gates. Again, the intention is to transfer good
solutions into a human readable format and possibly understand the operation principle
of the evolved OPs. The procedure, which automatically generates schematics from the
evolved circuits, is described in chapter 4, section 4.5.2.

For both types of input, generated schematics for example solutions with both, a good understanding
schematics of good
solutions

performance on the chip and in a level 2 simulation are shown in figure 7.19. In order
to improve understandability, circuits with minimized ressource consumption are chosen.
Besides, the depicted circuits are those from the previous subsection 7.4.4. Additionally,
the obtained schematics are manually redrawn in figure 7.20 by extracting functional
groups. Unfortunately, both depicted circuits will only beworking correctly, if the mean
parasitic on-resistance of the switches is considered in simulation (level 2). As can be
seen from the schematics, in both cases, with NMOS and PMOS input, the algorithm was
able to create a differential input stage, which is a promising result, since it is indeed arediscovery a

differential input stagereinvention of a widely used human design. Nevertheless, two important components are
as yet missing: first, contrary to the experiments with the logic gates and the comparators,
the algorithm failed to create an inverter at the circuit’s output, which would have resultedfailure in creating a

gain stagein significantly higher gain. A possible reason for this is the missing objective for open-
loop gain, which cannot be directly measured on the FPTA. Second, the EA comes up
with unusual biasing circuitry, which is probably the reason why the circuits are not unconventional biasing

circuitryproperly working, if only plain transistors are simulated.In the case of the PMOS inputs,
numerous transistors, which are actually closed, are contributing to the bias, while, in the
case of the NMOS inputs, the bias voltage is even depending onthe output voltage.

In addition to the two latter examples, resulting OP circuits can be found, which also
feature a good performance in a simulation with only plain transistors, which is a good
result. Despite this, it was not yet achieved to further understand the operation principle
of those circuits. Therefore, the according schematics areshown in appendix B.

7.4.6 Concluding Remarks

Concluding, it can be stated that, despite the EA did not discover any new ground-
breaking design, it is still an impressive result that the algorithm achieved to synthesizerediscovery of

differential input stagea differential input stage in both cases without prior analog design knowledge. Further-
more, a great benefit of using an MO approach for the evolutionof operational amplifiers
on the Heidelberg FPTA is the possibility to efficiently explore the search space taking
care of both, the diversity of the population and the variousdemands on the target circuit.
Thereby, the obtained results suggest that a MO approach is mandatory for the successfullsuccessfull evolution of

complex analog circuitsevolution of complex analog circuits.

147

Figure 7.19: Automatically generated schematics of the evolved OPs are shown above for both
types of input: NMOS (top) and PMOS (bottom).

Figure 7.20: Redrawn schematics of the evolved OPs from figure 7.19 are shown above for both
types of input: NMOS and PMOS. Shorted transistors are grayed, in order to improve readability.
In both cases theMO-Turtle GAachieved to synthesize differential input stages and quiteunusual
biasing circuitry. Unfortunately, the evolved solutions thus far lack of an output gain stage.

Chapter 8

Modeling FPTA Architectures

Initial experiments with a simulation model of the current FPTA, referred to as
the SimFPTA throughout the remainder of this thesis, are presented in this chap-
ter. Once more, in order to be able to compare the results withthose from the
previous chapter (7), the task is to evolve a comparator withthe MO-Turtle GA.
Due to the significantly higher time consumption of the simulation, a total of 30
evolution runs is carried out with the SimFPTA and compared to 30 randomly
picked FPTA runs from chapter 7, section 7.2. It is shown thatboth substrates
feature similar behavior and results in the case of the comparators. Further-
more, the opportunity is seized to comment the current chip,to propose some
improvements for possible FPTA architectures in the futureand an alternative
genome-chip mapping for the candidate circuits. To conclude, this last chap-
ter is, on the one hand, intended as a demonstration of the performace of the
SimFPTA and shall, on the other hand, provide a starting-point for future work.
Thereby, the developed software framework, introduced in chapter 5, can be used
to create and investigate new configurable FPTA topologies and further improved
evolutionary algorithms.

After performing a great number of evolution experiments ona particular FPTA chip, the
inevitable question arises, to what extent the constraintsof the present topology limit the
quality of the resulting circuits or exclude possible pathways of evolution towards good
solutions. The latter question can only be answered by, on the one hand, investigating
the evolution results for different design problems and, onthe other hand, compare the
evolvability of the current FPTA with the evolvability of other topologies. Due to the fact
that the architecture of the available hardware is fixed, hence, can only be changed by
designing and fabricating a new chip, it is desireable to be equipped with a customizable
simulation model of FPTA architectures, as proposed in chapter 5 and in [93]. Such an
FPTA model makes it possible to evaluate and improve the performance of an architecture
before actually manufacturing a chip. However, the prize that has to be paid for a cus-

151

8.1 A Simulation Model of the Current FPTA

tomizable simulation model is a high evaluation time for theanalog circuits in simulation.
Since numerous candidate solutions have to be evaluated in the case of EAs, the time con-
sumption of an evolution run drastically increases. A comparison of the evolution time
of the experiments in this thesis is given in section 8.1.2. First steps towards modeling
and testing FPTA architectures are presented in this chapter, including experiments with
a simulation model of the current chip, a description of its main shortcomings as well as
proposals for possible future architectures.

8.1 A Simulation Model of the Current FPTA

The first step is to create a simplified simulation model of thecurrent FPTA architecture,a simplified model: the
SimFPTA referred to as the SimFPTA throughout the remainder of this thesis, and to compare the

performance of this model with the real hardware by tacklingthe synthesis of compara-
tors. Thereby, theTurtle GA, which is introduced in chapter 6, section 6.1.2, is used for
the evolution experiments with both substrates, namely theFPTA and the SimFPTA. Fur-
ther, the same genetic representation is used for both experiments, although, in the case
of the SimFPTA, the candidate circuits are converted to a netlist and evaluated with a
SPICE simulator, as described in chapter 5, section 5.3.2 and 5.4.3. In order to provide a
sufficiently accurate model of the real hardware and to keep the simulation time feasibly
low at the same time, the simulation model has to be simplified. The results from chap-trade-off between model

complexity and
simulation time

ter 6 suggest that carrying out the simulations with level 2 netlists (chapter 4, section 4.4),
where the transmission gates used are replaced with their mean on-resistance should be a
suitable model of the real FPTA.

8.1.1 Performing Experiments with the Simulation Model

Experimental Setup:
The same test modes, fitness measures and EA parameters as forthe evolution of com-
parators in chapter 7, section 7.2.1, are used for the experimental setup, in order to be
able to compare the results, obtained with the SimFPTA with those from the FPTA. Due
to the significantly increased time consumption of the evolution experiments with the
SimFPTA, a total of 30 evolution runs is carried out instead of 50, and compared to 30
randomly selected evolution runs of the comparators from chapter 6. The population size
is 50 individuals, and the number of generations is 20.000.

Results
As can be nicely seen from Fig. 8.1, the evolutionary runs endup in equal ranges ofboth substrates produce

equal results fitness and ressource consumption for both substrates. Consequently, the SimFPTA is a
suitable model for evaluating the evolvability of the real hardware, although the behavior
is different in the beginning of evolution, due to the fact that individuals which do not
work at all in simulation, nevertheless produce an output onthe chip. The latter effect
will become less important, if, as presented here, an EA likethe Turtle GA is used for
the evolution experiments, since valid circuits are crucial for carrying out a successfulvalid circuits are crucial

for successfull
simulation

simulation. Output voltage characteristics for both test-modes of an individual with a
good performance is graphed in Fig. 8.2.

152

Modeling FPTA Architectures

resource consumption

fit
ne

ss

reference

SimFPTA
FPTA

0 10 20 30 40
0

0.5

1

1.5

2

Figure 8.1: The fitness for the output voltage characteristic is plottedover the ressource consump-
tion. As can be seen from the graph, the best resulting comparators, evolved with the SimFPTA
and the FPTA respectively, are distributed over equal ranges of fitness. Thus, the SimFPTA is
suitable for assessing the evolvability of the FPTA.

Vsweep

V
o

ut

0 1 2 3 4 5
0

1

2

3

4

5

Vsweep

V
o

ut

0 1 2 3 4 5
0

1

2

3

4

5

Figure 8.2: DC output voltage characteristics of the best comparator, evolved with theMO-Turtle
GAand the SimFPTA respectively, are depicted.

8.1.2 Time Consumption for Different Evolution Experiments

As already mentioned, the time consumption for one evolutionary run will significantly
increase, if the evaluation of the circuits is performed with an analog circuit simulator
instead of with the real hardware. In both cases, the simulation time is additionally de- factors, that influence

simulation timepending on the number of inputs and outputs used, the number of voltage samples and the
number of test modes. Furthermore, if a simulator is used, a higher amount of compo-
nents will exponentially increase the simulation time and,additionally, the duration of the
simulation depends on the type of analysis, e.g. a transientanalysis takes considerably
long. Contrary to simulation, only transient measuring is possible with the chip, although,
in the case of real hardware, the output can be measured (almost) immediately, which is a
great advantage. A further great advantage of the hardware is the fact that the measuring
time is independent from the number of components used.

153

8.1 A Simulation Model of the Current FPTA

substrate no. TMs no. of fit. vals no. ind./gen. time [min.]

logic gates FPTA 2 1+1 50 / 10.000 65±2
comparators FPTA 2 1+1 50 / 20.000 200±8
comparators FPTA 2 2+1 (MO) 50 / 20.000 210±8
comparators SimFPTA 2 1+1 50 / 20.000 1380±95
oscillators FPTA 1 5+1 (MO) 100 / 5.000 25±2

op. amplifiers FPTA 5 11+1 (MO) 100 / 10.000 720±8

Table 8.1:An overview of the mean duration of one evolution run of all experiments in this thesis.
Note, that in the case of complex fitness evaluation, e.g. in those cases where a fourier transform
is done or simply one test mode delivers numerous fitness values, the time consumption further
increases. The ressource consumption is considered as ’+1’in this table, due to the fact that it is
calculated outside the test mode setup.

An overview of the mean duration of one evolution run of all experiments in this thesis
is given in the table below, in order to give an impression of how long it actually takes—time consumption of

presented experiments to date—to obtain solutions for the respective kind of circuit. Note, that in the case
of complex fitness evaluation, e.g. in those cases where a fourier transform is done or
simply one test mode delivers numerous fitness values, the time consumption may further
increase.

8.1.3 Influence of the Parasitic Effects and its Consequences

The mean parasitic on-resistance of the transmission gates, which are used for intercon-
necting nodes on the FPTA, is included in the SimFPTA, with the intention to provide
similar conditions for evolution on both substrates. Despite the fact that the evolution
runs end up in the same regions of fitness for both substrates,it is observed that the cir-smooth improvement on

the FPTA vs. sudden
jumps in simulation

cuits on the FPTA are more ’smoothly’ improved by evolution than on the SimFPTA,
where rather sudden jumps occur in the course of the fitness. Thus, it can be stated that
the presence of parasitic effects in the case of real hardware results in a smoother im-
provement of the fitness, as can be seen from the example in figure 8.3. On the one hand,
such a smoother improvement is considered to be advantageous to the algorithm, since
the output voltage characteristic can be changed in smallersteps and therefore, e.g. the
slightest change of the W/L ratio of one of the transistors can possibly be exploited. On
the other hand, by investigating resulting circuits for thelogic gates and the comparators,
shown in chapter 6, section 6.4.5, it will be seen that, if theselection is oriented exclud-
ing at the slightest change of the shape of the output voltagecharacteristic, this can alsoselection should not rely

only on rms lead to unwanted solutions. It is therefore suggested that it would be most beneficial, if
it was possible to design a substrate and/or algorithm whichallows to smoothly improve
the circuit without relying on parasitic effects. One possibility could be to optimize the
W/L of all transistors of a candidate circuit in an intermediate step.

154

Modeling FPTA Architectures

generations

fit
ne

ss

SimFPTA
FPTA

0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Figure 8.3: Fitness courses for typical example
runs with the FPTA and the SimFPTA respec-
tively, are depicted on the left hand side.

8.2 Comments on the Current Architecture

8.2.1 Advantages

The fine grained architecture of the Heidelberg FPTA, i.e. the possibility to evolve cir- evolving circuits on
transistor levelcuits on the transistor level, is considered to be more interesting for research on EAs

and unusual circuit topologies than an FPTA with more complex configurable cells, e.g.
tuneable filters or amplifiers ([8, 79]). Despite the fact that with more complex cells,
which are aimed at predefined tasks, it is more feasible to findgood solutions for just
the task they are designed for, the idea of being able to almost freely interconnect sin-
gle transistors is intriguing. Thereby, it is intended not only to find working circuits
but, in turn, possibly learn new ways of analog design from evolution. Obviously, this aiming at new design

principlesis not possible in the case of a substrate with a predefined or too constrained architec-
ture. Unfortunately, the disadvantage of increasing configurability is that the presence
and influence of parasitic effects increases at the same time, although there are examples
where EAs were able to use just those parasitic effects to build circuits with surprising
properties ([30,60,78,87]). Thereby, the most famous example is the tone discriminator
experiment of Adrian Thompson [85], who achieved to evolve analog functionality on
a digital substrate (FPGA). Nevertheless, it has to be stated that, to date, Thompson’s
ground-breaking experiment remained unique.

8.2.2 Shortcomings and Desired Features

The main shortcomings surely are the limited routing and component connecting capa-limited routing and
connecting capabilitiesbilities of the current transistor array. Direct connections between transistors, i.e. with

the minimum required number of 2 transmission gates, can only be realized between
neighboring cells. Further, connections can only be established with the local routing
capabilities of the chip, resulting in at least one additional switch per cell, which is added
to the respective wire. Further, the four outside connections of the FPTA cells are shared
between the three transistor terminals and the six possibleroutes. Thus, in the case of
manually configuring a more complex circuit on the transistor array a relatively large area

155

8.3 A Proposal for Improvements

is needed, compared with the number of actually needed components. E.g. a compara-
tor with 7 transistors requires at least 6×6 transistor cells, thus, in this case, only about
1/5 of the available components are actually used. Consequently, an improved routing
scheme is desired, which makes it on the one hand possible to connect distant transistors
via a few switches and, on the other hand, does not share all its nodes with the transistor
terminals.

The second disadvantage is the presence of switches at both,source and drain terminalhigh source and drain
resistances of the transistors. As a consequence of this, it is not possible to configure a circuit on the

FPTA, where two transistors are connected to exactly the same source potential, which
would be desireable e.g. in the case of a differential pair, representing a differential
input stage. Despite this, in the OP experiments from chapter 7, section 7.4, the EA was
surprisingly rather able to find a differential input stage,than an additional gain stage.
Nevertheless, from the view of analog design, it is still desired to have real differential
pairs at hand, although it can only be suggested that it wouldalso help the EA in finding
better solutions. Moreover considering the principles of analog circuit design, a more net
oriented connection scheme is desired, instead of a cell oriented one.

Lastly, there is a need for more flexible IO cells, or, more generally spoken, a test-a test-bench with
extended features bench with extended features. It would be beneficial, if it was possible to attach test-

benches, which include also passive components (resistors, capacities) to the evolving
circuits. Alongside with supplies for reference voltages and the possibility of measuring
the current of some nodes, this would make it possible to measure properties like gain or
the characteristic of a configurable transistor directly onthe chip. E.g. the evaluation of
OPs would be significantly improved by a gain measuring. Furthermore, in a voltage net
based routing environment, different accurate reference voltages could be provided to the
circuit under development, which would be expecially beneficial for e.g. filters, DACs
and ADCs ([55,103,105]).

8.3 A Proposal for Improvements

This section is intended to present some thoughts about an improved FPTA architecture
and a possibly beneficial alternative genetic representation for the analog circuits in the
future. It is not yet proven by implementation and experiments that the proposed archi-
tecture or genetic representation will be more powerfull. Nevertheless, this is supposed
to be, based on the experience gained from the experiments inthis thesis.

8.3.1 New Configurable Architecture

Architecture

The proposed FPTA architecture is depicted in figure 8.4. Forthis possible new archi-
tecture, it is tried to avoid or at least reduce the shortcomings of the current chip, that
are described in the previous section 8.2. Thus, it is tried to, first, reduce the number ofreducing the no. of

switches switches for distant connects while maintaining connectivity. Second, a rather net-based

realizing a net-based
routing scheme

routing scheme is provided, instead of a cell-based one and last, groups of configurable
transistors are, avoiding the switches in between, directly attached to common source
nodes, as shown in figure 8.6. As a consequence of this, contrary to the current FPTA

156

Modeling FPTA Architectures

Figure 8.4: The upper left corner of the proposed PropFPTA architectureis depicted. For the new
architecture, the aim is to avoid or at least reduce the shortcomings of the current chip. Thus, it is
tried to, first, reduce the number of switches for distant connects while maintaining connectivity.
Second, a rather net-based routing scheme is provided, instead of a cell-based one. Last, groups
of configurable transistors are, avoiding the switches in between, directly attached to common
source nodes, in order to provide real differential pairs.

architecture, transistors that shall not contribute to thecircuit are not removed by closing
a switch, but have to be switched off by their gate voltage: vdd 7→ PMOS is closed and
gnd 7→ NMOS is closed. Despite those turned-off transistors represent a capacitive load
for the node, to which they are connected, it has to be considered that this capacitive
load would be even doubled in the case of switches, which are realized with transmission
gates. In order to facilitate distinguishing between the current and the proposed architec-
ture, the latter device is referred to as PropFPTA throughout the remainder of this thesis.the PropFPTA

Furthermore, it is intended to implement and test the proposed architecture with the mod-
elmodelingework, presented in chapter 5 and proven to work in this chapter, section 8.1,

157

8.3 A Proposal for Improvements

Figure 8.5: The depicted multi-
plexers illustrate the possible tar-
get nodes for the 5 terminals of all
4 configurable transistor devices
respectively.

Figure 8.6: As depicted above, the 16 transistors are switched on or off according to the demul-
tiplexed 4 configuration bits. The device can either be operated in ’5 terminal mode’, providing
a configurable real differential pair or in ’3 terminal mode’, providing a wider range for W/L.
Thereby, the ’3 terminal mode’ is achieved by simply connecting both gates and drains to the
same target node. In the case of the PropFPTA it is possible touse transistors with different L
in parallel, which is neither known to be beneficial, nor known to be harmful, thus, interesting to
investigate.

158

Modeling FPTA Architectures

Figure 8.7: The full connectivity of the switch boxes is depicted on the right hand side. Addi-
tionally, on the left hand side, merely the possible routes from the perspective of the east and the
north is shown, in order to provide a better overview.

FPTA PropFPTA

12(routing)
transmission gates per border node (routing) 6 10(border)

20(shared)
0(routing)

transmission gates per border node (terminals) 6 10(border)
10(shared)
0(routing)

accessible transistors (cells) per border node 2(2) 4(2)(border)
8(2)(shared)

transmission gates terminal 24 16
no. of configuration bits (routing) 6 6
no. of configuration bits (terminals) 9 15(×4)
no. of configuration bits (W/L) 7 4

Table 8.2: The number of transmission gates, which are connected to thenodes and transistor
terminals of the FPTA and the PropFPTA respectively, is listed above. It can be seen from the table
that the sum of parasitic capacitances of the switches is notexpected to be significantly greater for
the PropFPTA, compared with the FPTA. Nevertheless, it is supposed that the enhanced routing
capabilities and the 5 terminal configurable differential pairs will yield improved circuits.

in the future. Other proposals on evolvable hardware architectures and according routing
schemes can be found in [62, 79]. Further, an interesting approach for breaking the re-
sistive barriers, created by the configuration circuitry, by using microelectromechanical
systems (MEMS) is presented in [20].

The Building Blocks
As can be seen from figure 8.4, the architecture is designed ina manner, that it is again
possible to create a scalable, two dimensional array with the building blocks. Thereby,

159

8.3 A Proposal for Improvements

one building block consists of four configurable transistors, 2 PMOS and 2 NMOS respec-four configurable
transistors: 2 PMOS
and 2 NMOS

tively. The terminals of those configurable transistors canbe connected to the red nodes,
according to the schema in figure 8.5. Consequently, each of the four configurable tran-
sistors can be connected to their two next neighbors, four oftheir next routing lines, vdd
or gnd. A direct connection to the neighboring building blocks can established with the
shared nodes, marked assharedin figure 8.5. As described in figure 8.6, the configurable
transistors themselves feature 5 terminals, namely a common source of 2×8 symmetri-5 device terminals: 1

common source, 2 gates
and 2 drains

cally arranged transistors and a common gate/drain of 8 different transistors respectively.
This provides some advantageous configuration possibilities: first, in’5 terminal mode’,
the cells can be used as real differential pairs. Second, in’3 terminal mode’, the cells can5 terminal mode and 3

terminal mode be used as single transistors with a wider W/L range. Third, it is possible to configure the
four configurable transistors of one building block as e.g. inverter, current source/mirror
or even differential input stage without the need for additional routing. Nevertheless, the
substrate is still fine grained, in the sense of single configurable transistors. Furthermore,
one configurable transistor of the same type features small W/L ratios, while the other
one features greater W/L ratios, in order to provide a wide W/L range without attaching
to many components to the same node. A comparison with the configurable transistor
cells of the FPTA is given in table 8.2.

Routing Concept
The routing capabilites are separated from the actual configurable transistor cells and theseparated routing

capabilities with switch
boxes

proposed architecture is inspired by the routing scheme of FPGAs. Thus, as shown in fig-
ure 8.7, switch boxes are used for creating a great variety ofnetworks of voltage nodes.
As the connections between the routing nodes (R1-4) cannot be directly connected with
the configurable transistors, the latter nodes are intendedto provide additional routing
capabilities for the circuit’s IO, external reference voltages or for bypasses. As yet, a
total of 52 switches for each switch box is proposed. Thereby, each routing node (R1-4) is
attached to 6 switches, the border nodes (N,S,W,E1,3) to 5 switches and the shared border
nodes (N,S,W,E2) to 10 switches. It has to be found out, if the proposed connectivity will
be sufficient or not. Considering 6 configuration bits for each switch box, there are still
free ressources for up to 12 additional switches. A comparison with the FPTA is given in
table 8.2.

Concluding Remarks
It can be seen from table 8.2 that the sum of parasitic capacitances of the switches is not
expected to be significantly greater for the PropFPTA, compared with the FPTA. Nev-
ertheless, it is supposed that the enhanced routing capabilities and the 5 terminal config-
urable differential pairs will yield improved circuits, due to the greater variety of possible
configurations. Moreover, it will be interesting to see, to what extent the configuration
possibilities of the new architecture are actually used in the case of circuit synthesis with
EAs. Lastly, it has to be remarked that, in addition to the configurable array, IO circuitry,
e.g. sample and hold buffers and reference voltage sources,will be necessary to oper-
ate the architecture. Such IO circuitry can be easily attached to the unused nodes of the
border switch boxes and can subsequently be routed to inner nodes of the substrate.

160

Modeling FPTA Architectures

8.3.2 Alternative Genotype Representation for the CurrentFPTA

It is supposed that a genetic representation, which is not asclosely related to the pheno-
type as the current one, would be beneficial, since small changes in the genotype coulda more development

based genetic encodingresult in greatly different configuration bit-strings for the phenotype. This will not neces-
sarily result in circuits with completely different functionality, if e.g. only the placement
of the transistors is changed. Thereby, a possible genetic representation is simply a list
of components, their size and node numbers, that define the connectivity. Consequently,
the complexity of creating the phenotype is moved from the EAto an additional mapping
algorithm. In the case of a configurable hardware substrate,the latter mapping provides
an additional advantage: if the mapping contains some randomness in the placing of themapping to the substrate

components, the robustness of the evolving circuits will beimproved, since the circuit is
not depending on the properties of always the same components, which are depending on
the fabrication process themselves (fixed pattern noise).

In the case of the current FPTA substrate, the same algorithm, which is used to au-
tomatically create schematics from a netlist, could be usedfor mapping a circuit to the
transistor array. Assuming a maximum amount of 5×5 = 25 transistors in the genome,

Figure 8.8: An example of how a netlist based genetic representation canbe mapped to the
FPTA. In order to achieve this, an area of3×3 FPTA cells is reserved for each component of
the netlist. Subsequently, the coordinate of the transistors within the array is defined by their gate
node numbers (x-coordinate) and their source node numbers (y-coordinate). Depending on the
MOS type, an according FPTA cell is configured by selecting the W/L, connecting the gate to
the west, the source to the north and the drain to the south. First, gates with equal node numbers
are connected with vertical NS routes. Second, drains are connected with WE routes. Third, the
free routing capabilities can be used by a simple routing algorithm, to connect the sources to their
respective target net.

161

8.3 A Proposal for Improvements

and constraining the number of transistor terminals of the same kind, which are allowed
to connect to the same node, to 5, it should be possible to realize all possible config-
urations on the current FPTA. An example is given in figure 8.8. On the one hand, a
great advantage of the latter approach would be the possibility to use the whole array
area without exponentially increasing the search space, and, on the other hand, it is sup-
posed that a genome with 25 freely interconnectable transistors still provides sufficient
configurability. Besides, with a smart mapping algorithm, the number of transistors can
probably be further increased. Compared to using a simulator for evaluation, in the case
of 25 configurable transistors, the speed of hardware still significantly outperforms the
speed of simulation by an estimated factor of about 6, as shown in table 8.1.

162

Summary and Outlook

The focus of this thesis has been set on the design automationof CMOS transistor circuits
on field programmable (configurable) transistor array architectures (FPTAs) by means of
evolutionary algorithms. Compared with their widely used and elaborate digital counter-
parts, namely FPGAs, FPTAs remain currently still on a basiclevel of research. Within
this thesis, the Heidelberg FPTA, which has been designed byJörg Langeheine [49], wasthe Heidelberg FPTA

chipused as a substrate for the evolution of analog circuits on the transistor level. It con-
sists of 16× 16 configurable PMOS and NMOS transistor cells, that are arranged in a
checkerboard pattern. The routing capabilities of the chipand the possibility to configure
the characteristic of the transistors allow for realizing agreat variety of circuits on the
FPTA. In combination with a real time configuration and test environment, the FPTA is
suitable for efficient chip-in-the-loop evolution experiments. The idea behind utilizing a
fine-grained substrate is to avoid biasing evolution towards conventional designs and toevolution on the

transistor levelmodel the analog design process more closely. Besides, it isa notable fact that the Heidel-
berg FPTA is the only fine-grained configurable analog substrate in the world and there
is only one other similar chip, which however features more complex cells, developed by
the group of A. Stoica at the JPL.

This thesis tackled three main problems within the researcharea: first, in order to main aims of this thesis

improve understanding of circuits that have been evolved onthe FPTA, they should be
reduced to relevant components and be transferable to othertechnologies. Since this work
was aimed to provide the possibility to derive new design principles from evolution and
for closing the loop to human design, it has been desireable to draw clear schematics of
evolved circuits. Second, analog circuit design is a very complex task, where numerous
variables have to be optimized in parallel. Thus, a multi-objective approach suggested
itself for successfully handling circuits with the latter standards, i.e. with high complex-
ity. Third, it was interesting to investigate the influence of the FPTA architecture on the
success of evolution. Thus, a tool was desired, which provided the possibility to create
models of possible FPTA architectures and to immediately use them within the evolution
framework.

Addressing the problem of transferability of the found solutions, new variation oper- transferable circuits

ators have been developed within this thesis in order to makeit possible to synthesize
circuits, which are not bound to the particular substrate orarchitecture on which they
have been evolved. The EA that runs the new variation operators is denoted as theTurtle
GAand the one that runs straight forward implementations is referred to as theBasic GA.
Due to the intrinsic realism of configurable hardware, the set of possible configurations
equals the number of feasible solutions, although not all ofthose circuits are necessarily
valid outside the chip. In turn, if a circuit shall be successfully evolved extrinsically, it

163

Summary and Outlook

will have to follow the constraints of a SPICE simulator used, but is not generally realize-
able on the FPTA. Consequently, since the aim was to synthesize transferable, reusable
circuits and to possibly derive new design principles, the new variation operators havenew variation operators

been implemented in a manner that the candidate circuits were feasible on both the chip
and in simulation. The new operators have been successfullyapplied to the evolution of
logic gates and comparators and it was possible to verify theresulting circuits in simu-
lation, hence, to transfer them to other technologies. The found solutions have thereby
been extracted into netlists and a SPICE simulator could then be used for the off-chipoff-chip verification in

simulation verification. It has been interesting to see that the performance of good solutions was
not getting much worse, if a simplified simulation model was used for testing, i.e. most
parasitic effects of the chip had been omitted, although about 50 % of all circuits did no
longer work in simulation. Additionally, it has been shown,that the new genetic operators
performed equally well in finding good solutions for logic gates and comparators as those
of the previously used straight forward implementation.

Aside from verifying the resulting circuits in simulation,they have been tested withtesting on different
substrates two other substrates. It was observed that for both theBasic GAand theTurtle GAall

found solutions performed equally well on all substrates. This was on the one hand a
positive result, since the solutions featured a certain robustness by not depending on a
particular substrate although, on the other hand, the hope that the EA would be able to
create and optimize circuits by using some kind of ’hidden’ features of the hardware was
not corroborated.

Unfortunately, in the field of evolutionary electronics, there are as yet no suitable
benchmarks available, that allow for comparing the performance of algorithms of differ-
ent research groups independently of the problem. Thus, a statistical method for charac-characterization of

variation operators terizing variation operators was proposed in chapter 6, with which expected probabilities
can be calculated for whether the respective variation operator improves or degenerates
individuals. These expected probabilities can help to anticipate convergence speed and
the course of fitness. Table 6.3 shows that the variation operators of theBasic GAand the
Turtle GAfeatured a similar performance.

A further remarkable achievement of theTurtle GAis that the ressource consumptionreduced ressource
consumption of the resulting circuits has been reduced, compared with the Basic GA. The latter effect

got more obvious—and more important—with increasing complexity (see figures 6.8
and 6.11: XOR, XNOR, comparator and also the oscillators andOPs from chapter 7).
Furthermore, due to the reduced number of transistors, human-understandable schemat-schematic extraction:

closing the loop to
human design

ics of good solutions could be drawn. The generation of the latter schematics has been
done automatically within the circuit editor of the Cadencedesign framework. As a con-
sequence of this, it has been possible to analyze the resulting circuits and to investigate
how the algorithm is solving problems on the hardware substrate. It is a satisfying result
that the EA was even able to find a few solutions for the logic gates and the comparators,
which are performing well in a simulation where no parasitics of the chip are included
at all. These solutions are indeed independent from the FPTAand for the logic NAND,
AND and OR, it is possible to understand how the evolved circuits actually work. This is
a valuable result, since it provides some insight into the optimization process on the chip
and thereby suggests improvements for implementations of the EA in the future.

The next aim was to tackle the evolution of more challenging analog circuits, namely
oscillators and operational amplifiers (OPs). The evolutionary algorithm has been ex-

164

Summary and Outlook

tended with the capability of multi-objective optimization, in order to be able to success-multi-objective
optimizationfully find solutions for advanced problems where numerous—often even contradicting—

properties need to be optimized in parallel. With this new approach, it has been possible
to efficiently explore the design space and successfully findsolutions for comparators, os-
cillators and operational amplifiers. The evolution experiments for finding solutions for
comparators have been carried out in order to be able to compare the performance of the
MO approach to the non-MO implementations. In both cases equally good solutions are
found and although the MO algorithm converges slower, it achieves to maintain greater
diversity within the population, which is crucial for avoiding premature convergence. avoiding premature

convergenceIn the case of the oscillators, it is a specific feature of the setup that there was no input
present. Thus, no external stimulus could be exploited by the EA, which significantly
increased the difficulty level. It has been observed that it is necessary to formulate open
fitness criteria in order to exploit any variation of the output voltage and to get an oscilla-
tion started. The results for the oscillators revealed a further advantage of multi-objective
optimization: the resulting population of a successful runyielded different solutions with
different frequencies. Hence, in the case of MO it has been possible to harvest numerousharvesting numerous

solutionstrade-off solutions from the resulting population insteadof only one, if the formulation
of the fitness function was not too restrictive and allowed for certain variations. Unfortu-
nately, none of the found oscillators works in simulation outside the chip.

According to the lessons learned from the logic gates and comparators experiments,
the setup for the evolution of operational amplifiers has been modified in a way that the
inputs are always connected to the gates of either a pair of NMOS or PMOS transistors.
As a consequence of this, the algorithm reliably converged and the behavior of the result-
ing circuits was in all cases at least similar on the chip and in simulation. The resulting
OPs with a good performance were extracted into netlists andwere simulated outside
the substrate on which they have been evolved. However in thecase of multi-objective
optimization, it can not easily be decided which individualis the best to pick for further
testing. Due to this, the performance of all resulting individuals on the FPTA has been
compared with basic manually made reference designs and theindividual, which out- comparison with

reference designsperformed the reference designs in most objectives was considered as the best solution.
More than half of these best solutions have been performing equally well on the chip and
in simulation in up to 6 out of 12 objectives and they achievedfitness values comparable
to those which were obtained by the basic human reference designs measured on the chip.

The best OPs were again converted to clear schematics, in order to understand how
they work. In this case, the schematics were manually redrawn for clarity by grouping the
transistors according to their functionality. It is a promising result that for both PMOS and
NMOS input, the EA (re)discovered an architecture similar to a differential input stage,
which is a widely used human design. Despite this solution isalready well known, it is
remarkable that it has been achieved to derive a design principle from evolved circuits deriving design

principleswithout including prior circuit design knowledge. Unfortunately, the algorithm failed in
synthesizing additional gain stages. The reason for this was probably the lack of a suitable
gain test bench, which could have delivered an according fitness value.

To conclude the experiments with the FPTA, it is contenting to see that the presentedachievements of the
algorithmalgorithms are able to evolve transferable circuits and yield some good solutions that are

understandable from a designer’s point of view. Moreover, complex analog circuits have
been successfully evolved from scratch, i.e. on the transistor level, which was previously

165

Summary and Outlook

not achieved. In the case of the OPs it was even possible to (re)discover a human design
principle. Finally, the loop to human design has been closedby transferring the circuits to
a simulator and by drawing clear schematics of good solutions. The fact that the evolution
of comparators, oscillators and OPs is an already difficult task suggests that theMO-Turtle
GAcan be successfully applied to a variety of problems.

During this thesis, a comprehensive modular evolution framework has been developeda comprehensive
modular evolution
framework

in C++, which facilitates the implementation and immediateapplication of any module
of an evolutionary algorithm. Furthermore, it allows for assessing the architecture of the
FPTA by providing the possibility to develop simulation models of custom FPTA archi-
tectures and to immediately use them for experiments withinthe presented framework.
In this case, the results obtained from the FPTA and the SimFPTA—a simplified model
of the real hardware—showed equal performance for the task of synthesizing compara-
tors. It is thereby observed that generally all circuits that were evolved on the SimFPTA
perform similar on the FPTA, however, since a simplified simulation model cannot cope
with any parasitic effect of the chip, the inverse is not necessarily true. Regardless of the
supported view—avoiding or extensively exploiting parasitic effects—the aim should be
to understand or even control the influence of those effects,in order to benefit from as
much substrate properties as possible. Since evolution on real hardware is significantly
faster than in simulation, it is on the one hand an advantage to use real hardware in order
to quickly evaluate the performance of the algorithm used. On the other hand, the archi-
tecture of the chip cannot be changed unless a new version is designed and fabricated.
Thus, the presented work aims at providing a tool for developing and testing improvedmodeling FPTA

architectures FPTA architectures in the future. Once a software model of anarchitecture with a good
performance is found, it will be possible to realize a more powerful hardware implemen-
tation.

It is proposed to emphasize the research into new FPTA architectures and possibly newvisions

approaches to evolution substrates with the presented framework. If powerful FPTA ar-
chitectures are found, they will become equally important as their digital counterparts, the
FPGAs. Configurable analog hardware is suitable to perform any task for which inter-
faces to the real world are necessary, e.g. in telecommunication applications, controllers
and sensors, that have to interact with the physical world. Moreover, fault tolerance and
build-in self test methods can be more efficiently implemented using additional analog
ressources, even for digital circuits. Here it is not necessary to waste a whole spare logic
building block if there is only one single faulty transistor. Last but not least, it has always
to be kept in mind, that digital functional blocks are merelyan abstraction layer over ana-
log circuitry and their performance is therefore strongly depending on analog properties.
It is also imagineable to abandon even the transistors as basic components and to try to
directly evolve the underlying structures, namely layers and areas of silicon, polysilicon
and ion concentrations of a cutting edge fabrication process in the future. Lastly, it per-evolution works

sists that, as incredible as it may seem, evolution works andit is known to achieve a lot
when starting from the lowest level.

166

Acronyms

AC alternating current

ADC analog-to-digital converter

AMS Austria Micro Systems International AG

ASIC application specific integrated circuit

ASCII american standard code for information interchange

BIST build-in self test

CAD computer aided design

CMOS complementary metal oxide semiconductor

CMRR common-mode rejection ratio

DRC design rule check

DAC digital-to-analog converter

DC direct current

DNA desoxyribonucleic acid

EA evolutionary algorithm

EC evolutionary computation

ENOB equivalent no. of bits

FPAA field programmable analog array

FPTA field programmable transistor array

FPGA field programmable gate array

FFT fast fourier transform

GA genetic algorithm

GP genetic programming

i

Summary and Outlook

gcc gnu C compiler

HDL hardware description language

IO input/output

JPL NASA Jet Propulsion Laboratory

L length

LVS layout versus schematic

LPE layout parameter extraction

MO multi-objective

NDF non-dominated front

MOS metal oxide semiconductor

MEMS microelectromechanical systems

NMOS n-type metal oxide semiconductor

PMOS p-type metal oxide semiconductor

UML unified modelling language

VHSIC very high speed integrated circuit

VHDL VHSIC hardware description language

VLSI very large scale of integration

W width

OP operational amplifier

PCI Peripheral Component Interconnect

PC personal computer

rms root mean square

RNA ribonucleic acid

SKILL silicon compiler interface language

SRAM static random access memory

SPICE simulation program with integrated circuits emphasis

STL standard template library

SNR signal-to-noise-ratio

ii

Summary and Outlook

THD total harmonic distortion

THD+N THD + noise

TM test mode

TTL transistor-transistor logic

XML extensible markup language

iii

Appendix

iv

v

A.1 Evolution Software Framework

Appendix A

Pseudocode

A.1 Evolution Software Framework

Algorithm A.1: Example code for deriving a custom circuit component, namely a configurable
transistor (CCMOSTransistor), is depicted below. The setup and configuration of the compo-
nent is done in the constructor of the respective class, while the genotype-phenotype mapping is
implemented in additional member functions. In this example, the internal nodes correspond to the
external nodes. Despite this, the differentiation betweeninternal and external nodes is inevitable
for the design of FPTA architectures, as can be seen from section 5.4.3.

ccmostransistor.h
include<componentbase.h>
class CCMOSTransistor : public ComponentBase{ }

ccmostransistor.cpp
procedure CCMOSTRANSISTOR::CCMOSTRANSISTOR

create and add external nodes: NODE1(23), NODE2(12), NODE3(5)
create and add internal nodes: GATE(5), SOURCE(23), DRAIN(12)
create and add parameters: W(4.0um), L(1.0um)
create and add switch: CMOSTYPE(NMOS) //also possible: PMOS

end procedure

procedure CCMOSTRANSISTOR::GETFPTAREPRESENTATION

map the transistor to an FPTA cell with according properties
// there is no one-to-one mapping in this case!

end procedure

procedure CCMOSTRANSISTOR::GETSPICEREPRESENTATION

if CMOSTYPE is PMOSthen // create netlist entry
return ”mx 23 5 12 bulk=vdd pmos w=4um l=1um”

else
return ”mx 23 5 12 bulk=gnd nmos w=4um l=1um”

end if
end procedure

vi

Pseudocode

Algorithm A.2: The following example code demonstrates how to customize the evolutionary
algorithm by deriving from the basic framework, illustrated in figure 5.1. Solely those parts,
which have to be implemented, are shown. A description of howto implement custom genetic
operators is given in section 5.2.3 and is shown in algorithms A.3 and A.4

GAExampleGA.h
class GAExampleGA : public GABaseGa{
...
private:
GaBasicPopulation oldPop
GaBasicPopulation newPop
}

GAExampleGA.cpp
procedure INITIALIZE ()

assign the genetic operators
configure the evolutionary algorithm
call the initializer of all populations
measure and evaluate all populations

end procedure

procedure STEP()
swap oldPop with newPop
for all individuals o f oldPop← 1 to population sizedo

select individual from oldPop
cross the selected individual
mutate the selected individual
add the selected individual to the newPop

end for
measure and evaluate the newPop

end procedure

GAExampleGenome.h
class GAExampleGenome : public GABaseGenome{
private:
custom genetic coding (data structure)
}

GAExampleGenome.h
function GETPHENOTYPEREPRESENTATION()

// for example, the configuration bit string for the FPTA
map genotype to phenotype
return phenotype representation

end function

vii

A.1 Evolution Software Framework

Algorithm A.3: Part I: An initializer, mutator and crossover operator, that belong together, are
chosen as an example of demonstrating how to implement a set of custom genetic operators. It is
assumed, that an according evolutionary algorithm framework, described earlier in this section, is
already available and an according EA, with accessible population and genomes is present. Note
that the initializer is shown in algorithm A.4.

MutateExample.h
class MutateExample{
public:
mutate(GABaseGenome, float) : int
}

MutateExample.cpp
procedure MUTATEEXAMPLE ::MUTATE(GABaseGenome exGen, float probability)

cast to GAExampleGenome exGen
if random float< probability then

mutate genes of exGen
mark exGen for later measurement and evaluation

end if
return no of performed mutations

end procedure

CrossExample.h
class CrossExample{
public:
cross(GABaseGenome, GABaseGenome, float) : int
}

CrossExample.cpp
procedure CROSSEXAMPLE::CROSS(GABaseGenome exGen1, GABaseGenome ex-

Gen2)
cast to GAExampleGenome exGen1, exGen2
randomly select crossover points of exGen1 and exGen2
perform crossover and store results in exGen1 and exGen2
mark exGen1 and exGen2 for later measurement and evaluation
return error code

end procedure

GAExamplePop.h
initializer=InitExample::initialize(GABasePop basePop)

GAExampleGenome.h
initializer=InitExample::initialize(GABaseGenome exGen)
mutator=MutateExample::mutate(GABaseGenome exGen, float probability)
crossover=CrossExample::cross(GABaseGenome exGen1, GABaseGenome exGen2)

viii

Pseudocode

Algorithm A.4: Part II: This is the second part of algorithm A.3. Since the genomes feature their
own initializers, it is also possible to put code for the genome initialization there and merely call
those initializers fromInitExample.

InitExample.h
class InitExample{
public:
initialize(GABaseGenome or GABasePopulation) : int
}

InitExample.cpp
procedure INITEXAMPLE::INITIALIZE (GABaseGenome exGen)

reset and cast to GAExampleGenome exGen
create genetic encoding / components for exGen
mutate exGen randomly
measure and evaluate exGen
return no of created genes

end procedure
procedure INITEXAMPLE::INITIALIZE (GABasePopulation basePop)

reset GABasePopulation basePop
for i← 1 to population sizedo

new GAExampleGenome exGen
create genetic encoding / components for exGen
mutate exGen randomly
measure and evaluate exGen
add exGen to basePop

end for
return no of created genomes

end procedure

ix

A.2 Variation Operators

A.2 Variation Operators

Algorithm A.5: Part 1 of 2. The variation operators of theTurtle GAare described in the fol-
lowing pseudocode. Both, therandom wires mutationand theimplanting crossoverare carried
out recursively and produce circuits on the current FPTA architecture, which contain no floating
nodes. For part 2 see algorithm A.6 in this appendix.

procedure STARTRANDOMWIRE

select a random outside node of a random cell as starting point
decide whether to start in create mode or erase mode
if starting point = N,S,W,Ethen

// the recurse methods have to be carried out twice, otherwise the starting
node possibly floats
2× recurseRandomWire(cell, node, erase/create mode)

elsereturn no node selected
end if

end procedure

function RECURSERANDOMWIRE(cell, node, erase/create mode)
decide, whether to prefer current cell or neighbor cell for proceeding
decide, whether to prefer connecting to N,S,W,E or to source,gate,drain
if create modethen

if current node has at least 2 connectionsthen
return stop condition occurred

end if
select random unconnected target node (N,S,W,E,source,drain,gate)
connect node to target node

else iferase modethen
if current node has 0 or at least 2 connectionsthen return stop condition oc-

curred
end if
select random connected target node (N,S,W,E,source,drain,gate)
disconnect node from target node

end if
if selected target node = N,S,W,Ethen

recurseRandomWire(cell, target node, erase/create mode)
else ifselected target node = source,gate,drainthen

recurseRandomTerminal(cell, target node, erase/create mode)
end ifreturn

end function

x

Pseudocode

Algorithm A.6: Part 2 of 2. Part 1 is given in algorithm A.5 in this appendix.

function RECURSERANDOMTERMINAL (cell, target node, erase/create mode)
if create modethen

select two random unconnected target nodes (N,S,W,E,vdd,gnd)
connect the two remaining terminals to respectively one target node

else iferase modethen
decide whether to proceed or to rewire
if rewire transistorthen

switch to create mode
select random unconnected target node (N,S,W,E)
connect the current terminal to the selected target node

else ifcontinue erasingthen
select two random connected target nodes (N,S,W,E,vdd,gnd)
disconnect the two remaining terminals from those target nodes

end if
end if
if first selected target node = N,S,W,Ethen

recurseRandomWire(cell, first target node, erase/create mode)
end if
if second selected target node = N,S,W,Ethen

recurseRandomWire(cell, second target node, erase/create mode)
end ifreturn

end function

procedure IMPLANT CROSSOVER(individual1, individual2)
select randomly positioned blocks of cells of the same random size of individual1

and individual2
exchange those blocks between individual1 an individual2
make a list of all floating nodes
for i← 1 to sizeo f listdo

recurseRandomWire(cell, node(i), erase/create mode)
end for

end procedure

xi

Appendix B

Additional Schematics of Evolved
Circuits

B.1 Logic Gates

The best solutions for the logic AND, NAND and OR, presented in chapter 6, will per-
form well outside the FPTA, even if only plain transistors are considered in the simula-
tion. Unfortunately, the solutions for the logic NOR, XOR and XNOR will only work
in simulation, if at least the mean on-resistance of the transmission gates is included in
the netlist. Possible reasons for this failure are given in the captions of the respective
schematics. Note that the presented schematics are generated from the best solutions for
the respective logic gate and all configuration circuitry isomitted, in order to be able to
provide clear schematics. The results are obtained with theTurtle GA.

B.2 Comparators

Although the best solutions for a comparator (chapters 6 and7), obtained with theTurtle
GA and theMO-Turtle GArespectively, feature a good performance on the chip, both
solutions fail in the simulation with plain transistors. Therefore, it is not yet understood
how the circuits are actually working. Note that the circuits will perform equally well
in simulation and on the chip, if the parasitic resistances of the transmission gates are
included in simulation.

B.3 Operational Amplifiers

It is a nice result that the presented solutions for OPs with NMOS and PMOS input
respectively, are performing equally well on the FPTA and insimulation, although it
has not yet been achieved to figure out their operation principle. As can be seen from
figure B.6 and figure B.8, both designs consist of more than 30 transistors which already
stands for a high level of complexity.

xii

Additional Schematics of Evolved Circuits

I0 I1 I2 I3 I4 I5 I6 I7
type N P N N P N P N

W/L [µm] 15
0.6

2
4

15
1

15
1

9
2

15
0.6

9
8

4
0.6

Figure B.1: Schematic of the best evolved NOR. Although the circuit features a good performance
on the FPTA, it fails in simulation, because the interconnected gates ofI0 and I1 are floating.
Unlike in simulation, floating nodes are not in undefined states on the chip, due to leakage currents.

xiii

B.3 Operational Amplifiers

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11
type N N P N N P P N N P N N

W/L [µm] 15
0.6

8
0.6

4
8

15
0.6

15
0.6

6
2

7
0.6

15
1

15
1

11
0.6

13
0.6

11
1

Figure B.2: Schematic of the best evolved XOR. Unfortunately, it is neither yet understood why
the circuit works on the FPTA nor why it fails in simulation with plain transistors.

xiv

Additional Schematics of Evolved Circuits

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9
type N N P N N P P N N N

W/L [µm] 6
2

10
8

11
4

15
1

7
1

2
4

3
8

11
0.6

8
0.6

5
4

Figure B.3: Schematic of the best evolved XNOR. Not yet understood.

xv

B.3 Operational Amplifiers

I0 I1 I2 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14
type P N N P N N P N P P N P N P

W/L [µm] 15
4

0
8

3
0.6

0
2

13
0.6

6
1

12
2

15
2

14
2

15
1

13
1

13
1

5
1

9
1

Figure B.4: The best comparator evolved with theTurtle GA.

xvi

Additional Schematics of Evolved Circuits

I0 I1 I2 I4 I5 I7 I8 I9 I10 I11
type P P N N P N N N N N N

W/L [µm] 15
0.6

5
0.6

15
8

6
0.6

5
0.6

6
1

5
8

0
0.6

5
1

3
2

15
1

Figure B.5: The best comparator evolved with theMO-Turtle GA.

xvii

F
ig

ur
e

B
.6

:S
ch

em
at

ic
of

an
ev

ol
ve

d
O

P
w

ith
N

M
O

S
in

pu
tt

ra
ns

is
to

rs
.

xviii

Additional Schematics of Evolved Circuits

.subckt EvolvedOpAmp-NMOS In0=22 In1=1 Out0=10 vdd=23
m0 2 1 3 0 modn l=1u w=12u
m1 4 4 23 0 modn l=1u w=0u
m2 5 5 6 0 modn l=0.6u w=3u
m3 7 23 7 23 modp l=1u w=4u
m4 0 8 8 0 modn l=1u w=9u
m5 2 2 23 23 modp l=0.6u w=2u
m6 9 9 23 0 modn l=1u w=0u
m7 7 0 23 0 modn l=4u w=2u
m8 10 2 23 23 modp l=0.6u w=15u
m9 7 23 23 23 modp l=0.6u w=12u
m10 11 23 12 0 modn l=1u w=0u
m11 0 12 0 23 modp l=2u w=2u
m12 0 10 10 0 modn l=2u w=0u
m13 14 13 14 0 modn l=1u w=5u
m14 3 15 15 23 modp l=4u w=2u
m15 0 11 3 0 modn l=4u w=6u
m16 0 11 0 0 modn l=8u w=3u
m17 11 23 11 23 modp l=8u w=0u
m18 0 11 12 0 modn l=1u w=0u
m19 10 16 16 23 modp l=1u w=11u
m20 11 23 17 23 modp l=1u w=10u
m21 11 18 18 23 modp l=0.6u w=4u
m22 0 11 11 0 modn l=8u w=13u
m23 11 0 23 23 modp l=8u w=1u
m24 0 11 10 0 modn l=1u w=4u
m25 17 17 18 23 modp l=0.6u w=8u
m26 0 11 11 23 modp l=1u w=0u
m27 0 19 3 23 modp l=0.6u w=3u
m28 0 20 11 23 modp l=4u w=5u
m29 19 0 23 0 modn l=8u w=0u
m30 20 23 23 23 modp l=4u w=4u
m31 21 20 23 0 modn l=4u w=0u
m32 21 0 23 23 modp l=1u w=3u
m33 3 22 21 0 modn l=1u w=12u
.ends EvolvedOpAmp-NMOS

Figure B.7: SPICE netlist for the evolved operational amplifier with NMOS input, which is
depicted in figure B.6.

xix

B.3 Operational Amplifiers

F
ig

ur
e

B
.8

:S
ch

em
at

ic
of

an
ev

ol
ve

d
O

P
w

ith
P

M
O

S
in

pu
tt

ra
ns

is
to

rs
..

xx

Additional Schematics of Evolved Circuits

.subckt EvolvedOpAmp-PMOS In0=16 In1=1 Out0=10 vdd=17
m0 2 1 3 17 modp l=1u w=12u
m1 0 4 4 0 modn l=4u w=8u
m2 3 0 17 17 modp l=1u w=1u
m3 2 3 2 0 modn l=4u w=1u
m4 3 5 5 17 modp l=1u w=0u
m5 0 2 2 0 modn l=2u w=13u
m6 0 0 3 0 modn l=2u w=0u
m7 6 6 17 17 modp l=0.6u w=3u
m8 5 6 6 0 modn l=1u w=7u
m9 0 7 2 17 modp l=1u w=2u
m10 8 8 17 0 modn l=1u w=6u
m11 9 7 9 17 modp l=1u w=13u
m12 0 2 10 0 modn l=1u w=5u
m13 0 11 11 17 modp l=0.6u w=11u
m14 0 0 12 17 modp l=8u w=10u
m15 12 12 17 0 modn l=4u w=12u
m16 0 3 3 0 modn l=1u w=0u
m17 13 3 17 17 modp l=4u w=15u
m18 13 0 17 0 modn l=4u w=8u
m19 10 10 17 17 modp l=8u w=0u
m20 14 14 17 0 modn l=4u w=11u
m21 15 15 17 17 modp l=1u w=4u
m22 0 0 15 0 modn l=1u w=4u
m23 3 0 17 17 modp l=2u w=5u
m24 3 3 3 17 modp l=0.6u w=8u
m25 3 16 10 17 modp l=1u w=12u
.ends EvolvedOpAmp-PMOS

Figure B.9: SPICE netlist for the evolved operational amplifier with PMOS input, which is
depicted in figure B.8.

xxi

Appendix C

Tracking the Course of Evolution: a
Side-Result

A tracking meachanism for the EA has been developed togetherwith Stefan Zimmer dur-
ing his internship with the intention to investigate the dynamics of evolution. To date,
the tracking algorithm is proven to work and it is achieved togenerate impressive family
trees of the resulting individuals, as depicted in figure C.2. In order to achieve this, the
tracking algorithm writes the mutation, crossover and selection operations of each evolu-
tionary step to a file. This file is structured in a way that it ispossible to automatically
generate a family tree graph by using the freegraphvizsoftware package. As can be
seen from the zoom view in figure C.1, various information of the evolution process is
visualized. Hopefully, it will be possible to use this data for getting an insight into the
optimization process of the evolutionary algorithm.

Figure C.1: A zoom view of the family tree in figure C.2. The selection for mutation is marked
with a black arrow and if crossover is carried out, the crossover partner is marked with a dotted
black arrow. Elitist selection is illustrated with a green arrow. Furthermore, the ancestors of
the best resulting individual can be tracked back along the red lines. The labels of the red lines
show the fraction of the genetic information of the parent, that is still contributing to the resulting
individual.

xxii

Figure C.2: .

xxiii

Appendix D

Algorithmic Take-Outs

D.1 Logic Crossover Operator

The logic crossoveroperator can be principally used with theTurtle GAand theBasic
GA. As the name suggests, this operator calculates the logic combination of two selected
individuals. The OR operator e.g. combines the features of both circuits, although if a
transistor is present in both ciruits the W/L ratio will be taken from only one of them.
Applied to highly diverse individuals, this results in a strong impact on the individuals
structure. On the one hand, this usually changes the circuits output completely. On the
other hand, since thelogic or crossoverdoes not destroy previous structures, it enriches
the diversity of the individuals within the population and is therefore possibly helpful in
avoiding local minima.

However, major problems are observed during testing the logic crossover operators:
first, it will not be possible to calculate the logic OR of a FPTA cell configuration, if tran-
sistor terminals of the parent individuals are connected todifferent target nodes without
adding additional routing in a post-processing step. Second, calculating the logic AND
of two individuals results either in deserted circuits or ina great number of unconnected
circuit islands. In addition to the latter effects, the performance of the algorithm did not
increase when the logic OR/AND crossover were used. Therefore, (and for the lack of
elegance of complicated post-processing steps) the logic crossover is not used for the
experiments in this thesis.

D.2 Subpopulation of ’Mutants’

It is a complex task to avoid premature convergence of the population. First, it was
tried to overcome this problem by treating a subpopulation of individuals with variation
operators for which the mutation and crossover rates were significantly increased by a
factor of 10. The individuals of this subpopulation were denoted asmutantsand were
intended to preserve a great diversity within the whole population by selecting crossover
partners from the normal individuals and themutants.

In later experiments, it has been observed that adapting therates for the whole pop-
ulation according to its current best fitness features a better performance. The rates are
scaled down with improving fitness and are thereby modeling akind of simulated anneal-
ing. The equation, that is used to calculate the rates from the fitness values represents the
cooling function.
xxiv

Bibliography

[1] SILVACO Spice Models.

[2] NGSPICE: Next Generation SPICE, 2004.

[3] V. Aggarwal. Evolving Sinusoidal Oscillators Using Genetic Algorithms. In5th
NASA / DoD Workshop on Evolvable Hardware (EH 2003), pages 67–76, Chicago,
IL, USA, 9-11 July 2003. IEEE Computer Society.

[4] P. E. Allen and D. R. Holberg.CMOS Analog Circuit Design, chapter 2, pages
36–55. Oxford University Press, Inc., 198 Madison Avenue, New York, NY, USA,
2 edition, 2002.

[5] P. E. Allen and D. R. Holberg.CMOS Analog Circuit Design, chapter 10, pages
617,622,654. Oxford University Press, Inc., 198 Madison Avenue, New York, NY,
USA, 2 edition, 2002.

[6] P. E. Allen and D. R. Holberg.CMOS Analog Circuit Design. Oxford University
Press, Inc., 198 Madison Avenue, New York, NY, USA, 2 edition, 2002.

[7] E. Altshuler and D. Linden. Design of a wire antenna usinga genetic algorithm.
Journal of Electronic Defense, 20(7):50–52, July 1997.

[8] Anadigm, Inc. ȦN121E04, AN221E04 Field Programmable Array – User Manual,
2003.

[9] P. Antognetti and G. Massobrio.Semiconductor Device Modelling with SPICE.
McGraw Hill, New York, 1987.

[10] T. T. Arpad Buermen, Janez Puhan. Robust Design and Optimization of Operating
Amplifiers. pages 745–750, December 2003.

[11] T. Bäck. An Overview of Evolution Strategies. jun 2004.

[12] T. Bäck, U. Hammel, and H.-P. Schwefel. Evolutionary Computation: Comments
on the History and Current State.IEEE Trans. on Evolutionary Computation,
1(1):3–17, April 1997.

[13] J. P. Becker. Ein FPGA-basiertes Testsystem für gemischt analog/digitale ASICs.
Master’s thesis, University of Heidelberg, 2001.

xxv

Bibliography

[14] A. Breidenassel. A High Dynamic Range CMOS Image Sensor witht Adaptive
Integration Time Control. PhD thesis, University of Heidelberg, 2005.

[15] Cadence Design Systems, San Jose, CA, USA.Cadence Online Library Open-
book: SKILL Reference, 5.0 edition, 10. SKILL scripting language.

[16] Cadence Design Systems, San Jose, CA, USA.Cadence Online Library Open-
book: spectreS reference manual, 5.0 edition, 10. Description of the spectreS
simulator.

[17] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
New York, 2002.

[18] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A Fast Elitist Non-dominated
Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II. In Pro-
ceedings of the 6th International Conference on Parallel Problem Solving from
Nature, pages 849–858, 2000.

[19] K. Deb and T. Goel. Controlled Elitist Non-dominated Sorting Genetic Algorithms
for Better Convergence. In E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and
D. Corne, editors,First International Conference on Evolutionary Multi-Criterion
Optimization, pages 67–81. Springer-Verlag. Lecture Notes in Computer Science
No. 1993, 2001.

[20] R. T. Edwards and C. J. Kim. Breaking the resistivity barrier. In D. Keymeulen,
A. Stoica, J. Lohn, and R. S. Zebulum, editors,The Third NASA/DoD workshop on
Evolvable Hardware, pages 167–171, Long Beach, California, 12-14 July 2001.
Jet Propulsion Laboratory, California Institute of Technology, IEEE Computer So-
ciety.

[21] A. E. Eiben and J. E. Smith.Introduction to Evolutionary Computing. Springer
Verlag, Berlin, Heidelberg, New York, 2003.

[22] D. B. Fogel. Evolutionary Computation – Toward a New Philosophy of Machine
Intelligence. IEEE Press, New York, 1995.

[23] D. B. Fogel. An Introduction to Simulated EvolutionaryOptimization. IEEE
Transactions on Neural Networks, 5(1):3–14, January 1994.

[24] D. P. Foty.MOSFET modeling with SPICE: principles and practice. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1997.

[25] M. Garvie. Reliable Electronics through Artificial Evolution. PhD thesis, Univer-
sity of Sussex, 2004.

[26] G. G. E. Gielen and R. A. Rutenbar. Computer-Aided Design of Analog and
Mixed-Signal Integrated Circuits.Proceedings of the IEEE, 88(12):1825–1852,
Dec 2000.

xxvi

Bibliography

[27] D. E. Goldberg.Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley, 1989.

[28] T. G. W. Gordon and P. J. Bentley. On Evolvable Hardware.In S. Ovaska and
L. Sztandera, editors,Soft Computing in Industrial Electronics. Physica-Verlag,
Heidelberg, Germany, 2002.

[29] G. W. Greenwood, D. Hunter, and E. Ramsden. Fault Recovery in Linear Systems
via Intrinsic Evolution. InProc. of the 2004 NASA/DoD Conference on Evolvable
Hardware, pages 115–122, Seattle, WA, USA, June 2004. IEEE Press. ISBN:
0-7695-2145-2.

[30] S. Harding and J. F. Miller. Evolution in materio: A ToneDiscriminator In Liquid
Crystal. 2004.

[31] S. Harding and J. F. Miller. Evolution in materio: Initial experiments with liquid
crystal. 2004.

[32] A. Hernandez Aguirre, R. S. Zebulum, and C. A. Coello Coello. Evolutionary
Multiobjective Design targeting a Field Programmable Transistor Array. In Ze-
bulum, Ricardo S., Gwaltney, David, Hornby, Gregory, Keymeulen, Didier Lohn,
Jason, and Stoica, Adrian, editor,Proceedings of the 2004 NASA/DoD Conference
on Evolvable Hardware, pages 199–205, Los Alamitos, 2004. IEEE Computer So-
ciety Press.

[33] M. Hershenson, S. Boyd, and T. H. Lee. Optimal design of aCMOS op-amp via
geometric programming. InIEEE Transactions on Computer-Aided Design, pages
1–21, 2001.

[34] T. Higuchi. 2nd international conference on the simulation of adaptive behavior.
In Proceedings of the 2nd International Conference on the Simulation of Adaptive
Behavior. MIT Press, 1992.

[35] S. Hohmann.Stepwise Evolutionary Training Strategies for Hardware Neural Net-
works. PhD thesis, University of Heidelberg, 2005.

[36] S. Hohmann, J. Schemmel, F. Schürmann, and K. Meier. Exploring the Parame-
ter Space of a Genetic Algorithm for TRaining and Analog Neural Network. In
K. Langdon et. al. editor,Proc. of the Genetic and Evolutionary Computation
Conference (GECCO 2002), pages 375–382, New York City, NY, USA, Jul 2002.
Morgan Kaufmann Publishers. ISBN 1-55860-878-8.

[37] J. H. Holland. Genetic algorithms and the optimal allocation of trials.SIAM J. of
Computing, 2:88–105, 1973.

[38] Intel. Intel Itanium 2 Processor. http://www.intel.com/products/processor/itanium2/,
2006.

[39] ISO/IEC 14882.Programming Language C++, July 1998.

xxvii

Bibliography

[40] N. Josuttis.Die C++ Standardbibliothek, eine detaillierte Einfhrung in die vollst-
ndige ANSI/ISO-Schnittstelle. Addison-Wesley, 1 edition, 1996.

[41] Jungo Ltd., Netanya.Windriver 6 User’s Manual, 2003.

[42] D. Keymeulen, G. Klimeck, R. S. Zebulum, A. Stoica, and C. Salazar-Lazaro.
EHWPack: A Parallel Software/Hardware Environment for Evolvable Hardware.
In W. Darrell, editor,Proc. of the Genetics and Evolutionary Computation Confer-
ence (GECCO-2000), pages 538–539, Las Vegas, Nevada, USA, July 2000. Mor-
gan Kaufmann.

[43] D. Keymeulen, R. S. Zebulum, V. Duong, X. Guo, I. Ferguson, and A. Stoica. High
Temperature Experiments for Circuit Self-Recovery. In K. Deb et. al. editor,Proc.
of the Genetic and Evolutionary Computation Conference (GECCO 2004), Part I,
pages 792–803, Seattle, WA, USA, Jun 2004. Springer-Verlag, LNCS 3102. ISBN
3-540-22344-4.

[44] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica. Fault-Tolerant Evolvable
Hardware Using Field-Programmable Transistor Arrays.IEEE Transactions on
Reliability, Special Issue on Fault-Tolerant VLSI System, 49(3):305–316, Septem-
ber 2000.

[45] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Design of a high-
gain operational amplifier and other circuits by means of genetic programming.
In In Angeline, Peter J., Reynolds, Robert G., McDonnell, John R., and Eberhart,
Russ, editor,Evolutionary Programming VI. 6th International Conference, EP97,
Proceedings, volume 1213 ofLecture Notes in Computer Science, pages 125–136,
Indianapolis, Indiana, USA, 1997. Springer-Verlag, Berlin.

[46] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane. Evolution using genetic
programming of a low-distortion 96 Decibel operational amplifier. In Proceedings
of the 1997 ACM Symposium on Applied Computing, pages 207–216, San Jose,
California, USA, 1997. New York: Association for ComputingMachinery.

[47] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane.Genetic Programming
III: Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers,
1999.

[48] W. Kruiskamp and D. Leenaerts. DARWIN: CMOS opamp Synthesis by means of
a Genetic Algorithm. InDAC ’95: Proceedings of the 32nd ACM/IEEE Conference
on Design Automation, pages 433–438, New York, NY, USA, 1995. ACM Press.

[49] J. Langeheine.Intrinsic Hardware Evolution on the Transistor Level. PhD thesis,
Rupertus Carola University of Heidelberg, Seminarstrasse2, 69120 Heidelberg,
July 2005.

[50] J. Langeheine, J. Becker, S. Fölling, K. Meier, and J. Schemmel. A CMOS FPTA
chip for intrinsic hardware evolution of analog electroniccircuits. In Proc. of
the Third NASA/DOD Workshop on Evolvable Hardware, pages 172–175, Long
Beach, CA, USA, July 2001. IEEE Computer Society Press.

xxviii

Bibliography

[51] J. Langeheine, J. Becker, S. Fölling, K. Meier, and J. Schemmel. Initial Studies of a
New VLSI Field Programmable Transistor Array. In Y. Liu, T. Kiyoshi, I. Masaya,
T. Higuchi, and M. Yasunaga, editors,Proc. 4th Int. C onf. on Evolvable Systems
From Biology to Hardware (ICES2001), pages 62–73, Tokio, Japan, October 2001.
Springer Verlag.

[52] J. Langeheine, S. Fölling, K. Meier, and J. Schemmel. Towards a silicon primordial
soup: A fast approach to hardware evolution with a VLSI transistor array. In
J. Miller, A. Thompson, P. Thomson, and T. C. Fogarty, editors, Proc. 3rd Int.
Conf. on Evolvable Systems From Biology to Hardware (ICES2000), pages 123–
132, Edinburgh, Scotland, UK, April 2001. Springer Verlag.

[53] J. Langeheine, K. Meier, and J. Schemmel. Intrinsic Evolution of Analog Elec-
tronic Circuits Using a CMOS FPTA Chip. In G. Bugeda, J.-A. D´esidéri,
J. Périaux, M. Schoenauer, and G. Winter, editors,Proc. of the 5th Conf. on Evolu-
tionary Methods for Design, Optimization and Control (EUROGEN 2003), pages
87–88, Barcelona, Spain, September 2003. IEEE Press. Published on CD: ISBN:
84-95999-33-1.

[54] J. Langeheine*, M. Trefzer*, D. Brüderle, K. Meier, and J. Schemmel. On the
evolution of analog electronic circuits using building blocks on a CMOS FPTA. In
K. Deb et al., editors,Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO 2004), Part I, volume 1 ofLNCS 3102, pages 1316–1327,
Seattle, WA, USA, June 2004. Springer- Verlag.

[55] J. Langeheine, M. Trefzer, J. Schemmel, and K. Meier. Intrinsic Evolution of
Digital-To-Analog Converters Using a CMOS FPTA Chip. InProc. of the 2004
NASA/DoD Conference on Evolvable Hardware, pages 18–25, Seattle, WA, USA,
June 2004. IEEE Press. ISBN: 0-7695-2145-2.

[56] L. Logan. Data Acquisition: All about ENOB. Technical report, Data Translation,
1998.

[57] J. D. Lohn, G. Hornby, and D. S. Linden. Evolution, re-evolution, and prototype
of an x-band antenna for nasa’s space technology 5 mission. In J. M. Moreno,
J. Madrenas, and J. Cosp, editors,Evolvable Systems: From Biology to Hardware,
6th International Conference, ICES 2005, Proceedings, volume 3637 ofLecture
Notes in Computer Science, pages 205–214, Sitges, Spain, 2005. Springer.

[58] J. D. Lohn, D. S. Linden, G. Hornby, W. F. Kraus, and A. Rodriguez-Arroyo.
Evolutionary design of an x-band antenna for nasa’s space technology 5 mission.
In 5th NASA / DoD Workshop on Evolvable Hardware (EH 2003), pages 155–163.
IEEE Computer Society, July 2003.

[59] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programms.
Springer Verlag, Berlin, Heidelberg, New York, 1999.

[60] J. F. Miller and K. Downing. Evolution in materio: Looking beyond the silicon
box. InProc. of the Fourth NASA/DOD Workshop on Evolvable Hardware, pages
167–176, Alexandria, VA, USA, July 2002. IEEE Press.

xxix

Bibliography

[61] G. E. Moore. Moore’s law. http://www.intel.com/technology/mooreslaw/index.htm,
2006.

[62] J. M. Moreno Arostegui, E. Sanchez, and J. Cabestany. Anin-system routing strat-
egy for evolvable hardware programmable platforms. In D. Keymeulen, A. Stoica,
J. Lohn, and R. S. Zebulum, editors,The Third NASA/DoD workshop on Evolvable
Hardware, pages 157–166, Long Beach, California, 12-14 July 2001. Jet Propul-
sion Laboratory, California Institute of Technology, IEEEComputer Society.

[63] S. Obayashi, D. Sasaki, Y. Takeguchi, and N. Hirose. Multiobjective evolution-
ary computation for supersonic wing-shape optimization.IEEE Transactions on
Evolutionary Computation, 4(2):182–187, July 2000.

[64] PLX Technology, Inc., Sunnyvale.PLX 9054 Data Book, version 2.1 edition,
January 2000.

[65] T. Quarles, A. Newton, D. Pederson, and A. Sangiovanni-Vincentelli. SPICE3
Version 3f3 User s Manual. Department of Electrical Engineering and Computer
Sciences, University of California Berkeley, Ca., 94720, May 1993.

[66] D. Sasaki, M. Morikawa, S. Obayashi, and K. Nakahashi. Aerodynamic shape
optimization of supersonic wings by adaptive range multiobjective genetic algo-
rithms. In K. Deb, L. Theile, C. Coello, D. Corne, and E. Zitler, editors,In Evolu-
tionary Multi-Criterion Optimization: First International Conference, EMO 2001,
Proceedings, volume 1993 ofLecture Notes in Computer Science, pages 639–652,
Zurich, Switzerland, March 2001. Springer-Verlag.

[67] T. Schmitz, S. Hohmann, K. Meier, J. Schemmel, and F. Schürmann. Speeding
up Hardware Evolution: A Coprocessor for Evolutionary Algorithms. In A. M.
Tyrrell, P. C. Haddow, and J. Torresen, editors,Proceedings of the 5th International
Conference on Evolvable Systems ICES 2003, pages 274–285. Springer Verlag,
2003.

[68] F. Schürmann, S. Hohmann, J. Schemmel, and K. Meier. Towards an Artificial
Neural Network Framework. In A. Stoica, J. Lohn, R. Katz, D. Keymeulen, and
R. Zebulum, editors,Proceedings of the 2002 NASA/DoD Conference on Evolvable
Hardware, pages 266–273. IEEE Computer Society, 2002.

[69] K. Sheehan and S. J. Flockton. Intrinsic Circuit Evolution Using Programmable
Analogue Arrays. 1999.

[70] K. Sheehan and S. J. Flockton. Subsystem and Interconnection Strategies for In-
trinsic Evolution of Analogue Hardware. 2000.

[71] H. Shibata. Computer-Aided Design of Analog Circuits Based on Genetic Algo-
rithm. PhD thesis, Tokyo Institute of Technology, 2001.

[72] Z. Skolicki. An analysis of island models in evolutionary computation. InGECCO
’05: Proceedings of the 2005 workshops on Genetic and evolutionary computation,
pages 386–389, New York, NY, USA, 2005. ACM Press.

xxx

Bibliography

[73] Z. Skolicki and K. A. De Jong. Improving evolutionary algorithms with multi-
representation island models. In X. Yao, E. K. Burke, J. A. Lozano, J. Smith,
J. J. M. Guervós, J. A. Bullinaria, J. E. Rowe, P. Tiño, A. Kabán, and H.-P. Schwe-
fel, editors,Parallel Problem Solving from Nature - PPSN VIII, 8th International
Conference, Birmingham, UK, September 18-22, 2004, Proceedings, volume 3242
of Lecture Notes in Computer Science, pages 420–429. Springer, 2004.

[74] T. Sripramong and C. Toumazou. The Invention of CMOS Amplifiers Using Ge-
netic Programming and Current-Flow Analysis.IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 21(11):1237–1252, November
2002.

[75] A. Stoica. Reconfigurable Transistor Array for Evolvable Hardware. InCal-
tech/JPL Novel Technology Report, July 1996.

[76] A. Stoica. Evolutionary technique for automated synthesis of electronic circuits.
In Caltech/JPL Novel Technology Report, July 1998.

[77] A. Stoica, D. Keymeulen, R. S. Zebulum, A. Thakoor, T. Daud, G. Klimeck, Y. Jin,
R. Tawel, and V. Duong. Evolution of Analog Circuits on FieldProgrammable
Transistor Arrays. InProc. of the Second NASA/DOD Workshop on Evolvable
Hardware, pages 99–108, Palo Alto, CA, USA, July 2000. IEEE Computer Society
Press.

[78] A. Stoica, R. S. Zebulum, and D. Keymeulen. PolymorphicElectronics. InProc.
ICES 2001, LNCS 2210, pages 291–302, Tokio, Japan, October 2001. Springer
Verlag.

[79] A. Stoica, R. S. Zebulum, D. Keymeulen, R. Tawel, T. Daud, and A. Thakoor.
Reconfigurable VLSI Architectures for Evolvable Hardware:From Experimental
Field Programmable Transistor Arrays to Evolution-Oriented Chips.IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 9(1):227–232, February
2001.

[80] B. Stroustrup.The C++ Programming Language. Addison Wesley, Reading, MA,
August 1997.

[81] S. M. Sze. Physics of Semiconductor Devices. Wiley-Interscience, 2 edition,
September 1981.

[82] S. M. Sze. Semiconductor Devices: Physics and Technology. Wiley, John and
Sons, 2 edition, September 2001.

[83] A. Thompson. Evolutionary Techniques for Fault Tolerance. InProc. UKACC Int.
Conf. on Control 1996 (CONTROL’96), pages 693–698. IEE Conference Publica-
tion No. 427, 1996.

[84] A. Thompson. Silicon Evolution. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and
R. L. Riolo, editors,Genetic Programming 1996: Proc. 1st Annual Conf. (GP96),
pages 444–452, Stanford, CA, USA, Jul 1996. Cambridge, MA: MIT Press.

xxxi

Bibliography

[85] A. Thompson. An evolved circuit, intrinsic in silicon,entwined with physics.
In T. Higuchi, M. Iwata, and L. Weixin, editors,Proc. 1st Int. Conf. on Evolvable
Systems (ICES’96), volume 1259 ofLNCS, pages 390–405. Springer-Verlag, 1997.

[86] A. Thompson, I. Harvey, and P. Husbands. UnconstrainedEvolution and Hard
Consequences. In E. Sanchez and M. Tomassini, editors,Towards Evolvable Hard-
ware: The evolutionary engineering approach, volume 1062 ofLNCS, pages 136–
165. Springer-Verlag, 1996.

[87] A. Thompson and P. Layzell. Analysis of UnconventionalEvolved Electronics.
Communications of the ACM, 42(4):71–79, April 1999.

[88] A. Thompson and P. Layzell. Evolution of Robustness in an Electronics Design. In
J. Miller, A. Thompson, P. Thomson, and T. Fogarty, editors,Proc. 3rd Int. Conf.
on Evolvable Systems (ICES2000): From biology to hardware, volume 1801 of
LNCS, pages 218–228. Springer-Verlag, 2000.

[89] A. Thompson, P. Layzell, and R. S. Zebulum. Explorations in Design Space: Un-
conventional Electronics Design Through Artificial Evolution. IEEE Trans. on
Evolutionary Computation, 3:167–196, September 1999.

[90] U. Tietze and C. Schenk.Halbleiter-Schaltungstechnik. Springer-Verlag, Berlin,
10 edition, 1991.

[91] M. Trefzer, J. Langeheine, J. Schemmel, and K. Meier. New Genetic Operators
to Facilitate Understanding of Evolved Transistor Circuits. In R. S. Zebulum,
D. Gwaltney, G. Hornby, D. Keymeulen, J. Lohn, and A. Stoica,editors,Proceed-
ings of the 2004 NASA/DoD Conference on Evolvable Hardware, pages 217–224.
IEEE Computer Society Press, 2004.

[92] M. Trefzer, J. Langeheine, J. Schemmel, and K. Meier. Operational Amplifiers:
An Example for Multi-Objective Optimization on an Analog Evolvable Hardware
Platform. In J. M. Moreno, J. Madrenas, and J. Cosp, editors,Evolvable Systems:
From Biology to Hardware, Sixth International Conference,ICES 2005, number
3637 in LNCS, pages 86–97, Sitges, Spain, September 2005. Springer-Verlag.

[93] M. Trefzer, J. Langeheine, J. Schemmel, and K. Meier. A Modular Framework for
the Evolution of Circuits on Configurable Transistor Array Architectures. InAHS
2006, Istanbul, Turkey, June 2006.

[94] P. F. Vieira, L. B. Botelho, and A. Mesquita. Evolutionary Synthesis of Analog
Circuits Using Only MOS Transistors. In Zebulum, Ricardo S., Gwaltney, David,
Hornby, Gregory, Keymeulen, Didier Lohn, Jason, and Stoica, Adrian, editor,Pro-
ceedings of the 2004 NASA/DoD Conference on Evolvable Hardware, pages 38–
45, Los Alamitos, 2004. IEEE Computer Society Press.

[95] M. Wall. C++ Genetic Algorithm Library, GALib 2.4.6. Massachusetts Institute
of Technology, MIT, 1999.

xxxii

Bibliography

[96] K. Weicker. Evolution̈are Algorithmen. Leitfaden der Informatik. B. G. Teubner,
Stuttgart, Germany, 2002. ISBN: 3-519-00362-7.

[97] D. Whitley, S. B. Rana, and R. B. Heckendorn. Island model genetic algorithms
and linearly separable problems. InEvolutionary Computing, AISB Workshop,
pages 109–125, 1997.

[98] Wikipedia. Transistor. http://en.wikipedia.org/wiki/Transistor, 2006.

[99] E. Williams, W. Crossley, and T. Lang. Average and maximum revisit time trade
studies for satellite constellations using a multiobjective genetic algorithm.Journal
of the Astronautical Sciences, 49(3):385–400, July-September 2001.

[100] D. H. Wolpert and W. G. Macready. No Free Lunch Theoremsfor Optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

[101] Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400, USA. Virtex E
Datasheet.

[102] Xilinx Inc., San Jose.Xilinx XC9536XL High Performance CPLD, September
2004.

[103] R. S. Zebulum, M. A. Pacheco, and M. Vellasco. A multi-objective optimisa-
tion methodology applied to the synthesis of low-power operational amplifiers. In
I. J. Cheuri and C. A. dos Reis Filho, editors,Proceedings of the XIII Interna-
tional Conference in Microelectronics and Packaging, volume 1, pages 264–271,
Curitiba, Brazil, 1998.

[104] R. S. Zebulum, D. Keymeulen, V. Duong, G. Xin, M. Ferguson, and A. Stoica. Ex-
perimental Results in Evolutionary Fault-Recovery for Field Programmable Ana-
log Devices. In J. Lohn, R. Zebulum, J. Steincamp, D. Keymeulen, and M. I.
Stoica, Adrian an Ferguson, editors,Proc. of the Fifth NASA/DOD Workshop on
Evolvable Hardware, pages 182–186, Chicago, IL, USA, July 2003. IEEE Press.
ISBN 0-7695-1977-6.

[105] R. S. Zebulum, M. A. P. Pacheco, and M. Vellasco. Artificial Evolution of Active
Filters: A Case Study. InProc. of the First NASA/DOD Workshop on Evolvable
Hardware, pages 66–75, Pasadena, CA, USA, July 1999. IEEE Press.

[106] R. S. Zebulum, A. Stoica, and D. Keymeulen. Design process of an evolutionary
oriented reconfigurable architecture. InProc. of the Congress on Evolutionary
Computation, pages 529–536, San Diego, CA, USA, July 2000. IEEE Press.

[107] R. S. Zebulum, A. Stoica, and D. Keymeulen. A Flexible Model of a CMOS Field
Programmable Transistor Array Targeted for Hardware Evolution. In J. Miller,
A. Thompson, P. Thomson, and T. C. Fogarty, editors,Proc. of the Third Int.
Conference on Evolvable Systems: From Biology to Hardware (ICES2000), LNCS
1801, pages 274–283, Edinburgh, UK, April 2000. Springer. ISBN 3-540-67338-5
LNCS 1801.

xxxiii

Bibliography

[108] R. Zebulum, M. Pacheco, and M. Vellasco. Synthesis of CMOS Operational Am-
plifiers Through Genetic Algorithms. InProceedings of the SBCCI98 (Brazil-
ian Symposium on Integrated Circuits), pages 125–128, Rio de Janeiro, Brazil,
September 1998.

[109] R. Zebulum, M. Pacheco, and M. Vellasco. A Novel Multi-Objective Optimization
Methodology Applied to the Synthesis of CMOS Operational Amplifiers. Journal
of Solid-State Devices and Circuits, pages 10–15, February 2000.

xxxiv

Danksagung
(Acknowledgements)

Zum Abschluß möchte ich mich bei all jenen bedanken, die mitihrer fachlichen und persönlichen
Unterstützung zum Gelingen dieser Arbeit beigetragen haben. An dieser Stelle ganz herzlichen
Dank an

- Herrn Prof. Dr. Karlheinz Meier für die freundliche Aufnahme in seine Arbeitsgruppe und
die Möglichkeit, mit viel Freiheit in einem so interessanten und unkonventionellen Gebiet
forschen zu können.

- Herrn Prof. Dr. Fred A. Hamprecht, der freundlicherweise das Zweitgutachten übernommen
hat.

- Dr. Johannes Schemmel, der mit der Idee zum FPTA Projekt denGrundstein für alles Wei-
tere gelegt hat und von dem ich fachlich und organisatorischviel gelernt habe. Einen sol-
chen Post-Doc, der praktisch zu jedem Thema Wissen in petto und zusätzlich eine offene
und freundliche Art hat, kann man jedem nur wünschen.

- Jörg Langeheine, meinen ’Evolutionäre-Elektronik-Sensei’, der nicht nur den FPTA entwi-
ckelt, sondern mir auch geduldig beigebracht hat wie man ihnbenutzt. Herzlichen Dank
für die angenehme und bereichernde Zusammenarbeit und dieselbe Art von Humor! Das
Büro ward öd und leer ohne dich und deine Familienpackung Nivea Creme.

- Daniel Brüderle, der wärend meines ersten Jahres viel mitprogrammiert hat und den wir
dann leider an ein Neuronales Netz verloren haben. Vielen Dank auch an Stefan Zimmer,
meinen Informatik-Praktikanten der leider viel zu kurz da war, für die Implementierung
des ’Tracking GA’.

- Thorsten Maucher und Andreas Grübl für viele fachliche und ebenso viele nichtfachliche
Gespräche, sowie zahlreiche gemeinsame Aktionen ausserhalb der Arbeit.

- Johannes Fieres und Steffen Hohmann, von deren Unmengen antollem C++-Code ich sehr
viel lernen konnte und weil es einfach sympathische Burschen sind.

- Stefan Phillip und Felix Schürmann für die jahrelange kollegiale Zusammenarbeit und die
Betreuung unserer Server.

xxxv

Danksagung (Acknowledgements)

- Andreas Grübl, Margarita Kallweit, Jörg Langeheine, Stefan Phillip und Tillmann Schmitz
für das Korrekturlesen der Arbeit.

- allen Mitgliedern der Electronic Vision(s) Gruppe für die angenehme und harmonische
Arbeitsatmosphäre, die vielen erheiternden ordentlichen und ausserordendlichen Zusam-
mentreffen und die Bereitschaft, Feste zu feiern wie sie fallen.

- allen Mitarbeitern des Kirchhoff-Instituts, für die freundliche Atmosphäre, dafür dass sie
den ganzen Laden am Laufen halten und auch mal fünfe gerade sein lassen.

Ich möchte mich auch bei all den Menschen bedanken, die nicht direkt Teil meiner Arbeitswelt
sind, deren freundschaftlicher und emotionaler Beistand jedoch nicht minder wichtig für das Ge-
lingen dieser Arbeit und vieler anderer Dinge in meinem Leben sind. Herzlichen Dank daher auch
an:

- vor allem meinen Eltern und Grosseltern, die die Grundvorraussetzung für diese Arbeit
schufen, nämlich mich, von denen ich viel fürs Leben gelernt habe und die mich während
meiner Ausbildung stets in vielerlei Hinsicht unterstützt haben.

- den Mensaclub: Gerd, Hans, Jan, Tobias, Torsten und gelegentliche Gastschauspieler, die
mit hitzigen Diskussionen beim Nachmittagskaffee den sozialen Ausgleich zum täglichen
coden schaffen.

- alle Freunde, vor allem Hendrik, Jean-Marc und Tillmann, die mein Leben mit ihren ver-
schiedenen Persönlichkeiten bereichern.

- meine allerliebste Gordana, die es nun schon viele Jahre mit mir aushält, mein naturwis-
senschaftliches Wissen um das Geisteswissenschaftliche erweitert und mich oft mit ihrer
erfrischend anderen Sicht der Dinge wieder erdet.

xxxvi

