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Evolution von Transistor Schaltungen

Der Entwurf von analogen Schaltungen ist ein Bereich dektElaikentwicklung, der dem Entwickler ein hohes
MaR an Wissen und Kreativitat beim Losen von Problememidangt. Bis heute gibt es nur rudimentare analy-

tische Losungen um die Bauteile von Schaltungen zu diroareien. Motiviert durch diese Herausforderunge

konzentriert sich diese Arbeit auf die automatische Sysgtenaloger Schaltungen mit Hilfe von Evolutionaren

Algorithmen. Als analoges Substrat wird dield programmable transistor array (FPTAEnutzt, das ein Feld von
konfigurierbaren Transistoren zur Verfigung stellt. Dars&tz von echter Hardware bietet zwei Vorteile: erste
kdnnen entstehende Schaltungen schneller getestetmaldmit einem Simulator und zweitens funktionieren d
gefundenen Schaltungen garantiert auf einem echten Chipy&eseitig eignen sich Evolutionare Algorithme
besonders gut fur die Synthese analoger Schaltungene d@isierlei Vorwissen iiber das Optimierungsproble
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benotigen. In dieser Arbeit werden neue genetische Qmeraentwickelt, die das Verstandnis von auf dem FPTA

evolutionierten Schaltungen erleichtern und au3erdesub@en finden sollen, die auch au3erhalb des Substr
funktionieren. Dies ist mit der Hoffnung verbunden, mobérweise neue und ungewohnliche Schaltungsprin
pien zu entdecken. Weiterhin wird ein mehrzieliger Optimigysalgorithmus implementiert und verfeinert, u
die Vielzahl von Variablen beriicksichtigen zu kdnnere filir die gleichzeitige Optimierung von Topologie un
Bauteiledimensionierung notwendig sind. Die vorgescatam genetischen Operatoren, sowie die mehrzie
Optimierung werden fir die Evolution von logischen Gattdé¢omparatoren, Oszillatoren und Operationsverst
kern eingesetzt. Der Ressourcenverbrauch der durch Ewolgéfundenen Schaltungen wird damit verminde
und es ist moglich in einigen Fallen einen UbersichditiSchaltplan zu erstellen. Ein modulares System fur
Evolution von Schaltungen auf konfigurierbaren Substraterde entwickelt. Es wird gezeigt, dass mit diese
System FPTA-Architekturen modelliert und direkt fur Entibnsexperimente verwendet werden kdnnen.

Evolution of Transistor Circuits

Analog circuit design is a discipline of electronic desigmat demands a lot of knowledge and experience
well as a considerable amount of creativity in solving ddéeproblems from the designer and there are to d
only rudimentary analytical solutions for parameterizonguit topologies. Motivated by the latter challengess th
thesis focuses on the analog design automation for FPTAtacttres by means of evolutionary algorithms (EAS
The advantages of using real hardware for circuit evolutiom the significantly faster evaluation of candidal
solutions compared to a simulator and the fact that foundisols are guaranteed to work on a real-world substrg
On the software side EAs are particularly well suited forlagaircuit synthesis since they do not require pri
knowledge of the optimization problem. New genetic opasatwe developed within this thesis aiming to facilita
the understanding of evolved FPTA circuits and to find sohsithat can be transfered to other technologies.

great hope is thereby to possibly discover unusual, nevgdgsinciples. Furthermore, a multi-objective algorithin

is implemented and refined, in order to allow for taking thenewous variables into account, that are required
optimizing the topology and the dimensioning of transisiccuits. The proposed genetic operators and the mu
objective approach are successfully applied to the evawiudf logic gates, comparators, oscillators and operaitio
amplifiers. It is achieved to reduce the resource consummati@volved circuits and in some cases it is possil]
to generate clear schematics of good solutions. A modudandwork for the evolution of circuits on configurabl
substrates has been developed, which is used to perfornxpleements and is further demonstrated to be use
for modeling FPTA architectures and subsequently usingtimesvolution experiments.
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Introduction

Analog circuits are the basis for any electronic device aaeltthereby tremendously
influenced our lives during the last decades. Electroni¢pagent like satellites, mobile
phones or digital cameras would simply not exist, if the tetbgy for integrating hun-

dreds of millions of transistors, which represent the bogdblocks of analog circuits,

was not available. The success story of the transistor beghrits invention in 1947 by

William Shockley, John Bardeen and Walter Brattain and iglsuccessful integration
into a receiver circuit in 1958 [98]. Only the advent of thddieffect transistor in 1971

has been the final breakthrough, due to this technology reddée first microproces-
sor possible, namely the Intel 4004, which was built of 2.8@@sistors. According to
Moore’s Law [61], the transistor count has exponentiallgvgn during the last 35 years
and this lead, for instance, to the Itanium 2 processor [88jch consists of the impres-
sive number of more than half a billion transistors.

An inevitable consequence of the rapidly increasing dgmditransistors is the devel-
opment of concepts and tools to effectively and efficientlyamize such a great number
of components. As a consequence, large circuit designssaadly divided into smaller
subcircuits, which can be independently developed anditédeithe description of entire
systems. Furthermore, an important low level solution éoifoblem is to introduce logic
circuits as an abstraction layer over the transistors, hytdo the one hand, greatly facil-
itates the design of digital circuits and, on the other hamakes it possible to describe
digital circuits independent from the technology. Howewerpractice, the underlying
analog circuits define the specifications of the digital tayeg. speed, input voltage
range and noise. According to the differentiation betweawlay and digital design, both
approaches aim for different applications. Analog cikaite needed for any interaction
with the real world, e.g. controlling valves or a motor, ¢neg sounds or measuring
physical quantities like light intensity, whereas almogtrg signal processing task can
be more easily carried out with digital hardware.

As the need for fast, customizeable signal and data prowessits further increased,
field programmable gate arrays (FPGAs) emerged, which aemwigle widely used in
various applications. FPGAs are providing a huge numbeaobus building blocks for
logic circuits on a single substrate, which can be interested with a complex config-
urable routing scheme, in order to build large digital dit€uThe design software, that
comes along with those chips, indeed unfolds their real pewét is possible to describe
a logic circuit with a hardware description language (HDh)am abstract level and sub-
sequently the FPGA can be configured in a way that it becombgsagal representation
of this circuit. Additionally, it is possible to reconfigutke device an indefinite number
of times, which offers the possibility to develop highly tarmizeable hardware. Once
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a circuit is described in a HDL, it will immediately benefibfn improvements of new
technologies, if an appropriate new FPGA is available.

Driven by the intention of further automating the circuis@g process, yet aiming for
reducing it to merely a specification of the desired taskgdate with a suitable heuristic,
which is able to develop a solution circuit, field programieabansistor arrays (FPTAS)
entered the discipline of evolvable hardware in the 1990& algorithms, that are applied
for problem solving in the field of evolutionary computati(i#C), derive their operation
principles from natural evolution and are widely used as ehficbe heuristics for solving
complex optimization tasks. Thus, they are denoted as Efthel case of evolvable elec-
tronics, the candidate solutions will be either represebiea configuration bit string, if
real configurable hardware is targetaéatrinsic evolution, or by a netlist, if a simulator
is used éxtrinsic evolutioh Moreover, the model-free nature of EAs is an advantageous
property, since this makes it possible to apply them to atgaa@ety of problems without
including prior knowledge about possible solutions inte #igorithm. As Higuchi stated
in 1992 [34], the combination of configurable hardware arawdionary algorithms sug-
gests itself, as EAs rely on a great number of evaluationsodliclate solutions, which
can be performed at high speed with a hardware evolutiomisysflthough a real chip
is inherently limited by its fixed constraints, it offers citlerable advantages: first, eval-
uation speed is significantly faster than in simulation a®tond, it ensures an intrinsic
realism of the found solutions, which are bound to work asti@a their particular evo-
lution platform. It shall be thereby mentioned that the fiefdevolutionary hardware
is not restricted to electronics, but also exhibits exampliethe successful evolution of
e.g. antennas [7,57, 58], that are put on a space missiom, stiapes for supersonic
aircrafts [63, 66] and orbit trajectories with minimal cozge blackout for telecommuni-
cation satellites [99].

Eventually, the initial spark, that set especially the camity of evolutionary elec-
tronics on fire, has been ignited by Thompson in 1999 [84-86h not only achieved
to successfully evolve a tone discriminator on a Xilinx FR,®At happened to find a cir-
cuit with astonishing properties. For one thing the ciropierated without a clock signal,
which is quite unusual from a human designer’s point of veavg for another thing evolu-
tion seemed to exploit parasitic effects of the substratzder to get the circuit working.
Thompson found unconnected subcircuits which were nesierdh essential for proper
operation. Inspired and encouraged by this work, reseesceveloped various ideas for
using configurable architectures as evolution platfornmsefectronic circuits, e.g. cer-
tainly all sorts of field programmable analog arrays (FPA@8)adigm, Cypress, Zetex
and [52,53,76,79,107]) and even a liquid crystal displaghésense of a programmable
matter array [30, 31, 60]. Additionally, EAs offered new pitdities for researching fault
tolerance, build-in self test (BIST), self-recovery an@dtability [10, 29,43, 44,88, 104]
to the field of evolutionary electronics.

The aforementioned efforts and results within this redeéigld motivate the imple-
mentation of FPTAs as the analog counterparts to the alreetlyelaborated FPGAs and
finally lead to the conception and design of the HeidelbergAmin 2001 [50-52], which
represents the analog configurable evolution substratéhéexperiments in this the-
sis. It is manufactured in a®um complementary metal oxide semiconductor (CMQOS)
process and provides 256 configurable transistor cellsshwtan be variously intercon-
nected and by this means it is possible to realize a greagtyanif transistor circuits
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on the Heidelberg FPTA. Aside from application specific FRAMhere the behavior
can be tweaked, but the topology is fixed and an FPTA from th&AAet Propulsion
Laboratory (JPL) [76,79,107], which already consists ghhlievel building blocks (con-
figurable amplifier architecture), the Heidelberg FPTA &sdinly fine-grained substrate—
in the sense of configurable on the transistor level—in thedvd he philosophy behind
preferring one of those architectures differs: the use afifgarably complex cells aims
to quickly find robust solutions for problems that fit the pBded structures, but those
solutions are always bound to the constraints of the togolGgntrary to that, the single
transistor cells provide a higher degree of freedom to tldveng circuits and therefore
offer the possibility to discover new or unusual circuitatggies. However, it has to be
kept in mind that finer-grained substrates suffer from iasieg parasitic effects although
this is not necessarily a shortcoming, as Thompson'’s gesuljgest.

Analog circuit design is a discipline of electronic desitirgt demands a lot of knowl-
edge and experience as well as a considerable amount oivityest solving diverse
problems from the designer. Motivated by the latter chagées) new genetic operators
are developed within this thesis aiming to facilitate thelenstanding of evolved transis-
tor circuits and to make it possible to transfer them to oteehnologies, that is to verify
them in simulation. Thereby, a great hope is to possiblyadiscany kind of new or inno-
vative design principle. Furthermore, a multi-objectiypeoach is adapted and refined,
in order to allow for taking the numerous variables into actpthat are required for op-
timizing the topology and the dimensioning of CMOS trarwisircuits. It is shown that
the proposed genetic operators and the multi-objectiveoaigh can be successfully ap-
plied to the evolution of logic gates, comparators, odwitta and operational amplifiers.
It is achieved to significantly reduce the resource consiomyuif evolved circuits and in
some cases it is indeed possible to generate a clear scharhgtiod solutions. Within
this thesis, a modular framework for the evolution of citswin configurable substrates
has been developed, which is used to perform the variousriexgas and is further
demonstrated to be useful for modeling FPTA architecturessaibsequently assessing
their evolvability.

The thesis is organized as follows: part | introduces thegiples of CMOS design
and modeling (chapter 1) and provides the ideas behind tiwoaury algorithms while
emphasizing the topics, that are relevant to this thesepgehn 2). All components of the
setup are described in part Il: first, the architecture aedptioperties of the Heidelberg
FPTA are shown in chapter 3. Second, chapter 4 provides eodimdtion to the simu-
lation environment, which is used for off-chip verificatiohthe found solutions. Third,
the modular evolution software framework is presented iaptér 5 alongside with a
description of how to customize it. Finally, the conductegpeximents and the results
are discussed in part Ill. Following the course of resediot hew genetic operators are
introduced in chapter 6 and their performance in evolvirgidgates and comparators
is compared to a straight forward implementation of the EAwir@ to the increasing
complexity of the tackled problems, i.e. the evolution ofitbgtors and operational am-
plifiers, a multi-objective algorithm has been developed &ndiscussed in chapter 7.
To conclude, the algorithm is applied to extrinsic evolntmf comparators with a sim-
plified simulation model of the real hardware in chapter 8sdthon these results and
the experience gained during this thesis a proposal for @anoved FPTA architecture is
presented.






Part |

Foundations






Chapter 1

CMOS Analog Circuit Design

This chapter introduces the basic concepts of CMOS analogitdesign, which
are relevant to this thesis. The focus is set on metal oxidecemductor (MOS)
transistors and transmission gates, since those are the lbaslding blocks of
the field programmable transistor array (FPTA), namely theidélberg FPTA,
which is extensively used for the experiments in this thesisis described in
chapter 3. Characteristics and parasitic effects of thegladlevices are discussed,
due to mainly the transmission gates (switches) signifigamfiuence the circuits
that are realized on the FPTA. Moreover, it is shown how M@8distors can
be used—to a certain extent—as capacitances and resisi@nse, can replace
passive components. The reason for this is that no such aengmare directly
provided by the configurable transistor array. An additibaam of this thesis is
to verify FPTA circuits in simulation. Thus, CMOS transistoodels, which are
used by simulators for calculating the behavior of analaguiis are described.
Thereby, in analog circuit design, since the aim is to rdljatabricate a fully
operational chip, it is crucial to use a suitable and suffittlg accurate model of
the respective process for simulation. Lastly, an overnoéthe CMOS design
flow is given, since this work aims at automating severalgtesteps by means
of evolutionary algorithms.

During the last two decades, CMOS processes gained impertanhe field of very large
scale of integration (VLSI) technology, due to some greatathges: on the one hand,
the structures in CMOS processes are steadily shrinkingheamndfore the density of tran-
sistors increases. Current technology makes it possiliteggrate millions of transistors
on one single die (chip). On the other hand, field effect isois feature a zero cur-
rent gate, thus, can be successfully applied as well foryigtergrated digital designs.
The latter feature has become crucial for implementingesyston a chip, which consist
of both, analog and digital circuits on the same substrateeh Systems are denoted as
mixed-signal systemd he information presented in this chapter is mainly basethe
foundations from [4, 81, 82].

7
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1.1 Physical Representation of the CMOS Transistor

MOS transistors are four terminal electrical devices, Whace either used as voltage
controlled resistors or current sources in analog circantd can be realized either as
n-channel or p-channel devices in CMOS technology. A ligkibppedp~ substrate is
used in CMOS technology, thus, the n-channel transistobeatirectly formed with two
heavily dopedh™ regions, as can be seen from figure 1.1. In the case of therpreha
transistor, which is realized with two heavily dopgd regions, an additional lightly

NMOS PMOS

Schematic Symbol

I mm mmi |

' in- channel. “ Ip- channel. ’
; 1 . 1 n-we
| . |
= | | [y 1 1
p sut?'strate < ! ] < '
| | | |
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g— I |
| R
| |
4 Leff :4_

Figure 1.1: Top: the symbolic view of a PMOS and an NMOS transisteliddle: a substrate
cross section through a PMOS and an NMOS transiBioitom: the parasitic device capacitances
are shown, using the NMOS transistor as an example. Palig dfustration are taken from [49].
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Figure 1.2: Example output characteristics of a PMQ@St) and an NMOS transistoright) with

W =L =2um are graphed fo¥gs=1,2,3,4,5V. Thereby, the source voltage of the NMOS
was gnd and the source of the PMOS was tied to vdd. Furtherrti@e, — vps characteristics
for two simulation models, namely the SPICE level 3 modelttedndustrial standard BSIM3v3,
are compared.

dopedn™ well is necessary. The heavily doped regions are namedeg¢8jcand drain
(D), while the substrate resp. the n-well is named bulk (BRXh& surface, a gate electrodéeld effect transistor
(G), which is separated from the substrate by a dielectriteriz (silicon dioxide) lies Withisolated gate
between source and drain.
Considering the n-channel transistor with all four ternsneonnected to ground, at
equilibrium, the source and drain are separated by the ti@plegions of the two back-back-to-back pn
to-back pn junctions. Hence, the resistance between saumatealrain is very high> junctions
10'2 Q). Thereby, the gate and the substrate form a capa€isy)( enclosing the silicon
dioxide as dielectric. If a positive potentidss is applied between gate and source, holes
will be pushed away from the SiSiO, interface, thereby forming an additional depletion
region, that is inverse to those from the pn-junctions. @mreg the one-dimensional
case, the charge densjtyof the latter depletion region is given by

P =d(—Na), (1.1)

with the carrier chargg and the doping strengtNa. The resulting electric field can beslectric field
obtained by applying Gausses law and determining the iatiegr constant C by evalu-

ating E(x) at the boundaries of the depletion regian=0 at Si— SiO, andx = x4 at the

depth of the depletion region in the bulk).

Py, [*—ONa,  —QNa
E(x)_/0 de_/o . dx= & x+C (1.2)
with C— _SNAxd (1.3)
Si
EX) = TR0 %) (1.4)

Relating the electrical field to the Fermi potentidl) and the surface potentiadPg)

yields

NaxXg?
2€s;

Xd O
—/ Edx= [  db=— — O — O, (L.5)
0 ®s
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1.1 Physical Representation of the CMOS Transistor

thereby, the Fermi potentials of the semiconductor arengase

p-type: ® = —\in (%) (1.6)
|
Na

n-type: ® = MIn <?> a.7)
|

Further, assumingbs — @ > 0|, x4 can be calculated from equation 1.5.

3esi| Ps— Pe|
= = 7 1.8
X =] TN (1.8)

The charge underneath the gate can be calculated by irgsrénmmobile charge of the
acceptor ions

Q= —0NaXg = —/20Naési|Ps — Df | (1.9)

If a threshold voltag®&/s is applied to the gate, the substrate between source amd drai
will become inverted, hence, a n-type channel exists, thaws carriers to flow. This
condition is referred to astrong inversion In order to achieve this, the surface potential
must become at leadis = —®f. Thus, ifvgs = Vi, Qpo Will be

Qbo = — v/ 20Na&si| — 2P | (1.10)

and in case of a reverse biased pn junction with an accorgjgghis becomes

Qb = —v/2qNagsi|— 2Pk + Vs (1.11)

Finally, an expression for the threshold voltage can bergiwetaking the components of
Vs into account that are necessary to achieve inversion: tistjifference in the work
functions between the gate material (polysilicon) and tilk bilicon, denoted a®poyy.

Second, the gate voltage ef2dr — (f)—t;(, which is necessary to change the depletion-

layer charge. Third, there is an additional voltag%—f, taking the additionaV/ss into
account that is caused by material impurities. Thus, usqetons 1.10 and 1.1Y;
can be expressed as

Vi =Vro+y (/-2 +vsg] - v/[-2%¢]) (1.12)
with Vo = ®popy 4+ —20F — Qbo o Qimpurities (1_13)
Cox Cox
and y— 7@‘55”\"*, (1.14)
X

which is defined as the body-effect coefficient or the bulleshold parameter.
Consequently, if inversion is achieved and a voltageis applied between drain and
source, a currerip will be able to flow across the channel. Example |-V charasties
are depicted in figure 1.2. It is now assumed that the charaselhe width W andps is
small. The charge per unit ardaof the channel length can then be expressed by

Qiy = Cox (Ves— V(y) — V1) (1.15)
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and therefore, the voltage drop along the channel length is

dv(y) =ipdR= —————. 1.16
) =lo HnQi(y)W (119
Thereby 1, is the average carrier mobility in the channel. Solving #ieel equation and
integrating along the channel from O to L, resp. &g, results in

CoxW V2
o= E2 | (Vs — Vi) vos — 22| (1.17)

which is called the Sah equation and has been developed blyrSan and Hodges [81] ashe Sah equation, drain

amodel for computer simulation. Note that equation 1.17hig @alid whenvgs >V and  current

vps < (Ves— V). Thereby, the factor,Cox is defined as the device-transconductance

parameter, given as

HnEox
tox

For a detailed description of the physical CMOS model, egfigaconsequences of

latch-up, temperature and noise, the reader is referred, ®i1] 82]. Note, that the n-NMOS and PMOS

channel devices are generally denoted as NMOS transistbeseas the p-channel detransistors

vices are denoted as PMOS transistors.

K'= pnCox = (1.18)

1.1.1 Operation Regions

Furthermore, the relation betweegs! andvps defines the operation region of the tran-
sistor. Note that the conditions fogs andvps in the following are valid for an NMOS
transistor, thus, in the case of a PMOS transistor, theioakt symbols have to be in-
verted. A number of 4 operation regions are distinguishesdt, thecutoff region, where cutoff
ves = 0V and the channel resistance is greater thad @0 Hence, there is no inversion
at all andips = 0 A. Second, theveak inversiorregion, for which 0< vgs < V1 +nVip?, weak inversion and
thus, the absolute drain currents are relatively low ang ére exponentially dependinggtrong inversion
on the gate source voltage. Third, fats > V1 + NV, the substrate is actually inverted
and the transistor is in thgtrong inversionstate, which features a parabolic character-
istic for vps < ves— V1. This operation region is also calldidiear or ohmic region,
since the drain source current is almost linear for smsdl As the termohmicalready
suggests, the transistor can be used as voltage contrallize eesistor in this operation
mode. Fourth, if/ps > vgs— V1 > 0, ips will not further increase and the transistor is in
saturation In this case, the transistor resembles a voltage cordrollerent source. saturation
The influence of the different operation regions is not ledito the so-called large sig-
nal model presented above. Higher order effects, dynanhiawer and the various intrin-
sic device capacitances are also depending on the operatida of the transistor. Some
important small signal parameters, e.g. the channel tomtkrtancegy, = dip/dves
andggs = dip/dVps strongly depend on the transistor’'s operation mode. Fyréwen

1 A lower case letter indicates that the quantity is varialleereas an upper case letter stands for a constant
value.

2n is the so-called subthreshold slope parameter. It is psospecific and it is needed for modeling the
exponential behavior of the I-V characteristioreak inversion

11
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Figure 1.3: Left: the large signal model of a transistor, which is used to firdDIC operating
point. Right: a linearized small signal model, on which the equations éonputer simulations
are based. Note that the small signal model equations aendam on the DC operating point.

device mismatch on the silicon di€auses threshold voltage variations, that may lead to
infeasible strong sensitivity to small variationsvgls.

1.1.2 Parasitic Capacitances

The presented large signal model includes several chasiie of the MOS transistor,

such as parasitic capacitances of boundaries, channsiaese and noise. A complete
large-signal model is depicted in figure 1.3. Thereby, tluelels are used for modeling
the leakage currents and must always be reverse-biasedojoerptransistor operation.

The leakage currents are given by

5D Bs = I [exp(qVBD'E‘S) - 1} (1.19)
’ KT

wherels is the saturation current of a pn junction, q is the chargenaglactron, k is the

Boltzmann constant and T is temperature in Kelvin units.

The resistorgp andrg correspond to the ohmic resistance of source and drain and
are only important for high drain currents. Typically, thegsistances are in the order
of 10Q. The capacitors, formed by the several interfaces, arectdehin figure 1.1 and
in figure 1.3. There are three types of such capacitances; Ggs and Cgs, which
are formed by the depletion regions of the reverse-biasefipctions of source and

3 A 'die’ is a small piece of silicon, on which the fabricatedatiit is located and which is cut out of the
wafer. The dye has to be put in a package and to be connectesdoias, in order to operate it. The wafer,
in turn, is a slice of an artificially grown silicon mono-ctgh on which the circuit is built by means of
photo lithography and chemical deposition of the diffedegers (metal, polysilicon, silicon-oxide).
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drain respectively. Those capacitances are a functioneofaerse-bias voltage and are
additionally influenced by their side boundaries to the etégh region, which is denoted
assidewall effectand can be described with

c _ W Lyt Clt 2(W + Lgif )
BD.BS (1+Vp,s/Pp)M (14 Vp,s/Pp)MISW

.CISW (1.20)

where, W andL¢s define the geometry of the terminal diffusion avigls denotes the
terminal potential. The parameters MJ, MJSW, CJ, CISW, CEX@ICox are process
dependant constants ady is the working potential of the bulk. The first addend of 1.20
accounts for the area junction at the surface of the terndifaision, while the second
addend represents the sidewall effects.

Second, the capacitors related to the gate, which are depead the operating regiornparasitic gate
of the transistor, namel@sp, Css andCgg. Those capacitances, in turn, can be calculatepacitances
from Cos, Cox andCop according to

CoxWettLett +Cos+ Cop = CoxWeftLeft + LefCGBO  off

Ceg = Css+Cgp = LefCGBO saturation (1.21)
Css+Cgp = LefCGBO nonsaturated
CoWetiLeff = WefCGSO off

Ces = CosWettLeft + %Coxweffl_eff =WeCGSO+ %Coxweffl_eff saturatior{1.22)
CopWefiLest = WefCGDO off

Cep = CopWefrLest + :%CO)(Weff Lest = WegCGDO-+ %Coxweffl_eff saturatiofi.23)
CopWeftLeft + 3CoxWesiLert = Wit (CGDO+ 3CoxLe)  nNonsaturation

(1.24)

and account for the gate-source and gate-drain overlaplhasifer the gate-bulk capac-gate-source and
itor. Again, the values CGSO, CGDO, CGBO dbgk are process dependent parametege-drain overlap
with the unit%. TherebyCox represents the third type of capacitance, which is depend-

ing on the device geometry—the polysilicon of the gate amdbilik silicon form a plate

capacitance, with th€i0, as dielectric—, but not on the operation mode.

1.1.3 Large Signal and Small Signal Model.

As yet, the large signal model of MOS transistors is congidewhich is used for finding

the DC conditions, hence, the DC operating point of the adeviadditionally, a linearized linearized model
small-signal model, graphed in figure 1.3 is available, ideorto simplify calculations

after the DC operating point is found. The parameters of bwdldels are closely related

albeit the small-signal model is only valid for small chasge the vicinity of a given

operating point. Consequently, the values of the smatiaigarameters strongly depend

on the given DC operating point and can take on several aliefiorms. Note that the

4 MJ=bulk-source/drain grading coefficient, MISW=MJ foresiclls, CJ=zero bias, bulk-source/drain ca-
pacitance and CIJSW=CJ for sidewalls.
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1.1 Physical Representation of the CMOS Transistor

corresponding large-signal subscripts will be lowercasthé small-signal case. Thus,
the small signal channel transconductances are given as

=~ J2K/Ip Y DC current

Om = — DC current and voltage (1.25)
KI/_W (Vgs—VT) DC voltage

I

— DC current
vv/(2oB)
Ombs = 2 /20 Veg] DC current and voltage (1.26)

WhVes Vi) - pe voltage

2,/2|®¢[+|Vsp|
= Alp. DC current

Ods = —  DC current and voltage (1.27)
— DC voltage

(1.28)

Thereby K’ = uCox is the transconductancg,is the bulk threshold, |@k| is the strong
inversion surface potential, is the channel length modulation ands the subthreshold
slope process parameter. In practice, process parameteabi@ined from measuring
the properties of the target technology and fitting the nicakmodel. The process
parameters will be provided by the chip manufacturers, Hia & fabricated with one of
their processes.

1.1.4 Possible Configurations

ST U T

a) NMOS-T b) diode c) capacitor d) open e) shorted

Figure 1.4: As can be seen from the figure, a CMOS transistor can be coafigas diode,
capacitor or as pass transistor (switch, open/closed).

In practice, the bulk of a transistor is connected to vdd (FBY1Gr to gnd (NMOS),
whereas the three remaining terminals source, drain aredagatused for assembling
transistors to circuits. Possible configurations of the M@&sistor are depicted in fig-
ure 1.4. Transistors can be configured as diodes or capgaitnough those components
could also be fabricated without using a transistor stmectiexamples for the different
configurations are depicted in figure 1.4. Contrary to thds not possible to integrate
resistors with a sufficiently high resistance on the dye,tduge fact that the sheet resis-
tance of polysilicon is very low in standard CMOS processkeesistances greater than
afew kQ are desired, either a specialized process will have to bgerhahat features an
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additional layer of high-resistive polysilicon, or trasisirs will have to be used as active
resistors, as described in section 1.1.1. Thereby, thsistan has to be operated in the
linear region, in order to achieve the desired |-V charastier Furthermore, it is possible

to realize resistors as switched capacitors, which prositigh degree of linearity, al-

though such circuits require nonoverlapping clock sigmate a much higher frequency

than the voltage variations. Switched capacitors are mastd in telecommunication

applications.

1.2 Realizing Switches with Transmission Gates

Transmission gates are one of the most important circuiiseoffPTA chip, which is used

for the experiments in this thesis and is introduced in @dvapt The reason for this is that

the manifold configuration options of the transistor arreg/@rovided by a large number

of switches, hence, transmission gates. Thus, it is p@ssibtealize a great number ofealizing the
almost freely scalable circuits on the FPTA simply by opgnim closing the accordingconfigurability of the
switches. One pass transistor, which is closed by applyittggnd (NMOS/PMOS) and FPTA
opened by applying gnd/vdd to the gate (NMOS/PMOS), as thgpim figure 1.4, is

the most simple realization of a switch. A major drawbackhef katter approach is the

limited input voltage range, due to the constraigt > Vr (NMOS) orVgs < Vr (PMOS).

This can be overcome by combining both, NMOS and PMOS, inramleompensate

the limited Vs of the respective other transistor. Consequently, as casebe from

figure 1.5, transmission gates consist of a PMOS and an NM@$istor in parallel,

which are opened and closed with gate voltages of oppositgifyarespectively.

1.2.1 Parasitics of Transmission Gates

As can be seen from the small signal model of transmissioesgatfigure 1.5, these
switches possesses several parasitic capacitances athd, @m state, a finite parasitic
resistance. Since, in the case of a transmission gate, teevgléages are either vdd or
gnd, the transistors can be considered to be either in thodf @utin the linear operation
mode. The on-resistance of a transmission gate can be ettliom equation 1.17:
.o\ -1 -1
on=Ips = <ﬂ> = <K’V—V(Vdd—vs—VT —VDS)> . (1.29)
OVps L
Thereby, the channel length modulatidns omitted. The total parasitic capacitance is
obtained by simply adding the according parasitic capacésa from section 1.1.2.

The parasitics of transmission gates are of great impagtémehis thesis, due to the
fact that they are extensively used as switches for reglitie configuration options of
the FPTA, which is used for the presented experiments amutriediuced in chapter 3.
The on-resistance is considered to greatly influence tloeiits; that are configured oron-resistance
the transistor array, since the mean on-resistance of tiieh®s is about 33Q°. Due to
this fact, the latter resistances have to be considerec$ting FPTA circuits in SPICE
simulations, in order to obtain the correct behavior. ThECESsimulations are described

5 The mean on-resistance of the gate switches is ZBIowever, the influence of the gate resistance is not
as significant as the source and drain resistances.
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switch, realized equivalent circuit for
as transmission gate the transmission gate

L1

Cpe Cps Ces Css

A.ﬁ TB
L1l 11

Cpe Cos Ces Css

Figure 1.5: The realization of an open and a closed CMOS switch as trasgmni gates is de-
picted. Additionally, small signal models of an open andaset! switch are provided respectively,
in order to illustrate the parasitic capacitances andtasies of such switches.

in chapter 4, section 4.4. Contrary to that, it is assumetttfeparasitic capacitances
are negligible, since their signal bandwith is estimatelded.3 yg = 66.7 MHz (see [49],
chapter 1), while the configured circuits are operated atxdrman speed of 4 MHz.

1.3 CMOS Transistor Modeling

The large-signal model of the MOS transistor, which is prasly described in sec-
tion 1.1, is useful for getting an insight into the operatinciples of those devices and
for hand calculations, although important second-ordésces are not covered. Thus,
more accurate simulation models are required for sucdgsgtbricating application
specific integrated circuits (ASICs). Consequently, theitation facilities provide ac-
cording simulation parameters for their target processeke designer. As yet, SPICE
simulators support more than 60 different models, whiclecaolfferent technologies and
complexity levels. Each model consists of parameterizetth@emaatical equations and ac-
cording target technology dependent parameters, thatxénected by researchers at the
respective fabs. While the mathematical model is includetié SPICE simulator and is
most often public domain, the parameters themselves arpamyrproperty.

The main shortcoming of the large-signal model from sectidnis the fact that it is no
longer valid for small device sizes down t@Qm and moreover does not include effects
like velocity saturation and intrinsic parasitic resisgtas. Consequently, more complex
models have been developed, which provide the possibditgccurately describe the
behavior of devices with sizes down talum. Thereby, important models are: first,
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the SPICE level 3 model, which covers the range down to ab@iid. Second, the
BSIM3v3 model, which covers the range down t@®um and, finally, the BSIM4v4
model, which is valid for device sizes down to about @m. Two models are briefly
introduced in the following, namely the SPICE level 3 modehich is already quite
accurate and is not yet too complex, and the BSIM3v3 modeictwis used for the
process, with which the FPTA of chapter 3 is fabricated. T8B&MBmodel is not presented
in detail, due to the volume of complex equations, that acessary to describe it. A
more detailed description of the BSIM equations can be fanijé, 24].

1.3.1 SPICE LEVELS3 Simulation Model

Contrary to the basic large-signal model of the MOS deviee;aw and short channel ef-
fects < 3um) as well as temperature effects are considered in the SBWeE3 model.
Therefore, numerous additional parameters have to be tat@account for the calcula-
tions and also the equations have to be accordingly modifibd. main parameters and
considerations of the level 3 model are shown in table 1.5pibethe fact that the level 3
model already includes numerous process parametersuligtrate properties and oper-
ating conditions, e.g. temperature and saturation, itlgadid for structures not smallervalid down t00.8 um
than 08 um. Consequently, as structures of up-to-date processeshanking down to

60 nm and also the FPTA chip, which is used for the experimientsis thesis, is fabri-
cated with a smaller.6 um process, the BSIM3v3 model is briefly introduced in the next
section.

1.3.2 BSIM3v3 Simulation Model

The equations of the BSIM3v3 model are far more complex, duthé¢ fact that all

relevant parasitic effects down to structures @3Qum are included. As a consequencelid down t00.25m
of this, 93 parameters are necessary to describe a PMOS ord\ixé@sistor with the

BSIM3v3 model. In addition to the device parameters, cdpaces and resistances of

metal lines are also taken into account for the parasitiaetion of circuits. Moreover,

the BSIM3v3 model can be successfully applied for simugatioth analog and digital

circuits and therefore has become the industry standard WEDSIistor model. The most

important deep-submicron effects, that are included irB8&8M model are listed in the

following:

e threshold voltage reduction

e mobility degradation due to a vertical field
e carrier velocity saturation effects

e drain-induced barrier lowering

e channel length modulation

e subthresholdweak inversiopconduction

e parasitic resistance of source and drain

¢ hot-electron effects on output resistance
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characteristic considerations

WI/L is replaced with the effective size of the device,
by subtracting the gate overlap regions. For the cal-
culation of the effective drain-source voltagéy),
drain current the narrow-width threshold adjustment factor for the
channel, the substrate doping concentration and the
actual extent of the diffusion and metallurgical junc-
tion is taken into account.
In addition to the geometrical implications, which are
described for the drain current calculation, the intrin-
threshold voltage sic threshold, based on the work function of the sub-
strate and the static feedback threshold adjustment is
considered.
Depending onvgﬁs, the mobility of the minority
charge carriers degrades. Thus, it is accounted by an
effective carrier mobility  effective carrier mobility. Moreover, the carrier mo-
bility is temperature dependend, which is considered
by a temperature coefficient.
Again, the implications of/f?)”S are presumed. Addi-
saturation voltage tionally, the reduced charge carrier mobility is con-
sidered for the calculation of the saturation voltage.
The channel length variation depends on the differ-
channel length modulation ence betweenSt andvialrationgngd therefore a satu-
ration field factor is included in the model.
The transition between theutoff and thestrong in-
versionregion of a transistor, namely theeak in-
versionis also included in the level 3 model. This
is achieved by providing additional equations and a
subthreshold slope factor, which are used to model
the exponential behavior of in the weak inversion
region. Therebyweak inversiorwill be reached, if
Vgs is close to the threshold voltagér).

weak inversion

Table 1.1: The main parameters and considerations of the level 3 moglshawn. Although, the
level 3 model already considers numerous process paranigieronly valid for processes above
0.8 um.

1.4 CMOS Design Flow

Nowadays, there are actually four independent 'realitiesvhich a circuit exists: a be-
havioral model, the schematic, the layout and the final AFligst, the behavioral model
describes the desired properties of the circuit in an attstnadeling language. Second,
the schematic is a symbolic sketch of interconnected coemsn It contains the informa-
tion about the circuit architecture, the type of the compdsmiand their basic component
parameters, e.g. the WI/L ratio of transistors and the vdiresapacitors and resistors.
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Figure 1.6: The design flow for an ASIC is shown. The first step represdrgsconceptional
stage, where the desired behavior of the chip is describé@. nEcessary types of circuits are
designed and are divided and structured in hierarchic&ralics in the second step. First simu-
lations can be performed with both the behavioral model Aadthematics, hence, with the first
two design loops it is achieved to remove conceptional $alBtibsequently, an according layout
of the circuit has to be drawn, in order to define the physiept@sentation of the ASIC and to
be able to extract the whole parasitic information from ihefeby, the third design loop will be
closed, if all specifications are met. Finally, after the ofacturing facilities have fabricated the
real chip, it can be tested in the real world and shipped, tmedourth design loop of testing is
completed.

At this level, it is already possible to predict the behawdbthe drawn circuit by using
the equations from section 1.1, although the circuit is regtspecified for all physical
properties of a target technology in the real world. Thihd, kayout of a circuit is a floor- layout
plan of the different layers of metal, silicon-oxide, padlig®n and diffusion, that shall be
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piled up on a silicon substrate (wafer), in order to fabedae fourth representation of the
circuit, namely the actual ASIC. For a successfull tranefex circuit from the schematic
to an operational chip, powerfull design tools are avadail order to deal with the—
still increasing—high complexity of current systems, fdrigh millions of transistors are
intergrated on one single die. Those tools consist of egiftarcreating schematics, CAD
tools for drawing the layout and comprehensive simulatimrirenments, which allow for
creating various test benches and for considering all fsogmit parasitic effects. In order
to achieve this, numerous steps are necessary: first, ayaligeck of the schematic and
a design rule check (DRC) have to be successfully perforrdedond, the components
of the schematic have to be identified in the layout. This @seds denoted as layout ver-
sus schematic (LVS). Subsequently, all device parasitioshe extracted from the layout
with the layout parameter extraction (LPE). If the LVS ane tHPE are done, simulations
of back-annotated layoutsan be carried out and therefore crosstalk, parasitic layer
wire capacities as well as device mismatching are includetié simulation. Those ex-
tensive simulation and verification methods provide anaiatie design flow, graphed in
figure 1.6, that reliably yields fully operational ASICs.

6 The term 'back-annotated layout’ denotes a layout in whichthe one hand, each component is identified
with its respective representation in the schematic andherother hand, all parasitic effects, which are
extracted from the layout, are provided for simulation.
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Chapter 2

Evolutionary Algorithms

The operation of an EA is inspired by the principles of natweolution. This

chapter introduces these principles on the macroscopiel Jlavhere organisms
have to cope with the challenges of their environment, anthemmicroscopic
level, which provides and develops the construction plamsbtiilding those

organisms. Furthermore, it is shown how the ideas, which dmevn from

the mechanisms of natural evolution, can be formulated as\asiutionary

algorithm. The main constituents of such an algorithm arscdbed and some
extensions to the basic principle are presented. The@tdetionsiderations of
desireable properties of an evolutionary approach are mauderder to substan-
tiate their suitability for a great variety of tasks. The figmance of evolutionary
approaches as global optimizers and their properties asehtrde heuristics are
discussed. Moreover, the consequences of feasible arabible solutions are
described and it is shown how infeasible solutions can belleaih A solution,

of which not all properties can be tested in a given envirommis thereby de-
noted as infeasible solution. The focus is set on analogitiewolution whenever
examples are given in this chapter.

Evolutionary algorithms became very popular during thé 28syears, due to their rep-
utation for being general purpose automated problem solvdhe advent of genetic
programming (GP) [47] even lead to the opinion that EAs candesl as sources of in-
vention. Indeed, EAs have been successfully applied to a gegiety of optimization
problems as, for instance, search, engineering desigedatthg and neural network
training. The most intriguing advantage of using EAs isttlgeinerality, i.e. good solu-
tions can be found without prior knowledge about the tacileablem. The latter gen-
erality will be an important property, if either the problesntoo complex to be able to
develop a simple solution, or it is desired to find unconwdl or alternate designs.
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2.1 Inspiration from Natural Evolution

2.1 Inspiration from Natural Evolution

The manifold algorithmic approaches within the field of E@ arspired from natural
evolution mechanisms. Hence, the vocabulary is also bauofrom natural genetics.
Natural evolution achieved to produce an enormous variegpecies, which are perfectly
matched to their ecological niches. It is noticeable thaual2 million different species
are currently living on earth and it is estimated that, idalg those which already again
vanished, there existed in the order of a billion more. Natewolution has obviously
been able to develop these species in a manner that they laréoatbexist by fitting
into different ecological niches. However, there is irteghce and concurrence between
different species. Moreover, the environment is steadilsgnging and therefore, each
species has to be continuously adapted, in order to be abletive. Looking at nature’s
achievements from an algorithmic point of view, evolutiaurid solutions, represented
by the individuals of the different species, to a given peablspecification, namely to
survive in a present environment. Thus, it is an interesitileg to see natural evolution
as a general optimization algorithm. The question is nowthenone hand, how the
natural concepts can be implemented in an algorithm andh@wther hand, if such an
evolutionary algorithm will be suitable for solving probis. First of all, it is necessary
to take a more detailed look at how natural evolution acguatirks and to derive its main
principles.

2.1.1 Darwinian Evolution

Charles Darwin proposed his thed@n the Origin of Species’in 1859 which is, along-
side with the insights of molecular genetics, the foundatibevolutionary biology. An
essential statement of Darwin’s model of natural evoluigaime survival of the fittest, i.e.
those individuals, which are best adapted to their envimtrwill more likely reproduce
and survive. This phenomenon is denoted as natural seiesio will necessarily occur,
if a population of individuals has to compete for a limitedamt of ressoures and has
to escape from the same predators. Thereby, the basicglfivices of reproduction and
the will to survive is presumed to exist—at least to a cergxitent—in all individuals.
Furthermore, if there was always only the same pool of indials producing off-
spring, the individuals would, on the one hand, be able tciapee to their ecological
niche but, on the other hand, the population would not be tbikevelop truly new fea-
tures in order to adapt to a changing environment, sinceaily reew genetic information
would arise within the individual’'s genomes. Neverthelegsecies are able to adapt to
changing or different environments, due to a second impbplaenomenon, that actually
introduces random changes to the individuals, namely noataflhe latter effect takes
place with a certain probability during reproduction ansutes in a variation of traits in
the offspring generation. As a consequence of iterateddetion, mutation and natural
selection, the traits of the individuals of the current gatien, which produce offspring,
are preserved. Thus, their traits are newly combined agttslimodified present in the
next generation. The various individuals of the new geimrdhen have to face the chal-
lenges of their environment, hence, solely the advantag&aiis of those, which survive
long enough to again produce offspring, are preservedgewitiier features are discarded.
All higher life-forms reproduce by sexual mating. Thus, iallividuals, which are
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able to produce offspring with each other belong to the sgmeiss. Consequently, it
will be principally possible that new species arise, if tiedsion of subpopulations of
one species reaches a point where sexual reproduction dretivese subpopulations is
no longer possible. Geographical separation can be a rdasdtime latter effect. It is
believed that fundamental diversification of the speciesdigady taken place at a varyliversification of the
early stage of life and once there were no free ecologicélesideft, there was no roonspecies
for new species. Therefore, nowadays it has become unldbkit not impossible that
entirely new species evolve.

Concluding, a species evolves by means of reproductionloranvariations and natu-
ral selection. Thereby, natural selection affects theviddals, while the population as
a whole is evolved. The three stated mechanisms of evolatieralready featuring al-
gorithmic characteristics, due to the presence of an @dravolution loop, modification
and selection operations. The individuals can be congidasecandidate solutions to a
given problem, although the suitable data structure cay loaldelivered by looking at
the construction plan of the individuals themselves th#ties genome.

2.1.2 The Genetic Level

The Darwinian principles, that describe a macroscopic viewevolution, go together
with molecular genetics, which describe the evolution naattms from the microscopic
point of view. First of all, it is an important fact that alVing organisms actually feature
two representations of themselves: first, the physioldgined morphological appearancegenotype and phenotype
conjoined with the organisms behavioral traits is denotegleEenotype. Second, théepresentation of
genotype, which contains the genetic encoding of the camjpfdormation of how to °'9aMsms
develop the phenotype from one single zygbteAll information about the organism,
which is stored in the genotype, resp. the genome, can batethdy its offspring and is
thereby subject to random crossover and mutation. Additiskills, that the phenotypevariation of the
gains during its lifetime, are not influencing the genomeanedtherefore lost by its deathgenotype, selection of
Its genetic information will also be lost unless the orgamjgoduces again offspring and"® Phenotype
passes its genome to the next generation. Thus, from malegeahetics point of view,
the organism with its skills and experiences is merely agbype, the construction plan
of which will only be worthy to be preserved, if the organisuteeeds in the challenges
of the natural environment.
The genome consists of a set of genes, which are linearlpgedain several chromo-genes and chromosomes
somes. The number of chromosomes may vary from species ¢@spe.g. the human
genome features 23 of them. Depending on the number of copid® chromosomes,
which are kept within each cell of an organism, it is calleglbal (one copy) or diploid
(two copies). Higher life-forms usually include two copiea maternal and a paternal
copy—of each chromosome in their cells, except for the gasyathich contain either
only the paternal or only the maternal copy. Note that theegamare haploid cells, i.e haploid gametes
egg cells and sperms, which are specialized to reproduatidrcontain only one version
of the chromosome of the otherwise diploid cells. As a consage of this, the repro-
duction mechanisms of haploid and diploid organisms diffethe first case, the haploid

L A zygote is the haploid stem cell, which is formed by the cewsfertilization where the haploid sperm
cell and the haploid egg cell are merged.
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maternal genome: A &) - ! (2)
T T ‘ 1

paternal genome: B

Figure 2.1: The process of meiosis is illustrated in 4 steps, which arekevise arrangedl) The
gametes of the mother and the father form a new cell, which tleatains maternal and paternal
genomes(2) Subsequently, the chromosomes are split into chromatiaésiee aligned in that
way that the same genes form paif8) In this state, the chromosomes are subject to crossover
processes between maternal and paternal genes, which kednaith the box. Additionally,
mutations occur due to a certain probability as indicateti wie ellipse(4) The chromatides are
completed with the respective base pairs and finally yiefdmiosomes for 4 new haploid cells.
Note that the genetic information is typically stored asragl®NA chain, which, in turn, consists

of four base pairs: guanine (G)-cytosine (C), thymine (@g@ne (A), C-G and A-T.

cell first duplicates its genome and subsequently dividedfiinto two genetically iden-
tical cells, by providing each half one copy of the genom@eetvely. This process is
denoted as mitosis. Reproduction is a little bit more comjibe haploid cells, due to a
female and a male organism are necessary for sexual matmeglafter process is called

meiosis meiosis and is shown in figure 2.1. Meiosis takes place inraesteps: first, a female and
a male gamete have to combine their chromosomes, in orderrtod new diploid cell,
which contains both a maternal and a paternal chromosomsn8gthe chromosomes
are duplicated and are aligned, i.e. those, which contansime genes, form pairs.
Third, the aligned chromosomes are split into identical&sl(chromatides) and subse-
quently, genes are swapped between maternal and pateroala$omes copies by means
of crossover. Thereby, the crossing points are chosen nalgdd-inally, the 4 counter-
parts to the chromatides are built and are recombined tacfmamosomes, hence suffice
for either four haploid or two diploid cells. Furthermorejrihg meiosis, the duplication
and recombination processes of the chromosomes are stibjaeftequent errors, caus-
ing slight random modifications in the genes of all four réagl chromosomes. Those
various types of modification processes are denoted asiongat
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2.1.3 From Genotype to Phenotype

As described in the previous section, recombination (o3 and mutation affects ex-
clusively the genome, whereas only the phenotype is sutgjecttural selection. It isim-
portant to realize that information is only passed from dyo® to phenotype and nevebne-way information
vice versa. Thus, the developmental process from genotygEhénotype is itself of passing
utmost importance to the success of natural evolution. erplex self-organization
processes, which are not yet fully understood, are builtiegphenotype with the infor-
mation stored in the genome. It is amazing that the set o$ faledevelopment are orga-ules for development
nized in a manner that the complete set of genetically ertcpdaperties is reflected by
the resulting phenotype. However, due to the inherent nraméss of self-organization,
no phenotype will turn out exactly like any other, even ifithgenomes are similar or
even identical. The latter process provides rich possaslifor natural selection to sort
out the fittest individuals.
This developmental process is denoted as ontogenesis anigleésa by amino acids.
Those amino acids are generated by first transcribing stsipdehe genetic encoding,
i.e. creating copies of it. Note that the genetic informai®most often referred to as the
desoxyribonucleic acid (DNA), whereas the copied partgalled messenger ribonucleic
acid (RNA). Subsequently, the RNA is translated into défdgramino acids, which are
then concatenated to a great variety of proteins. An impbpeoperty of those proteinsproteins cause
is their ability to perform various tasks within the cell laking on different shapes. Theelf-organizing cell
generation of proteins is a self-organized process; A icedancentration of a proteindifferentiation
may excite or inhibit the generation of other proteins. Big theans, the cells are able
to differentiate, thus, become e.g. a liver, blood or skilly @éhich is crucial for creating
complex organisms. Since this genotype phenotype mappirgfascinating process,
albeit equally complex, a lot of research in the field of etiolary computation is done
to create suitable rule sets for self-organization.

2.2 Building Evolutionary Algorithms on Nature’s Concepts

From an algorithmic point of view, the achievements of ratewvolution suggest to use

its principles for solving optimization problems, sincéstls what evolution successfully

did and still does: optimizing organisms in order to empothem to best cope with theorganisms as candidate
challenges of their environment. In order to transfer thetmaisms of evolution, ansolutions

algorithmic counterpart has to be defined. Thereby, thevitidals represent candidate

solutions and are, according to natural evolution, optedim groups of various different

individuals. This group is called the population. The testimnment for the individuals

is given by a fitness function, which measures their perfoigeand assigns an accordintifness function as model
fitness value. Most often, better performance results ireatgr fitness value, althoughfor the environment
especially in the field of evolvable hardware, the fitnes$ sametimes be minimized,

if it represents the deviation from a desired behavior. lrarrhore, in the case of multi-

objective optimization, more than one fitness value is asglgo each individual. For

the reason that multi-objective optimization is a topic liktthesis, it is more closely

described in chapter 7, section 7.1. Based on their fithégsvéhe individuals are ranked

and subsequently, the parents, that shall produce oftgpaire selected. Offspring itself

is produced by applying crossover and mutation variatiograjprs to the genotype of
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Figure 2.2: A generic operation principle of evolutionary algorithresshown in the figure. The
implementations of the different modules are describe@aticn 2.2.2.

the parents. Consequently, in analogy to natural optineizaif organisms, the algorithm
continuously improves the ability of the individuals towslproblems, defined by the
fitness functions. The algorithm stops as soon as a predafnethation condition is

fullfilled, e.g. the desired target fitness is reached by onenpre) individuals or simply

a maximum number of generations is exceeded (iteration isnéached). The operation
principle of an EA is illustrated in figure 2.2.

2.2.1 Historical Roots and Current Subareas

The roots of evolutionary computation are reaching backéoforties of the 20th cen-
tury and then, since the 1960s the research field started¥oand spawned 4 main ap-
proaches to evolutionary computation. Three of them haee belependently developed
very early, namely evolutionary programming [12,22, 2&Jnetic algorithms [27,37] and
evolutionary strategies [11]. However, genetic programgnthe fourth branch, was in-
vented around 1990 by Koza [47]. Initially, evolutionaryogramming aimed for gener-
ating artificial intelligence by simulating learning prases, whereas genetic algorithms
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and evolutionary strategies have been developed for paeao@imization. In that sense,
genetic programming can be seen as an extension of gerggiritims, due to the genetic
encoding itself is designed for directing a developmentaitjprocess in order to create
the phenotype. For a survey of the current entire researtth flee reader is referred
to [21].

2.2.2 Modules of Evolutionary Algorithms

This section gives an overview of the main constituents ofwgionary algorithms and

points out some examples of possible extensions to the basiltles. Five modules

of the EA have to be specified, in order to define a particulgpi@mentation: first, the

genotype, which is represented by a data structure, thdaiosnall relevant parame-genotype & phenotype
ters for expressing a candidate solution. This part is stilbgethe actual optimization.

Second, a mapping algorithm, which is able to build the cetepphenotype from its

genotype. Alternatively, the phenotype can be created lewaldpmental process. In the

latter case, the mapping algorithm is implemented as a seiles for self-organization.

Third, the variation operators, namely crossover and nautathat describe how genesariation operators
from parent individuals are combined in order to producemfhg and which random

perturbations are introduced. Fourth, the fithess fundscm important part of the al-fitness & selection
gorithm, since it describes on the one hand the individweds énvironment and, on the

other hand assesses their performance by assigning fitakssy Last, an implemented

selection scheme chooses the individuals, which shallloeedl to survive or to produce

offspring, according to their fithess values. An overvievitmfse modules and some ex-

amples are provided in the following and in figure 2.2. Acaogdto the focus of this

thesis, given examples are biased towards analog cirautiheyis.

Genotype.

The genotype contains all variables and parameters, thatemessary to completely deencoding candidate
scribe a candidate solution to a given problem. Usuallya tigies are chosen, that allovgolutions

for an efficient encoding, i.e. in the case of analog comp@em integer identifier for

the component type and for the target nodes respectivetyflaat values for the com-

ponent size and properties. In the case of configurable tzaegit is also possible to

directly work with configuration bit strings for the targetistrate.

Phenotype mapping.
The genotype-phenotype mapping has to perform the tasknstreating the phenotypebuilding the phenotype
representation of an individual, based on its genetic méiron.
Fixed architecture Consider configurable hardware as an example of this. Irc#dss,
the architecture is fixed and the task for the mapping funasdo activate or deactivate
features of the particular hardware.
Self-organization.In the case of a general circuit, the components and the ctwne
ity of a circuit is given, but a place and route algorithm hasdalize it with available
ressources.

Variation operators.
Variation operators define the way in which parent individyzroduce offspring and to
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which random perturbations the genomes are subjectede Hnertwo types of variation
operators, namely crossover (recombination) and mutafiggreat variety of implemen-
tations is possible with respect to the data structure ofjiitype. Thus, examples of
popular, general approaches are given.

N-point crossoverThe genomes are aligned and N randomly positioned crossingsp
are selected. Subsequently, the genome is cutrintd pieces, which are recombined
after exchanging all odd (or even) parts.

Uniform crossoverAgain, the genomes A and B are aligned and two new genomes A
and B’ are created by successively randomly deciding wielleegene?,, is added to A
andB, is added to B’, oA, is added to B’ andB,, to A..

Block crossover.Randomly sized and positioned blocks of genes are exchdoged
tween A and B. Note that generally the blocks are randomlgdsibut the size is the
same for A and B.

Fitness function.

The fitness function evaluates the individuals by asseshigig performance and there-
fore it also contains the description of the problem to beemhl In the case of analog
circuits, the problem is often specified by a desired targige characteristic and the
fitness value is calculated as the deviation from the culvehavior of a candidate solu-
tion. It is an important and at the same time difficult tasknbpliement a suitable fithess
function. This is due to the various possible shapes of thed# landscape. If, for in-
stance, the fitness landscape features numerous localegtiwvill be unlikely to find the
global optimum, although EAs are considered to relativéfiziently sample the search
space, at least if the population is randomly initialized anofficiently large. During the
course of evolution, the whole population improves towdrdter fithess. Thus, it is
on the one hand important to avoid premature convergencemide other hand, it is
desired to quickly find a solution. Consequently, the evofuprocess is inherently split
into two phases: the phase of exploration, where the indalglare randomly spread over
the whole search space and the phase of exploitation, whendigiduals have already
converged, hence, are sampling a region of good fitness.

Selection Schemes.

The selection scheme chooses individuals, that shall bevedl to survive or to produce
offspring. Thereby, selection is based on the fithess valtidse individuals. The parent
selection picks two or more individuals for producing offsg, whereas the individuals,
which are passed unchanged to the next generation are gdigktiek survivor selection

scheme. Principally, it is possible to perform numeroushmiiatical operations on the
fithess values, resulting in a great variety of imagineablection schemes. Thus, only
the selection schemes, which are relevant to this work a®septed.

Fitness proportional.In this case, the fithess values are mapped to the intéyHl
thereby stretching and compressing different regions négis. The selection pressure
can be manipulated with arbitrary mapping functions. Thividuals are then selected
according to equally distributed random numbers betweemdQla As a consequence of
that, it is possible to emphasize desired regions of fitness.

Rank basedThe rank based selection does not take into account whetadithess
values are spread over wide ranges or are all similar. Orcratiking is done, selection
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depends only on this rank.

Tournament.According to the tournament size, a number of individualsaisdomly
picked and the champion is determined by comparing thegd#values. Only the cham-
pion is finally selected, whereas all unsuccessfull corntgrstare discarded, although the
latter individuals can still participate in other tournarse

Diversity. A metric for measuring the diversity between the individuaf the popu-
lation is introduced and selection is based on this crowdistance within the fitness
landscape. The aim is to maintain diversity within the pagioh and thereby efficiently
explore the search space.

Elitism. Elitism is a simple and popular possibility to ensure that llest individual
always survives. After the offspring generation is creatrd evaluated, the worst N in-
dividuals are replaced with the best N individuals of theepaigeneration.

Non-dominated sortinglhis selection scheme works only with multiple fithess value
per individual. The aim is to assess different tasks witfedént fithess values and allow
individuals to survive as long as they are superior in attleas task. Since this selection
scheme is used and refined in this thesis, it is describedail dechapter 7, section 7.1.

2.2.3 Extensions to Evolutionary Algorithms

In addition to the basic modules of an evolutionary algonittdescribed in the previ-
ous section, numerous extensions are investigated in feanmeh field. An interesting
approach is to implement different population models, &lgnd models or deme (subalternative population
population) models. If such an alternative population nhetiall be implemented, themodels
selection scheme will have to be changed accordingly. Incee of island models,
the algorithm has to independently evolve multiple sejgargtopulations, whereas the
selection mechanism—to a certain extent—exchanges thdilé between those island
populations (migration) [72,73,97]. The difference betwé¢he island and deme model is
that the demes are partly overlapping and mating is alwastscted to the same subpop-
ulation. Thus, individuals can only get to a fitter (or lesydieme by diffusing through
the overlapping region.
Another possibility is to replace the generation basedutiani loop with a steady-statea steady-state evolution
model. Therefore, individuals of different ages coexisthia same population and aréoop
able to produce offspring. The evolution loop is modified way that only a couple of
individuals are replaced for each generation. In this caisedditional selection module
has to decide, which individuals shall be discarded. Bpalby, it is also possible to
manage populations with a variable population size as lsngemory and computation
limits are not exceeded.

2.3 Characterization of Evolutionary Algorithms

As natural evolution, and therefore EAs, are consideredbhsst algorithms, that can

be easily applied to find solutions for a great variety of peois, this section intends

to point out general properties of such algorithms withia field of optimization. Due

to the basic concepts of EAs, there are inherent limitatfionsvhat can be expected to

achieve with an evolutionary approach. General propesfiegolutionary algorithms are:general properties
first, the population based approach allows for simultaslyosampling different points
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within the fitness landscape. Second, crossover, mutatidrsalection contain random
decisions. Third, it is expected that, with a probabiliteager zero, recombination forms
improved individuals and mutation introduces slight barafichanges. Consequently,
those three features influence the course of the optimizatiocess.

2.3.1 Features for Global Optimization

In general, the shape of the fithess landscape defines thdedmpf a given problem.
Thus, only if it is possible to state a fitness function, wHhiakarly depends on the input
parameters, it will be possible to deterministically find tflobal optimum. Since this is
usually not the case, hill-climbing algorithms and grateased approaches most likely
get stuck in local optima. This will not necessarily happi&an evolutionary algorithm
is used. As described in section 2.2.2, the course of ewnluias two phases, namely
the exploration phase and the exploitation phase. If thelatipn is carefully initialized,
i.e. the individuals are uniformly spread over wide rangethe search space, it will be
more unlikely that the EA gets stuck in a local optimum durthg exploration phase.
Although, as the population continuously improves by medrselection, all individuals
sooner or later end up in the vicinity of a good solution, viahgnot necessarily the global
optimum. Thus, the probability of finding the over-all beslution can be increased by
maintaining diversity within the population and therebwpiaing the so-called premature
convergence of the solutions by prolonging the exploratibase.

EAs will be a good choice, if multi-objective problems shiadl tackled, due to the
fact that the population is able to provide numerous satstiwith different properties.
Thus, if a clearly defined global optimum does not exist, heeahe problem will only
be solved by trade-off solutions, it will become even morf@alilt to distinguish those
solutions from local optima. In order to achieve this, it Bcassary to implement a
selection scheme, that in fact preserves different salat{see chapter 7).

2.3.2 Is Any Convergence Guaranteed?

It will be important to know, if at least any convergence oftaf can be guaranteed. On
the one hand, it is desired to quickly find a good solution,levbn the other hand, it is
equally important to know if any solutions can be found atlaik difficult to understand
the optimization process of an EA as a whole, whereas it i ®asack the application
of the variation operators for one generation.

Thus, one possibility is to model EAs as finite Markov Chaimbkich are defined as a
set of all possible states 1,...,k and start [0, 1]" with z}‘:1 starf = 1 are the probabili-
ties for all states to be the initial state. Note that in Markoocesses, the state at the time
t only depends on the statetof 1 and is independent from any earlier state, just like the
new population is created from only the current one. The gidity for state to directly
become stateis given byzik:l 1,....kx1,....k=1. As shown in [96], it can be proven
that for a simple EA with a population size of 1 and a linearefitm function the optimum
is found after< &'(nlogn) steps.

A second possibility is to use stochastic arguments, inrdcderedict convergence [96].
Considering a population of infinite size, the initial fiteaglues are distributed accord-
ing to the Gaussian distribution. After creating the offisgmpopulation by applying the
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variation operators once, the variation of the moments efassumed Gaussian distri-
bution can be calculated. Thus, it will be possible to pretlie course of optimization
to a certain extent, even if the implications of populatiofdimited size are taken into
account. In the simplest case, the success rate of theigar@ierators can be obtained
by comparing the number of improved individuals with the ta@mof worsened individ-
uals. Based on the latter considerations, the performahdgeovariation operators of
chapter 6, section 6.3 is tested.

Admittedly, reliable statements can yet only be made fopgnproblems. Despite
this, the latter considerations are useful for develophmg riose for assessing probleranose for convergence
specific implementations of variation operators. Furtte@enthe fact that convergence
can indeed be guaranteed for simple problems suggestdsbdbacomplex ones at least
a local optimum can always be found.

2.3.3 Model-Free Heuristics

Only two of the modules of EAs, that are introduced in secfdh2, have indeed to be

implemented in a problem specific way, namely the representaf the phenotype and

the fitness function. Every other module is completely irmhelent from the problem

definition. Thus, neither further information about theioyzed system nor prior knowl- no problem specific
edge about how a candidate solution actually works is ireduith the algorithm. Due knowledge is included
to this, EAs are often denoted as model-free heuristics askibbox approaches. As a

consequence of this, unlike most other heuristics, whithae such problem specific

knowledge, EAs can be successfully applied to a great yaofebptimization problems,

although the performance is possibly not as good in speasd<

In the case of the evolution of analog circuits, the usage adehfree evolutionary
algorithms is motivated by two main reasons: first, it is netmlly possible to formu- two reasons for using an
late an optimization strategy for all tasks of analog cirsynthesis. Second, an uncorgvolutionary approach
strained search could possibly discover previously unkndesign principles or unusual
solutions, which are intersting to investigate.

Aside from EAs, there are other model-free heuristics asgXample, random search,
hillclimbing and simulated annealing [21, 59, 96]. Simathtannealing can be consideomparison with other
ered as a special implementation of an EA, since it is pradlyippossible to implement optimizers
the modules of the algorithm in a way that the cooling funti®represented by a vari-
able selection pressure and a population size of 1 is ché&mmdom search samples the
search space randomly and does not take any informatiore ditttess landscape into ac-
count, whereas hillclimbing, that always follows the sesifascent in the neighborhood,
is only suitable for performing local searches. The congoeribetween the different
algorithms reveals additional advantages of the evolatip@pproach, which optimizes
a whole population of candidate solutions in parallel. Oa ¢ime hand, it is possible
to efficiently sample the search space during the explorgiftase, as described in sec-
tion 2.3.1. On the other hand, the modularity of EAs and tlieendently processed
candidate solutions allow for an easy parallelization.
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2.3.4 No Free Lunch Theorem

During the last decades, various implementations of EAs l@en successfully applied
to a great variety of tasks and are therefore rightly comeitles general problem solvers,
which are only outperformed by dedicated algorithms fotipalar tasks. Nevertheless,
it has to be mentioned that evolutionary approaches arerogep to always find a suf-
ficiently good solution in a reasonable amount of time. TheRxee Lunch theorem by
Wolpert and Macready [100], however, states that, if avedagver the space of all pos-
sible optimization problems, all nonrevisiting, modetdralgorithms will perform equal.
Thereby, algorithms, that are sampling the same point irs¢faech space only once, are
denoted as nonrevisiting. The latter constraint can béydagdlemented in evolutionary
algorithms with a sufficient amount of memory. In simple ternfi any algorithm is bi-
ased towards a particular set of problems, there will alvieyanother set of problems for
which it will perform accordingly worse. Moreover, it is gnpossible to break the limi-
tations of the No Free Lunch theorem by incorporating prnobépecific knowledge into
the algorithm, hence, by dismissing its model-free propertBesides, numerous imple-
mentations of EAs can anyway not be considered as modeldimee it is questionable,
in how far the problem specific design of the genotype and dniaton operators already
violates the model-free nature of the algorithm.

On the one hand, theoretical analyses of the performancA®fEe as yet either only
available for too simple problems or the drawn conclusi@msain on a too general level.
On the other hand, the heretical question can be askedgsifnitpractice relevant that a
particular EA will perform bad on certain problems, sincaggally, it is rather important
to quickly and reliably find good solutions for a specific tatlan being able to solve all
possible problems at once.

2.3.5 Feasible and Infeasible Solutions

The fitness function serves as the only link between the prolaind the algorithm in evo-
lutionary computation approaches. As a consequence ofttlisiecessary to 'perfectly’
characterize the problem with the fitness evaluation psdesparticular, it is important
to correctly handle feasible and infeasible solutions. fityeulation may contain such in-
feasible individuals, due to the fact that, in many casasgtnetic encoding offers richer
possibilities than can be correctly handled in the giverirenment. Very clear examples
from the field of circuit evolution are solutions, that cantanconnected components,
are not even connected to an input/output terminal or aidetivinto unconnected parts.
Nevertheless, such solutions possibly contain useful| @ggrating parts or, as in the
case of the experiments in this work, represent feasiblgisak in one test environment,
but are infeasible in another. In general, the genotype riapset of solutions which is
divided into the subset of feasible and infeasible sol&tiorhus, it is moreover possible
that the path to the desired feasible solution leads throlglsubset of infeasible ones.
Note that the feasibility of an individual is not necessadbrrelated to its fithess value
in a given environment.

There are several ways of handling infeasible solutions:simplest possibility is to
reject infeasible solutions, which is a popular technigaighough not very satisfying.
Furthermore, in the case of non-convex feasible searclespeds only possible to reach
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the feasible optimum by crossing infeasible regions. Itis® gossible to repair infea-repair infeasible
sible solutions in a post-processing stage before acteatyjuating them, although itsolutions

has to be mentioned that this implies additional problentifipealgorithms. The latter

process is related to a combination of evolution and legraimd is denoted aBaldwin

effect[59]. In this case, the question is whether the infeasibthviduals are replaced

with their repaired version or notL&marckian evolutiori59]). Further, it is possible to

use an aggregated fitness value, where infeasible solggirespenalty offset. Howeveraggregated fitness /
it is quite difficult to balance and implement aggregateceisvalues effectively. Hencenulti-objective

if feasible and infeasible properties are separately ewadl; it will be more elegant to uséPtimization

a multi-objective optimization approach. Finally, one loétmost reasonable heuristics

for dealing with feasibility is to use specialized genegpnesentations and variation opdesign care-taking
erators to inherently maintain the feasibility of indivals. Thereby, it is either possiblegenome and variation
to include according constraints in the genotype or theaipes, or even encode a buil@Pea°rs
instruction for the phenotype in its genes. Evolutionarggpamming and genetic pro-

gramming techniques are examples of the latter categomsteasls feasibility maintaining

variation operators are developed in this thesis (see ehéptection 6.1.2).
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Chapter 3

The FPTA: an Analog Evolvable
Hardware Substrate

This chapter introduces the architecture and the operapdnciple of the Hei-
delberg FPTA, a field programmable transistor array (FPTA)nsisting of
16 x 16 programmable transistors. The ASIE fabricated in CMOS technology.
Furthermore, the hardware environment is described in Whie chip is oper-
ated. It is possible to realize a great number of transistiocuits on the FPTA,
simply by loading an appropriate configuration bit stringarthe chip. Due to
the fact that reconfiguring the FPTA and subsequently mé&agtine character-
istics of the configured circuit can be performed much faitan a simulation
of the same circuit, the chip is a well suited substrate fghhi iterative chip-
in-the-loop measurements. Thus, in this thesis, the FPT#oésated for cir-
cuit evaluation alongside with an evolutionary algorittwwhich requires a great
number of evaluations of candidate solutions. The aim iyhthesize transistor
circuits from scratch and—in the ideal case—without prioowledge of analog
electronics. Unfortunately, the prize for using real coofaple hardware for
circuit testing instead of a simulator, is the increasinguence of parasitic ef-
fects. The consequences of this are discussed in sectionA3.8et, there are
two research groups using custom made configurable ASICanfalog circuit
synthesis, namely the JPL and the Electronic Vision(s)gfaam Heidelberg. A
short comparison of the two approaches is given in sectitr83.

There are yet two main approaches to evolvable analog aimdlis research field: first,
the one of the group of Adrian Stoica at the JPL labs, who feesi®n architectures that
provide programmable and interconnectable cells of highptexity? [75, 76, 79, 106,
107]

2 Every single cell contains as much complexity as to be cordifjas one operational amplifier (OP).

37



-

-
»n
-
N
-
»
~
K
n
-~
-
L)
‘-
B
Rl
-

4......'..l.'...

il

72N

Figure 3.1: Top: a photograph of the packaged FPTA chip, mounted on a testibddre test
board can be attached to the PCI real-time test environmdestribed in section 3.Rottom: an
enlarged view of the FPTA chip. The arrayX®x 16 configurable transistor cells (red area), the
10 circuitry (green area) and the bond wires are recognieedlthe FPTA chip is a full-custom

ASIC designed by Jorg Langeheine [49].
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and second, the one of the Electronic Vision(s) group ofdasdr Meier at the Univer-
sity of Heidelberg, where the Heidelberg FPTA was built,sisting of a large number
of basic transistor cells. For convenience, | will refertie Heidelberg FPTA simply as
the FPTA throughout the remainder of this thesis. FPA#@m other groups are marked
with the name of the respective group. The idea of the latieolbgy is to provide a
fine-grained substrate serving aSiicon Primordial Soug52]*. The philosophy behind
the two approaches differs: while the use of comparably dexngells aims to quickly
finding robust solutions for problems that fit the predefinedcsures, the single transis-
tor cells provide a higher degree of freedom to the evolvimguds and therefore offer
the possibility to discover new circuit topologies. Newetess, finer grained substrates
suffer from increasing parasitic effects and—due to thgdasearch space—slower con-
vergence of the optimization algorithm.

3.1 The FPTA's Architecture

The very idea of the FPTA arose from the successful evolutibtone discriminators

by Thompson [84, 85, 87] who achieved to distinguish two sgumaves of different

frequencies by exploiting parasitic effects of a FPGA by nseaf an evolutionary al-

gorithm. Since the underlying analog nature of the FPGA ésdhgin of its parasitic the very idea of the
effects, Thompson'’s results suggest that a configurabllegsabstrate is possibly everrPTA

more suitable for evolution experiments. The FPTA chip,clihs used for all presented

intrinsic hardware evolution experiments in this thesésaifull-custom ASIC designed

by Jorg Langeheine [49,50,52]. Fabrication technologghefFPTA is the Austria Micro

Systems International AG (AMS).®um CMOS process. A photograph of the chip is

shown in figure 3.1.

3.1.1 Configurable Transistor Cell

The configurable transistor cell is the basic building bléak circuit synthesis on the

FPTA. Each cell contains a matrix of either 20 differentlyes NMOS or PMOS transis-

tors, which behave like one single variable transistor éodttside world. Internally, the

transistors are arranged in 4 columns with increasing wiMthand 5 rows with increas-

ing length (L). Hence, it is possible to select one of the (@thlogarithmically spacedinternals of the
values 06,1,2,4,8 um for the transistor length, by enabling the correspondimg of configurable transistor
the transistor matrix. Due to the four transistors of one ap&/connected in parallel, the®!

resulting width is programmable by enabling different camaktions of those transistors.

Since the selectable transistors feature the valy2st 8 um, the resulting width can

take on linearly spaced values between 1 andubb. Note that it is possible to connect

transistors in parallel in order to achieve a similar chimagtic as one transistor with the

sum of the sigle widths, whereas the length is not properiyatte by just serializing
components.

3 Field Programmable Analog Arrays consist of configurablal@m building blocks, that can be intercon-
nected in various ways and are usually arranged as a matieselsubstrates aim at providing the analog
counterpart to the widely applied FPGAs.

4 For a more detailed summary about both approaches and athesgn automation in general, the reader
is referred to [26, 28, 49, 53].
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Figure 3.2: Small signal equivalent circuit model of the complete pesgmable transistor cell.
All drawn switches are assumed to be ideal. The resistor apdaitor values are understood to
be quantified inQ andfF respectively. The figure is taken from [49].

All inner transistors that are not contributing to the résgl W/L ratio are electrically
turned off by pulling the gate to gnd (NMOS) or to vdd (PMOS¥.carding to figure 3.2,
all source and drain terminals of the inner transistors aeetlly connected to a common
source and drain node that can be connected to one of thevailaltde outside connec-
terminal connections  tions (N,S,W,E), vdd or gnd. Additionally, the FPTA cellsopide 6 routing switches,
and routing switches  \hich offer the possibility to directly connect any of twotsigle connections (nodes).
The transistor array is designed in a way that the configamadf short-circuits is inher-
ently impossible, thus, the substrate is self-destruciafe.
A consequence of the high configurability of an FPTA cell is iresence of a con-
siderable amount of configuration circuitry, namely trarssion gates, logic gates and
parasitic configuration ~analog multiplexers, as depicted in figure 3.2. Hence, thgrammable transistors, rep-
circuitry resented by the FPTA cells, feature a different behavion thatandard transistor with
equal W/L. Example characteristicare depicted in figure 3.5. The consequences arising
from this for the whole chip are discussed in 3.3. Furtheaiteeibout the configuration
circuitry and the cell layout can be found in [49, 50].

3.1.2 Transistor Cell Array

16x 16 NMOS/PMOS  The transistor cell array represents the actual evolvaliistete and consists of an array
cells, arranged in a of 16 x 16 configurable CMOS transistor cells. As can be seen from€iguB, half of
checkerboard pattem 0 ca|is are designed as NMOS transitors and the othershdéisigned as PMOS tran-

5 The characteristics are obtained from simulation usingMi& 0.6 um process parameters with which the
FPTA is manufactured.
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Figure 3.3: A simplified architecture of the FPTA is depicted above. PM@ are colored light
red whereas NMOS cells are colored light blue. The transéstay is enclosed by 10 cells which
are connected to the border transistor cells. Input voltegterns as well as measured voltages
are buffered in the 10 cells and subsequently applied tortesistor array resp. read out by the
controller. The figure is taken from [49].

T-BJT

sistors. The latter two types of cells are arranged in a drbdard pattern. External
nodes (N,S,W,E) of adjacent cells are hard-wired. Combiviidthe abilities of the con-
figurable transistor cells (section 3.1.1), it is possibledalize a great variety of CMOS
transistor circuits on the FPTA. All possible circuits aepiresented by a corresponding
configuration bit string. FPTA circuits are

Furthermore the transistor array is enclosed by sample aftl® cells, which can representedby
either apply input voltage patterns to every outer node eflibrder cells, or measurg®nfiguration bitstrings
the output voltage characteristics of a configured or ewhleecuit. Up to 8 of these 10

. . .. . border cells for voltage

cells can be used at the same time, while the remaining, dni@eells are switched
to 'passive mode’—which means their internal sample and habplifiers are powered
down and disconnected from the transistor cell array—imiotd minimize their thermal
and parasitic effects.

The 10 cells are consecutively configured with new voltagagas or read out by the
controller. As a consequence, the maximum sample and hedgiéncy with which the
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3.1 The FPTA's Architecture

sampling frequency [MHz]
input(s) 1 2 6
output(s) 1 2 6 | 1 2 6 | 1 2 6
fastest settings| 20.00 10.00 3.33 8.00 5.71 2.67 2.35 211 -
slowest settingg 0.17 0.08 0.03 0.08 0.06 0.02 0.03 0.02 -

Table 3.1: An overview of example 10 setups for the FPTA and the resggampling frequencies
for a system clock oA0 MHz. The possible values between the lower and the higher sample
frequency cannot be programmed continuously but dependeoRRTA’s timing scheme.

input test patterns can be applied or voltages can be mebdapends on the maximum
settling times of the 10 cells. Therefore, the maximum sanfpdquency decreases with
increasing number of 10s cells. Thus, a trade-off betweempfiag time and accuracy

has always to be found. In general, slowly varying voltagiepas can be applied with

a higher frequency due to the fact that the sample and hajgstaave to perform only

small voltage changes in this case. Timing diagrams and haustive description of

the FPTA’s internals can be found in [49]. Typical samplegtrencies, used for the
experiments of this thesis, are listed below in table 3.% Jystem clock is set to 40 MHz
for all presented experiments.

3.1.3 Comparison with the JPL FPTA

Since, to the author’s knowledge, the JPL FPTA is to date tie reconfigurable analog
substrate that has been designed with the same intentidhe Bieidelberg FPTA, it is of
particular interest to present a short comparison of thaseASICs. Obvious similari-
ties are that both chips are analog, highly reconfigurabdecansist of basic cells, which
are interconnected and arranged in a matrix. Thus, bothrstdés—presumed that the
respective FPTA is attached to a suitable controller, whieble to perform reconfigura-
tion, application of input voltage patterns and measurifip® outputs—are suitable for
hardware evolution experiments, although both approaeatare considerably different
architectures. An overview of the most important similagtand differences between
both chips is given in table 3.2, in order to facilitate comgan. The answer to the
question, which approach is more suitable depends on tHe thad shall be reached. If
higher convergence speed, complexity and robustness efvtiieing circuits is desired,
the JPLs approach will probably be the better choice, degpithe fact that the resulting
circuits will inherently always be biased towards alreadgwn solutions. However, with
the intention of finding entirely new design concepts, thghhactually exploit parasitic
effects of a particular substrate instead of suffering ftbem, the Heidelberg FPTA is
more suitable. Additionally, a freely configurable subgtrean still be pre-structured by
software to enhance the applied search algorithm, e.g. thatlpossibility to use prede-
fined building blocks [49, 54]. Yet, this will not diminishéhthigher amount of parasitic
devices in the resulting circuits.
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JPL FPTA2 Heidelberg FPTA
no. of programmable cells 88 16x 16
no. of transistors per cell 1 programmable transistor
available to the 44 which is realized with 20
synthesized circuits real transistors

fixed and predefined to-
pology and componentsone programmable tran-

basic cell structure which are based on ap-sistor, either NMOS or
proved human (OP) de-PMOS
signs

transistors, capacitors and

components used : exclusively transistors
resistors

inner-cell routing capabili-
ties as well as the possibil-
ity to select various differ-
ent values for W/L ratio of
the programmable transis-
tor

the topology is configura-
configurability ble by opening or closing
numerous switches

total no. switches per cell 44 28

interconnection of cells  in both cases each cell is connected to the nearest
neighbor in all four directions (N,S,W,E)

inputs and outputs can
inputs and outputs can beonly be connected to the
applied to arbitrary cells  border cells of the transis-
tor array

input / output

due to dedicated inputs
signal flow and outputs the signal flow free signal flow
is constrained

Table 3.2: A short summary of the most important similarities and défeces between the JPL
and the Heidelberg FPTA. The considered FPTA from the JPlréady in its third generation

and is referred to as JPL FPTAZ2. Predecessors of the FPTARIp&PTAO and FPTAL, featured
similar architectures, although there were less prografereells available.

3.1.4 An Overview of FPAAs from Industry

Table 3.3 provides an overview of some examples of FPAAs Bglthdustry. These
chips consist of reconfigurable analog circuitry, which barreadily applied to various
problems of analog signal processing. Most often, the wiygemanufacturer also pro-
vides a design tool, which is able to generate configurafianthe respective component.
Although it is hardly possible for the FPTA to compete witlhdk solutions from indus-
try in the specific tasks, for which they are designed, thermiother substrate than the
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industrial strength and
suitability for research

3.2 The Hardware Evolution Setup

manufacturer device capabilities
Anadiam AN221E04, cells can be configured as: OPs, filters, DACs,
9 AN10E40 ADCs and signal generators are present
CYSC21x- analog cells can be configured as: OPs, filters,
DACs, ADCs
Cypress XX, CY8C29- . . . .
XXX digital cells can be configured as: counters,
timers, PWMs, UARTSs
limenau patent (D) a Germa_m patent for a configurable transistor ar-
ray architecture
Lattice ispPAC10 configurable OPs and tunable filters
Motorola MPAA-XXX various different types of configurabldtérs
Zetex TRAC* configurable analog arithmetic functions

Table 3.3: An overview of some examples of FPAAs which are sold by ingusthere is some
work in the field, where the FPAA from Zetex [69] and the FPAArfr Motorola [70] are used for
intrinsic hardware evolution. *TRAC stands for: totallycomfigurable analog circuits.

FPTA, which provides the possibility of interconnectinggle transistors. Consequently,
the FPTA is more valuable in the case of research on uncaowahtand new circuit
topologies.

3.2 The Hardware Evolution Setup

The hardware evolution setup consists of the FPTA chip atalalard personal computer
(PC) that runs the EA and organizes the voltage test pattehaslitionally, a custom
made Peripheral Component Interconnect (PCI) interface, aghich is referred to as
DarkWing and described in [13], represents a flexible FPGA based altertifor the
FPTA and provides an interface between the configurablsisim array and the PC. The
EA is implemented in a flexible manner using the C++ prograngntanguage, combined

a realtime measurement with the gnu C compiler (gcc) and is more closely describechiapter 5. Therefore, the

system for hardware
evolution

chip-in-the-loop

combination of the components above provides a flexibldinealmeasurement system
for hardware evolution experiments. Since the generat@amnation and management of a
pool of configuration bit strings can be performed by an E&,FRPTA is, alongside with
the latter measurement system, a suitable substrate foiirciihe-loop analog hardware
evolution.

3.2.1 The Controller: a Standard PC Hosting a FPGA-Based PCCard

TheDarkWingprovides power supply voltages.8V and 5 V) to the custom made ASIC
in use. Furthermore, a digital-to-analog converters (DA@fers the possibility to apply
analog voltages to the chip and an analog-to-digital caev€ADC) is available for mea-
suring analog voltages from the chip. Main controlling gnis a Xilinx Virtex-E FPGA
with a total of 2 Mbyte of on-board static random access mgrn®RAM) at hand. The
latter components provide a real-time mixed signal tesirenmnent for various custom
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made ASICs. As yet, thBarkWingboard is successfully used within three different rePGA-based controller

search projects of the Electronic Vision(s) group, namlegyttaining of neural network for custom made ASICs

chips [35, 67, 68], high dynamic range sensors [14] and gri@odware evolution ( [49]

and this thesis). For all presented experiments in thisghbts programmable system

clock of the PCI board is set to 40 MHz.
The PC contains an Intel Pentium 4 processor at a clock frexyuef 24 GHz and

the operating system is SUSE Linux 8.2 running kernel vargi@.21°. Additional

software, which provides a device driver (linux kernel miediwcalledWinDriver6 [41]

from JUNGO', is needed for the communication with tBerkWingboard via the PCI

bus. setup of the host PC
Any communication between the EA (actually the PC) and th&AHB carried out by

calling the respective methods of a state machine, whichrieing on the FPGA. The

source code for the state machine is written in very highgpaegrated circuit (VHSIC)

hardware description language (VHDL) and subsequentlypdechwith the appropriate

tools from Xilinx [101, 102] for the FPGA used. Both, PC andG#, access the local

SRAM of theDarkWingboard where the input voltage patterns, configuration aaténé

FPTA and the measured results are stored. As a consequettis, @ane measurement

loop is carried out in 3 steps: first, the PC writes configoraiilata and input voltagecommunication between

patterns for the FPTA to the local SRAM of the PCI card. Seg¢dhdse methods ofPC, controller and

the state machine which configure the FPTA and use the odliadCs and ADCs to FPTA

perform the measurements and write the results to the IdRAMsare carried out. Third,

the measured results are read back by the PC and are prouitleel EA for evaluation.

It is also possible to read back the current configuratiorhefttansistor array using the

same mechanisms, which is an essential feature for delmiggin

3.3 Characteristics of the FPTA and the Hardware Environ-
ment

The following section shall give a short overview over thareltteristics of the FPTA,
that are of concern for the presented experiments. Accuanadgpeed of the whole mixed
signal measurement system is predetermined by the ADCs A Bn theDarkWing
board (section 3.2.1) and the accuracy of the FPTA's sammiehald buffers. For a
detailed description of internal functionality and penfance of the chip, please refer
to [49].

3.3.1 Bandwidth

The bandwith of the evolving circuits is measured by apmyan input voltage pattern of
sine waves with increasing frequency to the west side andunieg the output at the east
side of the FPTA. Input and output cell are interconnecteddigg the routing capabili-
ties of the transistor array, i.e. the west-east routeseol Gitransistor cells between input

6 For more information about the SuSE Linux distribution @ ihstallation and usage of Linux kernels, the
reader is referred to www.suse.com and www.kernel.org.

7 The JUNGO windriver module provides a communication lipfar PCl communication via the PLX90xx
chipset family [64]. Further information is available on wmungo.com and www.plxtech.com.
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3.3 Characteristics of the FPTA and the Hardware Envirorimen
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and output cell are enabled. It can be seen from figure 3.4hlkahaximum expedient
frequency, at which the synthesized circuits are suppasemik, is about 3L MHz. Yet,

a maximum frequency of 1 MHz is chosen for the experimentiisthesis, for the rea-
son that total harmonic distortion and noise significamigréase at higher frequencies,
as can be seen from figure 3.4, right.

3.3.2 Noise, Distortion and Accuracy

Experimental setup and input voltage patterns are equalogetof the previous section
(section 3.3.1). Values for total harmonic distortion (THihd THD + noise (THD+N),
which are defined as the root mean square (rms) sum of all mesaivided by the am-

plitude of the fundamental frequency, are obtained by periftg an FFT on the measured
data and by calculating

1 NkO/Z
THD = |M(k0||z‘/ (Iko) (3.1)

1 MmN, /2 ”
THD+N = M2(K) 3.2
ksﬁko
_ 1 " —
noise = Mo Zl M2(k) . (3.3)
k#km

46



The FPTA: an Analog Evolvable Hardware Substrate

TherebyM (ko) represents the fundamental frequency component of the: &mpel wave
and theM (ky,) are the frequencies of the harmonics. The absolute ameléithe input
signal is 25 V. Assuming a linear behavior of the system, only the firsi 9 harmonics
are considered for the calculation of the THD. In this cake,dontributions of higher
orders are negligible. Contrary to the THD, where only harit®are taken into account;THD and THD+N
the value for THD+N is calculated from all fourier comporgrfbr the reason that noise
is present in all frequency components whereas distortifatte are merely present in
the harmonics.
Since the FPTA is bound to the hardware environment destiibesection 3.2, the
measurements, depicted in figure 3.4, include the conimibsitof noise and distortion
of the whole mixed-signal hardware setup. Consequentiynibasured values for THDfeasible bandwith
and noise represent the over-all performance of the hasdexaniution system. THD and
noise are measured for the two example frequencies 50 Hz stz land the results can
be seen from figure 3.4, right. Due to the fact that the value 4D already increased
by about 8dB at 1 MHz, the latter frequency is chosen as maxitfau the experiments
within this thesis. The value for noise is significantly belthe value for THD in both
cases. An additional reason for limiting the bandwidth to HaMs the maximum sam-
pling frequency of 20 MHz (see table 3.1) per sample. Thisimiply a maximum input
signal frequency of 4 MHz, if the minimum number of 4 samplasdne period is chosen,
which is not sufficient to form an input sine wave. Hence, ifi@imum of 20 samples sampling a sine wave
per period is desired the maximum frequency is moreovetdinior technical reasons.
An easy specification for the accuracy of the hardware measemt system is to cal-
culate the equivalent no. of bits (ENOB). This specificai®noriginally used to provide ENOB: specification for
an overall performance measure for data acquisition boasiitgy an ADC [5, 56]. The over-all accuracy of the
ENOB will be obtained by evaluating the output of the systerder test, if a sinusoidal Me2surement system
input is applied and subsequently the FFT of the output isutaled. One way of ex-
pressing ENOB is through a correlation to signal-to-noe@ (SNR), given in dB as

1
THDIN = SNR (3.4)
SNR = ((ENOB-6.02)+1.76) dB , (3.5)
1ENOB
error = <<§ >-100> % . (3.6)

Using the results for THD+N from figure 3.4 as a measure for Si\Rlue of ENOB=8.2

bits for 50 kHz and a value of ENOBs=8.0 bits for 1 MHz is cadtatl using equation 3.5.

As a result, an error of.89 % can be obtained using equation 3.6, thus, an accuracyysttmatic voltage error
AV = error-5V = 20mV is assumed for the entire measurement system for a potret0 mv

supply voltage of 5V.

3.3.3 Influence of Configuration Circuitry

The output characteristic of plain transistors differgrrthe output characteristic of con-
figurable FPTA transistors. Examples for different W/L oatiand transistor types are
illustrated in figure 3.5. The I-V characteristic of a plamartsistor is compared to a
configurable transistor with transmission gates and to gumable transistor where the
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transmission gates are approximated by their mean ortars&s The deviation of the
latter characteristics significantly increases for grel4_ ratios.
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Figure 3.5: The characteristics of NMO%eft) and PMOS ight) transistors are graphed above.
In all cases, the characteristics are plotted for diffegate-source voltages. Furthermore, the
characteristics of plain transistors are compared to tieégbe actual transistor matrix on the
FPTA. In the latter case, two types of simulations are cdmigt: one with all transmission gates
included and one with transmission gates replaced with thean on-resistance. The W/L ratios

of bothtop graphs are 1/8, those of both graphs intfiddleare 1/1 and those of both graphs at
thebottomare 15/8.
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3.4 Why Hardware in the Loop for Circuit Evolution?

In contrast to the domain of digital circuits, where FPGAséhalready reached a high
level of complexity and provide a great number of ressoumce®mbination with pow-
erful software tools, which are capable of efficiently sysize high-performance digital
circuits for those substrates, the analog counterpartsielyaFPAAs, are still in their
infancy. Although configurable field programmable analogys for dedicated tasks,
as shown in section 3.1.4 are already available, therellig $tick of multi-purpose sub- lack of multi-purpose
strates which could be used either as OP, filter or contrbilesimply using the accordingFPAAs
configuration bit-string.
Other important applications for (re)configurable analagdiwvare are fault tolerance
and BIST [10, 25, 44,83, 104]. Fault tolerance can be easiflemented by reconfigur-robustness and
ing damaged circuits using spare ressources. In the casBI&Ta the candidate circuit fault-tolerance
can be consecutively extended with various test circuitith whe intention of reducing
ressource consumption of redundant test structures. Mereihere are two main argu-
ments for using hardware-in-the-loop for evolution expennts of analog circuits instead
of an analog circuit simulator: first, a circuit, that is exexdl on a real chip is obviouslyintrinsic reality of real
proven to work at least on just that substrate. Second, thelaiion of complex analoghardware
circuits is highly non-trivial, thus, a very time consumitagk. Unlike the simulator, once o )
. . . . faster circuit evaluation
the inputs are applied to the FPTA, its outputs can be alnmssamtly measured. Nev-, - " oo
ertheless, the price that has to be paid using real hardwdoeforgo the unconstrained
configuration possibilities of simulation. Although, calering the smaller search space
resulting from less configuration options, this can also hheadvantage as long as the
given topology does not inherently exclude desired sahgtioUnfortunately, the latter
question can not be answered until experiments that imagstievolvability of a given
substrate have actually been carried out.
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Chapter 4

Analog Circuit Simulator

This chapter intends to give an overview over the operatiomciple of analog
circuit simulators. Different types of analyses, e.g. D@nsient or alternat-
ing current (AC), are introduced as well as SPICE netlistentiselves, which
represent circuits in a format that can be processed by disimulators. Impor-
tant goals of this thesis are, first, to use the Berkeley SBf&Eanalog circuit
simulator as simulator-in-the-loop for the extringicevolution of analog cir-
cuits and, second, to use it for verifying and further testif the circuits, which
are evolved on the FPTA. Thereby, extrinsic and intrinsicdhere evolution
are terms which have been created by researchers from thdali2L intrinsic
hardware evolution denotes experiments which are carriga real hardware,
whereas evolution experiments, in which a hardware simulest used, are de-
noted as extrinsic. Additionally, a brief introduction toet Berkeley SPICE3f5
simulator is given and the Cadence analog design framewsoshortly intro-
duced. Furthermore, the procedures of automatically geieg SPICE netlists
and simplified schematics from intrinsically evolved ditg@are described in this
chapter. The automatic creation of schematics is realized the silicon com-
piler interface language (SKILL), which is included in thadence software for
the purpose of design automation.

4.1 Introduction to Circuit Simulators

The development of VLSI technology makes it possible tagrate millions of transistors VLSI technology for
on one single die (chip). Further, CMOS processes fadlitaé combination of analogCMOS processes

and digital subcircuits on the same substrate. The tamxed-signalis widely accepted
for such systems. With increasing complexity, it becomesenamd more important to
accurately verify circuit designs in computer simulatidyefore fabricating expensive

mixed-signal systems
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4.2 Operation Principle of Analog Circuit Simulators

chips. This task is carried out by using circuit simulataghich are mostly based on
SPICE. The original SPICE was developed by Larry Nagle andakbPederson in 1975
at the Electronics Research Laboratory of the UniversitBerkeley and the current re-
lease is SPICE3f5 [65]. Since the first versions of SPICEmmemented in Fortran, a
Fortran-like circuit description is still remaining and st@f the commercial SPICE ver-
sions are compatible with the Berkeley syntax, althouglereked with vendor specific
features which limit the compatibility to concurrent pretkl Important commercial, in-
dustry standard simulators are offered®gdence Design Systef®sSPICE, Spectre, Ul-
traSim), Synopsy$HSPICE),Silvaco(SmartSpice) antflentor GraphicgEldo) and are

often integrated into a comprehensive mixed signal desemdwork. Additionally, free

SPICE versions (open source) are available for non-comaterse, namely NGSPICE,
tcISPICE and SPICE3f5.

4.2 Operation Principle of Analog Circuit Simulators

Circuit simulators are using nodal analysis to predict takavior of circuits. Thereby,
all nodes of the circuit are enumerated and the voltage df eade is stored in a vari-
able. The first step is to determine initial values for eactienolrhose nodes, which are
directly connected to a voltage source, are initializechwlite voltages provided by the
respective voltage source. For the remaining nodes, theges are found by solving the
corresponding simultaneous equations, obtained fromhKotf's Laws. This procedure
is iterated until the solutions for all nodes converge. &t algorithms (mesh analysis,
current branch method) are used to partition the circuityaisaproblem into multiple
simpler problems of calculating an operating point of adineircuit which can be de-
scribed by linear simultaneous equations. Once the opgratint is calculated, non-
linear components—in this case transistors—can be linegdrby replacing their large
signal model with a linearized small signal model, suitdblethe determined operating
region.

4.2.1 CMOS Device Modeling

Before a circuit can be successfully integrated in CMOSHeldgy, it is necessary to
verify its functionality in simulation. The quality of the@diction of the circuits behavior
depends on the accuracy, with which the model of the targéintdogy describes the
physical substrate. Models of current technologies aehgéwigh degree of reliability
and the prediction of simulation is, even for circuits catiaig of thousands of transistors,
within a feasible range of measuring. Possible representaiof CMOS models are
parameterized mathematical equations, behavioral giecrs or lookup tables. There
are more than 60 different SPICE models available, refetweas SPICE level, which
cover different technologies and levels of complexity. mEgpdes for models of increasing
accuracy and therefore high complexity are SPICE level 1CERevel 3 and BSIM.

While the level 1 model is quite simple, the level 3 modeladigincludes many parasitic
effects that have to be considered in short-channel teogied down to about.8 um

as well as subthreshold conduction. Finally, the BSIM3vB12odel has become the
current standard for computer simulations of deep subeamiprocesses down toZb um

and accurately describes physical effects of small strestuFor device sizes down to
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0.1 um some physical mechanisms need to be characterized evendred consequently
BSIM4v4 has been developed, which provides a geometryrukgpe parasitics model
and, for instance, considers carrier quantization effedtxomplete description of the
SPICE models can be found in [1].
An example of a simple CMOS model is given in part | in chaptexettion 1.1 and 1.3.
The equations of the BSIM models are far more complex, duleeddct that all relevant
parasitic effects are included. As a consequence of thitahdf 93 parameters are nec-
essary to describe a PMOS or NMOS transistor with the BSIM8egel. In addition to
the device parameters, capacitances and resistancesalflimes, vias and metal-poly-
oxide contact areas are included in the technology modeldardo perform a parasitic
extraction of the whole layout. The process parameter fdase obtained from the man<mMoOS parameters for
ufacturer of the target technology, whereas the model hias pyovided by the respectiveifferent fabrication
circuit simulator. Unlike the actual process parametetsiciwvmay not be published, the©“€s5€s
models are most often public domain, for the reason that asmication, simplifying
technology and sharing productivity is desired. Thus, treotto characterize a circuit for
a specific process, the correct SPICE level (model) has telbeted and the parameter
file has to be included in the simulation.

4.2.2 The SPICE Netlist: Circuit Description and Simulatian

Most of the current analog circuit simulators are compatibith the original SPICE

syntax. Thus, the basic syntax Bérkeley SPICE3fts chosen to describe the structure

of an analog circuit netlist. Furthermore, the SPICE3f5ator is used as simulator-in-

the-loop for the experiments in this thesis. The full SPI@Hist can be divided into four

main parts: first, the header, where the voltage sourcesaatsiare defined. Second, the

circuit components and subcircuits. Third, the setup arg@tion of circuit analysis and

fourth, the CMOS model definition. An example netlist, whiepresents an operationathe structure of a SPICE
amplifier and carries out an open-loop DC analysis is dismigsfig. 4.2. netlist

In addition to this, the SPICE syntax for CMOS transistord example setups for DC,

AC and transient simulations are described, which are masgd for the experiments in

this thesis. According SPICE netlist code is provided fbesamples after the respectivelescription of the
paragraph. For a full description of the SPICE functiogalite reader is referred to theSPICE syntax
SPICE manual [65] or th€adencedocumentation [16].

In case of transistors, the syntax is reduced to the relganmatmeters, that are widthepresentation for a
and length. Additional parameters, e.g. the areas of dmnahsaurce diffusions, aretransistorin SPICE
determined by the respective device model. Transistoréabedled with anmfollowed
by a unique device numbes.our ce, dr ai n, gat e andbul k take on node numbers,
depending on their position within the circuit. THevi ce nodel determines the sim-
ulation model (PMOS or NMOS) of the target technology, whilet h and| engt h
specify the gate/channel dimensions.

NMKxX source gate drain bul k devi ce.nodel |ength width

A DC analysis can be performed by sweeping either one or tpotitoltages, hence,DC analysis: setup and
initial conditions
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either one resulting transfer curve or a set of resultingsfier curves can be measured.
The DC analysis is carried out with capacitors open and ifmdsshorted. First, the input
voltage sourcegol t age_sour ce andvol t age_sour ce2 have to be defined. This
is done by assigning two nodes and a voltage value, whiclesepts the voltage differ-
ence between those two nodes, to the respective source.ol@st one of the nodes of
a voltage source is set to gnd. Second, in the case of noregemce, initial conditions,
exclusively for the DC analysis, can be set for each node thégh nodeset statement.
Finally, the. dc line defines the voltage sources to sweep, the sweep linttshanvolt-
age increment, hence, the number of samples and, in case afnpwts, the number of
curves.

vol t age_sour ce nodel node2 voltage
vol t age_sour ce2 node3 node4 voltage2

. nodeset vol tage(nodel) =val uel vol t age(node2) =val ue2 ...

.dc voltagesource v.start v.stop v.incr [voltage_source2
v2.start v2stop v2.ncr]

Principally, the number of varying input voltage sourcesids limited in case of the
transient analysis, thus, this type of analysis offers igbdst degree of freedom in cre-
ating custom input voltage patterns. Although several sypfetime dependant voltage
and current sources (exponential, sinusoidal, pulse)\aiahble, the piece-wise linear
(pW ) source is considered as example. A set of time/voltager@/tGurrent pairs, with
increasing time, define the input voltage pattern forghé source by using linear inter-
polation on the input values. Analog to theodeset statement for the DC analysis,
the. i c statement can be used to specify initial conditions exelgifor the transient
analysis in case of convergence problems. Thereby, thaliniinditions will be only
considered, if thaii ¢ statement is added to thd r an line. Finally, the. tr an line
defines the setup for the transient analysis by setting stag and increment values for
the time. Additionally, a time precisioni me_pr ec can be specified, in order to ensure
a minimum precision for calculation.

vol t age_source_pw nodel node2 voltage pw (tinel voltagel
[time2 voltage2 ...])

.ic vol tage(nodel)=val uel vol t age(node2) =val ue2 ...

.tran tinestep tinestop [timestart [tinme_prec]] [uic]
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If an AC analysis is desired, the keywoad has to be added to at least one indepene analysis: setup
dent voltage/current source in combination with valuesnfiagnitude and phase of the
AC input signal. In the given example, the independent sooamn also be used for a tran-
sient analysis with sinusoidal input. Thac line specifies, whether the input frequency
is varied in decades, octaves or linearly as well as the nuoflsamples per interval and
the frequency range.

vol t age_source_sin nodel node2 vol tage ac magni tude phase
sin(v0 vanpl freq del ay danpi ng)

.ac dec (oct,lin) nosanples freqstart freqstop

4.2.3 Floating Nodes and Initial Conditions

The extraction of a given circuit into a valid SPICE netlistai crucial precondition for
carrying out a successful simulation. However, this is natgs possible for evolved
circuits. If the circuit, and therefore the netlist, contafloating nodes—i.e. nodes which

are neither connected to any other component, nor to anyémikent voltage/current
source—or the initial state of a node cannot be determingdjféwo gates are connected

to nothing but each other, the circuit analysis will not cenge, i.e. the simulation will

fail. Usually, floating nodes are avoided by the designemwesicircuits, which contain reasons for simulation
floating nodes, are generally meaningless. Neverthelessgicase of automated circuifailure
synthesis, it is necessary to be able to successfully simelgen such invalid circuits

in the following cases: first, for circuit synthesis by meafsvolutionary algorithms
where it is desired not to abandon partly good solutions, a.eomplete circuit would

be lost due to only one faulty subcircuit. Second, for ciictinat have been developed

on a complex configurable hardware and shall be verified bygusisimpler simulation
model, which lacks some specific substrate properties areftire possibly fails. The
latter case is of particular importance to this thesis, duthé evolution of transferrable
circuits is tackled.

The initial conditions are usually calculated or approxiedaby the simulator and are
necessary for solving the simultaneous equations of theeotige model. If the simula-
tion does not converge due to nodes in undefined or ambigudates sinitial conditions avoiding ambiguous
for each node (voltage or current value) can be includedtirganetlist of the respectivestates by defining initial
circuit or subcircuit by adding anodeset line for DC analysis and ai ¢ line for tran- c°nditions
sient analysis:
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. nodeset v(node0)=val ue0 v(nodel)=val uel v(node2)=val ue2

. nodeset i (node0)=val ue3 i (nodel)=val ue4 i (node2)=val ue5

.1 ¢ v(nodeO)=val ue6 v(nodel)=val ue7 v(node2)=val ue8 ...
.ic i(node0)=val ue9 i (nodel)=val uel0 i (node2)=val uell ...

Contrary to that, it is not as obvious how to handle floatinglesy since usually the

overcoming the problem designer would have to connect those nodes in order to catrg successful simulation.

of floating nodes

replacing configuration
circuitry with drain-bulk
diodes

considering ASIC
integration of
synthesized circuits

freely available circuit
simulators

Basically, there are three possibilities to solve this:t fitsee simulation model has to be
more complex, i.e.—in case of the FPTA—all switches and gainéition circuitry, hence,
all parasitic effects have to be considered for simulatidhis often solves the problem
of floating nodes, due to the fact that those nodes are cathéxstructures on the chip,
which were previously not included in the simplified netli§econd, although a node
is connected on the chip, it is not intended to include thdigaration circuitry in the
netlist. Most often, the target circuitry is a multiplexeraclosed switch and therefore,
such floating nodes can be connected to a reverse-biasedodiidiode:

nmkx floatingnode 0 0 O nnos w=snal | | =l arge

Consequently, the simulation of the circuit succeeds alheitassimplified, the parasitic
influence of e.g. a closed switch is modelled. Furthermawanfa designers point of
view, it is always a good idea to use structures, that can bidya®alized on a chip,
because it should be possible to integrate automaticafithegized circuits on an ASIC.
An example of using an NMOS transistor as a reverse-biaskddmde is shown above.
Third, since, again, the worst case of a really floating naale anly be solved by con-
necting it to at least one minimal conductance, the onlyipdig in this case is to make
a good guess of where to connect it. Consequently, it is rezamded to inherently avoid
the third type of floating nodes, regardless of which teabgwlis used for circuit synthe-
sis: either configurable hardware or a software simuldtion

4.3 Simulator in the Loop: Berkeley SPICE3f5, NGSPICE

TheBerkeley SPICE3fB5] andNGSPICH?2] are chosen for practical reasons: first, both
simulators are available as open source or can be used ura@NU Public License
Second, both simulators are freely available for a greaetyaof operating systems (in
this caselLinux). Finally, state-of-the-art BSIM3v3 CMOS device model®(SE level

3 There are some exceptional cases in the area of analogtalesign, for which it possibly makes sense to
leave a node unconnected; e.qg. if the goal is to shield coemgerirom the noise of surrounding potentials.
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8,49,53 depending on the simulator) are included in botkauges and therefore, compo-
nents of the FPTA can be accurately simulated by using thesponding AMS Gum
process parameters, that are describing the technolodyRha is designed in.
Unfortunately, to the author’s knowledge, there is yethegita C++ SPICE library, nor
one for any other programming language, which can be dyréictked to the hardware
evolution framework application, which is written in C++.sAa consequence, SPICERASCII files are used for
has to be run as an external process(es) and AS@lés are used for data exchangeata exchange
with the evolution software. In simpler words, the evolatigoftware generates netlists
and runs external SPICE processes which use those ne#iffes. a simulation is com-
pleted, SPICE saves the simulation results to an ASCI| fitkéckvis read by the evolution
software. Since the simulation time usually dominates ithe bverhead of file commu-
nication, it is not a great slow-down to use ASCI| files foralaansfer.
NGSPICEhas to be mentioned as an alternativeBterkeley SPICE3{5due to the
fact that it is fully compatible witlBerkeley SPICE3fand additionally includes the lat-
est BSIM4v4 CMOS device models. Furthermore, for the reagdicensing conflicts,
ratherNGSPICEinstead ofBerkeley SPICE3fis innately included in current LINUX
distributions.

4.4 Extracting Netlists from FPTA Results

Three different levels of complexity for the conversion teé =P TA circuit representation
to a SPICE netlist are defined in this section, which must aehkxed up with the SPICEthree levels of
level of the CMOS model: first, on the simplest level, the\actirogrammable transistorgomplexity for netlist
are considered as directly connected single transistdighvis useful for quick checks®xtraction
and for investigating the operation principle of the evdle@cuit. The second complexity
level takes the mean on-resistances of the active transmigates into account. Those
transmission gates are, on the one hand, connected to tisestoa terminals and, on the
other hand, used for realizing the routing within the FPTAsceFinally, the simulation
on the third and highest complexity level includes both, titaasistors that represent
the actual configurable transistor and the transistors dr@teeded for configuration
and routing. Thus, the latter simulation level reprodud¢esrmeasurement on the FPTA
with the highest precision. Yet, the disadvantage of momptex simulations is the
significantly increasing simulation time.
It has to be remarked that the highest possible accuracyeo$ithulation would be
achieved by using the back-annotated layout with full pacasxtraction and the simu-
lator from the design software. This is not done in this thési the reason that, on the
one hand, the accuracy of the level 3 simulations is suffid@rthe current experiments
and, on the other hand, such simulations are complicatedirmedconsuming and thus,
go beyond the scope of this work.

4 A file format for text: american standard code for informatinterchange (ASCI!).
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4.4 Extracting Netlists from FPTA Results

441 Level1: Simulation with Plain Transistors

On the least complex simulation level, the active FPTA catks considered as single
transistors of given W/L ratios, hence, any parasitic eéffexf additional configuration
circuitry are neglected. An example for such a plain nedistreated by algorithm 4.1.

Algorithm 4.1: This algorithm converts circuits from the FPTA to basic is&tl in which all
active configurable transistors are considered as direotipected plain transistors.

find all transistors, that are connected to the active dircui
enumerate and create a list of those active transistors 0..K
for all active transistors— 0to K do
for all transistor terminals— 0to 2 do /l source,drain,gate
follow wires and find target node
if target node has a node numitieen
assign the target node number to the current terminal
else iftarget node has no node numliteen
create a new unigue node number
assign this node number to the current terminal
end if
end for
end for
detect input and output nodes of the circuit
create a netlist using the list of all active transistors

4.4.2 Level 2: Simulation Including Resistances of Switclse

The medium complexity level takes the mean on-resistantdsecactive transmission

gates into account. Transmission gates are used for camgebe transistor terminals
to one of the cell's four outside connections (N,S,W,E) amddirectly connecting any

of those outside connections, which provides the routingabgities. The according

algorithm 4.2, that creates this kind of netlist, is listadhe following. The values for the
resistances between the transistor terminals and thedeutsinnections are taken from
the thesis of Jorg Langeheine ([49]), who designed the EPTA

4.4.3 Level 3: Simulation Including the Whole ConfigurationCircuitry

Level 3 represents the highest level of netlist complex@gnsequently, both, the tran-
sistors that represent the actual configurable transistbttee transistors that are needed
for configuration and routing are included in the netlistislik realized by creating sub-
circuits for the FPTA’s PMOS and NMOS cells, that contain ¢eafiguration circuitry
as well as the transistor matrix which represents the cordige transistor. Those sub-
circuits feature a great number of inputs/outputs, namedyfour outside connections
(N,S,W,E), 40 nodes for the configuration of the switches fadect the W/L ratio, 36
nodes for the connection of the transistor terminals to drleeofour outside connections
and 12 nodes for the configuration of the routing. The totahiper of those nodes does
not correspond to the number of configuration bits for onk bet to twice the number of
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Algorithm 4.2: This algorithm converts circuits from the FPTA to netlistsr@dium complexity,
in which the resistances of all active switches are includ&®,W and E (north, south, west and
east) are the external nodes of the FPTA cells.

create a list of all FPTA cells used 0..K

n = 16 transistor cells per row

for all FPTA cells used— 0to K do
assign node numbersto N S W E,
depending on the x/y position within the transistor array
N=y-(2n+1)+x+1;

S=N+2n+1;
W =N+n;
E=N+n+1;

connect the gate to its target (NSWE) via 2310
connect source and drain to its targets (NSWE) viaGQ30
insert routing by connecting according nodes (NSWE) viaG30
create a subcircuit netlist entry for the current FPTA cell
end for
detect input and output nodes of the circuit
create a netlist using the subcircuit entries of all FPTAsaased

actual switches—transmission gates need two voltagésraiid-gnd of gnd-vdd—that
have to be opened or closed for realizing a certain configuraConsequently, once the
subcircuits for the PMOS and the NMOS cell are availabley dimé¢ configurations for

their inputs have to be created for the netlist, accordintyéadesired configuration.

4.5 Cadence Design Framework

The Cadence software is a comprehensive design framewdrikhvprovides industry

standard design and verification tools for custom analoglagithl VLSI design. Besides, industry standard
the FPTA chip has been designed with the Cadence designviraend the processdesign tools for VLSI
setup for AMS 06 um. Thus, the Cadence software is used to validate the sionlaf®s'9"

results, obtained from the SPICE simulator for the expemiisién this thesis. It has to

be remarked that simulations are exclusively performet schematics, i.e. no layouts

are generated from the resulting circuits of the presemtpdraments. Nevertheless, if a

schematic for a new design was found, it could be adapted @staie technology and

realized on a chip in the next step.

45.1 Circuit Simulation in Cadence

Cadence is able to work with a great variety of circuit sinis, e.g.cdsSPICEHSPICE

Spectreor UltraSim, to name just some important ones. It is possible to creatiblibe

simulation test benches as a combination of schematics, atigl netlists. Principally,

it is possible to consider all environmental conditions-ebsas noise, temperature anenvironmental influence
worst/best case design corners—that are covered by thegwonodel in simulation.

Device matching effects on the die are considered wittoate Carloanalysis. Further-
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4.5 Cadence Design Framework

more, simulations of back-annotated schematics can biedaut and therefore parasitic
effects like crosstalk, parasitic layer and wire capagitian be included in the simulation.
Thereby, the term ’back-annotated schematic’ denotes ensafic in which, on the one
hand, each component is identified with its respective sgmation in the layout and, on
the other hand, layout dependent parasitic effects aredaidihne schematic. The lay-
out has to successfully pass three tests before a valid dranfitation is achieved: First,
a DRC has to be performed to ensure that no geometrical eamtstiof the fabrication
process are violated. Second, a successful LVS check gaagathat all devices of the
schematic are present in the layout and vice versa. Thirdelavant electrical param-
eters are calculated from the LPE. Those extensive sirouland verification methods
target at maximizing the yield of fully operational ASICs.

4.5.2 Automatic Schematic Generation Using SKILL

SKILL ® is a very powerful scripting language, which is includedtia Cadence design
framework and allow to automate any functionality of the &axk software. The manual
is part of theCadence Open Bodi5]. Thus, it is possible to implement custom macros
that generate e.g. a parameterized layout block which guéetly needed or certain
schematic building blocks. In this thesis, the SKILL langeas used for automatically
generating schematics for Cadence from circuits that arwed on the FPTA. Due to the
fact that the visualization of the resulting circuits, whis provided by the circuit editor
of the evolution software (fig. 4.1), is rather based on thedistor array architecture than
on readability. Consequently, it is necessary to reorgattiz evolved circuits in order
to improve their readability and understandability, altgb this is not an easy task, since
the genetic algorithm often produces unconventional @scun this case, the reorgani-
zation of the schematic is carried out in four steps: Firgdinaple netlist is generated
from the FPTA circuit where all nodes and transistor terisigae enumerated. Second,
all transistors are placed on a 2-dimensional grid, withrtbde number of the gate as
x-coordinate and the node number of the source as y-codedinEhird, all gates can
be connected with straight vertical wires and all sourceshlmEaconnected with straight
horizontal wires. Fourth, the remaining drain terminaks eosnnected to their respective
vertical or horizontal target net. As can be seen from fig, #hd resulting schematic can
be more easily analyzed. Despite this, more intelligibleescatics are manually drawn
for particular example results, which are presented int&hah The schematic-creating
SKILL script is automatically generated by the evolutioftsare. Example SKILL com-
mands are listed below. Those commands are combined inp Sleriwith the extention

* .1 |, which then provides the new functionality encapsulatech&cros:

5"The name was originally an initialism for silicon compilieterface language (SCIL), pronounced 'SKIL,’
which then morphed into 'SKILL," a plain English word that svaasier for everyone to remember.” From
John Giannj usenet: comp.cad.cadence.
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procedur e( Creat eSchemati c()

[+ create a new schenatic view x/
cv=dbQOpenCel | Vi ewBy Type(" FPTAEVO' "Test exp" "schematic"
"“schematic" "w');

) [/+* end of procedure */

New functionality is encapsulated in procedures, which lmaexecuted within th€a- implementing custom
dencesoftware. In this case the new macro is nan@@dat eSchemati c() and macros

the first commandibOpenCel | Vi ewByType(. .. ) creates a new, empty schematic

view namedTest _exp within the Cadencedesign libraryFPTA _EVO.

net | D=dbOpenCel | Vi ewBy Type("anal ogLi b" "vdd" "symbol ") ;
i nst =dbCreatelnst(cv netID "Vdd" XY "rotation");
net | D=dbOpenCel | Vi ewBy Type("anal ogLi b" "gnd" "symbol ") ;
i nst =dbCreatelnst(cv netID "Gnd" XY "rotation");

cnos| D=dbQpenCel | Vi ewBy Type(" PRI M_I B* "nnos" "synbol "
nn llrll) ;

inst = schCreatelnst( cv cnoslD "instancename" XY
"rotation" );

dbSet q(i nst 12u w);

dbSet q(i nst 1u |);

The above examples show how to insert new componeardsl,nd,nnos) into the

active schematic. ThdbCr eat el nst andschCr eat el nst insert, place and addinserting components
labels to the respective component and create a hamt¢ which is used to change

component parameters with the commalixBet q, e.g. a transistor’s W and L. Thereby,

a uniquei nst ance_nane, the X: Y position and the ot at i on=R0(0’), R1(90),

R2(180), R3(270) must be specified.

wi rel D=schCreateWre(cv "route” "full" [ist(X0:Y0 X1:Y1)
0. 0625 0.0625 0.0 );

Wi rel D=schCreateWre(cv "route” "flight" |ist(X0:Y0 X1:Y1)
0. 0625 0.0625 0.0 );

Wi rel D=schCreateWre(cv "draw' "direct" list(X0:Y0O X1:Y1)
0. 0625 0.0625 0.0 );

There are three different possibilities for adding a wireirX0: YO to X1: Y1 to the

schematic: First, the optiomut e, f ul | adviseCadenceo carry out auto-routing for interconnecting
components
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4.5 Cadence Design Framework

the new wire. Second, the optionsut e, f | i ght use a direct rubber band connection,
which is fully functional for simulation but has to be mariyabuted in order to obtain
a plain schematic. Third, a fixed straight connection canobeefl by using the options
draw, di rect.

pi nCVI D = dbQpenCel | Vi ewByType( "basic" "ipin" "symbol" ""
llrll ) ;

pinld = schCreatePin( cv pinCVID "In0" "input" XY
“rotation" );

pi nCVI D = dbQpenCel | Vi ewByType( "basic" "opin" "synmbol" ""
)

pinld = schCreatePin( cv pinCvID "Qut0" "output" XY
“rotation" );

pi nCVI D = dbOpenCel | Vi ewByType( "basic" "iopin" "synmbol"
Tt

pinld = schCreatePin( cv pinCvID "Qut0" "in/output" XY
"rotation" );

Finally, the circuit has to be connected to other subciscait the outside world. This
is achieved by inserting input/output pins into the schémetd by connecting them to
the respective nodes. The commachHi CheckAndSave() has to be invoked at the
end of the procedure in order to verify the resulting schéaatd to save all changes.
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Circuit view of selected gene <@evolver13>
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Figure 4.1: Top: A screenshot of the circuit editor of the evolution softwarpixtapositioned to
(bottom;) a schematic which is automatically generated by an acegiSKILL scriptin Cadence.
As can be seen by comparing the two figures, the readabilitireoschematic on the right hand
side is greatly improved. This becomes even more importantibre complex circuits, which
consist of a greater number of transistors.



* Title: OpAnp open-|oop DC
vcec 4 0 5v

vinO 1 0 0.00v

vinl 2 0 0.00v

x*vout 0 3

x0 1 2 3 4 OpAmp

. subckt OpAnp 5 4 8 10
m. 3 4 6 10 nodp | =1u w=2u
m2 3 5 7 10 nodp | =1u w=2u
M 6 6 0 0 nodn | =1u w=4u
m 7 6 0 0 nodn | =1u w=4u
nb 10 2 3 10 nodp | =1u w=3u
n6 8 7 0 0 nodn | =1u w=10u
n7 10 2 8 10 nodp | =1u w=5u
m 10 2 2 10 nodp | =1u w=3u
m 8 10 9 0 nodn | =1u w=10u
mO0 8 0 9 10 nodp | =1u w=10u
rli 2 0 100k
cl 79 6p
. ends OpAnp

.dc vinO O5 .02vinl 14 .25

.save v(1) v(2) v(3)
.end

. nodel nnos nodn | evel =
. model pnos nodp | evel =

Voltage sources and circuit inputs are
described in the header by specify-
ing two nodes and the voltage value
between them. By definition, the
value of each voltage source is fixed.
The ground potential (0V) is always
represented by the node number O
and needs no further specification,
whereassdd (orvcce) are defined as
voltage sources. Comments are pre-
ceded by an asterisk.

In this example, the OP is realized
within a subcircuit, which, once
defined, behaves like a component
and can be accessed througl®.
The node numbers defined in the
x0 line are global, whereas all node
numbers within the sub-circuit are
local, except for the ground net.
Hence, the enumeration of the nodes
of the subcircuit is independent from
the top-level circuit. It is possible
to insert components either into
a subcircuit, or directly into the
netlist. Furthermore, the command
.include filenane.cir al-
lows to create hierarchical netlists in
combination with the possibility of
defining subcircuits.

The . dc command carries out a
DC simulation of the circuit. In
this case a set of 13 curves with
vinl= 1,12515...4V is mea-
sured by sweepingi n0=0...5V
for eachvi nl. The voltages for the
global nodes 1, 2 and 3 are saved to
the result file.

Finally, it is essential to define the
CMOS device models that are used
for simulation. In this example, a ba-
sic model (SPICE level 3) is used.

Figure 4.2: Example SPICE netlist, which represents an operationaliien@nd carries out an

open-loop DC analysis.



Chapter 5

Evolution Software Environment

This chapter introduces the evolution software envirortygenoted as EvoPoly,
which has been developed in C++, in order to perform the expents in this

thesis. The operation principle and the implementationhef EA, the genetic
representation of the circuit and the testmode based exmstial setup are de-
scribed. Since all components of the software environmentnaplemented in
a modular manner, it is possible to easily extend the ewvausiystem with cus-
tomized algorithms and genome representations as well asrtgpose flexible
setups. Besides, the measurement (evaluation) of the gsnand the fithess
calculation is entirely independent from the EA, thereldgraig the possibility

to target different evolution platforms, namely configuealhardware and circuit

simulators, by implementing according interfaces. Hemcepmprehensive and
customizable evolution software framework is achieveda;wlends itself for be-

ing developed by numerous programmers in parallel, duedartbdularity of the

implementation. Finally, the user interface is briefly désed.

For the experiments in this thesis, the origidatkGAQTsoftware, described in [49] has
been further developed and included into H&NNEE software framework, described
in [35]. Both software projects have been developed irBleetronic Vision(s)yroup at
the Kirchhoff-Institute for Physics in Heidelberg. The BAinework has been developed
during this thesis, whereas the hardware access moduladapéed frondarkGAQTand
the GUI is based on thd ANNEEframework.
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5.1 Operation Principle of the Modular Evolution Softwarafework

5.1 Operation Principle of the Modular Evolution Software
Framework

The modular evolution software framework is implemente@int+ [39, 80] and consists
of three main parts: the evolutionary algorithm engine, rtteasurement setup and the
hardware abstraction layer of the evolution substrate. tikkbe parts are implemented
as independent modules which are communicating througkrgemterfaces. Hence,
it is possible to easily operate different genetic algonghand to extend and customize
the experimental setup. Additionally, the developed algors and genomes are not ex-
clusively bound to one particular evolvable substratecesithe substrate itself can be
replaced with another one. In this thesis, two substraesised for the evolution of ana-
log circuits, namely the FPTA, which is described in cha@teand a SPICE simulator,
which is described in chapter 4. Due to the fact that this wetlocused on the evolu-
tion of analog circuits on FPTA architectures, specialigedilome classes are designed
to implement circuit components and FPTA cells. Consedyetite derived genome
and substrate classes do depend on each other in practicaygil the base classes are
independent from each other.

5.2 The Algorithmic Side of the Evolution Software

The implementation of the evolutionary algorithm enginebé&sed on the GALib of
Matthew Wall [95] and entirely independent from the measwaet and the hardware
modules. Hence, the developed algorithms can be easilytextizpany other optimiza-
tion problem, which is a nice example of the advantages afalgjriented programming.
Since evolutionary algorithms operate on at least one adipal of possible solutions,
represented by a set of genomes resp. individuals, theithigobase class already pro-
vides an empty population. The evolution is carried outwisg by applying variation
operators, namely mutation and crossover, to the currembrges. Subsequently, the
arisen new candidate solutions are evaluated and finallfittest individuals are carried
to the next generation due to a given selection scheme. Tiaiva operators represent
the interface between the evolutionary algorithm and tlodugon substrate and are spe-
cialized to certain kinds of target substrates, althoughe¥olutionary algorithm itself
does not need to know their respective implementation. pdirators of the evolutionary
algorithm, depicted in figure 5.1, are implemented as inddget modules which can be
linked to the base algorithm. Thus, the algorithm can beornigted by assembling the
desired operators and modules. Furthermore, the populdkie genomes and the evolu-
tionary algorithm itself can be easily extended or modifigdériving new classes, while
the basic functionality is maintained.
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GABaseGA
- maximizeFitness : bool = false
- useElitism : bool = false
- noGenerations : int
- mutationRate : float
- crossoverRate : float
- randomSeed : int = system_time
- population : GABasePopulation
+ GABaseGA()
+ Initialize()
+ step()
+ evolve()

GABasePopulation
- genome[1..N] : GABaseGenome
- populationSize : int
- initializer : Initializer::InitPopulation
- scaler : Scaler::ScaleFitness
- select : Selector::SelectGenome
+ GABasePopulation()

Initializer::InitPopulation
- configData : configuration
+ InitPopulation(configData : configuration)
+ initialize(pop : GABasePopulation)

+ GABasePopulation(newGen : GABaseGenome) Scaler::ScaleFitness

+ initialize() - configData : configuration

+ analyze() + ScaleFitness(configData : configuration)
+ evaluate() + scale(pop : GABasePopulation)

+ scale()

Selector::SelectGenome
- configData : configuration
+ SelectGenome(configData : configuration)
+ select(pop : GABasePopulation) : GABaseGenome

+ sort()

+ select() : GABaseGenome

+ diversity() : float

+ best() : GABaseGenome

+ worst() : GABaseGenome

+ individual(whichGenome : int) : GABaseGenome

Initializer::InitGenome
- configData : configuration
+ InitGenome(configData : configuration)
GABaseGenome + initialize(gen : GABaseGenome) : int

- fitnessSum : float
- fitnessMO : vector<float> Mutator::MutateGenome
- fitnessHistory : vector - configData : configuration
- nonDominationLevel : int + MutateGenome(configData : configuration)
- crowdingDistance : float / + mutate(gen : GABaseGenome) : int
- initializer : Initializer::InitGenome
- mutator : Mutator::MutateGenome SonfigDat" Con(f:i;%s;tt)i\ét:r::CrossGenome
- cr ver : Cr ver::Cri nom :
_ zoor:;gr:tor ?C?)srigafatcg::OCSosrfsa:eGinomes <— + CrossGenome(configData : configuration) .
- analyzer : Analyzer::AnalyzeGenome + cross(gen1 : GABaseGenome, gen2 : GABaseGenome) : int

- evaluator : Evaluator::EvaluateGenome
Comparator::CompareGenomes

+ GABaseGenome() - CompareGenome : configuration

+ initialize() : int

+ clone() : GABaseGenome + CompareGenome(configData : configuration)

+ cross() :int Analyzer::AnalyzeGenome

+ analyze() - configData : configuration

+ evaluate() + AnalyzeGenome(configData : configuration)
+ compare(gen : GABaseGenome) : float + analyze(gen : GABaseGenome)

+ convergence() : float

. . . 1:GAB s 2 : GAB <l
+ mutate(out noMutations : int) : int \ + compare(gen1 : GABaseGenome, gen2 : GABaseGenome) : float

Evaluator::EvaluateGenome
- configData : configuration
+ EvaluateGenome(configData : configuration)
+ evaluate(gen : GABaseGenome)

Figure 5.1: The diagram of the fundamental classes of the evolutionlgiyrighm is depicted
above. As can be seen from the class diagram, the evoluyiatgwrithm contains one or more
populations, which, for their part, consist of a number ofig@es. Both, the populations and
the genomes, include references to evolutionary operatdngh are implemented as indepen-
dent methods respectively. Hence, the evolutionary opecan be freely combined and can even
be swapped at runtime. The base classes of the evolutiofgasitam, the population and the
genome already provide methods, that are necessary totepleeaalgorithm. Consequently, it is
easy to derive new evolutionary algorithms by simply ovadtheinitialize() and thestep()meth-
ods of theGABas e GA. Additionally, a custom genome has to be derived fighBaseGenone
and according genetic operators have to be implementedunbé&onality of the actual evolution
process and the book-keeping are provided by the base ladsis structure provides a flexible,
modular evolutionary algorithm library.
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5.2 The Algorithmic Side of the Evolution Software

5.2.1 Class Structure of the Evolutionary Algorithm

As can be seen from the unified modelling language (UML) diagin figure 5.1, -
GABasePopul at i on, GABaseGA andGABaseGenorne are base classes, which pro-
vide fundamental methods and data structures for runniagetolutionary algorithm.
The GABaseGA class contains a population, global configuration pararadtariation
probabilities, no. of generations, random seed) and théadstthat carry out the evo-
lution run. Thereby, important methods are the evolustep() whereas the method
evolve()is provided for convenience and merely repeatedly a#tp() and theinitial-
ize() method which successively calls the initializer of eachuysation. Further, global
settings, as for example whether the fithess is to be maxihtizeninimized and whether
to enable elitism or not, are made in @&BaseGA class. Note that the EA is referred
to as genetic algorithm (GA) in the names of classes and rdstho

TheGABasePopul at i on class consists of an array of genomes and provides meth-
ods for managing the population. It is for example possibledrt the individuals ac-
cording to their fitness or to directly access those indigidwvith the best or worst per-

population management formance. Three main operators are linked to the populaficst, the initializer, which

manipulating and
evaluating the
individuals

customizing the
evolutionary step

initializes the population and, if necessary, succesgieatries out the local initializer
of each genome. Second, the scaling scheme, which is notatwapdbut can be used
to post-process the fitness score before ranking the indilédas e.g. proposed in [27].
Third, the selection scheme, which defines the rules forcsete and abandoning indi-
viduals. Additionally, thediversity() method, which uses theompare()function of the
GABaseGenorne class to calculate a value, which represents a measurecfaliarsity
of the genomes within the current population.

Finally, theGABaseGenone class is the base class for an individual. Data, which is
specific for each genome, is stored in this class and respegdinetic operators as well
as methods for analyzing and evaluating the genome aredlitokinis class. Thereby, the
variation operators are carried out by the methodsate()andcross() while the methods
compare() analyze(Jandevaluate()are performing the measurement and the evaluation
of the genome. As the initialization process is carried aetdnchically, thanitialize()
method performs the initial setup of the genome. Each idd#fi is assigned a vector of
fitness valuesfitnessMQ), depending on the number of objectives in which the indigid
is to be improved. For further calculation, tfitmessSumand thefitnessHistoryof the past
N generations are also recorded in tB&8BaseCGenone class. Additionally,—aiming
to multi-objective optimization experiments—the value tlee nonDominationLeveand
the crowdingDistanceof the individual are stored. The latter values are moreetjos
described in chapter 7, section 7.1.2. TB&BaseCGenone class does not yet contain
any genetic information or coding, thus, it is mandatory ¢oick a specialized genome
in order to be able to use it. Depending on the desired expatsnthe genome has to be
extended with a suitable data structure, which containgémetic information.

5.2.2 Derivation of Custom Evolutionary Algorithms

Starting with the base classes of the evolution framewodwshin figure 5.1, it is rel-
atively easy to derive new classes and to customize the Est; eirnew GA has to be
derived fromGABaseGA. As an example, the new GA is referred toG&Exanpl eGA.
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operator range (data type) meaning of return value

initializer 0...N (int) number of generated components

scaler 0..N (int) error code / success=0

selector & (GABaseGenome) areference to the selectedidudiv

mutator Q..N (int) no. of performed mutations

crossover 0..N (int) error code / success=0

comparator 0..1 (float) measure for equality: O=equal, 1=tot. different
analyzer 0..N (int) error code / success=0

evaluator 0..N (float) fitness values

Table 5.1: The meanings of the return values of the genetic operaterdescribed in the above
table. Those values are used by the evolutionary algorithrodiculating statistics and for book-
keeping, and as such have to be properly implemented.

In order to achieve this, it is merely necessary to (re-)an@nt (overload) thanitial-
ize() and thestep()method of the base class. Thutialize() function is responsible for
properly initializing all populations and all of their indduals, while thestep()function
represents one evolutionary loop. Hence, the user has eegidm to design the course
of the evolutionary algorithm. Second, a cust@Exanpl eGenone has to be derived
from GABaseGenone and must be extended with a datastructure which contains the
genetic information. Third, if necessary, the mapping frgemotype to phenotype has
either to be implemented as an additional method inGAExanpl eGenone class, or
can be sourced out to trenalyzeroperator. For this work, the mapping functions are
added to the genome class, since, if differanalyzersare used, it is advantageous to
implement it in only one place. Contrary to that, if a varietfydifferent genomes are
analyzed with the samanalyzer it will make more sense to put the mapping method
into this module. Finally, as can be seen from figure 5.1, @myate operators have to
be created, which are able to process the custom genomege lth@ algorithm and the
genome, the population base class can be used withoutifggikeialization, although, if
extra functionality is desiredzABasePopul at i oncan be derived as well. An example
application is given in algorithm A.2 in appendix A.

5.2.3 Implementation of Modular Genetic Operators

In addition to the customized evolutionary algorithm, ihecessary to implement varia-

tion operators, which are compatible with the genome usédt iB, in case of a genome
encoding an analog circuit, the initialization, mutatiomdeacrossover operators have to

be designed for varying such circuits and need to know alimutivailable, changeable
elements. The operators are implemented in separate glasbheeh can be linked at
runtime to either a population or a genome. Each of thosesetabas to implement aswitchable genetic
method with a predetermined name, e.g. the mutator has taderéhe methodrmu- operators
tate(gen:GABaseGenome):inthe names of the access member function for all genetic
operators can be seen from figure 5.1. As a consequence ,at tkipossible to create a

whole set of independent and reusable genetic operatoishwan even be switched at
runtime by just linking them to a specific genome. Apart frdra tatter constraints, all
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5.3 Analysis and Evaluation of the Genomes

features of the C++ language can be used to derive or to ektergknetic operators.

Furthermore, the programmer has to assure that correchreglues are passed back
by the genetic operators, since they are needed by the E/lafoulating statistics and
for bookkeeping. The meanings of the respective returnegadue listed in table 5.1. For
illustration, an example implementation for an initializeutator-crossover set is shown
in algorithms A.3 and A.4 in appendix A. The selector, scalet comparator classes
provide the same interface—although the methodsselect() scale()andcompare(3—
and therefore have to be implemented in the same manner.

5.3 Analysis and Evaluation of the Genomes

Generally, in evolution experiments, the entire processmapping the genome to the
phenotype, performing any measurement, further analyantyfinally assigning an ac-
cording fitness value, is referred to as evaluation. Desbite especially in the case of
analog circuit evolution, it makes sense to divide the tgtt®cess in two procedures:
first, the mapping of the genome to the target substrate anchfasurement of the con-
figured substrate. Second, calculating the fitness valuedb@sthe measured results and
the desired specification. By doing so, the substrate depemért of evaluation remains
separated from the pure fitness calculation, which shouldalg not depend on the given
problem or target technology. Consequently, the first sepferred to aanalysisof the
individual and the second step is referred to asebauationof the individual for the
remainder of this thesis.

The experiments are organized in test modes, that eaclsegyrene circuit analysis.
One test mode contains the input and the target voltagerpatite definition of the inputs
and outputs, the type of analysis that shall be carried odittla@ information of which
fitness function shall be used. Therefore it is possible togea great variety of complex
experiments by combining desired test modes.

5.3.1 Class Structure of the Testmode-Based Experimentak8ip

As can be seen from figure 5.2, tMeasur i ngSet up class, which is linked to the
genomes, contains on the one hand a vectdiesft ModeBase classes, which represent
the actual experiments and, on the other handCHlecul at i onBase class, which is
responsible for the fitness calculation. Therebyahalyze(Jmethod ofGAGenoneBase
performs the configuration of the target substrate, the typrephenotype mapping and
the measurement. The measured results, as well as the imghtarget patterns, are tem-
porarily stored in aveasur i ngDat a object. The latter result object can be accessed
by theGAGenoneBase’s evaluate()method, which calculates separate fithess values for
each test mode; it delivers a vector of fitness values forirnbjective optimization in ad-
dition to the sum of all fitness values. Besides, in the caseulti-objective optimization,
one test-mode can deliver more than only one fitness, alththegnumber of fithess val-
ues is constant during the course of the experiment. Adiditig theMeasur i ngDat a
object also provides various 10 methods, such as importatg ffom different file for-
mats, e.g. SPICE, and exporting data to different file fosmat
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MeasuringSetup
- testmode[1..N] : TestModeBase
- result : MeasuringData
+ MeasuringSetup() MeasuringData
+ measure(gen : GABaseGenome) : TestModeBase::MeasuringData - input : testpattern
- target : result
- measuring : result
+ loadData() : testpattern
+ saveData() : result
+ accessData(which : result) : vector<float>
TestModeBase + accessData(which : testpattern) : vector<float>
- measuring : MeasuringData
- fitnessFunctions : CalculationBase
+ TestModeBase()

+ configTargetSubstrate()
+ mapGenomeToSubstrate(gen : GABaseGenome)
+ measure(tp : testpattern) : result
/ CalculationBase
«interface» + CalculationBase()

TMFPTA i AccessFPTA + calcFitness(data : TestModeBase::MeasuringData) : vector<float>
+ bestFitness(noSamples : int) : vector<float>
+ worstFitness(noSamples : int) : int

TMFPTATrans

[ CalcLogThresholds | [ CalcOffset | [ CalcSquareDev | [ CalcRMSError |
[ 1 [ | [ 1 [
[ I N

TMSpice3 | «interface»

t AccessSPICE3 Zr
lﬁ\ | [ calcOffsetDeviation |
[ 1
[ ]

[ TMSpice3DC |[ TMSpice3Trans |[ TMSpice3AC |
[ | [ | [ |
I L I L ]

Figure 5.2: The relevant classes for setting up an experiment are égpitheTest MbdeBase
class andth€al cul at i onBase class are base classes, that need further specializatiodén

to use them. Thereby. tHeMFPTA class, is extended with an interface to the FPTA chip and is
dedicated to perform transient measurements on the hagdwhereas th€VSpi ce3 provides

an interface to the SPICE circuit simulator. Furthermdre,getup of the fitness function and the
actual fitness calculation is carried out with the classesyed fromCal cul ati onBase.

5.3.2 Targeting Different Evolution Substrates

Both, theTest ModeBase class and th€al cul at i onBase class are, as the names

suggest, base classes, that need further specializationder to use them. As de-

picted in figure 5.2, for the experiments in this thesis, twaimbranches are derived

from Test ModeBase: first, the TMFPTA class, which is extended with an interfacspecializing test modes
to the FPTA chip and is dedicated to perform measurementhehadrdware at differ- to substrates
ent sampling frequencies. Second, TiéSpi ce3 class, which provides an interface to
Berkeley’'s SPICE3f5 circuit simulator. Due to the fact thataddition to the transient

analysis, other kinds of simulation (e.g. DC, AC, noise) bartarried out with the simu-

lator, theTMSpi ce3 class itself needs to be further specialized accordingaa#sired

type of analysis. Three example classes are given in fig@renamelyTMSpi ce3DC

TMSpi ce3Tr ans andTVBpi ce3AC. Since thelTest MbdeBase class can be special-

ized for other simulators or new hardware substrates inuhed, it is easily possible to

extend the current evolution system with additional evotuplatforms.
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5.4 Implementation and Customization of the Genotype

5.3.3 Implementation of Fitness Functions and Fitness Caltation

A set of fitness functions, represented @gl cul at i onBase objects, is assigned to
each test-mode. Thereby, tBal cul at i onBase class is the base class for any fitness
function. Thus, a new fitness function can be added by derititom Cal cul ati on-
Base and simply overloading three methods, namedstFitness()worstFitness()and
calcFitness() The first two methods have to deliver the best and worst plesfitness
value, respectively. Those values are used by the EA, erditfiess scaling or in case
the measurement fails. Again, this class structure allawscénveniently adding new
fitness functions to the evolution system, while no changes ko be made in other code
sections, since the interface classes remain the same.

5.4 Implementation and Customization of the Genotype

The genetic representation of the phenotype—in the casésahiesis an analog circuit—
is equally important as accessing different substratdsdaware evolution. Hence, there
are important demands on the genetic representation: ifisstpuld describe an analog
circuit on a high abstraction level, which allows for mappiih to different evolution
substrates (e.g. FPTAs, simulators). Second, it shouldbbsilgle to easily extend it and
to add new components. Third, an expedient trade-off betwemmory consumption and
convenience has to be found.

Basically, there are two slightly different ways of genetitccoding and manipulating
the genetic encoding for EAs. In the first case, the genesegresented by a bit string,
which is changed by the genetic operators without prior Kedge about the meaning
of the respective bits. Contrary to that, in the second cdmeeyariation operators are
designed to rather change properties of the phenotype hwimplies that, to a certain
extend, the structure of the phenotype is known by thoseabtpms: It is possible to
include either encoding in the presented framework, atthothe second approach is
preferred for the experiments in this thesis.

5.4.1 Class Structure of the Genetic Representation of Anag Circuits

The evolutionary algorithm framework, introduced in sewtb.2, provides the genome
base class from which the actual genome, which is used foprésented experiments,
is derived. Since the focus of this work is set to analog direwolution, the first step
is to derive aGACI r cui t Genone class fromGABaseGenone, as depicted in fig-
ure 5.3, and include a pointer to the experiment moduEur i ngSet up), which is
described in section 5.3. Furthermore, the circuit genanesgtended with th€i r cui t -

St ruct ur e, which is a flexible genetic representation, that contai@sdonstruction
plan for the respective analog circuit. Again, tBier cui t St r uct ur e contains a vec-
tor of Conponent Base objects and each of them represents one configurable compo-
nent or building block of the whole circuit. As can be seemfriigure 5.3, any desired
circuit component can be derived from tBenponent Base class by using the given
data structures together with according implementatidtiseogenotype-phenotype map-
ping functionsgetMySubstrateRepresentatian{jhe Conponent Base class provides
four different data structures for creating a custom, caméfle circuit component: first,
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GACircuitGenome

- configData : configuration CircuitStructure
- experiment : MeasuringSetup - components : ComponentBase
+ GACircuitGenome(configData : configuration) + CircuitStructure()
+ clone() : GACircuitGenome I~ + clone()
+ accessExperiment() : MeasuringSetup ~ + insertComponent(comp : ComponentBase) : ComponentBase
+ getFPTARepresentation() : representationFPTA + removeComponent(comp : which) : ComponentBase
+ getSPICERepresentation() : representationSPICE + accessComp(comp : which) : ComponentBase
+ save() + editMethods()
+ load()
GABaseGenome ComponentBase
fitnessSum - float - switches : map<name,bool>
_ fitnessMO : vector<floats> - internalNodes : map<name,int>
- fitnessHistory : vector - externalNodes : map<name,int>
- nonDominationLevel : int - parameters : map<name,float>
- crowdingDistance : float + ComponentBase() ) i
_initializer : Initializer::InitGenome + ComponentBase(config : configuration, parm : parameters)
- mutator : Mutator::MutateGenome + clone() : ComponentBase )
- crossover : Crossover::CrossGenome + getFPTARepresentation() : representationFPTA
- comparator : Comparator::CompareGenomes + getSPICEHe‘presentaﬁon()' :representationS"PlCE )
- analyzer : Analyzer::AnalyzeGenome + getSchematlcRgpresgntatlon() : representationSchematic
- evaluator : Evaluator::EvaluateGenome + mutate() : configuration
+ GABaseGenome() + editMethods()
+ initialize() : int N
+ clone() : GABaseGenome
+ mutate(o_ut noMutations : int) : int CResistor
: Z;O:ii(z)e'(;m —— CCMosTransistor ]
+ evaluate() CFPTA_X_Cel _ CCapacity
+ compare(gen : GABaseGenome) : float
+ convergence() : float

Figure 5.3: The fundamental classes of the genome as well as their $patia for analog cir-
cuits are depicted. Thereby, ter cui t St r uct ur e, contains the actual analog circuit, which
consists of various possible components, EPTACel | andCCMosTr ansi st or . The latter
classes are, on their part, derived from @oarponent Base class. Th&GACi r cui t Genone
represents the interface to the EA library.

a map, containing the external nodes, which define the ctiopnedo other components.
Second, a map, that contains the internal nodes, which carsée to define the in-
ternal topology. Third, switches can be defined, in ordernterconnect two nodes.
Fourth, a map, for storing the parameter set which is nege$sacharacterize the re-
spective component. All of those four data structures aafizerd as standard template
library (STL) [40] maps, due to the fact that each node, swdod parameter can be
assigned to an additional identifier, which improves the agaability of those items and
the readability of the code. Since the derived componentsbeafreely combined in
the final circuit structure, this class system provides alflexframework for encoding
circuits of any kind and subsequently use them for evolutigperiments.

5.4.2 Derivation of Custom Circuit Components

In order to derive a custom circuit component, its particindial setup and configuration
has to be done in the respective constructor, while thegrdg&ation of the stored config-
uration has to be implemented in tgetFPTARepresentationgnd thegetSPICERep-

resentation()functions. The specialization of @nponent Base to a configurable implementation of
circuit components
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transistorCCMbs Tr ansi st or is chosen as an example and shown in algorithm A.1
in appendix A. Assuming the final circuit consists of sevestaih transistor components,
the information which ones are interconnected, is store@dgsigning the same node
number to one of the external nodes of both. Consequentiiigimesulting netlist, those
components will be connected. Since a transistor feathreg terminals (gate, source,
drain), three corresponding internal nodes are creategthwdan be attached to one of
the available external nodes, by simply assigning the mseidentifier of the external
nodes. In addition to the external nodes, the terminals easbhnected to vdd, which is
set to a predefined unique number, or gnd, which is alwaystddriry the node number
0. Two parameters W and L are created and initialized witlsibénfloat values, which
define the transistor size. Furthermore, the configurallleae be switched from PMOS
to NMOS, by changing thEMOSTYPEwitch fromtrue to false

5.4.3 Modular Genetic Representation of Custom FPTA Archiectures

Keeping in mind that the genetic circuit representatiorll dfeamapped to either the cur-
rent FPTA, or even new FPTA architectures in the future, tis¢ fipproach is to structure
arranging components  the representation according to such topologies. Presuthet FPTAs are generally
in regular patterns composed of a regular pattern of configurable basic cellstoou architectures can be
easily created by first, deriving the configurable basicsdetim Conponent Base, add
the desired amount of those cells to the circuit structucecmfigure the respective ex-
ternal nodes according to the desired topology. In priegipk long as a corresponding
mapping function is provided, the genetic representates ot necessarily to be a one-
to-one copy of the hardware, although this is the case faghesentations in this thesis.

5.4.4 The Genetic Representation of the Current FPTA

The genetic representation of the current FPTA is close é¢ohtirdware and is imple-
mented as a specialization of the modular representati@eaifon 5.4.3. It consists of
an array of data structures, that contain the configurateda tr the cells: the x- and
y-coordinates, 6 boolean variables for the routes and tved fiariables for the W/L ratio.

Thus, the design of the basic cell equals the architectutbeotonfigurable transistor
cell of the chip, which is described in section 3.1.1. Theatgst advantage of a direct
genotype-phenotype mapping is that no complex place and edgorithm is needed for

the configuration of the transistor array. Contrary to tlitamight be disadvantageous
to constrain the connectivity of possible circuits in ads@nalthough the smaller search
space, that results from the latter constraints, may leéaster convergence of the EA.

5.5 Control Software and User Interface for the Evolution Sdt-
ware

The control software is basically the superstructure ofEAdibrary, the genetic repre-

sentation and the analysis and evaluation classes, whisiides the user interfaces and
darkGAQT software configures the library modules. For the experiments in tieésis, the originatlarkGAQT

software, described in [49] has been further developed acidded into theHANNEE
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software framework, described in [35]. Both software prtgeare developed in tHelec-

tronic Vision(s)group at the Kirchhoff-Institute for Physics in Heidelberghe reasons

for adapting the original software to tH¢ANNEEframework are: first, thelANNEE HANNEE software
framework provides a factory system for easily creating utaduser interfaces for con-framework
figuration. Second, the software automatically storesutsenit state and data in an ex-
tensible markup language (XML) configuration file, from whit can be fully restored.

Third, it is possible to run the program in command line maaeich is useful for run-

ning experiments on remote computers, which has exhalystiez=n used for the pre-

sented experiments. Fourth, tilANNEEsoftware provides so calleabserverclasses,

which make it convenient to display any desired data duriregexperiment by auto-
matically creating the according plot windows. Finallyjsta great advantage to share
implemented functionality with others. An example scrémensf the user interface of

the evolution software is depicted in figure 5.4.
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Figure 5.4: A screenshot of the GUI of the evolution software.
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Chapter 6

Evolution of Transferable Circuits
on the FPTA

The aim of this chapter is to develop an evolutionary aldonf which is able to
synthesize circuits on the FPTA, which are transferabletheiotechnologies and
can therefore be validated with a simulator outside the cliporder to achieve
this, new variation operators are developed, which make least technically
possible to derive and reuse new concepts of electronigadésam the evolved
circuits. It is shown that the developed algorithm perforeggially well as a
straight forward implementation of the EA (Basic GA) in filglgood solutions
for logic gates and for comparators. The newly developedritlym is referred

to as the Turtle GA throughout the remainder of this thesisirtiiermore, the
circuits, which are evolved with the Turtle GA, are extracteto SPICE netlists
and the performance of the on-chip measuring is comparedthdosimulation

results. In addition to this, the circuits are measured offedent FPTA sub-
strates, in order to investigate to what extent the circaits bound to the chip,
on which they are evolved. For all experiments, basic mdpuahde designs,
taken from [6, 90], are realized on the configurable transisirray and used as
references for the evolved circuits. Finally, schematiesautomatically gener-
ated from the best solutions, using the algorithm from obiagt section 4.5.2,
and it is shown that in the case of some circuits with a goodoperance, it is

possible to understand how they actually work.

79



off-chip circuit
validation

new genetic operators

tournament selection
and elitism

mutation operator
(Basic GA)

6.1 Development of the Evolutionary Algorithm

6.1 Development of the Evolutionary Algorithm

The aim is to develop an EA, which is able to synthesize disaui an FPTA chip, which
are transferable to other technologies. In this case, thitb&s technologies are in the first
place either other FPTA substrates or a SPICE simulatot.idfgossible to validate cir-
cuits, which are evolved on the transistor array, with a &iton outside the chip, it will be
at least technically possible to derive and reuse new casicdglectronic design, which
are possibly found by means of evolution. Additionally, 8ymthesized circuits can be
more accurately analyzed with a simulator. This is helpdiice most evolved circuits
are difficult to unterstand. To achieve this, an algorithrthvmiew variation operators has
been developed: thEurtle GA It is desired that the new algorithm performs equally well
than theBasic GA which has been successfully applied in previous expeltisidd, 55].
Both algorithms are used for the evolution of logic gates eohparators, in order to
assess and to compare their performace. Additionallyisstat performance tests are
carried out with all variation operators. The variation igters of both algorithms are
designed to operate with the genetic representation of BiEAFthat is introduced in
section 5.4.3. This representation is used for all expertism this chapter. Tournament
selection is used as selection scheme and in order to peegeising good solutions,
elitism is applied to the two best parents by replacing theochanged with the two worst
individuals of the offspring population. The implementatiof the evolutionary step and
the selection scheme is given in figure 6.1.

6.1.1 The Basic GA

The Basic GAis based on the simple genetic algorithm introduced in [Z]straight
forward implementation of this algorithm has previouslhgbeised in [49, 55] for analog
circuit evolution experiments on the FPTA. Hence, it is—hngtight changes—used as a
reference for the performance of thartle GA which is developed in this thesis. Since
adaptations of the simple genetic algorithm are widely use¢ide field of evolvable hard-
ware [42,60,71,77,84,108], itis a suitable benchmark &wlg developed algorithms.

Implementation of the variation operators.

The mutation operatorandomly changes the properties of the FPTA cells according
to the defined mutation probabilities. There are three featof the FPTA cell, that can
be modified by the mutation operator, namely the routingctiteection of the transistor
terminals and the size of the configurable transistor. TAggparate mutation probabil-
ity can be configured for each of the three features. Mutatiararried out in a straight
forward way by consecutively addressing all transistolscethich are used for the re-
spective evolution experiment. Thereby, due to the giverbabilities, the six possible
routes are flipped and the three transistor terminals afic@rmnected to another target
node. Contrary to that, the W and L is not randomly changetinoueased or decreased
about up to 3 steps for each application of the mutation apert is randomly decided,
with a probability of 05, whether to increase or to decrease W and L. The actual mumbe
of steps is obtained from a gaussian distribution, whichaselol on the mutation proba-
bility. Therefore W/L remains most likely unchanged, wtilie probability for one (two,
three) step(s) are given by the probabilities represenyetoty2o, 30) of the Gaussian

80



Evolution of Transferable Circuits on the FPTA

Algorithm 6.1: This algorithm describes the course of the evolutionarg,stich is used for
both, theBasic GAand theTurtle GA The evolutionary step creates the offspring population
by selecting individuals from the parent population and blysequently applying crossover and
mutation to those individuals. Tournament selection idluse selection scheme. After the new
population is created, all individuals are evaluated anéted. In the next generation, the current
offspring becomes the new parent population. Elitism isldeethe two best parents by replacing
them unchanged with the two worst individuals of the offsgrpopulation, in order to increase
the probability of preserving good solutions.
procedure GATOURNAMENTSELECTOR::SELECT( )
select a randommhampion from the parent population
for i < 1to tournament sizelo
select a randomompetitor from the parent population
if fitness ofcompetitor < fitness ofchampion then
competitor becomes newhampion
end if
end forreturn currentchampion
end procedure

procedure GAGENETICALGORITHM::STEHR )
for i — 1to half population sizelo
select ind1 from parent population
select ind2 from parent population
if random float [0..1k crossover probabilityhen
cross ind1 with ind2- ind1’, ind2’
else
unchanged ind1, ind2» ind1’, ind2’
end if
mutate ind1’ according to mutation probability
mutate ind2’ according to mutation probability
add ind1’, ind2’ to the offspring population
end for
measure and evaluate offspring population
perform elitism: copy best two parents to worst two offsgrin
save statistical data
end procedure

distribution.

In all experiments, a rectangular areanot m FPTA cells (m,n < 16) is provided to
the GA for circuit evolution. Thus, therossover operatosimply exchanges two ran-crossover operator
domly sized and randomly positioned rectangular areasinéistor cells of two selectedBasic GA)
individuals. While it is possible to delimit the maximum siaf the exchanged blocks of
cells, the position can be freely chosen by the GA within treglable area of the transis-
tor array. The operation principle of both variation operstare visualized in figure 6.1
and figure 6.2.

81



recursive or rule-based
circuit creation

6.1 Development of the Evolutionary Algorithm

mutation operator - Basic GA

Figure 6.1: The operation principle of the mutation operator of Basic GAis depicted above.
Mutation is carried out by (re-)connecting randomly seddaransistor terminals, switching ran-
dom routes on or off and randomly changing the W/L ratio ofteaby transistors. An according
crossover operator is shown in figure 6.2

6.1.2 The Turtle GA

The operation principle of th€éurtle GAis inspired by growing networks like the nervous
system or blood vessels. Despite those growing processdmaed on randomly created
paths, furcations and interconnections, the overall m®de directed by developmental
rules. In the case of blood vessels, possible developmeules could be to ensure a
minimum volumetric flow rate, a minimum coverage of all parfishe body and the con-
straint that branches have always to be less in diametertiigamain trunk. The circuit
creating meachanisms of tfi@rrtle GAare inspired by developmental rules of the latter
kind. A rule-based developmental stage is supposed to beeffm$ent in combination
with genetic encodings, for which the phenotype is not atorere mapping of the geno-
type, e.g. in the case of GP [47]. Nevertheless, in this dhseyariation operators work
on a genetic representation, that is close to the phenofypenamelurtle GAis inspired
by theturtle graphicslanguage, with which a graphics cursor can be directed tatere
a plot!. Analogous to creating a graph, the variation operator@Turtle GAdraw a
circuit on the configurable transistor array, based on randecisions for direction and
component sizing.

1 The turtle graphics language has originally been develépesending commands to a plotter. A basic set
of instructions is available and each command (pen up, pamdmove n steps forward, rotate n degrees)
is directly carried out by the graphics cursor (turtle).
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Figure 6.2: The picture illustrates the operation principle of the sm&r operators of theasic
GA (top) and theTurtle GA (bottor) respectively. Principally, the first stemp) of exchanging
a randomly sized and positioned block of cells between tiecsed individuals is the same for
both algorithms. While the operation is thereby already joteted in the case of tHgasic GA

a second stagé¢tton) takes care of fixing the occurring floating nodes in the cdsbeurtle
GA
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6.1 Development of the Evolutionary Algorithm

Implementation of the variation operators.

Therandom wires mutatiomperator randomly selects an outside node of an arbitrary
FPTA cell as starting point for the algorithm. For such a ndmtgh the current cell and
the adjacent neighbor cell provide three possible routimgnections to the remaining
outside nodes (N, S, W, E) and three connections to the stanserminals (gate, source,
drain). There are two operation modes of thadom wires mutationrnamely the create
mode and the erase mode. In case the create mode is actiwethenstarting point is
selected, the algorithm randomly chooses one of the uncteshepossible target nodes,
connects it to the current node and subsequently the tangetlmecomes the new starting
point. Connections are recursively established until #ingat node features more than 1
connections, including the new connection. If a transigominal is selected as target
node, the algorithm is recursively carried out with the temaining terminals as starting
points. In the latter case, the four outside nodes of thesntitransistor cell are possible
target nodes, to which the transistor terminal can be caaded he algorithm works the
same way in erase mode, although the stop criterion will behred, if, after erasing the
chosen connection, the target node features either O or timane2 connections. In erase
mode, transistors are rewired instead of removed with aglitity of 0.5, by switching to
create mode after detaching the current terminal. As a cuesee of this, the mutation
operator inherently avoids floating nodes and terminalss,tproduces valid circuits for
simulation.

Thereby, the selection of the target node can be influencéd twio configuration
parameters: first, it can be configured, whether it is mom\tiko select a target node of
the current cell, or to proceed to the neighbor cell (0.5 mdzoth is equally probable).
Second, the probability of connecting a transistor termimstead of an outside node,
and the maximum number of transistors used can be specifiethefmore, a maximum
number of routing connections per cell can be set, whichxdeeded, will cause the
operator to switch more likely to erase mode. Finally, thebgbility, with which it is
decided whether to start in create mode or in erase mode ceonffigured.

The W and L of a transistor is randomly configured, immedjasdter the mutation
operator has inserted it into the active circuit. Duringdbarse of evolution, the sizes of
all transistors are varied in the same way as forBhsic GA described in section 6.1.1.

Since the relatively complerandom wires mutations yet available, the operation
principle of theimplanting crossoveoperator is simpler. Analogous to tBasic GA two
randomly sized and randomly positioned rectangular arE&® A cells are exchanged
between two different individuals. It is possible to delirtie maximum size of the
exchanged blocks of cells, while the position can be freblysen by the GA within the
available area of the transistor array. Since this operdtiogeneral breaks the layout
of the previously intact circuits, a postprocessing stafeg care of fixing the occurring
floating nodes by applying theandom wires mutatioroperator to each of them. As
a consequence, the validity of the circuit is restored. Tperation principle of both
variation operators is visualized in figure 6.2 and figure &@ditionally, it is described
in pseudocode A.5 and A.6 in appendix A.
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Figure 6.3: The operation principle of theandom wires mutation operatasf the Turtle GA

is depicted above. Transistors and wires are recursivalgriad (or removed) into (from) the
active circuit. Pictures 1-10 show an example where a stafibint is randomly selected and
subsequently a new transistor is attached to the circuitevi pictures 11-15 the deletion of a
wire is illustrated. Further, the W/L ratio of all transistds randomly changed. The mutation

operator is designed in a way that the resulting circuits@omo floating nodes.




6.2 Experimental Setup

6.1.3 Shortcomings of the Basic GA

Some important shortcomings of tlBasic GAcan already be seen from figure 6.1, in
which a section of a typical genotype is depicted. As can lea $®@m this figure, the
FPTA allows for circuit configurations, that contain unceated nodes and transistor ter-
unconnected nodes and minals. Those floating nodes are actually connected to @lvaesmission gates, which
transistor terminals are part of the configuration circuitry of the chip, hence, ot really unconnected. As a
consequence of this, if an evolved circuit shall be sucadiggested in simulation outside
no verification outside  the FPTA, it will be necessary to consider the entire conéigon circuitry of the chip.

the FPTA Thus, the simulation time is significantly increased to uf way, in the case of a large
circuit. Furthermore, it is—even if they are found—neitlieasible to derive new design

no transfer to other concepts from the evolved circuits, nor practical to trangbund solutions to other tech-

technologies nologies. The reason for this is that the circuits, whichsymrethesized by thBasic GA

N may sensitively depend on the influence of the parasiticeffef the configuration cir-
sensitive dependency one ity of the FPTA. Thus, in some cases, it is not even guagghthat an evolved circuit
the evolution substrate . .

performs equally well on another FPTA chip of the same kind.

6.1.4 Improvements of the Turtle GA Compared with the Basic A

The design of the variation operators of thertle GAaims for overcoming the short-
comings of theBasic GA Hence, the fact that floating nodes and floating terminads ar
simulation and inherently avoided, makes it possible to simulate the eleircuits outside the FPTA
verification outside the  wijthout obligatory considering the influence of the confagion circuitry of the transistor
FPTA array. Although the parasitic capacitances of the closmstnission gates and the inac-
tive parts of the configurable transistor are still presetiafluence the evolving circuit,
reduced dependency on the strength of this dependency is significantly reduceatesihere are no longer floating
parasitic effects nodes of incompletely connected transistors. In additathis, it is a great improvement
that schematics can be automatically generated from tbeitsithat are evolved with the
Turtle GA by using the SKILL language as described in section 4.5a2. |&@tter achieve-
ment is a great step towards facilitating the understanairigansistor circuits, which are
evolved on the FPTA.

6.2 Experimental Setup

All experiments within this chapter are performed with Basic GAand theTurtle GA
respectively. For the evolution of the set of logic gatesaea of 7x 7 configurable
transistor cells is used, whereas for the evolution of coatpes an area of 8 8 cells
is provided to the EA. As can be seen from figure 6.2, a testberiit randomly vary-

testbench with randomly ing capacitive load is connected to the circuit’'s input ithboases, in order to promote

varied capacitive load  circuits, which are able to drive different capacitive Isa@he chip-in-the-loop setup in-
herently provides exclusively the possibility of trangiereasuring. Therefore, in order to

quasi-DC measuring  obtain a quasi-DC characteristic of the evolving circwetatively long settling times are
chosen for each voltage sample in conjunction with randmmithe order of the voltage
test pattern.
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Figure 6.4: Left: the FPTA setup for the evolution of logic gates is shown. Is tase, an area
of 7 x 7 transistor cells can be changed by the algoritiRight: an area o8 x 8 FPTA cells is
provided to the EA for the evolution of comparators. In baéses, a capacitive load is realized
with the transistors on the chip and is attached to the ¢iscoutput. Thereby, the advantage is
that this capacitive load can be randomly varied by the EAnguthe course of evolution.

6.2.1 Test Modes for the Logic Gates

Vsweepl V]~ Vset[V] | AND NAND OR NOR XOR XNOR
<2 (low) < 2(low) 0 1 0 1 0 1
<2(low) >3(high)| O 1 1 0 1 0
> 3 (high) < 2 (low) 0 1 1 0 1 0
> 3 (high) > 3 (high) 1 0 1 0 0 1

Table 6.1: The truth table for all six symmetric logic gates is depicadave. Providing a better
overview, on the right hand side, the loggev and logichigh are represented by zeroes and ones.
Despite this, in the output voltage pattern, a logic 0 intdisahat the target output voltagedi§/,
while a logic 1 indicates that the target output voltage\&

Each of the two test modes for the logic gates features twotinfsweep Vse) and
one target output\,,) respectively. The input voltage pattern is given Wyeep=
0...2,3...5V for each of the 10 values &= 0,0.5,1,1.5,2,3,3.5,4,4.5,5V. Thus,
each test mode consists of a set of 10 sample curves and afté#0 voltage samples.
Note that the transition regions Wyeep Vset = 2.5+ 0.5V are not considered, with the
aim to facilitate the search for logic gates. The targetag#s are either setto OV or to
5V, depending on the result of the desired logic calculatidocording to the transistor-
transistor logic (TTL) definition, the voltage range of.00.8 V represents a logitow
and the range of 2.5V represents a logikigh. Thus, from this point of view, the spec-
ification of the target voltage pattern is even more re$tadior the presented evolution
experiments. The timing scheme of the chip is configured irag that the sampling
frequency is M1 MHz. Therefore, randomizing the sample voltage sequassares a
settling-time of at least.1us. Since logic gates shall deliver the same output, if the in-
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Figure 6.5: The schemes of the input voltage pattern for the evolutiolo@it gates (left) and
comparators (right) are depicted above. While, in the c&8gedogic gates, the transition regions
of VsweepVset= 2...3 are not considered, in order to facilitate the search fordgsalutions,

in the case of the comparators, the density of the voltag@kenis even increased towards the
switching points, in order to emphasize it.

puts are swapped, two test modes are necessary to covemipothconfigurations. A
visualization of the input voltage pattern is given in figér& and the truth table for the
logic gates is listed in table 6.1. In the section 6.4, theditéon region is included in the
measuring\sweep= 0...5 V) but not considered for fitness calculation, in order ttaob
nicer plots of the output voltage characteristics of thedgmtes.

6.2.2 Test Modes for the Comparators

Again, there are two inputs preseNtyeep Vse) and one output\gar). In the case of the
comparators, the voltage test pattern features a set of@éswithVsyeep=0...5V and
Vset=1,1.5,2,2.5,3,3.5,4 V. Vsweepconsists of 100 sample voltages, resulting in a total
of 700 samples for each test mode. The valueSsqtepare not uniformly distributed
between 0V and 5V, but with increasing density towards tlspeetiveVse, in order

to emphasize the switching points for the fitness calculatibhereby, the smallest dif-
ference between two consecutive voltage samples is newalesrithat 20 mV, owing to
the resolution of the measuring system, discussed in ch@ptection 3.3.2. The input
pattern is illustrated in figure 6.5 (right) and the targdtages are calculated according
to

(6.1)

Vi — 5V Viweep< Vset
tar = .
OV Vsweep> Vset

Since the design of a comparator, which performs well withi whole voltage range,

is a difficult task,Vset takes on values between 1V and 4V, in order to help the genetic
algorithm in finding good solutions. The order of the volteganples is randomized,
which ensures, alongside with the selected sampling frezyuef 077 MHz, a minimum
settling-time of about Bus. Since it is expected that a comparator will produce the
inverse output voltage characteristic, if the inputs aramyed, two test modes—one
with swapped inputs and inverse target voltages—are usask&ss the evolving circuit’s
performance.
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Figure 6.6: In order to make the fitness values more meaningful in the éiedircuit design, the
fitness is—for some graphs—translated to the according rros i@ volts. The according map-
ping of fitness— RMS error is depicted above. Contrary to the squared fittlessjtness used
is discrete, which provides two advantages: first, the nreaswoltage values are less sensitive
to the noisy hardware measurement and the resolution ot 2BauV of the hardware evolution
system. Second, the resolution of the fithess measure igdetimvards small voltage changes,
while improvements of large voltage changes are robust.

6.2.3 Simulator Setup

The simulations are carried out with the SPICE simulatoscdbed in chapter 4 and
in [65]. BSIM3v3 transistor models of the AMS®um process, with which the FPTA isthe fabrication process
designed, are used for simulation. SPICE netlists areaetidrom the circuits that haveof the FPTA
been evolved on the transistor array and the input voltagferpa correspond to those
used for the on-chip measurements. In cases where the sionutkelivers more output
voltage samples than the measuring on the FPTA, only the aconsubset of samples
is considered for fitness calculation. Additionally, thediss values, calculated from the
simulation results, are obtained by using the same fitnessifuns as are used throughout
evolution.

SPICE Netlists of the resulting circuits are extracted acdeed in chapter 4, sec-
tion 4.4. Level 2 netlists are used for comparing the reduttsi the chip to those ob-
tained from simulation. Furthermore, a load-capacity opEGs attached to the circuit’s
output in simulation, owing to the randomly varied cap&eitioad, which is present at
the circuit’'s output during evolution.

6.2.4 Fitness Measure

The same fitness measure is used for all experiments in thigeh in order to be able

to compare them. Both the setup for the logic gates and thup $et the comparators

consist of two test modes respectively and each test motkedeh separate fitness value.

Additionally, a third fitness value is obtained by quantifyithe ressource consumptioraccumulated fitness
The latter three fitness values are added up to the totalditwfesn individual, which is value

denoted asccumulated fitnesst is a great problem if circuits, which use less ressoyrces

are preferred right in the beginning of the experiment,esienolution will get more often

stuck in the local optimum of using no transistors and noesutt all after only a few
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generations. To overcome this problem, a widely used appr@ato assign the worst
fitness for the ressource consumption as long as the fitnalssilated from the output
voltage characteristics, is not below a certain threshdihce, the latter approach is also
applied for the experiments in this chapter. The worst ngsgoconsumption of 2048 is
thereby calculated by considering all 256 transistors &@&i<26 routes of the FPTA in
equation 6.7 and all fithess values are calculated as fallows

AVi - ’Vtarget _Vmeasured (6-2)
N = no. of voltage samples (6.3)
_ _ 1N 0. AL A -20mVv>01-(j-1
discrete fitness = — Zl > |75 2 - (J. ) (6.4)
NG & |0 AV —20mV<0.1-(j—1)
1 N
squared fitness = 5 AV? (6.5)
i=
rms error = +/squared fitness (6.6)
ressource consumption= 2 x transistors use¢t 1 x routes used (6.7)
(6.8)

Furthermore, for the purpose of making the fitness valueg maaningful in the field
of circuit design, the fitness is—for some graphs—trandlabethe according rms error
in volts. The mapping of fithess— RMS error is depicted in figure 6.6. For illustration,
rms error and fithess are calculated for one single voltagwkaand for 20 randomized
voltage samples respectively. Contrary to the squaredsfitribe fitness used is discrete,
which can be seen from the curve for 1 voltage sample in figuBeabd is referred to
asdiscrete fitnessIn the case of hardware evolution, the discrete fitnessifestsome
advantages compared with the squared fitness: first, theuneehsoltage values are
less sensitive to the noisy hardware measuring and theutasobf about 20 mV of the
hardware evolution system (chapter 3, section 3.3.2).18k¢be resolution of the fitness
measure can be refined towards small voltage changes byadexgehe distances of the
fithess steps, while improvements of large voltage changesare robust and therefore
preserved.

6.2.5 Estimation and Setup of the EA Parameters

As can be learned from publications about scanning the petearapace and finding op-
timal parameters for EAs ([36]) and from test runs of evalntéxperiments, carried out
for this thesis, optimally tweaking the EA is a difficult ariche-consuming task. Actu-
ally, there are two approaches for finding the optimal EA peeizrs for a certain a certain
task: the first possibility, which surely finds the globalioptm, is simply to sample the
whole parameter space by performing according experimardssubsequently pick the
parameters of the setups, that have lead to the best radoligver, a great disadvantage
of the latter approach is the immense time consumptionesine EA’s parameter set
consist of at least 4 independent variables, which have toptienized, namely muta-
tion rate, crossover rate, population size and selectiesspire. The influence of custom
fitness functions and genetic encodings is thereby not yat &ken into account. In
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practice, for a customized implementation of an EA, abou8@0ndependent parame-
ters, rather than only 4, have to be optimized. As a conseguehthis, assuming the
simplest case, 10 samples for each parameter (which is cpgtese) and a statistics of
only 10 runs for each parameter set, a total ok1M* = 100000 experiment runs would
have to be performed, in order to find a good set of parameteiske specific problem.
The second possibility is to make an educated guess for fjraligood parameter set,
although this will possibly not lead to the global optimum.

Since the focus of this work is rather set on improving the B4 finding solutions for
various problems, than to exhaustively sampling the pat@nspace, the parameter set
used is found by an educated guess. Important parametdrsBésic GAand theTurtle an educated guess for
GAare listed in table 6.2 conjoined with their numerical vadumel the considerations, orthe EA parameters
which the respective value is based.

In order to substantiate the chosen set of parameters, 20tievoexperiments—ifor
which the task is to evolve a logic AND-are carried out withgh parameters. Further-
more, another 20 evolution runs are carried out for certamations of the chosen pa-
rameter set respectively. Variations of the parameterrseth@reby obtained by slightly
increasing or decreasing certain parameters. Only onengdea is changed at the same
time, hence, the results obtained with the varied paransetsrdeliver information about
the vicinity of the respective variable and are listed inda®.2. Concluding those re-
sults, it can be stated that a parameter set, with which a geddrmance of the EA is
achieved, is found, although it cannot be claimed that tbbajloptimum is found.
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success rate
rms< 500 mV

educated guess, @atimider

30 %< 60 %> 55 %

45%=45%=45%

The mutation rates used are picked by
dividing 1 by the number of
configurable routes (& 256), terminals
(3 x 256) and WI/L (256). Thus, the
rates are set to values, with which, on
average, one of each kind of cell
features is changed per individual and
generation.

40 %< 45% > 65%

About 10 % of the individuals are
subject to a crossover operation.

parameter which smallet used< greater success rate
GA value rms< 200 mVv
mutation rates
routing Basic 015%<0.3%<06%
terminals Basic B%<06%<12% 10%>5%>0%
W/L both 08%<1.6%<32%
turtle rate Turtle b<l<?2
erase/create Turtle 40 %
reconnect Turtle éqgg/o 10%<25%>20%
to old/new cell  Turtle 30 %70 %
crossover rate Basic 10%
Turtle 5%< 50%< 20 % 5%< 25%< 30%
cross. block size  both .0.4x0...4
elitism both keep 2 best ind.
tournament size  Basic 3
Turtle 2<3<4 20%< 25%> 10%
population size  Basic 50
Turtle 25<50< 100 20%< 25%> 15%
no. generations  both 10000

40%<45%> 25%

30 %< 45%< 55%

The significant value is #evaluatioas
pop. sizex no. generations. An
adequate selection pressure is achieved
by setting the tournament size to about
59% of the pop. size.

Table 6.2: The GA parameters for thBasic GAand theTurtle GA which are used for most of the experiments in this thesis,liated in the table
above. The FPTA consists @b x 16 = 256 configurable transistor cells, each of them featuring sigsfile routes, three transistor terminals and one
W/L ratio. Since it is desired that the individuals are vdneithout destructive impact on useful structures, it mas@sse to set the basic mutation rates
to values that, on average, only one of the individual’sufezd is changed per generation. These conservative ratest ddlow for effective exploration

of the search space in the beginning of evolution. Therefthre basic mutation and crossover rates are multiplied witactorl < multiplier <5,

multiplier € N| current best fitness %ﬁ%‘? 1< 1 < 2, that depends on the current best fitness.
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6.3 Measuring the Performance of the Variation Operators of
Both GAs

Although theTurtle GAfeatures many eligible improvements compared withBlasic
GA it has to be assured that the new variation operators pedgually well as the basic
operators. Thus, in order to measure the performance ofahation operators of both
GAs, they are applied to the same individual for one evohatiyg step and the differences
between the previous fitness and the respective new fithessdsded. Thereby, owing
to the noisy output of the hardware, only those fithess diffees are considered, that
exceed a certain threshold. This threshold, in turn, isiobtaby performing multiple
measurements of the same circuit without changing it andesyuently calculating the
gaussian width of the distribution of the obtained resulige to the fact that measuring
only one single individual is not representative, a set fiegnt individuals with similar
fitness is measured.

For carrying out this measuring, different individuals lwiifferent fithess values are
collected during the evolution of logic gates (AND, XOR) aaré stored in a repository.creating a repository of
This repository is divided into 100 equally sized fitnesivals, that cover the rangdndividuals
of resulting fitness values betweerb0.5.5, which corresponds to rms errors between
0.8...3.4V. The fully populated repository features 100 differeahgmes for each fit-
ness interval and therefore contains a total of 10000 iddads. This repository makes it
possible to reproducible generate predefined initial patiris for evolution experiments.
In the case of measuring the performance of variation opexatwo fitness intervals are

which which rms errorf success failure success failure
task GA interval | rate mutation [%] rate crossover [%]
Basic 15V 25.6 11.7 27.8 6.2
AND 25V 25.7 6.0 27.2 4.7
Turtle 15V 25.7 12.1 26.5 5.5
25V 30.8 9.7 30.2 6.3
Basic 15V 7.2 39.0 7.9 8.2
XOR 25V 19.8 23.4 6.0 11.4
Turtle 15V 15.7 49.9 4.2 47.7
25V 7.5 27.2 5.1 17.0

Table 6.3: The success rate and the failure rate of the mutation and@resoperator of thBasic
GA and theTurtle GAare opposed in the table above. Thereby, the success riee(fate) is
calculated fronf2-0f runs with fitness below (above) thresholft o4 he seen that the variation operators
of both EAs perform equally well for both, populations of widuals with a relatively good
fitness and populations of individuals with a bad fitnesseespely. In the case of the XOR, it is
surprising that the mutation success rates and the crassdiuee rates show an inverse behavior.
A possible reason for the latter behavior could be the fatt fhrst, the XOR turns out to be hard to
evolve on the FPTA and second, contrary to the AND, the outplteige characteristic of the XOR
is symmetric. Thus, the performance of the operators foresponding fitness intervals is not
necessarily the same. Besides, greater success ratesstagger convergence of the individuals

in the case of the AND.
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Figure 6.7: For illustration, the distributions of the results from @R individuals with a fithess
of 1 are depicted above. The results for Basic GA(BGA) are depicted on the left hand side,
while those for th@urtle GA(TGA) are shown on the right hand side. Thereby, the graphemn
show the measuring of the unchanged individuals, thosegmrtialdle show the influence of the
mutation operator and those at the bottom show the influehttee@rossover operator. Further,
a positivel\fitness means that the individual is improved, while a negéifitness means that the
individual is degraded.

selected for the setup: one fitness interval of individudth & relatively good fitness of

1 (resp. an rms error of.3V) and another interval of individuals with a bad fitness of
3 (resp. an rms error of. 2V). Subsequently, each individual of a selected intersal i
tested 1,000 times, resulting in 100,000 for the mutatioaraor, the crossover opera-
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tor and the unchanged genome respectively. The Gaussiath Wfidhe distribution of

the latter measurements is used as a threshold, that haskeéeded when the genome

is changed, in order to distinguish fluctuations of the oufpam real improvement or

degradation of the individuals. Finally, the ratio of me@snents, where the application

of a genetic operator lead to better fitness, resp. worses$itrman be used to express the

efficiency of the applied variation operator. The resultstifie success rates of mutatioBuccess rates of the
and crossover of thBasic GAand theTurtle GAare compared in table 6.3 and, for ilgenetic operators
lustration, the distribution of the results from the XORiinduals with a fithess of 1 is

depicted in figure 6.7.

As can be seen from table 6.3, the variation operators ofGdthperform equally well
for populations of individuals with a relatively good fitrsemnd populations of individuals
with a bad fitness respectively. In the case of the XOR, it iprssing that the mutation
success rates and the crossover failure rates show angranavior. Possible reasons for
the latter behavior are: first, the XOR turns out to be hardodve on the FPTA. Second,
contrary to the AND, the output voltage characteristic & ¥OR is symmetric. Thus,
the performance of the operators for corresponding fitmgesvials is not necessarily the
same. Concluding, the results of the performance measstggest that both GAs will
show comparable performance for the following evolutiopeximents. Besides, as long
as the success rate:is0 %, the individuals are further improved by means of sabecti
Thereby, the greater the success rate, the faster convergedividuals.

6.4 Results for the Evolution of Logic Gates and Comparators
Using Both EAs

A total of 50 evolution runs is carried out with tlgasic GAand theTurtle GArespec- experimental setup
tively, in order to find solutions for all six logic gates (ANDIAND, NOR, OR, XOR,
XNOR) and the comparators. The population size is always8Widuals, which are
processed for 10.000 generations in the case of the gate®a@d.000 generations in
the case of the comparators. A complete list of the EA pararaés$ given in table 6.2.
The output fithess value range is.011. Thereby, 0 is the best fithess which would only
be obtained by the target voltage pattern itself and 11 ismbrest fithess value, which
would be produced by a circuit with the inverse target vataparacteristic. The in-
dividuals of all evolution runs are randomly initializeddait is observed that the best
individual of the initial generation in most cases produasgraight line as output voltage
characteristic. Hence, the best initial rms error is abdbiv2resulting in a best initial fit-
ness in the range of. &. Thus, for a better overview, the x-axis of the fitness lgistms

of the resulting populations ranges between 0 and 3, ingiEhdtween 0 and 11. As a
short remainder, the main questions, that shall be answsréabking at the following

results are:
How do theBasic GAand theTurtle GAperform in finding solutions for logic

gates and comparators?

e Are both EAs performing equally well?

e Do the circuits work on different substrates?
How well does theTurtle GAperform its new features: transfer to other tech-
nologies, reduced ressource consumption and schematcagiem?

95



logic gates: equal
on-chip performance of
both EAs

more complex circuits
are harder to evolve

comparators: on-chip
performance of Basic
GA is slightly better

finding good solutions

6.4 Results for the Evolution of Logic Gates and Comparditsiag Both EAs

6.4.1 Comparison of the Results of Both Algorithms

On-chip Results for the Logic Gates

For theBasic GAand theTurtle GA the best fithess of the resulting population of each
run is depicted in histogram 6.9. It can be seen that both E&sup in similar regions
of fithess for the same logic gate respectively. Thus, in #se ©f the logic gates, both
algorithms perform equally well. Furthermore, histogrard ghows that there are three
difficulty levels for the evolution of logic gates on the FRT#rst, the NAND and the
NOR are the easiest gates to evolve, since the resultingitrests of almost all runs is
below 0.25 (rms errog 700 mV). Second, the AND and the OR gates, which are more
difficult to evolve, due to the fact that, in this case, oélyof the runs feature a fitness
below 0.25, while the remaining part features fitness vdbetseen 0.25 and 1. Addition-
ally, there are 2..3 runs with a fitness between 1.5 and 2.8 < rms error< 2.5V).
Third, the XOR and the XNOR are the hardest to evolve, sineeréisulting best fit-
ness values of the experiment runs are distributed betwesmd(®B. Nevertheless, for
the XOR and the XNOR, at least 2 out of 50 runs achieved a fitbelsv 0.25. It can
be seen that, with increasing complexity (NAND,NOR=4 tistoss, AND,OR=6 tran-
sistors, XOR,XNOR=14 transistors), the circuits get hatdeevolve. Concluding this
so far, both algorithms are able to reliably find good sohgidor all six logic gates on
the FPTA. Measured output voltage characteristics of tisé smutions are shown in fig-
ure 6.14.

On-chip Results for the Comparators

The fitness of the best individual of each evolution run isaghon histogram 6.10 for
both algorithms. In the case of the comparators, the regultiness values of both EAs
are ranging between 0.1 and 1 (50 rMms error< 1.5 V), although the distribution of
the fitness values indicates that tBasic GAperforms better in finding good solutions:
about half of the runs achieved a best fitness below 0.25 (rmos< 700 mV). Contrary
to that, only 25% of the runs of tHEurtle GAfeature a best individual below a fitness of
0.25. Despite this, four runs reached the best fithess biotim ¢ases. It is interesting to
see that, considering the complexity of 7 transistors ofsich@omparator circuit, the dis-
tribution of the fitness values is similar to those of the ANl &he OR, which are equally
complex. As a consequence of this, it is suggested that dimpility, with which a good

rather depends on no. of splution is found, rather depends on the number of tranrsisiod their connectivity, than

transistors, than on
problem

on the particular problem or the type of circuit. To concludlecan be stated that both
algorithms are able to reproducible synthesize comparaith a good performance on
the chip. According output voltage characteristics of thstlzircuits found are depicted
in figure 6.15.

Considering the Ressource Consumption

The first significant advantage of tAartle GA compared with thd&asic GA can be
seen from figure 6.8 and figure 6.11, where the rms error of #s¢ individual of all
experiments is graphed over the resource consumption (htrarsistors used) of the
respective circuit. For drawing the figures 6.8 and 6.11 the error is chosen, instead
of the fitness, since this makes it easier to qualify the etadtperformance of the re-
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Figure 6.8: The fitness from the test modes is plotted over the no. ofigtors used. As can be
seen from the graphs, thertle GAfeatures reduced ressource consumption, compared with the
Basic GA Furthermore, both EAs achieved to find solutions for thed@ND, NAND, NOR,

OR and XOR, which perform equally well as the respective raipumade reference designs,
which are realized on the FPTA.

sulting circuits. In both experiments, the evolution ofitogates and the evolution ofthe Turtle GA
comparators, th&urtle GAproduces circuits, which use less transistors tharBihgic Significantly reduces
GA. Reducing ressource consumption is desireable insofardhahe one hand, freed®SSCurce consumption
ressources can be (re-)used by the EA for the developmenldifanal features and, on
the other hand, a smaller number of transistors increasgw tibability of understanding
evolved circuits.

advantage: (re-)using
ressources
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logic gates. It can be seen that the number of good solutieaiedses with increasing complexity
of the circuits.
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Figure 6.10: The distribution of the best fitness for comparators of ed¢hen50 evolution runs is
shown in the above histograms. Thereby, bottBasic GAand theTurtle GAachieve to reliably
find good solutions for comparators, although the overatigrmance of thBasic GAIs slightly

better in this case.
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the comparators, the fitness
from the test modes is plot-
ted over the no. of transis-
tors used. Thereby, it can be
seen that in the case of the
comparators, th&urtle GA
achieved to significantly re-
duce the ressource consump-
tion, compared with th8a-
sic GA For comparison, the
performance of a manually
made reference design on the
FPTA is marked with a trian-
gle.
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6.4 Results for the Evolution of Logic Gates and Comparditsiag Both EAs

6.4.2 \Verifying the Evolved Circuits in Simulation

The second important feature of thiartle GAis the possibility of extracting the resulting
circuits into SPICE netlists, as described in section 4 therefore it is possible to
validate them with a simulator outside of the chip. Sincedine is to proof that good so-
lutions, which are evolved on the FPTA, are working outstte ¢hip without including
the whole configuration and controlling circuitry of thertséstor array into simulation
(level 3), the simulations of the circuits are carried outhwietlists of level 2, in which
only plain transistors and the mean parasitic on-resistafithe switches are included.
Contrary to that, level 1 simulations, which represent deasistor cell as plain transis-
tor, are not used, due to the fact that it has been observaglimmary experiments that
the level 1 simulations generally fail. One individual otbaun, which features the best
performance on the chip, is measured on the FPTA, in a DC SBiGHation and in a
transient SPICE simulation respectively.

Simulation of the Logic Gates
The results for the logic gates are compared in histograr®. 6ltL.can be seen that,

the Turtle GA finds logic although the performance of many solutions decreases iD@simulation, at least 1
gates, which perform gyt of 50 individuals with a good fitness performs equallyvaslon the chip. DC volt-
wellin simulation age characteristics of the on-chip measuring of the bestisns of both GAs and the

DC voltage characteristic of the simulation of the b&sttle GAsolution are depicted

in figure 6.14. Contrary to the DC simulation, the perfornentthe circuits is getting
transient performance is significantly worse in the transient simulation. Neverdiss|, this is expected, since para-
worse than DC sitic capacitances are not included in the netlist. Despéevorse rms error, the transient
performance voltage characteristics, graphed in figure 6.16, show the&ed behavior of the respec-

tive logic gate, which is a positively surprising result.

the Turtle GA finds Simulation of the Comparators

comparators, which _ In the case of the comparators, the rms errors obtained fimmlation and from the

E%fj;rgoenq”a"y wellin- measurement on the chip are similar. The results are shofiguire 6.13. Once more, 1
out of 50 evolution runs features an individual with a goodgrenance, which performs
equally well in the DC simulation and on the FPTA. The outpoitage characteristics
are depicted in figure 6.15. For the comparators, the outpubth test modes is shown,
since, contrary to the logic gates, the curves will be iregrif the inputs are exchanged.
Furthermore, although the rms error of the majority of Sohg gets significantly worse,
the over-all best individual performs well in a transiemhslation, as can be seen from

good solutions are not ~ figure 6.17. Thus, it is possible to synthesize circuits @RRTA that are not bound to

bound to the FPTA the architecture of the configurable transistor array.
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Figure 6.13: The on-chip performance of the best comparators of all 5Qugea runs is com-
pared with their performance in a DC and a transient SPICRilgition. Again, for a better
overview, the results are ascending sorted by their fitn@istgined with the FPTA. Thereby,
about half of the circuits are not working in a DC simulatiordabout 3/4 of them fail in a tran-
sient simulation. Despite this, at lest 4 solutions are thuvhich achieve a similar fitness in all
three cases.
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Figure 6.14: The output characteristics, obtained from Besic GA theTurtle GAand the DC
simulation for all 6 logic gates are depicted above.
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Figure 6.15: The output voltage characteristics of the best comparatomved with theBasic
GA (top) and theTurtle GA (middle and bottorhare depicted. In the case of thartle GAthe
output voltage characteristic from the FPTA is additiopabmpared to the DC simulation result

(bottor).
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Figure 6.16: In addition to the DC voltage characteristic of the logicagatshown in figure 6.14,
it is interesting to see that the transient output voltage atteristic of the over-all best solutions,

depicted above, shows the desired behavior.
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Figure 6.17: In addition to the voltage characteristic of the best coratmar obtained with a DC
simulation, the measuring of an according transient sitiaridas depicted above. It can be seen
that the best coparator, which is found by Thetle GA performs equally well on the FPTA, in a

DC simulation and in a transient simulation.
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Figure 6.18: The best individual of all 50 evolution runs is measured aeélidifferent FPTAS.
Thereby, the 'home’ chip is marked with an asterisk. As casdmn from the above histograms,
all solutions for the logic gates perform equally well onthliee FPTA chips.
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Figure 6.19: As can be seen from the graphs above, the best solutiongfoothparators perform
equally well on all three FPTA substrates. Again, the chipphich the comparators are originally
evolved, is marked with an asterisk.

6.4.3 Performance of the Evolved Circuits on Different FPT/A

A further question is whether the circuits, which are evdlem a certain substrate, can

testing on three different be successfully operated on different FPTAs. For this she&iidentical, independent

FPTAs

logic gates perform
equally well on all
FPTAs

comparators perform
slightly worse on other
FPTAs

FPTA-in-the-loop evolution systems are available forgag out experiments. The three
different chips are named after the number of the respelotigePC: FPTA6, FPTA7 and
FPTAL3.

Measurement of the Logic Gates

The evolution results for the logic gates are obtained wiRfi&13. Thus, for compar-
ison, the best circuits of each run are measured on FPTA6 BAAF. It is seen from
figure 6.18 that the circuits of all 50 evolution runs perfaegqual on all three transistor
arrays. In the case of the logic gates, the results obtanseddifferent chips are depicted
in a histogram, instead of a scatter plot, in order to progdetter overview of the nu-
merous plots.

Measurement of the Comparators

The comparators are evolved with FPTA7 and the best indalsdof each run are tested
on FPTA6 and FPTA13 for comparison. The results for the coaipes are depicted in
figure 6.19. Unlike in the case of the logic gates, the fitn@ssiloution is shifted to
slightly worse values£0.05...0.1), corresponding to an additional rms error of about
150...250 mV. The reason for this is the importance of the switcliomt of the com-
parator. While the transition region ¥Wyeep= 2...3V is not considered for the logic
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gates, the no. of samples is even increased near the swgtphints of the comparators,
as described in section6.2.
Based on the latter results, it is suggested that the falmiceariations between differ-
ent chips are not exploited by the EA for optimizing evolvitigcuits. On the one hand,
this is a positive result, since the solutions feature aagerbbustness by not depending
on a particular substrate. On the other hand, the hope thdEAhcould be able to cre-no hidden parasitic
ate and optimize circuits by using some kind of ’hidden’ feas of the hardware is nofeatures are exploited
corroborated.

6.4.4 How the Algorithm Does FPTA Tricks

There are two different views on the parasitic effects ofl\etle hardware substrates

in the research field. On the one hand, some groups try to@waileuits beyond usualexploiting parasitic
application by exploiting the parasitic effects of a pardc substrate as much as possgffects: yes or no?
ble [30,60,85]. On the other hand, the aim is to evolve robwstiits that are independent

from the substrate on which they are evolved, resistant vo@mental influences like

temperature or pressure or even transferable to otherdtadies. In the first case, the

aim is to maximize the performance for one particular debicasing the parasitic effects

for tweaking the circuit, although the circuit generallyrfoems poor on other substrates,

even of the same kind. In the second case, it is desired tbalytithesized circuits work

on various platforms and that new design principles canilplydse learned from evolu-

tion.

Since this thesis is rather following the second approdcis, desired to reduce thethis thesis: rather
reducing the influence of
parasitic effects

“ Circuit view of selected gene <@evolver13> S
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Figure 6.20: An example circuit (screenshot of the circuit editor of tlelation software), for
which the EA mixed the input voltages without previously penting them to a transistor is
depicted. This kind of solution is not wanted, since it doesfail in simulation, but performs
different in simulation and on the chip. There are exampfahe latter effect for any signals
within the circuit, which should—from a designers point ééw—rather be used to control the
gates of different transistors, than being interconnected
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despite this, parasitic
'features’ are observed

6.4 Results for the Evolution of Logic Gates and Comparditsiag Both EAs

Figure 6.21: As can be seen from the depicted
voltage characteristics, some of the evolved cir-
cuits show a very different behavior for different
levels of simulation. The circuit pretends to be a
kind of comparator on the FPTA and the level 2
simulation, where the mean on-resistance of the

>,
5 switches is considered. Contrary to that, in the
= case of the level 1 simulation, where only plain
transistors are included, the graph shows merely
the characteristic of an inverter. It is suggested
0 that mixing the input signals—which is quite
o T 5 3 7 = likely done by the EA—is the main reason, for
VaweeplV] which evolved circuits do not work correctly in
simulation.
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influence of parasitic effects and to avoid circuits, which bound to their host sub-
strate. The first step to achieve this, was the developmetiedfurtle GA with which

it is possible to evolve circuits, that can be validated mudation. Despite this, while
carrying out the experiments of this chapter, two importéedtures’ of theTurtle GA
are observed, which still lead to circuits, that stronglyeled on the architecture—i.e.
the parasitics—of the FPTA: first, two gates are intercotetbcresulting in a 'floating
gate’, which leads to the failure of simulation. Althouglo$le circuits can be simulated

108



Evolution of Transferable Circuits on the FPTA

by considering all configuration switches, their behavéadifferent in simulation than on

the chip. Most often, such a 'floating gate’ configuration elegs on the previous state

of the FPTA, from which random charges are left. Thus, suatuits are most likely un-

stable an therefore automatically dismissed by the seleatiechanism. Second, the EA

connects the circuits inputs without previously routingdé signals through a transistor.

This is bad, since such circuits do not fail in simulationt bevertheless perform differ-different characteristics
ent in simulation and on the chip. The latter effect is notrieted to the input voltages,in simulation and on the
but occurs also for different signals within the circuit, ialh should—from a designersCh'p

point of view—rather be used to control the gates of diffetesnsistors, than being in-

terconnected. An example circuit for such input violatisrshown in the screenshot of

the transistor array 6.20. As can be seen from the measwespgctively the simulation

results of this circuit, shown in figure 6.21, the circuittereds to be a kind of comparator

on the FPTA and the level 2 simulation, while the level 1 sitioh (see section 4.4)

shows only the characteristic of an inverter. It is suggegat this signal mixing is the

main reason, for which evolved circuits do not work in sintigla. Additional examples

of the discussed effects can be found in appendix B. How@usiinteresting to see that,unusual configurations

independent from the EA used, the evolved circuits perfoquatly well on different work equally well on
substrates. different FPTAs

6.4.5 Understanding Schematics of the Evolved Circuits

The developed software framework offers the possibilitgiitbmatically generate schemat-
ics from circuits, which are evolved with thiurtle GA The according procedure is in-
troduced in chapter 4, section 4.5.2. It is intended to feargood solutions into a more
human readable format and to possibly understand the apeminciple of evolved cir-
cuits. Furthermore, the task is to find solutions, that asdanas possible, independent
from parasitic effects of the substrate, i.e. the level lusition, where only plain tran-
sistors are considered, has to result in a similar voltageacieristic as the measuring on
the FPTA. Schematics are generated from the best logic gattEomparators of thiscreating schematics
chapter and it is found that, indeed, the NAND, AND and the @QRegre working out- from good solutions
side the chip in a simulation with only plain transistors.eTdthematics are shown and
discussed in figures 6.22, 6.23 and 6.24. In the case of the, NOR, XNOR and the
comparators, the examined examples did not work in a levehlilation and therefore,
the according schematics are shown in appendix B.
Itis interesting to see that in all three cases, where tloelitsrare actually working out-
side the chip, evolution came up with a similar kind of salatithere is one critical node
present in all circuits, which is pulled towards vdd (5 V) litaghed PMOS transistors oNMOS and PMOS in
towards gnd (0 V) by attached NMOS transistors. The balahs&@ngth between thoseug of war for the
pulling transistors is depending on the input voltages. sBgbently, the logic decision®"tical node
is taken t_>y an inverter, which is gl_ways connected to theuttisc_output and tuned in @ ,.ision of the inverter
way that it fits the states of the critical node and the comrestlt is computed. Example
voltage outputs for the critical node, the inverter and thalfoutput of the NAND gate
are graphed in figure 6.25. Despite the presented circuétavarking well in simulation,
they might cause problems, if they were embedded into awedt circuit, since the in- issues in real-world
puts are often mixed or influenced themselves by the critiode. This is no problem, agircuits
long as the inputs are strong enough to drive the input vejtadpich is always the case in

109



6.4 Results for the Evolution of Logic Gates and Comparditsiag Both EAs

8

tot=10u
[=1u
ng=1

"

0 11 12 I3 14 15 17 18

tpe P P N P N P P P

10 4 9 15 14 1 5 10
WiLTpm + 5 1 2 7 3 3 T

Figure 6.22: Once more, for the logic OR, the output inverter (14 and I18)nslerlayed with a
grey box and the critical nodes, which actually represemistime net, are marked with a circle.
In this case, 11, 13, 15 and 17 are always open. Thus, I3 isipglthe critical net towards vdd,
while 15 (which is comparably weak) is pulling the output tmats gnd. Furthermore, 11 and 17
are mixing the input voltages and are controlling the gat&pfvhich is pulling the critical net
towards gnd. The higher the mixed input voltage is, the sfeoris 12 pulling the critical net
towards gnd, resulting in a high output voltage. Contrarhtat, if both inputs are low, 12 will
become weaker than 13, causing the critical net to be pudleeitds vdd and therefore the output
to be low. The resulting output voltage characteristic &t tf a logic OR.
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Figure 6.23: Again, in the case of the AND gate, the output inverter (10 &)ds underlayed
with a grey box and the critical node is marked with a circtettis case, the critical node is, on
the one hand, pulled towards vdd by the transistors 11, |4 amdth variable strength, depending
on both input voltages. On the other hand, 18 is always opéirpaifis the critical node towards
gnd. Thereby, as long as one of the two inputs has a low vqltagevoltage of the critical node
is rather high, 12 and 15 are closed and the output is low. @oyto that, if the inputs are high,
11, 14 and 17 will be closed and the critical node voltage idgulito gnd. Additionally, the latter
effect is emphasized, since 12 and 15 are opened and aregtiie inputs further towards vdd
(which should be rather deprecated from a designers poiréwf), causing the output to be high.
Hence, the resulting output voltage characteristic isdhah AND gate.

simulation and also on the FPTA, where strong enough inpst & applying the input
voltage pattern. However, the latter dependency is not &dhaint practice, where such
circuits are usually designed with a high input resistamnee, the inputs are connected
only to gates.

To conclude, it can be learned from the schematics that thedefs always to follow
the same strategy for finding solutions: first, a lot of trati with various sizes are in-
serted into the circuit until the output characteristichamging in a desired way. Second,
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Figure 6.24: In the case of the NAND gate, the transistors I1 and 14 areyadve@en and used
for mixing both input voltages. The inverter (13 and 15) a¢ thutput is underlayed with a grey
box and the critical node is marked with a circle. Dependingoth input voltages, the critical
node is, with a certain strength, pulled towards vdd by 12i¢ihis opened by 10), thus, as long
as one of the inputs has a low voltage, the critical node s lagdow the switching voltage of the
inverter and therefore the output Out0 is vdd. If both inphase a sufficiently high voltage, Out0
becomes gnd, resulting in the output characteristic of a NAfdte.

it is very likely that a NMOS and a PMOS transistor are comtiteean inverter, which
pulls the output towards vdd or gnd, depending on the voltdgeacteristic of a critical
node (a critical net). Finally, the circuit is tweaked bydyating the W/L ratio (strength)
of the transistors, which define the voltage of the criticade

6.5 Concluding Remarks

comparing the Basic GA The experiments in this chapter show that Besic GAand theTurtle GAare able to
and the Turtle GA
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successfully synthesize transistor circuits—in this dag& gates and comparators—on
the FPTA. Furthermore, the best solutions perform equa#yl (or at least similar in
the case of the XNOR) and use a comparable amount of trarssasomanually made
circuits, that are realized on the configurable transistraya The quality of the output
voltage characteristics of the found solutions will not getrse, if they are measured on
other substrates, than the one on which they are evolved.

Additionally, it is possible to extract SPICE netlists frahe evolved circuits and val-achievements of the
idate them in simulation, by using tfrtle GA It is also possible to create schematidgirtie GA
from the best results, in order to facilitate understandihtne found solutions.

Concluding, theBasic GAis slightly more successful in tweaking the performance of
certain circuits on the chip than tRaurtle GA although it lacks the ability of creating
circuits that can be transferred to other technologies dchvhre easy to understand.
Furthermore, as the example in section 6.4.4 shows, it &ively easy to generate aeneral observations
'good looking’ output on the FPTA, based on an elsewhereegsatircuit structure. Due
to these results, further experiments of this thesis amgecbout with theTurtle GA

An additional interesting perception of this chapter ig tha difficulty level of finding
good solutions for a given problem is only depending on themlexity (no. of necessary
transistors and connectivity) of the desired circuit (gec6.4.1), which is not the case
for a human designer, who creates solutions with the knaydeabout the behavior of
the transistors and how they are supposed to be connected, iTfs suggested that the
routing architecture of the current chip is the main limgtfiactor for further improvement
of the circuits, since either two paths are quite likely sbédor a huge number of routing
switches is necessary to connect two distant transistaviners.
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Chapter 7

Multi-Objective Optimization of the
Transistor Circuits

In this chapter, a multi-objective (MO) EA, based on the wqiresented in the
previous chapter and in [91], is developed and successapllied for the syn-

thesis of comparators, oscillators and OPs on the HeidgBd?TA [50]. Hence,

it is referred to as the MO-Turtle GA, throughout the rema&ndf this thesis.

A multi-objective approach is chosen, in order to be ablenude the various
specifications of e.g. an operational amplifier into the @®x of circuit syn-

thesis. Moreover, the presented algorithm is designed ése@we the diversity
within the population troughout the course of evolution amtherefore able to
efficiently explore the design space. In the case of the cratgra and the OPs,
the evolved circuits are proven to work on the chip as welhasmulation outside
the FPTA. Additionally, the results for the comparators ecenpared with the
non-MO results from the previous chapter. Automaticallpegated schematics
of good solutions are presented and their characteristiesampared to those
of basic manually created OPs. Furthermore, oscillators arvolved with the
multi-objective approach, which was previously not ackevThe latter oscilla-

tors are an example of a truly multi-objective result, siitde possible to harvest
solutions with different frequencies from successfullgian runs. Nevertheless,
the synthesis of OPs is the most challenging task in thistehap

To date, as to the authors knowledge, only a few analytictisolsl for analog design
automation are available. Examples, in which previouslgvkm topologies are tested
while the sizing of the components is done by an optimizattgorithm, are given in
[10,33]. In a great number of approaches, the topology Gtalde found automatically,
therefore, developmental strategies [45,46,74,94] onsteuinterconnection of building
blocks [48] are applied, in order to deal with the high comrijijeof amplifiers. An
alternative possibility is to choose a multi-objective lexionary algorithm [17, 18], in
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7.1 The Multi-Objective Evolutionary Algorithm

order to face the fact that, for the solution of almost evemnplex problem, numerous
variables have to be taken into account for optimizationer@ponal amplifiers, as well as
other transistor circuits, found to this point by means afiiagare evolution in conjunction

with multi-objective optimization (MO), are reported inZ32, 103, 109]. Other results,
obtained with the FPTA, can be found in [25]. Furthermore,dtirobjective approach

provides the designer with a variety of choices instead ¢ one more or less good

solution. This is a great advantage, especially in casesentade-offs have to be made,
e.g. between gain and speed of an amplifier.

7.1 The Multi-Objective Evolutionary Algorithm

Since the evolution of transistor circuits is a challengiask, where numerous variables
have to be taken into account for optimization, thetle GAis extended with a multi-
objective strategy, first proposed in [27], for the expernitsan this chapter. Th&urtle
GA itself is introduced in chapter 6, section 6.1.2. This alidior a separate evalua-
tion and optimization of different properties of the evolyicircuits, which would not be
possible with a single objective algorithm. The multi-attjee Turtle GA referred to as
the MO-Turtle GAthroughout the remainder of this thesis, consists of a ranidated
sorting algorithm and a crowding distance measure, whiehdascribed in the follow-
ing and are based on those from the non-dominated sortingtigerigorithm, presented
in [18,19]. Using an MO approach offers two important adeges: first, the population
is of great diversity during the whole course of evolutioor, the reason that individu-
als with a bad over-all performance survive as long as theysaperior in at least one
objective. Thus, on the one hand, crossover gains impatagcombining differently
specialized individuals and, on the other hand, prematongezgence of the population
is widely avoided. Second, due to the presence of 'spetiaidividuals for each ob-
jective in the resulting population, numerous results—+&senting trade-off solutions for
the different objectives—can be harvested from the nonidated front (NDF) instead
of only one.

7.1.1 Variation Operators of the MO-Turtle GA

The variation operators of thdO-Turtle GA namely theRandom Wiresnutation and
the Implanting Block of Cellerossover, are those from tiertle GAand are reported in
the previous chapter, section 6.1.2 and in [91]. The implaat@®n of both operators is
adapted to the FPTA’s architecture and, as a remaindeflylaiescribed in the following.
Note that the most important feature is that the resultingudis contain no floating nodes,
thus, can be validated off-chip.

Random Wires (Mutation). The mutation operator consists of the create mode and the
erase mode. The create mode connects random nodes withHifPTi#es transistor array
and thereby randomly inserts components into the activaiitir Contrary to that, the
erase mode randomly disconnects nodes and removes toasisiBhe mutation operator
is carried out recursively until the resulting circuit caims no dangling nodes and no
floating transistor terminals. The width and length of athactransistors is mutated due
to a configurable probability.
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Figure 7.1: Left: An example set of individuals—which shall be optimized footobjectives—is
depicted. The firstthree NDFs, obtained by evaluating éguos7.1 and 7.2, are drawn in. Itis ex-
pected that the NDFs propagate towards better fitness véiltmsghout evolution. Additionally,
the rank of the NDF is equal to the level of non-dominationdach individual of the respective
NDF. Right: In this example, the individuals are not distributed unifbr over the NDF. There-
fore, in order to be able to drive evolution towards such dauni distribution, a partial order of
the individuals within an NDF is defined by the crowding-distecis;. The value otgs; for an
example individuap is derived from the distance to the next neighborp.of

Implanting a Foreign Block of Cells (Crossover). Theimplantingcrossover operator
is carried out in two stages. The first stage exchanges rdgpdamed and positioned
rectangular blocks of transistor cells between two rangarlected individuals. While
the size of both blocks has to be the same for each indivithlpositions of the blocks
may differ. Since this operation in general breaks the laydiboth previously intact
circuits, the second stage fixes the occurring floating ndyesxecuting theandom
wires mutationoperator for each of them. Thus, again, the resulting dsatdntain no
floating nodes.

7.1.2 Non-Dominated Sorting and Crowding Distance

In order to include multi-objective optimization into tharcent evolutionary algorithm, MO extensions

a new evaluation and selection scheme has to be implemdntéte case of MO, sepa-

rate fitness values are assigned to the individuals for flegfiormance in different tasks,

resulting in a vector of fitness values, instead of only orgregated fitness value. Note

that in the MO language, the different tasks are referred tibgectivesthus, this is also

the case throughout the remainder of this thesis. As a caegsegq of this, it is no longer

possible to decide whether an individual is better or wadns@ another, by simply com-

paring their single fitness value. Therefore, before select ranking of the individuals ranking and selection by
is achieved by applying theon-dominated sortinglgorithm. A fast implementation oflevel of non-domination
the non-dominated sorting algorithm, is shown in pseudecbd. Note, that for simplic-

ity in some cases the fitness value for a certain objectivefésned to as objective value,

which means the same.
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7.1 The Multi-Objective Evolutionary Algorithm

Non-Dominated Sorting All individuals are classified by calculating their level rdn-
domination, as shown in figure 7.1, due to their objectiveieap;. An individual pis said
to dominateq, denoted byp < q, if and only if p is partially less tham (equation. 7.1).

Vied....,n,pp<qg A Je@d...,n):p<q (7.2)
NDF:={peP|#pcP:p =<p} (7.2)

All psatisfying equations 7.1 and 7.2 provide the first non-daieith front NDF. The
succeeding NDFs are found by removing the individuals of ND&m the population
P’ = P\ NDFy and by recalculating equations 7.1 and 7.2 for the new p&apuol&’ until
NDFy+1 is empty. Consequently, the level of non-domination regdathe aggregated
fithess value, which is used in the previous chapter, fociele The main advantage of
the non-domination measure is the fact that also partly gombations survive, thus, the
search space is more efficiently sampled and premature ig@mee is avoided.

As yet, there are possibly a great number of solutions withinsame NDF, thus, it
cannot easily be decided which one should get a higher pildipdb survive. Due to this
fact, a second measure is introduced: ¢lfmvding distance The algorithm for calculat-
ing this value is also given in pseudocode 7.2.

Crowding DistanceThe crowding distance{is;) is a measure for the density of solutions
within the vicinity of a particular individuap within the fitness landscape (figure 7.1) and

is calculated for the members of each NDF respectively. Bjgctive values are consid-
ered for calculating the quantityis; which represents an average distance to the nearest
neighbors ofp and is assigned to each individual of the respective NDFréfbee, since

the aims are to provide a great diversity within the popafatind to steer the evolution
towards a uniform distribution of the individuals over th®HK cgist is used as an addi-
tional ranking criterion for the individuals within the pesctive NDF.

Lexical Order of the Objectives

There is some work in the field, where the objectives thenasedve ranked due to their
suggested importance. This ranking is considered duriagalculation of the NDFs, by
omitting objectives of less importance in case there is hatism with a sufficiently good
performance for the objectives of higher importance. Segfcél ranking is considered
to be useful for saving computation time of the non-domidaterting algorithm and for
emphasizing good results in major objectives. Despite #hish explicit lexical order is
not employed in this thesis due to the following reasonst, fais importance ranking of
the objectives is nevertheless inherently present, sinisanot possible to assign another
than the worst fithess for the objective of minimizing e.gttlsg-time as long as the
objective, that aims at producing a voltage step, is nofilfell. Second, to the authors
opinion, the idea of multi-objective optimization will beolated, if it is necessary to
define problem specific thresholds for the activation of tholakal objectives. Finally, one
cannot be sure to not exclude possible pathways within tackespace, that lead to a
good solution.
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Algorithm 7.1: The non-domination sorting algorithm, which is used to sifgshe individuals
into non-dominated fronts, according to their level of raomination. This level depends on
how many other individuals are dominated by an individuahg an how many other individuals
dominate p. If no other individual dominates p, p belong$tofirst NDF.

procedure NONDOMINATED SORTING( )
for p «+ 1to population sizalo
np=0 /I'no. of individuals, which dominate p
$=0 /st of individuals, which are dominated by p
for g «— 1to population sizelo
assume dominatesy
assumey dominateg
for obj+ 1to no.ofobjectivedo
if Popj > dobj then
p does not dominatg!
else if pyp; < gopj then
g does not dominatp!
end if
end for
if p still dominatesq andq still dominatesp then
neitherp dominatesy, norg dominates!

end if
if p dominategy then
addqto$,=0

else if gdominates then
incrementn, =0 by 1
end if
end for
if n, equals Ghen
addp to NDRy
end if
end for /[ first NDF is found!

i=0
while NDF; is not emptydo
for all p in NDF; do
forall g in S, do
decremenhq by 1
if ng equals hen
addq to NDF+;
end if
end for
end for
incrementiby 1
end while /l all NDFs are found!
end procedure
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Algorithm 7.2: The algorithms which calculates the ranking of the indialduvithin the NDFs,
by assigning a value for therowding distancécgisi) to each of themcy;st is @ measure for the
density of solutions within the vicinity of a particular inéual p within the fitness landscape.

procedure ASSIGNCROWDINGDISTANCEY )
initialize cgjst of all individuals with 0
for all non-dominated fronts NDFlo
for obj+ 1to no. of objectivesdo
sort individuals of NDF-by objectiveobj
normalize objective values
assigncgist(indp = #objectives
assignCyist(iNdxindividuals = #objectives /Extrema are preserved
for i < 1to no. of individuals — 1 do
Cdist(ind; )+ = Cqist(iNdi.1 ) + Cyist(iNdi+1)
end for
end for
end for
end procedure

Algorithm 7.3: The tournament selection scheme, which is used for cretitsngew population
from the current repository generation, is described irugseode. The randomly picked com-
petitors have to compete in two disciplines: the level of4domination and, in case they belong
to the same NDF, the convergence of their fithess, which @utatkd according to equation 7.3.
Thereby, the tournament size is 3.

function SELECTINDIVIDUAL ()
randomly select champion from repository population
for i — 1totournament size 1 do
randomly select competitor from repository population
if NDF of competitor< NDF of champiorthen
champion = competitor
end if
if NDF of competitor = NDF of champiothen
if fitness convergence of competitsrconvergence of champiahen
champion = competitor
end if
end if
end for
end functionreturn champion
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7.1.3 Selection Scheme

Two equally sized populations are used in the case of MO; fivstrepository population,
which is directly created from the unchanged individualghefintermediate population in
the first step of the MO algorithm. In this case, as describdkld previous section (7.1.4)tournament selection
the decision, which individuals survive is based on thereleof non-domination and
their crowding distanceyist. Second, the new population, which is generated by applying
mutation and crossover to selected individuals from thesipry generation. In the latter
case, tournament selection with a tournament size of 3 i@ aseselection mechanism.
Thereby, champion and challengers are randomly picked fhemmepository population
and the one with the higher non-domination level wins. Iftbcbmpetitors feature the
same level of non-domination, hence, belong to the same HigFconvergence of their
fitness

cov= Y fitnessgen_s) (7.3)

objectives fitnessgen)

is additionally taken into account. The convergence isutated from their previous
fitness values using equation 7.3. Furthermore, the safentechanism for creating the
new generation is described in pseudocode 7.3.

7.1.4 The Evolutionary Step

As can bee seen from figure 7.2, three populations are uskd @vblution loop: a repos-
itory populationRP, a new populatiofNP of sizeN and an intermediate populatidf of
size . The first step is to initialize the algorithm by randomly geating individuals

REPOSITORY INTERMEDIATE
population | =4+ :
size N peEpsED b \
popsize
2N
tournament selection
mutation & crossover
REPOSITORY" INTERMEDIATE
50 % of space | «——— | NDF 1
SRR NDF 2 non-dominated sorting
H2.5%of space] NDF 3
) ) NDF 4
crowding distance
NDF, may take ﬁk of space NDF k

2

Figure 7.2: As can be seen from the figure, three populations are used evtiiution loop. NDFs
and crowding distance are calculated for the intermedigpefation. Subsequently, the repository
population is created and thereby, NDIE allowed to occupy at mosz%Z of the available space.
Finally, the new population is created from the repositoryapplying selection and the genetic
operators.
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7.2 A First Benchmark: the Comparators

for IP, to perform measuring and to calculate fitness values fatgdictives of the latter
individuals. Subsequently, the evolutionary loop is sttty performing non-dominated
sorting and by calculating crowding distancegs() for all individuals oflP. Thus, a non-
domination level (membership in the according NDF) and ae/débr cgis; is assigned to
each individual ofP. The next step is to filRPwith the best individuals ofP. Thereby,
NDFy is allowed to occupy at mos%Z of the available space iRP. In case the size of
NDFy is less than or equal to the available space, the whole N®Eopied toRP and
the remaining free space is additionally provided to theessing NDF. If an NDF con-
tains more individuals than space providedRR, only those individuals with the best
Cdist ranking are copied. Consequently, since the first NDF isnatbto occupy 50 %
of the space iIrRP and, due to theyis; ranking, the superior individuals of each objec-
tive survive—as long as the size BPis at least twice the number of objectives—it is
guaranteed that the best solutions always survive. Onceefiwsitory population is cre-
ated, the new population is generated from this repositpnysing tournament selection,
described in the following subsection 7.1.3, and by applymutation and crossover to
the selected individuals. Subsequeniyr is measured and evaluated and the next evo-
lutionary step (generation) is prepared by combiriRigand NP to a new intermediate
populationlP =RPUNP.

7.2 A First Benchmark: the Comparators

As a first benchmark, the evolution of comparators withM@-Turtle GAis tackled, in
order to compare the results with those from the previoupten®. The consequences of
employing the multi-objective approach are investigatedl @mpared with thBasic GA
and theTurtle GA where an aggregated fitness value is used. Again, a tot@lefd@ution
runs is carried out, each with a population of 50 individualéich are processed for
20.000 generations.

7.2.1 Experimental Setup

The setup for the test modes, the simulations and the fitmdaslation is identical to the
experimental setup for the comparators, described in teeiqus chapter, section 6.2.
Although, in this case, the aggregated fitness value isceglavith a vector of 3 fithess
values. Thereby, both test modes deliver one fitness vadpectvely, which assesses the
deviation from the respective target voltage pattern ardhhd fitness value represents
the ressource consumption (no. of transistors used).

TM  objective fitness description
TM1 dev. fromViar min. calc. with equation 6.4
TM,  dev. fromViar min. inverse inputs, calc. with equation 6.4

— resource consumption  min. sum of transistors used

Table 7.1: An overview of all TMs and their corresponding objectives. TIM», the inputs are
exchanged, thus, in the case of the comparators, the oudftage pattern is inverted. The aim is
to minimize the fitness.
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Furthermore, the same EA parameters are used as in the ygsesamparator experi-
ments, whereas the new selection scheme (subsection, e 3)on-dominated sorting
algorithm and theg;ss measure (subsection 7.1.2) of this chapter is used. A shertview
over the test modes is given in table 7.1.

7.2.2 Results and Conclusions

On-chip measuring and simulation
In the first histogram 7.3, the individuals of each run witk thest sum of MO fitness
values are depicted and the axes have the equal scaling Etdgram 6.10, in order to
be able to compare the results to the experiments from théopiechapter, where only
one aggregated fitness value is used. As can be seen fromgrhistd.3, the distribution
is flatter, than in the non-multi-objective experiments, the solutions are almost equallyiatter distribution of
distributed between fitness values 01 Q.1.5 (rms error= 50 mV...1.75V) and there resulting runs
are some solutions present with a fitness of up to 3 (rms ef@56V). Thus, from a
single fitness value’s point of view, the over-all perforroaof the MO approach seems to
be worse, than in the non-MO case, at least if the algoritimasum for the same number
of generations. Nevertheless, the best runs ended up irathe segions of fitness for
both approaches. Therefore, it is supposed that the majkistive approach convergeslower convergence in
slower than the non-MO approach, but will produce as manylgmutions if it is run the case of MO
for a greater number of generations.
Despite the fact that, as shown in figure 7.4, the rms errorgh® measuring on the
chip are shifted towards worse values, the results for theaB€ transient simulations
are not worse than those obtained with thetle GAand theBasic GA Once again, it
can be seen that a good performance on the FPTA is not nebessarelated with a
good performance in simulation. Output voltage charasties of the best individual are
depicted in figure 7.5.

& : : : © Comparator
2 gk PR L L o TurtleGA ...
o 41
c N N
0 : n.N :
0 0.5 1 15 2 2.5

fitness

Figure 7.3: The individuals of each run with the best sum of MO fitness ealare depicted in
the histogram and the axes have the equal scaling as in fastog10. As can be seen from the
graph, the distribution is flatter , than for the non-mubbjective experiments and ranges up to a
fitness of 3. Thus, from a single fitness value’s point of vige, over-all performance of the MO
approach seems to be worse, than in the non-MO case. Neesghsince the best runs ended up
in the same regions of fitness for both approaches, it is sqapitat the multi-objective approach
converges slower than the non-MO approach, but will prodsceany good solutions if run for
a greater number of generations.
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Figure 7.4: It can be seen from
the graph, that the performance of
the circuits is again worse in sim-
ulation than for the measuring on
the chip. Nevertheless, the results
for the DC and transient simula-
tions are not worse than those ob-
tained with theTurtle GAand the
Basic GA Thus, it can be seen
once again that a good perfor-
mance on the FPTA is not neces-
sarily correlated with a good per-
formance in simulation. Finally,
there are at least 6 solutions, that
perform similar in simulation and
on the chip.
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Figure 7.5: Output voltage characteristics for the MO comparators hogva. Top: DC simula-

tion and on-chip measuremeBttom: transient simulation.
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Pointing out the advantages of the multi-objective approak

The strength of the multi-objective approach is to make #sae to successfully evolve

circuits, where numerous—maybe even contradicting—aobEs need to be considered.

In order to achieve this, it is necessary that, on the one,fmpdpulation of individuals

of great diversity in each objective is maintained by theatgm and, on the other hand,

the individuals are continuously improved in all objeciveThe great diversity of the

population is, mainly in those objectives, where the ciramproves comparably slow,

important for avoiding premature convergence. As can ba fee figure 7.6, in the uniformly distributed
case of theMO-Turtle GA the fitness for all objectives is uniformly distributed otee fitness values: great
feasible range, while, in the case of thertle GA most solutions are clustered eithef"e's'Y

near the best solution, or near the worst solution. Furtheasn be seen from the depicted

example experiment that, in the non-MO case, there are rividndls in the branch

‘better fitness for TN, worse fitness for TN, which indicates premature convergenceavoiding premature
in TM; (objective 1). The scenario is similar, in case the numbdranfsistors used isconvergence
plotted over the fitness of Tivand the fitness of Tk respectively. Concluding, thdO-

Turtle GAsuccessfully found solutions for the comparator and, asémee time, achieved

to maintain great diversity for all objectives within theguiation. This is a promising

result, since the aim is to tackle problems with higher disi@mal objective spaces in the

following experiments.
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Figure 7.6: The first picture shows the over-all rms over the resourcswaption, while in the
other three pictures the marked with a cross experimenttegmieted as an example: each possible
objective over each possible objective.
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7.3 A Truly Multi-Objective Result: Oscillators from Scrat ch

The successfull evolution of oscillator circuits from gctahas not yet been achieved with
any single-objective approach on the FPTA. To the autharstedge, there is even no
other example—except for the work in [3, 93]—for succedsdublution of oscillators
in the research field, where no predefined inverting or gagest are provided to the
algorithm. Since there are no such predefined structured aiseéhe FPTA, the term
‘evolution from scratch’is emphasized. Furthermore, it is a challenging task tovevol
oscillating circuits, due to the fact that, at some poing EA has to modify the circuit
in a way that it in fact starts to oscillate. Rendering thingsre difficult, in the case of
an oscillating output, there are some important conseasefur the fitness calculation:
first, a possibly present transient effect has to be coreideé3econd, it is usually neither
the case that the circuit immediately starts oscillatindpatdesired frequency, nor that the
oscillation is stable. Third, the phase is shifted for eadasuring, which would, in the
case ofp = m, result in the worst fitness for the desired target outpuigd, if not taken
into account. Finally, amplitude and frequency have to besicered independently.
Concluding, if the performance of the candidate circuitallrthose objectives are to be
considered in solely one aggregated fitness, this valuenetlidecrease monotonically
with an improving solution. Hence, oscillators are a prédased problem for multi-
objective optimization.

7.3.1 Experimental Setup

An area of 10« 10 transistor cells is provided to the evolving circuit ahd population
size is 100 individuals, which are evolved for 5000 genereti A total of 100 evolution
runs is carried out. Crucial for this setup is the fact thatetis no input and only one out-
put present in the evolving circuit and further, the outggutaet bound to fixed constraints,
in terms of a target voltage pattern. Rather the output geltzehavior, than a fixed output
voltage pattern is assessed with the test modes and thpeates fithess functions, as
described in the following subsection. The FPTA setup iswhim figure 7.7.

FPTA setup - NO INPUT

Figure 7.7: Left: the FPTA test
SlEe i i = & bench for the evolution of oscillators
HURNREENRE is graphed. An area A0 x 10transis-
,j .. .k ﬁg f out tor cells are provided to the algorithm.
TT R R W > A capacitive load is realized with the
| Sl VRS | transistors on the chip and attached to
I 40*10 transwter C e the circuit’s output. Thereby, the ad-
IEEENRNEEENEF vantage is that this capacitive load can
IENTEN ETE Y be randomly varied during evolution

mm o m X y g
) -‘f\ by the EA.
~randomly varying (EA)
capacitve load
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7.3.2 Test Modes and Fitness Calculation

One testmode, containing 480 samples with a sampling frexyuef 10 MHz, is used for

the synthesis of oscillators, hence, possible output #rgies of the evolving circuits are

ranging within 21 kHz2.5 MHz. In this setup, rather than comparing the measured out-

put voltage samples to a predefined target voltage patteore general characteristics

of the output are evaluated by the fitness functions. Thesktmeeasure does not con-

strain the frequency, phase and signal shape of the csauitput to fixed values, since

it is supposed that this would implicitly exclude usefultpaays for evolution towards

oscillating circuits. Consequently, a total of 6 more opad phenomenological fithessathways for evolution
criteria are used for these experiments and are listed le %B. The equations, that aréhrough open fitness
used for the fitness calculation are listed below: criteria

N = no. of voltage samples (7.4)
1 N
Vmean = N I;\/I (7-5)
DC Oﬁset _ (25 V_Vmearbz Vmean§ 3V \ VmeanZ 3V (76)
0 2V < Vmean< 3V
N
deV frOmeean == Z (Vout_VmearDZ (77)
out=1
amplitude span = max{Vout} — min{Vou} (7.8)
zero cross.? = {Vout€ N < N|Vout = Vinean (7.9)
no. of zero cross. = #{ <} (7.10)
no. of periods = |#{2°}/2] (7.11)
2 #periodsge  ge  aneriods> 0
erio _ emdsdizz ST A TP 7.12
Perothean {N #periods= 0 (712)
eriothe, g P52~ Zioa) — periotheqy”  #periods>Q,
P eviation N #periods:(g '
(7.14)

7.3.3 Implications of Multi-Objective Optimization

The presented approach for multi-objective optimizatiolnerently maintains great di-
versity of the individuals in all objectives. Due to this fait is expected that, in addition
to finding over-all good solutions for oscillators, it wilelpossible to harvest multiple
different results from one single evolution run: e.g. indials with differentno. of zero expecting oscillators
crossingsrepresent oscillators with different frequencies. Thusili be a great benefit, with different
if such solutions can be found, which feature an equally wetformance in the otheredauencies
objectives.
Furthermore, it is neither expected to obtain solutionshwitspecific curve shape,
nor to obtain solutions with specific frequencies, sincehhmarameters are as yet nato constraint curve

constraint. More precisely, there is a technical limit foe tminimum and maximumshape and phase
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7.3 A Truly Multi-Objective Result: Oscillators from Sccht

TM  objective fitness description

TM1 DC offset min. dev. OVmean according to eq. 7.6

TM1 dev. fromVmean max. penalize straight lines, eq. 7.7

TM1 amplitude span max. the whole voltage range shall be used,&q
TM1 no. of zero crossings max.  rewarding oscillation, eq. 7.10

TM1 period deviation min. dev. of the detected period lengthsy€l3
— ressources used min. sum of transistors used

Table 7.2: A list of all objectives, that are used for the multi-objeetievolution of oscillators
from scratch. Zero crossings and amplitudes are always ure@selative to the mean output
voltage ¥/mear). Occurring periods are calculated from those zero crgssamd shall feature the
same period lengths.

frequency, given by the number of samples and the sampleguéncy, as described
in section 7.3.2 (480 samplefampie= 10 MHz, thus, freq. range- 21 kHz.2.5 MHz).
Besides, it is observed in example experiments that a ndreguency and curve shape
can be relatively easy achieved by postprocessing suifabled solutions by means of
evolution, although this is not systematically done in thissis. The test mode and fitness
function, which are used to evaluate the phase shift of thewave in section 7.4.2, are
a suitable setup for this task.

Last but not least, an important consequence of the mujiietiie approach is that—
on purpose—also numerous only partly good, or even badisofutan be found in the
resulting populations. This is, on the one hand, again aemprence of the extensive
diversity preserving behavior of the algorithm, which is,the case of keeping bad so-
lutions, not obviously useful. On the other hand, there @gr@aches in the field of
EAs, where, inspired from natural genome structuigesnetic garbagewith no explicit
meaning is added to the genomes on purpose, in order to fidémipdathways (tunnels)
towards good solutions within the fithess landscape [89& ifhctive garbage genes can
thereby be repeatedly mutated without affecting the fitmésm individual and, with a
certain probability, will become meaningful, if the crogsocopies them into an active re-
gion of the genome. Despite the fact that siggnetic garbagels not voluntarily present
in the genomes used in this thesis, maintaining wigdebage individuals’probably has
the same effects. As a consequence of this, the crossovetopgains importance, since
it is able to create a greater variety of combinations.

7.3.4 Results and Conclusion

The distribution of the fitness values for all 6 objectiveshwée resulting populations are
depicted in figure 7.8, in order to give examples of possiblilts. In principle, three

different scenarios are observed: it can be seen from thEhgra the top, which depicts
the outcome of a successfull run, that the fithess valuedlfobjectives are spread over
wide ranges within the population. This indicates that th® Elgorithm succeeded in
converging towards good fithess and in maintaining diver§ibntrary to that, the graph
in the middle and the graph at the bottom illustrate the tesafl failed runs, where the

fitness for all objectives is stuck at bad values.
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consumption—converges in the case of the run, which is depicted in thelmjdhis run
is not to be considered partly successfull, since none ofekalting circuits actually

oscillates. The reason for this is that achieving a suffibjegood fitness in the objectives
amplitude spamndno. of zero crossings crucial for an oscillating circuit: a good fithess

for amplitude sparindicates that there are at least two extrema in the outgtage and

a good fitness for theo. of zero crossingstands for the presence of a periodical zero

crossing.
For these experiments, only 6 out of 100 resulting evolutiams feature oscillating

circuits, while the other 94 runs did not converge. Nevédeb® those populations that

did converge show a truly MO behavior, as can be seen fromefig® and 7.10, in
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Figure 7.10: Output voltage characteristics for the MO comparat&asic GA Turtle GAand
DC simulation.

which typical results of a successfull run are depicted. Agample, for the objec-
tives amplitude sparandperiod deviationover no. of zero crossingghe improvement
of the respective non-dominated front over time (genenagh, 3k, 4k and 5k) is de-
picted on the left hand side, while the resulting NDF (geti@na5k) is shown on the
right hand side. Note that, for illustration, the resultiN®Fs are recalculated by con-
sidering only the two actually plotted objectives. Thus tloa right hand side, a projec-
tion of the respective multi-dimensional NDF, as seen byalgerithm, is additionally
shown. Finally, one of the main achievements of the MO approa that the success-arvesting different
full runs feature numerous solutions for an oscillator eéast of only one. Thereby, re-=solutions from one
sulting circuits are found that oscillate at various difier frequencies 57 kHz, 107 kHzSuccessfull run
127 kHz 161 kHz 200 kHz 233 kHz 281 kHz 328 kHz and 450 kHz, which can be nicely
seen from figure 7.10.
Concluding, oscillators with different frequencies arecassfully evolved with the
MO-Turtle GA although it seems to be hard for evolution to get any inisdillation
started. Thus, the yield of good solutions is comparably. I&dditionally, none of the itis hard to get an
resulting oscillators is working in simulation. It is obged that, as soon as any kin@scillation started
of oscillation is achieved, the populations converge frtery quickly. Moreover, it is
supposed that the non-restrictive formulation of the dbjes is crucial for the evolution
of certain properties of analog circuits, e.g. phase-shétjuency or curve shape.
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7.4 A Circuit with Numerous Demands: an Operational Am-
plifier

In this chapter, the aim is to evolve an operational amplifirce it is a challenging task
in the regime of analog circuit design and it moreover cormbwvarious properties of the
circuits from the previous experiments of this thesis. kertsome important character-
istics of an amplifier (gain, common-mode rejection ratid/®R)) cannot be measured
directly on the chip, due to the lack of configurable constasistors, lossless feedback
and the possibility of performing an AC analysis of the cdatk circuits. Thus, it will
be interesting to investigate, if those properties, dbscdrin the setup for the test modes
(subsection 7.4.2) that actually can be measured on the fRr®®ide a sufficiently suit-
able test environment for the successfull evolution of dlyiph circuits. Lastly, since
an amplifier is a circuit with various, sometimes even oppggiroperties (e.g. gain and
slew-rate), it represents once more a typically multi-otiye problem for evolution.

7.4.1 Setup and On-chip Test Bench

The experiments are conducted with a population size of 20¢hk intermediate pop-
ulation and a number of 10.000 generations per evolution mdividuals are mutated
according to the probabilities for tHdO-Turtle GA given in table 6.2 (mean mutation
rate: 1 turtle/individual, erase/create: 40 %/60 %, reeah®0 %) and crossover is car-
ried out with a probability of 10 % and a maximum block-sizelef4 transistor cells. An
area of 9 9 transistor cells is provided to the evolving circuit. Duodtlie lessons learned
from the previous experiments (section 6.4.4), both, theineerting (+) and the invert-
ing (I.) input of the circuit are statically connected to the gatesamsistors of the same
flavor, in order to avoid meaningless amplifiers. The W and thoke input transistors
are always equal, although, during evolution, their sizelmavaried by the EA. Thereby,
it is intended to provide some kind of differential pair apuihto the evolving circuit and
to avoid ‘misuse’ of the input voltages at the same time.

Two series of experiments, each of 50 evolution runs, amecbout using PMOS input
transistors in the first case and NMOS input transistorsérsttcond case. Further, free
resources of the transistor array are used to attach a rap@oynmutation) variable ca-
pacitive load to the circuits output and to implement twad besiches for the circuit under
test: one for open loop testing and another one with full bee# to the inverting input,
for which a resulting gain of 1 is assumed. The on-chip testhes for the test modes
of the measuring, described in the following subsection27 dre graphed in figure 7.11.
Since the feedback is realized using only the configurategrabilities of the transistor
array—where no constant resistors, capacities or curmntes are available—it is not
feasible to measure properties like gain or common-modetien ratio CMRR directly
on the chip. Despite this, it is possible to measure and atalimportant properties of
an amplifier, namely open-loop behavior, slew-rate, sgitime, DC offset, harmonic
distortion and phase-shift, directly on the FPTA.

The FPTA is configured with manually created circuits, on#tWMOS and one with
NMOS input respectively, in order to be able to assess thétyud the synthesized
circuits compared with human-made solutions. The referatesigns are taken from
[6,90] and consist of a differential input stage and a simplerter-output stage. The
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Figure 7.11: The FPTA test benches for the evolution of operational diepdiare graphed. Two
series of experiments are carried out using preconfigure@®Mput transistors in the first case
and NMOS input transistors in the second case. In both casesrea 08 x 9 transistor cells
and the W/L of the fixed input transistors can be changed bylgerithm. Like in the previous
experiments, a variable capacitive load is attached toitiaits output. This capacitive load is
randomly varied by the EA during the course of evolution.

fitness values are measured for both reference designg esactly the same setup as
throughout evolution, and are compared to those of the edatircuits.

7.4.2 Test Modes for the Measurements on the FPTA

Five different test modes (T}yl are used for the synthesis of operational amplifiefisg testmodes deliver 12
delivering fitness values for a total of 12 objectives, inlihg ressource consumptionfitness values
Thereby, the measuring of Tivand TMs is performed with the open-loop test bench,

while the full feedback test bench is used in the case ob.ZMAN overview over the

objectives is given in table 7.3 and the test modes are moselgl described in the fol-

lowing: open-loop behavior,

TM; and TMs: open-loop behavior, offset. The task is to pulNpys to Vigr = 5V if 0Tt
Vi+ > V. and toVigr = 0V if Vi < Vi and to keep the offset voltagés low or at least
constant. A set of nine curves\gt = 1.5,1.75,...,3.5V, each consisting of 100 sample
voltages foV,. = 0...5V, is used as test pattern for both test modes. Contrary tg, TM
the test pattern of TMis randomized. Thus, TMdelivers one fitness valu@(ll to rails
(rand)), which characterizes the quasi-DC behavior of the cirauftile TMs provides
a corresponding fitness valupu|l to rails) for the non-randomized case. Both values
are calculated according to equation 7.17 and are actugdyesenting the rms error of
the measured output voltages. Additionally, IX€ offsetanddeviation of DC offseare
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calculated from the measuring results of § Msing equations 7.19 and 7.20.

N = no. of voltage samples (7.15)
S = no. of curves (7.16)
1 N
N out=1
offset pos.0 = {Vigyeep € N <N|[Vig <25V AViiy, >25V} (7.18)
1 S
abs. offset = s > 101 —Viged (7.19)
set=1
13 )
Aoffset = és;:l(ﬁi —Viger) (7.20)
(7.21)

slew-rate, settling-time
TMy: Slew-Rate, Settling-Time. The challenge for the output is to follow four voltage-

steps fromViy =0V to 5V, fromV: =5V to 0V, fromV, =0V to 3V and from
Vi+ =3V 10 2Vintgep= 0.25us, respectively. Fitness values for tslew-rateand the
settling-timeare calculated from the period of time between the step aagdint of
time whenV,; has settled at the new target voltagg = Vi+. An additional objective is
given by thedeviation of V;, from V,y, which is once more calculated from the rms error
equation ( 7.17). The equations that are used for the fitredsalation ofslew-rateand
settling-timeare listed below:

Viow = Vmin + 10 % 0f(Vinax— Vmin) (7.22)

tow = {teR<T|[Vigy <Viow A Ver1gye > Viow} (7.23)

Vhigh = Vmin + 90 % 0f(Vinax — Vimin) (7.24)

thigh = {t€R <T [ Mgy <Mpgh /N Vit tour = Vhigh (7.25)

slew-rate = \M (7.26)
tshigh B tslow

Vmin for step down

Vtar = { (7-27)

Vmax for step up
settling-timg = {t€R <T|Viar—0.05V <V, < Vear+0.05V}  (7.28)
settling-timg = {t e R < T|Viar—0.25V < Vi, <Vtar +0.25V}  (7.29)
settling-timg = {tc R <T|[Viar— 05V <V ;; <Viar+0.5V} (7.30)

tiow + thigh

offset = | >

—tstep) (7.31)

(7.32)
magnitude, phase-shift
and THD+N TM3 & TMy4: Magnitude, Phase-Shift, Harmonic Distortion. A further demand on
an OP is to distort and damp the input signal as less as pessilal to keep the phase-
shift constant below at least 180n order to cause the amplifier to remain stable. These
properties are measured in TMy applying three different sinusoidal signals with=
5,50and 500 kHz to the input and comparing them to the circuitpud Vigr = Vi+. A
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TM  objective fithness description

TMq1 pullto rails (random)  min. guasi-DC behavior, accordingtp 7.17
TM, slew-rate max.  mean slew-rate of all steps (eq. 7.26)
TM, settling-time min. meatyeye after trans. step (eq. 7.28-7.30)
TM», deviation fromViar min. rms error, according to eq. 7.17

TM3 phase-shift min. phase-shift of sin betwaép; andV,.

TM3 sin-curve deviation min. rms error, according to eq. 7.17

TM4 magnitude max.  damping of the fund. freq. at unity gain
TM4 harmonic distortion min. sum of ampl. of harmonics if abev@é0dB
TMs pull to rails min. rms error, according to eq. 7.17

TMs DC offset min. DC offset of the set of 9 curves (eq. 7.19)
TMs dev. of DC offset min. std. deviation of the DC offset (eq.0j§.2

— resource consumption  min. sum of transistors used

Table 7.3: An overview of all test modes TMs and their corresponding objectives is given above.
Generally, the aim is to minimize the fitness. Thus, in thesasghere the objective value is to be
maximized, the reciprocaslew-rate or absolute valuefagnitude is used as fitness.

discrete fourier transform is used to calculate the powectspm of the output signal for
each frequency. Subsequently, fithess valuestagnitudeandTHD are calculated from
the resulting power spectrum. A description of THD+N is givie chapter3, section 3.3.2.
Additionally, the output of a sinusoidal input signal 6f= 20kHz is used in TM to
obtain values for th@hase-shifand thedeviation of ¥, from \y. Thereby, thephase-
shift is calculated from the difference of the zero crossings eftdiget voltage pattern
and the zero crossings of the measured voltage patterng Wiadeviation of ;. from
Vout IS, again, simply the rms error of the measured voltage ipatteith respect to the
phase-shift.

7.4.3 Performance of the Multi-Objective Approach

A first indicator, whether an evolution run is successfullnot, is the shape of the re-
sulting fitness distribution for the different objectiveBhus, the fitness distributions otonvergence in all
two typical evolution runs—one with NMOS and one with PMO$ut—are depicted objectives
in figure 7.12. Contrary to the oscillators, the fitness valfgr all objectives of all 50
evolution runs are spread over the wide ranges. Thus, indke of the OPs, the MO
algorithm achieved that each resulting population costadividuals, which converged
in at least one objective and to maintain great diversithefihdividuals at the same time.
Due to the numerous objectives, the NDFs, which are cakilahd optimized by themulti-dimensional
EA, are multi-dimensional. Thus, projections of exampleAsiinto the plane spanned by\DFs
the respective objectives are plotted in figure 7.13. Therabobjectives are taken into
account for computation. Additionally, the subsets, whach obtained by recalculating
the NDF considering only the two graphed objectives, arevehdn order to illustrate,
on the one hand, the relation to the example NDF in figure 7d] @mthe other hand, to
show the origin of the NDFs, depicted in figure 7.14. It is iaging to see that there are
two different signatures of the distribution of the solasowithin the search space: eithabwards better fitness
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the depicted objectives can be independently optimizedgasrethe case amagnitude
DC offsetandsettling-time where the individuals are spread over large areas of thestn
landscape, or the objectives are more closely correlatedgasiagnitudeanddistortion
where only trade-off solutions are possible. Accordinghlatter observation, as can be
seen from figure 7.14, the respective NDF rather improvesitadsvbetter fitness values
over time in the first case, whereas in the second case, tathdiversity is improved by
spreading the solutions over wide ranges of fitness.
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Figure 7.12: The distribution of the fitness values for all objectives wbtexample evolution
runs are depicted above. Thereby, a typical run with PMOS8tifigotton) and a typical run with
NMOS input fop) is shown. Furthermore, the fitness values are sorted imeswg order for
illustration. For all 50 evolution runs, the fitness valueser wide ranges of the output range.

The position of a manually made OP (reference) is marked higuagie.
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Figure 7.14: The development of the fitness over
time is depicted above. Thereby, the NDFs of the
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7.4.4 Solutions for the Operational Amplifier

Measurement on the FPTA.

In order to assess the performance of the resulting OPs, iiumaale reference designs
are manually realized on the configurable transistor amayaae measured with the same
test modes as are used for the evolution experiments. Susasiy) the obtained fitness
values for all objectives can be compared to those from theisns, found by the EA. It
is tested for how many objectives the performance of thevedotircuits is better, resp.
less than 10 % worse, than the performance of the accordiegeree designs (PMOS or
NMOS input). Thereby, itis recorded how many resulting dapons feature at least one
individual, which beats the manual desigrNrobjectives. As can be seen from Tab. 7.4,
in which the results of the latter measuring are listed, alreach run contains at least one
individual that outperforms the respective reference ORpito 3 objectives and about
half of the runs feature similar performance in up to 6 obyest Finally, for both setups,
with NMOS and PMOS input, at least one evolution run feataesndividual, which
performs equally well in 9 objectives.

In addition to this, the likelihood with which a certain objize of the reference designs
is outperformed by the individuals of all resulting popidas is listed in table 7.5. It
can be seen thagssource consumptipmagnitude pull to rails (random) DC offsetand
deviation from }4, are barely beaten by evolved solutions. This is not surjssince the
human-made design contains only relevant components amtiffiérential input stage is
designed to minimize the offset, while an additional gaagst—despite it is represented
by a simple inverter in this case—provides sufficient magidt Contrary to that, it
has not been expected that achieving a good fitnessdfling-time phase-shiftand
harmonic distortionseems to be relatively easy for evolution. The reason far ihi
probably that there is a large amount of individuals, whid@nage to propagate the input
voltage pattern directly to the output, resulting in a Ipvase-shift settling-timeand
harmonic distortion An additional hint for this is the fact that all 'easy’ objses are
covered by test modes, where the input voltage patternsymrals to the (inverse) output
voltage pattern. Thus, the tasks could be fulfilled best byngple inverter, if there were
no other objectives.

Simulating the test modes used for evolution.

The next task is to test the resulting circuits in simulatidimerefore, one individual of
each population, which performs equally well as the refegesfiesign in most objectives
on the chip is evaluated in simulation. For comparison, #mestest mode setup, which
is used for the evolution experiments on the FPTA, is usedifoulation. TM, and TMs
are represented by DC simulations, while M M3 and TM,; are set-up as transient
simulations. Thereby, in the case of TMmagnitude and distortion are obtained by
performing a fast fourier transform on the output valuesrthar, the simulations are
performed with extracted netlists of level 1 and level 2 fitka4, section 4.4). It can be
seen from table 7.6 that the EA was able to find at least aboint@its, which perform
equally well as the manually made OP in up to 6 objectives énddse of a simulation
with plain transistors. This is a promising result insofaatt from a netlist with plain
transistors it should be relatively easy to obtain a clehestatic and possibly understand
the operation principle of the evolved solution. The outmltage characteristics of the
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no. of objectives
1 2 3 4 5 6 7 8 9 10 11 12

NMOS, on-chip

better than ref.

max. 10 % worse than ref.
PMQOS, on-chip

better than ref.

max. 10 % worse than ref.

50 50 46 39 32 18 5 2 1 0 0 O
50 50 48 42 3 32 17 6 1 0 O O

50 49 42 26 15 3 0 O 0O O O O
50 50 46 34 27 14 5 2 1 0 0 O

Table 7.4: The no. of runs that contain at least one individual thatead a better (or not more
then 10% worse) fitness value than the manually made circuigsgiven no. of objectives. About
half of the runs feature a similar performance as the mayualde design in up to 6 objectives
and at least one evolution run features an individual, whatiorms equally well as the reference
design in 9 objectives. The likelihood with which a certabjextive of the reference designs is
outperformed by the individuals of the resulting populasigs listed in table 7.5.

ref. beaten by % of evo. individuals

™ objective

NMOS, on-chip  PMOS, on-chip

TM1  pull to rails (random) 2.1 3.3
TM,  slew-rate 12.9 7.5
TM,  settling-time 25.7 1.4
TM,  deviation fromVig, 3.5 2.5
TM3  phase-shift 23.6 21.1
TM3  sin-curve deviation 6.7 1.4
TM4  magnitude 2.1 4.2
TMy4  harmonic distortion 58.9 68.9
TMs  pull to rails 4.8 3.5
TMs  DC offset 3.6 2.8
TMs dev. of DC offset 9.7 8.2
— resource consumption 0.7 0.9

Table 7.5: The likelihood with which a certain objective of the refecerdesigns is outperformed
by the individuals of all resulting populations is listedoab. It can be seen thedsource con-
sumption magnitudepull to rails (random) DC offsetanddeviation from V4, are barely beaten
by the evolved solutions, while achieving a ga®itling-time phase-shifandharmonic distor-
tion seems to be relatively easy for evolution.

NMOS and the PMOS OP with the best performance are graphedure§ 7.16, 7.17
and 7.15. The results from the FPTA are thereby comparedtetirom simulation and
the evolved circuits are compared with the manually madegdss
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7.4 A Circuit with Numerous Demands: an Operational Amplifie

no. of objectives
1 2 3 4 5 6 7 8 9 10 11 12

NMOS, simulation

level 1

+10% ofref. fitness 7 7 7 6 5 5 3 1 0 0 O O
level 2

+10% of ref. fitness 23 21 20 20 15 10 4 4 0 0O O O
PMOS, simulation

level 1

+10% ofref. fitness 7 7 6 5 5 4 1 0 0 O O O
level 2

+10% of ref. fitness 23 19 19 17 12 11 4 1 0 O O O

Table 7.6: The individual of each run, which performs equally well as téference design in most
objectives, is evaluated in simulation and therefore atereid in this table. The no. of individuals,
which achieved a comparable fitness value as the corresppraeference OP in simulation for a
certain no. of objectives, is listed above. Simulationsmedormed with plain transistors (level
1) and with mean switch resistance included (level 2), retspady. It is a promising result that
the EA was able to find at least about 3 circuits, which perfequally well as the manually made
OP in up to 6 objectives in the case of a simulation with pleamsistors.

Testing typical OP characteristics.

The circuits with the best performance in the simulatiorhvpiiain transistors—one with
NMOS and one with PMOS input—is further examined in the follty. Opposite to the
competition with the reference circuits on the FPTA, thehesd circuits will come off
worse, if typical characteristics of OPs are compared irulation. As can be seen from
table 7.7 especially those properties that cannot be medglirectly on the transistor
array during evolution—thus, cannot be evaluated by a &tfesction (e.g. open-loop
gain)—return rather poor results. Contrary to that, theattaristics that are represented
by an objective, perform similar, e.goffsef slew-rateand settling-time despite they
turned out to be hard to evolve, as observed in table 7.5.eSheoutput voltage swing
and the 0dB bandwidth are correlated to a good open-loop tieee values are also not
as good as those of the manually made OPs.

In both cases, the phase-margin of the evolved solutiomtsehithan those of the refer-
ence OPs. This is interesting insofar, that it is on the omel ldagood result, since the aim
of the corresponding objective is to minimize the phas#-:sBin the other hand, forcing
the phase-shift towards too small values could possiblyathihe evolution of output
gain stages. If this was the case, it would be better to altovafgreater phase-margin in
the objective function. Output voltage characteristiasdipen-loop gain, CMRR, phase-
margin and output voltage swing/range are graphed in figr@ 7
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parameter NMOS (evo) NMOS (ref) PMOS (evo) PMOS (ref)
open-loop gain 37dB 57dB 29dB 65dB
0dB bandwidth 8 MHz 77 MHz 6 MHz 33 MHz
offset 40 mV 28mv 80mv 20mv
slew-rate (+) 4% 100%5 15%_ 25%5
slew-rate (-) 1% 30“1S 35“1S 45“1s
settling-time ™4 us 02us 03us 02us
phase-margin g1 50° 97 50
common mode rejection 56 dB >50dB 45dB > 40dB
out voltage swing 2V 4.8V 2.8V 48V
input common mode range .8V 4.2\ 40V 4.3V

Table 7.7: Comparison between characteristics of evolved circuith wigood performance and
the reference circuits (NMOS and PMOS input). The valueshtained from SPICE simulations.
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Figure 7.15: Upper left: magnitude and distortion of a good evolved solution with N#@put
are depictedUpper right: magnitude and distortion of the reference design with NM@sit are
depicted.Lower left, lower right:the according graphs for circuits with PMOS input are shown.
The measuring on the FPTA (straight line) is compared withdimulation result (dashed line)
and the target voltage pattern (gray dashed line).
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picted. The measuring on the FPTA (straight line) is comparigh the simulation result (dashed
line) and the target voltage pattern (gray dashed lines).

145



7.4 A Circuit with Numerous Demands: an Operational Amplifie

40 50
= : —
O\ ™\
T U\ = 50
s AN 2 N
% 5 \ _‘cﬁ e gt Y
> S\ ] =7 N
5 AN \
-10 Nk 15 N
\
-200
1° 100 1¢? 160 10* 10° 10° 107 10 100 1® 100 10* 10° 10° 107 1C°
frequency [Hz] frequency [Hz]
> 5 5
S S )
% 4 / (@] 4
— c
2 VY E R
o [7)
o
= / 7 g °
c 8
g 2 /4 S 2
£ 5
8 1 g 1
- ~ - targer 5
a = — nmos|| ©
£ 0 —— Ppmosjy 0 !
0 1 2 3 4 5 0 1 2 3 4 5
input+ [V] input+ [V]
60,
\\

40
30 \
o \

=

cmrr [dB]
L

0

P 10 10 16 10 16 1 10 16 10° 10°
frequency [Hz]

Figure 7.18: Real world characteristics—namely open-loop gain, phmaegin, CMRR and out-
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7.4.5 Schematic Extraction of Good Solutions: Deriving NeviDesign Prin-
ciples?

Due to the lessons learned by looking at the schematics if ¢jes and comparators in
chapter 6, section 6.4.5, the evolution setup for the OPasigded in a way that the input
voltages are always connected to the gate of either a NMO®BI@S transistor pair. As

a consequence of this, the algorithm cannot simply mix tpatimoltages in an unwanted
way, as it occurred in the case of the logic gates. Again,rtention is to transfer good

solutions into a human readable format and possibly uratsisihe operation principle

of the evolved OPs. The procedure, which automatically ggee schematics from the
evolved circuits, is described in chapter 4, section 4.5.2.

For both types of input, generated schematics for examplgiaas with both, a good understanding
performance on the chip and in a level 2 simulation are shawfigire 7.19. In order schematics of good
to improve understandability, circuits with minimized sesrce consumption are choserf*'ions
Besides, the depicted circuits are those from the previobsextion 7.4.4. Additionally,
the obtained schematics are manually redrawn in figure 726xbracting functional
groups. Unfortunately, both depicted circuits will only Wwerking correctly, if the mean
parasitic on-resistance of the switches is considerednmlsiion (level 2). As can be
seen from the schematics, in both cases, with NMOS and PM@, ithe algorithm was
able to create a differential input stage, which is a pramgisesult, since it is indeed aediscovery a
reinvention of a widely used human design. Neverthelessjrwportant components arelifferential input stage
as yet missing: first, contrary to the experiments with tlggdgates and the comparators,
the algorithm failed to create an inverter at the circuitisput, which would have resultedtailure in creating a
in significantly higher gain. A possible reason for this is thissing objective for open-gain stage
loop gain, which cannot be directly measured on the FPTA os&cthe EA comes up
with unusual biasing circuitry, which is probably the reasshy the circuits are notunconventional biasing
properly working, if only plain transistors are simulatéalthe case of the PMOS inputsgircuitry
numerous transistors, which are actually closed, are iboititrg to the bias, while, in the
case of the NMOS inputs, the bias voltage is even dependinigeooutput voltage.

In addition to the two latter examples, resulting OP cicwaian be found, which also
feature a good performance in a simulation with only plaamsistors, which is a good
result. Despite this, it was not yet achieved to further ustd@d the operation principle
of those circuits. Therefore, the according schematicslaoa/n in appendix B.

7.4.6 Concluding Remarks

Concluding, it can be stated that, despite the EA did notodisc any new ground-

breaking design, it is still an impressive result that thgoathm achieved to synthesizeediscovery of

a differential input stage in both cases without prior agalesign knowledge. Furtherdifferential input stage
more, a great benefit of using an MO approach for the evolutfmperational amplifiers

on the Heidelberg FPTA is the possibility to efficiently ex@ the search space taking

care of both, the diversity of the population and the varideismiands on the target circuit.

Thereby, the obtained results suggest that a MO approacaridaiory for the successfullsuccessfull evolution of
evolution of complex analog circuits. complex analog circuits
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Chapter 8

Modeling FPTA Architectures

Initial experiments with a simulation model of the curre®TA, referred to as
the SimFPTA throughout the remainder of this thesis, arsgmted in this chap-
ter. Once more, in order to be able to compare the results thitse from the
previous chapter (7), the task is to evolve a comparator tighMO-Turtle GA.
Due to the significantly higher time consumption of the sataih, a total of 30
evolution runs is carried out with the SImFPTA and compa@@Q@ randomly
picked FPTA runs from chapter 7, section 7.2. It is shown bwh substrates
feature similar behavior and results in the case of the caajpas. Further-
more, the opportunity is seized to comment the current dbippropose some
improvements for possible FPTA architectures in the fulamd an alternative
genome-chip mapping for the candidate circuits. To corglublis last chap-
ter is, on the one hand, intended as a demonstration of thioqpeace of the
SImFPTA and shall, on the other hand, provide a startingiptor future work.
Thereby, the developed software framework, introducetapi@r 5, can be used
to create and investigate new configurable FPTA topologiesfarther improved
evolutionary algorithms.

After performing a great number of evolution experimentsagoarticular FPTA chip, the
inevitable question arises, to what extent the constraiftise present topology limit the
quality of the resulting circuits or exclude possible padlya/ of evolution towards good
solutions. The latter question can only be answered by, erotie hand, investigating
the evolution results for different design problems andftanother hand, compare the
evolvability of the current FPTA with the evolvability ofteér topologies. Due to the fact
that the architecture of the available hardware is fixedcbenan only be changed by
designing and fabricating a new chip, it is desireable toduémed with a customizable
simulation model of FPTA architectures, as proposed intgrap and in [93]. Such an
FPTA model makes it possible to evaluate and improve the@pagnce of an architecture
before actually manufacturing a chip. However, the priz thas to be paid for a cus-
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SIMFPTA

8.1 A Simulation Model of the Current FPTA

tomizable simulation model is a high evaluation time fordhalog circuits in simulation.
Since numerous candidate solutions have to be evaluathd gase of EAs, the time con-
sumption of an evolution run drastically increases. A congpa of the evolution time
of the experiments in this thesis is given in section 8.1.@stIsteps towards modeling
and testing FPTA architectures are presented in this chapttuding experiments with
a simulation model of the current chip, a description of iEmshortcomings as well as
proposals for possible future architectures.

8.1 A Simulation Model of the Current FPTA

The first step is to create a simplified simulation model ofdhent FPTA architecture,
referred to as the SImMFPTA throughout the remainder of tiésis, and to compare the
performance of this model with the real hardware by tacktimg synthesis of compara-
tors. Thereby, th@urtle GA which is introduced in chapter 6, section 6.1.2, is used for
the evolution experiments with both substrates, namely*BiEA and the SImFPTA. Fur-
ther, the same genetic representation is used for both iexgas, although, in the case
of the SIMFPTA, the candidate circuits are converted to Asheind evaluated with a
SPICE simulator, as described in chapter 5, section 5.215ah3. In order to provide a
sufficiently accurate model of the real hardware and to kkesimulation time feasibly

trade-off between model low at the same time, the simulation model has to be simplifigte results from chap-

complexity and
simulation time

both substrates produce
equal results

valid circuits are crucial
for successfull
simulation

ter 6 suggest that carrying out the simulations with levet¢®ists (chapter 4, section 4.4),
where the transmission gates used are replaced with thain oreresistance should be a
suitable model of the real FPTA.

8.1.1 Performing Experiments with the Simulation Model

Experimental Setup:

The same test modes, fithess measures and EA parameterstas éoolution of com-

parators in chapter 7, section 7.2.1, are used for the erpatal setup, in order to be
able to compare the results, obtained with the SImFPTA vhitise from the FPTA. Due
to the significantly increased time consumption of the evmiuexperiments with the
SImMFPTA, a total of 30 evolution runs is carried out insted&® and compared to 30
randomly selected evolution runs of the comparators froaptdr 6. The population size
is 50 individuals, and the number of generations is 20.000.

Results

As can be nicely seen from Fig. 8.1, the evolutionary runs @mdn equal ranges of
fitness and ressource consumption for both substrates.eGaastly, the SImMFPTA is a
suitable model for evaluating the evolvability of the reatdware, although the behavior
is different in the beginning of evolution, due to the facattindividuals which do not
work at all in simulation, nevertheless produce an outputhenchip. The latter effect
will become less important, if, as presented here, an EAtlieTurtle GAis used for
the evolution experiments, since valid circuits are crufa carrying out a successful
simulation. Output voltage characteristics for both testdes of an individual with a
good performance is graphed in Fig. 8.2.
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Figure 8.1: The fitness for the output voltage characteristic is plottest the ressource consump-
tion. As can be seen from the graph, the best resulting caatgrar evolved with the SimFPTA
and the FPTA respectively, are distributed over equal ramgditness. Thus, the SIMFPTA is
Suitable for assessing the evolvability of the FPTA.
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Figure 8.2: DC output voltage characteristics of the best comparatolyed with theMO-Turtle
GA and the SImFPTA respectively, are depicted.

8.1.2 Time Consumption for Different Evolution Experiments

As already mentioned, the time consumption for one evatatip run will significantly

increase, if the evaluation of the circuits is performedhvan analog circuit simulator

instead of with the real hardware. In both cases, the siiounldime is additionally de- factors, that influence
pending on the number of inputs and outputs used, the nunfibeltage samples and thesimulation time
number of test modes. Furthermore, if a simulator is usedgteeh amount of compo-

nents will exponentially increase the simulation time autitionally, the duration of the

simulation depends on the type of analysis, e.g. a tranaiegli/sis takes considerably

long. Contrary to simulation, only transient measuringdasgible with the chip, although,

in the case of real hardware, the output can be measuredg@limonediately, which is a

great advantage. A further great advantage of the hardwahe ifact that the measuring

time is independent from the number of components used.
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substrate  no. TMs no. of fit. vals no. ind./gen. time [min.]

logic gates FPTA 2 1+1 50/10.000 63
comparators FPTA 2 1+1 50/20.000 206
comparators FPTA 2 2+1 (MO) 50/20.000 21@
comparators  SImFPTA 2 1+1 50/20.000 13895

oscillators FPTA 1 5+1 (MO) 100/5.000 252

op. amplifiers FPTA 5 11+1 (MO) 100/10.000 2@

Table 8.1: An overview of the mean duration of one evolution run of afpesiments in this thesis.
Note, that in the case of complex fitness evaluation, e.chase cases where a fourier transform
is done or simply one test mode delivers numerous fitnesesathe time consumption further
increases. The ressource consumption is considered ag'#iis table, due to the fact that it is
calculated outside the test mode setup.

An overview of the mean duration of one evolution run of appesiments in this thesis
time consumption of IS given in the table below, in order to give an impression@# hong it actually takes—
presented experiments  to date—to obtain solutions for the respective kind of dicciNote, that in the case

of complex fitness evaluation, e.g. in those cases wherergéefduansform is done or
simply one test mode delivers numerous fitness values,iteedbonsumption may further
increase.

8.1.3 Influence of the Parasitic Effects and its Consequense

The mean parasitic on-resistance of the transmission,gatésh are used for intercon-
necting nodes on the FPTA, is included in the SIMFPTA, with ititention to provide
similar conditions for evolution on both substrates. Dtsfiie fact that the evolution
smooth improvement on runs end up in the same regions of fithess for both substitiexybserved that the cir-
the FPTAvs. sudden  cuits on the FPTA are more 'smoothly’ improved by evolutitrart on the SimFPTA,
jumps in simulation —\here rather sudden jumps occur in the course of the fitndsss, Tt can be stated that
the presence of parasitic effects in the case of real hasdvesmults in a smoother im-
provement of the fitness, as can be seen from the example e 8. On the one hand,
such a smoother improvement is considered to be advantagedhbe algorithm, since
the output voltage characteristic can be changed in sneth@is and therefore, e.g. the
slightest change of the WI/L ratio of one of the transistors passibly be exploited. On
the other hand, by investigating resulting circuits for litgic gates and the comparators,
shown in chapter 6, section 6.4.5, it will be seen that, ifdbkection is oriented exclud-
selection should not rely ing at the slightest change of the shape of the output volthgeacteristic, this can also
only on rms lead to unwanted solutions. It is therefore suggested theduld be most beneficial, if
it was possible to design a substrate and/or algorithm wélickvs to smoothly improve
the circuit without relying on parasitic effects. One pbd#y could be to optimize the
WI/L of all transistors of a candidate circuit in an interreddistep.
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generations runs with the FPTA and the SImFPTA respec-
tively, are depicted on the left hand side.

8.2 Comments on the Current Architecture

8.2.1 Advantages

The fine grained architecture of the Heidelberg FPTA, i.e ghssibility to evolve cir- evolving circuits on
cuits on the transistor level, is considered to be more ésterg for research on EAgransistor level
and unusual circuit topologies than an FPTA with more comptanfigurable cells, e.g.

tuneable filters or amplifiers ( [8, 79]). Despite the facttthvith more complex cells,

which are aimed at predefined tasks, it is more feasible togowll solutions for just

the task they are designed for, the idea of being able to alfrexdy interconnect sin-

gle transistors is intriguing. Thereby, it is intended natyoto find working circuits

but, in turn, possibly learn new ways of analog design fromlwgion. Obviously, this aiming at new design
is not possible in the case of a substrate with a predefinedoocdnstrained architec-principles

ture. Unfortunately, the disadvantage of increasing candiility is that the presence

and influence of parasitic effects increases at the same diltheugh there are examples

where EAs were able to use just those parasitic effects {d bucuits with surprising

properties ( [30,60, 78,87]). Thereby, the most famous g@kaus the tone discriminator

experiment of Adrian Thompson [85], who achieved to evolwalag functionality on

a digital substrate (FPGA). Nevertheless, it has to be cthiat, to date, Thompson’s
ground-breaking experiment remained unique.

8.2.2 Shortcomings and Desired Features

The main shortcomings surely are the limited routing and mament connecting capadimited routing and
bilities of the current transistor array. Direct connestidoetween transistors, i.e. witl§onnecting capabilities
the minimum required number of 2 transmission gates, capy balrealized between

neighboring cells. Further, connections can only be estadd with the local routing

capabilities of the chip, resulting in at least one addaiswitch per cell, which is added

to the respective wire. Further, the four outside connastiaf the FPTA cells are shared

between the three transistor terminals and the six possiblies. Thus, in the case of

manually configuring a more complex circuit on the transiatoay a relatively large area
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a test-bench with
extended features

reducing the no. of
switches

realizing a net-based
routing scheme

8.3 A Proposal for Improvements

is needed, compared with the number of actually needed coemp®. E.g. a compara-
tor with 7 transistors requires at leask® transistor cells, thus, in this case, only about
1/5 of the available components are actually used. Consdguean improved routing
scheme is desired, which makes it on the one hand possibttect distant transistors
via a few switches and, on the other hand, does not shars albdes with the transistor
terminals.

The second disadvantage is the presence of switches asbotice and drain terminal
of the transistors. As a consequence of this, it is not ptessibconfigure a circuit on the
FPTA, where two transistors are connected to exactly theessyarce potential, which
would be desireable e.g. in the case of a differential pajprasenting a differential
input stage. Despite this, in the OP experiments from clhaptsection 7.4, the EA was
surprisingly rather able to find a differential input statfggn an additional gain stage.
Nevertheless, from the view of analog design, it is stillicdsto have real differential
pairs at hand, although it can only be suggested that it walslal help the EA in finding
better solutions. Moreover considering the principlesralag circuit design, a more net
oriented connection scheme is desired, instead of a celh@u one.

Lastly, there is a need for more flexible 10 cells, or, moreegally spoken, a test-
bench with extended features. It would be beneficial, if isysassible to attach test-
benches, which include also passive components (resistapscities) to the evolving
circuits. Alongside with supplies for reference voltaged &he possibility of measuring
the current of some nodes, this would make it possible to aregwoperties like gain or
the characteristic of a configurable transistor directitlmchip. E.g. the evaluation of
OPs would be significantly improved by a gain measuring. Heurhore, in a voltage net
based routing environment, different accurate referenttages could be provided to the
circuit under development, which would be expecially bariaffifor e.g. filters, DACs
and ADCs ( [55,103, 105]).

8.3 A Proposal for Improvements

This section is intended to present some thoughts about arowed FPTA architecture

and a possibly beneficial alternative genetic represemtdtr the analog circuits in the

future. It is not yet proven by implementation and experitaghat the proposed archi-
tecture or genetic representation will be more powerfulevéttheless, this is supposed
to be, based on the experience gained from the experimetitis ithesis.

8.3.1 New Configurable Architecture

Architecture

The proposed FPTA architecture is depicted in figure 8.4. thisrpossible new archi-

tecture, it is tried to avoid or at least reduce the shortogsiiof the current chip, that
are described in the previous section 8.2. Thus, it is tigedirtst, reduce the number of
switches for distant connects while maintaining connégtisecond, a rather net-based
routing scheme is provided, instead of a cell-based oneastddroups of configurable
transistors are, avoiding the switches in between, direattached to common source
nodes, as shown in figure 8.6. As a consequence of this, cpiitrahe current FPTA
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Figure 8.4: The upper left corner of the proposed PropFPTA architedtuilepicted. For the new
architecture, the aim is to avoid or at least reduce the sbwmings of the current chip. Thus, it is
tried to, first, reduce the number of switches for distantemts while maintaining connectivity.
Second, a rather net-based routing scheme is providedamhsif a cell-based one. Last, groups
of configurable transistors are, avoiding the switches imwéen, directly attached to common
source nodes, in order to provide real differential pairs.

architecture, transistors that shall not contribute tociheuit are not removed by closing

a switch, but have to be switched off by their gate voltaged #d PMOS is closed and

gnd+— NMOS is closed. Despite those turned-off transistors iagrea capacitive load

for the node, to which they are connected, it has to be coreidhat this capacitive

load would be even doubled in the case of switches, whichealezed with transmission

gates. In order to facilitate distinguishing between theent and the proposed architec-

ture, the latter device is referred to as PropFPTA througtimiremainder of this thesisihe PropFPTA
Furthermore, it is intended to implement and test the prep@schitecture with the mod-
elmodelingework, presented in chapter 5 and proven to wotkis chapter, section 8.1,
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Figure 8.6: As depicted above, the 16 transistors are switched on orcotirding to the demul-
tiplexed 4 configuration bits. The device can either be aeéra '5 terminal mode’, providing
a configurable real differential pair or in '3 terminal modptoviding a wider range for W/L.
Thereby, the '3 terminal mode’ is achieved by simply conimgcboth gates and drains to the
same target node. In the case of the PropFPTA it is possihlisddransistors with different L
in parallel, which is neither known to be beneficial, nor kmaew be harmful, thus, interesting to
investigate.
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all directions

Figure 8.7: The full connectivity of the switch boxes is depicted on tlght hand side. Addi-
tionally, on the left hand side, merely the possible routesifthe perspective of the east and the
north is shown, in order to provide a better overview.

FPTA PropFPTA

12(routing)

transmission gates per border node (routing) 6 10(border)
20(shared)
O(routing)

transmission gates per border node (terminals) 6 10(bprder
10(shared)
O(routing)

accessible transistors (cells) per border node 2(2) A4R)Er)
8(2)(shared)

transmission gates terminal 24 16

no. of configuration bits (routing) 6 6

no. of configuration bits (terminals) 9 (54)

no. of configuration bits (W/L) 7 4

Table 8.2: The number of transmission gates, which are connected todties and transistor
terminals of the FPTA and the PropFPTA respectively, islistbove. It can be seen from the table
that the sum of parasitic capacitances of the switches iexpmcted to be significantly greater for
the PropFPTA, compared with the FPTA. Nevertheless, itgesed that the enhanced routing
capabilities and the 5 terminal configurable differentatp will yield improved circuits.

in the future. Other proposals on evolvable hardware achites and according routing
schemes can be found in [62, 79]. Further, an interestingoagh for breaking the re-
sistive barriers, created by the configuration circuitiyy,using microelectromechanical
systems (MEMS) is presented in [20].

The Building Blocks

As can be seen from figure 8.4, the architecture is designadianner, that it is again
possible to create a scalable, two dimensional array wehbthlding blocks. Thereby,
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one building block consists of four configurable transist@PMOS and 2 NMOS respec-
tively. The terminals of those configurable transistors lwawonnected to the red nodes,
according to the schema in figure 8.5. Consequently, eadtedbtr configurable tran-
sistors can be connected to their two next neighbors, fotlieaf next routing lines, vdd
or gnd. A direct connection to the neighboring building lid®can established with the
shared nodes, marked sizaredin figure 8.5. As described in figure 8.6, the configurable
transistors themselves feature 5 terminals, namely a cansoorce of 2« 8 symmetri-

common source, 2 gates cally arranged transistors and a common gate/drain of 8rdifit transistors respectively.

and 2 drains

5 terminal mode and 3
terminal mode

separated routing
capabilities with switch
boxes

This provides some advantageous configuration possgsilifirst, in’5 terminal mode,
the cells can be used as real differential pairs. Secorid,tarminal mode, the cells can
be used as single transistors with a wider W/L range. Thiid,possible to configure the
four configurable transistors of one building block as engeiter, current source/mirror
or even differential input stage without the need for addail routing. Nevertheless, the
substrate is still fine grained, in the sense of single cordige transistors. Furthermore,
one configurable transistor of the same type features smillrdtios, while the other
one features greater W/L ratios, in order to provide a widé Yslhge without attaching
to many components to the same node. A comparison with thitggooable transistor
cells of the FPTA is given in table 8.2.

Routing Concept

The routing capabilites are separated from the actual amafiide transistor cells and the
proposed architecture is inspired by the routing schem@&&As. Thus, as shown in fig-
ure 8.7, switch boxes are used for creating a great varietetforks of voltage nodes.
As the connections between the routing nodes4f cannot be directly connected with
the configurable transistors, the latter nodes are intetmguovide additional routing
capabilities for the circuit's 10, external reference agies or for bypasses. As yet, a
total of 52 switches for each switch box is proposed. Therelgh routing nodeR;-4) is
attached to 6 switches, the border nodes (N,S;\4),6 5 switches and the shared border
nodes (N,S,W,B to 10 switches. It has to be found out, if the proposed cainigcwill

be sufficient or not. Considering 6 configuration bits forreawitch box, there are still
free ressources for up to 12 additional switches. A compangith the FPTA is given in
table 8.2.

Concluding Remarks

It can be seen from table 8.2 that the sum of parasitic cagpa@s of the switches is not
expected to be significantly greater for the PropFPTA, caetbavith the FPTA. Nev-
ertheless, it is supposed that the enhanced routing cédjgasbénd the 5 terminal config-
urable differential pairs will yield improved circuits, duo the greater variety of possible
configurations. Moreover, it will be interesting to see, tbhatvextent the configuration
possibilities of the new architecture are actually usedhindase of circuit synthesis with
EAs. Lastly, it has to be remarked that, in addition to thefigomable array, 1O circuitry,
e.g. sample and hold buffers and reference voltage sountktsie necessary to oper-
ate the architecture. Such 10 circuitry can be easily adddb the unused nodes of the
border switch boxes and can subsequently be routed to imgesrof the substrate.

160



Modeling FPTA Architectures

8.3.2 Alternative Genotype Representation for the CurrentFPTA

It is supposed that a genetic representation, which is nolioasly related to the pheno-
type as the current one, would be beneficial, since smallggsgim the genotype coulda more development
result in greatly different configuration bit-strings ftietphenotype. This will not necesbased genetic encoding
sarily result in circuits with completely different funchiality, if e.g. only the placement
of the transistors is changed. Thereby, a possible gerggiresentation is simply a list
of components, their size and node numbers, that define tireectvity. Consequently,
the complexity of creating the phenotype is moved from thet&An additional mapping
algorithm. In the case of a configurable hardware substita¢elatter mapping provides
an additional advantage: if the mapping contains some randss in the placing of themapping to the substrate
components, the robustness of the evolving circuits wilinpgroved, since the circuit is
not depending on the properties of always the same compmnehich are depending on
the fabrication process themselves (fixed pattern noise).
In the case of the current FPTA substrate, the same algqritftrith is used to au-
tomatically create schematics from a netlist, could be dsednapping a circuit to the
transistor array. Assuming a maximum amount of 5= 25 transistors in the genome,
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Figure 8.8: An example of how a netlist based genetic representationbeamapped to the
FPTA. In order to achieve this, an area% 3 FPTA cells is reserved for each component of
the netlist. Subsequently, the coordinate of the transistithin the array is defined by their gate
node numbers (x-coordinate) and their source node numparsofdinate). Depending on the
MOS type, an according FPTA cell is configured by selectirgy\W/L, connecting the gate to
the west, the source to the north and the drain to the soutét, Eates with equal node numbers
are connected with vertical NS routes. Second, drains areezed with WE routes. Third, the
free routing capabilities can be used by a simple routingrilynm, to connect the sources to their
respective target net.
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and constraining the number of transistor terminals of #meskind, which are allowed
to connect to the same node, to 5, it should be possible t@zeeall possible config-

urations on the current FPTA. An example is given in figure 88 the one hand, a
great advantage of the latter approach would be the pdssitml use the whole array

area without exponentially increasing the search spack,anthe other hand, it is sup-
posed that a genome with 25 freely interconnectable tramsistill provides sufficient

configurability. Besides, with a smart mapping algorithhre humber of transistors can
probably be further increased. Compared to using a simulat@valuation, in the case
of 25 configurable transistors, the speed of hardware gjiflificantly outperforms the

speed of simulation by an estimated factor of about 6, as slowable 8.1.
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The focus of this thesis has been set on the design autonwdit@OS transistor circuits
on field programmable (configurable) transistor array #echires (FPTAs) by means of
evolutionary algorithms. Compared with their widely used alaborate digital counter-
parts, namely FPGAs, FPTAs remain currently still on a bbesiel of research. Within
this thesis, the Heidelberg FPTA, which has been designelbiyyLangeheine [49], wasthe Heidelberg FPTA
used as a substrate for the evolution of analog circuits ertrimsistor level. It con-chip
sists of 16x 16 configurable PMOS and NMOS transistor cells, that arenged in a
checkerboard pattern. The routing capabilities of the ehighthe possibility to configure
the characteristic of the transistors allow for realizingraat variety of circuits on the
FPTA. In combination with a real time configuration and testimnment, the FPTA is
suitable for efficient chip-in-the-loop evolution expednts. The idea behind utilizing a
fine-grained substrate is to avoid biasing evolution towarahventional designs and tevolution on the
model the analog design process more closely. Besides, itasable fact that the Heidel{ransistor level
berg FPTA is the only fine-grained configurable analog satestn the world and there
is only one other similar chip, which however features managlex cells, developed by
the group of A. Stoica at the JPL.
This thesis tackled three main problems within the researel: first, in order to main aims of this thesis
improve understanding of circuits that have been evolvetherFPTA, they should be
reduced to relevant components and be transferable totettterologies. Since this work
was aimed to provide the possibility to derive new designgples from evolution and
for closing the loop to human design, it has been desireabdieaw clear schematics of
evolved circuits. Second, analog circuit design is a vemex task, where numerous
variables have to be optimized in parallel. Thus, a muljective approach suggested
itself for successfully handling circuits with the lattéaisdards, i.e. with high complex-
ity. Third, it was interesting to investigate the influenddh® FPTA architecture on the
success of evolution. Thus, a tool was desired, which pealvitie possibility to create
models of possible FPTA architectures and to immediatedytiiem within the evolution
framework.
Addressing the problem of transferability of the found $olus, new variation oper-transferable circuits
ators have been developed within this thesis in order to nitgkessible to synthesize
circuits, which are not bound to the particular substrata@rchitecture on which they
have been evolved. The EA that runs the new variation oparégalenoted as theurtle
GAand the one that runs straight forward implementationsfésned to as th&asic GA
Due to the intrinsic realism of configurable hardware, theo$@ossible configurations
equals the number of feasible solutions, although not atha$e circuits are necessarily
valid outside the chip. In turn, if a circuit shall be sucdaekg evolved extrinsically, it
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will have to follow the constraints of a SPICE simulator udauat is not generally realize-
able on the FPTA. Consequently, since the aim was to syathésinsferable, reusable
circuits and to possibly derive new design principles, tee wariation operators have
been implemented in a manner that the candidate circuits feasible on both the chip
and in simulation. The new operators have been successipiiifed to the evolution of
logic gates and comparators and it was possible to verifydhelting circuits in simu-
lation, hence, to transfer them to other technologies. Bled solutions have thereby
been extracted into netlists and a SPICE simulator could beeused for the off-chip
verification. It has been interesting to see that the perocea of good solutions was
not getting much worse, if a simplified simulation model waedifor testing, i.e. most
parasitic effects of the chip had been omitted, althoughuab0 % of all circuits did no
longer work in simulation. Additionally, it has been showhmt the new genetic operators
performed equally well in finding good solutions for logidggand comparators as those
of the previously used straight forward implementation.

Aside from verifying the resulting circuits in simulatiothey have been tested with
two other substrates. It was observed that for bothBasic GAand theTurtle GAall
found solutions performed equally well on all substratetiswas on the one hand a
positive result, since the solutions featured a certainstitess by not depending on a
particular substrate although, on the other hand, the Hugtethe EA would be able to
create and optimize circuits by using some kind of 'hiddex@ttires of the hardware was
not corroborated.

Unfortunately, in the field of evolutionary electronicseth are as yet no suitable
benchmarks available, that allow for comparing the pertoroe of algorithms of differ-
ent research groups independently of the problem. Thustiatgtal method for charac-
terizing variation operators was proposed in chapter ) which expected probabilities
can be calculated for whether the respective variationatpeimproves or degenerates
individuals. These expected probabilities can help tocgrdte convergence speed and
the course of fitness. Table 6.3 shows that the variatioratges of theBasic GAand the
Turtle GAfeatured a similar performance.

A further remarkable achievement of tiartle GAis that the ressource consumption
of the resulting circuits has been reduced, compared wilB#sic GA The latter effect
got more obvious—and more important—with increasing caxip} (see figures 6.8
and 6.11: XOR, XNOR, comparator and also the oscillators @Rd from chapter 7).
Furthermore, due to the reduced number of transistors, humderstandable schemat-
ics of good solutions could be drawn. The generation of thierlachematics has been
done automatically within the circuit editor of the Cadedesign framework. As a con-
sequence of this, it has been possible to analyze the raguliticuits and to investigate
how the algorithm is solving problems on the hardware satestit is a satisfying result
that the EA was even able to find a few solutions for the logiegiand the comparators,
which are performing well in a simulation where no parasitd the chip are included
at all. These solutions are indeed independent from the FbAfor the logic NAND,
AND and OR, it is possible to understand how the evolved @sa@actually work. This is
a valuable result, since it provides some insight into thtindpation process on the chip
and thereby suggests improvements for implementatiortsedEA in the future.

The next aim was to tackle the evolution of more challengingl@g circuits, namely
oscillators and operational amplifiers (OPs). The evoharg algorithm has been ex-
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tended with the capability of multi-objective optimizatidn order to be able to succesanulti-objective
fully find solutions for advanced problems where numeroufierceven contradicting— optimization
properties need to be optimized in parallel. With this neyrapch, it has been possible

to efficiently explore the design space and successfullysiihgtions for comparators, os-

cillators and operational amplifiers. The evolution expemts for finding solutions for

comparators have been carried out in order to be able to aentipa performance of the

MO approach to the non-MO implementations. In both casealgggood solutions are

found and although the MO algorithm converges slower, ii@@s to maintain greater

diversity within the population, which is crucial for avang premature convergence. avoiding premature

In the case of the oscillators, it is a specific feature of #tasthat there was no inpugonvergence
present. Thus, no external stimulus could be exploited byEA, which significantly
increased the difficulty level. It has been observed that itsécessary to formulate open
fitness criteria in order to exploit any variation of the auitpgoltage and to get an oscilla-
tion started. The results for the oscillators revealed théuradvantage of multi-objective
optimization: the resulting population of a successful yigided different solutions with
different frequencies. Hence, in the case of MO it has beasiple to harvest numerousarvesting numerous
trade-off solutions from the resulting population instedianly one, if the formulation solutions
of the fitness function was not too restrictive and allowedctrtain variations. Unfortu-
nately, none of the found oscillators works in simulationstde the chip.

According to the lessons learned from the logic gates andpeoators experiments,
the setup for the evolution of operational amplifiers hasbeedified in a way that the
inputs are always connected to the gates of either a pair cDSMr PMOS transistors.

As a consequence of this, the algorithm reliably convergetithe behavior of the result-

ing circuits was in all cases at least similar on the chip ansimulation. The resulting

OPs with a good performance were extracted into netlistsveer@ simulated outside

the substrate on which they have been evolved. However indke of multi-objective

optimization, it can not easily be decided which individisathe best to pick for further

testing. Due to this, the performance of all resulting ifdlials on the FPTA has been

compared with basic manually made reference designs anthdivédual, which out- comparison with
performed the reference designs in most objectives waddmmrs as the best solutionreference designs
More than half of these best solutions have been perforngugley well on the chip and

in simulation in up to 6 out of 12 objectives and they achiefigwkss values comparable

to those which were obtained by the basic human referenigndameasured on the chip.

The best OPs were again converted to clear schematics, ém trdunderstand how
they work. In this case, the schematics were manually redfanclarity by grouping the
transistors according to their functionality. Itis a preing result that for both PMOS and
NMOS input, the EA (re)discovered an architecture simitaa differential input stage,
which is a widely used human design. Despite this soluticarisady well known, it is
remarkable that it has been achieved to derive a designipleénitom evolved circuits deriving design
without including prior circuit design knowledge. Unfontately, the algorithm failed in principles
synthesizing additional gain stages. The reason for thispr@bably the lack of a suitable
gain test bench, which could have delivered an accordingditwvalue.

To conclude the experiments with the FPTA, it is contentingde that the presentedchievements of the
algorithms are able to evolve transferable circuits anttlygeme good solutions that ar@lgorithm
understandable from a designer’s point of view. Moreovemglex analog circuits have
been successfully evolved from scratch, i.e. on the traordisvel, which was previously
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not achieved. In the case of the OPs it was even possible)ttigcever a human design
principle. Finally, the loop to human design has been clégedansferring the circuits to
a simulator and by drawing clear schematics of good solstidhe fact that the evolution
of comparators, oscillators and OPs is an already diffiagk suggests that thdéO-Turtle
GA can be successfully applied to a variety of problems.

During this thesis, a comprehensive modular evolution éaork has been developed
in C++, which facilitates the implementation and immediapplication of any module
of an evolutionary algorithm. Furthermore, it allows fosassing the architecture of the
FPTA by providing the possibility to develop simulation net&lof custom FPTA archi-
tectures and to immediately use them for experiments withénpresented framework.
In this case, the results obtained from the FPTA and the STrAFRa simplified model
of the real hardware—showed equal performance for the thsinthesizing compara-
tors. It is thereby observed that generally all circuitd tlhare evolved on the SImMFPTA
perform similar on the FPTA, however, since a simplified datian model cannot cope
with any parasitic effect of the chip, the inverse is not sseely true. Regardless of the
supported view—avoiding or extensively exploiting patiasffects—the aim should be
to understand or even control the influence of those effattsrder to benefit from as
much substrate properties as possible. Since evolutioearhardware is significantly
faster than in simulation, it is on the one hand an advaniaged real hardware in order
to quickly evaluate the performance of the algorithm used tl@ other hand, the archi-
tecture of the chip cannot be changed unless a new versiagsigrebd and fabricated.
Thus, the presented work aims at providing a tool for devefpand testing improved
FPTA architectures in the future. Once a software model arahitecture with a good
performance is found, it will be possible to realize a moreg@dul hardware implemen-
tation.

Itis proposed to emphasize the research into new FPTA acothies and possibly new
approaches to evolution substrates with the presentedefvark. If powerful FPTA ar-
chitectures are found, they will become equally importarthair digital counterparts, the
FPGAs. Configurable analog hardware is suitable to perfonwyntask for which inter-
faces to the real world are necessary, e.g. in telecomntigricapplications, controllers
and sensors, that have to interact with the physical worldredver, fault tolerance and
build-in self test methods can be more efficiently impleradniising additional analog
ressources, even for digital circuits. Here it is not neagsto waste a whole spare logic
building block if there is only one single faulty transistbast but not least, it has always
to be kept in mind, that digital functional blocks are meratyabstraction layer over ana-
log circuitry and their performance is therefore strongipending on analog properties.
It is also imagineable to abandon even the transistors as tamponents and to try to
directly evolve the underlying structures, namely layerd areas of silicon, polysilicon
and ion concentrations of a cutting edge fabrication paeshe future. Lastly, it per-
sists that, as incredible as it may seem, evolution worksitsiscknown to achieve a lot
when starting from the lowest level.
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Acronyms

AC
ADC
AMS
ASIC
ASCII
BIST
CAD
CMOS
CMRR
DRC
DAC
DC
DNA
EA
EC
ENOB
FPAA
FPTA
FPGA
FFT
GA
GP

alternating current

analog-to-digital converter

Austria Micro Systems International AG
application specific integrated circuit
american standard code for information interchange
build-in self test

computer aided design

complementary metal oxide semiconductor
common-mode rejection ratio

design rule check

digital-to-analog converter

direct current

desoxyribonucleic acid

evolutionary algorithm

evolutionary computation

equivalent no. of bits

field programmable analog array

field programmable transistor array
field programmable gate array

fast fourier transform

genetic algorithm

genetic programming
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gcc gnu C compiler

HDL hardware description language
10 input/output

JPL NASA Jet Propulsion Laboratory
L length

LVS layout versus schematic

LPE layout parameter extraction

MO multi-objective

NDF  non-dominated front

MOS metal oxide semiconductor
MEMS microelectromechanical systems
NMOS n-type metal oxide semiconductor
PMOS p-type metal oxide semiconductor
UML unified modelling language
VHSIC very high speed integrated circuit
VHDL VHSIC hardware description language

VLSI very large scale of integration

w width

oP operational amplifier

PCI Peripheral Component Interconnect
PC personal computer

rms root mean square

RNA ribonucleic acid

SKILL silicon compiler interface language

SRAM static random access memory

SPICE simulation program with integrated circuits emphasis
STL standard template library

SNR  signal-to-noise-ratio



Summary and Outlook

THD total harmonic distortion
THD+N THD + noise

™ test mode

TTL  transistor-transistor logic

XML extensible markup language
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A.1 Evolution Software Framework

Appendix A

Pseudocode

A.1 Evolution Software Framework

Algorithm A.1: Example code for deriving a custom circuit component, ngraetonfigurable
transistor CCMOSTr ansi st or), is depicted below. The setup and configuration of the cempo
nent is done in the constructor of the respective classathé genotype-phenotype mapping is
implemented in additional member functions. In this examitie internal nodes correspond to the
external nodes. Despite this, the differentiation betwiagrnal and external nodes is inevitable
for the design of FPTA architectures, as can be seen frorosesi. 3.

# ccmostransistor.h
# include<componentbasesh
class CCMOSTransistor : public ComponentBase

# ccmostransistor.cpp
procedure CCMOSTRANSISTOR:CCMOSTRANSISTOR

create and add external nodes: NODE1(23), NODE2(12), NGBE3

create and add internal nodes: GATE(5), SOURCE(23), DRAZ)N(

create and add parameters: W(4.0um), L(1.0um)

create and add switch: CMOSTYPE(NMOS) al$o possible: PMOS
end procedure

procedure CCMOSTRANSISTOR:GETFPTAREPRESENTATION
map the transistor to an FPTA cell with according properties
// there is no one-to-one mapping in this case!
end procedure

procedure CCMOSTRANSISTOR :GETSPICEREPRESENTATION

if CMOSTYPE is PMOShen /I create netlist entry
return "mx 23 5 12 bulk=vdd pmos w=4um |=1um”

else
return "mx 23 5 12 bulk=gnd nmos w=4um |=1um”

end if

end procedure

Vi



Pseudocode

Algorithm A.2: The following example code demonstrates how to customieestiolutionary
algorithm by deriving from the basic framework, illustratan figure 5.1. Solely those parts,
which have to be implemented, are shown. A description of tminplement custom genetic
operators is given in section 5.2.3 and is shown in algostan3 and A.4

# GAExampleGA.h
class GAExampleGA : public GABaseGa

private:
GaBasicPopulation oldPop
GaBasicPopulation newPop

}

# GAExampleGA.cpp

procedure INITIALIZE ()
assign the genetic operators
configure the evolutionary algorithm
call the initializer of all populations
measure and evaluate all populations

end procedure

procedure STEHR )
swap oldPop with newPop
for all individuals of oldPop— 1to population sizelo
select individual from oldPop
cross the selected individual
mutate the selected individual
add the selected individual to the newPop
end for
measure and evaluate the newPop
end procedure

# GAExampleGenome.h

class GAExampleGenome : public GABaseGenpme
private:

custom genetic coding (data structure)

}

# GAExampleGenome.h
function GETPHENOTYPEREPRESENTATION )
I for example, the configuration bit string for the FPTA
map genotype to phenotype
return phenotype representation
end function
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A.1 Evolution Software Framework

Algorithm A.3: Part I: An initializer, mutator and crossover operatort thelong together, are
chosen as an example of demonstrating how to implement d sestowm genetic operators. It is
assumed, that an according evolutionary algorithm frannkeve®scribed earlier in this section, is
already available and an according EA, with accessible fadipn and genomes is present. Note
that the initializer is shown in algorithm A.4.

# MutateExample.h

class MutateExamp{e

public:

mutate(GABaseGenome, float) : int

}

# MutateExample.cpp
procedure MUTATEEXAMPLE::MUTATE(GABaseGenome exGen, float probability)
cast to GAExampleGenome exGen
if random floak< probability then
mutate genes of exGen
mark exGen for later measurement and evaluation
end if
return no of performed mutations
end procedure

# CrossExample.h

class CrossExampfe

public:

cross(GABaseGenome, GABaseGenome, float) : int

}

# CrossExample.cpp
procedure CROSEXAMPLE::CROSEGABaseGenome exGenl, GABaseGenome ex-
Gen2)
cast to GAExampleGenome exGenl, exGen2
randomly select crossover points of exGenl and exGen2
perform crossover and store results in exGenl and exGen2
mark exGenl and exGen?2 for later measurement and evaluation
return error code
end procedure

# GAExamplePop.h
initializer=InitExample::initialize(GABasePop basgho

# GAExampleGenome.h

initializer=InitExample::initialize(GABaseGenome ez
mutator=MutateExample::mutate(GABaseGenome exGer,dtoaability)
crossover=CrossExample::.cross(GABaseGenome exGerBasa&enome exGen2)
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Pseudocode

Algorithm A.4: Part II: This is the second part of algorithm A.3. Since theayaes feature their
own initializers, it is also possible to put code for the gmednitialization there and merely call
those initializers fronnitExample

# InitExample.h

class InitExamplé

public:

initialize(GABaseGenome or GABasePopulation) : int

}

# InitExample.cpp
procedure INITEXAMPLE::INITIALIZE (GABaseGenome exGen)
reset and cast to GAExampleGenome exGen
create genetic encoding / components for exGen
mutate exGen randomly
measure and evaluate exGen
return no of created genes
end procedure
procedure INITEXAMPLE::INITIALIZE (GABasePopulation basePop)
reset GABasePopulation basePop
for i «— 1to population sizelo
new GAExampleGenome exGen
create genetic encoding / components for exGen
mutate exGen randomly
measure and evaluate exGen
add exGen to basePop
end for
return no of created genomes
end procedure




A.2 Variation Operators

A.2 Variation Operators

Algorithm A.5: Part 1 of 2. The variation operators of thartle GAare described in the fol-
lowing pseudocode. Both, thandom wires mutatiomnd theimplanting crossoveare carried
out recursively and produce circuits on the current FPTAligecture, which contain no floating
nodes. For part 2 see algorithm A.6 in this appendix.
procedure STARTRANDOMWIRE
select a random outside node of a random cell as starting poin
decide whether to start in create mode or erase mode
if starting point = N,S,W,Ehen
Il the recurse methods have to be carried out twice, otherwisatarting
node possibly floats
2 x recurseRandomWire(cell, node, erase/create mode)
elsereturn no node selected
end if
end procedure

function RECURSERANDOMWIRE(cell, node, erase/create mode)
decide, whether to prefer current cell or neighbor cell fmceeding
decide, whether to prefer connecting to N,S,W,E or to sqgate,drain
if create modé¢hen
if current node has at least 2 connectitdmen
return stop condition occurred
end if
select random unconnected target node (N,S,W,E,souaoe ghite)
connect node to target node
else iferase modéhen
if current node has 0 or at least 2 connectitiren return stop condition oc-
curred
end if
select random connected target node (N,S,W,E,source,giade)
disconnect node from target node
end if
if selected target node = N,S,Wlten
recurseRandomWire(cell, target node, erase/create mode)
else ifselected target node = source,gate,dtaan
recurseRandomTerminal(cell, target node, erase/creadie)n
end ifreturn
end function




Pseudocode

Algorithm A.6: Part 2 of 2. Part 1 is given in algorithm A.5 in this appendix.

function RECURSERANDOMTERMINAL (cell, target node, erase/create mode)
if create modéhen
select two random unconnected target nodes (N,S,W,E rdy,g
connect the two remaining terminals to respectively ongetanode
else iferase modéhen
decide whether to proceed or to rewire
if rewire transistothen
switch to create mode
select random unconnected target node (N,S,W,E)
connect the current terminal to the selected target node
else ifcontinue erasinghen
select two random connected target nodes (N,S,W,E,vdd,gnd
disconnect the two remaining terminals from those targdeso
end if
end if
if first selected target node = N,S,W}ten
recurseRandomWire(cell, first target node, erase/creat®)n
end if
if second selected target node = N,S,\tén
recurseRandomWire(cell, second target node, erasedarezade)
end ifreturn
end function

procedure IMPLANT CROSSOVEKiIndividuall, individual2)
select randomly positioned blocks of cells of the same randize of individuall
and individual2
exchange those blocks between individuall an individual2
make a list of all floating nodes
for i + 1to sizeoflistdo
recurseRandomWire(cell, node(i), erase/create mode)
end for
end procedure
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Appendix B

Additional Schematics of Evolved
Circuits

B.1 Logic Gates

The best solutions for the logic AND, NAND and OR, presentedhapter 6, will per-
form well outside the FPTA, even if only plain transistore apnsidered in the simula-
tion. Unfortunately, the solutions for the logic NOR, XORdaXNOR will only work
in simulation, if at least the mean on-resistance of thestrassion gates is included in
the netlist. Possible reasons for this failure are giverhandaptions of the respective
schematics. Note that the presented schematics are gahén@n the best solutions for
the respective logic gate and all configuration circuitrpsitted, in order to be able to
provide clear schematics. The results are obtained wititinde GA

B.2 Comparators

Although the best solutions for a comparator (chapters 67anobtained with th&urtle

GA and theMO-Turtle GArespectively, feature a good performance on the chip, both
solutions fall in the simulation with plain transistors. éfbfore, it is not yet understood
how the circuits are actually working. Note that the cirsuitill perform equally well

in simulation and on the chip, if the parasitic resistancethe transmission gates are
included in simulation.

B.3 Operational Amplifiers

It is a nice result that the presented solutions for OPs withQ$ and PMOS input
respectively, are performing equally well on the FPTA andsimulation, although it
has not yet been achieved to figure out their operation ieciAs can be seen from
figure B.6 and figure B.8, both designs consist of more thama8sistors which already
stands for a high level of complexity.
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Additional Schematics of Evolved Circuits

0 11 12 13 14 15 16 17
type NP NN P N P N
WL [pm] 2 2 :

ool

0.6

Figure B.1: Schematic of the best evolved NOR. Although the circuitifezd a good performance
on the FPTA, it fails in simulation, because the intercote@gates of0 andl1 are floating.
Unlike in simulation, floating nodes are not in undefinedestain the chip, due to leakage currents.
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B.3 Operational Amplifiers

0o 11 12 13 14 15 16 17 18 19 110 111
wpe N N P N N P P N N P N N
15 8 4 15 15 6 7 15 15 11 13 11
WILTUM 5% 56 8 06 08 2 06 T 1 06 06 T

Figure B.2: Schematic of the best evolved XOR. Unfortunately, it is meityet understood why
the circuit works on the FPTA nor why it fails in simulationtiplain transistors.
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Additional Schematics of Evolved Circuits

Dotz

0 11 12 13 14 15 16 17 18 19
ttpe N N P N N P P N N N
6 10 11 15 7 2 3 11 8 5
WiLIpml 3 5§ 4 T 1 2 § 06 06 4

Figure B.3: Schematic of the best evolved XNOR. Not yet understood.
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B.3 Operational Amplifiers

Outd

0o 11 12 14 15 16 17 18 19 110 111 112 113 114
type P N N P N N P N P P N P N P
WA [pum & 0 3 9 13 6 1z 15 14 15 13 13

4 8 106 06 1 2 2 2 1 1 1

=lon
=l©

Figure B.4: The best comparator evolved with thertle GA
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Additional Schematics of Evolved Circuits

o 11 12 14 15 17 18 19 110 111

type P P N N P NNN N N N

15 5 15 6 5 6 0 3 15
WILTUM 3% o5 & 06 o6 1 06 >

ool
=lon

Figure B.5: The best comparator evolved with thO-Turtle GA
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Additional Schematics of Evolved Circuits

ubckt Evol vedOpAnp- NMOS | n0=22 | nl=1 Qut 0=10 vdd=23
1 3 0 nodn | =1u w=12u

4 23 0 nodn | =1u w=0u

56 0 modn | =0. 6u w=3u

23 7 23 nmodp | =1u w=4u

8 8 0 modn | =1u w=9u

2 23 23 nodp | =0. 6u w=2u

9 23 0 nodn | =1u w=0u

0 23 0 nodn | =4u w=2u
10 2 23 23 nodp | =0. 6u w=15u
md 7 23 23 23 nodp | =0. 6u w=12u
MmO 11 23 12 0 nodn | =1u w=0u
nll 0 12 0 23 nodp | =2u w=2u
m2 0 10 10 0 nodn | =2u w=0u
m.3 14 13 14 0 nodn | =1u w=5u
nml4 3 15 15 23 nodp | =4u w=2u
m5 0 11 3 0 nmodn | =4u w=6u
m6 0 11 0 0 nodn | =8u w=3u
nl7 11 23 11 23 nodp | =8u w=0u
m8 0 11 12 0 nodn | =1u w=0u
nl9 10 16 16 23 nodp | =1u w=11lu
n20 11 23 17 23 nodp | =1u w=10u
n21 11 18 18 23 nodp | =0. 6u w=4u
nm22 0 11 11 0 nodn | =8u w=13u
n23 11 0 23 23 nodp | =8u w=1lu
m4 0 11 10 O nodn | =1u w=4u
n25 17 17 18 23 nodp | =0. 6u w=8u
n26 0 11 11 23 nodp | =1u w=0u
n27 0 19 3 23 nodp | =0. 6u w=3u
n28 0 20 11 23 nodp | =4u w=5u
m9 19 0 23 0 nodn | =8u w=0u
n80 20 23 23 23 nodp | =4u w=4u
nmM31 21 20 23 0 nodn | =4u w=0u
n82 21 0 23 23 nodp | =1u w=3u
M3 3 22 21 0 nodn | =1u w=12u

. ends Evol vedOpAnp- NMOS

3A3FRDdPR D0
~NONO~NUOBADNDT

Figure B.7: SPICE netlist for the evolved operational amplifier with NE@nhput, which is
depicted in figure B.6.
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B.3 Operational Amplifiers
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Figure B.8: Schematic of an evolved OP with PMOS input transistors..
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Additional Schematics of Evolved Circuits

. subckt Evol vedOpAnp- PMOS |1 n0=16 I nl1=1 Qut 0=10 vdd=17
nD 2 1 3 17 nodp | =1u w=12u
nk 0 4 4 0 nodn | =4u w=8u
n2 3 0 17 17 nodp | =1u w=1lu
M 2 3 2 0 nodn | =4u w=1u
md 355 17 nodp | =1u w=0u
nb 0 2 2 0 nobdn | =2u w=13u
n6 0 0 3 0 nodn | =2u w=0u
n/ 6 6 17 17 nodp | =0. 6u w=3u
M 56 6 0 nodn | =1u w=7u
mM 0 7 2 17 nmodp | =1u w=2u
nl0 8 8 17 0 nodn | =1u w=6u
nll 9 7 9 17 nodp | =1u w=13u
nl2 0 2 10 0 nodn | =1u w=5u

nl3 0 11 11 17 nodp | =0. 6u w=11u
nl4 0 0 12 17 nmodp | =8u w=10u
nml5 12 12 17 0 nmodn | =4u w=12u
nl6 0 3 3 0 nodn | =1u w=0u

nl7 13 3 17 17 nodp | =4u w=15u
nl8 13 0 17 0 nmodn | =4u w=8u
nl9 10 10 17 17 nodp | =8u w=0u
n20 14 14 17 0 nmodn | =4u w=11lu
n2l1 15 15 17 17 nodp | =1u w=4u
n22 0 0 15 0 nodn | =1u w=4u
n23 3 0 17 17 nodp | =2u w=5u
nm24 3 3 3 17 nodp | =0. 6u w=8u
nm25 3 16 10 17 nmodp | =1u w=12u
. ends Evol vedOpAnp- PMOS

Figure B.9: SPICE netlist for the evolved operational amplifier with PBI@put, which is
depicted in figure B.8.
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Appendix C

Tracking the Course of Evolution: a
Side-Result

A tracking meachanism for the EA has been developed togeiitie Stefan Zimmer dur-
ing his internship with the intention to investigate the dgrics of evolution. To date,
the tracking algorithm is proven to work and it is achievedémerate impressive family
trees of the resulting individuals, as depicted in figure. @n2order to achieve this, the
tracking algorithm writes the mutation, crossover andaia operations of each evolu-
tionary step to a file. This file is structured in a way that ip@ssible to automatically
generate a family tree graph by using the fggaphviz software package. As can be
seen from the zoom view in figure C.1, various informationhed evolution process is
visualized. Hopefully, it will be possible to use this data §etting an insight into the
optimization process of the evolutionary algorithm.

genome_00002_065

genome_00002_027

genome, _00002_026

0.0360837

Figure C.1: A zoom view of the family tree in figure C.2. The selection foutation is marked
with a black arrow and if crossover is carried out, the cresspartner is marked with a dotted
black arrow. Elitist selection is illustrated with a greemoav. Furthermore, the ancestors of
the best resulting individual can be tracked back along éaelines. The labels of the red lines
show the fraction of the genetic information of the pardmit is still contributing to the resulting
individual.
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Appendix D

Algorithmic Take-Outs

D.1 Logic Crossover Operator

The logic crossoveroperator can be principally used with tfheartle GAand theBasic
GA As the name suggests, this operator calculates the logibioation of two selected
individuals. The OR operator e.g. combines the featuresotf bircuits, although if a
transistor is present in both ciruits the WI/L ratio will bé&ea from only one of them.
Applied to highly diverse individuals, this results in acstg impact on the individuals
structure. On the one hand, this usually changes the @rouiiput completely. On the
other hand, since thegic or crossoverdoes not destroy previous structures, it enriches
the diversity of the individuals within the population arsdtiherefore possibly helpful in
avoiding local minima.

However, major problems are observed during testing thie logpssover operators:
first, it will not be possible to calculate the logic OR of a FP3ell configuration, if tran-
sistor terminals of the parent individuals are connectedifterent target nodes without
adding additional routing in a post-processing step. Secoalculating the logic AND
of two individuals results either in deserted circuits omigreat number of unconnected
circuit islands. In addition to the latter effects, the pemiance of the algorithm did not
increase when the logic OR/AND crossover were used. Therefand for the lack of
elegance of complicated post-processing steps) the logssaover is not used for the
experiments in this thesis.

D.2 Subpopulation of 'Mutants’

It is a complex task to avoid premature convergence of theulptipn. First, it was
tried to overcome this problem by treating a subpopulatibimaividuals with variation
operators for which the mutation and crossover rates werafigiantly increased by a
factor of 10. The individuals of this subpopulation were ated asmutantsand were
intended to preserve a great diversity within the whole jbeimn by selecting crossover
partners from the normal individuals and theitants

In later experiments, it has been observed that adaptingates for the whole pop-
ulation according to its current best fitness features abptrformance. The rates are
scaled down with improving fitness and are thereby modelikig@of simulated anneal-
ing. The equation, that is used to calculate the rates frenfitimess values represents the

cooling function.
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