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Zusammenfassung

Wir wenden funktionale Renormierungsgruppenmethoden auf die Quantenchromodynamik (QCD) an.
Zunachst berechnen wir die Massendnderung des Pions in einem endlichen Volumen mit Hilfe des
Quark-Meson-Modells. Dabei untersuchen wir insbesondere die Bedeutung von Quarkeffekten. Im
Einklang mit Gitter-QCD Rechnungen finden wir, daf§ die Wahl der Randbedingungen fiir die Quark-
felder einen wesentlichen Einfluff hat. Ein Vergleich unserer Ergebnisse mit entsprechenden Resultaten
von chiraler Storungstheorie und Gitter-QCD-Rechnungen legt nahe, daf3 die Grosse der heutzutage
verwendeten Gitter noch nicht ausreichend ist, als daf§ chirale Storungstheorie zur Extrapolation der
Resultate fiir Niederenergie-Observablen angewendet werden konnte.

Phaseniibergéinge in der QCD bei endlicher Temperatur und Dichte sind Gegenstand aktueller For-
schung. Einerseits untersuchen wir den chiralen Phaseniibergang bei endlicher Temperatur in end-
lichem und unendlichem Volumen mit Hilfe des Quark-Meson-Modells. Obwohl qualitativ richtig,
legen unsere Ergebnisse nahe, dal das Modell die Dynamik der QCD in der Néhe des Phaseniibergangs
nicht vollstandig erfalt. Andererseits beschreiben wir chirale Symmetriebrechung durch Quarks und
Gluonen. Hierzu berechnen wie die laufende QCD-Kopplung fiir alle Skalen und Temperaturen. Damit
bestimmen wir dann quantitativ die chirale Phasengrenze in der Ebene von Temperatur und Quarkan-

zahl und finden gute Ubereinstimmung mit Gitter-QCD-Rechnungen.

Functional Renormalization Group Methods

in
Quantum Chromodynamics

Abstract

We apply functional Renormalization Group methods to Quantum Chromodynamics (QCD).

First we calculate the mass shift for the pion in a finite volume in the framework of the quark-meson
model. In particular, we investigate the importance of quark effects. As in lattice gauge theory, we
find that the choice of quark boundary conditions has a noticeable effect on the pion mass shift in
small volumes. A comparison of our results to chiral perturbation theory and lattice QCD suggests
that lattice QCD has not yet reached volume sizes for which chiral perturbation theory can be applied
to extrapolate lattice results for low-energy observables.

Phase transitions in QCD at finite temperature and density are currently very actively researched. We
study the chiral phase transition at finite temperature with two approaches. First, we compute the
phase transition temperature in infinite and in finite volume with the quark-meson model. Though
qualitatively correct, our results suggest that the model does not describe the dynamics of QCD
near the finite-temperature phase boundary accurately. Second, we study the approach to chiral
symmetry breaking in terms of quarks and gluons. We compute the running QCD coupling for all
temperatures and scales. We use this result to determine quantitatively the phase boundary in the

plane of temperature and number of quark flavors and find good agreement with lattice results.
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Chapter 1

Challenges of Quantum
Chromodynamics

At the beginning of the 20th century, there was to a large degree consent among physi-
cists that nuclei are not fundamental particles, but built up from protons and neutrons.
This realization raised the question which force kept these building blocks together.
However, this question about the nature of the strong force remained unanswered for
several years.

After the discovery of other strongly interacting particles, the so-called hadrons,
in the first large collision experiments, in 1964 Gell-Mann proposed a new theory for
the description of the properties of these particles, cf. Refs. [1, 2]. The original quark
model introduced by Gell-Mann was able to explain the existence of some but not all
of the newly discovered particles. For example, it was not possible to reconcile the
existence of the baryonic resonance A++(%+) which is made up of three up-quarks in a
spin-up state, without violating the Pauli Principle. In the seventies, it was then shown
that the shortcomings of the original quark model could be resolved by assigning a so-
called color charge to the quarks [3, 4, 5, 6]. Considering the problems of the original
quark model with the baryonic resonance A++(%+), it was reasonable to assume the
existence of three colors. Due to the principle of gauge invariance the existence of gauge
bosons which carry various combinations of color and anti-color, so-called gluons, was
postulated as well. Gauge invariance is a fundamental property of physical theories. For
example, in electrodynamics it implies that the photons are massless and the electric
charge is conserved. The gluons should be massless and mediate the interaction between
the quarks, as the photons do in Quantum Electrodynamics (QED). In contrast to
QED, however, the gauge bosons of the strong interaction interact with each other,
which explains the short range of the strong force!.

This new theory, which was called Quantum Chromodynamics (QCD), was not

"We add that the gauge bosons of the weak force interact also, but only weakly. In contrast to
QCD, however, they are not massless, which in this instance explains the short range of the weak
force.
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Figure 1.1: Running coupling of QCD: Comparison of theoretical predicted and exper-
imentally determined values of the coupling as a function of momentum transfer @ [9].

immediately accepted in the physical community, since there were no experimental
hints for the existence of either quarks or gluons. In QCD, the hadrons are explained
as color-neutral objects of quarks and gluons, in which the color charges are confined.
By definition, confinement means that only colorless objects, so-called color-singlets,
can be observed, and that color charges remain unobservable, inside these composite
objects. This confinement of color charges arises ultimately due to the fact that the
energy, which is needed to separate two quarks, rises proportional to their distance.
Therefore the low-energy regime of QCD is characterized by the confinement of quarks
and gluons. The confinement property by itself, however, is not sufficient to explain
the observed mass spectrum in this regime, which is distinguished by the existence
of light pions. The mass of these pions, m, ~ 140 MeV, is much smaller than the
masses of the other hadrons, my 2 1000 MeV. This characteristic property of the
mass spectrum can be explained by the spontaneous breakdown of the chiral symmetry
in QCD at low energies. It is this large mass gap due to the broken chiral symmetry,
together with the fact that the pions interact only weakly, which allows for a successful
description of low-energy QCD through effective theories in terms of the pion fields.
Famous candidates of such effective theories are chiral perturbation theory [7] and the
Gell-Mann-Levy model [8].
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Figure 1.2: Sketch of the phase diagram of QCD [12].

Beside its confining property at low energies, QCD is governed by asymptotic free-
dom at high energies, as has been shown by Gross, Wilczek and Politzer [10, 11] in 1973.
Asymptotic freedom means that the strength of the QCD coupling becomes smaller
and smaller at high energies, corresponding to small distances. In Fig. 1.1, we show
the running QCD coupling a; as a function of momentum transfer ). At high mo-
mentum transfers, where perturbation theory is applicable, we find coincidence of the
experimentally determined values of g with their theoretical predictions. At small
momentum transfers, however, the running coupling approaches a Landau pole in per-
turbation theory. Here perturbation theory predicts its own breakdown.

Although the high- as well as the low-energy limits of QCD are essentially well-
understood, the connection of both limits is still a challenge. The aspects of dy-
namical mass generation, namely chiral symmetry breaking and confinement, in the
intermediate-momentum regime cannot be addressed within a perturbative framework.
Here, non-perturbative methods are indispensable.

So far we have considered the zero temperature limit of QCD. At finite temperature,
the description of QCD becomes even more involved. Here a deconfinement phase tran-
sition has been observed in lattice QCD simulations. Below the deconfinement phase
transition temperature T,, there are only color-singlet states. However, above T}, we
encounter a rich spectrum of color-singlet as well as colored states, as suggested by
recent discussions on the existence of a strongly interacting high-temperature phase in
QCD [13, 14]. The existence of such a strongly interacting phase spoils a perturba-
tive description of QCD at finite temperature and makes the theoretical description
more difficult, in particular with regard to the dynamics in the vicinity of the finite-
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temperature and finite-density phase boundary of QCD.

In Fig. 1.2, we show a sketch of the phase diagram of QCD. Most of the quantitative
information that we have about this phase diagram comes from lattice QCD simula-
tions. We will give a brief introduction to lattice simualtions in Sec. 2.2 and also discuss
its limitations critically. QCD lattice simulations find a chiral phase transition tem-
perature of T\ ~ 175 MeV for two light quark flavors at vanishing baryon density [15]
and a decrease of this temperature for increasing baryon density [16, 17, 18]. Lattice
results indicate that the chiral and the deconfinement phase transition take place at the
same temperature for vanishing and small baryon densities. But so far, it has not been
established that this must be the case for all densities. Following the phase boundary
to higher densities, it is commonly expected to reach a critical point [19, 16, 20, 21].
Even though the existence of such a critical point is likely, it is not yet conclusively
confirmed. Besides this uncertainty, even the order of the phase transitions at small
and vanishing baryon density is highly debated. For finite current quark masses, a
crossover is observed, but in case of two massless quark flavors, the predictions from
different lattice collaborations are not in agreement [15, 22].

The structure of the QCD phase diagram is of great importance for many different
research fields. The high temperatures and baryon densities that are reached in current
heavy-ion collider experiments at CERN SPS and RHIC make a penetration of the
phase boundary possible and open the door for a study of the strongly interacting
high-temperature phase, the so-called quark-gluon plasma phase [23, 24, 25, 26, 27].
The aim of GSI experiments is to probe the phase diagram for smaller temperatures
but higher baryon densities. In the early universe the phase boundary was crossed
parallel to the temperature axis of the phase diagram. In contrast, the properties of
the phase diagram for large densities and small temperatures are of particular interest in
astrophysics. For example, one can estimate that the density in neutron stars is a about
six times larger than the density typically encountered in nuclear physics. Finally, it
is likely that a regime in the phase diagram exists at very high densities where effects
such as color-superonductivity and color-flavor-locking become important [28].

As already this brief history of QCD shows, there are still a lot of challenging
questions in QCD, even more than 30 years after this theory has been introduced.
Our discussion also shows that most of these questions are theoretically accessible only
within a non-perturbative framework. In this work, we focus mainly on the dynamics
near the phase boundary of QCD in finite volumes as well as at finite temperature. In
this context, we also present a study of the running QCD coupling at finite temperature
and show that there is an intriguing relation between its running and the quark and
gluon dynamics near the phase boundary. Since phase transitions are inherently non-
perturbative phenomena, we need non-perturbative methods to study them. There
are many different approaches to choose from: lattice simulations, Dyson-Schwinger
equations (DSE), functional Renormalization Group (RG) methods, ... . In this work,
we remain solely within a functional RG framework. However, in Chap. 2, we will briefly
introduce the underlying concepts of lattice simulations and DSE as well. Before we



give a detailed derivation and discussion of functional RG equations, we will introduce
the basic ideas of the renormalization group. Moreover, we will argue why we have
chosen this approach and why we think that this approach can shed more light on the
challenging questions of QCD mentioned above. In Chap. 3, we will discuss how low-
energy observables in QCD are affected by the presence of a four-dimensional Euclidean
volume. For this purpose we study a phenomenological low-energy QCD model in terms
of quarks and mesons coupled via an Yukawa-type interaction. We will show that there
exists a fascinating relation between the choice of the fermionic boundary conditions
in spatial directions and the volume dependence of low-energy observables of QCD,
such as the pion mass and the pion decay constant. Our results obtained from the
non-perturbative RG study are qualitatively in accordance with results from lattice
simulations, provided we apply periodic boundary conditions for the quarks. Choosing
anti-periodic boundary conditions, we find agreement with chiral perturbation theory.
These observations will finally lead us to the conclusion that lattice simulations have
not yet reached volume sizes for which chiral perturbation can be applied to extrapolate
results from the lattice. In Chap. 4, we show then that non-perturbative RG methods
are well-suited for studying gauge theories. After a discussion of the technical aspects
of such an approach, we compute the strong running coupling for Yang-Mills theory as
well as for QCD for a wide range of temperatures and scales. After that, we will discuss
how four-fermion interactions can be treated within the RG framework. In this context,
we will show that an interesting interplay exists between gluodynamics and (induced)
quark dynamics in the vicinity of the chiral phase boundary of QCD. These findings
will allow us to compute the critical temperature of QCD from a first-principle study
in terms of quarks and gluons. An extension of our study to an arbitrary number of
massless quark flavors will then result in a determination of the QCD phase boundary
in the plane of temperature and number of quark flavors. A brief summary of our main
results and an outlook are found in Chap. 5.
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Chapter 2

Non-perturbative Methods in
Quantum Field Theory

In this chapter, we discuss several non-perturbative approaches to quantum field the-
ories. First, we address the question why we need non-perturbative methods at all for
the study of quantum field theories. Since we compare our results, obtained with non-
perturbative RG methods, with results from lattice simulations and Dyson-Schwinger
equations, we briefly discuss these two non-perturbative approaches in Sec. 2.2 and 2.3.
Non-perturbative RG methods are then extensively discussed in Sec. 2.4.

2.1 Why do we need non-perturbative methods?

In QCD, the need for non-perturbative methods follows immediately from the fact
that the coupling ay increases strongly for small momentum transfers Q < 1 GeV, see
Fig. 1.1. At high momentum scales, the predictions of perturbation theory for the
running coupling are in accordance with experiment. At low momentum scales, how-
ever, the perturbative results for the coupling approach a Landau pole in perturbation
theory. In this regime, Feynman graphs with many loops become as relevant as graphs
with only a few loops. Since perturbation theory relies on the fact that the coupling is
small, i. e. ag < 1, it predicts its own breakdown in the low-momentum regime.

The increase of the coupling and its behavior on small momentum scales are deeply
related to the question of quark confinement in this momentum regime and cannot be
addressed with perturbative methods. Although there are various effective low-energy
theories (e. g. chiral perturbation theory) which describe the low-energy limit of QCD
in terms of hadronic degrees of freedom well, these theories are not able to bridge the
gap between the high-energy regime of QCD, dominated by quarks and gluons, and the
low-momentum limit. Thus, non-perturbative methods are essential for the prediction
of the hadronic mass spectrum and the understanding of dynamical mass generation
in QCD.

Another example for the need for non-perturbative methods in QCD is given by

7



8 Chapter 2. Non-perturbative Methods in Quantum Field Theory

collision experiments, where one faces the problem of hadronization in deep inelastic
scattering and jet formation.

In this work, we will mostly concentrate on strongly interacting systems at finite
temperature and their phase transitions. Phase transitions in QCD are currently very
actively researched and can only be addressed by non-perturbative methods. We em-
phasize that this is not particular to QCD, as it is also the case for a description of the
phase transition in a simple one-component scalar field theory [29].

But non-perturbative methods are not only needed to describe phase transitions
at finite temperature and density, they are also essential for a determination of bulk
thermodynamic quantities of QCD, such as the pressure or the energy density, even
at temperatures much higher than the transition temperature. Again, we rush to add
that the necessity of non-perturbative methods in this case is not a property inherent
in QCD, it belongs to all quantum field theories.

We finally note that there is also a particular interest in non-perturbative methods
in topics beyond QCD. An example for such a research field is the determination of
the validity limits of the standard model.

These examples of unsolved problems in quantum field theories serve as a motivation
for the use of the non-perturbative approaches discussed in the following sections.

2.2 Lattice simulations

Lattice simulations are an example of a non-perturbative method. Since we compare
our results with results from lattice simulations throughout this work, we briefly intro-
duce and discuss this method in the context of QCD; for reviews see Ref. [30, 31].

In order to simulate QCD on a computer, one has to reduce the infinite number
of degrees of freedom to a finite set. This is done by discretizing the 4-dimensional
space-time in form of a lattice cube! with lattice spacing a and side length L. In a
more field theoretical language, the discretization of space-time by the finite lattice
spacing amounts to an ultraviolet regularization, whereas the infrared is regularized by
the finite volume of the box.

Wilson’s approach [32] is based on the path-integral formalism, where the expecta-
tion value of an observable O can be calculated by evaluating the integral

(0) = fDAO (det G [A]) e finite a fDUO (det G'[UA]) e 1)
= f DA (det G;l[A]) e—S[Al o f’DZ/{ (det G;l [Z/{]) oS .

where S denotes the QCD action. The expression by means of the integral over the
gauge potentials A is the continuum representation for the expectation value whereas
the expression on the RHS is the lattice representation, written by means of an integral

'We restrict our discussion to an isotropic lattice, but this does not have to be the case in general.
On the contrary, lattices for simulations of QCD at finite temperature are usually anisotropic.
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over so-called link-variables &. On the lattice, one exchanges the gauge potentials A
of the continuum formulation for the link variables ¢ in order to formulate a gauge-
invariant action S, which is more convenient for simulations on a computer. The link
variables represent the gluonic degrees of freedom on the lattice and describe the color
transport between two neighboring lattice points. The determinant in the integrals
given above is the famous fermion determinant of the inverse quark propagator, which
results from an integration over the quark fields. This integration is necessary because
it is not possible to handle Grassmann-valued fields directly in lattice simulations.
Since the calculation of the determinant is very time-consuming, one often works in
the so-called quenched approximation, in which the quark propagator is treated as a
constant. We do not specify the various expressions in Eq. (2.1) any further since it is
not necessary for what follows?.

Lattice simulations have the great advantage that they in principle allow for a sim-
ulation of full QCD, in contrast to the functional methods discussed in the subsequent
sections. Lattice QCD has been quite successful in the study of non-perturbative phe-
nomena: for example, the deconfinement phase transition in Yang-Mills theory as well
as the chiral phase transition in QCD have been extensively studied, or bulk thermo-
dynamic quantities, such as the pressure, have been measured. For a review, we refer
to Ref. [33].

However, despite their great success, lattice simulations also have drawbacks. The
most difficult problem is the incorporation of fermions in the simulation. This is due
to the fact that the fermion propagator on the lattice does not have only a single
pole, which represents the physical particle, but also additional poles, arising due to
the discretization of the fermion fields on the lattice. This is known as the fermion-
doubling problem. There exist several proposals for the implementation of the quark
fields which attempt to cure this problem, e. g. Wilson fermions, staggered fermions or
domain-wall fermions, for reviews see Ref. [30, 34]. However, all these implementations
have in common that one must pay a price to get rid of the so-called fermion-doublers:
for example, Wilson fermions break chiral symmetry explicitly, even in the case of
vanishing current quark masses. In case of domain-wall fermions, one has to introduce
a five dimensional lattice, which obviously increases the simulation time considerably.
In the other case, quarks are treated with large current quark masses in the simulations
in order to keep the simulation time short. But the application of large current quark
masses requires that lattice results have to be extrapolated to the physical values of the
quark masses. For this purpose one mainly uses chiral perturbation theory [7]. This
seems to work well for most of the low-energy observables, but for other quantities of
interest, e. g. for the chiral phase transition temperature, there is no extrapolation
scheme available which provides a complementary approach to the lattice. We will
discuss the dependence of the chiral phase transition temperature on the quark mass
in Sec. 3.6 and 4.7 within a non-perturbative RG approach, and we will compare our

2Physical and mathematical aspects of gauge theories in the continuum are discussed in more detail
in Sec. 4.2.
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results to lattice predictions.

Besides the complications in connection with the implementation of the fermions,
problems in lattice simulations may arise due to the discretization of space-time by the
finite lattice spacing and the finite volume. Currently, the lattices used in simulations
are coarse-grained, a ~ 0.1 — 0.2fm, and the side length of the lattice cubes are still
small, L ~ 2 fm. It is therefore natural to expect that lattice results are still affected by
these two scales. To get a physically meaningful numbers out of lattice results, one has
to extrapolate to vanishing lattice spacing, a — 0, and infinite volume, L. — oo. The
former limit is often explored using RG methods, whereas only chiral perturbation has
been used for the latter one so far. The extrapolation to infinite volume is subject of our
investigation in Chap. 3, where we review the problem of finite-volume effects in lattice
simulations in more detail. In particular, the dependence of the lattice results on the
choice of the quark boundary conditions in the Euclidean time directions is discussed
in the light of our non-perturbative RG results. In addition, we try to estimate limits
for the applicability of chiral perturbation theory to finite-volume extrapolations of
lattice results.

2.3 Dyson-Schwinger Equations

In Chap. 4, we connect our results for the running coupling of Yang-Mills theory
qualitatively with the results from Dyson-Schwinger equations. Therefore we give a
brief introduction to this method in this section.

Dyson-Schwinger equations (DSE) are a non-perturbative functional method for
studying quantum field theories [35, 36]. As an illustration, we give the DSE for an
Euclidean® scalar theory, cf. e. g. Ref. [37, 38]:

/qu %e—SWHN"i’ -0 & {% {%} — J] Z[J] =0, (2.2)

where S is the action of the theory, J is a source term and Z[J] is the generating
functional of the disconnected correlation functions. In order to derive the DSE in
terms of Z, which is given by the expression on the RHS of Eq. (2.2), we have used
that the functional integral over a total functional derivative vanishes. From this
equation, we can derive an infinite set of integral equations for correlation functions
by expanding in powers of the source J. Since it is not possible to solve this infinite
tower of equations completely, one has to truncate this infinite set, which is equivalent
to a restriction to a finite subset of correlation functions.

The DSE approach has been extensively used to study all kinds of quantum field
theories, from scalar field theories to QCD. Especially for the latter, the approach via
DSE has been quite successful in the investigation of confinement-scenarios in QCD at

3We refer to App. A for our conventions.
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zero and finite temperature. For reviews and recent results in this field, we refer to
Refs. [39, 40, 41, 42, 43].

At the end of subsection 2.4.1, we will briefly discuss the relation of DSE to non-
perturbative RG flow equations.

2.4 Non-perturbative RG methods

In this section we discuss the Functional Renormalization Group, which provides the
opportunity to study quantum-field theories non-perturbatively. First, we recall the
basic ideas of the Renormalization Group, then we discuss the properties of the effective
action, derive the Functional RG flow equation and discuss various aspects of this
equation in Sec. 2.4.2. Finally, we discuss the sub-class of generalized proper-time RG
flow equations in Sec. 2.4.3.

2.4.1 Basic Ideas of the Renormalization Group

In perturbation theory, the correlation functions contain divergencies which can be
removed by a renormalization prescription. In any given theory, the renormalized
constants (e. g. the coupling constant) are nothing but mathematical parameters
which can be arbitrarily changed by changing the renormalization prescription. One
should not confuse these renormalized constants with physical observables such as, for
example, the physical mass of a particle, which is defined as the pole of the propagator.
Physical observables are, of course, invariant under a variation of the renormalization
prescription, provided we have not truncated the perturbation series®.

Once we have removed the divergences, we are still free to perform additional fi-
nite renormalizations which result in different effective renormalization prescriptions.
Therefore we can think of any given renormalization prescription as performing a re-
ordering of the perturbative expansion and expressing it in terms of new, renormalized
constants [45]. The transformations from the renormalization prescriptions can usually
be parametrized by introducing of a single mass scale . A so-called Renormalization
Group (RG) equation then describes the changes of the renormalized parameters of
the theory (e. g. the coupling constant) induced by a variation of the scale p. The set
of renormalization prescription transformations is called the Renormalization Group®.

In statistical physics, one finds that completely different many-body systems show
the same quantitative behavior near phase transitions, where long-range fluctuations
are important. In the vicinity of these critical points, the behavior of the theory is

41f we considered a truncated perturbation series, we would find that there is a residual dependence
on the renormalization prescription. Such a dependence can be controlled to some extent by the
”Principal of Minimum Sensitivity” [44].

5Strictly speaking, the Renormalization Group is not a group in the mathematical sense [45].
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independent of the details of the theory and can be described with a (small) set of
numbers, the so-called critical exponents, and scaling relations. This phenomenon is
called wuniversality. For example, the 3d Ising model and SU(2) Yang-Mills theory
belong to the same universality class. Typical scaling relations near a critical point (e.
g. a second order phase transition point) are of the form

T_Tcr - —d—
5N( - ) and  G(z,0) ~ |24, (2.3)

where ¢ is the range of correlated fluctuations (correlation length) and G denotes the
two-point correlation function between fluctuations at the origin and at space-time
point x. The universal critical exponents are v and 7, whereas d denotes the number
of Euclidean space-time dimensions. The temperature is denoted by 7" and the critical
temperature by 7¢,. It is important to stress that such scaling laws cannot be deduced
from any fixed order perturbation theory calculation, since there are inherently non-
perturbative phenomena underlying these lawss.

Wilson’s (basic) idea of the renormalization group is to start with a (renormalized)
microscopic theory at large momentum scale A (corresponding to a small length scale),
defined by a (classical) action S, and then to integrate out successively all fluctuations
from high to low momentum scales [46]. This procedure produces a scale-dependent
action, where the expressions for the action on the different scales are related by con-
tinuous RG transformations. The couplings of the action are now scale-dependent; the
change under a change of the scale is referred to as RG flow of the couplings. In this
picture, we have found universality, if the scale-dependent couplings approach a fixed
point. It is this property of capturing even long-range fluctuations which makes the
RG to such a powerful tool for studying statistical field theory as well as quantum-field
theory.

For our study of QCD in Chap. 3 and 4, we will apply non-perturbative RG flow
equations [46, 47, 48, 49, 50, 51] for a so-called ”averaged effective action” I'y, which
depends on a scale k. We will discuss this in detail in Sec. 2.4.2. Here, we only note
that these approaches are based on the fact that an infinitesimal RG transformation
(RG 7step”), performed by an integration over a single momentum shell, is finite. For
this reason we are able to integrate out all quantum fluctuations through an infinite
sequence of such RG steps. Then the flow equation describes the continuous trajec-
tory from the microscopic theory at large momentum scales to the full quantum action
(macroscopic theory) at small momentum scales. It therefore allows to cover physics
across different length scales.

Before we derive and discuss non-perturbative RG flow equations in the next section,
we relate the RG approach to the non-perturbative methods discussed in the first two
sections of this chapter, namely lattice simulations and Dyson-Schwinger equations.
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First, it is important to mention that the solutions of the Functional RG in the
infrared limit (at long length scales) are also solutions of the DSE, provided the full
theory is taken into account [52, 38]. However, since this is impossible in most cases,
we briefly discuss some of the technical differences between both approaches: As we
will show in the next subsection, the RG approach provides a solution for the effective
action itself. In contrast, the DSE approach has not yet been applied to an explicit
calculation of the effective action, but primarily for the correlation functions. Since
spontaneous symmetry breaking is indicated by the existence of multiple solutions of
the effective action, a comparison between the multiple solutions for the correlation
functions from DSE has to be performed without knowing the effective action. In this
case, a study of spontaneous symmetry breaking with DSE becomes more involved
than with the RG approach. Moreover, the RG allows for a flexible construction of
approximations of the full theory, see Sec. 2.4.2 and 2.4.3. Finally, a comfortable study
of the fixed point structure of a given theory is provided by the RG due to the successive
integration of momentum shells in this approach.

Compared to lattice simulations, the RG approach has the advantage that it allows
to implement chiral quarks as well as quarks with small finite current quark masses. In
addition, we can study quantum field theories in infinite and finite volume with the RG,
whereas lattice simulations are restricted to finite volume by definition. On the other
hand, the RG approach has the disadvantage that is not possible to take all operators
of a theory into account, in contrast to lattice simulations. This brief comparison
shows that both approaches are complementary. the RG approach can help to gain a
better understanding of lattice results and lattice simulations can help to check wether
a given RG truncation takes all operators relevant for a particular phenomenon into
account. As a result, one could possibly work out the relevant mechanisms for a given
phenomenon, say the chiral phase transition of QCD or finite-volume behavior of low-
energy observables of QCD. On the other hand, the RG approach may help to bridge
gaps between lattice simulations and nature, e. g. through the extrapolation of the
chiral phase transition temperature to small current quark masses or the extrapolation
to large volumes.

In any case, only with the help of all these non-perturbative approaches will it be
possible for us to gain a profound understanding of the non-perturbative aspects of

QCD.

2.4.2 The Functional Renormalization Group

Before we derive the non-perturbative RG flow equation for the effective action, we
introduce the effective action and discuss its properties, cf. e.g. [53, 54]. We work in
Euclidean space-time throughout this work, and we refer to Appendix A for details on
our conventions.
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The Effective Action

Our starting point is the generating functional
Z[J*) = (0]0), = / D e S+ (@)9@) (2.4)

where S is the (classical) action. The field variable ¢ as well as the source J are
regarded as generalized vectors in field space and are defined as

pa
=1 4 and J' = (7,0, 4, ...). (2.5)

Here 1) represents a Dirac spinor,and ¢ denotes a real scalar field. The dots indicate
that other types of fields, e. g. gauge-fields, are allowed as well. For convenience, we
have introduced a generalized matrix product in d dimensions:

M- N = /ddy [M(xim R ,xim_py)] K1 A [N(y, Loy eves [L‘jp)] Nizeptg (26)

where M and N are arbitrary operators and the greek letters denote discrete indices.

The generating functional Z|[.J] denotes the vacuum persistence amplitude, which
gives the probability that the ground state does not change under the influence of the
source J. Using the functional approach, the Green’s functions of the theory can be
deduced by taking functional derivatives of the generating functional Z with repsect
to the source J:

O T {60 (@1) - 65, (2)} 0) = / DY) iy (1) - - 6. () e

However, the Green’s functions generated by this procedure are the so-called discon-
nected Green’s functions, i. e. these Green’s functions are reducible in the sense that
they contain completely disjoint pieces. In Fig. 2.1, we illustrate qualitatively how
the disconnected graphs can be decomposed into a sum of various connected diagrams.
From the physical point of view, it is not convenient to work with the generating func-
tional Z[.J], since the disconnected pieces of the generated Green’s functions do not
contribute to the S-Matrix. For this reason, one introduces a generating functional for
the connected Green’s functions W[J] as

M = Z1J7, (2.8)
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Figure 2.1: Illustration of the relation between disconnected (D) and connected (C)
graphs for a disconnected graph with 2n external legs.

Here we will not prove rigorously that W[J?] is the generating functional for the
connected Green’s function, but the proof can be performed in the following way:
Taking the first functional derivative of W[J7] with respect to J? yields ®, the so-called
classical field or normalized vacuum expectation value of the field ¢ in the presence of
the source J:

FR _{016@)0); _ o
5Jz(x)W[J ] - X’_© - <O|O>J — q)a( ) (29)

The field ® is a function of x as well as a functional of JT. Naively, one would expect
that ® vanishes identically in the limit of vanishing source J. However, as we will see
in the following chapters, even in this limit fields can have a non-vanishing vacuum
expectation value in case of spontaneous symmetry breaking. Now let us turn to the
second derivative of W[J7]:
50
Gup(z, = ———W[J'] =
b( y) 5J2“(x) 6(]b(y) [ ] Xo—@—oy

(O T{¢a(x)es (1)} 10}, ((0\%(1") |0>J) (<0\¢bT(y) \0>J)
(010}, (010}, (0[0),

= e D—y — x—0 O—v - (2.10)

On the RHS of this equation, we have the full two-point Green’s function minus its
disconnected part. Therefore the second derivative of W[J] with respect to the source
is just the connected two-point function, i. e. the full propagator G(x,y). The proof
that the n-th derivative of W/[J] yields the connected n-point functions can now be
performed straightforwardly by induction.

However, the class of connected Green’s functions is still reducible, i. e. this class
still contains graphs which can be decomposed into two disjoint graphs by cutting
only one internal line. Feynman-graphs which cannot be decomposed into two disjoint
graphs by cutting only one internal line are called one-particle irreducible (1PI): The
1PI graphs of a given theory represent a (minimal) basis for the connected Feynman
graphs. For this reason it is more practical to calculate only the 1PI graphs and build
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up the connectred graphs from these than to compute all connected Green’s functions
directly from their generating functional W[J?]. Thus we need a generating functional
for 1PI graphs.

The vacuum expectation value ® can be used as a new variable in order to define
a new generating functional I'[®] by performing a Legendre transformation on the
generating functional W[J7]:

Lo =-wiJ+J"-®. (2.11)
Taking the functional derivative of I' with respect to the source J, we obtain
ﬁ
0 Lol =0 (2.12)
5T =0. )

This result proves that the generating functional I'[®] does not depend explicitly on
the source J.

The generating functional I'[®] is called the effective action. It depends only on
the classical field ® and all fluctuations have been integrated out. The effective action
is the generating functional for which we are looking: Taking functional derivatives of
['[®] with respect to the field ® yields the 1PI Green’s functions. We will not prove
this statement here, but we motivate it and show how a rigorous proof can be worked
out. For convenience, we suppress continuous as well as discrete indices from now on.
By taking the first functional derivative of the effective action I'[®] with respect to ®,

we obtain
(—

6 J—
53
Note that this is the quantum-mechanical analogon to the classical field equation.
Moreover, in limit of vanishing sources the solutions of Eq. (2.13) represent the stable
ground-states of the theory®. The second functional derivative of the effective action
reads

L[®)] Jr. (2.13)

— “— —_ —> -1
) L ) T (2.10)
sorl10)= = (MTMW[J ]) Gt (2.14)

This result is of crucial importance: The second functional derivative of the effective
action I with respect to the field ® is the inverse of the full propagator. For vanishing
source J, Eq. (2.14) relates the full propagator to the curvature of the effective action
in the physical ground-state of the theory. We immediately obtain from Eq. (2.14)
that
— —

-ifé]i-G—G (2.15)

sorl 155 ¢ =6 '

6They are stable only if the second functional derivative of the effective action is strictly positive
for this solution.

G
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which means that the connected two-point function of a theory can be constructed
from the 1PI two-point function by dressing the external legs with the propagator.

Relation (2.15) can be generalized for arbitrary n-point functions. Using Eq. (2.14),
we find

F 5 F F
o (2 gy 92 a1 90
0PpT <(5<I>TJ ) oJT G 5JT - (2.16)

This relation allows an interpretation of what happens when we take the n-th derivative
of the effective action with respect to the classical field ®: Taking a derivative of the
generating functional W[J] with respect to the source J adds an external line to a
Green’s function. Now, Eq. (2.16) tells us that taking a derivative of the effective
action I'[®] with respect to ® means adding an external line and then removing the
propagator from this line. This amputation of the external propagators generates the
1PI Green’s functions. Using Eq. (2.16), one can prove inductively that the connected
n-point functions can be constructed from the corresponding 1PI functions.

These properties, that the minimum of the effective action with respect to the
classical field ® corresponds to the ground-state of the theory under consideration, that
1PI graphs represent a minimal basis for the connected graphs, and that the second
functional derivative of the effective action is equivalent to the inverse propagator,
make the effective action into a convenient tool for studying quantum field theories.

Functional Renormalization-Group Equation

Our goal is to derive a non-perturbative RG flow equation for an ”effective average
action” I'y that depends on a scale k. This scale-dependent effective action is a gener-
alization of the effective action discussed above and includes only the effects of fluctu-
ations with momenta p® > k?. In the literature, I is often called a ”coarse-grained”
effective action, since it is averaged over volumes ~ 1/ k. i. e. quantum fluctuations on
smaller length scales than 1/k are integrated out. The underlying idea is to calculate
the generating function of 1PI graphs of a given theory by starting at an UV scale A
with the microscopic (classical) action S and then successively integrating out quantum
fluctuations by lowering the scale k. The 1PI generating functional from the preceding
section is then obtained in the limit £ — 0. In other words, the coarse-grained effec-
tive action interpolates between the classical action S at the UV scale A and the 1PI
generating functional I''P in the infrared limit k& — 0. This is depicted in Fig. 2.2.

In the following, we derive a flow equation for I'y,. This flow equation describes
how the scale-dependent effective action at the scale k changes under a variation of
the scale. The starting point for the derivation of the flow equation is a UV- and
[R-regularized generating functional for the disconnected Green’s functions:

Zp[JT] = /D¢ —SE-ASK+TT 6 = gWill] (2.17)
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IR: &k — 0 #ﬁ UV: k— A

FIPI S

Figure 2.2: The figure illustrates the basic idea of the coarse-grained effective action,
which is to connect physics on small length scales (large k) with physics on large length
scales (small k).

where a cutoff term has been inserted to regularize the IR regime. It is defined as

o7 - Ry - ¢, (2.18)

ASilg] = : / ddpd bu (=) R (%) 5 (p) E%

2/ (2m)
where Ry is matrix-valued regulator function. Through the insertion of the cutoff
term, we have defined a generating functional which now depends on the scale k.
Here we tacitly assume that the theory is well-defined by a UV-regularized generating
functional, where the index A indicates that we only integrate over fields ¢(p) with
momenta p < A, 1. e. we implicitly take ¢(p) = 0 for p > A.

It is useful to introduce the dimensionless scale variable ¢ = In(k/A). The cutoff
function Ry(p*) and its derivative with respect to ¢ as a function of the squared mo-
menta p? are depicted in Fig. 2.3. The cutoff function Ry(p*) has to fulfill certain
conditions: First, Ry(p*) must fulfill

lim Ry(p*) >0 (2.19)

P__.0

k2

in order to serve as an IR regularization of the theory. Second, the cutoff function must
vanish in the IR-limit £ — 0:

lim Ry(p®) =0. (2.20)

This is a necessary condition to obtain the 1PI generating functional in the limit £ — 0.
Finally, we want to recover the initial condition at the UV scale A. Therefore the cutoff
function should obey

: 2
kljl_I}I/lx Ri(p?) — o0 (2.21)

for fixed p?. This property ensures that I',_, = S. In the following, we will always
use linear cutoff functions which can be written in terms of a dimensionless regulator
shape function r(p?/k?) as

Ry(p*) = Zyp*r (Z—Z) (2.22)
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Figure 2.3: The cutoff function and its derivative with respect to ¢ as a function of the
squared momenta p? for fixed k2.

for bosonic degrees of freedom. For scalar field theories, the presence of such a cutoff
function is in general unproblematic. For gauge theories, however, it causes problems
due to condition (2.19) which requires the cutoff function to act like a mass term for
small momenta. Therefore the cutoff function breaks gauge symmetry. At first glance
this seems to be a severe drawback of the Functional Renormalization Group, but this
is not true at all. In order to treat gauge theories perturbatively within a path-integral
approach, one always has to fix the gauge. This gauge-fixing procedure necessarily
breaks gauge invariance. Gauge-invariant results are then recovered by applying Ward-
Takahashi identities. Consequently, we should think of the cutoff function as just an
additional source of gauge-symmetry breaking. In analogy to perturbation theory, one
then has to deal with modified Ward-Takahashi identities in order to recover gauge
invariance [55, 52, 56]. However, there are also alternatives: first, one can construct
gauge-invariant flows as proposed in [57, 58]. Second, we can apply the background-field
method, see Chap. 4 for details. Roughly speaking, this approach allows to construct
RG flows that are invariant under transformations of the background field which is
finally identified with the physical gauge field. For fermions, the construction of a
cutoff function which preserves chiral symmetry is not so involved [59]. An appropriate
choice is

w0 -z (%) 223

where r,(p*/k?) is a dimensionless regulator shape function.

Let us now return to the derivation of the RG flow equation. In order to calculate
the coarse-grained effective action from the IR-regularized functional Wy[J7] defined
in Eq. (2.17), we follow the steps along the lines of the calculation of the (standard)
effective action. We introduce a new field variable (classical field) by defining

=d(x). (2.24)
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Note that ® is a functional of J7 and depends on k, since the generating functional
does depend on it due to the insertion of the cutoff term in Eq. (2.17). Now we employ
a modified Legendre transformation and define the scale-dependent effective action” as

L@ = Wi [J] + J7 - @ — AS,[®], (2.25)

where the cutoff term depends on the fields ®. This has two effects: first, it ensures that
only fluctuations around the classical field are quenched, and second, it is necessary for
the connection of I'y with the classical (or "bare”) action S at the UV scale. Taking a
functional derivative of Eq. (2.25) with respect to the classical field ® yields®

—

(1yf0] + AS0]) & =

The full scale-dependent inverse propagator is then obtained by taking a functional
derivative of Eq. (2.26) with respect to ¢ as

J". (2.26)

Fars r 5
P= 5IT3J W] = (Sqﬁrk[q)]ﬁ) + Ry (2.27)

Now we take the derivative of the generating functional Wy[J] with respect to t for a
fixed source J:

Wi [JT] ;o o WilT] g, Ml
BN (CACESIELR
2 (0]0) ;
(227) _%STr{G,;l-(&Rk)}—9tASk[<1>]- (2.28)

The super-trace arises due to the fact that ¢ contains both fermionic as well as bosonic
degrees of freedom; it provides a minus sign in the fermionic subspace of the matrix.
The flow equation for the coarse-grained effective action is obtained by taking the
derivative of Eq. (2.25) with respect to ¢ for fixed? classical field ®:

I J
— — -1
(228) 1 ) 0
= S er[cb]ﬁuzk (ORe(p%) p . (2:29)

TA functional obtained by an ordinary Legendre transformations is convex. The coarse-grained
effective action I'y is not necessarily convex for finite £ due to the insertion of the cutoff term, but
convexity is recovered in the limit £ — 0.

8For convenience, we work in momentum space from now on.

9Tt is also possible to study scale-dependent fields ®. This is a powerful extension of the flow
equation discussed here, since it allows for a transition between different types of fields in the RG
flow. For example, quark-antiquark pairs can be ”bosonized” in the RG flow [60, 61, 62, 63].
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This flow equation for the coarse-grained effective action can be written as
1 (1 1) -1 1
0 Tu[@] = 5 STr [Fk’ (@] + Rk] (@R = 5 : (2.30)

where we have introduced the (n 4 m)-point functions defined as

n—times m—times
—_———— ———
— — — «—
) ) ) )

IR

[]:W"'er[@]ﬁ'“g—@- (2.31)

The (n + m)-point function defined in this way is a (n + m)-dimensional object in
field space. The double-line in Eq. (2.30) represents the full propagator of the theory
which includes the complete field dependence, and the solid black dot in the loop
stands for the insertion of 0, R). This shows that the cutoff function specifies details
of the momentum-shell integration, cf. Fig. 2.3 for an example of 0;R;. We observe
further that this so-called Functional RG flow equation is linear in the full propagator,
as it should be the case for an exact one loop flow [64]. It is a nonlinear functional
differential equation, since it involves the second functional derivative of the effective
action. Although the flow equation (2.30) has a simple one-loop structure, we stress
that this loop is not an "ordinary” perturbative loop, since it depends on the full
propagator. It can be shown that arbitrarily high loop orders are indeed summed up
by integrating this flow equation [64]. Finally, we note that the flow equation for T'y, is
not equal to the total derivative of a one-loop effective action:

1
O Ti[®] # 50, Tr In (p]gm)[@] n Rk) , (2.32)

since terms o< @F,(cl’l) are missing in Eq. (2.30).

So far, we have obtained an exact renormalization group flow equation for the
effective action since we have made no approximations in our derivation. However,
this equation is not solvable in its most general form. In the next paragraph, we
discuss how an approximate solution can be obtained.

Truncation of RG flows and higher n-Point functions

The RG flows of higher n-point functions are obtained straightforwardly from the
flow equation (2.30) by taking the appropriate number of functional derivatives. For
simplicity, we restrict the discussion to a single-component scalar field theory. The
flow equation for the one-point function reads then

1 -1

1 —
T @] = —5 STk (O, Ry) r,ﬁl*”[@HRk} T[] {r,@lv“[@HRk] . (2.33)
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Its graphical representation is given by
1

Taking a functional derivative of the flow equation one-point function, we obtain the
equation for the two-point function:

1 ~1 ~1
ar{e] = —ISTr(ak) [F,(:’l)[CDHRk} %2 [g] [r“ V1) + Rk} (2.35)

—1

+STr (9, Ry.) [F,(cl’l)[@]—i—Rk}lF,(f’l)[CI)] [F,(Cl’l)[é]JrRk] r2e] [T (0] + R

Its graphical representation reads

@; «? | (2.36)

This can be continued to obtain the flow for all n-point functions. For example, we
give the graphical representation of the flow for the three-point function:

From this, we observe that information about the (n+ 1)- and (n+ 2)-point function is
needed in order to solve the flow equation for the n—pomt function. This means that we
obtain an infinite coupled tower of flow equations by taking functional derivatives of the
flow equation (2.30). Since we are not able to solve this infinite tower of flow equations,
we need to truncate the effective action and restrict it to correlation functions with Ny ax
external fields. However, such a truncation poses severe problems: first, the system
of flow equations is no longer closed and, second, neglecting higher n-point functions
may cause problems in the IR region if one is interested in studying strongly coupled
theories, e. g. QCD, where one would expect that contributions from higher n-point
functions are of crucial importance. In subsection 2.4.3 and in particular in chapter 4,
we discuss a possible method to keep track of the flows of all n-point functions.

In general, the strategy for studying quantum field theories with the functional RG
is as follows: One writes down the most general ansatz for the effective action, contain-
ing all operators invariant under the symmetries of the theory. Then one truncates the
effective action by either reducing n-point functions to a more simplified momentum
dependence or just taking them as contact terms. Additionally, one chooses a value
for Np. and neglects all n-point functions with n > Ny, right from the beginning.
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In other words, since it is impossible to study the flow of an effective action containing
all operators allowed by the symmetries, one has to restrict oneself to a subspace of
operators which one expects to be relevant for the physical problem under considera-
tion. This is the most difficult step and it requires a lot of physical insight in order to
choose the correct subspace of operators. In this context, it is important to stress that
this truncation must not be confused with an expansion in some small parameter as in
perturbation theory. The assumption here is that the influence of neglected operators
on the operators included in the truncation is small.

Once one has chosen a certain truncation, one needs to check how trustworthy
the results are. An obvious sign for an insufficient truncation is an unstable RG
flow. For example, RG flows of four-fermion interactions show a divergence at a finite
scale k = k... In this particular case, however, there is a physical reason for the insta-
bility. A divergence in the flow of four-fermion interactions indicates the onset of chiral
symmetry breaking, see Subsec. 3.4.1 . Adding bosonic operators to the truncation
can cure this instability [60, 61, 62]. Thus one possibility to check a given truncation
is to extend the truncation by including additional operators and then check if the
results obtained from this new truncation are in agreement with the former results.
If this is not the case, one must rethink the chosen truncation. However, even if the
results are not sensitive to the additional operators added to the truncation, this does
not necessarily mean that one has included all relevant operators in the calculation.
Moreover, it might also be the case that one physical observable is insensitive to the
additional operators but others are not.

Another possibility to assess the reliability of a given truncation is to vary the cutoff
function Ry and then to check if the results depend on the choice of the cutoff function.
This possibility is based on the fact that physical observables should not depend on the
regularization scheme. Since the scheme is specified by the cutoff function, the physical
observables should be independent of this choice. If they are not, the truncation should
be extended.

But in any case, an approximate solution of the flow equation can also describe
non-perturbative physics reliably if the relevant degrees of freedom in the form of RG
relevant operators are kept in the ansatz of the effective action.

2.4.3 Generalized Proper-Time Flows

In this section, we discuss a special subclass of eract RG flow equations, the class
of Proper-Time flow equations, which can be obtained from Eq. (2.30). In order to
derive this class of flow equations, we make use of the background-field method, which
we discuss next.
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The Background-Field Method

The background-field method is a very powerful method to study gauge theories, since
it allows to construct a gauge-invariant effective action [65, 53]. We discuss this appli-
cation in detail in Sec. 4.3. Here we introduce this method. The flow equation for the
background-field effective action is then discussed in the next paragraph. Our starting
point is a modified version of the generating functional for the disconnected Green’s
functions, which is given by

“”:i_qg /D¢ e*S[¢,<ﬁ]+JT-(¢>f¢A>) — Z[JT, Q@]G*JT#; = eW[waﬂ . (2.38)

where Z is a functional of the sources J7 and the background fields qg On the LHS, we
have split the quantum fields in the action S into fluctuation fields ¢ and background
fields ¢. The source couples only to the fluctuation fields ¢. On the RHS, we have
shifted the integration variable in such a way that the fluctuation fields are now given
by (¢ — ¢2) We also allow for an explicit dependence of the action S on the background
fields qg We will encounter such a dependence when we discuss gauge theories in Sec.
4.3. For a scalar theory, we recover the standard generating functional Z for qg = 0,
i. e. Z[J,0] = Z[J,0]. Beyond this, we observe that W and the standard generating
functional of connected Green’s functions W are related by

Wt o =WI[JT, ¢ —J" - ¢. (2.39)

Note that the standard generating functional W depends explicitly on the background
fields, since we allowed for an explicit dependence of the action S on these fields. Now
we introduce modified classical fields by

—

5 . . .

— W[, 9= — 6. 2.40
W =@ (2.40)
The background-field effective action is obtained through a Legendre transformation
with respect to the classical fields ¢ as

)

D[, ¢ = W[+ JT - &= —W[J g +J7 & 2V r[a,g]. (2.41)

Again, the explicit dependence of the action S on the background fields results in an
explicit dependence of the standard effective action I' on these fields. From this we
read off the important relation

~

[®, 4] = T[d + ¢, 6] “2” 1[o, §) (2.42)

between the background-field effective action [ and the standard effective action I'.
Consequently, the background-field effective action is just a convential effective action
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computed in the presence of the background fields qg If we consider the limit of
vanishing classical fields ®, which is equivalent to setting ¢ = gf) we get

I00,6] = T[¢, 4] = T[@, D] (2.43)

This result means that the standard effective action can be obtained by evaluating the
background-field effective action for d =0.

Although it seems a bit awkward to calculate the background-field effective action
instead of the standard effective action, it has some important advantages: Usually, the
1PT Green’s functions are generated from the modified effective action by differentiating
with respect to the classical fields. But in this case, functional derivatives of F[CD qb]
with respect to o generate 1PI graphs in the presence of the background field gf) Since
F[O qb] does not depend on ®, it does not generate graphs with external legs. Moreover,
we know that T 0, ¢] contains all 1PI diagrams without external legs in the presence of
the background fields ¢ ®. This circumstance enables us to calculate the standard
effective action by summing only graphs without external legs. Due to Eq. (2.43),
we obtain the correct standard effective action by using this procedure. The second
advantage, which is the most interesting one for our later purposes, is that it makes it
possible to derive a gauge-invariant effective action, see Sec. 4.3.

RG Flows in the Background-Field Approach

In order to calculate the flow equation for the background-field effective action, we start
once more from a IR- and UV-regularized generating functional for the disconnected
Green’s functions:

2T = / Dy o~ Slp+.8l~ASie. 1+ -0
A

p=d—0 / Dep e~ SBA-ASk6=d I+ T-(6=9) = WilIT 4] (2.44)

In the second line, ¢ represents the full quantum fields, which are a sum of the fluctu-
ation fields ¢ = ¢ — ¢ and the background fields ¢. In principle we allow for all kinds
of fields, but it is important to stress that the generalization to gauge-fields is more
involved. It will be discussed in detail in Sec. 4.3. In the cutoff term AS), we allow
for an explicit dependence of the cutoff function on the background field:

TR . (2.45)

N —

Asiledl = 5 [ SR DR =
kl©s 3 ) ¥ PR )elp) =
The dependence of the cutoff function on the background field is indicated by the
superscript qg As we will see below, it is a generalization necessary to obtain the
generalized proper-time form of the flow equation. Note that AS, provides an infrared
cutoff for the fluctuation field ¢, but not for the full field ¢.
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The flow equation for the background-field effective action I'[®, ¢] is worked out in
complete analogy to the flow equation of the standard effective action in Sec. 2.4.2.
Defining the background-field coarse-grained effective action as

Du[@, 0] = —WilJ,¢]+ 7 - & — AS[®, g, (2.46)

the corresponding flow equation reads
U | . . -1 A
0iTu[®,] = 5 STr { [r,(j’l’o*” (D, 4] + R,ﬂ (&R,‘f)} : (2.47)

where we have introduced the following short-hand notation for the generalized n-point
functions:

i—times k—times [—times j—times
7\ 7\ 7\ 7\

(5 TN\(3 T\ (5 S\(5 T\
féi,j,k,Z)[(i)’gf;]: C — o — | @) [ = = [ == | .
0T 6T J \ 0T T 0p 9 ) \oP 0P

We stress that the RG flow for the background-field effective action defined by Eq. (2.47)
is still complete and consistent, and standard perturbation theory can be reproduced
by an integration of the flow equation [66].

Before we continue, we check the dependence of the flow equation (2.47) on the
background field ng) For this purpose it is convenient to consider the first functional

derivative of the coarse-grained effective action (2.46) with respect to the background
field ¢:

) } Ot A5 105"

A 2 n 1 I 0 3 1 (5
11](60,0,0,1)[(1)7 9] = 5STr { [p](ﬁl,lvo,O) 3, ¢]+Rf} <Rk(5_¢3 (0|0,

Note that the second term also depends on the scale k. If the action, as well as the
cutoff function Ry, is independent of the background field, then the RHS of Eq. (2.48)
vanishes. Consequently, the effective action would depend only on the field d. If we
have a cutoff function which depends on the background fields, but an action which is
independent of the background field, then the effective action does not depend on the
background field for k£ — 0, since the cutoff function has to vanish in this limit (see Eq.
(2.20)). For example, this particular case is on hand when one studies a scalar-field
theory or a quark-meson model’’. In gauge theories, the situation can be even more
involved: if one uses background-field dependent gauges!!, the action S also depends
on the background field. In this case, the first term on the RHS of Eq. (2.48) still
vanishes in the limit £ — 0, but the second term does not, cf. Ref. [68, 69, 70].

10Tn Chap. 3, we study a quark-meson model with RG flow equations. There, we use an approxi-
mation of the flow equation (2.47) which we discuss below.

1Tf one uses axial gauges, where only the cut-off function Rj depends on the background field,
there is no dependence of the action S on the background field [67].
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In order to find a representation of the flow equation (2.47) in terms of proper-time
integrals, we have to choose a certain class of cutoff functions Ry [69]. This class is
obtained by taking Rj as a function of 1:}({1,1,0,0) [0, ¢]. Tt is important to stress that the
we are not allowed to take Ry as a function of 1;](:,1,0,0) (@, ¢] as the cutoff term (2.45)
would no longer be bilinear in the fluctuation fields, and therefore we would lose the
one-loop structure of the flow equation (2.47).

Writing the cutoff as a function of r 1(;717070) [0, @] represents an optimization of the
RG flow, since it adjusts the regularization to the spectral flow of the fluctuations
[71, 64]. As the discussion in the next paragraph indicates, this implies a significant
improvement, since larger classes of diagrams can be resummed in a given truncation.
To be specific, we replace the regulator R,‘f in Eq. (2.45) as follows:

Ry (p") — Ri(x) = xr(y) (2.49)
with 7(y) being a dimensionless regulator shape function with a dimensionless argu-

ment. The quantities x and y are given by

X

~(1,1,0,0 i
e=TP00.4), y=575

(2.50)

This is the class of the spectrally adjusted cutoff functions. Note that in general both,
Ry, and Zj, are matrix-valued in field space. A natural choice for the matrix entries of
Zy. is given by the wave function renormalizations of the corresponding fields, since this
establishes manifest RG invariance of the flow equation. So far, we have not specified
the type of the fields. However, the definition of y is not appropriate for fermionic
degrees of freedom since z is not necessarily positive definite in this case. We discuss
the derivation of the flow equation for fermions separately in the next paragraph. For
now, we restrict the discussion to bosonic fields.

Using the spectrally adjusted cutoff functions, the flow equation (2.47) can be
formally written as

-1

A A A 1 ~ A A ,
O Tu[, 6] = 5 STr [F,S’l’o"” (@, ¢] + Rk[x]] : { (nz —2)-z-y-r

. (2.51)
I:f,l(cl,l,o,o) [07@

+ (Opx) - [r+y-r/}}

where 7’ denotes the first derivative of the dimensionless regulator shape function r with
respect to its dimensionless argument, and 7z denotes the (matrix-valued) anomalous
dimension

1
Nz = —8t In Zk = ——8tZk . (252)
Zy,
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Note that the completeness and consistency property of the flow equation (2.47) is not

spoiled by the improvement in terms of the insertion of 1:}({1,1,0,0) [0, ¢] in the regulator.
The RG flow equation (2.51) represents the starting point for the derivation of the
so-called generalized proper-time RG flow equation.

Generalized Proper-Time RG flows for Bosons

Let us now derive and discuss the generalized proper-time RG flow equation for bosonic
degrees of freedom. In order to obtain this flow equation, we identify the background
field ¢ with the field ®. From Eq. (2.42) and (2.46), we read off that the background-

~

field effective action I'y[®, ¢] evaluated for & = 0 is equivalent to the standard effective
action I'[0, @] in the IR limit & — 0. This motivates the definition

T4 [®] := T:[0, @] . (2.53)

Due to the identification of the background field ¢ with the classical field @, Eq. (2.51)
can be written as [71, 66]

ore) - Len ol | (TEV0el) (100, 9)
t 2 1%](€1,1,0,0) 0, @] AT AT
f(1717070) ()7 @
+@_nﬂ'h<iiié_l : (2.54)

The auxiliary functions g(y) and h(y) are related to the regulator shape function r(y) by

_ )
1+7r(y)’

hy) —yr'(y)

=T (2.55)

9(y)

We observe that the RG flow of the effective action I'y[®] depends on the propagator
of the fluctuation fields I'{""*”[0, ®] and its flow'2. This is an important difference to
the flow equation (2.47), where the RHS depends only on the propagator 1;](:,1,0,0) [QA), ¢2],
but not on its flow. This additional dependence on the flow of the propagator is due
to the adjustment of the cutoff function to the spectral flow of the fluctuations. But
there is also drawback!?: the flow equation (2.54) is not closed, since the propagator

of the fluctuation field 1:}({1,1,0,0) [0, @] and the propagator F,(gl’l)[q)] are not identical:

LV @) = 000, 0] + 1000, @) + TV [0, 8] + TP V(0, @], (2.56)

12We emphasize that no admissible cutoff-shape function r exists such that h(y) = g(y). Therefore
the term proportional to the flow of the two-point functions is present for all cutoff-shape functions.

13This drawback is due to the identification of the background field qAS with the field ® and not due

to the insertion of f](€1,1,0,0) [0, ¢] in the cutoff function.
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However, we can immediately deduce from Eq. (2.48) that both propagators coincide in
the limit £ — 0, where the cutoff function R vanishes, provided the action S does not
depend on the background field. As we already mentioned above, such a background-
field dependence is possible for gauge theories. Nevertheless, for the remainder of this
thesis we assume that

r{Die] = P00 @] (2.57)
We stress that this assumption suffices to extract perturbative § functions [72], as
we will show when we consider gauge theories in Chap. 4. Moreover, the validity of
the assumption (2.57) can, in principle, be quantitatively controlled by a check of the
following constraint:

flil,0,0,l) [0’ q:)] + fxl(co,l,l,()) [07 @] ; _flio,o,l,l) [07 @] ] (258)

The insertion of fé1,1,0,0) [0, ¢] into the cutoff function and the assumption (2.57) enable
us to write the flow equation (2.54) in terms of proper-time integrals’®. For this purpose
we make use of the Laplace transforms of the auxiliary functions h(y) and g(y), defined
as

h(y) = / dsh(s)e™ and g(y) = / ds g(s)e ™. (2.59)
0 0
Introducing the functions H(s) and G(s) through the relations
d -~ 5 3
L =hts).  A0) =0,
d - _

allows us to write the flow equation in the following useful and convenient form [71]:

1 [ . s p(D
are) =3 [ dsST fsmaye 5,
0

(2.61)
Eq. (2.61) is called the generalized proper-time flow equation. It will be applied to gauge
theories in Chap. 4. The operator f(s,nz) provides the translation of the regulator
R, into Laplace space:

F(s.mz) = §(5)(2 — nz) + (H(s) — C(s)) -0 (2.62)

S

The big advantage of the generalized proper-time flow equation is that the functional
traces in Eq. (2.61) can now be evaluated, for instance, with powerful heat-kernel
techniques, and all details of the regularization are encoded in the auxiliary functions
h,g.

4Writing the flow equation in terms of proper-time integrals means nothing else than a Laplace
transformation of Eq. (2.54).
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Generalized Proper-Time RG flows for Fermions

So far, we have discussed the generalized proper-time form of the RG flow equation for
bosons. Quark fields can similarly be treated within this framework. For our purposes
in Chap. 4, it is advisable to separate a possible explicit (constant) mass contribution

from the fermionic submatrix of f,(cl’l’o’o) 0, DJ:

L1000, @) L= [0, ®] +iM . (2.63)

Here the index 1 indicates that we focus on the fermionic submatrix of I ](€1,1,0,0) 0, ®].
The imaginary unit factor multiplying the mass matrix M appears due to our conven-
tions for fermions in Euclidean space-time, see App. A.

As we discussed in the last paragraph, the derivation of the generalized proper-time
RG is based on the assumption that we can equate

1,1 [ 1,1,0,0
riVe] = 00, ]

and on an optimization of the cutoff function. This assumption for the inverse propaga-
tor of the fluctuation field is still required for the derivation of the fermionic flow equa-
tion. However, the optimization of the regulator that we have proposed for bosons in
Eqns. (2.49) and (2.50), is not appropriate for fermions. The reason is that the fermionic
submatrix of 1;](:,1,0,0) [0, @] is in general not positive definite!®. Thus the transforma-
tion of the flow equation into Laplace-space is ill-defined. Moreover, f,(gl’l’o’o) 0, D]
has mass dimension one, and not two as it is the case for bosons. For these reasons we
optimize the fermionic part of the RG flow by using the regulator [73]

Ryl (wy) = wyry(yy) (2.64)

with 74 (yy) being a dimensionless regulator shape function with a dimensionless argu-
ment. The operators z, and y, are defined as

(1,1) . JUML
xy =17 [P o iM  and vy, = CE
k

: (2.65)
where Z;f denotes a wave-function renormalization. Note that RZ and Z;f are in
general matrix-valued in field space. This form of the fermionic regulator preserves
chiral symmetry, provided F,(Cl’l’o’o) [@]], is symmetric under chiral transformations. If
we used F,(:’l) (@], instead of F,(Cl’l) [®]],, —1M for the optimization of the cutoff function,
then the cutoff function would generate additional symmetry breaking contributions

15Tn the simplest case, f,(cl’l’o’o) [0, ®]|y is the Dirac-operator for which the existence of negative
eigenvalues is well-known.
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in the RG flow beside the contributions that arise due to the truncation. Since this is
unwanted, we have separated the explicit mass term in Eq. (2.63).

Following the steps along the lines of the derivation drawn in the last paragraph,
we finally obtain the flow equation for fermions:

1 [ - M- sxwxjp
(9tFk[CI)]) = —/ ds STr fy (s,n¢, %) exp| ———; . (2.66)
P 2 0 (Zk k)Q _ (1,1) .
$¢7(Fk [@]’w 1M>
Here we have introduced the anomalous dimension of the fermion field,
Ny = —0InZ. . (2.67)

The operator f¢(s, Ny, m) is defined in direct analogy to the definitions for bosons as

Fuls e ) = 5, ) (1 = ) + (¥ (5, 71) — G (s, )

0y . (2.68)
The fermion mass matrix M enters the definition of f¢ through m = % The regulator
shape function r,(y) is related to the auxiliary functions which appear in the definition

of the operator fw(s, 1y, M) through

hd’(y, m) _ —2y27“;/}(1 + Tq/,) 7/)( 7m) _ y?“w(l + 7“1[,) (269)

y(141y)2 +m2’ y(14+1y)2+m?

and

h¢(y,m):/ooodsﬁw(s,m)e—y8, —HY%(s,m) = h¥(s,m), HY(0,7m)=0. (2.70)

The corresponding functions g¥(y,m), §¥(s,m), and G¥(s, M) are related to each
other in a manner analogous to Eq. (2.70). The present construction facilitates a
simple inclusion of finite quark masses without complicating the convenient generalized
proper-time form of the flow equation.

Truncation of Generalized Proper-Time RG flows and n-point functions

In this paragraph, we discuss the consequences of the insertion of I' into the
cutoff function. As we have already discussed in Sec. 2.4.2, the RG flows of higher n-
point functions are obtained by taking the appropriate number of functional derivatives
of the flow equation of the effective action. Of course this still holds for generalized
proper-time RG flows. First we discuss how the diagrammatic representations of the
flow equations of the higher n-point functions change due to the insertion of 1;}({1,1,0,0)
in the cutoff function, then we discuss why this provides an optimization and how it
can be used in order to resum larger classes of diagrams in a given truncation.

r (1’170’0)
k
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For simplicity, we restrict the discussion to a single-component scalar field theory.
The flow equation for the one-point function is then given by

1 -1 —1
ari Ve = —3Tr@R) [TVl R] TV () [0 0]+ Ryl
H
Lar) [r“"[@HRk} g, [r<1’“[<1>]+3,€}_1
2 F 5oT F
1 5 !
(11) -

The representation of this flow equation in terms of Feynman-graphs reads

1 1 1
0-@ - 2@ 2@ +5 . (2.72)

The meaning of the various vertices is given by

- = Ry =T"V[@] 9 + (atr,gqu)]) r (2.73)

Zo— = @] with (+m=n), (2.74)
[—times m—times
2 5 55 5

AN |
/ S L o S ith (1 —n—2 2.
—— ST ST Ry 35 55 wi (l+m=n ), (2.75)
o = 9 lpe (2.76)

We observe that the square and triangle vertices are sums of the n-point functions Fg’j )
and their ¢-derivatives. The meaning of the solid black dot is significantly different from
its meaning in Sec. 2.4.2, since it now depends on F,(Cl’l). Due to this dependence we
integrate over shells of eigenvalues of F,(:’l), instead of over naive canonical momentum
shells, thereby accounting for the flow of these eigenvalues. The graphical representa-
tion of RG flow for the two-point function can be obtained by adding external legs to
the Feynman-graphs in Eq. (2.72):

- 0000
O
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This can be continued straightforwardly to obtain the RG flow equations for all n-point

functions. In order to simplify the following discussion we define F,(fﬂ )= F,(f’j ),

From the derivation of the flow equations we recognize that we need information
about the two-, three-, ..., n-, (n + 1)- and (n + 2)-point function in order to solve the
flow equation for the n-point function. This is due to the fact that the RHS of the flow
equations also depend explicitly on the flows of lower and higher n-point functions, in
contrast to the situation discussed in Sec. 2.4.2. The resulting infinite tower of flow

equations has the form
. . Z'+2 . .
(o) = X, (T, 0, T ) 4 3 v (T2, ) ar (], (27s)
J

with known functions X; and Y;;. The latter obeys Y;; = 0 for j > i + 2. Note that
X; and Y}; are infinite-dimensional and that Eq. (2.78) is linear in the ¢ derivatives of

F,(C”). Provided the matrix (1 —Y');; is invertible, the solution is formally given by
oLy =(1-Y)"'. X, (2.79)

where the RHS depends solely on F,(f), r f) R

Since we are not able to solve this infinite tower of flow equations completely, we
need to truncate the effective action. But in contrast to the situation described in
Sec. 2.4.2 there are now several possibilities, two of which are of particular interest:
first, we can restrict the effective action to correlation functions with Ny,.x legs and
drop all higher correlators, i. e. we can consider the limit F,(;) — 0 and Y;; — 0 for
i,J > Nmax. This corresponds to the truncation scheme discussed in Sec. 2.4.2, with
all its drawbacks. Second, there is the possibility to set F,(j) = 0 by hand for ¢ > Nyax
in Eq. (2.79), but to still keep track of the flows of all F,(C”). We stress that setting
F,(j) = 0 by hand for ¢ > N« does not mean that we drop the flows 8t1“,(f) for i > Npax,
since in general the flow equation for F,(Cn) depends on all correlators with n < Npax
as well. This is reflected in the existence of nonzero entries in the infinite-dimensional
matrix Y;; even for ¢, j > Nyjax. Since (1— Y) ! is infinite-dimensional as well, the flow
equation for any F,(Q") consists of an infinite number of terms'®. For this reason, larger
classes of diagrams can be resummed by integrating the flow equations even remaining
within a given truncation.

We have shown that the spectrally adjusted cutoff provides an efficient reorganiza-
tion of the RG flow equation [71]. Already a small truncation contains information from
the flow of infinitely many n-point functions. The introduction of a background field is
a necessary condition in order to obtain such an optimization of the RG flow. Applica-
tions of the flow equation (2.61) to gauge theories have been studied in Ref. [72, 74, 75],

6Note that setting F,(j) = 0 by hand for ¢ > Ny in Eq. (2.79) is not equivalent to dropping them
right from the beginning.
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where the term o @F,(f) in Eq. (2.61) has been neglected. The crucial importance of
including this term for a study of gauge theories has been shown in Ref. [71, 76, 77]. In
Chap. 4, we study the running of the strong coupling and the chiral phase boundary
of QCD by means of the flow equation (2.61), incorporating the terms o 8t1“,(€2).

Proper-Time Renormalization Group

In this final paragraph we discuss a special approximation of the flow equation (2.61),
which is called the proper-time RG flow equation. The proper-time RG has been
successfully applied to study scalar theories, models for low-energy QCD and even
gravity, see e. g. Refs. [78, 79, 80, 81, 82, 83, 84, 85, 86]. Although the proper-time RG
flow equation is not ezact, as was proved in [64], it yields quantitatively good results
for the critical exponents of O(N)-models'’, cf. Refs. [78, 87].

The proper-time RG flow equation for bosons can be deduced from Eq. (2.54) by

neglecting the term oc @f,(j’l’o’o) [0, @] and assuming F,(gl’l)[q)] = 1:}({1,1,0,0) 0, PJ:
(171)
1 L9
OTk[® = <=STr(2—nz)-h| Lt

(2.59

1 RS
59) 3 STr (2 — 7]2)/0 ds h(s) exp (_Z:k2 FS’U[CID]) , (2.80)

where the super-trace on the RHS acts only in the bosonic subspace. The corresponding
proper-time flow equation for fermions reads

o a] (V)
(Z,k)?

(259 1 B ® sy s (1,1) (1,1) f
2 ST (2 nzw)/o ds h(s) exp( (Z}fk;)QFk @] (rk [cp]) .

1
0, T'1,|®] = §STr(2—nz)-h¢

) (2.81)

In this case, the super-trace on the RHS acts only in the fermionic subspace. Now
we switch to the proper-time RG nomenclature for cutoff functions, cf. [78, 79], by
choosing the functions h(s) and h¥(s) to be!®

(Tk2zk)a+1 —Tk2Z,

(2 —nz) Tk°h (k) = =0ifu (TK*Z1) = (2 — nz) T+l :

(2.82)

17A rough estimate for the applicability of the proper-time RG to a specific model is given by the
anomalous dimension 7z of the fields. If it is small (nz < 1), as it is the case for O(N)-models or the
quark-meson model, the proper-time RG can be applied. If the anomalous dimension becomes large
(nz 2 1) as in QCD, see Chap. 4, this approximation to the Functional RG flow equation should not
be applied.

18We emphasize that this is a choice which is not necessarily in accordance with the conditions on
the cutoff function Ry. In particular, condition (2.21) may be violated by this choice.
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and

(TkQZk)aH —Tk2Z,

2 — KRV (1h*) = (2-— L 2.83
( 773)7— (7_ ) ( Uzw) F(&+ 1) ( )
The proper-time cutoff function f, is related to the incomplete I'-function by
r 1,7k*Z
fo (Th*Zy) = at 1,7k Z) (2.84)

F(a+1)

Here we allow for a free parameter a which must be chosen such that the infrared
regime is regularized.

It was found in Ref. [88] that there exists an optimized proper-time cutoff function
which corresponds to the optimized cutoff function'’

R () = (K — p*)O(k* — p*) (2.85)

within the Functional RG approach®’. Here ©(z) denotes the unit-step function. The
optimized proper-time regulator in d dimensions is obtained from Eq. (2.84) by choos-
ing [88]
Qopt. = g (286)
2
We stress that this correspondence is only true in leading order of the derivative ex-
pansion (the so-called local potential approximation). In other words, choosing the
optimized proper-time cutoff function, one finds exactly the same flow equations in
leading order of the derivative expansion as in the Functional RG approach with the
cutoff function (2.85).
In Chap. 3, we apply the proper-time RG to a quark-meson model in leading

order of the derivative expansion in order to study finite-volume effects in low-energy
observables of QCD.

19We refer to an optimization criterion which is based on the gap induced in the effective propagator
P(y) = p*(1 +7(p?/k?)) by the cutoff function. We denote those regulators to be optimized for which
the gap is maximized with respect to the cutoff-scheme. For a detailed discussion of optimization
criterions and the properties of optimized flow equations, we refer to Ref. [89, 88, 63].

20Here we only give the optimized cutoff Rzpt' for bosonic degrees of freedom. An optimized cutoff
function for fermionic degrees of freedom is given in Ref. [88].
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Chapter 3

QCD in Finite Volumes

In this chapter, we study finite-volume effects in QCD. After an introduction to this
topic in the first section, we discuss finite-volume effects in chiral perturbation theory
in Sec. 3.2. Finite-volume effects in low-energy observables of lattice QCD are briefly
reviewed in Sec. 3.3. Our RG approach for the study of finite-volume effects in QCD
and the underlying effective low-energy model, namely the quark-meson model, are
introduced in Sec. 3.4. We give a general discussion of our results and a comparison
with results from chiral perturbation theory and lattice QCD simulations in Sec. 3.5. In
Sec. 3.6, we study the chiral phase transition and its dependence on the volume size and
on the current quark mass. In the last section of this chapter, we give our conclusion
and discuss possible further applications of the RG approach for finite-volume studies.

3.1 Introduction

The study of QCD in a finite volume has been of interest for quite some time. Accurate
results of lattice simulations with dynamical fermions necessitate an understanding of
finite volume effects. A variety of different methods has been proposed, cf. Refs. [90,
91, 92, 93, 94, 95, 96, 97, 98], to extrapolate reliably from finite lattice volumes to
the infinite volume. Finite-volume partition functions for QCD have attracted interest
in their own right, because they allow an exact description of QCD at low energies,
cf. [99, 100, 101, 102]. The low-energy behavior of QCD is determined by spontaneous
chiral symmetry breaking [7], which, however, does not occur in a finite volume. If
the current quark mass is set equal to zero, in a finite volume the expectation value
for the order parameter of chiral symmetry breaking vanishes, remaining zero even for
arbitrary large volumes. The order parameter has a finite expectation value only when
the infinite volume limit is taken before the quark mass is set to zero.

The box size L, the pion mass m, and the pion decay constant f, are the relevant
scales for the transition between the regimes with a strongly broken and with an effec-
tively restored chiral symmetry [99]. As a measure of explicit symmetry breaking, the
pion mass is of particular importance. It is primarily the dimensionless product m, L
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that determines in which regime the system exists for a given pion mass and volume. In
order to study chiral symmetry breaking in a finite volume, it is essential to introduce
a finite quark mass as a parameter that explicitly breaks the chiral symmetry. Such
an explicit symmetry breaking is quite natural in theories which involve effective chiral
Lagrangians.

QCD at low energy can be studied by a wide variety of approaches which in essence
all rely on the same fact: Due to spontaneous breaking of chiral symmetry, low-energy
QCD is dominated by massless Goldstone bosons associated with the broken symmetry.
Since these Goldstone bosons interact only weakly, the low-energy limit of QCD can
be described in terms of an effective theory of these fields. A description in terms of
effective chiral Lagrangians becomes even better if one considers the partition functions
in finite Euclidean volume. Compared to the light degrees of freedom, contributions
of heavier particles are suppressed by e ™% where M is the typical separation of the
hadronic mass scale from the Goldstone masses. This separation of mass scales is at
the origin of the description of QCD with effective theories in terms of the light degrees
of freedom only.

A famous method which relies on the fact that low-energy QCD can be described
well in terms of an effective theory of the pions is chiral perturbation theory. Nowadays,
this method represents the most important tool for extrapolations of lattice gauge
theory results to small pion masses and to large volumes [99, 101, 94, 103, 104, 93,
91, 98, 97, 105, 106]. In particular for the chiral extrapolation to small pion masses
(107, 108, 94, 103, 104], and for the extrapolation to infinite volume for properties of
the nucleon [91], chiral perturbation theory describes the lattice results very well.

In contrast to these applications, the finite volume shifts of the meson masses are
less well described by chiral perturbation theory [109, 92, 110]. For the pion mass,
the shifts predicted by chiral perturbation theory are consistently smaller than those
observed in lattice simulations. For volume sizes that are suffciently large so that the
internal degrees of freedom such as quarks and gluons are unimportant, one would
expect that chiral perturbation theory correctly describes finite volume effects [105].
However, the discrepancies in current systematic investigations of finite volume effects
(91, 109, 92, 110, 111] seem to indicate that this range has not yet been reached in
lattice simulations.

One issue which cannot be addressed by chiral perturbation theory alone is the
influence of the boundary conditions in the spatial directions for the quark fields.
While fermionic fields require anti-periodic boundary conditions in the Euclidean time
direction, we are free to choose either periodic or anti-periodic boundary conditions in
the spatial directions. However, in lattice calculations, this choice changes the finite
size effects in low-energy observables significantly, as will be discussed in the following
sections. We think that a non-perturbative RG study in terms of an effective low-
energy model can shed more light on this interesting finite-size effect, since, in contrast
to chiral perturbation theory, it allows to study both types of boundary conditions. To
be specific, the underlying model for our investigations is the quark-meson model, which
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contains a scalar sigma meson and quarks in addition to the pion degrees of freedom.
Due to the presence of quarks, the low energy constants of chiral perturbation theory
are reproduced [112, 113]. We give a detailed introduction to this model in Sec. 3.4.

Beside this study of finite-size effects in low-energy observables of QCD, the subject
of this chapter is to study the dynamics of chiral symmetry breaking in QCD at finite
temperature within the quark-meson model. We mainly address the question of the
volume dependence of the chiral phase transition temperature, including its dependence
on the quark boundary conditions.

In finite volume, strictly speaking no phase transition is possible, since non-analyti-
cities cannot appear in the thermodynamic potential (see e.g. [114]). In general,
the investigation of phase transitions and critical behavior from results obtained in
a finite volume is difficult and requires an extrapolation to the infinite-volume limit.
In addition, if a symmetry is restored across the transition, this usually requires the
introduction of an external field which explicitly breaks the symmetry. Even if there is
no true order parameter that vanishes strictly in one of the phases, rapid changes over
a small temperature range are an indication of a (crossover) transition. Often, peaks
in susceptibilities or other higher-order derivatives of the thermodynamic potential are
used as criteria to define a pseudo-transition. Here we propose to use the mass of the
scalar mode, which corresponds to the inverse correlation length for fluctuations in the
quark condensate, to identify the transition point: A distinct minimum of the mass
appears at almost the same temperature at which the chiral quark condensate drops
rapidly.

Phase transitions in QCD are currently very actively researched. Although most of
the attention is focused on the phase transition at finite baryon density and temperature
[16, 115, 116, 18, 117, 17, 118, 81], where the existence of a critical point in the phase
diagram is not yet conclusively settled [20, 18, 119], there are still challenging questions
even at vanishing density: for example, the order of the phase transition is still under
discussion [120, 22, 15, 19] or the weak dependence of the phase transition temperature
on the quark mass [121, 15, 122] which cannot be explained in terms of simple low-
energy models [123, 78, 124].

The purpose of our finite-temperature study is twofold: first, we investigate if
the weak quark mass dependence of the chiral phase transition temperature can be
reproduced by means of the quark-meson model in finite volumes. Even though it was
shown that such a weak dependence cannot be explained by means of the quark-meson
model in infinite volume [123, 78], there still remains the possibility that this could be
a finite-volume effect. Second, should this not be the case, we can conclude that the
quark-meson model in its original form without gauge degrees of freedom is definitely
not appropriate as an accurate description of the dynamics of chiral symmetry breaking
in QCD at finite temperature.
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3.2 Chiral Perturbation Theory and Finite Volumes

For finite volume, massless Goldstone bosons dominate the action of a theory with
broken chiral symmetry. In chiral perturbation theory (chPT) [7], the pion mass, the
pion decay constant and the chiral condensate have been calculated in finite volume
[100, 101, 99]. The expansion parameters are the magnitude of the three-momentum
|p] and the mass of the pion m, as the lightest degree of freedom, which are small
compared to the chiral symmetry breaking scale 47 f.

Depending on the size L of the volume and the pion mass m,, chiral perturbation
theory distinguishes between two different power counting schemes. If the size of the
box is much larger than the Compton wavelength of the pion, L > 1/m,, the lowest
nonzero pion momentum is smaller than the pion mass (pyin ~ 27” < m,) and the
normal power counting scheme applies (“p-regime”). In this case, the pions are con-
strained very little by the presence of the box, and finite size effects are comparatively
small [101]. If, on the other hand, the size of the box is smaller than the Compton
wavelength of the pion, the normal chiral expansion breaks down, since the smallest
momentum Puin ~ 27” > m, is now much larger than the pion mass (“e-regime”). In
this case, the partition function is dominated by the zero modes. After solving the
zero-momentum sector of the theory exactly, one expands in corrections due to the
finite momentum modes. In Ref. [100], this was done first to one-loop order.

A very useful tool to study the effects of a finite volume on the mass of the pion
is Liischer’s formula [125]. It relates the leading finite-volume corrections for the pion
mass in Euclidean volume to the wr-scattering amplitude in infinite volume. Correc-
tions to the leading order behavior drop at the least as O(e~™*) where m > \/ﬁmﬂ.
For the particular case of the pion mass, the formula for the relative deviation R[m,(L)]
of the pion mass m, (L) in the finite volume from the pion mass in the infinite volume
m(00) reads

M (L) — my(00)

R[m.(L)] = 7 (00)
- 1637r2 m%m%L /_Z dy F(iy)e V™ L 0™, (3.1)

Here, F'is the forward mr-scattering amplitude as a function of the energy variable s
continued to complex values.

In Ref. [98, 97] the Liischer’s formula was combined with a calculation of the
scattering amplitude in chiral perturbation theory in order to study the pion-mass
shift in finite volume. A next-to-next-to leading order calculation of F' alone does not
seem to give a reliable and satisfactory result. For example, a one-loop calculation using
Liischer’s formula gives a shift in the pion mass, for example, which is substantially
lower than the one expected from the full one-loop calculation in chiral perturbation
theory, as performed by Gasser and Leutwyler [100]. This estimate of the finite volume
effects can be improved, if one uses the mass correction obtained from Liischer’s formula



3.3. Finite Volume Effects in Lattice QCD Results 41

with a wr-scattering amplitude including higher orders to correct the full one-loop chiral
perturbation theory result [98]. Since Liischer’s formula has sub-leading corrections

O <exp[—\/3/ QmWL]), the corrections to the leading result increase for decreasing

pion mass at fixed volume size L with m, L. As pointed out by the authors in [98], the
Liischer formula becomes a less reliable approximation exactly for those values of the
pion mass for which the chiral expansion converges especially well.

In this thesis, we apply RG flow equations in order to study finite-volume effects.
In contrast to chiral perturbation theory, this approach does not rely on either box size
or pion mass as an expansion parameter, and does not require to distinguish between
two different regimes. The approach remains valid as long as the lowest momenta
and the masses of the heaviest particles remain below the ultraviolet cutoff scale. The
beauty of the renormalization group method is precisely that the flow equations connect
different scales. In the same way as the renormalization group flow equations describe
the dependence of the results on the infrared cutoff scale k, they also describe the
dependence on the additional scale imposed by the finite volume.

3.3 Finite Volume Effects in Lattice QCD Results

Current Lattice QCD simulations with dynamical fermions are still limited to rather
small lattice sizes and in some approaches to quark masses which are still large com-
pared to the physical values. In addition to taking the continuum limit in which the
lattice spacing is taken to zero, results from lattice calculations require extrapolation
towards the chiral limit and the thermodynamic limit. Thus, in order to compare a
result for an observable simulated in a small volume with the physical observable, it
is essential to understand the finite volume effects. In an investigation of Aoki et al.
[126] of finite volume effects it was found that the choice of the boundary conditions
for the quark fields has a direct influence on the size of the observed finite volume shifts
[126, 127] and an explanation in terms of quark effects was proposed, for both quenched
and unquenched calculations. Such effects cannot be captured by a description in terms
of pion fields only. It has been shown by Gasser and Leutwyler that the low-energy
constants in the chiral perturbation theory Lagrangian remain unchanged from their
values in infinite volume if one considers QCD in a finite Euclidean volume, provided
the same anti-periodic boundary conditions as in the temporal direction are chosen as
well in the spatial directions for the quark fields [101]. This leaves open the possibility
that a change of boundary conditions for the quark fields might in fact lead to a change
in the finite volume behavior. If this is the case, then chiral perturbation theory is not
an appropriate tool for the extrapolation of lattice results to the infinite-volume limit,
at least as long as lattice simulations are constrained to the e-regime (m, < 27”) We
discuss this issue in Subsec. 3.5.3.

To illustrate our interest in the influence of boundary conditions on the volume
dependence of low-energy observables, we present an example of a lattice calculation
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Figure 3.1: The pion mass shift R[m,(L)] = (mx(L) — m(c0))/m.(c0) as a function
of m;(o0) - L, obtained in a quenched lattice calculation, from ref. [92]. Shown are
results for three different values of the quark mass, determined by x. The solid lines
show the corresponding predictions from chiral perturbation theory.
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Figure 3.2: The pion mass m,(L) as a function of box size L, obtained in a lattice
simulation with two flavors of dynamical Wilson fermions, from ref. [110]. Results
for pion masses m, = 643 MeV, 490 MeV, 419 MeV (circles, squares, diamonds) are
compared to results from Liischer’s formula [125] with input from chPT up to NNLO
order [98]. For details, see ref. [110]. For the smallest pion mass, a drop similar to the
one in Fig. 3.1 can be observed.
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in the quenched approximation from the ZeRo-collaboration [92] in Fig. 3.1. Shown is
the shift of the pion mass m, (L) in finite volume relative to the value in infinite volume
m,(00) as a function of m, (c0)-L where L is the volume size. Surprisingly, these results
show a dropping pion mass for intermediate volume sizes in a region where the standard
chiral perturbation theory result (indicated by the solid lines in the figure) predicts only
a very weak volume dependence. This behavior would be unexpected from pion effects
alone. In addition, finite volume effects from chiral perturbation theory are predicated
on the presence of a “pion cloud”, which in turn requires the presence of sea quarks
[91]. Like chPT, our study is not directly concerned with the quenched approximation,
which requires its own low-energy effective theory [128,; 129]. Although the quenched
calculation in Fig. 3.1 shows the pion mass drop in a very distinct fashion, similar
effects for the meson masses are also seen in studies of finite size effects with dynamical
quarks [109, 110]. In Fig. 3.2, we show results for the pion mass as a function of the
volume size from a lattice calculation with two dynamical flavors of Wilson fermions
[110]. Results are given only for few volume sizes, but they also show a decrease of the
pseudoscalar mass in small volumes.

Subject of our investigations is the influence of different boundary conditions for
the fermionic fields on the finite volume effects in low-energy observables. For this
purpose, we apply the proper-time RG formalism to the quark-meson model. This
will be the subject of the the next section. Since our model includes dynamical meson
fields, and a dynamical breaking of the chiral flavor symmetry according to SU(Ny) x
SU(Ny) — SU(Nyg) for Ny = 2 flavors of quarks, our results are applicable to
unquenched lattice calculations with two dynamical quark flavors. The advantage of
our approach is that it is complementary to lattice simulations and that it allows for
an implementation of different boundary conditions for the fermionic fields, in contrast
to chiral perturbation theory. Therefore, we think that our study may be helpful to
gain a better understanding of recent lattice results.

3.4 RG Flow Equations for the Quark-Meson Model

This section focuses on the technical aspects of our study of finite-volume effects in
QCD within a non-perturbative RG approach. First, we discuss the underlying quark-
meson model and its origin. In Subsec. 3.4.2, we set up the RG formalism that allows
to incorporate explicit symmetry breaking terms in the RG flow of the quark-meson
model. Our strategy for the determination of the initial conditions for the RG flow as
well as details on the numerical evaluations are then presented in Subsec. 3.4.3.

3.4.1 The Quark-Meson Model

The quark-meson model, in the form that is used in this work, has its origin in the so-
called Nambu-Jona-Lasinio (NJL) model [130]. The NJL model is an extremely useful



44 Chapter 3. QCD in Finite Volumes

model for studying dynamical chiral symmetry breaking. The generating functional Z
for the disconnected Green’s function reads

Z[n, 1, J(/),jf] — / DYDY oS AT DT () + T - (it ) (3.2)
with the action
_ - P -
ol = [ ata {diu -+ %3 [0 - (@) | (33)

where 1 contains two fermion species and the components of the vector 7 are the
Pauli-Matrices:

g1 X o o
b = ( z; ) = o and  (YOU)? = (;0y) (0;04;) . (3.4)
03

In the generating functional Eq. (3.2), we also introduced source terms for the com-
posite fields (¢1)) and (¢)iTys¢)). We restrict our considerations to four space-time
dimensions for convenience and refer to App. A for our conventions for fermion fields
and -Matrices in Euclidean space-time. The NJL model is invariant under vector-
(Ty) and axial-vector- (T4) transformations, which are defined as

Ty 9 — 7O and Ta:t) — W70y (3.5)

Here O is a constant vector that specifies the transformation angle. The axial-vector
transformations are the so-called chiral transformations, which are of particular interest
in the following. A necessary condition for this symmetry of the NJL model is that
the action does not contain explicit mass terms for the fermion fields. However, the
chiral symmetry can be still broken dynamically, if a finite vacuum expectation value
(0]2p1)|0) is generated by loop corrections. This can be seen immediately by calculating
the vacuum expectation value of the commutator of the chiral charge )¢ and the
composite field iTys1):

(01 [1@3, ir*0][0) o 57 00l0) with Q4 = [ dwinasrv. (39

Following the Nambu-Goldstone theorem, this implies that there exist three massless
pseudo-scalar Nambu-Goldstone particles in the channel of the composite field ¢iT®y51).
Since the action S does not contain such states, we conclude that the massless states
must be bound states.
Formally, we introduce these bound-states by properly writing an exponential factor
into the integrand of the generating functional'. We use
efd4x{’;—22(J62+f2)} :N/,DJ,Dﬁe—fd‘*a:{%m2(02+ﬁ2)—’;1—22(J62+f2)} (3.7)

Y

!This is known as a Hubbard-Stratonovich transformation.
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where ¢ and 7 are auxiliary fields, A/ is a normalization factor, and g as well as m are
constants that remain arbitrary for the moment. Multiplying the integrand of the gen-
erating functional with such a factor is allowed, since the additional field-independent
terms, which are quadratic in the sources Jj and J', leave the Green’s functions of the
theory unchanged. Shifting the integration variables in the thus modified generating
functional by

1 g ;- S g /7.
U—>U_§J6+ﬁ(¢w> and W_)W_EJ/jLW(wIT%w)’ (3.8)

we finally obtain the new generating functional

—

Z[n, 7, Jo, J] = N’ / DoDRDYDy) e Wb o vt dmtoot (3.9)
with the so-called bosonized action
" — 4 " I 5/ 9 2 - coo
S, v, 0,7 = /d x {1/)1@1/) + gm (0 + 7 ) +gv¥ (0 + 17'7m5)1/)} ) (3.10)

In order to write the bosonized action in this convenient form, we have used that m?

and g are arbitrary parameters at our disposal and we have rescaled the source terms J,
and J:

2 2 2

P Ly S Ly (3.11)

m g g

Instead of a four-fermion interaction, we now have a Yukawa-interaction and a mass
term for the auxiliary fields. The bosonized action Eq. (3.10) is essentially the action
of the quark-meson model. In hadron physics, however, the auxiliary fields and the
arbitrary parameters g and m acquire a physical meaning: the fields ¢ and 7 play
the role of the scalar meson and the pseudo-scalar Nambu-Goldstone modes in low-
energy QCD, respectively. The Yukawa-coupling g specifies the strength of the quark-
meson interaction, whereas m is the mass parameter of the meson fields. Finally, the
fermion fields represent constituent quarks. Even the bosonization of the four-fermion
interaction contains physics: in the spirit of the RG, the bosonic fields are introduced
at a UV scale A ~ 1 GeV that is determined by the validity of a hadronic description of
QCD. Below this UV scale, hadronic operators are considered to be the relevant degrees
of freedom, since low-energy QCD is dominated by light pions which play the role of
the Nambu-Goldstone particles and are associated with the spontaneous breakdown of
chiral symmetry. Above this UV scale, a description in terms of quarks and gluons is
expected to arise naturally, owing to asymptotic freedom of QCD. It is important to add
a comment on the bosonization procedure in the context of the RG: in the remainder
of this chapter, we follow the strategy to bosonize the four-fermion interaction at a
UV scale A. Below this scale, we then consider only operators which arise from the
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bosonization at the UV scale A. We stress that this is an approximation, since the
four-fermion interactions are generated again in the RG flow, already by performing an
infinitesimal RG step of size dk. This is problematic, as one now encounters bosonic as
well as fermionic operators at the scale A —dk. A so-called "re-bosonization-technique”
has been proposed to cure this problem by, to put it sloppily, performing a bosonization
of the newly generated four-fermion interactions in each RG step [60]. This method has
been successfully applied to QED and one-flavour QCD at zero temperature [60, 62, 61].

Let us make one more point by comparing the NJL model and its bosonized version
in more detail. Due to the Yukawa-interaction in Eq. (3.10), spontaneous breakdown
of chiral symmetry means that the o-field acquires a finite expectation value. This, in
turn, results in a mass term for the fermionic fields. In the following, we will identify the
expectation value of the o-field with the pion decay constant f,. This is a consequence
of the Goldberger-Treiman relation, which results from a detailed study of the axial-
vector currents of the bosonized action. Since this is important for our purpose in
Chap. 4, we point out that we necessarily encounter broken chiral symmetry if the
four-fermion coupling diverges, see e. g. [131]:

1
S— (3.12)

(e

This is equivalent to a vanishing coefficient of the term bilinear in the mesonic fields
in the bosonized action (3.10).

Since we have now clarified the origin of the quark-meson model, we can discuss
it critically. For our RG study in the remainder of this chapter, we use the following
effective action

T[T, 0, ] :/d4x{\11 (iP+m) U + gU(o + i7-775) U + %((m)? +Ulo, 7?2)}, (3.13)

where W contains the fields of the up- and down-quark, whereas ¢ contains the fields
of the sigma meson and the pions. We have generalized the bosonized NJL model
discussed above by including kinetic terms for the mesons as well as higher mesonic
self-interaction terms summarized in the potential U. It is not necessary that these
additional terms are present at the initial scale A, since they arise in the RG flow
due to non-vanishing contributions from loop diagrams. Furthermore, we allow for an
explicit current quark mass term m., but we neglect isospin breaking and assume that
the two quark flavors have equal current quark masses. It is also possible to bosonize
this term as well, which results in a linear term for the o-field. As is well known, a
linear symmetry breaking term remains unchanged in the RG flow [37]. Therefore the
usual strategy is to evolve the potential without a symmetry breaking term. Explicit
symmetry breaking is then taken into account after the quantum fluctuations have been
integrated out on all scales [123, 59, 78]. In an infinite volume and for small quark
masses, this method will yield reasonable results. In a finite-volume study, on which
we focus here, the situation is different. Since chiral symmetry is not spontaneously
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broken, explicit symmetry breaking has to be included on all scales in the RG flow to
obtain a nonzero value for the order parameter. Otherwise, divergences from massless
Goldstone bosons would restore the symmetry. Because of this, we implement explicit
chiral symmetry breaking by means of an explicit current quark mass term in the action.
Due to this current quark mass term, the potential U becomes a functional of ¢ and
72, rather than a functional of ¢? = o2 + 7. The reason for the appearance of 72 only
in addition to o is that the rotational symmetry of the pion space remains unbroken
even in the presence of explicit symmetry breaking terms in the sigma direction. As
we will show in the next subsection, the quark mass term generates in the RG flow
only contributions to the mesonic operators which are compatible with this ansatz.
Therefore we can easily "rebosonize” the contributions arising from this quark mass
term in each RG step.

The quark-meson model is an effective model for dynamical spontaneous chiral
symmetry breaking at intermediate scales of & < A. We stress that the quark-meson
model cannot predict the volume dependence of pion mass and pion decay constant
exactly. It is not a gauge theory, and thus it has neither gluons nor quark confinement.
At moderate energies, below the hadronic mass scale A, unconfined constituent quarks
appear instead of baryonic degrees of freedom. However, the low-energy couplings of
the linear sigma-model with quarks are compatible with those of chiral perturbation
theory [113, 112]. Despite the shortcomings of this model, we believe that the current
approach can shed more light on lattice results regarding the volume dependence of
the pion mass. While the actual mechanism in QCD may be different due to the
presence of color interactions, the approach employed here gives a possible explanation
for the various finite-volume effects in the low-energy observables observed in lattice
simulations, as far as they relate to the mechanisms of chiral symmetry breaking in an
effective low-energy description of QCD by means of light Nambu-Goldstone particles.

3.4.2 Derivation of the RG Flow Equations

Let us now derive the RG flow equations for the quark-meson model in the proper-time
formalism. In the following, we consider the effective action (3.13) in a local potential
approximation (LPA), which represents the lowest order in the derivative expansion
and which incorporates fermionic as well as bosonic contributions to the potential U.
In this approximation, the (classical) fields ¥, ¥ and ¢ are considered to be constant
over the entire volume. In order to apply the RG flow equations (2.80) and (2.82) to
a finite four-dimensional Euclidean volume L; x L3, we replace the integrals over the
momenta in the evaluation of the trace by sums

oo

2m 2m
/dpo...—>ft Z and /dpi...—>f Z (3.14)

ng=—o0 n;=—00
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The boundary conditions in the Euclidean time direction are fixed by the statistics of
the fields. The corresponding Matsubara frequencies take the values

2 2 1
Wnoy = L_’]trn(] and Ung = L_7: (no + 5) ) (315)

for bosons and for fermions, respectively. When we study chiral symmetry breaking at
finite temperate in Sec. 3.6, we will identify the inverse extent of the Euclidean time
direction, 1/L;, with the temperature T" of the system. In contrast to the situation in
the Euclidean time direction, we are free in the choice of boundary conditions for the
bosons and fermions in the space directions. In the following we use the short-hand
notation
a2 3 4?2 3
220N R2 and p? =
Py = 12 i Pap = 12
=1 =1

1\ 2
2

for the three-momenta in the case of periodic (p) and anti-periodic (ap) boundary

conditions. We will consider both choices for the quark fields, but employ only periodic

boundary conditions for mesonic fields. Then, inserting the effective action (3.13) into

Eq. (2.80) and (2.82), the flow equation for the mesonic potential U in finite Euclidean

volume reads

9 2 _ 1 (kL)*+) (F) 2 g2 =272 L
k%Uk(a,w L, L) = LD () Tar D\ 8NOgp | @, (k"M (0, 7))L 'L

L

B 2 2 =2\\ 72

+j§2<%>@xk+Mumw»L,z)),<aw>
i={o,7}

where N, gives the number of colors and a specifies the proper-time cutoff-function

given in Eq. (2.84). The dimensionless threshold functions @ff;p and @I(DB) are discussed

in App. D.3. Using the behavior of the these threshold functions in the limit L — oo
and L; — 0o, we obtain the corresponding flow equation for infinite Euclidean volume:

o k2(a+1) 8Nc
Ok B

k==Uy(o, 7%, L L =
W Ly = 00 L= 00) = R T @ Mo, )

1 3
. (3.18
+%Mwﬁ@ﬁw*+%ﬂﬂﬁﬁﬁw*}( )

This expression agrees with that in Ref. [78] calculated directly in the infinite-volume
case. In order to be able to perform the integration in Laplace-space in Eq. (2.80)
and (2.82), we have to choose a > 2 in infinite volume [78]. As we will discuss in
Subsec. 3.4.3, we use the same initial conditions for the flow equation in finite volume
as in infinite volume. Therefore we choose the same value for a in finite as well as in
infinite volume. To be specific, we choose a = 2 for our calculations. This choice for a
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Figure 3.3: Schematic representation of the relation between the momentum sum-
mation and the UV and IR cutoff in momentum space, for anti-periodic boundary
conditions (left panel) and for periodic boundary conditions (right panel). The UV
cutoff is denoted by A, while k£ denotes the variable IR-cutoff of the RG scheme. The
arrow indicates the direction of the RG flow from £ = A to kK = 0. From these figures,
one can easily read off that the choice of the boundary condition becomes more and
more unimportant for larger volumes.

corresponds in infinite volume to a choice of an optimized regulator in the Functional
RG [88], cf. the discussion of the proper-time RG in Subsec. 2.4.3. Integrating the
flow equations (3.17) and (3.18) from the UV scale A to k& — 0, we obtain an effec-
tive potential in which quantum corrections from all scales have been systematically
included. The relation between the momentum summation resp. integration and the
UV and IR cutoff in momentum space as well as the role of the boundary conditions
are nicely depicted in Fig. 3.3.

Let us now turn to a discussion of the masses of the quarks, the sigma meson and
the pions on the RHS of the flow equations. The constituent quark mass M, is given
by

M? = g*[(o + m.)? + 7. (3.19)

The squared meson masses M?, i € {0, 7}, are the eigenvalues of the second-order

derivative matrix

B 02U,
0¢;i0¢;

of the meson potential Uy(c, %) with respect to the fields ¢ = (o, 7). They depend
only on the magnitude of the pion fields 7 and are independent of the direction. We
wish to stress the importance of this point, since otherwise the meson contributions

(Uk(o, 7)) (3.20)
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from the flow equations would not be compatible with the ansatz for the potential
which we will introduce below. The second derivative matrix is given by

Uso Uzz, 27 U227 Ur2p27®
Uyz221D) 2Uzs + Upozed (D)2 Urzzzd 1D 7 () Urzz2d 1D 73
Um-r‘22 7T(2) U7‘|—‘27‘|—‘24 7T(2)7T(1) 2 Uﬁ—‘Q + U7‘|—‘27T-24 (7T(2))2 Uﬁ—‘?ﬁ24 7T(2)’/T(3)
Ua,-l:22 7T(3) U,—l:Q,—l:24 7T(3)7T(1) Uﬁ-’?ﬁ-'24 7T(3)’/T(2) 2U7—f2 + Uﬁ-’27—r'24 (7T(3))2

where we have suppressed the scale index & of the potential and use the abbreviations

= Up21' ¥, Upo = %, (3.21)

_w

oU o
oo’ u

v " = 97 o

and the corresponding expressions for the higher-order derivatives. The eigenvalues of
this matrix are given by

L
ME = 5 |2Usn+ 47 Une + Uss + \/(2 Use + 4720z — Uyy)2 + 16 72 U2, | |
M; = 2Uz, M;=2Us, (3.22)

LT :
M; = 52U+ 47 Uzezz + Upy — \/ (2Uz2 + 4 TUzez2 — Uyy)? + 16 B2 U2,

For vanishing cross terms U, z2, the last eigenvalue reduces to 2 Uz + 4 @2 Uz2z2, which
corresponds to a derivative in “radial” direction in the pion-subspace. In particular
for 7 = 0, the three pion modes have equal masses. We also note that the pion
fields appear only in the combination 72 in the eigenvalues, despite the fact that the
derivative matrix contains terms linear in 7(®. This is due to the fact that we still
have rotation invariance in the pion space even in the presence of explicit symmetry
breaking terms in the sigma direction.

In order to solve the flow equations Eq. (2.80) and (2.82), we make a polynomial
ansatz for the meson potential U. This ansatz is determined by the following idea:
Since the current quark mass is the only source of symmetry breaking, the quark
term in the flow equation determines the symmetry breaking terms of the potential.
The constituent quark mass can be expanded around a finite expectation value of the
mesonic fields, which is chosen in the direction of the field o,

Mq2 = ¢*l(oc +m)? + 72 = ¢*[(0 + 09 — 09 +m,)? + 7]
= ¢*[(00 +me)* + 2me(o — 00) + (02 + 7 — 02)]. (3.23)

We have rescaled m, by a factor g for convenience, so that the physical current quark
mass is given by gm.. From this expression, we read off that the contributions to the
potential from the fermionic terms in the flow equations can all be expressed in terms
of powers of the combinations (02 + @ — ¢2) for the symmetric part and (o — o) for
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the symmetry-breaking parts. Therefore we make the ansatz

Ny [3(No—1)]
Uelo, @ L, L) = > > a(k, Li,L)(0 — 00)' (0" + 7 = 03))  (3.24)
i=0  j=0

for the meson potential. We show in App. E that this ansatz for the meson potential
is indeed sufficient to capture all contributions in the RG flow which arise due to the
explicit symmetry breaking through the current quark mass m.. As we mentioned
in the last section, the vacuum expectation value oy is nothing but the pion decay
constant. We stress that oy depends on L, L;, and k as well. The flow equations
for the coefficients of the potential are derived by inserting eq. (3.24) into the flow
equation for the potential and comparing coefficients on both sides. In principle, such
a projection results in an infinite set of coupled first-order differential equations for
the coefficients a;;(k). In order to solve this set of equations, we have to truncate the
sum in Eq. (3.24) by an appropriate choice for N,, where the smallest allowed choice
is N, = 2.

It is worthwhile to discuss the calculation of the flow equations for the coefficients
a;; and the vacuum expectation value oy in more detail. For this purpose, we define
the expansion coefficients of the flow equations (2.80) and (2.82) as

0 gl 11/70\7 0\ o
(’“%U'f) = g (a—a) (ﬁ) "oV

where we have suppressed the arguments of Uy. The flow equations for the coefficients
a;; in the ansatz for the potential are then given by

o g 0 do .
(k%Uk) - (k%azj) + it1, (_ka—ko) (i +1)(1 = dn,.)

. do
+aijn (i +1) (—200 ka—ko) (1 =01 (n,—i)5) (3.26)

, (3.25)

O‘:do
72=0

with the additional condition that (1 + 2j) < N,. From now on, we suppress the
arguments of the coefficients a;; for convenience. In order to ensure that the expansion
around oy corresponds to an expansion around the minimum of the potential, we have
to enforce

0

— Uy =0. (3.27)

80' o=00

For the coefficients a1y and ag;, this translates into the condition

a9 + 2@010'0 =0. (328)
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Due to this condition, only two of the three variables in the set {aq,ap1, 00} are
independent, and the third one can be expressed in terms of the other two. Likewise,
if we take the derivative of Eq. (3.28) with respect to the renormalization scale k, we
get an equation which relates the flow of these three variables:

k%alo + 2@01]{3 (%0’0) + 20’0]€%a01 =0. (329)
We can use this equation to replace the flow equation for a,q in the tower of equations
given by Eq. (3.26). It is desirable to eliminate aqq, since oy and ag; both correspond
to observables we wish to obtain, namely the pion decay constant and the pion mass.
In addition, with this replacement the system of differential equations can be solved
more easily.

From the general expression for the flow equations Eq. (3.26), we find the particular
equations governing a,o and ag;:

o \" 0 0 0
(k%Uk) = k%&lo — 2@20 (k'%ao) — al (20’0]6%0'0) s (330)

o . \" 0 0 0
(k%Uk) = k%a(n — ai (k’%ao) - 2@02 (20’0]{3%00) . (331)

The flow equation for ayq is given by the first line in Eq. (3.30). It contains on the
LHS only terms that are proportional to the symmetry-breaking current quark mass
m.. Because of this, a;y does not evolve in the chiral limit m,. — 0. If it is initially
zero at the UV scale, it remains zero on all scales. In this case, the condition (3.29)
forces the coefficient ag; to vanish as soon as oy acquires a finite expectation value.
This corresponds to the appearance of exactly massless Goldstone bosons in case of
spontaneous symmetry breaking, in accordance with our expectations for the chiral
limit.

In order to derive a flow equation for the minimum of the potential oy, we combine
the two equations in (3.30) and use eq. (3.29) to eliminate the k-derivatives of ajg

and apq:
9 10 P 01
(k%Uk) + 200 (k%Uk)

= — (k%ao) (2@20 + 2@01 + 4@110’0 + 8@020’8) . (332)
From the expressions for the meson masses, evaluated at the minimum of the potential,
it can be seen that the expression in brackets, which multiplies the k-derivative of oy, is
up to a constant factor the square of the o-mass, M?2. Therefore, this equation is always
well-conditioned. The only exception is at the chiral symmetry breaking scale, where
M? drops sharply, if the explicit symmetry breaking is very small. For reasonably large
pion masses, this is not a severe problem.
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Finally, we discuss some features of our implementation of explicit symmetry break-
ing. Incorporating the explicit breaking of the chiral symmetry into the potential and
the RG flow from the start has several advantages. The polynomial expansion dis-
cussed above evolves automatically from a potential with small symmetry breaking
peaked around oy =~ 0 to a potential with large symmetry breaking peaked at a value
0o ~ fr. Without explicit symmetry breaking, the polynomial expansion in ¢? has to
be changed from a parametrization in terms of powers of ¢* to (¢* — ¢2) at the chiral
symmetry breaking scale, see e. g. [78].

As we have already discussed in the last subsection, evolving the potential without
symmetry breaking and shifting the minimum subsequently by means of a bosonized
quark mass term in the effective action is not possible for a study of finite-volume
effects in low-energy observables. For our purposes, we have to include explicit sym-
metry breaking in the RG flow on all scales since, otherwise, divergences from massless
Goldstone bosons would restore the symmetry in the limit £ — 0, in accordance with
the fact that chiral symmetry is not spontaneously broken in finite volumes. In this
context, we would like to point out that even in the absence of a symmetry break-
ing term, the pion decay constant does not remain zero on all renormalization scales
k. On some intermediate scale below the chiral symmetry breaking scale, where the
quantum fluctuations are only partially integrated out, it acquires a nonzero value, and
chiral symmetry is spontaneously broken. However, the emergence of exactly massless
Goldstone bosons dominates the infrared evolution of the potential and counteracts
the formation of a symmetry breaking quark condensate.

Last but not least, our implementation of symmetry breaking is numerically ad-
vantageous. When the potential is expanded in a polynomial in a theory with exactly
massless Goldstone bosons, divergences appear in the flow equations for the coefficients
of operators of mass dimension higher than four [132]. As an added benefit of includ-
ing explicit symmetry breaking, the presence of a finite pion mass regulates these IR
divergences.

3.4.3 Numerical Evaluation

We have solved the RG flow equations numerically and present the results for the
volume dependence of the pion mass and the pion decay constant in the following
sections. For the numerical evaluation, we have used the polynomial ansatz for the
effective potential given in eq. (3.24), and expanded up to fourth order in the fields:

Uk(o, @) = ago(k) + ao1 (k) (0 + 7 — 03) + age(k)(0? + 7 — 07)?
+&10(k)(0’ — 0'0) + ago(k)(a — 0'0)2 + &30(k)(0’ — 00)3 + a40(k)(a — 0'0)4
+ay (k) (o — 00) (0% + 7 — 05) + an (k) (o — 09)* (0 + 7> — 07) . (3.33)

Here, we first discuss our choice of model parameters at the UV scale, and some details
of the numerical evaluation.
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‘ AUV [MGV] ‘ muyv [MGV] ‘ )\UV ‘ gme [MGV] ‘ f7T [MGV] ‘ may [MGV] ‘

1500 779.0 60 2.10 90.38 100.8
1500 T47.7 60 9.85 96.91 200.1
1500 698.0 60 25.70 105.30 300.2

Table 3.1: Values for the parameters at the UV scale used in the numerical evaluation.
The parameters are determined in infinite volume by fitting to a particular pion mass
and the corresponding value of the pion decay constant, taken from chiral perturbation
theory. Note that in our notation, the physical current quark mass corresponds to gm..

The UV scale itself is determined from physical considerations as the scale below
which a description of QCD with hadronic degrees of freedom is appropriate. Here,
we choose A = 1.5 GeV. At the ultraviolet scale A, the free parameters of the quark-
meson-model are the meson mass myy, the four-meson-coupling Ay, and the current
quark mass gm.., which controls the degree of explicit symmetry breaking. The Yukawa
coupling ¢ does not evolve in the present approximation [59, 123, 78]. We choose g =
3.26, which leads to a reasonable constituent quark mass of M, = ¢g(f,+m.) ~ 310 MeV
for physical values for the pion decay constant f, = 93 MeV and the current quark
mass gm. = 7 MeV.

In table 3.1, we summarize the three parameter sets which we used in obtaining our
results for pion masses of 100, 200 and 300 MeV. We determine these UV parameters
by fitting to a particular value for the pion mass m, (oco) and to the corresponding value
for the pion decay constant f;(oo) in infinite volume. We then evolve the RG equations
with these parameters to predict the volume dependence of f,(L) and m,(L).

For any value of the pion mass, the corresponding value of the pion decay constant
is taken from chiral perturbation theory [98]. The pion mass is mainly controlled by
the value of the current quark mass, which parametrizes the symmetry breaking. The
current quark mass gm,. varies from approximately 2 MeV for a pion mass of 100 MeV to
about 10 MeV for m, = 200 MeV, and it has to be increased to approximately 25 MeV
for m, = 300 MeV. To achieve the correct corresponding values for the pion decay
constant, the meson mass at the UV scale has to be decreased from approximately
myy = 780 MeV to myy = 700 MeV, while the pion mass increases from 100 to
300 MeV. The four-meson-coupling Ayy is fixed. We have checked that our results are
to a very large degree independent of the particular choice of UV parameters: Different
sets of parameters leading to the same values of the low-energy constants in the infinite
volume, give the same volume dependence.

Although it facilitates the comparison to chiral perturbation theory, it is not nec-
essary as a matter of principle to use results from chiral perturbation theory for the
mass dependence of the pion decay constant. However, as has been found for infinite
volume, in order to correctly describe the behavior of the pion decay constant as a
function of a single symmetry breaking parameter, it is necessary to go beyond the
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approximation of a constant expectation value for the meson field, which we used here,
and to include wave function renormalizations in the RG flow. In infinite volume, it
was recently shown that the inclusion of the wave function renormalizations in the RG
flow makes it possible to recover the correct prefactors of chiral logarithms [112], in
agreement with chPT. Such an approach is more powerful than the present one, since
in addition to the volume dependence, it predicts the dependence of m, and f, on the
symmetry breaking parameter m.. We stress that even in such an approach, it remains
necessary to fit the parameters at the UV scale to reproduce the correct values of the
low energy constants. Thus, for example the value of the pion decay constant in the
chiral limit is not a prediction of the model, but a necessary input to constrain its
parameters. The full set of RG-equations, including the wave function renormalization
and coupling constant renormalization equations, would reduce the input parameters
to the four-fermion coupling and the current quark mass at the UV scale. In connection
with the symmetry breaking ansatz Eq. (3.24), these equations are more complicated
and have not yet been worked out.

A limit on the possible values of the current quark mass is given by the requirement
that all masses, in particular the sigma-mass, must remain substantially smaller than
the ultraviolet cutoff Ayy =~ 1500 MeV of the model. For a pion mass of m, =
300 MeV, we find m, ~ 800 MeV.

With regard to the UV cutoff, we find only a slight dependence of our results for
reasonably large volumes, provided we use anti-periodic boundary conditions for the
quark fields in spatial directions. When we change the cutoff from Ay = 1500 MeV to
Ayy = 1100 MeV, our results for the relative shift of the pion mass in the finite volume
change little. The change in the pion mass from a variation of the cutoff is of the order
of less than 1% for L > 2 fm, and approximately 6% at L = 1 fm for the largest pion
mass we considered here, m, = 300 MeV. For smaller pion mass, the dependence on
the UV cutoff becomes weaker, for m, = 100 MeV it is negligible on the scale of our
results. This is due to the fact that a higher degree of explicit symmetry breaking
leads to more massive particles for which a smaller value for the UV momentum cutoff
becomes more relevant.

For a choice of periodic boundary conditions, however, the cutoff dependence of the
results is somewhat more pronounced, in particular for small volumes when the Eu-
clidean time extent is kept large. Varying the cutoff between 1.5 GeV and 1.1 GeV for
a pion mass of m,(c0) = 300 MeV, we find that the largest variations are of the order
of 5 — 6% of the pion mass, and take place in a volume range of L = 0.5 — 1.0 fm,
depending on the exact ratio 1/(LL;) of time and space extent. As we argue in the next
section, this is mainly due to effects on the quark condensation: for periodic boundary
conditions, a larger UV cutoff allows for the build-up of a larger condensate in finite
volume, since for any given volume, a larger number of momentum modes 27 |7i|/L
remain below the cutoff and contribute. In a volume region where the quarks domi-
nate the finite volume effects, a certain cutoff dependence of these effects is therefore
expected in this model.
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3.5 RG Study of Finite-Volume Effects

3.5.1 RG Flow in a Finite Volume

The results of the RG flow equations for the evolution with the infrared cutoff scale k
give a picture of chiral symmetry breaking which reflects the formation of the quark con-
densate for higher momenta and the effects of pion fluctuations at low scales. Figure 3.4
shows the masses of the pion and sigma, and the pion decay constant as a function of
the renormalization scale k, for a value of m, = 100 MeV, in the infinite volume limit.
Starting at the UV scale Ayy and proceeding towards smaller values of k, we observe
that the pion decay constant f, grows rapidly around the chiral symmetry breaking
scale kysp ~ 800 MeV, begins to flatten between 600 —400 MeV, and becomes almost
completely flat below 300 MeV. Generally, massive degrees of freedom decouple from
the renormalization group flow at a momentum scale given by the value of their mass m,
i.e. they do not contribute to the renormalization for k& < m. This can be seen clearly
in the flow of f,. Assoon as the renormalization scale is of the order of the constituent
quark mass (approximately 300 MeV), the quarks are no longer dynamical degrees of
freedom and f, becomes essentially constant. The RG flow of the mass of the heaviest
meson, the sigma, is in several respects very similar to the flow of f,. Its slope is also
initially large at the chiral symmetry breaking scale and starts to decrease between
600 — 400 MeV as well. The value of the sigma-mass reaches a maximum at k slightly
above 300 MeV. Its decrease below this scale is due to the light pion with a mass of
100 MeV, which remains in the evolution as the only dynamical degree of freedom.
When the pion mass is increased, the drop in the sigma-mass below the scale set by
the constituent quark mass becomes much less pronounced. For m, ~ m, ~ 300 MeV,
me (k) is essentially a flat function of k after it has reached its maximum.

In finite spatial volumes, a similar behavior can be observed. For the introductory
discussion in this subsection, we restrict ourselves to finite spatial volumes and anti-
periodic boundary conditions for the quarks in spatial directions. In the subsequent
sections, we will also study the effects of different boundary conditions for the quarks
in volumes where we use an anisotropic compactification of space-time in the Euclidean
and the spatial directions. In Fig. 3.5 the meson masses and the pion decay constant
are shown as a function of the scale 1/L set by the finite spatial volume. In these
results all quantum fluctuations are integrated out completely, i. e. the scale k is
removed. Now let us consider a finite value of k, where the quantum fluctuations
are only partially integrated out. The scale 1/L introduced by the finite volume is
in competition with the renormalization scale k. As soon as k drops below 7/L, the
renormalization scale no longer controls the renormalization flow. We can interpret
the results shown in Fig. 3.5 roughly as an instant picture of the k-flow arrested at
a scale k = m/L. However, this correspondence is not one-to-one: while the cutoff k
affects both bosonic and fermionic fields in the same way, this is not true for 1/L. Since
there are no zero modes for fields with anti-periodic boundary conditions, the fermionic
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Figure 3.4: degrees of freedom and the pion decay constant as a function of the renor-
malization scale k in infinite volume. The chiral symmetry breaking scale can be clearly
identified as the scale at which the mass of the heaviest meson (the o) has a minimum.
For this figure, we have chosen m,(c0) = 100 MeV and f,(oc0) = 90.4 MeV.
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Figure 3.5: Masses of the mesonic degrees of freedom and the pion decay constant
as a function of the inverse box size 1/L. The results are obtained by completely
integrating out all quantum fluctuations (k — 0) at fixed L. As soon as k < 1/L, the
box size becomes the controlling scale, and in the limit £ — 0 it is the only scale that
remains. As for the preceding figure, we show the results with m, = 100 MeV and
fr =290.4 MeV for £k — 0 and L — oo.
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fields are more strongly affected by this cutoff than the mesons. For the mesons, the
2

scale =F imposes only a minimum value for the smallest non-zero momentum mode.
For the fermionic fields, on the other hand, the lowest momentum mode /37 /L can
effectively “freeze” the quark fields already above the constituent quark mass scale and
no condensation of quarks takes place. For very small volumes 1/L > 0.5 fm~", the
suppression of quark condensation by the large cutoff becomes the dominating effect,
and therefore chiral symmetry is approximately restored. A more subtle effect can also
be seen in the behavior of the sigma-mass. While the sigma-mass has a maximum in
the k-flow at a value of m, ~ 600 MeV, from which it drops to m, ~ 500 MeV due
to the pion fluctuations, there is no corresponding maximum in the 1/L-dependence.
With increasing 1/L the pions hardly feel the constraints of the finite volume, but
the momentum scale at which the quarks decouple increases consistently. Therefore
the pion contributions at low momenta have a greater effect in the RG flow, since
the k-region, in which they are the only relevant degrees of freedom, becomes larger.
Through this effect, the pions also contribute toward the restoration of chiral symmetry
for small volumes.

3.5.2 Influence of the Quark Boundary Conditions
We have calculated the relative pion mass shift

My (L) — mg(00)

R[m,(L)] = (3.34)

M (00)
with both choices for the fermionic boundary conditions for three different pion masses,
m.(00) = 100, 200 and 300 MeV, and for infinite (L;/L — o) as well as for finite
extent L; of the Euclidean time axis with different ratios L;/L = 3/1, 3/2, 1/1. Note
that L, is related to the temperature 7" of the system by L, = 1/T.

In Fig. 3.6, we show the results for the pion mass shift with periodic boundary
conditions as a function of the box size L. The three panels show the results for the
three different pion masses we investigated, and the curves are labeled with the ratios
L;/L. The main observation is that in this case, for certain volume ranges, the mass
of the pion in the finite volume can be lower than in infinite volume. In particular,
this is the case for pion masses m,(oco) > 200 MeV, ratios L;/L > 3/2, and volumes
smaller than 2 fm: R[m,(L)] takes on negative values and develops a minimum. This
can be seen in the lower two panels of Fig. 3.6. Secondly, we note that this minimum
in the mass shift becomes deeper for larger pion masses m, (o), and the corresponding
larger values of f,(c0). For m,(co) = 300 MeV, the pion mass shift reaches down to
approximately R[m,] = —0.14 at L = 0.7 fm.

In Fig. 3.7, we compare the results for the pion mass shift with periodic (p) and anti-
periodic (ap) boundary conditions for the fermion fields, for the ratios L;/L = 3/2 and
L;/L = 1/1. Clearly, employing periodic boundary conditions lowers the relative mass
shift R[m,(L)], compared to using anti-periodic boundary conditions. The differences



3.5. RG Study of Finite-Volume Effects

R[my(L)]

R[my(L)]

R[my(L)]

e | 1 1 1 1 1 1
1= -
L/L= o u
= L/IL=3/1 o ]
0815 . L/L=32 &
A LL=11 e
0.6 -+ ° -
* A °
04l o mp(e) = 100 MeV |
' A [ ]
[ ] ¢ ]
02 my o i e, 4
.l...O ‘ a A AA: Y
|| 'Y A
ok an & : . ] s
1 1 1 1 1 1 1 1
1 15 2 25 3 35 4 45
1 1 1 1 1 1 1 1
o8| ® -
A L/L= o |
06 L LIL=3/1 &
or LiL=32 &
LIL=1/1 e
A0
04 | -
o . ° m(e) = 200 MeV
02 - * A [ ] —
* 4 ¢
[ ] [
o—'.‘,“.gzﬂluoo- PR
l..‘.‘.-
1 1 1 1 1 1 1 1
05 1 15 2 25 3 35 4
1 1 1 1 1 1
O5F o -
04 Lt/L: ) |
1 » L/L=3/1
» L/L=32 &
03 ¢ LL=11 e
02 | ° -
A
. o m,{) = 300 MeV
01} .
A
| o ® o
0. A s ané S A ¢ one o =
[ RS "
01 m_seqn™ .
L]
1 1 1 1 1
0.5 1 1.5 2 2.5 3
L [fm]

Figure 3.6: Results for the pion mass shift R[m,(L)] = (mg(L) — mz(00))/m,(c0), in
a finite Euclidean volume of size V' = L? x L,, for periodic boundary conditions. The
ratio of L;/L for the different curves is given in the figure. We show the results for
pion masses of m,(c0) = 100,200,300 MeV (identified in the figure).
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become larger in smaller volumes, for larger pion masses m,(o0), and with increasing
ratios L;/L. As we have seen in Fig. 3.6 for large pion masses, the pion mass shift
becomes negative, if the length of the box in the Euclidean time direction is taken to
infinity.

Although at first a surprising result, this shift to smaller pion masses can actu-
ally be explained in the framework of the quark-meson model and its mechanism of
chiral symmetry breaking. In order to show this, we resort to a version of the model
that is simplified compared to our ansatz (3.24), but still contains the same essential
structure. In this model, for a fixed symmetry breaking parameter gm,, the pion mass
is completely specified by the scale-dependent order parameter oy(k, L), and by the
values given at the UV scale for the coupling g and the meson mass m?,,. According
to [133, 37], it is

2 MMy,

MZ(k, L) = ok L)’ (3.35)
For periodic boundary conditions, the “squeezing” of the quark fields in a small finite
volume leads to an increase in the chiral quark condensate, before a further decrease
of the volume size induces a restoration of chiral symmetry. Following eq. (3.35), the
increase in the order parameter leads in turn to the observed decrease in the pion
mass. In Fig. 3.8, we show the finite-volume shift R[f,(L)] of the pion decay constant
fx(L) = 0¢(L) which is defined as

fx(L) = fx(o0)
frlo0)

Indeed, we observe an increasing pion decay constant f.(L) = oo(L) exactly for those
values of L for which the pion mass decreases.

The intermediate increase in the order parameter with the decreasing volume size
can be explained more rigorously from the RG flow equations. Since this increase occurs
in volumes that are already quite small, the flow is dominated by the zero-momentum
modes and it is sufficient to analyze the contributions of these modes.

The zero mode contribution to the flow equation (indicated by the index 0 on the
LHS) from quarks and mesons is for purely periodic boundary conditions in spatial
directions given by

R[ffr(L)] =

(3.36)

0 .
k%Uk(U7 7T27 L7 Lt):| o -

k2(a+1)( 4NcNf

LL3 (k% + 1 + M, (o, 7?)?)(e+1)

- N7 -1 - 1 ) (3.37)
(kQ—l—Mﬂ(J,ﬁQ)Q)(aJrl) (kQ—l—MU(J,ﬁQ)Q)(aJrl) ’ )

where 13 = (£m/L;)?* corresponds to the value of the two Matsubara frequencies closest
to zero and a specifies the proper-time cutoff function given by Eq. (2.84). Note that
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Figure 3.7: Comparison of the pion mass shift in finite volume R[m,(L)] = (m.(L) —
mx(00))/mx(oc0) for the two choices of fermionic boundary conditions. Open symbols
denote results for anti-periodic, solid symbols for periodic boundary condition. The
size of the volume is V' = L3 x L;, the ratios of L;/L for the different curves are given in
the figures. We show results for pion masses of m,(co) = 100, 200,300 MeV (identified
in the figure).
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M, (o, 7*) and M, (o, 7*) depend on the scales k, L and L; through their dependence on
the expansion coefficients of the potential. In contrast, M (o, @) = g*[(c +mc)* + 7]
does not depend on these scales, since we are working in the local potential approxima-
tion?. The prefactor 1/L3 diverges for L — 0 for all momentum modes, but enhances
only the zero modes: Due to the factors 1/L? of the momentum terms in the denomi-
nators, the enhancement is canceled for the non-zero momentum modes, and they are
in fact strongly suppressed. If we scale L; proportional to L, this suppression occurs
also for the lowest fermionic terms because of the Matsubara frequencies, although it
is much weaker. The result of this competition between suppression and enhancement
for the fermions depends on the ratio L;/L.

We first consider exclusively the contributions of the fermionic zero modes, which
exist only for periodic boundary conditions:

P F k?(a—l—l) AN.N
k—Uy (0,72, Ly, L = - .2. e f . (3.38
ok k(o-aﬂ— y Lty ) o LtLB (kQ + Vg + MqQ(O', ﬁ?))aJrl ( )

This truncation to the fermionic contributions only is equivalent to the leading term of
a large N -approximation, as was shown for infinite volume in Ref. [80] and for finite
volume in Ref. [134].

In principle, Eq. (3.38) can be integrated analytically, since the constituent quark
mass does not depend on any scale-dependent quantities. The result shows that the
zero mode contributions to the potential as a function of the expectation value are
repulsive for small values. Consequently, these contributions increase the expectation
value oy(k, L, L;) and thus the value of the pion decay constant. Since these zero-
momentum contributions are enhanced for small volumes, this explains the increase in
the expectation value.

Alternatively, the increase of oo(k, L, L;) can be understood in more detail by a
direct analysis of the zero mode contributions to the flow equation for the minimum
oo(k, L, L) of the potential. Since the flow equation for og(k, L) is obtained from the
minimum condition

9 By
—Ui(c =00, =0,L,L;) =0, (3.39)
0o
it is determined by the flow of the potential. As we have seen in our analysis above, the
fermionic contributions tend to increase the absolute value of the minimum og(k, L),
while the mesonic contributions tend to decrease it. Thus, we can perform this analysis
entirely by considering the zero mode part of the potential flow given in eq. (3.37).

The renormalization scale k controls the momenta of the quantum fluctuations that

are integrated out. As soon as this momentum scale drops below the mass of one of the

2We stress that this does not mean that the constituent quark mass is independent of the scales k,
1/L and 1/L;. The constituent quark mass is obtained by evaluating the expression for M, 3(0, 72) at
the minimum of the potential which, of course, depends on k, L and L;.
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Figure 3.8: Results for the finite-volume shift of the pion decay constant R[f.(L)]

Rf(L)]

Rf(L)]

Rfr(L)]

L [fm]

1 1 1 1 1 1 1 1
O -
r 39
| |
0.2 -l"f”::,‘z *
02 u N ° -
.... | . R A ...
A
0.4 | * b -
0 . i
Y A M) = 100 MeV |
A
e LiL= © m
o L/L=31
-0.8 _AA:o L:/L=3/2 A
ie° LIL=11 e
a1 F -
1 1 1 1 1 1 1
1 15 2 25 3 35 4 45
L [fm]
0.4 1 1 1 1 1 1 1 1
02 | u"""n -
..I o* l'.‘
of * R - 3 | LN N
[ J
02 . ° -
* . . m, {e0) = 200 MeV
*
- - A —
0.4 S
06, o LlL= o m o
o LIL=31 o
08 Fe L/L=312 a ]
o LIL=11 e
[ ]
-1 1 1 1 1 1 1 1 1
05 1 15 2 25 3 35 4
L [fm]
06 _I 1 1 1 1 1 1 I_
S um
048 ooy -
. l.
02 | n -
* AL A.l
A My
oF . eoo 8V oeve o L] -
02F., o° _ -
o m () = 300 MeV
-0.4 o -
06 e L/L= o I
LIL=31 o
08 |® L/L=32 a =
® L/L=11 °
10 1 1 1 1 1 1 L
05 1 15 2 25 3 35 4

(fa(L) — fr(00))/ fx(00), in a finite Euclidean volume of size V' = L3 x L, for periodic
boundary conditions. The ratio of L;/L for the different curves is given in the figure.
We show the results for pion masses of m,(oc0) = 100,200,300 MeV (identified in the

figure).
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degrees of freedom, that particular field can no longer contribute to the RG evolution
of the running couplings: it decouples from the RG flow. We restrict the discussion
here to scales k£ < m,, where the sigma meson has already decoupled.

With periodic boundary conditions, the finite box length in the Euclidean time
direction L, is the only scale which affects the zero modes. The scale m/L; is in
competition with the renormalization scale k, and if £ drops below this scale, the lowest
Matsubara frequency vy = m/L; acts as a cutoff and stops that part of the evolution
which is driven by the quark fields. If L; is sufficiently small, this happens already
above the scale at which chiral symmetry breaking sets in. In that case, condensation
of the quark fields is prevented, and the constituent quark mass remains small. This
means that m,(k — 0, L, L;) remains large and that R[m,(L)] is large and positive.
This is illustrated by the results for L;/L = 1/1 and small L in Fig. 3.6.

The situation is different for large values of L;/L > 3/2. Here, the additional scale
set by 1/L; plays a less important role and becomes relevant only for much smaller
volumes. In this case, quarks build up a large condensate. According to eq. (3.35), this
increase in the chiral condensate leads to a decrease of the pion mass, which is visible in
Fig. 3.6 for L;/L > 3/2, m,(c0) > 200 MeV, and L > 0.8 fm. For large values of L;/L,
the decrease in the condensate for small volumes cannot be explained by the presence
of the cutoff 7/L, for the quark fields alone. There is an additional mechanism that
decreases o in such a way that chiral symmetry is broken less strongly. For very small
volumes, the pion contributions in Eq. (3.37) dominate the flow of oq. Even for a large
ratio L;/ L, this leads to a decrease in oy and the observed rise in R[m,(L)] for small L.

For anti-periodic boundary conditions, we do not find any decrease of R[m,(L)]
with decreasing finite volume size L for any value of L;/L, as can be seen in the
comparison in Fig. 3.7. In this case, two effects are responsible for the finite volume
behavior: effects due to the quark condensation, and effects due to light pions which
appear after the chiral condensate has been built up by the quark fields, see also the
discussion in Subsec. 3.5.1. In contrast to the case of periodic boundary conditions, for
anti-periodic boundary conditions the formation of the quark condensate is strongly
suppressed by the existence of a lower bound for the fermionic momenta, which is
V371 /L, see Eq. (3.16), and acts as an infrared cutoff. Consequently, for small L, fewer
modes contribute to the chiral condensate. If in addition L;/L is small, the condensate
decreases further and we observe a larger mass shift R[m,(L)].

3.5.3 Comparison to Chiral Perturbation Theory

In this section, we compare our results for the volume dependence of the pion mass to
those from chiral perturbation theory.

In Fig. 3.9, we show the pion mass shift as a function of the size L obtained from
chPT and from our RG approach. (Note that Fig. 3.9 has a logarithmic scale, whereas
Figs. 3.6 and 3.7 have linear scales.) We present results for different pion masses
from RG calculations with both periodic and anti-periodic boundary conditions for
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Figure 3.9: Comparison of the pion mass shift R[m,(L)] = (my(L) — m(c0))/m(c0)
for different boundary conditions with the results of chiral perturbation theory [105] on
a logarithmic scale. The ratio of L;/L for the different curves is given in the figures. We
show results for a pion mass of m,(c0) = 100,200,300 MeV (identified in the figure).
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the fermions, and from chiral perturbation theory [98, 105]. For the chPT results, the
pion mass shift is calculated with the help of Liischer’s formula [125]. As discussed
in Sec. 3.2, Liischer’s formula relates the leading corrections of the pion mass in finite
Euclidean volume to the 77 - scattering amplitude in infinite volume. The sub-leading
corrections drop as O(e ™) with m > 1/3/2m,. Using a calculation of the -
scattering amplitude in chPT to three loops (nnlo) as input for Liischer’s formula, the
authors of Ref. [98] obtain a correction above the leading order, which is then added
to the ezact one-loop result of Gasser and Leutwyler [100]. In Fig. 3.9, we show the
results from Ref. [98]. Liischer’s original approach only considers the periodicity of pion
propagators in finite volume as an invariance under a shift by L. More recently, this
has been improved to account for the fact that these propagators are actually invariant
under shifts by 7L with arbitrary 7 [105]. The result is a Liischer formula resummed
over 71. In Fig. 3.9, we compare our results to those from chiral perturbation theory
for Ly/L — oo. We find the same slope, provided we impose anti-periodic boundary
conditions on the fermionic fields. However, for periodic boundary conditions, our re-
sults clearly differ from chPT. This is an interesting result in light of the discussion
of finite-volume effects in QCD by Gasser and Leutwyler [101]: They showed that the
low-energy constants in the chPT Lagrangian remain unchanged from their values in
infinite volume if one considers QCD in a finite Euclidean volume, provided the same
anti-periodic boundary conditions as in the temporal direction are chosen as well in
the spatial directions for the quark fields. This leaves open the possibility that the
finite-volume behavior might change if one uses boundary conditions in spatial direc-
tions which differ from the anti-periodic ones in the temporal direction. Applying this
argument to our results depicted in Fig. 3.9, we suggest that for anti-periodic boundary
conditions the effective low-energy constants, which are relevant for the finite-volume
effects in the pion mass, agree in both approaches. The differences observed between
the RG results for periodic quark boundary conditions and the chPT results then might
imply that the low-energy constants change for periodic boundary conditions.

In Tab. 3.2, we give the values for R[m,(L)] for L = 2.0, 2.5, 3.0 fm, L; — oo and
three pion masses m,(o0) = 100, 200, 300 MeV. In addition, the table contains the
results of chPT from an exact one-loop calculation for a finite volume [100], and the
exact one-loop calculation with corrections in three-loop order obtained from chPT
using Lischer’s formula [98]. Moreover, the table contains the results from our RG
calculation with anti-periodic boundary conditions for the fermionic fields and the
improved results from [105]. We observe that our results are consistently above those
from chPT. However, the difference between the RG result and the loop expansion
decreases with higher order in loops. In particular, the RG result is closer to the
improved calculation [105] than to the ”simple” loop calculations in chPT.

For a given volume size, Liischer’s approach becomes an increasingly better ap-
proximation with increasing pion mass. The decreasing differences between the chPT
results and the RG results with increasing pion mass are compatible with this esti-
mate. For large volumes, the mass shift is completely controlled by pion effects and
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Rim,(L)]

L [fm] | m,(o0) [MeV] RG | 1L chPT | +(nnlo-lo) | resum. chPT
2.0 100 26.6 x 1072 | 874 x 1072 | 11.6 x 1072 14.2 x 102
200 538 x 1072 | 2.00 x 1072 | 3.31 x 1072 | 4.03 x 1072

300 1.70 x 1072 | 0.56 x 1072 | 1.12 x 1072 1.32 x 1072

2.5 100 10.37 x 1072 [ 3.85 x 1072 | 4.97 x 1072 | 5.84 x 1072
200 1.95x 1072 [ 0.73x 1072 | 1.17 x 1072 1.36 x 1072

300 531 x 1073 | 1.65x 1072 | 3.27x 1072 | 3.67 x 1072

3.0 100 494 %1072 [1.91 x107% | 2.41 x 1072 2.75 x 1072
200 7.85 x 1073 | 2.95 x 1072 | 4.65 x 1073 5.21 x 1072

300 1.76 x 1073 | 054 x 1072 | 1.05x 107* | 1.14 x 1073

Table 3.2: Values for R[m,(L)], cf. eq. (3.1), the relative shift of the pion mass in
finite volumes of L = 2.0, 2.5, 3.0fm and L; — oo, compared to the value in infinite
volume, for pion masses of m,(cc) = 100, 200, 300 MeV. We compare results from
our RG calculation with anti-periodic boundary conditions for the fermionic fields to
the exact one-loop chPT results of [100] for a finite volume (1L chPT), and the exact
one-loop calculation with corrections in three-loop order obtained with chPT using
Liischer’s formula [98] (1L chPT + (nnlo-lo)). The last column gives the improved
results obtained from the resummed Liischer-formula [105] (resum. chPT).

drops as e”"*% so that both the RG and the chPT results have the same slope in the
logarithmic plot. For the entire volume range shown in Fig. 3.9, the RG and chPT
results apparently differ only by a factor which is almost independent of the volume
size. For m(oc0) = 300 MeV, both agree within errors. For small volumes, however,
the RG approach has the advantage that it can be extended to describe the transition
into a regime with approximately restored chiral symmetry, where the chiral expansion
becomes unreliable.

Compared to the quarks, the mesonic degrees of freedom are less affected by the
ratio L;/L. The upper curve in Fig. 3.9 represents RG calculations with anti-periodic
boundary conditions and L;/L = 1/1, which gives a larger R[m,(L)] compared to the
lower curve corresponding to L;/L = oo. Fluctuations due to the light pions yield a
decrease of the condensate and explain the increase of R[m(L)] for larger volumes. In
particular for small pion masses (m, = 100 MeV) and the ratio L;/L = 1/1, the results
with periodic and with anti-periodic boundary conditions overlap over a wide volume
range. From our analysis, for sufficiently small values of m,(c0) this is expected in the
region where pion dynamics dominate. Because of this, the slopes of the curves are very
similar. The deviations between results at the same, fixed ratio L;/L that differ only in
the choice of boundary conditions become larger for increasing pion masses m. (o) and
decay constants f,(oco). This indicates that fermionic effects are increasingly important.
Evidence for this is also the observation that the results for the pion mass shift with
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periodic boundary conditions have a smaller slope, compared to the results with anti-
periodic boundary conditions, and also compared to those of chPT. The reason is that
the cutoff scales are different: for periodic boundary conditions, the lowest fermion
momentum mode is given by the lowest Matsubara frequency vy = 7/L;, and not
determined by /37 /L as for anti-periodic boundary conditions. In particular for large
values of L;/L, this explains that the finite volume mass shift will be much larger for
anti-periodic boundary conditions. For small volumes, we thus find the importance
of quark effects confirmed by the dependence on the boundary conditions. But since
pion effects dominate for larger volumes, the results of chPT and of our RG approach
converge in this volume regime.

3.5.4 Comparison to Lattice QCD results

Apart from the general interest of finite volume effects, the main motivation for our
investigation is its possible application to lattice gauge theory. At present, most lattice
calculations are performed in volumes of the order of L = 2—3 fm. In recent systematic
studies of finite volume effects done with Wilson fermions, the lightest pion masses are
of the order of m, = 400 — 500 MeV [111, 91, 135, 109, 92, 110]. With staggered
fermions, pion masses as low as 250 MeV have been realized [136]. Simulations with
fermions with good chiral properties such as domain-wall or overlap fermions have been
done with pion masses as low as 180 MeV in the quenched approximation [137] and
as low as 360 MeV with two fully dynamical flavors [138]. Because the finite volume
effects depend on the mass of the lightest field, they become more severe for smaller
pion masses. Thus, the better the statistical accuracy of these calculations, the more
important it becomes to understand finite size effects and to control the finite size
extrapolation.

Our model incorporates chiral symmetry and can still be used in the vicinity of
the point where chiral symmetry is restored. Finite volume effects should therefore
be captured as far as they relate to chiral symmetry breaking. But our model does
not contain gauge degrees of freedom, there are no gluons, and consequently the con-
stituent quarks in this model are not confined. There is no guarantee that the same
mechanisms apply as in QCD. Since the model contains dynamical meson fields and
chiral symmetry is broken in the usual way, our results can only be compared directly
to those of unquenched lattice calculations with two dynamical quark flavors, where
normal chPT is also applicable. However, qualitatively our arguments regarding the
quark condensate may also have implications for quenched simulations, since a similar
mechanism may apply.

For periodic boundary conditions, our results reproduce the qualitative behavior of
the lattice results, but clearly differ from chPT, as can be read off from Figs. 3.6 and
3.9, respectively. For anti-periodic boundary conditions, they largely agree with chPT.
The issue of finite volume effects has been addressed in several lattice studies [139, 126,
109, 92, 110]. The pion mass shift R[m,(L)] calculated by the ZeRo collaboration [92],
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which is shown in Fig. 3.1, actually becomes negative and has a minimum at small
volume sizes. Although this negative shift is small, the result seems to be significant.
The minimum is most pronounced for small quark masses (at a hopping parameter of
k = 0.1350). The position of the minimum corresponds to m,L = 3.5 or L = 1.264 fm
with T'/L = 2.25. The results were obtained in the quenched approximation with
periodic boundary conditions for the quark fields. Similar observations have also been
made in [109, 110], where the simulations were performed with dynamical Wilson
quarks.

In our calculation, such a decrease in the pion mass is reproduced if we choose pe-
riodic boundary conditions for the quarks. The minimum appears for large pion mass
mg(00) = 300MeV, L;/L > 3/2 and L = 1fm, cf. Fig. 3.6. Our model suggests a
mechanism for the appearance of this minimum, which may be the same mechanism
as on the lattice. In contrast to our findings, however, the decrease of the pion mass in
finite volume seems to be larger for smaller infinite-volume pion mass. For lattice cal-
culations, several other mechanisms for finite volume mass shifts have been suggested,
from an interaction of hadrons with their mirror states on a periodic lattice [139] to
effects on quark propagation related to a breaking of the center symmetry of the gauge
group [126].

The influence of boundary conditions for sea and valence quarks in lattice simula-
tions was also studied by Aoki et al. [126]. They find that periodic boundary conditions
lead to a lower mass shift than anti-periodic boundary conditions (see table III of [126]).
This finding is in agreement with our results, as can be seen in Figs. 3.7 and 3.9. The
actual pion mass on the lattice is very high (> 1 GeV). Different choices for the bound-
ary conditions of sea and valence quarks make it possible for the authors to establish
a connection between the mass shift and the expectation value that Polyakov loops
acquire in the presence of sea quarks. They relate the large increase of the pion mass
observed for small lattice size to the restoration of chiral symmetry. This is illustrated
by their results for the chiral condensate (Fig. 10 of [126]), which decreases strongly
in small volumes. In the same figure, the condensate may increase for intermediate
volume size, which would be similar to the behavior of the order parameter seen in our
simple model. We agree that the mass shift in small volumes is due to chiral symmetry
restoration, and reproduce this result in our calculations.

Our RG approach improves our understanding of the mechanisms of finite volume
effects in QCD, but cannot yet give a model independent extrapolation formula to
relate finite lattice results to the hadronic world.

3.6 Quark-Meson Model at Finite Temperature

In this section, we use the quark-meson model for a first study of dynamical chiral
symmetry breaking at finite temperature in QCD. In particular, we discuss the chiral
phase transition in infinite and finite volume and its dependence on the pion mass in
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Figure 3.10: Normalized sigma mass N[m,|(T) = ZZ%)) and normalized pion decay
constant N[f,](T) = 228 as a function of the temperature, in infinite volume for a

f=(0)
pion mass m$?> = 100 MeV.

Sec. 3.6.1 and 3.6.2, respectively. In Chapter 4, we will discuss this subject again in
an approach that incorporates the presence of gluons at high energies.

3.6.1 Chiral Phase Transition Temperature in Infinite Volume

Let us start with a brief discussion of the dependence of the chiral phase transition
temperature in infinite volume on the zero-temperature pion mass m{ = m.(T = 0).
In order to define a chiral phase transition temperature in the presence of explicit
symmetry breaking, we use the dependence of the sigma mass on the temperature. We
define the phase transition temperature 7, through the minimum of the o-mass,

om,(T)
oT

9*m,(T)

=0 and 572

T=Te

> 0. (3.40)

T=T¢

Alternatively, one can define the phase transition temperature as the turning point
of the pion decay constant as a function of temperature®. We have checked that

3In finite volume, strictly speaking no phase transition is possible, since non-analyticities cannot
appear in the thermodynamic potential. For this reason, there is no distinct point that allows for
an unique definition for the crossover or the pseudo-critical temperature. For example, the critical
temperature T, can also be defined as the temperature at which f; reaches half its zero-temperature
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|m-[MeV] | 0 | 50 [ 100 | 150 | 200 | 250 | 300 |
T.MeV] [ 147.6 | 163.9 [ 178.1 | 191.8 | 208.3 | 228.0 | 249.3
Ro(m®) | 0 [o0.104]0.207]0.300 [ 0.411 | 0.545 | 0.689

)
Table 3.3: Dependence of T, and Rc(mﬁr())) = Tc(mwTCi()g)Tc(o) on m{ = mx(T' = 0).

the values for the chiral phase transition temperature 7. obtained from these two
different definitions agree within a few percent. For example, in Fig. 3.10 we compare
the normalized o-mass N[m,](T) = L) and the normalized pion decay constant

mqg(0)
N[f-)(T) = J}Z((g)) for m{”) = 100MeV. One observes that both definitions for the
critical temperature yield for practical purposes the same result.

In Tab. 3.3 and Fig. 3.11, we show* the chiral phase transition temperature 7,
obtained in this way as a function of the pion mass m”. We find that the transition

temperature 7T, depends on the pion mass in the following way,

T.(m%) = ag + a;m® + ay(m)? + O((m)?3), (3.41)
where the parameters can be determined from a fit to our numerical results as
ap = 149.58 MeV, a; = 0.24258, a, = 0.00029 MeV ! . (3.42)

The constant ag is then the value for the chiral phase transition temperature in the
chiral limit as obtained from the fit. A similar relation was also found in lattice
simulations [15, 122] with two or three quark flavors. The corresponding relation is

T.(Ny, mps) _ To(Ny, mps = 0) m

F o s ThT g

where mpg denotes the mass of the pseudoscalar meson, and the string tension & is
used to set the scale in the lattice calculation. g and ¢ are the critical exponents of
the O(4)-model in three dimensions. The coefficient [;(Ny) depends only slightly on
the number of quark flavors [15].

The analysis in Eq. (3.43) assumes that the transition falls into the O(4) universality
class, where the ratio of the critical exponents obeys 1/35 = 0.55. Then, the first-
order correction term is approximately linear, in agreement with our result. On the
lattice, however, the coefficient of the approximately linear term is about one order
of magnitude smaller than the result of our calculation. For Ny = 3, a lattice QCD

+ O(mpg), (3.43)

value [140]. The results for T, obtained with such a definition will in essence agree with our results,
as suggested by Fig. 3.10.

4We do not show lattice results for comparison in this figure since there is no data available for
m{® < 300 MeV in Ref. [15].
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Figure 3.11: Chiral phase transition temperature 7, in infinite volume as a function of
m.(T = 0). The dots show the result of our RG-calculation, and the line shows the
result of the fit function defined in Eq. (3.41).

calculation [15] gives l;(N; = 3) ~ 0.039. While the exact value for [;(N; = 2) is not
given in [15], the authors point out that it is of the same order of magnitude as the
value for Ny = 3.

As we will see in the next subsection, it is not possible to explain the smaller
value of the (approximately) linear term found on the lattice as a finite volume effect:
Since a finite volume effect is more severe for smaller pion masses and since it leads
to a significantly reduced transition temperature in our model, we expect that the
slope of T, c(mﬁo’) should actually increase in a finite volume, compared to the infinite-
volume result. We think that the discrepancy may be a consequence of neglecting the
gauge sector in the quark-meson model. In the chiral limit, the chiral phase transition
temperature on the lattice is about 30 MeV larger [15] than the value obtained in the
quark-meson model®.

Work on the quark-meson model within the Functional RG suggests that the tran-
sition temperature becomes even smaller if one includes wave function renormaliza-
tions [123]. This is the case even though the parameters of the model were adjusted in
the same way as was done in this calculation®. In spite of the difference in the absolute

5The absolute values of the phase transition temperature are affected by the way how the scales
in the corresponding calculation are fixed. A comparison of dimensionless quantities, such as the
coefficient of the linear terms in Eq. (3.41) and Eq. (3.43), is more meaningful.

6There is also a dependence on the cutoff-function in the phase transition temperature [132, 134].
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Reference ‘ Method ‘ T, [MeV] ‘

Chapter 3 of this thesis | Proper-time RG, quark-meson model 148
Berges (1997) [123] | Functional RG, quark-meson model 100.7

Schaefer (1999) [78] | Proper-time RG, quark-meson model 149
Braun (2003) [82] | Proper-time RG, quark-meson model 154
Schaefer (2004) [81] | Proper-time RG, quark-meson model 142
Chap. 4 of this thesis Functional RG, QCD (see caption) 172
Gottlieb (1996)  [121] | lattice 16® x 8 (staggered) 128 +9
Karsch (2000) [15] | lattice 16® x 4 (improved staggered) | 173 +8
CP-PACS (2000) [141] | lattice 16* x 4 (improved Wilson) 171 +£4
Bornyakov (2005) [142] | lattice 16° x 8 (improved Wilson) 173 +£3

Table 3.4: Chiral phase transition temperature in the chiral limit (m, — 0) from
different RG approaches for the quark-meson model and for QCD, and from lattice
simulations. We have restricted our choice of lattice references to the case of Ny = 2
flavors that we have treated here. More recent lattice results have been obtained for
Ny = 2 + 1 flavors, see e.g. [19, 115, 122]. The difference in the RG results arises
from a weak dependence of T, on the initial values at the UV scale and on the choice
of the cutoff-function. In Chap. 4, the critical temperature is calculated from a study
which incorporates the running QCD coupling and a complete basis of four-fermion
interactions.

value, the slope of the function T, c(mﬁo’) is roughly the same as in our study. This is an

additional hint that neglecting the gauge degrees of freedom could indeed be respon-
sible for the difference in the results from the quark-meson model compared to lattice
calculations. We discuss this issue further in Sec. 4, where we apply the Functional RG
to a study of the chiral phase boundary of QCD, which incorporates gluonic degrees of
freedom and four-fermion interactions. As we will see, such a study shows reasonable
agreement with results from lattice studies of the chiral phase transition temperature
for two and three massless quark-flavors.

Results for T, in the chiral limit from various lattice and RG approaches are sum-
marized in Tab. 3.4. As can be seen from the table, there is some uncertainty in the
value of the chiral phase transition temperature in lattice calculations, which is mainly
due to different implementations of the fermions.

3.6.2 Chiral Phase Transition Temperature in Finite Volumes

Now we turn to the investigation of the chiral phase transition temperature in finite
spatial volumes. As in section 3.6.1, we define the phase transition temperature 7.
via the minimum of the sigma mass. Putting the system in a finite volume introduces
an additional scale. Let us first discuss the influence of this additional length scale L
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on the sigma- and pion-mass. In Fig. 3.12, we show the sigma- and pion-mass for
er°> = 100 MeV and with periodic boundary conditions for the quarks, as a function
of the temperature, for both a small volume L = 1fm and a large volume L = 4 fm. The
minimum of the sigma mass is clearly visible in the plot. Above the transition temper-
ature T, where chiral symmetry is restored, the sigma- and pion-mass are degenerate,
independent of the size of the volume. In order to gain a better understanding of the
meson masses and their dependence on the scales L and 7" in this temperature regime,
we extract the (perturbative) one-loop correction to the meson masses from the cor-
responding RG flow equation’. Since the chiral phase transition is a non-perturbative
phenomena, such a one-loop calculation is not trustworthy in the vicinity of the crit-
ical temperature: The determination of the critical temperature fails, leading to an
unphysical complex temperature [29]. Here, non-perturbative approaches are indis-
pensable, as pointed out by earlier RG flow studies, e. g. Refs. [123, 78, 82], and a
study in terms of many-body resummation techniques [124]. Moreover, we neglect the
quark contributions in this calculation, since they are suppressed by the appearance of
a thermal Matsubara mass. In contrast, the bosonic fields have a vanishing Matsubara
mass and therefore their contributions are more important at high temperature. Thus
our starting point for the calculation of the mass correction is the RG flow equation
for the meson potential (3.17) without the quark contributions. The effective action,
from which this "reduced” flow equation can be derived, follows immediately from the
effective action (3.13) and reads

1 1 = A
rig) = | d‘*w{ﬁ(am)% S+ 5o } . (3.44)

The O(4)-vector ¢ is given by ¢ = (o, 7). Since we have neglected the quark terms in
the effective action, the terms in the meson potential (3.33) violating O(4)-symmetry
drop out. The mass parameter m and the coupling A in Eq. (3.44) are related to the
couplings given in Eq. (3.33) by m? = 2ag; and \ = 4ags.

The mass correction dm?(T), L), which is due to finite volume and finite tempera-
ture effects, can be decomposed into a sum of two contributions, dm? (7T, L — oo) and
dm3(T, L). We refer to App. F for details of the calculation.

First, in the regime defined by 0 < & < L, the contribution dm?(T, L — o)

T
dominates. One can estimate dm? (T, L— o) for large temperatures and volumes as

1
dmi(T, L—o00) ~ §AT2 for T — 0. (3.45)

In this case, the meson masses depend linearly on the temperature, in agreement with
the result from Ref. [29].

"Thermal resummation techniques and their connection to the Functional RG have been recently
discussed in Refs. [143, 144].
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Figure 3.12: Sigma- and pion-mass as functions of the temperature T, with
m,ro) = 100 MeV and periodic quark boundary conditions, for L = 1 fm and L = 4 fm.
The solid black and the red (gray) lines show the pion mass for L = 1fm and L = 4 fm,
respectively, whereas the dotted black and red (gray) lines show the sigma mass for

L =11m and for L =4 fm.

Second, if the product T'L ~ O(1), the mass correction is in essence given by

omi(T, L) (3.46)
6 T & (mL)? +47r2n2(TL) >
~ o Z S ( ) %<\/Z2((mL)2 +dnn?(TL)R)),
oo {I;}
where K, denotes the modified Bessel-functions with index n = . The vector [is

2
defined as | = {ly, 15,13} and the prime indicates that the term with [ = 0 is excluded

from the summation. Note that dm3(7T, L) has a complicated dependence on T and L,
but we observe that it scales with %, rather than with 72, This explains the difference
between the slopes of the meson masses in the regime defined by TL > % 2 L, and in
the regime defined by 0 < % < L, which can be seen in Fig. 3.12. In contrast, in the
limit T'L > 1 one obtains

oo

Sm3(T, L) 9A r Z d— exp(—\/ﬁ((mL)2+47r2n2(TL)2)). (3.47)
oo {l;}

The contributions from the non-vanishing thermal Matsubara-modes to dm2(T, L) drop
exponentially, and dm3(7T, L) becomes a linear function in the temperature T, due to
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the zeroth thermal Matsubara-mode n = 0. Therefore, for TL > 1, 0m3(T, L) is a
sub-leading correction to the meson masses, compared to the contribution dm? (7T, L).
This describes the results for periodic quark boundary conditions well.

The behavior of the meson masses for anti-periodic boundary conditions of the
quarks fields in spatial directions is similar to the behavior for periodic boundary con-
ditions depicted in Fig. 3.12 for large volumes. However, there is one essential difference
between periodic and anti-periodic boundary conditions: As already discussed in Sec.
3.5, the quark fields have an additional IR cutoff which is given by the minimal spatial
momentum -

Pap = T (3.48)
This minimal momentum increases for decreasing volume sizes. The quark fields decou-
ple from the RG flow as soon as the IR-cutoff scale k in Eq. (3.17) drops below pg;;n and
the mesons are the only dynamical degrees of freedom in the theory for £ < p*. This
additional IR cutoff is responsible for the fact that the quark condensate for a given L
is smaller in the case of anti-periodic boundary conditions than for periodic boundary
conditions. Therefore the chiral phase transition temperature for anti-periodic bound-
ary conditions is for a given L always smaller than for periodic boundary conditions.

We now present our main results for the volume dependence of the chiral phase
transition temperature. Fig. 3.13 contains plots of the transition temperature 7, as a
function of the volume size, for different values of the pion mass at zero temperature,
m&‘”, and for different choices for the quark boundary conditions. For small, realistic
pion masses, mY = 100 MeV, the results for T, in the upper panel of Fig. 3.13 show
a deviation from its infinite volume value of about 6% already for L = 4fm and
independent from the choice of boundary conditions. For small volume sizes defined by
mV L < 1, we observe that the phase transition temperature 7, is strongly affected by
the choice of the boundary conditions for the quark fields. For anti-periodic boundary
conditions, T, decreases strongly for small volume sizes. As already discussed above,
this is because of the additional infrared cutoff pg;jn for the momenta of the quark fields.
For small volumes, it is due to this additional IR-cutoff that the system remains in the
phase with approximately restored symmetry.

For periodic quark boundary conditions, we observe a weaker volume dependence
of T, since the condensation of the quarks is not prevented by the additional IR-cutoff
pg;jn. For m!Y = 100 MeV and L < 1.5fm, we observe that T, is almost independent
of L, which may be due to the fact that pﬁ approaches Ay .

For large pion masses, m&‘” 2 300 MeV, and for L > 2fm, T, depends only weakly
on the box size. The deviation from its infinite volume value is less than 1% already
for L =~ 2.5fm. We observe only a weak dependence on the choice of the fermionic
boundary conditions, as well. The reason is that the length scale set by the pion mass,
L, ~ ﬁ, is much smaller than the box size L. Therefore the volume dependence of

T, is go:ferned by the pion mass scale , rather than the scale set by the spatial box
size: pion fluctuations are more strongly suppressed by their large mass than by the
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Figure 3.13: The chiral phase transition temperature 7, as a function of the volume
size L, for different pion masses m (identified in the figure), and for periodic (p) as
well as anti-periodic (ap) boundary conditions for the quark fields in spatial directions.
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Figure 3.14: Chiral phase transition temperature 7, as a function of m, (7 = 0) for
different box sizes. We show the results for L = 1.5, 2.5, 3.5 fm from bottom to top.
For comparison, we also show the results for infinite volume (solid line) from Fig. 3.11.

long-wavelength cutoff from the finite volume. This observation implies that lattice
results for T, are not affected by the finite volume to any considerable degree, provided
the pion mass is large, m 2 300 MeV.

Finally, we stress that finite volumes make the coefficient a; in Eq. (3.41) bigger
for smaller volumes. This can be seen from Tab. 3.5 and Fig. 3.14, where the slope of
Tc(mgro), L) as a function of m' is even larger at smaller values of L.

3.7 Conclusions

We have presented a new approach to the quark-meson model, which employs the
renormalization group method in a finite volume. Central to any such an approach is
the inclusion of explicit chiral symmetry breaking. Since chiral symmetry is not broken
spontaneously in a finite volume, it is necessary to introduce a finite current quark
mass. In this thesis, we have evolved the effective potential with additional symmetry-
breaking terms. The form of these terms is constrained by the quark contributions to
the renormalization group flow, which introduce the explicit chiral symmetry breaking.

By solving the resulting renormalization group flow equations numerically, we have
obtained results for the volume dependence of the meson masses, in particular the pion
mass, and the pion decay constant, the order parameter of chiral symmetry breaking.

Comparing our results to those from chiral perturbation theory, we find agreement
for larger pion masses, provided we impose anti-periodic boundary conditions on the
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| L [fm] || mY = 100MeV | m{ = 200 MeV | m{” = 300 MeV |

1.5 79.0 MeV 164.3 MeV 225.7 MeV
2.5 111.3 MeV 197.1 MeV 246.6 MeV
3.5 157.9 MeV 206.3 MeV 249 MeV
| oo || 1781MeV | 2083 MeV | 2493 MeV |

Table 3.5: Chiral phase transition temperatures Tc(mﬁP), L) as function of the pion
mass mﬁP) and the box size L for periodic boundary conditions for the quark-fields. For

comparison, the corresponding values in infinite spatial volume are also given.

fermionic fields. As expected, the differences increase for very small volumes, where
chiral symmetry restoration becomes important and chiral perturbation theory unreli-
able. Moreover, we find that our results for anti-periodic boundary conditions on the
fermionic fields show consistently a larger finite volume mass shift for the pion than has
been obtained in chiral perturbation theory including up to three loops. The differences
between the chiral perturbation theory results which make use of the Liischer formula
and our RG results are consistent with the error estimate for Liischer’s approximation.
As one expects, the difference is largest for small values of m,L. We have checked that
this difference decreases exponentially with an increase in this dimensionless quantity.
As shown in Fig. 3.9, our results for anti-periodic boundary conditions and those ob-
tained in chiral perturbation theory with Liischer’s formula [97, 98] converge for large
current quark masses. We note that the ratio of the results from chPT and RG does
not depend on L, even down to L = 1.5 fm.

Extrapolations to infinite volume using chiral perturbation theory are in good agree-
ment with the results from lattice simulations concerning the description of the volume
dependence of nucleon properties, such as the nucleon mass [91, 106]. However, it was
found that as far as meson masses are concerned, the finite-volume mass-shifts observed
on the lattice deviate from the predictions of chiral perturbation theory. This holds
also [109] for Liischer’s approach [125], which only takes pion effects into account as
well. Generally, the mass shifts predicted from chiral perturbation theory are much
smaller than the observed ones [126, 109, 92, 110]. The inclusion of higher orders in
the chiral expansion [98] and a summation of additional contributions in Liischer’s ex-
pression [105] increase the size of the predicted mass shifts. They also decrease the
distance to our RG results, provided we impose anti-periodic boundary conditions on
the fermionic fields. In contrast, for periodic boundary conditions, large pion masses,
and a large ratio 1/(L), we find that our mass shifts in small volumes behave in a
substantially different way from those of chPT. In particular, even in volume sizes as
large as L = 2.5 fm and for T" — oo, the results for the relative shift of the pion mass
can do as much as double under a change of the boundary conditions, for example from
Rlm,(L)] = 0.0488 with periodic, to R[m,(L)] = 0.1037 with anti-periodic boundary
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| my(00) | Approach | R[m,(L)] < 0.1 [ R[m.(L)] <0.01 |

100 MeV | RG, ap. L > 2.523 fm L > 4.381 fm
RG, p. L > 1.351 fm L > 4.259 fm
chPT L > 2.187 fm L > 3.785 fm

200 MeV | RG, ap. L > 1.736 fm L > 2.842 fm
RG, p. L>05 fm" L > 1.888 fm
chPT L > 1.639 fm L > 2.653 fm

300 MeV | RG, ap. L > 1.359 fm L > 2213 fm
RG,p. | L>1.022fm | L>1911fm
chPT L > 1.339 fm L > 2.104 fm

Table 3.6: Bounds on the minimum size of the volume V = L3x T for T — oo such that
the finite volume pion mass shift R[m.(L)] is < 0.1 or < 0.01, for different values of the
pion mass m,(0c0). RG results are given for anti-periodic and for periodic boundary
conditions, chPT results are those in NNLO obtained in [105]. Note that for periodic
boundary conditions and for m, = 200 MeV and m, = 300 MeV, the bounds are set
by a decrease of the pion mass. *For m, = 200 MeV and periodic boundary conditions,
the bound R[m,(L)] < 0.1 is satisfied in the full volume range described by our model
(cf. also Fig. 3.6).

conditions, for a pion mass of m, = 100 MeV. In Table 3.6 we give bounds on the min-
imum size of the volume that are necessary to keep the finite volume mass shift smaller
than 10% resp. 1%, calculated for periodic and anti-periodic boundary conditions in
the RG approach, and for comparison from the NNLO chPT calculation of Ref. [105].
Compared to anti-periodic boundary conditions, periodic boundary conditions gener-
ally allow to achieve the same accuracy with regard to finite volume effects already
with a smaller volume size. This is an important conclusion concerning lattice QCD
simulations. For the physical values of the pion mass and the pion decay constant,
chiral perturbation theory can be applied for volume sizes L > 1 fm, but, according
to Ref. [105], it is a priori impossible to say how large exactly the volume has to be.
Ultimately, this question can only be answered by lattice calculations.

The main uncertainty of our RG approach comes from its dependence on the UV
cutoff scale Ay for large meson masses. The system becomes sensitive to Ay for large
explicit symmetry breaking, because the mass of the sigma as the heaviest particle
approaches the UV cutoff. For a pion mass of m, = 300 MeV, the sigma mass is m, ~
800 MeV. In this case, a cutoff variation between Ay, = 1500 MeV and 1100 MeV,
changes the pion mass for a volume with L = 1 fm by approximately 6%, and by less
than 1% for L > 2 fm. Within this uncertainty, our results agree with those of chPT
for m, = 300 MeV. In contrast, for m, = 100 MeV the cutoff dependence is so weak
that it is not noticeable on the scale of the results. The RG and chPT results do not
agree within this uncertainty, cf. Table 3.2, for m, = 100 MeV and m, = 200 MeV.
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The dependence of our results on the choice of model parameters at the UV scale
is much weaker than that on the cutoff. By fitting to the values of the low-energy
observables m, and f; in infinite volume, we achieve a very high degree of independence
from the particular choice of UV parameters.

To summarize our study of finite-size effects in low-energy observables in QCD: The
RG approach shows the importance of the fermionic boundary conditions for the pion
mass and the pion decay constant. The differences between the results for periodic
and anti-periodic boundary conditions increase for increasing pion mass and increasing
ratio 7'/ L. Our analysis agrees qualitatively with the observations from lattice QCD,
in regards to the dependence on quark boundary conditions as well as in regards to an
apparent drop of the pion mass in finite volume. We find convergence of our results to
those of chiral perturbation theory calculations for large pion masses and large volumes,
where quark effects are not important.

In Sec. 3.6, we have studied dynamical symmetry breaking at finite temperatures by
means of the proper-time RG. The underlying model for our study was also the quark-
meson model. We have presented results for the volume dependence of the chiral phase
transition temperature. In this way, we have obtained non-perturbative results for the
transition temperature for various values of the pion mass.

In general, no phase transition can occur in a system of finite volume. The evalua-
tion of lattice results therefore uses a scaling analysis in quark mass and temperature
[145, 146, 147, 22], and recently finite-size scaling [22] as an analytical tool. We expect
that a Renormalization Group analysis of the critical behavior can complement these
approaches. In this work, we have focused on the chiral phase transition temperature,
which is not universal and also model-dependent. However, the relative shift of the
temperature from infinite to finite volume should depend mainly on the pion mass and
the pion decay constant, which are independent of the model and represent an external
input to our calculations.

We find that finite volume effects for the transition temperature remain small for
large pion masses m, = 300 MeV, as long as the volume is of the order L > 2 fm in the
spatial directions. The scale for the appearance of sizable finite-volume effects is given
by the pion mass m,, and the effects remains small as long as L > m%r

On the other hand, finite size effects are sizable already at a lattice extent of
L ~ 2 fm for realistic pion masses of the order of 100 MeV. We expect therefore that
finite volume effects will become more relevant in future simulations with realistic pion
masses. The strategy for lattice calculations should then be to simulate in volumes
where the value m,L is large enough to keep the finite volume effects down to an
acceptable size, and to extrapolate to smaller pion masses and the chiral limit.

We note that the choice of periodic boundary conditions in spatial directions for
the quark fields, which is commonly employed in lattice simulations, leads to a much
smaller finite volume effect on the transition temperature. This conclusion agrees with
our results for the volume dependence of the pion mass and pion decay constant.

The dependence of the transition temperature on the pion mass in the quark-meson
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model is much stronger than that observed in lattice simulations and becomes even
stronger for decreasing volume sizes. Consequently, the puzzle of the weak dependence
of the transition temperature on the pion mass in QCD cannot be explained as a
finite-volume effect by means of the quark-meson model. Therefore, we conclude that
the quark-meson model in its present from is not the appropriate tool for an accurate
description of the dynamics of the chiral symmetry breaking at finite temperature.
An extension of the quark-meson model with gauge degrees of freedom may cure this
deficiency of the model [148, 149, 61, 150, 76]. A new ansatz for studying the dynam-
ics of chiral symmetry breaking at finite temperature within a non-perturbative RG
approach is subject of Chap. 4.



Chapter 4

QCD at Finite Temperature

In this chapter, we study QCD at finite temperature from first principles within the
RG framework. First, we summarize the state of the art in the study of the QCD
phase boundary at finite temperature in Sec. 4.1. This will serve as a motivation for
our approach. In Sec. 4.2 to 4.4, we discuss the mathematical background which we
need for a careful RG treatment of gauge theories, in particular QCD. Our calculation
of the strong running coupling of Yang-Mills theory and QCD is presented in Sec. 4.5.
In order to compute the chiral phase boundary of QCD, we have to take quark self-
interactions into account. After an explanation of the underlying technical details for a
RG study of four-fermion interactions by means of a simple NJL model in Subsec. 4.6.1,
we incorporate gluons and show that a simple picture for the chiral quark dynamics
in QCD arises from this in Subsec. 4.6.2. We then show in Sec. 4.7 how our approach
allows for a determination of the chiral phase boundary of QCD and give a detailed
discussion of the phase boundary in the plane spanned by temperature and flavor
number. Our conclusions, a critical assessment of our results as well as an outlook are
given in Sec. 4.8.

4.1 Introduction

Even more than 30 years after QCD has been theoretically formulated, its phase dia-
gram has been neither qualitatively nor quantitatively determined to any large degree
of certainty. The results from various approaches to determine the order of the phase
transitions, the transition temperatures themselves as well as the existence of a (tri-
)eritical point in the phase diagram are not yet fully consistent. By far, this is not only
the case at finite density. Even at vanishing density we do not know if the confinement
and the chiral phase transition take place at the same temperature and the order of the
phase transition for the physically most relevant case of two massless quark flavors is
not finally determined. Since lattice QCD simulations have not given final answers to
all these questions so far, complementary non-perturbative approaches are indispens-
able to gain a better understanding of the underlying non-perturbative phenomena.

83
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In Fig. 4.1, we show the so-called ”three-flavor phase diagram” for vanishing baryon
chemical which has been obtained from lattice QCD simulations [33]: for Ny = 3 mass-
less quark flavours a first order chiral phase transition has been found at 7), ~ 155 MeV.
For Ny = 2, the phase transition temperature is shifted to a higher value of T\, ~
175 MeV. The deconfinement phase transition temperature in SU(N, = 3) Yang-
Mills theory has been measured at T; ~ 270 MeV. However, less is known about the
flavour dependence of the chiral phase boundary of QCD at finite temperature from
lattice QCD. At zero temperature, the phase structure of QCD has been studied by
applying various approaches, from lattice simulations to perturbative calculations, see
e. g. Refs. [151, 152, 153, 154, 155, 156]. Nevertheless, there are still challenging ques-
tions left, such as a determination of the critical number of quark flavors, N§*, above
which QCD remains in the chirally symmetric regime even in the deep IR. Although
the value of Nf" varies from Nf" = 5 (instanton-liquid model [155]) to N = 12 (this
work and DSE approach [153]) with a accumulation point around Nf* = 10, all these
studies confirm the existence of a regime where QCD is chirally symmetric but still
asymptotically free. In Fig. 4.2, we give a qualitative many-flavor phase diagram of
QCD at zero temperature. A first understanding of this phase diagram can already be
gained with the aid of the perturbative two-loop fg-function of QCD:

b b,
rl Y ) < , NCQ — 1 ™~ \
Bla) = = (11N, = 2Ny) a’~ m(:wvc — 10NN — 3= Nf> a® — ... (4.1)

Here a denotes the strong coupling, and the number of colors and massless quark flavors
are given by N, and N, respectively. Considering the first term of the expansion, the
demand for asymptotic freedom leads immediately to a constraint for the number of
massless quark flavors:

11 e
Ne < Npt = N V=965 (4.2)

For N; > Nt QCD is in the so-called trivial phase where neither chiral symmetry is
broken nor a confining regime emerges in the deep IR. Moreover, a number of quark
flavors Nf*ed above which the strong coupling approaches a non-trivial fixed point in
the IR, follows already from the perturbative two-loop expansion by demanding b; > 0
and by < 0:

N = Nfﬁ xed >
The regime between Ni*d and N2t is further divided by the existence of the above-
mentioned critical number of quark flavors N§*, above which QCD remains in the
chirally symmetric regime!. Below N2 but above N&¥, we have the so-called ” confor-
mal phase” where the strong coupling approaches an IR fixed point. However, below

Here we tacitly assume that N¢* is larger than Nfxed,
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Figure 4.1: The QCD phase diagram of 3-flavor QCD with degenerate up- and down-
quark masses and a strange-quark mass m, for vanishing baryon density taken from
Ref. [33].

N¢*, we find dynamical chiral symmetry breaking in QCD. In this perturbative picture,
the emergence of massive quarks in the chiral broken regime would destabilize the IR
fixed point of the running coupling. As we will see in the subsequent sections, such
a destabilization of the IR fixed point is not confirmed by our non-perturbative RG
study of QCD. Finally, QCD is confining and chiral symmetry is broken for values of
Nt (much) smaller than Nfxed,

In this work, we mainly focus on the dependence of the chiral phase transition
temperature on the number N; of massless quark flavours. As explored in heavy-ion
collisions, currently at CERN, at RHIC, and in the future at LHC and the FAIR fa-
cility at GSI, the properties of strongly interacting matter change distinctly during
transitions from low to high temperatures [33]. This makes the theoretical descrip-
tion of QCD by means of effective theories extremely difficult. At low temperature
and momentum scales, QCD can be described well by effective field theories in terms
of ordinary hadronic states, see e. g. our studies in Chap. 3. But a hadronic pic-
ture is eventually bound to fail at higher temperature and momentum scales, where
a description in terms of quarks and gluons is expected to arise naturally owing to
asymptotic freedom. In the transition region between these asymptotic descriptions,
effective degrees of freedom, such as order parameters for the chiral or deconfining
phase transition, may characterize the physical properties in simple terms, i.e., with a
simple effective action [120].
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Figure 4.2: Qualitative many-flavor phase diagram of QCD at vanishing temperature.

In lattice simulations, it was found that the QCD pressure function does not ap-
proach the Boltzmann-limit of a non-interacting gas of massless quarks and gluons,
even at temperatures much higher than the phase transition temperature. This indi-
cates that QCD is strongly interacting even above the phase transition, see Fig. 4.3.
This observation has recently attracted much attention [157], implying that any generic
choice of degrees of freedom will not lead to a weakly coupled description. In fact, it
is natural to expect that the low-energy modes of the thermal spectrum still remain
strongly coupled even above the phase transition temperature. If so, a formulation with
microscopic degrees of freedom from first principles will serve as the most powerful and
flexible approach to bridge wide ranges in parameter space.

In such a microscopic formulation, an expansion in the coupling constant is a natu-
ral first step [158]. The structure of this expansion is theoretically involved [159], and
exhibits a slow convergence behavior [160] and requires coefficients of nonperturbative
origin [161]. Still, with the aid of effective-field theory methods [162], a physically well-
understood computational scheme can be constructed . This facilitates a systematic
determination of expansion coefficients, and the agreement with lattice simulations is
often surprisingly good down to temperatures close to the phase transition tempera-
ture [163]. The phase-transition point and the deep IR, however, remain inaccessible
with such an expansion.

In this work, we follow a somewhat different strategy to study finite-temperature
Yang-Mills theory and QCD in terms of microscopic variables, i.e., in terms of gluons
and quarks. Our scheme is based on a systematic and consistent operator expansion of
the effective action which is inherently nonperturbative in the coupling. For bridging
the scales from weak to strong coupling, we use the functional renormalization group
(RG) [47, 50, 164] which has been introduced in Sec. 2.4.

Since we do not expect that microscopic variables will be able to answer all rele-
vant questions in a simple fashion, we concentrate on problems which are more easily
accessible to such a formulation in terms of quarks and gluons. First, we focus on the
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Figure 4.3: The pressure of SU(3)-Yang-Mills theory and of QCD with various number
of quark flavors as a function of temperature [33].

running of the strong coupling of pure SU(N,) Yang-Mills theory as well as QCD. Our
findings generalize zero-temperature results, obtained previously in a similar study [71],
to arbitrary values of the temperature. Second, we use this result in an investigation
of the induced quark dynamics, including its back-reactions on gluodynamics, in order
to monitor the status of chiral symmetry at finite temperature. It turns out that our
approach provides a simple picture for the chiral quark dynamics, which facilitates a
computation of the critical temperature above which chiral symmetry is restored. The
generalization of our approach to an arbitrary number of quark flavors allows us to ex-
plore the phase boundary in the plane of temperature and flavor number N¢. Moreover,
we gain a simple analytical understanding of the shape of the chiral phase boundary in
the (T, N¢) plane for small as well as large Ny. While fermionic screening is the dom-
inant mechanism for small N¢, we find an intriguing relation between the N scaling
of the critical temperature near the critical flavor number and the zero-temperature
IR critical exponent of the running QCD coupling. This relation is remarkable, since
it connects two different universal quantities with each other, and thus represents a
generic, testable prediction of the phase-transition scenario.

4.2 Physical and Mathematical Aspects of QCD

We briefly recall some physical and mathematical aspects of QCD. There are several
ways to introduce the Lagrangian density of QCD, we give a motivation with the aid
of the matter fields, i. e. with the aid of the quarks. The Lagrangian density of Ng
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non-interacting quark-flavors reads?

L = i + 1My, (4.4)
where 1) is a column-vector in flavor-space defined as
U
Y= : . (4.5)
U,
This theory is invariant under space-time independent transformations of the form
P(w) — e () (4.6)

with € representing generalized rotating angles and the 7*’s being the hermitean
generators of the physically underlying (non-abelian) symmetry-group. In QCD, the
T%s are the generators of the Lie-group SU(3) which assigns a so-called color quantum
number to the quarks. This has been postulated by Fritzsch and Gell-Mann, Nambu,
Bardeen and Greenberg [3, 4, 5, 6] in order to reconcile the original quark model
introduced by Gell-Mann [1, 2] with the fermionic character of the quarks. For example,
it was not possible to reconcile the existence of the baryonic resonance A ( %+) made
up of three up-quarks in a spin-up state with the original quark model without violating
the anti-symmetry for the wave-function®. The fact that the color wave function must
be anti-symmetric and that at least three different color states are needed, motivates
the appearance SU(3). Later, the existence of three color states was confirmed by the
observation of steps in the (normalized) cross-section of ete™-collisions. Nevertheless,
we do not restrict our calculations in this chapter to three colors only but also derive
also results for arbitrary SU(N.) Lie-groups which obeys

[T°,T"] =if*T°,  Te{T°T’} = %5“’. (4.7)

The f¢ are the structure constants of the group, and take the values 1,..., N2 — 1,
see also App. B.

Although it is invariant under the transformations (4.6), the Lagrangian den-
sity (4.4) is not invariant under local gauge transformations with a space-time de-
pendent ¢; such a transformation would yield terms proportional to d,e. Invariance of
the Lagrangian density under under local gauge transformations can be achieved by
replacing the ordinary derivative 0, by the so-called covariant derivative D,, which
depends on auxiliary gauge fields (the so-called gluons) and which is defined as

=A,
Dyt = [0,~ AT, (4.8)

2We work in Euclidean space-time, see App. A for our conventions.
3The wave-function must be anti-symmetric due to the Pauli Principle.
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where g is the bare coupling constant. An interaction between the fermions and gluons
is introduced by the covariant derivative. The number of gauge fields needed is identical
to the number of generators. Gauge invariance is then obtained if the gauge fields
transform according to

A, - UAU = [0,UU" with U=U(z)=e @7 (4.9)

The corresponding infinitesimal transformation reads

1 1 1
0A; = —0,€" — f“bcebAZ = ;[8“6‘“’ — gf“bcAZ]eb = ;Dzbeb (4.10)
g g g
in the so-called adjoint representation and
0A, =0,e+ (A, el with e=1T"" (4.11)

in the so-called fundamental representation. From the infinitesimal transformations,
we can read off the generators G9% of the gauge symmetry,

G4 = ng% , (4.12)
which we apply below for a study of the symmetry properties of the effective action.
So far, the gluons are just auxiliary fields without kinetic terms. However, it is a
straightforward task to construct gauge-invariant kinetic terms for the gluons out of
the covariant derivatives by repeated application. The simplest kinetic term for the
gluons is constructed from the relation

D, D, |y = F,% with F,, =0J,A, —0,A,+[A, A, (4.13)

yielding the gauge-invariant Lagrangian density

1 1 u
LYM = 2—‘62TI' {F}LVFMV} = 4—§2F§VFNV . (414)
This purely gluonic Lagrangian density is known as the Lagrangian density of Yang-
Mills theory. Note that this term includes also interactions between three and four
gluons, respectively. By adding the fermionic degrees of freedom to the Yang-Mills
Lagrangian density, we finally obtain the so-called (classical) QCD action:

1 _ -
Sqcp = /ddx {2—92Tr {FwFu} +vipy + 1M¢¢} : (4.15)
Note that the QCD action is also invariant under the chiral transformations discussed
in Sec. 3.4.1, provided the quarks are massless, M = 0.

Let us now discuss briefly the quantization of QCD in the path-integral approach
and the problems arising through this. Extensive introductions to this subject can
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for example be found in [45, 54]. Since the problems of the path-integral quantization
arise in this context from the pure gauge-sector of QCD, it is sufficient to discuss Yang-
Mills theory. The straightforward generalization of the generating functional of scalar
theories to gauge fields fails, since the expression

21j] = / DA, e St (4.16)

is ill-defined because DA, is a gauge-invariant integration measure. Here j;‘f is a row
vector, and A, is a column vector. The definition (4.16) is problematic since the path-
integral runs over all possible gauge-field configurations. This results in a multiple
counting of all equivalent gauge configurations which are connected by a gauge trans-
formation. In order to give a meaning to the functional integral (4.16), we divide the
space of all gauge configurations into equivalence classes. These so-called orbits contain
all configurations which are obtained by applying all possible gauge transformations of
the underlying gauge group to an arbitrarily given gauge configuration. For each gauge
configuration of a such an orbit the integrand in Eq. (4.16) is constant. A well-defined
generating functional is then obtained by defining the integral in such a way that it
runs only over physically distinct gauge configurations. Roughly speaking, this means
that we pick up only one gauge configuration from each orbit. This can be achieved
by inserting the identity

1= [ Ded (FJA)) det 0714 (4.17)
[ ped(Fa aer (Z52)

in the generating functional (4.16), where the functional F defines a gauge-fixing con-
dition, F [A;] = 0. The subscript € of the gauge fields indicates that A7 is obtained
from an initial configuration A, by a finite gauge transformation®. This is known as
the Faddeev-Popov trick. The generating functional (4.16) then reads

adF%

2, = N / DA, DeDee S s [ daF 0 7o dloct (g chifi Ay

eWlinl (4.18)

N/'DAMDCDEe_SYM_ng_sgh+j3'f4#+ﬁ'c—5'“

Here Greek letters denote Lorentz indices, whereas Roman letters denote color-indices.
The normalization factor N accounts for the integral over g that has been factored out.
In addition, we have used the fact that the determinant is gauge invariant and we have
applied an integral representation of the ¢ functional and of the determinant. We now
have the freedom to choose a gauge-fixing parameter £ . In order to find an integral

4We tacitly assume that a solution to the Gribov problem [165] within the path-integral approach
exists. Therefore we do not discuss problems that arise due to the fact that the argument of the §
functional in Eq. (4.17) does not only have a simple zero and that the determinant is not strictly
positive.



4.2. Physical and Mathematical Aspects of QCD 91

representation of the determinant, we have introduced so-called ghost fields, which are
Grassmann-valued scalar fields. These fields transform as tensors, according to

& — &4 gfuwbe  and ¢ — ¢+ gf*wbe, (4.19)

where the generators of the underlying symmetry group are given by

ggh = _gfabc <Ccﬁ + Ecﬁ> . (420)

For constructing the effective action 'y, of Yang-Mills theory, we have also introduced
source terms g and p for the ghost fields in Eq. (4.18). The effective action is then
obtained from Eq. (4.18) in the same way as in Subsec. (2.4.2). The derivation yields

L@ =W +J"- & =-W[j,i,ul+j. - Ay+p-c—CT-p. (4.21)

We have introduced a vector ® containing the (classical) fields and a corresponding
vector for the sources through

5 Ay
d=—W[JN=1| c and  J' =T g, pt). (4.22)
§JT T "

However, the effective action I'y,; is not invariant under gauge transformations. This
is due to the construction of the well-defined generating functional (4.18). On the other
hand, a gauge transformation of the fields in Eq. (4.18) should not change the value of
the integral; in other words, physics is unchanged under a gauge transformation of the
fields. From this, we conclude that the effective action (4.21) must be invariant under
gauge transformations. Applying the generators Gj and Gg), simultaneously on both
sides of Eq. (4.21) yields the so-called Ward-Takahashiidentity (WTI), which accounts
for the breaking of gauge invariance introduced by the Faddeev-Popov trick:

21y (0] (G4 + Gg) (Sym + et + Sen)[0) s
a (0[0)
<0‘ (gj + ggh) (ng + Sgh)|0>J
(0[0) '

In the second line, we have used (gj + Qgh) Sym = 0. We thus establish that the
1PI Green’s functions obtained from the effective action I' must fulfill the constraint
imposed by the WTI in order to have a physical meaning.

Note that so far we have not specified the gauge-fixing condition. In the next
section, we apply the background-field formalism introduced in Subsec. 2.4.3 to gauge
theories and show how a gauge-invariant effective action can be obtained through an
appropriate choice of the gauge-fixing condition within this framework.

(94 + Gg) T[2]

(4.23)
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4.3 The Background-Field Method and Non-Abelian
Gauge Theories

The starting point of our discussion is the background-field generating functional

Z[JT, A], which can be deduced from Eq. (4.18) by splitting the gauge field A, into the
fluctuation field a, = A, — A,, and an (auxiliary) non-dynamical background-field A,,:

2178 = N [ DADCDee Soulont S-S5
= Z[JTe "0 = M (4.24)

We have introduced the following vectors in field space:

0 /4,
p=1\| c and ¢ = 0 . (4.25)
c’ 0

Following the steps along the lines of Subsec. 2.4.3, the background-field effective action
becomes (see Eq. (2.42))
H
A - ~ )

[, ¢ = —W[JT,¢| +JT - & =T[d,¢] with @=aﬁWUW

From the relation between the background-field effective action f[i), QAS] and the (stan-
dard) effective action I'[®, @], which has been derived in Subsec. 2.4.3 for arbitrary
fields, we deduce

Pid, g = T[d,d =2 Plo,d] = I[d, @], (4.26)

where ® is the conventional classical field defined as

—

5 T
@ = W), (4.27)

However, in the case of gauge theories, Eq. (4.26) deserves a comment: if f[O, é] is
computed with a gauge-fixing condition F%[a,], then I'[®, ®] must be computed with
the gauge fixing condition F%[a, — A] in order to ensure that the background-field
effective action I'[0, ¢] and the (standard) effective action I'[®, ®] are equal.

One might ask what we gain by the introduction of a background gauge-field, beside
the advantages already discussed in Subsec. 2.4.3. The great advantage is that we can
choose a gauge-fixing condition F® in such a way that the background-field effective
action f[CI), é] is a gauge-invariant functional of the background field A. Let us discuss
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this issue more precisely. An appropriate choice is the so-called background-field gauge
condition [65, 53]

Fla,) = D*[Ala), (4.28)
with the covariant derivative in the adjoint representation defined as
Dzb[A] = Qﬁab — gf“bcAz ) (4.29)

The gauge-fixing condition (4.28) fixes the fluctuation fields a,, relative to the back-
ground fields A,. Using this condition in the generating functional (4.24), the gauge-
fixing action Sg¢ and the ghost action Sy, read

(4.28) 1 @ mabr T ~bel X1 c
Sy = - 5% d’z af, DI’ A|DY[Alas, (4.30)
Sen = a1 Y = L [ ateer Dot A1 Dt A, (431
o = — xC (5eb[a+ ] C——E xc* DY [A]D,fla+ Alef, (4.31)

where we have used that the full gauge field A, = a, + flu transforms according to
_ 1 _
6AL =0(a, +Ay) = EDZb[a + Aeb. (4.32)

The prefactor 1/g in the ghost action is unimportant since it can be factored out of the
functional integral (4.24) and absorbed in the physically unimportant normalization
factor. For convenience we therefore apply from now on gSg, rather than Sy, for
our calculations. Next we discuss the symmetry properties of the background-field
effective f[i),qg] For this purpose we study how the different contributions of the
action, namely the Yang-Mills action, the gauge-fixing action and the ghost action,
vary under the symmetries associated with the generators G4, Gy, and

- — 0
“ = DP[A]—-. 4.33
"= DAl (4.3
The operator G* is the generator of the so-called background gauge transformation,
which is an auxiliary symmetry transformation of the auxiliary background-field A. It
is given by
Aa 1 ab[ A1.b

0A; = EDM [A]e”. (4.34)
The generators G4 and Gg, are defined in Eq. (4.12) and (4.20), respectively. The
gauge-fixing action Sy and the ghost action Sy, change under a variation of the fields
according to

(G4 +G%) Set = —G*Syr and (G4 +G%) Sen = —G“Sen - (4.35)
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From this we conclu(je that Sgr as well as Sg, do not vary under the combined transfor-
mation G4 + ggh + G®. Since the classical Yang-Mills action Syy is trivially invariant
under these combined transformations, we find [65, 53|

(G4 + G5 +G*) I[d,4] = 0. (4.36)

So far, the symmetry under the combined transformation Gj +Gg, + G® is only an aux-
iliary symmetry. However, this symmetry acquires physical significance if we identify
the background-field @ with the physical gauge field ®. When we do this, we can read
off from Eq. (4.36) that T'[0, ¢] is a gauge-invariant functional of the background-field
A or, in other words, that the standard effective action I'[®, ®] is invariant under the
physical gauge transformations of the conventional classical field ®:
Sa\ DA 7 (4.26)
(G5 + G5+ G°) [0, )| "2 (G4 +G4) TI@, @] = 0. (4.37)
The fact that the background-field formalism allows for such a convenient construction
of a gauge-invariant effective action is the reason why we use this method for our study
of gauge theories within the RG framework in this chapter.
Finally, let us discuss some properties of I' [O,QAS] = I'[®,d]. First, we point out
that fluctuations around the background-field A are still constrained by standard WTI
which are obtained from (gj + ggh + Ga) f[@, g?)] according to Sec. 4.2. The effective

action I 0, QAS] has a crucial property: Vertices involving fluctuation fields a, are only
used inside Feynman diagrams, whereas vertices involving background-fields flu are
used for external lines. Therefore, only propagators of the fluctuation fields appear
inside the loops. This is the physical consequence of Eq. (4.37): the background-
field propagator is undefined, because f[O, qg] is still invariant under background-field
transformations. With regard to our purposes in the subsequent chapters, we remark
that a renormalization of the ghost fields as well as the fluctuation fields is not needed
since both appear only inside loops. The renormalization of the remaining quantities
is given by

_ 1 _
(A“)bare = Z,%AN ’ g - Zgg and (f)bare = Z§ 6 . (438)

The fact that f[O, qg] is a gauge-invariant functional of A then implies that the renor-
malized field strength tensor F},, is identical to the bare field strength, up to a constant.
This observation yields a relation between the renormalization constants Z, and Zj:

N|=

Zy=7.". (4.39)

It implies that the product of the background-field strength A and the the coupling g
is not renormalized, g4 = g (A) bare: Lhe relation (4.39) enables us to determine the
QCD running-coupling Bg-function solely from the computation of the background-
field two-point function. In Sec. 4.5, we make use of the background-field formalism
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for a computation of the running QCD coupling for a wide range of temperatures and
scales within the functional RG. At first sight, the running coupling does not seem
to be a useful quantity in the nonperturbative domain, since it is dependent on the
RG scheme and strongly dependent on the definition. Therefore, we cannot a priori
associate a universal meaning to the RG flow of the coupling, but we always have
to use and interpret it in the light of its definition and the RG scheme. In fact, the
background-field formalism provides for a simple non-perturbative definition of the
running coupling in terms of the background-field wave function renormalization Z 4 .
The running coupling 3,2 is related to the anomalous dimension 7 of the background
field via

592 = 8t92 = (d —4 4 7])92 with N = —ZkatZAk s (440)

where we have kept the spacetime dimension d arbitrary. Since the background field
can be naturally associated with the vacuum of gluodynamics, we may interpret the so-
defined coupling as the response strength of the vacuum to color-charged perturbations.

4.4 RG Flow Equations in Background-Field Gauge

In this section, we show how to apply the background-field formalism for gauge-theories
to the functional RG. The starting point for the derivation of the RG flow equa-
tion for the background-field effective action vt [q) ¢2] is an appropriate IR- and UV-
regularized generating functional Z [JT qb] In case of gauge theories, this might pose a
more difficult problem since such regularizations may violate gauge invariance. How-
ever, as already discussed in Subsec. 2.4.2, the IR- and UV- regularizations are only
additional sources of gauge-symmetry breaking, since gauge invariance is already vio-
lated by the gauge-fixing procedure, see Sec. 4.2. Following the derivation of the flow
equation in Sec. 2.4.2 and 2.4.3, we regularize the IR of the path-integral Eq. (4.24)
through an insertion of cutoff terms ASy 4 and ASj g, for the gauge fields and the
ghost fields, respectively:

a b

1 d ai - 1a 1 b: - 1b
ASia = 5 / dte (A%~ A9) R (AALA) (A~ L), (4.41)
ASpg = / dhe R (A A (4.42)

For the moment, we allow general arguments A4[A] and Ag,[A] which may depend

on A. The coarse-grained effective action fk[ci) qg] is then obtained by performing a
Legendre-transformation of the generating functional W[J T gf)] for connected diagrams:

Ti[®@, 0] = —WilJ,0] +J7- & — ASi[®, 9] (4.43)
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Here we have introduced a matrix-valued regulator Ry[A] in field space:

RA SV (AA [A] ) 0 0
Ry[A] = 0 0 (R (Agn[AD)" ] - (4.44)
0 R (Ag[A]) 0

Using the so-defined matrix and the vectors defined in Eq. (4.22) and (4.25), the cutoff-
terms can be written in a compact way:

1. R i A
ASka+ ASkgn = écpT Ry, - ® = AS,[®, ¢]. (4.45)

In the previous section, we have found that the effective action T' [QA), ¢2] is invariant
under the combined transformation G§ + G4 + G, see Eq. (4.36). This invariance of
the effective action is maintained even in the presence of the regulator term ASy, if
the regulator term satisfies

(G4 + G +G°) ASi[®, 6] =0, (4.46)

As has been shown in Ref. [70], the condition (4.46) for the regulator term is fulfilled if
the arguments A 4[A] and Ay, [A] of the regulator functions transform as tensors under
the background-gauge transformation, i. e. G%(z)A%[A] = gfP A [A]§(x — y). For
example, a possible choice for these operators is

AR, [A] = =DY[AIDY[A)5,,  and  AR[A] = —D[A]DY[A]. (4.47)

From now on, we assume that the arguments of the regulator functions are chosen in
such a way that the constraint (4. 46) is fulfilled. Following the steps along the lines of
Subsec. 2.4.3, the flow equation for I'[®, ¢] yields

0, T[®, 9] = —ST {[ FILL001$, ] +Rk(A[A])} (atRk(A[A]))} : (4.48)
where the super-trace includes a trace over the ghost sector as well, including the
corresponding minus sign. We have adopted the short-hand notation for the generalized
n-point functions from Subsec. 2.4.3:

i—times k—times [—times j—times
- -’ -’ -’

EAREAYEAEA) (5 T[T T\
fl(j,j,k,z)[é’d;]: S . fk[q>7g)] I I i
JOT 6T J \ 0T ST 0p 0o ) \oP oD

As we have discussed in Subsec. (2.4.3), the background-field effective action N[N
evaluated at ® = 0 is equivalent to the standard effective action I'[®, ®| for k& — 0.
According to Subsec. (2.4.3), we define

T[®] == T[0, 9] (4.49)
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Note that in order to obtain I'y[®] for a particular value of k, one must first solve the
flow equation (4.48) down to this value of k and then one must identify the background-
field ¢ with the field ®. In this context, we remind the reader that the RHS of the
flow equation (4.48) depends on the fluctuation field propagator r ](€1,1,0,0) [CT),QAS] and
that it is therefore not a functional of I'y[®], as we have explicitly shown in Eq. (2.56).
Consequently, it is not sufficient to study only the symmetries of I'y[®], but necessary to
study also those of I',[®, @], even if we know that I';[®] is a gauge-invariant functional,
as we will argue next.

Since we assume that Eq. (4.46) is satisfied, we find that T'[®, ¢ is invariant under
the combined transformations G4 + Gg), + G®. This implies that T';[®] satisfies

(G4 + Ggn) Tw[®] = 0. (4.50)

Thus T'y[®] is invariant under physical gauge transformations in the limit & — 0.
Physical gauge invariance for finite values of k is encoded in modified Ward-Takahashi
identities (mWTI) [70], which are given by

(G4 + Ga) D[, 9]
(0G5 + G5) (St Sa)l0)s (0] (G5 + Gg) ASl0),
(010}, (010},
The first term on the RHS corresponds to the standard W'TT in the presence of the
regulator scale k, whereas the second arises due to the presence of the regulator terms
in the path-integral®. From Eq. (4.60), we obtain the standard WTI for k — 0 since the

second term on the RHS vanishes in this limit. Moreover, we obtain background-field
Ward-Takahashi identities (bWTI) by applying G* to '[P, ¢]:

(01G* (St + Sen)|0) s, (0]G*ASL|0)
(0[0) s (00},

Combining the bWTT and the mWTI, we recover the invariance of r k[qA), QAS] under the
combined transformations Gj + Gg, + G“. Note that this only yields physical gauge

invariance of [y[®] for k — 0 if the background-field effective action I'y[®, @] satisfies
the standard WTT in this limit. o
Let us now apply our knowledge about the symmetries of Fk[q), gﬁ] ‘to the flow

equation (4.48). As has been shown in Ref. [70], the invariance of I';[®, ¢] under the
transformation G4 + ah T G® is sufficient to prove that the flow equation satisfies

(4.51)

g_afk[ci)a é] =

(4.52)

(G4 + G+ G°) OT[®,¢] =0, (4.53)
implying that
(G5 + G2) OTW[®] = 0. (4.54)

°It has been explicitly worked out in Ref. [70] that the first term in Eq. (4.60) gives the standard
loop contributions to the WTT in Yang-Mills theory.
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We conclude from Eq. (4.53) that the full quantum effective action I'y[®, ¢] is invariant
under the combined transformations G4 + gh + G® and that it satisfies the standard
WTI, provided the initial effective action at k& = A is invariant under these transfor-
mations®.

In this work”, we solve the RG flow defined by Eq. (4.48) approximately by setting
A=A i e & =0, right from the beginning. Beside this, we also neglect the
difference between the RG flows of the fluctuation and the background field. In the
flow equation (4.48), this approximation is reflected in the fact that we identify the

propagator F,(cl’l) [®] with the fluctuation-field propagator (see Eq. (2.56)):
Q)40 L (1,1,0,0)
PV L 111000 @), (4.55)

In fact, this is in general not the case, as we discussed in Sec. 2.4.3. We refer to [166] for
a treatment of this difference. In the following, however, we discuss a strategy developed
in [74, 71] for the computation of an approximate solution. The (approximate) RG flow
equation under consideration then reads

—1

0, T[®] = % STr { [r;j’”[cp] + Rk(A[A])} (@Rk(A[A]))} . (4.56)

The super-trace includes a trace over the ghost sector as well, with the corresponding
minus sign. As the above discussion of symmetries has shown, the property of manifest
physical gauge invariance of the solution to this flow equation is still maintained in
the approximation of setting 4 = A, i. e. o = 0, even for finite values of k. In
this respect, the neglecting of the difference between the RG flows of the fluctuation
and the background field is unproblematic. However, as we have already discussed
in Subsec. 2.4.3, the flow is no longer closed [64] due to the assumption (4.55). In
other words, this means an information loss, since information required for the next
RG step is not completely provided by the preceding step. This is the price to be
paid for this approximation. Moreover, this approximation satisfies some but not all
constraints imposed by the regulator-modified Ward-Takahashi identities (mWTI). It
is instructive to discuss the consequences of setting ® = 0 in Eq. (4.48) explicitly,
following Ref. [72, 71]. For this purpose, we assume that the background-field effective
action I',[®, @] can be decomposed as follows®:

A

Tila, c,e Al = T/M[a + A] + T¥a, A] + T%[a, ¢, ¢, A] + T5"[a, ¢, ¢, A],  (4.57)

SMoreover, o [<i>, qﬁ] satisfies the mW'TT on all scales if one can show that it satisfies the mWTT on
one particular scale, e. g. at k = A, see Ref. [70].

"We also apply the approximations discussed here to our study of the running QCD coupling that
incorporates quark degrees of freedom.

8This assumption is motivated by the fact that the classical action with the gauge-fixing terms is

recovered from 'y [®, ¢] in the limit & — A — oo, see Ref. [72]. Moreover, we have T'o [0, ®] = Syn[®]
in this limit.
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where we impose a normalization for I';*"*°

1&%°[0,0,0, A] = 0. (4.58)

For better readability, we give the arguments of the (background-field) effective action
explicitly rather than in form of a generalized vector in field space, see Eq. (4.22)
and (4.25) for our definitions of ¢ and ¢, respectively. Here s and Ish represent
generalized gauge-fixing and ghost contributions, for which we use their classical form
in the remainder of this chapter:

70‘“

f[a, A] = 26/ A-D,7 e A= —/cDu[fl]Du[aijl]c. (4.59)
x

Note that we neglect any non-trivial running in these terms. The gauge-noninvariant
remainder of the effective action is summarized in fiauge. This includes, e. g., operators
parametrizing the non-trivial running in the gauge-fixing and ghost sector. The pure
gluonic part I')YM is assumed to be a gauge invariant functional carrying the desired
physical 1nformat10n about the quantum theory in the limit « = ¢ = ¢ =0, 1. e
A = A. From our decomposition of I' in Eq. (4.57), we immediately find that the
fluctuation field propagator receives in general a contribution from fiauge even in the
limit @ = ¢ = ¢ = 0. In addition, we find that the contribution arising from the gauge-
fixing term f%f to the fluctuation field propagator is independent of the fluctuation
field a. Neglecting f‘ SU8¢ in Eq. (4.57) then means that we do not take into account
that the flow of I’} [A A] is affected by contributions from A # A. Applying the
mWTI, Eq. (4.60), to the decomposed effective action (4.57), we obtain

<O| (gA + g ) ( ef + Sgh)‘0>
(010},
(0] (94 + Gg) ASKI0),
- (0[0}.s ’

(G4 G) (T + T+ T

(4.60)

where we have used that I'YM is an arbitrary but gauge-invariant functional®. We
observe that the flow of I'; at A = A is in general affected by Fgauge via the mWTI.
Therefore, neglecting of r $7%8 is in general not consistent with this constraint. In
the following, however, we assume that both the information loss and the corrections
due to the mWTT are quantitatively negligible for the final result. The advantage of
the approximation of using Ty[A = A] = T[0,0,0, 4] for all k is that we obtain a
gauge-invariant approximate solution of the quantum theory!’

9A similar constraint is obtained by applying the bWTI, Eq. (4.52), on the decomposed effective
action (4.57).

10For recent advances using an alternative approach, which is based on a manifestly gauge invariant
regulator, we refer to [57]. Additional proposals for thermal gauge-invariant flows can be found in
[167].
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For the remainder of this chapter, we optimize our truncated flow by inserting
the background-field dependent F,(Cl’l)[A = A] in the regulator Eq. (4.56), i. e. we

use A[A] = F,(cl’l) [A]. Of course, this choice for A[A] is consistent with our assumption
that Eq. (4.46) is satisfied. Furthermore, it adjusts the regularization to the spectral
flow of the fluctuations [71, 64], which leads to a significant improvement since larger
classes of diagrams can be resummed in the present truncation scheme, as we have
discussed in Subsec. (2.4.3).

4.5 RG Flow of the Running Coupling at Finite
Temperature

In this section, we compute the QCD running coupling by applying the background-
field formalism to the functional RG. We follow the strategy discussed in the last
section. While an investigation of the coupling is interesting in its own right, we will
also show in the subsequent sections that it represents a key ingredient to our study of
the chiral phase boundary.

4.5.1 Truncated RG flow

Owing to the strong coupling, we cannot expect that low-energy gluodynamics can be
described by a small number of gluonic operators. On the contrary, infinitely many
operators become RG relevant and will in turn drive the running of the coupling. We
span a truncated space of effective action functionals with the ansatz!!

=A
n _ 7YM ~ ref 1 mgh ~ A rquark n A
Iy =T a+ A+ a, Al + % a, ¢ c, Al + 10 a, 0,9, Al . (4.61)

The terms '8! and I'#" represent gauge-fixing and ghost contributions, which are defined
in Eq. (4.59). Our choice for the functional I'YM[A] is only constrained by gauge
invariance. The quark contributions are contained in

[fla 00,4 = [ G6Pla+ A+ Mo+ TE 0l (462

where the last term F%’im [, %] denotes our ansatz for gluon-induced quark self-inter-
actions. These interactions will be discussed in Sect. 4.6.2. In Eq. (4.62), we have
already set the quark wave function renormalization to Z, = 1, which is a conse-
quence both of the Landau gauge and our later choice for I'{""™[¢), ¢]. The pure gluonic
subspace I'YM[A] is truncated to an infinite but still tractable set of operators,

Y[ A] / Wi(0), 0= Fe po (4.63)

4 Y2V 7

1Tn conrast to the previous sections, we give the arguments of the (background-field) effective
action explicitly rather in form of a generalized vector in field space.
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Expanding the function W(0) = W10 + $W16? 4+ 5 W30° ..., the expansion coefficients
W; denote an infinite set of generalized couphngs Here, Wl is identical to the desired
background-field wave function renormalization, Z, = W, which defines the running
of the coupling,

¢ =k"1Z g (4.64)

Note that Eq. (4.40) is a consequence of this definition. This truncation corresponds to
a gradient expansion in the field strength, in which higher-derivative terms and more
complicated color and Lorentz structures are neglected. In this way, the truncation in-
cludes arbitrarily high gluonic correlators, projected onto their small-momentum limit
and onto the particular color and Lorentz structure arising from powers of F?. In
our truncation, the running of the coupling is successively driven by all generalized
couplings W;.

It is convenient to express the flow equation in terms of dimensionless renormalized
quantities

v = k710 = k%0, (4.65)
w(@) = Pk Wi(0) = k12 Wi (K9 37). (4.66)

Inserting Eq. (4.61) into Eqns. (2.61) and (2.66), we obtain the flow equation for w(¥):

2 c Nf
dow = —(4 — n)w + 40 + —2 d/ ds{—mzzw eI (sbi)b
2(4m)2 Jo i=1 ¢=1

N2-1

43 (#, P sio) = S Eof (sh) b

=1

2 (s T) (s L)] — () + (h(s) — ) (22 0) )

+ h(s)

w +29 w w

N2-1 .
. . . . . w
2 ; [ (s, L) fH (swby)byt — f(sw, L) f (s, m)]

2h(s) =GPy o o -
_ (o 120 &)? <w8tw—w0tw +iww +49(ww — w ))ff(sw,z)}, (4.67)

where the auxiliary functions f are defined in App. D.1, and we have used the abbrevi-
ation e; = %1, The “color magnetic” field components b; are defined by b; = | |V/20,
where v; denotes eigenvalues of (n®T*) in the fundamental representation; correspond-
ingly, 0; is equivalently defined for the adjoint representation. Furthermore, we have
used the short-hand notation w = w(¥) and dots denote derivatives with respect to ¥.
For details on the derivation of Eq. (4.67), we refer the reader to App. G.
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In order to extract the flow equation for the running coupling, we expand the
function w(¥) in powers of ¥,

w®) =Y =9, w =1 (4.68)

1=0

Note that w is fixed to 1 by definition (4.66). Inserting this expansion into Eq. (4.67),
we obtain an infinite tower of first-order differential equations for the coefficients w;.
In the present work, we concentrate on the running coupling and ignore the full form
of the function W, hence, we set w; — 0 for ¢ > 2 on the RHS of the flow equation
as a first approximation, but keep track of the flow of all coefficients w;. The resulting
infinite tower of equations is of the form

dw; = X;(g°,m) + Yi;(g°) 0w, . (4.69)

Details on the computation of the functions X, Y;; are given in App. G; the function Y;;
obeys Y;; = 0 for 7 > i+ 1. Note that we have not dropped the flows of the generalized
couplings w;, namely 0,w;, which are a consequence of the spectral adjustment of the
flow, see the discussion in Subsec. 2.4.3. This infinite set of equations can be solved
iteratively, yielding the anomalous dimension as an infinite power series of ¢>

o0 2
n:Zame with GE2 g

AT (4.70)

m=1

The coefficients a,, can be worked out analytically, see App. (G); they depend on
the gauge group, the number of quark flavors, their masses, the temperature and the
regulator. Equation (4.70) constitutes an asymptotic series, since the coefficients a,,
grow at least factorially. This is no surprise, since the expansion (4.68) induces an
expansion of the proper-time integrals in Eq. (4.67), for which this is a well-understood
property [168]. A good approximation of the underlying finite integral representation
of Eq. (4.70) can be deduced from a Borel resummation, including only the leading
asymptotic growth of the a,,,

N~y aEG. (4.71)
m=1

The leading-growth coefficients are given by a sum of gluon, ghost and quark-gluon
contributions,

. mo1 D(za+m)T(m+1) 1+ 22m — 2
azvg' = 4(—201) ! F(Zd + 1) [hfm—ed(%)(d_Q) (Qm)‘ Tnf}LBQm
4 al

_ B _
AT A m+1_22m P m;
BT R A i DAL D). @)
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The auxiliary functions ¢y, co, 24 and the thermal moments l_zj, l_z;-p are defined in App.
D.1 and G.3. The group theoretical factors 72 and 7% are defined and discussed in
App. B.2. The last term in the second line of Eq. (4.72) contains the quark contri-
butions to the anomalous dimension, including a sum over the different quark flavors
with mass m;. The remaining terms are of gluonic origin.

The first term in the second line has to be treated with care, since it arises from the
Nielsen-Olesen mode in the propagator [169], which is unstable in the IR. This mode
occurs in the perturbative evaluation of gradient-expanded effective actions and signals
the instability of chromomagnetic fields with large spatial correlation. At finite temper-
ature, this problem is particularly severe, since such a mode will strongly be populated
by thermal fluctuations. This typically spoiling perturbative computations [170].

From the perspective of the flow-equation, this does not cause conceptual problems,
since in contrast to the perturbative gradient expansion, no assumption about large
spatial correlations of the background field is needed.

For an expansion of the flow equation about the (unknown) true vacuum state,
the regulated propagator would be positive definite, F,(f) + Rp > 0 for k£ > 0. Even
without knowing the true vacuum state, it is therefore a viable procedure to include
only the positive part of the spectrum of F,(f) + Ry in our truncation, since it is an exact
operation for stable background fields. At zero temperature, these considerations are
redundant, since the unstable mode merely creates imaginary parts that can easily be
separated from the flow of the coupling. At finite temperature, we need to remove only
the unphysical thermal population of this mode. We do this by using a T-dependent
regulator that screens the instability. To ensure an unambiguous regularization, we
include the Nielsen-Olesen mode for all £ > T as it is, dropping possible imaginary
parts. For k < T, we remove the Nielsen-Olesen mode completely, thus inhibiting its
thermal excitation. Of course, a smeared regularization of this mode is also possible,
as discussed in App. H. As we show in this appendix, the regularization prescription
that we have proposed here is a point of “minimum sensitivity” [44] in a whole class
of regulators. This supports our view that our regularization has the least amount of
contamination with unphysical thermal population of the Nielsen-Olesen mode.

We outline the resummation of n of Eq. (4.71) in App. G.3. It yields

n=n+n +n (4.73)

with gluonic parts n{*, 75" and the quark contribution to the gluon anomalous dimen-
sion'? n9. Finite integral representations of these functions are given in Eqns. (G.60),
(G.66), and (G.67). For pure gluodynamics, ;' and n3' carry the full information about
the running coupling.

In Fig. 4.4, we show the result for the anomalous dimension 7 as a function of
G = o for N. =3 and Ny = 3 in d = 4 dimensions. These results have been obtained

12The contribution 7% should not be confused with the quark anomalous dimension 7, which is zero
in our truncation.
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Figure 4.4: Anomalous dimension 7 as a function of G = g= for 4d SU(N, = 3) theory
with Ny = 3 massless quark flavors at vanishing temperature. The gluonic parts 7:!, n3
and the quark part n9 contributing to the anomalous dimension 7 (thick black line) are
shown separately. The gluonic parts n{* and n3' agree with the results found in [71].
The figure shows the results from a calculation with a background field pointing into
the 8-direction in color space.

with the exponential regulator, see Eq. (D.19) and Eq. (D.21) in App. D for the gluons
and quarks, respectively. For pure gluodynamics (i.e. Ny = 0), we find an IR stable
fixed point for vanishing temperature,

Q= g, aus) = [5.7,9.7], (4.74)

in agreement with the results found in [71]. The (theoretical) uncertainty is due to the
fact that we have used a simple approximation for the exact color factors T]A and 7’;-/) ,
see App. B.2 for details. This approximation introduces an artificial dependence on the
direction of the background field in color space. The extremal cases of this dependence
are given by the 3- and 8-direction in the Cartan sub-algebra. The results for these
extremal cases span the interval given above for the IR fixed point. Even though
this uncertainty is quantitatively large in the pure-glue case, it has little effect on the
quantitative results for full QCD, as we will see below.

The inclusion of light quarks yields a smaller value for the infrared fixed point a, as
can be seen from Fig. 4.4. However, this smaller fixed-point value will only be attained
if quarks stay massless or light in the deep IR. If chiral symmetry breaking occurs, the
quarks become massive and decouple from the flow, and in consequence the system is
expected to approach the pure-glue fixed point. We can read off from Fig. 4.4 that in
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any case the inclusion of quarks leads to a smaller coupling compared to the coupling
of a pure gluonic system. This happens already in the symmetric regime.

4.5.2 Results for the Running Coupling

For quantitative results with regard to the running coupling, we confine ourselves to d =
4 dimensions and to the gauge groups SU(2) and SU(3). Of course, results for arbitrary
dimensions with d > 2 and other gauge groups can be obtained straightforwardly
from our general expressions in App. G.3. For instance, this offers a way to study
nonperturbative renormalizability of QCD-like theories in extra dimensions, as initiated
in Ref. [171] for pure gauge theories.

To this end, a quantitative evaluation of the coupling flow requires a specification
of the regulator shape-function r(y), cf. Eq. (D.19) and Eq. (D.21) in the appendix
for the gluons and quarks, respectively. In order to make it easier to establish contact
with measured values for the coupling, e.g., at the scale given by Z mass or the 7 mass,
it is advantageous to choose r(y) in correspondence with a regularization scheme for
which the running of the coupling is sufficiently close to the standard MS running in
the perturbative domain. Here, it is important to note that already the two-loop (3,2
coefficient depends on the regulator. This is due to both the truncation and the mass-
dependent regularization scheme. As an example, we give the two-loop 3,2 function
calculated from Eq. (4.67) for QCD with N, colors and Ny massless quark flavors in
d = 4 dimensions:

. (4.75)

12775 he + Nﬂfﬁ‘g 6
_ 2

. 2<%N3—UU%3—§%)+%H§—C%D>Giy%au.

27 A Y
99 i gt TTN2h4 — 14N N¢h'y
) = —ZhiN.— ZhYN, - : 2 gi
B(g°) ( 3 1V (47)?2 3 91

The thermal moments gj‘/ w,ﬁ?/ w, C_T'f and H JA are defined in App. D.1. They specify the
regulator dependence of the loop terms and depend on % This is visualized in Fig. 4.5.
We observe that even the one-loop coefficient is regulator-dependent at finite temper-
ature, but universal and exact at zero temperature, as it should be. The universality
and exactness of this coefficient holds, since g‘f/ ¢(% =0)=1and B’f/ w(% =0) =1 for
all permissible regulators. Using the exponentQial regulator, we find ’

_ T T _ T
(=0 =26), gy =0=1, WG =0=

_.T _ . T

GiE =0 =5 and H=0)=((3) (4.76)

for the moments at zero temperature. Using the color factors 75! and r;" from App. B.2,
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Figure 4.5: Thermal moments as a function of % for the exponential regulator. The

moments h?' as well as hf’ are finite in the limit % — 0. The gluonic thermal moments
h#t grow linearly for increasing % due to the presence of a soft Matsubara mode, whereas

the fermionic thermal moments h?’ are exponentially supressed for % — 00.

we compare our result to the perturbative two-loop result,

22 4 gt 68N3 + 6N — 26 N2N; \  ¢°
er ) =— _Nc — =N - < -

4o, (AT

and find good agreement to within 99% for the two-loop coefficient for SU(2) and 95%
for SU(3) pure gauge theory. Besides this compatibility with the standard MS running,
the exponential regulator is also technically and numerically convenient.

The suitability of the regulator for a perturbative calculation is mandatory for a
reliable estimate of absolute scales of the final results. The present choice enables us to
fix the running coupling to experimental input: as initial condition, we use the value
of the coupling measured at the 7 mass scale [9], as = 0.322, which agrees after RG
evolution with the world average of ag at the Z mass scale. We stress that no other
parameter or scale is used as an input.

The global behavior of the running coupling can be characterized in simple terms.
Let us first concentrate on pure gluodynamics, setting Ny — 0 for the moment. At zero
temperature, we rediscover the results of [71], which exhibits a standard perturbative
behavior in the UV. In the IR, the coupling increases and approaches a stable fixed point
g2 which is induced by a second zero of the 3,2 function, see Fig. 4.6. The appearance
of an IR fixed point in Yang-Mills theories is a well-investigated phenomenon and has
also been studied in the Landau gauge, see e. g. Refs. [172, 173, 174, 175, 176, 177].
Here, the IR fixed point is a consequence of a tight link between the fully dressed gluon
and ghost propagators at low momenta. This link is visible in a vertex expansion [178].
Most interestingly, this behavior is in accordance with the Kugo-Ojima and Gribov-
Zwanziger confinement scenarios [179, 165, 180]. Even though the relation between
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the Landau-gauge and the background-gauge IR fixed point is not immediate, it is
reassuring that the definition of the running coupling in both frameworks rests on a
nonrenormalization property that arises from gauge invariance [181, 65]. Within the
present mass-dependent RG scheme, the appearance of an IR fixed point is compatible
with the existence of a mass gap: once the scale k has dropped below the lowest physical
state in the spectrum, the running of physically relevant couplings is expected to freeze
out, since no fluctuations are left to drive any further RG flow. Finally, IR fixed-point
scenarios have successfully been applied also in phenomenological studies as well, see
e. g. Refs. [182, 183, 184, 185, 186, 187].

For scales k > T, we find agreement with the perturbative running coupling at
zero temperature, as one would naively expect. In the IR, the running is strongly
modified: The coupling increases towards smaller scales until it develops a maximum
near k ~ T. Below, the coupling decreases according to a power law ¢? ~ k/T,
see Fig. 4.6. The reason for this behavior can be understood within the RG framework:
first, the hard gluonic modes decouple from the RG flow at the scale k ~ T'. At this
point, the wavelength of fluctuations with momenta p* < 72 is larger than the extent
of the compactified Fuclidean time direction. Hence these modes become effectively 3-
dimensional and their limiting behavior is governed by the spatial 3d Yang-Mills theory.
However, the decoupling of the hard modes alone cannot explain the decrease of the
coupling for scales k < T'. The second ingredient which is needed is the existence
of a non-Gauflian IR fixed point also in the reduced 3-dimensional theory. Indeed,
we observe the existence of such a non-Gauflian IR fixed point also in the reduced
3d theory, see also Subsec. 4.5.3. A straightforward matching between the 4d and 3d
coupling reveals that the observed power law for the 4d coupling is a direct consequence
of the strong-coupling IR behavior in the 3d theory, g*(k < T) = g3,, k/T. Note that
this asymptotic behavior can be deduced analytically from the integral representation
of Eq. (4.70), see Subsec. 4.5.3. Again, the IR behavior observed at finite temperature
is in accordance with recent results in the Landau gauge [41].

The 3d IR fixed point and the perturbative UV-behavior already determine the mo-
mentum asymptotics of the running coupling qualitatively. Phenomenologically, the
behavior of the coupling in the transition region near its maximum value is most im-
portant. Quantitatively, it is provided by the full 4d finite-temperature flow equation.
In addition to the shift of the position of the maximum with the temperature, we ob-
serve a decrease of the maximum value for increasing temperature. On average, the 4d
coupling gets weaker at higher temperature, in agreement with naive expectations. We
emphasize, however, that this behavior results from a nontrivial interplay of various
nonperturbative contributions.

Now we turn to the effect of a finite number N; of massless quark flavors. In
Fig. 4.7, we show the running coupling a; as a function of k& for 7' = 100 MeV and
for Ny =0,...,10. At large scales k > T, the running of the coupling agrees with the
zero-temperature running in the presence of Ny massless quark flavors. Towards smaller
scales, the coupling increases less strongly than the coupling of the corresponding SU(3)
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Figure 4.6: Running SU(3) Yang-Mills coupling ayy(k,T') as a function of k for T' =
0,100,500 MeV compared to the one-loop running at vanishing temperature.

Yang-Mills theory, which is due to fermionic screening. At a scale k ~ T, the coupling
reaches its maximum value. Below this scale, the quarks decouple from the flow, since
they only have hard Matsubara modes. Hence, the coupling universally approaches
the result for pure Yang-Mills theory. Furthermore, we observe that for an increasing
number of quark flavors, the maximum of the coupling becomes smaller and moves
towards smaller scales. Both effects are due to the fact that the anomalous dimension
7 becomes smaller for an increasing number of quark flavors.

Again, we stress that the results for the coupling with dynamical quarks do not yet
account for chiral symmetry breaking, whereby the quarks become massive and decou-
ple from the flow. For temperatures or flavor numbers larger than the corresponding
critical value for xySB, our results given so far should be trustworthy on all scales.

4.5.3 Dimensionally reduced high-temperature limit

As discussed above, the running coupling for scales much smaller than the tempera-
ture, £ < T, is governed by the IR fixed point of the 3-dimensional theory. More
quantitatively, we observe that the flow of the coupling is completely determined by n{
for % > 1. As discussed in the previous subsection, the quark contributions decouple
from the flow in this limit since they do not have a soft Matsubara mode. Therefore
we find an IR fixed point at finite temperature for the 4d theory at g2 = 0. In the limit



4.5. RG Flow of the Running Coupling at Finite Temperature 109

10 . .

ag(kT)

k [GeV]

Figure 4.7: Running SU(3) coupling a,(k,T') as a function of k for 7" = 100 MeV for
different number of quark flavors Ny = 0, 1,2, ..., 10 (from top to bottom). For k < T,
the coupling shows universal behavior, owing to the attraction of the IR fixed point of
the pure glue theory.

% > 1, the anomalous dimension Eq. (4.73) is given by

(T > k)~ (T > k) = 07°(9% F) = 3sa (F 99, (4.78)
where 734 is a number which depends on N.:

32¢(3)(1 = 2v2)T (T (5 + 2°) /e
(47r)4r(§)1“(z§f° +1)

V3d = N.. (4.79)

We refer to App. G.3 for the definition of the constants z° and ¢}°. In the high-
temperature limit, we can solve the differential equation (4.40) for ¢g* analytically,

T - [e¢)
§>>1

?l, =) = — R T O, (480)
k

The RHS explains the shape of the running coupling for small k/T in Fig. 4.6. The
_4
factor 7,,° is the fixed point value of the dimensionless 3d coupling g3,, as can be seen
from its relation to the dimensionless coupling ¢? in four dimensions:
T k
ggd = EQQ — g’ = ngd' (4.81)
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Comparing the right-hand side of Eq. (4.80) and (4.81), we find that the fixed point
for N. = 3 in three dimensions is given by:

2
o = gid’* = [a3% a?%] ~ [2.70,2.77] . (4.82)
7-(- b )

Again, the uncertainty arises from our lack of knowledge about the exact color factors
74 see App. G.3 and App. B.2.

On the other hand, the fixed point of the 3d theory is determined by the zero of the
corresponding 8 function. In fact, 7{°(g?, %) is identical to the 3d anomalous dimension
n34(g34), as can be deduced from the pure 3d theory, and we obtain

0i(Lg?) = 0,92 = (n3a(92) — 1)93, (4.83)

as suggested by Eq. (4.40). Since 734 is a monotonously increasing function, we find a
4

3d IR fixed point for g3;, = 75,7, which coincides with the result above.

4.6 Fermionic Interactions in QCD

In this section, we discuss the role of four-fermion interactions in QCD within the
functional RG. However, before we discuss four-fermion interactions in QCD, we start
with a simple truncated NJL-type model in Subsec. 4.6.1 in order to introduce some
technical aspects of such a RG study. In addition, a confrontation of the NJL model
with our study in Sec. 4.6.2 of four-fermion interactions, which incorporates gauge
degrees of freedom, is instructive to point out the substantial differences between both
approaches with respect to the mechanisms of chiral symmetry breaking.

4.6.1 A Technical Introduction: The NJL Model

The NJL model at zero temperature and zero fermionic density has been extensively
studied with the functional RG in Ref. [188, 189] in particular, the ambiguities arising
from Fierz transformations have been explicitly worked out and discussed. In this
subsection, we aim to point out the differences in such a study arising from finite
temperature and density. For this purpose, we restrict ourselves to a NJL-type model
with only one fermion species. Its truncation reads

1B w, w} = /d4${¢ i@ +ipyo + im)ap + %)\a[(wa — (V51)°]
W - gl b (s

where we allow for a finite chemical potential g and an explicit fermion mass term®3.

Furthermore, we consider the four-fermion interactions to be local, i. e. we neglect any

13The model is only invariant under chiral U(1)-transformations if the mass term vanishes.
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non-trivial momentum dependences of the couplings A\;. We are aware of the fact that
this is a crude approximation, but it should be sufficient to detect the critical surface
separating the strong and weak coupling regime in the plain spanned by the A;. Of
course, such a truncation is not sufficient to study the IR properties of the NJL model
in the strong-coupling regime. Here the RG flow of the present truncation becomes
unstable, as indicated by poles of Landau-type in the couplings A\;. We have included
more four-fermion interactions in our truncation than in the discussion on the origin of
the quark-meson model in Sec. 3.4.1. As we argue below, this is necessary because the
contributions to the interactions given in the second line of Eq. (4.84) are generated in
the RG flow, even if we neglect these interactions in the initial truncation.

For our calculation of the flow equations for the couplings, we apply the following
flow equation (see Eq. (2.29)):

1 ! r 5

achNJL[q)] = §STI' { [Fl(cl,l’\}‘)]L[q)] + Rk} (@Rk)} with Fl(cl,l’\}‘)IL[(I)] = WFMJL[@](S—Q.

Here ® represents a vector in field space and is defined by

d = d(q) := ( \I/‘f((z)q) ) and ©" = @"(—q) == (¥"(—q), ¥(q)) .  (4.85)

Due to this, F,(:I&k)m [®] is matrix-valued in field space. Decomposing the inverse reg-
ularized propagator on the RHS of the flow equation into a field-independent and a
field-dependent part,

TP+ Ry = Pi+ Fi, (4.86)

we can expand the flow equation in powers of fields as follows:

1 N
OlkNnyn = §ST1"{at In(Py, + fk)} (4.87)

1 - /1 1 - /1 Y 1 - /1 s

Here, 9, denotes a formal derivative acting only on the k-dependence of the regulator
function Ry. The powers of % .k can be computed by simple matrix multiplications.
The flow equations for the various couplings in a more general truncation than the
one given by Eq. (4.84) can now be calculated by comparing the coefficients of the
four-fermion operators on the RHS of Eq. (4.87) with the couplings specified in the
corresponding truncation. With respect to our truncation (4.84), we observe that only
the second term on the RHS contributes to the flow of the four-fermion interactions. In
anticipation of the next subsection, where we will couple the fermions additionally to
gauge fields via a covariant derivative, we note that we will have to take into account
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the contributions arising from the third and fourth term in the expansion as well. These
represent contributions from so-called 1PI "triangle”- and ”"box”-diagrams to the flow
of the four-fermion couplings.

Next, we discuss the Lorentz structure of the momentum integrals in the evaluation
of the super-trace in the expansion Eq. (4.87). At finite temperature 7" and chemical
potential u, we encounter two substantially different types of momentum integrals:

T Z / o B +mP I (pA 5, ) (4.88)

ddl P 7
=T Z/ {|:p0:i:llu)2_ﬂ:| nﬂln”/ d— 15NV+m}Il (pg\ )pg\i)> )

and

15 [ o R 4wy (0 m) T (5050 m) o)

n=—oo
dd -1 ﬁQ
_TZ / cH {{ 0+N2)_E}nunv
n=—oo
P’ L(4) 5(+) () ()
+E5uy+m2}zz (8787 m) T (8555 m) |

where d counts the number of space-time dimensions, the vector n, = (1,6) de-

notes the heat-bath velocity and the four-momenta ﬁ,(li) = (v, £ iu, p) depend on the
fermionic Matsubara-frequency v, = (2n+1)7T. The scalar functions Z; depend on the
squared four-momenta ﬁ&i) and the mass m. In order to perform the decomposition of
Eqns. (4.88) and (4.89), we have used the heat-bath projectors which are derived and
discussed in App. I. We point out that both integrals, Eq. (4.88) and (4.89), reduce to
the standard momentum integrals proportional to ¢,, for vanishing temperature and
chemical potential [59]. In the remainder of this work, we take for our calculations of
the RG flows of the four-fermion couplings into account only the momentum integrals
proportional to d,, on the RHS of Eqns. (4.88) and (4.89). We drop the contributions
arising due to the terms proportional to n,n, and m?. In any case, we will always
study the massless limit in this chapter, except for one excursion in Sec. 4.7. Note
that we reproduce the correct results for zero temperature and chemical potential even
if we neglect the contributions proportional to n,n,, since they vanish identically in
this limit. The assumption that the neglected contributions are not quantitatively
important is non-trivial. However, we have checked numerically that the momentum
integrals related to these contributions yield smaller values for T'/k < 0.6 and p = 0
than those from the integrals'* taken into account. This is sufficient for our purposes
in Sec. 4.6.2 and 4.7.

14The momentum integrals are related to so-called threshold functions, which are discussed in
App. D.2.
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We can read off from the expansion of the flow equation that contributions to
the flow of the four-fermion couplings specified in the second line of Eq. (4.84) are still
generated, even if they have been dropped in the truncation: the matrix multiplications
on the RHS of Eq. (4.87) mix the contributions from the inverse propagator Py, which
is proportional to 7,, with the contributions from the field-dependent part F;,. Suppose
for a moment that we use a truncation which consists only of the terms in the first line
of Eq. (4.84), then we would nevertheless encounter terms of the form'?

N tr {u i} = =X (0,) () (4.90)

in the expansion (4.87). This term obviously contributes to the flow of Ay. Moreover,
contributions of this type couple the flow equations of the various four fermion interac-
tions to one another. This observation explains why we need to include the couplings
Ay and A4 in our calculation. Note that the truncation (4.84) is closed, in the sense
that no contributions to four-fermion interactions are generated in the RG flow which
are not covered by the truncation. This brings us to the problem which arises due to
the fact that a particular four-fermion interaction can be expressed by a combination
of other four-fermion interactions by means of Fierz transformations. It is well known
that it is possible to rewrite the truncation (4.84) by performing Fierz transformations
of the four-fermion interactions (see App. C for our conventions for Fierz transforma-
tions). It is a temptation to look for a Fierz transformation which transforms away
one of the three couplings A;. In fact, only two of the three couplings in the present
truncation with only one fermion species are independent. This is due to the Fierz
identity (see App. C)

() = (y59)°] + 2 [(99)* — (¥7°9)°] = 0. (4.91)
Therefore, it is convenient to introduce new couplings ;\Z as
/_\U = 5\0 + 2’}/;\‘/ s S\V = (1 - ’7)5\\/ s S\A = ’y;\v s (492)

where 7 is an arbitrary parameter. We find Ay —Aa+ A, = 5\\/ + 5\0 with this choice for
the \;. In a study of the NJL. model in a mean-field approximation, it is not possible
to resolve the ambiguity in the four-fermion interactions [188]. Due to this, mean-field
results for the NJL model are always tainted with an uncertainty. In order to carefully
remove the so-called Fierz ambiguity we follow the strategy of Ref. [188]: first, we
insert Eq. (4.84) into the flow equation (4.87). Then we introduce the new couplings
defined in Eq. (4.92) into Eq. (4.84) and extract the RG flows for the new four-fermion
couplings by comparing the coefficients of the four-fermion operators on the LHS and

5 At first glance, it seems possible that a term could arise in the calculation with opposite sign to
the term in Eq. (4.90), so that both would cancel each other. We are aware of this and stress that
Eq. (4.90) should serve only as a motivation. As the full calculation shows (see below), not all terms
which couple the RG flows of the different couplings A\; drop out in the end.
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RHS of the equation. Introducing the dimensionless renormalized couplings \; = kQS\i,
we finally obtain the flow equations for A\, and Ay:

- 4 N
By = Odok = 2M, — 4[302, + 10A, 1Ay + 3A2 } ;’%?P (£, m,0)

4 )
4 [Ai,k + 200 kA — BN, } ;’3L§? (., i) |
_ 4 N
Br =0 = 2 — 4[N+ Dadva + 5| S2L (E.m,0)
dvg (p Ay o~ o~
+4[4)\%/,] L () (4.93)

Here we have defined the dimensionless quantities ji = u/k, t = T/k and m = m/k.
The threshold function L( ) , representing the fermionic loop integral, depend on the
details of the regularlzatlon, see App. D.2. The flow equations agree with the results of
Refs. [190, 188] for vanishing temperature and chemical potential'®. The flow equations
for A\, and Ay are independent of the parameter v, which reflects the fact that there
is no Fierz ambiguity in the RG flow. Finally, it is worth to be mentioned that the
first lines of the flow equations for A, and Ay do not depend on i even if we study
the NJL model at finite density; this independence of fi is due to the fact that the
integration variables in Eq. (4.88) can be shifted'”.

As a first application, we use the set of flow equations (4.93) to determine the
critical surface of the NJL model at zero and finite temperature for vanishing fermion
mass m and vanishing density p. Our study represents a generalization of earlier zero
temperature studies, reported in Refs. [190, 188].

Solving the flow equations numerically, we find that the set of possible initial con-
ditions®® for the flow equations at the scale k = A = 1 GeV can be divided into two
subsets for which the NJL model ends up in qualitatively different regimes in the IR,
either in a strongly or in a weakly coupled regime. The line separating the two sets of
initial conditions is called the critical surface. In Fig. 4.8, we show the critical surfaces
for T = 0 and T/A = 0.2 which have been obtained with the exponential regulator
Eq. (D.21). The names for the two regimes are motivated by the underlying physics.
For a given initial condition, there a two possibilities for the system: either the four-
fermion couplings approach Gauflian fixed points for £ — 0 or the couplings diverge
at a finite scale £ = k.. In the former case, the couplings become zero for £k — 0
and the NJL reduces to a theory of free fermions. In the latter case, the divergence
of the couplings at a finite scale k = k., indicates that the four-fermion interactions

10 the limit 4 — 0 and T — 0, we have L( ) (0,0,0) = Z”T’;‘IEF)A, where lEF)A denotes the
standard threshold functions defined in Ref. [59]. /

1"We would like to remark two points: first, the shift is performed for the py variable in the
continuum limit. Second, this shift is only possible if the integrand is analytic in the complex plane
spanned by the real axis and ipu.

8Note we have restricted our discussion to positive initial values for the couplings.
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Figure 4.8: 7 Critical” surface of the NJL model in the plane spanned by the dimen-
sionless couplings A, and Ay for zero temperature and for 7/A = 0.2 (left and right
panel, respectively). The red line divides the set of initial conditions for the flows of
the coupling at the UV scale kK = A into two subsets for which the NJL model ends up
either in a strongly coupled or in a weakly coupled regime. We restrict our discussion
to positive initial values for the couplings.

have become large enough to contribute as relevant operators to the flow. This, in
turn, indicates the onset of the breaking of the chiral U(1) symmetry of our model, as
we have already motivated in our discussion of the relation between the NJL model
and the quark-meson model in Subsec. 3.4.1. Hence, the divergence has a physical
meaning. This instability of the flow can be cured by including composite operators in
the truncation and then applying the so-called rebosonization technique [60, 61]. Such
an improvement of the truncation is indispensable if we are interested in the IR prop-
erties of the model or the order of the phase transition. However, for a computation of
the critical temperature, it is sufficient to detect the divergence in the RG flow. The
critical temperature can then be defined as the lowest temperature for which we do
not encounter instabilities in the flow.

Usually, the strategy for studying phase transitions in NJL-type models is as follows:
first, one chooses some physically motivated initial condition at zero temperature.
Then, one uses the same initial conditions for a study of the model at finite temperature.
For example, choosing (A, n = 75.1, \ya = 2.0) as initial condition at zero temperature,
the system ends up in the strongly coupled regime in the IR. Following the strategy
sketched above, we find a critical temperature of T, = 200 MeV. However, we can
find infinitely many initial conditions for which we get T, = 200 MeV; all points lying
on the critical surface for T/A = 0.2 specify initial conditions at 7" = 0 for which we
find T,, = 200 MeV. Even worse, the critical temperature depends strongly on the
choice of the initial conditions. These ambiguities in the initial conditions and the
resulting phase transition temperature are severe drawbacks of NJL-type models. In
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the next subsection, we incorporate gauge degrees of freedom into our study of quark
interactions. This allows us to get rid of the ambiguities present in the NJL model
when we compute the chiral phase transition temperature for QCD in Sec. 4.7.

4.6.2 Chiral Quark Dynamics in QCD

Let us now discuss the chiral quark dynamics in QCD. Dynamical quarks influence the
RG flow of QCD through two qualitatively different mechanisms. First, quark fluctu-
ations modify the running coupling directly as discussed above; the non-perturbative
contribution in the form of 79 in Eq. (4.73) accounts for the screening nature of
fermionic fluctuations, following the tendency that is already visible in perturbation
theory. Second, gluon exchange between quarks induces quark self-interactions which
can become relevant in the strongly-coupled IR. Both the quark and the gluon sector
feed back into one another in an involved nonlinear fashion. In general, these nonlinear-
ities have to be taken into account and are apparent in the flow equation. However, we
will argue that some intricate nonlinearities drop out or are negligible for the purpose
of locating the chiral phase boundary in a first approximation.

From now on, we will be working solely in d = 4. For our study of the chiral
quark dynamics in QCD, we have to specify our ansatz for the effective action of quark
self-interactions T{™[¢), ], introduced in Eq. (4.62). In a consistent and systematic
operator expansion, the lowest nontrivial order is given by [191]

DU ) — / 5[ (VA) + R (VEA) + A,(5P)

+FAva[2(V-A)2 4 (1/N,)(V-A)]|. (4.94)

The four-fermion interactions appearing here have been classified according to their
color and flavor structure. Color and flavor singlets are

(V-4) = (@) + (Wr50)’, (4.95)
(VHA) = (@7u)° = (s9)?, (4.96)

where (fundamental) color (7, j,...) and flavor (x,¢,...) indices are contracted pair-
wise, e.g., (V) = (¥X¥). The remaining operators have a non-singlet color or flavor
structure,

(SP) = (W) = (9% = W) — (i),
(V=AY = (@9 T9) + (95T %), (4.97)

where (X1)%)? = XopspshX, etc., and (T?);; denotes the generators of the gauge group
in the fundamental representation.

In the following, we study the four-fermion couplings ); in the point-like limit
A(|p:] < k). This is a severe approximation in the chirally broken regime where mesons



4.6. Fermionic Interactions in QCD 117

manifest themselves as momentum singularities of the four-fermion couplings. Never-
theless, the point-like truncation can be a reasonable approximation in the chirally sym-
metric regime; this has recently been quantitatively confirmed for the zero-temperature
chiral phase transition in many-flavor QCD [156], where the regulator independence
of universal quantities has been shown to hold remarkably well even in this restrictive
truncation. By adopting the same system at finite temperature, we base our truncation
on the assumption that quark dynamics both near the finite-temperature phase bound-
ary as well as near the many-flavor phase boundary [152] are driven by qualitatively
similar mechanisms.

The set of fermionic self-interactions introduced in Eq. (4.94) forms a complete
basis. Any other pointlike four-fermion interaction which is invariant under SU(V,)
gauge symmetry and SU(Np), x SU(Np)gr flavor symmetry is reducible by means of
Fierz transformations, see App. C. Terms accounting for instantons, as U, (1)-violating
interactions, are neglected as well, since we expect them to become relevant only inside
the xSB regime or for small N;. Schematically, the lowest-order Uy (1)-violating term
is ~ ()M, larger Ny correspond to increased irrelevance in the RG sense according
to naive power-counting. For Ny = 1, such a term is, of course, important, since it
represents a direct fermion mass term; in this case, the chiral transition is expected to
be a crossover. Dropping the Uy (1)-violating interactions, we thus confine ourselves to
N > 2.

The flow equations are derived along the lines of Subsec. (4.6.1). Introducing the
dimensionless renormalized couplings'®

the flow equations of the four-quark couplings for vanishing chemical potential and Ny
quarks with equal masses m read

OGN = 2A_— 1—5ng§?§?§ (£,1m,0,0) {Nicg% — 3¢%Ava
~ e L En,0,0) {% 4] = 2o B, 0) — NoN(Z 4 X2)
A2 Z2(N. A+ NoAAva + Nedph + QAQVA}, (4.99)
o = Dm PulfTEm0.0) -] - foarfBEm,0.0) | -2
—%%Lﬁ) (£,772,0)4 — 3X%2 — 2N.NJA_ Ay — 2X (A_ + (N + Np)Ava)
FNA N+ Avads + %2}, (4.100)

9Recall that Zy =1 in our truncation
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16 N
dXe = 20— =3 L2 (7,1m,0,0) [6C5(N.) ¢*As — 69224 ]

3
1 ~ 24 — 9N? 32 -
—§U3L§]j‘1]?2) (t, ﬁl, 0, O) [ - TC 4i| - 31)3[/5];:‘1) (t, ’ﬁ’L, O) {QNCAZ

“2X Ay — 2N Ava—6A Ao b, (4.101)

16 -~ 3
Odva = 2dva— gngiFle(t,m,o,O) {—gQAVA—z%g?A}

) NC
1 ep - 24 — 3N2
—éngg,LQ)(t,m,O,O) _T94
32

~ Sl (Em, 0){ (N, + N)AZy + 4\ Aya— iNfAf,}. (4.102)
Here Cy(N.) = (N2 —1)/(2N,) is a Casimir operator of the gauge group, and v3 =
1/(87%). The quantities i and ¢ denote the dimensionless quarks mass m/k and the
dimensionless ”temperature” T'/k. For better readability, we have written all terms
dependent on the gauge coupling in square brackets, whereas fermionic self-interactions
are grouped inside braces. The threshold functions Lﬁ) (t,m,0), Lg,FfQ) (t,m,0,0) and
Lfﬁ) (t,m,0,0) depend on the details of the regularization, see App. D.2. For zero
quark mass and vanishing temperature, we recover the equations derived in Refs. [191,
156]. Note that the threshold functions simply reduce to positive numbers in this limit,
see, e.g., Eqns. (D.29) and (D.35).%° For finite quark masses and temperature larger
than the regulator scale k, these functions approach zero. This reflects the decoupling
of massive modes from the RG flow. Although the flow equations for the four-quark-
couplings \; look rather complicated at first glance, we note that the various terms
arising on the RHS of the flow equations can be related straightforwardly to one-
particle irreducible Feynman-graphs, see Fig. 4.9. As initial conditions for the four-
fermion couplings, we use \; — 0 for k — A — oo. This choice ensures that the \; are
generated solely by quark-gluon dynamics from first principles for £ < A. This point
is very important, as it is in contrast to, e.g., the Nambu—-Jona-Lasinio model, where
the four-fermion couplings serve as independent input parameters which are adjusted
in such a way that low-energy observables are reproduced correctly.

Our truncation provides a simple picture for the chiral dynamics, which is illustrated
in Fig. 4.10: For vanishing gauge coupling, the flow is solved by vanishing J\;, which
defines the Gauflian fixed point. This fixed point is IR attractive, implying that these
self-interactions are RG irrelevant for sufficiently small bare couplings, as they should
be. For weak gauge coupling, the RG flow generates quark self-interactions of order
A\ ~ g%, as expected for a perturbative 1PI scattering amplitude. The back-reaction of

20Here we ignore a weak dependence of the threshold functions on the anomalous quark and gluon
dimensions, which were shown to influence the quantitative results for the present system only on the
percent level, if at all [156].



4.6. Fermionic Interactions in QCD 119

NG

Figure 4.9: Representation of the one-particle irreducible (1PI) graphs which are con-
tained in the RG flow equations for the four-fermion interactions. The double lines
represent the fully dressed propagator, and the solid black dots denote the insertion of
O Ry, in the loop. The four-fermion couplings \; are defined in Eq. (4.94). Diagrams
with the same topology but with the regulator insertion attached to other internal lines
are present in the RG flow as well.

these self-interactions on the total RG flow is negligible at weak coupling. If the gauge
coupling in the IR remains smaller than a critical value g < g.,, the self-interactions
remain bounded and approach fixed points in the IR. These fixed points can be seen
simply as order-g* shifted versions of the Gaufian fixed point, modified by the gauge
dynamics. At these fixed points, the fermionic subsystem remains in the chirally invari-
ant phase. This is indeed realized at high temperature. If the gauge coupling increases
beyond the critical coupling g > ¢, the IR fixed points mentioned above are destabi-
lized and the quark self-interactions become critical. This can be visualized with the
help of the 9;\; as a function of the \;, which is an inverted parabola, see Fig. 4.10.
For g = g, the parabola is pushed below the \; axis, such that the (shifted) Gauflian
fixed point coincides with the second zero of the parabola. In this case, the gauge-
fluctuation-induced A have become strong enough to contribute as relevant operators
to the RG flow. These couplings now increase rapidly and approach a divergence at
a finite scale & = k,gp. Indeed, this strong increase indicates the formation of chiral
quark condensates and therefore the onset of chiral symmetry breaking. We recall the
NJL model as an illustration, see Subsecs. 3.4.1 and 4.6.1: There, the mass parameter
m? of the bosonic fields in the partially bosonized action is inversely proportional to the
four-fermion coupling, A ~ 1/m?. In addition, we know from such NJL-type models
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Figure 4.10: Sketch of a typical § function for the fermionic self-interactions \;: at
zero gauge coupling, g = 0 (upper solid curve), the Gauflian fixed point A; = 0 is IR
attractive. For small g 2 0 (middle/blue solid curve), the fixed-point positions are
shifted on the order of g*. For gauge couplings larger than the critical coupling g > g,
(lower/green solid curve), no fixed points remain and the self-interactions quickly grow
large, signaling xSB. For increasing temperature, the parabolas become broader and
higher, owing to thermal fermion masses; this is indicated by the dashed/red line.

that their effective action in the bosonized form corresponds to a Ginzburg-Landau
effective potential for the order parameter. In its simplest form, the order parameter
is given by the expectation value of a scalar field. Symmetry breaking is then reflected
in a non-trivial minimum of this potential. Consequently, the scale k,gp at which the
four-fermion couplings diverge is a good measure for the chiral symmetry breaking
scale. At this scale, the effective potential for the order parameter becomes flat and
starts to develop a nonzero vacuum expectation value.

At this point, we have traced the question of the onset of chiral symmetry breaking
back to the strength of the coupling g, relative to the critical coupling g¢.., which is
required to trigger xSB. This makes a convenient determination of the chiral phase
boundary possible as we will discuss in the next section. Incidentally, the critical
coupling g, itself can be determined by solving the fixed-point equations d;\;(A,) = 0
algebraically for that value of the coupling, g = g.,, where the shifted Gauflian fixed
point vanishes. For instance, at zero temperature, the SU(3) critical coupling for
the quarks system is a., = g% /(4m) ~ 0.8, see Ref. [61]. This result is only weakly
dependent on the number of flavors [156].2! Since the IR fixed point for the gauge
coupling is much larger a,, > ag, (for not too many massless flavors), the QCD vacuum

2IThe critical coupling is a non-universal quantity with a value that depends on the regularization
scheme; the value given here for illustration holds for a particular class of regulators in the functional
RG scheme that includes the most widely used linear (“optimized”) and exponential regulators.
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is characterized by chiral symmetry breaking. The same qualitative observations have
already been made in Ref. [190] in a similar, though smaller, truncation. We note
that the existence of such a critical coupling is also a well-studied phenomenon in
Dyson-Schwinger equations [192].

As soon as the the quark sector approaches criticality, its back-reaction onto the
gluon sector becomes sizable as well. Here a subtlety of the present formalism be-
comes important: identifying the fluctuation field with the background field in the
RG flow, our approximation generally does not distinguish between the flow of the
background-field coupling and that of the fluctuation-field coupling. In our trunca-
tion, differences arise from the quark self-interactions. Whereas the running of the
background-field coupling is always given by Eq. (4.40), the quark self-interactions can
contribute directly to the running of the fluctuation-field coupling in the form of a ver-
tex correction to the quark-gluon vertex. Since the coupling of the fluctuation field is
responsible for inducing quark self-interactions, this difference may become important.
In Ref. [191], the relevant terms have been derived with the aid of a regulator-dependent
Ward-Takahashi identity. The result hence implements an important gauge constraint,
leading us to

2
- g
89> = ng® — L"), m,0) 2 Oy i, (4.103)
b 1— 2’(}4[;5?1) (t, m, O) Zz Ci)\i ;

with 1 provided by Eq. (4.73) in our approximation and
Co = 1 —|—Nf, Cir = O, c_ = —2, CvA = —2Nf.

In principle, the approach to chiral symmetry breaking can now be studied by solving
the coupled system of Eqns. (4.99)-(4.103). However, a simpler and, for our purposes,
sufficient estimate is provided by the following argument: if the system ends up in
the chirally symmetric phase, the \; always stay close to the shifted Gauflian fixed
point discussed above; apart from a slight variation of this fixed-point position with
increasing g2, the 9,\; flow is small and vanishes in the IR, 9,\; — 0. Therefore, the
additional terms in Eq. (4.103) are negligible for all k£ and drop out in the IR. As a
result, the behavior of the running coupling in the chirally symmetric phase is basically
determined by 7 alone, as discussed in the preceding section. In other words, in our
truncation the difference between the fluctuation-field coupling and the background-
field coupling automatically switches off in the deep IR in the symmetric phase.

Therefore, if the coupling never increases beyond the critical value g% for any k, as
predicted by 8,2 ~ ng* alone, the system remains in the chirally symmetric phase. In
this case, it will suffice to solve the g* flow and to compare it with g2, which can be
deduced from a purely algebraic solution of the fixed-point equations, d;\;(A,) = 0.

If the coupling approaches g, for some finite scale ke, as predicted by (2 ~ ng?,
the quark sector becomes critical and all couplings start to grow rapidly. To the
present level of accuracy, this serves as an indication for the onset of chiral symmetry
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Figure 4.11: Running QCD coupling ag(k,T) for Ny = 2 massless quark flavors and
N. = 3 colors and the critical value of the running coupling . (k,T") as a function
of k for T'= 130 MeV (left panel) and 7" = 220 MeV (right panel). The existence of

the (ag, ;) intersection point in the left panel indicates that the xYSB quark dynamics
can become critical for T = 130 MeV.

breaking. Of course, if the gauge coupling dropped quickly for decreasing k, the quark
sector could, in principle, become subcritical again. However, this might happen only
for a marginal range of g* ~ g2, if at all. For even larger values of the gauge coupling,
the flow towards the regime with broken chiral symmetry is unavoidable.

Inside the regime with broken chiral symmetry, the induced quark masses cause also
a back-reaction of the quarks onto the gluonic low by decoupling the quark fluctuations,
i.e., n%in Eq. (4.73) approaches zero. However, the present truncation does not allow
us to explore the properties of the sector with broken chiral symmetry; for this, the
introduction of effective mesonic degrees of freedom along the lines of Ref. [61, 60] is
most useful and will be employed in future work.

4.7 The Chiral Phase Boundary of QCD

In this section, we use the insights that we attained into the chiral quark dynamics for
a study of the chiral phase boundary of QCD. As elucidated in the previous section,
the breaking of chiral symmetry is triggered if the gauge coupling ¢? increases beyond
g%, thus signaling criticality of the quark sector. We will study the dependence of
the chiral symmetry status on two parameters: the temperature 7" and the number of
(massless) flavors N;. As already discussed in Sect. 4.5, the increase of the running
coupling in the IR is weakened on average for both larger 7" and larger N;. In addition,
Jer also depends on T" and Ng, even though the Ny dependence is rather weak.

The temperature dependence of g., has a physical interpretation: at finite 7', all
quark modes acquire thermal masses, which leads to a quark decoupling for & < T.
Hence stronger interactions are required to excite critical quark dynamics. Technically,
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Figure 4.12: The figure shows the dimensionful four-fermion couplings \; as a function
of the regulator scale k at vanishing temperature for Ny = 2 massless quark flavors; from
top to bottom: A, (red line), A_ (blue line), A\ya (turquoise line) and A, (green line).
The black, vertical line depicts the value of the scale k.., where the quark dynamics
become critical.

this T'/k dependence is a direct consequence of the T'/k dependence of the threshold
functions L1 (Z,7m,0), LYY (E,m,0,0) and L) (#,7,0,0) in Eqns. (4.99) - (4.102).
Since the threshold functions decrease with increasing temperature, the \; parabolas
shown in Fig. 4.10 become broader with a larger value at the maximum. Hence, the
annihilation of the Gauflian fixed point achieved by pushing the parabola below the A;
axis requires a larger ge,.

At zero temperature and for small V¢, the IR fixed point of the running coupling is
far larger than g%, hence the QCD vacuum is in the phase with borken chiral symmetry.
For increasing temperature, the temperature dependence of the coupling and that of g2
compete with each other. This is illustrated in Fig. 4.11, where we show the running
coupling ay = % and its critical value o, = “E: for T' = 130 MeV and T = 220 MeV
as a function of the regulator scale k. The intersection point k. between both curves
marks the scale where the quark dynamics become critical. Below the scale k.., the
system runs quickly into the regime with broken chiral symmetry. A corresponding
RG flow of the dimensional four-fermion coupling ); for the case of chiral symmetry
breaking at vanishing temperature is shown in Fig. 4.12. Although the divergence itself
is not shown in the figure, below the scale k.. the couplings approach a divergence at
a finite scale k,sp which indicates the onset of chiral symmetry breaking (see also the
discussion in the previous section).
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We estimate the critical temperature 7T, as the lowest temperature for which no
intersection point between ag and a., occurs.?> We find
40 32
T (N =2) ~ 172 +34 MeV and T (Ny = 3) ~ 148 +31 MeV  (4.104)
for two and three massless quark flavors, respectively. These values are in good agree-
ment with lattice QCD simulations, cf. Ref. [15] and Tab. 3.4 in Chap. 3. The errors
arise from the experimental uncertainties on «ag [9]. The theoretical error, due to the
uncertainty in the color-factor, turns out to be subdominant by a large degree, see Fig.
4.13. Dimensionless ratios of observables are less contaminated by this uncertainty of
a. For instance, the relative difference for T, for Ny = 2 and 3 flavors is

Np=2 _ INp=3
TCI' TCI‘

A=
(T2 + T5%) /2

= 0.150, (4.105)

in reasonable agreement with the lattice value of ~ 0.12 [15].%3

Before we continue with the discussion of the phase boundary in the plane spanned
by the temperature and the number of massless quark flavors, we briefly comment on
the current quark mass dependence of Ti, for Ny = 2 and Ny = 3. For simplicity, we
assume degenerate quark masses. In contrast to our study of this dependence with the
quark-meson model in Sec. 3.6, we find that T, is almost independent of the current
quark mass m, provided m < 10 MeV:

To(m) ~ T (0) for (m < 10MeV). (4.106)

Increasing the quark masses to higher values, we observe a weakly increasing value
for T... As we have discussed in Sec. 3.4.3, a current quark mass of m ~ 10 MeV is
associated with a pion mass m, =~ 200 MeV. From a linear extrapolation of the lattice
data [15], we get the following relative deviation of the phase transition temperature
from its value for Ny = 2 in the chiral limit:

Tcr (m> - Tcr (0)
Tcr(o)

~ 0.04. (4.107)

mx~200 MeV

From this, we conclude that our result for the mass dependence of the phase tran-
sition temperature is consistent with the lattice data, in contrast to our findings for

22Strictly speaking, this simplified analysis yields a sufficient but not a necessary criterion for chiral-
symmetry restoration. In this sense, our estimate for T¢, is an upper bound for the true T.. Small
corrections to this estimate could arise if the quark dynamics become uncritical again. This could
be caused by a strong decrease of the gauge coupling towards the IR, as discussed in the preceding
section.

23Even this comparison is potentially contaminated by fixing the scales in the two theories with
different flavor content in different ways. While lattice simulations generically keep the string tension
fixed, we determine all scales by fixing o at the 7 mass scale, cf. the discussion below.
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Figure 4.13: Chiral-phase-transition temperature 7T, versus the number of massless
quark flavors N for Ny > 2. The flattening at Ny 2 10 is a consequence of the IR
fixed-point structure. The dotted line depicts the analytic estimate near N§* which
follows from the fixed-point scenario (cf. Eq. (4.114) below). Squares and triangles
correspond to calculations with a background field in the 8- and 3-direction of the Car-
tan, respectively. The theoretical uncertainty which is given by the difference between
both curves is obviously negligible in full QCD.

the quark-meson model in Sec. 3.6. Thus, our study indicates that the quark-meson
model in its original form without gauge degrees of freedom does not capture the chi-
ral quark dynamics in QCD near the critical temperature completely. Two comments
concerning our present study are in order: first, there is no unique definition of the
critical temperature if chiral symmetry is explicitly broken by quark mass terms. For
our determination of Ti..(m), we apply the same definition as in the chiral limit, thus
assuming that it is compatible with the standard definition of 7., on the lattice via
the chiral susceptibility. Second, our present study of the mass dependence of the crit-
ical temperature by means of quarks and gluons has one particular shortcoming: our
truncation for the four-fermion interactions, Eq. (4.94), does not represent a complete
basis any longer if we allow for finite current quark masses. In this case the RG flow
generates contributions which are not invariant under chiral transformations. On the
one hand, we neglect the influence of the non-invariant terms in the RG flow, since
such terms are not covered by our truncation. On the other hand, these contributions
are suppressed as m?/k? relative to the chirally symmetric contributions in the flow,
as we have shown in Eq. (4.88) and (4.89). Therefore we assume that our results for
small quark masses are not too strongly affected by neglecting the symmetry-breaking
operators in our truncation.
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The weak dependence of our results on m is not unexpected when we consider
the threshold functions Lﬁ) (t,m,0), LgFBQ) (t,m,0,0) and L1,Fl],31) (t,m,0,0), that repre-
sent the regularized loop integrals in the flow equations (4.99)-(4.102). The fermionic
propagators in these integrals are essentially given by

(2n + 1)°’7*T? + p* +m*  with (n € N). (4.108)

We immediately read off that the fermionic propagators are almost unaffected by the
mass m, provided m < T'. It is remarkable that our simple, truncated flow already pro-
vides a simple picture for the weak mass dependence for the critical temperature which
yields consistent results for the quark mass dependence of the critical temperature.

Let us now discuss the phase boundary for massless quark flavors. For the case of
several massless quark flavors Vg, the critical temperature is plotted in Fig. 4.13. We
observe an almost linear decrease of the critical temperature for increasing Ny with a
slope of AT, = T(Nf) —T(N¢+1) ~ 24 MeV. In addition, we find a critical number of
quark flavors, Nf* o~ 12.5, above which no chiral phase transition occurs. This result
for Nf* agrees with other studies based on the two-loop [-function [152]. However,
the precise value of Nf* has to be considered with some skepticism: for instance, in a
perturbative framework, Nf' is sensitive to the three-loop coefficient which can bring
Nf* down to Nf* ~ 10 [156]. In our nonperturbative approach, the truncation error
can induce similar uncertainties; in fact, it is reassuring that our prediction for N¢*
lies in the same ball park as the perturbative estimates, even though the details of the
corresponding 3,2 function are very different. This suggests that our truncation error
for N¢ is also of order O(1). We expect that a more reliable estimate can be obtained
even within our truncation by using an optimized regulator function [88, 63].

A remarkable feature of the T-N; phase diagram of Fig. 4.13 is the shape of the
phase boundary, in particular the flattening near N¢*. In fact, this shape can be
understood from analytical arguments which reveal a direct connection between two
universal quantities: the phase boundary and the IR critical exponent of the running
coupling.

Before we outline the arguments in detail, let us start with an important caveat:
varying the number of massless quark flavors N;, unlike varying the temperature T,
corresponds to an unphysical deformation of a physical system. Whereas the defor-
mation itself is unambiguously defined, the comparison of the physical theory with
the deformed theory (or between two deformed theories) is not unique. A meaningful
comparison requires to identify one particular parameter or one particular scale in both
theories. In our case, we keep the running coupling at the 7 mass scale always fixed
to a(m,) = 0.322. Obviously, the couplings in the two theories are different on all
other scales, as are generally all dimensionful quantities, such as Aqcp. There is, of
course, no generic choice for fixing the corresponding theories relative to one another.
Nevertheless, we believe that our choice is particularly useful, since the 7 mass scale
is close to the transition between perturbative and nonperturbative regimes. In this
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sense, a meaningful comparison between the theories can be made in both regimes,
without being too much afflicted by the choice of the fixing condition.

Let us now study the shape of the phase boundary for small N;. Once the coupling
is fixed to a(m,) = 0.322, no free parameter is left. As a crude approximation, the
mass scale of all dimensionful IR observables such as the critical temperature Ty, is set
by the scale k., where the running gauge coupling undergoes the crossover from small
to nonperturbatively large couplings (for instance, one can define the crossover scale
keo from the inflection point of the running coupling in Fig. 4.6). As an even cruder
estimate, let us approximate k., by the position of the Landau pole of the perturbative
one-loop running coupling.?* The latter can be derived from the one-loop relation

1 1 k 1 11 2
= dtbgln —, by=— | =—N.— =N¢ | . 4.109

alk)  a(m,) o an’ 07 &2 ( 3 3 f) ( )
Defining k., by using the Landau-pole scale, 1/a(ke,) = 0, and estimating the order of
the critical temperature by T, ~ k.,, we obtain

T.. ~ m, ¢ el ~ g, @ TNeatmr) (1 —eNe+ O((eNg)?)) (4.110)

where € = —— 127 7 = 0.107 for N = 3. This simple estimate hence predicts a linear

121NZ2a(m
decrease of the 1()hase boundary T, (N¢) for small Ny which is confirmed by the full
solution plotted in Fig. 4.13. Actually, this estimate is also quantitatively accurate,
since it predicts a relative difference for T, for Ny=2 and 3 flavors of A ~ 0.146, which
is in very good agreement with the full result given in Eq. (4.105). We conclude that
the shape of the phase boundary for small N; is basically determined by fermionic
screening.

For larger NV¢, the above estimate cannot be used any longer, because neither one-
loop perturbation theory nor the Ny expansion are justified. However, a different
analytic argument can be made. For Ny ~ Nf*, fermionic screening of color charges
keeps the coupling small. Therefore the running coupling has to come close to its
maximal value in order to be strong enough to drive the quark sector to criticality. This
maximal value is, of course, close to the IR fixed point value a, attained for 7" = 0.
Even though at finite temperature the coupling is eventually governed by the 3d fixed
point, which implies a linear decrease with k, the status of chiral symmetry breaking
will still be dictated by the maximum coupling value, which roughly corresponds to
the T = 0 fixed point. In the fixed-point regime, we can approximate the 3,2 function
by a linear expansion about the fixed-point value,

B =09 =-0(g"—g2)+O0((g° — 92)°), (4.111)

where the universal critical exponent © denotes the first expansion coefficient. We
know that © < 0, since the fixed point is IR attractive. For vanishing temperature, we
find an approximately linear dependence of © on Ng, cf. Tab. 4.1.

24 Actually, this is a reasonable estimate, since the Ny dependence of k.., which is all that matters
in the following, is close to the perturbative behavior.
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(Nl o456 [ 7 [8 ]9 [10]11]12]13]
| —© 1639550499441 [382[319]258]1.97]1.42]0.95]0.57 |

Table 4.1: The critical exponent © for different values of N; at vanishing temperature.

The solution of Eq. (4.111) for the running coupling in the fixed-point regime reads

g*(k) = g7 — (kﬁo) - : (4.112)

where the scale kg is implicitly defined by a suitable initial condition to be set in the
fixed-point regime. In the following, we keep kg fixed. It provides all dimensionful
scales in the following and is related to the initial 7 mass scale by RG evolution. Our
criterion for the occurence of chiral symmetry breaking is that g*(k) exceeds g2 for
some value of k£ = k... We expect that this scale k. is generically somewhat larger
than the temperature, since for all k£ smaller than T the coupling decreases again due
to the 3d fixed point.?® This allows us to ignore the temperature dependence of the
running coupling ¢ and of the critical coupling g.. as a rough approximation, since the
T dependence of the threshold functions is rather weak for 7' < k. From Eq. (4.112)
and the condition ¢*(k) = g2, we derive the estimate

ker = ko (g2 — 92) 7. (4.113)

The scale k.. plays the same role as the crossover scale k., in the small- Ny argument
given above: it sets the scale for T, ~ k.., with a proportionality coefficient provided
by the solution of the full low. To conclude the line of arguments: we note that the
IR fixed-point value ¢g? depends roughly linearly on Ny, since the quark contribution
to the coupling flow given by 7% is linear in N;. From Eq. (4.113), we thus find the
relation

Ty ~ ko| Nt — N&F| 73, (4.114)

which is expected to hold near Nf* for Ny < Nf*. Here O should be evaluated at Nf*.%0
Relation (4.114) is an analytic prediction for the shape of the chiral phase boundary in
the T-N¢ plane of QCD. Remarkably, it relates two universal quantities to one another:
the phase boundary and the IR critical exponent.

This relation can be checked with a fit of the full numerical result parametrized
by the RHS of Eq. (4.114). In fact, the fit result, Og ~ —0.71, determined from the
phase boundary agrees with the direct determination of the critical exponent from the

25Indeed, this assumption is justified, since we find in the full calculation that k.. > T for large Nt
and for temperatures in the vicinity of the critical temperature T, .

26 Accounting for the N; dependence of © by an expansion around N{* yields mild logarithmic
corrections to Eq. (4.114).
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B2 function at zero temperature, ©(Nf" ~ 12.5) ~ —0.71. The fit is depicted by the
dashed line in Fig. 4.13. In particular, the fact that |©] < 1 near N{* explains the
flattening of the phase boundary near the critical number of flavors.

Qualitatively, relation (4.114) is a consequence of the IR fixed-point scenario pre-
dicted by our truncated flow equation. We emphasize, however, that the quantitative
results for universal quantities such as © are likely to be affected by truncation errors.
These can be reduced by an optimization of the present flow; we expect from prelimi-
nary regulator studies that more reliable estimates of © yield smaller absolute values
and, thus, a more pronounced flattening of the phase boundary.

We know that the relation (4.114) is difficult to test, for instance, in lattice QCD
simulations: neither the fixed-point scenario in the deep IR nor large flavor numbers
are easily accessible, even though there are promising investigations that have collected
evidence for the IR fixed-point scenario in the Landau gauge [193, 194] (see also [195,
196, 197]) as well as the existence of a critical flavor number [151]. Given the conceptual
simplicity of the fixed-point scenario in combination with xSB, further lattice studies
are certainly desirable.

4.8 Conclusions

We have obtained new non-perturbative results for the chiral phase boundary of QCD
in the plane spanned by the temperature and the number of massless quark flavors.
To our knowledge, this is the first determination of the full chiral phase boundary
in QCD. For a small number of quark flavors, where lattice simulations are available,
we found remarkable agreement of our values for the critical temperature with the
results obtained from lattice simulations.

Our work is based on the functional RG, which yields a flow equation for the effective
average action of QCD. We have studied this effective action from first principles in
a systematic and consistent operator expansion. We consider the truncated expansion
as a minimal approximation of the effective action that is capable of accessing the
non-perturbative IR domain and addressing the dynamics of chiral symmetry breaking
at zero as well as finite temperature.

In the gluon sector, this truncation results in a stable flow of the gauge coupling,
which runs into a fixed point in the IR at zero temperature. This is in agreement with
the results of Ref. [71] for the pure glue sector. As a physically non-trivial new result,
we find that the 3d analogue of this IR fixed point governs the flow of the gauge coupling
at finite temperature for scales k¥ < T'. Our truncation in the quark sector facilitates
a description of critical dynamics with a gluon-driven approach to chiral symmetry
breaking. The resulting picture for chiral symmetry breaking is comparatively simple:
in order to penetrate the phase boundary between the chirally symmetric and chirally
broken regime, the coupling is required to exceed a critical value g.. This allows us
to trace back the question of the onset of chiral symmetry breaking to the strength of
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the strong running coupling relative to this critical value. Whether or not this critical
value is reached depends on the RG flow of the strong coupling. The fixed points of the
coupling in the deep IR generically put an upper bound on the maximal value of the
coupling. This value depends on the external parameters such as temperature and the
number of quark flavors. Even though the underlying mechanism for chiral symmetry
breaking is remarkably simple, the interplay between the gluon and quark sectors
in general, and between the strong coupling and the critical coupling in particular, is
highly nonlinear, since both sectors induce back-reactions onto one another in a manner
that is quantitatively captured by the flow equation.

The phase boundary in the T-/N; plane, spanned by the temperature and the number
of massless quark flavors, exhibits a characteristic shape which can be understood
analytically in terms of simple physical mechanisms: for small N;, we observe a linear
decrease of T}, as a function of Ny which is a direct consequence of the color-screening
properties of light fermions. Our study confirms also the existence of a critical flavor
number, N ~ 12, above which the system remains in the chirally symmetric phase
even at zero temperature, and even though the theory is still asymptotically free for
N; not too much larger than Nf*. Although the screening property of the fermions is
ultimately responsible for the existence of a critical flavor number NN¢*, the shape of
the phase boundary for Ny < Nf* cannot be explained by this property alone. In this
region, the critical temperature is very small, and thus the system is probed in the deep
IR. We have shown that this connection becomes most obvious in a remarkable relation
between the shape of the phase boundary for Ny < Nf* and the IR critical exponent ©
of the running coupling at zero temperature. In particular, the flattening of the phase
boundary in this regime is a direct consequence of |0| being smaller than 1. Since both
the shape of the phase boundary and the critical exponent are universal quantities,
their relation is a generic, testable prediction of our analysis. This prediction can be

tested directly by other nonperturbative approaches, e. g. lattice simulations®” or

DSE.

Our present study already provides results for the quark-mass dependence of the
chiral phase transition temperature. Even if our truncation does not contain quark
self-interactions that violate chiral symmetry, we have argued that our study is still
trustworthy for small quark masses. We found a quark mass dependence which is
consistent with the results from lattice QCD and thereby seems to exclude the quark-
meson model in its original form without gauge degrees of freedom as an appropriate
model for an accurate description of the chiral phase boundary of QCD at finite tem-
perature. Further generalizations in this direction will aim at a more accurate study of
the effect of finite quark masses; the formalism for this has largely been developed in
this work. Owing to the mechanism of fermionic decoupling, we expect that the largest
modifications will arise from a realistic strange quark mass which is of the order of the
characteristic scales such as T, or the scale of ySB.

2"We know that it may be numerically expensive to test this prediction in lattice simulations.
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Let us now give a critical discussion of the reliability of our results in the light of our
underlying truncation. First of all, it is impossible to study the flow of the most general
effective action, consisting of all operators that are compatible with the symmetries of
the theory. Therefore we must truncate the action to a subset of operators, which is
not necessarily finite. Nevertheless, such an approximation of the full theory can also
describe non-perturbative physics reliably, provided the relevant degrees of freedom
in the form of RG relevant operators are kept in the ansatz for the effective action.
We know that this is obviously the most problematic part, since it requires a lot of
physical insight to make the correct physical choice. A first but highly nontrivial
check of any solution to the flow equation is provided by a stability analysis of its RG
flow, since insufficient truncations generically exhibit IR instabilities of Landau-pole
type. The truncation in the quark sector that supports potential critical dynamics
is an obvious example for this. The approximation can become (more) controlled if
the inclusion of higher-order operators does not lead to serious modifications of the
results. In the quark sector, it can indeed be verified easily that the contribution
of many higher-order operators such as (¢¢))* or mixed gluonic-fermionic operators
is generically suppressed by the one-loop structure of the flow equation or the fixed-
point argument given below Eq. (4.103). This holds at least in the symmetric regime,
which is sufficient to trace out the phase boundary. The Landau-pole type instability
in the RG flow has a physically meaning since it is related to the onset of chiral
symmetry breaking. This instability can be cured by including composite operators in
the truncation, yielding a stable flow even in the deep IR, as has been shown for one-
flavor QCD at zero temperature [61]. The inclusion of such operators in the truncation
is indispensable if we are interested in the deep IR or in a study of the order of the phase
transition. However, in this work, we have restricted our study to a determination of
the chiral phase boundary by approaching it from the chiral symmetric regime. In
this case, it is sufficient to locate the instability of the present truncation. In contrast
to the fermionic sector, we are not aware of similar arguments for the gluonic sector;
here, higher-order expansions involving, e.g., (F,,F*”)* or operators with covariant
derivatives or ghost fields eventually have to be used to verify the expansion scheme.
At finite temperature, the difference between so-called electric and magnetic sectors
can become important, as mediated by operators involving the heat-bath four-velocity
Uy, e.8., (Fu,)?. In view of results obtained in the Landau gauge [172], the inclusion
of ghost contributions in the gauge sector appears important, if not indispensable, for
a description of color confinement. A posteriori, our truncation can be verified by a
direct comparison with lattice results, which shows satisfactory agreement.

As we have discussed in Subsec. 2.4.2, a stability analysis of results from RG flows
can also be obtained by varying the regulator. Since universal quantities are inde-
pendent of the regulator in the exact theory, any such regulator dependence of the
truncated system is a measure for the reliability of the truncation. For our underlying
truncation in the quark sector, such an analysis has been performed at zero temper-
ature in Ref. [156], showing a surprisingly weak dependence on the regulator which
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strongly supports the choice of the truncation. By contrast, we do not expect such a
regulator independence to hold in the truncated gluonic sector. If so, it is advisable to
improve results for universal quantities towards their physical values. This can indeed
be done by using stability criteria for the flow equation which have led to optimization
schemes [88, 63, 198]. As has been pointed out for scalar field theories in Ref. [198], the
use of such optimized regulators gives better results for dimensionless quantities, e.g.
the relative shift (4.105) in the transition temperature or the IR critical exponent ©.
An optimization of the regulator for the present study is subject of a current work [199].



Chapter 5

Summary and Outlook

We have studied the chiral dynamics of QCD in a finite Euclidean volume and at finite
temperature within a non-perturbative RG framework based on a simple flow equation
for the effective action. This flow equation makes an interpolation possible between
the classical action and the full quantum effective action of a given theory. The RG
flow equation for this effective action provides a powerful but easy to handle machinery
for studying all kinds of quantum field theories non-perturbatively. We have argued
that such an approach is complementary to the one taken in lattice QCD simulations
since it has its advantages exactly at those points where the lattice approach has its
shortcomings. For example, the chiral limit is accessible or the fact that quantum field
theories can be studied in finite as well as in infinite volume. On the other hand, it is
impossible to study the RG flow of the most general effective action of a given theory.
A suitable truncation of the effective action to a subset of operators is therefore re-
quired. However, this limitation can be turned into an advantage since it provides the
opportunity for a systematic and consistent expansion of a quantum field theory. The
relevant mechanisms for a phenomenon can be worked out by a careful cross-check of
the results obtained from a given truncation with results from other non-perturbative
approaches such as lattice simulations.

In Chap. 3, we have studied finite-volume effects in low-energy observables of QCD
by means of the quark-meson model. The quark-meson model is an effective low-energy
model for the description of dynamical chiral symmetry breaking in QCD. It contains
mesonic and quark degrees of freedom, but does not contain any gluonic degrees of
freedom, and it is not confining. It relies on the fact that the low-energy limit of
QCD can be described well in terms of weakly interacting pions. However, due to
the missing gluonic degrees of freedom, the quark-meson model in its present form is
obviously not sufficient for bridging the gap between the low- and high-energy limit
of QCD, since the high-energy limit is best described in terms of quarks and gluons.
Nevertheless the model provides a reliable description for the low-energy limit and
should thus be trustworthy for a study of QCD for volume sizes that are not too small

133
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or temperatures that are not too high. If the volume is too small or the temperature
too high, a description of QCD by means of the quark-meson model is naturally bound
to fail due to the lack of gauge degrees of freedom.

We have shown that the qualitative behavior of the pion mass and the pion decay
constant as a function of the volume size depends on the the choice of the quark bound-
ary conditions in spatial directions. The reason for this can be immediately traced back
to the existence of zero-momentum modes for the quarks in case of periodic boundary
conditions. The most important result of our study is that we have found agreement be-
tween our results obtained for anti-periodic boundary conditions for the quarks with the
results from chiral perturbation theory. On the other hand, our results are qualitatively
in accordance with lattice QCD studies, provided we choose periodic boundary condi-
tions for the quarks in spatial direction. Of course, this agreement with lattice studies
is not unexpected since the quarks are usually implemented with periodic boundary
conditions on the lattice. However, the dependence of low-energy observables on the
volume size obtained from periodic quark boundary conditions differs significantly from
those that we have obtained for anti-periodic boundary conditions. The difference be-
tween both is most pronounced for intermediate volume sizes, V1/3 ~ 1—2 fm, and
becomes negligible for large volumes, V% > 4fm. Since current lattice simulations
use lattices of a size for which the effects arising due to the choice of the boundary
conditions are mostly pronounced, we conclude that lattice simulations have not yet
reached the point where chiral perturbation theory can be used for extrapolations to
the infinite volume limit, at least for the low-energy observables. Currently, we have
included the RG flow of the wave-function renormalization in a finite-volume study of
a scalar O(N) model [200]. Such a study can provide important information about
finite-size scaling and, in particular, about scaling functions which are important for a
reliable extrapolation of lattice results to the infinite-volume limit.

In addition, we have also studied the chiral phase transition in finite and infinite
volume in Chap. 3 with the quark-meson model. From our results for the dependence
of the transition temperature on the (current) quark mass in finite and infinite volume,
we conclude that the weak dependence of the phase transition on the quark mass found
in lattice studies cannot be explained with the quark-meson model. What is more, we
have also excluded that this weak dependence is a finite-volume effect. On the contrary,
we have found that the dependence of the phase transition temperature in finite volume
becomes even stronger than in the infinite volume limit. These findings confirm the
conjecture mentioned above that the quark-meson in its original form without gauge
degrees of freedom cannot correctly capture all the dynamics at high temperatures,
in particular near the phase boundary. Extensions of the quark-meson model which
might cure this lack of the model are currently researched [148, 61, 150].

In Chap. 4, we have studied a first-principles approach to chiral symmetry breaking
in QCD in terms of microscopic degrees of freedom, namely in terms of quarks and
gluons. First, we have computed the running coupling of Yang-Mills theory and of QCD
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for all temperatures and scales, extending previous work at zero temperature [71]. In
this study, we have found a non-trivial IR fixed point in 3d Yang-Mills theory. At scales
larger than a particular temperature, the flow of the coupling is in agreement with the
zero-temperature result. Following the RG flow towards lower scales, we encounter a
maximum in the value of the coupling at a scale which is of the order of the temperature.
Finally, the coupling decreases for scales lower than the temperature where the RG flow
is governed by the spatial 3d Yang-Mills theory. We have argued that the decrease in
this regime can be traced back to the existence of the above-mentioned non-trivial IR
fixed point in the underlying 3d Yang-Mills theory. From the phenomenological point of
view, the behavior of the coupling for intermediate momenta in the transition region is
most important. The behavior of the coupling influences physical observables especially
near its maximum. With increasing temperature the position of the maximum shifts
to higher momentum scales, and the value at the maximum decreases. On average,
the system becomes less strongly coupled for higher temperature, in agreement with
naive expectations from a temperature-dependent effective coupling. This behavior
influences, e. g., the scattering cross-section of a quark with the particles in the quark-
gluon plasma. In a current study [201], the running coupling, including its modification
due to finite temperature, is used in a computation of the energy loss of an incident
quark in the quark-gluon plasma.

In this work, we have applied the running coupling computed in Chap. 4 to a study
of the chiral phase boundary. For this purpose, we have included quark self-interactions
in our truncation of the effective action. We have used the lowest non-trivial choice
for the quark self-interactions in a consistent and systematic operator expansion. We
stress that our truncation of the quark self-interactions forms a complete basis in the
sense that any other gauge- and chirally symmetric point-like four-quark interaction
can be reduced in terms of the operators which we included. In our approach, we have
been able to provide a simple picture of the chiral dynamics of QCD in the vicinity
of the finite-temperature phase boundary. We have computed a critical value for the
gauge coupling which must be exceeded in order to reach the regime with broken chiral
symmetry. The existence of such a critical value enabled us to trace back the question
of the onset of chiral symmetry breaking to the strength of the running coupling relative
to its critical value. We have then applied our findings to a study of the chiral phase
boundary of QCD. The critical temperature in this context has been defined as the
lowest temperature for which the running coupling does not exceed its critical value.
Our results for the critical temperature for a small number of massless quark flavors
are in good agreement with the results from lattice QCD simulations. At this point,
we stress that no other parameter except for the running coupling at the 7-mass scale
has been used as an input. A generalization of our study to an arbitrary number
of massless quark flavors allowed us to compute the phase boundary of QCD in the
plane of temperature and flavor number. Our results show that the phase boundary
is characterized by a linear decrease of the critical temperature for small number of
quark flavors, owing to the screening nature of the quarks. For a large number of quark
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flavors, our study confirms the existence of a critical number Nf" of massless quark
flavors above which QCD is still asymptotically free, but no chiral symmetry breaking
occurs. Additionally, we have found that the chiral phase boundary is characterized
by a flattening near N¢". We have shown that there is an intriguing direct relation
between the characteristic flattening of the chiral phase boundary near Nf* and the
infrared fixed point structure of QCD.

The fact that our study relies on only one input parameter demonstrates nicely
how powerful our approach is. It serves as a promising starting point for further phe-
nomenological studies of QCD. An extension of the present work to finite density seems
to be a natural first step and should provide information about the QCD phase bound-
ary for small chemical potentials; work in this direction has been already started [202].
Further extensions of our study should include mesonic operators which can be treated
with RG rebosonization techniques [60, 61]. This would not only provide access to the
broken phase and a study of mesonic properties but also permit a study of the order
of the phase transition.

In conclusion, we have demonstrated the efficacy of RG methods for an investigation
of QCD. With our determination of the transition temperature independent of lattice
simulations, we believe that we have made a valuable contribution to the continually
improving knowledge of QCD. However, as we mentioned above, a lot of work is still
in progress and much remains to be done.



Appendix A

Notations and Conventions

In App. A.1, we give the relation between the the physical units used in this work
and the corresponding units of the SI system. Our conventions concerning Fuclidean
space-time are found in App. A.2. In this context, we discuss also the relation between
quantum field theory and statistical physics. Our abbreviations are summarized in
App. A.3.

A.1 Units

Throughout this work we set h = ¢ = kg = 1. As a consequence of this convention, the
ST units for length (Meter, m) and temperature (Kelvin, K) are related to the energy
unit MeV as follows

1
1 m= 10" fm ~ 5.1 x 10" oy and o ITKA86x 107" MeV. (A1)
€

A.2 Euclidean Space-Time

A.2.1 Minkowski- and Euclidean Space-Time

The coordinates in Euclidean space-time and Minkowski space-time are related by

Tymp = —lZg (A.2)
9" T T, = T3, = it = gz, = —x%, (A.3)
where pu,v =1, ..., d and correspondingly for the momenta. In this Subsection, we add

an index "M” to the coordinates in Minkowski space-time. The metric tensor in (flat)
Euclidean space-time is given by the Kronecker-Delta, g = 6", whereas we have the

metric tensor ¢4, = diag(+,—, —,...,—) in (flat) Minkowski space-time. When we
treat fermions, we deal with the Dirac operator ig which is defined as
if = iv,0,, (A.4)
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where the 7, denote hermitean y-matrices in Euclidean space-time. We refer to App. C
for our conventions for y-matrices. In order to have a hermitean Dirac-operator i@ in
Euclidean space-time, we make use of the fact that the fermion fields ¢ and ¢ are
independent variables in the path-integral. Therefore we can relate the fermion fields
in Euclidean space-time to their Minkowski counterparts vy, and ), through

For this reason, the mass terms of the fermion fields are always dressed with the
imaginary unit-factor ”i” throughout this work.

A.2.2 Quantum Field Theory and Statistical Physics

Let us now discuss briefly the relation between quantum field theory and statistical
physics, cf. [159, 54]. In statistical physics, it is convenient to use the grand canonical
partition function Z for a theoretical description of thermal systems:

7 — Ty 6*5(19*%1\71') — Z (n| efﬁ(H*uiNi)

n

ny , (A.6)

where H denotes the Hamilton operator of the system and N denotes the particle
number operator. The temperature T enters the definition of the grand canonical
partition function Z via the factor 3 = 1/T. Since the grand canonical partition
function contains the full information of the physical system, which is described by
the Hamilton operator H , we can compute all thermodynamical quantities from it.
Comparing Eq. (A.6) with the generating functional’ Z in Euclidean space-time,

7 o / D =Sl a0} (A7)

we observe that both expressions are similar from the mathematical point of view. For
example, the source term J corresponds to an external magnetic field applied to a
spin system in statistical physics. However, in order to treat thermal systems within a
path-integral approach, we have to use the following generating functional:

7 / o D¢ e S+l d'alo (A.8)
periodic

The index "periodic” indicates that the functional integration must be performed under
the constraint ¢(0,Z) = ¢(3, ). In statistical physics, the explicit dependence on the
external perturbation of a system, such as the magnetic field in a spin-system, is elim-
inated through a Legendre transformation of the free energy F' = —In Z, which yields

IFor convenience, we restrict the discussion to single-component scalar field theory. The general-
ization to fermion fields and vector fields is straightforward.
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the so-called Gibbs energy. The stable ground state of the system is then obtained by
minimizing the Gibbs energy. In our discussion of the effective action in Sec. 2.4.2,
we have shown that the generating functional W of the connected Green’s functions is
related to the generating functional Z via W = 1n Z. Thus W corresponds to the free
energy in statistical physics. Moreover, we have shown that the effective action I' is
obtained through a Legendre transformation of the generating functional W. Thus we
find that the effective action corresponds to the Gibbs energy in statistical physics.

Since we consider quantum field theories at finite temperature in this work, it is
important to keep in mind these relations between the field-theoretical quantities and
their statistical counterparts.

A.3 Abbreviations

1PI one particle irreducible

bWTTI | background-field Ward-Takahashi identity
chPT | Chiral Perturbation Theory

DSE | Dyson Schwinger Equation(s)
FRG Functional Renormalization Group
IR Infrared

LHS Left Hand Side

LPA Local Potential Approximation
mWTI | modified Ward-Takahashi identity
QCD | Quantum Chromodynamics

QED Quantum Electrodynamics

RG Renormalization Group

RHS Right Hand Side

uv Ultraviolet

WTI Ward-Takahashi identity
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Appendix B
Color Algebra

In this appendix, we give our conventions for the generators of the SU(N,) Lie-groups
and discuss some details on the evaluation of the color traces which we encounter in
the calculation of the strong coupling.

B.1 The Group SU(N,)

Our studies in Chap. 4 are not restricted to Yang-Mills theory or QCD with N, = 2
or N. = 3 colors. In the derivation of the RG flow equations, we have allowed for
an arbitrary number of colors N.. The underlying group SU(N,) of unitary matrices
U of rank N, with determinant det U = 1 has N? — 1 generators T which obey the
commutation relations

[T, T"] =if*T°, (B.1)
where f¢ are the (anti-symmetric) structure constants of the group, and a, b, ¢ take
the values 1,..., N*> — 1. The normalization of the generators is given by

1
Te {T*T"} = =5 B.2
{7 - L (B.2)
Moreover, the generators fulfill
u " 1 1
D (T%)as(T)s = 500808y = 577 0ap0ys (B.3)
and
a a 1 a a ]\]c2 —1
D AT Map(T)s + E(T Jas(T)py ¢ = 5575 0as98 - (B.4)

a

For SU(2), the generators are related to the Pauli matrices 7% via T = %7"1 and the
structure constants 2% are given by the (standard) totally antisymmetric tensor €.
The generators for the group SU(3) can be expressed in terms of the Gell-Mann ma-
trices \* via T = $)°.
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B.2 Color Traces for the Calculation of the Strong
Coupling

The leading growth coefficients al# given in Eq. (4.72) depend on the color factors 77!
and 77 in Eq. (4.72). These factors carry the information of the underlying SU(N,)
gauge group. The gluonic factors 7' appearing in the leading growth coefficients and
thus in the flow equation for the strong coupling have been discussed in Refs. [74, 71,
171]. Let us summarize these discussions, before we discuss the color factors 7 of the
quark sector.

Gauge group information enters the flow of the coupling via color traces over prod-
ucts of field strength tensors and gauge potentials. For our calculation, it suffices
to consider a pseudo-abelian background field A which points into a constant color
direction n®. In this case, the color traces reduce to

al

n®n® . no% tr [T T T2 (B.5)

where the parentheses at the color indices denote symmetrization. These factors are
not independent of the direction of n*, but the LHS of the flow equation is independent
of it. Note that the LHS of the flow equation is a function of {F% F, — §B* which is
independent of n®. For this reason, we only need that part of the symmetric invariant
tensor tr [T ... T%] which is proportional to the trivial one,

tr [T T T = 75 8(ayay - - - Oamsran) + - - - - (B.6)
Here, we have neglected further nontrivial symmetric invariant tensors. This is justified
since these neglected terms do not contribute to the flow of Wy (), but to that of other
operators which do not belong to our truncation. For the gauge group SU(2), there
are no further symmetric invariant tensors in Eq. (B.6), implying

P 9 =12, . (B.7)

However, for higher gauge groups, the complications mentioned above arise. Therefore
we do not evaluate the 7/%’s from Eq. (B.6) directly; instead, we use the fact that the
color unit vector n® can always be rotated into the Cartan sub-algebra. We choose the
two color vectors n® which give the extremal values for the whole trace of Eq. (B.5).
For SU(3), these extremal values are obtained by choosing a color vector n® pointing
into the 3- and 8-direction in color space, respectively:

1 3\
g =20 ey, T =3 (Z) . (B.8)

Let us now discuss the color factors 7';-/) of the quark sector. The considerations for the
gluonic factors TJA also hold for the contributions of the flow equation which arise from
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the fermionic part of our truncation Eq. (4.61) and (4.62). Choosing a color vector
n® pointing into the 3- or 8-direction and taking into account that quarks live in the
fundamental representation, we obtain the color factors for SU(3):

¥,SU(3 ,SU(3 .
s ”:2(1) T ”:2(5) +(§) i=1,2,.... (B.9)

Note that all complications are absent for SU(2) and we find TZ-IZ}’SU(Q) = T;f}éSU(B).

It is this uncertainty introduced by the artificial n® dependence of the color factors
which is responsible for the uncertainties of our results for the critical temperature and
the fixed point values in three and four dimensions.
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Appendix C

Dirac Algebra and Fierz Identities

C.1 Clifford Algebra

We work exclusively in Euclidean space-time in this work, see App. A for details.
Whenever we treat fermions, we restrict our discussion to d = 4 space-time dimensions.
The Dirac algebra is then defined through

{747 = A+t =201, (C.1)
() = 44,
Yo=Y
v Z v /L v v
o = 5[7“,7125(7"7 —¥"").

An explicit representation for the ~-matrices is given by,

0 —io” 1 0
T 5 _

where o = (i1, 0"). The matrices o’ denote the well-known Pauli-matrices

01 0 — 10

1 2 _ 3 _

U—(lo), O’—(Z. o)’ O’—(O _1). (C.3)
and 1 is here the 2 x 2 unit matrix. It is convenient to introduce the projection operators

P.r = # for the chiral components and to work in a chiral basis for the fermion
fields,

o= (0h) and b= (). ()

where ¢ and 1) are anti-commuting Grassmann variables and should be considered as
independent.
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C.2 Fierz Transformations

Defining Os = 14, Oy = 7, Ot = %UW, Or = Y5 and Op = 05 we obtain the
following Fierz identities,

(PaOxth) (PeOxtha) = > Cxy (PaOytba) ($cOy i), (C.5)
Y
where XY = S,V, T, AP and
-1 -1 -1 1 -1
1 —4 2 0 2 4
Cxy=7| -6 0 2 0 =6 [. (C.6)
4 2 0 2 —4
-1 1 -1 -1 -1

In Subsec. 4.6.1 we study a NJL model at finite temperature and density with only
one fermionic species. In this special case, the combination (YOvy1))? + (Ox)? is
invariant under Fierz-transformations. Due to the relation

(YOVY)? — (VOa)* + 2[(¥O0st)* — (¥Oph)] =0, (C.7)

we can transform the combination (¢Oy1))? — (¥Oat)? completely into scalar and
pseudoscalar channels.

Considering the case of several flavors and colors, the Fierz transformations turn
singlets into non-singlets and vice versa. This can be used to reduce the number
of possible couplings. In Subsec. 4.6.2, we study a truncation of the effective ac-
tion which includes four four-fermion couplings and which is invariant under SU(N.,)
gauge and SU(Ny)p x SU(Ny)g chiral transformations. We have pointed out that
our choice of the four-fermion couplings represents a complete basis in the sense that
any other point-like four-fermion interaction, which is invariant under SU(N.) gauge
and SU(Ny), x SU(Ny)g chiral-transformations, is reducible in terms of this ba-
sis. Let us sketch the line of arguments which allows us to write down an ansatz
consisting of only four (independent) four-fermion couplings: We have five Lorentz-
invariant structures Og, Oy, Or, Ox and Op. Since Ot breaks chiral symmetry for
any possible combination of color and flavor indices, we are left with four possible
couplings. Moreover, even the four fermion interactions generated by Og and Op sep-
arately break the chiral symmetry. However, it is possible to construct a potentially
chirally symmetric interaction by combing both interactions in an appropriate way,
namely (1/Os1))(1Ostp) — (Opt)(1Optp). Thus, we are left with three possible in-
teractions. Now we have to take into account that each of these remaining couplings
can be present in a flavor and color singlet structure as well as in a flavor and color
non-singlet structure. This increases the number of couplings by a factor of four. Due
to the (Dirac) Fierz identities given above, we can then reduce the number of couplings
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by a factor of two. Thus, we are left with six four-fermion couplings. Finally, the con-
straint, which is given by the SU(Ny); x SU(Ny)g invariance, reduces the number of
(independent) four-fermion couplings to four.
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Appendix D

Thermal Moments and Threshold
Functions

D.1 Thermal Moments

In this section, we give the definitions of the various auxiliary functions and the thermal
moments which we have introduced in the derivation of the flow equation of the strong
coupling in Sec. (4.5.1). Moreover, we specify the regulator shape functions that we
have used throughout Chap. (4). The auxiliary functions f, which are first introduced
in Eq. (4.67), are defined as

fit(u,v)
fr (u,v)
f*(u)
fi(w)
f3'(w)
fi'(w)
fi(u,v)

2Vdmv Z / da e~ cos(2mq) (D.1)
0

g=—00

2V 4mo Z (—1)‘1/ dz e~ ™D cog(2mqa) (D.2)

0

g=—oc0
%%u coth(u), (D.3)
uled (ed sinqilu + 2usinh u) , (D.4)
11 wu

§1UEd sinhu’ (D-5)
o (1—v), (D.6)
2V/4rv io: /OO dz(2mvz)?'T (—eq, (2mvx)u) cos(2mqz). (D.7)

¢

Here, the sum over ¢ arises from the application of Poisson’s Formula to the (usual)
sum over Matsubara modes. These fu_nctions are needed for the construction of the
thermal moments h?’ hf, f]f, H ;-4 and G;‘ which carry the regulator dependence of the
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flow equation of the strong coupling via Egs. (2.55), (2.59), (2.60), (2.69), (2.70) and
which are given by

RY = 1Y (i, v) = /0 T ds T (s, s (s,0) (D.8)
R = A (0) = /0 T dshis)s f(5,0) (D.9)
ot =gt () = [ dsis)9 i (s0), (D.10)
A= BM0) = [ dsh(s)5 i (s.0). (D.11)
G =G (v) = /0 " dsG(s)5 2 (5,0) (D.12)

where m denotes a dimensionless quark mass parameter. It is also possible to express
the thermal moments in momentum space with the aid of the regulator functions h(y)
and ¢(y), which are defined in Eq. (2.55). In order to obtain the representations for

h A% and g] , we introduce

Sb—f—l [e's) )
— =1 —1 D.1
F(b—i—l)/o duu’e (b>—1) (D.13)

in Egs. (D.9), (D.10) and (D.8) and use Eq. (D.1) and (D.2), respectively:

- 2 X d J+b+1
v q by 2~
hy = 7(() 1)\/_(] E_ (—1) /o dx cos <q—v) <__y) /0 duu’h® (y+utx®,m)|

(D'14)

_ d \j+b+1 [o°
A b 2
hy = b+1 \/_ E / dx cos ( dy) /0 duv’h(y+u+z”)| , (D.15)

y=0

g d N g 2 D.16
b= cos . (D.

7 = T 2/ voos (¢2) () [ dudtytyres? - (016)
y:

Note that b is an arbritrary parameter which can, e.g., be used to avoid fractional
derivatives. By applying Poisson’s formula to the (usual) Matsubara sum, we have
obtained the sum over ¢ which has good convergence properties for k 2 7T'. Moreover,
we use the moments H]‘-4 and G;-“ for j = 0 in App. G.3 where we give a detailed
derivation of the anomalous dimensions of the strong coupling. Integrating Eq. (D.11)
and (D.12) by parts and using Eq. (D.7) and (D.13), we obtain

_ 2 oo [ee) T d b—ey oo} Ub
HA= = i _“ 2
0 F(b+1)\/%qz_:oo/o dx cos <qv) < dy) /0 du - h(y+u+ax) ;
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y=0

_ 2 > & T d \b—ea [ ub
GA= — — d — - — d 2
0 P(b+1)ﬁq:zoo/0 T COos <qv) ( dy) /0 uu+x29(y+u+x )
(D.18)

Throughout Chap. (4) we use the exponential regulator. For the gluon and ghost fields,
this regulator is given by

1

A .
Ri(A) =Ar(g) with r(y) = pra— (D.19)
and the functions h(y) and g(y) read [71]
— — Y

h(y) = T and g(y)=e". (D.20)

For the fermionic fields, the exponential regulator reads

By s (i) . B 1 B

Rk (1p> - llD TTZ)( k2 ) Wlth le(y) - m 1 ) (D21)

and the functions h¥(y, 2) and g¥(y, %) are given by

Yy, ) = y? and  ¢%(y. 7 _ -1 -vI-c)
R¥ (3, M) (e — 1)(y + m2(1 — e v)) d g¢%(y,m) y+m2(1—ey)(D 22)

The thermal moments used in this work are now completely determined by inserting
Egs. (D.20) and (D.22) into Egs. (D.14)-(D.18).

D.2 Threshold Functions for the Functional RG

In Subsecs. 4.6.1 and 4.6.2, the regulator dependence of the flow equations of the four-
fermion interactions is controlled by (dimensionless) threshold functions which arise
from Feynman graphs, incorporating fermionic and/or bosonic fields. Let us first intro-
duce the so-called dimensionless regularized bosonic (pg) and fermionic (p,) momenta,
which carry the information on the corresponding regulator shape-function [59]:

_[pelye) and (o) — PBB)
) = ” 1 d (yB) "

7y (Y ~1. (D.23)

Here, yp and y, are dimensionless quantities. It is convenient to define the following
fermionic (¢/) and bosonic (B) kernels:

. L+ 74(UB) . ~ .
’])7/" , W) = ~ ¢ ) ,Pd) , W) = a ,Pd) y W), D24
y (G w) o) + s (Y, w) = 0y Py (G, w) (D.24)
~ 1 _ ~ - 3]93(?73))
PB , = Y s PB 5 — _2 ( - ~ 9 D25
(B, w) oa(in) 0 > (U, w) pe(JB) — Un . (D.25)
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where the dimensionless momenta gjff) = (I, +ip)? +y and yp = @2 +y depend on the

dimensionless fermionic Matsubara frequency 7, = (2n + 1)7t and the dimensionless
bosonic Matsubara frequency @, = (2n + 1)7t, respectively. Additionally, Yy, depends
on the dimensionless fermionic chemical potential i = u/k. The Matsubara frequencies
are related to the temperature 7' and the regulator scale k through ¢ = T'/k. The
dimensionless quantity w is related to a mass m of the fermions and bosons via w =
(%)?, respectively. The formal derivative 0, acts' only on the k-dependence of the
regulator function ry.

The purely fermionic threshold functions are defined by

L) (L w, i) = — Z/ dyy'= 7’1 (yw ; )7’2 (yw g )

o7 (1) P (1) ] (02

For example, one have to deal with this threshold function if one only takes the term
proportional to d,, in the decompositions Eqns. (I.11)-(I.14) into account. Although we
have not used them in this work, we give also the purely fermionic threshold functions
which arise due to terms proportional to m?, y? and p = 12 in the decompositions
Eqns. (I.11)-(1.14), see also Eqns. (4.88) and (4.89). The threshold function that arises
due to the terms proporional to m? or p? is defined as

M (Fw, i) = — Z/ dyy2 (yw, )7’2 (yw, )
Py <yw , )7)1 <yw , )} (D.27)

Finally, we find a threshold function due to the terms proportions to p? = v in the
decomposition. It is given by

NP w, o) = — Z / dyy's 771 <y¢, )7’2 (yw), )

n=—oo

Py <yw , >P1 (yw : )} - (D.28)

For w = 0, fi = 0 and # = 0, the fermionic threshold functions L{"}(0,0,0), M{(0,0,0)

and N{f;)(o, 0,0) reduce to real numbers. For example, using the exponential regulator
Eq. (D.21), we find

3 3U4 Z(F

L{)*(0,0,0

(0,0), (D.29)

IThis is a derivative with respect to t = In(k/A), not to be confused with the dimensionless
quantity t = T/k.
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in d =4 dimensions. Here, Z§F)’4 denotes the standard threshold functions which are
defined in Ref. [59]. The factor v, is proportional to the volume of the d dimensional
unit ball:

d
vyt =2%gaT (5) : (D.30)

Note that a simple relation, such as Eq. (D.29), between l (F)4 and Lﬁ)A exists only in
the limit w — 0, & —> 0 and t —> 0. For any finite value of either w, ji or ¢, a simple

relation between l( * and L * does not exist.

Let us now turn to the dlscussmn of the threshold functions Lgﬁi)’d(f, Wy, fi, Wa),

Ml(Fli)d(t wy, fi, we) and Nl(li n) (t, w1, fi, wy) which ultimately arise from 1PI graphs

with two fermionic internal lines and n bosonic internal lines. Accordmg to the purely

fermionic case, we define the threshold functions Lgﬂi)’d, Ml(qi and NIP; fi) :

Lgﬁ,Bn)’d (ﬂ Wi, ﬂa w?) -

. ni [ [Py (i) Py (5, 0) (P )"
+Py (yw ,w1> Py <yw ,w1> (P (G, w))"
Py (3w ) PY (37 wn) (PP (6. 0)"™ P (55, w) | - (D31)

M (Fwr, i ws) =
LS5 [ [P )2 66 ) (PP
+7)2 (yw 7w1> 7)1 <y¢ 7w1> (7){9 (?jBaw2))n
—n Py (557w ) PE (557 wn) (PE (5m,w2)"™ PE (5, w2) | . (D.32)

Nl(};]i) (z wy, ,l], w2) -

S o [ ) () 0

+7)2 <y7/) 7w1) 7)1 <y¢ ,wl) (7){3 (?]Baw2))n
—n Py (557 w) PE (35 wn) (PP G wn) "™ PE () | - (D.33)

For w; = wy = 0, fi = 0 and ¢ = 0, these functions reduce to simple numbers. Using the

exponential regulator, we find the following values for the threshold functions Lﬁﬁ”‘*
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FB)A . . .
and Lg 1,2) in d=4 dimensions:

[ (FB)A 3 3y [(FB)A

1,1,1 (0707070) - 1_6 - 4—03 1,1 (0,0,0) (D34)
FB)4 9 304 (FBYA
Li12"(0,0,0,0) = gen(3) = L1 157(0,0,0). (D.35)

The standard threshold functions lgB)A and lff”‘* denote the standard threshold
functions which are defined in Ref. [59]. Again, there exists no relation between the
B)

n’4 and lﬁm for finite value of wy, ws, fi or .

functions Lﬁ

For t — 0o or w; — oo, the threshold functions Lgi)’d and Lﬁﬁff)’d approach zero.

For finite ¢, w; and miu, the threshold functions can easily be evaluated numerically.

D.3 Threshold Functions for the Proper-Time RG

In Sec. 3.4.2, we have introduced the following auxiliary (dimensionless) functions for
the fermionic (F) and bosonic (B) degrees of freedom:

@ff;) (a,w,t) = /0 ds 5% w1, (s1?) <19ap(s))3 : (D.36)
0 (q,w,t) = / " ds ste 20 (st2)<19 (3))3 (D.37)
p T 0 ap P )
[ee] sw 3
@;B) (a,w,t) = /0 ds s"e” =, (st?) <19p(s)> . (D.38)

Here, ¥, and 9,, are Jacobi-Elliptic-Theta functions defined as [203]

Iop(r) = Y e = p73 42 (—1)TEeT (D.39)
n=-—oo q=1

Ip(r) = > e ™ =aTi 42 aTie T (D.40)
n=—00 q=1

Note that the representation of the flow equation (3.17) in terms of these functions
accelerates the numerical calculations by a factor of about a hundred, compared to the
representation used in Refs. [84, 85]. The first representation in Eq. (D.39) and (D.40)
is the standard Matsubara summation of the momenta for anti-periodic (ap) boundary
conditions and periodic (ap) boundary conditions, respectively. The second representa-
tion on the right hand side in Eq. (D.39) and (D.40) is obtained by applying Poisson’s
formula to the first representation. One can use this representation to separate the
zero-temperature and/or infinite-volume contributions of the flow equation. For illus-
tration, we discuss how the flow equation for the meson potential (3.18) in infinite
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volume at zero temperature can be derived from the corresponding finite-volume flow
1

equation (3.17). Using the approximation ¥,,(s) = ¥,(s) ~ s~z in Egs. (D.36), (D.37),

and (D.38), we obtain the threshold functions at zero-temperature and infinite-volume:

1T'(a—1)
t woel :

O (a,w, 1) = O (a,w,t) = OF) (4w, t) ~ (D.41)

p

Indeed, inserting this in Eq. (3.17), we obtain the flow equation (3.18) for infinite
volume and zero temperature.
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Appendix E

Implementation of Explicit
Symmetry Breaking

We show that our postulated ansatz (3.24) for the meson potential is sufficient to cap-
ture all contributions in the RG flow which arise due to the explicit symmetry breaking
through the current quark mass m.. For convenience, we consider the infinite-volume
flow equation (3.18) of the meson potential with the cutoff-function parameter a = 2.
However, the generalization of our considerations to the flow equation for finite volumes
and/or other values of a is straightforward. Neglecting the mesonic contributions to
the flow equation, we are left with the terms arising from the fermions:

0

N, kS
k _ C
Ok

F —2
Uy (0,77) = Tame k1 M2
q

(E.1)

where N, gives the number of colors. The only source of explicitly symmetry breaking in
the flow equation is contained in the constituent quark mass M, through its dependence
on the current quark mass m.. By expanding around the minimum of the potential,
we have shown in Eq. (3.23) that the quark mass can be written as

M = ¢*[(o0 4+ me)® + 2me(o — 0o) + (0% + 7% — 07)] . (E.2)

Note that we have rescaled m, by a factor of g for convenience. When we expand the
denominator in the flow equation (E.1) in the deviation of the fields from the vacuum
expectation value, the result contains only those terms which we postulated in our
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ansatz for the potential:

0

1 kS
kUL —
g Uk (

4727 k2 + g2(0g + m,.)?

o, 72

X

)

2

x{(02+7_r'2—00)

k2+g 00+mc

2

<k2+g Uo+mc

(o —00) [_zmc (

k2 + ¢?( Uo+mc

)

9
k2 + g%(o¢ + me)

+(0 — 0y)? [4m§ (

2

7

.
sl
|

92

+(0 — 09)(0? + 7

+}

All remaining terms are of higher order in (0 —0yg) or (0% + 7 —

)2 [—ch (k2 e

7))

(E.3)

(00 + me

od) or any combination

thereof. In the chiral limit, m, — 0, we find that the only terms, which remain in the

expansion, contain solely powers of (o2 + 72 — 02) = (¢* — 02);

Thus the potential reduces to the standard form in this limit.

all other terms vanish.



Appendix F

One-Loop Calculation of the Meson
Masses

In Subsec. 3.6.2, we have computed the meson masses in finite volume as a function
of the temperature. In order to gain a better understanding of the slope of the meson
masses in the symmetric phase as a function of the temperature, we have compared
the results obtained from the RG flow equation of the meson potential (3.17) to the
one-loop result for the masses of the scalar fields in an O(4)-model. In this appendix,
we discuss the details of the one-loop calculation.

We have given the simplest, non-trivial truncation for the effective action of an
O(4)-model in Eq. (3.44). Let us generalize our considerations to an O(N)-model with
the effective action

ri) = | d‘*x{%(amf b mie 4 §¢} , (F.1)

where, in contrast to the effective action (3.44), ¢ is now an N dimensional vector in
field space. In order to compute the finite-temperature and finite-volume corrections to
the masses of this model in one-loop approximation, it is convenient to use the RG flow
equations which we have already derived in Subsec. 3.4.2. Indeed, the RG flow equation
for the potential of an O(N)-model in a finite volume can be straightforwardly deduced
from Eq. (3.17) by neglecting the quark contributions and by taking into account that
we have now N — 1 Goldstone modes and one radial mode:

9 T (kL)X
o Uk(6%, T, L) = 7 (i Tt ) Z a, (K*+M;}(¢%)L*, TL) . (F2)

Here L denotes the length of the 3-dimensional box in space directions, and L; denotes
the length of the box in the Fuclidean time direction. Recall that the extent of the
Euclidean time direction L, and the temperature 7" are related by L, = 1/7. The
threshold function @,(JB) is defined and discussed in App. D.3. The masses of the radial

159



160 Chapter F. One-Loop Calculation of the Meson Masses

mode and the Goldstone modes are given by M?(¢) = m*+3X¢” and M7 ($) = m*+Ap?
for j = 2, ..., N, respectively. Since we are only interested in the behavior of the meson
masses above the phase transition temperature, we can assume that the masses depend
only on ¢ In an accurate RG study of the O(N)-model in a finite volume [200], it
is indispensable to allow for an explicit symmetry breaking, in a similar way as in our
RG study of the quark-meson model in finite volume in Chap. 3.

In order to calculate the masses of the scalar fields, we make use of the fact that
the threshold function @,(JB) is defined in terms of integrals over Jacobi-Elliptic-Theta
functions, see App. D.3. This allows us to isolate the divergent part of the effective
potential in the limit A — oo, which is contained in the infinite volume contribution.
Writing the threshold function @I(DB) in terms of the second representation of the Jacobi-
Elliptic-Theta function in Eq. (D.40), we can divide the flow equation for the effective
potential in three contributions,

outt U (T—0,L—00)  OUMT,L—o0)  OUNT, L)
o o h o =

The effective potential in one-loop approximation U can be extracted from the flow
equation (F.2), when we omit a possible dependence of the masses M; on the regulator
scale k. The potential is then obtained by a straightforward integration of the flow
equation (F.2) from the UV cutoff scale k = A to k = 0. The first term on the RHS of
Eq. (F.3) is divergent in the limit A — oo, whereas the other terms remain finite in this
limit. In the following, we do not consider the contributions from the divergent part
UL since we are only interested in the finite-temperature and finite-volume corrections
to the mass.
Let us start with the calculation of the mass correction due to the volume-independent

contribution U*(T) = UY(T, L — 00). The integration of the corresponding term in
Eq. (F.3) from &k = A — oo to k = 0 yields

(F.3)

2

UMT) = s ZZ / Cexp (1L — M), (F.4)

Note that the expression is independent of the parameter a which specifies the cutoff
function. In order to calculate the mass correction in the symmetric phase, we have
to take the second derivative of UY(T) with respect to the field ¢ and evaluate the
resulting expression at ¢ = 0:

sm2(T) = 2 AN+2DA p 3 é K <@> . (F.5)

@ 1 (T)'¢0: (27’(’)2 T

Here we have used the integral representation of the modified Bessel functions [203]:

2 (%)V K,(z)= /OO dss” e~ % | (F.6)

0
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For T' > m, we use

1
and obtain the simple expression

(N +2)A

2(T) ~
omy ( ) 12

T° (F.8)
for the correction dm3(T'), which agrees with the result found in Ref. [29].

Now we turn to the calculation of the mass correction due to the contribution
U(T, L). For our purposes in Subsec. 3.6.2, it is convenient to use the Poisson-
representation for the spatial contributions and the usual Matsubara sum for the ther-
mal contribution. Performing the integration from k£ = A to &k = 0 in Eq. (F.3), the
contribution from UJ%(T, L) to the potential in the limit A — oo reads

272
Uy (T, L) T Z Z Z / —exp — 5(M?(¢?) + 4n°n’T?) — %)

j=1n=—oc0 {l;}

=

NJC/J

(F.9)
The vector [ is defined as [ = {l, 15,13}, and the prime indicates that the term with
[ = 0, corresponding to the infinite-volume contribution, is excluded from the sum-

mation. The sum over n runs over the thermal Matsubara modes. We point out that
UL is independent of the cutoff-function parameter a. Taking the second derivative
with respect to the fields ¢ and evaluating at ¢ = 0, we obtain the corresponding mass
correction

Sm3(T. L) (F.10)
- GBR 5 > (- TNy (VR s i)
n=-—o0 {l;}

We used again the integral representation of the modified Bessel functions Eq. (F.6).
Finally, we show that this contribution becomes proportional to the temperature T
for TL > 1. Using the asymptotic expansion of the Bessel-functions for large argu-
ments, which is given by

K,(x) ~ \/ge_g” (x>1), (F.11)

the mass correction dm3 (T, L) for TL > 1 reads

oo

Sm2(T, L) ~ ;v;ixg Z Z _exp (—\/ﬁ((mL)2+47r2n2(TL)2)) (F12)
oo {l; }
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From this, we find that the contributions from the non-vanishing thermal Matsubara-
modes drop exponentially in the limit T'L — oo, whereas the contribution from the
zeroth thermal Matsubara-mode (n = 0) remains finite and is proportional to the tem-
perature T. For T'L > 1, the mass-correction dm3(T, L) is thus sub-leading, compared
to the contribution dm?(T).



Appendix G

Computation of the Coupling Flow

We summarize details of the computation of the flow equation for the running QCD
coupling. In App. G.1, we discuss the decomposition of the inverse propagator which
is obtained from the truncation (4.61), following the strategy of Refs. [72, 74]. In
App. G.2, we discuss the expansion of the flow equation (4.67), which ultimately leads
to the flow equation for the running QCD coupling. The resummation of the anomalous
dimension in App. G.3 is performed along the lines of Ref. [71, 171]. However, we
generalize the strategy to arbitrary regulator functions and dimensions as well as to
finite temperature.

G.1 Decomposition of the Inverse Propagator

In this part of the appendix, we discuss the decomposition of the second functional
derivative of the truncation (4.61) from which we have derived the flow equation (4.67).

The derivation of the flow equation (4.67) is based on the fact that it is sufficient to
consider a covariantly constant magnetic background field in order to project the flow
equation (4.56) onto the truncation (4.61). A convenient choice for such a covariantly
constant color magnetic field is

Ax(z) = n*A,(x), Fo=0,A, —0,A, = Beiy = const. . (G.1)

Here n? is a constant unit vector in color space, n? = 1. The ”Abelian” gauge field
and the corresponding field strength are given by A,(x) and F,,, respectively. The

antisymmetric tensor e® specifies the direction of the magnetic field; we choose €15 =

—€3; = 1. Thus our present choice for A,(x) corresponds to a constant magnetic field
B along the 3-direction. In the following we make also the additional assumption that
the field strength F},, is covariantly constant, i. e.

D,[A], F,,] =0. (G.2)

s £ pv

The covariant derivative D, [A] in the adjoint representation is defined in Eq. (4.29).
Indeed, the choice Eq. (G.1) obeys the condition (G.2).
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For the moment, we neglect the contributions from the quarks in Eq. (4.61) and
restrict the discussion to the terms arising due to the gauge fields and the ghosts.
Taking the second derivative of the corresponding terms in the truncation (4.61) with
respect to the fluctuation field, we obtain

(F4a, 4))"” = WiO)(DrlA] = Do AN + WY O)SEIA] + £ (DoAD . (G:3)
and
<f${_l’0’0) la, ¢, c, fl]) - —D[A]Y" D[A]Y*, (G.4)

where g is the (bare) gauge coupling and & is the gauge-fixing parameter. The fluc-
tuation field a and the field A are related by A = a + A. The Greek letters denote
Lorentz indices, whereas the Roman letters denote color indices!. For convenience, we
have introduced the operator ¢ which is connected with the field strength £, by
1 =
0= —F:Fm =

4,U,Z/Z

1 2
5B (G.5)

The various operators in Eq. (G.3) are defined as

(Dr)ys, = (=D[AR"DIAR*6,, — 29f""F,3,) . (G.6)

(Dr)y, = —DIARYDIAL”, (G.7)

S = Fu FY DIADIA]Y . (G.8)

Finally, the primes in Eq. (G.3) denote derivatives with respect to 6. Note that 1:}({1,1,0,0)

is matrix-valued in field space. Here the operators f%’l’o’o) and T' gl,},o,o) represent the

gluonic and ghost submatrix of ffj’l’o*”.

We remind the reader of the fact that the effective action fk[0,0,0,A = Al is a
gauge-invariant functional of A from which we can extract W,. Thus it is sufficient
to consider 1;](61,1,0,0) [0, A = A] from now on. Following the strategy discussed in Sub-
sec. 2.4.3 and Sec. 4.4, we define T[4] := T4[0,0,0, 4] and identify T\""[A] with
f](€1,1,0,0) [0,0,0, A = A]. This allows us to use the flow equation (2.61) to compute the
flow equation for W;.

In order to obtain the flow equation for W, we have to compute traces over color
and Lorentz indices. Let us first discuss the tools which are needed to decompose
F,(Cl’l)[A] in such a way that the traces can be computed most easily. Due to the fact
that we are considering covariantly constant fields (see Eq. (G.1) and (G.2)), we find
that the operators Dy and Dr commute. As a consequence, we can introduce the
projection operators?

P, =D;'Dy, Pr=1-"Pp, (G.9)

'Recall that the gluons live in the adjoint representation.
For vanishing gauge field A,,, these operators reduce to the well-known longitudinal and transversal
projectors (Pr),,[A = 0] =6, — 8,0,/0% and (Pr)[A = 0] = 9,0, /9>
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which satisfy P7; = Pry, Pr+ P, =1 and PrP, =0 = Py Pp. The operators P, and
Pr obey the following commutation relation

[P0 =0 =[Py.0]. (G.10)

Due to our choice (G.1) for the background field, we can define a set of projectors
which act solely in color space and project on the spaces perpendicular and parallel to
the direction given by n®, respectively. These projectors are given by

PY* =¢6% —n¥n* and P”W =n'n”, (G.11)

and satisfy Pi” =P, ,PL+ P =1and P P =0= P P.. Note that the projectors
P, | and Pr; commute:

[Py, Pro] =0. (G.12)

Moreover, we find that the covariant derivative (4.29) evaluated for the background
field (G.1) reads

DIAJS" = 0,0"" + gf*"'n*A, . (G.13)
Due to the antisymmetry property of the structure constants we then obtain
[P, D] =0, [P, D*] =0,
[P, Dr] =0, [P, D] =0,
I:PJ_,Hu F,ul/:| - 07 (G14)
and
PiA, =0, PD,=Po,, PII(DT)W = _825WPII : (G.15)

The operator S factorizes according to
S, = Pﬁ’zsw , Sy = FuFe,0°07 . (G.16)

Thus the operators D? D; and Dy commute with the operator S. Furthermore, we
find the commutation relations

Pr[A=0],s| =s and |P[A=0],s|=0. (G.17)
| ] [ )

Finally, it is convenient to introduce a projector P, which trivially projects on the
ghost sector.

By means of the projectors Pp r and P, j and Py, , we can now decompose F,(gl’l)[A]
as follows

SOV = AR P+ R PR TP,

+P P PP+ P TPy (G.18)
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with
(Ffﬁ))“y = —PWbu +Wsu, (G.19)
1
ry = -0 (G.20)
’ &k
yz N
(F(f,’%%y = [WiDrl, (G.21)
yz 1 ;
(F (f,’i)) = —[Drl}, (G.22)
pw &k
<Fét1)>y _ _(D2)yz‘ (GQB)

As we have discussed in the main text, we improve the regulator function by adjusting
the regulator to the spectral flow of F,(Cl’l). In doing this, we integrate over shells of

eigenvalues of F,(Cl’l) rather than ordinary canonical momentum shells. On the one hand,
this stabilizes the RG flow, and on the other hand, it allows us to satisfy the symmetry
constraint given by Eq. (4.46). Since the various terms on the RHS of Eq. (G.18)
annihilate each other, e. g.

(Pper( pyPr) (PP PP ) =0, (G.24)
we can also decompose the regulator function Ry:

RT) = PUPRT)RPr -+ PRI PPy + PP PPy

+P P R(DU)PLP, + Py Ri(DGY) P, (G.25)

Finally, we have to choose a matrix Zj, in the definition (2.49) of the regulator function.
A choice for the matrix entries of Z;, which establishes manifest RG invariance of the
flow equation, is given by the wave function renormalizations of the corresponding
fields. For the longitudinal gluon components, such a choice implies that the matrix
entry (Z;)1, is proportional to the inverse gauge-fixing parameter &. As a result, this
renders the truncated flow independent of &, and we can implicitly choose the Landau
gauge &, = 0 which is known to be an RG fixed point [55, 68]. For the transversal gluon
components we choose Z; which is related to the running coupling through Eq. (4.64).
For the ghost sector, we choose Zg, = 1. Consequently, the matrix Zj, can be written
in terms of the projectors defined above:

By = ZPrlA] + o PulA] + P (G.26)
k
Inserting the decomposition (G.18) into the flow equation (2.61), the traces can be
worked out straightforwardly and we finally obtain the contributions from the ghost
and the gluons to the flow equation (4.67).
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Let us briefly discuss the contribution of the quarks to the flow equation (4.67) which
arise from the term bilinear in the quark fields in the truncation (4.61). As we have

discussed in Subsec. 2.4.3, we need (ffj’l’o’o)—iM)(fS’l’O’O)—iM)T rather than 1:1(/}1,1,0,0):

(ffj’l’o’o)—iM)(fS’l’O’O)—iM)T _ ( (ID)(llD)T (G27)

0
0 ip)'(ip) ) '
Evaluating Eq. (G.27) for A = A, we find the following expression for the diagonal
elements:

N 1

(P)EP)' = =D* + 5904 (G.28)
where o, is defined in App. C. Note that the quarks live in the fundamental repre-
sentation. Inserting Eq. (G.27) into the flow equation (4.67), the quark contributions
to the flow equation (4.67) can be computed.

G.2 Flow Equations for the Operators (£, F,,)"

Here we discuss the expansion of the flow equation (4.67) which is required for the
computation of the anomalous dimension in Sect. 4.5.

In the following we expand the various functions in the flow equation (4.67) in
powers of the renormalized dimensionless squared field strength ¢. As we will see,
such an expansion is related to an expansion in powers of the proper-time variable
s. Due to the fact that we first expand the integrands of the various proper-time
integrals in Eq. (4.67) and then perform the integration over s, the resulting series will
be asymptotic?, involving strongly increasing coefficients.

As discussed in the main text, we neglect all w; in the expansion of wg(d) =
9+ w2%192 + wgél‘}?’ .... The expansions of the auxiliary functions ff}273 and fY¥ as

defined in Eqns. (D.3)-(D.6) are then given by (recall b, = |v;|v/29):
N2-1 oo

§ : - 21(2% — 2 . ,
2 flA(SIUkbl) bl(d D72 = —(d—l) E ((27)‘) T; Bo; 822_((1_1)/2 i
7).
=1

w;—0 i=0

e i , .
4 S 2i—(d—1)/2 9 G .29
+;(2¢—1)!”  (G-29)

N2-1

a- = 20(2% — 2) 1)/ i
9 Z f{‘(sbl) bz( n/2 _ _Z ((277;)!754 By; 52 (d-1)/2 ’ (G.30)
=1 =0

3We note that the interchange of integration and expansion does not necessarily result in an
asymptotic series. However, in our study the result of this procedure represents an asymptotic series.
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= fi{s,1)=0, (G.31)

w; —0

A (o )

3z+1 ]
7V By; %7 @1/2 98 (G.32)

[ee]
w;—0 i=0

NC
A3 (sy) b
=1

where B; denotes the Bernoulli numbers, and we define 1/(—1)! = 0. The color factors
7 and Tf are defined in App. B.2. These factors are related to the group theoretical

factors ZlNzgfl(Vf)i and S (12)? that occur in the expansions for the functions of
ff,‘zg and f¥, respectively. Note that the v are the eigenvalues of (n®T%) in the adjoint
representation for the functions fi', 4, whereas the v; are the eigenvalues of (n®T™) in
the fundamental representation for the function f¥. Finally, we obtain a contribution
from the last line of Eq. (4.67):

29

20 0) ( wow — wow +4ww +4Y(ww — w ))f4 (sw, )

w; —0

20
= — Z F 19Zf4A(8, %) @wiﬂ s (G33)

i=1

where the auxiliary function f;' is defined in Eq. (D.7).

Now we turn to the computation of the functions Y;; and X; in Eq. (4.69), which
define the flow equations for the generalized couplings w; in the present truncation.
Before we continue with the derivation of the flow equation, we rewrite Eq. (4.69).
Since we have w; = 1 by definition (see Eq. (4.66)), we find d,w; = 0. Moreover, we
observe that the RHS of Eq. (4.67) depends only linearly on 7. Introducing a infinitely
dimensional vector w; through

-n
8tw2
Oyws ’

(G.34)

we can rewrite Eq. (4.69) in the present truncation (recall w; = 0 for i > 2) as follows

= GX,; + GYjwy . (G.35)

g2
2(4m)d/2
X; and YZ] are independent of the coupling ¢?. In order to compute the anomalous
dimension 7, we have to compute first the new auxiliary functions X; and Y The
explicit representation of Y and X; can be found by inserting the expansions (G 29)-
(G.33) into the flow equatlon (4.67) and then performing the integration over the

Here we have factored out a factor G := = g=. Thus the new auxiliary functions
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proper-time variable s:

X, = oA hg‘i_%(%)u (- 2%52 Bai — 5ty
—81' Bgz Iﬁth i () (G-36)
Y/ij = /L‘j + Bij + Cij . (G.37)

The auxiliary matrices A, B, C' are given by

A = =0 forj>i—|—1 (G.38)

n-A[FA —A 22n 2 4
ij — G-1)! 1) [2 <h u—g%,ﬂ) <(d—1)( n)! Bap— (2n1)!)i|n:1+ij

2 2

! D>z D>z

- By _Ofor]>1 (G-39)
B L ) ‘
. C”—Ofor]7'éZJrl
) A4
C’ { 02,2.1_1 9 (HA GA) (G 0)

The thermal moments hJ , g] , hg’, Hi' and G} arise due to the proper-time integration,

see Equs. (D.8)-(D.12) for their definitions. Note that Y;; is independent of the quark
contributions in the present truncation.

The anomalous dimension in now obtained by solving the infinite set of equations
Eq. (G.35). Let us write Eq. (G.35) in form of a matrix equation (recall also the
discussion in Sec. (2.4.3)):

-1 -

—GX+GY @, = wt:G<1—G}7> X, (G.41)
From this representation, we find the following equation for »:
nN=—W,1 = Z &me with Ay, - — —(?mfl)ljf(j . (G42)

m=1

Using this equation, we can now compute straighforwardly the QCD (3, function to
any finite order in perturbation theory within our truncation. In Sec. 4.5.2, we have
used Eq. (G.42) for a calculation of the two-loop (2 function. However, Eq. (G.42)
represent an asymptotic series; for the exponential regulator (D.19) used in this work,
the coefficients a,, grow even more strongly than factorials and alternate in sign. The
reason for this behavior can be traced back to the fact that we have interchanged
integration and expansion in our derivation of equation Eq. (G.42) from the flow equa-
tion (4.67). Note that the RHS of Eq. (4.67) is finite. Thus we have to reconstruct



170 Chapter G. Computation of the Coupling Flow

a well-defined integral representation out of the asymptotic series Eq. (G.42). In this
work, we reconstruct such a representation by taking only the leading growth of the se-
ries coefficients into account. It has been shown for various examples that this already
leads to a good approximation of the underlying integral representation [204]. For a
particular m, we can isolate the leading growth a8 in the term that contains X

&i'g' = —Xb @;g' = —57125(2, a® = —3712?235734 . 'mel,me- (G.43)

m

Inserting Eqns. (G.40)-(G.40) into Eq. (G.43), we find the leading-growth coefficients
given in Eq. (4.72). In App. G.3, we discuss the resummation of the anomalous dimen-
sion by means of these leading growth coefficients.

G.3 Resummation of the Anomalous Dimension

In Sec. 4.5, we have computed and discussed the RG flow of the running QCD coupling.
Here, we present details for the resummation of the series expansion of the anomalous
dimension 7,

N~ Z arsG™. (G.44)
m=1

The leading growth (l.g.) coefficients a# read

L D(zg+m)T(m+1) 22m — 9
lg. _ A qa — A(__ m—1 d A T . A
Apy = Gy + Ay, = 4( 201) F(Zd 4 1) [h2m—ed( k)(d 2) (2m>| 7—mB2m
Ny
4 AT A T m—+1 BQm P P m; T
- F(Q )Tthmfed(E) +4 (2m>| mZZIthed(T7E) ’
(G.45)
where By, are the Bernoulli numbers [203] and z, is defined as
zg = (d—1)(NZ —1)cy. (G.46)
The temperature and regulator-dependent functions ¢; and ¢y are given by
o = 2AAND) - GAT). (Ga7)
RA (L) _gA (L
oy = —ed(k) g_ed(k) ] (G48)
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Note that ¢; > 0 and ¢ > 0 for % > 0. In the limits % — 0 and % — 00, ¢; and ¢y are
given by

fim e, = & = 3(%%(1 + g) - 1) , (G.49)

%@O o = = g, (G.50)
lim Loy = o = 2\/5((‘(1 + ed) - %) , (G.51)
1o

Jim ey = o= 2(65(51(12@;)_;_211), (G.52)

where we have used Eq. (D.9)-(D.18) for the exponential regulator (D.19) and ((x)
denotes the Riemann Zeta function.

In the following we perform the resummation of 1 along the lines of Ref. [71]: We
split the anomalous dimension Eq. (4.70) into three contributions,

n=n+n +n%, (G.53)

where 1! corresponds to the resummation of the term ~ 7By, in Eq. (G.45) and
n5' to the resummation of the term containing the Nielsen-Olesen unstable mode (~
1/T(2m)), representing the leading and subleading growth, respectively. The remaining
contributions, which include the quark effects, are contained in n9.

For the moment, we confine ourselves to SU(N, = 2) for which the group theo-
retical factors are 74 = N, and 7¥ = N.(1/4)™ = 2(1/4)™ (see App. B.2 for
details), but we artificially retain the N, dependence in all terms in order to simplify
the generalization to gauge groups of higher rank.

We start with the resummation of 7{': For this purpose, we use the standard integral

representation of the I' functions [203],

D(zg+m)I'(m+1) = /0 d81/o dss slséd(slsg)m_le_(sl+32) = /0 dp f(zd,l(p) pm L

(G.54)
where we have introduced the modified Bessel function

K., 1(s) = 252GtV (24/5). (G.55)
Furthermore, we use the series representation of the Bernoulli numbers [203],

Bom, . (_1)m71 > 1
)~ @ 2 B (G.56)
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Using Eq. (G.54) and (G.56), it is possible to rewrite ;! as follows

i = Sy 2w f, whewi BRCE) ()

(G.57)

In order to perform the summation over m, we define
1 — m—
Sb q,v Z_Q Z( > 2m ed(v)
=1 " m=1
9 o et [® N 2—eq St\/_
il d dtS [ dsh(s —( )
R Onz/ reos (7))t 5560 G ()

:anzoo/o dz cos <%)/o dtL11<e f) M t), (G.58)

where we have used Eqns. (D.9), (D.1) and (D.13). The auxiliary function of' is

defined as

8

d

b+3—eqy oo
oi(z,t) = <—@> /o du u® [h(y—l—u—l—xQ—t) + h(y+u+x2—|—t)] (G.59)

y=0
With the aid of Eq. (G.58), we obtain the final expression for ni',

4(d-2)N.G [*> - 2Gpe; T Gpey T
A _ 2\ A) e Af2PYT £ A £
T (et ) /0 % Keia () [QSb < w2 k:) 5 < 22’ k:)} o (G60)

which can straightforwardly be evaluated numerically.

Next we turn to the calculation of n3', the subleading-growth part of n. Here,
a careful treatment of the zeroth Matsubara frequency which contains the Nielsen-
Olesen mode is necessary. For this purpose we transform the modified moments l_zj‘ in
Eq. (D.15) into a sum over Matsubara frequencies and insert a regulator function P (1)
for the unstable mode,

ﬁ?’mg =4 UZ/ ds h(s)sTe—*Pr(®) (G.61)

n=—oo
Here, we have introduced

B.(v) { (;Z”f)/v)2 ((Zi(?)) . (G.62)

The function P(v) specifies the regularization of the Nielsen-Olesen mode and is defined
in Eq. (H.3); the hard Matsubara modes (n # 0) remain unmodified.
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Now we rewrite n3' by means of Eq. (G.54),

I6N.G = 1 o .
A= [ Agreg (T .
A P ;F(Qm)/o dp Koyt () B4, (B) (= 2Gper ). (GL63)

For what follows, it is convenient to introduce an auxiliary function T%(q) which is
defined as

00 =Y s (—0)" AL)

m=1

[e.e] 1 00 o )
ro+1) 2 Jy ), i

__v
T(b+1)

S 9 (Pulv).a). (G.64)

Here, we have used Eqns. (G.61) and (D.13). Furthermore, we have defined the auxil-
iary function 93

Iz, q) = (-%)b%_ed/oldt /Ooodu u® [h(y+u+ r—t\/—q) + h(y+u+z +t\/——q)]
(G65)

Applying Eq. (G.64) to Eq. (G.63), we finally obtain
16N.G *® - T
A c A
20 R () TA(2Gper, =) G.66
3 Y /O p K., (p) T, ( per k) (G.66)

This expression can straightforwardly be evaluated numerically.
The calculation of the contribution n of the quarks to the gluon anomalous dimen-
sion can be performed along the lines of the calculation of n{. We obtain

8N.G pGer T my
q P 1 )
K 7r2F (za+1) Z/ deZd 1(p) S < o2 'k k ) (G-67)

The auxiliary function SZ,/’ (q,m) is given by

Sy (q,v,1m) = mniw(—l)”/omdxcos (77;)—3;)/0 dtLi; <e f) o (u, 2%, t,m),

(G.68)
where aZf’ (u, z,t,m) is defined as

ol (u, z,t,m) = <—diy)b+36d/oodu u® [hf (W, ﬁ@) (G.69)
0

+hY <\/y+u+x+t, m) + hf(— y+utr—t, ﬁl) + h;"(—verqu:Ht, fn)]

y=0
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The regulator function occurs in the function h¥(,/y,m), which is related to h¥(y, m)
defined in Eq. (D.22) by

he (Vy,m) = kY (y,m). (G.70)
Note that there is one essential difference between the resummation of 7714/2 and that
of n?: the regulator shape-function r(y) can be expanded in powers of y, while the
corresponding function ry(y) for the quark fields should have a power series in /y.
This is a consequence of chiral symmetry [59] and justifies the notation h¥(,/y,m).

We stress that all integral representations in Eqs. (G.60), (G.66) and (G.67) are
finite and can be evaluated numerically. For d = 4 and in the limit of vanishing
temperature, T — 0, the results agree with those of Ref. [71].

In the remainder of this section we discuss how the results obtained above for SU(2)
can be generalized to higher gauge groups. Since we do not have the explicit repre-
sentation of the color factors /" for gauge groups with N, > 3 at hand, we have to
scan the Cartan subalgebra for the extremal values of the color factors 7/ and 7%. As
discussed in App. B.2, these extremal values of 74 and 7% can be calculated straight-
forwardly. Inserting the extremal values into Eq. (G.45), we find that the anomalous

dimension for SU(3) can be written in terms of the formulas already calculated for
SU(2) as

2

su@) _ 4 [ } 1 [ A A} “n¥
B . A . , G.71
UE! 3 h 2 —~3 3 h & Ne—3,c1—c1 /4 37] Ne—3 ( )
SU(3) B |: :| 2 " 4 P
s L2 L4 (G.72
s 2 Nc—3,c1—3c1 /4 977 Ne—3,c1—c1/3 9 Ne—3,c1—de1/3 ( )

The notation here serves as a recipe for replacing N, and ¢y, defined in Eq. (G.47), on
the right-hand sides of Eqns. (G.60), (G.66) and (G.67). Note that the replacement
of N, results also in a modification of the function z4, which is defined in Eq. (G.46).
However, ¢, which appears in the definition of z4, remains unchanged for all gauge
groups and depends only on the dimension d.



Appendix H

Regulator Dependence from the
Unstable Mode

In this part of the appendix, we discuss the regulator dependence of the critical tem-
perature T, that arises from the details of projecting out the unstable Nielsen-Olesen
mode. We already pointed out in Subsec. 4.5.1 that removing the tachyonic part of
the unstable mode corresponds to an exact operation on the space of admissible sta-
ble background fields. With regard to our purposes, it even suffices to remove only
the thermal excitations of the tachyonic part of the mode. This is due to the fact
that the imaginary part arising from quantum fluctuations can easily be identified and
dropped; in the context of a non-perturbative RG study, this has already been shown
in Ref. [71]. Now let us take a less strict point of view in the sense that we allow for a
smeared regularization of this mode in a whole class of regulators. The true physical
result will not depend on this part of the regularization. Therefore we can identify
the optimal (truncated) result with a stationary point in the space of regulators, using
the ”principle of minimum sensitivity”, cf. Ref. [44]. In order to prevent the thermal
population of the Nielsen-Olesen mode ENC| it is sufficient to regularize only the soft
part (zero Matsubara frequency) of this mode as follows:

ENO + Ry ENO + Ry
ftk2 —  P(3)+ ftk2 ‘ (H.1)
The function P (%) has to satisfy the following constraints:
. T : T
Tl/lkrgop(%) =0 and T/I;I_I}OOP(E) — 00. (H.2)
As a convenient example, we choose
P(L)=Pu(x)=(£)" with m > 0. (H.3)

Our regulator-optimization condition is given by the demand that T, should be sta-
tionary with respect to a variation of the optimal regulator function. Calculating T,
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Figure H.1: The figure shows the dependence of the critical temperature T¢, on the
smeared regularization of the Nielsen-Olesen mode. The regulators are labeled by m,
see also Eq. (H.3). The left and the right panel show the results for N. with Ny = 3
and Ny = 11 massless quark flavors, respectively. The limit m — oo can be identified
with the stationary point, and thus the optimal regulator in the class of considered
regulators. This justifies constructively the procedure used in the main text which was
derived from general considerations.

as a function of the parameter m, the optimization condition for the regulator function

translates into
arT.,

om .

m=m

20, (H.4)

The solution m = m of this equation defines the desired optimized regulator.

As an example, we show T, (m)/T..(c0) as a function of m for N, = 3 with Ny =3
and with Ny = 11 quark flavors in Fig. H.1. The figure illustrates nicely our finding
that the optimized regulator is given by m — oo for all N, and N;. This represents an
independent and constructive justification of the regularization used in the Chap. 4,
corresponding to the choice m — oo.



Appendix 1

Heat-Bath Projectors for Finite
Temperature and Density

When we calculate the flow equations for the four-fermion interactions in Subsec. 4.6.1
and Subsec. 4.6.2, we encounter momentum integrals of the following form:

T Z / QLI PP 7, (p(f)p& )> (L1)

and
dd —1
T Z / OO (B0R0) T (78 (12)

Here, d counts the number of space-time dimensions. We assume that the functions Z;
and Zy drop exponentially for large momenta and that they depend only on Lorentz-
scalars?.

Note that we allow for an additional dependence of these functions on a mass
parameter m in in Eqs. (4.88) and (4.89). For simplicity, we drop the dependence on
m here, since it is not relevant for what follows. The d-dimensional momenta ﬁfli) are
defined as

_=(%)
=Py
i —
Py = (v i), (1.3)

where v, = (2n + 1)7T denotes the n-th fermionic Matsubara-frequency. Note that
p'is a (d—1)-dimensional vector. The chemical potential of the fermions is given by
. In order to perform the momentum integration, it is convenient to decompose the

I'We encounter contributions with both fermionic and bosonic internal lines in the calculation of the
flow equations in Subsec. 4.6.2. In this case, the functions Z; and Z, have an additional dependence
on p.p, = w2 + p%, where w,, denotes the n-th bosonic Matsubara-frequency.
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non-trivial tensor structure in Egs. (I.1) and (I.2) by means of an appropriate basis.
For this purpose, we define the following operators:

(P = nunu, (14)

(PB)p,V - 5;w_n,u,nl/a 15)
1 N

(Péi))w = H <n“pf,i) n”nl,p(()i)> , (1.6)
1 /. N

(Pl():F)),uV - ﬁ <p£f)ny—n“n,,p(()¢)> : (17)

The vector n, = (1,0) denotes the heat-bath velocity. From the definitions of the

operators Py, Pg, Péi) and P,(f), we obtain immediately

TrPyPs = TrPyPSY = TePaPSY = TePy Py = TePSY PSY
= TP PSP, PSY = PP = TP PS) =0, (19)

and

TrPoPy = ToP P =1, TePgPs=(d—1). (1.9)

Now it is a straightforward task to show that the following set of operators represents

a complete orthonormal tensor basis:
A (pw P(q:))} ‘
/d _ \/5 \/5 < C D

(Pgi) + Py
Using the operators Py, Pg, Péi) and P](;), or equivalently the basis B, the tensors in
Egs. (I.1) and (I.2) can be decomposed as follows:

B= {PA, PB, (I.10)

‘2

BB = 06756 (P + = (Pew + 867 NP + 557181 (PS )y, (111)
‘2

~(—) ~ (=) ~ p ~

BB = 55857 (Pa)w + 7 (P + 56 PP+ 567 AP, (112)

3P0 P’ ()51 )

B =508 (Pa)w + == (P + B 11 (PG ) + PP ) (113)
D)

(=) ~(— D (- - (— -

OB =56 86 ) (Pt 57— (Po)w + B0 I(PE o + 85 11 (P )y - (114)

We observe that the terms proportional to Péi) and proportional to P](f) are only

linear in the spatial momenta p;. Therefore these terms drop out when we perform the
momentum integration. Taking this into account, the decompositions, which we have
given in Eqs. (4.88) and (4.89), are finally obtained by reinserting the definitions of the
operators P4 and Pg into the relations (I1.11)-(1.14).
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