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Chapter 1

Introduction

1.1 Motivation: Environmental Change

Economic activity has always altered societies’ physical and biological environment.

These human-induced changes have grown with population density and technical capa-

bility. In recent times humankind’s impact on the natural environment has not only

changed in quality and quantity, but also the time scale on which its actions affect the

physical and biological surroundings has increased significantly. I want to point out this

phenomenon at the example of global climate change. It is probably one of the most

serious human induced alterations of the natural environment discovered so far. The

background for this so called ‘global warming problem’ is that the atmosphere of the

earth naturally traps incoming solar energy. This process results in a higher average

temperature on the planet’s surface. The effect is mainly caused by water vapor and

different atmospheric gases. Due to the resemblance of the radiative forcing effect of

these gases to that of a greenhouse, these gases are typically classified as greenhouse

gases. Without the natural greenhouse effect, today’s average surface temperature of

the planet would be approximately 33◦C colder (Roedl 2000). As a result of human eco-

nomic activity, accumulation of these greenhouse gases in the atmosphere has increased

over the past centuries and, in particular, over the last decades. The most important

factor in this human induced accumulation is the increase in the atmospheric carbon

dioxide concentration, mainly caused by fossil fuel burning and deforestation. Another

example for an even more efficient greenhouse gas, which appears, however, in lower

concentrations in the atmosphere, is methane. Methane is also emitted in fossil fuel

burning but, most importantly, as well in cattle and rice agriculture and from land-

1



CHAPTER 1. INTRODUCTION

fills.1 Such an increase in greenhouse gas concentration causes an (additional) increase

in global surface temperature, as well as a change in other climatic determinants.

Considering different scenarios for future economic activity, the International Panel on

Climate Change (IPCC) predicts with respect to the baseline of 1990 an increase in av-

erage global surface temperature between 1.4 to 5.8 ◦C by the end of the century, with a

disproportional temperature increase on land areas (IPCC 2001b). While small amounts

of climate change can proof beneficial for some regions and sectors, adverse effects are

predicted to dominate and to increase with the magnitude of change. Adverse effects

include sea level rise, threats to human health, decrease in ecological productivity and in-

creased precipitation variability causing floods and droughts (IPCC 2001e, IPCC 2001a).

Another large scale change of a climate determinant that could be triggered by global

warming, is a shut-down of the northern arm of the Gulf Stream. Such a process would

be irreversible, and bring a significant cooling and change in the precipitation pattern

for Northwestern Europe.2 Other examples of irreversible processes that can be caused

by global warming include an irreversible disintegration of the West Antarctic ice sheet,

resulting in a permanent rise of the sea level (IPCC 2001e, 77), and an acceleration

of biodiversity loss (IPCC 2001a, 53). The irreversibility involved in these potential

changes highlights the time scale in which current actions, and emissions within a cou-

ple of decades, can alter our natural environment. However, also without invoking

irreversibility, the example of global warming points out that environmental change

and feedback, caused by today’s decisions, affect a long time horizon. For example,

the thermal expansion of the oceans and melting of the ice will continue at least for

several hundred years after a stabilization of greenhouse gas concentrations has been

achieved (IPCC 2001b, 17). An additional characteristic of climate change is the high

degree of uncertainty involved in most quantitative estimates concerning the effects of

global warming and the amount of global warming needed to trigger other changes in

the climate system (IPCC 2001b, 30 et seqq.).

While climate change alone would certainly be motivation enough for this study, a

similar reasoning on time scale and uncertainty holds true for many other economy-

environment interactions. Such examples include biodiversity loss, depletion of the

ozone layer, potential impacts of genetically modified organisms, ecosystem impact of

1For an overview of the different causes of global warming compare with increasing detailedness IPCC
(2001d), IPCC (2001e) and IPCC (2001c). A recent study by Keppler, Hamilton, Braß & Röckmann
(2006) suggests that also the production of methane in intact plants and from detached leaves plays a
more important role in the global methane budget than previously assumed.

2A recent study by Bryden, Longworth & Cunningham (2005) indicates that the volume of water
carried by the Atlantic Conveyor Belt to Northwestern Europe has possibly dropped already by 30%.
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1.2. CONCEPTUAL BACKGROUND

invasive species, nuclear waste disposal, watershed protection and climate regulation

functions of tropical rain forests, and soil degradation. There are three stylized facts

that can be derived from these examples. First, there are important settings in which a

careful consideration of the long term is essential for an adequate determination of costs

and benefits going along with economic activities that cause changes to the physical

and biological environment. Second, in the mentioned examples, benefits gained from

most economic activities3 are comparatively short-term as opposed to the long-term

repercussions on welfare through the induced environmental change. This time structure

makes it extremely important, to carefully think about weighing the future as opposed

to the present in order to avoid a systematic bias between (short-term) benefits and

(long-term) costs. And third, the magnitude of contemporary benefits from economic

activity is generally much better known than the highly uncertain magnitude (or even

character) of environmental changes and their repercussion on welfare in the long run.

Therefore, a careful consideration concerning the evaluation of uncertainty associated

with the long-term consequences of environmental change is a challenge of high priority.

Treating either the time structure or the uncertainty structure in the economic framework

of balancing costs against benefits inattentively, is likely to bias policy recommendations

in a systematic way in favor or against environmental interventions.

1.2 Conceptual Background

In economic theory, welfare is usually characterized by a function, or a more general

mathematical relation, that allows to compare different scenarios, and to evaluate which

choice in a given set of possibilities is best. The process of evaluating a particular

scenario or project is called cost benefit analysis. To this end, cost benefit analysis has

to identify different determinants of welfare, and make them comparable at a given point

of time. In such an analysis, the environment serves as a source of human welfare in a

manifold way. First, this happens by immediate appreciation of environmental amenities

such as clean air, scenic views, outdoor activities or appreciation of biodiversity. Second,

our physical and biological surroundings give rise to more indirect service flows, like for

example, the regulation of hydrological cycles or climate regulating functions. Third,

our natural environment provides resources that enter into the economic production

3That is, fossil fuel burning, agriculture, deforestation and landfill storage mentioned above as
some of the major causes for the increase of greenhouse gas concentrations, or the usage of CFC’s
or genetically modified organisms and again deforestation as major causes for the other mentioned
examples.
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CHAPTER 1. INTRODUCTION

process. All of these contributions to human welfare are captured under the concept of

use value.4 In addition to these use-values, one considers as well non-use (or intrinsic)

values that generally arise from ethical, moral or spiritual considerations. Moreover,

cost benefit analysis does not only have to compare different outcomes at a given point

of time, but also has to make comparisons when costs and benefits occur at different

points of time. As it was observed in the preceding section, a project that involves

fossil fuel burning or deforestation might go along with immediate benefits, as well as

an unfavorable alteration of the environment that feeds back into the welfare function

in the long run. Therefore, an important determinant in a cost benefit analysis is the

weight given to future sources of well-being as opposed to the current. These weights,

assigned to different points of time, are usually characterized by means of a (social)

discount rate.

The social discount rate, and thus, the weight given to future consumption and service

streams, is usually composed of two factors. The first is the so called rate of pure time

preference. It characterizes society’s impatience or intrinsic devaluation of the future,

and is typically an exogenous parameter to the economic theory of cost benefit analysis.

While usually positive rates of pure time preference are employed, some share the point

of view prominently expressed by Ramsey (1928, 543) that a pure rate of time prefer-

ence is “ethically indefensible and arises merely from the weakness of the imagination”.

The second determinant of the social discount rate is incorporating evaluative effects of

economic growth and decreasing marginal utility. More precisely, it is characterized by

the growth rate which is weighted with a term that depicts society’s desire to smooth

consumption over time. This term is founded on a simple economic consideration relat-

ing the technological possibility of increasing produced consumption over time through

investment, and the willingness to forego consumption in some period in order to have

more in another. Dasgupta (2001, 183 et seqq.) works out that this consideration,

in combination with a decline of long-term economic growth caused by global climate

change, could increase the weight that should be given to future consumption and service

streams. His reasoning implies that the optimal social discount rate would be falling

over time. As constant discount rates go along with an exponential decline of weight

given to the future, falling discount rates, which yield a more moderate decline of future-

weight, are often regarded as favorable. However, applying such declining discount rates

4Another (indirect) use value which is often mentioned in this context is the so called option or quasi
option value. It is introduced to capture the value of an uncertain potential use of natural resources in
the future, when time is not considered explicitly. However, in a dynamic framework, as employed in
this dissertation, these option values fall together with uncertain use values in the future (and possibly
also with future non-use values as stated next).

4
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in project evaluation can result in a continuous revision of the optimal project, due only

to the passage of time and not to any real changes in the project or its circumstances.5

This phenomenon has been termed time inconsistency. Most approaches that suggest

declining discount rates on the basis of intergenerational justice or observed behavior,

lead to such a time inconsistency. However, more recently, different approaches that ra-

tionalize time consistent declining discount rates under uncertainty have been developed

(Weitzman 1998, Azfar 1999, Dasgupta & Maskin 2005). In relation to climate change,

Nordhaus’ (1993,1994) integrated assessment model for climate change and its critical

discussions and alternative assessments have shown the importance of carefully quanti-

fying the social discount rate for the derivation of an optimal greenhouse gas abatement

path (see e.g. Toth 1995, Plambeck, Hope & Anderson 1997). In particular, Plambeck

et al. (1997, 85) point out that a reduction of the pure rate of time preference from 3%,

as assumed by Nordhaus (1993), to 0%, would result in an optimal abatement path that

cuts emissions by 50% from the baseline to the year 2100, as opposed to 10% in the

assessment of Nordhaus (1993).

The relation between current and future well-being is the central focus of a sustainable

development.6 With respect to the discussion on discount rates in the preceding para-

graph, let me remark that Pezzey (2006) refers to discount rates that fall over time as

‘sustainable discount rates’. Van den Bergh & Hofkes (1998, 11) describe the common

denominator of sustainability theories as the acknowledgment of the “long-run mutual

dependence of environmental quality and resource availability on the one hand, and

economic development on the other hand”. In this context two different notions of sus-

tainability are generally distinguished. On the one hand, there is the weak sustainability

paradigm which is mainly concerned with the preservation of a non-decreasing overall

welfare. To this end, advocates of the notion of weak sustainability allow for a substitu-

tion between environmental and man-made capital. On the other hand, the paradigm of

strong sustainability requires a non-declining value or physical amount of natural capital

and its service flows. The latter demand of non-declining natural capital and service

flows, is based on the viewpoint that substitution possibilities between man-made goods

and natural resources and service flows are either limited or ethically indefensible. While

5This problem does not apply to the mentioned reasoning set forth by Dasgupta (2001, 183 et seqq.),
where the falling discount rates are implied by a change in future economic development.

6The report of the World Commission on Environment and Development (Brundtland report) de-
fines: “Sustainable development is development that meets the needs of the present without compro-
mising the ability of future generations to meet their own needs” (WCED 1987). Note that a broad
definition of a sustainable development also includes a sociological dimension, which will not be part
of my analysis.
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CHAPTER 1. INTRODUCTION

traditionally the economic analysis of sustainability has a strong focus on capital and

its substitutability in production, the importance of incorporating preferences has been

pointed out as well. Recently, Gerlagh & van der Zwaan (2002) mapped the differ-

ence between the two mentioned paradigms of sustainability into an assumption on the

substitutability between the two classes of goods in the welfare function.

Another evaluative concern that is closely related to the concept of sustainability, is

the demand of a precautionary handling of the uncertainty going along with the long-

term environmental changes discussed in section 1.1. In this regard, Hahn & Sunstein

(2005, 1) predict that “over the coming decades, the increasingly popular ‘precautionary

principle’ is likely to have a significant impact on policies all over the world”. A fre-

quently cited definition of the precautionary principle is that “where an activity raises

threats of harm to the environment or human health, precautionary measures should be

taken even if some cause and effect relationships are not fully established scientifically”

(Wingspread declaration, Raffensperger & Tickner 1999, 8). However, a major difficulty

in the interpretation and application of the precautionary principle is the vagueness in

its formulations. This vagueness gives rise to criticisms which are most prominently

expressed by Hahn & Sunstein (2005, 1) who state that “the precautionary principle

does not help individuals or nations make difficult choices in a non-arbitrary way. Taken

seriously, it can be paralyzing, providing no direction at all”. The authors continue that

“In contrast, balancing costs against benefits can offer the foundation of a principled

approach for making difficult decisions”.

Let me finally address some important details of the standard modeling framework

in environmental economics. For models under certainty, the standard approach is to

depict overall welfare as a sum of per period welfare. The underlying assumption, al-

lowing for such a welfare representation, is known as additive separability over time.

In this model, the willingness of the decision-maker to substitute consumption between

one period and another, can be characterized by the (inverse of the) elasticity of in-

tertemporal substitution. An additional assumption, that is commonly adopted, is that

the functions describing the welfare derived from different outcomes coincide up to a

discount rate between different periods. For decision makers with an infinite planning

horizon, Koopmans (1960) has shown that this structure is implied by a stationarity

axiom, which assumes that the mere passage of time does not change preferences. Such

an axiomatization depends crucially on the strict positivity of the discount rate.

For models dealing with uncertainty, the standard framework is the expected utility

model. Here, a decision maker weights the different possible outcomes with a proba-

bility distribution, and evaluates a scenario that gives rise to a particular probability
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distribution by its expected welfare. For an atemporal setting, such an approach to

evaluate uncertain choices has been axiomatized most prominently by von Neumann &

Morgenstern (1944). In this framework, the decision maker’s willingness to smooth con-

sumption over different risk-states characterizes his degree of risk aversion. In models

where time and uncertainty is represented simultaneously, the standard is to combine

these two frameworks described above by assuming the structure of an intertemporally

additive expected utility model. In this framework, evaluation of certain consumption

streams is obtained, as before, by taking a discounted sum of per period welfare. If

uncertainty prevails, the different possible outcome paths are weighted with probabili-

ties. Then a scenario, giving rise to a particular distribution over possible consumption

paths, is evaluated by its expected welfare.

A limitation of the latter model is that two characteristics of welfare, which are in

principle independent of each other, are confined to a one-to-one relationship. Precisely,

the (Arrow-Pratt) coefficient of relative risk aversion has to be equal to the inverse of the

elasticity of intertemporal substitution. This implies that a decision maker’s willingness

to substitute consumption between different periods, has to coincide with his propen-

sity to ‘substitute consumption between different risk states’. Note that the definition

of intertemporal substitutability and risk aversion is straightforward only in the one

commodity setting. Kreps & Porteus (1978) developed a more general model, extending

von Neumann & Morgenstern’s (1944) axiomatic approach to a multiperiod setting (not

assuming additive separability over time). Within this generalized framework, Epstein

& Zin (1989) show for the one commodity case that intertemporal substitutability and

risk aversion can be disentangled. This disentanglement in the Epstein-Zin framework

goes along with an intrinsic7 preference for either early or late resolution of uncertainty.

The latter implies that, in such a model, uncertainty is no longer expressed immediately

over different consumption paths, but has to be stated recursively over periodic outcomes

(temporal lotteries). That is, uncertainty at the beginning of a period is expressed as a

joint probability distribution over the outcomes of that period and over the probability

distribution prevailing at the beginning of the next period. The more standard mod-

eling approach is to depict uncertainty directly as a joint probability distribution over

the outcomes in all periods.

7Intrinsic means not instrumental, i.e. that the information derived from an earlier resolution of
uncertainty cannot be used to improve (expected) outcomes in the future.
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1.3 Key Issues

In this dissertation, I develop insights and tools concerning the evaluation of long-term

trade-offs between economic activity and its environmental repercussions. My study

concentrates on theoretical aspects of the evaluation functional characterizing preference

and welfare. I focus in particular on the weight given to the short versus the long run,

and the incorporation of uncertainty. The results render contributions to the fields of

environmental economics and decision theory, as well as to the more specific research

areas of sustainability and cost benefit analysis. This section gives a brief overview over

the key issues addressed in my dissertation.

The first contribution relates the strength of the notion of sustainability to the sub-

stitutability in welfare between environmental service flows and produced consumption

streams. I analyze how the different notions of sustainability change the weight that

is given to consumption and services in the long run. To this end, I study a stylized

growth scenario, where the growth rate of produced consumption streams dominates

that of environmental service flows. I show that if the strength of sustainability is only

translated into the substitutability between environmental service streams and produced

consumption, a strong notion of sustainability will generally result in lower weights given

to long-run service and consumption streams than a weak notion of sustainability.

The second contribution is derived for the same stylized growth model. I find that in

such a multi-commodity setting the optimal social discount rates reflect the difference

in growth, as well as the degree of substitutability between the two classes of goods.

These determinants are mirrored not only in the magnitudes of the social discount rates,

but also in their time development. I point out that some degrees of substitutability can

cause social discount rates to decline over time, while others can cause social discount

rates to grow, both within a time consistent framework.

The third contribution formalizes an important aspect of the precautionary principle.

It concerns the willingness to undergo precautionary measures in order to prevent a

threat of harm. I argue that the concern of the advocates of the precautionary principle

is not captured by the standard model of risk aversion, based on an intertemporally

additive expected utility framework. Taking time structure more seriously, I introduce

a concept called intertemporal risk aversion, and show its immediate relation to the

concerns of the precautionary principle. This notion of uncertainty attitude is carried

by standard axioms of decision theory, including those of von Neumann & Morgenstern

(1944). Moreover, in contrast to the notion of standard risk aversion, the definition of

intertemporal risk aversion immediately holds for the multi-commodity setting.

The fourth contribution of my dissertation is to work out the general time consistent
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model, which falls back to additively separable welfare over time for certain consumption

paths, and to the von Neumann & Morgenstern (1944) setting in the atemporal case.

These are the most prominent specifications for the respective framing scenarios, and

I show how a careful unification allows to disentangle risk aversion from intertemporal

substitutability. Moreover, I show how a stationary aggregation of welfare over time

can be axiomatized in a finite planning horizon, without the assumption of a positive

discount rate.

The fifth contribution analyzes the reasons for an intrinsic preference for the timing

of uncertainty resolution in recursive utility models. I relate such a preference to the

functions characterizing risk attitude and intertemporal substitutability. Moreover, I

work out that a disentanglement of a decision maker’s attitude with respect to risk and

his propensity to substitute consumption between different periods is possible, without

assuming an intrinsic preference for an early or late resolution of uncertainty. This result

implies that it is possible to disentangle (standard) risk aversion and intertemporal

substitutability also in a model, where uncertainty is expressed non-recursively over

consumption paths.

The sixth contribution relates to the choice of the pure rate of time preference. I offer

axioms under which an intertemporally risk averse decision maker chooses the pure

rate of time preference as zero. These axioms concern the decision maker’s stationarity

of risk attitude and his attitude with respect to the timing of uncertainty resolution.

While, under these axioms, a decision maker is not free to devalue the future due to pure

impatience, he gives reduced weight to welfare that is uncertain. When uncertainty is

increasing over time, this fact has some resemblance to discounting. However, the more

a decision-maker can know about the future, the more weight it will carry.

1.4 Methodology

Part I of this dissertation employs a stylized growth model, which takes as given a

functional representation of welfare that is additive over continuous time. The assump-

tion of continuous time allows to adopt differential calculus to analyze the behavior of

discount rates over time. I introduce the concept of good-specific discount rates as gen-

erators of marginal utility propagation. The latter concept, taken from physics, proves

useful to interpret and compare different integral representations of cost benefit function-

als, corresponding to different views on discounting. Having introduced the conceptual

background, I reduce the general welfare function to a parametric form depicting the

difference between a preference for weak and strong sustainability in an as simple as

9
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possible form that still allows to derive the main insights. In this model, the (certain)

consumption levels of the two classes of goods are represented by real numbers.

In contrast, parts II and III are axiomatic approaches to long-term evaluation, deriv-

ing functional representations only from underlying assumptions on preferences. Again,

part II derives the simplest model that is general enough to introduce and relate the rel-

evant concepts. Then, part III starts out by extending the concepts to the most general

setting in this study. Subsequently, I work out desirable restrictions that cut back on the

model’s complexity. In part II, objects of choice are pairs of certain present outcomes

and uncertain future outcomes. Certain outcomes are depicted as elements of a compact

metric space, and uncertain outcomes are represented by (Borel) probability measures

on the latter. Part III makes use of a recursive extension of this ‘certain×uncertain’

setting to a multiperiod framework, as developed by Kreps & Porteus (1978) (temporal

lotteries). It also analyzes the simpler approach where probabilities are defined directly

on consumption paths. Part II and III adopt a discrete time framework. The simpler

structure is considered preferable to introduce the new concept of intertemporal risk

aversion, without the rather technical aspects of continuous time analysis in recursive

utility models. As in the first part, I introduce a concept borrowed from physics, a so

called gauge. It describes a degree of freedom in a system, here my preference represen-

tations, that can be exploited in different ways. Instead of eliminating, i.e. normalizing,

this degree of freedom right at the outset of the model, the idea is to explicitly analyze

this freedom. This approach proves helpful to derive a deeper understanding of the

theory.

1.5 Outline

Part I of my dissertation analyzes the relation between a preference for strong versus

weak sustainability and the optimal social discount rate. Anticipating the resulting

non-constancy of the social discount rate, chapter 2 briefly reviews related literature

on declining discount rates. Offering an interpretation as generators of marginal utility

propagation, the concept of social discount rates is extended to the multi-commodity

setting. For the one commodity setting, I briefly work out the well known dependence

of the social discount rate on growth and intertemporal substitutability. Chapter 3

discusses the concepts of weak and strong sustainability, and relates it to the degree

of substitutability in the welfare function between man-made goods and environmental

service and consumption streams. Taking a closer look at the situation where consump-

tion of produced goods grows at a faster rate than the consumption of environmental
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services and amenities, I work out how the limitedness in substitutability translates

into modifications of the optimal social discount rates for the respective goods. Finally,

chapter 4 elaborates how the good-specific social discount rates have to be employed

in the cost-benefit evaluation of a (small) project. It relates the perspective of good-

specific discount rates to an evaluation with a universal discount rate. Moreover, the

cost-benefit evaluation is related to an evaluation by means of (imaginary) complete

future markets.

Part II of my dissertation introduces the concept of intertemporal risk aversion and

relates it to an important concern of the precautionary principle. In chapter 5, I intro-

duce the precautionary principle, discuss related literature on choice under uncertainty,

and motivate my approach to formalize the willingness to undergo preventive action.

Chapter 6 develops the axiomatic background for the preference representation under-

lying the subsequent study. A particular feature of my representation is that it allows

for different choices of the representing Bernoulli utility function8 (for the same un-

derlying preferences). I show how different normalizations (gauges) of Bernoulli utility

correspond to different representations found in the literature. Chapter 7 introduces

the concept of intertemporal risk aversion, and relates it to the attempt of disentangling

intertemporal risk aversion from intertemporal substitutability. I show that in a multi-

commodity setting the latter coefficients depend on the particular commodity under

observation, and how this corresponds to a dependence on the choice of the Bernoulli

utility function (gauge). Intertemporal risk aversion, on the contrary, is shown to be

gauge independent. I relate the concept of intertemporal risk aversion to precaution

and the concern of preventive action, and give a reinterpretation in terms of risk aver-

sion with respect to welfare gains and losses. Finally, I introduce quantitative measures

of intertemporal risk aversion and elaborate conditions for uniqueness. To focus the

discussion, the axiomatizations and representations in chapters 5 to 7 use a simplified

framework featuring only two periods and stationary preferences. Moreover, a zero rate

of pure time preference is assumed.

Part III of my dissertation extends and refines the model of intertemporal risk aver-

sion. First, chapter 8 axiomatizes the general representation for an arbitrary finite time

horizon and non-stationary preferences, and adapts the axiomatic characterization of

intertemporal risk aversion. Starting from this general perspective, chapters 9 and 10

analyze axioms that simplify the representation. In chapter 9, I examine different sta-

8Bernoulli utility describes a cardinal function that, by itself, represents choice over certain, one
period outcomes. In combination with uncertainty and intertemporal aggregation rules, it serves as the
bases for more general evaluation.
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tionarity assumptions. In my finite time horizon setup, there is no canonical way to

impose stationarity. While stationarity with respect to the evaluation of certain out-

comes is straightforward, an axiom yielding stationarity with respect to risk attitude is

more involved. Two alternative axioms are introduced. The first yields a constancy of

the functionals that evaluate uncertainty in every period. The second axiom is a more

natural extension of the stationarity axiom for certain outcome paths and the intuition

that the mere passage of time should not change preferences. Chapter 10 analyzes a

decision maker’s preference with respect to the resolution of uncertainty. I relate the lat-

ter to the functions characterizing intertemporal substitutability and risk attitude, and

elaborate the reasons underlying such a timing preference. I critically discuss the mo-

tivations for a non-trivial timing preference found in the related literature. I show how

indifference with respect to the timing of uncertainty resolution allows to simplify the

representation. I point out that the derived model allows to disentangle standard risk

aversion from intertemporal substitutability in a non-recursive intertemporal expected

utility framework. Finally, I combine assumptions on timing preference with assump-

tions on stationarity and elaborate implications for discounting. Chapter 11 concludes

by summarizing the conceptual contributions, pointing out further implications and

different applications, and, finally, suggesting various extensions of the study.
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Social Discounting and Limited

Substitutability in Welfare
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Chapter 2

Social Discounting

2.1 Introduction

In the first part of my dissertation I analyze how limited substitutability in consumption

between environmental services and produced goods affects the social discount rates, and

the weights given to future consumption streams. The study is intimately linked with

two important aspects of sustainability. First, the weight given to future consumption is

the fundamental concern linking economic modeling to the definition of a sustainable de-

velopment as a “development that meets the needs of the present without compromising

the ability of future generations to meet their own needs” (WCED 1987). And second,

the substitutability between environmental services and produced consumption is the

most important distinction between the concepts of weak and strong sustainability.

My study considers a stylized growth model where the growth rate of produced con-

sumption dominates that of environmental service streams. I generalize the concept of

social discount rates to the multi-commodity setting and elaborate how social discount

rates are affected by such an uneven growth. I find that the social discount rate of

the environmental good, which becomes relatively more scarce over time, gets a mark

down, while the rate of the produced consumption stream receives a mark up. The

more challenging findings concern the behavior of the social discount rates over time.

It turns out that, if the two classes of goods are of moderately limited substitutability

in consumption,1 both discount rates decline over time. The corresponding specification

1By moderately limited substitutability I denote the region where welfare can be derived from
consuming only one of the two classes of goods, but mixtures are generally preferred to extremes. On
the other hand I denote the region where ‘positive welfare’ cannot be gained by consuming only one of
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of welfare closely relates to the concept of weak sustainability and the result seems to

substantiate a demand for falling discount rates by environmentalists. In this respect,

Pezzey (2006) even defines sustainable discount rates as falling discount rates. How-

ever, a surprise comes from analyzing the situation where the elasticity of substitution

between the two classes of goods is smaller than one, and substitutability is strongly

limited. This is a welfare specification that is closely related to the notion of strong

sustainability. I find that in such a setting both social discount rates grow over time.

Moreover, this growth is strong enough to imply that the weight given to consumption

and environmental services in the long run becomes smaller than under moderate lim-

itedness in substitutability, even when the environmental service stream decreases in

absolute and relative turns.

I explain that the described time behavior of the social discount rates connects to a

finding by Gerlagh & van der Zwaan (2002), who analyze the value share of man-made

consumption in a comparable growth scenario. Furthermore, my study closely relates

to a paper by Weitzman (1994) on an ‘environmental discount rate’ and its criticism by

Arrow et al. (1995, 140). Weitzman (1994) presents a reasoning how the consideration of

environmental amenities being degraded by production or being luxury goods, can lead

to reduced and falling discounting rates. However, he does not model the environmental

good or its value development explicitly. In particular, the interpretation of the derived

quantity as a proper discount rate is criticized by Arrow et al. (1995, 140), for its lack

of an explicit conversion of the environmental benefits into equivalents of produced

consumption. My study can be seen as a different approach to model the relation

between the development of environmental service streams and produced consumption.

Unlike Weitzman, I explicitly model preferences and both classes of goods. This allows

to take up the concern of Arrow et al. (1995, 140) with respect to Weitzman’s (1994)

work. My model does not substantiate Weitzman’s (1994) result. But opposed to Arrow

et al.’s (1995, 140) comment, it shows that, also when approaching the evaluation the

way requested by the authors, a similar environmental reasoning can affect the time

behavior of the discount rate.

More generally my model relates to a broad field of literature that motivates and works

with declining (hyperbolic) discount rates for different reasons. An excellent review on

declining social discount rates is found in Groom, Hepburn, Koundouri & Pearce (2005,

7 et seqq.) who summarize and critically review the literature on effects that can cause

optimal social discount rates to decline over time. A survey on experiments indicating

that observed behavior is better described by the use of falling discount rates is found

the consumption streams as the region of strongly limited in substitutability.
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in Frederick, Loewenstein & O’Donoghue (2002, 378). From a different perspective,

Chichilnisky (1996) and Li & Löfgren (2000) develop models of hyperbolic discounting

that are based on considerations of intergenerational justice. A problem with the use of

hyperbolic discount rates is that these can lead to a continuous revision of the (formerly)

optimal plan, a phenomenon called time inconsistency. One way to ‘solve’ this problem

is to look at the planning process as a non–cooperative game against one’s future selves

or future generations (Phelps & Pollak 1968, Arrow 1999). Another access to this

problem is set forth by Weitzman (1998), Azfar (1999) and Dasgupta & Maskin (2005)

who rationalize hyperbolic discounting in the case of uncertainty. In a context closer to

my own Gollier (2002) developed sufficient conditions for hyperbolic discounting in an

uncertain world of economic growth. From the perspective of this literature, my study

provides an explanation for time consistent evaluation with non-constant social discount

rates under certainty. Let me finally remark that in 2003 hyperbolic discount rates also

made their way into applied policy, when the British Green Book started to prescribe

hyperbolic discount rates for the evaluation of long-term projects (HM Treasury 2003,

97 et sqq.).

Part one of my dissertation is structured as follows. Subsequent to this introduction,

section 2.2 introduces good-specific social discount rates and factors, and offers an in-

terpretation of social discount rates as generators of marginal utility development over

time, a concept borrowed from physics. I briefly discuss the expression for social discount

rates in the standard one commodity setting. Chapter 3 analyzes how limited substi-

tutability in welfare between environmental service streams and produced consumption

affects the social discount rates in a stylized growth scenario. First, chapter 3.1 intro-

duces the reader to the concepts of weak and strong sustainability. I relate these two

concepts to different substitutability assumptions in welfare. Then, chapter 3.2 derives

a reduced form for welfare that parametrizes substitutability in a simple manner and

eliminates the effect of uniform growth on the social discount rates, which has been

discussed extensively in the literature. Chapter 3.3 derives the results concerning mag-

nitude and time behavior of social discount rates and the weight on future consumption

streams that have been mentioned earlier in this introduction. Chapter 4 explains the

cost benefit evaluation of a small project from different perspectives on discounting. In

chapter 4.1 I work out how good-specific discount rates have to be treated in the process

of evaluation and how the choice of numeraire affects the discount rate. The critique of

Arrow et al. (1995, 140) on Weitzman’s (1994) ‘environmental discount rate’ is taken

up and reviewed. Chapter 4.2 relates the social cost benefit analysis to a market based

evaluation. Finally, chapter 4.3 gives a brief summary of the results and the discussion
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in part I.

2.2 Social Discount Rates and Factors

This section derives social discount rates from the development of marginal utility over

time. It proves beneficial for later sections to do this by simultaneously introducing

social discount factors. I study the case of two (aggregate classes of) consumption goods,

however, the model is easily extended to N ∈ IN goods. The consumption quantities

of the two goods at time t are characterized by positive real numbers, denoted x1(t)

and x2(t). To simplify notation, the time argument will generally be omitted. With

xi : [0,∞) → IR I denote the consumption path for good i from the present t = 0 to

the infinite time horizon. x comprises the consumption paths of the two goods in vector

notation. Welfare is assumed to be representable in the form

U =

∞∫

0

U(x1(t), x2(t), t) dt . (2.1)

I call the function U(x1(t), x2(t), t) the (instantaneous) utility function and require it to

be twice differentiable. For a given consumption path x I write Ux(t) ≡ U(x1(t), x2(t), t).

The analogous notation applies to the derivatives of U . For notational convenience the x

will usually be dropped. I define the good specific social discount factor between time t0

and time t as the time propagator of marginal utility Dx
i (t, t0) for a given consumption

path x:

Dx
i (t, t0) ≡

∂U(x1,x2,t)
∂xi

|t
∂U(x1,x2,t)

∂xi
|t0

(2.2)

⇔
∂U(x1, x2, t)

∂xi

∣∣∣
t
≡ Dx

i (t, t0)
∂U(x1, x2, t)

∂xi

∣∣∣
t0

, i ∈ {1, 2} .

It captures the value development over time by relating the value of an additional unit

of consumption good xi at time t to the value of an additional unit at time t0. Note that

in a discrete time setting such discount factors Dx
i (t, t0) are used by Malinvaud (1974,

234).2

2In his general equilibrium setting Malinvaud calls them subjective discount factors as he consid-
ers heterogeneous agents. Looking at a social welfare framework, I call the Dx

i (t, t0) social discount
factors. Further below, I show that this wording is also appropriate in the sense that, for the one
commodity standard setting, the social discount factors give rise to rates that are known as social dis-
count rates. Obviously, the discount factors Dx

i (t, t0) are not the same as functions of time multiplied
to a time-independent instantaneous utility function (representing only pure time preference). Note
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To yield the discount rates that correspond to the social discount factors one can

immediately work out the relation

δi(t) = −
d
dt

Dx
i (t, t0)

Dx
i (t, t0)

= −
d
dt

∂U(x1,x2,t)
∂xi

∂U(x1,x2,t)
∂xi

= −

∂2U
∂t∂xi

(t) + ∂2U
∂x2

i

(t)ẋi + ∂2U
∂xj∂xi

(t)ẋj

∂U
∂xi

(t)

for i, j ∈ {1, 2} with i 6= j. However, I also want to offer a slightly more indirect

derivation, giving rise to an interesting perspective on the relationship between discount

rates and factors. For this purpose, I have a closer look at the infinitesimal discount

factor corresponding to the infinitesimal propagator of marginal utility:

Dx
i (t + dt, t) =

∂U
∂xi

(t + dt)
∂U
∂xi

(t)
= 1 +

∂U
∂xi

(t + dt) − ∂U
∂xi

(t)
∂U
∂xi

(t)

= 1 +

∂2U
∂t∂xi

(t) + ∂2U
∂x2

i

(t)ẋi + ∂2U
∂xj∂xi

(t)ẋj

∂U
∂xi

(t)
dt

≡ 1 − δi(x(t), ẋ(t), t) dt ≡ 1 − δi(t) dt

for i, j ∈ {1, 2} with i 6= j. The instantaneous change of Dx
i is completely characterized

by the term δi(t) ≡ δi(x(t), ẋ(t), t), which is the discount rate corresponding to Dx
i . In

physics (the negative of) δi(t) is called the generator of Dx
i as it describes – or from an

active point of view generates – the change of Dx
i .3 In the context of this study, δi(t) can

be understood as the (good-specific) generator of time development of marginal utility.

Therewith, δi(t) is the generator of value development for an additional unit of good xi

in the future.4 The finite time propagator follows from the infinitesimal one as derived

in Appendix A.1 yielding:

Dx
i (t, t0) = exp

(
−

∫ t

t0

δi(x(t′), ẋ(t′), t′) dt′
)

(2.3)

= exp



∫ t

t0

∂2U
∂t′∂xi

(t′) + ∂2U
∂x2

i

(t′)ẋi + ∂2U
∂xj∂xi

(t′)ẋj

∂U
∂xi

(t′)
dt′


 .

that the Dx
i (t, t0) can also be calculated if the pure time dependence of instantaneous utility is not

multiplicatively separable.

3Compare Sakurai (1985, 46 et sqq.,71 et sq.) or Goldstein (1980, chapter 9) for this view on
classical and quantum mechanics (e.g. momentum being the generator of translation). The minus
sign is introduced to meet the economic perspective of positively discounting instead of negatively
“upcounting”.

4Note that from a technical perspective the characterization of δi(t) as the generator of marginal
utility propagation is much less ambiguous than simply calling it “social” or “subjective” discount
factor (compare footnote 2).
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In models with a single (aggregate) consumption good, δi(t) is known as the (instan-

taneous) social rate of time preference or social discount rate. This stands out more

clearly if instantaneous utility is specified to the form usually applied in discount util-

ity models: U(x1, x2, t) = u(x1, x2)e
−ρt. For the moment, let me neglect the second

commodity by setting it constant.5 Then, the discount rate δ ≡ δ1 becomes

δ(t) = ρ −

∂2u
∂x2

1

∂u
∂x1

ẋ1 = ρ −
∂ ∂u

∂x1

∂x1

x1

∂u
∂x1

ẋ1

x1

= ρ + θ(x(t)) x̂1(x1(t),ẋ1(t)) . (2.4)

This expression for the social discount rate is well known in the literature, see for example

Arrow et al. (1995, 136) or Groom et al. (2005). The constant ρ is called the pure rate of

time preference. The term θ depicts the (absolute6 of the) elasticity of marginal utility of

consumption, which is the inverse of the intertemporal elasticity of substitution. Finally

x̂1 denotes the growth rate of the consumption commodity. Equation (2.4) states that

the value development of an additional unit of good xi is generated by the pure rate of

time preference as well as a term proportional to the growth rate of consumption and

the elasticity of marginal utility. To work out the intuition of the second term, assume

that consumption is growing over time. Then, an individual with a decreasing marginal

valuation of consumption will evaluate an additional unit of consumption in the future

less than in the present. Therefore, he discounts consumption at a higher rate than just

pure time preference. This effect is proportional to the growth rate and the measure

θ for the relative decrease in marginal valuation as overall consumption increases. In

most macroeconomic models the function u is assumed to exhibit constant elasticity

of intertemporal substitution (CIES). This assumption implies that in a steady state

the term θ x̂1 and, thus, the social discount rate δ̄ = ρ + θx̂1 is constant. A constant

rate of discount goes along with exponential discounting of future consumption, i.e. the

discount factor in equation (2.3) becomes Dx(t, t0) = e−δ̄t.

In general, the terms in equation (2.4) must not necessarily be constant. In fact, the

term θ x̂1 is also used to argue for hyperbolic discounting. A discount function is said to

be hyperbolic if it is characterized by a falling instantaneous discount rate (Laibson 1997,

450). Dasgupta (2001, 183 et sqq.) works out that in the face of global climate change, a

decline in consumption growth x̂1 would imply that social discount rates should fall over

time. It is immediate from equation (2.4) that this effect is proportional to the absolute

of the elasticity of marginal utility θ. In other words, a lower intertemporal elasticity of

5That is, x2 can be regarded as a fixed parameter of the utility function.

6As in the standard DU models diminishing but positive marginal utility in consumption is assumed,

the term −∂2u
∂x2

1

x1/
∂u
∂x1

= θ turns out to be positive.
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substitution (θ−1) intensifies the effect that a decline in growth induces decreasing social

discount rates and thus a relatively higher weight given to the future. I will come back

to this point at the end of the next chapter. Finally, Gollier (2002) works out conditions

under which a translation of equation (2.4) into a framework with uncertainty can lead

to a falling discount rate by the term θ x̂1. In the next chapter, I will analyze how

the explicit modeling of two commodity classes, which are limited in substitutability,

changes equation (2.4) and the weight given to future consumption. Such a weighing of

future consumption is an important concern of a sustainable development. Moreover,

when identifying the commodity classes x1 and x2 with environmental service streams

and produced consumption, the limitedness in substitution directly relates to the two

opposing concepts of weak and strong sustainability.
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Chapter 3

Sustainability and Limited

Substitutability

3.1 A Preference for Weak versus Strong

Sustainability

Concerning the environment-economy interaction there are two different paradigms of

sustainability. Both of them are carried by the broad definition of a sustainable de-

velopment as formulated in the report of the World Commission on Environment and

Development (Brundtland report) which defines that “sustainable development is de-

velopment that meets the needs of the present without compromising the ability of

future generations to meet their own needs” (WCED 1987). The paradigm of weak sus-

tainability translates this requirement into the demand that overall welfare should not

decline over time. To this end, advocates of the weak sustainability paradigm allow for

a substitution between man-made and environmental capital. The paradigm of strong

sustainability requires that the value (or the physical amount) of natural capital (or its

service flows) should be non-declining itself. The reason for the latter demand is that

the advocates of the strong sustainability paradigm do not believe in substitutability

between the different types of capital. Therefore, they translate the requirement of

not compromising future generations into the demand to individually maintain natural,

economic and social capital. While these three types of capital correspond to the differ-

ent dimensions of sustainability, natural capital is frequently broken down further into

different classes of capital corresponding to different service flows. Then, each of these

23



CHAPTER 3. SUSTAINABILITY AND LIMITED SUBSTITUTABILITY

classes is required to be non-declining by itself (either in physical terms or in value).

For an overview over the more detailed differences between weak and strong sustain-

ability as well as further differentiations of sustainability demands compare for example

Neumayer (1999) and van den Bergh & Hofkes (1998).

Traditionally the economic analysis of sustainability is mostly focused on capital and

its substitutability in production. However, as soon as one acknowledges that a per-

fect replication of natural capital and its service flows by man-made capital is not

possible, the evaluative aspect of weighing natural service flows against man-made ser-

vice flows gains in importance. Examples for non-substitutable environmental assets

pointed out by Pearce, Markandya & Barbier (1997, 37) include the ozone layer and its

UV-protection function, the climate-regulating functions of ocean phytoplankton, the

nutrient trap and pollution cleaning functions of wetlands and the watershed protection

functions of tropical rain-forests. Given such a non-substitutability, one either has to

adhere to an extreme notion of strong sustainability and leave the mentioned assets

untouched, or one has to allow for a trade-off and make the respective service flows

comparable to other service flows. For this purpose the substitutability of the different

service flows in welfare has to be specified. Note, that few people would claim that, for

example, the ozone layer as a whole can be replaced by man-made goods or services.

However, it can be argued for a substitutability at the (current) margin. For example,

sunscreen lotion or shelter under glass can protect from ultraviolet radiation and, thus,

‘replace’ a little of the stratospheric ozone. But, observe that such an argument already

involves the welfare judgment that taking a sun bath with or without sunscreen are

complete substitutes in consumption, or that a glass roof is a substitute to the open air.

While some might agree to such a statement, others will usually contradict. In particu-

lar, this disagreement over the substitutability between natural consumption and service

streams and its potential technical substitutes represents a difference in the preferences

between the advocates of the strong and the advocates of the weak sustainability con-

cept.

The importance of explicitly incorporating preferences concerning environmental ser-

vice flows and environmental quality into the analysis of a sustainable development is,

for example, pointed out by Pearce et al. (1997, 33). From a fairly comprehensive point

of view van den Bergh & Hofkes (1998, 14) summarize the motivation for the standpoint

of strong sustainability as “the recognition that natural resources are essential inputs in

economic production, consumption or welfare that cannot be substituted for by physical

or human capital, or the acknowledgement of environmental integrity rights in nature”.

Note that the latter ‘environmental integrity rights’ are often referred to as intrinsic
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values of nature. These values are generally regarded to be non-anthropocentric con-

cepts, based on moral, ethical or religious considerations.1 I will absorb them to the

degree possible into the neoclassical preference framework as a generalized (existence)

value of natural capital and its service flows. Explicitly, my model only considers ser-

vice and consumption flows (compare equation 2.1). An existence value attributed to a

particular capital at a certain point of time has to be captured as an ‘existence service

flow’ proportional to the amount of existing capital. Moreover, the words service flow,

consumption good and amenity stream will be used interchangeably.

Taking a non-perfect technical substitutability between natural and man-made capi-

tal as given, my analysis focuses on the limitedness in substitution between the corre-

sponding service flows in social welfare. Social welfare will be depicted by a constant

elasticity of substitution (CES) function which allows a straight forward analysis of dif-

ferent degrees of substitutability between the two aggregate classes of produced goods

and environmental services. I call the region in which welfare can be derived from con-

suming only either of the two commodity classes, the region of moderate limitedness in

substitutability and identify it with a weak sustainability preference. With these prefer-

ences, a mixture between the two classes of consumption and service flows is generally

preferred. However, it is possible that a decision maker agrees to a trade-off that de-

prives him completely of his natural capital and the according service flows. I refer to

the region in which it is not possible to derive welfare only from produced consumption

streams, as the region of strongly limited substitutability and identify it with the notion

of strong sustainability, calling it a strong sustainability preference.2 The extreme case

of a strong sustainability preference would correspond to a preference relation that does

not allow for any trade-off between the two classes of consumption. The extreme of

weak sustainability preference would limit to perfect substitutability in consumption

between produced and natural service flows. In between these two extremes there is a

wide range of parameters that correspond to more moderate standpoints.

A comparable translation of the two notions of sustainability into a preference or

welfare framework has been set out by Gerlagh & van der Zwaan (2002). Their analysis

focuses on the (infinitely) long run in a growth scenario where produced consumption

1I will not delve into the philosophical discussion about the meaning of a non-anthropocentric value
system. For a further discussion of a potential foundation and the difficulties going along with the
concept of intrinsic value and the construction of non-anthropocentric environmental ethics compare for
(different perspectives) Buchdahl & Raper (1998), Grey (1993) and most critical to the meaningfulness
of a non-anthropocentric ethics Lynch & Wells (1998).

2In the language of Dasgupta & Heal (1974, 4) for substitutability in production, such a functional
specification corresponds to, here a preference, where both inputs are essential.
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grows to infinity, while the flow of environmental goods is bounded. Against this back-

ground the authors distinguish between poor and perfect long-run substitutability by

a characteristic of the welfare function for an infinitely grown produced consumption

stream. It turns out that in the CES welfare characterization used in my setup, Gerlagh

& van der Zwaan’s (2002) distinction between poor and perfect long-run substitutability

and my distinction between the regions of strongly and of moderately limited substi-

tutability coincide (Gerlagh & van der Zwaan 2002, 335). Therefore, Gerlagh & van der

Zwaan’s (2002) mapping of the notions of weak versus strong sustainability into the

welfare specification matches my notions of weak and strong sustainability preference.

The next section analyzes how these notions of weak versus strong sustainability prefer-

ence are reflected in the social discount rates, in a scenario where produced consumption

grows at a faster rate than the consumption of environmental service streams. Particular

attention is paid to the question of weighing the long versus the short run.

3.2 Limited Substitutability in Consumption and

Social Discount Rates

Returning to the model set out in equations (2.1-2.3) the ‘commodity’ x1 is now inter-

preted as a flow of environmental goods and services while x2 is representing an aggre-

gate of produced consumption. Moreover, I assume an exponential time dependence of

instantaneous utility yielding U(x1, x2, t) = u(x1, x2)e
−ρt. This functional form corre-

sponds to a constant rate of pure time preference ρ and implies time consistency of the

planning functional (2.1). In such a multicommodity setting equation (2.4) generalizes,

and the discount rate corresponding to the social discount factor Dx
1 (t, t0) becomes

δ1(t) = ρ −

∂2u
∂x2

1

∂u
∂x1

ẋ1 −
∂2u

∂x1∂x2

∂u
∂x1

ẋ2 . (3.1)

It comprises an additional term that depends on the substitutability3 ∂2u
∂x1∂x2

between

the two classes of goods.4 To work out the influence of substitutability in welfare on

the social discount rate and its evolvement over time, I take instantaneous utility to

be of the functional form u(x1, x2) = [a1u1(x1)
s + a2u2(x2)

s]1/s with s ∈ IR, a1, a2 ∈

3See Coto-Millán (1999, 21) for different ways of defining substitutability of consumption goods.
Hereafter I will go over to a functional form that directly parametrizes substitutability.

4Note that equation (3.1) has independently been derived by Weikard & Zhu (2005) who also com-
ment on the magnitude effects (see below) but do not analyze time behavior of the discount rates.
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IR++, a1 + a2 = 1 and u1, u2 ≥ 0.5 This step furthers understanding as it separates

good-specific utility ui(xi) from substitutability effects parameterized in a simple form

by s. As derived in appendix A.1, for such a welfare specification the social discount

rate for the environmental service stream becomes

δ1(t) = ρ −

∂2u1

∂x2
1

∂u1

∂x1

ẋ1 − (1−s)
a2u2(x2)

s

a1u1(x1)s + a2u2(x2)s

(
∂u2

∂x2
(x2)

u2(x2)
ẋ2 −

∂u1

∂x1
(x1)

u1(x1)
ẋ1

)
. (3.2)

The first and the second term in equation (3.2) resemble the widely used equation

(2.4). In the following I want to examine the additional third term that depends on

the substitutability parameter s. With this objective in mind, I simplify the utility

function by setting u1(x1) = x1 and u2(x2) = x2, which leads to the standard CES

utility function u(x1, x2) = [a1x
s
1 + a2x

s
2]

1/s.6 Thereby, I eliminate in equation (3.2) the

well studied second term and simplify the third without changing its dependence on the

substitutability parameter s. This step leads to the discount rate:

δ1(t) = ρ − (1 − s)
a2x

s
2

a1xs
1 + a2xs

2︸ ︷︷ ︸
≡ Vsp s(x1, x2)

(x̂2 − x̂1) . (3.3)

The first determinant in the social discount rate for the environmental service stream in

equation (3.3) is the pure rate of time preference ρ. It is reduced by a second term which

comprises three different components. The first component (1− s) is a measure for the

limitedness in substitutability between the two classes of goods. The second component

depicts the value share of the produced consumption stream:

Vsp s(x1, x2) =
∂u
∂x2

x2

∂u
∂x1

x1 + ∂u
∂x2

x2

=
a2x

s
2

a1xs
1 + a2xs

2

. (3.4)

It depends on the ratio x1

x2
between the environmental services and the produced goods

consumed,7 the utility weights a1 and a2 and the substitutability parameter s. The last

component in equation (3.3) characterizes the relative growth overweight of the produced

5IR++ denotes the strictly positive real numbers. For s = 0 the function is defined by the limit s → 0
yielding u(x1, x2) = u1(x1)

a1u2(x2)
a2 . For s → −∞,∞ the limit functions are min{u1(x1), u2(x2)} and

max{u1(x1), u2(x2)} respectively. ui ≥ 0 stands for ui(xi) ≥ 0 for all xi ∈ IR+.

6CES functions exhibit a constant elasticity of substitution σ that relates to s by the formula
σ = 1

1−s . For its derivation see Arrow, Chenery, Minhas & Solow (1961). Observe that CES functions
are homogeneous of degree one. Thus, proportional overall growth does not change marginal utility as
it follows that the latter is homogeneous of degree zero in consumption. This explains why the chosen
functional form is so well suited to focus on the new effect due to relative difference in growth, filtering
out the overall growth effect extensively discussed in the literature in connection with equation (2.4).

7This is easily observed by multiplying the nominator and denominator on the right hand side of
equation (3.4) with x−s

2 .
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consumption stream with respect to the environmental service stream. Altogether the

second term on the right hand side of equation (3.3) can be summarized as follows. The

relative growth overweight in produced consumption is weighted with the value share

of produced consumption. This expression is then weighted with the limitedness in

substitutability between produced and environmental amenity streams and subtracted

from the pure rate of time preference. A closer analysis of the expression for different

degrees of substitutability will be the object of investigation of the next section.

Before, however, let me derive the analogous social discount rate for produced con-

sumption and service streams. It is easily arrived at by switching the indices in equa-

tion (3.3):

δ2(t) = ρ − (1 − s)
a1x

s
1

a2xs
2 + a1xs

1︸ ︷︷ ︸
≡ Vse s(x1, x2)

(x̂1 − x̂2) . (3.5)

The interpretation is analogous to that of equation (3.3). This time the growth over-

weight of the environmental service stream is weighted with the value share of the

environmental services

Vse s(x1, x2) =
∂u1

∂x1
x1

∂u1

∂x1
x1 + ∂u2

∂x2
x2

=
a1x

s
1

a1xs
1 + a2xs

2

.

The resulting expression is again weighted with the limitedness in substitutability be-

tween produced and environmental consumption and then subtracted from the pure rate

of time preference. In the next section I analyze a scenario where the environmental

amenity and service streams grow at a slower rate than produced consumption. Antici-

pating such a growth overweight on the part of produced consumption, let me rearrange

equation (3.5) to the form

δ2(t) = ρ + (1 − s) Vse s(x1, x2) (x̂2 − x̂1) . (3.6)

3.3 Social Discount Rates in a Stylized Growth

Scenario

In the following, I want to analyze how the weights for future consumption evolve in a

scenario where produced consumption grows at a faster rate than consumption of envi-

ronmental services. The underlying assumption is that technological progress increases

the availability of produced consumption at a faster rate than the availability of environ-

mental service and amenity streams can be increased. In fact, when thinking about the
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essential life-support services that most advocates of a notion of strong sustainability are

concerned about, like for example climate regulation functions (compare section 3.1), it

is hard to think about a long-term positive growth rate of environmental services at all.

When thinking about simpler environmental consumption goods like defined in Fisher

& Krutilla (1975, 360) as goods that are “generally consumed on site, with little or no

transformation by ordinary productive processes”, like for example scenic views, then

by definition these goods are not or little affected be technological progress in produc-

tion.8 The appreciation of biodiversity and its existence value is another example where

the growth rate of the corresponding existence service flow is negative and a serious

growth within a human planning horizon is hard to imagine. Against this background

I introduce the following

Assumption 1: The growth rate of produced consumption and services is higher than

the growth rate of environmental amenity streams and services, that is x̂2(t) >

x̂1(t) ∀ t.

The assumption allows of course for a decline in environmental goods and services. It

also allows for a scenario, which is sometimes put forth in relation to climate change,

where production and environment decline together, as long as environmental service

flows decline at a higher rate.

Under this stylized growth assumption, I want to analyze how different specifications

of the limitedness in substitutability in welfare, between the two classes of goods and

services, affects the weights given to future consumption. Hereby I want to focus on the

effect that stems from the interplay of the difference in growth rates and the limitedness

in substitutability. As I have worked out in section 3.2, a simple welfare function serving

this purpose is the following.

Assumption 2: Welfare is representable in the functional form

U =
∞∫
0

[a1x
s
1 + a2x

s
2]

1/se−ρt dt with a1, a2 ∈ IR++, a1 + a2 = 1 and s ∈ IR, s ≤ 1.9

As elaborated in the preceding section this specification of welfare disregards the in-

fluence of an even overall growth (or decline) on the social discount rates and focuses

on the substitutability effect. I added the assumption that the substitutability param-

eter s should be smaller or equal to one. The range s ∈ (1,∞) corresponds to the

8One can think of several cases, where technological progress helps accessing or enjoying environmen-
tal goods. However, such a complementarity between produced and environmental goods and services
is captured in the welfare function, i.e. in the parameter s.

9For s = 0 the integrand is defined by limit, yielding the well known Cobb-Douglas specification:
lims→0[a1x

s
1 + a2x

s
2]

1/s = xa1

1 xa2

2 (Arrow et al. 1961, 231).
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assumption that environmental and produced services are ‘more than perfect substi-

tutes’ in the sense that extreme choices tending towards the consumption of only one of

the two consumption streams are generally preferred to mixtures. Such an assumption

would neither seem reasonable when analyzing environmental and produced consump-

tion and service streams, nor would it correspond to any notion of sustainability. In

the following, I analyze one after another the scenarios corresponding to s = 1 (perfect

substitutability), s = 0 (Cobb-Douglas preferences), s ∈ (0, 1) (moderate limitedness in

substitutability) and s < 0 (strong limitedness in substitutability).

The interpretation of the social discount rates derived for these different welfare spec-

ifications is the following. I take as given an underlying growth scenario that satisfies

assumption 1. A decision-maker or social planner is asked to evaluate a small project

that affects environmental service streams and produced consumption streams over some

period of time. Then, the social discount rates and factors specify the weight that a

planner, subscribing to a particular welfare specification, gives to the corresponding fu-

ture consumption streams. In particular, I will be interested in the time development

of these weights and the differentiation between the scenarios of moderate and strong

limitedness in substitutability that I identified with the notions of weak versus strong

sustainability in section 3.1. A formal setup of such a small project evaluation is given

in chapter 4.10

The case of perfect substitutability in consumption between environmental service

flows and produced consumption corresponds to the substitutability parameter s = 1. It

implies additivity in welfare between the different classes of goods u(x1, x2) = a1x1+a2x2

and an elasticity of substitution σ = 1
1−s

that is infinite. As there is no limitedness in

substitutability (1−s = 0), equations (3.3) and (3.6) show that the social discount rates

for both classes of goods coincide with the pure rate of time preference: δ1 = δ2 = ρ.

Note that this result holds by construction (and reduction) of the welfare function

carried out in section 3.2 to focus on the substitutability effect and disregard other

growth effects.

The next preference specification that I want to analyze corresponds to the widely

used Cobb-Douglas welfare function u(x1, x2) = xa1
1 xa2

2 which is implied by s = 0

(Arrow et al. 1961, 231). This welfare specification lies at the border between the

regions identified with the notion of weak and strong sustainability. For such a welfare

specification the elasticity of substitution σ = 1
1−s

equals unity. The value share of the

environmental service stream Vse s=0 corresponds to its utility weight a1 and the value

10Smallness of the project means that the changes brought about by the project do not affect the
overall growth scenario.
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share of the produced consumption stream corresponds to Vsp s=0 = a2. Therefore, the

social discount rates corresponding to equations (3.3) and (3.6) become

δ1(t) = ρ − a2 (x̂2 − x̂1) and (3.7)

δ2(t) = ρ + a1 (x̂2 − x̂1) . (3.8)

The social discount rate for the environmental service flow is reduced by a term propor-

tional to the difference in the growth rates and to the (relative11) utility-weight given to

produced consumption. In a steady state the terms in equation (3.7) are constant and

therefore discounting of the environmental good stays exponential with a lower discount

rate. The social discount rate for produced consumption is also constant in a steady

state. However, it is augmented by a term proportional to the difference in growth rate

and to the (relative) utility-weight given to environmental amenities and services. These

results are summarized in

Proposition 1: Let assumptions 1 and 2 hold with s = 0.

Then the social discount rates are given by equations (3.7) and (3.8).

The social discount rate for the environmental service stream receives a mark down

proportional to the difference in growth rates and the utility weight given to the

produced consumption stream. The social discount rate for the produced consump-

tion stream receives a mark up proportional to the difference in growth rates and

the utility weight given to the environmental consumption stream. In a steady

state both social discount rates are constant.

The intuition is straight forward. The slower growing environmental consumption good

becomes relatively more scarce as time evolves. Therefore, the social discount rate,

expressing its value development over time, gets a mark down corresponding to a higher

weight given to future environmental service streams. On the other hand, the produced

good becomes more abundant in relative terms and, therefore, its social discount rate

receives a mark up. The fact that the mark up/down of the goods is proportional to the

value share corresponding to the utility weight given to the other consumption good,

is best understood by considering the situation where the other good receives a (close

to) zero utility weight. Then the evaluation of the first good should not (or very little)

depend on the evolvement of the second consumption stream. Therefore, as the utility

weight given to a good goes to zero, it should be the social discount rate of the other

good that is not affected anymore by limitedness in substitutability.

After these two rather specific parameter constellations where s ∈ {0, 1}, I turn to

11Note that a2 = a2

a1+a2

as a1 + a2 = 1.
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the range where the substitutability parameter lies anywhere in between, i.e. 0 < s < 1.

This case goes along with substitution elasticities between one and infinity. As mo-

tivated in section 3.1 I call this parameter range a region of moderate limitedness

in substitutability because utility can be gained by consuming only one class of ser-

vice streams, but mixtures are preferred. Connecting to the sustainability debate, I

have identified these preferences with the notion of weak sustainability, as - with

such a welfare specification - there is no a priory limit for substituting nature by an

increase in production. Analyzing the social discount rate for the environmental good,

equation (3.3) shows that again a positive term is deducted from the pure rate of time

preference. However, as I show in the proof of proposition 2, the term Vsp s in the mark

down is monotonously increasing over time. On the other hand, the social discount rate

for the produced consumption stream still gets a mark up (equation 3.6). However, the

term Vse s in the mark up is strictly decreasing over time.

Proposition 2: Let assumptions 1 and 2 hold with s ∈ (0, 1). Then the social discount

rates are given by equations (3.3) and (3.6).

The social discount rate for the environmental service stream receives a mark down

proportional to the difference in growth rates, the value share of the produced con-

sumption stream and the limitedness in substitutability expressed by (1 − s).

The social discount rate for the produced consumption stream receives a mark up

proportional to the difference in growth rates, the value share given to the envi-

ronmental consumption stream and the limitedness in substitutability expressed

by (1 − s).

In a steady state, both social discount rates fall over time to lim
t→∞

δ1 = ρ −

(1 − s)(x̂2 − x̂1) and lim
t→∞

δ2 = ρ and discounting is hyperbolic.

I show more generally in the proof of proposition 1 that the existence of ǫ > 0 and

t∗ ∈ [0,∞) with x̂1(t) < x̂2(t) − ǫ for all t ≥ t∗ is enough to ensure that in the long run

the discount rates approach the form δ1(t) = ρ − (1 − s) (x̂2(t) − x̂1(t)) and δ2(t) = ρ.

However, outside of a steady state a strong fluctuation in the difference in growth rates

can bring about a time period in which either of the discount rates is constant or

increasing. Observe furthermore that the discount rate for the environmental service

stream x1 will eventually grow negative if there exists t∗ such that (1−s)(x̂2(t)−x̂1(t)) >

ρ ∀ t > t∗. That is, if the difference in the growth rates between the two classes of

services, weighted with the limitedness in substitutability, dominates the rate of pure

time preference ρ.12

12Observe that this relation determines only the instantaneous discount rate. In addition it is also
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To interpret the result let me first compare it to the result of proposition 1. The two

social discount rates still receive a comparable mark up/down which is proportional to

the difference in growth rates. I first have a closer look at the social discount rate for the

environmental service stream. In proposition 2, the effect on δ1, triggered by the growth

overweight of the produced consumption stream, is no longer simply proportional to

the utility weight given to the produced consumption stream. It is weighted with the

value share of the produced consumption stream and the limitedness in substitutability.

The limitedness in substitutability happened to be one in proposition 1. Moreover, the

Cobb-Douglas specification of welfare in proposition 1 has the unique feature that the

value share of a commodity xi corresponds to its utility weight ai independent of the

consumption levels. In general however, the value share Vsp s, which is weighing the

importance of the growth overweight of produced consumption for the evaluation of the

environmental service stream, depends on the consumption levels. Due to the relative

increase of produced consumption this value share grows over time. The higher it gets,

the more attention is paid in δ1 to an increasing relative scarcity with respect to the

produced consumption stream. This increasing attention to the relative scarcity causes

the social discount rate to decline and the weight given to future environmental services

to increase over time (as compared to a scenario with perfect substitutability or no

change in relative scarcity). Moreover, such a relative scarcity is only important to the

degree that the two classes of goods are limited in substitutability. A similar reasoning

holds true for the social discount rate of the produced consumption stream. Here the

growth ‘overweight’ of the other commodity is negative resulting in a mark up of the

discount rate. As the value share of the environmental good Vse s declines, the attention

payed to such a mark up in the social discount rate for the produced consumption stream

falls over time. Therefore, the discount rate of the produced consumption stream is

declining as well.

Finally, let me turn to the welfare evaluation that goes along with a substitutability

parameter s < 0. This parameter range corresponds to an elasticity of substitution

smaller than unity. As I have motivated in section 3.1, I call such a parameter range a

region of strong limitedness in substitutability, because welfare cannot be gained

by consuming only one of the two classes of service streams. In connection with the

sustainability discussion, I identified these preferences with the notion of strong sus-

tainability as they impose a limit on substituting nature by an increase in production.

Analyzing the social discount rate for the environmental service stream, equation (3.3)

shows that, like in the other examined scenarios, a positive term is deducted from the

possible that the social discount factor Dx
i (t, t0) grows bigger than 1.
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pure rate of time preference. However, as I show in the proof of proposition 3, the term

Vsp s is now declining over time. On the other hand, the social discount rate for the

produced consumption stream still gets a mark up (equation 3.6). However, the term

Vse s in the mark up now is strictly increasing over time.

Proposition 3: Let assumptions 1 and 2 hold with s < 0. Then the social discount

rates are given by equations (3.3) and (3.6).

The social discount rate for the environmental service stream receives a mark down

proportional to the difference in growth rates, the value share of the produced con-

sumption stream and the limitedness in substitutability expressed by (1 − s).

The social discount rate for the produced consumption stream receives a mark up

proportional to the difference in growth rates, the value share given to the envi-

ronmental consumption stream and the limitedness in substitutability expressed

by (1 − s).

In a steady state, both social discount rates grow over time to lim
t→∞

δ1 = ρ and

lim
t→∞

δ2 = ρ + (1 − s)(x̂2 − x̂1).

The first part of the proposition is equivalent to that of proposition 2. The interesting

difference is, however, the evolvement of the optimal social discount rates over time.

Recall that the the two scenarios analyzed in propositions 2 and 3 only differ in the

assumption about the substitutability between environmental service streams and man-

made service and consumption streams. Proposition 2 considers the case where there is

moderate limitedness in substitutability, corresponding to a notion of weak sustainabil-

ity, and yields that optimal social discount rates should be falling over time. Proposition

3 considers the case where there is strong limitedness in substitutability, correspond-

ing to the notion of strong sustainability, and yields that optimal social discount rates

should be growing over time. This result is rather surprising as the usual intuition as

expressed for example in Groom et al.’s (2005, 2) survey on declining discount rates

is that “It is immediately obvious that using a declining discount rate would make

an important contribution towards meeting the goal of sustainable development” and

Pezzey (2006) even defines sustainable discount rates as falling discount rates. Now the

preferences underlying proposition 3 relate to a stronger concept of sustainability than

those of proposition 2. Nevertheless, it is proposition 3 that brings about optimal social

discount rates that increase over time. Even more surprisingly might be the following

result which is an immediate consequence of the steady state results of propositions 2

and 3.

Proposition 4: Evaluating the social discount rates for a given growth scenario under
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the assumptions 1 and 2 the following assertion holds.

In a steady state, the long-term social discount rates corresponding to a strong

sustainability preference (s < 0) are higher than those implied by a weak sustain-

ability preference (0 < s < 1). That is, lim
t→∞

δs<0
i (t) > lim

t→∞
δ0<s<1
i (t) for i ∈ {1, 2}.

For a similar statement without a steady state, assume the existence of ǫ > 0 and

t∗ ∈ [0,∞) such that x̂1(t) < x̂2(t) − ǫ for all t ≥ t∗. Then, there exists t̄ ∈ [0,∞)

such that δs<0
i (t) > δ0<s<1

i (t) for all t > t̄ and i ∈ {1, 2}.

A numerical example for the time evolvement of the social discount rates for the two

different scenarios is drawn in figure 3.1. In the left diagram the substitutability param-

eter is chosen to be s = .5 corresponding to moderate limitedness in substitutability and

a weak sustainability preference. In the right diagram the substitutability parameter is

chosen to be s = −.5 corresponding to strong limitedness in substitutability and a strong

sustainability preference. The other parameters are chosen equally for both scenarios

as ρ = 3%, x̂2 − x̂1 = 2.5% and a1 = a2 = .5.13 As the model is constructed to only

depend on the relative growth difference, this scenario depicts equally well a situation

where both growth rates of consumption are positive (e.g. x̂2 = 3% and x̂1 = .5%),

a scenario where produced consumption grows and environmental services decline (e.g.

x̂2 = 1.5% and x̂2 = −1%), or one where both forms of cosumptions are subject to

a decrease over time. The mark up/down as well as the time behavior pointed out in

propositions 2 and 3 is clearly observable. Moreover, after t = 88 years, the (instanta-

neous) discount rate for the environmental service stream grows bigger for the strong

sustainability scenario than for the weak sustainability scenario. Note that this does not

immediately imply that the weight given to the environmental service stream is lower

with a strong sustainability preference. As derived in chapter 2.2, the evaluation of an

extra unit of environmental services is captured by the corresponding discount factor

(the propagator of marginal utility). For the same scenario specifications as in figure 3.1

I have depicted the corresponding discount factors in figure 3.2. This picture seems to

go along better with the intuition that under a stronger sustainability preference future

environmental service streams should receive a higher weight. The reason is found in

equation (2.3). A discount factor relates to the rate by Dx
i (t, t0) = e

−
R t

t0
δi(x(t′),ẋ(t′),t′)dt′

.

Hence, a small discount rate at the beginning is ‘memorized’ in the discount factor for

all times and, therefore, raises the weight given to the future not only at early times,

but also in the long run. However, if the dominance of the discount rate in the strong

sustainability scenario keeps up long enough (which is guaranteed by propositions 2

and 3) the discount factors in the strong sustainability scenario will fall below that of

13The initial values in the example are x1(0) = x2(0) = 1.
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Figure 3.1 : Numerical example for the time development of social discount rates over
time in years. The upper line represents the social discount rate for the produced
consumption stream, the lower line represents the discount rate for the environmental
service stream. The dashed line reflects the pure rate of time preference, corresponding
to the common discount rate if perfect substitutability in consumption is assumed. In
the left diagram the substitutability parameter is chosen to be s = .5, on the right it is
s = −.5. The other parameters coincide for both scenarios and are ρ = 3%, x̂2 − x̂1 =
2.5% and a1 = a2 = .5.

the weak sustainability scenario and, thus, give a lower weight to future environmental

service streams. In the depicted scenario this would be observed after t = 195 years

and, sooner or later, it will happen under all parameter specifications as is assured by

the following proposition.

Proposition 5: Evaluating the social discount rates for a given growth scenario under

the assumptions 1 and 2 the following assertion holds.

Assume the existence of ǫ > 0 and t∗ ∈ [0,∞) such that x̂1(t) < x̂2(t) − ǫ

for all t ≥ t∗. Then for any t0 ∈ [0,∞) there exists t̄ ∈ [0,∞) such that

Dx
i

s<0
(t, t0) < Dx

i
0<s<1

(t, t0) for all t > t̄ and i ∈ {1, 2}.

This result clearly counteracts the intuition that environmental goods, which in relative

terms become increasingly scarce over time, should be valued higher in the long term,

in a setting with strong sustainability preferences and strongly limited substitutability,

than in a setting with weak sustainability preference and only moderate limitedness in

substitutability.

As discussed in connection with proposition 2 the reason for the time development

of the social discount rates is found in the development of the value share. Therefore,

the latter should also be the key to understand the supposed puzzle that a strong sus-

tainability decision-maker gives less weight on a long-run environmental service stream
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Figure 3.2 : Numerical example continued (same specifications as for figure 3.1). Drawn
are the social discount factors for the environmental (upper line) and the produced
(lower line) good. The dashed line reflects exponential discounting corresponding to the
pure rate of time preference.

than does a weak-sustainability decision-maker.14 The answer to the puzzle turns out to

be closely related to an observation by Gerlagh & van der Zwaan (2002). The authors

find in a similar stylized growth scenario that under strong limitedness in substitutabil-

ity between the two classes of commodities, the value share of man-made consumption

goes to zero in the long run. While Gerlagh & van der Zwaan (2002) assume that pro-

duced consumption grows over all bounds whereas environmental service streams are

bounded, I can show in my setup that this proposition holds true also if consumption

in both goods grows without bounds but the produced consumption stream grows at a

faster rate (compare proof of proposition 3). The same reasoning holds if both growth

rates decline, but the environmental service stream declines at a faster rate. Figure 3.3

depicts how the value share of the produced consumption stream evolves in the sce-

nario underlying figures 3.1 and 3.2. One can clearly observe how the value share of

produced consumption grows for a weak sustainability scenario and falls for a strong

sustainability scenario. Only for the specification at the border between the two differ-

ent regions where s = 0 the value share stays constant over time (corresponding to the

Cobb-Douglas evaluation of proposition 1).

By definition, the value share is a combination of the amount consumed of a con-

sumption stream and its evaluation. In the stylized growth scenario analyzed in this

section, the environmental service stream grows relatively scarce over time while pro-

duced consumption becomes relatively more abundant. At the same time the limited-

14This holds as long as the only difference between their preference specifications is the degree of
substitutability between the man-made and environmental goods and service flows.
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Figure 3.3 : Numerical example continued (same specifications as for figure 3.1). Drawn
is the value share of the produced consumption stream. The thick lines correspond to
the substitutability parameters used for the weak and strong sustainability preference
scenario drawn in figures 3.1 and 3.2.

ness in substitutability causes a unit of environmental services to be increasingly more

valuable than a unit of produced consumption. In the weak sustainability preference

scenario (moderate limitedness in substitutability), the (relative) physical scarcity of

the environmental service stream dominates, and the value share of the environmen-

tal service stream declines, while the value share of the produced consumption stream

grows. Limited substitutability and relative scarcity with respect to a consumption

stream that increasingly dominates the value share of welfare, causes the discount rate

for the environmental service stream to decline.

However, with a strong sustainability preference, corresponding to strong limitedness

in substitutability, the increase in unit value dominates the (relative) physical scarcity

in determining the value share of the environmental service stream. Therefore not

only a unit of environmental service grows more valuable over time, but also the total

amount of environmental services consumed grows more valuable than the total amount

of produced goods consumed. In consequence, as the value share of the produced con-

sumption stream declines to zero, less and less attention is paid in the social discount
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3.3. SOCIAL DISCOUNT RATES IN A STYLIZED GROWTH SCENARIO

rate for the environmental service stream to the limited substitutability with respect

to a consumption stream that grows increasingly unimportant for welfare. This effect

is best understood when considering the extreme of a strong sustainability preference.

For s → −∞ the evaluation functional converges to U =
∫∞

0
min{x1, x2}e

−ρt dt. Once

the economy is scarcer in environmental service flows than in produced consumption,

a decision-maker with these preferences will only pay attention to the environmental

service streams. Therefore the time development of his evaluation of an extra unit of

environmental services is solely generated by the pure rate of time preference (δ1 = ρ).

For such a decision maker an increase in relative scarcity of the environmental amenity

stream with respect to produced consumption is of no importance (as soon as the critical

level x1 = x2 has been exceeded). With a growing relative scarcity of the environmental

services and a declining value share of the produced services, the other preference spec-

ifications in the strong sustainability domain converge towards a similar evaluation. It

implies that less attention is paid to the increase in relative scarcity and lim
t→∞

δ1 = ρ.

The focus of my analysis has been the time development of the weight given to future

consumption streams. Let me point out that social discount rates for the different sce-

narios at a given point of time reflect well the different concepts of sustainability. At any

given point of time, the difference in evaluation between an extra unit of environmental

services and an extra unit of produced consumption increases in the relative scarcity of

the environmental service as well as in the limitedness in substitutability. This fact is

easily observed by taking the difference between equations (3.6) and (3.3) yielding

δ2(t) − δ1(t) = (1 − s) (x̂2(t) − x̂1(t)) . (3.9)

This difference in social discount rates in equation (3.9) generates a relative difference

in weights given to the consumption streams corresponding to

Dx
1 (t, t0)

Dx
2 (t, t0)

= exp

(
−

∫ t

t0

δ1(t
′) − δ2(t

′) dt′
)

= exp

(∫ t

t0

(1 − s) (x̂2(t
′) − x̂1(t

′)) dt′
)

. (3.10)

A stronger notion of sustainability corresponds to a higher limitedness in substitutability

(1 − s) in the welfare function. As equations (3.9) and (3.10) show, such an increase in

(1−s) implies also an increase in the weight given to environmental services as opposed

to produced consumption. Moreover, this difference is monotonously growing over time

as relative scarcity of the environmental service stream increases. Such a relation reflects

well the intuition behind associating the strength of the notion of sustainability with

the limitedness of substitutability in the corresponding welfare function.
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However, what I have shown in this section, is that a differentiation between a weak

and a strong notion of sustainability through an according parametrization of the substi-

tutability between environmental services and produced consumption streams in the wel-

fare function, implies at the same time that a stronger notion of sustainability results in a

reduction of the weight given to the future as opposed to the present. Whenever environ-

mental services or both consumption streams are declining over time (x̂1 < min{x̂2, 0}),

such a reduced attention paid to future service and consumption streams seems to oppose

the fundamental objective of a sustainable development as expressed in the Brundtland

report (compare section 3.1). I want to offer two different perspectives on the derived

relationship between the limitedness in substitutability and the accounting weights for

the future in the face of the different notions of sustainability.

The first perspective is that, in the analyzed growth scenario, any parameter constel-

lation corresponding to s < 1 gives more weight to future environmental services than

a welfare function assuming perfect substitutability (which does not pay attention at

all to an increase in relative scarcity). Giving a relatively higher weight to the scarcer

environmental goods comes at the cost of shifting weight from the future environmen-

tal services to the present environmental services.15 The notions of strong versus weak

sustainability only relate to the substitutability between the different classes of goods

and services. When concerned with intertemporal comparisons in a growth scenario as

analyzed in this section, applying a weak sustainability preference for project evalua-

tion corresponds to a stronger sustainability demand in the sense that a higher weight

is given to long-run future consumption and service streams. The second perspective

is that a difference between a weak and a strong notion of sustainability should not

only be mapped into a different degree of substitutability between the two classes of

goods. It can simultaneously be required that a stronger notion of sustainability should

go along with a decrease in intertemporal substitutability. As discussed in connection

to equation (2.4) on page 20, a decrease in intertemporal substitutability goes along

with an increase in weight given to future consumption streams, whenever growth is

declining, and can counteract the effect analyzed above.

15Note that this is despite the fact that absolute scarcity and relative scarcity of the environmental
service stream increases over time for x̂1 < min{x̂2, 0}.
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Chapter 4

Discounting and Project Evaluation

4.1 Social Discounting in a Cost Benefit Analysis

of a Small Project

In this chapter, I elaborate how the social discount rates and factors derived in the

previous chapters have to be applied in the evaluation of a small project. This section

presents and relates different views on the social discounting and pricing of costs and

benefits. In section 4.2, I relate such a social cost benefit analysis to an evaluation in

an (imaginary) market system. The project analyzed in this chapter is characterized

as a small change ∆x of a consumption plan x0. Exercising the project yields a new

consumption and service stream x=x0 + ∆x with xi = x0
i (t) + ∆xi(t), i ∈ {1, 2}, t ∈

[0, T ]. At each point of time ∆xi(t) should be small as compared to xi(t) so that I

can expand U(x1(t) + ∆x1(t), x2(t) + ∆x2(t), t) first order in the ∆xi(t) (small project

assumption). Then, the welfare of the new consumption path can be written as

U =

T∫

0

U(x0
1(t) + ∆x1(t), x

0
2(t) + ∆x2(t), t) dt

=

T∫

0

U(x0
1(t), x

0
2(t), t) +

∂U

∂x1

(t)∆x1(t) +
∂U

∂x2

(t)∆x2(t) + O(∆x(t)2) dt

= U 0 +

T∫

0

∂U

∂x1

(t)∆x1(t) +
∂U

∂x2

(t)∆x2(t) + O(∆x(t)2) dt , (4.1)
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where the marginal utilities are evaluated along x0. Equation (4.1) states that neglecting

terms of second order in ∆x, the project raises welfare, if and only if,
T∫

0

∂U

∂x1

(t)∆x1(t) +
∂U

∂x2

(t)∆x2(t) dt > 0 . (4.2)

The integral represents a cost benefit functional in continuous time with valuation de-

rived from the social welfare objective given in equation (2.1). If the path x0 is optimal,

all feasible projects ∆x should yield an evaluation smaller or equal to zero. In the follow-

ing, I derive different perspectives on how to evaluate whether a particular project can

increase welfare, and relate them to the results of the preceding chapter. Before doing

so, let me assume that at a reference time t0 there exist prices p1(t0) and p2(t0) fulfilling
p1(t0)
p2(t0)

=
∂U
∂x1

(t0)

∂U
∂x2

(t0)
. In general t0 will be the present (t0 = 0) and prices p1(t0) = p1(0) and

p2(t0) = p2(0) are either market prices, if present markets exist, or, more likely for the

environmental service streams, they are prices derived from direct and indirect methods

of evaluation, like for example contingent valuation or hedonic price studies (see e.g.

Hanley, Shogren & White 1997, 383 et sqq., or Mäler & Vincent 2005). In equation (4.2)

time specific marginal utilities are used to evaluate the changes in x1 and x2 at every

point of time. By relating the marginal utilities in equation (4.2) for different points of

time with the help of equation (2.2), I arrive at the perspective of social discounting as

it was adopted in the previous chapters. Together with the above relation for prices at

t0 I obtain the form
T∫

0

Dx0

1 (t, t0)p1(t0)∆x1(t) + Dx0

2 (t, t0)p2(t0)∆x2(t) dt > 0 . (4.3)

Equation (4.3) takes the prices at t0, usually the present, to determine the relative value

of x1 and x2 at t0 and propagates both prices over time by means of the marginal utility

propagators Dx
1 (t, t0) and Dx

2 (t, t0) respectively. The prices Dx
i (t, t0) pi(t0) could be

referred to as social accounting prices.1 Another interpretation is to take the factors

Dx
i (t, t0) as good–specific social discount factors. This view corresponds to the analysis

of chapters 2 and 3. Applying equation (4.3) to the growth scenario in section 3.3 with

a weak sustainability preference would imply a marked up and falling discount rate for

the produced consumption stream x2 and marked down and falling discount rate for the

environmental service stream. It is important to be aware that either one can argue that

prices of the environmental service stream rise due to its increasing relative scarcity, or

1Note that these prices Dx
i (t, t0) pi(t0), in general, do not coincide with the capital measured market

prices that will be studied in section 4.2.
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one can apply the good-specific discount rates discussed earlier. Doing both at the same

time yields a wrong evaluation.

An interesting special case is the evaluation of a project that affects only consumption

of the environmental service streams at different points of time (∆x2 = 0). Then (4.3)

is equivalent to
T∫

0

Dx0

1 (t, t0)∆x1(t) dt > 0 .

An important consequence of the discussion in chapter 3.3 is the following. Considering

a partial model of the environmental sector, optimal discounting can be hyperbolic and

time consistent with a marked down discount rate. Moreover, for the evaluation of such

a project, the relative weight given to environmental services as opposed to produced

consumption is of no importance. Therefore it appears particularly catchy that an

evaluation based on a strong sustainability preference - in the sense and scenario of

the last section - gives less weight to long-term environmental service flows than an

evaluation based on a weak sustainability preference.

By factoring out Dx0

1 (t, t0) or Dx0

2 (t, t0) in equation (4.3) the evaluation functional

becomes
T∫

0

[
p1(t0)∆x1(t) +

Dx0

2 (t, t0)

Dx0

1 (t, t0)
p2(t0)∆x2(t)

]
Dx0

1 (t, t0) dt > 0 or (4.4)

T∫

0

[
Dx0

1 (t, t0)

Dx0

2 (t, t0)
p1(t0)∆x1(t) + p2(t0)∆x2(t)

]
Dx0

2 (t, t0) dt > 0 . (4.5)

Equations (4.4) and (4.5) take the more usual view, that there is one common discount

rate applicable to all goods (the discount rate). Equation (4.4) can be interpreted the

following way. Let the evaluation start out with the prices in t0 = 0. Then the first

good is taken to be the numeraire (in the sense of keeping its price constant). Hence,

the change of marginal utility of the first good expressed by Dx0

1 (t, t0) becomes the

discount factor and the (contemporaneous) value of the second good must be propagated

by the relative change of marginal utility of good two relative to good one, i.e. by
Dx0

2 (t,t0)

Dx0

1 (t,t0)
. Applied again to the setup of chapter 3.2 with the example of moderately

limited substitutability between environmental and produced consumption streams, the

social discount rate for the environmental service stream would be the discount rate and

discounting would take place with the lower hyperbolic discount rate δ1.

A more common perspective on cost benefit analysis corresponds to equation (4.5)
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which is the analogue taking x2 to be the numeraire. Such a cost benefit evaluation

takes the social discount rate of produced consumption as the discount rate. Time

development of the accounting price for the environmental service stream is characterized

by the expression
Dx0

1 (t,t0)

Dx0

2 (t,t0)
. Let me normalize p2(0) to unity and define p∗1(0) =

∂U
∂x1

(0)

∂U
∂x2

(0)
as

the value of a unit of environmental services in units of produced goods in the present.

Then, choosing t0 = 0, equation (4.5) together with equation (3.10) imply that for

the scenario analyzed in chapter 3.3 the (relative) pricing of the environmental service

stream in units of produced consumption develops as:

p∗1(t) = p∗1(0) exp

(∫ t

0

(1 − s) (x̂2(t
′) − x̂1(t

′)) dt′
)

. (4.6)

This way of setting up a cost benefit evaluation is also promoted by Arrow et al. (1995).

From this perspective the authors criticize Weitzman’s (1994) derivation of a marked

down hyperbolic ‘environmental discount rate’ as not properly converting environmental

benefits into a flow of (produced2) consumption equivalents. Arrow et al. (1995, 139)

state that the “essence of social discounting is to convert all effects into their consump-

tion equivalents and then to discount the resulting stream of consumption equivalents at

the social rate of time preference. Incorporating environmental effects does not change

the discount rate itself but does require special attention to the proper relative pricing

of environmental goods over time”. Note that Arrow et al. (1995) use the term ‘social

rate of time preference’ for the social discount rate δ in the sense of the one commodity

equation (2.4).

In fact Weitzman (1994) neither models the environmental good explicitly, nor does

he state a functional form for the preferences. Also does he not account separately

for environmental changes and growth of produced consumption. Instead, Weitzman

derives an overall discount rate under the assumption that produced consumption is

growing at the cost of degrading the environment.3 The assumed functional form for

this relationship renders an overall discount rate that is smaller than in the absence

of environmental externalities and falling over time. As this so called ‘environmental

discount rate’ does not explicitly distinguish between the value development of environ-

2Arrow et al. (1995) use the one commodity equation (2.4) as point of departure for their discussion
on discounting. In the section on ‘the environmental and discounting’ the authors make the point that
environmental benefits have to be converted into consumption equivalents. In the view of my explicit
two commodity setup, I identify environmental benefits as environmental service and consumption
streams x1 and their (obviously non-environmental) consumption equivalents as corresponding to my
produced consumption stream x2.

3An alternative interpretation offered by Weitzman is that the environment is a luxury good whose
demand grows over time.
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mental service streams and that of produced consumption it could at most be applied to

a project where the assumed fixed relationship between production growth and environ-

mental decline holds. More generally Groom et al. (2005, 458) criticize that “in many

ways Weitzman’s environmental discount rate is difficult to interpret in light of the re-

duced form set up and, in particular, the absence of an explicit modeling of preferences,

environmental goods and externalities.”

Arrow et al. (1995, 140) continue that when properly converting into consumption

equivalents, the environmental considerations do “not change the discount rate to apply

to the consumption stream”. Now equation (4.5) gives a cost benefit analysis in the

perspective of Arrow et al. (1995) and equation (4.6) works out how for the scenario

in chapter 3.3 a ‘proper relative pricing of environmental goods over time’ converts the

environmental service and amenity stream into (produced) consumption equivalents.

However, in the same scenario it was also observed that under limited substitutability

in consumption the increasing relative scarcity of the environmental service stream also

changes the discount rate δ2 that has to be applied to the (produced) consumption stream

x2. In particular under the assumption of a moderate limitedness in substitutability

such an environmental consideration still can give rise to hyperbolic discount rates for

the produced consumption stream. However, the produced consumption stream gets

a mark up and not a mark down. Moreover, under the assumption of strong limited-

ness in substitutability, a growing relative scarcity in the environmental service stream

can result in a growing value share of the environmental goods and go along with an

increasing discount rate.

4.2 Relation to a Complete Market Evaluation

After having worked out the evaluative structure for the setting of incomplete future

markets, I want to point out how it relates to a scenario where markets are complete

and evaluation is reflected in the corresponding market prices. The prices are derived by

setting up the budget constraint of a representative consumer. Welfare is again assumed

to be of the general form of equation (2.1) though restricted by the assumptions that

follow below. For this section I will assume that the social optimum can be decentralized

by an appropriate price system. Prices are measured in units of capital which can be

regarded either as money or as real capital. These current value prices are denoted by

p1(t) and p2(t). The interest rate on capital is r(t). Remuneration for a fixed offer of

one unit of labor w(t) is only introduced for ‘completeness’ of the budget constraint.

All these variables are exogenous to the representative consumer. His choice is between
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saving k̇(t) units of the capital good k and consuming the amounts x1(t) and x2(t). For

x1 being essential life support services provided by the environment, such an immediate

choice of a representative agent is of course fictitious. For environmental goods like a

hiking trip or a scenic view one might get closer to existing future markets. However,

the setting is only meant to relate discounting in markets, or with respect to market

based prices, to a social cost benefit setup. With the above assumptions the budget

constraint of the representative agent is given by the equation

k̇(t) = r(t)k(t) + w(t) − p1(t)x1(t) − p2(t)x2(t) .

Together with equation (2.1) it follows that the Hamiltonian describing the optimization

problem of the representative agent is

H = U (x1(t), x2(t), t) + λ(t) [r(t)k(t) + w(t) − p1(t)x1(t) − p2(t)x2(t)] .

In the following, I assume that a sufficiency condition for the optimization problem is

met.4 Moreover, I assume a continuous control (consumption) path and an interior

solution. The solution for the consumption path is denoted by x. Along this path the

following necessary conditions for an optimum must be satisfied:

∂H

∂x1

=
∂U

∂x1

− λ(t) p1(t)
!
= 0 , (4.7)

∂H

∂x2

=
∂U

∂x2

− λ(t) p2(t)
!
= 0 , (4.8)

∂H

∂k
= λ(t) r(t)

!
= −λ̇(t) . (4.9)

From equations (4.7) and (4.8) I obtain the relations:
∂U
∂x1

(t)
∂U
∂x2

(t)
=

p1(t)

p2(t)
and

∂U
∂xi

(t)
∂U
∂xi

(t0)
=

λ(t)

λ(t0)

pi(t)

pi(t0)
i ∈ {1, 2} . (4.10)

Integration of equation (4.9) yields the shadow price of capital

λ(t) = ce−
R t
0 r(t′)dt′ with the integration constant λ(0) = c ∈ IR+ . (4.11)

Analogous to the social discount factors describing marginal utility propagation on the

preference side, let me define the time propagator of capital as

R(t0, t) = e
R t

t0
r(t′)dt′

.

4See Takayama (1994, 660 sqq.), Chiang (1992, 214 et sqq.) and Seierstad & Sydsaeter (1977) for
different sufficiency conditions.
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It describes how much capital in t can be derived from an extra unit of capital in t0. Note

that analogously to the reasoning in chapter 2.2 on the relation between δi and Dx
i , the

productivity of capital r(t) can be interpreted as the generator of capital propagation.

I have defined R(t0, t) in a way that again R(t, t0) = 1
R(t0,t)

= e
−

R t
t0

r(t′)dt′
is the factor

which is discounting with capital productivity. I refer to R(t, t0) = 1
R(t0,t)

as the inverse

capital propagator. Equation (4.11) shows that the shadow value of capital at time t

is inversely proportional to the productivity of capital between the present and time t,

i.e. λ(t) ∝ R(t, t0).
5 This relation is straight forward as a unit of capital today can be

turned into R(t0, t) units of capital in period t. Therefore a unit of capital in time t is

worth 1
R(t0,t)

= R(t, t0) units of capital today.

Inserting R(t0, t) into equation (4.10) the following relation between the time prop-

agator of marginal utility Dx
i (t, t0) of good i, the capital propagator and the price of

good i is obtained:

pi(t) = Dx
i (t, t0) pi(t0) R(t0, t) . (4.12)

Equation (4.12) shows that time development of (capital measured) prices depends on

two influencing factors. One is the effect discussed in the previous chapters depending

on the change of marginal utility expressed by Dx
i (t, t0). In addition, the current value

prices pi(t0) and pi(t) corresponding to different periods have to be related. As prices

of the goods are measured in units of the capital good, this is achieved by the capital

propagator R(t0, t).

For the one commodity setting it is often assumed that capital is measured in units

of consumption (e.g. Barro & Sala-i-Martin 1995, 62). Similarly, I could assume in the

two commodity setting that capital is measured in units of produced consumption. This

assumption makes the current value price of produced consumption constant over time.6

Therefore equation (4.12) implies for i = 2 that the inverse capital propagator R(t, t0)

and the propagator of marginal utility Dx
2 (t, t0) coincide. This is because capital mea-

sured in units of produced consumption now reflects the value development of produced

consumption over time. With regard to the non-constancy of the social discount rates

in the scenario of chapter 3.3, note that such a measurement of capital implies that r(t)

exhibits the same non-constant form as derived for δ2.

With this background, let me finally analyze how the evaluation of the small project

5The shadow value reflects the value of an extra unit of capital in units of welfare along the optimal
path. For a closer discussion and the derivation of this interpretation of a shadow price (costate variable)
compare e.g. Kamien & Schwartz (2000, 136 et sqq.). Note that λ is the present value shadow price.

6Then the current value price of produced consumption is measured in units proportional to itself.
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from the preceding section would be evaluated if complete markets existed for all times.7

Applying equation (4.12) to equation (4.3), the following evaluation functional for the

project is obtained:

T∫

0

[p1(t)∆x1(t) + p2(t)∆x2(t)] R(t, t0) dt > 0 . (4.13)

This time the social discount factors Dx
i (t, t0) are not needed for evaluation. The price

development accounts already for the change in welfare. But as prices are measured

in capital, and, if capital is productive, the present value of a unit of capital in the

future is less than the value of a unit of capital in the present, the future prices have

to be discounted with capital productivity. Therefore capital productivity can be re-

garded as the common discount rate for both goods. If capital is measured in terms

of produced consumption, and thus R(t, t0) = Dx
2 (t, t0), equation (4.13) coincides with

equation (4.5).

4.3 Summary

To evaluate long–term projects, an expression for the development of valuation over time

is needed. Social discount rates represent such an expression. They allow the economist

to think in rates and elasticities, and lay out different contributions in a nice additive

form. The study in part I of this dissertation has worked out one such contribution to

value development over time, which emerges in a multi-commodity world with limited

substitutability between different forms of consumption. I have analyzed a scenario, in

which produced consumption is assumed to grow at a faster rate than environmental

services. In this setting, I identified moderate and strong limitedness in substitutability

in the welfare function with the notions of weak and strong sustainability on sides of

the decision maker. I have derived that, under the assumption of moderate limitedness

in substitutability, the social discount rates for (both) future consumption streams fall

over time. On the other hand, the assumption of strong limitedness in substitutability

goes along with rising social discount rates. This result was related to Gerlagh & van der

Zwaan’s (2002) finding that under strong limitedness in substitutability the value share

of produced consumption falls to zero, even when its physical share grows to one. Such

7Having assumed that the social optimum can be decentralized in a complete market system, such
an evaluation is only of theoretical interest to compare the resulting cost benefit functional to that of
section 4.1.
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a development goes along with a reduced attention paid to the increase in relative

scarcity of the environmental service flow over time. In consequence, less weight is given

to environmental services in the long run than under the assumption of only moderate

limitedness in substitutability.

In such a scenario, the identification of the strength of the notion of sustainability, with

the substitutability between the two classes of service and consumption streams, seems

puzzling when environmental services also decline in absolute terms. Then, a notion

of stronger sustainability delivers a weaker commitment to a sustainable development

in the sense of valuing future resources. If such a relationship is unwanted, it has

been suggested that a stronger notion of sustainability can be translated simultaneously

into a higher limitedness of substitutability between environmental service streams and

produced consumption, and into a reduction of intertemporal substitutability. I have

elaborated how the derived discount rates and factors have to be applied in project

evaluation. Either, they can be used to directly propagate individual prices over time,

or a numeraire has to be chosen. In the latter case, the discount rate of the numeraire

becomes the discount rate, and other consumption streams have to be converted into

contemporaneous equivalents of the numeraire. However, not only magnitude, but also

the form of discounting depend on the choice of the numeraire and its substitutability

to other goods.
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Part II

Intertemporal Risk Aversion and

the Precautionary Principle
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Chapter 5

Preliminaries

5.1 Introduction

Recently Hahn & Sunstein (2005, 1) predicted in the Economists’ Voice that “Over the

coming decades, the increasingly popular ‘precautionary principle’ is likely to have a

significant impact on policies all over the world.” However, there is an ongoing debate

between and among economists, environmental scientists and policy makers about the

merit and meaning of the precautionary principle. The usual formulations of the prin-

ciple are generally vague, as discussed for example in Turner & Hartzell (2004) and

Sandin (2004). In part II of my dissertation I suggest an axiomatic formalization of

decision-making under uncertainty that takes up an important concern of the precau-

tionary principle, related to the willingness to undergo preventive action in order to

avoid a threat of harm. For doing so, I introduce a new notion of risk aversion in the

multi-commodity case and connect it to the idea of precaution.

A second point of view, motivating the line of thought of this study, is the following.

I derive the general time consistent model, satisfying the von Neumann & Morgenstern

(1944) axioms for an individual period, and additive separability over time when re-

stricted to certain outcomes. I consider this question particularly interesting as these

are the two predominantly used specifications in the respective framing scenarios of

atemporal choice under uncertainty and intertemporal choice under certainty. Merging

the assumptions underlying the respective representations into a common, time consis-

tent framework, does not result in intertemporally additive expected utility, but a more

general class of representations that also accommodate precautionary decision rules. In

this framework, I analyze how Epstein & Zin’s (1989) disentanglement between risk
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aversion and intertemporal substitutability extends to a multi-commodity setting. I

show that in a world with many commodities absolute values of risk aversion and in-

tertemporal substitutability are good-dependent, while a particular relation between the

two is invariant. This invariant gives rise to the concept of intertemporal risk aversion.

In opposite to the extension of standard risk aversion to a multi-commodity setting as

developed by Kihlstrom & Mirman (1974), the concept of intertemporal risk aversion is

not confined to comparisons of ordinally equivalent preferences.1

My setting closely relates to the seminal work of Kreps & Porteus (1978), who ex-

tend the atemporal von Neumann-Morgenstern setting for choice under uncertainty to

a temporal structure. Under the assumption of intertemporal consistency, the authors

obtain a recursive representation that uses expected utility evaluation within each pe-

riod, and a generally nonlinear time aggregation from one period to the next. Kreps and

Porteus show that an agent behaving in accordance with their axioms generally exhibits

a preference for the timing of risk resolution. The representation brought forward by

the authors can be understood as an extension of Koopmans’s (1960) recursive utility

model under certainty to a recursive model for risky settings. My study shows that

even when starting from a time-additive model for certain outcomes, the general time

consistent model for the evaluation of risky outcomes will exhibit recursivity and pref-

erence for the timing of risk resolution. While Kreps & Porteus’ (1978) representation

is more general, my model gives rise to an attractive structure that enhances the eco-

nomic interpretation. This is achieved not only by introducing and relating measures of

atemporal risk aversion, intertemporal substitutability and intertemporal risk aversion,

but also by the following reasoning. Contributing to the intricacy of interpreting Kreps

& Porteus’ (1978) representation is the fact that it crucially depends on a nonlinear

aggregation of utility over time. In my view, working with a utility (or welfare) function

that is additive over time on certain outcomes greatly simplifies the interpretation and,

thus, the move from mathematical representation to economic intuition.2

1In this respect it stands closer to the application of the theory of risk aversion to the indirect utility
function as brought forward by Stiglitz (1969). For fixed prices, Stiglitz applies the standard Arrow-
Pratt approach of risk aversion for one commodity to income. However this approach is constraint to
compare lotteries along an individual’s Engel curves in a market environment.

2In such an intertemporally additive representation, a welfare gain of one unit today and a welfare
gain of another unit in the next period is just as good as a welfare gain of two units in a third period.
Such a reasoning generally is wrong in the representation of Kreps & Porteus (1978). Note that in a
setting with stationary preference and a positive rate of time preference, the latter of course has to
be integrated into the interpretation. This fact, however, is not related to the nonlinearity of utility
aggregation over time as found in the representation of Kreps & Porteus (1978).
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Epstein & Zin (1989) analyze Kreps & Porteus’ (1978) representation3 in a one com-

modity setting in order to disentangle information about the attitude towards risk and

towards intertemporal substitutability. Such a distinction between risk aversion and

intertemporal substitutability is not possible within a standard intertemporally addi-

tive expected utility model.4 Using a representation that allows for different choices

of Bernoulli utility5, I analyze to what extend such a specification of risk aversion and

intertemporal substitutability proves useful when studying a multi-commodity world. I

work out that there is no longer a canonical measure of risk aversion or intertemporal

substitutability, as both of these quantities generally vary between different goods. This

variation between different goods can be expressed as a dependence on the choice of the

particular representing Bernoulli utility function (for given preferences). I identify a re-

lation between the characterizations of risk aversion and intertemporal substitutability

that is invariant under different choices of Bernoulli utility. It is this invariant quantity

that gives rise to the notion of intertemporal risk aversion. An axiomatic formalization

of the latter concept is developed and quantitative measures are worked out.

Later, in part III of the dissertation I establish a general relation between the measures

of risk aversion and intertemporal substitutability and Kreps & Porteus’ (1978) prefer-

ence for the timing of uncertainty resolution. This relation answers a question raised

by Epstein & Zin (1989, 952 et seq.) on the interlacement of (standard) risk aversion,

intertemporal substitutability and the preference for the timing of uncertainty resolu-

tion. My representation suggests that the concept of intertemporal risk aversion is also

at the basis of a preference for the timing of uncertainty resolution. Seeking for reason-

able simplifications of the model structure, I analyze the consequences of indifference to

the timing of uncertainty resolution and of stationarity with respect to risk evaluation.

Indifference to the timing of uncertainty resolution yields a representation that captures

intertemporal risk aversion in a single parameter. Moreover, it simplifies the model

structure by allowing for a non-recursive description of lotteries. In particular, such

a representation allows to disentangle risk aversion from intertemporal substitutability

3The precise difference of Epstein & Zin’s (1989) setting compared to Kreps & Porteus (1978) is
that the first only analyze a one commodity setting with no history dependence and a time aggregation
that exhibits constant elasticity of substitution. However, they allow for a more general evaluation of
uncertainty than that implied by the von Neumann-Morgenstern axioms and, moreover, extend the
framework to allow for an infinite time horizon.

4In the intertemporally additive expected utility model, the elasticity of intertemporal substitution
is confined to the inverse of the Arrow-Pratt measure of relative risk aversion (Weil 1990).

5Bernoulli utility describes a cardinal function, that, by itself represents choice of certain one period
outcomes. In combination with uncertainty evaluation functionals and time aggregation rules it serves
as the basis for more general evaluation.
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when evaluating lotteries over consumption paths non-recursively. Based on a study by

Chew & Epstein (1990) for homothetic preferences, the latter combination of attributes

has been believed to be unfeasible. Moreover, I work out two different axioms of risk

stationarity. One yields stationarity of the functionals evaluating uncertainty in every

period. The other is a more natural extension of certainty stationarity in a finite time

framework. In combination with indifference to the timing of uncertainty resolution, the

latter will have strong implications for the choice of the rate of pure time preference.

Part II of my dissertation is structured as follows. In the upcoming section 5.2, I intro-

duce the precautionary principle and motivate my approach to a formalization. Related

literature on modeling the concept of precaution and choice under uncertainty is briefly

summarized. Section 5.3 formally introduces the concept of general and precautionary

uncertainty aggregation rules, which are closely related to generalized means. Chapter 6

develops an axiomatic representation of preferences, based on these uncertainty aggrega-

tion rules and a closely related intertemporal aggregation rule. Chapter 6.1 revisits the

atemporal von Neumann-Morgenstern setting. Special attention is payed to different

possibilities of fixing (gauging) the Bernoulli utility function over the certain outcomes

and its consequence for the applicable uncertainty aggregation rule. Chapter 6.2 takes a

brief look at the other framing scenario, i.e. additively separable preferences over certain

consumption paths, and introduces the concept of an intertemporal aggregation rule.

The two framing scenarios are united in chapter 6.3 by a representation for the simplest

setting that is sufficiently rich to discuss most of the topics pointed out earlier in this

introduction. It consists of a two period framework, where the first period outcomes

are certain and the second period outcomes are uncertain. The crucial point of this

representation is that it leaves some freedom for the choice of the representing Bernoulli

utility function. Chapter 6.4 points out how fixing (gauging) Bernoulli utility in different

ways leads to different representations found in the literature.

Chapter 7 discusses the economic content of the representation. In chapter 7.1, I ana-

lyze how Epstein & Zin’s (1989) distinction between intertemporal substitutability and

risk aversion in the one-commodity case carries over to a multi-commodity setting. In

particular, I show that in the multi-commodity setting only a particular relation between

the two is invariant over different commodities. Chapter 7.2 axiomatically identifies this

invariant quantity as a notion of risk aversion itself. Due to its crucial dependence on

the intertemporal structure of preference, I call this notion of uncertainty attitude ‘in-

tertemporal risk aversion’. Chapter 7.3 shows, how the concept of precaution as it is

motivated in the next two sections, coincides with the concept of strict intertemporal

risk aversion. In this connection welfare is interpreted as a Bernoulli utility function
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that exhibits additive value aggregation over time. With such a notion of welfare, in-

tertemporal risk aversion and precaution are reconsidered as risk aversion on welfare.

Finally, chapter 7.4 works out quantitative measures of intertemporal risk aversion. Part

III of this dissertation is an extension of the analysis carried out in part II. Chapter

8 extends the preference representation and the notion of intertemporal risk aversion

to a general non-stationary multiperiod setting. In chapter 9, I introduce two different

stationarity conditions for preferences over uncertain outcomes (in the setting with a

finite time horizon). Finally, chapter 10 is dedicated to different aspects of preferences

for the timing of uncertainty resolution in the sense of Kreps & Porteus (1978), including

its relation to standard risk aversion, intertemporal substitutability, intertemporal risk

aversion and the pure rate of time preference.

5.2 The Precautionary Principle

The most frequently cited definition of the precautionary principle was agreed upon

at the Wingspread Conference in 1998 by 32 participants with different academic and

professional backgrounds. The latter state that “it is necessary to implement the Pre-

cautionary Principle: Where an activity raises threats of harm to the environment or

human health, precautionary measures should be taken even if some cause and effect

relationships are not fully established scientifically” (Raffensperger & Tickner 1999, 8)6.

There is some consensus that the precautionary principle emerged as an explicit and

(somewhat) coherent principle in the field of environmental policy in the seventies in

relation with the German ‘waldsterben’ (forest dieback) and its possible causes (see Har-

remoes et al. 2001, 13).7 Its first major international advocacy came with the adoption

of the World Charter for Nature by the General Assembly of the United Nations in 1982.8

With the decision on phasing out the production of a number of substances believed to

be responsible for the depletion of the stratospheric ozone layer, the precautionary prin-

ciple first entered into an international treaty in the Montreal Ozone Layer Protocol in

6Emphasis added, the Wingspread declaration is also found online at http://www.gdrc.org/u-gov/
precaution-3.html.

7However, some authors date the precautionary priciple back to earlier times, cf. Sandin (2004, 462).
For example, Martin (1997, 276) writes that “Unambiguous reference to precaution as a management
guideline is found in the millennial old tradition of Indigenous People of Eurasia, Africa, the Americas,
Oceania, and Australia”.

8Section (11b) of the World Charter of Nature states that “where potential adverse effects
are not fully understood, the activities should not proceed”. The Charter is available online at
http://www.un.org/documents/ga/res/37/a37r007.htm .
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1987. Since then, it has been taken up in a series of international treaties and decla-

rations. Most importantly these include the Third North Sea Conference (1990) with

a particularly strong version,9 the 1992 Rio Declaration on Environment and Develop-

ment & the Framework Convention on Climate Change,10 and the Cartagena Protocol

on Biosafety (2000)11. In the contracts of the European Union, the Precautionary Prin-

ciple entered into the Maastricht Treaty in 1994, was worked out in a Communication

on the Precautionary Principle in 2000 and made it into the European Constitution,

which was signed in 2004, but not ratified yet.12

The different formulations of the precautionary principle account for a wide range of

specifications, reaching from comparatively moderate formulations as in the Rio Decla-

ration on Environment and Development 1992, Principle 15: “Where there are threats

of serious or irreversible damage, lack of scientific certainty shall not be used as a rea-

son for postponing cost-effective measures to prevent environmental degradation”13 to

much stronger statements as in the Third North Sea Conference (1990): “apply the

precautionary principle, that is to take action to avoid potentially damaging impacts of

substances that are persistent, toxic, and liable to bioaccumulate even where there is

no scientific evidence to prove a causal link between emissions and effects” (Harremoes

et al. 2001, 14, emphasis added). Most importantly, however, the formulations are

generally vague. A detailed analysis of this problem can be found in Sandin (2004) and

Turner & Hartzell (2004). This vagueness is a major source of criticism with respect to

the precautionary principle, as prominently expressed by Hahn & Sunstein (2005). The

authors argue that “the precautionary principle does not help individuals or nations

make difficult choices in a non-arbitrary way. Taken seriously, it can be paralyzing, pro-

9See next paragraph for the formulation.

10The wording of the United Nations Framework Convention on Climate Change Article 3.3 is similar
to that of the 1992 Rio Declaration on Environment and Development cited in the next paragraph.
The Convention is available online at http://unfccc.int/resource/docs/convkp/conveng.pdf .

11The preamble directly refers to the precautionary principle as formulated in the 1992 Rio Dec-
laration on Environment and Development, and articles 10 and 11 further elaborate the princi-
ple. The Cartagena Protocal on Biosafety is available online at http://www.biodiv.org/biosafety/
protocol.asp .

12Article III-233 of the draft Treaty establishing a constitution for Europe stipulates: “Union policy
on the environment shall aim at a high level of protection taking into account the diversity of situations
in the various regions of the Union. It shall be based on the precautionary principle and on the principles
that preventive action should be taken, that environmental damage should as a priority be rectified at
source and that the polluter should pay.”

13Compare Rao (2000, 11 et seq.) or find the complete declaration online at http://www.unep.org/
Documents.multilingual/ Default.asp?DocumentID=78&ArticleID=1163.
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viding no direction at all” (Hahn & Sunstein 2005, 1). They continue that “In contrast,

balancing costs against benefits can offer the foundation of a principled approach for

making difficult decisions” (Hahn & Sunstein 2005, 1). My goal is to work out such a

principled approach for balancing costs and benefits in a non-arbitrary way, which, at

the same time, takes up some of the concern of the precautionary principle.

To motivate my approach, let me come back to the above mentioned Wingspread

definition of the precautionary principle. It requires that “Where an activity raises

threats of harm to the environment or human health, precautionary measures should be

taken even if some cause and effect relationships are not fully established scientifically”

(Raffensperger & Tickner 1999, 8). Yet any reasonable economic model depicting un-

certainty will take into consideration a threat of harm to human welfare. In a standard

model such a threat would be represented by a positive probability of yielding low wel-

fare. Such a probability does not have to be objective14 and, thus, does not have to be

based on a complete scientific understanding. A threat of harm in this sense obviously

reduces the expected welfare. A precautionary measure, in the sense of the Wingspread

definition, is an action taken to avoid such a threat of harm. Hence, it has to take place

before the observed impact on welfare. Therefore a formal model, depicting the decision

problem at hand, has to consider at least two periods. In addition, the second period

has to account for uncertainty. Let me lay out my formal intuition of precaution in such

a simple model.

Let me denote outcomes in the first and the second period by x1 and x2 respectively.

For the purpose of this introduction, think of outcomes as a description of consumption,

effort and harm for a particular state of the world that a decision maker envisions

within a period. Effort accounts for the various endeavors which are undergone in the

first period, in order to avoid a threat of harm in the second period. In the following

x1 is assumed to vary in the amount of effort undergone. Of course such an effort

can go along with a reduction in consumption. Increasing effort is assumed to reduce

welfare within the first period. For the second period uncertainty prevails. Assume that

only two outcomes are perceived possible. One is a standard or ‘unharmed’ outcome,

denoted by x̄2, and the other is an outcome, where society suffers serious harm and is

denoted by x2. Furthermore, let each of the two possible second period outcomes be

associated with probabilities p(x̄2) and p(x2) = 1−p(x̄2). I characterize society’s welfare

(or an individual’s utility) by a welfare function u. Obviously welfare is assumed to be

14The empirical definitions of probability by frequency or symmetry are usually referred to as objec-
tive probabilities. In the situation described by the Wingspread declaration an epistemic approach to
probabilities better fits the situation. Here, probabilities are seen as elements of a (non-binary) logic
or as beliefs. See the discussion on page 63.

59



CHAPTER 5. PRELIMINARIES

higher in the unharmed state than when society is suffering from serious harm, implying

u(x̄2) > u(x2). The standard evaluation of such a scenario would be depicted by the

following equation:

u(x1) + p(x̄2)u(x̄2) + p(x2)u(x2) = u(x1) + Ep u(x2) . (5.1)

For simplicity, I assume a stationary welfare function and set the rate of pure time pref-

erence to zero.15 Equation (5.1) is the evaluation rule corresponding to a maximizer of

intertemporally additive expected utility (or welfare). Note that I identify evaluation

rules with corresponding decision rules by the assumption of welfare (or utility) maxi-

mization on some set of feasible outcomes. Moreover, for the remainder of this chapter,

the terms welfare and utility will be used synonymously.16 The evaluation in equation

(5.1) translated into real terms is also the standard cost benefit analysis answer for a two

period setting with uncertainty, see e.g Brent (1996, 167 et seq.) and Johansson (1993,

142 et seq.). In equation (5.1) the threat of harm p(x2)u(x2) diminishes overall welfare.

In consequence, there will always be some willingness on behalf of the decision maker to

undergo efforts that decrease or prevent the threat of harm p(x2)u(x2). In accordance

with the Wingspread definition, precautionary measures have to be taken in the first

period, in order to reduce or eliminate the threat of harm in the second period. If these

measures would come at no cost, they would obviously be carried out. The interesting

scenario is when such precautionary measures lower the welfare in the first period. A

decision maker using equation (5.1) for his evaluation is willing to accept a reduction of

first period welfare of up to u(x̄2) − E u(x2), in order to eliminate the threat of harm.

In words, the maximum of first period welfare reduction accepted corresponds to the

difference between the welfare derived from the unharmed outcome and the expected

welfare when facing the threat of harm.

Yet, this effort does not seem to suffice the advocates of the precautionary principle.

The authors of the Wingspread declaration state explicitly that “We believe existing

environmental regulations and other decisions, particularly those based on risk assess-

ment, have failed to adequately protect human health and the environment, as well

15As will be discussed later on, neither a positive rate of time preference nor a non-stationary welfare
function change the general insight. Obviously, the cost-benefit approaches mentioned below do apply
a positive rate of discount striving for numerical results.

16While utility rather alludes to an agent making private decisions, the word welfare suits better to
a decision maker in public policy. However, the reasoning carried out in my study is suitable for both
scenarios. Moreover, some of the concepts from decision theory discussed in this and the next sections
are conventionally labeled in terms of utility rather than welfare, like, for example, expected versus
non-expected utility theories. A relabeling to non-expected welfare or to a Bernoulli welfare function
would appear somewhat peculiar.
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as the larger system of which humans are but a part” (Raffensperger & Tickner 1999,

353). However, some sort of assessment for the uncertainty is needed. The minimal

information would be that some harming scenario is deemed possible while others are

not. Such a situation is formalized by Arrow & Hurwicz (1972), who show that deci-

sion rules coping with that little information have to be based only on evaluation of

the extreme outcomes in order to satisfy certain rationality properties. With respect to

a precautionary evaluation, it seems to be more plausible to base the decision on the

evaluation of the worst possible outcome than basing it on the best possible outcome.

This reasoning is supported by Bossert, Pattanaik & Xu (2000), who show that in a

setting only discriminating between what can and what cannot happen, maximizing the

worst possible outcome is the only decision rule conforming with a concept of uncer-

tainty aversion.17 However, an evaluation that only takes into account the worst possible

outcome is usually considered as too extreme. In my example, such a decision criteria

implies a willingness to reduce welfare in the first period - in order to avoid the threat

of harm - by u(x̄2) − minx2 u(x2) = u(x̄2) − u(x2). In a scenario where welfare without

the threat of harm would coincide in both periods (i.e. u(x1) = u(x̄2)), this disposition

would imply that the decision maker is willing to reduce welfare in the first period to

the harm-level u(x2) just to prevent that such welfare level could come up in the second

period. In my opinion, most decision makers would not subscribe to such an extreme

decision rule (including myself). Therefore, I seek for precautionary evaluation rules,

as a subclass of generalized uncertainty aggregation rules, that render an evaluation of

the uncertain second period, which lies somewhere between expected value and the worst

possible outcomes. These precautionary evaluation rules imply that a decision maker’s

willingness to reduce welfare in the first period in order to prevent a threat of harm in

the second period p(x2)u(x2), is bigger than for the intertemporally additive expected

utility maximizer, who uses equation (5.1), i.e. bigger than u(x̄2) − E u(x2). This idea

of precautionary uncertainty evaluation is formalized in the next section.18 To this end,

17For a definition of what it means precisely to be uncertainty averse in such a setting compare
Bossert et al. (2000, Definition 3). The authors also refine the rule of ‘maximizing the worst possible
outcome’ for situations where the extreme outcomes of different scenarios coincide.

18In relation to the violation of the independence axiom in the Ellsberg (1961) paradox, the author
suggests a decision rule that is a convex combination of the expected utility model and the maximization
of the worst possible outcome. This compound decision rule obviously renders an evaluation that
lies between expected utility and the valuation of the worst outcome. The latest axiomatization of
such a decision rule is given by Chateauneuf, Grant & Eichberger (2003) in the language of subjective
Choquet-expected utility by relaxing independence on the extreme outcomes. My axiomatization yields
a decision rule that is not a convex combination of these two extremes, but can continuously vary from
one extreme to the other. Moreover it stays continuous within the topology of weak convergence.

61



CHAPTER 5. PRELIMINARIES

more information on uncertainty will be needed than the mere specification of what is

perceived possible and what is not.

If one is willing to add a little more structure concerning the evaluation of uncertainty

than in the Arrow-Hurwicz setup, models of ambiguity such as Gilboa & Schmeidler

(1989) or its recent generalization by Ghirardato, Maccheroni & Marinacci (2004) are

applicable. These models work with sets of probability distributions instead of unique

probabilities. In Gilboa & Schmeidler’s (1989) axiomatization, decision makers use

the worst probability distribution deemed possible to assess an uncertain situation.

With respect to the relation between ambiguity and precaution, Gollier (2001, 310 et

seq.) criticizes such an attitude as too extreme. However, the recent generalization by

Ghirardato et al. (2004) gives a more satisfactory axiomatization, which allows for a

much broader and more reasonable class of ambiguity attitudes. In my opinion, their

approach resolves Gollier’s criticism and supports that, when decision makers are not

willing or able to assign a single probability distribution to outcomes, but rather a set

of such distributions, there is evidence that some sort of more precautionary decision

rule can be needed in order to represent general preferences.

However, I show that it is by no means necessary to abandon the uniqueness of

probabilities (or the independence axiom, see below), in order to derive the necessity

in a preference representation to allow for more precautionary evaluation rules than

the one corresponding to equation (5.1). I demonstrate that already the standard von

Neumann-Morgenstern assumptions give rise to more precautionary decision rules, as

soon as time structure is introduced and taken serious. I consider my study as comple-

mentary to other approaches towards extending the notion of uncertainty evaluation, as

for example the mentioned study by Ghirardato et al. (2004), which comprises many of

the earlier extensions of the von Neumann-Morgenstern setup. Merging my conception

of intertemporal risk aversion and these extended treatments of ‘atemporal’ uncertainty,

constitutes a promising research agenda for the future. In the remainder of this section,

I briefly discuss the related literature, both, more broadly on choice under uncertainty

and more specifically on attempts to formalize the precautionary principle.

Let me start with a closer look at the representation of general uncertainty attitude by

Ghirardato et al. (2004). Key to this approach as compared to the standard approach of

von Neumann & Morgenstern (1944), and its subjective formulation by Savage (1972), is

the relaxation of the independence axiom. The independence axiom roughly states the

following.19 Let a decision maker be indifferent between a lottery p and another lottery

p′. Now offer him two compound lotteries, which both start out with a coin toss. In both

19A formal statement of the independence axiom is given on page 73.
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lotteries the decision maker enters the same third lottery p′′ if head comes up. However,

if tail comes up, the decision maker faces lottery p in the first compound lottery and

the lottery p′ in the second. Recalling that the decision maker is indifferent between

lotteries p and p′, the independence axiom requires the decision maker to be indifferent

between the two compound lotteries as well. However, in particular decision contexts,

there is ample evidence that observed behavior consistently deviates from the theories

of von Neumann & Morgenstern (1944) and Savage (1972), which are built on the inde-

pendence axiom. The most prominent violations are those discovered by Allais (1953)

and Ellsberg (1961). More recent challenges include the equity premium puzzle (see e.g.

Kocherlakota 1996) and Rabin’s (2000) paradoxical relation between risk aversion in the

small and risk aversion in the large for an expected utility maximizer. Note that the

first puzzle can partly be explained by disentangling the coefficients of risk aversion and

intertemporal substitutability without giving up the independence axiom. Such a disen-

tanglement is also an important step in my formalization of precaution (see chapter 7).

Rabin’s (2000) paradox has recently been shown to hold for a wide class of non-expected

utility theories that give up the independence axiom as well (Safra & Segal 2005). For an

overview on other violations of independence compare for example Starmer (2000) and

Luce (2000). Despite these behavioral inadequacies, the independence axiom still has a

strong normative appeal in the sense of agreeing on a principled approach to evaluate

uncertain outcomes as pointed out for example in Hammond (1988a), Hammond (1988b)

and Starmer (2000, 334). For an introduction to approaches for decision-making under

uncertainty that abandon or relax the independence axiom, most importantly Quiggin’s

(1982) Rank-Dependent Utility, Machina’s (1982) Local Expected Utility, Choquet Ex-

pected Utility dating back to Schmeidler (1989) and Kahneman & Tversky’s (1979)

Prospect Theory, compare for example Karni & Schmeidler (1991), Schmidt (1998) and

Starmer (2000). Note that most of the mentioned theories are completely or to some

extent contained in the above mentioned model by Ghirardato et al. (2004).

For the representation of uncertainty by a unique probability distribution, there exist

different conceptions and axiomatizations. The classical treatments are the frequentist

characterization of probability by von Mises (1939) and the measure theoretic axioma-

tization of Kolmogorov (1933). A quite different approach by de Finetti (1937) derives

probabilistic reasoning from assumptions on betting behavior. Savage (1972) recovers

probabilistic beliefs and evaluation of outcomes in a joint framework. His framework

is also the stepping stone for Ghirardato et al.’s (2004) axiomatization of choice under

uncertainty, where relaxing independence goes along with a description of uncertainty
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in terms of sets of probabilities.20 Better suited to the context of my study are the epis-

temic axiomatizations of probability by Koopman (1940) and Cox (1946,1961). Both are

partly inspired by the seminal work of Keynes (1921) and construct a probabilistic logic.

A more recent treatment within this line of thought is Jaynes (2003). For an overview

over the different conceptions of probability compare, for example, Eisenführ & Weber

(2003). For a more detailed discussion of subjective probabilities see Kyburg & Smokler

(1964) and Fishburn (1986).21 Note that, as a consequence of sticking to unique proba-

bility measures for the description of uncertainty, I will not make a distinction between

the words ‘risk’ and ‘uncertainty’.22

Complementary attempts on formalizing aspects of the precautionary principle have

been carried out by Gollier, Jullien & Treich (2000), Gollier (2001), Gollier & Treich

(2003), Immordino (2000), Immordino (2003) and Barrieu & Sinclair-Desgagné (2005).

A decade earlier Kimball (1990) analyzed and labeled the concept of precautionary

savings. He defined a precautionary savings motive by the condition that an increase

of uncertainty over future income raises the current savings. Within an intertemporally

additive expected utility model, Kimball (1990) derives conditions on the utility function

for the precautionary savings motive to hold. To this end, he defines measures of relative

and absolute prudence that characterize the curvature of marginal utility. They are

exact analogues to the Arrow-Pratt measures of relative and absolute risk aversion, just

applied to marginal utility instead of the utility function itself. Kimball finds that the

relation between the measures of risk aversion and prudence determine the precautionary

savings motive. Eeckhoudt & Schlesinger (2005) give an axiomatic characterization of

prudence and, moreover, extend the concept and the axiomatic characterization to any

order of derivatives of the utility function.

20Note however that there is some evidence within the Savage framework that dynamic consistency
implies the existence of unique probabilistic beliefs (Epstein & Breton 1993).

21For a definition of objective probability beyond the frequency or symmetry definition compare also
Popper’s (1959) concept of propensity.

22A notion frequently found in the literature discussing different forms of uncertainty and ignorance
is the following. Risk refers to the particular form of uncertainty where probabilities are known, while
general uncertainty also accounts for situations where the probabilities are unknown to the decision
maker. This distinction goes back to Knight (1921). Within the concept of epistemic probabilities or
subjective probabilistic beliefs, however, it is not obvious what is meant by ‘known probabilities’. A
possible answer would be to single out objective probabilities as known probabilities. However, among
the advocates of subjective probability, there is generally no agreement on the existence of objective
probability in the first place. Another distinction possibility is to identify general uncertainty with the
concept of ambiguity (or hard uncertainty). In the literature discussed above, the latter corresponds
to the non-uniqueness of probabilities, or, in the formulation of Choquet expected utility, to the non-
additivity of the (monotonic) set functions (capacities) that replace the concept of probability.
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Gollier et al. (2000), Gollier (2001) and Gollier & Treich (2003) analyze a one-

commodity, two-period model, in which consumption causes potential damage in the

second period. In such a model, they examine the effect of new information that arrives

between the first and the second period. The authors label a decision rule precautionary

if it satisfies the following condition. Whenever better information23 about the future

is expected, the decision rule must imply a reduction of the (potentially harmful) first

period consumption as compared to a situation where no information is expected. They

derive a criterion for their concept of precaution to hold in terms of absolute prudence

dominating (twice absolute) risk aversion. Gollier (2001, 312) points out that for deci-

sion makers exhibiting constant relative risk aversion, this condition is usually regarded

unlikely to hold.24 While the above model considers the reaction of a decision maker in

terms of reducing the amount of potential harm by reducing first period consumption,

Immordino (2000) and Immordino (2003) explore the decision maker’s willingness to

invest into a reduction of the probability that the harmful event takes place. Using

the terminology of Ehrlich & Becker (1972), Immordino calls actions that reduce the

harm level in case it occurs self-insurance and actions that reduce the probability of the

potential harm to take place self-protection. In a similar setup as Gollier et al. (2000),

Immordino analyzes under which circumstances decision rules exhibit precautionarity

in the sense of self-protection. Finally, Barrieu & Sinclair-Desgagné (2005) define a

precautionary strategy (within a static setting) as an action that either is self-insuring

or self-protecting. They derive a set of mathematical conditions that a precautionary

decision maker has to satisfy when confronted by a threat of harm.

While all of the above models, which explicitly refer to the precautionary principle,

stay within the intertemporally additive expected utility framework, Kimball & Weil

(2003) extend Kimball’s (1990) analysis of precautionary savings to a the framework of

Kreps & Porteus (1978). They show that in the generalized framework, which allows

to distinguish between risk aversion and intertemporal substitutability, all three quan-

23This is better information in the sense of Epstein (1980) going back to Marschak & Miyasawa
(1968). It can be defined roughly as follows. Let there be two periods and a given expectation for
the outcome of the second period at the beginning of the first. After having decided upon first period
consumption but before choosing consumption in the second period a signal is received. Whenever
an information structure allows to derive (in expectation) a higher welfare gain from such a signal for
all reasonable welfare functions than does another, the information structure is said to carry better
information.

24Note that the model crucially depends on a linearity in the trade-off between second period con-
sumption and second period damage. Moreover, the authors assume an interior solution. However,
due to the assumed linearity, this existence assumption is not always met. For the above mentioned
scenario of constant relative risk aversion, it can be shown that such an interior solution does not exist.
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tities, prudence, risk aversion and intertemporal substitutability, jointly determine the

precautionary savings motive. As I work out in chapter 7, my conception of precaution

crucially depends on the disentanglement between risk aversion and intertemporal sub-

stitutability, but not on prudence. Moreover, it is not tied to a specific model of savings

or emission reduction. Motivated as a simple intertemporal reasoning on a decision

maker’s willingness to undergo preventive action, I present a general characterization in

terms of the underlying preferences.

5.3 Uncertainty Aggregation Rules

This section defines the concept of general and precautionary uncertainty aggregation

rules. Let X be a connected compact metric space. The elements x of X are called

consumption levels or, more general, outcomes. They may contain quantifications in

terms of real numbers as well as more abstract characterizations, for example, of current

climate or the state of an ecosystem before and after an invasive species has been

introduced. The space of all continuous functions from outcomes into the reals is denoted

by C0(X). More generally, the space of all continuous functions from some metric space

Y into the reals is denoted by C0(Y ). An element u ∈ C0(X), u : X → IR, is called a

Bernoulli utility function.25 Define U = minx∈X u(x), U = maxx∈X u(x) and U = [U,U ]

so that the range of u is given by U .26 The set of all Borel probability measures on X

is denoted by P = ∆(X) and equipped with the Prohorov metric which gives rise to

the topology of weak convergence. The elements p ∈ P are called lotteries. Given the

epistemic probability definition I referred to in the preceding section, lotteries do not

only describe draws from an urn, but are general characterizations of uncertainty with

respect to possible outcomes. The degenerate lotteries giving weight 1 to outcome x are

denoted by x ∈ P . A lottery yielding outcome x with probability p(x) = λ and outcome

x′ with probability p(x′) = 1− λ is written as λx + (1− λ)x′ ∈ P . Note that the ‘plus’

sign between elements of X always characterizes a lottery.27 Again more generally, the

25A more specified definition of Bernoulli utility in relation to the representation of preference rela-
tions is given in the next section (compare page 73).

26Note that compactness of X and continuity of u assure that the minimum and the maximum are
attained.

27As X is only assumed to be a compact metric space there is no immediate addition defined for
its elements. In case it is additionally equipped with some vector space or field structure, the vector
addition will not coincide with the “+” used here. The “+” sign used here alludes to the additivity of
probabilities.
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set of Borel probability measures on any compact metric space Y is denoted by ∆(Y ).

Finally, I denote with IR+ = {z ∈ IR : z ≥ 0} and IR++ = {z ∈ IR : z > 0} the set of all

positive, respectively strictly positive, real numbers.

An uncertainty aggregation rule is defined as a functional M : P × C0(X) → IR. It

takes as input the decision maker’s perception of uncertainty, expressed by the probabil-

ity measure p, and his evaluation of certain outcomes, expressed by his Bernoulli utility

function u. For certain outcomes uncertainty aggregation rules are imposed to return

the value of the Bernoulli utility itself, i.e. M(x, u) = u(x). The uncertainty aggregation

rule generated by the axiomatization in the subsequent chapter is the following. For a

strictly monotonic and continuous function f : IR → IR define Mf : P ×C0(X) → IR by

Mf (p, u) = f−1
[∫

X
f ◦ u dp

]
, (5.2)

where f ◦u denotes the usual composition of two functions.28 The composition sign will

often be omitted. This shall not create confusion, as usual multiplication of two functions

does not appear within this model. If the probability measure would be defined directly

on the range of u, the expression in equation (5.2) would be known as the generalized

or f -mean. It aggregates the utility values weighted by some function f and applies the

inverse of f to normalize the resulting expression. The only difference between the mean

and the uncertainty aggregation rule is that the latter takes the Bernoulli utility function

as an explicit argument. If such a correspondence between a mean and an uncertainty

aggregation rule holds, I say that the uncertainty aggregation rule (here Mf ) is induced

by the mean (here generalized or f -mean).29 The reason for taking up the function u as

an explicit argument in the uncertainty aggregation rule, is to explore the freedom in the

choice of Bernoulli utility and to stress the similarity between uncertainty aggregation

and intertemporal aggregation, which will be introduced in chapter 6.2.

To illustrate the uncertainty aggregation rule Mf with some examples, let me consider

the subset of lotteries having finite support, i.e. the set of all simple probability measures

P s ⊂ P on X. Then, equation (5.2) can be written as

Mf (p, u) = f−1

[∑
x

p(x)f ◦ u(x)

]
.

28Note that by continuity of f ◦u and compactness of X Lesbeque’s dominated convergence theorem
(e.g. Billingsley 1995, 209) ensures integrability.

29Precisely this relation can be defined as follows. Let pu ∈ ∆(U) denote the probability measure
induced by p defined on X through the Bernoulli utility function u ∈ C0(X) on its (compact) range U .

Then an uncertainty aggregation rule M is said to be induced by a mean M : ∆(U) → IR whenever

M(p, u) = M(pu) ∀p ∈ P. Mean inducedness implies that only the probability of x is used to weigh
u(x).
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The simplest uncertainty aggregation rule corresponds to the expected value operator,

and is obtained for f = id:

E(p, u) ≡ Ep u(x) =
∑
x

p(x)u(x) .

It is induced by the arithmetic mean. For Bernoulli utility functions with a range re-

stricted to U ⊆ IR+ another example of an uncertainty aggregation rule is induced by

the geometric mean and corresponds to f = ln:

G(p, u) =
∏
x

u(x)p(x) .

Both of the above uncertainty aggregation rules are, again assuming U ⊆ IR+, contained

as special cases in the following uncertainty aggregation rule achieved by f(z) = zα:

Mα(p, u) ≡ Midα

(p, u) =

[∑
x

p(x)u(x)α

] 1
α

defined for α ∈ IR with M0(p, u) ≡ limα→0 M
α(p, u) = G(p, u) and M1(p, u) =

E(p, u).30 The corresponding mean is known as power mean. In the limit, where α goes

to infinity respectively minus infinity, the uncertainty aggregation rule Mα only con-

siders the extreme outcomes (abandoning continuity in the probabilities): M∞(p, u) ≡

limα→∞Mα(p, u) = maxx u(x) and M−∞(p, u) ≡ limα→−∞Mα(p, u) = minx u(x).

Let me take Mα as an example to illustrate the intuition of uncertainty aggregation

rules. Assume that an exogenously given u specifies some cardinally measurable welfare

information for the outcomes x ∈ X.31 Now consider a lottery yielding ū = u(x̄) =

100 with probability p̄ = 0.9 and u = u(x) = 10 with probability p = 0.1. Then an

expected value maximizer will evaluate the lottery by the certainty equivalent uc
E =

uc
α=1 = 91. Another person, who is extremely precautious, might value the lottery

only as high as the worst of its outcomes, that is uc
min = uc

α=−∞ = 10. However, as

discussed in the preceding section, the latter is considered as too extreme an assessment.

As motivated in the respective setup, a general precautionary decision rule should go

along with an uncertainty aggregation rule that renders an evaluation lying somewhere

between expected welfare and the welfare of the worst possible outcome. Rewriting the

scenario evaluation of equation (5.1) with a general uncertainty aggregation rule yields

30The easiest way to recognize the limit for α → 0 is to note that for any α > 0 the function
fα(z) = zα−1

α is an affine transformation of f(z) = zα. As shown in a ‘Note’ on page 195 in the
appendix, affine transformations leave the uncertainty aggregation rule unchanged. Then the fact that
limα→0

zα−1
α = ln(z) gives the result.

31Note that it will be a major task of the subsequent chapters to render a sound basis to this
cardinality.
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the evaluation rule

u(x1) + M(p, u) . (5.3)

The evaluation rule is considered precautionary if it yields a higher willingness to reduce

first period welfare in order to avoid a threat of harm than does equation (5.1). Denote

by P th
u = {p ∈ P s : p(x̄2), p(x2) > 0, p(x̄2) + p(x2) = 1 with x̄2, x2 ∈ X, u(x̄2) > u(x2)}

the set of potential threat of harm lotteries. Then, with an intertemporal evaluation

rule of the form (5.3), the definition of a precautionary uncertainty evaluation in the

sense of the preceding section can be formalized.

Definition: Given an evaluation of the certain outcomes by a function u ∈ C0(X), an

uncertainty aggregation rule is called precautionary if the following relation holds:

u(x2) < M(p, u) < E(p, u) ∀ p ∈ P th
u . (5.4)

For the uncertainty aggregation rule Mα it can be shown that the smaller is α, the

lower is the certainty equivalent that the respective uncertainty aggregation rule, corre-

sponding to the power mean, brings about (e.g. Hardy, Littlewood & Polya 1964, 26).

Hence, within this setup, a precautionary decision maker would be expected to choose

a parameter α < 1. More generally, in the case of the uncertainty aggregation rule Mf ,

which is parameterized by the function f , precautionarity of the uncertainty aggregation

rule is characterized by the concavity of f as stated in the following proposition.

Proposition 6: An uncertainty aggregation rule of the form Mf is precautionary in

the sense of equation (5.4), if and only if, f is either strictly increasing and concave

on U or strictly decreasing and convex on U . An uncertainty aggregation rule of

the form Mα is precautionary in the sense of equation (5.4), if and only if, α < 1.

The next chapter develops representations of preferences that make use of uncertainty

evaluation by means of Mf . Therefore, I will use the wording precautionary evaluation

or uncertainty aggregation rule as a reference to evaluation that goes along with an

uncertainty aggregation rule of type Mf and that satisfies the concavity condition stated

in the proposition. Other precautionary uncertainty aggregation rules (like e.g. the one

in footnote 18) will be ruled out by the axioms.
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Chapter 6

The Representation

6.1 Atemporal Uncertainty

Chapter 6 develops the representational background for the subsequent discussion on

intertemporal risk aversion and precaution in chapter 7. This section 6.1 revisits the

atemporal von Neumann-Morgenstern setting. Special attention is payed to different

possibilities of fixing (gauging) the originally ordinal utility function over the certain

outcomes. Section 6.2 takes a brief look at the other framing scenario of additively

separable preferences over certain consumption paths, and introduces the concept of

an intertemporal aggregation rule. The two framing scenarios are united in section

6.3, where a representation for the simplest setting sufficiently rich to discuss most

of the topics pointed out in the introduction is given. The distinctive feature of the

representation is that it leaves open the choice of the representing Bernoulli utility

function. Section 6.4 points out how fixing (gauging) Bernoulli utility in different ways

leads to different representations found in the literature. The idea of keeping some

freedom in the choice of Bernoulli utility is already introduced below in the atemporal

framework. While it might appear a little artificial at this point, it will prove helpful in

later sections and chapters.

A useful perspective on the study in this section is the following. Choice in a cer-

tain, atemporal (or one period) setting determines the utility or evaluation function on

the certain outcomes only up to strictly increasing transformations. Introducing un-

certainty, von Neumann & Morgenstern (1944) single out a particular utility function

evaluating the outcomes, by prescribing that expected value maximization should de-

scribe choice over lotteries. In other words, they use the originally ordinal character of
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utility on certain outcomes in order to render a desired uncertainty aggregation rule. If,

however, a cardinal evaluation of certain outcomes is given and the freedom of Bernoulli

utility no longer prevails, additive representations no longer suffice to represent all de-

cision rules conforming with the von Neumann-Morgenstern axioms. Such a situation

can arise, when there is additional information on welfare, for example stemming from

intertemporal considerations carried out in the later sections.

For a slightly different perspective on this reasoning, let me introduce a notion bor-

rowed from physics. I call a degree of freedom in a theory, that has no observable effect,

a gauge. Fixing this freedom in order to yield a particular representation is called

gauging. A more familiar wording for gauging is obviously choosing a normalization.

However, there is a small but important semantic difference between the two concepts.

A normalization is usually carried out at the very beginning of an analysis in order to

simplify the subsequent algebra. On the other hand, identifying a particular gauge goes

along with the reasoning that exploring the freedom of the gauge, instead of eliminat-

ing it right away, can render a deeper understanding of a theory. Chapter 7.1 applies

this technique to identify the quantity that describes intertemporal risk aversion and

precaution. Moreover, carrying along the gauge freedom of Bernoulli utility for a little

while, allows to develop different representations which are useful for different questions

and interpretations later on in sections 6.4, 7.1 and 7.3.

I represent preferences over lotteries in the usual way by a binary relation on P

denoted �. For two lotteries p, p′ ∈ P the interpretation of p � p′ is that lottery p

is weakly preferred with respect to lottery p′. The relation � will be required to be

reflexive.1 The asymmetric part of the relation � is denoted by ≻ and interpreted as a

strict preference. The symmetric part of the relation � is denoted by ∼ and interpreted

as indifference. An uncertainty aggregation rule is said to represent the preference

relation � over lotteries if

p � p′ ⇔ M(p, u) ≥ M(p′, u) for all p, p′ ∈ P (6.1)

and some u ∈ C0(X). It is said to represent � for u∗ ∈ C0(X) if equation (6.1) holds

with u = u∗. The theorem by von Neumann & Morgenstern (1944), in a version close

to Grandmont (1972, 49), states the following.

Theorem 1 (von Neumann-Morgenstern): The axioms

A1 (weak order) � is transitive and complete, i.e.:

1Note that reflexivity is implied by completeness in axiom A1.
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− transitive: ∀ p, p′, p′′ ∈ P : p � p′ and p′ � p′′ ⇒ p � p′′

− complete: ∀ p, p′ ∈ P : p � p′ or p′ � p

A2 (independence) ∀ p, p′, p′′ ∈ P :

p ∼ p′ ⇒ λ p + (1 − λ) p′′ ∼ λ p′ + (1 − λ) p′′ ∀ λ ∈ [0, 1]

A3 (continuity) ∀p∈P : {p′∈P : p′ � p} and {p′∈P : p � p′} are closed in P

hold, if and only if, there exists a continuous function u: X → IR such that

∀ p, p′ ∈ P : p � p′ ⇔ Ep u(x) ≥ Ep′ u(x).

The theorem states that, accepting axioms A1-A3, there exists a Bernoulli utility

function u on the outcomes such that the uncertainty aggregation rule is of the expected

utility form. A1 assumes that the decision maker can rank all lotteries (completeness).

Moreover, if one is preferred to a second and the second is preferred to a third, then the

first should also be preferred to the third (transitivity). Note that, within the context of

deriving a principled approach to choice under uncertainty, A1 should be interpreted as

“if a decision maker had the capacities to rank all possible outcomes, then his ranking

should satisfy transitivity” rather than as an assumption that the decision maker has

actually worked out a ranking of all possible outcomes. The independence axiom A2

has already been discussed in chapter 5.2 on page 62. Continuity A3 assures that

infinitesimally small changes in the probabilities do not result in finitely large changes

in the evaluation.

Now, consider what happens in a situation, where a decision maker has a given

evaluation u for the certain outcomes.2 To answer this question, I adapt my earlier

definition of Bernoulli utility to the duty of preference representation. The minimal

requirement for a utility function to express evaluation of certain outcomes is that

a certain outcome x is preferred over a certain outcome x′, if and only if, the value

assigned to x is higher than that assigned to x′. I call the set of all utility functions,

which satisfy this ordinal requirement, the set of Bernoulli utility functions B� = {u ∈

C0(X) : x � x′ ⇔ u(x) ≥ u(x′)∀x, x′ ∈ X} for a given preference relation �. Note that

for convenience of presentation, the definition of Bernoulli utility functions assumes

continuity (which is also implied by axiom A3). It is a trivial consequence of theorem 1

that, if the preference relation � satisfies axioms A1-A3, the set of Bernoulli utility

functions is nonempty. Moreover, with any Bernoulli utility function u ∈ B�, also a

strictly increasing and continuous transformation of u is in B�. With regard to my earlier

2Wherefrom such a cardinal evaluation may stem will be subject of the subsequent sections. The
key to the answer rests within the intertemporal structure.
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introduction of a Bernoulli utility function in chapter 5.3 without reference to preference

relations, note that any u ∈ C0(X) is a Bernoulli utility function in the sense above for

some preference relation �. Now, let me specify the uncertainty aggregation rules that

represent the decision makers preference over lotteries in the sense of equation (6.1) with

a given Bernoulli utility function u ∈ B� for a preference relation �, satisfying the von

Neumann-Morgenstern axioms.

Proposition 7: Given a binary relation � on P and a Bernoulli utility function u ∈ B�

with range U , the relation � satisfies axioms A1-A3, if and only if, there exists a

strictly monotonic and continuous function f : U → IR such that for all p, p′ ∈ P

p � p′ ⇔ Mf (p, u) ≥ Mf (p′, u).

Moreover, if f represents � in the above sense, then f ′: U → IR represents � in

this sense, if and only if, there exist a, b ∈ IR, a 6= 0 such that f ′ = a f + b.3

Note that the indeterminacy of f up to affine transformations does not translate into

an indeterminacy of the functional M. A function f ′ = a f + b with a, b ∈ IR, a 6= 0

renders the same uncertainty aggregation rule as f , that is Mf (·, ·) = Mf ′

(·, ·). This

holds, as the inverse f ′−1 cancels out the affine displacement of f ′ with respect to f .

In what follows, the group of nondegenerate affine transformations will be denoted by

A = {a : IR → IR : a(z) = a z + b , a, b ∈ IR, a 6= 0} with elements a ∈ A, and the group

of positive affine transformations will be denoted by A+ = {a+ : IR → IR : a+(z) =

a z + b , a, b ∈ IR, a > 0}. Then, the uniqueness result of proposition 7 can be written

as ‘...if and only if, there exists a ∈ A such that f ′ = af .’ In later propositions, this

notation yields a significant simplification in the formulation of the uniqueness results.

In all of the upcoming propositions, corollaries and theorems, the uniqueness result will

be stated in a similar form at the end of the proposition (corollary, theorem). Therefore,

I will often refer to the uniqueness result as the ‘moreover part’ of the corresponding

proposition.4

Let me come back to the perspective given at the beginning of this section. Choice

under certainty only renders ordinal information on the Bernoulli utility function u and,

thus, can be represented by all members of B�. Proposition 7 states that this gauge

freedom for Bernoulli utility u translates into the representing uncertainty aggregation

3The theorem can also be stated using only increasing versions of f . In this case Mα
would be

included in Mf
in a less obvious way than by f(z) = zα. Strictly decreasing functions are allowed in

the proposition, because the inverse in (5.2) cancels out any nondegenerate affine transformation.

4Similarly, the proof of the uniqueness results is given in a ‘moreover part’ subsequent to the proof
of the main assertion of the propositions, corollaries and theorems.
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rule through the form of the parameterizing function f . Taking this correspondence the

other way round one obtains

Corollary 1: For any strictly monotonic, continuous function f : IR → IR the following

assertion holds:

A binary relation � on P satisfies axioms A1-A3, if and only if, Mf represents

�. The latter is: there exists a continuous function u : X → IR such that

∀p, p′ ∈ P : p � p′ ⇔ Mf (p, u) ≥ Mf (p′, u). (6.2)

Moreover, if u represents � in the sense of equation (6.2) then u′: X → IR repre-

sents � in this sense if and only if there exists a+ ∈ A+ such that u = f−1a+ f u′ .5

The evaluation function u will obviously be a member of B�, as for any f it holds that

Mf (x, u) = u(x). Hence, u represents choice on the certain outcomes in the sense of the

definition of a Bernoulli utility function. The uniqueness of u is, in general, no longer

up to affine transformations as in theorem 1. Indeterminacy of the Bernoulli utility

function u corresponds to those transformations of u, which result in affine transforma-

tions of f , and, thus, leave the uncertainty aggregation rule unchanged. For example, in

the representation where uncertainty aggregation corresponds to the geometric mean,

the remaining gauge freedom of u, after fixing f = ln, is expressed by the group of

transformations u → c ud , c, d ∈ IR++.6

Corollary 1 points out, how Bernoulli utility functions and uncertainty aggregation

rules always come in pairs. For f increasing and strictly concave (or in particular Mα<1),

corollary 1 reproduces von Neumann-Morgenstern’s theorem with expected value re-

placed by a precautionary uncertainty aggregation rule (compare proposition 6). An

immediate consequence of corollary 1 is that

In the atemporal framework a dispute on whether to apply a pre-

cautionary uncertainty aggregation rule or expected value cannot

be distinguished from (or can be stated as) a disagreement on the

evaluation function over the certain outcomes.

5Recall that f−1a+ f u′ describes the composed function f−1 ◦a+ ◦ f ◦ u′ and not a multiplication
of values. Note that equation (6.2) uses f only on the restricted domain U . Alternatively one can
define f : U → IR on a nondegenerate interval U and require u : X → U to be surjective. Then the
representing u in equation (6.2) is unique. Compare to the analysis in chapter 7.4.

6Setting f = ln corresponds to the remaining freedom u = f−1a+ f u′ = ea ln(u′)+b = u′aeb with
a > 0.
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However, the definition of a precautionary uncertainty aggregation rule in chapter 5.3

appealed to an intertemporal setup, where the evaluation of uncertainty in the second

period determined the willingness to undergo prevention effort in the first period. Such

a time structure proves to be essential to define the concept of precaution in terms of

preferences. As a consequence, temporality is introduced in the next section.

6.2 Intertemporal Certainty

This short section treats the other framing scenario of the general framework, i.e. addi-

tively separable preference over certain outcome paths. Time is discrete with planning

horizon T ∈ IN. Individual periods are usually denoted with time indices t, τ ∈ {1, ..., T}.

The set of all certain consumption paths from period t to period T is denoted by

Xt = XT−t+1, where XT−t+1 denotes the T− t+1– fold Cartesian product of X with

itself.7 A consumption path is generally written with a calligraphic x and its period τ

entry is denoted by xτ . When explicit reference is made to the fact that x is an ele-

ment of Xt I give the consumption path an upper case time index t. Then xt denotes a

consumption path from period t to period T , and xt
τ denotes the period τ entry of the

respective consumption path. For example, a (planned) consumption path x ∈ X1 in pe-

riod one writes as x = (x1, x2, ..., xT ). Whenever such a notation is unambiguous, I also

label the entry xt by xt, yielding the notation x = (x1, x2, ..., xT ) for the consumption

path. Furthermore, let x0 ∈ X be some benchmark consumption. It is arbitrarily fixed

and serves to define the shorthand notation [x]t ≡ (x, x0, ..., x0) for the consumption

path [x]t ∈ Xt that yields the specified consumption x in period t and the benchmark

consumption in all subsequent periods. The benchmark consumption is a common out-

come when comparing two different paths of type [x]t and [x′]t. Thus, the relation

[x]t �t [x′]t expresses a preference of x over x′ in period t.8 The final piece of notation

concerns the introduction of an intertemporal aggregation rule. Like the uncertainty

aggregation rules in the preceding sections have been parameterized by a function f ,

the intertemporal aggregation rules will be parameterized by a function g. For a given

function u ∈ C0(X) with range U , I define G = g(U), G = g(U) and G = [G,G]. In

addition, I define Γ = (G,G).

7There are T − t + 1 periods from t to T for which consumption has to be specified. I do not
distinguish different sets of outcomes for different periods. X can be thought of as the union of all
possible outcomes perceivable in any period.

8The intertemporal separability implied by axiom A4 will make this expression of preference inde-
pendent of the choice of the benchmark consumption x0.
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In this section, the binary relation � depicts preferences on the set X1 of certain

consumption paths starting in the first period. As mentioned before, I want the model to

be additively separable over time with respect to certain outcomes. The reason is that it

is the predominant framework for intertemporal modeling, in particular in environmental

economics, and eases the economic interpretation (compare the discussion in chapter

7.3). Moreover, despite its simplicity, the additively separable structure on certain

outcomes over time proves to be sufficiently rich to analyze the concept of precaution

and intertemporal risk aversion. Examples for axiomatizations of additive separability

include Koopmans (1960) and Radner (1982). However, these axiomatizations are not

within the focus of my analysis. In consequence, I take additive separability as a direct

assumption expressed in the following axiom.

A4 (certainty additivity) There exists u ∈ C0(X) such that for all x, x′ ∈ X1

x � x′ ⇔
T∑

τ=1

u(xτ ) ≥
T∑

τ=1

u(x′
τ ). (6.3)

Note that this axiom also includes the assumptions of stationarity and a zero rate of time

preference. Stationarity implies that the mere passage of time does not have an (antic-

ipated) effect on preferences. For example, if stationarity holds, I will not (anticipate

in my plans to) prefer Beck’s beer over Budweiser in 2010 and Budweiser over Beck’s

beer in 2011. The assumption that the pure rate of time preference is zero implies that

future well-being is given the same weight as present well-being. Both assumptions will

be relaxed in chapter 8. However, for the time being, these assumptions are helpful, as

they do not affect qualitatively the concepts of precaution and intertemporal risk aver-

sion, and allow to focus on the essential. In chapters 9 and 10 I derive axiomatizations

that imply stationarity and a zero rate of time preference, taking general non-stationary

preference as a starting point. Another assumption that is implied by axiom A4, is his-

tory independence, which excludes (anticipated) habit formation. An extension of the

concept of intertemporal risk aversion to a framework allowing for history dependence

of preferences, is not pursued in this study, but constitutes an interesting challenge for

future research.

Like in the preceding section, the evaluation functions representing preferred choice

on certain one-period outcomes are called Bernoulli utility functions. The respective

set B� characterizing the Bernoulli utility functions is defined by the straight-forward

extension B� = {u ∈ C0(X) : [x]1 � [x′]1 ⇔ u(x) ≥ u(x′)∀ x, x′ ∈ X}, which coincides

with the definition given in section 6.1 for T = 1. Note that axiom A4 ensures that

the definition of B� does not depend on the choice of the benchmark consumption x0.9

9Nor does it depend on the fact that the defining paths [·] have constant future consumption streams.
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It is important to realize that axiom A4 does not imply that equation (6.3) holds for

every Bernoulli utility function u ∈ B�. It only implies that there exists a particular

Bernoulli utility function such that comparisons between different consumption paths

can be expressed as comparisons of the sum over per period utility.10 For an arbitrary

given Bernoulli utility function u the following analogy to proposition 7 holds.

Proposition 8: Given a preference relation � on X1 and a Bernoulli utility function

u ∈ B� with range U , the relation � satisfies axiom A4 if and only if there exists

a strictly monotonic, continuous function g : U → IR such that for all x, x′ ∈ X1

x � x′ ⇔ g−1

[
1
T

T∑
t=1

g ◦ u(xt)

]
≥ g−1

[
1
T

T∑
t=1

g ◦ u(x′
t)

]
. (6.4)

Moreover, if T ≥ 2 and g represents � in the sense of equation (6.4), then g′:

U → IR represents � in this sense, if and only if, there exists a ∈ A such that

g′ = ag.

For the case of two periods let me abbreviate the representational form by introduc-

ing the notion of an intertemporal aggregation rule N g : U × U → IR, N g(·, ·) =

g−1
[

1
2
g(·) + 1

2
g(·)
]
. Such an intertemporal aggregation rule resembles closely the func-

tional form of the uncertainty aggregation rule Mf . Here, the probability weights

entering Mf (p, u) correspond to the period weights 1
2

and assure that the expression is

well defined.11 The fact that the period weights are fixed, allows to define the intertem-

poral aggregation rule directly on the range U of the Bernoulli utility function. For the

particular Bernoulli utility function corresponding to u in equation (6.3) of axiom A4,

the function g is the identity and intertemporal aggregation becomes linear.

10Referring to axiom A4 at more length as ‘additive separability over certain consumption paths’
might be more helpful in making this point. Naming the axiom simply ‘certainty additivity’ follows
Chew & Epstein (1990, 61).

11That is that the range of 1
2 g(·) + 1

2 g(·) coincides with the domain of g−1. For a stationary setting
with positive discounting, these weights change to the form given in chapter 9.
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6.3 Certain × Uncertain

Combining the thoughts of sections 6.1 and 6.2, I now combine time structure and uncer-

tainty. For this end I consider the simplest nontrivial setting: a two period framework,

where consumption in the first period is certain and consumption in the second period

is uncertain. It is the simplest framework that allows to shed light on the idea of pre-

caution, as it has been motivated in chapter 5.2. I consider such a simplified framework

useful to familiarize with the structure of the representation, the idea of gauging and for

introducing the concept of intertemporal risk aversion. As I work out in chapter 8, all

the essential insights gained in this simplified framework extend in a straight forward

way to any finite time horizon. For such a multiperiod extension, I apply the frame-

work of Kreps & Porteus (1978). In their terminology, the time frame discussed here

only spans one and a half periods. Anticipating the more general setup and avoiding

notational confusion I denote the first period in this section by t = F and the second

and last period by t = T .12 Let me finally remark that this short section only presents

the mathematical structure. Its economic content will be discussed in chapter 7.

Elements xF ∈ X denote certain consumption in the first period. Degenerate lotteries

yielding certain consumption in the second period are denoted by xT ∈ X. If the period,

in which outcome x takes place is obvious, the time index is omitted. General objects of

choice in the second period are the lotteries p ∈ P , just as in section 6.1. The preference

relation over these objects is denoted by �T . Objects of choice in the first period are

combinations of certain consumption in the first period and lotteries faced in the next:

(x, p) ∈ X × P . Preferences over these objects are given by the relation �F . The set of

preferences in both periods will be denoted by �= (�F ,�T ).

I demand that preferences restricted to certain consumption paths satisfy certainty

additivity A4, and that lotteries are evaluated on basis of the von Neumann-Morgenstern

axioms A1-A3. In addition, the preferences in period one and two shall be connected

by the following consistency axiom:

A5 (time consistency) For all x ∈ X and p, p′ ∈ P : (x, p) �F (x, p′) ⇔ p �T p′ .

This is time consistency in the sense of Kreps & Porteus (1978).13 It is a requirement for

choosing between two consumption plans that coincide in their first period outcome. For

12Due to backward recursion in the derivation of the general representation, the structure of the
second period in this representation corresponds to the last period in the multiperiod setting. A full
time-step back would also introduce uncertainty for the preceding (i.e. first) period.

13Adapted to the one and a half period setting of this section.
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these choice situations, axiom A5 demands that in the first period the decision maker

shall prefer the plan that gives rise to the lottery that is preferred in the second period.

Again, I am interested in finding a representation for �, for a given evaluation u ∈

B� ≡ B�F
on the certain one-period outcomes. The definition of the set of Bernoulli

functions given in the preceding section still applies. Setting u ∈ B� ≡ B�F
is justified

by the fact that certainty additivity A4 and time consistency A5 imply that B�F
=

B�T
.14 Denote by �F |X×X the restriction of �F to the set of certain consumption paths

(or pairs). The following representation theorem holds.

Theorem 2: Given a set of binary relations �= (�F ,�T ) on (X×P, P ) and a Bernoulli

utility function u ∈ B� with range U , the set of relations � satisfies

i) A1-A3 for �T (vNM setting)

ii) A4 for �F |X×X (certainty additivity)

iii) A5 (time consistency)

if and only if, there exist strictly monotonic and continuous functions f : U → IR

and g : U → IR such that

v) (x, p) �F (x′, p′) ⇔ N g
[
u(x) , Mf (p, u)

]
≥ N g

[
u(x′) , Mf (p′, u)

]

vi) p �T p′ ⇔ Mf (p, u) ≥ Mf (p′, u) .

Moreover, g and f are unique up to nondegenerate affine transformations.

In this representation, period T lotteries are evaluated the same way as in proposition 7

by means of the uncertainty aggregation rule Mf . In the first period, these second period

lottery-evaluations are aggregated with the evaluation of the certain outcomes xF by

means of the intertemporal aggregation rule N g the same way as in proposition 8. With

respect to the roman numbering in the above and later theorems, I adopt the convention

that numbers i − iv are related to assumptions on preferences, while numbers starting

from v are concerned with the functional representation.15 Now, it will be interesting

to look again at the gauge-freedom within the representation.

14This is shown in the proof of theorem 2. Observe that in the definition of B�F
it is [x] = (x, x0)

where x0 is identified with the degenerate lottery yielding the benchmark outcome x0 in the second
period.

15The only exception to this rule will be the very last theorem in this dissertation.
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6.4 Gauging

Like in section 6.1, there is some gauge freedom rendered to the model by the freedom

to choose the Bernoulli utility function in theorem 2. Given some u ∈ B�, any other

Bernoulli utility function is a strictly increasing continuous transformation of u and any

strictly increasing continuous transformation of u yields an element of B�. Moreover

the following lemma holds.

Lemma 1: If the triple (u, f, g) represents the set of preferences � in the sense of

theorem 2, then so does the triple (s◦u, f ◦s−1, g ◦s−1) for any s : U → IR strictly

increasing and continuous.

Now, like in section 6.1, I can gauge the uncertainty aggregation rule in the representa-

tion of theorem 2 to any desired form which is parameterized by a strictly monotonic

and continuous f ∗. This is achieved by choosing s = f ∗−1 ◦ f in lemma 1, and yields

the following corollary of theorem 2.

Corollary 2 (f-gauge) :

For any strictly monotonic and continuous function f : IR → IR, the following

equivalence holds:

A set of binary relations � satisfies

i − iii) of theorem 2,

if and only if, there exists a continuous function u : X → IR with range U and a

strictly monotonic and continuous function g : U → IR such that

v − vi) of theorem 2 hold.

Moreover, the pairs (u, g) and (u′, g′) both represent � in the above sense, if

and only if, there exist a ∈ A and a+ ∈ A+ such that the relation (u, g) =

(f−1a+f u′,a g′ f−1a+−1
f) holds.

The gauge used implicitly by Kreps & Porteus (1978) is obtained for f = id. The

latter implies that the uncertainty aggregation rule becomes additive, i.e. expected util-

ity. Then equations v) and vi), characterizing the representation (compare theorem 2),

become:

Kreps Porteus gauge (f = id−gauge) :

v) (x, p) �F (x′, p′) ⇔ N g [u(x) , Ep u] ≥ N g [u(x′) , Ep′ u]

vi) p �T p′ ⇔ Ep u ≥ Ep′ u .
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While uncertainty aggregation is linear in this gauge, aggregating Bernoulli utility of

the first periods with expected Bernoulli utility of the second period is, in general,

nonlinear. The interpretation of the linearity of uncertainty aggregation at the cost of

nonlinearity over time will be discussed in the next chapter. Let me remark that Kreps

& Porteus (1978) get a slightly more general intertemporal aggregation rule, for they

do not demand certainty additivity in the sense of axiom A4. In the notion of Johnsen

& Donaldson (1985), my axiom implies unconditional strong independence over time

for certain outcomes while the analogue in their setting would be conditional strong

independence, which is slightly weaker. However, axiom A4 allows for a special gauge

that will prove most helpful for discussing the meaning of welfare and precaution in

chapter 7.3. This gauge is a special case of the following

Corollary 3 (g-gauge) :

For any strictly monotonic and continuous function g : IR → IR, the following

equivalence holds:

A set of binary relations � satisfies

i − iii) of theorem 2,

if and only if, there exists a continuous function u : X → IR with range U and a

strictly monotonic and continuous function f : U → IR such that

v − vi) of theorem 2 hold.

Moreover, the pairs (u, f) and (u′, f ′) both represent � in the above sense, if

and only if, there exist a ∈ A and a+ ∈ A+ such that the relation (u, f) =

(g−1a+g u′,a f ′ g−1a+−1
g) holds.

It renders the above mentioned certainty additive gauge for g = id. Setting the function

g to identity implies that intertemporal aggregation of Bernoulli utility becomes linear.

Then the representation mimics the setting discussed in chapter 5.

Certainty additive gauge (g = id−gauge) :

v) (x, p) �F (x′, p′) ⇔ u(x) + Mf (p, u) ≥ u(x′) + Mf (p′, u),

vi) p �T p′ ⇔ Mf (p, u) ≥ Mf (p′, u).

In this gauge, uncertainty aggregation will generally be nonlinear and, thus, differ from

taking the expected value. Let me point out that in the general multiperiod framework as

introduced in chapter 8.1, the intertemporal aggregation rule N g is applied recursively.

Due to the nonlinearity in the uncertainty aggregation rules and the recursive evaluation
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of lotteries, complete additive separability in the sense of an immediate summation over

periods is obtained only for certain consumption paths.16

Another special gauge is possible, if the outcome space is one-dimensional, i.e. X ⊂ IR,

and Bernoulli utility is strictly increasing in the consumption level x ∈ X. Then, the

representing Bernoulli utility function u in theorem 2 can be chosen as the identity,

rendering immediately the

Epstein Zin gauge (u = id−gauge, one commodity) :

v) (x, p) �F (x′, p′) ⇔ N g
[
x , Mfp

]
≥ N g

[
x′ , Mfp′

]

vi) p �T p′ ⇔ Mfp ≥ Mfp′

with Mfp ≡ Mf (p, id) = f−1
[∫

X
f(x) dp

]
.

In this representation, Bernoulli utility is not explicit anymore. Such a representation

is used by Epstein & Zin (1989) to distinguish between risk aversion and intertemporal

substitutability, as will be discussed in chapter 7.1. The representation assumed by these

authors slightly differs from the one supported by my axiomatization. With respect to

the intertemporal aggregation rule, Epstein & Zin (1989) assume the special case where

g(z) = zρ, which renders an intertemporal aggregation with a constant elasticity of

intertemporal substitution. On the other hand, they assume a more general uncertainty

aggregation rule, which does not comply with von Neumann & Morgenstern’s (1944)

independence axiom. For the one and a half period model discussed here, already Selden

(1978) introduced the representation corresponding to the u = id-gauge. However, only

Epstein & Zin (1989) give a time consistent multiperiod extension that has been taken up

by many authors in order to disentangle risk aversion from intertemporal substitutability.

Such a disentanglement is the topic of the next section.

16For the evaluation of the uncertain future, only intertemporal aggregation in each recursive step is
additive in the certainty additive gauge.
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Chapter 7

Discussion

7.1 Risk Aversion and Intertemporal

Substitutability

This chapter elaborates the economic interpretation of the representation developed in

the preceding chapter and introduces the concept of intertemporal risk aversion. First,

this section takes a close look at the disentanglement of intertemporal substitutability

and (standard) risk aversion in the one and in the multi-commodity setting. While

the latter quantities are seen to be good-dependent, an invariant quantity is identified.

Section 7.2 develops an interpretation of this quantity by axiomatically introducing the

concept of intertemporal risk aversion. Section 7.3 relates the concept to the discussion

on precaution in chapter 5. Section 7.4 elaborates quantitative measures of intertemporal

risk aversion and identifies the conditions for uniqueness. Finally, section 7.5 gives a

brief summary of the analysis in part II.

It is well known that risk aversion and intertemporal substitutability cannot be dis-

tinguished within the standard framework of intertemporally additive expected utility

(Weil 1990). For the latter preference specification the intertemporal elasticity of sub-

stitution is confined to the inverse of the coefficient of relative risk aversion. However,

Epstein & Zin (1989) work out how these two characteristics of preference can be dis-

entangled in the more general setting of Kreps & Porteus (1978). To this end they use

a one commodity setting and the Epstein Zin gauge of chapter 6.4:

�F representation in Epstein Zin gauge (u = id−gauge):

N g
[
x , Mfp

]
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with Mfp = Mf (p, id) = f−1
[∫

X
f(x) dp

]
.

With respect to the intertemporal aggregation rule, Epstein & Zin (1989) assume the

special case where g(z) = zρ, rendering a CES function for intertemporal aggregation.

Then, σ = 1
1−ρ

characterizes the elasticity of intertemporal substitution on certain con-

sumption paths, and the authors identify ρ as the parameter reflecting intertemporal

substitutability (Epstein & Zin 1989, 949). The easiest way to recognize that the un-

certainty aggregation rule characterizes risk attitude,1 is by comparing two risky second

period choices going along with the same first period consumption:

(x, p) �F (x, p′)

⇔ N g
[
x , Mfp

]
≥ N g

[
x , Mfp′

]

⇔ Mfp ≥ Mfp′

⇔
∫

f(x) dp ≥
∫

f(x) dp′ (7.1)

It is well known from the atemporal theory of risk aversion that, for a decision maker

whose evaluation of lotteries relies on equation (7.1), the concavity of f plays the es-

sential role in characterizing his risk aversion.2 For a twice differentiable function f ,

equation (7.1) reveals the Arrow-Pratt-measure of relative risk aversion as RRA(x) =

−f ′′(x)
f ′(x)

x. The advantage of the Arrow-Pratt-measure of relative risk aversion as op-

posed to f itself, is that it eliminates the affine indeterminacy of f that prevails by

the moreover part of theorem 2. In particular, for f(z) = zα the coefficient of relative

risk aversion becomes RRA = −f ′′(x)
f ′(x)

x = 1 − α (constant relative risk aversion). I

adopt the wording that f in the general setting, and α in the particular case of constant

relative risk aversion, parametrize uncertainty aggregation and risk attitude. More pre-

cisely, they characterize ‘a-temporal’ risk attitude, which means that in equation (7.1)

time plays no role whatsoever. The emphasis of ‘a-temporal’ is borrowed from Nor-

mandin & St-Amour (1998, 268), who use it to point out the difference between the

‘inter-temporal’ information contained in the parametrization of intertemporal substi-

tutability, and the ‘a-temporal’ nature of the risk attitude captured by RRA. I come

1Note that Epstein & Zin (1989) assume a more general uncertainty aggregation rule, which, in
general, does not comply with von Neumann & Morgenstern’s (1944) independence axiom.

2In the atemporal theory developed by von Neumann & Morgenstern (1944) and stated in theorem 1,
f is usually denoted as u and given the interpretation of Bernoulli utility itself. To understand the
relation to Bernoulli utility in the intertemporal setting, note first that in the atemporal setting g can
be neglected. Then, by lemma 1, the preference representation over the second period lotteries (id, f)
corresponding to equation (7.1), is equivalent to the representation (f ◦ id, f ◦f−1) = (f, id). The latter
is a representation in the sense of theorem 1. In words, f in the Epstein Zin (u = id-)gauge corresponds
to Bernoulli utility u in the classical von Neumann & Morgenstern (1944) theorem.

86



7.1. RISK AVERSION AND INTERTEMPORAL SUBSTITUTABILITY

back to this idea in the next section, when introducing the concept of intertemporal

risk aversion. The special case, exhibiting constant elasticity of substitution (g(z) = zρ)

and constant relative risk aversion (f(z) = zα), is also known as generalized isoelastic

preference (Weil 1990). Independently of Epstein & Zin (1989, 1991), it has also been

developed by Weil (1990). Currently, it represents the predominantly employed model

for disentangling risk aversion from intertemporal substitutability. For this special case,

the preference representation in the first period writes as follows.

�F representation in Epstein Zin gauge (u = id−gauge), isoelastic case:
{

1
2
xρ + 1

2
[Mαp]ρ

} 1
ρ

with Mαp = Mα(p, id) =
[∫

X
xα dp

] 1
α .

This form has been used in many applications ranging from asset pricing (Attanasio

& Weber 1989, Svensson 1989, Epstein & Zin 1991, Normandin & St-Amour 1998,

Epaulard & Pommeret 2001) over measuring the welfare cost of volatility (Obstfeld 1994,

Epaulard & Pommeret 2003b) to resource management3 (Knapp & Olson 1996, Epaulard

& Pommeret 2003a, Howitt et al. 2005) and evaluation of global warming scenarios (Ha-

Duong & Treich 2004). An overview over the empirical findings for the parameters α

and ρ can be found in Giuliano & Turnovsky (2003). Note that the papers mentioned

above employ the multiperiod extension of the model with a generally positive discount

rate, as introduced in chapters 8 and 9.4

The analysis in chapter 6.4 shows that the Epstein Zin gauge is a particular represen-

tation for a one commodity setting. By choosing the Bernoulli utility function as the

identity, it uses the natural scale of the single consumption commodity to measure risk

aversion and intertemporal substitutability. The representing triple in the sense of the-

orem 2 can be written as (idX , f, g), where idX denotes the identity on X ⊂ IR. In this

paragraph I work out, how a change in the measure-scale of the commodity generally

alters the parameterizations of risk attitude and intertemporal substitutability. In the

case of one commodity, the analysis highlights an aspect of gauge-dependence that be-

comes crucial in the multi-commodity setting. Let x ∈ [X,X] ⊂ IR+ denote the quantity

3While Knapp & Olson (1996) and Epaulard & Pommeret (2003a) solve theoretical models in order
to obtain optimal rules for resource use, Howitt, Msangi, Reynaud & Knapp (2005) try to rationalize
observed reservoir management in California, which cannot be explained by means of intertemporally
additive expected utility.

4I say generally positive, because some estimates, when disentangling α and ρ, actually find a
negative discount rate (e.g. Epstein & Zin 1991). For positive discounting the above representation

on certain × uncertain outcomes becomes
{

1
1+β u(x)ρ + β

1+β

[
Mα

p
]ρ} 1

ρ

(see chapter 9). Moreover

Svensson (1989) translates the isoelastic model to continuous time, which is also used in Epaulard &
Pommeret (2003b) and Epaulard & Pommeret (2003a).
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of the (single) consumption commodity in the original measure-scale. For some increas-

ing continuous transformation s ∈ C0([X,X]), let x̃ = s(x) ∈ X̃ = [s(X), s(X)] ⊂ IR

denote the quantity of the consumption commodity in the new measure-scale. For ex-

ample, a change in measurement from kg to g would correspond to s(x) = 1000x.

As u is the identity in the Epstein Zin gauge, such a change of measure-scale can

be identified with u = idX ⇒ ũ = s ◦ idX corresponding to idX̃ in the new mea-

sure scale. By lemma 1 it is known that with the triple (idX , f, g) also the triple

(s ◦ idX , f ◦ s−1, g ◦ s−1) represents �F . But in terms of the new measure scale, the

latter writes as (idX̃ , f ◦ s−1, g ◦ s−1) = (idX̃ , f̃ , g̃) with f̃ = f ◦ s−1 and g̃ = g ◦ s−1

defined on X̃. These functions f̃ and g̃ are the new parameterizations of risk aversion

and intertemporal substitutability for the changed measure-scale. A twice differentiable

f̃ is associated with the new coefficient of relative risk aversion

˜RRA(x̃) = −
f̃ ′′(x̃)

f̃ ′(x̃)
x̃ = −

1

s′(x)

[
f ′′ (s−1(x̃))

f ′ (s−1(x̃))
−

s′′ (s−1(x̃))

s′ (s−1(x̃))

]
x̃ .

Comparing relative risk aversion at the same physical consumption level x̃ = s(x) yields

the index

˜RRA(x̃)
∣∣∣
x̃=s(x)

= −
f̃ ′′(x̃)

f̃ ′(x̃)
x̃

∣∣∣∣∣
x̃=s(x)

= −
s(x)

s′(x)

[
f ′′ (x)

f ′ (x)
−

s′′ (x)

s′ (x)

]

for the new measure-scale as compared to

RRA(x) = −
f ′′ (x)

f ′ (x)
x

for the old measure-scale. Hence, in general, a change of the measure-scale of the

consumption commodity changes the coefficient of relative risk aversion.5 However, it

is interesting to note that a multiplicative rescaling of the consumption unit leaves the

coefficient of relative risk aversion unchanged.6 Let s(x) = a x as in the example of

changing the measure from kg to g (a = 1000). Then it is

˜RRA(x̃)
∣∣∣
x̃=ax

= −
f̃ ′′(x̃)

f̃ ′(x̃)
x̃

∣∣∣∣∣
x̃=ax

= −
ax

a

[
f ′′ (x)

f ′ (x)
−

0

a

]
= −

f ′′ (x)

f ′ (x)
x = RRA(x) .

5Note that this is despite the fact that the coefficient of relative risk aversion is defined in a way to
cancel out the unit of the x measurement.

6This fact is particularly interesting because indeterminacy up to a multiplicative constant is a
frequently encountered form of indeterminacy when defining a measure scale, e.g. for the quantity of
an arbitrarily divisible good. In such a situation, the meaning of a zero consumption level is naturally
given, and the concept of “double as much” as well. However, the unit has to be fixed by convention,
e.g. in the mentioned example to grams. A different fixing of the unit (e.g. to kg or pound) corresponds
to a multiplicative rescaling of the measure-scale.
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This finding implies that the coefficients α and ρ in the isoelastic setting do not depend on

a scaling factor of the measure units. Note, however, that a general affine transformation

a ∈ A+ does change the coefficient of relative risk aversion:

˜RRA(x̃)
∣∣∣
x̃=ax+b

= −
f̃ ′′(x̃)

f̃ ′(x̃)
x̃

∣∣∣∣∣
x̃=ax+b

= −
f ′′ (x)

f ′ (x)

ax + b

a
6= RRA(x) .

The preceding reasoning on the change of risk measure under a change of measure-

scale is intimately linked to the question on how to extend the notion of risk aversion

and the disentanglement of risk aversion and intertemporal substitutability to a multi-

commodity setting. Let me first explore an example, where a decision maker has pref-

erences over two different types of consumption, x1 and x2, quantified on some closed

subsets of IR+. Let me assume that his preferences are representable by a Cobb-Douglas

utility function u(x1, x2) = xγ1

1 xγ2

2 with γ1, γ2 > 0, and furthermore that f(z) = zα and

g(z) = zρ as in the isoelastic setting. Denote period τ consumption of good i by xiτ .

I want to ask for the risk aversion of the decision maker with respect to the first com-

modity, assuming that the second commodity is fixed to some level x̄2 = x21 = x22. In

that case, the representation can be transformed as follows:
{

1

2
(xγ1

11x̄
γ2

2 )ρ +
1

2

[∫
dp2 (xγ1

12x̄
γ2

2 )α

] ρ
α

} 1
ρ

= x̄γ2

2

{
1

2
xγ1ρ

11 +
1

2

[∫
dp2 xγ1α

12

] ρ
α

} 1
ρ

which is ordinally equivalent to
{

1

2
xγ1ρ

11 +
1

2

[∫
dp2 xγ1α

12

] γ1ρ

γ1α

} 1
γ1ρ

.7 (7.2)

The representation in the last line characterizes preferences over the first commodity,

given an arbitrary but fixed consumption level of the second good. Considering only

choice over the first good, I can identify the coefficient of relative risk aversion with

RRA1 = 1 − γ1α and the parameter of intertemporal substitutability with γ1ρ, imply-

ing an elasticity of intertemporal substitution σ1 = 1
1−γ1ρ

. On the other hand, fixing

the consumption level of the first good, yields, by the same reasoning, a coefficient of

intertemporal risk aversion RRA2 = 1 − γ2α and an intertemporal elasticity of substi-

tution of σ2 = 1
1−γ2ρ

. This simple example shows that the definition of risk aversion and

7In the case of positive discounting and a discount factor β (compare chapter 9), equation (7.2)

would write as
{

1
1+β xγ1ρ

11 + β
1+β

[∫
dp2 xγ1α

12

] γ1ρ

γ1α

} 1

γ1ρ

.
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intertemporal substitutability carried out above is good-specific. In the setting with two

consumption commodities, there is an intertemporal substitutability for good one that,

in general, differs from the intertemporal substitutability of good two, and a coefficient

of relative risk aversion for good one that, in general, also differs from the coefficient of

relative risk aversion for the second good. In general, the definitions of risk aversion

and intertemporal substitutability introduced in this section depend on the good under

observation and its measure-scale.8 In such a framework (or rather with such a word-

ing), it can even happen that the decision maker is risk averse with respect to lotteries

over the first good, but risk loving with respect to lotteries over the second good. In

the scenario above, the parametrization γ1 = 1
4
, γ2 = 3

4
and α = 2, yields such a result

with RRA1 = 1 − γ1α = 1
2

and RRA2 = 1 − γ2α = −1
2
. Note that in the extension of

atemporal risk aversion to multiple commodities, as developed by Kihlstrom & Mirman

(1974), this finding corresponds to a decision maker, who has a positive risk premium

for lotteries of one good, but a negative risk premium for lotteries over another good.

Personally, I consider such a diverge of risk attitude between different commodities as

unsatisfactory. My semantic understanding of risk aversion (or attitude towards uncer-

tainty) asks for a measure that is not coupled to a particular consumption commodity,

but rather to preference in general. In the following, such a measure is identified. To

this end, I exploit the gauge freedom of the representation.

In the formalism worked out in chapter 6, both transformations carried out in the two

preceding paragraphs can be interpreted as a change of the underlying Bernoulli utility

function. In the first case, where I have analyzed a change of measure-scale, this has

been used explicitly. In the situation of two consumption commodities, the underlying

reasoning is as follows. Instead of u(x1, x2) = xγ1

1 xγ2

2 , I also can choose the strictly

monotonic transformation ũ(x1, x2) = x1x
γ2/γ1

2 as the Bernoulli utility function for the

representation, which is linear in the first consumption commodity. In order to depict the

same preferences � by means of ũ, I have to change f and g according to lemma 1. The

strictly monotonic transformation that satisfies ũ = s◦u is s(z) = z1/γ1 ⇔ s−1(z) = zγ1 .

Therefore, the new parametrization of risk aversion is f ◦ s−1(z) = (zγ1)α = zγ1α which

renders the coefficient of relative risk aversion RRA1 = 1 − γ1α. The same reasoning

applies to intertemporal aggregation rendering the intertemporal substitutability σ1 =
1

1−γ1ρ
. Similarly, choosing Bernoulli utility linear in the consumption quantity of the

second good renders the coefficients of relative risk aversion RRA2 = 1 − γ2α and the

elasticity of intertemporal substitution σ2 = 1
1−γ2ρ

. Let me conclude that commodity and

8Note that for more general preference settings RRA1 will not only depend on the consumption level
of the first commodity, but also on the consumption level of the fixed second good.
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scale dependence of the parameters of risk aversion and intertemporal substitutability

correspond to a dependence of these parameters on the choice of Bernoulli utility.

The connection between commodity and scaling dependence of the risk aversion pa-

rameter and the choice of Bernoulli utility, suggests that a notion of risk aversion which

is to be independent of a specific consumption commodity, should not depend on the

choice of the Bernoulli utility function. In this spirit, the following lemma identifies a

natural candidate for such a measure. Denote for any f ∈ C0(U) by f̂ = {af : a ∈ A}

the class of all members of C0(U) that coincide with f up to nondegenerate affine trans-

formations. Inverting each member of f̂ yields the set f̂−1 = {f−1a : a ∈ A}.9 For

f, g ∈ C0(U), define the composition of f̂ and ĝ−1 as the class of all compositions of

elements from f̂ with elements of ĝ−1, i.e. f̂ ◦ ĝ−1 = {af ◦ g−1a′ : a,a′ ∈ A}. Note

that f̂ ◦ f̂−1 = îd. Obviously, the ‘quantity’ f̂ ◦ ĝ−1 denotes the class of all compositions

f ◦ g−1 that go along with the same representation of � for a given Bernoulli utility

function in the sense of theorem 2. However, there is more to it.

Lemma 2: In the representation of theorem 2, the ‘quantity’ f̂ ◦ ĝ−1 is gauge in-

variant, i.e. it is independent of the choice of the Bernoulli utility function and

uniquely determined by �.

In the light of the preceding discussion of atemporal risk aversion and intertemporal sub-

stitutability, lemma 2 states that the ‘difference’ between the attitude with respect to

risk and with respect to intertemporal substitutability is independent of the particular

good under observation and its measurement. In the isoelastic two commodity exam-

ple with f(z) = zα and g(z) = zρ discussed above, this ‘difference’ f ◦ g−1 becomes

f ◦ g−1(z) = (zα)
1
ρ = z

α
ρ where α

ρ
= 1−RRA

1− 1
σ

. The lemma implies that the same

result for f ◦ g−1 should be obtained, when extracting the information on risk aver-

sion and intertemporal substitution from equation (7.2). The latter was considering

changes (only) in the first consumption commodity. It found a respective parametriza-

tion of risk aversion and intertemporal substitutability corresponding to f(x) = xγ1α

and g(x) = xγ1ρ. As desired, this brings about f ◦ g−1(z) = (zγ1α)
1

γ1ρ = z
α
ρ . Similarly

the result holds, when only looking at changes of the second consumption commodity

rendering f ◦ g−1(z) = (zγ2α)
1

γ2ρ = z
α
ρ . The implications of the fact that f ◦ g−1 is

uniquely determined only up to affine transformations will be discussed in section 7.4.

In the following, section 7.2 works out the interpretation of the ‘quantity’ f ◦ g−1.

9Be aware that, in general, f̂−1 = {f−1a : a ∈ A} is not the same as ˆf−1 = {af−1 : a ∈ A}.
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7.2 Intertemporal Risk Aversion

This section characterizes the invariant quantity found in Lemma 2 axiomatically. Aim-

ing at the representation of theorem 2, the axiomatic characterization below is for a

decision maker, who has stationary preferences and a zero rate of time preference. Chap-

ter 8 presents the general non-stationary setting. I consider a non-discounting decision

maker to exhibit weak intertemporal risk aversion, if and only if, the following axiom is

satisfied:

A6w
nd (weak intertemporal risk aversion, no discounting) For all x̄, x1, x2 ∈ X holds

(x̄, x̄) ∼F (x1, x2) ⇒ x̄ �T
1
2
x1 + 1

2
x2. (7.3)

The superscript ‘w’ at the axiom’s label abbreviates ‘weak’ as opposed to ‘s’ for ‘strict’,

while the subscript ‘nd’ denotes the absence of discounting. Similarly, I define the non-

discounting decision maker to exhibit strict intertemporal risk aversion, if and only if:

A6 s
nd (strict intertemporal risk aversion, no discounting) For all x̄, x1, x2 ∈ X holds

(x̄, x̄) ∼F (x1, x2) ∧ x1 6∼T x2 ⇒ x̄ ≻T
1

2
x1 +

1

2
x2. (7.4)

I start with the interpretation of the strict axiom. The first part of the premise in

equation (7.4) states that a decision maker is indifferent between a certain constant

consumption path delivering the same outcome x̄ in both periods and another certain

consumption path which delivers outcome x1 in the first and outcome x2 in the second

period. The second part of the premise requires the consumption path (x1, x2) to exhibit

variation in the sense that either x1 is preferred to x2 or vice versa.10 Note that this

relation implies11 that either x1 ≻T x̄ and x̄ ≻T x2 or that x̄ ≻T x1 and x2 ≻T x̄. I

want to stress that, in the decision problem expressed on the left hand side of equation

(7.4), the individual knows that in either case he gets all of the chosen outcomes with

certainty (each at its time). Coming to the right hand side of equation (7.4), axiom

A6 s
nd demands that, for consumption satisfying the above conditions, the decision maker

should prefer the consumption of x̄ with certainty over a lottery yielding either x1 or

x2, each with probability a half. The intuition is that he values x1 and x2 differently.

10Note that the axiom compares the first period outcome x1 directly with x2, by taking it as a second
period outcome. This switching of the periods does not pose any problems, as the decision maker has
stationary preferences and a discount rate of zero. See also footnote 12. The axiomatic formulation of
intertemporal risk aversion for the general case avoids this switch of period. See chapter 8, pages 117
and 120, for the general formulation and chapter 127, page 139, for the particular case of stationary
preferences and positive discounting.

11In combination with the other axioms given in the representation theorem 2.
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Therefore, the lottery might make him better off, but with the same probability it can

make him worse off. In the latter case, and in contrast to the decision problem in the

premise, he will never receive the higher outcome. Let me point out that the comparison

of the intertemporal consumption paths in the premise is used to calibrate the ‘worse

off’ and the ‘better off’ outcomes in the lottery with respect to each other.12

Calling preferences satisfying axiom A6 s
nd intertemporally risk averse is motivated by

the following (interrelated) reasons. First, without acknowledging a trade-off over time,

the concept could not be defined. Second, the naming responds to the fact discussed in

the previous section that the conventional definition of attitude towards risk describes

what Normandin & St-Amour (1998, 268) call atemporal risk aversion. In comparison

the concept of intertemporal substitutability describes the attitude of the decision maker

to trade consumption over time. In this sense the theorem below delivers the third

motivation for the naming. It will reveal that intertemporal risk aversion is characterized

simultaneously by the functions f and g and, thus, combines information on atemporal

risk attitude with the intertemporal characteristics of preference.

The interpretation of the weaker axiom A6w
nd is analogous to that of axiom A6 s

nd,

except that the consumption path (x1, x2) is allowed to coincide with (x̄, x̄), and the

implication only requires that the lottery is not strictly preferred to the certain con-

sumption path. If axiom A6 s
nd (A6w

nd) is satisfied with ≻F (�F ) replaced by ≺F (�F ),

I call the decision maker a strong (weak) intertemporal risk seeker. If his preferences

satisfy weak intertemporal risk aversion as well as weak intertemporal risk seeking, the

decision maker is called intertemporally risk neutral. The following theorem relates the

concept of intertemporal risk aversion to the invariant found in lemma 2 of the preceding

section.13

Theorem 3: Let the triple (u, f, g) represent the set of preferences � in the sense of

theorem 2. Then the following assertions hold:

a) A decision maker is strictly intertemporally risk averse [seeking] in the sense of

axiom A6 s
nd, if and only if, f ◦ g−1(z) is strictly concave [convex] in z ∈ Γ for an

increasing version of f .14

b) A decision maker is weakly intertemporally risk averse [seeking] in the sense of

12Note that the interpretation of axiom A6 s
nd depends crucially on the fact that the decision maker

is not discounting future consumption. Otherwise the constellation in equation (7.3) could be entirely
due to x2 being a very bad outcome that had been highly discounted in the premise. While axiom
A6 s

nd at this point is a simplified version to focus on the essential idea, it will gain its own standing in
chapter 10.4, where I give an axiomatization that implies a zero discount rate.

13Recall the definition Γ =
(
G,G

)
.

14Which is equivalent to strict convexity [concavity] for a decreasing choice of f .
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axiom A6w
nd, if and only if, f ◦g−1(z) is concave [convex] in z ∈ Γ for an increasing

version of f .

c) A decision maker is intertemporally risk neutral, if and only if, f̂ = ĝ. In that

case the decision maker maximizes intertemporally additive expected utility.

To interpret the result, note that f ◦g−1 concave can be paraphrased as f being concave

with respect to g (Hardy et al. 1964). Assume for example that f ◦ g−1 = s and s is

some concave function. Then the relation is equivalent to f = s◦g so that f is a concave

transformation of g, or expressed intuitively f is ‘more concave’ than g. Reconsidering

the discussion of section 7.1, the interpretation in terms of the Epstein Zin gauge would

be as follows. Concavity of f characterizes the decision maker’s degree of (atemporal)

risk aversion, while concavity of g characterizes his desire to smooth out consumption

over time. Hence, in light of the above, f ◦ g−1 concave receives the interpretation of

the decision maker being more averse to substitute consumption into a risky state than

to substitute it into a certain future. To express this statement slightly different, think

of a situation, where a decision maker has the chance to either smooth out consumption

over time or over risk. Then, whenever the intertemporally risk neutral decision maker

is indifferent between the two options, the intertemporally risk averse decision maker

prefers to smooth out consumption over the risky states, while the intertemporally risk

seeking decision maker prefers to keep the risk but smooth out consumption over time.

In section 7.1 it has been shown that the ‘quantity’ f̂ ◦ ĝ−1 does not depend on the

gauge and, thus, on a particular commodity and its measure scale. Hence, the reasoning

in terms of the difference between uncertainty aggregation characteristics and attitude

towards intertemporal substitution is more general than the individual interpretation of

the terms f and g in the Epstein Zin gauge, which is tied to a particular commodity and

its measure scale. I think that the best economic interpretation of f ◦g−1 is the one laid

out in axioms A6w
nd and A6 s

nd. The subsequent section interprets the axioms and the

expression f ◦ g−1 in terms of risk aversion with respect to welfare gains and losses, and

relates it to the idea of precaution as developed in sections 5.2 and 5.3. Before doing

so, I end this section with a remark on the determinacy of the concavity of f ◦ g−1.

The observant reader might have noticed that the characterization of intertemporal

risk aversion in theorem 3 relies on f◦g−1, while only the ‘quantity’ f̂◦ĝ−1 is independent

of the choice of Bernoulli utility. Therefore, concavity of f ◦ g−1 should not depend

on affine transformations of the function or its argument. This fact is verified in the

following proposition.

Proposition 9: If some function h ∈ f̂ ◦ ĝ−1 is (strictly) concave, then all functions in

f̂ ◦ ĝ−1 are (strictly) concave. If some function h ∈ f̂ ◦ ĝ−1 is (strictly) convex,
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then all functions in f̂ ◦ ĝ−1 are (strictly) convex.

Proposition 9 shows that the fact of being intertemporally risk averse or risk seeking

does not depend on the affine freedom of f ◦ g−1. To succeed in defining a quantitative

measure of intertemporal risk aversion, however, the affine freedom in f ◦ g−1 requires

a little more thought.15 Section 7.4 will be dedicated to that question.

7.3 Welfare and Precaution

Technically, relating intertemporal risk aversion and precaution is merely a task of mov-

ing into the certainty additive gauge (g = id). Then the representation given in corol-

lary 3 corresponds to the setup of sections 5.2 and 5.3.16 Moreover, in the certainty

additive gauge it is f ◦ g−1 = f . Therefore, assertion a) of theorem 3 states that, for

an increasing choice of f , strict intertemporal risk aversion is equivalent to a strictly

concave function f . But proposition 6 on page 69 identified the same condition as a

characterization of precaution. This simple reasoning is the technical content of this

section. However, a closer look at the g = id representation yields an interesting in-

terpretation of the concept of intertemporal risk aversion developed in the preceding

section.

Let me start out by recalling that the cardinality of the welfare function in sections 5.2

and 5.3 relied entirely on some ‘exogenous intuition’ of welfare being something cardinal.

Technically, it dropped from heaven. With the background developed in chapter 6, the

cardinality of u is implicit to the formal setup. Evaluation of the threat of harm scenario

with equation (5.3) corresponds to the g = id-gauge. In this gauge, choice over certain

consumption paths is immediately characterized by the sum over per period utility u.

If the sum of per period utility is the same, then the overall welfare is the same, in

the sense that indifference between the corresponding consumption paths prevails. In

other words, an amount ∆u less in one period can be compensated by the same amount

∆u more in another period. The same reasoning and, thus, interpretation of Bernoulli

utility generally fails for other gauges. Therefore, I think that the Bernoulli utility in

the certainty additive gauge most closely relates to the semantics of the word welfare.

At the end of this section, I will come back to this idea and attempt to further motivate,

why I think that the g = id-gauge, and the interpretation of the corresponding Bernoulli

utility as welfare, is a particularly helpful representation of a decision problem. For now,

15It is the affine transformation ã in fg−1 → afg−1ã that requires some special attention.

16Compare in particular equation (5.3) on page 69.
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let me use the interpretation of welfare as certainty additive Bernoulli utility to revisit

the concept of intertemporal risk aversion. For this purpose, I denote the particular

Bernoulli utility function that corresponds to the g = id-gauge as welfare uwelf . It is the

notion of welfare that has been applied implicitly already in the discussion of sections 5.2

and 5.3.

Now, I give a reinterpretation of axioms A6w
nd and A6 s

nd. Applying the notion of

welfare introduced in the preceding paragraph, the first part of the premise in axiom

A6 s
nd corresponds to the requirement that welfare of the two consumption paths adds

up to the same overall welfare, i.e. uwelf(x1)+uwelf(x2) = uwelf(x̄)+uwelf(x̄). The second

part of the premise in axiom A6 s
nd adds the demand that the welfare evaluation of

outcome x1 and x2 should not coincide. Without loss of generality (wlog), assume that

uwelf(x1) > uwelf(x2). Then, the potential welfare gain in the lottery giving with equal

probability either x1 or x2 instead of the certain alternative x̄, is just as big as the

potential welfare loss, i.e. uwelf(x1) − uwelf(x̄) = uwelf(x̄) − uwelf(x2) = ∆uwelf . Hence, in

this notion, intertemporal risk aversion demands that a certain welfare level should be

preferred to a welfare lottery that renders a welfare gain of ∆uwelf , with probability a

half, and a welfare loss of ∆uwelf , also with probability a half. With this interpretation,

intertemporal risk aversion can be understood as risk aversion with respect to welfare

gains and losses or just as risk aversion on welfare.

In this notion, precautionary behavior in the sense of sections 5.2 and 5.3 corresponds

to strict risk aversion with respect to welfare gains and losses. A straight forward intu-

ition that was appealed to already in the introductory discussion, and that is excluded

in the preference framework represented by intertemporally additive expected utility.

In the setup of chapters 5.2 and 5.3 a decision maker, who exhibits risk aversion with

respect to welfare gains and losses as described above, will have a higher willingness to

reduce first period welfare in order to avoid a future threat of harm than does a decision

maker evaluating by intertemporal expected utility, as characterized in equation (5.1).

Note that if the precautionary decision maker has the chance to reduce the risk in the

second period by giving up some of his welfare in the first, his ex-post welfare evaluated

on the ex-post certain consumption paths will, on average, be lower than that of an in-

tertemporally risk neutral decision maker with the same welfare evaluation over certain

consumption paths. However, it is the very nature of risk aversion that evaluation of

the future is not simply based on the average outcome, but also on the ‘certainty’ with

which the average outcome (or an outcome close to the average) actually takes place in

the individual occasion. This characteristic of risk aversion corresponds to a cost (on av-

erage) that comes along with precautionary behavior. Therefore, the trade-off between
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precautionary action and intertemporally risk neutral action is that of avoiding risk at

the price of being worse off on average.17 Recall from the discussion in chapter 5.2 that

the arbitrariness with respect to its application, was a major criticism directed against

the precautionary principle. The formulation of precaution as strict intertemporal risk

aversion eliminates this arbitrariness by translating it into the question of specifying a

degree of intertemporal risk aversion. Once such a degree of risk aversion is specified,

the rule when to undergo precautionary action does not depend on the particular class

of outcomes (or field of policy) the decision maker is facing. This procedure offers a

principled approach to balance costs against benefits and, at the same time, allows for

precautionary behavior that is excluded in a cost-benefit analysis based on a preference

framework corresponding to intertemporally additive expected utility. In the next section,

I will set up such a quantitative measure for the degree of intertemporal risk aversion.

Again, the representation in the g = id-gauge and the corresponding interpretation as

risk aversion on welfare will prove useful for understanding the indeterminacy of the

expression f ◦ g−1 ∈ f̂ ◦ ĝ−1 and its implications for such a measurement. Before pre-

senting the corresponding analysis, let me close the section with suggesting a reasoning,

why the g = id-gauge might be a particularly convenient representation to think about

intertemporal decision problems.

From a mathematical point of view both, the certainty additive gauge (where g = id),

and the Kreps Porteus gauge (where f = id), have a special appeal as either of them

makes one of the two aggregators N g or M f additive.18 Contemplating why either of

the two gauges might be preferable and in what sense, let me go back to the work of von

Neumann & Morgenstern (1944). Before the authors introduce their famous represen-

tation theorem, they discuss the usefulness of yielding an additive representation. They

explain that calling two natural operations addition “is not intended as a claim that

the two operations with the same name are identical, [...] it only expresses the opinion

that they possess similar traits, and the hope that some correspondence between them

will ultimately be established.” (von Neumann & Morgenstern 1944, 21). As analogies

17Note that, here, the notion of an average appeals to the frequency definition of probability. As dis-
cussed in chapter 5.2, probabilistic reasoning applies to a much wider area of uncertainty. In particular
with respect to climate change and corresponding events like a shut down of the northern arm of the
Atlantic Conveyor Belt or a disintegration of the West Antarctic ice sheet, a frequency definition seems
a little far-fetched. However, in these situations it appears to me at least as reasonable not to base the
individual decision on the purely mathematical notion of an average outcome.

18In the general multi-commodity setting, u cannot be chosen linear in (all) consumption, as in the
Epstein Zin gauge for one-commodity. At most, one good and its perfect substitutes could be picked
under the assumption that nonsatiation in the interior of X holds for this commodity class. See section
7.1.
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for additive quantities and similarity of traits, they discuss the concepts of mass and

energy.19

In the preference framework described here, I have to conduct two aggregation oper-

ations, one over time and another over uncertainty. It was shown that, in general, only

one of them can be rendered additive. Now let me look at the analogies mentioned by

von Neumann & Morgenstern (1944, section 3.4), namely mass and energy and their

similarity in trait. When thinking about mass as an additive operation, I have in mind

the property that gaining one pound next week, another pound in the second and loosing

two pounds in the third will bring me back to my original weight. Energy might even

prove a better example for making this point, as it is an abstract quantity, introduced

by physicists, to describe some regularity that cannot be observed directly - just as

utility. Furthermore, energy is defined in order to bring this regularity into a form that

makes it possible to think about it in a similar way as about the physically observable

mass, that is, in terms of adding and subtracting energy at different points of time.20

Motivated by the discussion above, I suggest to introduce the quantity named welfare

as the special Bernoulli utility that shares the similarity with the above quantities of

making welfare comparisons additive over time. Then, in the certainty additive gauge,

a unit of welfare ∆uwelf more in period one can compensate a unit ∆uwelf of welfare less

in the second period. In a general gauge, this characterisitc of additivity over time on

certain consumption paths is not satisfied by Bernoulli utility itself, but by the com-

posed function g ◦u which equals uwelf up to an affine transformation.21 More precisely,

uwelf itself is only unique up to affine transformations (see corollary 3). A possibility to

render welfare measurement in the sense of a certainty additive Bernoulli utility function

uwelf unique, is by fixing exogeneously two welfare levels, e.g. the welfare of the worst

and the best outcome(s). This step is equivalent to fixing the range of uwelf or g ◦ u to

a given nondegenerate closed interval W ∗.

19Let me add that additivity is a concept that emerged from the calculus of natural numbers. Math-
ematically, it is therefore based on the Peano axioms. From a more ‘physical’ perspective, it is based
on the observation of similar rules for different classes of materialistic objects, describing what happens
when putting (adding) and taking away objects of the same type. This structure is inherent also in von
Neumann & Morgenstern’s (1944) examples of mass and energy.

20While stressing the similarity in trait between additivity of mass, energy and welfare be aware that
the analogy, like any analogy, also has its limits.

21From the first part of the proof of representation theorem 2 it is obvious that by construction it

is ĝ◦u = ̂id ◦ uwelf = ûwelf , where uwelf corresponds to the particular Bernoulli utility function which
appears in equation (6.3) of axiom A4.
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7.4 Measures of Intertemporal Risk Aversion

In this section, I establish a measure that quantifies a degree of intertemporal risk

aversion. The natural candidate is the construction of an analogue to the coefficient

of relative risk aversion in the atemporal setting. For a twice differentiable function

f ◦ g−1 : Γ → IR with Γ ⊂ IR, I define such a measure of relative intertemporal risk

aversion as the function:

RIRA : Γ → IR

RIRA(z) = −
(f ◦ g−1)

′′
(z)

(f ◦ g−1)′ (z)
z . (7.5)

In the light of section 7.1, and lemma 2 I have to check whether the definition of

RIRA is invariant under affine transformations of f and g. Unpleasantly, this is not

the case. In other words, the coefficient22 of relative intertemporal risk aversion is not

uniquely determined by the underlying preference relation. While the above definition

of RIRA eliminates the indeterminacy corresponding to the affine freedom of f , it still

depends on the particular affine specification of g.23 In detail, define for some a, ã ∈ A

the functions f̃ = af and g̃ = ãg and let ã(z) = ãz + b̃. Then, for the new choice

f̃ ◦ g̃−1 = af ◦ g−1ã−1 ∈ f̂ ◦ ĝ−1, defined on z̃ ∈ Γ̃ = ãΓ, the coefficient of relative

intertemporal risk aversion calculates as

˜RIRA(z̃) = −

(
f̃ ◦ g̃−1

)′′
(z̃)

(
f̃ ◦ g̃−1

)′
(z̃)

z̃ = −

(
af ◦ g−1ã−1

)′′
(z̃)

(
af ◦ g−1ã−1

)′
(z̃)

z̃ = −
(f ◦ g−1)

′′
(ã−1z̃) 1

ã2

(f ◦ g−1)′ (ã−1z̃) 1
ã

z̃

= −
(f ◦ g−1)

′′
(ã−1z̃)

(f ◦ g−1)′ (ã−1z̃)

1

ã
z̃ .

Evaluating the new coefficient of relative intertemporal risk aversion ˜RIRA at the same

consumption level as the old coefficient of relative intertemporal risk aversion RIRA,

22I adopt the word coefficient also for the case where the function is non-constant and, thus, ‘the’
coefficient is a function of z.

23More precisely, it eliminates the affine freedom corresponding the transformation a ∈ A in the
expression af ◦ g−1ã

−1
while it depends on the transformation ã ∈ A. Only in the representation of

theorem 2, the freedom corresponding to the transformation a corresponds to the indeterminacy of f
and the the freedom corresponding to the transformation ã corresponds to the indeterminacy of g. For
the g-gauge both indeterminacies are due to the freedom of f , as can be observed from the moreover
part of corollary 3. Similarly for the f -gauge both indeterminacies are due to the freedom of g, as can
be observed from the moreover part of corollary 2.
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which corresponds to z̃ = ãz,24 the following result is found

˜RIRA(z̃)
∣∣∣
z̃=ãz+b̃

= −

(
f̃ ◦ g̃−1

)′′
(z̃)

(
f̃ ◦ g̃−1

)′
(z̃)

z̃

∣∣∣∣∣
z̃=ãz+b̃

= −
(f ◦ g−1)

′′
(z)

(f ◦ g−1)′ (z)

ã z + b̃

ã
. (7.6)

As claimed above, the affine indeterminacy corresponding to the transformation f ◦

g−1 → af ◦ g−1 leaves the coefficient of relative intertemporal risk aversion unchanged.

However, an affine change corresponding to b̃ in f ◦ g−1 → f ◦ g−1ã−1 changes the

coefficient.

An analogous result holds, when defining the coefficient of absolute intertemporal risk

aversion as the function:

AIRA : Γ → IR

AIRA(z) = −
(f ◦ g−1)

′′
(z)

(f ◦ g−1)′ (z)
. (7.7)

Then, changing f◦g−1 → f̃◦g̃−1 like above and evaluating the new coefficient of absolute

intertemporal risk aversion for the same consumption level, yields

˜AIRA(z̃)
∣∣∣
z̃=ãz+b̃

= −

(
f̃ ◦ g̃−1

)′′
(z̃)

(
f̃ ◦ g̃−1

)′
(z̃)

∣∣∣∣∣
z̃=ãz+b̃

= −
(f ◦ g−1)

′′
(z)

(f ◦ g−1)′ (z)

1

ã
. (7.8)

Again, the affine indeterminacy corresponding to the transformation f ◦ g−1 → af ◦ g−1

leaves the coefficient of absolute intertemporal risk aversion unchanged. However, a

linear change corresponding to ã in f ◦ g−1 → f ◦ g−1ã−1 changes the coefficient.

I want to present an intuition for the indeterminacy of the above coefficients of in-

tertemporal risk aversion. For this purpose, note that a specification of f ◦ g−1 together

with g ◦ u, completely determines the underlying preference relation.25 However, this

is no longer true for a specification of g ◦ u and f ◦ ĝ−1 (or f̂ ◦ ĝ−1 ). The reason is as

follows. The function g itself is only determined up to affine transformations and the

particular specification entering the representation does not matter. Yet, it has to be

the same function g that enters the expression of intertemporal risk aversion f ◦ g−1

and the expression that determines choice on certain consumption paths g ◦ u. As long

as both are changed simultaneously corresponding to the same affine transformation

a ∈ A, i.e. f ◦ g−1 → f ◦ g−1ã−1 and g ◦ u → ãg ◦ u, the represented underlying set of

preference relations � stays the same. But setting up the evaluation functional, when

24The argument z of the function f ◦ g−1 in the representation is a weighted arithmetic mean of two
entries scaling with g.

25To see that f ◦ g−1 together with g ◦ u completely specifies �, just note that f ◦ u = (f ◦ g−1) ◦
(g ◦ u) and, hence, all terms in the following strictly monotonic transformation of the representation

N g
[
u(x) , Mf

(p, u)
]

are specified: f ◦ g−1
[
1
2 g ◦ u(x) + 1

2 g ◦ f−1
[∫

dpx2 f ◦ u(x2)
]]

.
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given only the information f ◦ ĝ−1 and g ◦ u, it is unknown which element of the class

f ◦ ĝ−1 corresponds to the same g as in g ◦u. Combining g ◦u with an arbitrary element

f ◦ g̃ ∈ f ◦ ĝ, however, yields in general an evaluation different from that implied by g ◦u

in combination with f ◦ g−1. In other words, the affine freedom of g does not translate

into a freedom of the measure for intertemporal risk aversion that is independent of the

specification of the evaluation over certain consumption paths. A particular specification

of the expression g ◦ u, evaluating certain outcomes, has to go a along with a particular

choice of the risk measure.

An example might help to understand the preceding reasoning and relate it to the

discussion on measure-scale in section 7.1. Imagine an employee in a small enterprise

who experiences an unusual situation. His boss steps into his office and offers to play

the following lottery. He flips a coin and, if head comes up, the employee gets three

weeks of summer vacation instead of the usual two weeks. However, if tail comes up, the

boss wants him to cut down his summer vacations to one week. The employee declines

the offer. Observing the situation, I would like to find out the underlying motive of the

employee to reject the offer. I have two possible theories about him, which I would like to

tell apart. On the one hand, the employee might love to have a vacation of three weeks.

He even thinks that the third week of vacation would be more valuable to him than

the second, for example because three weeks of vacation would allow him to undertake

the big travel he had been waiting for. But, at the same time he is risk averse, or, in

less sophisticated words, he fears to loose in the lottery, and therefore declines it.26 On

the other hand, the employee might be risk neutral or even keen on gambling, but he

values a third week of vacation so little as compared to the second that he refuses the

lottery of his boss. In an atemporal world, I had a hard time to distinguish these two

possibilities. However, in the intertemporal setting, a differentiation of the two motives

is possible. At least, if the boss allows me to offer the following deal to the perfectly

patient (i.e. non-discounting) employee.27 I walk into the employee’s office with the offer

to trade in one week of this year’s vacation for an extra week of vacation in the next

year. If he accepts, I know that his declining of the lottery was due to risk aversion.

Under certainty, he has a positive willingness to trade his second week of vacation for a

third (a reasoning obviously impossible without time). As he nevertheless declined the

26I encourage the reader to first go over the example relying entirely on a semantic intuition of ‘risk
aversion’ (as it prevailed before the study of von Neumann & Morgenstern’s (1944) theory). Formalizing
the intuitive argument corresponds to the concept of intertemporal risk aversion as introduced in
section 7.2.

27To see how the question has to be asked for a discounting employee or someone with non-stationary
preferences compare page 118 in chapter 8.
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lottery offered by his boss, he must be risk averse. If the employee declines my offer, I

know that he values a second week of vacation higher than the third. Of course, without

further inquiries, I cannot tell whether he might in addition be risk averse. However,

given that one of the two theories about the employee laid out above is true, it would

be the second.

Now, think about measuring the employee’s degree of risk aversion. The easiest per-

spective is the one discussed in section 7.3, corresponding to the certainty additive gauge,

where intertemporal risk aversion can be understood as risk aversion on welfare. Here the

intertemporal trade-off, i.e. the employee’s willingness to trade days of vacation between

one period and the next, determines the Bernoulli utility function, which I associated

with the agents welfare in section 7.3. However, observing the employee’s preferences

over certain consumption paths only renders a welfare function that is determined up

to affine transformations. This is, it does not render a natural level of ‘zero welfare’,

nor does it deliver a natural unit to measure welfare. Now intertemporal risk aversion

describes his attitude towards lotteries over welfare. But for determining a coefficient

of relative risk aversion over welfare lotteries, I have to know the ‘zero welfare’ level.

Similarly, to identify the coefficient of absolute risk aversion on welfare, I have to know

the unit of welfare. Not knowing the ‘zero welfare’ level corresponds, in equation (7.6),

to the undetermined constant b̃ in the coefficient of relative intertemporal risk aversion.

Not knowing the ‘unit of welfare’ corresponds, in equation (7.8), to the undetermined

constant ã in the coefficient of absolute intertemporal risk aversion. Fixing a unique

numerical coefficient of intertemporal risk aversion is, therefore, a question of fixing a

measure-scale, just as for atemporal risk aversion in section 7.1. However, this time

the measure-scale is not in terms of physical characteristics of a consumption good, but

in terms of the implicitly derived concept of welfare. Analogously to most arbitrarily

divisible goods, a natural unit is not given and must be fixed by convention (see also

footnote 6). More difficult is probably the interpretation of fixing a zero welfare level, in

order to render a meaning to the coefficient of relative risk aversion. Again, it must be

a convention. Note that chapter 10 develops a reasoning based on the decision maker’s

attitude with respect to the timing of uncertainty resolution that implies constant ab-

solute intertemporal risk aversion and, thus, a representation that does not depend on

b̃ or the ‘zero welfare’ level.

In general, the corollaries below solve the problem of quantifying intertemporal risk

aversion formally, by incorporating the information that has to come from convention.

As the discussion above was mainly led within the certainty additive gauge (g = id),

let me start out with the case where g is imposed. At first sight, it might be surprising
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that the affine freedom corresponding to ã in f̂ ◦ ĝ−1 still prevails in a gauge where

g is exogenously fixed. However, chapter 6.4 worked out that fixing g instead of u

does not abolish any of the indeterminacy. The freedom that corresponds to g in the

representation of theorem 2, translates into an additional freedom of f in the g = id-

gauge, as worked out in the moreover part of corollary 3. For the latter representation,

the pair (u, f) was only determined up to simultaneous transformations of type (u, f) →

(ũ, f̃) = (g−1a+−1
g u,a f g−1a+g) with a ∈ A and a+ ∈ A+. Hence, the expression

for intertemporal risk aversion in the standard g-gauge still is only determined up to

transformations of type f ◦ g−1 → f̃ ◦ g−1 = a (f g−1a+g) ◦ g−1 = a f ◦ g−1a+. Let me

point out that, in the g = id-gauge, a closer look at the allowed a+ transformations of

the pair (u, f) is another way to see the relation between measuring intertemporal risk

aversion and fixing some freedom in the welfare measure. In this gauge, f represents

intertemporal risk aversion and u was given an interpretation of welfare. Then, the

transformation (u, f) → (ũ, f̃) = (a+−1
u, f a+) corresponds to a shift of a+ between

welfare and intertemporal risk aversion. Only when fixing two points of u by some

convention, f is uniquely determined.

Corollary 4 (g+-gauge) :

Let there be given a set of binary relations �= (�F ,�T ) and a strictly mono-

tonic and continuous function g : IR → IR. Choose a nondegenerate closed interval

U∗ ⊂ IR. The following equivalence holds:

The set of binary relations � satisfies

i − iii) of theorem 2,

if and only if, there exists a continuous and surjective function u : X → U∗ as well

as a strictly monotonic and continuous function f : U∗ → IR such that

v − vi) of theorem 2 hold.

Moreover, u is determined uniquely and f is determined up to nondegenerate affine

transformations. The measures of intertemporal risk aversion RIRA and AIRA as

defined in equations (7.5) and (7.7) are determined uniquely.

I call the representation of corollary 4 a g+-gauge, because it is a g-gauge with the

additional fixing of Bernoulli utility at two points. Corollary 4 is a trivial consequence

of corollary 3, where the fixing of u for any two outcomes abolishes its indeterminacy.

Here, I have fixed the Bernoulli utility for the worst and the best outcome by requiring

that u is onto a given codomain U∗. In the g = id-gauge, the latter fixes immediately

the scale of evaluation for the certain outcome paths, and U∗ can be interpreted as the
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welfare range in the sense of W ∗ in section 7.3. If g is not chosen as the identity, then

g ◦ u gives the evaluation of certain consumption paths and W ∗ = g(U∗), also uniquely

fixed, would correspond to the welfare range in the sense laid out in section 7.3. Instead

of fixing evaluation of the best and the worst outcome, I could as well fix a ‘zero welfare’

level28 and a ‘welfare unit’, or Bernoulli utility for any two points that differ in their

evaluation.

The same approach copes with the indeterminacy of intertemporal risk aversion in

the representation of theorem 2. I call the representation a u+-gauge as a particular

choice of u ∈ B� is imposed and, in addition, the range of g is fixed. The latter fixing

determines again the scale, on which the evaluation over certain consumption paths

(corresponding to g ◦ u) is based.

Corollary 5 (u+-gauge) :

Let there be given a set of binary relations �= (�F ,�T ) and a Bernoulli utility

function u ∈ B� with range U . Choose a nondegenerate closed interval W ∗ ⊂ IR.

The following equivalence holds:

The set of binary relations � satisfies

i − iii) of theorem 2,

if and only if, there exists a strictly monotonic and continuous function f : U → IR

as well as a strictly monotonic, continuous and surjective function g : U → W ∗

such that

v − vi) of theorem 2 hold.

Moreover, g is determined uniquely and f is unique up to nondegenerate affine

transformations. The measures of intertemporal risk aversion RIRA and AIRA as

defined in equations (7.5) and (7.7) are determined uniquely.

Instead of fixing the welfare range corresponding to G = W ∗, I could again fix as well a

‘zero welfare’ level and a ‘welfare unit’, or the function g on any two points that differ in

their evaluation. In both corollaries above, the risk measures depend on the choice of the

imposed range of g. While in corollary 5 it is fixed directly, in corollary 4 it is determined

by imposing g : IR → IR together with the domain U so that G = g(U) = W ∗ is fixed.

The following lemma states more generally that all what is needed for the uniqueness

of the risk measures RIRA and AIRA, is the set of preference relations and the range

of the function g in any of the representations.

28At least, as long as it should correspond to some outcome within the choice set X. See chapters
8.2 and 9.4 for a formalization of fixing the ‘zero welfare level’ level or the ‘welfare unit’.
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Lemma 3: Let there be given a set of preference relations �= (�F ,�T ) satisfying

axioms A1-A5 as well as a closed nondegenerate interval W ∗ ⊂ IR. For any

representation in the sense of theorem 2 where g is onto G = W ∗, the risk mea-

sures RIRA and AIRA are determined uniquely and independent of the choice of

Bernoulli utility.

Lemma 3 states that, once the scale for welfare in the sense of section 7.3 is fixed by

imposing its range, the measures of intertemporal risk aversion RIRA and AIRA are

uniquely specified by the preference relations.29 Then, the choice of Bernoulli utility in

the representation, corresponding to different good-specific measures of atemporal risk

aversion, does not affect the measures of intertemporal risk aversion.

7.5 Summary

I have introduced a notion of general and precautionary uncertainty aggregation rules.

In this notion, the expected value operator corresponds to the particular uncertainty

aggregation rule that is linear in the evaluation of outcomes. I have elaborated that in

an atemporal setting, the use of different uncertainty aggregation rules is equivalent to a

change in the Bernoulli utility function evaluating (certain) outcomes. In an intertempo-

ral framework, however, aggregation of value over time adds an additional dimension to

the evaluation problem. I have shown that choosing Bernoulli utility in a way yielding a

linear uncertainty aggregation implies, in general, a nonlinear aggregation of value over

time. Considering additivity of welfare over time as a useful attribute for an economic

interpretation of a preference representation, I have offered an alternative representation

which keeps linearity in welfare over time, and uses more general uncertainty aggrega-

tion rules for the evaluation of uncertainty. In such a setting, the class of precautionary

uncertainty aggregation rules has been shown to capture an important concern of the

precautionary principle. These rules imply a higher willingness to undergo preventive

measures in order to avoid a threat of harm, than does an evaluation based on the

standard model of intertemporally additive expected utility.

I have worked out the general time consistent model supported by the von Neumann-

Morgenstern axioms for choice under uncertainty, and additive separability over time

for certain consumption paths. In this framework, I have introduced a new notion of

risk aversion. Due to its crucial dependence on the intertemporal structure of pref-

29Only in the certainty additive gauge the intertemporal trade-off measure that I interpreted as
welfare coincides with Bernoulli utility, in general it corresponds to range(g) = G.
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erences, I labeled it intertemporal risk aversion. I have provided an axiomatic foun-

dation and worked out measures of absolute and relative intertemporal risk aversion.

These measures were seen to depend only on the underlying preference relation and a

welfare normalization for the best and the worst outcome. In the certainty additive

representation, intertemporal risk aversion can be interpreted as a risk aversion with

respect to welfare gains and losses. I have elaborated a close connection between the

concept of intertemporal risk aversion and the disentanglement of atemporal risk aver-

sion from intertemporal substitutability in the one-commodity setting. While the latter

characterizations of preference become good-dependent in a multi-commodity setting,

intertemporal risk aversion has been shown to specify a relation between the two, which

is independent of the particular commodity under observation. Part II of my disser-

tation assumed a simplified two period setup with stationary preferences and a zero

discount rate. The next chapter extends the concept of intertemporal risk aversion to

the general multiperiod setting.
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Chapter 8

Multiperiod Extension

8.1 Multiperiod Extension of the Representation

Part III of my dissertation further analyzes the concept of intertemporal risk aversion

and its representation in a multiperiod framework. This chapter derives the most general

framework. First section 8.1 works out the multiperiod representation of non-stationary

preferences that comply in every period with the von Neumann-Morgenstern axioms

for choice under uncertainty, and allow for additive separability over time on certain

consumption paths. To this end I employ a recursive formulation of uncertainty devel-

oped and termed ‘temporal lotteries’ by Kreps & Porteus (1978). Subsequently, section

8.2 adapts the axiomatic characterization of intertemporal risk aversion to the derived

representational framework. It defines the (period-specific) measures of relative and ab-

solute intertemporal risk aversion and gives a respective condition for uniqueness. Later

in part III, chapter 9 examines the representational consequence of different assump-

tions on stationarity. As there is no canonical way of imposing stationarity in a finite

time framework, I offer two different axioms for stationarity of risk attitude. The first

yields stationarity of the uncertainty aggregation rules, while the second is motivated

mainly by the assumption that the mere passage of time should not change preferences.

Finally chapter 10 analyzes the attitude of a decision maker with respect to the timing

of uncertainty resolution. The latter is closely related to the measures of intertemporal

risk aversion. In particular, I derive a representation for an intertemporally risk averse

decision maker who is indifferent with respect to the timing of uncertainty resolution.

This setting allows to reduce the temporal lottery setup, where uncertainty is expressed

recursively over periods, to ‘standard’ lotteries, where uncertainty is expressed as a
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probability distribution over consumption paths. For a one commodity setting, this

representation allows to disentangle atemporal risk aversion from intertemporal substi-

tutability within an intertemporal expected utility model.

The first part of this chapter extends the representation of theorem 2 to an arbitrary

finite planning horizon. Hereby I allow for general non-stationary preferences. The

section is mainly technical. Instead of the more widespread framework of atemporal

lotteries corresponding to probability measures over consumption paths, it involves the

richer framework of temporal lotteries introduced by Kreps & Porteus (1978). The latter

is, as Kreps & Porteus (1978) have shown, a natural extension of the classical von Neu-

mann & Morgenstern (1944) setup to an intertemporal setting. It is also the standard

framework in the literature disentangling atemporal risk aversion from intertemporal

substitutability and thus a natural setting for a general definition of intertemporal risk

aversion. When I introduced the time structure for the preceding chapters, I pointed

out that within the general framework it only accounts for one and a half periods. Now,

at the beginning of every period the decision maker faces uncertainty, not only over the

future, but also over the outcome in the respective period. I identify period T with

the last period. As before in T the decision maker has preferences over all lotteries

on the space of outcomes X̃T ≡ X, which are modeled as elements of PT ≡ ∆(X).

In the preceding chapters, choices in F corresponded to pairs of certain outcomes in

period F and lotteries in period T , i.e. elements of the space X̃T−1 ≡ X × ∆(X). In

the general multiperiod framework, however, the second-last period T − 1 starts before

uncertainty over the respective period has resolved. Then, preferences in period T − 1

are expressed by a relation �T−1 on the space of lotteries over X̃T−1, which I denote

by PT−1 ≡ ∆(X̃T−1) = ∆(X × PT ). Note the recursive structure of the definition. The

uncertainty at the beginning of period T − 1 is not modeled as a probability distribu-

tion over the Cartesian product of outcomes in T − 1 and T . Rather, it is defined as

uncertainty over the outcome in T − 1 and the lottery faced in period T . For a de-

tailed introduction to recursive lotteries see also Kreps & Porteus (1978). Chapter 10.2

works out the relation between these recursive lotteries and probability measures that

are defined directly on consumption paths.

In general, define X̃T = X and recursively X̃t−1 = X × ∆(X̃t) for all t ∈ {2, ..., T}.

Equip the set of Borel probability measures on X̃t, denoted by Pt ≡ ∆(X̃t), with the

Prohorov metric as to render X̃t−1 compact in the product topology. The elements pt

of Pt are called (period t) lotteries. Preferences in period t are defined on the set Pt

and denoted by �t (⊂ Pt × Pt). The set of degenerate lotteries in Pt is identified with

the set X̃t in the usual way. An uncertainty aggregation rule in period t is defined as a
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functional Mft : Pt×C0(X̃t) → IR with Mft(pt, ũt) = f−1
t

∫
X̃t

dpt ft◦ũt(x̃t) . To allow for

general non-stationary preference I weaken the axiom of certainty additivity as follows:

A4’ (certainty additivity) There exist functions ut ∈ C0(X), t ∈ {1, ..., T}, such that

for all x, x′ ∈ X1:

x � x′ ⇔
T∑

t=1

ut(xt) ≥
T∑

t=1

ut(x
′
t). (8.1)

Axiom 4’ requires additive separability on certain consumption paths. However as op-

posed to axiom 4 the functions ut are allowed to vary arbitrarily over time. In particular,

tastes that are represented by a sequence (ut)t∈{1,...,T} can even reverse between two peri-

ods. To define the set of Bernoulli utility functions for �t, the definition on page 77 just

gains a time index, i.e. B�t
= {ut ∈ C0(X) : [x]t �t [x′]t ⇔ ut(x) ≥ ut(x

′)∀ x, x′ ∈ X}.

Recall that axiom 4’ only implies the existence of a certainty additive Bernoulli utility

function. For other Bernoulli utility functions equation (8.1) generally does not hold.

The time consistency requirement is adapted to the set of preference relations �≡

(�1, ...,�T ) in the multiperiod framework as follows:

A5’ (time consistency) For all t ∈ {1, ..., T}:

(xt, pt+1) �t (xt, p
′
t+1) ⇔ pt+1 �t+1 p′t+1 ∀ xt ∈ X, pt+1, p

′
t+1 ∈ Pt+1 .

The interpretation is equivalent to axiom A5. It is a requirement for choosing between

two consumption plans in period t that yield a degenerate lottery with a coinciding entry

in the respective period. For these choice situations, axiom 5’ demands that in period

t the decision maker shall prefer the plan that gives rise to the lottery that is preferred

in period t + 1.1 The notation regarding the codomains of the functions u and g is

adapted to the multiperiod setting by defining U t = minx∈X ut(x), U t = maxx∈X ut(x)

and Ut = [U t, U t], as well as Gt = gt(U t), Gt = gt(U t), Gt = [Gt, Gt] and ∆Gt = Gt−Gt

for all t ∈ {1, ..., T}. Moreover let Γt = (Gt, Gt). I assume for all following assertions

that the decision maker faces at least two periods (T ≥ 2) and that he is not indifferent

between at least two outcomes in each period, i.e. for all t ∈ {1, ..., T} there exist

xt, x
′
t ∈ X such that [x]t ≻t [x′]t. Then, the following representation holds.

Theorem 4: Let there be given a sequence of preference relations (�t)t∈{1,...,T} on

(Pt)t∈{1,...,T} and a sequence of Bernoulli utility functions (ut)t∈{1,...,T} with ut ∈

1This is time consistency in the sense of Kreps & Porteus (1978). The only difference to axiom 5 is
that (xt, pt+1) now has the interpretation of a degenerate lottery.
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B�t
. The sequence of preference relations (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4’ for �1|X1 (certainty additivity)

iii) A5’ (time consistency)

if and only if, for all t ∈ {1, ..., T} there exist strictly increasing2 and continuous

functions ft : Ut → IR and gt : Ut → IR such that with defining

v) the normalization constants θT = 1, ϑT = 0 and for t < T

θt = ∆Gt
PT

τ=t ∆Gτ
and ϑt = Gt+1Gt−Gt+1Gt

∆Gt
and

vi) recursively the functions ũt : X̃t → IR by ũT (xT ) = u(xT ) and

ũt−1(xt−1, pt) = g−1
t−1

[
θt−1 gt−1 ◦ ut−1(xt−1) + θt−1

θt
gt ◦M

ft(pt, ũt) + θt−1

θt
ϑt−1

]

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt) ∀ pt, p
′
t ∈ Pt . (8.2)

Moreover, (ut, ft, gt)t∈{1,...,T} and (ut, f
′
t , g

′
t)t∈{1,...,T} both represent (�t)t∈{1,...,T} in

the above sense, if and only if, for all t ∈ {1, ..., T} there exist constants af
t ∈ IR++

and bf
t ∈ IR such that ft = af

t f
′
t + bf

t , as well as constants ag ∈ IR++ and bg
t ∈ IR

such that gt = agg′
t + bg

t .

A sequence of triples (ut, ft, gt)t∈{1,...,T} as above is called a representation in the sense

of theorem 4 for the set of preference relations �= (�t)t∈{1,...,T}. The representation

theorem recursively constructs an aggregate utility ũt that depends on the utility in the

respective period ut(xt), as well as the aggregate utility derived from a particular lottery

pt+1 over the future. The construction of aggregate utility features for t ∈ {1, ..., T − 1}

the intertemporal aggregation rule

N gt,gt+1 : Ut × Ut+1 → IR

N gt,gt+1(·, ·) = g−1
t

[
θtgt(·) + θtθ

−1
t+1gt+1(·) + θtθ

−1
t+1ϑt

]

= g−1
t

[
θt gt(·) + (1 − θt)

∆Gt

∆Gt+1

(
gt+1(·) + ϑt

)]
.

The reformulation in the last line is an immediate consequence of the relation θtθ
−1
t+1 =

(1 − θt)
∆Gt

∆Gt+1
.3 The normalization constants ensure that the domain of g−1

t in the in-

2Alternatively the theorem can be stated replacing increasing by monotonic for (ft)t∈{1,...,T} and
demanding that either all (gt)t∈{1,...,T} are strictly increasing or that all are strictly decreasing.

3See equation C.2 in the appendix on page 209.
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tertemporal aggregation rule N gt,gt+1 coincides with Gt in order to make the inverse well

defined. For stationary preferences chapter 9 will show that gt = gt′ and ϑt = 0 for

all t, t′ ∈ {1, ..., T}, giving rise to the formulation employed in part II. As opposed to

the respective representation in theorem 2, however, in the general stationary setting

the normalization constants θt give rise to discounting. Whenever the outcome in the

respective period or the lottery faced in the future are not known with certainty, the

uncertainty aggregation rule Mft is applied in order to return the certainty equivalent

overall welfare. As formulated in equation (8.2), the resulting expression Mft(pt, ũt)

evaluates period t lotteries in a way representing choice between general uncertain con-

sumption or outcome plans faced in t. In this recursive evaluation, the representation

of theorem 4 not only features period-specific intertemporal aggregation rules, but also

period-specific uncertainty aggregation rules. Chapter 9 analyzes two different assump-

tions on risk stationarity that relate uncertainty aggregation in different periods.

With respect to the moreover part, observe that the functions (ft)t∈{1,...,T} are deter-

mined only up to individual affine transformations, while for the functions (gt)t∈{1,...,T}

the same multiplicative constant has to apply for all periods. In order to condense the

statement of the moreover part in a way that proves particularly useful in the gauge

corollaries, I introduce the following notation. For a ∈ IR++ define the set of affine trans-

formations Aa with elements aa by Aa = {aa : IR → IR : aa(z) = az + b, b ∈ IR}. In

this notation the moreover part of theorem 4 writes as: Moreover, (ut, ft, gt)t∈{1,...,T} and

(ut, f
′
t , g

′
t)t∈{1,...,T} both represent (�t)t∈{1,...,T} in the above sense, if and only if, there ex-

ists a ∈ IR++ such that for all t ∈ {1, ..., T} there exist a+
t ∈ A+ and aa

t ∈ Aa such that

(g′
t, f

′
t) = (a+

t ft,a
a
t gt). Let me point out that the functions (gt)t∈{1,...,T}, characterizing

intertemporal aggregation, are determined already by the preferences over certain con-

sumption paths, i.e. by �1 |
X

1 . Moreover, comparing only certain consumption paths,

the normalization parameter ϑt serves exclusively to allow for the renormalization g−1
t .

It has no representational function in the sense that the representation

g−1
t

[
θtgt ◦ u(xt) + θtθ

−1
t+1gt+1 ◦M

ft+1 (pt+1, ũt+1) + θtθ
−1
t+1ϑt

]

is a strictly increasing transformation of the expression

θtgt ◦ u(xt) + θtθ
−1
t+1gt+1 ◦M

ft+1 (pt+1, ũt+1) ,

which does not depend on ϑt. However, as soon as uncertainty is introduced, the repre-

sentation becomes

f−1
t

{∫
dp

xt,pt+1

t ft ◦ g−1
t

[
θtgt ◦ u(xt) + θtθ

−1
t+1gt+1 ◦M

ft+1 (pt+1, ũt+1) + θtθ
−1
t+1ϑt

]}
. (8.3)

In equation (8.3) no strictly increasing transformation can eliminate ϑt for nondegen-
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erate lotteries. Thus, the normalization constant gains representational responsibility.

However, it is possible to eliminate ϑt from the representation by adding an additional

requirement for the representing functions gt. The moreover part of theorem 4 admits

individual affine translations for the representing sequence (gt)t∈{1,...,T}. This individual

freedom can be used to yield the following modification of theorem 4.

Theorem 5: Let there be given a sequence of preference relations �= (�t)t∈{1,...,T}

on (Pt)t∈{1,...,T} and a sequence of Bernoulli utility functions (ut)t∈{1,...,T} with

ut ∈ B�t
. The sequence of preference relations (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4’ for �1|X1 (certainty additivity)

iii) A5’ (time consistency)

if and only if, for all t ∈ {1, ..., T} there exist strictly increasing and continuous

functions ft : Ut → IR and gt : Ut → IR, the latter satisfying Gt+1

Gt+1
= Gt

Gt
, such that

with defining

v) the normalization constants

θt = ∆Gt
PT

τ=t ∆Gτ
for t ∈ {1, .., T} and

vi) recursively the functions ũt : X̃t → IR by ũT (xT ) = u(xT ) and

ũt−1(xt−1, pt) = g−1
t−1

[
θt−1 gt−1 ◦ ut−1(xt−1) + θt−1θ

−1
t gt ◦M

ft(pt, ũt)
]

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt) ∀ pt, p
′
t ∈ Pt .

Moreover, (ut, ft, gt)t∈{1,...,T} and (ut, f
′
t , g

′
t)t∈{1,...,T} both represent (�t)t∈{1,...,T} in

the above sense, if and only if, for all t ∈ {1, ..., T} there exist constants at ∈ IR++

and bt ∈ IR such that ft = atf
′
t + bt, as well as constants a ∈ IR++ and b ∈ IR such

that gt = ag′
t + b∆Gt.

The only difference between the two representations is that the additional requirement
Gt+1

Gt+1
= Gt

Gt
picks a particular sequence of representations (gt)t∈{1,...,T} such that the

intertemporal aggregation rule in theorem 5,

N gt,gt+1
∗ : Ut × Ut+1 → IR

N gt,gt+1
∗ (·, ·) = g−1

t

[
θtgt(·) + θtθ

−1
t+1gt+1(·)

]
,

spares the normalization constants ϑt. A consequence of the additional requirement for

the functions gt is that they are no longer free up to individual translation parameters bt.
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Observe that this additional determinateness of the sequence (gt)t∈{1,...,T} is no longer due

to information that is conveyed already by preference over certain consumption paths.

The information stems from absorbing the normalization constant ϑt, which was seen

to gain representational relevance only for the choice between nondegenerate lotteries.

As theorem 5 breaks the symmetry in the freedom to choose gt, ft and ut ∈ B�t
, the

gauge corollaries are stated in terms of representation theorem 4, allowing for arbitrary

choices of gt. Gauging works out as in chapter 6.4. The only difference is that in the

more general framework developed above, I can choose the Bernoulli utility functions

independently for every period and, therefore, gauge the functions gt or ft differently

for different periods. The gauge corollaries build on the following analogon to lemma 1

in chapter 6.

Lemma 4: Let the triple (uτ , fτ , gτ ) be part of a representation (ut, ft, gt)t∈{1,...,τ,...,T}

for (�t)t∈{1,...,T} in the sense of theorem 4. Moreover, let sτ : Uτ → IR be a strictly

increasing and continuous transformation and define the triple (u′
τ , f

′
τ , g

′
τ ) =

(sτ ◦ uτ , fτ ◦ s−1
τ , gτ ◦ s−1

τ ). Then, letting (u′
t, f

′
t , g

′
t) = (ut, ft, gt)∀ t 6= τ , the

sequence (u′
t, f

′
t , g

′
t)t∈{1,...,T} is a representation of (�t)t∈{1,...,T}.

Using lemma 4 I can always choose the Bernoulli utility functions in a way to render

any desired form of the uncertainty aggregation rule. This is stated in

Corollary 6 (f-gauge) :

For any sequence of strictly increasing and continuous functions f t : IR → IR,

t ∈ {1, ..., T}, the following equivalence holds:

The sequence of preference relations (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfies

i − iii) of theorem 4,

if and only if, for all t ∈ {1, ..., T} there exist continuous functions

u t : X → IR as well as strictly increasing and continuous functions g t : Ut → IR

such that with defining

v − vi) of theorem 4,

the representation (8.2) of theorem 4 holds for all t ∈ {1, ..., T}.

Moreover, (ut, gt)t∈{1,...,T} and (u′
t, g

′
t)t∈{1,...,T} both represent (�t)t∈{1,...,T} in the

above sense, if and only if, there exists a ∈ IR++ such that for all t ∈ {1, ..., T}

there are affine transformations a+
t ∈ A+ and aa

t ∈ Aa such that (u′
t, g

′
t) =

(f−1
t a+

t ft ut , aa
t gt f−1

t a+
t
−1

ft).

In particular, choosing all functions ft as the identity, corollary 6 yields the Kreps Por-

teus gauge. In that case, uncertainty aggregation is always described by the expected
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value operator. In general, however, this choice comes at the cost of a non-linear aggre-

gation of Bernoulli utility over time. But as discussed in chapter 7.3, a linear aggregation

of Bernoulli utility over time can be desirable, e.g. for an interpretation of Bernoulli util-

ity in terms of welfare. The following lemma serves as the basis for such a certainty

additive gauge.

Corollary 7 (g-gauge) :

For any sequence of strictly increasing and continuous functions g t : IR → IR,

t ∈ {1, ..., T}, the following equivalence holds:

The sequence of preference relations (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfies

i − iii) of theorem 4,

if and only if, for all t ∈ {1, ..., T} there exist continuous functions

u t : X → IR as well as strictly increasing and continuous functions f t : Ut → IR

such that with defining

v − vi) of theorem 4,

the representation (8.2) of theorem 4 holds for all t ∈ {1, ..., T}.

Moreover, (ut, gt)t∈{1,...,T} and (u′
t, g

′
t)t∈{1,...,T} both represent (�t)t∈{1,...,T} in the

above sense, if and only if, there exists a ∈ IR++ such that for all t ∈ {1, ..., T}

there are affine transformations a+
t ∈ A+ and aa

t ∈ Aa such that (u′
t, f

′
t) =

(g−1
t aa

t gt ut , a+
t ft g−1

t aa
t
−1 gt).

In particular, choosing the functions gt as the identity for all t ∈ {1, ..., T} yields the

certainty additive gauge.4 Here, Bernoulli utility is time-additive over certain consump-

tion paths. For a stationary setting without discounting, chapter 7.3 has explained how

in such a representation the concept of intertemporal risk aversion can be interpreted

as risk aversion on welfare. The next section extends the concept of intertemporal risk

aversion into the general framework derived above.

8.2 Intertemporal Risk Aversion

In this section I introduce the general, axiomatic characterization of intertemporal risk

aversion. In the special case of a decision maker with stationary preference and a

zero rate of pure time preference, the definition is equivalent to the form introduced in

4Note that, for the definition of the normalization constants θt, this is a special case where
∆Gt = ∆Ut.
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chapter 7.2. To tie up with the discussion in part II, I first state the characterization

for a two period setting. Subsequently, two alternative extensions of the axiom to an

arbitrary number of periods are offered, both of which yield the same characterization in

terms of the representation derived in the preceding section. The main difference in the

formulation with regard to chapter 7.2 is the following. Relaxing the requirements of a

zero rate of time preference and stationarity imply that the definition has to consider

lotteries over general consumption paths, rather then over individual outcomes in a

single period.5

In the two period setting, a decision maker is said to exhibit weak intertemporal risk

aversion (in period 1), if and only if, the following axiom is satisfied:

A6w
tp (weak intertemporal risk aversion) For all x1, x

′
1, x2, x

′
2 ∈ X holds

(x1, x2) ∼1 (x′
1, x

′
2) ⇒ (x1, x2) �1

1

2
(x1, x

′
2) +

1

2
(x′

1, x2). (8.4)

The index ‘w’ at the axiom’s label abbreviates again ‘weak’ as opposed to ‘s’ for ‘strict’,

while ‘tp’ denotes the particular two period setting. A decision maker is said to exhibit

strict intertemporal risk aversion (in period 1), if and only if, the following axiom is

satisfied:

A6 s
tp (strict intertemporal risk aversion) For all x1, x

′
1, x2, x

′
2 ∈ X holds

(x1, x2) ∼1 (x′
1, x

′
2) ∧ x2 6∼2 x′

2 ⇒ (x1, x2) ≻1
1

2
(x1, x

′
2) +

1

2
(x′

1, x2). (8.5)

I start with the interpretation of the strict axiom. The first part of the premise in

axiom A6 s
tp states that a decision maker is indifferent between a certain consumption

path delivering outcome x1 in the first period and outcome x2 in the second period,

and another certain consumption path delivering outcomes x′
1 and x′

2 respectively. The

second part of the premise requires that the decision maker values either x2 higher than

x′
2 or vice versa. Let me assume he prefers outcome x′

2 over outcome x2 in the second

period. In combination with the first part of the premise, this preference implies that

the decision maker values x1 higher than x′
1 in the first period.6 Moreover, the indiffer-

5Precisely, admitting a non-zero rate of time preference implies the necessity to consider lotteries
over paths rather than over single period outcomes. Allowing for non-stationary preference results
in the additional need to include non-constant certain consumption paths in the axiom’s comparisons.
Chapter 9.4 gives a simplified version of the axiom for the case of general stationary preference, keeping
consumption paths on the left hand side of the comparisons in equation (8.4) constant over time.

6Again, the interpretation assumes that the axioms of choice of the last section, as gathered in
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ence with respect to the intertemporal trade-off in the first part of the premise implies

that there is some equivalence between the superiority of x1 over x′
1 and the inferiority

of x2 with respect to x′
2. To arrive at the right hand side of equation (8.5), reassemble

the outcomes to the new consumption paths (x1, x
′
2) and (x′

1, x2). As opposed to the

consumption path (x1, x2), the consumption path (x1, x
′
2) features a higher consumption

in the second period, while first period consumption coincides. On the other hand, the

consumption path (x′
1, x2) delivers an inferior outcome in the first period, but consump-

tion in the second is the same as in (x1, x2). Moreover, in the sense of indifference in the

intertemporal trade-off, there is an evaluative equivalence between the superiority of the

consumption path (x1, x
′
2) with respect to (x1, x2), and the inferiority of the consump-

tion path (x′
1, x2) with respect to (x1, x2). Now, the right hand side of equation (8.5)

offers the choice between the consumption path (x1, x2) with certainty and a lottery

that yields, with equal probability, either the superior consumption path (x′
1, x2) or the

inferior consumption path (x1, x
′
2). Then, the axiom requires an intertemporally risk

averse decision maker to prefer the certain consumption path over the lottery. Again,

the intuition is that he might be better off in the lottery than with the certain consump-

tion path (x1, x2), but he might as well be worse off with equal probability. This differs

from the decision problem in the premise, where the decision maker can be certain to

get the higher outcome in the second period, if he decides for the inferior outcome in

the first.

The interpretation for the weaker axiom A6w
tp is analogous. The only difference is that

the implication of axiom A6w
tp just requires the lottery not to be strictly preferred to the

certain outcome path. Therefore, the premise can allow that both consumption paths,

(x1, x2) and (x′
1, x

′
2), are evaluated identical with respect to their individual outcomes.

If axiom A6 s
tp (A6w

tp) is satisfied with ≻1 (�1) replaced by ≺1 (�1), the decision maker

is called a strong (weak) intertemporal risk seeker. If his preferences satisfy weak in-

tertemporal risk aversion as well as weak intertemporal risk seeking, the decision maker

is called intertemporally risk neutral.

Before I extend the axioms to an arbitrary planning horizon, let me revisit the example

studied in chapter 7.4. An employee was offered a vacation lottery by his boss. The

corresponding coin flip would have either extended his summer vacation from two to

three weeks, or would have cut the vacation short by one week. As the employee declined

the lottery, I wondered whether this rejection was due to risk aversion or whether it

theorem 5, are satisfied. Preferring x1 over x′
1 in the first period corresponds formally to [x1] ≻1 [x′

1].
In terms of representation theorem 5, this relation implies that any Bernoulli utility function renders a
higher value for outcome x1 than for outcome x′

1.
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was caused by a higher valuation for a second week of vacation than for a third week

of vacation. Therefore, I asked the employee, whether he was willing to trade in a

week of this year’s summer vacation for an extra week of next year’s summer vacation.

Acknowledging that I observed a rather particular employee, who featured a stationary

preference relation and a zero rate of time preference, this combined information was

enough to decide whether he declined due to (intertemporal) risk aversion or due to

judging a third week of vacation inferior to a second week of vacation. Now let me

extend the example to those employees, who have general non-stationary preferences,

by applying axiom A6 s
tp to the above setting. Hence, in order to find out whether such

an employee is intertemporally risk averse, I have to offer him a different lottery than in

chapter 7.4. Now, the coin flip should promise him either two weeks of vacation this year

and three in the next, or, if the other side comes up, one week of vacation this year and

two in the next. If he declines such an offer, but prefers to trade in one week of vacation

this year for an extra week next year, the employee is known to be intertemporally risk

averse.7 If he accepts the lottery, but declines the certain trade, the employee is known

to be an intertemporal risk seeker. If he declines both, the lottery and the certain trade,

I only know that he is not, at the same time, intertemporally risk seeking and values

the third week higher than the second. If he accepts both, I only know that he is not

intertemporally risk averse and, at the same time, judges the third week inferior to

the second. In these cases, I have to change the vacation payoffs, corresponding to a

variation of the outcome paths x = (x1, x2) and x′ = (x′
1, x

′
2) in axiom A6 s

tp, in order to

derive further information on the employees preference and risk attitude.

To state the axiom for an arbitrary finite planning horizon T , I need to introduce

some notation. Given two consumption paths x = (xt, xt+1, ..., xT ) ∈ Xt and x′ =

(x′
t, x

′
t+1, ..., x

′
T ) ∈ Xt, I define the reassembled consumption path (x−i, x

′
i) =

(xt, ..., xi−1, x
′
i, xi+1, ..., xT ) ∈ Xt, as the consumption path that coincides with x in all

but the ith period, and in period i it coincides with the period i outcome of path x′.

Note that for i ∈ {t, ..., T} there are T − t+1 different consumption paths (x−i, x
′
i), each

of length T − t + 1. Then,
∑T

i=t
1

T−t+1
(x−i, x

′
i) denotes a lottery that yields with equal

probability any of these consumption paths (x−i, x
′
i). This lottery can also be described

as follows. Think about constructing a new consumption path out of the consumption

path x, by keeping all but one of its entry. The entry that is changed, replaces the

outcome xi by the outcome x′
i. Now, the lottery draws with equal probability the period

7More precisely, he is known to be intertemporally risk averse for that particular welfare level. How-
ever, see chapter 10 to find (axiomatic) reasons, why a decision maker might be only either everywhere

intertemporally risk averse or everywhere intertemporally risk seeking.
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in which the consumption is exchanged.

A decision maker is said to exhibit weak intertemporal risk aversion in period t < T ,

if and only if the following axiom is satisfied:

A6w (weak intertemporal risk aversion) For all x, x′ ∈ Xt holds

x ∼t x′ ⇒ x �t

∑T
i=t

1
T−t+1

(x−i, x
′
i).

A decision maker is said to exhibit strict intertemporal risk aversion in period t < T , if

and only if the following axiom is satisfied:

A6 s (strict intertemporal risk aversion) For all x, x′ ∈ Xt holds

x ∼t x′ ∧ ∃ τ ∈ {t, ..., T} s.th. [xτ ]τ 6∼τ [x′
τ ]τ

⇒ x ≻t

∑T
i=t

1
T−t+1

(x−i, x
′
i).

I give an interpretation for the strict version of the axiom, which illustrates also the

interpretation of its weak form. The premise, i.e. the first line of axiom A6 s, is analogous

to that of axiom A6 s
tp. The first part states that a decision maker is indifferent between

the certain consumption paths x and x′. The second part of the premise requires that

there exists at least one period, in which the decision maker is not indifferent between

the outcome delivered in the respective period by consumption path x and the one

delivered by consumption path x′.8 Without loss of generality assume that there exists

τ ∈ {t, ..., T} such that outcome xτ is strictly preferred to outcome x′
τ (i.e. [xτ ]τ ≻τ

[x′
τ ]τ ). Then9, by the first part of the premise, there also has to exist a period τ ′, in

which the outcome xτ ′ is judged inferior to the outcome x′
τ ′ . Therefore, the second part

of the premise implies that there exists a consumption path (x−τ ′ , x′
τ ′) that is judged

superior to the consumption path x as well as a consumption path (x−τ , x
′
τ ) that is judged

inferior to x. Of course, there can be several consumption paths of type (x−i, x
′
i) with

i ∈ {t, ..., T} that are judged superior or inferior with respect to the consumption path

x. However, the outcomes x′
i that make the paths (x−i, x

′
i) superior and those that make

the paths inferior with respect to x, balance each other in the sense of the intertemporal

trade-off given in the first part of the premise. Then, the second line of axiom A6 s

demands that for consumption satisfying the above conditions, an intertemporally risk

averse decision maker should prefer the consumption path x with certainty over the

lottery that yields with equal probability any of the consumption paths (x−i, x
′
i), some

8Recall the definition of [xt]t as the consumption path (xt, x
0, ..., x0) that yields outcome xt in

period t and some arbitrary, but commonly fixed, baseline consumption x0 ∈ X from period t + 1 on.

9Assuming that the axioms of choice given in the preceding section prevail.
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of which make him better off and some of which make him worse off.

The interpretation for the weaker axiom A6w is analogous, except that the consump-

tion path x is allowed to coincide with x′, and the implication only requires that the

lottery is not strictly preferred to the certain consumption path. If axiom A6 s (A6w) is

satisfied with ≻t (�t) replaced by ≺t (�t) the decision maker is called a strong (weak)

intertemporal risk seeker. If a decision maker’s preferences satisfy weak intertemporal

risk aversion as well as weak intertemporal risk seeking, the decision maker is called

intertemporally risk neutral.

Before stating the theorem that characterizes intertemporal risk aversion in terms of

the representation of theorem 4, I want to offer an alternative axiomatic characterization

of intertemporal risk aversion in the multiperiod setting, which only involves a lottery

over two consumption paths. These consumption paths are constructed by separating

the relatively better outcomes of x with respect to x′ from the relatively worse outcomes

of x with respect to x′. Precisely, define for x, x′ ∈ Xt the consumption paths xhigh(x, x′)

and xlow(x, x′) in Xt by

(xhigh(x, x′))τ =

{
x′

τ if [x′
τ ]τ ≻τ [xτ ]τ

xτ if [xτ ]τ �τ [x′
τ ]τ

and

(xlow(x, x′))τ =

{
x′

τ if [xτ ]τ �τ [x′
τ ]τ

xτ if [x′
τ ]τ ≻τ [xτ ]τ

for τ ∈ {t, ..., T}. The consumption path xhigh(x, x′) collects the better outcomes of

every period, while xlow(x, x′) collects the inferior outcomes of every period. In this

notation the definition of weak intertemporal risk aversion in period t < T can also be

stated as follows:

A6w
* (weak intertemporal risk aversion) For all x, x′ ∈ Xt holds

x ∼t x′ ⇒ x �t
1
2

xhigh(x, x′) + 1
2

xlow(x, x′).

And strict intertemporal risk aversion in period t < T can be written as:

A6 s
* (strict intertemporal risk aversion) For all x, x′ ∈ Xt holds

x ∼t x′ ∧ ∃ τ ∈ {t, ..., T} s.th. [xτ ]τ 6∼τ [x′
τ ]τ

⇒ x ≻t
1
2

xhigh(x, x′) + 1
2

xlow(x, x′).

The interpretations are analogous to those of axioms A6w and A6 s. However, the ‘worse

off’ versus ‘better off’ trade-off in the lottery can be observed more directly. Moreover,
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for long time horizons, the formulation in axioms A6w
* and A6 s

* reduces the outcome

paths offered by the lottery significantly. Note that for the case of two periods, both

axioms A6w and A6w
* coincide with axiom A6w

tp, and both axioms A6 s and A6 s
* are

identical to axiom A6 s
tp. Theorem 6 shows the equivalence of the two formulations within

a preference setup as described in the preceding section. Most importantly however, it

translates the axiomatic characterization of intertemporal risk aversion into a functional

characterization for representations in the sense of theorem 4.

Theorem 6: Let the sequence of triples (ut, ft, gt)t∈{1,...,T} represent the preferences

�= (�t)t∈{1,...,T} in the sense of theorem 5. Furthermore let t ∈ {1, ..., T − 1}.

The following assertions hold:

a) A decision maker is strictly intertemporally risk averse [seeking] in period t in

the sense of axiom A6 s, if and only if, ft ◦ g−1
t (z) is strictly concave [convex] in

z ∈ Γt.

b) A decision maker is weakly intertemporally risk averse [seeking] in period t in

the sense of axiom A6 s, if and only if, ft ◦ g−1
t (z) is concave [convex] in z ∈ Γt.

c) A decision maker is intertemporally risk neutral in period t, if and only if,

ft ◦ g−1
t (z) is linear in z ∈ Γt.

d) The above assertions hold as well, if axiom A6 s is replaced by axiom A6 s
*, and

if axiom A6w is replaced by axiom A6w
* .

In theorem 6 intertemporal risk aversion is characterized by the functions ft ◦ g−1
t .

Note, that for period T , the term fT ◦ g−1
T is determined by the underlying preferences

�= (�t)t∈{1,...,T} to the same degree as the compositions ft ◦ g−1
t for any other period.

Therefore, theorem 6 can be used to extend the definition of intertemporal risk aver-

sion to the last period of the planning horizon.10 The interpretation of the assertions

is the same as for theorem 3. For a detailed discussion I refer to chapter 7. However,

the above extension to the general multiperiod setting allows the functions characteriz-

ing intertemporal risk aversion to change arbitrarily over time. In the one-commodity

Epstein Zin gauge, theorem 6 shows that intertemporal risk aversion goes along with

standard risk aversion dominating a decision makers aversion to substitute consumption

over time. Considering the certainty additive gauge (g = id), assertion a) states that

intertemporal risk aversion is equivalent to a strictly concave function f . As this gauge

was implicitly applied in the setup of sections 5.2 and 5.3, where a strictly concave

f has been identified to characterize precautionary behavior (compare page 69), strict

10Of course, this is only possible because the sequence of preference relations � is defined over at
least two periods. Otherwise, i.e. in the one-period or atemporal case, gT would not be determined at
all.
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intertemporal risk aversion corresponds again to a precautionary evaluation of a threat

of harm scenario.

As discussed in chapter 7.3, in the g = id-gauge, certainty additive Bernoulli utility

is given the interpretation of welfare uwelf . With such a notion of welfare, intertemporal

risk aversion can be interpreted as risk aversion with respect to welfare gains and losses.

Just as in chapter 7.3, I can also reinterpret the axioms characterizing intertemporal

risk aversion in this section in terms of risk aversion on welfare. For example axiom

A6 s
* gains the following interpretation. The first part of the premise requires that for

two consumption paths, x and x′, the per period welfare adds up to the same overall

welfare. The second part of the premise requires that at least in one period, the welfare

gained from consumption path x differs from that gained from consumption path x′. The

consumption path xhigh(x, x′) collects for every period the outcome xt or x′
t that renders

the comparatively higher welfare, while the consumption path xlow(x, x′) collects the

outcome xt or x′
t that yields the comparatively lower welfare. Then, the lottery between

these ‘high welfare’ and ‘low welfare’ consumption paths constructed in axiom A6 s
*

renders in expectation the same welfare as the certain consumption path x. A decision

maker who is strictly risk averse on welfare, i.e. strictly intertemporally risk averse, is

defined by preferring the certain consumption path x over the welfare lottery that leaves

him with equal probability either worse or better off, and yields the same welfare as the

certain consumption path in expectation.

For a quantitative measurement of risk aversion, the two definitions of chapter 7.4

gain a time index. For a twice differentiable function ft ◦ g−1
t : Γt → IR define a measure

of relative intertemporal risk aversion in period t as the function:

RIRAt : Γt → IR

RIRAt(z) = −

(
ft ◦ g−1

t

)′′
(z)

(
ft ◦ g−1

t

)′
(z)

z . (8.6)

Analogously define the coefficient of absolute intertemporal risk aversion in period t as

the function:

AIRAt : Γt → IR

AIRAt(z) = −

(
ft ◦ g−1

t

)′′
(z)

(
ft ◦ g−1

t

)′
(z)

. (8.7)

To make these quantities well defined, the affine freedom in the representation corre-

sponding to the evaluation of certain consumption paths has to be fixed, just as in

chapter 7.4. In a general gauge, this evaluation is characterized by the functions gt ◦ ut.

As worked out in the certainty additive gauge, where the term gt ◦ut = uwelf
t directly co-
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incides with Bernoulli utility, the expression was given an interpretation of welfare (see

chapter 7.3). As explained in chapter 7.4, fixing the unit of welfare makes the measure

of absolute intertemporal risk aversion (or risk aversion on welfare) unique, while fixing

the ‘zero welfare level’ makes the measure of relative intertemporal risk aversion unique.

Precisely, the following assertions hold.

Lemma 5: Let there be given a sequence of preference relations �= (�t)t∈{1,...,T}

satisfying axioms A1-A3, A4’ and A5’. In addition, choose

i) a time t∗ ∈ {1, ..., T} and number w∗ ∈ IR++,

ii) outcomes xzero
t for all t ∈ {1, ..., T} or

iii) numbers wt ∈ IR for all t ∈ {1, ..., T}.

Then, for representations (ut, ft, gt)t∈{1,...,T} in the sense of theorem 4 with twice

differentiable functions ft ◦ g−1
t that

a) satisfy ∆Gt∗ = w∗, the risk measures AIRAt

b) satisfy gt ◦ ut(x
zero
t ) = 0 for all t ∈ {1, ..., T}, the risk measures RIRAt

c) satisfy ∆Gt∗ = w∗ and gt ◦ ut(x
zero
t ) = 0 for all t ∈ {1, ..., T},

the risk measures AIRAt and RIRAt

d) satisfy ∆Gt∗ = w∗ and Gt = wt for all t ∈ {1, ..., T},

the risk measures AIRAt and RIRAt

are determined uniquely and independent of the choice of the Bernoulli utility

functions for all t ∈ {1, ..., T}.

As all gauges of the representation correspond to particular choices of Bernoulli utility,

lemma 5 can be restated as the fact that, once the corresponding welfare information

has been fixed, the measures RIRAt and AIRAt are gauge invariant. In assertion a) the

externally given information specifies the unit of welfare measurement, by prescribing

a numerical value to the difference in welfare between the best and the worst outcome,

i.e. uwelf
t (xmax

t ) − uwelf
t (xmin

t ) = gt ◦ ut(x
max
t ) − gt ◦ ut(x

min
t ) = Gt − Gt = w∗. Note

that it is enough to fix the unit for some period, in order to determine the welfare

unit for all periods.11 Such a partial specification of the measure scale for welfare

makes the measures of absolute intertemporal risk aversion unique. Assertion b) fixes

the ‘zero welfare level’ for all periods, by prescribing outcomes in every period that

shall correspond to a zero welfare. Note that such a specification of welfare leaves the

11The freedom in the choice of welfare unit for the different representations of the same preferences
corresponds to the multiplicative constant ag in the allowed transformations for gt in the representation
of theorem 4. As ag is common to all periods, specifying ag determines the unit of welfare measurement
for all periods.
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unit of welfare undetermined. The information is enough to render the measures of

relative intertemporal risk aversion unique. Assertion c) fixes the welfare unit and the

zero welfare level together. This step eliminates the freedom in the measure scale of

welfare, going along with different representations, completely. In consequence, both

measures of intertemporal risk aversion are determined uniquely. Assertion d) offers

an alternative way to eliminate the indeterminacy of the measure scale for welfare.

Here I fix the unit of welfare as in a), and prescribe numerical values to the worst

outcomes in every period. Similarly, one could prescribe numerical values to any other

arbitrary outcome in every period. The necessity to fix the ‘zero welfare level’, or specify

some alternative information, in every period, is due to the allowed non-stationarity of

preferences, which allows the functions ft ◦ g−1
t to vary arbitrarily over time. The next

chapter gives conditions under which the functions gt and ft for different periods are

directly related.
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Chapter 9

Stationarity

9.1 Certainty Stationarity

The representation developed in the preceding chapter allows time and uncertainty ag-

gregation to vary arbitrarily from period to period. This chapter introduces different

stationarity assumptions for preferences and elaborates their implications for the repre-

sentation. First, the current section develops an axiom restricting choice under certainty

that renders intertemporal aggregation and Bernoulli utility stationary. On certain con-

sumption paths, it gives rise to the common discount utility representation. Due to the

finite planning horizon in my analysis, the corresponding axiom slightly differs from its

usual formulation. It can be interpreted as a combination of the assumption that the

mere passage of time does not change preference, and an assumption that the rank-

ing of two lotteries does not depend on a common certain outcome in the last period.

Subsequently, in section 9.2, I introduce an axiom that additionally makes uncertainty

aggregation invariant over time. In particular, the resulting representation contains the

model of generalized isoelastic preferences, usually employed to disentangle (atemporal)

risk aversion from intertemporal substitutability. Section 9.3 works out an alternative

stationarity assumption for the evaluation of uncertainty. Analogously to the axiom for

certain consumption paths derived in the current section, it builds on the assumption

that the ranking of two lotteries does not depend on a common certain outcome in the

last period. An attractive feature of the resulting representation is that it condenses

information on intertemporal risk aversion into a single parameter. The latter insight

is worked out in section 9.4. There, I characterize intertemporal risk aversion in the

different representation theorems given in this chapter. In addition, I state a simplified
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axiom characterizing intertemporal risk aversion of preferences in a stationary setting.

Stationarity, in the sense of the standard discount utility model is a ubiquitous as-

sumption in economic modeling, and in particular in environmental economics. However,

to the best of my knowledge, the assumption is expressed in terms of the underlying

preference relations only for models featuring an infinite time horizon. In these models,

the axiomatic characterization of stationarity requires that a decision maker prefers a

consumption path x over another consumption path x′ in the present, if and only if,

he prefers a consumption path (x0, x) over a consumption path (x0, x′) in the present

(Koopmans 1960).1 Such an axiomatization makes use of the fact that for an infinite

time horizon, adding an additional outcome does not change the length of a consump-

tion path. Precisely, both paths x and (x0, x), are elements of X∞ and can be compared

by the same preference relation. On the contrary, for a finite time horizon, the paths

x and (x0, x) differ in length and, thus, cannot be compared by means of the same

preference relation �. The reason, why I keep my model in the finite time horizon is

threefold. First, the common techniques for analyzing an infinite time horizon setting

(contraction and fix point theorems) have to assume from the outset a positive rate of

pure time preference. However, as mentioned in the introduction to this thesis, such a

positive discount rate is not without controversy.2 Second, the reasoning on stationar-

ity carried out in this chapter together with the reasoning on attitude with respect to

the timing of uncertainty resolution carried out in chapter 10, make a strong point for

choosing a zero rate of time preference for a time consistent approach to choice under

uncertainty. Third, for most planning processes and scenario evaluations there exists

a reasonable upper bound for the planning horizon.3 Considering the assumption of a

finite horizon a competitive alternative to the assumption of an infinite planning horizon

that is accompanied by a positive discount rate, I give a slightly different axiomatization

of stationarity. In the discussion later on, I provide several comments with respect to

the limit of an infinite time horizon. The following axiom is applicable in a finite time

horizon setting and, there, yields the standard discount utility model for the evaluation

of certain consumption paths.

1See page 130 for details.

2Compare the citation of Ramsey (1928, 543), who states that a positive rate of pure time preference
is “ethically indefensible”. I come back to this issue in chapter 10.4.

3While such an upper bound can be in the magnitude of several decades, note that taking as upper
bound a point of time by which our sun has burned out or turned into a red giant still provides a finite
upper bound (Sackmann, Boothroyd & Kraemer 1993).
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A7 (certainty stationarity) For all x2, x′2 ∈ X2 and all x0 ∈ X holds

(x2, x0) �1 (x′2, x0) ⇔ x2 �2 x′2 .

On the right hand side of the equivalence, the decision maker faces a comparison between

x2 and x′2 as consumption paths starting in period 2. Note that, by time consistency

A5’, the comparison on the right is equivalent to (x0, x2) �1 (x0, x′2). On the left

hand side of the equivalence, the decision maker faces a comparison between x2 and

x′2 as consumption paths starting in period 1. The additional outcome x0, which is

commonly added to the paths x2 and x′2, makes (x2, x0) and (x′2, x0) choice objects

of the appropriate length, so that they can be compared in period 1 by the preference

relation �1. The important property of the axiom is that the decision maker’s preference

over the (certain) consumption paths is independent of their starting point.4

I want to give an interpretation of axiom 7 by separating the underlying idea into

two steps. Assume that a decision maker in period 1, planning with time horizon T ,

prefers consumption plan (x2, x0) over plan (x′2, x0). Now, let him contemplate about

his choice in period 2. Assume that he is confronted in period 2 with the exact same

consumption paths (x2, x0) and (x′2, x0) (not with their continuation). Furthermore, let

him anticipate that in period 2 he will plan ahead the same amount of periods as he

does in period one, implying a time horizon T + 1. Formally, I denote these preferences

of the decision maker in period 2 with time horizon T + 1 by �2|T+1. Then, given that

nothing else changes between period 1 and period 2, I demand that the decision maker

ranks (or rather plans to rank) the projects in both choice situations the same way.

Requiring the latter for all consumption paths yields the condition

(x2, x0) �1|T (x′2, x0) ⇔ (x2, x0) �2|T+1 (x′2, x0) (9.1)

for all x2, x′2 ∈ X2 and x0 ∈ X. Condition (9.1) most clearly captures the intuition of

stationarity, in the sense that the mere passage of time should not change the evaluation.

However, up to now the preference relations �·|T and �·|T+1 are completely unrelated.

In consequence, equation (9.1) on its own does not restrict the decision maker’s prefer-

ence relations (�t)t∈{1,...,T} = (�t|T )t∈{1,...,T} in any way. Thus, the second step in the

reasoning has to relate the preference relation �2|T+1 to the relation �2=�2|T . Both

preference relations specify how the decision maker anticipates to evaluate choice objects

in period 2. The relation �2|T specifies his ranking when planning T − 2 periods ahead

(until period T ), and the relation �2|T+1 states his ranking when he plans T − 1 periods

4Note the difference to time consistency. The latter is a condition on consumption paths starting in
the same period that yield a common outcome in the first period. Then, the continuation of the paths
in the next period should be ranked the same way as the complete paths in the earlier period.
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ahead (until period T + 1). Accepting stationarity in the sense of equation (9.1), axiom

A7 requires the following relation between �·|T and �·|T+1:

x2 �2|T x′2 ⇔ (x2, x0) �2|T+1 (x′2, x0) (9.2)

for all x2, x′2 ∈ X2 and x0 ∈ X. In words, if two scenarios or projects are evaluated with

a time horizon of T +1, and yield the same outcome in period T +1, then, an evaluation

based only on a time horizon T shall yield the same ranking of the scenarios.

Let me point out the analogous reasoning to yield stationarity from the assumption

expressed in equation (9.1) for the case of an infinite planning horizon. Denote the

consumption paths corresponding to (x2, x0) and (x′2, x0) by x, x′ ∈ X∞. Then, by

time consistency the right hand side of equation (9.1) is equivalent to (x0, x) �1|T+1

(x0, x′) for all x, x′ ∈ X∞ and x0 ∈ X. Moreover, in the infinite horizon setting, it

holds �1|T+1=�1|∞=�1|T , a relation which makes equation (9.2) dispensable. That

way, I arrive at the standard axiom of stationarity for the infinite planning horizon:

x �1|∞ x′ ⇔ (x, x) �1|∞ (x, x′) for all x ∈ X and all x∞, x′∞ ∈ X∞, dating back to

Koopmans (1960)[294]5. Hence, at first sight, the second assumption, corresponding to

equation (9.1), seems to come for free with an infinite time horizon. However, this is

not the case. It is a necessary assumption in the standard framework with an infinite

planning horizon that the decision maker applies a positive rate of pure time prefer-

ence. Therefore, the weight given to future consumption converges to zero. Thus, the

assumption that coinciding outcomes in the ‘last’ period of the planning horizon do not

matter for the ranking of consumption paths is implicit in the infinite horizon setting.

It is the combined result of the decision maker’s intrinsic devaluation of the future and

his infinite planning horizon.

As in the simplified setting analyzed in chapter 6.3, also in the general stationary

setting the sets of Bernoulli utility functions coincide for different periods. Therefore,

define u ∈ B� ≡ B�1 . Preference stationarity on certain consumption paths as formu-

lated in axiom A7, together with the assumptions of the previous chapter, yields the

following representation.

Theorem 7: Let there be given a sequence of binary relations �= (�t)t∈{1,...,T} on

(Pt)t∈{1,...,T} and a Bernoulli utility function u ∈ B� with range U . The sequence

�= (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

5Koopmans (1960) actually formulates his postulates in terms of utility functionals. However the
translation of his postulate 4 into the preference setup is immediate. His general axiomatic setting is
translated into preferences in Koopmans (1972), again with stationarity corresponding to postulate 4.
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ii) A4’ for �1|XT (certainty additivity)

iii) A5’ (time consistency)

iv) A7 (certainty stationarity)

if and only if, there exist strictly increasing and continuous functions ft : U → IR

for all t ∈ {1, ..., T} and g : U → IR as well as a discount factor β ∈ IR++, such

that with defining

v) the normalized discount weights

βt = β 1−βT−t

1−βT−t+1 for β 6= 1 and

βt = T−t
T−t+1

for β = 1 and

vi) the functions ũt : X̃t → IR for t ∈ {1, ..., T} by ũT (xT ) = u(xT ) and

recursively

ũt−1 = g−1
[
(1 − βt−1) g ◦ u(xt−1) + βt−1 g ◦Mft(pt, ũt)

]
(9.3)

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt) ∀ pt, p
′
t ∈ Pt.

Moreover the functions g and ft are unique up to nondegenerate positive affine

transformations.

Certainty stationarity implies that the same Bernoulli utility function u ∈ B� can be

used in the representation for all periods. Moreover, it makes the functions gt, char-

acterizing intertemporal aggregation, coincide for adjacent periods up to a (common)

multiplicative constant. This constant corresponds to the discount factor β. As shown

in the proof, a representation (u, ft, g)t∈{1,...,T} for (�t)t∈{1,...,T} in the sense of theorem 7

corresponds to a representation (ut, ft, gt)t∈{1,...,T} = (u, ft, β
tg)t∈{1,...,T} for (�t)t∈{1,...,T}

in the sense of the general non-stationary representation of theorem 4. Expressing this

relation in words, the information characterizing intertemporal aggregation, which in

the general setting is contained in the functions gt for t ∈ {1, ..., T}, can be captured in

the stationary setting by two quantities. The first piece of information is taken up by

the function g, which now is common to all periods. In the one commodity Epstein Zin

gauge, it comprises the information on intertemporal substitutability. The second piece

of information characterizes the change of the functions gt between different periods.

This change is captured in a single parameter, the discount factor β, which describes

the reduction in weight given to future outcomes.
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For the limit of an infinite time horizon under the assumption β < 1, the normalized

discount weights βt used in the representation converge to the discount factor itself:

limT→∞ βt = β for all t. Then, the weight given to the present as opposed to the

future is constant. However, for a decision maker who plans with a finite time horizon,

the weights βt have to accommodate not only discounting, but also the weight that an

individual period receives as opposed to the remaining future. The shorter the time

horizon, or the closer the end of the time horizon, the higher must be the weight that

the present period obtains as opposed to the remaining future.6 On certain consumption

paths the evaluation is ordinally equivalent to the representation

xt �t x′t ⇔
T∑

τ=t

βtg ◦ u(xt
τ ) ≥

T∑

τ=t

βtg ◦ u(x′t
τ ).

Moreover, in the g = id gauge, the recursive construction of aggregate utility in equa-

tion (9.3) becomes

ũt−1(xt−1, pt) = (1 − βt−1) u(xt−1) + βt−1 M
ft(pt, ũt)

and yields for certain consumption paths a representation ordinally equivalent to the

widely applied evaluation

xt �t x′t ⇔
T∑

τ=t

βtu(xt
τ ) ≥

T∑

τ=t

βtu(x′t
τ ).

In difference to the intertemporal aggregation rules, the uncertainty aggregation rules

are allowed to vary arbitrarily over time. The next two sections elaborate two different

assumptions rendering the uncertainty aggregation rules stationary as well.

9.2 Risk Stationarity I

In the preference framework of the preceding section, I assume stationarity in the eval-

uation of certain consumption paths. The assumption implies a close relation between

intertemporal aggregation rules in different periods. In contrast, in the representation

of theorem 7 uncertainty evaluation is allowed to vary arbitrarily over time.7 It stands

6In particular, at the end of the time horizon, the weight given to the future has to be zero. Note,
that this reasoning is necessary because the weights given to the present and to the future have to add up
to one in the time aggregator g−1 [(1 − βt−1) g(·) + βt−1(·)]. Otherwise the symmetric characterization
of intertemporal aggregation and uncertainty aggregation by functions gt and ft would fail.

7Precisely, uncertainty evaluation is allowed to vary arbitrarily between different periods t and t′.
By the requirement of time consistency, uncertainty aggregation has to be fixed for a given period t
and, thus, independent of whether period t is τ or τ ′ periods into the future.

132



9.2. RISK STATIONARITY I

to reason that a decision maker who relates his evaluation of certain consumption paths

between different periods, is also willing to relate his evaluation of uncertain consump-

tion plans for different periods. An example of a preference representation which relates

uncertainty evaluation between different periods is the generalized isoelastic model. It

has been discussed in chapter 7.1 as the common framework to disentangle (atemporal)

risk aversion from intertemporal substitutability. In the multiperiod framework, the

generalized isoelastic model features uncertainty aggregation rules that are commonly

characterized by ft = zα ,∀ t ∈ {1, ..., T}.

In order to state an axiom that implies time constant uncertainty aggregation rules,

it proves useful to introduce a special notation for constant consumption paths. Let

x̄t = (x̄, x̄, ..., x̄) denote the certain constant consumption path that gives consumption

x̄ from t until T . Then 1
2
x̄t + 1

2
x̄′t ∈ Pt is the lottery in period t that randomizes

with probability 1
2

between the constant consumption streams giving x̄ and x̄′. The

following axiom demands that these randomized consumption streams relate to certain

consumption streams the same way in different periods.

A8 (risk stationarity I) For all t ∈ {1, ..., T − 1} holds

1
2
x̄ t + 1

2
x̄′ t �t x̄′′ t ⇔ 1

2
x̄ t+1 + 1

2
x̄′ t+1 �t+1 x̄′′ t+1 ∀ x̄, x̄′, x̄′′ ∈ X .

The axiom can be conceived as an indifference requirement to the start, and thus, the

duration of a taken risk. In particular, for a decision maker who is indifferent between

the lottery 1
2
x̄ + 1

2
x̄′ and a certain outcome x̄′′ in period T , axiom A8 requires that he

is indifferent between the lottery 1
2
(x̄, x̄) + 1

2
(x̄′, x̄′) and the certain consumption path

(x̄′′, x̄′′) in period T −1 as well. Be aware that in the lotteries of axiom A8 the outcomes

in the different periods are perfectly correlated. In particular in the above example,

lottery 1
2
(x̄, x̄) + 1

2
(x̄′, x̄′) is not the same as the lottery 1

2
(x̄, 1

2
x̄ + 1

2
x̄′) + 1

2
(x̄′, 1

2
x̄ + 1

2
x̄′),

which would correspond to independent coin tosses in both periods. Adding axiom A8

to the assumptions of theorem 7 yields the following representation.

Theorem 8: Let there be given a sequence of binary relations �= (�t)t∈{1,...,T} on

(Pt)t∈{1,...,T} and a Bernoulli utility function u ∈ B� with range U . The sequence

�= (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4’ for �1|XT (certainty additivity)

iii) A5’ (time consistency)

iv) A7-A8 (stationarity)
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if and only if, there exist strictly increasing8 and continuous functions f : U → IR

and g : U → IR as well as a discount factor β ∈ IR++, such that with defining

v) the normalized discount weights

βt = β 1−βT−t

1−βT−t+1 for β 6= 1 and

βt = T−t
T−t+1

for β = 1 and

vi) the functions ũt : X̃t → IR for t ∈ {1, ..., T} by ũT (xT ) = u(xT ) and

recursively

ũt−1(xt−1, pt) = g−1
[
(1 − βt−1) g ◦ u(xt−1) + βt−1 g ◦ M f (pt, ũt)

]
(9.4)

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mf (pt, ũt) ≥ Mf (p′t, ũt) ∀ pt, p
′
t ∈ Pt.

Moreover g and f are unique up to nondegenerate positive affine transformations.

In this representation a common function f characterizes risk attitude in all periods. Re-

lating the representation to the general non-stationary setting, a representation (u, f, g)

in the sense of theorem 8 corresponds to the representation (u, f, βtg) in the sense of

theorem 4. Due to the fact that both functions, g and f , apply to all periods, gauging

can be carried out as already discussed in chapter 6.4.

Lemma 6: Gauge lemma 1, corollary 2 (f-gauge) and corollary 3 (g-gauge) of sec-

tion 6.4 also hold for the multiperiod representation of theorem 8.

Precisely, replace in the respective statements ‘theorem 2’ by ‘theorem 8’ and

‘i− iii)’ by ‘i− iv)’. Moreover, either replace the word ‘monotonic’ by ‘increasing’

in corollaries 2 and 3, or replace the word ‘increasing’ by ‘monotonic’ in theorem 8.

In the one-commodity Epstein Zin gauge (u = id), the representation yields a multi-

period extension of the generalized isoelastic model discussed in chapter 7.1. For X ⊂ IR,

the Epstein Zin gauge for the isoelastic setting, where f = zα and g(z) = zρ, brings

about the following recursive construction of aggregate utility ũt.

Equation (9.4) in the Epstein Zin gauge (u = id) with isoelastic preferences:

ũt−1(xt−1, pt) =

{
(1 − βt−1) xρ + βt−1

[∫
X̃t

ũt(x̃t)
α dpt

] ρ
α

} 1
ρ

(9.5)

8Alternatively, the theorem can be stated with ‘increasing’ replaced by ‘monotonic’ (see chapter 6.3).
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Analogous formulations have been used in many applications in order to disentangle

atemporal risk aversion, characterized by α, from intertemporal substitutability, char-

acterized by ρ. For details and an overview over the respective literature consult chapter

7.1. Recall that I have introduced the functions ut and ũt as explicit arguments in the

uncertainty aggregation rules, in order to analyze and make use of the freedom in the

choice of Bernoulli utility. In the literature disentangling risk aversion from intertem-

poral substitutability, the uncertainty evaluation is usually stated in terms of the power

mean, which corresponds to Mα, but uses the probability measure p∗t induced by pt on

Ut through the function ũt (see chapter 5.3, in particular footnote 29). Then, denoting

the elements of Ut ⊂ IR by ut, equation (9.5) writes as

ũt−1(xt−1, p
∗
t ) =

{
(1 − βt−1) xρ + βt−1

[∫
Ut

ut
α dp∗t

] ρ
α

} 1
ρ

.

The standard form of the aggregator is obtained for the limit of an infinite time horizon,

where limT→∞ βt = β for all t.

9.3 Risk Stationarity II

Stationarity of risk attitude in the preceding section was primarily motivated by the

objective to obtain constant uncertainty aggregation rules. In this section, I reconsider

stationarity of preference in a risky world. Departing from axiom A7 for certain con-

sumption paths, I derive an alternative requirement for stationarity of risk attitude,

yielding a preference representation distinct from that given in theorem 8.

In section 9.1 I have motivated the axiom of certainty stationarity by splitting it up

into two assumptions. The first requirement, corresponding to equation (9.1), expresses

that the mere passage of time shall not change preferences. The second assumption,

corresponding to equation (9.2), compares two scenarios yielding the same outcome in

period T +1. For such scenarios, it requires that adapting a time horizon of T +1 or of T

shall yield the same ranking of the two scenarios. In the following, I give an analogous

reasoning for risky scenarios. As already in axioms A6 and A8, it proves sufficient

to require risk stationarity only for ‘coin toss’ compositions of certain consumption

paths, i.e. probability a half mixtures of type 1
2
x + 1

2
x′. Moreover, it is enough to have

the decision maker rank these lotteries with respect to certain alternatives. Then, the

analogue requirement to equation (9.1) becomes

1
2
(x, x0) + 1

2
(x′, x0) �t|T (x′′, x0) ⇔ 1

2
(x, x0) + 1

2
(x′, x0) �t+1|T+1 (x′′, x0) (9.6)

for all x, x′, x′′ ∈ Xt+1, x0 ∈ X and t ∈ {1, ..., T}. In words, the mere passage of time
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shall not change the ranking between the different scenarios. As I want the decision

maker to evaluate lotteries where uncertainty resolves at any point in the future, I

require equation (9.6) to hold for all periods.9

The second step to arrive at the axiom of risk stationarity, is to relate the relations

�·|T and �·|T+1. As in section 9.1, I require that scenarios whose outcomes coincide in

the last period of a finite planning horizon T + 1 shall be ranked the same way when

applying a planning horizon of T . This demand is formalized by the statement

1
2
x + 1

2
x′ �t+1|T x′′ ⇔ 1

2
(x, x0) + 1

2
(x′, x0) �t+1|T+1 (x′′, x0) (9.7)

for all x, x′, x′′ ∈ Xt+1, x0 ∈ X and t ∈ {1, ..., T}. As the right hand side of the

requirements in equations (9.6) and (9.7) coincides, together, the equations bring about

the following axiom for stationarity of risk attitude in a setting with a finite planning

horizon.

A9 (risk stationarity II) For all t ∈ {1, ..., T − 1} and x0 ∈ X:

1
2
(x, x0) + 1

2
(x′, x0) �t (x′′, x0) ⇔ 1

2
x + 1

2
x′ �t+1 x′′ ∀ x, x′, x′′ ∈ Xt+1.

In short, the decision maker ranks lotteries of the form 1
2
x + 1

2
x′ the same way when

they are faced in period t as when they are faced in period t + 1. When facing them in

period t, the additional outcome x0 at the end of the planning horizon, which coincides

for all consumption paths, does not change his ranking.

Before I come to the representation, let me briefly point out the analogous reasoning

to yield risk stationarity from the assumption expressed in equation (9.6) in the case of

an infinite planning horizon. Denote the consumption paths corresponding to (x, x0) and

(x′, x0) simply by x, x′ ∈ X∞, yielding the notation 1
2
x+ 1

2
x′ for the lotteries considered in

the infinite horizon version of equation (9.6). Moreover, in the infinite horizon setting, it

is �1|T+1=�1|∞=�1|T . Then, by time consistency, equation (9.6) for t = 1 is equivalent

to

1
2
x + 1

2
x′ �1|∞ x′′ ⇔ (x1,

1
2
x + 1

2
x′) �1|∞ (x1, x

′′)

for all x, x′, x′′ ∈ X∞ and x1 ∈ X. Similarly for t = 2 equation (9.6) is equivalent to

(x1,
1
2
x + 1

2
x′) �1|∞ (x1, x

′′) ⇔ (x1, x2,
1
2
x + 1

2
x′) �1|∞ (x1, x2, x

′′)

for all x, x′, x′′ ∈ X∞ and x1, x2 ∈ X. The latter statement for t = 2 can be transformed

9Alternatively, I could formulate the requirement analogously to equation (9.1) in section 9.1 by
only considering preference in periods 1 and 2. Such a reformulation is straight forward, once it is
recognized that time consistency A4’ allows to carry over all the requirements in equation (9.6) into
the first two periods, by adding common outcomes to the beginning of all consumption plans which
start in later periods.
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using the corresponding statement for t = 1 into the requirement:

1
2
x + 1

2
x′ �1|∞ x′′ ⇔ (x1, x2,

1
2
x + 1

2
x′) �1|∞ (x1, x2, x

′′)

for all x, x′, x′′ ∈ X∞ and x1, x2 ∈ X. By induction I obtain the general requirement

1
2
x + 1

2
x′ �1|∞ x′′ ⇔ (xt, 1

2
x + 1

2
x′) �1|∞ (xt, x′′) (9.8)

for all x, x′, x′′ ∈ X∞, t ∈ IN and xt ∈ X t. A corresponding10 axiom for stationarity of

risk attitude is found in Chew & Epstein (1991, 356).

Preference stationarity for the evaluation of lotteries as formulated in axiom A9, to-

gether with the assumptions of the previous chapter, yields the following representation.

Theorem 9: Let there be given a sequence of binary relations �= (�t)t∈{1,...,T} on

(Pt)t∈{1,...,T} and a Bernoulli utility function u ∈ B� with range U . The sequence

�= (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4’ for �1|XT (certainty additivity)

iii) A5’ (time consistency)

iv) A9 (risk stationarity II)

if and only if, there exists a strictly increasing and continuous function g : U → IR

and a discount factor β ∈ IR++ as well as a function h ∈
{

exp, id, 1
exp

}
, such that

with defining the functions w̃t : X̃t → IR for t ∈ {1, ..., T} by

v) w̃T (xT ) = g ◦ u(xT ) and recursively

w̃t−1(xt−1, pt) = g ◦ u(xt−1) + β Mh(pt, w̃t) or by (9.9)

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mh(pt, w̃t) ≥ Mh(p′t, w̃t) ∀ pt, p
′
t ∈ Pt. (9.10)

Moreover, if the representation employs h ∈
{

exp, 1
exp

}
, then two functions g and

g′ both represent (�t)t∈{1,...,T} in the above sense, if and only if, there exists b ∈ IR

such that g = g′ + b. In a representation employing h = id, two functions g and g′

both represent (�t)t∈{1,...,T} in the above sense, if and only if, there exist a ∈ IR++

and b ∈ IR such that g = ag′ + b.

10In difference to the above formulation, the authors require condition (9.8) for all lotteries, not just
for the probability a half (‘coin toss’) combinations that I have used and which prove sufficient in my
setting.
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The representation constructed in theorem 9 slightly differs from earlier representa-

tions. First, the functions employed for the recursive construction of the representation

in equations (9.9) and (9.10) are not complete analogues to those used in earlier rep-

resentations. Precisely, the functions w̃t used in equation (9.9) relate to the functions

ũt used in the earlier theorems as w̃t = 1
1−βt

g ◦ ũt. Second, instead of the functions ft,

a function h characterizes the uncertainty aggregation rule employed above. The func-

tion h closely connects to intertemporal risk aversion and, in particular, characterizes

whether intertemporal risk aversion, risk neutrality or risk seeking prevail. Note that

for h = 1
exp

the characterization of the uncertainty aggregation rule corresponds to the

function h(z) = 1
exp(z)

= exp(−z).11

This departure from earlier layouts of the representations is caused by axiom A9. The

latter implies a close relation between the function g characterizing intertemporal aggre-

gation, and the functions ft characterizing uncertainty aggregation. In order to exploit

this relation, the functions w̃t and h are introduced (confer part four of the proof to see

how this simplifies the representation). In difference to the requirements of intertempo-

rally additive expected utility, the relation implied by axiom A9 between ‘risk aversion’

and ‘intertemporal substitutability’12 leaves one degree of freedom.13 This freedom

breaks the representation up into the three classes, corresponding to h ∈
{

exp, id, 1
exp

}
.

In each of these classes, the functions ft, characterizing uncertainty aggregation in the

sense of the earlier representation theorems, are affine transformations of h ◦ g.14 How-

ever, the mentioned relation between ft and g, which is used to simplify the represen-

tation, only holds for particular choices of g ∈ ĝ. In consequence, in order to exploit

the relation, I have to give up part of the affine freedom for the choice of g. For this

reason, in the cases where h ∈
{

exp, 1
exp

}
, the function g is no longer free up to affine

transformations, but only up to a translational constant.

Another consequence of incorporating the function g, characterizing intertemporal ag-

gregation, into the function w̃t, is that equation (9.9) is time additive in g ◦u. Note that

g ◦ u corresponds, up to discounting, to the time additive Bernoulli utility function de-

fined as welfare in chapter 7.3. Thus, for the certainty additive gauge (g = id) equation

11I avoid the notation h = exp−1 because h−1 is used to denote the inverse.

12I put quotation marks, as it has been analyzed in chapter 7.1 that this interpretation of f and g is
meaningful only in a one commodity setting applying the Epstein Zin gauge.

13Recall that in the intertemporally additive expected utility model, the coefficient of relative risk
aversion is always fixed to the inverse of the elasticity of intertemporal substitution.

14This is why h in the above representation is closely related to the functions ft ◦ g−1
t characterizing

intertemporal risk aversion in the earlier representations. However, note that the affine transformation
is negative for the case where h = 1

exp . The next section works out the precise relation.
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(9.9) is linear in Bernoulli utility uwelf . In that case the recursive representation employ-

ing w̃t and the one using ũt coincide up to the factor 1− βt.
15 In theorem 9, there seem

to be three disconnected classes of representations corresponding to h ∈
{

exp, id, 1
exp

}
.

The exploration of intertemporal risk aversion carried out in the next section naturally

gives rise to a continuous connection between these different representations.

9.4 Intertemporal Risk Aversion

The section analyzes how intertemporal risk aversion is characterized in the representa-

tions developed in this section. As the stationary setting is a special case of the general

multiperiod setup developed in chapter 8, the axiomatic definition of intertemporal risk

aversion given in chapter 8.2 applies. However, alternatively, a slightly less demanding

axiom can be used. In a stationary setting, it proves sufficient to compare lotteries to

constant consumption paths only. Such a definition states that a decision maker ex-

hibits weak intertemporal risk aversion in period t, if and only if, the following axiom is

satisfied:

A6w
st (weak intertemporal risk aversion) For all x̄t, xt ∈ Xt holds

x̄t ∼t xt ⇒ x̄t �t

∑T
i=t

1
T−t+1

(x̄t
−i, x

t
i).

A decision maker is said to exhibit strict intertemporal risk aversion in period t, if and

only if, the following axiom is satisfied:

A6 s
st (strict intertemporal risk aversion) For all x̄t, xt ∈ Xt it holds

x̄t ∼t xt ∧ ∃ τ ∈ {t, ..., T} s.th. [xt
τ ]τ 6∼τ [x̄]τ

⇒ x̄t ≻t

∑T
i=t

1
T−t+1

(x̄t
−i, x

t
i).

The interpretation of the axioms is analogous to that of axioms A6w and A6 s discussed

at length in chapter 7.2. The only difference is that, as x̄t is a constant consumption

path, the second part of the premise in the strict version simply requires the consumption

path x to exhibit some variation. Then, the second line of the axiom demands that the

constant consumption path delivering x̄ in every period, is preferred to a lottery whose

outcome paths differ in one period from x̄. In that respective period i, which is drawn

with equal probability from {t, ..., T}, the outcome x̄ is replaced by outcome xi. For

15The general g−gauge is obtained simply by eliminating the function g from equation (9.9) and
abandoning the freedom to pick the Bernoulli utility function u freely. The next section elaborates
more gauges.
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some i, the outcome xi is preferred, and for others it is judged inferior with respect to

the outcome x̄ prevailing in the other periods. The axiom requires the decision maker to

prefer the constant consumption path x̄t over the described lottery, which might yield a

better outcome than x̄ in some period, but might as well yield a worse outcome. Again,

the outcomes that are judged better than x̄ and those that are judged inferior with

respect to x̄ balance in the sense that receiving all (i.e. consumption path x), would

make the decision maker indifferent to the constant path. However, the lottery only

gives the decision maker one of the outcomes taken from x. Thus, the fear of receiving

an outcome which is judged inferior with respect to x̄ makes the intertemporally risk

averse decision maker prefer the certain and constant consumption path to the lottery.

If axiom A6 s
st (A6w

st) is satisfied with ≻t (�t) replaced by ≺t (�t), the decision maker

is called a strong (weak) intertemporal risk seeker. If a decision maker’s preferences

satisfy weak intertemporal risk aversion as well as weak intertemporal risk seeking, the

decision maker is called intertemporally risk neutral. The following theorem relates

intertemporal risk attitude to the functional representation of theorem 7. It is similar

to theorem 6 worked out in chapter 8, however, it uses the weaker axioms A6w
st and A6 s

st

adapted to the stationary setting.

Theorem 10: Let the sequence of triples (u, ft, g)t∈{1,...,T} represent the set of prefer-

ences �= (�t)t∈{1,...,T} in the sense of theorem 7. Furthermore let t ∈ {1, ..., T−1}.

Then the following assertions hold:

a) A decision maker is strictly intertemporally risk averse [seeking] in period t in

the sense of axiom A6 s
st, if and only if, ft ◦ g−1(z) is strictly concave [convex] in

z ∈ Γt.

b) A decision maker is weakly intertemporally risk averse [seeking] in period t in

the sense of axiom A6w
st, if and only if, ft ◦ g−1(z) is concave [convex] in z ∈ Γt.

c) A decision maker is intertemporally risk neutral in period t, if and only if,

ft ◦ g−1(z) is linear in z ∈ Γt.

d) The above assertions hold as well, if axiom A6 s
st is replaced by axioms A6 s or

A6 s
*, and if axiom A6w

st is replaced by axioms A6w or A6w
* .

Intertemporal risk attitude is described by the second order characteristics of the func-

tion ft ◦ g−1(z). I refer to the latter as the stationary characterization of intertemporal

risk attitude. It excludes the discount rate β, which enters the general expression char-

acterizing intertemporal risk attitude ft◦g−1
t (z) = ft◦g−1(β−tz). Compare proposition 9

in section 7.2 to find that ft ◦ g−1 is convex, if and only if ft ◦ g−1
t is convex.16 In the

16Of course this statement also follows immediately from a comparison of theorem 10 with its non-
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certainty stationary setting of representation theorem 7, the functions ft are allowed to

vary arbitrarily over time. Therefore, the decision maker’s intertemporal risk attitude

may also differ arbitrarily between different periods. This feature changes for the rep-

resentations worked out in sections 9.2 and 9.3, which assume stationarity of preference

also for risky choices. Concerning the representation of theorem 8, observe that it is

the special case of theorem 7, where uncertainty aggregation is constant over time, i.e.

ft = f ∀ t ∈ {1, ..., T}. In consequence, theorem 10 applies with ftg
−1 = fg−1 indepen-

dent of the period. Thus, the decision maker is either intertemporally risk averse, risk

neutral or risk seeking in all periods. The same is true for a decision maker deciding

in accordance with risk stationarity II as formulated in axiom A9. I have pointed out

that h in the representation of theorem 9 corresponds, for an adequate choice of g ∈ ĝ,

to an affine transformation of ft ◦ g−1. Therefore, the decision maker is intertemporally

risk averse, risk neutral or risk seeking depending on whether h is respectively 1
exp

, id

or exp.17

For a quantitative characterization of risk attitude, the definitions of absolute and

relative intertemporal risk aversion given in chapter 8.2 apply. In order to render these

risk measures unique, I first have to specify the range or, alternatively, the unit and the

zero level of welfare uwelf = g◦u. Other than for the non-stationary setting worked out in

chapter 8, it will suffice to fix the measure scale of welfare for one period in order to deter-

mine it, and thus the coefficients of intertemporal risk aversion, for all periods. However,

in difference to the stationary analysis without discounting in chapter 7.4, I have to de-

cide for which period I fix the measure scale, e.g. the range of uwelf
t to some given interval

G∗. I adopt the convention to fix the measure scale of welfare in the stationary setting

always for the first period. In consequence, fixing range(uwelf
1 ) = G∗ implies that the

range of welfare for later periods is fixed to range(uwelf
t ) = βt−1range(uwelf

1 ) = βt−1G∗.

The following adaption of lemma 5 to the stationary setting applies.

Lemma 7: Let there be given a sequence of preference relations �= (�t)t∈{1,...,T}

satisfying axioms A1-A3, A4’, A5’ and A7 or A9. In addition, choose

i) a number w∗ ∈ IR++,

ii) an outcome xzero ∈ X or

iii) a nondegenerate closed interval W ∗ ⊂ IR.

Then, for representations in the sense of theorems 7 or 8 with twice differentiable

stationary analogue, theorem 6.

17Note again that in the case where h = 1
exp , h is a negative affine transformation of ft ◦ g−1, making

the latter concave (compare footnote 14). Also note that intertemporal risk attitude going along with
preferences that satisfy axiom A9 can be observed better in corollary 8 following below.
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functions ft ◦ g−1 and for representations in the sense of theorem 9, which

a) satisfy ∆G = w∗, the risk measures AIRAt

b) satisfy g ◦ u(xzero) = 0, the risk measures RIRAt

c) satisfy ∆G = w∗ and g ◦ u(xzero) = 0, the risk measures AIRAt and RIRAt

d) satisfy G = W ∗, the risk measures AIRAt and RIRAt

are determined uniquely and independent of the choice of the Bernoulli utility

function.

Again, independence of Bernoulli utility implies that, once the corresponding welfare in-

formation has been fixed, the measures RIRAt and AIRAt are determined independently

of the representation and its gauge. In assertion a) this welfare information corresponds

to fixing the unit of measurement, by prescribing a numerical value to the difference

in welfare between the best and the worst outcome, i.e. uwelf
1 (xmax) − uwelf

1 (xmin) =

g ◦u(xmax)−g ◦u(xmin) = G−G = w∗. Such a partial specification of the measure scale

for welfare makes the measures of absolute intertemporal risk aversion unique. Assertion

b) fixes the ‘zero welfare level’, by choosing an outcome that shall correspond to zero

welfare. The information is enough to render the measures of relative intertemporal risk

aversion unique. Assertion c) fixes the welfare unit and the zero welfare level together.

This step completely eliminates the freedom in the choice of measure scale for welfare.

In consequence, both measures of intertemporal risk aversion are determined uniquely.

Assertion d) offers an alternative way to eliminate the indeterminacy of the measure

scale for welfare, by specifying the range of the function g and, thus, the welfare levels

corresponding to the best and the worst outcomes. The latter approach is taken in the

subsequent corollaries.

For preferences satisfying risk stationarity II as formulated in axiom A7, it is worth-

while to take a closer look at the representations that fix the degree of freedom in

the measure scale for welfare. For this purpose define the uncertainty aggregation rule

Mexpξ

for the case ξ = 0 by limit, yielding18

Mexp0

(pt, w̃t) ≡ lim
ξ→0

Mexpξ

(pt, w̃t) = lim
ξ→0

1

ξ
ln
[ ∫

dpt exp(ξw̃t)
]

= Ept
w̃t .

The limit is a simple application of l’Hospital’s rule, as shown in the proof of corollary 8.

Gauging g to identity in the representation of theorem 9 and fixing the range of welfare,

which for g = id corresponds to the range of u, I obtain the following representation.

Corollary 8 (g = id+−gauge) : Choose a nondegenerate closed interval W ∗ ⊂ IR.

18Note that the characterization of the uncertainty aggregation rule by f = expξ is equivalent to
f(z) = exp(ξ z).
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A sequence of binary relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4’ for �1|XT (certainty additivity)

iii) A5’ (time consistency)

iv) A9 (risk stationarity II)

if and only if, there exists a continuous and surjective function u : X → W ∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that with defining the functions

v) w̃t : X̃t → IR for t ∈ {1, ..., T} by w̃T (xT ) = u(xT ) and recursively

w̃t−1(xt−1, pt) = u(xt−1) + β Mexpξ

(pt, w̃t) (9.11)

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mexpξ

(p′t, w̃t) ≥ Mexpξ

(p′t, w̃t) ∀ pt, p
′
t ∈ Pt. (9.12)

Moreover, the function u is determined uniquely. With the convention that g1 = g,

the uniquely defined measures of intertemporal risk aversion are calculated to

AIRAt = − ξ
βt−1(1−βt)

and RIRAt = − ξ
βt−1(1−βt)

id.

Fixing the welfare range eliminates the affine freedom of g, here corresponding to the

freedom of u (g = id−gauge). In the representation of theorem 9, part of this freedom

was employed to carry information over the relation between the functions g and ft.

Fixing g and its range exogenously, this information gives rise to the new parameter ξ.

It parametrizes intertemporal risk aversion and corresponds to a degree of freedom

between the function g, characterizing intertemporal aggregation, and the functions

ft, characterizing uncertainty aggregation. In the particular case where ξ = 0, the

coefficient of relative atemporal risk aversion (defined in a one commodity setting) is

confined to the inverse of the intertemporal elasticity of substitution and intertemporal

risk neutrality prevails. In this case, equations (9.11) and (9.12) recursively define the

intertemporally additive expected utility framework.

In theorem 9 there appear three seemingly disconnected representations corresponding

to h ∈
{

1
exp

, id, exp
}
. Corollary 8 shows how the coefficient of absolute intertemporal

risk aversion, which is proportional to ξ, connects the three different classes continuously,

allowing for a wide range of intertemporal risk attitude. However, though being constant

in welfare, the coefficient of absolute intertemporal risk aversion is not constant over

time. In the discussion of theorem 10, it had already been observed that for risk station-

ary representations in the sense of axiom A8 only the expression ft◦g−1, which I referred
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to as the stationary characterization of intertemporal risk aversion, stays constant over

time. The general characterization ft ◦ g−1
t picks up the discount rate from gt = βt−1g.

The same happens for risk stationarity II in the sense of axiom A9. The interpretation

is as follows. The function ft ◦ g−1 characterizes intertemporal risk aversion in period t

with respect to a welfare scale that is fixed in period t to range(g) = range(u) = W ∗.

One could formulate this characterization as a measurement in terms of a ‘current

value measure scale for welfare’. With respect to such a constant ‘current value mea-

sure scale’, the characterizing functions of intertemporal risk aversion are constant over

time.19 In contrast, the measures AIRAt and RIRAt are defined with respect to the

characterizing functions ft ◦ g−1
t . Fixing range(g1) = range(g) = range(u) = W ∗, im-

plies that range(gt) = βt−1range(g) = βt−1W ∗. Thus, in these measures intertemporal

risk aversion is measured with respect to a ‘present value measure scale for welfare’ and

discounting shrinks the range of welfare that serves as basis for the measurement of in-

tertemporal risk aversion in period t. Then, as the range of the welfare measure scale (in

present value) becomes smaller and smaller over time due to discounting, the coefficient

of intertemporal risk aversion has to increase in order to keep up a stationary aversion to

risk. Therefore, the coefficients of intertemporal risk aversion AIRAt and RIRAt include

the factor βt in the denominator. In addition to the latter, risk stationarity II brings

another dependence on time into the characterization of intertemporal risk aversion.

In the denominator appears as well the time-dependent normalized discount factor βt.

Recall that the latter takes account of the relative weight given to a single period as

opposed to the remaining future, a weight changing over time when a finite planning

horizon is approached. For a representation satisfying risk stationarity in the sense of

axiom A9, this change of weight enters into the characterization of intertemporal risk

aversion. It implies that the stationary part of intertemporal risk aversion, characterized

by ft ◦ g−1, slowly decreases over time as the term 1 − βt increases to unity for the last

period. Leaving this term unconsidered, yields a representation in the sense of theorem

8, satisfying axiom A8. In other words, disregarding the adjustment of intertemporal

risk aversion by the change of weight that the remaining future obtains as opposed to

the present period, in a setting with a finite planning horizon, makes the corresponding

decision maker indifferent to the length of risk taking (axiom A8). For an infinite time

horizon this weight is obviously constant, precisely it holds (1−βt) = (1−β), and a rep-

resentation in the (limiting) sense of theorem 9 also is a representation in the (limiting)

19Except for the normalization factor 1
1−βt

in the case of risk stationarity in the sense of axiom A9.
This term will be discussed further below.
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sense of theorem 8.20

Alternatively to corollary 8, the representation can also be stated in the Kreps and

Porteus gauge where the functions ft are set to identity.

Corollary 9 (f = id+-gauge) : Choose a nondegenerate closed interval U∗ ⊂ IR++.

A sequence of binary relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4 for �1|XT (certainty additivity)

iii) A5’ (time consistency)

iv) A9 (risk stationarity II)

if and only if, there exists a continuous and surjective function u : X → U∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that defining the functions

v) ũt : X̃t → IR for t ∈ {1, ..., T} by ũT (xT ) = u(xT ) and recursively

- for ξ > 0: ũt−1(xt−1, pt) = u(xt−1)
ξ
(
Ept

ũt

)β
and

- for ξ = 0: ũt−1(xt−1, pt) = ln u(xt−1) + β Ept
ũt and

- for ξ < 0: ũt−1(xt−1, pt) = −u(xt−1)
ξ
(
− Ept

ũt

)β

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Ept
ũt ≥ Ep′t

ũt ∀ pt, p
′
t ∈ Pt .

Moreover, the function u is determined uniquely. With the convention that g1 = g,21

the uniquely defined measures of intertemporal risk aversion are calculated to

AIRAt = − ξ
βt−1(1−βt)

and RIRAt = − ξ
βt−1(1−βt)

id.

Here, the functions ũt are the same as those used in representation theorem 4. The func-

tion u, however, is only a strictly monotonic transformation of the respective Bernoulli

utility function used in the latter theorem. It is chosen in such a way that fixing the

range of u also fixes the range of g,22 which is necessary to render the measures of risk

aversion unique. However, note that due to the multiplicative form of intertemporal

20Note that a constant term (1 − β) can be absorbed into the parameter ξ and makes no difference
for the comparison between different classes of representations.

21This notation relates to the underlying representing triples in the sense of theorem 4. In corollary 9
the assumption implies that the measure scale of welfare is fixed for the first period to range(uwelf

1 ) =
range(g ◦ u) = lnU∗. See also the discussion below and the first remark in the proof of corollary 9.

22This is possible because of the relation implied by axiom A9 between the functions ft and g.
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aggregation, the range of welfare uwelf
1 in the certainty additive sense of chapter 7.3 is

fixed to the range W ∗ = ln U∗ rather than to the range U∗. This is also the reason,

why a logarithm appears in the representation for ξ = 0. Only with this definition, the

range of welfare is fixed independently of the parameter ξ. However, eliminating the

logarithm in the representation for ξ = 0 would not change the measures of intertem-

poral risk aversion, as they are zero in the case ξ = 0 and, thus, independent of the

particular measure scale adopted for welfare.

Observe the particular nonlinear form for intertemporal aggregation that arises when

uncertainty aggregation is required to be linear. For decision makers that are not in-

tertemporally risk neutral, it is ‘almost multiplicative’. But it depends on the exponent

ξ. Translating the exponent ξ back into the uncertainty aggregation rule and establish-

ing a purely multiplicative intertemporal aggregation yields the following representation.

Corollary 10 (isoelastic uncertainty evaluation): Choose a nondegenerate closed

interval U∗ ⊂ IR++. A sequence of binary relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T}

satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4’ for �1|XT (certainty additivity)

iii) A5’ (time consistency)

iv) A9 (risk stationarity II)

if and only if, there exists a continuous and surjective function u : X → U∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that defining the functions

v) ṽt : X̃t → IR for t ∈ {1, ..., T} by ṽT (xT ) = u(xT ) and recursively

ṽt−1(xt−1, pt) = u(xt−1)
(
Mα=ξ(pt, ṽt)

)β
(9.13)

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mα=ξ(p′t, ṽt) ≥ Mα=ξ(p′t, ṽt) ∀ pt, p
′
t ∈ Pt.

Moreover, the function u is determined uniquely. With the convention that g1 = g,23

the uniquely defined measures of intertemporal risk aversion are calculated to

AIRAt = − ξ
βt−1(1−βt)

and RIRAt = − ξ
βt−1(1−βt)

id.

23See footnote 21.
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Note, that the recursive construction (9.13) of the representation for ξ = 0 is equivalent

to the intertemporally additive expected utility setting. Again the range of welfare

in the sense of chapter 7.3 corresponds to W ∗ = ln U∗. The above representation is

particularly interesting, because it points out a special case that closely relates to the

generalized isoelastic framework analyzed in section 9.2. In the one commodity setting

and for u = id the following recursive characterization of the decision maker’s evaluation

is obtained:

ṽt−1(xt−1, pt) = xt−1

(
Mα=ξ(pt, ṽt)

)β
. (9.14)

It corresponds to an intertemporal elasticity of substitution of unity (ρ = 0) and uses

the isoelastic uncertainty aggregation rule Mα. Taking the interpretation of section 7.3,

the case ρ = 0, i.e. g = ln, corresponds to logarithmic welfare, which is a widespread

assumption in macroeconomics and popular also in environmental economic modeling.

It is the only specification for which risk stationarity II in the sense of axiom A9 allows

an isoelastic uncertainty aggregation.24 Observe that the setting (9.14) only coincides

with the (corresponding special case of the) isoelastic representation of section 9.2 for

an infinite planning horizon. As pointed out on page 144, the representations in the

sense of theorems 8 and 9 differ in the way they take account of the approaching end

of the planning horizon. More precisely, only the representation based on axiom A9

incorporates the change in weight that the present receives as opposed to the remaining

future ‘which shortens over time’. Let me summarize that only risk stationarity in the

sense of axiom A9 is a proper translation of the assumption that the mere passage of

time does not affect preferences. In contrast, axiom A8 characterizes what it needs to

make atemporal uncertainty aggregation constant in a setting with a finite time horizon.

This condition can be expressed as a form of indifference to the length of risk taking.

24In order to render ft a power function, intertemporal risk aversion has to be of the form
ft ◦ g−1 =

(
g−1

)α
. This expression can only be proportional to expξ, characterizing up to propor-

tionality intertemporal risk aversion in the representation of theorem 9, if g−1 is proportional to exp.
But then g has to be proportional to ln which corresponds to the case ρ = 0.
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Chapter 10

Temporal Resolution of Uncertainty

10.1 A Preference for the Timing of Uncertainty

Resolution

A particular feature of the recursive utility models employed in the preceding chapters,

is that they allow for an intrinsic preference for early or late resolution of uncertainty.

This preference is intrinsic in the sense that a decision maker can strictly prefer an

early resolution of uncertainty, even if the information obtained from the early reso-

lution is known not to affect his plans and, thus, his future outcomes. The current

section analyzes how a preference for early or late resolution of uncertainty is expressed

in the representations derived in the preceding chapters. The corresponding theorem

is a straight forward adaption of the result obtained by Kreps & Porteus (1978) to my

gaugeable setting. However, expressing the condition in terms of intertemporal risk

aversion, allows to examine the reason why a decision maker in the recursive utility

framework can exhibit a preference for the timing of uncertainty resolution. Section

10.2 discusses why such a form of intrinsic timing preference might not be desired in

a principled approach to choice under uncertainty. A consequence of eliminating the

intrinsic timing preference from the model is that, instead of recursive temporal lot-

teries, the more common description of uncertainty through probability measures that

are directly defined on consumption paths becomes sufficient for the evaluation of the

uncertain future. I elaborate, how the latter standard measures are derived from a given

temporal lottery by ‘integrating out’ temporal information. Subsequently, section 10.3

states the preference representation for a decision maker who is indifferent with respect
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to the timing of uncertainty resolution. Similarly to chapter 9.3, the resulting repre-

sentation captures intertemporal risk aversion in a single parameter. I work out that

the resulting model allows to disentangle (atemporal) risk aversion from intertemporal

substitutability without employing temporal lotteries. Furthermore, I show that a par-

ticularly suggestive ordering of two lotteries, which is used in the literature to motivate

a non-trivial preference with respect to the timing of uncertainty resolution, can be sat-

isfied as well under indifference to the timing of uncertainty resolution, if the decision

maker exhibits intertemporal risk aversion. Section 10.4 elaborates implications of the

axioms worked out in this and the preceding chapter for the pure rate of time preference

and, more generally, the weight given to future welfare.

Kreps & Porteus (1978) show that their recursive approach to describe choice under

uncertainty, which I have adopted so far, allows a decision maker’s preference to depend

on the time at which uncertainty resolves. Such a characteristic of preferences differs

from an instrumental preference for an early resolution of uncertainty, which is also

possible in the intertemporally additive expected utility model. In the latter case, early

resolution of uncertainty is preferred, whenever the information stemming from an earlier

resolution of uncertainty can be used to take action that improves outcomes (or their

probabilities). In contrast, the preference for early resolution of uncertainty that is

allowed in the setup of Kreps & Porteus (1978) and, thus, my setup in chapters 8

and 9, even holds when the decision maker cannot make any use of the information.

Chew & Epstein (1989) further analyze such a preference for the timing of uncertainty

resolution by introducing the concept of a timing premium for an early resolution. In

particular, they derive a representation for preferences going along with a constant

timing premium.1 In fact, the authors show that the assumption of a constant timing

premium can replace the independence axiom, which I adopt throughout my analysis

(Chew & Epstein 1989, 110). Note that any nontrivial2 application of the generalized

isoelastic model discussed in the preceding chapter implicitly features a preference for

the timing of uncertainty resolution. The explicit analysis of such a timing preference

is carried over to a time-continuous setting by Duffie, Schroder & Skiadis’s (1997),

who analyze how it influences asset pricing. Further generalizations of the modeling

1The timing premium relates the probabilities of two lotteries, in which uncertainty resolves at dif-
ferent points of time, and that yield the same outcomes with different probabilities. These probabilities
are picked in a way to make the decision maker indifferent between the lottery featuring early and the
lottery featuring late resolution of uncertainty.

2That is, any setting with non-zero consumption where the generalized model differs from intertem-
porally additive expected utility and the coefficient of relative risk aversion does not coincide with the
inverse of the elasticity of intertemporal substitutuion.
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framework are treated in Grant, Kajii & Polak (2000) and Skiadas (1998), who generalize

the concept of a comparable intrinsic preference for the timing of uncertainty resolution

beyond a recursive setup on temporal lotteries.

A standard motivation in the literature on non-indifference with respect to the timing

of uncertainty resolution is based on the comparison of the following two lotteries (e.g.

Duffie & Epstein 1992, Duffie et al. 1997, Skiadas 1998). In both lotteries, a decision

maker faces for some fixed number of periods either a high or a low consumption level,

depending on the toss of a coin. In lottery A, the coin is tossed at the beginning of every

period. If head comes up, the decision maker receives the high payoff in the respective

period and, if tail comes up, the decision maker faces the low payoff. In lottery B, a coin

is tossed once at the beginning of the first period. If head comes up, the agent receives

the high payoff in all periods, if tail comes up the agent receives the inferior payoff in

all periods. It is easily verified that a decision maker who employs the intertemporally

additive expected utility model, is indifferent between the lotteries A and B (see section

10.3). The intuition appealed to in the literature, which I personally share, is that people

would usually prefer lottery A over lottery B. Since the coin in lottery A is flipped in

every period, while in lottery B all uncertainty is resolved in the first period, such a

lottery evaluation can be interpreted as a preference for a late resolution of uncertainty.

However, the perfect serial correlation of outcomes in lottery B and the independence of

the outcomes in lottery A depicts another important difference between the two lotteries.

In fact, in section 10.3 I show that a strict preference for lottery A can also be derived in

a non-recursive model, where the decision maker is indifferent with respect to the timing

of uncertainty resolution, but intertemporally risk averse. The following extension of the

lottery example, found in the same papers cited above, concentrates on a pure timing

preference. For this purpose, a third lottery C is introduced. It coincides with lottery A,

except for the fact that for every period coins are (independently) tossed at the beginning

of period one. Therefore, the uncertainty resolves at the same point as in lottery B,

i.e. early. Again the authors point out that lotteries A and C conceptually differ, and

that a decision maker might not be indifferent between tossing the coins in the first

period (lottery C) or in the respective periods (lottery A) “based on the psychic costs

and benefits of early resolution” (Duffie & Epstein 1992). Other situations appealed to

in the literature, where people might exhibit intrinsic preference for either late or early

resolution of uncertainty, include anxious PhD students receiving information on exams

or jobmarket placements before or after a vacation (Chew & Epstein 1989, Grant, Kajii

& Polak 1998), or a person facing information on an incurable genetic disorder (Grant

et al. 1998).
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In the following I introduce the precise definition of an intrinsic3 preference for the

timing of uncertainty resolution. Let λ(xt, pt+1) + (1 − λ)(xt, p
′
t+1) denote a lottery in

period t that yields (xt, pt+1) with probability λ and (xt, p
′
t+1) otherwise. Both outcomes

of the ‘λ-lottery’ yield the same consumption xt in period t. Only the outcomes from

period t+1 on, described by pt+1 and p′t+1, are allowed to differ. An individual facing the

above lottery will know at the end of period t whether he confronts pt+1 at the beginning

of period t+1 or whether he faces p′t+1. Thus, uncertainty over pt+1 versus p′t+1 resolves

in period t. The definition of an intrinsic preference for the timing of uncertainty

resolution compares the lottery above to its degenerate counterpart (xt, λpt+1 + (1 −

λ)p′t+1). Analogous to the first lottery, the latter yields xt with certainty, pt+1 with

probability λ, and p′t+1 with probability 1 − λ. However, the uncertainty about facing

pt+1 or p′t+1 in period t + 1 is not resolved in period t, but only in period t + 1. The

following definition applies.

Definition: A decision maker prefers early [late] resolution of uncertainty in period t

for the fixed outcome xt, if for all pt+1, p
′
t+1 ∈ Pt+1, λ ∈ [0, 1] it holds that

λ(xt, pt+1) + (1 − λ)(xt, p
′
t+1) �t [�t] (xt, λpt+1 + (1 − λ)p′t+1). (10.1)

In words, a decision maker with a preference for early resolution of uncertainty, prefers

when the uncertainty about facing the future described by pt+1 or the future described

by p′t+1 resolves already in period t (lottery on the left), rather than in period t + 1

(lottery on the right). This uncertainty corresponds to the probability mixture λ and

1 − λ in equation (10.1). In contrast, if the decision maker exhibits a preference for

late resolution of uncertainty, he prefers to keep the uncertainty in period t, and have it

resolved only in period t + 1. Note that a decision maker’s attitude with respect to the

timing of uncertainty resolution can generally depend on the period t, as well as on the

(certain) outcome xt, which he is facing in the respective period. A decision maker is

called indifferent to the timing of uncertainty resolution, if equation (10.1) holds with

indifference (∼t replacing �t).

For a decision maker subscribing to the non-stationary multiperiod setting of chapter

8, his attitude with respect to the timing of uncertainty resolution can be characterized

in terms of the representation of theorem 4 as follows.

3Note that the word ‘intrinsic’ is not standard in the corresponding literature. I introduce the word
to stress the conceptual difference to an instrumental preference for an early resolution of uncertainty,
which is implied by a possibility to use the early arrival of information in order to raise (expected)
welfare.
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Theorem 11: Let the sequence (ut, ft, gt)t∈{1,...,T} represent the preferences (�)t∈{1,...,T}

in the sense of theorem 4. Then a decision maker prefers early [late] resolution of

uncertainty in period t for outcome xt, if and only if,

ft ◦ g−1
t

[
θt gt ◦ ut(xt) + θtθ

−1
t+1 gt+1 ◦ f−1

t+1(z) + θtθ
−1
t+1ϑt

]
(10.2)

is convex [concave] in z ∈ ft(Ut).
4

The theorem adapts the result of Kreps & Porteus (1978) to the certainty separable

framework, and extends it in the sense of allowing for general gauges of intertemporal

and uncertainty aggregation. At the same time, my version relates the preference for

the timing of uncertainty resolution to the concept of intertemporal risk aversion. An

immediate consequence of theorem 11 is that only an intertemporally risk averse or

risk seeking decision maker can exhibit a (strict) preference for early or late resolution

of uncertainty. Otherwise, if ft ◦ g−1
t and ft+1 ◦ g−1

t+1 are linear, expression (10.2) is

linear as well. In such a situation the decision maker is indifferent with respect to the

timing of uncertainty resolution. As section 10.3 elaborates, the opposite is not true,

i.e. a decision maker who is indifferent to the timing of uncertainty resolution is not

necessarily intertemporally risk neutral. Note that, comparing my result to Kreps &

Porteus (1978, 197), doing without additive separability on certain consumption paths

implies replacing my expression in equation (10.2) by a general function ũt(xt, z).5

Theorem 11 answers a question raised by Epstein & Zin (1989, 952 et seq.) on the

interlacement of the preference for early resolution of uncertainty with risk aversion

and intertemporal substitutability. In their u = id-gauge, Epstein & Zin (1989) find

for the stationary isoelastic setting that early resolution of uncertainty is preferred, if

and only if α < ρ.6 The authors pose the question how these three characteristics of

4If theorem 4 is stated in terms of strictly monotonic functions (see chapter 8, footnote 2), then the
latter part changes to: ‘...if and only if (10.2) is convex [concave] in z ∈ f(U) for an increasing version
of f , or concave [convex] for a decreasing choice of f ’.

5Kreps & Porteus’s (1978) expression ũt(xt, z) corresponds to the f = id gauge. Moreover, compar-
ing my theorem 11 to their theorem 3, note that my expression (10.2) is always increasing in z, which
has to be assured for a representation in the sense of Kreps & Porteus’s (1978) theorem 1.

6Using theorem 11, the result is verified easily for x > 0. For x = 0 the decision maker is always
indifferent with respect to the resolution of uncertainty in the respective period (see footnote 10). In

the generalized isoelastic setting expression (10.2) turns into
[
xρ

t + βt z
ρ

α

]α
ρ . Calculating the second

order derivative in z reproduces Epstein & Zin’s (1989, 952) result. Precisely, for α > 0 the second
order derivative is strictly positive, if and only if α < ρ. For the case α < 0 the function ft = zα is
decreasing and, thus, the convexity condition for the attitude with respect to the timing of uncertainty
resolution reverses (see footnote 4). In that case, the second order derivative turns out strictly negative,
if and only if α < ρ. For the cases where α or ρ equal zero, set f respectively g to the logarithm.
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preference are related to each other in a more general setting.7 In a one commodity

setting with utility strictly increasing in the consumption level, expression (10.2) brings

an answer by gauging ut to identity. Then, the functions ft and gt characterize general

uncertainty attitude and intertemporal substitutability, and theorem 11 states their

exact relation to the preference for an early resolution of uncertainty. In particular, it

can be observed that the most important determinant of the preference for early or late

resolution of uncertainty is the difference ft ◦ g−1
t between the functions characterizing

(atemporal) risk aversion and intertemporal substitutability in two adjacent periods.

Having elaborated the interpretation of the term ft◦g−1
t as characterizing intertemporal

risk aversion, the latter concept should also foster understanding why a decision maker

in a Kreps & Porteus (1978) framework exhibits an intrinsic preference for early or late

resolution of uncertainty.

The following scenario should help to understand, why α < ρ in the isoelasitc setting

of Epstein & Zin (1989) and convexity of the expression (10.2) in the general setting,

describe a decision maker with a preference for an early resolution of uncertainty. In a

two period setup, a decision maker faces two different lotteries. Both lotteries yield with

equal probability either a high or a low outcome in the second period, and a common

certain outcome in the first. However, in lottery E (early), which is formally defined as
1
2
(x1, x2)+ 1

2
(x1, x2), the uncertainty over the second period resolves already in period 1.

On the contrary, in lottery L (late), which is defined as (x1,
1
2
x2 + 1

2
x2), the uncertainty

resolves in period 2. To simplify the notation, let p be the probability measure giving

weight p1 = p2 = 1
2

to outcomes x1
2 = x2 and x2

2 = x2. Moreover, let i ∈ {1, 2} and, thus,

xi
2 ∈ {x2, x2}. Assuming a certainty stationary decision maker who subscribes to the

axioms of representation theorem 7, the decision maker prefers lottery E over lottery L,

if and only if the following relation holds:

1

2
(x1, x2) +

1

2
(x1, x2) �1 (x1,

1

2
x2 +

1

2
x2)

⇔ f−1
1

{∑
i pif1 ◦ g−1

[
(1 − β1) g ◦ u(x1) + β1 g ◦ u(xi

2)
]}

≥ g−1
[
(1 − β1) g ◦ u(x1) + β1 g ◦ f2

{∑
i pif2 ◦ g−1 ◦ g ◦ u(xi

2)
}]

7Epstein & Zin (1989, 952): “For more general recursive utility functions, we have not found a
characterization in terms of [time and uncertainty aggregators] of the condition under which early or
late resolution is preferred” and they “suspect [...] inherent inseparability of these three aspects [...]
Further study of this issue is required” (Epstein & Zin 1989, 953).
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⇔ g ◦ f−1
1

{∑
i pif1 ◦ g−1

[
(1 − β1) g ◦ u(x1) + β1 g ◦ u(xi

2)
]}

≥ (1 − β1) g ◦ u(x1) + β1 g ◦ f−1
2

{∑
i pif2 ◦ g−1 ◦ g ◦ u(xi

2)
}

⇔ Mf1◦g−1
(
p, (1 − β1) g ◦ u(x1) + β1 g ◦ u

)
(10.3)

≥ (1 − β1) g ◦ u(x1) + β1 M
f2◦g−1

(
p, g ◦ u

)
. (10.4)

The simplest but very important insight is that the recursive framework evaluates the

risk in the period in which it resolves. Expression (10.3) can be interpreted as an

evaluation of lottery E, featuring an early resolution of uncertainty. The uncertainty is

evaluated with an uncertainty aggregation rule that is characterized by intertemporal

risk aversion in period 1.8 Expression (10.4) corresponds to the evaluation of lottery L,

featuring a late resolution of uncertainty. Here, intertemporal risk aversion in period 2 is

used to evaluate the corresponding risk. Thus, both lottery evaluations can be expressed

by means of an uncertainty aggregation rule which is characterized by intertemporal risk

aversion. However, the difference in the evaluation is twofold. First, to evaluate lottery

E the decision maker bases his evaluation of uncertainty on intertemporal risk aversion

in period 1, characterized by f1 ◦g−1. For an evaluation of lottery L, however, he applies

the uncertainty aggregation rule Mf2◦g−1

, which is characterized by intertemporal risk

aversion as it holds in period 2. Second, the fact that uncertainty resolves for lottery E

in the first period, makes the ‘whole’ consumption path from period 1 to period 2 an

argument of the uncertainty aggregation rule. This includes the certain consumption in

period 1, as well as the discount factor β1. In contrast, in the evaluation of lottery L,

the uncertainty aggregation rule is only applied to the outcomes of the second period.

Still striving for an intuition why a decision maker might intrinsically prefer an early

resolution of uncertainty, let me further simplify the scenario. Assume, as it is done

in Epstein & Zin (1989), that the functions f1 = f2 ≡ f coincide for both periods.

Moreover, assume that the first period outcome x1 corresponds to the decision maker’s

zero welfare level.9 Then the above inequality, corresponding to a preference for the

lottery with the early resolution of uncertainty, writes as

Mf◦g−1
(
p, β1 g ◦ u

)
≥ β1 M

f◦g−1
(
p, g ◦ u

)
. (10.5)

8To arrive at the evaluation in the last equivalence, only a strictly increasing transformation has been
applied to both sides of the inequality. Therefore, both sides still can be interpreted as an evaluation
of the respective lottery.

9This is a zero welfare level in the sense of chapter 7.3, i.e. uwelf = g ◦ u(x1) = 0. For the isoelastic
one commodity Epstein Zin setting it implies a zero consumption level x = 0.
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The only difference left between the two lottery evaluations, is that for the lottery with

an early resolution of uncertainty (left), the decision maker’s devaluation of the future

finds its place in the argument of the uncertainty aggregation rule. This position of β1 is

due to the fact that lottery E is conceived as a lottery over the whole consumption path,

and the weight given to the future is part of the evaluation of the path. On the other

hand, for lottery L, the uncertainty is related directly to the second period outcomes.

Only after the corresponding uncertainty is evaluated, the resulting certainty equivalent

is discounted. In such a scenario, the generalized isoelastic model yields a particular

evaluation as the uncertainty aggregation rules are linear homogeneous:

Mf◦g−1

(p, β1 g ◦ u) =
[∑

i pi (β1x
i
2)

α
ρ

] ρ
α

= β1

[∑
i pi (x

i
2)

α
ρ

] ρ
α

= β1 M
f◦g−1

(p, g ◦ u) .

In consequence, for a zero consumption level in the first period, the decision maker

is indifferent between the two lotteries.10 Observe, that this indifference whether or

not the normalized discount factor β1 is included in the lottery evaluation, only holds

for linear homogeneous uncertainty aggregation rules. In general, a devaluation of the

future makes a difference in the recursive evaluation of the two lotteries. For β1 < 1,

the inequality (10.5) is strict, if the uncertainty aggregation rule exhibits ‘decreasing

returns to scale’ in its second argument.11 Decreasing returns imply that discounting

the certainty equivalent of the undiscounted period 2 lottery, yields a lower evaluation,

than applying the uncertainty aggregation rule to the discounted outcomes. The first

procedure is taken to evaluate lottery L with a late resolution of uncertainty, the latter

to evaluate lottery E exhibiting an early resolution of uncertainty. Summarizing in one

sentence, if the decision maker’s uncertainty evaluation of discounted lottery outcomes is

higher than his discounted uncertainty evaluation of the undiscounted lottery outcomes,

he prefers an early resolution of uncertainty.

Now consider an evaluation of the above lotteries when the first period outcome does

not correspond to a zero welfare level. The uncertainty aggregation in the evaluation of

lottery L still yields the same result. The evaluation of the certain first period outcome is

added only after the evaluation of the uncertain second period. In contrast, uncertainty

10This special case has not been pointed out by Epstein & Zin (1989). To verify it, use theorem 11.

In the generalized isoelastic setting, expression (10.2) turns into
[
xρ

t + βt z
ρ

α

]α
ρ . It is immediate that

for xt = 0 the expression is linear in z.

11Note that the normalized discount factor b1 is smaller than one. Therefore, the inequality in the
definition of decreasing returns to scale is inverted compared to a definition of decreasing returns to
scale with the help of some λ > 1.
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aggregation in lottery E is no longer concerned only with the second period outcomes xi
2.

Also outcome x1 is conceived as part of the lottery entering the uncertainty evaluation.

Thus, introducing a positive first period welfare level raises the mean outcome of lottery

E, while keeping the variability in the lottery identical to the above setting with a zero

welfare level in the first period. In the Epstein-Zin setting with generalized isoelastic

preferences, the consequences are as follows. Recall, that in the isoelastic setting the

decision maker exhibits a constant coefficient of relative intertemporal risk aversion

(parametrized by α
ρ
). Thus, in absolute terms, the decision maker is less risk averse

when evaluating a lottery that implies a particular absolute variability of outcomes at

a higher welfare level, than he is when evaluation a lottery with the same variability

of outcomes at a lower welfare level. Therefore, he, effectively, is less risk averse when

evaluating the lottery with an early resolution of uncertainty, than he is when evaluating

the lottery with a late resolution of uncertainty (in the latter lottery evaluation the first

period consumption does not enter the uncertainty aggregation rule). In consequence, a

decision maker who is intertemporally risk averse and exhibits a constant coefficient of

relative intertemporal risk aversion, prefers an early resolution of uncertainty. On the

other hand, a decision maker who is intertemporally risk averse but exhibits a constant

coefficient of absolute intertemporal risk aversion does not necessarily prefer an early

resolution of uncertainty. This will be derived formally in section 10.3. In general, this

second effect fostering a preference for an early resolution of uncertainty, is based on

the model feature that an earlier resolution of uncertainty makes the decision maker

evaluate the constant welfare spread between the uncertain outcomes at a higher welfare

level, whenever the foregoing certain period yields positive welfare.

A third effect causing a preference for an early resolution of uncertainty can set in

when the assumption that f1 = f2 is relaxed. Assume that the decision maker exhibits

a stronger intertemporal risk aversion in period 2, than he does in period 1. Then,

abstracting from the other effects worked out above, uncertainty reduces the welfare

stronger when the decision maker evaluates a lottery resolving in period 2, i.e. late.

This is, because in the latter case he applies the uncertainty aggregation rule Mf2◦g−1

to evaluate the uncertain outcomes, while for the evaluation of the lottery with an early

resolution of uncertainty, the decision maker employs the less risk averse uncertainty

aggregation rule Mf1◦g−1

.

The three possible driving forces for a preference for an early resolution of uncertainty

identified above, are merged in expression (10.2) of theorem 11. Starting with the one

treated last, it appears in terms of the functions ft ◦ g−1
t and

[
ft+1 ◦ g−1

t+1

]−1
. Consider

the case where ft ◦ g−1
t is linear, while ft+1 ◦ g−1

t+1 is concave. Then the decision maker
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exhibits a stronger intertemporal risk aversion in period t + 1, than he does in period t.

For such a preference specification, gt+1 ◦ f−1
t+1 turns out to be the only nonlinear term

in expression (10.2). Being a strictly increasing function, this inverse of ft+1 ◦ g−1
t+1 is

convex. Thus, the decision maker prefers an early resolution of uncertainty. In general,

however, the other two effects discussed before play an important role as well. They

are ‘sandwiched’ between the terms gt ◦ f−1
t and

[
gt+1 ◦ f−1

t+1

]−1
, which characterize the

relative difference in intertemporal risk aversion between the two periods. The second

effect, depending on how uncertainty aggregation is influenced by first period welfare is

caught in general terms by θt gt ◦ ut(xt). The first effect, depending on how uncertainty

aggregation is influenced by the devaluation of the second period, is expressed in general

terms through the factor θtθ
−1
t+1.

12

Turning around the driving forces for an early resolution, the three effects above

work towards a preference for a late resolution of uncertainty. Straight forwardly, the

reasons can be summarized as follows. First, the decision maker’s discounted value of a

lottery over undiscounted outcomes is higher than his value for a lottery over discounted

outcomes. Second, the decision maker is more risk averse when evaluating a lottery with

coinciding gains and losses at a higher welfare level, than he is evaluating it at a lower

welfare level. Third, the decision maker is less intertemporally risk averse in the period

of late uncertainty resolution than he is in the period of early uncertainty resolution. The

next section discusses the question, whether a preference for early or late resolution of

uncertainty on the grounds discussed above is desirable or even reasonable, in particular

for a social decision maker.

10.2 Indifference to the Timing of Uncertainty Res-

olution & Reduction of Recursive Probabilites

In the preceding section I have elaborated that and how a decision maker, who applies

the general recursive framework employed in chapters 8 and 9, can exhibit an intrinsic

preference for the timing of uncertainty resolution. In particular, an intertemporally risk

averse decision maker who subscribes to the generalized isoelastic setup, i.e. the model

commonly applied to disentangle (atemporal) risk aversion from intertemporal substi-

12As theorem 5 has shown, the term θtθ
−1
t+1ϑt can be eliminated by an appropriate choice of the

functions gt. Therefore, the corresponding term in expression (10.2) does not introduce a driving force
for a preference for the timing of uncertainty resolution, that is conceptually different from the three
effects summarized above.

158



10.2. TIMING INDIFFERENCE & REDUCTION OF RECURSIVE PROBABILITES

tutability, has to prefer an early resolution of uncertainty. In this section I question

whether such an intrinsic preference for the timing of uncertainty resolution is reason-

able. I suggest that such a preference might not be desirable in a principled approach

to social decision making under uncertainty. In that case, the temporal information

that is embedded in the recursive description of uncertainty by temporal lotteries is

no longer needed for evaluation. I work out, how eliminating the timing information

from recursive temporal lotteries yields a common description of uncertainty in terms

of probability measures that are directly defined on consumption paths.

The most clear-cut motivation found in the literature for recursive utility with a non-

trivial attitude towards the timing of uncertainty resolution is the comparison between

lotteries A, B and C discussed on page 151 in the previous section. However, I have

already pointed out that the next section proves that a strict preference for lottery A

over lottery B can also be explained with a non-recursive representation under the as-

sumption of indifference to the timing of uncertainty resolution. Therefore, to further

analyze why a decision maker might prefer an early or late resolution of uncertainty, I

concentrate on the comparison between lotteries A and C. Recall that in lottery A a

coin is tossed at the beginning of every period. If head comes up, the decision maker

receives the high payoff in the respective period and, if tail comes up, the decision maker

faces the low payoff in the respective period. Lottery C has been defined largely anal-

ogous to lottery A, with the only difference that in lottery C coins for the outcome of

every period are tossed already at the beginning of the first period. Therefore, lottery

C corresponds to a lottery with an early resolution of uncertainty, while lottery A cor-

responds to a lottery with a late resolution of uncertainty. The only motivation given in

the literature why one of these two lotteries might be preferred over the other is “based

on the psychic costs and benefits of early resolution” (Duffie & Epstein 1992). Such a

psychological explanation of a potential non-indifference between the two lotteries raises

the suspicion that it might not be a desirable feature of a decision support model for a

social decision maker. In the following, I argue that a social decision maker should be

indifferent between lotteries A and C. To sharpen the point, let me introduce a lottery

D. Lottery D is defined analogously to lottery C, only that the decision maker does not

observe the coin tosses. Only at the beginning of every period, the decision maker is

given the result of the coin toss that has decided over the outcome of the respective

period. Then13 lottery D is formally equivalent to lottery A. Now, a decision maker

13That is the case at least for the concepts of epistemic or subjective probabilities. For an objectivist’s
view on probability like in the case of the Popperian propensity, one might a well try to argue for
detaching the uncertainty resolution from the person who receives the information. See chapter 5.2 for
a brief overview of the different concepts of probability.
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with a (strict) preference for early resolution of uncertainty is willing to reduce welfare,

e.g. in period one, in order to exchange lottery D for lottery C. That is, he gives up

welfare in order to obtain an information earlier, of which he knows that it is of no use.

At least for a social decision maker, I do not think that such a behavior is desirable.

The lottery motivation for an intrinsic timing preference for uncertainty resolution

discussed above, is the most formal found in the respective literature. In the following, I

discuss two less formal motivations, which I regard the most elaborated and interesting

ones that I have encountered. Chew & Epstein (1989, 108) give the example of a Ph.D.

student who is about to spend a month of vacation in France. His comprehensive exams

have already been graded. Now, he has to decide whether he wants to be informed

about the result before or after his vacation (which he is committed to take). So far the

example of Chew & Epstein (1989). Certainly, there are individuals who would rather

be informed immediately, while others prefer not to possibly spoil their vacation with

bad news. The latter formulation already suggests my perception of the example. I do

not think that the reason why a student might prefer to receive the information before

or after the vacation is in fact due to an intrinsic preference for early or late resolution

of uncertainty, as it has been analyzed in the preceding section. I rather think that

the outcomes in the two lotteries are actually different. Receiving the news of having

failed the exam affects the welfare of the student beyond the future consequences of

repeating the exam, or changing his career. I suppose, the student will be unhappy if is

informed about having failed the exam. Moreover, the particular setting of the example

in which he receives the information before or after a vacation, suggests that there is

more to his ‘timing preference’ than the mere passage of time. I suggest that there is

an interaction between the unhappiness due to the bad news and the ability to enjoy

a vacation. For some people the bad news inhibits their ability to enjoy the vacation,

while for others, the vacation can help to better digest the bad news. In consequence,

the first type of people would prefer to receive the information after the vacation, while

the second type would like to be informed right away. Therefore, I would favor a more

explicit description of the welfare states at hand. If this is done, the preference for the

timing of uncertainty resolution might no longer be intrinsic, but rather instrumental

to avoid special types of information, which in some situations can affect welfare by

itself and interact with other characteristics of well-being. The above example involves

a personal information affecting a personal mood. For a principled approach to choice

under uncertainty, in particular for a social decision maker, I am convinced that the

timing should affect the decision only, if a welfare effect of the received information has

clearly been elaborated and made explicit. However, than it is not intrinsic anymore
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and not due to the effects discussed in the previous section.

Another interesting example of a preference for an early or late resolution of uncer-

tainty is given by Grant et al. (1998). The authors consider a situation where a person

has the opportunity to be tested for an uncurable genetic disorder. Grant et al. (1998)

cite a director of a genetic counseling program who states that “there are basically two

types of people. There are ‘want-to-knowers’ and there are ‘avoiders’. There are some

people who, even in the absence of being able to alter outcomes, find information of this

sort beneficial. The more they know, the more their anxiety level goes down. But there

are others who cope by avoiding, who would rather stay hopeful and optimistic and not

have the unanswered questions answered.” My interpretation of the situation is similar

to that of Chew & Epstein’s (1989) example. The ‘want-to-knowers’ are described as

people whose anxiety level goes down when they learn more about their potential dis-

orders or diseases. Again it seems to me that the information more directly affects the

welfare level than through any of the mechanisms discussed in the previous section, cor-

responding to an intrinsic preference for an early resolution of uncertainty as captured

in the Kreps & Porteus (1978) model. On the other hand, the avoiders are described

as hopeful and optimistic people who rather leave the question unanswered. Probably

there are many reasons, why someone prefers to abstain from undergoing the genetic

test. Let me explicitly work out the ‘explanation’ that an intrinsic preference for a late

resolution of uncertainty in the generalized isoelastic decision model would give for the

behavior of the ‘avoiders’. The (avoiding) decision maker is aware that he might suffer

at some point from an uncurable disease. The difference between being tested now or

never would be the following. When he takes the test today, he includes all of his welfare

experienced before he might fall ill into his lottery evaluation. Therefore, he evaluates

the risk of suffering from an incurable disease at a higher aggregate welfare level. More-

over, the decision maker has to be intertemporally risk seeking. Then, as he exhibits a

constant coefficient of relative intertemporal risk seekingness, he prefers to take the risk

at a lower welfare level. In his recursive evaluation this is achieved if he postpones the

resolution of the uncertainty as far as possible.14 Thus, the decision maker prefers not

to be tested at all. I doubt that such a mechanism underlying a preference for a late

resolution of uncertainty reflects the motives of the ‘avoiders’.

Finally, another argument, which is ubiquitous in the literature using or developing

general recursive models relying on a non-trivial attitude with respect to the timing of

uncertainty resolution, is that these models allow to disentangle between risk aversion

and intertemporal substitutability. Weil (1990, 32) even states that “attitudes toward

14Then, the welfare experienced before falling ill is excluded from the lottery evaluation.
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intertemporal substitution and risk aversion can be distinguished within the context

of KP15 preferences - precisely because these preferences do not impose indifference

toward the timing of resolution of uncertainty over temporal lotteries.” The next section,

however, shows that it is possible to distinguish between intertemporal substitution and

risk aversion in a non-recursive model satisfying indifference to the timing of uncertainty

resolution. Let me conclude the discussion. While there are situations in which people

exhibit preferences for an early or late resolution of uncertainty, I argue that these

preferences are not well described by an intrinsic preference for the timing of uncertainty

resolution as it has been analyzed in the previous section. Moreover, I believe that the

examples found in the literature to motivate an intrinsic preference for the timing of

uncertainty resolution are of interest for personal decision making rather than for a

social decision maker. If comparable situations can arise in social decision making, I

would advocate that the welfare effects of the information and its timing are stated

explicitly, making the preference for an early or late resolution of uncertainty in these

rather special situations instrumental. Finally, I believe that a principled approach to

choice under uncertainty should not depend on whether certain outcomes before a risky

period are considered part of the lottery or not, which is the essence of a corresponding

preference in the sense of the last section. In consequence, I consider the following

axiom as a desirable consistency requirement for a principled approach to choice under

uncertainty.

A10 (indifference to the timing of risk resolution)

For all t ∈ {1, ..., T − 1}, xt ∈ X, pt+1, p
′
t+1 ∈ Pt+1 and λ ∈ [0, 1] it holds

λ(xt, pt+1) + (1 − λ)(xt, p
′
t+1) ∼t (xt, λpt+1 + (1 − λ)p′t+1).

The axiom requires indifference to the timing of uncertainty resolution as it has been

defined and discussed in the preceding section and above.

If axiom A10 is met, the information on temporal resolution of uncertainty contained

in the recursive probability measures pt,t∈{1,...,T} is no longer needed for evaluative pur-

poses.16 In consequence, I can use ‘common’ probability measures that are defined

directly on the space of future consumption paths Xt to describe the prevailing uncer-

tainty. In the remaining part of this section, I show how these ‘non-temporal’ probabil-

ity measures can be derived from its temporal counterparts. To this end, I inductively

strip away the information on the timing of uncertainty resolution. Given a lottery

15Weil (1990) abbreviates Kreps & Porteus (1978) with KP.

16This intuition finds its formal validation in theorem 12 in the next section.
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pt ∈ Pt, t ∈ {1, ..., T}, this is done by deriving for all τ ∈ {t, ..., T} reduced probability

distributions for the outcomes xτ that are only conditioned on the previous outcome

realizations xt, ..., xτ−1. These conditional probabilities together render a probability

measure on the set of consumption paths pxt ∈ ∆(Xt). The latter contains information

on how probable every outcome in a particular period is, but no information on the tim-

ing of uncertainty resolution. The following demonstration how to derive a ‘common’

or ‘non-temporal’ probability measure pxt ∈ ∆(Xt) from a corresponding ‘temporal’ lot-

tery pt ∈ Pt is not necessary to understand the representation and discussion in the

subsequent sections. The less technically minded reader may skip this rather formal

remainder of the section.

Pick any pt ∈ Pt with t ∈ {1, ..., T} and define for inductive purposes IPXt,Pt+1 = pt.

Moreover, denote with L(Y ) the Borel σ−field of a metric space Y . By a probability

distribution of y ∈ Y , I formally mean a probability measure defined on L(Y ). Then,

the marginal probability distribution of xt is defined as

IPXt(At) = IPXt,Pt+1(At, Pt) ∀At ∈ L(X) .

To arrive at the distribution of xt+1, I first define the conditional probability of pt+1

given xt. The latter is formally defined through the probability kernel IPPt+1|Xt : X ×

L(Pt+1) → IR+ satisfying the requirement

IPXt,Pt+1(At, Bt+1) =

∫

At

IPPt+1|Xt(xt, Bt+1) dIPXt(xt)

for all At+1 ∈ L(X) and Bt+1 ∈ L(Pt+1). Then, for every xt ∈ X setting IPPt+1|xt(Bt+1) ≡

IPPt+1|Xt=xt(Bt+1) ≡ IPPt+1|Xt(xt, Bt+1) defines a probability measure on Pt+1. For every

xt ∈ X it gives a probability distribution over the temporal lotteries pt+1, i.e. a proba-

bility distribution over probability distributions on X̃t+1. This second order probability

distribution IPPt+1|xt contains the information on the uncertainty resolving in period t.17

In particular, if pt = (xt, pt+1) is degenerate, implying that no uncertainty resolves in

period t, then also IPPt+1|xt is degenerate: IPPt+1|xt(pt+1) = 1. To arrive at a reduced

probability measure on X̃t+1, I ‘integrate out’ the temporal information by summing

over all ‘positive weighted’ measures pt+1. This step yields for every xt ∈ X the reduced

probability measure IPXt+1,Pt+2|xt on X̃t+1 defined by

IPXt+1,Pt+2|xt(At+1, Bt+2) =

∫

Pt+1

pt+1(At+1, Bt+2) dIPPt+1|xt(pt+1)

for all At+1 ∈ L(X) and Bt+2 ∈ L(Pt+2). Then, the probability distribution of xt+1

17Precisely, only over the uncertainty resolving over period t+1 and later periods, given a particular
outcome xt in period t.
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given xt is obtained as the marginal of IPXt+1,Pt+2|xt defined as

IPXt+1|xt(At+1) = IPXt+1,Pt+2|xt(At+1, Pt+2)

for all At+1 ∈ L(X).

The same procedure to obtain conditional probabilities IPXτ |xτ−1,...,xt can be carried

out inductively for all τ ∈ {t + 1, ..., T − 1}. The induction step works as follows. Let

IPXτ ,Pτ+1|xτ−1,...,xt and its marginal IPXτ |xτ−1,...,xt be given for period τ . Then, define for

any given sequence xt, ..., xτ−1 the conditional probability of pτ+1 given xτ through the

probability kernel IPPτ+1|xτ−1,...,xt : X × L(Pτ+1) → IR+ satisfying the requirement

IPXτ ,Pτ+1|xτ−1,...,xt(Aτ , Bτ+1) =

∫

Aτ

IPPτ+1|Xτ ,xτ−1,...,xt(xτ , Bτ+1) dIPXτ |xτ−1,...,xt(xτ )

for all Aτ ∈ L(X) and Bτ+1 ∈ L(Pτ+1). Then for every sequence xt, ..., xτ , setting

IPPτ+1|xτ ,...,xt(Bτ+1) ≡ IPPτ+1|Xτ=xτ ,...,xt(Bτ+1) ≡ IPPτ+1|Xτ ,xτ−1,...,xt(xτ , Bτ+1) defines a

probability measure on Pτ+1. Again, this measure is a probability distribution over

the probability distributions pτ+1 on X̃τ+1, containing information on the uncertainty

resolving in period τ . To arrive at the reduced probability measure on X̃τ+1, I ‘integrate

out’ the temporal information by summing over all weighted measures pτ+1. This step

yields for every sequence xt, ..., xτ the reduced probability measure IPXτ+1,Pτ+2|xτ ,...,xt

defined by

IPXτ+1,Pτ+2|xτ ,...,xt(Aτ+1, Bτ+2) =

∫

Pτ+1

pτ+1(Aτ+1, Bτ+2) dIPPτ+1|xτ ,...,xt(pτ+1)

for all Aτ+1 ∈ L(X), Bτ+2 ∈ L(Pτ+2). Finishing the induction step, I find the probability

of xτ+1 given xt, ..., xτ as the marginal

IPXτ+1|xτ ,...,xt(Aτ ) = IPXτ+1,Pτ+2|xτ ,...,xt(Aτ+1, Pτ+2)

for all Aτ+1 ∈ L(X).

That way, I arrive for τ = T − 1, and for any sequence xt, ..., xT−2, at the measure

IPXT−1,PT |xT−2,...,xt on X̃t−1, and its marginal IPXT−1|xT−2,...,xt . In the final step, I obtain

as before IPPT |xT−1,...,xt as the conditional probability of pT given xt, ..., xT−1. However,

this time, the conditional probability of xT given xt, ..., xT−1 is obtained directly from

‘integration out’ pT :

IPXT |xT−1,...,xt(AT ) =

∫

PT

pT (AT ) dIPPT |xT−1,...,xt(pT )

for all AT ∈ L(X). Having derived the conditional probability measures IPXτ |xτ−1,...,xt for

all periods τ ∈ {t, ..., T}, and all sequences xt, ..., xτ−1, I obtain the desired probability

measure on the set of certain consumption paths pxt , as the composition of the derived
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conditional probabilities. Formally, define pxt ∈ ∆(Xt) by the requirement

pxt (At, ..., AT ) =
T∏

τ=t

∫

Aτ

dIPXτ |xτ−1,...,xt(xτ )

=

∫

At×...×AT

dIPXT |xT−1,...,xt(xT ) .... dIPXt+1|xt(xt+1) dIPXt(xt)

for all At, ..., AT ∈ L(X). By construction, the measure pxt comprises the non-temporal

information of the lottery pt. For a representation of preferences respecting axiom A10,

only this information is needed to evaluate the uncertain future. The latter assertion is

verified as part of theorem 12, which is stated in the next section.

10.3 Intertemporal Risk Aversion and Non-Recursive

Uncertainty

The section works out preference representations for a decision maker who is indifferent

to the timing of uncertainty resolution in the sense discussed in the previous section

Adding axiom A10 to the assumptions of chapter 8 yields the following theorem.

Theorem 12: Let there be given a sequence of preference relations (�t)t∈{1,...,T} on

(Pt)t∈{1,...,T} and a sequence of Bernoulli utility functions (ut)t∈{1,...,T} with ut ∈ B�t
.

The sequence of preference relations (�t)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)

ii) A4’ for �1|XT (certainty additivity)

iii) A5’ (time consistency)

iv) A10 (timing indifference)

if and only if for all t ∈ {1, ..., T} there exist strictly increasing continuous functions

gt : Ut → IR, as well as a function h ∈
{

exp, id, 1
exp

}
, such that with defining

v) the functions ũt : X̃t → IR for t ∈ {1, ..., T} by

ũt(x
t) =

T∑

τ=t

gτ ◦ uτ (x
t
τ ) (10.6)

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mh(pxt , ũt) ≥ Mh(p′xt , ũt) ∀ pt, p
′
t ∈ Pt, (10.7)
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Moreover, in a representation employing h ∈
{

exp, 1
exp

}
, two sequences (gt)t∈{1,...,T}

and (g′
t)t∈{1,...,T} both represent (�t)t∈{1,...,T} in the above sense, if and only if,

there exists bt ∈ IR for every t ∈ {1, ..., T}, such that gt = g′
t + bt. In a representa-

tion employing h = id, two sequences (gt)t∈{1,...,T} and (g′
t)t∈{1,...,T} both represent

(�t)t∈{1,...,T} in the above sense, if and only if, there exists a ∈ IR++, as well as

bt ∈ IR for every t ∈ {1, ..., T}, such that gt = ag′
t + bt.

As anticipated in the previous section, the assumption of timing indifference implies

that the evaluation in equation (10.7) only employs aggregate utility ũt and probability

measures pxt , p′xt ∈ ∆(Xt) that are defined non-recursively over consumption paths. The

measures pxt , p′xt ∈ ∆(Xt) are derived from their recursive counterparts pt, p
′
t ∈ Pt the

way explained in section 10.2. This relation, however, is only needed to axiomatize the

representation in the general setup. For an application of the theorem, it is sufficient

to describe the uncertain future directly with the measure pxt ∈ ∆(Xt). In view of the

axioms, note that in the above setting a result by Chew & Epstein (1989, 110) allows

to replace the independence axiom A3 by a collection of weaker assumptions.

To identify intertemporal risk aversion, I have to fix the measure scale for welfare in

the representation. Different possibilities for doing so in the non-stationary setting have

been explored in lemma 5. A full fixing of the measure scale corresponds to cases c)

and d) of the lemma and brings about the existence of ξ ∈ IR such that with the same

definition of ũt as in equation (10.6), the representing equation (10.7) becomes18

pt �t p′t ⇔ Mexpξ

(pxt , ũt) ≥ Mexpξ

(p′xt , ũt) ∀ pt, p
′
t ∈ Pt .

For such a u+−gauge, the measures of intertemporal risk aversion are defined uniquely

as AIRAt = − ξ
θt

and RIRAt = − ξ
θt

id. In the g+−gauge the corresponding result is

stated in the following corollary.

Corollary 11 (g = id+−gauge, non-stationary) : Choose numbers wt ∈ IR for all

t ∈ {1, ..., T} (minimum welfare levels), as well as t∗ ∈ {1, ..., T} and a number

wt∗ ∈ IR satisfying wt∗ > wt∗ (maximum welfare level in period t∗).

Then, a sequence of binary relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfies

i) − iv) of theorem 12,

if and only if, there exist continuous functions ut : X → Ut with U t = wt for all

t ∈ {1, ..., T} and U t∗ = wt∗ , as wells as ξ ∈ IR, such that with defining

18See equation (C.46) in the proof of theorem 12.
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v) the functions ũt : X̃t → IR for t ∈ {1, ..., T} by

ũt(x
t) =

T∑

τ=t

uτ (x
t
τ )

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mexpξ

(pxt , ũt) ≥ Mexpξ

(p′xt , ũt) ∀ pt, p
′
t ∈ Pt . (10.8)

Moreover, the functions ut,t∈{1,...,T} are determined uniquely, as are the measures

of intertemporal risk aversion AIRAt = − ξ
θt

and RIRAt = − ξ
θt

id, where θt is the

time dependent normalization constant defined in theorem 4, here θt = ∆Ut
PT

τ=t ∆Ut
.

Observe that uncertainty in the representing equation (10.8) is evaluated with intertem-

poral risk attitude. Let me relate the result to the discussion in section 10.1. There, I

have pointed out that in the case of an early resolution of uncertainty, certain outcomes

before the risky period are considered as part of the lottery. Thus, if the preceding

period yields a non-zero welfare, the uncertainty is evaluated at a different welfare level

than in the case of a late resolution of uncertainty. If (intertemporal) risk attitude

depends on the welfare level, this difference causes a preference for either of the two lot-

teries. Only if (absolute) intertemporal risk attitude is independent of the welfare level,

also the uncertainty evaluation is independent of whether certain outcomes in preceding

periods are conceived as part of the lottery or not. Only then, indifference to the timing

of uncertainty prevails. Therefore AIRAt is constant. Moreover, chapter 10.1 has elab-

orated that a difference in the attitude of intertemporal risk aversion between different

periods can imply a propensity to have uncertainty resolved in the period with the lower

intertemporal risk aversion. Therefore, the coefficients of intertemporal risk aversion in

the above representation only depend on the relative weight given to a particular period

as opposed to the remaining future, as characterized by the normalization constant θt,

but not otherwise on time. This difference to the representations derived under the

assumption of risk stationarity in chapter 9 will be discussed in the next section.

The following representation adds the assumption of certainty stationarity formulated

as axiom A7 in chapter 9.1. I state the representation directly in the g−gauge where it

implies the standard discount utility evaluation on certain consumption paths, and for

a fixed measure scale of welfare.

Theorem 13 (g = id+−gauge, certainty stationary) : Choose a nondegenerate

closed interval W ∗ ⊂ IR++.

A sequence of binary relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)
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ii) A4’ for �1|XT (certainty additivity)

iii) A5’ (time consistency)

iv) A7 & A10 (certainty stationarity & timing indifference)

if and only if, there exists a continuous and surjective function u : X → W ∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that with defining

v) the functions ũt : X̃t → IR for t ∈ {1, ..., T} by

ũt(x
t) =

T∑

τ=t

βτ−1u(xt
τ )

it holds for all t ∈ {1, ..., T} that

pt �t p′t ⇔ Mexpξ

(pxt , ũt) ≥ Mexpξ

(p′xt , ũt) ∀ pt, p
′
t ∈ Pt .

Moreover, the function u is determined uniquely, as are the measures of intertem-

poral risk aversion AIRAt = − ξ
1−βt

and RIRAt = − ξ
1−βt

id.

In all periods outcomes are evaluated with a common certainty additive Bernoulli utility

function u, which describes welfare in the sense of chapter 7.3. Overall evaluation of a

particular consumption path is performed by taking the discounted sum of per period

welfare. To evaluate an uncertain future, the decision maker weights the aggregate wel-

fare of the possible consumption paths with their respective probabilities, and applies

the uncertainty aggregation rule Mexpξ

, which is parametrized (up to a normalization

factor) by the coefficient of absolute intertemporal risk seeking, i.e. the negative of

absolute intertemporal risk aversion. For the limit of an infinite time horizon, the nor-

malization constant that depicts the relative weight of an individual period as opposed

to the remaining future 1 − βt becomes constant over time. In consequence, so does

the coefficient of intertemporal risk aversion limT→∞ AIRAt = − ξ
1−β

. For a finite time

horizon, as the end of the planning horizon is approached, the decreasing length of the

welfare paths under consideration goes along with a coefficient of absolute intertemporal

risk aversion AIRAt that decreases over time to −ξ for the last period. Note that, in

accordance with the convention underlying lemma 7, the measure scale for welfare has

been fixed to W ∗ in period 1, implying ranges βt−1W ∗ for welfare measurement in later

periods.

In particular, theorem 13 shows that it is possible to disentangle atemporal risk aver-

sion from intertemporal substitutability without assuming an intrinsic preference for

early or late resolution of uncertainty. In addition, such a model is compatible with the

widespread discount utility model for the evaluation of individual consumption paths.
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The possibility to disentangle these two characteristics of preference, defined in a one

commodity setting, follows immediately from the fact that the coefficients of intertem-

poral risk aversion characterize a difference between intertemporal and atemporal un-

certainty aggregation. Before I state the Epstein Zin gauge, in which the coefficients of

relative (atemporal) risk aversion and intertemporal substitutability have been discussed

in chapter 7.1, I give some alternative formulations of general multiperiod representa-

tion.

Representing the same preferences described in theorem 13 in the Kreps Porteus gauge

yields the alternative form

Corollary 12 (f = id+−gauge, certainty stationary) : Choose a nondegenerate

closed interval U∗ ⊂ IR++. A sequence of binary relations �= (�t)t∈{1,...,T} on

(Pt)t∈{1,...,T} satisfies

i) − iv) of theorem 13,

if and only if, there exists a continuous and surjective function u : X → U∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that with defining

v) the functions ũt : X̃t → IR for t ∈ {1, ..., T}

- for ξ > 0 by ũt(x
t) =

∏T
τ=t u(xt

τ )
ξβτ−1

and

- for ξ = 0 by ũt(x
t) =

∑T
τ=t β

τ−1 ln u(xt
τ ) and

- for ξ < 0 by ũt(x
t) = −

∏T
τ=t u(xt

τ )
ξβτ−1

the following equation holds for all t ∈ {1, ..., T}

pt �t p′t ⇔ E
pxt

ũt(x
t) ≥ E

p′xt
ũt(x

t) ∀ pt, p
′
t ∈ Pt,

Moreover, the function u is determined uniquely, as are the measures of intertem-

poral risk aversion AIRAt = − ξ
1−βt

and RIRAt = − ξ
1−βt

id.

Here, uncertainty is evaluated by the expected value operator. As observed in the earlier

models, this linearization of uncertainty aggregation comes at the price of introducing

a nonlinear aggregation of per period utility over time.19 Making the latter purely

19Also in corollary 12, the measure scale for welfare is fixed for period 1. However, note that due to
the multiplicative form of intertemporal aggregation, the range of welfare uwelf in the certainty additive
sense of chapter 7.3 is fixed to the range W ∗ = lnU∗ rather than to the range U∗. This is also the
reason, why a logarithm appears in the representation for ξ = 0. Only with this definition, the range of
welfare is fixed independently of the parameter ξ. However, eliminating the logarithm would not change
the measures of intertemporal risk aversion, as they are zero in the case ξ = 0 and, thus, independent
of the particular measure scale adopted for welfare.
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multiplicative over time brings about an isoelastic uncertainty aggregation rule, as stated

in the following variation of corollary 12.

Corollary 13 (isoelastic uncertainty evaluation, certainty stationary) :

Choose a nondegenerate closed interval U∗ ⊂ IR++. A sequence of binary re-

lations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfies

i) − iv) of theorem 12,

if and only if, there exists a continuous and surjective function u : X → U∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that with defining

v) the functions ũt : X̃t → IR for t ∈ {1, ..., T} by

ũt(x
t) =

T∏

τ=t

u(xt
τ )

βτ−1

the following equation holds for all t ∈ {1, ..., T}

pt �t p′t ⇔ Mξ(pxt , ũt) ≥ Mξ(p′xt , ũt) ∀ pt, p
′
t ∈ Pt,

Moreover, the function u is determined uniquely, as are the measures of intertem-

poral risk aversion AIRAt = − ξ
1−βt

and RIRAt = − ξ
1−βt

id.

Note that for a one commodity setting, the assumption u = id in the above represen-

tation corresponds to the assumption of logarithmic welfare in the certainty additive

model. I want to close this collection of alternative representations for preferences

satisfying certainty stationarity and indifference to the timing uncertainty resolution

by moving more generally to the one commodity scenario and stating the Epstein-Zin

gauge. Here the (cardinal) consumption level is assumed to be a subset of IR, and

Bernoulli utility is assumed to be strictly increasing in x ∈ X ⊂ IR.

Corollary 14 (one commodity u = id+−gauge, certainty stationary) :

Choose a nondegenerate closed interval W ∗ ⊂ IR. A sequence of binary rela-

tions �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfies

i) − iv) of theorem 13,

if and only if, there exists a continuous and surjective function g : IR → W ∗, a

discount factor β ∈ IR++ and ξ ∈ IR, such that with defining

v) the functions ũt : X̃t → IR for t ∈ {1, ..., T} by

ũt(x
t) =

T∑

τ=t

βτ−1g(xt
τ ) (10.9)
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the following equation holds for all t ∈ {1, ..., T}

pt �t p′t ⇔ Mξ(pxt , ũt) ≥ Mξ(p′xt , ũt) ∀ pt, p
′
t ∈ Pt,

Moreover, the function u id determined uniquely, as are the measures of intertem-

poral risk aversion AIRAt = − ξ
1−βt

and RIRAt = − ξ
1−βt

id.

Note that for the non-stationary representation, equation (10.9) would change to the form20

ũt(x
t) =

T∑

τ=t

gt(x
t
τ ) .

It has been worked out in chapter 7.1 that in the Epstein-Zin gauge g characterizes

intertemporal substitutability, while f , here ft, characterizes (atemporal) risk attitude.

As ft is not observed directly in the representation it has to be inferred from the relation

characterizing intertemporal risk aversion (for ξ 6= 0) as21

ftg
−1
t (z) = at exp(

ξ

1 − βt

z) + bt

⇒ ft(z) = at exp(
ξ

1 − βt

gt) + bt = at exp(
ξ

1 − βt

βtg) + bt

with at, bt ∈ IR and at ξ > 0. For the non-stationary setting analogously the relation

ft(z) = at exp( ξ
θt

gt) + bt holds.22 Noting that in the u = id gauge g and ft are defined

directly on X ⊂ IR, the coefficient of relative (atemporal) risk aversion calculates to

RRA(x) = −
f ′′ (x)

f ′ (x)
x = −

d2

dx2 kt exp
(

ξ
θt

gt(x)
)

+ dt

d
dx

kt exp
(

ξ
θt

gt(x)
)

+ dt

x

= −

(
ξ
θt

g′
t(x)

)2

exp
(

ξ
θt

gt(x)
)

+ ξ
θt

g′′
t (x) exp

(
ξ
θt

gt(x)
)

ξ
θt

g′
t(x) exp

(
ξ
θt

gt(x)
) x

= −

[
ξ

θt

g′
t(x) +

g′′
t (x)

g′
t(x)

]
x (10.10)

= −

[
ξ

βt

1 − βt

g′(x) +
g′′(x)

g′(x)

]
x . (10.11)

Expression (10.10) holds for general non-stationary representations while for the cer-

20See equation (C.52) in the proof of corollary 14.

21This relation implying the stated coefficients of intertemporal risk aversion is derived in the proof
of theorem 13 as equation (C.48).

22See equation (C.43) in the proof of theorem 12.
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tainty stationary case given in corollary 14, where θt = 1 − βt and gt = βtg, expression

(10.11) applies. For example, the widespread assumption of logarithmic welfare, corre-

sponding to g = ln and an intertemporal elasticity of substitution of unity, yields the

particularly simple coefficient

RRA(x) = 1 − ξ
βt

1 − βt

.

A form that corresponds to the isoelastic (atemporal) uncertainty aggregation rule Mα

with the time dependent coefficient αt = ξ βt

1−βt
.23 For an interpretation of the time

dependence, I refer again to the subsequent section. Before, I want to keep a promise

given in the preceding section.

In chapter 10.1 I have introduced two lotteries which are used in the literature to

motivate a non-trivial (intrinsic) preference to the timing of uncertainty resolution.

These lotteries have been defined as follows. In lottery A a coin is tossed at the beginning

of every period. If head comes up, the decision maker receives the high payoff in the

respective period and, if tail comes up, the decision maker faces the low payoff in the

respective period. In contrast, in lottery B a coin is tossed once at the beginning of

the first period. If head comes up, the agent receives the high payoff in all periods, if

tail comes up the agents receives the low payoff in all periods. The intuition appealed

to in the literature is that people would usually prefer lottery A over lottery B. In

section 10.2 I have claimed that a preference for a late resolution of uncertainty is by no

means necessary in order to explain the ranking. In the following I show that lottery A is

preferred over lottery B also by a timing indifferent decision maker, if (and only if) he is

intertemporally risk averse. It is easily recognized that the essence of such a preference

is captured already in a two period model. Denote the high lottery outcome by x and

the low lottery outcome by x. Then, lottery A writes as 1
2
(x, 1

2
x + 1

2
x) + 1

2
(x, 1

2
x + 1

2
x).

Lottery B is formally represented by 1
2
(x , x) + 1

2
(x , x). First, observe that in the

intertemporally additive expected utility model indifference between the two lotteries

prevails. Here, lottery A is evaluated by the expression

1
4

(
u(x) + βu(x)

)
+ 1

4

(
u(x) + βu(x)

)
+ 1

4

(
u(x) + βu(x)

)
+ 1

4

(
u(x) + βu(x)

)

which is equivalent to

1
2

(
u(x) + βu(x)

)
+ 1

2

(
u(x) + βu(x)

)
,

representing an intertemporally additive expected utility representation of lottery B.

In contrast, for an intertemporally risk averse decision maker (ξ < 0) applying the

23Note that this case corresponds to the mentioned representation obtained from corollary 13 by
assuming u = id.

172



10.4. IMPLICATIONS FOR DISCOUNTING

evaluation characterized in theorem 13, the following relation holds:

1
2
(x, 1

2
x + 1

2
x) + 1

2
(x, 1

2
x + 1

2
x) ≻ 1

2
(x, x) + 1

2
(x, x)

⇔ 1
ξ
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[

1
4
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[
ξ
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)]
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4
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ξ
(
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)]

+ 1
4
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ξ
(
u(x) + βu(x)

)]
+ 1

4
exp
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ξ
(
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)]]

> 1
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2
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ξ
(
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ξ
(
u(x) + βu(x)
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4
exp
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⇔ exp
(
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) [
exp
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)
− exp

(
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< exp
(
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) [
exp

(
ξβu(x)

)
− exp

(
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[
exp

(
ξu(x)

)
− exp

(
ξu(x)

)] [
exp

(
ξβu(x)

)
− exp

(
ξβu(x)

)]

If the decision maker is not indifferent between outcomes x and x, i.e. if u(x) 6= u(x),

the relation in the last line is always satisfied, as either both terms in the product are

strictly positive, or both terms are strictly negative. In consequence, an intertemporally

risk averse decision maker always prefers lottery A over lottery B. For an intertemporally

risk seeking decision maker (ξ > 0), the inequality sign does not flip around in the step

from the second to the third equivalence. Therefore, the opposite preference holds true

and such a decision maker always prefers lottery B over lottery A. Only an intertempo-

rally risk neutral decision maker, characterized by the intertemporally additive expected

utility model, is indifferent between the two lotteries described above.

10.4 Implications for Discounting

In the preceding section I have shown that the requirement of indifference to the timing

of uncertainty resolution is compatible with strict intertemporal risk aversion and a

discount utility evaluation of certain consumption paths. This section analyzes the

consequences of merging the assumption of indifference to the timing of uncertainty

resolution with that of risk stationarity formulated in chapter 9.3 (risk stationarity II).

In theorem 13, I have described how certainty stationarity determines the time devel-

opment of intertemporal risk aversion for a decision maker who has no intrinsic prefer-

ence for early or late resolution of uncertainty. The coefficient of absolute intertemporal

risk aversion was seen to be constant in welfare and to adapt to the length of the plan-
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ning horizon lying ahead of the decision maker. It was calculated to AIRAt = − ξ
1−βt

.

Similarly, the assumption of risk stationarity formulated in axiom A9 gives rise to a

coefficient of absolute intertemporal risk aversion that is constant in welfare. Moreover,

the respective representation stated in corollary 8 exhibits the same adaption of the co-

efficients of intertemporal risk aversion to the length of the remaining planning horizon

through the factor 1
1−βt

. However, in contrast to the representation of the preceding

section, for a decision maker who complies with risk stationarity, the coefficient of ab-

solute intertemporal risk aversion also depends on the discount factor βt. As worked

out in chapter 9.3, under the assumption of axiom A9 only the functions ft ◦ g−1 stay

constant over time (up to the normalization by 1
1−βt

). These functions, to which I have

referred as the stationary characterization of intertemporal risk attitude, measure in-

tertemporal risk aversion with respect to a ‘current value measure scale for welfare’.

In contrast, the coefficient AIRAt expresses intertemporal risk aversion with respect to

the ‘present value measure scale for welfare’. That is, if the measure scale for period

1 is fixed to range(uwelf
1 ) = W ∗, then the measure scale of welfare in period t shrinks

down to the range(uwelf
t ) = βt−1W ∗. But then, as the range of welfare measurement (in

present value) becomes smaller and smaller over time due to discounting, the coefficient

of intertemporal risk aversion has to increase in order to keep up a stationary aversion

to risk. However, this is not allowed by axiom A10. If indifference to the timing of

uncertainty resolution should prevail, the latter requires intertemporal risk aversion to

be constant over time (up to the normalization by 1
1−βt

). Otherwise, a decision maker

would be willing to give up welfare in order to have uncertainty resolved in the period

with the lowest intertemporal risk aversion, even if the information obtained is known

to be of no use.

In consequence, risk stationary devaluation of the future, which implies by axiom

A9 a decreasing coefficient of absolute intertemporal risk aversion, is not compatible

with the demand of axiom A10, i.e. the lack of an intrinsic preference of uncertainty

resolution. Precisely, there is only one situation where such a devaluation of the future is

compatible with both axioms. For a decision maker who is intertemporally risk neutral,

the assumption of risk stationarity has no more bite than the assumption of certainty

stationarity. Here, the coefficient AIRAt = 0 for all t ∈ {1, ..., T} is constant over

time and, thus, the intertemporally additive expected utility model trivially satisfies the

requirements implied by both axioms. However, for a nontrivial model of intertemporally

risk averse decision making, the following result obtains.

Theorem 14: A sequence of binary relations �= (�t)t∈{1,...,T} on (Pt)t∈{1,...,T} satisfies

i) A1-A3 for all �t, t ∈ {1, ..., T} (vNM setting)
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ii) A4’ for �1|XT (certainty additivity)

iii) A5’ (time consistency)

iv) A6 s
st (strict intertemporal risk aversion)

v) A9 (risk stationarity II)

vi) A10 (timing indifference)

if and only if, there exists a representation in the sense of theorem 13 and its

corollaries with ξ < 0 and β = 1.

In words, a decision maker who accepts the above axioms does not discount the future

due to an intrinsic timing preference. However, he does devaluate uncertain welfare24.

In consequence, if uncertainty increases over time, future welfare gains less weight than

current welfare. The remainder of this paragraph renders the latter intuition precise.

For this purpose let px1 ∈ ∆(X1) be a product measure px1 = IPx1
1 ⊗ ... ⊗ IPxT

T , so that

the outcomes in different periods are independently distributed. Assume that expected

welfare is the same in all periods, i.e. EIPxt
t

uwelf(xt) = u∗ ∈ U = W ∗ ∀ t ∈ {1, ..., T}.

To define what it means that uncertainty over welfare is increasing over time, I employ

Rothschild & Stiglitz’s (1970) definition of increasing risk. The authors define a random

variable to be riskier than another, if the corresponding probability distribution has

more weight on the tails.25 In particular, this condition is satisfied for a mean preserving

spread. Now, consider the probability distributions IPu
t over U that are induced by the

measures IPxt

t through the certainty additive Bernoulli utility function uwelf . Then,

uncertainty of welfare increases over time, if IPu
t has more weight in the tails than IPu

t′

for all t, t′ ∈ {1, ..., T} satisfying t > t′.26 For such an uncertainty specification it follows

from theorem 2 in Rothschild & Stiglitz (1970, 237) that the certainty equivalent of

welfare in period t is lower than the certainty equivalent of welfare in period t′. As

the expected welfare is the same in both periods, the difference in weights exhibits

some resemblance to discounting. Note, in particular, that the intertemporally additive

expected utility model does not allow for intertemporal risk aversion and, thus, not

for risk aversion on welfare and the reasoning I carried out above. Therefore, the only

24I still adhere to the notion of welfare discussed in chapter 7.3 as certainty additive Bernoulli utility.

25An equivalent characterization is that the riskier random variable can be obtained from the less
risky random variable by adding some noise. For a formal definition compare footnote 26.

26Formally let Pt denote the cumulative distribution function characterizing the measure IPu
t for t ∈

{1, ..., T}. Pt is said to have more weight in the tales than Pt′ , if
∫u

U
Pt(y)−Pt′(y) dy ≥ 0 ∀u ∈ [U,U ].
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possibility it permits to capture a difference in the weighting of expected welfare is by

introducing a positive rate of pure time preference.

To my knowledge, the only consideration in the literature which is concerned with a

relation between discounting and stationarity that is somewhat comparable to the one

derived in theorem 14, is once more due to Epstein (1992, 16). Motivating models of

recursive utility, he points out a contradiction between a disentanglement of risk aver-

sion and intertemporal substitutability in a non-recursive model on the one hand, and

the positiveness of the discount rate on the other. He concludes that a disentanglement

is not possible, at least in a stationary setting. The preceding section has elaborated

how such a disentanglement is possible in a non-stationary and in a certainty stationary

setting. Theorem 14 confirms Epstein’s (1992, 16) assertion, but with a very different

interpretation. Having analyzed the reasons and consequences of an intrinsic timing

preference, I suggest that a non-recursive evaluation is desirable (axiom A10). In con-

sequence, a risk stationary decision maker in the sense of axiom A9 has to accept that

he does not have the freedom to devaluate the future for sheer impatience, without

violating any of the other axioms. Furthermore, theorem 14 together with theorem 13

show that, for a decision maker with a finite planning horizon, it is well possible to dis-

entangle atemporal risk aversion from intertemporal substitutability, without violating

any of the axioms. Moreover, also in the limit of an infinite planning horizon, a factor

β = 1 does not necessarily imply that aggregate welfare diverges. Due to intertemporal

risk aversion, an increase in uncertainty over time can still yield a finite evaluation of

scenarios.27 Of course, instead of accepting the consequences of theorem 14, the under-

lying axioms can be dropped. Since Chew & Epstein (1989, 110) have shown that under

the assumption of axiom A10 the independence axiom can be replaced by a collection

of much weaker axioms, it is not a promising candidate to give up in order to avoid the

implication of a zero rate of pure time preference. If I had to drop an assumption, I

would probably first abandon risk stationarity. In consequence, I had to allow for an

anticipated change of preference over time.

Let me close the chapter by revisiting the important problem of global warming that

has been discussed exemplarily in the introduction, as a motivation for my theoretical

analysis in this dissertation. As Plambeck et al. (1997, 85) have pointed out, a reduction

of the pure rate of time preference from 3%, as assumed in Nordhaus (1993), to 0% cor-

responding to β = 1, would result in an optimal abatement path that cuts emissions by

27Note however, that increasing uncertainty can also make the evaluation functional converge to
zero. Preliminary analysis shows that convergence to finite non-zero evaluation are knife-edge in the
assumptions on the probability distributions and their evolvement over time.
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50% from the baseline to the year 2100, as opposed to 10% in the assessment of Nord-

haus (1993). To the best of my knowledge, so far a zero rate of pure time preference has

only been argued for in terms of moral consideration. Theorem 14 states formal axioms

dealing with consistency aspects of evaluation under uncertainty, and shows that these

alone suffice to call for a zero rate of pure time preference. In difference to the evalua-

tions used in current climate models, however, the representation implied by theorem 14

goes along with an intertemporally risk averse decision maker. Therefore, uncertainty

has a higher cost than in the above climate models, which apply the intertemporally

risk neutral standard model when they consider uncertainty at all.28 In consequence,

an evaluation of global climate change under the assumptions of theorem 14, implies an

additional preference for scenarios that give rise to a less uncertain future. Since un-

certainty is likely to increase in the perturbation of the climate system, which increases

with the amount of greenhouse gas emissions, a first conjecture is that the additional

effect caused by intertemporal risk aversion in an evaluation in the sense of theorem 14,

yields an even higher abatement recommendation than the one pointed out by Plambeck

et al. (1997, 85). A closer analysis of this aspect constitutes an interesting area of future

research.

10.5 Summary

I have extended the concept of intertemporal risk aversion to the non-stationary mul-

tiperiod setting. The general recursive and gaugable representation for preferences that

are additive over time on certain consumption paths, and satisfy the von Neumann-

Morgenstern axioms, has been developed. The axiomatic characterization, as well as

the measures of intertemporal risk aversion, have been adapted to this framework. Dif-

ferent stationarity assumptions have been imposed on the general framework. These

axioms offer an alternative to the standard stationarity axioms that rely on an infinite

time horizon and a positive rate of pure time preference. First, certainty stationarity

has been characterized and shown to imply the standard discount utility model on cer-

tain consumption paths. Then, aiming at a stationarity assumption that includes the

generalized isoelastic model, I have worked out an axiom that implies constancy of the

functions characterizing (atemporal) uncertainty aggregation. However, this axiom does

not express the idea that the mere passage of time should not affect preference order-

28With the exception of the stylized simulation by Ha-Duong & Treich (2004) that features two
possible damage states in a generalized isoelastic framework.
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ings. A careful translation of the latter assumption to the evaluation of risky outcomes,

implies that constancy of atemporal risk attitude is only supported for an infinite time

horizon. Moreover, under a finite time horizon the corresponding axiom no longer ad-

mits for the whole class of generalized isoelastic evaluation rules. For risk stationary

preferences, the measure of absolute intertemporal risk aversion is characterized by a

single parameter, is constant in welfare, and increases over time.

I have explained that a decision maker using a recursive evaluation over temporal

lotteries generally exhibits an intrinsic preference for an early or late resolution of un-

certainty. The relation between such a preference for the timing of uncertainty resolu-

tion, and the characterizing functions of intertemporal substitutability and atemporal

as well as intertemporal risk aversion has been given. I have analyzed the reasons for

a non-trivial attitude with respect to the timing of uncertainty resolution in the recur-

sive model, and have compared it to respective motivations found in the literature. As

a result, I have suggested that indifference to the timing of uncertainty resolution is a

desirable feature for a principled approach to choice under uncertainty. The correspond-

ing preference representation has been stated, and I have worked out how the model

allows to disentangle atemporal risk aversion from intertemporal substitutability in a

non-recursive setting. Moreover, I have shown that timing indifference is compatible

with the discount utility model on certain consumption paths. However, when adding

stationarity of choice over risky outcomes to the assumptions, a devaluation of the fu-

ture for reasons of sheer impatience is no longer allowed. Precisely, such a devaluation,

corresponding to a strictly positive rate of pure time preference is only possible for in-

tertemporally risk neutral decision makers, where the axiom of risk stationarity has no

additional bite. However, when uncertainty is increasing over time, also an intertem-

porally risk averse decision maker values (expected) future welfare less than current

welfare.
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Chapter 11

Conclusions

11.1 Summary of Conceptual Contributions

This section summarizes the conceptual contributions of my dissertation. For a more

detailed summary of the analysis carried out in each of the three parts, the reader

is referred to the respective sections at the end of chapters 4, 7, and 10. Further

implications and possible applications of the derived concepts and modeling frameworks

are pointed out in section 11.2. Finally, I suggest different extensions of the study in

section 11.3.

Structuring the contributions by parts, I start out with the exploration of the re-

lation between the weight given to future consumption and service streams, and the

substitutability between environmental and produced service and consumption streams

in welfare. Under the assumption that produced consumption grows at a higher rate

than environmental service and amenity streams, I show that a lower substitutability

between the different classes of goods can imply a reduction of the weight given to future

consumption and services. The result has two implications for the sustainability debate.

First, the characterization of weak versus strong sustainability, resting upon a weak or

strong limitedness in the substitutability between the two classes of goods, is directly

connected to the weight given to future consumption and service streams. Second, a

strength in sustainability in the above sense, can counteract a strength of sustainability

in the sense of a higher weight given to consumption of future generations. Another

contribution of the analysis in part I is, to point out that not only the value of the

discount rate depends on the numeraire, but also the form of discounting. In particular,

I derive that time consistent behavior in a growing world with limited substitutability
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in consumption can imply hyperbolic discount rates.

Part II of the dissertation introduces the concept of intertemporal risk aversion. On

the one hand, the concept is designed to capture an important concern of the precau-

tionary principle. In particular, an intertemporally risk averse decision maker exhibits

a higher willingness to undergo preventive action in order to avoid a threat of harm,

than does a decision maker employing the intertemporally additive expected utility

model. On the other hand, the concept of intertemporal risk aversion sheds new light

on the disentanglement of atemporal risk aversion and intertemporal substitutability.

Such a disentanglement has been recognized in the literature to help in explaining sev-

eral observed phenomena. The concept of intertemporal risk aversion elaborates that

a specific difference between the characterizing functions of (atemporal) risk aversion

and intertemporal substitutability has itself an interpretation of risk aversion. Quanti-

tative measures of absolute and relative intertertemporal risk aversion are introduced.

The corresponding concept of risk aversion extends naturally to the multi-commodity

setting.

Part III extends the model framework for intertemporally risk averse decision making,

and relates the concept to two other important aspects of decision making under uncer-

tainty. Avoiding the assumption of a positive rate of pure time preference at the outset

of the model, I derive an axiomatization of stationary preferences in a framework with

a finite planning horizon. The standard interpretation of stationarity is that the mere

passage of time does not influence preferences. I point out that for a finite planning

horizon, an additional assumption is needed, in order to derive a stationary preference

representation. This assumption is also implicit in the infinite horizon setting, but gains

more bite under a finite planning horizon. In consequence, stationarity of risk attitude in

the latter framework only allows for constant coefficients of absolute intertemporal risk

aversion. In particular, the axiom excludes all specifications of the generalized isoelastic

model, except for the case of logarithmic welfare.1

Moreover, part III analyzes the concept of an intrinsic preference for the timing of

uncertainty resolution. I relate such a preference to the functions characterizing risk

attitude and intertemporal substitutability in my representations. Connecting the con-

cept to that of intertemporal risk aversion, I discuss the underlying intuition and draw

the conclusion that an intrinsic preference for early or late resolution of uncertainty is

likely to be undesired in a principled approach to decision making under uncertainty.

1Here, I refer to the axiom of risk stationarity II, capturing the idea that the mere passage of time
should not change preferences. The word ‘welfare’ is used in the sense of the certainty additive Bernoulli
utility function.
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Eliminating the intrinsic timing preference from the model allows to depict intertempo-

ral risk aversion and, thus, to disentangle atemporal risk aversion from intertemporal

substitutability, in a non-recursive decision model. Such a non-recursive description of

uncertainty constitutes a technical and conceptual simplification for the analysis of time

and risk attitude. Two further insights are obtained by relating the concept of timing

indifference to that of stationarity. First, I show that indifference to the timing of uncer-

tainty resolution is compatible with the assumption of certainty stationarity and, thus,

the standard discount utility approach to the evaluation of certain consumption paths.

Second, for an intertemporally risk averse decision maker, accepting the von Neumann-

Morgenstern axioms and time consistency, such an indifference is only compatible with

a stationary risk attitude, if the pure rate of time preference is zero. Thus, accepting

risk stationarity and the absence of an intrinsic preference for early or late resolution of

uncertainty, the decision maker will not devaluate the future for reasons of pure time

preference. However, he does so for reasons of increasing uncertainty over time.

11.2 Implications and Applications

The furthest reaching implications of this study are conveyed by the concept of

intertemporal risk aversion. First, the concept mediates between the advocates and the

opponents of the precautionary principle. On the one hand, the concept takes up the

important concern of the principle’s advocates regarding a higher willingness to undergo

preventive action than that implied by a standard cost benefit assessment. On the other

hand, it meets the requirements of the opponents by formalizing and, thus, sharpening

this concern and reconciling it with standard assumptions underlying economic eval-

uation. This step allows to evaluate clearly and precisely in a more exhaustive way

future threats to human welfare. In doing so, it also enables a more consistent and,

thus, less disputable application of the precautionary principle, which gains increasing

importance in international contracts and conventions, in particular in the field of the

environment-economy interaction.

Second, the concept of intertemporal risk aversion implies a higher welfare cost of

volatility. Since Lucas (1987), it is well known that the standard model in macroeco-

nomics implies a strong ‘bias’ in favor of policy measures that foster additional growth

at the expense of higher welfare volatility. If welfare volatility is caused by a stochas-

tic process, the concept of intertemporal risk aversion explains that the above ‘bias’

is caused by the implicit assumption of intertemporal risk neutrality. Acknowledging

intertemporal risk aversion implies an increased emphasis on considerations of welfare
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volatility in macroeconomic policy recommendations.

The third implication is a consequence of the fact that the concept of intertemporal

risk aversion holds naturally in a multi-commodity setting. Currently, most studies on

risk aversion only consider a single aggregate consumption good. This is partly due to

the somewhat complicated and less satisfactory theory of multi-commodity risk aversion

laid out by Kihlstrom & Mirman (1974). Intertemporal risk aversion characterizes risk

attitude in a way that is independent of the amount of goods under observation. In

consequence, an implication of the concept for economic modeling is to promote the ex-

plicit analysis of risk attitude in multi-commodity settings, including also more abstract

situations where an a priori measure scale of the goods in terms of real numbers is not

given.

My analysis on indifference with respect to the timing of uncertainty resolution has

two immediate implications for decision makers in public policy. First, if a decision

maker’s willingness to substitute consumption into risky states is different from his

propensity to substitute consumption into the certain future, I offer him a model where

he no longer has to use an evaluation scheme that forces him to give up welfare for

information that is of no use in the planning process. Second, if a decision maker accepts

the axioms implying a zero rate of pure time preference, the long-term is gaining much

more importance in model-based policy evaluations. While the certain future is treated

equal to the present, the uncertain future gains the more importance, the more the

decision maker can know about it. For a particular application of this reasoning, see

the last paragraph of this section.

The insight that a strong sustainability preference can imply a lower weight for future

consumption streams than a weak sustainability preference, mainly has implications for

the question how to depict different concepts of sustainability in economic modeling.

Policy implication rather emerge in more specific applications. For example, the insight

that limited substitutability in consumption can influence the effective discount rate, is

relevant for climate change evaluation. The corresponding models generally depict an

aggregate of consumption and employ a corresponding real discount rate. Yet, global

climate change is predicted to affect future flows of environmental services and produced

consumption significantly. Therefore, a non-constant time behavior of discount rates as

pointed out in the study, can be of particular importance. For a quantification of this

effect, however, an extension of the model is suggested in the next section. Apart

from evaluation studies, the insight that limited substitutability in consumption can

affect the form of discounting, is as well of interest for experimental economics. Here,

the topic of hyperbolic discounting is an active field of research. Applying the model to
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experimental settings, it is a promising exercise to examine to what extent the reasoning

on limited substitutability can contribute to an understanding of non-constant discount

rates observed in the laboratory.

Applications for the concept of intertemporal risk aversion and the respective modeling

frameworks derived in parts II and III are numerous. The concept can be applied to any

field of economic evaluation, decision making or modeling, where time and uncertainty

play an essential role, reaching from classical resource extraction problems to asset

pricing in stock markets. As an application of particular conceptual interest, I consider

a closer analysis of the paradox discovered by Rabin (2000) on the relation between risk

aversion in the small and in the large at different welfare levels. The latter has recently

been extended to non-expected utility theory by Safra & Segal (2005). As the concept

of intertemporal risk aversion allows to detach the description of risk aversion from the

curvature of welfare, it constitutes a natural candidate to reanalyze the paradox.

The modeling frameworks in this dissertation have been motivated from the viewpoint

of a principled and, thus, prescriptive approach to choice under uncertainty. I consider

it an important challenge to test how the derived representations perform in describing

observed phenomena. Of particular interest is the question, whether the developed

framework that allows to disentangle intertemporal substitutability from risk aversion

under indifference to the timing of uncertainty resolution, can quantitatively outperform

the generalized isoelastic model, which is the current work horse for this task. For

reasons of data availability and the amount of research already performed in the field,

the stock market is a good place to start such a comparison. The model’s ability to

explain the equity premium puzzle constitutes an interesting topic to investigate.

Another important application of the derived representational framework for intertem-

poral risk aversion is to take up once more the problem of climate change that has been

discussed in the introduction as a motivation for my theoretical analysis. I have pointed

out that a zero rate of pure time preference in climate change evaluation models sig-

nificantly modifies the recommendations for an optimal greenhouse gas abatement path

(Toth 1995, Plambeck et al. 1997). Founding such a zero rate of pure time preference on

my analysis of intertemporal risk aversion, rather than on moral considerations, adds a

new aspect to the evaluation. In contrast to the modeling approach of the above authors,

an evaluation featuring intertemporal risk aversion implies discounting for reasons of un-

certainty. In general, increasing uncertainty over time brings about a decreasing weight

given to future welfare and, thus, future consumption and service streams. However, if

the amount of uncertainty differs for the different abatement scenarios, those that render

future consumption less uncertain obtain a higher weight. Since uncertainty is likely
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to increase in the perturbation of the climate system, which increases with the amount

of greenhouse gas emissions, a first conjecture is that the additional effect caused by

intertemporal risk aversion yields an even higher abatement recommendation than the

one pointed out by the above studies. I plan to carry out a quantitative assessment of

the effect in the future.

11.3 Extensions

Apart from these direct applications pointed out in the preceding section, several ex-

tensions of the models and concepts discussed in this study seem worthwhile. I suggest

some of the standard extensions and others that appear conceptually most interesting.

Starting with the model employed in part I of this dissertation, two extensions that ‘de-

stylize’ the model stand to reason when the model is to be applied quantitatively.2 The

first extension would be to drop the assumption of a constant elasticity of substitution

between the two classes of goods.3 The second would be to model and estimate precisely

the supply side of the model, which so far is pressed into the simple assumption of differ-

ing growth rates in consumption. Furthermore, an integration of the models in parts I

and II stands to reason. In such a model, the combined effect of substitutability between

goods, between periods and between risk states on the discount rate can be analyzed. A

final extension which I want to point out, is based on the insight that the marginal util-

ity propagators used in the model can also be defined for more general non-conservative

preference fields, which do not possess a closed form representation in terms of utility.

Then, ‘value’ development over time can still be described in terms of their generators,

i.e. the individual discount rates can replace the concept of utility. Thus, a comparable

analysis to that in part I can be carried out in a much more general setting.

Turning to extensions of the modeling frameworks for the concept of intertemporal

risk aversion, I first want to mention those which I consider primarily technical. One

is to drop the assumption of additive separability over time. While the same axiomatic

characterization of intertemporal risk aversion holds, it is interesting to work out the

functional representation in the generalized recursive framework and to compare it to the

one derived in my setting. Another extension is to translate the model into a continuous

2See section 11.2. While an application to long-term evaluation studies would make both extensions
necessary, an application to the analysis of laboratory experiments allows to control for the ‘supply’
side.

3Of course, at the same time the assumption that there are only two different classes could be
dropped.
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time setting. While this step is immediate for the non-recursive representation, the

extension for the general setting can work along the lines of Duffie & Epstein (1992).

Finally, a comparable, but slightly more conceptual extension is to allow for history

dependence of preferences. While this step complicates the representations in terms

of Bernoulli utility functions, it should not limit the definition and representation of

intertemporal risk aversion.

A conceptually very promising extension is to combine the reasoning on intertempo-

ral risk aversion with concepts of ambiguity. In particular, a combination of my time

and uncertainty structure with Ghirardato et al.’s (2004) axiomatization of ambiguity

attitude can bring about an attractive model for choice under uncertainty, and a con-

cept of ‘intertemporal ambiguity’. Another possible extension picks up a point that has

been judged an application for the specific problem of global warming and suggests to

analyze it from a more general perspective. The object of investigation is the relation

between the form of discounting and the specifications of intertemporal risk aversion,

the probability distribution over uncertain outcomes, and its evolution over time. In

particular the question arises, under what assumptions on intertemporal risk aversion

and uncertainty evolvement, a welfare representation with a zero rate of pure time pref-

erence converges in an infinite time horizon. Finally, a useful extension of my setting is

to analyze the interpersonal aggregation of welfare for intertemporally risk averse deci-

sion makers. To this end, a comprising axiomatic framework that develops assumptions

on the interpersonal comparability of risk attitude and welfare has to be elaborated.

Summing up, I have suggested a principled approach to long-term evaluation and

decision making. Several related insights have been derived, which shall provoke and

support a discussion on how to treat the, mostly uncertain, long run in environmental

evaluation and economic modeling. The study has opened up several alleys of future

research, and I hope that these lead a way to future answers.
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Appendix A

Proofs and Calculations for Part I

A.1 Calculations for Chapter 2

Derivation of the finite time propagator, of marginal utility:

Using the multiplicative structure of the propagator the derivation of Dx
i (t, t0) from

Dx
i (t + dt, t) is straightforward:

Dx
i (t + dt, t0) =

∂U
∂xi

(t + dt)
∂U
∂xi

(t0)
=

∂U
∂xi

(t + dt)
∂U
∂xi

(t)

∂U
∂xi

(t)
∂U
∂xi

(t0)

= Dx
i (t + dt, t)Dx

i (t, t0)

⇒ Dx
i (t + dt, t0) − Dx

i (t, t0) = (Dx
i (t + dt, t) − 1)︸ ︷︷ ︸

‖

Dx
i (t, t0)

=
︷ ︸︸ ︷
−δi(x(t), ẋ(t), t) dt Dx

i (t, t0)

⇒
Dx

i (t + dt, t0) − Dx
i (t, t0)

dt
= −δi(x(t), ẋ(t), t) Dx

i (t, t0)

⇒
d

dt
Dx

i (t, t0) = −δi(x(t), ẋ(t), t) Dx
i (t, t0)

⇒
d

dt
ln Dx

i (t, t0) = −δi(x(t), ẋ(t), t)

⇒ Dx
i (t, t0) = a e

R t
t0

−δi(x(t′),ẋ(t′),t′) dt′
.

Because of Dx
i (t, t) = 1 the integration constant a must be equal to 1.

Calculation of the social discount rate for

U(x1, x2, t)=[a1u1(x1)
s + a2u2(x2)

s]
1
s e−ρt :
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The derivatives needed for the computation of δ1 are for s 6∈ {0, 1}:

∂U

∂x1

= a1u1(x1)
s−1u′

1(x1)
[
a1u1(x1)

s + a2u2(x2)
s
] 1

s
−1

e−ρt ,

∂2U

∂x2
1

=
(
a1u1(x1)

s−1u′′
1(x1) − (1 − s)a1u1(x1)

s−2u′
1(x1)

2
)

·
[
a1u1(x1)

s + a2u2(x2)
s
] 1

s
−1

· e−ρt

+(1 − s)
(
a1u1(x1)

s−1
)2

u′
1(x1)

2
[
a1u1(x1)

s + a2u2(x2)
s
] 1

s
−2

e−ρt and

∂2U

∂x1∂x2

= (1 − s)
(
a1u1(x1)a2u2(x2)

)s−1

u′
1(x1)u

′
2(x2)

·
[
a1u1(x1)

s + a2u2(x2)
s
] 1

s
−2

e−ρt .

Inserting these into equation (3.1) yields:

δ1(t) = ρ−
(a1u1(x1)

s−1u′′
1(x1)−(1−s)a1u1(x1)

s−2u′
1(x1)

2) [a1u1(x1)
s+a2u2(x2)

s]
1−s

s

a1u1(x1)s−1u′
1(x1)[a1u1(x1)s + a2u2(x2)s]

1
s
−1

· ẋ1 −
(1 − s)(a1u1(x1)

s−1)2u′
1(x1)

2[a1u1(x1)
s + a2u2(x2)

s]
1
s
−2

a1u1(x1)s−1u′
1(x1)[a1u1(x1)s + a2u2(x2)s]

1
s
−1

ẋ1

−
(1 − s) (a1u1(x1)a2u2(x2))

s−1 u′
1(x1)u

′
2(x2)[a1u1(x1)

s + a2u2(x2)
s]

1
s
−2

a1u1(x1)s−1u′
1(x1)[a1u1(x1)s + a2u2(x2)s]

1
s
−1

ẋ2

= ρ −
u′′

1(x1)

u′
1(x1)

ẋ1 + (1 − s)u1(x1)
−1u′

1(x1) ẋ1

−(1 − s)
a1u1(x1)

s−1u′
1(x1)

a1u1(x1)s + a2u2(x2)s
ẋ1 − (1 − s)

a2u2(x2)
s−1u′

2(x2)

a1u1(x1)s + a2u2(x2)s
ẋ2

= ρ −
u′′

1(x1)

u′
1(x1)

ẋ1

+(1 − s)
u1(x1)

−1u′
1(x1)(a1u1(x1)

s + a2u2(x2)
s) − a1u1(x1)

s−1u′
1(x1)

a1u1(x1)s + a2u2(x2)s
ẋ1

−(1 − s)
a2u2(x2)

s−1u′
2(x2)

a1u1(x1)s + a2u2(x2)s
ẋ2

= ρ −
u′′

1(x1)

u′
1(x1)

ẋ1 + (1 − s)
a2u2(x2)

s

a1u1(x1)s + a2u2(x2)s

u′
1(x1)

u1(x1)
ẋ1

−(1 − s)
a2u2(x2)

s

a1u1(x1)s + a2u2(x2)s

u′
2(x2)

u2(x2)
ẋ2 .
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Which brings about equation (3.2):

δ1(t) = ρ −
u′′

1(x1)

u′
1(x1)

ẋ1 − (1−s)
a2u2(x2)

s

a1u1(x1)s + a2u2(x2)s

(
u′

2(x2)

u2(x2)
ẋ2 −

u′
1(x1)

u1(x1)
ẋ1

)
.

For s = 1 with ∂2U
∂x1∂x2

= 0 and 1− s = 0 it is easily observed that the same equation has

to hold. For the case s = 1 it is u(x1, x2) = [a1x
s
1 + a2x

s
2]

1/s (see footnote 6 on page 27).

The derivatives needed for the computation of δ1 are

∂U

∂x1

= a1u1(x1)
a1−1u′

1(x1)u2(x2)
a2e−ρt ,

∂2U

∂x2
1

= a1(a1 − 1)u1(x1)
a1−2u′

1(x1)
2
u2(x2)

a2e−ρt

+a1u1(x1)
a1−1u′′

1(x1)u2(x2)
a2e−ρt and

∂2U

∂x1∂x2

= a1u1(x1)
a1−2u′

1(x1)a2u2(x2)
a2−1u′

2(x2)e
−ρt .

These derivatives deliver the social discount rate

δ1(t) = ρ −
u′′

1(x1)

u′
1(x1)

ẋ1 − a2

(
u′

2(x2)

a2u2(x2)
ẋ2 −

u′
1(x1)

a1u1(x1)
ẋ1

)

which coincides with equation (3.2) for s = 0 as a1 + a2 = 1.

A.2 Calculations and Proofs for Chapter 3

Some of the proofs make use of the following

Transformation of Vsp s and Vse s:

First note that the following relation holds:

d ln xi(t)

dt
=

ẋi(t)

xi(t)

⇒ d ln xi(t) dt = x̂i(t) dt

⇒ ln xi(t) =

∫ t

0

x̂i(t
′) dt′ + c

⇒ xi(t) = xi(0)e
R t
0 x̂i(t

′) dt′

⇒ xi(t)
s = xi(0)ses

R t
0 x̂i(t

′) dt′ .
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Therefore the term Vsp s can be transformed as follows:

Vsp s(x1, x2) =
a2x2(t)

s

a1x1(t)s + a2x2(t)s

=
a2x2(0)ses

R t
0 x̂2(t′) dt′

a1x1(0)ses
R t
0 x̂1(t′) dt′ + a2x2(0)ses

R t
0 x̂2(t′) dt′

=
1

a1x1(0)s

a2x2(0)s
es

R t
0 x̂1(t′) dt′

es
R t
0 x̂2(t′) dt′

+ 1
=

1
a1x1(0)s

a2x2(0)s e
−s

R t
0 x̂2(t′)−x̂1(t′) dt′ + 1

. (A.1)

By switching the indices in equation (A.1) one finds the corresponding expression for

the value share of the environmental good:

Vse s(x1, x2) =
a1x1(t)

s

a1x1(t)s + a2x2(t)s
=

1
a2x2(0)s

a1x1(0)s e
s

R t
0 x̂2(t′)−x̂1(t′) dt′ + 1

.

Proof of Proposition 1: The proposition is derived in the text. 2

Proof of Proposition 2: Note that all terms in equations (3.3) and (3.6) are positive.

First I show that Vsp s is strictly increasing. As derived above equation (A.1) holds:

Vsp s =
a2x2(t)

s

a1x1(t)s + a2x2(t)s
=

1
a1x1(0)s

a2x2(0)s e
−s

R t
0 x̂2(t′)−x̂1(t′) dt′ + 1

.

From x̂2(t)−x̂1(t) > 0∀ t and s > 0 it follows that the expression a1x1(0)s

a2x2(0)s e
−s

R t
0 x̂2(t′)−x̂1(t′) dt′

is strictly falling in time. Therefore the value share of the produced consumption stream

Vsp s is strictly increasing over time.

Second, such an increasing Vsp s implies that the second term in the social discount rate

for the environmental amenity stream (1− s)Vsp s (x1(t), x2(t)) (x̂2 − x̂1) is increasing in

a steady state. As this term is subtracted from the constant rate of pure time preference,

the social discount rate for the first commodity class δ1(t) declines in a steady state.

Third, a strictly increasing term Vsp s implies a strictly decreasing value share of the

environmental amenity stream Vse s = 1 − Vsp s. Such a strictly decreasing term Vse s

implies that the the expression (1− s)Vse s (x1(t), x2(t)) (x̂2 − x̂1) strictly decreases in a

steady state. As this expression is added to the constant rate of pure time preference to

yield the social discount rate for the produced consumption stream, the social discount

rate δ2(t) declines as well in a steady state.

Finally, if there exist ǫ > 0 and t∗ ∈ [0,∞) such that x̂1(t) < x̂2(t) − ǫ for all t ≥ t∗,

which under assumption 1 is in particular satisfied in a steady state, the expression
a1x1(0)s

a2x2(0)s e
−s

R t
0 x̂2(t′)−x̂1(t′) dt′ falls to zero and the value share Vsp s grows to unity. Therefore

in a steady state the discount rate δ1 monotonously falls to δ1 = ρ − (1 − s)(x̂2 − x̂1)
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for t → ∞. At the same time the value share of the environmental amenity stream Vse s

falls to zero implying that the social discount rate for the produced consumption stream

falls to δ2 = ρ. 2

Proof of Proposition 3: First I show that Vsp s is strictly decreasing. As derived

above equation (A.1) holds:

Vsp s =
a2x2(t)

s

a1x1(t)s + a2x2(t)s
=

1
a1x1(0)s

a2x2(0)s e
−s

R t
0 x̂2(t′)−x̂1(t′) dt′ + 1

.

But then from x̂2(t) − x̂1(t) > 0∀ t and s < 0 it follows that the expression
a1x1(0)s

a2x2(0)s e
−s

R t
0 x̂2(t′)−x̂1(t′) dt′ is strictly increasing in time. Therefore that value share of

the produced consumption stream Vsp s is strictly decreasing over time.

Second, such a decreasing Vsp s implies that the second term in the social discount rate

for the environmental amenity stream (1−s)Vsp s (x1(t), x2(t)) (x̂2 − x̂1) is decreasing in

a steady state. As this term is subtracted from the constant rate of pure time preference,

the social discount rate for the first commodity class δ1(t) grows in a steady state.

Third, a strictly decreasing term Vsp s implies a strictly increasing value share of the

environmental service stream Vse s = 1 − Vsp s. Such a strictly increasing term Vse s

implies that the the expression (1 − s)Vsp s (x1(t), x2(t)) (x̂2 − x̂1) strictly increases in a

steady state. As this expression is added to the constant rate of pure time preference to

yield the social discount rate for the produced consumption stream, the social discount

rate δ2(t) grows as well in a steady state.

Finally if there exist ǫ > 0 and t∗ ∈ [0,∞) such that x̂1(t) < x̂2(t) − ǫ for all t ≥ t∗,

which in particular is satisfied under assumption 1 in a steady state, the expression
a1x1(0)s

a2x2(0)s e
−s

R t
0 x̂2(t′)−x̂1(t′) dt′ grows without bounds and the value share Vsp s falls to zero.

Therefore in a steady state the discount rate δ1 monotonously grows to δ1 = ρ for

t → ∞. At the same time the value share of the environmental amenity stream Vse s

grows to one, implying that the discount rate for the produced consumption stream

grows to δ2 = ρ + (1 − s)(x̂2 − x̂1). 2

Proof of Proposition 4: The result for the steady state follows immediately from

propositions 2 and 3. For the social discount rate of the environmental amenity stream

the propositions establish the relation lim
t→∞

δ0<s<1
1 (t) = δ1 = ρ − (1 − s)(x̂2 − x̂1) <

ρ = lim
t→∞

δs<0
1 (t). For the social discount rate of the produced consumption stream the

propositions establish the relation lim
t→∞

δ0<s<1
2 (t) = ρ < ρ+(1−s)(x̂2−x̂1) = lim

t→∞
δs<0
2 (t).

The proof for the statement assuming only the existence of ǫ > 0 and t∗ ∈ [0,∞)

with x̂1(t) < x̂2(t) − ǫ for all t ≥ t∗ is as follows. Consider the long run social discount

191



APPENDIX A. PROOFS AND CALCULATIONS FOR PART I

rate for the environmental amenity stream. In the proof of proposition 2 I have shown

that, if there exist ǫ > 0 and t∗ ∈ [0,∞) with x̂1(t) < x̂2(t) − ǫ, then the term Vsp 0<s<1

monotonously grows to unity as t → ∞. In particular there has to exist t1 ∈ [0,∞)

such that Vsp 0<s<1 > 2
3
∀ t > t1, implying

(1 − s) Vsp 0<s<1 (x̂2(t) − x̂1(t)) > (1 − s)
2

3
(x̂2(t) − x̂1(t))

⇒ δ0<s<1
1 (t) = ρ − (1 − s) Vsp 0<s<1(t) (x̂2(t) − x̂1(t))

< ρ − (1 − s)
2

3
(x̂2(t) − x̂1(t))

for all t > t1. Similarly the fact that for s < 0 the proof of proposition 3 has shown

that Vsp s<0 monotonously falls to zero as t → ∞ implies the existence of t2 such that

Vsp s<0 < 1
3
. Then for the social discount rate of the in the strong sustainability scenario

it follows

(1 − s) Vsp s<0 (x̂2(t) − x̂1(t)) < (1 − s)
1

3
(x̂2(t) − x̂1(t))

⇒ δs<0
1 (t) = ρ − (1 − s) Vsp s<0(t) (x̂2(t) − x̂1(t))

> ρ − (1 − s)
1

3
(x̂2(t) − x̂1(t))

for all t > t2. Setting t3 = max{t1, t2} I find

δs<0
1 (t) > ρ − (1 − s)

1

3
(x̂2(t) − x̂1(t))

> ρ − (1 − s)
2

3
(x̂2(t) − x̂1(t))

> δ0<s<1
1 (t)

for all t > t3. Analogously one derives for the social discount rate of the produced

consumption stream the existence of t′1 ∈ [0,∞) such that for 0 < s < 1 it holds

δ0<s<1
2 (t) = ρ + (1 − s) Vse 0<s<1(t) (x̂2(t) − x̂1(t))

< ρ + (1 − s)
1

3
(x̂2(t) − x̂1(t))

for all t > t′1 (as Vse s goes to zero), and the existence of t′2 ∈ [0,∞) such that for s < 0

it holds

δs<0
2 (t) = ρ + (1 − s) Vse s<0(t) (x̂2(t) − x̂1(t))

> ρ + (1 − s)
2

3
(x̂2(t) − x̂1(t))
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for all t > t′2 (as Vse s grows to unity). Then setting t′3 = max{t′1, t
′
2} delivers the relation

δs<0
1 (t) > ρ + (1 − s)

2

3
(x̂2(t) − x̂1(t))

> ρ + (1 − s)
1

3
(x̂2(t) − x̂1(t))

> δ0<s<1
1 (t)

for all t > t′3. Setting t̄ = max{t3, t
′
3} yields the statement of the proposition. 2

Proof of Proposition 5: The proof of proposition 4 brings about the existence of t̄ ′

and ǫ > 0 such that

δs<0
i (t) − δ0<s<1

i (t) > ǫ for all t > t̄ ′

⇔ exp

(∫ t

t̄ ′

δs<0
i (t) − δ0<s<1

i (t) dt′
)

> exp

(∫ t

t̄ ′

ǫ dt′
)

for all t > t̄ ′

⇔
Dx

i
0<s<1

(t, tt̄ ′)

Dx
i

s<0
(t, tt̄ ′)

> exp

(∫ t

t̄ ′

ǫ dt′
)

for all t > t̄ ′ .

Therefore, for any t0 ∈ [0,∞) the following relation has to hold for some constant

C ∈ IR++:

Dx
i

0<s<1
(t, t0)

Dx
i

s<0
(t, t0)

=
Dx

i
0<s<1

(tt̄ ′ , t0)

Dx
i

s<0
(tt̄ ′ , t0)

Dx
i

0<s<1
(t, tt̄ ′)

Dx
i

s<0
(t, tt̄ ′)

> C exp

(∫ t

t̄ ′

ǫ dt′
)

. (A.2)

As the right hand side of equation (A.2) grows to infinity for t → ∞ the left hand side

in particular grows bigger than one. Hence it exists t̄ such that

Dx
i

0<s<1
(t, t0) > Dx

i

s<0
(t, t0) for all t > t̄ .

2
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Appendix B

Proofs for Part II

B.1 Notation and lemma

For convenience I denote the group of nondegenerate affine transformations by

A = {a : IR → IR : a(z) = a z + b , a, b ∈ IR, a 6= 0} with elements a ∈ A and similarly

the group of positive affine transformations with elements a+ by

A+ = {a+ : IR → IR : a+(z) = a z + b , a, b ∈ IR, a > 0}. This notation will also

be introduced at a later point (page 74) in the main text.

Note: For a ∈ A it holds that Maf (u, p) = f−1a−1
∫

X
afu dp = f−1a−1a

∫
X

fu dp =

f−1
[∫

X
fu dp

]
= Mf (u, p) (the composition sign ◦ has been supressed).

Some proofs in appendix B.3 will make use of the following lemma.

Lemma 0: If the tuple (u, f) represents � in the sense of proposition 7, then so does

the tuple (s ◦ u, f ◦ s−1) for any s : U → IR strictly increasing and continuous.

Proof of lemma 0: The second tuple stands for the representation

sf−1
[∫

X
(fs−1)(su) dp

]
= sf−1

[∫
X

fu dp
]
. The latter is a strictly increasing trans-

formation of the representation Mf (p, u) for � and hence a representation for � itself.

Moreover s ◦ u and f ◦ s−1 are continuous and the latter is strictly monotonic.1 2

1Continuity of s−1 follows from the fact that the inverse of a strictly monotonic function on an
interval is continuous (Heuser 1988, 231).
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B.2 Proofs for Chapter 5

Proof of proposition 6: “⇒”: Let Mf satisfy equation (5.4). Then for some given

function u it is

Mf (p, u) < E(p, u) ∀ p ∈ P th
u

⇒ f−1 [p(x̄)f [u(x̄)] + p(x)f [u(x)]] < p(x̄)u(x̄) + p(x)u(x) (B.1)

for all p ∈ P s such p(x̄), p(x) > 0 and p(x̄) + p(x) = 1. Moreover equation (B.1) has to

hold for all elements x, x̄ ∈ X that satisfy the condition u(x̄) > u(x). Define p = p(x)

and p̄ = p(x̄). Then the requirement p(x̄), p(x) > 0 and p(x̄) + p(x) = 1 translates into

p̄,p ∈ (0, 1), p̄ + p = 1. Similarly define u = u(x) and ū = u(x̄). Then u(x̄) > u(x)

translates into ū > u. With these definitions (B.1) can be written as

⇔ f−1
[
p̄ f [ ū ] + pf [ u ]

]
< p̄ū + pu (B.2)

and has to hold for all p̄,p ∈ (0, 1) with p̄ + p = 1 and for all ū,u ∈ U with ū > u.

Note that the symmetry in (B.2) implies that the condition ū > u can be replaced by

the condition ū 6= u. But for an increasing function f equation (B.2) is equivalen to

⇔ p̄ f [ ū ] + pf [ u ] < f [ p̄ū + pu ]

and has to hold for all p̄,p ∈ (0, 1), p̄ + p = 1 and for all ū,u ∈ U with ū 6= u. But

this is just the definition of concavity of f on U . Similarly for a decreasing function f

the relation

⇔ p̄ f [ ū ] + pf [ u ] > f [ p̄ū + pu ]

has to hold and defines convexity of f on U . As a strictly monotonic function is either

strictly increasing or strictly decreasing the first assertion in the proposition follows. The

second part for the uncertainty aggregation rule Mα follows immediately from Hardy

et al. (1964, 26) as has already been mentioned in the text. Alternatively verify that

f(z) = zα is strictly decreasing and convex for α < 0 and strictly increasing and concave

for α ∈ (0, 1) but strictly increasing and convex for α > 1. The case α = 0 was defined

by limit. As it holds that limα→0 M
f(z)=zα

= Mln and the natural logarithm is strictly

increasing and concave the uncertainty aggregation rule corresponding to the geometric

mean and α = 0 is precautionary as well.

“⇐”: Take any p ∈ P th
u . Going backwards the steps in in the first part of the proof

immediately gives that strict concavity for an increasing function f and strict convexity

for a decreasing f yield equations (B.1) and (B.2). Thus the evaluation of any threat of

harm lottery by means of the uncertainty aggregation rule Mf renders a lower evaluation

than does expected value. 2
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B.3 Proofs for Chapter 6

Proof of theorem 1: As X is a compact metric space it is Polish and, thus, separable.

Therefore the theorem follows immediately from theorem 3 in Grandmont (1972). 2

Proof of proposition 7: “⇒”: By axioms A1-A3 theorem 1 gives the existence of

the representation (u0, id) with u0 as in theorem 1. Because u of proposition 7 and u0

of theorem 1 are in B� it is u0(x1) ≥ u0(x2) ⇔ δx1 � δx2 ⇔ u(x1) ≥ u(x2) for all

x1, x2 ∈ X. Therefore a strictly increasing transformation s exists such that u = s ◦ u0.

Let U0 ≡ range(u0) and U ≡ range(u). To see that continuity of u and u0 bring about

continuity of s : U0 → U it is enough to find that the preimage of any closed subset

A ⊂ U under s is closed. As u is continuous the preimage of A under u, B = u−1(A),

is closed. Moreover a closed subset of a compact space B is compact and the image of

a compact set under the continuous function u0 is compact (Schofield 2003, 111). In

consequence the resulting image u0(B), which is the sought for preimage of A under s,2

is closed. Hence, s is continuous. Therefore by lemma 0 the tuple (s◦u0, s−1) represents

�. Let f+ ≡ s−1, then f+ is strictly increasing and continuous and (u, f+) represent �

in the sense of proposition 7.

“⇐”: First let f be strictly increasing and (u, f) represent � in the sense of proposition

7. Applying lemma 0 with s = f−1 strictly increasing and continuous (see footnote 1)

shows that (f−1 ◦u, id) also represents � in this sense. But than u0 ≡ f−1 ◦u represents

� in the sense of theorem 1. Therefore the latter assures that A1-A3 are satisfied. For f

strictly decreasing note that Mf = M−f and hence the above reasoning can be applied

to the representing tuple (u,−f) with −f strictly increasing.

Moreover part: “⇒”: The statement will be proven in the respective moreover part

of proposition 8. Replace g by f , T by N , (x∗, ..., x∗) by x∗ and (x1, x2, ..., x2) by
1
N

xi + N−1
N

x2 to read the respective proof in terms of proposition 7. Note that the

constructive proof for uniqueness up to affine transformations in an expected utility

representation as given e.g. in Fishburn (1970, 114 et seq.) or Rubinstein (2006, 93 et

seq.), which could be adapted here, would not carry over to the uniqueness of g in the

intertemporal aggregation rule in proposition 8 because the latter applies fixed weights

to every period.

“⇐”: Follows immediately from Mf = Maf with af being a nondegenerate affine

transformation of f (see beginning of Appendix B.1). 2

2To see that u0(B) is indeed the preimage of A under s note that s ◦ u0(B) = s ◦ u0(u−1(A)) =
u(u−1(A)) = A.
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Proof of corollary 1: “⇒”: By axioms A1-A3 and theorem 1 there exists a repre-

sentation (u0, id) of � in the sense of proposition 7 where id is the identity (defined

on U0 ≡ range(u0)). Then by lemma 0 also (f−1u0, f) represents � in the sense of

proposition 7 (and equation 6.2). Due to continuity of f−1 (see footnote 1) and u0, the

function u ≡ f−1u0 is continuous and constitutes a Bernoulli utility function for which

Mf represents �.

Remark with respect to footnote 5 on page 75: In the above construction equation (6.2)

applies f only on the domain f |U : U → U0. One can define f right away on a given,

nondegenerate interval U = [U,U ] ⊂ IR and require the representing Bernoulli utility

function u : X → U to be surjective. For this case define the affine transformation a+

by a = f(U)−f(U)

U0−U
0 and b = f(U)U0−f(U)U

0

U0−U
0 . Then u ≡ f−1a0u0 renders the unique Bernoulli

utility function satisfying equation (6.2) together with the above properties.

“⇐”: As u in equation (6.2) is a Bernoulli utility function, this part of the proof is

implied by the “⇐” part of proposition 7.

Moreover part: “⇒”: Equation (6.2) implies for degenerate lotteries that there exists

a strictly increasing function s such that u′ = s ◦ u. As in the proof of proposition 7

it follows that s is continuous. If (u′, f) = (s ◦ u, f) is a representation of � then so

is (s−1 ◦ s ◦ u, f ◦ s) = (u, f ◦ s) by lemma 0. Comparing the latter with the represen-

tation (u, f) the moreover part of proposition 7 brings about the existence of a ∈ A

such that f = afs. From the fact that s is strictly increasing it can be inferred that

a is strictly increasing as well and can be replaced by a+ ∈ A+. But then it follows

fu = a+fsu ⇒ fu = a+fu′ ⇒ u = f−1a+fu′.

“⇐”: First let f be increasing. If (u, f) is a representation of � then by proposition 7

also (u,a+f) is a representation. By lemma 0 it follows that also ([a+f ]u,a+f [a+f ]−1)

is a representation. Applying lemma 0 once again yields the result that (f−1a+fu, f) is

a representation of �. For f decreasing by proposition 7 (u,−a+f) is a representation

of � and by a similar reasoning as above so are ([−a+f ]u, id), (f−1{−[−a+f ]u},−f),

(f−1a+fu,−f) and (f−1a+fu, f). 2

Proof of proposition 8: “⇒”: By axiom A4 it exists u0 such that
∑T

i=1 u0(xi) repre-

sents �. Furthermore as u ∈ B� find that

u(x) ≥ u(x′)

⇔ [x]1 � [x′]1

⇔ (x, x0, ..., x0) � (x′, x0, ..., x0)

⇔ u0(x1) +
T∑

i=2

u0(x0) ≥ u0(x2) +
T∑

i=2

u0(x0)
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⇔ u0(x) ≥ u0(x′).

Hence there exists a strictly increasing and continuous3 transformation function g : U →

IR such that u0 = g ◦ u. But then it is
T∑

t=1

u0(xt) ≥
T∑

t=1

u0(x′
t)

⇔
T∑

t=1

g ◦ u(xt) ≥
T∑

t=1

g ◦ u(x′
t)

⇔ 1
T

T∑

t=1

g ◦ u(xt) ≥ 1
T

T∑

t=1

g ◦ u(x′
t)

⇔ g−1

[
1
T

T∑

t=1

g ◦ u(xt)

]
≥ g−1

[
1
T

T∑

t=1

g ◦ u(x′
t)

]

yielding the representation stated in equation (6.4).

“⇐”: For g increasing u0 ≡ g ◦ u and for g decreasing u0 ≡ −g ◦ u satisfy axiom A4.

Moreover part: “⇒”: Given the Bernoulli utility function of proposition 8 I define

U = maxx∈X u(x) and U = minx∈X u(X) (the extrema are attained by continuity of

u and compactness of X). Let g′ : U → IR be another strictly monotonic, continuous

function satisfying equation (6.4). If indifference between all outcomes holds (i.e. U =

U), both functions g and g′ have a degenerate codomain and they are trivially affine

transformations of each other. Hence in the following it is assumed that U > U .

Define g̃ = ag′ + b as the affine transformation of g′ that coincides with g on the

best and the worst outcome, i.e. g̃(U)
!
= g(U) and g̃(U)

!
= g(U) (corresponding to

a = g(U)−g(U)

g′(U)−g′(U)
and b = g′(U)g(U)−g′(U)g(U)

g′(U)−g′(U)
). In the following I will show by contradiction

that g and g̃ have to coincide everywhere. The latter will imply that g′ is in fact an

affine transformation of g.

Assume that g̃(u) and g(u) do not coincide for all u ∈ U .4 Then by continuity and

connectedness there exist x1 and x2 with

u1 ≡ u(x1) < u2 ≡ u(x2) (B.3)

such that g̃(u1) = g(u1), g̃(u2) = g(u2) and

g̃(u) 6= g(u) ∀u ∈ (u1, u2). (B.4)

Let (qi)i∈{1,...,T} denote a sequence of weights with 0 < qi < 1 ∀i and
∑T

i=1 qi = 1.

3Compare continuity of s in the proof of proposition 7.

4For the rest of this proof u also specifies particular values that the utility function u takes on. It
should be obvious where u specifies a function and where it specifies a value.
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The particular case of proposition 8 is qi = 1
T

∀i. By construction it is q1g̃(u1) +∑T
i=2 qig̃(u2) = q1g(u1) +

∑T
i=2 qig(u2). Now equation (B.3) and continuity imply the

existence of x∗ with u∗ ≡ u(x∗) such that

u1 < u∗ < u2 (B.5)

and (x∗, x∗, . . . , x∗) ∼ (x1, x2, . . . , x2). Therefore the following equivalence holds:

g̃(u∗) = q1g̃(u∗) +
T∑

i=2

qig̃(u∗) = q1g̃(u1) +
T∑

i=2

qig̃(u2)

= q1g(u1) +
T∑

i=2

qig(u2) = q1g(u∗) +
T∑

i=2

qig(u∗) = g(u∗).

But g̃(u∗) = g(u∗) contradicts equations (B.4) and (B.5). Hence g̃ and g have to coincide

and g′ is an affine transformation of g.

“⇐” is a special case of “⇐” in the moreover part of proposition 7. 2

Proof of theorem 2: “⇒”: First I show that by certainty additivity A4 and time

consistency A5 it is u ∈ B�F
if and only if u ∈ B�T

. Hereto note that by certainty

additivity it exists u0 : X → R such that

(x0, x) �F (x0, x′)

⇔ u0(x0) + u0(x) ≥ u0(x0) + u0(x′)

⇔ u0(x) + u0(x0) ≥ u0(x′) + u0(x0)

⇔ (x, x0) �F (x′, x0).

The statement u ∈ B�T
is equivalent to u(x) ≥ u(x′) ⇔ x �T x′ which by time consis-

tency and the above is equivalent to u(x) ≥ u(x′) ⇔ (x0, x) �F (x0, x′) ⇔ (x, x0) �F

(x′, x0). But the latter is the definition of u ∈ B�F
.

Second by A1-A3 proposition 7 gives the existence of f as in the proposition such

that Mf represents �T . For any p ∈ P define xp to be an arbitrary element of the

set of certainty equivalents {x ∈ X : u(xp) = Mf (p, u)} for p. In the rest of this

paragraph I show that these sets are not empty. As X is connected compact and u

is continuous the range is a closed interval u(X) = [U ,U ]. Moreover max
p

Mf (p, u) =

max
x

Mf (δx, u) = max
x

u(x) = U and min
p

Mf (p, u) = min
x

Mf (δx, u) = min
x

u(x) = U .

Hence u−1
(
Mf (p, u)

)
is nonempty for all p ∈ P .

Third by definition and time consistency A5 it holds that xp ∼T p ⇔ (x, xp) ∼F

(x, p) ∀x ∈ X, p ∈ P . From certainty additivity A4 and u ∈ B� proposition 8

brings about the existence of g as in the proposition such that (x, xp) �F (x′, xp′) ⇔

g−1
[

1
2
g ◦ u(x) + 1

2
g ◦ u(xp)

]
≥ g−1

[
1
2
g ◦ u(x′) + 1

2
g ◦ u(xp′)]

]
.
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Forth combining the above statements I find for any two pairs (x, p), (x′, p′) ∈ X ×P

that the following relation holds:

(x, p) �F (x′, p′)

⇔ (x, xp) �F (x′, xp′)

⇔ g−1
[

1
2
g ◦ u(x) + 1

2
g ◦ u(xp)

]
≥ g−1

[
1
2
g ◦ u(x′) + 1

2
g ◦ u(xp′)]

]

⇔ g−1
[

1
2
g ◦ u(x) + 1

2
g ◦Mf (p, u)

]
≥ g−1

[
1
2
g ◦ u(x′) + 1

2
g ◦Mf (p′, u)

]
.

This implies representation v).

“⇐”: i) follows immediately from proposition 7. The same is true for ii) noting that

Mf (δx, u) = u(x) and using proposition 8. To show iii) first replace a decreasing g by −g

yielding the same representation v) with an increasing g. Then iii) can be seen to hold by

(x, p) �F (x, p′) ⇔ g−1
[

1
2
g ◦ u(x) + 1

2
g ◦Mf (p, u)

]
≥ g−1[1

2
g ◦ u(x) + 1

2
g ◦Mf (p′, u)] ⇔

g ◦ u(x) + g ◦Mf (p, u) ≥ g ◦ u(x) + g ◦Mf (p′, u) ⇔ Mf (p, u) ≥ Mf (p′, u) ⇔ p �T p′.

Moreover part: For g the moreover part is immediate from proposition 8. For f note

that affine transformations of f leave Mf unchanged, so that the affine transformations

allowed for f in vi) by proposition 7 also leave the representative character of v) un-

touched. 2

Proof of lemma 1: The triple (s ◦ u, f ◦ s−1, g ◦ s−1) stands for the representation

sg−1
[

1
2
gs−1su(x) + 1

2
gs−1sf−1

[∫
X

(fs−1)(su) dp
]]

= sg−1
[

1
2
gu(x) + 1

2
gf−1

[∫
X

(fu) dp
]]

.

The latter is a strictly increasing transformation of the representation of �F correspond-

ing to the triple (u, f, g). Moreover s◦u, f ◦ s−1 and g ◦ s−1 are continuous (see footnote

1) and f ◦ s−1 and g ◦ s−1 are strictly monotonic. Hence (s ◦ u, f ◦ s−1, g ◦ s−1) is a

representation for �F itself. The same reasoning obviously holds for �T . 2

Proof of corollary 2: “⇒”: By certainty additivity A4 the set of Bernoulli utility

functions B� = B�T
is not empty. Hence by theorem 2 there exists a representing tuple

(u0, f 0, g0) for some u0 ∈ B�. Wlog let f 0 be increasing if and only if f given in the

corollary is increasing (if this is not the case just take −f 0 rendering a representation for

the same preference). Then s = f−1f 0 is strictly increasing and continuous (see footnote

1). Lemma 1 zields that ([f−1f 0]u0, f 0[f−1f 0]−1, g0[f−1f 0]−1) = (f−1f 0u0, f, g0f 0−1
f)

is a representation of � that uses f to characterize the the uncertainty aggregation rule.

“⇐”: Implied by “⇐” in theorem 2.

Moreover part: “⇒”: Let (u, f, g) and (u′, f, g′) be representations for � in the sense

of v) and vi). Then looking at degenerate lotteries vi) implies that there exists a strictly
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increasing continuous transformation such that u′ = s ◦ u. If (u′, f, g′) = (s u, f, g′) is a

representation of � then by lemma 1 so is the triple (u, fs, g′s). Comparing the latter

to the representation (u, f, g) the moreover part of theorem 2 implies that there have to

exist affine transformations a+ ∈ A+ and a ∈ A such that

f = a+f s ⇔ s−1 = f−1a+f and

g = ag′s.

That a+ has to be positive affine can be inferred from the fact that s is strictly increasing.

Substituting the result for s into the equations for g and u renders

g = ag′f−1a+−1
f and

u = s−1u′ = f−1a+f u′.

“⇐”: First let f be increasing. If (u, f, g) is a representation of � then by theorem 2

for a+ ∈ A+ and a ∈ A also (u,a+f,ag) is a representation. By lemma 1 it follows

that also ([a+f ]u,a+f [a+f ]−1,ag[a+f ]−1) = (a+fu, id,agf−1a+−1
) is a representation.

Applying lemma 1 once again yields the result that (f−1a+fu, f,agf−1a+−1
f) is a

representation of �. For f decreasing find that by theorem 2 (u,−a+f,ag) is a repre-

sentation of � and by a similar reasoning as above so are ([−a+f ]u, id,agf−1(−a+)−1),

(f−1{−[−a+f ]u},−f,agf−1(−a+)−1(−f)) and (f−1a+fu,−f,agf−1(a+)−1f) as well

as (f−1a+fu, f,agf−1a+−1
f). 2

Proof of corollary 3: Imitates the proof of corollary 2. 2

B.4 Proofs for Chapter 7

Proof of lemma 2: Let u ∈ B� be an arbitrary Bernoulli utility function for the set

of preference relations �. By theorem 2 there exist f and g as in the theorem, unique

up to nondegenerate affine transformations, such that the triple (u, f, g) represents �.

Let ũ ∈ B� be any other Bernoulli utility function for � and let the triple (ũ, f̃ , g̃) be

a corresponding representation in the sense of theorem 2.

Compare proof of proposition 7 to see that there exists a strictly increasing continuous

transformation s such that ũ = s ◦ u. Lemma 1 implies that with (u, f, g) as well

(s ◦ u, f ◦ s−1, g ◦ s−1) = (ũ, f ◦ s−1, g ◦ s−1) is a representation for �. Comparing the

latter to the representation (ũ, f̃ , g̃) the moreover part of theorem 2 implies the existence

of affine transformations a, ã ∈ A such that f̃ = af ◦ s−1 and g̃ = ãg ◦ s−1. But then

find that f̃ ◦ g̃−1 = af ◦ s−1 ◦ s ◦ g−1ã−1 = af ◦ g−1ã−1 ∈ f̂ ◦ ĝ−1. 2
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Proof of theorem 3: a) “⇒”: The first part of the premise in axiom A6 s
nd translates

into the representation of theorem 2 as

(x̄, x̄) ∼F (x1, x2)

⇔ g−1
(

1
2
g ◦ u(x̄) + 1

2
g ◦ u(x̄)

)
= g−1

(
1
2
g ◦ u(x1) + 1

2
g ◦ u(x2)

)

⇔ u(x̄) = g−1
(

1
2
g ◦ u(x1) + 1

2
g ◦ u(x2)

)
(B.6)

and for the second part of the premise renders

x1 6∼T x2

⇔ u(x1) 6= u(x2) . (B.7)

Writing the implication of axiom A6 s
nd in the representation of theorem 2 yields

x̄ ≻T
1
2
x1 + 1

2
x2

⇔ u(x̄) > f−1
(

1
2
f ◦ u(x1) + 1

2
f ◦ u(x2)

)
. (B.8)

Combining equations (B.6) and (B.8) renders

g−1
(

1
2
g ◦ u(x1) + 1

2
g ◦ u(x2)

)
> f−1

(
1
2
f ◦ u(x1) + 1

2
f ◦ u(x2)

)
(B.9)

which for an increasing [decreasing] version of f is equivalent to

⇔ f ◦ g−1
(

1
2
g ◦ u(x1) + 1

2
g ◦ u(x2)

)
> [<] 1

2
f ◦ u(x1) + 1

2
f ◦ u(x2) .

Defining zi = g ◦ u(xi) the equation becomes

⇔ f ◦ g−1
(

1
2
z1 + 1

2
z2

)
> [<] 1

2
f ◦ g−1(z1) + 1

2
f ◦ g−1(z2) . (B.10)

Noting that for all x1, x2 ∈ X there exists a certainty equivalent x̄ to the lottery 1
2
x1+

1
2
x2

(compare proof of theorem 2) so that the first part of the premise is satisfied and that

the second part of the premise implies (by equation B.7) that z1 6= z2, one finds that

equation (B.10) has to hold for all z1, z2 ∈ Γ with z1 6= z2. Therefore f ◦ g−1 has to be

strictly concave [convex] on Γ (Hardy et al. 1964, 75).

a) “⇐”: The necessity of axiom A6 s
nd is seen to hold by mainly going backwards through

the proof of sufficiency given above. Strict concavity [convexity] of f ◦ g−1 with f

increasing [decreasing] implies that equation (B.10) and thus equation (B.9) have to hold

for z1, z2 ∈ Γ with z1 6= z2. The latter corresponds to the second part of the premise of

axiom A6 s
nd (see equation B.7). The second part of the premise corresponding to (B.6)

guarantees that equation (B.9) implies equation (B.8) which yields the implication of

axiom A6 s
nd.

b): Replace in the proof of part a) ‘strict’ by ‘weak’, ‘≻T ’ by ‘�T ’ and ‘>’ by ‘≥’ and

the proof is valid for part b).

c)“⇒”: Replacing in the reasoning of “a ⇒” the symbols ‘≻T ’ by ‘∼T ’ and ‘>’ by ‘=’
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yields the following alteration of equation (B.10)

f ◦ g−1
(

1
2
z1 + 1

2
z2

)
= 1

2
f ◦ g−1(z1) + 1

2
f ◦ g−1(z2)

which has to hold for all z1, z2 ∈ Γ with z1 6= z2. By Aczél (1966, 46) this condition

implies linearity of f ◦ g−1 on Γ. Hence f ◦ g−1 = a for some a ∈ A. Then gauging

f = id yields g = a−1. But as g is only determined up to affine transformations I can

represent the same preference with choosing g = id as well. However with f = g = id the

representation of theorem 2 represents �F as intertemporally additive expected utility.

c)“⇐”: If the preference relation � is representable by intertemporal expected utility,

then the premise of axiom A6w
nd, respectively the first part of the premise of axiom A6 s

nd,

translates into

(x̄, x̄) ∼F (x1, x2)

⇔ u(x̄) + u(x̄) = u(x1) + u(x2)

⇔ u(x̄) = 1
2
(u(x1) + u(x2))

⇔ x̄ ∼F
1
2
x1 + 1

2
x2

and thus implies intertemporal risk neutrality. 2

Proof of proposition 9: Let h be some function in f̂ ◦ ĝ−1. Then any other function

h̃ in f̂ ◦ ĝ−1 can be expressed as h̃ = ahã−1 for some a, ã ∈ A. Strict concavity of h is

equivalent to

h
(

1
2
z1 + 1

2
z2

)
> 1

2
h (z1) + 1

2
h (z2)

for all z1, z2 ∈ Γ with z1 6= z2 (Hardy et al. 1964, 75). Furthermore with introducing

z̃i = ãzi, i ∈ 1, 2, the following manipulations hold

⇔ ah
(

1
2
z1 + a1

2
z2

)
> 1

2
ah (z1) + 1

2
ah (z2)

⇔ ah
(

1
2
ã−1z̃1 + 1

2
ã−1z̃2

)
> 1

2
ah
(
ã−1z1

)
+ 1

2
ah
(
ã−1z2

)

⇔ ahã−1
(

1
2
z̃1 + 1

2
z̃2

)
> 1

2
ahã−1 (z1) + 1

2
ahã−1 (z2)

⇔ h̃
(

1
2
z̃1 + 1

2
z̃2

)
> 1

2
h̃ (z̃1) + 1

2
h̃ (z̃2)

for all z̃1, z̃2 ∈ Γ̃ = ãΓ with z̃1 6= z̃2. But the last equation characterizes strict concavity

of h̃. The same reasoning holds true for weak concavity replacing > for ≥ and for

convexity reversing the inequalities. 2

Proof of corollary 4: By corollary 3 there exists a Bernoulli utility function u and a

function f such that in a g = ḡ-gauge the triple (u, f, ḡ) represents the set of preference

relations �. The allowed transformations for u and f without fixing the range of u

are (u, f) → (ũ, f̃) = (g−1a+−1
g u,a f g−1a+g) with a ∈ A and a+ ∈ A+. Now

204



B.4. PROOFS FOR CHAPTER 7

write the closed interval W ∗ as [U,U ] and require that some representing Bernoulli

utility function ũ satisfies ũ(xmin) = U and ũ(xmax) = U , where xmin and xmax are

elements of the set of worst respectively best outcomes in X (which is non-empty due to

compactness and continuity). Starting from the arbitrary Bernoulli utility function u an

appropriate ũ is obtained as ũ = ḡ−1a+−1
ḡ u by means of the affine transformation a+

satisfying the conditions a+ (ḡ ◦ u(xmin))
!
= ḡ(U) and a+ (ḡ ◦ u(xmax))

!
= ḡ(U). Being

an affine function, a+ is determined uniquely by fixing two of its points. Thus, ũ is

determined uniquely and the freedom remaining for the representing function f reduces

to f → f̃ = af with a ∈ A. Therefore, the expression for intertemporal risk aversion

f ◦ ḡ−1 is determined up to transformations f ◦ ḡ−1 → f̃ ḡ−1 = afḡ−1, rendering the

according measures unique. 2

Proof of corollary 5: This is a trivial consequence of theorem 2. Everything but the

uniqueness of g has been established there. But fixing two points of a function g that

is determined already up to affine transformations obviously removes the indeterminacy

completely. 2

Proof of lemma 3: Let the triples (u, f, g) and (ũ, f̃ , g̃) be arbitrary representations

for the set of preference relations �= (�F ,�T ). As in the proof of lemma 2 it follows

that there exists a strictly increasing continuous function s and affine transformations

a, ã ∈ A such that ũ = s ◦ u, f̃ = af ◦ s−1 and g̃ = ãg ◦ s−1. Let xmin and xmax

be (members of the set of) worst respectively best outcomes in X with respect to �.

Writing the closed interval G as G = [G,G] the additional assumption in lemma 3

requires for the function g that G = g ◦ u(xmin) and G = g ◦ u(xmax). Similarly for g̃ it

has to hold that G = g̃ ◦ ũ(xmin) and G = g̃ ◦ ũ(xmax). Together with the implication of

lemma 2 these requirements bring about the relations

G = g̃ ◦ ũ(xmin) = ãg ◦ s−1 ◦ ũ(xmin) = ãg ◦ u(xmin) = ãG and

G = g̃ ◦ ũ(xmax) = ãg ◦ s−1 ◦ ũ(xmax) = ãg ◦ u(xmax) = ã G .

Therefore ã has to be the identity and it is f̃ ◦ g̃−1 = af ◦ s−1 ◦ s ◦ g−1ã−1 = af ◦ g−1.

But by construction the measures of intertemporal risk aversion RIRA and AIRA are

independent of the remaining indeterminacy corresponding to the transformation a. 2
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Appendix C

Proofs for Part III

C.1 Proofs for Chapter 8

Proof of theorem 4: The proof is divided into four parts. The first part gives a

representation for certain consumption paths which is a generalization of proposition 8

for non-stationary utility. In part two I derive a corresponding recursive formulation,

still only for certain consumption paths. Finally, part three works out the general

representation for temporal lotteries as given in the theorem. Part four verifies that the

derived representation implies all axioms.

Part I (“⇒”): First, note that certainty additivity A4 for �1 carries over to �t for all

t with coinciding Bernoulli utility functions uo
τ ,τ≥t . The argument works inductively.

Given that �t |X1
has a certainty additive representation with Bernoulli utility functions

uo
τ ,τ≥t , it follows from time consistency A5 that for all xt+1, x′t+1 ∈ Xt+1 and any xt ∈ Xt:

xt+1 �t+1 x′t+1

⇔ (xt, x
t+1) �t (xt, x

′t+1)

⇔ uo
t (xt) +

∑T
τ=t+1 uo

τ (x
t+1
τ ) ≥ uo

t (xt) +
∑T

τ=t+1 uo
τ (x

′t+1
τ )

⇔
∑T

τ=t+1 uo
τ (x

t+1
τ ) ≥

∑T
τ=t+1 uo

τ (x
′t+1
τ ).

Therefore �t+1 has a certainty additive representation which uses the same Bernoulli

utility functions uo
τ for τ ≥ t+1 as does the above representation for �t. In the following

uo
t continues to denote the above utility index derived from certainty additivity, while

ut denotes the period t (Bernoulli-) utility function given in the theorem.

Second, I show that for every pair of utility functions uo
t and ut there exists a strictly
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increasing, continuous transformation gt such that ut = gt ◦ uo
t . By uτ ∈ B�t

I have:

ut(xt) ≥ ut(x
′
t)

⇔ [xt]t �t [x′
t]t

⇔ (xt, x
o, ..., xo) �t (x′

t, x
o, ..., xo)

⇔ uo
t (xt) +

∑T
τ=t u

o
τ (xτ ) ≥ uo

t (x
′
t) +

∑T
τ=t u

o
τ (xτ )

⇔ uo
t (xt) ≥ uo

t (x
′
t)

Hence ut is a monotonic transformation of uo
t and it exists a strictly increasing function

gt : Ut → IR such that uo
t = gt ◦ ut. For the fact that continuity of uo

t and ut imply

continuity of gt consult the proof of proposition 7.

Third, I give a representation over certain consumption paths in terms of the Bernoulli

utility functions ut, t ∈ {1, ..., T}, given in the theorem. This is merely a task of com-

bining the two results derived above which yield for all t and all xt, x′t ∈ Xt:

xt �t x′t

⇔
∑T

τ=t u
o
τ (x

t
τ ) ≥

∑T
τ=t u

o
τ (x

′t
τ )

⇔
∑T

τ=t gτ ◦ uτ (x
t
τ ) ≥

∑T
τ=t gτ ◦ uτ (x

′t
τ ).

Part II (“⇒”): In this part, I construct the recursive analogue to the above represen-

tation for certain consumption paths. Let me first define for every t ∈ {1, ..., T − 1} the

intertemporal aggregation rule

N gt,gt+1 : Ut × Ut+1 → IR

N gt,gt+1(·, ·) = g−1
t

[
θtgt(·) + θtθ

−1
t+1gt+1(·) + θtθ

−1
t+1ϑt

]

with normalization constants

θt = ∆Gt
PT

τ=t ∆Gτ
and ϑt =

Gt+1Gt−Gt+1Gt

∆Gt
.

The normalization constants ensure that the domain of g−1
t in the intertemporal aggre-

gation rule is in fact [Gt, Gt]. This will be verified in the rest of this paragraph. To this

purpose, note that

Gt+1 + ϑt =
Gt+1(Gt−Gt)+Gt+1Gt−Gt+1Gt

∆Gt
= ∆Gt+1

∆Gt
Gt and

Gt+1 + ϑt =
Gt+1(Gt−Gt)+Gt+1Gt−Gt+1Gt

∆Gt
= ∆Gt+1

∆Gt
Gt .

The maximal value of the argument of g−1
t [ · ] in N gt,gt+1 is taken on for Gt = gt(U t)
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and Gt+1 = gt+1(U t+1) which yields

θt

[
gt(·) + θ−1

t+1 {gt+1(·) + ϑt}
]max

= ∆Gt
PT

τ=t ∆Gτ

[
Gt +

PT
τ=t+1 ∆Gτ

∆Gt+1

{
Gt+1 + ϑt

}]

= ∆Gt
PT

τ=t ∆Gτ

[
Gt +

PT
τ=t+1 ∆Gτ

∆Gt+1

{
∆Gt+1

∆Gt
Gt

}]

= ∆Gt
PT

τ=t ∆Gτ

[
Gt∆Gt+Gt

PT
τ=t+1 ∆Gτ

∆Gt

]
= Gt.

The minimal value of the argument of g−1
t [ · ] in N gt,gt+1 is taken on for Gt = gt(U t) and

Gt+1 = gt+1(U t+1). In this case exactly the same equation holds true with Gt replaced

by Gt. Hence the expression defining the intertemporal aggregation rule N gt,gt+1 is well

defined.

For the second step, I introduce the notation txt−1 to denote the continuation of the

consumption path xt−1 ∈ Xt−1 from period t on, i.e. xt−1 = (xt−1
t−1,

t xt−1). Then, define

the aggregate intertemporal utility functions for certain consumptions paths by setting

ũT = uT and for 1 < t ≤ T recursively:

ũt−1(x
t−1) ≡ ũt−1(x

t−1
t−1 , txt−1) = N gt−1,gt

∗

(
ut−1(x

t−1
t−1), ũt(

txt−1)
)

= g−1
t−1

[
θt−1 gt−1 ◦ ut−1(x

t−1
t−1) + θt−1θ

−1
t gt ◦ ũt(

txt−1) + θt−1θ
−1
t ϑt−1

]
.

From the first step in this part it follows that range(ũt) = [U t, U t].

Third, I show that there exist constants ξt, such that the following equation holds for

all t ∈ {1, .., T}:

θ−1
t gt ◦ ũt(x

t) =
∑T

τ=t gτ ◦ uτ (x
t
τ ) + ξt . (C.1)

As θT = 1 this relation obviously holds for t = T (with ξT = 0). The following

manipulation shows that the equation holds by (backwards) induction for all t:

θ−1
t−1 gt−1 ◦ ũt−1(x

t−1)

= θ−1
t−1 gt−1 ◦ g−1

t−1

[
θt−1 gt−1 ◦ ut−1(x

t−1
t−1) + θt−1θ

−1
t gt ◦ ũt(

txt−1) + θt−1θ
−1
t ϑt−1

]

= gt−1 ◦ ut−1(x
t−1
t−1) + θ−1

t gt ◦ ũt(
txt−1)︸ ︷︷ ︸ + θ−1

t ϑt−1

= gt−1 ◦ ut−1(x
t−1
t−1) +

∑T
τ=t gτ ◦ uτ (x

t−1
τ ) + ξt + θ−1

t ϑt−1︸ ︷︷ ︸
=
∑T

τ=t−1 gτ ◦ uτ (x
t−1
τ ) + ξt−1 .

But (C.1) states that on certain consumption paths ũt is a (strictly) increasing trans-

formation of
∑T

τ=t gτ ◦ uτ and hence a representation of �t |Xt .

Note: The following equality holds:

θtθ
−1
t+1 = ∆Gt

PT
τ=t ∆Gτ

PT
τ=t+1 ∆Gτ

∆Gt+1
= ∆Gt

PT
τ=t ∆Gτ

PT
τ=t ∆Gτ

∆Gt+1
− ∆Gt

PT
τ=t ∆Gτ

∆Gt

∆Gt+1

= (1 − θt)
∆Gt

∆Gt+1
. (C.2)

Part III (“⇒”): The extension of the representation to uncertainty employs backward
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induction. The induction hypothesis I have to proof is the following. For every t ∈

{1, ..., T} and ũt defined as in the theorem, it holds

H1 ∃ft : Ut → IR s.th. pt �t p′t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt) ∀ pt, p
′
t ∈ Pt.

The proof uses recursively the following additional hypothesis claiming that for every

lottery there exists a certainty equivalent that is a certain consumption path:

H2 For all pt ∈ Pt there exists xpt ∈ Xt such that xpt ∼ pt.

Let me first verify that induction hypothesis H1 and H2 are satisfied for t = T . For

H1 this is an immediate consequence of proposition 7. Observing that for t = T it is

xt = xt, also H2 is an immediate consequence of the existence of a certainty equivalent

for every pT ∈ PT which has been shown in the proof of proposition 7.

Given H1 and H2 for t I proceed to show that the induction hypotheses also hold for

t − 1. To this end, note that Mft(pt, ũt) = Mft(xpt , ũt) = ũt(x
pt) and find that the

following equivalence holds:

(xt−1, pt) �t−1 (x′
t−1, p

′
t)

⇔ (xt−1, x
pt) �t−1 (x′

t−1, x
p′t)

⇔ ũt−1(xt−1, x
pt) ≥ ũt−1(x

′
t−1, x

p′t)

⇔ N gt−1,gt (ut−1(xt−1), ũt(x
pt)) ≥ N gt−1,gt

(
ut−1(x

′
t−1), ũt(x

p′t)
)

⇔ N gt−1,gt
(
ut−1(xt−1),M

ft(pt, ũt)
)

≥ N gt−1,gt
(
ut−1(x

′
t−1),M

ft(p′t, ũt)
)

⇔ ũt−1(xt−1, pt) ≥ ũt−1(x
′
t−1, p

′
t) ,

where ũt−1 is the aggregate intertemporal utility function for degenerate period t−1 lot-

teries as given in the theorem. ũt−1 ∈ C0(Xt−1 ×Pt) satisfies (xt−1, pt) �t−1 (x′
t−1, p

′
t) ⇔

ũt−1(xt−1, pt) ≥ ũt−1(x
′
t−1, p

′
t) for all (xt−1, pt), (x

′
t−1, p

′
t) ∈ Xt−1 × Pt. Therefore, by

proposition 7 with the compact metric space Xt−1 × Pt, it exists ft−1 : Ut−1 → IR such

that:

pt−1 �t−1 p′t−1 ⇔ Mft−1(pt−1, ũt−1) ≥ Mft−1(p′t−1, ũt−1) ∀ pt−1, p
′
t−1 ∈ Pt−1.

Hence H1 also holds for t−1. Moreover as shown in the proof of proposition 7 for every

lottery pt−1 ∈ Pt−1 there exists a certainty equivalent x̃pt−1 = (x
pt−1

t−1 , p
pt−1

t ) ∈ Xt−1 × Pt

such that pt−1 ∼t−1 x̃pt−1 . Given that induction hypothesis H2 holds for t, there exists

a certain consumption path xp
pt−1
t with xp

pt−1
t ∼t p

pt−1

t . Therefore by time consistency

xpt−1 ≡ (x
pt−1

t−1 , xp
pt−1
t ) is a certain consumption path which satisfies xpt−1 ∼t−1 pt−1.

Hence, the second induction hypothesis H2 is satisfied for t − 1 as well, and recursion

gives that H1 and thus the theorem is satisfied for all t ∈ {1, ..., T}.

Part IV (“⇐”):
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A1 (weak order): Transitivity and completeness are trivial.

A2 (independence): Let pt ∼t p′t. Then for any p′′t ∈ Pt, a ∈ [0, 1] it follows:

pt ∼t p′t

⇔ f−1
t

∫
ftũt dpt = f−1

t

∫
ftũt dp′t

⇔
∫

ftũt dpt =
∫

ftũt dp′t

⇔ a
∫

ftũt dpt + (1 − a)
∫

ftũt dp′′t = a
∫

ftũt dp′t + (1 − a)
∫

ftũt dp′′t

⇔ f−1
t

∫
ftũt d(a pt + (1 − a) p′′t ) = f−1

t

∫
ftũt d(a p′t + (1 − a) p′′t )

⇔ a pt + (1 − a) p′′t ∼t a p′t + (1 − a) p′′t .

A3 (continuity): Using the topology of weak convergence on Pt, the functional

Mft(·, ũt) : Pt → IR is continuous. For all pt ∈ Pt define the numbers Upt ∈ IR by

Upt = Mft(pt, ũt). Then, the sets {p′t ∈ Pt : p′t �t pt} and {p′t ∈ Pt : pt �t p′t} are the

inverse image of the closed intervals [Upt , U ] and [U,Upt ] under Mft(·, ũt) and as such

they are closed.

A4 (certainty additivity): Defining uo
τ = gτ ◦ uτ for all τ ∈ {1, ..., T} find that for all

x, x′ ∈ XT :

x � x′

⇔ ũt(x) ≥ ũt(x
′)

⇔
∑T

τ=t gτ ◦ uτ (xτ ) ≥
∑T

τ=t gτ ◦ uτ (x
′
τ )

⇔
∑T

τ=t u
o
τ (xτ ) ≥

∑T
τ=t u

o
τ (x

′
τ ).

A5 (time consistency): For all t ∈ {1, ..., T} find for all xt ∈ Xt and pt+1, p
′
t+1 ∈ Pt+1:

(xt, pt+1) �t (xt, p
′
t+1)

⇔ g−1
t

[
θt gt ◦ ut(xt) + θtθ

−1
t+1 gt+1 ◦ M ft+1(pt+1, ũt+1) + θtθ

−1
t+1ϑt

]

≥ g−1
t

[
θt gt ◦ ut(xt) + θtθ

−1
t+1 gt+1 ◦ M ft+1(p′t+1, ũt+1) + θtθ

−1
t+1ϑt

]

⇔ M ft+1(pt+1, ũt+1) ≥ M ft+1(p′t+1, ũt+1)

⇔ pt+1 �t+1 p′t+1.

Moreover Part: Uniqueness of (ft)t∈{1...T} up to affine transformations follows for each

ft as in the proof of theorem 2.1 In the following I give the proof for the uniqueness

result for (gt)t∈{1...T} which is slightly more involved.

“⇐”: It has to be proven that if the triple (uτ , fτ , gτ )τ∈{t,...,T} represents �t as in the

theorem, then so does the tuple (uτ , fτ , g
′
τ )τ∈{t,...,T} with (g′

τ )τ∈{t,...,T} = (agτ +bτ )τ∈{t,...,T}

for any a, b ∈ IR, a > 0. For the g′
τ -scenario the normalization constants change as

1As seen in theorem 2 the allowed transformations for f and g are independent.
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follows.

θ′t =
∆G′

t
PT

τ=t ∆G′
τ

= a∆Gt
PT

τ=t a∆Gτ
= ∆Gt

PT
τ=t ∆Gτ

= θt and (C.3)

ϑ′
t =

G′
t+1G′

t−G′

t+1G′
t

∆G′

t
=

(aGt+1+bt+1)(aGt+bt)−(aGt+1+bt+1)(aGt+bt)

a∆Gt

= aϑt +
bt+ta(Gt−Gt)+bta(Gt+1−Gt+1)

a∆Gt
+ bt+1bt−bt+1bt

a∆Gt
= aϑt − bt+1 + bt

∆Gt+1

∆Gt
(C.4)

for t ∈ {1, ..., T}.2 Hence, noting that g′−1
t (·) = g−1

t

[
a−1

t {(·) − bt}
]
, the intertemporal

aggregation rule transforms as

N g′t,g
′

t+1(·, ·) = g′−1
t

[
θ′tg

′
t(·) + θ′tθ

′−1
t+1g

′
t+1(·) + θ′tθ

′−1
t+1ϑ

′
t

]

= g−1
t

[
a−1
{

θt(agt(·) + bt) + θtθ
−1
t+1(agt+1(·) + bt+1)

+θtθ
−1
t+1(aϑt − bt+1 + bt

∆Gt+1

∆Gt
) − bt

}]

= g−1
t

[
θtgt(·) + θtθ

−1
t+1gt+1(·) + θtθ

−1
t+1ϑt + a−1

{
θtbt + θtθ

−1
t+1bt+1 + θtθ

−1
t+1(−bt+1 + bt

∆Gt+1

∆Gt
) − bt

}]

= g−1
t

[
θtgt(·) + θtθ

−1
t+1gt+1(·) + θtθ

−1
t+1ϑt

]
= N gt,gt+1(·, ·) .

To arrive at the last line I have used equation (C.2). It results that (uτ , fτ , g
′
τ )τ∈{t,...,T}

is a representation of �t.

“⇒”: From the proof of the main part (in particular from equation C.1) it is known

that if the sequences (fτ )τ∈{t,...,T} and (gτ )τ∈{t,...,T} represent �t as in the theorem, then∑T
τ=t gτ ◦uτ (xτ ) represents �t on the set of certain outcome paths. In particular assume

that (uτ , fτ , gτ )τ∈{1,...,T} and (uτ , f
′
τ , g

′
τ )τ∈{1,...,T} both represent �1. Then

∑T
τ=1 gτ ◦

uτ (xτ ) and
∑T

τ=1 g′
τ ◦ uτ (xτ ) both represent �1 |

X
1 . Pick any r ∈ {1, ..., T}. Define

g̃τ = ∆Gr

∆G′
r
g′

τ + gτ (uτ ) − g′
τ (uτ )

∆Gr

∆G′
r

for all τ ∈ {1, ..., T} which yields

g̃τ (uτ ) = gτ (uτ ) ∀τ ∈ {1, ..., T} and

g̃r(ur) = gr(ur).

As (g̃τ )τ∈{1,...,T} = (ag′
τ +bτ )τ∈{1,...,T} with a > 0 it follows from “⇐” that

∑T
τ=t g̃τ ◦uτ (xτ )

represents �1 |X1 . In the following, I will show that in fact (g̃τ ),τ∈{1,...,T} = (gτ )τ∈{1,...,T}

completing the proof.

The proof that (g̃τ )τ∈{1,...,T} has to be equal to (gτ )τ∈{1,...,T} distinguishes two cases.

In the first case, I assume that for all τ ∈ {1, ..., T} it is g̃τ 6= gτ . In the second case, I

assume that for at least one τ ∈ {1, ..., T} it is g̃τ = gτ and for some other it is g̃τ ′ 6= gτ ′ .

Both assumptions will lead to a contradiction. For the rest of this proof I will slightly

modify notation letting Uτ ∈ IR denote utility levels in period τ (and not the range of

2Where bT+1 and ∆GT+1 are treated as zero to render ϑ′
T = 0.
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uτ ).

Case 1: Assume that for all τ ∈ {1, ..., T} it is g̃τ 6= gτ .

First, observe that due to continuity, connectedness, g̃(U r) = g(U r) and g̃(U r) =

g(U r), there have to exist U1
r and U2

r such that g̃(U1
r ) = g(U1

r ), g̃(U2
r ) = g(U2

r ) and

g̃(Ur) 6= g(Ur) ∀Ur ∈ (U1
r , U2

r ). Furthermore pick any s ∈ {1, ..., T} with s 6= r. Then,

again by continuity, connectedness and g̃(U s) = g(U s) there exist U1
s and ǫ > 0 such that

g̃(Us) = g(Us) ∀Us ≤ U1
s and g̃(Us) 6= g(Us) ∀Us ∈ (U1

s , U1
s + ǫ). For all τ /∈ {s, r} fix

xτ = xo
τ arbitrarily for the rest of this proof. To simplify notation let (Us, Ur) � (U ′

s, U
′
r)

be shorthand for (xo
1, ..., xs, ..., xr, ..., x

o
T ) �1 (xo

1, ..., x
′
s, ..., x

′
r, ..., x

o
T ), where Us = us(xs)

and Ur = ur(xr).
3

Second, for U∗
s ∈ (U1

s , U1
s + ǫ) define U∗

r by the requirement (U∗
s , U1

r ) ∼ (U1
s , U∗

r ).4

Pick a U∗
s for which U∗

r ∈ (U1
r , U2

r ). Restating this indifference in the
∑T

τ=1 g̃τ ◦ uτ (xτ )

and
∑T

τ=1 gτ ◦ uτ (xτ ) repesentations for �1 |X1 yields respectively

g̃s(U
∗
s ) + g̃r(U

1
r ) = g̃s(U

1
s ) + g̃r(U

∗
r )

gs(U
∗
s ) + gr(U

1
r ) = gs(U

1
s ) + gr(U

∗
r ) .

The terms stemming from periods τ /∈ {r, s} cancel because they are the same on both

sides of the equation. Moreover by construction it is g̃r(U
1
r ) = gr(U

1
r ) and g̃s(U

1
s ) =

gs(U
1
s ). Therefore taking the difference of the two equation above brings about

g̃s(U
∗
s ) − gs(U

∗
s ) = g̃r(U

∗
r ) − gr(U

∗
r ) . (C.5)

Third define U∗∗
r by (U∗

s , U∗∗
r ) ∼ (U1

s , U2
r ). Such U∗∗

r exists and lies in (U1
r , U2

r )

due to continuity, connectedness and (U∗
s , U1

r ) ∼ (U1
s , U∗

r ) ≺ (U1
s , U2

r ) ∼ (U∗
s , U∗

r ∗) and

(U∗
s , U2

r ) ≻ (U1
s , U2

r ) ∼ (Us∗, U
∗
r ∗). Stating the indifference condition in the

∑T
τ=1 g̃τ ◦

uτ (xτ ) and
∑T

τ=1 gτ ◦ uτ (xτ ) representations for �1 |X1 yields respectively

g̃s(U
∗
s ) + g̃r(U

∗∗
r ) = g̃s(U

1
s ) + g̃r(U

2
r )

gs(U
∗
s ) + gr(U

∗∗
r ) = gs(U

1
s ) + gr(U

2
r ) .

Due to g̃s(U
1
s ) = gs(U

1
s ) and g̃r(U

2
r ) = gr(U

2
r ) taking the difference between these two

equations renders

g̃s(U
∗
s ) − gs(U

∗
s ) = − [g̃r(U

∗∗
r ) − gr(U

∗∗
r )] . (C.6)

3For r < s nothing but the order in this notation would change.

4It can happen that for some U∗
s there is no U∗

r high enough within the domain of ur such that the
indifference holds (i.e. no xr ∈ Xr is good enough to make up for getting outcome x1

s instead of x∗
s in

period s). However continuity, connectedness and U1
r < Ur make sure that for small enough U∗

s > U1
s

there exist U∗
r satisfying the condition. In particular for any U∗

s satisfying the condition given in the
next line there obviously exists U∗

r .
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The fourth step derives a contradiction from combining equations (C.5) and (C.6).

Together these two equations yield the following statement:

g̃r(U
∗
r ) − gr(U

∗
r ) = − [g̃r(U

∗∗
r ) − gr(U

∗∗
r )] . (C.7)

Recollect that U∗
r , U∗∗

r ∈ (U1
r , U2

r ) where by construction it has to hold that g̃r(Ur) 6=

gr(Ur). Together with equation (C.7) it follows that either g̃r(U
∗
r ) > gr(U

∗
r ) and

g̃r(U
∗∗
r ) < gr(U

∗∗
r ) or vice versa. In any case continuity together with connectedness

implies that there exists U0
r between U∗

r and U∗∗
r for which g̃r(U

0
r ) = gr(U

0
r ). But this

contradicts g̃(Ur) 6= g(Ur) ∀Ur ∈ (U1
r , U2

r ) and hence the “case 1 assumption” that for

all τ ∈ {1, ..., T} it is g̃τ 6= gτ .

Case 2: Assume that there exist i, j ∈ {1, ..., T} such that g̃i 6= gi and g̃j = gj.

Then, in analogy to case 1 there exist U1
i and ǫ > 0 such that g̃(Ui) = g(Ui) ∀Ui ≤ U1

i

and g̃(Ui) 6= g(Ui) ∀Ui ∈ (U1
i , U1

i + ǫ). Furthermore fix some U1
j < U j. As in case 1 fix

τ /∈ {s, r} to some arbitrary xo
τ and use the shorthand notation (Ui, Uj) � (U ′

i , U
′
j) for

(xo
1, ..., xi, ..., xj, ..., x

o
T ) �1 (xo

1, ..., x
′
i, ..., x

′
j, ..., x

o
T ).

Pick some U∗
i ∈ (U1

i , U1
i + ǫ) such that there exists U∗

j < U j satisfying (U∗
i , U1

j ) ∼

(U1
i , U∗

j ).5 Stating this indifference condition in the
∑T

τ=1 g̃τ ◦uτ (xτ ) and
∑T

τ=1 gτ ◦uτ (xτ )

repesentations for �1 |X1 yields respectively

g̃i(U
∗
i ) + g̃j(U

1
j ) = g̃i(U

1
i ) + g̃j(U

∗
j )

gi(U
∗
i ) + gj(U

1
j ) = gi(U

1
i ) + gj(U

∗
j ) .

Again the terms stemming from periods τ /∈ {i, j} cancel. Moreover it is g̃j(U
1
j ) =

gj(U
1
j ), g̃i(U

1
i ) = gi(U

1
i ) and g̃j(U

∗
j ) = gj(U

∗
j ). But this implies g̃i(U

∗
i ) = gi(U

∗
i ) in

contradiction to g̃(Ui) 6= g(Ui) ∀Ui ∈ (U1
i , U1

i + ǫ). 2

Proof of theorem 5: The moreover part of theorem 4 shows that the functions

gt for t ∈ {1, ..., T} exhibit an affine freedom with translational constants bg
t that are

independent between the different periods. In the following I show that this freedom can

be used to eliminate the normalization constants ϑt in the representation of theorem 4.

“⇒”: Take an arbitrary representation (ut, ft, gt)t∈{1,...,T} for the preferences (�t)t∈{1,...,T}

in the sense of theorem 4. I construct a transformation gt → g̃t = gt + bt, such that

the particular representation going along with (ut, ft, g̃t)t∈{1,...,T} satisfies ϑ̃t = 0 for all

t ∈ {1, ..., T}. Let the translation parameter b1, g1 → g̃1 = g1 + b1, be arbitrary but

5Again the existence of an appropriate U1
j is just a question of picking U∗

i ∈ (U1
i , U1

i + ǫ) close

enough to U0
i .
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fixed. Equation (C.4) shows that the condition for ϑ̃t = 0 is equivalent to

ϑ̃t = aϑt − bt+1 + bt
∆Gt+1

∆Gt

!
= 0

⇔ bt+1 = aϑt + bt
∆Gt+1

∆Gt
. (C.8)

Fixing inductively the constants bt for t > 1 by equation (C.8) eliminates the normal-

ization constants ϑ̃t and renders the new intertemporal aggregation rule

N gt,gt+1
∗ : Ut × Ut+1 → IR

N gt,gt+1
∗ (·, ·) = g̃−1

t

[
θtg̃t(·) + θtθ

−1
t+1g̃t+1(·)

]
,

which is used in the representation of theorem 5.

“⇐”: Observe that the condition Gt+1

Gt+1
= Gt

Gt
implies ϑt = 0:

Gt+1

Gt+1
= Gt

Gt

⇔ Gt+1Gt = GtGt+1

⇔ Gt+1Gt −GtGt+1 = 0

⇔ ϑt = 0 .

But then, the necessity part of the proof is a special case of theorem 4.

Moreover part: “⇒”: Let (ut, ft, gt)t∈{1,...,T} and (ut, f
′
t , g

′
t)t∈{1,...,T} be representations

in the sense of theorem 5. By theorem 4, I know that the functions gt and g′
t can at

most differ by an affine translation of type gt → g′
t = a gt + bt. In addition equation

(C.8) has to be satisfied with ϑt = 0 for all t ∈ {1, ..., T − 1}. Given b1 and defining

b = b1
∆G1

, the latter equation determines all translation parameters bt as

bt = bt−1
∆Gt

∆Gt−1
= bt−2

∆Gt−1

∆Gt−2

∆Gt

∆Gt−1
= bt−2

∆Gt

∆Gt−2
= bt−3

∆Gt

∆Gt−3
= ...

= b1
∆Gt

∆G1
= b ∆G1

∆Gt

∆G1
= ∆Gt b .

Therefore, the remaining freedom of a representation (ut, ft, gt)t∈{1,...,T} in the sense of

theorem 5 is given by the simultaneous transformations gt → g′
t = a gt + ∆Gt b for all

t ∈ {1, ..., T} with a ∈ IR++ and b ∈ IR and, as before, the independent transformations

ft → f ′
t = af

t ft + bf
t for t ∈ {1, ..., T} with af

t ∈ IR++ and bf
t ∈ IR.

“⇐”: Wlog let (ut, ft, gt)t∈{1,...,T} be a representation of (�t)t∈{1,...,T} in the sense of

theorem 5. Recalling from the main part of the proof that Gt+1

Gt+1
= Gt

Gt
implies ϑt = 0,

it is know that (ut, ft, gt)t∈{1,...,T} is also a representation in the sense of theorem 4.

Thus, by the moreover part theorem 4, (ut, f
′
t , agt + ∆Gtb)t∈{1,...,T} is a representation

in the sense of theorem 4 as well, whenever f ′
t is a positive affine transformation of ft.

Moreover, because of ϑt = 0 equation (C.4) implies

ϑ′
t = aϑt − bt+1 + bt

∆Gt+1

∆Gt
= −∆Gt+1 b + ∆Gt b

∆Gt+1

∆Gt
= 0 .

Therefore, the sequence of triples (ut, f
′
t , agt + ∆Gtb)t∈{1,...,T} also is a representation in
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the sense of theorem 5.

Remark: On certain consumption paths the representation simplifies to the form

ũt(x
t) = g−1

t

[
θt

T∑

τ=t

gτ ◦ uτ (x
t
τ )

]
. (C.9)

This is an immediate consequence of equation (C.1) in the proof of theorem 4.

Recognizing that ϑt = 0 for all t ∈ {1, ..., T} implies ξt = 0 in all periods, the referenced

equation becomes θ−1
t gt◦ũt(x

t) =
∑T

τ=t gτ ◦uτ (x
t
τ ) which is equivalent to equation (C.9).

2

Proof of lemma 4: Due to backwards recursion in the construction of the aggregate

utility functions ũt, the representing functions for t > τ stay unaltered by the change

(uτ , fτ , gτ ) → (u′
τ , f

′
τ , g

′
τ ). For aggregate intertemporal utility in period τ find:

ũ′
τ (xτ , pτ+1) = sτg

−1
τ

[
θτ gτs

−1
τ sτuτ (xτ ) +θτθ

−1
τ+1 gτ+1M

fτ+1(pτ+1, ũτ+1) +θτθ
−1
τ+1ϑτ

]

= sτ ◦ ũτ (xτ , pτ+1) .

Note that the normalization constants do not change as the range of gτ and g′
τ are the

same. Then, the new representing functional in period τ becomes

Mf ′

τ (pτ , ũ
′
τ ) = Mf ′

τ (pτ , sτ ◦ ũτ )

= sτ ◦ f−1
τ

[ ∫
fτ ◦ s−1

τ ◦ sτ ◦ ũτ dpτ

]
= sτ ◦M

fτ (pτ , ũτ ).

As it corresponds to a strictly increasing transformation of Mfτ (pτ , ũτ ), it represents

�τ . For period τ − 1 the new aggregate intertemporal utility function becomes:

ũ′
τ−1(xτ−1, pτ ) = g−1

τ−1

[
θτ−1 gτ−1uτ−1(xτ−1) + θτ−1

θτ
gτs

−1
τ Mf ′

τ (pτ , ũ′
τ ) + θτ−1

θτ
ϑτ−1

]

= g−1
τ−1

[
θτ−1 gτ−1uτ−1(xτ−1) + θτ−1

θτ
gτs

−1
τ sτM

fτ (pτ , ũτ ) + θτ−1

θτ
ϑτ−1

]

= ũτ−1(xτ−1, pτ ).

Therefore, again due to backwards recursion in the construction of the functions ũt, the

representing functions in periods t < τ stay unchanged. In consequence, (ut, ft, gt)
′
t∈{1,...,T}

is a representation of (�t)t∈{1,...,T} in the sense of theorem 4, whenever

(ut, ft, gt)t∈{1,...,T} is a representation of (�t)t∈{1,...,T} in the sense of theorem 4. 2

Proof of corollary 6: The main part of the proof imitates that of corollary 2. Instead

of applying lemma 1, gauge lemma 4 is used for every period.

Moreover part: “⇒”: Also the moreover part works along the lines of corollary 2.

Let (ut, ft, gt)t∈{1,...,T} and (u′
t, ft, g

′
t)t∈{1,...,T} be representations in the sense of the corol-

lary. Then it exists for every t a strictly increasing, continuous function st such that
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u′
t = st ◦ ut. Lemma 4 implies that with (u′

t, ft, g
′
t)t∈{1,...,T} = (st ut, ft, g

′
t)t∈{1,...,T} being

a representation of �, so is the sequence of triples (u,ftst, g
′
tst)t∈{1,...,T}. Comparing the

latter to the representation (ut, ft, gt)t∈{1,...,T} it can be deduced from the moreover part

of theorem 4 that there have to exist a ∈ IR++ as well as affine transformations a+
t ∈ A+

and aa
t ∈ Aa for all t ∈ {1, ..., T}, such that

ft = a+
t ft st ⇔ s−1

t = f−1
t a+

t ft and (C.10)

gt = aa
t g

′
tst. (C.11)

Substituting the result for the functions st into the equations for gt and ut renders

gt = aa
t g

′
tf

−1
t a+

t
−1

ft and

ut = s−1
t u′

t = f−1
t a+

t ft u
′
t.

“⇐”: Let the sequence of triples (ut, ft, gt)t∈{1,...,T} be a representation of the pref-

erences described by �= (�t)t∈{1,...,T}. Then by theorem 4, with a+
t ∈ A+ for t ∈

{1, ..., T}, and aa
t ∈ Aa, also the sequence (ut,a

+
t ft,a

a
t gt)t∈{1,...,T} is a representation

of �. By lemma 4 it follows that also ([a+
t f ]ut,a

+
t ft[a

+
t ft]

−1,aa
t gt[a

+
t ft]

−1)t∈{1,...,T} =

(a+
t ftut, id,aa

t gtf
−1
t a+

t
−1

)t∈{1,...,T} is a representation of �. Applying lemma 4 once again

yields the result that the sequence (f−1
t a+

t ftut, ft,a
a
t gtf

−1
t a+

t
−1

ft)t∈{1,...,T} is a represen-

tation of �. 2

Proof of corollary 7: Imitates the proof of corollary 6. In the moreover part instead

of equations (C.10) and (C.11) find

ft = a+
t f ′

t st and

gt = aa
t gtst ⇔ s−1

t = g−1
t aa

t gt .

Substituting the result for the functions st into the equations for ft and ut renders

ft = a+
t f ′

t g−1
t aa

t
−1gt and

ut = s−1
t u′

t = g−1
t aa

t gt u
′
t .

2

Proof of theorem 6: The proof is divided into five parts. In the first, I translate

axiom A6 s into the representation of theorem 4. In the second part, I show that the

equation derived in the first part locally implies strict concavity of ft ◦ g−1
t . Part three

extends this result to strict concavity on the entire set Γt. Part four proofs the necessity

of axiom A6 s for the strict concavity of ft ◦ g−1
t . Together, parts one through four proof

assertion a) of the theorem for the case of strict intertemporal risk aversion. For the

case of strict intertemporal risk seeking just change the signs in the inequalities and

replace concave by convex. Part five lays out how assertions b-d) follow from the proof
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of assertion a). Part I (“⇒”): In part one I translate axiom A6 s into the representation

of theorem 4. I start with the first line, i.e the premise, and use equation (C.1) to find:

xt ∼t x′t

⇒ g−1
t

[
θt

T∑

τ=t

gτuτ (x
t
τ ) + ξt

]
= g−1

t

[
θt

T∑

τ=t

gτuτ (x
′t
τ ) + ξt

]
. (C.12)

The existence of τ ∈ {t, ..., T} such that [xt
τ ]τ 6∼τ [x′t

τ ]τ , translates into

gτuτ (x
t
τ ) 6= gτu(x′t

τ ) for some τ ∈ {t, ..., T}. (C.13)

The second line of axiom A6 s becomes

xt ≻T

∑T
i=t

1
T−t+1

(xt
−ix

′t
i ).

⇒ g−1
t

[
θt

∑T
τ=t gτuτ (x

t
τ ) + ξt

]
>

f−1
t

[∑T
i=t

1
T−t+1

ftg
−1
t

[
θt

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]]

⇒ftg
−1
t

[
θt

∑T
τ=t gτuτ (x

t
τ ) + ξt

]
>
∑T

i=t
1

T−t+1
ftg

−1
t

[
θt

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]
.

Using equation (C.12) the left hand side can be transformed as follows:

ftg
−1
t

[
T−t

T−t+1

[
θt

∑T
τ=t gτuτ (x

t
τ ) + ξt

]
+ 1

T−t+1

[
θt

∑T
τ=t gτuτ (x

′t
τ ) + ξt

]]
>

∑T
i=t

1
T−t+1

ftg
−1
t

[
θt

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]

⇒ ftg
−1
t

[
1

T−t+1

[
θt

∑T
i=t

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]]
>

∑T
i=t

1
T−t+1

ftg
−1
t

[
θt

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]

⇒ ftg
−1
t

[∑T
i=t

1
T−t+1

[
θt

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]]
> (C.14)

∑T
i=t

1
T−t+1

ftg
−1
t

[
θt

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]
.

Let me define the function z̃ : Xt → Γt by z̃(xt) = θt

∑T
τ=t gτuτ (xt

τ ) + ξt. Compare

part two of the proof of theorem 4 to see that, when restricting the domain to those

consumption paths satisfying equation (C.13),6 the function z̃ is onto Γt =
(
Gτ , Gτ

)
=(

θt

∑T
τ=t Gτ +ξt , θt

∑T
τ=t Gτ +ξt

)
. In particular define zi = z̃

(
(xt

−ix
′t
i )
)
. In this notation

equation (C.14) becomes

ftg
−1
t

(∑T
i=t

1
T−t+1

zi

)
>

∑T
i=t

1
T−t+1

ftg
−1
t (zi). (C.15)

If equation (C.15) had to hold for all zi ∈ Γt it would be a straight forward condition

for strict concavity of ft ◦ g−1
t . However, axiom A6 s does not immediately imply that

the equation has to be met for every choice (zi)i∈{t,...,T}, zi ∈ Γt. Equation (C.15) has to

6It is for the latter restriction that the theorem is considering the open set Γt.
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hold only for sequences (zi)i∈{t,...,T} that are stemming from consumption paths (xt
−ix

′t
i )

for which x′t ∈ Xt and xt
τ ∈ Xt satisfy the premise of axiom A6 s. In what follows, I

proceed to show that this restricted demand is enough to imply strict concavity of ft ◦g−1
t

on Γt.

Part II (“⇒”): Let zo ∈ Γt. In this part I show that for every such zo there exists

an open neighborhood Nzo ⊂ Γt such that equation (C.15) implies strict concavity of

ft ◦ g−1
t on Nzo .

In the first step I define a certain consumption path xot ∈ Xt with z̃(xot) = zo. It

will satisfy the additional characteristic that none of its outcomes is extremal. Define

(Go
τ )τ∈{t,...,T} to be a sequence with Gτ < Go

τ < Gτ∀τ and θt

∑T
τ=t G

o
τ + ξt = zo. Such a

sequence has to exist as zo ∈ Γt implies θt

∑T
τ=t Gτ +ξt < zo < θt

∑T
τ=t Gτ +ξt. Moreover

by connectedness of X and continuity of gτ ◦ uτ there exists for every τ ∈ {t, ..., T} an

outcome xo
τ ∈ u−1

τ [g−1
τ (Go

τ )] such that Go
τ = uτgτ (x

o
τ ). Define xot

τ = (xo
t , ..., x

o
T ).

In the second step I define deviation paths xµt around xot. Set ǫτ = min{Go
τ −

Gτ , Gτ − Go
τ} for τ ∈ {t, ..., T} and let ǫ = minτ∈{t,...,T} ǫτ . By construction of xot it is

ǫ > 0. For any sequence µ = (µτ )τ∈{t,...,T} with µτ ∈ (−ǫ, ǫ) define Gµ
τ = Go

τ + µτ for all

τ ∈ {t, ..., T}. Then each Gµ
τ is element of (Go

τ − ǫ, Go
τ + ǫ) ⊂ (Gτ , Gτ ) and hence there

exists xµ
τ

t ∈ u−1
t

[
g−1

t (Gµ
τ )
]
. Define xµt = (xµ

t , ..., x
µ
T ).

Third, I calculate the zµ
i ∈ Γt corresponding to the consumption paths (xot

−ix
µt

i) and

restate the condition xot ∼t xµt in terms of zo and (zµ
i )i∈{t,...,T}. It is

zµ
i = z̃

(
(xot

−ix
µt

i)
)

= θt

∑T
τ=t gτuτ

(
(xot

−ix
µt

i)τ

)
+ ξt

= θt

(
(
∑T

τ=t G
o
τ ) − Go

i + Gµ
i

)
+ ξt

= zo + θt(G
µ
i − Go

i ).

Hence zµ
i = z̃

(
(xot

−ix
µt

i)
)

as a fuction of µi is onto (Go
τ − θtǫ , Go

τ + θtǫ). The equation

also implies that the condition [xot
τ ] 6∼τ [xµt

τ ] ⇔ gτuτ (x
η
τ ) 6= gτu(xµ

τ ) ⇔ Go
τ 6= Gµ

τ for

some τ ∈ {t, ..., T} is equivalent zµ
i 6= zo for some τ . Using equation (C.12) I further

find that xot ∼t xµt translates into

θt

∑T
τ=t G

o
τ + ξt = θt

∑T
τ=t G

µ
τ + ξt

⇒ θt

∑T
τ=t G

o
τ + ξt = T−t

T−t+1

(
θt

∑T
τ=t G

o
τ + ξt

)
+ 1

T−t+1

(
θt

∑T
τ=t G

µ
τ + ξt

)

⇒ θt

∑T
τ=t G

o
τ + ξt = 1

T−t+1

∑T
i=t

(
θt

(
(
∑T

τ=t G
o
τ ) − Go

i + Gµ
i

)
+ ξt

)

⇒ zo = 1
T−t+1

∑T
i=t z

µ
i .

Summarizing steps one to three I have shown that equation (C.15) has to hold for all

sequences (zi)i∈{t,...,T} with zi ∈ (zo−θtǫ, z
o +θtǫ) satisfying 1

T−t+1

∑T
i=t zi = zo (and not

all zi = zo). However, due to the restriction that the weighted average has to equal zo
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this requirement is not enough to guarantee concavity of ftg
−1
t on zi ∈ (zo−θtǫ, z

o+θtǫ).

Define Nzo = (zo − θtǫ
2

, zo + θtǫ
2

). In the following I proceed to show that (C.15) has

to hold for all non-constant sequences (zi)i∈{t,...,T} with zi ∈ Nzo . The latter will be

sufficient to guarantee strict concavity of ftg
−1
t on the open set Nzo .

In step four, take any z∗ ∈ Nzo . I construct a corresponding consumption path x∗t

with z∗ = z̃(x∗t) as well as a perturbation xηt around it. Define

G∗
τ = Go

τ + z∗−zo

θt(T−t+1)
∈
(
Go

τ −
−θtǫ

2θt(T−t+1)
, Go

τ + −θtǫ
2θt(T−t+1)

)
⊂ (Go

τ − ǫ, Go
τ + ǫ) .

Then there exists x∗
τ ∈ u−1

t

[
g−1

t (G∗
τ )
]
. Define the consumption path x∗t = (x∗

t , ..., x
∗
T )

and find that indeed

z̃(x∗t) = θt

T∑

τ=t

G∗
τ + ξt = θt

(
T∑

τ=t

Go
τ + z∗−zo

θt(T−t+1)

)
+ ξt

= zo + z∗ − zo

(
T∑

τ=t

1
(T−t+1)

)
= z∗

Aim of the following construction is to make sure that the perturbations xηt around

x∗t account for all sequences (zi)i∈{t,...,T} with zi ∈ Nzo that satisfy 1
T−t+1

∑T
i=t zi = z∗.

Define ǫ∗− = ǫ−(Go
i −G∗

i ) and ǫ∗+ = ǫ+(Go
i −G∗

i ). For any sequence η = (ητ )τ∈{t,...,T} with

ητ ∈ (−ǫ∗−, ǫ∗+) let Gη
τ = Go

τ +ητ for all τ ∈ {t, ..., T}. Then each Gη
τ is in (Go

τ−ǫ, Go
τ +ǫ) ⊂

(Gτ , Gτ ) and hence there exists xη
τ
t ∈ u−1

t

[
g−1

t (Gη
τ )
]
. Let xηt = (xη

t , ..., x
η
T ).

In step five, I calculate the zη
i = z̃

(
(x∗t

−ix
ηt
i)
)

corresponding to the consumption paths

(x∗t
−ix

ηt
i) and restate the condition x∗t ∼t xηt in terms of z∗ and (zη

i )i∈{t,...,T}. It is

zη
i = z̃

(
(x∗t

−ix
ηt
i)
)

= θt

∑T
τ=t gτuτ

(
(x∗t

−ix
ηt
i)τ

)
+ ξt

= θt

(
(
∑T

τ=t G
∗
τ ) − G∗

i + Gη
i

)
+ ξt

= z∗ + θt(G
η
i − G∗

i ). (C.16)

As before with xot and xµt the condition [x∗t
τ ] 6∼τ [xηt

τ ] for some τ ∈ {t, ..., T} is

equivalent to zµ
i 6= zo for some i and equations (C.12) and (C.16) translate x∗t ∼t xηt

into

z∗ = 1
T−t+1

∑T
i=t z

η
i .

In step six it is shown that the zη
i calculated in the previous step can generate any

sequence (zi)i∈{t,...,T} with elements zi ∈ Nzo that satisfies 1
T−t+1

∑T
i=t z

η
i = z∗. To verify
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this fact find that each zη
i = z∗ + θt(G

η
i − G∗

i ) can take any7 of the values in(
z∗ + θt(−ǫ∗−) , z∗ + θtǫ

∗
−

)

=
(
zo + (z∗ − zo) − θt

(
ǫ − (Go

i − G∗
i )
)

, zo + (z∗ − zo) + θt

(
ǫ + (Go

i − G∗
i )
))

=
(
zo + (z∗ − zo) − θtǫ − θt

z∗−zo

θt(T−t+1)
, zo + (z∗ − zo) + θtǫ − θt

z∗−zo

θt(T−t+1)

)

=
(
zo − θtǫ + (z∗ − zo)

(
1 − 1

T−t+1

)
, zo + θtǫ + (z∗ − zo)

(
1 − 1

T−t+1

) )

which due to z∗ ∈ Nzo = (zo − θtǫ
2

, zo + θtǫ
2

) is a superset of

⊇
(
zo − θtǫ + θtǫ

2

(
1 − 1

T−t+1

)
, zo + θtǫ −

θtǫ
2

(
1 − 1

T−t+1

) )

⊇
(
zo − θtǫ

2
, zo + θtǫ

2

)
.

Therefore the zη
i can take on any value in Nzo as long as the sequence satisfies z∗ =

1
T−t+1

∑T
i=t z

η
i . Hence equation (C.15) also has to hold for all non-constant sequences

(zi)i∈{t,...,T} with zi ∈ Nzo and 1
T−t+1

∑T
i=t zi = z∗.

Finally, I show that ftg
−1
t has to be strictly concave on Nzo . Equation (C.15) has to

hold for all non-constant sequences (zi)i∈{t,...,T} with zi ∈ Nzo and 1
T−t+1

∑T
i=t zi = z∗.

But z∗ was an arbitrary element of Nzo and steps four to six hold for any z∗ ∈ Nzo .

Therefore equation (C.15) has to hold for all sequences (zi)i∈{t,...,T} with zi ∈ Nzo except

for the constant sequences with zi = zj ∀ i, j ∈ {t, ..., T}).8 Now pick any l ∈ {t, ..., T−1}

and define λ = l−t+1
T−t+1

> 0. Furthermore for any pair za, zb ∈ Nzo select zt = ... = zl = za

and zl+1 = ... = zT = zb. Then equation (C.15) becomes

ftg
−1
t

(
λza + (1 − λ)zb

)
> λftg

−1
t (za) + (1 − λ)ftg

−1
t (zb)

and has to hold for all za, zb ∈ Nzo , za 6= zb. But due to the continuity of ft ◦ g−1
t this

implies strict concavity of ft ◦ g−1
t on Nzo (Hardy et al. 1964, 74,75).

Part III (“⇒”): In this part I show that the local strict concavity of ft ◦ g−1
t on Nzo

for all zo ∈ Nzo as derived in the second part implies strict concavity on Γt.
9 I will

first demonstrate that weak concavity extends to Γt and then that local strict concavity

together with global weak concavity imply strict concavity of ft ◦ g−1
t on all of Γt.

First, note that a concave function ht = ft ◦ g−1
t on Nzo has non-increasing right-

continuous right-derivatives h′
t+ as well as non-increasing left-continuous left-derivatives

7Of course all zi together have to sum up to (T − t + 1)z∗ and not all zi can be equal to z∗. These
however are the only restrictions.

8Any such sequence yields a weighted arithmetic mean that lies within Nzo .

9I have to show that concavity does not only hold for convex combinations within a particular set
Nzo but for all convex combinations within Γt.
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h′
t− at every point in Nzo (van Tiel 1984, 4,5). Moreover there are at most countably

many points in Nzo where ht is not differentiable (van Tiel 1984, 5). Take any closed

interval [zl, zu] ⊂ Γt. Then already a finite number of open sets Nzo with zo ∈ I ⊆ Γt, I

finite, cover [zl, zu] (Heine-Borel-theorem). Hence there are just countably many points

where ht is not differentiable on [zl, zu]. Denote the countable set where ht is not differ-

entiable by A. Then on [zl, zu]\A it is h′
t− = h′

t+ and due to the left-continuity of the

left-derivative and right-continuity of the right-derivative ht
′ is continuous on [zl, zu]\A.

Moreover for all points in A the left- and right-derivative exist. But for such an almost

everywhere continuously differentiable function the fundamental theorem of calculus

applies (Königsberger 1995, 217). Therefore the relation ht(z) = ht(c) +
∫ z

c
h′

t+(z′) dz,

c, z ∈ [zl, zu] holds. By van Tiel (1984, 9) such an integral representation with a right-

continuous non-increasing integrand is a sufficient condition for weak concavity of ht on

[zl, zu]. Moreover any open set Γt ⊂ IR is exhaustible by compact sets, i.e there exists

an isotone sequence of closed intervals [zl
n, z

u
n],

n∈IN such that Γt =
⋃

n∈IN[zl
n, zu

n]. Hence

ht has to be weakly concave on Γt.

Second, I show that local strict concavity together with global weak concavity implies

strict concavity on Γt. Take any pair of points za, zb ∈ Γt, za < zb. Let zc ∈ Nzb
be a

point satisfying za < zc < zb. Moreover define λ ∈ (0, 1) by zc = λza + (1 − λ)zb and

let µ = 1
2λ

. Then the following inequality holds for any pair za 6= zb in Γt (as za < zb is

wlog):

ftg
−1
t

(
1
2
za + 1

2
zb

)
= ftg

−1
t

(
µ λ za + (1 − µ λ) zb

)

= ftg
−1
t

(
µ λ za +

(
µ (1 − λ) + (1 − µ)

)
zb

)

= ftg
−1
t

(
µ (λ za + (1 − λ) zb)︸ ︷︷ ︸

zc

+(1 − µ) zb

)

> µ ftg
−1
t

(
λza + (1 − λ) zb

)
+ (1 − µ) ftg

−1
t (zb)

≥ µ
(
λ ftg

−1
t (za) + (1 − λ) ftg

−1
t (zb)

)
+ (1 − µ) ftg

−1
t (zb)

= µ λ ftg
−1
t (za) +

(
µ (1 − λ) + (1 − µ)

)
ftg

−1
t (zb)

= µ λ ftg
−1
t (za) + (1 − µλ) ftg

−1
t (zb)

= 1
2
ftg

−1
t (za) + 1

2
ftg

−1
t (zb) .

Therefore ftg
−1
t is strictly concave on Γt (Hardy et al. 1964, 75).

Part IV (“⇐”): It is left to proof that strict concavity on Γt implies axiom A6 s. As
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in part one of this proof the prerequisite of A6 s becomes

xt ∼t x′t

⇒ g−1
t

[
θt

T∑

τ=t

gτuτ (x
t
τ ) + ξt

]
= g−1

t

[
θt

T∑

τ=t

gτuτ (x
′t
τ ) + ξt

]
. (C.17)

The existence of i ∈ {t, ..., T} such that [xt
i]i 6∼i [x′t

i ]i translates into

gτuτ (x
t
i) 6= gτu(x′t

i )

⇔ θt

T∑

τ=t
τ 6=i

gτu(xt
τ ) + θtgiuτ (x

t
i) + ξt 6=

T∑

τ=t
τ 6=i

gτu(xt
τ ) + θtgτu(x′t

i ) + ξt

⇔ z̃(xt) 6= z̃
(
(xt

−ix
′t
i )
)

(C.18)

for some i ∈ {t, ...T}. But then due to strict concavity of ft◦g
−1
t , the fact that z̃

(
(xt

−ix
′t
i )
)

cannot be the same for all i,10 and using equation (C.17) it has to hold that

ftg
−1
t

[∑T
i=t

1
T−t+1

[
θt

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]]
>

∑T
i=t

1
T−t+1

ftg
−1
t

[
θt

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]

⇒ ftg
−1
t

[
T−t

T−t+1

[
θt

∑T
τ=t gτuτ (x

t
τ ) + ξt

]
+ 1

T−t+1

[
θt

∑T
τ=t gτuτ (x

′t
τ ) + ξt

]]
>

∑T
i=t

1
T−t+1

ftg
−1
t

[
θt

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]

⇒ g−1
t

[
θt

∑T
τ=t gτuτ (x

t
τ ) + ξt

]
>

f−1
t

[∑T
i=t

1
T−t+1

ftg
−1
t

[
θt

∑T
τ=t gτuτ

(
(xt

−ix
′t
i )τ

)
+ ξt

]]

⇒ xt ≻T

∑T
i=t

1
T−t+1

(xt
−ix

′t
i ) .

Note that the flow of manipulations is laid out in more detail (going backwards) in part

two of the proof.

Part V: Assertion b) is obtained by replacing A6 s by A6wand the strict inequaties

by their weak counterparts.11 A decision maker is intertemporally risk neutral if his

preferences satisfy weak risk seeking as well as weak risk aversion. Therefore, assertion

b) implies that the function ft ◦ g−1
t has to be concave and convex at the same time

and, thus, linear. On the other hand, a representation featuring a linear composition

ft ◦ g−1
t yields indifference between the certain consumption path and the lottery and,

therefore, satisfies weak risk seeking as well as weak risk aversion (compare part four of

the proof). In consequence, assertion c) holds. The proof of assertion d) is completely

10This is implied by equation (C.18) as again z̃(xt) equals the weighted average
1

T−t+1

∑T
i=t z̃

(
(xt

−ix
′t
i )
)
.

11In this case the second step in part three becomes redundant.
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analogous to that of assertion a). Equation (C.15) becomes

ftg
−1
t

(
1
2
zhigh + 1

2
zlow

)
> 1

2
ftg

−1
t (zhigh) + 1

2
ftg

−1
t (zlow) ,

implying that the last step (“Finally...”) in part three of the proof can be omitted. 2

Proof of lemma 5: Let the triples (ut, ft, gt)t∈{1,...,T} and (ũt, f̃t, g̃t)t∈{1,...,T} be arbi-

trary representations for the set of preference relations �= (�t)t∈{1,...,T} in the sense of

theorem 4. For every t ∈ {1, ..., T} there exist, as in the proof of lemma 3, strictly in-

creasing continuous function st and affine transformations a+
t ∈ A+, as well as a ∈ R++

and affine transformations aa
t ∈ Aa, such that ũt = st ◦ ut, f̃t = a+

t ft ◦ s−1
t and

g̃t = aa
t gt ◦ s−1

t .

a) The requirement that for some t∗ both representations satisfy the condition ∆Gt∗ =

Gt∗ − Gt∗ = gt∗ ◦ ut∗(x
max) − gt∗ ◦ ut∗(x

min)
!
= w∗ implies

w∗ = G̃t∗ − G̃t∗ = g̃t∗ ◦ ũt∗(x
max) − g̃t∗ ◦ ũt∗(x

min)

= aa
t∗ gt∗ ◦ s−1

t∗ ◦ ũt∗(x
max) − aa

t∗ gt∗ ◦ s−1
t∗ ◦ ũt∗(x

min)

= aa
t∗ gt∗ ◦ ut∗(x

max) − aa
t∗ gt∗ ◦ ut∗(x

min)

= agt∗ ◦ ut∗(x
max) + bt∗ − agt∗ ◦ ut∗(x

min) − bt∗

= a
(
Gt∗ − Gt∗

)
= aw∗ .

Therefore, a = 1 and, as the multiplicative constant is the same for all periods, the

remaining freedom of the expression ft ◦ g−1
t corresponds to transformations ft ◦ g−1

t →

f̃t ◦ g̃−1
t = a+

t ft ◦ g−1
t a1

t
−1

, where a1
t
−1

denotes the inverse of aa=1
t , i.e. a1

t
−1

(z) = z − bt.

To compare the functions ft◦g
−1
t and f̃t◦g̃

−1
t characterizing intertemporal risk aversion

in the different representations, I first have to work out how the argument

z = θtgt ◦ ut(xt) + θtθ
−1
t+1gt+1

(
Mf (pt+1, ut+1

)
+ θtθ

−1
t+1ϑt

= θtgtut(xt) + (1 − θt)
∆Gt

∆Gt+1

(
gt+1M

f (pt+1, ut+1) + ϑt

)

scales under the above transformations. This step is necessary in order to compare both

measures for the same consumption plans. To this end, first note that a = 1 implies

∆G̃t = ∆Gt. Therefore it is θ̃t = θt. Moreover, simultaneous transformations (ut, gt) →

(ũ, g̃t) = (stut, gts
−1
t ) leave the normalization constant ϑt unchanged, because Gt =

gt ◦ ut(x
max
t ) = gts

−1
t stgt(x

max
t ) = g̃t ◦ ũt(x

max
t ) = G̃t and similarly Gt = G̃t. Therefore,

by equation (C.4) it follows that general transformations (ut, ft, gt) → (ũt, f̃t, g̃t) =
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(stut,a
+
t fts

−1
t , gts

−1
t + bt) yield ϑ̃t = ϑt − bt+1 + bt

∆Gt+1

∆Gt
. With these results, I find

z̃ = θ̃tg̃tũt(xt) + (1 − θ̃t)
∆G̃t

∆G̃t+1

(
g̃t+1M

f (pt+1, ũt+1) + ϑ̃t

)

= θt

(
gts

−1
t stut(xt) + bt

)
+

(1 − θt)
∆Gt

∆Gt+1

(
gt+1s

−1
t+1st+1M

f (pt+1, ut+1) + bt+1 + ϑt − bt+1 + bt
∆Gt+1

∆Gt

)

= θtgtut(xt) + (1 − θt)
∆Gt

∆Gt+1

(
gt+1M

f (pt+1, ut+1) + ϑt

)
+

+θtbt + (1 − θt)
∆Gt

∆Gt+1

(
bt

∆Gt+1

∆Gt

)

= θtgtut(xt) + (1 − θt)
∆Gt

∆Gt+1

(
gt+1M

f (pt+1, ut+1) + ϑt

)
+ bt

= z + bt.

In consequence, for twice differentiable functions ft ◦gt, it follows by equation (7.8) that

˜AIRAt(z̃)
∣∣∣
z̃=z+bt

= −

(
f̃t◦g̃

−1
t

)
′′

(z̃)(
f̃t◦g̃

−1
t

)
′

(z̃)

∣∣∣∣
z̃=z+bt

= −
(ft◦g

−1
t )

′′

(z)

(ft◦g
−1
t )

′

(z)
= AIRAt(z) .

Thus, the measures of absolute intertemporal risk aversion AIRAt are independent of the

particular choice of the triples (ut, ft, gt)t∈{1,...,T} representing the underlying preferences

�= (�t)t∈{1,...,T} .

b) The requirement that gt ◦ ut(x
zero
t ) = g̃t ◦ ũt(x

zero
t ) = 0 for all t ∈ {1, ..., T} yields

0 = g̃t ◦ ũt(x
zero
t )

= agt ◦ s−1
t stut(x

zero
t ) + bt

= agt ◦ ut(x
zero
t ) + bt

= a · 0 + bt = bt .

Therefore it is f̃t ◦ g̃−1
t = a+ftg

−1
t a−1. To compare the functions ft ◦ g−1

t and f̃t ◦

g̃−1
t , characterizing intertemporal risk aversion, I have to relate the arguments z and z̃

corresponding to the same consumption plan. As in the proof of assertion a), it holds

that the transformations st leave Gt, Gt, and ∆Gt unchanged. Therefore, I know for the

general transformations (ut, ft, gt) → (ũt, f̃t, g̃t) = (stut,a
+
t fts

−1
t , agts

−1
t ) by equation

(C.3) that θ̃t = θt and by equation (C.4) that ϑ̃ = aϑt. With these results, I find

z̃ = θ̃tg̃tũt(xt) + (1 − θ̃t)
∆G̃t

∆G̃t+1

(
g̃t+1M

f (pt+1, ũt+1) + ϑ̃t

)

= θtagts
−1
t stut(xt) + (1 − θt)

∆Gt

∆Gt+1

(
agt+1s

−1
t+1st+1M

f (pt+1, ut+1) + aϑt

)

= a
(
θtgtut(xt) + (1 − θt)

∆Gt

∆Gt+1

(
gt+1M

f (pt+1, ut+1) + ϑt

))

= az.

In consequence, for twice differentiable functions ft ◦gt, it follows by equation (7.6) that

˜RIRAt(z̃)
∣∣∣
z̃=az

= −

(
f̃t◦g̃

−1
t

)
′′

(z̃)(
f̃t◦g̃

−1
t

)
′

(z̃)
z̃

∣∣∣∣
z̃=az

= −
(ft◦g

−1
t )

′′

(z)

(ft◦g
−1
t )

′

(z)
z = RIRAt(z) .
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Thus, the measures of relative intertemporal risk aversion RIRAt are independent of the

particular choice of the triples (ut, ft, gt)t∈{1,...,T} representing the underlying preferences

�= (�t)t∈{1,...,T} .

c) Simply combine statements a) and b), acknowledging that the requirements are dis-

joint in the sense that a) fixes the multiplicative parameter a, while b) fixes the trans-

lational parameters bt.

d) As in the proof of asserion a), it follows that a = 1. Therefore, the requirement

Gt = G̃t = wt for all t ∈ {1, ..., T} implies

wt = G̃t = g̃tũt(x
min)

= gts
−1
t stut(x

min) + bt = gtut(x
min) + bt

= wt + bt,

and thus bt = 0 for all t ∈ {1, ..., T}. But then, the rest of the proof is equivalent to

that of assertions a) and b). 2

C.2 Proofs for Chapter 9

Proof of theorem 7: The proof is divided into four parts. Axioms A1-A3, A4’ and

A5’ assure the existence of a representation in the sense of theorem 4. In the first part

I show that axiom A7 allows to pick the same Bernoulli utility for all periods. In the

second part I work out a relation between the functions gt in different periods that has

to hold in such a representation by axiomA7. Part three calculates the corresponding

normalization constants and brings about the representation stated in the theorem.

Finally, part four proves the necessity of the axioms.

Part I (“⇒”): I show that axiom A7 implies that there exists a strictly monotonic

and continuous transformation st such ut−1 = st ◦ ut for any t ∈ {1, .., T}. To this end,
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translate axiom A7 into the representation of theorem 4 using equation (C.1).

(x2, x0) �1 (x′2, x0) ⇔ x2 �2 x′2

; ũ1

(
(x2, x0)

)
≥ ũ1

(
(x′2, x0)

)
⇔ ũ1(x

2) ≥ ũ1(x
′2)

; g−1
1

(
θ1

T∑

τ=2

gτ−1 ◦ uτ−1(x
2
τ ) + gT ◦ uT (x0) + ξ1

)

≥ g−1
1

(
θ1

T∑

τ=2

gτ−1 ◦ uτ−1(x
′2
τ−1) + gT ◦ uT (x0) + ξ1

)

⇔ g−1
2

(
θ2

T∑

τ=2

gτ ◦ uτ (x
2
τ ) + ξ2

)
≥ g−1

2

(
θ2

T∑

τ=2

gτ ◦ uτ (x
′2
τ ) + ξ2

)

Considering in particular the consumption paths x2, x′2 satisfying x2
τ = x′2

τ ∀ τ 6= t yields

; gt−1 ◦ ut−1(x
2
t ) ≥ gt−1 ◦ ut−1(x

′2
t ) ⇔ gt ◦ ut(x

2
t ) ≥ gt ◦ ut(x

′2
t )

; ut−1(x
2
t ) ≥ ut−1(x

′2
t ) ⇔ ut(x

2
t ) ≥ ut(x

′2
t )

for all x2
t = x′2

t ∈ X. Therefore, as in the proof of proposition 7, it has to exist a strictly

monotonic and continuous transformation st such that ut−1 = st ◦ ut. But then, by

induction it is B�1 = B�2 = ... = B�T
≡ B� and I can pick a common Bernoulli utility

function u ∈ B� for all periods.

Part II (“⇒”): In this part, I derive an affine relation between the functions gt in

different periods. To this end, I translate axiom A7 into the particular representation

in the sense of theorem 4, which applies the same Bernoulli utility function u for all

periods. Using again equation (C.1) I obtain the condition

T∑

τ=2

gτ−1 ◦ uτ−1(x
2
τ ) +������

gT ◦ uT (x0) ≥
T∑

τ=2

gτ−1 ◦ uτ−1(x
′2
τ−1) +������

gT ◦ uT (x0)

⇔
T∑

τ=2

gτ ◦ uτ (x
2
τ ) ≥

T∑

τ=2

gτ ◦ uτ (x
′2
τ )

for all x2, x′2 ∈ X2. The above equivalence implies that both,
∑T

τ=2 gτ ◦ uτ (x
2
τ ) and∑T

τ=2 gτ−1 ◦ uτ−1(x
2
τ ), are representations for �2 |

X
2 . In consequence, by the more-

over part of theorem 4 there exist a ∈ IR++ and bt ∈ IR, t ∈ {1, ..., T − 1}, such that

gt = agt+1 + bt for all t ∈ {1, ..., T − 1}.12 Use the freedom in the uniqueness of

(gt)t∈{1,...,T} to define g̃t = gt −
∑T−1

τ=t aτ−tbτ for t ∈ {1, ...T − 1} without loosing the rep-

12Here it is g′t = gt+1. Note that it is immediate from the proof of the moreover part in theorem
4 that coincidence of the representations (only) on the certain outcome paths is enough to assure the
uniqueness result for (gt)t ∈ {1, ..., T}.
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resentative character of the sequence (u, ft, g̃t)t∈{1,...,T} for (�t)t∈{1,...,T}. Observe that

g̃t = gt−
∑T−1

τ=t aτ−tbτ = agt+1+bt−bt−a
∑T−1

τ=t+1 aτ−tbτ = ag̃t+1. Set g = aT−1g̃T . More-

over let β = a−1. Then the sequence of triples (u, ft, a
T−tg̃T ) = (u, ft, β

t−T βT−1g) =

(u, ft, β
t−1g) for t ∈ {1, ..., T} represents (�t)t∈{1,...,T} in the sense of theorem 4.

Note 1: Expressing the triples with respect to g̃τ instead of g yields the equivalent rep-

resentation triples (u, ft, β
t−τ g̃τ )t∈{1,...,T} and in particular for τ = T the representation

(u, ft, β
t−T g̃T )t∈{1,...,T}.

Part III (“⇒”): Calculating the corresponding normalization constants for the repre-

senting tuples derived in the previous step, yields the representation stated in the theo-

rem. In the usual convention denote ∆Gt = Gt −Gt and G = [G,G] = [g(minx∈X u(x)),

g(maxx∈X u(x))] and find

θt = ∆Gt
PT

τ=t ∆Gτ
= βt∆G

PT
τ=t βτ∆G

= 1
1+β+β2+...+βT−t = 1−β

1−βT−t+1 for β 6= 1,

θt = ∆Gt
PT

τ=t ∆Gτ
= ∆G

PT
τ=t ∆G

= ∆G
(T−t+1)∆G

= 1
T−t+1

for β = 1 and

ϑt =
Gt+1Gt−Gt+1Gt

∆Gt
= βt+1G βtG−βt+1G βtG

βt∆G
= 0.

Using equation (C.2) it is straight forward to calculate the aggregate intertemporal

utility functions. In the case β 6= 1 they are

ũt(·, ·) = g̃−1
t

[
θtg̃t ◦ u(·) + (1 − θt)

∆G̃t

∆G̃t+1

(
g̃t+1 ◦M

ft+1(·, ũt+1) + 0
)}]

= g−1
[
β−t+1

{
θtβ

t−1g ◦ u(·) + (1 − θt)β
−1
(
βtg ◦Mft+1(·, ũt+1)

)}]

= g−1
[

θtg ◦ u(·) + (1 − θt)g ◦Mft+1(·, ũt+1)
]
.

Defining βt = 1−θt = 1− 1−β
1−βT−t+1 = 1−βT−t+1−1+β

1−βT−t+1 = β 1−βT−t

1−βT−t+1 gives the representation

stated in the theorem. For β = 1 find

ũt(·, ·) = g−1
[

1
T−t+1

g ◦ u(·) + (1 − 1
T−t+1

)g ◦Mft+1(·, ũt+1)
]

and define βt = 1 − θt = 1 − 1
T−t+1

= T−t+1−1
T−t+1

= T−t
T−t+1

to get the stated representation.

Note 2: For the evaluation of certain consumption paths equation (C.1) together with

ϑt = 0 and hence ξt = 0 yields:

ũt(x
t) = g̃−1

t

[
θt

T∑

τ=t

g̃τ ◦ uτ (x
t
τ )
]

= g−1
[
(1 − βt)

T∑

τ=t

βτ−tg ◦ u(xt
τ )
]
. (C.19)

Part IV (“⇐”): Axioms A1-A5 follow immediately from “⇐” of theorem 4. To see

that axiom A7 holds, take a look at equation (C.19) and note that g−1 and the x0 term

cancel in the representation of A7 (for any x0).

Moreover part: The moreover part is an immediate consequence of the moreover part

of theorem 4. 2
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Proof of theorem 8: “⇒”: Axioms A1-A7 assure the existence of a representation in

the sense of theorem 7. Axiom A8 implies furthermore that the uncertainty aggregation

rules in different periods can be characterized by the same function. Using equation

(C.19) to translate axiom A8 into the representation of theorem 7 yields for the first

expression

1
2
x̄ t + 1

2
x̄′ t �t x̄′′ t

⇔ f−1
t

[
1
2
ft ◦ ũt(x̄

t) + 1
2
ft ◦ ũt(x̄

′ t)
]

≥ ũt(x̄
′′ t)

⇔ f−1
t

[
1
2
ft ◦ g−1

[
(1 − βt)

∑T
τ=t β

τ−tg ◦ u(x̄)
]
+ 1

2
ft ◦ g−1

[
(1 − βt)

∑T
τ=t β

τ−tg ◦ u(x̄′)
]]

≥ g−1
[
(1 − βt)

∑T
τ=t β

τ−tg ◦ u(x̄′′)
]

⇔ f−1
t

[
1
2
ft ◦ g−1

[
1−β

1−βT−t+1
1−βT−t+1

1−β
g ◦ u(x̄)

]
+ 1

2
ft ◦ g−1

[
1−β

1−βT−t+1
1−βT−t+1

1−β
g ◦ u(x̄′)

]]

≥ g−1
[

1−β
1−βT−t+1

1−βT−t+1

1−β
g ◦ u(x̄′′)

]

⇔ f−1
t

[
1
2
ft ◦ u(x̄) + 1

2
ft ◦ u(x̄′)

]
≥ u(x̄′′) ,

and analogously for the second expression

1
2
x̄ t+1 + 1

2
x̄′ t+1 �t+1 x̄′′ t+1

⇔ f−1
t+1

[
1
2
ft+1 ◦ ũt+1(x̄

t+1) + 1
2
ft+1 ◦ ũt+1(x̄

′ t+1)
]

≥ ũt+1(x̄
′′ t+1)

⇔ f−1
t+1

[
1
2
ft+1 ◦ u(x̄) + 1

2
ft+1 ◦ u(x̄′)

]
≥ u(x̄′′) .

For all x̄, x̄′ ∈ X there is an outcome x̄′′ ∈ X such that the above relations hold with

equality (compare proof of theorem 2). This fact implies that the following equality has

to hold for all x̄, x̄′ ∈ X:

f−1
t

[
1
2
ft ◦ u(x̄) + 1

2
ft ◦ u(x̄′)

]
= f−1

t+1

[
1
2
ft+1 ◦ u(x̄) + 1

2
ft+1 ◦ u(x̄′)

]

⇔ ft+1f
−1
t

[
1
2
ftu(x̄) + 1

2
ftu(x̄′)

]
= 1

2
ft+1 f−1

t ft u(x̄) + 1
2
ft+1 f−1

t ft u(x̄′) .

Defining ht = ft+1 ◦ f−1
t and the interval Ft = ft(U), this condition translates into the

equation

ht

(
1
2
y + 1

2
y′
)

= 1
2
ht (y) + 1

2
ht (y′) ∀y, y′ ∈ Ft .

Therefore ht has to be linear on Ft (Hardy et al. 1964, refinement of theorem 83 on p.74).

Hence the expression ft+1 ◦f−1
t is linear on ft(U) implying that there exists at ∈ A such

that with z = f−1
t (y) ∈ U it is

ft+1f
−1
t (y) = a−1

t y

⇔ f−1
t (y) = f−1

t+1a
−1
t y

⇔ ft(z) = atft+1(z) .

By the fact that ft and ft+1 are both increasing it follows that at has to be positive
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affine, i.e. at ∈ A+. But as each ft in the representation is determined only up to

positive affine transformations, setting ft = ft+1 = f still yields a representation of

�t∈{1,...,T}.

“⇐”: Axioms A1-A5 follow immediately from “⇐” of theorem 4. As seen in the first

part of the proof, for constant consumption paths it is ũt(x̄
t) = u(x̄)∀t ∈ {1, ..., T}.

Therefore axiom A8 is seen to hold by observing that for all x̄, x̄′, x̄′′ ∈ X:

1
2
x̄ t + 1

2
x̄′ t �t x̄′′ t

⇔ f−1
[

1
2
f ◦ ũt(x̄

t) + 1
2
f ◦ ũt(x̄

′ t)
]

≥ ũt(x̄
′′ t)

⇔ f−1
[

1
2
f ◦ ũt+1(x̄

t+1) + 1
2
f ◦ ũt+1(x̄

′ t+1)
]

≥ ũt+1(x̄
′′ t+1)

⇔ 1
2
x̄ t+1 + 1

2
x̄′ t+1 �t+1 x̄′′ t+1 .

Moreover part: The moreover part is an immediate consequence of the moreover part

of theorem 4. 2

Proof of lemma 6: Except for admitting decreasing functions f and g, when changing

“increasing” into “monotonic” in theorem 8, the statements are special cases of lemma

4, corollary 6 and corollary 7. The decreasing functions come in the same way as in the

proofs for chapter 6.4, by noting that Maf = Mf and analogously Nag = N g for all

a ∈ A. Therefore, if the triple (u, f, g) represents �t∈{1,...,T} in the sense of theorem 8,

then so do the triples (u,−f, g) and (u, f,−g), if f and g are admitted to be decreasing

in the representation. 2

Proof of theorem 9: The proof is divided into five parts. First, I translate axiom

A9 into the representation of theorem 7. This step yields a requirement for the rep-

resenting functions ft and g that is solved in the second part under the assumption

of differentiability of ft ◦ g−1. The third part shows that the derived solution has to

hold as well without assuming differentiability. Part four translates the solution into

the representation stated in the theorem. Finally, part five proofs the necessity of the

axioms for the representation.

Part I (“⇒”): First note that axiom A9 implies axiom A7 by choosing x = x′. There-

fore a representation in terms of theorem 7 has to exist. In order to translate A9 for

t ∈ {1, ..., T − 1} into the latter representation, note that by definition of x as an ele-

ment of Xt+1, the period τ entry of the consumption path (x, x0) ∈ Xt corresponds to

(x, x0)τ = xτ+1 for τ ∈ {t, ..., T − 1}. Then, using equation (C.19), the left hand side of
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the equivalence in axiom A9 translates into

1
2
(x, x0) + 1

2
(x′, x0) �t (x′′, x0)

⇔ f−1
t

{
1
2
ftg

−1
[
(1 − βt)

∑T−1
τ=t βτ−tgu(xτ+1) + (1 − βt)β

T−tgu(x0)
]

+1
2
ftg

−1
[
(1 − βt)

∑T−1
τ=t βτ−tgu(x′

τ+1) + (1 − βt)β
T−tgu(x0)

]}

≥ g−1
[
(1 − βt)

∑T−1
τ=t βτ−tgu(x′′

τ+1) + (1 − βt)β
T−tgu(x0)

]

⇔ gf−1
t

{
1
2
ftg

−1
[
(1 − βt)

∑T
τ=t+1 βτ−(t+1)gu(xτ ) + (1 − βt)β

T−tgu(x0)
]

+1
2
ftg

−1
[
(1 − βt)

∑T
τ=t+1 βτ−(t+1)gu(x′

τ ) + (1 − βt)β
T−tgu(x0)

]}

≥
[
(1 − βt)

∑T
τ=t+1 βτ−(t+1)gu(x′′

τ ) + (1 − βt)β
T−tgu(x0)

]
.

Define the sum S =
∑T

τ=t+1 βτ−(t+1)gu(xτ ) and similarly S ′ =
∑T

τ=t+1 βτ−(t+1)gu(x′
τ )

and S ′′ =
∑T

τ=t+1 βτ−(t+1)gu(x′′
τ ) as well as A = (1 − βt)β

T−tgu(x0). Then, varying the

consumption paths x, x′ and x′′ in Xt+1, goes along with varying S, S ′ and S ′′ in the

interval [1−βT−t

1−β
G, 1−βT−t

1−β
G]. Similarly, as x0 is varied in X, the value A takes on any

number in the interval [(1 − βt)β
T−t G, (1 − βt)β

T−t G] . In the introduced notation,

the above inequality corresponding to the left hand side of the equivalence in axiom A9

writes as

gf−1
t

{
1
2
ftg

−1
[
(1 − βt)S + A

]
+ 1

2
ftg

−1
[
(1 − βt)S

′ + A
]}

−A ≥(1 − βt)S
′′. (C.20)

In the same notation the right hand side of the equivalence in axiom A9 translates into

gf−1
t+1

{
1
2
ft+1g

−1
[
(1 − βt+1)S

]
+ 1

2
ft+1g

−1
[
(1 − βt+1)S

′
]}

≥(1 − βt+1)S
′′. (C.21)

As derived in the proof of theorem 4 (induction hypothesis H2), for every lottery pt+1 ∈

Pt+1 there exists a certain consumption path as certainty equivalent. In consequence,

for any x, x′ ∈ Xt+1, there exists a certainty equivalent x′′ ∈ Xt+1 for the lottery 1
2
x +

1
2
x′ ∈ Pt+1, such that equation (C.21) holds with equality. Then, by axiom A9 also

equation (C.20) has to hold with equality. Equating the two equations by S ′′ yields the

requirement

gf−1
t

{
1
2
ftg

−1
[
(1 − βt)S + A

]
+ 1

2
ftg

−1
[
(1 − βt)S

′ + A
]}

− A (C.22)

= (1−βt)
(1−βt+1)

gf−1
t+1

{
1
2
ft+1g

−1
[
(1 − βt+1)S

]
+ 1

2
ft+1g

−1
[
(1 − βt+1)S

′
]}

for all S, S ′ ∈ [1−βT−t

1−β
G, 1−βT−t

1−β
G] and A ∈ [(1 − βt)β

T−t G, (1 − βt)β
T−t G].

Part II (“⇒”): In this part, I establish the general solution to equation (C.22), under

the assumption that ht = ft ◦ g−1 is differentiable for all t ∈ {1, ..., T}. First, observe
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that the right hand side of equation (C.22) is independent of A.13 Thus, the left hand

side has to be constant in A. Taking the first derivative with respect to A, the latter

requirement yields

∂
∂A

h−1
t

{
1
2
ht [ (1 − βt)S + A] + 1

2
ht [ (1 − βt)S

′ + A]
}
− A = 0

⇔ h−1
t

′
{

1
2
ht [ (1 − βt)S + A] + 1

2
ht [ (1 − βt)S

′ + A]
}
·

{
1
2
h′

t [ (1 − βt)S + A] + 1
2
h′

t [ (1 − βt)S
′ + A]

}
= 1

⇔ 1
2
h′

t [ (1 − βt)S + A] + 1
2
h′

t [ (1 − βt)S
′ + A]

= h′
t

{
h−1
[

1
2
ht [ (1 − βt)S + A] + 1

2
ht [ (1 − βt)S

′ + A]
]}

,

where the prime at the function ht (and only the one at the function ht) denotes a

derivative. Defining y = ht [(1 − βt)S + A] and y′ = ht [(1 − βt)S
′ + A], both in Ft =(

ft(U), ft(U)
)
, the latter equation becomes

1
2
h′

th
−1
t (y) + 1

2
h′

th
−1
t (y′) = h′

th
−1
t

(
1
2
y + 1

2
y′
)
.

By Hardy et al. (1964, refinement of theorem 83 on p.74) it follows that the composition

h′
th

−1 has to be linear. Therefore, I obtain the following differential equation for ht,

where at, bt ∈ IR and z = h−1
t (y) ∈ Γt = (G,G):

h′
th

−1
t (y) = aty + bt ∀y ∈ Ft

⇔ h′
t(z) = atht(z) + bt ∀z ∈ Γt. (C.23)

For at = 0 the solution to h′
t(z) = bt is obviously ht(z) = bt z + kt with kt ∈ IR. I

will come back to this solution below (case 2). In the meanwhile (case 1), assume

at 6= 0∀t ∈ {1, ..., T}.

Case 1, at 6= 0∀t ∈ {1, ..., T}:

First the differential equation (C.23) is solved using variation of the constant. Solving

the homogeneous differential equation for period t yields
∫

1
ht

dht =
∫

at dz

⇔ ln ht = atz + c̃t with c̃t ∈ IR

⇔ ht(z) = ct exp(atz) with ct = exp(c̃t) ∈ IR++.

Taking the integration constant ct as a function of z renders the ansatz

13Note that a functional equation that corresponds to the requirement that the left hand side of
equation (C.22) is independent of A is solved in a different way by Aczél (1966, 153) by relating it to
a Cauchy equation.
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ht(z) = ct(z) exp(atz) for the inhomogeneous equation:

h′
t(z) = atht(z) + bt

⇒ c′t(z) exp(atz) + ct(z) at exp(atz) = at ct(z) exp(atz) + bt

⇒ c′t(z) exp(atz) = bt

⇒
∫

dct =
∫

bt exp(−atz)dz

⇒ ct(z) = − bt

at
exp(−atz) + kt with kt ∈ IR.

Therefore ht(z) = [− bt

at
exp(−atz) + k] exp(atz) = − bt

at
+ kt exp(atz) with kt ∈ IR is the

general solution to equation (C.23) with at, bt ∈ IR, at 6= 0. Note, however, that it is also

known by theorem 7 that ht has to be strictly increasing. Thus, whenever for at > 0

it has to hold as well kt > 0 and for at < 0 it has to hold as well kt < 0. Furthermore

denote dt = − bt

at
∈ IR, and determine the inverse of ht to be h−1

t (y) = 1
at

ln
[
−dt+y

kt

]
.14

Second, I substitute the solution for ht and ht+1 back into equation (C.22) to find for

the left hand side

h−1
t

{
1
2
ht

[
(1 − βt)S + A

]
+ 1

2
ht

[
(1 − βt)S

′ + A
]}

− A

= 1
at

ln

[
1
kt

{
− dt+

1
2
dt + 1

2
kt exp

[
at{ (1 − βt)S + A}

]

+1
2
dt + 1

2
kt exp

[
at{ (1 − βt)S

′ + A}
]}]

− A

= 1
at

ln
[

1
2
exp

[
at{ (1 − βt)S + A}

]
+ 1

2
exp

[
at{ (1 − βt)S

′ + A}
]]

− A

= 1
at

ln
[

1
2
exp

[
at (1 − βt)S

]
+ 1

2
exp

[
at (1 − βt)S

′
]]

,

= ln
[

1
2
exp(S)at (1−βt) + 1

2
exp(S ′)at (1−βt)

] 1
at ,

and analogously for the right hand side

(1−βt)
(1−βt+1)

h−1
t+1

{
1
2
ht+1

[
(1 − βt+1)S

]
+ 1

2
ht+1

[
(1 − βt+1)S

′
]}

= (1−βt)
(1−βt+1)

1
at+1

ln
[

1
2
exp

[
at+1 (1 − βt+1)S

]
+ 1

2
exp

[
at+1 (1 − βt+1)S

′
]]

= ln
[

1
2
exp(S)at+1 (1−βt+1) + 1

2
exp(S ′)at+1 (1−βt+1)

] (1−βt)
at+1(1−βt+1)

. (C.24)

Therefore, equation (C.22) requires that for a continuum of values S and S ′ it has to

14Note that the relation holds also holds kt < 0. Then the nominator inside the logarithm −dt + y =
kt exp(atz) is negative as well.
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hold
[

1
2
exp(S)at (1−βt) + 1

2
exp(S ′)at (1−βt)

] 1
at(1−βt)

=
[

1
2
exp(S)at+1 (1−βt+1) + 1

2
exp(S ′)at+1 (1−βt+1)

] 1
at+1(1−βt+1)

.

Necessary and sufficient for this equality is the condition at(1−βt) = at+1(1−βt+1) ≡ ξ.15

As at ∈ IR\{0} and 1− βt 6= 0 for all t ∈ {1, ..., T}, there exists a solution if and only if

ξ ∈ IR\{0}. Summarizing, in the case that at 6= 0 for all t ∈ {1, ..., T}, equation (C.22)

implies that there exists ξ ∈ IR\{0} such that for every t it is ht(z) = ft ◦ g−1(z) =

dt +kt exp( ξ
1−βt

z) with dt, kt ∈ IR, kt 6= 0. In addition for ξ > 0 it has to hold kt > 0 and

for ξ < 0 it has to hold kt < 0.

Case 2, ∃ t ∈ {1, ..., T} with at = 0:

The solution to equation (C.23) for at = 0 is ht(z) = bt z+kt with kt ∈ IR. By theorem 7

it is known that ht has to be strictly increasing. Thus, the constant bt has to be strictly

positive. But then, the constants bt and kt correspond to positive affine transformations

of ft, which are known not to affect the representation. Therefore, wlog I can set bt = 1

and kt = 0. Then ht is the identity and the left hand side of equation (C.22) becomes

gf−1
t

{
1
2
ftg

−1
[
(1 − βt)S + A

]
+ 1

2
ftg

−1
[
(1 − βt)S

′ + A
]}

− A

= 1
2

[
(1 − βt)S + A

]
+ 1

2

[
(1 − βt)S

′ + A
]
− A = 1

2
(1 − βt)

[
S + S ′

]
. (C.25)

Let me first consider the case where at+1 6= 0. Then, equation (C.24) gives the right

hand side of equation (C.22). Define s = exp(S) and s′ = exp(S ′) and find that equation

(C.22) yields the following condition:

�����(1 − βt)
[

1
2
S+ 1

2
S ′
]

= ln
[

1
2
exp(S)at+1 (1−βt+1)+ 1

2
exp(S ′)at+1 (1−βt+1)

] ���(1−βt)
at+1(1−βt+1)

⇔
[

1
2
ln s+ 1

2
ln s′

]
= ln

[
1
2
sat+1 (1−βt+1) + 1

2
sat+1 (1−βt+1)

] 1
at+1(1−βt+1)

⇔ s
1
2 s′

1
2 =

[
1
2
sat+1 (1−βt+1) + 1

2
sat+1 (1−βt+1)

] 1
at+1(1−βt+1)

for a continuum of s and s′. However, the above equality does not hold for at+1(1 −

βt+1) 6= 0 (Hardy et al. 1964, 15,26). As it is 1−βt 6= 0, this fact implies a contradiction

to the assumption that at+1 6= 0. Evaluating equation (C.22) for period t − 1 the same

reasoning brings about a contradiction to the assumption at−1 6= 0. Therefore, if at = 0

for some t it necessarily follows that at = 0 for all t ∈ {1, ...T}.

In the case at = 0 for all t ∈ {1, ..., T} use (C.25) to see that equation (C.22) simplifies

15For the necessity see for example Hardy et al. (1964, 26).
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to the tautology

1
2

[
(1 − βt)S+A

]
+ 1

2

[
(1 − βt)S

′+A
]
−A = (1−βt)

(1−βt+1)
1
2

[
(1 − βt+1)S + (1 − βt+1)S

′
]

⇔ 1
2
(1 − βt)

[
S + S ′

]
= 1

2
(1 − βt)

[
S + S ′

]
,

which implies no further restrictions on the functional form of ht.

Part III (“⇒”): In this part I show that the solution to equation (C.22) derived in

part two has to hold as well if only continuity of ht = ft ◦ g−1 is assumed.16 Other

than differentiability, the latter is assured by theorem 7. Assume that some continuous

function ht satisfies equation (C.22). Expecting that the general solution will be of

the form derived in part two, I define for all t ∈ {t, ..., T} the continuous functions

rt : IR → IR by rt(y) = ht [(1 − βt) ln(y)] ⇔ ht(z) = rt ◦ exp( 1
1−βt

z). Then the left hand

side of equation (C.22) becomes

h−1
t

{
1
2
ht

[
(1 − βt)S + A

]
+ 1

2
ht

[
(1 − βt)S

′ + A
]}

− A

= (1 − βt) ln ◦ r−1
t

{
1
2
rt ◦ exp

[
1

1−βt
{ (1 − βt)S + A}

]

+1
2
rt ◦ exp

[
1

1−βt
{ (1 − βt)S

′ + A}
]}

− A

= (1 − βt) ln ◦ r−1
t

{
1
2
rt ◦ exp

[
S + A

1−βt

]
+ 1

2
rt ◦ exp

[
S ′ + A

1−βt

]}
− A

and with defining s = exp [S], s′ = exp [S ′] and a = exp
[

A
1−βt

]
the relation writes as

= (1 − βt) ln ◦ r−1
t

{
1
2
rt (s a) + 1

2
rt (s′ a)

}
− (1 − βt) ln a

= (1 − βt) ln
[

1
a
r−1
t

{
1
2
rt (s a) + 1

2
rt (s′ a)

}]
.

Analogously, the right hand side of equation (C.22) becomes

(1−βt)
(1−βt+1)

· (1 − βt+1) ln
[
r−1
t+1

{
1
2
rt+1 (s) + 1

2
rt+1 (s′)

}]
.

Using these expressions equation (C.22) translates into the requirement

1
a
r−1
t

{
1
2
rt (s a) + 1

2
rt (s′ a)

}
= r−1

t+1

{
1
2
rt+1 (s) + 1

2
rt+1 (s′)

}

for a continuum of values s, s′ and a. First of all, this relation implies that the left

hand side has to be constant in a for all values of s and s′. By Hardy et al. (1964,

66,68) it follows that rt has to be either an affine transformation of rt(z) = zξt for some

ξt ∈ IR\{0} or an affine transformation of ln. I will associate the latter case with ξ = 0.

In the first case equation (C.22) becomes

1

�a

{
1
2

(s�a)ξt + 1
2

(s′�a)
ξt

} 1
ξt =

{
1
2

(s)ξt+1 + 1
2

(s′)
ξt+1

} 1
ξt+1 (C.26)

16I.e. there are no further continuous solutions to equation (C.23).
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which implies ξt = ξt+1 ≡ ξ for all t ∈ {1, ..., T − 1} (Hardy et al. 1964, 26). The case

where rt = ln corresponds to taking the limit ξt → 0 in (C.26), and the same reasoning

on ξt and ξt+1 holds true, i.e if some rt is an affine transformation of ln then all have to

be an affine transformation of ln.

In consequence, the following solutions of equation (C.22) for ht are possible. In the

case ξ ∈ IR\{0} I find for all t ∈ {1, ..., T − 1}

h∗
t (z) = kt

(
exp( 1

1−βt
z)
)ξ

+ dt = kt exp( ξ
1−βt

z) + dt , (C.27)

with dt, kt ∈ IR and, in order to assure strict increasingness of h∗
t (z), kt ξ > 0. In the

case ξ = 0 I find for all t ∈ {1, ..., T − 1}

h∗
t (z) = b̃t ln

(
exp( 1

1−βt
z)
)

+ dt = b̃t
1

1−βt
z + dt ,

with b̃t, dt ∈ IR and, in order to assure strict increasingness of h∗
t (z), b̃t ξ > 0. With

b̃t = bt

1−βt
this solution is seen to correspond to case two in part two. Thus, giving up

the differentiability assumption for ftg
−1 yields no further solutions to equation (C.22),

than those already found in part two.

Part IV (“⇒”): In part four I substitute the relations found in parts two and three for

ht = ft ◦ g−1 back into the representation of �= (�t)t∈{1,...,T} in the sense of theorem 7.

I start with the case ft ◦g−1(y) = dt +kt exp( ξ
1−βt

y) with dt, kt ∈ IR and kt ξ > 0. Taking

g as given, the function ft follow as

ft ◦ g−1(y) = dt + kt exp( ξ
1−βt

y)

⇔ ft(·) = dt + kt exp( ξ
1−βt

g(·)) .

Then the functions ũt in the representation of theorem 7 become

ũt(xt, pt+1)= g−1
{

(1 − βt) g ◦ u(xt) + βt g ◦ f−1
t+1

[∫
dp

(xt+1,pt+2)
t+1 ft+1 ◦ ũt+1

]}

= g−1
{

(1 − βt) g ◦ u(xt) + βt
1−βt+1

ξ
ln
[

1
kt+1

{

−dt+1 +
∫

dp
(xt+1,pt+2)
t+1 ft+1 ◦ ũt+1

}]}
.

Define the functions w̃t = 1
1−βt

g ◦ ũt. Due to the relation between g and ft, imposed by

axiom A9, a recursive formulation employing these strictly monotonic transformation of

the functions ũt, largely simplifies the representation.

w̃T (xT ) = gu(xT ) and

w̃t−1(xt−1, pt) = 1
1−βt−1

g ◦ ũt−1(xt−1, pt)

= gu(xt−1) + βt−1

ξ
1−βt

(1−βt−1)
ln
[

1
kt

{
− dt +

∫
dp

(xt,pt+1)
t ftũt

}]
.
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Using the relation 1−βt+1

1−βt
= 1−βT−t+1

1−βT−(t+1)+1 = ββ−1
t further yields

w̃t−1(xt−1, pt) = gu(xt−1) + β
ξ
ln
[

1
kt

{
− dt +

∫
dp

(xt,pt+1)
t ftg

−1 gũt

}]

= gu(xt−1) + β
ξ
ln
[

1
kt

{
− dt +

∫
dp

(xt,pt+1)
t dt + kt exp

(
ξ

1−βt
·

(1 − βt)w̃t

)}]

= gu(xt−1) + β
ξ
ln
[∫

dp
(xt,pt+1)
t exp

(
ξw̃t

)]
(C.28)

= gu(xt−1) + βMexpξ

(pt, w̃t) , (C.29)

where the uncertainty aggregation rule is characterized by the function r(z) = exp(ξz) =

exp(z)ξ. Expression (C.29) will be used for the g+ − gauge of the representation in

corollary 8, where the range of g has been fixed. Here however, the parameter ξ can be

absorbed into the function g. To this end, define w̃∗
t = |ξ| w̃t, g∗ = |ξ| g and sgn(ξ) as

the sign of ξ. Then line (C.28) yields

w̃∗
t−1(xt−1, pt) = |ξ| gu(xt−1) + |ξ|

ξ
β ln

[∫
dp

(xt,pt+1)
t exp

(
ξw̃t

)]

= g∗u(xt−1) + sgn(ξ) β ln
[∫

dp
(xt,pt+1)
t exp

(
sgn(ξ) w̃∗

t

)]

= g∗u(xt−1) + βMexpsgn(ξ)

(pt, w̃
∗
t ) . (C.30)

Expression (C.30) yields equation (9.9) for the cases f ∈ {exp, 1
exp

}. To obtain the

representing equation (9.10) first observe that

Mft(pt, ũt) = f−1
t

[ ∫
dp

(xt,pt+1)
t ft ◦ ũt

]

= f−1
t

[ ∫
dp

(xt,pt+1)
t ftg

−1
(
(1 − βt) w̃t

)]

= f−1
t

[ ∫
dp

(xt,pt+1)
t dt + kt exp

(
ξ

1−βt
(1 − βt) w̃t

)]

= f−1
t

[ ∫
dp

(xt,pt+1)
t dt + kt exp

(
sgn(ξ) w̃∗

t

)]
.

Then, recalling that sgn(kt) = sgn(ξ), find that the strictly increasing transformation

Mf (pt, w̃
∗
t ) = ln

[
sgn(ξ)

∫
dp

(xt,pt+1)
t exp

(
sgn(ξ) w̃∗

t

)]

= Mexpsgn(ξ)
(
pt, w̃

∗
t

)
.

yields the expression representing the preferences in equation (9.10).

In the remaining case it is ft ◦ g−1(y) = bt z + kt with bt, kt ∈ IR and bt > 0. Taking g

as and, thus, ft = bt z + kt an analogous reasoning to the one carried out above yields

ũt(xt, pt+1)= g−1
{

(1 − βt) g ◦ u(xt) + βt g ◦ f−1
t+1

[∫
dp

(xt+1,pt+2)
t+1 ft+1 ◦ ũt+1

]}

= g−1
{

(1 − βt)g ◦ u(xt)+βt

[
1

bt+1

{
−kt+1+

∫
dp

(xt+1,pt+2)
t+1 ft+1 ◦ ũt+1

}]}
.
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And defining the functions

w̃T (xT ) = gu(xT ) and

w̃t−1(xt−1, pt) = 1
1−βt−1

g ◦ ũt−1(xt−1, pt)

= gu(xt−1) + βt−1

(1−βt−1)

[
1
bt

{
− kt +

∫
dp

(xt,pt+1)
t ftũt

}]

= gu(xt−1) + βt−1

(1−βt−1)

[
1
bt

{
− kt +

∫
dp

(xt,pt+1)
t bt(1 − βt)w̃t + kt

}]

= gu(xt−1) + β
[∫

dp
(xt,pt+1)
t w̃t

]
,

where the latter expression corresponds to the recursion (9.9) stated in the theorem for

the cases f = id. The representing equation (9.10) follows from

Mft(pt, ũt) = f−1
t

[ ∫
dp

(xt,pt+1)
t ft ◦ ũt

]

= f−1
t

[ ∫
dp

(xt,pt+1)
t ftg

−1
(
(1 − βt) w̃t

)]

= f−1
t

[ ∫
dp

(xt,pt+1)
t kt + bt(1 − βt) w̃t

]

which is a strictly increasing transformation of

Mf (pt, w̃t) = Ept
w̃t = Mid(pt, w̃t) .

Part V (“⇐”): As shown above, the representation is a special case of theorem 7.

Therefore axioms A1-A5 follow immediately from “⇐” of theorem 7. The following

calculation shows that axiom A9 is satisfied as well. Hereto note that for certain con-

sumption paths x ∈ Xt it is w̃t(x) =
∑T

τ=t β
τ−tg ◦ u(xτ ). For the case h = exp define

k = 1 and for the case h = 1
exp

define k = −1. Then, for h ∈ {exp, 1
exp

} and for all

t ∈ {1, ..., T − 1}, x0 ∈ X and x, x′, x′′ ∈ Xt+1 it holds

1
2
(x, x0) + 1

2
(x′, x0) �t (x′′, x0)

⇔ k ln

(
1
2
exp

[
k
∑T−1

τ=t βτ−tg ◦ u(xτ+1)
]
exp

[
k βT g ◦ u(x0)

]

+1
2
exp

[
k
∑T−1

τ=t βτ−tg ◦ u(x′
τ+1)

]
exp

[
k βT g ◦ u(x0)

])

≥
∑T−1

τ=t βτ−tg ◦ u(x′′
τ+1) + βT g ◦ u(x0)

⇔ k ln

(
1
2
exp

[
k
∑T

τ=t+1 βτ−(t+1)g ◦ u(xτ )
]

+ 1
2
exp

[
k
∑T

τ=t+1 βτ−(t+1)g ◦ u(x′
τ )
])

≥
∑T

τ=t+1 βτ−(t+1)g ◦ u(x′′
τ )

⇔ 1
2
ṽt+1(x) + 1

2
ṽt+1(x

′) ≥ ṽt+1(x
′′)

⇔ 1
2
x + 1

2
x′ �t+1 x′′ .

The case h = id makes both sides of the above inequalities linear in the term βT g◦u(x0),

so that it cancels as well and A9 is satisfied.
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Moreover part: “⇒”: Assume that g and g′ both represent the sequence of preference

relations �= (�t)t∈{1,...,T} (the prime in g′ does not indicate a derivative!). By the

representation of �= (�t)t∈{1,...,T} on certain paths, the freedom of g is limited to positive

affine transformations as in theorem 7, i.e. it have to exist a, b ∈ IR, a > 0 such that

g = ag′ + b. However, the dependence of ft on g destroys part of this freedom when

considering choice over lotteries.17 Precisely, find that the function w̃′
T corresponding

to the choice g′ is

w̃′
T (xT ) = g′ ◦ u(xT ) = a g ◦ u(xT ) + b

Define again k = 1 for the case h = exp and k = −1 for the case h = 1
exp

. Then, for the

case h ∈ {exp, 1
exp

}, the fact that w̃T (xT ) as well as w̃′
T (xT ) are to represent the same

preferences over period T lotteries implies

k
∫

dpT exp(k w̃T ) ≥ k
∫

dpT exp(k w̃T )

⇔ k ln
[ ∫

dpT exp(k w̃T )
]
≥ k ln

[ ∫
dpT exp(k w̃T )

]

⇔ Mh(pT , w̃T ) ≥ Mh(p′T , w̃T )

⇔ pT �t p′T

⇔ Mh(pT , w̃′
T ) ≥ Mh(p′T , w̃′

T )

⇔ k ln
[ ∫

dpT exp(k w̃′
T )
]
≥ k ln

[ ∫
dpT exp(k w̃′

T )
]

⇔ k
∫

dpT exp(k w̃′
T ) ≥ k

∫
dpT exp(k w̃′

T )

for all pt, p
′
t ∈ Pt. In consequence there have to exist constants c, d ∈ IR, c > 0 such that

exp(k w̃T ) = c exp(k w̃′
T ) + d

= c exp(k a w̃′
T + kb) + d

= c exp(kb) exp(k w̃′
T )a + d .

Thus, defining the constant c̃ = c exp(kb) and the variable z = exp(k w̃′
T (xt)) the relation

z = c̃za + d

has to hold for all z ∈ [exp(G), exp(G)]. The relation can only be satisfied if the right

hand side is linear and, thus, a = 1. In consequence, if g and g′ both represent the

preferences �= (�t)t∈{1,...,T}, it has to exist b ∈ IR such that g = g′ + b.

For the case h = id, corresponding to a maximizer of intertemporally additive ex-

pected utility, the above reasoning yields no further restrictions on the constants a or b.

17Without the dependence of f on g an affine transformation a of g cancels out. However, when f
depends on g as in the representation of theorem 9, at the same time f−1 → af−1, corresponding to
an affine transformation of the inverse of f . Such a transformation is, in general, not compatible with
the freedom in the choice of the representing functions.
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In that case, if g and g′ both represent the preferences �= (�t)t∈{1,...,T} all that can be

claimed is the existence a, b ∈ IR, a > 0, such that g = ag′ + b.

“⇐”: For the case h ∈ {exp, 1
exp

}, let g = g′ + b and g be part of a representation of

�= (�t)t∈{1,...,T}. Define as before k = 1 for the case h = exp and k = −1 for the case

h = 1
exp

. I claim that for every t ∈ {1, ..., T} it exists γt ∈ IR such that w̃′
t = w̃t + γt.

The proof is by backwards induction. For t = T it holds

w̃′
T (xT ) = g′ ◦ u(xT ) = g ◦ u(xT ) + b = w̃T (xT ) + γT

with γT = b. The induction step from t to t − 1 works as follows:

w̃′
t−1(xt−1, pt) = g′u(xt−1) + βMexpk

(pt, w̃
′
t)

= gu(xt−1) + b + k β ln
[∫

dp
(xt,pt+1)
t exp

(
kw̃t + kγt

)]

= gu(xt−1) + b + k β ln
[
exp(kγt)

∫
dp

(xt,pt+1)
t exp

(
kγtw̃t

)]

= gu(xt−1) + k β ln
[∫

dp
(xt,pt+1)
t exp

(
kγtw̃t

)]
+ b + βγt

= w̃t−1(xt−1, pt) + γt−1, +βγt

with γt−1 = b + βγt. Next I show, that such an additive constant in w̃t cancels out in

the representing equation (9.10):

Mh(pt, w̃
′
t) ≥ Mh(p′t, w̃

′
t)

⇔ Mh(pt, w̃t + γt) ≥ Mh(p′t, w̃t + γt)

⇔ k ln
[ ∫

dpt exp(k w̃t + γt)
]
≥ k ln

[ ∫
dpt exp(k w̃t + γt)

]

⇔ k ln
[ ∫

dpt exp(k w̃t)
]

≥ k ln
[ ∫

dpt exp(k w̃t)
]

⇔ Mh(pt, w̃t) ≥ Mh(p′t, w̃t) .

Thus, if g represents preferences �= (�t)t∈{1,...,T} in the sense of theorem 9 with h ∈

{exp, 1
exp

}, then so does g′ = g + b.

In the case h = id, let g = ag′+b and g be part of a representation of �= (�t)t∈{1,...,T}

in the sense of theorem 9. I claim that for every t ∈ {1, ..., T} it exists γt ∈ IR such that

w̃′
t = aw̃t + γt. Proof is by backwards induction. For t = T it holds

w̃′
T (xT ) = g′ ◦ u(xT ) = ag ◦ u(xT ) + b = aṽT (xT ) + γT ,

with γT = b. The induction step from t to t − 1 is as follows:

w̃′
t−1(xt−1, pt) = g′ ◦ u(xt−1) + βEpt

w̃′
t(xt, pt+1)

= a g ◦ u(xt−1) + b + βEpt
a w̃t(xt, pt+1) + β γt

= a w̃t−1(xt−1, pt) + b + β γt .

Setting γt−1 = b+γt closes the induction step. But then, the representation in equation
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(9.10) stays unchanged:

Ept
w̃′

t ≥ Ep′t
w̃′

t ⇔ Ept
a w̃t + γt ≥ Ep′t

a w̃t + γt ⇔ Ept
w̃t ≥ Ep′t

w̃t .

2

Proof of theorem 10: The proof resembles that of theorem 6. Part one translates

axiom A6 s
st into the representation of theorem 7. Then I show in the second part that

the equation derived in the first locally implies concavity of ft ◦ g−1. Part three extends

this result to concavity on the entire set Γt. The necessity of axiom A6 s
st is implied by

theorem 6. The difference to the proof of theorem 6, i.e. the stronger prerequisite in

axiom A6 s
st, mainly affects the first step in part two. Subsequently the proof follows

that of theorem 6 and the reader is referred to the latter.

Part I (“⇒”): In this part I translate axiom A6 s
st into the representation of theorem

7. I start with the first line, i.e the premise, and use equation (C.19) to find

x̄t ∼t xt

⇒ g−1
[
(1 − βt)

T∑

τ=t

βτ−tu(x̄)
]

= g−1
[
(1 − βt)

T∑

τ=t

βτ−tu(xt
τ )
]
. (C.31)

The existence of τ ∈ {t, ..., T} such that [xt
τ ] 6∼τ [x̄] translates into

u(xt
τ ) 6= u(x̄) for some τ ∈ {t, ..., T}. (C.32)

The second line of axiom A6 s
st becomes

x̄t ≻T

∑T
i=t

1
T−t+1

(x̄t
−i, x

t
i).

⇒ g−1
[
(1 − βt)

∑T
τ=t β

τ−tu(x̄)
]

> f−1
t

[∑T
i=t

1
T−t+1

ftg
−1
[
(1 − βt)

∑T
τ=t β

τ−tu
(
(x̄t

−i, x
t
i)τ

) ]]

⇒ ftg
−1
[
(1 − βt)

∑T
τ=t β

τ−tu(x̄)
]

>
∑T

i=t
1

T−t+1
ftg

−1
[
(1 − βt)

∑T
τ=t β

τ−tu
(
(x̄t

−i, x
t
i)τ

) ]
.
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Using equation (C.31) the left hand side can be transformed as follows:

ftg
−1
[

T−t
T−t+1

[
(1 − βt)

∑T
τ=t β

τ−tu(x̄)
]

+ 1
T−t+1

[
(1 − βt)

∑T
τ=t β

τ−tu(xt
τ )
]]

>
∑T

i=t
1

T−t+1
ftg

−1
[
(1 − βt)

∑T
τ=t β

τ−tu
(
(x̄t

−i, x
t
i)τ

) ]

⇒ ftg
−1
[

1
T−t+1

[
(1 − βt)

∑T
i=t

∑T
τ=t β

τ−tu
(
(x̄t

−i, x
t
i)τ

)]]

>
∑T

i=t
1

T−t+1
ftg

−1
[
(1 − βt)

∑T
τ=t β

τ−tu
(
(x̄t

−i, x
t
i)τ

) ]

⇒ ftg
−1
[∑T

i=t
1

T−t+1

[
(1 − βt)

∑T
τ=t β

τ−tu
(
(x̄t

−i, x
t
i)τ

)]]
(C.33)

>
∑T

i=t
1

T−t+1
ftg

−1
[
(1 − βt)

∑T
τ=t β

τ−tu
(
(x̄t

−i, x
t
i)τ

) ]
.

Define the function z̃ : Xt → Γt by z̃(xt) = (1 − βt)
∑T

τ=t β
τ−tu (xt

τ ). Restricting the

domain to those consumption paths that satisfy condition (C.32) the function is onto(
(1−βt)

∑T
τ=t G , (1−βt)

∑T
τ=t G

)
=
(
G , G

)
= Γt. In particular define zi = z̃

(
(xt

−ix
′t
i )
)
.

In this notation equation (C.33) becomes

ftg
−1
(∑T

i=t
1

T−t+1
zi

)
>

∑T
i=t

1
T−t+1

ftg
−1(zi). (C.34)

If equation (C.34) had to hold for all zi ∈ Γt it would be a straight forward condition

for strict convexity of ft ◦ g−1. However axiom A6 s
st does not immediately imply that

the equation has to be met for every choice (zi)i∈{t,...,T}, zi ∈ Γt. Only for combination

(zi)i∈{t,...,T} stemming from consumption paths (x̄t
−i, x

t
i) for which xt ∈ Xt and x̄ ∈ X

satisfy the premise of axiom A6 s
st. In what follows I proceed to show that this restricted

demand is enough to imply strict convexity of of ft ◦ g−1 on Γt.

Part II (“⇒”): Let zo ∈ Γt. In this part I show that for every such zo there exists

an open neighborhood Nzo ⊂ Γt such that equation (C.34) implies strict concavity of

ft ◦ g−1 on Nzo .

In the first step I define a certain consumption path x̄t with x̄ ∈ X such that z̃(x̄t) =

zo. The fact zo ∈ Γt is equivalent to G < zo < G. By connectedness of X and continuity

of g ◦ u there exists an outcome xo ∈ u−1 [g−1 (zo)] such that zo = u ◦ g(xo). Define

xot = x̄ot = (xo, ..., xo) and find that z̃(xot) = z0. Note that the difference between

the stationary and the non-stationary setting is that only in the stationary setting it

is guaranteed that any zo ∈ Γt can be attained by evaluating a constant consumption

path.

From step two on the proof (including Part III) follows exactly the one laid out for

theorem 6 on page 219 with Go
τ = zo for all τ ∈ {t, ..., T} and ǫ = min{zo −G,G− zo}.

Part IV (“⇐”): “⇐” is implied by theorem 6 for xt = x̄t. 2

Proof of lemma 7: The lemma is an immediate consequence of lemma 5 with the
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convention g1 ◦ u1 = g ◦ u. Then, the representing triples (u, ft, g)t∈{1,...,T} in the sense

of theorems 7 correspond to the representing triples (ut = u, ft, gt = βt−1g)t∈{1,...,T} in

the sense of theorem 4. Therefore, imposing the unit, the zero level or the range of

g ◦u determines the according values for gt ◦ut in the sense of theorem 4 for all periods.

Thus, the statements in a), b), c) and d) in lemma 5 imply the assertions a), b), c) and

d) in lemma 7. As theorems 8 and 9 are special cases of theorem 7, the reasoning holds

true as well for representations in the sense of theorems 8 and 9. 2

Proof of corollary 8: To the most part, the g+−gauge of the representation in

theorem 9 has already been derived in the proof of the latter theorem.

“⇒”: Before absorbing the parameter ξ into the function g in the proof of theorem 9,

the recursive construction of w̃t for the case corresponding to h ∈
{

exp, 1
exp

}
was given

by equation (C.29), which states

w̃t−1(xt−1, pt) = gu(xt−1) + βMexpξ

(pt, w̃t) .

Simply defining the new utility function u∗ = g ◦ u yields the g = id-gauge. Once the

range of u∗, i.e. g, is fixed, a transformation absorbing the free parameter ξ into the

function g, i.e. u∗, as carried out to arrive at the final representation stated in theorem 9,

is no longer possible.

The representing equation (9.12) is obtained as follows. The representation that is

known to hold by theorem 4 for the specifications of theorem 9 is

Mft(pt, ũt) = f−1
t

[ ∫
dp

(xt,pt+1)
t ft ◦ ũt

]

= f−1
t

[ ∫
dp

(xt,pt+1)
t ftg

−1
(
(1 − βt) w̃t

)]

= f−1
t

[ ∫
dp

(xt,pt+1)
t dt + kt exp

(
ξ w̃t

)]
.

But, recalling that kt ξ > 0, the latter expression is easily recognized as a strictly

increasing transformation of

Mexpξ

(pt, w̃t) = 1
ξ
ln
[ ∫

dp
(xt,pt+1)
t exp

(
ξ w̃t

)]
.

Therefore, also Mexpξ

(pt, w̃t) represents the preferences �= (�t)t∈{1,...,T}.

For the case corresponding to h = id in the representation of theorem 9, the proof of

the latter theorem has derived the following representation

w̃T (xT ) = gu(xT ) and

w̃t−1(xt−1, pt) = gu(xt−1) + βEpt
w̃t ,
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with

pt �t p′t ⇔ Ept
w̃t ≥ Ep′t

w̃t .

Thus, with the definition Mexp0

(pt, w̃t) = Ept
w̃t, the claimed representation also holds

for ξ = 0.

Finally, observe that, as stated in the text, the above definition of Mexp0

corresponds

to the limit ξ → 0. To see this, simply apply l’Hospital’s rule:

Mexp0

(pt, w̃t) ≡ lim
ξ→0

Mexpξ

(pt, w̃t)

= lim
ξ→0

ln
[ ∫

dpt exp(ξw̃t)
]

ξ

= lim
ξ→0

∂
∂ξ

ln
[ ∫

dpt exp(ξw̃t)
]

∂
∂ξ

ξ

= lim
ξ→0

∫
dptw̃t exp(ξw̃t)∫
dpt exp(ξw̃t)

=

∫
dptw̃t

1 = Ept
w̃t .

“⇐”: Implied by theorem 9.

Moreover part: By lemma 7 the function g ◦ u in theorem 9 is uniquely determined,

once its range has been fixed. As seen above, the representing utility function in the

corollary corresponds to the function u∗ = g ◦ u. Thus, fixing its range determines the

function uniquely. Moreover lemma 7 implies that the measures of intertemporal risk

aversion are determined uniquely.

Equation (8.7) defines the measure of absolute intertemporal risk aversion in period t

as the function

AIRAt(z) = −
(ft◦g

−1
t )

′′

(z)

(ft◦g
−1
t )

′

(z)
.

As derived in the proof of theorem 9, the case ξ 6= 0 corresponds to ft ◦ g−1 =

kt exp( ξ
1−βt

z) + dt, with dt, kt ∈ IR and kt ξ > 0 (compare C.27). Then, with g1 = g and

gt = βt−1g, the measure of absolute intertemporal risk aversion is calculated to

AIRAt(z) = −
d2

dz2 ft◦g−1(β−t+1z)

d
dz

ft◦g−1(β−t+1z)
= −

d2

dz2 kt exp

„

ξ
1−βt

β−t+1z

«

+dt

d
dz

kt exp

„

ξ
1−βt

β−t+1z

«

+dt

= −

„

ξ
1−βt

β−t+1

«2

exp

„

ξ
1−βt

β−t+1z

«

ξ
1−βt

β−t+1 exp

„

ξ
1−βt

β−t+1z

« = − ξ
βt−1(1−βt)

,

yielding the constant coefficient of absolute intertemporal risk aversion −ξ
βt−1(1−βt)

. In the
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case ξ = 0 it as

AIRAt(z) = −
d2

dz2 ft◦g−1(β−t+1z)

d
dz

ft◦g−1(β−t+1z)
= −

d2

dz2 bt z+kt

d
dz

bt z+kt

= 0 ,

coinciding with the general expression AIRAt(z) = − ξ
βt−1(1−βt)

.

The measure of relative intertemporal risk aversion in period t is defined in equa-

tion (8.6) as the function

RIRAt(z) = −
(ft◦g

−1
t )

′′

(z)

(ft◦g
−1
t )

′

(z)
z .

In consequence it holds RIRAt(z) = AIRAt(z) · z, yielding RIRAt = − ξ
βt−1(1−βt)

id. 2

Proof of corollary 9: The proof is divided into two parts. The first part derives a

representation triple in the sense of theorem 4, in which the functions ft correspond to

the identity, and which satisfies the requirements of corollary 9. The second part works

out the corresponding representation as stated in the corollary. The necessity of the

axioms is immediate by theorem 9.

Part I: First, observe that corollary 8 with Bernoulli utility u∗ implies, with the def-

inition u = exp(u∗) ⇔ u∗ = ln u, the representation for the case ξ = 0 (h = id in

theorem 9). The logarithm is introduced because the representation for the case ξ 6= 0

fixes the measure scale for welfare to ln u∗, as it will be observed in the remark at the

end of this part of the proof. In the following, I work out the proof for the case where

ht(z) = ft ◦ g−1(z) = kt exp( ξ
1−βt

z) + dt ,

with dt, kt ∈ IR and kt ξ > 0, corresponding to equation (C.27) and case two of the

proof of theorem 9. As I want to gauge the functions ft to identity, I have to allow the

functions gt to vary over time. Therefore, I express the preferences �= (�t)t∈{1,...,T} in

a representation in the sense of theorem 4. Recall, that a certainty stationary repre-

sentation, as the one above, corresponds to a representation (u, ft, β
t−1g) in the sense

of theorem 4. I take the functions ft as given. Then, the requirement (C.27) for ftg
−1

restated above implies

gt = βt−1g = βt−1 1−βt

ξ
ln
(

1
kt

(ft − dt)
)

.

In consequence, the sequence of triples(
u , ft , gt = βt−1 1−βt

ξ
ln
(

1
kt

(ft − dt)
))

t∈{1,...,T}

represents the preferences described in theorem 9, in the sense of the non-stationary

representation theorem 4. By gauge lemma 4 it is known that the same preferences are
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represented by the sequence of triples(
u′

t = ft ◦ u , f ′
t = ft ◦ f−1

t , g′
t = βt−1 1−βt

ξ
ln
(

1
kt

(ft ◦ f−1
t − dt)

))
t∈{1,...,T}

=
(
u′

t = ft ◦ u , f ′
t = id , g′

t = βt−1 1−βt

ξ
ln
(

1
kt

( id − dt)
))

t∈{1,...,T}
. (C.35)

As desired, uncertainty aggregation corresponding to the above representation is linear.

However, observe that

u′
t = ft ◦ u = kt exp( ξ

1−βt
g ◦ u) + dt .

The relation implies that it is impossible to fix u′
t to a given range independent of ξ.18

Therefore, define the functions

u∗
t =

(
1
kt

(u′
t − dt)

)1−βt

ξ
= exp( ξ

1−βt
g ◦ u)

1−βt

ξ = exp(g ◦ u) (C.36)

Then u∗ = u∗
t is independent of ξ and moreover constant in time. Note also, that u∗

t is

always positive. Using this definition, the representing triples (C.35) write as
(

ktu
∗

ξ
1−βt + dt , id , βt−1 1−βt

ξ
ln
(

1
kt

( id − dt)
))

t∈{1,...,T}

.

Finally, the moreover part of corollary 6 allows to eliminate the constants kt and dt from

the above triples, up to the sign of kt (choose a+
t = 1

kt
( id − dt) and note that ft = id).

I obtain the representing sequence of triples(
u′′

t = sgn(ξ) u∗
ξ

1−βt , f ′′
t = id , g′′

t = βt−1 1−βt

ξ
ln
(
sgn(ξ) id

))

t∈{1,...,T}

. (C.37)

The function u∗ in expression (C.37) corresponds to the utility function u stated in

corollary 9. For preference representations in theorem 9, Bernoulli utility lies in the

class u : X → IR. By equation (C.36), the latter class for u corresponds to functions

u∗ lying in the class of continuous functions from X into the positive real numbers, i.e.

u∗ ∈ {u∗ : X → IR++}.

Remark: The requirement of corollary 9 that u, i.e. u∗ in the representing triples above,

is onto the interval U∗ corresponds to setting the range for the measurement of welfare

in period t to the range of

g′′
t ◦ u′′

t = βt−1 1−βt

ξ
ln

(
u∗

ξ
1−βt

)
= βt−1 ln (u∗) (C.38)

and, thus, g1 ◦ u1 = ln u∗.

Part II: In the following I calculate the representation expressed by the sequence of

18Or from a different perspective, g′t ◦ u′
t = βt−1 1−βt

ξ ln
(

1
kt

(u′
t − dt)

)
depends on ξ. Thus fixing the

range of u′
t as is, would not allow for a common measure scale for welfare.
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triples in (C.37). Let U∗ =
[
U∗, U

∗
]
. Then, observe that ∆G′′

t = βt ln U
∗

U∗ and ϑ′
t = 0.

Thus, with the same definition for βt = 1 − θ′′t as in theorem 7 (compare page 228), it

holds

ũt−1(xt−1, pt) = g′′−1
t−1

[
θ′′t−1 g′′

t−1 ◦ u′′
t−1(xt−1) + (1 − θ′′t−1)

∆G′′

t−1

∆G′′

t
g′′

t ◦Mf ′′

t (pt, ũt)
]

= g′′−1
t−1

[
(1 − βt−1) g′′

t−1 ◦ u′′
t−1(xt−1) + βt−1 β−1 g′′

t ◦Mf ′′

t (pt, ũt)
]

= sgn(ξ) exp
(

ξ
βt−2(1−βt−1)

[
(1 − βt−1) βt−2 1−βt−1

ξ
ln
(

sgn(ξ) ·

sgn(ξ) u∗(xt−1)
ξ

1−βt−1

)
+ βt−1 βt−2 1−βt

ξ
ln
(
sgn(ξ) Ept

ũt

)])

= sgn(ξ) exp
(
ln
(
u∗(xt−1)

ξ)) exp
(
βt−1

1−βt

1−βt−1
ln
(
sgn(ξ) Ept

ũt

))

= sgn(ξ) u∗(xt−1)
ξ
(
sgn(ξ) Ept

ũt

)β
. (C.39)

Where I have used the relation 1−βt

1−βt−1
= ββ−1

t−1 to arrive at the last line. Distinguishing

the two cases where sgn(ξ) > 0 and sgn(ξ) < 0, equation (C.39) corresponds to the

representation stated in the theorem.

Moreover part: Equation (C.38) in the remark shows that the demand of u∗, corre-

sponding to u in the corollary, being onto the given interval U∗ fixes also the range for

the measurement of welfare g′′ ◦ u′′
t . Therefore, the moreover part follows as in corol-

lary 8. 2

Proof of corollary 10: The representation is a simple transformation of corollary 9.

“⇒”: For ξ 6= 0 define ṽt : X̃t → IR for t ∈ {1, ..., T} by ṽt = (sgn(ξ) ũt)
1
ξ , where ũt

defines the recursive construction of the representation in corollary 9. Then it is

ṽt−1(xt−1, pt) = u(xt−1)
(
Ept

sgn(ξ) ũt

)β
ξ

= u(xt−1)
(
Ept

ṽξ
t

)β
ξ

= u(xt−1)
(
Mα=ξ(pt, ṽt)

)β
,

yielding the stated construction of ṽt. Then the representation of corollary 9 translates

into

pt �t p′t

⇔ Ept
ũt ≥ Ep′t

ũt

⇔ sgn(ξ) Ept
sgn(ξ) ũt ≥ sgn(ξ) Ep′t

sgn(ξ) ũt

⇔ sgn(ξ) Ept
ṽξ

t ≥ sgn(ξ) Ep′t
ṽξ

t
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⇔
(
Ept

ṽξ
t

)ξ

≥
(
Ep′t

ṽξ
t

)ξ

⇔ Mα=ξ(p′t, ṽt) ≥ Mα=ξ(p′t, ṽt)

for all pt, p
′
t ∈ Pt.

For the case ξ = 0 the stated representation corresponds to

M0(pt, ṽt) = exp
( ∫

dpt ln ṽt

)

= exp
( ∫

dpt ln
[
u(xt)

(
exp

[
Ept

ln(ṽt+1)
])β])

= exp
( ∫

dpt ln u(xt) + β
[
Ept

ln(ṽt+1)
])

Define u∗ = ln u and ṽ∗
t = ln ṽt. Then the representation is ordinally equivalent to

∫
dptu

∗(xt) + β
[
Ept

ln(ṽt+1)
]

For the case ξ = 0 the stated representation corresponds to

ṽt−1(xt−1, pt) = u(xt−1)
(
exp

[
Ept

ln(ṽt)
])β

= u(xt−1) exp
[
Ept

β ln(ṽt)
]
.

Defining ṽ∗
t = ln ṽt and u∗ = ln u ⇔ u = exp u∗ yields the representation

ṽ∗
t−1(xt−1, pt) = ln

(
exp[u∗(xt−1)] exp

[
Ept

βṽ∗
t

])

= u∗(xt−1) + Ept
β ṽ∗

t .

But the latter construction of aggregate welfare, corresponds to that of corollary 8 for

preferences corresponding to ξ = 0 (intertemporally additive expected utility). More-

over, the uncertainty evaluation

M0(pt, ṽt) = exp
( ∫

dpt ln ṽt

)

= exp
( ∫

dpt ṽ∗
t

)

is a strictly increasing transformation of Ept
ṽ∗

t . Therefore, the representation for the

case ξ = 0 is equivalent to the formulation in corollary 8.

“⇐”: Immediate consequence of corollary 9.

Moreover part: Is implied by the moreover part of corollary 9. Again, the measure

scale for welfare is fixed for the first period to the range lnU∗. 2
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C.3 Proofs for Chapter 10

Proof of theorem 11: “⇒”: Translating the condition (10.2) for a preference for an

early resolution of uncertainty into the representation of theorem 4 yields the inequality

λ(xt, pt+1) + (1 − λ)(xt, p
′
t+1) �t (xt, λpt+1 + (1 − λ)p′t+1)

⇔ λftg
−1
t

[
θt gtut(xt) + θtθ

−1
t+1 gt+1M

ft+1(pt+1, ũt+1) + θtθ
−1
t+1ϑt

]

+(1 − λ)ftg
−1
t

[
θt gtut(xt) + θtθ

−1
t+1 gt+1M

ft+1(p′t+1, ũt+1) + θtθ
−1
t+1ϑt

]

≥ ftg
−1
t

[
θt gtut(xt) + θtθ

−1
t+1 gt+1f

−1
t+1

[
λ
∫

dpt+1ft+1ũt+1

+(1 − λ)
∫

dpt+1ft+1ũt+1

]
+ θtθ

−1
t+1ϑt

]

Defining γ =
∫

dpt+1ft+1ũt+1 ∈ ft+1(Ut+1) and γ′ =
∫

dp′t+1ft+1ũt+1 ∈ ft+1(Ut+1) yields

⇔ λftg
−1
t

[
θt gtut(xt) + θtθ

−1
t+1 gt+1f

−1
t+1(γ) + θtθ

−1
t+1ϑt

]

+(1 − λ)ftg
−1
t

[
θt gtut(xt) + θtθ

−1
t+1 gt+1f

−1
t+1(γ

′) + θtθ
−1
t+1ϑt

]

≥ ftg
−1
t

[
θt gtut(xt) + θtθ

−1
t+1 gt+1f

−1
t+1

[
λγ + (1 − λ)γ′

]
+ θtθ

−1
t+1ϑt

]
. (C.40)

Condition (10.2) in the definition of a preference for an early resolution of uncertainty

has to hold for all lotteries pt+1, p
′
t+1 ∈ Pt+1 and λ ∈ [0, 1]. Therefore, inequality (C.40)

has to hold for all γ, γ′ ∈ ft+1(Ut+1), implying that the expression

ft ◦ g−1
t

[
θt gt ◦ ut(xt) + θtθ

−1
t+1 gt+1 ◦ f−1

t+1(γ) + θtθ
−1
t+1ϑt

]
(C.41)

has to be convex in γ ∈ ft+1(Ut+1). Similarly, replacing �t by �t and ≥ by ≤ for the case

of a preference for a late resolution of uncertainty implies concavity of expression (C.41).

“⇐”: All steps showing the necessity of the convexity condition of expression (C.41)

can be carried out backwards, implying sufficiency. 2

Proof of theorem 12: The proof is divided into three parts. First, I translate

axiom A9 into the representation theorem 7 and derive a functional equation with known

solution. In the second part I work out the corresponding representation and translate it

from recursive lotteries into probabilities defined directly on consumption paths. Finally,

part three shows that the functional representation implies the axioms.

Part I (“⇒”): By axioms A1-A3, A4’ and A5’ a representation for �= (�t)t∈{1,...,T} in

the sense theorem 4 has to exist. Indifference with respect to the timing of uncertainty

resolution in the sense of axiom A9, formally corresponds to a weak preference for

early and late resolution of uncertainty. Therefore, relation (C.40), worked out in the

proof of theorem 11, has to hold with equality. Defining ht = gt ◦ f−1
t ∀ t ∈ {1, ..., T},

y = θt gtut(xt) + θtθ
−1
t+1ϑt, z = θtθ

−1
t+1 gt+1f

−1
t+1(γ) and z′ = θtθ

−1
t+1 gt+1f

−1
t+1(γ

′) yields the
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following equality

λftg
−1
t

[
θt gtut(xt) + θtθ

−1
t+1 gt+1f

−1
t+1(γ) + θtθ

−1
t+1ϑt

]

+(1 − λ)ftg
−1
t

[
θt gtut(xt) + θtθ

−1
t+1 gt+1f

−1
t+1(γ

′) + θtθ
−1
t+1ϑt

]

= ftg
−1
t

[
θt gtut(xt) + θtθ

−1
t+1 gt+1f

−1
t+1

[
λγ + (1 − λ)γ′

]
+ θtθ

−1
t+1ϑt

]

⇔ λht

[
y + z

]
+ (1 − λ)ht

[
y + z′

]

= ht

[
y + θtθ

−1
t+1h

−1
t+1

[
λht+1(θt+1θ

−1
t z) + (1 − λ)ht+1(θt+1θ

−1
t z′)

]]

⇔ h−1
t

[
λht

[
y + z

]
+ (1 − λ)ht

[
y + z′

]]
− y

= θtθ
−1
t+1h

−1
t+1

[
λht+1(θt+1θ

−1
t z) + (1 − λ)ht+1(θt+1θ

−1
t z′)

]
. (C.42)

As the right hand side of equation (C.42) does not depend on y, the left hand side has

to be constant in y. By part two and part three of the proof of theorem 9, or by Aczél

(1966, 153), the only solutions for ht satisfying this condition are

ht(z) = at exp(ξtz) + bt and

ht(z) = atz + bt

with at, ξt 6= 0.

Case 1, h1(z) = a1 exp(ξ1z) + b1:

In the case h1(z) = a1 exp(ξ1z)+ b1 note that either a1 and ξ1 have to be both negative,

or they have to be both positive, in order to yield an increasing function ht (as required

in theorem 4). In both cases, the inverse calculates to h−1
1 (z) = 1

ξ1
ln( z−b1

a1
). Then the

left hand side of equation (C.42) translates for t = 1 into

1
ξ1

ln
[

1
a1

{
λ
(
a1 exp(ξ1y) exp(ξ1z) + b1

)

+(1 − λ)
(
a1 exp(ξ1y) exp(ξ1z

′) + b1

)
− b1

}]
− y

= 1
ξ1

ln
[
λ
(
exp(ξ1z)

)
+ (1 − λ)

(
exp(ξ1z

′)
)]

.

Define the functions r(z) = exp(ξ1 z) and s(z) = h2(θ2θ
−1
1 z). Then equation (C.42) for

t = 1 turns into the relation

r−1
[
λr(z) + (1 − λ)r(z′)

]
= s−1

[
λs(z) + (1 − λ)s(z′)

]
.

By Hardy et al. (1964, 66) it follows that S is a nondegenerate affine transformation

of r. Therefore, it must hold that s(z) = h2(θ2θ
−1
1 z) = a2 exp(ξ1 z) + b2. Then,

h2(z) = a2 exp( ξ1 θ1

θ2
z) + b2 .
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Defining ξ2 = ξ1 θ1

θ2
, the same reasoning for t = 2 yields h3(θ3θ

−1
2 z) = a3 exp(ξ2 z) + b3

h3(z) = a3 exp( ξ2 θ2

θ3
z) + b3 .

Defining inductively ξt+1 = ξtθt

θt+1
and recognizing that the definition implies that θt ξt ≡ ξ

is constant over time, find inductively that for all t ∈ {1, ..., T}:

ht(z) = at exp( ξ
θt

z) + bt (C.43)

with at ξ > 0.

Case 2, h1(z) = a1z + b1:

For h1 linear, the same reasoning as in case 1 implies that ht has to be linear for all

periods. Thus, the solution in case 2 is

ht(z) = atz + bt

for all t ∈ {1, ..., T}. Moreover, the constants at have to be strictly positive in order to

yield an increasing function ht as required by theorem 4.

Part II (“⇒”): In part two I derive the representations corresponding to the functions

ht = ft ◦ g−1
t derived in part one. Starting with case 1, I have ht = at exp( ξ

θt
z) + bt for

all t ∈ {1, ..., T}. Defining the affine function at(z) = at z + bt simplifies the notation to

ht(z) = at exp( ξ
θt

z) and h−1
t (z) = θt

ξ
ln(a−1

t z) for the inverse. To explore this relation

it proves helpful to employ a strictly monotonic transformation of the functions ũt for

the recursive construction of the representation. Defining these as ṽt = ft ◦ ũt for all

{1, ..., T}, find find

ṽt(xt, pt+1) = ft ◦ ũt(xt, pt+1)

= ht

[
θtgtut(xt) + θtθ

−1
t+1h

−1
t+1

[∫
dpt+1ft+1ũt+1

]
+ θtθ

−1
t+1ϑt

]

= at exp
(

ξ
θt

[
θtgtut(xt) + θtθ

−1
t+1

θt+1

ξ
ln
[
a−1

t+1

∫
dpt+1ṽt+1

]
+ θtθ

−1
t+1ϑt

])

= at exp
(
ξgtut(xt) + ln

[
a−1

t+1

∫
dpt+1ṽt+1

]
+ ξθ−1

t+1ϑt

)

= at exp(ξgtut(xt))
[
a−1

t+1

∫
dpt+1ṽt+1

]
exp(ξθ−1

t+1ϑt) .
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Recursively this relation yields

ṽt(xt, pt+1) = ft ◦ ũt(xt, pt+1)

= at exp(ξgtut(xt))
[
a−1

t+1

∫
dpt+1at+1 exp(ξgt+1ut+1(xt+1))

[
a−1

t+2

∫
dpt+2ṽt+2

]
exp(ξθ−1

t+2ϑt+1)
]
exp(ξθ−1

t+1ϑt)

= at exp(ξgtut(xt))
[∫

dpt+1 exp(ξgt+1ut+1(xt+1))
∫

dpt+2a
−1
t+2ṽt+2

]
exp(ξθ−1

t+2ϑt+1) exp(ξθ−1
t+1ϑt)

= at exp(ξgtut(xt))
[∏T

τ=t+1

∫
dpτ exp(ξgτuτ (xτ ))

]

∏T−1
τ=t exp(ξθ−1

τ+1ϑτ ) .

Observe that the brackets delimit the argument of the product, not of the integrals. The

integral
∫

dp
(xτ ,pτ+1)
τ is not only over the argument xτ of the expression exp(ξgτuτ (xτ )),

but also over the measure pτ+1 determining the integration in the subsequent period.

Then, preferences in period t are represented by the uncertainty aggregation rule

Mft(pt, ũt) = f−1
t

[ ∫
dp

(xt,pt+1)
t ft ◦ ũt

]
= f−1

t

[ ∫
dp

(xt,pt+1)
t ṽt

]
.

= f−1
t

[ ∫
dp

(xt,pt+1)
t at exp(ξgtut(xt))

[∏T
τ=t+1

∫
dpτ exp(ξgτuτ (xτ ))

]

∏T−1
τ=t exp(ξθ−1

τ+1ϑτ )
]

= f−1
t

[
at

[∏T
τ=t

∫
dpτ exp(ξgτuτ (xτ ))

]∏T−1
τ=t exp(ξθ−1

τ+1ϑτ )
]

With Mft(pt, ũt) being a representation, so is any strictly increasing transformation. In

particular, note that f−1
t is strictly increasing and that

∏T−1
τ=t exp(ξθ−1

τ+1ϑτ ) is a positive

constant. Furthermore, let k = 1 for at, ξ > 0, and k = −1 for at, ξ < 0. Then, the

following expression represents preferences over uncertain period t lotteries expressed in

terms of the recursive lotteries pt

k
∏T

τ=t

∫
dp

(xτ ,pτ+1)
τ exp(ξgτuτ (xτ )) , (C.44)

in the sense that

pt �t p′t ⇔ k
∏T

τ=t

∫
dpτ exp(ξgτuτ (xτ )) ≥ k

∏T
τ=t

∫
dp′τ exp(ξgτuτ (xτ ))

for all pt, p
′
t ∈ Pt.

Finally, I translate the representation (C.44) into the representation stated in the

theorem applying the reduced probability measures pxt defined on the set of consumption

paths. In chapter 10.2 I have shown how to infer such a probability measure pxt ∈ ∆(Xt)

from any given temporal lottery pt ∈ Pt, t ∈ {1, ..., T}. The probability measures defined

in that section will now be used to rearrange the expression (C.44) into the representation
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stated in the theorem. To start with, I demonstrate the according transformation of

the first two measures pt and pt+1 in expression (C.44). To this purpose, I suppress the

terms that that go beyond period τ = t + 2.
∫

Xt×Pt+1
dp

(xt,pt+1)
t exp(ξgtut(xt))

∫
Xt+1×Pt+2

dp
(xt+1,pt+2)
t+1 exp(ξgt+1ut(xt+1))

=
∫

Xt
dIPXt(xt)

∫
Pt+1

dIPPt+1|xt(pt+1)
∫

Xt+1×Pt+2
dp

(xt+1,pt+2)
t+1 (xt+1, pt+2)

exp(ξgtut(xt)) exp(ξgt+1ut(xt+1)) .

Observe that IPPt+1|xt(pt+1) is a function of xt. Moreover, no term in the expression

directly depends on the measure pt+1 in the third integral (only on its arguments).

‘Integrating out’ pt+1 eliminates the temporal information on what uncertainty resolves

in period t, and yields the following expression (see chapter 10.2):

=
∫

Xt
dIPXt(xt)

∫
Xt+1×Pt+2

dIPXt+1,Pt+2|xt(xt+1, pt+2)

exp(ξgtut(xt)) exp(ξgt+1ut(xt+1)) .

Inductively this manipulation can be carried on for all periods τ ∈ {t+1, ...T} as follows:
∫

Xτ×Pτ+1
dIPXτ ,Pτ+1|xτ−1,...,xt(xτ , pτ+1)

∫
Xτ+1×Pτ+2

dp
(xτ+1,pτ+2)
τ+1

=
∫

Xτ×Pτ+1
dIPXτ |xτ−1,...,xt(xτ ) dIPPτ+1|xτ ,...,xt(pτ+1)

∫
Xτ+1×Pτ+2

dp
(xτ+1,pτ+2)
τ+1

=
∫

Xτ
dIPXτ |xτ−1,...,xt(xτ )

∫
Xτ+1×Pτ+2

dIPXτ+1,Pτ+2|xτ ,...,xt(xτ+1, pτ+2) ,

where, in general, the measure IPXτ+1,Pτ+2|xτ ,...,xt depends on the integration variables

xτ , ..., xt of the preceding integrations. See chapter 10.2 for details. Applying this

manipulation to all periods transforms the representation (C.44) into

k
∏T

τ=t

∫
Xτ

dIPXτ |xτ−1,...,xt(xτ ) exp(ξgτuτ (xτ ))

= k
∫
X

t dpxt
∏T

τ=t exp(ξgτuτ (xτ ))

= k
∫
X

t dpxt exp
(∑T

τ=t ξgτuτ (xτ )
)

, (C.45)

with k < 0 for ξ < 0 and k > 0 for ξ > 0. Define, as in equation (10.6) stated

in the theorem, the aggregate utility function ũt(x
t) =

∑T
τ=t gτ ◦ uτ (x

t
τ ). Replacing

the variable k in expression (C.45) with the function 1
ξ
ln, corresponding to a strictly

increasing transformation, yields the representation

pt �t p′t ⇔ Mexpξ

(pxt , ũt) ≥ Mexpξ

(p′xt , ũt) ∀ pt, p
′
t ∈ Pt . (C.46)

It would correspond to a u+−gauge, when the range of the functions gt had been fixed

exogeneously. However, as the latter is not the case in theorem 12, I can redefine the

function gt as g∗
t = |ξ| gt to absorb the constant ξ up to its sign. Then, For ξ > 0

define h = exp to obtain the representation stated in equation (10.7). For ξ < 0,

defining h = exp−1 = 1
exp

takes up the sign of ξ and, thus, also yields the preference
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representation stated in equation (10.7).

In case 2, it was found that ht = at z + bt for all t ∈ {1, ..., T}. Again, the definition

of the affine functions at(z) = at z + bt, simplifies the notation to ht(z) = at z and

h−1
t (z) = a−1

t z. Then, I find

ṽt(xt, pt+1) = ft ◦ ũt(xt, pt+1)

= ht

[
θtgtut(xt) + θtθ

−1
t+1h

−1
t+1

[∫
dpt+1ft+1ũt+1

]
+ θtθ

−1
t+1ϑt

]

= at

[
θtgtut(xt) + θtθ

−1
t+1

[∫
dpt+1a

−1
t+1ṽt+1

]
+ θtθ

−1
t+1ϑt

]
,

which recursively yields

ṽt(xt, pt+1) = at

[
θtgtut(xt) + θtθ

−1
t+1

[ ∫
dpt+1a

−1
t+1at+1

[
θt+1gt+1ut+1(xt+1) +

θt+1θ
−1
t+2

[ ∫
dpt+2a

−1
t+2ṽt+2

]
+ θt+1θ

−1
t+2ϑt+1

]]
+ θtθ

−1
t+1ϑt

]

= atθt

[
gtut(xt) +

[ ∫
dpt+1

[
gt+1ut+1(xt+1) +

[ ∫
dpt+2θ

−1
t+2a

−1
t+2ṽt+2

]
+ θ−1

t+2ϑt+1

]]
+ θ−1

t+1ϑt

]

= atθt

[
gtut(xt) +

∫
dpt+1gt+1ut+1(xt+1) +

∫
dpt+2θ

−1
t+2a

−1
t+2ṽt+2

+θ−1
t+2ϑt+1 + θ−1

t+1ϑt

]

= atθt

[
gtut(xt) +

∑T
τ=t+1

∫
dpτgτuτ (xτ )

]
+ atθt

∑T−1
τ=t θ−1

τ+1ϑτ .

Again, the integral
∫

dp
(xτ ,pτ+1)
τ is not only over xτ , but also over the measure pτ+1, deter-

mining the integration in the subsequent period. Preferences in period t are represented

by the uncertainty aggregation rule

Mft(pt, ũt) = f−1
t

[ ∫
dp

(xt,pt+1)
t ft ◦ ũt

]
= f−1

t

[ ∫
dp

(xt,pt+1)
t ṽt

]
.

= f−1
t

[
atθt

[∑T
τ=t

∫
dpτgτuτ (xτ )

]
+ atθt

∑T−1
τ=t θ−1

τ+1ϑτ

]
.

With Mft(pt, ũt), also any strictly increasing transformation represents period t prefer-

ences. In particular, the following expression constitutes a preference representation
∑T

τ=t

∫
dpτgτuτ (xτ ) ,

so that

pt �t p′t ⇔
∑T

τ=t

∫
dpτgτuτ (xτ ) ≥

∑T
τ=t

∫
dp′τgτuτ (xτ ) ,

for all pt, p
′
t ∈ Pt.
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The translation into the non-recursive representation works similar to case 1,
∑T

τ=t

∫
dpτgτuτ (xτ )

=
∫

dp
xt,pt+1

t

[
gtut(xt) +

∫
dp

xt+1,pt+2

t+1

[
gt+1ut+1(xt+1) +

[
... +

∫
dpxT

T gT uT (xT )
]]]

=
∫

dp
xt,pt+1

t

∫
dp

xt+1,pt+2

t+1 ...
∫

dpxT

T gT ut(xT )

gtut(xt) + gt+1ut+1(xt+1) + ... + gT uT (xT )

=
∫

dIPXt(xt)dIPXt+1|xt(xt+1) .... dIPXT |xT−1,...,xt(xT )

gtut(xt) + gt+1ut+1(xt+1) + ... + gT uT (xT )

=
∫

dpxt
∑T

τ=t gτuτ (xτ )

=
∫

dpxt ũt(x
t) ,

yielding the representation stated in equation (10.7) for h = id.

Part III (“⇐”): As shown above, the representation is a special case of theorem 4.

Therefore axioms A1-A5’ follow immediately from “⇐” of theorem 4. The following

calculation shows that axiom A10 is satisfied as well. For the case h = exp define k = 1

and for the case h = 1
exp

define k = −1. Moreover, let pe
t = λ(xt, pt+1)+ (1−λ)(xt, p

′
t+1)

denote the lottery with early resolution of uncertainty and let pl
t = (xt, λpt+1+(1−λ)p′t+1)

denote the lottery with late resolution of uncertainty. Then, for h ∈ {exp, 1
exp

} and for

all t ∈ {1, ..., T − 1}, xt ∈ X, pt+1, p
′
t+1 ∈ Pt+1 and λ ∈ [0, 1] it holds

Mh
(
pe

t
x, ũt

)
= k ln

[ ∫
dpe

t
x exp

(∑T
τ=t kgτuτ (xτ )

) ]

= k ln
[
λ exp

(
kgtut(xt)

) ∫
dpxt+1 exp

(∑T
τ=t+1 kgτuτ (xτ )

)

+(1 − λ) exp
(
kgtut(xt)

) ∫
dp′xt+1 exp

(∑T
τ=t+1 kgτuτ (xτ )

) ]

= k ln
[
exp

(
kgtut(xt)

)(
λ
∫

dpxt+1 + (1 − λ)
∫

dp′xt+1

exp
(∑T

τ=t+1 kgτuτ (xτ )
) ]

= k ln
[ ∫

dpl
t
x

exp
(∑T

τ=t kgτuτ (xτ )
) ]

= Mh
(
pl

t

x
, ũt

)

Thus indifference between early and late resolution of uncertainty prevails. In the case

h = id the uncertainty aggregation rules are linear and the same equality in the repre-

sentation holds.

Moreover part: “⇒”: That two different sequences (gt)t∈{1,...,T} and (g′
t)t∈{1,...,T} rep-

resenting (�t)t∈{1,...,T} at most differ up to positive affine transformations follows from

the representation on certain consumption path and the moreover part in theorem 4.

The proof that the common multiplicative factor a in g′
t = agt +bt has to equal unity for

the cases h ∈ {exp, 1
exp

} is the same as in the proof of the moreover part of theorem 9.
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“⇐”: Let g′
t = gt + bt with bt ∈ IR for all t ∈ {1, ..., T}. Define as before k = 1 for the

case h = exp and k = −1 for the case h = 1
exp

. Then, for the case h ∈ {exp, 1
exp

}, the

following equality holds for all t ∈ {1, ..., T}.

Mh
(
pt

x, ũ′
t

)
= k ln

[ ∫
dpt

x exp
(∑T

τ=t kgτuτ (xτ ) + kbτ

) ]

= k ln
[ ∫

dpt
x exp

(∑T
τ=t kgτuτ (xτ )

) ]
+
∑T

τ=t bτ

= Mh
(
pt

x, ũt

)
+
∑T

τ=t bτ

Thus, if one of the sequences (gt)t∈{1,...,T} and (g′
t)t∈{1,...,T} represents (�t)t∈{1,...,T}, so

does the other:

Mh
(
pt

x, ũ′
t

)
≥ Mh

(
p′t

x
, ũ′

t

)

⇔ Mh
(
pt

x, ũt

)
+
∑T

τ=t bτ ≥ Mh
(
p′t

x
, ũt

)
+
∑T

τ=t bτ

⇔ Mh
(
pt

x, ũt

)
≥ Mh

(
p′t

x
, ũt

)
.

For the case where h = id, intertemporal and uncertainty aggregation are linear and the

equivalence

E
pxt

ũ′
t(x

t) ≥ E
p′xt

ũ′
t(x

t)

⇔ E
pxt

a ũt(x
t) +

∑T
τ=t bτ ≥ E

p′xt
a ũt (xt) +

∑T
τ=t bτ

⇔ E
pxt

ũ′
t(x

t) ≥ E
p′xt

ũ′
t(x

t)

implies that (gt)t∈{1,...,T} and (g′
t)t∈{1,...,T} both represent (�t)t∈{1,...,T} if the relation

g′
t = agt + bt holds with a ∈ IR++ and bτ ∈ IR for all t ∈ {1, ..., T}. 2

Proof of corollary 11: Using the representation of corollary 7 instead of theorem 4,

when calculating the representation in the proof of theorem 12, allows to trade in the

freedom to pick the functions ut in order to set the functions gt to identity. In con-

sequence, the aggregate utility function is defined as ũt(x
t) =

∑T
τ=t uτ (x

t
τ ). Moreover,

with gt = id for all t ∈ {1, ..., T}, fixing ut also fixes gt ◦ ut. Therefore, lemma 5 assures

that the risk measure AIRAt and RIRAt are unique. Precisely, fixing welfare for the

worst outcomes in all periods in the best outcome in one period is an immediate alter-

native to cases c) and d) in lemma 5 to eliminate the freedom in the choice of gt for all

t ∈ {1, ..., T}. Then, the representation (C.46) derived in the proof of theorem 4 holds:

pt �t p′t ⇔ Mexpξ

(pxt , ũt) ≥ Mexpξ

(p′xt , ũt) ∀ pt, p
′
t ∈ Pt ,

with ũt(x
t) =

∑T
τ=t uτ (x

t
τ ) and without the freedom to absorb ξ into the functions

gt ◦ ut = ut, as done in the proof of theorem 4. The proof that the case where h = id
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corresponds to the (limiting) definition of Mexp0

(pxt , ũt) = E
pxt

ũt is found in the proof

of corollary 8.

Moreover part: As noted above, lemma 7 implies the uniqueness of the risk measures

AIRAt and RIRAt. Equation (8.7) defines the measure of absolute intertemporal risk

aversion in period t as the function

AIRAt(z) = −
(ft◦g

−1
t )

′′

(z)

(ft◦g
−1
t )

′

(z)
.

As derived in the proof of theorem 12, the case ξ 6= 0 corresponds to

ht(z) = gt ◦ f−1
t (z) = at exp( ξ

θt
z) + bt

Therefore, the measure of absolute intertemporal risk aversion calculates to

AIRAt(z) = −
d2

dz2 ft◦g
−1
t (z)

d
dz

ft◦g
−1
t (z)

= −

d2

dz2 kt exp

„

ξ
θt

z

«

+dt

d
dz

kt exp

„

ξ
θt

z

«

+dt

= −

„

ξ
θt

«2

exp

„

ξ
θt

z

«

ξ
θt

exp

„

ξ
θt

z

« = − ξ
θt

,

for ξ 6= 0. The same relation is easily seen to hold as well for ξ = 0 where ft ◦ gt is

linear in z. The measure of relative intertemporal risk aversion in period t is defined in

equation (8.6) as the function

RIRAt(z) = −
(ft◦g

−1
t )

′′

(z)

(ft◦g
−1
t )

′

(z)
z .

In consequence it holds RIRAt(z) = AIRAt(z) · z, yielding RIRAt = − ξ
θt

id. 2

Proof of theorem 13: “⇒”: Adding certainty stationarity to the assumptions of

theorem 12 implies, as shown in the proof of theorem 7, that Bernoulli utility can be

picked identical in all periods. Moreover, in that case it exist β ∈ IR++ and g : X → IR

such that the functions gt can be chosen as gt = βt−1g. Then, in the representation of

theorem 12, the construction of aggregate utility simplifies to the form

ũt(x
t) =

T∑

τ=t

gτ ◦ uτ (x
t
τ ) =

T∑

τ=t

βτ−1g ◦ u(xt
τ ) ≡

T∑

τ=t

βτ−1u∗(xt
τ ) , (C.47)

where the simple redefinition of Bernoulli utility as u∗(xt
τ ) = g ◦ u(xt

τ ) yields the

g = id−gauge. Moreover, in the formulation of the theorem, the range of welfare

u∗(xt
τ ) = g ◦u(xt

τ ), i.e. u in the notation of the theorem, is fixed exogenously. Therefore,

as in corollary 11, the parameter ξ in equation (C.46) stemming from the relation

ht(z) = gt ◦ f−1
t (z) = at exp( ξ

1−βt
z) + bt (C.48)
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cannot be absorbed by the function u∗. In consequence, for the case ξ 6= 0, the represen-

tation (C.46) prevails, just as for the g+−gauge in corollary 11. Also as in the previous

g+− corollaries 8 and 11, it is found that the case ξ = 0 is covered by the representation

using the uncertainty aggregation rule Mexp0

(pxt , ũt) = E
pxt

ũt.

“⇐”: Implied by theorems 7 and 12.

Moreover part: By lemma 7, the choice of the range of u = u1 = g1 ◦ u1 as W ∗ fixes

the measure scale of welfare for all periods. Therefore, corollary 11 covers the moreover

part with θt = 1 − βt (see proof of theorem 7). 2

Proof of corollary 12: “⇒”: First, gauge lemma 4 is applied to translate the

sequence of representing triples from the general representation into the Kreps Porteus

gauge. Then, the (per period) utility function employed in corollary 12 is chosen in order

to be time invariant and fix the measure scale for welfare. Finally, instead of working

out the representation from the beginning, the new functions u and gt are substituted

for the old ones into the reduced non-recursive representation.

The preferences in the general certainty stationary representation corresponding to

the form given in equation (C.47) for the case ξ 6= 0 correspond to the sequence of

representing triples(
u , kt exp( ξ

1−βt
gt) + dt , gt

)
t∈{1,...,T}

. (C.49)

An application of gauge lemma 5 with s = kt exp( ξ
1−βt

gt) + dt renders uncertainty ag-

gregation linear. It transforms the representation to(
kt exp( ξ

1−βt
gt ◦ u) + dt , id , 1−βt

ξ
ln
(

1
kt

(id − dt)
))

t∈{1,...,T}

The moreover part of corollary 6 allows to eliminate the constants kt and dt from the

above triples, up to the sign of kt (choose a+
t = 1

kt
( id − dt) and note that ft = id).

Furthermore, it is gt = βt−1g, implying the representation(
u′ = sgn(ξ) exp

(
ξ

1−βt
βt−1g ◦ u

)
, f ′

t = id , g′
t = 1−βt

ξ
ln
(
sgn(ξ) id

))
t∈{1,...,T}

.

In the representation of corollary 12, I use a particular utility function u, henceforth u∗,

whose range can be fixed independent of the period, and which determines the ranges

of welfare g′ ◦ u′ independent of ξ. Define

u∗ =
(
sgn(ξ) u′

) 1−βt

ξ βt−1=
(
sgn(ξ) sgn(ξ) exp

(
ξ

1−βt
βt−1g ◦ u

)) 1−βt

ξ βt−1

= exp
(
g ◦ u

)
.

Then, the function u∗ is independent of t (as g and u are so), it is always positive (being

an image of the exponential function) and, moreover, it fixes welfare independent of the
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parameter ξ, as can be inferred from the following equation:

g′ ◦ u′ = 1−βt

ξ
ln
(
sgn(ξ) u′

)
= 1−βt

ξ
ln

(
sgn(ξ) sgn(ξ) u∗

ξ βt−1

1−βt

)
= βt−1 ln u∗ .

To obtain the corresponding representation observe that gt = βt−1g in the represen-

tation corresponding to the triples (C.49) has to be transformed with the inverse of

s = exp( ξ
1−βt

βt−1g) to 1−βt

ξ
ln
(
sgn(ξ) id

)
while f becomes the identity and u is replaced

with u′ = sgn(ξ)
(
u∗
) ξ βt−1

1−βt . Applying these changes to the representation (C.45) yields

k
∫

dpxt exp
(∑T

τ=t ξgτuτ (xτ )
)

= sgn(ξ)
∫

dpxt exp
(∑T

τ=t ξβ
τ−1gu(xτ )

)

= sgn(ξ)
∫

dpxt exp

(
∑T

τ=t ξ
1−βt

ξ
ln

(
sgn(ξ) sgn(ξ)

(
u∗(xτ )

) ξ βt−1

1−βt

))

= sgn(ξ)
∫

dpxt exp
(∑T

τ=t ln
(
u∗(xτ )

)ξ βt−1
)

= sgn(ξ)
∫

dpxt
∏T

τ=t

(
u∗(xτ )

)ξ βt−1

. (C.50)

Defining ũ = sgn(ξ)
∏T

τ=t

(
u′(xτ )

)ξ βt−1

brings about the representation stated in corol-

lary 12 for the case ξ 6= 0. For the case ξ = 0 the representation equals that of theorem

13 as Mexp0

(pxt , ũt) = E
pxt

ũt (see corollary 8).

“⇐”: Since the representation is shown to be equivalent to that of theorem 13, necessity

of the axioms follows from the proof of the latter theorem.

Moreover part: As the the coefficients of intertemporal risk aversion are gague invari-

ant, the result is covered by corollary 8. 2

Proof of corollary 13: “⇒”: The corollary is an immediate consequence of the

representation established in equation (C.50) in the proof of corollary 12, which, with

u ≡ u∗, is a strictly increasing transformation of the expression

sgn(ξ)
(∫

dpxt
∏T

τ=t

(
u(xτ )

)ξ βt−1
) 1

|ξ|
.

The latter is again ordinally equivalent to

(∫
dpxt

∏T
τ=t

(
u(xτ )

)ξ βt−1
)1

ξ
.

Defining ũ =
∏T

τ=t

(
u′(xτ )

)βt−1

yields the representation stated in corollary 13 for the
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case ξ 6= 0. For the case ξ = 0 the stated representation is

Mξ=0(pxt , ũt) = exp
(∫

dpxt ln
(∏T

τ=t

(
u(xτ )

)βt−1
))

= exp
(∫

dpxt
∑T

τ=t ln
(
u(xτ )

)βt−1
)

= exp
(∫

dpxt
∑T

τ=t β
t−1 ln

(
u(xτ )

))
. (C.51)

Thus, Bernoulli utility used in the above representation is a logarithmic transformation

of the certainty additive Bernoulli utility function (welfare) employed in the representa-

tion of theorem 13. The class of preferences represented by the evaluation corresponding

to expression (C.51) is obviously the same as those represented for ξ = 0 in theorem 13

or corollary 12.

“⇐”: Implied by corollary 12.

Moreover part: Implied by corollary 12. 2

Proof of corollary 14: “⇒”: I give the reasoning as well for the stationary as

for the non-stationary setting, as the latter is referred to in the text. For the non-

stationary setting equation (C.46) in the proof of theorem 12 has already pointed out

the representation for the general u+ gauge as

pt �t p′t ⇔ Mexpξ

(pxt , ũt) ≥ Mexpξ

(p′xt , ũt) ∀ pt, p
′
t ∈ Pt ,

where aggregate welfare has been defined through the recursion

ũt(x
t) =

T∑

τ=t

gτ ◦ uτ (x
t
τ ) .

For the Epstein-Zin gauge, the outcome space is assumed to be a subset of IR. Moreover

Bernoulli utility (in every period) is assumed to be strictly increasing in the consumption

level. Thus the identity can be chosen as the representing Bernoulli utility function.

Then, with u = ut = id, in the non-stationary case aggregate utility is characterized by

ũt(x
t) =

T∑

τ=t

gτ (x
t
τ ) , (C.52)

and the form of the evaluation of uncertain scenarios, characterized by intertemporal

risk aversion, stays unchanged. For the certainty stationary setting it is gt = βt−1g and

thus

ũt(x
t) =

T∑

τ=t

βt−1g(xt
τ ) .

“⇐”: Implied by theorem 13.

Moreover part: See corollary 11 (non-stationary setting) and theorem 13 (certainty
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stationary setting).

2

Proof of theorem 14: The assertion follows immediately from comparing the func-

tions characterizing intertemporal risk aversion in the representations of theorem 9 and

theorem 13. These imply that the two representations can only coincide for the case

where β = 1.

“⇒”: Preferences satisfying the stated axioms have to be representable in the sense

of theorems 9 and 13.19 Choose a nondegenerate closed interval W ∗ ⊂ IR++ and re-

quire that u = uwelf is onto W ∗. Then, due to risk stationarity, by corollary 8 there

have to exist ξ and β such that the functions ft ◦ gt characterizing intertemporal risk

aversion are specified by the coefficients AIRAt = − ξ
βt−1(1−βt)

. Analogously, due to

timing indifference, by theorem 13 there have to exist ξ′ and β′ such that the func-

tions ft ◦ gt characterizing intertemporal risk aversion are specified by the coefficients

AIRAt = − ξ′

1−β′

t
.

Both representations, that of corollary 8 and that of theorem 13, are special cases of

the certainty stationary representation in theorem 7. For given preferences �

= (�t)t∈{1,...,T}, coincidence of the representations on certain consumption paths im-

plies that β = β′. In consequence, it also holds that βt = β′
t. As the measure scale

for welfare is fixed to W ∗ in the first period, lemma 7 states that the characterizations

AIRAt of intertemporal risk aversion are unique for all t ∈ {1, ..., T}. Therefore, com-

parison of the measures of intertemporal risk aversion for period one implies that ξ = ξ′.

Then, the requirement that furthermore AIRAt
!
= − ξ

βt−1(1−βt)

!
= − ξ

(1−βt)
for all t > 1,

cannot be satisfied unless β = 1 or ξ = 0. However, the requirement of strict intertem-

poral risk aversion as formulated in axiom A6 s
st implies implies ξ < 0. Therefore it has

to hold that β = 1.

“⇐”: Except for axiom A6 s
st all of the stated axioms are implied by theorems 9 and 13.

Axiom A6 s
st is implied by theorem 10, case a). 2

19Recall that axiom A9 implies certainty stationarity as described in axiom A7.
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l’Institut Henri Poincaré . Translated version published 1964 in Kyburg & Smokler

(1964).

Duffie, D. & Epstein, L. (1992), ‘Stochastic differential utility’, Econometrica 60(2), 353–

394.

Duffie, D., Schroder, M. & Skiadis, C. (1997), ‘A term structure model with preferences

for the timing of resolution of uncertainty’, Economic Theory 9, 3–22.

Eeckhoudt, L. & Schlesinger, H. (2005), ‘Putting risk into its proper place’, CESifo

Working Paper 1462.

Ehrlich, I. & Becker, G. (1972), ‘Market insurance, self-protection and self-insurance’,

Journal of Political Economy 80, 623–648.
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