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PREFACE 
 
 
This thesis includes the research work carried out at the European Molecular Biology 

Laboratory (EMBL), Hamburg outstation (Germany). The results collected in the last 

three and a half years are here reported. The project is focussed on structural studies on 

ferric uptake regulator proteins, named as FurA and FurB, from Mycobacterium 

tuberculosis. In order to achieve this purpose several methodologies, including EMSA 

(electrophoretic mobility shift assay), microPIXE (proton induced X-ray emission), ITC 

(isothermal titration calorimetry), EXAFS (extended X-ray absorption fine structure) and 

X-ray crystallography, have been used. In this thesis a description of these techniques and 

of relevant protocols is described. It was possible to distinguish different metal sites for 

each of the proteins and elucidate their biological functions. Furthermore the crystal 

structure of FurB has been solved and here reported.  

 

The thesis is organised in seven chapters. 

Chapter 1 introduces the reader to the topic. It starts with a brief description of metal ion 

homeostasis, an introduction to Mycobacterium tuberculosis and an overview of the 

importance of iron and zinc ions. The chapter continues describing these cations’ 

regulation towards the more specific topic of the ferric and zinc uptake regulators. 

Chapter 2 describes the materials and methods used in this project. 

Chapter 3 and 4 present the experimental results for FurA and FurB respectively. 

Chapter 5 and 6 collect discussions and conclusions for FurA and FurB respectively. 

Chapter 7 summarizes my personal consideration of this project. 

 

This thesis has been submitted for the degree of Doctor of Philosophy (Ph.D.) to the 

combined Faculties for the Natural Sciences and for the Mathematics of the Ruperto-

Carola University of Heidelberg, ………………………2006 

 

EMBL, Hamburg ……………………2006 

Debora Lucarelli 
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ZUSAMMENFASSUNG 
 
 

Eisen ist das häufigste Spurenelement im menschlichen Körper, Zink das zweithäufigste. 

Die Kontrolle der Ionenhomeostase ist von überlebenswichtiger Bedeutung für alle 

Organismen. Die Regulierung des Ionenflusses in oder aus der Zelle ist ein komplexer 

und und steng regulierter Mechanismus, der noch weitestgehend ungeklaert ist.  

Der hochspezialisierte Krankheitserreger Mycobacterium tuberculosis muss sich mit der 

Sequestration von Eisen begnügen, um im menschlichen Körper überleben zu können. 

Der Eisenstoffwechsel wird durch die transktriptionelle Regulation von Genen 

kontrolliert, die mit der Aufnahme, dem Transport und der Speicherung von Eisen 

zusammenhängen. Der Mangel dieses Metalls löst eine weitreichende Reaktion hin zur 

erhöhten Aufnahme von Eisen aus, während ein Überschuss für die Zelle toxisch sein 

kann. Die Kontrolle der intrazellulären Eisenkonzentration ist mit anderen wichtigen 

Prozessen wie der Reaktion auf oxidativen Stress und der Regulation von 

Virulenzfaktoren. Neuere Studien haben gezeigt, dass bei TB/HIV-Patienten die hohe 

Mengen diätisches Eisen zu sich nehmen das Risiko einer akuten offenen Tuberkulose 

ansteigt. In M. tuberculosis wird der Eisenaufnahmeregulator A (engl. ferric uptake 

regulator A: FurA) durch Fe2+ zur spezifischen Bindung an seine DNA-Zielsequenz 

aktiviert, wodurch nachgeordnete Gene reprimiert werden.  

Zink ist ein weiteres wichtiges Element für alle lebenden Organismen und dient als 

Kofaktor in allen sechs Enzymklassen sowie in verschiedenen Regulationsproteinen. Die 

intrazelluläre Konzentration dieses Metalls muss aufgrund seiner Toxizität sehr genau 

reguliert werden. Verglichen mit Eukaryonten ist nur sehr wenig über die 

Zinkhomeostase in Bakterien bekannt. Im Genom von M. tuberculosis wurden mehrere 

Gene fuer potentiell Zink bindende Proteine identifiziert, allerdings wurde bisher 

seltsamerweise kein Zinkregulator gefunden. Stattdessen wurden erstaunlicherweise zwei 

Fur-Gene identifiziert: Mtb furA und Mtb furB, allerdings wurde kein eindeutiger 

struktureller oder funktioneller Unterschied berichtet. 

In dieser Arbeit wird eine sorgfältige und detaillierte strukturelle und biologische 
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Beschreibung der FurA- und FurB-Proteine dargestellt. Mit Hilfe einer Reihe von 

biochemischen und biophysikalischen Methoden, darunter Untersuchungen der 

elektrophoretischen Mobilitätsveränderungen (engl. electrophoretic mobility shift assay: 

EMSA), ortsspezifische Mutationen, isothermale Titrations Kalorimetrie (ITC), 

microPIXE, Röntgenabsorptionsspektroskopie (engl. extended X-ray absorption fine 

structure: EXAFS) und Röntgenkristallographie, haben wir die Metallbindungsstellen 

zusammen mit der Struktur und den Eigenschaften dieser Proteine charakterisiert. Die 

Kombination dieser Ergebnisse erlaubte es zwischen strukturell und funktionell 

unterschiedlichen Metallbindungsstellen zu unterscheiden, eine aeusserst genaue 

qualitative und quantitative Charakterisierung von ihnen zu erstellen. sowie eine 

Erklärung ihrer biologischen Aufgaben und zum ersten Mal eine dreidimensionale 

Darstellung eines Zinkaufnahmeregulators vorzustellen. 
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SUMMARY 
 

Iron is the most abundant trace element in the human body and zinc is the second one. 

Control of ion homeostasis is of vital importance for mammals and bacteria. Regulation 

of the ion flux into or out of the cell is a complex and articulated mechanism that still 

needs to be elucidated.  

The highly specialized pathogen Mycobacterium tuberculosis has to contend with iron 

sequestration in order to survive in the human body. Iron metabolism is regulated by 

controlling transcription of genes involved in iron uptake, transport and storage. Paucity 

of this metal triggers an extensive response to increase iron acquisition whereas an excess 

of it can be toxic for the cell. The control of intracellular iron concentration is also linked 

to other important processes including oxidative stress response and the regulation of 

virulence factors. Recent studies have shown that, in patients affected by TB/HIV 

exposed to high level of dietary iron, the risk of active pulmonary tuberculosis increases. 

In M. tuberculosis the ferric uptake regulator A (FurA) is activated by Fe2+ to bind 

specifically to its target DNA sequence thereby repressing the downstream genes.  

Zinc is also an important element for all living organisms and serves as a cofactor in all 

six classes of enzymes and also in several regulatory proteins. The intracellular 

concentration of this metal must be carefully regulated due its toxicity. Compared with 

eukaryotes, little is known about zinc homeostasis in bacteria. In the tuberculosis genome 

several genes coding for zinc proteins have been classified but curiously no zinc regulator 

has been yet defined.  Surprisingly, instead, two Fur genes were identified: Mtb furA and 

Mtb furB, but no clear structural or functional distinction has been reported.  

In this thesis a careful and detailed structural and biological description of FurA and FurB 

proteins is presented. Using a variety of biochemical and biophysical methods - including 

electrophoretic mobility shift assay (EMSA), site directed mutations, isothermal 

calorimetry (ITC), microPIXE analysis, extended X-ray absorption fine spectroscopy 

(EXAFS) and X-ray crystallography - we investigated the metal binding sites together 

with the nature and the structure of these proteins.  The combination of these results 

enable us to distinguish between structurally and functionally distinct metal binding sites, 
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provide a meticulous description and qualitative and quantitative characterization of 

them, propose biological roles and present for the first time a 3D picture of a zinc uptake 

regulator. 



   

 

Chapter 1 

 

 

INTRODUCTION 

 

 

 

1.1 Metal ion homeostasis 

The biological activity of one-third of all proteins requires metal ions to perform 

catalytic, structural or regulatory functions (Pennella and Giedroc, 2005). Involved in the 

cell physiology are zinc, copper, nickel, cobalt, iron, manganese, molybdenum, tungsten 

and a few more cations. In certain environments, such as the ocean, paucity of metal ions 

can limit primary production and affect the cellular metabolism. In other environments, 

particularly in the neighbourhood of industrial contamination, the concentration of metal 

ions exceeds the lethal limit for most organisms. 

The cell membrane acts as a filter and avoids an uncontrolled flux of metal ions in to or 

out of the cytosol. Under depleting conditions, metal ions and selected chelating- 

complexes are internalized by active transport; conversely, when metal ions are in excess, 

systems for metal sequestration or efflux are induced.  

The balance of metal ion import and export mechanisms in the cell is termed metal ion 

homeostasis. Tight regulation of metal homeostasis is fundamental for bacteria and their 

interaction with the hosts. 

 

 

 



1. INTRODUCTION  2 
 

  

1.2 Introduction to the biology and pathogenesis of Mycobacterium tuberculosis 

It is estimated that every year around eight million new cases of this disease can be 

counted, with an annual death toll of more than 2.5 million people (Kaufmann, 2000). 

Tuberculosis appears in the list of the top 10 major killers of our century. Even though 

short-course chemotherapy (DOTS) and the Bacille Guerin-Calmette (BCG) vaccine are 

now available for a large proportion of the populations of developed countries, the threat 

remains, since this pathogen has developed an extraordinary multi drug-resistance 

(MDR). 

Mycobacterium tuberculosis appears to multiply both intracellularly, in mononuclear 

phagocytes - especially lung macrophages, and extracellularly, in lung cavities. 

Multiplication to very high levels in lung cavities is especially important for disease 

transmission. The pathogen is coughed up and disseminated to the new host (Gobin and 

Horwitz, 1996). This is a widespread human pathogen with a low speed of reproduction 

and a long generation-time.  The organism shows an excellent ability to mutate and 

therefore adapt to challenges in its microenvironment. Recently it has been observed that 

many patients affected by HIV can easily contract tuberculosis due to a breaking down of 

the immune system (Dye et al., 2002). In underdeveloped countries, the lack of resources 

does not allow the spread of the disease to be controlled, and new mutant strains can be 

observed depending on the living conditions of the subject. Furthermore, none of the 

animal models for tuberculosis, except maybe non-human primates, reproduces the 

diversity of disease progression that is seen in humans (Boshoff and Barry, 2005). These 

aspects represent a limiting factor to the understanding of tuberculosis metabolism; 

nevertheless, the huge amount of studies carried out in the last decades lead scientists to 

postulate testable and reliable pictures of the bacterial metabolism.   

The capacity to survive within a specialised phagosomal compartment is central to the 

pathogenicity of Mycobacterium tuberculosis (Agranoff and Krishna, 2004). Evidence for 

the significance of metal ion homeostasis comes from recent studies where the pathogen 

has been exposed to presence/absence of different metal ions. Patients exposed to 

deprivation or excess of iron have showed a diverse course of the disease and the 

attenuation of its severity (Gangaidzo et al., 2001). After iron, zinc is the second most 
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abundant trace element in eukaryotic and it is involved in a myriad of biological 

processes: catalytic function in enzymes, stabilization and induction of protein folding in 

storage proteins, transcription factors and replication proteins (Coleman, 1992). 

 

1.3.1 Iron in Mycobacterium tuberculosis 

In order to develop a defensive strategy against this bacterium, mammalian hosts have 

restricted the access of such organism to iron. It was observed that pulmonary 

tuberculosis patients are, in fact, often anemic, suggesting sequestration of this cation 

from the host (Rodriguez and Smith, 2003). 

In Mycobacterium tuberculosis, iron is an obligate cofactor for at least 40 enzymes e.g. it 

is required for the cytochromes (involved in electron transport) and for hemoproteins 

(involved in oxygen metabolism) such as catalase-peroxidase KatG - a major virulence 

factor which activates host defences against nitric oxide, acid tolerance and oxidative 

stress. Most of the intracellular iron is bound to non-heme proteins, and it is for instance 

required for DNA synthesis in ribonucleotide reductase and cell deotoxification by 

superoxide dismutase. An examination of the tuberculosis genome revealed 155 iron-

regulated genes (Rodriguez, 2006). In total the mycobacterial cell requires between 7 and 

64 µg of Fe per gram of cell mass in order to support growth. Even though iron is the 

fourth most abundant element on earth, its avaibility in mammalian fluids as a free cation 

is limited. It is usually kept in solution bound to transferritin, lactoferritin and ferritin 

(Rodriguez and Smith, 2006), since free iron is potentially toxic, being responsible for the 

generation of oxygen radicals through the Fenton reaction (Bossmann et al., 2004): 

Fe2++H2O2 → Fe3++OH•+OH- 

To overcome iron deficiency, M. tuberculosis, like all mycobacteria, has developed a 

highly sophisticated system of iron transporters to supplement and support the acquisition 

of this metal from the host. So-called siderophores are small iron-chelating molecules 

excreted to compete for the limited amount of environmental Fe+2 in the cell.  

Siderophores are composed by four structurally distinct molecules: salicylic acid, citric 

acid (the simplest), mycobactin and exochelin (De Voss et al., 1999). In the host they 
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bind Fe3+, and once the complex Fe3+-siderophore is formed, it interacts with specific 

receptor proteins on the cell surface and is transported into the cytoplasm by ATP-

binding cassette (ABC) transporters. Here Fe3+ is released and reduced to Fe2+ then 

quickly loaded by iron uptake, storage and transport proteins. 

The synthesis of siderophores depends on the extracellular iron abundance. They are 

produced under iron limitation and the amount synthesised is directly correlated with the 

mRNA levels of genes encoding for proteins responsible for their synthesis. This is 

indicative of a regulatory mechanism that functions at the level of DNA transcription 

(Rodriguez, 2006).  

Members of three families of iron-dependent DNA-binding proteins are encoded in the 

Tuberculosis genome (Cole et al., 1998): IdeR/DtxR, SirR and FurA/B. These proteins do 

not share any significant sequence identity and they are expected to bind to different 

target sequences. Thereby they regulate, at the transcriptional level, a large variety of 

genes involved in iron uptake and the oxidative stress response. The metal acts as a co-

repressor by activating the DNA-binding capability of these proteins. IdeR, the best 

characterized iron dependent regulator, has multiple biological roles which includes 

controlling iron metabolism (Schmitt et al., 1995). This protein controls genes encoding 

putative transporters, transcriptional regulators, proteins involved in general metabolism, 

members of the PE/PPE family of conserved mycobacterial proteins and the virulence 

determinant MmpL4 (Rodriguez and Smith, 2003). Control of iron homeostasis and 

protection against oxidative stress is coupled in mycobacteria, with IdeR also playing a 

role as a positive modulator of the oxidative stress response (Rodriguez and Smith, 2003). 

The function of SirR (named as such due to its high homology with the staphylococcal 

iron regulator repressor) is still unknown, but some data suggests it to be a divalent metal 

cation-dependent transcriptional repressor of the promoter/operator region of sitABC 

(Hill et al., 1998).  

In addition to these regulators, the Mycobacterium tuberculosis genome encodes two 

proteins FurA and FurB similar to the Ferric Uptake Regulator (Fur) proteins that are 

well characterized for the Gram-negative bacteria such as Escherichia coli and 

Pseudomonas aeruginosa (Cole et al., 1998).  



1. INTRODUCTION  5 
 

  

1.3.2 Fur (ferric uptake regulator) family 

Fur is the most studied and best characterized of all members of the family of the iron 

regulators. The fur gene is itself regulated by the concentration of iron in the cell (Wong 

et al., 1999), and it may act as either as a transcriptional activator or a repressor. Fur 

directly or indirectly regulates a substantial number of other genes encoding proteins with 

diverse functions: these proteins are involved in a variety of metabolic processes, such as 

the Krebs cycle, genes required to survive oxidative stress, genes necessary for 

scavenging iron and genes which contribute to virulence, such as Exotoxin A (Vasil and 

Ochsner, 1999). Furthermore, it was recently shown that in Pseudomonas aeruginosa and 

Escherichia coli, Fur has a positive but indirect effect on the abundance of a set of genes 

(fig. 1.1). This protein can repress the transcription of small regulatory RNAs that bind to 

and decrease the stability of several mRNAs encoding iron-containing proteins. As a 

result, these mRNAs are not stable in the absence of Fur (Masse and Gottesman, 2002; 

Wilderman et al., 2004). 

 
Figure 1.1: Schematic representation of Fur regulation in the cell 
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Many studies have recently been performed in order to shed light on this complex 

regulation system. Fur proteins from different organisms including Escherichia coli, 

Pseudomonas aeruginosa, Helicobacter pylori and Anabaena have been studied (Althaus 

et al., 1999; Hernandez et al., 2004; van Vliet et al., 2002; Vasil and Ochsner, 1999).  A 

great deal of physiological, biochemical and structural information has been published, 

and different suggestions regarding the structure, function and mechanism of Fur have 

been proposed. Whereas in vivo, Fe2+ is the protein co-activator, it is possible to produce 

in vitro activity with a variety of divalent transition metals including Fe2+, Zn2+, Co2+, 

Mn2+, Cd2+ and Cu2+ (Mills and Marletta, 2005).  All Fur proteins studied so far show a 

specific affinity for a DNA sequence, rich in A+T bases, called the Fur-Box: 5'-

GATAATGATAATCATTATC-3’ (Escolar et al., 1998). The Fur consensus box consists 

of a 19 bp (non-perfect) palindromic region suggesting the binding of at least one dimeric 

form of the protein.  The emerging scenario suggests certain common features. In most 

bacteria, Fur contains tightly bound zinc, and often denaturation of the protein is 

necessary to remove this cation. A second metal co-factor, Fe2+, is less strongly bound, 

but necessary for the DNA binding activity.  

At present, the three-dimensional structure of only one member of this family has been 

determined: the Pseudomonas aeruginosa Fur (PA Fur) complexed with Zn+2 solved to 

1.8 Å resolution (Pohl et al., 2003) (fig. 1.2). 
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Figure 1.2: Ribbon representation of PA Fur 

 

The protein is composed of 134 amino acids and has a molecular weight of 14435 Da. In 

solution Fur is a dimer and possesses two metal sites: one binds zinc ion and one binds 

iron ion. In the crystal structure, the protein exhibits two additional metal sites, both 

occupied by zinc ions. In the crystallization conditions the protein, purified with only one 

metal site (the structural zinc) occupied, was added to a mother liquor solution containing 

zinc-salt (ZnSO4) and polyethylene. Thus the iron ion was replaced by zinc. This is 

confirmed by the EXAFS data collected in solution on a protein sample complexed with 

both metals and exhibiting the same coordination observed in the crystal structure. The 

structure is composed of two domains: a DNA-binding domain (residues 1-84) and a 

dimerization domain (residues 85-134). The DNA-binding domain is composed of four 

helices (H1, H2, H3 and H4) followed by two-stranded antiparallel β-sheets (S1 and S2). 

This domain exhibits a typical helix-turn-helix motif with a three-helix bundle (H2, H3 

and H4) where the helix H4 is the putative DNA recognition region (Pohl et al., 2003). 
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The dimerization domain is constituted by three antiparallel β-strands (S3, S4 and S5) 

and one long α-helix (H5). The strand S3 and the helix H5 are involved in the protein 

dimer formation and they are kept in a rigid conformation by a metal site buried in the 

domain’s central part. It is possible to observe hydrophobic and hydrophilic interactions 

between the helix H5 and the symmetry related helix H5’ (fig. 1.3).  

 

 
Figure 1.3: Ribbon representation of PA Fur dimer 

 

The structural site shows a tetrahedral coordination and is surrounded by Asp88, Glu107, 

His86 and His124 (fig. 1.4) 
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Figure 1.4: “Ball and sticks” representation of the structural site of PA Fur 

 

In the regulatory site instead the cation is octahedrally coordinated by His32, Glu80, 

His89, Glu100, and 1 molecule of H2O (fig. 1.5). 

Both sites were also structurally analysed by absorption spectroscopy and data were in 

agreement with crystallographic coordinates. 

EXAFS experiments on Escherichia coli Fur (EC Fur) (Jacquamet et al., 1998) reported 

the presence of more than one metal site also for this protein and suggested distinct 

functions for each of them. Recently the high-resolution structure of the DNA-binding 

domain of this protein was published by the same group (Pecqueur et al., 2006), 

confirming the previously published spectroscopic data. This domain is very similar to 

the related one in PA Fur and again the well-characterized motif, helix-turn-helix typical 

of DNA-binding protein, has been observed.   
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Figure 1.5: “Ball and sticks” representation of the regulatory site of PA Fur 

 The sixth ligand (H2O) is not reported in the PDB file (ID 1mzb). 

 

For years long discussions and a few mechanisms have been proposed in order to explain 

the interaction between the protein and its DNA recognition sequence. As previously 

remarked, PA Fur binds the canonical Fur-box and is found in solution in a dimeric state, 

like all Fur proteins. These proteins interact with DNA by utilising two helices (of the 

helix-turn-helix motif) of which one (generally rich of electropositive residues) interacts 

with the negatively charged surface of the nucleotide, while the second is located in the 

major groove of the nucleotide. The dimeric protein form mainly acts as a “clamp” 

docking the palindromic DNA at least in two separate regions. The question of the 

number of Fur dimers involved in the Fur-box binding is still open. At present it is in fact 

only possible to confirm the DNA binding by using in vitro experiments, but determining 

the multiplicity of the dimer becomes more difficult. 

 

1.3.3 Mtb FurA and Mtb FurB 

As introduced above, the tuberculosis genome contains two genes coding for Fur-like 

proteins: furA and furB (Cole et al., 1998).  



1. INTRODUCTION  11 
 

  

The furA gene is situated immediately upstream of the katG gene, which encodes for 

catalase-peroxidase enzyme. FurA negatively regulates (by an as yet unknown 

mechanism) the expression of katG, thereby modulating the response against oxidative 

stress (Rodriguez, 2006). In addition, FurA is thought to be involved in other mechanisms 

but no “official” data is yet available (Pym et al., 2001). 

Very little is known about FurB.  The only clear evidence available points to a strong 

affinity of this protein for zinc (and not for iron) and it was recently suggested (Canneva 

et al., 2005) that FurB could be involved in the control of Zn-sensitive genes.   

After decoding the tuberculosis genome in 1998, many genes/proteins have been 

classified by homology or similarity to already well-defined and characterized proteins 

from other organisms. Less than 10 years have passed from that date and many studies 

have been conducted on tuberculosis targets, but more time is still required to cover the 

full genome and assign a major function to every single protein. 

Despite unclear classifications of each of the individual targets in tuberculosis, a pattern 

of multiple metal dependent repressors is seen, similar to that found in Bacillus spp. 

Genes encoding proteins homologous to both classes of the major iron dependent 

repressors (i.e. DtxR and Fur) were found, as in most other prokaryotes. While DtxR and 

Fur are clearly involved in iron homeostasis in organisms where they function as the 

main regulator of iron homeostasis (i.e. corynebacteria or mycobacteria for DtxR and 

gram negatives for Fur), the functions of the additional Fur homologs like FurA and FurB 

are not very certain. In some cases they appear to be involved in resistance to redox stress 

or in the regulation of gene expression involving metals other than iron, for instance zinc 

or manganese. For example, one Fur homolog is Zur, which appears to be required for the 

control of zinc uptake in Escherichia coli and Bacillus subtilis. More recently, another 

Fur homolog, Nur (of Streptomyces), has been discovered to control the expression of a 

gene encoding a nickel dependent superoxide dismutase (Ahn et al., 2006). The 

sequences of the Fur homologs which are likely to be directly involved in iron 

homeostasis are highly conserved throughout their lengths, whereas the sequences of Fur 

proteins which have alternative functions (e.g. Zur and Nur) are most conserved in their 

putative metal binding regions and dimerization domains. In contrast, the amino terminal 



1. INTRODUCTION  12 
 

  

DNA binding regions of these alternative Fur proteins are much less well conserved 

compared to the Fur proteins, which have a strong influence on iron homeostasis.  

 

1.4 Zinc regulation 

Zinc is an important element for all living organisms and serves as a cofactor in all six 

classes of enzymes (Coleman, 1998) and also in several classes of regulatory proteins 

(Outten and O'Halloran, 2001). The intracellular concentration of this metal must be 

carefully regulated due its toxicity. Compared with eukaryotes, little is known about zinc 

homeostasis in bacteria. In Escherichia coli a zinc efflux system (ZntA) and a zinc import 

system (ZnuABC) have been described (Hantke, 2001). ZntA (Zn2+ transport or 

tolerance) is an ion-motive P-type ATPase that exports Zn2+, Cd2+ and Pb2+. The Zn2+-

specific uptake system Znu (Zn2+ uptake) belongs to the ABC transporter family and is 

composed of the periplasmic binding protein ZnuA, the ATPase ZnuC, and the integral 

membrane protein ZnuB (fig. 1.6). In the znu gene cluster, the transcription of the znuA 

gene is divergent to that of the znuCB genes and the genes are separated by an unusually 

short intergenic region of 24 base pairs. 

Today, zinc homeostasis gains an increasing interest. The zinc uptake system ZnuABC is 

regulated by Zur (Zn2+ uptake regulator) (Patzer and Hantke, 2000). Other zinc-specific 

metalloregulatory proteins from bacteria are known, but I would like to focus our 

attention on this particular system. Zur is considered to be a member of the Fur family 

(Moore and Helmann, 2005). Its structure is unknown but it is likely that, in homology to 

all members of the Fur family, this protein has a conserved structure with a N-terminal 

DNA-binding domain and a C-terminal dimerization domain. Recently, two metal 

binding sites per monomer have been described for the E. coli zinc uptake regulator (EC 

Zur). EXAFS data indicated a tetrahedral structural zinc site constituted of sulphur and 

oxygen atoms and a tetrahedral regulatory site coordinated to one sulphur and three 

histidines/oxygens (Outten et al., 2001). Most of the zinc-specific periplasmic binding 

proteins have a central histidine, aspartate and glutamate rich region, which seems to 

allow discrimination from the manganese transporters. Zinc has a preferred tetrahedral 
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coordination geometry that is quite different from the hexa-coordinated binding state 

preferred by manganese.  

 
Figure 1.6: Schematic representation for the zinc uptake pathway 

Depending on the Zn2+ concentration in the medium, different types of Zn2+ transporters are 
synthesized. At limiting Zn2+ concentrations, binding-protein-dependent ABC transporters are 
induced.  Today there are still gaps in the understanding of this mechanism and little is known 
about the passage of divalent ions across the outer membrane and about which transport systems 
supply the cells under Zn2+-replete conditions.   
 
In many sequenced genomes of bacterial species, proteins designated as Fur homologues 

were recently reclassified as Zur (Hantke, 2001). Proteins belonging to the same family 

show various sequence similarities but evidently dissimilar biological functions. 

Curiously, two Fur genes were identified in the tuberculosis genome - furA and furB - but 

no Zur was yet reported. The metal selectivity of Fur-like repressors varies and is 

presumably determined by the precise spatial arrangement of the potential metal ligands 

around the regulatory site. Zur may have evolved the ability to sense zinc by modification 

of the iron-sensing site (Gaballa and Helmann, 1998). 
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1.5 Objectives 

In recent years, many studies have identified several components of the homeostasis 

machinery. Metalloregulatory proteins are key to understanding the pathways of metal 

uptake, distribution, storage and efflux of metal ions. 

Despite the amount of experimental data and knowledge available today, Mycobacterium 

tuberculosis homeostasis remains unclear and most of the pathways and the regulators 

involved are still unknown. In the past few years it became evident that this organism 

manifests a certain sensibility to the presence of metal ions. Vulnerability of this 

pathogen has been observed in the presence of iron and new therapy based on this 

knowledge can attenuate its progression (Gangaidzo et al., 2001). Today more and more 

studies are focussing on this topic, but still many gaps remain to be filled. Because of 

sequence and functional similarities between the major Fur regulators such as Fur from P. 

aeruginosa and those like FurA, FurB or Zur, it would be of interest to examine how 

metals interact with these subclasses of Fur. Furthermore, it could be of a certain 

importance to shed some light on the real functions of these two targets. 

The work presented in this thesis is focused on structural and biological studies on 

Rv1909c (Mtb FurA) and Rv2359 (Mtb FurB) from Mycobacterium tuberculosis. The 

following chapters will demonstrate that through a variety of biochemical and biophysical 

methods - including cloning, expression and protein purification, EMSA (electrophoretic 

mobility shift assay) assays, isothermal calorimetry (ITC), microPIXE analysis, extended 

X-ray absorption fine structure (EXAFS) and protein crystallography – it was possible to 

investigate the nature and function of the different metals present in Mtb FurA and Mtb 

FurB. Furthermore it was also possible to unravel and clearly to state for the first time the 

biological functions of Mtb FurB. 



   

 

Chapter 2 

 

 

MATERIALS AND METHODS 

 

 

 

In this chapter a brief description/introduction covering all methodologies utilized in this 

project is given.  

In all cases, before starting any of the experiments, all containers were washed and 

sterilized and all buffers were pretreated with chelex-100 to avoid possible metal 

contamination. All chemicals were purchased from Sigma-Aldrich (Germany) except 

where explicitly indicated otherwise. 

 

2.1 Cloning. expression and purification 

2.1.1 FurA 

A PCR amplification of the furA gene from the TB genome H37Rv was performed using 

the primers:  

 Fwd 5'GCATCGCCATGGCTTCTAGTGTGTCCTCTATACC3’ 

 Rev 5'GCATCGAAGCTTTTACGGATGTGATCGCGAAGTG3'   

(purchased from MWG, Ebersberg, Germany). The size of the insert was confirmed by 

agarose gel electrophoresis. Purification and gel extraction of the amplified product was 

performed using a gel extraction kit (Qiagen). The insert was subsequently digested at 

37°C with restriction enzymes HindIII (New England Biolabs, Frankfurt, Germany) and 

XhoI (New England Biolabs, Frankfurt, Germany) in buffer NEB2 (New England 
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Biolabs, Frankfurt, Germany). Ligation into a pETM11 vector was performed using the 

Rapid DNA ligation kit (Fermentas) after cutting the plasmid with the same restriction 

enzymes. 

DH5α cells were transformed with the product, spread on kanamycin-containing agar 

plate and left overnight at 37°C. One colony was picked from the plate and grown 

overnight in LB (Luria-Bertani) media in the presence of 50 mg kanamycin at 37°C. 

DNA was purified from the DH5α cells using a Qiagen kit and sent to MWG for 

sequencing. The purified plasmid was transformed into BL21* cells and over expressed 

in LB containing 50 mg kanamycin and 34 mg chloramphenicol.  The cultures were 

grown at 37°C; when the OD reached a value of approximately 0.6, the cells were 

induced with 1mM IPTG (Isopropyl β-D-thiogalactoside) (ROTH) and left to grow 

overnight at 20°C. 

Cells were harvested after centrifugation at 4000 xg for 20 min. Lysing buffer (50 mM 

Tris pH 8.0 HCl, 300 mM NaCl, 20 mM imidazole, 0.02%(v/v) of 1-thioglycerol) was 

added together with DNAase (BioLabs) and left for 20 min. After sonication the cells 

were spun down for 30 min at 20000 xg. All harvesting and lysing steps were performed 

at 4°C.  

The supernatant was then passed through a 0.22 µm filter and loaded on a pre-

equilibrated Ni-NTA column (resin purchased from Qiagen) for purification.  The protein 

was eluted with a high imidazole concentration buffer (50 mM Tris pH 8.0 HCl, 300 mM 

NaCl, 500 mM imidazole, 0.02%(v/v) of 1-thioglycerol) and left with TEV protease, for 

overnight cleavage at 4°C, in dialysis in a buffer containing 50 mM Tris pH 8.0 HCl, 300 

mM NaCl.  It was then loaded once more onto the Ni-NTA column in order to remove 

the His6-tagged protease and only the flow-through was collected. The eluted volume was 

reduced to 1ml and further purified on a Superdex 75 16/60 column (Amershan 

Bioscience) which had been previously equilibrated with 10 mM Tris pH 8.0 HCl, 150 

mM NaCl, 10% glycerol and 5 mM DTT (ROTH). 

The concentration was measured using either a Bradford assay (Biorad) or by measuring 

the absorption at 280 nm in 6.0 M guanidium chloride and 0.02 M phosphate buffer pH 

6.5 and using the calculated absorption coefficient (obtained from the “Expasy protein 
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chart” at http://www.expasy.org/uniprot/P0A582) 

 

2.1.2 Cloning, expression and purification of FurB 

Methods and materials are similar to those described above in the FurA section; therefore 

only a short description is given. 

The furB gene from the TB genome H37Rv was cloned into the pETM11 vector using the 

primers: 

 Fwd 5’GCATCGCCATGGCTAGTGCAGCCGGTGTCCG3’ 

 Rev 5’GCATCGAAGCTTTTAGCTCCGGCAGTCTGAGC3’   

and HindIII (New England Biolabs, Frankfurt, Germany) and XhoI (New England 

Biolabs, Frankfurt, Germany) as restriction sites. The protein was expressed in BL21* by 

overnight induction with 1mM IPTG (ROTH) at 20°C. 

Purification steps included a Ni-NTA affinity chromatography (Qiagen) followed by 

cleavage of the His6-tag with TEV protease and a size exclusion chromatography on a 

Superdex 75 16/60 column (Amersham Bioscience).  In some cases an ion exchange step 

through a resource column (Amersham Boscience) was performed in addition.  

Dynamic light scattering and mass spectroscopy were performed in order to confirm the 

purity of the sample. Concentration was measured using either a Bradford assay (Biorad) 

or by measuring the absorption at 280 nm in 6.0 M guanidium chloride and 0.02 M 

phosphate buffer pH 6.5 and using the calculated absorption coefficient. 

 

2.2 Site directed mutagenesis 

Single point-mutations of three cysteines (C76S, C126S and C129S) of FurB were 

prepared by using the QuikChange Site-Directed Mutagenesis Kit (Stratagene).  

For each mutation a set of primers was designed as indicated in the kit’s manual: 

 

 C76S_fwd 5’ TCGGTCTACCGCAGATCCTCGGAGCACCATCAC 
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 C76S_rev 5’ GTGATGGTGCTCCGAGGATCTGCGGTAGACCGA 

 C126S_fwd 5’ GAGATCTTCGGCACCTCCTCAGACTGCCGGAGC 

 C126S_rev 5’ GCTCCGGCAGTCTGAGGAGGTGCCGAAGATCTC 

 C129S_fwd 5’ ATCTTCGGCACCTGCTCAGACTCCCGGAGC 

 C129S_rev 5’ GCTCCGGGAGTCTGAGCAGGTGCCGAAGAT 

 

The reagents for the PCR reaction were as follows: 

5 µl of 10x reaction buffer 

1 µl (25ng) of dsDNA template 

1 µl (200 ng) of primer1 

1 µl (200 ng) of primer2 

1 µl of dNTP mix 

1 µl of Pfu Turbo DNA polymerase 

40 µl ddH2O 

After PCR, 1 µl of Dpn I was added directly to the amplification reaction and the tubes 

were incubated at 37°C for one hour to digest the parental DNA. 1 µl of the digested 

product was transferred into a tube containing supercompetent cells (Epicurian Coli XL1-

Blue) and all left on ice for 30 minutes. The transformation was pulse heated to 42°C for 

45 seconds and left on ice for two minutes. 0.5 ml of LB was added and the reaction was 

left at 37°C for one hour. Everything was then plated and left to grow overnight at 37°C. 

The following day, one colony was picked from the plate and grown in LB media with 

kanamycin and chloramphenicol. After 16 hours, cells were spun down and DNA was 

extracted using the Qiagen DNA-extraction kit (Stratagene). The DNA obtained was 

sequenced and mutations were confirmed.  

All three FurB mutants were expressed following the purification protocol described 

above for FurB.  

 

2.3 Bioinformatics analysis 

At present, Zur (zinc uptake regulator) from E. coli is the most studied and best 
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characterized zinc uptake regulator. It regulates a znu gene cluster coding for the zinc 

import system ZnuABC (ZnuA is a periplasmic binding protein, ZnuC is an ATPase and 

ZnuB an integral membrane protein). The transcription of the znuA gene is divergent to 

that of znuCB genes. They are separated by an unusually short intergenic region of 24 

base pairs. Protein searches against the Mycobacterium tuberculosis genome were 

executed with either BLAST or FASTA programs (Altschul et al., 1990; Pearson, 1990). 

A triplette of genes Rv2059 (2315172-2316707), Rv2060 (2316277-2316678), Rv2061c 

(2316679-2317083) respectively coding for a hypothetical adhesion protein, a possible 

conserved integral membrane protein and a hypothetical phosphatase protein was found. 

These proteins surprisingly match the related proteins in E. coli not only for high 

homology in the sequence alignments, but also for their functional annotations. Another 

similarity can be observed in the intergenic region of 70 base pairs present between 

Rv2059 and Rv2060-Rv2061c genes (these two are co-transcribed like in E. coli). Also, 

the molecular dimensions (related to the functions) of the proteins seem to be similar in 

tuberculosis. ZnuA shows, in fact, a bigger size compared to ZnuB and ZnuC which have 

instead smaller and approximately same molecular. The same pattern is observed for the 

newly-discovered genes: where Rv2059 is bigger than Rv2060 and Rv2061c which have 

similar masses.  

 

2.4 DNA-binding assays 

A 27 bp DNA sequence (referred to here as the Zur-box), almost palindromic and 

identical to the promoter region of Rv2059, was synthesized (MWG). Electrophoretic 

mobility shift assays were performed using the Zur-box and the canonical Fur-box. The 

oligonucleotides were mixed with the protein in the presence or absence of different 

metals in a low salt buffer (10 mM Tris pH 7.5, 100 mM NaCl, 10% Glycerol). The 

reaction was then loaded on a 4-20% native gel, stained with ethidium bromide and 

visualized under the UV lamp. 

 

2.5 FurB-DNA complex purification 
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Once the DNA partner had been identified, the complex was formed by adding 1.2 

equivalents of protein to the DNA in the presence of a zinc salt (ZnSO4) solution. The 

reaction was left at room temperature for one hour and then passed through a gel filtration 

column, Superdex 75 16/60 (Amersham) for purification.  

 

2.6 MicroPIXE 

2.6.1 Brief introduction to microPIXE 

Proton Induced X-ray Emission is a technique utilized to probe the amount of metal ions 

in a sample - particularly, as in this case, in proteins. The most significant effect produced 

by the absorption of the incident protron beam is ionization of atoms. Subsequent 

relaxation of an electron to a lower shell results in the emission of one or more photons or 

Auger electrons (fig. 2.1).  

 

Figure 2.1: Schematic representation of proton-element interaction 

An absorbing atom is photoionized by a proton beam. Electrons of a specific shell are excited to 
the continuum, followed by transition of electrons from higher shells (L,M) to the unoccupied 
lower shell (K). The energy of the X-ray quantum is element specific.  

 
Each atom emits a characteristic energy depending on the atomic potential. This signal 

serves as the fingerprint of the element. PIXE is based on the detection of these 
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characteristic photons. Thus every element above a certain energy cut-off, in other words 

heavier than fluorine, can be detected simultaneously. 

A complete description and introduction to this technique is reviewed in (Garman and 

Grime, 2005).  

 

2.6.2 MicroPIXE sample preparation and data collection 

All samples were left for overnight dialysis in 10 mM Tris pH 8.0, 150 mM NaBr, 10% 

glycerol and 5mM ascorbate. The buffer exchange is necessary to remove any traces of 

free S and Cl. Sulphur acts as an internal standard, and due to the proximity of the X-ray 

emission energies of S and Cl, strong chloride fluorescence can affect the accuracy with 

which the sulfur peak can be quantified.  

The microPIXE measurements were carried out at the National Ion Beam Centre, 

University of Surrey, U.K. A 2.5 MeV proton beam of 1 µm in diameter was used to 

induce characteristic X-ray emission from the dried liquid droplet under vacuum. The X-

rays were detected in a solid-state lithium-drifted silicon detector with high-energy 

resolution (Garman and Grime, 2005; Grime et al., 1991). 

Spatial maps were obtained of all elements heavier than neon. Quantitative information 

was obtained by collecting 3 or 4 point spectra from the sample area. These spectra were 

analyzed with GUPIX (Johansson et al., 1995) within DAN32 (Grime, 1996) to extract 

the relative amount of each element of interest in the sample. 

This part of the work has been done in collaboration with Dr. Elpseth Garman (Oxford 

university). 

 

2.7 Isothermal Calorimetry 

2.7.1 Brief introduction to the Isothermal Calorimeter  

ITC (Isothermal Titration Calorimetry) allows the determination of binding constants by 

measuring the heat produced during a chemical reaction. The binding of a ligand to a 

protein can be an exothermic reaction. A calorimeter is an isolated system where the heat 
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produced or absorbed during a reaction is determined.  

This technique consists of measuring the heat absorbed or released during a titration 

where the ligand is added in small amounts allowing collection of a large number of data 

points to facilitate subsequent integration. These values are fitted to models and 

information about the stoichiometry, binding constant and enthalpy can be extrapolated. 

Correlation between the parameters is given by: 

ΔG = ΔH-TΔS = -RTlnK 

where: 

ΔG= Gibbs energy variation  

ΔH= Enthalpy variation  

T= Temperature 

ΔS= Entropy variation 

R= Gas constant (8.3145 J/mol K) 

K= Association constant 

More detailed information can be found in the “VP-ITC MicroCalorimeter – User’s 

manual” MicroCal, LLC.      

 

2.7.2 ITC sample preparation and data collection 

ITC measurements were performed at 25 °C with a VP_ITC titration calorimeter 

(Microcal, Northampton, MA). After purification of FurA, the protein was left for 

overnight dialysis at 4°C in 10 mM Tris pH 7.5 HCl, 150 mM NaCl, 10% glycerol and 

1mM TCEP (PIERCE). The concentration of the protein was carefully measured using 

the absorption coefficient, immediately before starting each data collection. The final 

protein concentration in the cell was 31.8 mM with a volume of 1.4 ml. The titration was 

performed by a total of 38 injections of 5 µl each using a solution of 1mM ZnCl2. The salt 

was dissolved in the same buffer as described above. Blank titration of the zinc solution 

was performed in order to provide a control for possible effects due to the dilution during 

the protein titration.  

The same protocol was followed for titration of FurB. In this case, the protein was 
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dialyzed at 4°C against a solution containing 10 mM Tris pH 7.5 HCl, 150 mM NaCl and 

10% glycerol. The final protein concentration in the cell was 55.0 mM in a 1.4 ml 

volume. The titration was performed by a total of 50 injections of 5 µl each using a 

solution of 1mM ZnCl2 and CoCl2.  Salts were dissolved in the same buffer described 

above. Control titration was performed as described previously. 

Data reduction and analysis were carried out using the Origin software suite (Microcal, 

Northampton). The measured integrated heat values were fitted to the “single binding 

site” model for FurA and “double binding site” for FurB. The fitting procedure was 

iterated until the chi squared value (the parameter which estimates the goodness of the fit) 

reached a minimum. 

  

2.8 EXAFS 

2.8.1 Brief introduction to EXAFS 

X-ray absorption spectroscopy (XAS) is a technique, which has developed over the last 

few decades due to the availability of increasingly sophisticated synchrotron radiation 

sources. It provides information about local atomic and electronic structure of the 

absorber, as well as high-accuracy parameters such as oxidation state, coordination 

number and first coordination shell distances. XAS can be applied to solid, liquid and 

amorphous samples; apart for its high accuracy for the first shell disctances this is 

considered one of the main advantages of the method. 

X-ray Absorption Fine Structure (XAFS) is the modulation of the X-ray absorption 

coefficient (of metal ions) at energies near and above an X-ray absorption edge. When a 

metal ion absorbs a photon, one of the electrons from the core levels can be excited into 

the continuum. The atom is therefore left in an excited state with an empty electronic 

level. In order to rebalance the atomic energy, one of the electrons from the more external 

shells relaxes and occupies the inner shell. At the same time a fluorescent X-ray or an 

Auger electron is emitted (fig. 2.2) 
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Figure 2.2: Schematic representation of the photo-electric effect 

The X-ray is absorbed by an atom promoting a core-level electron (K) into the continuum. B X-
ray fluorescence. X-ray fluorescence occurs at discrete energies that are characteristic of the 
absorbing atom, and can be used to identify the nature of the atom. C Auger effect. 

 

Typically the XAS spectrum is divided in two main regions: the XANES (X-ray 

Absorption Near Edge Structure) covering the energy range around the edge and the 

EXAFS (Extended X-ray Absorption Fine Structure) covering the successive 30-2000eV 

(depending on the quality of the data) (fig. 2.3).  

The EXAFS region provides information about type, number and distances of the ligands.  

! 

"(k) =
Ns fs(# ,k)

kR
2
ass

$ exp(%Ras /"f )exp(%2&
2
ask

2 )sin 2kRas +'as(k)[ ]  

where: 

k= wave vector 

Ns= number of backscattering atoms in the shell 

Ras= distance of the ligand-absorber 

|fs(π,k)|= backscattering amplitude 

λf= free inelastic scattering 

exp(-2σ2
ask2)= Debye-Waller factor 

αas(k)=phase shift  

 



2. MATERIALS AND METHODS  25 
 

  

 

Figure 2.3: Iron X-ray absorption spectrum 

The spectrum was collected at the iron K-edge. It is composed of different regions: “pre-edge” 
area due to a transition 1s→3d, XANES and EXAFS  

 
Once the data have been collected, they are fitted to models using programs able to 

reproduce single or multiple scattering pathways (Scott, 2000). Further information 

related to this technique can be found in many reviews e.g. by Aksenov et al. (Aksenov et 

al., 2001).  

 

2.8.2 X-ray absorption spectroscopy sample preparation and data collection 

After concentrating the protein sample to 13mg/ml, FurA was dialyzed against a 1 mM 

Fe2+ solution (Fe(SO4)(NH4)26H2O, 10 mM Tris pH 8.0 HCl, 150 mM NaCl, 10% 

glycerol and 5 mM ascorbate). In addition, the same protein was washed for 24 hours 

with the corresponding iron free buffer to remove any excess of iron.  

FurB protein was concentrated to 17mg/ml and dialyzed against a 0.5 mM Co2+ solution 

(CoCl2), 10 mM Tris pH 8.0 HCl, 150 mM NaCl, 10% glycerol and 1 mM TCEP). The 

protein was washed for 24 hours with the corresponding cobalt free buffer to remove any 
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excess of the metal.  

The samples were then transferred into plastic cuvettes (Hesar Glas) with Kapton® 

windows, frozen in liquid nitrogen and kept at 20K in a He closed-cycle cryostat (Oxford 

instruments) during the entire experiment.  

X-ray absorption data at the iron, cobalt and zinc edges were recorded in fluorescence 

mode at the EMBL bending magnet beam line D2 (DESY, Hamburg, Germany) equipped 

with a Si(111) double crystal monochromator, a focusing mirror and a 13 element Ge 

solid-state fluorescence detector (Canberra). Harmonic rejection was achieved using a 

focusing mirror with cut-off energy of 21keV and a monochromator detuning to 70% (for 

the zinc) and 50% (for the iron and cobalt) the peak intensities. Dead time correction was 

applied to the fluorescence signal and saturation was not observed (detector dead time < 

20%). The energy of each scan was calibrated by using the Bragg reflections of a static 

Si(220) crystal in back reflection geometry (Pettifer and Hermes, 1985). Data reduction 

analysis of FurA and FurB were performed with the software program Kemp (M. Korbas, 

2006) using E0=9660eV for the zinc, E0=7120eV for the iron edge and E0=7716eV for the 

cobalt. The EXAFS spectra were analyzed with EXCURV98 (Binsted et al., 1991). 

Two data sets for each of the proteins, FurA and FurB, were collected on two 

independently prepared samples. Results were reproducible and only the best are 

reported. The quality of the fit can be assessed quantitatively using the Fit index 

(ΦEXAFS), the R factor (REXAFS) and the reduced χ2 (εν
2). The fit index (the parameter that 

is minimized during the least-squares refinement) is of the sum of the square of residuals  
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for which n=3 in the data analysis presented here. This weighting is typical for biological 

EXAFS data analysis. 

REXAFS gives an indication of the quality of the fit in k space 
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Neither ΦEXAFS nor REXAFS take into account the number of parameters that have been 

refined (Npars) or the number of independent data points (Nind). However, εν
2 gives an 

indication of the overall goodness of the fit, considering the degree of over-determination 

of the system. Reduced χ2 is not an absolute value but relative and thus can be used to 

decide which is the best statistical fit of 
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where the number of independent parameters is given by 
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Δk is the data range being fitted in k space (between kmin and kmax), and ΔR is the range of 

data being fitted in R space (between Rmin and Rmax) by the model where the data are 

substantial. 

For each model, the interatomic distances and the Debye-Waller factors were refined by 

least-square techniques starting from a variety of initial positions and converging to the 

results summarized in tables 3.3, 3.4, 4.2 and 4.3. 

 

2.9 Homology modelling 

A FurA homology model was generated using the Swiss Model suite 

(http://swissmodel.expasy.org/).  The crystal structures of PA Fur (PDB ID 1mzb) and 

FurB were used as a templates, and the amino acid sequence of the Mtb FurA was 

submitted for modeling (Guex and Peitsch, 1997; Peitsch, 1995; Schwede et al., 2003).   

 

2.10 Crystallization and crystal structure determination 

FurB crystals were obtained by hanging-drop vapor diffusion by mixing the protein at a 

concentration of 13 mg/ml with a reservoir solution containing 14% glycerol and 0.3 M 
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(NH4)2HPO4. Crystals are tetragonal with a=b=51.6, c=133.4 Å and space group P41212. 

They were mounted directly from the mother liquor and flash-cooled. X-ray diffraction 

data were collected at 100 K at the beam line X06SA at the Swiss Light Source using a 

MarCCD 225-mm detector (Villigen, Switzerland). Data were indexed and scaled using 

XDS (Kabsch, 1993). Three zinc sites per monomer were located with the Patterson 

superimposition minimum function implemented in SHELXS (Sheldrick, 1998)  and 

refined using CNS (Brunger et al., 1998). 

The refinement against the 2.7 Å native dataset was completed by iteractive cycles of 

interactive model building using O (Jones et al., 1991) and crystallographic refinement 

using a maximum likelihood target function with CNS. The final crystallographic model 

includes residues 2-130, three zinc ions and 7 solvent molecules. The metal sites were 

refined without any target values for the distances, and the Van der Waals’ electrostatic 

terms were switched off. The side chains of residues 1 and 131 are invisible in the 

electron density map and were thus refined as alanines. All residues are in the allowed 

region. 

The atomic coordinates and the structure factors have been deposited at the Protein Data 

Bank, Research Collaboratory for Structural Bioinformatic, Rutgers University, New 

Brunswich, NJ, USA (http://www.rcsb.org/) with access code XXX.



   

 

Chapter 3 
 

 

Mtb FurA RESULTS 
 

 

 

3.1 Purification 

The final yield of pure protein was approximately 10 mg per liter of culture. From the last 

purification step (size exclusion column), the protein was eluted mainly as a dimer and 

could easily be separated from the aggregated forms (fig. 3.1). Only pure FurA dimer was 

used for the experiments detailed below. The purity and nature of the protein were 

confirmed by ESI mass spectroscopy (16361Da) and SDS-PAGE (fig. 3.1).  

 

3.2 Metal analysis 

Three different FurA samples were analyzed by microPIXE (table 3.1). In two of them 

(FurA and FurA+Fe), the amount of Zn2+ was nearly constant at half a zinc atom per 

protein monomer and this site thus appears to be only around 50% occupied. In the third 

sample (FurA+EDTA), it was possible to completely remove the metal using EDTA as a 

chelating agent. 

After dialysis against an iron salt solution, complete occupation of a second metal site 

resulted; this was not reversed by consecutive dialysis against a Fe-free solution. The 

amount of Fe2+ in FurA is very close to 1 atom per monomer. 

From these results it is possible to distinguish two different metal binding sites in FurA: 

one zinc site, where the metal comes directly from the protein expression; and one iron 

site, where the metal had to be added to the protein after the purification.  
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Figure 3.1: FurA purification 
 Gel filtration (Sup 75 16/60) profile of FurA. In the grey box a SDS PAGE with purification 
steps; lane 1: first Ni-NTA column [indicated as Ni((I)]; lane2: second Ni-NTA column (after 
TEV cleavage) [indicated as Ni(II)]; lane 3: after gel filtration [indicated as GF] 
 
 

Table 3.1: FurA metal quantification by microPIXE 

  Zn2+ Fe2+ Ni2+ Cu2+ 

FurA 0.5(2) n.d. 0.3(1) 0.4(1) 

FurA+Fe 0.5(1) 1.2(1) 0.2(0.5) 0.3(1) 

FurA+EDTA n.d. 0.1(0.5) n.d. 0.5(2) 

In each cell the number of metal ions per protein molecule is reported. FurA is the protein as 
isolated, FurA+Fe is the protein dialyzed against iron salt solution and FurA+EDTA is the protein 
EDTA treated. n.d. = not determined. The quoted errors are largely due to low counting statistics. 
The presence of Ni and Cu results from the purification protocol 
 



3. MTB FURA RESULTS  31 
 

  

The presence of Ni and Cu in the metal analysis results can be explained by the 

purification protocol, as a Ni-containing column was used and the anti-oxidants contain 

Cu as an impurity. The microPIXE technique has a sensitivity of between 1 and 10 parts 

per million of dry sample weight, so these contaminants are readily detected, It is 

interesting to note that within the experimental error, the occurrence frequencies of Zn, 

Ni and Cu sums to one. Thus, it appears likely that the zinc ion in this metal binding site 

may be partially exchanged with another divalent transition metal during purification. 

In vivo this site is most likely occupied by zinc ion, hence this is denoted as Zn-FurA. 

The activated form of the protein containing an additional iron cation is designated 

Fe,Zn-FurA. 

 

3.3 Isothermal titration 

ITC experiments were performed to determine the number of additional metal binding 

sites and their affinities. In the protein sample used for the experiment, the protein as 

isolated (ZnFurA) was used, where the zinc-binding site was already occupied.  Zinc 

chloride was added to the sample, thus causing the second metal site (the regulatory site) 

to become occupied with zinc ions.  Figure 3.2 shows the heat of binding which resulted 

from each injection. The best fit to the experimental data was achieved using a “single 

metal binding site” model. From this analysis it is possible to obtain the dissociation 

constant of the reaction as well as thermodynamic parameters such as enthalpy and 

entropy (table 3.2). The association constant, 1.27⋅105 M, underlines the metal-binding 

affinity of the FurA for a second more loosely bound cation which is therefore 

exchangeable, and the value obtained is in the range of the binding constants for the 

regulatory sites (Mills and Marletta, 2005). 

ITC titration shows a single binding event for the ZnFurA sample and confirms the metal 

analysis results (fig. 3.2). 
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Table 3.2: Thermodynamic parameters of FurA-zinc titration 

Ka[M] 1.27(7)105 

Kd[µM] 7.9(4) 

ΔH[cal] -1.99(5)104 

ΔS[cal] 43.6 

Thermodynamic parameters based on the ITC measurements depicted in figure 3. Ka is the 
association constant and Kd is the dissociation constant extracted from a fit to integrated-binding 
heats.  
 
 

 
Figure 3.2: FurA-zinc ITC 

FurA ITC titration against zinc: in the top panel the experimental data are plotted. In the bottom 
panel experimental data (squares) are fitted to a “one metal binding site model” (solid line) 
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Titration with Fe2+ solution failed to give reasonable results due to the oxidation of the 

ferrous iron to the ferric state. The use of a reducing agent led to a large heat of dilution 

and did not completely prevent oxidation of Fe2+ to Fe3+ during the titration 

 

3.4 EXAFS analysis 

3.4.1 Zinc site 

The EXAFS spectrum and its Fourier transform (FT) of Fe,Zn-FurA, collected at the zinc 

edge, are shown in figure 3.3. The fine structure is dominated by one frequency with 

intense oscillations at high k. This corresponds to a strong first shell peak at 2.3 Å in the 

Fourier transform (FT) typical for metal-sulfur coordination. A second contribution 

visualized by the FT at about 2Å-1 indicates the presence of a light ligand such as oxygen 

or nitrogen. Models based on these considerations yielding coordination numbers of 4, 5, 

and 6 were compared with the data. The major results are summarized in table 3. Only 

two of the fits can be retained for further consideration: 3S+1(N/O) (model BZn table 3.3) 

and 2S+2(N/O) (model CZn table 3.3). 

 

3.4.2 Iron site 

The edge region (XANES), in particular the intensity of the 1s-3d transition (pre-edge 

peak), is sensitive to the electronic and geometric structure of the iron site and serves as a 

measure for the coordination and/or ligand sphere homogeneity. The 1s-3d transition 

becomes more intense as the metal environment deviates from centrosymmetry or an 

ideal octahedral coordination. Here the edge position is typical for an oxidation state of 

+2 (fig. 3.4). An octahedral iron coordination is supported by the area of the pre-edge 

peak (~11eV) (Roe et al., 1984).  
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Figure 3.3: FurA zinc EXAFS 
The figure shows the Zn K-edge EXAFS (top panel) and the corresponding Fourier transform 
(bottom panel) for Fe,Zn-FurA. The solid line represents the experimental data; the dashed line 
the best fit (CZn). Details of the model are stated in Table 3. χ(k) is the EXAFS amplitude; R[Å], 
the metal–ligand distance corrected for first-shell phase shifts; FT, the Fourier transform 
amplitude. 
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Table 3.3. Models for zinc coordination in FurA 

Model N R[Å] 2σ2[Å2] EF REXAFS 

AZn 4S 2.32(1) 0.012(1) -9.6(9) 49.36 

3S 2.32(1) 0.009(1) 
BZn 

1O/N 1.99(1) 0.009(1) 
-9.3(7) 41.80 

2S 2.32(1) 0.005(1) 
CZn 

2O/N 2.02(1) 0.010(1) 
-9.5(5) 38.64 

N is the co-ordination number, R the mean interatomic distance, 2σ2 the Debye-Waller parameter 
and EF the shift of the energy origin (Fermi energy) with respect to E0=9660eV. Numbers in 
parentheses represent the uncertainties of the last digit. 
 
 

 
Figure 3.4: FurA iron XANES 

Normalized Fe XANES spectrum of Fe,Zn-FurA. The pre-edge peak indicates the 1s→3d 
transition and its area (11eV) is at the upper limit for octahedral iron coordination. This is 
consistent with the wide white line at 7120eV indicating the presence of a heterogeneous metal 
coordination. 
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The extracted fine structure and its Fourier transform (FT) of Fe,Zn-FurA, collected at the 

iron edge, are shown in figure 3.5.  

 
Figure 3.5: FurA iron EXAFS 

Fe K-edge EXAFS (top panel) and the corresponding Fourier transform (bottom panel) for Fe,Zn-
FurA. The solid line represents the experimental data, the dashed line the best fit. Details of the 
model are stated in Table 4. χ(k), the EXAFS amplitude; R[Å], the metal–ligand distance 
corrected for first-shell phase shifts; FT, Fourier transform amplitude. 
 
 

In order to achieve satisfactory fits, sulfur backscattering had to be excluded. In fact, 

whenever such a contribution was introduced in the refinement procedure, it resulted in 

an unreasonably short Fe-S distance and a low quality fit. As already indicated by the 

XANES analysis, the hexa-coordinated model is the only plausible one because both the 

penta- and the tetra-coordination lead to unrealistically high R-factors.  

Three models were evaluated in detail and the results are shown in table 3.4.  Only the 

models (see table 3.4) resulting in good quality indicators are discussed further: 3O+3N 

and 4O+2N.  These models are identical within the XAS error range.  
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Table 3.4: Models for iron coordination in FurA 

Model N R[Å] 2σ2[Å2] EF REXAFS 

5O/N 1.99(1) 0.020(1) 
AFe 

1S 2.27(1) 0.020(1) 
-13.0(5) 31.6 

4O 2.04(1) 0.014(1) 
BFe 

2N 1.96(1) 0.010(1) 
-13.0(3) 27.30 

3O 2.06(1) 0.007(1) 
CFe 

3N 1.96(1) 0.007(1) 
-12.7(3) 27.04 

N is the co-ordination number, R the mean interatomic distance, 2σ2 the Debye-Waller parameter 
and EF the shift of the energy origin (Fermi energy) with respect to E0=7120eV. Numbers in 
parentheses represent the uncertainties of the last digit 
 
Strong back-scattering from neighboring atoms between 2.5 and 4 Å in both spectra was 

not observed. This has to be highlighted as it suggests the absence of a metal back-

scattering, ruling out a binuclear centre. 

 

3.5 DNA affinity 

Electro-mobility shifts assays were performed using FurA protein and different lengths of 

Fur-box nucleotides:  

 20_fwd 5’-GATAATGATAATCATTATCT-3’  

 20_rev 5’- AGATAATGATTATCATTATC-3’ 

 22_fwd 5’-GAGATAATGATAATCATTATCT-3’ 

 22_rev 5’- AGATAATGATTATCATTATCTC-3’ 

 25_fwd 5’-CTAGAGATAATGATAATCATTATCT-3’ 

 25_rev 5’- AGATAATGATTATCATTATCTCTAG-3’ 

From the gels (fig. 3.7) it is possible to observe DNA-binding with fairly weak affinity. 

FurA is able to bind the canonical nucleotide recognised by all ferric uptake regulators.   
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Figure 3.7: FurA DNA-binding assay 

Affinity of FurA for the 20 bp Fur-box. DNA concentration was ~ 0.7 nM. The protein was 
mixed with an equimolar amount of zinc ion and the concentration was as follows: lane 1, 0 nM 
(only DNA); lane 2, 1 nM (no zinc ion); lane 3, 10 nM (no zinc ion); lane 4, 5 nM; lane 5, 10 nM; 
lane 6, 20 nM; lane 7, 30 nM; lane 8, 40 nM; lane 9, 50 nM; lane 10, 60 nM; lane 11, 70 nM. 
  

3.6 Homology model 

A homology model was obtained after submitting the amino acid sequence of FurA and 

the PDB file of Fur from Pseudomonas aeruginosa to the SwissModel database. 

Conservation of the DNA binding domain and particularly of the regulatory site can be 

observed (fig 3.7). The residues involved in the metal coordination (His 32, Glu 80, His 

87, His 89, Glu 100) are also highly conserved in the sequence alignment through the 

species (see fig. 5.2; numbering of the amino acids referring to the sequence alignment). 

Unfortunately it is not possible to observe the same correspondence for the structural site 

(see discussions in chapter 5). 

 
Figure 3.7: FurA homology model 
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3.7 Proteolysis 

Limited digestion proteolysis was performed as a guide for potential crystallization 

conditions. The following enzymes were used: chemotrypsin, elastase, trypsin and 

thermolysin. The protein was left for 24 hours in digestion and samples were taken after 

5, 10, 30, 60, 120, 300 minutes and after 24 hours (some examples are reported in figure 

3.8 and 3.9). 

 
Figure 3.8: FurA digested with chemotrypsin 

The reaction has been checked after: 5min, lane 1; 10 min, lane 2; 30 min, lane 3; 60 min, lane 4; 
120 min, lane 5; 300 min, lane 6; 24 h, lane 7. 
 

 
Figure 3.9: FurA digested with elastase 

The reaction has been checked after: 5min, lane 1; 10 min, lane 2; 30 min, lane 3; 60 min, lane 4; 
120 min, lane 5; 300 min, lane 6; 24 h, lane 7. 
 

 

Most of the results described in this chapter have been collected in a manuscript recently 

submitted: 

“The regulatory and the structural metal binding sites in FurA from Mycobacterium 

tuberculosis” 

Debora Lucarelli, Ehmke Pohl, Matthew Groves, Michael L. Vasil, Elspeth Garman, 

Wolfram Meyer-Klaucke. 

 

 



   

 

Chapter 4 

 

 

Mtb FurB RESULTS 

 

 

 

4.1 Purification 

Mtb FurB was purified as a dimer with a molecular mass of 14596Da per monomer and 

final yield of 20 mg per litre of culture. The purity of the protein was confirmed by ESI 

mass spectroscopy and SDS PAGE (fig. 4.1).  

 

4.2 Metal analysis 

MicroPIXE analysis was used to determine the type and number of metal ions in the 

protein. Two samples were prepared: the protein as isolated from the purification and 

protein dialyzed for 24 hours with a strong chelating agent (1M EDTA). Very 

interestingly both samples showed one bound zinc ion per monomer (Table 4.1). 

It was not possible to remove the metal ion even after treatment with 1M EDTA. The 

copper found is presumably an impurity from the ascorbate used as mild reducing agent. 

Surprisingly, it proved impossible to complex the protein with Fe2+, the natural cofactor 

of all ferric uptake regulators. Only Co2+ and Zn2+ could be added to the protein and a 

particularly strong affinity was observed for Zn2+. 
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Figure 4.1: FurB purification 

Gel filtration (Sup 75 16/60) profile of FurB. In the blue box SDS PAGE purification steps; lane 
1: FurB before injection into the column; lane2: fraction A3; lane 3: fraction A4; lane 4: fraction 
A5; lane 5: fraction A6. 

 

Table 4.1: FurB metal quantification by microPIXE 

 Zn2+ Fe2+ Cu2+ 
FurB 0.8(1)* 0.1(1) 0.3(1) 

FurB (EDTA) 1.1(1) n.d. 0.5(2) 
*The relatively large errors quoted are due to low counting statistics. The presence of copper is 
due to contaminations during the purification protocol. N.d.: not determined as the concentration 
was below the limit of detection 

 

4.3 Isothermal titration 

ITC experiments were performed to determine the number of additional metal binding 

sites and their affinities. Protein as isolated from the last purification step was used for 

this experiment. Here a presumably very tightly bound zinc ion was detected by 

microPIXE, and this site should be added to the ITC results in order to obtain the final 
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number of metal sites occupied. Zinc chloride was added to the sample, thus causing 

occupation of two more sites. In order to reproduce this result, cobalt chloride was also 

utilized and the same number of binding sites was observed. In figures 4.2 and 4.3, the 

heat released after each injection is shown. The best fit to the experimental data was 

achieved using a “double metal binding site” model in both experiments.  

 

 
 

Figure 4.2: FurB-zinc ITC 

Titration of FurB with a zinc solution. In the top panel the experimental data are plotted, in the 
bottom experimental data (squares) are fitted to a “double metal binding site model” (solid line). 
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From both experimental curves it is possible to observe two metal binding sites. This 

number has to be added to the already occupied locus, therefore it is possible to conclude 

that FurB can bind at least three metal ions. 

The collected and presented data need to be optimised in order to achieve clear 

information on the binding constant and thermodynamic parameters, but they are 

certainly sufficient for estimating the stoichiometry of the reaction.   

 

 
 

Figure 4.3: FurB-cobalt ITC 
Titration of FurB with a cobalt solution. In the top panel the experimental data are plotted, in the 
bottom experimental data (squares) are fitted to a “double metal binding site model” (solid line). 
Blank solution is not subtracted and glitches (due to external perturbations) are present during 
injections 15-20.  
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4.4 DNA affinity 

Electrophoretic mobility shift assays (EMSA) were performed in order to clarify the 

biological role of FurB. As shown in figure 4.4, the protein was unable to bind the 

canonical Fur-Box (5’-CTAGAGATAATGATAATCATTATCT-3’). Considering the 

strong affinity of the protein for zinc, we identified possible DNA targets by locating 

gene clusters in the Mtb genome that show similarity to the Zur-regulated znuABC operon 

in E. coli. In the Mtb genome, a triplet of such genes was found.  These genes, Rv2059 

(2315172-2316707), Rv2060 (2316277-2316678), and Rv2061c (2316679-2317083), 

coding respectively for a hypothetical adhesion protein, a possible conserved integral 

membrane protein and a hypothetical phosphatase protein, show high sequence similarity 

with the E. coli znuABC operon. Another analogy can be seen in the intergenic region of 

70 base pairs between the Rv2059 gene and the Rv2060-Rv2061c genes that are co-

transcribed. Even the molecular dimensions of the proteins seem to be conserved in Mtb. 

ZnuA is larger than ZnuB and ZnuC which have approximately the same molecular 

weight. This same pattern is observed for Rv2059, which is larger than the similarly sized 

Rv2060 and Rv2061c. In the promoter region of this operon an almost perfectly 

palindromic 27 base pair sequence was identified (5'-

CAATAATGAAAACTGTTATCGATAAGG-3') and consecutively used for the gel 

shifts (fig. 4.4). The shift results showed that, remarkably, Mtb FurB only binds to this 

operator sequence and not to the canonical Fur-box (fig. 4.4).  

Once the DNA partner was found, the metal affinity/specificity of FurB was tested. 

Interestingly, only Zn2+ can activate the regulator (fig. 4.5). Mtb FurB appears to be more 

selective than the Fur proteins from other organisms, which can be activated in vitro by a 

variety of divalent transition metal ions (Mills and Marletta, 2005) 
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Figure 4.4: FurB EMSA with DNA boxes 
EMSA of FurB binding to the promoter region of Rv2059 (lane 1-3) and to the canonical Fur-Box 
(lane 4-6). Lane 1: DNA only; lane 2: DNA + FurB; lane 3: DNA + FurB + Zn2+; lane 4: Fur-Box 
only; lane 5: Fur-Box + FurB; lane 6: Fur-Box +FurB + Zn2+.  
Promoter region of Rv2059: 5'-CAATAATGAAAACTGTTATCGATAAGG-3'.  
Fur-box: 5’-CTAGAGATAATGATAATCATTATCT-3’. 
 

 

 
Figure 4.5: FurB EMSA with several metal ions 

EMSA of FurB binding to the Rv2059 promoter region with different divalent transition metals. 
Lane 1: DNA only; lane 2: DNA + FurB; lane 3: DNA + FurB + Zn2+; lane 4: DNA + FurB + 
Co2+; lane 5: DNA + FurB + Fe2+; lane 6: DNA + FurB + Mn2+; lane 7: DNA + FurB + Ni2+. 
 
 

4.5 FurB-DNA complex 

FurB-DNA complexes were purified with either the 27 base pairs sequence 

 5'-CAATAATGAAAACTGTTATCGATAAGG-3' 

or the 25 base pairs sequence: 

 5'-AATAATGAAAACTGTTATCGATAAG-3' 

in the presence of zinc (fig. 4.6). 

The pure complex was set up in crystallization trays. 
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Figure 4.6: FurB-DNA complex purification 

Profile of the gel filtration purification of FurB-DNA (27bp) complex. The blue line shows the 
absorbance at 280 nm and in pink, the absorbance at 260 nm. The first peak corresponds to the 
complex the second to free DNA and free protein. Fractions have been loaded on the gel shown 
aside. Lane 1: A8; lane 2: A9; lane 3: A10; lane 4: A11; lane 5: DNA only.  
 

4.6 EXAFS analysis  

The initial EXAFS experiments in which the protein sample was incubated with Fe2+-

containing solution did not show any significant Fe-fluorescence. This result further 

supported the microPIXE and gel shift experiments described above, indicating that iron 

can not bind to FurB. This sample was used to record the Zn-fluorescence in order to 

determine the chemical environment of the strongly bound zinc cation. To investigate the 

surrounding of the exchangeable metal site a protein sample was incubated with Co2+. 

Presumably, the divalent cobalt ion can occupy the site normally reserved for the 

activating Zn2+. The amount of Co2+ in the dialysis buffer, however, had to be kept very 

low in order to prevent protein precipitation and therefore its final amount was slightly 

less than equimolar ratio. 
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4.6.1 Zinc site 

The EXAFS spectrum and its Fourier transform (FT), collected at the zinc edge, are 

shown in figures 4.7 and 4.8. The EXAFS fine structure is dominated by one frequency 

with intense oscillations at high k. This corresponds to a strong first shell peak at 2.3Å in 

the Fourier transform (FT) typical of metal-sulphur coordination. The absence of a large 

detectable second shell in the FT between 2.5 and 4Å suggests the absence of metal back-

scattering, ruling out a binuclear centre. Two possible models are taken under 

consideration after data analysis (table 4.2).  (a) Due to the small peak at about 2Å, the 

data could be interpreted as a zinc ion coordinated with three sulphurs and one light atom 

(O/N); see figure 4.7.  (b) The zinc ion could also be surrounded by four sulphur atoms, 

with the small peak at 2Å regarded as an artefact generated by the Fourier transformation 

(fig. 4.8). 
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Figure 4.7: FurB zinc EXAFS (A) 

Zn K-edge EXAFS (panel A) and the corresponding Fourier transform (panel B) for Zn/CoFurB. 
The solid line represents the experimental data, the dashed line the best fit. χ(k), the EXAFS 
amplitude; R[Å], the metal–ligand distance corrected for first-shell phase shifts; FT, Fourier 
transform amplitude. 
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Figure 4.8: FurB zinc EXAFS (B) 
Zn K-edge EXAFS (panel A) and the corresponding Fourier transform (panel B) for Zn/CoFurB. 
The solid line represents the experimental data, the dashed line the best fit. χ(k), the EXAFS 
amplitude; R[Å], the metal–ligand distance corrected for first-shell phase shifts; FT, Fourier 
transform amplitude. 
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Table 4.2 Models for zinc coordination in FurB 

Model N R[Å] 2σ2[Å2] EF REXAFS 

AZn 4S 2.33(1) 0.009(1) -11.6(4) 29.73 

3S 2.33(1) 0.006(1) 
BZn 

1O/N 2.00(1) 0.010(2) 
-11.0(7) 25.45 

N is the co-ordination number, R the mean interatomic distance, 2σ2 the Debye-Waller parameter 
and EF the shift of the energy origin (Fermi energy) with respect to E0=9660 eV and REXAFS gives 
an extimation of the goodness of the fit. Numbers in parentheses represent the uncertainties of the 
last digit. 
 

Both models resulted in similar fit parameters; even thought model BZn shows slightly 

better parameters, the results of the crystal structure analysis suggest and confirm the 

tetragonal environment with four sulphur atoms from cysteines (ZnS4).  

 

4.6.2 Cobalt site 

The area of the 1s →3d transition in the normalized Co XANES spectrum is shown in 

figure 4.9 and is compatible with a 4-coordinated Co2+. The extracted fine structure and 

its Fourier transform (FT), collected at the cobalt edge, are shown in figure 4.10. The first 

shell FT peak width and asymmetry suggests the presence of two shells of nearest 

neighbours. The split peak observed in the EXAFS spectrum indicates the presence of 

histidines in the metal environment. In all the models evaluated, sulphur backscattering 

had to be included in order to achieve satisfactory fits, but introduction of more than one 

sulphur contribution in the coordination sphere produced unreasonable results and 

Debye-Waller factors. The best fit obtained shows one sulphur, one oxygen and two 

histidine nitrogens  (table 4.3).  
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Figure 4.9: FurB cobalt XANES 
Normalized Co XANES spectrum of Co/ZnFurB. The pre-edge peak indicates the 1s→3d 
transition and its area (15eV) is compatible with a tetrahedral coordination.  
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Figure 4.10: FurB cobalt EXAFS 

Co K-edge EXAFS (panel C) and the corresponding Fourier transform (panel D) for Zn/CoFurB. 
The solid line represents the experimental data, the dashed line the best fit. χ(k), the EXAFS 
amplitude; R[Å], the metal–ligand distance corrected for first-shell phase shifts; FT, Fourier 
transform amplitude. 
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Table 4.3: Models for cobalt coordination in FurB 

Model N R[Å] 2σ2[Å2] EF REXAFS 

1O 1.98(2) [0.012(3)] 

2His 1.99(2) 0.008(2) ACo 

1S 2.26(1) 0.011(2) 

-4.25(7) 38.9 

3His 1.98(1) 0.008(1) 
BCo 

1S 2.26(1) 0.011(2) 
-4.5(5) 41.73 

N is the co-ordination number, R the mean interatomic distance, 2σ2 the Debye-Waller parameter 
and EF the shift of the energy origin (Fermi energy) with respect to E0=7716eV and REXAFS gives 
an estimation of the goodness of the fit. Numbers in parentheses represent the uncertainties of the 
last digit. 
 
 
4.7 Proteolysis 

Limited digestion proteolysis was performed in order to gain additional information for 

possible crystallization conditions. The following enzymes have been used: 

chemotrypsin, elastase, trypsin and thermolysin. The protein was left for 24 hours in 

digestion and samples were taken after 5, 10, 30, 60, 120, 300 minutes and after 24 hours 

(some examples are reported in figure 4.11 and 4.12). 

 

 
 

Figure 4.11:  FurB digested with elastase 
The reaction was checked after: 5min, lane 1; 10 min, lane 2; 30 min, lane 3; 60 min, lane 4; 120 
min, lane 5; 300 min, lane 6; 24 h, lane 7. 
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Figure 4.12: FurB digested with thermolysin 
The reaction was checked after: 5min, lane 1; 10 min, lane 2; 30 min, lane 3; 60 min, lane 4; 120 
min, lane 5; 300 min, lane 6; 24 h, lane 7. 
 
None of the experiments shown here were taken forward for crystallization, as the cuts 

resulted in too long protein fragments and therefore lose of the integrity of protein 

domains. 

 

4.8 Mutants 

Crystallization of this protein was a long and irksome job. One of the main problems was 

the presence of a heavy skin. It appeared seemingly at random after minutes, hours or 

days independently of the conditions. In order to prevent skin formation, some of the 

cysteine residues were mutated. Due to sequence analogies with FurA (fig. 4.13), we 

assumed Cys86 and Cys89 to be involved in the metal binding. EXAFS data confirmed 

that some of the cysteines (at least four) are involved in metal binding. The full sequence 

of FurB presents a total of five cysteines; therefore we decided to mutate each of them 

separately starting with Cys76, Cys126 and Cys129. 

Each of these three mutants was expressed and purified (fig. 4.14) and set in 

crystallization trays. After less than one day the drops containing the mutants Cys126Ser 

and Cys129Ser showed heavy precipitation. 
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Figure 4.13: Sequence alignment of Mtb FurA and Mtb FurB 
It is possible to observe that 2 cysteine-motifs (Cys98XXCys101 and Cys139XXCys141) are 
conserved in both targets. The yellow boxes represent the conserved regions. In red are 
highlighted the identical residues. `hyd’ indicates the calculated hydropathy (pink: hydrophobic, 
grey: intermediate and cyan: hydrophilic). The alignment has been calculated with ClustalW 
(http://www.ebi.ac.uk/clustalw/index.html) (Pearson, 1990; Pearson and Lipman, 1988) and the 
graphically displayed with ESPript (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) (Gouet et 
al., 1999). 
 
 

 
 

Figure 4.14: SDS PAGE of FurB mutant Cys129Ser. 
Purification profile of FurB Cys129Ser: lane 1 (and 4): first Ni-NTA column; lane2: second Ni-
NTA column (after TEV cleavage); lane 3: after gel filtration. (All mutants resulted in similar 
gels) 
 
4.9.1 Crystallization 

As previously mentioned, crystallization of this protein required a lot of time and 

resources.  It was not possible to obtain crystals by using any of the commercial screens. 

Considering that this protein binds DNA, a phosphate screen was created. The first 

microcrystals appeared after three months and diffracted to 3.5Å (fig. 4.15).  
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Figure 4.15: First FurB microcrystals 
In Panel A the crystals (10x10 µm) are mounted on a micromount. In panel B is reported the 
diffraction pattern produced by these crystals. 
 

From that date different optimization methods were tried: pH screening, PEG 

(Polyethylene glycol in different sizes) screening, glycerol screening, phosphate 

screening, hanging drops, sitting drops, micro and macro seeding, additive screen. More 

than 200 optimization conditions were tested and more than 300 trays set up (fig. 4.16). 

The final crystals were obtained using hanging-drop vapour diffusion by mixing the 

protein at a concentration of 13 mg/ml to a reservoir solution containing 14% glycerol 

and 0.3 M (NH4)2HPO4. (fig. 4.17).  
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Figure 4.16: Crystals’ history 
A) First crystals appearing after two months. B) Initial optimization conditions, heavy skin 
creates a lot of difficulties in growing and fishing the crystals. C) Crystal obtained by steak 
seeding. D) Crystal obtained with the additive screen. E) Crystal from PEG400 screen. F) Screen 
obtained form a glycerol screen. 
 

 
 

Figure 4.17: FurB crystal diffracting to 2.7 Å 

Crystal dimensions: 80x80x200 µm 
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4.9.2 Crystal structure 

The crystal structure of FurB was determined by multi-wavelength anomalous diffraction 

(MAD) to a minimum Bragg spacing of 2.7 Å and refined to an R-factor of 0.23 (Rfree = 

0.25) with excellent geometry (see Table 4.4). 

The molecule is located on a crystallographic twofold axis that generates the functional 

dimer. The basic fold of the monomer, shown in figure 4.18, consists of two domains: the 

N-terminal DNA-binding domain (residues 1-77) and a C-terminal dimerization domain 

(residues 77-131). The DNA-binding domain is composed of three helices followed by a 

two-stranded antiparallel β-sheet. This domain exhibits the typical winged-helix motif 

with a three-helix bundle (H1, H2 and H3), where helix H3 (residue 34 to 54) is the 

putative DNA-recognition region (Brennen GR and BW, 1989).  

The dimerization domain is constituted of three antiparallel β-strands (S3, S4 and S5) and 

one long α-helix (H4) further stabilized by one of the metal binding sites. The β-strands 

S3-S5 form a six-stranded anti-parallel sheet with its symmetry-mates S5’-S3’. In 

addition, there are a number of hydrophilic and hydrophobic contacts from helix H4 to 

the symmetry-related H4’. This arrangement results in a tight dimer interface with a 

buried surface of approximately 2600 Å2 (fig. 4.19). 
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Table 4.4 Crystallographic data and refinement statistics 

Data collection 

 Inflection Peak Remote SAD 

Wavelength(Å) 1.28441 1.28358 1.26924 1.28358 

Resolution(Å) 39-3.1 39-3.1 39-3.1 33.9-2.7 

No. of reflection 52518 52381 52163 90395 

No. of unique refl. 6138 6130 6115 9344 

Redundancy 8.55 8.53 8.53 9.67 

Completeness 98.3(100) 98.4(100) 98.4(100) 98.9(99.1) 

I/I(σ) (last shell) 16.6 (4.3) 18.9 (6.3) 18.4 (5.4) 16.2 (3.2) 

Robs 0.12 (0.54) 0.10 (0.38) 0.10 (0. 43) 0.09 (0.63) 

Refinement 

Resolution [Å] 33.7-2.7 

Space group P41212 

No. reflections 5076 

No. reflection Rfree 268 

No. of atoms 964 

No. of water 7 

R 0.237 

Rfree 0.249 

Rmsd bond length  0.015 

Rmsd angles 1.35 
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Figure 4.18: Ribbon representation of FurB 

Ribbon diagram of the FurB monomer with secondary structural elements annotated. The metal 
sites are shown as yellow spheres. The DNA-binding domain is shown with colours changing 
from the N-terminus in blue to green, the dimerization domain from yellow to the C-terminus in 
red / orange. 
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Figure 4.19 Ribbon representation of FurB dimer 
Ribbon diagram FurB dimer with the DNA-binding domains in blue and the dimerization domain 
in orange. The view shown is approximately perpendicular to the crystallographic 2-fold axis. 
 

4.9.3 Metal binding sites in the crystal structure 

The crystal structure of FurB possesses three functionally important zinc sites (Zn1-Zn3). 

Two of the metal ions are in the dimerization domain and one is located in the hinge 

region between the dimerization and the DNA-binding domains. Each of the metal sites 

exhibits different structural and chemical environments depending on its functional role. 

Site 1 is surrounded by Asp 62, Cys 76, His 81 and His 83 (fig. 4.20). This site occupies a 

strategic position in the protein structure, since two of the coordinating amino acids are 

part of the DNA domain (Asp 62 and Cys 76) and two belong to the dimerization domain 

(His 81 and His 83).  
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Figure 4.20: FurB zinc site 1 

Stereo view of the experimental MAD density depicted at 1σ with the final model in a ball-and-
stick representation centred on Zn1.  
 
Site 2 is tetrahedrally coordinated to a cluster of sulphur ligands: Cys86 and Cys89 from 

the dimerization domain and Cys126 and Cys129 from the C-terminus (fig. 4.21). This 

geometry was already observed in many other zinc proteins, and the geometrical 

parameters agree with those previously reported in the literature (Harding, 2004).  

 
Figure 4.21: FurB zinc site 2 

Stereo view of the experimental MAD density depicted at 1σ with the final model in a ball-and-
stick representation centred on Zn2.  
 
Site 3 is located in core of the dimerization domain. The Zn2+ is tetrahedrally coordinated 

by the three histidines (His 80, His 82, His 118) and one glutamate (Glu 101) (Fig. 4.22). 

This metal site links the β-sheet with the C-terminal α-helix of the dimerization domain. 
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Figure 4.22: FurB zinc site 3 

Stereo view of the experimental MAD density depicted at 1σ with the final model in a ball-and-
stick representation centred on Zn3.  
 
 

 
 

Most of the results described in this chapter have been collected in a manuscript recently 

submitted: 

“Structure and function of FurB from M. tuberculosis – the first Zinc uptake regulator” 

Debora Lucarelli, Elspeth Garman, Santina Russo, Wolfram Meyer-Klaucke, Ehmke 

Pohl. 

 

  



   

 

Chapter 5 
 

 

Mtb FurA DISCUSSIONS 
 

 

 

5.1 FurA possesses two metal sites  

The protein was isolated as a dimer containing a partially exchangeable zinc ion site in 

each monomer. MicroPIXE was performed in order to estimate the amount of metal ions 

bound to FurA. Results show the presence of 0.5 zinc atom and 0.3 nickel atom per 

protein monomer in both samples: FurA as isolated and incubated with Fe2+-solution 

(table 1, chapter 3). No metal presence is observed after EDTA treatment except for the 

copper impurity introduced by buffer exchange. Considering that one zinc site per 

monomer has been reported for a number of Fur proteins, it is likely that FurA also 

possesses a single zinc site per monomer which is partially exchanged by nickel during 

the purification.  Furthermore, a second metal site can be filled with Zn2+ as shown by 

ITC titration, or with Fe2+ as shown by microPIXE and EXAFS. 

 

5.2 The structural site 

 Zinc can have four-, five- and six-coordination number, but in proteins, zinc structural 

sites always exhibit four ligands and no bound water (Auld, 2004). The ligands are 

generally located near (within, before or after) β-sheets and often supplied in pairs by 

short sequences of three to six (mainly located in loop regions) amino acids. The majority 

of these loop regions is composed of two β-sheets. The sulphur (of a cysteine) is the 

ligand which most frequently coordinates zinc, but it can also be found in combination 

with a nitrogen (from a histidine) and/or and oxygen (from aspartic/glutamic acid) (Auld, 
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2004). 

Mtb FurA presents six cysteines in pairs located in relatively short linear sequence of 15 

to 33 amino acids and organized in CysXXCys motifs. A recent study on EC Fur 

(Pecqueur et al., 2006), based on a homology model, proposes the zinc tetrahedrally 

coordinated by four sulphur atoms. Two homology models have been created for Mtb 

FurA (fig. 5.1). 

 
Figure 5.1: Homology models 

A) Homology model of FurA based on PAFur. B) Homology model of FurA based on FurB 
 
In figure 5.1 A is reported a ribbon representation of a homology model based on PA Fur 

crystal structure. In sticks are underlined three of the cysteine residues (Cys 92, Cys 95, 

Cys Y - third cysteine highlighted in green in figure 5.2: numbering of the amino acids 

referring to the sequence alignment reported in the figure) conserved in the sequence 

alignment. It was not possible to add the fourth one (Cys 130) as the Mtb FurA amino 

acid sequence is longer than PA Fur sequence. Most likely this cysteine is located two 

residues apart on the C-terminus β-sheet. Considering a possible flexibility of this sheet, 

it could be possible to imagine a movement of this secondary element so that the four 

cysteines could assume a typical conformation of a zinc structural site (Auld, 2004).  
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Figure 5.2: Fur proteins alignment 

The numbering refers to the PA Fur sequence. The yellow boxes represent the conserved regions. 
In red are highlighted the identical residues, and in green those cysteine residues potentially 
involved in metal binding. The arrows indicate the residues forming the regulatory site in 
Pseudomonas aeruginosa. `acc’ represents the accessibility to PA Fur (blue: accessible, cyan: 
intermediate and white: not accessible). `hyd’ indicates the calculated hydropathy for Mtb FurA 
(pink: hydrophobic, grey: intermediate and cyan: hydrophilic). The alignment has been calculated 
with ClustalW (http://www.ebi.ac.uk/clustalw/index.html) (Pearson, 1990; Pearson and Lipman, 
1988) and the graphically displayed with ESPript (http://espript.ibcp.fr/ESPript/cgi-
bin/ESPript.cgi) (Gouet et al., 1999).  
 

In figure 5.1 B a ribbon representation of a homology model based on Mtb FurB is 

shown. Also in this case the four cysteines (Cys 98, Cys 101, Cys 138, Cys 141: 

numbering of the amino acids referring to the sequence alignment reported in figure 5.3), 

highly conserved, in the sequence alignment (fig. 5.3) are organized in a typical zinc 

structural site.  
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Figure 5.3: Sequence alignment of Mtb FurA and Mtb FurB 
The numbering refers to the Mtb FurA sequence. The yellow boxes represent the conserved 
regions and in red are highlighted the identical residues. `hyd’ indicates the calculated hydropathy 
for Mtb FurA (pink: hydrophobic, grey: intermediate and cyan: hydrophilic). The alignment has 
been calculated with ClustalW (http://www.ebi.ac.uk/clustalw/index.html) (Pearson, 1990; 
Pearson and Lipman, 1988) and the graphically displayed with ESPript 
(http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) (Gouet et al., 1999).  
 

From both homology models, a zinc ion coordinated to four cysteines seem to be 

suggested but experimental data show a different coordination. 

Spectroscopic analysis of Fe,Zn-FurA reveals a tetrahedral zinc coordination by sulphur 

and light atoms (O/N). Of all models considered during the EXAFS refinement, the one 

with two S at 2.32Å and two O/N at 2.01Å is the most persuasive. Distances and Debye-

Waller factors are consistent with the values reported for other zinc proteins containing 

sulphur atoms in the metal coordination sphere (Harding, 2004). It is noteworthy that the 

same coordination, with similar distances, has also been proposed by EXAFS studies for 

the zinc binding site of EC Fur (Adrait et al., 1999; Althaus et al., 1999).  

An alignment of some of the Fur proteins previously described is depicted in figure 5.2. It 

is clear that most of the cysteine residues are conserved in all targets except for P. 

aeruginosa. In particular, Fur from this organism shows a peculiarity: only one cysteine 

is present in the whole sequence. In contrast, Fur proteins from more than twenty other 

organisms contain two highly conserved motifs: Cys92-(2/5)X-Cys95 and CysY-XX-

Cys130 in the C-termini (numbering according to the alignment in figure 5.2). The 
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cysteine residues in these motifs were, for some time, proposed to play a role in the metal 

binding properties of the protein. Mutational studies on EC Fur (Coy et al., 1994) have 

demonstrated the essential nature of Cys92 and Cys95 for the activity of the protein. 

Furthermore, EC Fur mutants, in which the C-terminal cysteines were mutated 

(Cys132Gly and the double mutant Cys132Gly/Cys137Gly) demonstrated that these 

residues are not involved in the zinc coordination (D'Autreaux et al., 2004). Mtb FurA 

contains two additional cysteines: Cys103 and Cys110. However, based on the homology 

model of Mtb FurA with PA Fur, these cysteines appear to be located on the fifth helix 

and to be solvent exposed. We therefore propose that Cys92 and Cys95 are likely to be 

involved in the formation of the structural zinc site. The two remaining zinc-binding 

amino acids could be aspartate, glutamate or histidine. Although these residues are also 

highly conserved in Fur proteins, it is not possible to unambiguously identify them based 

on the spectroscopic data alone.  

 

5.3 The regulatory site  

In addition to the zinc site, Mtb FurA also contains a second metal binding site. The 

nature of this site was first analyzed by ITC. Due to the high tendency of Fe2+ to oxidize, 

it was not possible to determine the affinity of Mtb FurA for ferrous iron. Instead, Zn2+ 

was used, since it can generally mimic the octahedral Fe+2 coordination (d6). This 

electronic configuration confers important characteristic to this metal ion:  

a) Since all orbitals are fully occupied, this element is not susceptible to any crystal 

field stabilization energy. This electronic energy term can favor certain 

arrangements of ligands over the others (Berg and Shi, 1996).  

b) In terms of hard-soft acid-base theory, Zn2+ is regarded as a borderline acid and 

can interact with ligands like cysteines, nitrogens and oxygens (Berg and Shi, 

1996).  

c) Divalent zinc is not redox active, therefore forms like Zn+ or Zn3+ are not 

achievable under physiological conditions (Berg and Shi, 1996).  

d) Zn2+ is relatively labile in kinetics and can easily participate in ligand exchange 
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reactions (Berg and Shi, 1996). 

The binding constant obtained from the ITC titration is 1.27⋅105M (dissociation constant 

of ~8 µM). This value is comparable to those reported previously for the regulatory site 

of EC Fur (dissociation constants ranging from 10 and 80 µM).  

The iron site was further characterized by X-ray absorption spectroscopy. As discussed 

above, two possible models can be considered to describe its coordination: 4O+2N and 

3O+3N. It is important to note that only light atoms surround the cation and that the 

presence of sulphur atoms in the metal coordination sphere can be completely excluded. 

The chemical environment proposed here is frequently found in non-heme iron-proteins. 

Previous research on the Fur iron binding sites in E. coli (Jacquamet et al., 1998) and 

Anabaena (Hernandez et al., 2005) has pointed out a high conservation of particular 

residues. An EXAFS and crystallography study on PA Fur (Pohl et al., 2003) has reported 

a coordination of 4O+2N where three of the oxygen donors belong to two glutamate 

residues and one belongs to a molecule of solvent water. In addition, the high resolution 

structure of the DNA domain of EC Fur was recently published (Pecqueur et al., 2006), 

and the metal site present in this domain exhibited a coordination very similar to that 

observed in PA Fur. According to the sequence alignment, the residues involved in the 

coordination of Fe2+ of PA Fur and EC Fur are highly conserved in the Fur family (as 

indicated by the blue arrows in figure 5.2).  As the chemical environment of Fe2+ in Mtb 

FurA, PA Fur and EC Fur is very similar, we are inclined to suggest that the amino acids 

involved in the metal coordination of Mtb FurA are identical to those in the other 

organisms - namely His32, Glu80, His89 and Glu100. This is sustained by the 

observation that mutation of His32 and His89 in EC Fur completely abolished protein 

activity (Adrait et al., 1999). 

All this evidence is indeed consistent and in agreement with the models BFe and CFe 

reported in table 3.4, where nitrogens are coordinated at 1.96 Å and oxygens at 

2.04/2.06Å. 

 

 



5. MTB FURA DISCUSSIONS  70 
 

  

5.4 DNA affinity 

Figure 3.7 shows a faint binding of FurA to the canonical oligonucleotide Fur-box. Even 

though the interaction is not very strong, it is possible to observe a certain affinity of the 

protein for the DNA. This result represents preliminary information for the investigation 

of the physiological role of Mtb FurA. The protein could, in fact, be classified as a ferric 

uptake regulator, but further experiments have to be undertaken before claiming a 

biological function. 

 

5.5 Summary and conclusion 

The results presented in this work amount to a thorough characterization of the two 

metal-binding sites of Mtb FurA, including a detailed description of their chemical 

environments. The zinc site, to which the metal is already bound after purification, is 

presumably involved in the stabilization of the protein architecture and serves a purely 

structural role. The function of the zinc ion is most likely the maintenance of the tertiary 

structure. Previous studies have already reported that the cysteine-motif (CysXXCys) can 

participate in forming structural sites to hold helical sections, thus stabilizing the tertiary 

structure (Harding, 2004). The iron site, in contrast, is readily exchangeable and fully 

occupied after incubation with Fe2+-solution. This metal is essential for the activation of 

the protein and the its DNA-binding function (Mills and Marletta, 2005). The amino acids 

coordinated to this site (histidine and glutamic acids) are the most frequently statistically 

counted in the coordination sphere of the Fe2+ (Harding, 2004). Same electronic 

octahedral configuration of the iron can be achieved by the next closest elements, such as 

Co, Cu, Mn, and Zn. When iron binds to Fur proteins, it is likely that a hinge motion of 

the C-terminal domain takes place in order to achieve the conformational changes that 

allow the DNA recognition motif to assume its active configuration. All this evidence 

finally leads us to postulate that the zinc site serves a structural function and the iron site 

a regulatory function. Notably, through this work, we have been able to shed some light 

on questions still open about the role and the involvement of some specific residues such 

as cysteines, considered crucial for the activity of the protein. We have also provided a 

meticulous description and a qualitative and quantitative characterization of the metal 
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sites in FurA from Mycobacterium tuberculosis. It is notable that the metal binding 

features of the Fur proteins, which have a major effect on iron homeostasis (e.g. PA Fur) 

are very similar to those with more limited functions (i.e. Mtb FurA), such as regulating 

specific genes involved in oxidative stress.  Consequently, it appears that the specific 

DNA binding region of these regulators plays a major role in the determination of the 

specific genes that are ultimately regulated by the particular type of Fur.  

 



   

 

Chapter 6 
 

 

Mtb FurB DISCUSSIONS 
 

 

 

6.1 Structure overview 

FurB from Mycobacterium tuberculosis is a DNA binding protein with a high affinity for 

Zn2+. The protein is expressed and purified with a very tightly bound zinc atom. Through 

the binding of additional zinc FurB reaches its active status. It is so able to bind the 

promoter region of the znuABC gene cluster encoding for proteins involved in zinc 

uptake.  

The first crystal structure of one of the members of the Zur (zinc uptake regulator) family 

has been presented in this work: Mtb FurB solved to 2.7Å resolution. The overall fold of 

Mtb FurB with its N-terminal DNA-binding and C-terminal dimerization domain is 

similar to the PA Fur one - for long time the only available crystal structure of any 

member of the Fur family (Pohl et al., 2003). Domain conservation can be observed and 

only the presence of an additional helix of 10 residues in the N-terminus of PA Fur could 

be regarded as one of the main differences between (fig. 6.1). 
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Figure 6.1: DNA-binding domains superposition 

Ribbon representation in blue of Mtb FurB and in salmon of PA Fur.  
 

The individual domains superimpose well with an rmsd of 1.6 Å for 67 equivalent Cα-

atoms in the DNA-binding domain and 2.0 Å for 50 Cα-atoms dimerization domain, 

respectively (calculated using the DALI server (Holm and Sander, 1993)). The largest 

and more important difference between these two proteins is the orientation and therefore 

the angle between the two domains (fig. 6.2). Mtb FurB adopts a much wider 

conformation where the DNA-binding domains have moved in a hinge motion of 

approximately 77˚ with respect to the dimerization domain. The hinge region is located 

between residues 77-79. 
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Figure 6.2: Dimerization domains superposition 

Least-squares superposition of dimerization domains of Mtb FurB dimer (red) and PA Fur dimer 
(blue). Only the Cα-atoms of the dimerization domain were used to calculate the superposition 
matrix which was consecutively applied to the full dimer. 
 

6.2 Metal sites 

From the crystal structure three distinct Zn2+-binding sites were identified in FurB.  

Zinc 1 is surrounded by two histidines (His 81 and His 83), one cysteine (Cys 76) and 

one aspartic acid (Asp 62) (see fig. 4.20). The position of this site is presumably 

important for the activation of the protein as the metal ion is located at the hinge region 

between the two domains and may thus be responsible for the orientation of these two 

units with respect to each other. In fact two of the zinc ion ligands (Aps 62 and Cys 76) 

are located in the DNA-binding domain and two (His 81 and His 83) in the dimerization 

domain. The role of this metal site is presumably important for the function of the 

protein. The chemical environment corresponds exactly to that described for the EXAFS 

cobalt spectrum of Mtb FurB, where the ion presumably occupies the putative regulatory 
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site. This cation is often used in biology to replace and thus mimic zinc ion. This 

expedient allowed us to distinguish between the different metal sites in solution. It is 

important to note that it was not possible to introduce Fe2+, which prefers an octahedral 

coordination sphere with only N and O atoms (Harding, 2004).  

Zinc 2 is tetrahedrally coordinated by four cysteines arranged in a motif frequently 

reported in literature: CXXC (Auld, 2001) (see fig. 4.21). The metal ties the dimerization 

domain (via Cys86 and Cys 89) and the C-terminus  (Cys126 and Cys 129) together. A 

similar metal environment was also described by EXAFS data collected at the zinc edge 

in Mtb FurB solution. This cation can only be removed from its locus by denaturing the 

protein therefore it is very likely that this high-affinity site serves a structural role. 

Tetragonal ZnS4-clusters are by far the preferred motifs for structural zinc site (Auld, 

2004). 

In the crystal structure Mtb FurB exhibits a third Zn2+ site, surrounded by three histidines 

(His 80, His 82 and His 118) and one glutamate (Glu 101) (see fig. 4.22). This site could 

not be analyzed by X-ray absorption spectroscopy, due to the fact that it was not possible 

to introduce a third metal without observing precipitation. Although the exact biological 

function of this site remains open the following possibilities are at present proposed:  

a) Metal site 3 could be a second structural site. There are a number of examples (Auld, 

2001) in literature where a structural zinc site is composed of one aspartate/glutamate and 

three histidines. This motif is highly conserved in the metalloproteinases family where 

the metal ion is coordinated to four protein ligands. Remarkably, like in this case, no-

bound water and a relatively short sequence of the amino acids involved in the cation 

coordination is observed (Auld, 2001). Location of zinc 3 in the crystal structure of Mtb 

FurB, buried in the dimerization domain and coordinating to residues placed in the helix 

S3 and the strands S3 and S5, seems to play a stabilization role for the structure. Its 

presence, in fact, brings together all the secondary structure elements of the dimerization 

domain and confers a certain rigidity and stability to this unit. However, in contrast to the 

first structural site this site is not necessary for structural integrity as it can easily be 

removed by EDTA treatment.  
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b) This site could be an artefact of crystallization. There are a number of cases where 

additional metal sites were found in crystal structures - sometimes they are responsible 

for crystal contacts as in the case of the crystal structure of PA Fur (Pohl et al., 2003).  

However this site well superimposes with the putative regulatory Fe-binding site of the 

PA-Fur crystal structure. After least-squares superposition of the dimerization domain 

(Cα-atoms only) the position of the two metals differ by only 1Å. In addition, three of the 

four residues binding the metal are conserved but whereas in PA Fur this site constitutes 

an octahedral ligation sphere, well suited for Fe2+, in our structure the site forms a 

tetrahedral environment preferred by Zn2+.  

It is clear that proteins belonging to the Fur family exhibits a conserved overall structure 

with a DNA-binding domain and a dimerization but the metal ion selectivity of Fur-like 

repressor varies and is presumably determined by the spatial arrangement of the ligands 

involved in the metal coordination sphere (Moore and Helmann, 2005). 

Obviously, further experiments are needed to elucidate the exact role of this Zn2+ binding 

site. 

 

6.3 Remarkable points 

6.3.1 EXAFS similarity 

The EXAFS results reported here are interesting if compared to the X-ray absorption 

spectroscopy analysis of EC Zur metal sites (Outten et al., 2001). As with the protein 

studied here, the authors were able to add one cobalt ion to Zur already complexed with a 

very tightly bound zinc ion. Both cations, Zn2+ and Co2+, exhibited significantly similar 

environments to those identified by EXAFS for the Mtb FurB (Outten et al., 2001). It is 

important to note that, although the best-fitting model proposed for EC Zur was a 

3S+1N/O model, the second best model, whose goodness of fit was not significantly 

worse, was a 4S model, as proposed here. Moreover, looking at the sequence alignment 

of Mtb FurB with the Zur proteins (including that from E. coli), it is possible to observe 

that the four cysteines coordinating the Mtb FurB zinc structural site in the crystal 

structure are highly conserved among the species (fig. 6.3).  
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Figure 6.3: Zur proteins alignment 
The numbering refers to Mtb FurB sequence. The yellow boxes represent the conserved regions 
and in red are highlighted the identical residues. Consensus > 70 has been chosen to underline the 
conservation of the residues in at least three/four cases. The alignment has been calculated with 
ClustalW (http://www.ebi.ac.uk/clustalw/index.html) (Pearson, 1990; Pearson and Lipman, 1988) 
and the graphically displayed with ESPript (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) 
(Gouet et al., 1999). Mtb: Mycobacterium tuberculosis, Bsub: Bacillus subtilis, Ecol: Escherichia 
coli, Xcam: Xanthomonas campestris 
 

Considering that the difference in the parameters between the two best EXAFS models 

(in both cases EC Zur and Mtb FurB) is not enough to completely rule out one or the 

other model, along with the crystallographic results and the alignment information, I am 

inclined to propose a more generally valid structural site coordinated by four cysteines. 
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The chemical environment proposed for the regulatory site occupied by Co2+ in EC Zur is 

instead identical to metal site 1 of Mtb FurB crystal structure.  These similarities further 

support the notion that Mtb FurB is in fact the zinc uptake regulator. 

 

6.3.2 DNA-binding 

The promoter region of Rv2059 is similar to the promoter of ZnuA and to the Zur-boxes 

from other organisms, all sequences are pseudo-palindromic and rich in AT base pairs. In 

the tuberculosis genome this is not common as more than 66% of its base pairs is 

constituted by CG (Cole et al., 1998). The presence of such a particular sequence of 

nucleotides, regularly present in the promoter region of a specific class of genes, can not 

be regarded just as a mere coincidence and most likely it is an important feature for the 

recognition and then regulation of genes involved in zinc homeostasis. 

Although the crystal structure of Mtb FurB presented here shows a detailed picture of the 

overall architecture as well as the metal binding sites, the model of DNA recognition is 

not immediately obvious. The dimer forms a widely open structure where the two 

putative DNA-recognition helices (H3 and H3’, respectively) are oriented almost parallel 

to each other on opposite sides. Hence the binding of each of the DNA-recognition 

elements in the major groove of one half site of the (pseudo-)palindromic DNA-target 

sequence as observed in the case of a number of prokaryotic DNA-binding proteins 

(Huffman and Brennan, 2002) including DtxR (Pohl et al., 1999; White et al., 1998) 

cannot be accomplished without major conformational change upon the hinge region of  

the protein. The electrostatic potential representation depicted in figure 6.4 shows that 

helices H1 and H3 with a number of surface arginines possess a mainly positively 

charged surface. This may be an indication that H1 and its symmetry-mate H1’ are also 

involved in DNA-backbone binding.  
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Figure 6.4: Electrostatic representation of Mtb FurB dimer 

Surface representation with the calculated electrostatic potential (DeLano Scientific LLC, 1998-
2003) varying from positive (blue) to negative (red).  
 

Clearly, a crystal structure of a Fur/Zur DNA complex is needed to unravel the exact 

mode of DNA-binding. 

 

6.3.3 Alignment considerations 

Sequence alignment of MtB FurB with Zur from Gram-positive bacteria (i.e Bacillus 

subtilis) shows 25% of identity (fig. 6.5). 

Unfortunately it is still very difficult to distinguish between Fur and Zur proteins only 

from sequence alignments. A clear classification, supported by experimental results, can 

be stipulated only based on a few organisms. In fact today Fur and Zur proteins with their 

own respective functions and target specificity can be assigned only in Escherichia coli, 

Bacillus subtilis, Xantomonas campestris and with this work also in Mycobacterium 

tuberculosis. All other targets, classified as Zur, are assigned only by sequence homology 

and are not supported by experimental proves. However when a comparison between 

Zurs from different species is required it is important to remember that Zur proteins form 
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at least three unrelated groups: enterobacterial Zur, Zur proteins of low-GC Gram-

positive bacteria and high CG Gram-positive bacteria (Hantke, 2005).  

 

 

 
Figure 6.5: Sequence alignment of Mtb FurB and Zur from Bacillus subtilis 

Bacillus subtilis is a Gram-positive bacteria like Mycobacteirum tuberculosis. The numbering 
refers to the Mtb FurB sequence. The blue square indicated site 1 in  Mtb FurB, the pink stars the 
site 2 and the green arrows the site 3. These sites seem to be conserved in Bacillus subtilis too. 
The yellow boxes represent the conserved regions, in red are highlighted the identical residues. 
The alignment has been calculated with ClustalW (http://www.ebi.ac.uk/clustalw/index.html) 
(Pearson, 1990; Pearson and Lipman, 1988) and the graphically displayed with ESPript 
(http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) (Gouet et al., 1999). 
 
 

6.4 Conclusion 

Mtb FurB shows many structural and functional similarities with Zur. The metal sites are 

likely to be conserved through the Zur species. The protein is very sensitive to the 

presence of zinc in the media and an overload of this metal causes precipitation. Same 

phenomena has happened to other Zur proteins (Outten et al., 2001). FurB binds the 

promoter regions of a triplet of genes involved in zinc transport, these genes are regulated 

in other already characterized organisms by Zur (Gaballa and Helmann, 1998; Patzer and 

Hantke, 2000). Furthermore this protein does not show any iron binding affinity and the 

ferric uptake regulator of Mycobacterium tuberculosis has been already identified as 

FurA (Pym et al., 2001). In summary, a combination of X-ray absorption spectroscopy 

and crystallographic data have allowed the investigation and distinction between the 



6. MTB FURB DISCUSSIONS  81 
 

  

structural and the regulatory site of zinc sites in Mtb FurB. All experimental results 

presented here suggest a clear biological function for FurB as a Zinc uptake regulator. 



   

 

 

Chapter 7 
 

 

CONCLUSIONS 
 

 

 

When this project was started, very little was known about the proteins FurA and FurB 

from Mycobacterium tuberculosis. At that time, many uncertainties existed about the 

nature of ferric and zinc uptake regulators even though the field was already very prolific.  

While many of the same questions remain today, knowledge of the importance of these 

proteins has grown with exponential velocity/rate in recent years and they have become 

the focus of new interest for many laboratories. In the last few years, scientists have 

discovered the vital importance of metal homeostasis for humans and bacteria. Today, 

unravelling the mechanisms that control these highly sophisticated regulation systems has 

become a priority in the battle against pathogens. 

This project started with knowledge of two Fur genes in the tuberculosis genome, 

assigned, like for many other bacteria, only by sequence homology to the Fur protein 

previously known from E. coli. A number of techniques have been utilized and a set of 

protocols established in order to characterise both systems and to shed some light on the 

real nature and function of these proteins. The work was all carried out starting from the 

very beginning and proceeded along three and a half years.  

A detailed and careful description of all metal sites in both targets is provided in this 

work. For years, many interpretations and discussions have been reported in literature 

about the possible evolution, in the same family, of the metal sites, and often a 

comparison between Fur and Zur has been required. Finally it is possible to propose 

models and to permit a clarification based only on experimental evidence.  Specifically, 
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this work has allowed estimation of the number of metal sites, their binding constants, 

coordination environment and nature of the metal ions. By solving the crystal structure of 

FurB it was possible to present for the first time a 3D picture of a zinc uptake regulator. 

No member of this family has ever been crystallized before. On the basis of these results 

it is possible to assign functions to both targets, recognising FurA as the ferric uptake 

regulator and FurB as the zinc uptake regulator. This can be regarded as an important step 

especially if it is considered that, despite the presence of several zinc-dependent genes in 

the tuberculosis genome, until today no zinc regulator had been classified in that 

organism. The respective DNA partners were also identified and studies on the nature of 

these complexes are ongoing. 

At present several steps forward have been made from the original basic knowledge of 

furA and furB gene numbers. The project has assumed a well-defined shape and more 

importantly, the ground is ready for a more careful and advanced study of these targets. 

Both systems can now easily be expressed and stabilized, although a lot of work still 

remains to be done.  Crystallization of the FurB-DNA complex, FurA and FurA-DNA 

complex has already started as well as a biological characterization of the DNA binding 

constants. The system is there, just waiting to be disclosed.  

All results reported here could be achieved only by involving a combination of different 

techniques. This proves that there is no certain nor unique method universally valid for 

studying and understanding nature but that this is Science, where each system represents 

a new “universe” which, by being “observed” from different sides, reveals its true nature 

to the investigator. 
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