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Abstract

This thesis contains two major parts. In the first part, I introduce a new theory
of modules with iterative connection. This theory unifies the theory of modules
with connection in characteristic zero as given by N. Katz (see [Kat87]) and
the theory of iterative differential modules in positive characteristic as given by
B. H. Matzat und M. van der Put (see [Mat01] and [MvdP03]). The second
part of this work is about the differential Abhyankar conjecture for iterative
Picard-Vessiot extensions (IPV-extensions). This conjecture is concerned with
the problem which linear algebraic groups occur as iterative differential Galois
groups of IPV-extensions with restricted singular locus. In this thesis, I prove the
differential Abhyankar conjecture for connected groups and give necessary and
sufficient conditions for connected groups for being realisable with given singular
points.

Zusammenfassung

Diese Doktorarbeit besteht im Grofien aus zwei Teilen. Im ersten Teil entwickle
ich eine neue Theorie von Moduln mit iterativem Zusammenhang. Diese Theo-
rie vereinheitlicht die Theorie der Moduln mit Zusammenhang in Charakteris-
tik Null, wie N. Katz sie in [Kat87] vorstellt, und die Theorie der iterativen
Differential-Moduln von B. H. Matzat und M. van der Put (siehe [Mat01] und
[MvdP03]). Im zweiten Teil der Arbeit geht es um die Differential-Abhyankar-
Vermutung fiir iterative Picard-Vessiot-Erweiterungen (IPV-Erweiterungen).
Diese Vermutung macht dariiber Aussagen, welche lineare algebraische Gruppe
als iterative Differential-Galoisgruppe von IPV-Erweiterungen mit eingeschrank-
tem singuldren Ort vorkommen. In dieser Arbeit beweise ich die Differential-
Abhyankar-Vermutung fiir zusammenhangende Gruppen und gebe notwendige
und hinreichende Kriterien fiir die Realisierbarkeit zusammenhingender Grup-
pen mit vorgegebenen Singularitdten an.
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Introduction

At the beginning of differential Galois theory, one was restricted to the case
of characterictic zero. In this case N. Katz gave a general setting of modules
with integrable connection to describe linear differential equations in several vari-
ables (see [Kat87]). These modules with integrable connection form a category
DE(R/K) (here R denotes the differential ring and K the field of constants),
which turns out to be a Tannakian category or even a neutral Tannakian cate-
gory over K, if there is a fibre functor w : DE(R/K) — Vect(K) (for example if
R has a K-rational point). By the general properties of neutral Tannakian cate-
gories, this gives rise to a Galois theory for these linear differential equations (see
for example [DM89]). But this approach of Katz only works in characteristic zero,
mainly because in positive characteristic p, every p-th power is a constant with
respect to any derivation on R. In particular, if there is a differential extension
L of R, L would have additional constants, namely L? \ R.

After a few attempts by K. Okugawa in 1963 and 1987 (see [Oku63] and [Oku87]),
B. H. Matzat and M. van der Put started to set up a systematic approach to
differential Galois theory in positive characteristic (see [MvdP03]). They used
so called iterative derivations, which were first introduced by H. Hasse and F.
K. Schmidt in [HS37]. In their notation, an iterative derivation on a ring R is

a sequence of endomorphisms (6("“))]€ N of the ring R satisfying some properties

(cf. proposition 1.2 and the remarks following it), which imply that 0™ is a
derivation and which would imply that 9%®) = L(0™W)* if the characteristic was
zero. But this differential Galois theory developed by Matzat and van der Put
only works for differential equations in one variable, and there has still been no
systematic way for several variables.

In the first part of this thesis, I will introduce such a systematic description using
so called higher differentials and iterative connections. This theory is completely
independent of the characteristic. The characteristic will only take into account,
when we look for special properties (which parameters determine an iterative
derivation and so on). We will see that this theory of modules with iterative
connection resp. integrable iterative connection is a generalisation of both the
classical theory of modules with (integrable) connection in characteristic zero and
the iterative differential theory of Matzat and van der Put over algebraic function
fields. In section 4, it will be shown, that the category ICon(R/K) of modules
with iterative connection over R and the category ICon;,;(R/K) of modules with
integrable iterative connection over R are both (neutral) Tannakian categories.

In getting the right setting, the main idea is to regard a higher derivation not
as a sequence of maps (B(k) R — R)keN but as a homomorphism of algebras
¢ : R — R[[T]] by summing up, in detail 1(r) := Y ro, 0% (r)T*. This leads to
the notion of R-cgas (completions of graded R-algebras), which allows to gener-
alise the definition of a higher derivation and to obtain a universal object QR/K
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with a universal higher derivation dg : R — QR/K, replacing the module of differ-
entials Qg k in classical theory. There have already been some attempts in this
direction (see for example [Voj04], where P. Vojta defined an algebra of divided
differentials), but they all didn’t lead to an appropriate theory.

In the second part of the thesis, we will be concerned with the differential Ab-
hyankar conjecture over algebraic function fields in positive characteristic.

So we will be in the case, for which Matzat and van der Put developed an itera-
tive differential Galois theory. In more detail, for an iterative differential module
(ID-module) M over the algebraic function field F', there is a minimal iterative
differential extension field L/F (which is unique up to differential isomorphism),
called iterative Picard-Vessiot extension (IPV-extension), such that M ®p L has
a basis of differentially constant elements. The group of differential automor-
phisms of L over F'is an algebraic subgroup of GL,(K) (n = dimg(M), K the
field of constants), called the iterative differential Galois group Gal(L/F). It
has already been shown by Matzat (see [Mat01], cor. 8.11) that for every re-
duced linear algebraic group G defined over K, there exists an IPV-extension
with Gal(L/F) = G(K). (We say that G can be realised as differential Galois
group.) However, one wants to have realisations with few singular points. The
differential Abhyankar conjecture states that a linear algebraic group G can be
realised with singular locus inside a nonempty set S, if and only if G/p(G) can,
where p(G) denotes the subgroup of G generated by its unipotent elements. For fi-
nite groups G, this conjecture becomes the classical Abhyankar conjecture, which
has been proved by Raynaud and Harbater (see [Ray94], [Har94] and [Har95]).

In this work, we will give a realisation of connected groups which shows that the
differential Abhyankar conjecture is also true for connected groups.

Nevertheless, the differential Abhyankar conjecture is not true in this form. In
section 9.1, we will give an example of a non-connected group which is generated
by unipotent elements but which is not realisable with one singularity. Since this
example only works if the field of constants equals Fp, the differential Abhyankar
conjecture might be true if the field of constants is not F,,.

Chapter 1 gives the definition of higher derivations in the general sense and in the
special case which is equivalent to the higher derivations of Hasse and Schmidt.
The R-cgas (completions of graded R-algebras) used here and throughout the
whole thesis are defined in appendix A, together with some properties and no-
tations related to R-cgas. In the first chapter, we also define higher derivations
on modules and finally give an action of the field of constants K on the set of
higher derivations, which turns out to be very useful later on to simplify a lot of
calculations.

In chapter 2, the algebra of higher differentials QR/K is introduced together with
the universal higher derivation dg. We show that this universal higher derivation
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can be extended to an automorphism dg of the K-algebra QR/K (see section
2.2). At last, we define higher connections on a module M as higher derivations
over dg, we define extensions of these higher connections to endomorphisms of
QR/K ® M using the automorphism dg, and we show that over a regular local
ring R, every finitely generated module with a higher connection is free.

In chapter 3, we focus on iterative derivations on the ring R (i.e. higher deriva-
tions with an additional composition law) and on iterative derivations on mod-
ules. The iterative derivations seem to be the appropriate replacement for the
common derivations, because they are in one-to-one correspondence to those in
characteristic zero, what will be shown later. We conclude the chapter with the
definitions and some properties of iterative connections and integrable iterative
connections, the central objects of the first part of this work.

The investigation of categorial properties is done in the forth chapter. There,
we see that the category of modules with (arbitrary) higher connection is not
a tensor category for lack of some morphisms regarding the dual object. But
the category ICon(R/K) of modules with iterative connection and the category
ICon;,;(R/K) of modules with integrable iterative connection are tensor cate-
gories over K. Even more, together with the fibre functor w : ICon(R/K) —
Mod(R), that forgets the connection, the categories ICon(R/K) and
ICon;,;(R/K) are Tannakian categories and even neutral Tannakian categories
over K, if R has a K-rational point. A short summary of the definitions of the
categories used here is given in appendix B. In section 4.2, we sketch a generali-
sation of the previous to schemes.

The last two chapters of the first part concentrate on special properties related
to the characteristic. In chapter 5, it is shown that for char(K) = 0, (common)
derivations, differentials and connections are in one-to-one correspondence to
iterative derivations, higher differentials and iterative connections, what proves
that the classical theory is obtained as a special case of the theory developed
here.

In chapter 6, we show that modules with integrable iterative connection are in
one-to-one correspondence to projective systems. This implies that the theory of
iterative differential modules defined by Matzat in [Mat01] also is obtained as a
special case.

In chapter 7, the first chapter of the second part, we start with some properties
of iterative derivations in algebraic function fields in one variable, which will be
necessary for later purposes. We recall the basic definitions and results of the
iterative Picard-Vessiot theory, including methods for determining the iterative
differential Galois group of an iterative Picard-Vessiot extension (IPV-extension).

In chapter 8, we then concentrate on questions regarding regularity both of it-
erative differential modules and of IPV-extensions. One point is that iterative
differential modules (ID-modules) can be totally singular, i.e. they are singular
in every place of the function field. This is a phenomenon that doesn’t occur in



characteristic zero. We also give criteria for deciding, whether an ID-module is
totally singular or not, and for determining the points in which these modules
are regular.

Finally in chapter 9, we discuss questions concerning the differential Abhyankar
conjecture for IPV-extensions. We show that the conjecture is true for connected
groups. Moreover, we show that every connected group can be realised with at
most two singular points and in special cases with even less singular points. This
has already been stated in [MvdP03] (see [MvdP03], thm. 7.1 (3) and cor. 7.7
(3)), but the proof sketched there has a gap (cf. the remark in section 9.5). The
realisation of a connected group given here is splitted into several parts: The
realisation of unipotently generated connected groups, the realisation of tori and
the solution of embedding problems with unipotent kernel.

vi



Part 1

In this part of the thesis, the reader is introduced into the theory of iterative
connections. The main result is given in section 4, namely that for a regular
commutative ring R that is finitely generated as a K-algebra, the finitely gen-
erated modules with iterative connection form a Tannakian category and — if in
addition Spec(R) has a K-rational point — even a neutral Tannakian category
over K.

Furthermore in section 5, we show that in characteristic zero, the category
ICon;,;(R/K) of finitely generated modules with integrable iterative connec-
tion is equivalent to the category DE(R/K) of finitely generated modules with
integrable (common) connection as introduced by Katz in [Kat87]. This shows
that the theory of modules with iterative connection is a generalisation to all
characteristics of the theory of modules with (common) connection.

At last in section 6, we consider the case that K has positive characteristic.
Then if R is an algebraic function field, the category ICon(R/K) (and also
ICon;,;(R/K)) is equivalent to the category ID g (R) of modules with an iterative
derivation as introduced by Matzat in [Mat01]. So the theory of modules with
iterative connection is also a generalisation of this theory.

Notation Throughout this work, K denotes a field, R and R denote integral
domains, which are finitely generated K-algebras (or localisations of finitely gen-
erated K-algebras) and f : R — R denotes a homomorphism of K-algebras.
Furthermore B denotes the completion of a graded algebra over R (a R-cga for
short), as defined in appendix A. M will always be a finitely generated R-module.



1 Higher Derivations

In this section we give the notion of higher derivations on rings and modules.
The definition used here is different from that introduced by Hasse and Schmidt
in [HS37]. In fact it is a generalisation which we will show later on. This more
general definition is necessary to define the algebra of higher differentials as a
universal object (see section 2.1).

1.1 Higher Derivations on Rings

Definition 1.1 A higher derivation of R to B over K is a homomorphism of
K-algebras ¢ : R — B satisfying o = f : R — By = R.

The set of all higher derivations of R to B over K will be denoted by HDg (R, B).

In the special case of B = R[[T]] (and R = R) we set HDg (R) := HD (R, R[[T])).
For ¢ € HDg(R) we define a sequence (¢(k))keN of maps ) : R — R by the

equation
o0

w(ir) = oW

k=0
for all r € R.

Proposition 1.2 For ¢y € HDg(R) the maps Y ®) are homomorphisms of K-
modules and satisfy the following properties:

PO = idg (1)
VEENVrseR: W (rs) = > ¢ (r)pl(s) (2)

i+j=k
Furthermore a sequence (w(k))keN of K-module-homomorphisms satisfying these

two properties defines a higher derivation ¢ : R — R[[T]] by the equation given
above.

Proof 1 =33 %™ T* is a homomorphism of K-modules, if and only if for all
ri,m9 € R and a,as € K we have

Z¢(k)(alrl +asra)TH = larry + axry) = arp(r) + axt(ro)
k=0
= a Y V()T +ay > W ()T,
k=0 k=0

ie. if ®) (a1r) + agry) = a1 ™ (1)) 4 agp® (ry) for all k € N, which means that
¥™*) is a homomorphism of K-modules for all & € N.
Since £ 0 ¢p = (9, we have idp = ¢ 0 ¢ if and only if ¥ = idp.

2



At last, we have

vrs) = Y vP(rs)Tk

b(r)w(s) = (Z w"“(r)T’“) (Z W(s)T’“) => ( > w”)(rw@(s)) T*

k=0 \i+j=k

for all r,s € R. So 1 is a homomorphism of algebras if and only if the sequence
(v®), oy Satisfies the second property. 0

Remark More generally, for an arbitrary higher derivation ¢» € HDg (R, B) we
denote by 1)*) the composition of 1) and the projection into the k-th homogeneous
component of B. For every r € R we then have ¢(r) = Y72 ¢®(r). (The right
side is a series that converges in the topology of B.)

Note that this definition of ¢(*) slightly differs from that given for ¢» € HDg(R)
(as in the above definition 1(*)(r) only is the coefficient of T*), but it should
always be clear from the context or not important, which of these two notations
is used.

Remark As mentioned in the beginning, Hasse and Schmidt introduced another
definiton of higher derivations, namely a sequence (1/;(’“)) e of homomorphisms of
K-modules which satisfy the properties of proposition 1.2. So a higher derivation
1 € HDg (R) is exactly what Hasse and Schmidt called a higher derivation.

Proposition 1.3 Let S C R be a multiplicatively closed subset and let R = R(y)
be an integral extension of R such that the minimal polynomial of y, call it g(X),
has coefficients in R and ¢'(y) is invertible in R, where ¢'(X) denotes the formal
derivative of g(X). Then:

1. Every higher derivation ¢ € HDg (R, B) to a (S™'R)-cga B can be extended
uniquely to a higher derivation v, € HDg(S™'R, B).

2. Fvery higher derivation ¢ € HDg(R, B) to a R—cga B can be extended
uniquely to a higher derivation 1. € HDg (R, B).

Proof For the first part, by the universal property of localisation (cf. [Eis95],
Ch.2) — applied to ¢ and to £ 0 ¢) — we only have to show that for each s € S the
image 1(s) is invertible in B.
Define "% b; € B inductively by

bg = 8_1 € S_lR = BO

3



and for all £ > 1:

k
b= —s Y _ ()b
i=1
Then we get:
00 oo k
i=0 k=0 i=0

The proof of the second part: Every extension of ¢ is given by the image of y
m 00 ?
in B, i.e. by an element Y > n, € B with gy =y and Y ¢(a;) <Z 77k> =0,
k=0

i=0
where g(X) =" a;X*. So we have to show that there exists a unique element
with these properties.

Therefore let > )~ nx € B satisty 79 = y. The k-th homogenous component
(k> 0) of > ¥(a;) (Z m) is then given by:
1=0

1=0

Z@b(ai) (Z 77l> = Z Z 1/1(j)(az')77k1 © Tk

1=0 k 1=0 j+ki+--+k;=k

— Zw az Z77[] 77k+P(¢(j)(ai)a770;771,---;nkfl)

= Z iaiyi_lnk + P(w(g)(az)a Mo, My - - - 777]9*1)7

=1

where P(¢9)(a;), 1m0, M1, . - ., Mk—1) denotes a polynomial expression in 1) (a;) (j =
0,...,k; i =0,...,m) and y = no,m,...,Mk_1. (Here the second equality is
obtained by sorting out all terms, in which 7 occurs.) Since >.1" ia;y"™" = ¢'(y)
is invertible in R, the condition that the k-th homogenous component above
equals 0 is equivalent to

m=—gy) " P(w”)(ai),no,m, ey M)

o0

and therefore there is a unique Y 7, € B, whose homogenous components can
k=0
be calculated by the formula above. O

Example 1.4 For a polynomial algebra R = K[ty,...,t,], every higher deriva-
tion of R into some R-cga B is given by an m-tupel (b1, ..., by,) of elements of B

4



satisfying e(b;) =t; for all j =1,... ,m.

The higher derivations ¢;; € HDg (K[t ..., tm]) given by ¢ (t;) = t; for i # j
and ¢, (t;) = t; + T play an important role. In the classical context, d)EJ) is just
the derivation with respect to ;. We therefore call ¢;; the higher derivation

with respect to t;. If R is a localisation of K[t;,...,t,] or an integral exten-
sion as in the previous proposition, then the ¢;, € HDg (K[ty,. .., t,]) uniquely
extend to higher derivations on R. These derivations will also be referred to as
higher derivation with respect to ¢; and will also be denoted by ¢;;.

Definition 1.5 For ¢ € HDg(R) we define ¢[[U]] € HDgqoy(R[[U]]) by
PIUNRCE ail?) = 22720 (@)U
Using this we get a composition of higher derivations ¢y, ¢, € HDg(R) by:

T—U
—

bty R RITY 2% Rioy 2% RonTy) = RIU, T

If R[[U,T]] is given the grading by total degree, we obviously have 1y x 1hy €

Remark One easily calculates that for r € R we have

(1) (r) = Y (0 o i) (r)UIT". (3)

1,jEN

Lemma 1.6 Let pu: R[[U,T]] — R|[T]] be the homomorphism of R-cgas defined
by U — T and T — T. Then the multiplication

U1ty 1= po (Y1 x i) (4)
for 1,9 € HDg(R) defines a group structure on HDg (R).

Proof See [Mats89],§27. O

1.2 Higher Derivations on Modules

In this section we consider higher derivations on modules. Remind that M will
denote a finitely generated R-module.



Definition 1.7 Let ¢ : R — B be a higher derivation of R in B over K. A
(higher) «-derivation of M is a homomorphism of K-modules
U:M— B®rM with (e ®idy) oV = f ®idy and ¥(rm) = (r)¥(m) for all
r € Rom e M. We denote by HDg (M, ) the set of (higher) 1-derivations of
M. Asin section 1.1, for ) € HDg(R) and U € HDg (M, 1)) we define a sequence

of maps ¥ - M — M by writing ¥(m) = Y WE (m)T* for all m € M.
k=0

Proposition 1.8 For ¢y € HDg(R) and ¥ € HDg(M,v) the maps ¥*) are
homomorphisms of K-modules and satisfy the following properties:

O = idy, (5)
Vae RomeM:¥W(am) = Y 4@ (a)u9(m) (6)
i+j=k

Furthermore a sequence (\I!(k))keN of K-module-homomorphisms satisfying these
two properties defines a -derivation ¥ : M — M][[T]] by the equation given
above.

Proof Analogous to the proof of proposition 1.2. O

Remark

1. For given ¢ € HDg(R, B), every homomorphism of R-cgas g : B — B
induces a map g, : HDg (M, ¢) — HDg(M,go ), ¥ — (g ® idys) o W.

2. Let ¢, 19 € HDg(R). Then as in definition 1.5, we can define the composi-
tion Wy x Wy of two higher derivations ¥; € HDg (M, 1);) (i = 1,2), which is
an element of HD g (M, ¢ x1),), and the product ¥y - Wy € HDg (M, 1)11)9).

1.3 Action of K on Higher Derivations

We now regard the action of K on the set of higher derivations.! This action will
be useful when giving a description of iterative derivations (see section 3), which
is convenient for calculations.

Definition 1.9 For a € K and ¢ € HDg (R, B) we define a map a.yp : R — B
by (a.)®) = aF - p*) for all k € N, which is easily seen to be a higher derivation.
(Here a° := 1 even if a = 0.)

Also for a -derivation ¥ € HDg (M, 1) we define a map a.¥ : M — B®pr M
by (a.0)®) .= gk . I*) for all k € N, which is an element of HDg (M, a.1)).

!The action given here actually is a special case of the action of K given in appendix A.

6



Proposition 1.10 The definition above gives an action of the multiplicative
monoid K on the set HDg (R, B) for arbitrary R-cga B. Moreover this action
commutes with the group structure on HDg (R).

Proof This is a special case of proposition A.5 in appendix A. a

Corollary 1.11 The set Der(R) := {4V | » € HDg(R)} is a vector space over
K.

Proof Let 1&%1),1&51) € Der(R) and ay,ay € K. Then by equation (3) and (4),
for all r € R we have:

(a1.901) (a2.002) D (r) = ((a1.41)V 0 (a2.2) @) (r) + ((a1.11)@ 0 (az.1h2) V) (r)
= a1 (r) +an - ().

Therefore a; - ¥\ + ay - 4" € Der(R). O

Remark One could also define an action of R on HDg (R, B) by the same rule.
But we won’t use this action, because it doesn’t behave nicely. For example it
doesn’t commute with the multiplication in HDg(R) and most properties that
will be shown in section 3 and used later on are restricted to the action of K
(and are not valid for arbitrary elements of R). However using the action of R
one could see that the set Der(R) defined in the previous corollary is in fact an
R-module, actually the R-module of (common) derivations of R.



2 Higher Differentials and Higher Connections

2.1 Higher Differentials

Theorem 2.1 Up to isomorphism, there exists a unique R-cga QR/K together
with a higher derivation dp : R — QR/K satisfying the following universal prop-
erty:

For each R- cga B and higher derivation ¢ : R — B there exists a unique homo-
morphism of R-cgas 1 : R ®p QR/K — B with o (1®dg) =1. 2

Proof We Construct Q r/K- Uniqueness is given by the universal property.

Let G = R[ )r | k € Ny,7 € R] be the polynomial algebra over R in the
variables d®)r and let the degree of d*)r be k. Define I < G to be the ideal
generated by the union of the sets

{d(k)(T + S) _ d(k)T — d(k)s | ke N+;Ta3 € R}’
{d (k)a|k€N+;a€K} and

Zdrd Ys |k eNy;r s € R},

where we identify d®r with r for all » € R. Therefore I is a homogeneous ideal
and we set QR/K as the completion of the graded algebra G/I. We also define
the higher derivation dg : R — QR/K by dr(r) ==Y 22, d®)

The universal property is seen as follows: Let ¢ : R — B be a higher derivation.
Then we define an R-algebra-homomorphism g : G — B by g(d®)r) := ) (r)
for all £ > 0 and r € R. The properties of a higher derivation imply that I lies
in the kernel of g, and therefore g factors through g : G/I — B and we get a
homomorphism of algebras Q R/K = B by extending ¢ continuously and therefore
a homomorphisms of R—cgas 1/; R Qr QR/K — B.

On the other hand, the condition 1 o (1 ® dg) = ¢ forces this choice of g and so
z; is unique. 0O

Proposition 2.2 (a) For every homomorphism of rings f: R — R there is
a unique homomorphism of R-cgas Df : R Qp QR/K — QR/K such that
dpof=Dfo(1®dg).

(b) If R is a localisation of R or R = R(y), where y is integral over R, the
minimal polynomial g(X) of y has coefficients in R and ¢'(y) is invertible
in R, then Df is an isomorphism.

2In other words, QR/K is representing the functor HDg (R, )

3Here and in the following the residue class of d®r € G in QR/K will also be denoted by
dE) p.



Proof Since djof is a higher derivation on R, part (a) follows from the universal
property of QR/K.

By proposition 1.3, in the two cases of part (b), every higher derivation on R
to a R-cga extends uniquely to R. So there exists a (unique) higher derivation
d: R > R®p QR/K extending (1 ® dg). By the universal property of QR/K,
there exists a unique homomorphism of R—cgas g: QR/K — R®r QR/K such that

god; =d. Now we have
(goDf)o(1®dp) =godpof=dof=(1@dg)

and therefore by the universal property (go Df) = id . Furthermore

1 R®RQR/K
(Dfog)odsof=Dfodof=Dfo(l1®dg) =dzof

By the unique extension of higher derivations this leads to (Df o g) odp = djp
and finally we get (Dfog) = idQ[z/K by the universal property of 2z 5.
So Df and g are inverse to each other and so D f is an isomorphism. O

Theorem 2.3 (a) Let R = K[t1,...,ty] be the polynomial ring in m variables.
Then Qg is  the  completion  of the  polynomial  algebra
Rd9t i e Ny, j=1,...,m].

(b) Let F/K(ti,...,tm) be a finite separable algebraic extension field. Then
Qr/k 8 the completion, of the polynomial algebra
Fld9% |ie Ny, j=1,...,m].

(¢) Let (R,m) be a regular local ring of dimension m, let t1,...,t, generate m
and assume that R is a localisation of a finitely generated K -algebra and
that R/m is a finite separable extension of K. Then QR/K 18 the completion
of the polynomial algebra R[dWt; |i € Ny, j =1,...,m].

Remark We will denote the completion of such a polynomial algebra by
R[[dD¢; | i € Ny,j = 1,...,m]], although it is not really a ring of power se-
ries, because it contains infinite sums of different variables.

Proof (a): Since for P € R the image d(P(t1,...,ty)) = P(d(t1),...,d(tm))
is a “power series” in d(i)tj, QR/K is generated by the d(i)tj as a R-cga. On the
other hand, since every choice of @ (¢;) € R (i € Ny,j = 1,...,m) defines a
higher derivation ¢) € HDg(R), by the universal property of QR/K the d¥¢; are
algebraically independent over R.

(b): This follows from part (a) and proposition 2.2(b), since K(ti,...,t,) is
a localisation of K[ty,...,t,] and F' = K(t1,...,t,)[y] with an element y €
F that is separable algebraic over K(ti,...,t,). So the minimal polynomial

9



g(X) € K(t1,...,tm)[X] of y satisfies ¢'(y) # 0, i.e. ¢'(y) is invertible in F.

(c): We will show that Qp/x @ (R/m) is isomorphic to (R/m)[[d®¢;]]. Then,
since Qr/x ®r Quot(R) is isomorphic to Quot(R)[[d®;]] (prop. 2.2 and part
(b)), by [Hart77], Ch.II, lemma 8.9, it follows that (QR/K)k is a free R-module
and that the residue classes of any basis of (QR/K)k is a basis of (QR/K ®prR/m)y.
Hence we obtain Qg /x = R[[dVt]].

First, let ) : R — B be a higher derivation of R to a R/m-cga B. Then for all
ke Nand ry,...,r.1 € m, we have

w(k)(r1 . 'Tk+1) _ Z w(il)(rl) .. .w(ikﬂ)(rkJrl) =0,

i14+-tip 1=k

since in each summand at least one i; = 0, and so ) (ry) -+ (r, ) €
mB = 0. Therefore 1)*) (and @ for i < k) factors through R/m*+!,

Next, since R/m is a finite separable extension of K, there is § € R/m that gen-
erates the extension K C R/m. Let g(X) € K[X] be the minimal polynomial of
7, then starting with an arbitrary representative y € R for g, using the Newton
approximation ¥,4+1 = ¥n — 9(¥n)g'(yn) ~', We obtain an element 7, € R such that
9(Jx) = 0 (mod m**1) for given k € N. (Note that the Newton approximation is
well defined and converges to a root of ¢(X), since ¢g(y) = ¢(7) = 0 € R/m, so
g(y) € m, since ¢'(y) = ¢'(y) # 0 € R/m, so g(y) € R* and so inductively for all
ne€N o1 = =79 € R/m, g(yns1) € mand ¢'(yn11) € R*.) This proves that
for all k € N, the ring R/mf*! contains a subfield isomorphic to R/m.

Now by [Mats89], theorem 14.4, the associated graded ring gr(R) of R is isomor-
phic to the polynomial ring (R/m)[t1,...,t,] and therefore we obtain
gr(R/mkF+l) = (R/m)[t;,..., t,]/n*!, where n is the ideal generated by
{t1,...,tm}. Furthermore, since R/m**! contains a subfield isomorphic to R/m,
we see that the inclusion v, : (R/m)[ty, ..., t,]/0*! — R/m**! (given by the
inclusion K[ty,...,t,]/n** C R/mF1 and § — ) is an isomorphism.

Hence, every higher derivation ), : gr(R) — B into an R/m-cga B induces a
higher derivation 1)z : R — B on R by wg) = ngﬁ) o' (K € N) and vice versa.

So Qpr/x ®r R/m 2 Qppy/ic ge(ry B/m = (R/m)[[dD1,]]. 0

Corollary 2.4 If K is a perfect field and R is a regular ring, then the homoge-
neous components (g )i (k € N) are projective R-modules.

Proof For every maximal ideal m<J R, the localisation Ry, fulfills the conditions
of theorem 2.3(c). And so by proposition 2.2, Ry ®r (Qr/k)k = (Qpyw/k)k is a

free Ry-module. Hence by [Eis95], thm. A3.2, (QR/K)k is a projective R-module.
O
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2.2 An Extension of the Universal Derivation

Notation We will sometimes omit indices when they are clear from the context.
So for example in the following €2 means 2z and d means dg, as there are no
other rings mentioned.

Theorem 2.5 For all a € K the mapping
dDr Z al (l + j) Ay,
— j
‘]7
where © € N and r € R, defines a continuous homomorphism of K-algebras
a.dg @ Q — Q satisfying the following three conditions:
1. a.dgy extends the higher derivation a.d : R — Q.
2. For all a,b € K: (a.dg) o (b.dg) = (a +b).dg.
3. 0.dg = idg.
For short, we will write d¢, instead of 1.dg, and —dg instead of —1.dg.
To prove the theorem we need a combinatorial lemma.

Lemma 2.6 For all i,k,l € N the following holds:

2 ()6 = ()

i1+12=1

(-

Sketch of the proof Both identities are given by counting in two different
ways: Given two disjoint sets M; and M of order k resp. [, both sides of the first
identity count the number of possibilities choosing ¢ elements out of M;UM,. The
two sides of the second identity count the number of possibilities of partitioning
a set of order 7 + [ + k into three subsets of order i,/ and k.

Proof of theorem 2.5 We first prove that a.dg, is well defined: For b € K,7 € Ny

we have
ade (ADp) =S o <Z , )d““) b) = 0.
o (d90) =) j (b)

=0

1.
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For all r;s € R,i € N we have

a.dg (A9 (r +5)) = i a’ <Z +]> AW (r 4 5)

=0 N7
- Y <Z + J) 4 (1) + 3 af (Z + J) 4+ (5)
j=0 J j=0 J
= a.dg (d(i)r + d(’)s)
Moreover,
a.dg, (d(i) (rs)) = Z a’ (Z + ]> A (rs)
A
= a’ (l —itj Z d®r . dVs
=0 T iz
and

a.dg ( Z d@y . d(i2)s>
11+ia=1
_ Z (Z ot <i1 fj1>d(i1+j1)(r)> (Z o <i2 -f‘]é) d(i2+j2)(s)>

intin=i \j1=0 2 j2=0 J2
=S (M) (R e
7=0 i1 +i2=1
Ji+je=j

£ 5 ()
>

k+l=i+j

iy (’“ N l) A () - dO(s).

j=0  k+l=i+j

So all relations are preserved and a.dg is welldefined.

a.dg extends a.d because for r € R we have



At last, for r € R,i € N we have
a.dg (b.dg(d?7)) = adg (ij <Z;]>d(i+ﬂ'>r>
=0
R N A A I A PN
= () e (e
7=0 k=0
_ ibjak i+5\ (i+i+k qHH),
i 1+

Jik=0
= DD Ve (Z I ) (Z N 7) A+,
e =0 ) 1+

- 5o ()) (1)

n=0 \j=0

A

= i(a +b)" <Z * ”) Ay = (a +b).dg (d97) .

n=0

The identity 0.dg, = idg is clear from the definition. 0O
Remark By the second and the third property we see, that a.dg actually is an

automorphism of Q for all ¢ € K. The endomorphisms a.dg play an important
role in the iterative theory, as will be seen in section 3.

Definition 2.7 For a € K we decompose a.dg into a sequence ((a.dQ)(’“))kEN

of continuous endomorphisms of the K-module Q) in the following way:* For a
homogeneous element w € €; of degree i we define

(a-d())(k)(w) 1= pry(a.dg(w)) € Qi
It is clear that the series Zzozo(a.dﬁ)(k) converges against a.dg, at least pointwise,

and that for all k € N we have (a.dgq)® = a - dgc).

Proposition 2.8 For all i,j € N we have:

() o q@) — (P T g+
ds odg —< ; )dQ .
Proof For all i,j € N and w € €, the term (dé) odg)) (w) is the coeffi-
cient of a'd’ in the expression ((a.dg) o (b.dg)) (w). By theorem 2.5, we have
(a.dg) o (b.dg) = (a+b).dg and so (dg) o dg)) (w) is the coefficient of a’t’ in the

expression (a + b).dg(w) = o (a + b)kdgc) (w), i.e. equals ("7 dgﬂ)(w). 0

4cf. appendix A
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2.3 Higher Connections

Definition 2.9 A higher connection on M is a d-derivation V € HDg (M, d).
If v € HDg (R, B) is a higher derivation, we define the higher 1-derivation V
on M by

qu = (’LE@ldM)OVM—}QR/K@RM—)B@RM .
For all a € K we define an endomorphism a.aV : QRrM = Q@r M by
(a.oV)(w ® ) := a.dg(w) - (a.V)(x)

forallw € Q and x € M, ie. a.gV = (ug @ idy) o (a.dg ® a.V), where g
denotes the multiplication map in Q.

Remark Be aware that in the previous definition the map a.dg ® a.V is a map
from Q ®r M to Q ®q.ar) (2 Qr M) = (2 Qaqr) 2) ®r M (the tensor product
is taken over the image of R under a.dg!).

Lemma 2.10 Let (R, m) be a regular local ring such that R/m is a finite separable
extension of K. By Noether normalization, R is a finite separable extension of
Klti, .. tml ), where {ty, ..., ty} is a minimal set of generators of m.

Let ¢, € HDg(R) (j = 1,...,m) denote the higher derivations with respect to t;

(cf. example 1.4).
Then for every r € R\ {0} there exist ki, ..., ky € N such that

( gim) 0-+-0 d)gfl)> (r) € R®
and for all ly,...,l, € Nwithl; < k; (j =1,...,m) and l; < k; for some
ie{l,...,m}:

(600 0lV) () & R*

Proof Let r € R\ {0}. Choose F € N such that r € m” and r ¢ m”*'. Then
r can (uniquely) be written as

r= uet®
Z e )

e=(e1,....e;m ) EN™
le|=F
where u, € R and uy € R* for at least one f = (f1,..., fm)-
(We use the usual notation of multiindices: |e| = e;+- - -+e,, and t® = ¢7* - - - )
For arbitrary I = (Iy,...,l,) € N™ and e € N™ we have:

. . 0 if l; > e; for some ¢
( Ef,:n)o"'oﬂsglll)) (te):<l1>---<lm>te_l= 1 if [; = e; for all j
! " €m if 1] < |e]
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So if we choose k; = f; (j =1,...,m), we get

(i 000} (1) = 32 (i) 00 0l (uet)

le|=FE

=3 > (Ao o6l (ue) (6 0o 0 ()

le|=F 0<I;<k;
j=1,...m

= ug -1 (mod m).

So (¢l 00 6) (r) € ug +m C R, and for all L € N" with I; < k; (j =

tm

1,...,m) and [; < k; for some i, we have <¢(lm) 0---0 qﬁgl)) (r) € m= R\ R,

tm

since |l| < E. 0

Theorem 2.11 Let (R, m) be a regular local ring such that R/m is a finite sep-
arable extension of K and let M be a finitely generated R-module with a higher
connection V € HDg (M, d). Then M is a free R-module.

Proof Let {zi,...,z,} be a minimal set of generators of M.

Assume that x,...,z, are linearly dependent. Then there exists a nontrivial
relation Z?:l riz; = 0, with r; € R. Choose F € N such that r; € m¥ for all
j=1,...n and r; € mP*! for at least one i and without loss of generality let

ry & mP+L Then choose ki, ..., k, € N for r; as given in the previous lemma.
Then
m k
0 = (vfbtm) o vfbt?) (Z rixi)
i=1

- (o700 0) (ra) (Vi 00 V™) (@)

Il
/N
AN
ol

: 3

Jo.--0 qﬁgfl)) (r;) - z; (mod mM)

Since (d)E:’”) 0-:0 ¢§11c1)> (r1) € R*, we get x1 € (xa,...,2,) + mM, so M =

(x9,...,2,) + mM and therefore by Nakayama’s lemma M = (xs,...,2,), in
contradiction to the condition that {z;,...,z,} is minimal.
So x1,...,x, is a basis for M and in particular M is a free R-module. O
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3 Iterative Theory

3.1 Iterative Derivations

Definition 3.1 A higher derivation ¢ € HDk(R) is called an iterative deriva-
tion, if
pxp=Aoo,

where A : R[[T]] — R|[[U,T]] is the homomorphism of R-cqas defined by T
U+T.
In terms of the ¢\¥) | this identity is written as:

Vi,jeN: gl ogl) = <Z +.j>¢>("+f> .
i
We denote the set of iterative derivations on R by IDg(R).

Example 3.2 If R is the polynomial ring Klt, ..., t,] or an extension of that
ring as in proposition 1.3, the higher derivations ¢y, with respect to t; (cf. exam-
ple 1.4) are iterative derivations. (For Klty,...,ty] this is obvious and for the
extensions, this follows from lemma 3.5.)

Lemma 3.3 (characterisation of iterative derivations)
Let 1p € HDg(R) be a higher derivation. Then the following conditions are
equivalent:

(i) v is iterative,
(i) ¥ o dg = ¢[[T]] o ¥,
(iii) For alla € K: 1o (a.dg) = (a.[[T])) o 4.
If K s an infinite field, then this is also equivalent to
(iv) For all a,b € K: (a.y)(ba)) = (a+ b).4,
whereas for arbitrary K the conditions (i)-(iii) only imply condition (iv).
Proof Fora € K,r € R and ¢ € N we have:

o (adg)(dPr) = @(iaﬂ' (iﬂ>d<i+ﬁ>r>

= N7

_ i i <Z + j) D) () T+

=0 J

Q
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and

(a-y[[T]]) o b (dPr) = axp[[T]] (9 (r)T")

o0

_ Z aj¢(j)(¢(i) (T))Tiﬂ'_

J=0

So by comparing the coefficients of 7'/ one sees that condition (iii) is fulfilled
if and only if ¢ o (a.dg) = (a.9[[T]]) o ¢ is fulfilled for an arbitrary a € K \ {0}
(e.g. a = 1, i.e. condition (ii)) and if and only if for all 4,5 € N we have
YD) o p) = (“]TJ)W”J'), i.e. 1 is iterative.
Furthermore we get for all a,b € K:
(@p)o)® = 37 (@) o (b))
i+j=k
= Z a'bIp® o ) since b € K,

i+j=k

and
(a+0)-)™ = (a+b)'oW
= D ¥ (”j)w“*ﬁ
i+j=k L

So if ¢ is iterative we obtain condition (iv) and if #K = oo by comparing the
coefficients of a’ we obtain from condition (iv) that 1 is iterative. O

Example 3.4 Condition (iv) is in fact weaker if K is finite. If for example
K =T, and R = F,[t], then 1) € HDg(R) defined by t(t) =t + 1 - T?" is not
iterative, since

(29 = DY) =2 = 1 # 0=y (1))
On the other hand, for all a € F, we have a** ' = g and so
((aw)(bw))(k)(t) — Z aibjw(i)(w(j)(t)) — akw(k)(t) _|_ak72q+1b2q71w(k72q+1)(1)
it+j=k
t k=0

= L @ P = (a4 b))% k=201 = ((a+0).0)" )
0 otherwise

forall a,b e K =TF,.
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Remark Condition (iv) is very useful for calculations — even if K is finite. If
one has to show that some higher derivation ¢» € HDg(R) is iterative, one can
often use the following trick:

Let R := K @z~r R be the maximal separable extension of R by constants.
Then by proposition 1.3 the higher derivation ¢ uniquely extends to a higher

derivation 1), € HDg(R) = HDgsep(R). Since #K°% = 0o, we can use condition
(iv) to show that ), is iterative and therefore 1) is iterative.
Whenever it will be shown that for all a,b € K5P, (a.1)(b.)) = (a + b).1, this
trick will be used, although we won’t mention it explicitely.

The next lemma states some structural properties of IDk(R).

Lemma 3.5 1. If two iterative derivations ¢1, po € IDg(R) satisfy ¢§%¢§j> =
qﬁgj) o ¢§Z) foralli,j € N, then ¢1¢2 is again an iterative derivation.

2. IDk(R) is invariant under the action of K.

3. [fﬁi D R is a ring extension such that every higher derivation on R uniquely
extends to a higher derivation on R (see proposition 1.3 for examples), then
the extension ¢, € HDg(R) of an iterative derivation ¢ € IDg(R) is again
iterative.

Proof

1. By the given condition, for all a,b € K we have (a.¢2)(b.¢1) = (b.¢1)(a.p2)
and so

(a-(d162))(b.(d102)) = (a.01)(a.¢2)(b.¢1)(b.¢2) = (a-¢1)(b-¢1)(a.¢2)(b.d2)
= ((a+0).¢1)((a+b).¢2) = (a +b).(d162)

for all a,b € K®®. Therefore by lemma 3.3 ¢ ¢ is iterative.

2. Let a € K and ¢ € IDg(R). Then for all b, ¢ € K% we have

(b.(a.9))(c.(a.9)) = (ba.¢)(ca.¢) = (ba + ca).¢p = (b+ c).(a.p).

So a.¢ is iterative by lemma 3.3.

3. Let ¢ € IDg(R) and ¢ € HDg(R) the unique extension. Then for all
a,b € K*P, (a+ b).¢. and (a.¢.)(b.¢e) are both extensions of (a + b).¢p €
HDg (R), hence equal. So ¢, is iterative.

18



It is easy to see that an element w € QR/K equals zero if and only if for all higher
derivations ¢ € HDg(R) the image ¢(w) € R[[T]] equals zero. But it is not
clear — nor even true — if there is a nonzero higher differential w € Qg x such
that ¢(w) = 0 for all iterative derivations ¢ € IDg(R). We therefore make the
following

Definition 3.6 We say that R has enough iterative derivations, if for every
nonzero w € g/ there exists an iterative derivation ¢ € IDk(R) such that

¢(w) # 0.

Example 3.7 If R/K is an algebraic function field and #K = oo, then R has
enough iterative derivations. This will be shown in section 6.

Definition 3.8 Let M be an R-module and ¢ € IDg(R). A higher ¢-derivation
® € HDg (M, ¢) is called an iterative ¢-derivation, if & x & = A, (P), where
A (P) = (A®idy) o ® (¢f. remark 1.2). The set of iterative ¢-derivations will
be denoted by IDg (M, ¢).

Remark Note that there is no sense in defining an iterative derivation
® € HDg(M,) for a non-iterative higher derivation ¢» € HDg(R), because
® xd € HDg (M, 1) x 1)), whereas A, (®) € HDg (M, A o 9h)).

Lemma 3.9 Let ¢ € IDg(R) be an iterative derivation and ¥ € HDg (M, ¢) be
a ¢-deriwation. Then U is iterative, if and only if for all a,b € K5 the identity
(a.W)(b.¥) = (a+ b).¥ holds.

Proof Analogous to the proof of lemma 3.3. O

3.2 Iterative Connections

In the previous, we have seen that dg, satisfies the condition dg) odg) = (“Z”) dgH)
and that for iterative derivations ¢ € IDg(R) we have the “same” condition
¢ o ¢U) = ("7)(+) . This motivates the following definition of an iterative

connection.

Definition 3.10 A higher connection V on M is called an iterative connec-
tion if for all i,j € N the identity

]

V0 o ) = (Z +J ) D)

holds.?

5As defined in appendix A for the general case, QV(i) denotes that part of oV, that “increases
degrees by i”.
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An iterative connection V on M is called an integrable iterative connection
if for all commuting iterative derivations ¢1, o € IDg(R) (i. e. ¢1¢9 = b1 ) the
iterative derwations Vg, and Vg, commute.

A higher connection V on M is called an involutive higher connection if

as maps from M to Q@ M.

In section 4 we will see the role which is played by the modules with involutive
higher connections in questions about categorial properties. The notion of an in-
tegrable iterative connection is motivated by the correspondence to the integrable
(common) connections in characteristic 0 (cf. section 5).

Theorem 3.11 Let V be a higher connection on M. Then:

1. 'V is iterative if and only if for all a,b € K*P: a.aV 0 b.aV = (a + b).oV
and if and only if for all a,b € K*P: 4.V 0 b.V = (a +b).V.

2. If V is iterative, then for all iterative derivations ¢ € IDg(R) the ¢-
derivation V4 is again iterative. If R has enough iterative derivations then
the converse is also true.

Proof The first equivalence in 1. is seen by a similar calculation as in lemma
3.3. The second one is obtained by

(a.QV o) b.QV) (w ® m) = a.dQ (b.dﬂ(w)) - (a.QV o) b.QV) (1 X m)
= (a.dgobdg)(w) - (a.qV 0b.V)(m)
and
(a+0).gVwedm) = (a+0b)dg(w):  ((a+0).4V) (1 ®@m)
= (a.dgob.dy)(w)- (a+0).V(m),

for all w € Q and m € M.
For proving the second part, let ¢ € IDg(R) and regard the following diagram:

a.QV
M Y QM s Q ®aar (2 M) Ho QoM
b.V¢| ((a.¢)[[T]]oq3)®a.v¢ (¢oa.dg)®a. v¢ |¢>®¢®1dM Fidas
¢ ®id
& M 2SR @44y M{(T)] R| [Tn Ragry M[T)] 20 BT @ M

(a.Vy)I[T]]

20



The square on the left commutes, since

bV = b. ((¢3 ® idy) o v) — (b ®idy) o (b.V).

The lower triangle commutes by lemma 3.3, since ¢ is iterative. The upper
triangle commutes, since .V, = (¢ ® idy) o (a.V) and the square on the right
commutes, since d~> is a homomorphism of algebras. Furthermore the top of the
diagram commutes by definition of a.4V and the bottom commutes, since a.V
is a (a.¢)-derivation.

So the whole diagram commutes and we obtain

(¢ ®@idpr) 0 (a.qV) 0 (b.V) = (a.V)[[T]] 0 (0.V ) = (a.V)(0.V )

for all iterative derivations ¢ € IDg(R).
If V is iterative, we get

(a+b).Vy=(¢®idy) o (a+b).V = (¢ ®idp) o (a.qV) 0 (b.V) = (a.V)(0.V,)

by the first part of this theorem and so by lemma 3.9, V is iterative.
In turn, from the commuting diagram we see that if V4 is iterative for an iterative
derivation ¢ € IDg(R), we get

(¢ ®@idar) 0 (a.qV) 0 (0.V) = (¢ @ idar) 0 (a+).V

for those ¢. So if R has enough iterative derivations and V is iterative for all
¢ € IDg(R) we obtain (a.4V) o (b.V) = (a+b).V, i.e. V is iterative. 0

Corollary 3.12 FEvery iterative connection on M is an involutive higher connec-
tion.

Proof If V is iterative, then by the previous theorem, we have
NVo-V=1Vo-1V=(1-1).V=0V=1Qidy.

So V is involutive. O
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4 Categorial Properties

In this section we show — assuming a slight restriction to the ring R — that the
finitely generated projective modules (i.e. locally free of finite rank) with higher
connection form an abelian category and that the modules with integrable resp.
iterative resp. involutive higher connection form full subcategories. Furthermore
these subcategories form tensor categories over K and even form Tannakian cat-
egories (see appendix B for the notions of these categories that we use).
Notation From now on let in addition K be a perfect field and R be a regular
commutative ring over K, which is the localisation of a finitely generated K-
algebra, such that K is algebraically closed in R.

4.1 The Category of Modules with Iterative Connections

Notation In the following a pair (M, V) will always denote a finitely generated
R-module M together with a higher connection V : M — Q ®r M, even if
“finitely generated” is not mentioned.

Theorem 4.1 FEvery finitely generated R-module M with higher connection V is
a projective R-module.

Proof Since R is a finitely generated algebra over a field, R is a Noetherian ring.
So every finitely generated R-module M is finitely presented and so by [Eis95],
theorem A3.2, M is projective if and only if every localisation M, at a maximal
ideal m < R is a free Ry-module. For m < R maximal, the connection V can be
extended to My, by V(s 'm) = dg, (s7')V(m) for s € R\m,m € M. So M, is a
module with higher connection over the local ring R,,. Since R is regular, Ry, is
a regular local ring. Since R is finitely generated over K, the field Ry, /mR,, is a
finite extension of K and since K is perfect, this extension is separable. Therefore
we can apply theorem 2.11, i.e. M, is a free R,-module. 0O

Definition 4.2 Let (M,,V,) and (M,,Vsy) be R-modules with higher connec-
tions. Then we call f € Hompg(M;, Ms) a morphism of modules with higher
connections, or a morphism for short, if the diagram

M, L YA

ok
N ida®f .
QRp My —=Q Qg M,
commutes. The set of all morphisms f € Hompg(M;, Ms) will be denoted by
Mor((Ml, Vi), (Ma, Vz)). If the connections are clear from the context we
will sometimes omit them.
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Remark It is clear that the set of modules with higher connection and the
sets of morphisms defined above form a category. We will denote this cate-
gory by HCon(R/K). Furthermore the full subcategories of modules with
involutive higher connection resp. iterative connection resp. integrable itera-
tive connection will be denoted by HCon;p,(R/K) resp. ICon(R/K) resp.
ICon;;,(R/K). By corollary 3.12, we have a chain of inclusions
HCon(R/K) D HCon;,,(R/K) D ICon(R/K) D ICon;,(R/K). As the ob-
jects of HCon(R/K) are modules with an extra structure and the morphisms
are special homomorphisms, we have a faithful functor w : HCon(R/K) —
Mod(R), that forgets the extra structure.

Definition 4.3 Let (M, V) and (My, Vy) be R-modules with higher connection.
Then we define a higher connection Vg on (My @ My) by

V@M1®M2MQ@MleaQ@MQiQ@(MI@MQ)

and a higher connection Vg on M; ®g My by
V1i®Va A A =]
v® : M1 XRr MQ L} (Q Rr Ml) ®d(R) (Q Rr MQ) —
> A A id A
— (Q ®d(R) Q) KRR (Ml XRr MQ) &Q@R (Ml XRr Mg)
Furthermore we define a higher connection Vg on Hompg(My, My) by the follow-
mg:
For f € Homg(M,, My) the composition
_ N id g ~ ~Va
M1 l)Q@R‘i\fl ﬁ)@@RMQ Q—>Q®RM2
is an element of HomR(Ml,Q ®pr Ms), which can be regarded as_an element of
QQr Homp(M,, My) by the canonical isomorphisms Hompg(My, Q®) @5 M,) =
QF Qp Hompg (M, Ms) in each degree k. In this sense we define

Viu(f) =¢gVao(idg ® f) o —Vi.

Theorem 4.4 The category HCon(R/K) is an abelian category and
HCon,;,,(R/K), ICon(R/K) and ICon;,,(R/K) are abelian subcategories.

Proof For all (M, V,),(M,,V,) € HCon(R/K) the set Mor(M, My) is a
subgroup of Hompg (M, Ms) and so is an abelian group. Since Mod(R) is an
abelian category, it is sufficiant to show that the kernels, direct sums and so on
in the category Mod(R) can be equipped with a higher connection (resp. iterative
connection ...) and that all necessary homomorphisms (like the inclusion map
of the kernel into the module) are morphisms.

The trivial module {0} with the zero map 0 : {0} — Q ® {0} = {0} as higher
connection obviously fullfills the properties of a null object. The direct sum of
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M, and M, together with the higher connection Vg defined above is a biproduct
for M, and My, since the natural inclusions in; : M; — M; @ M, and the natural
projections pr; : My @ My — M; (j = 1,2) are morphisms, what can easily be
verified. Furthermore if V; and V5 are iterative, integrable iterative or involutive
higher connections, then so is V.

Next we show that kernels and cokernels exist. Let f € Mor(M;y, M) be a
morphism then the image of f is an object of HCon(R/K), because for all
f(y) € Im(f), we have V,(f(y)) = (idg ® f) (Vi(y)) € Im(idy® f) = Q@Im(f),
i.e. Vj can be restricted to a higher connection Vs s @ Im(f) — Q ® Im(f).
So we have a commutative diagram with exact rows:

0 Ker(f) My —L—Tm(f) ——0

Vilker(f) | Vi V2Im(f)l
Y

' . idy®f A
0—=Ker(idg ® f) — Qo M, —= Q& Im(f) —=0

But Im( f) is a projective R-module and therefore flat, so the short exact sequence

0 — Ker(f) — M; — Im(f) — 0 stays exact after tensoring with an arbitrary R-

module and so Ker(idg,® f) = Q®Ker(f), which shows that (Ker(f), Vi|ker(s)) €

HCon(R/K) and that the inclusion Ker(f) < M; is a morphism.

Furthermore we have a commutative diagram with exact rows:

00— Im(f) M, Coker(f) ——0
|
V2|1m(f)l V2l IVa
) A A v
0—QIm(f) —Q® M, —=Q ® Coker(f) —=0
(Remind that tensoring is always right exact). So (Coker(f), Vy) € HCon(R/K)
and the epimorphism M, — Coker(f) is a morphism. It is clear that the connec-

tions V1|Ker( 5 and V, will be iterative, integrable iterative or involutive higher
connections, if V; and V, are.

At last, in an abelian category every monomorphism has to be an inclusion map
of a kernel and every epimorphism has to be a projection map to a cokernel. But
this is fulfilled in HCon(R/K), because if f : M; — M, is a monomorphism then
M; is the kernel of the projection My — Coker(f), and if f is an epimorphism
then M, is the cokernel of the inclusion Ker(f) — M.

Therefore HCon(R/K), HCon,,,(R/K), ICon(R/K) and ICon;,;(R/K) are
abelian categories. O

Now we check, whether these categories are tensor categories over K
(HCon(R/K) won't, whilest the others will). By the last theorem, they are
all abelian, and by theorem 4.1, all modules that arise are projective and the
category Proj-Mod(R) of finitely generated projective R-modules is known to
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satisfy all properties apart from being an abelian category.®
So we define

e the tensor product of (M, V) and (Ms, V3) by
(M, V1) ® (My,Vy) := (M; ®g M3, V)
(this tensor product is obviously associative and commutative),

e the unital object 1 := (R,dg) (R®r M — M,r ® m + rm is easily seen
to be a morphism for all M € HCon(R/K)),

e the dual object to (M, V) by
(M, V)" := (M*, V"),

where V*(f) := dg o (idg ® f) o (=V) € Homgp(M,Q)7 for f € M* =
Hompg (M, R) and

e the internal hom object of (M7, V) and (M, Vs) by

I’IO_III ((Ml, Vl), (MQ, VQ)) = (HOIHR(Ml, MQ), VH) .

Furthermore we recognize that every endomorphism in End(1) is given by the
image of 1 € R, which has to be constant, as 1 € K is a constant. Since all
constants are algebraic over K and K is algebraically closed in R, End(1) is
isomorphic to K.

Lemma 4.5 For all (M,V),(M,,V3) € HCon(R/K) the isomorphism
v, - My ®p My — Homp (M, My), f @ m— {v— f(v)-m}
is a morphism (and therefore an isomorphism) in HCon(R/K).
Proof For all f @ m € My ®g M, and for all v € My, we have
Vil (f @ m)(e) = (4720 (idg ® tas 0 (f @ m)) © (<91) ) (0)

= Vs((idg ® /)(~V1(v) @ m)
= (n@idu,)(dg((idy ® f)(~Vi(v)) © Va(m))

6See appendix B.
"Here we used that Q ®z R = Q) and Homg (M, Q) = Homg (M, R) ®g Q (cf. the definition
of Vy in definition 4.3).
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and
(idg ® tan an) (Ve (f @ m))(v)
= (idg ® ) ((dg 0 (idg ® £) 0 (= V1)) © V() ) (v)
= (dgo (idy ® f) o (V1)) (v) - Va(m).
So Vi oty v, = (idg ® tar i) © Vi, 1. €. tagy a, 1S @ morphism. O

Lemma 4.6 Let (M,V) € HCon(R/K), and let epy : M @ M* — R and
ov : R — M*® M be the homomorphisms given in the definition of a tensor

category, i.e. ey(m @ f) = f(m) and oy (1) = LX/[l’M(idM). Then the following
are equivalent:

(i) exr is a morphism.
(ii) V is involutive.
(iii) O is a morphism.
Proof Form® f € M ® M*, we have
(idg ® enr) (Ve (m @ f))
:@%®anM®Mﬁqvmn®mﬁqm0®ﬂo—v»
= (1 ®id) ((idA ® (dg o (idy ® f) o —v))(V(m)))
((1®id) o (dg ® dg) 0 (idgeq & f) o (—dq ® —V) 0 V) (m)
(dQ o (ide ® f) o (p®id) o (—dg ® —V) o v) (m)
(on (idy ® f) o — vov)( )

and
dr(ea(m @ f)) = dr(f(m)) = (dg o f)(m).
Applying —dg on both terms shows that 57 is a morphism if and only if for all

fe M, (idg®flo—gVoV =1® f € Hom(M,Q® R), i.e. if and only if
—gV oV =1®idyy, i.e. V is involutive.

Since tpr,n is an isomorphism in HCon(R/K), dy is a morphism if and only if
tm,m © Opr is a morphism. Now

and
(idg, @ (tarar 0 6ar))(dr(1)) = (idg ® (tarar 0 0ar)) (1 ®@ 1) = 1 @ idy,

so dps is a morphism if and only if 3V o =V =1® idy, i.e. V is involutive. O
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Theorem 4.7 HCon;,,,(R/K), ICon(R/K) and ICon;,,(R/K) are tensor cat-

egories over K.

Proof Since we have already shown, that these categories are abelian, that
HCon(R/K) is equipped with an associative and commutative tensor product
and that e, and dy; are morphisms if (M, V) € HCon;,,,(R/K), it only remains
to show that the three categories are closed under the constructions of tensorising
and dualising. The unital object of the tensor product 1 = (R, dg) is clearly an
element of all three categories.

We first show that ICon(R/K) is closed under these constructions. The proof
for HCon;,,(R/K) is then obtained by replacing a by 1 and b by —1, since
0.V=1®idy : M - Q& M.

Let (M, V1), (M,,Vsy) € ICon(R/K), then for all a,b € K5:

(a.QV®) o (bv®) = (aﬁv®) o (/,l, ® ld) o (bV1 ® ng)

(h®id) o ((a.dg ® a.V;) @ (a.dg ® a.V3)) o (b.V1 @ b.V5)
(

(

p®id)o ((a+1b).Vi® (a+b).Vs)
a+0).V.

So Vg is again iterative and (M; ® M,, Vg) € ICon(R/K).
If (M,V) € ICon(R/K), then also (M*,V*) € ICon(R/K), because for all
a,be K fe M*:

a.oV* (b.V*(f)) = poa.(dg®dg)o (idf2 ® (b.dg o (idg ® f) o (—b.V))) o (—a.V)
= poa.(dy®dg) 0b.(dg ®dg) o (idggs ® f) o —b.(dg ® V) 0 —a.V
= a.dgobdgo (idg® f)o (n®idy) o —b.(dg ® V) o —a.V
= (a+b).dyo(idy® f)o—(a+b).V
= (a+0).V*(f).

Therefore ICon(R/K) is a tensor category over K.
For higher connections V; and V, and ¢ € IDg(R), we have

(Vo) = (9@id)o(u®id)o (Vi ® Vy)
(p®@id)o ((¢®@idy,) ® (¢ @idp,)) o (V1 ® V)
= (p®id)o ((Vi)s ® (Va)s),

from which it follows immediately that for integrable iterative connections V;
and V,, the iterative connection Vg is integrable, too.
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Finally, let (M, V) € ICon;,;(R/K). Then for ¢ € IDg(R) and all f € M*, we
obtain
Vi(f) = ¢opo(dg®dg)o(idy® f)o—V

= po(¢®¢)o ( ®dp)o (idg® f) o =V
(¢od gbodR))o(idQ@f)o—V
o ((¢] ®¢) (idg ® f) o =V

= 0( [[T]]®¢) (idgyry ® f) 0 (9@ idu) 0 =V

= O[[T]] o po (idgm ®f)o—V¢,

= ¢l[T]]o f[[T]] o —V¢ :
And so for commuting ¢1, ¢o € IDg(R) and all f € M*:

(V5 Va)(f) = aullTllo (el[TN o fI[TN 0 =V4,) [Tl 0 =V,
= (¢102)[[TT] o f[[T]] 0 =(V, V)
= (20T 0 fl[TN] 0 =(V4, V) = (V5, Vi) (f)-

Hence V* also is an integrable iterative connection and therefore ICon;,,;(R/K
is a tensor category over K. 0O

T
T

Theorem 4.8 The categories HCon,,,,(R/K), ICon(R/K) and ICon;,;(R/K)
are Tannakian categories with the forgetful functor w : HCon(R/K) — Mod(R)
(restricted to the respective category) as fibre functor. If moreover R has a
K-rational point, i.e. there exists a mazimal ideal m < R with K = R/m,

then these categories are neutral Tannakian categories with fibre functor wg :
®RR/m

HCon(R/K) < Mod(R) —= Vect(K).

Proof By construction, the functor w is a fibre functor and so the tensor
categories HCon,,,,(R/K), ICon(R/K) and ICon;,;(R/K) are Tannakian cate-
gories. If R has a K-rational point, by [Del90].2.8, wy is a fibre functor. This
proves the second part. O

Remark One might ask whether the inclusions in the chain of categories
HCon(R/K) > HCon;,,(R/K) D ICon(R/K) D> ICon;,(R/K) are strict
or not.
Clearly, HCon(R/K) # HCon,,,(R/K), because if for example M is a free
R-module of dimension 1 with basis by € M, every w = Z;io wj € QR/K with
= 1 defines a higher connection V : M — QR/K ®r M,b; — w ® by, but
in general this higher connection is not involutive, because if V is involutive, w
satisfies the condition

0= (—gV o V)P (b)) = (2w — w} + d) (w1)) @ by.
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(The only exception is the case, when R is algebraic over K, because in this case

b

Qr/k = R and hence all these categories are equivalent to Mod(R)).

The last inclusion ICon(R/K) D ICon;,;(R/K) is strict in general, because in
the next chapter we will see that in characteristic zero, the category ICon(R/K)
is equivalent to the category of modules with (common) connection over R and
ICon;,;(R/K) is equivalent to the category of modules with integrable connection
over R, and it is known that those two categories are different if for example
R = K(t1,t3). However, it is also known that every (common) connection is
integrable, if char(K) = 0 and R is an algebraic function field in one variable
over K. In chapter 6, we will see that also ICon(R/K) = ICon;,;(R/K), if R
is an algebraic function field (in one variable) over K and char(K) = p.

It is yet not clear, if there exists a module with an involutive higher connection
that is not iterative. However, if one regards the condition for an involutive
higher connection more explicitly, there seems to be more choice for getting an
involutive higher connection than for an iterative connection. We therefore make
the following conjecture.

Conjecture If R is not algebraic over K, then there exist R-modules with
involutive higher connection that are not iterative, i.e.

ICon(R/K) € HCon,,,(R/K).
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4.2 Higher Connections on Schemes

Throughout this section, let K be a perfect field, let X be a nonsingular, geo-
metrically integral K-scheme, which is separated and of finite type over K and
let Ox denote the structure sheaf of X.

Definition 4.9 We define the sheaf of higher differentials on X, denoted by
Qx/K, to be the sheaf associated to the presheaf given by

U= Qo w)/x
for each open subset U C X and by the restriction maps

DY) : Qo — Qox vy

for all open subsets V. C U C X, as defined in proposition 2.2, where
Pl Ox(U) — Ox (V) is the restriction map of Ox.

Remark By proposition 2.2, for all open subsets V' C U C X, the diagram

OX(U) A

Ox(U) —— Qo /K

commutes and so the collection of maps doy (1) 1nduces a morphism of sheaves
of K-algebras dx : Ox — QX/K.

Proposition 4.10 If X is an affine scheme, then the presheaf U +—> Q@X(U)/K
already is a sheaf.

Proof The given presheaf is a sheaf if and only if for all open subsets U C X

and all open coverings | J U; = U, the sequence
i€l

0— QoX(U)/K — HQOX(Ui)/K — H QOX(UiﬂUj)/K
il ijel
is exact. Since this is a sequence of cgas, it suffices to show that the sequence is
exact in each homogeneous component.
For every open subset V' C U, Ox(V) is a localisation of Ox(U) and so by
proposition 2.2, Qo vk = Ox(V) ®oxw) Qoxw)/k- By corollary 2.4, the
homogeneous components (Q@X( y/k)k (B € N) are projective Oy (U)-modules

and therefore tensoring with (QoX )/K )k is exact. So the sequence above is
exact in each homogeneous component, if the sequence

0—>OX _>HOX —)HOXUQU)

el NI
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is exact. But this is just the condition on Ox for being a sheaf. 4

As an immediate consequence of this proposition, we have the following corollary:

Corollary 4.11 For every affine open subset U C X, we have QX/K(U) =

QOX(U)/K'

Definition 4.12 Let M be a coherent Ox-module. A higher connection on
M is a morphism of sheaves V : M — QX/K ®oyx M, which locally (i.e. on
affine open subsets) is a higher connection in the sense of section 2.3. The higher
connection V is called involutive resp. iterative resp. integrable itera-
tive if V locally is an involutive higher resp. iterative resp. integrable iterative
connection.

Remark By theorem 4.1, every coherent Ox-module M, that admits a higher
connection V : M — QX/K ®oy M, is locally free and of finite rank.

Remark Following the notion of modules with higher connections over rings,
we denote by HCon(X/K), HCon;,,(X/K), ICon(X/K) and ICon;,,(X/K)
the categories of coherent Ox-modules with higher connections, with involutive
higher connections, with iterative connections and with integrable iterative con-
nections. By standard methods of algebraic geometry, one obtains that again
HCon;,,(X/K), ICon(X/K) and ICon;,;(X/K) are tensor categories over K
and that they are Tannakian categories. And if X has a K-rational point, they
are in fact neutral Tannakian categories over K.

Remark In the second part of this work, coherent modules with higher connec-
tions will occur from another point of view:

Let F//K be a field of finite transcendence degree over K, and let X be a nonsin-
gular irreducible projective scheme over K with function field K(X) = F'. Since
Oy is a subsheaf of the constant sheaf I (X), for every coherent Ox-module M
with higher connection V, F' ®p, M is an F-vector space with higher connection

dF®VIF®@XM—)QF/K®F (F®@X M)

Qn the other hand, let M be an F-vector space with higher connection V : M —
Qp/k ®r M and let U C X be an open subset. If there exists a generating set

{b1,...,b,} for M such that for alli =1,...,r, we have V(b;) = Y w;; ® b; with
7=1

wji € QX/K(U) C QF/K, then M := Opb; + -+ + Oyb, C M is a coherent Oy -

module with higher connection V|; : M — QU/K Roy M and the pair (M, V)

is recovered from (M,V|;;) in the way given above. In this case, we will call

(M, V) regular on U.
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5 Correspondence to the Classical Theory in
Characteristic Zero

For char(K) = 0, in general one gets the usual constructions of derivations,
differentials and connections by restricting to the terms of degree 1. On the
other hand these constructions can be uniquely extended to iterative derivations
and iterative connections. Moreover integral connections, i.e. connections which
preserve commutators of derivations, are corresponding to integrable iterative
connections. This will be proven in this chapter.

So throughout this chapter, let K be a field of characteristic zero, R a regular ring,
that is finitely generated as a K-algebra, and M a finitely generated R-module.

Proposition 5.1 The map
Der(R/K) — IDk(R), 0 — o,
given by
=3
for all v € R, is a bijection and the inverse map is given by ¢ — ¢V

For a given derivation 0 on R and a corresponding iterative derivation ¢g the
map 1 : Derg(M) — IDg (M, ¢g), On +— Pg,, given by

= L,
Doy (m) =) _ — 0
n=0
for all m € M, is a bijection and the inverse map is given by ® — &),

Proof Let d € Der(R/K) be a derivation. Then for all i,j € N: +9' o 18j =

(”{J) il 07 So ¢y is an iterative derivation. On the other hand, for every

iterative derivation ¢, one obtains ¢*) i L(¢™M)* for all k € N by applying the
formula ¢ = ¢ 0 p=1 inductively. Finally by proposition 1.2, for all 7, s € R
we have ¢ (rs) = r¢M(s) + ¢M(r)s, i.e. 1) € Der(R/K).

The bijection I : Derg(M) — IDg (M, ¢5) is shown analogously. O

Proposition 5.2 The R-module (QR/K)l 15 canonically isomorphic to the mod-
ule of (usual) differentials Qg x and AV : R — (QR/K)l = Qp/k is the universal
derivation.

Proof The contruction of (QR/K)I in the proof of theorem 2.1 is the same as
the usual construction of Qg x (e.g. in [Hart77],IL.8). 0
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Proposition 5.3 For every iterative connection V on M, the map VY : M —
(QR/K)l @M = Qp/k ® M is a connection on M and every connection v
on M extends uniquely to an iterative connection on M. Furthermore, V 1is an
integrable iterative connection if and only if VY is an integrable connection.

Proof Let V be an iterative connection on M. Then for all r € R and m € M,
we have VI (rm) = dV(r) @ m + rV®H(m). So VI is a connection. On the
other hand, for a given connection V(") by the formula V¥ = % (QV“) o V(k_l)),
one can inductively calculate maps V® : M — Qr@M forall k € N, which build
up an iterative connection V = > o V*) (same calculation as in proposition
5.1).

For proving the equivalence of the integrability conditions, remind that Der(R/K)
is a free R-module and has a basis of commuting derivations (see [Hart77]). So
VW is integrable if and only if for all commuting derivations 0y, 9, € Der(R/K),
we have [(V())s,, (V)a,] = (VW) 5,0,] = 0, i.e. if for all 9;,0, € Der(R/K)
with 9, 0 @y = 05 0 0y, the identity (V())y, o (V)5 = (V))s, 0 (V)4 holds.
Using the bijection in proposition 5.1, this is equivalent to the condition that for
all commuting iterative derivations ¢g,, s, € IDk(R) the iterative derivations

(1)
Vg, and Vg, commute, because (V¢>al> = (V(l))al_ O

Theorem 5.4 The category ICon;,,(R/K) of finitely generated R-modules with
integrable iterative connection and the category DE(R/K) of finitely generated
R-modules with integrable connection are equivalent.

Proof This follows directly from the previous propositions. O
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6 Positive Characteristic

In this section, we regard the case that K has positive characteristic p. Con-
trary to characteristic zero, iterative derivations and iterative connections are
not longer determined by the term of degree 1. Moreover, not every derivation
0 € Der(R/K) can be extended to an iterative derivation ¢ with ¢(!) = 9, be-
cause the conditions on an iterative derivation imply (¢(V)? = p!- ¢® =0, i.e.
at least 0 has to be nilpotent.

But there are some other structural properties: The main result is that every
module with integrable iterative connection gives rise to a projective system and
vice versa, similar to the correspondence of projective systems and iterative dif-
ferential modules over function fields given in [Mat01], Ch.2.2. In fact, when R is
an algebraic function field, the projective systems defined here are equal to those
defined by Matzat and so this shows that in this case the categories ICon(R/K),
ICon;,;(R/K), Projy and IDg® are equivalent.

For convenience, we will restrict to the case of fields over K, although this corre-
spondence is true more generally.

In positive characteristic p, every finitely generated K-algebra (or localisation
of a finitely generated K-algebra) R has a natural sequence of K-subalgebras
(R))ien given by R, := RP'.° The following proposition gives a characterisation
of this sequence by the higher differential:

Proposition 6.1 (Frobenius Compatibility) For all | € N:

Ri= () Ker(d¥).

0<j<pt

Proof Since dp is a homomorphism of algebras, dr(R,) = dgr(R?') C (QR/K)”’
and therefore dg)(r) =0 (0 < j <p') for all r € R;. The other inclusion is

shown inductively: The case [ = 0 is trivial. Now let r € R satisfy dg)(r) =0 for
0 < j < p'. By induction hypothesis » € R;,_;. So there exists ¢t € R with
T = If ¢ ¢ RP, then t is a separable element of R and we can find
separating variables ¢t = ty,t9,...,t, for R, i.e. R/K[t,...,t,] is a finite
separable extension (or R is the localisation of a finite separable extension of
Klt1,...,tn]). By localising and applying theorem 2.3 and proposition 2.2(b),

we see that dg)(t) # 0. And so

-1 l—l)

07 (aPm) =af (77 = a0,

8Projp denotes the category of projective systems over R and IDg denotes the category of
ID-modules (cf. [Mat01])
9Remember that we assumed K to be perfect and therefore K? = K.
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which is a contradiction. So t € RP and r € R. O

Remark Since we are in positive characteristic, we have a Frobenius map on
every ring: Fr: R — R,r — rP.
The components dg) of dg fulfill some kind of compatibility with the Frobenius

maps Fp resp. Fg, namely for all k£ € N,
dgk) oFr=Fgqo dg).

(This follows directly from the fact, that dg is a homomorphism of rings and that
F multiplies degrees by p.) The proposition above then implies that an element

r € R lies in the image of Fg if and only if it lies in the kernel of dg).

In the case of R being an algebraic function field in one variable, it was shown by
F. K. Schmidt (see [Mat01], ch. 1.5) that for an iterative derivation ¢ € IDg(R)
satisfying ¢! # 0, we have RP' = No<jep! Ker(¢1)).

So in this case we obtain the same sequence of subalgebras, when “only” regarding
an iterative derivation instead of the universal derivation. This will be important
in part II.

From now on, let K be a perfect field of characteristic p > 0 and F/K be a
finitely generated field extension of transcendence degree m. Furthermore denote
by ti,...,t, aseparable transcendence basis for F', i.e. F'is a separable algebraic
extension of the rational function field K (ty,...,t,).

Definition 6.2 A projective system over F' is a sequence (M, ¢;)en with the
following properties

1. Foralll € N, M, is an Fj-vector space of finite dimension.

2. ¢ My — M, is a monomorphism of Fji-vector spaces that uniquely
extends to an isomorphism idp, ® ¢ @ Fi ®p,,, M1 — M;.

A morphism a : (M, ¢;) — (M}, ¢;) of projective systems over F' is a
sequence o = (ay)en of homomorphisms of vector spaces oy : My — M| satisfying
10y = QO .

Proposition 6.3 Every projective system (M, ;)ien over F defines an inte-
grable iterative connection V on M := M, satisfying

ﬂ Ker(VW) = (g o+ 0pi1) (M).

0<j<pt
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For a morphism (oq)ien : (M, 1) — (M, ) of projective systems over F, the
homomorphism of F-vector spaces ag : M = My — M' = M| is a morphism of
modules with higher connection.

Proof (cf. [Mat01],2.8) By identifying M, with its image ¢ o -+ -0 ¢;_1(M;) in
M, we may assume that M; C M for all [ € N. In order to define V¥, choose
I € N such that p' > k and let {b;,...,b,} be an Fj-basis for M;. Then by the
second property of a projective system, {b;,...,b,} is an F-basis for M, so for
all v € M we can find coefficients a; € F such that v = Z?:l a;b;. Then define

VE () =" dR (a)b;.
i=1

This definition is independent of the chosen basis, because given another Fj-basis
{0f,...,0,} for M, the base change matrix C' = (c¢;;) has coefficients in F; and
therefore

n

V® (@) = v® (Zn: ajbj> — V' (Zzn:cijajb;)
j=1

i=1 j=1
= i i dg;]?) (Ci]‘a]‘)b; = i i Cijdg?]?) (a])b;
i=1 j=1 i=1 j=1

= > dP(a)b; = VO ().
=1

The definition is also independent of the chosen [, because for j > [ every Fj-basis
of M; is also an Fj-basis for M;.
Furthermore, by choosing an Fj-basis {b1, ..., b,} of M;, one sees that an element
v=)gab € Misin o Ker(VYW) if and only if a; € No<jp! Ker(dg))
for all 4, i.e. if and only if v € M.
If remains to show that V is an integrable iterative connection. But by choosing
an Fj-basis {b1,...,b,} of M;, one sees that the necessary conditions are fulfilled
modulo degrees > p', since dp is an integrable iterative connection. As [ can be
chosen arbitrary large, V fulfills all conditions for being an integrable iterative
connection.
Finally, let (a;)ien @ (M, 1) — (M],¢}) be a morphism of projective systems
over F'. We have to show, that V' o oy = (idg, ® ) o V or equivalently that for
all k e N

V'® o ag(b;) = (idg ® ag) o VP () (i =1,...,n),

where {b,...,b,} denotes an F-basis of M. But the last condition is seen easily
by choosing {bi,...,b,} to be an Fj-basis of M; (p' > k) and by reminding that
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Oég(Ml) = Otl(Ml) C Ml, O

In the following, we will show that the converse is also true, i.e. a module
with integrable iterative connection gives rise to a projective system over F'.
For this, we consider a monomial ordering on QF/K = F[[d"¢]], namely the
lexicographical order, where the variables are ordered by d(t; > d@)¢,, if

17 > 19 or if iy = iy and j; > jo. The leading term of w € QF/K (if it exists) is
then denoted by LT(w).

Lemma 6.4 Let w € ) be homogeneous of degree p' and w ¢ FQOP'. Let d(io)tj0
be the greatest variable with the property that there ezist eg € N, p t ey and a
monomial w' € Q such that (A%t; )W’ is a monomial term of w. Let ey and W'
be chosen such that (4@, )W’ is mazimal amoung those monomials. Then for
every k < p'(p — 1), we have:

LT(dff)(w)) < eod(io-l-pl(il’—l))tjo . (d(io)tjo)eo_lw'

with equality if and only if k = pl(p — 1) and iy < p'.
Proof ForieN, je{l,...,m},e €N, and k € N, we have

k ) e Z"i_kl i+ke i itke
a¥ (@)= S ( i )( _ )d(+k1)tj---d(+k)tj.

7
ki+--+ke=k

So

LT (dgﬂ) ((d(‘)tj)e)> — e (Zt )d(z+k)tj(d(2)tj)e—1 ife(z—; ) £0
d¥ ((d9)¥) = 0 ifpleandptk and
(k) ; (%) N
d¥ (D)) = <de ((dmtj)p)) if p|eandp|k.
So for k < p!(p — 1), a variable dVt; # d(©)t; occuring in w gives a contribution
to dgc)(w) of variables

(i) less than d+k)¢, if it occurs in a power not divided by p and
(ii) less than d(H%)tj otherwise.

In the second case i < p'~!, since w € Qpl, and so i+§ <pt4pttp—1) =p. So

dT9)t, < dlot?)t, - Therefore the greatest variable that may occur is d® k¢,

(or dCo+)¢, if k < p') and do+?' - D¢, occurs if and only if k = p'(p — 1) and
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(20+pp 1)#0 ie. Zo#p

The greatest corresponding monomial then is
eod(io-l—p’(p—l))tjo . (d(io)tjo)eo_lwl.
|

Proposition 6.5 Fvery F-module M with integrable iterative connection V de-

fines a projective system (M, ¢;) over F, where M; := () Ker(V®) and
0<i<pl

@1+ Myyw — My is the inclusion map, and a morphism f : (M,V) — (M’ V')

of modules with higher connection defines a morphism « : (M, p;) — (M}, ¢}) of

projective systems over F by ay := f|,.

Proof Since dWt,,...,dM¢,, is an F-basis of €y, the kernel Ker(V®) is equal to

ﬂ] , Ker (me)) and since V is integrable iterative, the endomorphisms
P
me) M — M commute and (Vé?) =0 for all 7.
J
Now let M; := Ker (V) ( = No<icpt Ker(V®), since V is iterative). Then M,
is an F}-vector space and

dimp, (M;) = dimp, (ﬂ Ker (vfﬁ)) > pim dimp, (M) = dimp(M).
j=1
On the other hand, an Fi-basis of M; is F-linearly independent in M and so
dimp, (M) < dimp(M). So dimp, (M) = dimp(M) and the inclusion ¢q : M} —
My = M extends to an isomorphism idg, ® ¢g : Fy ®p, M1 — M.
Next, we will show that V(M) C (QF/K)I’®F1M1 Since (QF/K)” = F[[(dDt;)?]] =
Fy[[d®) ()] is isomorphic to Qpy i = F[[d0 J(#9)]] as an algebra by the map
d®)(t#) — d@ (%), this means that essentially V|, is an integrable iterative con-
nection on the Fj-module M. And then it follows inductively that
dimp,,, (M;41) = dimg (M;) and that, essentially, V|y;,, is an integrable iter-
ative connection on the Fj,;-module M.
Since V is iterative, it suffices to show that V®)(M;) C (QF/K)p ®p M, for all
[ > 1. So fix an Fi-basis b = (by,...,b,) of M; (ertten as a row) and let A€
Mat (€,) with V) (B) = bA,.'0 From 0 = ;VE)(VO (b)) = VO(VE) (b)) =
( ;) we conclude d%)(A) = 0. Assume there is an entry w € sz
C F[d Ot; | i=1,...,p,5 = 1,...,m] of A with LT(w) = rd®)¢; (for some
r € Fandje{l,...,m}). Since dg)(rd(pl)tj) = dD(r)d®@)t; + rd®+1¢; and

for all other monomials of w, the image under dg)

d(pl+1)tj, we obtain dg)(w) # 0, a contradiction.

doesn’t contain the variable

OFor simplicitiy we use vector notations: bA; denotes the row vector with j-th component
> (Ar)ijbi, and V and d, are always applied to the components of a vector or a matrix.
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Sowe FldVt; |i=1,...,p'=1,5 =1,...,m]. Furthermore, since V is iterative,
) =0 a

V1) 6 v = (”;,rl)v@“rl 0 and therefore
l l p'(p—1)—-1 l
0= v (ba) =b-aP ") (4)) + v e=D=R) p) . a (4)).
k=0

If A, ¢ Mat,(F - Qp), then by the previous lemma, d(”l(p_l))(Al) has an entry
with leading term egd(i”pl(”_l))tjo (d("o)tjo)eo_1 - w' for some W' € Q, ig < p!
and jo € {1,...,m} and the variables occuring in dg)(Al) (k <p(p—1)—1)
are less than d(ot?'(®~1)¢. and those occuring in V@ @Dk (b) are even less
than or equal to d?® D)t So we would have sV (=1 (bA;) # 0. Therefore
A; € Mat,, (FQP).

At last, since dg)(Al) =0, in fact A; € Matn(Q”), which completes the proof. O

Theorem 6.6 The category Projy of projective systems over F' and the category
ICon;,;(F/K) are equivalent. Furthermore, if F' is an algebraic function field in
one variable over K and ¢ € IDg(F) with #D) £ 0, then they are also equivalent
to the category IDp of iterative differential modules over (F, ¢) (cf. [Mat01]) and
to the category ICon(F/K).

Proof The first statement follows immediately from the previous two proposi-
tions, since the given maps are functors that are inverse to each other.

The proof of proposition 6.5 shows that the integrability condition is not nec-
essary, when F' is an algebraic function field in one variable. So ICon(F/K) is
equivalent to Proj, in this case. Furthermore, Matzat showed in [Mat01] that
IDpr is equivalent to Proj,, too. O

Remark Let (M, V) be an F-module M with an integrable iterative connection
V and corresponding projective system (M;)en , and let b = (by,...,b,) be
an F-basis of M. By the properties of a projective system, we could choose
matrices D; € GL,(F;) (I € N) such that bDy---D;_; is an Fj-basis of M;
(j = 0,1,...). Then the image of an arbitrary element ba := Y. bja; € M
(where @ = (ay, ..., a,)" with a; € F) by V¥ can be calculated by

V(k)(ba) =bD, - -sz1dg§) (Dl_}1 .- -Do_la) ;

where k < p'.
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Part 11

In this part of the thesis, we restrict to the case of an algebraic function field!!
F over an algebraically closed field of positive characteristic. In this case the
modules with iterative connection are the same as iterative differential modules
defined in [Mat01], which was shown in section 6.

So the iterative Picard-Vessiot theory (IPV-theory) developed by Matzat can be
used: For an iterative Picard-Vessiot extension (IPV-extension) E/F, there is
a Galois correspondence between the intermediate iterative differential fields L
(i,e. F < L < E) and the (Zariski-)closed subgroups of the linear algebraic
group Gal(L/F) = Aut;p(L/F). In what follows, we will investigate when a
linear algebraic group can be realised as an iterative differential Galois group

by an IPV-extension, which is regular outside a given nonempty set of places
S C Pr.

Notation Throughout this part of the thesis, K denotes an algebraically closed
field of characteristic p > 0, F' an algebraic function field over K, Pr the set
of places of F' and Cr a nonsingular projective model for F', i.e. a nonsingular
projective curve over K with function field K(Cr) = F. By [Hart77], ch. I,
theorem 6.9, this curve is unique up to isomorphism and there is a one-to-one
correspondence between the (closed) points of Cr and the places of F. For a
point x € Cr, we denote by O, C F the set of functions that are regular in z. Tt
is a discrete valuation ring and therefore induces a valuation on F' corresponding
to the place x € Pp. Given a point x € Cr, we denote by ord,(¢) the image of an
element ¢ € F under this valuation. An element s € F with ord,(s) = 1 is called
a local parameter for x.

For an open subset U C Cp, we denote by O(U) the set of functions that are
regular on U, i.e. O(U) = ,cp Os-

For [ € N, we denote by F}, (O,); resp. (O(U)), the elements ¢ in F, O, resp.
OU) with d¥ () = 0 for all 0 < k < p!.12

U The term algebraic function field will always mean algebraic function field in one variable.
I2Remind that dp denotes the universal derivation dp : F — QF/K and that Fj, (O;); and
(O(U)), are subrings, as shown in proposition 6.1.
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7 IPV-Extensions and ID-Galois Groups

7.1 Iterative Derivations in Algebraic Function Fields

Proposition 7.1 Let t € F be a separating element (i.e. F/K(t) is a finite
separable extension). Then for every F-cga B and every b € B with £(b) =t
there exists a unique higher derivation ¢ : F — B satisfying ¢ (t) = b.

And the higher derivation ¢, given by ¢i(t) = t +T € F[[T]] is an iterative
derivation, the iterative derivation with respect to t.

Proof This is a special case of example 1.4 and example 3.2. O
Remark In example 1.4, we needed a transcendence basis to define the iterative
derivations with respect to one of the basis elements. Since an algebraic function

field has transcendence degree 1, every separating ¢ € F itself is a transcendence
basis for F'.

Proposition 7.2 (chain rule) Let t € F be separating, ¢; the iterative deriva-
tion with respect to t and let v € HDg(F'). Then for allr € F

o0

w(r)=Z¢§’“’(r)<‘ w“)(t)Tj) -

k=0

Proof Define a homomorphism of F-algebras A : F[[T]] — F[[T]] by \(T) :=
() =t =322, WD ()T7 € T - F[[T]]. Then X o ¢ is a homomorphism of K-
algebras and e o A o ¢y = £ 0 ¢, = idp, and therefore A o ¢; is a higher derivation.
Furthermore (Ao ¢;)(t) = ANt +T) =t +¢(t) —t = ¢(t) and so, by the previous
proposition, A o ¢; = 1), hence the formula above. O

Proposition 7.3 (chain rule for modules) Let t € F be separating, ¢; the
iterative derivation with respect to t and let ¢ € HDg(F). Moreover let (M, V)
be a module with iterative connection. Then for all m € M

Vy(m) = V) (m) (_Z wm(t)Tf) .

Proof By theorem 6.6, an iterative connection leads to a projective system
(M;)ien over F. So for an arbitrary | € N, choose an Fj-basis {b1,...,b,} of
M;. Then for every m € M, there are ay,...,a, € F with m =Y, a;b; and
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therefore we get by the chain rule:

Vy(m) = Vy (Z aibi> = Zw(ai)bi (mod T")

=1

= 2> 0 (@) (Zw@(tm‘) b,

o0

> Vi m) (Z w@(tm‘) (mod 7).

Since [ can be chosen arbitrary large, we get

Vy(m) =Y ¥ (m) (_Z wﬁ(tw) .

O

Lemma 7.4 For each n € N, there exist 7, € K[X1,...,X,,X;"], such that
for all separating variables s,t € F' we have:

A" (s) = 70 (4D (8), ..., 6 (1)) .
Especially, qﬁgl)(t) # 0 for all separating s,t € F.

Proof By the chain rule, for separating s, € F' we have:

o0 o0 k
s+T=d(s) = o (s) (Z ¢gﬂ'>(t)Tﬂ'> .
k=0 j=1
And so, by comparing the coefficients, we obtain,
1= ¢(s)(t) (s0 ¢{(t) #0) and
n—1
0 = ¢ ()" +Y Y #)e(8) -0 (1)

k=1 j1++jr=n
Jiz1l
for n > 1. From this, one inductively obtains a formula for calculating ¢§”)(s) as
a polynomial of qﬁgl)(t), o (t) and qﬁgl)(t)_l. Replacing qﬁg])(t) by X; gives
the desired “polynomial” 7,. a

Theorem 7.5 If #K = oo, then for every nonzero w € QF/K there exists an

iterative derivation ¢ € IDg(F') such that &(w) # 0, i.e. F has enough iterative
derivations.
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Proof Let ¢t € F be a separating element. At first, we show that an element
o € K[Xy,...,X,, X" has to be zero, if for all separating elements s € F,

061 (5), - 8" (s)) = 0:

Assume this is false and choose j € {1,...,n} maximal such that there is 0 #
o€ K[X;,...,X,] C K[Xy,..., X, X; ] with o(¢(s), ..., 6" (s)) = 0 for all
separating s € F'. As j is maximal, there is a separating s € F' such that

0# o(X;, 87" (s),.... 61" (5)) € FIX;].

Then for almost all @ € K, s+at’ also is separating'®, and ¢\’ (s+at’) = ¢\ (s)+a
and ¢Ek)(s +at!) = qﬁgk)(s) for all k£ > j. So for almost all @ € K (i.e. in special
infinitely many a € K), o(6(s) + a,07 " (s),..., " (s)) = 0 and therefore
o(Xj, ¢§j+1)(s), ce qﬁin)(s)) = 0 € F[X}] in contradiction to the choice of s.
Next, we define a homomorphism of K-algebras y, : K[Xi,...,X,, X;'] —
K[X1,...,X,, X7 by X; = 7; (the 7; given by the previous lemma). ¥, is an
involution because for all separating s € F and 0 € K[X1,..., X,,, X; ']:

(o2 X)(@) (67(3),- - 67(3) = xal0) (6 (0);-, (1))

and so (xn 0 xn)(0) = 0.

Now assume there is 0 # w € Qp/x such that ¢(w) = 0 for all ¢ € IDg(F).
Then without loss of generality w is homogeneous of degree n and so w €
F[dMt, ..., d™t] =2 F[X,..., X,]. Hence for all separating s € F:

0= 6,(w) = w (6 (1), 6" (1) = xalw) (1(5), . 6"(5))

So, by the previous, we get y,(w) = 0 and therefore w = x,(x,(w)) = 0, a
contradiction. O
Remark Not all iterative derivations of F' are given as the iterative derivation
with respect to some separating ¢t € F'. But since we won’t use this fact, we won’t
proof it. See [Mat01], Ch. 1.5, for a description of all iterative derivations of F.

7.2 IPV-Extensions

In [Mat01], Ch. 3, Matzat has developed an iterative Picard-Vessiot theory in
positive characteristic. In this section we give a summary of the main definitions
and results.

In the following when we speak of the ID-field F, we mean a pair (F, ¢), where
¢ € IDg(F) is an iterative derivation satisfying ¢() # 0. An ID-module over

13 ¢ F is separating if and only if ¢{")(r) # 0.
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(F,¢) is an F-vector space M with an iterative ¢-derivation ® € IDg (M, ¢).
Since F'is an algebraic function field over K, Matzat showed that such an ID-
module M determines a projective system over F. By the last section, this
determines an integrable iterative connection V on M. It is easy to see that
this connection fulfills V, = ®. So there is no difference whether we consider
ID-modules or modules with integrable iterative connections. We will therefore
also call a pair (M, V) an ID-module.

Definition 7.6 An iterative differential ring (ID-ring) over F is a ring R >
F with an iterative connection dp : R — R QF QF/KM that is a higher derivation
on R over K. An iterative differential field (ID-field) over F is an ID-
ring L, that is a field. An ID-module over L is an L-vector space M equipped
with a dj-derivation V : M — (QF/K ®p L) ®;, M. For an ID-ring R > L, a
matrizY € GLy(R) is called a fundamental solution matrix for an ID-module
(M,V) over L (with respect to a basis b = (by,...,b,) of M), if

V oy v (BY) := V(B) - dg(Y) = bY.15

The ring R is called an iterative Picard-Vessiot ring (IPV-ring) for M, if it
satisfies the following conditions:

1. R is a simple ID-ring (i. e. has no non-trivial dg-stable ideal).
2. There ezists a fundamental solution matriz Y € GL,(R) for M.

3. R is generated over L by the coefficients of Y and det(Y) L.

Such a ring is an integral domain ([Mat01], prop. 3.2) and we call its quotient
field E an iterative Picard-Vessiot field (IPV-field). E/L is then called an
IPV-extension and the group of iterative differential automorphisms of E over
L (i.e. automorphisms that commute with the iterative connection) is called the
iterative differential Galois group (ID-Galois group) Gal(E/L).

Remark

1. dg is an extension of dp, because for all ¢t € F,

dr(t) = dp(t-1) = dp(t) - dr(1) = dp(t).

14Take care, that dg is not the universal derivation. The similar notation is due to the fact,
that for every iterative derivation ¢ € IDg(F'), dgr determines an iterative derivation on R
extending ¢ (see the next remark).

5Like in section 6, we use vector notations and the higher connections are meant to be
applied to the coefficients separately.
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2. If we choose an iterative derivation ¢ € IDg(F') with #M # 0 and set
ér, = (id;, ® ¢) ody, € IDK(L) and ¢ := (idg ® ) odr € IDK(R), the pair
(L, ¢r) is an ID-field and the pair (R, ¢r) is an ID-ring resp. IPV-ring for M
in the sense of [Mat01]. On the other hand (R, dg) and (R, ¢r) determine
the same projective system over F' and so (R, dg) is determined by (R, ¢r).
So the definition of ID-ring and IPV-ring given here is equivalent to the
other. Furthermore for any other iterative derivation ¢’ € IDg(F) with
¢’ # 0, the pair (R, ¢r) determines a unique extension ¢, € IDg(R) of
¢

In the following, we state some results that are all given in [Mat01] and we refer
thereto for proofs.

L will denote an ID-field over F with field of constants K, (M,V) an ID-
module over L with a basis b = (by,...,b,) and V(b) = bA for a matrix A €
GL,(L ®F QF/K). Furthermore R denotes an IPV-ring for M and E = Quot(R)
an IPV-field. D, € GL,(L;) are chosen such that bDy - D; is a basis of M., for
all [ > 0.16

Proposition 7.7 1. The IPV-ring R and the IPV-field E are unique up to
iterative differential isomorphisms. (Thm. 3.4)

2. The IPV-field E is a minimal field extension of L that contains a funda-
mental solution matriz for M. (Cor. 3.5)

3. An IPV-ring for M can be constructed in the following way: Let U :=
L[X;;(i,7 = 1,...,n),det(X)7"] be a localisation of the polynomial ring
in n? variables equipped with the integrable iterative connection defined by
dy(X):=A1'X € GLn(QF/K(X)U). Nezxt choose a mazimal ID-ideal P<U.
Then U/ P is an IPV-ring for M with fundamental solution matrizY := X,
the image of X under the projection to U/P. (Thm. 3./)

4. E contains no new constants. (Prop. 3.2)

5. Guven two fundamental solution matrices V,Y € GL,.(E), there exist C' €
GL,(K) such thatY =Y -C. (Prop. 3.3)

6. Gal(E/L) is a subgroup of GL,(K). (Prop. 3.8)

7. There exists a reduced linear algebraic group G < GL,, defined over K, such
that Gal(F/L) = G(K) under the inclusion above. (Thm. 3.10)

Proof of 6. Although this is proved in [Mat01], too, we give the proof here, to
show how this inclusion is given:

16As usual, we set Ly := (| Ker (d(Lk)) and M;:= () Ker (V(k)).

0<k<p! 0<k<p!
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If Y is a fundamental solution matrix and v € Gal(E/F), then since v commutes
with the higher derivation, (YY) is again a fundamental solution matrix. By 5.,
there exists an element C, € GL,(K) such that y(Y) = Y C,. This defines a
homomorphism ¢ : Gal(E/F) — GL,(K),y — C,. If C,, = 1,, € GL,,(K), then
v(Y) =Y, but since E is generated by the coefficients of Y, this implies that
~v = idg, showing that ¢ is injective. a

Theorem 7.8 (Galois correspondence) Let L be an ID-field over F, let E/L
be an IPV-extension for an ID-module M over L and let G be a reduced linear
algebraic group such that G(K) = Gal(E/L). Suppose

H={H|H <G is a Zariski closed reduced linear algebraic subgroup},

and
¢ = {E | E is an intermediate ID-field L < E < E}.

Then the map x : $ — € defined by x(H) := E™5) is an anti-isomorphism of
lattices with inverse given by x~'(E) = M, where H(K) = Gal(E/E). Further
if H € $ is a normal subgroup of G, then E = E*) is an IPV-extension of L
with Galois group (G/H)(K).

Proof See [Mat01], thm. 4.7. O

7.3 Determining the Galois Group

In the following, every linear algebraic group is supposed to be reduced and
defined over K.

Theorem 7.9 Using the notations above, if there exists a linear algebraic group
G < GL,, such that Dy € G(L;) for alll € N, then Gal(E/L) < G(K).

Proof See [Mat01], thm. 5.1. O

Theorem 7.10 Let G < GL,, and H < GL, be two linear algebraic groups
and let © : G — H be an epimorphism with reduced kernel. Let M and N be
ID-modules over L with projective systems given by matrices D; € G(L;) resp.
Dy € H(Ly) for alll € N and let the IPV-fields for M resp. N be denoted by Eyy
resp. En.

IfD, = O(Dy) for all 1, then up to ID-isomorphism Ey > Ey and Gal(Ey/Ey) <
Ker(0)(K).

Proof See [Mat01], thm. 5.12. O
Remark If N is an ID-module over L with D, € H(I;) and Gal(Ey/L) =
H(K). Then by choosing preimages D, € ©7(D;) < G(L;) (if possible) one
obtains an ID-module M defined by the D; and an IPV-field F,; for M such that
Gal(Ey /L) < G(K) and ©(Gal(Ey /L)) = H(K).
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Proposition 7.11 Let Ry, Ry be two IPV-rings over L with Galois groups
Gal(R;/L) =: Gj(K) (j = 1,2). And assume that R := Ry ®, Ry is a sim-
ple ID-ring. Then R is an IPV-extension over L with Galois group Gal(R/L) =
(G1 x G)(K).

Proof See [Mat01], proposition 7.9. O

Proposition 7.12 Let F = K(s,t) with some algebraic relation f(s,t) = 0.
Let C' be the corresponding affine model and assume without loss of generality
that (0,0) € C is a regular point. Then F, = K(s*' 7)) with some relation
fl(spl,tpl) = 0 and model C;. Let G be a linear algebraic group and let M be an
ID-module over F with projective system defined by D, € G(F}) (I € N). Assume
that Dy (1 =0,1,...) satisfy the following conditions:

1. For all | € N there exists a rational map v, : C, — G such that D, =
l !
n(s”, ") € G(F) and %(0,0) = 1g(k).

2. For all m € N the set {v(C/(K)) |l > m} generates G(K) as an algebraic
group.

3. There exists a number d € N such that deg(v;) < dp' for all | € N, where
deg denotes the maximum divisor degree of the matrixz entries with respect
to F.

4. If ly < Iy < ... is a sequence of natural numbers l; for which v, # 1, then

Then M defines an IPV-extension E/F with Galois group isomorphic to G(K).

Proof See [Mat01], lemma 8.6. O

Definition 7.13 Let L/F be an IPV-extension with Gal(L/F) = H(K),n — C,,
for a linear algebraic group H < GL,. And let N < GL, be a linear algebraic
group on which H acts by conjugation in GL,. Then there is an action of H(K)
on the L-rational points of N given by

Cyx D := Cyn(D)C; Y,
for all C,, € H(K) and D € N (L), where n € Gal(L/F) acts on the matriz
entries of D € N(L) < GL,(L).
The subgroup of elements that are invariant under this action will be denoted by

N(L)* and for all subrings O C L we define

N(OY = {D € N(0) < N(L) | VC, € H(K) : C,yx D = D}.
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Proposition 7.14 With notations of the previous definition, assume there is a
fundamental solution matriz Y € H(L) withn(Y') =Y C, for alln € Gal(L/F) =
H(K).X" Then

N =Y 'N(F)Y.

Proof For all D € N(L) and n € Gal(L/F):
WY DY) = (¥ )(D)y(Y) ! = YC(D)Cy 'Y = ¥(Cyw DY
and so YDY ! € N(F) if and only if D € N(L)*. O

Theorem 7.15 Let G < GL, be a connected linear algebraic group and as-
sume that G = N x H is a semidirect product of two subgroups N and H of
G. Let L/F be an IPV-extension with fundamental solution matriz Y € H(L)
and Gal(L/F) = H(K). Further, let M denote an ID-module over L with pro-
jective system defined by D; € N(L;) and let E/L be an IPV-extension for M
with fundamental solution matriz 7 € N (E).

If for all 1 € N, Dy is H-invariant, i.e. D; € N (L), then E/F is an IPV-
extension with Galois group Gal(E/F) = Gal(E/L) x H(K) < (N x H)(K) =
G(K) and E is generated over F by the coefficients of YZ (i.e. Y7 is a funda-
mental solution matriz for M ).

Proof At first, let C; € H(F) (I = 0,1,...) be chosen such that Y, :=
C7 - Cy'Y € H(L;). Then by proposition 7.14, V;D,Y,"" € N(F)N N (L)) =
N (F}) and therefore

D, :==Y,D)Y, ;1 =VDY, 'Ci € (N x H)(F) (l€N).

So the sequence (DZ)ZGN defines an ID-module N over F and for all k < pt!

—1
dgﬁ( 0" ) ( Dl)
= di (VDY Dy, YD) - (VDY YD)
= di) (YDo---D) Y3} - Yin Dy Dy 'Y
= 4P (vDy---D)-D D'V =dW(vz) 27y

Hence, Y Z € GL,(F) is a fundamental solution matrix for N and F := F(Y Z) <
FE is an IPV—extension for N. Next, the projection © : N' x H — H maps D, to
C; (since V;DY;™" € N'(F)) and therefore by theorem 7.10, L is a subfield of E
andsoYEGL()andZ YU (YZ) € GL,(E), i.e. E=E.

So E/F is an IPV-extension, Gal(E/F) < (N xH)(K) (since D; € (N xH)(F))
and Gal(E/L) < Ker(0)(K) = N(K).

So Gal(E/F) = Gal(E/L) x H(K) < (N x H)(K). 0

"By [Mat01], thm. 5.9, this is possible whenever H is connected.
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8 Regularity

8.1 Differentially Stable Regular Rings

Definition 8.1 Let t € F' be a separating element. Then we denote by U; C Cp
the subset consisting of all points y € Cp such that t € O, and O, is ¢;-stable,

i.e. $9(0,) C O, for all j € N,
Proposition 8.2 Let t € F' be a separating element. Then

U = {yeCplordy(t) >0 and ord,((dt)) =0}
= {y€Cr|Ja€ K such that t — a is a local parameter for y},

where (dt) denotes the divisor of the differential dt (as in [Sti93]). Especially, Uy
is a (Zariski) open subset of Cp.

Proof Let U/ := {y € Cp | ordy(t) > 0and ord,((dt)) = 0} and
U/ :=={y € Cr | Ja € K such that t — a is a local parameter for y}.
We will show U; C U’ C U, C Uj.

So let s be a local parameter for a given place y € U}, then 0 = ord,((dt)) =

ordy(qﬁgl)(t)) and therefore ord,(t) < 1. Moreover we have ord,(t —a) < 1 for
all @ € K, since d(t — a) = dt. As ord,(t) > 0, there exists an element a € K
satisfying ord,(t —a) > 0, i.e. ord,(t —a) =1 and so ¢t — a is a local parameter
for y.

Now let y € U/ and t — a be a local parameter for y. Then t — a is an element of
O, and O, is ¢;_,-stable, since O, is a finite separable extension of K[t —a];_q).
So t € O, and, since ¢; = ¢;_,, the ring O, is also ¢;-stable. This proves y € Uj,.
At last, let y € U;. Then t € O, and therefore ord, (t) > 0.

Let s be a local parameter for y. Then ¢{"(t) € O,, since t € O, and O, is
ps-stable. Analogously, we get qﬁ,gl)(s) € O,. But since ¢§1)(5) = (qﬁgl)(t))’l,
the element qﬁgl)(t) is invertible in O, and so ordy(qﬁgl)(t)) = 0. This means
ord,((dt)) = 0.

U, is open, since the conditions ord,(¢) > 0 and ord,((dt)) = 0 are fulfilled for all
but finitely many y € Cp. a

Remark U; is an affine variety. U; is the maximal subset of Cr such that
t € O(U;) and such that for all subsets U C Uy, the ring O(U) is ¢4-stable.

Proposition 8.3 Lett € F be a separating element and x € U,. Then O, has
no nontrivial ¢,;-stable ideal.
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Proof Choose a € K such that ¢ — a is a local parameter for x (cf. proposition
8.2). Then O, is a regular local ring with maximal ideal generated by ¢ — a and
O./(t—a) = K, since K is algebraically closed. Since ¢, = ¢;_,, the proposition
follows directly from lemma 2.10. O

8.2 Differentially Stable Lattices

Recall that M is a vector space over F' of finite dimension equipped with an
iterative connection V.

Definition 8.4 Let O C F be a subring. An O-lattice in M is a free O-sub-
module A of M, which contains an F-basis of M. An O-pseudo-lattice in M is
a finitely generated O-submodule A of M, which contains an F-basis of M, i. e.
A satisfies M = F ®o A.

If t € F is separating and U is an open subset of Uy, then an O(U)(-pseudo)-
lattice A is called ¢y-stable, if V4, (A) C A[[T]].

Lemma 8.5 Let s,t € F be separating elements, let U C U; N Uy and let Ay be
a ¢s-stable O(U)-pseudo-lattice in M. Then Ay is also ¢y-stable.

Proof By the chain rule for modules, for all m € M:
o o0 o0 k
k k j ;
Do VL T =3V m) (Z qs?)(s)w) .
k= —

0 k=0 7j=1

Now Ay is ¢s-stable, and so ng)(m) € Ay for all m € Ay. Moreover qﬁgj)(s) €
O(U), since s € O(U) and O(U) is ¢-stable.
So 00, V) (m)T* € Ay|[T]] for m € Ay, i.e. Ay is ¢p-stable. O

Lemma 8.6 Lett € F be separating and U C Uy be an open subset. Then there
exists at most one O(U)-pseudo-lattice A in M, that is ¢s-stable.

Proof Let A and A’ be two ¢;-stable pseudo-lattices. Clearly, the intersection
AN A" also is ¢;-stable, and since for every m € M, there are a, o/ € O(U) with
am € A and o/m € A’ and hence with aa'm € AN A’, the O(U)-module A N A’
is an O(U)-pseudo-lattice in M. So let without loss of generality be A’ C A.
Now let y € U and define A, := O, ®o) A and A} := O, ®panA’. Then A C A,
are two ¢;-stable O,-pseudo-lattices in M. Since O, is a principal ideal domain,
Aj, and A, are in fact lattices in M and furthermore there exists an O,-basis
{b1,...b,} of Ay and a,...,a, € Oy such that {aiby, ..., a,b,} is an Oy-basis
of Aj,.

Now we show ¢§k)(ai) €0, -q;foralli e {1,...,n} and all £ € N by induction
on k:
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For k = 0 the claim is trivial. So let & > 0 and ¢Ej)(ai) € O, - «; for all
i€{l,...,n}and all 0 < j < k. Then

¢§k)(04i)bz‘ = Vgﬁ)(%bi)— d’gj)(ai)v(k_j)(bz‘)

€ A; + o - Ay
So ¢Ek)(al)bz € (A; + ;- Ay) N Oy . bl = Oy . Oéibi, 1.e. ¢Ek)(al) € Oy C Q.
Therefore O,-a; # 0is a ¢;-stable ideal of O, and, by proposition 8.3, O,-a; = O,.
So Ay = A},
Since this holds for every y € U, we get A = A'. O
In the following, we show that we can easily calculate differentially stable lattices,

if the ID-module is 1-dimensional:

So let M be a 1-dimensional ID-module with basis b and projective system given
by (Dl)leN; where Dl € GL1 (Fl) = EX.

For every x € Cr, we have ord,(D;) € p'Z, because D; € F;. So Y ord,(Dy) € 7Z,
i=0

is a welldefined p-adic integer. Since the product Dg---D; is uniquely deter-

mined by M and b up to C' € FJ,, the sum Z;:o ord,(D;) (mod p'*t) =

ord,(Dy - - D;) (mod p!*!) is independent of the chosen sequence (D;);cn for the

projective system, and hence Y ;° ord,(D;) € Z, is independent of the chosen
sequence (D;);en for the projective system.

Proposition 8.7 Let x € Cr, t a local parameter for x and m € Z. Then the
o0

O,-lattice bt™O,, in M is ¢y-stable if and only if m =) ord,(D;).
7=0

Proof If bt O, is ¢;-stable, then as it will be shown in corollary 8.14, we could
choose D} € GLi((O,);) = (Og)], such that bt™ Dy - - Dj is an (Oy);41-basis of
btmoz N Ml+1. So

> " ordy(Dy) = ord, (t"Dy) + Y ord, (D)) =m,
§=0

j=1
since ord,(Dj) =0 for all j € N.
On the other hand, if Y 7% ord,(D;) = m, then for all | € N, there exists ; € O}
such that (Dy---D;) = t™ ™3~ where m; :== m — ord, (Dy---D;) € p'*'Z.
Since my € p!*'Z, we have t™ € F,., for all [ € N, and so for all & < p!*!,
V) = b (Do D) (Do~ Dy)~'t™)

= s

= o™ 570 () € O,
Hence, bt™ O, is ¢4-stable. O
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8.3 Regular Points

Definition 8.8 An ID-module M over F' is called regular in € Cg, if there
exists a local parameter t for x, an open subset U of Uy and a ¢;-stable O(U)-
lattice in M. M 1is called regular on V' C Cg, if M s reqular in every x € V.
We call M singular in © € Cp, if M is not reqular in x. The set of points in
which M is singular, is referred to as the singular locus of M. If M is singular
in all points x € Cg, then M is called totally singular.

Remark

1. By lemma 8.5, the local parameter ¢ can be chosen arbitrarily.

2. If Ay and Ay are ¢p-stable O(U)- resp. O(U’)-lattices (U, U’ C U,), then
by lemma 8.6, their localisations to O(U N U') are equal.

3. Contrary to characteristic 0, totally singular ID-modules really exist, what
will be shown later.

4. We will also show, that the singular locus always is a closed subset of Cp,
and that for every closed subset S of Cp, there exists an ID-module with
singular locus S.

Proposition 8.9 The singular locus S of M is a closed subset of Cr.

Proof If M is totally singular, then S = Cr is a closed subset. Assume that M
is not totally singular. So there exists © € Cr, a local parameter ¢ for x, an open
subset U of Uy and a ¢-stable O(U)-lattice A in M. Now for arbitrary y € U, let
s be a local parameter for y and U’ := U; N U. Then by lemma 8.5, the O(U")-
lattice O(U') ®o(ry A is ¢g-stable. Since U’ C Cr is an open subset containing y,
we obtain that M is regular in y. So the singular locus S is contained in Cr \ U.
Hence S is a finite set and therefore a closed subset of Cp. O

Proposition 8.10 Let M be regular on an open subset V- C Cr, t € F separating
and Uy := Uy, N V. Then there exists a ¢4-stable O(Uy)-pseudo-lattice in M.

Proof For an arbitrary point 2 € U, by definition, there exists a local parameter
s for z, an open neighbourhood U(z) C Cp of x (without loss of generality
U(r) C U;) and a ¢s-stable O(U(z))-lattice Ay in M. By lemma 8.5, Agy
is also ¢-stable. Now the sets U(x) cover 0t and the localisations of Ay, and
Ay to O(U(x)NU(y)) coincide. So the lattices Ay (,) can be glued together to a

sheaf of Op,-modules, which is induced by a finitely generated O(U;)-module Ag,
(see [Hart77], Ch. II, Cor. 5.5). This module is ¢;-stable, since all localisations
are ¢;-stable and we have

F ®o,) Mg, = F ®ow) OU (7)) o,y A, = F ®ow(z)) Avw) = M.
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So Ag, is a ¢s-stable O(U,)-pseudo-lattice. O

Theorem 8.11 Let b = (by,...,b,) be a basis of M. Then M is not totally
singular, if and only if for almost all y € Cp the Oy-lattice with basis b is ¢;-
stable, where t denotes a local parameter for y.

Proof If there exists a point © € Cg, in which M is regular, then by definition,
there is a local parameter s for x and an open set U C U, such that there is
a ¢s-stable O(U)-lattice A. Let A € GL,(F) be chosen so that bA is a basis
for A. But for almost all y € U (and hence for almost all y € Cr), we have
A € GLn(0,), and therefore Oy @) A = b- O} for those y. So by lemma 8.5,
for almost all y € Cr the Oy-lattice with basis b is ¢;-stable, where ¢ denotes a
local parameter for y.

On the other hand, let the O,-lattice with basis b be ¢;-stable for all y in a
cofinite set U C Cr, where t denotes a local parameter for y. Choose an x € U,
choose a local parameter s for z and let U := UNU,. Then by lemma 8.5, for all
yeU, b0, is a ¢s-stable O,-lattice and so

() bOs = bO(U)"
yelu

is a ¢s-stable O(U)-lattice. Hence M is regular in z. O

Theorem 8.12 Let M be an ID-module which is not totally singular. Then M
s reqular in x € Cg if and only if there exists a ¢4-stable O,-lattice in M, where
s denotes a local parameter for x.

Proof If M is regular in z € Cp, then we get a ¢,-stable O,-lattice in M by
localising the ¢g-stable O(U)-lattice in the definition of a regular point.

Now assume there exists a ¢,-stable O,-lattice in M and let b be an O,-basis of
this lattice. Since M is not totally singular, for almost all y € Cp, the O,-lattice
bO, is ¢;-stable (¢ a local parameter for y), by theorem 8.11. Furthermore, the
proof of theorem 8.11 shows that M is regular in all these points, in particular
M is regular in z. 0

Theorem 8.13 Let x € Cr be a point in which M is regular, t a local parameter
for x, U C Uy and A a ¢4-stable O(U)-pseudo-lattice in M. Then for arbitrary

[ € N, there exists a generating set for A (as O(U)-module) consisting of elements
Of Ml .

Proof Denote by {by,...,b,} an Fj-basis of M. Since A is a pseudo-lattice in
M, there exist 0 # a; € O(U) such that bja; € A (i = 1,...,n) and therefore

biafl eEANM, =N (i=1,...,n). So A; contains a basis of M, and is a finitely
generated O(U);-module (finitely generated, because it is a submodule of the
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finitely generated O(U);-module A), i.e. A; is an O(U);-pseudo-lattice in M,.
Hence O(U) - A; is an O(U)-pseudo-lattice in M.

By assumption, A is ¢;-stable and so AN M; = A, is ¢;-stable, too. Furthermore
O(U) is ¢s-stable and so O(U) - A, is also ¢s-stable. Therefore by lemma 8.6,
A= O(U) - A;, which completes the proof. O

Corollary 8.14 Let x € Cr be a point in which M s reqular, t a local parameter
for x and A a ¢s-stable Oy-lattice in M. Denote by b = (bl,..., bn) an Oy-
basis for A. Then there exist matrices D; € GL,((Oy):) (1 =0,1,...), such that
bD - -- D;j is an (Oy);+1-basis of Njiq := AN M,

Proof Since (O,);41 is a local ring, every (O,);;1-pseudo-lattice in M4 is in
fact an (O,);41-lattice. By the previous theorem, an (O,);y1-basis of A;y; also is
an (O,);-basis of A;. So there exists a base change matrix in GL, ((O,);). Starting
from the O,-basis (b, ...,b,) for A, we obtain all D, (I =0,1,...) step by step.
O

In section 4.2, we defined higher connections on Ox-modules, where X is a
scheme. We also mentioned, when a higher connection on a K (X)-vector space
should be called regular on an open subset U C X. We will now show, that this
coincides with the definition of regularity in this section.

Proposition 8.15 M is reqular on an open subset U C Cr, if and only if there
is a coherent Oy-module A with a higher connection V' : A — QU/K Roy A such

that F'®o, A2 M andV equals dp @ V' as higher connections on M = F ®p,, A.

Proof Let M be regular on U C Cr. Then by proposition 8.10, for every
separating ¢ € F' and Uy := Uy N U, there is a ¢;-stable O(U;)-pseudo-lattice Ay,
in M. We show that for m € Ay,, we have V(m) € QO(@) Qo) Mo,

For given k € N, choose I € N with p' > k and choose a generating set {b,..., 0.}
for A with b; € M; (cf. theorem 8.13). Then there are a; € O(U;) such that
m =Y., a;b; and therefore

=D VOaibi) =Y _dr(a) @b € (QO(Ut)/K)k Do) M-
=1 =1

So V(m) € Q, o) @ow,) A, Since the open sets (Up)ier sep. cover Cr, we have
Urer sep. U, = U, and as in proposition 8.10, the pseudo-lattices Ap, can be glued

together to a sheaf of Op-modules A. Since on the open covering {U, | t € F sep.},
the higher connection V restricts to a higher connection V5 : Az, — Qp, /K®Aﬁt,

these higher connections can be glued together to a hlgher connectlon V':A—
QU/K R0y A, that clearly fulfills V = dp @ V'.

95



For the converse, let A be a coherent Op-module with higher connection V'
satisfying the properties above and let x € U and t be a local parameter for x.
Then A(UNT,) is a projective Oy (U N Uy)-module (all localisations at maximal
ideals are torsionfree, hence free) and so by [Eis95], thm. A3.2, there is an open
neighbourhood U; € U N U, of x, such that A := A(T,) is a free O(U;)-module.
Finally, since V(A) = V'(A) C Qo(ch)/K ® A, we have

Vi (A) = (6 ®ida)(V(A)) € O[T ® A = A[IT]].

So M is regular in z. O

We now turn our attention to 1-dimensional ID-modules:

So let M be a 1-dimensional ID-module with basis b and projective system given
by (Dl)l€N7 where Dl S GL1 (E) = EX.

Lemma 8.16 M is totally singular if and only if for infinitely many x € Cp,
So2oord, (D) #0. If M is not totally singular, then M is regular in all x € Cp
for which 37,2, ord,(D;) € Z.

Proof This follows immediately from proposition 8.7, theorem 8.11 and theorem
8.12. O

Corollary 8.17 If M is reqular in all points different from a point x € Cr. Then
M s also reqular in x.

Proof Let (D;);en be a sequence giving the projective system associated to M.
If M is regular in all points y # z. Then ) ;° ord,(D;) € Z for all y # x. But
for all [ € N, we have ord, (D)) = =) y ord;(D;) and therefore

yECF\{:r
Y ordy (D)=~ Y Y ordy(D)€ZLCTZ,
=0 yeCp\{z} =0
Hence by lemma 8.16, M is regular in z, too. a

Example 8.18 Let F' = K(t) be the rational function field in one variable and
choose a sequence (a,),en of distinct elements of K. Define a 1-dimensional ID-
module M with projective system given by D; := (t — al)pl(”_l) € F,l eN.
Then Y772 ord(_a)(D;) = p'(p — 1) for a = a; and so 32 ord(_a)(D;) # 0 for
infinitely many (t—a) € Cr. Hence by lemma 8.16, M is totally singular. Further,
foralla ¢ {a; | | € N}, we have > 2 jord( o) (D;) =0 € Zand } 77 ordy (D) =
St —pt) =1€Zand foralll €N, Y7 jord_q)(D;) =p'(p— 1) € Z.
So by proposition 8.7, for all x € Cr and local parameter s for z, there exists a
¢s-stable O,-lattice.
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This example shows, that totally singular ID-modules exist. It also shows, that
an ID-module can be singular in some points even if for all points = € Cg, there
exist differentially stable O,-lattices. However, in theorem 8.12, we have seen
that this doesn’t happen, if M is not totally singular.

Notation In the following, we denote by J the Jacobian variety of Cr and by
T,(J) the p-adic Tate-module of 7, i.e. T,,(J) = limJ [p"], where J[p"] denote
the points of p"-torsion of 7.
The set of isomorphism classes of 1-dimensional ID-modules over I will be de-
noted by Isome¢, ;. With multiplication given by the tensor product, Isom¢, ; is
an abelian group. Further, let

Div’(Cp, Zy) = {f :Cp — Zy | V1 €N : |supp(f (mod p))| < oo and Z f(x) = 0}

zeCp

and let H(Cr) be the group of principal divisors on Cg, which can be regarded as
a subgroup of Div®(Cr, Z,).

Theorem 8.19 (c¢f. [MvdP03], prop. 4.2) There is a short exact sequence of
abelian groups

Div’(Cr, Z,)

0—T, I = (|

— T,(J) — Isome, 1 = 1(Cr) —

where the homomorphism x is given in the following way: For an ID-module
M with basis b, calculate a sequence (D))ien of elements in GL1(F;) such that
bDy - -- Dy is an Fj-basis for M;. Then x([M]) is represented by the map x —
So2sord, (D) € Zy.

Proposition 8.20 For every closed subset S C Crg, there exists an ID-module
with singular locus S.

Proof We have already seen (cf. example 8.18), that there exist totally singular
ID-modules, i.e. ID-modules with singular locus equal to Cp. If S # Cp, i.e. S
is finite, and if #S > 2 or S = (), then for all x € S choose o, € Z, \ Z such
that ) _ca, =0. The map f : Cp — Z, defined by f(z) := a, for € S and
f(z) :=0for z ¢ S is an element of Div’(Cr,Z,). So by theorem 8.19, there is a
1-dimensional ID-module M such that x([M]) is represented by f. By theorem
8.16, M is not totally singular and M is singular exactly in the points in S, i.e.
S is the singular locus of M.

If remains to show, that S occurs as singular locus, when #S = 1. For this
choose an element ¢ € F, whose pole divisor (¢), has support equal to S, and
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define a projective system for a 2-dimensional ID-module M with basis (by, bo)
by choosing matrices D; := ((1) “1’) € GLy(F)), | € N, where a; = t*'. Then for
ally ¢ S, D, € GLy((O,);) and hence by theorem 8.11 and theorem 8.12, M is
regular outside S. On the other hand, if M is also regular in the point x € S.
Then there exists a differentially stable O,-lattice A in M. Since b1O0, C M Nb F
is the unique differentially stable O,-lattice in M N b F and since bO?/b, 0, C
M/(M Nb F) is the unique differentially stable O,-lattice in M/(M Nb F), we
have A = bO2.

Let s be a local parameter for x. Then for all [ € N:

! ! ;

VO (b2) = <bi > ) =~ S (67 7(1)) "
i=0

1=0

Since t € O,, there exists a minimal j > 0 such that ¢>§”j)(t) ¢ O, and so

) = b <¢gpj)(t) N Z (¢gpf—i)(t)>pi> Z A,

a contradiction. Therefore M is singular in x € S. O

We now regard regular points of IPV-extensions:

Definition 8.21 Let L/F be an IPV-extension for M. Then L/F is called reg-
ular in = € Cp, if M is reqular in x. Otherwise we call L/F singular in = € Cp.
The set of points in which L/F is singular, is referred to as the singular locus

of L/F.

Proposition 8.22 If L/F is reqular in x € Cr and t is a local parameter for
x. Then there exists a monomorphism of iterative differential fields (L,d;) —
(K((t)), dr(y), where K((t)) is regarded as the completion of F with respect to
the valuation corresponding to x and dg () 5 the continuous extension of dp.

Proof Let A € Matn(QF/K) satisfy V(b) = bA and let A, € GL,(F) be
such that bA' is a basis for the ¢;-stable O,-lattice A. Then by corollary
8.14, there are D; € GL,((O,);) (j = 0,1,...) such that bA;'Dy---D; is an
(Og)i41-basis of Ajyy := AN M. Moreover, we can choose D; in such a
way, that D,|;—g = 1,. Hence Dy---D; = Dy---Dyyy (mod t”l“) and there-
fore the matrix entries of the sequence (Dyg - - D;)en converge in the completion
0, = K][[t]]. Let D € Mat, (K[[t]]) denote the limit, then D € GL, (K[[t]]), since
D|i—o = 1,, and for all £ € N we have pr;(A) = A;lDd(Kkz(t))(D*IAI) and there-

fore A = AngdK((t))(D_le) € Mat,, (K((t)) ® QF/K>

So the ID-field K (()) has a fundamental solution matrix A;'D and therefore the
[PV-field L is iterative differentially isomorphic to a subfield of K((t)). 0

o8



8.4 Iterative Differential Closure

Let L/F be an IPV-extension for an ID-module M with Galois group H(K) <
GL,(K) and singular locus inside a finite set S C Cp. Denote by Y € GL, (L) a
fundamental solution matrix for M with respect to a basis b = (b, ..., b,) of M.
And denote by O C F the ring of regular functions on Cr \ S.

Definition 8.23 For a point x € Cr \ S, the iterative differential closure of
O, 1is by definition the largest subring Or,, C L of L such that for all local parame-
ters t for x and all iterative differential embeddings v : (L,dr) — (K((t)), dr(w))).
the image 1(Op ;) of O is contained in K|[[t]]. The iterative differential clo-
sure of O is by definition the subring

Proposition 8.24 Forz € Cr \ S let A, € GL,(F) be a matriz such that bA,!
15 a basis for the ¢i-stable Oy-lattice in M. Then

Proof Let z € Cr\ S and ¢ be a local parameter for z. Since Y is a fundamen-
tal solution matrix with respect to b, A,Y is a fundamental solution matrix with
respect to bA'. So by propostion 8.22, there is an ID-monomorphism ¢ : L —
K((t)) such that t(A,Y) € Mat, (K]|[t]]). Since two fundamental solution matri-
ces differ by a matrix C' € GL, (K), for every ID-monomorphism ¢ : L — K((t)),
we have 1(A,Y) € C - Mat, (K[[t]]) = Mat,(K][[t]]). So ¢ (O.[A.Y]) C K][t]] for
all ID-monomorphisms ¢ : L — K((t)). So O,[A,Y] C Of . 0
Remark Obviously, for all x € Cr \ S, we have

OL.NF =0,

The next theorem is a refinement of proposition 7.14.

Theorem 8.25 Let N x H < GL, be a semidirect product of connected lin-
ear algebraic groups. Let LJ/F be an IPV-extension with Gal(L/F) = H(K)
for an ID-module M over F and assume there is a fundamental solution matriz
Y € H(Op) for M with respect to an appropriate basis b = (by,...,b,). As-
sume that for any x € Cp \ S there are C; € H ((O,):) (I = 0,1,...) such that
Crl o Cy'Y =Y, € H((OLz)1). Then

N ((Ora))" =Y 'V ((02)) Y.
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Proof By proposition 7.14, we have
N =YTIN(F)Y =Y7'Co- - CaN(F)CT, - C'Y = YN (F)Y,

Furthermore, since Y; € H ((Or.):), we have D € N ((Or,);) if and only if
VDY, "' € N ((Or4);). And therefore

N(Ora)) = N((Ore)) NN(L)* =YW ((O12)) YiN Y, N (F)Y
= YiilN((OI)Z) YE
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9 Realisation with Restricted Singular Locus

In this chapter, we consider the problem, for which linear algebraic group G the
group G(K) of K-rational points occurs as the Galois group of an IPV-extension
E/F with singular locus inside a given finite set S C Cp. (We say that G is
realisable over F' regularly outside S.)

9.1 On the Abhyankar Conjecture

Conjecture (Differential Abhyankar Conjecture) Assume F is an algebraic
function field (in one variable) over K with nonsingular projective model Cr, and
let ) # S C Cr be a finite subset. Suppose G is a linear algebraic group over
K and let p(G) denote the (normal) subgroup of G generated by all unipotent
elements. Then G is realisable as an iterative differential Galois group over F'
regularly outside S if and only if G/p(G) is.

Raynaud and Harbater have proved this conjecture for finite groups G (see [Ray94],
[Har94] and [Har95]). In the next sections, I will prove this conjecture for con-
nected groups.

However, this conjecture is not true in this generality as the following example
shows:

Let K = F, be the algebraic closure of the field of two elements and let Dy, :=
Gy X Z /27 be the infinite dihedral group, where Z/27Z acts on G,, be inverting
the elements. So since char(K) = 2 and all elements of Dy, \ G,, have order 2,
D, is unipotently generated. Therefore by the Abhyankar conjecture, D, should
be realisable with at most one singular point over K ().

Theorem 9.1 Let K = Fy and let F = K(t) be the rational function field over
K. Then the infinite dihedral group Ds = Gy, X Z /27 is not realisable over F
with only one singular point.

Proof Assume E/F is an IPV-extension with Galois group Gal(E/F) = Dy, (K)
and singular locus inside S C Cr with #S = 1, and without loss of generality let
S = {oo}. Then the fixed field L := E®(K) i5 a finite extension of F with Galois
group Gal(L/F) = Z/2Z and L/F is regular outside S. But such an extension is
given as L = K(t,s) with s> + s = f(t), where f(t) € K[t] C F. Now E/L is an
[PV-extension with Galois group G,, (K) and singular locus inside Sz, := {00},
the place of L lying over oo € Cp. (Since oo is ramified in L/F, there is only one
place ooy, over co.)

Let M be a 1l-dimensional ID-module over L with IPV-field E, then [M] €
Isomg, ; has infinite order, since the Galois group is infinite. But a short cal-
culation shows, that J has no 2-torsion and so T5(Jz) = 0. Therefore the
homomorphism y in theorem 8.19 is an isomorphism. By corollary 8.17, since
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M is singular in at most one point, M is regular in all points and x([M]) € J.
Finally, by the general theory on Jacobian varieties, since K = Fy, the Jacobian
Jr, has no element of infinite order. So [M] cannot have infinite order. O

Remark This proof only works if K = I, because this is the only case (in
characteristic 2) for which J;, has no element of infinite order. Furthermore if
K is an algebraically closed field of characteristic 2 and K # F,, then in fact
one can find the desired ID-module M, and D,, can be realised with exactly one
singular point.

One might wonder if this example only occurs in characteristic 2, because there is
no other p-group acting nontrivially on G,,. But this example can be generalised
to arbitrary characteristic p by regarding the group

G:={(ar,...,a,) €G |a---a,=1}

on which Z/pZ acts by cyclic permutation of the components.

In the next sections, we restrict to connected linear algebraic groups. We will
show that every reduced connected linear algebraic group G is realisable regularly
outside a set S C Cr of order #S = 2 for any algebraic function field F/K.

The proof will show that the Abhyankar conjecture is true for connected groups.

9.2 Dividing the Problem of Realisation

We first give a splitting of a connected linear algebraic group G into parts that
are easier to handle with, regarding the problem of realisation.

Notation So let G be a reduced connected linear algebraic group, R(G) its
radical and R, := R,(G) its unipotent radical. Furthermore let Ty be a maximal
torus of R(G) and Z := Cg(7,) the centraliser of 7 in G and let [Z, Z] denote
the commutator subgroup of Z.

Theorem 9.2 The inclusions of the subgroups R, Ty and [Z, Z] into G induce
an epimorphism of algebraic groups

Rux (To x [2,2]) — G,
where the action of Ty X [Z, Z] on R, is given by conjugation in G.
For the proof, we need some lemmata:

Lemma 9.3 G is generated by R, and Z.

Proof Let 7 be a maximal torus of G. Then 7 N R(G) is a maximal torus of
R(G) and therefore conjugate to 7g. Since R(G) = R, - Ty, there exists a € R,
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such that 7 N R(G) = aToa'. And so, we get

Cg(T) C Cg(T NR(G)) = Cg(aToa™") = aCy(To)a™" = aZa™".
So the union of all conjugates aZa~! contains all Cartan subgroups of G. By
[Spro8], thm. 6.4.5(iii), and [Spr98], lemma 2.2.3, these conjugates generate G
and therefore R, and Z generate G. O

Lemma 9.4 A connected linear algebraic group H is generated by its radical
R(H) and its commutator subgroup [H,H].

Proof By [Spr98|, cor. 8.1.6(i), the factor group H/R,(H) is generated by its
radical and its commutator subgroup. But since R(H/R,(H)) = R(H)/R.(H)
and [H/R,(H),H/R,(H)] = ([H,H]R.(H))/R,(H), H is generated by R(H)
and [H, H]. 0

Lemma 9.5 R(Z) equals the identity component of R(G) N Z (denoted by
(R(G) N 2)°) and R,(2) = (R, N 2)°. Furthermore Ty is a mazximal torus

of R(Z).

Proof By [Spr98|, thm. 6.4.7, a Borel subgroup of Z = Z5(7) is the intersection
of Z with a Borel subgroup of G containing 7y. Since 7, lies in the radical of G,
To is contained in every Borel subgroup of G. And therefore:

R2) = | B| =|)BnZ
Borel Borel
(R(G)NZ)°

= (RuxTo)NZ)" = ((RuN Z) xTo)’
= (R.NZ)°xT,

since Ty is central in Z. Since all elements of (R, N Z)° are unipotent, we obtain
R,(Z) = (R, N Z)°. If follows immediately from R(Z) = (R, N Z)° x Ty, that
7o is a maximal torus of R(Z). O

Proof of theorem 9.2 Since by definition of Z, the elements of 75 C G and
of Z C G commute, the map 7y X [Z,Z] — G induced by the inclusions is a
homomorphism of algebraic groups, and therefore the map R, % (76 x|[Z, Z]) —
G also is a homomorphism of algebraic groups. So it is sufficient to show, that
these subgroups generate G.

By lemma 9.4, Z is generated by R(Z) and [Z, Z] and therefore by lemma 9.5,
it is generated by (R, N Z)°, Ty and [Z, Z]. So by lemma 9.3, G is generated by
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Ry, (RuNZ)°, Ty and [Z, Z], i.e. by Ry, To and [Z, Z]. O

At last, we give a structural property of commutator subgroups in positive char-
acteristic:

Theorem 9.6 Let H be a connected linear algebraic group (over an algebraically
closed field of positive characteristic p). Then the commutator subgroup [H, H] is
unipotently generated.

Proof The group H/R,(#) is reductive and so by [Spr98], cor. 8.1.6(ii), the
group [H/R,(H),H/R,(H)] is semisimple, and then by [Spr98], thm. 8.1.5(i),
unipotently generated. Let a € [H, H] be a representative of a unipotent element
of [H/R.(H),H/R.(H)]. So there is n € N such that a*" € R,(#). But since all
elements of R, () are unipotent, there is m € N such that 1 = (apn)pm =",
So a itself is unipotent.

Since [H, H] is generated by R,(#) and by representatives of a generating set of
[H/R,(H),H/R,(H)], it is unipotently generated. O

Corollary 9.7 [Z, Z] is unipotently generated.

Proof By [Spr98], thm. 6.4.7(i), centralisers of tori are always connected. So
the statement follows from the previous theorem. O

Remark By the previous results, the realisation of connected groups as Galois
groups can be reduced to realising tori and unipotently generated groups and to
realising unipotent groups equivariantly.

9.3 Realisation of Tori and Unipotently Generated Groups

In [Mat01], Matzat has already proved that unipotently generated groups can be
realised with one singular point, and in [MvdP03], Matzat and van der Put have
proved that tori and connected unipotently generated groups can be realised with
two singular points. But for the realisation of the direct product of those two,
we need to be able to realise the torus in such a way, that the corresponding
[PV-extension is linearly disjoint to that of the unipotently generated group (cf.
prop. 7.11).

Notation Let S C Cp be a set with #S = 2, let O = O(Cr \ S) be the ring of
regular functions on Cr \ S and O, = O N F.

Proposition 9.8 A connected unipotently generated group G can be realised as
a Galois group over F' reqularly outside S.
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Sketch of the proof Choose unipotent subgroups i; < G (i =1,...,k) which
generate G. Then for all [ € N and i = 1,...k, U;(O)) is a free O-module of
dimension dim(24;), since U; is unipotent. So we can choose a sequence (D;);en of
matrices with D; € U;(O;) for some i € {1,...,k}, that satisfies the conditions
of proposition 7.12. Therefore the D; define an ID-module whose TPV-extension
has Galois group G(K), and since for all I € N, D; € U;(O;) < G(O,), this
[PV-extension is regular outside S.

Next, we consider 1-dimensional ID-modules M, because an IPV-extension E for
M has Galois group Gal(E/F) < GL;(K) = G, (K) and every torus defined over
K is isomorphic to G} for some k € N.

So let M be an ID-module with basis b and projective system given by (D;)en,
where D, € GL,(F}) = F}*.

Theorem 9.9 Let My, ..., M, be 1-dimensional ID-modules over F and let L/ F
be an IPV-extension for My @ --- @ M,. If [M],...,[M,] € Isome, | generate a
free abelian group of rank r, then Gal(L/F) is isomorphic to G, (K).

Proof For i = 1,...,r, let b; be a basis element for M; and (D;;)ien be a
sequence corresponding to the ID-module-structure of M;. Further let U =
F[Xi,...,X,, X', ..., XY be an ID-ring via d\P(X;) = d¥ (D Dy,) -
(Dig---Diy) " X; forall k < pt and i = 1,...,r. If I QU is a maximal ID-
ideal, then obviously U/I is an IPV-ring for M; & --- & M,, i.e. L =2 U/I and
Gal(L/F) is isomorphic to G;, (K) if and only if I = (0).

Assume that I is not trivial. Since dy stabilizes monomials, I is generated by
elements of the form X{*'--- X — a, where e1,...,¢e, € Z and a € F. Choose
such an element and define a 1-dimensional ID-module M (resp. its projective
system over F') by the sequence (D;);en, where D; := DYy Dy € F¢, with
respect to a basis b. Then define the ID-ring U’ := F[Y,Y '] with d(L]f,)(Y) =
d¥ (Dy---D)) - (Dy---D) 'Y for all k < pl. So the ideal (Y — a) < U is
an ID-ideal, hence M is a trivial ID-module and so [M] = 0 € Isom¢, ;. But
by construction, [M]| = e;[M] + ...e,[M,] € Isome, , which contradicts the
assumption that [Mi],...,[M,] are Z-linearly independent. O

Corollary 9.10 Every torus T can be realised reqularly outside S (where #S =
2) by an IPV-extension L/F. Furthermore this IPV-extension can be chosen
linearly disjoint to any other given IPV-extension L'/F .

T can be realised even without any singular point, if and only if the Jacobian
variety J of Cr has an element of infinite order or if J has p-torsion.

Proof The subset Div’(Cr,S,Z,) of Div’(Cr,Z,) consisting of the maps
f:Cr — Z,, with f(z) =0 for z € S, is a free Z,-module of rank 1, i.e. a free
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Z-module of infinite rank. So Div’(Cp, S, Z,)/(H(Cr)NDiv°(Cr, S, Z,)) contains a
free Z-module of infinite rank, and therefore its inverse image
x ! (Div’(Cr, S, Z,)/(H(Cr) N Div’(Cr, S, Z,))) C Isome,; contains a free Z-
module of infinite rank. So we can find the desired IPV-extension L.

The Jacobian is equal to the subgroup of % whose elements are repre-
sented by maps f : Cr — Z C Z,. Hence the preimages under x are exactly
the ID-modules which are regular on Cr. If the Jacobian has p-torsion, then the
p-adic Tate-module T,(J) is nonzero and therefore a free Z-module of infinite
rank. Hence the image of T,(J) in Isomc, ; is a free Z-module of infinite rank.
Since for all [M] € Isome,. ; in this image, we have x([M]) = 0, these modules are
all regular on Cr. So the subgroup x!(J) has an element of infinite order, if and
only if J has an element of infinite order or J[p] # 0. By [MvdP03], thm. 7.1 (4),
if x7'(J) has an element of infinite order, then it contains a free Z-submodule
of infinite rank. Hence every torus can be realised without singularities and such
that the IPV-extension is linearly disjoint to any other given IPV-extension. O

9.4 Equivariant Realisation of Unipotent Groups

Notation Let H be a reduced linear algebraic group, & a connected unipotent
group and G = U x H a semidirect product. Furthermore let L/F be an IPV-
extension with Galois group Gal(L/F) = H(K) and singular locus inside a finite
set ) # S C Cp, such that for all x € Cr\ S and all [ € N there exists a
fundamental solution matrix Y; € H ((Oy,)).

Theorem 9.11 U can be realised H-equivariantly over L reqularly outside S,
i. e. there is an IPV-extension E /L with Galois group U(K) such that E/F is an
IPV-extension with Galois group G(K) = (U x H)(K) with singular locus inside
S.

Proof Let A <U be a minimal nontrivial H-invariant connected normal sub-
group of U, i.e. A # 1 is a connected normal subgroup of U that is invariant
under the action of 4 and is minimal amoungst those. Since the center C'(A) of
A is a characteristic subgroup of A, it is H-invariant and a normal subgroup of
U. Since A is unipotent, C'(A) is nontrivial and so by minimality of A, we get
C(A) = A, i.e. Ais abelian.

Further if A" < A is a non-connected H-invariant normal subgroup of U, then A’
is finite, because its identity component (A')° is also H-invariant and normal in
U and hence trivial by minimality of A.

First case: A = U, i.e. there is no nontrivial normal subgroup of U — apart
from 1 and U — that is invariant under the action of H.

Now, every sequence D; € U((Or)))* (I =0,1,...) defines an IPV-extension E/L
with Gal(E/L) C U(K) and Gal(E/F) C (U xH)(K), which is regular outside S
(cf. section 8.4). Then Gal(E/L) is an H-invariant subgroup of U (K'). But since
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U is abelian and #H-simple, we obtain that Gal(E/L) is finite or Gal(E/L) =
U(K).

We have to show that the D; can be chosen such that E/L is not finite: For
this, we consider the set of all IPV-extensions that are defined by sequences
D, € U((OL)l)H, [ €N.

Let E' and E" be extensions defined by D] € U((Or,);)™ resp. D! € U((Or),)"
and let Y and Y” be the corresponding fundamental solution matrices. Then
the map o : E' — E" defined by a(Y’) = Y" and «o|; = idy, is a differential
isomorphism if and only if for all [ € N we have: (Dj---D})~"(Dj---D}) €
U(Or)ir1)™.

Therefore we have a one-to-one correspondence between differential isomorphism
classes of those IPV-extensions L(Y’) and the infinite product

[Tu©u))™/u((Or)i)*.

1>0

But U((Or);)™ is an (OF);-module for all [ and therefore a K-vector space. So
U(OL) )™ /U((Or)141)™ is a K-vector space and its dimension is greater than
1, because it is a nontrivial torsionfree (Op);1-module and dimg ((Op);51) > 1.
Hence the dimension of the infinite product as K-vector space is uncountable
(> 20).

Those IPV-extensions whose Galois group is finite are given by maximal ideals
in the ring U := L[X;;,det(X)!]. Since every maximal ideal is given by n?
polynomials, the L-vector space of n2-tuples of polynomials in U gives an upper
bound to the number of those IPV-extensions with finite Galois group. But since
this is an L-vector space of countable dimension and L is a K-vector space of
countable dimension, the set of n2-tuples of polynomials in U is a K-vector space
of countable dimension.

Thus for dimensional reasons, there exists an IPV-extension E' = L(Y') with
Gal(E'/L) =U(K) and Gal(E'/F) = (U x H)(K).

Second case: A # U and there exists an H-equivariant isomorphism
Ax(UJA) = U.

Then (A x (U/A)) x H =2 Ax ((U/A) xH) and by induction we can assume
that U /A is realised H-equivariantly as Galois group Gal(E/L), such that E/F
has singular locus inside S. (The dimension of U/ A is less than that of U.) So it
remains to realise A over E by ((U/.A) x H)-invariant matrices D; € A ((Op),).
But an ((U/A) x H)-invariant connected normal subgroup of A is a normal
subgroup of U (since it is U /. A-invariant) and is H-invariant, so equals 1 or A,
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by minimality of A. Hence we are in the first case.

Third case: A # U and there doesn’t exist an H-equivariant isomorphism
Ax (UJA) = U.

We first show that the map o : U((Or))"* — (U/A) ((O1),)*, induced by the
projection, is surjective:

Since U((Or);)* and U((Or),)* are (O);-modules it suffices to show that for all
x € Cr \ S the localised map «a, : U((Or.)1)" — (U/A) ((Or.))™ is surjective.
But by choosing a fundamental solution matrix Y; € H ((Oy,,);) (which exists by
assumption), we get a commutative diagram

U(On)1) — U/ A)(O:)1)

()Yll ()Yll
U((Or.))* — U)A) (O,

where ()Y denotes conjugation by Y;. The vertical maps are isomorphisms and
the upper horizontal map is an epimorphism and so the lower horizontal map
also is an epimorphism.

Now let (¢4 /.A) be realised H-equivariantly as (U4 /A)(K) = Gal(E/L) by matrices
Dy e UJA)(OL))* (1=0,1,...). Then choose preimages D; € o' (D;). These
define an IPV-extension E'/L with Galois group U'(K) = Gal(E'/L) C U and
U — U/ A is surjective (cf. [Mat01], thm. 5.12). Since the D, are H-invariant
and U’ is generated by the D, as an algebraic group, U’ is H-invariant, and
therefore A NU" is H-invariant. Furthermore AN U’ is normal in U’ (since A is
normal in /) and normal in A (since A is abelian), so it is normal in AU’ = U
By minimality of A, we get that ANY’ is finite or ANU' = A. If ANU' is finite,
then we have 1 = (ANU')° = AN (U')°, since A is connected and A and U’ are
unipotent. And so (U')° 22U/ A and U = A x (U')° = Ax (U/A) as H-groups.
But by assumption, there doesn’t exist such an isomorphism. So ANU' = A and
therefore U' = U. Hence E'/L is the desired IPV-extension. O

9.5 Realisation of Connected Groups

As a summary of the previous sections, we have the following theorem:

Theorem 9.12 Every connected linear algebraic group G can be realised as iter-
ative differential Galois group of an IPV-extension FE/F which has at most two
singular points. If the Jacobian variety of Cr has p-torsion or if G is unipotently
generated, then G can be realised even with at most one singular point.

Proof Denote by S C Cg the set of two points in Cr, which may be singular
in the IPV-extension. Choose a maximal torus 7, of the radical R(G), then with
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the notations of section 9.2, we have an epimorphism
7:G =R, X (To x [2,2]) — G.

By corollary 9.7 and proposition 9.8, we can realise [Z, Z] by an IPV-extension
L'/ F regularly outside S and by corollary 9.10, we can realise 7, by an IPV-
extension L/F regularly outside S such that L ® L' is an IPV-extension of F
with Galois group (7y x [Z, Z])(K). Since L and L’ are regular outside S, this
extension is also regular outside S. Then by theorem 9.11, there is an IPV-
extension E/L with Galois group R, (K) such that E/F is an IPV-extension
with Gal(E/F) = G(K) and E/F is regular outside S. Hence, the fixed field
under Ker(r), E := E¥( is an IPV-extension over F with Gal(E/F) =

(C;/ Ker(w)) (K) = G(K) and E/F has singular locus inside S.

The last statement is then clear, because if J[p] # 0, then T, can be realised
without singularities, by corollary 9.10. If G is unipotently generated, G can be
realised with only one singular point, by proposition 9.8. O

Remark In [MvdP03], cor. 7.7 (3), it has already been stated that G can be
realised regularly outside a non empty set S, if the torus 7, can be realised
regularly outside S, but the proof given there doesn’t work in general:

Assume #S = 2 and, for simplicity, let 7o = G, be the 1-dimensional torus and
let 7y be realised regularly outside S, i.e. we have an ID-module with projective
system given by matrices D; € To(F)) = F/*.

If F is not a rational function field, then for all [ € N, where D; ¢ K* (in
particular for infinitely many /), there exists a point z; € Cr \ S with ord,, (D) #
0, because the support of a nontrivial principal divisor has at least three elements.
So if we choose an increasing sequence ([;);en with lim;_,(l;11 — ;) = oo and
if we define a new ID-module N with projective system given by D) := 1, if
k ¢ {l;}, and D} := (D;*"" € F,, it k = I, then the IPV-extension for this
ID-module also has differential Galois group 7y(K'), by proposition 7.12. But in
general for the z; defined above, we get Y - ord,, (D)) # 0. This means that in
general N is totally singular (if there are infinitely many such x;), or N has at
least one additional singular point, namely a point z € Cp \ S, for which there
are infinitely many [ € N such that z = x;.

Hence, also in the “interlacing with gaps” of the matrices for the torus and the
unipotently generated group, as given in the proof of [MvdP03], cor. 7.7 (3),
there might occur new singularities.

Corollary 9.13 The differential Abhyankar conjecture is true for connected
groups.

Proof The factor group G/p(G) is a torus. If G/p(G) = 1, then G is unipotently
generated and therefore can be realised with one singularity. If G/p(G) # 1, then
by the previous theorem, both G and G/p(G) can be realised with singular locus
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inside a nonempty set S, if and only if #S > 2 or if #S5S = 1 and the Jacobian J
has an element of infinite order or an element of order p. 0O
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A Completions of Graded Algebras

In this appendix we regard completions of graded algebras over a ring R (R-cgas
for short).

Let R be a commutative ring.

Definition A.1 A commutative R-algebra B is called an R-cga , if B is the

o0

completion of a connected graded R-algebra @ B;, where the completion is taken
i=0

with respect to the filtration given by the ideals Iy := @ B;. We call B; the

i=k
i-th homogeneous component of B. The augmentation map will be denoted by
e: B — By = R. More general, the projection map to the i-th homogeneous

component will be denoted by pr, : B — B;.

Proposition A.2 Let B be an R-cga. Then as an R-module B is isomorphic to

the direct product || Bg.
k=0

Proof By definition the completion is the inverse limit lim (D)._, Bk) (see also
neN

[Eis95]). But this limit is obviously isomorphic to [] B. O
k=0

Example A.3 1. The ring of formal power series R[[T]] is an R-cga, with
i-th homogeneous component R - T".

2. The ring R itself is the trivial R-cga with (R); =0 for i > 0.

Remark According to the notation of a power series as an infinite sum, we
will denote elements of an R-cga B by Z;’io b;, where b; € B;. This notation
is also justified by the fact, that, indeed, > .20 b; is the limit of the sequence of
partial sums (3 7, bi)nen in the given topology, or in other words that Y >, b;
is a convergent series.

Definition A.4 Let B and B be R-cgas. A homomorphism of R-algebras
[+ B — B is called a homomorphism of R-cgas, if f is a continuous exten-
sion of a homomorphism of graded R-algebras g : @, Br — Dj—q Bi-

Remark Since @), By is dense in B, the continuous extension of a given
homomorphism of graded R-algebras is unique. So the category of commutative
connected graded R-algebras and the category of R-cgas are equivalent.

In this thesis, we sometimes have to consider more general homomorphisms be-
tween R-cgas, too. So let K C R be a subring, B and B be R-cgas and let
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f: B — B be a continuous homomorphism of K-modules (or even K-algebras).
Then we define “homogeneous components” f%) : B — B (i € Z) of f to be the
continuous homomorphisms of K-modules given by

f(i)|Bj = Prig; 0 f|Bj : Bj - Bi-i-j
for all j € N (set BZ-H := 0 fori+j < 0). The f® uniquely determine f, because
for all b; € B;, > f@D(b;) converges to f(b;).

i=—j
Such a continuous homomorphism of K-modules f : B — B is called positive,
if f® =0 fori<0.

Proposition A.5 The monoid (K,-) acts on the set Hom}.(B, B) of positive
continuous homomorphisms of K-modules by
(a.f)? :=a'- fO (i >0)

for alla € K, [ € Hom};(B,B). If f is a homomorphism of algebras, then
a.f also is a homomorphism of algebras. Furthermore for f € Hom}; (B, B),

g € Hom}. (B, B) and a € K, we have
a.(go f) =a.goa.f,
i. e. the action of K commutes with compositions.

Proof It is clear, that for all @ € K and [ € Hom;’((B,B), a.f is a positive
continuous homomorphism. If f is a homomorphism of algebras, then for all
b,c € B:

a.flbe) = Y a* fPbe) =3 d" Y fO0)f9(e)

_ (Z y fw(b)) . (Z aﬂfw(c)) = a.f(b) - a.f(c),

i.e. a.f is a homomorphism of algebras.
Next, it is clear from the definition that 1.f = f and a;.(as.f) = (a1a9).f for
all ay,a9 € K, f € Hom (B, B), i.e. this defines an action of the monoid K.

Now let f € Hom}.(B, B), g € Hom}.(B, B) and a € K. Then for all b € B and
k € N, we have:

(a.g) o (a.fN® () = Y (a.9)? o (a.f)P0) = Y a'g? (al fO (b))

i+j=k it+j=k

— Z aiajg(i) (f(j)(b)) =aF Z (g(i) of(j)) (b)
i+j=k it+j=k

= (a(go /NH® (1)

73



So (a.g) o (a.f) =a.(go f). O

Remark Some special maps, that are used in this thesis are the higher deriva-
tions on rings and modules (cf. sections 1.1 and 1.2) — maps in Hom}. (R, B) resp.
Homj: (M, B&g M) —, the extension d, of the universal derivation to the algebra
of higher differentials — a map in Hom%(Q,Q) (cf. section 2.1) — and at last
the extensions of higher connections on M to maps in Hom};(Q ®r M,Q Qg M)
(cf. section 2.3).
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B Definitions of Some Categories

In this appendix we give an overview of the definitions of some special categories,
such as the notion of a Tannakian category. We don’t give all the details but
refer to other books, if for example one doesn’t know the universal property of
the kernel of a morphism.

Definition B.1 (Abelian Category)
A category C is called an abelian category if the following conditions hold:

1. For all objects X,Y of C, the set of morphisms Mor(X,Y) is an abelian
group.

2. There exists a null object 0 € Ob(C).'®
3. For all objects X,Y of C, there exists a biproduct X &Y € Ob(C).

4. For all morphisms f of C, the kernel Ker(f) and the cokernel Coker(f) of
f exist.

5. For every monomorphism f € Mor(X,Y'), there exists a morphism g : Y —
7 such that X = Ker(g) and for every epimorphism f € Mor(Y, X), there
exists a morphism g : Z —'Y such that X = Coker(g).

For the next definition, the definition of a tensor category over a field K, we
follow the notion of P. Deligne in [Del90] and B. H. Matzat in [Mat01]. There
also exist other notions of a tensor category. For example, what we call a tensor
category is called a “rigid abelian K-linear ACU ®-category” by S. Saavedra in
[Saa72] or a “K-linear rigid abelian tensor category with K = End(1)” by P.
Deligne and J. Milne in [DM89].

Definition B.2 (Tensor Category over K)
A category C is called o tensor category over a field K if the following con-
ditions hold:

1. C is an abelian category.

2. There exists a biadditive functor ® : C x C — C, called tensor product,
that is associative and commutative.

3. There exists a unital object 1¢ for ®.

4. For all X € C, there exists an object X* € C (called dual of X ) and mor-
phisms ex € Mor(X ® X*,1¢) (called evaluation) and 6x € Mor(1e, X*®
X) (called coevaluation), such that:

I8 All the object that are assumed to exists are defined by their universal properties.
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i S x ®id x
XX v o Xt X and X2 v g X @ X
idy |8x®idx idX* lidx* Rex
X X*
commute.

d. Endc(lc) =K.

Remark Let C be a tensor category. Then for all objects X,Y € C, the functor
T — Mor(T ® X,Y) is representable and the representing object, denoted by
Hom(X,Y), is called the internel hom of X and Y.

The following proposition is a collection of some useful results, that are all proved
in [Del90]:

Proposition B.3 Let C be a tensor category over a field K. Then:
1. For all X,Y € C, there is an isomorphism txy : X* ® Y — Hom(X,Y).
2. For all X € C, the bidual (X*)* is isomorphic to X.
3. For all X,Y € C, X* ® Y™ is isomorphic to (X ® Y)*.

Example B.4 For a commutative ring R, the category Mod(R) of finitely gen-
erated R-modules is an abelian category.

The category Proj-Mod(R) of finitely generated projective R-modules is in gen-
eral not abelian, but satisfies the properties 2.-4. of a tensor category, with the
usual tensor product, 1 = R, X* = Homg(X,1),ex : X @ X* > 1,z Q@ a — a(z)

and1 25 X+ @ X 2 Homp(X, X),r 7 - idx.

Definition B.5 ((Neutral) Tannakian Category)

A tensor category T over a field K is called o Tannakian category if there
erists a scheme S # 0 over K and a functor w : T — Mod(S) (so called fibre
functor) which

1. respects the tensor product,
2. 1s K-linear and
3. 18 exact.

T is called a neutral Tannakian category if it admits a fibre functor
w: T — Vect(K).

Ygee again [Del90] for more details
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