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Abstrat

This thesis ontains two major parts. In the �rst part, I introdue a new theory

of modules with iterative onnetion. This theory uni�es the theory of modules

with onnetion in harateristi zero as given by N. Katz (see [Kat87℄) and

the theory of iterative di�erential modules in positive harateristi as given by

B. H. Matzat und M. van der Put (see [Mat01℄ and [MvdP03℄). The seond

part of this work is about the di�erential Abhyankar onjeture for iterative

Piard-Vessiot extensions (IPV-extensions). This onjeture is onerned with

the problem whih linear algebrai groups our as iterative di�erential Galois

groups of IPV-extensions with restrited singular lous. In this thesis, I prove the

di�erential Abhyankar onjeture for onneted groups and give neessary and

suÆient onditions for onneted groups for being realisable with given singular

points.

Zusammenfassung

Diese Doktorarbeit besteht im Gro�en aus zwei Teilen. Im ersten Teil entwikle

ih eine neue Theorie von Moduln mit iterativem Zusammenhang. Diese Theo-

rie vereinheitliht die Theorie der Moduln mit Zusammenhang in Charakteris-

tik Null, wie N. Katz sie in [Kat87℄ vorstellt, und die Theorie der iterativen

Di�erential-Moduln von B. H. Matzat und M. van der Put (siehe [Mat01℄ und

[MvdP03℄). Im zweiten Teil der Arbeit geht es um die Di�erential-Abhyankar-

Vermutung f�ur iterative Piard-Vessiot-Erweiterungen (IPV-Erweiterungen).

Diese Vermutung maht dar�uber Aussagen, welhe lineare algebraishe Gruppe

als iterative Di�erential-Galoisgruppe von IPV-Erweiterungen mit eingeshr�ank-

tem singul�aren Ort vorkommen. In dieser Arbeit beweise ih die Di�erential-

Abhyankar-Vermutung f�ur zusammenh�angende Gruppen und gebe notwendige

und hinreihende Kriterien f�ur die Realisierbarkeit zusammenh�angender Grup-

pen mit vorgegebenen Singularit�aten an.
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Introdution

At the beginning of di�erential Galois theory, one was restrited to the ase

of harateriti zero. In this ase N. Katz gave a general setting of modules

with integrable onnetion to desribe linear di�erential equations in several vari-

ables (see [Kat87℄). These modules with integrable onnetion form a ategory

DE(R=K) (here R denotes the di�erential ring and K the �eld of onstants),

whih turns out to be a Tannakian ategory or even a neutral Tannakian ate-

gory over K, if there is a �bre funtor ! : DE(R=K)! Vet(K) (for example if

R has a K-rational point). By the general properties of neutral Tannakian ate-

gories, this gives rise to a Galois theory for these linear di�erential equations (see

for example [DM89℄). But this approah of Katz only works in harateristi zero,

mainly beause in positive harateristi p, every p-th power is a onstant with

respet to any derivation on R. In partiular, if there is a di�erential extension

L of R, L would have additional onstants, namely L

p

nR.

After a few attempts by K. Okugawa in 1963 and 1987 (see [Oku63℄ and [Oku87℄),

B. H. Matzat and M. van der Put started to set up a systemati approah to

di�erential Galois theory in positive harateristi (see [MvdP03℄). They used

so alled iterative derivations, whih were �rst introdued by H. Hasse and F.

K. Shmidt in [HS37℄. In their notation, an iterative derivation on a ring R is

a sequene of endomorphisms

�

�

(k)

�

k2N

of the ring R satisfying some properties

(f. proposition 1.2 and the remarks following it), whih imply that �

(1)

is a

derivation and whih would imply that �

(k)

=

1

k!

(�

(1)

)

k

, if the harateristi was

zero. But this di�erential Galois theory developed by Matzat and van der Put

only works for di�erential equations in one variable, and there has still been no

systemati way for several variables.

In the �rst part of this thesis, I will introdue suh a systemati desription using

so alled higher di�erentials and iterative onnetions. This theory is ompletely

independent of the harateristi. The harateristi will only take into aount,

when we look for speial properties (whih parameters determine an iterative

derivation and so on). We will see that this theory of modules with iterative

onnetion resp. integrable iterative onnetion is a generalisation of both the

lassial theory of modules with (integrable) onnetion in harateristi zero and

the iterative di�erential theory of Matzat and van der Put over algebrai funtion

�elds. In setion 4, it will be shown, that the ategory ICon(R=K) of modules

with iterative onnetion over R and the ategory ICon

int

(R=K) of modules with

integrable iterative onnetion over R are both (neutral) Tannakian ategories.

In getting the right setting, the main idea is to regard a higher derivation not

as a sequene of maps

�

�

(k)

: R! R

�

k2N

but as a homomorphism of algebras

 : R ! R[[T ℄℄ by summing up, in detail  (r) :=

P

1

k=0

�

(k)

(r)T

k

. This leads to

the notion of R-gas (ompletions of graded R-algebras), whih allows to gener-

alise the de�nition of a higher derivation and to obtain a universal objet

^




R=K

iii



with a universal higher derivation d

R

: R!

^




R=K

, replaing the module of di�er-

entials 


R=K

in lassial theory. There have already been some attempts in this

diretion (see for example [Voj04℄, where P. Vojta de�ned an algebra of divided

di�erentials), but they all didn't lead to an appropriate theory.

In the seond part of the thesis, we will be onerned with the di�erential Ab-

hyankar onjeture over algebrai funtion �elds in positive harateristi.

So we will be in the ase, for whih Matzat and van der Put developed an itera-

tive di�erential Galois theory. In more detail, for an iterative di�erential module

(ID-module) M over the algebrai funtion �eld F , there is a minimal iterative

di�erential extension �eld L=F (whih is unique up to di�erential isomorphism),

alled iterative Piard-Vessiot extension (IPV-extension), suh that M 


F

L has

a basis of di�erentially onstant elements. The group of di�erential automor-

phisms of L over F is an algebrai subgroup of GL

n

(K) (n = dim

F

(M), K the

�eld of onstants), alled the iterative di�erential Galois group Gal(L=F ). It

has already been shown by Matzat (see [Mat01℄, or. 8.11) that for every re-

dued linear algebrai group G de�ned over K, there exists an IPV-extension

with Gal(L=F ) = G(K). (We say that G an be realised as di�erential Galois

group.) However, one wants to have realisations with few singular points. The

di�erential Abhyankar onjeture states that a linear algebrai group G an be

realised with singular lous inside a nonempty set S, if and only if G=p(G) an,

where p(G) denotes the subgroup of G generated by its unipotent elements. For �-

nite groups G, this onjeture beomes the lassial Abhyankar onjeture, whih

has been proved by Raynaud and Harbater (see [Ray94℄, [Har94℄ and [Har95℄).

In this work, we will give a realisation of onneted groups whih shows that the

di�erential Abhyankar onjeture is also true for onneted groups.

Nevertheless, the di�erential Abhyankar onjeture is not true in this form. In

setion 9.1, we will give an example of a non-onneted group whih is generated

by unipotent elements but whih is not realisable with one singularity. Sine this

example only works if the �eld of onstants equals F

p

, the di�erential Abhyankar

onjeture might be true if the �eld of onstants is not F

p

.

Chapter 1 gives the de�nition of higher derivations in the general sense and in the

speial ase whih is equivalent to the higher derivations of Hasse and Shmidt.

The R-gas (ompletions of graded R-algebras) used here and throughout the

whole thesis are de�ned in appendix A, together with some properties and no-

tations related to R-gas. In the �rst hapter, we also de�ne higher derivations

on modules and �nally give an ation of the �eld of onstants K on the set of

higher derivations, whih turns out to be very useful later on to simplify a lot of

alulations.

In hapter 2, the algebra of higher di�erentials

^




R=K

is introdued together with

the universal higher derivation d

R

. We show that this universal higher derivation

iv



an be extended to an automorphism d

^




of the K-algebra

^




R=K

(see setion

2.2). At last, we de�ne higher onnetions on a module M as higher derivations

over d

R

, we de�ne extensions of these higher onnetions to endomorphisms of

^




R=K


M using the automorphism d

^




, and we show that over a regular loal

ring R, every �nitely generated module with a higher onnetion is free.

In hapter 3, we fous on iterative derivations on the ring R (i. e. higher deriva-

tions with an additional omposition law) and on iterative derivations on mod-

ules. The iterative derivations seem to be the appropriate replaement for the

ommon derivations, beause they are in one-to-one orrespondene to those in

harateristi zero, what will be shown later. We onlude the hapter with the

de�nitions and some properties of iterative onnetions and integrable iterative

onnetions, the entral objets of the �rst part of this work.

The investigation of ategorial properties is done in the forth hapter. There,

we see that the ategory of modules with (arbitrary) higher onnetion is not

a tensor ategory for lak of some morphisms regarding the dual objet. But

the ategory ICon(R=K) of modules with iterative onnetion and the ategory

ICon

int

(R=K) of modules with integrable iterative onnetion are tensor ate-

gories over K. Even more, together with the �bre funtor ! : ICon(R=K) !

Mod(R), that forgets the onnetion, the ategories ICon(R=K) and

ICon

int

(R=K) are Tannakian ategories and even neutral Tannakian ategories

over K, if R has a K-rational point. A short summary of the de�nitions of the

ategories used here is given in appendix B. In setion 4.2, we sketh a generali-

sation of the previous to shemes.

The last two hapters of the �rst part onentrate on speial properties related

to the harateristi. In hapter 5, it is shown that for har(K) = 0, (ommon)

derivations, di�erentials and onnetions are in one-to-one orrespondene to

iterative derivations, higher di�erentials and iterative onnetions, what proves

that the lassial theory is obtained as a speial ase of the theory developed

here.

In hapter 6, we show that modules with integrable iterative onnetion are in

one-to-one orrespondene to projetive systems. This implies that the theory of

iterative di�erential modules de�ned by Matzat in [Mat01℄ also is obtained as a

speial ase.

In hapter 7, the �rst hapter of the seond part, we start with some properties

of iterative derivations in algebrai funtion �elds in one variable, whih will be

neessary for later purposes. We reall the basi de�nitions and results of the

iterative Piard-Vessiot theory, inluding methods for determining the iterative

di�erential Galois group of an iterative Piard-Vessiot extension (IPV-extension).

In hapter 8, we then onentrate on questions regarding regularity both of it-

erative di�erential modules and of IPV-extensions. One point is that iterative

di�erential modules (ID-modules) an be totally singular, i. e. they are singular

in every plae of the funtion �eld. This is a phenomenon that doesn't our in

v



harateristi zero. We also give riteria for deiding, whether an ID-module is

totally singular or not, and for determining the points in whih these modules

are regular.

Finally in hapter 9, we disuss questions onerning the di�erential Abhyankar

onjeture for IPV-extensions. We show that the onjeture is true for onneted

groups. Moreover, we show that every onneted group an be realised with at

most two singular points and in speial ases with even less singular points. This

has already been stated in [MvdP03℄ (see [MvdP03℄, thm. 7.1 (3) and or. 7.7

(3)), but the proof skethed there has a gap (f. the remark in setion 9.5). The

realisation of a onneted group given here is splitted into several parts: The

realisation of unipotently generated onneted groups, the realisation of tori and

the solution of embedding problems with unipotent kernel.

vi



Part I

In this part of the thesis, the reader is introdued into the theory of iterative

onnetions. The main result is given in setion 4, namely that for a regular

ommutative ring R that is �nitely generated as a K-algebra, the �nitely gen-

erated modules with iterative onnetion form a Tannakian ategory and { if in

addition Spe(R) has a K-rational point { even a neutral Tannakian ategory

over K.

Furthermore in setion 5, we show that in harateristi zero, the ategory

ICon

int

(R=K) of �nitely generated modules with integrable iterative onne-

tion is equivalent to the ategory DE(R=K) of �nitely generated modules with

integrable (ommon) onnetion as introdued by Katz in [Kat87℄. This shows

that the theory of modules with iterative onnetion is a generalisation to all

harateristis of the theory of modules with (ommon) onnetion.

At last in setion 6, we onsider the ase that K has positive harateristi.

Then if R is an algebrai funtion �eld, the ategory ICon(R=K) (and also

ICon

int

(R=K)) is equivalent to the ategory ID

K

(R) of modules with an iterative

derivation as introdued by Matzat in [Mat01℄. So the theory of modules with

iterative onnetion is also a generalisation of this theory.

Notation Throughout this work, K denotes a �eld, R and

~

R denote integral

domains, whih are �nitely generated K-algebras (or loalisations of �nitely gen-

erated K-algebras) and f : R !

~

R denotes a homomorphism of K-algebras.

Furthermore B denotes the ompletion of a graded algebra over

~

R (a

~

R-ga for

short), as de�ned in appendix A.M will always be a �nitely generated R-module.

1



1 Higher Derivations

In this setion we give the notion of higher derivations on rings and modules.

The de�nition used here is di�erent from that introdued by Hasse and Shmidt

in [HS37℄. In fat it is a generalisation whih we will show later on. This more

general de�nition is neessary to de�ne the algebra of higher di�erentials as a

universal objet (see setion 2.1).

1.1 Higher Derivations on Rings

De�nition 1.1 A higher derivation of R to B over K is a homomorphism of

K-algebras  : R! B satisfying " Æ  = f : R! B

0

=

~

R.

The set of all higher derivations of R to B over K will be denoted byHD

K

(R;B).

In the speial ase of B = R[[T ℄℄ (and

~

R = R) we setHD

K

(R) := HD

K

(R;R[[T ℄℄).

For  2 HD

K

(R) we de�ne a sequene

�

 

(k)

�

k2N

of maps  

(k)

: R ! R by the

equation

 (r) =

1

X

k=0

 

(k)

(r)T

k

for all r 2 R.

Proposition 1.2 For  2 HD

K

(R) the maps  

(k)

are homomorphisms of K-

modules and satisfy the following properties:

 

(0)

= id

R

(1)

8 k 2 N ; 8 r; s 2 R :  

(k)

(rs) =

X

i+j=k

 

(i)

(r) 

(j)

(s) (2)

Furthermore a sequene

�

 

(k)

�

k2N

of K-module-homomorphisms satisfying these

two properties de�nes a higher derivation  : R ! R[[T ℄℄ by the equation given

above.

Proof  =

P

1

k=0

 

(k)

T

k

is a homomorphism of K-modules, if and only if for all

r

1

; r

2

2 R and a

1

; a

2

2 K we have

1

X

k=0

 

(k)

(a

1

r

1

+ a

2

r

2

)T

k

=  (a

1

r

1

+ a

2

r

2

) = a

1

 (r

1

) + a

2

 (r

2

)

= a

1

1

X

k=0

 

(k)

(r

1

)T

k

+ a

2

1

X

k=0

 

(k)

(r

2

)T

k

;

i.e. if  

(k)

(a

1

r

1

+ a

2

r

2

) = a

1

 

(k)

(r

1

) + a

2

 

(k)

(r

2

) for all k 2 N , whih means that

 

(k)

is a homomorphism of K-modules for all k 2 N .

Sine " Æ  =  

(0)

, we have id

R

= " Æ  if and only if  

(0)

= id

R

.

2



At last, we have

 (rs) =

1

X

k=0

 

(k)

(rs)T

k

and

 (r) (s) =

 

1

X

k=0

 

(k)

(r)T

k

! 

1

X

k=0

 

(k)

(s)T

k

!

=

1

X

k=0

 

X

i+j=k

 

(i)

(r) 

(j)

(s)

!

T

k

for all r; s 2 R. So  is a homomorphism of algebras if and only if the sequene

�

 

(k)

�

k2N

satis�es the seond property. 2

Remark More generally, for an arbitrary higher derivation  2 HD

K

(R;B) we

denote by  

(k)

the omposition of  and the projetion into the k-th homogeneous

omponent of B. For every r 2 R we then have  (r) =

P

1

k=0

 

(k)

(r). (The right

side is a series that onverges in the topology of B.)

Note that this de�nition of  

(k)

slightly di�ers from that given for  2 HD

K

(R)

(as in the above de�nition  

(k)

(r) only is the oeÆient of T

k

), but it should

always be lear from the ontext or not important, whih of these two notations

is used.

Remark As mentioned in the beginning, Hasse and Shmidt introdued another

de�niton of higher derivations, namely a sequene

�

 

(k)

�

k2N

of homomorphisms of

K-modules whih satisfy the properties of proposition 1.2. So a higher derivation

 2 HD

K

(R) is exatly what Hasse and Shmidt alled a higher derivation.

Proposition 1.3 Let S � R be a multipliatively losed subset and let

~

R = R(y)

be an integral extension of R suh that the minimal polynomial of y, all it g(X),

has oeÆients in R and g

0

(y) is invertible in

~

R, where g

0

(X) denotes the formal

derivative of g(X). Then:

1. Every higher derivation  2 HD

K

(R;B) to a (S

�1

R)-ga B an be extended

uniquely to a higher derivation  

e

2 HD

K

(S

�1

R;B).

2. Every higher derivation  2 HD

K

(R;B) to a

~

R-ga B an be extended

uniquely to a higher derivation  

e

2 HD

K

(

~

R;B).

Proof For the �rst part, by the universal property of loalisation (f. [Eis95℄,

Ch.2) { applied to  and to " Æ { we only have to show that for eah s 2 S the

image  (s) is invertible in B.

De�ne

P

1

i=0

b

i

2 B indutively by

b

0

:= s

�1

2 S

�1

R = B

0

3



and for all k � 1:

b

k

:= �s

�1

k

X

i=1

 

(i)

(s)b

k�i

:

Then we get:

 (s) �

 

1

X

i=0

b

i

!

=

1

X

k=0

k

X

i=0

 

(i)

(s)b

k�i

= sb

0

+

1

X

k=1

 

sb

k

+

k

X

i=1

 

(i)

(s)b

k�i

!

= 1:

The proof of the seond part: Every extension of  is given by the image of y

in B, i.e. by an element

P

1

k=0

�

k

2 B with �

0

= y and

m

P

i=0

 (a

i

)

�

1

P

k=0

�

k

�

i

= 0,

where g(X) =

P

m

i=0

a

i

X

i

. So we have to show that there exists a unique element

with these properties.

Therefore let

P

1

k=0

�

k

2 B satisfy �

0

= y. The k-th homogenous omponent

(k > 0) of

m

P

i=0

 (a

i

)

�

1

P

l=0

�

l

�

i

is then given by:

0

�

m

X

i=0

 (a

i

)

 

1

X

l=0

�

l

!

i

1

A

k

=

m

X

i=0

X

j+k

1

+���+k

i

=k

 

(j)

(a

i

)�

k

1

� � � �

k

i

=

m

X

i=1

 

(0)

(a

i

)i�

i�1

0

�

k

+ P ( 

(j)

(a

i

); �

0

; �

1

; : : : ; �

k�1

)

=

m

X

i=1

ia

i

y

i�1

�

k

+ P ( 

(j)

(a

i

); �

0

; �

1

; : : : ; �

k�1

);

where P ( 

(j)

(a

i

); �

0

; �

1

; : : : ; �

k�1

) denotes a polynomial expression in  

(j)

(a

i

) (j =

0; : : : ; k; i = 0; : : : ; m) and y = �

0

; �

1

; : : : ; �

k�1

. (Here the seond equality is

obtained by sorting out all terms, in whih �

k

ours.) Sine

P

m

i=1

ia

i

y

i�1

= g

0

(y)

is invertible in

~

R, the ondition that the k-th homogenous omponent above

equals 0 is equivalent to

�

k

= �g

0

(y)

�1

� P ( 

(j)

(a

i

); �

0

; �

1

; : : : ; �

k�1

)

and therefore there is a unique

1

P

k=0

�

k

2 B, whose homogenous omponents an

be alulated by the formula above. 2

Example 1.4 For a polynomial algebra R = K[t

1

; : : : ; t

m

℄, every higher deriva-

tion of R into some R-ga B is given by an m-tupel (b

1

; : : : ; b

m

) of elements of B

4



satisfying "(b

j

) = t

j

for all j = 1; : : : ; m.

The higher derivations �

t

j

2 HD

K

(K[t

1

; : : : ; t

m

℄) given by �

t

j

(t

i

) = t

i

for i 6= j

and �

t

j

(t

j

) = t

j

+ T play an important role. In the lassial ontext, �

(1)

t

j

is just

the derivation with respet to t

j

. We therefore all �

t

j

the higher derivation

with respet to t

j

. If

~

R is a loalisation of K[t

1

; : : : ; t

m

℄ or an integral exten-

sion as in the previous proposition, then the �

t

j

2 HD

K

(K[t

1

; : : : ; t

m

℄) uniquely

extend to higher derivations on

~

R. These derivations will also be referred to as

higher derivation with respet to t

j

and will also be denoted by �

t

j

.

De�nition 1.5 For  2 HD

K

(R) we de�ne  [[U ℄℄ 2 HD

K[[U ℄℄

(R[[U ℄℄) by

 [[U ℄℄(

P

1

i=0

a

i

U

i

) =

P

1

i=0

 (a

i

)U

i

.

Using this we get a omposition of higher derivations  

1

;  

2

2 HD

K

(R) by:

 

1

?  

2

: R

 

2

�! R[[T ℄℄

T 7!U

���! R[[U ℄℄

 

1

[[U ℄℄

����! R[[U ℄℄[[T ℄℄ = R[[U; T ℄℄

If R[[U; T ℄℄ is given the grading by total degree, we obviously have  

1

?  

2

2

HD

K

(R;R[[U; T ℄℄).

Remark One easily alulates that for r 2 R we have

( 

1

?  

2

)(r) =

X

i;j2N

( 

(i)

1

Æ  

(j)

2

)(r)U

j

T

i

: (3)

Lemma 1.6 Let � : R[[U; T ℄℄ ! R[[T ℄℄ be the homomorphism of R-gas de�ned

by U 7! T and T 7! T . Then the multipliation

 

1

�  

2

:= � Æ ( 

1

?  

2

) (4)

for  

1

;  

2

2 HD

K

(R) de�nes a group struture on HD

K

(R).

Proof See [Mats89℄,x27. 2

1.2 Higher Derivations on Modules

In this setion we onsider higher derivations on modules. Remind that M will

denote a �nitely generated R-module.
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De�nition 1.7 Let  : R ! B be a higher derivation of R in B over K. A

(higher)  -derivation of M is a homomorphism of K-modules

	 :M ! B 


R

M with ("
 id

M

) Æ	 = f 
 id

M

and 	(rm) =  (r)	(m) for all

r 2 R;m 2 M . We denote by HD

K

(M; ) the set of (higher)  -derivations of

M . As in setion 1.1, for  2 HD

K

(R) and 	 2 HD

K

(M; ) we de�ne a sequene

of maps 	

(k)

:M !M by writing 	(m) =

1

P

k=0

	

(k)

(m)T

k

for all m 2M .

Proposition 1.8 For  2 HD

K

(R) and 	 2 HD

K

(M; ) the maps 	

(k)

are

homomorphisms of K-modules and satisfy the following properties:

	

(0)

= id

M

(5)

8 a 2 R;m 2M : 	

(k)

(am) =

X

i+j=k

 

(i)

(a)	

(j)

(m) (6)

Furthermore a sequene

�

	

(k)

�

k2N

of K-module-homomorphisms satisfying these

two properties de�nes a  -derivation 	 : M ! M [[T ℄℄ by the equation given

above.

Proof Analogous to the proof of proposition 1.2. 2

Remark

1. For given  2 HD

K

(R;B), every homomorphism of

~

R-gas g : B !

~

B

indues a map g

�

: HD

K

(M; )! HD

K

(M; g Æ  );	 7! (g 
 id

M

) Æ	.

2. Let  

1

;  

2

2 HD

K

(R). Then as in de�nition 1.5, we an de�ne the omposi-

tion 	

1

?	

2

of two higher derivations 	

i

2 HD

K

(M; 

i

) (i = 1; 2), whih is

an element of HD

K

(M; 

1

?  

2

), and the produt 	

1

�	

2

2 HD

K

(M; 

1

 

2

).

1.3 Ation of K on Higher Derivations

We now regard the ation of K on the set of higher derivations.

1

This ation will

be useful when giving a desription of iterative derivations (see setion 3), whih

is onvenient for alulations.

De�nition 1.9 For a 2 K and  2 HD

K

(R;B) we de�ne a map a: : R ! B

by (a: )

(k)

:= a

k

� 

(k)

for all k 2 N, whih is easily seen to be a higher derivation.

(Here a

0

:= 1 even if a = 0.)

Also for a  -derivation 	 2 HD

K

(M; ) we de�ne a map a:	 : M ! B 


R

M

by (a:	)

(k)

:= a

k

�	

(k)

for all k 2 N, whih is an element of HD

K

(M; a: ).

1

The ation given here atually is a speial ase of the ation of K given in appendix A.
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Proposition 1.10 The de�nition above gives an ation of the multipliative

monoid K on the set HD

K

(R;B) for arbitrary

~

R-ga B. Moreover this ation

ommutes with the group struture on HD

K

(R).

Proof This is a speial ase of proposition A.5 in appendix A. 2

Corollary 1.11 The set Der(R) := f 

(1)

j  2 HD

K

(R)g is a vetor spae over

K.

Proof Let  

(1)

1

;  

(1)

2

2 Der(R) and a

1

; a

2

2 K. Then by equation (3) and (4),

for all r 2 R we have:

(a

1

: 

1

)(a

2

: 

2

)

(1)

(r) =

�

(a

1

: 

1

)

(1)

Æ (a

2

: 

2

)

(0)

�

(r) +

�

(a

1

: 

1

)

(0)

Æ (a

2

: 

2

)

(1)

�

(r)

= a

1

�  

(1)

1

(r) + a

2

�  

(1)

2

(r):

Therefore a

1

�  

(1)

1

+ a

2

�  

(1)

2

2 Der(R). 2

Remark One ould also de�ne an ation of R on HD

K

(R;B) by the same rule.

But we won't use this ation, beause it doesn't behave niely. For example it

doesn't ommute with the multipliation in HD

K

(R) and most properties that

will be shown in setion 3 and used later on are restrited to the ation of K

(and are not valid for arbitrary elements of R). However using the ation of R

one ould see that the set Der(R) de�ned in the previous orollary is in fat an

R-module, atually the R-module of (ommon) derivations of R.
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2 Higher Di�erentials and Higher Connetions

2.1 Higher Di�erentials

Theorem 2.1 Up to isomorphism, there exists a unique R-ga

^




R=K

together

with a higher derivation d

R

: R !

^




R=K

satisfying the following universal prop-

erty:

For eah

~

R-ga B and higher derivation  : R ! B there exists a unique homo-

morphism of

~

R-gas

~

 :

~

R


R

^




R=K

! B with

~

 Æ (1
 d

R

) =  .

2

Proof We onstrut

^




R=K

. Uniqueness is given by the universal property.

Let G = R[d

(k)

r j k 2 N

+

; r 2 R℄ be the polynomial algebra over R in the

variables d

(k)

r and let the degree of d

(k)

r be k. De�ne I � G to be the ideal

generated by the union of the sets

fd

(k)

(r + s)� d

(k)

r � d

(k)

s j k 2 N

+

; r; s 2 Rg;

fd

(k)

a j k 2 N

+

; a 2 Kg and

fd

(k)

(rs)�

k

X

i=0

d

(i)

r � d

(k�i)

s j k 2 N

+

; r; s 2 Rg;

where we identify d

(0)

r with r for all r 2 R. Therefore I is a homogeneous ideal

and we set

^




R=K

as the ompletion of the graded algebra G=I. We also de�ne

the higher derivation d

R

: R!

^




R=K

by d

R

(r) :=

P

1

k=0

d

(k)

r.

3

The universal property is seen as follows: Let  : R! B be a higher derivation.

Then we de�ne an R-algebra-homomorphism g : G ! B by g(d

(k)

r) :=  

(k)

(r)

for all k > 0 and r 2 R. The properties of a higher derivation imply that I lies

in the kernel of g, and therefore g fators through g : G=I ! B and we get a

homomorphism of algebras

^




R=K

! B by extending g ontinuously and therefore

a homomorphisms of

~

R-gas

~

 :

~

R


R

^




R=K

! B.

On the other hand, the ondition

~

 Æ (1
 d

R

) =  fores this hoie of g and so

~

 is unique. 2

Proposition 2.2 (a) For every homomorphism of rings f : R !

~

R there is

a unique homomorphism of

~

R-gas Df :

~

R 


R

^




R=K

!

^




~

R=K

suh that

d

~

R

Æ f = Df Æ (1
 d

R

).

(b) If

~

R is a loalisation of R or

~

R = R(y), where y is integral over R, the

minimal polynomial g(X) of y has oeÆients in R and g

0

(y) is invertible

in R, then Df is an isomorphism.

2

In other words,

^




R=K

is representing the funtor HD

K

(R;�).

3

Here and in the following the residue lass of d

(k)

r 2 G in

^




R=K

will also be denoted by

d

(k)

r.
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Proof Sine d

~

R

Æf is a higher derivation on R, part (a) follows from the universal

property of

^




R=K

.

By proposition 1.3, in the two ases of part (b), every higher derivation on R

to a

~

R-ga extends uniquely to

~

R. So there exists a (unique) higher derivation

~

d :

~

R !

~

R 


R

^




R=K

extending (1 
 d

R

). By the universal property of

^




~

R=K

,

there exists a unique homomorphism of

~

R-gas g :

^




~

R=K

!

~

R


R

^




R=K

suh that

g Æ d

~

R

=

~

d. Now we have

(g ÆDf) Æ (1
 d

R

) = g Æ d

~

R

Æ f =

~

d Æ f = (1
 d

R

)

and therefore by the universal property (g ÆDf) = id

~

R


R

^




R=K

. Furthermore

(Df Æ g) Æ d

~

R

Æ f = Df Æ

~

d Æ f = Df Æ (1
 d

R

) = d

~

R

Æ f:

By the unique extension of higher derivations this leads to (Df Æ g) Æ d

~

R

= d

~

R

and �nally we get (Df Æ g) = id

^




~

R
=K

by the universal property of

^




~

R=K

.

So Df and g are inverse to eah other and so Df is an isomorphism. 2

Theorem 2.3 (a) Let R = K[t

1

; : : : ; t

m

℄ be the polynomial ring in m variables.

Then

^




R=K

is the ompletion of the polynomial algebra

R[d

(i)

t

j

j i 2 N

+

; j = 1; : : : ; m℄.

(b) Let F=K(t

1

; : : : ; t

m

) be a �nite separable algebrai extension �eld. Then

^




F=K

is the ompletion of the polynomial algebra

F [d

(i)

t

j

j i 2 N

+

; j = 1; : : : ; m℄.

() Let (R;m) be a regular loal ring of dimension m, let t

1

; : : : ; t

m

generate m

and assume that R is a loalisation of a �nitely generated K-algebra and

that R=m is a �nite separable extension of K. Then

^




R=K

is the ompletion

of the polynomial algebra R[d

(i)

t

j

j i 2 N

+

; j = 1; : : : ; m℄.

Remark We will denote the ompletion of suh a polynomial algebra by

R[[d

(i)

t

j

j i 2 N

+

; j = 1; : : : ; m℄℄, although it is not really a ring of power se-

ries, beause it ontains in�nite sums of di�erent variables.

Proof (a): Sine for P 2 R the image d

�

P (t

1

; : : : ; t

m

)

�

= P

�

d(t

1

); : : : ; d(t

m

)

�

is a \power series" in d

(i)

t

j

,

^




R=K

is generated by the d

(i)

t

j

as a R-ga. On the

other hand, sine every hoie of  

(i)

(t

j

) 2 R (i 2 N

+

; j = 1; : : : ; m) de�nes a

higher derivation  2 HD

K

(R), by the universal property of

^




R=K

the d

(i)

t

j

are

algebraially independent over R.

(b): This follows from part (a) and proposition 2.2(b), sine K(t

1

; : : : ; t

m

) is

a loalisation of K[t

1

; : : : ; t

m

℄ and F = K(t

1

; : : : ; t

m

)[y℄ with an element y 2

F that is separable algebrai over K(t

1

; : : : ; t

m

). So the minimal polynomial

9



g(X) 2 K(t

1

; : : : ; t

m

)[X℄ of y satis�es g

0

(y) 6= 0, i. e. g

0

(y) is invertible in F .

(): We will show that

^




R=K




R

(R=m) is isomorphi to (R=m)[[d

(i)

t

j

℄℄. Then,

sine

^




R=K




R

Quot(R) is isomorphi to Quot(R)[[d

(i)

t

j

℄℄ (prop. 2.2 and part

(b)), by [Hart77℄, Ch.II, lemma 8.9, it follows that (

^




R=K

)

k

is a free R-module

and that the residue lasses of any basis of (

^




R=K

)

k

is a basis of (

^




R=K




R

R=m)

k

.

Hene we obtain

^




R=K

= R[[d

(i)

t

j

℄℄.

First, let  : R ! B be a higher derivation of R to a R=m-ga B. Then for all

k 2 N and r

1

; : : : ; r

k+1

2 m, we have

 

(k)

(r

1

� � � r

k+1

) =

X

i

1

+���+i

k+1

=k

 

(i

1

)

(r

1

) � � � 

(i

k+1

)

(r

k+1

) = 0;

sine in eah summand at least one i

j

= 0, and so  

(i

1

)

(r

1

) � � � 

(i

k+1

)

(r

k+1

) 2

mB = 0. Therefore  

(k)

(and  

(i)

for i < k) fators through R=m

k+1

.

Next, sine R=m is a �nite separable extension of K, there is �y 2 R=m that gen-

erates the extension K � R=m. Let g(X) 2 K[X℄ be the minimal polynomial of

�y, then starting with an arbitrary representative y 2 R for �y, using the Newton

approximation y

n+1

= y

n

� g(y

n

)g

0

(y

n

)

�1

, we obtain an element ~y

k

2 R suh that

g(~y

k

) � 0 (mod m

k+1

) for given k 2 N . (Note that the Newton approximation is

well de�ned and onverges to a root of g(X), sine g(y) = g(y) = 0 2 R=m, so

g(y) 2 m, sine g

0

(y) = g

0

(y) 6= 0 2 R=m, so g(y) 2 R

�

and so indutively for all

n 2 N : �y

n+1

= �y

n

= �y 2 R=m, g(y

n+1

) 2 m and g

0

(y

n+1

) 2 R

�

.) This proves that

for all k 2 N , the ring R=m

k+1

ontains a sub�eld isomorphi to R=m.

Now by [Mats89℄, theorem 14.4, the assoiated graded ring gr(R) of R is isomor-

phi to the polynomial ring (R=m)[t

1

; : : : ; t

m

℄ and therefore we obtain

gr(R=m

k+1

)

�

=

(R=m)[t

1

; : : : ; t

m

℄=n

k+1

, where n is the ideal generated by

ft

1

; : : : ; t

m

g. Furthermore, sine R=m

k+1

ontains a sub�eld isomorphi to R=m,

we see that the inlusion �

k

: (R=m)[t

1

; : : : ; t

m

℄=n

k+1

! R=m

k+1

(given by the

inlusion K[t

1

; : : : ; t

m

℄=n

k+1

� R=m

k+1

and �y 7! ~y

k

) is an isomorphism.

Hene, every higher derivation  

gr

: gr(R) ! B into an R=m-ga B indues a

higher derivation  

R

: R! B on R by  

(k)

R

:=  

(k)

gr

Æ �

�1

k

(K 2 N) and vie versa.

So

^




R=K




R

R=m

�

=

^




gr(R)=K




gr(R)

R=m = (R=m)[[d

(i)

t

j

℄℄. 2

Corollary 2.4 If K is a perfet �eld and R is a regular ring, then the homoge-

neous omponents (

^




R=K

)

k

(k 2 N) are projetive R-modules.

Proof For every maximal ideal m�R, the loalisation R

m

ful�lls the onditions

of theorem 2.3(). And so by proposition 2.2, R

m




R

(

^




R=K

)

k

�

=

(

^




R

m

=K

)

k

is a

free R

m

-module. Hene by [Eis95℄, thm. A3.2, (

^




R=K

)

k

is a projetive R-module.

2
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2.2 An Extension of the Universal Derivation

Notation We will sometimes omit indies when they are lear from the ontext.

So for example in the following

^


 means

^




R=K

and d means d

R

, as there are no

other rings mentioned.

Theorem 2.5 For all a 2 K the mapping

d

(i)

r 7!

1

X

j=0

a

j

�

i + j

j

�

d

(i+j)

r;

where i 2 N and r 2 R, de�nes a ontinuous homomorphism of K-algebras

a:d

^




:

^


!

^


 satisfying the following three onditions:

1. a:d

^




extends the higher derivation a:d : R!

^


.

2. For all a; b 2 K: (a:d

^




) Æ (b:d

^




) = (a+ b):d

^




.

3. 0:d

^




= id

^




.

For short, we will write d

^




instead of 1:d

^




and �d

^




instead of �1:d

^




.

To prove the theorem we need a ombinatorial lemma.

Lemma 2.6 For all i; k; l 2 N the following holds:

1.

X

i

1

+i

2

=i

�

k

i

1

��

l

i

2

�

=

�

k + l

i

�

2.

�

i + l + k

i + l

��

i+ l

i

�

=

�

i + l + k

i

��

l + k

l

�

Sketh of the proof Both identities are given by ounting in two di�erent

ways: Given two disjoint sets M

1

andM

2

of order k resp. l, both sides of the �rst

identity ount the number of possibilities hoosing i elements out ofM

1

[M

2

. The

two sides of the seond identity ount the number of possibilities of partitioning

a set of order i + l + k into three subsets of order i,l and k.

Proof of theorem 2.5We �rst prove that a:d

^




is well de�ned: For b 2 K; i 2 N

+

we have

a:d

^




�

d

(i)

b

�

=

1

X

j=0

a

j

�

i+ j

j

�

d

(i+j)

(b) = 0:

11



For all r; s 2 R; i 2 N we have

a:d

^




�

d

(i)

(r + s)

�

=

1

X

j=0

a

j

�

i + j

j

�

d

(i+j)

(r + s)

=

1

X

j=0

a

j

�

i + j

j

�

d

(i+j)

(r) +

1

X

j=0

a

j

�

i+ j

j

�

d

(i+j)

(s)

= a:d

^




�

d

(i)

r + d

(i)

s

�

:

Moreover,

a:d

^




�

d

(i)

(rs)

�

=

1

X

j=0

a

j

�

i+ j

j

�

d

(i+j)

(rs)

=

1

X

j=0

a

j

�

i+ j

j

�

X

k+l=i+j

d

(k)

r � d

(l)

s

and

a:d

^




 

X

i

1

+i

2

=i

d

(i

1

)

r � d

(i

2

)

s

!

=

X

i

1

+i

2

=i

 

1

X

j

1

=0

a

j

1

�

i

1

+ j

1

j

1

�

d

(i

1

+j

1

)

(r)

! 

1

X

j

2

=0

a

j

2

�

i

2

+ j

2

j

2

�

d

(i

2

+j

2

)

(s)

!

=

1

X

j=0

X

i

1

+i

2

=i

j

1

+j

2

=j

a

j

1

+j

2

�

i

1

+ j

1

i

1

��

i

2

+ j

2

i

2

�

d

(i

1

+j

1

)

(r) � d

(i

2

+j

2

)

(s)

=

1

X

j=0

a

j

X

i

1

+i

2

=i

k+l=i+j

�

k

i

1

��

l

i

2

�

d

(k)

(r) � d

(l)

(s)

=

1

X

j=0

a

j

X

k+l=i+j

�

k + l

i

�

d

(k)

(r) � d

(l)

(s):

So all relations are preserved and a:d

^




is wellde�ned.

a:d

^




extends a:d beause for r 2 R we have

a:d

^




(r) = a:d

^




(d

(0)

r) =

1

X

j=0

a

j

�

j

j

�

d

(j)

(r) = a:d(r):

12



At last, for r 2 R; i 2 N we have

a:d

^




�

b:d

^




(d

(i)

r)

�

= a:d

^




 

1

X

j=0

b

j

�

i+ j

j

�

d

(i+j)

r

!

=

1

X

j=0

b

j

�

i+ j

j

�

1

X

k=0

a

k

�

i+ j + k

k

�

d

(i+j+k)

r

=

1

X

j;k=0

b

j

a

k

�

i + j

i

��

i + j + k

i+ j

�

d

(i+j+k)

r

=

1

X

n=0

n

X

j=0

b

j

a

n�j

�

i+ j

i

��

i+ n

i+ j

�

d

(i+n)

r

=

1

X

n=0

 

n

X

j=0

b

j

a

n�j

�

n

j

�

!

�

i+ n

i

�

d

(i+n)

r

=

1

X

n=0

(a+ b)

n

�

i+ n

i

�

d

(i+n)

r = (a+ b):d

^




�

d

(i)

r

�

:

The identity 0:d

^




= id

^




is lear from the de�nition. 2

Remark By the seond and the third property we see, that a:d

^




atually is an

automorphism of

^


 for all a 2 K. The endomorphisms a:d

^




play an important

role in the iterative theory, as will be seen in setion 3.

De�nition 2.7 For a 2 K we deompose a:d

^




into a sequene

�

(a:d

^




)

(k)

�

k2N

of ontinuous endomorphisms of the K-module

^


 in the following way:

4

For a

homogeneous element ! 2

^




i

of degree i we de�ne

(a:d

^




)

(k)

(!) := pr

i+k

(a:d

^




(!)) 2

^




i+k

:

It is lear that the series

P

1

k=0

(a:d

^




)

(k)

onverges against a:d

^




, at least pointwise,

and that for all k 2 N we have (a:d

^




)

(k)

= a

k

� d

(k)

^




.

Proposition 2.8 For all i; j 2 N we have:

d

(i)

^




Æ d

(j)

^




=

�

i+ j

i

�

d

(i+j)

^




:

Proof For all i; j 2 N and ! 2

^


, the term

�

d

(i)

^




Æ d

(j)

^




�

(!) is the oeÆ-

ient of a

i

b

j

in the expression ((a:d

^




) Æ (b:d

^




)) (!). By theorem 2.5, we have

(a:d

^




) Æ (b:d

^




) = (a+ b):d

^




and so

�

d

(i)

^




Æ d

(j)

^




�

(!) is the oeÆient of a

i

b

j

in the

expression (a+ b):d

^




(!) =

P

1

k=0

(a + b)

k

d

(k)

^




(!), i. e. equals

�

i+j

i

�

d

(i+j)

^




(!). 2

4

f. appendix A
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2.3 Higher Connetions

De�nition 2.9 A higher onnetion onM is a d-derivation r 2 HD

K

(M; d).

If  2 HD

K

(R;B) is a higher derivation, we de�ne the higher  -derivation r

 

on M by

r

 

:= (

~

 
 id

M

) Æ r :M !

^




R=K




R

M ! B 


R

M :

For all a 2 K we de�ne an endomorphism a:

^




r :

^





R

M !

^





R

M by

(a:

^




r)(! 
 x) := a:d

^




(!) � (a:r)(x)

for all ! 2

^


 and x 2 M , i.e. a:

^




r = (�

^





 id

M

) Æ (a:d

^





 a:r), where �

^




denotes the multipliation map in

^


.

Remark Be aware that in the previous de�nition the map a:d

^





 a:r is a map

from

^





R

M to

^


 


a:d(R)

(

^


 


R

M) = (

^


 


a:d(R)

^


) 


R

M (the tensor produt

is taken over the image of R under a:d

^




!).

Lemma 2.10 Let (R;m) be a regular loal ring suh that R=m is a �nite separable

extension of K. By Noether normalization, R is a �nite separable extension of

K[t

1

; : : : ; t

m

℄

(t

1

;:::;t

m

)

, where ft

1

; : : : ; t

m

g is a minimal set of generators of m.

Let �

t

j

2 HD

K

(R) (j = 1; : : : ; m) denote the higher derivations with respet to t

j

(f. example 1.4).

Then for every r 2 R n f0g there exist k

1

; : : : ; k

m

2 N suh that

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(r) 2 R

�

and for all l

1

; : : : ; l

m

2 N with l

j

� k

j

(j = 1; : : : ; m) and l

i

< k

i

for some

i 2 f1; : : : ; mg:

�

�

(l

m

)

t

m

Æ � � � Æ �

(l

1

)

t

1

�

(r) 62 R

�

Proof Let r 2 R n f0g. Choose E 2 N suh that r 2 m

E

and r 62 m

E+1

. Then

r an (uniquely) be written as

r =

X

e=(e

1

;:::;e

m

)2N

m

jej=E

u

e

t

e

;

where u

e

2 R and u

f

2 R

�

for at least one f = (f

1

; : : : ; f

m

).

(We use the usual notation of multiindies: jej = e

1

+� � �+e

m

and t

e

= t

e

1

1

� � � t

e

m

m

.)

For arbitrary l = (l

1

; : : : ; l

m

) 2 N

m

and e 2 N

m

we have:

�

�

(l

m

)

t

m

Æ � � � Æ �

(l

1

)

t

1

�

(t

e

) =

�

e

1

l

1

�

� � �

�

e

m

l

m

�

t

e�l

=

8

<

:

0 if l

i

> e

i

for some i

1 if l

j

= e

j

for all j

2 m if jlj < jej
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So if we hoose k

j

= f

j

(j = 1; : : : ; m), we get

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(r) =

X

jej=E

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(u

e

t

e

)

=

X

jej=E

X

0�l

j

�k

j

j=1;:::;m

�

�

(k

m

�l

m

)

t

m

Æ � � � Æ �

(k

1

�l

1

)

t

1

�

(u

e

)

�

�

(l

m

)

t

m

Æ � � � Æ �

(l

1

)

t

1

�

(t

e

)

� u

f

� 1 (mod m):

So

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(r) 2 u

f

+ m � R

�

, and for all l 2 N

m

with l

j

� k

j

(j =

1; : : : ; m) and l

i

< k

i

for some i, we have

�

�

(l

m

)

t

m

Æ � � � Æ �

(l

1

)

t

1

�

(r) 2 m = R n R

�

,

sine jlj < E. 2

Theorem 2.11 Let (R;m) be a regular loal ring suh that R=m is a �nite sep-

arable extension of K and let M be a �nitely generated R-module with a higher

onnetion r 2 HD

K

(M; d). Then M is a free R-module.

Proof Let fx

1

; : : : ; x

n

g be a minimal set of generators of M .

Assume that x

1

; : : : ; x

n

are linearly dependent. Then there exists a nontrivial

relation

P

n

i=1

r

i

x

i

= 0, with r

i

2 R. Choose E 2 N suh that r

j

2 m

E

for all

j = 1; : : : n and r

i

62 m

E+1

for at least one i and without loss of generality let

r

1

62 m

E+1

. Then hoose k

1

; : : : ; k

m

2 N for r

1

as given in the previous lemma.

Then

0 =

�

r

(k

m

)

�

t

m

Æ � � � Æ r

(k

1

)

�

t

1

�

(

n

X

i=1

r

i

x

i

)

=

n

X

i=1

X

0�l

j

�k

j

j=1;:::;m

�

�

(l

m

)

t

m

Æ � � � Æ �

(l

1

)

t

1

�

(r

i

)

�

r

(k

m

�l

m

)

�

t

m

Æ � � � Æ r

(k

1

�l

1

)

�

t

1

�

(x

i

)

�

n

X

i=1

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(r

i

) � x

i

(mod mM)

Sine

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(r

1

) 2 R

�

, we get x

1

2 hx

2

; : : : ; x

n

i + mM , so M =

hx

2

; : : : ; x

n

i + mM and therefore by Nakayama's lemma M = hx

2

; : : : ; x

n

i, in

ontradition to the ondition that fx

1

; : : : ; x

n

g is minimal.

So x

1

; : : : ; x

n

is a basis for M and in partiular M is a free R-module. 2
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3 Iterative Theory

3.1 Iterative Derivations

De�nition 3.1 A higher derivation � 2 HD

K

(R) is alled an iterative deriva-

tion, if

� ? � = � Æ �;

where � : R[[T ℄℄ ! R[[U; T ℄℄ is the homomorphism of R-gas de�ned by T 7!

U + T .

In terms of the �

(k)

, this identity is written as:

8 i; j 2 N : �

(i)

Æ �

(j)

=

�

i + j

i

�

�

(i+j)

:

We denote the set of iterative derivations on R by ID

K

(R).

Example 3.2 If R is the polynomial ring K[t

1

; : : : ; t

m

℄ or an extension of that

ring as in proposition 1.3, the higher derivations �

t

j

with respet to t

j

(f. exam-

ple 1.4) are iterative derivations. (For K[t

1

; : : : ; t

m

℄ this is obvious and for the

extensions, this follows from lemma 3.5.)

Lemma 3.3 (haraterisation of iterative derivations)

Let  2 HD

K

(R) be a higher derivation. Then the following onditions are

equivalent:

(i)  is iterative,

(ii)

~

 Æ d

^




=  [[T ℄℄ Æ

~

 ,

(iii) For all a 2 K:

~

 Æ (a:d

^




) = (a: [[T ℄℄) Æ

~

 .

If K is an in�nite �eld, then this is also equivalent to

(iv) For all a; b 2 K: (a: )(b: ) = (a+ b): ,

whereas for arbitrary K the onditions (i)-(iii) only imply ondition (iv).

Proof For a 2 K, r 2 R and i 2 N we have:

~

 Æ (a:d

^




)(d

(i)

r) =

~

 

 

1

X

j=0

a

j

�

i+ j

j

�

d

(i+j)

r

!

=

1

X

j=0

a

j

�

i+ j

j

�

 

(i+j)

(r)T

i+j
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and

(a: [[T ℄℄) Æ

~

 (d

(i)

r) = a: [[T ℄℄

�

 

(i)

(r)T

i

�

=

1

X

j=0

a

j

 

(j)

( 

(i)

(r))T

i+j

:

So by omparing the oeÆients of T

i+j

one sees that ondition (iii) is ful�lled

if and only if

~

 Æ (a:d

^




) = (a: [[T ℄℄) Æ

~

 is ful�lled for an arbitrary a 2 K n f0g

(e.g. a = 1, i.e. ondition (ii)) and if and only if for all i; j 2 N we have

 

(j)

Æ  

(i)

=

�

i+j

j

�

 

(i+j)

, i.e.  is iterative.

Furthermore we get for all a; b 2 K:

((a: )(b: ))

(k)

=

X

i+j=k

(a: )

(i)

Æ (b: )

(j)

=

X

i+j=k

a

i

b

j

 

(i)

Æ  

(j)

; sine b 2 K;

and

((a+ b): )

(k)

= (a+ b)

k

 

(k)

=

X

i+j=k

a

i

b

j

�

i+ j

i

�

 

(i+j)

So if  is iterative we obtain ondition (iv) and if #K = 1 by omparing the

oeÆients of a

i

we obtain from ondition (iv) that  is iterative. 2

Example 3.4 Condition (iv) is in fat weaker if K is �nite. If for example

K = F

q

and R = F

q

[t℄, then  2 HD

K

(R) de�ned by  (t) = t + 1 � T

2q�1

is not

iterative, sine

(2q � 1) 

(2q�1)

(t) = 2q � 1 6= 0 =  

(2q�2)

�

 

(1)

(t)

�

:

On the other hand, for all a 2 F

q

we have a

2q�1

= a and so

�

(a: )(b: )

�

(k)

(t) =

X

i+j=k

a

i

b

j

 

(i)

( 

(j)

(t)) = a

k

 

(k)

(t) + a

k�2q+1

b

2q�1

 

(k�2q+1)

(1)

=

8

<

:

t k = 0

a

2q�1

+ b

2q�1

= (a+ b)

2q�1

k = 2q � 1

0 otherwise

9

=

;

=

�

(a + b): 

�

(k)

(t)

for all a; b 2 K = F

q

.
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Remark Condition (iv) is very useful for alulations { even if K is �nite. If

one has to show that some higher derivation  2 HD

K

(R) is iterative, one an

often use the following trik:

Let

~

R := K

sep




�

K\R

R be the maximal separable extension of R by onstants.

Then by proposition 1.3 the higher derivation  uniquely extends to a higher

derivation  

e

2 HD

K

(

~

R) = HD

K

sep

(

~

R). Sine #K

sep

=1, we an use ondition

(iv) to show that  

e

is iterative and therefore  is iterative.

Whenever it will be shown that for all a; b 2 K

sep

, (a: )(b: ) = (a + b): , this

trik will be used, although we won't mention it expliitely.

The next lemma states some strutural properties of ID

K

(R).

Lemma 3.5 1. If two iterative derivations �

1

; �

2

2 ID

K

(R) satisfy �

(i)

1

Æ�

(j)

2

=

�

(j)

2

Æ �

(i)

1

for all i; j 2 N, then �

1

�

2

is again an iterative derivation.

2. ID

K

(R) is invariant under the ation of K.

3. If

~

R � R is a ring extension suh that every higher derivation on R uniquely

extends to a higher derivation on

~

R (see proposition 1.3 for examples), then

the extension �

e

2 HD

K

(

~

R) of an iterative derivation � 2 ID

K

(R) is again

iterative.

Proof

1. By the given ondition, for all a; b 2 K

sep

, we have (a:�

2

)(b:�

1

) = (b:�

1

)(a:�

2

)

and so

(a:(�

1

�

2

))(b:(�

1

�

2

)) = (a:�

1

)(a:�

2

)(b:�

1

)(b:�

2

) = (a:�

1

)(b:�

1

)(a:�

2

)(b:�

2

)

= ((a+ b):�

1

)((a+ b):�

2

) = (a+ b):(�

1

�

2

)

for all a; b 2 K

sep

. Therefore by lemma 3.3 �

1

�

2

is iterative.

2. Let a 2 K and � 2 ID

K

(R). Then for all b;  2 K

sep

we have

(b:(a:�))(:(a:�)) = (ba:�)(a:�) = (ba+ a):� = (b+ ):(a:�):

So a:� is iterative by lemma 3.3.

3. Let � 2 ID

K

(R) and �

e

2 HD

K

(

~

R) the unique extension. Then for all

a; b 2 K

sep

, (a + b):�

e

and (a:�

e

)(b:�

e

) are both extensions of (a + b):� 2

HD

K

(R), hene equal. So �

e

is iterative.

2
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It is easy to see that an element ! 2

^




R=K

equals zero if and only if for all higher

derivations  2 HD

K

(R) the image

~

 (!) 2 R[[T ℄℄ equals zero. But it is not

lear { nor even true { if there is a nonzero higher di�erential ! 2

^




R=K

suh

that

~

�(!) = 0 for all iterative derivations � 2 ID

K

(R). We therefore make the

following

De�nition 3.6 We say that R has enough iterative derivations, if for every

nonzero ! 2

^




R=K

there exists an iterative derivation � 2 ID

K

(R) suh that

~

�(!) 6= 0.

Example 3.7 If R=K is an algebrai funtion �eld and #K = 1, then R has

enough iterative derivations. This will be shown in setion 6.

De�nition 3.8 Let M be an R-module and � 2 ID

K

(R). A higher �-derivation

� 2 HD

K

(M;�) is alled an iterative �-derivation, if � ? � = �

�

(�), where

�

�

(�) = (�
 id

M

) Æ � (f. remark 1.2). The set of iterative �-derivations will

be denoted by ID

K

(M;�).

Remark Note that there is no sense in de�ning an iterative derivation

� 2 HD

K

(M; ) for a non-iterative higher derivation  2 HD

K

(R), beause

� ? � 2 HD

K

(M; ?  ), whereas �

�

(�) 2 HD

K

(M;� Æ  )).

Lemma 3.9 Let � 2 ID

K

(R) be an iterative derivation and 	 2 HD

K

(M;�) be

a �-derivation. Then 	 is iterative, if and only if for all a; b 2 K

sep

the identity

(a:	)(b:	) = (a+ b):	 holds.

Proof Analogous to the proof of lemma 3.3. 2

3.2 Iterative Connetions

In the previous, we have seen that d

^




satis�es the ondition d

(i)

^




Æd

(j)

^




=

�

i+j

i

�

d

(i+j)

^




and that for iterative derivations � 2 ID

K

(R) we have the \same" ondition

�

(i)

Æ �

(j)

=

�

i+j

i

�

�

(i+j)

. This motivates the following de�nition of an iterative

onnetion.

De�nition 3.10 A higher onnetion r on M is alled an iterative onne-

tion if for all i; j 2 N the identity

^




r

(i)

Æ

^




r

(j)

=

�

i+ j

i

�

^




r

(i+j)

holds.

5

5

As de�ned in appendix A for the general ase,

^




r

(i)

denotes that part of

^




r, that \inreases

degrees by i".
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An iterative onnetion r on M is alled an integrable iterative onnetion

if for all ommuting iterative derivations �

1

; �

2

2 ID

K

(R) (i. e. �

1

�

2

= �

2

�

1

) the

iterative derivations r

�

1

and r

�

2

ommute.

A higher onnetion r on M is alled an involutive higher onnetion if

^




r Æ �r = 1
 id

M

as maps from M to

^



M .

In setion 4 we will see the role whih is played by the modules with involutive

higher onnetions in questions about ategorial properties. The notion of an in-

tegrable iterative onnetion is motivated by the orrespondene to the integrable

(ommon) onnetions in harateristi 0 (f. setion 5).

Theorem 3.11 Let r be a higher onnetion on M . Then:

1. r is iterative if and only if for all a; b 2 K

sep

: a:

^




r Æ b:

^




r = (a + b):

^




r

and if and only if for all a; b 2 K

sep

: a:

^




r Æ b:r = (a+ b):r.

2. If r is iterative, then for all iterative derivations � 2 ID

K

(R) the �-

derivation r

�

is again iterative. If R has enough iterative derivations then

the onverse is also true.

Proof The �rst equivalene in 1. is seen by a similar alulation as in lemma

3.3. The seond one is obtained by

(a:

^




r Æ b:

^




r) (! 
m) = a:d

^




(b:d

^




(!)) � (a:

^




r Æ b:

^




r) (1
m)

= (a:d

^




Æ b:d

^




)(!) � (a:

^




r Æ b:r) (m)

and

(a + b):

^




r(! 
m) = (a+ b):d

^




(!) � ((a+ b):

^




r) (1
m)

= (a:d

^




Æ b:d

^




)(!) � (a + b):r(m);

for all ! 2

^


 and m 2M .

For proving the seond part, let � 2 ID

K

(R) and regard the following diagram:

M

b:r

//

b:r

�

��

^



M

a:d
a:r

//

(

(a:�)[[T ℄℄Æ

~

�

)


a:r

�

��

(

~

�Æa:d

^




)


a:r

�

S

S

S

S

S

S

S

S

))S

S

S

S

S

S

S

a:

^




r

**
^





a:dR

(

^



M)

�
id

M

//

~

�


~

�
id

M

��

^



M

~

�
id

M

��

R[[T ℄℄
M

(a:�)[[T ℄℄
a:r

�

//

(a:r

�

)[[T ℄℄

44
R[[T ℄℄


a:�(R)

M [[T ℄℄ R[[T ℄℄


a:�(R)

M [[T ℄℄

�
id

M

//
R[[T ℄℄
M
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The square on the left ommutes, sine

b:r

�

= b:

�

(

~

�
 id

M

) Æ r

�

= (

~

�
 id

M

) Æ (b:r):

The lower triangle ommutes by lemma 3.3, sine � is iterative. The upper

triangle ommutes, sine a:r

�

= (

~

� 
 id

M

) Æ (a:r) and the square on the right

ommutes, sine

~

� is a homomorphism of algebras. Furthermore the top of the

diagram ommutes by de�nition of a:

^




r and the bottom ommutes, sine a:r

�

is a (a:�)-derivation.

So the whole diagram ommutes and we obtain

(

~

�
 id

M

) Æ (a:

^




r) Æ (b:r) = (a:r

�

)[[T ℄℄ Æ (b:r

�

) = (a:r

�

)(b:r

�

)

for all iterative derivations � 2 ID

K

(R).

If r is iterative, we get

(a + b):r

�

= (

~

�
 id

M

) Æ (a + b):r = (

~

�
 id

M

) Æ (a:

^




r) Æ (b:r) = (a:r

�

)(b:r

�

)

by the �rst part of this theorem and so by lemma 3.9, r

�

is iterative.

In turn, from the ommuting diagram we see that ifr

�

is iterative for an iterative

derivation � 2 ID

K

(R), we get

(

~

�
 id

M

) Æ (a:

^




r) Æ (b:r) = (

~

�
 id

M

) Æ (a+ b):r

for those �. So if R has enough iterative derivations and r

�

is iterative for all

� 2 ID

K

(R) we obtain (a:

^




r) Æ (b:r) = (a+ b):r, i. e. r is iterative. 2

Corollary 3.12 Every iterative onnetion on M is an involutive higher onne-

tion.

Proof If r is iterative, then by the previous theorem, we have

^




r Æ �r = 1:

^




r Æ �1:r = (1� 1):r = 0:r = 1
 id

M

:

So r is involutive. 2
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4 Categorial Properties

In this setion we show { assuming a slight restrition to the ring R { that the

�nitely generated projetive modules (i.e. loally free of �nite rank) with higher

onnetion form an abelian ategory and that the modules with integrable resp.

iterative resp. involutive higher onnetion form full subategories. Furthermore

these subategories form tensor ategories over K and even form Tannakian at-

egories (see appendix B for the notions of these ategories that we use).

Notation From now on let in addition K be a perfet �eld and R be a regular

ommutative ring over K, whih is the loalisation of a �nitely generated K-

algebra, suh that K is algebraially losed in R.

4.1 The Category of Modules with Iterative Connetions

Notation In the following a pair (M;r) will always denote a �nitely generated

R-module M together with a higher onnetion r : M !

^


 


R

M , even if

\�nitely generated" is not mentioned.

Theorem 4.1 Every �nitely generated R-module M with higher onnetion r is

a projetive R-module.

Proof Sine R is a �nitely generated algebra over a �eld, R is a Noetherian ring.

So every �nitely generated R-module M is �nitely presented and so by [Eis95℄,

theorem A3.2, M is projetive if and only if every loalisationM

m

at a maximal

ideal m� R is a free R

m

-module. For m� R maximal, the onnetion r an be

extended toM

m

by r(s

�1

m) = d

R

m

(s

�1

)r(m) for s 2 Rnm; m 2M . SoM

m

is a

module with higher onnetion over the loal ring R

m

. Sine R is regular, R

m

is

a regular loal ring. Sine R is �nitely generated over K, the �eld R

m

=mR

m

is a

�nite extension ofK and sine K is perfet, this extension is separable. Therefore

we an apply theorem 2.11, i. e. M

m

is a free R

m

-module. 2

De�nition 4.2 Let (M

1

;r

1

) and (M

2

;r

2

) be R-modules with higher onne-

tions. Then we all f 2 Hom

R

(M

1

;M

2

) a morphism of modules with higher

onnetions, or a morphism for short, if the diagram

M

1

f

//

r

1

��

M

2

r

2

��

^





R

M

1

id

^





f

//
^





R

M

2

ommutes. The set of all morphisms f 2 Hom

R

(M

1

;M

2

) will be denoted by

Mor

�

(M

1

;r

1

); (M

2

;r

2

)

�

. If the onnetions are lear from the ontext we

will sometimes omit them.
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Remark It is lear that the set of modules with higher onnetion and the

sets of morphisms de�ned above form a ategory. We will denote this ate-

gory by HCon(R=K). Furthermore the full subategories of modules with

involutive higher onnetion resp. iterative onnetion resp. integrable itera-

tive onnetion will be denoted by HCon

inv

(R=K) resp. ICon(R=K) resp.

ICon

int

(R=K). By orollary 3.12, we have a hain of inlusions

HCon(R=K) � HCon

inv

(R=K) � ICon(R=K) � ICon

int

(R=K). As the ob-

jets of HCon(R=K) are modules with an extra struture and the morphisms

are speial homomorphisms, we have a faithful funtor ! : HCon(R=K) !

Mod(R), that forgets the extra struture.

De�nition 4.3 Let (M

1

;r

1

) and (M

2

;r

2

) be R-modules with higher onnetion.

Then we de�ne a higher onnetion r

�

on (M

1

�M

2

) by

r

�

:M

1

�M

2

r

1

�r

2

����!

^



M

1

�

^



M

2

�

=

�!

^



 (M

1

�M

2

)

and a higher onnetion r




on M

1




R

M

2

by

r




:M

1




R

M

2

r

1


r

2

����! (

^





R

M

1

)


d(R)

(

^





R

M

2

)

�

=

�!

�

=

�! (

^





d(R)

^


)


R

(M

1




R

M

2

)

�
id

���!

^





R

(M

1




R

M

2

):

Furthermore we de�ne a higher onnetion r

H

on Hom

R

(M

1

;M

2

) by the follow-

ing:

For f 2 Hom

R

(M

1

;M

2

) the omposition

M

1

�r

1

��!

^





R

M

1

id

^





f

���!

^





R

M

2

^




r

2

��!

^





R

M

2

is an element of Hom

R

(M

1

;

^


 


R

M

2

), whih an be regarded as an element of

^


 


R

Hom

R

(M

1

;M

2

) by the anonial isomorphisms Hom

R

(M

1

;

^




(k)




R

M

2

)

�

=

^




(k)




R

Hom

R

(M

1

;M

2

) in eah degree k. In this sense we de�ne

r

H

(f) :=

^




r

2

Æ (id

^





 f) Æ �r

1

:

Theorem 4.4 The ategory HCon(R=K) is an abelian ategory and

HCon

inv

(R=K), ICon(R=K) and ICon

int

(R=K) are abelian subategories.

Proof For all (M

1

;r

1

); (M

2

;r

2

) 2 HCon(R=K) the set Mor(M

1

;M

2

) is a

subgroup of Hom

R

(M

1

;M

2

) and so is an abelian group. Sine Mod(R) is an

abelian ategory, it is suÆiant to show that the kernels, diret sums and so on

in the ategoryMod(R) an be equipped with a higher onnetion (resp. iterative

onnetion . . . ) and that all neessary homomorphisms (like the inlusion map

of the kernel into the module) are morphisms.

The trivial module f0g with the zero map 0 : f0g !

^


 
 f0g = f0g as higher

onnetion obviously full�lls the properties of a null objet. The diret sum of
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M

1

and M

2

together with the higher onnetion r

�

de�ned above is a biprodut

forM

1

and M

2

, sine the natural inlusions in

j

:M

j

!M

1

�M

2

and the natural

projetions pr

j

: M

1

�M

2

! M

j

(j = 1; 2) are morphisms, what an easily be

veri�ed. Furthermore if r

1

and r

2

are iterative, integrable iterative or involutive

higher onnetions, then so is r

�

.

Next we show that kernels and okernels exist. Let f 2 Mor(M

1

;M

2

) be a

morphism then the image of f is an objet of HCon(R=K), beause for all

f(y) 2 Im(f), we have r

2

(f(y)) = (id

^





 f) (r

1

(y)) 2 Im(id

^





f) =

^



 Im(f),

i. e. r

2

an be restrited to a higher onnetion r

2

j

Im(f)

: Im(f) !

^


 
 Im(f).

So we have a ommutative diagram with exat rows:

0

//
Ker(f)

//

r

1

j

Ker(f)

��
�

�

�

M

1

f

//

r

1

��

Im(f)

//

r

2

j

Im(f)

��

0

0

//
Ker(id

^





 f)

//
^



M

1

id

^





f

//
^



 Im(f)

//
0

But Im(f) is a projetive R-module and therefore at, so the short exat sequene

0! Ker(f)!M

1

! Im(f)! 0 stays exat after tensoring with an arbitrary R-

module and so Ker(id

^





f) =

^



Ker(f), whih shows that (Ker(f);r

1

j

Ker(f)

) 2

HCon(R=K) and that the inlusion Ker(f) ,!M

1

is a morphism.

Furthermore we have a ommutative diagram with exat rows:

0

//
Im(f)

//

r

2

j

Im(f)

��

M

2

//

r

2

��

Coker(f)

//

r

2

��
�

�

�

0

0

//
^



 Im(f)

//
^



M

2

//
^



 Coker(f)

//
0

(Remind that tensoring is always right exat). So (Coker(f);r

2

) 2 HCon(R=K)

and the epimorphismM

2

! Coker(f) is a morphism. It is lear that the onne-

tions r

1

j

Ker(f)

and r

2

will be iterative, integrable iterative or involutive higher

onnetions, if r

1

and r

2

are.

At last, in an abelian ategory every monomorphism has to be an inlusion map

of a kernel and every epimorphism has to be a projetion map to a okernel. But

this is ful�lled inHCon(R=K), beause if f :M

1

!M

2

is a monomorphism then

M

1

is the kernel of the projetion M

2

! Coker(f), and if f is an epimorphism

then M

2

is the okernel of the inlusion Ker(f)!M

1

.

Therefore HCon(R=K), HCon

inv

(R=K), ICon(R=K) and ICon

int

(R=K) are

abelian ategories. 2

Now we hek, whether these ategories are tensor ategories over K

(HCon(R=K) won't, whilest the others will). By the last theorem, they are

all abelian, and by theorem 4.1, all modules that arise are projetive and the

ategory Proj-Mod(R) of �nitely generated projetive R-modules is known to
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satisfy all properties apart from being an abelian ategory.

6

So we de�ne

� the tensor produt of (M

1

;r

1

) and (M

2

;r

2

) by

(M

1

;r

1

)
 (M

2

;r

2

) := (M

1




R

M

2

;r




)

(this tensor produt is obviously assoiative and ommutative),

� the unital objet 1 := (R; d

R

) (R 


R

M ! M; r 
m 7! rm is easily seen

to be a morphism for all M 2 HCon(R=K)),

� the dual objet to (M;r) by

(M;r)

�

:= (M

�

;r

�

);

where r

�

(f) := d

^




Æ (id

^





 f) Æ (�r) 2 Hom

R

(M;

^


)

7

for f 2 M

�

=

Hom

R

(M;R) and

� the internal hom objet of (M

1

;r

1

) and (M

2

;r

2

) by

Hom ((M

1

;r

1

); (M

2

;r

2

)) := (Hom

R

(M

1

;M

2

);r

H

) :

Furthermore we reognize that every endomorphism in End(1) is given by the

image of 1 2 R, whih has to be onstant, as 1 2 K is a onstant. Sine all

onstants are algebrai over K and K is algebraially losed in R, End(1) is

isomorphi to K.

Lemma 4.5 For all (M

1

;r

1

); (M

2

;r

2

) 2 HCon(R=K) the isomorphism

�

M

1

;M

2

:M

�

1




R

M

2

! Hom

R

(M

1

;M

2

); f 
m 7! fv 7! f(v) �mg

is a morphism (and therefore an isomorphism) in HCon(R=K).

Proof For all f 
m 2M

�

1




R

M

2

and for all v 2M

1

, we have

r

H

(�

M

1

;M

2

(f 
m))(v) =

�

^




r

2

Æ

�

id

^





 �

M

1

;M

2

(f 
m)

�

Æ (�r

1

)

�

(v)

=

^




r

2

�

(id

^





 f)(�r

1

(v))
m

�

= (�
 id

M

2

)

�

d

^




�

(id

^





 f)(�r

1

(v)

�


r

2

(m)

�

6

See appendix B.

7

Here we used that

^





R

R

�

=

^


 and Hom

R

(M;

^


)

�

=

Hom

R

(M;R)


R

^


 (f. the de�nition

of r

H

in de�nition 4.3).
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and

(id

^





 �

M

1

;M

2

)(r




(f 
m))(v)

= (id

^





 �

M

1

;M

2

)

�

�

d

^




Æ (id

^





 f) Æ (�r

1

)

�


r

2

(m)

�

(v)

=

�

d

^




Æ (id

^





 f) Æ (�r

1

)

�

(v) � r

2

(m):

So r

H

Æ �

M

1

;M

2

= (id

^





 �

M

1

;M

2

) Æ r




, i. e. �

M

1

;M

2

is a morphism. 2

Lemma 4.6 Let (M;r) 2 HCon(R=K), and let "

M

: M 
 M

�

! R and

Æ

M

: R ! M

�


M be the homomorphisms given in the de�nition of a tensor

ategory, i. e. "

M

(m 
 f) = f(m) and Æ

M

(1) = �

�1

M;M

(id

M

). Then the following

are equivalent:

(i) "

M

is a morphism.

(ii) r is involutive.

(iii) Æ

M

is a morphism.

Proof For m
 f 2M 
M

�

, we have

(id

^





 "

M

)(r




(m
 f))

= (id

^





 "

M

)

�

(�
 id) Æ

�

r(m)
 (d

^




Æ (id

^





 f) Æ �r

�

�

= (�
 id)

�

�

id

^







�

d

^




Æ (id

^





 f) Æ �r

��

(r(m))

�

=

�

(�
 id) Æ (d

^





 d

^




) Æ (id

^





^





 f) Æ (�d

^





�r) Æ r

�

(m)

=

�

d

^




Æ (id

^





 f) Æ (�
 id) Æ (�d

^





�r) Æ r

�

(m)

=

�

d

^




Æ (id

^





 f) Æ �

^




r Ær

�

(m)

and

d

R

("

M

(m
 f)) = d

R

(f(m)) = (d

R

Æ f)(m):

Applying �d

^




on both terms shows that "

M

is a morphism if and only if for all

f 2 M

�

, (id

^





 f) Æ �

^




r Æ r = 1 
 f 2 Hom(M;

^


 
 R), i. e. if and only if

�

^




r Ær = 1
 id

M

, i. e. r is involutive.

Sine �

M;M

is an isomorphism in HCon(R=K), Æ

M

is a morphism if and only if

�

M;M

Æ Æ

M

is a morphism. Now

r

H

((�

M;M

Æ Æ

M

)(1)) = r

H

(id

M

) =

^




r Æ (id

^





 id

M

) Æ �r =

^




r Æ �r

and

(id

^





 (�

M;M

Æ Æ

M

))(d

R

(1)) = (id

^





 (�

M;M

Æ Æ

M

))(1
 1) = 1
 id

M

;

so Æ

M

is a morphism if and only if

^




r Æ �r = 1
 id

M

, i. e. r is involutive. 2
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Theorem 4.7 HCon

inv

(R=K), ICon(R=K) and ICon

int

(R=K) are tensor at-

egories over K.

Proof Sine we have already shown, that these ategories are abelian, that

HCon(R=K) is equipped with an assoiative and ommutative tensor produt

and that "

M

and Æ

M

are morphisms if (M;r) 2 HCon

inv

(R=K), it only remains

to show that the three ategories are losed under the onstrutions of tensorising

and dualising. The unital objet of the tensor produt 1 = (R; d

R

) is learly an

element of all three ategories.

We �rst show that ICon(R=K) is losed under these onstrutions. The proof

for HCon

inv

(R=K) is then obtained by replaing a by 1 and b by �1, sine

0:r = 1
 id

M

:M !

^



M .

Let (M

1

;r

1

); (M

2

;r

2

) 2 ICon(R=K), then for all a; b 2 K

sep

:

(a:

^




r




) Æ (b:r




) = (a:

^




r




) Æ (�
 id) Æ (b:r

1


 b:r

2

)

= (�
 id) Æ

�

(a:d

^





 a:r

1

)
 (a:d

^





 a:r

2

)

�

Æ (b:r

1


 b:r

2

)

= (�
 id) Æ

�

(a+ b):r

1


 (a+ b):r

2

�

= (a+ b):r




:

So r




is again iterative and (M

1


M

2

;r




) 2 ICon(R=K).

If (M;r) 2 ICon(R=K), then also (M

�

;r

�

) 2 ICon(R=K), beause for all

a; b 2 K

sep

; f 2M

�

:

a:

^




r

�

�

b:r

�

(f)

�

= � Æ a:(d

^





 d

^




) Æ

�

id

^







�

b:d

^




Æ (id

^





 f) Æ (�b:r)

�

�

Æ (�a:r)

= � Æ a:(d

^





 d

^




) Æ b:(d

^





 d

^




) Æ (id

^





^





 f) Æ �b:(d

^





r) Æ �a:r

= a:d

^




Æ b:d

^




Æ (id

^





 f) Æ (�
 id

M

) Æ �b:(d

^





r) Æ �a:r

= (a+ b):d

^




Æ (id

^





 f) Æ �(a + b):r

= (a+ b):r

�

(f):

Therefore ICon(R=K) is a tensor ategory over K.

For higher onnetions r

1

and r

2

and � 2 ID

K

(R), we have

(r




)

�

= (

~

�
 id) Æ (�
 id) Æ (r

1


r

2

)

= (�
 id) Æ

�

(

~

�
 id

M

1

)
 (

~

�
 id

M

2

)

�

Æ (r

1


r

2

)

= (�
 id) Æ

�

(r

1

)

�


 (r

2

)

�

�

;

from whih it follows immediately that for integrable iterative onnetions r

1

and r

2

, the iterative onnetion r




is integrable, too.
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Finally, let (M;r) 2 ICon

int

(R=K). Then for � 2 ID

K

(R) and all f 2 M

�

, we

obtain

r

�

�

(f) =

~

� Æ � Æ (d

^





 d

R

) Æ (id

^





 f) Æ �r

= � Æ (

~

�


~

�) Æ (d

^





 d

R

) Æ (id

^





 f) Æ �r

= � Æ

�

(

~

� Æ d

^




)
 (

~

� Æ d

R

)

�

Æ (id

^





 f) Æ �r

= � Æ

�

(�[[T ℄℄ Æ

~

�)
 �

�

Æ (id

^





 f) Æ �r

= � Æ (�[[T ℄℄
 �) Æ (id

R[[T ℄℄


 f) Æ (

~

�
 id

M

) Æ �r

= �[[T ℄℄ Æ � Æ (id

R[[T ℄℄


 f) Æ �r

�

= �[[T ℄℄ Æ f [[T ℄℄ Æ �r

�

:

And so for ommuting �

1

; �

2

2 ID

K

(R) and all f 2 M

�

:

(r

�

�

1

r

�

�

2

)(f) = �

1

[[T ℄℄ Æ

�

�

2

[[T ℄℄ Æ f [[T ℄℄ Æ �r

�

2

�

[[T ℄℄ Æ �r

�

1

= (�

1

�

2

)[[T ℄℄ Æ f [[T ℄℄ Æ �(r

�

2

r

�

1

)

= (�

2

�

1

)[[T ℄℄ Æ f [[T ℄℄ Æ �(r

�

1

r

�

2

) = (r

�

�

2

r

�

�

1

)(f):

Hene r

�

also is an integrable iterative onnetion and therefore ICon

int

(R=K)

is a tensor ategory over K. 2

Theorem 4.8 The ategories HCon

inv

(R=K), ICon(R=K) and ICon

int

(R=K)

are Tannakian ategories with the forgetful funtor ! : HCon(R=K)!Mod(R)

(restrited to the respetive ategory) as �bre funtor. If moreover R has a

K-rational point, i. e. there exists a maximal ideal m � R with K

�

=

R=m,

then these ategories are neutral Tannakian ategories with �bre funtor !

K

:

HCon(R=K)

!

�!Mod(R)




R

R=m

����! Vet(K).

Proof By onstrution, the funtor ! is a �bre funtor and so the tensor

ategories HCon

inv

(R=K), ICon(R=K) and ICon

int

(R=K) are Tannakian ate-

gories. If R has a K-rational point, by [Del90℄.2.8, !

K

is a �bre funtor. This

proves the seond part. 2

Remark One might ask whether the inlusions in the hain of ategories

HCon(R=K) � HCon

inv

(R=K) � ICon(R=K) � ICon

int

(R=K) are strit

or not.

Clearly, HCon(R=K) 6= HCon

inv

(R=K), beause if for example M is a free

R-module of dimension 1 with basis b

1

2 M , every ! =

P

1

j=0

!

j

2

^




R=K

with

!

0

= 1 de�nes a higher onnetion r : M !

^




R=K




R

M; b

1

7! ! 
 b

1

, but

in general this higher onnetion is not involutive, beause if r is involutive, !

satis�es the ondition

0 = (�

^




r Ær)

(2)

(b

1

) = (2!

2

� !

2

1

+ d

(1)

^




(!

1

))
 b

1

:
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(The only exeption is the ase, when R is algebrai over K, beause in this ase

^




R=K

= R and hene all these ategories are equivalent to Mod(R)).

The last inlusion ICon(R=K) � ICon

int

(R=K) is strit in general, beause in

the next hapter we will see that in harateristi zero, the ategory ICon(R=K)

is equivalent to the ategory of modules with (ommon) onnetion over R and

ICon

int

(R=K) is equivalent to the ategory of modules with integrable onnetion

over R, and it is known that those two ategories are di�erent if for example

R = K(t

1

; t

2

). However, it is also known that every (ommon) onnetion is

integrable, if har(K) = 0 and R is an algebrai funtion �eld in one variable

over K. In hapter 6, we will see that also ICon(R=K) = ICon

int

(R=K), if R

is an algebrai funtion �eld (in one variable) over K and har(K) = p.

It is yet not lear, if there exists a module with an involutive higher onnetion

that is not iterative. However, if one regards the ondition for an involutive

higher onnetion more expliitly, there seems to be more hoie for getting an

involutive higher onnetion than for an iterative onnetion. We therefore make

the following onjeture.

Conjeture If R is not algebrai over K, then there exist R-modules with

involutive higher onnetion that are not iterative, i. e.

ICon(R=K) ( HCon

inv

(R=K):
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4.2 Higher Connetions on Shemes

Throughout this setion, let K be a perfet �eld, let X be a nonsingular, geo-

metrially integral K-sheme, whih is separated and of �nite type over K and

let O

X

denote the struture sheaf of X.

De�nition 4.9 We de�ne the sheaf of higher di�erentials on X, denoted by

^




X=K

, to be the sheaf assoiated to the presheaf given by

U 7!

^




O

X

(U)=K

for eah open subset U � X and by the restrition maps

D(�

U

V

) :

^




O

X

(U)=K

!

^




O

X

(V )=K

for all open subsets V � U � X, as de�ned in proposition 2.2, where

�

U

V

: O

X

(U)! O

X

(V ) is the restrition map of O

X

.

Remark By proposition 2.2, for all open subsets V � U � X, the diagram

O

X

(U)

d

O

X

(U)

//

�

U

V

��

^




O

X

(U)=K

D(�

U

V

)

��

O

X

(V )

d

O

X

(V )

//
^




O

X

(V )=K

ommutes and so the olletion of maps d

O

X

(U)

indues a morphism of sheaves

of K-algebras d

X

: O

X

!

^




X=K

.

Proposition 4.10 If X is an aÆne sheme, then the presheaf U 7!

^




O

X

(U)=K

already is a sheaf.

Proof The given presheaf is a sheaf if and only if for all open subsets U � X

and all open overings

S

i2I

U

i

= U , the sequene

0!

^




O

X

(U)=K

!

Y

i2I

^




O

X

(U

i

)=K

!

Y

i;j2I

^




O

X

(U

i

\U

j

)=K

is exat. Sine this is a sequene of gas, it suÆes to show that the sequene is

exat in eah homogeneous omponent.

For every open subset V � U , O

X

(V ) is a loalisation of O

X

(U) and so by

proposition 2.2,

^




O

X

(V )=K

�

=

O

X

(V ) 


O

X

(U)

^




O

X

(U)=K

. By orollary 2.4, the

homogeneous omponents (

^




O

X

(U)=K

)

k

(k 2 N) are projetive O

X

(U)-modules

and therefore tensoring with (

^




O

X

(U)=K

)

k

is exat. So the sequene above is

exat in eah homogeneous omponent, if the sequene

0! O

X

(U)!

Y

i2I

O

X

(U

i

)!

Y

i;j2I

O

X

(U

i

\ U

j

)
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is exat. But this is just the ondition on O

X

for being a sheaf. 2

As an immediate onsequene of this proposition, we have the following orollary:

Corollary 4.11 For every aÆne open subset U � X, we have

^




X=K

(U) =

^




O

X

(U)=K

.

De�nition 4.12 Let M be a oherent O

X

-module. A higher onnetion on

M is a morphism of sheaves r : M !

^




X=K




O

X

M , whih loally (i. e. on

aÆne open subsets) is a higher onnetion in the sense of setion 2.3. The higher

onnetion r is alled involutive resp. iterative resp. integrable itera-

tive if r loally is an involutive higher resp. iterative resp. integrable iterative

onnetion.

Remark By theorem 4.1, every oherent O

X

-module M , that admits a higher

onnetion r :M !

^




X=K




O

X

M , is loally free and of �nite rank.

Remark Following the notion of modules with higher onnetions over rings,

we denote by HCon(X=K), HCon

inv

(X=K), ICon(X=K) and ICon

int

(X=K)

the ategories of oherent O

X

-modules with higher onnetions, with involutive

higher onnetions, with iterative onnetions and with integrable iterative on-

netions. By standard methods of algebrai geometry, one obtains that again

HCon

inv

(X=K), ICon(X=K) and ICon

int

(X=K) are tensor ategories over K

and that they are Tannakian ategories. And if X has a K-rational point, they

are in fat neutral Tannakian ategories over K.

Remark In the seond part of this work, oherent modules with higher onne-

tions will our from another point of view:

Let F=K be a �eld of �nite transendene degree over K, and let X be a nonsin-

gular irreduible projetive sheme over K with funtion �eld K(X) = F . Sine

O

X

is a subsheaf of the onstant sheaf K(X), for every oherent O

X

-module

~

M

with higher onnetion r, F 


O

X

~

M is an F -vetor spae with higher onnetion

d

F


r : F 


O

X

~

M !

^




F=K




F

(F 


O

X

~

M):

On the other hand, letM be an F -vetor spae with higher onnetion r :M !

^




F=K




F

M and let U � X be an open subset. If there exists a generating set

fb

1

; : : : ; b

r

g for M suh that for all i = 1; : : : ; r, we have r(b

i

) =

r

P

j=1

!

ji


 b

j

with

!

ji

2

^




X=K

(U) �

^




F=K

, then

~

M := O

U

b

1

+ � � � + O

U

b

r

� M is a oherent O

U

-

module with higher onnetion rj

~

M

:

~

M !

^




U=K




O

U

~

M and the pair (M;r)

is reovered from (

~

M;rj

~

M

) in the way given above. In this ase, we will all

(M;r) regular on U .
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5 Correspondene to the Classial Theory in

Charateristi Zero

For har(K) = 0, in general one gets the usual onstrutions of derivations,

di�erentials and onnetions by restriting to the terms of degree 1. On the

other hand these onstrutions an be uniquely extended to iterative derivations

and iterative onnetions. Moreover integral onnetions, i. e. onnetions whih

preserve ommutators of derivations, are orresponding to integrable iterative

onnetions. This will be proven in this hapter.

So throughout this hapter, letK be a �eld of harateristi zero, R a regular ring,

that is �nitely generated as a K-algebra, and M a �nitely generated R-module.

Proposition 5.1 The map

Der(R=K) �! ID

K

(R); � 7! �

�

;

given by

�

�

(r) :=

1

X

n=0

1

n!

�

n

(r)T

n

for all r 2 R, is a bijetion and the inverse map is given by � 7! �

(1)

.

For a given derivation � on R and a orresponding iterative derivation �

�

the

map I : Der

R

(M)! ID

K

(M;�

�

); �

M

7! �

�

M

given by

�

�

M

(m) :=

1

X

n=0

1

n!

�

n

M

(m)T

n

;

for all m 2M , is a bijetion and the inverse map is given by � 7! �

(1)

.

Proof Let � 2 Der(R=K) be a derivation. Then for all i; j 2 N :

1

i!

�

i

Æ

1

j!

�

j

=

�

i+j

i

�

1

(i+j)!

�

i+j

: So �

�

is an iterative derivation. On the other hand, for every

iterative derivation �, one obtains �

(k)

=

1

k!

(�

(1)

)

k

for all k 2 N by applying the

formula �

(i)

=

1

i

�

(1)

Æ�

(i�1)

indutively. Finally by proposition 1.2, for all r; s 2 R

we have �

(1)

(rs) = r�

(1)

(s) + �

(1)

(r)s, i. e. �

(1)

2 Der(R=K).

The bijetion I : Der

R

(M)! ID

K

(M;�

�

) is shown analogously. 2

Proposition 5.2 The R-module (

^




R=K

)

1

is anonially isomorphi to the mod-

ule of (usual) di�erentials 


R=K

and d

(1)

: R! (

^




R=K

)

1

�

=




R=K

is the universal

derivation.

Proof The ontrution of (

^




R=K

)

1

in the proof of theorem 2.1 is the same as

the usual onstrution of 


R=K

(e.g. in [Hart77℄,II.8). 2
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Proposition 5.3 For every iterative onnetion r on M , the map r

(1)

: M !

(

^




R=K

)

1


 M

�

=




R=K


 M is a onnetion on M and every onnetion r

(1)

on M extends uniquely to an iterative onnetion on M . Furthermore, r is an

integrable iterative onnetion if and only if r

(1)

is an integrable onnetion.

Proof Let r be an iterative onnetion on M . Then for all r 2 R and m 2M ,

we have r

(1)

(rm) = d

(1)

(r) 
 m + rr

(1)

(m). So r

(1)

is a onnetion. On the

other hand, for a given onnetion r

(1)

by the formula r

(k)

=

1

k

�

^




r

(1)

Æ r

(k�1)

�

,

one an indutively alulate maps r

(k)

:M !

^




k


M for all k 2 N , whih build

up an iterative onnetion r =

P

1

k=0

r

(k)

(same alulation as in proposition

5.1).

For proving the equivalene of the integrability onditions, remind that Der(R=K)

is a free R-module and has a basis of ommuting derivations (see [Hart77℄). So

r

(1)

is integrable if and only if for all ommuting derivations �

1

; �

2

2 Der(R=K),

we have [(r

(1)

)

�

1

; (r

(1)

)

�

2

℄ = (r

(1)

)

[�

1

;�

2

℄

= 0, i. e. if for all �

1

; �

2

2 Der(R=K)

with �

1

Æ �

2

= �

2

Æ �

1

, the identity (r

(1)

)

�

1

Æ (r

(1)

)

�

2

= (r

(1)

)

�

2

Æ (r

(1)

)

�

1

holds.

Using the bijetion in proposition 5.1, this is equivalent to the ondition that for

all ommuting iterative derivations �

�

1

; �

�

2

2 ID

K

(R) the iterative derivations

r

�

�

1

and r

�

�

2

ommute, beause

�

r

�

�

1

�

(1)

=

�

r

(1)

�

�

1

. 2

Theorem 5.4 The ategory ICon

int

(R=K) of �nitely generated R-modules with

integrable iterative onnetion and the ategory DE(R=K) of �nitely generated

R-modules with integrable onnetion are equivalent.

Proof This follows diretly from the previous propositions. 2
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6 Positive Charateristi

In this setion, we regard the ase that K has positive harateristi p. Con-

trary to harateristi zero, iterative derivations and iterative onnetions are

not longer determined by the term of degree 1. Moreover, not every derivation

� 2 Der(R=K) an be extended to an iterative derivation � with �

(1)

= �, be-

ause the onditions on an iterative derivation imply (�

(1)

)

p

= p! � �

(p)

= 0, i. e.

at least � has to be nilpotent.

But there are some other strutural properties: The main result is that every

module with integrable iterative onnetion gives rise to a projetive system and

vie versa, similar to the orrespondene of projetive systems and iterative dif-

ferential modules over funtion �elds given in [Mat01℄, Ch.2.2. In fat, when R is

an algebrai funtion �eld, the projetive systems de�ned here are equal to those

de�ned by Matzat and so this shows that in this ase the ategories ICon(R=K),

ICon

int

(R=K), Proj

R

and ID

R

8

are equivalent.

For onveniene, we will restrit to the ase of �elds over K, although this orre-

spondene is true more generally.

In positive harateristi p, every �nitely generated K-algebra (or loalisation

of a �nitely generated K-algebra) R has a natural sequene of K-subalgebras

(R

l

)

l2N

given by R

l

:= R

p

l

.

9

The following proposition gives a haraterisation

of this sequene by the higher di�erential:

Proposition 6.1 (Frobenius Compatibility) For all l 2 N:

R

l

=

\

0<j<p

l

Ker(d

(j)

R

):

Proof Sine d

R

is a homomorphism of algebras, d

R

(R

l

) = d

R

(R

p

l

) � (

^




R=K

)

p

l

and therefore d

(j)

R

(r) = 0 (0 < j < p

l

) for all r 2 R

l

. The other inlusion is

shown indutively: The ase l = 0 is trivial. Now let r 2 R satisfy d

(j)

R

(r) = 0 for

0 < j < p

l

. By indution hypothesis r 2 R

l�1

. So there exists t 2 R with

t

p

l�1

= r. If t 62 R

p

, then t is a separable element of R and we an �nd

separating variables t = t

1

; t

2

; : : : ; t

m

for R, i. e. R=K[t

1

; : : : ; t

m

℄ is a �nite

separable extension (or R is the loalisation of a �nite separable extension of

K[t

1

; : : : ; t

m

℄). By loalising and applying theorem 2.3 and proposition 2.2(b),

we see that d

(1)

R

(t) 6= 0. And so

0 6=

�

d

(1)

R

(t)

�

p

l�1

= d

(p

l�1

)

R

�

t

p

l�1

�

= d

(p

l�1

)

R

(r);

8

Proj

R

denotes the ategory of projetive systems over R and ID

R

denotes the ategory of

ID-modules (f. [Mat01℄)

9

Remember that we assumed K to be perfet and therefore K

p

= K.
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whih is a ontradition. So t 2 R

p

and r 2 R

l

. 2

Remark Sine we are in positive harateristi, we have a Frobenius map on

every ring: F

R

: R! R; r 7! r

p

.

The omponents d

(k)

R

of d

R

ful�ll some kind of ompatibility with the Frobenius

maps F

R

resp. F

^




, namely for all k 2 N ,

d

(pk)

R

Æ F

R

= F

^




Æ d

(k)

R

:

(This follows diretly from the fat, that d

R

is a homomorphism of rings and that

F multiplies degrees by p.) The proposition above then implies that an element

r 2 R lies in the image of F

R

if and only if it lies in the kernel of d

(1)

R

.

In the ase of R being an algebrai funtion �eld in one variable, it was shown by

F. K. Shmidt (see [Mat01℄, h. 1.5) that for an iterative derivation � 2 ID

K

(R)

satisfying �

(1)

6= 0, we have R

p

l

=

T

0<j<p

l

Ker(�

(j)

).

So in this ase we obtain the same sequene of subalgebras, when \only" regarding

an iterative derivation instead of the universal derivation. This will be important

in part II.

From now on, let K be a perfet �eld of harateristi p > 0 and F=K be a

�nitely generated �eld extension of transendene degree m. Furthermore denote

by t

1

; : : : ; t

m

a separable transendene basis for F , i. e. F is a separable algebrai

extension of the rational funtion �eld K(t

1

; : : : ; t

m

).

De�nition 6.2 A projetive system over F is a sequene (M

l

; '

l

)

l2N

with the

following properties

1. For all l 2 N, M

l

is an F

l

-vetor spae of �nite dimension.

2. '

l

: M

l+1

,! M

l

is a monomorphism of F

l+1

-vetor spaes that uniquely

extends to an isomorphism id

F

l


 '

l

: F

l




F

l+1

M

l+1

!M

l

.

A morphism � : (M

l

; '

l

)! (M

0

l

; '

0

l

) of projetive systems over F is a

sequene � = (�

l

)

l2N

of homomorphisms of vetor spaes �

l

:M

l

!M

0

l

satisfying

'

0

l

Æ �

l+1

= �

l

Æ '

l

.

Proposition 6.3 Every projetive system (M

l

; '

l

)

l2N

over F de�nes an inte-

grable iterative onnetion r on M :=M

0

satisfying

\

0<j<p

l

Ker(r

(j)

) = ('

0

Æ � � � Æ '

l�1

) (M

l

):
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For a morphism (�

l

)

l2N

: (M

l

; '

l

) ! (M

0

l

; '

0

l

) of projetive systems over F , the

homomorphism of F -vetor spaes �

0

: M = M

0

! M

0

= M

0

0

is a morphism of

modules with higher onnetion.

Proof (f. [Mat01℄,2.8) By identifying M

l

with its image '

0

Æ � � � Æ '

l�1

(M

l

) in

M , we may assume that M

l

� M for all l 2 N . In order to de�ne r

(k)

, hoose

l 2 N suh that p

l

> k and let fb

1

; : : : ; b

n

g be an F

l

-basis for M

l

. Then by the

seond property of a projetive system, fb

1

; : : : ; b

n

g is an F -basis for M , so for

all v 2M we an �nd oeÆients a

i

2 F suh that v =

P

n

i=1

a

i

b

i

. Then de�ne

r

(k)

(v) :=

n

X

i=1

d

(k)

F

(a

i

)b

i

:

This de�nition is independent of the hosen basis, beause given another F

l

-basis

fb

0

1

; : : : ; b

0

n

g for M

l

, the base hange matrix C = (

ij

) has oeÆients in F

l

and

therefore

r

0(k)

(v) = r

0(k)

 

n

X

j=1

a

j

b

j

!

= r

0(k)

 

n

X

i=1

n

X

j=1



ij

a

j

b

0

i

!

=

n

X

i=1

n

X

j=1

d

(k)

F

(

ij

a

j

)b

0

i

=

n

X

i=1

n

X

j=1



ij

d

(k)

F

(a

j

)b

0

i

=

n

X

j=1

d

(k)

F

(a

j

)b

j

= r

(k)

(v):

The de�nition is also independent of the hosen l, beause for j > l every F

j

-basis

of M

j

is also an F

l

-basis for M

l

.

Furthermore, by hoosing an F

l

-basis fb

1

; : : : ; b

n

g ofM

l

, one sees that an element

v =

P

n

i=0

a

i

b

i

2 M is in

T

0<j<p

l

Ker(r

(j)

) if and only if a

i

2

T

0<j<p

l

Ker(d

(j)

F

)

for all i, i. e. if and only if v 2M

l

.

If remains to show that r is an integrable iterative onnetion. But by hoosing

an F

l

-basis fb

1

; : : : ; b

n

g of M

l

, one sees that the neessary onditions are ful�lled

modulo degrees � p

l

, sine d

F

is an integrable iterative onnetion. As l an be

hosen arbitrary large, r ful�lls all onditions for being an integrable iterative

onnetion.

Finally, let (�

l

)

l2N

: (M

l

; '

l

) ! (M

0

l

; '

0

l

) be a morphism of projetive systems

over F . We have to show, that r

0

Æ �

0

= (id

^





 �

0

) Æ r or equivalently that for

all k 2 N

r

0(k)

Æ �

0

(b

i

) = (id

^





 �

0

) Æ r

(k)

(b

i

) (i = 1; : : : ; n);

where fb

1

; : : : ; b

n

g denotes an F -basis of M . But the last ondition is seen easily

by hoosing fb

1

; : : : ; b

n

g to be an F

l

-basis of M

l

(p

l

> k) and by reminding that
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�

0

(M

l

) = �

l

(M

l

) �M

0

l

. 2

In the following, we will show that the onverse is also true, i. e. a module

with integrable iterative onnetion gives rise to a projetive system over F .

For this, we onsider a monomial ordering on

^




F=K

= F [[d

(i)

t

j

℄℄, namely the

lexiographial order, where the variables are ordered by d

(i

1

)

t

j

1

> d

(i

2

)

t

j

2

if

i

1

> i

2

or if i

1

= i

2

and j

1

> j

2

. The leading term of ! 2

^




F=K

(if it exists) is

then denoted by LT(!).

Lemma 6.4 Let ! 2

^


 be homogeneous of degree p

l

and ! 62 F

^




p

l

. Let d

(i

0

)

t

j

0

be the greatest variable with the property that there exist e

0

2 N, p - e

0

and a

monomial !

0

2

^


 suh that (d

(i

0

)

t

j

0

)

e

0

!

0

is a monomial term of !. Let e

0

and !

0

be hosen suh that (d

(i

0

)

t

j

0

)

e

0

!

0

is maximal amoung those monomials. Then for

every k � p

l

(p� 1), we have:

LT(d

(k)

^




(!)) � e

0

d

(i

0

+p

l

(p�1))

t

j

0

� (d

(i

0

)

t

j

0

)

e

0

�1

!

0

;

with equality if and only if k = p

l

(p� 1) and i

0

< p

l

.

Proof For i 2 N , j 2 f1; : : : ; mg, e 2 N

+

and k 2 N , we have

d

(k)

^




�

(d

(i)

t

j

)

e

�

=

X

k

1

+���+k

e

=k

�

i+ k

1

i

�

� � �

�

i+ k

e

i

�

d

(i+k

1

)

t

j

� � �d

(i+k

e

)

t

j

:

So

LT

�

d

(k)

^




�

(d

(i)

t

j

)

e

�

�

= e �

�

i+ k

i

�

d

(i+k)

t

j

(d

(i)

t

j

)

e�1

if e

�

i + k

i

�

6= 0

d

(k)

^




�

(d

(i)

t

j

)

e

�

= 0 if p j e and p - k and

d

(k)

^




�

(d

(i)

t

j

)

e

�

=

�

d

(

k

p

)

^




�

(d

(i)

t

j

)

e

p

�

�

p

if p j e and p j k:

So for k � p

l

(p� 1), a variable d

(i)

t

j

6= d

(i

0

)

t

j

0

ouring in ! gives a ontribution

to d

(k)

^




(!) of variables

(i) less than d

(i

0

+k)

t

j

0

if it ours in a power not divided by p and

(ii) less than d

(i+

k

p

)

t

j

otherwise.

In the seond ase i � p

l�1

, sine ! 2

^




p

l, and so i+

k

p

� p

l�1

+p

l�1

(p�1) = p

l

. So

d

(i+

k

p

)

t

j

< d

(i

0

+p

l

)

t

j

0

. Therefore the greatest variable that may our is d

(i

0

+k)

t

j

0

(or d

(i

0

+p

l

)

t

j

0

if k < p

l

) and d

(i

0

+p

l

(p�1))

t

j

0

ours if and only if k = p

l

(p� 1) and
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�

i

0

+p

l

(p�1)

i

0

�

6= 0, i. e. i

0

6= p

l

.

The greatest orresponding monomial then is

e

0

d

(i

0

+p

l

(p�1))

t

j

0

� (d

(i

0

)

t

j

0

)

e

0

�1

!

0

:

2

Proposition 6.5 Every F -module M with integrable iterative onnetion r de-

�nes a projetive system (M

l

; '

l

) over F , where M

l

:=

T

0<i<p

l

Ker(r

(i)

) and

'

l

: M

l+1

! M

l

is the inlusion map, and a morphism f : (M;r) ! (M

0

;r

0

)

of modules with higher onnetion de�nes a morphism � : (M

l

; '

l

)! (M

0

l

; '

0

l

) of

projetive systems over F by �

l

:= f j

M

l

.

Proof Sine d

(1)

t

1

; : : : ; d

(1)

t

m

is an F -basis of

^




1

, the kernel Ker(r

(1)

) is equal to

T

m

j=1

Ker

�

r

(1)

�

t

j

�

and sine r is integrable iterative, the endomorphisms

r

(1)

�

t

j

:M !M ommute and

�

r

(1)

�

t

j

�

p

= 0 for all j.

Now let M

1

:= Ker

�

r

(1)

�

( =

T

0<i<p

1

Ker(r

(i)

), sine r is iterative). Then M

1

is an F

1

-vetor spae and

dim

F

1

(M

1

) = dim

F

1

 

m

\

j=1

Ker

�

r

(1)

�

t

j

�

!

�

1

p

m

dim

F

1

(M) = dim

F

(M):

On the other hand, an F

1

-basis of M

1

is F -linearly independent in M and so

dim

F

1

(M

1

) � dim

F

(M). So dim

F

1

(M

1

) = dim

F

(M) and the inlusion '

0

:M

1

!

M

0

=M extends to an isomorphism id

F

0


 '

0

: F

0




F

1

M

1

!M .

Next, we will show thatr(M

1

) � (

^




F=K

)

p




F

1

M

1

. Sine (

^




F=K

)

p

= F

1

[[(d

(i)

t

j

)

p

℄℄ =

F

1

[[d

(pi)

(t

p

j

)℄℄ is isomorphi to

^




F

1

=K

= F

1

[[d

(i)

(t

p

j

)℄℄ as an algebra by the map

d

(pi)

(t

p

j

) 7! d

(i)

(t

p

j

), this means that essentially rj

M

1

is an integrable iterative on-

netion on the F

1

-module M

1

. And then it follows indutively that

dim

F

l+1

(M

l+1

) = dim

F

l

(M

l

) and that, essentially, rj

M

l+1

is an integrable iter-

ative onnetion on the F

l+1

-module M

l+1

.

Sine r is iterative, it suÆes to show that r

(p

l

)

(M

1

) � (

^




F=K

)

p




F

1

M

1

for all

l � 1. So �x an F

1

-basis b = (b

1

; : : : ; b

n

) of M

1

(written as a row) and let A

l

2

Mat

n

(

^




p

l) with r

(p

l

)

(b) = bA

l

.

10

From 0 =

^




r

(p

l

)

(r

(1)

(b)) =

^




r

(1)

(r

(p

l

)

(b)) =

bd

(1)

^




(A

l

) we onlude d

(1)

^




(A

l

) = 0. Assume there is an entry ! 2

^




p

l

� F [d

(i)

t

j

j i = 1; : : : ; p

l

; j = 1; : : : ; m℄ of A

l

with LT (!) = rd

(p

l

)

t

j

(for some

r 2 F and j 2 f1; : : : ; mg). Sine d

(1)

^




(rd

(p

l

)

t

j

) = d

(1)

(r)d

(p

l

)

t

j

+ rd

(p

l

+1)

t

j

and

for all other monomials of !, the image under d

(1)

^




doesn't ontain the variable

d

(p

l

+1)

t

j

, we obtain d

(1)

^




(!) 6= 0, a ontradition.

10

For simpliitiy we use vetor notations: bA

l

denotes the row vetor with j-th omponent

P

n

i=1

(A

l

)

ij

b

i

, and r and d

^




are always applied to the omponents of a vetor or a matrix.
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So ! 2 F [d

(i)

t

j

j i = 1; : : : ; p

l

�1; j = 1; : : : ; m℄. Furthermore, sine r is iterative,

^




r

(p

l

(p�1))

Æ r

(p

l

)

=

�

p

l+1

p

l

�

r

(p

l+1

)

= 0 and therefore

0 =

^




r

(p

l

(p�1))

(bA

l

) = b � d

(p

l

(p�1))

^




(A

l

) +

p

l

(p�1)�1

X

k=0

r

(p

l

(p�1)�k)

(b) � d

(k)

^




(A

l

):

If A

l

62 Mat

n

(F �

^




p

), then by the previous lemma, d

(p

l

(p�1))

(A

l

) has an entry

with leading term e

0

d

(i

0

+p

l

(p�1))

t

j

0

�

d

(i

0

)

t

j

0

�

e

0

�1

� !

0

for some !

0

2

^


, i

0

� p

l

and j

0

2 f1; : : : ; mg and the variables ouring in d

(k)

^




(A

l

) (k < p

l

(p � 1) � 1)

are less than d

(i

0

+p

l

(p�1))

t

j

0

and those ouring in r

(p

l

(p�1)�k)

(b) are even less

than or equal to d

(p

l

(p�1))

t

m

. So we would have

^




r

(p

l

(p�1))

(bA

l

) 6= 0. Therefore

A

l

2 Mat

n

(F

^




p

).

At last, sine d

(1)

^




(A

l

) = 0, in fat A

l

2 Mat

n

(

^




p

), whih ompletes the proof. 2

Theorem 6.6 The ategory Proj

F

of projetive systems over F and the ategory

ICon

int

(F=K) are equivalent. Furthermore, if F is an algebrai funtion �eld in

one variable over K and � 2 ID

K

(F ) with �

(1)

6= 0, then they are also equivalent

to the ategory ID

F

of iterative di�erential modules over (F; �) (f. [Mat01℄) and

to the ategory ICon(F=K).

Proof The �rst statement follows immediately from the previous two proposi-

tions, sine the given maps are funtors that are inverse to eah other.

The proof of proposition 6.5 shows that the integrability ondition is not ne-

essary, when F is an algebrai funtion �eld in one variable. So ICon(F=K) is

equivalent to Proj

F

, in this ase. Furthermore, Matzat showed in [Mat01℄ that

ID

F

is equivalent to Proj

F

, too. 2

Remark Let (M;r) be an F -moduleM with an integrable iterative onnetion

r and orresponding projetive system (M

l

)

l2N

, and let b = (b

1

; : : : ; b

n

) be

an F -basis of M . By the properties of a projetive system, we ould hoose

matries D

l

2 GL

n

(F

l

) (l 2 N) suh that bD

0

� � �D

j�1

is an F

j

-basis of M

j

(j = 0; 1; : : : ). Then the image of an arbitrary element ba :=

P

n

i=1

b

i

a

i

2 M

(where a = (a

1

; : : : ; a

n

)

t

with a

i

2 F ) by r

(k)

an be alulated by

r

(k)

(ba) = bD

0

� � �D

l�1

d

(k)

F

�

D

�1

l�1

� � �D

�1

0

a

�

;

where k < p

l

.
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Part II

In this part of the thesis, we restrit to the ase of an algebrai funtion �eld

11

F over an algebraially losed �eld of positive harateristi. In this ase the

modules with iterative onnetion are the same as iterative di�erential modules

de�ned in [Mat01℄, whih was shown in setion 6.

So the iterative Piard-Vessiot theory (IPV-theory) developed by Matzat an be

used: For an iterative Piard-Vessiot extension (IPV-extension) E=F , there is

a Galois orrespondene between the intermediate iterative di�erential �elds L

(i. e. F � L � E) and the (Zariski-)losed subgroups of the linear algebrai

group Gal(L=F ) = Aut

ID

(L=F ). In what follows, we will investigate when a

linear algebrai group an be realised as an iterative di�erential Galois group

by an IPV-extension, whih is regular outside a given nonempty set of plaes

S � P

F

.

Notation Throughout this part of the thesis, K denotes an algebraially losed

�eld of harateristi p > 0, F an algebrai funtion �eld over K, P

F

the set

of plaes of F and C

F

a nonsingular projetive model for F , i. e. a nonsingular

projetive urve over K with funtion �eld K(C

F

) = F . By [Hart77℄, h. I,

theorem 6.9, this urve is unique up to isomorphism and there is a one-to-one

orrespondene between the (losed) points of C

F

and the plaes of F . For a

point x 2 C

F

, we denote by O

x

� F the set of funtions that are regular in x. It

is a disrete valuation ring and therefore indues a valuation on F orresponding

to the plae x 2 P

F

. Given a point x 2 C

F

, we denote by ord

x

(t) the image of an

element t 2 F under this valuation. An element s 2 F with ord

x

(s) = 1 is alled

a loal parameter for x.

For an open subset U � C

F

, we denote by O(U) the set of funtions that are

regular on U , i. e. O(U) =

T

x2U

O

x

.

For l 2 N , we denote by F

l

, (O

x

)

l

resp. (O(U))

l

the elements t in F , O

x

resp.

O(U) with d

(k)

F

(t) = 0 for all 0 < k < p

l

.

12

11

The term algebrai funtion �eld will always mean algebrai funtion �eld in one variable.

12

Remind that d

F

denotes the universal derivation d

F

: F !

^




F=K

and that F

l

, (O

x

)

l

and

(O(U))

l

are subrings, as shown in proposition 6.1.
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7 IPV-Extensions and ID-Galois Groups

7.1 Iterative Derivations in Algebrai Funtion Fields

Proposition 7.1 Let t 2 F be a separating element (i. e. F=K(t) is a �nite

separable extension). Then for every F -ga B and every b 2 B with "(b) = t

there exists a unique higher derivation  : F ! B satisfying  (t) = b.

And the higher derivation �

t

given by �

t

(t) = t + T 2 F [[T ℄℄ is an iterative

derivation, the iterative derivation with respet to t.

Proof This is a speial ase of example 1.4 and example 3.2. 2

Remark In example 1.4, we needed a transendene basis to de�ne the iterative

derivations with respet to one of the basis elements. Sine an algebrai funtion

�eld has transendene degree 1, every separating t 2 F itself is a transendene

basis for F .

Proposition 7.2 (hain rule) Let t 2 F be separating, �

t

the iterative deriva-

tion with respet to t and let  2 HD

K

(F ). Then for all r 2 F

 (r) =

1

X

k=0

�

(k)

t

(r)

 

1

X

j=1

 

(j)

(t)T

j

!

k

:

Proof De�ne a homomorphism of F -algebras � : F [[T ℄℄ ! F [[T ℄℄ by �(T ) :=

 (t) � t =

P

1

j=1

 

(j)

(t)T

j

2 T � F [[T ℄℄. Then � Æ �

t

is a homomorphism of K-

algebras and " Æ � Æ �

t

= " Æ �

t

= id

F

, and therefore � Æ �

t

is a higher derivation.

Furthermore (� Æ �

t

)(t) = �(t+ T ) = t+  (t)� t =  (t) and so, by the previous

proposition, � Æ �

t

=  , hene the formula above. 2

Proposition 7.3 (hain rule for modules) Let t 2 F be separating, �

t

the

iterative derivation with respet to t and let  2 HD

K

(F ). Moreover let (M;r)

be a module with iterative onnetion. Then for all m 2M

r

 

(m) =

1

X

k=0

r

(k)

�

t

(m)

 

1

X

j=1

 

(j)

(t)T

j

!

k

:

Proof By theorem 6.6, an iterative onnetion leads to a projetive system

(M

l

)

l2N

over F . So for an arbitrary l 2 N , hoose an F

l

-basis fb

1

; : : : ; b

n

g of

M

l

. Then for every m 2 M , there are a

1

; : : : ; a

n

2 F with m =

P

n

i=1

a

i

b

i

and
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therefore we get by the hain rule:

r

 

(m) = r

 

 

n

X

i=1

a

i

b

i

!

�

n

X

i=1

 (a

i

)b

i

(mod T

p

l

)

=

n

X

i=1

1

X

k=0

�

(k)

t

(a

i

)

 

1

X

j=1

 

(j)

(t)T

j

!

k

b

i

�

1

X

k=0

r

(k)

�

t

(m)

 

1

X

j=1

 

(j)

(t)T

j

!

k

(mod T

p

l

):

Sine l an be hosen arbitrary large, we get

r

 

(m) =

1

X

k=0

r

(k)

�

t

(m)

 

1

X

j=1

 

(j)

(t)T

j

!

k

:

2

Lemma 7.4 For eah n 2 N

+

there exist �

n

2 K[X

1

; : : : ; X

n

; X

�1

1

℄, suh that

for all separating variables s; t 2 F we have:

�

(n)

t

(s) = �

n

�

�

(1)

s

(t); : : : ; �

(n)

s

(t)

�

:

Espeially, �

(1)

s

(t) 6= 0 for all separating s; t 2 F .

Proof By the hain rule, for separating s; t 2 F we have:

s+ T = �

s

(s) =

1

X

k=0

�

(k)

t

(s)

 

1

X

j=1

�

(j)

s

(t)T

j

!

k

:

And so, by omparing the oeÆients, we obtain,

1 = �

(1)

t

(s)�

(1)

s

(t) (so �

(1)

s

(t) 6= 0) and

0 = �

(n)

t

(s)

�

�

(1)

s

(t)

�

n

+

n�1

X

k=1

X

j

1

+���+j

k

=n

j

i

�1

�

(k)

t

(s)�

(j

1

)

s

(t) � � ��

(j

k

)

s

(t)

for n > 1. From this, one indutively obtains a formula for alulating �

(n)

t

(s) as

a polynomial of �

(1)

s

(t); : : : ; �

(n)

s

(t) and �

(1)

s

(t)

�1

. Replaing �

(j)

s

(t) by X

j

gives

the desired \polynomial" �

n

. 2

Theorem 7.5 If #K = 1, then for every nonzero ! 2

^




F=K

there exists an

iterative derivation � 2 ID

K

(F ) suh that

~

�(!) 6= 0, i. e. F has enough iterative

derivations.
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Proof Let t 2 F be a separating element. At �rst, we show that an element

� 2 K[X

1

; : : : ; X

n

; X

�1

1

℄ has to be zero, if for all separating elements s 2 F ,

�(�

(1)

t

(s); : : : ; �

(n)

t

(s)) = 0:

Assume this is false and hoose j 2 f1; : : : ; ng maximal suh that there is 0 6=

� 2 K[X

j

; : : : ; X

n

℄ � K[X

1

; : : : ; X

n

; X

�1

1

℄ with �(�

(j)

t

(s); : : : ; �

(n)

t

(s)) = 0 for all

separating s 2 F . As j is maximal, there is a separating s 2 F suh that

0 6= �(X

j

; �

(j+1)

t

(s); : : : ; �

(n)

t

(s)) 2 F [X

j

℄:

Then for almost all a 2 K, s+at

j

also is separating

13

, and �

(j)

t

(s+at

j

) = �

(j)

t

(s)+a

and �

(k)

t

(s + at

j

) = �

(k)

t

(s) for all k > j. So for almost all a 2 K (i. e. in speial

in�nitely many a 2 K), �(�

(j)

t

(s) + a; �

(j+1)

t

(s); : : : ; �

(n)

t

(s)) = 0 and therefore

�(X

j

; �

(j+1)

t

(s); : : : ; �

(n)

t

(s)) = 0 2 F [X

j

℄ in ontradition to the hoie of s.

Next, we de�ne a homomorphism of K-algebras �

n

: K[X

1

; : : : ; X

n

; X

�1

1

℄ !

K[X

1

; : : : ; X

n

; X

�1

1

℄ by X

j

7! �

j

(the �

j

given by the previous lemma). �

n

is an

involution beause for all separating s 2 F and � 2 K[X

1

; : : : ; X

n

; X

�1

1

℄:

�

(�

n

Æ �

n

)(�)

�

�

�

(1)

t

(s); : : : ; �

(n)

t

(s)

�

= �

n

(�)

�

�

(1)

s

(t); : : : ; �

(n)

s

(t)

�

= �

�

�

(1)

t

(s); : : : ; �

(n)

t

(s)

�

and so (�

n

Æ �

n

)(�) = �.

Now assume there is 0 6= ! 2

^




F=K

suh that

~

�(!) = 0 for all � 2 ID

K

(F ).

Then without loss of generality ! is homogeneous of degree n and so ! 2

F [d

(1)

t; : : : ; d

(n)

t℄

�

=

F [X

1

; : : : ; X

n

℄. Hene for all separating s 2 F :

0 =

~

�

s

(!) = !

�

�

(1)

s

(t); : : : ; �

(n)

s

(t)

�

= �

n

(!)

�

�

(1)

t

(s); : : : ; �

(n)

t

(s)

�

:

So, by the previous, we get �

n

(!) = 0 and therefore ! = �

n

(�

n

(!)) = 0, a

ontradition. 2

Remark Not all iterative derivations of F are given as the iterative derivation

with respet to some separating t 2 F . But sine we won't use this fat, we won't

proof it. See [Mat01℄, Ch. 1.5, for a desription of all iterative derivations of F .

7.2 IPV-Extensions

In [Mat01℄, Ch. 3, Matzat has developed an iterative Piard-Vessiot theory in

positive harateristi. In this setion we give a summary of the main de�nitions

and results.

In the following when we speak of the ID-�eld F , we mean a pair (F; �), where

� 2 ID

K

(F ) is an iterative derivation satisfying �

(1)

6= 0. An ID-module over

13

r 2 F is separating if and only if �

(1)

t

(r) 6= 0.
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(F; �) is an F -vetor spae M with an iterative �-derivation � 2 ID

K

(M;�).

Sine F is an algebrai funtion �eld over K, Matzat showed that suh an ID-

module M determines a projetive system over F . By the last setion, this

determines an integrable iterative onnetion r on M . It is easy to see that

this onnetion ful�lls r

�

= �. So there is no di�erene whether we onsider

ID-modules or modules with integrable iterative onnetions. We will therefore

also all a pair (M;r) an ID-module.

De�nition 7.6 An iterative di�erential ring (ID-ring) over F is a ring R �

F with an iterative onnetion d

R

: R! R


F

^




F=K

14

that is a higher derivation

on R over K. An iterative di�erential �eld (ID-�eld) over F is an ID-

ring L, that is a �eld. An ID-module over L is an L-vetor spae M equipped

with a d

L

-derivation r : M ! (

^




F=K




F

L) 


L

M . For an ID-ring R � L, a

matrix Y 2 GL

n

(R) is alled a fundamental solution matrix for an ID-module

(M;r) over L (with respet to a basis b = (b

1

; : : : ; b

n

) of M), if

r

R


L

M

(bY ) := r(b) � d

R

(Y ) = bY:

15

The ring R is alled an iterative Piard-Vessiot ring (IPV-ring) for M , if it

satis�es the following onditions:

1. R is a simple ID-ring (i. e. has no non-trivial d

R

-stable ideal).

2. There exists a fundamental solution matrix Y 2 GL

n

(R) for M .

3. R is generated over L by the oeÆients of Y and det(Y )

�1

.

Suh a ring is an integral domain ([Mat01℄, prop. 3.2) and we all its quotient

�eld E an iterative Piard-Vessiot �eld (IPV-�eld). E=L is then alled an

IPV-extension and the group of iterative di�erential automorphisms of E over

L (i. e. automorphisms that ommute with the iterative onnetion) is alled the

iterative di�erential Galois group (ID-Galois group) Gal(E=L).

Remark

1. d

R

is an extension of d

F

, beause for all t 2 F ,

d

R

(t) = d

R

(t � 1) = d

F

(t) � d

R

(1) = d

F

(t):

14

Take are, that d

R

is not the universal derivation. The similar notation is due to the fat,

that for every iterative derivation � 2 ID

K

(F ), d

R

determines an iterative derivation on R

extending � (see the next remark).

15

Like in setion 6, we use vetor notations and the higher onnetions are meant to be

applied to the oeÆients separately.
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2. If we hoose an iterative derivation � 2 ID

K

(F ) with �

(1)

6= 0 and set

�

L

:= (id

L




~

�) Æ d

L

2 ID

K

(L) and �

R

:= (id

R




~

�) Æ d

R

2 ID

K

(R), the pair

(L; �

L

) is an ID-�eld and the pair (R; �

R

) is an ID-ring resp. IPV-ring forM

in the sense of [Mat01℄. On the other hand (R; d

R

) and (R; �

R

) determine

the same projetive system over F and so (R; d

R

) is determined by (R; �

R

).

So the de�nition of ID-ring and IPV-ring given here is equivalent to the

other. Furthermore for any other iterative derivation �

0

2 ID

K

(F ) with

�

0(1)

6= 0, the pair (R; �

R

) determines a unique extension �

0

R

2 ID

K

(R) of

�

0

.

In the following, we state some results that are all given in [Mat01℄ and we refer

thereto for proofs.

L will denote an ID-�eld over F with �eld of onstants K, (M;r) an ID-

module over L with a basis b = (b

1

; : : : ; b

n

) and r(b) = bA for a matrix A 2

GL

n

(L


F

^




F=K

). Furthermore R denotes an IPV-ring for M and E = Quot(R)

an IPV-�eld. D

l

2 GL

n

(L

l

) are hosen suh that bD

0

�D

l

is a basis of M

l+1

for

all l � 0.

16

Proposition 7.7 1. The IPV-ring R and the IPV-�eld E are unique up to

iterative di�erential isomorphisms. (Thm. 3.4)

2. The IPV-�eld E is a minimal �eld extension of L that ontains a funda-

mental solution matrix for M . (Cor. 3.5)

3. An IPV-ring for M an be onstruted in the following way: Let U :=

L[X

ij

(i; j = 1; : : : ; n); det(X)

�1

℄ be a loalisation of the polynomial ring

in n

2

variables equipped with the integrable iterative onnetion de�ned by

d

U

(X) := A

�1

X 2 GL

n

(

^




F=K


U). Next hoose a maximal ID-ideal P�U .

Then U=P is an IPV-ring for M with fundamental solution matrix Y := X,

the image of X under the projetion to U=P . (Thm. 3.4)

4. E ontains no new onstants. (Prop. 3.2)

5. Given two fundamental solution matries Y;

~

Y 2 GL

n

(E), there exist C 2

GL

n

(K) suh that

~

Y = Y � C. (Prop. 3.3)

6. Gal(E=L) is a subgroup of GL

n

(K). (Prop. 3.8)

7. There exists a redued linear algebrai group G � GL

n

de�ned over K, suh

that Gal(E=L) = G(K) under the inlusion above. (Thm. 3.10)

Proof of 6. Although this is proved in [Mat01℄, too, we give the proof here, to

show how this inlusion is given:

16

As usual, we set L

l

:=

T

0<k<p

l

Ker

�

d

(k)

L

�

and M

l

:=

T

0<k<p

l

Ker

�

r

(k)

�

.
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If Y is a fundamental solution matrix and  2 Gal(E=F ), then sine  ommutes

with the higher derivation, (Y ) is again a fundamental solution matrix. By 5.,

there exists an element C



2 GL

n

(K) suh that (Y ) = Y C



. This de�nes a

homomorphism ' : Gal(E=F ) ! GL

n

(K);  7! C



. If C



= 1

n

2 GL

n

(K), then

(Y ) = Y , but sine E is generated by the oeÆients of Y , this implies that

 = id

E

, showing that ' is injetive. 2

Theorem 7.8 (Galois orrespondene) Let L be an ID-�eld over F , let E=L

be an IPV-extension for an ID-module M over L and let G be a redued linear

algebrai group suh that G(K) = Gal(E=L). Suppose

H = fH j H � G is a Zariski losed redued linear algebrai subgroupg;

and

E = f

~

E j

~

E is an intermediate ID-�eld L �

~

E � Eg:

Then the map � : H ! E de�ned by �(H) := E

H(K)

is an anti-isomorphism of

latties with inverse given by �

�1

(

~

E) = H, where H(K) = Gal(E=

~

E). Further

if H 2 H is a normal subgroup of G, then

~

E := E

H(K)

is an IPV-extension of L

with Galois group (G=H)(K).

Proof See [Mat01℄, thm. 4.7. 2

7.3 Determining the Galois Group

In the following, every linear algebrai group is supposed to be redued and

de�ned over K.

Theorem 7.9 Using the notations above, if there exists a linear algebrai group

G � GL

n

, suh that D

l

2 G(L

l

) for all l 2 N, then Gal(E=L) � G(K).

Proof See [Mat01℄, thm. 5.1. 2

Theorem 7.10 Let G � GL

m

and H � GL

n

be two linear algebrai groups

and let � : G ! H be an epimorphism with redued kernel. Let M and N be

ID-modules over L with projetive systems given by matries D

l

2 G(L

l

) resp.

~

D

l

2 H(L

l

) for all l 2 N and let the IPV-�elds for M resp. N be denoted by E

M

resp. E

N

.

If

~

D

l

= �(D

l

) for all l, then up to ID-isomorphism E

M

� E

N

and Gal(E

M

=E

N

) �

Ker(�)(K).

Proof See [Mat01℄, thm. 5.12. 2

Remark If N is an ID-module over L with

~

D

l

2 H(L

l

) and Gal(E

N

=L) =

H(K). Then by hoosing preimages D

l

2 �

�1

(

~

D

l

) � G(L

l

) (if possible) one

obtains an ID-moduleM de�ned by the D

l

and an IPV-�eld E

M

forM suh that

Gal(E

M

=L) � G(K) and �(Gal(E

M

=L)) = H(K).

47



Proposition 7.11 Let R

1

; R

2

be two IPV-rings over L with Galois groups

Gal(R

j

=L) =: G

j

(K) (j = 1; 2). And assume that R := R

1




L

R

2

is a sim-

ple ID-ring. Then R is an IPV-extension over L with Galois group Gal(R=L) =

(G

1

� G

2

)(K).

Proof See [Mat01℄, proposition 7.9. 2

Proposition 7.12 Let F = K(s; t) with some algebrai relation f(s; t) = 0.

Let C

0

be the orresponding aÆne model and assume without loss of generality

that (0; 0) 2 C is a regular point. Then F

l

= K(s

p

l

; t

p

l

) with some relation

f

l

(s

p

l

; t

p

l

) = 0 and model C

0

l

. Let G be a linear algebrai group and let M be an

ID-module over F with projetive system de�ned by D

l

2 G(F

l

) (l 2 N). Assume

that D

l

(l = 0; 1; : : : ) satisfy the following onditions:

1. For all l 2 N there exists a rational map 

l

: C

0

l

! G suh that D

l

=



l

(s

p

l

; t

p

l

) 2 G(F

l

) and 

l

(0; 0) = 1

G(K)

.

2. For all m 2 N the set f

l

(C

0

l

(K)) j l � mg generates G(K) as an algebrai

group.

3. There exists a number d 2 N suh that deg(

l

) � dp

l

for all l 2 N, where

deg denotes the maximum divisor degree of the matrix entries with respet

to F .

4. If l

0

< l

1

< : : : is a sequene of natural numbers l

i

for whih 

l

i

6= 1, then

lim

i!1

(l

i+1

� l

i

) =1.

Then M de�nes an IPV-extension E=F with Galois group isomorphi to G(K).

Proof See [Mat01℄, lemma 8.6. 2

De�nition 7.13 Let L=F be an IPV-extension with Gal(L=F )

�

=

H(K); � 7! C

�

,

for a linear algebrai group H � GL

n

. And let N � GL

n

be a linear algebrai

group on whih H ats by onjugation in GL

n

. Then there is an ation of H(K)

on the L-rational points of N given by

C

�

? D := C

�

�(D)C

�1

�

;

for all C

�

2 H(K) and D 2 N (L), where � 2 Gal(L=F ) ats on the matrix

entries of D 2 N (L) � GL

n

(L).

The subgroup of elements that are invariant under this ation will be denoted by

N (L)

H

and for all subrings O � L we de�ne

N (O)

H

:= fD 2 N (O) � N (L) j 8C

�

2 H(K) : C

�

? D = Dg:
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Proposition 7.14 With notations of the previous de�nition, assume there is a

fundamental solution matrix Y 2 H(L) with �(Y ) = Y C

�

for all � 2 Gal(L=F )

�

=

H(K).

17

Then

N (L)

H

= Y

�1

N (F )Y:

Proof For all D 2 N (L) and � 2 Gal(L=F ):

�(Y DY

�1

) = �(Y )�(D)�(Y )

�1

= Y C

�

�(D)C

�1

�

Y

�1

= Y (C

�

? D)Y

�1

and so Y DY

�1

2 N (F ) if and only if D 2 N (L)

H

. 2

Theorem 7.15 Let G � GL

n

be a onneted linear algebrai group and as-

sume that G = N o H is a semidiret produt of two subgroups N and H of

G. Let L=F be an IPV-extension with fundamental solution matrix Y 2 H(L)

and Gal(L=F ) = H(K). Further, let M denote an ID-module over L with pro-

jetive system de�ned by D

l

2 N (L

l

) and let E=L be an IPV-extension for M

with fundamental solution matrix Z 2 N (E).

If for all l 2 N, D

l

is H-invariant, i. e. D

l

2 N (L

l

)

H

, then E=F is an IPV-

extension with Galois group Gal(E=F ) = Gal(E=L) o H(K) � (N o H)(K) =

G(K) and E is generated over F by the oeÆients of Y Z (i. e. Y Z is a funda-

mental solution matrix for M).

Proof At �rst, let C

l

2 H(F

l

) (l = 0; 1; : : : ) be hosen suh that Y

l

:=

C

�1

l�1

� � �C

�1

0

Y 2 H(L

l

). Then by proposition 7.14, Y

l

D

l

Y

�1

l

2 N (F ) \ N (L

l

) =

N (F

l

) and therefore

~

D

l

:= Y

l

D

l

Y

�1

l+1

= Y

l

D

l

Y

�1

l

C

l

2 (N oH)(F

l

) (l 2 N):

So the sequene (

~

D

l

)

l2N

de�nes an ID-module N over F and for all k < p

l+1

:

d

(k)

F

�

~

D

0

� � �

~

D

l

�

�

�

~

D

0

� � �

~

D

l

�

�1

= d

(k)

L

�

Y D

0

Y

�1

1

Y

1

D

1

Y

�1

2

� � �Y

l

D

l

Y

�1

l+1

�

�

�

Y D

0

Y

�1

1

� � �Y

l

D

l

Y

�1

l+1

�

�1

= d

(k)

L

(Y D

0

� � �D

l

)Y

�1

l+1

� Y

l+1

D

�1

l

� � �D

�1

0

Y

�1

= d

(k)

L

(Y D

0

� � �D

l

) �D

�1

l

� � �D

�1

0

Y

�1

= d

(k)

L

(Y Z) � Z

�1

Y

�1

:

Hene, Y Z 2 GL

n

(E) is a fundamental solution matrix for N and

~

E := F (Y Z) �

E is an IPV-extension for N . Next, the projetion � : N oH ! H maps

~

D

l

to

C

l

(sine Y

l

D

l

Y

�1

l

2 N (F

l

)) and therefore by theorem 7.10, L is a sub�eld of

~

E

and so Y 2 GL

n

(

~

E) and Z = Y

�1

(Y Z) 2 GL

n

(

~

E), i. e.

~

E = E.

So E=F is an IPV-extension, Gal(E=F ) � (N oH)(K) (sine

~

D

l

2 (N oH)(F

l

))

and Gal(E=L) � Ker(�)(K) = N (K).

So Gal(E=F ) = Gal(E=L)oH(K) � (N oH)(K). 2

17

By [Mat01℄, thm. 5.9, this is possible whenever H is onneted.
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8 Regularity

8.1 Di�erentially Stable Regular Rings

De�nition 8.1 Let t 2 F be a separating element. Then we denote by U

t

� C

F

the subset onsisting of all points y 2 C

F

suh that t 2 O

y

and O

y

is �

t

-stable,

i. e. �

(j)

t

(O

y

) � O

y

for all j 2 N.

Proposition 8.2 Let t 2 F be a separating element. Then

U

t

= fy 2 C

F

j ord

y

(t) � 0 and ord

y

((dt)) = 0g

= fy 2 C

F

j 9 a 2 K suh that t� a is a loal parameter for yg;

where (dt) denotes the divisor of the di�erential dt (as in [Sti93℄). Espeially, U

t

is a (Zariski) open subset of C

F

.

Proof Let U

0

t

:= fy 2 C

F

j ord

y

(t) � 0 and ord

y

((dt)) = 0g and

U

00

t

:= fy 2 C

F

j 9 a 2 K suh that t� a is a loal parameter for yg.

We will show U

0

t

� U

00

t

� U

t

� U

0

t

.

So let s be a loal parameter for a given plae y 2 U

0

t

, then 0 = ord

y

((dt)) =

ord

y

(�

(1)

s

(t)) and therefore ord

y

(t) � 1. Moreover we have ord

y

(t � a) � 1 for

all a 2 K, sine d(t � a) = dt. As ord

y

(t) � 0, there exists an element a 2 K

satisfying ord

y

(t� a) > 0, i. e. ord

y

(t� a) = 1 and so t� a is a loal parameter

for y.

Now let y 2 U

00

t

and t� a be a loal parameter for y. Then t� a is an element of

O

y

and O

y

is �

t�a

-stable, sine O

y

is a �nite separable extension of K[t� a℄

(t�a)

.

So t 2 O

y

and, sine �

t

= �

t�a

, the ring O

y

is also �

t

-stable. This proves y 2 U

t

.

At last, let y 2 U

t

. Then t 2 O

y

and therefore ord

y

(t) � 0.

Let s be a loal parameter for y. Then �

(1)

s

(t) 2 O

y

, sine t 2 O

y

and O

y

is

�

s

-stable. Analogously, we get �

(1)

t

(s) 2 O

y

. But sine �

(1)

t

(s) = (�

(1)

s

(t))

�1

,

the element �

(1)

s

(t) is invertible in O

y

and so ord

y

(�

(1)

s

(t)) = 0. This means

ord

y

((dt)) = 0.

U

0

t

is open, sine the onditions ord

y

(t) � 0 and ord

y

((dt)) = 0 are ful�lled for all

but �nitely many y 2 C

F

. 2

Remark U

t

is an aÆne variety. U

t

is the maximal subset of C

F

suh that

t 2 O(U

t

) and suh that for all subsets U � U

t

, the ring O(U) is �

t

-stable.

Proposition 8.3 Let t 2 F be a separating element and x 2 U

t

. Then O

x

has

no nontrivial �

t

-stable ideal.
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Proof Choose a 2 K suh that t� a is a loal parameter for x (f. proposition

8.2). Then O

x

is a regular loal ring with maximal ideal generated by t� a and

O

x

=(t� a)

�

=

K, sine K is algebraially losed. Sine �

t

= �

t�a

, the proposition

follows diretly from lemma 2.10. 2

8.2 Di�erentially Stable Latties

Reall that M is a vetor spae over F of �nite dimension equipped with an

iterative onnetion r.

De�nition 8.4 Let O � F be a subring. An O-lattie in M is a free O-sub-

module � of M , whih ontains an F -basis of M . An O-pseudo-lattie in M is

a �nitely generated O-submodule � of M , whih ontains an F -basis of M , i. e.

� satis�es M = F 


O

�.

If t 2 F is separating and U is an open subset of U

t

, then an O(U)(-pseudo)-

lattie � is alled �

t

-stable, if r

�

t

(�) � �[[T ℄℄.

Lemma 8.5 Let s; t 2 F be separating elements, let U � U

s

\ U

t

and let �

U

be

a �

s

-stable O(U)-pseudo-lattie in M . Then �

U

is also �

t

-stable.

Proof By the hain rule for modules, for all m 2 M :

1

X

k=0

r

(k)

�

t

(m)T

k

=

1

X

k=0

r

(k)

�

s

(m)

 

1

X

j=1

�

(j)

t

(s)T

j

!

k

:

Now �

U

is �

s

-stable, and so r

(k)

�

s

(m) 2 �

U

for all m 2 �

U

. Moreover �

(j)

t

(s) 2

O(U), sine s 2 O(U) and O(U) is �

t

-stable.

So

P

1

k=0

r

(k)

�

t

(m)T

k

2 �

U

[[T ℄℄ for m 2 �

U

, i. e. �

U

is �

t

-stable. 2

Lemma 8.6 Let t 2 F be separating and U � U

t

be an open subset. Then there

exists at most one O(U)-pseudo-lattie � in M , that is �

t

-stable.

Proof Let � and �

0

be two �

t

-stable pseudo-latties. Clearly, the intersetion

� \ �

0

also is �

t

-stable, and sine for every m 2 M , there are �; �

0

2 O(U) with

�m 2 � and �

0

m 2 �

0

and hene with ��

0

m 2 � \ �

0

, the O(U)-module � \ �

0

is an O(U)-pseudo-lattie in M . So let without loss of generality be �

0

� �.

Now let y 2 U and de�ne �

y

:= O

y




O(U)

� and �

0

y

:= O

y




O(U)

�

0

. Then �

0

y

� �

y

are two �

t

-stable O

y

-pseudo-latties in M . Sine O

y

is a prinipal ideal domain,

�

0

y

and �

y

are in fat latties in M and furthermore there exists an O

y

-basis

fb

1

; : : : b

n

g of �

y

and �

1

; : : : ; �

n

2 O

y

suh that f�

1

b

1

; : : : ; �

n

b

n

g is an O

y

-basis

of �

0

y

.

Now we show �

(k)

t

(�

i

) 2 O

y

� �

i

for all i 2 f1; : : : ; ng and all k 2 N by indution

on k:
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For k = 0 the laim is trivial. So let k > 0 and �

(j)

t

(�

i

) 2 O

y

� �

i

for all

i 2 f1; : : : ; ng and all 0 � j < k. Then

�

(k)

t

(�

i

)b

i

= r

(k)

�

t

(�

i

b

i

)�

k�1

X

j=0

�

(j)

t

(�

i

)r

(k�j)

�

t

(b

i

)

2 �

0

y

+ �

i

� �

y

:

So �

(k)

t

(�

i

)b

i

2 (�

0

y

+ �

i

� �

y

) \ O

y

� b

i

= O

y

� �

i

b

i

, i. e. �

(k)

t

(�

i

) 2 O

y

� �

i

.

ThereforeO

y

��

i

6= 0 is a �

t

-stable ideal ofO

y

and, by proposition 8.3, O

y

��

i

= O

y

.

So �

y

= �

0

y

.

Sine this holds for every y 2 U , we get � = �

0

. 2

In the following, we show that we an easily alulate di�erentially stable latties,

if the ID-module is 1-dimensional:

So let M be a 1-dimensional ID-module with basis b and projetive system given

by (D

l

)

l2N

, where D

l

2 GL

1

(F

l

) = F

�

l

.

For every x 2 C

F

, we have ord

x

(D

l

) 2 p

l

Z, beause D

l

2 F

l

. So

1

P

l=0

ord

x

(D

l

) 2 Z

p

is a wellde�ned p-adi integer. Sine the produt D

0

� � �D

l

is uniquely deter-

mined by M and b up to C 2 F

�

l+1

, the sum

P

l

j=0

ord

x

(D

j

) (mod p

l+1

) =

ord

x

(D

0

� � �D

l

) (mod p

l+1

) is independent of the hosen sequene (D

l

)

l2N

for the

projetive system, and hene

P

1

l=0

ord

x

(D

l

) 2 Z

p

is independent of the hosen

sequene (D

l

)

l2N

for the projetive system.

Proposition 8.7 Let x 2 C

F

, t a loal parameter for x and m 2 Z. Then the

O

x

-lattie bt

m

O

x

in M is �

t

-stable if and only if m =

1

P

j=0

ord

x

(D

j

).

Proof If bt

m

O

x

is �

t

-stable, then as it will be shown in orollary 8.14, we ould

hoose D

0

j

2 GL

1

((O

x

)

j

) = (O

x

)

�

j

, suh that bt

m

D

0

0

� � �D

0

l

is an (O

x

)

l+1

-basis of

bt

m

O

x

\M

l+1

. So

1

X

j=0

ord

x

(D

j

) = ord

x

(t

m

D

0

0

) +

1

X

j=1

ord

x

(D

0

j

) = m;

sine ord

x

(D

0

j

) = 0 for all j 2 N .

On the other hand, if

P

1

j=0

ord

x

(D

j

) = m, then for all l 2 N , there exists �

l

2 O

�

x

suh that (D

0

� � �D

l

) = t

m�m

l

�

�1

l

, where m

l

:= m � ord

x

(D

0

� � �D

l

) 2 p

l+1

Z.

Sine m

l

2 p

l+1

Z, we have t

m

l

2 F

l+1

for all l 2 N , and so for all k < p

l+1

,

r

(k)

�

t

(bt

m

) = b � (D

0

� � �D

l

)�

(k)

t

�

(D

0

� � �D

l

)

�1

t

m

�

= bt

m

� �

�1

l

t

�m

l

�

(k)

t

(t

m

l

�

l

)

= bt

m

� �

�1

l

�

(k)

t

(�

l

) 2 bt

m

O

x

:

Hene, bt

m

O

x

is �

t

-stable. 2
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8.3 Regular Points

De�nition 8.8 An ID-module M over F is alled regular in x 2 C

F

, if there

exists a loal parameter t for x, an open subset U of U

t

and a �

t

-stable O(U)-

lattie in M . M is alled regular on V � C

F

, if M is regular in every x 2 V .

We all M singular in x 2 C

F

, if M is not regular in x. The set of points in

whih M is singular, is referred to as the singular lous of M . If M is singular

in all points x 2 C

F

, then M is alled totally singular.

Remark

1. By lemma 8.5, the loal parameter t an be hosen arbitrarily.

2. If �

U

and �

U

0

are �

t

-stable O(U)- resp. O(U

0

)-latties (U; U

0

� U

t

), then

by lemma 8.6, their loalisations to O(U \ U

0

) are equal.

3. Contrary to harateristi 0, totally singular ID-modules really exist, what

will be shown later.

4. We will also show, that the singular lous always is a losed subset of C

F

,

and that for every losed subset S of C

F

, there exists an ID-module with

singular lous S.

Proposition 8.9 The singular lous S of M is a losed subset of C

F

.

Proof If M is totally singular, then S = C

F

is a losed subset. Assume that M

is not totally singular. So there exists x 2 C

F

, a loal parameter t for x, an open

subset U of U

t

and a �

t

-stable O(U)-lattie � inM . Now for arbitrary y 2 U , let

s be a loal parameter for y and U

0

:= U

s

\ U . Then by lemma 8.5, the O(U

0

)-

lattie O(U

0

)


O(U)

� is �

s

-stable. Sine U

0

� C

F

is an open subset ontaining y,

we obtain that M is regular in y. So the singular lous S is ontained in C

F

n U .

Hene S is a �nite set and therefore a losed subset of C

F

. 2

Proposition 8.10 LetM be regular on an open subset V � C

F

, t 2 F separating

and

~

U

t

:= U

t

\ V . Then there exists a �

t

-stable O(

~

U

t

)-pseudo-lattie in M .

Proof For an arbitrary point x 2

~

U

t

by de�nition, there exists a loal parameter

s for x, an open neighbourhood U(x) � C

F

of x (without loss of generality

U(x) �

~

U

t

) and a �

s

-stable O(U(x))-lattie �

U(x)

in M . By lemma 8.5, �

U(x)

is also �

t

-stable. Now the sets U(x) over

~

U

t

and the loalisations of �

U(x)

and

�

U(y)

to O(U(x)\U(y)) oinide. So the latties �

U(x)

an be glued together to a

sheaf of O

~

U

t

-modules, whih is indued by a �nitely generated O(

~

U

t

)-module �

~

U

t

(see [Hart77℄, Ch. II, Cor. 5.5). This module is �

t

-stable, sine all loalisations

are �

t

-stable and we have

F 


O(

~

U

t

)

�

~

U

t

= F 


O(U(x))

O(U(x))


O(

~

U

t

)

�

~

U

t

= F 


O(U(x))

�

U(x)

=M:
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So �

~

U

t

is a �

t

-stable O(

~

U

t

)-pseudo-lattie. 2

Theorem 8.11 Let b = (b

1

; : : : ; b

n

) be a basis of M . Then M is not totally

singular, if and only if for almost all y 2 C

F

the O

y

-lattie with basis b is �

t

-

stable, where t denotes a loal parameter for y.

Proof If there exists a point x 2 C

F

, in whih M is regular, then by de�nition,

there is a loal parameter s for x and an open set U � U

s

suh that there is

a �

s

-stable O(U)-lattie �. Let A 2 GL

n

(F ) be hosen so that bA is a basis

for �. But for almost all y 2 U (and hene for almost all y 2 C

F

), we have

A 2 GL

n

(O

y

), and therefore O

y




O(U)

� = b � O

n

y

for those y. So by lemma 8.5,

for almost all y 2 C

F

the O

y

-lattie with basis b is �

t

-stable, where t denotes a

loal parameter for y.

On the other hand, let the O

y

-lattie with basis b be �

t

-stable for all y in a

o�nite set U � C

F

, where t denotes a loal parameter for y. Choose an x 2 U ,

hoose a loal parameter s for x and let

~

U := U \U

s

. Then by lemma 8.5, for all

y 2

~

U , bO

n

y

is a �

s

-stable O

y

-lattie and so

\

y2

~

U

bO

n

y

= bO(

~

U)

n

is a �

s

-stable O(

~

U)-lattie. Hene M is regular in x. 2

Theorem 8.12 Let M be an ID-module whih is not totally singular. Then M

is regular in x 2 C

F

if and only if there exists a �

s

-stable O

x

-lattie in M , where

s denotes a loal parameter for x.

Proof If M is regular in x 2 C

F

, then we get a �

s

-stable O

x

-lattie in M by

loalising the �

s

-stable O(U)-lattie in the de�nition of a regular point.

Now assume there exists a �

s

-stable O

x

-lattie in M and let b be an O

x

-basis of

this lattie. Sine M is not totally singular, for almost all y 2 C

F

, the O

y

-lattie

bO

n

y

is �

t

-stable (t a loal parameter for y), by theorem 8.11. Furthermore, the

proof of theorem 8.11 shows that M is regular in all these points, in partiular

M is regular in x. 2

Theorem 8.13 Let x 2 C

F

be a point in whih M is regular, t a loal parameter

for x, U � U

t

and � a �

t

-stable O(U)-pseudo-lattie in M . Then for arbitrary

l 2 N, there exists a generating set for � (as O(U)-module) onsisting of elements

of M

l

.

Proof Denote by fb

1

; : : : ; b

n

g an F

l

-basis of M

l

. Sine � is a pseudo-lattie in

M , there exist 0 6= a

i

2 O(U) suh that b

i

a

i

2 � (i = 1; : : : ; n) and therefore

b

i

a

p

l

i

2 � \M

l

=: �

l

(i = 1; : : : ; n). So �

l

ontains a basis of M

l

and is a �nitely

generated O(U)

l

-module (�nitely generated, beause it is a submodule of the
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�nitely generated O(U)

l

-module �), i. e. �

l

is an O(U)

l

-pseudo-lattie in M

l

.

Hene O(U) � �

l

is an O(U)-pseudo-lattie in M .

By assumption, � is �

t

-stable and so � \M

l

= �

l

is �

t

-stable, too. Furthermore

O(U) is �

t

-stable and so O(U) � �

l

is also �

t

-stable. Therefore by lemma 8.6,

� = O(U) � �

l

, whih ompletes the proof. 2

Corollary 8.14 Let x 2 C

F

be a point in whih M is regular, t a loal parameter

for x and � a �

t

-stable O

x

-lattie in M . Denote by b = (b

1

; : : : ; b

n

) an O

x

-

basis for �. Then there exist matries D

l

2 GL

n

((O

x

)

l

) (l = 0; 1; : : : ), suh that

bD

0

� � �D

j

is an (O

x

)

j+1

-basis of �

j+1

:= � \M

j+1

.

Proof Sine (O

x

)

l+1

is a loal ring, every (O

x

)

l+1

-pseudo-lattie in M

l+1

is in

fat an (O

x

)

l+1

-lattie. By the previous theorem, an (O

x

)

l+1

-basis of �

l+1

also is

an (O

x

)

l

-basis of �

l

. So there exists a base hange matrix in GL

n

((O

x

)

l

). Starting

from the O

x

-basis (b

1

; : : : ; b

n

) for �, we obtain all D

l

(l = 0; 1; : : : ) step by step.

2

In setion 4.2, we de�ned higher onnetions on O

X

-modules, where X is a

sheme. We also mentioned, when a higher onnetion on a K(X)-vetor spae

should be alled regular on an open subset U � X. We will now show, that this

oinides with the de�nition of regularity in this setion.

Proposition 8.15 M is regular on an open subset U � C

F

, if and only if there

is a oherent O

U

-module

~

� with a higher onnetion r

0

:

~

�!

^




U=K




O

U

~

� suh

that F 


O

U

~

�

�

=

M and r equals d

F


r

0

as higher onnetions on M = F 


O

U

~

�.

Proof Let M be regular on U � C

F

. Then by proposition 8.10, for every

separating t 2 F and

~

U

t

:= U

t

\ U , there is a �

t

-stable O(

~

U

t

)-pseudo-lattie �

~

U

t

in M . We show that for m 2 �

~

U

t

, we have r(m) 2

^




O(

~

U

t

)




O(

~

U

t

)

�

~

U

t

:

For given k 2 N , hoose l 2 N with p

l

> k and hoose a generating set fb

1

; : : : ; b

r

g

for � with b

i

2 M

l

(f. theorem 8.13). Then there are a

i

2 O(

~

U

t

) suh that

m =

P

r

i=1

a

i

b

i

and therefore

r

(k)

(m) =

r

X

i=1

r

(k)

(a

i

b

i

) =

r

X

i=1

d

F

(a

i

)
 b

i

2

�

^




O(

~

U

t

)=K

�

k




O(

~

U

t

)

�

~

U

t

:

So r(m) 2

^




O(

~

U

t

)




O(

~

U

t

)

�

~

U

t

. Sine the open sets (U

t

)

t2F sep:

over C

F

, we have

S

t2F sep:

~

U

t

= U , and as in proposition 8.10, the pseudo-latties �

~

U

t

an be glued

together to a sheaf ofO

U

-modules

~

�. Sine on the open overing f

~

U

t

j t 2 F sep:g,

the higher onnetion r restrits to a higher onnetion r

~

U

t

: �

~

U

t

!

^




~

U

t

=K


�

~

U

t

,

these higher onnetions an be glued together to a higher onnetion r

0

:

~

�!

^




U=K




O

U

~

�, that learly ful�lls r = d

F


r

0

.
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For the onverse, let

~

� be a oherent O

U

-module with higher onnetion r

0

satisfying the properties above and let x 2 U and t be a loal parameter for x.

Then

~

�(U \ U

t

) is a projetive O

U

(U \ U

t

)-module (all loalisations at maximal

ideals are torsionfree, hene free) and so by [Eis95℄, thm. A3.2, there is an open

neighbourhood

~

U

t

� U \ U

t

of x, suh that � :=

~

�(

~

U

t

) is a free O(

~

U

t

)-module.

Finally, sine r(�) = r

0

(�) �

^




O(

~

U

t

)=K


 �, we have

r

�

t

(�) = (

~

�

t


 id

�

)(r(�)) � O(

~

U

t

)[[T ℄℄
 � = �[[T ℄℄:

So M is regular in x. 2

We now turn our attention to 1-dimensional ID-modules:

So let M be a 1-dimensional ID-module with basis b and projetive system given

by (D

l

)

l2N

, where D

l

2 GL

1

(F

l

) = F

�

l

.

Lemma 8.16 M is totally singular if and only if for in�nitely many x 2 C

F

,

P

1

l=0

ord

x

(D

l

) 6= 0. If M is not totally singular, then M is regular in all x 2 C

F

for whih

P

1

l=0

ord

x

(D

l

) 2 Z.

Proof This follows immediately from proposition 8.7, theorem 8.11 and theorem

8.12. 2

Corollary 8.17 IfM is regular in all points di�erent from a point x 2 C

F

. Then

M is also regular in x.

Proof Let (D

l

)

l2N

be a sequene giving the projetive system assoiated to M .

If M is regular in all points y 6= x. Then

P

1

l=0

ord

y

(D

l

) 2 Z for all y 6= x. But

for all l 2 N, we have ord

x

(D

l

) = �

P

y2C

F

nfxg

ord

x

(D

l

) and therefore

1

X

l=0

ord

x

(D

l

) = �

X

y2C

F

nfxg

1

X

l=0

ord

y

(D

l

) 2 Z � Z

p

:

Hene by lemma 8.16, M is regular in x, too. 2

Example 8.18 Let F = K(t) be the rational funtion �eld in one variable and

hoose a sequene (a

n

)

n2N

of distint elements of K. De�ne a 1-dimensional ID-

module M with projetive system given by D

l

:= (t � a

l

)

p

l

(p�1)

2 F

�

l

, l 2 N .

Then

P

1

j=0

ord

(t�a)

(D

j

) = p

l

(p� 1) for a = a

l

and so

P

1

j=0

ord

(t�a)

(D

j

) 6= 0 for

in�nitely many (t�a) 2 C

F

. Hene by lemma 8.16,M is totally singular. Further,

for all a 62 fa

l

j l 2 Ng, we have

P

1

j=0

ord

(t�a)

(D

j

) = 0 2 Z and

P

1

j=0

ord

1

(D

j

) =

P

1

j=0

(p

j

� p

j+1

) = 1 2 Z and for all l 2 N ,

P

1

j=0

ord

(t�a

l

)

(D

j

) = p

l

(p � 1) 2 Z.

So by proposition 8.7, for all x 2 C

F

and loal parameter s for x, there exists a

�

s

-stable O

x

-lattie.
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This example shows, that totally singular ID-modules exist. It also shows, that

an ID-module an be singular in some points even if for all points x 2 C

F

, there

exist di�erentially stable O

x

-latties. However, in theorem 8.12, we have seen

that this doesn't happen, if M is not totally singular.

Notation In the following, we denote by J the Jaobian variety of C

F

and by

T

p

(J ) the p-adi Tate-module of J , i. e. T

p

(J ) = lim

 �

J [p

n

℄, where J [p

n

℄ denote

the points of p

n

-torsion of J .

The set of isomorphism lasses of 1-dimensional ID-modules over F will be de-

noted by Isom

C

F

;1

. With multipliation given by the tensor produt, Isom

C

F

;1

is

an abelian group. Further, let

Div

0

(C

F

;Z

p

) :=

n

f : C

F

! Z

p

�

�

�

8 l 2 N : jsupp(f (mod p

l

))j <1 and

X

x2C

F

f(x) = 0

o

and let H(C

F

) be the group of prinipal divisors on C

F

, whih an be regarded as

a subgroup of Div

0

(C

F

;Z

p

).

Theorem 8.19 (f. [MvdP03℄, prop. 4.2) There is a short exat sequene of

abelian groups

0! T

p

(J )! Isom

C

F

;1

�

�!

Div

0

(C

F

;Z

p

)

H(C

F

)

! 0

where the homomorphism � is given in the following way: For an ID-module

M with basis b, alulate a sequene (D

l

)

l2N

of elements in GL

1

(F

l

) suh that

bD

0

� � �D

l

is an F

l

-basis for M

l

. Then �([M ℄) is represented by the map x 7!

P

1

l=0

ord

x

(D

l

) 2 Z

p

.

Proposition 8.20 For every losed subset S � C

F

, there exists an ID-module

with singular lous S.

Proof We have already seen (f. example 8.18), that there exist totally singular

ID-modules, i. e. ID-modules with singular lous equal to C

F

. If S 6= C

F

, i. e. S

is �nite, and if #S � 2 or S = ;, then for all x 2 S hoose �

x

2 Z

p

n Z suh

that

P

x2S

�

x

= 0. The map f : C

F

! Z

p

de�ned by f(x) := �

x

for x 2 S and

f(x) := 0 for x 62 S is an element of Div

0

(C

F

;Z

p

). So by theorem 8.19, there is a

1-dimensional ID-module M suh that �([M ℄) is represented by f . By theorem

8.16, M is not totally singular and M is singular exatly in the points in S, i. e.

S is the singular lous of M .

If remains to show, that S ours as singular lous, when #S = 1. For this

hoose an element t 2 F , whose pole divisor (t)

1

has support equal to S, and
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de�ne a projetive system for a 2-dimensional ID-module M with basis (b

1

; b

2

)

by hoosing matries D

l

:=

�

1 a

l

0 1

�

2 GL

2

(F

l

), l 2 N , where a

l

= t

p

l

. Then for

all y 62 S, D

l

2 GL

2

((O

y

)

l

) and hene by theorem 8.11 and theorem 8.12, M is

regular outside S. On the other hand, if M is also regular in the point x 2 S.

Then there exists a di�erentially stable O

x

-lattie � inM . Sine b

1

O

x

�M \b

1

F

is the unique di�erentially stable O

x

-lattie in M \ b

1

F and sine bO

2

x

=b

1

O

x

�

M=(M \ b

1

F ) is the unique di�erentially stable O

x

-lattie in M=(M \ b

1

F ), we

have � = bO

2

x

.

Let s be a loal parameter for x. Then for all l 2 N :

r

(p

l

)

�

s

(b

2

) = �b

1

l

X

i=0

�

(p

l

)

s

(t

p

i

) = �b

1

l

X

i=0

�

�

(p

l�i

)

s

(t)

�

p

i

:

Sine t 62 O

x

, there exists a minimal j � 0 suh that �

(p

j

)

s

(t) 62 O

x

and so

r

(p

j

)

�

s

(b

2

) = �b

1

 

�

(p

j

)

s

(t) +

j

X

i=1

�

�

(p

j�i

)

s

(t)

�

p

i

!

62 �;

a ontradition. Therefore M is singular in x 2 S. 2

We now regard regular points of IPV-extensions:

De�nition 8.21 Let L=F be an IPV-extension for M . Then L=F is alled reg-

ular in x 2 C

F

, ifM is regular in x. Otherwise we all L=F singular in x 2 C

F

.

The set of points in whih L=F is singular, is referred to as the singular lous

of L=F .

Proposition 8.22 If L=F is regular in x 2 C

F

and t is a loal parameter for

x. Then there exists a monomorphism of iterative di�erential �elds (L; d

L

) ,!

�

K((t)); d

K((t))

�

, where K((t)) is regarded as the ompletion of F with respet to

the valuation orresponding to x and d

K((t))

is the ontinuous extension of d

F

.

Proof Let A 2 Mat

n

(

^




F=K

) satisfy r(b) = bA and let A

x

2 GL

n

(F ) be

suh that bA

�1

x

is a basis for the �

t

-stable O

x

-lattie �. Then by orollary

8.14, there are D

j

2 GL

n

((O

x

)

j

) (j = 0; 1; : : : ) suh that bA

�1

x

D

0

� � �D

l

is an

(O

x

)

l+1

-basis of �

l+1

:= � \ M

l+1

. Moreover, we an hoose D

j

in suh a

way, that D

j

j

t=0

= 1

n

. Hene D

0

� � �D

l

� D

0

� � �D

l+1

(mod t

p

l+1

) and there-

fore the matrix entries of the sequene (D

0

� � �D

l

)

l2N

onverge in the ompletion

b

O

x

�

=

K[[t℄℄. Let D 2 Mat

n

(K[[t℄℄) denote the limit, then D 2 GL

n

(K[[t℄℄), sine

Dj

t=0

= 1

n

, and for all k 2 N we have pr

k

(A) = A

�1

x

Dd

(k)

K((t))

(D

�1

A

x

) and there-

fore A = A

�1

x

Dd

K((t))

(D

�1

A

x

) 2 Mat

n

�

K((t))


^




F=K

�

.

So the ID-�eld K((t)) has a fundamental solution matrix A

�1

x

D and therefore the

IPV-�eld L is iterative di�erentially isomorphi to a sub�eld of K((t)). 2
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8.4 Iterative Di�erential Closure

Let L=F be an IPV-extension for an ID-module M with Galois group H(K) �

GL

n

(K) and singular lous inside a �nite set S � C

F

. Denote by Y 2 GL

n

(L) a

fundamental solution matrix for M with respet to a basis b = (b

1

; : : : ; b

n

) of M .

And denote by O � F the ring of regular funtions on C

F

n S.

De�nition 8.23 For a point x 2 C

F

n S, the iterative di�erential losure of

O

x

is by de�nition the largest subring O

L;x

� L of L suh that for all loal parame-

ters t for x and all iterative di�erential embeddings � : (L; d

L

) ,! (K((t)); d

K((t))

),

the image �(O

L;x

) of O

L;x

is ontained in K[[t℄℄. The iterative di�erential lo-

sure of O is by de�nition the subring

O

L

:=

\

x2C

F

nS

O

L;x

:

Proposition 8.24 For x 2 C

F

n S let A

x

2 GL

n

(F ) be a matrix suh that bA

�1

x

is a basis for the �

t

-stable O

x

-lattie in M . Then

O

x

[A

x

Y ℄ � O

L;x

:

Proof Let x 2 C

F

n S and t be a loal parameter for x. Sine Y is a fundamen-

tal solution matrix with respet to b, A

x

Y is a fundamental solution matrix with

respet to bA

�1

x

. So by propostion 8.22, there is an ID-monomorphism � : L !

K((t)) suh that �(A

x

Y ) 2 Mat

n

(K[[t℄℄). Sine two fundamental solution matri-

es di�er by a matrix C 2 GL

n

(K), for every ID-monomorphism � : L! K((t)),

we have �(A

x

Y ) 2 C �Mat

n

(K[[t℄℄) = Mat

n

(K[[t℄℄). So � (O

x

[A

x

Y ℄) � K[[t℄℄ for

all ID-monomorphisms � : L! K((t)). So O

x

[A

x

Y ℄ � O

L;x

. 2

Remark Obviously, for all x 2 C

F

n S, we have

O

L;x

\ F = O

x

:

The next theorem is a re�nement of proposition 7.14.

Theorem 8.25 Let N o H � GL

n

be a semidiret produt of onneted lin-

ear algebrai groups. Let L=F be an IPV-extension with Gal(L=F )

�

=

H(K)

for an ID-module M over F and assume there is a fundamental solution matrix

Y 2 H(O

L

) for M with respet to an appropriate basis b = (b

1

; : : : ; b

n

). As-

sume that for any x 2 C

F

n S there are C

l

2 H ((O

x

)

l

) (l = 0; 1; : : : ) suh that

C

�1

l�1

� � �C

�1

0

Y =: Y

l

2 H ((O

L;x

)

l

). Then

N ((O

L;x

)

l

)

H

= Y

�1

l

N ((O

x

)

l

)Y

l

:
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Proof By proposition 7.14, we have

N (L)

H

= Y

�1

N (F )Y = Y

�1

C

0

� � �C

l�1

N (F )C

�1

l�1

� � �C

�1

0

Y = Y

�1

l

N (F )Y

l

:

Furthermore, sine Y

l

2 H ((O

L;x

)

l

), we have D 2 N ((O

L;x

)

l

) if and only if

Y

l

DY

�1

l

2 N ((O

L;x

)

l

). And therefore

N ((O

L;x

)

l

)

H

= N ((O

L;x

)

l

) \ N (L)

H

= Y

�1

l

N ((O

L;x

)

l

)Y

l

\ Y

�1

l

N (F )Y

l

= Y

�1

l

N ((O

x

)

l

)Y

l

:

2

60



9 Realisation with Restrited Singular Lous

In this hapter, we onsider the problem, for whih linear algebrai group G the

group G(K) of K-rational points ours as the Galois group of an IPV-extension

E=F with singular lous inside a given �nite set S � C

F

. (We say that G is

realisable over F regularly outside S.)

9.1 On the Abhyankar Conjeture

Conjeture (Di�erential Abhyankar Conjeture) Assume F is an algebrai

funtion �eld (in one variable) over K with nonsingular projetive model C

F

, and

let ; 6= S � C

F

be a �nite subset. Suppose G is a linear algebrai group over

K and let p(G) denote the (normal) subgroup of G generated by all unipotent

elements. Then G is realisable as an iterative di�erential Galois group over F

regularly outside S if and only if G=p(G) is.

Raynaud and Harbater have proved this onjeture for �nite groups G (see [Ray94℄,

[Har94℄ and [Har95℄). In the next setions, I will prove this onjeture for on-

neted groups.

However, this onjeture is not true in this generality as the following example

shows:

Let K = F

2

be the algebrai losure of the �eld of two elements and let D

1

:=

G

m

o Z=2Z be the in�nite dihedral group, where Z=2Z ats on G

m

be inverting

the elements. So sine har(K) = 2 and all elements of D

1

n G

m

have order 2,

D

1

is unipotently generated. Therefore by the Abhyankar onjeture, D

1

should

be realisable with at most one singular point over K(t).

Theorem 9.1 Let K = F

2

and let F = K(t) be the rational funtion �eld over

K. Then the in�nite dihedral group D

1

:= G

m

o Z=2Z is not realisable over F

with only one singular point.

Proof Assume E=F is an IPV-extension with Galois group Gal(E=F ) = D

1

(K)

and singular lous inside S � C

F

with #S = 1, and without loss of generality let

S = f1g. Then the �xed �eld L := E

G

m

(K)

is a �nite extension of F with Galois

group Gal(L=F ) = Z=2Z and L=F is regular outside S. But suh an extension is

given as L = K(t; s) with s

2

+ s = f(t), where f(t) 2 K[t℄ � F . Now E=L is an

IPV-extension with Galois group G

m

(K) and singular lous inside S

L

:= f1

L

g,

the plae of L lying over 1 2 C

F

. (Sine 1 is rami�ed in L=F , there is only one

plae 1

L

over 1.)

Let M be a 1-dimensional ID-module over L with IPV-�eld E, then [M ℄ 2

Isom

C

L

;1

has in�nite order, sine the Galois group is in�nite. But a short al-

ulation shows, that J

L

has no 2-torsion and so T

2

(J

L

) = 0. Therefore the

homomorphism � in theorem 8.19 is an isomorphism. By orollary 8.17, sine
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M is singular in at most one point, M is regular in all points and �([M ℄) 2 J

L

.

Finally, by the general theory on Jaobian varieties, sine K = F

2

, the Jaobian

J

L

has no element of in�nite order. So [M ℄ annot have in�nite order. 2

Remark This proof only works if K = F

2

, beause this is the only ase (in

harateristi 2) for whih J

L

has no element of in�nite order. Furthermore if

K is an algebraially losed �eld of harateristi 2 and K 6= F

2

, then in fat

one an �nd the desired ID-module M , and D

1

an be realised with exatly one

singular point.

One might wonder if this example only ours in harateristi 2, beause there is

no other p-group ating nontrivially on G

m

. But this example an be generalised

to arbitrary harateristi p by regarding the group

G := f(a

1

; : : : ; a

p

) 2 G

p

m

j a

1

� � �a

p

= 1g

on whih Z=pZ ats by yli permutation of the omponents.

In the next setions, we restrit to onneted linear algebrai groups. We will

show that every redued onneted linear algebrai group G is realisable regularly

outside a set S � C

F

of order #S = 2 for any algebrai funtion �eld F=K.

The proof will show that the Abhyankar onjeture is true for onneted groups.

9.2 Dividing the Problem of Realisation

We �rst give a splitting of a onneted linear algebrai group G into parts that

are easier to handle with, regarding the problem of realisation.

Notation So let G be a redued onneted linear algebrai group, R(G) its

radial and R

u

:= R

u

(G) its unipotent radial. Furthermore let T

0

be a maximal

torus of R(G) and Z := C

G

(T

0

) the entraliser of T

0

in G and let [Z;Z℄ denote

the ommutator subgroup of Z.

Theorem 9.2 The inlusions of the subgroups R

u

, T

0

and [Z;Z℄ into G indue

an epimorphism of algebrai groups

R

u

o

�

T

0

� [Z;Z℄

�

�! G;

where the ation of T

0

� [Z;Z℄ on R

u

is given by onjugation in G.

For the proof, we need some lemmata:

Lemma 9.3 G is generated by R

u

and Z.

Proof Let T be a maximal torus of G. Then T \ R(G) is a maximal torus of

R(G) and therefore onjugate to T

0

. Sine R(G) = R

u

� T

0

, there exists a 2 R

u
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suh that T \ R(G) = aT

0

a

�1

. And so, we get

C

G

(T ) � C

G

�

T \R(G)

�

= C

G

(aT

0

a

�1

) = aC

G

(T

0

)a

�1

= aZa

�1

:

So the union of all onjugates aZa

�1

ontains all Cartan subgroups of G. By

[Spr98℄, thm. 6.4.5(iii), and [Spr98℄, lemma 2.2.3, these onjugates generate G

and therefore R

u

and Z generate G. 2

Lemma 9.4 A onneted linear algebrai group H is generated by its radial

R(H) and its ommutator subgroup [H;H℄.

Proof By [Spr98℄, or. 8.1.6(i), the fator group H=R

u

(H) is generated by its

radial and its ommutator subgroup. But sine R(H=R

u

(H)) = R(H)=R

u

(H)

and [H=R

u

(H);H=R

u

(H)℄ = ([H;H℄R

u

(H))=R

u

(H), H is generated by R(H)

and [H;H℄. 2

Lemma 9.5 R(Z) equals the identity omponent of R(G) \ Z (denoted by

(R(G) \ Z)

Æ

) and R

u

(Z) = (R

u

\ Z)

Æ

. Furthermore T

0

is a maximal torus

of R(Z).

Proof By [Spr98℄, thm. 6.4.7, a Borel subgroup of Z = Z

G

(T

0

) is the intersetion

of Z with a Borel subgroup of G ontaining T

0

. Sine T

0

lies in the radial of G,

T

0

is ontained in every Borel subgroup of G. And therefore:

R(Z) =

0

B

�

\

~

B�Z

Borel

~

B

1

C

A

Æ

=

0

B

�

\

B�G

Borel

B \ Z

1

C

A

Æ

= (R(G) \ Z)

Æ

= ((R

u

o T

0

) \ Z)

Æ

= ((R

u

\ Z)o T

0

)

Æ

= (R

u

\ Z)

Æ

� T

0

;

sine T

0

is entral in Z. Sine all elements of (R

u

\ Z)

Æ

are unipotent, we obtain

R

u

(Z) = (R

u

\ Z)

Æ

. If follows immediately from R(Z) = (R

u

\ Z)

Æ

� T

0

, that

T

0

is a maximal torus of R(Z). 2

Proof of theorem 9.2 Sine by de�nition of Z, the elements of T

0

� G and

of Z � G ommute, the map T

0

� [Z;Z℄ ! G indued by the inlusions is a

homomorphism of algebrai groups, and therefore the mapR

u

o

�

T

0

�[Z;Z℄

�

�!

G also is a homomorphism of algebrai groups. So it is suÆient to show, that

these subgroups generate G.

By lemma 9.4, Z is generated by R(Z) and [Z;Z℄ and therefore by lemma 9.5,

it is generated by (R

u

\ Z)

Æ

, T

0

and [Z;Z℄. So by lemma 9.3, G is generated by

63



R

u

, (R

u

\ Z)

Æ

, T

0

and [Z;Z℄, i. e. by R

u

, T

0

and [Z;Z℄. 2

At last, we give a strutural property of ommutator subgroups in positive har-

ateristi:

Theorem 9.6 Let H be a onneted linear algebrai group (over an algebraially

losed �eld of positive harateristi p). Then the ommutator subgroup [H;H℄ is

unipotently generated.

Proof The group H=R

u

(H) is redutive and so by [Spr98℄, or. 8.1.6(ii), the

group [H=R

u

(H);H=R

u

(H)℄ is semisimple, and then by [Spr98℄, thm. 8.1.5(i),

unipotently generated. Let a 2 [H;H℄ be a representative of a unipotent element

of [H=R

u

(H);H=R

u

(H)℄. So there is n 2 N suh that a

p

n

2 R

u

(H). But sine all

elements of R

u

(H) are unipotent, there is m 2 N suh that 1 =

�

a

p

n

�

p

m

= a

p

n+m

.

So a itself is unipotent.

Sine [H;H℄ is generated by R

u

(H) and by representatives of a generating set of

[H=R

u

(H);H=R

u

(H)℄, it is unipotently generated. 2

Corollary 9.7 [Z;Z℄ is unipotently generated.

Proof By [Spr98℄, thm. 6.4.7(i), entralisers of tori are always onneted. So

the statement follows from the previous theorem. 2

Remark By the previous results, the realisation of onneted groups as Galois

groups an be redued to realising tori and unipotently generated groups and to

realising unipotent groups equivariantly.

9.3 Realisation of Tori and Unipotently Generated Groups

In [Mat01℄, Matzat has already proved that unipotently generated groups an be

realised with one singular point, and in [MvdP03℄, Matzat and van der Put have

proved that tori and onneted unipotently generated groups an be realised with

two singular points. But for the realisation of the diret produt of those two,

we need to be able to realise the torus in suh a way, that the orresponding

IPV-extension is linearly disjoint to that of the unipotently generated group (f.

prop. 7.11).

Notation Let S � C

F

be a set with #S = 2, let O = O(C

F

n S) be the ring of

regular funtions on C

F

n S and O

l

= O \ F

l

.

Proposition 9.8 A onneted unipotently generated group G an be realised as

a Galois group over F regularly outside S.
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Sketh of the proof Choose unipotent subgroups U

i

� G (i = 1; : : : ; k) whih

generate G. Then for all l 2 N and i = 1; : : : k, U

i

(O

l

) is a free O

l

-module of

dimension dim(U

i

), sine U

i

is unipotent. So we an hoose a sequene (D

l

)

l2N

of

matries with D

l

2 U

i

(O

l

) for some i 2 f1; : : : ; kg, that satis�es the onditions

of proposition 7.12. Therefore the D

l

de�ne an ID-module whose IPV-extension

has Galois group G(K), and sine for all l 2 N , D

l

2 U

i

(O

l

) � G(O

l

), this

IPV-extension is regular outside S.

Next, we onsider 1-dimensional ID-modulesM , beause an IPV-extension E for

M has Galois group Gal(E=F ) � GL

1

(K) = G

m

(K) and every torus de�ned over

K is isomorphi to G

k

m

for some k 2 N .

So let M be an ID-module with basis b and projetive system given by (D

l

)

l2N

,

where D

l

2 GL

1

(F

l

) = F

�

l

.

Theorem 9.9 Let M

1

; : : : ;M

r

be 1-dimensional ID-modules over F and let L=F

be an IPV-extension for M

1

� � � � �M

r

. If [M

1

℄; : : : ; [M

r

℄ 2 Isom

C

F

;1

generate a

free abelian group of rank r, then Gal(L=F ) is isomorphi to G

r

m

(K).

Proof For i = 1; : : : ; r, let b

i

be a basis element for M

i

and (D

i;l

)

l2N

be a

sequene orresponding to the ID-module-struture of M

i

. Further let U =

F [X

1

; : : : ; X

r

; X

�1

1

; : : : ; X

�1

r

℄ be an ID-ring via d

(k)

U

(X

i

) = d

(k)

F

(D

i;0

� � �D

i;l

) �

(D

i;0

� � �D

i;l

)

�1

X

i

for all k < p

l

and i = 1; : : : ; r. If I � U is a maximal ID-

ideal, then obviously U=I is an IPV-ring for M

1

� � � � �M

r

, i. e. L

�

=

U=I and

Gal(L=F ) is isomorphi to G

r

m

(K) if and only if I = (0).

Assume that I is not trivial. Sine d

U

stabilizes monomials, I is generated by

elements of the form X

e

1

1

� � �X

e

r

r

� a, where e

1

; : : : ; e

r

2 Z and a 2 F . Choose

suh an element and de�ne a 1-dimensional ID-module M (resp. its projetive

system over F ) by the sequene (D

l

)

l2N

, where D

l

:= D

e

1

1;l

� � �D

e

r

r;l

2 F

�

l

, with

respet to a basis b. Then de�ne the ID-ring U

0

:= F [Y; Y

�1

℄ with d

(k)

U

0

(Y ) =

d

(k)

F

(D

0

� � �D

l

) � (D

0

� � �D

l

)

�1

Y for all k < p

l

. So the ideal (Y � a) � U

0

is

an ID-ideal, hene M is a trivial ID-module and so [M ℄ = 0 2 Isom

C

F

;1

. But

by onstrution, [M ℄ = e

1

[M

1

℄ + : : : e

r

[M

r

℄ 2 Isom

C

F

;1

, whih ontradits the

assumption that [M

1

℄; : : : ; [M

r

℄ are Z-linearly independent. 2

Corollary 9.10 Every torus T an be realised regularly outside S (where #S =

2) by an IPV-extension L=F . Furthermore this IPV-extension an be hosen

linearly disjoint to any other given IPV-extension L

0

=F .

T an be realised even without any singular point, if and only if the Jaobian

variety J of C

F

has an element of in�nite order or if J has p-torsion.

Proof The subset Div

0

(C

F

; S;Z

p

) of Div

0

(C

F

;Z

p

) onsisting of the maps

f : C

F

! Z

p

, with f(x) = 0 for x 62 S, is a free Z

p

-module of rank 1, i. e. a free
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Z-module of in�nite rank. So Div

0

(C

F

; S;Z

p

)=(H(C

F

)\Div

0

(C

F

; S;Z

p

)) ontains a

free Z-module of in�nite rank, and therefore its inverse image

�

�1

�

Div

0

(C

F

; S;Z

p

)=(H(C

F

) \ Div

0

(C

F

; S;Z

p

))

�

� Isom

C

F

;1

ontains a free Z-

module of in�nite rank. So we an �nd the desired IPV-extension L.

The Jaobian is equal to the subgroup of

Div

0

(C

F

;Z

p

)

H(C

F

)

whose elements are repre-

sented by maps f : C

F

! Z � Z

p

. Hene the preimages under � are exatly

the ID-modules whih are regular on C

F

. If the Jaobian has p-torsion, then the

p-adi Tate-module T

p

(J ) is nonzero and therefore a free Z-module of in�nite

rank. Hene the image of T

p

(J ) in Isom

C

F

;1

is a free Z-module of in�nite rank.

Sine for all [M ℄ 2 Isom

C

F

;1

in this image, we have �([M ℄) = 0, these modules are

all regular on C

F

. So the subgroup �

�1

(J ) has an element of in�nite order, if and

only if J has an element of in�nite order or J [p℄ 6= 0. By [MvdP03℄, thm. 7.1 (4),

if �

�1

(J ) has an element of in�nite order, then it ontains a free Z-submodule

of in�nite rank. Hene every torus an be realised without singularities and suh

that the IPV-extension is linearly disjoint to any other given IPV-extension. 2

9.4 Equivariant Realisation of Unipotent Groups

Notation Let H be a redued linear algebrai group, U a onneted unipotent

group and G = U o H a semidiret produt. Furthermore let L=F be an IPV-

extension with Galois group Gal(L=F ) = H(K) and singular lous inside a �nite

set ; 6= S � C

F

, suh that for all x 2 C

F

n S and all l 2 N there exists a

fundamental solution matrix Y

l

2 H ((O

L;x

)).

Theorem 9.11 U an be realised H-equivariantly over L regularly outside S,

i. e. there is an IPV-extension E=L with Galois group U(K) suh that E=F is an

IPV-extension with Galois group G(K) = (U oH)(K) with singular lous inside

S.

Proof Let A � U be a minimal nontrivial H-invariant onneted normal sub-

group of U , i. e. A 6= 1 is a onneted normal subgroup of U that is invariant

under the ation of H and is minimal amoungst those. Sine the enter C(A) of

A is a harateristi subgroup of A, it is H-invariant and a normal subgroup of

U . Sine A is unipotent, C(A) is nontrivial and so by minimality of A, we get

C(A) = A, i. e. A is abelian.

Further if A

0

� A is a non-onneted H-invariant normal subgroup of U , then A

0

is �nite, beause its identity omponent (A

0

)

Æ

is also H-invariant and normal in

U and hene trivial by minimality of A.

First ase: A = U , i. e. there is no nontrivial normal subgroup of U { apart

from 1 and U { that is invariant under the ation of H.

Now, every sequene D

l

2 U((O

L

)

l

)

H

(l = 0; 1; : : : ) de�nes an IPV-extension E=L

with Gal(E=L) � U(K) and Gal(E=F ) � (UoH)(K), whih is regular outside S

(f. setion 8.4). Then Gal(E=L) is an H-invariant subgroup of U(K). But sine
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U is abelian and H-simple, we obtain that Gal(E=L) is �nite or Gal(E=L) =

U(K).

We have to show that the D

l

an be hosen suh that E=L is not �nite: For

this, we onsider the set of all IPV-extensions that are de�ned by sequenes

D

l

2 U((O

L

)

l

)

H

, l 2 N .

Let E

0

and E

00

be extensions de�ned by D

0

l

2 U((O

L

)

l

)

H

resp. D

00

l

2 U((O

L

)

l

)

H

and let Y

0

and Y

00

be the orresponding fundamental solution matries. Then

the map � : E

0

! E

00

, de�ned by �(Y

0

) = Y

00

and �j

L

= id

L

, is a di�erential

isomorphism if and only if for all l 2 N we have: (D

0

0

� � �D

0

l

)

�1

(D

00

0

� � �D

00

l

) 2

U((O

L

)

l+1

)

H

.

Therefore we have a one-to-one orrespondene between di�erential isomorphism

lasses of those IPV-extensions L(Y

0

) and the in�nite produt

Y

l�0

U((O

L

)

l

)

H

=U((O

L

)

l+1

)

H

:

But U((O

L

)

l

)

H

is an (O

F

)

l

-module for all l and therefore a K-vetor spae. So

U((O

L

)

l

)

H

=U((O

L

)

l+1

)

H

is a K-vetor spae and its dimension is greater than

1, beause it is a nontrivial torsionfree (O

F

)

l+1

-module and dim

K

((O

F

)

l+1

) > 1.

Hene the dimension of the in�nite produt as K-vetor spae is unountable

(� 2

N

).

Those IPV-extensions whose Galois group is �nite are given by maximal ideals

in the ring U := L[X

ij

; det(X)

�1

℄. Sine every maximal ideal is given by n

2

polynomials, the L-vetor spae of n

2

-tuples of polynomials in U gives an upper

bound to the number of those IPV-extensions with �nite Galois group. But sine

this is an L-vetor spae of ountable dimension and L is a K-vetor spae of

ountable dimension, the set of n

2

-tuples of polynomials in U is a K-vetor spae

of ountable dimension.

Thus for dimensional reasons, there exists an IPV-extension E

0

= L(Y

0

) with

Gal(E

0

=L) = U(K) and Gal(E

0

=F ) = (U oH)(K).

Seond ase: A 6= U and there exists an H-equivariant isomorphism

Ao (U=A)! U .

Then

�

A o (U=A)

�

oH

�

=

A o

�

(U=A) oH

�

and by indution we an assume

that U=A is realised H-equivariantly as Galois group Gal(

~

E=L), suh that

~

E=F

has singular lous inside S. (The dimension of U=A is less than that of U .) So it

remains to realise A over

~

E by ((U=A)oH)-invariant matries D

l

2 A ((O

~

E

)

l

).

But an ((U=A) o H)-invariant onneted normal subgroup of A is a normal

subgroup of U (sine it is U=A-invariant) and is H-invariant, so equals 1 or A,
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by minimality of A. Hene we are in the �rst ase.

Third ase: A 6= U and there doesn't exist an H-equivariant isomorphism

Ao (U=A)! U .

We �rst show that the map � : U((O

L

)

l

)

H

! (U=A) ((O

L

)

l

)

H

, indued by the

projetion, is surjetive:

Sine U((O

L

)

l

)

H

and U((O

L

)

l

)

H

are (O)

l

-modules it suÆes to show that for all

x 2 C

F

n S the loalised map �

x

: U((O

L;x

)

l

)

H

! (U=A) ((O

L;x

)

l

)

H

is surjetive.

But by hoosing a fundamental solution matrix Y

l

2 H ((O

L;x

)

l

) (whih exists by

assumption), we get a ommutative diagram

U((O

x

)

l

)

�

x

//

( )

Y

l

��

(U=A)((O

x

)

l

)

( )

Y

l

��

U((O

L;x

)

l

)

H

�

x

//
(U=A) ((O

L;x

)

l

)

H

;

where ( )

Y

l

denotes onjugation by Y

l

. The vertial maps are isomorphisms and

the upper horizontal map is an epimorphism and so the lower horizontal map

also is an epimorphism.

Now let (U=A) be realisedH-equivariantly as (U=A)(K) = Gal(

~

E=L) by matries

~

D

l

2 (U=A) ((O

L

)

l

)

H

(l = 0; 1; : : : ). Then hoose preimagesD

l

2 �

�1

(

~

D

l

). These

de�ne an IPV-extension E

0

=L with Galois group U

0

(K) = Gal(E

0

=L) � U and

U

0

! U=A is surjetive (f. [Mat01℄, thm. 5.12). Sine the D

l

are H-invariant

and U

0

is generated by the D

l

as an algebrai group, U

0

is H-invariant, and

therefore A \ U

0

is H-invariant. Furthermore A \ U

0

is normal in U

0

(sine A is

normal in U) and normal in A (sine A is abelian), so it is normal in AU

0

= U .

By minimality of A, we get that A\U

0

is �nite or A\U

0

= A. If A\U

0

is �nite,

then we have 1 = (A \ U

0

)

Æ

= A \ (U

0

)

Æ

, sine A is onneted and A and U

0

are

unipotent. And so (U

0

)

Æ

�

=

U=A and U

�

=

Ao (U

0

)

Æ

�

=

Ao (U=A) as H-groups.

But by assumption, there doesn't exist suh an isomorphism. So A\U

0

= A and

therefore U

0

= U . Hene E

0

=L is the desired IPV-extension. 2

9.5 Realisation of Conneted Groups

As a summary of the previous setions, we have the following theorem:

Theorem 9.12 Every onneted linear algebrai group G an be realised as iter-

ative di�erential Galois group of an IPV-extension E=F whih has at most two

singular points. If the Jaobian variety of C

F

has p-torsion or if G is unipotently

generated, then G an be realised even with at most one singular point.

Proof Denote by S � C

F

the set of two points in C

F

, whih may be singular

in the IPV-extension. Choose a maximal torus T

0

of the radial R(G), then with
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the notations of setion 9.2, we have an epimorphism

� :

~

G := R

u

o (T

0

� [Z;Z℄) �! G:

By orollary 9.7 and proposition 9.8, we an realise [Z;Z℄ by an IPV-extension

L

0

=F regularly outside S and by orollary 9.10, we an realise T

0

by an IPV-

extension L=F regularly outside S suh that L 


F

L

0

is an IPV-extension of F

with Galois group (T

0

� [Z;Z℄)(K). Sine L and L

0

are regular outside S, this

extension is also regular outside S. Then by theorem 9.11, there is an IPV-

extension

~

E=L with Galois group R

u

(K) suh that

~

E=F is an IPV-extension

with Gal(

~

E=F ) =

~

G(K) and

~

E=F is regular outside S. Hene, the �xed �eld

under Ker(�), E :=

~

E

Ker(�)

is an IPV-extension over F with Gal(E=F ) =

�

~

G=Ker(�)

�

(K) = G(K) and E=F has singular lous inside S.

The last statement is then lear, beause if J [p℄ 6= 0, then T

0

an be realised

without singularities, by orollary 9.10. If G is unipotently generated, G an be

realised with only one singular point, by proposition 9.8. 2

Remark In [MvdP03℄, or. 7.7 (3), it has already been stated that G an be

realised regularly outside a non empty set S, if the torus T

0

an be realised

regularly outside S, but the proof given there doesn't work in general:

Assume #S = 2 and, for simpliity, let T

0

= G

m

be the 1-dimensional torus and

let T

0

be realised regularly outside S, i. e. we have an ID-module with projetive

system given by matries D

l

2 T

0

(F

l

) = F

�

l

.

If F is not a rational funtion �eld, then for all l 2 N , where D

l

62 K

�

(in

partiular for in�nitely many l), there exists a point x

l

2 C

F

nS with ord

x

l

(D

l

) 6=

0, beause the support of a nontrivial prinipal divisor has at least three elements.

So if we hoose an inreasing sequene (l

j

)

j2N

with lim

j!1

(l

j+1

� l

j

) = 1 and

if we de�ne a new ID-module N with projetive system given by D

0

k

:= 1, if

k 62 fl

j

g, and D

0

k

:= (D

j

)

p

l

j

�j

2 F

l

j

, if k = l

j

, then the IPV-extension for this

ID-module also has di�erential Galois group T

0

(K), by proposition 7.12. But in

general for the x

l

de�ned above, we get

P

1

k=0

ord

x

l

(D

0

k

) 6= 0. This means that in

general N is totally singular (if there are in�nitely many suh x

l

), or N has at

least one additional singular point, namely a point x 2 C

F

n S, for whih there

are in�nitely many l 2 N suh that x = x

l

.

Hene, also in the \interlaing with gaps" of the matries for the torus and the

unipotently generated group, as given in the proof of [MvdP03℄, or. 7.7 (3),

there might our new singularities.

Corollary 9.13 The di�erential Abhyankar onjeture is true for onneted

groups.

Proof The fator group G=p(G) is a torus. If G=p(G) = 1, then G is unipotently

generated and therefore an be realised with one singularity. If G=p(G) 6= 1, then

by the previous theorem, both G and G=p(G) an be realised with singular lous
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inside a nonempty set S, if and only if #S � 2 or if #S = 1 and the Jaobian J

has an element of in�nite order or an element of order p. 2
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A Completions of Graded Algebras

In this appendix we regard ompletions of graded algebras over a ring R (R-gas

for short).

Let R be a ommutative ring.

De�nition A.1 A ommutative R-algebra B is alled an R-ga , if B is the

ompletion of a onneted graded R-algebra

1

L

i=0

B

i

, where the ompletion is taken

with respet to the �ltration given by the ideals I

k

:=

1

L

i=k

B

i

. We all B

i

the

i-th homogeneous omponent of B. The augmentation map will be denoted by

" : B ! B

0

= R. More general, the projetion map to the i-th homogeneous

omponent will be denoted by pr

i

: B ! B

i

.

Proposition A.2 Let B be an R-ga. Then as an R-module B is isomorphi to

the diret produt

1

Q

k=0

B

k

.

Proof By de�nition the ompletion is the inverse limit lim

 �

n2N

(

L

n

k=0

B

k

) (see also

[Eis95℄). But this limit is obviously isomorphi to

1

Q

k=0

B

k

. 2

Example A.3 1. The ring of formal power series R[[T ℄℄ is an R-ga, with

i-th homogeneous omponent R � T

i

.

2. The ring R itself is the trivial R-ga with (R)

i

= 0 for i > 0.

Remark Aording to the notation of a power series as an in�nite sum, we

will denote elements of an R-ga B by

P

1

i=0

b

i

, where b

i

2 B

i

. This notation

is also justi�ed by the fat, that, indeed,

P

1

i=0

b

i

is the limit of the sequene of

partial sums (

P

n

i=0

b

i

)

n2N

in the given topology, or in other words that

P

1

i=0

b

i

is a onvergent series.

De�nition A.4 Let B and

~

B be R-gas. A homomorphism of R-algebras

f : B !

~

B is alled a homomorphism of R-gas, if f is a ontinuous exten-

sion of a homomorphism of graded R-algebras g :

L

1

k=0

B

k

!

L

1

k=0

~

B

k

.

Remark Sine

L

1

k=0

B

k

is dense in B, the ontinuous extension of a given

homomorphism of graded R-algebras is unique. So the ategory of ommutative

onneted graded R-algebras and the ategory of R-gas are equivalent.

In this thesis, we sometimes have to onsider more general homomorphisms be-

tween R-gas, too. So let K � R be a subring, B and

~

B be R-gas and let
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f : B !

~

B be a ontinuous homomorphism of K-modules (or even K-algebras).

Then we de�ne \homogeneous omponents" f

(i)

: B !

~

B (i 2 Z) of f to be the

ontinuous homomorphisms of K-modules given by

f

(i)

j

B

j

:= pr

i+j

Æ f j

B

j

: B

j

!

~

B

i+j

for all j 2 N (set

~

B

i+j

:= 0 for i+ j < 0). The f

(i)

uniquely determine f , beause

for all b

j

2 B

j

,

1

P

i=�j

f

(i)

(b

j

) onverges to f(b

j

).

Suh a ontinuous homomorphism of K-modules f : B !

~

B is alled positive,

if f

(i)

= 0 for i < 0.

Proposition A.5 The monoid (K; �) ats on the set Hom

+

K

(B;

~

B) of positive

ontinuous homomorphisms of K-modules by

(a:f)

(i)

:= a

i

� f

(i)

(i � 0)

for all a 2 K, f 2 Hom

+

K

(B;

~

B). If f is a homomorphism of algebras, then

a:f also is a homomorphism of algebras. Furthermore for f 2 Hom

+

K

(B;

~

B),

g 2 Hom

+

K

(

~

B;

~

~

B) and a 2 K, we have

a:(g Æ f) = a:g Æ a:f;

i. e. the ation of K ommutes with ompositions.

Proof It is lear, that for all a 2 K and f 2 Hom

+

K

(B;

~

B), a:f is a positive

ontinuous homomorphism. If f is a homomorphism of algebras, then for all

b;  2 B:

a:f(b) =

1

X

k=0

a

k

f

(k)

(b) =

1

X

k=0

a

k

X

i+j=k

f

(i)

(b)f

(j)

()

=

 

1

X

i=0

a

i

f

(i)

(b)

!

�

 

1

X

j=0

a

j

f

(j)

()

!

= a:f(b) � a:f();

i. e. a:f is a homomorphism of algebras.

Next, it is lear from the de�nition that 1:f = f and a

1

:(a

2

:f) = (a

1

a

2

):f for

all a

1

; a

2

2 K; f 2 Hom

+

K

(B;

~

B), i. e. this de�nes an ation of the monoid K.

Now let f 2 Hom

+

K

(B;

~

B), g 2 Hom

+

K

(

~

B;

~

~

B) and a 2 K. Then for all b 2 B and

k 2 N , we have:

((a:g) Æ (a:f))

(k)

(b) =

X

i+j=k

(a:g)

(i)

Æ (a:f)

(j)

(b) =

X

i+j=k

a

i

g

(i)

�

a

j

f

(j)

(b)

�

=

X

i+j=k

a

i

a

j

g

(i)

�

f

(j)

(b)

�

= a

k

X

i+j=k

�

g

(i)

Æ f

(j)

�

(b)

= (a:(g Æ f))

(k)

(b)
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So (a:g) Æ (a:f) = a:(g Æ f). 2

Remark Some speial maps, that are used in this thesis are the higher deriva-

tions on rings and modules (f. setions 1.1 and 1.2) { maps in Hom

+

K

(R;B) resp.

Hom

+

K

(M;B


R

M) {, the extension d

^




of the universal derivation to the algebra

of higher di�erentials { a map in Hom

+

K

(

^


;

^


) (f. setion 2.1) { and at last

the extensions of higher onnetions on M to maps in Hom

+

K

(

^





R

M;

^





R

M)

(f. setion 2.3).
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B De�nitions of Some Categories

In this appendix we give an overview of the de�nitions of some speial ategories,

suh as the notion of a Tannakian ategory. We don't give all the details but

refer to other books, if for example one doesn't know the universal property of

the kernel of a morphism.

De�nition B.1 (Abelian Category)

A ategory C is alled an abelian ategory if the following onditions hold:

1. For all objets X; Y of C, the set of morphisms Mor(X; Y ) is an abelian

group.

2. There exists a null objet 0 2 Ob(C).

18

3. For all objets X; Y of C, there exists a biprodut X � Y 2 Ob(C).

4. For all morphisms f of C, the kernel Ker(f) and the okernel Coker(f) of

f exist.

5. For every monomorphism f 2 Mor(X; Y ), there exists a morphism g : Y !

Z suh that X

�

=

Ker(g) and for every epimorphism f 2 Mor(Y;X), there

exists a morphism g : Z ! Y suh that X

�

=

Coker(g).

For the next de�nition, the de�nition of a tensor ategory over a �eld K, we

follow the notion of P. Deligne in [Del90℄ and B. H. Matzat in [Mat01℄. There

also exist other notions of a tensor ategory. For example, what we all a tensor

ategory is alled a \rigid abelian K-linear ACU 
-ategory" by S. Saavedra in

[Saa72℄ or a \K-linear rigid abelian tensor ategory with K

�

=

End(1)" by P.

Deligne and J. Milne in [DM89℄.

De�nition B.2 (Tensor Category over K)

A ategory C is alled a tensor ategory over a �eld K if the following on-

ditions hold:

1. C is an abelian ategory.

2. There exists a biadditive funtor 
 : C � C ! C, alled tensor produt,

that is assoiative and ommutative.

3. There exists a unital objet 1

C

for 
.

4. For all X 2 C, there exists an objet X

�

2 C (alled dual of X) and mor-

phisms "

X

2 Mor(X
X

�

; 1

C

) (alled evaluation) and Æ

X

2 Mor(1

C

; X

�




X) (alled oevaluation), suh that:

18

All the objet that are assumed to exists are de�ned by their universal properties.
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X

id

X


Æ

X

//

id

X

%%K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

X 
X

�


X

"

X


id

X

��

X

and

X

�

Æ

X


id

X

�

//

id

X

�

&&L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

X

�


X 
X

�

id

X

�
"

X

��

X

�

ommute.

5. End

C

(1

C

)

�

=

K.

Remark Let C be a tensor ategory. Then for all objets X; Y 2 C, the funtor

T 7! Mor(T 
 X; Y ) is representable and the representing objet, denoted by

Hom(X; Y ), is alled the internel hom of X and Y .

The following proposition is a olletion of some useful results, that are all proved

in [Del90℄:

Proposition B.3 Let C be a tensor ategory over a �eld K. Then:

1. For all X; Y 2 C, there is an isomorphism �

X;Y

: X

�


 Y ! Hom(X; Y ).

2. For all X 2 C, the bidual (X

�

)

�

is isomorphi to X.

3. For all X; Y 2 C, X

�


 Y

�

is isomorphi to (X 
 Y )

�

.

Example B.4 For a ommutative ring R, the ategory Mod(R) of �nitely gen-

erated R-modules is an abelian ategory.

The ategory Proj-Mod(R) of �nitely generated projetive R-modules is in gen-

eral not abelian, but satis�es the properties 2.-4. of a tensor ategory, with the

usual tensor produt, 1 = R, X

�

= Hom

R

(X; 1), "

X

: X
X

�

! 1; x
� 7! �(x)

and 1

Æ

X

�! X

�


X

�

X;X

��! Hom

R

(X;X); r 7! r � id

X

.

De�nition B.5 ((Neutral) Tannakian Category)

A tensor ategory T over a �eld K is alled a Tannakian ategory if there

exists a sheme S 6= ; over K and a funtor ! : T !Mod(S) (so alled �bre

funtor) whih

1. respets the tensor produt,

19

2. is K-linear and

3. is exat.

T is alled a neutral Tannakian ategory if it admits a �bre funtor

! : T ! Vet(K).

19

see again [Del90℄ for more details
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