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Abstra
t

This thesis 
ontains two major parts. In the �rst part, I introdu
e a new theory

of modules with iterative 
onne
tion. This theory uni�es the theory of modules

with 
onne
tion in 
hara
teristi
 zero as given by N. Katz (see [Kat87℄) and

the theory of iterative di�erential modules in positive 
hara
teristi
 as given by

B. H. Matzat und M. van der Put (see [Mat01℄ and [MvdP03℄). The se
ond

part of this work is about the di�erential Abhyankar 
onje
ture for iterative

Pi
ard-Vessiot extensions (IPV-extensions). This 
onje
ture is 
on
erned with

the problem whi
h linear algebrai
 groups o

ur as iterative di�erential Galois

groups of IPV-extensions with restri
ted singular lo
us. In this thesis, I prove the

di�erential Abhyankar 
onje
ture for 
onne
ted groups and give ne
essary and

suÆ
ient 
onditions for 
onne
ted groups for being realisable with given singular

points.

Zusammenfassung

Diese Doktorarbeit besteht im Gro�en aus zwei Teilen. Im ersten Teil entwi
kle

i
h eine neue Theorie von Moduln mit iterativem Zusammenhang. Diese Theo-

rie vereinheitli
ht die Theorie der Moduln mit Zusammenhang in Charakteris-

tik Null, wie N. Katz sie in [Kat87℄ vorstellt, und die Theorie der iterativen

Di�erential-Moduln von B. H. Matzat und M. van der Put (siehe [Mat01℄ und

[MvdP03℄). Im zweiten Teil der Arbeit geht es um die Di�erential-Abhyankar-

Vermutung f�ur iterative Pi
ard-Vessiot-Erweiterungen (IPV-Erweiterungen).

Diese Vermutung ma
ht dar�uber Aussagen, wel
he lineare algebrais
he Gruppe

als iterative Di�erential-Galoisgruppe von IPV-Erweiterungen mit einges
hr�ank-

tem singul�aren Ort vorkommen. In dieser Arbeit beweise i
h die Di�erential-

Abhyankar-Vermutung f�ur zusammenh�angende Gruppen und gebe notwendige

und hinrei
hende Kriterien f�ur die Realisierbarkeit zusammenh�angender Grup-

pen mit vorgegebenen Singularit�aten an.
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Introdu
tion

At the beginning of di�erential Galois theory, one was restri
ted to the 
ase

of 
hara
teri
ti
 zero. In this 
ase N. Katz gave a general setting of modules

with integrable 
onne
tion to des
ribe linear di�erential equations in several vari-

ables (see [Kat87℄). These modules with integrable 
onne
tion form a 
ategory

DE(R=K) (here R denotes the di�erential ring and K the �eld of 
onstants),

whi
h turns out to be a Tannakian 
ategory or even a neutral Tannakian 
ate-

gory over K, if there is a �bre fun
tor ! : DE(R=K)! Ve
t(K) (for example if

R has a K-rational point). By the general properties of neutral Tannakian 
ate-

gories, this gives rise to a Galois theory for these linear di�erential equations (see

for example [DM89℄). But this approa
h of Katz only works in 
hara
teristi
 zero,

mainly be
ause in positive 
hara
teristi
 p, every p-th power is a 
onstant with

respe
t to any derivation on R. In parti
ular, if there is a di�erential extension

L of R, L would have additional 
onstants, namely L

p

nR.

After a few attempts by K. Okugawa in 1963 and 1987 (see [Oku63℄ and [Oku87℄),

B. H. Matzat and M. van der Put started to set up a systemati
 approa
h to

di�erential Galois theory in positive 
hara
teristi
 (see [MvdP03℄). They used

so 
alled iterative derivations, whi
h were �rst introdu
ed by H. Hasse and F.

K. S
hmidt in [HS37℄. In their notation, an iterative derivation on a ring R is

a sequen
e of endomorphisms

�

�

(k)

�

k2N

of the ring R satisfying some properties

(
f. proposition 1.2 and the remarks following it), whi
h imply that �

(1)

is a

derivation and whi
h would imply that �

(k)

=

1

k!

(�

(1)

)

k

, if the 
hara
teristi
 was

zero. But this di�erential Galois theory developed by Matzat and van der Put

only works for di�erential equations in one variable, and there has still been no

systemati
 way for several variables.

In the �rst part of this thesis, I will introdu
e su
h a systemati
 des
ription using

so 
alled higher di�erentials and iterative 
onne
tions. This theory is 
ompletely

independent of the 
hara
teristi
. The 
hara
teristi
 will only take into a

ount,

when we look for spe
ial properties (whi
h parameters determine an iterative

derivation and so on). We will see that this theory of modules with iterative


onne
tion resp. integrable iterative 
onne
tion is a generalisation of both the


lassi
al theory of modules with (integrable) 
onne
tion in 
hara
teristi
 zero and

the iterative di�erential theory of Matzat and van der Put over algebrai
 fun
tion

�elds. In se
tion 4, it will be shown, that the 
ategory ICon(R=K) of modules

with iterative 
onne
tion over R and the 
ategory ICon

int

(R=K) of modules with

integrable iterative 
onne
tion over R are both (neutral) Tannakian 
ategories.

In getting the right setting, the main idea is to regard a higher derivation not

as a sequen
e of maps

�

�

(k)

: R! R

�

k2N

but as a homomorphism of algebras

 : R ! R[[T ℄℄ by summing up, in detail  (r) :=

P

1

k=0

�

(k)

(r)T

k

. This leads to

the notion of R-
gas (
ompletions of graded R-algebras), whi
h allows to gener-

alise the de�nition of a higher derivation and to obtain a universal obje
t

^




R=K
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with a universal higher derivation d

R

: R!

^




R=K

, repla
ing the module of di�er-

entials 


R=K

in 
lassi
al theory. There have already been some attempts in this

dire
tion (see for example [Voj04℄, where P. Vojta de�ned an algebra of divided

di�erentials), but they all didn't lead to an appropriate theory.

In the se
ond part of the thesis, we will be 
on
erned with the di�erential Ab-

hyankar 
onje
ture over algebrai
 fun
tion �elds in positive 
hara
teristi
.

So we will be in the 
ase, for whi
h Matzat and van der Put developed an itera-

tive di�erential Galois theory. In more detail, for an iterative di�erential module

(ID-module) M over the algebrai
 fun
tion �eld F , there is a minimal iterative

di�erential extension �eld L=F (whi
h is unique up to di�erential isomorphism),


alled iterative Pi
ard-Vessiot extension (IPV-extension), su
h that M 


F

L has

a basis of di�erentially 
onstant elements. The group of di�erential automor-

phisms of L over F is an algebrai
 subgroup of GL

n

(K) (n = dim

F

(M), K the

�eld of 
onstants), 
alled the iterative di�erential Galois group Gal(L=F ). It

has already been shown by Matzat (see [Mat01℄, 
or. 8.11) that for every re-

du
ed linear algebrai
 group G de�ned over K, there exists an IPV-extension

with Gal(L=F ) = G(K). (We say that G 
an be realised as di�erential Galois

group.) However, one wants to have realisations with few singular points. The

di�erential Abhyankar 
onje
ture states that a linear algebrai
 group G 
an be

realised with singular lo
us inside a nonempty set S, if and only if G=p(G) 
an,

where p(G) denotes the subgroup of G generated by its unipotent elements. For �-

nite groups G, this 
onje
ture be
omes the 
lassi
al Abhyankar 
onje
ture, whi
h

has been proved by Raynaud and Harbater (see [Ray94℄, [Har94℄ and [Har95℄).

In this work, we will give a realisation of 
onne
ted groups whi
h shows that the

di�erential Abhyankar 
onje
ture is also true for 
onne
ted groups.

Nevertheless, the di�erential Abhyankar 
onje
ture is not true in this form. In

se
tion 9.1, we will give an example of a non-
onne
ted group whi
h is generated

by unipotent elements but whi
h is not realisable with one singularity. Sin
e this

example only works if the �eld of 
onstants equals F

p

, the di�erential Abhyankar


onje
ture might be true if the �eld of 
onstants is not F

p

.

Chapter 1 gives the de�nition of higher derivations in the general sense and in the

spe
ial 
ase whi
h is equivalent to the higher derivations of Hasse and S
hmidt.

The R-
gas (
ompletions of graded R-algebras) used here and throughout the

whole thesis are de�ned in appendix A, together with some properties and no-

tations related to R-
gas. In the �rst 
hapter, we also de�ne higher derivations

on modules and �nally give an a
tion of the �eld of 
onstants K on the set of

higher derivations, whi
h turns out to be very useful later on to simplify a lot of


al
ulations.

In 
hapter 2, the algebra of higher di�erentials

^




R=K

is introdu
ed together with

the universal higher derivation d

R

. We show that this universal higher derivation

iv




an be extended to an automorphism d

^




of the K-algebra

^




R=K

(see se
tion

2.2). At last, we de�ne higher 
onne
tions on a module M as higher derivations

over d

R

, we de�ne extensions of these higher 
onne
tions to endomorphisms of

^




R=K


M using the automorphism d

^




, and we show that over a regular lo
al

ring R, every �nitely generated module with a higher 
onne
tion is free.

In 
hapter 3, we fo
us on iterative derivations on the ring R (i. e. higher deriva-

tions with an additional 
omposition law) and on iterative derivations on mod-

ules. The iterative derivations seem to be the appropriate repla
ement for the


ommon derivations, be
ause they are in one-to-one 
orresponden
e to those in


hara
teristi
 zero, what will be shown later. We 
on
lude the 
hapter with the

de�nitions and some properties of iterative 
onne
tions and integrable iterative


onne
tions, the 
entral obje
ts of the �rst part of this work.

The investigation of 
ategorial properties is done in the forth 
hapter. There,

we see that the 
ategory of modules with (arbitrary) higher 
onne
tion is not

a tensor 
ategory for la
k of some morphisms regarding the dual obje
t. But

the 
ategory ICon(R=K) of modules with iterative 
onne
tion and the 
ategory

ICon

int

(R=K) of modules with integrable iterative 
onne
tion are tensor 
ate-

gories over K. Even more, together with the �bre fun
tor ! : ICon(R=K) !

Mod(R), that forgets the 
onne
tion, the 
ategories ICon(R=K) and

ICon

int

(R=K) are Tannakian 
ategories and even neutral Tannakian 
ategories

over K, if R has a K-rational point. A short summary of the de�nitions of the


ategories used here is given in appendix B. In se
tion 4.2, we sket
h a generali-

sation of the previous to s
hemes.

The last two 
hapters of the �rst part 
on
entrate on spe
ial properties related

to the 
hara
teristi
. In 
hapter 5, it is shown that for 
har(K) = 0, (
ommon)

derivations, di�erentials and 
onne
tions are in one-to-one 
orresponden
e to

iterative derivations, higher di�erentials and iterative 
onne
tions, what proves

that the 
lassi
al theory is obtained as a spe
ial 
ase of the theory developed

here.

In 
hapter 6, we show that modules with integrable iterative 
onne
tion are in

one-to-one 
orresponden
e to proje
tive systems. This implies that the theory of

iterative di�erential modules de�ned by Matzat in [Mat01℄ also is obtained as a

spe
ial 
ase.

In 
hapter 7, the �rst 
hapter of the se
ond part, we start with some properties

of iterative derivations in algebrai
 fun
tion �elds in one variable, whi
h will be

ne
essary for later purposes. We re
all the basi
 de�nitions and results of the

iterative Pi
ard-Vessiot theory, in
luding methods for determining the iterative

di�erential Galois group of an iterative Pi
ard-Vessiot extension (IPV-extension).

In 
hapter 8, we then 
on
entrate on questions regarding regularity both of it-

erative di�erential modules and of IPV-extensions. One point is that iterative

di�erential modules (ID-modules) 
an be totally singular, i. e. they are singular

in every pla
e of the fun
tion �eld. This is a phenomenon that doesn't o

ur in

v




hara
teristi
 zero. We also give 
riteria for de
iding, whether an ID-module is

totally singular or not, and for determining the points in whi
h these modules

are regular.

Finally in 
hapter 9, we dis
uss questions 
on
erning the di�erential Abhyankar


onje
ture for IPV-extensions. We show that the 
onje
ture is true for 
onne
ted

groups. Moreover, we show that every 
onne
ted group 
an be realised with at

most two singular points and in spe
ial 
ases with even less singular points. This

has already been stated in [MvdP03℄ (see [MvdP03℄, thm. 7.1 (3) and 
or. 7.7

(3)), but the proof sket
hed there has a gap (
f. the remark in se
tion 9.5). The

realisation of a 
onne
ted group given here is splitted into several parts: The

realisation of unipotently generated 
onne
ted groups, the realisation of tori and

the solution of embedding problems with unipotent kernel.

vi



Part I

In this part of the thesis, the reader is introdu
ed into the theory of iterative


onne
tions. The main result is given in se
tion 4, namely that for a regular


ommutative ring R that is �nitely generated as a K-algebra, the �nitely gen-

erated modules with iterative 
onne
tion form a Tannakian 
ategory and { if in

addition Spe
(R) has a K-rational point { even a neutral Tannakian 
ategory

over K.

Furthermore in se
tion 5, we show that in 
hara
teristi
 zero, the 
ategory

ICon

int

(R=K) of �nitely generated modules with integrable iterative 
onne
-

tion is equivalent to the 
ategory DE(R=K) of �nitely generated modules with

integrable (
ommon) 
onne
tion as introdu
ed by Katz in [Kat87℄. This shows

that the theory of modules with iterative 
onne
tion is a generalisation to all


hara
teristi
s of the theory of modules with (
ommon) 
onne
tion.

At last in se
tion 6, we 
onsider the 
ase that K has positive 
hara
teristi
.

Then if R is an algebrai
 fun
tion �eld, the 
ategory ICon(R=K) (and also

ICon

int

(R=K)) is equivalent to the 
ategory ID

K

(R) of modules with an iterative

derivation as introdu
ed by Matzat in [Mat01℄. So the theory of modules with

iterative 
onne
tion is also a generalisation of this theory.

Notation Throughout this work, K denotes a �eld, R and

~

R denote integral

domains, whi
h are �nitely generated K-algebras (or lo
alisations of �nitely gen-

erated K-algebras) and f : R !

~

R denotes a homomorphism of K-algebras.

Furthermore B denotes the 
ompletion of a graded algebra over

~

R (a

~

R-
ga for

short), as de�ned in appendix A.M will always be a �nitely generated R-module.

1



1 Higher Derivations

In this se
tion we give the notion of higher derivations on rings and modules.

The de�nition used here is di�erent from that introdu
ed by Hasse and S
hmidt

in [HS37℄. In fa
t it is a generalisation whi
h we will show later on. This more

general de�nition is ne
essary to de�ne the algebra of higher di�erentials as a

universal obje
t (see se
tion 2.1).

1.1 Higher Derivations on Rings

De�nition 1.1 A higher derivation of R to B over K is a homomorphism of

K-algebras  : R! B satisfying " Æ  = f : R! B

0

=

~

R.

The set of all higher derivations of R to B over K will be denoted byHD

K

(R;B).

In the spe
ial 
ase of B = R[[T ℄℄ (and

~

R = R) we setHD

K

(R) := HD

K

(R;R[[T ℄℄).

For  2 HD

K

(R) we de�ne a sequen
e

�

 

(k)

�

k2N

of maps  

(k)

: R ! R by the

equation

 (r) =

1

X

k=0

 

(k)

(r)T

k

for all r 2 R.

Proposition 1.2 For  2 HD

K

(R) the maps  

(k)

are homomorphisms of K-

modules and satisfy the following properties:

 

(0)

= id

R

(1)

8 k 2 N ; 8 r; s 2 R :  

(k)

(rs) =

X

i+j=k

 

(i)

(r) 

(j)

(s) (2)

Furthermore a sequen
e

�

 

(k)

�

k2N

of K-module-homomorphisms satisfying these

two properties de�nes a higher derivation  : R ! R[[T ℄℄ by the equation given

above.

Proof  =

P

1

k=0

 

(k)

T

k

is a homomorphism of K-modules, if and only if for all

r

1

; r

2

2 R and a

1

; a

2

2 K we have

1

X

k=0

 

(k)

(a

1

r

1

+ a

2

r

2

)T

k

=  (a

1

r

1

+ a

2

r

2

) = a

1

 (r

1

) + a

2

 (r

2

)

= a

1

1

X

k=0

 

(k)

(r

1

)T

k

+ a

2

1

X

k=0

 

(k)

(r

2

)T

k

;

i.e. if  

(k)

(a

1

r

1

+ a

2

r

2

) = a

1

 

(k)

(r

1

) + a

2

 

(k)

(r

2

) for all k 2 N , whi
h means that

 

(k)

is a homomorphism of K-modules for all k 2 N .

Sin
e " Æ  =  

(0)

, we have id

R

= " Æ  if and only if  

(0)

= id

R

.

2



At last, we have

 (rs) =

1

X

k=0

 

(k)

(rs)T

k

and

 (r) (s) =

 

1

X

k=0

 

(k)

(r)T

k

! 

1

X

k=0

 

(k)

(s)T

k

!

=

1

X

k=0

 

X

i+j=k

 

(i)

(r) 

(j)

(s)

!

T

k

for all r; s 2 R. So  is a homomorphism of algebras if and only if the sequen
e

�

 

(k)

�

k2N

satis�es the se
ond property. 2

Remark More generally, for an arbitrary higher derivation  2 HD

K

(R;B) we

denote by  

(k)

the 
omposition of  and the proje
tion into the k-th homogeneous


omponent of B. For every r 2 R we then have  (r) =

P

1

k=0

 

(k)

(r). (The right

side is a series that 
onverges in the topology of B.)

Note that this de�nition of  

(k)

slightly di�ers from that given for  2 HD

K

(R)

(as in the above de�nition  

(k)

(r) only is the 
oeÆ
ient of T

k

), but it should

always be 
lear from the 
ontext or not important, whi
h of these two notations

is used.

Remark As mentioned in the beginning, Hasse and S
hmidt introdu
ed another

de�niton of higher derivations, namely a sequen
e

�

 

(k)

�

k2N

of homomorphisms of

K-modules whi
h satisfy the properties of proposition 1.2. So a higher derivation

 2 HD

K

(R) is exa
tly what Hasse and S
hmidt 
alled a higher derivation.

Proposition 1.3 Let S � R be a multipli
atively 
losed subset and let

~

R = R(y)

be an integral extension of R su
h that the minimal polynomial of y, 
all it g(X),

has 
oeÆ
ients in R and g

0

(y) is invertible in

~

R, where g

0

(X) denotes the formal

derivative of g(X). Then:

1. Every higher derivation  2 HD

K

(R;B) to a (S

�1

R)-
ga B 
an be extended

uniquely to a higher derivation  

e

2 HD

K

(S

�1

R;B).

2. Every higher derivation  2 HD

K

(R;B) to a

~

R-
ga B 
an be extended

uniquely to a higher derivation  

e

2 HD

K

(

~

R;B).

Proof For the �rst part, by the universal property of lo
alisation (
f. [Eis95℄,

Ch.2) { applied to  and to " Æ { we only have to show that for ea
h s 2 S the

image  (s) is invertible in B.

De�ne

P

1

i=0

b

i

2 B indu
tively by

b

0

:= s

�1

2 S

�1

R = B

0

3



and for all k � 1:

b

k

:= �s

�1

k

X

i=1

 

(i)

(s)b

k�i

:

Then we get:

 (s) �

 

1

X

i=0

b

i

!

=

1

X

k=0

k

X

i=0

 

(i)

(s)b

k�i

= sb

0

+

1

X

k=1

 

sb

k

+

k

X

i=1

 

(i)

(s)b

k�i

!

= 1:

The proof of the se
ond part: Every extension of  is given by the image of y

in B, i.e. by an element

P

1

k=0

�

k

2 B with �

0

= y and

m

P

i=0

 (a

i

)

�

1

P

k=0

�

k

�

i

= 0,

where g(X) =

P

m

i=0

a

i

X

i

. So we have to show that there exists a unique element

with these properties.

Therefore let

P

1

k=0

�

k

2 B satisfy �

0

= y. The k-th homogenous 
omponent

(k > 0) of

m

P

i=0

 (a

i

)

�

1

P

l=0

�

l

�

i

is then given by:

0

�

m

X

i=0

 (a

i

)

 

1

X

l=0

�

l

!

i

1

A

k

=

m

X

i=0

X

j+k

1

+���+k

i

=k

 

(j)

(a

i

)�

k

1

� � � �

k

i

=

m

X

i=1

 

(0)

(a

i

)i�

i�1

0

�

k

+ P ( 

(j)

(a

i

); �

0

; �

1

; : : : ; �

k�1

)

=

m

X

i=1

ia

i

y

i�1

�

k

+ P ( 

(j)

(a

i

); �

0

; �

1

; : : : ; �

k�1

);

where P ( 

(j)

(a

i

); �

0

; �

1

; : : : ; �

k�1

) denotes a polynomial expression in  

(j)

(a

i

) (j =

0; : : : ; k; i = 0; : : : ; m) and y = �

0

; �

1

; : : : ; �

k�1

. (Here the se
ond equality is

obtained by sorting out all terms, in whi
h �

k

o

urs.) Sin
e

P

m

i=1

ia

i

y

i�1

= g

0

(y)

is invertible in

~

R, the 
ondition that the k-th homogenous 
omponent above

equals 0 is equivalent to

�

k

= �g

0

(y)

�1

� P ( 

(j)

(a

i

); �

0

; �

1

; : : : ; �

k�1

)

and therefore there is a unique

1

P

k=0

�

k

2 B, whose homogenous 
omponents 
an

be 
al
ulated by the formula above. 2

Example 1.4 For a polynomial algebra R = K[t

1

; : : : ; t

m

℄, every higher deriva-

tion of R into some R-
ga B is given by an m-tupel (b

1

; : : : ; b

m

) of elements of B

4



satisfying "(b

j

) = t

j

for all j = 1; : : : ; m.

The higher derivations �

t

j

2 HD

K

(K[t

1

; : : : ; t

m

℄) given by �

t

j

(t

i

) = t

i

for i 6= j

and �

t

j

(t

j

) = t

j

+ T play an important role. In the 
lassi
al 
ontext, �

(1)

t

j

is just

the derivation with respe
t to t

j

. We therefore 
all �

t

j

the higher derivation

with respe
t to t

j

. If

~

R is a lo
alisation of K[t

1

; : : : ; t

m

℄ or an integral exten-

sion as in the previous proposition, then the �

t

j

2 HD

K

(K[t

1

; : : : ; t

m

℄) uniquely

extend to higher derivations on

~

R. These derivations will also be referred to as

higher derivation with respe
t to t

j

and will also be denoted by �

t

j

.

De�nition 1.5 For  2 HD

K

(R) we de�ne  [[U ℄℄ 2 HD

K[[U ℄℄

(R[[U ℄℄) by

 [[U ℄℄(

P

1

i=0

a

i

U

i

) =

P

1

i=0

 (a

i

)U

i

.

Using this we get a 
omposition of higher derivations  

1

;  

2

2 HD

K

(R) by:

 

1

?  

2

: R

 

2

�! R[[T ℄℄

T 7!U

���! R[[U ℄℄

 

1

[[U ℄℄

����! R[[U ℄℄[[T ℄℄ = R[[U; T ℄℄

If R[[U; T ℄℄ is given the grading by total degree, we obviously have  

1

?  

2

2

HD

K

(R;R[[U; T ℄℄).

Remark One easily 
al
ulates that for r 2 R we have

( 

1

?  

2

)(r) =

X

i;j2N

( 

(i)

1

Æ  

(j)

2

)(r)U

j

T

i

: (3)

Lemma 1.6 Let � : R[[U; T ℄℄ ! R[[T ℄℄ be the homomorphism of R-
gas de�ned

by U 7! T and T 7! T . Then the multipli
ation

 

1

�  

2

:= � Æ ( 

1

?  

2

) (4)

for  

1

;  

2

2 HD

K

(R) de�nes a group stru
ture on HD

K

(R).

Proof See [Mats89℄,x27. 2

1.2 Higher Derivations on Modules

In this se
tion we 
onsider higher derivations on modules. Remind that M will

denote a �nitely generated R-module.
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De�nition 1.7 Let  : R ! B be a higher derivation of R in B over K. A

(higher)  -derivation of M is a homomorphism of K-modules

	 :M ! B 


R

M with ("
 id

M

) Æ	 = f 
 id

M

and 	(rm) =  (r)	(m) for all

r 2 R;m 2 M . We denote by HD

K

(M; ) the set of (higher)  -derivations of

M . As in se
tion 1.1, for  2 HD

K

(R) and 	 2 HD

K

(M; ) we de�ne a sequen
e

of maps 	

(k)

:M !M by writing 	(m) =

1

P

k=0

	

(k)

(m)T

k

for all m 2M .

Proposition 1.8 For  2 HD

K

(R) and 	 2 HD

K

(M; ) the maps 	

(k)

are

homomorphisms of K-modules and satisfy the following properties:

	

(0)

= id

M

(5)

8 a 2 R;m 2M : 	

(k)

(am) =

X

i+j=k

 

(i)

(a)	

(j)

(m) (6)

Furthermore a sequen
e

�

	

(k)

�

k2N

of K-module-homomorphisms satisfying these

two properties de�nes a  -derivation 	 : M ! M [[T ℄℄ by the equation given

above.

Proof Analogous to the proof of proposition 1.2. 2

Remark

1. For given  2 HD

K

(R;B), every homomorphism of

~

R-
gas g : B !

~

B

indu
es a map g

�

: HD

K

(M; )! HD

K

(M; g Æ  );	 7! (g 
 id

M

) Æ	.

2. Let  

1

;  

2

2 HD

K

(R). Then as in de�nition 1.5, we 
an de�ne the 
omposi-

tion 	

1

?	

2

of two higher derivations 	

i

2 HD

K

(M; 

i

) (i = 1; 2), whi
h is

an element of HD

K

(M; 

1

?  

2

), and the produ
t 	

1

�	

2

2 HD

K

(M; 

1

 

2

).

1.3 A
tion of K on Higher Derivations

We now regard the a
tion of K on the set of higher derivations.

1

This a
tion will

be useful when giving a des
ription of iterative derivations (see se
tion 3), whi
h

is 
onvenient for 
al
ulations.

De�nition 1.9 For a 2 K and  2 HD

K

(R;B) we de�ne a map a: : R ! B

by (a: )

(k)

:= a

k

� 

(k)

for all k 2 N, whi
h is easily seen to be a higher derivation.

(Here a

0

:= 1 even if a = 0.)

Also for a  -derivation 	 2 HD

K

(M; ) we de�ne a map a:	 : M ! B 


R

M

by (a:	)

(k)

:= a

k

�	

(k)

for all k 2 N, whi
h is an element of HD

K

(M; a: ).

1

The a
tion given here a
tually is a spe
ial 
ase of the a
tion of K given in appendix A.

6



Proposition 1.10 The de�nition above gives an a
tion of the multipli
ative

monoid K on the set HD

K

(R;B) for arbitrary

~

R-
ga B. Moreover this a
tion


ommutes with the group stru
ture on HD

K

(R).

Proof This is a spe
ial 
ase of proposition A.5 in appendix A. 2

Corollary 1.11 The set Der(R) := f 

(1)

j  2 HD

K

(R)g is a ve
tor spa
e over

K.

Proof Let  

(1)

1

;  

(1)

2

2 Der(R) and a

1

; a

2

2 K. Then by equation (3) and (4),

for all r 2 R we have:

(a

1

: 

1

)(a

2

: 

2

)

(1)

(r) =

�

(a

1

: 

1

)

(1)

Æ (a

2

: 

2

)

(0)

�

(r) +

�

(a

1

: 

1

)

(0)

Æ (a

2

: 

2

)

(1)

�

(r)

= a

1

�  

(1)

1

(r) + a

2

�  

(1)

2

(r):

Therefore a

1

�  

(1)

1

+ a

2

�  

(1)

2

2 Der(R). 2

Remark One 
ould also de�ne an a
tion of R on HD

K

(R;B) by the same rule.

But we won't use this a
tion, be
ause it doesn't behave ni
ely. For example it

doesn't 
ommute with the multipli
ation in HD

K

(R) and most properties that

will be shown in se
tion 3 and used later on are restri
ted to the a
tion of K

(and are not valid for arbitrary elements of R). However using the a
tion of R

one 
ould see that the set Der(R) de�ned in the previous 
orollary is in fa
t an

R-module, a
tually the R-module of (
ommon) derivations of R.
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2 Higher Di�erentials and Higher Conne
tions

2.1 Higher Di�erentials

Theorem 2.1 Up to isomorphism, there exists a unique R-
ga

^




R=K

together

with a higher derivation d

R

: R !

^




R=K

satisfying the following universal prop-

erty:

For ea
h

~

R-
ga B and higher derivation  : R ! B there exists a unique homo-

morphism of

~

R-
gas

~

 :

~

R


R

^




R=K

! B with

~

 Æ (1
 d

R

) =  .

2

Proof We 
onstru
t

^




R=K

. Uniqueness is given by the universal property.

Let G = R[d

(k)

r j k 2 N

+

; r 2 R℄ be the polynomial algebra over R in the

variables d

(k)

r and let the degree of d

(k)

r be k. De�ne I � G to be the ideal

generated by the union of the sets

fd

(k)

(r + s)� d

(k)

r � d

(k)

s j k 2 N

+

; r; s 2 Rg;

fd

(k)

a j k 2 N

+

; a 2 Kg and

fd

(k)

(rs)�

k

X

i=0

d

(i)

r � d

(k�i)

s j k 2 N

+

; r; s 2 Rg;

where we identify d

(0)

r with r for all r 2 R. Therefore I is a homogeneous ideal

and we set

^




R=K

as the 
ompletion of the graded algebra G=I. We also de�ne

the higher derivation d

R

: R!

^




R=K

by d

R

(r) :=

P

1

k=0

d

(k)

r.

3

The universal property is seen as follows: Let  : R! B be a higher derivation.

Then we de�ne an R-algebra-homomorphism g : G ! B by g(d

(k)

r) :=  

(k)

(r)

for all k > 0 and r 2 R. The properties of a higher derivation imply that I lies

in the kernel of g, and therefore g fa
tors through g : G=I ! B and we get a

homomorphism of algebras

^




R=K

! B by extending g 
ontinuously and therefore

a homomorphisms of

~

R-
gas

~

 :

~

R


R

^




R=K

! B.

On the other hand, the 
ondition

~

 Æ (1
 d

R

) =  for
es this 
hoi
e of g and so

~

 is unique. 2

Proposition 2.2 (a) For every homomorphism of rings f : R !

~

R there is

a unique homomorphism of

~

R-
gas Df :

~

R 


R

^




R=K

!

^




~

R=K

su
h that

d

~

R

Æ f = Df Æ (1
 d

R

).

(b) If

~

R is a lo
alisation of R or

~

R = R(y), where y is integral over R, the

minimal polynomial g(X) of y has 
oeÆ
ients in R and g

0

(y) is invertible

in R, then Df is an isomorphism.

2

In other words,

^




R=K

is representing the fun
tor HD

K

(R;�).

3

Here and in the following the residue 
lass of d

(k)

r 2 G in

^




R=K

will also be denoted by

d

(k)

r.

8



Proof Sin
e d

~

R

Æf is a higher derivation on R, part (a) follows from the universal

property of

^




R=K

.

By proposition 1.3, in the two 
ases of part (b), every higher derivation on R

to a

~

R-
ga extends uniquely to

~

R. So there exists a (unique) higher derivation

~

d :

~

R !

~

R 


R

^




R=K

extending (1 
 d

R

). By the universal property of

^




~

R=K

,

there exists a unique homomorphism of

~

R-
gas g :

^




~

R=K

!

~

R


R

^




R=K

su
h that

g Æ d

~

R

=

~

d. Now we have

(g ÆDf) Æ (1
 d

R

) = g Æ d

~

R

Æ f =

~

d Æ f = (1
 d

R

)

and therefore by the universal property (g ÆDf) = id

~

R


R

^




R=K

. Furthermore

(Df Æ g) Æ d

~

R

Æ f = Df Æ

~

d Æ f = Df Æ (1
 d

R

) = d

~

R

Æ f:

By the unique extension of higher derivations this leads to (Df Æ g) Æ d

~

R

= d

~

R

and �nally we get (Df Æ g) = id

^




~

R
=K

by the universal property of

^




~

R=K

.

So Df and g are inverse to ea
h other and so Df is an isomorphism. 2

Theorem 2.3 (a) Let R = K[t

1

; : : : ; t

m

℄ be the polynomial ring in m variables.

Then

^




R=K

is the 
ompletion of the polynomial algebra

R[d

(i)

t

j

j i 2 N

+

; j = 1; : : : ; m℄.

(b) Let F=K(t

1

; : : : ; t

m

) be a �nite separable algebrai
 extension �eld. Then

^




F=K

is the 
ompletion of the polynomial algebra

F [d

(i)

t

j

j i 2 N

+

; j = 1; : : : ; m℄.

(
) Let (R;m) be a regular lo
al ring of dimension m, let t

1

; : : : ; t

m

generate m

and assume that R is a lo
alisation of a �nitely generated K-algebra and

that R=m is a �nite separable extension of K. Then

^




R=K

is the 
ompletion

of the polynomial algebra R[d

(i)

t

j

j i 2 N

+

; j = 1; : : : ; m℄.

Remark We will denote the 
ompletion of su
h a polynomial algebra by

R[[d

(i)

t

j

j i 2 N

+

; j = 1; : : : ; m℄℄, although it is not really a ring of power se-

ries, be
ause it 
ontains in�nite sums of di�erent variables.

Proof (a): Sin
e for P 2 R the image d

�

P (t

1

; : : : ; t

m

)

�

= P

�

d(t

1

); : : : ; d(t

m

)

�

is a \power series" in d

(i)

t

j

,

^




R=K

is generated by the d

(i)

t

j

as a R-
ga. On the

other hand, sin
e every 
hoi
e of  

(i)

(t

j

) 2 R (i 2 N

+

; j = 1; : : : ; m) de�nes a

higher derivation  2 HD

K

(R), by the universal property of

^




R=K

the d

(i)

t

j

are

algebrai
ally independent over R.

(b): This follows from part (a) and proposition 2.2(b), sin
e K(t

1

; : : : ; t

m

) is

a lo
alisation of K[t

1

; : : : ; t

m

℄ and F = K(t

1

; : : : ; t

m

)[y℄ with an element y 2

F that is separable algebrai
 over K(t

1

; : : : ; t

m

). So the minimal polynomial

9



g(X) 2 K(t

1

; : : : ; t

m

)[X℄ of y satis�es g

0

(y) 6= 0, i. e. g

0

(y) is invertible in F .

(
): We will show that

^




R=K




R

(R=m) is isomorphi
 to (R=m)[[d

(i)

t

j

℄℄. Then,

sin
e

^




R=K




R

Quot(R) is isomorphi
 to Quot(R)[[d

(i)

t

j

℄℄ (prop. 2.2 and part

(b)), by [Hart77℄, Ch.II, lemma 8.9, it follows that (

^




R=K

)

k

is a free R-module

and that the residue 
lasses of any basis of (

^




R=K

)

k

is a basis of (

^




R=K




R

R=m)

k

.

Hen
e we obtain

^




R=K

= R[[d

(i)

t

j

℄℄.

First, let  : R ! B be a higher derivation of R to a R=m-
ga B. Then for all

k 2 N and r

1

; : : : ; r

k+1

2 m, we have

 

(k)

(r

1

� � � r

k+1

) =

X

i

1

+���+i

k+1

=k

 

(i

1

)

(r

1

) � � � 

(i

k+1

)

(r

k+1

) = 0;

sin
e in ea
h summand at least one i

j

= 0, and so  

(i

1

)

(r

1

) � � � 

(i

k+1

)

(r

k+1

) 2

mB = 0. Therefore  

(k)

(and  

(i)

for i < k) fa
tors through R=m

k+1

.

Next, sin
e R=m is a �nite separable extension of K, there is �y 2 R=m that gen-

erates the extension K � R=m. Let g(X) 2 K[X℄ be the minimal polynomial of

�y, then starting with an arbitrary representative y 2 R for �y, using the Newton

approximation y

n+1

= y

n

� g(y

n

)g

0

(y

n

)

�1

, we obtain an element ~y

k

2 R su
h that

g(~y

k

) � 0 (mod m

k+1

) for given k 2 N . (Note that the Newton approximation is

well de�ned and 
onverges to a root of g(X), sin
e g(y) = g(y) = 0 2 R=m, so

g(y) 2 m, sin
e g

0

(y) = g

0

(y) 6= 0 2 R=m, so g(y) 2 R

�

and so indu
tively for all

n 2 N : �y

n+1

= �y

n

= �y 2 R=m, g(y

n+1

) 2 m and g

0

(y

n+1

) 2 R

�

.) This proves that

for all k 2 N , the ring R=m

k+1


ontains a sub�eld isomorphi
 to R=m.

Now by [Mats89℄, theorem 14.4, the asso
iated graded ring gr(R) of R is isomor-

phi
 to the polynomial ring (R=m)[t

1

; : : : ; t

m

℄ and therefore we obtain

gr(R=m

k+1

)

�

=

(R=m)[t

1

; : : : ; t

m

℄=n

k+1

, where n is the ideal generated by

ft

1

; : : : ; t

m

g. Furthermore, sin
e R=m

k+1


ontains a sub�eld isomorphi
 to R=m,

we see that the in
lusion �

k

: (R=m)[t

1

; : : : ; t

m

℄=n

k+1

! R=m

k+1

(given by the

in
lusion K[t

1

; : : : ; t

m

℄=n

k+1

� R=m

k+1

and �y 7! ~y

k

) is an isomorphism.

Hen
e, every higher derivation  

gr

: gr(R) ! B into an R=m-
ga B indu
es a

higher derivation  

R

: R! B on R by  

(k)

R

:=  

(k)

gr

Æ �

�1

k

(K 2 N) and vi
e versa.

So

^




R=K




R

R=m

�

=

^




gr(R)=K




gr(R)

R=m = (R=m)[[d

(i)

t

j

℄℄. 2

Corollary 2.4 If K is a perfe
t �eld and R is a regular ring, then the homoge-

neous 
omponents (

^




R=K

)

k

(k 2 N) are proje
tive R-modules.

Proof For every maximal ideal m�R, the lo
alisation R

m

ful�lls the 
onditions

of theorem 2.3(
). And so by proposition 2.2, R

m




R

(

^




R=K

)

k

�

=

(

^




R

m

=K

)

k

is a

free R

m

-module. Hen
e by [Eis95℄, thm. A3.2, (

^




R=K

)

k

is a proje
tive R-module.

2
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2.2 An Extension of the Universal Derivation

Notation We will sometimes omit indi
es when they are 
lear from the 
ontext.

So for example in the following

^


 means

^




R=K

and d means d

R

, as there are no

other rings mentioned.

Theorem 2.5 For all a 2 K the mapping

d

(i)

r 7!

1

X

j=0

a

j

�

i + j

j

�

d

(i+j)

r;

where i 2 N and r 2 R, de�nes a 
ontinuous homomorphism of K-algebras

a:d

^




:

^


!

^


 satisfying the following three 
onditions:

1. a:d

^




extends the higher derivation a:d : R!

^


.

2. For all a; b 2 K: (a:d

^




) Æ (b:d

^




) = (a+ b):d

^




.

3. 0:d

^




= id

^




.

For short, we will write d

^




instead of 1:d

^




and �d

^




instead of �1:d

^




.

To prove the theorem we need a 
ombinatorial lemma.

Lemma 2.6 For all i; k; l 2 N the following holds:

1.

X

i

1

+i

2

=i

�

k

i

1

��

l

i

2

�

=

�

k + l

i

�

2.

�

i + l + k

i + l

��

i+ l

i

�

=

�

i + l + k

i

��

l + k

l

�

Sket
h of the proof Both identities are given by 
ounting in two di�erent

ways: Given two disjoint sets M

1

andM

2

of order k resp. l, both sides of the �rst

identity 
ount the number of possibilities 
hoosing i elements out ofM

1

[M

2

. The

two sides of the se
ond identity 
ount the number of possibilities of partitioning

a set of order i + l + k into three subsets of order i,l and k.

Proof of theorem 2.5We �rst prove that a:d

^




is well de�ned: For b 2 K; i 2 N

+

we have

a:d

^




�

d

(i)

b

�

=

1

X

j=0

a

j

�

i+ j

j

�

d

(i+j)

(b) = 0:

11



For all r; s 2 R; i 2 N we have

a:d

^




�

d

(i)

(r + s)

�

=

1

X

j=0

a

j

�

i + j

j

�

d

(i+j)

(r + s)

=

1

X

j=0

a

j

�

i + j

j

�

d

(i+j)

(r) +

1

X

j=0

a

j

�

i+ j

j

�

d

(i+j)

(s)

= a:d

^




�

d

(i)

r + d

(i)

s

�

:

Moreover,

a:d

^




�

d

(i)

(rs)

�

=

1

X

j=0

a

j

�

i+ j

j

�

d

(i+j)

(rs)

=

1

X

j=0

a

j

�

i+ j

j

�

X

k+l=i+j

d

(k)

r � d

(l)

s

and

a:d

^




 

X

i

1

+i

2

=i

d

(i

1

)

r � d

(i

2

)

s

!

=

X

i

1

+i

2

=i

 

1

X

j

1

=0

a

j

1

�

i

1

+ j

1

j

1

�

d

(i

1

+j

1

)

(r)

! 

1

X

j

2

=0

a

j

2

�

i

2

+ j

2

j

2

�

d

(i

2

+j

2

)

(s)

!

=

1

X

j=0

X

i

1

+i

2

=i

j

1

+j

2

=j

a

j

1

+j

2

�

i

1

+ j

1

i

1

��

i

2

+ j

2

i

2

�

d

(i

1

+j

1

)

(r) � d

(i

2

+j

2

)

(s)

=

1

X

j=0

a

j

X

i

1

+i

2

=i

k+l=i+j

�

k

i

1

��

l

i

2

�

d

(k)

(r) � d

(l)

(s)

=

1

X

j=0

a

j

X

k+l=i+j

�

k + l

i

�

d

(k)

(r) � d

(l)

(s):

So all relations are preserved and a:d

^




is wellde�ned.

a:d

^




extends a:d be
ause for r 2 R we have

a:d

^




(r) = a:d

^




(d

(0)

r) =

1

X

j=0

a

j

�

j

j

�

d

(j)

(r) = a:d(r):

12



At last, for r 2 R; i 2 N we have

a:d

^




�

b:d

^




(d

(i)

r)

�

= a:d

^




 

1

X

j=0

b

j

�

i+ j

j

�

d

(i+j)

r

!

=

1

X

j=0

b

j

�

i+ j

j

�

1

X

k=0

a

k

�

i+ j + k

k

�

d

(i+j+k)

r

=

1

X

j;k=0

b

j

a

k

�

i + j

i

��

i + j + k

i+ j

�

d

(i+j+k)

r

=

1

X

n=0

n

X

j=0

b

j

a

n�j

�

i+ j

i

��

i+ n

i+ j

�

d

(i+n)

r

=

1

X

n=0

 

n

X

j=0

b

j

a

n�j

�

n

j

�

!

�

i+ n

i

�

d

(i+n)

r

=

1

X

n=0

(a+ b)

n

�

i+ n

i

�

d

(i+n)

r = (a+ b):d

^




�

d

(i)

r

�

:

The identity 0:d

^




= id

^




is 
lear from the de�nition. 2

Remark By the se
ond and the third property we see, that a:d

^




a
tually is an

automorphism of

^


 for all a 2 K. The endomorphisms a:d

^




play an important

role in the iterative theory, as will be seen in se
tion 3.

De�nition 2.7 For a 2 K we de
ompose a:d

^




into a sequen
e

�

(a:d

^




)

(k)

�

k2N

of 
ontinuous endomorphisms of the K-module

^


 in the following way:

4

For a

homogeneous element ! 2

^




i

of degree i we de�ne

(a:d

^




)

(k)

(!) := pr

i+k

(a:d

^




(!)) 2

^




i+k

:

It is 
lear that the series

P

1

k=0

(a:d

^




)

(k)


onverges against a:d

^




, at least pointwise,

and that for all k 2 N we have (a:d

^




)

(k)

= a

k

� d

(k)

^




.

Proposition 2.8 For all i; j 2 N we have:

d

(i)

^




Æ d

(j)

^




=

�

i+ j

i

�

d

(i+j)

^




:

Proof For all i; j 2 N and ! 2

^


, the term

�

d

(i)

^




Æ d

(j)

^




�

(!) is the 
oeÆ-


ient of a

i

b

j

in the expression ((a:d

^




) Æ (b:d

^




)) (!). By theorem 2.5, we have

(a:d

^




) Æ (b:d

^




) = (a+ b):d

^




and so

�

d

(i)

^




Æ d

(j)

^




�

(!) is the 
oeÆ
ient of a

i

b

j

in the

expression (a+ b):d

^




(!) =

P

1

k=0

(a + b)

k

d

(k)

^




(!), i. e. equals

�

i+j

i

�

d

(i+j)

^




(!). 2

4


f. appendix A
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2.3 Higher Conne
tions

De�nition 2.9 A higher 
onne
tion onM is a d-derivation r 2 HD

K

(M; d).

If  2 HD

K

(R;B) is a higher derivation, we de�ne the higher  -derivation r

 

on M by

r

 

:= (

~

 
 id

M

) Æ r :M !

^




R=K




R

M ! B 


R

M :

For all a 2 K we de�ne an endomorphism a:

^




r :

^





R

M !

^





R

M by

(a:

^




r)(! 
 x) := a:d

^




(!) � (a:r)(x)

for all ! 2

^


 and x 2 M , i.e. a:

^




r = (�

^





 id

M

) Æ (a:d

^





 a:r), where �

^




denotes the multipli
ation map in

^


.

Remark Be aware that in the previous de�nition the map a:d

^





 a:r is a map

from

^





R

M to

^


 


a:d(R)

(

^


 


R

M) = (

^


 


a:d(R)

^


) 


R

M (the tensor produ
t

is taken over the image of R under a:d

^




!).

Lemma 2.10 Let (R;m) be a regular lo
al ring su
h that R=m is a �nite separable

extension of K. By Noether normalization, R is a �nite separable extension of

K[t

1

; : : : ; t

m

℄

(t

1

;:::;t

m

)

, where ft

1

; : : : ; t

m

g is a minimal set of generators of m.

Let �

t

j

2 HD

K

(R) (j = 1; : : : ; m) denote the higher derivations with respe
t to t

j

(
f. example 1.4).

Then for every r 2 R n f0g there exist k

1

; : : : ; k

m

2 N su
h that

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(r) 2 R

�

and for all l

1

; : : : ; l

m

2 N with l

j

� k

j

(j = 1; : : : ; m) and l

i

< k

i

for some

i 2 f1; : : : ; mg:

�

�

(l

m

)

t

m

Æ � � � Æ �

(l

1

)

t

1

�

(r) 62 R

�

Proof Let r 2 R n f0g. Choose E 2 N su
h that r 2 m

E

and r 62 m

E+1

. Then

r 
an (uniquely) be written as

r =

X

e=(e

1

;:::;e

m

)2N

m

jej=E

u

e

t

e

;

where u

e

2 R and u

f

2 R

�

for at least one f = (f

1

; : : : ; f

m

).

(We use the usual notation of multiindi
es: jej = e

1

+� � �+e

m

and t

e

= t

e

1

1

� � � t

e

m

m

.)

For arbitrary l = (l

1

; : : : ; l

m

) 2 N

m

and e 2 N

m

we have:

�

�

(l

m

)

t

m

Æ � � � Æ �

(l

1

)

t

1

�

(t

e

) =

�

e

1

l

1

�

� � �

�

e

m

l

m

�

t

e�l

=

8

<

:

0 if l

i

> e

i

for some i

1 if l

j

= e

j

for all j

2 m if jlj < jej
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So if we 
hoose k

j

= f

j

(j = 1; : : : ; m), we get

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(r) =

X

jej=E

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(u

e

t

e

)

=

X

jej=E

X

0�l

j

�k

j

j=1;:::;m

�

�

(k

m

�l

m

)

t

m

Æ � � � Æ �

(k

1

�l

1

)

t

1

�

(u

e

)

�

�

(l

m

)

t

m

Æ � � � Æ �

(l

1

)

t

1

�

(t

e

)

� u

f

� 1 (mod m):

So

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(r) 2 u

f

+ m � R

�

, and for all l 2 N

m

with l

j

� k

j

(j =

1; : : : ; m) and l

i

< k

i

for some i, we have

�

�

(l

m

)

t

m

Æ � � � Æ �

(l

1

)

t

1

�

(r) 2 m = R n R

�

,

sin
e jlj < E. 2

Theorem 2.11 Let (R;m) be a regular lo
al ring su
h that R=m is a �nite sep-

arable extension of K and let M be a �nitely generated R-module with a higher


onne
tion r 2 HD

K

(M; d). Then M is a free R-module.

Proof Let fx

1

; : : : ; x

n

g be a minimal set of generators of M .

Assume that x

1

; : : : ; x

n

are linearly dependent. Then there exists a nontrivial

relation

P

n

i=1

r

i

x

i

= 0, with r

i

2 R. Choose E 2 N su
h that r

j

2 m

E

for all

j = 1; : : : n and r

i

62 m

E+1

for at least one i and without loss of generality let

r

1

62 m

E+1

. Then 
hoose k

1

; : : : ; k

m

2 N for r

1

as given in the previous lemma.

Then

0 =

�

r

(k

m

)

�

t

m

Æ � � � Æ r

(k

1

)

�

t

1

�

(

n

X

i=1

r

i

x

i

)

=

n

X

i=1

X

0�l

j

�k

j

j=1;:::;m

�

�

(l

m

)

t

m

Æ � � � Æ �

(l

1

)

t

1

�

(r

i

)

�

r

(k

m

�l

m

)

�

t

m

Æ � � � Æ r

(k

1

�l

1

)

�

t

1

�

(x

i

)

�

n

X

i=1

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(r

i

) � x

i

(mod mM)

Sin
e

�

�

(k

m

)

t

m

Æ � � � Æ �

(k

1

)

t

1

�

(r

1

) 2 R

�

, we get x

1

2 hx

2

; : : : ; x

n

i + mM , so M =

hx

2

; : : : ; x

n

i + mM and therefore by Nakayama's lemma M = hx

2

; : : : ; x

n

i, in


ontradi
tion to the 
ondition that fx

1

; : : : ; x

n

g is minimal.

So x

1

; : : : ; x

n

is a basis for M and in parti
ular M is a free R-module. 2
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3 Iterative Theory

3.1 Iterative Derivations

De�nition 3.1 A higher derivation � 2 HD

K

(R) is 
alled an iterative deriva-

tion, if

� ? � = � Æ �;

where � : R[[T ℄℄ ! R[[U; T ℄℄ is the homomorphism of R-
gas de�ned by T 7!

U + T .

In terms of the �

(k)

, this identity is written as:

8 i; j 2 N : �

(i)

Æ �

(j)

=

�

i + j

i

�

�

(i+j)

:

We denote the set of iterative derivations on R by ID

K

(R).

Example 3.2 If R is the polynomial ring K[t

1

; : : : ; t

m

℄ or an extension of that

ring as in proposition 1.3, the higher derivations �

t

j

with respe
t to t

j

(
f. exam-

ple 1.4) are iterative derivations. (For K[t

1

; : : : ; t

m

℄ this is obvious and for the

extensions, this follows from lemma 3.5.)

Lemma 3.3 (
hara
terisation of iterative derivations)

Let  2 HD

K

(R) be a higher derivation. Then the following 
onditions are

equivalent:

(i)  is iterative,

(ii)

~

 Æ d

^




=  [[T ℄℄ Æ

~

 ,

(iii) For all a 2 K:

~

 Æ (a:d

^




) = (a: [[T ℄℄) Æ

~

 .

If K is an in�nite �eld, then this is also equivalent to

(iv) For all a; b 2 K: (a: )(b: ) = (a+ b): ,

whereas for arbitrary K the 
onditions (i)-(iii) only imply 
ondition (iv).

Proof For a 2 K, r 2 R and i 2 N we have:

~

 Æ (a:d

^




)(d

(i)

r) =

~

 

 

1

X

j=0

a

j

�

i+ j

j

�

d

(i+j)

r

!

=

1

X

j=0

a

j

�

i+ j

j

�

 

(i+j)

(r)T

i+j
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and

(a: [[T ℄℄) Æ

~

 (d

(i)

r) = a: [[T ℄℄

�

 

(i)

(r)T

i

�

=

1

X

j=0

a

j

 

(j)

( 

(i)

(r))T

i+j

:

So by 
omparing the 
oeÆ
ients of T

i+j

one sees that 
ondition (iii) is ful�lled

if and only if

~

 Æ (a:d

^




) = (a: [[T ℄℄) Æ

~

 is ful�lled for an arbitrary a 2 K n f0g

(e.g. a = 1, i.e. 
ondition (ii)) and if and only if for all i; j 2 N we have

 

(j)

Æ  

(i)

=

�

i+j

j

�

 

(i+j)

, i.e.  is iterative.

Furthermore we get for all a; b 2 K:

((a: )(b: ))

(k)

=

X

i+j=k

(a: )

(i)

Æ (b: )

(j)

=

X

i+j=k

a

i

b

j

 

(i)

Æ  

(j)

; sin
e b 2 K;

and

((a+ b): )

(k)

= (a+ b)

k

 

(k)

=

X

i+j=k

a

i

b

j

�

i+ j

i

�

 

(i+j)

So if  is iterative we obtain 
ondition (iv) and if #K = 1 by 
omparing the


oeÆ
ients of a

i

we obtain from 
ondition (iv) that  is iterative. 2

Example 3.4 Condition (iv) is in fa
t weaker if K is �nite. If for example

K = F

q

and R = F

q

[t℄, then  2 HD

K

(R) de�ned by  (t) = t + 1 � T

2q�1

is not

iterative, sin
e

(2q � 1) 

(2q�1)

(t) = 2q � 1 6= 0 =  

(2q�2)

�

 

(1)

(t)

�

:

On the other hand, for all a 2 F

q

we have a

2q�1

= a and so

�

(a: )(b: )

�

(k)

(t) =

X

i+j=k

a

i

b

j

 

(i)

( 

(j)

(t)) = a

k

 

(k)

(t) + a

k�2q+1

b

2q�1

 

(k�2q+1)

(1)

=

8

<

:

t k = 0

a

2q�1

+ b

2q�1

= (a+ b)

2q�1

k = 2q � 1

0 otherwise

9

=

;

=

�

(a + b): 

�

(k)

(t)

for all a; b 2 K = F

q

.
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Remark Condition (iv) is very useful for 
al
ulations { even if K is �nite. If

one has to show that some higher derivation  2 HD

K

(R) is iterative, one 
an

often use the following tri
k:

Let

~

R := K

sep




�

K\R

R be the maximal separable extension of R by 
onstants.

Then by proposition 1.3 the higher derivation  uniquely extends to a higher

derivation  

e

2 HD

K

(

~

R) = HD

K

sep

(

~

R). Sin
e #K

sep

=1, we 
an use 
ondition

(iv) to show that  

e

is iterative and therefore  is iterative.

Whenever it will be shown that for all a; b 2 K

sep

, (a: )(b: ) = (a + b): , this

tri
k will be used, although we won't mention it expli
itely.

The next lemma states some stru
tural properties of ID

K

(R).

Lemma 3.5 1. If two iterative derivations �

1

; �

2

2 ID

K

(R) satisfy �

(i)

1

Æ�

(j)

2

=

�

(j)

2

Æ �

(i)

1

for all i; j 2 N, then �

1

�

2

is again an iterative derivation.

2. ID

K

(R) is invariant under the a
tion of K.

3. If

~

R � R is a ring extension su
h that every higher derivation on R uniquely

extends to a higher derivation on

~

R (see proposition 1.3 for examples), then

the extension �

e

2 HD

K

(

~

R) of an iterative derivation � 2 ID

K

(R) is again

iterative.

Proof

1. By the given 
ondition, for all a; b 2 K

sep

, we have (a:�

2

)(b:�

1

) = (b:�

1

)(a:�

2

)

and so

(a:(�

1

�

2

))(b:(�

1

�

2

)) = (a:�

1

)(a:�

2

)(b:�

1

)(b:�

2

) = (a:�

1

)(b:�

1

)(a:�

2

)(b:�

2

)

= ((a+ b):�

1

)((a+ b):�

2

) = (a+ b):(�

1

�

2

)

for all a; b 2 K

sep

. Therefore by lemma 3.3 �

1

�

2

is iterative.

2. Let a 2 K and � 2 ID

K

(R). Then for all b; 
 2 K

sep

we have

(b:(a:�))(
:(a:�)) = (ba:�)(
a:�) = (ba+ 
a):� = (b+ 
):(a:�):

So a:� is iterative by lemma 3.3.

3. Let � 2 ID

K

(R) and �

e

2 HD

K

(

~

R) the unique extension. Then for all

a; b 2 K

sep

, (a + b):�

e

and (a:�

e

)(b:�

e

) are both extensions of (a + b):� 2

HD

K

(R), hen
e equal. So �

e

is iterative.

2
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It is easy to see that an element ! 2

^




R=K

equals zero if and only if for all higher

derivations  2 HD

K

(R) the image

~

 (!) 2 R[[T ℄℄ equals zero. But it is not


lear { nor even true { if there is a nonzero higher di�erential ! 2

^




R=K

su
h

that

~

�(!) = 0 for all iterative derivations � 2 ID

K

(R). We therefore make the

following

De�nition 3.6 We say that R has enough iterative derivations, if for every

nonzero ! 2

^




R=K

there exists an iterative derivation � 2 ID

K

(R) su
h that

~

�(!) 6= 0.

Example 3.7 If R=K is an algebrai
 fun
tion �eld and #K = 1, then R has

enough iterative derivations. This will be shown in se
tion 6.

De�nition 3.8 Let M be an R-module and � 2 ID

K

(R). A higher �-derivation

� 2 HD

K

(M;�) is 
alled an iterative �-derivation, if � ? � = �

�

(�), where

�

�

(�) = (�
 id

M

) Æ � (
f. remark 1.2). The set of iterative �-derivations will

be denoted by ID

K

(M;�).

Remark Note that there is no sense in de�ning an iterative derivation

� 2 HD

K

(M; ) for a non-iterative higher derivation  2 HD

K

(R), be
ause

� ? � 2 HD

K

(M; ?  ), whereas �

�

(�) 2 HD

K

(M;� Æ  )).

Lemma 3.9 Let � 2 ID

K

(R) be an iterative derivation and 	 2 HD

K

(M;�) be

a �-derivation. Then 	 is iterative, if and only if for all a; b 2 K

sep

the identity

(a:	)(b:	) = (a+ b):	 holds.

Proof Analogous to the proof of lemma 3.3. 2

3.2 Iterative Conne
tions

In the previous, we have seen that d

^




satis�es the 
ondition d

(i)

^




Æd

(j)

^




=

�

i+j

i

�

d

(i+j)

^




and that for iterative derivations � 2 ID

K

(R) we have the \same" 
ondition

�

(i)

Æ �

(j)

=

�

i+j

i

�

�

(i+j)

. This motivates the following de�nition of an iterative


onne
tion.

De�nition 3.10 A higher 
onne
tion r on M is 
alled an iterative 
onne
-

tion if for all i; j 2 N the identity

^




r

(i)

Æ

^




r

(j)

=

�

i+ j

i

�

^




r

(i+j)

holds.

5

5

As de�ned in appendix A for the general 
ase,

^




r

(i)

denotes that part of

^




r, that \in
reases

degrees by i".
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An iterative 
onne
tion r on M is 
alled an integrable iterative 
onne
tion

if for all 
ommuting iterative derivations �

1

; �

2

2 ID

K

(R) (i. e. �

1

�

2

= �

2

�

1

) the

iterative derivations r

�

1

and r

�

2


ommute.

A higher 
onne
tion r on M is 
alled an involutive higher 
onne
tion if

^




r Æ �r = 1
 id

M

as maps from M to

^



M .

In se
tion 4 we will see the role whi
h is played by the modules with involutive

higher 
onne
tions in questions about 
ategorial properties. The notion of an in-

tegrable iterative 
onne
tion is motivated by the 
orresponden
e to the integrable

(
ommon) 
onne
tions in 
hara
teristi
 0 (
f. se
tion 5).

Theorem 3.11 Let r be a higher 
onne
tion on M . Then:

1. r is iterative if and only if for all a; b 2 K

sep

: a:

^




r Æ b:

^




r = (a + b):

^




r

and if and only if for all a; b 2 K

sep

: a:

^




r Æ b:r = (a+ b):r.

2. If r is iterative, then for all iterative derivations � 2 ID

K

(R) the �-

derivation r

�

is again iterative. If R has enough iterative derivations then

the 
onverse is also true.

Proof The �rst equivalen
e in 1. is seen by a similar 
al
ulation as in lemma

3.3. The se
ond one is obtained by

(a:

^




r Æ b:

^




r) (! 
m) = a:d

^




(b:d

^




(!)) � (a:

^




r Æ b:

^




r) (1
m)

= (a:d

^




Æ b:d

^




)(!) � (a:

^




r Æ b:r) (m)

and

(a + b):

^




r(! 
m) = (a+ b):d

^




(!) � ((a+ b):

^




r) (1
m)

= (a:d

^




Æ b:d

^




)(!) � (a + b):r(m);

for all ! 2

^


 and m 2M .

For proving the se
ond part, let � 2 ID

K

(R) and regard the following diagram:

M

b:r

//

b:r

�

��

^



M

a:d
a:r

//

(

(a:�)[[T ℄℄Æ

~

�

)


a:r

�

��

(

~

�Æa:d

^




)


a:r

�

S

S

S

S

S

S

S

S

))S

S

S

S

S

S

S

a:

^




r

**
^





a:dR

(

^



M)

�
id

M

//

~

�


~

�
id

M

��

^



M

~

�
id

M

��

R[[T ℄℄
M

(a:�)[[T ℄℄
a:r

�

//

(a:r

�

)[[T ℄℄

44
R[[T ℄℄


a:�(R)

M [[T ℄℄ R[[T ℄℄


a:�(R)

M [[T ℄℄

�
id

M

//
R[[T ℄℄
M
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The square on the left 
ommutes, sin
e

b:r

�

= b:

�

(

~

�
 id

M

) Æ r

�

= (

~

�
 id

M

) Æ (b:r):

The lower triangle 
ommutes by lemma 3.3, sin
e � is iterative. The upper

triangle 
ommutes, sin
e a:r

�

= (

~

� 
 id

M

) Æ (a:r) and the square on the right


ommutes, sin
e

~

� is a homomorphism of algebras. Furthermore the top of the

diagram 
ommutes by de�nition of a:

^




r and the bottom 
ommutes, sin
e a:r

�

is a (a:�)-derivation.

So the whole diagram 
ommutes and we obtain

(

~

�
 id

M

) Æ (a:

^




r) Æ (b:r) = (a:r

�

)[[T ℄℄ Æ (b:r

�

) = (a:r

�

)(b:r

�

)

for all iterative derivations � 2 ID

K

(R).

If r is iterative, we get

(a + b):r

�

= (

~

�
 id

M

) Æ (a + b):r = (

~

�
 id

M

) Æ (a:

^




r) Æ (b:r) = (a:r

�

)(b:r

�

)

by the �rst part of this theorem and so by lemma 3.9, r

�

is iterative.

In turn, from the 
ommuting diagram we see that ifr

�

is iterative for an iterative

derivation � 2 ID

K

(R), we get

(

~

�
 id

M

) Æ (a:

^




r) Æ (b:r) = (

~

�
 id

M

) Æ (a+ b):r

for those �. So if R has enough iterative derivations and r

�

is iterative for all

� 2 ID

K

(R) we obtain (a:

^




r) Æ (b:r) = (a+ b):r, i. e. r is iterative. 2

Corollary 3.12 Every iterative 
onne
tion on M is an involutive higher 
onne
-

tion.

Proof If r is iterative, then by the previous theorem, we have

^




r Æ �r = 1:

^




r Æ �1:r = (1� 1):r = 0:r = 1
 id

M

:

So r is involutive. 2
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4 Categorial Properties

In this se
tion we show { assuming a slight restri
tion to the ring R { that the

�nitely generated proje
tive modules (i.e. lo
ally free of �nite rank) with higher


onne
tion form an abelian 
ategory and that the modules with integrable resp.

iterative resp. involutive higher 
onne
tion form full sub
ategories. Furthermore

these sub
ategories form tensor 
ategories over K and even form Tannakian 
at-

egories (see appendix B for the notions of these 
ategories that we use).

Notation From now on let in addition K be a perfe
t �eld and R be a regular


ommutative ring over K, whi
h is the lo
alisation of a �nitely generated K-

algebra, su
h that K is algebrai
ally 
losed in R.

4.1 The Category of Modules with Iterative Conne
tions

Notation In the following a pair (M;r) will always denote a �nitely generated

R-module M together with a higher 
onne
tion r : M !

^


 


R

M , even if

\�nitely generated" is not mentioned.

Theorem 4.1 Every �nitely generated R-module M with higher 
onne
tion r is

a proje
tive R-module.

Proof Sin
e R is a �nitely generated algebra over a �eld, R is a Noetherian ring.

So every �nitely generated R-module M is �nitely presented and so by [Eis95℄,

theorem A3.2, M is proje
tive if and only if every lo
alisationM

m

at a maximal

ideal m� R is a free R

m

-module. For m� R maximal, the 
onne
tion r 
an be

extended toM

m

by r(s

�1

m) = d

R

m

(s

�1

)r(m) for s 2 Rnm; m 2M . SoM

m

is a

module with higher 
onne
tion over the lo
al ring R

m

. Sin
e R is regular, R

m

is

a regular lo
al ring. Sin
e R is �nitely generated over K, the �eld R

m

=mR

m

is a

�nite extension ofK and sin
e K is perfe
t, this extension is separable. Therefore

we 
an apply theorem 2.11, i. e. M

m

is a free R

m

-module. 2

De�nition 4.2 Let (M

1

;r

1

) and (M

2

;r

2

) be R-modules with higher 
onne
-

tions. Then we 
all f 2 Hom

R

(M

1

;M

2

) a morphism of modules with higher


onne
tions, or a morphism for short, if the diagram

M

1

f

//

r

1

��

M

2

r

2

��

^





R

M

1

id

^





f

//
^





R

M

2


ommutes. The set of all morphisms f 2 Hom

R

(M

1

;M

2

) will be denoted by

Mor

�

(M

1

;r

1

); (M

2

;r

2

)

�

. If the 
onne
tions are 
lear from the 
ontext we

will sometimes omit them.
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Remark It is 
lear that the set of modules with higher 
onne
tion and the

sets of morphisms de�ned above form a 
ategory. We will denote this 
ate-

gory by HCon(R=K). Furthermore the full sub
ategories of modules with

involutive higher 
onne
tion resp. iterative 
onne
tion resp. integrable itera-

tive 
onne
tion will be denoted by HCon

inv

(R=K) resp. ICon(R=K) resp.

ICon

int

(R=K). By 
orollary 3.12, we have a 
hain of in
lusions

HCon(R=K) � HCon

inv

(R=K) � ICon(R=K) � ICon

int

(R=K). As the ob-

je
ts of HCon(R=K) are modules with an extra stru
ture and the morphisms

are spe
ial homomorphisms, we have a faithful fun
tor ! : HCon(R=K) !

Mod(R), that forgets the extra stru
ture.

De�nition 4.3 Let (M

1

;r

1

) and (M

2

;r

2

) be R-modules with higher 
onne
tion.

Then we de�ne a higher 
onne
tion r

�

on (M

1

�M

2

) by

r

�

:M

1

�M

2

r

1

�r

2

����!

^



M

1

�

^



M

2

�

=

�!

^



 (M

1

�M

2

)

and a higher 
onne
tion r




on M

1




R

M

2

by

r




:M

1




R

M

2

r

1


r

2

����! (

^





R

M

1

)


d(R)

(

^





R

M

2

)

�

=

�!

�

=

�! (

^





d(R)

^


)


R

(M

1




R

M

2

)

�
id

���!

^





R

(M

1




R

M

2

):

Furthermore we de�ne a higher 
onne
tion r

H

on Hom

R

(M

1

;M

2

) by the follow-

ing:

For f 2 Hom

R

(M

1

;M

2

) the 
omposition

M

1

�r

1

��!

^





R

M

1

id

^





f

���!

^





R

M

2

^




r

2

��!

^





R

M

2

is an element of Hom

R

(M

1

;

^


 


R

M

2

), whi
h 
an be regarded as an element of

^


 


R

Hom

R

(M

1

;M

2

) by the 
anoni
al isomorphisms Hom

R

(M

1

;

^




(k)




R

M

2

)

�

=

^




(k)




R

Hom

R

(M

1

;M

2

) in ea
h degree k. In this sense we de�ne

r

H

(f) :=

^




r

2

Æ (id

^





 f) Æ �r

1

:

Theorem 4.4 The 
ategory HCon(R=K) is an abelian 
ategory and

HCon

inv

(R=K), ICon(R=K) and ICon

int

(R=K) are abelian sub
ategories.

Proof For all (M

1

;r

1

); (M

2

;r

2

) 2 HCon(R=K) the set Mor(M

1

;M

2

) is a

subgroup of Hom

R

(M

1

;M

2

) and so is an abelian group. Sin
e Mod(R) is an

abelian 
ategory, it is suÆ
iant to show that the kernels, dire
t sums and so on

in the 
ategoryMod(R) 
an be equipped with a higher 
onne
tion (resp. iterative


onne
tion . . . ) and that all ne
essary homomorphisms (like the in
lusion map

of the kernel into the module) are morphisms.

The trivial module f0g with the zero map 0 : f0g !

^


 
 f0g = f0g as higher


onne
tion obviously full�lls the properties of a null obje
t. The dire
t sum of

23



M

1

and M

2

together with the higher 
onne
tion r

�

de�ned above is a biprodu
t

forM

1

and M

2

, sin
e the natural in
lusions in

j

:M

j

!M

1

�M

2

and the natural

proje
tions pr

j

: M

1

�M

2

! M

j

(j = 1; 2) are morphisms, what 
an easily be

veri�ed. Furthermore if r

1

and r

2

are iterative, integrable iterative or involutive

higher 
onne
tions, then so is r

�

.

Next we show that kernels and 
okernels exist. Let f 2 Mor(M

1

;M

2

) be a

morphism then the image of f is an obje
t of HCon(R=K), be
ause for all

f(y) 2 Im(f), we have r

2

(f(y)) = (id

^





 f) (r

1

(y)) 2 Im(id

^





f) =

^



 Im(f),

i. e. r

2


an be restri
ted to a higher 
onne
tion r

2

j

Im(f)

: Im(f) !

^


 
 Im(f).

So we have a 
ommutative diagram with exa
t rows:

0

//
Ker(f)

//

r

1

j

Ker(f)

��
�

�

�

M

1

f

//

r

1

��

Im(f)

//

r

2

j

Im(f)

��

0

0

//
Ker(id

^





 f)

//
^



M

1

id

^





f

//
^



 Im(f)

//
0

But Im(f) is a proje
tive R-module and therefore 
at, so the short exa
t sequen
e

0! Ker(f)!M

1

! Im(f)! 0 stays exa
t after tensoring with an arbitrary R-

module and so Ker(id

^





f) =

^



Ker(f), whi
h shows that (Ker(f);r

1

j

Ker(f)

) 2

HCon(R=K) and that the in
lusion Ker(f) ,!M

1

is a morphism.

Furthermore we have a 
ommutative diagram with exa
t rows:

0

//
Im(f)

//

r

2

j

Im(f)

��

M

2

//

r

2

��

Coker(f)

//

r

2

��
�

�

�

0

0

//
^



 Im(f)

//
^



M

2

//
^



 Coker(f)

//
0

(Remind that tensoring is always right exa
t). So (Coker(f);r

2

) 2 HCon(R=K)

and the epimorphismM

2

! Coker(f) is a morphism. It is 
lear that the 
onne
-

tions r

1

j

Ker(f)

and r

2

will be iterative, integrable iterative or involutive higher


onne
tions, if r

1

and r

2

are.

At last, in an abelian 
ategory every monomorphism has to be an in
lusion map

of a kernel and every epimorphism has to be a proje
tion map to a 
okernel. But

this is ful�lled inHCon(R=K), be
ause if f :M

1

!M

2

is a monomorphism then

M

1

is the kernel of the proje
tion M

2

! Coker(f), and if f is an epimorphism

then M

2

is the 
okernel of the in
lusion Ker(f)!M

1

.

Therefore HCon(R=K), HCon

inv

(R=K), ICon(R=K) and ICon

int

(R=K) are

abelian 
ategories. 2

Now we 
he
k, whether these 
ategories are tensor 
ategories over K

(HCon(R=K) won't, whilest the others will). By the last theorem, they are

all abelian, and by theorem 4.1, all modules that arise are proje
tive and the


ategory Proj-Mod(R) of �nitely generated proje
tive R-modules is known to
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satisfy all properties apart from being an abelian 
ategory.

6

So we de�ne

� the tensor produ
t of (M

1

;r

1

) and (M

2

;r

2

) by

(M

1

;r

1

)
 (M

2

;r

2

) := (M

1




R

M

2

;r




)

(this tensor produ
t is obviously asso
iative and 
ommutative),

� the unital obje
t 1 := (R; d

R

) (R 


R

M ! M; r 
m 7! rm is easily seen

to be a morphism for all M 2 HCon(R=K)),

� the dual obje
t to (M;r) by

(M;r)

�

:= (M

�

;r

�

);

where r

�

(f) := d

^




Æ (id

^





 f) Æ (�r) 2 Hom

R

(M;

^


)

7

for f 2 M

�

=

Hom

R

(M;R) and

� the internal hom obje
t of (M

1

;r

1

) and (M

2

;r

2

) by

Hom ((M

1

;r

1

); (M

2

;r

2

)) := (Hom

R

(M

1

;M

2

);r

H

) :

Furthermore we re
ognize that every endomorphism in End(1) is given by the

image of 1 2 R, whi
h has to be 
onstant, as 1 2 K is a 
onstant. Sin
e all


onstants are algebrai
 over K and K is algebrai
ally 
losed in R, End(1) is

isomorphi
 to K.

Lemma 4.5 For all (M

1

;r

1

); (M

2

;r

2

) 2 HCon(R=K) the isomorphism

�

M

1

;M

2

:M

�

1




R

M

2

! Hom

R

(M

1

;M

2

); f 
m 7! fv 7! f(v) �mg

is a morphism (and therefore an isomorphism) in HCon(R=K).

Proof For all f 
m 2M

�

1




R

M

2

and for all v 2M

1

, we have

r

H

(�

M

1

;M

2

(f 
m))(v) =

�

^




r

2

Æ

�

id

^





 �

M

1

;M

2

(f 
m)

�

Æ (�r

1

)

�

(v)

=

^




r

2

�

(id

^





 f)(�r

1

(v))
m

�

= (�
 id

M

2

)

�

d

^




�

(id

^





 f)(�r

1

(v)

�


r

2

(m)

�

6

See appendix B.

7

Here we used that

^





R

R

�

=

^


 and Hom

R

(M;

^


)

�

=

Hom

R

(M;R)


R

^


 (
f. the de�nition

of r

H

in de�nition 4.3).
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and

(id

^





 �

M

1

;M

2

)(r




(f 
m))(v)

= (id

^





 �

M

1

;M

2

)

�

�

d

^




Æ (id

^





 f) Æ (�r

1

)

�


r

2

(m)

�

(v)

=

�

d

^




Æ (id

^





 f) Æ (�r

1

)

�

(v) � r

2

(m):

So r

H

Æ �

M

1

;M

2

= (id

^





 �

M

1

;M

2

) Æ r




, i. e. �

M

1

;M

2

is a morphism. 2

Lemma 4.6 Let (M;r) 2 HCon(R=K), and let "

M

: M 
 M

�

! R and

Æ

M

: R ! M

�


M be the homomorphisms given in the de�nition of a tensor


ategory, i. e. "

M

(m 
 f) = f(m) and Æ

M

(1) = �

�1

M;M

(id

M

). Then the following

are equivalent:

(i) "

M

is a morphism.

(ii) r is involutive.

(iii) Æ

M

is a morphism.

Proof For m
 f 2M 
M

�

, we have

(id

^





 "

M

)(r




(m
 f))

= (id

^





 "

M

)

�

(�
 id) Æ

�

r(m)
 (d

^




Æ (id

^





 f) Æ �r

�

�

= (�
 id)

�

�

id

^







�

d

^




Æ (id

^





 f) Æ �r

��

(r(m))

�

=

�

(�
 id) Æ (d

^





 d

^




) Æ (id

^





^





 f) Æ (�d

^





�r) Æ r

�

(m)

=

�

d

^




Æ (id

^





 f) Æ (�
 id) Æ (�d

^





�r) Æ r

�

(m)

=

�

d

^




Æ (id

^





 f) Æ �

^




r Ær

�

(m)

and

d

R

("

M

(m
 f)) = d

R

(f(m)) = (d

R

Æ f)(m):

Applying �d

^




on both terms shows that "

M

is a morphism if and only if for all

f 2 M

�

, (id

^





 f) Æ �

^




r Æ r = 1 
 f 2 Hom(M;

^


 
 R), i. e. if and only if

�

^




r Ær = 1
 id

M

, i. e. r is involutive.

Sin
e �

M;M

is an isomorphism in HCon(R=K), Æ

M

is a morphism if and only if

�

M;M

Æ Æ

M

is a morphism. Now

r

H

((�

M;M

Æ Æ

M

)(1)) = r

H

(id

M

) =

^




r Æ (id

^





 id

M

) Æ �r =

^




r Æ �r

and

(id

^





 (�

M;M

Æ Æ

M

))(d

R

(1)) = (id

^





 (�

M;M

Æ Æ

M

))(1
 1) = 1
 id

M

;

so Æ

M

is a morphism if and only if

^




r Æ �r = 1
 id

M

, i. e. r is involutive. 2
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Theorem 4.7 HCon

inv

(R=K), ICon(R=K) and ICon

int

(R=K) are tensor 
at-

egories over K.

Proof Sin
e we have already shown, that these 
ategories are abelian, that

HCon(R=K) is equipped with an asso
iative and 
ommutative tensor produ
t

and that "

M

and Æ

M

are morphisms if (M;r) 2 HCon

inv

(R=K), it only remains

to show that the three 
ategories are 
losed under the 
onstru
tions of tensorising

and dualising. The unital obje
t of the tensor produ
t 1 = (R; d

R

) is 
learly an

element of all three 
ategories.

We �rst show that ICon(R=K) is 
losed under these 
onstru
tions. The proof

for HCon

inv

(R=K) is then obtained by repla
ing a by 1 and b by �1, sin
e

0:r = 1
 id

M

:M !

^



M .

Let (M

1

;r

1

); (M

2

;r

2

) 2 ICon(R=K), then for all a; b 2 K

sep

:

(a:

^




r




) Æ (b:r




) = (a:

^




r




) Æ (�
 id) Æ (b:r

1


 b:r

2

)

= (�
 id) Æ

�

(a:d

^





 a:r

1

)
 (a:d

^





 a:r

2

)

�

Æ (b:r

1


 b:r

2

)

= (�
 id) Æ

�

(a+ b):r

1


 (a+ b):r

2

�

= (a+ b):r




:

So r




is again iterative and (M

1


M

2

;r




) 2 ICon(R=K).

If (M;r) 2 ICon(R=K), then also (M

�

;r

�

) 2 ICon(R=K), be
ause for all

a; b 2 K

sep

; f 2M

�

:

a:

^




r

�

�

b:r

�

(f)

�

= � Æ a:(d

^





 d

^




) Æ

�

id

^







�

b:d

^




Æ (id

^





 f) Æ (�b:r)

�

�

Æ (�a:r)

= � Æ a:(d

^





 d

^




) Æ b:(d

^





 d

^




) Æ (id

^





^





 f) Æ �b:(d

^





r) Æ �a:r

= a:d

^




Æ b:d

^




Æ (id

^





 f) Æ (�
 id

M

) Æ �b:(d

^





r) Æ �a:r

= (a+ b):d

^




Æ (id

^





 f) Æ �(a + b):r

= (a+ b):r

�

(f):

Therefore ICon(R=K) is a tensor 
ategory over K.

For higher 
onne
tions r

1

and r

2

and � 2 ID

K

(R), we have

(r




)

�

= (

~

�
 id) Æ (�
 id) Æ (r

1


r

2

)

= (�
 id) Æ

�

(

~

�
 id

M

1

)
 (

~

�
 id

M

2

)

�

Æ (r

1


r

2

)

= (�
 id) Æ

�

(r

1

)

�


 (r

2

)

�

�

;

from whi
h it follows immediately that for integrable iterative 
onne
tions r

1

and r

2

, the iterative 
onne
tion r




is integrable, too.
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Finally, let (M;r) 2 ICon

int

(R=K). Then for � 2 ID

K

(R) and all f 2 M

�

, we

obtain

r

�

�

(f) =

~

� Æ � Æ (d

^





 d

R

) Æ (id

^





 f) Æ �r

= � Æ (

~

�


~

�) Æ (d

^





 d

R

) Æ (id

^





 f) Æ �r

= � Æ

�

(

~

� Æ d

^




)
 (

~

� Æ d

R

)

�

Æ (id

^





 f) Æ �r

= � Æ

�

(�[[T ℄℄ Æ

~

�)
 �

�

Æ (id

^





 f) Æ �r

= � Æ (�[[T ℄℄
 �) Æ (id

R[[T ℄℄


 f) Æ (

~

�
 id

M

) Æ �r

= �[[T ℄℄ Æ � Æ (id

R[[T ℄℄


 f) Æ �r

�

= �[[T ℄℄ Æ f [[T ℄℄ Æ �r

�

:

And so for 
ommuting �

1

; �

2

2 ID

K

(R) and all f 2 M

�

:

(r

�

�

1

r

�

�

2

)(f) = �

1

[[T ℄℄ Æ

�

�

2

[[T ℄℄ Æ f [[T ℄℄ Æ �r

�

2

�

[[T ℄℄ Æ �r

�

1

= (�

1

�

2

)[[T ℄℄ Æ f [[T ℄℄ Æ �(r

�

2

r

�

1

)

= (�

2

�

1

)[[T ℄℄ Æ f [[T ℄℄ Æ �(r

�

1

r

�

2

) = (r

�

�

2

r

�

�

1

)(f):

Hen
e r

�

also is an integrable iterative 
onne
tion and therefore ICon

int

(R=K)

is a tensor 
ategory over K. 2

Theorem 4.8 The 
ategories HCon

inv

(R=K), ICon(R=K) and ICon

int

(R=K)

are Tannakian 
ategories with the forgetful fun
tor ! : HCon(R=K)!Mod(R)

(restri
ted to the respe
tive 
ategory) as �bre fun
tor. If moreover R has a

K-rational point, i. e. there exists a maximal ideal m � R with K

�

=

R=m,

then these 
ategories are neutral Tannakian 
ategories with �bre fun
tor !

K

:

HCon(R=K)

!

�!Mod(R)




R

R=m

����! Ve
t(K).

Proof By 
onstru
tion, the fun
tor ! is a �bre fun
tor and so the tensor


ategories HCon

inv

(R=K), ICon(R=K) and ICon

int

(R=K) are Tannakian 
ate-

gories. If R has a K-rational point, by [Del90℄.2.8, !

K

is a �bre fun
tor. This

proves the se
ond part. 2

Remark One might ask whether the in
lusions in the 
hain of 
ategories

HCon(R=K) � HCon

inv

(R=K) � ICon(R=K) � ICon

int

(R=K) are stri
t

or not.

Clearly, HCon(R=K) 6= HCon

inv

(R=K), be
ause if for example M is a free

R-module of dimension 1 with basis b

1

2 M , every ! =

P

1

j=0

!

j

2

^




R=K

with

!

0

= 1 de�nes a higher 
onne
tion r : M !

^




R=K




R

M; b

1

7! ! 
 b

1

, but

in general this higher 
onne
tion is not involutive, be
ause if r is involutive, !

satis�es the 
ondition

0 = (�

^




r Ær)

(2)

(b

1

) = (2!

2

� !

2

1

+ d

(1)

^




(!

1

))
 b

1

:
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(The only ex
eption is the 
ase, when R is algebrai
 over K, be
ause in this 
ase

^




R=K

= R and hen
e all these 
ategories are equivalent to Mod(R)).

The last in
lusion ICon(R=K) � ICon

int

(R=K) is stri
t in general, be
ause in

the next 
hapter we will see that in 
hara
teristi
 zero, the 
ategory ICon(R=K)

is equivalent to the 
ategory of modules with (
ommon) 
onne
tion over R and

ICon

int

(R=K) is equivalent to the 
ategory of modules with integrable 
onne
tion

over R, and it is known that those two 
ategories are di�erent if for example

R = K(t

1

; t

2

). However, it is also known that every (
ommon) 
onne
tion is

integrable, if 
har(K) = 0 and R is an algebrai
 fun
tion �eld in one variable

over K. In 
hapter 6, we will see that also ICon(R=K) = ICon

int

(R=K), if R

is an algebrai
 fun
tion �eld (in one variable) over K and 
har(K) = p.

It is yet not 
lear, if there exists a module with an involutive higher 
onne
tion

that is not iterative. However, if one regards the 
ondition for an involutive

higher 
onne
tion more expli
itly, there seems to be more 
hoi
e for getting an

involutive higher 
onne
tion than for an iterative 
onne
tion. We therefore make

the following 
onje
ture.

Conje
ture If R is not algebrai
 over K, then there exist R-modules with

involutive higher 
onne
tion that are not iterative, i. e.

ICon(R=K) ( HCon

inv

(R=K):
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4.2 Higher Conne
tions on S
hemes

Throughout this se
tion, let K be a perfe
t �eld, let X be a nonsingular, geo-

metri
ally integral K-s
heme, whi
h is separated and of �nite type over K and

let O

X

denote the stru
ture sheaf of X.

De�nition 4.9 We de�ne the sheaf of higher di�erentials on X, denoted by

^




X=K

, to be the sheaf asso
iated to the presheaf given by

U 7!

^




O

X

(U)=K

for ea
h open subset U � X and by the restri
tion maps

D(�

U

V

) :

^




O

X

(U)=K

!

^




O

X

(V )=K

for all open subsets V � U � X, as de�ned in proposition 2.2, where

�

U

V

: O

X

(U)! O

X

(V ) is the restri
tion map of O

X

.

Remark By proposition 2.2, for all open subsets V � U � X, the diagram

O

X

(U)

d

O

X

(U)

//

�

U

V

��

^




O

X

(U)=K

D(�

U

V

)

��

O

X

(V )

d

O

X

(V )

//
^




O

X

(V )=K


ommutes and so the 
olle
tion of maps d

O

X

(U)

indu
es a morphism of sheaves

of K-algebras d

X

: O

X

!

^




X=K

.

Proposition 4.10 If X is an aÆne s
heme, then the presheaf U 7!

^




O

X

(U)=K

already is a sheaf.

Proof The given presheaf is a sheaf if and only if for all open subsets U � X

and all open 
overings

S

i2I

U

i

= U , the sequen
e

0!

^




O

X

(U)=K

!

Y

i2I

^




O

X

(U

i

)=K

!

Y

i;j2I

^




O

X

(U

i

\U

j

)=K

is exa
t. Sin
e this is a sequen
e of 
gas, it suÆ
es to show that the sequen
e is

exa
t in ea
h homogeneous 
omponent.

For every open subset V � U , O

X

(V ) is a lo
alisation of O

X

(U) and so by

proposition 2.2,

^




O

X

(V )=K

�

=

O

X

(V ) 


O

X

(U)

^




O

X

(U)=K

. By 
orollary 2.4, the

homogeneous 
omponents (

^




O

X

(U)=K

)

k

(k 2 N) are proje
tive O

X

(U)-modules

and therefore tensoring with (

^




O

X

(U)=K

)

k

is exa
t. So the sequen
e above is

exa
t in ea
h homogeneous 
omponent, if the sequen
e

0! O

X

(U)!

Y

i2I

O

X

(U

i

)!

Y

i;j2I

O

X

(U

i

\ U

j

)
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is exa
t. But this is just the 
ondition on O

X

for being a sheaf. 2

As an immediate 
onsequen
e of this proposition, we have the following 
orollary:

Corollary 4.11 For every aÆne open subset U � X, we have

^




X=K

(U) =

^




O

X

(U)=K

.

De�nition 4.12 Let M be a 
oherent O

X

-module. A higher 
onne
tion on

M is a morphism of sheaves r : M !

^




X=K




O

X

M , whi
h lo
ally (i. e. on

aÆne open subsets) is a higher 
onne
tion in the sense of se
tion 2.3. The higher


onne
tion r is 
alled involutive resp. iterative resp. integrable itera-

tive if r lo
ally is an involutive higher resp. iterative resp. integrable iterative


onne
tion.

Remark By theorem 4.1, every 
oherent O

X

-module M , that admits a higher


onne
tion r :M !

^




X=K




O

X

M , is lo
ally free and of �nite rank.

Remark Following the notion of modules with higher 
onne
tions over rings,

we denote by HCon(X=K), HCon

inv

(X=K), ICon(X=K) and ICon

int

(X=K)

the 
ategories of 
oherent O

X

-modules with higher 
onne
tions, with involutive

higher 
onne
tions, with iterative 
onne
tions and with integrable iterative 
on-

ne
tions. By standard methods of algebrai
 geometry, one obtains that again

HCon

inv

(X=K), ICon(X=K) and ICon

int

(X=K) are tensor 
ategories over K

and that they are Tannakian 
ategories. And if X has a K-rational point, they

are in fa
t neutral Tannakian 
ategories over K.

Remark In the se
ond part of this work, 
oherent modules with higher 
onne
-

tions will o

ur from another point of view:

Let F=K be a �eld of �nite trans
enden
e degree over K, and let X be a nonsin-

gular irredu
ible proje
tive s
heme over K with fun
tion �eld K(X) = F . Sin
e

O

X

is a subsheaf of the 
onstant sheaf K(X), for every 
oherent O

X

-module

~

M

with higher 
onne
tion r, F 


O

X

~

M is an F -ve
tor spa
e with higher 
onne
tion

d

F


r : F 


O

X

~

M !

^




F=K




F

(F 


O

X

~

M):

On the other hand, letM be an F -ve
tor spa
e with higher 
onne
tion r :M !

^




F=K




F

M and let U � X be an open subset. If there exists a generating set

fb

1

; : : : ; b

r

g for M su
h that for all i = 1; : : : ; r, we have r(b

i

) =

r

P

j=1

!

ji


 b

j

with

!

ji

2

^




X=K

(U) �

^




F=K

, then

~

M := O

U

b

1

+ � � � + O

U

b

r

� M is a 
oherent O

U

-

module with higher 
onne
tion rj

~

M

:

~

M !

^




U=K




O

U

~

M and the pair (M;r)

is re
overed from (

~

M;rj

~

M

) in the way given above. In this 
ase, we will 
all

(M;r) regular on U .
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5 Corresponden
e to the Classi
al Theory in

Chara
teristi
 Zero

For 
har(K) = 0, in general one gets the usual 
onstru
tions of derivations,

di�erentials and 
onne
tions by restri
ting to the terms of degree 1. On the

other hand these 
onstru
tions 
an be uniquely extended to iterative derivations

and iterative 
onne
tions. Moreover integral 
onne
tions, i. e. 
onne
tions whi
h

preserve 
ommutators of derivations, are 
orresponding to integrable iterative


onne
tions. This will be proven in this 
hapter.

So throughout this 
hapter, letK be a �eld of 
hara
teristi
 zero, R a regular ring,

that is �nitely generated as a K-algebra, and M a �nitely generated R-module.

Proposition 5.1 The map

Der(R=K) �! ID

K

(R); � 7! �

�

;

given by

�

�

(r) :=

1

X

n=0

1

n!

�

n

(r)T

n

for all r 2 R, is a bije
tion and the inverse map is given by � 7! �

(1)

.

For a given derivation � on R and a 
orresponding iterative derivation �

�

the

map I : Der

R

(M)! ID

K

(M;�

�

); �

M

7! �

�

M

given by

�

�

M

(m) :=

1

X

n=0

1

n!

�

n

M

(m)T

n

;

for all m 2M , is a bije
tion and the inverse map is given by � 7! �

(1)

.

Proof Let � 2 Der(R=K) be a derivation. Then for all i; j 2 N :

1

i!

�

i

Æ

1

j!

�

j

=

�

i+j

i

�

1

(i+j)!

�

i+j

: So �

�

is an iterative derivation. On the other hand, for every

iterative derivation �, one obtains �

(k)

=

1

k!

(�

(1)

)

k

for all k 2 N by applying the

formula �

(i)

=

1

i

�

(1)

Æ�

(i�1)

indu
tively. Finally by proposition 1.2, for all r; s 2 R

we have �

(1)

(rs) = r�

(1)

(s) + �

(1)

(r)s, i. e. �

(1)

2 Der(R=K).

The bije
tion I : Der

R

(M)! ID

K

(M;�

�

) is shown analogously. 2

Proposition 5.2 The R-module (

^




R=K

)

1

is 
anoni
ally isomorphi
 to the mod-

ule of (usual) di�erentials 


R=K

and d

(1)

: R! (

^




R=K

)

1

�

=




R=K

is the universal

derivation.

Proof The 
ontru
tion of (

^




R=K

)

1

in the proof of theorem 2.1 is the same as

the usual 
onstru
tion of 


R=K

(e.g. in [Hart77℄,II.8). 2
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Proposition 5.3 For every iterative 
onne
tion r on M , the map r

(1)

: M !

(

^




R=K

)

1


 M

�

=




R=K


 M is a 
onne
tion on M and every 
onne
tion r

(1)

on M extends uniquely to an iterative 
onne
tion on M . Furthermore, r is an

integrable iterative 
onne
tion if and only if r

(1)

is an integrable 
onne
tion.

Proof Let r be an iterative 
onne
tion on M . Then for all r 2 R and m 2M ,

we have r

(1)

(rm) = d

(1)

(r) 
 m + rr

(1)

(m). So r

(1)

is a 
onne
tion. On the

other hand, for a given 
onne
tion r

(1)

by the formula r

(k)

=

1

k

�

^




r

(1)

Æ r

(k�1)

�

,

one 
an indu
tively 
al
ulate maps r

(k)

:M !

^




k


M for all k 2 N , whi
h build

up an iterative 
onne
tion r =

P

1

k=0

r

(k)

(same 
al
ulation as in proposition

5.1).

For proving the equivalen
e of the integrability 
onditions, remind that Der(R=K)

is a free R-module and has a basis of 
ommuting derivations (see [Hart77℄). So

r

(1)

is integrable if and only if for all 
ommuting derivations �

1

; �

2

2 Der(R=K),

we have [(r

(1)

)

�

1

; (r

(1)

)

�

2

℄ = (r

(1)

)

[�

1

;�

2

℄

= 0, i. e. if for all �

1

; �

2

2 Der(R=K)

with �

1

Æ �

2

= �

2

Æ �

1

, the identity (r

(1)

)

�

1

Æ (r

(1)

)

�

2

= (r

(1)

)

�

2

Æ (r

(1)

)

�

1

holds.

Using the bije
tion in proposition 5.1, this is equivalent to the 
ondition that for

all 
ommuting iterative derivations �

�

1

; �

�

2

2 ID

K

(R) the iterative derivations

r

�

�

1

and r

�

�

2


ommute, be
ause

�

r

�

�

1

�

(1)

=

�

r

(1)

�

�

1

. 2

Theorem 5.4 The 
ategory ICon

int

(R=K) of �nitely generated R-modules with

integrable iterative 
onne
tion and the 
ategory DE(R=K) of �nitely generated

R-modules with integrable 
onne
tion are equivalent.

Proof This follows dire
tly from the previous propositions. 2
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6 Positive Chara
teristi


In this se
tion, we regard the 
ase that K has positive 
hara
teristi
 p. Con-

trary to 
hara
teristi
 zero, iterative derivations and iterative 
onne
tions are

not longer determined by the term of degree 1. Moreover, not every derivation

� 2 Der(R=K) 
an be extended to an iterative derivation � with �

(1)

= �, be-


ause the 
onditions on an iterative derivation imply (�

(1)

)

p

= p! � �

(p)

= 0, i. e.

at least � has to be nilpotent.

But there are some other stru
tural properties: The main result is that every

module with integrable iterative 
onne
tion gives rise to a proje
tive system and

vi
e versa, similar to the 
orresponden
e of proje
tive systems and iterative dif-

ferential modules over fun
tion �elds given in [Mat01℄, Ch.2.2. In fa
t, when R is

an algebrai
 fun
tion �eld, the proje
tive systems de�ned here are equal to those

de�ned by Matzat and so this shows that in this 
ase the 
ategories ICon(R=K),

ICon

int

(R=K), Proj

R

and ID

R

8

are equivalent.

For 
onvenien
e, we will restri
t to the 
ase of �elds over K, although this 
orre-

sponden
e is true more generally.

In positive 
hara
teristi
 p, every �nitely generated K-algebra (or lo
alisation

of a �nitely generated K-algebra) R has a natural sequen
e of K-subalgebras

(R

l

)

l2N

given by R

l

:= R

p

l

.

9

The following proposition gives a 
hara
terisation

of this sequen
e by the higher di�erential:

Proposition 6.1 (Frobenius Compatibility) For all l 2 N:

R

l

=

\

0<j<p

l

Ker(d

(j)

R

):

Proof Sin
e d

R

is a homomorphism of algebras, d

R

(R

l

) = d

R

(R

p

l

) � (

^




R=K

)

p

l

and therefore d

(j)

R

(r) = 0 (0 < j < p

l

) for all r 2 R

l

. The other in
lusion is

shown indu
tively: The 
ase l = 0 is trivial. Now let r 2 R satisfy d

(j)

R

(r) = 0 for

0 < j < p

l

. By indu
tion hypothesis r 2 R

l�1

. So there exists t 2 R with

t

p

l�1

= r. If t 62 R

p

, then t is a separable element of R and we 
an �nd

separating variables t = t

1

; t

2

; : : : ; t

m

for R, i. e. R=K[t

1

; : : : ; t

m

℄ is a �nite

separable extension (or R is the lo
alisation of a �nite separable extension of

K[t

1

; : : : ; t

m

℄). By lo
alising and applying theorem 2.3 and proposition 2.2(b),

we see that d

(1)

R

(t) 6= 0. And so

0 6=

�

d

(1)

R

(t)

�

p

l�1

= d

(p

l�1

)

R

�

t

p

l�1

�

= d

(p

l�1

)

R

(r);

8

Proj

R

denotes the 
ategory of proje
tive systems over R and ID

R

denotes the 
ategory of

ID-modules (
f. [Mat01℄)

9

Remember that we assumed K to be perfe
t and therefore K

p

= K.
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whi
h is a 
ontradi
tion. So t 2 R

p

and r 2 R

l

. 2

Remark Sin
e we are in positive 
hara
teristi
, we have a Frobenius map on

every ring: F

R

: R! R; r 7! r

p

.

The 
omponents d

(k)

R

of d

R

ful�ll some kind of 
ompatibility with the Frobenius

maps F

R

resp. F

^




, namely for all k 2 N ,

d

(pk)

R

Æ F

R

= F

^




Æ d

(k)

R

:

(This follows dire
tly from the fa
t, that d

R

is a homomorphism of rings and that

F multiplies degrees by p.) The proposition above then implies that an element

r 2 R lies in the image of F

R

if and only if it lies in the kernel of d

(1)

R

.

In the 
ase of R being an algebrai
 fun
tion �eld in one variable, it was shown by

F. K. S
hmidt (see [Mat01℄, 
h. 1.5) that for an iterative derivation � 2 ID

K

(R)

satisfying �

(1)

6= 0, we have R

p

l

=

T

0<j<p

l

Ker(�

(j)

).

So in this 
ase we obtain the same sequen
e of subalgebras, when \only" regarding

an iterative derivation instead of the universal derivation. This will be important

in part II.

From now on, let K be a perfe
t �eld of 
hara
teristi
 p > 0 and F=K be a

�nitely generated �eld extension of trans
enden
e degree m. Furthermore denote

by t

1

; : : : ; t

m

a separable trans
enden
e basis for F , i. e. F is a separable algebrai


extension of the rational fun
tion �eld K(t

1

; : : : ; t

m

).

De�nition 6.2 A proje
tive system over F is a sequen
e (M

l

; '

l

)

l2N

with the

following properties

1. For all l 2 N, M

l

is an F

l

-ve
tor spa
e of �nite dimension.

2. '

l

: M

l+1

,! M

l

is a monomorphism of F

l+1

-ve
tor spa
es that uniquely

extends to an isomorphism id

F

l


 '

l

: F

l




F

l+1

M

l+1

!M

l

.

A morphism � : (M

l

; '

l

)! (M

0

l

; '

0

l

) of proje
tive systems over F is a

sequen
e � = (�

l

)

l2N

of homomorphisms of ve
tor spa
es �

l

:M

l

!M

0

l

satisfying

'

0

l

Æ �

l+1

= �

l

Æ '

l

.

Proposition 6.3 Every proje
tive system (M

l

; '

l

)

l2N

over F de�nes an inte-

grable iterative 
onne
tion r on M :=M

0

satisfying

\

0<j<p

l

Ker(r

(j)

) = ('

0

Æ � � � Æ '

l�1

) (M

l

):
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For a morphism (�

l

)

l2N

: (M

l

; '

l

) ! (M

0

l

; '

0

l

) of proje
tive systems over F , the

homomorphism of F -ve
tor spa
es �

0

: M = M

0

! M

0

= M

0

0

is a morphism of

modules with higher 
onne
tion.

Proof (
f. [Mat01℄,2.8) By identifying M

l

with its image '

0

Æ � � � Æ '

l�1

(M

l

) in

M , we may assume that M

l

� M for all l 2 N . In order to de�ne r

(k)

, 
hoose

l 2 N su
h that p

l

> k and let fb

1

; : : : ; b

n

g be an F

l

-basis for M

l

. Then by the

se
ond property of a proje
tive system, fb

1

; : : : ; b

n

g is an F -basis for M , so for

all v 2M we 
an �nd 
oeÆ
ients a

i

2 F su
h that v =

P

n

i=1

a

i

b

i

. Then de�ne

r

(k)

(v) :=

n

X

i=1

d

(k)

F

(a

i

)b

i

:

This de�nition is independent of the 
hosen basis, be
ause given another F

l

-basis

fb

0

1

; : : : ; b

0

n

g for M

l

, the base 
hange matrix C = (


ij

) has 
oeÆ
ients in F

l

and

therefore

r

0(k)

(v) = r

0(k)

 

n

X

j=1

a

j

b

j

!

= r

0(k)

 

n

X

i=1

n

X

j=1




ij

a

j

b

0

i

!

=

n

X

i=1

n

X

j=1

d

(k)

F

(


ij

a

j

)b

0

i

=

n

X

i=1

n

X

j=1




ij

d

(k)

F

(a

j

)b

0

i

=

n

X

j=1

d

(k)

F

(a

j

)b

j

= r

(k)

(v):

The de�nition is also independent of the 
hosen l, be
ause for j > l every F

j

-basis

of M

j

is also an F

l

-basis for M

l

.

Furthermore, by 
hoosing an F

l

-basis fb

1

; : : : ; b

n

g ofM

l

, one sees that an element

v =

P

n

i=0

a

i

b

i

2 M is in

T

0<j<p

l

Ker(r

(j)

) if and only if a

i

2

T

0<j<p

l

Ker(d

(j)

F

)

for all i, i. e. if and only if v 2M

l

.

If remains to show that r is an integrable iterative 
onne
tion. But by 
hoosing

an F

l

-basis fb

1

; : : : ; b

n

g of M

l

, one sees that the ne
essary 
onditions are ful�lled

modulo degrees � p

l

, sin
e d

F

is an integrable iterative 
onne
tion. As l 
an be


hosen arbitrary large, r ful�lls all 
onditions for being an integrable iterative


onne
tion.

Finally, let (�

l

)

l2N

: (M

l

; '

l

) ! (M

0

l

; '

0

l

) be a morphism of proje
tive systems

over F . We have to show, that r

0

Æ �

0

= (id

^





 �

0

) Æ r or equivalently that for

all k 2 N

r

0(k)

Æ �

0

(b

i

) = (id

^





 �

0

) Æ r

(k)

(b

i

) (i = 1; : : : ; n);

where fb

1

; : : : ; b

n

g denotes an F -basis of M . But the last 
ondition is seen easily

by 
hoosing fb

1

; : : : ; b

n

g to be an F

l

-basis of M

l

(p

l

> k) and by reminding that
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�

0

(M

l

) = �

l

(M

l

) �M

0

l

. 2

In the following, we will show that the 
onverse is also true, i. e. a module

with integrable iterative 
onne
tion gives rise to a proje
tive system over F .

For this, we 
onsider a monomial ordering on

^




F=K

= F [[d

(i)

t

j

℄℄, namely the

lexi
ographi
al order, where the variables are ordered by d

(i

1

)

t

j

1

> d

(i

2

)

t

j

2

if

i

1

> i

2

or if i

1

= i

2

and j

1

> j

2

. The leading term of ! 2

^




F=K

(if it exists) is

then denoted by LT(!).

Lemma 6.4 Let ! 2

^


 be homogeneous of degree p

l

and ! 62 F

^




p

l

. Let d

(i

0

)

t

j

0

be the greatest variable with the property that there exist e

0

2 N, p - e

0

and a

monomial !

0

2

^


 su
h that (d

(i

0

)

t

j

0

)

e

0

!

0

is a monomial term of !. Let e

0

and !

0

be 
hosen su
h that (d

(i

0

)

t

j

0

)

e

0

!

0

is maximal amoung those monomials. Then for

every k � p

l

(p� 1), we have:

LT(d

(k)

^




(!)) � e

0

d

(i

0

+p

l

(p�1))

t

j

0

� (d

(i

0

)

t

j

0

)

e

0

�1

!

0

;

with equality if and only if k = p

l

(p� 1) and i

0

< p

l

.

Proof For i 2 N , j 2 f1; : : : ; mg, e 2 N

+

and k 2 N , we have

d

(k)

^




�

(d

(i)

t

j

)

e

�

=

X

k

1

+���+k

e

=k

�

i+ k

1

i

�

� � �

�

i+ k

e

i

�

d

(i+k

1

)

t

j

� � �d

(i+k

e

)

t

j

:

So

LT

�

d

(k)

^




�

(d

(i)

t

j

)

e

�

�

= e �

�

i+ k

i

�

d

(i+k)

t

j

(d

(i)

t

j

)

e�1

if e

�

i + k

i

�

6= 0

d

(k)

^




�

(d

(i)

t

j

)

e

�

= 0 if p j e and p - k and

d

(k)

^




�

(d

(i)

t

j

)

e

�

=

�

d

(

k

p

)

^




�

(d

(i)

t

j

)

e

p

�

�

p

if p j e and p j k:

So for k � p

l

(p� 1), a variable d

(i)

t

j

6= d

(i

0

)

t

j

0

o

uring in ! gives a 
ontribution

to d

(k)

^




(!) of variables

(i) less than d

(i

0

+k)

t

j

0

if it o

urs in a power not divided by p and

(ii) less than d

(i+

k

p

)

t

j

otherwise.

In the se
ond 
ase i � p

l�1

, sin
e ! 2

^




p

l, and so i+

k

p

� p

l�1

+p

l�1

(p�1) = p

l

. So

d

(i+

k

p

)

t

j

< d

(i

0

+p

l

)

t

j

0

. Therefore the greatest variable that may o

ur is d

(i

0

+k)

t

j

0

(or d

(i

0

+p

l

)

t

j

0

if k < p

l

) and d

(i

0

+p

l

(p�1))

t

j

0

o

urs if and only if k = p

l

(p� 1) and
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�

i

0

+p

l

(p�1)

i

0

�

6= 0, i. e. i

0

6= p

l

.

The greatest 
orresponding monomial then is

e

0

d

(i

0

+p

l

(p�1))

t

j

0

� (d

(i

0

)

t

j

0

)

e

0

�1

!

0

:

2

Proposition 6.5 Every F -module M with integrable iterative 
onne
tion r de-

�nes a proje
tive system (M

l

; '

l

) over F , where M

l

:=

T

0<i<p

l

Ker(r

(i)

) and

'

l

: M

l+1

! M

l

is the in
lusion map, and a morphism f : (M;r) ! (M

0

;r

0

)

of modules with higher 
onne
tion de�nes a morphism � : (M

l

; '

l

)! (M

0

l

; '

0

l

) of

proje
tive systems over F by �

l

:= f j

M

l

.

Proof Sin
e d

(1)

t

1

; : : : ; d

(1)

t

m

is an F -basis of

^




1

, the kernel Ker(r

(1)

) is equal to

T

m

j=1

Ker

�

r

(1)

�

t

j

�

and sin
e r is integrable iterative, the endomorphisms

r

(1)

�

t

j

:M !M 
ommute and

�

r

(1)

�

t

j

�

p

= 0 for all j.

Now let M

1

:= Ker

�

r

(1)

�

( =

T

0<i<p

1

Ker(r

(i)

), sin
e r is iterative). Then M

1

is an F

1

-ve
tor spa
e and

dim

F

1

(M

1

) = dim

F

1

 

m

\

j=1

Ker

�

r

(1)

�

t

j

�

!

�

1

p

m

dim

F

1

(M) = dim

F

(M):

On the other hand, an F

1

-basis of M

1

is F -linearly independent in M and so

dim

F

1

(M

1

) � dim

F

(M). So dim

F

1

(M

1

) = dim

F

(M) and the in
lusion '

0

:M

1

!

M

0

=M extends to an isomorphism id

F

0


 '

0

: F

0




F

1

M

1

!M .

Next, we will show thatr(M

1

) � (

^




F=K

)

p




F

1

M

1

. Sin
e (

^




F=K

)

p

= F

1

[[(d

(i)

t

j

)

p

℄℄ =

F

1

[[d

(pi)

(t

p

j

)℄℄ is isomorphi
 to

^




F

1

=K

= F

1

[[d

(i)

(t

p

j

)℄℄ as an algebra by the map

d

(pi)

(t

p

j

) 7! d

(i)

(t

p

j

), this means that essentially rj

M

1

is an integrable iterative 
on-

ne
tion on the F

1

-module M

1

. And then it follows indu
tively that

dim

F

l+1

(M

l+1

) = dim

F

l

(M

l

) and that, essentially, rj

M

l+1

is an integrable iter-

ative 
onne
tion on the F

l+1

-module M

l+1

.

Sin
e r is iterative, it suÆ
es to show that r

(p

l

)

(M

1

) � (

^




F=K

)

p




F

1

M

1

for all

l � 1. So �x an F

1

-basis b = (b

1

; : : : ; b

n

) of M

1

(written as a row) and let A

l

2

Mat

n

(

^




p

l) with r

(p

l

)

(b) = bA

l

.

10

From 0 =

^




r

(p

l

)

(r

(1)

(b)) =

^




r

(1)

(r

(p

l

)

(b)) =

bd

(1)

^




(A

l

) we 
on
lude d

(1)

^




(A

l

) = 0. Assume there is an entry ! 2

^




p

l

� F [d

(i)

t

j

j i = 1; : : : ; p

l

; j = 1; : : : ; m℄ of A

l

with LT (!) = rd

(p

l

)

t

j

(for some

r 2 F and j 2 f1; : : : ; mg). Sin
e d

(1)

^




(rd

(p

l

)

t

j

) = d

(1)

(r)d

(p

l

)

t

j

+ rd

(p

l

+1)

t

j

and

for all other monomials of !, the image under d

(1)

^




doesn't 
ontain the variable

d

(p

l

+1)

t

j

, we obtain d

(1)

^




(!) 6= 0, a 
ontradi
tion.

10

For simpli
itiy we use ve
tor notations: bA

l

denotes the row ve
tor with j-th 
omponent

P

n

i=1

(A

l

)

ij

b

i

, and r and d

^




are always applied to the 
omponents of a ve
tor or a matrix.

38



So ! 2 F [d

(i)

t

j

j i = 1; : : : ; p

l

�1; j = 1; : : : ; m℄. Furthermore, sin
e r is iterative,

^




r

(p

l

(p�1))

Æ r

(p

l

)

=

�

p

l+1

p

l

�

r

(p

l+1

)

= 0 and therefore

0 =

^




r

(p

l

(p�1))

(bA

l

) = b � d

(p

l

(p�1))

^




(A

l

) +

p

l

(p�1)�1

X

k=0

r

(p

l

(p�1)�k)

(b) � d

(k)

^




(A

l

):

If A

l

62 Mat

n

(F �

^




p

), then by the previous lemma, d

(p

l

(p�1))

(A

l

) has an entry

with leading term e

0

d

(i

0

+p

l

(p�1))

t

j

0

�

d

(i

0

)

t

j

0

�

e

0

�1

� !

0

for some !

0

2

^


, i

0

� p

l

and j

0

2 f1; : : : ; mg and the variables o

uring in d

(k)

^




(A

l

) (k < p

l

(p � 1) � 1)

are less than d

(i

0

+p

l

(p�1))

t

j

0

and those o

uring in r

(p

l

(p�1)�k)

(b) are even less

than or equal to d

(p

l

(p�1))

t

m

. So we would have

^




r

(p

l

(p�1))

(bA

l

) 6= 0. Therefore

A

l

2 Mat

n

(F

^




p

).

At last, sin
e d

(1)

^




(A

l

) = 0, in fa
t A

l

2 Mat

n

(

^




p

), whi
h 
ompletes the proof. 2

Theorem 6.6 The 
ategory Proj

F

of proje
tive systems over F and the 
ategory

ICon

int

(F=K) are equivalent. Furthermore, if F is an algebrai
 fun
tion �eld in

one variable over K and � 2 ID

K

(F ) with �

(1)

6= 0, then they are also equivalent

to the 
ategory ID

F

of iterative di�erential modules over (F; �) (
f. [Mat01℄) and

to the 
ategory ICon(F=K).

Proof The �rst statement follows immediately from the previous two proposi-

tions, sin
e the given maps are fun
tors that are inverse to ea
h other.

The proof of proposition 6.5 shows that the integrability 
ondition is not ne
-

essary, when F is an algebrai
 fun
tion �eld in one variable. So ICon(F=K) is

equivalent to Proj

F

, in this 
ase. Furthermore, Matzat showed in [Mat01℄ that

ID

F

is equivalent to Proj

F

, too. 2

Remark Let (M;r) be an F -moduleM with an integrable iterative 
onne
tion

r and 
orresponding proje
tive system (M

l

)

l2N

, and let b = (b

1

; : : : ; b

n

) be

an F -basis of M . By the properties of a proje
tive system, we 
ould 
hoose

matri
es D

l

2 GL

n

(F

l

) (l 2 N) su
h that bD

0

� � �D

j�1

is an F

j

-basis of M

j

(j = 0; 1; : : : ). Then the image of an arbitrary element ba :=

P

n

i=1

b

i

a

i

2 M

(where a = (a

1

; : : : ; a

n

)

t

with a

i

2 F ) by r

(k)


an be 
al
ulated by

r

(k)

(ba) = bD

0

� � �D

l�1

d

(k)

F

�

D

�1

l�1

� � �D

�1

0

a

�

;

where k < p

l

.
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Part II

In this part of the thesis, we restri
t to the 
ase of an algebrai
 fun
tion �eld

11

F over an algebrai
ally 
losed �eld of positive 
hara
teristi
. In this 
ase the

modules with iterative 
onne
tion are the same as iterative di�erential modules

de�ned in [Mat01℄, whi
h was shown in se
tion 6.

So the iterative Pi
ard-Vessiot theory (IPV-theory) developed by Matzat 
an be

used: For an iterative Pi
ard-Vessiot extension (IPV-extension) E=F , there is

a Galois 
orresponden
e between the intermediate iterative di�erential �elds L

(i. e. F � L � E) and the (Zariski-)
losed subgroups of the linear algebrai


group Gal(L=F ) = Aut

ID

(L=F ). In what follows, we will investigate when a

linear algebrai
 group 
an be realised as an iterative di�erential Galois group

by an IPV-extension, whi
h is regular outside a given nonempty set of pla
es

S � P

F

.

Notation Throughout this part of the thesis, K denotes an algebrai
ally 
losed

�eld of 
hara
teristi
 p > 0, F an algebrai
 fun
tion �eld over K, P

F

the set

of pla
es of F and C

F

a nonsingular proje
tive model for F , i. e. a nonsingular

proje
tive 
urve over K with fun
tion �eld K(C

F

) = F . By [Hart77℄, 
h. I,

theorem 6.9, this 
urve is unique up to isomorphism and there is a one-to-one


orresponden
e between the (
losed) points of C

F

and the pla
es of F . For a

point x 2 C

F

, we denote by O

x

� F the set of fun
tions that are regular in x. It

is a dis
rete valuation ring and therefore indu
es a valuation on F 
orresponding

to the pla
e x 2 P

F

. Given a point x 2 C

F

, we denote by ord

x

(t) the image of an

element t 2 F under this valuation. An element s 2 F with ord

x

(s) = 1 is 
alled

a lo
al parameter for x.

For an open subset U � C

F

, we denote by O(U) the set of fun
tions that are

regular on U , i. e. O(U) =

T

x2U

O

x

.

For l 2 N , we denote by F

l

, (O

x

)

l

resp. (O(U))

l

the elements t in F , O

x

resp.

O(U) with d

(k)

F

(t) = 0 for all 0 < k < p

l

.

12

11

The term algebrai
 fun
tion �eld will always mean algebrai
 fun
tion �eld in one variable.

12

Remind that d

F

denotes the universal derivation d

F

: F !

^




F=K

and that F

l

, (O

x

)

l

and

(O(U))

l

are subrings, as shown in proposition 6.1.
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7 IPV-Extensions and ID-Galois Groups

7.1 Iterative Derivations in Algebrai
 Fun
tion Fields

Proposition 7.1 Let t 2 F be a separating element (i. e. F=K(t) is a �nite

separable extension). Then for every F -
ga B and every b 2 B with "(b) = t

there exists a unique higher derivation  : F ! B satisfying  (t) = b.

And the higher derivation �

t

given by �

t

(t) = t + T 2 F [[T ℄℄ is an iterative

derivation, the iterative derivation with respe
t to t.

Proof This is a spe
ial 
ase of example 1.4 and example 3.2. 2

Remark In example 1.4, we needed a trans
enden
e basis to de�ne the iterative

derivations with respe
t to one of the basis elements. Sin
e an algebrai
 fun
tion

�eld has trans
enden
e degree 1, every separating t 2 F itself is a trans
enden
e

basis for F .

Proposition 7.2 (
hain rule) Let t 2 F be separating, �

t

the iterative deriva-

tion with respe
t to t and let  2 HD

K

(F ). Then for all r 2 F

 (r) =

1

X

k=0

�

(k)

t

(r)

 

1

X

j=1

 

(j)

(t)T

j

!

k

:

Proof De�ne a homomorphism of F -algebras � : F [[T ℄℄ ! F [[T ℄℄ by �(T ) :=

 (t) � t =

P

1

j=1

 

(j)

(t)T

j

2 T � F [[T ℄℄. Then � Æ �

t

is a homomorphism of K-

algebras and " Æ � Æ �

t

= " Æ �

t

= id

F

, and therefore � Æ �

t

is a higher derivation.

Furthermore (� Æ �

t

)(t) = �(t+ T ) = t+  (t)� t =  (t) and so, by the previous

proposition, � Æ �

t

=  , hen
e the formula above. 2

Proposition 7.3 (
hain rule for modules) Let t 2 F be separating, �

t

the

iterative derivation with respe
t to t and let  2 HD

K

(F ). Moreover let (M;r)

be a module with iterative 
onne
tion. Then for all m 2M

r

 

(m) =

1

X

k=0

r

(k)

�

t

(m)

 

1

X

j=1

 

(j)

(t)T

j

!

k

:

Proof By theorem 6.6, an iterative 
onne
tion leads to a proje
tive system

(M

l

)

l2N

over F . So for an arbitrary l 2 N , 
hoose an F

l

-basis fb

1

; : : : ; b

n

g of

M

l

. Then for every m 2 M , there are a

1

; : : : ; a

n

2 F with m =

P

n

i=1

a

i

b

i

and
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therefore we get by the 
hain rule:

r

 

(m) = r

 

 

n

X

i=1

a

i

b

i

!

�

n

X

i=1

 (a

i

)b

i

(mod T

p

l

)

=

n

X

i=1

1

X

k=0

�

(k)

t

(a

i

)

 

1

X

j=1

 

(j)

(t)T

j

!

k

b

i

�

1

X

k=0

r

(k)

�

t

(m)

 

1

X

j=1

 

(j)

(t)T

j

!

k

(mod T

p

l

):

Sin
e l 
an be 
hosen arbitrary large, we get

r

 

(m) =

1

X

k=0

r

(k)

�

t

(m)

 

1

X

j=1

 

(j)

(t)T

j

!

k

:

2

Lemma 7.4 For ea
h n 2 N

+

there exist �

n

2 K[X

1

; : : : ; X

n

; X

�1

1

℄, su
h that

for all separating variables s; t 2 F we have:

�

(n)

t

(s) = �

n

�

�

(1)

s

(t); : : : ; �

(n)

s

(t)

�

:

Espe
ially, �

(1)

s

(t) 6= 0 for all separating s; t 2 F .

Proof By the 
hain rule, for separating s; t 2 F we have:

s+ T = �

s

(s) =

1

X

k=0

�

(k)

t

(s)

 

1

X

j=1

�

(j)

s

(t)T

j

!

k

:

And so, by 
omparing the 
oeÆ
ients, we obtain,

1 = �

(1)

t

(s)�

(1)

s

(t) (so �

(1)

s

(t) 6= 0) and

0 = �

(n)

t

(s)

�

�

(1)

s

(t)

�

n

+

n�1

X

k=1

X

j

1

+���+j

k

=n

j

i

�1

�

(k)

t

(s)�

(j

1

)

s

(t) � � ��

(j

k

)

s

(t)

for n > 1. From this, one indu
tively obtains a formula for 
al
ulating �

(n)

t

(s) as

a polynomial of �

(1)

s

(t); : : : ; �

(n)

s

(t) and �

(1)

s

(t)

�1

. Repla
ing �

(j)

s

(t) by X

j

gives

the desired \polynomial" �

n

. 2

Theorem 7.5 If #K = 1, then for every nonzero ! 2

^




F=K

there exists an

iterative derivation � 2 ID

K

(F ) su
h that

~

�(!) 6= 0, i. e. F has enough iterative

derivations.
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Proof Let t 2 F be a separating element. At �rst, we show that an element

� 2 K[X

1

; : : : ; X

n

; X

�1

1

℄ has to be zero, if for all separating elements s 2 F ,

�(�

(1)

t

(s); : : : ; �

(n)

t

(s)) = 0:

Assume this is false and 
hoose j 2 f1; : : : ; ng maximal su
h that there is 0 6=

� 2 K[X

j

; : : : ; X

n

℄ � K[X

1

; : : : ; X

n

; X

�1

1

℄ with �(�

(j)

t

(s); : : : ; �

(n)

t

(s)) = 0 for all

separating s 2 F . As j is maximal, there is a separating s 2 F su
h that

0 6= �(X

j

; �

(j+1)

t

(s); : : : ; �

(n)

t

(s)) 2 F [X

j

℄:

Then for almost all a 2 K, s+at

j

also is separating

13

, and �

(j)

t

(s+at

j

) = �

(j)

t

(s)+a

and �

(k)

t

(s + at

j

) = �

(k)

t

(s) for all k > j. So for almost all a 2 K (i. e. in spe
ial

in�nitely many a 2 K), �(�

(j)

t

(s) + a; �

(j+1)

t

(s); : : : ; �

(n)

t

(s)) = 0 and therefore

�(X

j

; �

(j+1)

t

(s); : : : ; �

(n)

t

(s)) = 0 2 F [X

j

℄ in 
ontradi
tion to the 
hoi
e of s.

Next, we de�ne a homomorphism of K-algebras �

n

: K[X

1

; : : : ; X

n

; X

�1

1

℄ !

K[X

1

; : : : ; X

n

; X

�1

1

℄ by X

j

7! �

j

(the �

j

given by the previous lemma). �

n

is an

involution be
ause for all separating s 2 F and � 2 K[X

1

; : : : ; X

n

; X

�1

1

℄:

�

(�

n

Æ �

n

)(�)

�

�

�

(1)

t

(s); : : : ; �

(n)

t

(s)

�

= �

n

(�)

�

�

(1)

s

(t); : : : ; �

(n)

s

(t)

�

= �

�

�

(1)

t

(s); : : : ; �

(n)

t

(s)

�

and so (�

n

Æ �

n

)(�) = �.

Now assume there is 0 6= ! 2

^




F=K

su
h that

~

�(!) = 0 for all � 2 ID

K

(F ).

Then without loss of generality ! is homogeneous of degree n and so ! 2

F [d

(1)

t; : : : ; d

(n)

t℄

�

=

F [X

1

; : : : ; X

n

℄. Hen
e for all separating s 2 F :

0 =

~

�

s

(!) = !

�

�

(1)

s

(t); : : : ; �

(n)

s

(t)

�

= �

n

(!)

�

�

(1)

t

(s); : : : ; �

(n)

t

(s)

�

:

So, by the previous, we get �

n

(!) = 0 and therefore ! = �

n

(�

n

(!)) = 0, a


ontradi
tion. 2

Remark Not all iterative derivations of F are given as the iterative derivation

with respe
t to some separating t 2 F . But sin
e we won't use this fa
t, we won't

proof it. See [Mat01℄, Ch. 1.5, for a des
ription of all iterative derivations of F .

7.2 IPV-Extensions

In [Mat01℄, Ch. 3, Matzat has developed an iterative Pi
ard-Vessiot theory in

positive 
hara
teristi
. In this se
tion we give a summary of the main de�nitions

and results.

In the following when we speak of the ID-�eld F , we mean a pair (F; �), where

� 2 ID

K

(F ) is an iterative derivation satisfying �

(1)

6= 0. An ID-module over

13

r 2 F is separating if and only if �

(1)

t

(r) 6= 0.

44



(F; �) is an F -ve
tor spa
e M with an iterative �-derivation � 2 ID

K

(M;�).

Sin
e F is an algebrai
 fun
tion �eld over K, Matzat showed that su
h an ID-

module M determines a proje
tive system over F . By the last se
tion, this

determines an integrable iterative 
onne
tion r on M . It is easy to see that

this 
onne
tion ful�lls r

�

= �. So there is no di�eren
e whether we 
onsider

ID-modules or modules with integrable iterative 
onne
tions. We will therefore

also 
all a pair (M;r) an ID-module.

De�nition 7.6 An iterative di�erential ring (ID-ring) over F is a ring R �

F with an iterative 
onne
tion d

R

: R! R


F

^




F=K

14

that is a higher derivation

on R over K. An iterative di�erential �eld (ID-�eld) over F is an ID-

ring L, that is a �eld. An ID-module over L is an L-ve
tor spa
e M equipped

with a d

L

-derivation r : M ! (

^




F=K




F

L) 


L

M . For an ID-ring R � L, a

matrix Y 2 GL

n

(R) is 
alled a fundamental solution matrix for an ID-module

(M;r) over L (with respe
t to a basis b = (b

1

; : : : ; b

n

) of M), if

r

R


L

M

(bY ) := r(b) � d

R

(Y ) = bY:

15

The ring R is 
alled an iterative Pi
ard-Vessiot ring (IPV-ring) for M , if it

satis�es the following 
onditions:

1. R is a simple ID-ring (i. e. has no non-trivial d

R

-stable ideal).

2. There exists a fundamental solution matrix Y 2 GL

n

(R) for M .

3. R is generated over L by the 
oeÆ
ients of Y and det(Y )

�1

.

Su
h a ring is an integral domain ([Mat01℄, prop. 3.2) and we 
all its quotient

�eld E an iterative Pi
ard-Vessiot �eld (IPV-�eld). E=L is then 
alled an

IPV-extension and the group of iterative di�erential automorphisms of E over

L (i. e. automorphisms that 
ommute with the iterative 
onne
tion) is 
alled the

iterative di�erential Galois group (ID-Galois group) Gal(E=L).

Remark

1. d

R

is an extension of d

F

, be
ause for all t 2 F ,

d

R

(t) = d

R

(t � 1) = d

F

(t) � d

R

(1) = d

F

(t):

14

Take 
are, that d

R

is not the universal derivation. The similar notation is due to the fa
t,

that for every iterative derivation � 2 ID

K

(F ), d

R

determines an iterative derivation on R

extending � (see the next remark).

15

Like in se
tion 6, we use ve
tor notations and the higher 
onne
tions are meant to be

applied to the 
oeÆ
ients separately.

45



2. If we 
hoose an iterative derivation � 2 ID

K

(F ) with �

(1)

6= 0 and set

�

L

:= (id

L




~

�) Æ d

L

2 ID

K

(L) and �

R

:= (id

R




~

�) Æ d

R

2 ID

K

(R), the pair

(L; �

L

) is an ID-�eld and the pair (R; �

R

) is an ID-ring resp. IPV-ring forM

in the sense of [Mat01℄. On the other hand (R; d

R

) and (R; �

R

) determine

the same proje
tive system over F and so (R; d

R

) is determined by (R; �

R

).

So the de�nition of ID-ring and IPV-ring given here is equivalent to the

other. Furthermore for any other iterative derivation �

0

2 ID

K

(F ) with

�

0(1)

6= 0, the pair (R; �

R

) determines a unique extension �

0

R

2 ID

K

(R) of

�

0

.

In the following, we state some results that are all given in [Mat01℄ and we refer

thereto for proofs.

L will denote an ID-�eld over F with �eld of 
onstants K, (M;r) an ID-

module over L with a basis b = (b

1

; : : : ; b

n

) and r(b) = bA for a matrix A 2

GL

n

(L


F

^




F=K

). Furthermore R denotes an IPV-ring for M and E = Quot(R)

an IPV-�eld. D

l

2 GL

n

(L

l

) are 
hosen su
h that bD

0

�D

l

is a basis of M

l+1

for

all l � 0.

16

Proposition 7.7 1. The IPV-ring R and the IPV-�eld E are unique up to

iterative di�erential isomorphisms. (Thm. 3.4)

2. The IPV-�eld E is a minimal �eld extension of L that 
ontains a funda-

mental solution matrix for M . (Cor. 3.5)

3. An IPV-ring for M 
an be 
onstru
ted in the following way: Let U :=

L[X

ij

(i; j = 1; : : : ; n); det(X)

�1

℄ be a lo
alisation of the polynomial ring

in n

2

variables equipped with the integrable iterative 
onne
tion de�ned by

d

U

(X) := A

�1

X 2 GL

n

(

^




F=K


U). Next 
hoose a maximal ID-ideal P�U .

Then U=P is an IPV-ring for M with fundamental solution matrix Y := X,

the image of X under the proje
tion to U=P . (Thm. 3.4)

4. E 
ontains no new 
onstants. (Prop. 3.2)

5. Given two fundamental solution matri
es Y;

~

Y 2 GL

n

(E), there exist C 2

GL

n

(K) su
h that

~

Y = Y � C. (Prop. 3.3)

6. Gal(E=L) is a subgroup of GL

n

(K). (Prop. 3.8)

7. There exists a redu
ed linear algebrai
 group G � GL

n

de�ned over K, su
h

that Gal(E=L) = G(K) under the in
lusion above. (Thm. 3.10)

Proof of 6. Although this is proved in [Mat01℄, too, we give the proof here, to

show how this in
lusion is given:

16

As usual, we set L

l

:=

T

0<k<p

l

Ker

�

d

(k)

L

�

and M

l

:=

T

0<k<p

l

Ker

�

r

(k)

�

.
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If Y is a fundamental solution matrix and 
 2 Gal(E=F ), then sin
e 
 
ommutes

with the higher derivation, 
(Y ) is again a fundamental solution matrix. By 5.,

there exists an element C




2 GL

n

(K) su
h that 
(Y ) = Y C




. This de�nes a

homomorphism ' : Gal(E=F ) ! GL

n

(K); 
 7! C




. If C




= 1

n

2 GL

n

(K), then


(Y ) = Y , but sin
e E is generated by the 
oeÆ
ients of Y , this implies that


 = id

E

, showing that ' is inje
tive. 2

Theorem 7.8 (Galois 
orresponden
e) Let L be an ID-�eld over F , let E=L

be an IPV-extension for an ID-module M over L and let G be a redu
ed linear

algebrai
 group su
h that G(K) = Gal(E=L). Suppose

H = fH j H � G is a Zariski 
losed redu
ed linear algebrai
 subgroupg;

and

E = f

~

E j

~

E is an intermediate ID-�eld L �

~

E � Eg:

Then the map � : H ! E de�ned by �(H) := E

H(K)

is an anti-isomorphism of

latti
es with inverse given by �

�1

(

~

E) = H, where H(K) = Gal(E=

~

E). Further

if H 2 H is a normal subgroup of G, then

~

E := E

H(K)

is an IPV-extension of L

with Galois group (G=H)(K).

Proof See [Mat01℄, thm. 4.7. 2

7.3 Determining the Galois Group

In the following, every linear algebrai
 group is supposed to be redu
ed and

de�ned over K.

Theorem 7.9 Using the notations above, if there exists a linear algebrai
 group

G � GL

n

, su
h that D

l

2 G(L

l

) for all l 2 N, then Gal(E=L) � G(K).

Proof See [Mat01℄, thm. 5.1. 2

Theorem 7.10 Let G � GL

m

and H � GL

n

be two linear algebrai
 groups

and let � : G ! H be an epimorphism with redu
ed kernel. Let M and N be

ID-modules over L with proje
tive systems given by matri
es D

l

2 G(L

l

) resp.

~

D

l

2 H(L

l

) for all l 2 N and let the IPV-�elds for M resp. N be denoted by E

M

resp. E

N

.

If

~

D

l

= �(D

l

) for all l, then up to ID-isomorphism E

M

� E

N

and Gal(E

M

=E

N

) �

Ker(�)(K).

Proof See [Mat01℄, thm. 5.12. 2

Remark If N is an ID-module over L with

~

D

l

2 H(L

l

) and Gal(E

N

=L) =

H(K). Then by 
hoosing preimages D

l

2 �

�1

(

~

D

l

) � G(L

l

) (if possible) one

obtains an ID-moduleM de�ned by the D

l

and an IPV-�eld E

M

forM su
h that

Gal(E

M

=L) � G(K) and �(Gal(E

M

=L)) = H(K).
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Proposition 7.11 Let R

1

; R

2

be two IPV-rings over L with Galois groups

Gal(R

j

=L) =: G

j

(K) (j = 1; 2). And assume that R := R

1




L

R

2

is a sim-

ple ID-ring. Then R is an IPV-extension over L with Galois group Gal(R=L) =

(G

1

� G

2

)(K).

Proof See [Mat01℄, proposition 7.9. 2

Proposition 7.12 Let F = K(s; t) with some algebrai
 relation f(s; t) = 0.

Let C

0

be the 
orresponding aÆne model and assume without loss of generality

that (0; 0) 2 C is a regular point. Then F

l

= K(s

p

l

; t

p

l

) with some relation

f

l

(s

p

l

; t

p

l

) = 0 and model C

0

l

. Let G be a linear algebrai
 group and let M be an

ID-module over F with proje
tive system de�ned by D

l

2 G(F

l

) (l 2 N). Assume

that D

l

(l = 0; 1; : : : ) satisfy the following 
onditions:

1. For all l 2 N there exists a rational map 


l

: C

0

l

! G su
h that D

l

=




l

(s

p

l

; t

p

l

) 2 G(F

l

) and 


l

(0; 0) = 1

G(K)

.

2. For all m 2 N the set f


l

(C

0

l

(K)) j l � mg generates G(K) as an algebrai


group.

3. There exists a number d 2 N su
h that deg(


l

) � dp

l

for all l 2 N, where

deg denotes the maximum divisor degree of the matrix entries with respe
t

to F .

4. If l

0

< l

1

< : : : is a sequen
e of natural numbers l

i

for whi
h 


l

i

6= 1, then

lim

i!1

(l

i+1

� l

i

) =1.

Then M de�nes an IPV-extension E=F with Galois group isomorphi
 to G(K).

Proof See [Mat01℄, lemma 8.6. 2

De�nition 7.13 Let L=F be an IPV-extension with Gal(L=F )

�

=

H(K); � 7! C

�

,

for a linear algebrai
 group H � GL

n

. And let N � GL

n

be a linear algebrai


group on whi
h H a
ts by 
onjugation in GL

n

. Then there is an a
tion of H(K)

on the L-rational points of N given by

C

�

? D := C

�

�(D)C

�1

�

;

for all C

�

2 H(K) and D 2 N (L), where � 2 Gal(L=F ) a
ts on the matrix

entries of D 2 N (L) � GL

n

(L).

The subgroup of elements that are invariant under this a
tion will be denoted by

N (L)

H

and for all subrings O � L we de�ne

N (O)

H

:= fD 2 N (O) � N (L) j 8C

�

2 H(K) : C

�

? D = Dg:
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Proposition 7.14 With notations of the previous de�nition, assume there is a

fundamental solution matrix Y 2 H(L) with �(Y ) = Y C

�

for all � 2 Gal(L=F )

�

=

H(K).

17

Then

N (L)

H

= Y

�1

N (F )Y:

Proof For all D 2 N (L) and � 2 Gal(L=F ):

�(Y DY

�1

) = �(Y )�(D)�(Y )

�1

= Y C

�

�(D)C

�1

�

Y

�1

= Y (C

�

? D)Y

�1

and so Y DY

�1

2 N (F ) if and only if D 2 N (L)

H

. 2

Theorem 7.15 Let G � GL

n

be a 
onne
ted linear algebrai
 group and as-

sume that G = N o H is a semidire
t produ
t of two subgroups N and H of

G. Let L=F be an IPV-extension with fundamental solution matrix Y 2 H(L)

and Gal(L=F ) = H(K). Further, let M denote an ID-module over L with pro-

je
tive system de�ned by D

l

2 N (L

l

) and let E=L be an IPV-extension for M

with fundamental solution matrix Z 2 N (E).

If for all l 2 N, D

l

is H-invariant, i. e. D

l

2 N (L

l

)

H

, then E=F is an IPV-

extension with Galois group Gal(E=F ) = Gal(E=L) o H(K) � (N o H)(K) =

G(K) and E is generated over F by the 
oeÆ
ients of Y Z (i. e. Y Z is a funda-

mental solution matrix for M).

Proof At �rst, let C

l

2 H(F

l

) (l = 0; 1; : : : ) be 
hosen su
h that Y

l

:=

C

�1

l�1

� � �C

�1

0

Y 2 H(L

l

). Then by proposition 7.14, Y

l

D

l

Y

�1

l

2 N (F ) \ N (L

l

) =

N (F

l

) and therefore

~

D

l

:= Y

l

D

l

Y

�1

l+1

= Y

l

D

l

Y

�1

l

C

l

2 (N oH)(F

l

) (l 2 N):

So the sequen
e (

~

D

l

)

l2N

de�nes an ID-module N over F and for all k < p

l+1

:

d

(k)

F

�

~

D

0

� � �

~

D

l

�

�

�

~

D

0

� � �

~

D

l

�

�1

= d

(k)

L

�

Y D

0

Y

�1

1

Y

1

D

1

Y

�1

2

� � �Y

l

D

l

Y

�1

l+1

�

�

�

Y D

0

Y

�1

1

� � �Y

l

D

l

Y

�1

l+1

�

�1

= d

(k)

L

(Y D

0

� � �D

l

)Y

�1

l+1

� Y

l+1

D

�1

l

� � �D

�1

0

Y

�1

= d

(k)

L

(Y D

0

� � �D

l

) �D

�1

l

� � �D

�1

0

Y

�1

= d

(k)

L

(Y Z) � Z

�1

Y

�1

:

Hen
e, Y Z 2 GL

n

(E) is a fundamental solution matrix for N and

~

E := F (Y Z) �

E is an IPV-extension for N . Next, the proje
tion � : N oH ! H maps

~

D

l

to

C

l

(sin
e Y

l

D

l

Y

�1

l

2 N (F

l

)) and therefore by theorem 7.10, L is a sub�eld of

~

E

and so Y 2 GL

n

(

~

E) and Z = Y

�1

(Y Z) 2 GL

n

(

~

E), i. e.

~

E = E.

So E=F is an IPV-extension, Gal(E=F ) � (N oH)(K) (sin
e

~

D

l

2 (N oH)(F

l

))

and Gal(E=L) � Ker(�)(K) = N (K).

So Gal(E=F ) = Gal(E=L)oH(K) � (N oH)(K). 2

17

By [Mat01℄, thm. 5.9, this is possible whenever H is 
onne
ted.
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8 Regularity

8.1 Di�erentially Stable Regular Rings

De�nition 8.1 Let t 2 F be a separating element. Then we denote by U

t

� C

F

the subset 
onsisting of all points y 2 C

F

su
h that t 2 O

y

and O

y

is �

t

-stable,

i. e. �

(j)

t

(O

y

) � O

y

for all j 2 N.

Proposition 8.2 Let t 2 F be a separating element. Then

U

t

= fy 2 C

F

j ord

y

(t) � 0 and ord

y

((dt)) = 0g

= fy 2 C

F

j 9 a 2 K su
h that t� a is a lo
al parameter for yg;

where (dt) denotes the divisor of the di�erential dt (as in [Sti93℄). Espe
ially, U

t

is a (Zariski) open subset of C

F

.

Proof Let U

0

t

:= fy 2 C

F

j ord

y

(t) � 0 and ord

y

((dt)) = 0g and

U

00

t

:= fy 2 C

F

j 9 a 2 K su
h that t� a is a lo
al parameter for yg.

We will show U

0

t

� U

00

t

� U

t

� U

0

t

.

So let s be a lo
al parameter for a given pla
e y 2 U

0

t

, then 0 = ord

y

((dt)) =

ord

y

(�

(1)

s

(t)) and therefore ord

y

(t) � 1. Moreover we have ord

y

(t � a) � 1 for

all a 2 K, sin
e d(t � a) = dt. As ord

y

(t) � 0, there exists an element a 2 K

satisfying ord

y

(t� a) > 0, i. e. ord

y

(t� a) = 1 and so t� a is a lo
al parameter

for y.

Now let y 2 U

00

t

and t� a be a lo
al parameter for y. Then t� a is an element of

O

y

and O

y

is �

t�a

-stable, sin
e O

y

is a �nite separable extension of K[t� a℄

(t�a)

.

So t 2 O

y

and, sin
e �

t

= �

t�a

, the ring O

y

is also �

t

-stable. This proves y 2 U

t

.

At last, let y 2 U

t

. Then t 2 O

y

and therefore ord

y

(t) � 0.

Let s be a lo
al parameter for y. Then �

(1)

s

(t) 2 O

y

, sin
e t 2 O

y

and O

y

is

�

s

-stable. Analogously, we get �

(1)

t

(s) 2 O

y

. But sin
e �

(1)

t

(s) = (�

(1)

s

(t))

�1

,

the element �

(1)

s

(t) is invertible in O

y

and so ord

y

(�

(1)

s

(t)) = 0. This means

ord

y

((dt)) = 0.

U

0

t

is open, sin
e the 
onditions ord

y

(t) � 0 and ord

y

((dt)) = 0 are ful�lled for all

but �nitely many y 2 C

F

. 2

Remark U

t

is an aÆne variety. U

t

is the maximal subset of C

F

su
h that

t 2 O(U

t

) and su
h that for all subsets U � U

t

, the ring O(U) is �

t

-stable.

Proposition 8.3 Let t 2 F be a separating element and x 2 U

t

. Then O

x

has

no nontrivial �

t

-stable ideal.
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Proof Choose a 2 K su
h that t� a is a lo
al parameter for x (
f. proposition

8.2). Then O

x

is a regular lo
al ring with maximal ideal generated by t� a and

O

x

=(t� a)

�

=

K, sin
e K is algebrai
ally 
losed. Sin
e �

t

= �

t�a

, the proposition

follows dire
tly from lemma 2.10. 2

8.2 Di�erentially Stable Latti
es

Re
all that M is a ve
tor spa
e over F of �nite dimension equipped with an

iterative 
onne
tion r.

De�nition 8.4 Let O � F be a subring. An O-latti
e in M is a free O-sub-

module � of M , whi
h 
ontains an F -basis of M . An O-pseudo-latti
e in M is

a �nitely generated O-submodule � of M , whi
h 
ontains an F -basis of M , i. e.

� satis�es M = F 


O

�.

If t 2 F is separating and U is an open subset of U

t

, then an O(U)(-pseudo)-

latti
e � is 
alled �

t

-stable, if r

�

t

(�) � �[[T ℄℄.

Lemma 8.5 Let s; t 2 F be separating elements, let U � U

s

\ U

t

and let �

U

be

a �

s

-stable O(U)-pseudo-latti
e in M . Then �

U

is also �

t

-stable.

Proof By the 
hain rule for modules, for all m 2 M :

1

X

k=0

r

(k)

�

t

(m)T

k

=

1

X

k=0

r

(k)

�

s

(m)

 

1

X

j=1

�

(j)

t

(s)T

j

!

k

:

Now �

U

is �

s

-stable, and so r

(k)

�

s

(m) 2 �

U

for all m 2 �

U

. Moreover �

(j)

t

(s) 2

O(U), sin
e s 2 O(U) and O(U) is �

t

-stable.

So

P

1

k=0

r

(k)

�

t

(m)T

k

2 �

U

[[T ℄℄ for m 2 �

U

, i. e. �

U

is �

t

-stable. 2

Lemma 8.6 Let t 2 F be separating and U � U

t

be an open subset. Then there

exists at most one O(U)-pseudo-latti
e � in M , that is �

t

-stable.

Proof Let � and �

0

be two �

t

-stable pseudo-latti
es. Clearly, the interse
tion

� \ �

0

also is �

t

-stable, and sin
e for every m 2 M , there are �; �

0

2 O(U) with

�m 2 � and �

0

m 2 �

0

and hen
e with ��

0

m 2 � \ �

0

, the O(U)-module � \ �

0

is an O(U)-pseudo-latti
e in M . So let without loss of generality be �

0

� �.

Now let y 2 U and de�ne �

y

:= O

y




O(U)

� and �

0

y

:= O

y




O(U)

�

0

. Then �

0

y

� �

y

are two �

t

-stable O

y

-pseudo-latti
es in M . Sin
e O

y

is a prin
ipal ideal domain,

�

0

y

and �

y

are in fa
t latti
es in M and furthermore there exists an O

y

-basis

fb

1

; : : : b

n

g of �

y

and �

1

; : : : ; �

n

2 O

y

su
h that f�

1

b

1

; : : : ; �

n

b

n

g is an O

y

-basis

of �

0

y

.

Now we show �

(k)

t

(�

i

) 2 O

y

� �

i

for all i 2 f1; : : : ; ng and all k 2 N by indu
tion

on k:
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For k = 0 the 
laim is trivial. So let k > 0 and �

(j)

t

(�

i

) 2 O

y

� �

i

for all

i 2 f1; : : : ; ng and all 0 � j < k. Then

�

(k)

t

(�

i

)b

i

= r

(k)

�

t

(�

i

b

i

)�

k�1

X

j=0

�

(j)

t

(�

i

)r

(k�j)

�

t

(b

i

)

2 �

0

y

+ �

i

� �

y

:

So �

(k)

t

(�

i

)b

i

2 (�

0

y

+ �

i

� �

y

) \ O

y

� b

i

= O

y

� �

i

b

i

, i. e. �

(k)

t

(�

i

) 2 O

y

� �

i

.

ThereforeO

y

��

i

6= 0 is a �

t

-stable ideal ofO

y

and, by proposition 8.3, O

y

��

i

= O

y

.

So �

y

= �

0

y

.

Sin
e this holds for every y 2 U , we get � = �

0

. 2

In the following, we show that we 
an easily 
al
ulate di�erentially stable latti
es,

if the ID-module is 1-dimensional:

So let M be a 1-dimensional ID-module with basis b and proje
tive system given

by (D

l

)

l2N

, where D

l

2 GL

1

(F

l

) = F

�

l

.

For every x 2 C

F

, we have ord

x

(D

l

) 2 p

l

Z, be
ause D

l

2 F

l

. So

1

P

l=0

ord

x

(D

l

) 2 Z

p

is a wellde�ned p-adi
 integer. Sin
e the produ
t D

0

� � �D

l

is uniquely deter-

mined by M and b up to C 2 F

�

l+1

, the sum

P

l

j=0

ord

x

(D

j

) (mod p

l+1

) =

ord

x

(D

0

� � �D

l

) (mod p

l+1

) is independent of the 
hosen sequen
e (D

l

)

l2N

for the

proje
tive system, and hen
e

P

1

l=0

ord

x

(D

l

) 2 Z

p

is independent of the 
hosen

sequen
e (D

l

)

l2N

for the proje
tive system.

Proposition 8.7 Let x 2 C

F

, t a lo
al parameter for x and m 2 Z. Then the

O

x

-latti
e bt

m

O

x

in M is �

t

-stable if and only if m =

1

P

j=0

ord

x

(D

j

).

Proof If bt

m

O

x

is �

t

-stable, then as it will be shown in 
orollary 8.14, we 
ould


hoose D

0

j

2 GL

1

((O

x

)

j

) = (O

x

)

�

j

, su
h that bt

m

D

0

0

� � �D

0

l

is an (O

x

)

l+1

-basis of

bt

m

O

x

\M

l+1

. So

1

X

j=0

ord

x

(D

j

) = ord

x

(t

m

D

0

0

) +

1

X

j=1

ord

x

(D

0

j

) = m;

sin
e ord

x

(D

0

j

) = 0 for all j 2 N .

On the other hand, if

P

1

j=0

ord

x

(D

j

) = m, then for all l 2 N , there exists �

l

2 O

�

x

su
h that (D

0

� � �D

l

) = t

m�m

l

�

�1

l

, where m

l

:= m � ord

x

(D

0

� � �D

l

) 2 p

l+1

Z.

Sin
e m

l

2 p

l+1

Z, we have t

m

l

2 F

l+1

for all l 2 N , and so for all k < p

l+1

,

r

(k)

�

t

(bt

m

) = b � (D

0

� � �D

l

)�

(k)

t

�

(D

0

� � �D

l

)

�1

t

m

�

= bt

m

� �

�1

l

t

�m

l

�

(k)

t

(t

m

l

�

l

)

= bt

m

� �

�1

l

�

(k)

t

(�

l

) 2 bt

m

O

x

:

Hen
e, bt

m

O

x

is �

t

-stable. 2
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8.3 Regular Points

De�nition 8.8 An ID-module M over F is 
alled regular in x 2 C

F

, if there

exists a lo
al parameter t for x, an open subset U of U

t

and a �

t

-stable O(U)-

latti
e in M . M is 
alled regular on V � C

F

, if M is regular in every x 2 V .

We 
all M singular in x 2 C

F

, if M is not regular in x. The set of points in

whi
h M is singular, is referred to as the singular lo
us of M . If M is singular

in all points x 2 C

F

, then M is 
alled totally singular.

Remark

1. By lemma 8.5, the lo
al parameter t 
an be 
hosen arbitrarily.

2. If �

U

and �

U

0

are �

t

-stable O(U)- resp. O(U

0

)-latti
es (U; U

0

� U

t

), then

by lemma 8.6, their lo
alisations to O(U \ U

0

) are equal.

3. Contrary to 
hara
teristi
 0, totally singular ID-modules really exist, what

will be shown later.

4. We will also show, that the singular lo
us always is a 
losed subset of C

F

,

and that for every 
losed subset S of C

F

, there exists an ID-module with

singular lo
us S.

Proposition 8.9 The singular lo
us S of M is a 
losed subset of C

F

.

Proof If M is totally singular, then S = C

F

is a 
losed subset. Assume that M

is not totally singular. So there exists x 2 C

F

, a lo
al parameter t for x, an open

subset U of U

t

and a �

t

-stable O(U)-latti
e � inM . Now for arbitrary y 2 U , let

s be a lo
al parameter for y and U

0

:= U

s

\ U . Then by lemma 8.5, the O(U

0

)-

latti
e O(U

0

)


O(U)

� is �

s

-stable. Sin
e U

0

� C

F

is an open subset 
ontaining y,

we obtain that M is regular in y. So the singular lo
us S is 
ontained in C

F

n U .

Hen
e S is a �nite set and therefore a 
losed subset of C

F

. 2

Proposition 8.10 LetM be regular on an open subset V � C

F

, t 2 F separating

and

~

U

t

:= U

t

\ V . Then there exists a �

t

-stable O(

~

U

t

)-pseudo-latti
e in M .

Proof For an arbitrary point x 2

~

U

t

by de�nition, there exists a lo
al parameter

s for x, an open neighbourhood U(x) � C

F

of x (without loss of generality

U(x) �

~

U

t

) and a �

s

-stable O(U(x))-latti
e �

U(x)

in M . By lemma 8.5, �

U(x)

is also �

t

-stable. Now the sets U(x) 
over

~

U

t

and the lo
alisations of �

U(x)

and

�

U(y)

to O(U(x)\U(y)) 
oin
ide. So the latti
es �

U(x)


an be glued together to a

sheaf of O

~

U

t

-modules, whi
h is indu
ed by a �nitely generated O(

~

U

t

)-module �

~

U

t

(see [Hart77℄, Ch. II, Cor. 5.5). This module is �

t

-stable, sin
e all lo
alisations

are �

t

-stable and we have

F 


O(

~

U

t

)

�

~

U

t

= F 


O(U(x))

O(U(x))


O(

~

U

t

)

�

~

U

t

= F 


O(U(x))

�

U(x)

=M:
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So �

~

U

t

is a �

t

-stable O(

~

U

t

)-pseudo-latti
e. 2

Theorem 8.11 Let b = (b

1

; : : : ; b

n

) be a basis of M . Then M is not totally

singular, if and only if for almost all y 2 C

F

the O

y

-latti
e with basis b is �

t

-

stable, where t denotes a lo
al parameter for y.

Proof If there exists a point x 2 C

F

, in whi
h M is regular, then by de�nition,

there is a lo
al parameter s for x and an open set U � U

s

su
h that there is

a �

s

-stable O(U)-latti
e �. Let A 2 GL

n

(F ) be 
hosen so that bA is a basis

for �. But for almost all y 2 U (and hen
e for almost all y 2 C

F

), we have

A 2 GL

n

(O

y

), and therefore O

y




O(U)

� = b � O

n

y

for those y. So by lemma 8.5,

for almost all y 2 C

F

the O

y

-latti
e with basis b is �

t

-stable, where t denotes a

lo
al parameter for y.

On the other hand, let the O

y

-latti
e with basis b be �

t

-stable for all y in a


o�nite set U � C

F

, where t denotes a lo
al parameter for y. Choose an x 2 U ,


hoose a lo
al parameter s for x and let

~

U := U \U

s

. Then by lemma 8.5, for all

y 2

~

U , bO

n

y

is a �

s

-stable O

y

-latti
e and so

\

y2

~

U

bO

n

y

= bO(

~

U)

n

is a �

s

-stable O(

~

U)-latti
e. Hen
e M is regular in x. 2

Theorem 8.12 Let M be an ID-module whi
h is not totally singular. Then M

is regular in x 2 C

F

if and only if there exists a �

s

-stable O

x

-latti
e in M , where

s denotes a lo
al parameter for x.

Proof If M is regular in x 2 C

F

, then we get a �

s

-stable O

x

-latti
e in M by

lo
alising the �

s

-stable O(U)-latti
e in the de�nition of a regular point.

Now assume there exists a �

s

-stable O

x

-latti
e in M and let b be an O

x

-basis of

this latti
e. Sin
e M is not totally singular, for almost all y 2 C

F

, the O

y

-latti
e

bO

n

y

is �

t

-stable (t a lo
al parameter for y), by theorem 8.11. Furthermore, the

proof of theorem 8.11 shows that M is regular in all these points, in parti
ular

M is regular in x. 2

Theorem 8.13 Let x 2 C

F

be a point in whi
h M is regular, t a lo
al parameter

for x, U � U

t

and � a �

t

-stable O(U)-pseudo-latti
e in M . Then for arbitrary

l 2 N, there exists a generating set for � (as O(U)-module) 
onsisting of elements

of M

l

.

Proof Denote by fb

1

; : : : ; b

n

g an F

l

-basis of M

l

. Sin
e � is a pseudo-latti
e in

M , there exist 0 6= a

i

2 O(U) su
h that b

i

a

i

2 � (i = 1; : : : ; n) and therefore

b

i

a

p

l

i

2 � \M

l

=: �

l

(i = 1; : : : ; n). So �

l


ontains a basis of M

l

and is a �nitely

generated O(U)

l

-module (�nitely generated, be
ause it is a submodule of the
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�nitely generated O(U)

l

-module �), i. e. �

l

is an O(U)

l

-pseudo-latti
e in M

l

.

Hen
e O(U) � �

l

is an O(U)-pseudo-latti
e in M .

By assumption, � is �

t

-stable and so � \M

l

= �

l

is �

t

-stable, too. Furthermore

O(U) is �

t

-stable and so O(U) � �

l

is also �

t

-stable. Therefore by lemma 8.6,

� = O(U) � �

l

, whi
h 
ompletes the proof. 2

Corollary 8.14 Let x 2 C

F

be a point in whi
h M is regular, t a lo
al parameter

for x and � a �

t

-stable O

x

-latti
e in M . Denote by b = (b

1

; : : : ; b

n

) an O

x

-

basis for �. Then there exist matri
es D

l

2 GL

n

((O

x

)

l

) (l = 0; 1; : : : ), su
h that

bD

0

� � �D

j

is an (O

x

)

j+1

-basis of �

j+1

:= � \M

j+1

.

Proof Sin
e (O

x

)

l+1

is a lo
al ring, every (O

x

)

l+1

-pseudo-latti
e in M

l+1

is in

fa
t an (O

x

)

l+1

-latti
e. By the previous theorem, an (O

x

)

l+1

-basis of �

l+1

also is

an (O

x

)

l

-basis of �

l

. So there exists a base 
hange matrix in GL

n

((O

x

)

l

). Starting

from the O

x

-basis (b

1

; : : : ; b

n

) for �, we obtain all D

l

(l = 0; 1; : : : ) step by step.

2

In se
tion 4.2, we de�ned higher 
onne
tions on O

X

-modules, where X is a

s
heme. We also mentioned, when a higher 
onne
tion on a K(X)-ve
tor spa
e

should be 
alled regular on an open subset U � X. We will now show, that this


oin
ides with the de�nition of regularity in this se
tion.

Proposition 8.15 M is regular on an open subset U � C

F

, if and only if there

is a 
oherent O

U

-module

~

� with a higher 
onne
tion r

0

:

~

�!

^




U=K




O

U

~

� su
h

that F 


O

U

~

�

�

=

M and r equals d

F


r

0

as higher 
onne
tions on M = F 


O

U

~

�.

Proof Let M be regular on U � C

F

. Then by proposition 8.10, for every

separating t 2 F and

~

U

t

:= U

t

\ U , there is a �

t

-stable O(

~

U

t

)-pseudo-latti
e �

~

U

t

in M . We show that for m 2 �

~

U

t

, we have r(m) 2

^




O(

~

U

t

)




O(

~

U

t

)

�

~

U

t

:

For given k 2 N , 
hoose l 2 N with p

l

> k and 
hoose a generating set fb

1

; : : : ; b

r

g

for � with b

i

2 M

l

(
f. theorem 8.13). Then there are a

i

2 O(

~

U

t

) su
h that

m =

P

r

i=1

a

i

b

i

and therefore

r

(k)

(m) =

r

X

i=1

r

(k)

(a

i

b

i

) =

r

X

i=1

d

F

(a

i

)
 b

i

2

�

^




O(

~

U

t

)=K

�

k




O(

~

U

t

)

�

~

U

t

:

So r(m) 2

^




O(

~

U

t

)




O(

~

U

t

)

�

~

U

t

. Sin
e the open sets (U

t

)

t2F sep:


over C

F

, we have

S

t2F sep:

~

U

t

= U , and as in proposition 8.10, the pseudo-latti
es �

~

U

t


an be glued

together to a sheaf ofO

U

-modules

~

�. Sin
e on the open 
overing f

~

U

t

j t 2 F sep:g,

the higher 
onne
tion r restri
ts to a higher 
onne
tion r

~

U

t

: �

~

U

t

!

^




~

U

t

=K


�

~

U

t

,

these higher 
onne
tions 
an be glued together to a higher 
onne
tion r

0

:

~

�!

^




U=K




O

U

~

�, that 
learly ful�lls r = d

F


r

0

.
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For the 
onverse, let

~

� be a 
oherent O

U

-module with higher 
onne
tion r

0

satisfying the properties above and let x 2 U and t be a lo
al parameter for x.

Then

~

�(U \ U

t

) is a proje
tive O

U

(U \ U

t

)-module (all lo
alisations at maximal

ideals are torsionfree, hen
e free) and so by [Eis95℄, thm. A3.2, there is an open

neighbourhood

~

U

t

� U \ U

t

of x, su
h that � :=

~

�(

~

U

t

) is a free O(

~

U

t

)-module.

Finally, sin
e r(�) = r

0

(�) �

^




O(

~

U

t

)=K


 �, we have

r

�

t

(�) = (

~

�

t


 id

�

)(r(�)) � O(

~

U

t

)[[T ℄℄
 � = �[[T ℄℄:

So M is regular in x. 2

We now turn our attention to 1-dimensional ID-modules:

So let M be a 1-dimensional ID-module with basis b and proje
tive system given

by (D

l

)

l2N

, where D

l

2 GL

1

(F

l

) = F

�

l

.

Lemma 8.16 M is totally singular if and only if for in�nitely many x 2 C

F

,

P

1

l=0

ord

x

(D

l

) 6= 0. If M is not totally singular, then M is regular in all x 2 C

F

for whi
h

P

1

l=0

ord

x

(D

l

) 2 Z.

Proof This follows immediately from proposition 8.7, theorem 8.11 and theorem

8.12. 2

Corollary 8.17 IfM is regular in all points di�erent from a point x 2 C

F

. Then

M is also regular in x.

Proof Let (D

l

)

l2N

be a sequen
e giving the proje
tive system asso
iated to M .

If M is regular in all points y 6= x. Then

P

1

l=0

ord

y

(D

l

) 2 Z for all y 6= x. But

for all l 2 N, we have ord

x

(D

l

) = �

P

y2C

F

nfxg

ord

x

(D

l

) and therefore

1

X

l=0

ord

x

(D

l

) = �

X

y2C

F

nfxg

1

X

l=0

ord

y

(D

l

) 2 Z � Z

p

:

Hen
e by lemma 8.16, M is regular in x, too. 2

Example 8.18 Let F = K(t) be the rational fun
tion �eld in one variable and


hoose a sequen
e (a

n

)

n2N

of distin
t elements of K. De�ne a 1-dimensional ID-

module M with proje
tive system given by D

l

:= (t � a

l

)

p

l

(p�1)

2 F

�

l

, l 2 N .

Then

P

1

j=0

ord

(t�a)

(D

j

) = p

l

(p� 1) for a = a

l

and so

P

1

j=0

ord

(t�a)

(D

j

) 6= 0 for

in�nitely many (t�a) 2 C

F

. Hen
e by lemma 8.16,M is totally singular. Further,

for all a 62 fa

l

j l 2 Ng, we have

P

1

j=0

ord

(t�a)

(D

j

) = 0 2 Z and

P

1

j=0

ord

1

(D

j

) =

P

1

j=0

(p

j

� p

j+1

) = 1 2 Z and for all l 2 N ,

P

1

j=0

ord

(t�a

l

)

(D

j

) = p

l

(p � 1) 2 Z.

So by proposition 8.7, for all x 2 C

F

and lo
al parameter s for x, there exists a

�

s

-stable O

x

-latti
e.
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This example shows, that totally singular ID-modules exist. It also shows, that

an ID-module 
an be singular in some points even if for all points x 2 C

F

, there

exist di�erentially stable O

x

-latti
es. However, in theorem 8.12, we have seen

that this doesn't happen, if M is not totally singular.

Notation In the following, we denote by J the Ja
obian variety of C

F

and by

T

p

(J ) the p-adi
 Tate-module of J , i. e. T

p

(J ) = lim

 �

J [p

n

℄, where J [p

n

℄ denote

the points of p

n

-torsion of J .

The set of isomorphism 
lasses of 1-dimensional ID-modules over F will be de-

noted by Isom

C

F

;1

. With multipli
ation given by the tensor produ
t, Isom

C

F

;1

is

an abelian group. Further, let

Div

0

(C

F

;Z

p

) :=

n

f : C

F

! Z

p

�

�

�

8 l 2 N : jsupp(f (mod p

l

))j <1 and

X

x2C

F

f(x) = 0

o

and let H(C

F

) be the group of prin
ipal divisors on C

F

, whi
h 
an be regarded as

a subgroup of Div

0

(C

F

;Z

p

).

Theorem 8.19 (
f. [MvdP03℄, prop. 4.2) There is a short exa
t sequen
e of

abelian groups

0! T

p

(J )! Isom

C

F

;1

�

�!

Div

0

(C

F

;Z

p

)

H(C

F

)

! 0

where the homomorphism � is given in the following way: For an ID-module

M with basis b, 
al
ulate a sequen
e (D

l

)

l2N

of elements in GL

1

(F

l

) su
h that

bD

0

� � �D

l

is an F

l

-basis for M

l

. Then �([M ℄) is represented by the map x 7!

P

1

l=0

ord

x

(D

l

) 2 Z

p

.

Proposition 8.20 For every 
losed subset S � C

F

, there exists an ID-module

with singular lo
us S.

Proof We have already seen (
f. example 8.18), that there exist totally singular

ID-modules, i. e. ID-modules with singular lo
us equal to C

F

. If S 6= C

F

, i. e. S

is �nite, and if #S � 2 or S = ;, then for all x 2 S 
hoose �

x

2 Z

p

n Z su
h

that

P

x2S

�

x

= 0. The map f : C

F

! Z

p

de�ned by f(x) := �

x

for x 2 S and

f(x) := 0 for x 62 S is an element of Div

0

(C

F

;Z

p

). So by theorem 8.19, there is a

1-dimensional ID-module M su
h that �([M ℄) is represented by f . By theorem

8.16, M is not totally singular and M is singular exa
tly in the points in S, i. e.

S is the singular lo
us of M .

If remains to show, that S o

urs as singular lo
us, when #S = 1. For this


hoose an element t 2 F , whose pole divisor (t)

1

has support equal to S, and
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de�ne a proje
tive system for a 2-dimensional ID-module M with basis (b

1

; b

2

)

by 
hoosing matri
es D

l

:=

�

1 a

l

0 1

�

2 GL

2

(F

l

), l 2 N , where a

l

= t

p

l

. Then for

all y 62 S, D

l

2 GL

2

((O

y

)

l

) and hen
e by theorem 8.11 and theorem 8.12, M is

regular outside S. On the other hand, if M is also regular in the point x 2 S.

Then there exists a di�erentially stable O

x

-latti
e � inM . Sin
e b

1

O

x

�M \b

1

F

is the unique di�erentially stable O

x

-latti
e in M \ b

1

F and sin
e bO

2

x

=b

1

O

x

�

M=(M \ b

1

F ) is the unique di�erentially stable O

x

-latti
e in M=(M \ b

1

F ), we

have � = bO

2

x

.

Let s be a lo
al parameter for x. Then for all l 2 N :

r

(p

l

)

�

s

(b

2

) = �b

1

l

X

i=0

�

(p

l

)

s

(t

p

i

) = �b

1

l

X

i=0

�

�

(p

l�i

)

s

(t)

�

p

i

:

Sin
e t 62 O

x

, there exists a minimal j � 0 su
h that �

(p

j

)

s

(t) 62 O

x

and so

r

(p

j

)

�

s

(b

2

) = �b

1

 

�

(p

j

)

s

(t) +

j

X

i=1

�

�

(p

j�i

)

s

(t)

�

p

i

!
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a 
ontradi
tion. Therefore M is singular in x 2 S. 2

We now regard regular points of IPV-extensions:

De�nition 8.21 Let L=F be an IPV-extension for M . Then L=F is 
alled reg-

ular in x 2 C

F

, ifM is regular in x. Otherwise we 
all L=F singular in x 2 C

F

.

The set of points in whi
h L=F is singular, is referred to as the singular lo
us

of L=F .

Proposition 8.22 If L=F is regular in x 2 C

F

and t is a lo
al parameter for

x. Then there exists a monomorphism of iterative di�erential �elds (L; d

L

) ,!

�

K((t)); d

K((t))

�

, where K((t)) is regarded as the 
ompletion of F with respe
t to

the valuation 
orresponding to x and d

K((t))

is the 
ontinuous extension of d

F

.

Proof Let A 2 Mat

n

(

^




F=K

) satisfy r(b) = bA and let A

x

2 GL

n

(F ) be

su
h that bA

�1

x

is a basis for the �

t

-stable O

x

-latti
e �. Then by 
orollary

8.14, there are D

j

2 GL

n

((O

x

)

j

) (j = 0; 1; : : : ) su
h that bA

�1

x

D

0

� � �D

l

is an

(O

x

)

l+1

-basis of �

l+1

:= � \ M

l+1

. Moreover, we 
an 
hoose D

j

in su
h a

way, that D

j

j

t=0

= 1

n

. Hen
e D

0

� � �D

l

� D

0

� � �D

l+1

(mod t

p

l+1

) and there-

fore the matrix entries of the sequen
e (D

0

� � �D

l

)

l2N


onverge in the 
ompletion

b

O

x

�

=

K[[t℄℄. Let D 2 Mat

n

(K[[t℄℄) denote the limit, then D 2 GL

n

(K[[t℄℄), sin
e

Dj

t=0

= 1

n

, and for all k 2 N we have pr

k

(A) = A

�1

x

Dd

(k)

K((t))

(D

�1

A

x

) and there-

fore A = A

�1

x

Dd

K((t))

(D

�1

A

x

) 2 Mat

n

�

K((t))


^




F=K

�

.

So the ID-�eld K((t)) has a fundamental solution matrix A

�1

x

D and therefore the

IPV-�eld L is iterative di�erentially isomorphi
 to a sub�eld of K((t)). 2
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8.4 Iterative Di�erential Closure

Let L=F be an IPV-extension for an ID-module M with Galois group H(K) �

GL

n

(K) and singular lo
us inside a �nite set S � C

F

. Denote by Y 2 GL

n

(L) a

fundamental solution matrix for M with respe
t to a basis b = (b

1

; : : : ; b

n

) of M .

And denote by O � F the ring of regular fun
tions on C

F

n S.

De�nition 8.23 For a point x 2 C

F

n S, the iterative di�erential 
losure of

O

x

is by de�nition the largest subring O

L;x

� L of L su
h that for all lo
al parame-

ters t for x and all iterative di�erential embeddings � : (L; d

L

) ,! (K((t)); d

K((t))

),

the image �(O

L;x

) of O

L;x

is 
ontained in K[[t℄℄. The iterative di�erential 
lo-

sure of O is by de�nition the subring

O

L

:=

\

x2C

F

nS

O

L;x

:

Proposition 8.24 For x 2 C

F

n S let A

x

2 GL

n

(F ) be a matrix su
h that bA

�1

x

is a basis for the �

t

-stable O

x

-latti
e in M . Then

O

x

[A

x

Y ℄ � O

L;x

:

Proof Let x 2 C

F

n S and t be a lo
al parameter for x. Sin
e Y is a fundamen-

tal solution matrix with respe
t to b, A

x

Y is a fundamental solution matrix with

respe
t to bA

�1

x

. So by propostion 8.22, there is an ID-monomorphism � : L !

K((t)) su
h that �(A

x

Y ) 2 Mat

n

(K[[t℄℄). Sin
e two fundamental solution matri-


es di�er by a matrix C 2 GL

n

(K), for every ID-monomorphism � : L! K((t)),

we have �(A

x

Y ) 2 C �Mat

n

(K[[t℄℄) = Mat

n

(K[[t℄℄). So � (O

x

[A

x

Y ℄) � K[[t℄℄ for

all ID-monomorphisms � : L! K((t)). So O

x

[A

x

Y ℄ � O

L;x

. 2

Remark Obviously, for all x 2 C

F

n S, we have

O

L;x

\ F = O

x

:

The next theorem is a re�nement of proposition 7.14.

Theorem 8.25 Let N o H � GL

n

be a semidire
t produ
t of 
onne
ted lin-

ear algebrai
 groups. Let L=F be an IPV-extension with Gal(L=F )

�

=

H(K)

for an ID-module M over F and assume there is a fundamental solution matrix

Y 2 H(O

L

) for M with respe
t to an appropriate basis b = (b

1

; : : : ; b

n

). As-

sume that for any x 2 C

F

n S there are C

l

2 H ((O

x

)

l

) (l = 0; 1; : : : ) su
h that

C

�1

l�1

� � �C

�1

0

Y =: Y

l

2 H ((O

L;x

)

l

). Then

N ((O

L;x

)

l

)

H

= Y

�1

l

N ((O

x

)

l

)Y

l

:
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Proof By proposition 7.14, we have

N (L)

H

= Y

�1

N (F )Y = Y

�1

C

0

� � �C

l�1

N (F )C

�1

l�1

� � �C

�1

0

Y = Y

�1

l

N (F )Y

l

:

Furthermore, sin
e Y

l

2 H ((O

L;x

)

l

), we have D 2 N ((O

L;x

)

l

) if and only if

Y

l

DY

�1

l

2 N ((O

L;x

)

l

). And therefore

N ((O

L;x

)

l

)

H

= N ((O

L;x

)

l

) \ N (L)

H

= Y

�1

l

N ((O

L;x

)

l

)Y

l

\ Y

�1

l

N (F )Y

l

= Y

�1

l

N ((O

x

)

l

)Y

l

:

2
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9 Realisation with Restri
ted Singular Lo
us

In this 
hapter, we 
onsider the problem, for whi
h linear algebrai
 group G the

group G(K) of K-rational points o

urs as the Galois group of an IPV-extension

E=F with singular lo
us inside a given �nite set S � C

F

. (We say that G is

realisable over F regularly outside S.)

9.1 On the Abhyankar Conje
ture

Conje
ture (Di�erential Abhyankar Conje
ture) Assume F is an algebrai


fun
tion �eld (in one variable) over K with nonsingular proje
tive model C

F

, and

let ; 6= S � C

F

be a �nite subset. Suppose G is a linear algebrai
 group over

K and let p(G) denote the (normal) subgroup of G generated by all unipotent

elements. Then G is realisable as an iterative di�erential Galois group over F

regularly outside S if and only if G=p(G) is.

Raynaud and Harbater have proved this 
onje
ture for �nite groups G (see [Ray94℄,

[Har94℄ and [Har95℄). In the next se
tions, I will prove this 
onje
ture for 
on-

ne
ted groups.

However, this 
onje
ture is not true in this generality as the following example

shows:

Let K = F

2

be the algebrai
 
losure of the �eld of two elements and let D

1

:=

G

m

o Z=2Z be the in�nite dihedral group, where Z=2Z a
ts on G

m

be inverting

the elements. So sin
e 
har(K) = 2 and all elements of D

1

n G

m

have order 2,

D

1

is unipotently generated. Therefore by the Abhyankar 
onje
ture, D

1

should

be realisable with at most one singular point over K(t).

Theorem 9.1 Let K = F

2

and let F = K(t) be the rational fun
tion �eld over

K. Then the in�nite dihedral group D

1

:= G

m

o Z=2Z is not realisable over F

with only one singular point.

Proof Assume E=F is an IPV-extension with Galois group Gal(E=F ) = D

1

(K)

and singular lo
us inside S � C

F

with #S = 1, and without loss of generality let

S = f1g. Then the �xed �eld L := E

G

m

(K)

is a �nite extension of F with Galois

group Gal(L=F ) = Z=2Z and L=F is regular outside S. But su
h an extension is

given as L = K(t; s) with s

2

+ s = f(t), where f(t) 2 K[t℄ � F . Now E=L is an

IPV-extension with Galois group G

m

(K) and singular lo
us inside S

L

:= f1

L

g,

the pla
e of L lying over 1 2 C

F

. (Sin
e 1 is rami�ed in L=F , there is only one

pla
e 1

L

over 1.)

Let M be a 1-dimensional ID-module over L with IPV-�eld E, then [M ℄ 2

Isom

C

L

;1

has in�nite order, sin
e the Galois group is in�nite. But a short 
al-


ulation shows, that J

L

has no 2-torsion and so T

2

(J

L

) = 0. Therefore the

homomorphism � in theorem 8.19 is an isomorphism. By 
orollary 8.17, sin
e
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M is singular in at most one point, M is regular in all points and �([M ℄) 2 J

L

.

Finally, by the general theory on Ja
obian varieties, sin
e K = F

2

, the Ja
obian

J

L

has no element of in�nite order. So [M ℄ 
annot have in�nite order. 2

Remark This proof only works if K = F

2

, be
ause this is the only 
ase (in


hara
teristi
 2) for whi
h J

L

has no element of in�nite order. Furthermore if

K is an algebrai
ally 
losed �eld of 
hara
teristi
 2 and K 6= F

2

, then in fa
t

one 
an �nd the desired ID-module M , and D

1


an be realised with exa
tly one

singular point.

One might wonder if this example only o

urs in 
hara
teristi
 2, be
ause there is

no other p-group a
ting nontrivially on G

m

. But this example 
an be generalised

to arbitrary 
hara
teristi
 p by regarding the group

G := f(a

1

; : : : ; a

p

) 2 G

p

m

j a

1

� � �a

p

= 1g

on whi
h Z=pZ a
ts by 
y
li
 permutation of the 
omponents.

In the next se
tions, we restri
t to 
onne
ted linear algebrai
 groups. We will

show that every redu
ed 
onne
ted linear algebrai
 group G is realisable regularly

outside a set S � C

F

of order #S = 2 for any algebrai
 fun
tion �eld F=K.

The proof will show that the Abhyankar 
onje
ture is true for 
onne
ted groups.

9.2 Dividing the Problem of Realisation

We �rst give a splitting of a 
onne
ted linear algebrai
 group G into parts that

are easier to handle with, regarding the problem of realisation.

Notation So let G be a redu
ed 
onne
ted linear algebrai
 group, R(G) its

radi
al and R

u

:= R

u

(G) its unipotent radi
al. Furthermore let T

0

be a maximal

torus of R(G) and Z := C

G

(T

0

) the 
entraliser of T

0

in G and let [Z;Z℄ denote

the 
ommutator subgroup of Z.

Theorem 9.2 The in
lusions of the subgroups R

u

, T

0

and [Z;Z℄ into G indu
e

an epimorphism of algebrai
 groups

R

u

o

�

T

0

� [Z;Z℄

�

�! G;

where the a
tion of T

0

� [Z;Z℄ on R

u

is given by 
onjugation in G.

For the proof, we need some lemmata:

Lemma 9.3 G is generated by R

u

and Z.

Proof Let T be a maximal torus of G. Then T \ R(G) is a maximal torus of

R(G) and therefore 
onjugate to T

0

. Sin
e R(G) = R

u

� T

0

, there exists a 2 R

u
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su
h that T \ R(G) = aT

0

a

�1

. And so, we get

C

G

(T ) � C

G

�

T \R(G)

�

= C

G

(aT

0

a

�1

) = aC

G

(T

0

)a

�1

= aZa

�1

:

So the union of all 
onjugates aZa

�1


ontains all Cartan subgroups of G. By

[Spr98℄, thm. 6.4.5(iii), and [Spr98℄, lemma 2.2.3, these 
onjugates generate G

and therefore R

u

and Z generate G. 2

Lemma 9.4 A 
onne
ted linear algebrai
 group H is generated by its radi
al

R(H) and its 
ommutator subgroup [H;H℄.

Proof By [Spr98℄, 
or. 8.1.6(i), the fa
tor group H=R

u

(H) is generated by its

radi
al and its 
ommutator subgroup. But sin
e R(H=R

u

(H)) = R(H)=R

u

(H)

and [H=R

u

(H);H=R

u

(H)℄ = ([H;H℄R

u

(H))=R

u

(H), H is generated by R(H)

and [H;H℄. 2

Lemma 9.5 R(Z) equals the identity 
omponent of R(G) \ Z (denoted by

(R(G) \ Z)

Æ

) and R

u

(Z) = (R

u

\ Z)

Æ

. Furthermore T

0

is a maximal torus

of R(Z).

Proof By [Spr98℄, thm. 6.4.7, a Borel subgroup of Z = Z

G

(T

0

) is the interse
tion

of Z with a Borel subgroup of G 
ontaining T

0

. Sin
e T

0

lies in the radi
al of G,

T

0

is 
ontained in every Borel subgroup of G. And therefore:

R(Z) =

0

B

�

\

~

B�Z

Borel

~

B

1

C

A

Æ

=

0

B

�

\

B�G

Borel

B \ Z

1

C

A

Æ

= (R(G) \ Z)

Æ

= ((R

u

o T

0

) \ Z)

Æ

= ((R

u

\ Z)o T

0

)

Æ

= (R

u

\ Z)

Æ

� T

0

;

sin
e T

0

is 
entral in Z. Sin
e all elements of (R

u

\ Z)

Æ

are unipotent, we obtain

R

u

(Z) = (R

u

\ Z)

Æ

. If follows immediately from R(Z) = (R

u

\ Z)

Æ

� T

0

, that

T

0

is a maximal torus of R(Z). 2

Proof of theorem 9.2 Sin
e by de�nition of Z, the elements of T

0

� G and

of Z � G 
ommute, the map T

0

� [Z;Z℄ ! G indu
ed by the in
lusions is a

homomorphism of algebrai
 groups, and therefore the mapR

u

o

�

T

0

�[Z;Z℄

�

�!

G also is a homomorphism of algebrai
 groups. So it is suÆ
ient to show, that

these subgroups generate G.

By lemma 9.4, Z is generated by R(Z) and [Z;Z℄ and therefore by lemma 9.5,

it is generated by (R

u

\ Z)

Æ

, T

0

and [Z;Z℄. So by lemma 9.3, G is generated by
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R

u

, (R

u

\ Z)

Æ

, T

0

and [Z;Z℄, i. e. by R

u

, T

0

and [Z;Z℄. 2

At last, we give a stru
tural property of 
ommutator subgroups in positive 
har-

a
teristi
:

Theorem 9.6 Let H be a 
onne
ted linear algebrai
 group (over an algebrai
ally


losed �eld of positive 
hara
teristi
 p). Then the 
ommutator subgroup [H;H℄ is

unipotently generated.

Proof The group H=R

u

(H) is redu
tive and so by [Spr98℄, 
or. 8.1.6(ii), the

group [H=R

u

(H);H=R

u

(H)℄ is semisimple, and then by [Spr98℄, thm. 8.1.5(i),

unipotently generated. Let a 2 [H;H℄ be a representative of a unipotent element

of [H=R

u

(H);H=R

u

(H)℄. So there is n 2 N su
h that a

p

n

2 R

u

(H). But sin
e all

elements of R

u

(H) are unipotent, there is m 2 N su
h that 1 =

�

a

p

n

�

p

m

= a

p

n+m

.

So a itself is unipotent.

Sin
e [H;H℄ is generated by R

u

(H) and by representatives of a generating set of

[H=R

u

(H);H=R

u

(H)℄, it is unipotently generated. 2

Corollary 9.7 [Z;Z℄ is unipotently generated.

Proof By [Spr98℄, thm. 6.4.7(i), 
entralisers of tori are always 
onne
ted. So

the statement follows from the previous theorem. 2

Remark By the previous results, the realisation of 
onne
ted groups as Galois

groups 
an be redu
ed to realising tori and unipotently generated groups and to

realising unipotent groups equivariantly.

9.3 Realisation of Tori and Unipotently Generated Groups

In [Mat01℄, Matzat has already proved that unipotently generated groups 
an be

realised with one singular point, and in [MvdP03℄, Matzat and van der Put have

proved that tori and 
onne
ted unipotently generated groups 
an be realised with

two singular points. But for the realisation of the dire
t produ
t of those two,

we need to be able to realise the torus in su
h a way, that the 
orresponding

IPV-extension is linearly disjoint to that of the unipotently generated group (
f.

prop. 7.11).

Notation Let S � C

F

be a set with #S = 2, let O = O(C

F

n S) be the ring of

regular fun
tions on C

F

n S and O

l

= O \ F

l

.

Proposition 9.8 A 
onne
ted unipotently generated group G 
an be realised as

a Galois group over F regularly outside S.
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Sket
h of the proof Choose unipotent subgroups U

i

� G (i = 1; : : : ; k) whi
h

generate G. Then for all l 2 N and i = 1; : : : k, U

i

(O

l

) is a free O

l

-module of

dimension dim(U

i

), sin
e U

i

is unipotent. So we 
an 
hoose a sequen
e (D

l

)

l2N

of

matri
es with D

l

2 U

i

(O

l

) for some i 2 f1; : : : ; kg, that satis�es the 
onditions

of proposition 7.12. Therefore the D

l

de�ne an ID-module whose IPV-extension

has Galois group G(K), and sin
e for all l 2 N , D

l

2 U

i

(O

l

) � G(O

l

), this

IPV-extension is regular outside S.

Next, we 
onsider 1-dimensional ID-modulesM , be
ause an IPV-extension E for

M has Galois group Gal(E=F ) � GL

1

(K) = G

m

(K) and every torus de�ned over

K is isomorphi
 to G

k

m

for some k 2 N .

So let M be an ID-module with basis b and proje
tive system given by (D

l

)

l2N

,

where D

l

2 GL

1

(F

l

) = F

�

l

.

Theorem 9.9 Let M

1

; : : : ;M

r

be 1-dimensional ID-modules over F and let L=F

be an IPV-extension for M

1

� � � � �M

r

. If [M

1

℄; : : : ; [M

r

℄ 2 Isom

C

F

;1

generate a

free abelian group of rank r, then Gal(L=F ) is isomorphi
 to G

r

m

(K).

Proof For i = 1; : : : ; r, let b

i

be a basis element for M

i

and (D

i;l

)

l2N

be a

sequen
e 
orresponding to the ID-module-stru
ture of M

i

. Further let U =

F [X

1

; : : : ; X

r

; X

�1

1

; : : : ; X

�1

r

℄ be an ID-ring via d

(k)

U

(X

i

) = d

(k)

F

(D

i;0

� � �D

i;l

) �

(D

i;0

� � �D

i;l

)

�1

X

i

for all k < p

l

and i = 1; : : : ; r. If I � U is a maximal ID-

ideal, then obviously U=I is an IPV-ring for M

1

� � � � �M

r

, i. e. L

�

=

U=I and

Gal(L=F ) is isomorphi
 to G

r

m

(K) if and only if I = (0).

Assume that I is not trivial. Sin
e d

U

stabilizes monomials, I is generated by

elements of the form X

e

1

1

� � �X

e

r

r

� a, where e

1

; : : : ; e

r

2 Z and a 2 F . Choose

su
h an element and de�ne a 1-dimensional ID-module M (resp. its proje
tive

system over F ) by the sequen
e (D

l

)

l2N

, where D

l

:= D

e

1

1;l

� � �D

e

r

r;l

2 F

�

l

, with

respe
t to a basis b. Then de�ne the ID-ring U

0

:= F [Y; Y

�1

℄ with d

(k)

U

0

(Y ) =

d

(k)

F

(D

0

� � �D

l

) � (D

0

� � �D

l

)

�1

Y for all k < p

l

. So the ideal (Y � a) � U

0

is

an ID-ideal, hen
e M is a trivial ID-module and so [M ℄ = 0 2 Isom

C

F

;1

. But

by 
onstru
tion, [M ℄ = e

1

[M

1

℄ + : : : e

r

[M

r

℄ 2 Isom

C

F

;1

, whi
h 
ontradi
ts the

assumption that [M

1

℄; : : : ; [M

r

℄ are Z-linearly independent. 2

Corollary 9.10 Every torus T 
an be realised regularly outside S (where #S =

2) by an IPV-extension L=F . Furthermore this IPV-extension 
an be 
hosen

linearly disjoint to any other given IPV-extension L

0

=F .

T 
an be realised even without any singular point, if and only if the Ja
obian

variety J of C

F

has an element of in�nite order or if J has p-torsion.

Proof The subset Div

0

(C

F

; S;Z

p

) of Div

0

(C

F

;Z

p

) 
onsisting of the maps

f : C

F

! Z

p

, with f(x) = 0 for x 62 S, is a free Z

p

-module of rank 1, i. e. a free
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Z-module of in�nite rank. So Div

0

(C

F

; S;Z

p

)=(H(C

F

)\Div

0

(C

F

; S;Z

p

)) 
ontains a

free Z-module of in�nite rank, and therefore its inverse image

�

�1

�

Div

0

(C

F

; S;Z

p

)=(H(C

F

) \ Div

0

(C

F

; S;Z

p

))

�

� Isom

C

F

;1


ontains a free Z-

module of in�nite rank. So we 
an �nd the desired IPV-extension L.

The Ja
obian is equal to the subgroup of

Div

0

(C

F

;Z

p

)

H(C

F

)

whose elements are repre-

sented by maps f : C

F

! Z � Z

p

. Hen
e the preimages under � are exa
tly

the ID-modules whi
h are regular on C

F

. If the Ja
obian has p-torsion, then the

p-adi
 Tate-module T

p

(J ) is nonzero and therefore a free Z-module of in�nite

rank. Hen
e the image of T

p

(J ) in Isom

C

F

;1

is a free Z-module of in�nite rank.

Sin
e for all [M ℄ 2 Isom

C

F

;1

in this image, we have �([M ℄) = 0, these modules are

all regular on C

F

. So the subgroup �

�1

(J ) has an element of in�nite order, if and

only if J has an element of in�nite order or J [p℄ 6= 0. By [MvdP03℄, thm. 7.1 (4),

if �

�1

(J ) has an element of in�nite order, then it 
ontains a free Z-submodule

of in�nite rank. Hen
e every torus 
an be realised without singularities and su
h

that the IPV-extension is linearly disjoint to any other given IPV-extension. 2

9.4 Equivariant Realisation of Unipotent Groups

Notation Let H be a redu
ed linear algebrai
 group, U a 
onne
ted unipotent

group and G = U o H a semidire
t produ
t. Furthermore let L=F be an IPV-

extension with Galois group Gal(L=F ) = H(K) and singular lo
us inside a �nite

set ; 6= S � C

F

, su
h that for all x 2 C

F

n S and all l 2 N there exists a

fundamental solution matrix Y

l

2 H ((O

L;x

)).

Theorem 9.11 U 
an be realised H-equivariantly over L regularly outside S,

i. e. there is an IPV-extension E=L with Galois group U(K) su
h that E=F is an

IPV-extension with Galois group G(K) = (U oH)(K) with singular lo
us inside

S.

Proof Let A � U be a minimal nontrivial H-invariant 
onne
ted normal sub-

group of U , i. e. A 6= 1 is a 
onne
ted normal subgroup of U that is invariant

under the a
tion of H and is minimal amoungst those. Sin
e the 
enter C(A) of

A is a 
hara
teristi
 subgroup of A, it is H-invariant and a normal subgroup of

U . Sin
e A is unipotent, C(A) is nontrivial and so by minimality of A, we get

C(A) = A, i. e. A is abelian.

Further if A

0

� A is a non-
onne
ted H-invariant normal subgroup of U , then A

0

is �nite, be
ause its identity 
omponent (A

0

)

Æ

is also H-invariant and normal in

U and hen
e trivial by minimality of A.

First 
ase: A = U , i. e. there is no nontrivial normal subgroup of U { apart

from 1 and U { that is invariant under the a
tion of H.

Now, every sequen
e D

l

2 U((O

L

)

l

)

H

(l = 0; 1; : : : ) de�nes an IPV-extension E=L

with Gal(E=L) � U(K) and Gal(E=F ) � (UoH)(K), whi
h is regular outside S

(
f. se
tion 8.4). Then Gal(E=L) is an H-invariant subgroup of U(K). But sin
e
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U is abelian and H-simple, we obtain that Gal(E=L) is �nite or Gal(E=L) =

U(K).

We have to show that the D

l


an be 
hosen su
h that E=L is not �nite: For

this, we 
onsider the set of all IPV-extensions that are de�ned by sequen
es

D

l

2 U((O

L

)

l

)

H

, l 2 N .

Let E

0

and E

00

be extensions de�ned by D

0

l

2 U((O

L

)

l

)

H

resp. D

00

l

2 U((O

L

)

l

)

H

and let Y

0

and Y

00

be the 
orresponding fundamental solution matri
es. Then

the map � : E

0

! E

00

, de�ned by �(Y

0

) = Y

00

and �j

L

= id

L

, is a di�erential

isomorphism if and only if for all l 2 N we have: (D

0

0

� � �D

0

l

)

�1

(D

00

0

� � �D

00

l

) 2

U((O

L

)

l+1

)

H

.

Therefore we have a one-to-one 
orresponden
e between di�erential isomorphism


lasses of those IPV-extensions L(Y

0

) and the in�nite produ
t

Y

l�0

U((O

L

)

l

)

H

=U((O

L

)

l+1

)

H

:

But U((O

L

)

l

)

H

is an (O

F

)

l

-module for all l and therefore a K-ve
tor spa
e. So

U((O

L

)

l

)

H

=U((O

L

)

l+1

)

H

is a K-ve
tor spa
e and its dimension is greater than

1, be
ause it is a nontrivial torsionfree (O

F

)

l+1

-module and dim

K

((O

F

)

l+1

) > 1.

Hen
e the dimension of the in�nite produ
t as K-ve
tor spa
e is un
ountable

(� 2

N

).

Those IPV-extensions whose Galois group is �nite are given by maximal ideals

in the ring U := L[X

ij

; det(X)

�1

℄. Sin
e every maximal ideal is given by n

2

polynomials, the L-ve
tor spa
e of n

2

-tuples of polynomials in U gives an upper

bound to the number of those IPV-extensions with �nite Galois group. But sin
e

this is an L-ve
tor spa
e of 
ountable dimension and L is a K-ve
tor spa
e of


ountable dimension, the set of n

2

-tuples of polynomials in U is a K-ve
tor spa
e

of 
ountable dimension.

Thus for dimensional reasons, there exists an IPV-extension E

0

= L(Y

0

) with

Gal(E

0

=L) = U(K) and Gal(E

0

=F ) = (U oH)(K).

Se
ond 
ase: A 6= U and there exists an H-equivariant isomorphism

Ao (U=A)! U .

Then

�

A o (U=A)

�

oH

�

=

A o

�

(U=A) oH

�

and by indu
tion we 
an assume

that U=A is realised H-equivariantly as Galois group Gal(

~

E=L), su
h that

~

E=F

has singular lo
us inside S. (The dimension of U=A is less than that of U .) So it

remains to realise A over

~

E by ((U=A)oH)-invariant matri
es D

l

2 A ((O

~

E

)

l

).

But an ((U=A) o H)-invariant 
onne
ted normal subgroup of A is a normal

subgroup of U (sin
e it is U=A-invariant) and is H-invariant, so equals 1 or A,
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by minimality of A. Hen
e we are in the �rst 
ase.

Third 
ase: A 6= U and there doesn't exist an H-equivariant isomorphism

Ao (U=A)! U .

We �rst show that the map � : U((O

L

)

l

)

H

! (U=A) ((O

L

)

l

)

H

, indu
ed by the

proje
tion, is surje
tive:

Sin
e U((O

L

)

l

)

H

and U((O

L

)

l

)

H

are (O)

l

-modules it suÆ
es to show that for all

x 2 C

F

n S the lo
alised map �

x

: U((O

L;x

)

l

)

H

! (U=A) ((O

L;x

)

l

)

H

is surje
tive.

But by 
hoosing a fundamental solution matrix Y

l

2 H ((O

L;x

)

l

) (whi
h exists by

assumption), we get a 
ommutative diagram

U((O

x

)

l

)

�

x

//

( )

Y

l

��

(U=A)((O

x

)

l

)

( )

Y

l

��

U((O

L;x

)

l

)

H

�

x

//
(U=A) ((O

L;x

)

l

)

H

;

where ( )

Y

l

denotes 
onjugation by Y

l

. The verti
al maps are isomorphisms and

the upper horizontal map is an epimorphism and so the lower horizontal map

also is an epimorphism.

Now let (U=A) be realisedH-equivariantly as (U=A)(K) = Gal(

~

E=L) by matri
es

~

D

l

2 (U=A) ((O

L

)

l

)

H

(l = 0; 1; : : : ). Then 
hoose preimagesD

l

2 �

�1

(

~

D

l

). These

de�ne an IPV-extension E

0

=L with Galois group U

0

(K) = Gal(E

0

=L) � U and

U

0

! U=A is surje
tive (
f. [Mat01℄, thm. 5.12). Sin
e the D

l

are H-invariant

and U

0

is generated by the D

l

as an algebrai
 group, U

0

is H-invariant, and

therefore A \ U

0

is H-invariant. Furthermore A \ U

0

is normal in U

0

(sin
e A is

normal in U) and normal in A (sin
e A is abelian), so it is normal in AU

0

= U .

By minimality of A, we get that A\U

0

is �nite or A\U

0

= A. If A\U

0

is �nite,

then we have 1 = (A \ U

0

)

Æ

= A \ (U

0

)

Æ

, sin
e A is 
onne
ted and A and U

0

are

unipotent. And so (U

0

)

Æ

�

=

U=A and U

�

=

Ao (U

0

)

Æ

�

=

Ao (U=A) as H-groups.

But by assumption, there doesn't exist su
h an isomorphism. So A\U

0

= A and

therefore U

0

= U . Hen
e E

0

=L is the desired IPV-extension. 2

9.5 Realisation of Conne
ted Groups

As a summary of the previous se
tions, we have the following theorem:

Theorem 9.12 Every 
onne
ted linear algebrai
 group G 
an be realised as iter-

ative di�erential Galois group of an IPV-extension E=F whi
h has at most two

singular points. If the Ja
obian variety of C

F

has p-torsion or if G is unipotently

generated, then G 
an be realised even with at most one singular point.

Proof Denote by S � C

F

the set of two points in C

F

, whi
h may be singular

in the IPV-extension. Choose a maximal torus T

0

of the radi
al R(G), then with
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the notations of se
tion 9.2, we have an epimorphism

� :

~

G := R

u

o (T

0

� [Z;Z℄) �! G:

By 
orollary 9.7 and proposition 9.8, we 
an realise [Z;Z℄ by an IPV-extension

L

0

=F regularly outside S and by 
orollary 9.10, we 
an realise T

0

by an IPV-

extension L=F regularly outside S su
h that L 


F

L

0

is an IPV-extension of F

with Galois group (T

0

� [Z;Z℄)(K). Sin
e L and L

0

are regular outside S, this

extension is also regular outside S. Then by theorem 9.11, there is an IPV-

extension

~

E=L with Galois group R

u

(K) su
h that

~

E=F is an IPV-extension

with Gal(

~

E=F ) =

~

G(K) and

~

E=F is regular outside S. Hen
e, the �xed �eld

under Ker(�), E :=

~

E

Ker(�)

is an IPV-extension over F with Gal(E=F ) =

�

~

G=Ker(�)

�

(K) = G(K) and E=F has singular lo
us inside S.

The last statement is then 
lear, be
ause if J [p℄ 6= 0, then T

0


an be realised

without singularities, by 
orollary 9.10. If G is unipotently generated, G 
an be

realised with only one singular point, by proposition 9.8. 2

Remark In [MvdP03℄, 
or. 7.7 (3), it has already been stated that G 
an be

realised regularly outside a non empty set S, if the torus T

0


an be realised

regularly outside S, but the proof given there doesn't work in general:

Assume #S = 2 and, for simpli
ity, let T

0

= G

m

be the 1-dimensional torus and

let T

0

be realised regularly outside S, i. e. we have an ID-module with proje
tive

system given by matri
es D

l

2 T

0

(F

l

) = F

�

l

.

If F is not a rational fun
tion �eld, then for all l 2 N , where D

l

62 K

�

(in

parti
ular for in�nitely many l), there exists a point x

l

2 C

F

nS with ord

x

l

(D

l

) 6=

0, be
ause the support of a nontrivial prin
ipal divisor has at least three elements.

So if we 
hoose an in
reasing sequen
e (l

j

)

j2N

with lim

j!1

(l

j+1

� l

j

) = 1 and

if we de�ne a new ID-module N with proje
tive system given by D

0

k

:= 1, if

k 62 fl

j

g, and D

0

k

:= (D

j

)

p

l

j

�j

2 F

l

j

, if k = l

j

, then the IPV-extension for this

ID-module also has di�erential Galois group T

0

(K), by proposition 7.12. But in

general for the x

l

de�ned above, we get

P

1

k=0

ord

x

l

(D

0

k

) 6= 0. This means that in

general N is totally singular (if there are in�nitely many su
h x

l

), or N has at

least one additional singular point, namely a point x 2 C

F

n S, for whi
h there

are in�nitely many l 2 N su
h that x = x

l

.

Hen
e, also in the \interla
ing with gaps" of the matri
es for the torus and the

unipotently generated group, as given in the proof of [MvdP03℄, 
or. 7.7 (3),

there might o

ur new singularities.

Corollary 9.13 The di�erential Abhyankar 
onje
ture is true for 
onne
ted

groups.

Proof The fa
tor group G=p(G) is a torus. If G=p(G) = 1, then G is unipotently

generated and therefore 
an be realised with one singularity. If G=p(G) 6= 1, then

by the previous theorem, both G and G=p(G) 
an be realised with singular lo
us
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inside a nonempty set S, if and only if #S � 2 or if #S = 1 and the Ja
obian J

has an element of in�nite order or an element of order p. 2
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A Completions of Graded Algebras

In this appendix we regard 
ompletions of graded algebras over a ring R (R-
gas

for short).

Let R be a 
ommutative ring.

De�nition A.1 A 
ommutative R-algebra B is 
alled an R-
ga , if B is the


ompletion of a 
onne
ted graded R-algebra

1

L

i=0

B

i

, where the 
ompletion is taken

with respe
t to the �ltration given by the ideals I

k

:=

1

L

i=k

B

i

. We 
all B

i

the

i-th homogeneous 
omponent of B. The augmentation map will be denoted by

" : B ! B

0

= R. More general, the proje
tion map to the i-th homogeneous


omponent will be denoted by pr

i

: B ! B

i

.

Proposition A.2 Let B be an R-
ga. Then as an R-module B is isomorphi
 to

the dire
t produ
t

1

Q

k=0

B

k

.

Proof By de�nition the 
ompletion is the inverse limit lim

 �

n2N

(

L

n

k=0

B

k

) (see also

[Eis95℄). But this limit is obviously isomorphi
 to

1

Q

k=0

B

k

. 2

Example A.3 1. The ring of formal power series R[[T ℄℄ is an R-
ga, with

i-th homogeneous 
omponent R � T

i

.

2. The ring R itself is the trivial R-
ga with (R)

i

= 0 for i > 0.

Remark A

ording to the notation of a power series as an in�nite sum, we

will denote elements of an R-
ga B by

P

1

i=0

b

i

, where b

i

2 B

i

. This notation

is also justi�ed by the fa
t, that, indeed,

P

1

i=0

b

i

is the limit of the sequen
e of

partial sums (

P

n

i=0

b

i

)

n2N

in the given topology, or in other words that

P

1

i=0

b

i

is a 
onvergent series.

De�nition A.4 Let B and

~

B be R-
gas. A homomorphism of R-algebras

f : B !

~

B is 
alled a homomorphism of R-
gas, if f is a 
ontinuous exten-

sion of a homomorphism of graded R-algebras g :

L

1

k=0

B

k

!

L

1

k=0

~

B

k

.

Remark Sin
e

L

1

k=0

B

k

is dense in B, the 
ontinuous extension of a given

homomorphism of graded R-algebras is unique. So the 
ategory of 
ommutative


onne
ted graded R-algebras and the 
ategory of R-
gas are equivalent.

In this thesis, we sometimes have to 
onsider more general homomorphisms be-

tween R-
gas, too. So let K � R be a subring, B and

~

B be R-
gas and let
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f : B !

~

B be a 
ontinuous homomorphism of K-modules (or even K-algebras).

Then we de�ne \homogeneous 
omponents" f

(i)

: B !

~

B (i 2 Z) of f to be the


ontinuous homomorphisms of K-modules given by

f

(i)

j

B

j

:= pr

i+j

Æ f j

B

j

: B

j

!

~

B

i+j

for all j 2 N (set

~

B

i+j

:= 0 for i+ j < 0). The f

(i)

uniquely determine f , be
ause

for all b

j

2 B

j

,

1

P

i=�j

f

(i)

(b

j

) 
onverges to f(b

j

).

Su
h a 
ontinuous homomorphism of K-modules f : B !

~

B is 
alled positive,

if f

(i)

= 0 for i < 0.

Proposition A.5 The monoid (K; �) a
ts on the set Hom

+

K

(B;

~

B) of positive


ontinuous homomorphisms of K-modules by

(a:f)

(i)

:= a

i

� f

(i)

(i � 0)

for all a 2 K, f 2 Hom

+

K

(B;

~

B). If f is a homomorphism of algebras, then

a:f also is a homomorphism of algebras. Furthermore for f 2 Hom

+

K

(B;

~

B),

g 2 Hom

+

K

(

~

B;

~

~

B) and a 2 K, we have

a:(g Æ f) = a:g Æ a:f;

i. e. the a
tion of K 
ommutes with 
ompositions.

Proof It is 
lear, that for all a 2 K and f 2 Hom

+

K

(B;

~

B), a:f is a positive


ontinuous homomorphism. If f is a homomorphism of algebras, then for all

b; 
 2 B:

a:f(b
) =

1

X

k=0

a

k

f

(k)

(b
) =

1

X

k=0

a

k

X

i+j=k

f

(i)

(b)f

(j)

(
)

=

 

1

X

i=0

a

i

f

(i)

(b)

!

�

 

1

X

j=0

a

j

f

(j)

(
)

!

= a:f(b) � a:f(
);

i. e. a:f is a homomorphism of algebras.

Next, it is 
lear from the de�nition that 1:f = f and a

1

:(a

2

:f) = (a

1

a

2

):f for

all a

1

; a

2

2 K; f 2 Hom

+

K

(B;

~

B), i. e. this de�nes an a
tion of the monoid K.

Now let f 2 Hom

+

K

(B;

~

B), g 2 Hom

+

K

(

~

B;

~

~

B) and a 2 K. Then for all b 2 B and

k 2 N , we have:

((a:g) Æ (a:f))

(k)

(b) =

X

i+j=k

(a:g)

(i)

Æ (a:f)

(j)

(b) =

X

i+j=k

a

i

g

(i)

�

a

j

f

(j)

(b)

�

=

X

i+j=k

a

i

a

j

g

(i)

�

f

(j)

(b)

�

= a

k

X

i+j=k

�

g

(i)

Æ f

(j)

�

(b)

= (a:(g Æ f))

(k)

(b)
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So (a:g) Æ (a:f) = a:(g Æ f). 2

Remark Some spe
ial maps, that are used in this thesis are the higher deriva-

tions on rings and modules (
f. se
tions 1.1 and 1.2) { maps in Hom

+

K

(R;B) resp.

Hom

+

K

(M;B


R

M) {, the extension d

^




of the universal derivation to the algebra

of higher di�erentials { a map in Hom

+

K

(

^


;

^


) (
f. se
tion 2.1) { and at last

the extensions of higher 
onne
tions on M to maps in Hom

+

K

(

^





R

M;

^





R

M)

(
f. se
tion 2.3).
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B De�nitions of Some Categories

In this appendix we give an overview of the de�nitions of some spe
ial 
ategories,

su
h as the notion of a Tannakian 
ategory. We don't give all the details but

refer to other books, if for example one doesn't know the universal property of

the kernel of a morphism.

De�nition B.1 (Abelian Category)

A 
ategory C is 
alled an abelian 
ategory if the following 
onditions hold:

1. For all obje
ts X; Y of C, the set of morphisms Mor(X; Y ) is an abelian

group.

2. There exists a null obje
t 0 2 Ob(C).

18

3. For all obje
ts X; Y of C, there exists a biprodu
t X � Y 2 Ob(C).

4. For all morphisms f of C, the kernel Ker(f) and the 
okernel Coker(f) of

f exist.

5. For every monomorphism f 2 Mor(X; Y ), there exists a morphism g : Y !

Z su
h that X

�

=

Ker(g) and for every epimorphism f 2 Mor(Y;X), there

exists a morphism g : Z ! Y su
h that X

�

=

Coker(g).

For the next de�nition, the de�nition of a tensor 
ategory over a �eld K, we

follow the notion of P. Deligne in [Del90℄ and B. H. Matzat in [Mat01℄. There

also exist other notions of a tensor 
ategory. For example, what we 
all a tensor


ategory is 
alled a \rigid abelian K-linear ACU 
-
ategory" by S. Saavedra in

[Saa72℄ or a \K-linear rigid abelian tensor 
ategory with K

�

=

End(1)" by P.

Deligne and J. Milne in [DM89℄.

De�nition B.2 (Tensor Category over K)

A 
ategory C is 
alled a tensor 
ategory over a �eld K if the following 
on-

ditions hold:

1. C is an abelian 
ategory.

2. There exists a biadditive fun
tor 
 : C � C ! C, 
alled tensor produ
t,

that is asso
iative and 
ommutative.

3. There exists a unital obje
t 1

C

for 
.

4. For all X 2 C, there exists an obje
t X

�

2 C (
alled dual of X) and mor-

phisms "

X

2 Mor(X
X

�

; 1

C

) (
alled evaluation) and Æ

X

2 Mor(1

C

; X

�




X) (
alled 
oevaluation), su
h that:

18

All the obje
t that are assumed to exists are de�ned by their universal properties.
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X

id

X


Æ

X

//

id

X

%%K

K

K

K

K

K

K

K

K

K

K

K

K

K

K

X 
X

�


X

"

X


id

X

��

X

and

X

�

Æ

X


id

X

�

//

id

X

�

&&L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

X

�


X 
X

�

id

X

�
"

X

��

X

�


ommute.

5. End

C

(1

C

)

�

=

K.

Remark Let C be a tensor 
ategory. Then for all obje
ts X; Y 2 C, the fun
tor

T 7! Mor(T 
 X; Y ) is representable and the representing obje
t, denoted by

Hom(X; Y ), is 
alled the internel hom of X and Y .

The following proposition is a 
olle
tion of some useful results, that are all proved

in [Del90℄:

Proposition B.3 Let C be a tensor 
ategory over a �eld K. Then:

1. For all X; Y 2 C, there is an isomorphism �

X;Y

: X

�


 Y ! Hom(X; Y ).

2. For all X 2 C, the bidual (X

�

)

�

is isomorphi
 to X.

3. For all X; Y 2 C, X

�


 Y

�

is isomorphi
 to (X 
 Y )

�

.

Example B.4 For a 
ommutative ring R, the 
ategory Mod(R) of �nitely gen-

erated R-modules is an abelian 
ategory.

The 
ategory Proj-Mod(R) of �nitely generated proje
tive R-modules is in gen-

eral not abelian, but satis�es the properties 2.-4. of a tensor 
ategory, with the

usual tensor produ
t, 1 = R, X

�

= Hom

R

(X; 1), "

X

: X
X

�

! 1; x
� 7! �(x)

and 1

Æ

X

�! X

�


X

�

X;X

��! Hom

R

(X;X); r 7! r � id

X

.

De�nition B.5 ((Neutral) Tannakian Category)

A tensor 
ategory T over a �eld K is 
alled a Tannakian 
ategory if there

exists a s
heme S 6= ; over K and a fun
tor ! : T !Mod(S) (so 
alled �bre

fun
tor) whi
h

1. respe
ts the tensor produ
t,

19

2. is K-linear and

3. is exa
t.

T is 
alled a neutral Tannakian 
ategory if it admits a �bre fun
tor

! : T ! Ve
t(K).

19

see again [Del90℄ for more details
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