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Summary  
 
In developmental neurobiology, it is a fundamental topic but it is not still well investigated how 
newborn neurons elaborate axonal and dendrite processes to navigate complicated pathways and 
travel long distances before they reach their target.  Recent studies have suggested that Rho 
family GTP-binding proteins are important components of the signalling pathways that link the 
reception of extracellular cues to the cytoskeleton.  Rho family GTP-binding proteins regulate 
many different aspects of the actin cytoskeleton in a wide variety of organisms.  Small GTPases 
of the Rho family have been suggested to be involved in the regulation of formation of neurites 
and their differentiation into axons and dendrites, but the function of Rho GTPases is not still 
clear in terms of axonal and dendritic growth during mammalian development.  There are 
numerous data suggesting the important role of Rho GTPases in axonal guidance in vitro, 
however, there has been little direct evidence of these proteins in the in vivo context in 
mammals.  To modulate the activity of Rho during early nervous system development, we 
expressed either a RhoA dominant negative (N19-RhoA) mutant, a constitutively active (V14-
RhoA) mutant, or a natural inhibitor, C3 transferase from Clostridium botulinum, in neuborn 
neurons under the control of the tau gene.  Their protein expression in neurons can be activated 
by application of Cre recombinase.  The tau gene was used because it is known to drive the high 
expression of genes specifically in neurons (Binder et al., 1995).  We used this transgenic 
strategy to analyze the effects of Rho family GTP-binding proteins on axonal outgrowth in early 
nervous system and the effect of long-term inhibition of Rho function in the adult brain.  The 
recombinant protein of N19-RhoA was expressed in the postnatal mouse brain, and we found 
that the somatosensory cortex in the adult mouse brain contained more severe involutions and 
aggregations of the cells in specific area of somatosensory cortex in brain, particularly in layer 
IV.  Also, the barrel-like discontinuous pattern was more extended toward the posterior part of 
the brain in the mice that have expressed a dominant negative RhoA. 

 



Zusammenfassung 
 
Wie neugeborene Neurone ihre axonalen und dendritischen Fortsätze einsetzen um komplizierte 
Signalwege zu steuern und um weite Entfernungen zu überwinden bevor sie ihr Ziel erreichen, 
ist ein fundamentales aber noch nicht ausreichend erforschtes Thema in der 
Entwicklungsbiologie. Jüngste Studien zeigen, dass GTP-bindende Proteine der Rho Familie 
wichtige Bestandteile von Signalkaskaden sind, welche das Cytoskelett modulieren können. 
GTP-bindende Proteine der Rho Familie regulieren viele verschiedene Aspekte des Aktin 
Cytoskelettes in einer Vielzahl von Organismen. Es wird angenommen, das kleine GTPasen der 
Rho Familie an der Regulation und Entstehung von Neuriten und ihrer Differenzierung in Axone 
und Dendriten beteiligt sind. Die Funktion der Rho GTPasen beim axonalen oder dendritischen 
Wachstum während der Entwicklung ist aber bisher noch ungeklärt. Verschiedene Daten weisen 
darauf hin das Rho GTPasen in der axonalen Zielführung in vitro eine Rolle spielen, doch liegen 
für diese Proteine und deren Funktion, in vivo bei Säugetieren, deutlich weniger Daten vor. Um 
die Aktivität von Rho während der frühen Entwicklung des Nervensystems zu modulieren, 
wurden entweder eine RhoA dominant negative Mutante (N19-RhoA), eine konstitutiv aktive 
(V14-RhoA) Mutante, oder ein natürlicher Inhibitor, die C§ Transferase aus Clostridium 
botulinum, in neugeborenen Neuronen unter der Kontrolle des Tau Gens exprimiert. Die Protein 
Expression kann in diesem System durch die Zugabe einer Cre Recombinase aktiviert werden. 
Hierbei wurde das Tau-Gen benutzt weil es dafür bekannt ist, eine hohe Expression von Genen, 
speziell in Neuronen, zu ermöglichen. In dieser Arbeit wurde diese transgene Strategie 
angewendet, um die Effekte der GTP-bindenden Proteine der Rho Familie auf das axonale 
Wachstum im frühen neuronalen System, und um den Effekt der Langzeitinhibierung von Rho 
im adulten Gehirn zu untesuchen. 
Mit dieser Arbeit konnte gezeigt werden, das die Expression des rekombinanten Proteins N19-
RhoA im postnatalen Gehirn der Maus zu einer erhöhten Aggregation von Zellen, in der Schicht 
IV im somatosensorischen Kortex der adulten Maus, führt. Weiterhin wurde beobachtet das dass 
barrel-field, bei den dominant negativen RohA Mutanten, weiter in Richtung einer posterioren 
Region verschoben war. 
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1 INTRODUCTION 

 

In developmental neurobiology, it is a fundamental topic but it is not still well investigated how 

newborn neurons elaborate axonal and dendrite processes to navigate complicated pathways and 

travel long distances before they reach their target.  Recent studies have suggested that Rho 

family GTP-binding proteins are important components of the signalling pathways that link the 

reception of extracellular cues to the cytoskeleton. 

Rho family GTP-binding proteins, Rho GTPases, regulate many different aspects of the 

actin cytoskeleton in a wide variety of organisms.  Small GTPases of the Rho family have been 

suggested to be involved in the regulation of formation of neurites and their differentiation into 

axons and dendrites, but the function of Rho GTPases is not still clear in terms of axonal and 

dendritic growth during mammalian development in vivo.  There are numerous data suggesting 

the important role of Rho GTPases in axonal guidance in vitro, however, there has been little 

direct evidence of these proteins in the in vivo context in mammals. 

In general, Rho inhibits neurite outgrowth, and when Rho is bound to GTP, Rho causes 

the actin cytoskeleton to become rigid, causing the inhibition of axonal elongation and growth 

cone collapse followed by the formation of stress fibers and focal adhesions.  The importance 

role of Rho GTPases in neuronal development has been suggested and Rho GTPases thereby 

could possibly lead to defects in neuronal migration.  Therefore, not only in the early nervous 

system, the importance of Rho GTPases and the effect of long-term inhibition of Rho function 

in the adult brain was also analyzed. 
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1.1 Small GTPases of the Rho family

 

The small G protein superfamily (small GTPase) is composed of more than 100 members and 

has been divided into six families: Ras, Rho, Rab, Arf, Sar and Ran.  Ras and Rho GTPases 

regulate many important aspects of cell behaviour including decisions to proliferate or 

differentiate, cell polarity, modifications to the actin cytoskeleton, cell shape, cell movement, 

gene transcription, and microtubule dynamics (reviewed by Kaibuchi et al., 1999; Aspenstrom, 

1999a and 1999b; Dickson, 2001; Ramakers, 2002).  Rab, Arf, and Sar GTPases are involved in 

the regulation of intracellular vesicle transport, and the Ran subfamily plays an important role in 

transport through the nuclear membrane (reviewed by Takai et al., 2001).  Most members of the 

small GTPase family possess the ability to bind to and hydrolyze GTP.  They thereby act as 

binary molecular switches cycling between an active and an inactive conformation.  In the GTP-

bound active form, the protein can interact with one or more cellular targets to promote a 

response until hydrolysis of GTP to GDP brings the switch to the “off” inactive conformation 

(Figure 1).  Even though members of the small G protein superfamily are described as small 

GTPases in my thesis, a common usage, it is important to understand that although GTPase 

activity is essential to stop the functions of small G proteins in most cases, GTP does not always 

need to be bound for the G protein to be functional.  There are examples of small GTPases that 

are constitutively active, such as Rnd3/RhoE and RhoH/TTF (reviewed by Rossman et al., 2005).  

This simple mechanism of Rho GTPase acitivity regulation is carefully controlled by more than 

60 activators and over 70 inactivators (Figure 1). 

 

 

Figure 1.  The GTPase molecular switch:  In the GTP-bound active state, Rho-GTPases regulate the activity of 

their binding partners or one of over 60 target effectors to promote a cellular responses and influence the actin 

cytoskeleton organization, gene expression, or cell cycle progression.  The cycle is highly regulated by three classes 

of protein: in mammalian cells, around 60 guanine nucleotide exchange factors (GEFs) catalyze nucleotide 
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exchange and mediate activation; more than 70 GTPase-activating proteins (GAPs) stimulate GTP hydrolysis, 

leading to inactivation; and guanine nucleotide exchange inhibitors (GDIs) bind the switch regions and the C-

terminal isoprenyl moiety of Rho GTPases to sequester them in the cytosol.  (taken from Etienne-Manneville and 

Hall, 2002) 

Rho GTPases are key signaling proteins which regulate intracellular signals in response 

to extracellular signals and participate in many physiological processes.  Rho was first isolated as 

a small GTP-binding protein related to Ras (Madaule and Axel, 1985).  The Ras-related gene 

family was found in a wide variety of organisms, including plants, Saccharomyces cerevisiae, 

Drosophia melanogaster, mouse, rat, and human (DeFeo-Jones et al., 1983; Reymond et al., 

1984; Fukui and Kiziro, 1985; Mozer et al., 1985; Avraham and Weinberg, 1989).  In mammals, 

they include Rho (RhoA, RhoB, and RhoC), Rac (Rac1, Rac2, and Rac3), Cdc42, Rnd1/Rho6, 

Rnd2/Rho7, Rnd3/RhoE, RhoD/HP1, RhoG, TC10 and RhoH/TTF.  An exception to the 

previously-described GTPase cycle pattern is found only in Rnd and RhoH/TTH proteins which 

are known to be unable to hydrolyze GTP in vitro so that they are constitutively active 

(reviewed by Etienne-Manneville and Hall, 2002; Rossman et al., 2005).  Like the ras genes, the 

rho genes encode proteins of 21 kilodaltons in size.  Different mammalian Rho GTPases are at 

least 40% identical to each other at the amino-acid level, and the most well-studied GTPases 

among them are Rho, Rac, and Cdc42.  RhoA, RhoB, and RhoC are three highly homologous 

isoforms of Rho in mammals and, at the amino-acid level they share more than 85% identity. 

Two regions, the switch I and switch II domains, are highly conserved within most of the 

small GTPases.  These regions surrounding the γ-phosphate of GTP have been determined by 

comparing the structure of Ha-Ras in the GTP- and the GDP-bound conformations (reviewed by 

Takai et al., 2001). 
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Figure 2.  RhoA and GTP crystallographic structure:  The switch I (green) and switch II (purple) loops are 

highlighted.  The structure was generated using the 3D imaging software from http://www.cgl.ucsf.edu/chimera/.  

The sequence to generate the 3D imaging structure was based on the Protein Data Bank model 1A2B (Ihara et al., 

1998) 

 

The switch I region is within loop L2 and β2, which is the effector region, and the switch 

II region is within loop L4 and helix α2 (Figure 2).  Together they encircle the γ-phosphate of 

GTP.  Most small GTPases have consensus amino acid sequences for specific GDP/GTP-binding 

and GTPase activity, and there is a separate region for the downstream effectors (Figure 3).  

Moreover, all Rho GTPases are modulated by a post-translational lipid modification 

(prenylation) and a C-terminal carboxymethylation of four amino acids (i.e. Cys-A-A-X box) so 

that the last three amino acids are cleaved (Adamson et al., 1992).  These modifications are 

required for their localization to the plasma membrane and for the activation of downstream 

effectors.  Only post-translationally modified Rho proteins interact with the regulators of Rho 

GTPases.  These modifications serve functional roles, for example, by preventing the 

dissociation of guanine nucleotide dissociation inhibitors (GDIs) from Rho GTPases (Hori et al., 

1991; Read et al., 2000). 
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Figure 3.  Structure of small GTPases:  Most of the GTPases conserve Switch I and Switch II of the consensus 

sequences responsible for GDP/GTP-binding interaction and GTPase activities.  A, Ala; D, Asp; E, Glu; G, Gly; K, 

Lys; N, Asn; S, Ser; X, any amino acid (taken from Takai et al., 2001) 

Two Rho protein mutant forms, constitutively active and dominant negative forms of Rho 

GTPases, have been commonly used for experimental purposes to study their role in axonal 

arborization (Threadgill et al.,1997; Nakayama et al., 2000), dendritic growth (Threadgill et al., 

1997; Ruchhoeft et al., 1999; Nakayama et al., 2000; Li et al., 2000), neuronal remodeling (Luo 

et al., 1996; Ruchoeft et al., 1999; Li et al., 2000), and growth cone motility (Jin and Strittmatter, 

1997; Kozma et al., 1997; Ruckhoeft et al., 1999; Kuhn et al., 2000; Nakayama et al., 2000; 

Wahl et al., 2000). 

1) A constitutively active form made by mutation of glycine (G) at position 12 for 

Ras/Rac/Cdc42 or 14 for RhoA to valine (V) is not able to hydrolyze GTP, and therefore signals 

are continuously sent to downstream targets.  It reduces the essential GTPase activity and GAPs 

become inaccessible to the GTP-bound Rho (Garrett et al., 1989; Ridley and Hall, 1992a and 

1992b).  In fibroblasts, the constitutively active mutant of Rho (V14-Rho) was shown to 

stimulate the assembly of focal adhesion and stress fibers induced by growth factors such as 

platelet derived growth factor (PDGF), epidermal growth factor (EGF), or those found in bovine 

fetal calf serum (FCS) (Ridley and Hall, 1992a).  Microinjection of active Rac into fibroblasts 

led to the formation of lamellipodia and membrane ruffles (Ridley et al., 1992), while active 

Cdc42 stimulated the formation of filopodium in Swiss 3T3 fibroblasts resulting from actin 

polymerization (Nobes et al., 1995).  Transfection of constitutively active Rho, Rac, or Cdc42 

increased the numbers of dendrites in cortical neurons in vitro (Threadgill et al., 1997) but 

caused growth cone collapse in the neuroblastoma cell line NIE-115 (Kozma et al., 1997; Jin and 

Strittmatter, 1997) and in the case of Rac, in chick DRG neurons as well (Kozma et al., 1997).  

Mice expressing constitutively active Rac1 in cerebellar Purkinje cells showed dendritic 

morphology changes (Luo et al., 1996). 

2) A dominant negative mutant made by mutation of threonine (T) at amino acids 17 

(Rac/Cdc42) and at 19 (RhoA) to asparagine (N) or by mutation of serine (S) to asparagine (N) 
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at amino acids 17 (Ras), is predicted to block the GTPase activity of endogenous Rho GTPases 

through the competition in binding to GEF exchange factors (Feig et al., 1994), and it has been 

suggested that this substitution of the amino acid to asparagine possibly disturbs the Rho GTPase 

activity by interfering with an essential Mg2+ ion required for guanine nucleotide binding in all 

Ras superfamily GTP-binding proteins (Farnsworth et al., 1991).  When dominant negative 

RhoA was transfected, the numbers of dendrites in cortical neurons was decreased in vitro 

(Threadgill et al., 1997).  Transfection of dominant negative Rac showed the inhibition of 

outgrowth in PC12 phaeochromocytoma cells (Lamoureux et al., 1997).  Serum-induced 

outgrowth was inhibited by dominant negative Rac and Cdc42 in neuroblastma NIE-115 cell 

(Kozma et al., 1997). 

Experimental models using neuronal cell lines do not always necessarily reproduce the 

activities of primary neurons.  The neurite outgrowth in PC12 and N1E-115 cells showed the 

same result, but embryonic chick DRG neurons showed different data.  In general, Rho inhibits 

neurite outgrowth while Cdc42 induces filopodia and Rac promotes lamellipodia (reviewed by 

Gallo and Letourneau, 1998a).  The Rho GTPases possibly activate each other sequentially, and 

therefore activation hierarchies may exist amongst these proteins (Kozma et al., 1995; Nobes and 

Hall, 1995).  It has been suggested that when both Rho and Rac1 are active, slow outgrowth 

occurs and the collapse of growth cones, but when Rho is active and Rac1 is inactive, moderate 

outgrowth occurs with growth cones extending lamellipodia and filopodia.  Finally, when Rho is 

inactive and Rac1 is in either the active or the inactive form, rapid growth and collapse of growth 

cones are seen respectively (reviewed by Gallo and Latourneau, 1998a). 

 

1.2 C3 transferase 

Rho was found to be the target of the Clostridium botulinum exoenzyme C3 transferase, which 

ADP-ribosylates Rho at amino acid 41 (asparagine) and thereby inactivates it (Sekine et al., 

1989; Aktories and Frevert, 1987; Morii et al., 1991).  Subsequently, various C3-family 

members have been identified including the exoenzyme ADP-ribosyltransfarase from 

Clostridium limosum, Bacillus cereus, and epidermal differentiation inhibitor (EDIN) (reviewed 

by Kaibuchi et al., 1999) that share the same functionality.  All C3 transferases are highly 

specific inhibitors of all the three Rho member isoforms, RhoA, RhoB, and RhoC (Just et al., 

1992), and C3 is believed not to ADP-ribosylate Rac or Cdc42 (Just et al., 1995).  Nucleotide 

binding of GDP/GTP and inherent or GAP- activated GTPase activity are not affected by ADP-

ribosylation of Rho, and it has been suggested that modified Rho possibly binds to alternate 

effectors to sequester activation (reviewed in the book “GTPases” by Aktories, Schmidt, and 
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Hofmann, 10. GTPases targeted by bacterial toxins, Oxford University Press).  The C3 

transferase has been shown to inhibit the LPA activity, suggesting that Rho mediates the length 

of neurites induced by the LPA in neuroblastoma cells (Jalink et al., 1994). 

 

 

Figure 4.  Rho is the target for covalent modification by many pathogenic bacteria:  Characterized toxins acting 

on Rho and their effects on various cell types.  CNF1, Cytotoxic necrotizing factor 1; EDIN, epidermal 

differentiation inhibitor; DNT, dermonecrotizing toxin (taken from Machesky and Hall, 1996) 

 

Because several bacterial toxins and exoenzymes modify Rho GTPases (Figure 4), it is 

suggested that there is an important and ubiquitous Rho function including cell flattening and 

neurite outgrowth in neuronal cells (reviewed by Machesky. and Hall, 1996).  Dramatic changes 

in the actin cytoskeleton have been shown upon introduction of C3 transferases into cells, 

causing most cell types to round up in mammalian cell culture (Wiegers et al., 1991; Paterson, et 

al., 1990; Chardin et al., 1989).  In neuronal cells, C3 transferase treatment flattens cells and 

expresses neurite-like cell processes.  C3 transferase stimulated growth cone formation in N1E-

115 cells (Kozma et al., 1997).  On the other hand, C3 transferase induce axonal outgrowth 

from DRG neurons but lamellipodia and filopodia in the growth cones of DRG are missing under 

these conditions (Jin and Strittmatter, 1997).  Incubation with C3 exoenzyme in cultured rat 
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pheochromocytoma PC-12 cells inhibited cell growth and induced neurites (Nishiki et al., 1990), 

and microinjection of C3 exoenzyme induced neurite outgrowth but co-injection of a dominant 

negative Rac1 or Cdc42 blocked that outgrowth (Kozma et al., 1997).  C3 transferases cause the 

loss of actin stress fibres and integrin adhesion plaques. 

Thymi isolated from C3 exoenzyme-expressing transgenic mouse were smaller, 

reflecting a 90% decrease in cell number.  A transgenic mouse expressing C3-exoenzyme 

showed disrupted fiber cell morphology, cytoskeletal regulation, and fiber cell interactions in 

developing eyes (Henning et al., 1997; Maddala et al., 2004). 

All the studies using the C3 exoenzyme or C3 transgenic mice have shown an important 

need for Rho GTPase function, and thereby C3 exoenzyme is widely used for Rho function 

studies. 

 

1.3 Nucleotide exchange and exchange factors GEFs (Guanine nucleotide exchange 

factors) 

Guanine nucleotide exchange factors (GEFs) promote activation of the small GTPases stabilizing 

the nucleotide-free form of the GTPase and thereby facilitating its association with GTP, which 

is the more abundant nucleotide.  Different GEFs are recruited to membranes and/or growth 

factor receptors.  The first mammalian Rho GEF was found in diffuse B-cell-lymphoma cells 

(Dbl), and more than 30 potential GEFs for small GTPases have since been discovered (reviewed 

by Rossman, 2005).  All of them have a conserved exchange factor domain, the Dbl homology 

(DH) domain, which is generally adjacent to a pleckstrin homology (PH) domain and which 

interacts with the switch regions of Rho GTPases (Figure 5) (reviewed by Cerione and Zheng, 

1996).  The heterotrimeric small GTPases bind to the Dbl domain of GEF and as a result become 

activated to mediate their downstream effector targets.  Many Rho GEFs are constitutively 

activated by the N-terminal truncation of sequences which lie upstream of the DH domain 

(Schmidt and Hall, 2002).  The function of the PH domain is not well investigated, but it seems 

to play a role in cellular localization together with the DH domain to activate Rho GTPases (van 

Aelst et al., 1997). 
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Figure 5.  Model of PH-domain-assisted guanine nucleotide exchange:  GDP-bound Rho interacts with GEFs (as 

indicated by DH and PH).  GEFs promote GDP and Mg2+ dissociation from Rho GTPases. (taken from Rossmann 

et al., 2005) 

 

Genetic analyses have shown that GEFs are important for the regulation of cell motility 

and morphology (Barrette et al., 1997).  Among GEFs that have already been studied, Dbl is 

expressed in brain, ovary and testis and mice lacking the Dbl gene showed defective dendrite 

elongation (Hirsch et al., 2002).  Trio, a GEF for the Rho GTPases, is known to play a role in 

embryonic lethality, skeletal development, and neuronal-tissue development (reviewed by 

Rossman et al., 2005), and it also has been shown that Trio is expressed along axons in the CNS 

of embryos and in the subsets of brain regions and has an essential role in axonal and dendritic 

development in Drosophila (Newsome et al., 2000; Awasaki et al., 2000; Bateman et al.; 2000, 

Liebl et al., 2000).  It is possible that the actin cytoskeleton is regulated through the local 

activation or recruitment of GEFs with the guidance cues by Rho GTPases. 

 

1.4 GTP hydrolysis and GAPs (GTPase activating proteins) 

GTPase activating proteins (GAPs) promote the hydrolysis of the bound GTP by enhancing the 

intrinsic GTPase activity of the Rho protein and thus bring it to the inactive state.  Once Rho 
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proteins are activated and bound to GTP, their activity is terminated by GTP hydrolysis, yielding 

a bound GDP and free phosphate.  Approximately 70 GAPs have been identified and are 

assumed to specifically promote GTPase activities for individual members of the small G-protein 

superfamily.  There are several Ras and Rho GAPs and each GAP is possibly specific for 

different cell types.  Many Ras and Rho GAPs contain membrane interacting domains and have 

been found in transient protein complexes formed as a result of incoming membrane signals.  It 

has been suggested that different GAPs target specific GTPases and that the interactions with 

certain membrane compartments or signaling complex proteins may regulate the GTPases 

(reviewed by Bernards, 2005). 

There are suggestions that GAPs play an important role in neuronal development or 

nervous system function from the evidence that multiple GAPs for the small GTPases are 

expressed in the brain at high levels (reviewed by Bernards et al., 2005).  An example of GAPs 

involvement in processing external signal transduction in neurons comes from studies that 

indicate p250GAP is possibly involved in the downstream activity of the neurotransmitter N-

methyl-d-aspartate (NMDA) receptor (Nakazawa et al., 2003; Taniguchi et al., 2003).  NMDA 

receptors regulate actin reorganization in dendritic spines (Engert and Bonhoeffer, 1999; 

Maletic-Savatic et al., 1999).  Another function GAPs may have is that of bridging multiple 

signaling pathways.  A Rho GAP, p190RhoGAP, may link the Rho and Ras signaling pathways 

thorough its binding to p120RasGAP (reviewed by Machesky and Hall, 1996). 

Mice deficient in p190-B RhoGAP showed similar phenotypes to the CREB 

transcription factor deficient mice in that they have a reduced body size as well as cell size 

during development (Sordella et al., 2002).  Rho and CREB have both been suggested to play a 

role in the differentiation of thymocytes and neurons (Henning et al., 1997; reviewed by Luo, 

2000).  It has been found that the brain and thymus defects in p190-B RhoGAP-deficient mice 

are associated with a failure in cell differentiation (Sordella et al., 2002).  From this it is 

suggested that increased activity of ROK (Rho kinase) in p190-B Rho GAP deficient cells 

downregulates the insulin/IGF signal and therefore several downstream pathway factors 

including MAP kinases and JNK (c-jun N-terminal kinase) resulting in increased CREB activity 

(Figure 6). 
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Figure 6.  Model of the predicted role of p190-B RhoGAP in modulating insulin/IGF-1 signaling to CREB. 

Increased ROK (ROCK) activity in mutant cells downmodulates insulin/IGF signal into downstream pathway 

factors, MAP kinases and JNK, promoting CREB activity (taken from Sordella et al., 2002) 

 

In summary, the activity balance between the GEFs and GAPs has been shown to be 

important in the regulation of Rho GTPases, and therefore it is interesting to see the relationship 

between them in axonal outgrowth and in neuronal development. 

 

1.5 GDIs (Guanine Nucleotide Dissociation Inhibitors) 

The GDP-bound form of the Rho GTPase specifically interacts with proteins in the cytoplasm 

known as guanine nucleotide dissociation inhibitors (GDIs), which keep Rho in an inactive form 

in cells (reviewed by Olofsson, 1999).  The Rho-GDI family consists of at least three isoforms: 

Rho-GDIα, Rho-GDIβ, and Rho-GDIγ.  Rho-GDIs are active on all Rho, Cdc42, and Rac 

proteins (Abo et al., 1992, Leonard et al., 1992; Hart et al., 1992).  Ubiquitously expressed 

proteins, GDIs are so named for their function of inhibiting the dissociation of GDP from Rho 

proteins (Ueda et al., 1990) and therefore prolonging the time Rho GTPases spend in the inactive 

form, preventing GDP/GTP exchange activity by GEFs (Figure 1).  Another biochemical 

characteristic of GDIs is a weak interaction with the GTP-bound Rho to inhibit GTP hydrolysis, 

resulting in a blockage of intrinsic and GAP-mediated GTPase activity (reviewed by 

DerMardirossian and Bokoch, 2005; Hart, et al., 1992; Chuang et al., 1993; Sasaki et al., 1993; 

Hancok and Hall, 1993).  Therefore, GDIs are capable of blocking the GDP binding/GTP cycle 

both at the GDP/GTP exchange step and at the GTP hydrolysis step (reviewed by Van Aelst and 

D’Souza-Schorey, 1997). 
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GDIs are also involved in controlling the distribution of the Rho GTPases cycling 

between the cytosol and the plasma membrane (Figure 1, reviewed by DerMardirossian and 

Bokoch, 2005).  The inactive Rho GTPases bound to Rho-GDI stay in the cytosol.  When GDIs 

release the inactive Rho, it then incorporates into the plasma membrane lipid layer, where it is 

converted to the active GTP-bound form by interaction with membrane-associated Rho-GEFs.  

After GTP hydrolysis, a membrane associated, GDP-bound Rho may bind to a GDI.  Once this 

occurs, the newly formed complex dissociates from the membrane and returns to the cytosol 

(reviewed by Sasaki and Takai, 1998).  Therefore, GDIs help to terminate GTPase signaling at 

the membrane and serve to sequester inactive GTPases in the cytosol.  The formation of the Rho-

GDI complex has been shown to be required for the suppression of Rho signaling (Yamashita 

and Tohyama, 2003). 

 

1.6 The neurotrophin family 

The neurotrophin family consists of nerve growth factor (NGF), brain-derived neurotrophic 

factor (BDNF), neurotrophin-3 (NT-3), and neurotophin-4/5 (NT4/5).  The neurotrophin family 

of neurotrophic factors are known for their effects on neuronal survival and growth.  

Neurotrophins help to stimulate and control neurogenesis, and one of their most important 

abilities is to support the survival of a wide variety of peripheral nervous system neuronal 

populations (reviewed by Bibel and Barde, 2000).  These trophic factors are released from target 

cells, retrogradely transported along their axons, and rapidly degraded upon arrival in cell 

bodies. 

NGF is important for the survival and maintenance of sympathetic and sensory neurons.  

NGF binds to and activates its high affinity receptor TrkA.  It is then internalized into the 

responsive neuron.  The NGF/TrkA complex is subsequently trafficked back to the cell body 

and this NGF movement from axon tip to soma is thought to be involved in the long-distance 

signaling of neurons.  NGF accelerates neurite outgrowth from embryonic rat hippocampal 

neurons (Brann et al., 1999) and chick ciliary ganglion neurons (Yamashita et al., 1999)  NGF is 

suggested to be important in later stages of innervations of nerve because NGF is strongly 

expressed in epithelial targets. 

BDNF plays important roles in proliferation, differentiation and survival of neurons 

during development, as well as in the synaptic activity and plasticity in mature neurons.  

Regulation of the local availability of BDNF at the cell soma, dendrites, axons, and spines gives 

spatial and temporal specificity of the different effects.  BDNF deficient mice do not have slowly 

adapting mechanoreceptors (Carroll et al., 1998).  Mutations in the gene encoding MeCP2 
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(methyl-CpG binding protein 2) cause Rett syndrome (RTT) which is an X-linked postnatal 

neurodevelopmental disorder and BDNF was found to be the first mammalian neuronal target 

gene for MeCP2 (Chen et al., 2003; Martinowich et al., 2003).  A functional interaction between 

BDNF and MeCP2 was shown in vivo that BDNF protein levels decrease in Mecp2−/y cortex by 

21%, cerebellum by 41%, and the rest of the brain by 55% of wild-type levels.  The decrease of 

BDNF levels in the absence of MeCP2 is surprising, knowing that BDNF is a target of repression 

by MeCP2 (Chang et al., 2006).  The forebrain-specific BDNF deficient mice mimicked the 

phenotypes seen in the MeCP2 deficient mice in that they have a decreased brain weight, 

smaller olfactory and hippocampal neuronal sizes, and a clasped hindlimb.  Overexpression of 

Bdnf did not rescue these phenotypes shared by these two deficient mice, while the phenotypes 

of Mecp2−/y mice that are rescued by BDNF are not detected in BDNF deficient mice.  

Therefore, BDNF has extensive modulatory effects in neurons throughout the brain, some of 

which are in common with MeCP2 function (reviewed by Sun and Wu, 2006) 

NT-3 was the third neurotrophic factor in the NGF-family of neurotrophins characterized 

after NGF and BDNF.  It has activity on certain neurons of the peripheral and central nervous 

system; it supports existing neurons to survive and differentiate and encourages new neurons 

and synapses to grow and differentiate.  NT-3 is unique in the number of neuron types it can 

potentially stimulate, given its ability to activate two of the receptor tyrosine kinase neurotrophin 

receptors TrkB and TrkC.  Mice deficient in the NT-3 gene have shown a loss of proprioceptive 

and subsets of mechanoreceptive sensory neurons (Ernfors et al., 1994; Tessarollo et al., 1994).  

Both BDNF and NT-3 play an important role in growth cone turning in embryonic Xenopus 

laevis spinal cord neurons (Song et al., 1997; Ming et al., 1997). 

Neurotrophins regulate neuronal differentiation, axon extension, guidance, arborization, 

and synaptogenesis (Gundersen and Barrett, 1979; Cohen-Cory and Fraser, 1995; Gallo et al., 

1997; Lom and Cohen-Cory, 1999; Ming et al., 1999; Yamashita et al., 1999; Alsina et al., 2001; 

Frost, 2001; Tucker et al., 2001).  The neurotrophin activating pathways also regulate the 

cytoskeleton, which affects growth cone behaviors (Gallo and Letourneau, 1998b, 2000).  

Neurotrophins stimulate both axonal and dendritic growth and axonal outgrowth from CNS 

neurons has been shown to depend on neurotrophic factors in vitro (Lentz et al., 1999; Goldberg 

et al., 2002; reviewed by McAllister et al., 1999; Markus et al., 2002, Tucker, 2002).  

Additionally, neurotrophic factors may be important in stimulating axon growth after CNS 

injuries to the spinal cord (Coumans et al., 2001).  In vivo, injection of NGF increased the 

ingrowth of sympathetic and sensory nerves in brain (Menesini Chen et al., 1978).  NGF or TrkA 

deficient mice showed that more than 80% of DRG neurons are lost (Crowley et al., 1994; 
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Smeyne et al., 1994; Silos-Santiago et al., 1995).  All DRG neurons that die in the absent of 

NGF/TrkA signaling survive when BAX is eliminated.  Crossing NGF null or Trk null mice with 

the pro-apoptotic gene BAX deficient mice showed the inhibition of apoptosis in peripheral 

neurons (Patel et al., 2000).  Peripheral axons were found to be extended toward ectopic sources 

of neurotrophins and its growth was reduced by function-blocking antibodies, suggesting that 

neurotrophins are involved in axonal elongation during development (Tucker et al., 2001). 

 

1.7 The neurotrophin receptors, p75 and the Trks 

Two classes of receptors for neurotrophins are p75 (p75NTR) and the Trk family of Tyrosine 

kinases receptors.  p75NTR is a membrane glycoprotein and a low affinity neurotrophin receptor 

to which all neurotrophins bind (reviewed by Bothwell, 1995).  The Trk family includes TrkA, 

TrkB, and TrkC.  Trks bind to specific neurotrophins with a much higher affinity than p75NTR; 

NGF acts via TrkA, BDNF and NT4/5 act via TrkB, and NT3 acts via TrkC (reviewed by 

Barbacid, 1993) (Figure 7).  Coactivation of the phosophoinositide-3-kinase and phospholipase 

C-γ pathways is important for chemotrophic responses through Trk receptors (Ming et al., 1999) 

 

 
Figure 7.  Neurotrophins and their receptors:  Trks bind to specific neurotrophins with a much higher affinity; 

NGF acts via TrkA, BDNF and NT4/5 act via TrkB, and NT3 acts via TrkC while p75 binds to all neurotrophins. 

(Courtesy of Tucker) 

 

The expression of p75NTR has been implicated in many different biological roles 

including cell death, cell migration, and modulation of synaptic transmission and functional 

regulation of sensory neurons.  p75NTR is highly expressed in motor neurons in the spinal cord, 

most sympathetic and sensory neurons in the peripheral nervous system, cerebellar Purkinje cells 

and retinal ganglion cells during outgrowth of axons from these cells (von Bartheld et al., 1991).  
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Neurotrophin binding to p75 decreases RhoA signaling, which promotes the extension of 

filopodia (reviewed by Gallo and Letourneau, 2004).  In migrating cells of the nervous system, 

the neural crest cells also express p75NTR from the beginning of their separation from the dorsal 

neural tube (Stemple and Anderson, 1992).  A link between p75NTR, Rho and the actin 

cytoskeleton has been suggested (Figure 8 and 9), and p75NTR may have an important role in axon 

guidance during the development (Dechant and Barde, 2002).  p75NTR is suggested to be a growth 

inhibitory protein for NGF-dependent neurons and functions in concert with myelin to prevent 

axonal growth in the adult brain (Kohn et al., 1999). 

p75NTR is expressed at high levels in subplate neurons with a low-rostral to high-caudal 

gradient form throughout the period of thalamocortical innervations, therefore p75NTR is 

suggested to play a role in thalamic innervations of cortex (Lee et al., 1992, 1994).  NT3 

binding to p75NTR increases neurite length and filopodial formation of immunopurified subplate 

neurons in vitro. 

Interestingly, RhoA was identified as a protein that interacts with the neurotrophin p75NTR 

through a yeast two-hybrid screen.  It was found that the predominant GDP-bound form of wild-

type RhoA associates with p75NTR while constitutively active RhoA does not interact with p75NTR  

(Yamashita et al., 1999), suggesting that RhoA activation was dependent upon the interaction of 

RhoA and p75NTR.  However, later it was found that Rho-GDI, not RhoA, interacted directly with 

the p75NTR acting as a displacement factor to release RhoA from Rho GDI, an activity that can be 

enhanced by MAG and Nogo (Yamashita and Tohyama, 2003).  p75NTR integrates diverse 

growth-regulating cues, including those from neurotrophins and myelin proteins, which may be 

important for both development and maintenance of neuronal circuitry. 

The neurotrophin receptor p75NTR has been described as having Rho-GDI displacement 

activity, resulting in the activity to release RhoA from Rho-GDI (Yamashita and Tohyama, 

2003).  The Nogo receptor (NgR) associates with the p75NTR receptor in the absence of Myelin-

associated glycoprotein (MAG) or Nogo.  In this state, axonal growth and regeneration will 

occur, partly due to the fact that Rho-GDI remains complexed with Rho-GDP in the cytosol 

(Figure 8).  However, in the presence of MAG or Nogo, the cytoplasmic domain of the NgR 

preferentially binds Rho-GDI, resulting in the release and subsequent activation of the Rho 

GTPase.  In this state, activated Rho-GTP interacts with other signaling proteins such as Rho 

kinase (ROK/ROCK) resulting in no growth (Figure 8).  Supporting evidence for this mechanism 

comes from reports that neurite outgrowth in postnatal cerebellar neurons was inhibited by MAG 

and Nogo, but overexpression of Rho-GDI reversed their inhibitory effects resulting in neurite 

growth (Yamashita and Tohyama, 2003). 

15 



Introduction 
 
 

In myelin-independent mechanisms, p75NTR activated by BDNF can suppress axonal 

growth probably because of the inhibition of nerve growth factor (NGF)-induced TrkA growth 

signaling to MAP kinase (MAPK) or Rac.  Or it is possible that other unidentified growth 

inhibitory proteins could play a role in this signaling to cause the inhibition of growth (Figure 8). 

 
Figure 8.  Mechanisms of axonal outgrowth inhibition: p75NTR associates with RhoGDI and causes the inhibition 

of growth (taken from Kaplan and Miller, 2003) 

 

Neurotrophin binding to p75NTR inactivates RhoA in HN10 cells and cerebellar neurons 

(Yamashita et al., 1999).  However, p75NTR activate RhoA in transfected HEK293 cells 

independently from the ligand neurotrophin (Figure 9).  p75NTR is suggested not to be a 

constitutive activator of RhoA in the cells expressing endogenous p75NTR (Yamashita and 

Tohyama, 2003).  Whole-mount of p75NTR-deficient mice carrying a targeted deletion in the third 

exon encoding the neurotrophin-binding domain were stained with anti-TuJ1 (beta-tubulin III), 

showing that outgrowth of spinal and sensory axonal elongation was retarded during embryonic 

development.  This phenotype is probably caused by the loss of neurotrophin binding ability in a 

p75NTR–dependent manner (Figure 10, Yamashita et al., 1999). 
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Figure 9.  p75 activates RhoA in the absence of ligand NGF  The levels of GTP-bound Rho were increased with 

coexpression of full-length p75NTR with RhoA.  10min of the neurotrophin NGF application already showed the 

decrease of the GTP-bound Rho.  (taken from Yamashita et al., 1999) 

 

 
 
Figure 10.  Intercostal nerve outgrowth slowed in p75-/- at 12.0 d.p.c. (Whole mount Tuj1 (beta tubulin III) Ab): 

Outgrowth of spinal and sensory axonal elongation was retarded during the development in p75NTR-deficient mice 

carrying a targeted deletion in the third exon encoding the neurotrophin-binding domain.  (taken from Yamashita et 

al., 1999) 

 

p75NTR plays an important role in the death of superior cervical ganglion neurons in the 

sympathetic system (Bamji et al., 1998, Brennan et al., 1999).  The absence of p75NTR resulted in 

contradictory reports demonstrating an increase, a decrease, or no change in the number of basal 

forebrain neurons (Yeo et al., 1997, Peterson et al., 1999; Ward and Hagg, 1999), but one 

consistent result is that p75NTR activated by a neurotrophin can cause apoptosis in the absence of 
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Trk receptor (Dechant and Barde, 1997).  The apoptosis mechanism of p75NTR is suggested to 

include Rac GTPase and JNK (Harrington et al., 2002). 

 

1.8 Use of the tau locus for gene expression in newborn neurons 

The assembly of microtubules is regulated by microtubule-associated proteins known as MAPs.  

MAPs have been largely divided into two categories: Type I including MAP1 proteins and type 

II including MAP2, MAP4 and TAU/MAPT.  The MAP1 family, comprised of MAP1a and 

MAP1b, binds to microtubules differently than other MAPs, utilizing charged interactions 

(reviewed by Mandelkow and Mandelkow, 1995).  In general, the MAP C-terminal domains 

bind the microtubules while the N-terminal domains of the MAPs bind other parts of the 

cytoskeleton or the plasma membrane, resulting in spacing of the microtubule in the cells.  The 

MAP1 family is found in axons and dendrites, tau is found in the axon, and MAP2 in the 

dendrites.  In vitro activities of tau suggest a role in the neural outgrowth and the neuronal 

polarity development.  Tau proteins stabilize microtubules by interacting with tubulin.  However, 

mice deficient in the gene encoding tau are healthy, and neuronal development is almost normal 

both in structure and function.  Using the cDNA for EGFP targeted into the locus encoding tau, 

strong EGFP was expressed throughout the embryonic central nervous system (Figure 11; 

Tucker et al., 2001). 

 
 

Figure 11.  Targeting of the EGFP cDNA to the tau locus  Homozygous mutant embryo at 10.75 d.p.c. with epi-

fluorescence.  Labelled structures are as follows, proceeding caudally: arrow, trigeminal mesencephalic nucleus; 

Vmx,maxillary branch of trigeminal nerve; Vmn, mandibular branch of trigeminal nerve; VII, geniculate ganglion; 

VIII, vestibulocochlear ganglion; IX, glossopharyngeal ganglion; 
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X, vagus nerve; XI, spinal accessory nerve; XII, hypoglossal nerve; D, dorsal root ganglion and spinal cord; 

*spinal nerves growing into forelimb. Scale bar, 500 μm. (taken from Tucker et al., 2001). 

 

Using the tau locus as a target for other expression constructs, the effect of having 

various genes under the control of neuron-specific promoter has been tested.  For example, 

MeCP2 which is thought to be responsible for the cause of the neurodevelopment abnormality 

called Rett syndrome, was engineered into the tau locus and resulted in the rescue of Rett 

syndrome in the transgenic mice (Luikenhuis et al., 2004).  Other examples of using tau locus 

include two ETS transcriptional factors of the Pea3 family, Er81 and Pea3, which were 

introduced into the DRG sensory and spinal motor neurons in the mouse. They showed that the 

late start of ETS signaling is crucial for the development of normal sensory afferent protrusions 

in the proprioceptive sensory neurons of the spinal cord (Hippenmeyer et al., 2005). 

 

1.9 Rho GTPases and neurite outgrowth development 

During embryogenesis, axons must arrive at their targets properly in order to establish the 

complex neural networks in the adult nervous system.  As neuronal precursors differentiate into 

neurons, one of the first obvious neuron-specific incidents is axon outgrowth.  As a growth cone 

travels along its path, the growth cone of the axon specifically reacts to environmental 

extracellular signals to determine its next move during navigation.  Growth cones travel toward 

attractant sources and away from repellent sources (Figure 12).  The process of neurite formation 

and differentiation into axons and dendrites needs to precisely regulate the cytoskeleton.  The 

actin cytoskeleton needs to cycle between the polymerization and depolymerization states for the 

growth of axon, thereby blockage of either state would inhibit axonal growth.  Extension and 

retraction of growth cones are caused by the rearrangements of the actin cytoskeleton during 

axonal development.  Growth cones respond to the extracellular cues by selectively stabilizing 

(polymerization) or destabilizing (depolymerization) the actin cytoskeleton in filopodia and 

lamellipodia resulting in extension or retraction of the growth cone to achieve directional growth 

(reviewed by Luo et al., 1997).  Blockage of either state would inhibit axonal growth.  

Extracellular cues, attractants and repellents, guide the local reorganization of the actin 

cytoskeleton in the filopodia and lamellipodia.  Complicated regulations of the cytoskeleton in 

the axon produce the development of neurons including axonal branching, turning and 

orientation in chemotactic gradients, growth cone collapse and elongation, and the regulation of 

neurotransmitter release. 
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Figure 12.  Growth cone guidance categorized into four different mechanisms; long-range (chemoattraction and 

chemorepulsion) or short-range distance (contact-mediated attraction or contact-mediated repulsion).  Growth 

cones travel toward attractant sources and away from repellent sources (taken from Mueller, 1999) 

 

Rho GTPases play an important role in the regulation of actin in the growth cones 

(reviewed by Luo et al., 1997; Tapon and Hall, 1997; Gallo and Letourmeau, 1998a; Aspenstrom, 

1999a, Mueller, 1999; Song and Poo, 1999; Bishop and Hall, 2000).  When Rho is bound to GTP, 

Rho causes the actin cytoskeleton to become rigid, thereby inhibiting axonal elongation and 

causing growth cone collapse followed by the formation of stress fibers and focal adhesions 

(Figure 13).  In neuroblastoma NIE-115 and phaechoromacytoma PC12 cell lines as well as in 

primary neuronal cultures, both LPA and thrombin causes growth cone collapse, neurite 

retraction and neuronal cell rounding (Suidan et al., 1992; Jalink and Moolenaar, 1992; Jalink et 

al., 1994).  It has been suggested that thrombin and LPA signal through Rho GTPases to regulate 

myosin activity causing growth cone collapse and neurite retraction (reviewed by Luo et al., 

1997). 
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Figure 13.  Rho, Rac, and Cdc42 signal cascade in cytoskeletal organization in Swiss 3T3 fibroblasts.  LPA 

(lysophosphatitic acid) activates Rho, which regulates actin stress fiber and focal adhesion formation.  Rac 

regulates membrane ruffling and the formation of lamelipodia.  Cdc42 regulates the formation of filopodia 

containing bundled F-actin (taken from Takai et al., 2001) 

 

Growth cone collapse in chick embryonic DRG neurons caused by the repellent guidance 

cue collapsin/Semaphorin is mediated through Rac1 and not Rho or Cdc42, but growth cone 

collapse occurred induced by LPA or myelin was not prevented in a dominant negative Rac1 

mutant, indicating that Rac1 does not always act on all guidance cues to collapse DRG growth 

cones (Jin et al., 1997).  Formation of dendrites was decreased by inhibition of Rho GTPases 

and dendrite number was increased by the expression of constitutively active Rho, Rac, or 

Cdc42 in cortical neurons in vitro (Threadgill et al., 1997).  Although Rho GTPases play an 

important role in growth cone morphology and axon outgrowth in both neuronal cells and 

primary neurons, the functional results with neuronal cell lines and between neuronal types may 

be different, as summarized in Figure 14. 
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Figure 14.  Summary of Rho, Rac, and Cdc42 effects on neurite outgrowth (taken from Gallo and Letourneau, 

1998a) 

 

In vitro experiments using cerebellar granule neurons showed that constitutive activation 

of Rho by expression of the V14RhoA mutant or ROCK by expressing a constitutively active 

ROCK-Delta3 mutant inhibited axon outgrowth and decreased the number of axons generated 

from one neuron.  In addition, inactivation of Rho by C3 transferase or ROCK by Y-27632 

augmented axonal processes, leading to the suggestion that the Rho/ROCK pathway functions 

as an initiation point for axonogenesis (Bito et al., 2000). 

It has also been shown that RhoA mRNA is localized to developing axon and growth 

cones, and that its axonal translation regulates the signaling of Sema3A in many aspects of 

neuronal morphogenesis, especially growth cone collapse (Wu et al., 2005).  Rho GTPase 

activities are responsible for stimulating neurite outgrowth on laminin through the assembly of 

integrin-dependent adhesion sites and membrane extension stability in the growth cone (Woo 

and Gomez, 2006).  Axonal RhoA mRNA knock-down studies using RNAi resulted in 

elimination of Sema3A-dependent growth cone collapse (Hengst et al., 2006).  In neuronal 

cell lines, Rho GTPases are also shown to be involved in synapse formation and plasticity 

(reviewed by Ramakers, 2002; Negishi and Katoh, 2005).  Rho GTPases modulate neurite 

outgrowth in response to extracellular guidance signals such as myelin (Kuhn et al., 1999), 

collapsin-1/Sema3A (Jin and Strittmatter, 1997; Vastrik et al., 1999), Ephrin-A5 (Wahl et al., 

2000), and neurotrophins (Ozdinler and Erzurumlu, 2001; Yamashita et al., 1999).  Rac also 

plays a role in axonal patterning in vivo (Hakeda-Suzuki et al., 2002; Ng et al., 2002). 
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Given the importance of the actin cytoskeleton in growth cone steering, it has been 

suggested that Rho GTPases are important in neuronal development, thereby can lead to defects 

in neuronal migration, axonal growth, guidance, and dendritic morphogenesis (reviewed by Luo 

et al., 1997; reviewed by Mueller, 1999) 

Another suggested important role of Rho is in cell survival.  Inactivation of Rho by C3 

transferase induces apoptosis in hematopoeitic cells (Moorman et al., 1996), C3 modified or 

dominant negative Rho expression causes adhesion-dependent or –independent apoptosis 

respectively (Bobak et al., 1997), Clostridium difficile toxin B, a specific inhibitor of Rho, Rac, 

and Cdc42, induced cerebellar granular neurons apoptosis in vitro (Linseman et al., 2001), and 

transgenic mice expressing dominant negative RhoA caused apoptosis in motor neurons of spinal 

cord (Kobayashi et al., 2004), suggesting that Rho GTPases play a role in cell survival signaling.  

Although balanced signaling of Rho GTPases RhoA, Rac1 and Cdc42 results in cytoskeleton 

maintenance, cell survival appears to be controlled by a Rho-mediated pathway (Moorman et al., 

1999). 

The presence of Rho GTPases in the adult brain as determined by in situ hybridization 

and Western blot analysis suggests a functional regulatory role in the adult brain.  The synaptic 

remodeling areas in adult rat brain showed expression of RhoA, RhoB, Rac1 and Cdc42 in 

pyramidal cells of the CA1-CA4 regions and granule cells of the dentate gyrus (DG), hilar cells 

of the hippocampus, Purkinje and granular cells of the cerebellum, in addition to the brainstem, 

thalamus and neocortex (Figure 15) (Olenik et al., 1997). 
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Figure 15.  In situ hybridization of RhoA mRNA in adult rat brain.   Coronal sections of rat forebrain hybridized 

with a DIG-labelled cRNA probe for RhoA..  Cs, cerebral cortex; Th, thalamus; Pir, piriform cortex; DG, dentate 

gyrus.  (taken from Olenik et al., 1997) 
 

Even though in vitro studies have showed that Rho GTPases are important in neuronal 

development, it has not been actually shown that Rho GTPases are involved in axonal and 

dendritic outgrowth in the mouse in vivo. 

 

1.10 Rho GTPases and formation of cortex 

The generation and migration of cortical neuron needs to be tightly regulated for proper 

lamina formation in cortex.  The adult neocortex consists of six layers serving different roles.  

Major sensory and motor areas can be distinguished by their architecture of neurons and 

neuropil.  How cortical areas differentiate during development and the involvement of neural 

activity in this process are still under intense investigation (Katz and Shatz, 1996).

The somatosensory pathways bring sensory information from the periphery into the brain. 

For example, information from the whisker pad goes by the trigeminal nerve that projects  to 
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the trigeminal complex in the brainstem, which in turn sends projections to the medial ventral 

posterior nucleus of the thalamus (VPm).  The final connection from VPm to the primary 

somatosensory cortex is the synaptic connection. 

The primary somatosensory cortex of mammals has a typical cytoarchitecture in layer IV of 

the cortex, called barrels, which represent each individual whisker vibrissae.  Barrels are made 

up of groups of stellate cortical neurons with cell bodies arranged in a ring and dendrites filling 

the hole in the center of the barrel, known as the barrel hollow.  Barrel formation occurs over 

the first two days after birth, and it depends on sensory input from the relevant whisker 

vibrissae.  Barrels show experience-dependent plasticity; if a whisker is cut during this 

formation period, the corresponding cortical barrel is not formed but is combined with the 

neighboring barrel.  As thalamic axons grow through the lower layers of the cortex within the 

first days after birth, they make bundles to form a barrel-like pattern (reviewed by O'Leary et 

al., 1994; Agmon et al., 1995).  Subsequently, this segregated group of axons reaches layer IV.  

Most neurons become dislocated to form the barrel walls, and readjust their dendrites into the 

barrel hollows, where they receive synaptic input from their particular distinguished bundle of 

thalamic afferents from the ventroposterior complex of the thalamus.  The remaining few 

cortical neurons in the barrel hollow maintain symmetrically distributed dendrites (Greenoug 

and Chang, 1988). 

The morphological reorganization and differentiation of cortical neurons to form barrels 

are partially due to signals delivered by thalamic axons.  For instance, it has been shown that 

barrels were formed in the primordial visual cortex transplanted into the neonatal somatosensory 

cortex when invaded by axons from ventroposterior (VP) thalamus nucleus (Schlaggar and 

O'Leary, 1991).  Interfering with the VP axons totally disorders barrel differentiation (Welker et 

al., 1996; Abdel-Majid et al., 1998; Cases et al., 1996).  Mice deficient in the monoamine 

oxidase A (MAOA) gene show decreased serotonin levels, and a failure of ingrowing thalamic 

axons to separate to form the primordial barrel pattern and of the rearrangement of cortical 

neurons (Case et al., 1996).  However, the exact mechanism of the rearrangement of neurons in 

layer IV responding to the pre-formed pattern of thalamic axons needs to be further addressed.

In p75NTR deficient mice, fewer filopodia on subplate growth cones was observed.  There 

is a reduced thalamic innervation of visual cortex in p75NTR deficient mice, but normal 

innervation of auditory and somatosensory cortex (McQuillen et al., 2002).  A function of 

subplate neurons and p75NTR in area-specific innervation of neocortex has been suggested in that 

despite the fact that p75NTR deficient mice cause a morphological defect with random ectopic 
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projections in subplate axons, most of the subplate axons arrive at the internal capsule as they do 

in wild-type mice. 

It has also been shown that BDNF is involved in neuronal laminar destination in the 

developing mouse cerebral cortex; BDNF changed the location and projections of neurons in 

layer IV to the deeper layers V and VI (Fukumitsu et al., 2006).  It has also been shown that the 

progenitor neurons in layer IV, but not in layer II/III, have been altered to become neurons in 

layer V and VI by BDNF treatment (Ohmiya et al., 2001).  There may be a link to alter the 

migratory machinery between the Rho GTPases and BDNF. 

During postnatal brain development, experience-dependent synaptic rearrangement is 

important to optimize neuronal network circuitry to meet environmental demands.  The Rho 

GTPases have been suggested to be involved in neurological diseases such as X-linked mental 

retardation (MR) (reviewed by Ramakers, 2002; Neghishi and Katoh, 2002) as well as 

Alzheimer's disease (Cordle et al., 2005), and thereby the importance of Rho GTPases in the 

development, maintenance and function of the nervous system have been demonstrated in 

humans.  It is unclear, however what the exact roles of Rho GTPases are in layer formation in 

the cortex. 

 

1.11 Project aims utilizing the RhoA transgenic mice 

RhoA, RhoB, and RhoC have been shown to interact with p75NTR through Rho-GDIs and inhibit 

neurite extension of neurons in vitro.  RhoA, RhoB, and RhoC are known to be expressed in 

developing rat DRG and spinal cord (Erschbamer et al., 2005) and RhoA and RhoB are 

expressed in developing chick DRG at E6.5, which is equivalent to mouse 12.5 d.p.c. (Malosio et 

al., 1997).  RhoA, RhoB, and RhoC have shown gene-specific patterns of expression in the 

sensorimotor cortex, DRG, and spinal cord in the adult, suggesting different roles for the Rho 

GTPases family members (Erschbamer et al., 2005) and RhoA has been shown to be expressed 

in adult rat brain (Figure 15; Olenik et al., 1997).  Considering all the preliminary data shown 

previously that Rho GTPases can play an important role in the development of the nervous 

system, we were interested in using transgenic RhoA mice to answer the question, do RhoA, 

RhoB, and RhoC guide developmental outgrowth of peripheral nerves? 

Our primary hypotheses for the early development of the RhoA transgenic mice were: 

1) Expression of a dominant negative RhoA (N19-RhoA) or the RhoA inhibitor C3 

transferase may interfere with growth inhibitory signals such as those provided by Sema3A 

because RhoA activation has been shown in Sema3A signalling, and thus axons from the DRG 

neurons may grow out into normally non-permissive areas. 
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2) Overexpression of constitutively active RhoA (V14-RhoA) may reduce or abrogate 

nerve extension, similar to that seen in the p75 mutant mouse where GTP-bound Rho could 

activate signaling proteins such as Rho kinase (ROCK) which resulted in no growth or induced 

retraction through growth cone collapse (Dickson, 2001). 

However, since the protein expression of dominant negative N19-RhoA after crossing 

with Cre mice was detectable only at the postnatal stage, I decided to look at the consequence of 

the dominant negative RhoA expression in the brain at the postnatal stage. 

In this thesis, I report the construction and analysis of mutant-variant RhoA transgenic 

mice, focusing upon the N19-RhoA mouse line at postnatal stage. 
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2 METHODS 

2.1 Construction of targeting vectors 

2.1.1 HA-tagged dominant negative RhoA (N19-RhoA) 

2.1.2 HA-tagged constitutively active RhoA (V14-RhoA) 

2.1.3 EGFP fusion-C3 transferase 

Additional details are given in the Appendix chapter, where I also briefly review the background 

techniques. 

 

 
 
Figure 16. Tau targeting construct and strategy  Homologous recombination strategy for exon 1 of mouse N19-

RhoA, V14-RhoA, or EGFP-C3 gene. A, wild-type allele of tau gene. B, targeting vector. C, expected homologous 

recombination event. D, predicted structure of the tau allele after crossing with the Cre deletor mouse.  Exon 1, 

light blue; loxP sites, black box; cDNAs of interest, GeneX in a blue box.  Red bars indicate the hybridization 

probes and arrows indicate the expected size of restriction fragments for Southern analysis. 
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The tau targeting vector backbone, termed pSilvia, and a stop cassette construct LSL/pGEM 

were gifts from Dr. Silvia Arber.  The plasmid pSilvia was generated to target to the tau locus 

and cDNAs can be inserted in Exon 1 (Figure 16A and B).  cDNAs of interest lie downstream of 

a stop cassette flanked by loxP sites.  The plasmid LSL/pGEM contains a stop cassette which 

consist of a transcriptional termination signal and a neomycin resistance gene cassette as a 

positive selection marker for embryonic stem (ES) cell culture.  After insertion of the polylinker 

site of PWL512p into the SalI site of the LSL/pGEM plasmid, termed pPWL512/LSL/pGEM, 

each interested cDNA could be inserted into the unique EcoRI site of the pPWL512/LSL/pGEM 

plasmid.  Each plasmid in pPWL512/LSL/pGEM was finally subcloned into the pSilvia with the 

unique AscI site.  The orientation of all insertions was verified by complete DNA sequencing.  

The functionality of the loxP sites was confirmed by transforming the targeting vector into E. 

Coli cells expressing Cre recombinase and subsequent PCR analysis using a specific pair of 

primers to amplify the fragments containing a stop cassette gene floxed by two loxP showed a 

complete removal of a stop cassette (Figure 17). 

 

 
 
Figure 17.  Schematic strategy and efficiency of the removal of a stop cassette by Cre recombinase 
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A  Schematic representation for the removal of the stop cassette by Cre recombinase. The fragment containing a 

floxed stop cassette was amplified by PCR.  B  PCR analysis on DNA from transfected targeting plasmid into Cre-

expressing bacteria. C  PCR analysis on DNA from the targeted ES cells after the electroporation of a Cre plasmid 

p (+Cre) and the genomic DNA from the cerebellar granule cells of Cre+/N19RhoA+ mouse 

 

The targeting vector was linearized with PmeI and 30 µg were electroporated into mouse 

embryonic stem (ES) cells (strain J1 for N19-RhoA and EGFP-C3 and strain V6.5 for V14-

RhoA).  After 36 hours of culture, the cells were grown in G418 (380 µg/ml) on top of a layer of 

mitotically-inactivated embryonic mouse fibroblast cells (see the Appendix 5.7 “Mouse 

embryonic stem cell culture”).  Individual resistant colonies were picked up 6-8 days after G418 

selection and split into 24-well plates (on top of a layer of mitotically-inactivated embryonic 

mouse fibroblast cells) and 24-well plates (coated with 0.1 % gelatin) for expansion.  After 2-3 

days, the clones cultured in 24-well feeder plates were frozen in ES cell medium containing 10% 

DMSO and 25% FCS at -80 °C and then stored in liquid nitrogen.  The clones cultured on 

gelatin plates were expanded for genomic DNA isolation. 

ES cell colonies were screened by Southern blots; genomic DNA was digested with 

BamHI for a Tau specific 5’ external probe and with KpnI for a Tau specific 3’ external probe.  

The same Southern blot technique was employed to establish targeting of the tau locus with all 

three targeting vectors.  For the N19-RhoA and V14-RhoA constructs, the BamHI fragment 

resulted in an 8.8-kb band for the wild-type allele and a 2.9-kb band for the targeted allele, and 

KpnI fragment results in a 9.0-kb band for the wild type allele and a 8.1-kb band for the targeted 

allele. 

For the N19-RhoA construct, 49 neomycin-resistant clones were picked, of which 28 

colonies were analyzed by Southern blots.  First electroporation for N19-RhoA construct, of the 

first 11 colonies in total screened, five were positive with the 5’ external probe (BamHI 

digestion) and, of 28 colonies screened, five were positive with the 3’ external probe (KpnI 

digestion) (Figure 18). 
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Figure 18. Southern blots of ES cell clones (HA2 and HA24) after the electroporation of N19-RhoA targeting 

construct.   (Left) a 8.8-kb BamHI band for the targeted allele and a wild-type 2.9-kb when probing with the 5’ 

external probe.  (Right) KpnI digested DNA of clones revealed a 8.1-kb band for the targeted allele and a 9.0-kb 

for the wild- type allele when probing with the 3’ external probe.  t: targeted clone. 

 

For the V14-RhoA construct, 48 neomycin-resistant clones were picked and were 

analyzed by Southern blots.  Of 34 colonies screened, four were positive with the 5’ external 

probe (BamHI digestion) and of 24 colonies screened, three were positive with the 3’ external 

probe (KpnI digestion) (Figure 19). 

 

 
Figure 19. Southern blots of ES cell clones (HB60 and HB62) after the electroporation of V14-RhoA targeting 

construct.   (Left) 8.8-kb BamHI band for the targeted allele and a wild-type 2.9-kb when probing with the 5’ 

external probe.  (Right) KpnI digested DNA of clones revealed a 8.1-kb band for the targeted allele and a 9.0-kb 

for the wild type allele when probing with the 3’ external probe.  t: targeted clone.. 

 

For the EGFP-C3 construct, 118 neomycin-resistant clones were picked, and analyzed by 

Southern blots.  Of 65 colonies screened, two were positive with the 5’external probe (BamHI 

digestion), and of 8 colonies screened, two were positive with the 3’ external probe (KpnI 

digestion) (Figure 20). 
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Figure 20.  Southern blots of ES cell clones (C3-60 and C3-62) after the electroporation of EGFP-C3 targeting 

construct.  (Left) a 8.8 kb BamHI band for the targeted allele and a wild-type 2.9 kb when probing with the 5’ 

external probe.  (Right) long running gel of KpnI digested DNA of clones 2 and 3 revealed a 8.1 kb band for the 

targeted allele and a 9.0 kb for the wild type allele when probing with the 3’ external probe.  t: targeted clone. 

 

Targeted ES Cells (Ha2 and Ha24 for N19-RhoA, V14-17 and V14-20 for V14-RhoA, 

and C3-60 and C3-62 for EGFP-C3) were injected by F. Zimmermann at the Interfakultaere 

Biomedizinische Forschungseinrichtung, University of Heidelberg into the blastocysts of mice of 

the inbred strain C57/BL6 for the N19-RhoA and EGFP-C3 constructs and of mice of the inbred 

strain FVB/N for the V14-RhoA constructs.  Of 5 chimeras obtained, 2 high density male 

chimeras were bred with C57/BL6 wild-type mice to generate the N19-RhoA mouse line.  The 

germline transmission of the targeted N19-RhoA allele was confirmed by Southern blots of 

mouse tail DNA digested with BamHI and KpnI hybridized with the 5’ external probe and the 3’ 

external probe, respectively.  All mice were handled according to the guidelines of the 

University of Heidelberg animal facility and the State of Baden-Wuerttemberg. 

The subsequent generations of N19-RhoA and EGFP-C3 have been maintained on a 

C57/BL6 background.  The generations of V14-RhoA have been maintained on an FVB/N or a 

C57/BL6 background.  N19-RhoA and V14-RhoA mice were analyzed by PCR with primers 

amplifying a specific HA-tagged RhoA (Figure 38). 

 

2.2 Proof of the functionality of the loxP sites in targeted ES cells 

The targeted ES cell line Ha24 was electoroporated with the linearized plasmids pCAGGS-CRE 

(a gift from Prof. Dr. Junichi Miyazaki, Kyoto, Japan) and pPgk-PURO.  After 36 hours of 

electroporation, the cells were grown in puromycin (2 µg/ml) on top of a layer feeder fibroblast 

cells (feeder fibroblast cells were not puromycin resistant).  Individual resistant colonies were 

picked up 6-8 days after puromycin selection and split into 24-well plates (coated with 0.1 % 
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gelatin) for expansion.  After 2-3 days, the clones cultured in 24-well plates were frozen in ES 

cell medium containing 10 % DMSO and 25 % FCS at -80 °C and then stored in liquid 

nitrogen.  The clones cultured on gelatin plates were expanded for genomic DNA isolation and 

analyzed by PCR for deletion of a stop cassette.  

 

2.3 Breeding with Cre mice to remove a floxed stop cassette 

To remove a floxed stop cassette from the tau locus we crossed the N19-RhoA mice with two 

lines of mice that express Cre recombinase.  Offspring were genotyped by PCR for both HA-

tagged RhoA and Cre.  The Cre mice we used were EIIa::CRE (Lakso et al., 1996) and 

Nestin::CRE (Kurihara et al., 2000), which were gifts from Prof. Dr. S. Offermanns’ lab.  The 

EIIa::CRE mouse line expresses CRE recombinase under the control of the adenovirus EIIa 

promoter.  Expression of CRE recombinase starts from the zygote stage and recombination of a 

floxed allele occurs in all cell types.  The nestin::CRE mouse targets expression of CRE 

recombinase from the nestin promoter and nervous system enhancer, and therefore this is a 

specific promoter for proliferating glial and neuronal precursors. 

 

2.4.1 Cloning of N19-RhoA and V14-RhoA cDNA 

The two mutant forms of the RhoA proteins that we used are 1) a dominant-negative mutant 

made by mutating threonine (T) at amino acids 19 to asparagine (N), termed N19-RhoA and 2) 

a constitutively-active form made by mutating glycine at amino acid 14 for RhoA to valine (V), 

termed V14-RhoA.  HA tagged N19-RhoA or V14-RhoA cDNAs subcloned into a targeting 

vector that would allow integration at the ROSA locus (plasmids courtesy of Dr. U. Mueller, 

Scripps Research Institute, La Jolla, CA, U.S.A.) were amplified by PCR using the primers 

described (see the Appendix section 5.9.1 “Primers used for targeting vector construction” for 

more details).  The PCR primers introduced a Kozak sequence including BamHI that facilitated 

cloning. 

The coding region of HA-tagged N19-RhoA or V14-RhoA was amplified from human 

cDNA using AccuPrime Pfx DNA polymerase (Invitrogen).    The mouse and human RhoA 

genes are both 582 bp in size and they share 93.6% nucleotide identity and 99.5% identical at 

amino acids level.  PCR primers were designed from the predicted human cDNA sequence 

(NCBI accession number: NM_001664) tagged with an HA peptide.: forward primer RhoA1 5’-

AAT GTC GAC GGC ACC ATG GCC tac ccc tac g-3’ and reverse primer RhoA2 5’- TAT 

GCG GCC GCT CAC AAG ACA AGG CAA CC -3’ (19 cycles at 95 °C for 30 sec, 65 °C (+/- 7 
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°C gradient PCR) for 30 sec, 72 °C for 30 sec, 100 ng of cDNA).  Lower case letters indicate a 

part of an HA peptide sequences and a SalI site was underlined in the forward primer, and a NotI 

site was underlined in the reverse primer  The PCR fragment was gel-purified with QIAEX II gel 

extraction kit (Qiagen) and subcloned into the ZERO blunt TOPO cloning vector (PCR-blunt 

Amp Cloning Kit, Invitrogen).  The insert was then excised with EcoRI and subcloned into the 

PWL512/LSL/pGEM vector (gift of Dr. Silvia Arber, see 2.1 “Construction of targeting 

vectors”), and termed N19RhoA/PWL512/LSL/pGEM or V14RhoA/PWL512/LSL/pGEM.  

They were inserted into the unique AscI site of pSilvia and linearized with PmeI.  Each 

amplified fragment was verified by complete sequencing (see Appendix section 5.9.2 

“Sequencing primers used for N19-RhoA and V14-RhoA cDNA”).  The final targeting construct 

was termed N19RhoA/PWL512/LSL//pGEM/pSilvia for the N19-RhoA construct or 

V14RhoA/PWL512/LSL//pGEM/pSilvia for the V14-RhoA construct. 

 

2.4.2 Cloning of EGFP fusion C3 

A cDNA encoding the C3 transferase from the Gram-positive bacteria Clostridium limosum was 

a kind gift from Prof. Dr. Klaus Aktories of the University of Freiburg, Germany.  In order to 

subclone the C3 cDNA into the pEGFP-C1 vector (Clontech), the BglII site of EGFP-C1 was 

changed toa BamHI site.  1 µg of pEGFP-C1 plasmid was linearized with BglII in 20 µl reaction 

mixture for 1 hour at 37 °C and added EcoRI afterwards.  The C3 fragment digested with 

BamHI and EcoRI was ligated into the pEGFP-C1 vector digested with BglII and EcoRI and 

transformed into DH5α E. coli cells. 

PCR primers to amplify GFP fused C3 transferase cDNAs were designed from the 

published Clostridium limosum C3 transferase sequence (NCBI accession No. X87215) and GFP 

sequence; forward primer 5’-CGG TTT AAA CCG CCA CCA TGG TGA GGT GAG CAA 

GGG C-3’ (PmeI site is underlined) and reverse primer 5’-TAT GCG GCC GCC TAT CTT TTT 

AAT AAT CCT G-3’ (NotI site is underlined) (25 cycles at 95 °C for 30 sec, 65 °C (+/- 7 °C 

gradient PCR) for 30 sec, 72 °C for 30 sec, 100 ng of cDNA).  The PCR fragment was gel 

purified and subcloned into pCR II-TOPO vector (Invitrogen) with sites.  The insert was then 

excised with EcoRI and subcloned into the PWL512/LSL/pGEM vector (gift of Dr. Silvia Arber, 

see 2.1 “Construction of targeting vectors”), and termed EGFP-C3/PWL512/LSL/pGEM.  A 

fragment from this plasmid was finally inserted into the unique AscI site of pSilvia.  In order to 

linearize this plasmid with PmeI, digestion was carried out with EtBr to optimize the linealized 

condition because there were two PmeI sites in the final construct.  Each amplified fragment was 
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verified by complete sequencing (see Appendix section 5.9.2 “Sequencing primers used for 

EGFP-C3 cDNA”).  The final targeting construct was termed EGFP-

C3/PWL512/LSL/pGEM/pSilvia. 

 

2.5 Substitution in N19RhoA/cDNA3.1(+) to wtRhoA/cDNA3.1(+) 

We purchased the wild type RhoA cDNAs from Deutsches Ressourcenzentrum for 

Genomforschung GmbH (RZPD):(RZPD clone ID is IRALp962A174Q).  The wild type RhoA 

plasmid with CMV promoter was used in the cotransfection of the wild type RhoA with N19-

RhoA or EGFP-C3 transferase cDNA to see the efficiency of inhibition of Rho GTPases activity 

by expression of N19-RhoA or C3 transferase (see 2.7 “Rhotekin pulldown assay”).  In order to 

clone the wild type RhoA, a 100 bp fragment containing the V14 amino acid of V14-RhoA was 

substituted with the fragment from wild type RhoA.  V14RhoA/cDNA3.1(+) was double 

digested with BspEI and EcoRV, and then used as a vector.  The wild type RhoA was also 

digested with BspEI and EcoRV, and the expected fragment size of 100 bp was gel purified to 

subclone in the vector from V14RhoA/cDNA3.1(+) above.  Complete sequencing verified the 

wild type RhoA sequence. 

 

2.6 Recombinant expression of mouse N19-RhoA and V14-RhoA cDNAs in different cells 

3 µg of N19RhoA/cDNA3.1(+) or V14RhoA/cDNA3.1(+) expression vectors were transfected 

into HEK293 cells, HN10 cells, and Swiss 3T3 cells in 35-mm plates each using Lipofectamine 

(Invitrogen).  2 days after the transfection, cells were lysed in 300 µl of RIPA buffer in each 

plate and protein expression was analyzed by Western blots. 

 

2.7 Rhotekin pulldown assay 

HEK293 cells in 6-cm dishes were cotransfected with wild type RhoA (6 µg) and different 

amounts of N19RhoA or EGFP-C3 using TransFectin Lipid Reagent (BioRad) and cultured with 

serum starved medium, because LPA in serum is known to activate endogenous Rho.  After 2 

days of transfection, transfected cells were trypsinized with 1x Trypsin (5 mg/ml), placed into a 

2 ml eppendorf tube, and pelleted at 3000 rpm at 4 °C.  The cells were resuspended in 320 µl of 

lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 mM MgCl2) with 10 µg/ml Aprotinin 

(Roche), 10 µg/ml Leupepetin (Roche), and 10 µg/ml PMSF (ROTH) (protease inhibitors are all 

added into lysis buffer right before sonicating) and sonicated three times for 15 sec.  20 µl out of 

320 µl was kept as a lysis control and stored at -80 °C.  With the remaining 300 µl, 100 µl 

Rhotekin beads (prepared by Julia Hoffmann, see the Appendix 5.1 ”Rhotekin beads 
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preparation”) were added and incubated upon the rotator for 45 min.  The cells were centrifuged 

at 4 °C for 15 min at 2900 rpm and the supernatant was discarded.  After 1 ml of wash buffer (50 

mM Tris-HCl, pH 7.5, 0.5 % TritonX-100, 150 mM NaCl, 5 mM MgCl2) with 10 µg/ml 

Aprotinin, 10 µg/ml Leupepetin (Roche), and 10 µg/ml PMSF (protease inhibitors are all added 

in wash buffer right before use) was added, the beads were resuspended and washed for 5 min 

with rotating.  The supernatant was discarded.  After washing three times, the pellet was 

resuspended in 15 µl of 2x sample buffer (see the Appendix 5.6 3 ”6x Sample Buffer”) and 

analyzed by Western blots. 

 

2.8 Metaphase spreads for Karyotype analysis 

ES cells that were free of MEFs by several passages were passaged onto gelatin-coated 6-cm 

plates.   In the next morning, the medium was changed and 15 µl of colcemid (10 µg /ml) was 

added.  After 6 hours of incubation, the cells were washed with 1x PBS, trypsinized with 0.1 % 

trypsin for 3 min at 37 °C in the incubator, and received ES medium to stop the trypsinization.  

The cells were pelleted at 900 rpm for 5 min and the pelleted cells were resuspended after the 

supernatant was removed.  Cells were transferred to 2 ml eppendorf tube and were pelleted at 

2000 rpm for 2 min.  Cells were carefully resuspended in 1 ml 0.075 M (0.56 %) KCl and were 

vortexed at a very low speed while KCl was added dropwise, and then incubated for 10 min at 

RT.  The cells were centrifuged at 2,000 rpm at RT and supernatant was carefully removed with 

a pipette tip.  The pellet was resuspended slowly and carefully in 1 ml of cold and freshly made 

MeOH + acetic acid (3:1) solution, and this step was repeated one more time.  The cells sat 

overnight at 4 °C, and were then centrifuged at 2000 rpm for 2 min and resuspended in MeOH/ 

acetic acid solution.  The slides were cleaned with EtOH and dipped briefly in water.  The cells 

were immediately dropped onto the slides, which were held at a slight angle on the ground using 

a siliconized pasteur pipette from 2-3 meter height.  The slides were put in a tray in 37 °C water 

bath and air dried.  The cells were stained with 3 % Giemsa in GuRR buffer for 20 min at RT.  

Giemsa and GuRR were purchased from Invitrogen.  The slides were dipped into water briefly 

and coverslipped in Entallen Neu (Merck).  Karyotypes were analyzed under the microscope. 

 

2.9 Hybridization probes 

The same 5’ external and 3’ external probes for all three targeting vectors were prepared for 

Southern blot with the analysis of targeting of the EGFP cDNA to the tau locus (Tucker et al., 

2001).  8 µg of pTAU-SRI 5’sonde was digested with SmaI and followed by EcoRI which 
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produced an approximately 500-bp genomic fragment and used as the 5’ external probe which is 

located 2.8-kb upstream of exon 1.  8 µg of pTAU KHBRI 3’sonde was double digested with 

BamHI and EcoRI yielding a 600-bp genomic fragment for the 3’ external probe.  25 ng of each 

probe was used for each Southern blot hybridization. 

For the analysis of Cre recombinase efficiency for the removal of a stop cassette, an 

approximately 600-bp N19-RhoA cDNA fragment, amplified by PCR (using a forward primer 

RhoA1 and a reverse primer RhoA2) was used as a probe for Southern blot analysis. 

 

2.10.1 Southern blots 

Digested genomic DNA fragments were separated by electrophoresis on 0.7% agarose gels 

(containing 0.5 μg/ml ethidium bromide) in 1 x TAE buffer (800 mM Tris-HCl, 400 mM 

NaOAc, 40 mM EDTA, pH 8.3 adjusted with acetic acid).  After electrophoresis, the gel was 

incubated 30 min in denaturing solution (0.5 M NaOH, 1.5 M NaCl) to denature the DNA, and 

neutralized with neutralization solution (1 M Tris pH 7.4, 1.5 M NaCl).  Blotting was performed 

by a standard capillary Southern transfer set up using 10 x SSC (0.4 M NaOH) onto a positively 

charged nylon Hybond N+ (Amersham) membrane (the denatured DNA binds covalently to the 

membrane).  After transferring the membrane overnight, the membrane was UV-crosslinked and 

prehybridized at 65 °C overnight in Church buffer (7% SDS, 0.5 M Na2HPO4, 1 mM EDTA, 1% 

BSA). 

 

2.10.2 Southern blot membrane hybridization 

The Southern blots were hybridized with specific DNA probes labelled with α32P-dCTP 

(Hartman Analytic GmbH) by using Ready-To-Go DNA Labelling Beads (Amersham) (the 

technique for radiolabelling DNA restriction endonuclease fragments was introduced by 

Feinberg and Vogelstein, 1983).  Unincorporated labeled nucleotides from the DNA-labeling 

reaction were removed using ProbeQuant G-50 Micro Columns (Amersham).  Hybridization was 

performed overnight at 65 °C in Church buffer.  After hybridization, the membrane was washed 

twice in 1 x SSC/0.1% SDS at 65 °C for 15 min and twice with 1 x SSC/0.1% SDS at 65 °C for 

20 min. The membrane was then exposed to an X-ray film (Kodak) at -80 °C in cassette with 

scintillation screens. 
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2.11 Western blots 

Embryos (13.5 d.p.c. and 17.5 d.p.c.) or pups (P3, P6, P10, and P20) were killed and 

subsequently their brains were removed and homogenized on ice in RIPA buffer (50 mM Tris, 

pH 8.0, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.5% NaDOC, 0.1% SDS) containing 1 

tablet of protease inhibitor (Roche), freshly added protease inhibitors 1 mM PMSF, and 2 μg/ml 

E64.  The homogenate was centrifuged 20 min at 12000 rpm at 4 °C.  The obtained supernant 

proteins were aliquoted and stored at -80 °C.  The protein concentration of the samples was 

determined using a Bradford protein assay reagent (Bio-Rad). 

The protein samples were separated by SDS-PAGE in a discontinuous system (5% 

acrylamide-containing stacking gel and 13% acrylamide-containing resolving gel) and then 

transferred to Immobilon-P transfer membrane (Millipore).  The membranes were incubated in 

5% skimmed milk in TBST (0.1% Tween20 in TBS (25 mM Tris Base, 125 mM NaCl, pH 8.0)) 

at least one hour at 4 °C.  The membranes were then incubated with the affinity purified mouse 

anti-RhoA antibody (Santa Cruz Biotechnology product number sc-418) (1:1,000) or rabbit anti-

HA antibody (Santa Cruz Biotechnology, product number sc-805) (1:1,000) for overnight at 4 °C 

and washed with TBST 3 times for 10 min at RT.  The membranes were next incubated with 

anti-rabbit IgG or anti-mouse IgG, horseradish peroxidase linked antibody (Santa Cruz) 

(1:10,000) for 1 hour at RT and then washed three times with TBST at RT.  All membranes were 

visualized using ECL plus Western Blotting Detection System (Amersham Biosciences) and 

exposure to ECL Hyperfilm (Amersham Biosciences). 

 

2.12 Insoluble protein immunoblot analysis 

The pellets obtained were dissolved in 4x sample buffer (125 mM Tris-HCl, pH 6.8, 4% SDS, 

and 25% glycerol) and further sonicated four times for 10 sec each.  The solubilized protein 

solutions after sonication were used for immunoblot analysis. 

 

2.13 Neurofilament whole mount staining 

Neurofilament 165 kDa was stained to analyze the outgrowth of embryo nervous system at 10.5-

13.5 d.p.c.  Embryos were removed from uterus in successive baths of cold 1x PBS on ice.  

Cleaned embryos were transferred into MeOH:DMSO 4:1 solution and fixed overnight at 4 °C.  

After washing out fixative with 100% MeOH 5 times for 10 min each, embryos were bleached 

by agitating in 6% H2O2 at 4 °C for at least 4 hours.  Embryos were rehydrated by successive 

steps 30 min each in 90%, 70%, 50%, 30%, 0% MeOH in PBS/0.1% TritonX-100, and then 
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incubated for 2 hrs at RT in 80% FCS:20% DMSO for blocking.  Embryos were incubated by 

gently rocking with 2H3 anti-neurofilament monoclonal mouse antibody (1:400) at 4 °C at least 

24 hours for embryos up to 11.5 d.p.c. and 48-96 hours for later-stage embryos in blocking 

solution, and then washed at least 10 times in PBS/ 0.1% Triton X-100 at RT for 6 hours.  

Embryos were then incubated with the monoclonal mouse antibody (1:400) for at least 24 hours 

for small embryos up to 11.5 d.p.c. and 36 hours for the later stage embryos in blocking solution 

at 4 °C and washed with PBS/ 0.1% Triton X-100 at least 10 times for 6 hours at RT.  The 

embryos were rocked in a 0.5 mg/ml DAB in 1x PBS in small glass beakers with wide mouths 

for 30 min, and 4 μl of 0.3% H2O2 was added per 5 ml of DAB solution while the staining 

process was monitored under the microscope.  The development process was carried out in the 

dark.  The coloring reaction was stopped by switching to 1 x PBS, washing several times in 1x 

PBS/0.1% NaN3, and washed overnight.  For longer storage, embryos were dehydrated by 

successive steps 30 min each in 30, 50, 70, 100% MeOH in PBS/ 0.1% TritonX-100, and then 

cleared in benzyl alcohol:benzyl benzoate 1:2 in glass containers. 

 

2.14 Cerebellar granular cells culture 

The original protocol for cerebellar granule cells culture was supplied by Dr. Haruhiko Bito (Bito 

et al., 2000) and was modified after optimizing the culture condition.  Details for all mediums 

used for cell cultures can be found in the Appendix 5.5 “Cerebellar granular cell culture 

Medium”.  5-day old pups were sacrificed by decapitation, the skull was removed, and the brains 

were taken out and placed into 1 x HBSS (+1% HEPES, 1% p/s).  The pia mater was removed 

carefully as much as possible, the cerebellum placed into a 300 µl digestion solution (10 mg 

trypsin in 1 ml of 1 x HBSS) in a 1.5 ml eppendorf tube, and incubated at 37 °C for 10 min.  The 

digested cerebellum was gently triturated using pipet tips until no clumps and aggregates were 

visually detected, and 300 ml of 20% FBS/HANKS(-) was added to stop the reaction.  After 

filtering the cells, another 10 ml of 20% FBS/HANKS(-) was added into the filter to make sure 

that all cells were filtered.  The pellet was centrifuged at 1,000 rpm for 5 min and resuspended in 

20% FBS/HANKS(-).  I plated out 70,000 cells per each coverslips of a 24-well plate which had 

been precoated with 100 μg/ml Poly-L-lysine (Sigma).  The cells were plated in the 500 ml pre-

equilibrated 10% FBS/MEM or MEM without FBS to starve the cell to eliminate the possibility 

to activate Rho by LPA in serum at 37 °C per well and settled down for 30 min at room 

temperature.  Then the cells were placed into the CO2 incubator. 
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2.15 Immunocytochemistry 

Cultured neurons were fixed for 5 min at RT with 4% PFA and washed three times with PBS.  

Cells were incubated in a blocking buffer (5% NGS, 0.5% Triton X-100, 1% BSA in PBS) for 1 

hr at RT.  Then, cultures were incubated with monoclonal antibody to Tuj1 (1:2000) for 4 hours 

at RT and washed sequentially three times with 1x PBS, followed by a Cy3-labeled anti-mouse 

monoclonal antibody for 1 hr.  DAPI (100 nM) and phalloidin (1:100) were used to stain the 

nucleus and F-actin, respectively. 

 

2.16 Immunohistochemistry 

Mice were perfused transcardially with physiological saline (0.9% NaCl, 2% polyvidon25 

(Merck), freshly added 0.2% procainhydrochlorid (Merck)) and then with cold 4% PFA in final 

concentration of 0.1 M NaH2PO4*H2O and Na2HPO4*2H2O with 2% polyvidon25, pH 7.6 (pH 

was adjusted by using only 0.2 M NaH2PO4*H2O and 0.2 M Na2HPO4*2H2O).  The brains were 

removed and preserved at 4°C in PBS (154 mM NaCl, 13 mM NaH2PO4*H2O, 60 mM 

Na2HPO4*2H2O, pH 7.4).  The brains were washed 3 times in PBS at RT, and placed in 10% 

Sucrose/PBS for 1 hour, 20% Sucrose/PBS for 1 hour, and 30% Sucrose/PBS for overnight at 4 

°C.  Brains were embedded in Jung tissue freezing medium (Leica microsystem) on dry ice and 

stored in -20 °C.  Brain sections were cut at 25 µm using the cryostats (LEICA CM3050S) and 

stored in PBS at 4 °C. 

 

2.17 Hematoxylin and Eosin staining 

Hematoxylin (catalog number 5B535) and Eosin Y (catalog number 1B425) were purchased 

from Chroma.  After frozen brain sections were dipped in distilled water for 5 min, they were 

stained in Mayer’s Hematoxylin solution for 3 min.  Then sections were washed with distilled 

water twice and followed by tap water for more than 20 min.  Then, the sections were stained in 

0.1% Eosin solution for 3 min, and washed with distilled water for 5 min twice.  Sections were 

mounted in Aqua-Poly/Mount coverslipping medium (Polysciences, Inc) and analyzed under the 

microscope. 

 

2.18 NeuN staining 

NeuN staining was done by Dorge Komljenovic.  Free floating brain sections were washed in 

PBS for 30 min, rinsed in 2% H2O2 in 10% methanol for 20 min to block endogenous 

peroxidase, then washed again in PBS for 30 min.  Sections were then rinsed in PBS containing 
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0.4% TritonX-100 for 1 hour at RT, followed by an incubation in PBS/0,1% Triton X-100/1.5% 

horse serum/1%BSA for 1 hour at RT.  Overnight incubation with mouse anti-NeuN 

monoclonal antibody (1:1000; Chemicon MAB377) in PBS/0.1% TritonX-100/1% BSA at 4°C 

was followed by 30 min washing in PBS.  Biotinylated secondary antibody and peroxidase-

labeled avidin-biotin complex were applied according to the instructions of the manufacturer 

(Vectastain Elite ABC, Vector Laboratories, Burlingame, UK).  Sections were washed in PBS 

for 30 min and processed in 0.05% DAB (Sigma) and 0.006% H2O2.  Sections were washed 

again in PBS for 10 min and mounted and coverslipped using Aquatex mounting medium. 
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3 RESULTS 
 

3.1 Transient Expression of N19-RhoA, V14-RhoA, and C3 genes 

Before I started making a targeting construct, I checked the protein expression of HA-tagged 

dominant negative RhoA (N19-RhoA), HA-tagged constitutively active RhoA (V14-RhoA), and 

EGFP-C3, all three driven by the CMV promoter by transient transfecton of HN10, Swiss 3T3, 

and HEK293 cells.  The fragment of N19-RhoA or V14-RhoA which were fused at the N-

terminus with an HA (YPYDVPDYA) epitope tag was inserted into the cDNA3.1(+) vector with 

the CMV promoter.   An antibody directed against Rho or HA detected the proper size of 

proteins of dominant-negative RhoA and constitutively active RhoA from transfected HN10 and 

HEK293 cells (Figure 21A and 21B), but not from Swiss 3T3 transfected cells (Figure 21C).  

Therefore, HA-tagged N19-RhoA and HA-tagged V14-RhoA were used for further experiments. 

I decided to make an EGFP fusion protein of C3 at its N-terminus because when C3 was 

tagged with an HA peptide, as with the N19-RhoA or V14-RhoA constructs, protein expression 

of C3 trasnferase was not detectable for unknown reasons.  The exoenzyme from Clostridium 

limosum (gift from Prof. Dr. Klaus Aktorius), homologous to the C3 transferase from 

Clostridium botulinum, was fused at its N-terminus with the EGFP cDNA by using an expression 

vector pEGFP-C1 (Clontech) which is driven by the CMV promoter, and this plasmid was 

termed EGFP-C3.  The transient transfected EGFP-C3 protein expression was detected in 

HEK293 cells (Figure 21D).  Therefore, the EGFP fusion protein of C3 transferase was used for 

further experiments to generate targeting constucts. 
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Figure 21. Transient expression of the CMB promoter HA-tagged N19-RhoA, HA-tagged V14-RhoA, and EGFP 

fusion C3 by Western blot analysis.  A. HEK293 cells, B. HN10 cells, C. 3T3 cells 

RhoA was detected using anti-HA antibody and anti-Rho antibody.  Endogenous RhoA is 24 kDa and recombinant 

RhoA is 28 kDa. EGFP fusion C3 was detected using anti-EGFP antibody.  EGFP is 27 kDa and C3-EGFP is an 

approximately 54 kDa. 

 

3.2 Inhibition of Rho activity by N19-RhoA or C3 transferase gene 

To see the efficiency of inhibition of Rho activation, we employed a method to precipitate GTP-

bound Rho using the Rho-binding domain (RBD) of a downstream effector protein Rhotekin 

(Ren et al., 1999) because RBD interacts only with GTP-bound Rho.  HEK293 cells co-

transfected with wild-type RhoA and either N19-RhoA or EGFP-C3 were serum starved so that 

LPA in serum does not activate endogenous Rho.  This Rhotekin pulldown assay showed that 

transfection of 1/4 μg of C3 transferase plasmid completely abolished the Rho activity of GTP 

binding (Figure 22A), whereas transfection of 2 μg of N19-RhoA plasmid was required to 

inactivate Rho (Figure 22B).  Even though this is not a comparison of the protein amount 
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between N19-RhoA and C3 transferase, the size of their nucleotides is close and we expected 

that they produce the similar amount of the protein.  Thereby, N19-RhoA may not be as effective 

in inhibiting Rho function as the C3 transferase, but this result showed that both dominant 

negative N19-RhoA and C3 transferase genes are able to inhibit Rho activity.  These results 

suggested that the degrees of Rho GTPases inhibition may be controlled genetically comparing 

with N19-RhoA and C3 transferase expression.  Also, its ability to inhibit wild-type Rho activity 

when co-expressed in HEK293 cells showed that an HA tag or EGFP protein did not change the 

function of the constructs. 

 

 
Figure 22.  Inhibition of Rho with transient transfection of C3 transferase and N19-RhoA detected by Rhotekin 

pulldown assay.  HEK293 cells were co-transfected with wtRhoA and either EGFP-C3 or HA tagged N19-RhoA.  

Only GTP-bound Rho was pulled down with Rhotekin binding sites.  Lysates were used as a control. 
 

3.3 N19-RhoA, V14-RhoA, and EGFP-C3 gene targeting strategy 

A cDNA encoding HA-tagged N19-RhoA, HA-tagged V14-RhoA, or EGFP-fused C3 was 

targeted to the tau locus.  We constructed a targeting vector by placing the HA-tagged N19-

RhoA, HA-tagged V14-RhoA, and EGFP-fused C3 into Exon 1 of the tau gene (Figure 16).  This 

inserts lie downstream of a tranclscriptional stop cassette flanked by two loxP sites (gift from Dr. 

Silvia Arber) (Figure 23A).  Because of this floxed stop cassette, expression of the endogenous 

tau promoter at the altered locus will produce a truncated, non protein-coding heterologous 
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transcript, and the introduced cDNAs will not be transcribed (Figure 23).  Southern blot analysis 

of targeted ES cell clones following BamHI or KpnI digestion and hybridization with 5’ or 3’ 

external probes respectively, showed that targeting N19-RhoA or V14-RhoA yielded a 2.9- or 

8.1-kb band, and the untargeted allele remains at 8.8-and 9.0-kb, respectively (Figure 18 and 19). 

 The ability of the loxP sites to undergo recombination by Cre recombinase in targeted ES 

cells was confirmed by electroporation of a plasmid expressing Cre recombinase into ES cells.  

PCR analysis using genomic DNA from the targeted ES cell (Ha24) amplified the fragments 

containing a stop cassette gene floxed by LoxP sites with a specific pair of primers, yielding a 

1558 bp fragment before and a 187 bp fragment after removal of the stop cassette.  Therefore, 

PCR analysis showed a proper reduction of size, indicating a complete removal of the stop 

cassette (Figure 17B).  More importantly, PCR analysis using the genomic DNAs of cerebellar 

granular neurons (CGN) from Cre+/ N19RhoA+ (positive for Cre and N19-RhoA genes by PCR) 

double transgenic mouse also showed the corresponding reduction of size (Figure. 17C), and 

later, Southern blot analysis confirmed this PCR result, indicating the removal of the stop 

cassette after mating with Cre-expressing mice (Figure 24).  Offspring were genotyped by PCR 

for both HA-tagged RhoA and Cre. 

 

 
Figure 23. Experimental strategy to flox the stop cassette.  RhoA transgenic mice were crossed with EIIa-Cre or 

Nestin-Cre mice to remove a termination transcription stop cassette.  A, Expected targeting event.  B, Expected 

CRE homologous recombination event.  An approximately 1-kb fragment (Txstop: a termination transcription stop 

cassette) is removed by CRE recombinase exposure. 
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3.4 Generation of N19-RhoA trasngenic mice 

By homologous recombination in ES cells, we generated mice expressing N19-RhoA gene fused 

to a stop cassette flanked by two loxP sites targeted at tau locus.  Targeting efficiency of ES cells 

in total analysis was 16%.  Targeted ES cells were injected into blastocysts by Frank 

Zimmermann at the Interfakultaere Biomedizinische Forschungseinrichtung, University of 

Heidelberg and 7 chimeric males were born.  The heterozygous and homozygous N19-RhoA 

mice are healthy, and breed normally; mutants are obtained in the expected Mendelian ratio.  I 

analyzed germ line-transmitted progeny of chimeras generated from two independent clones.  

These mice were mated with the EIIa::Cre and Nestin::Cre mice to obtain double-transgenic 

mice (Cre+/ N19RhoA+) to remove a floxed stop cassette from the tau locus. 

Tail DNAs from heterozygous transgenic offspring were genotyped by BamHI or KpnI 

digestion and hybridized with the 5’ external probe: a 2.9-kb band was produced together with 

the 8.8-kb wild-type allele (data not shown) or with the 3’ external probe: a 8.1-kb together with 

a 9.0-kb band for the wild-type allele (data not shown).  These data show that the N19-RhoA 

construct has passed through the germline of chimeric males and at the same time the conditions 

for PCR reaction was also established to genotype both Cre and RhoA mice (see the Appendix 

5.7.3. “PCR genotyping of mice”).  Further genotyping of the transgenic mice was done by PCR. 

To assess the expression of the dominant-negative forms by Cre-loxP recombination, we 

performed Southern blot analysis upon genomic DNA from cerebellar granular cultures prepared 

from 17.5 d.p.c. embryos and P3 mice on Cre+/ N19RhoA+ by KpnI digestion and hybridized 

with the RhoA specific probe: a 2-kb band was produced together with the 7-kb wild-type allele.  

Cre-loxP recombination had occurred in Cre+/ N19RhoA+ mice showing the shorter fragment of 

2,010 bp while Cre-/ N19RhoA+ mice showed 3,381 bp with a stop cassette.  The proper DNA 

size reduction of an approximately 1.4-kb after removing a stop cassette by Cre recombinase 

exposure was detected in corresponding double-transgenic mice (Figure 24), indicating that the 

stop cassette was properly removed after being exposed to Cre recombinase, allowing expression 

of the gene, in agreement with the PCR result.  Also, recombination occurs with 100% efficiency 

in cerebellar granule neurons, because Southern blot analysis showed only one fragment 

corresponding with the expected size of 2-kb.  The other, higher molecular weight fragment is 

probably from endogenous RhoA. 
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Figure 24. Cre recombination in heterozygote offspring after crossing of HA-N19RhoA with Cre.  Southern blot 

analysis of offsprings with RhoA specific probe revealed the 2.0-kb band which is corresponding to the 

recombination event (the lowest band).  Genomic DNA was prepared from cerebellar granular neurons culture. The 

3.4-kb band is corresponding to the fragment with a stop cassette before Cre exposure (the middle band).  The 

higher molecular weight band is presumably an endogenous RhoA (the upper band).  The corresponding genotypes 

of the mice are indicated above the lanes. Cre+: positive for a Cre gene, N19RhoA+: positive for a dominant 

negative RhoA.gene.  Cre-/ N19RhoA+ as wild-type mice and Cre+/ N19RhoA+ as double transgenic mice.  HA2 and 

HA24 indicate genomic DNAs from the N19-RhoA targeted ES cells. 

 

3.5 Expression of HA-N19RhoA protein by Western blotting 

I checked the protein expression from whole brain lysates from a litter of both EIIa-Cre+/ 

N19RhoA+ and Nestin-Cre+/ N19RhoA+ double transgenic mice.  A proper-sized HA-tagged 

N19-RhoA protein was detected (Figure 25 and 26) with expression detectable at P3 onwards.  

The level of protein expression at P3, P6, P10 and P20 also was not different among the four 

time points, which suggested that the N19-RhoA protein expression level had already reached its 

highest level during this postnatal period.  The level of protein expression in mice brain did not 

show any differences between the cross with EIIa-Cre and Nestin-Cre.  However, the 

recombinant protein expression level of HA-tagged N19-RhoA was relatively lower than 

endogenous RhoA.  Western blots using a dilution of different amount of protein revealed that 

endogenous RhoA protein is about 10-fold higher than recombinant protein in the whole brain 

lysate (Figure 27).  Unexpectedly, I could not detect the HA-tagged N19-RhoA protein from 

embryos (Figure 28) or from neonates before P3, which was a surprise given that high 

expression of EGFP targeted at tau locus begins at 9.0 d.p.c.  It is still possible that the 

recombinant protein is expressed at very low, undetectable levels in embryos, especially as there 
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were some background bands detected from the embryos’ brain lysate near the expected 

recombinant proteins.  Nevertheless, the inhibitory effects caused by such a low expression of 

N19-RhoA would not necessarily cause any effects in the development of the nervous system of 

embryos.  Therefore, the recombinant protein was expressed but detected only after P3.  This 

protein expression pattern motivated me to look at the effects of N19-RhoA in the nervous 

system at postnatal stages, although there was much less recombinant dominant negative RhoA 

than endogenous RhoA. 

 

 
Figure 25. Protein expression analysis of whole brain lysate at postnatal day 20 (P20) using the anti-HA  

antibody and anti-RhoA antibody.  Western blots on membranes incubated with anti-HA antibody (1:1000) and 

with anti-RhoA antibody (1:500) overnight at 4°C.  20 µg proteins were loaded in each lane.  The corresponding 

genotypes of the mice used for whole brain protein extraction are indicated above the lanes.  Arrow in the blot of 

anti-HA antibody indicates the recombinant protein.  Upper arrow indicates the recombinant RhoA and lower 

arrow indicates the endogenous RhoA in the blot of anti-Rho antibody.  Cre+: positive for a Cre gene; Cre-: 

negativeve for a Cre gene; N19RhoA+: positive for a dominant negative RhoA.gene. 
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Figure 26. Protein expression analysis of whole brain lysate at postnatal day 3 (P3) using the anti-HA antibody 

and anti-RhoA antibody.  The corresponding genotypes of the mice are indicated above the lanes.  Arrow in the 

blot of anti-HA antibody indicates the recombinant protein.  Upper arrow indicates the recombinant RhoA and 

lower arrow indicates the endogenous RhoA in the blot of anti-Rho antibody.  Cre+: positive for a Cre gene, 

N19RhoA+; Cre-: negativeve for a Cre gene, N19RhoA+; positive for a dominant negative RhoA.gene.  +: Protein 

lysate from Cre+/ N19RhoA+ at P20 same as in Figure 25. 

 

 
Figure 27. Dilution of Protein expression analysis of whole brain lysate from postnatal mice using the anti-RhoA 

antibody.  All protein lysate is from whole brain of Cre+/ N19RhoA+ at P20 same as in Figure 25.  Upper arrow 

indicates the recombinant RhoA and lower arrow indicates the endogenous RhoA.. 
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Figure 28. Protein expression analysis of whole brain lysate at 13.5 d.p.c. using the anti-HA antibody and anti-

RhoA antibody.  The corresponding genotype of the mouse is indicated above the lane.  Arrow in the blot of anti-

HA antibody indicates the recombinant protein.  Upper arrow indicates the recombinant RhoA and lower arrow 

indicates the endogenous RhoA in the blot of anti-Rho antibody.  Cre+: positive for a Cre gene, N19RhoA+; 

N19RhoA+; positive for a dominant negative RhoA.gene.  +: Protein lysate from Cre+/ N19RhoA+ at P20 same as in 

Figure 25. 

 

 I checked if N19-RhoA became an insoluble protein by sonicating the pellets from the 

brains of P0 mice.  Semaphorin3A (Sema3A) was hardly detected in the soluble fraction of 

protein extracts from P0 mice brain but was detected as an insoluble protein in these brain 

lysates, even though Sema3A were detected as soluble protein at the later stages (Morita et al., 

2006).  However, there was no obvious N19-RhoA protein expression detected even in insoluble 

protein lysates, which indicated that there was no insoluble N19-RhoA protein expression at this 

stage either (Figure 29). 
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Figure 29. Protein expression analysis of whole brain lysate in insoluble (at 13.5 d.p.c.) and soluble (P6) protein 

using the anti-RhoA and anti-HA antibody.  The corresponding genotypes of the mice are indicated above the lanes.  

Cre+: positive for a Cre gene, N19RhoA+; Cre-: negativeve for a Cre gene, N19RhoA+; positive for a dominant 

negative RhoA.gene.  +: HA-N19-RhoA expressed in HN10 cells.  

 

This result of the low protein expression together with the result of the 100% Cre 

recombinase efficiency suggests that the tau promoter is not as strong in its expression of the 

recombinant RhoA protein as the endogenous RhoA promoter in its expression of RhoA. 

 

3.6 Peripheral nervous system in N19-RhoA mice 

Even though we did not detect visible protein expression during embryogenesis, we initially 

analyzed initial nerve development in the central and peripheral nervous system using EIIa-Cre+/ 

N19RhoA+ double transgenic embryos, compared to either Cre-/ N19RhoA+, Cre+/ N19RhoA-, or 

Cre-/ N19RhoA- embryos as a wild-type control by whole-mount staining using an anti-

Neurofilament 165 kDa antibody (clone 2H3) which labels outgrowing nerves in the peripheral 

and central nervous system (Figure 30).  We did not observe any major differences in the 

embryos at 12.0 d.p.c. in terms of outgrowth of peripheral neurons, suggesting that N19-RhoA 

seemed not to disturb the growth inhibitory signals such as secreted by Sema3A to cause the 

abnormality in the axonal projection pattern.  It is possible that such a low expression or no 

expression of N19-RhoA protein in embryos did not cause any effects on the outgrowing nerves 

during the development of embryogenesis.  Therefore, it is still possible that if there were much 
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more of N19-RhoA protein expressed in neurons, it may cause effects on the outgrowth of 

neurons. 

 

 
Figure 30.  Whole-mount immunostainings of embryos at 11.5 d.p.c. using the 2H3 antibody, which recognized 

the neuronal specific protein β  tubulin III.  Littermates of the same somite number were compared.   Cre+/ 

N19RhoA+ (right), Cre-/ N19RhoA- (left).  Rostal is to the left, and dorsal is at the top of all panels.  Scale bar, 1 mm. 

 

3.7 Axonal outgrowth in the cerebellar granular neurons from N19-RhoA mice 

Cerebellar granule cells were prepared for culture from litters of EIIa-Cre+/ N19RhoA+ double 

transgenic and Cre-/ N19RhoA+ or Cre+/ N19RhoA- as wild-type mice at P5 and fixed with 4 % 

PFA at different time points to see the effects on the axonal outgrowth stained with TuJ1 

antibody.  Culture of cerebellar neurons of EIIa-Cre+/ N19RhoA+ double transgenic mice 

showed no difference in axonal outgrowth or cell survival compared to of Cre+/ N19RhoA- or 

Cre+/ N19RhoA- mice (Figure 31). 
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Figure 31. Immunocytochemistry of CGN culture prepared from cerebellum of P5 mice.  They were fixed at 24 

hrs (top 4 panels) and 48 hrs (bottom 4 panels) after plating.  DAPI staining (left) and Tuj1 staining (right).  Each 

corresponding genotype is indicated under the panels.  Scale bar, 200 μm. 

 

The expression of recombinant N19-RhoA in the relatively pure cerebellar granular 

neuron cultures was also very low (data not shown).  When I checked the protein expression of 

the whole brain without cerebellum, the protein expression levels did not differ between the one 

with cerebellum and without; this suggested that the expression of a dominant negative RhoA 

protein in cerebellum is not that high.  This suggests that expression of dominant negative RhoA 

is higher in specific parts of the brain, and this prompted me to investigate the entire postnatal 

brain for potential defects. 

 

3.8 Analysis of the brain in N19-RhoA mice 

To investigate the significance of Rho regulation in postnatal brain, brains from postnatal mice 

were fixed and processed for frozen sectioning.  We decided to examine the stages P21, P60 and 

P65 staining because of the recombinant protein expression detected at the postnatal stages 

before these stages.  Hematoxylin stained nuclei blue with some metachromasia.  Any major 

difference in the total number of cells was not observed in the brain section of Hematoxylin 

staining at P21, P60 and P65. 

In order to avoid the possibility of sex differences, only female animals were compared 

for the brain analysis.  The brain weight of the transgenic mice that have expressed a dominant 

negative RhoA (Cre+/ N19RhoA+) was about 11% smaller on average than the wild-type (Cre+/ 

N19RhoA-) (Figure 32).  Even though there was no significant change in organization of cortex 

layer, the packing density of the cells varies between the transgenic mice that have expressed a 

dominant negative RhoA and the wild-type mice. 
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Figure 32. Brain weight of P60 and P65 mice.  Brain weight of the transgenic mice (TG) was smaller than the 

wild-type mice (WT).  Brain weight was compared in the same litter. 

 

At P60 and P65, moreover, there are more severe involutions of the cells in specific area 

of layer IV in somatosensory cortex in the brain and clumping rather than a uniform distribution 

was seen in layer V (lamina ganglionaris) (Figure 33c).  The involutions seem to be 

corresponding to the barrels in barrel cortex.  The morphology of this barrel-like discontinuous 

pattern looks like a normal barrel but this pattern was observed continuously toward the posterior 

part of the brain only in double transgenic Cre+/ N19RhoA+ mouse.  A barrel-like discontinuous 

pattern was observed from the anterior part of the brain at the very beginning of the 

hippocampus as also seen in wild-type mouse (Cre+/ N19RhoA-) but these structures continued 

to the posterior part of the hippocampus only in the double transgenic Cre+/ N19RhoA+ mouse 

brain.  This observation indicated that there is an alternation in the layer IV, especially in the 

barrel cortex and implied that the barrels were extended toward the posterior part of the brain 

cortex. 
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Figure 33. Hematoxylin staining in coronal sections at the level of somatosensory cortex of wild-type (Cre+/ 

N19RhoA-) (left on the top panel) and transgenic (Cre+/ N19RhoA+) (right on the top panel) mice brain at P60.  The 
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bottom  panels show the higher magnification of corresponding area of a, b, and c in each top panel.  Scale bars, 

0.5 mm (top two panels), 0.1 mm (bottom three panels) 

 

In order to see if these phenotypes were reflective of a change in the number and 

distribution of neurons, we stained brain sections with an antibody that specifically recognizes 

neurons, anti-NeuN.  Brain sections stained with the anti-NeuN antibody showed that there is a 

significant difference between layer IV and V of the cortex (Figure 34).  Average number of 

neurons in layer IV was 14.9 neurons/ 100 μm2 in double transgenic mouse and 9.6 neurons/100 

μm2 in wild-type mouse and in layer V was 5.5 neurons/ 100 μm2 in double transgenic mouse 

and 8.2 neurons/ 100 μm2 in wild-type (Figure 35A).  The density of neuron in layer IV, the 

density was increased about 35.6% in double transgenic mouse than in wild-type mouse while in 

layer V and the density was decreased about 32.4% in double transgenic mouse than in wild-type 

(Figure 34 and 35B). 
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Figure 34.  NeuN immunohistochemistry in coronal sections at the level of somatosensory cortex of wild-type 

(Cre+/ N19RhoA-) (top) and transgenic (Cre+/ N19RhoA+) (bottom) mice brain at P65.  The right panels show the 

higher magnification of corresponding area of a and b in each right panel.  Scale bars, 0.5 mm (left panels), 0.1 mm 

(right panels).  
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Figure 35.  Quantification of the number of neurons in layer IV and V from NeuN immunohistochemistry in coronal 

sections at the level of somatosensory cortex of wild-type (Cre+/ N19RhoA-) and transgenic (Cre+/ N19RhoA+) mice 

brain at P65.  A.  The average number of neurons per 100 μm2.  Average number of neurons in layer IV was 14.9 

neurons/ 100 μm2 in double transgenic mouse and 9.6 neurons/ 100 μm2 in wild-type mouse.  In layer V, 5.5 

neurons/ 100 μm2 in double transgenic mouse and 8.2 neurons/ 100 μm2 in wild-type mouse.  B.  The relative 

percentages of the number of neurons in transgenic mouse compared to the one in wild-type mouse.  In layer IV, the 

number of neurons in transgenic mice was increased in 35.6% and in layer V, the number of neurons in transgenic 

mouse was decreased in 32.4% compared to the wild-type mouse. 

 

3.9 Generation of EGFP fusion C3 transferase transgenic mice 

By homologous recombination in embryonic stem (ES) cells, we generated mice expressing an 

EGFP-C3 gene fusion protein downstream of a stop cassette flanked by two loxP sites targeted 

at the tau locus.  The targeting frequency of ES cells in total analysis was 25%.  The targeted ES 

cells were injected into the blastocysts by Frank Zimmermann at the Interfakultaere 

Biomedizinische Forschungseinrichtung, University of Heidelberg and 8 chimeric males were 

born.  Tail DNAs from heterozygous transgenic offspring were genotyped by BamHI digestion 

and hybridized with the 5’ external probe: a 2.9-kb band was produced together with the 8.8-kb 
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wild-type (Figure 36).  Thereby, the EGFP-C3 construct has passed through the germline of 

chimeric males.  The chimeric EGFP-C3 male mice are healthy, and breed normally; mutants are 

obtained in the expected Mendelian ratio. 

 

 
 
Figure 36. Southern blot analysis of genomic DNAs from EGFP-C3 transgenic mice following BamHI digestion and 

hybridization with the 5’ external probes.  Wild-type displays a 8.8-kb allele.  Targeting of EGFP-C3 yielded a 2.9-

kb band. 

 

3.10 Generation of V14-RhoA transgenic mice 

By homologous recombination in embryonic stem (ES) cells, we generated mice expressing a 

V14-RhoA variant downstream of a stop cassette flanked by two loxP sites targeted at tau locus.  

Targeting frequency of ES cells in total analysis was 12%.  Targeted ES cells were injected into 

the blastocysto by Frank Zimmermann at the Interfakultaere Biomedizinische 

Forschungseinrichtung, University of Heidelberg and 3 chimeric males were born.  The chimeric 

V14-RhoA male mice are healthy, but did not breed well.  My first Southern blot analysis 

showed that V14-RhoA contruct did not go germ line even though PCR analysis showed the 

positive result (data not shown). 
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4 DISCUSSION 

 

4.1 Generation of N19-RhoA mouse 

We were concerned that the long-term expression of Rho variants in all neurons of the mouse 

could cause serious toxic effects and make the transgenic mouse infertile or inviable if we simply 

inserted the Rho variants directly into the tau locus, as had been done before with EGFP.  

Therefore, I decided to place the transcriptional stop cassette upstream of each gene that I 

wanted to express.  This construct was then inserted into Exon 1 of the tau locus.  In the resulting 

mouse line, transcription from the endogenous tau promoter was prematurely terminated by the 

transcriptional stop cassette.  After crossing the transgenic mouse to a Cre-expressing mouse line, 

the stop cassette was removed, and this then allowed for the neuron-specific expression of the 

construct of interest.  Southern blot analysis using genomic DNA from cerebellar granular 

neurons confirmed that the transcriptional stop cassette was properly removed with 100% 

efficiency by Cre recombinase.  However, HA-tagged N19-RhoA recombinant protein 

expression was observed only at very low levels and only in postnatal mice.  This low protein 

expression was unexpected because tau is known to be highly expressed in neurons (Binder et al., 

1995).  Also, very strong EGFP expression was seen in neurons when inserted into the tau locus 

(Tucker et al., 1999) and the mouse line Tau-MeCP2, in which the Mecp2 cDNA was placed 

under the control of the endogenous promoter of Tau, where the tau-MeCP2 transcript was 

expressed at a level 2- to 4-times higher than endogenous MeCP2 (Luikenhuis et al., 2004).  Cre 

recombinase completely removed the transcriptional stop cassette with 100% efficiency so that 

the gene can get expressed; therefore the Tau gene promoter was not strong enough to express 

high levels of the dominant negative N19-RhoA, when compared to endogenous levels of RhoA 

expression.  There are many non-neuronal cell types in the brain that are expected to only 

express endogenous Rho and not the N19-RhoA construct, and therefore Western blot 

examination of whole brain lysates should underestimate the amount of N19-Rho being 

expressed in neurons, compared to endogenous Rho.  Nevertheless, examination of a pure 

neuronal population (isolated cerebellar granule neurons) did not reveal a higher level of N19-

RhoA expression compared to endogenous RhoA.  It could be the case that this cell type does 

not express high levels of tau either, but this is still unclear.  In any case, the presence of a 

phenotype in the cortex suggests that certain neuronal cell types either express a higher level of 
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the N19-RhoA construct, or a lower level of endogenous Rho transcripts. This remains to be 

investigated. 

4.2 Peripheral nervous system in Cre+/ N19RhoA+ mice 

Members of the Rho family of small GTPases are involved in cytoskeletal rearrangements in 

axons: Cdc42 and Rac1 play a role in filopodia and lamellipodia formation in growth cones and 

RhoA in growth cone collapse and neurite retraction (Gallo and Letourneau, 2004).  Therefore, 

we expected to see effects upon the peripheral nervous system in Cre+/ N19RhoA+ mice during 

embryogenesis.  However, we did not observe any phenotypic changes in the growth cone in the 

cerebellar granular neurons culture and in nerve outgrowth in double transgenic embryos by 

expression of dominant negative RhoA.  Because of such a low protein expression of N19-RhoA, 

it is quite possible that the recombinant protein was located only in the soma without diffusion of 

the protein to the growth cone. 

The neurofilament whole-mount staining of Cre+/ N19RhoA+ embryos 10.5-13.5 d.p.c. 

did not show any significant alternations in the developing peripheral nervous system when 

compared with the wild-type embryos.  We initially expected that outgrowth would be more 

diverse and extensive due to the inhibition of the Sema3A repulsive signal by inhibiting Rho 

GTPase activity.  Sema3A, a secreted guidance cue, primarily repels axons from inappropriate 

targets, and has been suggested to cause growth cone collapse.  In DRG neurons, growth cone 

collapse in response to Sema3A requires the RhoA effector ROCK, which suggested RhoA 

activation in Sema3A signalling (Dontchev and Letourneau, 2002), and Sema3A deficient mice 

show severe axonal projection patterns in the peripheral nervous system during embryogenesis, 

including in the trigeminal, facial vagus, accessory, and glossopharyngeal nerves (Taniguchi et 

al., 1997).  Thereby, inhibition of Rho activity by expressing N19-RhoA in mouse embryos was 

expected to trigger axons from the DRG to grow out into non-permissive areas because of the 

inhibition of the Rho-based effect signalled by Sema3A.  At this point, there are two possible 

reasons why no phenotype was observed in the whole-mount staining during nerve outgrowth.  

One possibility is that inhibition of Rho activity may not play an important role in the peripheral 

nervous development of embryos because of other compensatory molecules.  Another reason is 

that undetectable protein expression levels of dominant negative RhoA, as revealed by Western 

blot analysis, did not affect the nervous system.  Knowing the role of Rho GTPases in axonal 

outgrowth previously shown in vitro, it is most likely that the very low expression of N19-RhoA 

did not cause severe changes in the early peripheral nervous system in embryos. 
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4.3 Axonal outgrowth of cerebellar granular neurons in Cre+/ N19RhoA+ mice 

As I did not see any effects upon peripheral nerve outgrowth in embryos, and as I could detect 

N19-RhoA protein expression in postnatal animals, I checked if there is any effect on the 

axonal outgrowth in cerebellar granular cultures prepared from N19-RhoA expressing mice at 

postnatal day 5 (P5).  Because the recombinant protein N19-RhoA is expressed in brain at P5, 

the cerebellar granular culture was prepared from the cerebellum at P5.  However, no significant 

effects upon the neurite outgrowth from Cre+/ N19RhoA+ mice were seen compared to neurons 

prepared from the Cre-/ N19RhoA+ or Cre+/ N19RhoA- mice (Figure 31).  I speculate that a low 

protein expression of dominant negative RhoA, which was confirmed by a Western blot upon 

protein lysates made from the cerebellar granule neurons, did not bring a high inhibition of Rho 

activity to modulate neurite outgrowth.  Much higher inhibition of Rho activity is probably 

required to augment axonal processes. 

 

4.4 Apoptosis in N19-RhoA mice 

A previously-published analysis using mice expressing a dominant-negative form for RhoA 

showed an increase of apoptosis in spinal motor neurons during embryogenesis (Kobayashi et al., 

2004).  However, because there was no detectable protein expression of dominant negative form 

of RhoA in embryos, it was probable that the recombinant RhoA did not affect the cell survival 

in the peripheral nervous system in embryos that were our double transgenic Cre+/ N19RhoA+.  

Since inhibition of Rho, Rac, and Cdc42 by Clostridium difficile toxin B induced cerebellar 

granular neuron apoptosis in vitro by c-Jun phosphorylation (Linseman et al., 2001), I checked 

the number of granule neurons in cerebellum in culture.  However, the total number of neurons 

in cerebellar granular neurons did not show any significant change, suggesting that there was no 

cell death or apoptosis caused by such a low expression of dominant negative RhoA.    However, 

RhoA-based apoptosis may play a role in the cortex, as discussed in the next section. 

 

4.5 Preliminary observation on alternations in cortex of N19-RhoA mice 

Because of the protein expression of a dominant negative RhoA in postnatal stages in brain, I 

analyzed the long-term effects of dominant negative RhoA expression in the cortex.  I first 

noticed that there are more severe involutions in specific areas of somatosensory cortex in brain 

at P60 as well as at P65 when they are stained with Hematoxylin.  Further, NeuN staining 

showed that there is a 35.6 % reduction of neurons in layer V and a 32.4 % increase of neurons 

in layer IV in the mouse brain expressing a dominant negative RhoA.  One possible reason for 

the reduction of the neurons in layer V is that there is an increase in cell death in neurons of layer 
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V, since N19-RhoA expression in mice has been shown to cause apoptosis in motor neurons in 

spinal cord during early embryonic development (Kobayashi et al., 2004).  However, if the 

apoptosis occurs in neurons in layer V, one might expect that it occurs in all neurons, not only in 

neurons in a selective area of cortex.  The difference in the density of neurons could also come 

from defects in the migration process, in that the stop signals to form the proper layers are 

somehow misinterpreted during migration, in that neurons that are supposed to stop in layer V, 

which is formed before layer IV during cortical development, continue to migrate and stop in 

layer IV.  The same could hold true for neurons destined for layer II or III, which form after 

layer IV.  In this scenario, neurons destined for layer II and/or III would stop prematurely in 

layer IV.  However, I did not find any significant reduction in the number of neurons in these 

two layers, though a subtle reduction may be hard to see.  In order to resolve these two 

possibilities, it would be useful to examine layer IV with markers specific for neurons of layer 

II/III and layer V. 

Another possible reason is that cortical interneurons do not properly migrate to layers IV 

and V, as cortical interneurons are known to proceed along tangential migratory paths to reach 

the cortex during development (Nadarajah et al., 2003).  If the interneurons do not migrate 

properly from layer IV to layer V, the accumulation of neurons in layer IV could be seen. 

Furthermore, a barrel-like discontinuous pattern is more extended toward the posterior 

part of the cortex in the mice expressing a dominant negative RhoA.  Therefore, the formation 

of barrel cortex may also be affected.  The aberrant accumulation of neurons in layer IV could in 

turn cause defects during the formation of barrels. 

Preliminary measurements also indicate that transgenic mice expressing a dominant 

negative RhoA have smaller brains than wild-type littermates.  However, I did not observe any 

major architectural changes in the cortex.  The reduction of the brain size may be related to the 

alterations in the numbers of neurons in the cortex and possibly other brain areas that remain to 

be investigated. 

In the reeler mouse mutant, despite the alteration in the positioning of cortical neurons in 

that the cortical plate developed under the subplate, therefore preventing the normal “inside-out” 

cell migration (reviewed by Olson and Walsh, 2002), the neuronal roles are proper to each 

corresponding layer (Polleux et al., 1998; Tarabykin et al., 2001).  The positioning of neurons in 

each layer in our double transgenic mice were normal, consisting of six layers, and the functional 

role may not be altered by the inhibition of Rho activity.  However, it will be interesting to 

investigate the functional outcome of the increase of the neurons in layer IV and the reduction of 

the neurons in layer V. 

 64



Discussion 
 

The preliminary data observed in the cortex of our double transgenic mice need to be 

confirmed.  Inhibition of Rho activity by expressing a dominant negative RhoA is possibly 

involved in the formation of cortical layers, migration of neurons in the cortex, innervation of 

axons from the thalamus, formation and organization of barrels, and / or apoptosis of neurons in 

cortex. 

 

4.6 Generation of EGFP-C3 and V14-RhoA mice 

From the Rhotekin pulldown assay, it was assumed that C3 is more effective than N19-RhoA in 

inhibiting Rho GTPase activity.  From my first Southern blot analysis using tail genomic DNAs 

from EGFP-C3 mice, I have shown that EGFP-C3 line has gone through the germline.  However, 

the PCR conditions for genotyping have not yet been established for the EGFP-C3 line.  On the 

other hand, my first Southern blot analysis using the tail genomic DNAs from V14-RhoA mice 

show that the V14-RhoA construct has not passed through the germline of chimeric males, even 

though the PCR analysis for genotyping showed a positive result.  The germline transmission of 

both the EGFP-C3 and the V14-RhoA mouse lines needs to be confirmed with Southern blot 

analysis. 

 

4.7 Summary and future plans 

I have generated two different transgenic mice lines, N19-RhoA and EGFP-C3, whose 

expression can be induced using the Cre-loxP recombination system.  This Cre-loxP system can 

elucidate the in vivo role of the Rho signaling pathways in the development of neurons and this 

system will provide a useful experimental tool to study the functions of Rho GTPases in mice 

development, physiology, and pathology.  But this system needs to be improved to have higher 

protein expression of variant of Rho by either generating homozygous Cre+/ N19RhoA+ mice or 

employing a tau promoter expression vector, in which even higher levels of expression can be 

observed. 

Rho GTPases are involved in a wide variety of process in different cell types and without 

question in growth cone regulation.  However, it also seems obvious that Rho GTPases function 

as a common denominator in many pathways, similar to a Ras or a MAP kinase.  Also, the 

activity balance between the GEFs and GAPs is important in the regulation of Rho GTPases 

suggesting therefore a role for them in axonal outgrowth and in neuronal development.  

Therefore, what is determinant for the phenotype is probably the other upstream or downstream 

effectors.  Rho GTPases are the central signals, but it is the other signal proteins like Sema3A, 
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Rho kinase, or neurotrophins that determine how that signal is interpreted in each cell type 

context. 

Since the protein expression level was not detectable during embryogenesis driven by the 

endogenous tau promoter in our transgenic mice, the analysis of the neurite outgrowth in embryo 

in our mice did not show any phenotypic changes.  Even though our initial plan was to look at 

the neuronal outgrowth and growth cone direction caused by modifiers of Rho GTPase activity, 

we decided to look at the consequence of the long-term inhibition of Rho in adult brain.  Our 

first observation of abnormality in the brain expressing N19-RhoA suggested that a low 

expression of dominant negative RhoA affected neuronal development in cortex.  There is an 

increase of neurons in layer IV and a decrease in layer V of cortex in double transgenic mice.  

The barrel formation and/or the positioning of barrels in cortex may also be altered.  The 

alteration of barrel formation and / or the positioning of barrels could be due to the alteration of 

migratory mechanism in cortex.  The total protein expression levels of the brain between without 

and with cerebellum did not differ between them, suggesting that the dominant negative RhoA 

expression in cerebellum was not high.  It is also important to define the specific regions of brain 

where the N19-RhoA most expresses in brain. 

My first southern blot analysis for EGFP-C3 line showed that they have passed through 

the germline.  However, I have not established the PCR genotyping condition for the EGFP-C3 

line.  On the other hand, a constitutively active RhoA (V14-RhoA), mouse line showed positive 

results by PCR analysis that they contain V14-RhoA.  However, Southern blot analysis has not 

shown that the V14-RhoA has been passed through germline.  These contradictory results of 

V14-RhoA line need to be clarified by Southern blot analysis to confirm germline transmission. 

Since the C3 transferase is more effective in inhibiting Rho GTPase activity than 

dominant negative RhoA, it is possible that EGFP-C3 mice could show stronger effects and 

phenotypes on axonal outgrowth or in brain cortex than dominant negative RhoA (N19-RhoA) 

mice.  From the low protein expression of N19-RhoA driven by tau endogenous promoter, I 

expect that the protein expression of EGFP-C3 driven by tau endogenous promoter will be very 

low.  Therefore, it would be necessary to analyze the long-term inhibition of Rho activity by C3 

transferase in adult mice.  It will be interesting to compare the phenotypes in brain between a 

dominant negative RhoA and C3 transferase. 

By the same reasoning, protein expression of a constitutively active RhoA (V14-RhoA) 

driven by the tau promoter would be also low, and it would be necessary to analyze the long-

term effects in the brain.  However, a constitutively active RhoA may cause stronger phenotypes 

because it activates the downstream of Rho, for instance ROCK or mDia.  Overexpression of 
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constitutively active RhoA (V14-RhoA) may reduce or abrogate nerve extension, and/or perhaps 

impair neuronal migration cortex formation. 

My preliminary observation in a dominant negative RhoA mice brain showed that RhoA 

may play an important role during formation of the cortex layer, possibly in the barrel formation 

in layer IV and the neurons in layer V.  This is the first time that RhoA has been shown to play a 

role in the formation of cortical layers and/or migration of neurons in the cortex in vivo.  

However, there are a lot of questions that need to be answered.  What is the consequence of 

having a smaller brain in the transgenic mice, if any?  Why does the inhibition of Rho activity 

make the brain smaller even though the architecture of brain is reserved?  What are the 

mechanisms for the difference in neuron number in each layer of cortex?  Are Rho GTPases 

involved in the migratory mechanism?  What is the functional role of Rho GTPases in barrel 

formation?  How was the change of the barrels affected from the whisker?  When do these 

phenotypes occur? Are these phenotypes causes by apoptosis?  Is it possible to rescue these 

phenotypes by crossing to V14-RhoA? Or how does this affect the function in brain?  Not only 

in cortex, there are probably other areas in the brain that might be affected by the inhibition of 

Rho activity, for example in the hippocampus or thalamus. 
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5 APPENDIX 

 

The Appendix contains supplementary material on methods and probes relating to gene 

targeting/homologous recombination.  

 

5.1 Rhotekin beads preparation 

The Rhotekin-beads used for the Rhotekin pulldown assay were prepared by Julia Hoffmann in 

our laboratory.  Rhotekin expressing bacteria were harvested in 20 ml LB media with Ampicillin 

(100 μg/ml) and Chloramphenical (34 μg/ml) on a shaker at 37 °C overnight.  The following day, 

2-4 ml of overnight culture was added in 4 x 500 ml LB media with Ampicillin and 

Chloramphenicol on a shaker at 37 °C and induced with 500 μl of 0.5 M IPTG until the OD600 

became between 0.7 and 0.8, followed by 3 hrs incubation at 30 °C on shaker.  The bacterial 

cultures were placed in 500 ml tubes, centrifuged for 10 min at 4000 rpm, and the pellets were 

washed twice with 200 ml of cold 1x PBS.  The pellets were resuspended and centrifuged for 10 

min at 4000 rpm at 4 °C, and the pellets were resuspended in 20 ml lysis buffer and 5 ml was 

placed in four 15 ml Falcon-tubes.  The cells were sonicated for 15 sec six times approximately 

at 130 W, 500 μl of 10 % Triton X-100 was added per tube to make the final concentration of 

1 % Triton X-100, and incubated for 15 min on ice, rocking.  Lysates were decanted in 8 

Ultracentrifuge tubes on ice and centrifuged for 12 min at 27,000 rpm (UZ, g100ATS-0112 in 

Hitachi himacCS 100fx).  1.3 ml of the beads (Glutathione Sepharose 4B, Amersham) for 2 L of 

medium was washed in 50 ml tube twice with 15 ml of 1x PBS at 4 °C.  Beads were centrifuged 

at 1,000 rpm at 2 °C for 1 min.  Rhotekin lysates were added to the beads and incubated for 45 

min, shaking horizontally to avoid making bubbles.  The beads were washed with 20 ml of cold 

wash buffer (see the Appendix 5.6.2 “Wash buffer for Rhotekin assay”) for 1 min at 1,000 rpm 

at 2 °C and then the supernatant was removed.  Beads were resolved in 20 ml wash buffer + 

10 % Glycerol and aliquot beads were kept at -80 °C.  200 μl or 400 μl of Rhotekin beads was 

used for each incubation in the pulldown assay. 

 

5.2 Further details on construction of the N19-RhoA, V14-RhoA, and EGFP-C3 targeting 

vectors 
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The tau targeting vector backbone, termed pSilvia (Figure 37-4), and a stop cassette construct 

LSL/pGEM (Figure 37-3) were gifts from Dr. Silvia Arber.  The plasmid pSilvia was generated 

to target to the tau locus, such that any given cDNA can be inserted into Exon 1.  cDNAs of 

interest lie downstream of a stop cassette flanked by loxP sites.  The plasmid pLSL/pGEM 

contains a stop cassette, which consists of a transcriptional termination signal and a neomycin 

resistance gene cassette as a positive selection marker for embryonic stem (ES) cell culture.  

After insertion of the polylinker site of PWL512p into the SalI site of the LSL/pGEM plasmid, 

termed pPWL512/LSL/pGEM (Figure 37-1), each cDNA of interest could be inserted into the 

unique EcoRI site of the pPWL512/LSL/pGEM plasmid (Figure 37-2).  Each plasmid in 

pPWL512/LSL/pGEM was finally subcloned into pSilvia using a unique AscI site The insert was 

then excised with EcoRI and subcloned into the PWL512/LSL/pGEM vector (Figure 37-3).  

They were inserted into the unique AscI site of pSilvia and linearized with PmeI (Figure 37-4). 

 

 
Figure 37. Cloning strategy of targeting construct:  1. poly adenylation site and 2. cDNA of interest were inserted 

into a stop cassette construct LSL/pGEM vector.  4.  Each plasmid in pPWL512/LSL/pGEM was finally subcloned 

into the tau targeting vector backbone, pSilvia. 

 

The homologous recombination technique was invented by Cappechi and Smithies 

independently; (reviewed by Capecchi, 2005; Smithies, 2005).  The basic protocol is still the 

same as the original techniques and was merged with the embryonic stem cell biology 

discovered by Martin Evans (Evans and Kaufman, 1981).  The total technology includes 
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making the targeting vector by subcloning relevant fragments, inserting a removable 

transcriptional stop cassette and gene expression, and characterizing hybridization probes to 

detect homologous gene targeting by Southern blot analysis.  Once the targeting vectors were 

constructed, the targeting vectors were transfected into ES cells and screening undertaken for 

homologous events. 

 

5.3 Probes for Southern blot analysis 

5.3.1 5’ and 3’ external Tau genomic probe 

The 5’ external probe is a 420 bp fragment located immediately upstream of the 5’ end of the 8 

Kb EcoRI-EcoRI fragment used for the construction of the tau targeting vector.  

5.3.2 RhoA probe 

The RhoA probe consists of an approximately 600 bp fragment obtained by double digestion 

with NotI and SalI of N19-RhoA in Topo vector plasmid and purified by gel extraction. 

 

5.4 Mouse embryonic stem cell culture  

Electroporated cells were cultured on mouse fibroblasts inactivated with mitomycin C (Sigma) in 

ES cell Medium (See the Appendix 5.5 “Medium for cell cultures”).  Electroporated cells were 

grown in ES cell medium supplemented with G418 (380 µg/ml) for selection.  Individual 

resistant colonies were picked 6-8 days after electroporation and split into 96 well feeder plates 

and 24-well plates (coated with 0.1% gelatine) for expansion.  After 2-3 days, the clones 

cultured in 24-well MEF plates were frozen in ES cell medium containing 10% DMSO and 25% 

FCS and stored in liquid nitrogen.  The clones cultured on gelatine plates were expanded for 

genomic DNA isolation. 

 

5.5 Medium for cell cultures 

MEF medium 

DMEM Glutamax, High Glucose (Invitrogen) 
10% NCS (newborn calf serum) 
2 mM L-Glutamate (Invitrogen) 
 

ES Medium 

DMEM Glutamax, High Glucose (Invitrogen) 
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2 mM L-Glutamine (Invitrogen) 
0.15 mM ß-mercaptoethanol (Sigma) 
0.1 mM non essential amino acids (Invitrogen) 
10% FBS (fetal bovine serum) 
1000 U/ml leukaemia inhibitory factor (LIF) (Invitrogen) 
50 µg/ml P/S (penicillin/streptomycin) (Invitrogen) 
 
1x PBS for cell culture 
140 mM NaCl 
3 mM KCl 
10 mM NaHPO4*(H2O) 
2mM KH2PO4
 

Cerebellar granular cell culture Medium (1-8) 

Protocol given from Dr. Haruhiko Bito (Bito et al., 2000) was modified after optimizing the 
culture condition 
 
1. MEM-GT 

For each 500 ml of MEM (Life Technologies) 
add 2.5 g Glucose, 100 mg NaHCO3, 50 mg Transferrin (Calbiochem #616420) 
 

2. HANK’s salt solution (HANKS(-)) 

HANKS Balanced Salt Solution (Sigma, no biocarbonate, no calcium, no magnesium), add 350 
mg/L NaHCO3, pH. 7.4. 
 
3. Digestion solution 

137 mM NaCl, 5 mM KCl, 7 mM Na2HPO4, 25 mM HEPES, pH. 7.2 
 
4. Dissociation solution 

HANK’s salt solution + 12 mM MgSO4*(7H20) 
 
5. 20% FCS/HANKS(-) 

 
6. 10% FCS/MEM 

10% FCS, 2 mM Glutamine, 25 µg/ml of insulin, 1x B-27 supplement in MEM-GT 
 
7. 5% FCS/MEM + Ara-C 

5% FCS, 0.5 mM Glutamine, 25 µg/ml insulin, 1x B-27 supplement, 4 µM Cytosine arabinoside 
(Ara-C) (Sigma) in MEM-GT 
 
8. 5% FCS/MEM - Ara C 

5% FCS, 0.5 mM Glutamine, 25 µg/ml insulin stock, 1x B-27 supplement in MEM-GT  
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5.6 Buffers 

5.6.1 Lysis buffer for Rhotekin beads preparation and Rhotekin pulldown assay 

50 mM Tris-HCl, pH 7.4 
150 mM NaCl 
5 mM MgCl2
1 mM DTT 
*10μg/ml Aprotinin 
*10μg/ml Leupeptin 
*10μg/ml PMSF 
* freshly added just prior to use 
 

5.6.2 Wash buffer for Rhotekin beads preparation and Rhotekin pulldown assay 

50 mM Tris-HCl, pH7.5 
0.5 % Triton X-100 
150 mM NaCl 
5 mM MgCl2

*10μg/ml Aprotinin 
*10μg/ml Leupeptin 
*10μg/ml PMSF 
* freshly added just prior to use 
 

5.6.3 6x Sample buffer for western blots 

30% glycerol 
10% SDS 
0.6 M DTT 
0.012% bromphenol blue 
7 ml/ 10 ml 0.5 M Tris*Cl containing 0.4% SDS 
 
5.7. Genotyping of mice 

5.7.1 Preparation of mouse tail DNA 

Tail biopsies were digested with proteinase K (500 µg/ml) (Roche) overnight at 55 °C in 500 µl 

Lysis buffer (10 mM Tris pH 8, 100 mM EDTA, 0.5% SDS).  The DNA from the supernatant 

was precipitated with 500 µl 100% isopropanol, washed with 70% ethanol, air dried and 

dissolved in 50 µl TE. 
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5.7.2 Mouse tail DNA digestion by restriction enzyme for Southern blotting 

The tail biopsy DNA was digested overnight at the appropriate temperature in 25 µl reaction 

mixture containing 10 µl DNA, 2.5 µl 10X restriction endonuclease buffer, 10.5 µl H2O and 2 µl 

restriction endonuclease (10 U/µl). All the digestion volume was loaded for electrophoresis. 

 

5.7.3 PCR genotyping of mice 

0.3 µl of the tail DNA, 2µl 10X PCR buffer (NEB), 0.4µl 10mM dNTPs, 0.4µl 10µM sense 

primer, 0.4 µl 10 µM antisense primer, 16.1 µl H2O and 0.1 µl Taq polymerase to the PCR 

reaction.  

For genotyping the N19-RhoA mice, two primers flanking the 5’ loxP site were used: 

HaRhoA-S-2 and HaRhoA-AS-2 (see Appendix section 5.9.4 “Primers used for targeting vector 

construction”), giving a 220 bp wild type band (Figure 38). PCR reactions were done for 46 

cycles at 94 °C for 45 sec, 70 °C for 45 sec, 72 °C for 30 sec. 

 

 
Figure 38. Genotyping of N19-RhoA mice.  Genotyping of HA-N19RhoA mice by PCR using primers HaRhoA-A-2 

and HaRhoA-AS-2.  Expected PCR product size is 220 bp.  +:  positive PCR product. 

 

During crossing of N19-RhoA mice with the mice, we detected the Cre-positive mice by 

PCR using primers CRE(+) and CRE(-) (see Appendix section 5.9.4 “Primers for genotyping”) 

that give a 486 bp amplicon (Figure 39).  PCR conditions were 45 cycles at 95 °C for 30 sec, 

55 °C for 30 sec and 72 ° for 30 sec. 
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Figure 39. Genotyping of Cre mice.  Genotyping strategy of Cre mice by PCR using primers Cre(+) and Cre(-).  

Expected PCR product size is 486 bp.  +:  positive PCR product. 

 

5.8. Removal of the stop cassette insertion from the N19RhoA line 

Crossing mice heterozygous or homozygous for N19-RhoA with a Cre-expressing resulted in the 

removal of a floxed stop cassette.  After Cre recombination, the N19-RhoA cassette is activated 

and expressed.  The two Cre-expressing lines EIIa::Cre or Nestin::Cre have been used for all 

my analysis of the N19-RhoA mice. 

 

5.9 List of primers 

5.9.1 Primers used for targeting vector construction 

RhoA1:  5’-AATGTCGACGGCACCATGGCCTACCCCTACG- 3’ (sense) 

RhoA2:  5’-TATGCGGCCGCTCACAAGACAAGGCAACC-3’ (antisense) 

C3int1:  5’-AATGGATCCATGCCTTATGCGGATTCTTTTAAGG-3’ (sense) 

C3int2:  5’-TATGCGGCCGCCTATCTTTTTAATAATGCTG-3’ (antisense) 

MTfor1:  5’-CGGTTTAAACCGCCACCATGGTGAGCAAGGGC-3’ (sense) 

5.9.2 Sequencing primers 

HSRho2:  5’-CCCAGAAAAGTGGTCCCCAG-3’ 

HSRho3:  5’-GCACGTTGGGACAGAAATGC-3’ 

C3-KA-2:  5’-GGTGCTACTTCTAGGAAGCAAC-3’ 

C3-KA-3:  5’-GATGAAGCAAGGGCATGGGG-3’ 

TAUTKII5’-2:  5’-GGCAGATGACAGGAGACAG-3’ 

TAUTKII3’:  5’-GTATGTCCACCCCACTGACC-3’ 
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TauTKII3’-upS: 5’-GGTCAGTGGGGTGGACATAC-3’ 

TauTKII3’-dwS: 5’-CAGAGTCCAGATGGCCAGG-3’ 

TauTKII3’dwS-2: 5’-GCGGATTTCTGAGTTCAAGGC-3’ 

TAUTKII5’-2upS: 5’-CTGTCTCCTGTCATCTGCC-3’ 

TAUTKII5’-3upS: 5’-GACAGCACCAAAGAGGTAC-3’ 

PWL512pA-dwS: 5’-CCATCAGAAGCTGGTCGAC-3’ 

TKNEO5’-1:  5’-GCGGATTTCTGAGTTCAAGGC-3’ 

SilviaT7-upS:  5’-GGTCAACAGAGTGAGTTCCG-3’ 

SilviaT3-dwS:  5’-GTCCAACCACGTAGGATGG-3’ 

TAUTKII3’-dwS-3: 5’-CAGTGGCTAAGAGCACTCG-3’ 

TKNEO-gap-pA: 5’-GCTTGCCGAATATCATGGTGG-3’ 

TauTK-Exon1-3’upS: 5’-GGACTGCTGTAGAACTGAG-3’ 

5.9.3 Standard primers 

pBluescript II SK (+) sequencing primers 

T3:   5’-AATTAACCCTCACTAAAGGG-3’ 

T7:   5’-TAATACGACTCACTATAGGG-3’ 

SP6:   5’- CGATTTAGGTGACACTATAG-3’ 

5.9.4 Primers for genotyping 

HA-RhoA primers 

HaRhoA-S-2:  5’-TACGACGTGCCCGACTAC-3’ (sense) 

HaRhoA-AS-2: 5’-GCTGTGTCCCACAAAGCC-3’ (antisense) 

EGFP-C3 primers 

C3-KA-4:  5’-GATCCTGGATATTTAGGACCGG-3’ (sense) 

C3-KA-2:  5’-GGTGCTACTTCTAGGAAGCAAC-3’ (antisense) 

CRE primers 

CRE(+):  5’-GCCGAAATTGCCAGGATCAG-3’ (sense) 

CRE(-):  5’-AGCCACCAGCTTGCATGATC-3’ (antisense) 
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6 ABBREVIATIONS 

 

α32P-dCTP Deoxcytosine triphosphate labeled with 32P in alpha position 

Ara-C Cytosine arabinoside 

ATP Adenosine triphosphate 

β Beta 

BDNF Brain-derived neurotrophic factor 

bp Base pair 

BSA Bovine serum albumin 

C Celsius 

cDNA Complementary DNA 

CGC Cerebellar granule cells 

CNS Central Nervous System 

COOH-terminal Carboxyl terminal 

Cre Cre recombinase 

EtBr Ethidium bromide 

DAB 3,3’-diaminobenzidine 

DNA Deoxyribonucleic acid 

DMEM “Dulbecco’s Modified Eagle Medium” 

DMSO Dimethylsulfoxid 

dNTP Deoxyribonucleotide triphosphate 

d.p.c. days post coitum 

DRG Dorsal root ganglian 

DTT Dithiothreitol 

E. coli Escherichia coli 

EGFP Enhanced green fluorescent protein 

et al. et alii 

EDTA Ethylenediamine tetraacetic acid 

ES  Embryonic Stem 

FCS Fetal calf serum 

γ Gamma 

G Glycine 
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G proteins signal transducing GTP-binding proteins 

G418 Geneticin 

GAPs GTPase-activating proteins 

GDI guanine dissociation inhibitor 

GEFs guanine nucleotide exchange factors 

HA Hemagglutinin 

HEK Human embryonic kidney 

HEPES N-(2-Hydroxyethyl)piperazine-N’-ethanesulfonic acid 

hr(s) hour(s) 

HRP Horse radish peroxide 

IgG Immunoglobulin G 

IPTG Isopropylthiogalaktoside 

JNK c-jun N-terminal kinase 

kb Kilobase 

kD Kilodalton 

lacZ β-galactosidase 

LB Luria Broth 

LoxP Locus of crossing over (for) phage P 

LPA lysophosphatidic acid 

µ Micro 

M Milli 

m Meter 

M Molar 

MAG Myelin-associated glycoprotein 

MAPK MAP kinase 

MEF Mouse embryonic fibroblast 

MeCP2 methyl-CpG binding protein 2 

Min Minute 

mRNA Messenger RNA 

MW Molecular weight 

NCS Newborn Calf Serum 

N Asparagine 

Neo Neomycin resistance gene 
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NGF nerve growth factor 

NgR Nogo receptor 

N-terminus Amino-terminus 

OD Optical Density 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate-buffered saline 

PCR Polymerase chain reaction 

PFA  Paraformaldehyde 

PNS Peripheral nervous system 

PMSF Phenylmethylsulfonylfluorid 

P/S penicillin/streptomycin 

RT Room temperature 

RT-PCR Reverse transcription coupled to polymerase chain reaction 

RTT Rett syndrome 

Puro Puromycin resistance gene 

PVP Polyvinylpyrollidone 

RNA Ribonucleic acid 

RNase Ribonuclease 

ROK/ROCK Rho kinase 

rpm Rounds per minute 

S Serine 

Sec Second 

Sema3A Semaphorin3A 

SDS Sodium-dodecyl-sulfat 

T Threonine 

TAE Tris-acetate-EDTA 

TE Tris/EDTA buffer 

TEMED N, N, N, N-Tetramethylethylendiamin 

Tris Tris(hydroxymethyl)aminomethane 

Tris-HCl Tris(hydroxymethyl)aminomethane-hydrochloride 

TRITC Tetramethyl-Rhodaminisothiocyanat 

U Unit 

V Valine 
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V Volt 

VP Ventroposterior

mVP medial ventral posterior nucleus of the thalamus 

Wt Wild-type 
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