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Summary

A!-amyloid peptide (A!), that plays a central role in the pathogenesis of

Alzheimer’s disease is derived by sequential proteolytic processing from the
amyloid precursor protein (APP) by ! - and ∀-secretase. APP is additionally

processed through a non-amyloidogenic pathway by #-secretase. Recent work

suggests that amyloidogenesis is highly dependent on the levels of cholesterol
within plasma membrane/early endosomes’ microdomains termed “rafts”. Indeed
APP cleaving machinery, required for A! generation has been shown to reside in

lipid rafts and the secretase activity on APP to depend on membrane cholesterol
levels. Counterintuitive to the localization of cleavage machinery, the substratum
protein APP localizes, at constitutive levels of expression, in membrane
microdomains enriched in phospholipids (PL), so-called non-raft domains. From
these two series of results it arises that not only cholesterol-rich rafts but also
cholesterol-poor/PL-rich non-rafts could be important modulators of AD
implicated APP processing.  In this work, I have addressed the question of how
changes in the lipidic content of non-raft domains, where APP concentrates,
affect proteolytic processing of this protein. As phosphatidylethanolamine (PE),
an important regulator of diverse cell processes, accounts for the majority of PL I
focused on the regulation of APP proteolyisis by this particular PL. For this
purpose I utilized Drosophila melanogaster and mammalian model systems.
Confirming previous work, APP was found in the non-raft domains of either insect
or mammalian cells, excluded from cholesterol/ergosterol/Flotilin that enrich in
rafts. The activity of ∀-secretase on APP that is the crucial step in A! generation

was assayed in Drosophila in vivo system using fly strains transgenic for human
APP-C-terminal fragment, fused to the GAL4-VP16 (GV) transcription factor.
Membrane PE levels in these ∀∃secretase reporter flies were depleted by

introducing the easPC80 mutation, that affects ethanolamine kinase (ETNK) an
enzyme involved in PE synthesis pathway. A strong downregulation of hAPP-Ct
processing by ∀-secretase, readout by GV triggered cell lethal GRIM and GFP

reporter genes expression was observed in low membrane PE flies compared to
the ∀-reporter flies with wild-type membrane PE levels.  The effect of PE on APP

proteolysis was additionally observed in mammalian HEK 293 cells stably
expressing hAPP. In these cells membrane PE levels were altered by the
treatment with RNAi directed against diverse PE synthesis enzymes including
ETNK. Membrane PE level decrease, caused by RNAi treatment was shown to
correlate with a downregulated ∀- and !-secretase processing of APP and

correspondingly an elevated #- secretase activity on APP. In the present study I

could show that besides cholesterol/raft microdomains, PL (in particular PE),
which are the major lipids in APP surrounding non-raft microdomains, appear to
be involved in the regulation of APP proteolysis.  From all the above I conclude
that APP cleavage efficiency is highly dependent on the levels of the lipidic
environment of non-raft domains, either because of affecting the degree of
accessibility of the responsible cleaving enzymes to APP or by affecting the
capacity of these enzymes to cleave the substratum. These are in my view
important venues for future investigation, opened by this work.



Zusammenfassung

Das Amyloid ! Peptid, das eine zentrale Rolle in der Pathogenese von Alzheimer Erkrankung (AD) spielt,
entsteht durch die sequentielle Prozessierung des Amyloid Precursor Protein (APP), durch die !- und ∀-
Sekretase. Zusätzlich kann APP in einem nicht-amyloidogenen Prozessierungsweg, durch die #-Sekretase
innerhalb der A!-Domäne proteolytisch gespalten werden.  Aktuelle Studien deuten darauf hin, dass die
Amyloidogenese in hohem Maße von dem Gehalt an Cholesterol in Mikrodomänen innerhalb der
Plasmamembran bzw. früher Endosomen abhängt. Diese cholesterolreiche Membrandomänen werden als
“Rafts” bezeichnet. Es ist gezeigt worden, dass die APP-Prozessierungsmaschinerie, welche für die
Amyloidogenese benötigt wird, in Rafts angereichert ist, und dass die Aktivität der Sekretasen von dem
Cholesterolgehalt in der Membran abhängt. Anders als seine Prozessierungmaschinerie, ist APP unter
physiologischen Bedingungen hauptsächlich in den Membrandomänen lokalisiert, die reich an
Phospholipiden (PL) sind und als “Non-Rafts” bezeichnet werden. Diese beiden Erkenntnisse führen zu der
Annahme, dass nicht nur cholesterolreiche, sondern auch die cholesteroarme/PL-reiche Membran-
Mikrodomänen eine entscheidende Rolle in der Regulierung der APP-Prozessierung und der Entstehung
des pathogenen A!-Peptids spielen.
In der vorliegenden Arbeit habe ich die Frage untersucht, ob und wie die Veränderungen in der
Lipidkomposition der Non-Raft-Domänen, wo APP konzentriert ist, dessen proteolytische Prozessierung
beeinflussen. Da Phosphatidylethanolamin (PE) zu den Hauptbestandteilen von Non-Raft-Mikrodomänen
zählt, wurde im Ramhen dieser Arbeit die Regulierung der APP-Prozessierung durch dieses spezielle PL
eingehend untersucht. Zu diesem Zweck wurden humane Zellen und Drosophila melanogaster als
experimentelle Systeme verwendet. In Übereinstimmung mit vorangegangenen Studien, wurde APP sowohl
in humanen Zellen als auch in Insektenzellen in den PL-reichen, Non-Raft-Domänen gefunden, in den keine
Raft-typischen Lipide (Cholesterol/Ergosterol) und Proteine (Flotillin) angereichert waren. Für die
Untersuchung der APP-Proteolyse durch die ∀-Sekretase, die den entscheidenden Schritt in der A!-Peptid
Entstehung darstellt, wurde das Drosophila in vivo System verwendet, genauer, transgene Reporterstämme,
die das humane APP-C-teminale Fragment exprimieren, das mit GAL4-VP16, einer Transaktivatordomäne,
fusioniert ist. GAL4-VP16 aktiviert die Transkription der Reportergene, deren Expression ein direkter
Indikator der ∀-Sekretase-Aktivität ist. Die Reportergene, die  ∀-Sekretase Aktivität indizieren, sind GRIM,
das die Apoptose in der Retina induziert und das Gen für das “Green Fluorescent Protein”, GFP. Der
Membrangehalt von PE in ∀-Sekretase-Reporterfliegen wurde durch die Kreuzung mit den easPC80-Mutanten
reduziert. Die easPC80-Mutation hat einen direkten Einfluss auf das Enzym Ethanolamin Kinase, das für die
PE-Synthese verantwortlich ist.
Vergleiche zwischen den ∀-Sekretase-Reporterfliegen, die einen Wild-typ PE-Membranlevel aufweisen und
den Reporterfliegen, mit dem niedrigen PE-Gehalt, zeigen in den letzteren eine starke Reduktion der ∀-
Sekretase-Aktivität, die durch das Ausmaß des retinalen Zelltodes und der GFP-Intensität indiziert wird.
Zusätzlich konnte ein Effekt von Membran-PE auf die APP-Proteolyse in den humanen HEK-Zellen, die das
humane APP exprimieren, festgestellt werden. Der Membrangehalt von PE wurde in diesen Zellen durch
den RNAi vermittelten knock-down der PE-Syntheseenzyme signifikant beeinflusst. Die Reduktion des
Membran-PE-Gehalts, durch die RNAi-Behandlung, zeigte eine klare Korrelation mit der starken Reduktion
von !- und ∀-Sekretase-Aktivitäten. Die Prozessierung von APP durch die #-Sekretase war stark erhöht.  In
der hier vorliegenden Studie konnte ich zeigen, dass neben Cholesterol und den Raft Mikrodomänen, den
PL (hierbei besonders PE), den meist vertretenen Lipid-Spezies, in den APP angereicherten Non-Rafts,
eine wichtige Rolle in seiner Proteolyse zukommt. Die oben genannten Gründe lassen deshalb den Schluss
zu, dass die APP-Prozessierung stark von der Beschaffenheit der Non-Raft-Domänen abhängig ist. Die
Rolle von Non-Rafts in der APP-Regulierung kann darauf beruhen, dass sie den Zugang der Sekretasen zu
dem Substrat modulieren oder direkt die Aktivität, der für die APP Prozessierung verantwortlichen Enzyme
beeinflussten. Diese Arbeit deutet darauf hin, dass die Non-Rafts ein wesentliches Stellglied für die APP-
Prozessierung sind und eröffnet damit neue Einblicke in die Regulationsmechanismen, den die APP-
Prozessierung und viel wichtiger, die Amyloidogenese, unterliegen.
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1.1. Alzheimer’s Disease (AD)

Alzheimer’s disease, a progressive neurodegenerative disorder of the central

nervous system has been called “the disease of the century” because of its

staggering medical and social dimensions. On November 4th, 1906 Alois

Alzheimer first published his observations on the rapidly deteriorating mental

illness in a 51-year old woman called Auguste D, who had shown progressive

cognitive impairment, focal symptoms, hallucinations, delusions, and

psychosocial incompetence.  Characteristic clinical features of AD besides a wide

range of cognitive dysfunctions, of which the most common is the failure of

memory for recent events (Terry et al., 1994, Cummings 2000), are impairments

in attention, anxiety and emotional modulation (Ferretti et al., 2001, Foldi et al.,

2002). These conditions give a rise to a range of symptoms like depression,

panic, sleep disturbances, paranoia and delusion.  Alzheimer’s is the most

common form of dementia. Epidemiological studies show that AD affects 5-10%

of the population over 65, 20% after age of 40 and 43% after age of 90 years.

Most aggressive forms of AD, caused by autosomal dominant inheritance of

certain mutations, may have an onset younger than 30 years.

Histological analyses from the brains of demented patients versus non-demented

patients revealed the presence of bundles of fibrils within the neurons and

numerous focal lesions in the cerebral cortex. Most affected are the brain regions

responsible for cognitive function like, cerebral cortex, entorhinal cortex and

hippocampus. The brains of patients suffering AD are characterized by

extracellular accumulation of amyloid ! peptide (A!) and intracellular aggregates

of hyperphosphorylated tau, in so-called amyloid plaques and neurofibrilary

tangles respectively. Although not the exclusive pathological signs these are the

major hallmarks of AD.

Accumulation of aggregated A!, as the key pathological event driving

neurodegeneration in AD and Down’s syndrome was introduced by George

Glenner (Glenner and Wong, 1984).  Sequential cleavage of APP, by its cleaving

enzyme termed ∀-secretase generates 38-43-amino-acid A! peptides (Haas and
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De Strooper, 1999). The longer A! peptide (A!42), which represents 10% of all

A! species in the brain, seems to be the more amyloidogenic form of the peptide

since it is prone to aggregate. Hence A!42 peptides have an increased

propensity to accumulate as extracellular amyloid deposits in senile plaques and

cerebral blood vessels. Together with shorter fragments of the peptide in

amorphous form they constitute senile plaques in AD brains (Sellkoe, 1999).

Additionally to the 7-10nm-thick amyloid fibrils the mature plaques contain

degenerating axons and dendrites, and are surrounded and invaded by variable

numbers of microglia and reactive astrocytes.

Neurofibrilary tangles are intracellular aggregates of hyperphosphorylated tau

(Lee at al., 2001) consisting of 10nm-thick paired helical filaments. Aggregate

formation relies on elevated level of phosphorylated tau in the cells (Grundke-

Iqbal et al., 1986). Tau, a microtubule-associated protein is phosphorylated by

protein kinases, such as the neuron-specific cyclin dependent kinase 5 (cdk5).

This event precedes the organisation of highly phosphorylated tau protein in

paired helical fragments that causes the disruption of microtubules and ultimately

leads to cell death (Cruz et al., 2003, Noble et al., 2003).  Together with the tau

containing dystrophic neurons, neurofibrilary tangles are likely to be a

consequence of A! peptide accumulation (Hardy and Selkoe, 2002).

Although the pathology of AD is complex, amyloid cascade hypothesis, which

states that chronic imbalance between A! production and clearance leads to a

multistep cascade including gliosis, inflammatory changes, neuritic/synaptic

change, tangles and transmitter loss is considered to be the primary cause for

dementia in AD pathogenesis (Scheuner et al. 1996, Price et al., 1998, Hardy

and Selkoe, 2002, St. George-Hyslop and Petit, 2005, Tanzi and Bertam, 2005).

A! peptide is not produced as an independent protein but is instead generated by

proteolytic processing of a type I transmembrane protein, the amyloid precursor

protein (APP) (Kang et al., 1987, Tanzi et al., 1987). The role of APP in

Alzheimer’s disease became interesting as the mutations in the APP gene,

localized on chromosome 21 have been found in some rare forms of familial

early-onset AD (FAD) (Chartier-Harlin et al., 1991, Goate et al., 1991, Murell et
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al., 1991, Eckman et al., 1997).  Most of APP missense mutations alter APP

processing in a pathological manner by increasing either overall production of A!

peptide or generating highly fibrilogenic A! variants, like A!42. (Citron et al.,

1992, Cai et al., 1993, Haas et al., 1994, Suzuki et al., 1994, Price et al., 1998).

Interestingly AD related APP mutations were found within the region encoding A!

or immediately adjacent to !# and ∀-secretase cleavage sites (Hardy, 1996) that

strengthen the amyloid cascade hypothesis. In APP mutations linked FAD that

accounts for less than 5% of total AD cases, clinical and pathological symptoms

are nearly identical to that of the more frequent, late-onset sporadic AD. The

observations above strongly suggest that abnormal processing of APP plays an

important role not only in FAD but also in sporadic form of AD.

In addition to mutations in APP gene, FAD cases were linked to the mutations in

genes encoding presenilin-1 (PS1) and presenilin-2 (PS2), localized on

chromosome 14 and 1, respectively (Sherrington et al., 1995, Rogaev et al.,

1995, Levy-Lahad et al., 1995). Biochemically, FAD-associated mutations in PS

gene increase the relative concentration of the aggregation-prone A!42 (Sisodia,

2002, Iwatsubo, 2004). The mechanisms by which these mutations lead to a

selective increase of in the levels of A!42 species have not been fully resolved

yet.

There is also strong evidence that the ∃4 allele of apolipoprotein E (ApoE) is

associated with increased AD risk (Roses, 1998). ApoE4 plays a crucial role in

the metabolism and clearance of A! peptide. Like APP and PS genes, ApoE ∃4

allele impacts on A! production, deposition or clearance. This provides strong

genetic support to the role of amyloid cascade hypothesis in AD.

1.2. Amyloid Precursor Protein (APP)

Senile plagues in the brains of AD patients are deposits composed primarily of !-

amyloid insoluble peptides generated from the Amyloid Precursor Protein (APP).

APP is known to play a central role in the pathogenesis of AD but its
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physiological function is still not fully understood. Experiments in Drosophila

melanogaster indicate that APP might play an important role in the regulation of

cell adhesion and signalling (Beyreuther and Masters, 2001). Besides its role in

AD development A! domain appears to be crucial for correct APP functioning in

processes like axonal adhesion, neuritic outgrowth or regulation of synaptic

plasticity.

APP is a 110-120-kDa integral type I membrane glycoprotein that contains a

large amino terminal extracellular/cytosolic domain and a small intracellular

COOH-terminal domain (De Strooper and Annaert, 2000, Nunan and Small,

2000). This ubiquitously expressed protein is modified in the secretory pathway

by N-glycosylation and O-glycosylation in the endoplasmic reticulum (ER) and

the Golgi apparatus (Weideman et al., 1989, Sinha and Lieberburg, 1999).

Tyrosine sulfation and addition of phosphate in trans-Golgi network and at the

cell surface further increase the structural complexity of this protein. APP is

expressed as three alternatively spliced isoforms: APP695 (neuronal form),

APP770 and APP771 (peripheral and glial isoforms). APP770 and APP771

contain Kuniz-type protease inhibitor domain within the ectodomain.

Mammalian APP belongs to a protein family with two other members: the amyloid

precursor like protein 1 and 2 (APLP1 and APLP2). Two homologues have been

identified in invertebrates: the amyloid protein-like protein 1 (APL-1) in

Caenorhabditis elegans (Daigle, 1993) and the amyloid precursor protein-like

protein (APPL) in Drosophila melanogaster (Rosen, 1989). None of the

homologous members of the APP protein family exhibit sequence similarities

within the !-amyloid region that encodes the AD implicated A! peptide (Selkoe,

1996).

1.2.1. Proteolytic processing of APP

APP proteolytic processing is a membrane related event, which occurs by

sequential cleavage of APP by proteases termed %-, !- and ∀-secretase (Figure

1.1.). This process involves ectodomain shedding by either %- or by !-secretase
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and the retention of corresponding membrane-anchored C-terminal fragment,

%CTF (C83) and !C T F  (C99). ∀-secretase a multimeric protein complex

subsequently cleaves the % and !CTFs, in the middle of transmembrane domain

generating a 3-kda peptide (p3) and A! (4-kDa), respectively. Additionally to p3

or A! generation, ∀-cleavage releases the intracellular domain of APP (AICD)

after C83 or C99 processing. The APP processing pathway, in which %-secretase

precedes the ∀-secretase cleavage is so-called non-amyloidogenic pathway and

is the favoured pathway in non-neuronal tissue. The production of !-amyloid

peptide, relevant for AD pathogenesis is the product of sequential APP cleavage

by !- and ∀-secretase and it is the major APP prosessing pathway in neurons.

Both amyloidogenic and non-amyloidogenic pathways occur under physiological

conditions which indicates, that all products of APP proteolytic processing,

including A! are part of normal physiology (Haass et al., 1992, Seubert et al.,

1992).

A
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Figure 1.1. (A) Schematic diagram of the proteolytic processing of amyloid

precursor protein (APP). APP is a type I transmembrane protein that is processed by

%-, !- and ∀-secretase. APP processing by %-secretase is characterized by the release of

a large soluble ectodomain fragment (sAPP%) and the retention of a 10-kDa membrane

anchored fragment (C83). %-secretase cleaves APP within the A! domain (marked in

red) and prevents amyloidogenesis. Extracellular !-secretase mediated cleavage

produces a soluble APP-! fragment (sAPP!) that is shed in the extracellular space and a

membrane attached C-teminal fragment (C99). The membrane bound carboxy-terminal

fragments C99 and C83 are immediate substrates for ∀-secretase that cleaves in the

middle of transmembrane domain and generates 4kDa A! peptide and a small p3

peptide, respectively. Additionally ∀-secretase cut releases the APP intracellular domain

(AICD) that is known to be involved in nuclear signalling. Figure (B) depicts schematic

diagram of APP770 and APP695 isoforms and amino acid sequences of the

regions encompassing the A  sequence and the intracellular domain.  The APP770

isoform contains a serine protease inhibitor domain of the Kuniz type (KPI, starting form

the residue 289), while APP695 lacks this domain and is therefore shorter than APP770.

The amyloid-! sequence (labelled in red) is identical in both isoforms. Protease cleavage

sites in APP770 isoform (marked in green) are as follows: !-secretase cleaves after

residue 671, %-secretase cleaves after residue 687 and ∀-secretase cleaves after

residues 711 and 713, generating A!40 and A!42, respectively. APP695 isoform is

B
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cleaved by proteases at following cleavage sites (marked in blue): !-secretase cleaves

after residue residue 596, %-secretase cleaves after residue 612 and ∀-secretase

cleaves after residues 636 and 638, generating A!40 and A!42, respectively.

-secretase cleaves APP within A! domain between residues Lys16 and Leu17

(numbering according to the primary sequence of A! peptide), and therefore

precludes generation of intact A! peptide. As already mentioned above during

APP cleavage by %-secretase, a soluble ectodomain (sAPP%) is released into

extracellular space and a 10-kDa C-terminal fragment remains within the

membrane (C83) (Weidemann et al., 1989). SAPP% has been shown to have

neurotrophic properties (Small 1998), which could antagonize the neurotoxic

effect of A! peptide. Cleavage of C83 by ∀-secretase releases a short peptide

(p3), containing the C-terminal part of A! peptide. The biological significance and

the role of p3 in amyloidogenesis remain obscure. Several zinc metalloproteases

including TACE (tumor necrosis factor-% converting enzyme; or ADAM17), ADAM

(a disintegrin and metalloprotease) 9, ADAM10 and MDC9 and an aspartyl

protease BACE2 can cleave APP at the %-secretase site (Allinson, 2003).

The APP cleavage by %-secretase may occur in the trans-Golgi compartment

(Sinha and Lieberburg, 1999), at the cell surface or within calveolae (Lammich et

al., 1999, Kosik, 1999). At the membrane level %-secretase that is involved in

non-amyloidogenic APP processing pathway has been shown to act in the non-

raft membrane microdomains (Kojro et al., 2001, Ehehalt et al., 2003). ADAMs

are not only found in vertebrates but also in Caenorhabditis elegans, Drosophila

melanogaster and Xenopus. It has been shown that Drosophila %-secretase

processes human APP in a similar manner like in mammalian cells, generating a

CTF corresponding in size to mammalian %CTF (C83)  (Fossgreen et al., 1998,

Loever et al., 2003). One of the best candidates responsible for this %-secretase

activity in Drosophila is the protease Kuzbanian (Kuz). Kuz belongs to the ADAM

family, members of which contain contain both a disintegrin and metalloprotease

domain.
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-secretase is involved in amyloidogenic processing of APP and is the first

prerequisite for generation of A! peptide. This enzyme cleaves APP at the Asp+1

residue of A! sequence, and generates two products: a secreted soluble

fragment (sAPP!) and the membrane bound APP C-terminal fragment,

composed of 99 amino acids (!CTF or C99). Subsequently ∀-secretase cleaves

C99 producing a spectrum of intact !-amyloid peptide plus the APP intracellular

domain (AICD). A !-site APP cleaving enzyme, BACE (beta-site APP-cleaving-

enzyme; also called Asp-2 and memapsin-2) has been identified by several

groups by genetic screening, and by direct enzyme purification and sequenzing

(Hussain et al., 1999, Vassar et al., 1999, Yan et al., 1999). BACE is a

transmembrane protein characterized by a large extracellular domain, containing

two aspartate residues involved in !-secretase activity (Hussain et al., 1999) and

it is a member of pepsin family of aspartyl proteases. Affinity of BACE1, which is

the major neuronal !-secretase toward APP is relatively low. Interestingly,

Swedish type of missense mutation in APP gene, which is known to enhance A!

generation, promotes cleavage of APP by BACE (Vassar et al., 1999).

!-secretase has maximal activity at acidic pH (Haass et al., 1993 and 1995,

Knops et al., 1995). Indeed cell biological studies indicate that BACE colocalizes

with endosomes and trans-Golgi (Koo and Squazzo, 1994, Haass et al., 1995,

Walter et al., 2001) and that its activity is highest in these subcellular

compartments that provide acidic environment. Another important aspect

regarding !-secretase activity is its localization and activity on APP within the

lipid rafts (Ridell et al., 2001, Ehehalt et al. 2003, Cordy et al., 2003, Abad-

Rodriguez et al., 2004). Homologues for BACE in invertebrates, e.g. in

Drosophila melanogaster have not been reported.

-secretase cleavage of APP is the major step in the generation of A! peptide.

This intramembrane protease cleaves APP fragments generated by %- and !-

secretase within the membrane and produces secreted fragments consisting of
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nontoxic p3 and toxic !-amyloid peptide, respectively and the intracellular domain

of APP, AICD. As described above ∀-cleavage of APP C-terminal fragments

generates a spectrum of amyloidogenic species and the exact position of ∀

cleavage site is critical for AD pathogenesis. Besides  APP ∀-secretase cleaves a

number of substrates like E-cadherin, N-cadherin, ErbB-4, CD44, p75

nurothropin receptor, and most importantly the protein Notch (Struhl and

Greenwald, 1999, 2001, Ye et al., 1999, Thinakaran and Parent, 2004), which is

involved in cell fate decision in the embryo and in the adult. The process in which

∀-secretase cleaves APP and Notch within the plasma membrane is an example

of a much more general process known as regulated intra-membrane proteolysis

(RIP). RIP is a highly conserved from bacteria to humans and it is involved in a

numerous cellular regulatory events, including lipid homeostasis (Brown et al.,

2000).

∀-secretase is a membrane-bound enzyme complex comprised of at least four

components including Presenilin 1 and 2  (PS1, PS2), Nicastrin (Nct), anterior

pharynx-defective phenotype (APH-1) and Presenilin enhancer (PEN-2) (Figure

1.2.). Several studies indicate that ∀-secretase endoproteolyzes its substrates

through a GX’GDX’’-type catalytic site (X’ is variable, and X’’ is preferably a

hydrophobic amino acid) residing within the 6th and the 7th transmembrane

domain (TMD6, TMD7) of PS (Steiner et al., 2000). Hence Presenilins appear to

be a central catalytic component of ∀-secretase. Preseniln (PS) is an aspartyl

protease whose membrane topology is characterized by 7- to 8-membrane

spanning domains (Figure1.2.), with the sixth and seventh domain containing

aspartate residues (Asp257 and Asp385), responsible for the catalytic activity.

PS is synthesized as an immature, inactive holoprotein, which is subsequently

endoproteolyzed by an unknown activity to generate N- (NTF, ~-30kDa) and C-

terminal (CTF, ~20-kDa) fragments, which are thought to associate to form the

active enzyme (Thinakaran et al., 1996, Rattovitski et al., 1997, Levitan et al.,

2001). Nicastrin (Nct), a glycosylated type I transmembrane protein (~130-kDa)

conatins a large N-terminal extracellular and a short C-terminal intracellular
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domain (Figure 1.2.). Nct is an additional putative component of ∀-secretase

complex, which exists, similar to PS as an immature and a mature protein

(Edbauer et al., 2002, Leem et al., 2002). The mature isoform of Nct is

associated with active ∀-complex. N-terminal part of Nicastrin, that contains

several conserved cysteines and a conserved functionally important DYIGS

motif, associates with PS and COOH-terminal fragments of APP and Notch (Yu

et al., 2000, Chen et al., 2001, Capell et al., 2003) and it has been proposed to

be required for PS-mediated cleavage at the cell surface in Drosophila (Chung

and Struhl, 2001) and mammalian cells (Kaether et al., 2002).  But PS and Nic

alone do not suffice for the formation of an active ∀-secretase complex. Indeed

two other members of ∀-secretase complex were identified through genetic

screens in Caenorhabditis elegans, APH-1 and PEN-2. APH-1 is a 30-kDa

multipass membrane protein containing seven transmembrane segments.

Together with Nct APH-1 works as a scaffold and facilitates the assembly and

trafficking of ∀-secretase (La Voie et al., 2003, Niimura et al., 2005). PEN-2 a 12-

kDa membrane protein with two transmembrane segments is incorporated into

the PS-Nct-APH-1 complex through direct binding to TMD4 of PS. It causes PS

endoproteolyisis, which avails its proteolytic activity to other substrates (Takasugi

et al., 2003, Watanabe et al., 2005, Kim et al., 2005).
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Figure 1.2. Schematic depiction of the -secretase complex and its putative

components: Presenilin (PS), Nicastrin (Nct), APH-1 and PEN-2. ∀-secretase is a

membrane bound protein complex consisting of at least four different integral membrane

proteins: PS, Nic, APH-1 and PEN-2 (left panel). PS contains eight transmembrane

domains, NH2- and COOH-terminal cytoplasmic domains, and a large intracellular

hydrophilic loop domain (right panel). Catalytic aspartate residues in PS transmembrane

domains 6 and 7 indicate that PS may comprise the active site of ∀-secretase.

Endoproteolytic processing of immature PS generates a PS heterodimer, which is

thought to be component of the mature, active ∀-secretase. The red box represents the

endoproteolytic cleavage site. Nct is a type I transembrane protein, with an extracellular

domain that contains several conserved cysteines and a functionally important DYIGS

motif, and a relatively small intracellular domain. Together with APH-1 and PEN-2, that

contain seven and two transmembrane segments, respectively, Nct is required for the

maturation, trafficking and the activity of the ∀-secretase complex.

At the subcellular level, ∀-secretase activity have been shown to reside in multiple

compartments including the ER, late-Golgi/TGN, endosomes and the plasma

membrane (Xu et al., 1997, Cook et al., 1997, Greenfield et al., 1999, Takahashi

et al., 2002, Kaether et al., 2002).  Only 6% of total ∀-activity had been detected

at the cell-surface (Chyung et al., 2005). The majority of the active components

of ∀-complex are present in ER/Golgi intermediate compartments, Golgi

apparatus, the trans Golgi network (TGN), and late endosomes (Vetrivel et al.,

2004). Recent biological evidence suggests that ∀-secretase components

assemble into the proteolytically active complex in the Golgi/TGN compartments

(Baulac et al., 2003). Similar to BACE1, active components of ∀-secretase

activity, namely PS1 derived fragments, mature Nct, APH-1 and PEN-2 associate

with lipid raft microdomains (Vetrivel et al., 2004), although interestingly ∀-

secretase activity seem to be independent of the presence of cholesterol (Wada

et al., 2003). Presenilins, Nicastrin, APH-1 and PEN-2 enable the highly

conserved ∀-secretase proteolytic activity in mammalian, insect or yeast cells

(Takasugi et al., 2003, Kimberly et al., 2003, Hayashi et al., 2004).
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A novel APP cleavage taking place a few residues C-terminal to the ∀-site has

been recently reported (Gu et al., 2001, Yu et al., 2001, Sastre et al., 2001,

Weidemann et al., 2002). Remarkably, it shares similarities with S3 Notch

cleavage site. The -cleavage site of APP resides at Leu-49 distal to the ∀-

secretase site, and is thought to be involved in the regulation of APP cleavage

generating APP intracellular domain, that similar to its Notch counterpart appears

to mediate important physiological functions. Evin and colleagues suggest that ∃-

CTF may be derived from ∀CTF by a rapid action of a second protease in the

cytosol (Weidemann et al., 2002). Alternatively ∃-cleavage may represent an

intermediate step in A! formation that would precede ∀-cleavage at 40- or 42-

position (Weidemann et al., 2002). This observation indicates that ∀- and ∃-

cleavages on APP could be seen as either deleterious (∀-site) or beneficial (∃-

site) events, and that modulation of ∃-cleavage may contribute to the regulation of

the neurotoxic amyloid-! peptide generation implicated in AD pathogenesis. This

cellular mechanism is still poorly understood and further studies are required to

clarify the function of this cleavage.

1.2.2. Modulators of APP proteolytic processing

Generation of amyloid-! peptide by APP proteolytic processing plays a central

role in the pathophysiology of AD (Beyreuther and Masters, 1997) and is

therefore an interesting target from pharmaceutical point of view. Particularly

modulation of APP by !- and ∀-secretase, enzymes involved in amyloidogenic

processing of APP may stop or prevent neurodegenerative processes

characteristic for AD. But also %-secretase cleavage of APP is an issue in

amyloidogenesis, as %-secretase cleaves APP within A! domain preventing the

deposition of intact A! peptide. Moreover sAPP%, a large soluble domain,

produced by %-processing of APP has neuroprotective and memory-enhancing

effects (Barger and Harmon, 1997, Meziane et al., 1998).
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As already described APP and its proteolytic machinery consisting of %-, !# and

∀-secretase reside at the membrane. It seems likely that APP and the proteases

being membrane proteins respond to their lipid environment in a way that could

eventually affect their activity. Indeed strong evidence indicates a functional

relationship between AD and amyloidogenesis with lipid metabolism (Simons et

al., 2001, Kalvodova et al., 2005, Vetrivel and Thinakaran, 2006). Although

alterations in several lipid species including phospholipids, ceramides and

sphingolipids have been reported to correlate with AD pathogenesis and AD

related events (Prasad et al., 1997, Han, 2005, Kalvodova et al., 2005),

cholesterol and cholesterol rich membrane domains, rafts have received the most

attention during the past few years (Puglielli et al., 2003, Wolozin, 2004, Vetrivel

and Thinakaran, 2006).

The reasons for the interest in this lipid are several fold. There are epidemiologic

data that show a direct relationship between cholesterol and AD.  For instance

high cholesterol levels are shown to be an important risk factor in AD

pathogenesis (Hofman et al., 1997). Further, Kivipelto et al. (2001) reported that

elevated cholesterol levels during mid-life increase the risk of developing the

disease. Additionally cholesterol metabolism is genetically linked to AD through

ApoE ∃4 allele (Sing and Davignon, 1985), which is the major genetic factor for

developing the disease (Strittmatter et al., 1993, Corder et al., 1993). Clinical

studies indicating that there is a decreased prevalence of AD associated with the

treatment of cholesterol synthesis inhibitors (statins) (Jick et al., 2000, Wolozin et

al., 2000, Austen et al., 2002) are supported by studies in animal models that

have revealed a significant decrease of A! generation in animals fed with statins

(Fassbender et al., 2001) and on the other hand an accumulation of A! due to

the cholesterol rich diet (Sparks et al., 1996, Refolo et al., 2000). The

epidemiological data find support in cell biological studies. Thus, cholesterol

reduction at the cellular level by inhibition of its de novo synthesis with statins

alone or in combination with cholesterol extracting agent, methyl-!-cyclodextrin

results in a strong decrease of A! production (Simons et al., 1998, Fassbender et

al., 2001, Ehehalt et al., 2003). Amyoidogenic processing of APP by ∀- and !-
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secretase is affected by cholesterol depletion as indicated by a marked reduction

of !CTF and A! peptide generation (Simons et al., 1998, Ehehalt et al., 2003).

The non-amyloidogenic APP processing pathway seems to be stimulated by

cholesterol loss, since reduction of cholesterol levels causes an increase in the

production of APP ectodomain generated by %-secretase (Kojro et al., 2001).

Taken together the results described above suggest that cholesterol depletion

favours the non-amyloidogenic pathway, while inhibiting the AD implicated

amyloidogenic APP processing by !- and ∀-secretase.

Contrary to the above view it has been shown that mild reduction of cholesterol

leads to an increased amyloidogenesis in neurons indicating the importance and

requirement of cholesterol for APP proteolysis (Rodriguez et al., 2004). These

results are supported by observations showing that rodents treated with the statin

most permeable to the blood brain barrier show an increased A! generation and

senile plaque deposition (Park et al., 2003). The discrepancy between these last

results with the above may rely on several factors (see Kaether and Haass, 2004,

Ledesma and Dotti 2006) and future work is needed to settle this controversy.

Nevertheless what is clear from all these two series of results is that cholesterol

can play a key role in the regulation of APP processing, possibly by restricting the

access of proteases to their substrate. (Kaether and Haass, 2004, Kalvodova et

al., 2005). Hence an altered A! peptide generation in cholesterol low membranes

is likely to rely on an aberrant access of !- and ∀-secrtetase to their substrate.  A

crucial cell membrane structure that may act as a link between cholesterol and

APP processing are cholesterol/sphingolipid enriched lateral assemblies within

the membrane so-called lipid rafts.

Biological membranes are complex structures composed of lipids, that have

multiple and distinct roles in cellular function (Roberts et al., 2002, Hardie et al.,

2003). Although membranes contain thousands of individual lipid molecular

species three lipid species are the main components of cellular membranes:

sterols, sphingolipids and phosphoglycerolipids (phospholipids) (Figure 1.3.).
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Sterols are based on a rigid four-ring structure, with cholesterol being the

principle form found in vertebrate. Sphingolipids contain C18 alcohol sphingosine

or dihydrosphingosine, their homologs or their derivatives (ceramide) associated

with either a phopshocholine headgroup (sphigomyelin) or one of a range of

carbohydrate structures (glycosphingolipids). In sphingolipids both acyl chains

are often saturated. Phosphoglycerolipids comprise one of several headgroups

(phosphocholine, phosphoethanolamine, phosphoserine and phosphoinositol)

attached via glycerol to two acyl chains, one of which is usually unsaturated.

Sphingolipids are longer and more saturated than phospholipids, and would

therefore be predicted to have a higher melting temperature than phospholipids.

Figure 1.3. Major membrane lipid species in mammals and Drosophila. (A) Sterol

structure is based on a rigid four-ring structure. Cholesterol is the most abundant sterol

in the membranes of the mammalian cells. Flies cannot synthesize sterols and require

therefore a dietary source that is mainly yeast with ergosterol being the major sterol

cholesterol ergosterol

sphingomyelin
PECer

PEPC

A

B

C
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species. (B) The structural unit of mammalian and Drosophila sphingolipids is C18

alcohol sphingosine or dihydrosphingosine, their homologues or their derivatives

(ceramide). Sphingomyelin, the major sphingolipid in mammalian membranes is

composed of ceramide and phosphocholine. Instead in Drosophila membranes

phosphoethanolamine ceramide (PECer) accounts for the majority of membrane

sphingolipids and it contains ceramide and phosphoethanolamine. Typically, amide-

linked fatty acids (R’) present in sphingolipids are saturated or monounsaturated. (C)

Most phosphoglycerolipids (phospholipids) contain a saturated fatty acid (R’) on C-1 and

an unsaturated fatty acid (R”) on C-2 of the glycerol backbone.  The most commonly

added alcohols (serine, ethanolamine and choline) also contain nitrogen that may be

positively charged, whereas, glycerol and inositol do not. The major phospholipid

species in mammals besides phosphatidylcholine (PC) is phosphatidylethanolamine

(PE) that is present in Drosophila membranes with 55% of total phospholipids.

At the subcellular levels sterols and sphingolipids are not distributed

homogeneously  (Ikonen, Vainio and Lusa, 2005).  Other than in the plasma

membrane, the membranes of early endosomes and the endosomal recycling

compartment, which are enriched in sterols and sphingolipids, these lipids are

present at low levels in endoplasmic reticulum (ER) and cis Golgi membranes.

Also within membranes lipid distribution is not homogenous. Instead membrane

lipids have high affinities towards each other and tend to form lateral assemblies

within the membrane.  One such assembly termed rafts are known to be an

important regulator of polarized intracellular sorting and signal transduction

(Simons and Ikonen, 1997, Brown and London, 1997, Simons and Toomre,

2000). Moreover a large body of evidence suggests that these specialized

membrane domains are related to AD pathogenesis (see above, and Simons et

al., 1998, Simons et al., 2001, Fassbender et al., 2001, Ehehalt et al., 2003,

Abad-Rodriguez et al., 2004, Vetrivel and Thinakaran, 2006). Lipid raft formation

is based on the tendency of cholesterol to organize the membrane bilayer in

cholesterol-rich liquid ordered and cholesterol-poor liquid disordered domains

(Sankaram and Thompson, 1991). Pure phospholipid bilayers can exist in two

states a “gel” state or “liquid” state. The presence of rigid sterol in the
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physiologically relevant liquid phase causes phospholipid acyl chains to become

closely packed or compacted, and the bilayer to be thickened.  This high

cholesterol bilayer in which phospholipid acyl chains cannot readily deform is

termed liquid-ordered phase, in contrast to liquid-disordered state “without”

cholesterol. Formation of liquid-ordered phase is enhanced by preferential

interaction of cholesterol with sphingolipids and the fact that sphingolipids have a

higher melting temperature than phospholipids. The “separation” of

cholesterol/sphingolipid-rich liquid-ordered membrane domains from the

phospholipid-rich phase that constitutes the rest of the membrane leads to raft

formation.   Raft assembly takes place in the Golgi, and they are predominantly

located at the plasma membrane. Biochemically lipid rafts are defined as

detergent resistant microdomains (DRM) that resist extraction with a non-ionic

detergent, like Triton X-100 (Yu et al., 1973, Brown and Rose, 1992, London and

Brown, 2000, Edidin, 2003).

Raft microdomains have also been found in the membranes of Drosophila

melanogaster (Rietveld et al., 1999). Drosophila membranes are similar to those

in mammals regarding their lipid composition. Like in mammalian membranes

major lipidic components in Drosophila membranes are sterols, sphingolipids and

phosphoglycerolpids. In contrast to mammalian membranes in which cholesterol

accounts for the majority of membrane sterols, in Drosophila membranes

ergosterol represents the major sterol species (Figure 1.3. A). Flies incorporate

dietary (yeast) sterols into their membranes, as they have only a part of sterol

synthesis machinery and are therefore disabled to synthesize sterols. The only

phosphosphingolipid in mammals, sphingomyelin is not present in Drosophila

membranes. Instead Drosophila membranes contain phosphoethanolamine

ceramide (PECer) (Figure 1.3. B). Despite differences in chemical structure

between mammalian and Drosophila lipids, the properties of sterols,

sphingolipids and phospholpids that allow raft formation have been preserved.

Both ergosterol and PECer are enriched in insoluble membranes (Rietveld et al.,

1999).
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As mentioned above, strong evidence indicates that rafts may be the principal

membrane platforms where amyloidogenic processing of APP takes place. The

importance of raft microdomains for APP processing, particularly in

amyloidogenic pathway is strongly supported by the enrichment of entire A!

generating machinery within the lipid raft microdomains (Li et al., 2000, Wahrle et

al., 2002, Ehehalt et al., 2003, Rodriguez et al., 2004, Vetrivel et al., 2004). A

further evidence for the role of rafts in amyloidogenesis is the concentration of

monomeric and oligomeric A! in DRM in the brains of a mouse model for AD

(Lee et al., 1998, Kawarabayashi et al., 2004). Opposite to ! and ∀-secretase

activity in rafts, %-secretase involved in non-amyloidogenic APP processing takes

place outside rafts (Ehehalt et al., 2003).

On the other hand, it is also strong the evidence that amyloidogenic processing

of APP, is mostly taking place within phospholipid rich or non-rafts membrane

domains (Rodriguez et al., 2004). This would be consistent with the view of

Ehehalt et al. (2003), who suggest the existence of APP in two pools, in raft and

non-raft domains, rendering possible that both, lipid rafts and non-raft domains

are important regulators of APP cleavage. Although large body of evidence

support the cholesterol/raft role in APP processing event, very little is known

about the role of APP surrounding phospholipidslipids and non-rafts in its

proteolytic processing. The colocalization of APP with these membrane domains

strongly suggests the phospholipid role as APP cleavage modulators and the

analysis of their role in APP proteolysis may shed important light on

amyloidogenesis.

Although phospholipids are major components of cell membranes, the role of

phospholipids in the physiology of the cell is just beginning to be understood.

Phospholipids play multiple roles in cells being important components in cell

signalling, by providing the matrix for the assembly and function of a wide variety

of catalytic processes and therefore actively influencing the functional properties

of membrane-associated processes (Berridge and Irvine 1984, Nishizuka 1986,

Fadok et al., 1992, 2000, Vance and Vance, 1996, Dowhan et al., 1997,

Alessenko and Burlakova, 2002). One of those membrane related events
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implicated in AD  (BACE-activity) has been shown recently by Simons and

colleagues to be regulated by phospholpids (Kalvodova et al., 2005). Similar to

the sterols phospholipids show altered levels in the brains of Alzheimer’s patient.

In particular PE membrane levels are affected in AD brains while PC and

phosphatidylinositol (PI) do not show significant changes in AD brains compared

to control (Wells et al., 1995, Prasad et al., 1997). Among all phospholipids PE

appears to be the most interesting candidate for modulation of APP proteolytic

processing. Besides PC, PE is the most abundant phospholipid in eukaryotic

cells, and it constitutes 20-40% and 55% of the total phopholipids in mammalian

and in Drosophila cell membranes, respectively (Figure 1.3. C). PE is involved in

a variety of cell processes. It has been shown to be required for membrane

protein activity, it serves as “chaperone” and, along with other “non-bilayer” lipids,

PE seems to be important for maintaining the physical state of the bilayer

(Bogdanov et al, 1996, van der Brink-van der Laan, 2004). Recently Drosophila

PE has been shown to regulate SREBP (sterol regulatory element-binding

protein) processing, an event that is regulated by sterols in mammalian cells

(Dobrosotskaya et al., 2002). Unlike PC and PS, which form flat bilayers, PE can

form non-bilayer structures under physiological conditions. These structures,

observed in vitro, may provide discontinuity in the membrane bilayer for several

important biological functions like vesicle-mediated protein trafficking, lateral

movement of macromolecules within bilayer, stabilization of specific membrane

protein complexes (Dowhan et al., 1997).

PE is synthesized via two main pathways: CDP-ethanolamine pathway (Kennedy

et al., 1957) and phosphatidylserine (PS) dexarboxylation pathway (Merrill, 1997,

Dickson and Lester, 1999, Hannun and Luberto 2001; Figure 1.4.). While in

insects the CDP-ethanolamine pathway is known to be the major source of PE

(Downer et al., 1985), in mammalian cells the utilization of that pathway is tissue

dependent. Kennedy pathway is the primary pathway in mammalian tissues such

as the brain and the hart (Butler and Morell, 1983, McMaster et al., 1993, Arthur

and Page, 1991).  In liver and kidney tissue PE is mainly synthesized by PS-

dexarboxylation.
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Figure 1.4. The major pathways for biosynthesis of phosphatidylethanolamine de

novo in eukaryotic cells. Scheme is based on data from mammalian and yeast

systems. PE is mainly synthesized through CDP-ethanolamine pathway and

phosphatidylserine decarboxylation pathway. The first step in CDP-ethanolamine

pathway which is the major pathway in Drosophila and in mammalian neuronal tissue is

phosphorylation of ethanolamine by ethanolamine kinase (ETNK), followed by reaction

of the product with cytidine triphosphate (CTP) to form cytidine diphosphoethanolamine

(CDP-ethanolamine). CDP-ethanolamine phosphotransferase, catalyses the reaction of

the last compound with diacylglycerol to form phosphatidylethanolamine (PE).

Additionaly to CDP-ethanolamine pathway, PE is synthesized through dexarboxylation of

phosphatidylserine by phosphatidylserine decarboxylase.

Phosphoethanolamine
Citidylyltransferase (PECT)

Ethanolamine Kinase

CDP-Ethanoalmine
Phosophotransferase (CEPT)

Phosphatidylserine
Decarboxylase
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1.3. Goals of my PhD thesis

The processing of APP by its cleaving enzymes plays a crucial role in

A D  pathogeneis, and is therefore an important pharmacological target.

Membrane lipids in particular cholesterol/sphingolipid rich membrane

microdomains are important candidates for regulation of APP proteolysis. The

localization of APP processing enzymes responsible for amyloidogenic APP

cleavage supports the regulatory role of cholesterol and rafts in amyloidogenesis.

But the finding that APP localization in neurons and non-neuronal cells is largely

restricted to the phospholipid rich liquid disordered phase strongly indicates the

importance of these membrane domains for APP processing and

amyloidogenesis. In addition, the crucial role that PE plays in variety of

membrane occurring enzymatic activities strengthen the hypothesis that PE may

be an important factor in the regulation of APP proteolysis. Present study has

been performed in order to understand whether PE plays a modulatory role in the

regulation of APP proteolytic processing by %-, !- and ∀-secretase, as indicated

by several factors described above.

The modulation of the APP processing by PE will be analysed by utilizing

Drosophila in vivo and in vitro model system and mammalian in vitro model

system. In the first part of my thesis I will focus on the analysis of PE role on %-,

!- and ∀-secretase activity by using mammalian HEK 293 cells, overexpressing

wild-type APP.

The second part, in which the experiments will be performed in a more

sophisticated Drosophila in vivo system is aimed at addressing the PE

modulatory role on the crucial step of A! generation, namely APP processing by

∀-secretase. Presenilin dependant ∀-secretase activity, that is highly conserved in

mammals and Drosophila melanogaster will be analysed in the flies transgenic

for APP-C-terminal fragment, initiating just downstream of the !-secretase

cleaving site that is known to be processed In Drosophila in a similar manner like

in mammalian cells, generating A! peptide and APP intracellular domain (AICD).
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Transgenic fly lines utilized for that purpose GMR-APP-GAL4, UAS-GRIM and

APP-GAL4-VP16, UAS-cd8-GFP act as a sensitive and specific reporter of the

endogenous, physiological levels of ∀-secretase. PE levels in transgenic flies will

be modulated by introducing the easPC80 mutation with a known biochemical

effect in phospholipid metabolism, particularly in PE synthesis that allows the

investigation of specific consequences of defects in phospholipids, or rather PE

metabolism. The properties of Drosophila sterols, sphingolipids and

phosoholipids that allow the formation of liquid ordered/raft phase and liquid

disordeded/non-raft phase provide optimal conditions to analyse the role of

membrane microdomains in APP proteolysis. Additionally I will analyse the

influence of membrane PE on ∀-secretase activity in Drosophila embryonic

Schneider-2 (S2) cells.
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2.1. Cell biology

2.1.1. HEK 293-hAPP cells

2.1.1.1. Culturing HEK 293-hAPP cells

Human epithelial kidney 293 cells (HEK 293), stably transfected with wild-type

APP695 (the cells were kindly provided by Dr. Christian Haass) were grown in

Doelbeco’s Minimal Essential Medium (DMEM-Gibco) containing 10% fetal

bovine serum (FBS, Sigma), 2 mM L-glutamine (Sigma), 100u/ml Penicillin

Streptomycin solution (Sigma), 200 µg/ml G418 sulfate antibiotic Liquid

(Invitrogen) at 370C and 5% CO2.

HEK 293 cells stably transfected with the APP cDNA containing the Swedish

mutation were generous gift from Dr. De Strooper. The cells were maintained in

DMEM with 10% FBS, 100u/ml Penicillin Streptomycin solution and 250 µg/ml

G418 at 370C and 5% CO2.

2.1.1.2. RNAi transfection of HEK 293-hAPP cells

On day before transfection, HEK 293-hAPP cells were harvested by

trypsinization and 6 x 105 cells were plated in 4 ml of growth medium without

antibiotics per 6 cm dish.  At the time of transfection cells were 50% confluent.

Prior to transfection cells were washed once in Opti-MEM I Reduced Serum

Medium (Invitrogen) and subsequently switched to 3 ml of the same medium of

per dish. 1000 pmol RNAi were diluted in 500 µl of Opti-MEM I Reduced Serum

Medium for each sample. 10 µl Lipofectamine 2000 (Invitrogen) were diluted in

500 µl of Opti-MEM I Reduced Serum Medium, and after 5 minutes incubation at

room temperature combined with the diluted RNAi. RNAi/Lipofectamine mixture

was incubated for 15 minutes at room temperature and subsequently added to

the cells. RNAi transfected cells were incubated at 370C and 5% CO2. Cells were

assayed 48 hours after RNAi transfection.
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2.1.2. Drosophila Schneider-2 (S2) cells

2.1.2.1. Culturing S2 cells

S2 cells grow at 250C without CO2 as a loose, semi-adherent monolayer. The

cells were purchased from Invitrogen and grown in Schneider’s Insect Medium

(Sigma) containing 10% heat-inactivated FBS (Sigma) and 100u/ml Penicillin

Streptomycin soluton.

2.1.2.2. DNA transfection of S2 cells

Schneider cells were transient transfected with 15 µg of SC100 construct that

contains hC99 fragment (Maryama et al., 1994; Figure 2.1.), with Calcium

Phosphate Transfection Kit (Invitrogen). At day 1, 3 x 106 cells were seeded in

3ml of S2 complete growth medium in each well of a 6-well format and incubated

over night at 250C without CO2. At day 2, 3-4 hours before transfection cells were

switched to the fresh complete growth medium. Transfection mixture was

prepared according to the manufacturer’s protocol and added to the cells after 30

minutes of incubation at room temperature. 18 hours post-transfection calcium

phosphate solution was removed, and the cells washed twice with 1 x Phosphate

Buffered Saline (PBS). Subsequently S2 cells were resuspended in 3 ml fresh

complete growth medium and replated to the same vessel.  Cells were incubated

at 250C without CO2 and analysed for the gene of interest 48 or 72 hours after

transfection.
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Figure 2.1. Amino acid sequence encoding for APP695-C-terminal fragment (hC99;

M596-N695) that is contained in the SC100 construct. The fragment initiates just C-

terminal to the !-secretase cleavage site (M596) and encompasses the A! domain and

the intracellular domain. The cleavage sites of  ∀-, !- and #-secretase are indicated by

arrowheads.  A! domain is shown in red.

2.1.2.3. RNAi transfection of S2 cells

S2 cells were set up for the RNAi transfection by placing 2 x 106 cells in 2 ml of

antibiotic free S2 growth medium into each well of 6-well culture dish. After 24

hours cells were resuspended in 1.5 ml of serum and antibiotic free IPL-41 Insect

Medium (Invitrogen). Subsequently 50 µg/ml of RNAi were added to the cells. Six

hours later, 1.5 ml of IPL-41 Insect Medium containing 20% of FBS were added

to each well, and the cells were incubated over night at 250C without CO2. S2

cells were re-suspended, re-treated with RNAi and re-plated each 24 hours and

analyzed 48 hours after the first RNAi treatment.

2.1.3. Determination of cell viability

Cell viability was analysed by measuring apoptosis and necrosis level. Apoptosis

was scored by using Apoptosis Detection System, Fluorescin (Promega). This

assay is based on DNA labelling by catalytically incorporating of fluorescin –12-
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dUTP(a) at 3’-OH DNA ends using the enzyme Terminal Deoxynucleotidyl

Transferase (TdT), which forms a polymeric tail using the principle of the TUNEL

(TdT-mediated dUTP Nick-End labelling) assay. The cells were prepared for the

assay as described in manufacturer’s protocol and analyzed by fluorescence

microscopy.  Necrosis was measured by Trypan blue uptake. Trypan blue

(Sigma) stock solution of 8% was prepared in 0.9% NaCl, diluted 1:9 in HBSS

and subsequently mixed 1:1 with the cell suspension. Cell viability is indicated by

the fraction of dye-excluding cells.

2.2. Biochemistry

2.2.1. Preparation of cell lysates for protein and lipid analysis

HEK 293-hAPP cells were washed once in 1ml of cold washing buffer (1 x PBS,

CLAP (chymostatin, leupeptin, antipain and pepstatin A, each of the final

concentration of 25µg/ml, Sigma)), mechanistically removed from the culture

dishes in 2 ml of lysis buffer (1 x PBS, CLAP, 0.2% Triton X-100 (Merck)),

incubated for 15 minutes on ice and homogenized by 10 passages through a 27-

gauge syringe.

The medium of S2 cells was collected and the cells that grow in suspension were

centrifuged to pellet for 5 minutes by 1000 x g at 40C (Microcentrifuge 5415R,

Eppendorf). Cell pellet was washed in 1 x PBS/CLAP, resuspended in lysis buffer

containing 1 x PBS, CLAP and 0.2% (v/v) Triton X-100, and subsequently

incubated for 15 minutes on ice in order to avoid the protein degradation. After 15

minutes on ice cells were homogenized by 10 passages through a 27-gauge

syringe. HEK 293-hAPP and S2 cell lysates were centrifuged for 10 minutes by

400 x g at 40C to pellet the nuclei and to remove cell debris; the supernatants

were considered as total extracts. Protein concentration was assayed in

Spectrophotometer Genesys 10 UV-VIS (Thermo Spectronic), using Bradford

reagent (Bio-Rad Laboratories).
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2.2.2. DRM separation using Triton X-100

HEK 293-hAPP or S2 cells were extracted in a buffer containing 25 mM MES (2

(N-morpholino)-ethanesulfonic acid) pH 7.0, 5 mM DTT, 2 mM EDTA pH 8.0, 1%

Triton X-100, CLAP. After 1 hour of incubation in lysis buffer at 40C under

rotation, cells were centrifuged 10 minutes by 400 x g at 40C in order to pellet the

nuclei and to remove cell debris. Membrane pellets were obtained by cell extracts

(containing 100 µg of total protein) centrifugation for 1hour at 40C at 100, 000 x g

i n  Ultracentrifuge Optima Max E (MLA-103 rotor; Beckman). Extracted

membrane pellets were resuspended in 1 ml of solution buffer (10 mM MES,

2mM EDTA, 1mM DTT), brought to 40% OptiPrepTM solution (AXIS-SHIELD PoC

AS) and overlaid with 30% and 5% OptiPrepTM solution in solution buffer. The

subsequent OptiPrepTM step gradient centrifugation was performed in

Ultracentrifuge Le80 (SW40 rotor; Beckman ) at 120, 000 x g for 18 hours at 40C.

After centrifugation 1 ml of each of following gradient fractions were collected: 5

% fraction, the interphase between 5% and 30% fraction, 30% fraction and 40%

fraction. Subsequently each fraction was centrifuged by 100, 000 x g for 1 hour at

40C to extract the membranes that were utilized for the analysis of membrane

lipids and membrane proteins. The interphase between the fractions 5% and

30% was identified as the DRM fraction by the presence of the DRM markers.

2.2.3. Western blot analysis

For analysis of membrane proteins total cell extracts were centrifuged for 1 hour

at 100, 000 x g at 40C to pellet the membrane fraction. Crude membranes were

resuspended in 0.2% (w/v) Sodium Dodecyl Sulfate (SDS) and after protein

measurement by Bradford protein assay the proteins were denatured for 5

minutes in 1 x SDS sample buffer (22mM Tris-HCl pH 6.8, 0.8% (w/v) SDS, 4%

glycerol, 1.6% (w/v) !-Mecaptoethanol, Bromphenolblue) at 950C. Samples for

the analysis of membrane bound proteins isolated form the membranes

fractionated by OptiPrep gradient were prepared as described above. Cytosolic
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proteins were directly diluted in 1 x SDS sample buffer and denatured for 5

minutes at 950C. Denatured proteins were subjected either to the Tris-glycine-

acrylamide SDS-PAGE or to the urea version of the Bicine/bis-Tris/Tris/sulfate

SDS-PAGE (Wiltfang et al., 1991) and separated by electrophoresis.   Tris-

glycine-acrylamide gels were run at constant voltage of 100 volts, and the urea

version of the Bicine/bis-Tris/Tris/sulfate SDS-PAGE gels were run at room

temperature at the constant current of 12 mA/gel, using the Mini-PROTEAN II

electrophoresis cell (Bio-Rad Laboratories).

After gel electrophoresis, proteins were transferred to a 0.45 !m nitrocellulose

transfer membrane (Schleicher & Schuell BioScience) using a constant voltage of

100 volts for 1 hour, with transfer buffer (48 mM Tris, 38 mM glycine, 0.037% (vv)

SDS, 20% (v/v) methanol) in a Mini Trans-Blot electrophoretic transfer cell (Bio-

Rad Laboratories). Subsequently membrane was incubated in blocking solution

(5% (w/v) non-fat powder milk dissolved 1 x in TBS-T buffer (25 mM Tris/HCl pH

7.4, 150 mM NaCl, 4 mM KCl, 0.1% (v/v) Tween-20) at 40C overnight. Primary

and secondary antibodies were diluted in blocking solution containing 1% (w/v)

powder milk to the appropriate concentrations (Table 1). Species specific

peroxidase-conjugated antibodies and the enhanced chemiluminescence (ECL)

(Amersham Biosciences) were used followed by the exposure to x-ray films

(BioMax Light Film for Chemiluminescent Imaging, Kodak Co). Quantification

was done by densitometry of autoradiograms using Image J software.
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Primary antibody Descripton Clonality Company
Dilutions

for WB

ANTI-AMYLOID

PRECURSOR
PROTEIN (APP)

C-Terminal

C-Terminus (95-100

kDa) of APP695,
APP770 and APP771

polyclonal Sigma 1:1000

Monoclonal Anti-

Human ! Amyloid

[1-17] Clone 6E10

Residues 1-17 of the

human !-amyloid

peptide

monoclonal Sigma 1:500

A.v. Peptide

Antibody

Central and C-

Terminal portion of
Aequorea victoria

green fluorescent

protein

monoclonal
BD

Biosciences
1:400

Anti-Flotillin-1 Flotillin-1 ~48k-Da monoclonal
BD

Biosciences
1:500

Anti-∀-Tubulin ∀-Tubulin ~60-k-Da monoclonal Calbiochem 1:1000

E18
 A! amino terminal-

selective
monoclonal nanoTools 1:300

WO2 A! residues 5-8 monoclonal Abeta Gmbh 1:1000

Table 1 Collection of primary and secondary antibodies that were used for Western blot

(WB) assay.

2.2.4. Immunoprecipitation of A  peptides and their electrophoretic

separation.

For analysis of A ! peptide, medium from the S2 cells was collected and

immunoprecipitated. Magnetic sheep anti-mouse immunoglobulin G (IgG)

Secondary antibodies Company Dilution

Horse radish

peroxidase antibody

(sheep anti mouse)

Amersham 1:5000

Horse radish

peroxidaseantibody

(donkey anti rabbit)

Amersham 1:5000
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Dynabeads M-280 (Dynal) were preactivated by overnight incubation at 40C with

monoclonal A! amino terminal-selective antibody, 1E8 (nanoTools) according to

the manufacturer’s protocol. Eight hundred µl of medium were added to 200 µl

fivefold concentrated RIPA detergent buffer (2.5% (v/v) Nonidet-P40, 1.25% (w/v)

sodium deoxycholate, 0.25% (v/v) SDS, 750 mM NaCl, 250 mM HEPES, one

tablet of Protease Inhibitor Cocktail Complete per 2ml of 5 x RIPA, pH 7.4), 25 µl

preactivated magnetic Dynabeads (1 ml 1E8 mouse antibody/1.68 x 107 beads)

and 300 µl H2O. Samples were than incubated overnight at 40C under rotation,

following washing of the beads four times with PBS/0.1% bovine serum albumin,

and once with 10 mM Tris/HCl, pH 7.4. For A!-SDS-PAGE-Immunoblot, bound

A! peptides were eluted by heating the samples to 950C for 5 minutes with 25µl

sample buffer. For separation of A! peptides the urea version of the Bicine/bis-

Tris/Tris/sulfate SDS-PAGE was used. Gels were run at room temperature for 2

hours at the constant current of 12 mA/gel, using the Mini-PROTEAN II

electrophoresis cell (Bio-Rad Laboratories). A! peptides were transferred for 30

minutes at 1 mA/cm2 and room temperature under semidry Western conditions

onto Immobilon-P PVDF membranes (Millipore) (according to Witlfang et al.,

1997) and incubated in the blocking solution containing 2.5% (w/v) non-fat

powder milk 1 hour at room temperature. The membranes were than

immunostained overnight with monoclonal amino terminal-selective antibody,

1E8 (nanoTools) at 40C. After the washing step the membranes were incubated

for 1 hour at room temperature with an anti-mouse biotinylated antibody (Vector

Laboratories), washed, and horseradish peroxidase-coupled streptavidin

(Amersham Biosciences) was added for 1 hour. After the final washing step,

chemiluminescence was visualized with ECLPlus solution (Amersham

Pharmacia) according to the protocol of the manufacturer, using the CCD camera

system (FluorSMaxMultiImager, Bio-Rad).
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2.2.5. Enzyme-linked immunosorbent assay (ELISA)

ELISA assay, utilized for A! 42 detection in the extracellular medium from the

HEK 293-SweAPP695 cells, was performed using the highly sensitive microtiter

plate Enzyme-Immunoassay for the quantitative detection of human Amyloid !

42, hAmyloid ! 42 ELISA (HS) (the GENETICS company). This assay is based

on the formation of an antibody-Amyloid-antibody complex, which is indirectly

linked to an enzyme that catalyses the conversion of the substrate in a coloured

product which colour intensity is measured by means of photometry. The

measured extinction correlates directly with the concentration of hAß42 within the

sample. The analysis was done according to the manufacturer’s protocol.

2.2.6. Analysis of soluble APP  in the medium of HEK 293-hAPP cells

Soluble APP∀, which is released into the medium after APP cleavage by ∀-

secretase was analysed in the medium of HEK 293-hAPP cells. For sAPP∀

analysis 50 µl medium were diluted in 50µl 2 x sample buffer and heated to 950C

for 5 minutes. The samples were subjected to 10% SDS-PAGE and run at the

room temperature at the constant voltage of 200 volts for 40 minutes, using the

Mini-PROTEAN II electrophoresis cell (Bio-Rad Laboratories). After

electrophoresis a Western blotting was performed using semidry conditions and

Immobilon-P PVDF membranes. Subsequently the membranes were incubated

for 1 hour at room temperature in the blocking solution containing 2.5% (w/v)

non-fat powder followed by the overnight antibody incubation with monoclonal

amino terminal-selective antibody, 1E8 (nanoTools) at 40C. After washing with

PBS/Tween, incubation at room temperature with an anti-mouse biotinylated

antibody (Linaris) and the subsequent incubation with horseradish peroxidase-

coupled streptavidin (GE Healthcare) chemiluminescence was visualized with

ECLPlus solution (Amersham Pharmacia) using the CCD camera system

(FluorSMaxMultiImager, Bio-Rad).
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2.2.7. Lipid extraction and analysis by Thin Layer Chromatographie (TLC)

Cell membranes obtained after 100, 000 x g centrifugation were resuspended in

800 µl of 0.9% (w/v) sodium chloride (NaCl) containing 37% (v/v) chloridc acid

(HCl) and homogenized with a 22-gauge syringe. Membrane lipids were than

extracted according to Bligh and Dyer (1959). After addition of 2 ml methanol and

1 ml chloroform to 800 µl suspension containing cell membranes, 1 ml chloroform

and 1 ml of 0.9% (w/v) NaCl containing 37% (v/v) HCl were added to the sample,

mixed well, incubated 10 minutes on ice to allow the phase separation and

centrifuged at 1000 rpm for 5 minutes at 40C (Allegra 25R-High-Performing-

Centrifuge, TA-14-50 fixed angle rotor; Beckman). The upper phase was

discarded and 2 ml methanol plus 1.8 ml of 0.9% (w/v) NaCl/37% (v/v) HCl were

added to the interphase and the lower phase and kept on ice for minutes.

Subsequently the samples were centrifuged at 1000 rpm for 5 minutes at 40C

and the lower phase was collected and dried in a rotational vacuum concentrator

(Centrifuge RVC 2-25; Christ) to obtain lipid pellets. Lipid pellets were

resuspended in 1:1 methanol/chloroform mixture, applied to the silica gel 60

HPTLC plates (Merck) and separated first in the hydrophilic running solvent,

composed of chloroform:acetone:acetic acid:methanol:H2O (50:20:10:10:5) and

subsequently in the hydrophobic running solvent containing hexane:ethyl acetate

(5:2).  The HPTLC plates were than dried at room temperature and stained with

7% (v/v) sulfuric acid (H2SO4) in methanol. Standards for cholesterol, ergosterol

and sphingomyeline (Sigma), and PC, PE, and PECeramide (Matreya, Inc.) were

used to identify these lipid species. For the lipid quantification the scanned TLCs

were analysed in conditions of non-saturated signal by Image J software.
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2.3. Molecular Biology

2.3.1. Rapid Small Scale Isolation of Drosophila genomic DNA (Walter,

1991)

To prepare genomic DNA from S2 cells, about 20 millions of cells were collected

and centrifuged to the pellet at 1000 x g for 5 minutes at 40C. Cell pellet was

resuspended in solution A (0.1 M Tris/HCl pH 9.0, 0.1 M EDTA, 1% (v/v) SDS,

1% DEPC, homogenized with a 27-gauge needle and incubated for 30 minutes at

700C. After incubation 14 µl of 8M KAc per 1 ml of solution A were added and

incubated for another 30 minutes on ice. Subsequently the solution was

centrifuged for 15 minutes at room temperature, the 1/2 volume of isopropanol

was added to the supernatant and centrifuged again for 5 minutes at room

temperature. The supernatant was discarded, the pellet was washed with 70%

(v/v) ethanol, centrifuged, dried in a speed vacuum concentrator and finally

dissolved in 100 µl of pH 7.4 TE buffer (10 mM Tris/HCl pH 7.4, 1 mM EDTA pH

8.0)

2.3.2.  RNA interference (RNAi) synthesis

2.3.2.1. RNAi synthesis for the treatment of S2 cells

2.3.2.1.1. Preparation of PCR template for RNAi synthesis directed against

Drosophila phosphoethanolamine citidylyltransferase gene

Two primers, forward and reverse, designed to target Drosoph i l a

phosphoethanolamine citidylyltransferase, PECT (CG5547-gene number refers

to the Berkeley Drosophila Genome Project designation) messenger RNA have

following sequences:
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Forward primer 5’-3’

GAATTAATACGACTCACTATAGGGAGAGTGGGCATTCACACCGACGAGGA

GATCACC

Reverse primer 5’-3’

GAATTAATACGACTCACTATAGGGAGACTTCAGTGACACAGTAGGGAGCTC

CG

Each primer contains a sequence encoding the T7 RNA polymerase binding site

(bold), followed by the appropriate coding sequence. The T7 RNA polymerase

binding site sequence is required for the subsequent RNAi synthesis. The

oligonucleotides were synhtetized by Invitrogen.

The DNA template for RNAi synthesis was synthesized and amplified by PCR

reaction (performed in Thermal Cycler PTC 100; MJ research), set-up as follows:

20 µg of Drosophila genomic DNA

150 ng of both forward and reverse PECT primers

Taq polymerase buffer (Promega) to final concentration of 1x

dNTPs  to final concentration of 0.2 mM each (Promega)

5 units Taq polymerase (Promega)

1.5 mM Mg2+ (Promega)

H2O to a final volume of 100 µl

PCR program

Step 1) 940C 4   minutes
Step 2) 940C 15 seconds
Step 3) 580C 30 seconds
Step 4) 720C 2 minutes
Step 5) back to the step 2) 30x
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Step 6) 720C 7 minutes

The completed PCR reaction was purified using High Pure PCR Product
Purification Kit (Roche) according to kit-supplied protocol and examined on a 1%
agarose gel.

2.3.2.1.2. Transcription reaction assembly

The Ambion  MEGAscriptTM T7 kit was used to synthesize RNAi from templates

obtained as described under 2.3.2.1.1.

The reaction was set-up as follows:

3 µl H20 containing 0.1% (v/v) Diethyl pyrocarbonate (DEPC; Sigma)

2 µl 10 x reaction buffer

2 µl of each ATP, CTP, GTP, UTP mixes

5 µl DNA template

2 µl enzyme mix,

and incubated for 8 hours at 370C.

After 8 hours, DNase was added for 15 minutes at 370C. After 15 minutes

reaction was stopped with 15 µl of stop solution (5 M ammonium acetate, 100

mM EDTA). The RNAi was extracted by phenol/chloroform extraction method

and precipitated with isopropanol overnight at -200C. After precipitation the RNAi

was washed with 70% (v/v) ethanol and concentrated in a speed vacuum

concentrator. The RNAi was analysed on a 1% agarose gel (Agarose LE;

Euroclones) and the concentration was determined by measuring the absorbance

at 260 nm (A260) in a spectrophotometer using quartz cuvettes. An absorbance of

1 unit a 260 nm corresponds to 40 µg of RNA per ml (A260 =1=40 µg).
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The RNAi directed against Drosophila easily shocked (eas) gene was designed

using Dharmacon siDESIGN Center. The eas RNAi and predesigned control

RNAi directed against rat CYP7A1 were purchased from Dharmacon RNA

TECHNOLOGIES:

easily shocked sense sequence 5’-3’:        AAACGGACCUACUGAUAGAUU

easily shocked antisense sequence 5’-3’:      UCUAUCAGUAGGUCCGUUUUU

CYP7A1 sense sequence 5’-3’:        UAAACAACCUUGACAACUUUU

CYP7A1 antisense sequence 5’-3’:    5’-PAAGUUGUCAAGGUUGUUUAUU

2.3.2.2. Synthesis of RNAi oligonucleotides directed against human

phosphoethanolamine citidylyltransferase, (PECT), CDP-ethanolamine

phosphotransferase (CEPT) and ethanolamine kinase 1 and 2 (ETNK1 and

ETNK2) genes utilized for the transfection of HEK 293 cells

The RNAi oligonucleotides for the treatment of HEK 293 cells were designed with

Dharmacon siDESIGN Center:

ETNK1 sense sequence 5’-3’:                  CGAUCGAGAUGAGGAAGUA
ETNK1 antisense sequence 5’-3’:         UACUUCCUCAUCUGCAUCG

ETNK2 sense sequence 5’-3’:        UCAGGUUAAUCGCCUUAGA
ETNK2 antisense sequence 5’-3’:         UCUAAGGCGAUUAACCUGA

PECT sense sequence 5’-3’:        CCAACAGGUUGGAGUAUGA

PECT antisense sequence 5’-3’:        UCAUACUCCAACCUGUUGG

CEPT sense sequence 5’-3’:                    UCAUUGGACUGUCAAUAAA

CEPT antisense sequence 5’-3’:         UUUAUUGACAGUCCAAUGA

The RNAi oligonucleotides were purchased form MWG Biotech AG.
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2.3.3. Propagation and isolation of the SC100 construct

For the transformation with SC100 construct chemocompetent E.coli cells (DH5∀

strain, Gibco) were thaw on ice. 10 ng SC100 DNA were added to the bacteria

cells, incubated for 20 minutes on ice, 2 minutes at 370C and again on ice for 2

minutes. Subsequently 400µl of Luria-Bertani broth medium (LB) (0.5% (w/v)

NaCl, 1% (w/v) Trypton, 0.5% (w/v) Yeast-Extract, 2M Tris/HCl pH 7.5) were

added and incubated for 1 hour at 370C. After 1 hour of incubation the cells were

plated onto the LB-Agar plates containing 100µg/ml Ampicilin and incubated

overnight at 370C.  A single bacteria colony was selected for inoculation of 200

ml of LB-medium culture containing 100µg/ml Ampicilin. After an incubation of 18

hours at 370C at 180 rpm the bacterial culture was harvested by centrifugation at

4000 x g for 10 minutes at 40C (Allegra 25R-High-Performing-Centrifuge, TA-10-

250 fixed angle rotor; Beckman). The DNA was purified using QIAGEN-EndoFree

Plasmid Maxi Kit according to the manufacture’s protocol. Extracted DNA was

examined on 1% agarose gel after control digestion with AgeI and KpnI

restriction enzymes (New England Biolabs) in order to confirm the propagation of

the desired construct.

2.4. Flies

The flies were raised on standard fly food at 180C or 250C with 60-70% relative

humidity.

2.4.1 Drosophila transgenic lines and mutants utilized in this work

Oregon R strain was utilized as wild-type control.

GMR-APP-GAL4, UAS-GRIM and GMR-GAL4, UAS-G/RPR transgenic flies

were kindly provided by Dr. Ming Guo (Departement of Neurology, Brain

Research Institute, The David Geffen School of Medicine, University of
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California). GMR-APP-GAL4, UAS-GRIM transgenic system contains a type I

chimeric protein containing human APP770 C-terminal fragment (APP770-Ct;

initiating from the residue M671) that is appended to GAL4 on its C-terminal end

(Figure 2.2.). APP770-Ct-GAL4 is specifically expressed in the eye under the

control of the eye-specific GMR promoter. The reporter flies carry additionally to

APP-GAL4, a #-secretase reporter output construct, UAS-GRIM, that consists of

a GAL4-responsive transcriptional cassette driving the expression of the

Drosophila cell death activator GRIM. In GMR-GAL4, UAS-G/RPR flies GAL4 is

expressed specifically in the eye under eye-specific GMR promoter but this

transgenic strain do not contain APP770-Ct fragment. The expression of GRIM

cell lethal gene is as above triggered through the activation of UAS by GAL4.

APP-GAL4-VP16, UAS-cd8-GFP transgenic strain was established in the

laboratory of Dr. Dotti, by recombining the APP-GAL4-VP16 fusion flies

(generous gift from Dr. Gary Struhl, Department of Genetics and Development,

Howard Hughes Medical Institute, Columbia University) with UAS-cd8-GFP

transgenic flies. This transgenic system contains APP695-C-terminal fragment

(APP695-Ct) that initiates immediately downstream of !-cleavage site (residue

M596). APP695-Ct is fused to the transcription factor GAL4-VP16 (GV) just

downstream of the transmembrane domain (Figure 2.2.). After its intramembrane

proteolysis APP C-terminal end the nucleus together with GV (APP-C-t-GV) and

induces the expression of a nuclear UAS-cd8-GFP reporter gene.

APP770 and APP 695 isoforms do not differ in their C-terminal domains so that

chimeric proteins in both transgenic strains GMR-APP-GAL4, UAS-GRIM and

APP-GAL4-VP16, UAS-cd8-GFP have identical amino acid sequence (see

figures 2.2. and 1.1. B).
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Figure 2.2. Amino acid sequence of the extracellular and transmembrane domain

of chimeric protein form APP reporter flies. GMR-APP-GAL4, UAS-GRIM flies

contain the APP770 C-terminal fragment; C-terminus of APP695 is contained in APP-

GAL4-VP16 (GV), UAS-cd8-GFP transgenic flies. Both APP770 and APP695 C-terminal

fragments are identical and encompass the extracellular domain that initiate directly after

!-secretase cleavage site and the transmembrane domain. GAL4-VP16 transcription

factor that is inserted just downstream of APP-Ct transmembrane domain is linked to the

stop transfer signal through the last amino acids of APP-Ct (KK). Arrows indicate

putative secretase cleavage sites of ∀-, !- and #-secretase. Amino acids inside the A!

domain is labelled in red.

EasPC80f mutant flies were a kind gift of Dr. Mark Tanouye (Department of

Molecular and Cell Biology Division of Neurobiology, Department of

Environmental Science, Policy, and Management, University of California).

Ethanolamine kinase gene, termed easily shocked (eas) is localized on the X

chromosome. The mutation in easPC80 allele relies on a 2bp deletion at nucleotide

position 1004-1005, which causes frame shift in the open reading frame leading

to a stop codon in-frame at nucleotide position 1078. The peptide has only a

portion of the conserved sequence and lacks completely the highly conserved

kinase domain. EasPC80 mutant gene is marked by a recessive expressed marker

termed forked (f) that is localized on the X chromosome. Forked that causes
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short bristles with split or bent ends was utilized to identify homozygous easPC80

mutants.

2.4.2. Analysis of adult eye phenotype

Progeny transgenic for GMR-APP-GAL4, UAS-GRIM and homozygous for

easPC80f mutation were obtained by crossing homozygous female easPC80f

mutants with the male transgenic GMR-APP-GAL4, UAS-GRIM flies.

Homozygous easPC80f progeny with following phenotype: easPC80f/Y; GMR-C99-

GAL4, UAS-GRIM/+ and easPC80f/easPC80f; GMR-C99-GAL4, UAS-GRIM/+ were

selected against forked marker and together with the control flies assayed for the

adult eye roughness and the eye size.  The eye size and the size of roughened

eye surface are indicators for the level of retinal cell death that directly correlates

with the expression of the cell lethal GRIM gene. Adult eye roughness was

calculated as the percentage of the total eye surface. The eye size of adult

progeny was measured in comparison to the wild-type flies and the transgenic

flies without easPC80 mutation. About 150 eyes/genotype were analysed by

scoring images obtained by high-resolution light microscopy (Stereo microscope

SZX9; Olympus).  All measurements were performed in one-day-old adult flies.

Progeny homozygous for easPC80f mutation, obtained by crossing male control

transgenic flies GMR-GAL4, UAS-G/RPR with the female easPC80f mutants   have

a genotype as follows: easPC80f/easPC80f; GMR-GAL4, UAS-G/RPR/+. These

flies were selected against the marker forked and analysed for retinal cell death

as described above.

2.4.3. Analysis of GFP expression

Homozygous easPC80f  mutants transgenic for APP-GAL4-VP16, UAS-cd8-GFP

(phenotype: easPC80f/Y; APP-GAL4-VP16, UAS-cd8-GFP/+) were obtained by

crossing the female easPC80 homozygous with the male APP-GAL4-VP16, UAS-

cd8-GFP transgenic flies. GFP expression in the progeny and control flies was
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analysed by measuring the fluorescence intensity using Image J software or by

Western blotting. In order to induce GFP expression one-day-old adult flies were

heat shocked for 1 hour at 370C, placed at 250C to allow GFP expression and

subsequently analysed by fluorescence intensity and Western blot assay. High-

resolution light microscopy images were utilized for the analysis of fluorescence

activity. For the Western blot analysis of the GFP protein expression 10 fly bodies

were homogenized in lysis buffer containing 10 mM Tris/HCl [pH 7.4], 150 mM

NaCl, 5 mM EDTA, 5 mM EGTA, 10% glycerol, 50 mM NaF, 1 mM NaVOF, 5

mM DTT, 4 M Urea, and protease inhibitors (CLAP), resolved by 15% Tris-

glycine-acrylamide SDS-PAGE and analyzed as described under 2.2.3. using

Anti-GFP-peptide antibody (BD Biosciences).

2.4.4. Membrane lipid analysis in flies

For the membrane lipid analysis 10 fly bodies (GFP reporter flies) or 20 fly heads

(GRIM reported flies) were homogenized in lysis buffer (10 mM Tris/HCl [pH 7.4],

150 mM NaCl, 5 mM EDTA, 5 mM EGTA, 10% glycerol, 50 mM NaF, 1 mM

NaVOF, 5 mM DTT, 4 M Urea, and protease inhibitors (CLAP)). After

homogenization, the fly debris were centrifuged for 10 minutes by 18, 000 x g at

40C, followed by the protein measurement in supernatant and cell membrane

centrifugation by 100, 000 x g at 40C for 1 hour, using the same amount of total

protein as starting material for all samples. Subsequently the lipids were

extracted and analysed as described under 2.2.6.
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3.1. Role of phosphatidyethanolamine (PE) in APP proteolytic

processing in HEK 293 cells

3.1.1. Phosphatidylethanolamine distribution in the cell membranes of HEK

293 cells

In mammalian cells phosphatidylethanolamine (PE) represents one of the major

membrane phospholipids. In addition to roles in normal cellular function, the

possible involvement of PE in pathological situations, more precisely in AD, arose

as consequence of the observation of altered PE levels in the brains of

Alzheimer’s patients (Wells et al., 1995, Prasad et al., 1997). While this is per se

not an enough argument to strongly propose that PE are involved in the

occurrence of AD (different from the changes being a consequence of it), this

postulate can be also supported by the fact that, as mentioned in the chapter

1.2.2., PE is involved in membrane occurring enzymatic activities. This acquires

further relevance if one accepts the view that one of the causes of AD is an

increased amyloidogenic cleavage of APP, a membrane occurring event. As

already described in the introduction, one of the by-products of APP cleavage is

the neurotoxic A! peptide, whose accumulation in the brain mesenchime is

thought to be the cause of this disease. Therefore, we propose that changes in

the PE content, can induce abnormal APP cleavage, leading to a perturbed

production of A!.  In further support of this view, APP was shown to colocalize

with phospholipid rich membrane domains (Ehehalt et al., 2003, Abad-Rodriguez

et al., 2004).

To gain insight into the above proposal I started by determining the distribution of

PE in the membrane, measuring its levels in raft and non-raft domains. In order

to determine PE distribution we utilized HEK 293 cells, the membranes of which

were subjected to density gradient centrifugation. Gradient centrifugation allows

the separation of cholesterol/sphingolipid rich phase from the phospholipid rich

phase that constitutes the rest of the membrane.
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The most widely used criterion for the separation of cholestrol/sphingolipid rich

domains or rafts from non-rafts, is their insolubility in the nonionic detergent

Triton X-100 at 40C. After membrane solubilization in the nonionic detergent, raft

associated lipids and proteins remain insoluble and can be floated to low density

by OptiPrep gradient centrifugation.

To analyse the distribution of PE in the membranes of HEK 293 cells, cell

membrane pellets were isolated by 100,000 x g centrifugation and subsequently

solubilized at 40C in a 1% Triton X-100 containing buffer. For the separation of

detergent resistant or raft lipid microdomains (DRM) from the detergent soluble,

non-raft microdomains, cell membrane pellets were loaded on an OptiPrep

gradient and centrifuged at 120,000 x g for 18 hours at 40C. To be certain that I

had succeeded in the raft and non-raft isolation, the proteins from each gradient

fraction were concentrated, re-suspended in sample buffer and subjected to 12%

SDS-PAGE following by Western blotting for the detection of the raft associated

protein, Flotilin-1. The interphase between 5% and 30% was identified as raft

fraction, since the raft marker Flotilin-1 was significantly enriched in this gradient

phase (Figure 3.1.1.). Further proof that rafts do become enriched in the 5% and

30% fractions of this type of gradient, comes from the observation that this is the

fraction with most cholesterol (Figure 3.1.2).

Figure 3.1.1. Flotilin-1 associates specifically with detergent insoluble membrane

microdomains (DRM) in HEK 293 cells.  Cellular membranes solubilized with 1%

Triton X-100, were collected by flotation through the OptiPrep gradient. Subsequently,
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the membranes of each gradient fraction were isolated by 100,000 x g centrifugation and

subjected to 12% SDS-PAGE. Western blot analysis revealed an association of 41% of

total Flotilin-1 with insoluble membrane fraction (DRM). As shown in the graph, 57% and

2% of total Flotilin-1 are detected in 40% and 30% fraction, respectively. The 5% fraction

is not represented in the graph, since no Flotilin-1 was detected in this fraction.

After confirming the efficacy of the method for raft and non-raft fractions

purification, PE distribution in these domains was analyzed by TLC. As before,

cell membrane pellets were isolated by 100,000 x g centrifugation, followed by

gradient centrifugation and membrane lipids extraction procedures (see Materials

and Methods).

Figure 3.1.2. PE is equally distributed in the membranes of HEK 293 cells.  After

separation of membrane microdomains by OptiPrep gradient, membrane lipid extracts of

DRM and non-DRM fractions were analysed by TLC. Lipid analysis showed that PE is

equally distributed along the gradient, with about 25% of its total amount in each fraction.

75% of membrane PE is localized in non-raft domains, which encompass 5%, 30% and

40% fractions. DRM contain only 25% of PE. In contrast, the portion of total cholesterol

was approximately 50% in the intephase between 5% and 30% fractions corresponding
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to detergent insoluble microdomains (DRM). 5%, 30% and 40% gradient fractions

contain 14%, 16% and 20% of total membrane cholesterol, respectively. The percentage

of total PE and cholesterol in respective gradient fraction are depicted in the graph.

In the membranes of HEK 293 cells PE is equally distributed in raft and non-raft

lipid microdomains, while cholesterol is, consistent to the Flotilin-1 localization,

clearly enriched in the interphase between 5% and 30% gradient fractions (DRM)

(Figure. 3.1.2.). PE ratio in non-rafts averages 0.75 versus only 0.25 in rafts,

while the half (0.5) of total membrane cholesterol enriches in the raft fraction.

3.1.2. Localization of Amyloid Precursor Protein (APP) in the membranes of

HEK 293 hAPP cells

Several studies have clearly indicated that membrane lipids are involved in

pathogenesis of AD (Kuo et al. 1998, Jick et al. 2000, Wolozin et al.2000,

Kivipelto et al.2001, Austen et al., 2002, Simons et al., 2002). In particular,

cholesterol and cholesterol rich membrane microdomains seem to play an

important role in APP proteolytic processing and generation of neurotoxic A!

peptide (Simons et al., 1998, Simons et al., 2001, Fassbender et al., 2001,

Ehehalt et al., 2003, Abad-Rodriguez et al., 2004).

However, it was unequivocally shown, in both neuronal and non neuronal cells,

that APP is, at endogenous levels, mostly, if not exclusively, present in the

phospholipid rich/cholesterol poor membrane microdomains (Abad-Rodriguez et

al., 2004), suggesting, without excluding the involvement of rafts, that non-raft

domains may participate in the regulation of APP cleavage. Yet, before directly

addressing this issue, I tested whether or not APP partitioning was, as in

neuronal cells, restricted to non-raft domains in the HEK cells where I identified

PE partitioning.

To determine APP membrane partitioning/localization, HEK 293 cells stably

transfected with human APP were solubilized, and cell membrane pellets were

isolated by centrifugation of cell extracts at 100,000 x g for 1 hour at 40C. The
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separation of raft from non-raft domains was performed as described, through

density centrifugation in OptiPrep gradient. Then, the cell membrane pellets from

each gradient fraction were isolated by 100,000 x g centrifugation, subjected to

10% SDS-PAGE and blotted with an APP C-terminal specific antibody (ANTI-

APP, C-terminal, Sigma), to detect APP and identify its distribution along the

gradient. Western blot analysis showed that in HEK 293 hAPP cells, APP is,

consistently what described in neuronal cells, largely restricted to the non-raft,

phospholipid rich domains (Figure 3.1.3.). 23% and 77% of total APP are present

in the 30% and 40% fraction, respectively.  Furthermore, APP was not detectable

neither in DRM, the raft associated Flotilin-1 and cholesterol/sphingolipids

enriched fraction, nor in   the 5% fraction

Figure 3.1.3. In the membranes of HEK 293 cells APP accumulates in the heavy,

phospholipid rich fraction. After separation of DRM from non-DRM fractions by

OptiPrep gradient, cell membranes of each fraction were isolated and subjected to 10%

SDS-PAGE, to determine the distribution of APP along the gradient.  Staining with ANTI-

APP, C-terminal antibody reveals an accumulation of APP in the phospholipid rich

fractions. Quantification of APP in the respective gradient fractions is represented in the

graph. 23% and 77% of total APP is present in the 30% and 40% fraction, respectively.

No APP was detected in the cholesterol rich domains (DRM) and the light 5% fraction.

These last results pave the way to undertake the functional study of the role of

phospholipids-rich membrane domains in APP proteolytic processing.
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3.1.3. RNAi against PE synthesis enzymes in HEK 293 cells efficiently affect

plasma membrane PE levels

To study the role of PE on APP proteolytic processing its membrane levels were

modified by treatment with RNAi. The effect of altered PE levels on APP was

studied by assaying the APP processing by ∀-, !- and #-secretase. Since APP

cleavage by #-secretase is the crucial step in the generation of A! peptide, the

interest was mainly focused on PE role in the regulation of this particular enzyme.

In addition to #-activity analysis, PE dependence of ∀- and !-secretase activity

was studied, as amyloidogenesis appears to be regulated by the interaction of all

three enzymes (see chapter 1.2.1.).

For the modification of membrane PE levels, following enzymes involved in the

PE synthesis pathway were blocked by RNAi: phosphoethanolamine

cytidylyltransferase (PECT), CDP-ethanolamine phosphotransferase (CEPT) and

ethanolamine kinase (ETNK). Cells were transfected with RNAi using

Lipofectamine 2000 reagent according to the manufacturer’s protocol and treated

for 48 hours. RNAi efficacy was tested after 48 hours by measuring membrane

PE levels in RNAi treated versus non-treated (control) cells (Figure 3.1.4. A). As

a control, cells were treated with RNAi directed against an irrelevant messenger

RNA (rat CYP7A1) (Figure 3.1.4. B). Cell membrane pellets isolation, followed by

lipid extraction, lipid separation by TLC and lipid measurement, revealed that

membrane PE level was approximately 40% lower in PECT, CEPT and ETNK

RNAi treated cells compared to the non-treated cells, whereas the membrane

content of cholesterol, ceramide, sphingomyelin, PC and PI did not significantly

differ in treated and non-treated cells (Figure 3.1.4. A). The treatment with the

control CYP7A1 RNAi had no effect on membrane lipid content (Figure 3.1.4. B).

To test whether RNAi treatment and PE depletion have a deleterious affect on

the cells, cell viability was assayed by measuring apoptosis and necrosis in low

PE cells versus control cells with wild type PE levels (Figure 3.1.4. C). As both

apoptosis and necrosis were not significantly different in PE depleted and control



Results

48

cells, I could rule out that PE depletion may have an unspecific effect on APP

proteolytic processing through inducing cell death.
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Figure 3.1.4. HEK 293 cells treated with RNAi, directed against enzymes involved

in PE synthesis pathway show a decrease of membrane PE levels. HEK 293 cells

were treated with RNAi against PECT, CEPT and ETNK and the control RNAi, directed

against rat CYP7A1.  After 48 hours of RNAi treatment cell membranes were isolated,

using the same amount of total protein as starting material. Membrane lipids were

extracted and analyzed by TLC. Lipid quantification is shown in the graph. (A) HEK cells

treated with the RNAi directed against PECT, CEPT and ETNK show approximately 40%

lower membrane PE content than non-treated cells. Membrane levels of cholesterol,

ceramide, sphingomyelin, PC and PI do not significantly differ in non-treated and RNAi

treated cells.  (B) HEK 293 cells, treated with the control, rat CYP7A1 RNAi, under the

same experimental conditions like the cells described in A, do not show any significant

changes in the membrane lipid composition in comparison to the non-treated cells.  (C)

Apoptosis levels, measured by TUNNEL assay have similar values, 9% of total cells, in

non-treated and PE depleted cells. Also necrosis, determined by Trypan blue staining,

was not enhaced by PE depletion. The amount of necrotic cells in control (non-treated)

and low PE cells was about 3% of total cells.

3.1.4. RNAi against PE synthesis enzymes in HEK 293 cells alter APP

cleavage efficacy

To determine whether PE depletion affects proteolytic processing of APP, low PE

HEK 293-wtAPP695 cells were analysed for the changes in APP cleavage by ∀-

!-, and #-secretase. Cleavage of APP by ∀- or alternatively by !-secretase leads

to generation and extracellular release of soluble APP peptides, sAPP∀ and

sAPP!, respectively, and the retention of corresponding membrane-anchored C-

terminal fragment, ∀CTF (C83) and !CTF (C99). Membrane-anchored C-terminal

fragments ∀CTF and !CTF, are both substrates for #-secretase that cleaves C83

and C99 within the membrane and derives nonamyloidogenic p3 and

amyloidogenic A!, respectively. Additionally to p3 and A!, #-secretase cleavage

releases AICD in the intracellular space.

To analyse the effect of PE depletion on ∀- and !-secretase cleavage of APP,

HEK 293 cells stably expressing wild-type APP695 were treated with RNAi
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directed against the enzymes: PECT, CEPT and ETNK, as described above.

Crude membrane pellets, from non-treated (control) and RNAi treated cells, were

resolved by the urea version of the Bicine/bis-Tris/Tris/sulfate SDS-PAGE

(Wiltfang et al., 1991). Western blot analysis was performed with ANTI-APP, C-

terminal antibody to visualize full length APP (fl APP) and the membrane-

anchored ∀CTF. !CTF fragment was detected by Anti-Human ! Amyloid [1-17]

antibody. In RNAi treated cells, with approximately 40% less membrane PE,

levels of APP-C-terminal fragment generated by !-secretase processing of APP,

revealed a 40-50% decrease compared to the cells with wild-type PE levels

(Figure 3.1.5. A). ∀CTF levels in low membrane PE cells were increased an

average of 50% over the control. In addition to ∀CTF analysis, ∀-secretase

activity was assayed by changes in the levels of secreted sAPP∀ .

Correspondingly to the increased ∀CTF levels, sAPP∀ content in the medium of

low PE cells was about 50% higher, with respect to the control cells (Figure 3.1.5.

A). To rule out, that the changes in the generation of ∀CTF and !CTF are due to

the alterations in APP expression the levels fl APP were determined in low PE

cells versus control. Quantification of fl APP normalized to the total amount of

∀Tubulin, revealed that, PE depletion in the membranes of HEK 293 cells did not

cause alterations in APP content. Control RNAi directed against rat CYP7A1 had

an effect neither on ∀CTF and !CTF nor on fl APP levels (Figure 3.1.5. B), which

excludes an unspecific effect of RNAi on APP proteolytic processing. Taken

together the results above indicate a specific effect of PE on ∀- and !-secretase

activity on APP.
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Figure 3.1.5. HEK 293 cells with low membrane PE show changes in APP

processing by -, - and -secretase.  (A) Activity of ∀-, !- and #-secretase in HEK
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293-wild-type APP695 cells was analysed after depletion of approximately 40% of

membrane PE by RNAi directed against PECT, CEPT and ETNK enzymes. For

determination of fl APP, ! and  ∀CTF’s crude membrane pellets isolated form non-

treated (control) and RNAi treated cells were subjected to the urea version of the

Bicine/bis-Tris/Tris/sulfate SDS-PAGE. Tubulin served as the loading control. The

amount of fl APP, determined by ANTI-APP C-terminal antibody does not significantly

differ in control and low PE cells. Membrane levels of !CTF fragment, determined by

Anti-Human !  Amyloid [1-17] antibody, were 40- 50% lower in PE depleted cells

compared to the control. Analysis of the membrane-anchored ∀CTF, visualized by ANTI-

APP C-terminal antibody revealed that the amount of ∀CTF in low PE cells was

approximately 50% increased with respect to the control cells. ∀CTF and !CTF

membrane levels, determined by densitometry were normalized to the amount of total

APP. Consistent to the elevated levels of ∀CTF, the amount of sAPP∀ in the medium

was about 50% higher than in the medium from the control cells. Immunoprecipitations

from extracellular medium were submitted to 10% Laemmli-PAGE and sAPP∀ visualized

by A! N-terminus specific antibody 1E8 (Nanotools). (A1) In HEK 293-SwedishAPP695

A!42 generation was analysed in ETNK RNAi treated cells versus control, by ELISA and

Western blotting using WO2 antibody. Compared to the non-treated cells, RNAi treated

cells show a decrease in A! generation of approximately 18%. Quantification of A! 42

peptide, depicted in the graph, revealed similar results in both assays. (B) Control RNAi

against rat CYP7A1 did not cause any alterations in full length APP levels and its

proteolytic processing by ∀- and !-secretase. The analyses of fl APP, ! and ∀CTF’s and

sAPP∀  were performed as described under A.  Quantifications are shown in the

respective graph.

After it was shown that membrane PE depletion is related to the changes in the

generation of ∀- and !-secretase products (Figure 3.1.5.), #-secretase activity

was analysed, measuring changes in the A! production. For the analysis of A!,

cell culture medium from the PECT, CEPT and ETNK RNAi treated and control

cells was collected and A! peptide recovered by immunoprecipitation with

Amyloid beta A4, amino-terminal-selective antibody 1E8 (Nanotools).

Subsequently immunoprecipitates were analysed on the urea version of the

Bicine/bis-Tris/Tris/sulfate SDS-PAGE, using the A! 1E8 antibody.
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The antibody detection of A! released into the extracellular medium from the

HEK 293-wild-type APP695 cells showed that the amount of peptide was not

sufficient to perform a proper quantification. In order to overcome this problem I

switched the A! analysis to the HEK cells, which overexpress human APP695

with the Swedish mutation (SweAPP695). This mutation in the APP gene

elevates the amount of generated A! that allows a valid quantification of the

peptide. PE levels in the membranes of HEK 293-SweAPP695 cells were

depleted by RNAi directed against the ETNK enzyme. Afterwards A! generation

was analysed by Western blotting and ELISA assay in low PE cells versus non-

treated (control) cells, with wild-type membrane PE levels. For Western blot

detection of A! peptide extracellular medium (the amount was standardized by

the protein amount) was re-suspended in sample buffer and resolved by the

16.5% SDS-PAGE. A! peptide was detected by using the WO2 antibody that is

raised against the residues 5-8 of A! region (Ida et al., 1996). The antibody

detection revealed that in HEK 293-SweAPP695 cells with depleted membrane

PE, the levels of the neurotoxic A! 42 species show a decrease of about 20% in

comparison to the control cells.  An additional quantification of human A! 42 in

the medium was performed using the highly sensitive kit “hAmyloid !42 ELISA

(HS)” (the GENETICS company) following the manufacturers instruction. The

results obtained by ELISA confirmed those from Western blot assay, revealing an

A! 42 decrease of approximately 20% after membrane PE depletion

(Figure3.1.5. A1).

Since the data in HEK 293 cells clearly show a correlation of membrane PE

levels and APP processing, experimental investigations were switched to a more

sophisticated Drosophila melanogaster in vivo system, in order to prove the

results obtained in mammalian in vitro system.
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3.2. Role of phosphatidyethanolamine (PE) in APP proteolytic

processing in Drosophila melanogaster

Drosophila melanogaster  is a widely used model system to study

neurodegenerative diseases, including Alzheimer’s disease. The strength of

Drosophila as an experimental organism relies on its powerful genetic tools (e.g.

large amount of transgenic lines and mutants), intensive genetic analysis of its

genome, short generation time and nevertheless the fact that Drosophila and

humans share many structurally and functionally related gene families, despite

their phylogenetic distance. One of these, in Drosophila and mammals, highly

conserved metabolic pathways is the mechanism of !-secretase activity

(Fossgreen et al., 1998, Takasugi et al., 2002). !-secretase has been shown to

play the main role in the generation of A∀ peptide, which forms senile plaques,

hallmark of AD pathology. Furthermore #-secretase-like activity has been

reported in Drosophila (Fossgreen et al., 1998, Loewer et al., 2004).

It is noteworthy that amyloid precursor protein-like protein APPL, a Drosophila

homologue of hAPP does not exhibit sequence similarities within the ∀-amyloid

region of APP (Selkoe, 1996), and !-cleavage of APPL has not been documented

(Rosen et al., 1990). But it has been shown that !-secretase in Drosophila

cleaves overexpressed hAPP and hAPP-C-terminal fragment in the similar

manner like in mammals, under generation of A∀ peptide and APP intracellular

domain (AICD) (Fossgreen et al., 1998, Takasugi et al., 2002, Loewer et al.,

2004).

Localization of APP and APP cleaving machinery on the membrane, suggests a

role of membrane lipids in the regulation of APP processing. As described in the

introduction, APP is processed by three proteases termed #∃, ∀∃ and !-

secretase. A∀ peptide is produced by the sequential cleavage of APP by ∀∃ and

!-secretase (Annaert and De Strooper, 2002).  This APP processing pathway is

termed amyloidogenic pathway. The production of an intact A∀ peptide is
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prevented by APP processing through the non-amyloidogenic pathway, in which

#-secretase cleaves APP within A∀ domain.

In chapter 3.1. I showed that in mammalian HEK 293 cells, membrane levels of

PE clearly correlate with processing of APP by #-, ∀- and !-secretase. Here I will

describe how the modulation of PE levels affect APP cleavage in vivo. For this I

have utilized Drosophila melanogaster, which, as mentioned above has been

shown to be valuable to study this phenomenon (Fossgreen et al., 1998,

Lichtenthaler et al., 1999, Struhl and Adachi, 2000, Takasugi et al., 2002, Francis

et al., 2002, Loewer et al., 2003, Guo et al., 2003, Doglio et al., 2006). Moreover,

Drosophila has been as well useful to study PE modulation (Pavlidis et al., 1994,

Dobrosotskaya et al., 2000, Nyako et al., 2001).

My in vivo, Drosophila-based validation work, started using embryonic Schneider-

2 (S2) cells grown in vitro, transiently transfected with SC100, an APP-C-

terminal-domain (C99) containing construct (SC100: M596-N695 of APP695, see

Material and Methods, Figure 2.1.). For the true in vivo studies I utilized

transgenic fly lines expressing the C-terminal fragment of hAPP (see Material

and Methods, Figure 2.2.) and the easPC8f mutant, defective in the gene for

ethanolamine kinase.

3.2.1.  Role of phosphatidyethanolamine (PE) in APP proteolytic processing

in Drosophila S2 cells

3.2.1.1. Phosphatidylethanolamine distribution in the cell membranes of

Drosophila S2 cells

Like in mammalian cells, !-secretase cleavage in Drosophila occurs on the

membrane. Phospholipids represent, besides sterols and sphingolipids, main

lipid species in Drosophila membranes. Barring the some differences, e.g. in the

length of fatty acyl chains, phospholipids in mammals and Drosophila have a

similar organization. PE, which is shown to correlate with the changes in APP
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processing in HEK 293 cells (see above), comprises 55% of total phospholipids

in Drosophila (Jones et al., 1992). Similar to the situation in mammalian cells,

structural properties of membrane lipids in Drosophila cells are consistent with

the ability to separate into sterol/sphingolipid rich, liquid ordered and phospholipid

rich, liquid disordered phase (Rietveld et al., 1999). Ergosterol/sphingolipid rich

domains in Drosophila cells have been shown to be insoluble in nonionic

detergent at 4oC, other than phospholipid rich membrane domains, which are

detergent soluble.

In order to study the role of PE in hC99 processing its membrane distribution in

S2 cells was determined by density gradient centrifugation. S2 membranes were

solubilized for 1 hour at 4oC in a 1% Triton X-100 containing buffer and

subsequently loaded on OptiPrep gradient, to separate detergent resistant

microdomains (DRM) from detergent soluble fractions (non-DRM).  Drosophila

melanogaster Flotilin (FlotilinDm), which is closely related to the raft associated,

mammalian Flotillin-1 (Galbiati et al., 1998), was used to identify DRM or raft

microdomains. For the identification of DRM, I performed a gradient phase

separation by 120.000 x g at 4oC for 18 hours. Subsequently, membrane pellets

from each fraction were extracted, re-suspended in sample buffer and loaded to

12% SDS-PAGE. Detection of FlotilinDm was performed by Western blotting using

Flotillin-1 antibody. FlotilinDm was significantly enriched in the interphase between

5% and 30% OptiPrep gradient fractions (Figure 3.2.1.). This data, together with

ergosterol enrichment in the 5%-30% fraction interphase (Figure 3.2.2.), indicates

flotation density of DRM in this gradient fraction.
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Figure 3.2.1. Drosophila Flotilin (FlotilinDm) is abundant in detergent insoluble

membrane microdomains (DRM) of S2 cells. Distribution of FlotilinDm was analysed by

density gradient centrifugation of S2 membranes, solubilized for 1 hour at 40C in a 1%

Triton X-100 containing buffer. OptiPrep gradient centrifugation was performed at

120,000 x g for 18 hours at 40C. After separation of raft and non-raft microdomains,

gradient fractions were collected. Cell membranes of each fraction were isolated by 100,

000 x g, resuspended in sample buffer and subjected to 12% SDS-PAGE. As depicted in

the graph, 33% of total FlotilinDm was present in the interphase between 5% and 30%

gradient fraction. Measurement of FlotilinDm levels in other gradient fractions show that

27% and 40% of total FlotilinDm is localized in 30% and 40% fractions, respectively. No

FlotilinDm was detected in the light 5% fraction.

To determine PE distribution in S2 membranes, cell membrane pellets,

solubilized in 1% Triton X-100, were separated in OptiPrep gradient as described

above. After density centrifugation, membranes from each gradient fraction were

isolated by 100,000 x g, and membrane lipids extracted according to Bligh and

Dyer (1959). Subsequent analysis of PE distribution by TLC shows that PE is

equally distributed all over the gradient, while ergosterol enriches in the 5%-30%

interphase, consistent to the FlotilinDm localization. The results concerning the

membrane distribution of PE and ergosterol obtained in S2 cells were similar to

those in mammalian cells. The ratio of total PE is 0.75 in non-rafts, while its

portion in rafts averages only 0.25. Other than PE, ergosterol is abundant in raft

fraction with 0.45 of its total membrane content.
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Figure 3.2.2. In Drosophila S2 cells 75% of total membrane PE is present in non-

raft fraction. S2 cell membranes were solubilized with 1% Triton X-100 at 40C and

loaded on OptiPrep gradient to determine PE distribution. After separation of detergent

soluble from detergent insoluble membranes by density centrifugation, membranes from

each gradient fraction were isolated by 100, 000 x g centrifugation and analysed by TLC.

The ratios of total membrane PE in respective gradient fraction, which are depicted in

the graph, show that all gradient fractions contain similar amount of approximately 25%

of total membrane PE. Non-raft domains, encompassing the 5%, 30% and 40%

fractions, contain 75% of total membrane PE. Contrariwise, ergosterol is with 45% of its

total amount strongly enriched in the raft fraction, identified by FlotilinDm in the 5%-30%

interphase. In 5%, 30 % and 40% fractions ergosterol was present with 13%, 20% and

22%, respectively.

3.2.1.2. Localization of hAPP (hC99) in the cell membranes of Drosophila S2

cells

To investigate, whether in S2 cells, membrane PE plays a role in APP

processing, as shown in HEK 293 cells, the distribution/localization of hC99 in the

membranes of S2 cells was analysed. S2 cells were transiently transfected with

hAPP695 C-terminal-domain (hC99) containing construct (SC100, Maryama et

al., 1994). The transfection was performed with Calcium Phosphate method,

according to the manufacturer’s protocol (Invitrogen). 72 hours after transfection,

cell membranes were solubilized in 1% Triton X-100 and submitted to the

OptiPrep gradient to determine hC99 distribution along the gradient.  After 18

hours centrifugation by 120,000 x g, gradient fractions were collected, membrane

extracts of each fraction isolated by 100,000 x g centrifugation and subjected to

the urea version of the Bicine/bis-Tris/Tris/sulfate SDS-PAGE. The localization of

hC99 was determined by immunostaining with ANTI-APP C-Terminal antibody.

As depicted in the Figure 3.2.3., about 84% of total hC99 was detected in 40%

gradient fractions. 30% fraction contains 16% of total hC99, whereas no hC99

was detected in 5% and DRM fraction. Like in mammalian cells, localisation of

hAPP (hC99) in Drosophila S2 cells is mainly restricted to the phospholipid rich
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fraction, unlike Flotilin and ergosterol distribution, which are significantly enriched

in DRM fraction.

Figure 3.2.3. Overexpressed hC99 is mainly enriched in the non-raft microdomains

of Drosophila S2 cells. Raft and non-raft microdomains of S2 cells overexpressing

hC99, were isolated by OptiPrep gradient centrifugation. Subsequently cell membranes

from each fraction were isolated, resuspended in sample buffer, resolved by the urea

version of the Bicine/bis-Tris/Tris/sulfate SDS-PAGE and stained with ANTI-APP C-

Terminal antibody, to analyse the localization of hC99.  Quantification, shown in the

graph, revealed that 84% of total hC99 is present in 40% fraction. Approximately 16% of

hC99 was detected in 30% fraction, whereas no hC99 was found DRM and 5% gradient

fractions.

Enrichment of hC99 within the phospholipid rich membrane core strongly

suggests an important role of those lipids in C99 processing. Among all

phospholipids PE appears most interesting regarding its role in cellular

processes. Moreover PE constitutes 55% of total phospholipids in Drosophila

membranes.
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3.2.1.3.   Altered membrane PE levels in Drosophila S2 cells correlate with

changes in hC99 processing

The fact that, in mammalian and in Drosophila cells, hAPP (hC99) preferentially

colocalizes with phospholipid rich membrane domains, strongly indicates the role

of those lipids in the regulation of APP processing. In Drosophila, in vitro and in

vivo systems, PS-dependant !-secretase activity has been shown to be highly

conserved and to cleave overexpressed hAPP (Fossgreen et al., 1998, Takasugi

et al., 2002, Loewer et al., 2004). Besides !-secretase cleavage, hAPP in

Drosophila is processed by #-secretase-like activity, that generates a ~ 10-kDa

polypeptide comigrating with C83 fragment of mammalian cells. (Fossgreen et

al., 1998, Takasugi et al., 2002, Loewer et al., 2004). Processing of hAPP-Ct by

Drosophila !-secretase generates A∀ peptide and the APP intracellular domain

(AICD).

In order to determine the role of PE in APP processing by !-secretase, A∀ levels

were analyzed in low PE cells versus control cells with wild type membrane PE

levels. In addition to A∀ generation I assayed the changes in hC99 and #-stub-

like fragments, as they correlate with the levels of !-secretase activity. To deplete

membrane PE, S2 cells were treated with RNAi directed against enzymes

involved in the CDP-Ethanolamine pathway: phosphoethanolamine

cytidylyltransferase (PECT) and ethanolamine kinase (ETNK). At first Drosophila

S2 cells were transiently transfected with hC99. 24 hours after transfection cells

were treated with RNAi for 48 hours. Such treatment abolishes the corresponding

endogenous mRNA selectively through RNAi and leads to the loss of respective

enzyme activity. After 48 hours of RNAi treatment, membrane pellets from

treated and non-treated (control) cells were isolated by 100,000 x g and after lipid

extraction analysed by TLC. Membrane lipid analysis revealed that membrane

PE content in PECT and ETNK RNAi treated cells was about 40% lower with

respect to non-treated cells (Figure 3.2.4. A). In contrast, membrane content of

ergosterol, ceramide, PECeramide, phosphatidylcholine (PC) and

phosphatidylinositol (PI) was not significantly altered compared to the non-treated
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cells (Figure 3.2.4. A). To exclude an unspecific effect of RNAi on membrane PE

content S2 cells, transiently transfected with hC99 were treated for 48 hours with

a control RNAi, directed against rat CYP7A1 mRNA. Membrane isolation, lipid

extraction and analysis were carried out under the same experimental conditions

like above. As shown in the Figure 3.2.4. B, control RNAi did not cause any

changes in the membrane lipid composition of S2 cells. Cell viability, tested by

apoptosis and necrosis in low PE versus control cells, revealed that the levels of

cell death in PE depleted and control cells did not significantly differ, i.e. PE

depletion does not have a deleterious effect on S2 cells (Figure 3.2.4. C).
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Figure 3.2.4. S2 cells show approximately 40% decreased membrane PE levels

after treatment with RNAi directed against PECT and ETNK enzymes.  (A) 48 hours

after PECT and ETNK RNAi treatment, extracts from S2 cells overexpressing hC99 were

centrifuged for 1 hour at 100,000 x g in order to isolate cell membrane pellets.

Membrane lipids extracted from crude membranes of RNAi treated and non-treated cells

were analysed by TLC. Lipid quantification in RNAi treated cells versus non-treated

(control) cells revealed that PECT and ETNK RNAi treatment induced a decrease of

membrane PE of approximately 40% with respect to the non-treated cells.  Ergosterol,

ceramide, PECeramide, PC and PE do not show significantly different membrane levels

in RNAi treated and non-treated cells. (B) S2 cells treated with control rat CYP7A1 RNAi,

under same experimental conditions as described above, do not exhibit any changes in

their membrane lipid levels in comparison to the non-treated cells. Quantifications of

membrane lipid content in RNAi treated cells versus control are shown in the graph. (C)

Levels of apoptosis and necrosis measured in low PE cells did not reveal significant

differences to control cells. As shown in the graph the percentage of apoptotic cells was

about 8% of total cells in PE depleted cells and the cells with wild-type PE content. Also

the level of necrosis in both, low PE and control cells was about 5% of total cell amount.

After it was shown, that PECT and ETNK RNAi treatment specifically leads to PE

depletion, without significant alterations in membrane content of other major

lipids and without affecting cell viability, I addressed the question, whether PE

depletion causes changes in hC99 proteolytic processing. For the analysis of

membrane-anchored C99 and #-stub-like fragments, crude membrane pellets

from non-treated and low membrane PE cells were isolated, subjected to the

urea version of the Bicine/bis-Tris/Tris/sulfate SDS-PAGE and stained with ANTI-

APP, C-Terminal antibody. Immunoblot analysis showed a decrease of

approximately 65% in C99 and #-stub-like levels, in low PE cells with respect to

the non-treated (control) cells (Figure 3.2.5., left panel). Both membrane-

anchored fragments, C99 and #-stub-like are substrates for !-secretase and the

decrease in their membrane levels indicates that they are longer processed by !-

secretase than under control conditions. This observation indicates an elevated

!-secretase activity but as C99 and #-stub-like membrane levels are only indirect
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indicators for !-secretase activity, I analysed the amount of A∀ in order to directly

assay the effect of PE depletion on  !∃activity.

A∀ peptide was immunoprecipitated from the extracellular medium of the control

and PE depleted cells, using Amyloid beta A4, amino-terminal-selective antibody

1E8 (Nanotools) and afterwards analysed on the urea version of the Bicine/bis-

Tris/Tris/sulfate SDS-PAGE. As already indicated by C99 and #-stub-like

analysis, A∀ generation changes dramatically after membrane PE depletion.  The

amount of total A∀ in low PE cells averages 80% over the control (Figure 3.2.5.

B). PE depletion did not alter the rates of single A∀ species in relation to the total

A∀ content. Figure 3.2.5. (right panel) depicts different A∀ species, generated

depending on !-secretase cleavage site. “A∀ X” represents an A∀ peptide species

that is not defined yet (personal comment from Dr. Wiltfang).

Crude membrane pellets and the cell culture medium from CYP7A1 RNAi treated

and non-treated cells were analysed for C99, # -stub-like fragment and

A∀ as described above.  Western blot analyses revealed that rat CYP7A1 RNAi

did not induce any significant changes neither in C99 and #-stub-like nor in

A∀ generation (Figure 3.2.5., see left and right panel).
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Figure 3.2.5. In S2 cells, membrane PE depletion by PECT and ETNK RNAi leads to

alterations in hC99 processing by -secretase. (left panel) Analysis of crude

membrane pellets, isolated from PECT and ETNK RNAi treated S2 cells show altered

levels of C99 and #-stub-like fragments versus control cells. Both membrane-anchored

fragments were analysed using urea version of the Bicine/bis-Tris/Tris/sulfate SDS-

PAGE and ANTI-APP C-Terminal antibody. In comparison to the non-treated cells,

membranes of PECT and ETNK RNAi treated cells show about 65% lower level of C99

and #-stub-like fragments. Densitometry measurements were normalized to the amount

of # Tubulin. (right panel) Immunoprecipitations from extracellular medium were

resolved by the urea version of the Bicine/bis-Tris/Tris/sulfate SDS-PAGE and visualized

using Amyloid beta A4, amino-terminal-selective antibody 1E8. The densitometry

analysis revealed that total A∀ content in PE depleted cells averages approximately 80%

over the control. The ratios of single A∀ species (A∀ 1-37, A∀ 1-38, A∀ 1-39, A∀ 1-40, A∀

1-42, A∀ X) do not significantly differ in control and low PE cells.  (left and right panel)

Control treatment, performed under the same experimental conditions as described

above with rat CYP7A1 RNAi had a significant effect neither on levels of membrane-

anchored APP fragments, nor on generation of A∀ peptide.

Increased generation of A∀ peptide as well as decreased C99 and #-stub-like

membrane levels, described above, indicate an elevated activity of !-secretase

on APP caused by PE depletion. These data contradict the results obtained in

mammalian system, where I had shown that reduction of membrane PE content

leads to decreased APP proteolytic processing by !- and ∀-secretase. One

possibility for the discrepancy would be that, because of being embryonic,

Schneider-2 cells represent PE-mediated modulation of APP at the embryonic,

but not mature stage of life.  Another possibility is that Drosophila cells have in

vitro requirements not relevant in the more complex situation of the in situ

scenario. Either possibility could be addressed by looking at the processing of

hC99 in Drosophila in vivo.  The results of this analysis are described next.
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3.2.2. Role of phosphatidylethanolamine (PE) in APP proteolytic processing

Drosophila in vivo system

As already mentioned above, hAPP processing in Drosophila system has been

described in several studies (Fossgreen et al., 1998, Lichtenthaler et al., 1999,

Struhl and Adachi, 2000, Loewer et al., 2003, Guo et al., 2003, Doglio et al.,

2006). To study the role of PE in APP processing, I have utilized Drosophila

melanogaster transgenic strains expressing hAPP-C-terminal (APP-Ct) fragment

initiating downstream of the ∀-secretase cleavage site. These !-reporter flies

were crossed with easPC80f mutant, defective in the gene for ethanolamine

kinase.

One of Drosophila transgenic lines used in this study is GMR-APP-GAL4, UAS-

GRIM which acts as a reporter of !-secretase activity in the fly eye (Guo et al.,

2003). These reporter flies, allow the studying of endogenous levels of !-

secretase activity, using a nonessential neuronal tissue, adult fly eye.  As !-

secretase substrate serves a chimeric type-I transmembrane protein, which

contains a N-terminus, with a cleavable signal sequence followed by human

APP-C-terminal fragment to the ∀-secretase cleaving site (see Material and

Methods, Figure 2.2.). The protein is targeted to the secretory pathway by the N-

terminal signal sequence.  On its C-terminal end hAPP-Ct is fused to the yeast

transcription factor GAL4. APP-Ct-GAL4 is specifically expressed in the eye

under control of eye specific GMR promoter. The reporter flies carry additionally

to hAPP-Ct-GAL4, a !-secretase reporter output construct, UAS-GRIM, that

consists of a GAL4-responsive transcriptional cassette driving the expression of

the Drosophila cell death activator GRIM (Chen et al., 1996). After !-secretase

cleavage, APP-C-terminal fragment downstream of the !-cleavage site moves

together with GAL4-VP16 to the nucleus, and triggers the transcription of cell

lethal gene GRIM, through UAS activation (Figure 3.2.8. G) Activation of Grim

transcription by !-secretase processing of hAPP-Ct, promotes cell death in the fly

eye, so that the size of the eye and the roughened surface correlate with the level

of endogenous !-secretase activity.
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To address the role of PE in APP processing in Drosophila in vivo system, !-

reporter flies were crossed with easPC80f mutants, for the purpose of generating

low PE flies expressing hAPP-Ct. EasPC80 mutants have a defect in enzymatic

activity of ethanolamine kinase (ETNK), which is the first enzyme in the synthesis

of PE via CDP-ethanolamine pathway (Kennedy, 1957; Figure 1.4.). ETNK has

been located on the gene easily shocked (eas) (Pavlidis et al., 1994), localized

on the X chromosome. EasPC80 mutation is a frame shift mutation based on a 2bp

deletion in easPC80 gene at nucleotide position 1004-1005, which introduces a

stop codon in-frame at nucleotide position 1078. These mutants, defective in eas

gene lack completely highly conserved kinase domain, which is required for

ETNK enzymatic activity. Correspondingly to ETNK loss of function, easPC80

mutants have a decreased PE levels compared to the wild-type flies. EasPC80

homozygous are viable and under most conditions the flies do not show any

observable abnormalities, regarding development, viability, behaviour and

electrophysiology (Pavlidis et al., 1994).

In order to prove the effect of membrane PE on APP processing by !-secretase

in Drosophila in vivo system, easPC80f mutants were crossed with GMR-APP-

GAL4, UAS-GRIM transgenic flies. At first, membrane PE levels were determined

in easPC80f homozygous versus wild-type flies. Additionally, PE levels in the

transgenic flies, which served as control for !-activity levels, were measured in

comparison to wild-type flies. TLC analysis of membrane lipid composition

showed that easPC80f mutants have about 50% lower membrane PE levels than

the wild-type flies. Ergosterol, ceramide, PECeramide, PC and PI membrane

levels, in contrary, are not significantly different in mutant and wild-type flies

(Figure 3.2.6. A). Transgenic and wild-type flies have a consistent membrane

lipid composition, as shown in the Figure 3.2.6. B.
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Figure 3.2.6. EasPC80f homozygous flies show a low membrane PE level versus

wild-type flies, while membrane PE levels in -reporter flies do not differ from

these in wild-type flies. Membrane pellets from homogenates of 10 flies were isolated

by 100,000 x g centrifugation, using the same amount of total protein as starting

material. Afterwards membrane lipids were extracted and analysed by TLC. (A) TLC

analysis of membrane lipid content in easPC80f homozygous, lacking ETNK enzyme

activity, revealed about 50% lower PE level in the membranes of these flies in

comparison to the wild-type (Oregon R) flies. Mutants and control (wild-type) flies did not

significantly differ in their membrane content of ergosterol, ceramide, PECeramide, PC

and PI. Quantifications are represented in the graph. (B) Membrane lipid content in !-

reporter flies: GMR-APP-GAL4, UAS-GRIM/+ and APP-GAL4-VP16, UAS-cd8-GFP/+

versus wild-type flies shows similar values for PE, ergosterol, ceramide, PECeramide,

PC and PI. For quantifications see graph.
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Progeny, generated by crossing easPC80f mutants with GMR-APP-GAL4, UAS-

GRIM transgenic flies with following genotype: easPC80f/Y; GMR-hAPP-Ct-GAL4,

UAS-GRIM/+ and easPC80f/easPC80f; GMR-C99-GAL4, UAS-GRIM/+, was

assayed for membrane lipid content. Because hAPP-Ct is specifically expressed

in the eye of the transgenic flies, membrane PE level in the head appears to be

relevant for !-secretase activity on APP. To determine membrane PE content,

cell membranes were isolated by 100,000 x g from homogenates of 20 fly heads

and analysed by TLC after lipid extraction. TLC analysis and subsequent

quantification of membrane lipid content revealed a 50-60% lower membrane PE

level in the progeny, which are !-reporter flies homozygous for easPC80 mutation,

compared to the control flies, reporter flies with wild-type PE level. Other

membrane lipids, like ergosterol, ceramide, PECeramide, PC and PI did not

significantly alter in mutants and control flies (Figure 3.2.7. A).
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Figure 3.2.7.  Membrane PE content is 50-60% lower in easPC80f/Y; GMR-hAPP-Ct-

GAL4, UAS-GRIM/+ and easPC80f/easPC80f; GMR-hAPP-Ct-GAL4, UAS-GRIM/+

mutants, than in the transgenic flies without easPC80 mutation, GMR-hAPP-Ct-

GAL4, UAS-GRIM/+.  (A) Membrane lipids extracted form the membranes of 20 fly

heads were analysed by TLC and subsequently quantified for PE, ergosterol, ceramide,

PECeramide, PC and PI amount. Membrane PE levels show a significant decrease of

50-60% in reporter flies carrying easPC80 mutation compared to the control flies (GMR-

hAPP-Ct-GAL4, UAS-GRIM). Other analysed lipids have similar membrane content in

easPC80 homozygous and control flies.  (B) Membrane lipids isolated, under the same

experimental conditions as described in A, have been assayed for their content in

easPC80 homozygous expressing GMR-GAL4, UAS-G/RPR/+ versus GMR-GAL4, UAS-

G/RPR/+ flies without easPC80 mutation (control). Membrane lipid quantification shows

approximately 55% lower PE level in mutant flies with respect to the control flies. PE was

only lipid, which shows altered levels in easPC80 mutants, while ergosterol, ceramide,

PECeramide, PC and PI contents do not significantly differ in comparison to the control

flies. All quantifications are depicted in the respective graph.

These flies, which have low membrane PE level, relying on easPC80 mutation and

show retinal degeneration phenotype due to GMR-APP-Ct-GAL4, UAS-GRIM/+

transgene expression were analysed for the role of membrane PE in !-activity. To

assess the role of membrane PE in the modulation of !-secretase activity,
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easPC80f homozygous, carrying chimeric protein hAPP-Ct-GAL4-VP16 and the

UAS-GRIM output were assayed for levels of retinal cell death versus control

flies. Since eas gene is localized on the X chromosome, homozygous have been

generated with eas mutation on one (easPC80f/Y; GMR-hAPP-Ct-GAL4, UAS-

GRIM/+) and on both alleles (easPC80f/easPC80f; GMR-hAPP-Ct-GAL4, UAS-

GRIM/+), to verify the results. Both homozygous have the same genetic

background for ETNK activity and show corresponding membrane PE levels

(Figure 3.2.7. A).

Effect of altered membrane PE levels on !-secretase activity was analysed by the

size of the fly eye and the size of roughened exterior eye surface. Both small

eyes and roughened exterior eye surface are indicative for retinal cell death and

correlate with the level of endogenous !-secretase activity. Control flies,

transgenic for GMR-hAPP-Ct-GAL4, UAS-GRIM with a wild-type membrane PE

level (3.2.6. B and 3.2.7. A), show certain level of retinal cell death due to the

normal levels of endogenous !-secretase activity. Approximately 70% of total eye

surface is roughened in the !-reporter control flies and the eye size is compared

to the wild-type eye about 20% decreased (Figure 3.2.8. A, B). EasPC80f

homozygous, expressing GMR-hAPP-Ct-GAL4, UAS-GRIM were compared to

the control flies measuring adult eye size and eye roughness, which was

calculated as a percentage of the total eye surface. Retinal cell death, present in

the control flies is almost eliminated and the eye size is restored to normal by

introducing easPC80f mutation (Figure 3.2.8. B, C, D).  Roughened eye surface in

easPC80f homozygous averages only 10-15% of the total eye, compared to the

70% in control eye. Eye size in the flies with easPC80 mutation is an average of

15% over the control, i.e. only 5% smaller then the wild-type eye, corresponding

to decreased !-secretase activity and less expression of the cell lethal gene.
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Figure 3.2.8. Levels of -secretase activity, measured by retinal cell death are

significantly lower in reporter flies with easPC80 mutation than in control -reporter

flies.  Light microscope images of adult fly eyes of various genotypes. The genotypes

are as follows: (A)  Oregon R (wild-type) (B) GMR-APP-GAL4, UAS-GRIM/+, (C)

easPC80f/Y; GMR-APP-GAL4, UAS-GRIM/+ (D) easPC80f/easPC80f; GMR-hAPP-Ct-GAL4,

UAS-GRIM/+. !-secretase activity was measured by cell death levels in control reporter

flies (GMR-hAPP-Ct-GAL4, UAS-GRIM; B) versus reporter flies homozygous for easPC80

mutation (C, D). Retinal cell death was scored by quantification of eye size and the size

of roughened eye surface. Quantifications of roughened eye surface revealed that the

retinal cell death in mutant flies (C, D) was almost eliminated and so only 10-15% of eye

surface were affected compared to 70% of roughened eye in control flies with wild-type

levels of !-activity.  Also the eye size in easPC80 homozygous mutants was similar to the

one in Oregon R flies and approximately 15% bigger than in control flies. Measurement

of retinal cell death in GMR-GAL4, UAS-G/RPR/+ control flies (E) versus easPC80

mutants expressing GMR-GAL4, UAS-G/RPR/+ constructs (genotype: easPC80f/easPC80f;

GMR-GAL4, UAS-G/RPR/+, (F)) revealed that the size of roughened eye surface and

the eye size do not differ in mutants and control flies. Like in GMR-GAL4, UAS-G/RPR

control flies easPC80 mutants show approximately 90% of roughened eye surface. The

eye size is 30% smaller than in the wild-type eye, in both mutant and control fly. (G)

Schematic illustrating a !-secretase reporter. The reporter contains two components: the

chimeric protein (APP-CT (A∀ (red) + Ct (black bar)) appended to the GAL4-VP16) that

serves as a !-secretase substrate and the UAS-GRIM construct as an output. APP-

GAL4-VP16 is specifically expressed in the eye under the control of GMR promoter. In

the absence of !-secretase activity APP-GAL4 remains attached to the membrane and is

disabled to enter the nucleus and activate the transcription of the cell lethal gene GRIM.

In the presence of !-secretase activity, cleavage of APP releases a fragment consisting

of APP-Ct initiating downstream of the !-cleavage site and GAL4-VP16. This fragment

translocates to the nucleus and activates GRIM transcription, thereby promoting retinal

cell death through UAS activation.

To rule out an unspecific effect of easPC80 mutation on GRIM expression, easPC80f

mutants were crossed with the GMR-GAL4, UAS-G/RPR flies that do not contain

hAPP-Ct chimeric protein. Like in !-secretase reporter system, in control flies
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GAL4-VP16 fusion construct is specifically expressed in the eye under GMR

promoter and the flies show small eye phenotype. Since in control flies, GAL4 is

not fused to hAPP-Ct, thus not under the control of !-secretase, true modifiers of

!-secretase should alter the eye size of the reporter flies containing APP but not

those of control flies, that lack APP. Flies carrying the easPC80 mutation, which

has been shown to correlate with altered !-secretase activity, were crossed with

control flies and analysed for membrane PE content and the level of retinal cell

death.

Progeny, homozygous for easPC80 mutation, containing GMR-GAL4, UAS-G/RPR

constructs show about 55% decreased PE level compared to the control GMR-

GAL4, UAS-G/RPR  flies. Membrane levels of ergosterol, ceramide,

PECeramide, PC and PI do not differ in mutant and control flies (Figure 3.2.7. B).

Although easPC80 mutants have a significantly altered membrane PE level, the

comparison of retinal cell death in easPC80 mutants versus control flies, revealed,

that both eye size and the size of roughened eye surface are not significantly

different (Figure 3.2.8. E, F). This observation indicates a specific effect of

easPC80 mutation through lowering of PE level, on !-secretase activity.

To confirm the results obtained with GMR-APP-GAL4, UAS-GRIM transgenic

system, APP-GAL4-VP16, UAS-cd8-GFP flies were utilized as transgenic

readout to study !-secretase activity. This system is based on the fusion of GAL4

DNA-binding domain and the VP16 activator domain to the C-terminal domain of

hAPP (hAPP-Ct) (Figure 2.2.). Upon !-secretase processing of hAPP-Ct, APP-

Ct-GAL4-VP16 is released from the membrane, and it moves to the nucleus

where it drives the expression of UAS-cd8-GFP reporter gene in a ligand-

dependent manner (Struhl and Adachi, 2000) (Figure 3.2.10. C). Processing

event of hAPP-Ct by !-secretase is visualized by expression of the green

fluorescent protein (GFP), which takes place in the whole body.

To study the modulatory role of PE on !∃secretase activity, PE levels in APP-

GAL4-VP16, UAS-cd8-GFP flies have been modified, by crossing these flies with

easPC80f mutants. Subsequently GFP expression levels were determined in

progeny homozygous for easPC80 mutation. APP-GAL4-VP16, UAS-cd8-GFP
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flies, which have wild-type PE levels (Figure 3.2.6. B), served as control for !-

activity. As described in the Figure 3.2.6. A, easPC80 mutants show approximately

50% decrease in membrane PE content in comparison to the wild-type flies,

whereas the content of other membrane lipids does not significantly differ in

mutant and wild-type flies.

Before initiating analysis of !∃secretase activity, easPC80 homozygous progeny

generated by crossing APP-GAL4-VP16, UAS-cd8-GFP transgenic flies and

easPC80f mutants were assayed for the membrane lipid composition. Cell

membranes from homogenates of 10 fly bodies were prepared by centrifugation

at 100,000 x g. Subsequently membrane lipids were extracted and analysed by

TLC (see Materials and Methods). TLC lipid analysis revealed that the level of

membrane PE in progeny, homozygous for easPC80 gene was 50% lower with

respect to control flies. Levels of other membrane lipids: ergosterol, ceramide,

PECeramide, PC and PI, did not significantly differ in the cell membranes of

easPC80 mutant and the control (Figure 3.2.9.).

Figure 3.2.9. APP-GAL4-VP16, UAS-cd8-GFP/+ flies, homozygous for easPC80 gene

show decreased PE levels compared to the control flies. TLC analysis showing that

only membrane PE levels reveal significant decrease of about 50% in easPC80
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homozygous (easPC80fY; APP-GAL4-VP16, UAS-cd8-GFP/+) compared to the control

flies (APP-GAL4-VP16, UAS-cd8-GFP/+), whereas other lipids (ergosterol, ceramide,

PECer, PC, PI) have similar membrane levels in both, mutant and control reporter flies.

Values from membrane lipid quantification are depicted in the graph.

Whether PE depletion in the membranes of reporter flies, homozygous for easPC80

gene, causes altered !-secretase processing of hAPP-Ct was assayed by the

GFP expression, measured by fluorescence intensity and Western blotting.

Transcription of GFP reporter gene is triggered by translocation of the C-terminal

end of hAPP-Ct together with GAL4-VP16 to the nucleus after !-secretase

cleavage, so that GFP fluorescence level is a direct indicator of !-secretase

activity (Figure 3.2.10. C). In the absence or decrease of !-activity, hAPP-Ct-

GAL4-VP16 remains at the membrane and therefore is unable to enter the

nucleus and activate GFP transcription. Analyses of GFP levels by fluorescence

intensity and Western blotting were performed after adult flies were heat shocked

at 370C for 1 hour and placed at 250C to allow GFP expression. Strong GFP

fluorescence intensity, present in control reporter flies is an evidence for an

active !-secretase enzyme, under control conditions. After altering the membrane

PE levels in reporter flies by introducing easPC80 mutation, GFP levels decrease

dramatically. Fluorescence intensity in GFP reporter flies with easPC80 mutation is

approximately 65% lower than in the control flies (Figure 3.2.10. A).

Additionally GFP levels in control and homozygous mutants were measured by

Western blot analysis. 10 adult flies were homogenized in lysis buffer, subjected

to 15% SDS page and stained with GFP-Peptide Antibody  (BD Biosciences). As

shown in the Figure 3.2.10. B, GFP expression, which corresponds to

endogenous !-secretase activity, is about 65% lower in mutant flies with respect

to the control flies.
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Figure 3.2.10. GFP expression in easPC80 homozygous flies, transgene for APP-

GAL4-VP16, UAS-cd8-GFP is dramatically decreased compared to the reporter

control flies.  (A) GFP signal in Drosophila transgenic flies with following genotypes:

APP-GAL4-VP16, UAS-cd8-GFP/+ and easPC80f/Y; APP-GAL4-VP16, UAS-cd8-GFP/+,

was measured 12h after heat-shock-induced activation of the APP-GAL4-VP16

construct. GFP expression measured by fluorescence intensity in the entire fly shows a

decrease of about 65% in mutants with respect to control flies. (B) An additional analysis

of GPF expression by Western blot analysis revealed, similar to the fluorescence

intensity measurements, an approximately 65% lower GFP level in easPC80 mutant

versus control reporter flies. Tubulin served as the loading control. (C) Schematic

illustrating a !-secretase reporter. This system is based on a chimeric protein (APP-C-

terminal fragment, consisting of: A∀ (red) + Ct (black bar)) appended to the transcription

factor GAL4-VP16 (GV) downstream of APP-Ct transmembrane domain and the UAS-

GFP construct as an output. In the absence of !-secretase activity APP-GV remains

tethered at the membrane and no GFP expression will be observed.  !-secretase activity

releases APP-C-t-GV from the membrane that translocates to the nucleus and triggers

GFP expression through UAS activation.

C
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These data confirm the results obtained with the GMR-APP-GAL4, UAS-GRIM

transgenic system and indicate a correlation of low membrane PE levels, caused

by easPC80 mutation, with the decreased level of !-secretase activity in

Drosophila.



4. Discussion
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Present study shows that membrane PE levels correlate with alterations in APP

processing. This finding is supported by the observation that APP localization is

largely restricted to the phospholipid rich liquid disordered phase. Other than

APP, the part of its cleaving machinery, involved in amyloidogenic pathway

colocalizes with raft-like, liquid ordered membrane microdomains (Li et al., 2000,

Wahrle et al., 2002, Ehehalt et al., 2003, Rodriguez et al., 2004, Vetrivel et al.,

2004) though it is also clear that it is also present in the non-raft regions of the

membrane. In contrast to !- and ∀-secretase, #-secretases have not been linked

to raft microdomains (Ehehalt et al., 2003). Given these facts APP proteolysis

appears to be regulated by differential partitioning into distinct membrane sub-

domains, rafts and non-rafts. In theory, such spatial segregation could determine

the degree of access of secretases to the substrate and thus the degree of

amyloid generation.

A key to understanding amyloidogenesis is to establish how the access of the

secretases to APP is modulated. In this study I could demonstrate, by using

Drosophila and mammalian model system, that the non-raft phospholipid rich

membrane domains are implicated in processing of amyloidogenic APP. By no

means this comes to contradict previous work strongly indicative of the

involvement of rafts (Ehehalt et al, 2003); simply that non-rafts do also

participate. From here one could conclude that APP proteolytic processing relies

on dynamic interaction of raft and non raft membrane domains and that both rafts

and non-rafts are important regulators of its cleavage by #-, !- and ∀ -secretase.

4.1. In mammalian HEK 293 cells membrane PE modulates

proteolytic processing of APP by its cleaving enzymes -, - and

-secretase

In the cellular membranes of HEK 293 cells, APP is mainly restricted to the

phospholipid membrane core, which strongly indicates the involvement of these

lipids in the regulation of APP cleavage.  Indeed the analysis of APP processing
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enzymes revealed significant changes in their activity in low membrane PE cells

compared to the cells with wild-type membrane PE content.

For the purpose of analysing the role of PE in APP proteolysis, membrane PE

levels were depleted by RNAi, directed against  PECT, CEPT and ETNK

enzymes that are involved in PE synthesis pathway. Inhibition of all three

enzymes led to depletion of similar amounts of membrane PE. Moreover

alterations in APP processing by its cleaving enzymes did not differ dependently

on inhibited PE synthesis enzyme. These findings indicate that changes in APP

cleavage observed in RNAi treated cells are not due to the inhibited enzyme

activity itself, but to altered PE level caused by enzyme activity inhibition.

Analysis of APP processing enzymes involved in amyloidogenic pathway show

alterations in their activity in correlation with low membrane PE levels. The

activities of ∀- and ! - secretases, read out by A!  and !CTF generation,

respectively were significantly decreased after membrane PE depletion. In

contrast, non-amyloidogenic #-secretase processing of APP, assayed by #CTF

and sAPP# levels, revealed an elevated level in low PE cells. Composition of

other membrane lipids, assayed in the membranes of RNAi treated cells,

revealed that they do not significantly differ in comparison to the non-treated

cells, so that the effect on the secretases activity seems to rely exclusively on the

changes in membrane PE levels. Furthermore an unspecific effect of RNAi itself

on APP cleavage by #-, !- and ∀-secretase was excluded by treating the cells

with RNAi directed against an irrelevant messenger RNA.

Regarding the finding above membrane PE appears to have benefit effect on the

amyloidogenic pathway of APP processing, in contrast to the non-amyloidogenic

APP processing, which is favoured in low membrane PE cells.

4.2. PE is implicated in the regulation of hAPP processing by -

secretase in Drosophila in vivo system

Results obtained in mammalian HEK 293 cells, that strongly indicate a

modulatory role of PE in APP proteolytic processing are supported by
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observations in Drosophila in vivo system. As mentioned above amyloidogenesis

depends on the interaction of ∀-, !- and #-secretase. But since APP processing

by ∀-secretase represents the crucial step in the generation of the neurotoxic A!

peptide modulation of this event appears to be most interesting for the regulation

of AD implicated amyloidogenesis.

By using Drosophila in vivo system, I could demonstrate that membrane PE

levels influence the modulation of ∀-secretase activity on APP. Like in

mammalian system, APP in Drosophila membranes colocalizes mainly with the

phospholipid rich/cholesterol poor non-raft membrane domains.

In order to address the role of membrane PE in APP cleavage by ∀-secretase, I

analysed ∀-activity in two different transgenic systems homozygous for easPC80f

mutation. Low PE flies expressing C-terminal fragment of hAPP (hAPP-Ct) were

obtained by crossing transgenic lines, carrying hAPP-Ct (GMR-APP-GAL4, UAS-

GRIM/+ and APP-GAL4-VP16, UAS-cd8-GFP/+) with low PE mutant flies

(easPC80f).

Highly conserved ∀-secretase activity in Drosophila, described by Iwatsubo and

colleagues (Takasugi et al., 2002), has been shown in previous studies to

processes hAPP in similar manner like in mammals (Fossgreen et al., 1998,

Lichtenthaler et al., 1999, Struhl and Adachi, 2000, Loewer et al., 2003, Guo et

al., 2003, Doglio et al., 2006). GMR-APP-GAL4, UAS-GRIM transgenic flies act

as a sensitive and specific reporter of the endogenous, physiological levels of ∀-

secretase (Guo et al, 2003). Also APP-GAL4-VP16, UAS-cd8-GFP is an

established model for ∀-secretase analysis (Struhl and Adachi, 2000). As easPC80

is a mutation with a known biochemical effect in phospholipid metabolism,

particularly in PE synthesis (Pavlidis et al., 1994, Nyako et al., 2001) it allows the

investigation of specific consequences of defects in phospholipids, or rather PE

metabolism.

In GMR-APP-GAL4, UAS-GRIM reporter system hAPP-Ct-GAL4 is specifically

expressed in the developing eye, in which the cell population is dominated by

neurons. ∀-secretase dependent cleavage of hAPP-Ct triggers the transcriptional

activation of a cell death activator Grim, whose expression induces retinal cell
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death. Thus, endogenous levels of ∀-secretase activity correlate with the extent of

retinal cell death, indicated by the eye size and the size of roughened eye

surface. Control reporter flies with wild-type PE level show a small and

roughened eye phenotype due to the wild-type levels of ∀-secretase activity. A

dramatic decrease of ∀-activity indicated by almost eliminated roughened eye

surface and to normal restored eye size, was obtained after reducing membrane

PE content by easPC80 mutation. An unspecific effect of easPC80 mutation on

retinal cell death was excluded in control experiments, performed in GMR-GAL4,

UAS-G/RPR/+ transgenic system. Since these transgenic flies do not express

APP and so GRIM expression is not ∀-secretase dependent, true modulators of ∀-

activity should not affect the level of retinal cell death. In fact, GMR-GAL4, UAS-

G/RPR/+ flies, homozygous for easPC80 gene show a significant decrease in

membrane PE content, but the level of retinal cell death do not differ from the

GMR-GAL4, UAS-G/RPR/+ flies with wild-type PE amount.

Results obtained by using GMR-APP-GAL4, UAS-GRIM flies were confirmed in

APP-GAL4-VP16, UAS-cd8-GFP transgenic system. In these flies endogenous ∀-

secretase activity is read out as levels of green fluorescent protein (GFP)

expression. APP-Ct-GV translocates to the nucleus after being released from the

membrane by ∀-cleavage of APP, and leads to transcriptional activation of GFP

protein, which is expressed in the whole fly. GFP expression determined by

biochemical assay and fluorescence intensity measurements appears to be

strongly decreased in transgenic flies homozygous for easPC80 mutant gene with

respect to the control flies. Decreased GFP expression in is an indicator for

downregulated ∀-activity in low PE flies, consistent to the results obtained in

GMR-APP-GAL4, UAS-GRIM reporter system.

In both systems reporter gene transcription is triggered by translocation of GV

and APP-Ct fragments, initiating downstream of the ∀-secretase cleavage site, to

the nucleus after ∀-cleavage. As A! peptide is the counterpart of this ∀-secretase

generated APP-Ct fragment, a decrease of its generation complies with a

decrease of A! peptide production.
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As mentioned above easPC80 is a mutation in ethanolamine kinase involved in PE

synthesis via CDP-ethanolamine pathway, which has been shown to be the

major source of PE in insects (Downer, 1985). Since ETNK is specifically

involved in PE synthesis, the easPC80 mutation is supposed to have no significant

effect on membrane content of other lipids. Indeed, TLC analyses of Drosophila

main membrane sterols, sphingolipids and phospholipids like ergosterol,

ceramide, PECeramide, PC and PI revealed no significant alterations in their

membrane content in easPC80 homozygous with respect to control flies. Apart of a

decrease in PE levels easPC80 mutation does not alter membrane lipid content

significantly, so that downregulated ∀-secretase activity in easPC80 homozygous

appears to rely on low membrane PE levels. Although I cannot rule out the

possibility of modulatory effect of the lipids which are not included in the analysis,

it seems unlikely that one of those lipids would affect APP regulation in a such

strong manner, considering their role in cell processes and their presence in the

membrane in comparison to the major membrane lipids, e.g. PE or ergosterol.

4.3. PE depletion leads to downregulation of -secretase in

neuronal and non-neuronal cells

Another very interesting aspect of the results obtained in GMR-APP-GAL4, UAS-

GRIM and APP-GAL4-VP16, UAS-cd8-GFP flies is that PE affects 

∀ -activity in a cell or tissue type independent manner.  In GMR-APP-GAL4, UAS-

GRIM transgenic system, ∀-activity was analysed exclusively in neuronal tissue,

whereas in APP-GAL4-VP16, UAS-cd8-GFP transgenic flies ∀-secretase activity

was assayed in whole fly, i.e. in different cell types. Given the results above PE

effect on ∀-secretase activity appears to be the same independent on cell or

tissue type. Nevertheless PE modulation of ∀-secretase in a cell type related

manner cannot be excluded. It is possible that the modulations are manifested in

more delicate manner, which was not observable in present systems.
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Although present membrane PE decrease clearly induces downregulation of ∀-

activity in neuronal and non-neuronal Drosophila cells, it may be that the

sensitive neuronal cells, different than other cell types, respond to very slight

changes in PE membrane content.

Since PE appears to be involved in ∀-secretase regulation, its membrane level

modulation may be a target for therapeutic aims. For that purpose it would be

interesting to determine the threshold of PE levels responsible for ∀-alterations in

neurons versus non-neuronal cells. Moreover this question remains to be

answered because mild changes in membrane lipid content may be important for

pathological situations. Neuronal tissue related processes, implicated in AD

pathogenesis, are likely to be influenced by slight lipid alterations, as reported in

mammalian system for the effect of moderate cholesterol loss on BACE1-activity

and A! generation (Rodriguez et al., 2004).

4.4. PE effect on -activity differs in non-differentiated,

embryonic Drosophila cells and in adult flies. Does PE correlate

with -activity depending on cell differentiation stage?

An evidence for cell type related role of PE on ∀-activity is provided by

experiments done in embryonic Drosophila S2 cells. It is important to point out

that S2 cells belong to embryonic cells, which are undifferentiated and so less

complex than the cell types assayed for ∀-activity in vivo. Different than in

Drosophila in vivo system, membrane PE depletion in S2 cells induces a strong

increase in ∀-secretase activity.

S2 cells, transiently expressing hC99, were treated with RNAi directed against

eas (ETNK) mRNA, encoded by the same gene that is mutated in easPC80 flies.

Additionally to membrane PE alterations by ethanolamine kinase (ETNK) RNAi,

S2 cells were treated with RNAi against phosphoethanolamine

cytidylyltransferase (PECT).   Inhibition of ETNK and PECT, both, enzymes

involved in PE synthesis vie CDP-ethanolamine pathway, causes PE depletion
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comparable to the one in easPC80 mutants. Like in vivo system, except of a

significant PE decrease, the content of other membrane lipids was not affected

by RNAi treatment. But other than in vivo, ∀-secretase activity, measured by A!

generation had clearly elevated levels in respect to the control cells with wild-type

PE levels. A! content in the medium shows an enormous increase after PE

depletion by RNAi treatment.

Although clearly dependent on membrane PE, alterations in levels of ∀-secretase

activity obtained in S2 cells do not correspond to those from mammalian HEK

cells and Drosophila in vivo system. This discrepancy may be due to the

embryonic, undifferentiated stage of S2 cells, that represents PE-mediated

modulation of APP in a different way than mature, differentiated cells.   This

observation raises the question, whether PE modulation of ∀-secretase activity

depends on cellular differentiation and developmental stage.

Because the mechanisms responsible for A! generation are is still poorly

understood one may speculate that pathological accumulation of A! peptide in

AD brains results from its perturbed generation at different developmental stages.

Although the answer to this question may be interesting for understanding

amyloidogenesis, the experimental approach provided by in vivo system appears

more relevant for the aim of this study, as amyloidogenesis is an event, related to

the differentiated adult cells.

4.5. Conclusion

Being an integral membrane protein APP is likely to respond to its lipid

environment. Moreover APP proteolytic processing by #- !- and ∀- secretase is a

membrane occurring event. Hence, it seems likely that membrane lipids play an

important role in the regulation of APP proteolysis. Findings presented in this

study, show that in mammalian and in Drosophila system proteolytic cleavage of

APP, which is largely restricted to the phospholipid membrane core, appears to

be modulated by these lipids, particularly by PE. Even though the observations

described here clearly indicate the PE involvement in APP proteolytic regulation,
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it is important to point out, that neither PE alone, nor the phospholipid rich phase

per se can account for full regulation of APP processing.

However, the way to understand the function of such a complex structure like cell

membrane, which is composed of thousands of lipid species, is to analyze how

individual lipids regulate activities of membrane proteins. In the present study I

analysed the modulatory role of one of the major membrane phospholipids in

APP proteolytic processing. I hypothesized that phospholipids play an important

role in APP proteolysis, relying on the fact that APP mainly accumulates in

phospholipid rich membrane core and I could establish that phospholipids,

particularly PE modulates the processing of APP in the membranes of

mammalian and Drosophila cells. As the experimental approach utilized in this

study provides information on the mean role of PE in processing of APP the

exact way by which PE regulates APP cleavage remains to be answered.

An explanation for the phospholipid modulatory role in APP proteolysis is the

separation of the cleaving machinery and the substrate into distinct membrane

microdomains. Growing evidence indicates the importance of rafts that are

enriched in active !- and ∀-secretase, as principal membrane platforms for

amyloidogenic processing of APP. As APP is mainly restricted to the non-raft

domains analysis of rafts and non-raft interaction may provide essential answers

about the regulation of APP proteolysis. It seems likely that phospholipid rich

membrane sub-domains together with lipid rafts control the access of APP to its

processing enzymes and that perturbed membrane phospholipid content disables

the access of APP to the rafts, resulting in alterations of its proteolytic cleavage.

This hypothesis is supported by findings obtained in the present study, which

show that cleavage of APP by !- and ∀-secretases, which are thought to be

enriched in lipid rafts, decrease after PE depletion. Highly elevated levels of #-

secretase products in low PE cells may be explained by the retention of APP in

phospholipid rich domains caused by altered non-rafts properties. Under these

circumstances APP accumulation in phospholipid rich membrane core would
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provide an increased substrate amount for #-secretase, which is supposed to act

in non-raft domains (Figure 4.1. A, B).

It is important to take in account that although active forms of ∀- and !-secretase

have been shown to enrich in lipid rafts, their activity is not exclusively restricted

to these domains, i.e. ∀- and !-activity on APP is present also in non-raft

domains.  Hence it is possible that ∀- and !-secretase are trafficked from rafts to

the non-rafts, to cleave APP. In this scenario altered non-rafts composition

caused by depleted membrane PE would disable !- and ∀-secretase to rich the

substratum that would result in decreased amyloidogenic APP processing in non-

raft domains (Figure 4.1. A,C), as shown in the present study. As mentioned

above a downregulation in amyloidogenic processing increases the substrate

amount for #-secretase, and consequently enhances the non-amyloidogenic

pathway.

Whether APP needs to be transported to the rafts, where active ∀- and !-

secretases enrich or the processing enzymes are trafficked to their substratum to

perform the cleavage remains to be answered. It is conceivable that these two

events exist in parallel, i.e. that both rafts and non-rafts, provide the matrix for

APP processing. However, the findings in the present study correspond to

previous work, which suggests that the key event in the regulation of APP

proteolysis is the restriction of enzyme accessibility to the substratum by

partitioning them into distinct membrane microdomains, in rafts and non-rafts. In

support to previous studies (reviewed in Kaether and Haass, 2004), which point

out the role of cholesterol in APP cleavage, here I could show that PE, a major

membrane phopsholipid, that enriches in non-raft domains clearly influences APP

proteolytic processing by #-, !-, and ∀- secretase.
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A

B

C

Figure 4.1. A model describing the effects of PE reduction on APP processing by

secretases. For details see text.
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Besides partitioning of the membrane proteins into distinct membrane

microdomains, which is described above another way to restrict their contact is to

separate them into different cellular compartments and dispatching them to

separate trafficking routes. As this may be an important way in the modulation of

APP processing by membrane lipids, the effect of membrane PE on APP in

particular membrane compartments remains to be determined.  More precise, it

remains to be answered, whether membrane PE effect on secretases differs

depending on their site of action, e.g. ∀-secretase, which has been postulated to

reside in multiple compartments including the ER, late Golgi/TGN, endosomes

and plasma membrane (Cook et al., 1997, Xu et al., 1997, Greenfiled et al.,

1999, Takahashi et al., 2002 and Kaether et al., 2002), or !-secretase that has

been reported to be the highest in late Golgi/TGN and endosomes (Koo and

Squazzo, 1994, Haass et al., 1995, Walter et al., 2001) may respond more

sensitive to membrane lipid alterations in these membrane compartments than in

the others, in which the enzyme activity is supposed to be lower.

Another possibility, how PE may contribute to the regulation of APP proteolysis

by secretases is by directly affecting the capacity of the enzyme to cleave the

substratum.  For instance, ∀-secretase enzyme complex formation may depend

on the proper organisation of phopspholipid bilayer, so that perturbations in

phospholipid rich domains caused by low membrane PE would not allow the

assembly of an active ∀-complex. Also #- and !-secretases are likely to depend

on lipidic environment that provides the matrix for their activity.

I conclude that PE appears to have a benefit effect on APP cleavage by !- and ∀-

secretases, whereas low membrane PE levels enhance the processing of APP

via non-amyloidogenic pathway. Since amyloidogenesis is a pivotal and early

event in AD pathogenesis, membrane phospholipids may be important

candidates for understanding the disease development and moreover for

developing therapeutical agents for AD treatment.
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