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Zusammenfassung:

Gesättigte Entvölkerung durch stimulierte Emission (engl.: STED) ist das erste Konzept,

welches die Abbesche Beugungsgrenze in der optischen Fernfeld-Mikroskopie überwindet

und erfolgreich in der Zellbiologie angewandt wurde. Jedoch war die theoretisch unbegren-

zte Auflösung durch Ausbleichen der Farbstoffmoleküle limitiert. In dieser Arbeit wird

in einer umfassenden Studie zur ein- und zwei- Photonen Anregung die Dunkelzustands-

Relaxation (engl.: D-Rex) als ein effektives Mittel der Bleichreduzierung nachgewiesen,

welche gleichzeitig eine enorme Fluoreszenzsignalzunahme pro Anregungspuls hervorruft.

Dies bereitet den Weg für eine erfolgreiche Kombination dieser Anregungsstrategie mit

der STED-Mikroskopie und ermöglicht die Anwendung einer 10-fach höheren STED-

Energie aufgrund reduzierten Farbstoffbleichens. Damit wird die laterale Auflösung in der

STED-Mikroskopie auf ≈ 20 nm erhöht, was einer 12-fachen Auflösungserhöhung über der

Abbeschen Beugungsgrenze entspricht. Dieses makromolekulare Trennungsvermögen wird

auf eine Vielzahl biologischer Fragestellungen angewendet, einschließlich der Untersuchung

von Zellkontaktproteinen und fokalen Zellkontaktstellen sowie der hochaufgelösten Er-

forschung der Neurofilamenten menschlicher Neuronenzellen. Schließlich wird erstmals die

Erweiterung auf ein Zwei-Farben STED-Mikroskop realisiert, das eine Nanoskalen präzise

Kolokalisation individueller Proteinkluster ermöglicht und damit die Anwendungsmöglich-

keiten der STED-Mikroskopie nachhaltig erweitert. Diese Methode kann bislang unent-

deckte Nanostrukturen von Vesikelproteinen auf Endosomen darstellen sowie verschiedene

Proteine in Säugetier-Mitochondien hochaufgelöst kolokalisieren.

Abstract:

Stimulated emission depletion (STED) microscopy was the first concept for breaking

Abbe’s diffraction barrier in optical far-field microscopy verified in biological applica-

tions. However, the theoretically infinite resolution was limited due to photobleaching of

the fluorescent species. In this thesis, dark-state relaxation (D-Rex) has been traced in a

comprehensive study on one- and two-photon excitation to crucially reduce photobleach-

ing in general thus leading to a major signal increase per excitation pulse. This facilitated

a successful combination of this illumination strategy with STED-microscopy making a

10-fold increase of STED-power feasible. The expansion of STED-microscopy to D-Rex

conditions at 250 kHz leads to a yet unattained focal plane resolution ≈ 20 nm, equiv-

alent to an approximate 12-fold multilateral increase of resolution below the diffraction

limit. This macromolecular resolution was exemplified in a variety of biological samples,

including proteins of cell-junction and focal adhesion, or a neurofilamental protein from

the human brain. Finally, the extension to a Dual-colour STED-microscope was achieved

to provide nanoscale precise colocalization ability of individual protein clusters in cell

biology, thereby sustainably widening the application range of STED-microscopy. The

method proved to resolve hitherto uncovered nanopatterns of vesicle proteins on endo-

somes, as well as localized different proteins in mammalian mitochondria.



Abbreviations

+ Iterative Deconvolution algorithm (Richardson-Lucy)

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

4Pi-microscopy Microscopy using two opposing lenses in a coherent way

AFM Atomic force microscope

ANT Adenosin nucleotide transporter

APD Avalanche photodetector

ATP Adenosintriphosphat

CNGA2 Cyclic nucleotide-gated channel subunit A2

CW Continuous wave

DM Dichroic mirror

D-Rex Dark-state relaxation

EM Electron microscope

Exc Excitation

FCS Fluorescence correlation spectroscopy

FRAP Fluorescence recovery after photobleaching

FREF Förster resonance energy transfer

FWHM Full width at half maximum

GFP Green fluorescent protein

GSD Ground state depletion

IR Infrared

ISC Intersysem crossing from singlet to triplet system

LD Linear deconvolution

LSM Laser scanning microscope

MOE Main olfactory epithelium

NA Numerical aperture of a lens (NA= n sin α)

OL Objective lens

ONE-photon One-photon excitation condition

iv



v

OPA Optical parametric amplifier

OPO Optical parametric oscillator

OSN Olfactory sensory neuron

PALM Photoactivation light microscopy

(PAL-)SLM (parallel-aligned nematic liquid crystal) spatial light modulator

PSF Point spread function

RESOLFT Reversible saturable optical (fluorescence) transitions

RL Richardson-Lucy algorithm for deconvolution

RNA Ribonucleic acid

s.d. Standard deviation

SMF Single-mode fibre

SMHCF Single-mode hollow-core fibre

SNAP25 Synaptosome associated protein of 25kDa

SNOM Scanning near-field optical microscopy

STD Standard deviation

STORM Stochastic optical reconstruction microscopy

STED Stimulated emission depletion

TIRF Total internal reflection fluorescence

TL Tubus lens

Tom20 Protein of the TOM-complex in the mitochondria outermembrane

TPM Two photon microscopy

T-Rex Triplet-state relaxation

TRPM5 Protein M5 of the transient receptor potential channel

TWO-Photon Two-photon excitation condition

VE-cadherin Vascular endothelial cadherin complex protein

VIS Visible
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1 Introduction

,,Wär in der Natur überhaupt ein Zufall - auch nur einer -, so würdest du ihn

in allgemeiner Regellosigkeit erblicken. Weil aber alles, was in ihr geschieht,

mit blinder Notwendigkeit geschieht, so ist alles, was in ihr geschieht oder

entsteht, Ausdruck eines ewigen Gesetzes und einer unverletzbaren Form.”

Friedrich Wilhelm Schelling

1.1 Importance of modern light microscopy in cell biology

Science begins with careful observation. The more accurate and precise the observation,

the sounder the hypothesis, the more discerning the experiment, the more telling and

reliable the result. Techniques that allowed us to observe organelles and molecules made

a revolution in science possible, resulting in the fields of cellular and molecular biology;

these disciplines have laid the foundations for an important number of advances in many

areas of biology, including the medical arena.

Since light has proven to be one of the most decisive factors for the evolution of life on this

planet, clever pioneers started exploiting the phenomena of visible light for investigating

the origin and mechanisms of life itself. One of the foundations of far-field light microscopy

were laid in the 19th century, when Carl Zeiss and Ernst Abbe combined their engineering

and theoretical outstanding abilities. In 1873 Ernst Abbe derived the wave theory of

optical imaging ([1]), setting a milestone in the theory of microscopy since today. He

was the first to recognize, that the resolution of a far-field microscope, likely to be the

most essential characteristic of an optical tool, is limited by diffraction, a fundamental

physical law. The diffraction barrier states that far-field optics cannot focus light to an

infinitely small spot, rather its size is limited e.g. in lateral dimension to ∆x ≈ 0.5λ/NA,

with λ denoting the wavelength of the focused light, and NA=nsinα describing the light

collecting ability of the focusing lens. The refractive index n and the maximum cone angle

α of accepted light by the lens are technically limited. The intensity distribution of the

1



1 Introduction 2

focused light in the specimen is called the point spread function (PSF), or expressing it in

words: a point light source (e.g. a single fluorescent molecule) is imaged by a single lens

not back to a single point, but is spread out due to diffraction. In terms of resolution,

the size of the PSF is essential since its spatial extent determines the smallest dimension

that can be resolved in the image ([2]). The lateral spot size is often referred to as Airy

disk which is defined as the lateral distance between the primarily intensity minima. The

diameter of the Airy disk is given, as previously described, by the Abbe formula,

∆x, ∆y ≈ 1.22
λ

NA
(1.1)

and respectively, for the axial dimension, the distance between the primarily minima leads

to ([3]):

∆z ≈ 4.00
nλ

(NA)2
(1.2)

Till today the Abbe law is valid for describing the focusing process of light thus determin-

ing the resolution of a conventional far-field light microscope applying visible light which

is about 200 nm in the lateral and 500 nm in the axial directions.

The wide range of available fluorescent markers adds to the importance of light microscopy

in cell biology. Apart from fluorescence detection containing multidimensional informa-

tion regarding light colour, lifetime, intensity or polarization, selective labeling strategies

of proteins or lipids in cells enable the study of the tagged species in terms of localiza-

tion or dynamic behavior. The immunolabeling technique being one of the first specific

labeling approaches in the 1940s uses antibodies for recognizing specifically the protein

of interest. Since the antibodies are decorated with fluorescent labels, their binding dis-

tribution in the cell is accessible by light microscopy.

Traditional imaging technologies, including light and electron microscopy (EM) opened a

window on the inner working of cells and organisms. The latter technique addresses the

problem of resolution limitation by choosing the operating wavelength of accelerated elec-

trons being orders of magnitude smaller than the wavelength of visible light. With the de

Broglie wavelength of electrons being below 1nm, this approach delivers a resolution abi-

lity down to the molecular level ([4]). However, highly energetic electrons are inherently

destructive to biological material rendering live cell imaging impossible. Furthermore,

EM-sample preparation involves sample cutting into thin slices, thereby interrupting 3D

relationships and requires contrast enhancing materials such as gold nanoparticles. To

conserve slow cellular processes evolving at least on the millisecond time scale, one can

shock-freeze the sample at different timescales with afterwards imaging different stages of

the interesting process.
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It is the limitation of real 3D resolution capability that EM-microscopy is facing. This

was overcome by confocal microscopy proposed 1955 by Minsky ([5]), after a century

of stagnation in the field of optical microscopy have passed. The principle of confocal

microscopy is to illuminate the specimen with laser light focused at one position in the

specimen using only a single point of illumination. In combination with pinhole detection,

this method ensures, that the light spot generated at the far-field is the smallest spot

available due to diffraction and is exploited to the maximum extent.

The detected signal (e.g. fluorescence light from labeled cellular structures) is imaged

by the same objective again onto a point detector, e.g. with a spatial filter smaller in

size than the Airy disk of the imaged detection light. This leads to ”out of focus light

rejection”, i.e. the illumination intensity immediately above and below the focal plane

is reduced due to beam convergence and divergence. Light scattered from parts other

than the specimen illumination point is rejected from the optical system to an extent

never realized before, thus establishing light microscopy for the first time with a real 3D

resolution.

The overall detection probability of a fluorescence photon is governed by two contributions:

the excitation light distribution giving the probability of exciting a fluorescent species at

the specimen and the probability of detecting a thereby generated fluorescence photon by

the point detector, denoted the detection PSF hdet. Therefore the confocal PSF is given

by

hconf (~r) = hexc(~r)hdet(~r) ∼= hexc(~r)
2 (1.3)

Here the product of both PSF’s reveals a quadratic suppression of out of focus light,

thus ensuring axial resolution performance of ∼= λ determined by the confocal spot size

(the identity in (1.3) is valid, if excitation and detection wavelengths are the same). For

obvious reasons, a combination of the confocal pinhole with the laser scanning microscope

(LSM) presents the standard device for biological imaging and spectroscopic applications,

having demonstrated single molecule sensitivity. In the latter method, the image build-up

is arranged by scanning the single focal spot through the specimen, in contrast to wide-

field techniques, where the complete image is obtained at the same time by homogeneously

illuminating the area of interest. For this reason, the confocal performance is taken as

reference for the developments in this thesis, especially since the STED technique in the

implementation presented here is based on the confocal setup.

Another development successfully improved the performance of confocal LSM with re-

gard to tissue penetration ability. The widespread availability of ultrashort laser sources

providing high electromagnetic fields ([6]) made two-photon excitation, which is a non-

linear absorption process that needs to absorb two photons at the same time for exciting

a fluorescent molecule ([7]), accessible for microscopy. The two-photon absorption is pro-

portional to the square of the light intensity at the specimen thus limiting the excitation
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spatially to the center of the focus. This fact makes the presence of a detection pinhole

unnecessary, while still providing full 3D sectioning ability. In combination with the fact

that infrared light photons with energy hν (ν denoting the light frequency), now providing

the excitation energy of 2hν, are much less absorbed in biological material, two-photon

microscopy (TPM) provides deeper penetration depths in highly scattering samples like

brain slices or tissue ([8]). Still, in terms of resolution, the TPM cannot surpass the

conventional one-photon excitation, since the doubled wavelength of excitation in TPM

cancels out the effect of smaller effective focal volumes due to the quadratic excitation

probability ([9]). Increased photobleaching in the center of the focus due to orders of

magnitude higher peak powers as compared to single photon excitation limits however its

applications and is also center of interest in chapter (2.2) of this thesis.

Addressing the minor axial resolution of a confocal microscope of around 500 nm, the

concept of 4Pi-microscopy ([10],[11]) brought a major breakthrough in axial sectioning.

Since the focusing angle of one objective is limited to values α ≈ 70◦ (see equation 1.2),

the idea to mimic focusing light from the full 4π angle lead to the realization of fusing two

objectives opposing each other. Constructive interference in the focal point results in a

pronounced intensity maximum that is about four times narrower than that compared to

a single objective. Since the PSF also features axial side maxima, the images need to be

deconvolved for uncovering the pure object. The applicability of 4Pi-microscopy to living

cells with an axial resolution of ≈ 80 nm was already shown in ([12]).

Similarly motivated by the lack of resolution, optical near-field surface methods were

established. Total internal reflection microscopy (TIRF) makes use of generating an

evanescing light field when the sample is illuminated at high angles featuring total internal

reflection ([13]). The axial resolution is governed by the penetration depth of around 100

nm and can only be exploited for structures within this proximity of the glass surface.

Another method which does not rely on focused light and thus not being governed by

the Abbe law is the scanning nearfield optical microscope (SNOM) ([14],[15]). The trick

here is to use a nanoscaled tip with a light emitting aperture much smaller than λ. When

avoiding the divergently propagating radiation out of the aperture by placing the sample

right next to the tip in the near-field, the area of illumination is directly given by the

dimension of the tip. Having shown illumination areas of 50-100 nm ([14]), this approach

is however confined to image surfaces only. Moreover, an elaborate tight control of the

aperture tip is necessary.

Important progress and development in the field of studying molecular processes on the

nanoscale range was achieved by spectroscopic approaches, addressing questions of dis-

tances and interaction dimensions below the diffraction limit. For example the Förster

Resonance Energy Transfer (FRET) makes use of the nonradiative energy transfer from

a previously excited donor molecule to an acceptor molecule via dipole-dipole coupling
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([16],[17]). The red shifted fluorescence intensity decodes the efficiency of the FRET-

process. Since this process is sensitive to the distance of both molecules the energy

transfer rate is an efficient nanometer ruler. In fact, the transfer efficiency varies with

the 6th power of the donor-acceptor separation over the range of 1-10 nm. The technique

is applicable to questions on chemical bonding, molecular conformation or colocalization

problems. Obviously, the spatial distribution of the FRET-process in for example cellular

environment can only be read out diffraction limited. Another powerful spectroscopic

approach is fluorescence correlation spectroscopy (FCS). It allows one to investigate dif-

fusion, molecular dynamics and chemical reactions, e.g. clustering behaviour of individual

molecules, in solution and also in live cells ([18]).

However, all of these methods have brought application-driven improvements but none of

them has questioned the basic limitating factor, namely the diffraction limitation itself.

Ever since the invention of the light microscope and our first vistas of cells, technological

and conceptual developments have gone hand in hand. The ultimate tool for any cell

biologist would be the combination of life-cell compatibility, 3D accessibility and nanoscale

resolution. In other words, a focusing far-field light microscope with nanoscale resolution,

which was believed to be impossible only a couple of years ago. The following describes

the very latest approaches to overcome the diffraction barrier which has the potential to

open a new realm of microscopy.

1.2 Subdiffraction resolution techniques are breaking

ground for a new realm in microscopy

The very first concept of breaking the diffraction barrier, namely STimulated Emission

Depletion (STED), was proposed by Hell and Wichmann in 1994 ([19]). So far STED is

the most sophisticated implementation of a more generalized concept, which is denoted

reversible saturable optical fluorescence transition (RESOLFT) ([20]). Before discussing

the basic STED implementation detailed in the next section, the RESOLFT concept

behind it will be illustrated here, since any RESOLFT-type subdiffraction technique so

far can be related to this idea.

Starting with two arbitrary states of a fluorophore, A and B, one of these states must be

fluorescent (let us assume state A), the other one needs to be dark (at least in the detection

window). One of these transitions, e.g. the reverse transition into the nonfluorescent state

(A−→B) must be optical saturable by increasing the light intensity of the fluorescence

inhibiting light (deexcitation power I) (Fig.1.1 (a)). The molecules can be effectively

pushed into the state B by arbitrarily increasing the deexcitation power. The deexcitation

beam intensity I is organized in such a way that it features intensity zeros in space (Fig.1.1
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Figure 1.1: RESOLFT concept of breaking the diffraction barrier. (a) Saturation
behaviour of the fluorescence inhibition driven by the deexcitation light intensity
I(r) from the fluorescent state A to the dark state B. Both transitions are light
induced. (b) Wide-field excitation of the molecules into state A (blue); note that
the deexcitation light I(r) is featuring intensity zeros, e.g. by destructive interfer-
ence. The remaining molecules in state B (blue) indicate the fluorescence intensity
Fluo(r). (c) Applying the saturation power level of the deexcitation beam can only
deplete molecules outside the intensity zeros. (d) Ramping up the deexcitation
power to arbitrary values leads to subdiffraction areas of remaining excitation with
∆x≈ λq

I
Isat

. Saturation factors I/Isat for simulation in panel (b,c,d): 0, 1, 162.

(b)), which is always possible even in wide-field illumination through the interference

phenomena. Only those molecules in the intensity zero can resist being deexcited (Fig.1.1

(c)). Since the transition is saturable, the molecules being infinitely delocalized outside

the intensity zero can still be forced into state B by arbitrarily increasing the deexcitation

power I, the resolution thus being theoretically unlimited (Fig.1.1 (d)). In STED state A

represents the excited fluorescent level and state B is the ground state of the fluorophore.

A second implementation beside the STED concept is the utilization of photoswitchable

proteins for showing subdiffraction resolution ([21]). Here a conformational change is

responsible for the switching between a fluorescent and a nonfluorescent state of the

fluorescent protein asFP545. It should be mentioned that the switching takes place on
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time scales of miiliseconds or seconds. This spontaneous relaxation process into state

B must be overpowered by the light induced deexcitation process to reach saturation

levels. Therefore the saturation peak powers for the induced switching process feature

moderate values of W/cm2. Compared to the values of the STED-implementation, where

the deexcitation process is stimulated emission, as described detailed in the next section,

the spontaneous relaxation process of spontaneous fluorescence emission (≈ ns) makes

saturation powers that are orders of magnitude larger necessary (see chapter 3.1).

The photoswitchable proteins were the missing ingredient in another smart idea to break

effectively the diffraction barrier, as proposed and verified in ([22],[23]). In photoacti-

vation light microscopy (PALM), the ”bottom up” approach is chosen with localizing

single molecules in modest numbers to allow spatial localization which is far more precise

than the resolution. To this end, photoswitchable proteins in their dark ground state

are illuminated with a very weak ”switching on” light intensity, and thereby only sparse

photoactivation is generated. With the read-out light, fluorescence is detected only from

those molecules which have been switched on in the previous step. This fluorescence is

read out till the ”on-state”-molecules are bleached and their individual position is local-

ized afterwards with nanoscale precision. Under the uncertainty of having switched on

probably more than one molecule within a confocal Airy disk, the resolution of PALM is

governed by the localization accuracy of a single molecule given by the number of detected

fluorescence photons, i.e., bright fluorophores are needed. The described process is iter-

ated until all molecules have been read out once and bleached by this process. Finally the

image is reconstructed taking all detected position of individual molecules into account.

The process being comparably slow, the acquisition time is many hours. Moreover, PALM

must rely on a mathematical restoration techniques to extract the spatial information of

the image, whereas such techniques are only additional tools in the RESOLFT concept,

e.g. one can exploit a-priori knowledge of the effective PSF by applying deconvolution

algorithms. PALM was shown to be applicable to cellular imaging, however, the necessity

of cutting back background signal made sample slicing inevitable, hence not being live-

cell compatible in this stage of development. Nevertheless, the method showed another

powerful approach of breaking the diffraction barrier by introducing a spectroscopic di-

mension in the working principle of the microscope, just like RESOLFT microscopy does.

A very similar approach was independently chosen by introducing the STORM (stochas-

tic optical reconstruction microscopy) concept ([24]). Here, not photoswitchable proteins

but photoswitchable fluorophores, namely Cy5, are used for reversibly switching them on

an off while again reading out only a small fraction of the whole molecule ensemble at the

same time thus being able to determine their individual positions. The method was proven

by labeling DNA-strands with Cy5 in defined distances and resolving those distances as

being far below the diffraction barrier. To complete the very recent implementations
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of subdiffraction imaging, the realization of nonlinear structured illumination should be

mentioned ([25],[26]). Here the subdiffraction information is generated by illuminating

the sample with a single, modulated wide-field intensity distribution, e.g. an interference

pattern, and saturating the level of excitation. Depending on the accessible saturation

level, more and more harmonics come into play thus transmitting higher spatial frequen-

cys through the microscope. In the described way this method can extend the resolution

which is only being limited by photobleaching. In this implementation bleaching mainly

occurs due to the necessity of oversaturation of the excited state A. Additionally, the user

is only provided with negative images, which makes deconvolution techniques inevitable.

In fact, the method can also be judged as a wide-field implementation of the RESOLFT

concept, which is not necessarily relying on focused light as illustrated in Fig.1.1. Re-

cently this was consequently proven with the switchable protein FP595, implemented in

a wide-field STED technique ([27]).

The diffraction barrier has thus been ultimately broken and the belief in this achievement

seems to be established. Therefore fundamentally new ways of looking deeper into the

structures and functionality of cells is open.

1.3 STED-microscopy

The depleting mechanism of the fluorescent state in STED-microscopy is illustrated in

Fig.1.2. In a STED-microscope the deexcitation of fluorescence, a necessity originating
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Figure 1.2: (a) Basic energy states of a fluorescent molecule. (b) Typical measure-
ment of the depleting efficiency of the STED beam depending on the applied STED
intensity ISTED. For explanation see text.
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from the RESOLFT-concept, is achieved by stimulated emission. This effect was already

predicted in 1917 by A. Einstein ([28]) and is the key mechanism in the laser working

principle. Fig.1.2 (a) shows the basic energy states of a fluorescent molecule. After excita-

tion of a fluorescent molecule in its ground state S0 into higher vibronic levels of the first

excited state (Svib
1 ), the molecule undergoes a fast relaxation process (τvib ≈ 0.1-10 ps) into

the vibronic ground state of S1. Therefore a red shifted second laser beam (STED pulse)

can efficiently couple into the populated state S1 and force the molecules into the ground

state Svib
0 by stimulated emission, but cannot reexcite the molecules from the ground state

S0. The latter holds true, since the deexcited molecules also undergo fast relaxation (Svib
0

→ S0), hence the depleting light intensity does not provide enough energy for reexcita-

tion. Since the depleting efficiency must overpower the decay of spontaneous fluorescence

emission (kfl ≈ ns), the depleting rate kSTED has to fulfill the condition ksted >> kfl, with

kSTED=σSTEDISTED. Here σSTED denotes the molecular cross-section at the depleting

wavelength and ISTED the intensity of the depleting beam. This relationship determines

the power level of effective STED depleting to be in the order of MW/cm2 (also see chap-

ter 3.2).

Mathematically, the four level system consisting of S0, S1, Svib
0 and Svib

1 can be modelled

by a set of four differential equations. For a different purpose, a similar set of equations

was solved in chapter (2.3). Therefore the result is directly presented here (for a detailed

description and discussion see [29]). The population of the excited state niveau S1 can be

approximated immediately after the STED pulse duration to be

NS1 ≈ N0exp(−σSTEDISTED) = N0η(ISTED), (1.4)

η is called the STED suppression coefficient, since it describes the amount of fluorescence

inhibition (also compare with Fig.1.1 (a)). Such experimental depleting curves can be

directly measured (Fig.1.2 (b)) and determine the performance of the fluorescent dye

under STED conditions, hence the performance of the STED-microscope. Unfortunately,

a theoretical prediction of the saturation level is difficult since intrinsic molecule specific

entities like the cross sections σ are involved, why a screening of different fluorescence

species becomes necessary. The most important aspect of (1.4) is the strongly nonlinear

dependence of the remaining fluorescence on the STED intensity ISTED, hence creating

the saturation behaviour (Fig.1.2 (b)). In fact, the clue to resolution enhancement stems

from this nonlinearity since any light distribution in the focal plane can only feature

diffraction limited features following the Abbe law.

To make this efficient fluorescence inhibition feasible for resolution enhancement, the last

ingredient for STED-microscopy is the reengineering of the STED light distribution in such

a way that it features an intensity zero, corresponding to the RESOLFT-concept. Several

methods have been established to design the spatial light distribution of the STED-PSF,

all of them utilizing phase manipulations of the depleting beam to generate destructive
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interference in the center of the focus addressing lateral and axial resolution improvements.

The latest method to deplete the outer areas of the excitation PSF laterally isotropic is to

use circular polarized light in combination with a phase pattern of a helical phase ramp

from 0 to 2π ([30]). To this end, a spatial light modulator (SLM) was introduced which is

freely programmable in phase retardation on an array of 1024 x 768 pixels. The resulting

light distribution is of doughnut shape featuring a singularity in the middle (Fig.1.3).

This light distribution is coaxially aligned with the excitation beam and synchronized

STED-PSF Exc-PSF

603nm 470nm

a b

y

x

Figure 1.3: Light distributions in the focal plane of a STED microscope for lateral
resolution enhancement. (a) STED-PSF generated by a helical phase ramp from 0
to 2π radians in combination with circular polarized light. (b) Conventional confocal
excitation PSF. Scale bar = 200 nm.

in time to be shortly after the excitation pulse for most efficient depleting ([31]). With

arbitrarily increasing the STED power above the saturation level, the resulting lateral

spot size of non-depleted, excited molecules shrinks down to the molecular level (Fig.3.2).

Limitations are observed in practice concerning the maximum power level tolerable for

the molecules under photostable conditions and the imperfection of the intensity zero

due to optical imperfections or scattering. A major part of this thesis deals with the

questions of the maximum applicable STED peak powers and consequent optimization of

the illumination pattern for reaching higher saturation factors, hence higher resolution,

while simultaneously reducing photobleaching.

This thesis demonstrates major signal increase in fluorescence microscopy inherent with

reduced bleaching in one- and two-photon microscopy in general by utilizing molecular

dark state relaxation (D-Rex) between subsequent absorption events (chapter 2). This

illumination technique in the low repetition rate regime (250 kHz) is combined with STED

microscopy (T-Rex STED-microscopy), thus ramping up the resolution power in the focal

plane below 20 nm. This unprecedented resolution ability was shown in various biological

samples, including membrane patches, vesicle proteins on endosomes, and neurofilaments

in the human brain (chapter 3). Moreover, the method was extended by designing the
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first Dual-colour STED-microscope that reached superresolution in two independent chan-

nels, as shown in chapter 4. The concept of Dual-colour fluorescence nanoscopy opens up

the possibility of studying different protein colocalizations with hitherto unprecedented

detail. This new technique was verified by colocalizing two individual proteins on endo-

somes and in mammalian mitochondria, reaching nanoscale alignment preciseness of two

subdiffraction resolution images.



2 Major signal increase in fluorescence

microscopy through D-Rex

2.1 Illumination strategy of dark-state relaxation (D-Rex)

Two key properties of standard fluorescence microscopy, namely the spatial resolution

and the limited signal yet call for major improvements ([32]). This chapter addressed the

latter and uncovers an illumination scheme that increases the fluorescence yield substan-

tially. Particularly this study is concerning different excitation modes for optimizing the

illumination pattern in terms of fluorescence signal. To maximize fluorescence emission

within a given time span, it is generally desirable to apply high excitation intensities. In

most cases of imaging biological structures in cells it is simply not possible to enhance the

signal by increasing the concentration of labeling, since the amount of the target proteins

is usually part of the experiment itself. Therefore the signal of the individual molecule

is to be addressed by increasing the excitation power level. Besides, high intensities are

mandatory in multihoton microscopy ([6]). However, intense excitation results in both

enhanced triplet buildup and photobleaching, and thus in losses in the fluorescence signal.

Therefore, excitation times of less than a microsecond readily elicit a substantial triplet

population, which suggests the use of fast scanning in conventional confocal microscopes

([33],[34],[35]).

In the following will be shown that the total number of photons emitted by a dye that is

subject to intense illumination substantially increases when one ensures that fluorophores

caught in an absorbing dark state, such as the triplet state, are not further excited ([36]).

Consequently, judicious pulsed excitation allowing for dark od triplet relaxation (D-Rex

or T-Rex), yields a lot more photons from the sample. This observation is relevant not

only to microscopy but also to a range of bioanalytical techniques that, relying in fluo-

rescence detection, are challenged by photobleaching. Pulsed excitation is preferred or

even required for fluorescence lifetime imaging, STED microscopy, and for multi-photon

excitation microscopy, as well as for the bioanalytical techniques relying on the same char-

acteristics of fluorescence emission. In basically all of these fluorescence detection modes,

pulse trains with a repetition rate f = 40-100 MHz are utilized. This rate is conveniently

12
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provided in most pulsed lasers, such as the mode-locked Ti:Sapphire laser operating at f

= 80 MHz. Moreover, the associated ”illumination pause”, ∆t = 1/f of 10-25 ns between

two succeeding pulses is up to 10 times larger than the typical lifetime of the fluorescent

state S1 of most organic fluorophores. Shorter ∆t increase the probability of illuminating

molecules that are already excited, whereas longer ∆t would leave the dye overly idle.

Hence, not surprisingly, increasing ∆t by decreasing f appeared unattractive.

Exceptions are rarely reported. For example, an amplified Ti:Sapphire system emitting

at f = 0.2 MHz has been sporadically used in two-photon microscopy to benefit from the

400 times more intense pulses ([37]) allowing deeper penetration into live brain ([38]) or

into tissue. In another experiment, widefield one-photon excitation with a pulsed laser

diode at f = 6 kHz has been used to saturate the fluorescent S1 state and for technical

convenience ([26]). However, having relied on a single value of f and having targeted dif-

ferent purposes, these works have not recognized the general relationship between ∆t and

the signal magnitude. Here is shown that intermissions ∆t ≈0.5-2 µs boost the number of

photons emitted from a molecule before bleaching. Increasing ∆t enables the spontaneous

ISC

~ns

S 1

S 0

T1

S x Tx

Exc Fl
0.5-3τT~

...bleaching

µs

~psExc

Figure 2.1: Energy diagram of a typical organic fluorophore, indicating the major
molecular pathways for excitation (Exc), fluorescence (Fl), relaxation (dashed line),
and photobleaching: singlet states: S0, S1, Sn>1 , triplet states: T1, Tn>1. Due to
the chemical fragility of the triplet system, the excitation of T1 is an effective
bleaching pathway. While the lifetime of the fluorescent state S1 is ≈ 1 ns, that of
the vulnerable T1 is by 3 orders of magnitude longer: ≈ 1 µs.

relaxation of this state, thereby avoiding its pile-up and its excitation to a further reac-

tive state ([39],[40]). The primary candidate for this dark state is the molecular triplet

state T1, because, in most fluorophores the T1 reportedly relaxes within ≈ 1 µs under

ambient conditions ([41]). These states and the associated pathways of excitation and

photobleaching are illustrated in Fig.2.1. This finding holds both for intense one- and
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inherently intense two-photon molecular excitation.

2.2 Experimental fluorescence gain for ONE- and

TWO-photon excitation

Here I present the study of the role of dark- or triplet state relaxation in pulsed mode

illumination by gradually reducing the repetition rate f from 40 MHz down to 0.5 MHz,

which is the same as expanding the inter-pulse distance ∆t from 25 ns to 2 µs. Two

Figure 2.2: Photobleaching of GFP and Atto532 decreases with interpulse break
∆t = 1/f for one- and two-photon excitation. (a,c) Fluorescence images of the
fluorophore layers (7 x 10.5 µm) after illumination with varying repetition rates
f and pulse peak intensities IP . The horizontally aligned spots were subject to
the same IP . In each panel the number of excitation pulse was the same for all
exposures. (b,d) show decrease in fluorescence observed at the spot marked in (a)
and (c), respectively, its integral giving the total signal G1P and G2P for one- and
two-photon excitation. Note the increase of the initial peak with increasing ∆t.
The magnification factors indicate the relative increase of G1P and G2P .

fundamentally different fluorophores are chosen: Atto532 and GFP. The first is a Rho-
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damine dye known for its photostability, low intersystem crossing to the triplet state (< 1

%), and high fluorescence yield. Atto532 emits in the 540-580 nm wavelength range and

is used for labeling peptides and proteins, as well as for single molecule imaging. GFP is

the archetype of the genetically encodable fluorescence markers. The fluorophores have

been prepared as thin layers on a glass cover slip and covered with the mounting medium

mowiol. This measure avoided molecular diffusion as a source of signal replenishment

during photobleaching. To quantify photobleaching I irradiated the layers with a station-

ary beam focused to a ≈ 200 nm diameter spot (experimental setup see A.1). The panels

in Fig.2.2 (a,c) show images taken from the layer after completion of the measurements.

Dark areas signify the spots at which the signal was recorded, with the darkness being a

measure of the bleaching occurred. Besides f, I also varied the pulse peak intensity IP .

There were actually five values of IP both for one- and two-photon excitation applied.

For each pair f and IP , four runs were recorded, arrayed in the same line. Recording the

fluorescence as a function of time indicated the photobleaching rate, whereas the inte-

gration of the fluorescence over time disclosed the total signal G1P and G2P gained by

one- and two-photon excitation, respectively (b,d). Importantly, all runs to be compared

were performed with the same total number of pulses, irrespective of the repetition rate,

because I compensated the reduction of f by concomitantly extending the exposure time.

Fluorescence gain for ONE-photon excitation

The total illumination time for one-photon excitation (470 nm, pulse width τp =100 ps) of

Atto532 at f = 40 MHz, 10 MHz, and 0.5 MHz was 35 ms, 140 ms, and 2.8 s, respectively,

implying that the spots were exposed to 1.4 x 106 pulses in all cases. For GFP the number

of excitation pulses was 2.8 x 106. Photobleaching increased with increasing IP (Fig 1a).

Although this finding may arguably be expected ([42]), less expected is the fact that

photobleaching is substantially weaker at the lower f.

The fluorescence as a function of the number of excitation pulses applied is plotted in

(Fig.2.2 (b)). In fact, these curves quantify the initial fluorescence strength along with its

decrease for the first 5 x 105 pulses. Each data point represents the signal accumulated

from 2000 pulses (1000 pulses for one-photon excitation of Atto532). Being recorded at f =

40, 10, and 0.5 MHz, the curves reveal that increasing ∆t elevates the signal dramatically.

The elevation is observed both for the signal generated by the first pulses applied on the

spot (note the initial peak in Fig.2.2 (b)) and for the integrated one-photon generated

signal G1P . For example, the curves in (b) indicate that the reduction of the repetition

rate from f = 40 MHz to 0.5 MHz for one-photon excitation with IP ≈ 20 MW/cm2

increases the G1P from GFP by 18-fold and that from Atto532 by 7-fold. The actual

improvement is larger because the curves in (b) just show the signal for the first 5 x 105

pulses. The signal G1P gained from 1.4 x 106 pulses is shown in Fig.2.3 (a) as a function

of ∆t. The data shows that the signal improvement actually is by 20-fold for GFP and by
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8-fold for Atto532. I plotted G1P as a function if IP ranging up to 50 MW/cm2 (Fig.2.3

(b)); here ∆t = 1/f is used as a parameter. For all values of IP the maximum G1P is

attained at the highest ∆t. These results underscore that ∆t plays a decisive role in

keeping the dye fluorescent. Moreover, the most significant leap occurs between ∆t = 0.1

and 1 µs. This observation indicates that the primary mechanism of photobleaching of

Atto532 and GFP is the absorption of a dark state with a lifetime of ≈ 1µs (Fig.2.3 (a)).

Figure 2.3: Total fluorescence signal generated by one-photon excitation (G1P ) for
GFP and Atto532 for a given number of excitation pulses (1.4 x 106). (a) G1P as a
function of ∆t =1/f. The magnification factors indicate the relative increase in total
fluorescence. The s.d. of 5-10 % were determined from five replicate measurements.
The solid lines represent an exponential fit to the data, mimicking the extent of
the decay of a nonfluorescent dark (triplet) state of 1 µs lifetime between two
subsequent pulses. Note that an optimal gain in G1P is predicted for 100 kHz, close
to the samllest applied rate of 500 kHz. In the case of a 5-µs lifetime (dashed line),
the optimal frequency shifts to lower repetition rates. (b) G1P as a function of the
pulse peak intensity IP with ∆t as parameter. The number of excitation photons
and illumination time of continuous wave (CW) illumination was the same as that of
its 40 MHz pulsed counterpart. Strong excitation intensities and pulsed excitation
with ∆t < 1µs lead to smaller total fluorescence yield per fluorescent molecule.

It is now interesting to compare the G1P values found for the pulsed illumination with
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those for continuous wave (CW) exposure (Fig.2.3). As there is no dedicated intermission

in the CW case, the population of the dark state and its excitation just depend on the

continuously applied intensity ICW . The CW data is gained by illuminating for the same

illumination time and with the same time-averaged intensity ICW = IP (τP f) as in the

40Mhz case. The latter condition is like spreading out the photons of a pulse across

the 25 ns break. At the 488 nm wavelength used for continuous-wave illumination, the

absorption cross-section is higher at the 470 nm wavelength used for pulsed illumination.

Nevertheless, for all intensities, the fluorescence signal is by up to 5-fold (GFP) and by

up to 8-fold (Atto532) smaller than in the 0.5 MHz case. Note that the maximum applied

intensities of up to ICW of ≈ 200kW/cm2 were about an order of magnitude above those

usually applied in fluorescence microscopy ([39]), but they were in the range of what

is routinely used in single-molecule experiments in solution ([40]). Hence, an intense

CW illumination cannot provide the same total signal that is provided by pulsed D-Rex

illumination.

Fluorescence gain for TWO-photon excitation

I also measured the total fluorescence signal generated by two-photon excitation (800 nm,

pulse width τp = 200 fs) shown in Fig.2.4. Like in the one-photon mode, the total number

of pulses was 1.4 x 106 in all cases. For pulse peak intensities IP ≈ 300 GW/cm2, enlarging

∆t from 25 ns to 2 µs increased the total two-photon fluorescence yield G2P by ≈ 25-fold

for GFP and ≈ 20-fold for Atto532.

Fig.2.4 (b) displays G2P as a function of IP , with ∆t = 1/f as parameter. Again, G2P

becomes saturated with increasing IP ; the saturation level strongly depends on ∆t. Yet

again, larger ∆t enable more emissions and once more, both GFP and Atto 532 exhibit

the decisive leap when stepping up from ∆t = 0.1 to 1 µs. This finding showed again

that a ≈ 1 µs dark state played a key role in the fluorescence bleaching (and saturation)

mechanism. Similarly to the one-photon case, a larger ∆t leads to a stronger prompt

signal (compare Fig.2.2(d)), because all non-bleached molecules are in the S0 at the time

of arrival of the following illumination pulse. This similarity suggests the comparison of

the yield for both excitation modes, especially because two-photon excitation reportedly

involves stronger photobleaching ([43],[44]). Therefore, I selected IP = 25 MW/cm2 and

300 GW/cm2, for the one- and the two-photon mode, respectively, and displayed the ratio

G1P / G2P as a function of ∆t (c). Interestingly this exhibits that, for ∆t ≤ 0.1 µs the

G2P was indeed up to 20-times lower than G1P , but this adverse factor is below 10-fold

at ∆t ≥ 0.1 µs, thus narrowing the gap. This finding indicates that in a multiphoton

excitation modality, the intermission ∆t are even more effective.

In addition, this observation provides further evidence for dark state absorption because

in the multiphoton mode, the pulse intensity is larger than for its one-photon counterpart

by orders of magnitude. Once a molecule has passed to an absorbing dark state, such as
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Figure 2.4: Total fluorescence signal generated by two-photon excitation (G2P ) for
GFP and Atto532 for a given number of excitation pulses (1.4 x106). (a) G2P as
a function of ∆t =1/f. (b) G2P as a function of the pulse peak intensity IP with
∆t as parameter. The magnification factors indicate the relative increase. The
s.d. of 5-10 % were determined from five replicate measurements. The gray lines
reveal the extent of the decay of a nonfluorescent dark (triplet) state of 1 µs (solid
line) and 5 µs (dashed line) lifetime in between subsequent pulses (c). Ratio of
one- and two-photon generated fluorescence as a function of ∆t, showing that the
total fluorescence yield is lower for two-photon excitation than for its one-photon
excitation counterpart, but the ratio decreases by two-fold for ∆t > 1 µs.

the T1, the molecule is confronted with a photon flux that readily leads to a single (and

possibly also multi-photon) excitation to the Tn>1 (compare Fig.2.1). The occurrence

of such processes is exacerbated by the fact that the molecular cross-section for a one-

photon absorption of the T1 state is σT ≈ 10−17 cm2 ([45]). Given IP = 300 GW/cm2

and a photon energy of 2.5 x10−19 J, the excitation rate of a T1 molecule is ≈1 event

per (τp ≈ 200 fs) pulse, i.e., the T1 −→ Tn>1 process is nearly saturated. Therefore,

once the molecule has crossed to the T1, the molecule is prone to be excited to a more
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fragile state. Furthermore, the Tn>1 molecule can absorb another photon from the same

pulse, thus setting off a cascade of several consecutive one-photon excitations leading to

increasingly fragile states. In fact, starting from T1 (≈ 1.9 eV) the combined energy

of about 2-3 photons of ≈ 800 nm wavelength (i.e., ≈ 2-3x1.56 eV) reaches the typical

ionization energy of ≈ 5-6 eV of, for example, Rhodamine dyes. This scenario explains

why the D-Rex illumination modality is so effective.

Influence of the pulse length τp in TWO-photon excitation

In fact, there is further evidence to be found for the previously discussed scenario when

scrutinizing the role of the pulse duration τp on G2P . Accommodating τp = 0.2, 1,4 both

for 40 ps for f = 40 and 0.5 MHz pulse trains, in Fig.2.5 G2P is plotted as a function of

I2
P τP , which is proportional to the probability of two-photon excitation within a single

pulse. Increasing τP by a factor m while keeping this ability constant, entails an IP that

Figure 2.5: Dependence of photobleaching on the pulse width (τp) for two-photon
fluorescence excitation of GFP (a) and Atto532 (b). The curves show G2P for 0.5
MHz (open circles) and 40 MHz (filled) with increasing value of I2

P τP giving the
ability of a pulse to excite in the two-photon mode. The latter is maintained when
varying the pulse widths from τp = 200 fs to 40 ps. Pulses that are longer by m
feature a pulse energy that is larger by

√
m and an IP that is lower by the same

factor.

is lower by
√

m. By the same token, the pulse energy, given by ≈ IP τP ≈ (IP /
√

m)m, is

larger by
√

m. τp was adjusted to the values 0.2, 1, 4, and 40 ps both for f = 40 and 0.5

MHz pulse trains. Spanning over two orders of magnitudes, the variation in τp exceeds by

far the 100 fs - 2 ps span encountered in practical two-photon microscopy ([46]). Fig.2.5

reconfirms that stepping down f leads to a substantial increase in G2P , but changing τp

by m = 200 and hence the pulse energy by 14-fold does not display a considerable effect
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on G2P . There are two reasonable explanations for the fact that the reduction in the

two-photon fluorescence yield G2P (caused by dark state population and absorption) does

not vary with I2
P τP . The first one is that all the excitation pulses are so intense that they

deplete the ground state S0, thus neutralizing any intensity or pulse length dependence

of the transition to the S1 and hence to the dark state, such as the T1. This scenario

is unlikely. The second explanation is consistent with the one given above: following a

two-photon excitation to the S1, the molecule crosses to the dark state (e.g. the T1) which

is then subject to a further nearly saturated excitation (e.g. to Tn>1) elicited by one of

the following pulses. The saturation is either provoked by large IP for short (τp = 200

fs) or by repetitive excitation to Tn>1 within the same long pulse (τp = 40 ps) with the

lifetime of Tn>1 being ≈ 200 fs. The saturation eliminates any dependence on intensity

or pulse width.

Increased image brightness

D-Rex illumination conditions yield brighter two-photon images of Escheria coli cells

expressing the Venus yellow fluorescent protein ([47]) (Fig.2.6). In each recording were

4 x 104 pulses of IP = 350 GW/cm2 per 62.5 nm quadratic pixel applied, but in (a) ∆t

= 1 µs, whereas in (b) ∆t = 0.025 µs. The brightness histogram in (c) reveals that the

40-fold increase in ∆t provided an approximately 3 times brighter image. In light of the

fact that Venus is a further member of the GFP family, the data of Fig.2.6 underscores

the relevance of D-Rex for other fluorophores.

Figure 2.6: Two-photon fluorescence images of Escherichia coli cells expressing the
fluorescent protein Venus are brighter when recorded in the D-Rex mode. Pulse
intermissions ∆t = 1 µs and 0.025 µs in (a) and (b), respectively. The same number
of excitation pulses was ensured for both images by adjusting the exposure time
accordingly (40 ms in (a) and 1 ms in (b)). Scale bar = 1 µm. (c) Histogram of the
counts per pixel of the images of (a) (red) and (b) (black).
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Conclusion

The fluorescence generated by intense one- and two-photon excitation from a molecule

can be fundamentally increased by applying light pulses with a rate f < 1 MHz. Photo-

bleaching is reduced, because intermissions ∆t = 1/f > 1 µs between succeeding pulses

enable the decay of an absorbing dark state of similar lifetime. The primary candidate

for this state is the molecular triplet state T1, because the 1 µs relaxation time coincides

with the T1 lifetime of most fluorophores under ambient conditions. A further reason

is that the T1 is a feature of organic fluorophores and fluorescent proteins alike. Also

G2p slightly varies with the sample preparation. For example, in the data of Fig.2.5 the

gain for GFP is lower as compared to that in Fig.2.4 which was recorded on a sample

that was 10 days old. As the embedding medium mowiol solidifies with time, the con-

centration and mobility of oxygen decrease, increasing the T1 lifetime. A shortened T1

lifetime lowers the T1 pile-up and abates the effect of D-Rex microscopy. In contrast, an

increased dark state lifetime will enforce f<<1 Mhz (Fig.2.3 (a) and Fig.2.4 (a)). Hence,

while the boost factor depends on the chemical environment, most, if not all fluorophores

are expected to exhibit gain under D-Rex conditions. In fact, ad hoc screening of Rho-

damine6G, Coumarin120, DAPI and the enhanced yellow fluorescent protein have also

exhibited a 5-15-fold fluorescence increase.

As dark state photobleaching is reduced by D-Rex illumination, S1−→Sn>1 induced pho-

tobleaching becomes more prominent. Besides, non-excited T1 molecules also undergo

bleaching. There should be mentioned that D-Rex illumination is less important for one-

photon excitation at low intensities as can also be inferred from the G1P data in Fig.2.3

(b). Low intensities hardly generate cascaded excitation processes, rather the molecule

relaxes to the S0 before absorbing another photon. By contrast, in a typical two-photon

microscope operating at 80 MHz and scanning with a double-pixel dwell time of 5 µs,

a molecule is hit by 400 pulses in a row at ∆t = 12.5 ns with each pulse containing ≈
1000 photons. Once it has passed to the T1 it is confronted with these pulses, explaining

why even fluorophores with a low (< 1 %) rate for S1−→T1 crossing, such as Atto532,

exhibit a substantial gain by the D-Rex modality. Yet high intensities are also necessary

in one-photon excitation to maximize signal and to cut down acqusition times. The data

indicate that the D-Rex scheme allow the application of high intensities while still pro-

viding a high fluorescence yield.

In the following section the measured repetition rate dependence is simulated on basis of a

detailed photophysical description of a fluorescent molecules regarding the argumentations

previously discussed.
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2.3 Simulation of the repetition rate dependence

The photophysical simulations will show that the fluorescence enhancement upon the de-

crease in the repetition rate arises from a significantly lowered triplet population, which

leads to less ground-state depletion and less multi-step photobleaching. The simulation

data will be compared to the measured (pulse peak) intensity dependence of the fluo-

rescence signal observed within the first 2000 pulses of one- and two-photon excitation

(Fig.2.7) of the Atto532 layer (i.e., the first observed fluorescence value of the decays of

Fig.2.2 (b,d)). As illustrated in Fig.2.2, a significant increase in fluorescence signal of a

factor of 3 in the case of one- and up to 6 for two-photon excitation is already observed

for such short number of excitation pulses. A similar characteristic is observed for GFP.

a b

c

d e

Figure 2.7: Photophysical description of the rise in fluorescence signal upon the re-
duction of the repetition rate for the Atto532 layer. (a and b) Fluorescence signal
detected within the first 2000 pulses of one- and two-photon excitation, respec-
tively, for increasing pulse peak intensity IP and different laser repetition rates as
labeled. The illumination time texc is thereby adapted to the varying repetition rate
f and for CW excitation identified with texc = 0.05 ms of the 40 MHz experiment.
(c) Photokinetic model with energy diagram of the dye molecule including three
electronic levels and their transition and photobleaching rate constants. For details
see text. (d and e) Simulation of the data of (a) and (b) applying the photokinetic
model of (c).
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Photophysical Model

The photophysical model is based on three electronic levels; singlet ground and first

excited state S0 and S1, respectively, and lowest excited triplet states T1 (Fig.2.7 (c)). The

kinetic rate constants of the underlying transitions define the kinetic rate system of the

time dependent relative populations of the different states as well as the photobleaching

kinetics. Ṡ0(t)

Ṡ1(t)

Ṫ1(t)

 =

 −kexc(t)

kexc(t)

0

 S0(t)+

 k10

−k∗(t)

kISC

 S1(t)+

 kT

0

−kT − kbT (t)

 T1(t), (2.1)

with k∗(t) = k10+kISC+kbS(t). kexc(t) determines the rate constant for excitation from

S0 to S1 and is given by the product σexcγI(t) for one- and (σexc/2)γ2I(t)2 for two-photon

absorption with the one- and two-photon absorption cross sections σexc and δexc, respec-

tively, and the reciprocal photon energy γ ([44],[48]). The time dependence of kexc results

from the time course of the excitation intensity I(t), which follows the pulse shape and

the repetition rate in the case of pulsed excitation and is constant for CW excitation.

The reciprocal fluorescence lifetime k0 = k10 + kISC is made up of the deexcitation rate

constant k10 from S1 to S0 and the rate constant for intersystem crossing kISC denoting

the S1 to T1 transition. kT depicts the inverse lifetime of the triplet state following the

return from T1 to S0. Photobleaching is introduced by the microscopic rate constants

kbS(t) and kbT (t) starting from the excited states S1 and T1, respectively. Both rate con-

stants comprise direct photoreactions from S1 and T1 with rate constants kbS1 and kbT1

and multi-step photobleaching from higher excited electronic singlet and triplet states

(kbSn, kbTn) (Fig.2.2 (c)).

kbX(t) = kbX1 + kX1n(t)/(kX1n(t) + kXn1)kbXn (X = S or T ) (2.2)

Multi-step photobleaching follows an additional absorption step to higher excited elec-

tronic states with the rate constant for excitation kX1n(t) = σX1nγI(t), the corresponding

absorption cross section σX1n, and the rate constant kXn1 for deexcitation to the lowest

excited electronic state (X = S or T). In this model, vibrational substates are disregarded

due to their comparatively short lifetime. Due to the same reason, the populations of the

higher excited electronic states do not have to be explicitly calculated, rather are the essen-

tial reaction rates expressed in terms of the relative populations kX1n(t)/(kX1n(t)+kXn1).

The time dependent populations of each electronic level can be calculated by solving

equation (2.1) for a given time course of the excitation intensity I(t) and with initial

populations S0(0) = 1 and S1(0) = T1(0) = 0. S1(t) on the other hand gives an estimate

of the fluorescence signal F (texc) ≈
∫ texc

0
S1(t)dt gathered for an illumination time texc.

The proportionality thereby includes experimental and molecular constants such as the

detection efficiency of the setup and the fluorescence quantum yield of the dye.
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Simulation of experimental data

Fig.2.7 (d,e) shows the simulations of the experimental data (Fig.2.7 (a,b)), applying

photokinetic parameters σexc = 1x10−17 cm2 for 470 nm and 3x10−17 cm2 for 488 nm and

k0 = 5x108 s−1 determined from control experiments of absorption spectrum and time-

correlated single-photon counting (TCSPC), δexc = 2x10−48 cm4 s, kT = 5x105 s−1, kbS1

= kbT1 = 500 s−1, σS1n = 1x10−17 cm2 and σT1n = 5x10−17 cm2 and kSn1 = kTn1 = 5x1012

s−1 estimated from parameters known for the similar organic dye Rhodamine6G ([44]),

and kISC = 5x107 s−1 and kbSn = kbTn = 3x108 s−1 for one- and 5x1010 s−1 for two-photon

excitation adapted to fit the experimental data best. For both one- and two-photon

excitation, the photophysical model describes the experimental intensity dependence of

the fluorescence signal well, especially with respect to the saturation behaviour and the

dependence on the repetition rate.

Calculation of the fluorescence signal following two-photon excitation at 40 MHz with

(black line in Fig.2.8) and without triplet state population (kISC = 0, black dotted line

in Fig.2.8) and without multi-step photobleaching from the triplet state (kbTn = 0, gray

dotted line in Fig.2.8) disclose the population of the triplet state as well as multi-step

photobleaching from higher excited triplet states as the most severe limit in the fluo-

rescence yield. It is actually the negligible population of the triplet state in the case of

Figure 2.8: Simulation of the fluorescence signal detected within the first 2000 pulses
of the Atto532 layer for two-photon excitation with 40 MHz (label ”40”) and 0.5
MHz repetition rates (label ”0.5”) and for varying values of the photokinetic pa-
rameters. Comparison with the conditions of fast beam scanning frequencies (label
”40 scan”) with an effective dwell time of 100 ns (corresponding to 4 pulses at 40
Mhz) and full relaxation of the dark state before each following scan. For details
see text.
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excitation with low repetition rates, which elicits the boost in fluorescence. This becomes

obvious from the coinciding fluorescence signal expected for 40 MHz in the case of re-

pressed triplet build-up compared to 0.5 MHz excitation (black dotted and orange lines

in Fig.2.8). Actually, no difference in fluorescence signal is predicted with kISC = 0 or kbTn

= 0 in the case of 0.5 MHz (coinciding with the orange line in Fig.2.8). The fluorescence

gained with a lowered repetition rate thus comprises reduced ground-state depletion, i.e.,

reduced fluorescence saturation and less multi-step photobleaching from higher-excited

triplet states. It is the extended time lag between subsequent laser pulses, that allows the

triplet state to relax to S0, thereby preventing triplet pile-up or subsequent absorption

to higher excited states. The calculations on the other hand reveal a marginal influence

by direct photobleaching from S1 and T1 (kS1 and kT1), as has been proposed before in

the case of the high intensities used within confocal microscopy ([40]). In the case of

repetition rates below 10 MHz, the fluorescence signal obtained by two-photon excitation

almost reaches the signal level of one-photon excitation, eliminating limits of the signal-

to-noise ratio in two-photon excitation fluorescence microscopy. Further improvements

for both excitation modes can solely be achieved by minimizing residual multi-step pho-

tobleaching from higher excited singlet states (kbSn = 0, red dotted line in Fig.2.8), e.g.

by the addition of certain stabilizers ([49]).

CW excitation

The level of fluorescence signal gained by one-photon CW excitation (blue line in Fig.2.7

(d,e)) is as low as for one-photon pulsed excitation with repetition rates above 10 MHz.

A similar consistence between CW and quasi-continuous excitation at 80 MHz has been

reported for rhodamine dyes in aqueous solution ([40]). Both excitation modes, CW and

quasi-continuous excitation at above 10 MHz repetition rates, do not allow essential de-

population of the triplet state in-between subsequent excitation events, thereby reinforcing

analogue saturation and bleaching pathways via the enhanced triplet build-up.

Fast scanning

Implementing D-Rex by decreasing f is not optimal, because of the concurrent increase

in recording time. The preferred implementation of the D-Rex modality is to scan the

beam so fast, that succeeding pulses illuminate different molecules. This holds if the

scanning speed is larger than the focal spot size divided by ∆t. The ideal speed for a

40 MHz system is ≈ 200 nm/25 ns = 8 m/s. However, a relief is already predicted for

slightly lower speeds, because they also reduce effective triplet built-up (thus minimizing

the problem of image alignment during fast mirror scanning). Fast scanning rates utilize

minimal dwell times, allowing no time for significant triplet build-up and thus no possibil-

ity of transitions to higher excited states. As simulated for 40 MHz two-photon excitation

(green line in Fig.2.7), scanning dwell times as low as 100 ns reveal almost the same gain
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in fluorescence signal and photostability as moving to repetition rates ≤ 1 MHz. For

comparison and to achieve the same number of 2000 excitation pulses, the simulations as-

sume 500-times repetition of the 100 ns scans, assuming complete relaxation of the triplet

state between subsequent scans. The realization of such fast scanning experiments would

therefore achieve the same improvements as the use of low repetition rates, however, in a

much lower acquisition time, i.e., 50 µs compared to 4 ms for 0.5 MHz.

An elegant way of fast scanning is the application of spinning disks in which case the

synchronization like for fast mirror scanning does not pose problems. Another option is

to combine low-repetition-rate scanning with parallelized multispot or line-shaped illu-

mination. The results also corroborate anecdotal reports that fast scanning microscopes

bleach less and that high f lasers (1 GHz) do not provide the anticipated fluorescence flux.

Finally should be noted that unlike the addition of antifade chemical agents, the D-Rex

strategy is allphysical and hence compatible with live cells.

Conclusion

The simulation applies a basic photokinetic model, which is good enough to outline the

underlying processes responsible for the experimental observations. However, from the

data, I cannot really determine the exact details of the model as well as the real values

of the corresponding photokinetic parameters. As an example, the value of kbSn = kbTn

of photobleaching from the higher excited triplet state should in principle be smaller for

the case of two-photon excitation at 800 nm compared to one-photon excitation at 470

nm, inasmuch as the photon energy of 800 nm light is lower than that of 470 nm light.

A lower energy results in a lower level of the higher excited electronic state and, thus, a

lower efficiency of photobleaching. The contradiction of this findings, kbSn = kbTn = kbXn

= 5x1010 s−1 for two- compared to kbXn = 3x108 s−1 for one-photon excitation, indicates

further excitation steps to higher excited electronic states in the case of the extraordinary

high photon densities applied for efficient two-photon excitation. Such photobleaching

mechanism higher in order than three on the applied intensity has been examined sev-

eral times before ([43],[50]) and is supported by the fact, that the lowest pulse intensities

IP ≈ 50 GW/cm2 accessed in the two-photon experiments readily result in a saturated

transition from the lowest to higher excited electronic states, kX1n(t)/(kX1n(t) + kXn1)

≈ 1. That is, the population of an excited state is immediately followed by subsequent

absorption steps, resulting in extraordinary photobleaching efficiencies. Such a character-

istic would for example not allow for the observation of a significant triplet population,

and thus does not contradict the previous two-photon excitation fluorescence correlation

spectroscopy (FCS) experiments in solution, which observed no triplet build-up at all in

their correlation data ([49]).
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2.4 Expectations of D-Rex application on

STED-microscopy

With D-Rex having an impact on a variety of fluorescence techniques utilizing intense

molecular excitation, this illumination scheme should facilitate new applications in STED-

microscopy, too. Therefore studies were conducted to test D-Rex conditions for STED-

microscopy, namely the effect of repetition rate reduction on the STED-efficiency (Fig.2.9)

and the total bleaching behaviour (see chapter 3.1 and Fig.3.4), when the sample is illu-

minated under STED conditions.

When distinguishing the diverse interaction possibilities of the intense STED beam with

the various molecular states of the fluorophore one has to keep in mind that the STED

beam interferes with the dye in its excited state. Four different pump-probe conditions

were investigated (Fig.2.9 (a)): (i),(ii) STED-mode: illumination with optimized inter-

pulse distance of the excitation and STED beam for effective fluorescence depletion. The

red beam is operated under common STED conditions, featuring long and short puls

length, respectively. (iii, iv) ”Reverse-mode”: Illumination with reversed pulse order.

The red shifted laser light (indicated in orange colour, Fig.2.9 (a)) arrives in time before

the blue excitation light. This mode excludes a depleting effect of the red shifted beam,

since the first excited state of the fluorescent molecule has already relaxed before the

incidence of the STED pulse (the time gap between STED and excitation is ≥ 25 ns).

Thus the STED beam only interacts with long living states (with τ >> ns), such as the

triplet state. Again the red shifted beam is either featuring long (iii) and short (iv) pulse

lengths of ≈ 300 ps and < 10 ps, respectively. Both pulse length conditions were pro-

vided by stretching the red laser beam via a pair of gratings or a 7 m single-mode fibre,

respectively, thus varying the pulse peak intensity of the STED pulses of more than one

order of magnitude, but keeping the total pulse energy (intensity values on the sample

are ≈ 5 mW at 40MHz in both cases) constant. A higher pulse peak intensity makes

nonlinear effects such as stimulated emission or excitation into higher electronic states

more probable ([44]).

Fig.2.9 (b) depicts the repetition rate dependence of these four illumination conditions

observed with 470 nm excitation light and 610 nm STED light on a dye layer of the or-

ganic dye Atto465, an acridine derivative. Note that the pulse peak intensity of the STED

beam for a chosen pulse length was kept constant when stepping down the frequency in

STED- and ”reverse”-mode from 40 Mhz to 150 kHz, respectively. An acridine derivative

was chosen as fluorescent label for this study, since it shows a very high triplet yield

([51]), pronouncing the D-Rex effect as discussed earlier in chapter (2.2). In particular

two molecular transitions addressed by the intense red STED beam could be separa-

tely studied via repetition rate reduction and in combination with applying STED- (red
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Figure 2.9: Influence of the repetition rate on the STED-efficiency and fluorescence
enhancement due to reverse intersystem crossing (ISC) (Tn −→ Sn).(a) Different
illumination modes: (i) STED-mode, long pulse, (ii) STED-mode, short pulse,
(iii)”Reverse”-mode, long pulse, (iv) ”Reverse”-mode, short pulse. (b) Exempli-
fied measurement at 40Mhz in mode (iv) illustrating the photoinduced fluorescence
enhancement effect due to reverse ISC by the intense red beam. (c) Dependence
of the STED-efficiency in case of STED mode (red colour) and of the fluorescence
enhancement due to the reverse intersystem crossing in the case of the ”reverse”
mode (blue colour) on the repetition rate. (Inset i) Schematic signal enhancement
due to reverse ISC by applying the ”reverse” pulse mode in the high repetition
rate regime (compare with the measurement in (b)). (Inset ii) Occurrence of fluo-
rescence depletion due to STED by applying the STED mode in the low repetition
rate regime.

colour in Fig.2.9(b)) and ”reverse”- illumination mode (blue colour in Fig.2.9(b)): STED

depleting and reverse intersystem crossing (ISC) (Tn −→ Sn). The latter transition is an

effective pathway for triplet depopulation, where the dye in its lowest excited triplet state

T1 is excited into higher excited triplet levels Tn. From Tn the dye can effectively cross

back into the singlet system thus generating fluorescence emission as reported in ([52]).

Photoinduced reverse ISC has therefore the potential to compromise the fluorescence de-

pleting efficiency of the STED beam. Starting at high repetition rate (40Mhz) one can see

a signal enhancement evoked by the red-shifted ”reverse” pulse up to 90 % regarding the
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fluorescence level reached by excitation only (Fig.2.9 (b)). With reducing the repetiton

rate this enhancement in signal drops gradually to zero when reaching frequencies of ≈
1 Mhz (Fig.2.9 (c)). Accordingly, the ”reverse” pulse can no longer pump electrons from

the triplet in the fluorescing singlet channel, as the long living dark (triplet) state is no

longer populated at an interpulse distance of ≥ 1 µs. Obviously the red STED beam can

only address the reverse ISC transition effectively at high repetition rates. Accordingly,

in STED-mode no STED efficiency was observed at high repetition rates. However, fluo-

rescence depletion is more pronounced when reaching low repetition rates (red colour in

Fig.2.9) where the same photon density within the STED pulses reaches depleting levels

of 60 %. Inherently, this observation is a consequence of the previous result. At high rep-

etition rate the STED pulse can address both transitions, the depleting and the reverse

ISC transition. Under this conditions the depleting effect is completely compromised by

the fluorescence enhancement effect due to reverse ISC of the STED-beam. But with de-

populating the dark state by stepping down the frequency, the depleting behaviour gains

ground against the reverse ISC transition (inset (ii) in Fig.2.9). Therefore the STED

depleting transition becomes the dominant process at low repetition rates.

The change of pulse duration of the STED pulse at least one order of magnitude has no

significant influence on the STED efficiency or the reverse ISC (Fig.2.9 (c)), thus indicat-

ing that the addressed transitions are saturated and therefore eliminating any dependence

on the pulse duration (like previously argued in section (2.2), Fig.2.5).
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Figure 2.10: Expectations for T-Rex STED-microscopy

Conclusively, fluorescence dyes are generally expected to operate favourably under STED

conditions in the low repetition rate regime. Exemplified on Atto465, a highly triplet pop-
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ulating dye, the STED depleting transition is favoured under low repetition illumination

against other compromising transitions, like the reverse ISC. In fact, Atto465 showed no

STED applicability at 40 Mhz, whereas at repetition rates below 1 MHz the STED de-

pleting ability was uncovered. On one hand, this observation illustrates that fluorescence

depletion by STED is a general behaviour of a fluorescent dye, and on the other hand the

application of low repetition rates widens the pool of fluorescent molecules accessible to

STED-microscopy in terms of good depleting performance.

On the gained basis of understanding low repetition rate conditions for excitation and hav-

ing tested them for STED applicability, the expectations for T-Rex STED-microscopy are

summarized in Fig.2.10. Motivated by the uncovering of the T-Rex illumination scheme

that substantially increases both the fluorescence yield per pulse and the photostability,

the possibility of applying strong light levels prepares the grounds for expecting a reso-

lution improvement of a STED-microscope with similar argumentation: applying larger

STED peak intensities due to less dark state bleaching and more tolerable reexcitation

due to the fluorescence increase following stronger excitation can directly enhance the

resolution of a STED-microscope (see equation 3.1). Moreover, the fluorescence enhance-

ment per pulse is the encouraging argument to fight the longer acquisition times being

expected by drastically reducing the repetition rate, thus reducing the illumination time

of the sample per second.

The next chapter will work out how these expectations were met in the experiment.
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3.1 Concept and experimental realization

Based on the following estimations, the operational principles of STED microscopy at a

pulse repetition rate of 0.25 MHz that is 320 times lower than the standard rate of 80MHz

were explored ([53]).

From the introduction we already know, that the rate for deexcitation by stimulated emis-

sion is given by kSTED = σISTED, with σ denoting the fluorophore cross-section and ISTED

denoting the intensity of the deexcitation beam. Oversaturating the deexcitation requires

kSTED be much larger than the fluorescence decay given by the inverse of the fluorescence

lifetime, τFL ≈ 1-5 ns, of the fluorescent state S1. With typical molecular cross-sections

σ =10−17 cm2 for stimulated emission it follows that ISTED >> 1026 photons/cm2 which,

at a wavelength of λ = 600 nm, amounts to ISTED >> 33 MW/cm2. This intensity value

is at least 103-fold lower than what is required for multiphoton excitation ([6]), but still

102-fold larger than what is used for single photon fluorescence excitation. Therefore,

to operate with a moderate average power, the excitation and the STED beams are im-

plemented in the pulsed mode ([19]). Besides, the duration of the STED pulse τSTED is

adjusted to a fraction of τFl, typically ≈ 0.2 ns, in which case the depletion of the excited

state is an exponential function of the stimulating intensity: exp(−στSTEDISTED). Hence,

a doughnut-shaped focal distribution featuring Imax
STED = max(ISTED(~r)) at the doughnut

crest and ISTED(~r) = 0 at the center, suppresses the signal throughout the focal region

except at ~r = 0. The remaining spot in the focal plane follows

∆r ≈ λ

2nsinα
√

1 + στSTEDImax
STED

, (3.1)

with nsinα denoting the numerical aperture at which the doughnut is generated ([54]).

Thus, the resolution can be arbitrarily increased with increasing Imax
STED , in principle,

down to the molecular scale ([19]).

An obvious challenge toward maximizing Imax
STED is elevated photobleaching of the fluo-

rescent marker that usually scales nonlinearly with the applied intensities ([55]). For

example, at the typical 80 MHz repetition rate of modelocked lasers, the focused average

31
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power applicable to the green dye Atto 532 is about 15 mW ([56]). The associated Imax
STED

= 250 MW/cm2 yields a resolution of ∆r = 50-70 nm. Larger Imax
STED and hence much

narrower focal spots were reached only with a red dye under controlled photochemical

conditions ([54]).

In STED microscopy, two bleaching pathways are imaginable ([31]): i) the absorption

of the fluorescent state, leading to a higher molecular singlet state, S1 −→ Sx>1, as it

has been proposed for multiphoton microscopy ([44]) and ii) the excitation of excited

molecules that have crossed to a triplet state, T1 −→ Tx>1, or to another dark state with

lifetime τT > 1µs. Both the Sx>1 and Tx>1 are well known starting points for bleaching

reactions (Fig.3.1(a)).
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Figure 3.1: (a) Fluorophore energy levels and potential bleaching pathways: fluores-
cence from S1 is suppressed by stimulated emission. The latter may also excite the
dye to a higher singlet state Sx, from which the molecule can cross to the triplet
system Tx. In regions of weak STED pulse intensity, the molecule can directly cross
to the T1 featuring a lifetime of (0.5 - 3) µs. Excitation of T1 molecules by sub-
sequent pulses leads to reverse intersystem crossing or augmented photobleaching.
(b) These adverse effects are counteracted by ∆t > τT .

When considering the two routes, it becomes evident that the first one, S1 −→ Sx>1, is

counteracted by stimulated emission S1 −→ S0. With a wavelength optimized for the

latter, S1 −→ Sx>1 excitation by the STED pulse is less probable. Nevertheless, since

the cross-sections for S1 −→ Sx>1 are finite (both at the STED and at the excitation

wavelength), higher singlet excitation is possible. The superexcited Sx>1 molecule may

bleach, cross to the triplet system Sx>1 −→ Tx>1 −→ T1, or return to S1([45]). Referred

to as internal conversion, the last process is very effective because it occurs within a few

picoseconds. Due to the STED pulse duration of τT =0.2 ns, the putatively superexcited
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molecule is instantly quenched by the same pulse. Therefore, as long as the molecule

remains in the singlet system, the STED pulse is able to protect the molecule from

photobleaching.

Just the opposite is the case once the molecule has slipped into the triplet state T1. Due

to its prolonged typical lifetime, τT ≈ 1 µs at ambient conditions, the T1 molecule is

exposed to a train of intense excitation and STED pulses. Given the comparatively large

cross-sections (10−18 - 10−17 cm2) for triplet absorption over a broad wavelength range, the

STED pulse can efficiently pump up the molecule to higher triplet states Tx>1. The ≈ 80

MHz repetition rate of modelocked lasers used so far for STED implies that an inherently

fragile triplet molecule faces on average 80 intense STED pulses before relaxing to the S0

(just as previously discussed in chapter 2.2 for an excitation pulse only).
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Figure 3.2: (a) T-Rex STED-microscope (250kHz) and 80Mhz STED setup. For
explanation see text. (b) Stimulated emission depletion (STED) microscopy oper-
ation with interpulse time interval ∆t = 4 µs. Measured focal spots (point-spread-
functions) for excitation (wavelength: 470 nm, blue) and STED (603 nm, orange).
Applying a crest intensity Imax

STED yields the effective spot shown in green (right).
Note the fundamental reduction in focal spot area.
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Moreover, most fluorophores spontaneously undergo S1 −→ T1 crossings with a proba-

bility of 1-10% per excitation cycle ([45]). At the doughnut hole, where the STED pulse

is weak and the molecules relax spontaneously, stimulated emission does not override the

intersystem crossing. Therefore, a remedy against this bleaching pathway is to illuminate

molecules as little as possible within the timespan τT ≈ 1 µs after the excitation. The

t = 4 µs time gap between subsequent pulse pairs ensures that a triplet state molecule

of typical lifetime τT ≈ 1 µs relaxes to the ground state before encountering a second

or third pulse pair (Fig.3.1(c)). This illumination scheme is termed Triplet-Relaxation

(T-Rex) STED.

To explore the potential of T-Rex STED microscopy, an optical parametric amplifier fed

by a regeneratively amplified modelocked Ti:Sapphire oscillator ([53]) (Coherent, Santa

Clara, CA) was employed providing visible pulses of ≈ 200 fs duration and 100-250 nJ

pulse energy (Fig.3.2 (a)). To stretch them to ≈ 280 ps, the pulses were diffracted from

a grating pair before being coupled into a 4-m single mode glass fiber. The STED beam

was circularly polarized and converted into a doughnut by a spatial phase modulator

(Hamamatsu, Hamamatsu City, Japan). The latter was programmed to imprint a heli-

cal phase ramp on the STED beam wavefront which is reminiscent of a Gauss-Laguerre

beam providing circular symmetry in the focal plane ([57]). For excitation, a laser diode

emitting ≈ 80 ps pulses at 470 nm (Picoquant, Berlin, Germany) was synchronized. Both

beams were focused by a 1.4 numerical aperture oil immersion lens (Leica Microsystems,

Mannheim, Germany) on the sample. Fig.3.2 (b) shows the spot of the blue excitation

light along with its STED counterpart; both spots are measured data.

For comparison measurements (Fig.3.4) an 80Mhz setup features a Ti:Sapphire laser

pumping an optic parametric oscillator (OPO) for providing the STED pulse train.

3.2 Focal plane resolution of 20 nm in fluorescence

microscopy

The resolution attainable under T-Rex conditions was first demonstrated on yellow-green

beads emitting in the 500-530 nm range (Fig.3.3). Specified by the manufacturer using

electron microscopy, the beads varied by 4 nm around a mean diameter of 24 nm (Molec-

ular Probes Eugene, OR). The imaging parameters were: 10 x 10 nm pixels, 603 nm

STED wavelength and Imax
STED = 4.7 GW/cm2. Whereas the confocal recording (Fig.3.3

(a,e)) yielded undefined blobs, the STED images (b,f) discerned virtually every bead in

the focal plane.

Fig.3.3 (g) and (h) depict line profiles through beads located 39 nm and 42 nm apart,

respectively; both are clearly separated. The STED images also indicate that a frac-
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Figure 3.3: (a) Resolution < 20 nm in the focal plane of a STED microscope.
Whereas the confocal imaging mode (a, e) fails to resolve the bead agglomera-
tion, the corresponding STED recording (b and f) discerns every 24 nm bead. (c)
Averaged profile of bead images. The 22.3 nm FWHM indicates a lateral resolution
of ≈ 16 nm in the focal plane (after extraction of the bead size). (d) Data as indi-
cated by the dashed line in panel (b), both for the confocal and the STED recording.
Note the sharp peaks resulting from STED superresolution. (g,h) Intensity profiles
through the data in (f) proving the separation capability of the STED microscope.

tion of the fluorophore molecules leaked into the mounting medium (Mowiol by Merck,

Darmstadt, Germany) which is commonly observed for nanosized fluorescent beads. The

structure of the fluorophore and its molecular bleaching kinetics remained unknown to
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me, but at 80 MHz resolving the beads was precluded by photobleaching.

Furthermore the function describing the bead image by averaging over 75 beads that were

comparatively isolated and of lesser brightness was determined. The result is displayed in

Fig.3.3 (c), exhibiting a full-width-half-maximum (FWHM) of 22.3±2 nm, as well as in

the lower panel of Fig.3.2. As it is given by the convolution of the bead object function

with the PSF of the microscope, the bead image function in Fig.3.3 (c) is just an upper

bound for the actual PSF. Therefore, the actual resolution of the STED microscope is

below 20 nm. If the PSF and the bead function are coarsely approximated by a Gaussian,

one can assess the actual focal plane resolution as = 15.8±4 nm. Comparison of this

value with the resolution limit given by Abbe’s criterion in an epifluorescence microscope,

λFL/2nsinα = 190 nm, demonstrates a ≈ 12 fold gain in focal plane resolution.

Reducing the repetition rate by a factor of 320 as compared to the standard 80 MHz

implementation initially appears unappealing, because of the concomitantly reduced il-

lumination duty cycle. However, experiments comparing the two illumination schemes

showed that for the Rhodamine-like dye Atto532 (AttoTec, Siegen, Germany), as well as

for many other dyes, this factor is largely compensated by the total yield of fluorescence.

For example, in the 80 MHz case, the maximum applicable average power on an Atto532-

labeled sample was 2 µW for excitation and 15 mW for STED, with corresponding focal

intensities of 0.43 MW/cm2 and Imax
STED = 250 MW/cm2, respectively. In the 0.25 MHz

case, I employed 0.1 µW for illumination and 0.5 mW for STED, but the lower repeti-

tion rate gave rise to a much larger peak power: 7 MW/cm2 for excitation and Imax
STED =

2.2 GW/cm2. In terms of pulse energy, the individual STED pulse reached a maximum

value of 15mW/80MHz=0.1875 nJ in the 80-MHZ case and 0.5mW/0.25 MHz=2 nJ under

T-Rex conditions.

Thus, the T-Rex conditions not only allowed to utilize STED pulses which were 9 times

more intense, but also to excite the molecules 16 times more efficiently per pulse. In fact,

calculations show that 17 % of all molecules in the inner focal spot were excited to S1

by each pulse. Strong excitation not only favoured a strong fluorescence signal but also

effectively prepared the grounds for STED by better emptying the S0 and enhancing the

S1 population. Comparison of the total fluorescence yield showed that in the T-Rex (0.25

MHz) case, the integral signal before molecular bleaching was ≈ 30 times larger than in

the 80 MHz counterpart optimized for maximal resolution. Therefore the extension in

recording time was only 5- to 10-fold compared with the 80 Mhz-case. Because of the

stronger signal, the typical dwell time in the images was 3-8 ms per pixels. Fig.3.4 shows

the direct performance comparison on the same yellow-green bead sample between the

80Mhz-setup, optimized in terms of peak power, as well as the 250 kHz-setup, optimized

respectively. Obviously, bleaching concearning mainly the STED-bleaching through dark

state (triplet) absorption, is in the second STED image at 250 kHz (Fig.3.4 (g)) nearly
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Figure 3.4: Comparison of an 80 Mhz- and 250 kHz- STED setup. (Upper row)
Recordings at 80 Mhz, with (b) and (c) showing two consecutively taken STED im-
ages; (Lower row) respectively taken images at 250 kHz with additionally changing
the fast axis from (f) to (g). Note the bleaching reduction from the comparison of
(c) with (g). (d) Profiles of 2 beads taken under both imaging conditions, respec-
tively; note the 3-fold increase in resolution at low-repetition rate condition (250
kHz). (h,j) Magnified subregion after RL-deconvolution. Both images recall every
single bead at its position thus demonstrating the reliability of the STED method.

supressed when comparing it to the according second STED recording at 80 MHz (Fig.3.4

(c)), although the STED peakpower at 250kHz is nearly an order of magnitude larger.

Moreover, the resolution increase at low repetition rate conditions is vividly demonstrated

in (d), showing the same beads resolved in approximately 3-fold increased resolution.

Finally note, that both consecutively taken, but independent STED images of the same

bead distribution (outtakes in (f,g)) recover every single bead at its very position thus

demonstrating the reliability of the STED method itself.

3.3 Biological applications of T-Rex STED-microsopy

After proving the new resolving power of the T-REX STED-microscope, the next step is

to launch it for biological relevant problems. To this end the structures of interest were

labeled by immunostaining methods ([58]) using Atto532 as organic fluorescent marker,
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having shown its applicability under T-REX conditions in chapter 2 and STED compati-

bility in previous applications ([56],[59]). A highly visible advantage of STED microscopy

is that in general any staining protocol can be performed as usual for confocal microscopy.

As a control, all images in the following were recorded in the STED and confocal mode

line by line by turning on and off the STED laser beam.

3.3.1 Biological structures accessible with STED

Initially one must deal with the justified question in which parts, organelles and structures

of cells STED-microscopy can be successfully applied, since the generation of the STED

beam requires e.g. sophisticated PSF engineering, which could be influenced by variations

in the refractive index in different types of tissue. This question will simultaneously break

the ground for the general applicability for the STED method in cell biology. During

the various biological projects I came across many different parts of a cell, including the

nucleus, mitochondria, the cytoskelett or proteins embedded in the plasma membrane.

Fig.3.5 gives an overview of the cell structures that could be images with STED microscopy

providing a resolution ability in the focal plane of ≈ 20 nm. Shown are the confocal and

according STED images (linear deconvolved where indicated) throughout different parts

of a cell, demonstrating how STED-microscopy can open up new insights into cell biology

by providing macromolecular scale resolution ability.

(a) Assembly of SNAP25, a SNARE protein which is involved in synaptic vesicle fusion on

the plasma membrane of mammalian cells ([60]). The substructure of the highly cluster-

ing protein pattern of SNAP25 can only be revealed by high resolution STED-microscopy

([61]). Another example shows the true size dimensions of vesicles from the same mam-

malian cells, which can be seen in the T-Rex STED image in (b) performed on the vesicle

protein Synaptobrevin 2. Here the vesicles were previously been extracted from the cell

during the purification process (for details see [62]). The arrow is indicating a FWHM of

36 nm, which is consistent with size evaluation from EM imaging ([63]). In (c) the tubulin

structure from the cytoscelett of a cell is shown in both imaging modes. The STED image

clearly resolves the bundles of tubulin fibres.

The ADP/ATP carrier, also referred to as ANT (adenosin nucleotide transporter), is the

most abundantly occurring transporter of the inner mitochondrial membrane and is re-

sponsible for the membrane potential-driven exchange of ATP versus ADP between the

inner-membrane space and the cytosol ([64]). The function and the electrogenicy of the

protein have been investigated in detail, but its localization in the inner membrane re-

mains unclear. The confocal recording of ANT in mammalian cells in (d) does not indicate

a nonuniform distribution of the protein, whereas only the STED recording can uncover

the clustering behaviour of ANT in the inner membrane of the mitochondria.
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Figure 3.5: STED-microscopy performed in conventional confocal and STED mode
(deconvolution applied where indicated) in various compartments and organelles of
a cell. Scale bar 200 nm (a,b,e,i) and 500 nm (c,d,f,g,h). For explanation see text.

Turning into the nucleus Fig.3.5 (e) represents recordings of H3K9me3, a specific post-

translational modification of the Histone H3 that has been associated with heterochro-

matin in the cell nucleus. Heterochromatin is the transcriptionally silent region of the

genome, that is more densely packed than the active regions ([65]). Note that the STED

image clearly resolves the arrow indicated area into defined and separated spots, whereas

the confocal fails to do so.
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Diverse cellular processes are carried out by specific integrin-mediated adhesions. Cell

spreading and migration are driven e.g. by focal complexes, whereas robust adhesion to

the extracellular environment are dominated by focal adhesions ([66]). The mechanism(s)

governing those distributions in time and space as well as the interaction between differ-

ent types of adhesions are unknown. Here it is shown that STED-microscopy is able to

address the nanopatterned structure of different focal adhesion proteins of PAEC (porcine

aortic endothelial cells) cells1. Fibronektin (f), Paxilin (g) and Tensin (h), the focal ad-

hesion proteins which were studied, show clustering behaviour in the STED recordings,

which cannot be recovered by conventional imaging. Especially in the case of Fibronektin,

showing similar appearance in the confocal image like tubulin (comparing the confocal

images of (f) with (c)), the STED image decodes once again a strict and regular clustering

behaviour of the protein. Also Paxilin shows at the focal adhesion areas a clustered sub-

structure of distinct adhesion ”hotspots”. This result of uncovering nanostructure within

individual adhesion spots is also addressed by a different approach of studying the coher-

ences behind the molecular arrangement of integrins in cell adhesion where experiments

with living cells are carried out on nanostructured surfaces ([67]).

Finally (j) reveals the superresolving power of a highly compartmentalized structure of

mammalian interphase nuclei. Particularly interested were the nuclear ”speckles” enriched

in premessenger RNA splicing factors and polyadenylated RNA ([68],[69],[70]). I imaged

the distribution of the speckle marker protein, SC35. In contrast to the confocal imaging,

the resolving power of the STED-microscope allowed to separate the speckles into distinct

particles that have so far been accessible by electron microscopy only ([71]). Indicated

areas feature FWHM profiles of 25 nm (i) and 22 nm (ii) in the raw STED data (not

shown), respectively, thus proving the 20 nm resolution obtained in the nucleus of a fixed

but otherwise intact mammalian cell. Notably the effective PSF of the STED-microscope,

featuring no z-resolution enhancement in this realization, is also able to visualize details

down to the nanoscale in real 3D structures. T-REX STED-microscopy appears to be

suitable to bring further critical insight into how the nuclear organization ensures regu-

lated gene expression.

Having shown that various biological fields regarding various parts of cells are feasible

of exploiting the enhanced information of high resolution STED-microscopy, the next

chapter illustrates concrete biological results of the latter method in further highlighted

examples of the successful application of T-Rex STED-microscopy in cell biology.

1In kindly collaboration with Tova Volberg and Benjamin Geiger, Department of Molecular Cell Biology,
Weizmann Institute of Science, Rehovot 76100, Isreal
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3.3.2 Anatomie of a fusion protein Syntaxin 1 forming membrane

microdomains

The fluid model for the structure of biological membranes ([72]) proposes single proteins

to diffuse freely in a sea of lipids. However, in the plasma membrane of eucaryotic cells

many proteins are concentrated in sub-micron sized clusters whose architecture and dy-

namics are still enigmatic. In fact, organization into clusters is well established for an

increasing variety of membrane proteins ([73]). However, these domains are too small to

be characterized by conventional light microscopy. To overcome this limit nanoresolu-

tion STED microscopy was combined in a more comprehensive study with quantitative

biochemistry and FRAP-analysis ([74]) to explore the mechanism of the cluster forma-

tion in more detail. For this study Syntaxin 1 was used as an example because it is a

relatively simple membrane protein being involved in the SNARE interactions of vesicle

fusion. Recently it was already shown, that the SNARE motif of Syntaxin 1 is involved in

cluster formation ([75]). Fig 3.6 displays a representative image of syntaxin distribution

in both imaging modes, confocal (a) and STED (b), both subject to a RL-deconvolution

respectively, on a membrane sheet of a PC12 cell. Indeed, the STED image can display
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Figure 3.6: T-REX STED performed on Syntaxin I membrane sheets. (Inset in a)
Effective PSF’s for the confocal (190nm) and STED recording (38 nm); the latter
is simulated with the measured depleting curve and both measured PSFs. RL-
deconvolved confocal (a) and STED (b) recording of a typical membrane sheet. (c,d)
Magnified outtake with clearly resolving two individual Syntaxin clusters distanced
with 51 nm in the STED image. (e) Histogram of the clustersize from 304 individual
clusters from 8 different patches in the raw STED data.

the single Syntaxin clusters separated and als give an upper limit of the clustersize by
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identifying the FWHM of 304 individual clusters on eight different membrane sheets (e).

With respect to the size of the effective STED-PSF (38 nm) at the given STED power level

used for imaging (inset (a)), determined by the light distribution of both PSF’s (excitation

and STED-doughnut) and the according depleting curve, the upper limit in clustersize

is ≈ 64 nm, suggesting dense packing of clustered syntaxin molecules. This size has

especially to be taken serious, as the imaging PSF is crucially below the determined size

thus being able to resolve smaller structures. The magnified outtakes shown in (c) and (d),

respectively, demonstrate from the resolution point of view, that only the STED image

contains object information on this spatial scale with clearly separating two individual

Syntaxin clusters by 51 nm.

The clustersize is an important input parameter only being accessible by STED mi-

croscopy in the comprehensive modeling of the anatomy of supermolecular membrane

protein structures like the Syntaxin 1 clusters thus affirming STED-microscopy to be an

important tool in the microdomain research ([75]).

3.3.3 Signal transduction for biologically relevant odors involves the

protein TRPM5

Some olfactory sensory neurons (OSNs) in the main olfactory epithelium (MOE), a special-

ized epithelium tissue inside the nasal cavity, respond to pheromones, but transduction

for these stimuli in the MOE is poorly understood ([76]). A key step in transmission

of olfactory information is the activation of the canonial cAMP (adenosine 3‘,5‘ cyclic

monophosphate) signaling pathway by binding of airborne odor to olfactory receptors,

resulting in influx of calcium through a CNG (cyclic nucleotide-gated) channel and sub-

sequent depolarization ([77]). Biologically relevant chemosignals including pheromones

signal social, sexual, genetic makeup and species identity are important for the survival

of the individual and the species. Traditionally, it was thought that the vomeronasal

organ, a tubular structure located in the roof of the mouth that is associated with the

accessory olfactory system, mediates detection of pheromones - chemicals given off by

an animal that elicit a response, physiological and/or behavioral, in a conspecific ([78]).

However, a growing number of studies show that the main olfactory system also responds

to pheromones ([79]). Although it is now clear that the main olfactory system is involved

in detection of biologically relevant chemosignals, the transduction pathway(s) stimulated

by these chemical stimuli in OSNs is (are) not well understood.

A comprehensive study of TRPM5, the protein M5 from the transient receptor potential

channel in OSNs, strongly implicated the participation in chemosensory transduction, not

only in the taste system as previously reported ([80]), but latterly also in the olfactory

system ([81]). Within the process of this investigation STED microscopy was performed
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on immunofluorescence staining of the olfactory epithelium with a TRPM5 antibody (Fig.

3.7).
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Figure 3.7: Analysis of spot size for T-Rex STED images of TRPM5 immunoreac-
tivity in the cilia layer. Confocal (a) and STED (b) images of TRPM5 immunoflu-
orescence in the cilia layer of the olfactory epithelium. Inset in a: Confocal image
at a lower magnification taken with a conventional confocal microscope. Inset in
b: Smallest spot (antibody cluster) sizes in the confocal (189 nm) and STED (35
nm) imaging modes (each is an average of 3 individual spots). c and d: Higher
magnification images of the areas enclosed by the dashed boxes in a and b re-
spectively. The image in d represents the STED image further processed using a
linear deconvolution (LD). (e) Histogram showing the distribution of full width half
maxima (FWHM) for the clusters in three separate images (130 individual clusters
from three separate images). In order to estimate the FWHM background was
subtracted from the STED images and each cluster was fit with Lorentz-shaped
profiles. If one assumes a 35 nm effective STED-PSF (indicated by the minimal
spot sizes in the images) the real mean object size of the clusters is in the order of
≈ 60 nm.

The images (a) and (b) show the TRPM5 distribution in the apical layer of the olfactory

epithelium in confocal and STED mode, while the inlay in (a) illustrates the confocal cross-

section of the olfactory epithelium indicating the site of recording. Higher magnification

outtakes are shown in (c) and (d), with the STED image revealing discrete spots with an
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average size of 69 nm derived from the raw data (e). I found similar punctuate distribu-

tion for CNGA2 (not shown), consistent with previous electron microscopy studies ([82]).

A further intriguing finding of this study is the co-expression of TRPM5 and CNGA2 in

the majority of TRPM5-expressing OSNs investigated by conventional fluorescence mi-

croscopy ([81]). Could these two channels, the CNGA2 channel and the TRPM5 channel,

interact directly? TRPM5 has been shown to be a Ca2+-activated channel ([83]), while

under physiological conditions the current flowing through the CNGA2 channel is also

made up mostly of Ca2+. In fact, the finding that immunoreactivity for TRPM5 is found

in small spots with average diameter of 69 nm suggests that the TRPM5-channel may be

clustered in small microdomains. If CNGA2 and TRPM5 were co-localized within these

microdomains there would be efficient activation of the TRPM5 channel by Ca2+ flowing

through the CNGA2 channel. This information is likely to be accessible in the future of

high resolution microscopy experiments, leading to further insights in the mechanism of

signal transduction in the olfactory system.

3.3.4 Flow-induced functional adaptation and differentiation of

endothelial cell junction

Endothelial cells line the inner surface of all blood vessels and the heart, and consti-

tute a diffusion barrier between the blood and tissue, which is required for a controlled

exchange of water, solutes and migrating cells between the blood and the surrounding

tissue. A transport through the endothelium can occur either transcellular by vesicular

machanisms or transport molecules in the cell membrane, or paracellular through the

intercellular space. The paracellular transport is controlled by different cell junctions,

particularly the adherens junctions and the tight junctions. While the tight junctions are

well expressed in the endothelial cells of the blood brain barrier, they are poorly deve-

loped or even absent in most other endothelial cells. In these cells the paracellular barrier

is mainly controlled by adherens junctions. The cell to cell adhesion in these junctions

is mediated by the vascular endothelial cadherin (VE-cadherin) ([84]), which is an en-

dothelial cell-specific adhesion protein. The extracellular domain of this transmembrane

protein directly connects adjacent cells to each other while the intracellular domain is

linked to actin filaments, composed of the protein actin, which is a prominent compound

of the cytoscelett ([85]).

Due to their localization, endothelial cells are constantly subjected to shear stress gen-

erated by the flowing blood. This mechanical stimulus plays a pivotal role in vascular

endothelial structure and function. Endothelial cells of the veins are polygonal in shape,

while endothelial cells of the arteries are spindle shaped and aligned in the direction of flow

([86]). Transposition of vein segments into the arterial circulatory system or application
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Figure 3.8: Imaging reorganization of VE-cadherin of endothelial cell junctions under
stress with nanoscale resolution STED-microscopy. (a,b,c, inset) Low-magnification
confocal image indicating site of recording. Contrary to the confocal images (a,b,c,
left), the STED recordings (a,b,c, right) display clustering behaviour of VE-cadherin
with details < 40 nm. Panel (a) shows cells after exposure to low flow (0.5 dyn/cm2),
(b) after 15 minutes and (c) after 24 hours high shear stress exposure (12 dyn/cm2).
For direct comparison equally sized subregions of the STED images are further
highlighted with linear deconvolution (LD) (see Appendix A.2) (d,e,f). Note the
linearization of the cell contact protein distribution from d to f. Size distribution of
the VE-cadherin clusters in orthogonal directions (g) and its line density (density of
clusters along the cell junctions) under different stress situations as indicated (h).
(Inset f) Upper limit for the effective focal spots of confocal and STED microscopy
(average of 3 individual clusters within the images) determine the resolution of the
respective imaging modes under the applied power conditions for STED.
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of flow to endothelial cell cultures causes cell elongation and alignment as observed in ar-

teries in vivo ([87]). Those data identified fluid flow as a critical and physiological stimulus

in arterialisation and differentiation of the endothelium. Since flow-induced morphologi-

cal transition follows a characteristic time course of cell orientation, cell elongation and

alignment in association with cell migration ([88]) a spatially and temporally remodeling

of inter-endothelial junctions is required but the functional and structural consequences

remains to be investigated. In the present study the functional and structural adapta-

tion of endothelial junctions and barrier function in response to acute and chronic flow is

shown ([89]).

Results and discussion

Laminar flow causes endothelial cell elongation and alignment that requires a coordinated

regulation of endothelial cell junctions and was investigated on human umbilical vein en-

dothelial cell cultures. Laminar flow was applied to endothelial cells using an extended

cone-and-plate rheological system ([90]). Since VE-cadherin/catenin complexes and actin

filaments are critical in junction regulation, immunofluorescence staining was performed

(staining protocols see A.5). Under static and low flow conditions (0.5 dyn/cm2) VE-

cadherin was mainly localised in large overlapping endothelial junctions and exhibited

an irregular pattern of staining. At arterial levels of flow (12 dyn/cm2) immunofluores-

cence staining of VE-cadherin revealed a linearization of VE-cadherin, which describes

the reorganization of VE-cadherin closer to the cell to cell contacts. Simultaneously one

can verify reduced overlapping cell junctions and recruitment of junction-associated linear

actin filaments ([89]). However, confocal images of the VE-cadherin distribution could not

address the question of whether the VE-cadherin is altering its density at the cell contacts

when applying flow profiles. Fig.3.8 presents the STED-microscopy study on VE-cadherin

staining for different stress situations on endothelial cells. In contrast to the confocal im-

ages, the STED images of VE-cadherin of cells subjected to low flow (0.5 dyn/cm2, 24 h)

allowed the identification of clustering of proteins at the cell border (a). The profiles from

50 individual clusters were measured in the raw STED-images, providing round shaped

clusters of 63±11 nm in diameter (first histogram in g). Furthermore, the clusters appear

to be randomly distributed at cell junctions. Consistent with the observed transendothe-

lial electrical resistance (TER)-increase (for details see [89]) and the reorganisation of

junctional proteins and f-actin, STED microscopy revealed a largely linear distribution of

VE-cadherin after 15 minutes of shear stress exposure due to extended lateral clustering

(b). The cluster size remains basically unchanged with a diameter around 60±11 nm at

this time point (middle histogram in g).

In addition to the short flow exposure experiments, the STED images after 24 hours of

high flow uncover a further linearization of the cell junctions (c), featuring single chains

of VE-cadherin clusters at the cell-to-cell junction. Consistent with this observation the
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cluster sizes are significantly increased to 80±15 nm in diameter, indicating an aggrega-

tion of protein clusters at the elongated cell junction after 24 hours of high flow exposure.

In fact, further evidence of this long-term reorganization effect is given by the number of

clusters per chain length, which are considerably reduced form 12 clusters per µm under

low shear stress conditions to 6 clusters per µm for cells exposed to high shear stress for 24

hours (Fig.3.8 (h)). Thus shear stress induced reorganization of VE-cadherin consists of a

short-term linear reorganization of the VE-cadherin clusters, while the long-term exposure

additionally induces cluster aggregation at the cell contacts. Together with the observed

recruitment of filamentous actin to the junctions this pattern appears to be consistent

with the distribution of these proteins in vivo ([91]).

The presented study investigated the structural adaptation of endothelial cell junctions

in response to acute and chronic flow. Although VE-cadherin usually shows a diffuse

staining along the cell border, the clustered organization of this protein can not be re-

solved using conventional fluorescence microscopy. Using the potential of high resolution

STED microscopy, it became possible to show, that VE-cadherin forms cluster in the

range of 60-80 nm. Application of shear stress increased the size of VE-cadherin clusters,

which is consistent with flow-induced linearization of VE-cadherin along the junctions in

association with recruited actin that remained at the junctions even during long lasting

cell alignment. Both appears to be responsible for the early and long-term physiological

adaptation of endothelial barrier function. The data further support the concept that

shear stress is largely responsible for arterial differentiation of endothelial cells.
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3.3.5 Imaging nanopatterns of endosomal proteins

Containing a variety of synaptic proteins, the endosomes of PC12 cells have been used

extensively in in vitro assays for studying neuroendocrine activity. In gerneral those endo-

somes form structures of around 200-400 nm, occasionally even larger. Particularly they

have been found to generate synaptic vesicles ([92]), thus being a key player in the mech-

Figure 3.9: Synaptotagmin I molecules form distinct spots on endomsomes. Whereas
confocal microscopy exhibits a 190-200 nm diffraction limited spot per endosome
(a), STED microscopy recognizes sharp dots of 25-40 nm size (b), both indicating
its resolution as well as the punctuated spatial arrangement of synaptotagmin I on
the endosome. (c, d) Corresponding intensity profiles.

anism of neuronal signal transduction. So far, the resolution limit prevented to disclose

any substructure on endosomes using fluorescence microscopy. Fig.3.9 compares record-

ings of synaptotagmin I, a transmembrane synaptic vesicle protein, on purified endosomes

of the PC12 cell line ([92]). Whereas the confocal image (a) displays diffraction limited

blobs of 192 nm FWHM (c), the corresponding STED image (Imax
STED = 1.6 GW/cm2)

identifies protein patches in the range of 25-40 nm. Fig.3.9 (d) shows an intensity profile

through the protein labeled endosome, featuring a FWHM of 27 nm. Since the extent of

the molecular distribution of synaptotagmin I on the endosome plus the antibody label

is at least 15 nm, one can conclude that the actual lateral resolution of the system is 20

nm. In the process of vesicle formation one hypothesis being discusses is that endosomes

putatively form protein subdomains specifically containing just synaptic vesicle proteins,

such as synaptophysin. These subdomains subsequently break off. So far, this hypothesis

was difficult to put to the test, since endosomes are too small for conventional light mi-
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Figure 3.10: Synaptophysin forms elaborate nanopatterns on endosomes. (a) con-
focal reference, (b) STED microscopy plus a linear deconvolution (LD) revealing
ring-like and C-shaped nanoarrangements. (c,d) Line profiles through rings, both
of the LD (red line) and the raw STED data (black, with pixels).

croscopy, and the substructures cannot be easily recognized by electron microscopy due

to the lower efficiency of labeling with metal particles.

Fig.3.10 shows that STED microscopy displays synaptophysin patterns on endosomes,

such as nanosized C-shapes and rings ([53]). Note that the confocal recordings of synap-

totagmin I (Fig.3.9) and synaptophysin are similar, although the latter protein seems to

exists in typically larger numbers on individual endosomes and presents itself partly in

noncircular shapes (confocal recording in Fig.3.10 a). But there is no indication that

both proteins provide such different nanopatterns looking on the nanoscale. In the fourth

chapter of this work (4.3.2) these endosomal proteins are again subject of investigation

with a Dual-colour T-Rex STED-microscope.
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3.3.6 Imaging neurofilaments of the human brain

Fig.3.11 displays the protein heavy subunit of neurofilaments (NF-H) in the human

neuroblastoma cell line SH-SY5Y (retinoic acid-BDNF-differentiated) which establishes
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Figure 3.11: Imaging neurofilaments in human neuroblastoma. Contrary to the
confocal (a), the (b) STED recording displays details < 30 nm, as also highlighted
by the comparison of image subregions bordered by dashed lines (c) and (d). (c,
e) Subregion after linear deconvolution. Note that the deconvolved confocal image
does not yield a substantial gain in information. (f) Profiles of raw data demonstrate
the ability of (undeconvolved) STED data to reveal object structures that are far
below the wavelength of light.

crosslinks to organize and stabilize neurofilaments in axons ([93]). Neurofilaments play

an essential role in many neurodegenerative diseases such as Parkinsons’s. In contrast

to the confocal (a) image, the STED (b) image identifies neurofilamental substructures

of 20-30 nm size. This is particularly apparent in (d) showing a partial area of (b) at a

larger magnification, as well as in (e) where the details are further enhanced by a linear

deconvolution. The line plots of raw data in panel (f) prove that substructures that are

only 45 nm apart are separated by a dip of 50 %. Interestingly the protein is not con-

tinuously distributed but mainly organized in chains of clusters. This becomes especially

apparent when rather isolated axon areas of the neuron cells are imaged, as shown in

Fig.3.12. The axon strand in the middle of the recording actually consists of two parallel

chains of neurofilamental protein revealed only by STED microscopy (b). Each chain is
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Figure 3.12: Macromolecular scale fluorescence imaging close to the immunostain-
ing limit. (Inset middle) Immunostaining schematic with primary and secondary
antibody; the size of such a construct is estimated with ≈ 18 nm. (a) Confocal
and (b) STED recording of rather isolated neurofilaments of an axon strand; the
indicated areas (circles) mark protein clusters in the range of ≤ 24 nm FWHM. (c)
RL-deconvolved STED data. (d) Convolution of an 18 nm object with a Lorentz-
shaped profile of 20 nm FWHM leads to a theoretical object size ≈ 26 nm. Note
that the measured STED profiles in (b) are below this value, indicating a true
FWHM of the effective imaging PSF to be < 20 nm. Scale bar = 200 nm.

represented by very small individual clusters of proteins and crosslinked by the same pro-

tein clusters as indicated by the arrow in (b). The STED image shows a bunch of these

clusters each being in the order of ≤ 24 nm FWHM (indicated by circles). Note that the

RL-deconvolved data (c) provides an extreme sharp contrast in resolution compared to

the confocal recording in (a). Representing the convolution of the microscope’s PSF with

the spatial extent of the labeling, the FWHM of the profiles are just an upper limit for

the actual imaging resolution. In fact, with a complex size of 6-8 nm for the protein, the

secondary antibodies form an estimated 12-16 nm diameter volume around the similarly

sized primary antibody ([94]). The whole construct therefore easily reaches diameter val-

ues of ≈ 18 nm (Fig.3.12 middle inset). Thus, the resolution has attained values that are

close to the limits set by the labeling itself. A straight forward convolution of an 18 nm

object with an estimated effective Lorentzian of 20 nm FWHM for the STED-PSF leads
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to an image of 26 nm FWHM (d). This value is larger than the smallest object sizes de-

fined by T-REX STED-microscopy in (b), which again indicates the focal plane resolution

to be below 20 nm. Note that the sampling rate was 15 nm, thus leaving a theoretical

chance of having underestimated the indicated cluster sizes. However, in Fig.3.12 (b) are

approximately 39 clusters present with a FWHM > 30 nm and simultaneously are at least

6 clusters ≤ 24 nm indicated. Assuming a true cluster size of 24 nm the expected ratio

of cluster images ≤ 24 nm and clusters > 30 nm due to a 15 nm sampling rate (30:6) is

met in good agreement.

Conclusion

Intensity profiles of a FWHM of 22-30 nm (Fig.3.9, Fig.3.11, Fig.3.12) demonstrate the

fundamental progress in resolution brought about by T-Rex STED-microscopy. The 10-

to 12- fold multilateral increase in resolution below the diffraction barrier has been en-

abled by the elimination of the molecular triplet state excitation as a major source of

photobleaching in STED-microscopy. The attained far-field optical resolution is similar

to that of current high-end x-ray microscopy ([95]). In contrast to the latter, STED has

the potential to provide 3D images without tomography and, what is perhaps more im-

portant, can harness fluorescence labeling. Moreover, the presented STED-microscopy

results from various fields of cell biology show that lens-based fluorescence microscopy

has reached macromolecular-scale resolution. This arguably unexpected power of light

microscopy is anticipated to unravel many fundamental problems in life science.
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The last chapter of this thesis presents the implementation of two independent imaging

channels in a STED microscope and its first biological applications in terms of protein

colocalization. In every biological project addressed by STED microscopy the discussions

were at some point ruled by the question: What about the possibility of mapping out two

individual proteins with subdiffraction resolution with the purpose of protein localization

on the nanoscale? In fact, colocalization of proteins is a common method in fluorescence

microscopy. Although the colocalization accuracy is not limited due to diffraction, how-

ever, in most cases the drawback of information quality is again due to the fact that

two diffraction limited images are aligned to each other, thus not revealing any spatial

information being smaller than ≈ 200 nm.

An obvious challenge toward discovering protein interactions on the molecular level is to

colocalize different proteins on the nanoscale, which not only calls for two superresolution

images of two different fluorophores but simultaneously for the ability of colocalization

with accuracy one order of magnitude beyond what is needed for conventional optical

imaging so far. In the following is pointed out how the experimental realization of the

imaging components and the alignment procedure of both images has been worked out.

In consequence, the investigation of the spatial relationship of two individual proteins at

the nanoscale exemplified on endosomes and mammalian mitochandria can be presented.

4.1 Experimental realization of a Dual-Colour

STED-microscope

Starting with a STED microscope optimized in its two wavelengths for effectively exciting

and depleting a green fluorophore in the visible (emission maxima at 550 nm) I headed

for the straight forward approach to introduce two additional independent laser beams

in the microscope, which operate a second (red) fluorophore (emission maxima at 680

nm) under STED conditions. This approach requires the necessity for generating two

independent doughnut shaped depleting pulses. To this end, half of the infrared pulse

energy provided by the regeneratively amplified mode-locked Ti:sapphire oscillator was

53
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used to pump an OPA thus generating the visible STED beam at 603 nm and the second

half directly supplied the setup with infrared pulses of 780 nm, ≈ 200 fs pulse duration

and energies up to 1.5 µJ, as shown in Fig.4.1 (see supplememt in ([96])).
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Figure 4.1: Experimental setup of a Dual-Colour STED-microscope featuring T-Rex
conditions for a green and a red fluorophore. See text for explanation.

To stretch the infrared STED light (similarly to the visible beam) to ≈ 300 ps ([31])) by

up-chirping, it was diffracted from a pair of gratings before being coupled to a 2-m hollow-

core fibre (Air6-800, Photonic Crystal Fibers, Denmark). Both fluorescent dyes (Atto

532 and Atto647N, respectively) were excited via two laser diodes emitting at 470nm and

635nm (Picoquant, Berlin, Germany), each of them electronically synchronized with the

according STED pulse train. The conversion of both STED beams into doughnut-shaped

light distributions were individually carried out by means of two spatial light modulators

(Hamamatsu, Hamamatsu City, Japan) each delivering a (0-2π) helical phase ramp. In

combination with circular polarized light, this imprinted phase distribution generates

in the focal plane of an objective lens the typical doughnut shaped light distribution
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featuring a singularity in the middle. Since the polarizations at both STED wavelengths

have to be organized perfectly circular, this could not simply be achieved by a single

phase-quarterplate (λ/4) likely because of chromatic imperfections of this optical element

regarding wavelengths being ≈ 180 nm separated. For this reason two (λ/4)-phaseplates

were introduced, one optimized for the visible and the other one for the infrared, on a

repositionable mount. Accordingly the (λ/4)-phaseplates had to be switched between

subsequent recordings of both colours (Fig.4.1). The central phase singularity of the

modified beams coincided with the optical axis. All four beams were coupled via carefully

dichroic filtering into the aperture of the 1.4 oil immersion lens.

On a first look the handling of four laser beams might be recognized as inconvenient

complexity, however, this strategy provides the user with the valuable benefit of pre-

venting spectral overlap of the fluorescence windows, thus having cross-talk free spatial

information of both imaging channels. The dichroic handling of four wavelength and two

fluorescence windows (545/50 and 680/50, AHF Analysentechnik, Germany) is illustrated

in Fig.4.2.

Figure 4.2: Dichroic filter setup and detection windows for a green and a red fluores-
cent dye in a Dual-colour STED-microscope. Position of the dichrioc filters DM1,
DM2 and DM3 in the setup see Fig.4.1.

The most critical dichroic mirror is DM2 (see also Fig.4.1) due to the various demands
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regarding its position in the setup: the 600 nm visible STED light has to be coupled into

the microscope, while already 635 nm for the red excitation must pass effectively through

it; additionally both detection windows need to be fully transmitted. Note that within

the two detection windows all diochroic mirrors (except DM2 at its red edge) deliver more

than 90 % transmission. Matching both spectral detection windows, both fluorescence

maxima of the used organic fluorophores (Atto532 and Atto647N) are separated by 130

nm which prevents fluorescence cross talk in both detection channels.

The spectral separation is especially necessary, since the visible STED beam meets the

excitation spectra of the red dye, which is hardly to prevent by using two independent

STED wavelengths. This fact has two major implications on the recording procedure of

both colour images: firstly, considering the STED intensity to be more than three orders

of magnitude higher than the excitation light intensity, the red fluorophore is immediately

bleached out when scanning the visible STED beam through the sample. Therefore the

complete image of the red fluorophore has to be taken line by line in confocal- and STED-

mode consequently before similarly capturing the distribution of the green dye.

Secondly, as both superresolution images of both colours have to be taken one after the

other a reliable alignment procedure with nanoscale accuracy becomes necessary. To this

end, two independent alignment procedures were established, one of them utilizing two-

colour labeled fluorescent beads (Molecular Probes, Leiden, Netherlands), which provide

a colocalization accuracy down to ±5 nm (see Appendix A.3).

Fig.4.3 (a,b) shows the measured spots of the visible pulse pair at 470 nm and 603 nm,

while (d) and (e) render the infrared counterpart beams at 635 nm and 780 nm. All four

wavelengths were measured on the same gold nanoparticle for probing the different light

distributions via scattering. To demonstrate the resolving power of the individual imaging

channels, I measured the upper limit of the effective point spread functions by averaging

35 individual yellow-green fluorescence beads and 30 individual examples of crimson fluo-

rescence beads (Molecular Probes Eugene, OR), respectively. Both fluorophores are not

specified, but the manufacturer provided the size distribution to vary by 4 nm around a

mean diameter of 24 nm with electron microscopy for both cases. The results are depicted

in (c,f) revealing a bead image of 25 nm and 65 mn for the green and the red channel

respectively ([96]). Note that the red imaging channel was limited to 65 nm in this study,

since the STED wavelength of the infrared beam could not be tuned below 780 nm, which

is not the optimal depleting wavelength for the red fluorophore. With another iteration

of improving the red imaging channel for utilizing wavelength tunability, the resolution

in the red channel is expected to meet the conditions of the green counterpart.

In the following the applicability of two STED beams and two excitation light sources

for taking double colour images with diffraction unlimited resolution will be the center of

interest.
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Figure 4.3: STED microscopy operating spectrally separated fluorophores at four
different wavelengths. Measured focal spots (PSFs) for excitation and depletion
beam in the green (a,b) and the red counterparts (d,e), respectively. The blue spot
(a) features a FWHM of 190 nm, whereas the red spot (d) provides 250 nm FWHM.
The effective spots operating under STED conditions are depicted for both channels
in c and f featuring a FWHM of 25 nm and 65 nm, respectively.

4.2 Performance of a Dual-Colour STED-microscope

The first demonstration of a successful expansion of STED microscopy to Dual-Colour

operation is done by imaging of yellow-green and crimson fluorescence beads emitting in

the 500-530 nm and 640-670 nm range, spread out on a silaniced cover slip, as shown

in Fig.4.4. The imaging parameters were 3 ms (5 ms) pixel dwell time for the green

(red) colour image, the applied excitation peak powers were I470nm=4,2 MW/cm2 and

I635nm=4,9 MW/cm2 throughout the measurements and the STED peak powers were

adjusted to Imax
STED(603nm) =3,4 GW/cm2 and Imax

STED(780nm)= 1,1 GW/cm2.

Panel (a,c) depict both confocal recordings, while only the according RL-deconvolved

STED recordings can provide object information on individual bead positions as depicted

in (b,d). Insets in (a) and (b) show the confocal recordings of the same area before and

for the visible case also after both STED recordings. Note, that the measured intensity

distributions are not influenced by the STED beams, particularly the visible dye is not

compromised by the red STED-beam previously being scanned through the specimen.

In (e,f) the aligned confocal and RL-deconvolved STED recordings (see Appendix A.3,

first alignment method applied) are presented. Fig.4.4 (f) identifies beads of opposite

colour being 26 nm apart from each other. Panel (g) depicts fluorescence depleting curves
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Figure 4.4: Imaging procedure of both STED channels exemplified on fluorescence
beads of two species, yellow-green and crimson fluorescence beads. Confocal (a)
and RL-deconvolved STED (b) recording, taken line-by-line in the red channel.
Respectively the green channel imaged afterwards on the same sample area (c,d).
(Inset in (c)) Low-magnification confocal recordings before and after the STED
imaging procedure. Note, that the image ”after” is not distorted by both STED-
images taken previously and shows congruency with the confocal image taken at the
beginning (”before”). (e,f) Magnified and aligned outtakes of (a-d); f represents a
Dual-colour superresolved STED image with two opposite colour beads indicated
to be < 30 nm apart. (g) Depleting efficiencies for the yellow-green and the crimson
fluorescence beads against the according depleting intensity Imax

STED for the visible
and the infrared STED beam, respectively.

for the yellow-green and the crimson fluorescence beads against the maximum applied

depleting intensity Imax
STED at the doughnut crest, for the visible (603 nm) and the infrared

(780 nm) STED beam, respectively. Note the higher depleting efficiency of the visible

STED beam (90%) against the infrared counterpart (82%). This undepleted fluorescence

is the reason for the pronounced confocal background in the red STED images, which

should be effectively minimized by tuning down the STED wavelength for the infrared

depleting beam. As the effective PSF width is in the order of the spatial distance of
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characteristic object features, additional information can be extracted from the recorded

images by utilizing photon localization methods ([97],[98]) (see Appendix A.4). The idea

is to exploit a-priori object knowledge by identifying distinct localizations of separable

bead positions and substituting the recorded area with the real objects of a 24 nm bead

projection. The results are shown in Fig.4.5. As expected the new restoration technique

Confocal STED+LD STED++

b ca

200nm

Figure 4.5: Resolution of < 30nm (green) and ≈ 65nm (red) in the focal plane of
a Dual-colour STED-microscope. The confocal image (a) fails to resolve the bead
agglomeration, whereas the corresponding STED image (b) displays every separable
24 nm red and green bead. Applying a restoration algorithm (see Appendix A.4),
the maximum clarity of the object is gained (c). Note that two individual beads of
different colour indicated by arrows in (c) being 52 nm apart are perfectly separated
with nm precision. Within the dashed area in (c) the object is fully restored by
applying the algorithm on the STED data.

increases the localization ability of the beads in the restored image. The positions of

isolated bead images can be estimated with accuracy of a few nm or even less. Therefore

also distances between neighbored bead images of different colour down to 52 nm indicated

by arrows in (c) could be estimated with nm precision. Note that in case of identifying

every single bead by STED-microscopy in the recorded area, the object would be fully

restored by this advanced restoration procedure.

4.3 Nanoscale colocalization studies of two individual

proteins

4.3.1 Colocalization of synaptic vesicle proteins on endosomes

Having demonstrated the operation principle of imaging two independent superresolution

images with nanoscale colocalozation ability on bead samples I turned back to biologi-
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cal imaging of individual proteins. Resuming the study of protein distribution on the

endosomes of PC12 cells from section (3.3.2), this time double-labeled endosomes with

two synaptic vesicle proteins, synaptotagmin I and synaptophysin, tagged with the red

(Atto647N) and green (Atto532) fluorophor, respectively, were investigated. PC12 cells

contain abundant small synaptic-like vesicles, which they can release upon stimulation.

The vesicles are generated (and possibly recycled) through the endosomal compartment,

which contains a variety of synaptic vesicle proteins. The earlier mentioned hypothesize

that during vesicle biogenesis/recycling, domains rich in synaptic proteins would enrich

on the endosomes, and then ”break off” to form new vesicles could be further addressed

([92]): Are all synaptic vesicle proteins localized to the same places on the endosome?

To clarify this question a cellular fraction highly enriched in early endosomes was pre-

pared, both proteins were immunostained, and finally STED imaging (Imax
STED(603nm) =

STED+LD
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Figure 4.6: Resolving the nanostructure of two synaptic proteins, synaptotagmin I
(red) and synaptophysin (green) on endosomes. (a) LD-deconvolved confocal refer-
ence, (b) STED microscopy plus LD (RL for f) (see Appendix A.2) revealing large,
ring-shaped domains, while the by far less abandoned protein forms largely puncta-
like structures. (c-f) Additionally there are double-labeled fluorescence beads in-
corporated in the sample, being distinguishable by providing a superresolved fluo-
rescence bead image in both channels simultaneously (indicated by arrows in d and
f). The alignment procedure for the indicated beads allows alignment precision of
±5 nm (see appendix A.3). Localization profiles of both proteins are reliable within
this accuracy as shown in (g). Scale bar = 100 nm.
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1,2 GW/cm2 and Imax
STED(780nm) = 0,7 GW/cm2) was performed on individual endosomes

([96]). Fig.4.6 displays fully aligned images of the localization of both proteins. Confocal

and STED recording were subject to a linear deconvolution (RL-deconvolution in (f)) for

maximizing the information content. Synaptophysin is by far the more abundant pro-

tein. It resulted in large, ring-shaped domains as revealed in the green channel of Fig.4.6

(and Fig.3.10). In contrast, synaptotagmin I formed puncta-like domains, which largely

colocalize with synaptophysin-containing structures (red channel in Fig.4.6, compare also

with Fig.3.9). Thus, surprisingly, not all synaptic vesicle proteins occupy the same sites

on the endosomes. One possible explanation for this phenotype is that synaptophysin-

containing sites that lack syaptotagmin I could contain other isoforms such as synaptotag-

min IX ([99]). Alternatively, it is possible that not all synaptophysin is directed toward

synaptic vesicle formation - only the sites where proteins like synaptotagmin also exist

are going to generate new vesicles, with other synaptophysin patches remaining on the

endosome. Note that the corresponding confocal images in (a,c,e) cannot provide any

information toward the localization of the two proteins on the endosomes; even rarely can

be estimated, if both proteins exist on the same endosome or not.

It should be mentioned that in (c,d) four fluorophores are imaged during the acquisition

procedure with two of them fluorescing in the green (Atto532 and yellow-green dye from

the double-colour beads) and two in the red channel (Atto647 and crimson fluorophore

from the double-colour beads), respectively. All four dyes can be effectively quenched

by the corresponding STED depleting beams, which illustrates again that the depleting

phenomena is a common photophysical behaviour of fluorescing molecules in general. Su-

perresolved images of fluorescence beads within the recorded area, which are displayed in

both channels are indicated by arrows (d). Fluorescence, which only occurs in one of the

channels is referred to as fluorescence signal of the tagged proteins.

The images of the two-colour reference beads are utilized for overlaying both STED im-

ages with an accuracy corresponding to ±5 nm. Within this presicion the double-colour

intensity profile in (f) displays a profile of protein distribution of synaptotagmin I (red)

and synaptophysin (green), being 25 nm apart from each other. Nanoscale localization of

different proteins on endosomes opens up new possibilities in the study of vesicle forma-

tion.

4.3.2 Two-colour imaging of ATP synthase and translocase

(TOM20) in mammalian mitochondria

Finally I applied the superresolving power of two-colour STED microscopy on two proteins

from different compartments of mitochondria in mammalian PtK2 cells. Having shown,
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Figure 4.7: Inset in (c,e) indicating site of recording. Contrary to the confocal plus
LD recording (a), only the STED plus LD image (b) displays major differences in the
protein distribution patterns; the translocase of the mitochondrial outer membrane
(TOM20) is located in distinct clusters (at the mitochondrial surface, green pattern
in b,f), whereas the visualization of the distribution of the F1F0ATP synthase shows
a homogeneous staining pattern (red in b,f). The observed staining patterns are
independent from the used secondary antibodies shown by interexchange of the
labeling colours (c,d). Additional incorporation of double labeled beads (indicated
by arrows; note that the red colourmap is adjusted within the dashed box) for
nanoscale precise alignment (±5 nm) of both channels (e,f). Scale bar = 200 nm.
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that the mitochondria protein ANT provides strong clustering behaviour (Fig.3.5 (d))

further proteins in the complex structure of the mitochondrial organelle were to be inves-

tigated in terms of spatial arrangement. Fig.4.7 displays fully aligned images from the

mitochondrial ATP synthase and simultaneously the translocase (TOM20) of the mito-

chondrial outermembrane of immunolabeled mammalian cells ([96]). ATP is part of the

mitochondrial F1F0ATP synthase complex, residing in the mitochondrial inner membrane.

Electron microscopy demonstrated a dense packing of the F1F0ATP synthase complex

along the inner membrane ([100]). The TOM complex mediates the transport of nuclear

encoded mitochondrial preproteins across the mitochondrial outer membrane. The dis-

tribution of this complex within the outer membrane is less clear. The TOM complex

has been suggested to be specifically enriched in so-called contact sites, regions at which

the inner and the outer membranes are in close spatial proximity, although compelling

experimental evidence is missing ([101]). To investigate the relative distributions of both

complexes two-color STED microscopy was employed. One finds that the F1F0ATP syn-

thase is practically homogeneously distributed along mitochondrial tubules (red colour

in Fig.4.7 (b), (f)). Tom20, marking the localization of the TOM complex, however, is

localized into distinct foci along mitochondrial tubules (green colour in Fig.4.7 (b), (f)).

This protein specific localization of ATP and TOM20 is not changed when exchanging

the labeling colour of both proteins displayed in (c,d). Accordingly, now the red protein

distribution is recalling the clustering behaviour of TOM20. For nm-precision alignment

there were also double-labeled fluorescent beads incorporated during the sample prepa-

ration process (see Appendix A.3), as shown in Fig.4.7 (e,f). Signal, which is present in

both channels simultaneously is recognized as bead signal (indicated by arrows) and is

used for direct alignment of the confocal and also the STED images respectively.

The spotted distribution of the TOM complex is only resolvable with the superior resolu-

tion of STED-microscopy, but not by conventional confocal microscopy. Therefore it has

previously not been possible to resolve the sub-mitochondrial localization of the TOM

complex. It will be enlightening to understand the molecular basis for the localization of

this complex into clusters and to correlate the distribution of Tom20 with distinct mito-

chondrial morphological structures, possibly with contact sites.

Conclusion

The feasibility of reaching subdiffraction resolution in two separated colour channels allows

the localization of individual protein nanopatterns down to the molecular level. The

resolution of ≈ 65 nm in the red channel was limited compared to the green channel

because of the lack of wavelength tunability for the red STED beam. By wavelength

optimization the performance of the red channel is expected to meet the conditions of

the green STED image (resolution < 30 nm). While electron microscopy (EM) provides
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the possibility for imaging immunolabeled protein structures with high spatial resolution

hence not being comparably competitive in the here shown examples of superresolution

light microscopy, it seems to be nearly impossible to do protein colocalization studies.

The accuracy of aligning both high resolution fluorescence images was shown to reach

nm-precision. The progress in biological microscopy presented herein should facilitate the

imaging of protein colocalization in cells with unreached clarity thus opening up a new

method of fundamentally addressing problems in life science.



5 Conclusion and Outlook

The implementation of the dark-state relaxation (D-Rex) illumination scheme in STED-

microscopy enabled to increase the resolution performance down to molecular scales of

≈ 20 nm. This increase in resolution is based on an improved photostability and on a

major fluorescence signal increase per pulse under the D-Rex conditions, also allowing

to apply much larger STED powers. Large STED powers have to be applied to reach

highest resolution in STED-microscopy, so far debased by the photostability of the fluo-

rescence labels. The comprehensive study of the impact of repetition rate reduction on

one- and two-photon excitation in microscopy in general revealed that photobleaching at

large excitation powers mainly occurred via the dark state, identified as the triplet state.

Photobleaching can be effectively prevented by ensuring full dark state relaxation between

subsequent excitation events. An optimum excitation scheme was realized, identified as

pulsed illumination with a pulse repetition rate below 1MHz for both excitation modes,

as exemplified on a rhodamine-related organic dye and on the green fluorescent protein

(GFP), the archetype of fluorescent proteins. In fact, the fluorescence signal before bleach-

ing was boosted by a factor of 18 for GFP and 7 for Atto532 for one-photon excitation

and by a factor of 12 and 10 in the case of two-photon excitation on comparing the high

and low repetition rate regimes, respectively. Altogether, the D-Rex illumination scheme,

being all-physical, is expected to improve many biotechnological applications that rely on

fluorescence.

Motivated by those results, a STED setup established with pulsed repetition rate of 250

kHz has proven a lateral performance of below 20 nm resolution tantamount to a 10-

to 12- fold multilateral increase in resolution below the diffraction barrier which has yet

been unattainable for biological fluorescence microscopy. This macromolecular-scale re-

solving ability was achieved inside immunolabeled cells demonstrated on a wide spread of

biological applications, including imaging of membrane microdomains, vesicle proteins on

endosomes and vesicles, mitochondrial proteins in mammalian cells, proteins of cell junc-

tion and focal adhesion, proteins from the olfactory system for odor signal transduction,

and a neurofilamental protein in human neuroblastoma. The broad range of applications

and biological questions addressed demonstrated imposingly the compatibility of super-

resolution STED-microscopy to cell biology.

Beyond this, the T-Rex STED-microscope was extended to feature two independent su-
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perresolving detection channels thus setting up the first method to colocalize different

proteins on the nanoscale. To this end, four independent laser beams were coupled into

the objective lens to independently image two fluorescent species, the green-emitting

Atto532 and the red-emitting Atto647N, under STED conditions. Moreover, two inde-

pendent alignment procedures were introduced to colocalize both images with a precision

of up to ±5 nm. The method was able to resolve the so far unrevealed nanopatterns of

two individual proteins on endosomes, as well as two proteins of mammalian mitochon-

dria. For obvious reasons, superresolution colocalization ability sustainably widens the

application field of STED-microscopy to studying molecular protein localization on the

nanoscale.

Further progress in imaging capability should be possible in combination with axial reso-

lution increasing strategies, such as 4Pi-microscopy. The STED-4Pi technique has already

proven a resolution of < 40 nm in axial direction ([102],[103]). A combined strategy should

have the potential of reaching real 3D nanoscale resolution without tomography. For the

same purpose, one could think of additionally using phase masks for engineering a STED

PSF addressing a z-resolution increase ([104]), as already shown for FCS applications in

subdiffraction focal volumes ([9]) and also for biological imaging ([105]).

Further efforts are necessary to render a STED microscope applicable for live-cell imaging.

Here the D-Rex modality is helpful in its implementation in fast beam scanning utilizing

high repetition rate lasers. With the resultant fluorescence increase and gain in speed,

the resulting imaging times are predicted to be even below the common imaging times in

current scanning confocal microscopy, as already discussed in section (2.3). Supporting

these efforts are the very promising developments in the use of fluorescent proteins for

STED imaging. Having demonstrated the use of GFP for sub-diffraction STED imaging

([106]), further optimization by consequently exploiting the meanwhile established vari-

ety of photochemically differing fluorescent proteins is to be expected. This would pool

together all the ingredients for live-cell STED imaging.

Other implementation strategies of the RESOLFT concept, such as ground state depletion

(GSD) ([107]) are also making progress in taking the last step of experimental realization,

while protein photoswitching has recently been vindicated ([21]). All these implementa-

tions can be combined with photon statistical localization methods ([97]), in the same

manner like exemplarily shown in this thesis for the STED imaging of fluorescent beads,

to further improve the resolution in fluorescence microscopy.

The different highlighted options in further improving optical microscopy to reach the

ultimate goal of multicolour 3D live-cell imaging on the nanoscale are under careful in-

vestigation, while improvements are to be realized in the near future.



Bibliography
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A.1 Setup D-Rex measurements

The experiments were performed with a stage-scanning fluorescence microscope featuring

an oil immersion objective (100x magnification, 1.4 numerical aperture, i.e., α = 68◦;

Leica, Mannheim, Germany) producing nearly diffraction-limited spots. For one-photon

excitation we used a linearly polarized pulsed laser diode (470nm, τP = 100 ps, LDH-P-

C-470, PicoQuant GmbH, Berlin, Germany). Variation of the pulse rate was realized by

means of a frequency generator. A linearly polarized argon laser (Omnichrome Series 43,

Melles Griot, Carlsbad, CA) was applied for CW excitation at 488 nm. For two-photon

excitation at 800 nm a femtosecond modelocked, linearly polarized Ti:Sa Laser of 80 MHz

repetition rate (MaiTai, Spectra-Physics Lasers GmbH, Darmstadt, Germany) was uti-

lized. A Single Pulse Selector (Pulse Select, APE GmbH, Berlin, Germany) equipped

with a TeO2 Bragg cell was used to adjust f from 40 down to 0.3 MHz. Where required,

the initial pulse width τP = 200 fs was stretched to ≈ 1 ps by a 20 cm SF6 glass rod.

Longer durations were realized by passing the pulses through 2-20 m long glass fibers

(PMF-RC-820-BL single-mode polarization maintaining, cutoff at 820 nm, StockerYale

Inc., Halem, U.K.). τP was measured with an autocorrelator (Pulse Check, APE GmbH)

or a microchannel plate photomultiplier tube (R3809U, Hamamatsu, Japan). The fluores-

cence emission was collected by the same objective lens and projected onto an avalanche

photodetector (SPCM-AQR-13-FC, Perkin Elmer Optoelectronics, Fremont, CA) with

an aperture size corresponding to 0.8 times the magnified Airy disk of the fluorescence

spot. The detection events were further processed by a PC card (SPC 730, Becker&Hickl

GmbH, Berlin, Germany), enabling the observation of the fluorescence count rate within

varying observation time windows. The intensity point-spread function (PSF) of the ex-

citation laser was probed by a gold bead of 80 nm diameter on a nonconfocal detector

(MP 963 Photon Counting Module, Perkin Elmer). The full width at half maximum

(FWHM) of the PSF in the focal plane and the power IP measured at the sample entered

the calculation of the applied pulse peak intensities IP = P/[π(0.5 FWHM)2 (τP f)].
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A.2 Deconvolution

A single-step linear deconvolution (LD) ([108]), i.e. Wiener filter, was carried out where

indicated with a theoretical PSF FWHM as indicated (if no further specifications are

made the images of Atto532 have been deconvolved with 20 nm and images of Atto647N

with 60 nm, respectively). Alternatively a nonlinear deconvolution technique (RL) was

applied were indicated, taking the positivity condition of the dye concentrations into

account ([109]).

A.3 Alignment of the Dual-colour images

The two colour images showed a shift of their respective focusing points in the order of

50-100 nm. Therefore, two independent alignment procedures were applied.

In a first approach, an additional sample of dual-labeled fluorescence beads was prepared

(green and red fluorophore, bead diameter 24 ± 4 nm, Molecular Probes, Leiden, Ger-

many) by spreading them out on a silanized microscope cover glass, concentrating green

and red fluorescence emission on the same spot. By calculating the crosscorrelation of

the two (green and red) confocal images of these beads the lateral shift between the focal

positions from the maximum of the crosscorrelation function can be rendered. This lateral

shift was used to overlay the subsequently recorded two-colour confocal and STED images

of the sample of interest. In a final alignment step the relative shift of the positions of

the center of the confocal excitation PSF compared to the zero-intensity position of the

STED light distribution was compensated. These zero-intensity positions define the cen-

ters of the effective PSFs in STED microscopy and can slightly vary between the different

colours. I maintained this shift from the direct PSF measurements.

The alternative way was to incorporate double-labeled beads in the sample preparation

process. They could be distinguished from the sample structure by featuring a small point

like shape in both STED channels simultaneously. The shift between images of several

beads in the two channels was then again computed by cross correlation techniques. The

errors of these alignment procedures were estimated by modeling typical situations and

testing the alignment procedures in these situations. Therefore, a model with an adapted

number of objects, an adapted number of photons including a background and a typical

shift of about 50 nm was chosen. The error obtained by repeated alignments of the noisy

model images amounts to ±17 nm in the first procedure and to about ±5 nm in the

second procedure.
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A.4 Algorithm for deploying photon statistical

localization methods

An algorithm was created1 that identified separable bead positions in the image by evalu-

ating the brightest position in a smoothed image first, fitting a 2D bead model including

diameter, brightness and position convolved with an assumed PSF locally to the image,

clearing the image of the obtained object and restarting the algorithm until a threshold

was reached ([97],[98]). Only objects with a sufficiently high goodness of the fit were

taken into account since they present separable and bright bead images. To account for

the remaining parts of the image, a constrained deconvolution algorithm (RL) was applied

that kept the results of the bead identification unchanged.

A schematic of the working principle of the algorithm is exemplified on a dense sample of

yellow green beads (24nm FWHM) in Fig.A.1.

Figure A.1: Confocal (a) and STED (b) images of yellow-green beads. (c) Magnified
outtake of the STED image after applying an RL-deconvolution. The deconvolved
image reveals the individual bead positions (d) which are identified by the algo-
rithm. After convolution with the object (e) of a 24 nm bead-projection the image
is restored at every identified bead position. If all beads are identified the image is
fully restored (f). Note that this process needs a-priori information of the subunits
(in this case 24 nm bead objects) the object is actually consisting of to successfully
apply the algorithm.

1Jan Keller, Department of Nanobiophotonics
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A.5 Immunolabeling protocols

Labeling of SC35 protein in the nucleus

HeLa SS6 cells were grown on glass coverslips (FisherScientific) in Dulbecco’s modified

Eagle’s medium (GibcoBRL) supplemented with 10% fetal calf serum (GibcoBRL) and

100 U ml-1 penicillin/streptomycin (Biochrom KG) at 37◦C, 5% CO2. Cells were washed

with PBS, fixed for 20 min with PBS pH 7.4/4% (wt/vol) paraformaldehyde, rinsed with

PBS pH 7.4 and permeabilized in PBS pH 7.4/0.2% Triton X-100 (Sigma) for 20 min. Cells

were then rinsed with PBS, blocked in PBS pH 7.4/10% Fetal Calf Serum (FCS) for 30

min and incubated for 60 min with the mouse anti-SC35 antibody (BD Pharmingen, San

Diego, CA) diluted 1:500 in PBS pH 7.4/10% FCS. Subsequently, cells were washed and

incubated overnight with the secondary Atto532 labeled antibody at 4◦C. The coverslips

were again washed and mounted in Mowiol (Merck, Darmstadt).

Syntaxin mambrane patches

PC12 cells (clone25) were maintained, propagated and transfected essentially as described

([110]). Membrane sheets were immunostained for systaxin 1 as previously described

([75]). As primary antibody we applied HPC-1 ([111]), as secondary antibodies goat

anti-mouse-Atto532.

Endosomes preparation from PC12 cells

Enriched early endosomes were diluted to approximately 4 µg/ml protein, and cen-

trifuged onto bovine serum albumin-coated coverslips for 40 minutes at 5900g. They were

paraformaldehyde-fixed, and immunostained using anti-synaptotagmin I monoclonal an-

tibodies (Clone 41.1, Synaptic Systems, Göttingen, Germany), and anti-synaptophysin

polyclonal serum ([112]). The antibodies were applied at a dilution of 1:100, in PBS

containing 1.5% BSA. After washing, sheep anti-mouse and anti-rabbit antibodies, con-

jugated to Atto 532 or Atto 647 (Atto Tec, Siegen, Germany), were applied for 2 hours,

followed by washing with PBS (500 mM NaCl) and embedding in Mowiol or Moviol con-

taining double-labeled alignment beads.

Preparation of early endosomes from PC12 cells. Early endosomes were enriched from post

nuclear supernatants by use of discontinuous sucrose gradients, as previously described

([113]).
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Neurofilaments in the human brain

The SH-SY5Y neuroblastoma cell line was grown as described previously ([93]). Cells were

seeded on standard glass coverslips to a confluency of about 80%. 10µM all-trans-Retinoic

Acid (RA) (EMD Biosciences Inc., San Diego, United States) was added the day after

plating. After 5 days in the presence of RA cells were washed 3 times and incubated with

50 ng/ml human Brain Derived Neurotrophic Factor (hBDNF) (Alomone Laboratories,

Jerusalem, Israel) in serum-free medium. Immunostaining of neurofilaments as a neuronal

marker protein was performed with anti-200kD Neurofilament heavy subunit rabbit IgG

(Abcam, Cambridge, UK) as primary antibody and with anti-rabbit conjugated Atto 532

IgG as secondary antibody respectively. The cells were mounted in Mowiol.

Mitochondrial proteins

For immunolabeling cultured PtK2 cells from the marsupial Potorous tridactylus were

grown on coverslips, fixed with 4% formaldehyde for 15 minutes at room temperature and

incubated with primary antibodies specific for the mitochondrial ATP synthase (mouse

anti ATP synthase, alpha subunit, Molecular Probes, Leiden, Netherlands) or specific for

the translocase of the mitochondrial outer membrane (rabbit anti Tom20, Santa Cruz,

CA, USA). These primary antibodies were detected with secondary antibodies (goat anti

rabbit, sheep anti mouse; Jackson ImmunoResearch Laboratories, PA, USA) coupled to

Atto532 (Atto Tec, Siegen, Germany) or Atto647N (Atto Tec, Siegen, Germany). The

stained cells were mounted in Mowiol and where indicated in Mowiol containing double-

labeled alignment beads (Molecular Probes, Leiden, Netherlands) for imaging respectively.

Tissue preparation for TRPM5 immunolabeling

For euthanasia mice were anesthetized with ketamine/xylazine (100 µg - 20 µg/g body

weight), perfused transcardially with 0.1M phosphate buffer (PB) followed by a PB

buffered fixative containing 3% paraformaldehyde, 0.019 M L-lysine monohydrochloride,

and 0.23% sodium m-periodate ([114]). The olfactory bulbs and nose were harvested and

post-fixed for 2 h before being transferred for cryoprotection into PBS with 25% sucrose

overnight. Olfactory bulbs were cut into 4 µm thick transverse sections mounted on Su-

perfrost Plus slides (VWR) for the T-Rex STED experiments to minimize light scattering

and background fluorescence. Sagittal cuts maximized the number of glomeruli visualized

in medial and lateral sections.

For immunolabeling, sections were rinsed and incubated in blocking solution containing

2% normal donkey serum, 0.3% Triton X-100 and 1% bovine serum albumin in PBS for 1.5
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hour. Sections were then incubated with primary antibodies for periods from overnight

to 72 hours. Antibodies against rabbit anti TRPM5 (1:250 to or 1:500) ([115]) were used.

Finally we utilized ATTO 532 anti rabbit as the secondary antibody (Atto-Tech GmbH,

Germany). Removal of primary antibody resulted in no labeling in control sections.

Immunolabeling of VE-cadherin

Endothelial cells derived from human umbilical cord veins were harvested and cultured

as described elsewhere ([116]). Endothelial cells from the first passage were used for the

experiments. Cells were seeded on cross-linked gelatine coated glass cover slips, or glass

slides especially manufactured for rheological experiments. Cells cultured on glass sup-

ports were fixed with 2% formaldehyde in phosphate buffered saline (PBS: 137 mmol/l

NaCl, 2.7 mmol/l KCl, 1 mmol/l Na2HPO4, 1.5 mmol/l KH2PO4, pH 7.4) and perme-

abilized with 0.1% Triton X-100 for 10 minutes. Antibody labeling was performed as

described elsewhere ([117]).
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