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Zusammenfassung   

1. Zusammenfassung 
 
In Saccharomyces cerevisiae sind dynamische Multiproteinkomplexe, die sich zu 

sogenannten kortikalen Flecken an der Plasmamembran aufbauen, als Orte der 

Endozytose identifiziert worden. Während der Bildung des endozytischen Vesikels 

assoziieren und dissoziieren Proteine an diesen Membrandomänen in hoch geordneter 

zeitlicher Abfolge. Myo5p, ein Myosin der Klasse I, ist eine essentielle Komponente des 

Endozytose-Apparates von S. cerevisiae. Es ist beschrieben worden, dass dieses Protein 

sich in einer kurzen, der Vesikelfusion vorausgehenden Zeitspanne am kortikalen Fleck 

aufhält. 

In dieser Arbeit haben wir den Mechanismus der exakten Rekrutierung von Myo5p zu den 

kortikalen Flecken analysiert. Um zu untersuchen welche Proteindomänen von Myo5p an 

der Lokalisation des Myosins beteiligt sind, haben wir verschiedene Myo5p-Konstrukte mit 

GFP fusioniert und deren Lokalisation in lebenden Hefezellen untersucht. Durch diese 

Experimente fanden wir Hinweise auf eine intramolekulare Interaktion zwischen der 

zentralen TH1 Domäne und dem C-terminalen Teil von Myo5p, der eine SH3 Domäne mit 

einschließt. In weiteren Versuchen konnten wir die intramolekulare Interaktion bestätigen 

und zeigen, dass diese die SH3-vermittelte Interaktion mit Verprolin verhindert und die 

Rekrutierung von Myo5p an die kortikalen Flecken blockiert. 

Mit verschiedenen experimentellen Methoden gelangen wir zu überzeugenden 

Hinweisen, dass die intramolekulare Interaktion in Myo5p durch die Dissoziation von 

Calmodulin von der Myo5p-Hals-Domäne (die oberhalb der TH1 Domäne liegt) gelöst 

wird. Unsere Experimente belegen auch, dass die Dissoziation von Calmodulin die 

Affinität der TH1 Domäne zu sauren Phospholipiden erhöht. 

Basierend auf unseren Ergebnissen erstellen wir ein Modell für die durch Calmodulin 

regulierte Rekrutierung von Myo5p an den endozytischen Fleck. Demzufolge dissoziiert 

Calmodulin an der Plasmamembran von der Myo5p-Hals-Domäne und die Interaktion 

zwischen der TH1 Domäne und dem C-terminalen Teil von Myo5p wird folglich gelöst. 

Dies ermöglicht wiederum die Bindung der SH3 Domäne an Veprolin und die Interaktion 

der TH1 Domäne mit sauren Phospholipiden. 
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Summary 

2. Summary 
 
In Saccharomyces cerevisiae, dynamic complexes of multiple proteins that assemble in 

cortical patches at the plasma membrane have been identified as sites of endocytosis. 

During endocytic vesicle formation, proteins associate and dissociate at these membrane 

subdomains in a highly defined temporal order. The type I myosin Myo5p is an essential 

component of the endocytic machinery of S. cerevisiae. The protein has been shown to 

be localized to the cortical patches in a short time interval, preceding vesicle scission from 

the plasma membrane. 

In the present work, we analyze the process of Myo5p recruitment to the endocytic patch. 

To investigate which domains are required for targeting of the myosin, we used GFP-

tagged Myo5p mutants and life cell imaging. Starting with these experiments, we 

demonstrate the existence of an inhibitory interaction between the Myo5p tail homology 1 

(TH1) domain and the most C-terminal portion of the myosin, which includes the SH3 

domain. Such interaction precludes the SH3-mediated Myo5p association with Verprolin 

and Myo5p recruitment to the cortical patch. Using different kinds of experiments, we find 

strong evidence that the interaction between the Myo5p TH1 domain and the C-terminus 

is released at the plasma membrane by dissociation of calmodulin from the Myo5p neck 

domain, which lies immediately upstream of the TH1 domain. Further, we find that 

calmodulin release increases the affinity of the Myo5p neck and TH1 domains for acidic 

phospholipids.  

Based on our results, we propose a model for calmodulin-regulated patch recruitment of 

Myo5p, whereby calmodulin dissociation from the Myo5p neck at the plasma membrane 

releases an intramolecular interaction between the Myo5p TH1 domain and the C-

terminus, allowing the association of the Myo5p SH3 domain with Verprolin and the 

interaction of the Myo5p neck and TH1 domains with acidic phospholipids. 

 

 2



Abbreviations 
   

3. Abbreviations 
 
aa  amino acid 
ADP  adenosine 5’-diphosphate 
ATP    adenosine 5’-triphosphate 
bp    base pairs 
DMSO    dimethyl sulfoxide 
DNA    deoxyribonucleic acid 
g    gravity 
GFP    green fluorescent protein 
GST    glutathion-S-transferase 
GTP    guanosine 5’-triphosphate 
GDP    guanosine 5’-diphosphate 
GEF    guanine nucleotide exchange factor 
IgG    immunoglobulin G 
kDa    kilodalton 
kd    dissociation constant 
min    minute 
OD600    optical density at 600nm 
ORF    open reading frame 
PCR    polymerase chain reaction 
PMSF    phenylmethanesulfonyl fluoride 
P inorganic phosphatei    

ProtA    protein A of Staphylococcus aureus 
RT    room temperature 
SDC    synthetic dextrose complete medium 
SGC    synthetic galactose complete medium 
Tris    tris-(hydroxymethyl)-aminomethane 
s    second 
ts    temperature-sensitive 
U    unit 
wt    wild-type 
YPD    yeast peptone dextrose medium 
YFP    yellow fluorescent protein 
Ura    uracil 
Leu    leucin 
Trp    tryptophan 
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4. Introduction 
 
4.1. Class I myosins 
 
Many intracellular trafficking events are powered by motor proteins. While molecular 

motors of the kinesin and dynein protein family mediate microtubule-based motility, 

myosins are the only known motors that use actin filaments as tracks (Mallik and Gross, 

2004). 

Myosins comprise a big superfamily of proteins, all are characterized by a big N-terminal 

motor or “head” domain that bears an actin-dependent ATPase and transforms the 

chemical energy derived from ATP hydrolysis into mechanical movement (Sellers, 2000).  

In most myosins, the N-terminal head domain is followed by a flexible neck region and a 

C-terminal tail (Mooseker and Cheney, 1995). The neck is an amphipathic helix, which 

acts as a lever arm, transforming small conformational changes in the motor domain into 

bigger movements that are transmitted to the C-terminal tail (Goldman, 1998). The neck 

domain also serves as the binding site for regulatory light chains, which are calmodulin 

molecules or other members of the EF-hand protein family (Bahler and Rhoads, 2002; 

Mooseker and Cheney, 1995). The C-terminal tails of different myosins show a striking 

diversity of structural elements. Via binding to specific proteins and cargoes, the tail is 

thought to determine the function and localization of the myosin (Krendel and Mooseker, 

2005). 

Based on sequence comparison of their conserved N-terminal catalytic domain, myosins 

are grouped into an ever-increasing number of classes (18 up to now) (Berg et al., 2001). 

Generally, members of a particular class of myosins also share a common organization of 

the C-terminal tail and are thus thought to fulfill similar cellular functions (Krendel and 

Mooseker, 2005; Mooseker and Cheney, 1995). 

Only one class of myosin was known until 1973, the so called “conventional” or class II 

myosins, which promote actin filament movement in muscle cells. Pollard and Korn 

discovered then the first “unconventional” myosins in Acanthamoeba castellani and 

termed them myosins I, since, in contrast to the two-headed conventional myosins, they 

were single headed and incapable of forming bipolar filaments via their tails (Pollard and 

Korn, 1973). 

The class I myosins are now the largest and best-characterized group of unconventional 

myosins and they have been found in a wide range of species from yeast to humans, 

indicating that they fulfill evolutionary conserved and essential functions (Hasson and 

Mooseker, 1996; Sellers, 2000). 

Class I myosins are characterized by a short positively charged domain in the tail, the so-

called tail homology 1 (TH1) domain (Coluccio, 1997). This domain has been shown to 
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bind to negatively charged phospholipids and protein stripped membranes (Adams and 

Pollard, 1989; Doberstein and Pollard, 1992; Hayden et al., 1990; Miyata et al., 1989). 

Class I myosins can be divided into short-tailed and long-tailed. The tail of short-tailed 

myosins bears only the TH1 domain, while long-tailed myosins comprise a C-terminal 

extension, which recently has been proven to be involved in the activation of Arp2/3 

dependent actin polymerization (Coluccio, 1997; Soldati, 2003). Most lower eukaryotes, 

e.g. Acanthamoeba and yeast, have only long-tailed myosins I (Coluccio, 1997). In 

mammals, two members of long-tailed and 6 types of short-tailed class I myosins have 

been described (Berg et al., 2001). The specific properties of the long-tailed myosins will 

be explained in detail later on in this work. 

 

4.1.1. Class I myosins function in membrane dynamics 
 
Consistent with their potential to translocate actin and to associate with membranes, 

members of the class I myosins have been implicated in processes that require reshaping 

or translocation of membranes associated to actin-rearrangements, e.g. endocytic and 

exocytic processes, cell motility, polarized cell growth and vacuole contraction (for review 

see (Mermall et al., 1998; Mooseker and Cheney, 1995). 

Since class I myosins were first discovered in protozoa, most early studies came from 

Acanthamoeba and Dictyostelium. Subcellular localization studies in Acanthamoeba and 

analysis of myosin knockout mutants in Dictyostelium demonstrated the involvement of 

the long-tailed class I myosins in cell motility, phagocytosis and pinocytosis (Baines et al., 

1992; Baines et al., 1995; Jung and Hammer, 1990; Novak et al., 1995; Ostap et al., 

2003; Temesvari et al., 1996; Titus et al., 1993; Wessels et al., 1991; Wessels et al., 

1996). A more detailed study in Dictyostelium has recently demonstrated an important 

role of MyoB in membrane recycling from the endosomes to the plasma membrane 

(Neuhaus and Soldati, 2000). Finally, early studies using microinjection of antibodies have 

also demonstrated a role of Acanthamoeba myosin-IC in contractile vacuole function 

(Doberstein et al., 1993).  

The best established cellular function of the type I myosins is their role in the uptake step 
of endocytosis in Saccharomyces cerevisiae (Geli and Riezman, 1996), which will be 
discussed in detail later on in this work. A double knockout mutant of the yeast myosins I 
Myo3p and Myo5p also shows a strong defect in cell polarity (Goodson et al., 1996). 
However recent data indicate that the polarity defect is probably installed as a secondary 
effect of the defect in endocytosis (Valdez-Taubas and Pelham, 2003).  
Similar cellular functions have also been described for class I myosins of 
Schizosaccharomyces pombe, Aspergillus nidulans and Candida albicans (Lee et al., 
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2000; McGoldrick et al., 1995; Oberholzer et al., 2004; Sirotkin et al., 2005). In addition, 
Aspergillus MyoA has been implicated in polarized secretion, but also in this case the 
observed defect might be a consequence of impaired endocytic trafficking (McGoldrick et 
al., 1995). 
In vertebrates, so far, most studies have focused on the short-tailed myosins. The best 
studied ones are those which participate in specialized functions associated to particular 
cell types, like Myo1c which is involved in the adaptation of hair cells in the inner ear, and 
brush-border myosin I (BBMI or Myo1a) which is a cross-linker of actin filaments in 
microvilli required for structural maintenance (Coluccio, 1997; Gillespie and Cyr, 2004; 
Tyska et al., 2005). Besides their specialized activities, these myosins also seem to 
participate in cellular functions associated to membrane traffic in a broader range of cell 
types. BBMI has been implicated in transcytosis in polarized cells and in the movement of 
Golgi-derived secretory vesicles to the plasma membrane (Durrbach et al., 2000; Fath et 
al., 1994). Myo1c promotes the fusion of Glut4-containing vesicles with the plasma 
membrane after insulin-treatment in adipocytes (Bose et al., 2002). Also, it was recently 
shown that Myo1c is essential for controlled actin-dynamics which drive compensatory 
endocytosis in frog oocytes (Sokac et al., 2006). 
Another short-tailed myosin, Myo1b, associates with endosomes and lysosomes and the 
effects observed upon expression of dominant negative mutants indicates that they are 
involved in membrane traffic between these two compartments (Raposo et al., 1999). 
Moreover, Myo1b mediates short-range movements of lysosomes on actin-filaments 
(Cordonnier et al., 2001). Myo1d has been implicated in membrane traffic events between 
recycling and early endosomes (Huber et al., 2000). 
Only recently, a first functional analysis has been made for a long-tailed myosin I in 
mammalian cells. Myo1f-deficient mice were shown to have neutrophiles with increased 
adhesion and reduced motility. Exocytosis of β2 integrin-containing granules, induced by 
integrin ligands, was augmented in Myo1f-knockout cells, suggesting that Myo1f functions 
as a negative regulator in the process (Kim et al., 2006). 
 

4.1.2. The functional domains of class I myosins 
4.1.2.1. The conserved domains characterizing myosins I: the head, the neck and 
the TH1 domain 
 
Likewise the conventional muscular myosins, the class I myosins are actin-based 

molecular motors. They can transform the energy derived from ATP hydrolysis in the head 

domain into mechanical work, as demonstrated by in vitro motility assays where the 

movement of labelled actin filaments can be observed on myosin I coated coverslips in 

the presence of ATP (Adams and Pollard, 1986; Albanesi et al., 1985; Pollard, 1982). 
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Small conformational changes which occur in the myosin head as a consequence of the 

ATPase hydrolysis are transmitted and amplified by the neck towards the tail.  

The mechanochemical cycle of class I myosins has been studied in detail in myosins from 
Acanthamoeba and vertebrates (El Mezgueldi et al., 2002; Jontes et al., 1997; Ostap and 
Pollard, 1996; Pollard and Ostap, 1996; Veigel et al., 1999). The general enzyme 
mechanism of these myosins is very similar to the mechanism of muscle myosin II (see 
figure 1). However, in contrast to class II myosins, all characterized class I myosins are 
low-duty-ratio motors, i.e. they spend a small fraction of their catalytic cycle strongly 
bound to actin (De La Cruz and Ostap, 2004). Moreover, the weak-binding states have a 
very low affinity to actin. Therefore, class I myosins cannot achieve processive movement 
of their cargo unless a high number of motors is concentrated at the sites where they 
function.  

ADP
+Pi 

Pi

ADP

ADPATP

ATP 

(2) (3) 

(1) 

power- 
stroke 

The release of Pi 
is the rate-limiting 
step for myosins I 

weak 
binding

strong 
binding 

 
Figure 1. A simplified model for the myosin ATPase cycle. In the absence of ATP the myosin (blue) binds 
tightly to actin (red). ATP binding induces a conformational change in the myosin that weakens its actin-affinity 
and causes the release of the myosin from actin (1). ATP-hydrolysis causes a second conformational change 
allowing actin binding with low affinity (2). After ATP-hydrolysis ADP and Pi stay first bound to the myosin. 
When Pi is finally released the myosin can bind with high affinity to actin and the force-generating power-
stroke is finally generated, which moves the myosin relative to the actin-filament (3). ADP is released and ATP 
can rebind to repeat the cycle (De La Cruz and Ostap, 2004). 
 
In protozoan and yeast myosins the motor activity of class I myosins is controlled by 
phosphorylation (Barylko et al., 2000). The phosphorylated site, called TEDS site (since 
the phosphorylated serine or threonine is replaced by negatively charged aspartic acid or 
glutamic acid residues in vertebrate myosins) is located in a surface loop that mediates 
strong hydrophobic bonds with actin. Thus, phosphorylation regulates the productive 
interaction of the head with actin.  
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Introduction 

In vitro experiments indicate that the motor activity of class I myosins can also be 
regulated by Ca2+-triggered release of the calmodulin or calmodulin-like light chains. 
The neck region of different class I myosins varies in length. It bears 1 to 6 IQ motifs (α-
helical segments with N-terminal isoleucine (I) and glutamine (Q) residues, consensus 
IQXXXRGXXXR) which bind calmodulin or other members of the EF-hand protein family 
in the absence of Ca2+ (Sellers, 2000; Wolenski, 1995). 
In vitro, a rise in Ca2+ inhibited motility of class I myosins (Stoffler and Bahler, 1998; 
Wolenski et al., 1993). However, the influence of an elevated Ca2+-concentration on the 
ATPase activity was either stimulatory or inhibitory, depending on the myosin studied 
(Wolenski, 1995). Ca2+-binding might either induce a conformational change in the 
calmodulin protein associated to the neck or cause dissociation of the light chain from the 
myosin. Depending on the exact sequence of the IQ motif, calmodulin binding is more or 
less sensitive to Ca2+ (Bahler and Rhoads, 2002). In vitro, calmodulin can be removed 
from some IQ motifs by high Ca2+-concentrations. However, it is not known whether Ca2+ 
can influence calmodulin-binding to the neck under physiological conditions.  
 
The TH1 domain characterizing class I myosins is required for the localization of the 
motor proteins to their membrane-bound destinations (Lee et al., 2000; Oberholzer et al., 
2004; Yamashita et al., 2000). The domain is highly enriched in positively charged amino 
acids and has been shown to interact in vitro with purified protein stripped membranes 
and with different kinds of negatively charged lipids, e.g. phosphatidylserine, phosphatidic 
acid and PI(4,5)P2 (Adams and Pollard, 1989; Doberstein and Pollard, 1992; Hayden et 
al., 1990; Miyata et al., 1989). Thus, it was believed that the TH1 domain of class I 
myosins interacts with membranes by unspecific electrostatic interactions. However, it 
was recently shown that the TH1 domain of mammalian Myo1c binds specifically to 
PI(4,5)P2 in in vitro experiments with liposomes (Hokanson and Ostap, 2006). By 
sequence analysis and structural modelling, the TH1 domains of mammalian Myo1c and 
Acanthamoeba myosin-1C were predicted to exhibit structural homology to PI(4,5)P2-
specific pleckstrin homology (PH) domains (Hokanson et al., 2006; Hwang et al., 2007). 
Thus, for these myosins the TH1 domain might be sufficient for the localization to 
PI(4,5)P2-enriched membranes or membrane subdomains. However, important residues 
for PI(4,5)P2 binding are not conserved in the TH1 domain from other class I myosins, 
suggesting that TH1 domains might mediate different kinds of lipid binding (Hokanson et 
al., 2006).   
Interestingly, recent reports have also suggested a possible role of the myosin I neck in 
membrane binding. The junction between head and tail domains of class I myosins forms 
an extended amphipathic alpha-helical structure bearing positively charged residues that 
could mediate binding to acidic phospholipids (Coluccio, 1997). 
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Early investigations by Swanljung-Collins and Collins suggested that the neck of the 
brush-border myosin I might bind to anionic lipids in the absence of associated light 
chains. They demonstrated that in vitro Ca2+ can promote dissociation of some calmodulin 
light chains from the brush-border myosin I and stimulate binding to phosphatidylserine 
(Swanljung-Collins and Collins, 1992). Consistently, Tang et al. showed that the addition 
of Ca2+ dramatically decreases the dissociation of Myo1c from phosphatidylserine-
containing liposomes (Tang et al., 2002). However, these observations could still be 
explained by an artificial effect of Ca2+, as it is possible that high levels of free Ca2+ induce 
phosphatidylserine to cluster, which could favour an electrostatic interaction via the TH1 
domain. Hirono et al. could finally demonstrate that a recombinant neck construct of 
Myo1c binds to negatively charged lipids and that this interaction is inhibited by the 
addition of calmodulin, also in the presence of EGTA (Hirono et al., 2004). For Myo1c it 
was shown that the neck is not required for in vivo membrane binding (Hokanson et al., 
2006). Since the neck domain alone binds unspecifically anionic lipids with low affinity, it 
was proposed to function in Myo1c recruitment to certain membrane subdomains, in 
combination with the TH1 domain (Hokanson et al., 2006). Surprisingly, it was recently 
shown that a neck-protein interaction might also be involved in the recruitment of Myo1c 
of the inner ear to the plasma membrane. In vivo and in vitro data suggest that a specific 
IQ motif of Myo1c associates with cadherin 23 in a calmodulin-regulated manner (Cyr et 
al., 2002; Phillips et al., 2006). 
 
4.1.2.2. The C-terminal extension of the long-tailed class I myosins 
 
As mentioned before, the long-tailed class I myosins have a C-terminal extension located 

downstream of the TH1 domain (see also figure 2). This extension of the tail includes a 

glycine, alanine and proline or glutamine rich domain (GPA or GPQ domain), also called 

the tail homology 2 (TH2) domain, and a Src homology (SH3) domain, which mediates 

protein-protein interactions by binding to proline-rich motifs (consensus PXXP) (Coluccio, 

1997; Kuriyan and Cowburn, 1997).  

BBMI 

AMIC 

Myo5p 

head (ATPase) neck TH1 TH2 SH3

Figure 2. Schematic presentation of the structural organization of some class I myosins. Brush-border 
myosin I (BBMI) is short-tailed, bearing only the lipid binding tail homology 1 (TH1) domain in the tail. 
Acanthamoeba myosin-IC and Myo5p of S. cerevisiae are long-tailed class I myosins. The extension of their 
tails bears tail homology 2 (TH2; orange) and SH3 domains (red). Myo5p has additionally an acidic motif at 
the very C-terminus (violet). See text for details. 
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For long time, the molecular function of the C-terminal extension stayed obscure and 

hypotheses only derived from in vitro experiments whose physiological significance 

remained elusive. Early in vitro experiments demonstrated that the TH2 domain binds 

filamentous actin (F-actin) in vitro (Rosenfeld and Rener, 1994), a property that might also 

be shared with some of the TH1 domains (Lee et al., 1999). In contrast to the actin 

binding site of the myosin motor head, the TH2 and the TH1 F-actin binding site is ATP-

insensitive. Thus, it was proposed that the TH2 domain may allow the class I myosins to 

cross-link and contract actin filaments (Fujisaki et al., 1985; Lynch et al., 1986). 

Alternatively, the TH2 domain could be required to recruit the myosins I onto actin 

filaments and thereby help to achieve a high local concentration of motor heads at low 

actin/myosin ratios. As mentioned before, reaching a high local concentration of motor 

heads might be important for myosin I motor function, since the class I myosins are non-

processive, low-duty-ratio motors (De La Cruz and Ostap, 2004).  
 
 
In addition to the TH2 domain, the long-tailed class I myosins bear an SH3 domain at the 

C-terminus or within the TH2 domain. The SH3 domain mediates binding to proteins with 

proline-rich motifs (Kuriyan and Cowburn, 1997). Full function of myosins I was shown to 

be dependent on this domain, indicating that its interaction with the prolin-rich target 

protein is important for myosin I activity (Anderson et al., 1998; Novak and Titus, 1998). 

Since the TH2 domain is rich in proline residues it was proposed that the SH3 domain 

might control access to the ATP-insensitive actin-binding site by intramolecular interaction 

with this domain (Goodson et al., 1996). Moreover, proteolytic removal of the SH3 domain 

from rat myosin I myr3 was shown to activate the ATPase activity in vitro, suggesting that 

the myosin tail folds back and the SH3 domain allosterically inhibits the ATPase (Stoffler 

and Bahler, 1998). Alternatively, 3D reconstruction analysis of the Acanthamoeba myosin-

IB suggested that the SH3 domain might form intermolecular bridges with the TH2 domain 

of adjacent myosin molecules, thus promoting myosin oligomerization (Jontes et al., 

1998). The physiological relevance of all these data has not been tested yet.  

However, more recent data have established the functional significance of interactions of 

the C-terminal extension with the machinery involved in Arp2/3 dependent actin 

polymerization. The SH3 domain of the protozoal class I myosins interacts with CARMIL 

(capping protein, Arp2/3 and myosin linker), a protein that acts as a molecular linker with 

the Arp2/3p complex (Jung et al., 2001). Further, the C-terminal extension of the fungal 

class I myosins bears an acidic domain that directly participates in the activation of the 

actin nucleating activity of the Arp2/3 complex and their SH3 domains interact with the 

yeast homologs of WASP (Wiskott-Aldrich syndrome protein) and WIP (WASP interacting 
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protein), Las17p and Vrp1p, two proteins with a well established function in Arp2/3 

dependent actin polymerization (Evangelista et al., 2000; Geli et al., 2000a; Lechler et al., 

2000). 

 

4.1.2.1.1. The C-terminal extension of long-tailed class I myosins forms a linkage to     
the Arp2/3 complex 
 
The highly conserved Arp2/3 protein complex plays a central role in the control of actin 

dynamics (Goley and Welch, 2006). It consists of 7 proteins of which two, Arp2p and 

Arp3p, are actin-related. Upon activation of the complex Arp2p and Arp3p can form an 

actin dimer-like structure which allows the addition of further actin monomers and thus 

induces actin polymerization. Since the Arp2/3 complex also interacts with the sides of 

existing actin filaments its activation finally leads to the formation of a network of branched 

actin filaments (Welch and Mullins, 2002). The Arp2/3 complex alone has low intrinsic 

actin nucleation activity. For the induction of actin polymerization, activator proteins, e.g 

proteins of the WASP (Wiskott-Aldrich syndrome protein) family, have to induce the active 

conformation of the complex (Goley and Welch, 2006). 

In the highly homologous class I myosins of S. cerevisiae, Myo3p and Myo5p, Evangelista 

et al. identified an acidic domain at the very C-terminus that shares homology with the 

acidic C-terminus of WASP proteins and other Arp2/3 activators (Evangelista et al., 2000). 

The acidic domain of Arp2/3 activators directly binds to the Arp2/3 complex (Mullins, 

2000). Consistently, it was also demonstrated for the class I myosins that the acidic 

domain mediates direct binding to subunits of the complex (Evangelista et al., 2000; 

Lechler et al., 2000). Moreover, the acidic domain of the myosins was shown to be 

functionally redundant with the acidic domain of Las17p, the yeast WASP homologue, 

since the deletion of the acidic region from the class I myosins or Las17p had little effect 

in living cells, but removal of all acidic domains led to drastic growth and actin 

organization defects (Evangelista et al., 2000; Lechler et al., 2000). However, the 

induction of Arp2/3 dependent actin-polymerization by purified class I myosins could not 

be demonstrated. A direct function of the class I myosins as Arp2/3 activators remained a 

matter of debate. Up to this point, all strong Arp2/3 activator proteins, e.g. Las17p, had 

been shown to exhibit actin-binding domains that were structurally different from the TH2 

domain (Machesky and Insall, 1999).  

Since it was shown that the SH3 domain of the myosins directly interacts with Las17p and 

Vrp1p, the yeast homologue of WIP (WASP interacting protein), it was suggested that 

Myo3p and Myo5p work in a complex with these two proteins (Evangelista et al., 2000; 

Machesky, 2000). Vrp1p bears a binding domain for monomeric actin (the WASP 

homology 2 domain; WH2) which is homologous to the actin binding domain of Las17p 
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(Vaduva et al., 1997) Thus, it was proposed that Vrp1p functions together with Myo5p, 

delivering monomeric actin (G-actin) to the Arp2/3 complex, while the acidic domain of the 

myosins mediates Arp2/3 binding and induces the structural reorganization of the 

complex (Machesky, 2000). Consistently, a fusion construct of the Vrp1p WH2 domain 

and the acidic domain of Myo3p could efficiently activate the Arp2/3 complex in vitro 

(Lechler et al., 2001). Moreover, in a cytosol-dependent in vitro assay, Arp2/3 dependent 

actin polymerization induced by a recombinant tail-construct of Myo5p was shown to 

depend on Vrp1p but not on Las17p (Geli et al., 2000a; Idrissi et al., 2002).  

Only recently, Sun et al. could finally demonstrate in an in vitro actin polymerization assay 

with purified components that Myo5p has Arp2/3 activator activity in combination with 

Vrp1p (Sun et al., 2006). The capacity of the myosin-Vrp1p complex to activate the Arp2/3 

complex was shown to be very similar to purified Las17p, which is considered to be a 

strong Arp2/3 activator.  

Since the acidic domain required for Arp2/3 activation can only be found at the C-terminus 

of fungal class I myosins (in S. cerevisiae, S. pombe, Candida albicans and Aspergillus 

nidulans) (Soldati, 2003), the generality of the result, that myosins I function in Arp2/3 

dependent actin polymerization was doubted. Jung et al. could then demonstrate that also 

the SH3 domain of Dictyostelium myosins I recruits the Arp2/3 complex, although not 

direct, but via an adaptor protein called CARMIL (for capping protein, Arp2/3 and myosin I 

linker) (Jung et al., 2001). CARMIL was isolated from cell extracts using GST-tagged 

constructs of the MyoB and MyoC SH3 domain as baits. The protein was shown to have 

strong homology to Acan125, a protein which was isolated as a binding partner of the 

SH3 domain of Acanthamoeba class I myosins. CARMIL is a protein of the leucin-rich 

repeat family of proteins and binds the α-and β-subunits of capping protein to its N-

terminus. Besides 2 C-terminal PXXP motifs which mediate the interaction with the class I 

myosins, CARMIL exhibits 2 domains which can also be found in the Myo5p-Vrp1p 

complex from S. cerevisiae: a G-actin binding WH2 domain and an acidic domain. A 

protein fragment containing the WH2 domain and the acidic region of CARMIL could 

activate the Arp2/3 complex in an in vitro actin polymerization assay. Moreover, an 

interaction between CARMIL and the Arp2/3 complex, independent of the class I myosins, 

was shown in immunoprecipitation experiments. Thus, the CARMIL-myosin I complex 

seems to function very similar to the myosin I-Vrp1p complex in yeast. Interestingly, 

CARMIL homologues have been identified in C. elegans, Drosophila, mouse and human 

(Jung et al., 2001). This suggests that the long-tailed class I myosins are also linked to the 

Arp2/3 complex in higher organisms and that the participation in actin polymerization is a 

general activity of this myosin I subclass. 
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4.2. Endocytosis in S. cerevisae: the assembly of a highly dynamic endocytic patch 
 
Endocytosis is the essential cellular process whereby vesicles are formed at the plasma 

membrane, which finally detach from the cell surface and travel through the cytosol to 

fuse with endosomes and enter the endo-lysosomal system. Among many different 

functions, endocytosis serves for the down-regulation of surface proteins (e.g. receptors 

and nutrient transporters) and for the uptake of signalling molecules for intracellular 

communication (Di Fiore and De Camilli, 2001; Mellman, 1996). 

In the budding yeast S. cerevisiae, a dynamic actin cytoskeleton is essential for the 

endocytic uptake (Engqvist-Goldstein and Drubin, 2003). A temperature sensitive 

mutation in the gene encoding actin causes a dramatic defect in the endocytic 

internalization immediately upon shift to restrictive temperature (Kubler and Riezman, 

1993). Further, latrunculin A, a drug that binds to actin monomers and prevents its 

incorporation into actin filaments, and jasplakinolide, which stabilizes actin filaments, 

rapidly and potently block endocytosis (Ayscough, 2000; Ayscough et al., 1997). Finally, 

many endocytic mutants isolated from different screenings bear mutations in genes that 

encode proteins known to control actin dynamics (Ayscough, 2005). 

In S. cerevisiae, actin patches associated with the plasma membrane have been 

described for many years. The observation that many proteins required for endocytosis 

colocalized with these structures suggested their involvement in the endocytic process 

(Ayscough, 2005). However, the protein composition of the cortical actin patches seemed 

heterogeneous (Warren et al., 2002) and their actual involvement in endocytosis 

remained unproven for many years. Only recently, the matter could be resolved by using 

real-time, live-cell fluorescence microscopy to analyze the dynamics of the actin patch 

components tagged with different GFP variants. This technique demonstrated that the 

different proteins are recruited to and disassemble from cortical patches in a highly 

defined temporal order and in a partially overlapping manner (Kaksonen et al., 2003; 

Kaksonen et al., 2005; Kaksonen et al., 2006; Sun et al., 2006). Most importantly, 

internalization of exogenously added endocytic markers (i.e. the fluorescent lipophilic 

marker FM4-64 or fluorophor-conjugated alpha factor) together with some patch 

components was reported, unequivocally demonstrating that the cortical patches 

constitute sites of endocytosis (Kaksonen et al., 2003; Toshima et al., 2006b). The results 

revealed that the previously described heterogeneous composition of the cellular cortical 

patches represented a static view of different maturation stages during the formation of 

the primary endocytic profile. 
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When observing several patch components by real-time fluorescence microscopy 

Kaksonen et al. distinguished 3 different phases of patch behaviour (Kaksonen et al., 

2003) (see figure 3). During the first phase, early patch proteins associate to the 

endocytic site, but the patches remain immotile at the plasma membrane. The second 

phase is characterized by slow movement (0.05-0.1 μm/sec) of the patch by which the 

structure moves up to 200 nm away from the plasma membrane. Then, during the third 

phase, the cortical patch shows rapid, directional movement (0.3 μm/sec) away from the 

cell cortex. Several studies by the Drubin lab and others suggest that these 3 phases of 

patch behaviour correspond to coat-assembly, plasma membrane invagination /vesicle 

scission and vesicle inward movement after scission (Jonsdottir and Li, 2004; Kaksonen 

et al., 2003; Kaksonen et al., 2005; Sun et al., 2006).  

While coat proteins assemble in the absence of actin, actin polymerization seems to be 

required for membrane invagination and the formation of the endocytic vesicle, as 

indicated by real-time fluorescence microscopy of cells treated with latrunculin A 

(Kaksonen et al., 2003). Consistently, actin and the Arp2/3 complex can be observed at 

the patch just at the onset of slow movement and disappear during the fast motility phase 

(Kaksonen et al., 2003; Kaksonen et al., 2005). 

Besides actin and the Arp2/3 complex, several Arp2/3 activators, coat proteins, endocytic 

adaptors, scaffold proteins and proteins regulating actin dynamics have been observed on 

the endocytic patches (see table I). Based on their time of arrival at the endocytic site and 

their motiliy behaviour, patch components have been grouped into 4 different modules: 

the coat module, the Las17p/Myo5p module, the actin module, and the amphiphysin 

module (Kaksonen et al., 2005) (see figure 4 and table I). 

Chc1p, 
Clc1p 

Las17p 

Vrp1p 

Myo5p 

Arp2/3p 

Rvs167p 

stationary phase 
     fast 
movement 

     slow 
movement 

 
 
Figure 3. Endocytic proteins show different kinds of behaviour at the endocytic patch. Proteins arrive at 
different time points during patch formation and either stay stationary or show movement away from the 
plasma membrane. Stationary behaviour is indicated by black lines and movement is indicated by red arrows. 
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The coat module includes coat proteins, endocytic adaptors and scaffold proteins like 

clathrin, Sla1p, Sla2p, Ede1p, End3p and Pan1p. These proteins arrive early to the 

endocytic patch, during the immotile phase, and then internalize with the forming vesicle 

(during the slow motility phase) before disassembling (Kaksonen et al., 2003; Kaksonen 

et al., 2005; Sun et al., 2006; Toshima et al., 2006b). Coat module proteins function not 

only in cargo recruitment, but some of them also regulate actin-dynamics. For example, 

Sla1p and Sla2 act as negative regulators of Arp2/3p dependent actin polymerization and 

Pan1p is itself an Arp2/3 activator (Duncan et al., 2001; Rodal et al., 2003; Toshima et al., 

2006a). 

Some proteins of the second module, like the Arp2/3 activator Las17p and its binding 

partners Vrp1p and Bzz1p, also arrive early at the endocytic site, however, they do not 

move with the vesicle. Together with Myo5p and Bbc1p which arrive just before actin and 

the initiation of slow movement, these proteins remain in an immotile complex at the 

plasma membrane until the scission of the endocytic vesicle (Jonsdottir and Li, 2004; 

Kaksonen et al., 2003; Kaksonen et al., 2005; Sun et al., 2006). The Arp2/3 activators 

Las17p and the class I myosins are thought to act in concert to promote actin 

polymerization at the plasma membrane that drives the invagination of the membrane 

(Sun et al., 2006). Thus, proteins of this module probably stay at the rim of the coated pit 

 

while the coat module moves inward with the growing vesicle.  

 4. The modular organization of the endocytic patch. Based on their time of arrival at the endocytic 
te and their motiliy behaviour, patch components have been grouped into 4 different modules: the coat 

 

    fast 
movement non-motile slow movement 

coat module 

Las17p/Myo5p module 

actin module 

amphiphysin module 

 
Figure
si
module, the Las17p/Myo5p module, the actin module, and the amphiphysin module. The figure was adopted 
from Kaksonen et al., 2003, and Kaksonen et al., 2005. See text for details. 
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The actin module arrives to the endocytic patch when the membrane starts to invaginate 

and moves with the patch also after the transition from slow to fast motility. It includes 

actin, the Arp2/3 complex and other proteins involved in the regulation of actin-

polymerization, like actin-binding protein Abp1p, capping protein (Cap1/2p) and the yeast 

fimbrin Sac6p (Kaksonen et al., 2003; Kaksonen et al., 2005). These proteins are thought 

to work together to form the complex cone-like actin meshwork surrounding the endocytic 

vesicle (Rodal et al., 2005; Young et al., 2004). Although Abp1p activates the Arp2/3 

complex in vitro, it is now thought to restrain Arp2/3 activity, limiting actin polymerization 

via the strong activators Las17p and Myo5p by competing for binding sites in the Arp2/3 

complex (Goode et al., 2001; Sun et al., 2006). Moreover, Abp1p acts in vesicle 

uncoating, as it has been shown to recruit proteins involved in the disassembly of the 

coat, like the kinases Prk1p/Ark1p and the phosphatidyI-inositol-(4,5)-bisphosphate-(5)-

phosphatase Sjl2p (Fazi et al., 2002; Stefan et al., 2005). 

The fourth protein module of the endocytic patch consists of the two yeast amphiphysin 

proteins Rvs161p and Rvs167p. The 2 proteins form a complex that appears very 

transiently at the endocytic patch, arriving after the onset of actin-polymerization and 

disappearing before the fast movement starts (Kaksonen et al., 2005). Rvs161p and 

Rvs167p contain N-BAR domains which are known to induce membrane curvature 

(Dawson et al., 2006). A yeast strain deficient in the 2 proteins shows endocytic patches 

that first move away from the cortex and then retract towards the cell surface (Kaksonen 

et al., 2005). This striking phenotype together with the time of patch association of 

Rvs161p and Rvs167p suggests that the amphiphysin proteins function in vesicle 

scission. However, scission can still occur without Rvs161p and Rvs167p, indicating that 

other factors are also involved in the process.  

Endocytic modules are not independent molecular machineries but they influence each 

other’s activity. The Arp2/3 complex can not only be activated by proteins present in 

different modules (Pan1p, Las17p, Myo5p and Abp1p), but also the Arp2/3 activators 

themselves are regulated by interactions with proteins in their own or in other protein 

modules. For example, the activity of Las17p is negatively regulated by interactions with 

Sla1p, a member of the coat module, whereas Bzz1p, a member of the Las17p/Myo5p 

module relieves this inhibition (Rodal et al., 2003; Sun et al., 2006). Bbc1p blocks the 

Arp2/3 activator activity of Las17p and Myo5p (Sun et al., 2006), and Pan1p seems to be 

negatively regulated by Sla2p (Toshima et al., 2006a). 

The molecular mechanisms that control the extremely transient and precise association 

and dissociation between the different components of the endocytic patch are far from 

being understood. Endocytic modules do not seem to be pre-assembled in the cytosol, 

but rather, within a time window of a few seconds, each single protein associates and 
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dissociates to the patch in a precise and ordered manner, which can hardly be explained 

by single protein-protein interactions. Molecular mechanisms that intersect multiple 

synergistic protein-protein and protein-lipid contacts and postranslational modifications 

such as ubiquitination or phosphorylation, which modify the affinity between the different 

components, are surely involved.   

 
Saccharomyces 

cerevisiae  protein Function References 

Chc1p, Clc1p vesicle coat component, initiation of 
patch formation 

(Kaksonen et al., 2005; Newpher et al., 
2005) 

End3p scaffold protein (Tang et al., 1997) 

Pan1p Arp2/3 activator, scaffold protein (Duncan et al., 2001; Tang et al., 1997) 

Sla1p endocytic adaptor (binds NPF-motif), 
regulator of actin dynamics (inhibits 
Las17p) 

(Howard et al., 2002; Rodal et al., 
2003) 

Sla2p scaffold between endocytic coat and (Sun et al., 2005; Toshima et al., 
actin machinery, binds PI(4,5)P2, 
negatively regulates Pan1p  

2006a; Wesp et al., 1997) 

Ent1p, Ent2p* endocytic adaptors, bind ubiquitin, 
bind PI(4,5)P2

(Shih et al., 2002; Wendland et al., 
1999) 

Ede1p coat component, binds ubiquitin (Shih et al., 2002; Toshima et al., 
2006b) 

Las17p Arp2/3 activator, recruits Vrp1p (Sun et al., 2006; Winter et al., 1999) 

Vrp1p binds Las17p and Myo5p, required for 
Myo5p activity as Arp2/3 activator 

(Evangelista et al., 2000; Geli et al., 
2000a; Lechler et al., 2001; Lechler et 
al., 2000; Sun et al., 2006)  

Myo5p, Myo3p motor proteins, Arp2/3 activators 
together with Vrp1p 

(Evangelista et al., 2000; Geli et al., 
2000a; Lechler et al., 2000; Sun et al., 
2006) 

Bbc1p negatively regulates Las17p and 
Myo5p 

(Rodal et al., 2003; Sun et al., 2006) 

Bzz1p binds and regulates Las17p (relieves 
inhibition by Sla1p) 

(Soulard et al., 2002; Sun et al., 2006) 

Arp2/3 complex actin nucleator, promotes filament 
branching 

(Goley and Welch, 2006) 

Abp1p Arp2/3 activator, regulator of actin 
polymerrization (inhibits Las17p and 
Myo5p), recruits Ark1p/Prk1p kinases 
and Sjl2p 

(Fazi et al., 2002; Goode et al., 2001; 
Stefan et al., 2005; Sun et al., 2006) 

Cap1p, Cap2p barbed-end actin filament capping 
protein 

(Kim et al., 2004) 

Sac6p yeast fimbrin, bundles and stabilizes 
actin filaments 

(Adams et al., 1991) 

Rvs161p, Rvs167p curvutare sensing and  membrane 
bending via N-BAR domain, involved 
in scission 

(Kaksonen et al., 2005; Lombardi and 
Riezman, 2001) 

 
Table I. Endocytic patch components. The table is giving an overview about the molecular function of 
proteins which localize to the endocytic patch and which have been grouped into the different protein 
modules: the coat module (green), the actin module (red), the Las17p/Myo5p module (blue) and the 
amphiphysin module (brown). 
* For Ent1p and Ent2p the exact behaviour at the endocytic patch has not been determined, but due to their 
molecular function and binding characteristics they can be grouped into the coat module. 
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4.3. The S. cerevisiae class I myosins in the endocytic uptake step 
 
Two highly homologous type I myosins exist in S. cerevisiae. Myo5p and Myo3p belong to 

the long-tailed class I myosins and bear a TH1, a TH2 and an SH3 domain in the tail 

(Brown, 1997). The neck domain of these myosins bears two IQ motifs that bind 

calmodulin (Geli et al., 1998).  

The  the endocytic uptake early suggested that an actin 
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function of Myo5p and Myo3p has been shown to be important for endocytosis. Mutation 

of a serine-residue in the motor head of Myo5p, which has to be phosphorylated for 
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efficient actin binding and motor activity, led to a striking defect in endocytosis in a myo3Δ 

ins. The motor activity via the head and neck domains and 

A 

strain (Grosshans et al., 2006). 

C 

Myo3p/ 

 
Figure 5. Endocytic functions of class I myos

Myo5p 

neck TH1 GPA SH3 head (ATPase)

 activation of the 
Arp2/3 complex 

motor activity 

the Arp2/3 activator activity via the C-terminal part of the tail (C) bearing the GPA domain, the SH3 domain 
and the acidic peptide have been shown to be important for endocytosis. 
 

How the two activities of the class I myosins, motor function and Arp2/3 activator function 

(see figure 5), participate on the molecular level in endocytosis remains to be understood. 

Only recently, Sun et al. presented important insights regarding this question by analyzing 

the contribution of the two myosin I activities to endocytic patch dynamics (Sun et al., 

2006). 

Arp2/3 dependent actin polymerization has been proposed to function in membrane 

invagination, vesicle constriction, scission or vesicle movement after scission during 

endocytosis (Kaksonen et al., 2006). Sun et al. performed photobleaching experiments in 

bbc1Δ sla1Δ cells that carry out endocytosis but have highly enlarged endocytic actin 

structures (Sun et al., 2006). The experiments demonstrated that actin-monomers are 

added next to the plasma membrane. Moreover, slow inward-movement of cortical patch 

components was observed at the same speed as actin-protrusions grew. This suggests 

that actin polymerization at the plasma membrane is generated for plasma membrane 

invagination, implicating the plasma membrane-based Arp2/3 activators Myo5p/Vrp1p 

and Las17p in these processess. Moreover, deleting the Myo5p acidic domain required 

for Arp2/3 activation caused a significant reduction of the frequency of Sla1-GFP slow 

inward movement (in a myo3Δ background), while similar truncations in the other Arp2/3 

activator proteins had no or very little effect. This observation suggests that the Arp2/3 

activator activity of Myo5p is especially important for membrane invagination during 

endocytosis.  

By analyzing Myo5p mutants mutated in important sites of the motor head, Sun et al. 

demonstrated that, independent of the Myo5p function as Arp2/3 activator, also the 

myosin I motor activity plays an important role for the slow motility phase of cortical patch 

components. Myo5p mutants with blocked motor activity could still polymerize actin at 
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endocytic sites, but were strikingly impaired in the slow endocytic inward-movement of 

Sla1-GFP (Sun et al., 2006). This suggests that the myosin I motor activity is required for 

membrane invagination and/or scission. The idea that Myo5p functions in membrane 

 mutant 

ssive 

hibit an 

increased n these 

membrane i

 

ndocytosis. On the molecular level the motor could participate in the generation of 

 

limiting the activity and the time interval of appearance of the endocytic proteins at 

 (Sun et al., 2006). Since Bbc1p binds to the Myo5p SH3 domain via 

scission is supported by the observation that a temperature sensitive myo5

exhibits cortical patches with a prolonged slow-movement phase at semipermi

temperature (Jonsdottir and Li, 2004). The ts mutant was also shown to ex

umber of plasma membrane invaginations, but the endocytic origin of 

nvaginations was not demonstrated.  

It remains to be answered how the myosin I motor activity participates exactly in

e

membrane tension by moving the membrane along actin filaments or in the organization 

f actin filaments, i.e. their correct orientation and movement away from the plasmao

membrane.  

 

4.3.1. Mechanisms of Myo5p regulation 
 
As mentioned before, the complex formation of the endocytic vesicle can be controlled by 

sharply 

the endocytic patch. One of the proteins that might integrate a major number of inputs that 

modulate its presence and activity is the unconventional class I myosin Myo5p. Myo5p 

has a complex domain structure and directly interacts with a number of proteins involved 

in endocytosis, which include not only components of the hard core machinery required 

for the formation of vesicles but also some signalling molecules, i.e. kinases, 

phosphatases and calmodulin (Evangelista et al., 2000; Geli et al., 2000a; Geli et al., 

1998; Grosshans et al., 2006; Lechler et al., 2000)(and our unpublished data).  

As explained before, Myo5p exhibits two activities that are important for the formation of 

the endocytic vesicle: Arp2/3 activator function and molecular motor activity. Both 

activities seem to be independently regulated.  

Since binding of the Myo5p SH3 domain to Vrp1p is essential for the Myo5p activity as 

Arp2/3 activator (Geli et al., 2000a; Lechler et al., 2000; Sun et al., 2006), actin 

polymerization via Myo5p can be controlled by mechanisms affecting the interaction with 

Vrp1p. The protein Bbc1p has been shown to inhibit the Arp2/3 activator function of 

Myo5p/Vrp1p in vitro

a proline-rich region it most likely negatively regulates Myo5p by competing with Vrp1p for 

myosin binding (Mochida et al., 2002; Tong et al., 2002).   

The motor activity of class I myosins from lower organisms can be controlled by 

phosphorylation of a single site in an actin-binding loop (Barylko et al., 2000). 
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Phosphorylation of the corresponding residue was shown to be required for Myo5p motor 

activity during fast, ligand-induced endocytosis (Grosshans et al., 2006) 

Besides the regulatory mechanisms affecting Myo5p activities, also the recruitment of 

Myo5p to the endocytic patch seems to be sharply regulated.  

Myo5p appears at the endocytic patch during an extremely short time interval (15 to 20 

seconds), which probably precedes vesicle scission from the plasma membrane 

(Jonsdottir and Li, 2004; Sun et al., 2006). Consistent with an important role of the SH3 

domain in Myo5p recruitment, a Myo5p mutant with a mutated SH3 domain appears 

Vrp1p arrives about 10 seconds earlier than the myosin.  

o far, direct evidence for a role in Myo5p recruitment has been only shown for Vrp1p, 

zed in a vrp1Δ yeast strain (Sun et al., 2006). 

shown to 

eraction between Cmd1p and the Myo5p 

partially delocalized (Sun et al., 2006). However, while Bbc1p arrives together with Myo5p  

at the endocytic site, two binding partners of the Myo5p SH3 domain, Las17p and Vrp1p, 

arrive significantly earlier (Jonsdottir and Li, 2004; Kaksonen et al., 2003; Kaksonen et al., 

2005; Sun et al., 2006). Las17p association precedes the recruitment of Myo5p about 20 

seconds and 

S

since the myosin appears partially delocali

Las17p binds to the SH3 domain of Myo5p and also to Vrp1p (Evangelista et al., 2000; 

Naqvi et al., 1998). Thus, a direct and indirect implication of Las17p in Myo5p recruitment 

has been proposed. The observation that Las17p and Vrp1p associate to the endocytic 

sites significantly earlier than Myo5p suggests that their interaction with the myosin might 

be regulated. Moreover, other Myo5p domains and Myo5p interactions should necessarily 

be involved in the recruitment of the myosin to the cortical patches, because the SH3 

domain is not sufficient to target Myo5p to these structures and the effects of deleting the 

SH3 domain are only partial (Anderson et al., 1998; Sun et al., 2006).  

Since Myo5p bears a TH1 domain that for other class I myosins has been 

interact with negatively charged lipids (see 4.1.2.1.) it seems to be likely that also the 

binding to certain lipids might influence Myo5p behaviour at the endocytic patch. 

Moreover, as it was demonstrated that the int

neck is important for the endocytic uptake step (Geli et al., 1998), a Cmd1p-dependent 

regulation of Myo5p might be required for the formation of the primary endocytic profile.  
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5. Objectives 
 
Recently, real-time microscopy of fluorescently labelled proteins required for the uptake 

step of endocytosis has allowed defining the temporal sequence of recruitment of the 

recisely modulate 

different elements of the budding machinery. This kind of analysis has demonstrated that 

association and dissociation between the different cortical patch components has to be 

exquisitely regulated within a time frame of seconds. The molecular mechanisms 

regulating this highly dynamic process are largely unknown.   

 

As previously discussed, one of the proteins that might integrate a major number of inputs 

that modulate its presence at the endocytic patch is the unconventional type I myosin 

Myo5p. Therefore, we decided to investigate the cis and trans elements required for the 

Myo5p recruitment to the endocytic patch and the mechanisms that p

this process. The specific aims of our work are: 

 

1) Define the Myo5p domains necessary and sufficient to target the type I myosin to 

the cortical endocytic patch. 

2) Identify protein-protein or lipid-protein interactions that might contribute to the 

localization of Myo5p to the cortical endocytic patch with a special focus in the 

components that are present at the cortical patch before Myo5p. 

3) Investigate the molecular mechanisms that regulate the transient nature of these 

interactions.  
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6. Results 
 
6.1. Analysis of Myo5p recruitment to endocytic patches 
 
Recently, real-time fluorescence microscopy has allowed observing the sequential 

recruitment of endocytic proteins to cortical patches (Kaksonen et al., 2003; Kaksonen et 

al., 2005; Sun et al., 2006). In these studies it was shown that Myo5p localizes to the 

endocytic patch about 20 seconds after the recruitment of Las17p and about 10 seconds 

fter the recruitment of Vrp1p, two proteins that are known to bind to the Myo5p tail via its 

teraction with Las17p and Vrp1p, is not 

ufficient for Myo5p patch localization (Anderson et al., 1998) suggests that other factors 

Myo5p anization that could integrate a number of different 

cortica

the diff

6.1.1. An interaction between different Myo5p tail domains regulates the 
recruit p to cortical patches   

.1.1.1. The cellular localization of GFP-Myo5p constructs bearing different 
uncations suggests that an interaction between the TH1 domain and the Myo5p C- 
rminus prevents Myo5p recruitment to cortical patches    

 order to analyze the role of the different Myo5p tail domains in the recruitment to 

ortical patches, we expressed GFP-fusion proteins of full-length Myo5p or different 

uncations under the control of the native MYO5 promoter in myo5Δ cells (figure 6). The 

ll-length fusion protein (GFP-Myo5p) showed localization to cortical patches, as it has 

een described before. Moreover, a diffuse localization at the plasma membrane and 

some cytosolic expression could be observed.  

When visualizing GFP-Myo5p constructs with C-terminal truncations, a construct missing 

only the Myo5p domains required for Arp2/3 activation (GFP-HnT) failed to concentrate at 

cortical patches. Thus, the Myo5p C-terminus including the GPA domain, the SH3 domain 

and the acidic peptide seemed to be required for patch localization. Not surprisingly then, 

also the constructs with bigger C-terminal truncations showed only diffuse cytoplasmic 

fluorescence (GFP-Hn and GFP-H).   

a

SH3 domain (Evangelista et al., 2000; Sun et al., 2006). The observation that Myo5p and 

its known binding partners arrive at different stages during the formation of the endocytic 

patch and the fact that they remain there during overlapping but still different time 

windows, suggests that their interaction might be regulated. Further, the observation that 

the Myo5p SH3 domain, which mediates the in

s

might be involved in the recruitment of Myo5p to the endocytic site.  

 has a complex domain org

cellular signals. Thus, in order to look for the molecular mechanisms regulating the 

l patch recruitment of the myosin, first, we decided to analyze the contribution of 

erent Myo5p domains to the cortical patch localization. 

 

ment of Myo5
 
6
tr
te
 
In

c

tr

fu

b
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Figure 6. Localization of Myo5p constructs fused to GFP. A. Fluorescence micrographs of live 
myo5Δ cells (SCMIG275) expressing the indicated constructs represented in B from centromeric plasmids 
under the control of the MYO5 promoter. Cells were grown to mid-log phase at 25°C and directly observed by 
conventional fluorescence microscopy. Arrowheads indicate cortical patches.  
 

Visualization of GFP constructs with N-terminal truncations demonstrated that a construct 

missing just the head domain (GFP-nTC) exhibited a cellular localization nearly 

indistinguishable from the full-length protein. In contrast, a GFP fusion protein bearing the 
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Myo5p-tail without the neck (GFP-TC) appeared exclusively localized to the nucleus, 

suggesting t l patch. 

 

 These 

rs between the 

l 

uct missing just the 

head domai ired to 

release the 

only 

the neck (  

construct th was blocked by 

 

patches, su ch localization. 

cytosolic 

localization construct missing 

the motor h es to 

the efficient 

 

Myo5p 
fragment c  in 
vitro 
 

  

and incubat o the 

eck and TH1 domains of Myo5p (ProtA-nT), which was purified from yeast. 

nfortunately, we could not purify a construct bearing the TH1 domain alone, since 

d 

hat the Myo5p neck was required for Myo5p localization to the cortica

Surprisingly though, a construct bearing only the Myo5p C-terminal domains required for

Arp2/3 activation (GFP-C) partially recovered the cortical patch localization.

observations suggested that an intra- or intermolecular interaction occu

Myo5p TH1 domain and the C-terminus, which blocks Myo5p recruitment to cortica

patches via its C-terminal domain. On the other hand, since the constr

n (GFP-nTC) was localized normally, the neck seemed to be requ

Myo5p C-terminus / TH1 domain interaction. 
For further analysis of these hypotheses, we expressed GFP fusion proteins missing 

GFP-Myo5Δnp) or only the TH1 domain (GFP-Myo5ΔTp). As expected, the

construct missing the neck could not localize to cortical patches, implying that also in this 

e interaction of the Myo5p C-terminus with patch components 

the TH1 domain. The fusion protein missing only the TH1 domain was recruited to

pporting the idea that the C-terminus alone is sufficient for pat

Nevertheless, it should be noticed that besides their cortical patch localization, the GFP-C 

and GFP-Myo5ΔTp constructs, missing the TH1 domain, showed strong 

when compared with the full-length GFP-Myo5p or with the 

ead (GFP-nTC). This suggests that the lipid binding TH1 domain contribut

localization of Myo5p.  

6.1.1.2. The Myo5p neck and TH1 domains directly interact with a C-terminal 
ontaining the GPA domain, the SH3 domain and the acidic peptide in

binding assays 

Since visualization of the GFP-Myo5p constructs suggested that an intra- or 

intermolecular interaction may occur between the Myo5p TH1 domain and the C-terminus, 

we next decided to test this interaction in vitro using purified components.  

A GST-fusion protein bearing the Myo5p C-terminus (GST-C) was purified from bacteria

ed with a construct bearing two Protein A IgG-binding domains fused t

n

U

significant amounts of the protein could not be expressed in yeast or in bacteria.  

As shown in figure 7A, glutathion-Sepharose beads coated with GST-C could efficiently 

ull down purified ProtA-nT (approximately 50 % of the total input), while beads coatep

with GST alone could not, suggesting a direct interaction between the Myo5p neck and 

TH1 domains and the Myo5p C-terminus. 
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Figure 7. A Myo5p fragment bearing the neck and TH1 domains directly binds to the Myo5p C-
terminus. A. Immunoblot  (lower panel) of glutathion-Sepharose pull-downs of 3 µg of a recombinant purified 
C-terminal fragment of Myo5p bearing the GPA, SH3 and acidic domains fused to GST (GST- C) or GST, 
incubated with 0.01 µg of a Protein A-tagged Myo5p fragment bearing the neck and TH1 domains (ProtA-nT) 
purified from yeast. Ponceau red staining was used to detect the GST and the GST- C proteins (upper panel). 
PAP was used to decorate the ProtA-nT construct (lower panel). 5 % of the total input and 10 % of the 
precipitate were loaded.  
B. Overlay assay of 0.15 µg of a Myo5p fragment bearing the neck and TH1 domain (nT) purified from yeast 
overlayed with 20 mM GST or the C-terminal fragment of Myo5p bearing the GPA, SH3 and acidic domains 
fused to GST (GST-C) or 60 mM calmodulin (Cmd1p). An α-GST antibody was used to detect GST and th
GST-C construct and an α-Cmd1p antibody was used for detection of calmodulin. Control assays were 

e 

east proteins could still mediate binding between the 

ifferent Myo5p domains. Thus, in order to test if the interaction between the Myo5p C-

s with 

 interaction between the Myo5p SH3 domain 

(included in the C-terminal portion of the protein) and the endocytic protein Verprolin 

performed starting from a yeast strain that did not express the nT-protein (C). 
 

 

Although the ProtA-nT construct purified from yeast appeared at least 90% pure by SDS-

PAGE and Coomassie staining, and about 50 % of the ProtA-nT input was associating to 

the GST-C construct, copurifying y

d

terminus and the neck and TH1 domains was really direct, we performed a protein overlay 

assay (figure 7B). ProtA-nT bound to IgG-Sepharose beads was purified from yeast and 

the Myo5p fragment containing the neck and TH1 domains was stripped from the ProtA-

tag using the TEV (tobacco etch virus) protease. The polypeptide was subjected to SDS-

PAGE, transferred to nitrocellulose and finally overlayed with GST-C, GST alone or 

recombinant Cmd1p as a positive control, all of them purified from E. coli. As expected, 

binding to the fragment containing the Myo5p neck and TH1 domains could be detected 

for GST-C and for Cmd1p, but not for GST alone. Thus, the interaction between the 

Myo5p C-terminus and the Myo5p neck and TH1 domains seemed to be direct.  

 
6.1.1.3. The TH1 domain blocks the interaction of the Myo5p C-terminu
Verprolin in cis and in trans 
 
Visualization of the GFP-Myo5p constructs suggested that the interaction between the 

TH1 domain and the Myo5p C-terminus might inhibit the recruitment of Myo5p to cortical 

patches mediated by the C-terminus. An
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(Vrp1p) has been shown to be essential for Myo5p function (Anderson et al., 1998; Geli et

al., 2000b). Moreover, an involvement of Vrp1p in Myo5p patch recruitment has been

suggested (Sun et al., 2006). Thus, we decided to analyze if the Myo5p-Vrp1p interaction 

could be blocked by the Myo5p TH1 domain. Extracts of yeast cells expressing

tagged Myo5p constructs and HA-tagged Vrp1p (Vrp1-HAp) were subjected to IgG 

downs (precipitating mainly cytosolic ProtA-Myo5p, see methods) and coprecip

Vrp1-HAp was detected by immunoblot.  

 

 

 ProtA-

pull-

itating 

 

epresented in B and HA-tagged Verprolin (Vrp1-HAp) from centromeric 

 
 
Figure 8. The Myo5p TH1 domain blocks the interaction of the Myo5p C-terminus with verprolin in cis 
and in trans. Immunoblots of IgG-Sepharose pull-downs of myo5Δ vrp1Δ cells (SCMIG304) expressing the 

rotein A-tagged Myo5p constructs rP
plasmids under the control of the MYO5 and VRP1 promoters, respectively, in the absence or in the presence 
of LexA-fusion proteins of Rvs167p (LexA-Rvs167p) or the Myo5p neck and TH1 domains (LexA-nT), both 
overexpressed under the control of the constitutive ADH promoter. Cells were lysed and proteins were 
precipitated with IgG-Sepharose. IgG-precipitated proteins were analyzed by immunoblot using PAP for 
detection of the Myo5p constructs, and α-HA or α-LexA antibodies for detection of Vrp1-HAp and the LexA 
fusion constructs, respectively.  
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As shown in figure 8, a ProtA-construct bearing the Myo5p C-terminus (ProtA-C) showed 

strong interaction with Vrp1-HAp when compared with the full-length Myo5p. Adding back 

the TH1 domain to the C-terminus (ProtA-TC and ProtA-nTC) completely blocked the 

interaction with Vrp1p. In addition, coexpression of a LexA-fusion protein bearing the neck

and TH1 domains (LexA-nT) clearly diminished the Myo5p C-terminus / Vrp1p interaction

in trans, while coexpression of LexA fused to Rvs167p did not have this effect. 

Interestingly, LexA-Rvs167p and LexA-n

 

 

TH1 were both pulled down by ProtA-C. Thus, 

lthough both LexA fusion proteins interacted with the Myo5p C-terminal extension, only 

the neck-TH

 

 

 
Visualizat  

localization 

ry 

interaction b  

and Myo5p 

Interestingly

of ma in 

vitro n could 

contribute t et al., 

mote 

lipid binding  

of these do

 

 
 

investigated s and 

if this intera inding 

properties o e tagged 

onstructs bearing these domains were not expressed in sufficient amounts in yeast or 

nteracting to a much stronger extent with phosphatidic acid and 

a

1 fragment was competing for binding with Vrp1p.  

6.1.2. Calmodulin regulates the recruitment of Myo5p to endocytic patches at the
plasma membrane 

ion of the GFP-constructs indicated that the Myo5p neck is essential for Myo5p

in the presence of the TH1 domain. This result suggested that a molecular 

mechanism that involves the Myo5p neck might be involved in the release of the inhibito

etween the TH1 domain and the C-terminal extension, allowing Vrp1p binding

patch recruitment. 

, it has been demonstrated before that calmodulin dissociation from the neck 

mmalian Myo1c promotes association of this short tailed myosin to phopholipids 

, suggesting that under certain circumstances calmodulin dissociatio

o membrane targeting of the unconventional class I myosins (Hirono 

2004). Thus, we wondered if calmodulin release from the Myo5p neck could also pro

through the neck and TH1 domains and concomitantly trigger the dissociation

mains from the Myo5p C-terminus. 

6.1.2.1. Calmodulin dissociation promotes efficient lipid binding of Myo5p 

Since the lipid binding properties of the Myo5p neck and TH1 domains have never been

 we decided to analyze if these domains bind specifically to certain lipid

ction can be modulated by Cmd1p dissociation. Unfortunately, the lipid b

f the TH1 domain or the neck alone could not be analyzed, sinc

c

bacteria. Thus, we purified a Protein A-tagged fragment bearing the neck and TH1 

domains together (ProtA-nT) or the Myo5p C-terminus (ProtA-C, as negative control) from 

yeast, and we overlayed lipid-strips bearing spots of different phospholipids with the 

proteins. As expected, only ProtA-nT, but not ProtA-C could bind to acidic phospholipids 

(figure 9A). ProtA-nT was i
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especially with PI(4,5)P2 and PI(3,5)P2 than with the other phospholipids. Remarkably, 

some lipids bearing the same or even more negative charge than PI(4,5)P2 and PI(3,5)P2 

bound much less ProtA-nT. This suggests that Myo5p lipid binding is not merely mediated 

by electrostatic interactions.  

Consistent with the results described for the mammalian Myo1c, we also found that the 

nTH1 phopholipid binding was clearly enhanced by calmodulin dissociation. It has been 

shown that 5 mM Ca2+ induces Cmd1p dissociation from Myo5p (Geli et al., 1998). When 

we added 5 mM CaCl2 to the lipid binding assay the interaction of the ProtA-nT construct 

with acidic lipids was clearly enhanced (figure 9A). The addition of 5 mM MgCl2 did not 

ave this effect (data not shown). The association of ProtA-nT with phosphatidic acid 

ked the effect of adding recombinant purified Cmd1p to Cmd1p-

h

seemed to be most strikingly influenced by the addition of calcium.  

ext, we also checN

stripped ProtA-nT in the absence of Ca2+. As shown in figure 9B, the addition of Cmd1p 

clearly diminished binding of the Myo5p fragment to the acidic lipids.  

These results strongly suggest that calmodulin dissociation from the Myo5p neck domain 

promotes phospholipid binding of Myo5p.  
 

 
 
 
 
Figure 9. Calmodulin dissociation from a Myo5p fragment bearing the neck and TH1 domains 
promotes phospholipid binding in vitro. A. Commercially available PIP strips (Echelon) bearing dot spots 
of immobilized sphingosine-1-phosphate (S1P), the indicated phosphoinositides (PI(3,4)P2; PI(3,5)P2; 
PI(4,5)P2; PI(3,4,5)P3)), phosphatidic acid (PA) and phosphatidyl serine (PS) overlaid with 0.5 nM of Protein 
A-tagged Myo5p fragments bearing either the neck and TH1 domains (ProtA-nT) or the C-terminal portion 
containing the GPA, SH3 and the acidic domains (ProtA-C). The constructs were purified from yeast in the 
absence of Ca2+ to preserve calmodulin binding to the Myo5p neck and the incubation was performed either in 
the absence or in the presence of 5 mM Ca2+. PAP was used to detect the ProtA fusion proteins. B. PIP strips 
overlaid with 0.5 nM of the ProtA-nT construct purified from yeast in the presence of Ca2+ to dissociate 
calmodulin from the Myo5p neck. Overlay assays were performed in the absence of Ca2+ and in the absence 
or in the presence (+ Cmd1p) of 14 nM calmodulin. PAP was used to detect the Protein A-tagged constructs. 
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6.1.2.2. Cmd1p dissociation from the Myo5p neck releases the interaction of the 
neck and TH1 domains with the Myo5p C-terminus in vitro 
 
Next, we wanted to investigate if Cmd1p dissociation can also release the inhibitory 

interaction in the Myo5p tail. Thus, we analyzed if Cmd1p dissociation affects the in vitro 

 
 
 
Figure ng the 
neck an harose 
pull- d acidic 
omains fused to GST (GST-C) or GST, incubated with 0.01 µg of a Protein A-tagged Myo5p fragment 
earing the neck and TH1 domains (ProtA-nT) purified from yeast in the absence of Ca2+ to preserve the 
almodulin association to the Myo5p neck. Pull downs were performed in the absence (-) or in the presence 
) of 5 mM Ca2+. Ponceau red staining was used to detect the GST and the GST-C proteins (upper panel). 

 
lmodulin from the Myo5p neck. The IgG-Sepharose beads were washed in the absence of Ca2+ and further 

incubated in the absence (-) or in the presence (-) of 14 nM calmodulin. Cmd1p and the Protein A-tagged 
construct were detected as described in B. 

interaction between the Myo5p tail domains observed previously (figure 7). As before, a 

GST-fusion protein bearing the Myo5p C-terminus (GST-C) purified from bacteria was 

used to pull down a ProtA-construct bearing the neck and TH1 domains (ProtA-nT) 

purified from yeast. Cmd1p copurified with the ProtA-nT construct.  

 

 10. Calmodulin dissociation releases the interaction between a Myo5p fragment containi
d TH1 domains and the Myo5p C-terminus. A. Immunoblot (lower panel) of gluthation-Sep

downs of 3 µg of a recombinant purified C-terminal fragment of Myo5p bearing the GPA, SH3 an
d
b
c
(+
PAP was used to decorate the ProtA-nT construct (lower panel). 5 % of the total input and 10 % of the 
precipitate were loaded. B. Immunoblot of IgG-Sepharose pull-downs (IgG-pd) from a myo5Δ strain (SCMIG 
275) expressing the ProtA-nT construct under the promoter of MYO5 in the absence (-) or in the presence (+) 
of 5 mM Ca2+ to demonstrate calmodulin dissociation from the Myo5p neck in the presence of calcium. An 
antibody against Cmd1p (α-Cmd1p) and PAP were used for detection of calmodulin and the Protein A-tagged 
construct, respectively. C. Immunoblot (lower panel) of gluthation-Sepharose pull downs of 3 µg of the 
recombinant purified C-terminal fragment of Myo5p fused to GST (GST-C) or GST incubated with 0.04 µg of 
purified calmodulin-free Protein A-tagged Myo5p fragment bearing the neck and TH1 domains (ProtA-nT), in 
the absence (-) or in the presence (+) of 50 nM calmodulin. Ponceau red staining was used to detect the GST 
and GST-C proteins (upper panel). PAP was used for detection of ProtA-nT. 5 % of the total input and 10 % of 
the precipitate were loaded. D. Immunoblot of IgG-Sepharose pull-downs (IgG-pd) from a myo5Δ strain 

CMIG275) expressing the ProtA-nT construct performed in the presence of 5 mM Ca(S
ca

2+ to dissociate
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Addition of 5 mM CaCl2 (but not addition of 5 mM MgCl2, data not shown) induced 

issociation of Cmd1p from the ProtA-nT construct (figured  10B) and triggered the 

ould efficiently bind to 

ProtA-nT (figure 10D). Altogether, the results supported the view that the interaction 

ed by 

 

otes 

hibitory 

that 

 

md1p 

) were 

 then 

yo5p. Under these conditions, the full length Myo5p precipitated significantly more Vrp1-

Ap than in the absence of calcium. In contrast, the interaction of the Myo5p construct 

or in a CMD1 wild-type strain. When precipitating ProtA-Myo5p with IgG-Sepharose from 

dissociation of the ProtA-nT fusion protein from the Myo5p C-terminus (figure 10A). 

Next, the experiment was performed with Cmd1p-stripped ProtA-nT and in the absence of 

calcium. Recombinant Cmd1p purified from E. coli was added to analyze the effect of 

Cmd1p-binding to the Myo5p neck. As expected, the addition of Cmd1p significantly 

increased binding of ProtA-nT to GST-C (figure 10C). An IgG pull-down experiment was 

performed in parallel, demonstrating that the recombinant Cmd1p c

between the neck and TH1 domains and the Myo5p C-terminus is releas

dissociation of Cmd1p from the Myo5p neck.   

 

6.1.2.3. Cmd1p dissociation from the Myo5p neck promotes Myo5p binding to
Vrp1p 

 
The previous results indicated that Cmd1p dissociation from the Myo5p neck prom

phospholipid binding through the neck and TH1 domains and releases the in

interaction affecting the C-terminal fragment. From our observations we could predict 

Cmd1p dissociation promotes binding of Myo5p to Vrp1p. To verify this point, Protein A

fusion proteins of full-length Myo5p (ProtA-Myo5p), a Myo5p construct missing the C

binding sites (ProtA-Myo5ΔIQp) or Myo5p lacking the C-terminus (ProtA-Myo5ΔCp

coexpressed with Vrp1-HAp in yeast cells. The ProtA-tagged proteins were

precipitated from cell extracts with IgG-Sepharose, in the presence or absence of 5 mM 

CaCl2. As shown in figure 11A, the addition of calcium strongly reduced Cmd1p binding to 

M

H

missing the Cmd1p binding sites (IQ motifs) was not affected by the addition of calcium, 

demonstrating that the observed effect was dependent on the Cmd1p association to 

Myo5p. Further, the detected interactions between Myo5p and Vrp1-HAp in the presence 

or absence of calcium were both mediated by the C-terminus, since the Myo5p construct 

missing the C-terminus did not coprecipitate Vrp1-HAp at all in any condition.  

To confirm that Cmd1p dissociation from Myo5p promotes the Myo5p-Vrp1p interaction, 

coimmunoprecipitation experiments were performed with extracts of a cmd1-226 mutant 

specifically impaired in the Myo5p-Cmd1p interaction (Geli et al., 1998). As a control, the 

same experiment was performed with extracts of a calmodulin mutant (cmd1-231) in 

which the interaction between Cmd1p and Myo5p is not affected (Geli et al., 1998).  

ProtA-Myo5p and Vrp1-HAp were coexpressed in the cmd1-226 and cmd1-231 mutants 
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the cell extracts, significantly more Vrp1-HAp coprecipitated in the cmd1-226 strain, when 

compared with the cmd1-231 mutant or the wild-type strain (figure 11B).  

Thus, also this experiment indicates that the dissociation of Cmd1p is a prerequisite for 

efficient binding of Vrp1p to the Myo5p C-terminus. 

 

 

 
 
 
 
Figure 11. Calmodulin dissociation promotes Myo5p binding to Vrp1p. A. Immunoblots of IgG-Sepharose 
pull-downs of myo5Δ vrp1Δ cells (SCMIG304) expressing Protein A-tagged constructs of full-length Myo5p 
(ProtA-Myo5p), or mutant Myo5p proteins either lacking the IQ motifs (GFP-Myo5ΔIQp) or the C-terminus 
including GPA, SH3 and acidic domains (ProtA-Myo5ΔCp) together with HA-tagged verprolin (Vrp1-HAp), all 
expressed from centromeric plasmids under control of the MYO5 and VRP1 promoters, respectively. Cells 
were lysed and proteins were precipitated with IgG-Sepharose in the absence (-) or in the presence (+) of 5 
mM Ca2+. Precipitates were analyzed by immunoblot using PAP for detection of the Myo5p constructs, and α-
HA or α-Cmd1p antibodies for detection of Vrp1-HAp and Cmd1p, respectively. B. Immunoblots of IgG-
Sepharose pull-downs from wild-type cells (CMD1,  SCMIG947) or the temperature sensitive calmodulin 
mutants cmd1-226 (SCMIG182) or cmd1-231 (SCMIG187) expressing Protein A-tagged constructs of full-
length Myo5p (ProtA-Myo5p) and HA tagged Verprolin (Vrp1-HAp) from centromeric plasmids under the 
control of the MYO5 and VRP1 promoters, respectively. Cells were lysed and proteins were precipitated with 
IgG-Sepharose. Precipitated proteins were analyzed by immunoblot, using PAP for detection of the Myo5p 
constructs and α-HA and α-Cmd1p antibodies for detection of Vrp1-HAp and Cmd1p, respectively. Note that 
disruption of the Myo5p-Cmd1p interaction by the cmd1-226 mutation promotes Myo5p association with 
Vrp1p.
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6.1.2.4. At the plasma membrane, Myo5p releases Cmd1p and binds to Vrp1p  
 
If Cmd1p dissociation from the neck domain was required to promote the interaction of 

Myo5p with plasma membrane phospholipids and with the cortical patch component 

nding 

 Myo5p was specific, since it disappeared when a ProtA-Myo5p mutant lacking the two 

2). 

lasma 

Vrp1p, one would predict that cytosolic Myo5p should have much more Cmd1p bound 

than plasma membrane associated Myo5p. Moreover, only the plasma membrane fraction 

of Myo5p should be able to interact with Vrp1p. To test these predictions, we established 

a protocol for the purification of highly enriched plasma membrane and cytosolic fractions.  

After preparing the plasma membrane and cytosolic fractions from yeast expressing 

ProtA-Myo5p, we subjected them to IgG pull-downs and detected coprecipitating Cmd1p 

by immunoblot. As shown in figure 12, the plasma membrane associated Myo5p clearly 

coprecipitated much less Cmd1p than the cytosolic Myo5p. The detected Cmd1p bi

to

Cmd1p-binding sites (ProtA-Myo5ΔIQp) was used instead of the wild-type protein (figure 

1

 
 
Figure 12. Calmodulin dissociates from Myo5p at the plasma membrane. A. Immunoblot of 10 μg of total 
yeast protein extract (T) or of yeast plasma membrane (PM) or cytosolic (C) fractions prepared from myo5Δ 
cells (SCMIG275) expressing Protein A-tagged constructs of full-length Myo5p (ProtA-Myo5p) or a mutant 
Myo5p lacking the IQ motifs (GFP-Myo5ΔIQp) from centromeric plasmids under the control of the MYO5 
promoter. Nitrocellulose membranes were decorated with antibodies against the plasma membrane marker 
Gas1p (α-Gas1p), the cytosolic marker hexokinase (α-Hxk1p) or calmodulin (α-Cmd1p). PAP was used for 
detection of the ProtA-Myo5p constructs. B. Immunoblots of IgG pull-downs (IgG-pd) from yeast p
membrane (PM) and cytosolic (C) fractions of the strains described in A. ProtA-Myo5p constructs and 
calmodulin were detected as described in A. 10% of the total inputs was loaded to control the calmodulin 
concentration in the pull-down mixture. Diluting the cytosolic fraction 1 to 10 (Cdil) did not alter the result. 
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Since the cytosolic fraction used for the pull-down experiments had a much higher 

concentration of Cmd1p than the plasma membrane fraction (figure 12A), we had to rule 

res. For this purpose, the cytosol 

reparation was diluted (1:10) until the Cmd1p concentration was similar to that in the 

lasma membrane fraction and ProtA-Myo5p was pulled down with IgG-sepharose as 

before. As shown in figure 12B, ProtA-Myo5p of non-diluted or diluted cytosol 

coprecipitated the same amount of Cmd1p, and strikingly more than ProtA-Myo5p from 

the plasma membrane. Thus, in our experiments the Myo5p pool associated with the 

plasma membrane had less Cmd1p bound than the cytosolic Myo5p.   

To check the hypothesis that only plasma membrane associated Myo5p binds to Vrp1p, 

coimmunoprecipitation experiments were performed with plasma membrane and cytosolic 

fractions prepared from yeast expressing ProtA-Myo5p and HA-tagged Vrp1p (Vrp1-HAp). 

ProtA-Myo5p was precipitated with IgG-Sepharose and copurifying Vrp1p-HA was 

detected by immunoblot. associated Myo5p 

clearly copr  

th a ProtA-Myo5p 

construct missing the s not interact with 

Vrp1p. ProtA-Myo5

o5p interacts with 
 at the plasma 

blot of 10 μg of 
total yeast extract (T) or 

ma membrane (PM) or 
fractions prepared from 

 strains (SCMIG304) 
ein A-tagged constructs 

ProtA-Myo5p constructs. B. 
Immunoblots of IgG pull-downs (IgG-pd) 
from yeast plasma membrane (PM) and 
cytosolic (C) fractions from the strains 
described in A. ProtA-Myo5p constructs 
and Vrp1-HAp were detected as 
described before. 

out that the different amounts of coprecipitating Cmd1p only reflected the differences in 

the Cmd1p concentration in the reaction mixtu

p

p

 As shown in figure 13, the plasma membrane 

ecipitated much more Vrp1-HAp than the cytosolic Myo5p. To demonstrate the

specificity of the interaction, the same experiment was performed wi

 C-terminus (ProtA-Myo5ΔCp), a protein which doe

ΔCp did not pull down significant amounts of Vrp1-HAp (figure 13).  

 
Figure 13. My
Vrp1p mostly
membrane. Immuno
protein from a 
of yeast plas
cytosolic (C) 
myo5Δ vrp1Δ
expressing Prot
of full-length Myo5p (ProtA-Myo5p) or a 
mutant Myo5p missing the C-terminus 
including GPA, SH3 and acidic 
domains, (ProtA-Myo5ΔCp) together 
with HA-tagged verprolin (Vrp1-HAp), 
all  expressed from centromeric 
plasmids under control of the MYO5 
and VRP1 promoters, respectively. 
Nitrocellulose membranes were 
decorated with antibodies against the 
plasma membrane marker Gas1p (α-
Gas1p) and the cytosolic marker 
hexokinase (α-Hxk1p). Vrp1-HAp was 
detected with an α-HA antibody and 
PAP was used for detection of the 
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6.1.2.5. No evidence for homo-oligomerization of the cytosolic or plasma membrane 
ssociated Myo5p a

 
Cryo-electron microscopy studies have indicated an extended intramolecular interaction 

between the TH1 domain and the C-terminal extension of the Acanthamoeba myosin-IB 

(Jontes et al., 1998). This observation and our previous results suggest a model for the 

regulated recruitment of Myo5p to cortical endocytic patches. Cytosolic Myo5p in complex 

with calmodulin might exhibit a “closed” conformation, in which the TH1 domain interacts 

with the Myo5p C-terminus and prevents binding with other cortical patch components, 

which are also present in the cytosol. Only at the plasma membrane, an unknown signal 

might induce Cmd1p dissociation from Myo5p, thus promoting phospholipid and Vrp1p 

binding. However, with the experiments performed, we did not investigate if an 

intermolecular interaction between the TH1 and the C-terminal extension of cytosolic 

Myo5p could account for the observed inhibition of the interaction with Vrp1p.  

To investigate if oligomerization of Myo5p might occur, cytosol and plasma membrane 

fractions were purified from yeast expressing myc-tagged Myo5p (myc-Myo5p) and 

Myo5p bearing an HA-tag (Myo5-HAp), and myc-Myo5p was precipitated with α−myc 

agarose beads. As shown in figure 14, no coprecipitating Myo5-HAp could be detected in 

the immunoprecipitates from the different fractions. 

 

igure 14. An intermolecular interaction 
of Myo5p molecules cannot be detected 

 plasma membrane or cytosolic 
fractions. Immunoblot of 10 μg of a total 
protein yeast extract (T) or of yeast plasma 
membrane (PM) or cytosolic (C) fractions 
prepared from myo5Δ strains (SCMIG275) 
expressing myc-tagged Myo5p (myc-

yo5p) or wild-type Myo5p (Myo5p) 
together with HA-tagged Myo5p (Myo5-
HAp), all from centromeric plasmids under 
the control of the MYO5 promoter. 
Nitrocellulose membranes were decorated 

ith antibodies against the plasma 
membrane marker Gas1p (α-Gas1p) and 
the cytosolic marker hexokinase (α-
Hxk1p). Myc-Myo5p and Myo5-HAp were 
detected with α-myc or α-HA antibodies, 
respectively. B. Immunoblots of 

 
 
F

in

M

w

immunoprecipitations (IP) with anti-myc 
agarose beads from yeast plasma 
membrane (PM) and cytosolic (C) fractions 
of the strains described in A. Myc-Myo5p 
and Myo5-HAp were detected as 
described in A. 
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6.1.2.6. Cmd1p binding to Myo5p influences the average lifespan of Myo5p at 
cortical patches in vivo 
 
Recently, real-time fluorescence microscopy has allowed measuring the life time of 

different endocytic proteins at the cortical patches. Since our model predicted that Cmd1p 

regulates patch recruitment of Myo5p, we decided to analyze in vivo if Cmd1p binding 

influences the life time of Myo5p at the cortical patches. GFP-Myo5p was expressed in a 

yeast strain bearing a cmd1 mutation (cmd1-226) which has been shown to specifically 

impair the interaction of Cmd1p with Myo5p. In collaboration with the laboratory of Prof. 

Sandra K. Lemmon (University of Miami), the lifetime of GFP-Myo5p patches was 

analyzed in wild type and mutant cells. As shown in figure 15, the cmd1 mutant exhibited 

ged li
impaired in the Myo5p-Cmd1p interaction. Time lapse fluoresce
(SCMIG947) or cmd1-226 mutant (SCMIG182) cells expressing GF
centromeric plasmid under the control of the MYO5 promoter. For e
time series of an invidual patch from a time lapse movie is show
incubated at 37°C and images were taken every 2 seconds. Value
Myo5p patches in the yeast strains, which was estimated from 30 inde cortical patches. 

more GFP-Myo5p patches at the plasma membrane than wild-type cells. Moreover, the 

Myo5p patches in the cmd1-226 mutant had an average life span which was extended for 

about 4 seconds when compared with the patches of the wild-type cell. These 

observations support the view that Cmd1p dissociation from Myo5p promotes its 

association with the cortical patch.  
 

 
Figure 15. GFP-Myo5p cortical patches exhibit a prolon fespan in a yeast strain specifically 

nce microscopy of live CMD1 wild-type 
P-tagged Myo5p (GFP-Myo5p) from a 

ach strain a representative cell and the 
n. Cells were grown to mid-log phase, 
s indicate the average lifespan of GFP-
pendent GFP-Myo5p 
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6.2. Screening for factors in trans involved in Myo5p localization 

 
The results presented so far strongly indicated that Cmd1p regulates Myo5p recruitment 

to the cortical patch via the C-terminal domain and phospholipid association of Myo5p via 

the TH1 domain and possibly the neck. However, the signal triggering Cmd1p release 

from the Myo5p neck at the plasma membrane was not identified. Also, depletion of 

cellular Vrp1p only causes a partial defect in Myo5p recruitment to the cortical patches 

(Kaksonen et al., 2003; Kaksonen et al., 2005; Sun et al., 2006), suggesting that other 

proteins might also interact with the Myo5p C-terminus and contribute to the recruitment 

of the myosin. In order to look for more factors in trans involved in Myo5p localization, we 

followed two different strategies: a visual screening for localization defects of GFP-Myo5p 

in yeast mutants and a genetic screening based on the Plasma Membrane Recruitment 

System (a system that Helga Grötsch started to establish during her diploma thesis). 

 
6.2.1. Visual screening for factors in trans required for Myo5p localization 
 
6.2.1.1. Las17p might share a redundant function with Vrp1p in Myo5p patch 
recruitment 
 
In order to look for mutants with a defect in Myo5p localization, GFP-Myo5p under the 

control of the Myo5p promoter was expressed in different mutant strains. Mutants 

 in several endocytic patch components were analyzed (figure 16A). Although 

“early patch components” would most likely affect Myo5p recruitment, we also checked 

mutants defective in “late components” of the endocyt

participate in earlier processes before accumulating at 

As previouslly explained, the endocytic patch compone

protein modules, depending on their time of recruit

endocytic site (see introduction and table I for a sho

endocytic proteins). Concerning the coat module, w

sla2Δ and end3Δ mutants. Moreover, GFP-Myo5p was

ede1Δ strain (uimΔ). Ent1p, Ent2p and Ede1p are cons

ubiquitinated cargo and it has been shown that Ed

formation of the endocytic patch (Shih et al., 2002; Tos

GFP-Myo5p localization was also observed in bbc1Δ, 

proteins of the Las17p/Myo5p module and in abp1Δ, a

in proteins of the actin module. Concerning the amphip

an rvs167 knockout strain that has been shown to be also defective in Rvs161p 

xpression (Lombardi and Riezman, 2001).  

deficient

ic patch, since such proteins could 

the patch for a later function.  

nts can be grouped into 4 different 

ment and motile behaviour at the 

rt description of the function of the 

e analyzed chc1Δ, pan1-4, sla1Δ, 

 expressed in an ent1-UIMΔ ent2Δ 

idered to be endocytic adaptors for 

e1p arrives very early during the 

hima et al., 2006b). 

las17Δ and vrp1Δ mutants affecting 

rp2-2 and sac6Δ mutants deficient 

hysin protein module, we analyzed 

e

 37 



Results 

All knockout strains and mutants missing essential parts of endocytic proteins (pan1-4, 

imΔ) were observed at ru oom temperature. The temperature sensitive arp2-2 strain was 

 
 
 
Figure 16A. GFP-My hiphysin 
and actin modules different 
yeast mutants Δ ede1Δ 
pent1-UIMΔ (=uim (SCMIG669), 

3Δ (SCMIG55)), the Las17p/Myo5p module (vrp1Δ (SCMIG57), las17Δ (SCMIG273), bbc1Δ (SCMIG553)), 
e amphiphysin module (rvs167Δ (SCMIG59)) and the actin module (arp2-2Δ (SCMIG229), 

analyzed additionally after incubation at 37°C for 30 min. 

o5p localization in yeast mutants affecting the coat, Las17p/Myo5p, amp
. Representative fluorescence micrographs of wild-type cells (SCMIG19; wt) and 

 affecting the endocytic coat (chc1Δ (SCMIG754), chc1Δ (SCMIG754), ent1Δ ent2
Δ; SCMIG806), pan1-4 (SCMIG392), sla1Δ (SCMIG391), sla2Δ 

end
th
abp1Δ (SCMIG458)) expressing GFP-tagged Myo5p from pGFP-MYO5 under the control of the MYO5 
promoter. Cells were grown to mid-log phase at 25°C and directly observed by conventional fluorescence 
microscopy. The temperature-sensitive arp2-2 mutant (SCMIG229) and a wild-type strain (wt, SCMIG19) 
expressing GFP-Myo5p were also observed after a shift to 37°C for 30 min (30’ 37°C). Note that GFP-Myo5p 
appears mislocalized in the las17Δ mutant  
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Figure 16B. GFP-Myo5p localization in a wild-type strain, a vrp1Δ mutant and a las17Δ
Fluorescence micrographs of wild-type cells (SCMIG19; wt), vrp1Δ (SCMIG57) or las17Δ (SCMIG273
mutants expressing GFP-Myo5p under the control of the Myo5p promoter. Note that GFP-Myo5p a
mislocalized in the las17Δ mutant.  
 

 

After repetitive visualization of GFP-Myo5p in the different mutants, comparing with the

phenotype of a wild-type strain, we concluded that only the las17Δ strain was showing a 

clear defect in GFP-Myo5p localization (see figure 16B). We could observe abnormal

patches that accumulated at certain sites in the cell.  

Surprisingly, in contrast to other authors, we did not detect a clear delocalization of

Myo5p in the vrp1Δ strain (figure 16B). Sun et al. have observed that a vrp1Δ

exhibits strongly enhanced cytosolic localization of Myo5-GFPp (Sun et al., 2006). I

strain we could not detect this phenotype; just the cortical patches appeared slightly 

smaller than in the wild-type strain. The variation of Myo5p localization in the 

 mutant. 
) 

ppears 

 

 big 

 GFP-

 strain 

n our 

different 

vrp1Δ strains might be due to the different genomic backgrounds of the strains and/or 

differences in the expression of the GFP-tagged Myo5p constructs.  

Las17p is known to be required for Vrp1p localization and it has also been shown to bind 

to the SH3 domain of Myo5p independent of Vrp1p (Duncan et al., 2001; Evangelista et 

al., 2000; Geli et al., 2000b; Lechler et al., 2000; Madania et al., 1999). Thus, it already 

has been suggested that Las17p might share a redundant function with Vrp1p in Myo5p 

recruitment. Our results support this idea.   
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6.2.1.2. PI(4,5)P2 might be involved in Myo5p recruitment to the plasma membrane   

irst, we analyzed the localization of GFP-Myo5p in the knockout strains (erg2Δ and 

the same 

normal 

ture 

sjl1 sjl2  strain. Moreover, the Abp1p-patches appeared fuzzy and were not restricted to 

or the 

 
So far, we analyzed mutants that affect proteins directly participating in endocytic vesicle 

formation. Next, we observed the localization of GFP-Myo5p in different mutants affecting 

the synthesis (erg2Δ, mss4-2) or the turnover (sjl1Δ sjl2Δ) of lipids which have been 

implicated in endocytosis, namely, PI(4,5)P2 and the yeast cholesterol analog ergosterol.  

Erg2p is an enzyme participating in the synthesis of ergosterol, the main sterol of yeast 

(Pichler and Riezman, 2004). Mss4p is the phosphatidylinositol-4-phosphate-5-kinase that 

converts PI(4)P into PI(4,5)P2 (Desrivieres et al., 1998). The synapatojanins Sjl1p and 

Sjl2p catalyze the opposite reaction. They are phosphatidylinositol-bisphosphate-5-

phosphatases, required for the dephosphorylation of PI(4,5)P2 to PI(4)P (Singer-Kruger et 

al., 1998). The erg2Δ and sjl1Δ sjl2Δ mutants have been shown to be defective in 

receptor-mediated endocytosis (Munn et al., 1999; Singer-Kruger et al., 1998). 

F

sjl1Δ sjl2Δ) at room temperature (figure 17A, B). The erg2Δ mutant showed 

phenotype as a wild-type strain, but the sjl1Δ sjl2Δ cells exhibited abnormal GFP-Myo5p 

calization wlo ith fuzzy cortical patches, enhanced cytosolic expression and ab

intracellular structures bearing GFP-Myo5p. This phenotype of the sjl1Δ sjl2Δ mutant was 

clearly pronounced after incubation at 37°C for 30 minutes (figure 17B), a treatment which 

is known to increase PI(4,5)P2 production in yeast (Desrivieres et al., 1998).  

In order to check if the sjl1Δ sjl2Δ mutation was specifically affecting Myo5p localization, 

we also expressed GFP-Abp1p (under control of the ABP1 promoter) in the sjl1Δ sjl2Δ 

mutant.  Similar to GFP-Myo5p, GFP-Abp1p appeared mislocalized at room tempera

and even stronger after incubation at 37°C for 30 minutes (figure 17B). When compared 

with the wild-type, the cytosolic expression of GFP-Abp1p was clearly enhanced in the 

Δ Δ

the cell cortex. Thus, Myo5p is not the only delocalized patch component in the 

sjl1Δ sjl2Δ strain.  

 

The temperature sensitive mss4-2 mutant was also observed at room temperature and 

after incubation at 37°C for 30 minutes. Moreover, since it has been described f

mss4-2 strain that the concentration of PI(4,5)P2 changes more dramatically after longer 

exposure to 37°C, we also observed this mutant after 2 hours at restrictive temperature.  

The mss4-2 strain, which was compared with its specific wild-type strain (MSS4), was 

undistinguishable from the wild-type at room temperature and after 30 min at 37°C (see 

figure 17C). 
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Figure 17. GFP-Myo5p localization in yeast mutants affecting the synthesis and turnover of lipids with 
a relevant endocytic function A. Fluorescence micrographs of an erg2Δ mutant (SCMIG61) defective in the 
synthesis of ergosterol expressing GFP-tagged Myo5p from plasmid pGFP-MYO5 under the control of the 
MYO5 promoter. Cells were grown to mid-log phase at 25°C and directly observed by conventional 
fluorescence microscopy. B. Fluorescence micrographs of a wild-type strain (SCMIG19; wt) or a 
sjl1Δ sjl2Δ mutant (SCMIG958) defective in the PI(4,5)P2 hydrolysis, expressing GFP-fusion constructs of 
Myo5p or Abp1p from centromeric plasmids under the control of the MYO5 or ABP1 promoter, respectively. 
Cells were grown to mid-log phase at 25°C and visualized with a conventional fluorescence microscope, 
either directly (RT) or after a shift to 37°C for 30 min before visualization (37°C) to enhance the PI(4,5)P2 
production.  
 
 

 41 



Results 

However, af almost completely 

5p looked clearly 

mislocalized ic wild-type. GFP-

Myo5p appe  disappeared nearly 

totally. This al sickness of the 

n 

the mss4-2 P-Abp1p appeared 

T) or shifted to 37°C for 30 min (37°C 30’) or 2 h (37°C 
ce microscope. 

ter 2 hours at 37°C, a treatment that is known to deplete 

PI(4,5)P2 from the mss4-2 strain (Desrivieres et al., 1998), GFP-Myo

 in the mss4-2 mutant when compared with the isogen

ared strongly localized to the cytosol, but cortical patches

phenotype could also be an indirect defect due to the gener

strain after long exposure at 37°C. Therefore, we also expressed GFP-tagged Abp1p i

 mutant and wild-type strain. After 2 hours at 37°C, GF

equally localized in both strains (figure 17C). 

 

 
Figure 17C. GFP-Myo5p localization in wild-type and mss4-2 cells. Fluorescence micrographs of a MSS4 
wild-type strain (SCMIG 729) or a mss4-2  mutant (SCMIG730) expressing GFP-tagged Myo5p or Abp1p from 
centromeric plasmids under the control of the MYO5 or ABP1 promoter, respectively. Cells were grown to 
mid-log phase at 25°C and either directly visualized (R
2h) before visualization with a conventional fluorescen
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We could see abnormal GFP-Myo5p localization in 2 different strains affecting PI(4,5)P2 

(sjl1Δ sjl2Δ and mss4-2). The observation that the sjl1Δ sjl2Δ mutant is also defective in 

the localization of the patch component Abp1p does not exclude that PI(4,5)P2 is involved 

in Myo5p localization. Several endocytic patch proteins can interact with PI(4,5)P2 (see 

table I) and their mislocalization could indirectly effect the recruitment of the later patch 

component Abp1p. Since the mislocalization of GFP-Myo5p in the mss4-2 strain 

appeared more specific and in previous experiments we had observed in vitro binding of 

Myo5p domains to PI(4,5)P2 (see section 6.1.2.1), an involvement of this specific lipid in 

Myo5p recruitment seems likely. Future experiments will further analyze the role of 

PI(4,5)P2 in Myo5p localization. 
 
 
6.2.2. The Plasma Membrane Recruitment System (PRS): a reporter s
investigate the close association of proteins with the plasma membrane in vivo

ystem to 
 

plasma 

As a 

yristoylated protein myrRin is localized to the plasma membrane and recruits any 5’Sos 

 
For the genetic analysis of the Myo5p localization at the plasma membrane we 

established a reporter system that we called Plasma membrane Recruitment System 

(PRS). This work was started during the diploma thesis of Helga Grötsch. 

The PRS is based on the observation that the human protein Sos (a guanyl nucleotide 

exchange factor (GEF) of Ras) can bypass the requirement for a functional Cdc25p (the 

yeast GEF of Ras) in S.cerevisiae, only when it is closely associated with the 

membrane (Broder et al., 1998). We reasoned that a truncated form of human Sos (5’Sos) 

lacking the plasma membrane localization signal could therefore be used as a reporter 

gene in a cdc25 temperature sensitive (ts) mutant background, to investigate whether a 

given protein interacts with the plasma membrane. Expression of a construct of 5’Sos 

fused to the protein of interest should only rescue the ts growth defect of the cdc25-2 

strain if the protein of interest would localize to the plasma membrane (see figure 18A, B).  

Expression of the 5’Sos-fusion protein could be controlled by coexpression of the human 

protein Rin fused to a myristoylation site (myrRin). The human Rin protein has been 

observed to interact with 5’Sos (A. Aronheim, personal communication). 

m

fusion protein expressed in the cell to this membrane. Thus, co-expression of myrRin 

allows growth of the cdc25-2 strain at restrictive temperature if any Sos-protein is 

expressed (A. Aronheim, personal communication) (see figure 18C).  
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Figure 18. The plasma membrane recruitment system (PRS). A./B. The PRS is based on the observation 
that human Sos, a GEF for Ras, can rescue a temperature sensitive cdc25-2 mutant only if Sos is localized to 
the plasma membrane. A construct of Sos missing its plasma membrane localization signal (5’Sos) can 
therefore be fused to a protein of interest (X) to monitor plasma membrane localization. Only if the fusion 
protein 5’Sos-X is localized to the plasma membrane the Ras-pathway can be activated and the cells can 
grow at restrictive temperature (36°C). C. The human protein Rin bearing a myristoylation motif (myrRin) 
interacts with 5’Sos and recruits it to the plasma membrane. Thus, expression of myrRin will allow growth at 
restrictive temperature (36°C) if any functional 5’Sos-protein is expressed. 
 

 
6.2.2.1. The PRS can monitor the plasma membrane localization of Myo5p  
 
In order to investigate whether the PRS could be used to monitor the Myo5p plasma 

membrane recruitment in vivo, the entire coding sequence of MYO5 was fused to the 

truncated form of human Sos (5’Sos). The temperature sensitive cdc25-2 strain 

(SCMIG271) was transformed with the plasmid encoding the 5’Sos-Myo5p fusion protein 

(pYX5’SOS-MYO5) or with pYX5’SOS encoding 5’Sos alone. Cells were streaked on 

selective medium containing 2% galactose for the induction of the GAL1-promoter of the 

constructs and growth was monitored after incubation for 3-4 days at restrictive 

temperature (36°C).   

Cells carrying the plasmid pYX5’SOS-MYO5 were able to grow at restrictive temperature 

while cells carrying pYX5’SOS could not grow (figure 19). Coexpression of myrRin 

rescued the ts growth defect of both strains, indicating that 5’Sos and 5’Sos-Myo5p were 

expressed.  

hese results strongly suggested that Myo5p was indeed recruiting the truncated Sos 

 that expressed 5’Sos and Myo5p from 2 different plasmids or Myo5p alone 

ould not be rescued by coexpression of myrRin. Thus, the fusion between 5’Sos and 

Myo5p was necessary for complementation of the cdc25-2 ts phenotype, suggesting that 

T

protein to the plasma membrane. However, to rule out that Myo5p overexpression alone 

or in combination with 5’Sos expression was rescuing the ts phenotype of the cdc25-2 

cells, Myo5p alone or Myo5p and 5’Sos separated on 2 different plasmids were 

expressed in the cdc25-2 cells. Cells expressing these proteins were not able to grow at 

restricitive temperature (figure 19). Overexpression of Myo5p was even blocking growth, 

since cells

c
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Myo5p localization to the plasma membrane recruited 5’Sos and induced activation of the 

Ras-pathway. 

 
Figure 19. A 5’Sos-Myo5p fusion protein can rescue the temperature sensitive growth defect of a 
cdc25-2 strain. Dot spots of cdc25-2 cells (SCMIG271) bearing plasmids encoding 5’Sos fused to Myo5p 
(pYX5’SOS-MYO5), 5’Sos alone (pYX5’SOS), Myo5p alone (pYXMYO5) or 5’Sos and Myo5p on two different 
plasmids (pYX5’SOS.TRP and pYXMYO5), with or without a plasmid encoding myrRin (pmyrRin), all under 
the control of the GAL1-promoter, were grown on SGC-Leu-Trp-Ura at 36°C for 3-4 days. To allow growth on 
the selective medium, cells carrying only one or two plasmids were transformed additionally with empty 
vectors (Ycplac22 and Ycplac33). 
 
 
 
6.2.2.2. The PRS monitors close plasma membrane association, but not cortical 
patch localization of proteins 
 
To further control the applicability of the PRS we also fused the truncated Sos protein to 

two different yeast proteins which localize to endocytic cortical patches: the yeast epsin 

Ent1p, a protein which is known to bind to plasma membrane lipids via an ENTH (epsin N-

terminal homology) domain (Wendland et al., 1999), and to the yeast actin-binding protein 

Abp1p, which has no membrane interacting domain but still localizes to cortical patches. 

As expected, expression of 5’Sos-Ent1p rescued the ts growth defect of the cdc25-2 

strain while expression of 5’Sos-Abp1p did not complement the ts phenotype (see figure 

20A). These results strongly support the view that the PRS only monitors close 

association of proteins to the plasma membrane (most likely, interaction with the lipid 

bilayer). Since Ent1p and Abp1p both localize to cortical patches (figure 20B), we could 

rule out that cortical patch localization alone, without membrane binding, would be 

monitored by our system.  
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Figure 20. The PRS monitors plasma membrane association but not cortical patch localization of 
proteins. Dot spots of cdc25-2 cells (SCMIG271) bearing plasmids encoding 5’Sos alone (pYX5’SOS) or 
5’Sos fused to Myo5p (pYX5’SOS-MYO5), to Abp1p (pYX5’SOS-ABP1) or to Ent1p (pYX5’SOS-ENT1), with 
or without a plasmid encoding myrRin (pmyrRin), all under the control of the GAL1-promoter, were grown on 
SGC-Leu-Ura at 36°C for 3-4 days. To allow growth on the selective medium, cells carrying only one plasmid 
were transformed additionally with the empty vector Ycplac33. B. Fluorescence micrographs of a myo5Δ 
strain (SCMIG275) expressing GFP-tagged Myo5p (GFP-Myo5p), an abp1Δ strain (SCMIG458) expressing 
GFP-tagged Abp1p (GFP-Abp1p) or an ent1Δ strain (SCMIG459) expressing GFP-tagged Ent1p, all from 
centromeric plasmids under the control of their own promoters. Cells were grown to mid-log phase at 25°C 
and directly observed by conventional fluorescence microscopy. 
 

 

6.2.2.3. The Myo5p domains mediating lipid binding (the neck and TH1 domains) 
allow growth of the 5’Sos fusion construct in the PRS. 
 
The results described before indicated that the PRS can be used to monitor close 

interaction of Myo5p with the plasma membrane (probably with the phospholipid bilayer). 

From previous experiments and the available literature we knew that the neck and TH1 

domains participate in association of Myo5p to the lipid bilayer. Thus, we predicted that 

these domians would allow growth of 5’Sos constructs in the PRS. To test this hypothesis 

several constructs of Myo5p with truncations at the N- or the C-terminus were fused to 

’Sos and expressed in the cdc25-2 strain. As before, growth of the cells was monitored 

after incubation for 3-4 days at restrictive temperature and expression of the constructs 

was controlled by coexpression of myrRin.   

 

5
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encoding myrRin  
der the control of the GAL1-promoter, were grown on SGC-Leu-Ura at 36°C for 3-

h localization was not rescuing growth of the cdc25-2 cells at high 

 
 
 
Figure 21.  The neck and TH1 domain of Myo5p are necessary and sufficient to allow growth of a 5’Sos 
fusion construct in the PRS. Dot spots of cdc25-2 cells (SCMIG271) bearing plasmids encoding 5’Sos alone 
(pYX5’SOS) or the represente
expression (pmyrRin), all un

d 5’Sos-fusion constructs of Myo5p, with or without a plasmid 

4 days (A) or for 10 days (B). To allow growth on the selective medium, cells carrying only one plasmid were 
transformed additionally with the empty vector Ycplac33.  
 

Expression of the Myo5p C-terminus which we had previously identified as sufficient for 

Myo5p patc

temperature, indicating once again that the PRS does not monitor patch association.  

Generally, constructs missing either the neck or the TH1 domain of Myo5p could not 

rescue the ts growth defect of the cdc25-2 mutant (figure 21A), suggesting that both 

domains are required for Myo5p plasma membrane recruitment.  

To further analyze the implication of the neck and TH1 domain in the plasma membrane 

recruitment of Myo5p, both domains together, the neck alone or the TH1 domain alone 

were fused to 5’Sos and analyzed for complementation of the cdc25-2 ts growth defect. 

Also, Myo5p-constructs missing only one domain, either the neck or the TH1 domain, 
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were analyzed. While 5’Sos-fusions of the single domains or 5’Sos-Myo5p constructs 

missing single domains could not rescue growth at restrictive temperature, the construct 

observed for a 

bearing the neck and TH1 domains together allowed growth at 36°C.  

The data indicated that the neck and the TH1 domains together are required to achieve a

strong association of Myo5p with the phospholipid bilayer. The observations are in

agreement with the knowledge about other class I myosins, since both domains have 

been implicated in membrane binding (see introduction, section 4.1.2.1.). 

Nevertheless, it should be mentioned that when incubating the cells for a much lo

time period (up to 10 days) at restrictive temperature, some growth for the 5’Sos-const

bearing the head and the neck domains could be observed, whereas no growth could be

 

 

nger 

ruct 

 

construct bearing the head alone (figure 21B). Thus, the neck alone could 

erhaps mediate some plasma membrane interaction, although with much less affinity 

.2.2.4. A genetic screen to search for factors in trans required for neck and TH1 
omain-mediated Myo5p recruitment to the plasma membrane. 

creen based on the system to look for factors in trans involved in Myo5p plasma 

fecting the Sos construct, the reporter system (the Ras-

essential genes (see figure 22C). 

p

than the neck and TH1 together. However, it has to be taken into account that differences 

in expression of the constructs are not tightly controlled in this assay. Coexpression of 

myrRin allows a qualitative, but not an exact quantitative control of expression.  

 
6
d
 
The Plasma Membrane Recruitment System (PRS) was developed to design a genetic 

s

membrane localization. Since the previous results indicated that the PRS monitors close 

plasma membrane association of Myo5p via the neck and TH1 domain, such a screen 

would in theory allow the identification of the enzymes that produce the physiological 

phospholipid that binds to the TH1 domain in vivo. Also, the screen might lead to the 

identification of a signal which causes dissociation of Cmd1p from the neck.  

As described before, the temperature sensitive cdc25-2 strain could grow at restrictive 

temperature if a construct of human 5’Sos fused to Myo5p was expressed (see section 

6.2.2.1.). Since Myo5p was able to bring 5’Sos to the plasma membrane, we supposed 

that a mutation affecting an essential factor for Myo5p cortical recruitment would prevent 

this growth of the cdc25-2 strain (see figure 22A, B). Growth of the mutant in the presence 

of myrRin would be a control for the specificity of the mutation on the Myo5p recruitment, 

since it would discard mutations af

pathway) or 
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Figure 22. A PRS-based screen for extragenic mutations that prevent plasma membrane recruitment 
of Myo5p A. As indicated by our results, Myo5p is able to bring 5’Sos to the plasma membrane, allowing 
growth of the cdc25-2 mutant at restrictive temperature. B. A mutation affecting an essential factor for Myo5p 
cortical recruitment would prevent this growth. C. Growth of the mutant in the presence of myrRin would be a 
control for the specificity of the mutation on the Myo5p recruitment, since it would discard mutations affecting 
the 5’Sos construct, the Ras-pathway or essential genes.  
 

     

Before actually starting with the screen, we looked for conditions to make the system as 

sensitive as possible. The 5’Sos-Myo5p construct was expressed under the control of the 

AL1-promoter. Thus, we sought for the lowest galactose concentration which allowed 

omplementation of the cdc25-2 growth defect by 5’Sos-Myo5p. A very low expression 

.2.2.4.1. Screening for mpr (M
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level of 5’Sos-Myo5p should facilitate selection of mutants that cause only partial 

delocalization of Myo5p.  

Next, we looked for the lowest temperature at which the cdc25-2 mutant was still defective 

for growth. Choosing the lowest temperature for the screen should make it more likely to 

find also ts mutants in essential genes affecting Myo5p localization. 

 

6 yo5p plasma membrane recruitment) mutants 

 screen were performed with 

Leu medium containing 5’-fluoroorotic acid 

 
Having defined the optimal conditions for the screen, the actual screening procedure was 

performed as summarized in figure 23. All steps of the

medium containing 0.1% galactose.  

Cdc25-2 cells bearing the plasmid for 5’Sos-Myo5p expression (pYX5’SOS-MYO5) and 

the plasmid of myrRin (pmyrRin) were grown in SGC-Leu-Ura liquid medium. Cells were 

chemically mutagenized with ethylmethane sulfonate, plated on solid medium selecting 

again for the 2 plasmids and incubated for 3 days at 24°C, until clear colonies were 

visible. Colonies were then replica-plated on SGC-Leu medium selecting only for the 

plasmid for 5’Sos-Myo5p expression and incubated at 24°C. Under these conditions cells 

were allowed to loose the myrRin plasmid bearing the URA3 marker. After 2 days of 

growth, the colonies were plated on SGC-
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(FOA) that contraselects cells still bearing the URA3 marker. When transferring the 

oloni eening were also 

 

°C and the 

following 2-  clearly 

A-medium were 

selected (  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ng 5’-fluoroorotic acid (FOA), 
n transferring the colonies to 

c es to the FOA-containing plates, the original plates of the scr

replica-plated, again on SGC-Leu-Ura medium selecting for the 2 plasmids. Both types of

replicas (SGC-Leu+FOA plates and SGC-Leu-Ura plates) were incubated at 31

4 days growth of corresponding colonies was observed. Colonies that

showed better growth on the SGC-Leu-Ura medium than on the FO

see methods, section 9.2.3. for more details of the screening procedure).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Scheme of the PRS screening procedure. Cdc25-2 cells (SCMIG271) bearing the plasmid for 
5’Sos-Myo5p expression (pYX5’SOS-MYO5) and the plasmid encoding myrRin (pmyrRin) were chemically 
mutagenized with ethylmethane sulfonate, plated on SGC-Leu-Ura and incubated for 3 days at 24°C, until 
clear colonies were visible. Colonies were then replica-plated on SGC-Leu medium and incubated at 24°C. 
After 2 days of growth, the colonies were plated on SGC-Leu medium containi
contraselecting cells still bearing the URA3 marker of the myrRIN plasmid. Whe
the FOA-containing plates, the original plates of the screening were also replica-plated, again on SGC-Leu-
Ura medium. Both types of replicas (SGC-Leu+FOA plates and SGC-Leu-Ura plates) were incubated at 31°C 
and after 2-4 days, colonies clearly showing better growth on the SGC-Leu-Ura medium than on the FOA-
medium were selected. 
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Putative candidates growing on FOA-plates at 24°C were discarded to avoid selection of 

false positives bearing mutations causing hypersensitivity to FOA. Putative candidates 

that did not grow on FOA at 31°C in the presence of a non-contra-selectable plasmid 

bearing myrRin were also discarded to avoid selection of false positives that were only 

temperature sensitive in the presence of FOA.  

Overall 21540 colonies were screened and finally 6 mutants were selected, which showed 

the expected phenotype (see figure 24). These mutants were called mpr mutants, for 

Myo5p plasma membrane recruitment mutants. At 31°C the mutants mpr1, mpr2 and 

mpr3 showed no growth at all without the plasmid bearing myrRin, while mpr4, mpr5 and 

mpr6 were growing without pmyrRin but strikingly less than with the plasmid. 

 
Figure 24. Myo5p plasma membrane recruitment mutants (mpr) isolated from the PRS screening. The 
6 selected mutants (mpr1, mpr2, mpr3, mpr4, mpr5 and mpr6) bearing the plasmid for 5’Sos-Myo5p 
expression (pYX5’SOS-MYO5) were grown on SGC-Leu for 3 days at 31°C, with or without the plasmid for 
myrRin expression (pmyrRin). 
 
 
6.2.2.4.2. Identification of genes bearing the 
 

mpr mutations 

The 6 mpr mutants, expressing 5’Sos-Myo5p and myrRin were incubated at 37°C to 

check if they beard temperature sensitive mutations. Three mutants (mpr1, mpr2 and 

mpr3) were temperature sensitive while the other three (mpr4, mpr5 and mpr6) were not. 
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It would be difficult to purify and clone the non-ts mutants. Thus, we decided to continue 

the work first with the temperature sensitive mpr mutants. 

In order to check if the 3 ts mpr mutants were affected in different genes, the mutants 

were crossed to each other and the resulting diploids, carrying the plasmids for 5’Sos-

Myo5p and myrRin expression, were incubated at 37°C. All diploids could grow at 

restrictive temperature, demonstrating that the 3 mutants were bearing mutations in 

different genes. 

To segregate the mpr mutations from the cdc25-2 mutation, the temperature sensitive mpr 

dc25-2 mutants were crossed to a wild-type strain (SCMIG19). After tetrade dissection 

 EMS 

utage is could have produced. 

c library. The genomic fragments in the corresponding plasmids 

e class C Vps protein 

omplex, a complex which has been implicated in vacuole fusion, Golgi-to-vacuole protein 

mes to 

 

c

and sporulation, those spores were selected which beard the mpr mutation alone (see 

methods, section 9.2.3.3., for the detailed description of the identification of the single 

mutants). The mpr mutants were then crossed again to the wild-type strain, further 

isolating the mutation causing the mpr phenotype from other mutations that the

m nes

Finally, the mpr mutations were identified by complementation of the ts growth defect with 

a genomic plasmid library (see methods, section 9.2.3.4. for details). 

 

6.2.2.4.3. Mpr mutants bear mutations in Class C VPS genes  
 
All 3 temperature sensitive mpr mutants (mpr1, mpr2 and mpr3) could be complemented 

by plasmids of the genomi

were identified by sequencing both ends of the inserts. Surprisingly, the 3 inserts 

contained sequence of 3 different class C VPS genes: VPS16, VPS18 and VPS33 (see 

figure 25). The corresponding proteins form together with Vps11p th

c

transport, endosome to vacuole transport and the recycling pathway from endoso

the plasma membrane (Bugnicourt et al., 2004; Peterson and Emr, 2001; Rieder and Emr, 

1997; Sato et al., 2000). 

 
 
 
 
 
Figure 25. Scheme of the genomic 
DNA fragments that rescued the ts 
growth-defects of the mpr mutants. 
Open reading frames are indicated. 
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Since mpr1, mpr2 and mpr3 were temperature sensitive and showed strongly fragmented 

vacuoles, like it has been described for class C vps knockout mutants (Rieder and Emr, 

1997), we could guess that other genes or gene fragments on the identified inserts were 

not responsible for the complementation.  

However, for the unequivocal identification of the mpr mutations, the mutants were 

crossed to knockout strains of the class C VPS genes and the resulting diploids were 

checked for a temperature sensitive phenotype. Diploids could not grow at restrictive 

mperature if both alleles of the same gene were affected. This analysis confirmed that 

pr1, mpr2 and mpr3 were bearing mutations in VPS16, VPS18 and VPS33, respectively 

ee figure 26).  

he VPS18 sequence of the plasmid that was complementing mpr2 was missing the first 

68 bp of the ORF. Thus, a protein fragment of Vps18p probably using the methionine of 

mino acid 280 as a start codon was sufficient to rescue the ts growth defect of the mpr2 

utant.  

igure 26. The mpr1, mpr2 an tants bear mutations in the VPS16, VPS18 and VPS33 genes, 
spectively. The mpr1, mpr2 and mpr3 mutants obtained from the PRS screening were crossed to vps11Δ, 

ps1 wn on YPD medium for 2 days at 36°C. 
ack of complementation in the diploids indicates that the parental haploid strains bear mutations in the same 
ene.  

se association of Myo5p with the plasma membrane, but not Myo5p 
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g
 
6.2.2.4.4. The vps mutants identified in the screening show no delocalization of 

Myo5p 
 
Since the aim of the screening was to find proteins involved in Myo5p plasma membrane 

recruitment, next, we analyzed the localization of Myo5p in the mpr mutants we had 

identified. The Plasma Membrane Recruitment System (PRS) applied for the screening 

was sensing the clo
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patch localization (see section 6.2.2.2.). Thus, to facilitate the identification of the plasma 

membrane, we stained the membrane of the cells with the lipophilic dye FM4-64 and 

observed cells expressing Myo5-YFPp under a confocal microscope. 

When comparing the Myo5-YFPp localization in the vps mutants with a wild type strain, no 

difference in Myo5p plasma membrane localization could be detected (see figure 27). Like 

roscopy. As 

explained before, we had performed the screening with the lowest expression level of 

5’Sos-Myo5p, in order to make it more likely to detect mutants that show only a minor 

defect in Myo5p localization.  

 

 
 
 
Figure 27. No  mutants identified from 
the PRS screening. MIG19) cells or 
vps16Δ, vps18 P-tagged Myo5p 
construct from asma membrane was 
stained with th
 

 

6.2.2.4.5. The vps mutants identified in the screening exhibit a slight defect in the 
uptake step of endocytosis.  

clude a partial delocalization of Myo5p in the vps mutants. Next, 

ctor uptake assay is a very sensitive, quantitative method, a partial delocalization of 

the wild-type, the mutants showed Myo5-YFPp imbedded in the plasma membrane, 

insight and outsight of patch-like structures. Also, the amount or intensity of Myo5p 

patches was not reduced in the mutants. These results suggested that the class C vps 

proteins are not essential factors of Myo5p localization. However, a partial delocalization 

of Myo5p could perhaps be detected by the PRS and not by fluorescent mic

delocalization of YFP-tagged Myo5p can be observed in the vps
Representative confocal fluorescence micrographs of wild-type (SC

Δ or vps33Δ mutants identified from the PRS screening expressing a YF
 pMYO5-YFP. Cells were grown to mid-log phase at 25°C and the pl
e red lipophilic dye FM4-64. 

 
So far, we could not ex

we decided to analyze the alpha-factor uptake kinetics in the mutants. Since the class I 

myosins are essential for the endocytic uptake step (Geli and Riezman, 1996) and the α-

fa

Myo5p should be reflected by a defect in the α-factor uptake.  

Indeed, in comparison to a wild-type strain, all 3 vps mutants showed slightly defective 

uptake kinetics (see figure 28). The vps16 mutant exhibited the strongest defect, while the 
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vps18 and vps33 mutants showed nearly identical uptake kinetics, ranging between those 

of the vps16 and the wild-type strain.  

These results were in agreement with the idea that the vps mutants could exhibit a partial 

delocalization of Myo5p. However, further experiments will be necessary to proof this 

idea. 

 

 
Figure 28. The vps mutants identified in the PRS screening are slightly defective in the uptake step of 
endocytosis. Wild-type cells (wt; SCMIG19) or vps16, vps18 or vps33 mutants identified from the PRS 
screening were grown to early log-phase and tested for 35S-radiolabelled α-factor internalization at 25°C. 
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 bearing an empty 
asmid (p; Ycplac111) or plasmids for the expression of full-length Myo5p (pMYO5), Myo5p missing the neck 

Ycplac11 mids for the expression of full-length Myo5p (pMYO5), Myo5p missing the neck domain 
myo5Δn) or Myo5p missing the TH1 domain (pmyo5ΔT), were grown to early log-phase, preincubated for 30 

7. Supplementary data 

 
 
 
 
Figure 29. The membrane binding domains of Myo5p are important for Myo5p function and the 
endocytic uptake step. A. Dot spots of myo3Δ myo5Δ cells (SCMIG590) complemented with MYO5 
expressed from a centromeric plasmid (p33MYO5) with a contraselectable marker (URA3)
pl
domain (pmyo5Δn) or Myo5p missing the TH1 domain (pmyo5ΔT), grown on SDC-Leu medium with FOA (for 
contraselection of p33MYO5) at 30°C for 3 days. B. myo5Δ cells (SCMIG275) bearing an empty plasmid (p; 

1) or plas
(p
min at 37°C and tested for 35S-radiolabelled α-factor internalization at 37°C. C. Immunoblot analysis of protein 
extracts from myo5Δ cells (SCMIG275) bearing an empty plasmid (p; Ycplac111) or plasmids for the 
expression of full-length Myo5p (pMYO5), Myo5p missing the neck domain (pmyo5Δn) or Myo5p missing the 
TH1 domain (pmyo5ΔT). Nitrocellulose membranes were decorated with a rabbit polyclonal antibody against 
the C-terminal domain of Myo5p (α-Myo5p). 20 μg protein were loaded per lane. 
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iation of Myo5p to 

 

On the cont rain. 

Las17p inter is clearly 

refore, 

 

SH3 interaction, the association of the acidic domain to the Arp2/3 complex and the 

interaction of the TH2 domain with filamentous actin might contribute to stabilize the 

Myo5p localization at the endocytic patch, since the SH3 alone is not localized to cortical 

atches (Anderson et al., 1998). Indeed, previous reports have suggested the Myo5p 

calization is at least partially sensitive to treatment with Latrunculin A (Anderson et al., 

dicated a possible interaction between the Myo5p C-terminus and the TH1 domain, we 

ecided to analyze if this interaction occurred in vitro. In an in vitro binding assay with 

5p C-terminus, indicating that the interaction between the 

ted to Myo5p (Lee et al., 

8. Discussion 
 
8.1. Cmd1p regulates the Myo5p-Vrp1p interaction and the assoc
the endocytic patch 
 
In order to identify domains required for proper recruitment of Myo5p to the endocytic 

patch, we analyzed the localization of GFP-Myo5p constructs bearing different truncations 

by fluorescence microscopy in living yeast cells. The observations strongly suggested that 

the Myo5p C-terminus bearing the GPA domain, the SH3 domain and the acidic peptide is 

sufficient for localization of the myosin to cortical patches. This observation is consistent 

with previous results suggesting that the protein Vrp1p, which directly binds to the Myo5p 

SH3 domain, plays an important role in the recruitment of Myo5p (Anderson et al., 1998; 

Sun et al., 2006). Nevertheless, it should be mentioned that in contrast to what Sun et al 

observed, GFP-Myo5p did not appear significantly delocalized in our vrp1Δ background.

rary, a clear Myo5p localization defect was observed in the las17Δ st

acts both with Vrp1p and with the Myo5p SH3 domain and Las17p 

important for the recruitment of Vrp1p to the endocytic patch (Sun et al., 2006). The

we hypothesize that Las17p participates in endocytic patch localization of Myo5p, either

directly or by an indirect interaction bridged by Vrp1p. In addition to the Las17p/Vrp1p-

p

lo

1998; Sun et al., 2006). 

An unexpected observation from our experiments was that the presence of the TH1 

domain seemed to block Myo5p patch recruitment via the C-terminus. Since these results 

in

d

purified proteins and in a protein overlay assay, a construct bearing the neck and the TH1 

omains could bind to the Myod

different tail domains might be direct. Moreover, in immunoprecipitation experiments using 

whole cell extracts, we could show that the TH1 domain can bind to the Myo5p C-

terminus and block the interaction of the SH3 domain with Vrp1p in cis and in trans.  

An in vitro interaction between these myosin I tail domains has already been reported for 

myosin-IA of Acanthamoeba castellani, which is closely rela

1999). Consistent with our results, purified TH1 domain was shown to interact with high 

affinity to a construct bearing the TH2 and SH3 domains.  
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tudy by Jontes et al., the tail of Acanthamoeba 

mains, indicated 

at the very C-terminus of the tail, bearing the GPA and SH3 domains, folds back to 

anneal side by side with the TH1 domain (Ishikawa et al., 2004). Recently, Hwang et al. 

presented additional NMR data that provide evidence for an intramolecular interaction 

between the TH1 domain and the SH3 domain in myosin-IC (Hwang et al., 2007). 

These studies on different long-tailed class I myosins strongly support our model that the 

Myo5p tail domains interact intramolecularly with each other. Moreover, when 

precipitating cytosolic Myo5p under the same conditions which allowed us to observe the 

nTH1-mediated inhibition of the Myo5p C-terminus (blocking the interaction with Vrp1p), 

we could not detect any oligomerization of Myo5p.  Thus, most likely, an intermolecular 

interaction does not occur or if at all, in cellular fractions others than the cytosol. 

 

When expressing the GFP-Myo5p constructs with different truncations, we observed that 

or patch localization if the neck domain is 

molecules, and the functional 

quirement of this interaction for endocytosis has been described (Geli et al., 1998). 

Moreover, it has been shown for the mammalian brush-border myosin I, that calmodulin 

release from the neck domain can induce a big conformational change in the tail 

(Whittaker and Milligan, 1997). Thus, we speculated that Cmd1p association to Myo5p 

could regulate the intramolecular interaction of the different tail domains and as a result, 

the interaction of Myo5p with some components of the endocytic patch.  

Indeed, Cmd1p binding clearly stabilized the interaction between a construct bearing the 

neck and TH1 domains and the Myo5p C-terminus in in vitro binding experiments, using 

purified components. Consistently, in immunoprecipitation assays from total yeast extracts 

the interaction of Myo5p with Vrp1p was strongly enhanced under conditions that cause 

dissociation of Cmd1p from the myosin. Moreover, in a cmd1 mutant with impaired 

Cmd1p-Myo5p interaction much more Vrp1p appeared associated to Myo5p than in a 

wild-type strain. These results suggested that Cmd1p dissociation at the plasma 

membrane might release the intramolecular interaction between the tail domains and 

favour the interaction of the Myo5p C-terminus with Vrp1p, leading to cortical patch 

association of Myo5p.  

So far, little structural information exists about class I myosin tails with a domain 

organization similar to Myo5p. In a s

castellanii myosin-IB was analyzed by cryo-electron microscopy and shown to exhibit a 

surprisingly globular structure (Jontes et al., 1998). Similar studies on Acanthamoeba 

myosin-IC, which bears the SH3 domain flanked by two TH2 (GPA) do

th

the TH1 domain can only block the C-terminus f

not present, suggesting that in the full-length protein the neck might regulate the 

interaction between the tail domains. 

he Myo5p neck is known to bind 2 calmodulin (Cmd1p) T

re
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If our hypothesis would have a physiological relevance for the endocytic patch recruitment 

of Myo5p, one would expect that Cmd1p interacts to a less extent with Myo5p at the 

plasma membrane than in the cytosol. It should be mentioned that dissociation of 

calmodulin from the class I myosins has never been demonstrated under physiological 

conditions and thus, a role for calmodulin in the regulation of these motors has only been 

suggested based on in vitro experiments using purified components. To test our 

hypothesis, we purified plasma membrane and cytosolic fractions from yeast cells and 

performed immunoprecipitation experiments. Cmd1p clearly appeared more associated 

with cytosolic Myo5p than with Myo5p from the plasma membrane, indicating that indeed 

Cmd1p might dissociate from Myo5p to promote Vrp1p-binding and localization of the 

myosin to endocytic patches. Consistent with this interpretation, immunoprecipitation 

experiments showed only association of Myo5p with Vrp1p in a plasma membrane 

fraction but not in the cytosol.  

Further underlying the physiological relevance of calmodulin dissociation for Myo5p patch 

association, we also observed that a cmd1 mutant specifically impaired in the Cmd1p-

Myo5p interaction showed more GFP-Myo5p patches at the plasma membrane than wild-

type cells. Moreover, the lifespan of individual GFP-Myo5p patches was prolonged. Also 

these in vivo observations support our model that Cmd1p-binding to the Myo5p neck 

domain negatively regulates patch association of the myosin.  

Finally, a role of Cmd1p as a negative regulator of Myo5p function is supported by earlier 

observations in which the deletion of the Cmd1p binding sites in Myo5p only slightly 

affected Myo5p endocytic function at low temperatures (Geli et al., 1998). The strong 

uptake defects observed at 37°C in cmd1 and myo5 mutants specifically impaired in the 

Cmd1p-Myo5p interaction might be a consequence of the precipitation of the cytosolic 

myosin upon exposure of the naked neck. 

 

lthough studies from different class I myosins have indicated an intramolecular 

teraction of the tail, our data suggest for the first time a regulatory function of this 

A

in

interaction. Moreover, we present for the first time evidence that Cmd1p dissociates from 

a myosin I under physiological conditions, modulating myosin association with lipids and 

with the actin polymerization machinery. 

An important prediction of our observations is that calmodulin release from Myo5p might 

also regulate the myosin function as an activator of the Arp2/3 complex, since it has been 

demonstrated that Myo5p binding to Vrp1p is essential to induce Arp2/3 dependent actin 

polymerization (Geli et al., 2000a; Sun et al., 2006). Further experiments are now required 

to address this matter. 
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8.2. Phospholipid binding of Myo5p 

charged amino acids, interacts in vitro with purified membranes and 

consistent with the described binding 

 

 slow growth of the cdc25-2 

 
It has been shown for class I myosins others than Myo5p that the TH1 domain, which 

bears many positively 

with different kinds of negatively charged lipids (Adams and Pollard, 1989; Doberstein and 

Pollard, 1992; Hayden et al., 1990; Miyata et al., 1989). Thus, it was believed that the TH1 

domain of class I myosins interacts with membranes by unspecific electrostatic 

interactions. In comparison to other intracellular domains, the plasma membrane has a 

unique anionic character that has been shown to be sufficient to direct basic proteins 

specifically to this membrane (Okeley and Gelb, 2004). Thus, an unspecific interaction via 

the TH1 domain could serve to concentrate Myo5p at the plasma membrane, facilitating 

the interaction with binding partners at the cortical patches. Consistent with this idea, 

when expressing GFP-Myo5p under the MYO5 promoter in living cells, sometimes we 

could observe a diffuse staining of the plasma membrane outside of the cortical patches, 

which was stronger than the cytosolic staining. Moreover, GFP-Myo5p constructs lacking 

the TH1 domain but bearing the C-terminal fragment (GFP-C and GFP-Myo5ΔTp) showed 

a strong cytosolic expression in addition to the localization to cortical patches, suggesting 

that the TH1 domain might contribute to the efficient localization of Myo5p to the endocytic 

patches.  

Using commercially available lipid strips, we made a first approximation to analyze the 

lipid binding properties of Myo5p. Since a construct of the TH1 domain alone could not be 

expressed in sufficient amounts, we purified a construct bearing the Myo5p neck and TH1 

domains from yeast and we overlayed the lipid strips with the protein. The construct 

bound to different negatively charged lipids, 

properties of TH1 domains.  However, the neck domain could also participate in the 

observed lipid binding. The neck domain of class I myosins forms an amphipathic helix 

and its involvement in membrane binding has been suggested for many years. Only 

recently, it was shown that the neck of mammalian Myo1c binds to anionic lipids in vitro 

and that this interaction can be blocked by Cmd1p (Hirono et al., 2004). Therefore, we 

decided to analyze the effect of Cmd1p on the lipid binding properties of Myo5p, using 

again a purified construct of Myo5p bearing the neck and TH1 domains and commercial 

lipid strips. Cmd1p clearly diminished binding of the construct to acidic lipids, suggesting

that either the neck participates in lipid binding upon Cmd1p dissociation or the release of 

Cmd1p might induce a conformational change in the TH1 domain. Both possibilities might 

also work together.  

In our experiments with the PRS (plasma membrane rescruitment system) a 5’Sos-

construct bearing the head and neck domains could restore
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mutant while a construct of the head alone could not, suggesting that the Myo5p neck 

alone has membrane binding capacity in vivo. However, the neck and TH1 domains were 

both required to rescue efficient growth of the cdc25-2 strain. This might indicate that a 

strong interaction with the lipid bilayer only occurs upon cooperative neck and TH1 

binding to phospholipids. The observation is also supporting the idea that the neck 

promotes a conformational change in the TH1 domain which allows efficient membrane 

binding. Interestingly, using cryoelectron microscopy it has been demonstrated for the 

short-tailed brush-border myosin I that Cmd1p dissociation causes a major conformational 

change in the TH1 domain (Whittaker and Milligan, 1997).  

Since our results indicate that a Cmd1p-dependent intramolecular interaction occurs 

between the TH1 domain and the C-terminus of Myo5p, it would also be possible that the 

TH1 domain can only bind to lipids upon Cmd1p dissociation and the release of the C-

terminus from the TH1 domain. Further experiments are necessary to discriminate 

between these hypotheses. 

 

The TH1 domain of several myosins has been shown to bind to different negatively 

to PI(4,5)P2 in in vitro experiments with liposomes 

 suggesting that 

charged lipids (Adams and Pollard, 1989; Doberstein and Pollard, 1992; Hayden et al., 

1990). However, recent results indicate that the TH1 domain might mediate more specific 

lipid interactions. Hokanson and Ostap have demonstrated that the TH1 domain of 

mammalian Myo1c binds specifically 

(Hokanson and Ostap, 2006). Moreover, it has been shown that the TH1 domains of 

Myo1c and Acanthamoeba myosin-IC reveal structural homology to PI(4,5)P2-specific 

PH-domains (Hokanson et al., 2006; Hwang et al., 2007).  

Consistent with these results, when using commercial lipid strips to analyze the lipid 

binding properties of Myo5p, PI(4,5)P2 was one of the lipids to which a construct of the 

neck and TH1 domains preferentially bound. The binding to PI(4,5)P2 was stronger than 

to other phospholipids with the same or even higher negative charge,

Myo5p lipid binding domains mediate not only electrostatic interactions. However, based 

on our binding assay we cannot decide which influence the neck domain or the TH1 

domain have on Myo5p binding to lipids. On the other hand, we also observed that the 

neck-TH1 construct binds with high affinity to PI(3,5)P2 and phosphatidic acid. 

Phosphatidic acid can be produced at the plasma membrane by the activity of 

phospholipase D and the lipid has been implicated in endocytosis (Jenkins and Frohman, 

2005). An involvement of PI(3,5)P2 in Myo5p recruitment to cortical endocytic patches 

appears unlikely, as this phospholipid is found mainly on the outer membrane of 

multivesicular bodies and not on the plasma membrane (Di Paolo and De Camilli, 2006; 

Odorizzi et al., 1998). 
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Even though the experiments using lipid strips are not conclusive regarding the affinity of 

Myo5p for the different lipids and further analysis with liposomes should be carried out to 

address this matter, our in vivo data also suggest a role of PI(4,5)P2 in Myo5p 

localization. When we expressed GFP-Myo5p in mutants affecting PI(4,5)P2 synthesis 

(mss4-2) or turnover (sjl1Δ sjl2Δ),  mislocalization of the myosin was observed. The 

sjl1Δ sjl2Δ mutant has been shown to exhibit long plasma membrane invaginations which 

might present endocytic invaginations unable to bud off from the plasma membrane 

(Singer-Kruger et al., 1998). Consistently, we could observe that not only Myo5p but also 

Abp1p localization was affected in the sjl1Δ sjl2Δ strain. However, the mislocalization of 

Myo5p in the mss4-2 strain appeared more specific, as Abp1p was normally localized in 

this mutant. 

Besides the described results, also the observation that a mss4 ts mutant is synthetical 

lethal with a myo5Δ strain suggests an important role of PI(4,5)P2 for Myo5p function 

ely charged phospholipids (Hokanson et al., 

006). Moreover, it was demonstrated that the neck is not required for membrane 

ould not only promote the localization of class I 

embrane insertion of an amphipathic helix might be important for 

(Audhya et al., 2004). 

Studies from mammalian cells indicate that PI(4,5)P2 might be produced locally at sites of 

endocytosis, and the lipid is important for the localization of several endocytic proteins 

(Haucke, 2005; Krauss et al., 2003; Krauss et al., 2006). Therefore, a specific interaction 

of the TH1 domain with PI(4,5)P2 could be involved in the endocytic patch recruitment of 

Myo5p.  

 
As mentioned before, our experiments also suggest a direct participation of the neck in 

Myo5p membrane binding. As the neck domain forms an amphipathic helix it might 

mediate unspecific electrostatic interactions with lipids. Consistent with this idea, in vitro 

experiments with a head-neck construct of mammalian Myo1c showed only weak, 

unspecific binding of the neck to negativ

2

association of a Myo1c-tail construct in living cells (Hokanson et al., 2006). This suggest 

that the TH1 domain alone localizes Myo1c to the plasma membrane and the neck might 

then participate in the targeting to specific subdomains, e.g. membrane regions especially 

enriched in PI(4,5)P2. 

The amphipathic character of the neck c

myosins to membrane regions especially enriched in negatively charged phospholipids. 

After membrane binding via the TH1 domain, the neck could be inserted into the 

phospholipid bilayer, where hydrophobic amino acids would interact with the lipid acyl 

chains and the positively charged amino acids would interact with negatively charged lipid 

head groups. Such a m
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Myo5p function by inducing stronger anchoring of Myo5p to the plasma membrane. 

 specifically bind to the neck and/or the TH1 domain. Interestingly, PA has been 

ing domains (Myo5-ΔTp or Myo5-Δnp). The myo3Δ myo5Δ strain 

Moreover, proteins bearing N-BAR domains (e.g. amphiphysin) and the COPII coat 

protein Sar1p have been shown to promote membrane curvature by the insertion of an 

amphipathic helix into the lipid bilayer (Lee et al., 2005; Peter et al., 2004). In vitro 

experiments with Sar1p and liposomes also suggest that the accumulation of inserted 

helices at the bud neck promotes vesicle scission (Antonny, 2006; Lee et al., 2005). 

Interestingly, Myo5p appears localized to the neck of endocytic vesicles in electron 

micrographs (F. Idrissi, unpublished data). The participation of Myo5p in the scission of 

endocytic vesicles has been proposed, since a temperature sensitive myo5 mutant 

exhibits cortical patches with a prolonged slow-movement phase at semipermissive 

temperature (Jonsdottir and Li, 2004). Moreover, a myo5Δ mutation is synthetical lethal 

with a rvs167Δ mutation, suggesting that Myo5p and the amphiphysin-like protein 

Rvs167p might share a redundant function in endocytosis (Tong et al., 2004).  

Besides PI(4,5)P2, phosphatidic acid (PA) was also preferentially bound by the nTH1 

construct in the lipid binding assays and the association of the Myo5p fragment to this 

lipid appeared especially elevated after the addition of 5 mM Ca2+ (to induce Cmd1p 

dissociation). Thus, even though we still need to confirm this result using liposomes, PA 

could also

implicated in endocytosis and vesicle fission (Jenkins and Frohman, 2005). Because of its 

biophysical properties, PA might induce negative curvature in the inner leaflet of the lipid 

bilayer and thus may be directly involved in the closure of the vesicle neck for scission 

(Kooijman et al., 2003). Alternatively, clusters of PA have been proposed to function as 

platforms for the insertion of fissiogenic proteins. Thus, the lipid might be enriched at the 

neck of the forming endocytic vesicle, where also Myo5p appears to concentrate. 

Moreover, a number of observations indicate that PI(4,5)P2 and PA positively regulate 

each others synthesis, making a model of a synchronic PI(4,5)P2 and PA binding by the 

Myo5p TH1 domain and neck domain, respectively, very attractive (Jenkins and Frohman, 

2005; Powner and Wakelam, 2002). The role of phospholipase D in the uptake step of 

endocytosis and in the patch recruitment of Myo5p will now be investigated to address the 

possible role of PA in the process. 

 

The importance of phospholipid binding for Myo5p function and endocytosis is reflected 

by the strong growth and uptake defects of yeast strains expressing Myo5p constructs 

lacking the lipid-bind

used in our lab cannot grow at all at 30°C. This growth defect can not be rescued by the 

expression of a Myo5 construct missing the TH1 domain or the neck (see supplementary 
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data, page 56, figure 29A). Moreover, the endocytic uptake defect of a myo5Δ strain is 

also not suppressed at all by expression of the corresponding constructs (supplementary 

data, figure 29B). 

Since we have observed that the GFP-Myo5ΔTp construct localizes to endocytic patches, 

patch recruitment of the Myo5p motor-head and the C-terminus does not seem to be 

sufficient for Myo5p function. Probably, the motor protein function and/or Arp2/3 activator 

activity have to be tightly bound to the plasma membrane (e.g. to translocate the 

phospholipid bilayer with respect to the actin cytoskeleton) or the TH1 domain might have 

an active role in membrane bending. 

 

8.3. A model for Cmd1p-regulated recruitment of Myo5p to endocytic patches 
 
Our results allow us to propose a model for regulated patch recruitment of Myo5p (see 

figure 30).  

 

 
Figure 30. Model of Myo5p recruitment to cortical patches (see text for details) 

 

In the cytosol, Myo5p with Cmd1p associated to the neck might exhibit a “closed” 

conformation, in which the TH1 domain interacts with the Myo5p C-terminus and prevents 

binding with other cortical patch components such as Vrp1p, which are also present in the 

cytosol. Only at the plasma membrane, an unknown signal might induce Cmd1p 

dissociation from Myo5p. The dissociation of Cmd1p would then favour an “open” 

conformation of the tail in which the TH1 domain does not interact with the Myo5p C-

terminus anymore. This would then allow the interaction of the Myo5p SH3 domain with 

Vrp1p and Myo5p function as an Arp2/3 complex activator. Moreover, Cmd1p release 

would allow efficient binding to plasma membrane lipids. After fulfilling its function in 

    
 

 

PM 

Myo5p 

Vrp1p 

Cmd1p 
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endocytosis, Myo5p might rebind Cmd1p, promoting Myo5p dissociation from the 

endocytic vesicle. 

Interestingly, an intramolecular interaction which regulates protein localization and 

function has been described for other actin-regulating proteins. For the mammalian formin 

FRLalpha (formin-related gene in leukocytes alpha) is has been described that 

autoinhibition via an interaction between the N- and C-terminus regulates its plasma 

membrane localization and actin assembly activity for phagocytosis. In this case, release 

of the intramolecular interaction is induced by the activated form of the RhoGTPase 

Cdc42 (Seth et al., 2006).  

Also the actin-regulating activity of the mammalian homologue of Las17p, N-WASP 

(neuronal Wiskott-Aldrich Syndrome protein), has been shown to be autoinhibited by an 

llowing the interaction of the C-terminus with the Arp2/3 complex 

a membrane via the TH1 before Cmd1p dissociation is induced or if membrane 

ssociation also requires Cmd1p dissociation. The results with the lipid strips and with the 

interaction between the N- and C-terminus. Simultaneous binding of PI(4,5)P2 and 

activated Cdc42 to a central region of the protein reduces the affinity between the N- and 

C-terminal domains, a

(Rohatgi et al., 2000). 

 

A number of points need to be analyzed to further refine our model of Myo5p patch 

recruitment. First, we can not conclude from our results if Myo5p is already associated to 

the plasm

a

PRS only indicate that the neck is essential to mediate tight association with the lipid 

bilayer and Cmd1p release increases phospholipid association of Myo5p.  

However, some specific Cmd1p-Myo5p interaction could still be observed in the 

immunoprecipitation experiments from plasma membrane fraction. Further, a diffuse 

plasma membrane localization of GFP-Myo5p, in addition to the endocytic patch 

localization, could sometimes be observed in fluorescence microscopy of living cells. 

Thus, our preferred hypothesis would propose that a loose TH1-mediated Myo5p 

association with the plasma membrane occurs in the closed, Cmd1p-bound state of 

Myo5p. This kind of membrane association might serve to concentrate the motor at the 

plasma membrane plane and might already reduce the strong affinity of Cmd1p for the 

Myo5p neck. Only at the cortical patch, a still unknown signal would trigger the release of 

Cmd1p. As a consequence, the interaction of Myo5p with the lipid bilayer would be 

strengthened and the inhibitory intramolecular interaction on the C-terminal extension 

would be loosed, allowing the interaction of Myo5p with Vrp1p, and, in turn, Myo5p 

function as activator of the Arp2/3 complex. 
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A major question derived from our results is why Cmd1p is released from Myo5p at the 

plasma membrane.  

An obvious possibility would be that a phospholipid produced at endocytic sites (e.g. 

PI(4,5)P2 or phosphatidic acid) directly competes with Cmd1p for binding to the neck 

domain. PI(4,5)P2 degradation after vesicle formation might then allow Cmd1p rebinding. 

However, we do not favour this hypothesis unless other molecular mechanisms 

participate in lowering the strong affinity of Cmd1p for the IQ motifs (Kd values of 2-4 μM 

were measured for Myo1c)(Gillespie and Cyr, 2002). An interesting possibility would be 

that binding of PI(4,5)P2 via the TH1 domain induces a conformational change in the 

adjacent neck and reduces the affinity to Cmd1p. Only then, a high local concentration of 

PA or PI(4,5)P2 could displace Cmd1p from the Myo5p neck. 

Likely, the Myo5p-Cmd1p interaction could also be affected by phosphorylation. 

Phosphorylation of rat liver myosin by protein kinase C (PKC) has been shown to reduce 

in Cmd1p dissociation from Myo5p. The plasma 

embrane recruitment system (PRS) seems to monitor the close interaction of the neck 

Cmd1p binding in vitro (Williams and Coluccio, 1995). Interestingly, the neck domain of 

Myo5p and adjacent sequences of the TH1 domain bear possible phosphorylation sites 

for the PKC. Further, a role for PKC in the uptake step of endocytosis has been 

demonstrated (Friant et al., 2001).  

Finally, since Ca2+ is known to inhibit Cmd1p binding to Myo5p, a local gradient of Ca2+ 

could induce Cmd1p release from the myosin. In mammalian cells, a local elevation of 

Ca2+ next to the plasma membrane seems to be important for the regulation of plasma 

membrane associated processes (Barritt, 1999). However, since it has been shown that a 

cmd1 mutant impaired in Ca2+ binding has normal endocytic uptake kinetics, a Ca2+-

dependent regulation of the Cmd1p-Myo5p interaction appears less likely (Kubler et al., 

1994). 

Future experiments are now being designed to identify the molecular mechanism that 

triggers Cmd1p dissociation from Myo5p at the plasma membrane. 

 

8.4. The PRS screening 
 
In this work we present a genetic screen, which could theoretically be useful for the 

identification of factors involved 

m

and TH1 domains with the plasma membrane, probably with the lipid bilayer. Thus, by a 

screening based on the PRS we expected to identify enzymes involved in the production 

or the turn over of certain lipids or proteins with the capacity to modify the lipid binding 

affinity of the neck or the TH1 domains of Myo5p.  
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So far, the PRS screening led to the identification of 3 different genes which encode 

proteins of the same complex, namely VPS16, VPS18 and VPS33. The corresponding 

proteins form together with Vps11p the class C Vps protein complex, a complex which 

 Myo5p recruitment seems to be unlikely. The class 

 Vps complex functions in more than one important transport route in the yeast cell. 

trains 

racellular transport. The abnormal plasma membrane composition could then 

affect Myo5p recruitment. However, Myo5-YFPp localization at the plasma membrane 

seemed to be unaffected in the vps mutants, when analyzed by confocal microscopy.  

Nevertheless, the low resolution of the fluorescence microscopy could still prevent 

detection of minor defects in Myo5p localization. Since we detected a slight endocytic 

uptake defect in all mutants identified, a defect in Myo5p plasma membrane recruitment in 

the strains appears still possible. As previously discussed, Myo5p could localize to the 

plasma membrane before Cmd1p dissociates and the release of Cmd1p might then lead 

to a tighter or closer interaction with the lipid bilayer. If only this last step would be 

affected in the vps mutants, quantitative biochemical experiments would be required to 

resolve the differences to a wild-type background.  

Another less appealing but still more likely possibility came out recently with the 

bservation that in class C vps mutants Ras2p is delocalized from the plasma membrane, 

ainly to mitochondria (Wang and Deschenes, 2006). Thus, signalling through the Ras-

athwa g was 

has been implicated in Golgi-to-vacuole protein transport, vacuole fusion, endosome to 

vacuole transport and the recycling pathway from endosomes to the plasma membrane 

(Bugnicourt et al., 2004; Peterson and Emr, 2001; Rieder and Emr, 1997; Sato et al., 

2000). 

Since the class C Vps proteins have not been described to be localized at the plasma 

membrane, their direct involvement in

C

Thus, the identification of the vps mutants by the screening could indicate that the s

exhibit an abnormal composition of the plasma membrane as a secondary effect of the 

disturbed int

o

m

p y might actually be impaired in the vps mutants. In principle, our screenin

designed to discard mutants affecting the reporter system using the myrRIN control. 

However, we cannot rule out that myrRIN recruits more 5’Sos-Myo5p (compared with the 

5’Sos construct alone), sufficient to activate residual amounts of Ras2p which reach the 

plasma membrane in the vps mutants. Further experiments are necessary to analyze the 

credibility of the myrRin control for the vps mutants and the screening in general. 

 

8.5. Outlook 
 
For the verification and extension of our model for Cmd1p-regulated patch recruitment of 

Myo5p we are planning several experiments. 
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To verify our result from the immunoprecipitation experiments that Vrp1p and the neck 

and TH1 domains can compete for binding with the Myo5p C-terminus, we will perform in 

tion, in vitro actin polymerization assays will be performed. 

scopy, the lifespan and the number of GFP-Myo5p patches at the 

lasma membrane will be analyzed in a collection of strains expressing cmd1 point 

otype. We also 

ins will demonstrate the effect of the neck 

omain on lipid binding and show if the TH1 domain alone binds lipids with strong affinity. 

vitro binding assays with purified components. Binding of purified Vrp1-HAp to GST-C 

(bearing the Myo5p C-terminus) will be analyzed, in the presence or absence of ProtA-nT 

(bearing the Myo5p neck and TH1 domains). The same experiments will also be 

performed with Cmd1p-free ProtA-nT and in the presence or absence of purified Cmd1p, 

to demonstrate in vitro that the interactions are regulated by Cmd1p.  

To investigate the influence of calmodulin on the capacity of Myo5p to induce Arp2/3p 

dependent actin polymeriza

Full length Myo5p or a construct bearing the neck and tail domains will be analyzed with 

and without associated Cmd1p. Moreover, to investigate if the intramolecular interaction in 

Myo5p affects its Arp2/3 activator activity, purified neck-TH1 protein with associated 

Cmd1p will be analyzed for its effect on Arp2/3-dependent actin polymerization induced 

by a construct of the Myo5p C-terminus. 

Using time-lapse micro

p

mutations, which differentially affect binding to Myo5p. If our hypothesis is correct, we 

expect to find a strong correlation between the mutations that disrupt the interaction 

between Myo5p and Cmd1p, and those that elongate the GFP-Myo5p lifespan and/or 

increase the number of Myo5p patches at the plasma membrane. Further, different GFP-

tagged endocytic proteins will be analyzed in the cmd1 mutants that exhibit an elongated 

GFP-Myo5p lifespan in order to assess the specificity of the observed phen

plan to analyze if the detected elongated lifespan of Myo5p patches in the cmd1-226 

mutant is a consequence of premature Myo5p-association to Vrp1p or of delayed 

dissociation of Myo5p from the plasma membrane. Both effects could also work together. 

To analyze this point, GFP-Myo5p will be coexpressed with RFP-tagged Vrp1p or Abp1p, 

and the time-course of patch association of the fluorescent proteins will be observed using 

dual-color imaging. 

For a more detailed analysis of the lipid-binding properties of Myo5p, liposomes with 

different lipid compositions will be prepared and used for in vitro binding experiments with 

purified ProtA-nT. Again, experiments will also be performed with a Cmd1p-free ProtA-nT 

construct and with and without the addition of purified Cmd1p. Since the TH1 domain 

alone could not be expressed in yeast or bacteria, we will try to express the domain in 

vitro. The comparison of liposome-binding by the TH1 domain with liposome-binding by a 

construct bearing the neck and TH1 doma

d
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Competition experiments between different acidic phospholipids and Cmd1p for binding to 

a construct of the neck and TH1 domain will be performed, to analyze the possibility that 

the local production of a specific lipid at endocytic sites causes Cmd1p release from the 

Myo5p neck. Searching for the signal that causes Cmd1p dissociation, we will also 

analyze possible phosphorylation sites at the Myo5p neck domain. We will mutate these 

sites and analyze their functional relevance for Cmd1p binding, Myo5p recruitment to 

cortical patches and endocytosis. 

Finally, purification of high amounts of Myo5p using the bacculovirus system may allow 

the visualization of the structural change in Myo5p induced by calmodulin dissociation, 

using cryo-electron microscopy.  
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9. Materials and methods 
 
9.1. Cell culture 
9.1.1. E. coli cell culture  
E. coli cell culture was performed according to standard protocols (Sambrook and Russel

2001). 

9.1.2. S

, 

. cerevisiae cell culture 

 

 

 

 

 

 

 

.2.1.1. Generation of double mutants by diploid construction, sporulation and tetrad  
 dissection 

trad dissection and scoring of genetic markers were performed as described 

f 

re mixed on YPD plates and incubated for 

S. cerevisiae cell culture was performed as described (Guthrie and Fink, 1991; Sambrook

and Russel, 2001). Unless otherwise mentioned, strains were grown in complete yeast 

peptone dextrose media (YPD) or, if selection was required, in appropriate synthetic 

dextrose minimal media (SDC) (Sherman, 1991). Complete media contained 1% yeast 

extract (Difco), 2% peptone (Difco) and 2% glucose (Fluka). Synthetic minimal media 

consisted of 2% glucose (Fluka), 0.67% yeast nitrogen base (Difco) and 0.075% of CSM 

(complete synthetic mix; Qbiogene), which contains all required amino acids, purine- and 

pyrimidine-bases except those required for auxotrophic marker selection. SDC-Ura media,

for instance, contained all described components except uracil. The concentrations of all 

amino acids, purin- and pyrimidin-bases used in CSM were: 10 mg/l adenine, 50 mg/l L-

arginine, 80 mg/l L-aspartate, 20 mg/l L-histidine-HCl, 50 mg/l L-leucin, 50 mg/l L-lysine, 20

mg/l L-methionine, 50 mg/l L-phenylalanine, 100 mg/l L-threonine, 50 mg/l tryptophane, 50

mg/l L-tyrosine, 20 mg/l uracil and 140 mg/l valine. Solid media additionally contained 2% 

agar (Fluka).  

For the induction of proteins under a GAL1-promoter, the galactose containing medium

(SGC) was prepared like SDC, just substituting glucose by 1% raffinose and the adequate

amount of galactose. For YPD solid medium containing kanamycin, the drug was added at

a concentration of 0.03 mg/ml. For contraselection of cells carrying URA3 plasmids, 5-

fluoro-orotic acid (FOA) (Fluorochem) was added to the solid medium at a concentration of 

1 mg/ml. 

Yeast cells were grown at 30°C unless otherwise mentioned. 

9.2. Genetic techniques 

9.2.1. Generation of yeast strains  
 
9
 
Sporulation, te

(Sherman et al., 1974). Briefly, in order to obtain diploid yeast cells, haploid cells o

opposite mating types, Mata and Matα, we
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approximately 12 hours at room temperature (RT). Subsequently, diploid cells were

selected on appropriate minimal media (SDC lacking all amino acids, purine- or pyrimidine

bases that could be synthesized by the diploid but not by the haploid yeast cells). For

sporulation, diploid cells were grown for 1 day on complete solid media and subsequently

transferred to sporulation media (0.022% raffinose, 3g/l potassium acetate). The spores

were separated under a tetrad microscope (Singer Instruments) and allowed to germinate

and grow on complete media at RT. 

 

-

 

 

 

 

 

 

t 

 

 bar1 mutants 
 

 

 

 

 

 

s 

 

 

 

1, the protease will degrade the α-factor secreted by the Matα strain 

 

 

 

The mating type of haploid cells was tested by plating the corresponding yeast either with

Mata or Matα tester strains bearing a his1 mutation (not present in any other laboratory

strain) on minimal media lacking all amino acids, purine- or pyrimidine-bases. Only yeas

cells capable of mating with the testers (Matα or Mata cells, respectively) were able to

produce diploids that grew on the minimal media.  

 

9.2.1.2. Plate assay for the detection of
Deletion of the BAR1 gene was tested using a plate assay. This assay is based on the

observation the Mata cells bearing double mutations in the BAR1/SST1 and the SST2

genes cannot recover from the cell cycle arrest induced by the α-factor pheromone (Sst2p

is a negative regulator of the α-subunit of the Ste2p coupled heterotrimeric G-protein). Only

when another Mata BAR1 is plated nearby, the extracellular α-factor is degraded and the

Mata bar1 sst2 strain is able to grow. 

To perform the assay, first, a YPD plate is overlaid with a saturated culture of the α-factor

hyper-sensitive yeast strain (Mata bar1 sst2 cells (SCMIG31)). A straight line of Matα cell

(i.e. SCMIG33) is then streaked in the middle of the plate. Matα cells will secrete α-factor

and inhibit growth of the SCMIG31 strain. As a consequence, a halo along both sides of the

line of Matα cells will be observed upon incubation at 30°C. The Mata cells to be analysed 

for the deletion of the BAR1 gene are streaked perpendicular to the line of Matα cells. If the

tested strain is BAR

and the Mata bar1 sst2 cells will be able to grow closer to the line of Matα cells. In contrast,

if a strain is bar1Δ, the α-factor will not be degraded and the SCMIG31 cells will not be able

to grow close to the Matα cells.  

 
9.2.2. Yeast strains 
The yeast strains used in this study are listed in table II. Not previously published strains

were generated as follows. 
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SCMIG958 
The strain was constructed by crossing the yeast strains SCMIG682 and SCMIG683.  

Sjl1Δ sjl2Δ double knockouts were selected on kanamycin-containing plates, choosing

spores of tetrads with a 2:2 segregation of the kanamycin resistance. 

 

 

Table II. Yeast strains  

 

strain genotype  reference 

EGY48 Matα ura3 leu2 his3 trp1  (Gyuris et al., 1993) 

SCMIG182 Mata ade2 ade3:: cmd1-226::TRP1 his3 leu2 lys2 
 trp1 ura3 cmd1Δ::HIS3 bar1Δ::LYS2 

(Geli et al., 1998) 

SCMIG187 Mata ade2 ade3:: cmd1-231::TRP1 his3 leu2 lys2 
 trp1 ura3 cmd1Δ::HIS3 bar1Δ::LYS2 

(Geli et al., 1998) 

SCMIG19 Mata his3 leu2 trp1 ura3 bar1 (Idrissi et al., 2002) 
SCMIG201 Mata ade2 ade3:: cmd1-247::TRP1 his3 leu2 lys2 

 trp1 ura3 cmd1Δ::HIS3 bar1Δ::LYS2 
(Geli and Riezman, 1998) 

SCMIG229 
(RH4165) 

Mata arp2-2::URA3 ts GAL+ ade2 trp1 leu2 his   
ura3 bar1 

(Idrissi et al., 2002) 

SCMIG271 Matα ura3 lys2 trp1 his3 leu2 ade2 cdc25-2   (Aronheim and Karin, 2000)

SCMIG273 Mata his3 leu2 ura3 trp1 las17Δ::LEU2 (Naqvi et al., 1998) 

SCMIG275 Mata his3 leu2 lys2 trp1 ura3 bar1 myo5Δ::TRP1  (Idrissi et al., 2002) 

SCMIG304 Mata his3 leu2 lys2 trp1 ura3 bar1 end5Δ::URA3        
myo5Δ::TRP1 +  pURA3MYO5 

 (Geli et al., 2000a) 

SCMIG391 
(RH2634) 

Mata his3 leu2 bar1 ura3 sla1Δ::URA H. Riezman 

SCMIG392 
(RH3654) 

Mata his3 trp1 lys2 leu2 bar1Δ::LYS2 ura3 pan1-4 (Tang et al., 1997) 

SCMIG458 Mata abp1Δ::KMX leu2 his3 ura3 met15 Euroscarf 

SCMIG459 Mata ent1Δ::KMX leu2 his3 ura3 met15 Euroscarf 

SCMIG533 Mata his3 leu2 met15 ura3 bbc1Δ::KMX  Euroscarf 

SCMIG55 
(RH1995) 

Mata his4 leu2 bar1 end3Δ::URA3 H. Riezman 

SCMIG57 
(RH2892) 

Mata end5Δ::URA3 ura3 leu2 his4 lys2 bar1 Howard Riezman 

SCMIG59 
(RH2905) 

Mata leu2 his4 ura3 trp1Δ::URA3 rvs167Δ::TRP1 
bar1 

H. Riezman 

SCMIG590 Mata his3 leu2 trp1 ura3 bar1 myo3Δ::HIS3 
myo5Δ::TRP1 pMYO5  

(Grosshans et al., 2006) 

SCMIG61 
(RH2897) 

Mata his4 leu2 lys2 ura3 bar1 end11(erg2)Δ::URA3 (Munn et al., 1999) 

SCMIG669 Mata his3 trp1 lys2 ura3 leu2 bar1 sla2Δ::HIS3  (Wesp et al., 1997) 

SCMIG682 Mata sjl1Δ::KMX ura3 his3 leu2 met1 Euroscarf 

SCMIG683 Matα sjl2Δ::KMX ura3 his3 leu2 lys2 Euroscarf 
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SCMIG729 Mata leu2 ura3 rme1 
mss4Δ::HIS3MX6 pYC

trp1 his3 GAL+ HMLa TOF3 
plac111.MSS4 

(Desrivieres et al., 1998) 

Mata leu2 ura3 rme1 trp1 his3 GAL+ HMLa TOF3 
3MX6 pYcplac111.mss4-2ts 

(Desrivieres et al., 1998) SCMIG730 
mss4Δ::HIS

SCMIG754 Mata chc1Δ
(SL5006) 

::LEU2 pRS426  (Tan et al., 1993) 

SCMIG762 Mata his3 leu2 ura3 met1 sac6Δ::KMX Euroscarf 

SCMIG806 Mata ent1Δ::KMX ent2Δ:: KMX ede1Δ::KMX: ura3 
1-UIMΔ (LEU2) 

(Shih et al., 2002) 
his3 leu2 met1 pent

SCMIG947 Mata ade2 ade3:: CMD1::TRP1 his3 his3 leu2 lys2 (Geli et al., 1998) 
trp1 ura3 cmd1Δ::HIS3 bar1::LYS2 

SCMIG958 Matα sjl1Δ::KMX sjl2Δ::KMX ura3 his3 leu2 met1 this study 

SCMIG990 Mata his3 leu2 ura3 met1 vps11Δ::KMX Euroscarf 

SCMIG991 Mata his3 leu2 ura3 met1 vps16Δ::KMX Euroscarf 

SCMIG992 Mata his3 leu2 ura3 met1 vps18Δ::KMX Euroscarf 

SCMIG993 Mata his3 leu2 ura3 met1 vps33Δ::KMX Euroscarf 
 

 

9.2.3. Methods of the PRS screening 
 
9.2.3.1. Chemical mutagenesis with ethymethane sulfonate 
The protocol for the chemical mutagenesis of yeast cells with ethylmethane sulfonate 

(EMS) is based on the method published by (Guthrie and Fink, 1991). 

5 ml of yeast strain SCMIG271 bearing pYX5’SOS-MYO5 and pYesM#7 were grown to 

saturation in medium containing 0.1% galactose at 23°C, harvested at 2400 g for 5 min and 

 0.1 M Na-PO4 buffer, pH 7. After resupension in 1 ml of 0.1 M Na-PO4 buffer, 

using a Neubauer counting-

chamber, and diluted to 500 cells/ml. Finally cells were plated on SGC-Leu-Ura plates 

.  

washed with 5 ml of 0.1 M Na-PO4 buffer, pH 7. Cells were again harvested and 

resuspended in 20 ml 0.1 M Na-PO4 buffer. 0.5 ml of culture was transferred into a glass 

tube and 35 µl of EMS (Sigma) was added. After careful mixing, the cells were incubated for 

1 h at RT. To stop the mutagenesis 0.5 ml of 12% Na-thiosulfate was added and cells were 

transferred into a 15 ml Falcon tube. Cells were harvested at 3000 g for 3 min and washed 

twice with

cells were counted under a microscope (Axiolab, Zeiss), 

containing 0.1% galactose

 

9.2.3.2. Selection of mpr (myosin plasma membrane recruitment) mutants 

cells were incubated on SGC-Leu-Ura plates for 3 days at 24°C. The mutagenized cdc25-2 

Colonies were then replica-plated on SGC-Leu medium selecting only for the pYX5’SOS-

MYO5 plasmid and incubated again at 24°C. After 2 days of growth the colonies were 

plated on SGC-Leu medium containing 1 mg/ml 5’-fluoroorotic acid (FOA). Also the original 
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plates of the screening were replica-plated, again on SGC-Leu-Ura medium selecting for 

the 2 plasmids. Both types of replicas (SGC-Leu plates with FOA and SGC-Leu-Ura plates) 

were incubated at 31°C and the following 2-4 days growth of corresponding colonies was 

observed. Colonies that showed clearly better growth on the SGC-Leu-Ura medium than on 

the FOA-medium were selected. 

 
9.2.3.3. Outcrossing of mpr mutants 

ansferred to new SDC-Leu plates and 

cubated at 37°C. If 4 spores of the same tetrad were not growing on SDC-Leu at 37°C, 2 

 were ts due to the mpr mutation. 

re sensitive mpr mutants, cells were transformed with 

9.2.3.4.1. The yeast genomic library 

nd partially filled in 

sing the Klenow DNA polymerase fragment in the presence of dGTP and dATP. 

ed into the SalI site of Ycplac111, which had been partially filled in 

 

For the purification of the mpr mutations from the cdc25-2 mutation, the temperature 

sensitive mpr mutants were crossed to a wild-type strain (SCMIG19). After tetrad dissection 

and sporulation, those spores were selected which were bearing the mpr mutation alone.  

For the identification of the mpr mutants, spores that were bearing the pYX5’SOS-MYO5 

plasmid were selected on SDC-Leu medium, tr

in

spores were ts due to the cdc25-2 mutation and 2 spores

The mpr mutants could then be identified by a growth defect on SGC-Leu at 37°C. As all 

spores were bearing the pYX5’SOS-MYO5 plasmid, cdc25-2 cells could be rescued by 

5’Sos-Myo5p expression, while mpr mutants were still defective in growth. 
 
9.2.3.4. Identification of mutants by complementation with a genetic library 
For the identification of the temperatu

the genomic plasmid library, plated on YPD plates and incubated at RT. After 12 hours, the 

cells were shifted to 37°C. 3 days later, colonies were picked and the plasmid DNA was 

purified. Isolated plasmids were digested with restriction enzymes to check if they have an 

insert and if perhaps similar digestion patterns could be observed for plasmids isolated from 

the same mutant. Plasmids were retransformed into the original mutant and cells were 

grown as before to control again the effect of the plasmid. Finally, the DNA sequence of the 

genomic insert of the plasmid was identified by sequencing with primers #140 and #141. 

 

The yeast genomic library used in this study was constructed by Brian Stevenson from the 

H. Riezman lab. Genomic DNA was partially digested with Sau3A a

u

Fragments were ligat

using the Klenow DNA polymerase fragment in the presence of dTTP and dCTP.  
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9.3. DNA techniques and plasmid construction 

Standard DNA manipulations (gel electrophoresis, enzymatic digestion, ligation, 

nzymes for molecular biology were obtained from New England Biolabs or Roche. 

lasmids were purified with the Nucleospin plasmid purification kit (Macherey-Nagel).  

arose gels using the gel extraction kit from Qiagen. 

PC ere pe sing a DNA polymerase with proof-reading activity (Vent 

polymerase; New England Biolabs)  a TRIO-thermoblock (B

 

9.3.1. Introductio
Ele n o roo

Transformation of yeast was accomplished by th 1983). 

 

9.3.2. Extraction and purification of plasmid DNA from S. cerevisiae  

A 5  of at 23 ells were 

resuspende

ED ans . 150 µl of glass beads and 300 µl of 

ph orm d c  vortexing 

for n c hase) was 

transferred into a new 1.5 ml tube and the DNA was further purified by phenol:chloroform 

ext e p ated by ethan  and finally 

res in 5 tro-  cells were 

transformed with the plasmid prepared from the yeast cells. Plasmid DNA was purified from 

single colon zymes and analytical agarose 

ge res

 

9.3.3. Extraction and purification of genomic DNA from S. cerevisiae  
20 ml of yeast cells sted at 2300 g for 5 min and 
res  in 1  an f tube at 5200 g  
for 2 min and resuspended in 0.5 ml of 1 M sorbitol, 50 mM potassium phosphate buffer pH 
7.5 -me 0T (Seik ion for 
30 C sp n a  0.5 ml of 
50  pH 8.0, 0.2% SDS. The sample was then incubated for 15 min at 65°C. 50 µl 
of ium as in r 1 h. The 
pre s se  and the supe as transferred into 
a n dor  and the gen A precipitate was 

transformation, plasmid preparation and polymerase chain reaction) were performed as 

described (Sambrook et al., 1989; Sambrook and Russel, 2001) 

E

P

DNA was purified from ag

Rs w rformed u

and iometra).  

n of DNA into cells 
ctroporatio f E. coli was performed as described (Samb k et al., 1989). 

e lithium acetate method (Ito et al., 

 ml culture  yeast in stationary phase was harvested 00 g for 5 min. C

d in 0.4 ml of lysis buffer (0.2 M Tris-HCl pH 7.5, 0.5 M NaCl, 1% SDS, 10 mM 

TA) and tr ferred to a 1.5 ml Eppendorf tube

enol:chlorof :isoamyl alcohol (25:24:1) were added an ells were lysed by

 2 min. Upo entrifugation at 20,000 g for 5 min, the aqueous phase (upper p

raction. Th lasmid DNA was then concentr ol precipitation

uspended 0 µl H2O. To obtain pure plasmid DNA, elec competent E.coli

ies and analyzed by digestion with restriction en

l-electropho is. 

were grown to 107 cells/ml, harve
uspended  ml of 1 M sorbitol. Cells were collected in  Eppendor

, 14 mM β rcaptoethanol, 40 µg/ml Zymolyase 2 agaku). After incubat
 min at 30°
 mM EDTA

heroblasts were collected at 5200 g for 2 mi nd resupended in

5 M potass  acetate pH 7.5 was added and the tube w cubated on ice fo
cipitate wa dimented at 20,000 g for 15 min rnatant w
ew Eppen f tube. 1 ml ethanol was added omic DN
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col 0,0 ard s air-
dried and resuspended in 200 µl of ncubated at 37°C for 15
the presence of urification the sample was extracted 3 
tim en ohol (25:24:1). Finally, the genomic DNA was 
precipitated with ethanol and resuspended in 50µl of TE-buffer (10 mM Tris pH 7.5, 1 mM 
EDTA). 
 

9.3.4. Plasmids 
Plasmids used in tures are listed in table III. Primers used in 

this liste

 

Table III. Plasmids 

marker 
rence 

lected at 2 00 g for 15 sec. The supernatant was disc ed and the pellet wa
 TE. The DNA was then i

RNase A (50 µg/ml). For further p
 min in 

es with ph ol:chloroform:isoamyl alc

 this study and their relevant fea

 study are d in table IV.  

Plasmid∗ Yeast Insert Refe

p181LAS17 LEU2 LAS17 (Naqvi et al., 1998) 
p33mycMYO5 LEU2 myc-MYO5 I.M. Fernandez 
p33MYO5 URA3 MYO5 (Geli and Riezman, 1996) 
p33myo5-996STOP URA3 myo5 aa 1-996 (Geli et al., 2000a) 
p33MYO5-HA3 URA3 MYO5 + 3HA  (Idrissi et al., 2002) 

p33myo5Δ IQ URA3 myo5 (aa 1-1219- (G
(aa 725-735)Δ, (aa 743-753)Δ) 

eli et al., 1998) 

p33myo5Δn URA3 myo5 (aa 1-1219-(aa 705-773)Δ) this study 

p33myo5ΔΤ URA3 myo5 (aa 1-1219-(aa 774-905)Δ) this study 

pEG202 HIS3 LexA (Gyuris et al., 1993) 
pEG202-nT HIS3 myo5 aa 1-996 this study 
pEG202-T HIS3 myo5 aa 757-996 M.I. Geli 
pENT1-GFP URA3 ENT1-GFP this study 
pFA6a-GFP(S65T)TRP1 - GFP-TRP1 cassette (Longtine et al., 1998) 
pGEX-4T-1 - GST Pharmacia 
pGEX-5X-3 - GST Pharmacia 
pGFP-ABP1 URA3 GFP-ABP1 this study 
pGFP-GSa URA3 GFP-myo5 (aa 996-1219) this study 
pGFP-H URA3 GFP-myo5 (aa 1-704) this study 
pGFP-Hn URA3 GFP-myo5 (aa 1-773) this study 
pGFP-HnT URA3 GFP-myo5 (aa 1-996) this study 
pGFP-MYO5 URA3 GFP-MYO5 this study 
pGFP-MYO5.LEU LEU2 GFP-MYO5 this study 

pGFPmyo5Δn  URA3 GFP-myo5 (aa 1-1219 
-(aa 705-773)Δ) 

this study 

pGFPmyo5ΔΤ URA3 GFP-myo5 (aa 1-1219 
-(aa 774-905)Δ) 

this study 
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pGFP-n URA3 GFP-myo5 (aa705-773) this study 
pGFP-nT URA3 GFP-myo5 (aa 705-996) this study 
pGFP-nTC URA3 GFP-myo5 (aa 705-1219) this study  
pGFP-TC URA3 GFP-myo5 (aa 774-1219) this study 
pGST-C - GST-myo5 (aa 982-1219) (Geli et al., 2000a) 
pGST-CMD1 - GST-CMD1  this study 
pJG4-5 TRP1 B42 (Gyuris et al., 1993) 
pLH309 - bar1Δ::URA3 (BAR1 k.o.) L. Hicke 

pMYO5 LEU2 MYO5 (Geli et al., 2000a) 
pMYO5-YFP (Ycplac112 
background) 

TRP1 MYO5-YFP F. Idrissi 

pmyo5Δn LEU2 myo5 (aa 1-1219-(aa 705-773)Δ) this study 

pmyo5ΔΤ LEU2 myo5 (aa 1-1219-(aa 774-905)Δ) this study 

pmyrRin URA3 myristoylation site-RIN A. Aronheim 
pNOPGFP2L LEU2 NOP1 promoter-GFP  E. Hurt 
pProtA-GSa URA3 ProtA-myo5 (aa996-1219) this study 
pProtA-MYO5  URA3 MYO5  (Grosshans et al., 2006) 

pProtA-myo5ΔC URA3 myo5 (aa 1-996) this study 

pProtA-myo5ΔIQ URA3 myo5 (aa 1-1219- 
(aa 725-735)Δ, (aa 743-753)Δ) 

this study 

pProtA-nT URA3 ProtA-myo5 (aa705-996) this study 
pProtA-nTC URA3 ProtA-myo5 (aa705-1219) F. Idrissi 
pProtA-TC URA3 ProtA-myo5 (aa774-1219) this study 
pRFM-1 HIS3 LexA-Bicoid (Gyuris et al., 1993) 
pYES-5'SOS URA3 5’Sos (aa 1-1068) (Aronheim and Karin, 2000)
pYX243 LEU2 - R&D Systems Europe Ltd 
pYX5’SOS LEU2 5’Sos (aa 1-1068) this study 
pYX5’SOS.TRP TRP1 5’Sos (aa 1-1068) this study 
pYX5’SOS-ABP1 LEU2 5’Sos-ABP1 this study 
pYX5’SOS-C LEU2 5’Sos-myo5 (aa 996-1219) this study 
pYX5’SOS-ENT1  LEU2 5’Sos-ENT1 this study 
pYX5’SOS-H LEU2 5’Sos-myo5 (aa 1-704) this study 
pYX5’SOS-Hn LEU2 5’Sos-myo5 (aa 1-773) this study 
pYX5’SOS-HnT LEU2 5’Sos-myo5 (aa 1-995) this study 
pYX5’SOS-MYO5 LEU2 5’Sos-MYO5  this study 

pYX5’SOS-myo5Δn LEU2 5’Sos-myo5 (aa 1-1219 
-(aa 705-773)Δ) 

this study 

pYX5’SOS-myo5ΔT LEU2 5’Sos-myo5 (aa 1-1219 
-(aa 774-905)Δ) 

this study 

pYX5’SOS-nT LEU2 5’Sos-myo5 (aa 705-995) this study 
pYX5’SOS-nTC LEU2 5’Sos-myo5 (aa 705-1219) this study 
pYX5’SOS-T LEU2 5’Sos-myo5 (aa 774-995) this study 
pYX5’SOS-TC LEU2 5’Sos-myo5 (aa 774-1219) this study 
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pYXMYO5 LEU2 MYO5 F. Idrissi 
YCplac111 LEU2 - (Gietz and Sugino, 1988) 
YCplac22 TRP1 - (Gietz and Sugino, 1988) 
YCplac33 URA3 - (Gietz and Sugino, 1988) 
YDP-L LEU2 - (Berben et al., 1991) 
YDp-W TRP1 - (Berben et al., 1991) 

 

∗All plasmids listed in this table carry a bacterial ori and an AmpR resistance gene.  
Plasmids of the pEG202, pJG4-5, Ycplac112 and pYX243 series are 2µ (multi-copy) plasmids. All 

ot previously published plasmids were generated as follows. 

I 

nd CMD1.444U.XhoI and pYXCMD1 as template. The PCR fragment was digested with 

MD1 sequence in 

ssful recombination was identified by restriction analyses.  

other plasmids, which contain a yeast marker, are CEN (low-copy) plasmids. 
 

N

 

pGST-CMD1 
A DNA fragment encoding Cmd1p was amplified by PCR using the primers CMD1.1D.Mfe

a

MfeI and XhoI and cloned into EcoRI/SalI cut pGEX-4T-1, inserting the C

frame downstream of the glutathione-S-transferase. 

 

p33myo5Δn 

A MYO5 DNA fragment missing the sequence encoding the myosin neck (aa 705-773) was 

synthesized by a 2-step PCR. First, 2 overlapping DNA fragments were amplified by PCR 

using p33MYO5 as the template and the primer pairs M1502D/ M5.Th1.2112U and 

M5.2320D/ M52955U. The second PCR reaction used the 2 PCR fragments as template 

and the primers M1502D and M52955U.   

For homologous recombination the product of the 2-step PCR was co-transformed into 

yeast with KpnI/BstEII digested p33MYO5. Cells were selected on SDC-Ura, plasmids were 

recovered and succe

 

p33myo5ΔT 

This plasmid was constructed as described for p33myo5Δn, using the primer pairs M1502D 

/M5.Th2.2319U and M5.2986D/ C9E1 for the first PCRs and the primers M1502D and 

C9E1 for the final PCR. 
 

pmyo5Δn and pmyo5ΔT 

These plasmids were constructed by homologous recombination in yeast, substituting 

URA3 in p33myo5-(N)Δ and p33myo5-(T)Δ by LEU2. A DNA fragment containing LEU2 

flanked by sequences upstream of the ATG and downstream of the STOP of URA3 was 
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amplified by PCR using the primers URAD.D and URAD.U and YDp-L as template. The 

DNA fragment was co-transformed with p33myo5-(N)Δ and p33myo5-(T)Δ into yeast and 

cells were selected on SDC-Leu. Plasmids were recovered from yeast and p33myo5-

(N)Δ.LEU and p33myo5-(T)Δ.LEU were identified by restriction analysis. 

 
pYX5’SOS 

243 was digested with EcoRI and the 5’ overhangs were filled in using the 

merase fragment. The linearized plasmid was then digested with BamHI 

TRP 
tained by substituting URA3 in pYX5’SOS by TRP1 by homologous 

recombination in yeast. A DNA fragment containing TRP1 flanked by sequences upstream 

of the ATG and downstream of the STOP codon of the URA3 gene was amplified by PCR 

us rs URAD  U  YDp-W as template. T t was 

then co-transformed with pYX5’SOS into yeast and cells were s  

Pl vere  y X5’SOS.TRP1 was i riction 

an

 

9. ids for ex on
pY T1  
Th sequence enc  the 1 ORF was amplified by PC DNA 

using the primers Ent1. D I.1565U. The PCR f was digested 

wi d XhoI and l  into YX5’SOS. 

 
pY BP1 

Th uence enc ing the 1 ORF was amplified by PC nomic DNA 

us ers Abp1. aI 2779U.MluI. The PCR was cut with 

Ap I and ligated  

 
Pl  expressio e 5 tructs 
The plasmids were obtained by inserting different PCR fragments in frame downstream of 

5’S OS.  

M 5 fragm er e plasmids liste  table below. 

pYX5’SOS and PCR frag s w I and MluI and

were subsequently ligated into pY

The vector pYX

Klenow DNA poly

and a SmaI/BamHI cut 5’Sos DNA fragment, isolated from pYes-5’Sos, was ligated into it. 

 

pYX5’SOS.
This plasmid was ob

ing the prime .D and RAD.U and he DNA fragmen

elected on SDC-Trp.

asmids were reco d from east and pY dentified by rest

alysis. 

3.4.1. Plasm pressi  of 5’Sos constructs 
X5’SOS-EN

e DNA oding  ENT R from genomic 

ApaI.1 and Ent1.Xho ragment 

th ApaI an igated  ApaI/SalI cut p

X5’SOS-A
e DNA seq od  ABP R from ge

ing the prim 1D.Ap and Abp1. fragment 

aI and Mlu  into ApaI /MluI cut pYX5’SOS.

asmids for n of th ’Sos Myo5p cons

OS into pYX5’S

YO5 and myo ents w e amplified from th d in the

ment ere digested with Apa  the PCR fragments 

X5’SOS. 
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id yoplasm M 5p-fragment primer template 

pYX5’SOS-MYO5 a 1 U.SOS  a -1219 Myo5.1.ApaI.D,  
M5.3660 p33MYO5

pYX5’SOS-nTC aa 7 D.SOS,  
M5.3660U.SOS  05-1219 M5.2113 p33MYO5

pYX5’SOS-TC aa 7 19 M5.2320D.SOS,  
OS 74-12 M5.3660U.S p33MYO5 

pYX5’SOS-C a 9 9 M5.2986D.SOS,  
M5.3660U.SOS a 96-121 p33MYO5 

pYX5’SOS-HnT aa 1-995 Myo5.1.ApaI.D, 
M5.2985U.SOS p33MYO5 

pYX5’SOS-Hn aa 1-7  
  73 M5.2319U.SOS

Myo5.1.ApaI.D, p33MYO5

pYX5’SOS-H a 1 .ApaI.D, 
12U.SOS   a -704 Myo5.1

M5.21 p33MYO5 

pYX5’SOS-nT a 7 OS, 
OS  a 05-995 M5.2113D.S

M5.2985U.S p33MYO5

pYX5’SOS-T a 7 M5.2320D.SOS,  
U.SOS  a 74-995 M5.2985 p33MYO5

pYX5’SOS-myo5Δn 
a 1

-(aa
yo5.1.ApaI.D, 

S n 
a -1219 M

 705-773)Δ M5.3660U.SO p33myo5Δ

pYX5’SOS-myo5ΔT 
a 1

a
paI.D, 

OS n 
a -1219 Myo5.1.A
-(a  774-905)Δ M5.3660U.S p33myo5Δ

 
9.3.4.2. Plasmids for expression of GFP constructs 
pG
The sequence encoding BP mplified by PCR from

the primers ABP1.-522D.BamHI and ABP1.2239U.SphI. The PCR product was cut with 

Ba nd liga o t phI cut Ycplac33 to generate p33ABP1.  

Th don of A as restriction s meI. A DNA-

fragment bearing the restriction synthesized by a 2-step PCR. First 2 DNA 

fra re ampli y primer pairs 2D.BamHI / 

2PmeI.Abp1 ABP1 as template. The second 

PC  the  p mplate and the prime 522D.BamHI 

an . Th ond digested with nd EagI and 

ligated into the BamHI/EagI cut p3

Finally, the DNA fragme din rted upstream 1. The GFP-

fragment was amplified CR FP.SmaI.D .SmaI.U and 

pN templat wit  the previously inserted PmeI site 

of

 

FP-ABP1  
 the A 1 gene was a  genomic DNA using 

mHI and SphI a ted int he BamHI/S

e START co BP1 w  then exchanged by 2 ites of P

sites was 

gments we fied b PCR using the Abp1.-52

.-1U and Abp1.479U / 2PmeI.Abp1.3D and p33

R reaction used 2 PCR roducts as te rs Abp1.-

d 2PmeI.Abp1.3D e sec  PCR product was BamHI a

3ABP1.  

nt co g for GFP was inse  of ABP

 by P  with the primers G and GFP

OPGFP2L as e, cut h SmaI and ligated into

 p33ABP1. 
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pE  
A p ORF was amplified by PCR fro  

the primers Ent1.HdIII.-600D and Ent1.XhoI.1565U, cut with HindIII  

into the III/SalI cut Ycplac33 (p33ENT1). The GFP sequence, toget

then cloned downstream of the last codon of ENT1 by homologous recombination. A PCR 

s Ent1.F2 and Ent1.R1 and pFA6a-GFP(S65T)-

, together with 

combination was identified by restriction analysis. 

lasmids for expression of GFP-Myo5p constructs 
n of pGFP-MYO5 and pGFP-HnT a PCR-product of the sequence encoding 

p33myo5-(T)Δ or p33myo5-(N)Δ. 

GFP-TC, pGFP-C and GFP-nT were obtained by homologous recombination 

NT1-GFP:
DNA sequence encoding the Ent1 m genomic DNA using

 and XhoI and ligated

Hind her with TRP1, was 

fragment was amplified using the primer

TRP1 as template. The PCR product was transformed into yeast cells

p33ENT1. Cells were selected on SDC-Trp, plasmids were recovered and successful 

re

 

P
For constructio

for GFP was amplified from pNOP-GFP2L with the primers GFP.SmaI.D and GFP.SmaI.U, 

cut with SmaI and ligated into the MscI site upstream of the MYO5 sequence in p33MYO5 

and p33myo5-996STOP, respectively. pGFPmyo5ΔT and pGFPmyo5Δn were obtained by 

ligating the same PCR fragment into the MscI site of 

 

pGFP-nTC, p
in yeast. For each plasmid, a PCR-fragment was amplified with the primers listed below and 

p33MYO5 as template. The PCR products were then co-transformed into yeast with 

KpnI/BstEII digested pGFP-MYO5 or KpnI/BstEII digested pGFP-HnT (see table). Cells 

were selected on SDC-Ura, plasmids were recovered and successful recombination was 

identified by restriction analyses.  

 

plasmid primers  KpnI/BstEII cut plasmid
for recombination  

pGFP-nTC 5RU1, M5-27.neck.D pGFP-MYO5 
pGFP-TC 5RU1, M5-27.TH1.D pGFP-MYO5 
pGFP-C C9E1, M5-27.TH2.D pGFP-MYO5 
pGFP-nT M52955U, M5-27.neck.D pGFP-HnT 

 

 

or construction of pGFP-H, pGFP-Hn and pGFP-n PCR fragments were amplified with the 

ed in the table below, cut with EcoRI and BamHI and ligated into 

F

primers and templates list

the EcoRI/BamHI cut Ycplac33. 
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plasmid primers template 

pGFP-H M5.-640D, M5.2112U.STOP.BamHI pGFP-MYO5 
pGFP-Hn M5.-640D, M5.2320U.STOP.BamHI pGFP-MYO5 
pGFP-n M5.-640D, M5.2320U.STOP.BamHI pGFP-nTC 

 

pGFP-MYO5.LEU was constructed by substituting URA3 in pGFP-MYO5 by LEU2 by 

 

med with pGFP-MYO5 into yeast and cells were selected on SDC-Leu. Plasmids 

ast and pGFP-MYO5.LEU was identified by restriction analysis. 

yo5Δn, pProtA-myo5ΔT, pProt-myo5ΔC and pProtA-myo5ΔIQ were 

onstructed by ligating a SnaBI/HpaI fragment, which was cut out from pProtA-MYO5, into 

5-996STOP and p33myo5-(IQ)Δ, 

3MYO5 as template 

nd then co-transformed into yeast with KpnI/BstEII digested p33ProtA-MYO5. Cells were 

-Ura, plasmids were recovered and successful recombination was 

homologous recombination in yeast. A DNA fragment encoding LEU2 flanked by sequences 

upstream of the ATG and downstream of the STOP codon of URA3 was amplified by PCR 

using the primers URAD.D and URAD.U and YDp-L as template. The DNA fragment was

co-transfor

were recovered from ye

 
9.3.4.3. Plasmids for expression of ProtA-Myo5p constructs 
In these plasmids 2 IgG-binding motifs of the Protein A from Staphylococcus aureus 

followed by a TEV (tobacco etch virus) protease restriction site was cloned upstream of the 

myo5 sequence. 

 

pProtA-m

c

the plasmids p33myo5-(N)Δ, p33myo5-(T)Δ, p33myo

respectively 

 
pProtA-TC, and pProtA-C were constructed by homologous recombination. A PCR-

fragment was amplified with the primers listed in the table below and p3

a

selected on SDC

identified by restriction analyses. 

plasmid primers  

pProtA-TC C9E1, ProtA.M5.2320D 
pProtA-C C9E1, ProtA.M5.2986D 

 

pProtA-nT was also constructed by homologous recombination in yeast. A PCR was 

performed with the primers M52955 and M1502D and pProtA-nTC as template. The 

amplified fragment was co-transformed with pGFP-HnT for recombination. Cells were 

selected on SDC-Ura, plasmids were recovered and successful recombination was 

identified by restriction analyses. 
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9.3.5. Primers 
Table IV. Primers 

Na Se Res
site irection#me quence∗ triction D

2P GT GGT
GTGATTGATAGGTGT

 ’ meI.Abp1.-1U  TTAAACGGTT TGTTTAAACT
GTGCG 

3

2P GT AAC
CTTTGGAACCTATTG
C 

 ’ meI.Abp1.3D TTAAACAACC CGTTTAAACG
ATTATACTACT

5

5RU1 GGTGGTGGGGCAGGC  TTTTTAGA 3’ 
AB AAP1.2239U.SphI CCAAGCATGCTGG

ATGCATTTC 
SphI 3’ GAGACTCTTC

Ab CG TGGAAG  ’ p1.479U GGAGGAG  3
ABP1.-522D.BamHI  ACCAAGGATCCCAGAAT

AG C 
BamHI 5’ ACTCTTAG

CTCATCG
C9E1 GCCCTAGCAGCAAGC  3’ G 
CM
 

AA TTGD1.1D.MfeI CCAACCCAA A
TCTTACCGAAGAAC 

MfeI ’ TGTCCTCCAA  5

CM  
 

AA GD1.444U.XhoI CCAACTCGA CTA
AA

XhoI 3’ TTTAGATAAC
AGCAGC 

En AA AC
CT TTTACGGATCCCCG
GT

 t1.F2 TGGCTCAAATA CGGGGATATA
CTAATTGA
TAATTAA 

G
5’ 

Ent1.HdIII.-600D  AACCAAAAGCTTGGAA
TCTAGCCAAAG 

HindIII 5’ GTGAAGAA

Ent1.R1 CATCTGATTAGAAATGCGGACTGGA
ATGACAGAATCACTGAATTCGAGCT
CGTTTAAAC 

 3’ 

Ent1.XhoI.1565U AACCAACTCGAGCGTCCTGAACTAC
GTTAGTTTAC 

XhoI 3’ 

GFP.SmaI.D AACCACCCGGGATGTCAGCATGCAG
TAAAGGAGAAGAAC 

SmaI 5’ 

GFP.SmaI.U AACCACCCGGGAGTTTGTATAGTTC
ATCCATGCCATGTG 

SmaI 3’ 

M1502D GTTATTAAGCATTATGCCGG  5’ 
M5.2112U.SOS   CAACCACGCGTAGGTGTTTTGATGA

AAACACTTGTG 
MluI 3’ 

M5.2112U.STOP.BamHI ACCAAGGATCCTTAAGGTGTTTTGA
TGAAAACACTTGTG 

BamHI 3’ 

M5.2113D.SOS CTTCCGGGCCCGAAACATTATTTGC
TTTGGAGCATAT

ApaI 5’ 
GAG 

M5.2319U.SOS CAACCACGCGTTCTTTCTTTTCTTCC
ACCCAAAACC 

MluI 3’ 

M5.2320D AGGTCTATGTCCTTATTAGGTTACA
GAGC 

 5’ 

M5.2320D.SOS CAACCGGGCCCAGGTCTATGTCCTT
ATTAGGTTACAG 

ApaI 5’ 

M5.2320U.STOP.BamHI ACCAAGGATCCTTATCTTTCTTTTCT
TCCACCCAAAACC 

BamHI 3’ 

 83 



Materials and methods 

M5.2985U.SOS CAACCACGCGTTGCAGCAATCGAAA MluI 3’ 
CTGGCC 

M5.2986D GCCCAGCATGTTCCCACC  5’ 

M5.2986D.SOS ACCAAGGGCCCGCCCAGCATGTTCC
CACC 

ApaI 5’ 

M5.3660U.SOS CAACCACGCGTTTACCAATCATCTT
CCTCTTCATCTTC 

MluI 3’ 

M5.-640D CAAGAGGAATTGGACGCTAAG  5’ 
M5.Th1.2112U GCTCTGTAACCTAATAAGGACATAG

ACCTAGGTGTTTTGATGAAAACACT
TG 

 3’ 

M5.Th2.2319U GGTGGGAACATGCTGGGCTCTTTCT
TTTCTTCCACCCAAAAC 

 3’ 

M5-27.neck.D CAATACGAATTTAACCGCTTT
AAATGGAAACATTATTTGCTT

ATAG
TGGA

 5’ 

GCATATGAG 
M5-27.TH1.D CAATACGAATTTAACCGCTTTATAG

AAATGAGGTCTATGTCCTTATTAGG
TTACAG 

 5’ 

M5-27.TH2.D CAATACGAATTTAACCGCTTTATAG
AAATGGCCCAGCATGTTCCCACC 

 5’ 

M52955U GTTGCTTGCGAGGAACTAGC  3’ 
Myo5.1.ApaI.D GCCGGGGGCCCATGGCTATCTTAAA ApaI 5’ 

AAGAGGAGC 
PEP5.1D.EcoRV AACCAAGATATCCATGTCCCTGAGC

TCCTGG 
EcoRV 5’ 

PEP5.3087U.XhoI AACCAACTCGAGTTAAATAGTGATG
TCAGAATAACTGATGG 

XhoI 3’ 

ProtA.M5.2320D CTGCAGGAATTCGATATCCCAACGA
CCGAAAACCTGTATTTTCAGGGCAG
GTCTATGTCCTTATT

 5’ 

AGGTTACAG 
ProtA.M5.2986D CGTCAGGAATTCGATATCCCAACGA

CCGAAAACCTGTATTTTCAGGGCGC
CCAGCATGTTCCCACC 

 5’ 

Pro 13D 
 

AGGAATTCGATATCCCA
CCGAAAACCTGTATTTTCAGG

TTTGGAGCA

tA-M5.21 CTGC ACGA
GCGA

 5’ 

AACATTATTTGC TATG
AG 

UR AACCTGCAG

CCGGTGA

5’ A3D.D  CACAGAACAAA GAAA  
CGAAGATAAATC 
GAATTCCCGGGGAT TG  

URA3D.U GTGAGTTTAGTATACATGCATTTAC
TTATAATACAGTGCAGGTCGACGGA

 3’ 

TCCGGTGATTG 
#140 AACAGCTATGACCATG  5’ 
#141 TGAAAACGACGGCCAGT  3’ 

 
∗The sequences of the primers are written from the 5’ to the 3’ end. 

 strand are named 5’ primers, primers amplifying the 
ary strand are 3’ primers. 

#Primers amplifying the coding
complement
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9.4. Pu  of asma membrane and cytos
The is  hig ac preparation of cytosol 

were p in rifi sma membrane on a 

discont ucro l fr no (Serrano, 1988). 

Figure 31. Scheme of the protocol for the purification of plasma membrane and cytosolic fractions 

llet volume of lysis buffer was added and the cells were 

glass bead- the pres rotein inhibitors (0.5 mM PMSF, 1µg/ml aprotinin, 

1µg/ml peps ml leu in). The cell extract was recovered, 

transferred in  50 ml  with lysis buffer, 0.5 mM PMSF up to a 

olume of 12.5 ml. Unbroken cells and cell debris were eliminated by centrifugation at 700 g 

r (JS-13.1, Beckman) at 20,000 g for 20 min at 4°C. The 

supernatant was collected (= precytosol) and the pellet was resupended in 10 ml of 

rification  yeast pl ol 
olation of hly enriched plasma membrane fr tions and the 

erformed  parallel (see figure 31). The pu cation of pla

inuous s se gradient is based on the protoco om R. Serra

 

 

(see text for details). 
 

2 l of yeast cells were grown to an OD600 of 1.0, washed once with water and once with lysis 

buffer (25 mM Tris, pH 8.5, 5 mM EDTA), harvested into 2 50 ml centrifugation tubes at 

2400 g for 5 min and frozen at -20°C.  

Cells were thawed, one-tenth pe

lysed in ence of p

tatin, 1µg/ peptin, 1µg/ml antipa

to a single Falcon tube and diluted

v

for 10 min at 4°C. The supernatant was recovered (supernatant A) and the pellet was 

resuspended in 12.5 ml of breakage buffer (10 mM Tris, pH 7.5, 0.2 mM EDTA, 0.2 mM DTT), 

0.5 mM PMSF. After centrifugation at 700 g for 10 min at 4°C, the supernatant (supernatant B) 

was mixed with the same volume of supernatant A. The combined supernatants (= total) were 

then centrifuged in a swing out roto

 

 
plasma 
membrane 

 
43% 
sucr. 
53% 
sucr. 

 
yeast 
cell 
extract 

 
  

 20 000 g 100 000 g 
cytosol 

crude plasma 
membrane 

100 000 g 100 000 g dilute 
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breakage buffer, 0.5 mM PMSF. To eliminate non-solubilized material the membrane 

ain centrifuged at 700 g for 10 min at 4°C. The supernatant was then 

applied to a discontinuous sucrose gradient made of 9 ml of 53% (w/w) and 18 ml of 43% 

sucrose in breakage buffer in an Ultra-Clear ultracentrifuge tube (#344058, Beckman). 

Cen carried 10 ,000 g for 3 t 4°C. The 

43% / 53% interphase of d, iluted with 6 volumes of 

 80,000 g for 20 min at 

4°C. The plasma membrane pellet plus lysis 

buffer (1:1), 0.5mM PMS ec l was ared from 

membranes by centrifugati 8 Beckman rotor at 100,000 g for 3h at 4°C. The 

supernatant was recovered

 

 
9.5. Protein techniques 

9.5. mun

SDS-PAGE was performed as de  Minigel system (BioRad 

Laboratories, München). High and low range SDS-PAGE molecular weight standards 

(BioRad Laboratories, München) were used for determination of apparent molecular 

weights. Coomassie Brillia colloidal Brilliant Blue G, Sigma) was used for 

detection of total protein on

Protein concentrations were determined with a BioRad Protein assay (BioRad 

Lab

Immunoblots were performed as described (Geli et al., 1998).  

For detection of peroxidase s an enhanced chemoluminescence (ECL) 

dete ersham Bio

Proteins on nitrocellulose membran

The condary ot re listed in the tables 

V and VI. 

 

 
 
 
 

suspension was ag

trifugation was out in a SW-28 Beckman rotor at 0 h a

the sucrose gradient was recovere

brane was recovered by centrifugation at

 d

water and the plasma mem

 was dissolved in 1.3 ml of breakage buffer 

F. To obtain the cytosol, the pr

on in a SW-2

ytoso cle

. 

1. SDS-PAGE, im oblots and antibodies 

scribed (Laemmli, 1970) using a

nt blue staining (

 acrylamide gels.  

oratories).  

-conjugated antibodie

ction kit (Am sciences) was used. 

es were stained with Ponceau Red 

 primary and se  antibodies used for detection of pr eins a
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Tab Antibod

 

 
Table VI. Secondary antib

S dy Ty Dilution  

le V. Primary ies 

odies 

econdary antibo pe Source/ Reference 

goat anti-mouse hor
goat anti-mouse IgG 

1:4000 seradish peroxidase Sigma

g it hor
goa

1:50oat anti-rabb seradish peroxidase 
t anti-rabbit IgG 

Sigma 00 

goat anti-rat hor
goa

1:5000 seradish peroxidase Sigma 
t anti-rat IgG 

rabbit anti-goat hor
goa

1:2000 seradish peroxidase 
t anti-rat IgG 

Sigma

 

P tibody Typ ource/ Refe nce Dilution  rimary an e S re

P
(Peroxidase-anti-
p

rabb
pero
horse

1:1000 AP 

eroxidase) 

it anti-horseradish 
xidase conjugated to 

DAKO A/S 

radish peroxidase 

anti-Gas1 rabb st  
reco

 (Muniz et al., 2000) 1:50,000 it-serum raised again
mbinant Gas1p 

a rabb
reco

 and 
87) 

1.2000 nti-Hxk1 it-serum raised against 
mbinant Hxk1p 

 (van Tuinen
Riezman, 19

anti-Cmd1 rabb rum raised against 
reco

 (Geli et al., 1998) 1:1000 it-se
mbinant purified Cmd1p 

anti-HA rat m
(3F1
hem

Roche 1:1000 onoclonal antibody 
0) against a 
agglutinin epitope 

anti-HA-perox rat m ody 
(3F1
hem
pero

Roche 1:500 onoclonal antib
0) against a 
agglutinin epitope, 
xidase conjugated 

a  mou
(9E1
hum

1:20nti-myc-perox se monoclonal antibody 
0) against a peptide of 
an c-myc protein 

Roche 00 

a goat
schi
tran

rsham 
s, 

1:2000 nti-GST -serum against Ame
stosomal glutathion-S-
sferase 

Biocscience

a mou
pero jugated 

1:2000 nti-LexA se monoclonal antibody, 
xidase con

Santa Cruz 

a Rab
a C-
Myo

9 1:1000 nti-Myo5p bit-serum raised agains 
terminal peptide of 

(Geli et al., 1

5p (IPTPPQNRDVPK) 

98) 
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9.5.2. Purification of recombinant GST fusion proteins  

GST fusion proteins were purified from BL21 E.coli strains (Novagen). Glutathion 

Sepharose beads were obtained from Amersham Biosciences. 

 

9.5.2.1. Purification of GST  
For purification of GST BL21 cells carrying pGEX-5X-3 were grown in LB media containing 50 

mg/l ampicillin at 37°C. At OD600 0.6, isopropyl-β-D-thiogalactopyranoside (IPTG) was 

added to a concentration of 1 mM and the culture was incubated for 4 h at 37°C. Cells were 

harvested and frozen at -20°C.  

Cells were thawed in PBS, 0.5% Tween, 0.5 mM PMSF and lysed by sonication (10 x 20 

sec.). Cell debris was eliminated by centrifugation at 12,000 g for 20 min.  

For the preparation of GST-coated beads 30 µl of 50% glutathione Sepharose beads were 

added to the protein extract obtained from 200 ml of BL21 pGEX-5X-3 culture. After 

incubation for 1 h shaking at 4°C, the beads were recovered on an econocolumn (BioRad), 

washed several times with PBS, 0.5% Tween and then PBS, and finally equilibrated in the 

buffer used for the binding experiment.  

For purification of soluble GST the protein was eluted from the glutathione beads by 

incubating with 20 mM glutathione, 50 mM Tris pH8, 5 mM CaCl2 at 24°C for 5 min. Several 

eluted fractions were collected and analyzed by SDS-PAGE and Coomassie Blue staining. 

 

.5.2.2. Purification of GST-C 
For pur Sa coated beads an E.coli culture carrying pGST-GSa was grown 

 minimal media (MM; (Sambrook et al., 1989)) containing 50 mg/l ampicillin. At OD600 0.4 

 described for GST (8.5.2.1), but additionally to the 

9
ification of GST-G

in

cells were shifted to 24°C and induced at OD600 0.7-0.8 with 0.1 mM IPTG for 2 h. Cells 

were harvested and frozen at -20°C.  

The E.coli cell extract was prepared as

PMSF, protease inhibitors (Complete Protease Inhibitor tablets, Roche) were added to the 

buffer for sonication (1 tablet/ 50 ml buffer).  

30 µl of 50% glutathione Sepharose beads were added to the protein extract obtained from 

2 l of BL21 pGST-C culture, and were incubated for 1 h shaking at 4°C. Beads were 

recovered, washed as explained previously (see 8.5.2.1.), and finally equilibrated in the 

buffer used for the binding experiment. 

 

 
 
 

 88



Materials and methods   

9.5.2.3. Purification of GST-Cmd1p and Cmd1p 
For the purification of GST-Cmd1p, an E.coli culture carrying the plasmid pGSTCMD1 was 

grown in LB-medium. Induction of protein, purification of protein coated glutathione beads and 

elution of GST-Cmd1p was done like described for the GST protein (see 8.5.2.1.).  

Cmd1p was cleaved from GST by adding 30 µl of 50% thrombin-agarose (Thrombin clean 

cleavage kit; Sigma) to 50 µl eluted GST-Cmd1 protein and incubating over night shaking at 

4°C.  

In order to purify Cmd1p from GST and uncut GST-Cmd1p, the supernatant was recovered 

from the thrombin-agarose, diluted 1:25 with 10 mM Tris pH 8, 150 mM NaCl2, 0.1% Tween 

and incubated with 50 µl of 50% glutathione Sepharose over night, shaking at 4°C. The 

supernatant was recovered and analyzed by SDS-PAGE and Coomassie Blue staining. 

.5.3. Purification of Protein A-tagged proteins from yeast 
gged proteins were purified from yeast strain SCMIG275 

otA-nT or pProtA-C). 1 l of cells were 

 inhibitors was added, mixed and incubated for 

ersham Biocsciences) for 2 h 

2

2 2

from the beads by adding 0.5 M acetic acid pH 3.4 (adjusted with ammonium 

tate), 0.5 M NaCl2, 0.1% Tween. The eluted protein was rapidly centrifuged from the 

mn into half the volume of 1 M Tris pH 9 for neutralization. The protein content of the 

luted fractions was determined by SDS-PAGE and Coomassie staining. 

In vitro protein binding assay 
For the binding assays, Gutathion Sepharose beads covered with GST-C or GST, ProtA-nT 

or Cmd1p free ProtA-nT, and Cmd1p were purified as described before. 1 µg of GST-C or 

GST bound to Glutathion Sepharose beads were incubated with 0.03 µg of ProtA-nT in 1 ml 

 

9
N-terminal Protein A-ta

transformed with the corresponding plasmid (pPr

grown to OD600 1.0, harvested and frozen at -20°C. After thawing, one-tenth pellet volume 

of IP buffer (50 mM Tris, pH 7.5, 150 mM NaCl2, 5 mM EDTA) was added to the cell pellet 

and the cells were glass bead lysed in the presence of protein inhibitors (0.5 mM PMSF, 1 

µg/ml aprotinin, 1 µg/ml pepstatin, 1 µg/ml leupeptin, 1 µg/ml antipain). 1 ml of IP buffer 

containing 0.5 M NaCl2, 1% Triton and protein

10 min on ice. Unbroken cells and cell debris were eliminated by centrifugation at 2500 g for 5 

min. The cell extract was centrifuged at 20,000 g for 10 min at 4°C. The supernatant was 

recovered and incubated with 40 µl of 50% IgG-Sepharose (Am

rotating at 4°C. 

For the purification of Cmd1p free ProtA-nT, 5mM CaCl  was added to the cell extract 

before addition of the sepharose.  

Beads were collected on Mobicol-columns (MoBiTec) and washed 4 times with IP buffer, 

0.5 M NaCl , 1% Triton and 3 times with IP buffer, 0.5 M NaCl , 0.1% Tween. The protein was 

n eluted the

ace

colu

e

 
9.5.4. 
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TBS-TB (10 mM Tris pH 8.0, 150 mM NaCl2, 0.1% Tween-20, 1.5% BSA) for 3 h at 4°C on 

a t

For the experiment wi µg of C  preincubated with ProtA-nT 

(pu en S-TB buffer before addition of the beads, 1 

mM 

For the binding experi ce of Ca2+ ProtA-nT was preincubated for 2 h in 

TB r containi iti  

Be ollected iTec), washed 2 times with TBS-TB and 3 

times with TBS-T (10 m Cl2, 0.1% Tween-20) and finally boiled in 

30 µl SDS-sample buffer. Bound proteins were analyzed by SDS-PAGE and Western blot. 

 
9.5.5. Protein overlay
For the overlay assay, IgG-Sepharose covered with ProtA-nT was purified as explained 

before (3.5.2.4). The beads were collected Tec) and washed 7 

times with 50 mM Tris M EDTA, 1% Triton. The nT-fragment was 

then cut off from the TEV prot  protein-coated beads were 

incubated in 30 µl of mM 10 Units (1 µl) of AcTEV 

(Invitrogen) over night °C. The supernatant was discarded and the protein was 

elu he beads  m  8, 1 M NaC 2 A 

for ing at 4°

After analysis of the e GE and Coomassie Blue staining, the nT-

rotein (0.15 µg) was separated on SDS-PAGE and transferred to nitrocellulose in 30 mM 

ially renaturated by washing 3 times for 30 

, 150 mM NaCl2, 0.05% Tween, and the membrane was 

blo C (10 mM Tris, pH 8 Na % Tween 

3% BSA). The membrane was then probed with purified GST or GST-C protein in blocking 

bu C. Aft h blocking buffer for 20 min at 4 nti-GST 

an :2000 added and the membrane

1.5 h at RT. Again, the shed 3 times for 20 min with blocking buffer and 

then incuba body r. After 

washing 2 times with bl mM Tris, pH M NaCl2, 

0.05% Tween the membra roxidase-conjugated antibody was detected with an 

nhanced chemoluminescence detection kit. 

 

9.5.6. Binding of purified proteins to lipid strips 
The PIP lipid strips (p-6001,Echelon) were first blocked with 3% fatty acid free BSA (Sigma) 

in TBS-T buffer (10 mM Tris pH 8.0, 150 mM NaCl, 0.1% Tween-20) at RT for 1 h. The 

urning wheel.  

th purified Cmd1p, 1 

ce of 5 mM CaCl

md1p was

rified in the pres 2) in TB

EGTA was added to the binding assay.  

ment in the presen

S-TB buffe ng 5 mM CaCl2 before add on of the beads. 

ads were c on Mobicol-columns (MoB

M Tris pH 8.0, 150 mM Na

 assay 

 on Mobicol-columns (MoBi

 pH 7.5, 0.5 M NaCl2, 5 m

Protein A-tag with ease. The

 EDTA and 50 mM Tris, pH 8, 0.5 

shaking at 4

ted from t by incubating in 30 µl of 50 M Tris, pH l , 0.5 mM EDT

 30 min shak C. 

luted fractions by SDS-PA

p

Tris, 240 mM glycine. Proteins were then part

min at RT with 10 mM Tris, pH 8

cked over night at 4° in blocking buffer , 150 mM Cl2, 0.05

ffer for 3 h at 4° er 3 washing steps wit °C, a

tibody diluted 1 in blocking buffer was 

membrane was wa

 was incubated for 

ted for 1 h with the anti-goat anti diluted 1:2000 in blocking buffe

ocking buffer and 2 times with 10 

ne-bound pe

8, 150 m

e
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strips were then incubated with the Protein A-tagged protein at a concentration of 0.005 

ntibody for detection of the 

rotein A (PAP, DAKO) was added 1:1000 in TBS-TB. After incubation for 1h at RT the strip 

in with TBS-TB and 3 times for 10 min with TBS-T. Finally, 

extract 

 and frozen at -

he supernatant was recovered and diluted with the 

 

riton and 150 mM NaCl2 was added, the extract was incubated for 30 min shaking at 4°C 

ation at 700 g for 10 min at 4°C. 1 ml of extract was 

B

yzed by SDS-PAGE and immunoblot. 

iton, 150 mM NaCl2, and protein inhibitors (0.5 mM 

MSF, 1µg/ml aprotinin, 1µg/ml pepstatin, 1µg/ml leupeptin, 1µg/ml antipain) were added, and 

amples were incubated with 40 µl of 50% IgG-Sepharose (Amersham Biosciences) for 2 h at 

°C on a turning wheel. Beads were washed 5 times with BLB, 1% Triton, 150 mM NaCl2, 

nd finally boiled in 25 µl SDS-sample buffer. Immunoprecipitated proteins were analyzed 

by SDS-PAGE and Western blot. 

µg/ml in TBS-T with 3% BSA (=TBS-TB) over night at 4°C. The strip was washed 3 times 

with TBS-TB for 10 min at RT and the peroxidase-conjugated a

p

was washed 3 times for 10 m

bound protein was detected using an enhanced chemoluminescence detection kit. 

 

9.5.7. IgG pull-down experiments 
9.5.7.1. IgG pull-downs from yeast 
0.4 l of yeast cells were grown to OD600 0.8, washed once with water and once with lysis 

buffer (25 mM Tris, pH 8.5, 5 mM EDTA), harvested at 2400 g for 5 min

20°C. Cells were thawed, 100 µl of lysis buffer was added and the cells were glass bead-

lysed in the presence of protein inhibitors (0.5 mM PMSF, 1µg/ml aprotinin, 1µg/ml pepstatin, 

1µg/ml leupeptin, 1µg/ml antipain). The cell extract was recovered and diluted with 1 ml of lysis 

buffer containing protein inhibitors. Unbroken cells and cell debris were eliminated by 

centrifugation at 700 g for 10 min at 4°C. T

same volume of breakage buffer (10 mM Tris, pH 7.5, 0.2 mM EDTA, 0.2 mM DTT) containing 

protein inhibitors. After another centrifugation at 700 g for 10 min at 4°C the yeast extract was 

adjusted to a concentration of 10 mg/ml with breakage buffer plus lysis buffer (1:1) (BLB). 1%

T

and cleared again by centrifug

incubated with 25 µl of 50% IgG-Sepharose (Amersham Biosciences) in siliconized tubes 

for 2 h at 4°C on a turning wheel. The beads were washed three times with BLB containing 

1% Triton and 150 mM NaCl2 and 2 times with LB and finally boiled in 25 µl SDS-sample 

buffer. Precipitated proteins were anal

Note: Since we observed that ProtA-Myo5p from the plasma membrane was binding less 

efficient to the IgG-beads than ProtA-Myo5p from cytosol, probably with this method mainly 

cytosolic Myo5p was precipitated. 

 

9.5.7.2. IgG pull-down from plasma membrane and cytosolic fractions 
0.5 ml purified plasma membrane and cytosolic fraction (see section 8.4.) was diluted with 

0.5 ml BLB buffer (see 8.5.7.1.). 1% Tr

P

s

4

a
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9.5.8. Immunoprecipitations from plasma membrane and cytosolic fractions 

 described 

e α-factor internalization assay 

l 

 cascade that results in the transcriptional activation of genes involved in the 

n to 0.5 - 1 x 107 cells/ml, harvested and resuspended to 5 x 108 cells/ml in 

of culture were taken at the indicated time points and the 

ternalized counts were calculated by dividing pH 1-resistant (internal) by pH 6-resistant 

. Uptake assays were performed at least three times 

Myc-tagged Myo5p was precipitated from plasma membrane and cytosol under the same 

conditions as described for the IgG-pull down (see 8.5.7.2.). Samples were incubated with 

50 µl of 50% a-myc-agarose (Roche) and the beads were washed and analyzed as

before. 

 
 
9.6. Th

The α-factor pheromone is a small peptide secreted by yeast cells of the mating type α 

(Matα). The peptide binds to a G-coupled receptor (Ste2p) that is exclusively expressed in 

cells of the opposite mating type (Mata cells). Binding of the pheromone triggers a signa

transduction

mating response.  

After binding of the α-factor to its receptor the complex is rapidly internalized by endocytosis 

and is then transported to the vacuole for degradation. Such a mechanism significantly 

contributes to desensitization of the pheromone (Bardwell et al., 1994). Based on the 

observation that α-factor which is bound to its receptor on the cell surface, but not 

internalised α-factor, can be dissociated from the cells by a short incubation in an acidic 

buffer, a quantitative assay to monitor the internalization kinetics of 35S-radiolabelled 

α−factor was developed by Dulic et al (Dulic et al., 1991).  

 

The [35S] α-factor uptake assays were performed as described for the continuous-presence 

protocol (Dulic et al., 1991).

Cells were grow

YPD of 37°C. Cells were pre-incubated for 15 min at 37°C and 100,000 dpm/ml of purified 
35S-α-factor was added. 2 x 100 µl 

uptake was stopped by 1/100 dilution into ice-cold pH 1 (50 mM sodium citrate) or pH 6 (50 

mM potassium phosphate) buffers, respectively. Cells were incubated for 20 min on ice to 

allow the dissociation of the �-factor from its receptor at pH 1. Subsequently, cells were 

recovered by filtration onto GF/C filters (Whatman) using a 10 PLC filter holder (Amersham 

Biocsciences) and cell-associated counts were measured in a �-counter (Beckman LS 6000 

TA).  

In

(total cell-bound) counts per time point

and the mean and standard deviations were calculated per time point.  
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9.7. Fluorescence microscopy 

9.7.1. Fluorescence microscopy of living cells expressing GFP-Myo5p constructs 

s using an Axiophot fluorescence microscope 

 

ideos were collected from cells immobilized in 0.8% low-melt agarose prepared in 

icroscopy was performed using an Olympus fluorescence 

0–535 nm. For visualization of FM4-64, the 

mission window was set at 563–607 nm. Serial optical slices were taken each 0.5 μm. 

tion images.  

Cells encoding GFP-constructs were grown to mid-log phase in SCD medium, selecting for 

the transformed plasmid. Cells were harvested, diluted in a small volume of medium and 

directly visualized on poly-lysine coated slide

(Zeiss) equipped with a GFP-filter (excitation 470/40, LP520). Images were taken with a 

Olympus DP70 camera. 

 

9.7.2. Time-lapse fluorescence microscopy of cortical patches in living cells 

Cells expressing GFP-Myo5p were grown to mid-log phase in SDC medium. Time-lapse

v

complete synthetic medium. M

BX61 microscope equipped with Nomarski differential interference contrast (DIC) optics, a 

100 x objective (NA 1.35) , a Roper Cool-SNAP HQ camera, Sutter Lambda 10 x 2 

automated excitation and emission filter wheels and a 175 W Xenon remote source lamp 

with liquid light guide. Images were taken every 2 seconds and were acquired/processed 

using the SlideBook image analysis software from Intelligent Imaging Innovations. 

 

9.7.3. Plasma membrane staining with FM4-64 and confocal fluorescence 
microscopy 
For staining of the plasma membrane with the lyophilic dye FM4-64, the yeast cells were 

grown to 107 cells/ml, harvested and resuspended in 25 µl of YPD. The cells were 

incubated for 15 min on ice, FM4-64 (Molecular Probes) was added to a concentration of 8 

µM and the cells were kept on ice for another 15 min. Cells were harvested at 4°C and 

resuspended in 50 µl of ice-cold 2% alginate in 50 mM glycine, pH 6.2, containing 8 µM 

FM4-64. 2 µl of sample were placed on an ice-cold slide, covered with a coverslip and 2 µl 

of 50 mM CaCl2 was added to the sample from every side of the coverslip to solidify the 

alginate. Cells were immediately visualized using a Leica TCS SP confocal laser scanning 

microscope. The microscope fitted to/with spectrophotometers for emission band 

wavelength selection was used with 2 lasers, i.e., an argon ion laser emitting at 488 nm and 

an HeNe laser emitting at 543 nm to excite YFP and FM4-64, respectively. During 

scanning, we used a triple-dichroic beam splitter (TD 488/543/633). For visualization of 

YFP, the emission window was set at 50

e

Confocal image stacks were combined as x–y projec
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	For staining of the plasma membrane with the lyophilic dye FM4-64, the yeast cells were grown to 107 cells/ml, harvested and resuspended in 25 µl of YPD. The cells were incubated for 15 min on ice, FM4-64 (Molecular Probes) was added to a concentration of 8 µM and the cells were kept on ice for another 15 min. Cells were harvested at 4°C and resuspended in 50 µl of ice-cold 2% alginate in 50 mM glycine, pH 6.2, containing 8 µM FM4-64. 2 µl of sample were placed on an ice-cold slide, covered with a coverslip and 2 µl of 50 mM CaCl2 was added to the sample from every side of the coverslip to solidify the alginate. Cells were immediately visualized using a Leica TCS SP confocal laser scanning microscope. The microscope fitted to/with spectrophotometers for emission band wavelength selection was used with 2 lasers, i.e., an argon ion laser emitting at 488 nm and an HeNe laser emitting at 543 nm to excite YFP and FM4-64, respectively. During scanning, we used a triple-dichroic beam splitter (TD 488/543/633). For visualization of YFP, the emission window was set at 500–535 nm. For visualization of FM4-64, the emission window was set at 563–607 nm. Serial optical slices were taken each 0.5 μm. Confocal image stacks were combined as x–y projection images.  
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