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Many common kinetic model reduction approaches are explicitly based on inherent multiple time
scales and often assume and directly exploit a clear time scale separation into fast and slow reaction
processes. They approximate the system dynamics with a dimension-reduced model after eliminat-
ing the fast modes by enslaving them to the slow ones. The corresponding restrictive assumption of
full relaxation of fast modes often renders the resulting approximation of slow attracting manifolds
inaccurate as a representation of the reduced model and makes the numerical solution of the nonlin-
ear “reduction equations” particularly difficult in many cases where the gap in intrinsic time scales
is not large enough. We demonstrate that trajectory optimization approaches can avoid such severe
restrictions by computing numerical solutions that correspond to “maximally relaxed” dynamical
modes in a suitable sense. We present a framework of trajectory-based optimization for model re-
duction in chemical kinetics and a general class of reduction criteria characterizing the relaxation of
chemical forces along reaction trajectories. These criteria can be motivated geometrically exploiting
ideas from differential geometry and fundamental physics and turn out to be highly successful in
example applications. Within this framework, we provide results for the computational approxima-
tion of slow attracting low-dimensional manifolds in terms of families of optimal trajectories for a
six-component hydrogen combustion mechanism.

I. INTRODUCTION

The idea of modeling chemical kinetics is to map re-
ality to a mathematical description of the system, i.e. to
describe its dynamics by differential equations. While re-
ducing reality to equations one has to bear in mind that it
is conceptually impossible to describe every microscopic
detail. Depending on the task at hand the appropriate
degree of accuracy of the system description has to be
chosen. For example in a simulation of technical combus-
tion processes not every single molecule has to be tracked
on a microscopic level. Instead, usually only a few char-
acteristic “macroscopic” variables are used to describe
the phenomenological system behavior of interest.

The art of modeling often consists in finding an ap-
propriate level of abstraction for describing the aspects
which are to be investigated. There are two general ap-
proaches to model multi-scale problems. One of them is
the so called top-down approach. First a rough model
of the system phenomena is set up which then is refined
according to experimental observations. In the other ap-
proach, called bottom-up approach, a system is modeled
using first-principle physical and chemical laws, taking
into account as much detailed knowledge as available.
The latter approach is more precise and describes a sys-
tem more accurately than the first one. However, it gen-
erally leads to large-scale models with huge numbers of
variables. For efficient spatiotemporal simulations these
high-dimensional models are inappropriate, in particular
if they involve multiple time scales causing severe stiff-
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ness.

This is where model reduction comes into applica-
tion. A central issue of model reduction is to address the
discrepancy between the need to develop detailed high-
dimensional multi-scale models (e.g. in chemical kinet-
ics) and the inefficiency of their use in computationally
demanding numerical simulations. The ultimate goal of
all model reduction techniques in chemical kinetics is to
find a low-dimensional approximation of a reaction mech-
anism which contains all the essential information to still
describe the system accurately enough. For a kinetic
model set up by the bottom-up approach this is equiv-
alent to identifying the essential degrees of freedom with
respect to the system properties of interest. Those prop-
erties of interest are often related to long-term dynam-
ics. To construct low-dimensional approximations, many
model reduction techniques therefore make use of intrin-
sic multiple time scales. If the long-term behavior of a
system is to be studied, fast transient dynamical modes
are assumed to be relaxed within the reduced model ap-
proximation replacing the original system of differential
equations by one of lower dimension without losing too
much key information about the long-term system dy-
namics.

However, in simulations of technical processes usually
all species are relevant for the properties of interest and
therefore have to be considered, not only the ones in-
cluded in the reduced mechanism. Hence the concen-
trations for the species of the full mechanism need to
be automatically calculated as functions of the species of
the reduced mechanism. This so-called automatic species

reconstruction is implemented in most of the model re-
duction algorithms, independently of the concepts the
methods are based on.



2

Comprehensive overviews of the most common model
reduction techniques and their underlying concepts can
be found in1,2. Most modern model reduction methods
are based on one of the following three general strategies:
lumping3, sensitivity analysis4–6 and time scale analysis.
Model reduction techniques based on time scale analysis
range from the quasi-steady-state assumption (QSSA)7,8

and the partial equilibrium approximation (PEA)9 to
modern computational methods as computational sin-
gular perturbation (CSP) methods10,11, inertial man-
ifold approaches12, intrinsic low-dimensional manifolds
(ILDM)13–15 and ideas from integer optimization16,17 to
eliminate “unnecessary” species and reactions.

Apart from methods making explicit use of time scale
separation, powerful geometrical approaches to simpli-
fication of chemical kinetics have been investigated by
Fraser and Roussel18–22. Fraser’s algorithm is based
on a fixed point iteration of a functional equation ob-
tained from the underlying system of differential equa-
tions within a phase space formalism. A truncated ver-
sion of this functional equation has recently been intro-
duced in order to accelerate the computation of ILDMs23.
Other approaches not explicitly based on time scale sep-
aration are the rate-controlled constrained-equilibrium
(RCCE) method first proposed by Keck and Gillespie24

and later further developed by Hamiroune et al.25 and the
invariant constrained equilibrium edge pre-image curve
(ICE-PIC) method recently introduced by Ren et al.26,27.

Lebiedz28 presented a novel approach to model reduc-
tion in chemical kinetics that is based on the optimization
of trajectories subject to given constraints. The resulting
trajectories are supposed to be maximally relaxed with
respect to an optimization criterion chosen to be minimal
entropy production rate in28. This approach assures that
at least an approximation of slow attracting manifolds
that is ”as good as possible” is found even in regions,
where other model reduction methods as for example the
ILDM13 requiring a clear time scale separation fail.

Pursuing Lebiedz’s optimality concept, here, we
present a generalized trajectory-based optimization ap-
proach suitable for the accurate computational approxi-
mation of slow attracting low-dimensional manifolds and
its adaptation and application to realistic kinetic models
and higher-dimensional manifolds. In particular, we de-
velop a novel criterion for the desired maximal relaxation
of forces along reaction trajectories parameterizing the
reduced model. We motivate our criterion on the back-
ground of a geometric interpretation of chemical forces.

II. GENERAL METHODOLOGY

In this work, the novel model reduction concept for
chemical kinetics first proposed by Lebiedz28 is further
developed and considerably extended. Our conceptual
idea is based on finding optimal criteria related to maxi-
mal relaxation of chemical forces along phase space tra-
jectories under given constraints. This idea is exploited

by formulating optimization problems for the numerical
computation of such trajectories and their use as a repre-
sentation of a reduced model in terms of slow attracting
manifolds spanned by these trajectories.

An important practical issue of model reduction in
chemical kinetics is the a priori choice of some species
as so-called reaction progress variables which serve as
representatives of the reduced model in terms of a pa-
rameterization. In our context this finds a fully natural
realization in terms of initial conditions of trajectories.
For fixed initial values of those progress variables both
a special trajectory converging towards the equilibrium
point in phase space and the a priori unknown initial
values of the remaining species (species reconstruction)
are calculated at the same time as a solution of the opti-
mization problem. Our species reconstruction procedure
can be interpreted as the maximal relaxation of chemical
forces or dynamic modes of a chemical system under the
constraints of fixed progress variables.

We will provide an improved optimization criterion
suitable for an approximation of slow, invariant attract-
ing manifolds and its numerical implementation and
present promising results for the reduction of a realistic
test case reaction mechanism describing hydrogen com-
bustion. Our criterion unites ideas from and shares a
deep connection to both differential geometry concepts
related to the curvature of trajectories and slow long-
term dynamics enslaving fast modes in a multiple time-
scale kinetic system. The well-established geometric in-
terpretation of physical force as curvature of manifolds
is transfered to the field of dissipative forces in chemical
kinetics.

Our trajectory-based optimization approach for model
reduction in chemical kinetics can generally be formu-
lated as

min
ck

∫ T

0

Φ(c(t)) dt (1a)

subject to
dck

dt
= fk(c), k = 1, ...,m (1b)

ck(0) = c0
k, k ∈ Ifixed (1c)

|ck(T ) − ceq
k | ≤ ε, k ∈ Ifixed (1d)

and subject to conservation relations. ck are the concen-
trations of chemical species, Ifixed is the index set that
contains the indices of variables with fixed initial values
(the reaction progress variables). The system dynamics
is described by (1b) and the initial concentrations of the
reaction progress variables are fixed in (1c). When ap-
proaching the equilibrium point ceq, the system dynamics
become infinitely slow. Therefore the equilibrium point
is approximated in (1d) within a surrounding of small
radius ε for the reaction progress variables. A priori the
end time T is free and is determined within the optimiza-
tion such that (1d) is fulfilled. Alternatively the time T
can be fixed such that the final state of the system is
very close to the chemical equilibrium point. The objec-
tive functional Φ(c(t)) in (1a) describes an optimization
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criterion related to the degree of relaxation of chemical
forces. The choice of the objective functional is discussed
below.

For the numerical solution of the boundary value prob-
lem stated in (1), elaborate mathematical optimization
techniques exist. In the example applications presented
in the following, the software package MUSCOD-II

29,30

originally developed for solving large scale optimal con-
trol problems for nonlinear dynamical systems is used
for the numerical solution of problem (1). In MUSCOD-II

the direct multiple shooting method29 is implemented.
By discretizing the state variables, the originally infi-
nite dimensional problem is transformed into a finite di-
mensional nonlinear programming problem (NLP), which
then can be solved by a sequential quadratic program-
ming (SQP) method. The state trajectories are numeri-
cally integrated only on small subintervals of the full time
horizon, which are initially decoupled, using a BDF-type
(backward differentiation formulae) stiff integrator31. As
a result, for each multiple shooting interval an initial
value problem has to be solved instead of just one for
the whole time horizon. Although the resulting NLP
is much larger than the one resulting from the single
shooting approach, the mathematical structure of the
multiple shooting discretization can be exploited such
that the related optimization problem can be solved with
approximately the same effort as in the single shooting
approach32. However, compared to single shooting, mul-
tiple shooting is much more robust. Furthermore even
for systems with dynamical instabilities, e.g. strongly di-
verging state trajectories, the computation of derivative
information which is required for die SQP optimization
is much more stable and in some cases even possible at
all.

Another significant advantage of the multiple shoot-
ing approach is that neighboring problems can be initial-
ized very efficiently from the previous optimal trajectory.
In the so called initial value embedding strategy33,34 for-
mally a linear extrapolation prediction of the previous
solution is used to calculate an initial guess for the new
solution if the same problem needs to be solved with
just slightly modified initial values. The incorporation
of a priori information about the optimal solution (tra-
jectory) by setting initial conditions for the state vari-
ables at the multiple shooting nodes generally results in
highly improved and fast convergence to the new solu-
tion which actually makes the solution of parameterized
optimization problems very efficient. This strategy can
be efficiently exploited in model reduction, since reduced
models often need to be computed and tabulated for a
whole range of reaction progress variables.

The initial value embedding strategy is implemented
and successfully exploited for reasons of practical appli-
cability of a model reduction approach for the first time
in this work. For both, the offline tabulation and the
online use in CFD (computational fluid dynamics) simu-
lations whole families of optimal trajectories need to be
calculated. For a specified range of the reaction progress
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FIG. 1: Application of the initial value embedding strategy to
the calculation of families of optimal trajectories illustrated
for the hydrogen combustion mechanism (13): For a discrete
grid of initial values of the reaction progress variables H2 and
H2O (depicted as cruxes), optimal trajectories spanning a
two-dimensional manifold are calculated (dotted lines).

variables, these optimal trajectories have to be calculated
on a discrete grid, where neighboring grid points only
slightly differ in the values of the progress variables (see
Figure 1).

These ideas cannot only be used to calculate families
of optimal trajectories spanning two-dimensional mani-
folds as demonstrated in this work, but can also easily
be extended to large-scale mechanisms and the calcula-
tion of optimal trajectories spanning higher-dimensional
manifolds. For most common model reduction tech-
niques the calculation of higher-dimensional manifolds
is hardly practicable due to the immense computational
effort that is necessary. Using MUSCOD-II together with
the initial value embedding strategy to solve the opti-
mization problem set up in our model reduction approach
results in drastically reduced computing times due to the
highly accelerated convergence of the optimization prob-
lem. Therefore it should even be efficiently applicable to
large-scale mechanisms for which reduced models often
need to be represented by higher-dimensional manifolds.

III. OPTIMIZATION CRITERIA

Both success and degree of accuracy of the general tra-
jectory based optimization approach for model reduction
(1) depend on the choice of the optimization criterion
Φ(c(t)), which should describe the maximal relaxation
of chemical forces in the underlying dynamical system.
Here, we want to briefly review the criterion of minimal
entropy production and subsequently develop an alterna-
tive but related choice for an optimization criterion which
is motivated by fundamental considerations related to ge-
ometric interpretation of forces as curvature of trajecto-
ries.

In order to derive a thermodynamic criterion which is
related to maximal relaxation of chemical forces along
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phase space trajectories, Lebiedz28 considered a general-
ized concept for the “distance” of a chemical system from
its attractor. Under isolated conditions the attractor of
a chemical system is the thermodynamic equilibrium.
In Lebiedz’s model reduction approach, a special tra-
jectory (called Minimal Entropy Production Trajectory
(MEPT)) converging towards equilibrium is calculated
such that the sum of affinities of the entropy production
rates of single reaction steps is minimized28,35,36. The
entropy production rate is closely related to the con-
cept of chemical affinity which was first introduced by
de Donder37 as the driving force of chemical reactions.
For an elementary reaction step j with the forward and
backward reaction rates Rj→ and Rj←, the concept of
chemical affinity can be related to the concept of entropy
production by the following relation38:

diSj

dt
= R (Rj→ − Rj←) ln

(
Rj→

Rj←

)

, (2)

where diSj/dt is the entropy production rate for reaction
j and R is the gas constant. Entropy production rates are
additive for several elementary reaction steps. Therefore
the total entropy production rate (the sum of the entropy
production rates of all n elementary reaction steps) can
be computed for an arbitrary reaction system, if kinetic
data are available and a detailed elementary reaction step
mechanism is known.

An intuitive justification for the minimization of the
total entropy production rate in the optimization prob-
lem (1) is provided by relation (2). In partial equilibrium
the entropy production rate diSj/dt of a single elemen-
tary reaction step is zero, since in partial equilibrium
forward and backward reaction rates are equal. This is
equivalent to the thermodynamic driving force being fully
relaxed, which in turn is an equivalent of the assumption
of model reduction techniques based on time scale sep-
aration. There it is assumed that fast reaction modes
relax into partial equilibrium or quasi-steady-states and
the whole system can be satisfactorily described by the
slow modes only. But unlike the methods explicitly based
on time scale separation it is not necessary in the MEPT
approach to actually identify and analyze the dynamical
modes by e.g. numerically expensive eigenvalue decom-
position and solve highly nonlinear algebraic “reduction
equations”. A configuration with as many elementary re-
action steps as possible being close to quasi-equilibrium
in a chemical sense is determined automatically by the
optimization algorithm. The logarithmic ratio of forward
and backward reaction rates in (2) has the meaning of a
reaction affinity38. It is weighted by the absolute differ-
ence between the rates for forward and backward reac-
tions. Thus fast processes produce more entropy than
slow ones and the fast reactions have a stronger weight-
ing factor in the optimization problem (1), which is fully
natural for our purpose.

In the context of the general optimization problem (1),
using entropy production as an optimization functional

means

Φ(c(t)) =
n∑

j=1

diSj

dt
. (3)

As stated above, a suitable objective functional Φ(c(t))
should optimally characterize the relaxation of chemical
forces. A more fundamentally rooted criterion in this
context can be derived on the basis of the concept of cur-
vature of trajectories in phase space and subsequently be
combined with the entropy production39. From a physi-
cal point of view curvature is closely related to the geo-
metric interpretation of a force.
One of the most popular examples is Einstein’s general
theory of relativity40 which proposes the idea that grav-
itational force is replaced by a “geometric picture”. Ein-
stein’s general theory of relativity relates the special the-
ory of relativity and Newton’s law of universal gravita-
tion with the insight that gravitation can be described
by curvature of space-time. Space-time is treated as a 4-
dimensional manifold whose curvature is due to the pres-
ence of mass, energy, and momentum.

But even long before Einstein, the concept of curva-
ture has already been related to the concept of force in
physics. In 1687 Sir Isaac Newton published the laws
of motion in his work “Philosophiae Naturalis Principia
Mathematica”. In a differential formulation Newton’s
second law can be stated as

F = m · a ,

where m is mass, a is acceleration and F is force. Since
the acceleration a is the second derivative of the state
variable x(t) with respect to time, a = ẍ, and thus con-
tains information about the curvature of x, in Newton’s
law for the first time force is directly related to curvature.
In this context it is important to remark that equations
of motion in classical mechanics can also be described
by a variational principle, Hamilton’s principle of least
action. In Lagrangian mechanics, the trajectory of an
object is determined such that the action (which is de-
fined as the integral of the Lagrangian over time, where
the Lagrangian is the difference of kinetic energy and
potential energy) is minimal. It can be shown by using
the calculus of variations, that Lagrange’s equations of
motion are equivalent to Hamilton’s principle41.

Another well known variational principle is Fermat’s
principle of optics. It states in its classical form that the
actual path between two points taken by a beam of light
is minimal.

Our aim is to transfer the principle of “force = curva-
ture” to the field of chemical systems and look for a cor-
responding variational principle formally similar to those
mentioned above in a physical context.
In chemical systems dissipative forces are active. Slow
and fast dynamic modes result in an anisotropic force re-
laxation behavior in phase space. To formally being able
to describe this anisotropy for a chemical system whose
dynamics are described by the ODE ċ = f(c), curvature
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of the trajectories in phase space is considered. The fol-
lowing relations hold:

c̈(t) =
d2c

dt2
=

dċ

dt
=

dċ

dc
·
dc

dt
= J(ċ(t)) · ċ(t)

= J(f(c(t))) · f(c(t)) (4)

with J(f) being the Jacobian of the right hand side of
the ODE ċ(t) = f(c(t)).
Hence we may define the curvature of c(t) as the vector
norm

||c̈(t)|| = ||J(f(c(t))) · f(c(t))|| . (5)

Transferring the fundamental geometric principle of force
being equivalent to curvature mentioned above, we relate
the curvature of trajectories in a kinetic model ċ = f(c)
to the forces driving the chemical system towards equi-
librium by subsequent relaxation of dynamical modes.
In thermodynamic equilibrium those chemical forces be-
come zero. In search of a criterion which characterizes
maximal relaxation of chemical forces it is tempting to
describe the relaxation of the system towards equilibrium
by minimal remaining chemical forces, i.e. in our context
by minimal total (“integrated”) curvature of trajectories
defined by the objective function

Φ(c(t)) = ‖J(f(c)) · f(c)‖ (6)

in the general optimization problem (1). As the curva-
ture – here the norm of a second derivative – can be inter-
preted as some kind of “acceleration”, the integral over
the curvature in the objective function (6) is a term with
the physical dimension of velocity. It correlates to the
time scales present in the chemical system described by
(1b). Minimizing the velocity term is related to minimiz-
ing a suitably weighted “overall” velocity of the reactions.
In the optimal solution then the fast modes should be
relaxed as much as possible subject to constraints com-
prising the system dynamics, conservation relations, and
the fixation of initial values.

Interestingly, from a different point of view the objec-
tive function (6) can also be interpreted as minimizing
the length of a trajectory in a suitable Riemannian met-
ric.
For any continuously differentiable curve γ(t) on a Rie-
mannian manifold, the length L of γ is defined as

L(γ) =

∫

γ

√

gγ(t)(γ̇(t), γ̇(t)) dt . (7)

with gγ(t) being a scalar product defined on the tangent
space of the curve in each point. If the Riemannian met-
ric gγ(t) is chosen as

gγ(t)(f, f) := fT JT J
︸︷︷︸

positive definite

f = ‖J f‖2 (8)

the “length-minimizing” objective functional equivalent
to (6) is now

min

∫ T

0

√

gγ(t)(ċ(t), ċ(t)) dt . (9)

The solution trajectory of this problem can be inter-
preted as a geodesic, i.e. a curve which minimizes the
length of the path between two points in a possibly
curved manifold. Hence the “distance from equilibrium
in a chemical sense” can be formulated here in an explicit
mathematical form based on concepts from differential
geometry.

To describe the distance of a chemical system from its
thermodynamic equilibrium in an very general way, the
Riemannian metric

ĝγ(t)(f, f) := fT JT · A · J
︸ ︷︷ ︸

positive definite

f =: ‖J f‖2
A , (10)

can be considered, where A is a positive definite matrix.
As a possible choice for A we propose the diagonal matrix
with the entries

akk =

n∑

j=1

νkj

diSj

dt
(k = 1, . . . ,m) . (11)

which represents an anisotropic “kinetic weighting” of
the phase space directions by including the entropy pro-
duction rate. Here n is the number of reactions, νkj are
the stoichiometric coefficients describing the degree to
which the chemical species k participates in reaction j,
and diSj/dt is the entropy production rate of reaction
j. akk is the sum of the entropy production rates of all
elementary reactions in which species k takes part. A
is positive definite since according to the Second Law of
Thermodynamics diSj/dt > 0 holds for any spontaneous
process, and therefore akk > 0 for all k = 1, . . . ,m.

Having this, an objective function in the general prob-
lem (1) is readily formulated as

Φ(c(t)) = ‖J f‖A (12)

which obviously includes formulation (6) for the choice
A = Im (identity matrix).

We will demonstrate in the next section that this crite-
rion yields highly promising results for the computation
of slow attracting manifolds by help of our optimization
approach.

IV. RESULTS

To demonstrate the practical success of the proposed
model reduction method we present results based on the
following example mechanism for H2 combustion.

H2

k±1

⇌ 2 H

O2

k±2

⇌ 2 O

H2O
k±3

⇌ H + OH

H2 + O
k±4

⇌ H + OH

O2 + H
k±5

⇌ O + OH

H2 + O
k±6

⇌ H2O

(13)
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with the rate constants

k1 = 2.0, k−1 = 216.0
k2 = 1.0, k−2 = 337.5
k3 = 1.0, k−3 = 1400.0
k4 = 1000.0, k−4 = 10800.0
k5 = 1000.0, k−5 = 33750.0
k6 = 100.0, k−6 = 0.7714

(14)

The kinetic model for the reaction mechanism is given by

dcH2

dt
= −k1cH2

+ k−1c
2
H2

− k4cH2
cO + k−4cHcOH

−k6cH2
cO + k−6cH2O

dcH

dt
= 2k1cH2

− 2k−1c
2
H2

+ k3cH2O − k−3cHcOH

+k4cH2
cO − k−4cHcOH − k5cO2

cH + k−5cOcOH
dcO2

dt
= −k2cO2

+ k−2c
2
O − k5cHcO2

+ k−5cOcOH
dcO

dt
= 2k2cO2

− 2k−2c
2
O − k4cH2

cO + k−4cHcOH

+k5cHcO2
− k−5cOcOH − k6cH2

cO + k−6cH2O
dcH2O

dt
= −k3cH2O + k−3cHcOH + k6cH2

cO − k−6cH2O
dcOH

dt
= k3cH2O − k−3cHcOH + k4cH2

cO − k−4cHcOH

+k5cHcO2
− k−5cOcOH.

(15)
Together with the conservation relations

2 cH2
+ 2 cH2O + cH + cOH = C1

2 cO2
+ cH2O + cO + cOH = C2

(16)

this mechanism yields a system with four degrees of free-
dom.

First we investigate and extend the MEPT approach
proposed by Lebiedz28,35,36 on the basis of the given
mechanism for hydrogen combustion (13). We present
results for the computation of one-dimensional slow at-
tracting manifolds and demonstrate an extension to two-
dimensional manifolds, which are efficiently computed as
families of MEPTs exploiting initial value embedding (see
section II.) for parametric optimization in order to com-
pute neighboring optimal trajectories.

Choosing only one reaction progress variable and fix-
ing its initial concentration, a single trajectory with
“maximally relaxed chemical forces” (here character-
ized by a minimal total entropy production rate) can
be computed. In Figure 2 the MEPT for a fixed
initial concentration of H2O, cH2O(0) = 10−4, and
the constants C1 = 2.0, C2 = 1.0 in the con-
servation equations is depicted as a bold black line.
The equilibrium value is (cH2

, cH, cO2
, cO, cH2O, cOH) =

(0.27, 0.05, 0.135, 0.02, 0.7, 0.01).
As long as there is at least one degree of freedom left

in the system, the problem formulation (1) permits the
choice of more reaction progress variables. To illustrate
how the MEPT method can be applied for model reduc-
tion to higher dimensions than one, families of MEPTs
are calculated using H2O and H2 as reaction progress
variables by applying the initial value embedding strat-
egy.
First the initial concentration of H2 is varied from 0.3 to
0.95 with the initial concentration of H2O set to 10−4.

0.20.40.6 0.5
1
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0.1

0.2

0.3
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c H 2

c H 2O

 

c
O

FIG. 2: Minimal Entropy Production Trajectories computed
for reaction mechanism (13) as solution of problem (1) for

Φ(c(t)) =
Pn

j=1

diSj

dt
: dotted lines represent MEPTs with

H2O and H2 as reaction progress variables, which span a
two-dimensional attracting manifold; the thick black line rep-
resents MEPT with only H2O as reaction progress variable;
dashed lines are arbitrary trajectories bundling on the MEPT
manifolds.

Then the initial concentration of H2 is set to 0.3 and the
initial concentration of H2O is varied from 0.05 to 0.65.
In Figure 2 the trajectories belonging to the family of
MEPTs calculated with two reaction progress variables
are depicted as dotted lines. One can see that those
MEPTs span a two-dimensional manifold. All of them
relax to an attracting trajectory, the one-dimensional
manifold (a single MEPT) calculated with just H2O as
reaction progress variable and cH2O(0) = 10−4. Trajecto-
ries with arbitrary initial concentrations (plotted in Fig-
ure 2 as thick, dashed lines) all first relax to a part of
the spanned two-dimensional manifold, then to the one-
dimensional attracting MEPT and finally to equilibrium
illustrating the bundling behavior of trajectories on the
computed MEPT manifolds.

When looking at the MEPTs calculated with two re-
action progress variables H2O and H2 and the manifold
they are spanning, one can see that the MEPTs do not
start exactly on the 2-dimensional slow manifold for re-
action progress variables far from their equilibrium val-
ues. They first seem to relax themselves to this manifold.
This undesired behavior suggests to consider a modified
optimization criterion representing relaxation of chemi-
cal forces even more accurately also under conditions far
from equilibrium.

Using the criterion (12) based on a suitable “cur-
vature=force” concept including a weighting with the
entropy production rate as the objective functional, the
relaxation can be completely eliminated. In Figure 3 the
optimal trajectories are depicted. The fixed initial con-
centration of H2 is varied between 0.3 and 0.9, and the
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FIG. 3: Two different views of trajectories calculated as so-
lutions of problem (1) using (12) as the objective functional.

initial concentration of H2O is varied between 0.05 and
0.65. Figure 3 shows that the optimal trajectories span
exactly the two-dimensional slow attracting manifold

suggesting (12) a good choice for an accurate reduction
of the model mechanism (13). The computational results
turn out to be largely independent of the initial values
chosen for the numerical optimization. This is a highly
important practical issue since it allows local species
reconstruction without the requirement to compute the
whole slow attracting manifold or the necessity to use
continuation strategies starting near equilibrium.

V. SUMMARY AND DISCUSSION

We present a general framework for model reduction in
chemical kinetics using an approach that is based on the
optimization of trajectories. In this context, the model
reduction task can be described by a variational bound-
ary value problem related to the minimization of chem-
ical forces, which is in principle solvable for all feasible
conditions. Sophisticated numerical solution strategies
exist for variational boundary problems and assure that
model reduction based on the optimization of reaction
trajectories presents an efficient alternative to existing
model reduction approaches. The example application
demonstrates promising success of the concept.

In future work, this approach will have to be adapted
and tested for large-scale reaction mechanism especially
using temperature dependent reaction mechanisms at low
temperatures - conditions where purely timescale-based
methods like the ILDM13 fail.
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