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Zusammenfassung  1 

Zusammenfassung 

 

 

Das Hormon 17β-oestradiol   und sein Rezeptor Östrogen Rezeptor α 

(ERα) zeigten neuroprotektive Eigenschaften in Tiermodellen für 

Schlaganfall in Nagetieren. Im Gegensatz dazu legten klinische Studien 

nahe, daß Langzeitbehandlungen mit Östrogenen das Risiko für Demenz 

und Schlaganfälle erhöht. Diese Gegensätze zeigen, daß ein besseres 

Verständnis von E2 und ERα-vermittelten Wirkungen beim Schlaganfall 

notwendig ist.  

Um die Rolle des ERα im Schlaganfall zu untersuchen, wurden mit Hilfe 

des Cre-loxP Systems drei zelltypspezifische ERα knock out Mausstämme 

hergestellt: ein neuronenspezifischer ERα Mutanten-Mausstamm 

(CaMKIICre/ERfl/fl), ein mikroglialer ERα Mutanten-Mausstamm 

(LysMCre/ERfl/fl) sowie ein endothelspezifischer ERα Mutanten-Mausstamm 

(Tie2CreERT2/ERfl/fl). Diese Mausstämme wurden auf ihre 

gewebsspezifische Inaktivierung des ERα hin untersucht. In den 

CaMKIICre/ERfl/fl-Mäusen fand eine vollständige Inaktivierung des ERα 

statt. In den LysMCre/ERfl/fl-Mäusen war in 92% aller mikroglialen Zellen 

ERα inaktiviert, wohingegen in den Tie2CreERT2/ERfl/fl-Mäusen nur eine 

unvollständige Inaktivierung des ERα stattfand. Aufgrund dieses 

Ergebnisses wurden die Tie2CreERT2/ERfl/fl-Mäuse von den weiteren 

Experimenten ausgeschlossen. 

Um nun die Rolle vom ERα in Neuronen und mikroglialen Zellen im 

Schlaganfall zu untersuchen, wurden Experimente mit einem Modell für 

Schlaganfall, der „middle cerebral artery occlusion“ (MCAO), durchgeführt. 

Nach Analyse der Schlaganfallvolumina nach einer MCAO in 

CaMKIICre/ERfl/fl-Mäusen und LysMCre/ERfl/fl-Mäusen, zeigte sich, daß der 

neuronale ERα und nicht der mikrogliale ERα für die Vermittlung der 

neuroprotektiven Wirkung von E2 im Schlaganfall verantwortlich ist. 

Außerdem wurde gezeigt, daß E2 nicht nur neuroprotektive Eigenschaften 
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in weiblichen Tieren, sondern auch in männlichen Tieren besitzt, und daß 

diese Eigenschaften in beiden Geschlechtern durch den neuronalen ERα 

vermittelt werden.  

Um die molekularen Mechanismen, welche durch den ERα vermittelten 

neuroprotektiven Effekt beeinflußt werden, besser verstehen zu können, 

wurde die Genexpreesion in weiblichen CaMKIICre/ERfl/fl-Mäusen 

untersucht. Es wurde in dieser Arbeit gezeigt, daß die Transkription von 

ERα im Schlaganfall verstärkt stattfindet, wohingegen die Transkripion von 

Bcl-2, Cocaine- and Amphetamine-regulated transcript (CART), 

Cyclooxygenase 2 (COX-2), Prostaglandin E2 EP1 Rezeptor (EP1) und 

Prostaglandin E2 EP2 Rezeptor (EP2) unverändert war. Die Transkription 

des Brain derived neurotrophic Factor (BDNF) war im Schlaganfall nach E2 

Behandlung erhöht. Diese verstärkte Transkription des BDNF-Gens war 

unabhängig vom neuronalen ERα, da auch in den neuronalen ERα knock 

out Mäusen die Transkription erhöht war.  

Zusammengefasst wurde in dieser Arbeit gezeigt, daß der neuronale ERα 

und nicht der mikrogliale ERα eine essentielle Rolle in der E2 vermittelten 

Neuroprotektion im Schlaganfall spielt.  
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Summary 

 

 

The hormone 17β-estradiol (E2) and its receptor estrogen receptor α (ERα) 

have neuroprotective effects in animal models of stroke in rodents. In 

contrast, clinical studies revealed, that long term treatment with 

estrogens lead to an increased risk of dementia and stroke. These 

controversy shows, that there is a need for a better understanding of E2 

and ERα action in stroke. 

To investigate the role of ERα in stroke, three cell type specific ERα knock 

out mouse-strains were generated using the Cre-loxP system: a neuronal 

specific ERα knock out mouse strain (CaMKIICre/ERfl/fl), a microglial 

specific ERα knock out mouse strain (LysMCre/ERfl/fl) and an endothelial 

specific ERα knock mouse strain (Tie2CreERT2/ERfl/fl). These mouse-strains 

were analysed for tissue specific deletion of ERα. Deletion of ERα in 

neurons of CaMKIICre/ERfl/fl-mice was complete, in LysMCre/ERfl/fl-mice 

ERα was deleted in 92% of the microglial cells whereas the deletion of ERα 

was incomplete in endothelial cells of the vascular system in the 

Tie2CreERT2/ERfl/fl-mice. Due to these results the Tie2CreERT2/ERfl/fl 

mouse-strain was excluded for further experiments.  

To investigate the role of ERα in neurons and in microglial cells in stroke, 

experiments using a model of middle cerebral artery occlusion (MCAO) 

were performed. Analysing the stroke volume after performing a MCAO in 

CaMKIICre/ERfl/fl-mice and in LysMCre/ERfl/fl-mice revealed, that it is 

neuronal ERα and not microglial ERα which mediates the neuroprotective 

effects of E2 in stroke. Furthermore it was shown, that E2 has 

neuroprotective effects in female as well as in male mice, and that in both 

sexes the neuroprotecive effect of E2 is mediated via neuronal ERα.  

For a better understanding of the molecular mechanisms underlying these 

neuroprotective effects mediated by neuronal ERα, the expression of 

several genes in female CaMKIICre/ERfl/fl-mice was investigated. It was 

shown in this work, that ERα is upregulated in stroke, whereas Bcl-2, 
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cocaine- and amphetamine-regulated transcript (CART), cyclooxygenase 2 

(COX-2), prostaglandin E2 EP1 receptor (EP1) and prostaglandin E2 EP2 

receptor (EP2) transcription was unchanged. Brain derived neurotrophic 

factor (BDNF) was upregulated upon E2 treatment in stroke. The 

upregulation of BDNF was independent from neuronal ERα since its 

transcription was elevated in the neuronal ERα knock out mice as well.  

Taken together, it was demonstrated in this work, that neuronal ERα and 

not microglial ERα plays a major role in E2 mediated neuroprotection in 

stroke. 
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1. Introduction 

 

 

Estrogens and their receptors are involved in many regulatory and 

protective signalling pathways. Mostly known to play an essential role in 

female reproductive and sexual differentiation processes, evidences 

accumulated that estrogens play an important role in the vascular and in 

the central nervous system. It has been described that estrogens and 

their receptors have neurotrophic and neuroprotective effects in diseases 

like Alzheimer and stroke. Several studies suggested that the 

neuroprotective effects of estradiol in stroke are mediated via its receptors 

estrogen receptor α and estrogen receptor β but it remained unknown in 

which cells this protective effect occurs. In this work it was shown that 

these neuroprotective effects in stroke are mediated via neuronal and not 

microglial estrogen receptor α by using-tissue specific estrogen receptor α 

knock out mice as a model of ischemic stroke. It was also shown that 

these estrogen receptor α-mediated neuroprotective effects of estradiol 

are present in female mice as well as in male mice. 

 

 

1.1 Estradiol  

 

17β-Estradiol (E2) is mainly synthesized in the granulosa cells of the 

ovaries and plays several important roles in reproductive organs and in 

the central nervous system: 

• E2 is essential for reproduction in mammals, it plays a pivotal role in 

pubertal development, regulation of the estrous cycle and 

establishment and maintenance of pregnancy and lactation (Hewitt 

et al., 2005).   

• Cognitive functions like verbal fluency, performance on spatial tasks, 

verbal memory tests and fine motor skills are influenced by E2, 
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showing that E2 prevents cognitive decline (Merchenthaler et al., 

2003). 

• Thermo-regulation is affected by E2. The low E2 level in 

postmenopausal women causes hot flushes and night sweating 

(Schmidt et al., 2006). 

• E2 also acts as a general neurotrophic factor that stabilizes neuronal 

function and supports viability. The role of E2 in neurodegenerative 

diseases, e.g. Alzheimer´s disease and Parkinson´s disease reflects 

its function as a neurotrophic factor in the central nervous system. 

E2 reduces the risk of the onset and delays the progression of such 

diseases (Behl, 2002). 

• In the central nervous system, E2 was shown to have protective 

effects against brain injury and neurodegeneration (Merchenthaler 

et al., 2003). For example, in vitro and in vivo studies have 

described neuroprotective actions of estrogens in serum deprivation, 

glutamate-induced excitotoxicity (McEwen and Alves, 1999) and in a 

variety of models of acute cerebral ischemia where it represses 

apoptosis in ischemic incidences of the brain (Rau et al., 2003). 

In other organ systems it has been shown that E2 has beneficial effects in 

the prevention of cardiovascular diseases resulting from atherosclerosis. 

E2 causes rapid vascular dilatation and significantly inhibits vascular 

smooth muscle cell proliferation after injury (Pare et al., 2002). It has also 

long-term effects on gene expression in vascular cells and lipoprotein 

level-changes. Additionally it plays an important role in bone formation 

(Sims et al., 2003). 

Two mechanisms have been suggested to mediate estrogen effects in the 

brain and in the vascular system: 

• Classical genomic actions which involve estrogen receptor- (ER) 

mediated gene transcription. The upregulation of neurotrophic 

factors like brain derived neurotrophic factor (BDNF), insuline-like 

growth factor-1 (IGF-1), nerve growth factor (NGF)  and other 

neutrophins were described as  possible candidates for mediating 
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neuroprotection (Garcia-Segura et al., 2001; Wise et al., 2001; 

Zhao et al., 2004). E2 also influences apoptosis by downregulation of 

proapoptotic genes like Bad and Cox-2, and upregulation of 

antiapoptotic genes like Bcl-2, Bcl-XL (Dubal et al., 1999; Nilsen and 

Diaz Brinton, 2003; Pike, 1999). 

• nongenomic actions of ligand bound ER by affecting MAPK- (Szego 

et al., 2006) and/or PI3K-pathways (Choi et al., 2004). Non-

genomic neuroprotective actions of E2 are described in microglial 

cells and endothelial cells of the vascular system. In microglial cells, 

E2 is thought to prevent via ERα the translocation of the NFκ-B 

subunit p65 and thereby repressing the transcription of 

proinflammatory cytokines (Ghisletti et al., 2005), whereas in 

endothelial cells E2 prevents the adhesion and migration of 

leukocytes to and through the endothelial cell layer via stimulation 

of the PI3-K pathway, and upregulation of the eNOS activity 

(Simoncini et al., 2000). 

Additionally, receptor-independent actions of estrogens, like antioxidant 

characteristics (Behl et al., 1997) have been suggested. 

In clinical treatment, estrogens became an object of controversial 

discussion regarding its role in the hormone replacement therapy (HRT). 

Estrogens are the only active substances to treat symptoms like hot 

flushes, night sweats and sleep disturbances caused by menopause and 

they have beneficial effects in the treatment of osteoporosis. Beside these 

beneficial effects of estrogens in HRT, it turned out that long term 

treatment with estrogens leads to a higher risk of endometrial cancer and 

ovarian cancer. Furthermore long term HRT leads to an elevated risk for 

dementia and stroke caused by increased blood clotting (Schmidt et al., 

2006). The circumstance that estrogens on the one hand lead to a higher 

risk of stroke insults in the case of long term treatment, but on the other 

hand have shown to be beneficial in experimental models of stroke, points 

out the need for a better understanding of estrogen actions in stroke.  
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1.2 Estradiol and stroke 

 

Stroke is a global epidemic and an important cause of morbidity and 

mortality. It ranks next to cardiovascular disease and cancer as a cause of 

death. The estimated direct and indirect cost of stroke for 2007 in the US 

is $62.7 billion (Rosamond et al., 2006). Stroke is also the leading cause 

of adult disability, because 76% of people survive their stroke. Of these 

survivors, 50% have a hemiparesis, 26% are dependent in activities of 

daily living, and 26% are forced into a nursing home. Possible signs and 

symptoms of stroke are unilateral weakness or paralysis, a sagging of one 

side of the face, double or blurred vision, vertigo, numbness or tingling, 

and language disturbances (Zerwic et al., 2002). There are two major 

classifications of stroke:  

• 13% are classified as hemorrhagic strokes, which are 

caused by the rupture of a cerebral blood vessel and 

bleeding in the surrounding tissue. Most common causes 

for aneurysms are hypertension and atherosclerosis.  

• 87% of all strokes are ischemic strokes. An ischemic stroke 

results from the complete occlusion of an artery. 

 

The characteristic of ischemic stroke is evolving damage, in which 

ischemic cell death or cell stress responses progress after the initial 

ischemic insult. The region of the ischemic penumbra, a brain region 

adjacent to the earliest region of ischemic cell death will progress to 

infarction over time unless untreated and is followed by secondary 

mechanisms of ischemic cell death such as inflammation and oxidative 

injury. Epidemiological studies show men and postmenopausal women are 

at a higher risk for stroke than premenopausal women. In animal models 

of stroke, estrogens impair the progression of ischemic cell death and lead 

to smaller infarct areas in estradiol treated animals compared to untreated 

animals (Dubal et al., 1999). Nevertheless, so far these studies have 

failed to show in which celltype the beneficial effects of estradiol and its 
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receptors take place. A better understanding of the estradiol mediated 

neuroprotective effects on a cellular as well as on a molecular level are a 

necessary prerequisite to devise clinical applications that seize E2’s 

positive effects and circumvent unwanted side effects. 

 

 

1.3 Estrogen receptors 

 

There are two known estrogen receptors in mice, estrogen receptor α 

(ERα) and estrogen recptor β (ERβ). The two receptors are distinct 

proteins encoded by separate genes (Esr1 and Esr2) located on different 

chromosomes. Both are ligand-dependent transcription factors and 

members of the nuclear hormone receptor superfamily (ERα classified as 

NR3A1 and ERβ classified as NR3A2). They share a high homology in 

some domains, like the DNA binding domain (96% homology), but differ 

in the ligand binding domain (58% homology) and the N-terminal 

transactivation domain.  

ERs and estrogens as their ligands act in an apparently simple pathway. 

Estrogens, like all steroid hormones, are small lipophilic molecules which 

diffuse from the blood through the cell membrane into the cytosol and the 

nucleus. Without a ligand, the majority of the ERs are blocked in the 

nucleus by a complex of heat shock proteins. After binding a ligand to the 

ER, the heat shock proteins dissociate and the receptor gets into an 

activated form. Activated ERs dimerize and bind to specific DNA sequences 

(Beato et al., 1995). These sequences are called estrogen response 

elements (EREs) and consist of two hexanucleotides which contain an 

inverted repeat sequence, separated by a spacer of three nucleotides. 

Binding of the ERs to EREs leads to changes of gene expression in the cell. 

Another way to influence gene expression by ligand bound ER are protein-

protein interactions with transcription factors as e.g. the AP-1 family and 

therefore changing transcription of genes without binding directly to DNA 

(Gottlicher et al., 1998). 
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Beside these “classical” ER mechanisms, there are also so called 

“nongenomic” or “rapid” estrogen actions (Hall et al., 2001). These 

nongenomic actions occur after a few minutes of E2 treatment and they 

influence pathways like the MAP-kinase (MAPK)- and phosphatidylinositol-

3’-kinase (PI3K) pathways (Simoncini et al., 2000). However, the 

molecular mechanisms of nongenomic effects remain controversial 

(Pedram et al., 2006). 

 Transcription of the ERα gene in the mouse results in a single transcript 

of 6.3 kb, transcribed from 9 Exons (Fig. 1). This transcript encodes a 

protein of 599 amino acids with a molecular mass of 66 kDa.  

In contrast the ERβ protein is composed by 530 amino acids with a 

molecular mass of 60 kDa. The majority of this difference in size between 

the two ERs is due to a significantly shorter N’-terminus in the ERβ 

protein.  

The ERα and ERβ proteins are composed of six functional domains (Fig. 

1), labelled A-F. The N’-terminal A/B domain contains a ligand-

independent transactivation domain (AF-1) and is encoded by exon 2. The 

C domain is the DNA-binding domain (DBD) encoded by exon 3 and 4. It 

is characterized by two zinc fingers, which form the DNA-binding domain 

responsible for binding to EREs. The nuclear localisation signal in the D 

domain is encoded by exon 5, followed by the E and F domain which 

possess the ligand binding domain (LBD) and the ligand-dependent 

transactivation domain (AF-2). Both domains, the DBD and the LBD are 

necessary for dimerization of the receptor. 

 

 

1.4 Estrogen receptor knock out mice 

 

The first available ERα knock out mouse (here called ERαKOneo) was 

generated by Korach and co-workers in 1993 by cloning a neomycin-

resistance gene (neo) into exon 2 of the Esr1 gene, thereby disrupting it 
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Fig. 1 Scheme of the Esr1 gene and its translation into the ERα 
protein  
The gene consists of 9 Exons which are translated into a protein with five 
domains.  
 

 

(Lubahn et al., 1993). Later analysis revealed an incomplete deletion of 

the ERα protein (Pendaries et al., 2002). The ERαKOneo mouse expresses  

a truncated form of the ERα protein with a molecular weight of 61 kDa at 

lower levels than the wildtype protein. The ERβ knock out mouse was 

established in 1998. The Esr2 gene was inactivated by insertion of a neo-

cassette in exon 3 (Krege et al., 1998). 

A second ERαKO (here called ERαKO) and a second ERβKO mouse line 

(here called ERβKO) were reported in 2000, both lacking exon 3, which 

results in a complete loss of the ERα respectively the ERβ (Dupont et al., 

2000). The phenotypes of the ERαKO and the ERβKO are quite different, 

reflecting that both proteins have different implications (Hewitt and 

Korach, 2003). 

ERαKO suffer from elevated luteinizing hormone (LH), estrogen, 

testosterone and low prolactin levels. In the ERβKO no changes of these 

hormone levels are observed. Both knock outs have reduced ovulations in 

superovulation trials. The follicles of ERαKO are immature and 

hemorrhagic cystic follicles begin to develop at the beginning of puberty 

as a result of chronic elevated LH. The ERβKO mice show impaired follicle 

development, which leads to subfertility. Ovulation can be induced in 

ERαKO by treating young mice with exogenous gonadotropins before LH 
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rises, showing that ERα is not important for follicle maturation and rupture 

(Couse et al., 1999). However, ERα is indispensable for the regulation of 

ovulation by the HPG axis (Wintermantel et al., 2006).  

It was demonstrated that estradiol is still able to inhibit the vascular injury 

response in the ERαKOneo and the ERβKO, but it is abolished in the 

ERαKO (Pendaries et al., 2002).  

 

 

1.5 Conditional mutagenesis 

 

The ERαKO model is a powerful tool for the understanding of ERα actions 

in mice, but is limited for the explanation of particular endocrine circuits 

and cell type specific events influenced or regulated by ERα. Since the 

receptor is ablated in all tissues, phenotypes can also occur due to side 

effects from the integration of several disregulated circuits as well as due 

to disturbed developmental processes.  

 

 

1.5.1 The Cre-loxP-system 

 

The Cre-loxP system is a genetic technology which gives the possibility for 

conditional mutagenesis of a gene of interest (Nagy, 2000). This means, 

that the gene of interest gets inactivated not only under certain 

circumstances but also in defined tissues of the mouse. This technology 

allows the investigation of the role of an organ in a complex endocrine 

dysfunction as well as the role of a gene in a certain organ or celltype 

without distortion caused by systemic influences. 

The Cre-loxP-system was first described in bacteriophages and consists of 

two components (Gu et al., 1994): a sequence-specific recombinase (Cre, 

a 36 kDa protein) and a DNA sequence flanked by loxP sites (34 bp DNA 

elements, which are recognized by the Cre-recombinase, Fig. 2A). The 

Cre-recombinase (Cre) catalyses recombination of two loxP-sites (Fig. 
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2B). If both loxP-sites have the same orientation, the loxP-flanked DNA 

will be excised and thereby eliminated. There are no metabolic compounds 

or cofactors necessary to catalyze this reaction. This system is also 

working in E.coli, yeast, plants and more complex organisms.  

In mice the Cre-loxP system has to fulfil two requirements to give rise to a 

conditional mutagenesis: 

• Tissue specific Cre expression 

Tissue specific Cre expression is achieved by putting the Cre gene 

under the control of an appropriate promoter. This means, that the 

tissue-specifity of the Cre-mediated recombination is given by the 

promoter controlling the expression of the Cre. The transgene, 

consisting of the chosen promoter and the Cre gene, should mimic 

the expression pattern of the endogenous gene. It has been shown 

that, using small vectors (<10kb), which contain only few elements 

of a promoter, can result in mosaicism or broader expression of the 

transgene than the endogenous expression pattern (Tronche et al., 

1999). Bacterial artificial chromosomes (BACs) can accommodate 

more than 150 kb of a transgene, thereby containing most of the 5’- 

and 3’-promotor elements of the endogenous promoter to guarantee 

the expression pattern of the tissue specific promoter of interest. 

Additionally it was shown that large sized transgenes are expressed 

independent of the integration site in the genome and that 

expression is only dependent on the copy number of the transgene 

(Schedl et al., 1993). 

• Gene inactivation by using loxP-sites 

Flanking an essential Exon of a gene by loxP-sites and recombining 

these sites by the Cre, leads to the loss of the Exon sequence and 

thereby to the loss of the capability to translate a functional protein. 

In case of the ERαloxP mouse (ERαfl/fl-mouse), the loxP-sites are 

integrated in the introns 5’ and 3’ of Exon 3 of the Esr1 gene by 

gene targeting (Wintermantel et al., 2006). Placing the loxP 

sequences into Introns should not have any effects on the 

 



Introduction  14 

expression of the gene. Exon 3 of the ERα, like Exon 3 of all steroid 

hormone receptors, is essential for the translation of the RNA to a 

functional protein.  Therefore excising Exon 3 of the Esr1 gene, by 

using the Cre-loxP system, leads to a complete loss of the protein. 

 

In addition to allowing cell type-specific recombination, it is also possible 

to set a timepoint for the mutagenesis (Feil et al., 1997) by the 

introduction of a fusion protein consisting of the Cre fused to a mutated 

ER ligand binding domain (CreERT2). The mutated ligand binding domain 

of the ER can only bind tamoxifen and is not able to bind other estrogens 

anymore. The CreERT2 without tamoxifen as a ligand, is inactivated by 

heatshock proteins in the cytoplasm. After tamoxifen treatment, the 

heatshock proteins dissociate from the CreERT2 and the recombinase is 

translocated to the nucleus where it catalyses the recombination (Fig. 2C). 

Therefore the CreERT2 allows inducible cell type specific mutagenesis. 
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A)                                                         B) 

         

 

 

 

 

Cre 

loxP 

ATAACTTCGTATAGCATACATTATACGAAGTTAT 

 

 

C) 

 

 

 

 

 

 

 

 

D) 

 

      ERαfl/fl-mouse          Cre-mouse 

 

 

 

       

            Cre/ERfl/fl-mouse 

                                            

      Cre recombinase                loxP sequence              genomic sequence 

x

+

CreERT2 + 
heatshock 
protein complex tamoxifen 
 

 

 

 

 

 

Fig.2 Conditional mutagenesis using the Cre-loxP-system  
A) the Cre recognizes the loxP site and binds to it. B) The Cre catalyses the 
recombination of two loxP sites. If both loxP sites have the same orientation, the flanked 
sequence will be excised and thereby deleted. C) Heatshock proteins dissociate upon 
tamoxifen binding to the CreERT2. After translocation of the CreERT2 into the nucleus, the 
recombination of the floxed alleles take place. D) Breeding mice carrying a loxP flanked 
(floxed) locus with mice, expressing the Cre in a celltype-specific manner, leads to mice 
carrying both transgenic alterations. The recombination takes place and results in a 
celltype-specific deletion of the floxed gene. 
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1.6 Aim of this thesis 

 

 

In stroke the ERαKO shows no estradiol mediated neuroprotective effect. 

In the ERβKO estradiol treatment is still as efficient as in wildtype mice 

related to neuroprotection (Dubal et al., 2001).Thus it is proven that the 

protective effects of E2 in stroke are mediated via ERα and not ERβ. 

However, the question still remains in which celltype ERα action takes 

place. To investigate this issue, we focused on three cell types, which are 

thought to play an important role while a stroke occurs.  

 

1.6.1 Endothelial cells of the vascular system: 

To elucidate the role of ERα in endothelial cells while a stroke 

occurs, we generated and analysed a transgenic mouse 

expressing the CreERT2 under control of the Tie2-promoter 

(Tie2CreERT2). Breeding these mice to ERαfl/fl-mice should result 

in an endothelial specific ERα knock out mouse upon tamoxifen 

treatment (Tie2/ERfl/fl).  

1.6.2 Microglial cells: 

Microglial cells as “macrophages of the brain” are thought to play 

an important role in the inflammatory response and apoptosis in 

stroke. Breeding mice, expressing the Cre under control of the 

lysozyme M promoter (Clausen et al., 1999) to ERαfl/fl-mice, 

results in a ERα knock out specific in the monocytic lineage 

(Lys/ERfl/fl). 

1.6.3 Neurons of the forebrain: 

To achieve a specific ERα knock out in neurons of the forebrain, 

mice transgenic for a Cre under the control of the CaMKIIα 

promoter (Casanova et al., 2001) were bred with ERαfl/fl-mice to 

obtain an ERα knock out in the neurons of the forebrain 

(CaMKIICre/ERfl/fl) (Wintermantel et al., 2006). 
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The aim of this work is to identify the cell type in which the beneficial 

effects of E2 are mediated via the ERα in stroke. Additionally, potential 

pathways influenced by ERα are investigated and elucidated. 
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2. Materials and methods 

 

 

2.1 Chemicals 

 

Chemicals were obtained from the following companies: 

 

• Fluka, Neu-Ulm 

• Merck, Darmstadt 

• Carl Roth GmbH, Karlsruhe 

• Sigma-Aldrich Chemie GmbH, Steinheim 

 

 

2.2 Enzymes 

 

Taq-DNA-polymerase  Roche Molecular Biochemicals, Mannheim 

Proteinase K   Carl Roth GmbH, Karlsruhe 

RNAse A    Qiagen, Hilden 

SuperScript II RT   Qiagen, Hilden 

 

 

2.3 Primers 

 

Primers were obtained from MWG-Biotech AG, München. 

 

Primers to detect the Tie2CreERT2-transgene: 

MWG 503:  5’-GAAGTCGCAAAGTTGTGAGTTG-3’ 

MWG 504:  5’-TGGCTTGCAGGTACAGGAG-3’ 

MWG 505:  5’-GAGAATGGCGAGAAGTCACTG-3’ 

 

Primers to detect the LysMCre-transgene: 

Lys-forward:  5’-GCTTTCTCTAGTCAGCCAGCAG-3’ 
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Cre-reverse:  5’-AGCATTGGAGTCAGAAGGGCGT-3’ 

 

Primers to detect the CaMKIIαCre-transgene: 

CaMKII1: 5’-GGTTCTCCGTTTGCACTCAGGA-3’ 

CaMKII2: 5’-CCTGTTGTTCAGCTTGCACCAG-3’ 

CaMKII5: 5’-CTGCATGCACGGGACAGCTCT-3’ 

 

Primers to detect the ERα-loxP allele: 

MWG 539: 5’-TAGGCTTTGTCTCGCTTTCC-3’ 

MWG 540: 5’-CCCTGGCAAGATAAGACAGC-3’ 

MWG 541: 5’-AGGAGAATGAGGTGGCACAG-3’ 

 

Primers to detect the RAGE-eGFP allele: 

MWG 531: 5’-CTGGGTGCTGGTTCTTGCTCTA-3’ 

MWG 532: 5’-GTTCTGACCACCAGCTACAGCT-3’ 

MWG 533: 5’-GGCATGGCGGACTTGAAGAAGT-3’ 

 

 

2.4 Buffers and standard methods 

 

2.4.1 Production of genomic DNA-lysates from mouse-tails for 

genotyping PCRs: 

 

NID-buffer 

 

 50 mM KCL 

 10 mM Tris pH 8.3 

 2 mM MgCl2

 0.1 mg/ml gelatine 

 0.45% NP 40 

 0.45% Tween 20 

 1 mg/ml Proteinase K 
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Mouse tails were digested in 200 µl of NID-buffer overnight at 56°C. After 

inactivation of the proteinase K at 95°C for 20 min, 1 µl of the lysate was 

used for the PCR reaction. 

 

 

2.4.2 Analytical PCR for genotyping 

 

PCR reaction mix 

  

 1 µl genomic DNA-lysate, preparation see 2.4.1 

 2.5 µl 10x PCR buffer 

 1 µl dNTP-mix (5 mM dATP, dTTP, dGTP, dCTP) 

 6 pmol each primer 

 0.5 U Taq-DNA-polymerase 

 Add H2O to a volume of 25 µl 

 

 

PCR-programs: 

 

ERα-loxP PCR 

 

  95°C – 5’ 

 

  For 35 times 

  95°C – 30’’ 

  61°C – 30’’ 

  72°C – 1’ 

 

  72°C – 7’ 
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 CaMKIIαCre-, LysMCre-, RAGE/eGFP-loxP-PCR 

   

  95°C – 5’ 

 

  For 35 times 

  95°C – 30’’ 

  63°C – 1’ 

  72°C – 1’ 

 

  72°C – 7’ 

 

Tie2CreERT2-PCR 

 

  95°C – 5’ 

   

  For 35 times 

  95°C – 30’’ 

  58°C – 30’’ 

  72°C – 1’ 

 

  72°C – 7’ 

 

PCR results were analysed using 2% agarose gel-electrophoresis. DNA 

was visualized with UV-light using 0.5 µg/ml ethidiumbromide. 

  

 

2.4.3 Buffer for agarose-gelelectrophoresis  

 

50x Tris-acetatebuffer (TAE) 

 

 2 M Tris 

 250 mM Na-acetate 
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 50 mM EDTA pH 8 

 Acetic acid is used to adjust pH to 7.8 

 

6x sample buffer 

 

 0.25% bromphenolblue 

 0.25% xylenecyanol FF 

 15% Ficoll 400 

 

DNA-sizemarker: 

“Smart Ladder”, Stratagene. 5 µl per lane. 

 

 

2.4.4 PBST for immunohistochemistry 

 

PBS: 

 137 mM NaCl 

 2.7 mM KCl 

 10 mM Na2HPO4 

 2 mM KH2PO4

pH is adjusted to 7.2 using HCl 

 

PBST for immunohistochemistry on paraffinsections: 

Tween 20 added to PBS to a final concentration of 0.02% 

 

PBST for immunohistochemistry on vibratomsections, frozen sections and 

for immunocytochemistry on microglial cells: 

Triton-X-100 added to PBS to a final concentration of 0.2% 
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2.5 Mouse strain background 

 

All mouse strains were crossed to a C57/Bl6 background. C57/Bl6-mice 

were obtained from Charles River. Crossing the mice for four generations 

to a C57/Bl6 background guarantees a nearly complete C57/Bl6 

background.  

 

 

2.6 Tamoxifen solution and induction protocol 

 

0.5 mg tamoxifen were solved in 0.5 ml 100% EtOH and 4.5 ml sun flower 

seed oil (Sigma). The solution was mixed at 4°C overnight. 

Mice were injected intra peritoneal with 100 µl tamoxifen solution (= 1mg 

tamoxifen) each day for five consecutive days. Fowolling another nine 

days for recovery and that recombination takes place, mice were 

sacrificed for further analysis. 

 

 

2.7 Preparation of sections 

 

Frozen sections were prepared using a cryostat (Leica CM 3050). 6 µm 

paraffin sections were prepared using a microtome (Leica). 40 µm free 

floating sections were prepared using a vibratome (Microm). 

 

 

2.7.1 Preparation of frozen sections and visualization of eGFP 

positive cells of Tie2CreERT2/RAGEeGFP/+-mice 

 

Organs were isolated and immediately frozen in liquid nitrogen cooled 

isopentane. 10 µm Frozen sections were briefly dried and embedded in 

Vectashield mounting medium for fluorescence (Vector laboratories). EGFP 
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positive cells were visualized by fluorescence microscopy using filter set 

24 (Zeiss).  

 

 

2.7.2 Preparation of frozen sections for the analysis of the 

stroke volume and TUNEL-histochemistry 

 

The brains of mice which underwent a MCAO were isolated and 

immediately frozen on dry ice. 20 µm coronal serial sections every 400 

µm of the forebrain were performed and collected on PolysinTM slides 

(Menzel Gläser). Sections were then used to perform a silver stain or 

TUNEL-histochemistry.  

 

 

2.7.3 Preparation of paraffin sections 

 

Organs were isolated and fixed in 4% para-formaldehyde/PBS (4% PFA) 

at 4°C overnight. Organs were then washed twice for 30 min with PBS at 

room temperature and dehydrated using an ethanol-gradient: 2 x 30 min 

70% ethanol, 1 x 30 min 85% ethanol, 1 x 30 min 95% ethanol, 3 x 

100% ethanol, 1 x 30 min xylene, xylene overnight, 1 x 30 min xylene. 

Organs were then incubated in 60°C paraffin, 3 x 60 min. Finally, the 

organs were imbedded in 60°C paraffin and cooled down. 6 µm Paraffin 

sections of the embedded organs were prepared using a Leica microtome. 

The sections were collected on SuperFrost-slides and incubated at 56°C 

overnight to stick the sections on the slide. The slides were stored at room 

temperature.  
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2.7.4 Peparation of free floating sections 

 

Brains were isolated and fixed for 48 h in 4% PFA at 4°C. 40 µm coronal 

sections of the fixed brains were prepared using a vibrotome. Free floating 

sections were stored in 0.5% PFA for up to six months. 

 

 

2.8 Immunohistochemistry 

 

Antibodies: 

Polyclonal anti-ERα MC-20, Santa Cruz sc-542, diluted 1:2000 in 5% 

normal swine serum (DAKO)/PBST (5% NSS). 

 

Biotinylated anti rabbit antibody, Vector laboratories Burlingame USA, 

diluted 1:400 in PBST. 

 

Detection system: 

 

ABC-peroxidase system, Vectastain, Vector laboratories used with DAB 

(Sigma) as a substrat. DAB gets converted by the ABC-peroxidase system 

into a brown precipitate. 

Hematoxylin counterstain was performed using Hematoxylin QS, Vector 

laboratories 

  

 

2.8.1 ERα detection on paraffin sections  

 

To remove the paraffin, the slides were incubated 3 x 5 min in xylene. 

Afterwards, sections were rehydrated using an ethanol gradient: 2 x 5 min 

100% ethanol, 1 x 5 min 95% ethanol, 1 x 5 min 85% ethanol, 1 x 5 min 

70% ethanol, 2 x 5 min PBS. Endogenous peroxidase activity was blocked 

with 50% MeOH/PBS 3% H2O2. Slides were washed twice for 5 min in PBS 
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and boiled in Antigen-Retrieval buffer (DCS, Hamburg), first 2 min 800 W 

than 8 min 360 W, to expose the antigene. After cooling and washing with 

PBS the slides, sections were incubated for 10 min with 5% NSS blocking 

solution. Slides were then incubated overnight with primary antibody at 

4°C overnight. Following primary antibody incubation, slides were washed 

2 x 5 min with PBS and incubated for 30 min with secondary antibody. 

Afterwards the slides were washed again 2 x 5 min with PBS and 

incubated for 30 min with ABC-peroxidase system. Detection was 

performed using DAB substrate resulting in a brown precipitate. 

Counterstain was performed by incubating the sections 1 min with 

Hematoxylin QS. 

The sections were dehydrated (see below) and after incubation in xylene 3 

x 5 min embedded in Eukitt. 

 

 

2.8.2 ERα detection on vibratome sections 

 

Sections were collected in 24-well plates and washed with PBS. 

Endogenous peroxidase activity was blocked with 50% MeOH/PBS 3% 

H2O2 for 15 min. Afterwards sections were washed 3 x 10 min with PBST. 

Blocking of unspecific binding sites was achieved by incubating the 

sections with 5% NSS for 30 min. Sections were incubated with the 

primary antibody at 4°C overnight. Following washing 3 x 10 min with 

PBST, sections were incubated with secondary antibody for 30 min. After 

washing 3 x 10 min with PBST, the sections were incubated for 30 min 

with ABC-peroxidase system and washed 2 x 10 min with PBS. Detection 

was performed using DAB as a substrate. 

After staining with DAB, the sections were dried and incubated with 

xylene. The sections were then mounted with Eukitt.  
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2.9 TUNEL-histochemistry 

 

TUNEL-staining was performed using DeadEnd Fluorometric TUNEL 

System (Promega Corporation, Wisconsin USA). Buffers and reaction mix 

were prepared according to the technical bulletin. 

20 µm frozen sections of brains of mice, which underwent a MCAO, were 

thawed and fixed for 10 min with 4% PFA. Sections were washed 2 x 5 

min with PBS, following incubation with PBST for 30 min. After washing 

the sections 2 x 5 min with PBS, sections were incubated with TDT-

reaction-buffer. Sections were then incubated with TUNEL-reaction mix at 

40°C for 2 h. Afterwards sections were washed 3 x 5 min with PBS and 

mounted with Vectashield mounting medium with DAPI (Vector 

Laboratories). Slides were stored at 4°C until fluorescence microscopy 

analysis. 

 

 

2.10 Microglial cell culture and immunocytochemistry 

 

2.10.1 Isolation of microglial cells from mouse brains 

 

Microglial cells were isolated from newborn mice (P1) as described (Burudi 

et al., 1999). 

 

 

2.10.1.1 Buffers and media 

 

• Poly-L-lysine, ready-to-use 0.01% solution (Sigma Cat.: P-4832) 

• Dnase from bovine pancreas grade II, (Roche Diagnostics Cat. 

104159) 

• Trypsine 2.5% solution (10x) (Invitrogen Cat. 25090-010) 

• HEPES 1M solution (Sigma Cat.: H 0887) 

• HBSS 1 M solution (Sigma Cat.: H 1641) 
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• Trypsine-EDTA (low): typsine 0.05%, EDTA 0.02%, in HBSS without 

Ca2+/Mg2+ (Invitrogen, Cat.: 25300-054) 

• Trypsine-EDTA (high): trypsine 0.025%, EDTA 0.04%, in HBSS 

without Ca2+/Mg2+ (Invitrogen, Cat.: 25200-056) 

• DMEM with 4500 mg glucose, L-glutamine and sodium bicarbonate 

(Sigma Cat.: D 5796) 

• Penicillin-Streptomycin (Invitrogen, Cat.: 15140-122) 

• Glutamine (Invitrogen, Cat.: 25030-024) 

• Gentamycin (Invitrogen, Cat.: 15750-045) 

• Fetal calf serum (GIBCO), 30 min inactivation at 56°C 

• PLL 0.01%: 0.01g PLL dissolved in PBS. The solution was filtered 

with 0.45 µm Millipore-filter and stored at 4°C. 

• HBSS 1x: 1x HBSS/100 mM HEPES pH 7 stored at 4°C. 

• DNase solution: 0.05% DNase/HBSS pH 6.8 stored at -20°C. 

• Trypsine solution: 1% Trypsin/DNase 0.5 mg/ml in HBSS pH 7.8 

stored at -20°C 

• Growth medium (cDMEM): DMEM, 10% FCS, glutamine 1%, 

Penicillin-Streptomycin 1% 

 

 

2.10.1.2 Microglial cell culture 

 

75 cm2 flasks were coated with PLL 0.01%, one flask for three brains. 

Brains of one day old mice were isolated under sterile conditions. The 

brains were collected in a cell culture dish containing HBSS and the 

meninges were removed under a binocular using two forceps. Afterwards 

the brains were collected in 50 ml Falcon tubes containing 10 ml 

HBSS/DNase 0.05% and incubated for 3 min at room temperature. Brains 

were homogenized by pipetting 4-5 times the brains with a 10 ml glass 

pipette. The lysates were incubated for 20 min at room temperature after 

adding 1 ml 1% trypsine. In the mean time the PLL was removed from the 

flasks and 9 ml cDMEM was put into the flasks. After 20 min the Falcon 
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tubes containing the cell lysate were filled to a volume of 50 ml with 

cDMEM and centrifuged for 10 min at 180 g. The supernatant was 

discarded and the precipitate was resuspended with 1 ml cDMEM per three 

brains. The cell lysate was distributed with 1 ml per flask and incubated at 

37°C, 5% CO2. The medium was changed at day 1, day 2 and day 7.  

 

After 14 days the secondary culture for the selection of the microglial cells 

was performed. All steps were done at room temperature. All volumes are 

given for the treatment of one flask. 

 

Flasks were shaken vigorously up to 10 times to detach oligodendrocytes 

and microglial cells bound at the surface of the cell layer. The medium 

was discarded and the flasks were rinsed once with 10 ml cDMEM each. 

Flasks were incubated with 3 ml trypsine-EDTA per flask for 3 min at room 

temperature. The trypsine-EDTA was discarded and 10 ml of cDMEM and 

0.5 ml of DNase were added. The cells were resuspended with a Pasteur 

pipette. The cell suspension was transferred to 15 ml Falcon tubes and 

centrifuged for 10 min at 180 g. Meanwhile 2 ml of cDMEM were 

distributed to Petri dishes (bacterial grade, Sarstedt) and coverslips were 

put into the dishes. After centrifugation the cell precipitate was 

resuspended with 4 ml of cDMEM. 1 ml of the resuspended cells was given 

to each Petri dish and was incubated at 37°C, 5% CO2 for 20 min. After 20 

min incubation, 6 ml cDMEM was added to the cultures and the cells were 

grown at 37°C, 5% CO2. Medium was changed once a week. The 

microglial cells were used after three weeks of isolation for further 

analysis. 
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2.10.2 ERα detection and determination of recombination 

efficiency in microglial cells of LysMCre/ERfl/fl-mice 

 

Antibodies: 

Polyclonal anti-ERα MC-20, Santa Cruz sc-542, diluted 1:500 in 5% NSS. 

 

Isolectin GS-IB4 AlexaFluor 488 from Griffonia simplicifolia, Invitrogen, 

diluted 1:20 in 5% NSS. 

 

Secondary antibody anti-rabbit AlexaFluor 594, Invitrogen, diluted 1:500 

in 5% NSS.  

 

Mounting medium: 

 

2.4 g Mowiol (Hoechst) were solved in 6 ml 1% glycerol and incubated for 

2 h at room temperature. Afterwards, the solution was mixed with 12 ml 

0.2 M Tris-HCl pH 8.5 and incubated at 50°C for 10 min. The prepared 

Mowiol was stored at -20°C. 

 

Protocol:  

Coverslips with attached microglial cells were washed 2 x 5 min with 

PBS/MgCl2, following fixation with 4% PFA. Afterwards the cells were 

treated for 10 min with 50 mM NH4Cl/PBS and permeabilised for 15 min 

with 0.1% Triton-X-100/PBS. The cells were washed 1 x 5 min with 

PBS/MgCl and unspecific binding sites were blocked for 20 min with 5% 

NSS. Incubation with anti-ERα antibody was performed at 4°C overnight. 

The cells were washed 3 x 5 min then and incubated for 30 min with the 

secondary antibody. Following second antibody incubation, the cells were 

washed 3 x 5 min with PBS/MgCl2 and incubation of the cells with the 

isolectin B4-antibody was performed at 4°C overnight.Finally the cells 

were washed 3 x 5 min with PBS/MgCl2 and coverslips were mounted with 

Mowiol. 
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ERα positive cells and isolectin B4 positive cells were counted using 

fluorescene microscopy. Recombination efficiency was determined by the 

ratio of ERα positive cells/ isolectin B4 positive cells. 400 cells were 

counted. Microglial cells of ERαfl/fl-mice were stained as a control. 

 

 

2.11 Middle cerebral artery occlusion  

 

MCAO was performed in mice as described (Zhang et al., 2005). 

 

8 week old female mice were anesthetized by intraperitoneal injection of 

150 µl 2.5% avertin per 10 g body weight and ovariectomized. Female 

mice as well as male mice received an E2-pellet 0.025 mg 21 days release 

(Innovative Research of America, Sarasota, Florida USA) to achieve a 

constant E2-plasmalevel of 35 pg/ml (Horsburgh et al., 2002) whereas 

control animals received a placebo-pellet. Following 10 days to recover 

from the ovariectomy or implantation of the pellet respectively, mice were 

anesthetized by intra peritoneal injection of 150 µl 2.5% avertin per 10 g 

body weight. A skin incision was made between the ear and the orbit on 

the left side. The temporal muscle was removed by electrical coagulation. 

The stem of the middle cerebral artery (MCA) was exposed through a 

burr-hole and was occluded by micro bipolar coagulation (Erbe, Tübingen, 

Germany). Surgery was performed under a microscope. Mice were kept at 

a body temperature of 37°C on a heating pad. The body temperature was 

monitored continuously during the surgery with a rectal thermometer. To 

determine the infarct volume and to perform immunohistochemistry, mice 

were sacrificed 48 h after the MCAO. For the isolation of the RNA from the 

cortex, mice were sacrificed 24 h after the MCAO. 
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2.12 Isolation of the brains after MCAO 

 

For the analysis of the infarct volume and to perform 

immunohistochemistry later on, the mice were deeply anesthetized (250 

µl 2.5% avertin per 10 g body weight). Median thorakotomie was carried 

out to expose the heart. The intracardial perfusion was performed with 20 

ml Ringer’s solution. The perfusion was checked by change in liver colour 

that turns yellow during perfusion. Head was cut at the atlanto-occipital 

joint and Brains were removed carefully from the skull and immediately 

frozen on dry ice.  

For the isolation of the RNA from the cortex, the mice were deeply 

anesthetized (250 µl 2.5% avertin per 10 g body weight).The brain tissue 

dissection was carried out on normal ice. The brain was cut 3 mm frontal 

and 5 mm caudal on a brain tissue dissection block to restrict the tissue 

for later RNA isolation to the penumbra and the ischemic core. The left 

and right hemispheres were separated with a sharp blade. The remaining 

cortex was dissected from sub cortical tissue with fine tweezers and was 

immediately frozen in liquid nitrogen.  

 

 

2.13 Silverstaining and determination of the infarct volume 

 

Coronal serial sections of the forebrain of mice which underwent a MCAO 

were prepared like described in 2.7.2. Silver stain technique to determine 

the infarct volume was performed as described (Neudeck et al., 1997). 

Following solutions were used: 

 

Silver impregnation solution: 

A saturated LiCO3-solution was prepared (ca. 12 mg/ml). The LiCO3-

solution was mixed with a 10% AgNO3-solution to form a precipitate. The 

precipitate was dissolved by drip-wise adding a 25% NH3-solution. Finally 
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the solution is diluted 1:6 with H2O. The silver impregnation solution is 

sensitive to light. 

 

Developing solution: 

6.6 g sodium citrate was solved in 420 ml H2O. Afterwards 120 ml 37% 

formaldehyde was added and mixed well. Finally 1.8 g hydroquinone and 

90 ml acetone were added and the solution was mixed for 60 min. 

 

 

2.13.1 Silver staining 

 

Frozen sections were thawed and incubated for 2 min with silver 

impregnation solution while shaking. Afterwards the slides were washed 6 

x 1 min with H2O. Then, slides were incubated for 3 min with developing 

solution. Finally the slides were washed 3 x 1 min with H2O and dried 

overnight. 

 

 

2.13.2 Measurement of the infarct volume 

 

Stained sections were scanned at 300 dpi and the infarct area was 

measured using Scion ImageJ software (Scion, Frederick, MD, USA). The 

data were exported in Microsoft Excel. The unstained area represents not 

only the infarct area but also surrounding brain oedema as white area. In 

order to correct for the oedema portion, the difference of the surface of 

the left and the right hemisphere was subtracted from the measured 

silver-negative area (Swanson et al 1990). For the calculation of the whole 

brain infarct volume, the infarct areas were added and multiplied by the 

distance between the sections (0.4 mm). 
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     Y=U-N+I 

 

Y = Corrected infarct area (mm2) 

U = Total area of the contralateral Hemisphere (mm2)   

N = Total area of the ipsilateral Hemisphere (mm2) 

I  = Infarct area (mm2). 

 

 

2.14 Measurement of the physiological parameters 

 

Arterial blood pressure, pulse and blood gas analysis was carried out 

before and after ischemia.  Mice were kept under avertine anaethesia at a 

heating pad at 37°C and body temperature was measured by a rectal 

thermometer. The temperature signal was recorded continuously during 

the ischemia. For the measurement of blood pressure and pulse in a 

subgroup of mice, a cannula was inserted into the right femoral artery. 

The blood samples of 150 µl per mouse were collected in a heparin coated 

glass capillaries for analysis of arterial blood gas, haemoglobin- and 

glucose-levels. The catheter was washed with 200µl NaCl solution mixed 

with 50 IE of heparin before measurement of blood pressure. For laser 

Doppler measurements, the electrode (P415-205; Perimed, Jarfalla, 

Sweden) was placed 3 mm lateral and 6 mm posterior to the bregma. 

Relative perfusion units were determined (Periflux 4001; Perimed, 

Ja¨rfa¨lla, Sweden). 

 

 

2.15 RNA isolation and real time PCR analysis 

 

2.15.1 RNA isolation 

 

RNA was isolated using RNeasy Mini Kit (Qiagen, Hilden). All solutions and 

procedures were done according to the technical bulletin. Cortices for RNA 
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isolation were prepared like described before (2.12). The frozen cortices 

were put in RLT-buffer and homogenized using a ultra turrax T8 

homogenizer (IKA Werke). While RNA isolation genomic DNA was removed 

from the lysate using RNase-Free DNase Set (Qiagen, Hilden). The 

procedure was performed according to the technical bulletin. Isolated RNA 

was dissolved in 40 µl H2O and stored at -80°C. 

 

 

2.15.2 RT-PCR 

 

RT-PCR was performed using SuperScriptTM II Reverse Transcriptase kit 

(Invitrogen) including all buffers and enzymes. RT-PCR mixes were set up 

as described in the following protocol: 

 

1 µl Oligo(dT)18 500 µg/ml 

x µl RNA to achieve a mass of 1 µg 

1 µl dNTP mix 10 mM 

Add H2O to a volume of 13 µl 

 

The mixture was heated to 65°C for 5 min and chilled on ice. The 

following components were added: 

 

4 µl 5 x first strand buffer 

2 µl 0.1 M DTT 

 

Following incubation at 42°C for 2 min, 1 µl of SuperScriptTM II RT was 

added and the mixture was incubated at 42°C for 1 h. The reaction was 

inactivated by incubating the mixture at 70°C for 15 min. The synthesized 

cDNA was then used for real time PCR analysis. 
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2.15.3 Real time PCR analysis 

 

 

All real time PCR primers were obtained from Applied Biosystems (Applera 

Deutschland GmbH, Darmstadt). Real time PCR primers used for the 

analysis of expression of the genes of interest: 

 

Gene Protein Ordering number 

Esr1 ERα Mm 00433149_m1 

Bcl-2 Bcl-2 Mm 00477631_m1 

Ptgs2 COX-2 Mm 00478374_m1 

Ptger1 EP1 Mm 00443097_m1 

Ptger2 EP2 Mm 00436051_m1 

Cart CART Mm 00489086_m1 

Bdnf BDNF Mm 00432069_m1 

Hprt1 HPRT Mm 00446968_m1 

 

Real time PCR-mix 

 

2 µl cDNA (equivalent to 1 µg RNA) 

1 µl real time PCR primer  

10 µl ABgene ABsolute QPCR-mix (AB-1138) 

7 µl H2O 

 

Real time PCR was performed using a Chromo4 real time detector 

(BioRad). 
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PCR-programme: 

 

95°C – 15’ 

 

For 40 times 

95°C – 15’’ 

60°C – 1’ 

Reading of the fluorescence signal 

 

 

Hprt expression was used as a reference to calculate the relative 

expression of the gene of interest. The following formula was used to 

calculate the relative expression level of the gene of interest: 

 

2^(PCR cycles of Hprt – PCR cycles of gene of interest) = relative 

expression of the gene of interest 
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3. Results 

 

3.1 Analysis of Tie2CreERT2-mediated recombination upon 

tamoxifen treatment 

 

The cloning of the Tie2CreERT2-transgene and its expression analysis in 

transgenic mice is described elsewhere (Elzer, J. diploma thesis, 

University of Heidelberg 2002).  

To investigate the Tie2CreERT2-mediated endothelial cell specific 

recombination upon tamoxifen treatment, Tie2CreERT2 mice were mated 

with transgenic mice containing an eGFP-reportergene (Tie2/RAGEeGFP/+). 

An eGFP-gene without promoter sequences was cloned into the locus of 

the receptor for advanced glycated end products (RAGE). Exons 2 to 7 of 

the RAGE gene were flanked by two loxP sites. Upon Cre-mediated 

recombination the intervening sequences were deleted. The deletion event 

resulted in the movement of the thymidine kinase (tk) promoter next to 

  

Cre 

Fig. 3 eGFP expression upon Cre mediated recombination 
Cre catalysed recombination leads to deletion of Exon 2 to 7 and the 
Neo-cassette and to expression of the eGFP-reportergene under control 
of the tk-promotor. 
In cells where recombination has occured the eGFP can be detected by 
fluorescence microscopy. 

eGFP  neo tk 

 

    

    

  

eGFP tk 

neo 

I II-VII VIII-XI 

II-VII 

I VIII-XI 

 



Results  39 

the start site of the promotorless eGFP open reading frame (Constien et 

al., 2001). Consequently, upon Cre recombination, eGFP transcription was 

activated (Fig. 3).  

As illustrated in Fig. 4, eGFP expression was analysed by fluorescence 

microscopy of 10 µm frozen sections of aorta, liver, brain and kidney of 

tamoxifen induced and control mice. Frozen sections of the organs of 

Tie2/RAGEeGFP/+-mice without tamoxifen treatment were used as control. 

In contrast to organs of untreated mice, the endothelial cells of the aorta, 

the small and bigger veins of the liver, the vessels of the meninges, small 

vessels of the brain and arteries and peritubular vessels of the kidney of 

tamoxifen induced Tie2/RAGEeGFP/+-mice showed a clear eGFP signal. 
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A B C 

Tie2/RAGEeGFP/+ with tamoxifen treatment, 
1 mg per day, 5 consecutive days 

brain 

kidney 

J K L 

G H I 

liver 

aorta 

Tie2/RAGEeGFP/+ 

without tamoxifen 

Fig. 4 Tie2CreERT2-mediated recombination upon tamoxifen treatment 
Fluorescence microscopy of frozen 10 µm sections of aorta, liver, brain and kidney of 
Tie2/RAGEeGFP/+-mice. 
Frozen sections of aorta, liver, brain and kidney of Tie2/RAGEeGFP/+-mice without tamoxifen 
treatment (A, D, G, J) showed no eGFP signal in the endothelial cell layer. 
Frozen sections of these organs of Tie2/RAGEeGFP/+-mice treated with 1mg tamoxifen per 
day for 5 consecutive days resulted in Tie2CreERT2-mediated recombination and occurred 
in eGFP expression in the endothelial cell layer (B, E, H, K, C, F, I, L).  
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3.2 Immunohistochemical analysis of Tie2CreERT2-mediated 

deletion of ERα in endothelial cells upon tamoxifen 

treatment 

 

The analysis of the ERα loss in endothelial cells of Tie2/ERfl/fl-mice 

following tamoxifen treatment, was done by immunohistochemistry on 6 

µm paraffin sections of the isolated organs. Paraffin sections of organs 

from uninduced Tie2/ERfl/fl-mice were used as control. Endothelial cells of 

the aorta, liver and the brain were immunoreactive for ERα in uninduced 

Tie2/ERfl/fl-mice (Fig. 5 A,D,G). The endothelial cells of the aorta of 

tamoxifen induced Tie2/ERfl/fl-mice (Fig. 5 B,C) as well as the endothelial 

cells of the vessels of the brain (Fig. 5 H,I) showed ERα immunoreactivity. 

However, the endothelial cells of the small veins showed an ERα loss, 

whereas endothelial cells of big veins and arteries showed ERα 

immunoreactivity (Fig. 5 E,F). Since the recombination pattern of ERα in 

the endothelial cells of tamoxifen induced Tie2/ERfl/fl-mice showed a 

heterogenous pattern these mutants were not used for further 

investigations about the role of ERα in stroke. 
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Tie2/ERfl/fl without 
tamoxifen 

Tie2/ERfl/fl with tamoxifen treatment, 
1 mg per day, 5 consecutive days 
 

 

brain 

liver 

aorta 

I G H 

F D E 

C A B 

 

   

Fig. 5 ERα loss in Tie2/ERfl/fl-mice following tamoxifen treatment 
using immunohistochemistry  
ERα positive cells were visualized on 6 µm parafin sections performing DAB 
staining (brown signals). Additionally, on parafin sections of aorta and liver 
(Fig. 6 A-F) a hematoxylin counterstain (blue signals) was performed. 
Immunohistochemistry of ERα on paraffin sections of uninduced Tie2/ERfl/fl-
mice (A,D,G). Endothelial cells of the vascular system were all ERα positive 
(brown signals).  
(B,C) Induced Tie2/ERfl/fl-mice showed a positive signal for ERα in endothelial 
cells of the aorta, of the vessels of the meninges (H) and small veins of the 
brain (I).Additionally endothelial cells of big veins of the liver (E) were ERα 
positive, too. ERα protein was lost in smaller veins of the liver (F), upon 
tamoxifen induction. 
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3.3 Immunohistochemical analysis of ERα deletion in 

CaMKIICre/ERfl/fl-mice in cortical neurons. 

 

ERα deletion in cortical neurons was analysed using 

immunohistochemistry. Following isolation of brains of CaMKIICre/ERfl/fl-

mice and ERαfl/fl-mice as a control, 20 µm vibratome sections were 

prepared.  Immunohistochemistry for ERα on free floating sections of 

ERαfl/fl-mice revealed an ERα expression in the cortex (Fig. 6 A,C). In 

contrast no ERα was detectable in the cortex of CaMKIICre/ERfl/fl-mice 

(Fig. 6 B,D). The loss of ERα in the neruons of the cortex is in line with 

previous findings which showed the loss of ERα in the neurons of the 

hypothalamus in CaMKIICre/ERfl/fl-mice (Wintermantel et al., 2006).  

 

 

A B 

C D 

Fig. 6 Analysis of ERα loss in the cortex of CaMKIICre/ERfl/fl-mice 
using immunohistochemistry  
On 20 µm freefloating sections of the brain ERα was detected in the ectorhinal 
cortex (A) and the piriform cortex (C) of ERαfl/fl-mice (brown signals). In 
CaMKIICre/ERfl/fl-mice ERα was not detectable in the cortex (B,D). 
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3.4 Analysis of estradiol effects in stroke 

 

In order to study the role of E2 in stroke, female wildtype mice underwent 

a middle cerebral artery occlusion (MCAO). The mice were ovarectomized 

and received an estradiol pellet (0.025 mg, 21 days release) which results 

in a constant E2 level of 35 pg/ml (Horsburgh et al., 2002). Control mice 

were ovariectomized and received no E2 pellet. Following 10 days of 

recovery, the mice underwent a MCAO and were sacrificed after 48 h. The 

brains were isolated and frozen on dry ice. Serial 20 µm coronal sections 

every 400 µm of the isolated brains were analysed using silver staining 

(Fig. 7). Stained sections were scanned and the infarct volume was 

measured using scion image software (Swanson et al., 1990). As shown in 

Fig. 8 E2-treated mice showed a significantly reduced infarct volume of 

35% compared to untreated mice (Fig. 8). 

 

               
- E2 + E2

Fig. 7 Silverstaining of coronary brain sections of mice which 
underwent a MCAO  
Typical sections of untreated animals (left side) and E2 treated animals (right 
side) are shown. Undamaged and living tissue was silverstained (grey). Apoptotic 
or necrotic tissue was unstained (white areas).  
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Fig. 8 Quantitative analysis of the stroke volume of untreated and 
estradiol treated female wildtype mice  
Ovariectomized E2 treated female mice (right bar, n=9) show a clear reduction of 
the infarct size after 48 h of a MCAO compared to ovariectomized mice without 
E2 treatment (left bar, n=6). The reduction of the infarct volume was 35%. 
(p<0,03) 
 

 

3.5 Analysis of stroke-mediated tissue damage using TUNEL 

staining on frozen sections from mice which underwent a 

MCAO 

 

As illustrated in Fig. 7, the area affected by stroke showed massive tissue 

damage. To examine whether programmed cell death is involved in this 

tissue damage, a TUNEL staining was performed. Frozen sections from 

brains of mice, which underwent a MCAO, were prepared and used for a 

TUNEL staining (Fig. 9) to detect damaged cells. TUNEL positive nuclei 

were only present in the stroke area (Fig. 9A). To visualize nuclei, a DAPI 

counterstain was performed (Fig. 9B). Double positive nuclei were 

represented by light turquoise signals as shown in merged pictures of 

panels A and B (Fig. 9C).  
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A C B 

Fig. 9 TUNEL staining on frozen sections from stroke affected 
brains  
Frozen sections from brains of mice which underwent a MCAO, were stained for 
apoptosis using TUNEL-histochemistry. Sections of E2 treated mice as well as 
sections from untreated mice showed TUNEL positive nuclei. Panels A-C show 
representative pictures of the staining. A) TUNEL positive nuclei (green dots). B) 
DAPI staining. C) Merged pictures. Double positive nuclei are represented by 
light turquoise signals. 
 

 

3.6 Middle cerebral artery occlusion in CaMKIICre/ERfl/fl-mice  

 

As shown by Wise and coworkers, E2 induced neuroprotective effects in a 

MCAO are mediated through ERα and not ERβ (Dubal et al., 2001). The 

cell type, however, that receives the estradiol signal and mediates its 

neuroprotection was not identified. To evaluate the role of neuronal ERα in 

a MCAO in the presence of E2, female CaMKIICre/ERfl/fl-mice were 

ovariectomized and received an E2 pellet. The mice underwent a MCAO. 48 

h after the surgery, the brains were isolated and the stroke volume was 

determined as described above. Ovariectomized ERαfl/fl-mice treated with 

E2 were used as a control. To estimate the relevance of neuronal ERα in 

stroke, a second group of untreated ovariectomized ERαfl/fl-mice 

underwent a MCAO.  

As it has already been shown in the previous experiment, E2 reduced the 

infarct volume in the E2 treated control group compared to the untreated 

control group (Fig. 10 left and middle bar). This neuroprotective effect 

was completely lost in CaMKIICre/ERfl/fl-mice despite the fact that these 
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mice were treated with E2 (Fig. 10 right bar). The size of the stroke 

volume was comparable to that of the untreated control group which 

underwent a MCAO. 
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Fig. 10 Quantitative analysis of the stroke volume in female 
neuronal ERα knock out mice compared to female ERαfl/fl-mice 
untreated and treated with E2
Quantitative analysis of the stroke volumes of ERαfl/fl-mice without E2-pellet, 
ERαfl/fl-mice with E2-pellet and CaMKIICre/ERfl/fl-mice with E2-pellet. All mice were 
ovariectomized. The mice were sacrificed following 48 h of a MCAO and the 
stroke volume was analysed as described above. The stroke volume of E2 treated 
ERαfl/fl-mice (middle bar, n=11) was clearly reduced to about 37% compared to 
untreated ERαfl/fl-mice (left bar, n=11, p<0,03) as well as to about 34% 
compared to the stroke volume of CaMKIICre/ERfl/fl-mice (right bar, n=8, 
p<0,01). The neuroprotective effect of E2 in stroke was completely lost in the 
neuronal specific ERα knockout. 
 

 

Data by Hurn and coworkers suggest that E2 also has a neuroprotective 

effect in male rats which underwent a MCAO (Toung et al., 1998). In order 

to examine this hypothesis in the model used here, and to find out 

whether E2 induced neuroprotective effects in a MCAO are also mediated 

by neuronal ERα in male mice, the previous experiment was repeated as 
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described above, using E2 treated male CaMKIICre/ERfl/fl-mice and E2 

treated and untreated male ERαfl/fl-mice as controls.  

As expected, E2 reduced the stroke volume in male ERαfl/fl-mice (n=8) 

compared to male ERαfl/fl-mice without E2 treatment (n=10, p<0,02) (Fig. 

11 left and middle bar). Moreover, consistent with the results in female 

neuronspecific ERα mutants, the neuroprotective effect of E2 was lost in 

male CaMKIICre/ERfl/fl-mice (n=11, p<0,01) (Fig. 11 right bar). 
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Fig. 11 Quantitative analysis of the stroke volume of male 
neuronal ERα knock out mice compared to male ERαfl/fl-mice 
untreated and treated with E2  
Quantitative analysis of the stroke volumes of male ERαfl/fl-mice without E2-
pellet, male ERαfl/fl-mice with E2-pellet and male CaMKII/ERfl/fl-mice with E2-
pellet. The mice underwent a MCAO and were sacrificed following 48 h. The 
stroke volume of E2 treated male ERαfl/fl-mice (middle bar, n=8) was significantly 
reduced to about 26% compared to untreated ERαfl/fl-mice (left bar, n=10, 
p<0,02). Consistent with the result of the female neuronal knock out obtained 
before, the stroke volume of E2 treated male ERαfl/fl-mice is significantly reduced 
to about 36% compared to E2 treated CaMKIICre/ERfl/fl-mice (right bar, n=11, 
p<0,01).  
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3.7 Analysis of the physiological parameters of female 

CaMKIICre/ERfl/fl-mice 

 

The pre-ischemic and post-ischemic physiological parameters of 

CaMKIICre/ERfl/fl-mice (n=4) and ERαfl/fl-mice (n=4) both treated with E2 

were analysed. This analysis was done to exclude that the deletion of ERα 

in the brain leads to secondary effects on cardiovascular physiology that 

influences stroke. The following physiological parameters were analysed: 

mean arterial blood pressure, pulse, body temperature, blood flow using 

Doppler analysis, glucose levels, partial pressure of oxygen, partial 

pressure of carbon dioxide, ion composition (BE), pH, haemoglobin oxygen 

saturation, haemoglobin carbon dioxide saturation, share of 

methaemoglobin and total oxygen concentration (table 1). The 

physiological analysis showed no significant differences between the pre-

ischemic ERαfl/fl-mice and the pre-ischemic CaMKIICre/ERfl/fl-mice. There 

were also no significant differences in the physiological parameters of the 

two groups detectable after performing a MCAO. 
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Pre-ischemic ERαfl/fl CaMKIICre/ERfl/fl

Mean arterial pressure (mmHg) 58.5 57.33 
Pulse (bpm) 297 296 
Body temperature (°C) 37.5 37.23 
Blood flow (relative units) 211.5 287.33 
Glucose (mg/dl) 262.5 228.67 
Partial pressure of O2 (mmHg) 79.9 82.13 
Partial pressure of CO2 (mmHg) 53.45 49.20 
BE (mEq/l) -6.23 -5.87 
pH 7.23 7.25 
Haemoglobin O2 saturation (%) 84.33 82.67 
Haemoglobin CO2 saturation (%) 5.78 5.07 
Methaemoglobin concentration (%) 0.93 0.90 
Total O2 concentration (ml/dl) 15 14.47 
   
Post-ischemic   
Mean arterial pressure (mmHg) 54.8 55.67 
Pulse (bpm) 306.0 304.00 
Body temperature (°C) 37.5 37.43 
Blood flow (relative units) 34.8 34.00 
Glucose (mg/dl) 279.5 249.00 
Partial pressure of O2 (mmHg) 64.9 76.23 
Partial pressure of CO2 (mmHg) 59.6 53.23 
BE (mEq/l) -9.2 -9.87 
pH 7.2 7.10 
Haemoglobin O2 saturation (%) 64.6 76.33 
Haemoglobin CO2 saturation (%) 4.5 4.67 
Methaemoglobin concentration (%) 1.1 1.00 
Total O2 concentration (ml/dl) 9.8 12.83 
 
Table 1 Pre- and post-ischemic physiological parameters of 
ERαfl/fl- and CaMKIICre/ERfl/fl-mice, both treated with E2
The following physiological parameters were analysed: mean arterial blood 
pressure, pulse, body temperature, blood flow using Doppler analysis, glucose 
levels, partial pressure of oxygen, partial pressure of carbon dioxide, ion 
composition (BE), pH, haemoglobin oxygen saturation, haemoglobin carbon 
dioxide saturation, share of methaemoglobin and total oxygen concentration. 
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3.8 Analysis of ERα deletion in microglial cells of 

LysMCre/ERfl/fl-mice 

 

Breeding mice expressing the Cre recombinase under control of the 

lysozyme M promoter to ERαfl/fl mice resulted in a deletion of ERα specific 

in the monocytic cell lineage including microglial cells. Microglial cells of 

LysMCre/ERfl/fl-mice and ERαfl/fl-mice as a control were isolated to 

determine the recombination efficiency and deletion of ERα in these cells. 

To show ERα loss in isolated microglial cells, an immunocytochemistry for 

ERα and isolectin B4 was performed (Fig. 12). ERα appears red in the 

controls and was mainly restricted to the nucleus of the cells (Fig. 12A), 

whereas 92% of the microglial cells isolated from LysMCre/ERfl/fl-mice 

showed no ERα signal (Fig. 12B). Cells were counterstained with isolectin 

B4 appearing green upon fluorescence microscopy, to identify them as 

microglial cells. 

    

                         

 

A B 

 

Fig. 12 Quantitative analysis of ERα deletion in microglial cells 
isolated from LysMCre/ERfl/fl-mice  
Microglial cells from ERαfl/fl-mice as a control (Fig. A) and from LysMCre/ERfl/fl-
mice (Fig. B) were isolated and a immunocytochemistry for ERα and isolectin B4 
were performed. ERα positive cells show a red signal upon fluorescence 
microscopy, whereas isolectin B4 positive cells appear green. 
 

 

 



Results  52 

3.9 Middle cerebral artery occlussion in LysMCre/ERfl/fl-mice  

 

 

Since it has been proven that ERα in neurons plays a critical role in 

mediating neuroprotective effects of E2, the role of ERα in microglial cells 

in stroke was investigated using LysMCre/ERfl/fl-mice. The experiment was 

performed as described above. Three groups of female mice were 

ovariectomized and underwent a MCAO. ERαfl/fl-mice received no estradiol 

pellets, whereas a second ERαfl/fl-group received an E2-pellet.  Additionally 

LysMCre/ERfl/fl-mice received an E2-pellet. The MCAO experiment was 

performed as described above.  

In agreement with previous MCAO experiments the neuroprotective effect 

of E2 was unequivocally displayed between E2 treated and control ERαfl/fl-

mice (Fig.13 left and middle bar, n=11, p<0,01). There was also a clear 

visible neuroprotective effect of E2 in female LysMCre/ERfl/fl-mice 

compared to ERαfl/fl control mice (Fig. 13 right bar, n=8, p<0,01). This 

was in contrast to the previous MCAO experiments where the 

neuroprotective effect of E2 was lost in the neuronal specific ERα knock 

out. 
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Fig. 13 Quantitative analysis of the stroke volume of female 
microglial ERα knock out mice compared to female ERαfl/fl-mice 
untreated and treated with E2
Quantitative analysis of the stroke volume of female ERαfl/fl-mice without E2-
pellet, female ERαfl/fl-mice with E2-pellet and female LysMCre/ERfl/fl-mice with E2-
pellet. The mice underwent a MCAO and were sacrificed following 48 h. The 
stroke volume of E2 treated ERαfl/fl-mice (middle bar, n=11) was significantly 
reduced to about 36% compared to untreated ERαfl/fl-mice (left bar, n=11, 
p<0,01). In contrast to the previous CaMKIICre/ERfl/fl-experiments, the stroke 
volume of E2 treated female LysMCre/ERfl/fl-mice was reduced (n=8, p<0,01).  
 

 

3.10 Real time PCR expression analysis of RNA isolated from 

cortices of female CaMKIICre/ERfl/fl-mice which underwent 

a MCAO 

 

For the analysis of ERα dependent transcriptional regulation in a MCAO, 

female CaMKIICre/ERfl/fl-mice and ERαfl/fl-mice as controls underwent a 

MCAO. As described in the previous sections, the mice were 

ovarectomized and received an E2-pellet. As a control, one group of 

ERαfl/fl-mice were left untreated.   
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The stroke volume reaches its maximum size after 48 h. Upon this time 

point, no more expansion of the stroke volume could be detected. To 

monitor the neuroprotective events on a transcriptional level, the mice 

were sacrificed 24 h following a MCAO. At that time, expression of genes 

participating in apoptotic or antiapoptotic events, is strongly changed 

(Alkayed et al., 2001; Dubal et al., 2006). Therefore cortices of the mice 

were prepared at 24 h of MCAO and immediately frozen in liquid nitrogen. 

The RNA of the tissues was isolated and a RT-PCR was performed. The 

resulting cDNA was then used for further expression studies by real time 

PCR as displayed in the following sections. Hypoxanthine guanine 

phosphoribosyl transferase 1 (HPRT1) was used as a reference gene for all 

real time PCR experiments in this study to quantify the changes in the 

RNA-expression levels of the investigated genes (Meldgaard et al., 2006).  

 

 

3.10.1 Expression levels of ERα in stroke 

 

As demonstrated before, the neuroprotective effects of E2 in neurons are 

mediated via ERα. Since it has been shown, that a MCAO can induce the 

upregulation of ERα expression in the brain (Dubal et al., 2006), ERαfl/fl-

mice were analysed for MCAO dependent transcriptional regulation of ERα. 

ERα expression levels in cortices affected by a MCAO (ipsilateral) were 

compared to the expression levels of ERα in unaffected cortices 

(contralateral)(Fig. 14). 

In absence of E2 transcription of ERα was sifnificantly higher in ipsilateral 

cortices than in the contralateral cortices (Fig.14 two left bars, n=9, 

p<=0,02). These findings were consistent with the result obtained on the 

cortices of E2 treated mice (Fig.14 two right bars, n=10, p<0,03). ERα 

transcription was significantly elevated in the ipsilateral cortices compared 

to contralateral cortices of E2 treated mice.  
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.10.2 Expressionanalysis of Bcl-2 in CaMKIICre/ERfl/fl-mice 

 

 has been shown, that the neuroprotective properties of Bcl-2 in in vitro 

ct to E2 and ERα 

Fig.14 Analysis of ERα expression levels in ipsilateral and 
contralateral cortices in MCAO 
 Real time PCR analysis of ERα expression in ipsilateral cortices compared to 
contralateral cortices of E2 treated and untreated ERαfl/fl-mice after 24 h of MCAO. 
ERα expression was measured by taqman analysis. In ispilateral cortices of mice 
in absence of E2 (right striped bar, n=9, p<0,02), as well as in the presence of E2 
(right filled bar, n=10, p<0,03), ERα expression was significantly elevated as 
compared to cortices of the contralateral side. 

 

3

following 24 h of a MCAO 

It

as well as in in vivo models of stroke are influenced by E2 (Choi et al., 

2004; Nilsen and Diaz Brinton, 2003; Zhao et al., 2004). 

To analyse the Bcl-2 expression level in stroke with respe

function in a stroke-model a real time PCR was performed. Two groups of 

female ERαfl/fl-mice, one with E2-pellets (n=10) and one without (n=9), 

and an E2 treated group of female CaMKIICre/ERfl/fl-mice (n=9) were 
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analysed by performing a real time PCR. The RNA was isolated from the 

ipsilateral cortices of these mice following 24 h of a MCAO. After 

performing a reverse transcription, the cDNA was used for real time PCR 

analysis.  

In contrast to previous findings (Alkayed et al., 2001; Nilsen and Diaz 

i

qu

Brinton, 2003), there were no significant differences in the expression 

levels of Bcl-2 in the three experimental groups detectable (Fig. 15). 

Neither an E2 mediated Bcl-2 regulation (Fig. 15 left and middle bar) nor 

an ERα dependent Bcl-2 expression could be observed (Fig. 15 middle and 

right bar), suggesting that Bcl-2 expression is not affected by E2 or its 

receptor ERα in this model of stroke. 
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F g. 15 Bcl-2 expression levels in female CaMKIICre/ERfl/fl-mice 
performing real time PCR analysis 
The Bcl-2 expression level was analyzed using a real time PCR techni e. RNA 
from the ipsilateral cortices of ERαfl/fl-mice in absence (left bar) and presence 
(middle bar) of E2 and CaMKIICre/ERfl/fl-mice treated with E2 (right bar) was 
isolated following 24 h of a MCAO.  
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3.10.3 Expressionanalysis of cyclooxygenase-2 in 

 

yclooxygenase-2 (COX-2) catalyses the first step in the synthesis of 

he 

ssion level in ERαfl/fl-mice (n=10) with E2-pellet was not 

CaMKIICre/ERfl/fl-mice after 24 h of a MCAO 

C

prostanoids, a large family of arachidonic acid metabolites comprising 

prostaglandins, prostacyclin, and thromboxanes. COX-2 activity is 

described to exacerbate neuronal death in ischemia (Wu Chen et al., 

2004). In contrast to these observations, COX-2 is required for the 

development of sexual behaviour in newborn male mice and is 

upregulated upon estradiol treatment (Amateau and McCarthy, 2004).  

Therefore the expression of COX-2 was analysed by real time PCR. T

settings and realization of the experiment were conducted as described in 

section 3.10.2.  

The COX-2 expre

significantly altered compared to ERαfl/fl-mice (n=9) without E2-pellet (Fig. 

16 left and middle bar). However, COX-2 expression was significantly 

increased in CaMKIICre/ERfl/fl-mice (n=9) compared to E2 treated ERαfl/fl-

mice (Fig. 16 middle and right bar) suggesting, that ERα is able to 

suppress the expression of COX-2.  
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Fig. 16 COX-2 expression levels in female CaMKIICre/ERfl/fl-mice 
using real time PCR analysis  
COX-2 mRNA expression was analysed performing a real time PCR. The RNA was 
isolated from ipsilateral cortices of ERαfl/fl-mice lacking E2 treatment (left bar, 
n=9) and ERαfl/fl-mice (middle bar, n=10) and CaMKIICre/ERfl/fl-mice (right bar, 
n=9) both treated with E2, after 24 h of a MCAO.  
 

 

3.10.4 Expressionanalysis of prostaglandin E2 EP1 receptor (EP1) 

and prostaglandin E2 EP2 receptor (EP2) in 

CaMKIICre/ERfl/fl-mice after 24 h of a middle cerebral 

artery occlusion 

 

The neurotoxic effect of COX-2 is mediated via one of its products 

prostaglandin E2 (PGE2). PGE2 binds and activates EP1, resulting in the 

disruption of the Ca2+ homeostasis in neurons by disrupting Na+-Ca2+ 

exchange. In case of an ischemic insult, elevated Ca2+ accumulation can 

lead to increased neuronal damage (Kawano et al., 2006).  
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In contrast to these findings PGE2 also binds to EP2. This receptor was 

postulated to have neuroprotective effects in an ischemic insult 

(McCullough et al., 2004). 

Since COX-2 expression was slightly increased in the CaMKIICre/ERfl/fl-

mice, reflecting the increased tissue damage in these mice, it was most 

intriguingly to analyze changes in transcription levels of EP1 and EP2. 

Isolated RNA of ERαfl/fl-mice in presence and absence of E2 and RNA of 

CaMKIICre/ERfl/fl-mice were used to perform a real time PCR to monitor 

the levels of EP1 and EP2 transcription. The settings and realization of the 

experiment were conducted as described in section 3.10.2.  

Transcription of EP1 was slightly but not significantly decreased in ERαfl/fl-

mice treated with E2 compared to ERαfl/fl-mice without E2 treatment as 

well as in CaMKIICre/ERfl/fl-mice (Fig. 17). Moreover, the transcription 

levels of EP2 were completely unaffected by E2 treatment or the loss of 

neuronal ERα (Fig. 18) when comparing the different experimental groups 

with each other. 
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Fig. 17 EP1 expression in female CaMKIICre/ERfl/fl-mice using real 
time PCR analysis  
The EP1 expression level was analyzed using a real time PCR technique. RNA 
from the ipsilateral cortices of ERαfl/fl-mice in absence (left bar) and presence 
(middle bar) of E2 and CaMKIICre/ERfl/fl-mice treated with E2 (right bar) was 
isolated following 24 h of a MCAO.  
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Fig. 18 EP2 expression levels in female CaMKIICre/ERfl/fl-mice 
using real time PCR analysis  
Real time PCR analysis of EP2 expression of RNA isolated from the ipsilateral 
cortices of ERαfl/fl-mice without E2 treatment (left bar, n=9), ERαfl/fl-mice (middle 
bar, n=10) and CaMKIICre/ERfl/fl-mice (right bar, n=9) with E2 treatment. The 
RNA of the ipsilateral cortices was isolated after the mice underwent a MCAO of 
24 h.  
 
 
3.10.5 Expressionanalysis of cocaine- and amphetamine-

regulated transcript (CART) in CaMKIICre/ERfl/fl-mice after 

24 h of a middle cerebral artery occlusion 

 

Cocaine- and amphetamine-regulated transcript (CART) peptides are 

neurotransmitters with important roles in a number of physiologic 

processes. As a modulator of the mesolimbic system, CART is well known 

to play a role in drug abuse. Additionally, as recently reported, CART has 

neuroprotective effects in stroke and its expression is inducible by E2 

(Kuhar et al., 2005). To study the expression of CART in stroke and its 

regulation by E2, a real time PCR for CART transcription was performed. 

The experimental settings and procedures were conducted as described in 

section 3.10.2. 

There were no significant differences detectable comparing real time PCR 

performed on RNA from ERαfl/fl-mice with E2 treatment to ERαfl/fl-mice 

without E2 treatment (Fig. 19 left and middle bar). There were also no 
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changes in the transcription level of CART in E2 treated ERαfl/fl-mice 

compared to E2 treated CaMKIICre/ERfl/fl-mice (Fig. 19 middle and right 

bar). 
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Fig. 19 Analysis of CART expression in female CaMKIICre/ERfl/fl-
mice performing real time PCR  
Real time PCR analysis of CART expression of RNA isolated from the ipsilateral 
cortices of ERαfl/fl-mice without E2 treatment (left bar, n=9), ERαfl/fl-mice (n=10) 
and CaMKIICre/ERfl/fl-mice (n=9) with E2 treatment (middle and right bar). The 
RNA of the ipsilateral cortices was isolated after the mice underwent a MCAO for 
24 h. The transcription level of CART was not altered in ERαfl/fl-mice with E2-pellet 
compared to ERαfl/fl-mice without E2-pellet, nor was it changed compared to 
CaMKIICre/ERfl/fl-mice with E2-pellet. 
 

 

3.10.6 Analysis of the expression level of brain derived 

neurotrophic factor (BDNF) in CaMKIICre/ERfl/fl-mice after 

24 h of a MCAO 

 

It is well known, that E2 can induce trophic factors in the brain, which 

promote cell survival in stroke (Wise et al., 2001). Therefore, BDNF 

transcription was analysed in ovariectomized ERαfl/fl-mice in absence and 
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presence of E2, as well as in E2 treated CaMKIICre/ERfl/fl-mice, using real 

time PCR technique. The experimental settings and procedures were 

conducted exactly as in section 3.10.2. 

As illustrated in Fig. 20, BDNF transcription was twofold increased in 

ERαfl/fl-mice treated with E2 compared to ERαfl/fl-mice in absence of E2 (left 

and middle bar). Surprisingly, BDNF transcription was more than twofold 

increased in CaMKIICre/ERfl/fl-mice treated with E2 compared to ERαfl/fl-

mice in absence of E2 (Fig 20 middle and right bar). These results suggest 

that BDNF is upregulated by E2 independent of neuronal ERα. 
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Fig. 20 Real time PCR analysis of BDNF expression in female 
CaMKIICre/ERfl/fl-mice  
The BDNF expression level was analyzed using real time PCR technique. RNA 
from the ipsilateral cortices of ERαfl/fl-mice in absence (left bar) and presence 
(middle bar) of E2 and CaMKIICre/ERfl/fl-mice treated with E2 (right bar) was 
isolated following 24 h of a MCAO. 
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4. Discussion 

 

E2 has neuroprotective effects in stroke. It was shown that physiological 

doses of E2 are sufficient to reduce the stroke volume in several models of 

a MCAO in rodents (Dubal et al., 1998; Hurn et al., 1995; Merchenthaler 

et al., 2003). In contrast to these findings, the women’s health initiative 

revealed that long term treatment with estrogens can lead to dementia 

and a higher risk for cardiovascular events including stroke (Schmidt et 

al., 2006). There are also unwanted side effects upon long term treatment 

with estrogens in women observed, like a higher risk for endometriosis 

and ovarian cancer. This controversy of “good effects” of E2 in animal 

models of stroke and on the other hand “bad effects” upon long term 

treatment with estrogens in humans, shows clearly that there is a need 

for a better understanding of estrogen action in stroke. 

It was demonstrated by Wise and coworkers that the neuroprotective 

effects of E2 are mediated via ERα and not ERβ in mice (Dubal et al., 

2001). However, since germline ER knock out mice were used in the study 

of Wise and coworkers, the question remained unanswered in which 

celltype ERα mediates its neuroprotective effects upon ligand dependent 

activation.  

The aim of this work was to identify the celltype in which ERα action 

mediates neuroprotection. Therefore, three different tissue specific ERα 

knock out mouse strains were generated using the Cre-loxP-system. 

Neuronal specific ERα knock out mice were achieved by breeding ERαfl/fl-

mice to CaMKIIαCre-mice (Casanova et al., 2001; Wintermantel et al., 

2006). Microglial specific ERα knock out were achieved by breeding 

ERαfl/fl-mice to LysMCre-mice (Clausen et al., 1999). Finally, endothelial 

specific CreERT2 expressing mice were analysed for endothelial specific 

recombination upon tamoxifen treatment, and then bred to ERαfl/fl-mice to 

achieve an endothelial specific ERα knock out.  

 



Discussion  64 

Performing MCAO experiments with CaMKIICre/ERfl/fl-mice and 

LysMCre/ERfl/fl-mice revealed that the neuroprotective effects of E2 are 

mediated through neuronal ERα and not microglial ERα. 

After identifying neuronal ERα as the critical mediator of E2-induced 

neuroprotection, female neuronal specific ERα knock mice were used to 

investigate the molecular mechanisms which are affected by the ERα in 

stroke. 

 

 

4.1 In Tie2CreERT2-mice, CreERT2 mediated endothelial specific 

recombination is induced upon tamoxifen treatment, but is 

not sufficient for complete deletion of ERα in endothelial 

cells of the vascular system 

 

The Tie2-gene is expressed in endothelial cells of the vascular system and 

in hematopoietic cells while embryonic development, but its expression is 

restricted to the endothelial cells of the vascular system after birth 

(Takakura et al., 1998). Former generated constitutive active Tie2Cre-

mice showed recombination activity of the Cre not only in endothelial cells 

of the vascular system but showed also recombination activity in 

hematopoietic cells (Constien et al., 2001) due to the activity of the Tie2 

promotor while embryonic development. To circumvent Cre-mediated 

recombination in the hematopoietic system, transgenic mice were 

generated, expressing the tamoxifen inducible CreERT2-recombinase under 

control of the Tie2-promotor.  

To investigate endothelial specific recombination upon tamoxifen 

treatment, Tie2CreERT2-mice were crossed with RAGEeGFP/+-mice. 

Endothelial cells of the aorta, liver, kidney and brain of 

Tie2CreERT2/RAGEeGFP/+-mice were eGFP positive upon intraperitoneal 

tamoxifen injection. These results demonstrated that recombination is 

inducible by tamoxifen and that recombination is restricted to the 

endothelial cells of the vascular system. Tissue specific expression of the 
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Cre is dependent on the promotor and its regulatory sequences which 

drive the expression. The advantage of the use of a BAC as a vector is to 

include all regulatory elements of a promotor into the Cre-transgene, 

therefore guaranteeing the tissue specific expression. Former generated 

constitutive active Tie2Cre-mice used plasmids as a vector for the 

transgene.  Since a plasmid cannot mirror the genomic surrounding of the 

Tie2-promotor, these mice showed recombination in the germline 

(Constien et al., 2001), resulting in a complete null allele. Germline 

recombination was not observed in the Tie2CreERT2-mice analysed in this 

study. This finding points out the importance of the use of the whole Tie2-

promotor. Experiences of this laboratory in the use of Cre-transgenes, 

revealed that the use of a BAC as a vector allows control of the expression 

of the transgene by nearly all promoter-elements of the expression driving 

gene. In contrast, experiences with plasmid-transgenes showed that the 

expression of some plasmid-based transgenes differ from the endogenous 

expression pattern of the genes used for the control of the transgene 

expression due to lacking regulatory elements. Furthermore Arnold and 

coworkers generated a plasmid based inducible Tie2CreERT2-mice 

displaying difficulties in inducing tamoxifen dependent recombination 

(Forde et al., 2002). The authors claimed that the expression level of the 

transgene is not sufficient to obtain tamoxifen induced complete 

recombination in the endothelial cells of the whole vascular system.  

The Tie2CreERT2-mice investigated in this study showed recombination in 

the endothelial cells of all investigated organs, suggesting that tamoxifen 

treatment induces recombination in all vessels. 

In contrast to the tamoxifen induced recombination demonstrated in the 

Tie2CreERT2/RAGEeGFP/+-mice of this study, the tamoxifen induced 

CreERT2-mediated recombination was not sufficient for the complete 

deletion of ERα in the endothelial cells of the vascular system. Since Cre-

mediated recombination is a stochastic event (Nagy, 2000), this 

controversy might be due to the fact that eGFP-expression is achieved by 

the recombination of one RAGEeGFP-allele, whereas for the deletion of ERα 
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both alleles of the gene have to be recombined. The expression level of 

the CreERT2 might be insufficient to mediate recombination of both ERαfl/fl-

alleles.  

However, to reveal the reason for this controversy of complete tamoxifen 

induced recombination of the RAGEeGFP-allele and incomplete 

recombination of the ERαfl/fl-alleles in endothelial cells of the vascular 

system, further investigations have to be done. 

 

 

4.2 Neuronal ERα mediates the neuroprotective effects of E2 and 

not microglial ERα 

 

To define the role of neuronal ERα in stroke, CaMKIIαCre mice were 

crossed with ERαfl/fl-mice. It was demonstrated, that the resulting 

neuronal ERα knock out mice lacked ERα in all neurons of the cortex.  

To generate a microglial ERalpha knockout, lysMCre mice were mated with 

ERαfl/fl-mice, which resulted in ERα loss in the monocytic cell lineage and 

therefore to the loss of ERα in 92% of the microglial cells of the brain, as 

it was shown in this work.  

Performing a MCAO experiment with female neuronal ERα knock out mice 

showed that the neuroprotective effect of E2 was completely lost in the 

mutants. Also in the male neuronal ERα knock out mice, E2 did not reduce 

the stroke volume in the mutant mice. To exclude secondary effects of the 

mutation, physiological parameters of the mice were monitored. There 

were no significante alterations in the monitored physiological 

measurements comparing ERαfl/fl-mice with CaMKIIα/ERfl/fl-mice, showing 

that the phenotype is due to the deletion of ERα in neurons and not 

because of the integration site of the Cre-transgene. These data provide 

evidence for the critical role of neuronal ERα to mediate the 

neuroprotective effects of E2 in stoke.  

It has been reported that microglial ERα plays an important role reducing 

damage and inflammatory events in in vitro models of stroke (Bruce-
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Keller et al., 2000; Dimayuga et al., 2005; Ghisletti et al., 2005). 

However, in vivo models for demonstrating if there is a neuroprotective 

effect in stroke mediated by microglial ERα have not been investigated so 

far.  

In contrast to the reported in vitro experiments, the neuroprotective effect 

of E2 was still present in the micrglial ERα knock out mice after 48 h of 

MCAO. This shows that microglial ERα has no role in mediating E2 

dependent neuroprotection. Nevertheless, the role of microglial ERα in 

repressing inflammatory events and therefore promoting the regeneration 

of the brain after a stroke occurred, have to be investigated in long term 

MCAO experiments.  

Taken together these experiments demonstrated that E2 has 

neuroprotective effects in stroke in female as well as in male mice. 

Furthermore it was demonstrated, that E2 dependent neuroprotection is 

mediated via neuronal ERα and not microglial ERα in the acute phase of a 

stroke.  

 

 

4.3 Analysis of gene expression 

 

To examine the molecular mechanisms which are affected by the 

neuroprotective action of ERα, real time PCR experiments were performed. 

Finsen and coworkers have shown that hypoxanthine guanine 

phosphoribosyl transferase 1 (HPRT1) expression is not altered while a 

MCAO (Meldgaard et al., 2006). Thus, HPRT1 was used as a reference 

gene for all real time PCR experiments in this study to quantify the 

changes in the RNA-expression levels of the investigated genes.  
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4.3.1 ERα is upregulated upon a MCAO 

 

Since immunohistochemistry for ERα showed that the receptor is 

expressed at low levels in the cortex, a real time PCR experiment was 

performed to analyse ERα expression in stroke. Comparing the ipsilateral 

cortex which is affected by the MCAO to the unaffected contralateral 

cortex, showed significant upregulation of ERα upon MCAO in E2 treated as 

well as in untreated mice. These findings give another hint to the 

important role of neuronal ERα in stroke.  

 

 

4.3.2 COX-2 expression is only elevated in neuronal specific ERα 

knock out mice, but does not respond to E2 

 

COX-2 plays different roles in the mammalian brain. While the perinatal 

phase COX-2 and one of its products prostaglandin E2 are needed for the 

development of the neuronal structures which mediate sexual behaviour 

(Amateau and McCarthy, 2004). Additionally the expression level of COX-

2 is affected by E2 while this perinatal phase.  

On the other hand, COX-2 is also known to have neurodegenerative 

effects in stroke (Hara et al., 1998), mediated by increased PGE2 

production and binding of PGE2 to its receptor EP1 (Kawano et al., 2006).  

To elucidate the controversy that E2 on the one hand has neuroprotective 

effects but on the other hand is able to induce COX-2 expression, which is 

described to exacerbate neuronal death in ischemia, COX-2 expression 

was investigated by real time PCR. COX-2 expression was not significantly 

changed in ERαfl/fl-mice treated with E2 compared to ERαfl/fl-mice without 

E2 after 24 h of MCAO. In contrast, neuronal ERα knock out mice showed 

a 27% elevation of COX-2 expression compared to E2 treated ERαfl/fl-mice. 

E2 alone had no effect on the level of COX-2 expression, only the loss of 

the whole receptor in neurons in the CaMKIIα/ERfl/fl-mice leads to an 

increased expression of COX-2. This data provide a hint that COX-2 
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expression is not influenced by E2, but might be repressed by ERα. 

However, expression-levels of downstream signalling molecules of COX-2, 

like EP1 and EP2, were not changed in MCAO, leading to the conclusion, 

that COX-2 plays no pivotal role in E2- and ERα-mediated neuroprotection 

in ischemia. 

 

 

4.3.3 BDNF is upregulated upon E2 treatment, but its regulation 

is independent from ERα 

 

There are several effects of BDNF in the brain, like trophic functions while 

development and neuroprotective actions in models of brain injury and 

stroke (Behl, 2002; Garcia-Segura et al., 2001). These mechanisms are 

described to be influenced by E2. Like demonstrated here, BDNF is 

upregulated in stroke upon E2 treatment. But this upregulation is 

independent of neuronal ERα, since the BDNF expression level is also 

elevated in the neuronal ERα knock out mice compared to the ERαfl/fl-mice 

lacking E2 treatment. However, the neuroprotective effects of BDNF seem 

to be upstream of ERα action in stroke. BDNF is upregulated in stroke 

upon E2 treatment independent of neuronal ERα, but the neuronal damage 

can be only prevented in the presence of ERα in neurons since the stroke 

volume and therefore the neuronal damage is only reduced in the E2 

treated ERαfl/fl-mice. These data demonstrate, that BDNF is necessary for 

neuroprotection in stroke, but it is not sufficient. Furthermore it was 

shown that neuronal ERα is required to mediate the neuroprotective 

effects of BDNF in a MCAO. The upregulation of BDNF is E2 dependent, 

whether this upregulation is dependent on ERα in astrocytes or ERα in 

other celltypes of the brain except neurons could not be answered in this 

work.  
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4.4 Future perspectives 

 

It was demonstrated in this work, that E2 has neuroprotective effects in 

female as well as in male mice in a model of a MCAO. Furthermore it was 

shown, that the neuroprotective effects of E2 are mediated via neuronal 

ERα and not microglial ERα using the Cre-loxP system to generate tissue 

specific ERα knock outs. ERα is upregulated upon stroke, pointing to its 

important role in neuroprotection. Furthermore, neuronal ERα is needed to 

mediate the neuroprotective effects of BDNF in stroke. However, 

downstream signalling molecules of neuronal ERα mediated 

neuroprotection have not been identified. Therefore microarray analysis of 

RNA isolated from the cortices of neuronal specific ERα knock outs should 

reveal possible downstream signalling molecules of neuroprotective ERα 

action. Validated E2 targets can be used to “rescue” the phenotype of 

CaMKIIα/ERfl/fl-mice in a model of a MCAO, and therefore give new 

insights in molecular mechanisms mediating neuroprotective actions in 

stroke and potentially give rise to new medical applications. 
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