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Zusammenfassung 

Chaperone der Hsp70-Familie sind an einer Vielzahl zellulärer 

Proteinfaltungsvorgänge beteiligt, indem sie über ATP verbrauchende Reaktionszyklen 

Substrate binden und freisetzen. Diese Reaktionszyklen werden durch  J-Proteine sowie 

Nukleotidaustausch-faktoren reguliert. Hsp70 Chaperone binden überwiegend ungefaltete 

Polypeptide, interagieren jedoch im allgemeinen nicht mit deren nativ gefalteten Formen. 

Hsp70 erkennt aber auch hochspezifisch bestimmte nativ gefaltete Proteine, insbesondere 

regulatorische Proteine, als Substrate und moduliert deren Aktivität. Obwohl die Bindung 

an Substrate bereits extensiv untersucht wurde, wobei hauptsächlich Modellpeptide zum 

Einsatz kamen, ist es immer noch weitgehend unverstanden, wie die Bindung an nativ 

gefaltete Substrate erfolgt. Außerdem ist unklar, ob Hsp70 Proteine ihre Substrate nur in 

einem ungefalteten Zustand halten können oder eine aktive Rolle übernehmen, indem sie 

Konformationsänderungen im Substrat auslösen. Das Ziel dieser Arbeit war, zum 

Verständnis der Interaktion zwischen Hsp70 und nativ gefalteten Substraten beizutragen, 

indem deren Konformation und durch Hsp70 verursachte Konformationsänderungen 

untersucht wurden. Ich analysierte dafür die Interaktion zwischen dem Hsp70-

Homologen aus E. coli DnaK sowie dessen Co-Chaperon DnaJ mit zwei 

Proteinsubstraten, deren Aktivität über DnaK und DnaJ reguliert wird: den 

Hitzeschocktranskriptionsfaktor σ32 und das Replikationsinitiatorprotein RepE. 

Die Bindestellen von DnaK und DnaJ in σ32 wurden mittels 

Amidprotonenaustausch und Massenspektrometrie sowie über Deletions-und 

Punktmutationskonstrukte identifiziert.  Ich konnte zeigen, dass beide Chaperone die 

Konformation von σ32 beeinflussen, indem sie bestimmte Regionen destabilisieren, 

welche erstaunlicherweise entfernt von der jeweiligen Bindestelle liegen. Die Bindung 

von DnaJ an σ32 destabilisiert einen Bereich nahe der Bindestelle von DnaK, wodurch die 

katalytische Aktivität von DnaJ erklärt wird, welche darin besteht, das Substrat auf DnaK 

zu laden und die ATPase-Aktivität von DnaK synergistisch zu stimulieren. DnaK 

destabilisiert eine Region in der N-terminalen Domäne, dem Hauptangriffspunkt der 

Protease FtsH, die σ32 in vivo abbaut. 
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RepE führt abhängig vom Oligomerzustand verschiedene Funktionen aus: Als 

Dimer verhindert es seine eigene Synthese, als Monomer begünstigt es die Initiation der 

Replikation. DnaK reguliert die Monomerisierung von RepE. Ich konnte den molekularen 

Mechanismus der Monomerisierung aufklären, indem ich die Konformation des dimeren 

RepE und einer konstitutiv monomeren Varianten, RepE54, mittels 

Amidprotonenaustausch-Experimenten verglich. Dadurch konnte ich die 

Dimerisierungsgrenzfläche kartieren und außerdem die Bindestelle von DnaK 

identifizieren, welche überraschenderweise nicht in der räumlichen Nähe der 

Dimerisierungsregion liegt.  
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Abstract 
 Hsp70 chaperones assist a large variety of protein folding processes in the cell by 

ATP-controlled cycles of substrate binding and release that are regulated by J-proteins 
and nucleotide exchange factors. Hsp70 chaperones bind to almost all unfolded proteins 
but generally do not interact with their native counterparts. However, Hsp70 also 
recognize certain folded proteins as substrates, like natively folded regulatory proteins, 
and modulates their activities. Even though the binding to peptide substrates has been 
extensively studied, it is still unclear how the binding to natively folded substrates occurs. 
It is also unknown whether Hsp70 proteins keep their substrates in an unfolded 
conformation in solution or play a more active role by inducing conformational changes 
on them. The aim of this Thesis was to contribute to a deeper understanding of the Hsp70 
interaction with natively folded substrates, studying their conformation and probing 
possible conformational changes due to the action of Hsp70. I have analyzed the 
interaction of the E. coli Hsp70 homologue DnaK and its co-chaperone DnaJ with two 
protein substrates whose activity is regulated by DnaK and DnaJ: the heat-shock 

transcription factor σ32 and the replication initiator protein RepE.  
Using amide hydrogen exchange experiments combined with mass spectrometry, 

and deletion and point-mutation constructs, I have identified the DnaK and DnaJ binding 

sites in σ32. I have been able to show that both chaperones influence the conformation of 

σ32 by destabilizing specific regions distant to their binding sites. DnaJ binding to σ32 
destabilizes a region in close spatial vicinity to the DnaK binding site, thereby explaining 

the catalytic action of DnaJ in loading σ32 onto DnaK and the synergistic stimulation of 

DnaK’s ATPase activity by the simultaneous interaction of DnaJ and σ32. DnaK 
destabilizes a region in the N-terminal domain, the primary target for the FtsH protease, 

which degrades σ32 in vivo.  
RepE, on the other hand, performs different functions depending on its oligomeric 

state: as a dimer it represses its own synthesis while as a monomer it promotes replication 
initiation. Monomerization of RepE is regulated by DnaK. I have characterized the 
molecular mechanism of this regulation by investigating the conformation of dimeric 
RepE wild type and the constitutively monomeric variant RepE54 by amide hydrogen 
exchange experiments. I have been able to map the dimer interface in RepE and to 
identify the DnaK binding site which, interestingly, is not close to the dimer interface.  
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Overview 
 

 

 

 

 

 

 

Protein folding is the process by which a protein assumes its characteristic 

functional tertiary structure or native state. The information for the proper folding of a 

protein is encoded in its amino acid sequence (Anfinsen, 1973). At low protein 

concentration and low temperatures many purified proteins can fold spontaneously in 

vitro.  However, the situation inside the cell is more complex. The cellular environment is 

crowded with high protein concentrations (300 to 400 mg/ml), and in vivo proteins have 

to fold at physiological temperature (Zimmerman & Trach 1991, Ellis 2001). In addition, 

protein stability depends on factors such as pH, temperature and salt concentrations that 

can be affected by environmental changes inducing misfolding of many proteins. To 

antagonize these risks, cells have evolved a system of molecular chaperones that assist 

the folding of other proteins.  

Most proteins can only fulfill their biological function when they are properly 

folded. The importance of protein folding and its regulation by molecular chaperones is 
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evidenced by cellular abnormalities observed when proteins misfold. Despite the ability 

of molecular chaperones to efficiently hinder protein aggregation, misfolding of some 

proteins cannot be prevented. This is the case, for example, for Alzheimer's, Huntington's, 

and prion diseases. In other situations, like cystic fibrosis, even though a protein carrying 

a mutation is sufficiently active to prevent the disease state, the product is captured by the 

quality control system in the endoplasmatic reticulum (ER) and never reaches its site of 

function.  

Many of the molecular chaperones were first identified by exposing cells to 

elevated temperatures, and are for this reason called heat-shock proteins (Hsp). Hsp are 

divided in different families according to their molecular weight: Hsp100, Hsp90, Hsp70, 

Hsp60, Hsp40, and the small Hsp. The Hsp70 family is one of the best-studied families of 

molecular chaperones. Hsp70 activity requires ATP and the cooperation of co-factors 

(co-chaperones) that control the Hsp70 ATPase cycle and target the chaperone to specific 

substrates. Hsp70 proteins and its co-chaperones assist a large variety of protein folding 

processes in the cell under both normal and stress conditions. Under stress conditions 

they prevent aggregation and assist refolding of misfolded proteins, whereas under 

normal conditions they: (a) assist folding of some newly synthesized proteins, (b) guide 

translocation of protein across organelle membranes, (c) disassemble oligomeric protein 

structures, (d) facilitate proteolytic degradation of unstable proteins, and (e) control the 

activity of regulatory proteins (Bukau and Horwich, 1998). Figure O.1 shows an 

overview of the cellular functions of the E. coli Hsp70 chaperone DnaK. Hsp70 

chaperones bind to almost all unfolded proteins but generally do not interact with their 

native counterparts. This property could be explained through the elucidation of the 

binding motif of Hsp70: it was found that Hsp70 recognize hydrophobic peptide stretches, 

which are exposed in unfolded proteins but buried inside the folded ones. However, 

Hsp70 proteins also recognize certain folded proteins as substrates. For example, DnaK 

binds to natively folded heat-shock transcription factor σ32, replication factors RepA and 

RepE, and the DNA replication initiation complex of bacteriophage λ, namely λO and λP 

proteins (Straus et al., 1990; Ishiai et al., 1994; Alfano and McMacken, 1989; 

Wawrzynow and Zylicz, 1995; Wawrzynow et al., 1995). In the case of native substrates, 

it is unclear which properties of the proteins make them a substrate for Hsp70. 

 
  

6



 
Figure O.1. Cellular functions of the Hsp70 chaperone DnaK. 

 

 

Even though Hsp70 proteins have been extensively studied, it is not completely 

clear how they interact with their substrates and whether they merely keep the substrate 

in an unfolded conformation in solution or they play a more active role inducing 

conformational changes in the substrate. These are fundamental questions that have not 

been solved in the chaperone field. 

The aim of this thesis is to obtain a deeper understanding of Hsp70-substrate 

interactions, studying the conformation of substrates and probing possible conformational 

changes due to the action of Hsp70. We have studied the E. coli DnaK chaperone, a 

member of the well-conserved Hsp70 family, and two native protein substrates whose 

activities are regulated by DnaK: the heat-shock transcription factor σ32 and the 

replication initiator protein RepE. We have examined the molecular mechanism of DnaK 

by identifying binding sites and possible DnaK-induced conformational changes in these 

two substrate proteins. These issues have been addressed using mainly hydrogen 
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exchange (HX) experiments but also traditional biochemistry techniques, as will be 

described in more detail in the course of the following chapters. 

The structure of this thesis is the following: 

• In Chapter 1 we review fundamental aspects of the Hsp70 chaperone machinery. 

We focus on the structural properties of the E. coli Hsp70 and its co-chaperone 

DnaJ, and the interaction of both with their substrates.  

• In Chapter 2 we review fundamental aspects relating to hydrogen exchange 

experiments that are later applied in Chapters 3, 5, 6 and 7.  

• In Chapter 3 we present a quenched-flow setup system that allows HX experiments 

with exchange times as short as 100 msec, and evaluate its performance and 

reproducibility. We then investigate the conformational properties of E. coli heat-

shock transcription factor σ32 free in solution.  There results were published in the 

journal Protein Science (Rist W., Rodriguez F., Jorgensen T., Mayer M.P., Protein 

Sci. 2005 14: 626-632).  

• In Chapter 4 we present a crystallization approach that we have performed for the 

DnaK-σ32 complex. We show the purification strategy and the results of the 

crystallization trials. 

• In Chapter 5 we study the interaction of DnaK and DnaJ with σ32. We confirm that 

the previously identified DnaK binding site in σ32 is the binding site in the native 

protein and we identify the segment involved in DnaJ binding. Using HX exchange 

experiments, we find that DnaK and DnaJ induce conformational changes upon 

binding to σ32. A manuscript describing these studies has been submitted for 

publication. 

• In Chapter 6 we consider two mutants of σ32 that have a longer half-life in vivo. The 

purpose of this study was to elucidate why these mutants are more stable and to 

understand the molecular mechanism of σ32 regulation.   

• Finally, in Chapter 7 we study RepE as another model substrate for DnaK. First, we 

characterize the RepE monomer and dimer, and then we identify the DnaK binding 

site in RepE. The results described in this chapter constitute a manuscript currently 

in preparation. 
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Chapter 1 
 

 

 

 

Hsp70 chaperone machinery 

 

 

 

The Hsp70 chaperone machinery is composed of Hsp70 proteins and co-chaperones 

that regulate their activities. Hsp70 proteins consist of an actin-like N-terminal ATPase 

domain of 45 kDa (Flaherty et al., 1990; Flaherty et al., 1991), a substrate-binding 

domain (SBD) of approx. 15 kDa, and a C-terminal domain of approx. 10 kDa whose 

function is not completely clear (Zhu et al., 1996) (Figure 1.1). The three-dimensional 

structure of the bovine Hsp70 ATPase domain has been solved. It consists of two lobes 

with a deep cleft between them; ATP binds at the base of this cleft (Flaherty et al., 1990). 

The crystal structure of the substrate-binding domain of E. coli DnaK, in complex with a 

peptide substrate, has also been determined: it consists of a β-subdomain and a C-

terminal α-helical subdomain (helical lid). The peptide substrate is bound in a cavity 
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formed by two pairs of inner and outer loops protruding upwards from the β-sandwich. 

Two elements are crucial for peptide binding: a hydrophobic pocket that accommodates a 

single hydrophobic side chain and an arch that encloses the peptide backbone (Zhu et al., 

1996). The peptide substrate is tightly packed into the binding cavity. But how can a 

substrate find its way into such a tight spot? Clearly, the substrate-binding site must 

undergo conformational changes to allow substrate binding.  

 

 

 
 

Figure 1.1. Structure of ATPase domain and substrate-binding domain of Hsp70. Left, ribbon 

representation of the bovine Hsc70 ATPase domain in complex with Mg2+.ADP.Pi and two K2+ ions 

(1BUP) (Flaherty et al., 1990). Right, E. coli DnaK substrate domain in complex with peptide substrate 

(1DKX) (Zhu et al., 1996), connected with a dotted line representing the linker. 
 

 

 

Structural data suggest that the helical lid and the β-sheet may move to allow 

substrate binding. Two distinct conformations in the lid were observed in the crystal 

structure of the DnaK substrate-binding domain (Zhu et al., 1996). In one structure, the 

long α-helix (α-helix B) that lies over the substrate-binding site was kinked in the middle 
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and slightly bent upwards. NMR studies of truncated substrate-binding domain showed 

that α-helix B is capable of unwinding at almost the same region where the kink was 

observed (Wang et al., 1998). Therefore, the opening of the substrate-binding domain can 

be achieved in part by bending of the α-helix B or pivoting of the complete α-helical 

domain away from the substrate-binding site. A lidless mutant of DnaK retains the 

capacity of allosteric stimulation of peptide release by ATP but to a lesser extent (Mayer 

et al., 2000a; Misselwitz et al., 1998; Pellecchia et al., 2000; Buczynski et al., 2001). 

This data indicates that the β-sheet domain also undergoes conformational changes upon 

substrate binding. In addition, HX experiments with DnaK in the presence of ATP have 

shown that ATP induces opening of the substrate-binding pocket mainly in the β-sheet 

sub-domain (Rist et al., 2006).  

Hsp70 interaction with substrates is regulated by ATP and co-chaperones that 

modulate the ATPase cycle (Mayer et al, 2000b). ATP binding to the ATPase domain of 

Hsp70 decreases the affinity of the substrate-binding domain for substrates by increasing 

both the association and the dissociation rates for substrates. In contrast, in the ADP-

bound state the affinity for substrate is high but the association and dissociation rates are 

low (Schmid et al., 1994; Mayer et al., 2000a; Gisler et al., 1998). Hsp70 proteins 

alternate between the ATP- and ADP-bound states (Figure 1.1). For most Hsp70 proteins, 

the rate-limiting step of the cycle is the ATP hydrolysis (McCarty et al., 1995; Theyssen, 

1996). ATP hydrolysis is strongly accelerated by Hsp40 or DnaJ proteins in the presence 

of substrates (Liberek et al., 1991; Karzai et al., 1996; Barouch et al., 1997; Misselwitz et 

al., 1998; Laufen, 1999). In addition, DnaJ proteins also can target Hsp70 partner 

proteins to pre-selected substrates (Mayer and Bukau 1998). The release of ADP and Pi 

from some Hsp70 is regulated by nucleotide exchange factors.   

The Hsp70 chaperone system in E. coli is composed of DnaK, DnaJ, and GrpE. 

DnaK is the Hsp70 protein, DnaJ stimulates nucleotide hydrolysis and targets substrates 

to DnaK, and GrpE promotes the exchange of ADP for ATP. DnaJ and GrpE act in 

concert to control the flux of unfolded polypeptides into and out of the substrate-binding 

domain of DnaK by regulating its nucleotide bound state.  
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Figure 1.2. Functional cycle of DnaK. 

 

The DnaJ-proteins (or Hsp40) family comprises multi-domain proteins that are 

defined by the presence of the highly conserved J domain. DnaJ is the prototype of this 

family. It has four domains: the J domain, the Gly/Phe-rich region, the zinc finger region 

and the C-terminal domain. The DnaJ-proteins family is divided in three subfamilies 

according to the degree of homology to DnaJ: (a) type I share significant homology to all 

four domains of DnaJ, (b) type II lack the zinc binding domain, and (c) type III only have 

the J domain in common with DnaJ. The type III subfamily can have a large variety of 

additional domains and protein motifs. The J domain is essential for the ATP stimulation 

of Hsp70 proteins (McCarty et al., 1995; Liberek et al., 1991; Laufen et al., 1999; 

Misselwitz et al., 1998; Russell et al., 1999; Wall et al., 1994). DnaJ can bind denatured 

substrates through its C-terminal domain (Langer, et al. 1992; Szabo et al., 1996; Szabo 

et al., 1994; Li et al., 2003). It has therefore been suggested that DnaJ is a chaperone 

itself. In addition, DnaJ can bind to nascent ribosome-bound polypeptides suggesting that 

DnaJ may protect polypeptide chains from aggregation and, in cooperation with Hsp70, 

promotes their correct folding (Hendrick et al., 1993).  

High resolution structures have been solved for isolated J domains (Figure 1.3): 

three helices pack together into a compact structure, with the highly conserved tripeptide 

histidine–proline–aspartate (HPD) exposed in a loop between helices II and III  

(Szyperski et al., 1994; Pellecchia et al., 1996; Berjanskii et al., 2000; Qian et al., 1996). 
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Mutations of this tripeptide reduce or abolish stimulation of the Hsp70 ATPase reaction, 

suggesting that the J domain plays an important part in the interaction of an Hsp40 

protein with its Hsp70 partner. NMR studies have suggested that the interacting surface 

on the J domain might be as small as residues 2–35, including helix II and the HPD 

tripeptide segment. In DnaK, the site of J domain interaction might be in a small cleft 

between subdomains IA and IIA of the ATPase domain. Alanine substitution of residues 

lining both sides of this cleft dramatically altered binding to DnaJ (Gässler et al., 1998).  

The co-chaperone GrpE functions as a nucleotide exchange factor to promote 

dissociation of ADP from the nucleotide-binding cleft of DnaK. GrpE was identified in a 

genetic screen for mutants that failed to propagate the bacteriophage λ in E. coli (Saito 

and Uchida, 1977). GrpE has been crystallized in complex with the ATPase domain of 

DnaK, showing that the former is an asymmetric dimer that is bent towards the latter as a 

result of the break in the long α-helix in the GrpE monomer proximal to DnaK. GrpE 

binding to DnaK opens the ATPase domain resulting in nucleotide dissociation. 

 

 

 

 
Figure 1.3. NMR structure of E.coli J-domain. The conserved HPD motif 

is marked as ball-and-stick model (1XBL, Pellecchia et al., 1996). 
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DnaK interaction with substrates 

In the crystal structure of the DnaK substrate-binding domain in complex with a 

peptide substrate, the peptide is bound over a stretch of five residues through two types of 

interactions. First, hydrogen bonds which are formed between the backbones of both the 

cavity-forming loops and the peptide. Secondly, van der Waals interactions which are 

formed between hydrophobic side chains of the binding cavity and the substrate peptide. 

At a central position within the binding cavity, two residues of DnaK form an arch that 

reaches over the bound substrate, and a hydrophobic pocket facing downwards 

accommodates a single hydrophobic side chain of the substrate. These latter interactions 

make the most important contributions to substrate binding (Zhu et al., 1996).   

DnaK interacts promiscuously with almost all unfolded proteins. Its substrate 

specificity was analyzed using a library of cellulose-bound 13-mer peptides scanning the 

sequences of natural proteins with an overlap of ten amino acids (Rüdiger et al., 1997). 

With this approach a consensus motif for DnaK binding sites was identified. It is 

composed of a core of up to 5 hydrophobic residues flanked by sequences rich in 

positively charged amino acids. The DnaK binding motif is frequent in protein sequences. 

On average, this site occurs in proteins every 36 residues. In the native state, these sites 

are buried in the hydrophobic core of the protein, explaining why most native proteins are 

not substrate of DnaK.  

All DnaK potential binding sites of a substrate can be determined using peptide 

libraries. However, a different approach is required to identify the DnaK binding site in a 

native folded protein. For example, the DnaK and DnaJ binding sites in RepA have been 

identified using deletion mutants and point mutants: DnaK binds in the N-terminus of 

RepA and DnaJ binds in the C-terminus (Kim et al., 2002).   

 

 

DnaJ interaction with substrates  

The binding motif of DnaJ has also been determined by screening of peptide 

libraries. It consists of a hydrophobic core of approximately eight residues enriched with 

aromatic and large aliphatic residues and arginine (Rüdiger et al., 2001). Most DnaK-

binding peptides are recognized by DnaJ, and only a minority of peptides with affinity for 

 
  

14



DnaK are not substrate for DnaJ. However, differences between the two chaperones 

arised when the affinity for D-amino acids was evaluated. DnaK’s affinity for peptides is 

lost in the D-stereoisomers even when the side chain conformation is conserved, 

demonstrating that backbones are essential for DnaK-substrate interactions (Feifel et al., 

1998; Rüdiger et al., 2001). This fact is consistent with the crystal structure of DnaK 

substrate-binding domain in complex with a peptide substrate, which shows hydrogen 

bonds between DnaK and the substrate backbone (Zhu et al., 1996). DnaJ, unlike DnaK, 

can bind to polypeptides consisting of D-amino acids. In the case of DnaJ, only the side 

chains are important for the interaction with substrates (Rüdiger et al., 2001; Feifel et al., 

1998). The zinc-binding domain is also important for substrate binding (Banecki et al., 

1996; Szabo et al., 1996; Linke et al., 2003). The yeast DnaJ homologue Ydj1 has been 

crystallized in complex with a peptide substrate. In that structure, interactions with the 

substrate backbone and Ydj1 were important and aromatic residues did not make any 

contact. This structure is not in agreement with DnaJ substrate specificity, suggesting that 

DnaJ substrate recognition may not be similar in different DnaJ-proteins. Substrate 

binding to DnaJ is not an essential function since mutants that cannot bind substrate still 

support DnaK-DnaJ dependent replication of bacteriophage λ and refolding of denatured 

proteins. However, higher concentrations of the DnaJ mutants are needed in this case 

(Wall et al., 1994 JBC; Linke et al., 2003 JBC). 

Two mechanisms have been proposed for the substrate targeting action of DnaJ to 

DnaK. In the first model, DnaJ and DnaK bind to the same hydrophobic patch. DnaJ 

binds first, and then the binding site is handed over to DnaK while DnaJ is dissociating. 

Alternatively, DnaK and DnaJ associate with different hydrophobic patches, followed by 

a DnaJ- and substrate-dependent ATP hydrolysis by DnaK, which locks the substrate in 

DnaK. The direct transfer mechanism is not operative in the case of RepA since DnaK 

and DnaJ have distinct binding sites in the RepA sequence (Kim et al., 2002). It is 

important to determine whether this mode of action of the DnaK-DnaJ team is generally 

applicable for other substrates and for Hsp70 homologues.  
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Natively folded substrates of DnaK  

 

Heat-shock transcription factor σ32 

The heat-shock response is a protective mechanism of cells against stress-induced 

damage of proteins (Morimoto et al., 1990). In E. coli this response is mediated by the 

alternative σ transcription factor σ32 that activates the transcription of the heat-shock 

genes (Bukau, 1993; Connolly et al., 1999; Gross et al., 1996; Yura and Nakahigashi, 

1999). σ factors bind to the catalytic core RNA polymerase (RNAP) to form the RNAP 

holoenzyme and recruit the RNAP to the promoter through sequence-specific binding of 

conserved, hexameric promoter elements located at positions –35 and –10 bp relative to 

the transcription start site (Gross et al., 1998). With the exception of σ54, all σ -factors 

comprise a homologous family (the σ70 family) with four flexibly linked domains: σ1.1, σ2, 

σ3 and σ4 (Gruber and Bryant, 1997). The structures of the σ domains have been 

determined individually (Campbell et al., 2002b; Li et al., 2002; Malhotra et al., 1996), in 

complex with anti-σ factors (Campbell et al., 2002a, 2003) and in complex with the core 

RNAP (Murakami et al., 2002; Vassylyev et al., 2002). The structures of the 

corresponding σ-domains are nearly identical in the different cases but with a different 

relative positioning. It is also known that binding to core RNAP induces large relative 

movements of the σ -domains of σ70 (Callaci et al., 1999). To date, no structure has been 

reported for σ32. However, it was shown using amide hydrogen experiments that σ32 has a 

high degree of flexibility (Rist et al., 2003).  

Stress-dependent changes in heat-shock gene expression are mediated by changes in 

synthesis, activity and stability of σ32. The levels of σ32 are regulated at the initiation of 

translation. Translational regulation is mediated by a secondary structure of the 5’ region 

of the mRNA encoding for σ32, which inhibits translation at low temperatures but is 

unstructured at high ones, enhancing ribosome loading and initiation of the translation 

(Morita et al., 1999a; Morita et al., 1999b; Yura and Nakahigashi, 1999).  

Under normal growth conditions, σ32 is rapidly degraded with a half-life of 

approximately 1 minute (Connolly et al., 1999; Gross et al., 1996; Herman et al., 1995; 

Kanemori et al., 1997; Kanemori et al., 1999; Tomoyasu et al., 1995). The DnaK and 

GroELS chaperone systems act as negative modulators of the heat-shock response by 
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regulating the stability and activity of σ32 (Straus et al., 1989; Tomoyasu et al., 1998; 

Guisbert et al., 2004). The DnaK system plays an important role in the regulation of the 

heat-shock response because its association with σ32 at optimal growth temperatures 

prevents the formation of the RNA polymerase-σ32 complex (Gamer et al., 1992; Liberek 

et al., 1992) and targets it to degradation. At high temperatures, the DnaK chaperone 

system binds to unfolded or aggregated proteins, liberating σ32. Shutoff of the heat-shock 

response starts after 4 to 6 min at a heat stress temperature. When enough chaperones are 

synthesized, the heat-shock sigma factor is again bound to available DnaK molecules and 

redirected to degradation, thus decreasing the amount of σ32 to normal levels (Straus et al., 

1990; Straus et al., 1987). In Figure 1.4 we show a model of the heat-shock regulation. 

 

 

 

 

 
 

Figure 1.4. Homeostatic model of heat-shock regulation in E.coli. σ32 is in equilibrium between an 

active form that can bind to RNAP and an inactive form that is bound to DnaK/DnaJ or GroEL. These 

chaperones target σ32 for degradation by FtsH. 
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σ32 is degraded in vivo by the protease FtsH and perhaps by other cytosolic 

proteases including HslUV (ClpYQ). FtsH, a member of the AAA+ family of proteins, is 

a membrane-bound ATP-dependent metalloprotease with an active site facing the 

cytoplasm. It degrades membrane and cytoplasmic proteins. Unfortunately, it has been so 

far impossible to fully reconstitute in vitro the degradation of σ32 by FtsH; only slow 

degradation at 42°C is observed and this degradation is not facilitated by chaperones 

(Blaszczak et al., 1999; Herman et al., 2003). It also remains unclear how FtsH, a 

membrane protease, is able to rapidly degrade cytosolic σ32. Early studies suggested that 

σ32 was degraded from the C-terminus. However, it was later shown using fluorescence 

polarization that the degradation of Cy3-σ32 proceeds from the N-terminus to the C-

terminus (Okuno et al., 2004).  

In Chapters 4, 5 and 6 we have studied the heat-shock transcription factor σ32 as a 

model substrate for DnaK and DnaJ. The elucidation of the molecular mechanism of 

DnaK-DnaJ regulation of σ32 is essential to understand the heat-shock response. 

 

RepE replication initiator protein 

The replication of many bacterial plasmids depends on replication initiator (Rep) 

proteins. Cellular concentrations of Rep proteins determine the plasmid copy number by 

regulating the replication initiation. One such Rep protein is RepE, which regulates the 

replication initiation of the mini-F plasmid from the origin of replication ori2 (Tolun et 

al., 1982; Watson et al., 1982; Maki et al., 1984). The mini-F plasmid is a derivative of 

the F (fertility) factor, which is involved in sexual conjugation in E. coli (Lovett & 

Helinski, 1976). It is maintained at 1-2 copies per host chromosome by stringent control 

of replication initiation.  

RepE has different functions depending on its oligomeric state. As a monomer, it 

functions as a replication initiation factor that binds to four directed repeats (iterons) at 

the replication origin to initiate plasmid replication. However, as a dimer, RepE represses 

its own transcription by binding to the operator of the repE gene consisting of an inverted 

repeat sequence. 

The RepE oligomeric state is regulated by the DnaK system (Kawasaki et al., 1990) 

(Figure 1.5). The first evidence that the DnaK system is involved in RepE regulation 
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arose from genetic studies. F plamids cannot replicate in E. coli strains expressing rpoH 

mutants and cannot transform E. coli cells lacking σ32 (Kawasaki et al., 1990). It was 

originally thought that σ32 controlled the transcription of RepE. However, repE mutants 

that can replicate in ∆rpoH mapped in the coding sequence, not in the promotor region of 

RepE (Kawasaki et al., 1991). These mutants have reduced autogenous repressor activity 

and increased initiator activity. A second set of RepE mutants was isolated in a dnaJ259 

background (Ishiai et al., 1992). These mutant plasmids were also able to replicate in 

dnaK and grpE mutants. The majority of these mutants carried a unique amino acid 

alteration in the coding region between residues 92 and 134. These RepE initiator 

variants bind ori2 repeat sequences with higher affinities as compared to wild-type 

protein, but their affinity for the operator is reduced (Kawasaki et al., 1992). Using 

purified proteins, Ishiai et al. demonstrated that the hyperactive initiator mutants are 

monomers and that RepE wild-type are dimers (Ishiai et al., 1992). DnaK, DnaJ and ATP 

enhance the binding of RepE to ori2 by promoting the conversion of dimeric RepE into 

monomeric RepE (Figure 1.5).  

 

 
Figure 1.5. Schematic representation of RepE functions. RepE monomers bind to four iterons (direct 
repeats) of ori2 to initiate replication. RepE dimers bind to the operator (inverted repeats) to repress repE 
transcription. The repeat sequences are also shown in the figure. DnaK and DnaJ regulate the 
monomerization of RepE.  
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A constitutively monomeric variant of RepE (RepE54) has been crystallized in 

complex with the iteron DNA (Komori et al., 1999). It is a pseudo-symmetric protein 

with two winged-helice domains (WH): winged-helice domain 1 (WH1) and winged-

helice domain 2 (WH2). WH consists of a helice-turn-helice DNA binding motif with one 

or two β-hair-pin wings (Figure 1.6). Recently, the structure of a dimeric N-terminal 

fragment of RepA was solved (Giraldo et al., 2003). RepA is a replication initiator 

protein related to RepE that exhibits some structural rearrangements to form the dimer. 

The pseudo-symmetry of the two domains is broken, and the RepA dimer interface is 

formed by hydrogen bonds between β-sheets. In the dimers, the C-terminal WH (WH2) 

domain binds to each operator DNA repeat. In the monomers, WH2 binds to the end of 

each iteron that includes the core of the repeat sequence, while WH1 binds to the 

opposite iteron end. When RepE is monomerized, the N-terminal dimerization domain is 

converted to a second origin-binding module.  Even though the structures of monomeric 

RepE and dimeric RepA have been solved, there is no available structure for the dimer 

RepE. 

 

 

 
 

Figure 1.6. Ribbon representation of RepE54 (R118P) in complex with the iteron DNA (1REP). (Komori 

et al., 1999) 
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In Chapter 7 we study RepE as a native substrate for DnaK. First, we characterize 

the RepE monomer and dimer by using hydrogen exchange experiments. We next map 

the DnaK binding site in RepE. 
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Chapter 2 
 

 

 

 

Amide Hydrogen exchange  
 

 

 

Hydrogen exchange (HX) experiments, first introduced by Linderstøm-Lang in the 

1950s, are a powerful technique that can be used to study protein structure and dynamics. 

Hydrogen atoms in proteins can exchange with hydrogen atoms from the solvent 

molecules surrounding the protein. Protein hydrogens can be divided in three types 

according to their exchange rate under the conditions generally employed in HX 

experiments: (a) hydrogens covalently bound to carbon that essentially do not exchange, 

(b) hydrogens attached to functional groups on the side chains that exchange very fast, 

and (c) backbone amide hydrogens that exchange at rates that can be measured (Figure 

2.1). Since backbone amide hydrogens are involved in the formation of hydrogen bonds 

in secondary structural elements their exchange rates are a reflection of the protein 
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structure. Hydrogen bonding and solvent inaccessibility protect hydrogens against 

exchange.  

 

 
 

Figure 2.1. Different kinds of hydrogens in proteins. Hydrogens covalently bound to carbon are shown in 

green, those attached to functional groups on the side chains are depicted in blue, and the ones at the 

backbone amide positions in red. 

 

 

Hydrogen exchange reactions can be quantified by measuring the exchange of 

protium (1H) for deuterium (2H) or tritium (3H), deuterium being the isotope most 

commonly used. The kinetics of amide HX can be measured by nuclear magnetic 

resonance (NMR) spectroscopy and mass spectrometry (MS).  

 

Exchange mechanism in peptides 

In water-based solutions, amide hydrogen exchange is catalysed by OH- (down to 

pH 3) and by H3O+ (below pH 3). The exchange rate for a freely exposed peptide amide 

hydrogen kex, also known as intrinsic chemical exchange rate, can be approximated as  

 

kex = kOH [OH-] + kH [H3O+] + ko                                  

 

where kOH, kH and ko are the rate constants for base-catalysed, acid-catalyzed and direct 

exchange with water. The latter exchange is insignificant in most studies. 

The exchange rate depends on the pH of the solution. For each unit change in the 

pH there is a 10-fold increase in the exchange rate. The minimum exchange rate is at pH 

2.5 to 3 (Figure 2.2). Hydrogen exchange rate is also temperature-dependent. The rate 

constants follow the Arrhenius equation, lnk = lnA - Ea/(RT), where A is a constant, Ea is 

the activation energy, R is the gas constant and T is temperature. Thus, there is a 3-fold 
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increase in the exchange rate for every 10°C increase in temperature. At pH 7 and 25°C, 

the half-lives of exposed amide hydrogens are in the range of 0.05-0.01 s, whereas at 0°C  

 
Figure 2.2. Rate constants for amide hydrogen exchange in a unstructured 

peptide as a function of pH (Bai et al., 1993). 
 

 

and pH 2.7 the half-lives are between 30 to 90 minutes. The latter conditions are used for 

quenching exchange reactions to preserve the isotope labels during analysis. Solvent 

composition also has an effect on the exchange rate —for example, miscible organic 

solvents generally slow it down. In addition, the neighbour residue side-chains influence 

the exchange constant. Bai et al. have assessed these neighbouring side-chain effects 

using model peptides (Bai et al., 1993). With the parameters obtained in that study it is 

possible to predict the intrinsic chemical exchange rate of peptide amide hydrogens for all 

conditions. 

 

Exchange mechanism in proteins 

In unstructured peptides, amide hydrogen exchange occurs under physiological 

conditions within milliseconds. However, rates are much slower for hydrogens that are 

protected by hydrogen-bonds or that are buried inside the protein. Linderstrøm-Lang et 

al. proposed the following two-step model for structurally protected hydrogens,  
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where kop and kcl are the opening (unfolding) and closing (refolding) rates and kch is the 

chemical exchange rate of freely available, unprotected amide hydrogen (Linderstrøm-

Lang, 1958). In this model, hydrogens are non-exchangeable in the closed state but can 

be exchanged in the open one.  

According to this model, the exchange rate kex can be defined as 

 

 
 

For native proteins, one can usually assume that refolding is much faster than 

opening (kcl>>kop), so kop in the denominator can be neglected and the equation above 

simplifies as follows: 

 
 

Two limiting cases are possible. If the closing rate is small compared to the chemical 

exchange rate, the observed exchange rate is directly related to the opening rate kex = kop. 

This regime is known as type 1 mechanism (EX1) or correlated exchange: all amide 

hydrogens exchange upon a single opening event. EX1 is observed under destabilizing 

buffer conditions like in the presence of chemical denaturants or extreme pH. In HX 

experiments where protons are exchanged for deuterons, EX1 mechanism yields peptides 

that contain either no deuterium or are fully deuterated, and thus two distinct mass peaks 

will be observed. In the type 2 mechanism (EX2), protein refolding is faster than the 

intrinsic exchange and folding-refolding occurs many times before hydrogen deuterium 

exchange is completed. The observed exchange rate is then  
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where Kop is the equilibrium constant for the opening (unfolding) reaction. Measuring kex 

and calculating kch leads to direct determination of the equilibrium constant Kop and the 

apparent free energy GHX for the unfolding process (Bai et al., 1994) 

 

 
 

In EX2 refolding is more likely than exchange reactions, and the exchange is 

random or uncorrelated. The mass spectrum shows a single mass peak that gradually 

shifts to higher masses.  

Experimental conditions like pH, temperature and chemical denaturants will 

determine which of the two exchange mechanisms dominates. It is also possible that both 

mechanisms, namely EX1 and EX2, are observed within the same protein.  

 

Mass spectrometry for monitoring hydrogen exchange 

The mass difference between hydrogen and deuterium is 1 Da; therefore, the 

changes in deuterium incorporation can be detected by changes in masses with a mass 

spectrometer. In native state HX, the exchange reaction is performed at physiological 

conditions for a certain amount of time and subsequently quenched by lowering the pH to 

2.5 and temperature to 0°C, which decreases hydrogen exchange rates for amide 

hydrogens. Under these conditions, the half-life of amide hydrogen exchange is 30 to 120 

minutes. This is enough time to analyze the sample by reverse-phase HPLC coupled to 

electrospray ionization mass spectrometry without a substantial loss of incorporated 

deuterium. The incorporated deuterium can be analyzed in a global manner (full-length 

proteins) or in a local one (peptides generated by proteolytic degradation), in which case 

more detailed information can be obtained. Peptides are produced by digesting the 

deuterium-labeled protein with pepsin under conditions of slow exchange (pH 2.5 and 

0°C). Figure 2.3 shows a schematic representation of a typical HX experiment. Of the 

many exchangeable hydrogens present in proteins, only backbone amide hydrogens are 

measured with this method. Since the rate of exchange of amide hydrogens in a folded 

protein depends on the presence of hydrogen bonds and the solvent accessibility, this 

technique can be use to monitor dynamical and conformational changes. HX experiments 
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can also be used to map binding interfaces when amide hydrogens are involved in the 

interaction with a ligand. Figures 2.4 shows a schematic representation of these two 

applications of HX experiments. 
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Mass spectrometer 

A mass spectrometer consists of three main parts: (a) an ion source where gaseous 

ions are formed, (b) a mass analyser that separates the ions regarding the mass-charge-

ratio (m/z), and (c) a detector. There are different ways of ionising analytes (Figure 2.4). 

For example, in electrospray ionisation (ESI) the sample is sprayed into an electrical field, 

while in MALDI (matrix assisted laser desorption ionisation) the sample is embedded in a 

crystal matrix and ions are produced after excitation of the matrix with a high intensity 

laser pulse of short duration. The ions can be separated by combining a magnetic and an 

electric field (sector field instruments), inside the RF field of a quadrupole, by a magnetic 

ion trap, or after a flight time in an ion flight tube combined with a pulsed ion formation 

(Time-Of-Flight instruments, TOF). 

 

 

Figure 2.5. Components of a mass spectrometer.  

Both ESI-MS and MALDI-MS can be used in amide hydrogen exchange 

experiments. However, ESI-MS is the most commonly used ionization method because 

the quenched sample can be introduced directly via HPLC into the electrospray source, 

thereby reducing the deuterium loss during the analysis. This loss of labeled deuteron is 

known as back-exchange.    
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Chapter 3 
 

 

 

 

A quenched-flow setup   
 

 

 

As mentioned in the previous chapter, amide hydrogen exchange (HX) combined 

with mass spectrometry (MS) is a powerful tool to analyze the folding and dynamics of 

proteins. In recent years this approach has become increasingly popular because of its 

high sensitivity, the accessibility of flexible structures, the greatly extended size range 

compared with NMR, and the possibility to detect coexisting conformations. The 

resolution of this method depends on the size (on average 10–15 residues) of peptides 

generated after the exchange reaction by proteolytic cleavage under quench conditions. 

The conformational properties of proteins in their native state are typically investigated 

by HX by incubating the proteins in deuterated buffer at neutral pH for different time 

intervals with subsequent acidification, desalting, and MS analysis (Engen and Smith 

2001). In the traditional methodology the exchange time is controlled by manual pipeting, 
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therefore limiting the time resolution to several seconds. However, some conformational 

changes in proteins occur in the sub-second time scale. It is then necessary to perform 

HX at shorter time intervals. In our laboratory a completely on-line quenched-flow setup 

was developed that allows the performance of HX experiments in the 100 ms to 30 s time 

scale, on-line proteolytic digestion using immobilized proteases, rapid desalting, and MS 

analysis (Rist et al., 2005). The purpose of this chapter is to evaluate the performance and 

reproducibility obtained with this setup. We have also used it to investigate the 

conformational properties of E. coli heat-shock transcription factor σ32 free in solution. 

Homology modeling of the σ32 sequence onto the structure of the σ-factor σA in complex 

with the RNA-polymerase indicated a helical structure in the C-terminus. Previous HX 

experiments had shown that the amide hydrogens of the C-terminus of σ32 exchange 

almost completely after 10 s, indicating that this region is very flexible. Using the 

quenched-flow setup we have detected amide protons in the C-terminal region of σ32 that 

are protected. Our results indicate that the C-terminal domain of σ32, which is responsible 

for the recognition of the −35 region of heat-shock promoters, contains amide hydrogens 

involved in secondary structure.   

 

Quenched-flow setup 

Our setup consists of five HPLC pumps, two 10-port valves, an injection valve, a 

trap column for rapid desalting, an optional column with immobilized pepsin for on-line 

proteolytic digestion, and an optional analytical column for peptide separation before 

analysis by ESI-MS as shown in Figure 3.1. The sample is introduced in the injection 

valve and delivered by pump 1. It is next diluted 1:25 in a mixing tee with D2O-buffer, 

delivered by pump 2, thereby starting the exchange reaction, which continues in the delay 

line. This exchange reaction is quenched by addition of quench buffer, delivered by pump 

3, in a second mixing tee. The protein is subsequently trapped on a reversed-phase micro-

trap column and, after switching the first 10-port valve, desalted with 0.05% 

trifluoroacetic acid in water, delivered by pump A. After switching the second 10-port 

valve, the sample is eluted with an acetonitrile gradient, generated by binary pump B, 

over an analytical microbore reversed-phase column directly into the electrospray ion 

source of the mass spectrometer. For localization of the exchanging regions within the 
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protein, a column with an immobilized protease, e.g., pepsin, is inserted into the system 

before the trap column. The duration of the exchange reaction can be adjusted to the 

desired times by choosing the delay line length and inner diameter. To limit back-

exchange during proteolytic cleavage and desalting, the entire setup downstream of the 

delay line is submerged in an ice bath. When all pumps have reached the desired flow 

rates the exchange experiment is started by switching the injection valve to the inject 

position. This triggers a program that automatically switches the two 10-port valves at the 

preset time points. This full automation of the setup guarantees a high degree of 

reproducibility. 

 
 
Figure 3.1. Schematic representation of the HPLC-MS quenched-flow setup (A) HX position, (B) desalting 
position and (C) MS analysis position. 
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The quench-flow setup is accurate and reproducible 

Apo-myoglobin is a model protein generally used in Biophysics because it is well 

characterized and commercially available. In order to test our setup we have analyzed 

deuteron incorporation into native apo-myoglobin at different time intervals and 

compared them with manually-performed HX reactions. As shown in Table 3.1, between 

30 s and 5 s both procedures have yielded identical results. Although gradual deuterium 

incorporation was observed with the quenched-flow setup in the millisecond-to-second 

time scale, reproducible manual sample handling was very difficult below 5 seconds and 

not possible below 2 seconds. For this reason we could not determine the deuterium 

incorporation with manual handling below 5 seconds. The total deuterium incorporated in 

the case of the quenched-flow setup was 1-2 Daltons smaller than in the case of manual 

handling. There are two possible explanations for this observation, one is that in the case 

of the quenched-flow setup the sample is in contact with the deuterium buffer for a 

shorter time than in the case of manual pipeting. The second possibility is that there is 

more back-exchange in the case of the quenched-flow setup. The first possibility can be 

excluded since the exchange time is determined by the length of the delay line. Then, the 

lower deuterium incorporation can be explained by increased back-exchange in the 

quenched-flow setup due to a prolonged exposure to protonated solvent. The sample is 

loaded into the quenched-flow system for a period of about 50 s (5 µL at 6 µL/min flow-

rate at pump 1). Part of the sample remains slightly longer on the trap column compared 

with the sample obtained from the manually-performed initiation and quenching of 

isotopic exchange. Figure 3.2 shows some representative mass spectra of full-length apo-

myoglobin. The quality of the spectra is good —all isotopic peaks are well defined. To 

determine the loss by back-exchange in both methods, the incorporation of deuterium was 

tested with a peptide that exchanged 100% of the hydrogens after 30 seconds. The 

percentage of incorporation was calculated assuming that all amide hydrogens with 

exception of the first one exchanged after 30 s. In both procedures the overall retention of 

incorporated deuterons was close to 90%. The small loss by back-exchange is due to the 

short time interval between the quench of the exchange reaction and the transition of the 

sample into the vacuum. Thus, the quench-flow setup is accurate and reproducible. 
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Table 3.1. Reproducibility of manual and quenched-flow amide hydrogen exchange. 
Exchange time 

(seconds) 

Off-line On-line 

1 - 16,992.4 ± 0.7 

2 - 16,997.8 ± 0.9 

5 17,006.3 ± 0.5 17,005.4 ± 0.7 

10 17,013.0 ± 0.7 17,011.0 ± 0.7 

30 17,023.9 ± 0.7 17,022.2 ± 0.1 
 

Apo-myoglobin was diluted 1:25 in D2O buffer by manual mixing or using the 
quenched-flow setup and deuteron incorporation determined after different 
time intervals. Desalting and analysis was identical for both methods. 

 
 

 
Figure 3.2. Quenched-flow amide hydrogen exchange of full-length apo-myoglobin. Protein mass spectra 
(left) and deconvoluted mass spectra (right) of apo-myoglobin after exposure to D2O for different times.  
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The quench-flow system setup time interval is limited by kch  

Our next step was to evaluate the performance of the quench-flow setup at time 

points between 100 ms and 30 s. To this aim we performed HX experiments with apo-

myoglobin at two different pH values (7.6 and 8.5) and compared the conformational 

information obtained against previously published results. HX experiments were 

performed with full-length protein and the time course of deuteron incorporation for both 

pH was fitted. The curves of incorporated deuterium versus time can be fitted with a 

triple exponential. The amide hydrogens of the protein can be divided in three, depending 

on their exchange rate: solvent-exposed ones which exchange very fast, the ones involved 

in the flexible structure which have an intermediate exchange rate, and the ones 

participating in the stable structure which have the longest time constant. The smallest 

time constant for the measured deuteron incorporation could not be fitted and was set to 

the intrinsic chemical exchange time constant (dashed lines, Figure 3.3) as calculated for 

each amide hydrogen of the entire protein using the HXPep program (courtesy Z. Zhang, 

Bai et al., 1993) with a triple exponential rate equation fit.  

The fitted parameters indicated that 31 deuterons were incorporated into apo-

myoglobin at pH 7.6 with a time constant shorter than 0.1 s. This is the number of 

completely exposed amide hydrogens. Seventeen deuterons were incorporated with a 

time constant of 1.7 s, revealing relatively fast fluctuations in amide hydrogen 

accessibility —most likely, in the form of opening and closing H-bonds. Additional 29 

deuterons were incorporated with a time constant of 22 s. The total number of exchanging 

amide hydrogens at pH 7.6 as calculated from the fitting parameters was 77. Since apo-

myoglobin has 147 exchangeable amide hydrogens, about 50% of the amide hydrogens 

are completely protected at the investigated time scale. Our results for the longest 

incubation times are similar to published data (Johnson and Walsh, 1994).  

To show that the shortest exchange time that we can measure is determined by the 

intrinsic exchange rate, we evaluated the apo-myoglobin deuterium incorporation at pH 

8.5. The intrinsic exchange rate is pH-dependent and is faster at pH 8.5 compared with 

pH 7.6.  At pH 8.5, the intrinsic chemical exchange exceeds 98% already after 250 ms; 

any measured slower exchange therefore indicates protection by structural elements. As 

indicated by the fitting parameter, 47 deuterons were incorporated with a time constant < 
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0.1 s, 28 amide hydrogens exchanged with a time constant of 0.8 s, and additional 75 

protons with a time constant < 70 s. The total number of exchanging amide hydrogens at 

pH 8.5 as calculated from the fitting parameters was 150, which is very similar to the 

total number of exchangeable amide hydrogens in apo-myoglobin. At pH 8.5, deuteron 

incorporation was therefore faster and more extensive than at pH 7.6, indicating pH-

dependent structural fluctuations in apo-myoglobin. The increased rate of deuteron 

incorporation at higher pH values is caused by two effects. First, the accelerated intrinsic 

chemical exchange rate at higher pH increases the probability of exchange in any 

transient structural opening event. Second, the flexibility of apo-myoglobin increases at 

higher pH, in agreement with published data (Haouz et al., 1998). These results 

demonstrate that our quenched-flow setup can accurately measure the deuterium 

incorporation into full-length proteins within the time interval limited by kch and the 

manual pipeting speed.   

 

 
 
Figure 3.3. Quenched-flow amide hydrogen exchange of full-length apo-myoglobin (100 pmol). It was 
measured at pH 7.6 (left) and 8.5 (right) for 0.1 s to 30 s and compared to the overall intrinsic chemical 
exchange (dashed curves) as determined for each amide using the HXPep program (courtesy Z. Zhang). 
The solid line represents the fit of a triple exponential rate equation (y = A∞ − A1·exp(−k1·t) − A2·exp(−k2·t) 
− A3·exp(−k3·t)) to the data whereby for the fastest rate k1 the value derived from a fit to the intrinsic 
chemical exchange data was used. The lower panels show a zoom of the first 2 s of the exchange reaction.  
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The three-helix bundle of σ32 has protected amide hydrogens 

In a previous work at our laboratory, the temperature-dependent conformational 

changes of σ32 were studied using HX experiments. It was shown that there is a good 

overall consistency between a structural model of σ32 and the HX data, with the only 

exception of the C-terminus of σ32 showing disagreement. Even though the model 

predicted α-helices in the C-terminus, no protection was observed in HX (Rist et al., 

2003). This inconsistency could be explained either by the incorrectness of the model or 

by a highly dynamic nature of the α-helices in this region with opening and closing 

kinetics in the second time range. The shortest exchange time used in the reported 

experiments was 10 s, and therefore a dynamic structure of the α-helices would have 

remained undetected. Since this region is involved in the recognition of the −35 region of 

heat-shock promoters, its structural properties are important for the biological function of 

σ32. To ascertain whether the α-helices are highly dynamical we performed HX 

experiments with the quenched-flow setup. A pepsin column was included before the trap 

column and a gradient was run to separate the peptides. We tested first whether the 

elution time of the peptides is reproducible. σ32 was diluted in quench buffer, injected into 

the system, and the retention times were determined —they ranged between 8 and 12 min. 

σ32 was then incubated in deuterated buffer, and the sample was quenched and injected 

into the HPLC system. The retention times for all the peptides were identical (some of 

them are shown in Table 3.2) for both conditions. This facilitates the assignment of 

peptides after deuteration since the same peptide would elute after the same time. We 

determined the back-exchange by using fully deuterated peptides and running the 

gradient. Deuterium loss during desalting and analytical chromatography was between 

13% and 18%. Some representative mass spectra of peptic fragments of σ32 are shown in 

Figure 3.4. 

When HX of σ32 was analyzed in our setup and the measured deuteron 

incorporation compared with the kch of the individual peptide segments, we found that a 

total of at least 30 amide protons in the C-terminal region are still protected after 1 s and 

at least 25 after 5 s. Figure 3.5 shows the kinetics of amide hydrogen exchange of  

individual peptide segments under native state conditions in comparison with the intrinsic 

chemical exchange  kinetics of the corresponding  unstructured peptides.  While  in  some 
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Figure 3.4. Amide hydrogen exchange of peptide segments within E. coli heat shock transcription factor 

σ32. Mass spectra of 5 different peptides after exposure to D2O for different times. The residue numbers for 

each peptide are indicated at the top. 

 

 

peptide segments (amino acids 209–244, 240–253, 255–263, 259–272, and 258–294) 

(Figures 3.5 and 3.6, upper panel) significant protection was observed over a time 

interval of 1–5 s, other peptide segments (amino acids 184–199 and 201–208) exchanged 

almost all amide protons for deuterons within 0.5 s. The determined protection factors of 

the intermediately exchanging amide hydrogens were 10.0, 14.4, 33.9, 9.3, and 35.9 for 

peptides 209–244, 240–253, 255–263, 259–272 and 258–294, respectively. Repetitive 

determination of the m/z values for the different peptides at the individual time points of 

HX was within 0.1 m/z units, demonstrating high reproducibility. σ32 was modelled by 

homology onto the structure of Thermus thermophilus σA bound to RNA polymerase. 

Using this model the number of possible hydrogen bonds involving backbone amides was 

determined by measuring the distances between amide nitrogens and their corresponding 

carbonyl oxygens using the Insight II program (Accelrys). The number of potential 

hydrogen bonds are shown in the lower panel of Figure 3.6 (nitrogen–oxygen distance < 

3.0 Å  and <  3.2 Å,  respectively)  and  compared  with  the number  of  protected  amide  
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Figure 3.5. Amide hydrogen exchange kinetics of peptide segments within the E. coli heat-shock 
transcription factor σ32. Incorporation of deuterium into σ32 was measured using quenched-flow with on-
line peptic digestion. The exchange kinetics is shown for six different peptides [indicated in the structural 
model of σ32 (183–284) in black] and compared to their individual intrinsic chemical exchange kinetics 
(dashed line). The solid line represents the fit of a triple exponential rate equation (y =A∞ − A1·exp(−k1·t) − 
A2·exp(−k2·t) − A3·exp(−k3·t)) to the data whereby the values for the fastest rate, k1, and for the total number 
of exchangeable amides, A∞, were derived from a fit to the intrinsic chemical exchange data. 

 
  

40



hydrogens after different exchange times (Figure 3.5, upper panel). In most peptides 

originating from the C-terminal part of σ32 we observed a higher degree of protection of 

amide hydrogens than expected from the structural model using 3 Å or 3.2 Å as cutoff 

criterion for a stable hydrogen bond, indicating a more extensive secondary structure. In 

one peptide the opposite was observed: less amide hydrogens were protected than 

expected from the model. This discrepancy could be due to the fact that σ32 was modeled 

onto the RNA polymerase bound from of σA. Free in solution, this region may exhibit a 

more extensive secondary structure. Therefore, the C-terminal part of σ32 has protected 

amide hydrogens involved in secondary structure. 

 

 

 
Table 3.2. Retention time of different σ32 peptides. 

segment Retention time in 

normal buffer (min) 

Retention time in 

D2O buffer (min) 

184-199 8.5 8.5 

240-253 9.5 9.5 

255–263 10.5 10.5 

259–272 9.5 9.5 

258–294 10.5 10.5 

 
The retention time with and without incubation with deuterium 
buffer was identical. The retention time was determined as the time 
where the maximum intensity for each peak was observed.  

 

 

 

 
Conclusions 

In this chapter we have presented a quenched-flow setup that allows HX 

experiments with as short as 100 ms exchange times. We have demonstrated that these 

experiments can be performed with our setup in a reproducible manner. All steps are 

performed automatically, thereby reducing the error due to sample handling. We have 

also shown that back-exchange is reduced since all step are performed on-line. 

 
  

41



 
 

Figure 3.6. Comparison between expected and observed amide 
hydrogen exchange in the C-terminal region of σ32. In the upper 
panel we show the number of protected amide hydrogens for 
different time points (0.5, 1, 5, 10 and 30 seconds). The number of 
potential hydrogen bonds are shown in the lower panel.  

 
 
 

  

Using this setup we have then investigated the conformational properties of E. coli 

heat-shock transcription factor σ32 free in solution. We have shown that the amide 

hydrogens of the C-terminus of σ32 exchange almost completely after 10 s, indicating that 

this region is very flexible. Using the quenched-flow setup we have detected at least 30 

amide protons in the C-terminal region of σ32 that are protected after 1 sec, and at least 25 

after 5 s. Even though the number of hydrogens protected did not completely agree with 

the homology modeling of σ32 onto the RNA polymerase bound from of σA, we have 

shown that the C-terminal part of σ32 has protected amide hydrogens involved in 

secondary structure. Therefore, this setup is suitable for mapping short-term 

conformational changes and it will be useful for mapping ligand binding, enzyme 

catalysis or dimer interfaces with high dissociation rates.   

 
  

42



 

 

 

 

 

 

 

 

 

Chapter 4 
 
 
 
 

Crystallization of the σ32-DnaK complex 
 

 

 

With the exception of σ54, all σ-factors comprise a homologous family (the σ70 

family) with four flexibly linked domains, σ1.1, σ2, σ3 and σ4 (Gruber and Bryant, 1997). 

The structures of σ2, σ3 and σ4 have been observed in complex with core RNAP 

(Murakami et al., 2002a; Vassylyev et al., 2002), in complex with anti-σ-factors 

(Campbell et al., 2002a, 2003), and individually (Campbell et al., 2002b; Li et al., 2002; 

Malhotra et al., 1996). In all cases, the structures of the corresponding σ-domains are 

nearly identical, suggesting that the relative positioning of the domains is responsible for 

the regulation of σ activity. It is also known that binding to core RNAP induces large 

relative movements of the σ-domains of σ70 (Callaci et al., 1999). We would like to gain 

insight into the structure of  σ32-bound to DnaK. This is the reason why during this thesis 

we attempted to crystallize σ32 in complex with DnaK.   

As described in Chapter 1, the structures of the two DnaK domains (ATPase 

domain and substrate-binding domain) have been determined separately by X-ray 
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crystallography. However, the structure of the full-length DnaK in complex with a 

substrate has not yet been determined. It is still unclear how the two DnaK domains 

interact with each other and which structure the linker region assumes. In addition, the 

substrate-binding domain was crystallized in complex with a heptamer substrate peptide 

and it is not known how a substrate protein is bound. Does the helical lid close when a 

protein is bound? Are there additional contact sites important for substrate specificity? 

The aim of the studies reported in this chapter was to elucidate the molecular details 

of the σ32-DnaK interaction by solving the structure of the complex using X-ray 

crystallography. σ32 forms a stable complex with DnaK. The apparent KD for this 

complex is between 1 to 5 µM. This indicated that the isolation of the complex was 

possible and encouraged us to try to crystallize it. This would help understanding the 

mechanism of Hsp70 chaperones. With this purpose we established a collaboration with 

the research group of Prof. Seth Darst (Rockefeller University). This group has solved the 

X-ray crystal structure of the flagellar σ-factor, σ28, in complex with its anti-σ-factor, 

FlgM (Sorenson et al., 2004), the crystal structure of the E. coli factor σE in an inhibitory 

complex with the cytoplasmic domain of its anti-σ, RseA (Campbell et al., 2003), the 

structure of σ70 in complex with core RNAP (Murakami et al., 2002a), the structure of 

individual σ domains (Campbell et al., 2002b), the crystal structure of the initiating form 

of Thermus aquaticus RNA polymerase, containing core RNA polymerase and the 

promoter specificity σ sub-unit (Murakami et al., 2002b), and the crystal structure of 

Thermus aquaticus core RNAP complexed with Rif (Campbell et al., 2001). This project 

was initiated with my research visit to the laboratory of Prof. Seth Darst, where the 

purification of the complex and initial crystal screening were performed.  

 

Cloning of σ32 and DnaK 

The original idea was to co-express σ32 and DnaK (without the flexible C-terminal 

tail, up to amino acid 607, DnaK (1-607)), in order to purify in vivo pre-assembled 

complexes. We cloned the σ32 and DnaK (1-607) encoding genes into an IPTG inducible 

expression vector and overexpressed the proteins in a ∆dnaK52-host strain (BB1553, 

Bukau and Walker, 1990). We used a ∆dnaK strain given that we formed the complex 
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with a C-terminal deletion version of DnaK and we did not want to have wild-type 

contaminants in our complexes. However, in this background we found that the 

expression level of the complex was too low. This could be due to the fact that, in vivo, 

σ32 is degraded by the AAA+ protein FtsH, which is a membrane-anchored ATP-

dependent metalloprotease (Tomoyasu et al., 1998, Tatsuta et al., 2000), and DnaK is 

necessary for this degradation. We transformed the vector expressing the complex into a 

∆dnaK-∆ftsH strain. This strain grew very slowly and was not suitable for the expression 

of the complex, so we decided to follow an alternative protocol: to express both proteins 

in separate strains and then to form the complex in vitro. 

The rpoH gene, encoding σ32, was cloned into a plasmid with an L-arabinose 

inducible promoter. At the N-terminus of σ32 we placed a hexahistidine-tag (His6-tag) 

followed by a Ppx cleavage site. We changed the thrombin for the Ppx cleavage site 

because members of the Darst laboratory had found that the latter protease has a higher 

efficiency in cleaving. DnaK (1-607) was cloned in an IPTG inducible expression vector. 

Overexpression was performed in the ∆dnaK52-host strain. The substrate-binding domain 

of DnaK without the C-terminal tail (aa 389-607) was also cloned in an IPTG inducible 

expression vector and overexpressed in a ∆dnaK52-host strain. DnaK, substrate-binding 

domain of DnaK, and DnaJ do not contain a His-tag. 

 

Purification of the complex 

We purified σ32 using Ni2+-affinity chromatography, and then added DnaK (1-607) 

to σ32 bound to the Ni2+-column. The complex was formed in the Ni2+-column and the 

unbound DnaK (1-607) could be washed away. After elution and cleavage, we ran a gel 

filtration column to separate free σ32 from the complex. We also purified the DnaJ/σ32 

and the DnaK/DnaJ/σ32 complexes. 

DnaK/σ32 complex. After gel filtration, the complex containing fractions were 

pooled and concentrated to a final concentration of 10 mg/ml. Figure 4.1 illustrates the 

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of the purified 

complex. Lanes 1 and 2 show the complex eluted from the Ni column, showing that it 

was indeed formed. Lanes 3 and 4 show the purified complex after gel filtration, which 
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not only removed contaminating protein but also separated DnaK/σ32 complex from free 

σ32. Lanes 5 and 6 show σ32 alone, before and after concentration of the sample. As we 

can see, the gel filtration column was unable to separate Ppx from the complex. Since 

Ppx protease has a GST tag, we finally ran a GST sepharose column to remove it.  

 

 
 

Figure 4.1. The purification of the DnaK/σ32 complex was analyzed by SDS-
PAGE using 8-25% PhastGels (Pharmacia). Lanes 1 and 2 show the complex 
eluted from the Ni-column at two different concentrations. Lanes 3 and 4 show the 
purified complex after gel filtration, before and after concentration of the sample. 
Lanes 5 and 6 show σ32 alone, also before and after concentration of the sample. 
 

 

DnaJ/σ32 complex. The DnaJ/σ32 complex was purified in a similar way as 

described above for the DnaK/σ32 complex. After elution, the protein was loaded onto a 

Superdex 200 column and the DnaJ/σ32 complex containing fractions were pooled. Also 

in this case the gel filtration column was useful for the separation of the complex from 

free σ32. In lanes 1 and 2 of Figure 4.2 we show the purified DnaJ/σ32 complex, after gel 

filtration, purified on different days. As we can see, it was possible to purify it and was 

stable after gel filtration.  

DnaK/DnaJ/σ32 complex. DnaJ wild type was added to σ32 bound to the Ni2+-

column. The two proteins were incubated during 20 min and then DnaK (1-607) was 

added with ATP during 30 min (concentration of ATP: 2 times the concentration of 

DnaK). The Ni2+-agarose was then washed to remove unbound DnaK and DnaJ. Ppx 

protease was added and incubated during 4 hours at 4°C. The purification of the ternary 
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complex was repeated one more time (purifications 1 and 2), and its eluted form was 

loaded onto a gel filtration column. We observed that it was also stable after gel filtration. 

Some contaminants remained in purification 1 (see Figure 4.2, lane 3), but not in number 

2 (lane 4). 

 

 
 

Figure 4.2. The purifications of the DnaJ/σ32 and DnaK/DnaJ/σ32 
complexes were analyzed by SDS-PAGE using 8-25% PhastGels 
(Pharmacia). Lanes 1 and 2 show the purified DnaJ/σ32 complex after 
gel filtration, purified at different days. Lanes 3 and 4 show the 
DnaK/DnaJ/σ32 complex, also purified on different days.  
 

 

Initial crystal screenings 

The structure determination of the DnaK/σ32, DnaJ/σ32 and DnaK/DnaJ/σ32 

complexes and σ32 alone is of utmost importance to understand the mechanism of action 

of the DnaK/DnaJ chaperone system. In this way, one can observe the interactions that 

are involved in the binding of these proteins and the effect of binding on the protein 

structure. For this reason we screened the three complexes and σ32 alone, in order to 

identify potential crystallization conditions. For the initial trial we used the classic buffers 

from Nextal. This commercial kit is composed of 96 unique conditions with high 

concentration of various precipitants. We used the DropGuard Crystallization Tool 

(Nextal) that allows for the screening of six complexes in the same well. With the first 

screening we found that some conditions could lead to crystal formation e.g., 

ammonium sulfate precipitation. Therefore, we screened different ammonium sulfate 

concentrations and different values of pH. Ammonium sulfate had also been used 
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successfully in the Darst laboratory for the crystallization of other σ-factors. All screens 

were performed at 22°C and 4°C. For some of the conditions screened we observed the 

presence of microcrystals. However, none of them grew further, so they were not useful 

for diffraction.    

 

Trypsin partial proteolysis 

σ factors are loosely folded proteins. To succeed in the crystallization of a protein it 

is important to remove the flexible parts that avoid crystal formation. We used limited 

proteolysis of σ32 in the absence and presence of DnaK to map which regions of σ32 are 

flexible. σ32 or σ32-DnaK complex was mixed with increasing amounts of trypsin and the 

fragments produced were separated by SDS-PAGE. In the σ32-DnaK complex, at highest 

concentration of trypsin stable fragments appeared. These fragments were analyzed by 

mass spectrometry. It was possible to identify some fragments by their mass (see Table 

4.1). 

 
Table 4.1. Identification of σ32 fragments produced after trypsin proteolysis. 

Observed mass Calculated fragment Theoretical mass wt number 

29820 2-263 29818.7 1-241 

29106 2-257 29105.9 1-235 

27875 2-246 27875.5 1-224 

26267 24-254 (a) 26267.9 2-232 

25496 2-225 (b) 25497.1 1-203 

(a) cut after L, (b) cut after D   
The fragments were identified by their mass.  

 

As shown in Table 4.1, the fragments identified are deletions from the C-terminus. 

Rist et al. (Rist et al., 2003) have shown, using HD experiments, that the C-terminus of 

σ32 is very accessible to the solvent. In Chapter 3 we have also demonstrated that the 

exchange times in HX experiments have to be short (less than 10 s) in order to see 

protection of the hydrogens involved in secondary structure. As initial step we decided to 

clone three different mutants lacking the C-terminus domain. We cloned up to residues 
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210, 218 and 224. In our structure model, there is an α-helix between residues 218-235. 

Therefore, we decided to construct two deletion mutants before that α-helix and the third 

one was the same as the fragment produced by trypsin (Figure 4.3).  

 

 

 
Figure 4.3. Zoom of the C-terminal region of σ32. The positions of 
the deletion mutants are indicated in yellow. The DnaK binding 
domain is indicated in red.  

 

 

Deletion mutants form complex with DnaK 

To check that the deletion mutants can still form complex with DnaK (1-607), the 

three mutants were over-expressed and the mutants purified through a NiNTA column. 

Before elution from the NiNTA column, purified DnaK(1-607) was added and incubated 

for two hours. The free and bound σ32 were separated by gel filtration and analyzed by 

SDS-PAGE. The three deletion mutants still form complex with DnaK (1-607) (Figure 

4.4). Unfortunately, these deletion mutants in complex with DnaK have not produced 

diffracting crystals.  
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Figure 4.4. The purifications of the DnaK/σ32 deletion variants complexes were 
analysed by SDS-PAGE using 12% gel.  
 

 
Conclusions 

In this chapter we have shown that it is possible to purify DnaK/σ32, DnaJ/σ32 and 

DnaK/DnaJ/σ32 complexes in the high concentrations required for crystallization trials. 

We have also found the regions of σ32 that are flexible when it is in complex with DnaK. 

It is important to remove these flexible regions to obtain crystals. We created deletion 

mutants and tested them for DnaK binding. We found that the three deletion mutants 

bound DnaK and they were suitable for crystal trials.  

Even though we have not been successful yet in obtaining crystals for neither of the 

complexes, this project is a still ongoing collaboration. We are currently trying to purify 

the different complexes formed in vivo. For this we have created new plasmids and we 

are still searching for the right conditions for this purification.  
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Chapter 5 
 

 

 

 

Regulation of σ32 by the DnaK chaperone system 
 

 

 

In E. coli the heat-shock response is mediated by the alternative σ transcription 

factor σ32 that activates the transcription of the heat-shock genes (Bukau, 1993; Connolly 

et al., 1999; Gross et al., 1996; Yura and Nakahigashi, 1999). σ 32 is regulated by the 

DnaK, DnaJ and GrpE chaperone system. The precise mechanism of the DnaK and DnaJ 

interaction with σ 32 is still unclear. In order to obtain a complete picture of the heat-shock 

regulation, it is important to characterize the regions of σ 32 directly involved in the DnaK 

and DnaJ-mediated control. Given that common substrates of DnaK and DnaJ are non-

native polypeptides, it is important to determine which are the structural features that turn 

σ 32 into a native protein substrate of DnaK and DnaJ. The interaction of DnaK and DnaJ 

with σ 32 is considered to be a paradigm for the interaction of Hsp70  chaperones with 

regulatory native  substrates. The DnaK binding site within the native σ32 protein has 
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been previously mapped employing a protease foot-printing approach in our laboratory. 

This approach assumes that DnaK binding prevents proteolytic cleavage of σ32 in the 

neighbourhood of its binding site. As a negative control, a DnaK mutant protein (DnaK-

V436F) that had a 17-fold lower affinity for σ32 (Mayer et al., 2000a) was included in the 

experiments. In the presence of a 5-fold molar excess of DnaK, the pattern of the σ32 

bands changed. Three σ32 bands were less prominent in the presence of DnaK indicating 

a protected cleavage site. DnaK-V436F did not protect σ32 to the same extent. These 

bands were identified by MALDI-TOF mass spectrometry and N-terminal sequencing. 

The protected cleavage sites are at positions 204 and 201 of the σ32 polypeptide chain for 

trypsin and proteinase K, respectively. This region comprises a potential DnaK binding 

site with a core of 4 large hydrophobic amino acids (198Val-Leu-Tyr-Leu201). This site 

has also been experimentally identified by scanning of a σ32 peptide library (McCarty et 

al., 1996; Rüdiger et al., 1997)). A peptide that contains both cleavage sites (σ32-M195-

N207) also binds with high affinity to DnaK in solution (McCarty et al., 1996). This 

peptide is the only segment within the entire region that experimentally shows high 

affinity for DnaK at the peptide level (Rüdiger et al., 1997). The potential binding site 

was mutated and the affinity evaluated, showing a lower affinity for DnaK.  

In this chapter we study the interaction of DnaK and DnaJ with σ32. We confirm 

that the previously identified DnaK binding site in σ32 is the binding site in the native 

protein and we identify the segment where DnaJ binds. Using amide hydrogen exchange 

experiments, we find that DnaK and DnaJ induce conformational changes upon binding 

to σ32. Our results provide mechanistic insights into the regulation of the heat shock 

response.  

 

σ32 binds specifically to DnaK immobilized in poros material 

Our purpose was to study the σ32-DnaK interaction using HX-MS experiments. First, 

we performed the experiments with σ32 and σ32-DnaK in solution. The resolution we 

obtained was insufficient to resolve all σ32 peptides because some of them overlapped 

with some DnaK peptides. To have all σ32 bound to DnaK, we needed to incubate with a 

large excess of DnaK and, since DnaK is larger than σ32, DnaK peptides dominated the 
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spectra. For this reason we decided to follow a different approach. DnaK was 

immobilized on Poros AL material and packed onto a column. To evaluate if the binding 

of σ32 to immobilized DnaK was specific we incubated σ32 with immobilized DnaK and 

eluted it with ATP. The eluted protein was analyzed by SDS-PAGE. We tested whether 

immobilized DnaK could be reused after elution with low pH quench buffer by 

performing the binding experiments followed by ATP elution, then washed with quench 

buffer and regenerated the immobilized DnaK with ATP-containing buffer at 

physiological pH. This procedure was repeated 3 times. In all repetitions σ32 could be 

bound to the column and eluted with ATP, indicating that DnaK was still functional 

(Figure 4.1). 

 

 

 
Figure 5.1. Eluted σ32 from the DnaK immobilized in poros material was 
analyzed by SDS-PAGE using a 12 % gel. σ32 was eluted with ATP. After 
each elution the immobilized DnaK was washed with quench buffer and 
re-equilibrated with HMK buffer.  
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Figure 5.2. HX foot-printing of σ32 M195-N207 peptides. Peptide mass spectra 
are shown for samples incubated in water and in D2O buffer in the absence and 
presence of DnaK. The pepsin cleavage site is indicated with an arrow. In the 
left panel we show the spectra of full-length peptides while in the right panel the 
spectra of the cleavage peptide (MAPVL).    

 

DnaK protects at least two amide hydrogens in the DnaK binding site of σ32 

The approach we followed for the HX experiments of σ32 in complex with DnaK 

was the following: immobilized DnaK was packed onto a column. Then, σ32 was injected 

into it and incubated with DnaK. The unbound σ32 was washed away and the column was 

incubated with D2O buffer for different time points. The reaction was quenched and σ32 

was eluted from the column by reducing the pH and temperature. In order to test the 

number of amide hydrogens protected when a substrate is bound to DnaK, we performed 

the HX experiments with the immobilized DnaK and two peptide substrates derived from 

σ32, namely σ32-Q132-Q144 and σ32-M195-N207. The σ32-M195-N207 peptide contains 

the DnaK binding site in the folded σ32 protein. The peptides were incubated with 

immobilized DnaK for 30 minutes in a column containing either immobilized DnaK or an 

anion exchange material for control. As shown in Figure 4.2, when DnaK is bound 4 

amide hydrogens are protected in the σ32-M195-N207 peptide. The same result was 

obtained with the σ32-Q132-Q144 peptide. This is in agreement with the crystal structure 
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of the substrate-binding domain of DnaK in complex with a substrate peptide, where 3 

hydrogen bonds are formed between DnaK and amide hydrogens of the co-crystallized 

peptide. A fourth amide hydrogen of the bound peptide was shielded from surrounding 

water. The experiment was repeated with σ32. We found that 3 peptides exchange less in 

the presence of DnaK. Two peptides are located in the previously identified DnaK 

binding site: peptides 183-199 and 200-208 (Figures 5.3 and 5.4). Unfortunately, pepsin 

cleaves in the middle of the binding site, explaining the fact that we did not observe 4 

protected hydrogens in that region. The same result was obtained when the σ32-M195-

N207 peptide was digested with pepsin (Figure 5.4, right panel). This result is consistent 

with the previously identified binding site of DnaK in σ32. The difference in deuteron 

incorporation in these peptides decreased with longer incubation times, indicating a 

dynamic nature of the hydrogen bonds between the DnaK substrate-binding domain and 

σ32 (Figure 5.5). In addition, dissociation of the DnaK-σ32 complex in the course of the 

HX reaction contributes to an increase in deuteron incorporation at longer incubation 

times. 

 
Figure 5.3. Difference of deuteron incorporation into σ32 bound to poros DnaK or NiNTA. Negative values 
indicate peptides that are protected when DnaK is bound, while positive values indicate peptides that are 
de-protected when DnaK is bound. Significant results (P < 0.05) are indicated with an asterisk. 
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Figure 5.4. HX foot-printing of σ32 peptides. Peptide mass spectra are shown for 
samples incubated in water and in D2O buffer in the absence and presence of 
DnaK. In the upper part we indicate the two peptides where protection was 
observed. The pepsin cleavage site is indicated with an arrow. In the left panel 
we show the peptide 183-199, and in the right panel the peptide 200-209.  

 

 

 

Another peptide that showed protection when DnaK was bound to σ32 is a peptide 

in the N-terminus of σ32. There are two alternative explanations for this observation. First, 

the N-terminal peptide constitutes a second binding site for DnaK that was missed in the 

protease protection assay. Second, DnaK-binding to σ32 could induce a conformational 

change leading to a protection of the N-terminal segment. The first possibility was 

excluded because a variant protein with amino acid replacement in this region (σ32-L8E, 

L10E) has the same KD for DnaK as σ32 wt. These results indicate that DnaK binds to σ32 

in the region 200 and that at least 2 amide hydrogens are protected by DnaK binding.  
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Figure 5.5. Kinetics of D2O incorporation into different segments of σ32. The 
amount of incorporated deuterium is plotted versus exchange time.  

 

DnaK destabilizes the N-terminus of σ32  

One of the objectives of HX experiments of σ32 in complex with DnaK was to 

investigate whether DnaK can induce conformational changes in σ32. In these 

experiments we observed that segment 31-49 exchanged more amide protons for 

deuterons when σ32 was bound to DnaK as compared to σ32 in the absence of DnaK, 

suggesting that there is a destabilization of this region upon binding of DnaK (Figure 5.6). 

This was observed throughout the time course of exchange (Figure 5.5). The same effect 

was observed when σ32 was incubated with DnaJ and ATP together with immobilized 

DnaK. This result indicates that DnaK induces a conformational change in σ32 thereby 

destabilizing the N-terminal region of σ32. 
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Figure 5.6. Unfolding of the N-terminal region of DnaK. The mass spectrum of a 
peptic fragment of σ32 is shown in water and after incubation in D2O buffer in the 
absence and presence of DnaK, and also DnaK and DnaJ.  

 
 

 
Figure 5.7. σ32 mutants. (A) σ32 deletion mutants. In ∆C one of the DnaJ potential 
binding sites was removed. In ∆N, two DnaJ potential binding sites were removed. 
(B) σ32 point mutants. The DnaK binding site is indicated in black. 
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Figure 5.8. Comparison of the KD for DnaJ of the different σ32 variant 
proteins. The KD were determined using surface plasmon resonance 
spectroscopy. The relative KD was calculated dividing the KD of each σ32 
variant by the KD of σ32 wild-type. 

 

 DnaJ binds in the N-terminus of σ32 

The peptide library scans indicated at least four possible DnaJ binding sites in σ32. 

These correspond to residues 52-64, 88-110, 139-151, and 235-247.  The σ32-derivated 

peptide libraries are composed of 13mers that overlap with adjacent peptides on 10 

residues. Therefore, all DnaJ potential binding sites at the primary sequence level are 

present. However, the DnaJ binding site in native σ32 does not need to be unstructured 

and contiguous since DnaJ only distinguishes side-chain hydrophobicity (Rüdiger et al., 

2001). The solvent accessibility of side-chain was analyzed in the σ32 model based on the 

crystal structures of Thermus thermophilus σA in complex with RNA polymerase. To 

map the binding site of DnaJ in native σ32 we made two deletion mutants (Figure 5.7): (i) 

in σ32-∆N two of the potential binding sites (I and II) were removed, and (ii) in σ32-∆C 

the C-terminal potential binding site (IV) was removed. The KD for DnaJ of these two 

deletion mutants was determined using surface plasmon resonance spectroscopy. The KD 

of the σ32-∆C mutant was similar to the KD of σ32 wild-type. In the case of σ32-∆N, the 

KD for DnaJ was 6.5-fold higher than for σ32 wild-type. It is known that σ32 and DnaJ 

each individually stimulate the ATP hydrolysis rate of DnaK, and that if they are 

incubated together with DnaK they stimulate synergistically the ATP hydrolysis rate of 

DnaK. A σ32 mutant that cannot bind DnaJ as efficiently as σ32 wild-type would be 

expected to fail in the DnaJ-mediated synergistic stimulation but not in the substrate 
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stimulation of the ATPase activity of DnaK. Single turn-over experiments were 

performed with σ32 wild-type and the two deletion mutants. Both deletion mutants 

stimulated the ATPase rate of DnaK like wild-type σ32 when they were incubated with 

DnaK in the absence of DnaJ. In the presence of DnaJ the σ32-∆C deletion mutant 

stimulated synergistically the ATP hydrolysis of DnaK like σ32 wild-type. However, for 

the ∆N deletion mutant such a synergistic stimulation of the ATP hydrolysis rate of DnaK 

could not be observed (Figure 5.9). To determine which of the two potential binding sites 

in the N-terminal domain was the binding site of DnaJ, in the folded protein we created 

point mutants of these sites and of two other potential DnaJ binding sites as a control 

(Figure 5.7). We determined the KD of these four point mutants to DnaJ using surface 

plasmon resonance spectroscopy experiments. Site II, III and IV mutants bound to DnaJ 

like σ32 wild type. Only the site I mutant showed a different behavior (Figure 5.8). The 

single turn-over experiments were repeated with the four point mutants. Although all four 

mutants stimulated the ATP hydrolysis of DnaK like σ32 wild-type in the absence of 

DnaJ, only the mutant in site I showed a 3-fold decrease in the DnaJ-mediated synergistic 

stimulation of the ATPase rate of DnaK. Taken together, these results indicate that DnaJ 

binds to a single specific site in the N-terminal region of σ32.  

 

 

 
Figure 5.9. Single turn-over of DnaK and different σ32 mutant proteins with and without DnaJ. 
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σ32-∆N and σ32-∆C bind DnaK like σ32 wild-type  

To test whether σ32-∆N and σ32-∆C mutants still bind DnaK like σ32 wt, gel 

filtration experiments were performed. σ32 and the deletion variants were labeled with 

tritium and radioactivity was measured in the different fractions.  5µM of σ32 wt and the 

deletion mutants were alternatively incubated for two hours at 30°C with 10µM of DnaK 

wt. The reaction mixture was injected onto a Superdex 75 analytical column, and the 

fraction of bound σ32 wt or the deletion mutants to DnaK was determined. As shown in 

Both deletion mutants bound DnaK to the same extent as σ32 wt (KD for DnaK in σ32 wt 

and both deletion variants was 1 µM). This is in agreement with the previously identified 

DnaK binding site since both mutants still contain the region where DnaK binds. 

 

 
Figure 5.10. Kinetics of deuterium incorporation into σ32 free and in complex 
with DnaJ, which destabilizes σ32  upon binding.   

 

 

DnaJ-bound σ32 is destabilized  

To investigate whether DnaJ binding affects conformation of σ32, we used HX-MS 

experiments with σ32 alone and σ32 in complex with DnaJ. In this case the experiments 

with σ32 and σ32 in complex with DnaJ were performed in solution. Under the conditions 

used DnaJ was not extensively digested by pepsin and therefore we could observe the 

majority of σ32 peptides even in the presence of DnaJ. Since the KD of the σ32-DnaJ 
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complex is about 20 nM, under the experimental conditions of 0.6 µM σ32 and 1 µM 

DnaJ 98% of σ32 was in complex with DnaJ at equilibrium. 

To determine the overall amide hydrogen accessibility of DnaJ-bound σ32 we 

performed the HX-MS experiments first without online peptic digestion after the 

exchange reaction. The DnaJ-σ32 complex was incubated for 2 to 60 s in D2O and 

subsequently analyzed in our HPLC-MS setup using gradient elution to separate the two 

full-length proteins. As shown in Figure 5.10, σ32 exchanges more amide hydrogens in the 

presence of DnaJ than in its absence. The data were fitted using a biexponential rate 

equation. The fitting results revealed that in the absence of DnaJ 150 amide hydrogens 

exchange at a rate of 1.13 s-1 and 41 at a rate of 0.026 s-1. In the presence of DnaJ 159 

amide hydrogens exchanged at a rate of 1.32 s-1 and 31 at a rate of 0.037 s-1. Since the 

HX reaction occurred according to the so-called EX2 exchange mechanism the difference 

in stability of σ32 in the presence and absence of DnaJ (∆∆G) can be estimated from these 

values. In the presence of DnaJ 9 amide hydrogens more than in the absence of DnaJ 

exchanged with the fast rate of 1.3 s-1. We can assume that these 9 amide hydrogens 

exchanged in the absence of DnaJ with the lower rate of 0.026 s-1. This assumption is 

based on the fact that the number of amide hydrogens, which exchanged in the presence 

of DnaJ with the lower rate, was 10 smaller than in the absence of DnaJ. An acceleration 

of the exchange rate from 0.026 s-1 to 1.3 s-1 for 9 amide hydrogens results in a difference 

in stability of 86 kJ·mol-1. This result suggests that DnaJ-binding destabilizes σ32.  

 

DnaJ opens σ32 next to the DnaK binding site 

To map the region where DnaJ destabilizes σ32 the HX experiments were repeated 

including a pepsin column in the HPLC setup. We found that the overall exchange 

kinetics of σ32 in the presence of DnaJ is composted of opposing effects on different 

regions of σ32. An N-terminal segment of σ32 exchanges less amide hydrogens when 

DnaJ is bound to σ32. This region is close to the identified DnaJ binding site. Thus, upon 

DnaJ binding to σ32, DnaJ stabilized secondary structure in the N-terminal domain of  σ32. 

We did not find a protection in the actual DnaJ binding site. Since we only observe the 

exchange of backbone amide hydrogens in HX experiments these observations are 

consistent with DnaJ binding exclusively to amino acid side chains as suggested by 
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library scanning experiments (Rüdiger et al., 2001). We also observed that two segments 

(residues 90-101 and 157-175) exchanged more amide hydrogens when σ32 was bound to 

DnaJ (Figure 5.11) than in the absence of DnaJ. The segment 157-175 is located close in 

sequence to the DnaK binding site and segment 90-101 is located in spatial vicinity of the 

dnaK binding site in our σ32 homology model onto the T. thermophilus σA structure 

(Figure 5.12). Therefore, DnaJ seems to make the DnaK binding site more accessible 

explaining the efficient delivery of σ32 to DnaK by DnaJ. Such a mechanism would also 

explain why DnaJ and σ32 stimulate the ATP hydrolysis rate of DnaK synergistically. Our 

result shows that DnaJ can also affect the conformation of  σ32. 

 

 

 

 
 

Figure 5.11. Difference of deuteron incorporation into σ32 free and bound to DnaJ. 
Negative values indicate peptides that are protected when DnaJ is bound, while positive 
ones indicate peptides that are de-protected when DnaJ is bound.  
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Figure 5.12. Molecular model of DnaK and DnaJ binding to σ32. Secondary structure representation of 
homology model of σ32 onto T. thermophilus σ70 (PDB 1IW7, (Vassylyev et al., 2002). The DnaK binding 
site is colored in green, and DnaJ binding sites is colored in orange. The sites destabilized by DnaK and 
DnaJ are shown in red and blue. 
 

 

Conclusions 

In this chapter we have characterized the interaction of the folded substrate σ32 with 

the DnaK-DnaJ chaperone system. DnaK binds in a surface-exposed hydrophobic stretch 

of residues located at positions 198 to 201 of the σ32 polypeptide chain. This binding site 

was confirmed using HD footprinting. In analogy to protease footprinting, HD 

footprinting can give information about binding interfaces in protein complexes. Amide 

hydrogen exchange was performed with σ32 alone and in complex with DnaK. Two 

peptides, residues 183-199 and 200-208, show protection when bound to DnaK. σ32 

M195-N207, a σ32-derived peptide containing the identified DnaK binding site, shows a 
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similar behavior. Furthermore, amide hydrogen exchange reveals a region (residues 31-

49) that incorporated more deuterium in the presence of DnaK than in its absence. This 

suggests a small structural rearrangement within σ32 upon binding to DnaK resulting in a 

less compact structure. In vivo σ32 is degraded mainly by the AAA protease FtsH. 

Degradation of σ32 proceeds from the N-terminus to the C-terminus (Okuno et al., 2004). 

In addition, FtsH lacks robust unfoldase activity and only degrades substrates efficiently 

when they have low intrinsic thermodynamic stability (Herman et al., 2003). This 

suggests that a chaperone-induced unfolding of a secondary structure element may 

facilitate degradation of σ32 in vivo. Recently, in vivo more stable σ32 mutants were 

reported (Horikoshi et al., 2004; Obrist and Narberhaus, 2005). Interestingly, they are 

located in the region where the destabilization by DnaK occurs. Thus, this is a crucial 

region of the regulation of σ32. The DnaK system cannot stimulate the FtsH proteolysis of 

σ32 in vitro. It has been speculated that an X factor is missing. We cannot exclude that 

this destabilization exposes a binding site for an adaptor protein. For example, the SspB 

adaptor binds in the N-terminus of the substrate and targets its degradation by ClpX from 

the N-terminus (Levchenko et al., 2003; Song et al., 2003; Park et al., 2007).  

In this chapter we have also identified the region of σ32 where DnaJ binds, which is 

a hydrophobic stretch rich in aromatic residues. Mutational alterations of this site 

decreased the affinity of σ32 for DnaJ. HD footprinting does not show protection of this 

site when DnaJ is bound to σ32. This is not surprising since DnaJ association with peptide 

substrate relies on side-chain contacts not detected with this method. Amide HD 

experiments reveal two conformational changes induced by DnaJ: a stabilization of the 

N-terminus close to the DnaJ binding site and a destabilization of the region close to the 

DnaK binding site.  

It was proposed that DnaJ binds to substrates and hands them over to DnaK in a 

process that is coupled to ATP hydrolysis by DnaK (Laufen et al., 1999). One possible 

mode of substrate transfer is that the peptide segment that is bound to DnaJ is directly 

handed over to DnaK’s binding cleft (Rüdiger et al., 2001). Another possibility is that 

DnaK and DnaJ bind in different regions. The fact that DnaK and DnaJ bind σ32 in 

different regions demonstrates that a direct transfer mechanism of the DnaJ bound site 

into the substrate binding cavity of DnaK is not operative in the case of σ32. Since a 
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truncation and mutagenesis study on the native DnaK substrate RepA also suggests 

different binding sites for DnaK and DnaJ (Kim, 2002) this mode of cooperation between 

DnaJ and DnaK might be more general.  

What are the effects of DnaJ on σ32? We observed that DnaJ induces a 

destabilization of σ32 close to the DnaK binding site. This suggests that DnaJ promotes an 

open conformation of σ32 thereby facilitating DnaK binding. These data explain the 

synergism of DnaJ and σ32 in stimulating DnaK’s ATPase activity and of DnaJ’s high 

efficiency in loading σ32 onto DnaK. 
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Chapter 6 
 

 

 

 

Study of σ32 stable mutants 
  

 

 

As we have described before, σ32 is an unstable protein with a half-life of 

approximately one minute. Upon heat-shock, the levels of σ32 increase transiently due to 

increased synthesis and stabilization. The DnaK chaperone system is required for rapid 

degradation of σ32 since it is stabilized in ∆dnaK, ∆dnaJ and ∆grpE mutants (Straus et al., 

1987, Tilly et al., 1989). σ32 is degraded by membrane protease FtsH, a member of the 

AAA protein family. Even though the regulation of σ32 by DnaK, DnaJ and GrpE has 

been extensively investigated, its molecular mechanism remains obscure. Recently, a 

number of σ32 mutants that are stabilized in vivo were isolated (Horikoshi et al., 2004; 

Obrist and Narberhaus, 2005; Gross, personal communication). Many of these mutants 

have amino acid substitutions in the N-terminal part of σ32 (residues 47-55). This region 

is close to the region where we observed the destabilization induced by DnaK. 

Stabilization can result from various factors. For example, enhanced affinity for the RNA 

polymerase would reduce the percentage of σ32 that is degraded. Some of these mutants 
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were tested for their affinity for core RNA polymerase and it was shown that the 

stabilization is not due to an increase in the latter. Another possibility is that the affinity 

for chaperones is changed, decreasing the amount of σ32 targeted for degradation. This 

last hypothesis has not been tested and further studies are required to understand why 

these σ32 mutants are more stable. 

To evaluate the reason why these mutants are more stable, we analyzed two of them 

using HX experiments. We tested the mutants σ32 L47Q-L55Q isolated by Horikoshi et al. 

and σ32 I54N isolated by the Gross Group.   

 

 

Comparison of σ32 I54N and σ32 wt  

The protein σ32 with a replacement of isoleucine 54 for asparagine (σ32 I54N) is 

more stable in vivo. The Gross group has determined the KD for GroEL, DnaK and RNA 

polymerase. The calculated KD were similar to wt for all proteins. To characterize the σ32 

I54N we performed HX experiments with full-length protein and compared them with σ32 

wt. These proteins were incubated with deuterium buffer for different time intervals 

(from 5 seconds to 1 minute) and analyzed by mass spectrometry. As shown in Figure 6.1, 

for the full-length proteins there is not difference in deuterium incorporation. We then 

repeated the HX experiments in the presence of a pepsin column to evaluate both proteins 

at a peptide level (Figure 6.2). We found that the N-terminus of σ32 I54N incorporated 

more deuterium as compared to σ32 wt. This is the region where the mutation was 

introduced. We next located the residue I54 in our σ32 model (Figure 6.3). This residue 

faces the inside part of the protein and, therefore, it is not surprising that a replacement of 

a hydrophobic residue for a polar residue destabilizes this region of σ32. We have also 

found two segments of σ32 I54N that exchange less than the segments of σ32. These 

segments are 158-175 and 258-294. Interestingly, it was on segment 158-175 that we 

observed destabilization by DnaJ.  
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Figure 6.1. Deuterium incorporation into full-length σ32 wt and σ32 I54N. Both proteins incorporated the 

same amount of deuterium.  

 

 
 
Figure 6.2. Difference of deuteron incorporation into σ32 I54N and σ32 wt. Positive values indicate peptides 
that exchange more in σ32 I54N than in σ32 wt, while negative values indicate peptides that exchange more 
in σ32 wt as compared to σ32 I54N. 
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Figure 6.3. Localization of residue I54 in σ32. Space-filling representation of homology models of σ32 onto 
T. thermophilus σ70 (PDB 1IW7, Vassylyev et al., 2002). The residue I54 is colored in red. 
 

σ32 L47Q-L55Q is more stable than σ32 wt in vitro 

Horikoshi et al. had isolated several σ32 mutants that are more stable in vivo. All of 

them have altered residues in the N-terminus of σ32. One of them, σ32 L47Q-L55Q, has a 

half-life more than 10-fold longer than wild-type. To characterize the σ32 L47Q-L55Q 

variant protein we performed HX experiments with full-length protein and compared it 

with σ32 wt. The proteins were incubated with deuterium buffer for different time 

intervals (from 5 seconds to 1 minute) and analyzed by mass spectrometry. As shown in 

Figure 6.4, from 5 to 20 sec σ32 L47Q-L55Q incorporated less deuterium than σ32 wt. For 

example, σ32 L47Q-L55Q incorporated 172 atoms of deuterium after 10 seconds whereas 

σ32 wt incorporated 180. We then repeated the HX experiments in the presence of a 

pepsin column to map the region that is more stable. In the case of σ32 L47Q-L55Q, we 

found a small deprotection in the N-terminus where the residues were replaced. In 

contrast, the C-terminus domain of σ32 L47Q-L55Q exchanged less than the C-terminus 

domain of σ32 wt. There is also a small stabilization in the segment 88-101 of σ32 L47Q-

L55Q. We have found in Chapter 5 that this region is destabilized upon binding of σ32 to 

DnaJ. 
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Figure 6.4. Deuteron incorporation into full-length σ32 wt and σ32 L47Q L55Q. 

 

 

 

 
 
Figure 6.5. Difference of deuteron incorporation into σ32 L47Q L55Q and σ32 wt. Positive 
values indicate peptides that exchange more in σ32 L47Q L55Q than in σ32 wt, while negative 
values indicate peptides that exchange more in σ32 wt as compared to σ32 L47Q L55Q. 
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DnaJ destabilizes σ32 I54N and σ32 L47Q-L55Q  

As mentioned above, the segments 158-175 of σ32 I54N and 88-101 of σ32 L47Q-

L55Q are more stable than the same segments of σ32 wt. These two segments are 

destabilized in σ32 upon DnaJ binding. In order to evaluate whether these mutants are 

more stable because they are defective in the regulation by DnaJ, we performed HX 

experiments of the mutants in complex with DnaJ. DnaJ destabilized the same segments 

of σ32 I54N and σ32 L47Q-L55Q as it does in σ32 wt (data no shown). Therefore, these 

two proteins are destabilized by DnaJ. 

 

DnaJ affinity for σ32 I54N and σ32 L47Q-L55Q is reduced 

σ32 I54N and σ32 L47Q-L55Q could also be more stable in vivo because the affinity 

for DnaJ is reduced. To evaluate this possibility, we determined the KD of these two σ32 

protein variants using surface plasmon resonance. The KD of DnaJ for σ32 I54N is 3-fold 

higher than for σ32 wt (Table 6.1). This KD is in agreement with the one obtained by the 

Gross group.  The KD of DnaJ for σ32 L47Q-L55Q is 2-fold higher than for σ32 wt (Table 

6.1). Next we indirectly determined the affinity of a protein for DnaJ using single turn-

over experiments (Figure 6.6). We performed them with DnaK, and with DnaK and DnaJ. 

σ32 I54N and σ32 L47Q-L55Q stimulated the ATP hydrolysis of DnaK like σ32 wt. 

However, σ32 I54N stimulated 2-fold less and σ32 L47Q-L55Q stimulated 1.8-fold less 

when they were incubated together with DnaJ. Taken together, these results indicate that 

the affinity of DnaJ for σ32 I54N and σ32 L47Q-L55Q is reduced. 

 

 
Figure 6.6. Single turn-over of DnaK and different σ32 with and without DnaJ. 

 
  

72



Table 6.1. KD of DnaJ for σ32 wt, σ32 I54N and σ32 L47Q-L55Q 
 

 KD (nM) 
σ32 wt 21 ±4 
σ32 I54N 100 ± 1 
σ32 L47Q-L55Q 48 ± 1 

 
The KD were determined by surface plasmon resonance. 
Between 300 and 400 response units of σ32 wt, σ32 I54N or σ32 
L47Q-L55Q were immobilized onto a CM5 chip and then 
increasing concentrations of DnaJ were injected.  

 

 

Conclusions 

In this chapter we have analyzed two σ32 variant proteins, namely σ32 I54N and σ32 

L47Q-L55Q, that are more stable in vivo than σ32 wt. Using HX experiments we 

evaluated these two proteins and found that in the case of σ32 I54N the segment 158-175 

is more protected than in σ32 wt, and in the case of σ32 L47Q-L55Q the segment 88-101 is 

more protected than in σ32 wt. These two segments are destabilized in σ32 wt upon DnaJ 

binding.  

In addition, we found that the affinity of DnaJ for these two proteins is smaller than 

the affinity of DnaJ for σ32 wt. This reduced affinity for DnaJ could explain why these 

proteins are more stable in vivo. DnaK and DnaJ target σ32 for degradation by FtsH. If the 

affinity for DnaJ is reduced for σ32 I54N and σ32 L47Q-L55Q then the half-life of both 

proteins should increase.   
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Chapter 7 
 

 

 

 

The replication initiator protein RepE 
 

 

 

As already described, the aim of the studies reported in this thesis is to obtain a 

deeper understanding of the mechanism of DnaK-substrate interactions. In Chapters 4, 5 

and 6 we have studied the heat-shock transcription factor σ32 as a model substrate for 

DnaK and DnaJ. We have shown that DnaK and DnaJ destabilize σ32. Another substrate 

of DnaK is RepE. RepE has a double function depending on its oligomeric state: as a 

dimer it represses its own synthesis, and as a monomer it works as a replication initiation 

protein. Under physiological conditions RepE predominantly exists as a dimer, and its 

conversion into monomers requires the concurrent action of DnaK, DnaJ and GrpE.  The 

monomerization process is poorly understood due to a lack of structural information. 

Even though the structures of monomeric RepE54 (a variant of the RepE protein with 

arginine 118 substituted by proline) have been solved, there is no available structure for 

the dimer RepE. The details of the interaction of RepE wild-type with operator DNA are 

also unknown. The purpose of the studies reported in this chapter is to characterize the 
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RepE monomer and dimer using HX experiments. RepE was also used as a model 

substrate of DnaK and the DnaK-RepE interaction was studied.  

 

Monomeric RepE54 is more stable than dimeric RepE 

To determine the total amount of deuterium incorporated into dimeric RepE wild-

type and monomeric RepE54 we performed HX experiments with full-length protein. We 

expected that the RepE dimer would exchange less than the monomer since the amino 

acids involved in the dimer interface should be less solvent-exposed. In previous work 

from this laboratory it was shown that the dimer incorporated more deuterons than the 

monomer. These experiments were performed for time points between 10 sec and 1 hour. 

We considered these time points to be too long to observe protection in the dimer 

interface. For this reason, we decided to repeat the experiments with the quenched-flow 

setup system. The HX experiments were performed with the quenched-flow setup system 

at time points between 200 msec and 1 sec. As shown in Figure 7.1, monomeric RepE54 

exchanged less than dimeric RepE at all tested time points. This result indicates that 

monomeric RepE54 is more compactly folded than dimeric RepE and, even though the 

region where the dimer interface is located is expected to exchange less than in the 

monomer, there must be other regions in the dimer that are less folded than in the 

monomer. Another way of determining the stability of a protein is by using partial 

proteolysis. A more stable protein will be degraded slower or at higher concentrations of 

protease than a less stable one. To confirm that monomeric RepE54 is more stable than 

dimeric one we performed partial tryptic proteolysis followed by SDS-PAGE analysis 

with both proteins. Dimeric RepE was rapidly degraded even at the lowest trypsin 

concentrations whereas monomeric RepE54 was not (data no shown). Taken together, 

these results indicate that the monomeric RepE54 variant protein is more stable than the 

dimeric wild-type protein.   
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Figure 7.1. Amide hydrogen kinetics of full-length RepE wild-type (dimer) and RepE54 (monomer).   
 

 

The dimer interface locates in region 97-128 

To map the region where the molecules of RepE enter in contact with each other to 

form a dimer, we performed HX experiments with different incubation times in 

combination with peptic digestion and compared the deuterium incorporated into the 

dimeric wild-type protein and the monomeric variant protein. Figure 7.2 depicts a 

diagram of the difference between the amounts of deuterium incorporated into the 

monomer minus the dimer. Negative values of this difference indicate segments of the 

protein that incorporate less deuterium in the monomer as compared to the dimer, while 

positive values indicate segments of the protein that incorporate less deuterium in the 

dimer as compared to the monomer. When there is no difference between monomer and 

dimer, the value of the computed magnitude is zero. We observed three kinds of protein 

segments: (i) the segments that showed no difference, which are the majority of the 

peptides, (ii) the segments that incorporated more deuterium into the dimeric wild-type 

protein than into the monomeric variant, which are located in the N- and C-terminal 

regions of the protein, and (iii) the segments that incorporated more deuterons in the 

monomeric variant protein than into the dimeric protein. The latter are candidates to be 

involved in the formation of the dimer interface. These segments of RepE are poorly 

resolved in the crystal structure of monomeric RepE54, indicating a high flexibility. 

However, in a dimeric assembly they would prolong a β-sheet across the dimer interface 
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(Figure 7.3). Additional evidence for the hypothesis that these regions are involved in 

dimerization comes from mutation analysis. Variant proteins that are constitutively 

monomeric have amino acid substitutions in this region (Matsunaga et al., 1995). These 

data are also consistent with the crystal structure of the N-terminal domain of RepA, 

which is related to RepE in structure but not in sequence and which crystallized as a 

dimer (Giraldo et al., 2003). In RepA the dimerization interface comprises two β strands 

from different protomers, forming a central five-stranded antiparallel-pleated β-sheet. 

These two β−stands interact through hydrogen bonds. The region we found to be 

protected in the dimer corresponds to the dimer interface of RepA. Thus, we conclude 

that region 97-128 comprises the dimer interface.  

 

 

 

 
 

Figure 7.2. Differences of deuterium incorporation into RepE54 (monomer) and RepE wt 
(dimer).  Negative values indicate segments of the protein that exchange less in the monomer, 
whereas positive values indicates segments of the protein that exchange more in the monomer.  
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Figure 7.3. Structure of monomeric RepE. In green we show the regions of RepE that 
exchange more in the dimer. In red we show the regions that exchange more in the 
monomer, where the proposed dimer interface is located. With dots we indicate the amino 
acids that are not resolved in the crystal structure. 
 

 

Monomerization of RepE requires marked conformational changes 

Figure 7.5 shows the structure of monomeric RepE54 in complex with a 19-base 

pair iteron DNA (Komori et al., 1999). N- and C-terminal domains of monomeric 

RepE54 are topologically similar and related one to each other by an internal two-fold 

symmetry. Both domains of RepE54 bind to the two major grooves of iteron DNA. Two 

helix-turn-helix motifs in RepE54, namely α3-turn-α4 (residues 64-92) and α3’-turn-α4’ 

(residues 168-242), are critical for directed repeat ori2 binding. The α3’-turn-α4’ motif is 

also a critical region for dimeric RepE binding to inverted repeat operator (Matsunaga et 

al., 1995). In HX experiments, the segments from this region showed no differences 

between dimeric RepE wild-type and monomeric RepE54, indicating that this region does 

not change its conformation upon monomerization. Therefore, binding to DNA must be 

similar for both proteins. This is in agreement with the fact that the directed repeats 

sequence from ori2 where monomeric RepE binds and the inverted repeats sequence 

from the operator where dimeric RepE binds contain 8 bp in common (Ishiai et al., 1994).   
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Figure 7.4. Structure of monomeric RepE in complex with DNA (1REP). In 

green we show the regions of RepE that exchange more in the dimer. In red 

we show the regions that exchange more in the monomer.  

 

 

Komori et al. have modeled two RepE monomers on the inverted repeats of the 

operator (Komori et al., 1999). A large steric hindrance occurred in the major part of the 

N-terminal domain of RepE and both helices α4 competed with each other for the major 

groove in the DNA. Bending the operator DNA did not compensate this steric hindrance 

between the RepE proteins. In HX experiments, the segments in regions 6-28, 152-164 

and 220-240 exchange more in the dimer than in the monomer, indicating that dimeric 

RepE is more flexible in these regions (Figures 7.2 and 7.4). Segment 6-28 includes the 

β1 that in monomeric RepE54 forms a small β-sheet with β1’(residues 147-150). In the 

structure of the N-terminal domain of RepA this β-sheet is disrupted and β1’ forms an 

extension of α5 (Giraldo et al., 2003). Our results are in agreement with the N-terminal 

structure of RepA since the lack of hydrogen-bonds between those two strands would 

result in higher deuteron incorporation in this region. These results indicate that 

monomerization of RepE requires marked conformational changes and that these 
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conformational changes are needed for accommodating dimeric RepE on the inverted 

repeat of the operator. 

 

Monomeric and dimeric RepE bind to DnaK 

One of the open questions about the Rep proteins is how they are regulated by the 

DnaK-DnaJ system. In ∆dnaK and ∆dnaJ strains it has been shown that the mini-F 

plasmid cannot replicate, and that replication is reestablished when RepE is mutated to 

proteins that are constitutively monomers. It has been speculated that the DnaKJ system 

is involved in the monomerization of RepE. However, this is not the only existing 

hypothesis. It has also been suggested that DNA facilitates the monomerization and that 

the DnaK-DnaJ chaperone system prevents the aggregation of the monomer since there 

are some hydrophobic regions that are exposed upon monomerization. This latter 

hypothesis is inconsistent with our data and the crystal structure. To elucidate what is the 

role of the DnaKJ system we tested the ability of DnaK to bind monomeric and dimeric 

RepE. We first evaluated the binding of DnaK to RepE using specific cross-linking. The 

DnaK Q424C variant protein was used, which has glutamine 424 located close to the 

binding pocket of DnaK replaced by a cystein. It has been previously shown that this 

variant protein is fully functional in all assays including luciferase refolding (Laufen et 

al., 1999). DnaK Q424C was labeled with a cystein-specific UV-activable 

heterobifunctional crosslinker (BPIA). As shown in Figure 7.5, when RepE monomer and 

dimer were incubated with DnaK and irradiated with UV light, specific bands of the size 

expected for the DnaK-RepE complex appeared in both cases. These were bands 1 and 2, 

which were then cut and analyzed by mass spectrometry. We found that they contained 

DnaK and RepE. The DnaK-RepE complex was also formed when DnaJ and ATP was 

added to the reaction mix. We therefore conclude that both monomeric and dimeric RepE 

bind to DnaK.  

 

DnaK binds in the C-terminus of RepE 

In a previous work of our laboratory it was shown, using peptide libraries, that there 

are four potential DnaK binding sites in RepE (Figure 7.6). Two possible binding sites 

are located in the N-terminus of RepE, and the other two in the C-terminus.  
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Figure 7.5. Site-specific crosslinking of BPIA-labeled DnaK with RepE54 (A) 
and RepE wild-type (B). After UV irradiation, proteins were separated by SDS-
PAGE and stained with Coomassie. Lane 1 corresponds to DnaK alone, lane 2 
corresponds to RepE alone and lane 3 corresponds to the complex. The 
crosslinking products between DnaK and RepE are indicated with asterisks.  

 

 

 

 

 
 
Figure 7.6. DnaK potential binding sites. In blue we indicate the DnaK potential 
binding sites obtained from peptide library scanning. 
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Figure 7.7. HX foot-printing of RepE wt and RepE54 peptides. Peptide mass 
spectra are shown for samples incubated in water and in D2O buffer in the 
absence and presence of DnaK. The only peptide where a difference was 
observed was the peptide 240-251.  

 

To map the DnaK binding site in native proteins, HX experiments were performed. 

We used immobilized DnaK as already described before for σ32. We only found one 

peptide that showed protection when DnaK was bound. This is a peptide from region 

240-251 (Figure 7.7), which is a region where there is a potential binding site for DnaK.  

In order to confirm that DnaK binds in the C-terminus of RepE, we performed 

partial proteolysis experiments. RepE wt or RepE54 free or in complex with DnaK were 

digested with different concentrations of trypsin and the products were analyzed by mass 

spectrometry. We found two fragments that were produced after trypsin cleavage of RepE 

wt but not after the cleavage of DnaK-RepE wt complex. These fragments were 1-242 

and 1-245. In the case of RepE54, the fragments 2-247, 8-245 and 5-244 were present for 

free RepE54 but not for the DnaK-Rep54 complex. This indicates that the C-terminus is 

protected by DnaK from proteolysis. Taken together, these results indicate that DnaK 

binds in the C-terminus of RepE in the region 240-251. 
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Conclusions 

In this chapter we have characterized the structure of RepE dimer and RepE54, 

which is a constitutive monomer. Using HX experiments of full-length proteins we have 

shown that the monomer is more stable than the dimer. When we repeated our 

experiments introducing a pepsin column to map these differences we found that the 

peptides have three different exchange behaviors. Most of the peptides exchanged to the 

same extent in both proteins. Some peptides exchanged more in the monomer —these are 

the peptides that are involved in the formation of the dimer interface. Finally, we found 

peptides that exchanged more in the dimmer (segments: 6-28, 1521-164, 220-240). These 

regions are more flexible in the dimer protein. This fact probably has a functional 

implication. The dimer-monomer transition requires structural rearrangements including 

the formation of additional secondary structure elements. This higher flexibility may be 

necessary for binding to the inverted-repeat operator. 

Using the same approach as in Chapter 4 we were able to map the DnaK binding 

site in RepE: the former binds in a C-terminal hydrophobic site of the latter. We have 

shown that HX experiments in combination with a column containing immobilized DnaK 

are a powerful tool to map binding sites in its substrates.  

DnaK induces monomerization of RepE. Interestingly, DnaK binding site (residues 

240-250) is not close to the dimer interface (residues 97-128). Therefore, DnaK induces 

conformational changes in RepE in a region that is distant from its binding site. This 

situation is similar to the one we observed for σ32: DnaK binds in the region 198-202 of 

σ32 but induces destabilization in the N-terminus (residues 31-49). We have observed a 

similar effect with DnaJ and σ32. 
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Discussion 
 

 

 

 

 

 

 

As stated in the Overview, the purpose of this Thesis is to characterize the 

interaction of DnaK with native substrates substrates. To this end we have employed two 

different native substrates of DnaK: σ32 and RepE. The interaction of DnaK with σ32 and 

RepE was studied using HX experiments combined with mass spectrometry, which is a 

powerful tool to investigate protein conformational properties. In this section we make a 

summary of the obtained results and discuss the possible mechanism of action of DnaK.  

In Chapter 3 we presented a quenched-flow setup system that allows HX 

experiments with as short as 100 ms exchange times. We have first evaluated the 

performance of the system: using apo-myoglobin as a model protein, we have 

demonstrated that the quenched-flow setup is accurate and reproducible with a low level 

of back-exchange. We have then investigated the conformational properties of E. coli 

heat-shock transcription factor σ32 free in solution. Using the quenched-flow setup we 

have detected at least 30 amide protons in the C-terminal region of σ32 that are protected 
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after 1 sec, and at least 25 after 5 sec. We have found that the C-terminus of σ32 is 

structured but yet very flexible. These structural properties can only be detected with very 

short exchange times given that after 10 seconds the C-terminus of σ32 has exchanged 

almost completely. The quenched-flow setup was also used in Chapter 7 to investigate 

the conformational differences between dimeric RepE wild-type and the monomeric 

RepE54 variant. In this case we were able to show that, even at very short exchange times, 

the monomer is more stable than the dimer. Summing up, in this thesis we have shown 

that the quenched-flow setup is suitable for mapping short-term conformational changes. 

Our first approach to characterize the interaction of DnaK with σ32 was a 

crystallization attempt described in Chapter 4. We were able to purify DnaK-σ32 and 

DnaK-DnaJ-σ32 complexes in the high amounts that are needed for crystal screenings. 

Even though we have not yet been successful in obtaining crystals, this project is a still 

ongoing collaboration. We are currently trying to purify the different complexes formed 

in vivo. With this purpose we have created new plasmids and are still searching for the 

right conditions for this purification. 

Since we could not obtain the crystal structure of the DnaK-σ32 and DnaK-DnaJ-σ32 

complexes, we investigated the interaction of DnaK and DnaJ with σ32 using HX 

experiments in Chapter 5. We have confirmed that the previously identified DnaK 

binding site in σ32 is the actual binding site in the native protein. The identified DnaK 

binding site is located at position 198 to 201 in the σ32 polypeptide chain. This DnaK 

binding site consists of a hydrophobic core of 4 amino acids flanked by many hydrophilic 

and negatively charged residues. While these flanking segments do not promote DnaK 

binding, they may promote the surface exposure of the hydrophobic core residues 

including their peptide backbone, thereby facilitating the enclosure of this site through 

binding into DnaK´s substrate binding cavity. In addition, the negative charges in the 

flanking segments may help to prevent aggregation of σ32 by electrostatic repulsion.  

We have also localized the DnaJ binding site to the N-terminal domain of σ32. Our 

conclusion resides on five lines of evidence. (1) The identified site is a high affinity site 

at the primary sequence as evidenced by peptide library scanning (Rüdiger et al., 2001). 

(2) DnaJ binding to σ32 leads to a protection from HX of regions in close vicinity of the 
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identified site (Figure 5.12). (3) Truncations and point mutations decrease the affinity of 

DnaJ for σ32. (4) The truncation and point mutants fail to stimulate the ATPase activity of 

DnaK in a synergistic fashion in the presence of DnaJ, while they stimulate the ATPase 

activity of DnaK in the absence of DnaJ like wild type σ32 (Figure 5.8). (5) The 

truncation mutant is not loaded onto DnaK in a DnaJ- and ATP-dependent way (Figure 

5.8). 

The DnaJ binding site in σ32 does not need to be unstructured since DnaJ only 

distinguishes side chain hydrophobicity and, unlike DnaK, does not depend on backbone 

contacts (Rüdiger et al., 2001). This site is different from the DnaK binding site. The fact 

that DnaK and DnaJ bind to σ32 in different regions demonstrates that a direct transfer 

mechanism of the DnaJ-bound site into the substrate-binding cavity of DnaK is not 

operative in the case of σ32. Since a truncation and mutagenesis study on the native DnaK 

substrate RepA also suggests different binding sites for DnaK and DnaJ (Kim et al, 2002) 

this mode of cooperation between DnaJ and DnaK might be more general. 

What are the effects of the DnaK and DnaJ chaperones on σ32? In the presence of 

DnaJ, σ32 exchanged amide hydrogens with an overall higher rate corresponding to a 

destabilization of 86 kJ·mol-1. The localization of the destabilized regions revealed that 

one of them is in close vicinity to the DnaK binding site in the primary structure. This 

suggests that DnaJ promotes an open conformation of σ32 thereby facilitating DnaK 

binding. These data explain the synergism of DnaJ and σ32 in stimulating DnaK’s ATPase 

activity and of DnaJ’s high efficiency in loading σ32 onto DnaK. 

DnaK also affects the conformation of σ32. A segment in the N-terminal domain of 

σ32, residues 31-49, shows in HX experiments more exchange in the presence of DnaK as 

compared to free σ32. This region of σ32 is therefore less compact when σ32 is bound to 

DnaK, though the magnitude of this destabilization appears to be small (two amide 

hydrogens). In the HX experiments with full-length σ32 we did not observe any change in 

overall exchange rates. However, we observed hydrogen protection at the DnaK-binding 

site and at the very N-terminus (residues 3-18) in the HX experiments with pepsin 

digestion. In the binding site we could only measure a protection of 2 amide hydrogens 

due to the subsequent cleavage of the binding site during the peptic digestion. A model 
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peptide comprising this region shows a protection of 4 amide hydrogens in the absence of 

peptic digestion and of 2 amide hydrogens in its presence, indicating that in the full-

length protein also 4 amide hydrogens within the DnaK binding site should be protected 

by binding to DnaK. Together with the single amide hydrogen that exchanges more 

slowly in the N-terminal segment, a total of at least 5 amide hydrogens in σ32 should be 

protected upon binding to DnaK. Since none were observed in the experiments with the 

full-length protein, an equal number of amide hydrogens are expected to be deprotected. 

The reason for the lower number of observed deprotected amide hydrogens is probably 

peptic digestion, which leads to a loss of information at every cleavage site. Therefore, 

the observed degree of destabilization in the N-terminal domain is most likely an 

underestimation of the total effect of DnaK on σ32. 

How could DnaK and DnaJ affect the conformation of σ32? There are principally 

two alternative ways. Chaperone binding could actively induce the conformational 

alteration in σ32. Alternatively, σ32 could exist in at least two conformational states, a 

closed and an open state, which are in equilibrium with each other. Chaperone binding 

could shift this equilibrium to the open state by binding to it. However, irrespective of the 

way by which the chaperones affect the deprotection of amide hydrogens in σ32, the result 

is the same: σ32 is destabilized in defined regions. In Figure D.1 we show a model of the 

regulation of σ32 by DnaK-DnaJ. 

Recently, σ32 variant proteins with a longer half-life in vivo were reported 

(Horikoshi et al. 2004; Obrist and Narberhaus 2005; Gross personal communication). 

Interestingly, the amino acid substitutions in these σ32 variants are located in the region 

where the destabilization by DnaK occurs. This is thus a crucial region of the regulation 

of σ32. In Chapter 6 we have investigated two of these σ32 variants (σ32 I54N and σ32 

L47Q-L55Q) by HX experiments. We found that in the case of σ32 I54N the segment 

157-175 is more protected than in σ32 wt, and in the case of σ32 L47Q-L55Q the segment 

87-101 is more protected than in σ32 wt. These two segments are destabilized in σ32 wt 

upon DnaJ binding. In addition, we found that the affinity of DnaJ for these two proteins 

is lower than the affinity of DnaJ for σ32 wt. These two variant proteins are also impaired 

in the DnaJ-σ32 synergistic stimulation of the DnaK ATP hydrolysis. The reason for these  
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Figure D.1. Model of the regulation of σ32 by DnaK-DnaJ. DnaK and DnaJ bind in different regions of σ32. 
DnaK binds in the C-terminal region of σ32 (aa 198-201) while DnaJ binds in the N-terminus region (aa 59-
64). Both chaperones destabilize σ32 in regions distant to their binding sites. DnaK destabilizes the segment 
31-49 of σ32 while DnaJ destabilizes two segments, one of them close to the DnaK binding site in the 
primary structure (aa 158-175). This suggests that DnaJ promotes an open conformation of σ32 thereby 
facilitating DnaK binding. The destabilizations induced by DnaK-DnaJ are indicated with red arrows and 
shown in light blue in the structure. The chaperone-induced unfolding of a secondary structure element may 
facilitate degradation of σ32 in vivo by the FtsH protease. DnaK and DnaJ could be bound to or released 
from σ32 during degradation (indicated with light green and light yellow). DnaK binding to σ32  prevents the 
binding to the RNA polymerase (RNAP). 

 

 

two σ32 variants to be more stable in vivo could be that the DnaJ targeting to DnaK is 

impaired for these proteins.   

What are the consequences of the interaction of the chaperones with σ32 in vivo? In 

vivo, σ32 is degraded mainly by the AAA+ protease FtsH. Degradation of σ32 proceeds 

from the N- to the C-terminus (Okuno et al., 2004). In addition, FtsH lacks robust 

unfoldase activity and only degrades substrates efficiently when they have a low intrinsic 

thermodynamic stability (Herman et al., 2003). This indicates that a chaperone-induced 

unfolding of a secondary structure element may facilitate degradation of σ32 in vivo. The 

DnaK system cannot stimulate the proteolysis of σ32 by full-length FtsH in vitro. It has 

been speculated that an unknown factor is missing. We cannot exclude that this 

destabilization exposes a binding site for an adaptor protein. For example, the SspB 

adaptor protein binds in the N-terminus of substrates and targets them to ClpX for 
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degradation, which starts from the N-terminus (Levchenko et al., 2003; Song et al., 2003; 

Park et al., 2007).  

How could the DnaK-DnaJ system regulate the activity of σ32? Our data indicate 

that the DnaK binding site is in close vicinity of, or is identical with, a site involved in 

RNAP binding. This conclusion resides on previous results from our laboratory. In these 

studies σ32 could be cross-linked to RNAP through an UV-activated cross-linker located 

in the close neighborhood of the DnaK binding site, and mutational alterations within the 

DnaK binding site reduced the affinity of RNAP to σ32. These results are consistent with 

the reduced affinity of RNAP for the σ32 mutant protein encoded by the rpoH113 allele 

that carries a deletion of residues 178 to 201 (Calendar et al., 1988; Zhou et al., 1992). 

These data are also consistent with the crystal structure of T. thermophilus RNAP 

holoenzyme, which shows that the σ70 region homologous to the DnaK binding site is 

enclosed between the β and β’ subunit of RNAP (Vassylyev et al., 2002). Consequently, 

DnaK and RNAP binding to this site are mutually exclusive, in consistence with earlier 

observations (Gamer et al., 1996; Liberek et al., 1992). This way of regulation of the 

activity of σ-factors seems to be a more general scheme as suggested by three recent 

crystal structures between σ-factors and their specific anti-σ-factors (Campbell et al., 

2003; Campbell et al., 2002; Sorenson et al., 2004). Although the individual σ-factor—

anti-σ-factor pairs bind to each other in different ways, the effect is similar: at least one 

binding determinant for RNAP becomes inaccessible. However, under equilibrium 

conditions DnaK can not out-compete RNAP, neither in the ADP nor in the ATP bound 

state, since the dissociation equilibrium constant for the DnaK-σ32 interaction is 1.4 µM 

in the ADP state and at least ten-fold higher in the ATP state, while the KD for RNAP is 

with 12 nM 100-fold lower, most likely due to the much larger interaction surface. The 

efficient competitive binding of DnaK to σ32 relies on the high association rate in the 

ATP-bound state and subsequent ATP hydrolysis,  coordinated by DnaJ, to take 

advantage of the low dissociation rate of the ADP-bound state. Thus, the calculated non-

equilibrium KD is in the low nM range.  The effect of  DnaJ on the interaction of DnaK 

with σ32 is therefore twofold. First, the DnaK  binding site within σ32  becomes  more 

accessible, increasing the association rate  between DnaK and σ32. Second, synergistic  
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stimulation of the ATP hydrolysis leads to an efficient trapping of σ32. It will be 

important to determine whether this mode of action of the DnaK-DnaJ team is generally 

applicable for other substrates and for Hsp70 homologues.  

In Chapter 7 we studied the interaction between DnaK and another of its native 

substrates RepE. RepE can initiate replication or repress its own synthesis depending on 

its oligomeric state (monomer or dimer). DnaK, DnaJ and GrpE regulate RepE 

monomerization. The purpose of this Chapter was to characterize the mechanism of 

monomerization induced by the DnaK system. First, we investigated the conformation of 

dimeric RepE wild-type and the monomeric variant RepE54. Using HX experiments, we 

mapped the dimer interface in RepE. It is located in the region 96 to 128. Our result is 

supported by different data: (1) variant proteins that are constitutively monomeric have 

amino acid substitutions in this region (Matsunaga et al., 1995), (2) these segments of 

RepE are poorly resolved in the crystal structure of monomeric RepE54, indicating a high 

flexibility. However, in a dimeric assembly they would prolong a β-sheet across the 

dimer interface (Figure 7.3), (3) the dimerization interface in RepA which is related to 

RepE in structure but not in sequence comprises two β strands from different protomers, 

forming a central five-stranded antiparallel-pleated β-sheet (Giraldo et al., 2003). These 

two β−stands interact through hydrogen bonds. The region we found to be protected in 

the dimer corresponds to the dimer interface of RepA. 

Is binding to DNA similar in monomeric RepE wild-type and dimeric RepE54? N- 

and C-terminal domains of monomeric RepE54 are topologically similar and related to 

each other by an internal two-fold symmetry (Komori et al., 1999). Both domains of 

RepE54 bind to the two major grooves of iteron DNA. Two helix-turn-helix motifs in 

RepE54, namely α3-turn-α4 (residues 64-92) and α3’-turn-α4’ (residues 168-242), are 

critical for directed repeat ori2 binding. In HX experiments, the segments from this 

region showed no differences between dimeric RepE wild-type and monomeric RepE54, 

indicating that this region does not change its conformation upon monomerization. 

Therefore, binding to DNA must be similar for both proteins. This is in agreement with 

the fact that the directed repeats sequence from ori2 where monomeric RepE binds and 

the inverted repeats sequence from the operator where dimeric RepE binds contain 8 bp 
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in common (Ishiai et al., 1994).  In addition, the α3’-turn-α4’ motif is also a critical 

region for dimeric RepE binding to inverted repeat operator (Matsunaga et al., 1995). 

How is the mechanism of monomerization? In HX experiments, the segments in 

regions 5-28, 151-164 and 219-240 exchange more in the dimer than in the monomer, 

indicating that dimeric RepE is more flexible in these regions. Segment 5-28 includes the 

β1 that in monomeric RepE54 forms a small β-sheet with β1’(residues 147-150). In the 

structure of the N-terminal domain of RepA this β-sheet is disrupted and β1’ forms an 

extension of α5 (Giraldo et al., 2003). Our results are in agreement with the N-terminal 

structure of RepA since the lack of hydrogen-bonds between those two strands would 

result in higher deuteron incorporation in this region. Our results indicate that 

monomerization of RepE requires marked conformational changes. The higher flexibility 

in RepE dimer may be needed for accommodating it on the inverted repeat of the operator. 

With crosslinking experiments we showed that DnaK binds to both RepE wild-type 

and RepE54. Using the same approach as in Chapter 5, we were able to map the DnaK 

binding site in RepE: DnaK binds in a C-terminal hydrophobic site of RepE (segment 

240-250).  The binding site for both RepE proteins was the same. This result was 

confirmed with trypsin partial proteolysis experiments. We found that C-terminal 

fragments were protected from trypsin cleavage in DnaK-RepE wt complex but not in 

free RepE wt. We obtained the same result with Rep54. 

How could DnaK induce the monomerization of RepE? We showed that there are 

marked conformational changes in the monomerization of RepE. Monomeric  RepE54 is 

more stable than the dimeric RepE wild-type even though the dimer interface is more 

stable in RepE wild-type. RepE is in equilibrium between dimer and monomer.  The 

dimerization KD has been estimated to be approximately 0.3 nM (Ishiai et al., 1994). 

Thus, under physiological conditions RepE will be majority as a dimer and require the 

action of DnaK system to monomerize and bind to ori2. We propose that DnaK system 

induces the monomerization of RepE and remains bound to monomeric RepE to avoid 

reformation of the dimer. This hypothesis is supported by the fact that the DnaK also 

binds to monomeric RepE.  
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What is the function of DnaJ? There are 5 potential binding sites for DnaJ in RepE 

(data no shown). The DnaJ binding site in native RepE remains to be elucidated. One way 

to find this site is to create point mutants and evaluate the affinity for DnaJ like we did 

for σ32. It also would be interestedly to study whether DnaJ induces conformational 

changes in RepE. We speculate that DnaJ also destabilizes RepE and makes the DnaK 

binding site more accessible. This hypothesis is based in the fact that RepE cannot initiate 

mini-F replication in ∆dnaJ strains and that DnaJ together with RepE stimulate 

synergistically the ATP hydrolysis of DnaK in single turn-over experiments (data no 

shown).  This DnaJ effect on RepE requires further investigation.  

DnaK regulates the activity of different native proteins in the cell. It can inhibit the 

activity of same proteins like in the case of σ32 and it can activate the activity of other 

proteins like in the case of RepE. We propose that inactivation is a consequence of 

structural destabilization whereas activation stems from structural stabilization. 

In conclusion, in this Thesis we have characterized the interaction of two native 

substrates with the DnaK system. Our data explain how the chaperone system regulates 

the activity of σ32. We also elucidated the molecular mechanism of RepE 

monomerization and contributed to the understanding of the regulation of RepE by the 

DnaK system. 
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Materials and methods 
 

 

 

 

 

 

 

Computer software  
Acrobat 5.0     Adobe  
Analyst QS (with BioAnalyst)  Applied Biosystems/MDS SCIEX 
EndNote 4.0     ISI ResearchSoft 
GPMAW     Lighthouse Data 
Graphit 5.0     Erithacus Software Ltd. 
HXPep      Z. Zhang  
Illustrator 9.0     Adobe 
MagTrans     Z. Zhang 
Office 2000     Microsoft Corp. 
PepSea 2.2     MDS Proteomics 
Photoshop 6.0     Adobe 
Weblab Viewer 5.0    Molecular Simulations Inc. 
 
Equipment 
Mass spectrometers 
QSTAR Pulsar i Hybrid MS/MS System Applied Biosystems/MDS SCIEX 
UltraFlex MALDI-TOF/TOF   Bruker Daltonics 
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HPLC pumps 
1100 Series Capillary Pump   Agilent 
1100 Series Binary HPLC Pump  Agilent 
LC-10ADVP HPLC    Shimadzu 
Rheos 2000 Micro HPLC   Flux Instruments 
Ultimate HPLC with Switchos and Famos LC Packings 
 
Other equipment 
Speed-Vac     Bachofer 
UV lamp B-100AP    Ultraviolet Products  
French Press     SLM-Amin.co 
ÄKTA FPLC and columns   Amersham Pharmacia 
RoboCycler      Stratagen 
Spektrometer UV-1601   Shimadzu 
Scintillation counter    Beckman  
Fuji FLA 2000 fluorimager 
 

Chemicals 

If not otherwise stated all chemicals were analytical grade and obtained from Roth, 

Sigma or Merck. For mass spectrometry only high purity solvents (HPLC grade) were 

used. 

 

Kits 

QIAGEN® Plasmid Prep Kit. 
QIAGEN® PCR DNA and Gel Band Purification Kits. 
 
Proteins and Enzymes 

BSA      Sigma-Aldrich  
DNase A     Sigma 
Lysozyme     Roth  
Gel filtration standard    Biorad  
Myoglobin     Sigma  
Poroszyme Immobilized Pepsin  Applied Biosystems 
Restriction enzymes    New England Biolabs, Roche 
T4-DNA ligase    New England Biolabs, Roche 
Trypsin (sequencing grade)   Promega 
 

DNA and Protein Size Standards 

GeneRulerTM 1kb DNA Ladder   Fermentas 
Prestained Protein Ladder (SM0671)   Fermentas 
Prestained Protein Ladder (SM0441)   Fermentas 
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Protein Ladder (SM0431)    Fermentas 
 

 
Peptides 

Pep44 (σ32-Q132-Q144)  J. Schneider-Mergener, Charité Berlin 
Pep65 (σ32-M195-N207)  J. Schneider-Mergener, Charité BerlinColumns 
 

Antibiotic stock solutions (1000x) 

Ampicillin   100 mg/ml in H2O (stored at –20°C) 
Chloramphenicol   20 mg/ml in 70% (v/v) ethanol (stored at –20°C) 
Kanamycin   50 mg/ml in H2O (stored at –20°C) 
Tetracycline   10 mg/ml in 70% (v/v) ethanol (stored –20°C) 
 

Strains 

MC4100 lab collection (Casadaban, 1976) 
F- araD139 ∆(argF-lac)U169 rpsL150 relA1 deoC1 ptsF25 rpsR flbB5301 
 
BB1553 lab collection (Bukau & Walker, 1990) 
MC4100 ∆dnaK52::Cmr sidB1 
 
BB1994 lab collection 
BB1553, pDMI.1 
 
DH5α lab collection 
supE44 ∆lacU169 deoR (f80lacZAM15)hsdR17 recA1 endA1 gyrA96 thi-1 relA1 
 
DH5αZ1 lab collection (Lutz & Bujard, 1997)  
DH5α lacIq tetR Specr 
 
WKG191 lab collection (Kelley & Georgopoulos, 1997) 
MC4100 araD139 ∆ara714 ∆dnaK52::Cmr sidB1 
 
CJ236 lab collection (Kunkel et al., 1987) 
dut1, ung1, thi-1, relA1/pCJ105(F' camr) 
 
BL21 lab collection 
hsdSgal (λcIts857 ind1 Sam7 nin5 lacUV5-T7 gene1) 
 

BB7142 lab collection 
BL21 ∆ftsH 
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Plasmids 

pUHE21-2fd∆12 lab collection (Lanzer, 1988) 
(colE1 Ampr Lac 03/04 promotor/operator) 
 
pMPM-A4 lab collection (Mayer, 1995)  
(colE1 Ampr araC, pBAD promotor) 
 
pBluescript II KS+ = pBSKS+ Stratagene (Alting-Mees & Short, 1989) 
phagemid vector, ampicillin resistant 
 
pWR01 lab collection 
pBSKS+(repE) 
 
pWR02 lab collection 
pBSKS+(repE54) 
 

 

Primers 

10His-EcoRI  aattcATGCATCACCATCACCATCATCACCATCACGGCGGTTC 
10His-NcoI-rev   catgGAACCGCCGTGATGGTGATGGTGTGATGGTGATGGTGATGCATG 
3’HindIII 145-251 cgataagcttgatatcgc 
3’HindIII 1-144  cgtaagcttagTTCTGTAACCCGATAAAGAA 
3’HindIII RepE 10His cgaagcttCTAgtgatggtgatggtgatggtgatggtgatgTCCTGTCGTCATGGAAG 
3’RepE 224AAAA  GCCTTTCTTTTTCTCagcagcagcagcGCGCATTGGAGTTC 
3’repE delta220  cgaagcttTCAAGTTCTGCTGTTGATC 
5’NcoI 145-251  ccggCcATGGCGTTTACGCAGTTTCGGC 
5’RepE   ggatggagtgaaaggagg 
5’RepE 244AAAA  GAACTCCAATGCGCgctgctgctgctGAGAAAAAGAAAGGC 
5’RepE EcoRI w/oNhis gggaattcATGGCGGAAACAGCGG 
5’RepE KpnI   cggggtaccGCGGAAACAGCGGTTATC 
5’RepE KpnI 144-251 cggggtaccCGGTTTACGCAGTTTCGG 
3’s32EcoRI  ggtggtgaattcTTAgtgatggtgatggtg 
3’SUMO KpnI BamHI cgggatccggtaccACCAATCTGTTCTCTGTGAGCC 
3’HindIII rpoH  ggaagcTTACGCTTCAATGGCAGC 
3’SBD HindIII  caggagtccaagcTTAGGC 
5’NdeI Sumo   GGAGATATACATATGGG 
5’rpoH EcoRI  cggaattcATGACTGACAAAATGCAAAG 
5’rpoH KpnI  cggggtaccGACAAAATGCAAAGTTTAGC 
5’SBD 389 NdeI gcgcatatggtactgctgctggacgttacccCG 
3’rpoH 122Cter SpeI CCGactagtTTAgtgatggtgatggtgatg 
3’rpoH 122 SpeI  CGGactagttaACGCCAGTTACGCAGAAC 
5’rpoH 122Cter EcoRI  ccgGAATTCATGCGTATCGTCAAAGTTGCG 
3’rpoH 210 SpeI  CGGGactagttaGTCGGCAAAGTTAGATGATTTATC 
3’rpoH 218 SpeI  CGGactagttaTTCCCAGTTATCATCTTCAATG 
3’rpoH 224 SpeI CGGactagttaACGGTTTGCCGCCTGCTC 
3’rpoH 235 SpeI  CGGactagttaGCGTTCGTCCAGACCCTG 
5’rpoH-liz NdeI  CCATGGGCAGCAGCCATC 
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rpoH L47Q  TGCTTCctgATCGCC 
rpoH L55Q   GTGAGActgGATCAG 
rpoH I54N   AGACAGGtTCAGCGT 
rpoH N94C   cttccgggcagaaacggc 
 
 
Media 

LB broth   10 g/l tryptone 
5 g/l   yeast extract 
5 g/l   NaCl 
15 g/l agar (only for culture plates) 

 
2x YT    16 g/l tryptone 

                                  
5 g/l NaCl 

 
Buffers 

KII buffer   25 mM Hepes KOH pH 7.6 
    50 mM KCl 
    5 mM MgCl2 
 
HKNM buffer   25 mM Hepes KOH pH 7.6 
    50 mM KCl 
    150 mM NaCl 
    5 mM MgCl2 

    7 mM β-mercaptoethanol 
 
T-Buffer   20 mM Tris/HCl, pH 7.8 
    200 mM KCl 
    10 mM MgCl2 
    2 mM DTT 
    5% glycerol 
    0.05% Tween-20 
 
Others 

nick-column (sephadex G50)   Amersham Pharmacia 
ultracentrifugation spin column   Vivaspin 
TLC plates: PEI celluloseF   Merck 1.05579 
[α32P] ATP: 10 µCi/ul   Amersham Biosciences 
D2O (99.9%)      Cambridge Isotope Laboratories  
Poros R1         Applied Biosystems 
Poros R2     Applied Biosystems 
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Molecular Biology Techniques 

Agarose Gel Electrophoresis 
 
Buffers 
10x TAE   400 mM Tris/acetate, pH 8.0 
    10 mM EDTA 
 
6x DNA loading buffer 30% glycerol 
    0.25% bromophenol blue 
    0.25% xylene cyanol FF 
Method 
Agarose gels were prepared according to standard methods (Sambrook and Russell, 

2001). 

 
 
Purification of DNA agarose gels and PCR reactions 

DNA from agarose gels and PCR reactions was purified with QIAGEN® kit following the 

instructions of the manufacturer.   

 
Preparation of competent cells using calcium chloride 

Buffers and solutions 

MgCl2-CaCl2 solution  80 mM MgCl2 
    20 mM CaCl2 
 
Storage solution  100 mM CaCl2 
    15% glycerol 
 
 

Preparation of cells 

A single bacterial colony was picked from a plate and incubated overnight at 37°C (30°C 

for ∆dnaK strains) in 2ml of LB media.  50 ml of LB media were inoculated with 1 ml of 

the overnight culture and incubated 37°C (or 30°C) until an OD600 of 0.2-0.3. The 

bacterial cells were transferred to a sterile, ice-cold 50 ml falcon tube and the culture was 

cooled on ice for 10 minutes. Then, cells were harvested by centrifugation at 4000 rpm 

for 10 minutes. The medium was removed and the tube was stood in an inverted position 

on a pad of paper towels for 1 minute to drain away the last traces of media. The pellet 

was resuspended in 50 ml of ice-cold MgCl2-CaCl2 solution and the cells were recovered 
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by centrifugation at 4000 rpm for 10 minutes. The medium was decanted and the tube 

was stood in an inverted position on a pad of paper towels for 1 minute to drain away the 

last traces of media. The pellet was resuspended in 2 ml of storage solution, dispensed 

into aliquots, frozen in liquid nitrogen and stored at –80°C.  

 

Transformation 

DNA was added to 50 µl of the competent cells.  The tube was incubated on ice for 30 

minutes on ice. Then the tube was incubated 90 seconds at 42°C (40°C for ∆ dnaK 

strains) and 2 minutes on ice. 500 µl of LB media was added to the tube and it was 

inoculated 45 minutes at 37°C (or 30°C) to allow bacteria to recover and express the 

antibiotic resistance marker encoded by the plasmid. 100 µl of transformed cells were 

platted onto agar LB medium containing the appropriate antibiotic.  

 

Purification of plasmid DNA 

Plasmid DNA isolation was performed using either the small-scale QIAGEN® Quick 

Spin method or the large-scale QIAGEN® Plasmid Midi Kit according to the protocol 

provided by the manufacturer. 

 

Cloning 10His-RepE and 10His-RepE R118P 

The plasmids pWR07 and pWR08 were cut with NcoI and EcoRI. The resulting fragment 

was purified with QIAGEN® gel extraction kit according to the manufacture instruction. 

Then the purified fragment was ligated to the 10His-EcoRI and 10His-NcoI-rev 

previously annealed.  

 

PCR Cloning of σ32 deletion mutants 

 

The rpoH gene was amplified by PCR (polymerase chain reaction) from the pMPM-4A-

rpoH-liz plasmid. The primers were designed such that they were complementary to the 

beginning and to the base that wanted to be deleted of the rpoH gene and contained 

EcoRI and SpeI sites, respectively. rpoH PCR product was cut with EcoRI and SpeI and 

inserted into pMPM-4A, which was also cut with EcoRI and SpeI. The resulting plasmid 
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was transformed into the E. coli strains DH5αZ1 and BB7142. All plasmids were 

sequenced. 

 

Site directed mutagenesis 

Buffers 

Annealing buffer  20 mM tris/HCl pH 7.5 
    2 mM MgCl2 

    50 mM NaCl 
 
10x Polmix    200 mM Tris/HCl pH 7.5 

20 mM DTT 
100 mM MgCl2 
5 mM dNTP  
4 mM ATP 
0.5 mg/ml BSA 

 
 

Method 

Mutant genes of rpoH (rpoH N94C, rpoH L47Q-L55Q, rpoH I54N) were created by in 

vitro mutagenesis according to Kunkel (Kunkel et al., 1991). Single-stranded DNA 

(ssDNA) of pMPM-4A-rpoH was prepared using the E. coli host strain CJ236 and helper 

phage M13KO7. CJ236 is dut– and ung–, and therefore deficient for the enzymes 

dUTPase (Dut) and uracil-N glycosylase (Ung). The mutagenic oligonucleotide was 

annealed to the deoxyuridine-containing ssDNA, and was extended and ligated using T7 

DNA polymerase and T4 DNA ligase, respectively. The DNA was transformed into E. 

coli DH5αZ1, which is ung+, thereby degrading the original uridine-containing strand. 

The newly synthesized strand that contained the mutated bases was replicated to produce 

intact mutated plasmid, which was confirmed by sequencing. 

 

Annealing: 

1 µL phosphorylated primer, 1 µl ssDNA (1 µg), 1 µl 10x annealing buffer, and 7 µl H2O 

were heated to 95°C for 2 min, slowly cooled to 30°C, and then placed on ice. 

Elongation/Ligation: 
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To the annealed template-primer 10 µl of 10x polmix buffer and 79 µl H2O were added, 

incubated on ice for 5 min, at room temperature for 5 min, and at 37°C for 2 h. Then, 5 µl 

were used for transformation into DH5αZ1. 

 

Cloning of σ32 and DnaK (crystallization approach) 

The original idea was to co-express σ32 and DnaK (without the C-terminal tail), in order 

to purify in vivo pre-assembled complexes. σ32 and DnaK (up to 607) were cloned into a 

pUHE-based vector and the proteins were over-expressed in a delta dnaK52-host strain 

(BB1994). The expression level of the complex was too low. In vivo, σ32 is degraded by 

the AAA+ protein FtsH (a membrane-anchored ATP dependent metal protease, 

Tomoyasu et al., 1998, Tatsuta et al., 2000). It has been shown in the past that σ32 is 

better expressed in delta ftsH strains. The vector expressing the complex was cloned into 

a delta dnaK, delta ftsH strain. This strain grown very slowly and was not suitable for the 

expression of the complex. An alternative protocol was made: σ32 was purify using Ni2+-

affinity chromatography, and then DnaK was added to σ32 bound to the Ni2+-column. The 

complex was formed in the Ni2+-column and the unbound DnaK could be washed away. 

After elution and cleavage, a gel filtration column was run to separate free σ32 from the 

complex. In the same way the DnaK/DnaJ/σ32 complex and the DnaJ/σ32 complex were 

purified.  

 

σ32 was cloned into a plasmid with a L-arabinose inducible promoter (pMPM-A4). We 

placed at the N-terminus of σ32 a hexahistidine-tag (His6-tag) followed by a Ppx cleavage 

site.  

 

DnaK without the C-terminal tail (up to aa 607) was cloned in a pUHE-based vector. 

Over-expression was performed in a delta dnaK52-host strain (BB1994). The substrate- 

binding domain (SBD) of DnaK without the C-terminal tail (aa 389-607) was also cloned 

in a pUHE-based vector and over-expressed in a delta dnaK52-host strain. 
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Biochemical Methods 

 
SDS Gel Electrophoresis  
Buffers 
4x SDS stacking gel buffer   0.5 M Tris/HCl, pH 6.8 
      0.4% SDS 
 
4x SDS separation gel buffer   1.5 M Tris/HCl, pH 8.8 
      0.4% SDS 
4x gel loading buffer    500 mM Tris/HCl, pH 6.8 
      8% (w/v) SDS 
      40% (v/v) glycerol 
      20% (v/v) β-mercaptoethanol 
      0.6% (w/v) bromophenol blue 
 
1x SDS gel running buffer   25 mM Tris, pH 8.0 
      200 mM glycine 
      0.1% (w/v) SDS 
 
Coomassie staining solution   0.2% (w/v) Coomassie Brilliant Blue R250 
      50% (v/v) methanol 
      5% (v/v) acetic acid 
        
Coomassie destaining solution  50% (v/v) methanol 
      5% (v/v) acetic acid 
 
 
SDS-PAGE gels were prepared according to Laemmli (Laemmli, 1970) and protein 

bands were visualized by Coomassie staining. 

 

Protein Quantification  

The protein concentration was determined using the Bradford method (Bradford, 1976).  

The Bradford reagent (Biorad) was diluted 1:5 with water and 1 ml was mixed with 1–5 

µl of the protein solution. After 5 minutes of incubation the absorption was measured at 

595 nm in a spectrophotometer. For calibration were used different amounts of BSA (0, 1, 

2, 4, 5 and 10 mg/ml BSA).  

 

Purification of 10His-RepE 
Buffers 
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Lysis buffer A   40 mM Na2HPO4/NaH2PO4, pH 7.9 
    450 mM NaCl 

0.1 mM EDTA 
1 mM PMSF 
10% glycerol 
 

Buffer A   40 mM Na2HPO4/NaH2PO4, pH 7.9 
    100 mM NaCl 

20 mM imidazole 
10% glycerol 

 
Buffer B   40 mM Na2HPO4/NaH2PO4, pH 7.9 
    100 mM NaCl 

20 mM imidazole 
10% glycerol 

 
Buffer C   40 mM Na2HPO4/NaH2PO4, pH 7.9 
    50 mM NaCl 

500 mM imidazole 
10% glycerol 

 
Buffer D   40 mM Na2HPO4/NaH2PO4, pH 7.9 

10% glycerol 
   
Buffer E   40 mM Na2HPO4/NaH2PO4, pH 6.6 
    100 mM NaCl 

0.1 mM EDTA 
7 mM β-mercatoethanol 
10% glycerol 

 
Buffer F   40 mM Na2HPO4/NaH2PO4, pH 6.6 
    100 mM NaCl 

0.2 mM EDTA 
7 mM β-mercatoethanol 
10% glycerol 

 
Overproduction and cell lysis: 

Over-expression of 10His-RepE or 10His-RepE mutants was performed in a WKG191-host 

strain. 3L of 2xYT complemented with 100 µg/l ampicilin were inoculated with an 

overnight culture of the corresponding strain. The culture was grown at 30°C until an 

OD600 of 0.6. Cells were induced with L-arabinose (0,2% final concentration). After 4 

hours, cells were harvested by centrifugation at 4°C and stored at –80°C.  
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All further steps were carried out on ice or at 4 °C. Cells were re-suspended in 120 ml of 

lysis buffer and lysed with a French press. Cell debris was removed by centrifugation for 

30 min at 18,000 rpm.  

 

NiNTA  

The supernatant was added to NiNTA (QIAGEN®) that was equilibrated with buffer A 

and incubated at 4°C shaked end-over-end for 1 hour. The NiNTA was packed in a 

disposable column and washed with 20 volume column buffer A, 20 volume column 

buffer B and again with 20 volume column buffer A. The protein was eluted with buffer 

C and diluted 5 times in buffer D.  

 

Cation exchange chromatography (SP-sepharose) 

The protein solution was loaded onto a 5 ml SP-sepharose column that was equilibrated 

on buffer E. The column was washed with 100 ml buffer A and eluted with 100 ml 

gradient of 0 to 50% buffer F into 1 ml fractions. The RepE containing fractions were 

pooled and stored at –80C.  

 

Purification of DnaK-His6 
Buffers 
Lyses buffer   20 mM Tris-HCL pH 7.9 
    100 mM KCl 
    20 mM imidazole 
    1 mM PMSF 
 
Buffer A   20 mM Tris-HCL pH 7.9 
    100 mM KCl 
    20 mM imidazole 
 
Buffer B   20 mM Tris-HCL pH 7.9 
    1 M KCl 
    20 mM imidazole 
 
ATP buffer   40 mM Tris-HCl 

100mM KCl 
5 mM MgCl2 

    5 mM ATP 
    20 mM imidazole 
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Buffer C   20 mM Tris-HCL pH 7.9 
    100 mM KCl 
    500 mM imidazole 
 
Buffer D   40 mM Tris-HCl 
 
Buffer E    40 mM Hepes-KOH pH 7.6 
    50 mM KCl 
    5 mM MgCl2 
 
Buffer F    40 mM Hepes-KOH pH 7.6 
    1 M KCl 
    5 mM MgCl2 
 
Overproduction and cell lysis 

Over-expression of DnaK-His6 was performed in a BL21-host strain. 10L of 2xYT 

complemented with 100 µg/l ampicilin were inoculated with an overnight culture of the 

corresponding strain. The culture was grown at 30°C until an OD600 of 0.8. Cells were 

induced with IPTG (1 mM final concentration) over-night. Cells were harvested by 

centrifugation at 4°C and stored at –80°C.  

All further steps were carried out on ice or at 4 °C. Cells were re-suspended in 200 ml of 

lyses buffer and lysed with a French press. Cell debris was removed by centrifugation for 

30 min at 18,000 rpm (repeated two times). 

 

NiNTA  

The supernatant was mixed with 8 ml of NiNTA agarose previously equilibrated with 

buffer A and incubated at 4°C for 30 minutes. The sample slurry was poured onto a 

disposable column. The column was washed with 20 column volume buffer A, 20 column 

volume of buffer B, 10 volume column ATP buffer and again with 20 volume column 

buffer A. The protein was eluted with buffer C and diluted in buffer D. 

 

Anion exchange chromatography (resource Q) 

The protein sample was loaded onto a 6 ml resource Q column that was equilibrated with 

buffer E. The column was washed with 100 ml buffer A and eluted with 100 ml gradient 

of 0 to 50% buffer F into 0.75 ml fractions. The DnaK containing fractions were pooled 

and stored at –80C.  
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Purification of σ32-His6 

Buffers  
Lysis buffer   20 mM Tris-HCl pH 7.9 
    100 mM NaCl 
    0.05% Na-desoxycholate 
    1 mM PMSF 
 
Buffer A   20 mM Tris-HCl pH 7.9 
    450 mM NaCl 
    20 mM imidazole 
 
Buffer B    20 mM Tris-HCl pH 7.9 
    1 M NaCl 
    20 mM imidazole 
 
ATP buffer   40 mM Tris-HCl 

100mM KCl 
5 mM MgCl2 

    5 mM ATP 
    20 mM imidazole 
 
Buffer C   20 mM Tris-HCL pH 7.9 
    100 mM KCl 
    500 mM imidazole 
 
Gel filtration buffer  40 mM Hepes-KOH pH 7.9 
    200 mM KCl 
    10 % glycerol 
 
Overproduction and cell lysis: 

Over-expression of σ32-His6 wt and σ32-His6 mutants was performed in a BB7142-host 

strain carrying the rpoΗ-containing vector. 3L of 2xYT complemented with 100 µg/l 

ampicilin were inoculated with an overnight culture of the corresponding strain. The 

culture was grown at 30°C until an OD600 of 0.8. Cells were induced with L-arabinose 

(0,2% final concentration). After 4 hours, cells were harvested by centrifugation at 4°C 

and stored at –80°C.  

 All further steps were carried out on ice or at 4 °C. Cells were re-suspended in 75 ml of 

lyses buffer and lysed with a French press. Cell debris was removed by centrifugation for 

60 min at 40,000 rpm.  
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NiNTA 

The supernatant was mixed with 3 ml of NiNTA agarose previously equilibrated with 

buffer A and incubated at 4°C for 60 minutes. The sample slurry was poured onto a 

disposable column. The column was washed with 20 column volume buffer A, 20 column 

volume of buffer B, 10 volume column ATP buffer and again with 20 volume column 

buffer A. The protein was eluted with buffer C. The eluent was concentrated using a 20ml 

vivaspin ultracentrifugation spin column (10KDa MWCO).  

 

Gel filtration ( Superdex 75 16/60) 

3 ml of the concentrated protein solution were loaded onto a Superdex 75 gel filtration 

column equilibrated with gel filtration buffer. 1ml fractions were collected. The σ32-His6 

containing fractions were pooled, divided in suitable aliquots, frozen in liquid nitrogen 

and stored at -80°C. 

 

Purification of DnaJ 
Buffers 
Lyses buffer   50 mM tris-HCl, pH 8 
    10 mM DTT 
    0.6% (w/v) Brij 58 
    1mM PMSF 
    0.8 mg/ml Lysosyme 
 
Buffer A   50 mM sodium phosphat buffer pH 7 
    5 mM DTT 
    1 mM EDTA 
    0.1% (w/v) Brij 58 
 
Buffer B   50 mM sodium phosphat buffer pH 7 
    5 mM DTT 
    1 mM EDTA 
    0.1% (w/v) Brij 58 
    2 M Urea 
 
Buffer C   50 mM Tris-HCl, pH 7.5 

5 mM DTT 
    0.1% (w/v) Brij 58 
    2 M Urea 
    50 mM KCl 
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Buffer D    50 mM Tris-HCl, pH 7.5 
      5 mM DTT 
    0.1% (w/v) Brij 58 
    2 M Urea 
    50 mM KCl 
    600 mM KH2PO4 
 
Buffer E   25 mM Hepes-KOH, pH 7.0 
    100 mM KCl 
 
Overproduction and cell lysis 

The strain BB2583 was grown in 10L of 2xYT complemented with ampicillin (100 µg/l) 

and kanamycin (50 µg/l) at 30°C to OD600=0.3-0.4. Expression of DnaJ was induced by 

addition of IPTG to a final concentration of 1 mM. After 5 hours, cells were harvested by 

centrifugation at 4°C and stored at –80°C.  

 All further steps were carried out on ice or at 4 °C. Cells were re-suspended in 200 ml of 

lyses buffer and lysed with a French press. Cell debris was removed by centrifugation for 

60 min at 40,000 rpm.  

 

Ammonium sulfate precipitation 

1 volume of buffer A was added to the supernatant and DnaJ was precipitated by addition 

of (NH4)2SO4 to a final concentration of 65% (w/v; 398g/l). The sample was stir at 4°C 

for 30 minutes and then, centrifugated at 15000 rpm during 10 min.  

 

Cation exchange chromatography (SP-sepharose) 

The ammonium sulfate pellet was dissolved in 220 ml buffer B and dialyzed against 5L 

buffer B. DnaJ (30 ml aliquots) was loaded onto a 30 ml SP-sepharose column 

(equilibrated with buffer B), washed with buffer B (5 column volumes) and eluted with a 

linear gradient of 0 to 1 M KCl (7 column volumes) and 1 column volume 100% 1 M 

KCl into 3 ml fractions. DnaJ containing fractions were pooled and precipitated with 

ammonium sulfate (80%; 516 g/L). The ammonium sulfate pellet was dissolved in 50 ml 

buffer C and dialyzed against 5L buffer C.  

 

 
  

110



Hydroxyapatit 

The sample was loaded onto a 60 ml hydroxyapatit column equilibrated in buffer C and 

washed with 40 mL buffer C, further washed with 60 mL buffer C + 1 M KCl. Finally 

washed again with 80 mL buffer C. DnaJ is eluted with a linear gradient of 60 ml 0 to 

50% buffer D and 80 mL 50% buffer D. The DnaJ containing fractions are pooled and 

dialyzed against 2L buffer E. 

 

Cation exchange chromatography (Poros SP20) 

The sample is loaded onto a 2 ml Poros SP20 column (equilibrated with buffer B), 

washed with buffer B and eluted with a linear gradient of 0 to 1 M KCl (15 column 

volumes). The DnaJ containing fractions were pooled and dialyzed against 2L buffer E. 

The pool was divided in suitable aliquots, frozen in liquid nitrogen and stored at –80°C. 

 

Purification of DnaK 

Buffers  
BufferA    25 mM Hepes-KOH pH 7.6 
    50 mM KCl 
    5 mM MgCl2 
    10 mM β-mercaptoethanol 
    1 mM EDTA 
 
BufferB    25 mM Hepes-KOH pH 7.6 
    1 M KCl 
    5 mM MgCl2 
    10 mM β-mercaptoethanol 
    1 mM EDTA 
 
BufferC    50 mM Tris-HCl pH 7.6 
    10% Sucrose 
    0.1 M (NH4)2SO4 
    5 mM EDTA 
    5 mM DTT (freshly added) 
 
 
ATP-buffer    25 mM Hepes-KOH pH 7.6 
    50 mM KCl 
    5 mM MgCl2 
    10 mM β-mercaptoethanol 
    10 mM ATP  
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    10 mM MgCl2  
 
Overproduction and cell lysis 

The strain BB4279 was grown in 5L of 2xYT complemented with ampicillin (100 µg/l) 

and kanamycin (50 µg/l) at 30°C to OD600=0.3-0.4. For induction IPTG was added to a 

final concentration of 1 mM and the culture were further incubated over night at 30 °C. 

All steps were carried out at 4 °C and on ice, respectively. Cell paste (47 g) was 

resuspended in 200 ml buffer C and 1 mM (final) PMSF. The cells were lysed using a 

micro-fluidizer (P=10000-15000). Cell debris was removed by centrifugation for 10 min 

at 18,000 rpm and then for 2 hours at 40,000rpm.  

 

Ammonium sulfate precipitation 

DnaK was precipitated by addition of 280g/l of (NH4)2SO4. The sample was stir at 4°C 

for 30 minutes and then, centrifugated at 10,000 rpm during 10 min. The pellet was 

resuspended in 40 ml bufferA and dialyzed against 3 l bufferA over night. 

 

Anion exchange chromatography ( DEAE-Cellulose) 

The dialyzed protein solution is cleared from particles by centrifugation at 18,000 rpm for 

10 minutes and subsequent filtrated through a 0.45 µm filter. It was loaded onto a 250 ml 

DEAE-cellulose column that was equilibrated to bufferA. The column was washed with 

300 ml bufferA and eluted with a 700 ml gradient of 0 to 50 % bufferB. The column was 

washed with 300 ml 100% bufferB. 10 ml fraction were collected 280 ml after the start of 

the gradient and until the end of the gradient. The DnaK containing fractions were pooled 

and directly applied to affinity chromatography on ATP-agarose. 

 

Affinity chromatography (ATP-agarose) 

0.27 g of ATP-agarose were swollen for at least 2 h in bufferA and washed with 10 ml 

bufferB and re-equilibrated with 10 ml bufferA (batch procedure). The pooled fractions 

from DEAE-chromatography were added to the equilibrated ATP-agarose and incubated 

at 4 °C in a 50 ml falcon tube shaking end-over-end for 30 min. The agarose was packed 

into a disposable column and washed with 10 ml bufferA and 10 ml bufferB. DnaK was 

eluted with ATP-buffer in the following way. The washed ATP agarose was resuspended 
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in the column in an equal volume of ATP-buffer and incubated for 45 min at 4 °C. After 

this time the agarose was repacked and the eluate collected in one fraction. An additional 

10 ml of ATP-buffer were added onto the column and the eluate collected in fractions of 

1 ml size. 

 

Anion exchange chromatography ( Resource Q) 

The DnaK-containing fractions of the sephacryl column were loaded onto a resource Q 

strong anion-exchanger. The column was washed with 40 ml buffer A and DnaK eluted 

with a 100 ml gradient of 0 to 50 % buffer B. Fractions of 1.3 ml size are collected. The 

DnaK containing fractions were pool, aliquots were frozen in liquid nitrogen and stored 

at -80 °C. 

 

Purification of the DnaK/ σ32, DnaK/DnaJ/σ32 and DnaJ/σ32 complexes 
Buffers  
Buffer A     20 mM Tris-HCl pH 7.9 
     200 mM NaCl 
    20 mM imidazole 
 
Buffer B     20 mM Tris-HCl pH 7.9  
    1M NaCl  
    20 mM imidazole 
 
ATP-buffer    40mM Tris-HCl pH 7.9  
    100 mM KCl  
    5mM MgCl2 
    10 mM ATP  
    20 mM imidazole 
 
Incubation buffer  20 mM Hepes-KOH pH 7.6  
    50 mM KCl  
    5 mM MgCl2  
    20 mM imidazole 
    10% glycerol 
 
Buffer C     20 mM Hepes-KOH pH 7.6 
    50 mM KCl  
    5 mM MgCl2  
    10% glycerol 
 

Overproduction of σ32 and cell lysis 
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6L of 2xYT complemented with 100ug/L ampicillin were inoculated with an overnight 

culture of the ∆ftsH strain carrying the rpoH-containing vector. The culture was grown at 

30°C to an OD600 of 0.8. For induction, L-arabinose was added to a final concentration of 

0.2% and the culture was incubated for 3 hours at 30°C. Cells were harvested by 

centrifugation for 10 min at 5000g, and the pellets were resuspended in 300 ml of lysis 

buffer. All steps were carried out at 4°C or on ice. Cells were lysed using French press at 

a pressure of 1,000 psi. Cell debris were separated from lysates by centrifugation for 30 

min at 20,000 g (twice). 

 

NiNTA agarose 

The supernatant containing σ32 was mixed with Ni-NTA agarose (5 ml bed volume) 

equilibrated with buffer A and mixed end-over-end at 4°C during one hour. The Ni2+-

agarose was transferred to a 50 ml falcon tube and washed 4 times with 45 ml buffer B, 4 

times with 45 ml buffer A and 2 times with 45 ml ATP-buffer. The ATP wash was 

intended to remove wt DnaK. The Ni2+-agarose was incubated 30 min with ATP-buffer 

and then washed again with incubation buffer to remove the ATP. DnaK (1-607) was 

added to the Ni2+-column (DnaK does not contain His-tag) and incubated 1 hour at 4°C. 

The column was washed with incubation buffer. Then, the Ppx protease was added and 

incubated with the Ni2+-agarose for 4 hours. The eluted protein was loaded onto a 

Superdex 200 gel filtration column, equilibrated with buffer C. The fractions containing 

the complex were pooled and concentrated. The glycerol was removed during the 

concentration step. For the complex DnaK/DnaJ/σ32 the same procedure was followed, 

except for one difference: DnaJ was added first, and only after 20 minutes DnaK. For the 

DnaJ/σ32 complex, instead of adding DnaK, DnaJ was added, with an incubation time of 

20 min.  

 

Overproduction of DnaK (1-607)  

4L of 2xYT complemented with 100 µg/L ampicillin and 50 µg/L kanamycin were 

inoculated with an overnight culture of the BB1994 strain carrying the dnaK (1-607) 

containing vector. The culture was grown at 30°C to an OD600 of 0.3-0.5. For induction, 

IPTG was added to a final concentration of 1 mM and the culture was incubated for at 

 
  

114



least 5 hours at 30°C. Cells were harvested by centrifugation for 10 min at 5000g, and the 

pellets were resuspended in 80 ml of lysis buffer (same as lysis buffer purification of 

DnaK). All steps were carried out at 4°C or on ice. Cells were lysed using a French press 

at a pressure of 1,000 psi. Cell debris were separated from lysates by centrifugation for 30 

min at 20,000 g (twice). The DnaK protein was precipitated with 0.28 mg/ml (NH4)2SO4 

on ice and centrifugated for 15 min at 10,000 rpm. The protein pellet was resuspended in 

40 ml incubation buffer and dialyzed against 3 L incubation buffer over night. 

 

Overproduction of DnaJ 

4L of 2xYT complemented with 100µg/L ampicillin and 50 µg/L kanamycin were 

inoculated with an overnight culture of the BB2583 strain with contains the pUHE-dnaJ 

plasmid. The culture was grown at 30°C to an OD600 of 0.4. For induction, IPTG was 

added to a final concentration of 1 mM and the culture was incubated for 4-5 hours at 

30°C. Cells were harvested by centrifugation for 10 min at 5000g, and the pellets were 

resuspended in 100 ml of lysis buffer. All steps were carried out at 4°C or on ice. Cells 

were lysed using a French press at a pressure of 1,000 psi. Cell debris were separated 

from lysates by centrifugation for 30 min at 20,000 g (twice). The DnaK protein was 

precipitated with 0.398 mg/ml (NH4)2SO4 on ice and centrifugated for 15 min at 10,000 

rpm. The protein pellet was resuspended in 100 ml buffer C and dialyzed against buffer C 

for 3 hours. The protein was loaded on a SP-sepharose column and eluted with a gradient 

0-666 mM KCl. The DnaJ-containing fractions were pooled and dialyzed against 

incubation buffer.  

 

Labeling with 3H-N-succinimidyl-propionate (NSP)  

Buffers  
NSP buffer   50 mM K2HPO4/KH2PO4, pH 7.6 
    200 mM KCl 
    10 % glycerin 

 

Proteins were dialysed overnight in NSP buffer. 1500 pmol of the dialysed proteins were 

added to 1500 pmol of 3H-NSP previously dried under nitrogen. The mixture was 
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incubated for 2 hours at room temperature and dialysed again overnight in NSP buffer to 

remove unbound 3H-NSP.  

 

Interaction of σ32 and DnaK  

Analytical gel filtration 
3H-σ32/σ32  (5 µM) was incubated with different concentrations of DnaK (5-30 µM) in a 

total volume of 20 µl of HKNM buffer at 30°C for 2 hours. The sample was spun at 

13000 rpm for 10 min and 90 µl of ice cold HKNM buffer was added. The sample was 

loaded onto a Superdex 75 HL 10/30 previously equilibrated with KII buffer to separate 

DnaK-bound and free 3H-SH3/SH3. Gel filtration experiments were performed at 4°C. 

Fractions of 0.5 ml were collected and 4 ml of Optima Gold scintillation cocktail was 

added to each fraction. The amount of radioactivity was determined using a scintillation 

counter. The same procedure was repeated using HKNM buffer plus 0.4 M Na2SO4. 

For the interaction of 3H-σ32/σ32 with DnaK and DnaJ, 3H-σ32/σ32  (5 µM) was incubated 

with DnaK (10 µM), DnaJ (1µM) and ATP (1mM) in a final volume of 20 µl of HII 

buffer at 30°C for 10 min. Then the sample was treated as described before.  

The dissociation constant was calculated from the Scatchard plot analysis of the data 

using a single binding site model (one DnaK molecule binds to one σ32   molecule). 

 

ATPase single turn-over experiments 

Isolation of the DnaK-ATP complex 

A nick-column (sephadex G50) was equilibrated with KII buffer.1 ml of BSA (1mg/ml) 

was loaded onto the column and eluted with 3 column volumes of KII buffer. DnaK (30 

µM) was incubated with ATP (800 µM) and [α32P] ATP (12 µCi) in a final volume of 50 

µl of KII buffer on ice for 2 min. The nick-column was connected to a fraction collector. 

The reaction mixture was loaded onto the column and 1ml KII buffer was added to the 

column. Two drops fractions were collected and the peak was detected with a Geiger 

counter. The first peak appeared between fraction 8 and 12. The first peak and the 

following 3 fractions were pooled and divided in 6.5 µl fractions (ca. 30 aliquots). The 

fractions were frozen in liquid nitrogen and stored at –80°C. 
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Preparation of the TLC-plates 

Each TCL plate was divided in 3. In each plate, vertical lines were drawn with pencil 

every 1 cm. At 1 cm from the bottom one horizontal line was drawn. On each start 

position 2 µl of ADP/ATP (5 µM each) solution was spotted.  

 

Single turn-over assay 

DnaK-ATP complex was thawed at 30°C. 0.5 µl was diluted on 3.5 µl of KII buffer and 2 

µl of it were spotted on position one of the TLC plates. 6 µl of the DnaK-ATP complex 

were added to 44 µl of a premix solution containing the co-factors to be tested. Aliquots 

of 2 µl were spotted onto the TLC-plate. For fast kinetics (DnaK + DnaJ + substrate), the 

time points were: 6”, 12”, 18”, 30”, 1’, 2’, 5’ and 10’. For slow kinetics (DnaK + DnaJ or 

DnaK + substrate), the time points were: 30”, 1’, 2’, 3’, 5’, 10’, 15’ and 20’. For very 

slow kinetics (DnaK basal rate), the time points were 5’, 10’, 15’, 25’ 40’ 60’, 90’ and 

120’. Plates were developed in 3.6% Hac/400 mM LiCl, dried and exposed to bleached 

FI-screens overnight. The screens were analysed with Fuji FLA 2000 fluorimager.   

 

Attachment of Crosslinker to Proteins 

Benzophenone-4-iodacetamide (BPIA, 10 Å spacer) was used for the crosslinking of 

DnaK and substrate. BPIA is a heterobifunctional cross-linker, which reacts with thiol 

groups of cysteine side chains, and reacts unspecifically with close binding partners after 

UV activation. DnaK with specific cysteine mutation (Q424C) was labeled with the 

cross-linker. Potential intermolecular disulphide bridges were reduced with 5 mM TCEP 

before the protein solution was dialyzed against KII buffer. When handling photoreactive 

crosslinkers, direct light was avoided. However, it was not necessary to work in a dark 

room since activation only occurs at λ < 400 nm (UV light). 

 

Labeling with BPIA 

Labeling was performed in the presence of 1 mM TCEP. BPIA stock solution was added 

to a final concentration of 1 mM and the protein concentration was 50-100 µM. Since 

BPIA can side react with primary amines, over-labeling may occur. The reaction was 
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followed by ESI-MS and stopped by addition of βME once it is complete. After dialysis 

against K11 buffer, the protein concentration was determined, aliquots frozen in liquid 

nitrogen and stored at -80°C. 

 

Crosslinking Reaction 

The reaction was performed in 20 µl K11 buffer containing 6 µM DnaK-Cys with the 

crosslinker attached, 6 µM ATP, and 6 µM protein substrate (RepE). Crosslinking 

mixtures were incubated for 60 min at 30°C and subsequently irradiated on ice with UV 

light (365 nm, 100W) at a distance of 3 cm for 30 min. Crosslinking products were 

analyzed by SDS-PAGE with subsequent Coomassie blue staining and mass 

spectrometry. 

 

In-gel Digest 

The gel was washed with water before precisely cutting out the band of interest. The band 

was chopped into smaller cubes (1x1x1 mm) and put into a reaction tube. The gel pieces 

were washed with 100 µl of 100 mM NH4HCO3 plus 100 µl ACN until the blue color had 

disappeared. The liquid was removed, 100 µl ACN were added and left for 5-10 min until 

the gel pieces have shrunk. The supernatant was removed and the gel pieces were dried in 

vacuum centrifuge. Afterwards, the gel pieces were swollen on ice for 45 min with 50 

mM NH4HCO3 containing 12.5 ng/µl trypsin (Promega, sequencing grade). After excess 

trypsin was removed 5 µl of 50 mM NH4HCO3 were added to prevent the gel pieces from 

drying. The digest was performed at 37°C over night and stopped by acidification with 2 

µl of 10% TFA. After 30 min, the supernatant containing the peptides was transferred 

into a new reaction tube. For a second elution step, 10 µl of 0.1% TFA were added to the 

gel pieces and left for another 30-60 min. Both supernatants were pooled. 

 

Immobilization of DnaK 

On Poros Al  

DnaK was immobilized into Poros Al material. Aldehyde groups on the surface of the 

support react selectively with primary amines of the protein to form a Schiff’s base, 

which are then converted into a stable secondary amine linkage by reduction with 
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NaCNBH3 .The immobilization was performed according to the protocol provided by the 

manufacturer. 

20 mg NaCNBH3 was dissolved in 2 ml of 25 mM HEPES/KOH, pH 7.0 100 mM KCl 

containing aprox. 10 mg/ml Dna.K Then, 0.1 g of POROS 20 AL powder was added to 

form a homogeneous suspension. After slowly adding 2 ml of 2 M Na2SO4, the reaction 

continued at 4°C ON. Throughout this time, the tube was turned end-over-end to ensure 

gentle mixing. 

To quench the reaction, 5 µl ethanolamine was added and incubated for 2 more hours. 

The support material was washed with K11 buffer, K11 supplemented with ATP and 

again with K11 to remove free DnaK. Immobilized DnaK was stored at 4°C in K11 

buffer containing 0.05% NaN3. 

 

Trap column 

A slurry of POROS 50 R1 or 50 R2 bulk material (Applied Biosystems) were packed into 

2 x 20 mm column.  

 

Analytical column 

ZORBAX 300SB-C8 (300 Å pore size and 3.5 µm particles) bulk material was obtained 

from Agilent. The slurry was packed into 0.75 mm ID Peek tubing (Upchurch) via a 

pressure bomb because the backpressure was too high for packing with a syringe. After 

packing and washing with 5% ACN, the tubing was cut to get the appropriate column 

length (usually 5-8 cm) and both ends were secured with 2 µm stainless steel screens and 

male nuts with standard external threads. 

 

In-line Peptic Digestion/Rapid-Desalting HPLC Setup 

The setup consisted of two HPLC pumps (Agilent 1100 Series), a Rheodyne injection 

valve (Model 7725i) with a 200 µl stainless steel sample loop, and a 2-position/10-port 

valve with microelectric actuator (Valco C2-1000EP6). A schematic drawing of the setup 

is shown in Figure 3.3. Pump A delivered the solvent for desalting (300 µl/min, 0.05% 

TFA) and pump B for elution (20 µl/min, 70% ACN, 0.05% TFA). Quenched samples 

were loaded via the injection valve and pushed through the pepsin column (2 x 20 mm) 
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by pump A. The resulting peptic fragments were immediately trapped on a self-packed 

reversed-phase column (POROS 50 R1) for desalting and concentration. After 2 min the 

10-port valve was switched to elute the peptides with organic solvent (pump B) directly 

into the electrospray ion source of the quadrupole time-of-flight mass spectrometer. At 

the same time the pepsin column was back flushed by pump A. The digestion, desalting 

and elution required less than 3 min. The whole setup was immersed in an ice bath to 

minimize back-exchange. For kinetic measurements of the full-length protein the pepsin 

column was omitted.  

The timing and sequence of operation of the valves were controlled by the Agilent 1100 

Series Capillary Pump. Each run was started by sample injection. The switch of the 

Rheodyne 7725i valve provided an electrical start signal for the Agilent Pump, which in 

turn provided the actuator of the 2-position/10-port valve an electrical signal to switch 

from ‘load’ to ‘elute’ position after the programmed time. 

 

On-line Quenched-Flow Amide Hydrogen Exchange Setup 

The setup employed to measure amide hydrogen exchange in a millisecond time scale 

consisted of five HPLC pumps (one Agilent 1100 Series Capillary pump (A), one Agilent 

1100 Series Binary pump (B), one Rheos 2000 Micro pump (1), and two Shimadzu LC-

10ADVP pumps (2 & 3)), a Rheodyne injection valve (Model 8125) with a 5 µl stainless 

steel sample loop, and two Valco 2-position/10-port valves with microelectric actuators 

(Model C2-1000EP6). A schematic drawing of the setup is shown in Figure M.M.1 

Protein samples (100-200 pmol in <5 µl) were injected and pushed by pump 1 with a 

flow rate of 6 µl/min towards a mixing tee, which was also connected with pump 2 

delivering D2O-buffer (25 mM HEPES, pD 7.6, 50 mM KCl, and 5 mM MgCl2) with a 

flow rate of 150 µl/min. Hence, the injected samples were diluted 1:25 in D2O-buffer and 

pushed through the delay line where amide hydrogen exchange occurred. The exchange 

time was adjusted by the volume of the delay line (e.g. 2.6 µl ≡ 1 s). The exchange 

reaction was quenched in a second mixing tee by 1:1 dilution of the sample with quench 

buffer (0.5 M KH2PO4/H3PO4, pH 2.2) delivered by pump 3 with a flow rate of 150 

µl/min. The quenched sample was then pushed through the pepsin column and 

immediately trapped on a reversed-phase column (0.8 x 3 mm, POROS 10 R1).  
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Figure MM.1. Schematic representation of the HPLC-MS quenched setup (A) HX position, (B) desalting 
position and (C) MS analysis position. 
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For the desalting of trapped peptic peptides, the left 2-position/10-port valve was 

switched, and 0.05% TFA was delivered by pump A (250 µl/min). After 1 min, the right 

2-position/10-port valve was switched to elute the desalted peptic peptides from the trap 

column over a 0.75 mm ID x 6 cm analytical reversed-phase column packed with 

ZORBAX 300SB-C8 (3.5 µm particles) directly into the electrospray source. The solvent 

for elution was delivered by pump B with a flow rate of 17.5 µl/min using the following 

short gradient: buffer A (0.05% TFA) to buffer B (90% ACN, 0.05% TFA), having the 

profile: %B: 15 → 55 (0 → 10 min), %B: 55 → 100 (10 → 11 min), %B: 100 → 15 (11 

→ 12 min). The last eluted peptide was detected 12 minutes after sample injection. All 

lines delivering quench buffer or quenched sample were immersed in an ice bath to 

minimize back-exchange. For kinetic measurements of the full-length proteins the pepsin 

column was omitted. 

 

Off-line Amide Hydrogen Exchange Experiments 

Amide hydrogen exchange was initiated by a 20-fold dilution of 100 pmol protein into 

D2O containing 25 mM HEPES, pD 7.6, 50 mM KCl, and 5 mM MgCl2 at room 

temperature. After different elapsed times (from 1 to 30 sec), the exchange reaction was 

quenched by decreasing the temperature to 0°C and the pH to 2.2 with 500 mM KxHyPO4. 

Quenched samples were loaded via the injection valve and pushed through the pepsin 

column by pump A. Hereafter, the experimental setup was as described above. 

 

Data Analysis of Amide Hydrogen Exchange Experiments 

Peptic peptides were identified separately either by static nanoESI-MS/MS (see 3.2.6) or 

by on-line nanoLC/MS/MS (see 3.2.7) on the basis of their fragment ion spectra. After 

internal recalibration, the mass error was below 10 ppm and hence more peptides could 

be identified on the basis of their exact mass. 

The deuterium content of the peptides was calculated by using the average mass 

difference between the isotopic envelopes of the deuterated and the undeuterated 

peptides. The average masses were determined with the MagTran software (Zhang & 

Marshall, 1998). Overlapping peptides sequences were used to improve the resolution of 

amide hydrogen exchange measurements (Zhang & Smith, 1993; Yang & Smith, 1997). 
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Only peptides that differ in length at their C-termini have been used. The deuterium 

occupancy for the non-overlapping C-terminal sequence extension was easily calculated 

by subtraction of the deuterium levels of the peptides. In order to avoid erroneous 

interpretations, peptides that differ in length at their N-termini have been neglected. The 

main problem is that deuterons incorporated at N-terminal amide groups are readily lost 

during desalting and it is thus not possible to determine whether this amide group was 

deuterated or protiated before being quenched (at acidic pH the positive charge on the N-

terminus increases the exchange rate at the adjacent amide hydrogen by a factor of ~10).  

Adjustments were made for deuterium losses due to back-exchange during analysis based 

on appropriate controls, a 0% deuterium control (i.e. protein that has never been exposed 

to D2O) and a 100% deuterium control (i.e. protein in which all exchangeable hydrogens 

have been replaced with deuterium) according to following formula (Zhang & Smith, 

1993) 

 

 
 

where D is the number of deuterons present in a particular peptic peptide after incubation 

of the protein in D2O, N is the total number of amide hydrogens in that peptide, and <m> 

is the experimentally observed average mass. <m0%> and <m100%> are the average 

molecular masses of the same peptide obtained by analysis of the non-deuterated and the 

fully deuterated controls, respectively. Fully deuterated controls were obtained by 

denaturing the protein in 4 M Gdn/HCl followed by lyophilization. D2O was added to the 

initial volume and left at 60°C to dissolve the precipitated protein and buffer salts before 

the next lyophilization. Lyophilization and dissolving in D2O was repeated 5 times. All 

exchangeable hydrogens in the unfolded protein and the buffer salts were thereby 

replaced by deuterium. Then, the protein was dissolved in a appropriate volume of D2O 

to obtain a concentration of 2 M Gdn/DCl and refolded by rapid 1:100 dilution into D2O-

buffer at 0°C. After 15 h incubation at 4°C, the refolded mixture was centrifuged at 

13,000 rpm to remove any aggregated protein. 
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Biacore 

Biacore is a quantitative method that allows the study of macromolecular interactions in 

real time with low amount of protein.  Using Biacore it is possible to obtain the kinetic 

data for an interaction between macromolecules. Biacore technology relies on the 

phenomenon of surface plasmon resonance (SPR).  SPR is phenomenon that occurs in 

thin conducting films at an interface between media of different refractive index: the 

glass of a sensor surface (high refractive index) and a buffer (low refractive index). As 

molecules are immobilized on a sensor surface, the refractive index at the interface 

between the surface and a solution flowing over the surface changes, altering the angle at 

which reduced-intensity polarized light is reflected from a supporting glass plane. The 

change in angle, caused by binding or dissociation of molecules from the sensor surface, 

is proportional to the mass of bound material and is recorded in a sensorgram. 

Measurements on Biacore are based on interaction of molecules in solution with a 

molecule attached to a sensor chip. The molecule immobilized on the sensor chip is the 

ligand and the molecule free in solution is the analyte. The response is measured in 

resonance units (RU). The response is directly proportional to the concentration of 

biomolecules on the surface.  

 

The sensor chip 

The sensor chip is a glass slide coated with a thin layer of gold. The standard chip is the 

CM5 that has a matrix of carboxymethlated dextran covalently attached to the gold 

surface.  

 

 
 

Figure MM.2. Schematic representation of a Biacore sensor chip. 
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The dextran matrix is activated with carboxymethyl groups with a mixture of N-

hydroxysuccinimide (NHS) and N-ethyl-N’-(dimethyl-aminopropyl)-carbodiimidine 

(EDC). These active groups are able to reacting covalently with the ligand molecule. 

Each chip has four different flow cells. Generally two cells are used as blank surface and 

in the other two the ligand is attached.  

 
 
 
 
 

 
 

Figure MM.3.  Schematic representation of the immobilization procedure onto CM5 sensor chip.  
 
 
Immobilization of the σ32 

σ32 wt and mutants were immobilized on CM5 sensor chips via amine coupling. Amine 

coupling introduces N-hydroxysuccinimide esters into the surface matrix by modification 

of the carboxymethyl groups with a mixture of N-hydroxysuccinimide (NHS) and N-

ethyl-N’-(dimethyl-aminopropyl)-carbodiimidine (EDC). These esters then react 

spontaneously with amines on the ligand to form covalent bonds. The CM5 sensor chip 

was activated with a 7 minutes pulse of 0.05 M NHS/0.2 M EDC at a flow rate of 5 

µl/min. σ32 wt and mutants were diluted in acetate buffer pH = 5 to a final concentration 

of 100 nM and injected at a flow rate of 5 µl/min to achieve a total of 100-150 RU. The 

excess of reactive groups on the chip was deactivated with a 7 minutes pulse of 1 M 

ethanolamine hydrochloride pH 8.5 at a flow rate of 5 µl/min.  

 

Kinetic measurements 

Different amounts of DnaJ (30-500 nM) where inject at a flow rate of 30 µl/min during 2 

minutes. The dissociation time was 7 minutes. After each injection the chip was 

regenerated with Tris buffer pH 8.5. In all experiments, DnaJ was injected through an 
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empty flow cell. For each DnaJ concentration the empty flow cell was subtracted from 

the flow cell were σ32 was immobilized to eliminate unspecific interactions.  

 

Determination of kon, koff and KD 

Figure M.M.4 shows a typical sensogram obtained after injection of analyte. The 

sensogram can be divided into association phase and dissociation phase.  

 

 
Figure MM.4. Schematic representation of a typical sensogram. 

 

 

From the association phase, the association rate constant can be determined by fitting the 

exponential curve with the following double exponential equation. From the dissociation, 

the dissociation rate constant can be determined by fitting the exponential curve with the 

following double exponential equation. Then KD can be calculated with, 

 

KD = koff/ kon 

 

KD can also be determined from the equilibrium phase using the Michaelis and Menten 

equation,  

v = Vmax [S]/(KD + [S]) 

 

Crystal Screenings 

The protein solutions containing σ32, DnaK/ σ32, DnaK/DnaJ/σ32 or DnaJ/σ32 were 

concentrated to 10 mg/ml by centrifugal filtration. The buffer was exchange against 
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buffer C without glycerol. Initial conditions for crystal formation were screened by the 

hanging-drop method using a crystallization tool containing 24 well plates (Nextal) with 

drops containing 1 µl of protein and 1 µl of well solution. The screenings were performed 

at 4°C and 16°C.  96 different crystallization conditions were analyzed (Nextal Classics 

buffers).  

 

 

 
 
Figure MM.5. Hanging-drop method using a crystallization tool containing 24 well plates. For each plate 6 
different proteins samples can be analyzed. 
 
 
 
Limited proteolysis with trypsin of σ32 and σ32-DnaK complex 
Buffer 
Trypsin buffer   20 mM TRIS pH = 8 
    200 mM NaCl 
    5% (v/v) glycerol 

1 mM DTT 
    10 mM MgCl2 
 

50 pmol of σ32 and σ32-DnaK complex were digested in a 10 µl volume with different 

concentration of trypsin (1.5-0.03 pmol) for 30 minutes at 25°C. Reaction were 

terminated by addition of Laemmli loading buffer and boiling. Those samples analysed 

later by mass spectrometry were diluted in phosphate buffer (0.4 M, pH = 2.4). Reaction 

product were analysed on 16% SDS-geles followed by Coomassie staining. The 

molecular mass of the proteolyzed fragments was analysed by electrospray mass 

spectrometry as described above. 
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