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Kurzfassung

Abbildung von Photofragmentationsprozessen schneller Molekülionen
Ein neuartiger experimenteller Aufbau zur Messung von Photofragmentationsprozessen mole-
kularer Ionen wurde etabliert. Der Aufbau kombiniert das Verfahren der Abbildung schneller
Ionenstrahlen (keV Energien) mit einer Ionenfalle, die es erlaubt die Vibrationsanregungen der
Ionen zu reduziern. Der Aufbau wurde am Freie-Elektronen-Laser (FEL) in Hamburg für die
ersten Benutzer Experimente installiert. Mit der Apparatur wurden unter Verwendung eines
gepulsten Nd:YAG Lasers (Photonen Energien von 2.33 und 4.66eV) Experimente an den Edel-
gasionen Ar+2 und Ne+

2 und an HeH+ unter Benutzung des FEL mit 38.8eV durchgeführt. Die
Photodissoziation von Ar+2 wurde bei 266nm gemessen, wobei die C2Σ+

g Potentialfläche domi-
nierte. Die Winkelverteilung der Fragmente zeigte, den erwarteten hauptsächlichen Anteil an
Dissoziation parallel zur Laserpolarization. Jedoch wurde auch ein beträchtlicher senkrechter
Beitrag mit zunehmender bei der Dissoziation freiwerdender Energie gemessen. Obwohl die An-
nahme von Spin-Bahn Wechselwirkung die plausibelste Erklärung darstellt, war die beobachtete
Größe des Effektes wesentlich höher, als durch theoretische Rechnungen vorhergesagt. Es wurde
beobachtet, daß bei der Photofragmentation von Ne+

2 bei 523nm die A2Πu Potentialfläche do-
miniert. Die C2Σ+

g Potentialkurve gewinnt an Bedeutung für höhere vibrations Anregung der
Molekülionen. Experimentell wurde auch hier ein hauptsächlicher paralleler Charakter zusätzlich
zu einem senkrechten Anteil gemessen. Der senkrechte Anteil blieb erhöht über den gesamten
beobachteten Bereich der freiwerdenden kinetischen Energie. Die Photofragmentationsspektro-
skopie von HeH+ am FEL bei 32nm zeigte im Spektrum der freiwerdenden Energie einen Anteil
von ≈50% an hochangeregten He0 Fragmenten, der den Beitrag vieler hoch angeregter Potenti-
alflächen deutlich machte. Die Winkelverteilung zeigte einen dominierenden Anteil an Σ → Π
Übergängen, die den wichtigen Beitrag dieser Symmetry zum Dissoziationsprozeß unterstreicht.
Der gemessene Wirkungsquerschnitt für beide Symmetrien beträgt (1.4± 0.7) · 10−18cm2.

Abstract

Fast-beam photodissociation imaging of molecular ions
A novel arrangement to study photofragmentation of molecular ions using fast beam (keV) imag-
ing techniques combined with fast ion-beam pulsing and trapping has been realized. The setup
was transferred to the new free-electron laser in Hamburg (FLASH) for the first user experi-
ments. With this apparatus experiments were conducted on the two rare-gas dimer ions Ne+

2 and
Ar+2 utilizing a pulsed Nd:YAG laser at 2.33 and 4.66eV photon energy and on HeH+ using the
free electron laser at 38.8 eV. Photofragmentation of Ar+2 was measured at 266nm, where the
C2Σ+

g repulsive curve dominates. The angular fragment distribution was mainly parallel to
the laser polarization, as expected, but a sizable transverse contribution increasing at energy
releases corresponding to vibrationally excited target ions was found. Although spin-orbit cou-
pling in Ar+2 remains as the most plausible explanation, the observed size of the effect is much
larger than expected using theoretical predictions. Photodissociation of the Ne+

2 was measured
at 532nm where the A2Πu curve is dominant and the C2Σ+

g curve becomes important for higher
vibrational target excitation. Also here, a mainly parallel angular charactistic was observed
plus a perpendicular contribution which remained high throughout the observed kinetic energy
release regime. The photofragmentation studies of HeH+ with the free electron laser at 32nm
wavelength, revealed in the kinetic energy release spectrum, a contribution of ≈50% from highly
excited He0 fragments, indicating the important contribution of many high-lying repulsive curves.
The angular distributions showed a dominant contribution of Σ→ Π transitions, underlining the
large importance of this symmetry among the excited curves contributing to photodissociation.
The cross sections for both symmetries were measured with a total of (1.4± 0.7) · 10−18cm2.
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1. Introduction

The inner molecular dynamics at short internuclear separations are of importance for the theo-

retical understanding because they define the pathways a molecule can take in a reaction process.

Photofragmentation studies provide a well controlled access to these regions, and the fragments

resulting from the dissociative reactions carry information on the participating potential surfaces

and their dynamical couplings.

Photodissociation can occur in a direct bound-continuum transition, in which case the emerging

photofragments hold information about the vibrational levels of the bound state as well as

information about the shape and symmetry of the dissociative state. This information manifests

itself in the amount of energy released in the dissociation process and the angular distribution

of fragments after dissociation. Indirect photodissociation involves an initial transition from a

bound state to a higher lying quasi-bound state that subsequently dissociates via coupling to a

repulsive potential energy surface. From the fragments emerging from such processes information

on the lifetimes of the excited state and the dissociation mechanism can be obtained.

Spectroscopic information of molecular ions is in general much more difficult to obtain compared

to neutral molecules, owing to the low target densities of 104 to 106cm−3 typically attainable.

Photofragmentation spectroscopy has proven particularly adept in extracting spectroscopic in-

formation from the studies of molecular ions. This is mainly due to the fact that dissociation of

molecular ions results in a neutral and a charged photofragment. These charged fragments can

generally be detected with very high efficiencies.

These motivations have sparked extensive research in the field of molecular ion photofragment

spectroscopy. Starting with the first pioneering experiments of Dehmelt and Jefferts [28] in

1962, who employed photodissociation by photons emitted by a powerful arc lamp as a probe

to obtain the radio frequency spectrum of H+
2 ions trapped in a rf quadrupole trap.

The advent of lasers opened up new possibilities since the low target densities could be compen-

sated by higher photon intensities. One of the first to apply these new light sources to study

photofragmentation were Ozenne et al. [77] in 1972. Since then various lasers have been used in

photofragment studies and the evolution in the field has basically followed the advances in laser

development. Starting with studies on H+
2 using ruby lasers [77, 106, 107], to high resolution

studies in the visible in the case of O+
2 [37], to experiments using UV lasers [54]. For molecules

some experimental results exist using VUV photon sources such as synchrotrons, for example in

1
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Figure 1.1: Exemplary potential energy surfaces for the Ar+2 system [66] and the HeH+ ion [82].

the case of the CO molecule which was studied by Stark and co workerst [100].

Most of these aforementioned experiments used fast beams of molecular ions with several keV

energies which were overlapped with a photon beam in either a collinear or a crossed geometry

relying on detection of the charged photofragments with energy analyzers. These experiments

achieved superb energy resolutions of 0.001-10meV [42] ceding very profound results on the

shape of the potential energy surfaces taking part in the dissociation process. However, the

information that could be obtained on angular distributions of the photofragments was limited.

Exemplary potential curves of two systems presented in the scope of this work are displayed in

Fig. 1.1. The left graph shows the Ar+2 system. This particular system shows various excited

potential energy surfaces which arise from a ground state rare gas atom and a ground state ion.

These excited states are still accessible using conventional laser sources. The different states are

partly subject to splitting and mixing due to the spin orbit interaction. Many of these systems

have been subject in previous investigations. However, better access to the angular distributions

of photofragments can yield more detailed insight into the character and magnitude of these

coupling effects which was not possible before.

Many molecular ions feature a vast manifold of highly excited potential energy surfaces, an

example of which is the HeH+ ion depicted in the right figure of Fig. 1.1. These high lying
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potential energy surfaces correlate to excited atomic final states and can only be reached by

energetic photons which were so far not available with sufficiently high intensities. Thus, the

chemical dynamics on these high lying states leading to various fragmentation channels is at the

moment largely unexplored.

Besides being of fundamental interest photofragmentation processes with energetic photons are

also of importance in astrophysics. Photodissociation is one of the main destruction mechanisms

for molecules and ions in the interstellar medium [57, 49]. For instance, photodissociation

processes play a dominant role in the chemistry of diffuse clouds and in the outer parts of

dense clouds [9]. Moreover, photodissociation not only leads to the destruction of molecules

and molecular ions but it can also affect the chemistry in these clouds by producing atomic

fragments with significant kinetic energy which leads to a heating of the ambient gas [49]. In

some cases electronically excited fragments may be formed, which radiate and influence the

ambient radiation field (see for instance [33] and references therein).

The wavelength regime of the interstellar radiation field, which is of importance for photodis-

sociation processes, has been modeled by various groups, see for example [40] and [49], and was

also subject to measurements [41]. Predictions of the intensities by the divers models differ by

factors. However, they all show high photon flux in the VUV regime, due to Lyman α radiation

from excited atomic hydrogen. Thus, in order to interpret or predict the observed abundances

of molecules and molecular ions in these regions, an accurate knowledge of the photodissociation

cross sections of various species of molecules and molecular ions even at low wavelengths is a

prerequisite.

A number of recent developments now enables new insight into excited states to be gained with

photodissociation experiments.

Development in detector technology has yielded imaging detectors that can record arrival time

and position of charged as well as neutral fragments. This not only makes it possible to detect

all particles resulting from a photodissociation reaction, but using these detectors energy release

and angular distribution of the photofragments are directly accessible.

New 4th generation synchrotron radiation light sources have been developed, for instance the

Free-electron LASer in Hamburg (FLASH) started user operation in late 2005. These new

light sources offer high photon flux in the vacuum ultra-violet (VUV) to soft X-ray wavelength

regime. This development thus opens up the possibility to perform experiments on molecular

ions or radicals using VUV photons despite the low target densities.

New developments in ion trapping techniques has lead to the appearance of table top devices

which allow storage of fast ion beams for several 100ms [114, 24]. This allows to prepare the

molecular ions in their vibrational ground state or to perform time dependent studies on these

molecular ions.

Motivated by these three major developments, a new apparatus suitable for studying photofrag-

mentation processes using VUV as well as conventional laser based light sources was designed.
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1 Introduction

In this work the new Trapped Ion Fragmentation experiment at FLASH (TIFF) will be in-

troduced. This novel setup combines the technique of fast ion beams at keV energies with a

3-dimensional imaging detector and an ion beam trap to allow cooling of the ions prior to dissoci-

ation. The TIFF experiment was designed and setup at the Max-Planck-Institut für Kernphysik

in Heidelberg and was installed at the plane grating monochromator beamline (PG2) at FLASH

in late 2005.

This work will present first results obtained on photodissociation studies of rare gas dimer ions,

namely Ar+2 and Ne+
2 , using UV and visible radiation. Additionally, first results achieved in a

pathfinding experiment using VUV photons to study photofragmentation of HeH+ ions, will be

reported.

4



2. Background

2.1 Photodissociation of diatomic ions

2.1.1 Photodissociation processes

Studies of molecular photodissociation typically yield information on the characteristics of the

bound states of the molecule or molecular ion as well as the symmetry and shape of the excited

states involved in the dissociation process. Photofragment spectroscopy has been applied to ob-

tain spectroscopic information from molecules but has proven particularly adept at investigating

transitions in molecular ions [72].

The process of photodissociation of a diatomic molecular ion AB+ is written as

AB+ + hν → (AB+)∗ → A+ + B. (2.1)

Through a dipole allowed transition the molecular ion is transferred into an intermediate excited

state which eventually breaks up into a neutral and an atomic photofragment. For a molecule

the photodissociation process can be written similar to Eq. 2.1. Two distinct mechanisms of

photodissociation are depicted schematically in Fig. 2.1.

Direct photodissociation

Photodissociation can occur through direct coupling to the continuum of the nuclear motions

via a repulsive upper state as illustrated in Fig. 2.1 a). Since spontaneous emission back to the

ground state is slow compared to the movement along the nuclear coordinate, all absorptions

lead to dissociation of the molecule or molecular ion.

In this mechanism, the photodissociation cross section is continuous as a function of photon

energy, and the maximum of the cross section is found close to the vertical excitation energy

indicated by the arrow in Fig. 2.1 a) [108].

Direct photodissociation can also occur by absorption into the repulsive part of a potential curve

which exhibits a bound well at larger distances (not shown in Fig. 2.1).
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A+ + B

a)

A+ + B

A+ + B*

b)

Energy

Internuclear distance Internuclear distance

Energy

Figure 2.1: Electronic potential energy curves as function of the internuclear distance illustrat-

ing processes of photodissociation for a diatomic molecular ion AB+. The processes described

in the figure are a) the direct photodissociation process, where the bound state of a molecule

or molecular ion is directly coupled to a continuum state. The mechanism of predissociation is

illustrated in b). This indirect process begins with line absorption into a bound vibrational level

of an excited electronic state which is coupled to a third dissociative state of different symmetry.

Transitions to the dissociating state occur without the emission of radiation and lead to the

breakup of the molecule or molecular ion.
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2.1 Photodissociation of diatomic ions

Indirect photodissociation processes

Indirect photodissociation processes are not of importance for this study but shall nevertheless

be briefly mentioned. A detailed account of the indirect dissociation mechanism can be found

in the article by Kirby [49] and references therein.

The process of indirect photodissociation is illustrated in Fig. 2.1 b). Here the initial absorption

occurs into a quasi-bound state which subsequently couples to a dissociating continuum.

In the case of indirect photodissociation one can distinguish between three different mechanisms.

In predissociation (see Fig. 2.1 b)) the bound levels of an excited quasi-bound state are coupled

to the continuum state. This third state usually crosses the excited electronic state. The cross

section for predissociation consists of a series of discrete peaks, broadened by the predissociating

process.

A second possible mechanism of indirect dissociation is the so called coupled states dissociation

(not shown in Fig. 2.1). Here the quasi-bound excited electronic state is coupled to a repulsive

state which does not cross the bound excited state. A third possibility is the spontaneous

radiative dissociation. In this process spontaneous emission of radiation occurs as the molecule

or ion makes a transition from a bound excited state into the continuum of a lower lying repulsive

state.

2.1.2 Quantum mechanical treatment

Electronic and nuclear wavefunctions

In a molecule the forces acting on the atoms and electrons are comparable in size while the

respective masses differ to a large extent. Thus, the nuclear motions are much slower than the

electronic motions and both can effectively be treated independently and it is a good approxi-

mation to determine the electronic states at each value of the internuclear separation by treating

the nuclei as fixed. This is called the Born-Oppenheimer (BO) approximation [16] which shall

be briefly described here while a more detailed description can be found in [17].

To define the BO approximation let’s consider a diatomic system with N electrons. The time

independent Schrödinger equation for the system (neglecting spin interactions) is

(TN + Te + V )Ψ(R, r1, r2, ..., rN ) = EΨ(R, r1, r2, ..., rN ), (2.2)

where R denotes the internuclear coordinate and ri are the position vectors of the electrons with

respect to the center of mass of the molecule which is assumed to be fixed. TN thereby denotes

the kinetic energy operator of the nuclei, Te is the electron kinetic energy operator and V is the

potential energy of the system which consists of the sum of the Coulomb interactions between

all pairs of particles.

In the case where the electrons move in the field of the fixed nuclei Eq. 2.2 simplifies to

7



2 Background

(Te + V )Φq(R, r1, r2, ..., rN ) = Eq(R)Φq(R, r1, r2, ..., rN ). (2.3)

This is known as the electronic wave equation [17]. The eigenvalues Eq(R) and the wavefunctions

Φq for each electronic state q depend parametrically on the internuclear coordinate R.

The wavefunctions Φq form a complete orthonormal set for each value of R, thus the exact

wavefunction Ψ can be expanded as

Ψ(R, r1, r2, ..., rN ) =
∑

q

Fq(R)Φq(R, r1, r2, ..., rN ), (2.4)

where Fq(R) represents the nuclear motion wavefunction for the electronic state q. Inserting

this in the Schrödinger equation (Eq. 2.2) and projecting the equation with Φq′ yields

∑
q

∫
dr1dr2...drNΦ∗

q′(TN + Te + V − E)Fq(R)Φq = 0. (2.5)

The action of the operator TN = − ~2

2µ∇
2
R (here µ represents the reduced mass of the system) on

the product Fq(R)Φq can be written as

TN (FqΦq) = − ~2

2µ

(
Fq(∇2

RΦq) + 2(∇RFq · ∇RΦq) + Φq(∇2
RFq)

)
. (2.6)

Within the Born-Oppenheimer approximation the terms including derivatives of the electronic

wavefunction with respect to the nuclear coordinate are neglected. Thus, using the relation

given in Eq. 2.3 and the orthonormality property of Φq the Eq. 2.5 uncouples and one arrives at(
− ~2

2µ
∇2

R + Eq′(R)− E

)
Fq′(R) = 0. (2.7)

The nuclear wavefunction Fq′(R) can be described as a vibrational part χ depending on R, and

a rotational part Y depending on the polar angles θ and φ of the vector R. Thus for a given

state q′ one can write

Fq′(R) =
χν,J(R)

R
YJ,MJ

(θ, φ) (2.8)

where Y denotes the spherical harmonic functions.

For a bound electronic state, the vibrational wavefunction χν,J satisfies Eq. 2.7 and one obtains

− ~2

2µ

d2

dR2
χν,J +

(
Eq′(R) +

~2

2µ

J(J + 1)
R2

− Eq′,ν,J

)
χν,J(R) = 0, (2.9)

in which ν and J are the vibrational and rotational quantum numbers and Eq′(R) describes

the electronic energy dependence on R and forms the so called potential energy curve (see for

instance Fig. 2.1) within which the nuclei vibrate.
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2.1 Photodissociation of diatomic ions

For R→ 0, Eq′(R) is dominated by the Coulomb repulsion between the nuclei, while for R→∞,

Eq′(R) tends to a constant energy Eq′(∞) which is the sum of the energies of the two isolated

atoms from which the molecule is composed. If there is a stable bound state Eq′(R) will exhibit

a minimum at some distance R0.

Photodissociation cross sections

In the above section we have discussed the case were the nuclei vibrate in a bound potential

well. In the case of direct photodissociation process the electronic state has no potential well

or the energy regime of interest lies above the dissociation limit Eq′(∞) of a bound potential

curve. In this case Eq. 2.9 changes to

− ~2

2µ

d2

dR2
χk,J +

(
Eq′(R) +

~2

2µ

J(J + 1)
R2

− Ek

)
χk,J(R) = 0, (2.10)

where Ek = k2

2µ is the relative kinetic energy of the dissociating atomic fragments and k is the

momenta of the fragments. The continuum wavefunctions χk,J(R) behave for large internuclear

distances R according to

χk,J(R) ∝ sin(kR + η), (2.11)

where η denotes a phase shift which depends on the energy and shape of the potential [45, 49].

Assuming a dissociation process were the molecule is in a bound state Ψi before the dissociation

and is transferred into a continuum state Ψk,f where the fragments separate with the kinetic

energy Ek. Thus, the cross section in the dipole approximation is proportional to [49]

σ(Ek) ∝ |〈Ψk,f |D|Ψi〉|2, (2.12)

where D is the electric dipole operator given by [17]

D = e

∑
i

ZiRi −
∑

j

rj

 (2.13)

where the first sum is over the Ri and charges Zie of all the nuclei and the second sum is over the

positions rj of all electrons. If we further assume that the states Ψi and Ψk,f can be described

in the Born-Oppenheimer approximation and ignoring the effect of rotations, the electric dipole

operator and the matrix element in Eq. 2.12 can be written as

〈Ψk,f |D|Ψi〉 =
∫

1
R2

dRχ∗
k,fDel(R)χi (2.14)

where Del(R) =
∫

φ∗f

(∑
j rj

)
φidr is the electric dipole transition moment, which is usually

responsible for the absorption from the initial into the final electronic state.

9
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The direct photodissociation cross section for absorption into the vibrational continuum, given

by [3, 49], can then be written as

σ(∆Ek′,ν) =
2
3

πe2

mc
g∆Ek′,ν |〈χk′,f (R)|Del(R)|χν,i(R)〉|2 (2.15)

where χ is a solution of Eq. 2.10 at energy Ek′ = ∆Ek′,ν− (Eν(∞)−Eν) and g is the degeneracy

factor [3].

Assuming, that the electronic transition triggered by the absorption takes place instantaneously

with respect to the nuclear motion, Del(R) can be said to be independent of R. This assumption

is called the Franck-Condon principle. Hence, Eq. 2.15 can be simplified to

σ(∆Ek′,ν) =
2
3

πe2

mc
g∆Ek′,νDelfν,ν′ , (2.16)

with fν,ν′ = |〈χk′,f (R)|χν,i(R)〉|2 the Franck-Condon factor.

2.2 Experimental techniques

Several experimental techniques have been applied to study ion photofragmentation processes.

All of these techniques have been used with lasers as photon sources, and in particularly favor-

able cases the light from incoherent sources, such as arc lamps, has been used. Most of these

techniques have been successfully applied in other fields before they were applied to photodisso-

ciation studies. The most important techniques shall be briefly described here a more extensive

description can be found in the review articles by Moseley [72] and Mosely and Durup [71] and

in the references to individual experiments given below.

2.2.1 Gas phase and trapped ion techniques

Photodissociation cross section measurements in the gas phase have been studied using drift tube

mass spectrometers by for instance Beyer et al. [11] and Moseley and co workers [73]. In these

drift tubes ions are formed in the gas phase through initial electron processes and subsequent ion-

molecule reactions. Under the influence of a weak electric field the molecular ions drift through

the background gas towards an extraction aperture allowing them to thermalize in collisions.

Before the aperture the ions are overlapped with a laser beam. Parent ions and photofragment

ions are detected through some from of mass spectrometer. Dissociation cross sections can be

derived through the disappearance of parent ions or the appearance of photofragments.

Photodissociation studies utilizing ion traps have been mostly applied to study larger molecular

ions, for example by Freiser et al. [32]. The ions are irradiated while stored inside the trap and

similar to gas phase techniques, cross sections are determined by measuring the disappearance

of parent ions.
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2.2 Experimental techniques

2.2.2 Fast ion beams

Although the above described techniques have been useful in the study of photofragmentation,

the major development in this field has come through the application of fast ion beams. The

pioneering study in this field was that of von Busch and Dunn [110] who crossed a beam of

H+
2 ions with photons from a powerful arc lamp and measured the wavelength dependence of the

photodissociation cross section with a resolution of 200Å.

The first to apply lasers to the spectroscopic study of photodissociation, using fast beams of

H+
2 ions, were Ozenne et al. [77] and van Asselt and co workers [107, 106]. The application of

lasers to this technique opened up many new possibilities, since the low ion density could be

compensated by the higher photon densities.

The setups used for fast ion beam photodissociation by the various groups differ to a large

extent. However, in general one can state that in all the different applications the molecular

ions are produced in an ion source and are accelerated to the desired energy. The term ”fast”

ion beams thereby varies between energies of 10 to 105eV. The ion specie of interest is then mass

selected using magnetic or quadrupole mass spectrometers. In the following interaction region

the photon beam is overlapped with the ion beam in either a crossed or collinear geometry, in

many experiments both possibilities were foreseen. In the early experiments of the 1970s up to

the late 1980s, the charged photofragments are commonly detected using an energy analyzer.

At fixed laser frequency, the energy analyzer can be scanned to measure the energy distribution

of the photofragments. Making use of the amplification of the rather small center of mass

dissociation energies in the laboratory frame an energy resolutions down to 10meV for the

crossed geometry and 0.001meV in coaxial geometry [42] in the center of mass frame of the ion

was achieved.

Since the most setups only detected photofragments ejected in the direction of the ion beam

propagation, while photofragments ejected perpendicular to the ion beam were strongly sup-

pressed, insights into the angular distribution of fragments could also be obtained assuming a

good collimation of the ion and photon beam. In the crossed beams geometry the laser polar-

ization can even be turned to obtain both parallel and perpendicular orientation with respect

to the ion beam direction.

However, these described experiments have their limitations which are imposed by the finite

resolution of the analyzers used to determine the photofragment energies and by the unavoidable

energy spread and angular divergence in the ion beam.

With the availability of 3-dimensional imaging detectors, such as micro channel plates (MCP)

(see for instance [27]), the fast ion beam technique was revolutionized. These modern detectors

allow the detection of multiple charged as well as neutral particles recording the position and

arrival time of each fragment.

One of the first applications of this new detection scheme was done by de Bruijn and Helm [26]

in order to study the photodissociation of H2. In their apparatus the H2 beam was produced
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Energy

Internuclear distance

D
E

0

-De

A+ + B*

Figure 2.2: Schematic illustration of the

relation between the kinetic energy release

and the internal excitation of a molecular

ion.

from a H+
2 ion beam in a charge exchange cell. The H2 molecules were overlapped with the laser

beam in a crossed geometry. The imaging detector was mounted straight ahead of the overlap

region oriented perpendicular to the ion beam direction. The main advantage of this detection

scheme is that nearly all fragments can be detected with an efficiency that is in first order

independent of the kinetic energy release and the ejection angel of the fragments in the center

of mass frame. The energy resolution of such a system is in first approximation determined by

the beam energy and the distance between the overlap region and the detector and can be on

the order of 1meV [39].

2.3 The kinematics of two body breakup

To discuss the kinematics of photodissociation first the process of direct dissociation is rewritten

as

AB+(αi) + hν −→ A+(αf,A) + B0(αf,B), (2.17)

where AB+(αi) represents the molecular two body system in an initial rovibronic state αi,

hν is the photon energy, A+(αf,A) is the ionic fragment with electronic excitation αf,A and

B0(αf,B) is the neutral atomic fragment with electronic excitation αf,B. The energy balance of

the dissociation process is illustrated in Fig. 2.2 and can be written as

∆E = hν + Eint(αi)−De − Eint(αf,A, αf,B). (2.18)

Where Eint(αi) represents the initial internal excitation of the molecular ion, De is the dissoci-
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y
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Figure 2.3: Vectors and coordinates used to describe the breakup of a two body system. (a)

Photodissociation at the interaction point in the center of mass frame of the molecule and in

the laboratory frame of reference. (b) Detection of photoframgments at the imaging detector.

(X,Y) is the point of impact, which is related to the polar coordinates: R2 = Y2 + X2 and

tan(ϕ) = Y/X.

ation energy and Eint(αf,A, αf,B) denotes the internal excitation of the reaction products. The

excess energy ∆E released in the dissociation process is carried away by the fragments in the

form of kinetic energy. Hence, ∆E is also referred to as the kinetic energy release. Measuring the

energy release in a photodissociation process can thus yield information on the initial rovibronic

excitation stored in the molecular ion.

Fig. 2.3 (a) indicates the vectors and coordinates characterizing the photofragmentation pro-

cess [81]. A detailed account of the kinematics of a breakup of a two body system can also be

found in [83, 39].

In the laboratory frame of reference the position of a dissociation fragment is given by ~rLab.

The angel between ~rLab and the zLab-axis is defined as θLab. The center of mass frame of the

dissociating molecule is moving with respect to the lab-frame at the velocity ~vion parallel to

the zLab-axis. The photofragments dissociate in the cm-frame with velocities ~v1 and ~v2. The

fragment velocities and the kinetic energy release ∆E given in Eq. 2.18 are connected through

∆v = |~v1 − ~v2| =

√
2∆E

µ
, (2.19)

with µ = M1M2
M1+M2

being the reduced mass and Mi the mass of the respective fragment.

The angel between ~vi and the z-axis is defined as θz. ϕ constitutes the angle between the x-axis

and the projection of ~vi onto the x-y-plane.

Therefore, the velocity of a fragment in the lab-frame can be described as
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~vLab,i = vLab,i


sin(θLab,i)cos(ϕi)

sin(θLab,i)sin(ϕi)

cos(θLab,i)

 (2.20)

=


0

0

vion

 + vi


sin(θz,i)cos(ϕi)

sin(θz,i)sin(ϕi)

cos(θz,i)

 (2.21)

with ϕi = ϕLab,i and either v1 = ∆v µ
M1

or v2 = −∆v µ
M2

.

A field free propagation of a photofragment (here for fragment number 1) from the interaction

point to the detector along the z-axis is given by

~rLab,1 = ~vLab,1 · ttof,1 (2.22)

=


0

0

vion

 ttof,1 + ∆v
µ

M1
ttof,1


sin(θz,i)cos(ϕ)

sin(θz,i)sin(ϕ)

cos(θz,i)

 (2.23)

=


X1

Y1

L

 (2.24)

with ttof,1 being the time of flight of the particle to the detector, L being the distance between

the interaction point and the detector, and X and Y the coordinates on the detector as depicted

in Fig. 2.3 (b).

From there we can arrive at the following conclusion for the time of flight ttof,1

ttof,1 =
L

vion
· 1

1 + ∆vµ
vionM1

cos(θz,1)
(2.25)

and for ~R1, which is the radial position on the imaging detector as illustrated in Fig. 2.3 (b),

one obtains

R1 =
√

X2
1 + Y 2

1 (2.26)

=
∆vµ

M1
· ttof,1 · sin(θz,1) (2.27)

=
∆vµ

M1
· sin(θz,1) · L

vion
· 1

1 + ∆vµ
vionM1

cos(θz,1)
. (2.28)

Inversion of Eq. 2.25 and Eq. 2.27 yields a formula for the angle θz
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2.4 Angular distribution of photofragments
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Figure 2.4: Vectors and coordi-

nates used to characterize the an-

gular distribution of photodissoci-

ation fragments.

θz,1 =

 arctan
(

R1
L−ttof,1vion

)
for L− ttof,1vion > 0

π + arctan
(

R1
L−ttof,1vion

)
for L− ttof,1vion < 0

(2.29)

and for the kinetic energy release ∆E one arrives at

∆E =
1
2
µ∆v2 =

1
2

M2
1

µ

(L− ttof,1vion)2 + R2
1

t2tof,1

. (2.30)

2.4 Angular distribution of photofragments

This section will give a brief overview of how the angular distribution of photofragments can be

calculated from coordinates measured by an imaging detector. A more detailed account can be

found in [83].

The angular distribution for photofragments, from initially randomly oriented molecules, can be

written in the form

P(θL, ϕ)dΩL =
1

4π
(1 + β · P2(cos(θL)))dΩL (2.31)

which was given by [115, 21]. Here θL is the angel between the laser polarization, given by

~εL, and the direction of ejection of the fragments in the center of mass frame (~v) illustrated in

Fig. 2.4. P2(cos(θL)) = 1
2(3cos2(θL) − 1) is the second Legendre polynomial of cos(θL) and β

is the anisotropy parameter. ~kB indicates the ion beam propagation direction and ~kL gives the

direction of the laser beam.

The anisotropy parameter is limited to values of −1 ≤ β ≤ 2, where β = −1 corresponds to

a sin2(θL) distribution, a value of β = 2 to a cos2(θL) distribution, and β = 0 to an isotropic

distribution.

In case of fast direct photodissociation of a diatomic molecule, β is equal to 2 if ∆Λ = 0 which

gives a parallel transition and beta is equal to -1 if ∆Λ = ±1 which corresponds to a perpendic-

ular transition. Λ thereby denotes the quantum number corresponding to the projection of the
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total electronic orbital angular momentum along the internuclear axis (see for example [17]).

This allows to determine the identity of the potential curves involved in the photodissociation

process from the angular distribution of the photofragments.

With the solid angel dΩL defined by dΩL = sin(θL)dθLdϕL Eq. 2.31 can be rephrased as

I(β, θL)dθL =
1

4π

∫ 2π

0
dϕ(1 + β · P2(cos(θL)) · sin(θL)dθL (2.32)

=
1
2

(
1− β

2

)
sin(θL) +

3
4
βcos2(θL)sin(θL)dθL. (2.33)

The theoretical curves for the angular distributions according to Eq. 2.33 assuming pure parallel

and perpendicular transitions and assuming no rotation of the molecular ion before dissociation

are displayed in Fig. 2.5.

Since the solid angel is conserved upon rotation of the coordinate system at the interaction point

and using the conversion

cos(θL) =
~v · ~εL

v
= sin(θz)cos(ϕ) · εx + sin(θz)sin(ϕ) · εy + cos(θz)εz, (2.34)

the angular distribution in terms of θz can be written as

I(β, θz)dθz =
1

4π

∫ 2π

0
dϕ(1 + β · P2(

~v1 · ~εL

v1
)) · sin(θz)dθz (2.35)

=
(

1
2

(
1− β

2

)
+

3
4
βcos2(θz) · ε2

z +
3
8
βsin2(θz) · (ε2

x + ε2
y)

)
· sin(θz)dθz.(2.36)

2.5 Monte Carlo simulations

The angular distribution of fragments following a dissociation event was simulated. Therefore, a

set of molecular ions with isotropic orientation was generated. The molecules were fragmented

according to the probability distribution given in Eq. 2.31, assuming a pure parallel transition
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Figure 2.6: Results of the Monte Carlo simulations assuming a purely parallel transition and

taking into account different time (dt) and position (dPos) resolution.

(β = 2). The resulting photofragments were then propagated to the detector position according

to Eq. 2.24 and the arrival time ttof and position on the detector was recorded for each fragment.

To simulate the effect of a finite position and time resolution on the angular distributions it

was assumed that the coordinates and times obtained in the simulations are subject to small

uncertainties which are added to the corresponding values. The uncertainties were randomly

generated from a gaussian distribution with a predefined width dt for the arrival time and dPos

for the X and Y position of the fragment on the detector respectively.

The results of these simulations for different values of dt and dPos are depicted in Fig. 2.6. The

solid curve illustrates the initial angular distribution of the photofragments at the interaction

point. In comparison with the simulated curves for finite resolution one can state that effects on

the shape of the angular distribution can only be expected for very high uncertainties of both

the time and the position coordinates.
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3. A crossed ion beam setup for

photodissociation imaging

3.1 Basic elements of the setup

In order to perform vacuum ultra-violet (VUV) photodissociation experiments on molecular

ions, it was decided to setup a crossed photon and ion beam experiment. With this geometry

the momenta of charged as well as neutral fragmentation products emerging from the region

of interaction can be directly measured using time and position resolving particle detectors.

To alleviate neutral fragment detection, the decision was taken to use fast ion beams of few

keV energy. Since production and handling of ions at such energies can be done mainly using

methods employing electrostatic fields. This makes the resulting setup compact and versatile.

This is of particular importance since, at such large facilities as a free-electron laser, it has to

be integrated into existing experimental stations. Additionally, it was decided to integrate a

trapping device to allow cooling of the molecular ions or to make time-dependent studies of

certain processes possible.

A schematic sketch of the experiment is shown in Fig. 3.1. Ions are created in an ion source

kept at several kV potential and accelerated to a beam energy of several keV. To transport the

ion beam focussing and steering units are installed along the beam line. The desired ion species

is mass-selected using a dipole magnet. In the ion beam trap ions can be stored up to seconds

to allow them to relax vibrationally. The ions are then extracted from the trap. To reduce

the background of neutrals in the detector section the beam is bend by 90◦ in a quadrupole

deflector, and the ion beam is focussed in the region where the photon beam and ion beam

overlap. The emerging charged and neutral photofragments are detected using two imaging

detectors. Light and charged fragments can be imaged on a detector close to the overlap of the

two beams (Detector 2). This detector is equipped with a hole to allow the unreacted beam

and heavy photofragments to pass. The beam is removed with an electrostatic deflector and the

neutral fragments are detected on a second imaging detector situated further downstream.

This chapter will describe in detail the experimental setup sketched in this section, includ-

ing the utilized light sources. The experimental results characterizing the performance of the

experimental setup are presented in Ch. 4.

19
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Figure 3.1: General idea of a crossed beam photofragment imaging setup crossing cold molec-

ular ions with VUV photons from a free-electron laser.
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3.2 The Trapped Ion Fragmentation setup at FLASH (TIFF)

In the photodissociation experiments conducted with this setup which are described in Ch. 5 and

Ch. 6 only one detector situated away from the overlap region (here Detector 1) was available.

Thus, emphasize was at first put on the heavy neutral fragments produced in photodissociation

reactions. However, the detector with a hole has been installed and tested in the end of February

2007 and first experiments making use of this new detector will soon take place.

3.2 The Trapped Ion Fragmentation setup at FLASH (TIFF)

3.2.1 Historic development

Photodissociation imaging experiments with the setup described in this work were done in

two distinct phases. In the preparation phase, mainly conducted at the Max-Planck-Institut

für Kernphysik in Heidelberg, the experiment was set up and commissioned. Also first test

experiments with an optical laser system on rare gas dimer ions namely Ar+2 and Ne+
2 could be

carried out. The results of these experiments can be found in Ch. 5.

In the second phase the experiments with vacuum-ultra-violet (VUV) photons were conducted.

The complete setup was moved to the free-electron laser in Hamburg (FLASH, see Ch. 3.7.2)

situated at Deutsches Elektronen-Synchrotron (DESY) that began user operation in 2005. The

installation of the setup in Hamburg was carried out in October 2005 with first experiments

starting in November 2005. The results of these experiments are described in Ch. 6.

Changes were necessary to adapt the experiment to the environment at the free-electron laser.

Since the FEL beam height at the plane grating monochromator beamline (PG2), at which this

experiment is permanently installed, is at approximately 2.60m, a large part of the experiment

had to be transfered to that height and an additional upcoupling section for the ion beam was

added. To facilitate the description of the setup emphasize will be put on the current status

and the changes and developments the setup did undergo will be discussed briefly. Where it is

necessary for the understanding of experimental results the different stages will be covered in

detail.

3.2.2 Beamline setup

A complete technical drawing of the current status of the setup is displayed in Fig. 3.2 and a

picture of the installation at the free-electron laser is depicted in Fig. 3.3.

The TIFF experiment can be divided into distinct functional segments. The first segment

contains the ion source and the mass selecting magnet. The second segment includes the ion

beam trap followed by the overlap region between photon and ion beam, and the final section

contains the imaging detector. Each segment includes focussing lenses, steerer units, deflectors,

apertures and a chopper unit to influence and control the ion beam. Beam diagnostics is done

using Faraday cups, pickups and MCP detectors.

21
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Figure 3.2: Technical drawing of the TIFF installation at the free-electron laser in Hamburg

(FLASH).
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3.2 The Trapped Ion Fragmentation setup at FLASH (TIFF)
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Figure 3.3: Picture of the TIFF installation at the free-electron laser in Hamburg (FLASH).

23



3 A crossed ion beam setup for photodissociation imaging

Einzel
lens

x/y De-
flector

Ion beam

Figure 3.4: Picture of an Einzel lens

unit. The upper part shows the ac-

tual Einzel lens electrode (center) and

the two upper and lower grounded elec-

trodes. The x/y deflector contains four

plates mounted in a rectangular fash-

ion. Each set of opposing plates is

used for vertical or horizontal steering

of the ion beam. The ion beam passes

through each element on the indicated

trajectory.

The beam of molecular or atomic ions is produced in the ion source. After it has been accelerated

upon leaving the source the ion beam enters into the first quadrupole triplet (QT1) which

matches the focussing to the first quadrupole deflector (QD1). The deflector bends the beam by

90◦ in the upward direction. After being transported to the correct FEL beam height the beam

is flipped back into the horizontal plane by QD2. In the 90◦ dipole magnet the ions are mass

selected. About 50cm before the trap the ion beam passes through the second quadrupole triplet

(QT2). QT2 allows matching the ion beam to the acceptance of the ion beam trap. When the

ion beam leaves the ion trap it enters QD3 and is bend by 90◦ so it now runs perpendicular to

the photon beam coming from the free-electron laser. Via the third quadrupole triplet (QT3)

the beam is focused in the interaction region and brought to overlap with the photon beam.

For more details about the processing of the beam in the interaction region and in the detector

region following after that please see Ch. 3.5.

3.2.3 Ion beam transport

At the beamline, two types of devices are used to focus and steer the beam. The first type is a

combination of an Einzel lens and a set of horizontal and vertical deflection plates. An example

is displayed in Fig. 3.4. The second type is a unit composed of three electrostatic quadrupoles,

a so called quadrupole triplet. The electrodes of each quadrupole are placed above, below, left

and right of the ion beam with the electrode surfaces oriented parallel to the beam as indicated

in Fig. 3.5. The quadrupole units are mounted inside a DN160CF 3-way cross. The overall

length of the complete triplet is 30cm. Each individual electrode is 75mm in length and 52mm

wide. The profile of each electrode is semicircular with a maximum thickness of 30mm.

In each quadrupole module opposing electrodes have the same polarity while neighboring elec-

trodes have opposite polarity. Therefore, each quadrupole element produces a focus in either

the x- or y-plane. The lower part of Fig. 3.5 shows the electrical connections to each electrode.
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Figure 3.5: Schematic drawing of the quadrupole triplet and a sketch of the electrical connec-

tions to each individual electrode.
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Figure 3.6: Cut through

view of the quadrupole de-

flector unit. The ion beam

entering from below is bend

by 90◦ if the electrode po-

tential is of the order of the

beam energy.

Assuming a beam of positively charged ions, the focus in x direction is achieved by module 2.

Due to the interconnection of module 1 and module 3 the focus in the y direction is split up

between these two modules. In the case of negatively charged ions the focal planes are reversed.

In module 3 the electrode situated below the ion beam and the electrode to the right of the ion

beam are independent of the interconnection to module 1. These electrodes can be set slightly

higher or lower than the respective opposing electrode effectively producing a small potential

gradient in either the x- or y-plane which is used to steer the beam.

For 90◦ deflection of the beam in the upcoupling section as well as after the ion beam trap

another type of electrostatic quadrupole is used. In this case the electrodes are oriented so that

the surfaces are perpendicular to the ion beam (see Fig. 3.6) producing a transverse quadrupole

field. Two opposing electrodes have the same polarity while neighboring electrodes have opposite

polarity. If the ion beam enters such a quadrupole between the frontmost two electrodes and the

potential of each electrode is on the order of the beam energy (i.e. 4.2kV in our case) the beam

is bend by 90◦ and leaves between the two rightmost electrodes. The quadrupole deflector has

strong defocussing effects on the ion beam therefore each quadrupole deflector is vested with

two Einzel lens units of the type displayed in Fig. 3.4. The Einzel lens units are mounted on

DN160CF flanges and are directly installed on the 6-way crosses that houses the quadrupole

deflector.

3.2.4 Ion beam diagnostic

Every functional segment of the setup contains ion beam diagnostic units installed in between

the focussing elements along the beam pipe. Each unit consists of a small Faraday cup with

5mm diameter and apertures of 1, 3 and 5mm. Each Faraday cup is enclosed by a grounded

housing with a 5mm opening facing the ion beam. The ion beam current signal delivered by

the cup is connected to the outside of the vacuum chamber via a BNC feedthrough. The signal

line coming from each Farady cup is connected to a switching unit where each channel can be

electronically selected for display on a picoamperemeter (Keithley Model 414A Picoammeter).

The active Faraday cup is coupled to a battery which biases the cup to -100V while the inactive

cups remain grounded. Each diagnostic unit is positioned on a linear motion feedthrough, and
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can be moved to different positions or retracted from the beam pipe completely.

For non-destructive detection of ion pulses several pickup electrodes are mounted in the center

of the beam pipe. The pickup electrodes consist of a small metal ring with a diameter of 3cm

and a thickness of 0.6cm. Each pickup is connected to a BNC feedthrough passing the signal to

the outside of the vacuum chamber. The ion bunch passing through the ring produces a mirror

charge on the electrode which can be amplified using a charge sensitive amplifier. A recording

of these bunches utilizing a scope is displayed in Ch. 4.3.2.

To diagnose the transverse beam profile two MCP detectors are installed. These MCPs are

equippped with phosphor screens and are monitored using CCD cameras. Each MCP detector

is attached to a motion feedthrough and can be removed from the beam pipe. One is installed

in the interaction region and the second one is mounted just before the imaging detector (see

also Ch. 3.5).

To monitor the stored ion beam inside the ion beam trap a 40mm MCP detector (0◦-MCP)

situated just after QD3 approximately 60cm downstream from the exit mirror of the ion trap.

The third quadrupole deflector is therefore mounted on a translation stage so it can be removed

from the beam pipe to prevent it from blocking the detector.

3.2.5 Ion beam pulsing

To produce a pulsed ion beam two posiblities have been used at the beamlines. It is possible

to either use the longitudinal pulsing capabilities of the ion beam trap or a transverse chopper

unit which is installed about 50cm downstream from the ion source. The transverse ion beam

chopper unit consists of two short electrodes with a width of 4cm and a length 2cm. These

electrodes are mounted inside the beam pipe about 1.5cm apart so that the ion beam can pass

between the two plates. One side of the chopper is grounded and the other electrode is connected

to a fast HV push-pull switch, which can switch the high potential to ground and vice versa

in about 200ns. At a beam energy of 4.2keV a setting of higher than 3000V was found to be

sufficient, to deflect the ion beam onto the walls of the vacuum chamber.

3.2.6 The vacuum system

The vacuum system of the setup is divided into six distinct segments. As can be taken from

Fig. 3.2 valves are placed along the beam pipe so that the different segments can be separated

from each other to facilitate maintenance work and to protect against accidental vacuum leaks.

The first segment contains the ion source and the first quadrupole triplet and is pumped by

a 500l/s turbo pump (Varian Navigator TV551) situated below QT1. Under typical operating

conditions the pressure is on the order of 5 · 10−7mbar to 2 · 10−5mbar depending on the source

inside pressure. To allow for differential pumping the beam pipe diameter is reduced to 40mm

in a 40cm section installed after QT1 which also contains the valve (V1).
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The following segment number two contains the two quadrupole deflectors installed in the up-

coupling section and is pumped by a 250l/s turbo pump (Varian Navigator TV301) situated on

top of QD2. Normal operating pressure is on the order of 10−6mbar. In the section containing

the valve (V2), between QD2 and the magnet, the pipe diameter is reduced to 40mm. Together

with the magnet vacuum chamber this serves as a second differential pumping section.

The next segment includes the magnet, the quadrupole triplet number two (QT2) and another

differential pumping section between triplet and the ion beam trap. The vacuum is provided by

a second 500l/s turbo pump installed below QT2. Under normal operating conditions the inside

pressure ranges from 5 · 10−9mbar to 2 · 10−8mbar.

The fourth segment comprises the ion beam trap, the third quadrupole deflector (QD3) as well as

the third quadrupole triplet unit (QT3). Vacuum in this segment is provided by two cryo pumps

and a second 250l/s turbo pump. The cryo pumps are installed beneath the ion beam trap and

below the quadrupole deflector while the turbo pump is mounted underneath the quadrupole

triplet. Upon normal operation the vacuum inside the ion beam trap is between 8 · 10−10mbar

and 4 · 10−9mbar while the pressure outside the trap is typically on the order of 8 · 10−9mbar.

A fourth differential pumping section is installed after QT3 containing valve number four (V4).

The fifth segment contains the interaction region. This segment is pumped by a 50l/s ion pump

(Varian model VacIon Plus 55) installed underneath a vacuum chamber before the interaction

region and a NEG getter pump (Saes SORB-AC cartridge pump) situated below the interaction

region. This yields an inside pressure upon operation of up to 4 · 10−9mbar.

The last segment is separated from segment number five by a valve with a size of 100mm (V5)

and contains the imaging detector. It is pumped by a third 250l/s turbo pump installed below

the detector chamber. The turbo pump can be segregated from the chamber by a 100mm valve

(V6) mounted between chamber and pump. Under normal operating conditions the vacuum in

the detector chamber is at the same level as in segment five.

The last two segments, namely interaction region and the detector section, are baked at 150◦C

for more than 24 hours.

To measure the inside pressure of the vacuum chambers each segment contains one full range vac-

uum gauge (Leybold IONIVAC ITR 90) which can indicate pressures ranging form 5 ·10−10mbar

to atmospheric pressure. For measurement of ultra high vacuum two extractor gauges (Leybold

IONIVAC IE 514) are installed at the chamber of the ion beam trap and the vacuum chamber

housing the interaction region. These allow pressure determination down to 1 · 10−12mbar.

3.3 The hollow cathode ion source

The ion source in use is a hollow cathode type source that was previously used for production

of cold H+
3 [5]. A picture of the complete source is displayed on the left of Fig. 3.7.

Ions are extracted from the negative glow of a self-sustained discharge [88] burning in a gas
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3.3 The hollow cathode ion source

Figure 3.7: The hollow cathode ion source and a schematic diagram of the electrical wiring.
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UPlatform 4200V

UBPS ≈100V

IBPS 5-8mA

UDis. 250-400V

IDis. 45mA

UExtr. -3000V

psource 0.1-1.0mbar

Table 3.1: Typical ion source settings.

between a hollow cathode and a hollow anode.

The anode and cathode electrodes are isolated against each other by the glass adaptor. Together

with a window (below the anode in the picture) and the bias electrode they form an enclosed

volume with only a small opening in the bias electrode. The diameter of the opening can be

varied between 0.2-1.0mm by exchanging a small disc held in place by the HV electrode. The

anode is extended on the inside of the glass adaptor by a copper cylinder with an inside diameter

of about 1cm reaching almost all the way to the cathode forming one hollow anode structure.

A cup like extraction electrode is mounted on top of the ion source electrically insulated from

the remaining electrodes by ceramic tubes as displayed in Fig. 3.7.

The electrical wiring diagram of the source is displayed on the right side of Fig. 3.7. The source

is mounted on a high voltage platform and is electrically insulated from the rest of the beam

pipe by a piece of tubing made from plexiglas. The discharge is driven by UDis. with the series

resistor RS = 10−40kΩ serving as a spark protection. Anode and cathode can be moved up and

down potential wise by UBPS. Typical settings for all voltages can be taken from Tab. 3.1. To

a good approximation the platform voltage UPlatform defines the potential on which the ions are

created and thus their kinetic energy after extraction from the source. The extraction electrode

potential is lower than the platform voltage producing a steep field gradient at the exit of the

ion source which accelerates the ions when leaving the source.

Via UBPS the negative glow region of the discharge situated inside the hollow cathode can be

adjusted slightly higher than the potential of the HV electrode to produce a small drift field

inside the source. Pulled by this drift field the ions leave the ion source through the opening

inside the HV electrode and are then accelerated by the strong extraction field imposed by the

extraction electrode. When leaving the extraction electrode the ions are further accelerated to

ground potential until they reach the final beam energy of typically 4.2keV.
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Figure 3.8: Model of an optical res-

onator consisting of two concave mirrors

with radius of curvature Rm. Such a res-

onator is used as an analogy for the ion

beam trap. The focal length of a concave

mirror is defined as fm = Rm
2 as can be

taken from [55, 65].

3.4 The ion beam trap

3.4.1 An electrostatic ion trap

As trapping device for the ion beam an electrostatic ion trap device invented by Zajfman et

al. [114] is used. A description of the trap assembly can also be found in [24].

In an optical resonator, as illustrated in Fig. 3.8, a beam of light is trapped between two concave

mirrors, if certain conditions relating to the length of the resonator and the focus length of the

mirrors are fulfilled. The laws of geometrical optics can be directly applied to the motion of

charged particles in an electromagnetic fields with the difference that the index of refraction

becomes a continuous function of space [102]. If only electrostatic fields are present the index

of refraction is proportional to the square root of the electric potential. Thus, it is possible to

construct an ion trapping device based on the principle of an optical resonator, utilizing ion

mirrors. Such ion mirrors can be designed using either magnetostatic [87] or electrostatic fields.

However, an electrostatic design offers the advantage of having no limit on the mass of the

trapped particles.

3.4.2 Trap stability criteria

The stability of the ion trap can be divided into two parts: longitudinal and radial confinement.

The longitudinal confinement of ions inside the trap is achieved if the confining potential Vs

generated by the mirrors is high enough to stop the ions, i.e.,

Vs >
Ekin

q
; (3.1)

where Ekin is the kinetic energy of the ions and q is their charge.

Exploiting the analogy to light propagation the radial stability criteria can be directly derived

from (ABCD)-matrix calculations developed in geometrical optics (see for example [113]). It is

given by
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0 ≤ (1− L
R1

) · (1− L
R2

) ≤ 1 (3.2)

with L being the length of the resonator and R1 and R2 the radii of curvature of the two mirrors.

Using the definition of the focal length f = R
2 and assuming a symmetric resonator (R1 = R2)

one obtains the simple relation

L
4
≤ f ≤ ∞. (3.3)

3.4.3 Ion trap mechanical construction

Fig. 3.9 shows a picture of the ion beam trap. The trap consists of two cylindrical-symmetric

electrostatic mirrors made up of seven mirror electrodes labeled M0–M6. The electrode M1

holds a small cylindrical insert which extents from M1 all the way to the inside of electrode M2

depicted in the enlarged section shown in the lower part of Fig. 3.9. Two additional focussing

electrodes Z0 and Z1 are added to the each stack of mirror electrodes.

All trap electrodes are made from 304 stainless steel and are mounted using ceramic balls which

ensure precise alignment of all parts and, provide the electrical insulation of the electrodes. The

two sets of mirror electrodes are interconnected by four rods and are coaxially oriented. An

additional Einzel lens is mounted just after the exit mirror followed by a set of vertical and

horizontal deflection plates. The complete assembly is mounted on a double sided DN160CF

flange (visible in the picture contained in Fig 3.9) and can be inserted into the vacuum chamber

from one side. A second double sided flange supports the exit mirror at the other end of the

vacuum chamber.

The overall length of a mirror including the Einzel lens electrodes Z1 and Z0 is 103mm with a

diameter of 93mm. The field free region between both mirrors has a length of 227mm. This

results in a complete length of the trap assembly of 433mm. If the additional focussing and

steering electrodes mounted after the exit mirror are also taken into account the total length of

the complete assembly rises to 620mm. More detailed dimensions can be found in Fig. 3.9.

Electrical connections to all electrodes is achieved using stainless steel wires. These wires are

spot welded to each electrode and then guided to electrical feedthroughs mounted on the double

sided flanges. The interconnection between the wires and the electrical feedthroughs is done

with removable push-on connectors.

3.4.4 Electrostatic mirrors

The focal properties of the trap mirrors were modeled with the help of SIMION [25]. The

program SIMION can both solve the Laplace equation for a specific potential configuration in

space as well as propagate ions on the computed potential grid. The program uses a fourth

order Runge-Kutta method to solve the Newtonian equation of motion.
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3.4 The ion beam trap

Figure 3.9: Overview of the ion beam trap assembly.
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Figure 3.10: SIMION simulations of the focal length versus the potential of the Einzel lens

electrode Z1 for Ar+ ions with 4.2keV kinetic energy. The inserts show the simulations of

ion trajectories inside the trap mirror for two exemplary voltage settings, (a) corresponds to

VZ1 = 3150V and (b) VZ1 = 4200V . The settings for the remaining mirror electrodes were

VM5 = 1625V , VM4 = 3250V , VM3 = 4875V , VM2 = 6500V and VM1 = 5700V , all electrodes

not mentioned were grounded.
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3.4 The ion beam trap

The geometry files describing the ion trap assembly needed for the simulations were kindly

provided by [79]. An example of these simulations using a particular set of electrode potentials

is shown in Fig. 3.10. The potential of the Einzel lens electrode Z1 was varied between VM2 =

3100− 4700V . The focal length of each setting was than determined by trajectory simulations

of Ar+ ions with 4.2keV beam energy initially moving parallel to the axis of symmetry (z-axis,

compare with Fig. 3.8). By comparing the turn around points inside the mirror zm with the

point where the ion crosses the axis of symmetry after being reflected zc the focal length f could

be calculated by f = zm − zc. To account for aberrations of the mirror these calculations were

performed for a small group of ions where the distance y from the z-axis changed for each ion

ranging from 0-1.5mm. From the results obtained from this group of ions an average focal length

was then calculated.

It was found in the simulations that the length of the trap L = 2zm is independent of the value

of VZ1, i.e. the value of zm is defined by the settings of the mirror electrodes M1–M5. Hence L

was assumed to be constant with a value of L = 357mm.

Fig. 3.10 shows the relation between the Einzel lens voltage VZ1 and the focal length. The lower

limit of the stability criteria Eq. 3.3 is indicated by a horizontal line. For different values of

VZ1 similar focal properties can be obtained leading to a division into two distinct regions of

stability: a region reaching from 3100V . VZ1 . 3500V and a region of VZ1 extending from

4050V . VZ1 . 4450V. The simulated trajectories for VZ1 = 3150V and VZ1 = 4200V depicted

in Fig. 3.10 (a) and (b) show that the behavior of the ions inside the mirror clearly changes in

the two stability regions. For VZ1 = 3150V, which exemplifies the lower lying region, different

trajectories with various distance y from the z-axis have turning points inside the mirror that

are distributed radially, while in the case of VZ1 = 4200V trajectories focus close to the z-axis.

3.4.5 Ion trap operation

For trap operation the M1 electrodes of each mirror are set to a potential VM1 which is high

enough to stop the ions (compare to Eq. 3.1) for 4.2keV ions a value of VM1 = 4600V is used.

In most cases the potential VM1 is then divided linearly among the electrodes M2–M5, although

different partitions are possible. This produces a retarding field with variable field gradient in

direction of the M1 electrode. The M6 electrode is grounded as well as M0 which closes the

stack and reduces the electric field outside of the ion trap. The last electrode (Z0) is grounded

and closes the stack to the inside of the ion trap thus making the region between the two mirrors

field free. The Einzel lens electrode Z1 focuses the ion beam and is usually set to a potential

ranging between 3200-4800V depending on trapping conditions as discussed in Ch. 3.4.4.

The power supplies (up to 10kV for the Einzel lenses and mirror electrodes) are connected

through a set of fast HV switches (Behlke, series HTS) to each electrode. The HV switches

allow raising or dropping the voltages of each mirror with rise or fall times of around 100ns.

To facilitate injection and extraction of ions into or from the trap the electrode M1 was given a
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Z0 Z1 M1M2M4M5M6 M3

Figure 3.11: SIMION simulations of one of the trap mirrors. The lines indicate equipotential

surfaces with the following color coding red = 1000V, green = 2000V, blue = 3000V and brown

corresponds to multiple potentials between 3900-4000V. In order to illustrate the behavior of ions

inside the mirror simulations of Ar+ ions at 4.2keV were carried out. The resulting trajectories

are indicated by the black lines. The trap settings were VZ1 = 3900V , VM5 = 1000V , VM4 =
2000V , VM3 = 3000V , VM2 = 4000V , VM1 = 4600V for (a) and VM1 = 4000V for (b), all other

electrodes were grounded.
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Figure 3.12: SIMION simulations of in-

jection into the trap through one of the

trap mirrors. The lines indicate equipoten-

tial surfaces with the following color cod-

ing red = 1000V, green = 2000V, blue =

3000V and brown corresponds to multiple

potentials between 3900-4000V. An injected

beam of Ar+ ions at 4.2keV was simulated

and the resulting trajectories are displayed

by the black lines. The trap settings were

VM1 = 4000V , VM2 = 4000V , VM3 =
3000V , VM4 = 2000V , VM5 = 1000V and

VZ1 = 3900V , all other electrodes were

grounded.

special shape using a cylindrical insert. By lowering the potential of this electrode, it is possible

to produce a hole inside the mirror through which ions can pass into or out of the trap. The

effect of this electrode is illustrated with the simulations shown in Fig. 3.11 and Fig. 3.12.

The calculations show the obtained equipotential surfaces indicated by lines of the same color.

Fig. 3.11 (a) displays the result for a configuration with M1 at high potential, here VM1 = 4600V.

In Fig. 3.11 (b) the M1 potential is then lowered to VM1 = 4000V resulting in an open channel

inside the electrode indicated by the equipotential lines adjacent to M1.

Trajectory simulations of a set of Ar+ ions at an energy of 4.2keV were also carried out to

illustrate the properties of the mirrors at different voltage settings. The trajectory of each ion

inside the mirror is indicated by a black line. In case of a situation where the trap is closed, i.e.

VM1 = 4600V , depicted in Fig. 3.11 (a) the potential of the M1 electrode is high enough that

ions remain stored inside the ion beam trap. The simulated trajectories show the ions turning

around close to the M2 electrode. In Fig. 3.11 (b) the potential VM1 was lowered to 4000V.

Under these settings the equipotential surfaces around the M1 and M2 electrode illustrate the

occurrence of the hole inside the M1 electrode. The trajectory calculations performed with the

same set of Ar+ ions as in Fig. 3.11 (a) shows that the kinetic energy of the ions is now sufficient

to overcome the potential barrier and they leave the ion trap.

Injection into the ion beam trap was also simulated and is displayed in Fig 3.12, showing a

beam of Ar+ ions at 4.2keV energy with a diameter of 2mm being injected through a hole inside

the mirror. Simulated potential settings are the same as used for the simulation of extraction

illustrated in Fig. 3.11 (b).

In previous work conducted using this type of ion trap [24, 114, 85, 84] a different scheme for

injection and extraction of ions was applied. In their case an ion bunch was injected with the

complete entrance mirror at ground potential. While the ion bunch resides inside the trap the
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Figure 3.13: Schematic drawing of the interaction region.

entrance mirror was quickly raised and the trap is effectively closed around the ion bunch. For

extraction the procedure was reversed and the exit mirror was quickly lowered while the entrance

mirror remained at high potential. In our applications ions were mostly injected and extracted

through a hole in the mirror although usage of the above mentioned method is also possible.

3.5 Interaction region

3.5.1 Layout of the interaction region

Fig. 3.13 shows a schematic drawing of the ion-photon overlap region and the imaging detector

setup. The ion beam is focused into the overlap region where it passes through the animated

beam module (ABM). The ABM unit is used to shift the ion beam in vertical direction. After

leaving the ABM unit the beam is crossed either with the FEL beam or the laser beam coming

from the Nd.YAG laser system. The neutral and charged fragments resulting from photodis-

sociation events and the unreacted ions leave the overlap region towards the imaging detector.

In the imaging deflector unit (IMD) all charged fragments are deflected and only the neutral

fragments proceed to the imaging detector.

The ABM is made up of two sets of up-down deflection plates each with a length and width of

6cm. Opposing plates are placed 6cm apart. The distance between the two sets of plates is 2cm.

The IMD consists of two opposing metal deflection plates with a length of 10cm and a width of

6cm situated 7cm apart.

In case of the ABM unit the electrical connections vary depending on the direction of steering.

Assuming an ion beam of positively charged particles and the ABM should produce a parallel

shift in the downward direction. On the first set of deflection plates the corresponding settings

would be a positive polarity on the upper plate and a negative polarity on the lower plate. To
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Ion beam

laser
beam Figure 3.14: Schematic

drawing of the device used to

force the overlap of ion and

photon beam.

compensate for the downward shift of the first electrode set and produce a net parallel shift

the polarities on the second set of electrodes need to be the opposite of the first set. For ion

deflection the upper plate of the IMD is connected to a positive power supply while the lower

plate is grounded. A potential of 2500-4000V on the upper plate was found to be sufficient to

steer all charged particles away from the detector.

3.5.2 Forced overlap method used in the optical laser experiments

For the optical laser experiments on Ar+2 conducted in Heidelberg no diagnostic unit was in-

stalled in the interaction region. The best overlap of ion and photon beam was determined by

shifting the ion beam stepwise using the animated beam module and comparing the resulting

photodissociation signals. However, after these experiments a forced overlap method was applied

to control the overlap of the two beams. Therefore a linear motion feedthrough was installed in

the interaction chamber above the crossing point of ion and photon beam. An assembly of two

plates mounted in a 90◦ angel illustrated in Fig. 3.14 is attached to the feedthrough. Using the

motion feedthrough the device can be moved into the overlap region of ion and photon beam.

Each plate contains a 3mm slit allowing photon and ion beam to pass the device if both beams

are situated at the same height.

3.5.3 Diagnostic of the overlap region at FLASH

Overview of the diagnostic unit

At the experimental setup installed at FLASH the overlap of the ion and photon beam can be

monitored using a diagnostic unit as displayed in Fig. 3.15 (a)). This diagnostic unit is installed

inside the interaction region chamber at the crossing point of ion and laser beam (see Fig. 3.13).

The diagnostic device is attached to a linear motion feedthrough and can be moved into the

overlap region.

Ion beam diagnostics

To determine the transverse profile of the ion beam the unit features a 25mm MCP equipped

with a phosphor screen. Upon operation the front plate of the MCP is typically at -1300V
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Figure 3.15: Interaction region diagnostic unit. Fig. 3.15 (a) shows a picture of the complete

unit and (b) illustrates the device used for fragment separation mounted on the inside of the

diagnostic unit (position is indicated by a black rectangle in Fig. 3.15 (a)).
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to -2000V, the back plate remains grounded and the phosphor screen is at 2000V. To obtain

pictures from the phosphor screen of the MCP detector a CCD camera is installed outside the

vacuum chamber pointing at the center of the interaction region as illustrated in Fig. 3.13 (a).

Below the MCP detector a plate used for ion detection is mounted electrically insulated behind

the 1mm slit. Additionally a Farady cup is installed in the lower part of the diagnostic unit.

The cup has an opening of 5mm diameter an is mounted electrically insulated inside a grounded

housing. Ion current signals originating from the cup and the detection plate are connected in

series and transferred to the outside of the vacuum chamber via a BNC feedthrough as shown

in Fig. 3.15 (a). For ion current measurements both detection devices are biased to -100V using

a battery.

As further means of ion beam diagnostic another Faraday cup is installed just before the imaging

detector. The cup is mounted on a linear motion feedthrough and can be moved to different po-

sitions in the beam pipe. Additionally a second MCP detector with phosphor screen is installed

just before the imaging detector. Similar to the MCP detector contained in the diagnostic unit

the phosphor screen can be monitored by a CCD camera situated outside the vacuum chamber.

To remove the MCP detector from the beam pipe it is attached to a linear motion feedthrough.

Photon beam diagnostics

Facing the photon beam coming from the free-electron laser a small copper plate coated with

a Cerium doped YAG crystal (Ce:YAG) is installed. When excited by ultra-violet photons this

crystal emits florescence light in the green [104]. The plate is mounted at about the same height

as the phosphor screen from the MCP detector and can be monitored by the CCD camera.

At the same height as the ion detection plate an additional photon detection plate is mounted on

the diagnostic unit at a 90◦ angel. The plate is electrically isolated from the rest of the structure.

The photon beam coming from the FEL striking the plate surface produces an electrical signal

which is fed to a BNC feedthrough and can be monitored outside the vacuum via a charge

sensitive amplifier.

After crossing the ion beam the FEL beam can be collected on a photon beam dump installed

about 1m downstream. Basically the photon beam dump is a small 3x3cm2 copper plate mounted

electrically isolated on a linear motion feedthrough. The beam dump can thus be removed from

the beam pipe allowing the photon beam to pass on to experiments situated behind this setup.

Similar to the photon measurement plate it is also possible to obtain a photon beam related

signal from the photon beam dump.

Determination of the overlap of ion and photon beam

In order to determine the spatial overlap of the two beams a plate with a slit of 1mm width

is mounted just below the MCP detector at a 45◦ angle which allows the ion beam and the
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FEL beam to pass the slit at the same time. Ion and FEL beam are then collected on the

ion detection plate or photon measurement plate respectively. A measurement of the spatial

overlap of the two beams can be done by moving the 1mm slit across the interaction point and

comparing the ion signal with the photon signal directly. Experimental results of such a scan

can be seen in Fig. 4.9. Additionally, such an overlap scan can also be carried out using a 4mm

slit which is situated just below the 1mm slit.

To determine the temporal overlap a fast timing signal can be extracted form the photon beam

dump. In case of the MCP detector the signal of the electron charge cloud produced by impinging

particles on the MCP front plate is measured at the back of the MCP detector yielding an arrival

time signal of the ions. If one compares the two signals using an oscilloscope the temporal overlap

can be determined. An example of such a measurement is displayed in Fig. 4.8.

Biased interaction region

The lower part of the diagnostic unit contains the device displayed in Fig. 3.15 (b). Somewhat

similar in design to the ion beam trap (compare Ch. 3.4) the unit consists of five entrance and

exit electrodes (labeled 1e–5e and 5x–1x respectively) and a central metal block (c). Additional

electrodes are mounted on top (t) as well as on the bottom (b, not visible in Fig. 3.15 (b)) of

the central part. The complete unit features openings at the appropriate places to allow the ion

beam as well as the FEL and Nd:YAG laser beam to pass through as indicated by the arrows in

Fig. 3.15 (b). The whole assembly is enclosed by the octagonal box attached to the interaction

region diagnostic unit as can be seen in Fig. 3.15 (a).

Electrical connections are made by attaching capton insulated cables to threaded rods welded to

each electrode. The cables are then fed to multi pin HV feedthroughs as shown in Fig. 3.15 (a).

The voltage for each individual electrode is supplied by a separate negative 6kV power supply

(iseg EHQ 8060 unit). The potential on the central electrode is distributed evenly across the

entrance and exit electrodes producing a homogeneous field inside the central part with a field

gradient towards electrode 1e and 1x respectively as indicated in the lower part of Fig. 3.15 (b).

Ions entering the assembly as indicated by the arrow will be accelerated towards the center

and obtain higher kinetic energy. In the region of homogeneous electric field the ion beam is

overlapped with the photon beam. While the unreacted ions and charged fragments produced

in reactions with photons are decelerated again upon leaving the assembly on the other side,

neutral fragments will leave with a higher kinetic energy. Neutral fragments will thus arrive at

the detector earlier resulting in a separation of photodissociation fragments in time.

For online monitoring of the ion bunch intensity another detection plate is mounted after the

biased interaction region. The ion bunches leaving the interaction region are thereby deflected

onto the detection plate indicated in Fig. 3.15 a) by a set of vertical deflection plates also installed

after the biased interaction region. The ion bunch signal emanating from the electrically isolated

plate is fed to the outside of the vacuum chamber and enhanced using a charge sensitive amplifier.
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Figure 3.16: Schematic principle of operation of a delay-line readout for one dimension. A

meander-shaped delay-line picks up the charge cloud (here emitted form the MCP stack), the

induced signals travel along the wire with an effective speed of v⊥ towards the ends. The signal

arrival time difference is proportional to the pickup position in direction of v⊥.

Individual ion bunch intensities can thus be constantly recorded during the ongoing experiment.

3.6 Photofragment detection

3.6.1 The principle of delay line detection

The principle behind the delay-line technique is to take advantage of the delay that a signal

experiences when traveling on a transmission line which is preferably meander-shaped or helical

to introduce an effective propagation speed v⊥ (see Fig. 3.16). For each dimension, the respective

position is directly proportional to the time difference T1−T2, where T1 and T2 are the arrival

times of the signal at the two ends of the delay-line measured with respect to a time zero. In

case of a 2D delay-line with crossed wires and if we declare the actual event as the zero point in

time one obtains the following:

Tx1(i) = ttof (i) + Px1(i)−Ds (3.4)

Tx2(i) = ttof (i) + Px2(i)−Ds (3.5)

Ty3(i) = ttof (i) + Py3(i)−Ds (3.6)

Ty4(i) = ttof (i) + Py4(i)−Ds, (3.7)

where i denotes the particle number, T the time recorded for each wire end, P contains the

propagation time on the x- or y-wire until the hit is recorded, Ds is the delay of the clock start

and ttof contains the time it takes the fragments to fly from the event location to the detector.

Any coordinate for a given particle i can be calculated in the following way:
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X(i) = l1 − (
l1 − l2

2
) (3.8)

=
vx

2
(Px1(i)− Px2(i)) (3.9)

= αx(Tx1(i)− Tx2(i)) (3.10)

and respectively

Y(i) = αy(Ty3(i)− Ty4(i)) (3.11)

with αx and αy being the characteristic detector calibration factors, which can be determined

by calibrating the detector with a mesh with known grid size (see Sec. 4.5).

Additionally Eq. 3.4 - 3.7 allow two independent determinations of the arrival time ttof of each

particle, namely

t012(i) = ttof (i)−Ds =
1
2

(Tx1(i) + Tx2(i)− S12(∆T12(i)) (3.12)

t034(i) = ttof (i)−Ds =
1
2

(Ty3(i) + Ty4(i)− S34(∆T34(i)) (3.13)

where S12(∆T12) = Px1(i)+Px2(i) is the timesum for channel 1 and 2 and S34(∆T34) = Py3(i)+

Py4(i) is the timesum for channel 3 and 4 respectively. The availability of two independent

determinations of ttof makes it possible to check the validity of an event and in case of a

multi-hit event allows an assignment of corresponding hits. A valid event has then to fulfill the

following condition

t012(i)− t034(i) = 0. (3.14)

3.6.2 The delay line detector

For photofragment detection a RoentDek DLD80 MCP [44, 99] delay-line detector system was

used in all experiments. The detector system comprises a pair of 80mm MCP plates in a

chevron configuration mounted in front of a 2D-position sensitive delay-line anode (see Fig. 3.17).

The anode comprises two double delay-line helical propagation lines (Lecher-line). For each

dimension a wire pair is formed by a collection (signal) wire and a reference wire.

For neutral as well as positively charged photofragments the front of the MCP stack was operated

with a potential of -2400V to -3000V while the MCP back was kept on ground. A potential

difference of about +20V to +50V of the signal wire with respect to the reference wire ensures

that the electron cloud emerging form the MCP stack is mainly collected on the signal line,

shared almost equally between both dimensions. The anode holder has to be supplied with an
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Figure 3.17: Schematic drawing (not to scale) and a picture of the RoentDek DLD80 delay-line

detector used for photofragment detection in our experiments.
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intermediate potential with respect to the anode wires and the MCP back potential to ensure

proper charge cloud propagation. The optimal voltage settings for both holder and wires depends

on the relative distance between the MCP, holder plates and the anode wires. These settings

were determined experimentally and can be found in Tab. 3.2. To shield the detector a grounded

grid was added in front of the detector at a later stage.

MCP grid 0V

MCP front -2400V to -3000V

MCP back 0V

Anode holder +300V

Reference wires +680V

Signal wires +700V

Table 3.2: Detector voltage settings.

For readout of the detector signals the RoentDek DLATR6 module was used. It contains a 6

channel differential amplifier with integrated constant fraction discriminator (CFD) circuits for

each channel. The onboard CFD stages provide precise ECL timing signals with an accuracy of

less than 50ps and can separate a consecutive pair of incoming signals with a pulse-pair resolution

of 20ns. The timing signals are then passed on to a time-to-digital-converter (TDC) module

which digitizes the timing information and is read out by a PC after each detector exposure.

For more details concerning the DAQ system see Ch. 4.1.1.

3.7 Light sources

3.7.1 The Nd:YAG laser system

Optical laser setup in Heidelberg

The laser used in the optical laser experiments is a Continuum Powerlite 6050 Q-switched

Nd:YAG laser system. The laser system features an internal doubling crystal. Thus output

of 1064nm light and 532nm light is possible. Typical operating parameters can be taken from

Tab. 3.3.

The setup of the laser including optics as shown in Fig. 3.18. The laser beam leaving the

Nd:YAG laser is coupled down from the original beam size of 7-8mm to approximately 2-3mm

in diameter via a telescope. In a two prism arrangement the beam is transferred to the correct

height thereby changing the polarization of the 532nm beam from originally vertical orientation

to horizontal. Afterwards the beam is sent through the doubling crystal. The resulting 266nm

light is separated from the 532nm by a dichroic mirror installed at a 45◦ angel after the crystal.
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Figure 3.18: Experimental setup for the optical laser experiments.
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Laser output 1064nm, 532nm, 266nm (with 2nd doubling see Fig. 3.18)

Energy per pulse 30mJ, 3mJ, 1mJ

Pulsewidth 6–9ns

Linewidth (FWHM) 30GHz

Repetition rate 40–50Hz

Table 3.3: Technical specifications for the Continuum Powerlite 6050 laser system taken

from [20].

The 532nm light is collected in a beam dump situated after the dichroic mirror. The 266nm

light is reflected onto another mirror and then sent through a cylindrical lens which focuses the

beam in the center of the interaction chamber. The laser beam enters and exits the vacuum

chamber through quartz viewports. After being overlapped with the ion beam the laser beam

is collected in a power meter situated outside the vacuum chamber. For 532nm operation the

doubling crystal is removed and the dichroic mirror is replaced. Alignment of the laser beam to

the center of the vacuum chamber can be controlled by two removable collimators installed on

both sides of the interaction chamber.

For the experimental timing the flash lamp fire pulse, called CB fire, is extracted from the laser.

The CB fire pulse is emitted about 155µs before a light pulse is delivered. A second timing

signal is obtained from a fast photo diode (EO Tech ET-2030) with a risetime of less than 300ps

which monitors the actual laser output.

Optical laser installation at the FEL

At the FEL the optical laser described in the previous section is mounted on top of the beam

line as can be seen in Fig. 3.3. Here the laser beam emitted from the laser is reflected by 90◦ so

it is parallel to the beam line. Afterwards it is coupled down onto an optical table mounted on

the side of the beam pipe using two mirrors. On the optical table the beam is reflected into the

interaction chamber. Before entering the vacuum chamber at a 45◦ angle with respect to the ion

beam as indicated in Fib. 3.13 it passes through a telescope reducing the overall beam diameter

to 3mm. The laser beam is brought to overlap with the ion beam and leaves the interaction

chamber on the other side where it is collected by a power meter.

3.7.2 The VUV free-electron laser at DESY in Hamburg (FLASH)

Principle of operation of a SASE FEL

In a conventional laser the amplification derives from the stimulated emission of electrons bound

to atoms, either in a crystal, liquid dye or gas, whereas the amplification medium of a free-

48



3.7 Light sources

electron laser (FEL) are ”free” (unbound) electrons. Since the electrons in the FEL are not

bound to atoms and thus not limited to specific transitions, the wavelength of the FEL is

tunable over a wide range depending on accelerator energy.

The basic principle of the free-electron laser based on the self amplified spontaneous emission

(SASE) process [14, 52, 97] can be described as follows and is illustrated in Fig. 3.19. The

free electrons are stripped from atoms in an electron gun and are accelerated to relativistic

velocities. These relativistic electrons are send through a long, periodic magnetic dipole array, a

so called undulator. Due to the Lorentz force introduced by the magnetic field of the undulator

the electrons are accelerated in the direction transverse to their propagation and are forced

on a sinusoidal path. Hence, they emit synchrotron radiation in a narrow cone in the forward

direction at the resonance wavelength λph. This spontaneous emission acts back onto the electron

bunch inside the undulator. Electrons that are in phase with the electromagnetic wave are

retarded while the ones with opposite phase gain energy causing a longitudinal fine structure

of the electron bunch, the so called micro-bunching. With micro-bunching fully established, all

electrons radiate in phase which yields a radiation power output proportional to N2
e, where Ne is

the number of electrons in the bunch. This gives an amplification of many orders of magnitude

with respect to the radiation power emitted by spontaneous emission, which is proportional to

Ne.

Layout of the FLASH facility

The free-electon laser in Hamburg [7, 1, 4] results from an extension of the TTF FEL, Phase

1 [93, 2, 18] which successfully demonstrated SASE at 109nm in 2000 [6]. The main goals of

FLASH are to extent the accessible radiation wavelength down to 6nm and to make the facility

more accessible for users. An overview of the facility including the experimental hall is depicted

in Fig. 3.19.

The electron beam is produced in a radio frequency (RF) photocathode gun and accelerated up

to 1GeV beam energy by six superconducting TESLA modules [78]. At energy levels of 130MeV

and 450MeV the electron bunches a compressed from a length of 2mm RMS at the exit of the

gun to approximately 50µm RMS in order to provide the peak current of 2.5kA required for

the FEL. Before the electron bunch enters the undulator section particles with too large energy

deviations are removed in the collimator section. In the undulator section the electron bunch

is forced onto a sinusoidal path producing the FEL radiation. When leaving the undulator a

dipole magnet deflects the electron beam into a beam dump, while the FEL light propagates to

the experimental hall.

The experimental hall features five different beamlines for user experiments. Two of these

beamlines (PG1 and PG2) are served by a high resolution monochromator while the other three

(BL1, BL2 and BL3) use the direct FEL beam. The TIFF experiment is currently installed

1.5m before the focus of the PG2 [62] beamline as indicated in Fig. 3.19. The monochromator
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Figure 3.19: Layout of the FLASH facility at DESY based on [1]. Insert: SASE principle; (1)

the electron bunch traveling at relativistic velocities in the undulator is forced on to a sinusoidal

orbit by the magnetic field; (2) in resonance the back action of the emitted spontaneous radiation

on the electron bunch leads to a modulation of the electron density on the scale of the undulator

radiation wavelength (micro bunching); (3) with complete micro bunching all electrons radiate

in phase leading to an overall radiation power growth proportional to N2
e.
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serving this beamline is a plane grating monochromator developed at BESSY [31]. The tuning

range of the monochromator includes the full FEL spectral range and higher harmonics up to

1keV photon energy. The exit arm of the monochromator is rising at an angel of 4◦ such that

the focal point of the PG1 and PG2 beamlines is approximately 2.5m above ground.
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4. Commissioning of the setup

4.1 Control of the experiment

4.1.1 Data acquisition system and timing of the experiment

In the experiments conducted in Heidelberg the HM1 TDC module supplied by RoentDek was

used. This TDC unit features 4 TDC channels with one common start input, an adjustable

resolution ranging from 133ps to 808ps, a range of 2.1 - 13.2µs (depending on resolution) and

the possibility to record up to 3 hits per channel. For more precise specifications see [92, 91].

Using a PCI based interface card the data was transferred to the PC.

At a later point the data acquisition was changed to a CAMAC based system. The layout

of the data acquisition system as well as the other systems used to control the experiment is

displayed in Fig. 4.1. The data acquisition (DAQ) system consists of a CAMAC crate with a

32 channel time-to-digital converter (TDC, LeCroy Model 2277) used to readout the detector.

This particular TDC features a resolution of 1ns, a range of up to 65µs and it can record up

to 16 hits per channel. For processing of analog signals there is a 8 channel analog-to-digital

converter (ADC, Ortec AD 811) installed in the CAMAC crate which returns the peak height

of an input signal after receiving an externally supplied trigger signal. As an alternative the

DAQ PC is equipped with a 2 channel PCI scope card (Gagescope Model CS 14100). This card

allows recording of arbitrary wavefroms. An example of a recorded scope trace can be found in

Fig. 4.8.

The timing of the experiment is based on two PCI based timer counter cards (PCI-6602) supplied

by National Instruments. Each card offers 8 channels with a precision of 12.5ns giving 5V

TTL signals as output. Each channel can be triggered by an external source or can be free

running. The detailed timing configurations are subject to constant changes depending on the

experimental conditions and will thus be discussed at a later stage (see Ch. 5.2 and Ch. 6.2).

4.1.2 Power supplies

Compact FieldPoint system

To address power supplies that feature control and monitoring based on analog voltages (usu-

ally 0-10V) it was decided to use the Compact FieldPoint (cFP) system supplied by National
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Figure 4.1: Schematic of the programmatic control of the experiment.
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Instruments. This system features controller units that are able to address different input or

output (I/O) units. The I/O cards come in 8 channel or 16 channel variants and can supply or

read either analog or digital signals. The controller units as well as the I/O cards are mounted

on a back plane which can accept up to 8 different I/O modules. Communication with the cFP

host controllers is done via the TCP/IP protocol so standard network cabling can be used and

no additional interface cards are necessary on the PC side. Power supplies controlled by the cFP

system are ion trap power supplies, Einzel lenses, quadrupole triplets, magnet power supply and

the ion source.

Furthermore the motorized motion feedthroughs carrying the ion beam diagnostic units (see

Ch. 3.2.2) and the interaction region feedthrough (see Ch. 3.5) are also remote controlled using

the cFP system.

CAN bus based power supplies

The power supplies needed for the quadrupole triplets and steerer units are controlled through

a different system. Due to the high density of medium voltage channels with low power require-

ments, needed for that application a multi channel system made by iseg Spezialelektronik GmbH

(EHQ multi channel HV system) was chosen. In our case this system features 8 interchangeable

HV modules installed in one 19” crate which can be addressed via a CAN interface. Each HV

module is available with either positive or negative polarity and offers 8 channels ranging form

0-2000V (EHQ 8020) or from 0-6000V (EHQ 8060). Thus a total of 64 channels are available

which is sufficient to supply the high voltage necessary for the quadrupole triplets, the steerer

units and for the electrodes installed in the interaction region used for fragment separation (see

Ch. 3.5).

LeCroy high voltage mainframe

Voltages for the detectors are supplied by a LeCroy multi channel high voltage mainframe

(LeCroy Model 1440) addressed via an interface module plugged into the CAMAC crate as

shown in Fig. 4.1. This system can deliver stable voltages of 1.6kV or 3.2kV of both polarities.

This system supplies the voltages to the imaging detector, the 0◦-MCP detector as well as the

diagnostic MCPs installed in the interaction region and in front of the imaging detector.

4.1.3 Programatic control of the setup

The programatic control of all the systems discussed in the previous section is achieved by specif-

ically written applications developed with the LabView programming environment provided by

National Instruments. These applications run on a Windows 2000 based computer system and

communicate with the above mentioned systems through several interface cards as indicated in

Fig. 4.1.
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The programmatic control of the different power supplies mentioned in Ch. 4.1.2 is split up

among three different LabView based applications. One program is used to control the ion

source related functions, like magnet and other associated power supplies, the valve controlling

the gas inlet and the recording of mass spectra as shown in Fig. 4.2 and Fig. 4.3. Another

separate program is in charge of controlling the power supplies necessary to operate the ion

beam trap and a separate program is used for communication with the LeCroy high voltage

system supplying the detector voltages. The remaining HV channels are all used to control

the properties of the ion beam and are therefore merged into the ion beam control program.

This program combines control over all focussing and steering units, the quadrupole deflectors,

the ABM module, the IMD unit and the fragment separation unit installed in the interaction

region (see also Ch. 3.2.2 and Ch. 3.5). Furthermore by using an algorithm very similar to the

Powell optimization method [86] the program offers a way to programatically optimize the ion

beam current at a given point along the beam line. This method works by monitoring the ion

beam current measured by a Faraday cup and varying a user given set of parameters in small

steps up and down. Two different approaches can be taken. Either each parameter is varied

individually and the move in the direction yielding the highest increase in beam current is made

before moving to the next parameter. In the second approach, the parameter is continuously

varied in one direction until a maximum in the ion beam current is reached before moving on

to the next parameter.

The motorized motion feedthroughs are controlled using the cup control program. Each

feedthrough is assigned a unique identifier encoded using 14 bits. A motion feedthrough can

be selected giving its individual address using a cFP digital output module. The feedthrough

position is set and monitored via 0-10V analog signals also using cFP I/O modules. The timing

of the experiment using the timer cards (see Ch. 4.1.1) is influenced through the timer control

program. The program allows to set the settings for each timer channel separately or channels

can be grouped together defining one master channel on which other channels are dependent on.

In the LabView program controlling the scope card individual time markers can be defined on

a per channel basis. The recorded peak heights at these marker positions are then passed on

to the DAQ program running on the same computer. The DAQ application reads out the data

from the CAMAC crate via a Wiener CC32 interface card and obtains the data from the scope

through shared variables stored in the computer memory. The data is then written to disk in

small ASCII files typically containing 500 to a few thousand events.

4.1.4 The vacuum interlock system

Each FieldPoint controller can be used as an embedded stand alone system featuring a real-

time capable operating system. This possibility was utilized for the vacuum control system.

The readings from the eight vacuum gauges are read in via a 0-10V analog input card, status

readings are processed via a digital input card and the valves are controlled with a 230V output
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module all mounted on the FieldPoint bank. All the channels are integrated and processed with

a real-time application deployed on the FieldPoint controller. Due to the real-time nature of the

underlying operating system a well defined response time to a defined fail state, for instance if

a given vacuum threshold is crossed, of only several milliseconds is guaranteed.

The user communication with the vacuum monitoring program can be done through a web in-

terface thus making the service accessible from almost any computer. Through the web interface

the user can control the valves along the beam line and set individual threshold levels for each

vacuum reading. In case of a failure users can be notified by email. Through the monitoring

capabilities included in LabView the vacuum levels are constantly logged to another computer.

4.2 Characterization of the ion source

In Ch. 3.3 the ion source and it’s individual components were described. This section will focus

on the results obtained from measurements with the ion source. These measurements involved

testing the source under different conditions with the main focus lying on good conditions for

production of molecular ions. Two examples of these measurements can be found in Fig. 4.2

and Fig. 4.3. Fig. 4.2 and Fig. 4.3 show two different mass spectra obtained from the hollow

cathode ion source with different gas mixtures. In both cases the ion source voltage settings

were comparable to the ones shown in Tab. 3.1. The spectra were obtained by recording the

current in the Faraday cup situated directly after the 90◦ bending magnet (see Fig. 3.2 and

Fig. 3.3) while the magnet current is slowly ramped up.

Fig. 4.2 shows a mass spectra taken from the hollow cathode ion source with a gas mixture of

Hydrogen, Neon and Helium. The ratio of Neon to Helium was about 2 to 3 with some trace

amounts of Hydrogen. The source inside pressure was about 0.2mbar and the pressure outside

the ion source was 2.5 · 10−6mbar.

The second example depicted in Fig. 4.3 shows a mass spectra taken with a pure Argon gas

mixture and is on display in Fig. 4.3. Source inside pressure was ≈0.6mbar and outside pressure

was 1.3 · 10−5mbar.

The mass spectra demonstrate that this type of ion source is well suited for production of a

wide variety of molecular ions. With respect to the photodissociation experiments described in

Ch. 5 and Ch. 6 sufficient ion currents of 10-40nA in the case of HeH+ and around 100-150nA of

Ne+
2 for photodissociation experiments could be obtained (compare with Fig. 4.2). In the case

of Ar+2 the ion yield was lower than the other species but was also still sufficient to perform

photodissociation experiments (compare with Fig. 4.3). Also high currents of atomic ions could

be obtained from the ion source. This was of importance for studies of the ion beam trap which

will be elaborated in the next section where a typical ion yield of 150-200nA of Ar+ was used to

study trapping under different conditions. Because of the low ion yield of Ar+2 the high current of

Ar+ were also quite helpful for the Ar+2 photodissociation measurements. Since the experimental
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Figure 4.2: Mass scan taken from the hollow cathode ion source with a Hydrogen, Neon and

Helium gas mixture. With a ratio of Neon to Helium of 2 to 3 and trace amounts of Hydrogen.

Source inside pressure was ≈0.2mbar and outside pressure was 2.5 · 10−6mbar.

Mass (amu)
0 10 20 30 40 50 60 70 80 90

Io
n 

be
am

 c
ur

re
nt

 (
nA

)

1

10

210

+H

+Ar

+
2Ar

Figure 4.3: Mass scan taken from the hollow cathode ion source with a pure Argon gas mixture.

Source inside pressure was ≈0.6mbar and outside pressure was 1.3 · 10−5mbar.
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Figure 4.4: (a) Fitted lifetimes for the long time behavior t > 30ms of the measured decay

curves as a function of VZ1; (b) measured relative efficiency εr versus the Einzel lens potential

VZ1. Trap settings: VM5 = 1625V , VM4 = 3250V , VM3 = 4875V , VM2 = 6500V and VM1 =
5700V , all electrodes not mentioned were grounded. The trap inside pressure was 8 · 10−9mbar.

setup is mostly based on electrostatic focussing and deflection optimal settings for an ion beam

should be mostly independent of the mass of the ion. Making use of this fact the settings could

be optimized with a strong Ar+ beam. Then changing the magnet current to the Ar+2 beam

required only subtle changes to the focussing and steering settings.

4.3 Characterization of the ion beam trap

4.3.1 Stability of the ion beam trap

Fig. 4.4 shows the experimental results obtained from trapping studies. In Fig. 4.4 a bunch of

Ar+ ions was injected into the trap for different values of VZ1 and it’s evolution in the trap was

followed for more than 1s by observing the count rate of neutral particles on the 0◦-MCP. Two

exemplary decay curves are displayed in Fig. 4.5. From these decay curves the lifetime of the

trapped ions was derived. Fig. 4.4 shows the results for the lifetime of the decay curves. For

each value of VZ1 data was accumulated over 100 injections and the long time behavior of the

decay curves 30ms ≤ t ≤ 800ms (compare also to Fig. 4.5) was fitted with an exponential decay
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Figure 4.5: Two exemplary life-

time curves for Ar+ ions stored in-

side the ion trap for different set-

tings of the Einzel lens electrode.
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4.3 Characterization of the ion beam trap

taking into account a background. Time values t ≤ 30ms were ignored due to saturation of the

MCP detector resulting from the large number of particles hitting the detector upon injection.

The obtained lifetimes are plotted versus VZ1. As was expected, judging by the results obtained

from the simulations (compare to Fig. 3.10), they are clearly two distinct regions where ions

are trapped between the two mirrors. To compare to the simulation results the Einzel lens

potentials corresponding to the boundary conditions given in Eq. 3.3 are marked by vertical

lines. In general the agreement between the experimental data and the theoretical values is

quite good even though the optical model cannot take into account the fact that ions penetrate

into the mirror and are not reflected by a solid surface. The model furthermore has its limitations

because it can also not cope with the large differences in focal length observed in the simulations

for ions with increasing distance from the z-axis or with different angles of incident. For this

reason the simulations carried out to determine the focal properties only took into account ions

with small (y ≤ 1.5mm) offset from the z-axis.

For a more detailed description of the ion beam trap and the interesting dynamics taking place

in such an electrostatic ion trap can be found in [84, 85].

4.3.2 Trapping and extraction from the ion beam trap

To study trapping and extraction Ar+ ions with a kinetic energy of 4.2keV were produced in

the ion source and the ion beam was pulsed using the ion beam chopper (compare Fig. 3.2).

Short bunches of Ar+ ions with a typical length of several µs were then injected into the ion

beam trap by lowering the entrance mirror to ground. Once the bunch is stored, its evolution

can be monitored using the 0◦-MCP located approximately 60cm after the trap (see Fig. 3.2),

which measures the number of neutral Argon atoms emerging through the exit mirror. These

atoms are produced in charge-exchange collisions with the residual gas inside the trap. In case

of stable trapping conditions, the rate of neutral Argon atoms exiting the trap and hitting the

MCP detector is proportional to the number of ions trapped between the mirrors, so that the

beam decay can be studied this way.

The red curve in Fig. 4.6 shows an example for the measured number of neutral Argon hitting

the 0◦-MCP. Approximately 106 Ar+ ions in a bunch of 3µs length were injected into the trap

for each injection and the data shown here is a sum over 500 injections. Similar decay curves can

be measured for different values of VZ1. For all of these curves an increase in count rate could

be observed at short times t < 20ms. After the first 20ms, the decay curves were characterized

by a slow decaying part. In Fig. 4.6 an exponential fit taking into account a background level

yields a lifetime for t < 20ms of τ = 262.1± 9.4ms.

In a detailed study of the characteristics of the ion beam trap Pedersen et al. [85] found that

this multiexponential behavior of the decay curves could be attributed to different competing

processes. Involving collisions with a residual gas species R, they considered two possibilities,

namely electron capture (I) and elastic or inelastic scattering (II), and collisions among the
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Figure 4.6: The rate of neutral Argon atoms exiting the trap as measured by the 0◦-MCP

detector. The red curve shows an example for trapping without extracting the ions from the

trap. The spectrum was summed over 500 injection cycles. The green curve indicates an

exponential fit yielding a lifetime of τ = 262.1 ± 9.4ms. The brown curve illustrates trapping

combined with multiple short extractions of ions also summed over 500 injection cycles. In

this case the extraction electrode M1 was lowered form VM1 = 4600V to 4440V several times

for textr. = 1.6µs. The short bunch of extracted ions hits the 0◦-MCP resulting in a steep

increase in count rate. Due to saturation of the MCP detector the number of extracted ions

appears to be higher for extraction numbers 5 and 6. Here the trap settings were VZ1 = 3900V ,

VM5 = 1000V , VM4 = 2000V , VM3 = 3000V , VM2 = 4000V and VM1 = 4600V , all other

electrodes were grounded. The trap inside pressure was 3 · 10−9mbar.
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4.3 Characterization of the ion beam trap

Figure 4.7: Trapping and extraction as measured with the pickup electrodes (see Ch. 3.2.4).

The brown curve shows the bunch oscillating inside the ion trap as recorded by the trap pickup

(Pu3). After switching the trap electrode, which manifests itself in the spectrum by the indicated

spikes, a bunch is registered by the pickup situated shortly before the interaction region (Pu5,

red curve). At the same time some ions still remain trapped causing the oscillations on the Pu3

signal at long times. Trap settings are the same as described in Fig. 4.6.

63



4 Commissioning of the setup

stored particles themselves (III). For a beam of Ar+ these processes can be written as

(I) Ar+ + R0 −→ Ar0 + R+ (4.1)

(II) Ar+(~pi) + R0 −→ Ar+(~pf ) + R0 (4.2)

In Reaction 4.1 a trapped ion captures an electron from a residual gas atom or molecule and

leaves the trap as a neutral atom. In Reaction 4.2 the ion’s initial momentum ~pi is changed to

~pf and the ion is lost from the trapped if scattered into an unstable orbit. Ion loss due to the

second mechanism can occur after a single collision or after multiple collisions.

The third process is the collision of two stored ions with initial momenta ~pi,1 and ~pi,2 leading

to Ar+ ions with different final momenta ~pf,1 and ~pf,2 resulting in ion loss if scattering into

unstable orbits occurs.

(III) Ar+(~pi,1) + Ar+(~pi,2) −→ Ar+(~pf,1) + Ar+(~pf,2) (4.3)

While the loss of ions from the trap due to electron capture (I) was found to be largely in-

dependent of the trap settings, the ion-loss rate due to the other two mechanisms turned out

to be a complicated function of the exact trajectory of the ions inside the trap and extensive

calculations would be necessary to fully understand the different contributions from each loss

process. However, in their study Pedersen and co workers could conclude the following. Ion

loss as a result of ion-ion scattering depends directly on the ion density and hence influences

the decay curve mostly at the early times. The reduction of trapped ions because of electron

capture or ion neutral scattering define the long term behavior of the decay curves with the

scattering process being the largest contributor.

The brown curve in Fig. 4.6 demonstrates extraction through a hole in the exit mirror using the

M1 electrode. This method of extraction is described in Ch. 3.4.5 and illustrated by simulations

in Fig. 3.11. In this particular example the trap was filled with Ar+ ions at 4.2keV beam energy

and the extraction electrode (M1) was then lowered from VM1 = 4600V to 4440V for a short

time of 1.6µs for 6 consecutive times. The spectrum was summed over 500 complete cycles. The

short extracted ion bunches are recorded by the 0◦-MCP detector producing a sharp increase in

count rate. As can be seen from the spectrum in Fig. 4.6 short bunches can be extracted from

the ion trap without disturbing the remaining ions inside the trap.

Fig. 4.7 shows the same extraction process recorded with the pickup electrodes situated inside

the ion trap (Pu3) and Pu5 situated after the third quadrupole deflector (see Fig. 3.2). Here

the signal produced by the ion bunch passing through the pickup electrode is amplified an

recorded using the PC scope (see Ch. 4.1.1). The brown curve in Fig. 4.7 shows the ion bunch

oscillating inside the ion trap. The switching of the M1 electrode is registered by the pickup

electrodes because of electronic noise associated with it which results in sharp peaks in the
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Figure 4.8: Temporal overlap measurement.

The brown curve shows the FEL laser sig-

nal taken from the photon beam dump via a

charge sensitive amplifier. The lower curve is

the ion bunch measured with the MCP detec-

tor. The ion signal was taken from the MCP

back and fed directly into an oscilloscope.
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The brown curve shows the FEL intensity as

measured by the photon beam dump. The

orange curve illustrates the ion beam as mon-

itored by the Faraday cup. Each data point

was averaged over approximately 10 FEL pho-

ton pulses, for the ion current measurement

the ion beam was in DC mode.

recorded spectrum. If the M1 electrode is lowered for a short time a part of the trapped ions

is extracted which manifests itself by an ion bunch signal recorded by Pu5 (red curve) shortly

after extraction.

4.4 Beam overlap measurements

Using the diagnostic unit described in Fig. 3.5.3 the properties of the two overlapping beams

can be determine. Fig. 4.8 shows an example for how the temporal overlap is determined. The

brown curve shows the signal emanating from the photon pulse impinging on the copper photon

beam dump (see Fig. 3.13). The lower signal shows the ions hitting the 25mm MCP detector

installed in the interaction region as taken from the back of the MCP detector. In this particular

example the delay of the ion bunch was picked so that the photon pulse will strike the ion bunch

in the first 100ns.

Fig. 4.9 displays the result of a scan with the 1mm slit (see Fig. 3.15) across the overlap position

of photon and ion beam. Here the diagnostic unit was scanned slowly around the position of the

1mm slit and the photon beam and ion beam signal were recorded simultaneously. The brown

curve shows the averaged photon beam signal taken from the photon measurement plate (see

Fig. 3.15) as described in Ch. 3.5.3. From the FEL pulse train one exemplary micro-pulse is
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Figure 4.10: Negative image of the calibration grid illuminated by the alpha source. The circles

indicate the found positions for the calibration grid holes. From the known distance between

the holes αx and αy can be derived. The results are plotted on the right side.

picked and the signal height of that pulse is recorded by an analog-to-digital converter (ADC).

For each datapoint the photon signal is averaged over 2s which corresponds to approximately 10

FEL micro-pulses. The ion beam signal was measured by dumping the beam onto an insulated

biased metal plate mounted behind the 1mm slit very similar to a Faraday cup. The DC ion

beam current was directly measured by the pico-amperemeter.

4.5 Detector calibration

As described in Ch. 3.6 it is necessary to determine the characteristic detector calibration pa-

rameters αx, αy as well as the timesums S12 and S34. Therefore a calibration grid was installed

just beside the detector which can be moved in and retracted at any time from outside the

vacuum chamber via a mechanical motion feedthrough of 100mm travel length. The grid is

made up of a 6 x 6 matrix of 2mm holes with a 10mm spacing covering almost the complete

detector. To guarantee an even illumination of the detector during calibration we also installed

an Americium 241 alpha source about 2.5m upstream from the detector (see also Fig 3.2).

Fig 4.10 shows the negative image of the calibration grid illuminated by the alpha source. From

the imprints left by the holes of the grid on the detector and the known grid spacing one can

derive the calibration values for αx = 0.49±0.02mm/ns and αy = 0.51±0.03mm/ns. The fringes

visible in the detector image indicate the problems encountered when the detector front is not
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4.5 Detector calibration

Figure 4.11: Timesum calibration for the x- and y-positions of the detector. Plotted is the

timesum S12 as a function of the x-position ∆T12 = Tx1−Tx2 in ns and for completeness also in

mm (see upper scale) and on the right side S34 as function of the y-position ∆T34. The resulting

calibration functions in ns scale are plotted in both graphs.
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Figure 4.12: Showcase example of the

distribution of the ||t012| − |t034|| (see

also Eq. 3.14) values for one run. The

red line indicates the 5ns cut performed

for event validation.

shielded by the MCP grid (see Fig 3.6). With installed MCP grid these artifacts disappear but

the calibration values remain basically unchanged.

For the timesum calibration the detector is illuminated by alpha particles without the calibration

grid. The start of the TDC is taken directly from the MCP back thus there is no delay due to the

time of flight ttof and if Ds is set to 0 the timesums turn to S12(∆T12) = Px1 + Px2 = Tx1 + Tx2

and respectively S34(∆T34) = Py3 + Py4 = Ty3 + Ty4 the results of these calibration runs are

depicted in Fig. 4.11. A polynomial fit to both distributions yields the corresponding calibration

functions S12(∆T12) = (154.5± 0.1) + (0.03± 0.002)∆T12 + (−6.7 · 10−5 ± 5.1 · 10−5)∆T2
12 and

S34(∆T34) = (146.5± 0.03) + (−0.03± 0.001)∆T34 + (6.1 · 10−4 ± 1.9 · 10−5)∆T2
34.

Fig. 4.12 displays a showcase example of the distribution of the ||t012| − |t034|| values used for

event validity check (see also Eq. 3.14). It illustrates that a cut of 5ns on the ||t012|−|t034|| value

for an event is sufficient to verify the validity of that particular event. Eq. 3.14 can therefore be

rephrased as

||t012(i)| − |t034(i)|| ≤ 5ns. (4.4)
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5. Optical laser experiments

5.1 Rare gas dimer ions

Rare gas dimer ions and their corresponding neutral states are in general of importance for the

understanding of the kinetics of rare gas excimer or rare gas halide (exciplex) systems for example

in lasers. The operating principle of these laser systems is based on electron beam excitations

of mixtures of rare gases and rare gases containing amounts of halogen gas. These excitations

eventually lead to the formation of the excited rare gas molecules or rare gas halide complexes

through kinetic processes. These excimers or exciplexes decay and emit laser radiation in the

UV. However, it was discovered that also significant concentrations of rare gas dimer ions are

formed through the same excitation processes [38, 43]. These dimer ions were thought to act as

a gain inhibitor because of indications of strong photoabsorption cross sections throughout the

visible and the UV and would therefore absorb the emitted laser radiation. This observation

sparked extensive research in the field of noble-gas dimer ions with emphasize put on the systems

Ar+2 , Kr+2 and Xe+
2 because of the widespread use of the parent rare gases in laser applications.

Furthermore, the rare gas dimers ions are important for understanding the structure and reactiv-

ity of large rare gas clusters. There exists experimental evidence [76, 75, 58] as well as theoretical

predictions [53, 30] supporting that ionic clusters contain a dimer or trimer ion localized inside

the neutral rare gas atoms.

Neglecting the spin-orbit interaction, in the so called Hund’s case (b), the atomic Ar(1S0) and

Ar+(2P) ground states correlate to four molecular electronic states of symmetry X2Σ+
u , A2Πg,

B2Πu and C2Σ+
g . The ground state of the nobel gas ion is split by spin-orbit coupling into

two components, a 2P3/2
state, which lies lowest, and a low lying 2P1/2

state. This splitting is

small in the case of Ne+ (97meV) but is of the same magnitude as the chemical binding in the

case of Xe+ (1.3eV) [66]. In Hund’s case (a) only the projection of the total angular electronic

momentum (Jz = Lz + Sz) on the internuclear axis is a constant of motion with corresponding

quantum number Ω. For the states described by 2Σ (Λ = 0, Σ = ±1
2) and 2Π (|Λ| = 1, Σ = ±1

2),

spin-orbit effects lead to states with Ω = 1
2 , 3

2 which can be described by a linear combination

of Σ and Π states [67, 66, 101]. For the gerade (g) states one obtains
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Figure 5.1: Potential energy

curves for the low doublet

states of Ne+
2 including spin-

orbit coupling as calculated

in [66]. The vibrational lev-

els were calculated from the

spectroscopic constants given

in [66]. The green line indi-

cates the transition induced by

photons with a wavelength of

532nm. A bound wavefunction

and a continuum wavefunc-

tion obtained from the Franck-

Condon (see Fig. 5.22) factor

calculations are indicated.
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Figure 5.2: Potential energy

curves for the low doublet

states of Ar+2 including spin-

orbit coupling as calculated
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photons with a wavelength of
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calculations are indicated.
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5 Optical laser experiments

|2Σ 1
2
,g〉 = ag|2Σg〉+ bg|2Πg〉 (5.1)

|2Π 3
2
,g〉 = |2Σg〉 (5.2)

|2Π 1
2
,g〉 = a′g|2Πg〉+ b′g|2Σg〉, (5.3)

and respectively for the ungerade (u) states. In Hund’s case (b) optical transitions of ∆Λ = 0

are termed parallel while ∆Λ = ±1 are termed perpendicular since the radiation couples to the

electronic dipole moment parallel or perpendicular to the internuclear axis. If the dissociation

is prompt, parallel transitions lead to angular distributions with β = 2 while perpendicular

transitions lead to angular distributions of β = −1 (see Ch. 2.4). The spin-orbit induced

states defined by the coefficients ag, bg, a′g and b′g will thus manifest themselves in the angular

distribution of the photofragments since transitions involving these Ω = 1
2 states now gain a

contribution of both ∆Λ = 0 and ∆Λ = ±1.

Theoretical calculations of the potential energy curves have been carried out using various ab

initio approaches for instance in the case of Ar+2 [111, 66] or for Ne+
2 [66, 19, 64]. Theoretically

calculated potential energy surfaces are displayed in Fig. 5.1 in the case of Ne+
2 and Fig. 5.2 for

Ar+2 [66]. The lowest state, usually labeled X2Σ+
u , is bound for the four systems Ne+

2 , Ar+2 ,

Kr+2 and Xe+
2 . The higher lying C2Σ+

g state is purely repulsive while latest calculations on the

B2Πu and C2Πg states show them to be slightly binding having a binding energy of 70-170meV

in the case of Ne+
2 and 60-100meV for Ar+2 [66, 64].

The low lying electronic states of Ar+2 were extensively studied in ion-atom scattering exper-

iments by for example Lorents et. al [61] or experiments conducted by Jones and co work-

ers [47]. From the values of the observed rainbow scattering angel they were able to report

first experimentally determined results for binding energy of the system. Further information

about the Ar+2 potential curves and absolute photodissociation cross sections were acquired us-

ing photofragment spectroscopy at a wide range of wavelengths. In the UV by Vanderhoff [109],

in the visible regime by Lee [56], Miller [69] and Moseley [74] and in the infrared by Duffy [29]

and Woodward [112]. More recently, results form photoelectron spectroscopy were obtained by

Signorell et al. [98].

For Ar+2 theoretical values were also obtained for the photoabsorption cross sections for the

bound-free transitions from the X2Σ+
u ground state to the repulsive A2Πg and C2Σ+

g states. For

the Σ→ Π transition Stevens and co workers [101] arrived at a value of 2.6 ·10−19cm2 at 716nm

and for the Σ→ Σ transition they calculated a value of 5.0 · 10−17cm2 at 300nm.

The Ne+
2 dimer ion has received limited attention. Attempts to measure the photodissociation

cross section in the visible regime by the above mentioned studies by Lee [56] and Miller [69]

failed due to the lack of detectable photofragments and only upper limits could be given. The

binding energy of the system was determined in scattering experiments [70], photoionization

studies of Neon dimers [105] and lately also using photodissocation [19]. The obtained results
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5.2 Timing and data acquisition
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Figure 5.3: Schematic timing and data acquisition diagram used in the optical laser photodis-

sociation experiments conducted in Heidelberg.

are in good agreement with the theoretical values calculated in [19].

Previous experiments have been very successful in determining the shape and dimensions of the

potential energy surfaces involved in the dissociation process. Detailed results were also obtained

on the magnitude of the absolute cross sections of the dissociation process and the wavelength

dependence. However due to the applied method of detection of the photofragments (see also

Ch. 2.2) only limited data on the angular distribution of photofragments could be extracted

from these experiments.

With the angular distributions of fragments resulting from photodissociation reactions directly

measurable more insight can be gained into the magnitude and character of the aforementioned

spin orbit effects. Comparing the different contributions to the angular distributions can thus

test theoretical predictions on the mixing coefficients.

5.2 Timing and data acquisition

Fig. 5.3 shows a schematic of the experimental timing and data acquisition used for the studies

performed on Ar+2 and Ne+
2 using the optical laser (see Ch. 3.7.1). The flash lamp trigger pulse

(CB fire signal) originating from the Nd:YAG laser comes 155µs before the laser pulse is emitted.

The signal is processed as indicated in Fig. 5.3 and triggers the master timer (Channel 0) situated

on the PCI timer card (compare to Ch. 4.1.1). The master timer controls the beam chopper (see

Ch. 3.2.5) and triggers the laser gate (Channel 1) at the same time. The fast photo diode signal

which registers the light pulse emitted by the laser is processed and anded with the laser gate
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Ar+2 photodissociation Ne+
2 photodissociation

Master timer (Ch. 0) delay: 98µs 56µs

Master timer (Ch. 0) width: 5µs 6µs

Laser gate (Ch. 1) delay: 56µs 32µs

Laser gate (Ch. 1) width: 4µs 6µs

TDC delay 6.995µs 5.419µs

Table 5.1: Timer settings for the optical laser experimtens.

signal trigger by channel 0. The resulting signal triggers the Wavetek function generator which

effectively delays the signal for several µs before starting all four TDC channels, to account for

the time of flight of the photofragments. The arrival times of the respective stop signals Tx1,

Tx2, Ty3 and Ty4 (see also Ch. 3.6) are recorded and the data is transferred to the DAQ PC.

The repetition rate of the experiment is defined by that of the Nd:YAG laser which can be either

40Hz or 50Hz. The individual timer settings are displayed in Tab. 5.1.

5.3 Photodissociation of Ar+
2 at 266nm

5.3.1 Experimental parameters

A beam of Ar+2 ions was produced with the hollow cathode ion source (see Ch. 3.3 and Ch. 4.2)

totaling to a DC current of ≈400pA in the interaction region. The ion beam was pulsed using

the ion trap yielding a bunch width of 5µs.

Laser pulses at a wavelength of 266nm emitted from the Nd:YAG laser (see Ch. 3.7.1) were

overlapped with the Ar+2 ion bunch at a 90◦ angle. The laser polarization was perpendicular the

the ion beam direction. The average pulse energy per laser shot was 0.75mJ.

In total this corresponds to 1.0 ·1015 UV photons per pulse interacting with typically 25 Ar+2 ions

assuming an average length of the laser pulse of 9ns. The experiment was triggered by the laser

as illustrated in Fig. 5.3 giving a repetition rate of 40Hz.

5.3.2 Fragment imaging

Neutral fragments produced in the crossing of laser beam and ion beam proceed to the time and

position sensitive imaging detector (see also Ch. 3.6.2) situated about 850mm downstream. In

addition to the laser induced signal, collisional dissociation of the molecular ions in the residual

gas (3 · 10−9mbar) produced a background of neutrals on the detector. Data was recorded for

≈11 hours.

74



5.3 Photodissociation of Ar+
2 at 266nm

ttof $ ttof + Dttof

Figure 5.4: Time of flight ttof spectrum of the neutral Argon fragments. The method for

obtaining the background estimate is described. The background spectrum is extracted from

time of flight values of 7000ns ≤ ttof ≤ 8000ns and then shifted to coincide with the mean arrival

time of the signal events. The resulting kinetic energy release distributions are displayed on the

right.
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Figure 5.5: 2D detector image of the neu-

tral Argon photofragments measured by the

imaging detector. The blue arrow indicates

the laser polarization which is perpendicular

to the ion beam direction.

In the upper left part of Fig. 5.4 a time of flight spectrum of the Ar0 fragments is shown. The

ttof spectrum shows a clear photon induced signal at a mean time of flight value of ≈8300ns.

The ion bunch length is relatively long (5µs) and the ion density distribution in the bunch is

uniform, hence the characteristics of events with time of flight values different from the signal

events are similar to the background at the time of flight where the signal is observed. Thus,

the background was extracted from neutral fragments having a time of flight value ranging from

7000ns to 8000ns as illustrated in Fig.5.4. 2-dimensional detector pictures corresponding to each

region of the time of flight are displayed in the lower part of Fig.5.4. The kinetic energy release

and angular distributions were obtained by shifting the time of flight value by ∆ttof = 873.1ns

to match the flight time of the signal plus background events. Resulting kinetic energy release

spectra are also displayed in Fig. 5.4.

An enlarged X-Y distribution of the signal plus background events (8.1µs ≤ ttof ≤ 8.67µs) is

displayed in Fig. 5.5. The arrow in Fig. 5.5 illustrates the direction of the laser polarization ~εL.

A 3-dimensional representation of the experimental data is given in Fig. 5.6. Here the time of

flight ttof of the Ar0 fragments is plotted versus the squared radial position R2 = (X−X0)2 +

(Y −Y0)2 on the detector where X0 and Y0 constitute the position of the beam center.

By inversion of the equation for the kinetic energy release (Eq. 2.30) one obtains

R2 =
2µ∆E

M2
· t2tof − (L− vion · ttof )2. (5.4)

Using Eq. 5.4 and the values for the ion kinetic energy Eion ≈ 4200keV and the distance between

interaction point and detector L ≈ 850mm curves indicating the expected kinetic energy release

3eV≤ ∆E ≤4eV (see Fig. 5.2) are drawn. Fig. 5.6 shows an amassing of neutral Argon fragments

with high R2 values fulfilling the indicated condition on the kinetic energy release.
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Figure 5.6: R2 versus time of flight ttof distribution for Ar0 fragments resulting from

Ar+2 photodissociation at 266nm. The lines indicate R2 values for constant kinetic energy release

of ∆E = 3eV and ∆E = 4eV
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5.3.3 Kinetic energy release and angular distributions

From the radial position of the fragments on the imaging detector and the time of flight the

kinetic energy release was calculated using Eq. 2.30. The kinetic energy release obtained from

the Ar0 fragments emerging from Ar+2 photodissociation after background subtraction is depicted

in Fig. 5.7 showing a single peak centered around 3.5eV.

The range of the energy release is consistent with a transition from the X2Σ+
1
2
,u

ground state to

the C2Σ+
1
2
,g

repulsive state which decays to the Ar(1S) + Ar+(2P1/2
) final channel as indicated

in Fig. 5.2. The kinetic energy release is related to the initial rovibrational excitation of the

molecular ion as illustrated in Fig. 2.2 and is given by Eq. 2.18. Thus, high levels of internal

excitation will lead to high values of the kinetic energy release.

The kinetic energy release corresponding to the individual vibrational levels of the ion was

calculated with the spectroscopic constants given in [66] for the two possible final channels of

the dissociation process. The results are included in Fig. 5.7. Thus, the extension of the high

energy edge up to ≈5.0eV can be attributed to the presence of highly excited Ar+2 ions. This

should be expected since no cooling was applied to the Ar+2 ions prior to dissociation and the ion

production mechanism in the ion source should lead to high levels of internal excitation. The

position resolution of the detector corresponds to ±0.1mm while the uncertainty in the arrival

time of the fragments is ±10ns due to the length of the laser pulse. This leads to an energy

resolution of dE ≈0.5eV. Since the vibrational spacing of Ar+2 is only on the order of several

10meV (e.g. the difference between ν = 0 to ν = 1 equals to 37meV) individual vibrational

levels should not be resolved. Additionally, the uncertainty in energy is evident through the

extension of the low energy edge of the ∆E spectrum.

The dissociation angles relative to the laser polarization were obtained by first evaluating the

angle θz between the z-axis and the axis of dissociation in the cm-frame of the molecule according

to Eq. 2.29. The angle between polarization direction and molecular orientation θL was obtained

by turning the coordinate system according to Eq. 2.34. The angular distributions are bound to

be symmetric to the axis defined by θL = π
2 . Thus, the resulting distributions were symmetrized

to compensate for detector inefficiencies by randomly assigning the sign of the right side in

equation Eq. 2.34.

The angular distributions for the background events were obtained in the same way. The re-

sulting spectra were then subtracted from the signal distributions. Fig. 5.8 shows the angular

distributions after background subtraction for different regions of the kinetic energy release.

The angular distributions are obviously different for different range of kinetic energy release:

with increasing energy release the valley between the two distinct lobes of the distribution

observed in Fig. 5.8 a) slowly fills up until the depth of the valley is about half the peak height

for high kinetic energy release (Fig. 5.8 f)).

To quantitatively characterize the angular distributions two different models were fitted to the
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Figure 5.7: Potential diagram for Ar+2 photodissociation and the measured kinetic energy

release ∆E distribution of neutral Argon fragments emerging from Ar+2 photodissociation at

266nm. The kinetic energy release corresponding to the vibrational levels of the two final states

are indicated.
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Figure 5.8: Distribution of Ar+2 dissociation angle relative to the laser polarization for different

cuts on the kinetic energy release. Background was subtracted for each slice of the energy

release. θL denotes the angle between the direction of dissociation and the laser polarization ~εL.

The black curve shows the fit to the distribution taking into account a β = 2, β = −1 (see also

Ch. 2.4).
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Figure 5.9: Distribution of Ar+2 dissociation angle relative to the laser polarization for different

cuts on the kinetic energy release. Background was subtracted for each slice of the energy

release. θL denotes the angle between the direction of dissociation and the laser polarization ~εL.

The black curve shows the fit to the distribution taking into account a free β parameter.
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experimental data depicted in Fig. 5.8.

The first model assumes that the distribution originate from pure perpendicular and parallel

transitions and takes the from

Pmodel1(θL) = a−1 · I(β = −1, θL) + a2 · I(β = 2, θL), (5.5)

where the angular distributions were fitted with a−1 and a2 as free parameters and I(β, θL)

are the theoretical distributions given in Eq. 2.33. The results of the fit with model 1 are

indicated by the black curves in Fig. 5.8 while the red and brown curves indicate the individual

contributions of β = −1 and β = 2.

The second model takes into account a angular distribution given by Eq. 2.33 were beta is not

kept fixed in the fit. Thus, the fit function can be formulated as

Pmodel2(β, θL) = a · I(β, θL). (5.6)

The obtained curves for different regions of the kinetic energy release are displayed in Fig. 5.9

with the resulting dependence of the β parameter on the kinetic energy release depicted in

Fig. 5.11. The fit results show an decreasing anisotropy parameter for higher kinetic energy

release values.

The results of both methods are shown in Fig. 5.10 and Fig. 5.11. For model number one the

angular distributions show an increasing contribution of perpendicular dissociation for increasing

kinetic energy release. The ratio a−1

a2
between β = −1 and β = 2 versus kinetic energy release is

shown in Fig. 5.10.

For the second model one finds for the anisotropy parameter β a value of 1.84 for the lowest

kinetic energy region. With increasing energy release the β parameter decreases until it reaches

a value of 1.31 for the very high kinetic energy release.

5.3.4 Discussion

The observed angular distributions for a transition from the X2Σ+
1
2
,u

ground state of the Argon

dimer ion to the C2Σ+
1
2
,g

repulsive state should have dominantly β = 2 character. For the

lowest kinetic energy region (Fig. 5.8 a) and Fig. 5.9 a)) the findings agree more or less with

the expected value of a pure parallel transition. However, the fits to the angular distributions

conducted for both models show a striking deviation from the expected β value for increasing

internal excitation of the molecular ions, i.e. for increasing kinetic energy release. It was carefully

checked that neither the finite angular resolution nor a false assignment of the laser polarization

was the origin of this effect.

If the molecular ion would rotate before the dissociation was completed a pure β = 2 distri-

bution would appear to have a perpendicular component. To judge the effect of rotations on

the dissociation process a classical calculation was conducted on the dissociation time of the
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Franck-Condon factors for the

transitions from individual vi-
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wavefunctions of the A2Π and

C2Σ+ state. Please note that

the factors for the Σ → Π over-

lap are scaled by a factor of 109

and shifted to lower energies by

0.01eV for better visibility.

Ar+2 fragments. Thus, the Ar+2 ions were propagated on the potential energy surfaces A2Πg and

C2Σ+
g displayed in Fig. 5.2. The molecular ion was assumed to be fully dissociated when the

internuclear distance exceeded 10 Bohr radii. The dissociation time obtained from these cal-

culations for the two dipole-allowed transitions from the ground state, namely X2Σu → A2Πg

and X2Σu → C2Σg, are depicted in Fig. 5.12 as a function of the kinetic energy release. Typ-

ical dissociation times are on the order of 120-350fs and they show an inverse dependence on

the energy released in the dissociation process. Hence, dissociation is in indeed faster if the

molecular ion is initially at short internuclear distances. Since the energy dependence of the

ratio of β = −1 to β = 2 (see Fig. 5.10) and the β trend observed in Fig. 5.11 anti correlate

to the dissociation time, the deviations from pure β = 2 distributions cannot be attributed to

a rotational effect. Furthermore, typical rotation times for the Ar+2 ions calculated using the

rotational constant given in [66] are 57.4ps for the J = 1 level and 7.4ps for the J = 10 level and

are thus significantly longer than the estimated dissociation times.

Another possible source for a perpendicular dissociation could arise if transitions to the A2Πg

states would occur. The Franck-Condon factors for the overlap of the bound wavefunctions to

the continuum wavefunctions of the A2Πg and the C2Σ+
g were calculated [80] for the potential

energy surfaces published in [66]. The Franck-Condon factors are decisive for the strength of

the transition (see Ch. 2.1.2) and a comparison of these factors for individual vibrational levels

should thus give insight into the relative contribution of the two possible transitions.

The calculated bound-continuum overlap factors are displayed in Fig. 5.13 where the brown

bars indicate the strength of the X2Σ+
u → C2Σ+

g transition and the orange bars show the

strength of the X2Σ+
u → A2Πg transition multiplied by a factor of 109 for better visibility.

The overlap factors for the X2Σ+
u → C2Σ+

g decrease as a function of kinetic energy release
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while the X2Σ+
u → A2Πg transition strength only picks up at high kinetic energy release of

4.2eV. Evidently, the X2Σ+
u → C2Σ+

g transition are several orders of magnitude stronger than

the X2Σ+
u → A2Πg transition throughout the range of kinetic energy release observed in the

experimental data (see Fig. 5.7). Thus, it is unlikely that the perpendicular dissociation observed

in the angular distributions can be attributed to transitions to the A2Πg states.

In conclusion, it seems evident that the observed photodissociation of Ar+2 originates solely from

the X2Σ+
1
2
,u
→ C2Σ+

1
2
,g

transitions and that the measured perpendicular contribution result from

the mixing of |Π〉 character into X2Σ+
1
2
,u

ground state and the C2Σ+
1
2
,g

excited state due to spin

orbit effects as mentioned in Ch. 5.1.

5.3.5 Comparison to theoretical calculations

Following the description in Ch. 5.1 the functions for the X2Σ+
1
2
,u

ground state and the C2Σ+
1
2
,g

can be formulated as a linear combination of |2Π〉 and |2Σ〉 states and one obtains:

|2Σ 1
2
,u〉 = au|2Σu〉+ bu|2Πu〉 (5.7)

|2Σ 1
2
,g〉 = ag|2Σg〉+ bg|2Πg〉. (5.8)

The matrix elements of the electronic dipole operator for the 2Σu → 2Σg transition in terms of

spin-orbit mixed electronic states are

T0 = 〈2Σ+
u |µ0|2Σ+

g 〉 (5.9)

T1 = 〈2Σ+
u |µ±1|2Σ+

g 〉, (5.10)

where µ is the dipole operator in the molecule fixed coordinate frame. The matrix elements T

can be reformulated using the wavefunction representation given in Eq. 5.7 and Eq. 5.8 and one

obtains

T0 = auag〈2Σ+
u |µ0|2Σ+

g 〉+ bubg〈2Πu|µ0|2Πg〉 (5.11)

T1 = aubg〈2Σ+
u |µ+1|2Πg〉+ buag〈2Πu|µ−1|2Σ+

g 〉. (5.12)

The mixing coefficients a and b and the dipole transitions moments for the non spin-orbit

split states 〈2Σ+
u |µ0|2Σ+

g 〉, 〈2Πu|µ0|2Πg〉, 〈2Σ+
u |µ+1|2Πg〉 and 〈2Πu|µ−1|2Σ+

g 〉 were published for

different values of the internuclear distance R in the article by Stevens et al. [101] and are

displayed in Tab. 5.2 and Tab. 5.3.

The individual strength of the bound-continuum transitions ignoring the effect of rotations is

then given by the matrix elements |〈χν(R)|T0|χc(R)〉|2 for the perpendicular transition and
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X2Σ+
1
2
,u

C2Σ+
1
2
,g

R (Bohr) au bu ag bg

4.00 0.99987 0.01611 0.99979 -0.02035

4.25 0.99979 0.02056 0.99969 -0.02496

4.50 0.99966 0.02613 0.99952 -0.03092

4.75 0.99945 0.03306 0.99925 -0.03861

5.00 0.99913 0.04165 0.99881 -0.04880

5.50 0.99786 0.06536 0.99695 -0.07809

6.50 0.98838 0.152 0.97734 -0.21166

7.00 0.97549 0.2203 0.94217 -0.33514

Table 5.2: Ar+2 spin-orbit mixing coefficients taken from [101].

R (Bohr) 〈2Σ+
u |µ0|2Σ+

g 〉 〈2Πu|µ0|2Πg〉 〈2Σ+
u |µ+1|2Πg〉 〈2Πu|µ−1|2Σ+

g 〉

4.00 1.974 1.955 0.066 -0.064

4.25 2.085 2.088 0.053 -0.037

4.50 2.198 2.220 0.042 -0.017

4.75 2.313 2.350 0.034 -0.004

5.00 2.432 2.478 0.028 0.005

5.50 2.676 2.733 0.020 0.014

6.50 3.184 3.237 0.012 0.016

7.00 3.441 3.489 0.011 0.014

Table 5.3: Transition moments in atomic units taken from [101].
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Figure 5.14: Calculations of the individual strength of the bound-continuum transition for

perpendicular and parallel transitions as a function of the initial vibrational level ν. Please note

that the perpendicular dipole matrix elements have been scaled by a factor of 3 · 105. Both

matrix element values haven been shifted by 0.15 viblevel up and down respectively for better

visibility.
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|〈χν(R)|T1|χc(R)〉|2 for the parallel transition, where χν(R) constitutes the wavefunction of a

vibronic ground state and χc(R) is the wavefunction of the continuum state.

Using the wavefunctions obtained from the Franck-Condon factor calculations and the values

published by Stevens et al. [101] these matrix elements can be evaluated. The results obtained

from these calculations for the first 40 vibrational levels of the ground state are displayed in

Fig. 5.14. Here the perpendicular matrix elements were scaled by a factor of 3 · 105. The

dependence of the matrix elements on the initial vibrational level of the ground state is quite

similar for the perpendicular case as well as the parallel transition. This is due to the fact

that the bound and continuum wavefunctions only constitute to the matrix elements at small

internuclear separations R were the operators T0 and T1 are basically constant and only differ

by factors. Thus, the dependence on vibrational levels is only determined by the overlap of the

bound and continuum wavefunction. However, the size of the parallel matrix elements is orders

of magnitude larger than for the perpendicular transition which can not explain the discrepancies

observed in the angular distributions. Thus, the experimental findings show a much larger effect

of the spin orbit mixing as predicted in direct calculations of the transition probabilities using

the Franck-Condon overlap integrals.

5.4 Photofragmentation studies of Ne+
2 ions at 532nm

5.4.1 Experimental parameters

Similar to the photodissociation studies performed on Ar+2 (see Ch. 5.3) Ne+
2 was also a subject

to investigations. Here a Ne+
2 ion beam with an average DC beam current of 1nA, measured

close to the interaction point, was extracted from the hollow cathode ion source. The ion beam

was bunched using the longitudinal pulsing capabilities of the ion beam trap with a length of

each pulse of about 6µs. The Ne+
2 molecular ion beam was crossed at a 90◦ angle with the

laser beam emitted by the Nd:YAG laser system (see Ch. 3.7.1). The wavelength used for

fragmentation of the ions was 532nm with an average of 3mJ per pulse and a 40Hz repetition

rate. The photons were horizontally polarized thus the direction of polarization was parallel to

the ion beam direction (compare to Fig. 3.18). Overall this corresponds to 8 · 1015 photons per

pulse colliding with approximately 56 Ne+
2 ions.

5.4.2 Fragment imaging

The neutral Ne0 fragments emerging from the photodissociation reaction were recorded by the

imaging detector situated downstream from the interaction region (see Ch. 3.5) while the charged

photofragments and the remaining ion beam were removed from the beam pipe by the imaging

deflector unit (IMD). In addition to the laser induced signal, dissociation of the Ne+
2 ions due to

collisions with residual gas particles (8 · 10−9mbar) produced a background of neutral particles
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Figure 5.15: Time of flight spectrum of the He0 fragments resulting from photofragmentation

of Ne+
2 at 532nm.

on the detector.

The time of flight ttof spectrum of Ne0 fragments after ≈12 hours of measurement is displayed

in Fig. 5.15. In comparison to the Ar+2 results the time of flight for the Neon fragments shows

two distinct peaks separated by ≈175ns. The mean arrival time of the fragments at the detector

was ≈5940ns.

Similar to the Ne+
2 measurements the background was determined from neutral fragments with

a time of flight of 4900ns ≤ ttof ≤ 5750ns (see Fig. 5.4) shifted by ≈619ns to match the time of

flight of the signal plus background events.

Fig. 5.16 shows the 2-dimensional positions of the signal Ne0 fragments emerging from the overlap

region having a time of flight of 5.8µs ≤ ttof ≤ 6.1µs. The green mark in Fig. 5.16 indicates the

direction of the laser polarization ~εL which is in this case parallel to the propagation direction

of the ion beam and thus perpendicular to the detector plane.

The 3-dimensional representation of the experimental data is give in Fig. 5.17. Here the squared

radial position R2 of a neutral Ne0 fragment on the imaging detector is plotted versus the time

of flight ttof of the fragment. Lines of constant kinetic energy release according to Eq. 5.4 are

also drawn for illustrative purposes. Fig. 5.17 shows an accumulation of neutral Neon fragments

fulfilling the expected conditions on the kinetic energy release of 1eV≤ ∆E ≤2.3eV (see also

Fig. 5.1). The distribution illustrates that the Ne0 fragments are well separated in time of flight
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Figure 5.16: 2D detector image of the neu-

tral Neon photofragments measured by the

imaging detector. The green mark indicates

the laser polarization which is perpendicular

to the paper plane and thus parallel to the ion

beam direction.

Figure 5.17: R2 versus time of flight ttof distribution for Ne0 fragments following photodisso-

ciation of Ne+
2 ions at 532nm.
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Figure 5.18: Diagram of the dissociation of Ne+
2 and the measured kinetic energy release of

the neutral Neon photofragments.

but have only low R2 values.

5.4.3 Kinetic energy release and angular distributions

From the R2 values and the time of flight of the Neon fragments the kinetic energy release

∆E (see Eq. 2.30) was derived. In addition to the spectrum of the signal events a kinetic

energy distribution of the neutral background was also obtained and subtracted from the signal

distribution. The resulting kinetic energy release spectrum is displayed in Fig. 5.18. At energy

release values between 0.5eV and 3.0eV the distribution for the photofragments shows a clear
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peak.

The kinetic energy release is related to the initial internal excitation of the molecular ion as

given by Eq. 2.18. Thus, high internal excitation will lead to a high kinetic energy release.

At 532nm the photodissociation of Ne+
2 can proceed either via the A2Πg repulsive curve or the

C2Σ+
g state. The kinetic energy release values corresponding to the two possible final channels for

different vibrational levels of the ground state were calculated using the spectroscopic constants

given in [66] and the experimentally determined value for the dissociation energy published

in [19], and are displayed in Fig. 5.18. The experimentally observed kinetic energy release is

consistent with a dissociation process via the A2Πg and the C2Σ+
g repulsive curves. Similar to the

results obtained from the Ar+2 measurements, high vibrational excitation of the Ne+
2 ions prior

to dissociation is found to be present, leading to the extension of the spectrum to ∆E ≈ 3eV.

With the same position resolution as in Ar+2 (±0.1mm) and the same length of the laser pulse

(9ns), the uncertainty of the energy measurement is slightly better, having a value of 0.4eV. The

vibrational spacing of the Ne+
2 ions is larger than for Ar+2 (e.g. the difference between ν = 0 to

ν = 1 equals to 73meV) but the splitting of the final states due to spin-orbit effects is smaller

with only 97meV. However, due to the energy resolution it is not expected that these features

should be resolved. Furthermore, the observed extension of the spectrum to low kinetic energy

energy release values observed in Fig. 5.18 can be attributed to the energy resolution.

The angular distributions of the photofragments were calculated using Eq. 2.29. Since the

direction of polarization of the laser coincides with the ion beam propagation direction the angles

θz and θL are the same. The distributions were again symmetrized by randomly assigning the

sign to the argument of arctan in Eq. 2.29. The background angular distributions were obtained

in the same manner and the results were subtracted from the signal distributions. The spectra

are plotted in Fig. 5.19 for different ranges of the kinetic energy release.

The angular distributions for different regions of ∆E are clearly different from one another: for

different values of the kinetic energy release the ratio between the height of the valley between

the two peaks of the distribution and the maxima of the distribution changes.

In order to characterize the angular distributions, fits were conducted for pure perpendicular

and parallel transitions assuming the same form as the first model in Ar+2 (see Eq. 5.5). Again

a−1 and a2 were free parameters in the fits. The obtained results are illustrated by the black

curve in Fig. 5.19 while individual contributions for both symmetries are drawn for β = −1 (red

curve) and for β = 2 (brown curve).

The amplitude of each contribution versus the kinetic energy release is depicted in Fig. 5.20 while

Fig. 5.21 shows the ratio between the β = −1 and the β = 2 contribution. For the ratio of the

two different symmetries one finds a clear dependence on the energy released in the dissociation

process.

93



5 Optical laser experiments

 (rad)
L

θ
0 0.5 1 1.5 2 2.5 3

In
te

ns
ity

 (
co

un
ts

)

0

100

200

300

400

500

600

700

E < 1.25eV∆: 0.75eV < Lθa)  

 (rad)
L

θ
0 0.5 1 1.5 2 2.5 3

In
te

ns
ity

 (
co

un
ts

)

0

200

400

600

800

1000

E < 1.45eV∆: 0.95eV < Lθb)  

 (rad)
L

θ
0 0.5 1 1.5 2 2.5 3

In
te

ns
ity

 (
co

un
ts

)

0

200

400

600

800

1000

1200

E < 1.65eV∆: 1.15eV < Lθc)  

 (rad)
L

θ
0 0.5 1 1.5 2 2.5 3

In
te

ns
ity

 (
co

un
ts

)

0

200

400

600

800

1000

1200

E < 1.85eV∆: 1.35eV < Lθd)  

 (rad)
L

θ
0 0.5 1 1.5 2 2.5 3

In
te

ns
ity

 (
co

un
ts

)

0

200

400

600

800

1000

E < 2.05eV∆: 1.55eV < Lθe)  

 (rad)
L

θ
0 0.5 1 1.5 2 2.5 3

In
te

ns
ity

 (
co

un
ts

)

0

100

200

300

400

500

600

700
E < 2.25eV∆: 1.75eV < Lθf)  

 (rad)
L

θ
0 0.5 1 1.5 2 2.5 3

In
te

ns
ity

 (
co

un
ts

)

0

50

100

150

200

250

300

350

400

E < 2.45eV∆: 1.95eV < Lθg)  

 (rad)
L

θ
0 0.5 1 1.5 2 2.5 3

In
te

ns
ity

 (
co

un
ts

)

0

20

40

60

80

100

120

140

160

180

200

220

240
E < 2.65eV∆: 2.15eV < Lθh)  

 (rad)
L

θ
0 0.5 1 1.5 2 2.5 3

In
te

ns
ity

 (
co

un
ts

)

0

20

40

60

80

100

120

E < 2.85eV∆: 2.35eV < Lθi)  

Figure 5.19: Angular distribution of Ne0 photofragments with the background subtracted for

different cuts on the kinetic energy release. The black curve illustrates a fit using the model

described by Eq. 5.5 while the brown curve shows the contribution of β = 2 and the red curve

corresponds to the β = −1 contribution.

94



5.4 Photofragmentation studies of Ne+
2 ions at 532nm

E (eV)∆Kinetic energy release 
1 1.5 2 2.5 3

F
it 

am
pl

itu
de

 (
ar

b.
)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 = 2βFit with 
 = -1βFit with 

Figure 5.20: Results for the fits conducted in Fig. 5.19, versus kinetic energy release ∆E.
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Figure 5.23: Estimated dissociation time for

the two repulsive states in the Ne+
2 system ver-

sus kinetic energy release ∆E.

5.4.4 Discussion

In Ne+
2 photodissociation with 532nm photons dipole-allowed transitions are possible from the

X2Σ+
u ground state to the A2Πg states and from the ground state to the C2Σ+

g repulsive state.

To compare the relative strength of each transition Franck-Condon factor calculations were

carried out for the overlap of the bound and continuum wavefunctions [80] using the potential

energy curves published by [19]. The calculated factors for individual vibrational levels of the

bound state versus the kinetic energy release are shown in Fig. 5.22. The results show that the

X2Σ+
u → A2Πg transition is expected to dominate for a value of the kinetic energy release lower

than 1.25eV. In addition, X2Σ+
u → A2Σ+

g transitions should be observable for higher ∆E.

Transitions to the A2Πg states should have perpendicular character while transitions to the

C2Σ+
g state should have parallel character. Judging by the calculated overlap factors shown in

Fig. 5.22 the contribution from the X2Σ+
u → C2Σ+

g transitions can be ruled out for values of the

kinetic energy release below 1.25eV. Thus, only X2Σ+
u → A2Πg should be observable. However,

the angular distribution for the kinetic energy region 0.75≤ ∆E ≤1.25eV (see Fig. 5.19 a))

exhibits a predominantly parallel character with a small perpendicular contribution.

To evaluate the effect of rotation on the dissociation process the dissociation times were calcu-

lated. The time it takes for the molecule to dissociate was simulated using the same approach

as for the Ar+2 dissociation (see Ch. 5.3.4). The molecular ion was assumed to be dissociated

when the internuclear distance was larger than 8 Bohr radii. Dissociation times were calculated

for fragmentation via the C2Σ+
g state and via the A2Πg states. The results are plotted versus

the energy released in the dissociation process and are displayed in Fig. 5.23. For dissociation

via the C2Σ+
g excited state dissociation times vary between 130-400fs while the time it takes

for the Ne+
2 to separate via the A2Πg curve can take slightly longer namely, 160-570fs. In case
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of the Ne+
2 ion the rotational constant is calculated in [66] with a value of B = 70µeV. This

yields an estimated time of rotation for the molecule ranging from 200ps for J = 1 down to for

instance 13ps for J = 20, assuming that the distance between the two atoms remains constant.

In comparison to the dissociation times these values are larger by orders of magnitude and thus

the effect of rotation on the angular distributions can be said to be negligible.

Due to spin-orbit effects, as discussed in Ch. 5.1, the A2Πg states are in fact split into a A2Π 1
2
,g

state and a A2Π 3
2
,g state which can be written as a linear combination of |2Πg〉 and |2Σg〉

according to Eq. 5.3. Transitions from the ground state to the A2Π 3
2
,g should be dominantly

perpendicular in nature while transitions to the A2Π 1
2
,g should exhibit both perpendicular and

parallel character. Thus, it seems evident that the parallel character observed in the angular

distribution for ∆E ≤1.25eV (Fig. 5.19 a)) results from the mixing of |2Σg〉 into the A2Π 1
2
,g.

This effect is consistent with the experimental observations of Moseley et al. [74] and the calcu-

lations preformed by Stevens et al. [101] in the case of the Argon dimer ion. In their calculations

on the cross sections for the X2Σ+
u → A2Π 1

2
,g transition and X2Σ+

u → A2Π 3
2
,g transition Stevens

and co workers find that the cross section increases by a factor of six due to the fact that

the transition moments caused by spin-orbit effects (〈2Σ+
u |µ0|2Σ+

g 〉 and 〈2Πu|µ0|2Πg〉 see also

Eq. 5.12) dominate the dissociation process.

At higher vibrational levels of the ground state, i.e. higher kinetic energy release values, the

situation gets more complex, because in addition to transitions to the A2Π 1
2
,g and A2Π 3

2
,g

state, the C2Σ+
1
2
,g

state becomes accessible (compare Fig. 5.22). This should give more parallel

character to the angular distributions for values of the kinetic energy release higher than 1.25eV,

while the perpendicular contribution should become smaller. However, the ratio between β = −1

and β = 2 (see Fig. 5.21) shows an even stronger perpendicular contribution which peaks at

around ∆E = 1.4eV and than drops of for higher values of ∆E. The fact that the perpendicular

contribution remains high throughout the observed kinetic energy regime, even though the

transition to the C2Σ+
1
2
,g

should dominate according to the calculated Franck-Condon factors

(Fig. 5.22), points to a similar effect as observed in the Ar+2 photodissociation experiments

(Ch. 5.3). In the Ar+2 experiments the photodissociation was found to proceed via the C2Σ+
1
2
,g

repulsive state also here high β = −1 contributions were observed in the angular distributions

of the photofragments for large kinetic energy release.
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6.1 Significance of the HeH+ ion

There has been extensive theoretical and experimental interest in HeH+ partly because it is the

simplest heteronuclear ion. The existence of a permanent dipole moment in the HeH+ ion has

permitted the acquisition of highly precise vibration-rotational and pure rotational transition

energies from gas phase spectra. The first high resolution spectrum was obtained by Tolliver

and co workers [103] using Doppler tuned ion beam spectroscopy. Bernath and Amano [10] de-

termined accurate vibration-rotation constants of HeH+ while the measurements were extended

to the isotopomers by Crofton et al. [23] in 1989. More recently very precise studies of pure

rotational transitions were obtained by [63] and measurements of pure rotational transitions up

to the dissociation threshold were reported by [59].

The need for increasingly accurate ab inito calculations of HeH+ was stimulated by these afore-

mentioned high resolution measurements. The X1Σ+ ground state of HeH+ is well established

by first calculations published by Ko los and Peek [51] in 1976 (see Fig. 6.1) and by adiabatic

corrections calculated by Bishop et al. [12]. The first excited state of HeH+, namely A1Σ+,

correlates with the H(11S) + He+(12S) limit, which is situated approximately 11eV [22] above

the ground state limit of H++He(11S). Hence, the ground state is essentially isolated. Electron-

ically excited states of HeH+ are only reached from the ground state by high energy (≥ 20eV)

input. They have been theoretically extensively characterized by [36, 34, 35, 96, 8, 94], includ-

ing their photodissociation [96, 8, 94]. Potential energy surfaces were taken from [82] and are

displayed in Fig. 5.1.

Moreover, HeH+ is composed of the two most abundant elements in the universe, and thus there

is much astrophysical interest in the possibility that HeH+ is an important species in interstellar

space. HeH+ is assumed to exists, although not definitively confirmed [68], in astrophysical

plasmas [90] and is of importance in the chemistry of planetary nebulae [13].

Besides the fundamental interest in HeH+ it also attracts attention as the isotopologue of 3HeT+

which is formed in the T2 beta decay given by

T2 → 3HeT+(f) + e− + ν̄e, (6.1)

where f designates a molecular final state of the daughter ion. By studying the shape of the
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Figure 6.1: HeH+ potential energy surfaces, atomic final states and sample kinetic energy re-

lease for photodissociation of HeH+ using VUV photons at 32nm [82]. The lowest vibrational
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β electron energy spectrum near the end-point energy it is possible to deduce the mass of the

neutrino mν . However, the accuracy of these experiments [60, 15] is limited by the molecular

final state distribution used in the analysis of the experimental data [94, 48]. This distribution

is so far only available from theory, for example calculations were published by [50, 46] with

more recent refinements presented in [48, 95] and references therein. In this framework it has

been suggested [94] that the experimental investigation of the photoabsorption spectrum of the

HeH+ ion could serve as a good check of the accuracy of the calculated molecular final state

distributions. Thus, calculated photodissociation cross sections for the HeH+ ion were presented

in [94].

6.2 Timing requirements

The time structure of the pulse train delivered by the free-electron laser is fairly complex.

The overall repetition rate used in the FEL experiments was 5Hz. Every FEL light pulse is

subdivided into several micro pulses. The amount of these micro pulses can be varied between

one to several hundred, with a variable spacing of 1µs to 10µs between the micro pulses. For the

HeH+ experiments conducted at the free-electron laser the used settings were five micro pulses

with a 10µs division (see Fig. 6.3).

Fig. 6.2 illustrates the timing scheme used in the FEL experiments. The timing signals triggering

the different sub-branches, namely TIFF ion trigger, TIFF RoentDek start, TIFF PC scope start,

TIFF ADC trigger and TIFF gate trigger, are delivered by the FEL through VME based timer

cards. The TIFF timer channels are fixed in time with respect to the emission of the FEL pulse

train.

For illustrative purposes all the relevant pulse trains produced are depicted in Fig. 6.3. The

FEL pulse train consisting of five photon pulses with a division of 10µs is emitted every 200ms.

Each FEL micro pulse is matched with an ion bunch. The TIFF ion trigger signal starts the

generation of a pulse train of five ion bunches with a width of ≈ 2.0µs and the same frequency

as the FEL micro pulses. TIFF RoentDek start, TIFF PC scope start and TIFF ADC trigger

supply the start signals of the TDC, the PC scope trigger and the ADC trigger respectively.

TIFF gate trigger activates the generation of a second pulse train used to gate the imaging

detector.

To conduct a background measurement between each FEL pulse train all channels, except for the

ADC trigger, are equipped with a pseudo trigger (see Fig. 6.2). The pseudo trigger effectively

delays the incoming FEL timing signals by 100ms and triggers the same sub-branch through an

OR unit effectively doubling the repetition rate of the experiment to 10Hz. Hence, every second

ion bunch train coincides with a FEL pulse train while every other ion bunch train is used as a

background measurement.

The pulse train generation is explained in the insert of Fig. 6.2. The incoming start pulse
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Figure 6.2: Schematic diagram of the timing of the experimental setup used in the FEL

experiments.
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signals resulting from the timing scheme illustrated in Fig. 6.2.
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activates two timers. The upper timer (PT delay) controls the initial delay of the pulse train

and triggers the PT pulse timer via an OR and an AND unit. The PT pulse timer controls

the spacing and width of each individual pulse in the train. The output of PT pulse is fed to

the outside, but is also used to trigger itself through the OR unit. The PT length timer only

allows the PT pulse timer to trigger itself if a NIM signal is present at the AND unit. Hence,

PT length defines the overall length of the pulse train.

The data acquisition system comprises the PC scope, CAMAC TDC module and CAMAC ADC

module (see also Ch. 4.1.1). The PC scope records the analog signals originating from the

photon beam dump and the ion bunch signals from the online beam monitor (see Fig. 3.15 a)

and Ch. 3.5.3). In the resulting analog spectrum the peak heights of the ion and the photon

bunches are measured. The obtained values are sent to the DAQ program and are recorded for

every event.

The CAMAC TDC unit is triggered by the TDC start signal and then acquires the timing

signals from the imaging detector for the full range of 65µs. Up to 16 hits per TDC channel

were recorded. To blend out background events between the laser shots the TDC was gated by

the TDC gate signal. The detector gate only allows the detector timing signals Tx1, Tx2, Ty3

and Ty4 (see Ch. 3.6) to be recorded by the TDC if the gate signal is high. The gate is positioned

so that starting with the laser shot all neutral particles events are accepted for ≈ 4.5µs.

Furthermore, the ADC was used to record an analog signal proportional to the average FEL

pulse train intensity provided by the gas monitor detector (GMD) [89, 104] of the FEL.

6.3 HeH+ photodissociation using VUV photons at 32nm

In the photodissociation experiments conducted at the free-electron laser in Hamburg the first

system studied was HeH+ ion. The data displayed in this section was taken in a total of 13

hours of measurement time. The experimental results are also subject of an article published

by Pedersen et al. [82].

VUV photon pulses produced by FLASH at 32nm wavelength were crossed with a HeH+ beam

at a 90◦ angle. The photon polarization was directed parallel to the propagation direction of the

ion beam. The FEL pulse train consisted of several short (≈30fs in length) micro pulses of which

a number of 5 were matched with an equal number of ion bunches. With an FEL repetition

rate of 5Hz this yielded an effective interaction rate of 25Hz. The ion beam intensity at the

interaction point was typically 2-3nA of HeH+ with a pulse length ranging from 2-4.5µs. The

average energy per micro pulse was 20-30µJ. The photons were directed across the plane grating

monochromator (see Ch. 3.7.2 for more details) which was set to the zeroth order, resulting in

an approximate transmission of 30-50% and a laser bandwidth of ±0.5nm. Both beams were

focussed to a comparable beam diameter of 1-2mm. Hence, on average ≈25 HeH+ ions collided

with 2 · 1012 photons.
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After passing through the interaction region the photon beam was collected on the photon beam

dump (see Ch. 3.5.3). The signal obtained from the beam dump was calibrated relative to the

gas monitor detector giving the absolute photon number per pulse.

Neutral fragments produced in photodissociation reactions are recorded by the imaging detec-

tor 3.6.2 which is situated about 1m downstream oriented perpendicular to the ion beam axis.

The region around the overlap of the two beams was biased to a negative potential of 1500-

3000V using the device described in Ch. 3.5.3 and depicted in Fig. 3.15 b). Hence, neutral

fragments emerging from the interaction point had a higher kinetic energy than neutrals formed

in other sections of the beam pipe, e.g. by dissociative collisions of the ions with the residual

gas (≈ 5 ·10−10mbar). He0 fragments released from the ion bunch in the biased region arrived at

the imaging detector ≈350-600ns earlier than fragments produced in other sections of the beam

pipe facing the detector. By adjusting the temporal overlap of both beams so that the photons

coincide with the ions after ≈100ns with respect to the edge of the ion bunch the photofrag-

ment signal could be observed at a time when only neutrals produced in the small biased region

contribute to the background.

In addition to the neutral background a background of stray photons was observed promptly

after the FEL pulse on the imaging detector. This photonic background could be sufficiently

reduced by correctly aligning the FEL beam in the interaction region.

The remaining ion beam is removed from the beam pipe after leaving the interaction region via

the vertical deflection plates mounted on the interaction feedthrough (see Fig. 3.15 b)). The

beam is deflected onto the beam monitoring plate. The resulting analog signal indicating the

ion bunch intensities was recorded using the PC scope.

The imaging detector records the time of flight ttof and position of each neutral fragment for the

full length of the photon and ion pulse train. Thus, the resulting spectrum has to be deconvoluted

to obtain the correct time of flight for each particle. Therefore the time of each laser shot was

determined by getting the peak position of the signal produced by the stray photons. The five

distinct slices of the spectrum were then overlayed so that the photon signal positions coincided

and the contained counts were summed up.

For each setting of the bias potential the precise fragment energy was determined by the average

time of flight of the photon induced signal events. The runs with different settings were added by

scaling each event to the nominal value of 7200eV (given by Eion = 4200eV plus the additional

acceleration due to the bias potential), thereby keeping the longitudinal velocity v|| = L−vionttof

ttof

and the transverse velocity v⊥ = R
ttof

of each event constant (here L corresponds to a value of

0.987m).

Fig. 6.4 shows the resulting 3-dimensional distribution of the neutral fragments. Here the radial

position of each fragment on the detector given by R =
√

X2 + Y2 is plotted versus the time of

flight ttof . In comparison to the background measurement (left) the image representing the data

taken with both FEL and ion beam present clearly shows an amassment of He fragments with
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Figure 6.4: Radial position R =
√

X2 + Y2 versus the event time of flight ttof for

HeH+ photodissociation at 32nm.
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Figure 6.5: HeH+ kinetic energy release spectrum after subtraction of the background energy

release.

large transverse momentum fulfilling the condition of high kinetic energy release. The red curves

indicate lines of kinetic energy release equal to 8eV and 20eV respectively which correspond to

the expected ∆E values taken from Fig. 6.1.

Neutral Hydrogen fragments are expected to emerge at similar kinetic energy values. However,

the anticipated center of mass velocities of the H0 fragments are larger by a factor of four, due

to the smaller mass. The resulting radial position of the fragments on the imaging detector also

increases by the same factor and thus only a small portion of the solid angle of these fragments

is covered by the current detector arrangement.

With the radial position and time of flight of each fragment one can determine the corresponding

kinetic energy release of the fragment using Eq. 2.30. The distribution of kinetic energy release

of the fragments after subtraction of the background is displayed in Fig. 6.5. The kinetic energy

release is related to the initial excitation of the ions and the final excitation of the photofragments

as described in Eq. 2.18. Thus, a low kinetic energy release corresponds to a highly excited final

states of the He atoms. The energy release distribution shows a significant contribution of highly

excited (n ≥ 3) He0 fragments totaling to about 50% with the remaining contribution going into

the n = 2 final state.

The low energy edge of the spectrum is consistent with the spectral width of the unmonochro-

matised photon beam of ±0.5eV and the resolution of the detector which is determined by the

time resolution of the TDC of 1ns which results in an energy resolution of ±0.7eV. The extension

of the energy release spectrum towards ∆E values of up to 21eV indicates the presence of high

internal excitation of the HeH+ ions prior to dissociation which was also found to be present in

the experiments conducted on the rare gas dimer ions (see Ch. 5.3 and Ch. 5.4).

The absolute cross section for the reaction of HeH+ ions with 32nm photons can be derived

from the measured ion current I and photon number Np for each pulse. Using the overlap
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Figure 6.6: Angular distribution of neutral He0 fragments following photodissociation of

HeH+ for different regions of the kinetic energy release. The distributions obtained from the

background measurements were subtracted in both plots.

of ion and photon beam determined by scanning the 1mm slit across the interaction point as

described in Ch. 4.4 the overlap factor can be derived to F = 3.5± 1.0cm−1. With the number

of observed signal events N and an estimated detection efficiency of the micro channel plate

used for fragment detection ε = 0.5 ± 0.1 the cross section is given by σ = N
εF

P
Npnl

, where
∑

denotes the sum over all temporal overlaps of ion and FEL beam and nl = I
evion

is the linear ion

density corresponding to the ion current I and the velocity of the ion vion. Thus, one arrives at

an absolute cross section of σ = (1.4± 0.7) · 10−18cm2.

Fig 6.6 shows the angular distribution of the photofragments. Here the angle comprised between

the molecular axis of dissociation and the polarization direction of the laser beam is plotted

versus the count rate for two cuts on the kinetic energy release corresponding to the n = 2 and

the n ≥ 3 final channel.

The angular distributions of He0 fragments for both kinetic energy regimes show a clear domi-

nance of excitations from the X1Σ+ ground state excited Π states resulting in a β = −1 character

of the distribution with respective contributions of ≈90% for the low kinetic energy release and
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Figure 6.7: Comparison of the calculated

cross section published by [94] and the exper-

imentally determined total and partial cross

sections.

≈70% for the high ∆E region.

6.3.1 Comparison to theoretical studies of the HeH+ system

The observed photodissociation of HeH+ at 32nm proceeds via a manifold of excited

HeH+ potential curves (see Fig. 6.1). So far only one theoretical study by Saenz and co work-

ers [94] calculated the cross section of a large subset of these curves. They selected the twelve

lowest 1Σ+ states correlated to the He+(1s) + H(nl) and the He(1snl) + H+ final states, arriving

at a value of 0.8 · 10−18cm2 for the cross section at 32nm for the vibrational ground state of

HeH+ . From the angular distributions one arrives at a contribution of the Σ → Σ transition

of ≈10% and ≈30% respectively. Taking the 30% of the estimated contribution one obtains

a measured partial cross section of (0.4 ± 0.2) · 10−18cm2 for the He(1snl) + H+ final channel

and an unknown vibrational excitation. The calculated cross section and the experimentally

determined values for the total cross section (Σ and Π) and the partial cross section (Σ only)

are plotted in Fig. 6.7. If one assumes that the magnitude of the cross section is similar for both

final states and for the various vibrational levels the calculated value is in reasonable agreement

with the measurement.

However, the kinetic energy release distribution (see Fig. 6.5) of the He0 fragments shows that

even for the low vibrational states highly excited He atoms (n ≤ 3) are observed indicating

that even higher excited molecular states than considered in [94] play a role in the dissociation

process.

Furthermore, the angular distributions shows that the major contribution to the cross section
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arises due to Σ → Π transitions. These states have been neglected in the recent calculations

because the population of the 1Π states in T2β decay is only a higher order effect [94]. The

study performed by Basu et al. [8] took into account the lowest lying C1Π state and calculated

partial dissociation cross sections showing that the contribution from both symmetries is about

equal. This tendency is more or less confirmed by the experimental results.

From the experimental data it becomes clear that for theoretical predictions of the total pho-

todissociation cross section of HeH+ higher excited potential curves of both Σ and Π symmetry

need to be included in the calculations. Also for a full theoretical understanding of the photodis-

sociation of the HeH+ system at VUV photon energies, which is of importance in astrochemistry

and the associated chemical models, these high lying potential surfaces cannot be ignored.
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7. Summary and outlook

7.1 Summarized results and conclusions

In this work a novel apparatus to study photodissociation of molecular ions has been introduced.

The Trapped Ion Fragmentation experiment at FLASH was designed and setup at the Max-

Planck-Institut für Kernphysik in Heidelberg. Advanced ion beam pulsing and trapping schemes

as well as photodissociation imaging on molecular ion beams using optical lasers was explored in

test experiments. At a later stage the setup was installed at the plane grating monochromator

beamline of the new free-electron laser at DESY. The experimental setup combines fast ion

beam imaging of photofragments with an electrostatic ion trap which allows trapping of the ions

prior to dissociation experiments.

The molecular ions are produced using a hollow cathode ion source suitable for production of

a wide variety of molecular ions. The molecular ions are accelerated to energies of a few keV

upon leaving the ion source. The desired ion species is mass selected in a 90◦ dipole magnet and

transferred to the ion trap. The primary purpose of the ion beam trap is to store the ions for a

prolonged time to allow them to relax to the vibrational ground state.

After being extracted from the trap the ion bunches are crossed at a 90◦ angle with the photon

pulses either coming from the free-electron laser or from a pulsed Nd:YAG laser system. Neutral

and charged fragments resulting from photodissociation reactions proceed to an MCP delay-

line detector mounted straight ahead of the interaction point oriented perpendicular to the

ion beam propagation direction. The imaging detector records the position of each fragment

on the detector as well as the corresponding arrival time of the particle. With the recorded

information the energy released in the photodissociation process and the angular distribution of

the photofragments can be inferred.

The experimental setup was extensively characterized. The performance of the ion source was

investigated using different settings and gas mixtures. Several mass spectra were obtained

which illustrated that sufficient currents of the desired ion species, namely Ar+, Ne+
2 , Ar+2 , and

HeH+ could be obtained.

The ion trap operation was established. The obtained results for stable trapping conditions were

found to be in good agreement with conducted computer simulations. Typical storage times of

ions inside the trap were found to be on the order of several 100ms at a trap inside pressure
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corresponding to 3 · 10−9mbar.

Additionally a novel extraction and pulsing method was implemented and successfully tested.

Tests conducted with this extraction scheme successfully demonstrated that short ion bunches

of ≈500ns length could be produced. In combination with ions stored in the ion beam trap it

could be illustrated, that multiple short ion bunches could be extracted from one filling of the

ion beam trap.

Based on the availability of short ion pulses, a new diagnostic method to control the temporal

and spatial overlap of ion and photon beam was devised. To determine the temporal overlap

the arrival time of the ion pulse is recorded using a MCP detector while the photon beam

timing signal is derived by collecting the beam on a copper plate which is mounted electrically

isolated. The relative position of ion and photon beam at the interaction point is obtained by

scanning a 1mm slit across the overlap region. The information on the spatial overlap of the

two beams is used to determine the overlap function and to measure absolute cross sections of

the photodissociation reactions.

Studies of photofragmentation of rare-gas dimer ions, namely the two systems Ar+2 and Ne+
2 ,

were performed using a pulsed Nd:YAG laser. The photodissociation experiments on Ar+2 were

done using UV photons at 266nm. The kinetic energy release of the Ar0 fragments recorded after

fragmentation is consistent with a dissociation via the C2Σ+
1
2
,g

repulsive state. The measured

angular distributions exhibit a striking deviation from the expected purely parallel character of

the transition which increases for higher kinetic energy release values. An influence of rotation

of the molecule on the angular distributions could be ruled out. Also a transition to the lower

lying A2Πg states was found to be negligible. Thus, the effect has to be caused by the mixing

of states due to spin-orbit effects. The magnitude of these effects observed in the experimental

data were compared to previous theoretical predictions. The experimental data was found to

exhibit much stronger mixing effects than previously conceived.

In photodissociation reactions of the Neon dimer ion with photons at 532nm wavelength tran-

sitions are possible from the ground state to the A2Πg states and the C2Σ 1
2
,g state. For the

low kinetic energy release values only transitions to the A2Πg states contribute to the pho-

todissociation process. One finds in the angular distribution some contribution of perpendicular

transitions but also a dominant contribution of parallel character which can be attributed to the

mixing due to spin orbit interactions of the A2Π 1
2
,g state. At higher kinetic energy release values

the situation gets more complicated because transitions to the A2Πg states as well as the C2Σ+
g

state are equally possible. In the angular distributions the parallel transition still dominates

the picture but the perpendicular contribution to the transition remains high indicating that

transitions to the C2Σ+
g in Ne+

2 also exhibit a strong perpendicular character as observed in the

case of Ar+2 .

While in the Ar+2 and Ne+
2 photodissociation experiments still relied on conventional lasers the

dissociation of HeH+ requires highly energetic photons to reach the highly excited repulsive po-
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tential energy curves. With the 32nm photons available at the free-electron laser corresponding

to a photon energy of 38.8eV a significant portion of these high-lying potential surfaces could

be addressed. Photodissociation of HeH+ ions using 32nm photons focussed on the detection of

the neutral Helium fragments emerging from the overlap region. The resulting kinetic energy

release spectrum of the He0 fragments showed two distinct peaks. The lower energy release peak

residing between 8eV ≤ ∆E ≤ 13eV corresponds to highly excited neutral He(1snl) fragments

with a contribution of ≈50% found in n ≥ 3. The remaining half of the fragments contributed

to the n = 2 final channel having a kinetic energy release ranging from 13eV to 20eV. The

absolute cross section at this wavelength was measured to be (1.4± 0.7) · 10−18cm2. The deter-

mined angular distributions of the photofragments for both regions of the kinetic energy release

showed a clear dominance of photodissociation perpendicular to the laser polarization was found

in contrast to dissociation pathways so far addressed in theoretical studies. Taking into account

the relative contributions observed in the angular distribution measurements yields a value for

the partial cross section which is ≈50% lower than previously predicted by theory.

7.2 Outlook

Based on the presented results and recent technical development at the TIFF setup the above

mentioned experimental results can be further improved in the near future.

All molecular ion species studied showed high vibrational excitation to be present prior to

dissociation which made analysis of the data difficult. Thus, all experiments would benefit from

cooling of the ions inside the ion beam trap. In the case of the homonuclear rare gas ions

storage of these ions should not lead to a significant reduction of vibrational excitation because

of the lack of a permanent dipole moment. Hence, a move to dimer ions which experience a

permanent dipole moment, e.g. the HeNe+ system, is planned. This system was tried previously

but it turned out that insufficient current could be produced with the hollow cathode ion source.

Therefore, a switch to a different ion source is necessary. First tests showed that high currents

of the Helium Neon dimer ion could be produced using a duo-plasmatron ion source. Work on

installation of this ion source at the TIFF setup is currently under way.

In the case of HeH+ with typical relaxation times of ≈100ms cooling is possible. However, due

to limitations in the initially available photon intensities at the FEL, storage of the ions would

have lead to a significant reduction in ion beam intensity which would have made the current

experiments impossible. With the anticipated further increase in pulse energies at the free-

electron laser, photodissociation studies in combination with trapping of the ions would become

feasible. Higher photon intensities would also lead to a further improvement in statistics for the

HeH+ experiments.

With the second imaging detector for light photofragments now installed at the TIFF setup the

neutral Hydrogen channel in the HeH+ photodissociation can also be observed. Furthermore, this
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improvement will enhance the energy resolution of the detector system and through coincidence

measurements the signal to background ratio can be further improved. Additionally, it opens up

many new possibilities to study the fragmentation of systems consisting of more than two atoms

since almost all photodissociation fragments of such a system can be recorded. A further step

would also be the extension of the HeH+ photodissociation measurements to different wavelength

to probe the theoretical calculated cross section for different photon energies.
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[55] W. Lange. Einführung in die Laserphysik. Wissenschaftliche Buchgesellschaft, 1994.

119



References

[56] L. C. Lee and G. P. Smith. Photodissociation cross sections of Ne+
2 , Ar+2 , Kr+2 , and Xe+

2
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