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I Zusammenfassung 

Proteine sind die zentralen Bausteine des Lebens. Um ihre Funktion 

erfüllen zu können, ist es von entscheidender Bedeutung, dass neu synthetisierte 

Polypeptidketten innerhalb kurzer Zeit in ihre einzigartige dreidimensionale 

Struktur falten. Obwohl die zur korrekten Faltung benötigte Information in der 

linearen Abfolge der Aminosäuren eines Proteins enthalten ist, benötigen 

Proteine zur Faltung unter zellulären Bedingungen die Unterstützung von so 

genannten „Helferproteinen“, bekannt als molekulare Chaperone. Diese Gruppe 

von Proteinen hat die Eigenschaft, dass sie an neu synthetisierte nicht-native 

Proteine bindet und dadurch unproduktive Nebenreaktionen verhindert, die 

andernfalls zu Fehlfaltung oder Aggregation führen würden. Bei der de novo 

Faltung von Proteinen im Zytosol sind vorrangig zwei Klassen von Chaperonen 

beteiligt: die Hsp70-artigen Chaperone und die Chaperonine. Die Hsp70-artigen 

Chaperone stabilisieren in erster Linie die naszenten Ketten bis eine komplette, 

zur Faltung fähige, Domäne am Ribosom synthetisiert wurde. Die 

tonnenförmigen Chaperonine hingegen stellen physikalisch definierte 

Faltungskompartimente bereit, in denen Proteine oder Proteindomänen, 

abgeschirmt von den aggregationsfördernden Bedingungen des Zytosols, falten 

können. Die Faltung von eukaryontischen Proteinen, die im Durchschnitt 

komplexer aufgebaut sind als ihre prokaryontischen Vertreter, verläuft in 

bakteriellen Expressionssystemen häufig ineffizient. Dieses Phänomen stellte in 

der Vergangenheit eine generelle Limitierung bei der Herstellung rekombinanter 

Proteine dar. 

In dieser Arbeit wurden mehrdomänige eukaryontische Proteine in 

zellfreien Translationssystemen synthetisiert, um den Einfluss einzelner 

Chaperone auf deren de novo Faltung zu untersuchen: Im Falle des 

eukaryontischen Enzyms Luziferase konnte gezeigt werden, dass dessen Faltung 

bei der Expression in einem Chaperon-dezimierten Escherichia coli-Lysat schnell 

und eng gekoppelt an die Translation erfolgt. Die Ausbeute an richtig gefaltetem 

Protein war allerdings sehr gering. Im Gegensatz dazu führte die Zugabe von 
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gereinigtem Triggerfaktor und DnaK/DnaJ/GrpE zum Lysat zu einer 

Ausbeutesteigerung an nativem Protein, wobei gleichzeitig die Faltung von 

Luziferase in Relation zur Translation erheblich verzögert wurde. Während das 

mehrdomänige bakterielle Protein β-Galaktosidase die endogene 

Chaperonmaschinerie optimal zu dessen Faltung nutzen kann (Agashe et al., 

2004), ist die ansonsten im eukaryontischen Zytosol beobachtete und sehr 

effektive co-translationale Domänenfaltung von Luziferase nicht mit dem 

prokaryontischen Chaperonsystem kompatibel. Das lässt darauf schließen, dass 

bei der Kopplung von Translation und Proteinfaltung in pro- und 

eukaryontischen Zellen grundlegende Unterschiede bestehen.  

Des Weiteren wurde das bakterielle Lysat, welches keine 

eukaryontischen Chaperone enthält, zur Bestimmung der Mindestanforderungen 

für die Faltung von neu synthetisiertem Aktin verwendet. Die in vitro Translation 

von Aktin in Anwesenheit verschiedener gereinigter Chaperone zeigte, dass 

einzig das eukaryontische Chaperonin TRiC für die de novo Faltung von Aktin 

ausreichend und absolut essentiell ist. Die native Konformation, des auf diese 

Weise produzierten Aktins, wurde durch dessen spezifische Bindung an DNase I 

und Aktinfilamentbildung nachgewiesen. Interessanter Weise erfolgte im 

TRiC-angereicherten Lysat die Aktinfaltung wesentlich langsamer als dies im 

eukaryontischen Zytosol der Fall ist. Lysate, die mit den bakteriellen Chaperonen 

GroEL/GroES bzw. DanK/DnaJ/GrpE ergänzt wurden, führten zwar zu 

größtenteils löslichem jedoch fehlgefaltetem Aktin. 

Zusätzlich konnte gezeigt werden, dass TRiC durch den partiellen 

Einschluss von Domänen großer modularer Proteine zu deren domänenweisen 

Faltung beiträgt. Diese Schlussfolgerung basiert auf der Beobachtung, dass bei 

der Expression von mehrdomänigen Aktinfusionsproteinen in vivo und in vitro 

diese entweder in das Aktin-Zytoskelett von Hefen integrieren bzw. einen 

stabilen Komplex mit DNase I formen. Der Mechanismus, mit dem TRiC die 

Faltung von mehrdomänigen Proteinen bewerkstelligt, könnte dabei dem 

kürzlich veröffentlichten endoproteolytischen Abbau von einzelnen 

Proteindomänen durch das Proteasom ähnlich sein (Liu et al., 2003). 



Summary                                                                                                                     VII                                  

II Summary 

Proteins are the central molecules of life. To become functionally active, 

newly synthesized polypeptide chains must fold into unique three-dimensional 

structures on a biologically relevant time scale. Although the information 

required for correct folding resides in the linear amino acid sequence of a protein, 

execution of the folding process under cellular conditions is critically dependent 

on the assistance of “helper proteins” termed molecular chaperones. This group 

of proteins shares the common function of binding to newly synthesized 

non-native proteins to prevent off-pathway reactions which otherwise would 

lead to misfolding and aggregation. Two major classes of chaperones, the Hsp70s 

and the chaperonins, have been implicated in de novo protein folding in the 

cytosol. While Hsp70s are primarily involved in stabilizing nascent chains until a 

complete domain has emerged from the ribosome and is competent for folding, 

the barrel-shaped chaperonins provide physically defined compartments inside 

which complete proteins or protein domains can fold unimpaired by 

aggregation. Proteins of eukaryotic origin which, on average, have a more 

complex architecture than their prokaryotic counterparts, often fold inefficiently 

upon expression in bacterial hosts. For many decades, this phenomenon placed 

great limitations on the recombinant production of proteins.  

In the present study, eukaryotic multi-domain proteins were 

synthesized in cell-free translation systems in order to investigate the 

contribution of individual chaperones to their de novo folding: Upon expression 

under chaperone-depleted conditions in an Escherichia coli based lysate, the 

modular eukaryotic protein firefly luciferase was demonstrated to fold by a rapid 

default-pathway, tightly coupled to translation. However, only a minor fraction 

of the translated protein chains folded correctly. In contrast, supplementation of 

the lysate with purified trigger factor and DnaK/DnaJ/GrpE increased the 

amount of native protein, but markedly delayed firefly luciferase folding relative 

to translation. Interestingly, while the bacterial multi-domain protein 

β-galactosidase uses the endogenous chaperone machinery effectively (Agashe et 
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al., 2004), the efficient co-translational domain folding of firefly luciferase 

observed in eukaryotes is not compatible with the prokaryotic chaperone system. 

Thus, important differences between bacterial and eukaryotic cells seem to exist 

in the coupling of translation and folding. 

Moreover, the bacterial lysate which did not contain any eukaryotic 

chaperones was further utilized to determine the minimum requirements for the 

folding of newly synthesized actin. By conducting in vitro translation reactions in 

the presence of purified components, the chaperonin TRiC was found to be the 

only eukaryotic chaperone absolutely necessary and sufficient for de novo actin 

folding. The actin thus produced bound DNase I and polymerized into filaments, 

hallmarks of its native state. Lysate supplementation with the bacterial 

chaperonin GroEL/GroES or the DnaK/DnaJ/GrpE chaperones led to mostly 

soluble actin, yet failed to facilitate its correct folding. Notably, actin folding in 

the TRiC-supplemented bacterial lysate occurred with slower kinetics when 

compared to the eukaryotic cytosol. 

Additionally, TRiC was demonstrated to be capable of mediating the 

domain-wise folding of modular proteins by their partial encapsulation in the 

chaperonin cavity. This was based on the fact that upon expression of actin 

multi-domain fusion proteins both in vivo and in vitro, the proteins properly 

integrated into yeast cytoskeleton structures as well as formed stable complexes 

with DNase I. The mechanism of how TRiC might promote the folding of 

individual protein domains is thereby reminiscent of the domain-wise 

endoproteolytical degradation of proteins by the proteasome, as reported 

recently (Liu et al., 2003). 
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1 Introduction 

Proteins are very diverse biomolecules and play crucial roles in virtually 

all biological processes. They are built from a repertoire of 20 different amino 

acids which are linked to each other by peptide bonds in order to form chains of 

various lengths. Proteins constitute the majority of the dry mass of a cell and 

fulfill a remarkable number of biological functions. Some proteins act as enzymes 

and are responsible for catalyzing thousands of chemical reactions involved in 

metabolism. Others provide structural building blocks or serve as transport and 

storage devices. Proteins are also involved in the control of cell division, 

differentiation of cells, their coordinated motion and the delivery of information 

between them. 

1.1 From DNA to protein 

1.1.1 Protein synthesis and structure 

Inside the cell, the information for the synthesis of individual proteins is 

encoded in genes as part of double-stranded DNA. Prior to synthesis, the gene is 

transcribed into a linear single-stranded messenger RNA (mRNA), and in the 

case of eukaryotic cells, exported from the nucleus into the cytosol. There, 

ribosomes, large ribonucleotide complexes, translate the mRNA into its amino 

acid sequences in a vectorial manner. The newly synthesized polypeptide chain 

exits these complexes through the ribosomal exit tunnel and generally adopts its 

unique three-dimensional structure during and upon release. The process in 

which the linear sequence of amino acids is converted into a three-dimensional 

structure is called protein folding. 

Amino acids consist of an amino group, a carboxyl group, a hydrogen 

atom, and a variable side chain, all of which are bonded to the central alpha 

carbon atom (Cα). Twenty kinds of side chains varying in size, charge, shape, 

hydrogen-bonding capacity, and chemical reactivity are commonly found in 

naturally occurring proteins. The α-carboxyl group of one amino acid is joined to 
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the α-amino group of another amino acid by a peptide-bond, forming a stable 

linear and unbranched backbone structure (Figure 1). By convention, the amino 

end is referred to as the beginning of a polypeptide chain. 

The structure of proteins is typically described in terms of four 

hierarchical levels of organization: The linear arrangement of amino acids 

constituting the polypeptide chain is called the primary structure. The secondary 

structure refers to the localized organization of parts of a polypeptide chain due 

to the formation of stabilizing hydrogen bonds between certain residues. As a 

consequence, the backbone folds periodically into one of two geometric 

arrangements: an α-helix, which is a spiral rodlike structure, or a β-sheet, a 

planar structure consisting of alignments of two or more β-strands, which are 

generally short and fully extended segments of the backbone. The tertiary 

structure of a protein describes the overall conformation of a polypeptide chain, 

that is, the three-dimensional arrangement of all the amino acids organized in 

secondary structural elements. The stability of the tertiary structures is mostly 

attained by hydrophobic interactions between nonpolar side chains and, in some 

proteins, disulfide bonds. For proteins consisting of only a single polypeptide 

chain, tertiary structures are the highest level of organization. The final 

association of multiple polypeptide chains resulting in an active and functional 

unit is referred to as quaternary structure, mainly stabilized by all types of 

noncovalent interactions between the subunits. 

1.1.2 The protein folding problem 

In order to fulfill their biological functions, proteins have to acquire a 

specific and unique three-dimensional structure, the so called “native state”. All 

the information necessary to reach this energetically favored and most stable 

folded conformation of a protein is contained in its amino acid sequence, as 

shown by pioneering experiments of Christian Anfinsen (Anfinsen, 1973). He 

demonstrated that correct refolding of fully denatured ribonuclease into its 

native and enzymatically active conformation occurs spontaneously and without 

any further assistance in free solution. Even more striking was the observation 
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that this refolding process can take place on a biologically relevant time scale 

(Schechter et al., 1970). 

 

 
 
Figure 1: Individual amino acids in a protein are linked by peptide bonds. 
 
Each amino acid has the same fundamental structure, differing only in the side chain, 
designated the R-group (R). The carbon atom to which the amino-, carboxyl-, and 
R-groups are attached is called the alpha carbon (Cα). Individual amino acids are linked 
by peptide bonds which are planar (blue shading) and do not allow rotation. Rotation 
within the polypeptide is only possible around the N-Cα and Cα-C bonds – their angles 
are described as psi (Ψ) and phi (Φ), respectively. 
 

While the structures of amino acids are relatively simple and similar to 

one another, three-dimensional conformations of proteins are exceedingly 

complex. Theoretically, proteins have an incomparably high number of possible 

conformations due to the nearly free rotation around the bond connecting the Cα 

and the carboxyl carbon and the bond between the Cα and the amino group in 

their peptide backbone (Figure 1). The angles of these rotations are defined as the 

dihedral angles Ψ (psi) and Φ (phi). The peptide bond itself is planar, resulting 

from the partial double bond character, caused by the resonance of electrons 

rapidly moving between the oxygen and the nitrogen. Furthermore, steric 

repulsions between amino acid side chains are responsible for the exclusion of 

most of the theoretically existing Ψ and Φ pairs. In 1968, Ramachandran 

calculated the energy contained in various pairs of Ψ and Φ angles and found the 

two most stable pairs, termed the α and the β conformation (Ramachandran and 

Sasisekharan, 1968). These two pairs of angles are found to occur almost 
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exclusively in folded proteins, including the most prominent examples of 

secondary structure: α-helices and β-strands. 

In order to get an idea of how long it would take a protein to reach its 

lowest-energy conformation through random folding, Levinthal computed the 

number of all theoretically possible conformations of a polypeptide containing 

150 amino acids (Levinthal, 1969). The result for this particular protein was ~10300 

possible conformations. Even if one assumes that each amino acid populates only 

the two lowest energy regions Ψ and Φ in the Ramachandran plot, there are still 

~1030 main-chain conformations for a small protein with 100 residues. Based on 

the physical speed limit of ~1011 s-1 possible interconversions between main-chain 

conformations, it would take about 1011 years (longer than the lifetime of the 

universe!) to populate the full number of potential conformers (Dinner et al., 

2000). This so called “Levinthal paradox” led to the conclusion that a protein 

cannot sample all the possible conformations during the process of folding. 

Rather, “folding is speeded and guided by the rapid formation of local 

interactions which then determine the further folding of the peptide. This 

suggests local amino acid sequences which form stable interactions and serve as 

nucleation points in the folding process”(Levinthal, 1969). 

1.1.3 Protein folding mechanisms 

As protein folding through random, unbiased adoption of all possible 

conformations would take “an eternity”, it was a logical step to assume that there 

must be defined pathways to reduce the choices in folding. The search for a 

single, general mechanism of protein folding led to various proposals, all of 

which simplified the folding process by uncoupling the formation of secondary 

structure from that of tertiary structure (Daggett and Fersht, 2003).  

The classical “nucleation-growth” mechanism (Wetlaufer, 1973) 

postulated that initially some neighboring amino acids form stable secondary 

structures, acting as nuclei from which native tertiary structure propagates in a 

stepwise manner. However, nucleation dropped from favor as it predicts the 

absence of folding intermediates, although the field of protein folding was 
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dominated by the study of folding intermediates at that time (Kim and Baldwin, 

1982; Ptitsyn, 1987). 

 Therefore, alternative models became more attractive: one was the 

“framework” model (Ptitsyn and Rashin, 1975; Kim and Baldwin, 1982; Kim and 

Baldwin, 1990) together with the closely related “diffusion-collision” model 

(Karplus and Weaver, 1976). This model predicts that local elements of native 

secondary structure form independently and then diffuse until they collide, 

successfully adhere, and coalesce to result in the final native tertiary structure. 

The second model, the “hydrophobic collapse” model (Schellman, 1955; 

Kauzmann, 1959; Tanford, 1962; Baldwin, 1989), hypothesized that a protein 

rapidly collapses around its hydrophobic side chains so that folding can occur in 

a confined volume, thereby reducing the number of possible conformations 

during the process of folding to the native sate.  

In the early 1990s, proteins were observed which folded by simple 

two-state kinetics without the formation of detectable intermediate structures 

(Jackson and Fersht, 1991). Others formed secondary and tertiary structure in 

parallel as they undergo hydrophobic collapse (Otzen et al., 1994). These findings 

led to the formulation of the “nucleation-condensation” mechanism (Fersht, 

1997) which unites features of both the “hydrophobic collapse” and the 

“framework” mechanism.  

Nowadays, the synergy of experimental data and protein folding 

simulations by molecular dynamics computations are beginning to describe 

folding and unfolding pathways at atomic-level resolution (Mayor et al., 2000; 

Fersht and Daggett, 2002; Vendruscolo and Dobson, 2005). Despite the 

tremendous progress within the last decade, these kinds of simulations are still 

limited to very small proteins and are not yet applicable to the large majority of 

proteins in the cell. 

1.1.4 Protein folding energy landscapes  

The “classical view” of protein folding along folding pathways has 

recently been replaced by the “new view” (Baldwin, 1995), the so-called “folding 

funnel” or “energy landscape” theory (Baldwin, 1995; Dill and Chan, 1997; 
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Dobson et al., 1998; Onuchic and Wolynes, 2004). Here, protein folding is 

described as a process of reaching a global minimum in free energy (satisfying 

Anfinsen’s thermodynamic hypothesis) and doing so quickly (satisfying 

Levinthal’s kinetic theory) by multiple down-hill routes on funnel-like energy 

landscapes (Figure 2).  

 

 
 
Figure 2: Energy landscape of a folding funnel. 
 
Protein folding proceeds from an unfolded state of high energy towards a unique three-
dimensional native structure where the energy level is lowest. In general, several folding 
pathways down the rugged energy landscape are possible. For instance, the red 
trajectory illustrates a fast track of folding whereas the yellow trajectory illustrates a slow 
track of folding in which a kinetically stable intermediate is populated, slowing down the 
folding process. Adapted from Dill and Chan (1997). 
 

The distinction between a pathway and a funnel is that the former describes a 

one-dimensional route through the space of all configurations possible, whereas 

the latter delineates folding as a progressive reduction in dimensionality of the 

accessible conformational space, beginning from the many degrees of freedom 

available to denatured chains, down to the almost a complete lack of freedom of 

the native protein (Dill and Chan, 1997). Thus, in the funnel theory, folding can 

occur either on a sub-second timescale by reducing all potential conformations to 

a subset of thermodynamically favored local minima (Schultz, 2000) or undergo a 

slow trajectory through many unproductive transition states in a more or less 
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rugged energy landscape (Bryngelson et al., 1995; Onuchic et al., 1995; Wolynes 

et al., 1995). Kinetic traps arising close to the bottom of the folding funnel 

correspond to the accumulation of misfolded proteins. Despite the information 

gained from these models addressing some principles of folding kinetics, they 

are not yet recipes for predicting the defined three-dimensional structure from a 

given amino acid sequence (Dill and Chan, 1997). 

1.1.5 Differences in protein folding in vitro and in vivo 

The process of protein folding in vitro has been studied extensively over 

the last few decades in order to gain insights in how proteins fold inside living 

cells. Most of the initial in vitro refolding experiments utilized small, single-

domain proteins that undergo cooperative and reversible folding reactions, since 

multi-domain proteins often refold very inefficiently due to aggregation. To 

investigate protein refolding, purified proteins are in general first unfolded in 

denaturants like guanidinium-hydrochlorid (6 M) or urea (8 M) and then rapidly 

diluted into aqueous solutions where refolding to the native state is allowed to 

occur spontaneously. In order to avoid protein aggregation during refolding, the 

experiments are usually performed in simple buffer systems and under 

optimized conditions (very low protein concentrations as well as optimal pH, 

salt, and temperature).  

Compared to in vitro protein refolding under idealized conditions, 

folding inside the cell is much more complex. Here, protein folding must be 

achieved in a highly crowded and dynamic environment that favors protein 

misfolding and aggregation (Figure 3). The total concentration of proteins and 

RNA in the cytosol of an Escherichia coli (E. coli) cell has been estimated to be in 

the range of 300-400 mg/ml (Zimmerman and Trach, 1991). Thus, a significant 

proportion of the cellular volume is already physically occupied by the large 

amount of mutually impenetrable macromolecules and is therefore inaccessible 

for other molecules. This phenomenon, designated as “excluded volume effect” 

or “macromolecular crowding” (Ellis, 2001; Minton, 2001), is also responsible for 

significant increases in the affinities and rate constants of many cellular reactions 

by several orders of magnitude. Thus, macromolecular crowding can result, 
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among other effects, in an increased propensity of folding protein molecules to 

aggregate (Zimmerman and Minton, 1993; Ellis and Hartl, 1996; Minton, 2000).  

 

 
 
Figure 3: Folding states accessible to a protein after synthesis on the ribosome. 
 
Upon synthesis on the ribosome, proteins are assumed to fold from a largely disordered 
unfolded state through a partially structured intermediate into their final globular native 
conformation. Native proteins can act as monomers, oligomers or assemble into highly 
ordered fibres and crystals, whilst preserving their overall structure. Instead, unfolded and 
partially folded proteins mostly form aggregated species that are frequently disordered. 
Exceptions are the so-called amyloid fibrils, which are thought to form through a 
nucleation growth mechanism, utilizing partially folded soluble precursor proteins as 
seeds. Adapted from Vendruscolo and Dobson (2005). 
 

Another major difference between protein refolding out of denaturant 

and folding in vivo is that in the cell folding is tightly coupled to the vectorial 

synthesis of polypeptide chains (N-terminus to C-terminus) on the ribosome. 

Thus, the folding information encoded in the amino acid sequence becomes 

available sequentially and not all at once, as is the case during in vitro refolding. 

Since stable folding requires the presence of at least a complete protein domain of 

~100-300 residues, nascent chains remain unfolded until the entire sequence of 
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such a folding competent unit has been synthesized and emerged from the 

ribosomal exit tunnel (Jaenicke, 1991). In eukaryotes, the rate of chain elongation 

was estimated to be approximately 4 amino acids per second (Thulasiraman et 

al., 1999). Hence, the synthesis of a complete domain takes more than a minute. 

During this time, nascent chains expose hydrophobic amino acid residues and 

segments of unstructured polypeptide backbone which are normally buried in 

the interior of a native protein and are thus susceptible to aggregation.  This 

propensity to aggregate is thought to be greatly increased by the high local 

concentration of identical nascent chains synthesized on neighboring ribosomes 

in a polysome (Ellis and Hartl, 1996). In order to minimize off-pathway reactions 

during de novo protein folding, nascent chains either have to fold 

co-translationally or need to be stabilized in a nonaggregated, folding-competent 

conformation until post-translational folding of a complete chain is possible 

(Netzer and Hartl, 1998). 

1.1.6 Protein misfolding and diseases  

Protein folding and unfolding belong to the most important mechanisms 

to generate and abolish cellular activities. Given the enormous complexity of the 

protein folding process, as described above, it is not surprising that the failure to 

fold correctly, or to remain correctly folded, will inevitably lead to 

malfunctioning in living systems and therefore to diseases (Thomas et al., 1995). 

The so-called “protein misfolding diseases” include pathological states in which 

impairment in the folding of a certain protein is accompanied by a reduction in 

the available amount of native protein normally necessary to fulfill its proper 

function. This reduction can, among other effects, result from an increased 

probability for misfolded proteins to be degraded by the quality control system 

of the endoplasmatic reticulum, as it is the case in cystic fibrosis (Amaral, 2004), 

or the improper trafficking of a protein to the site where it is needed, as it occurs 

in early-onset emphysema (Lomas and Carrell, 2002). The largest group of 

misfolding diseases, however, is associated with the conversion of proteins or 

protein fragments from their normally soluble form into insoluble, highly 

organized amyloid fibrils or plaques (Chiti and Dobson, 2006) (Figure 3). 
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Depending on the disease involved, such deposits can accumulate in a variety of 

organs including liver, spleen and brain (Dobson, 1999). The quantity of these 

aggregates can thereby range between an almost undetectable level and several 

grams to kilograms in certain manifestations of systemic amyloidosis. In recent 

years, most attention has been focused on the group of neurodegenerative 

diseases, associated with the formation of brain lesions, including Alzheimer’s 

disease, Parkinson’s disease, the polyglutamine-expansion diseases such as 

Huntington’s disease, as well as the prion diseases such as Creutzfeldt-Jakob 

disease (Barral et al., 2004). Interestingly, despite the native forms of the proteins 

involved in the respective diseases being quite different (they range from 

globular proteins to mostly unstructured polypeptides), the fibrils in which they 

appear in the disease state have many similar characteristics (Sunde and Blake, 

1997). For instance, all the fibrillar structures have very similar morphologies 

(long and unbranched), as evidenced by electron microscopy, and show a 

characteristic “cross-β” X-ray diffraction pattern. Furthermore, they all show 

specific optical properties on binding of special dye molecules, like Congo red, 

which have been utilized in diagnostics for more than a century (Dobson, 2004). 

In addition to the misfolding diseases described above, large-scale 

genome sequencing projects revealed mutations being responsible for a variety of 

inherited human diseases, such as McKusick-Kaufman Syndrome (MKKS) and 

Bardet-Biedel type 6 Syndrome (BBS6) (Slavotinek et al., 2000; Stone et al., 2000). 

Interestingly, a detailed analysis of the open reading frames harboring these 

mutations discovered heat shock proteins or proteins with similarities to this 

class of proteins which assist other proteins in folding, the so called molecular 

chaperones (Barral et al., 2004). Furthermore, these findings indicate that defects 

in the folding machinery can be directly associated with a variety of severe 

human diseases. 
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1.2 Molecular Chaperones 

Over the past 15 years, intense research efforts have demonstrated that 

efficient folding of newly synthesized proteins necessitates a complex cellular 

machinery of molecular chaperones (Ellis and Hemmingsen, 1989; Gething and 

Sambrook, 1992; Buchner, 1996; Hartl, 1996; Ellis and Hartl, 1999; Frydman, 2001; 

Hartl and Hayer-Hartl, 2002). The term “molecular chaperone” was originally 

coined to describe the specialized function of nucleoplasmin, a nuclear protein 

that promotes chromatin assembly by preventing improper interactions between 

histones and DNA (Laskey et al., 1978). This specific usage of the term was later 

generalized by John Ellis (Ellis, 1987). 

A key property, common to all chaperones, is their mediation of folding 

by minimizing improper interactions within and between molecules. To fulfill 

this function, molecular chaperones transiently bind to structural elements of 

non-native polypeptide chains, such as exposed hydrophobic residues and 

unstructured backbone regions, which are normally buried inside the globular 

structure of native proteins. Binding and release of substrate polypeptides by 

chaperones is often regulated in a complex ATP-dependent manner and may 

occur several times until folding is completed. Importantly, chaperones 

contribute neither steric information to the folding process nor are they part of 

the final native structure of the folded protein (Agashe and Hartl, 2000). 

Furthermore, chaperones do not catalyze or accelerate folding reactions in a 

classical sense, but rather increase the number of molecules that are on a 

productive folding pathway. Instead, real folding catalysts are peptidyl-prolyl 

cis-trans isomerases (PPIases) and protein disulfide isomerases (PDIs), which 

specifically catalyze rate-limiting steps in the folding process, such as the 

isomerization of peptide bonds preceding prolyl residues (Schmid et al., 1993) 

and the rearrangement of disulfide bonds (Freedman et al., 1994), respectively. 

Molecular chaperones are distributed ubiquitously across the 

boundaries of all three kingdoms of life and can fulfill their functions inside 

living cells over a wide temperature range. Although constitutively expressed 

under normal growth conditions, many chaperones are greatly upregulated upon 
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exposure to elevated temperatures or other conditions of stress, such as 

starvation and exposure to toxins (Lindquist, 1986; Lindquist and Craig, 1988; 

Morimoto, 1998). Therefore, molecular chaperones are also referred to as “stress 

proteins” or “heat shock proteins” (Hsp).  At present, more than 25 different 

protein families are described as molecular chaperones, but not all of them are 

stress proteins. The most prominent chaperones belong to five sequence-related 

families and were initially classified according to their sequences and apparent 

molecular masses (in kDa): Hsp60, Hsp70, Hsp90, Hsp100 and the small heat 

shock proteins (sHsp). 

In addition to protein folding and refolding, molecular chaperones are 

also involved in many other cellular processes, such as protein degradation, 

targeting and signal transduction (Hartl, 1996; Ellis and Hart, 2000). 

1.2.1 Pathways of chaperone mediated protein folding in the cytosol  

In living cells, a multitude of molecular chaperones is required to 

mediate the correct folding of newly synthesized proteins into their unique three-

dimensional structures. In order to fulfill this challenging task, chaperones are 

thought to be organized in complex chaperone networks (Figure 4). Although 

individual differences in de novo protein folding exist, the essential principles of 

these networks are conserved among eubacteria and eukarya. Chaperones 

initially interact with nascent chains during their biogenesis and the 

polypeptides are then conveyed between functionally cooperating chaperones 

that complete their folding to the native sate (Young et al., 2004). 

Cytosolic protein folding generally starts with the interaction of nascent 

chains emerging at the peptide exit tunnel with ribosome-associated factors: 

these are trigger factor (TF; 1.2.2) in prokaryotes and the nascent chain-associated 

complex (NAC) in eukaryotes. Notably, some eukaryotes like Saccharomyces 

cerevisiae (S. cerevisiae) feature an additional ribosome associated complex, called 

RAC (ribosome-associated complex), which consists of Ssz (a member of the 

Hsp70 family) and zuotin (a Hsp40 homolog). All these factors, although 

structurally unrelated, are associated with the large ribosomal subunit and are 

believed to guide proteins to their correct folding pathway.  
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Upon completion of translation and release from this first set of 

ribosome-bound factors, the majority (>60% of total) of small proteins are 

thought to fold rapidly and without further assistance. Longer polypeptide 

chains (~10-20% of total) subsequently interact with a second class of nascent 

chain-binding chaperones, the classical Hsp70 proteins (1.2.3). These chaperones, 

not associated with the ribosome themselves, bind to short hydrophobic 

sequences of nascent chains thereby preventing their aggregation during 

elongation. Moreover, Hsp70 proteins together with their respective 

co-chaperones of the Hsp40 family are able to assist in both co-translational 

folding, while the nascent chain is still associated with the ribosome, and 

post-translational folding, once the protein is released.  

 

 
 
Figure 4: Models for chaperone-assisted folding of newly synthesized proteins in 
the cytosol of eubacteria and eukarya. 
 
N: native protein, TF: trigger factor, NAC: nascent-chain associated complex, PFD: 
prefoldin, DnaK/DnaJ: Hsp70/Hsp40 chaperone system in the bacterial cytosol, 
GroEL/GroES: bacterial chaperonin, TRiC: eukaryotic chaperonin. Detailed information is 
provided in the text. Adapted from Hartl and Hayer-Hartl (2002). 
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Furthermore, a fraction of slow-folding and aggregation-sensitive proteins 

(~10-15% of total) require transfer to a protected folding environment provided 

by the central cavity of the multimeric chaperonins bacterial GroEL or the 

eukaryotic TRiC (1.2.4 and 1.3). Notably, TRiC mediated protein folding in the 

eukaryotic cytosol is facilitated in close cooperation with an additional factor, 

termed prefoldin (PFD), which directly binds to nascent chains and does not exist 

in bacteria. 

Finally, the correct folding of another, diverse subset of eukaryotic 

polypeptides (including transcription factors and regulatory kinases) strongly 

depends on the successive transfer from the Hsp70/40 system to chaperones of 

the Hsp90 family. Folding of these proteins is performed in a cooperative process 

between both chaperone systems, regulated by several cofactors. 

Despite the fact that proteins fold quite efficiently along individual 

folding pathways in bacteria and eukaryotes, the predominant folding 

mechanism for complex multi-domain proteins in both cytosols appear to be 

fundamentally different. Whereas folding of these proteins in bacteria occurs 

mostly post-translationally, folding of similar complex polypeptides in 

eukaryotes is generally facilitated in a co-translational manner.  Although it was 

proposed that the shift from a post-translational to a co-translational folding 

mechanism must have occurred during evolution (the so called “folding shift 

hypothesis”; Netzer and Hartl, 1997), it is not yet clear, whether the ability to 

support co-translational folding has been lost (or reduced) by prokaryotes or 

acquired by eukaryotes. 

Thus, the reduced efficiency of co-translational folding in prokaryotes 

might be a valid explanation for the low abundance of multi-domain proteins in 

these organisms (~13% of total compared to ~38% in eukaryotes; Netzer and 

Hartl, 1998), and why modular proteins of eukaryotic origin tend to misfold and 

form inclusion bodies upon expression in bacterial hosts (Marston, 1986; Baneyx, 

1999). 
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1.2.2 Trigger factor: a ribosome-associated chaperone 

Trigger factor (TF), initially discovered as an E. coli protein facilitating 

protein export into the periplasmic space (Crooke and Wickner, 1987), is now 

known to be one of the first bacterial chaperone to meet nascent chains as they 

emerge from the ribosome exit tunnel (Valent et al., 1995; Hesterkamp et al., 1996; 

Scholz et al., 1997; Valent et al., 1997). 

1.2.2.1 TF structure and localization at the ribosome 

E. coli TF (the tig gene product) is a 48 kDa protein composed of three 

individual domains (Figure 5A, bottom): The N-terminal ribosome-binding 

domain, containing the highly conserved and essential ribosome binding 

signature GFRxGxxP (aa 43-50), is exclusively responsible for the specific binding 

of TF to the ribosomal proteins L23 and L29 located in close proximity to the 

polypeptide exit tunnel (Hesterkamp et al., 1997; Kramer et al., 2002). 

Importantly, TF binding to the ribosome has been shown to be essential for its 

interaction with nascent chains and is markedly reduced upon mutation of its 

ribosome binding signature motif (Kramer et al., 2002). The second domain in 

sequence exhibits a catalytic activity as a peptidyl-prolyl cis/trans isomerase 

(PPIase). Its contribution to de novo protein folding still remains unclear, since it 

is not essential for TF function in vivo (Genevaux et al., 2004; Kramer et al., 

2004a). The C-terminal domain, comprising virtually half of the TF molecule, 

displays no sequence homology to any other protein (Hesterkamp and Bukau, 

1996). Recent studies using a photo-crosslinking approach demonstrated this 

domain to be directly involved in substrate binding (Lakshmipathy et al., 2007). 

Furthermore, deletion of the C-terminal domain drastically reduced the 

chaperone activity of TF in vitro and in vivo (Kramer et al., 2004b; Merz et al., 

2006).  

In 2004, Ferbitz et al. solved the crystal structure of E. coli TF, as well as 

the ribosome binding domain of TF in complex with ribosomes of archaeal origin 

(Ferbitz et al., 2004). As depicted in Figure 5A (top panel), TF adopts a fairly 

elongated structure which was proposed to resemble the shape of a “crouching 

dragon”. Thereby, the “tail” is formed by the N-terminal ribosome binding 
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domain, whereas the PPIase domain constitutes the “head”. The C-terminal 

domain is positioned in the middle of the three-dimensional structure, forming 

two “arms” and the back of the molecule. The result of this crescent TF structure 

is a large cavity, located between the tail and the arms of the protein. This 

so-called “cradle” is highly enriched in hydrophobic side chains and therefore 

supposedly the contact region for emerging nascent chains from the ribosome. 

 

 
 
Figure 5: Structure of E. coli TF. 
 
(A) Top: ribbon diagram of the extended TF structure. Bottom: domain arrangement 
comprising the N-terminal ribosome-binding domain (Tail), the central PPIase domain 
(Head) and the C-terminal domain (Arm1 and Arm2). Domain borders and the ribosome-
binding signature (residues 43-50) are indicated. (B) Model of full-length TF bound to the 
large ribosomal subunit of Haloarcula marismortui shown as slice along the peptide exit 
tunnel containing a modeled nascent chain (magenta), extruding from the peptidyl 
transferase center (PT). In all parts, the ribosome-binding “tail” is shown in red, the 
PPIase “head” in yellow and “arm1” and “arm2” in green and blue, respectively. Adapted 
from Ferbitz et al. (2004). 
 

A model of full-length TF bound to the L23 protein of an archaeal ribosome 

suggests TF to hunch over the polypeptide exit of the ribosome, exposing the 

hydrophobic inner surface of the cradle towards the area where the nascent chain 

exits the ribosome (Figure 5B). A similar orientation was shown for the 

N-terminal domain of Deinococcus radiodurans TF in complex with its cognate 50S 

subunit (Baram et al., 2005; Schlunzen et al., 2005). Interestingly, recent protease 



Introduction   17                                  

protection studies utilizing model proteins such as firefly luciferase reported the 

cradle to form a shielded folding environment for nascent chains at the ribosome 

(Hoffmann et al., 2006; Tomic et al., 2006). 

1.2.2.2 Role of TF in protein folding 

The formation of a 1:1 complex between TF and vacant ribosomes is a 

prerequisite for its interaction with nascent chains emerging from the 

polypeptide exit tunnel (Kramer et al., 2002; Patzelt et al., 2002; Maier et al., 

2003). Since TF function is ATP-independent, the chaperone does not actively 

assist protein folding through regulated cycles of substrate binding and release. 

Instead, TF was for a long time thought to mainly bind to short nascent chains 

(Valent et al., 1995; Hesterkamp et al., 1996), mediated by sequences enriched in 

hydrophobic amino acids (Patzelt et al., 2001), in order to prevent early 

aggregation events. Recently, TF interactions were also reported for longer 

nascent chains (Hoffmann et al., 2006; Tomic et al., 2006). Additionally, Kasier 

et al. demonstrated that TF interaction with ribosomes and newly synthesized 

polypeptide chains occurs in a dynamic reaction cycle which involves all three 

functional domains of the chaperone (Kaiser et al., 2006). Upon release from TF, 

active folding of newly synthesized proteins can then be facilitated by the 

ATP-driven chaperones, located further downstream in the folding pathway. So 

far, a role of TF in post-translational folding has not yet been shown, but would 

be consistent with the observation that only approximately half the TF molecules 

are ribosome associated (Bukau et al., 2000) and that TF is able to bind unfolded 

proteins in vitro (Scholz et al., 1997). 

TF and DnaK (the main bacterial Hsp70 system) have been shown to 

have overlapping chaperone function in stabilizing nascent chains in a state 

competent for subsequent folding (Deuerling et al., 1999; Teter et al., 1999). 

Although not physically tethered to the ribosomes itself, DnaK is known to bind 

nascent chains during translation while these are still attached to the ribosome 

(Teter et al., 1999). In E. coli cells lacking TF (∆tig), DnaK can function as an 

effective substitute in chaperoning nascent chains during translation, reflected in 

an increased amount of this particular chaperone being transiently associated 
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with ribosome bound nascent chains. Furthermore, the simultaneous deletion of 

the genes encoding for TF and DnaK severely diminishes the viability of E. coli 

cells at temperatures above 30 °C and results in the accumulation of misfolded 

and aggregated proteins, including a number of large multi-domain proteins 

(Deuerling et al., 1999; Teter et al., 1999; Genevaux et al., 2004). Interestingly, 

recent results have demonstrated that some bacterial cells can cope with this loss 

of viability by the accumulation of suppressor mutations, when first grown at 

20 °C and gradually adapted to higher temperatures (Genevaux et al., 2004; 

Vorderwulbecke et al., 2004). Moreover, the growth defect can also be 

complemented by overproduction of SecB (a chaperone involved in protein 

translocation) and GroEL/GroES, utilized as backup system for TF and DnaK 

(Ullers et al., 2004; Vorderwulbecke et al., 2004). 

1.2.3 The Hsp70 chaperone system 

The members of the Hsp70 family are highly conserved ATPases found 

in the cytosol of prokaryotes, eukaryotes and some archaea, as well as within 

most eukaryotic organelles (Craig et al., 1993; Hartl, 1996; Hartl and Hayer-Hartl, 

2002). Hsp70s act on their substrates by a mechanism of binding and release, 

usually in a cofactor dependent manner, and play an essential role in a variety of 

cellular processes under both stress- and non-stress conditions. Among those, 

assisting in de novo protein folding and the prevention of aggregation are 

probably the most important ones. Additionally, they are also involved in protein 

targeting and membrane translocation, the dissociation of large aggregates, and 

protein degradation (Hartl, 1996; Bukau and Horwich, 1998).  

1.2.3.1 Hsp70 structure and reaction cycle 

Hsp70 chaperones typically consist of two major functional domains, a 

highly conserved N-terminal ATPase domain (44 kDa) and a less conserved 

C-terminal peptide binding domain (25 kDa). In the case of DnaK, crystal 

structures of both individual domains, but not of the entire molecule have been 

determined (Zhu et al., 1996; Harrison et al., 1997). Interestingly, the ATPase 

domain turned out to have a fold similar to that of monomeric actin, consisting of 
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two structural lobes with a deep nucleotide-binding cleft between them (Flaherty 

et al., 1991). The peptide binding domain is divided into a β-sandwich 

subdomain, comprising the peptide-binding cleft, and an α-helical extension that 

functions as a lid for substrate enclosure (Zhu et al., 1996). 

The ATP-regulated cycle of substrate binding and release is best 

understood for the bacterial DnaK, its Hsp40 co-chaperone DnaJ, and the 

nucleotide exchange factor GrpE (Bukau and Horwich, 1998; Naylor and Hartl, 

2001). During this cycle, DnaK alternates between two different structural states, 

dependent on the phosphorylation state of the nucleotide bound (Figure 6). 

 

 
 
Figure 6: Chaperone cycle of the bacterial Hsp70 chaperone system DnaK, DnaJ 
and GrpE. 
 
The cycle starts with the association of non-native substrate proteins with either DnaJ (J) 
(1a) or DnaK (K) in the ATP-bound open conformation (1b). DnaJ and substrate protein 
(2) then stimulate the ATP-hydrolysis of DnaK (3), resulting in the closure of its substrate 
binding pocket. The interaction of GrpE (E) with DnaK (4) efficiently promotes the 
exchange of bound ADP (5) for ATP (6). This results in the opening of the substrate 
binding cleft and the exchange of substrate proteins (7). The released protein can then 
either fold towards the native state (8) or rebind to DnaJ (9) or DnaK (1b). Adapted from 
Naylor and Hartl (2001). 



Introduction   20                                  

In the ATP-bound state, the lid over the peptide-binding cleft is in an open 

conformation and substrate binding and release is allowed to occur rapidly. In 

the ADP-bound form, the binding pocket is closed and substrates are bound with 

high affinity. Cycling of DnaK between its different nucleotide-bound states is 

regulated by the cofactors DnaJ and GrpE (Szabo et al., 1994). Upon substrate 

binding of DnaK in the ATP-bound state, interaction with DnaJ stimulates the 

ATPase activity of DnaK, thus facilitating tight peptide capture (Mayer et al., 

2000). Importantly, DnaJ is itself a chaperone which can bind unfolded 

polypeptides and subsequently present them to the ATP-bound state of DnaK 

(Langer et al., 1992a; Rudiger et al., 2001). Substrate release from DnaK requires 

the exchange of bound ADP for ATP, catalyzed by the nucleotide exchange factor 

GrpE (Harrison et al., 1997). Furthermore, rebinding of ATP not only dissociates 

the DnaK:substrate complex but also resets DnaK to its initial low substrate 

affinity state completing the reaction cycle. 

Although the bacterial and eukaryotic Hsp70 systems have similar 

functional properties (Figure 4), a GrpE-like nucleotide exchange factor homolog 

is absent in the eukaryotic cytosol. Such a factor may be dispensable as the rate-

limiting step in the ATPase cycle of eukaryotic Hsp70 is normally not the 

dissociation of ADP but rather the hydrolysis of ATP itself (Hohfeld et al., 1995). 

1.2.3.2 Hsp70 substrates and folding mechanism 

Hsp70 proteins are known to recognize exposed hydrophobic amino 

acid side chains within an accessible polypeptide backbone, structural features 

which are common to most nascent chains and proteins in their non-native states. 

Nevertheless, there has been some controversy regarding the in vivo role of 

DnaK. This was based on the fact that, under non-stress conditions, deletion of 

DnaK in a certain wild-type E. coli strain is lethal, whereas in others it is not 

(Hesterkamp and Bukau, 1998; Teter et al., 1999). Importantly, DnaK is absolutely 

essential for cell viability under heat stress conditions (Bukau and Walker, 1989). 

Furthermore, downstream of TF, DnaK has been shown to interact transiently 

with a variety of nascent and newly synthesized polypeptides (~15% of total; 

Figure 4), preferentially in the size range of 30-75 kDa (Teter et al., 1999). For 
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some proteins, the half-life of DnaK transit has been determined to be <1 min, 

consistent with the rapid protein folding upon completion of synthesis. The 

extent of DnaK binding to nascent chains is modulated by TF since in ∆tig cells 

the fraction of nascent polypeptides interacting with DnaK increases more than 

twofold and is markedly enriched in short chains (Deuerling et al., 1999; Teter et 

al., 1999). Additional depletion of DnaK in ∆tig cells results in the aggregation of 

many large, newly synthesized proteins (Deuerling et al., 1999), arguing for 

DnaK to play an important role in facilitating the post-translational folding of 

complex multi-domain proteins, which do not fit into the central cavity of the 

GroEL chaperonin (size exclusion: ~60 kDa). Similar to DnaK, mammalian Hsp70 

was also shown to act co-translationally on a large subset of newly synthesized 

polypeptides, including a variety of multi-domain proteins (Frydman et al., 1994; 

Thulasiraman et al., 1999). 

The binding motif of putative Hsp70 target peptides was determined to 

be ~4-8 amino acids in length and of preferentially hydrophobic character (Flynn 

et al., 1991; Rudiger et al., 1997). It was predicted to occur, on average, every 36 

residues in every polypeptide and is normally buried in the interior of a folded 

protein  (Bukau and Horwich, 1998). 

From a mechanistic point of view, folding of an Hsp70-bound protein 

can only occur upon its release from the chaperone stabilized state. Once this has 

happened, the protein is given the chance to either fold spontaneously, to rebind 

to Hsp70 or to be transferred to another chaperone. In vitro, proteins can undergo 

multiple rounds of binding and release, as shown for the 62 kDa model protein 

firefly luciferase (Szabo et al., 1994). It is also possible that folding of especially 

large and complex proteins is mediated by binding and release of several Hsp70 

molecules acting on individual domains of the protein. 

1.2.4 The chaperonins 

The chaperonins (Hemmingsen et al., 1988) are a ubiquitous family of 

sequence-related and essential proteins which form large, multimeric, bi-toroidal 

structures enclosing a central cavity in each ring (Hartl, 1996; Bukau and 

Horwich, 1998; Carrascosa et al., 2001; Frydman, 2001). Characteristically, 
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ATP-regulated folding of complete proteins (or protein domains) is facilitated 

inside the sequestered space of these cavities, unimpaired by aggregation with 

other non-native proteins of the cellular environment (Martin et al., 1993; Spiess 

et al., 2004). Chaperonins are divided into two subgroups which are similar in 

architecture but distantly related in sequence: Group I chaperonins are found in 

the bacterial cytosol (GroEL) and in eukaryotic organelles of endosymbiotic 

origin (Cpn60 in chloroplasts and Hsp60 in mitochondria). They function in close 

cooperation with cofactors of the Hsp10 family (GroES in bacteria, Cpn10 in 

chloroplasts, and Hsp10 in mitochondria). Group II chaperonins exist in archaea 

(thermosome) and the eukaryotic cytosol (TRiC) whose function is independent 

of an Hsp10-like cofactor. 

Since the focus of this study mostly concerns TRiC, only a brief 

overview of the best characterized group I chaperonin system GroEL/GroES 

from E. coli will be given. GroEL is a homo-tetradecamer of nearly 800 kDa, 

composed of two identical back-to-back stacked seven-membered rings (Braig et 

al., 1994) (Figure 7A). Each ~60 kDa subunit consists of an equatorial 

ATP-binding, an intermediate, and an apical substrate-binding domain. In order 

to fold substrates efficiently, GroEL requires the cofactor GroES, a dome-shaped 

homo-heptameric ring of ~10 kDa subunits (Hunt et al., 1996). 

GroEL/GroES mediated protein folding is an alternating process 

involving the encapsulation of unfolded or partially folded substrate proteins 

under the GroES lid on either side of the GroEL cylinder (Hayer-Hartl et al., 1995; 

Bukau and Horwich, 1998). Folding starts with the binding of a substrate 

polypeptide to the apical domains, exposing hydrophobic surfaces, at the free 

end of a GroEL/GroES complex (Figure 7B). This step is closely followed by the 

binding of ATP and GroES at the interacting GroEL toroid, resulting in substrate 

encapsulation. Upon GroES binding, GroEL undergoes major conformational 

changes (Xu et al., 1997) leading to cavity enlargement and a shift in its surface to 

a predominantly hydrophilic lining (Lin and Rye, 2006). Enclosed in this 

so-called “Anfinsen cage”, single proteins up to ~60 kDa are given the chance to 

fold unimpaired by aggregation (Ellis, 2006). After ATP hydrolysis (~10-15 s), 

ATP binding to the opposite ring of GroEL results in the release of GroES and the 
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substrate protein. Proteins that have not acquired their native state are 

recaptured and subjected to another round of folding. 

 

 
 
Figure 7: The chaperonin system GroEL/GroES of E. coli. 
 
(A) Top: Space-filling model of the GroEL/GroES complex. The secondary structure of 
one subunit in the upper GroEL ring is shown and separately depicted with the apical (a), 
intermediate (i) and equatorial (e) domains highlighted. Bottom: Cross-section of the 
chaperonin complex, illustrating the central cage in the upper ring. Adapted from Lin and 
Rye (2006). (B) Simplified reaction cycle of protein folding in the GroEL/GroES cage. 
Substrate binding to the free GroEL-ring is closely followed by binding of ATP and 
GroES, resulting in substrate enclosure. During ATP-hydrolysis (10-15 s), the protein is 
given the chance to fold. After binding of ATP to the opposite ring, GroES and the 
substrate are released from the chaperonin. Adapted from Ellis (2006). 
 

Whereas GroEL interacts with almost any non-native model protein 

in vitro (Coyle et al., 1997), only ~10% of newly translated polypeptides in E. coli 

interact with the chaperonin under normal growth conditions (Ewalt et al., 1997) 

(Figure 4).  Recently, GroEL substrates where shown to preferentially consist of 

βα-barrel domains, including many essential proteins for cell viability (Houry et 

al., 1999; Kerner et al., 2005). Noteworthy, GroEL is also able to assist the folding 

of large proteins which cannot be encapsulated by the co-chaperonin GroES 

(Chaudhuri et al., 2001). 
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1.3 TRiC: the eukaryotic group II chaperonin 

Among the chaperonins, the eukaryotic group II chaperonin TRiC (TCP1 

ring complex; also termed CCT for chaperonin containing TCP1) is the most 

complex, not only with regard to its hetero-oligomeric subunit composition but 

also with respect to its function in protein folding (Gutsche et al., 1999; 

Carrascosa et al., 2001). 

1.3.1 Structure and subunit composition 

Unlike GroEL, which is a homo-oligomer, each of the two TRiC toroids 

consists of eight different, albeit homologous subunits, ranging between 

50-60 kDa in size (Frydman et al., 1992; Gao et al., 1992; Lewis et al., 1992). The 

individual subunits (TRiC α, β, γ, δ, ε, ζ, η, and θ) display ~30% identity to one 

another and are thought to be organized in a unique arrangement within each 

ring (Liou and Willison, 1997; Miller et al., 2006). Interestingly, whereas in all 

organisms and tissues studied, the eight subunits are encoded by unique genes, a 

tissue-specific ζ2-subunit was identified in mammalian testis (Kubota et al., 

1997). Notably, TRiC is not inducible by heat-shock (Lewis et al., 1992). The 

endogenous chaperonin concentrations were estimated to be ~0.5 µM in 

mammalian cells (Thulasiraman et al., 1999) and ~0.3 µM in yeast (Siegers et al., 

1999), respectively. 

Crystal structure analysis of the thermosome, the archaeal group II 

chaperonin from Thermoplasma acidophilum and homolog of TRiC, revealed 

domain folds of the individual subunits to be similar to that of GroEL (Ditzel et 

al., 1998). This observation is consistent with a high degree of sequence 

conservation in the equatorial (ATPase) domain and the intermediate domain 

between group I and group II chaperonins (Kim et al., 1994). No significant 

sequence similarity could be detected in the apical (substrate binding) domains 

of both groups. In fact, a direct comparison of thermosome and GroEL apical 

domains revealed an additional α-helical protrusion which is strictly conserved 

among group II chaperonins (Figure 8A), but is absent in group I chaperonins 

(Klumpp et al., 1997). These protrusions are thought to play an important role in 
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substrate binding and controlling access to the central cavity, independent of a 

GroES-like cofactor. Unfortunately, so far no high-resolution structure of the 

entire TRiC complex has been solved. However, the overall structure of TRiC, 

determined by cryoelectron microscopy (cryo-EM) (Llorca et al., 1999b; Llorca et 

al., 2000), is very similar to that of other group II chaperonins (Ditzel et al., 1998; 

Nitsch et al., 1998). It shows a barrel-shaped double-ring cylinder (150 Å x 160 Å) 

with every subunit interacting with only one subunit of the opposite ring (Llorca 

et al., 1999b) (Figure 8B, top panel), contrary to the staggered subunit 

arrangement observed in group I chaperonins (Braig et al., 1994). Closure of the 

chaperonin cavity was demonstrated to be ATP dependent and is accomplished 

by a ~70° clockwise rotation of the apical domains (Llorca et al., 1999b; Llorca et 

al., 2001), similar to an iris-like mechanism (Figure 8B, bottom panel). 

 

 

 
 
Figure 8: Structural properties of group II chaperonins. 
 
(A) Apical domain of the thermosome α-subunit. The insert depicts a structural 
comparison with the corresponding domain of GroEL (green), illustrating the additional 
α-helical protrusion (yellow) present in the apical domain of group II chaperonins. 
Adapted from Klump et al. (1997). (B) Three-dimensional reconstruction of the eukaryotic 
chaperonin TRiC. Top: Side view of the apo-TRiC complex in the open conformation. 
Adapted from Llorca et al. (2000). Bottom: Top view of the AMP-PNP-TRiC complex in 
the closed conformation. Adapted from Llorca et al. (2001). 
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1.3.2 Mechanism of TRiC mediated protein folding 

The mechanism by which group II chaperonins mediate folding of their 

substrate proteins is very poorly defined. Recent structural and biochemical data 

suggest a mechanism, similar to that of group I chaperonins, although differences 

exist. Similar to GroEL, folding is proposed to occur inside the central cavity and 

involves at least two different conformational stages of the chaperonin (Llorca et 

al., 2001; Meyer et al., 2003). In the nucleotide free or ADP-bound state, the apical 

domains of TRiC are in an open conformation exposing the substrate binding 

sites. On the other hand, binding of ATP results in lid-closure and substrate 

encapsulation. Importantly, unlike for GroEL, lid-closure is not solely triggered 

by ATP binding but instead requires the presence of an ATP-transition state, 

engaged during nucleotide hydrolysis (Meyer et al., 2003). How exactly 

ATP-hydrolysis triggers protein folding is not yet clear. One model suggests 

sequential anti-clockwise conformational changes in the apical domains of TRiC 

to actively convert bound substrate proteins from a largely unfolded towards a 

more compact (native) state (Lin and Sherman, 1997; Llorca et al., 2001) 

(Figure 9B). In contrast to folding by mechanical pushing, a recent model 

proposes distinct binding properties in individual subunits at different states of 

the chaperonin to be responsible for folding (Spiess et al., 2006). Surprisingly, 

although confinement of substrate proteins was shown to be essential for 

TRiC-assisted folding (Meyer et al., 2003), the substrates are not liberated into the 

central cavity but instead remain bound to the chaperonin apical domains until 

their release (Llorca et al., 2001). Finally, negative inter-ring cooperativity (Kafri 

et al., 2001) and lid-closure in only one ring of TRiC after incubation with an 

ATP-transition state analog (Meyer et al., 2003) strongly argue for a “two-stroke 

mechanism” of the chaperonin. 

1.3.3 TRiC substrates  

TRiC was initially found to facilitate the folding of the cytoskeletal 

proteins actin and tubulin in vitro (Gao et al., 1992; Yaffe et al., 1992). 

Subsequently, the crucial role of TRiC for the folding of these proteins could also 

be demonstrated in vivo. Temperature-sensitive mutations in the genes encoding 
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for individual TRiC subunits displayed cytoskeletal phenotypes in S. cerevisiae, 

including defects in actin and tubulin assembly as well as aberrant budding 

patterns (Chen et al., 1994; Ursic et al., 1994). Therefore, TRiC was for a long time 

assumed to be a highly specialized chaperone exclusively responsible for the 

folding of cytoskeletal proteins (Lewis et al., 1996). 

This view changed upon the identification of new TRiC substrates, 

including firefly luciferase (Frydman et al., 1994), Gα-transducin (Farr et al., 

1997), cyclin E (Won et al., 1998), and the Von Hippel-Lindau tumor suppressor 

protein VHL (Feldman et al., 1999). It was even proposed that the substrate 

specificity of TRiC for actin and tubulin was based on an artifact, resulting from 

the high abundance of these proteins in cell extracts. Hence, other putative 

chaperonin substrates have possibly been overlooked. This would be in line with 

the high affinity of TRiC for cytoskeletal proteins (Melki and Cowan, 1994) and 

the observation that in vivo ~50-60% of the chaperonin capacity is devoted to the 

folding of actin and tubulin (Siegers et al., 2003). However, a pulse-chase analysis 

in mammalian cells revealed TRiC to interact with a broader range of proteins 

than the ones previously cited (Thulasiraman et al., 1999). Approximately 9-15% 

of the total synthesized proteins, mostly ranging from 30 to 60 kDa in size, were 

shown to associate transiently with the chaperonin (Figure 4). Notably, 

chaperonin interactions were also demonstrated for several proteins of 

100-120 kDa which clearly exceed the ~50 kDa size limit of the central cavity 

determined for group II chaperonins (Ditzel et al., 1998). More recently, 

proteomic analyses of protein complexes in yeast identified a new set of 

TRiC-associated proteins, the so-called “WD40-repeat proteins” (Ho et al., 2002). 

For several of these proteins, folding was demonstrated to be critically dependent 

on the chaperonin, thus, providing evidence for the first class of structurally 

defined TRiC substrates (Camasses et al., 2003; Siegers et al., 2003). WD40-repeat 

proteins are characterized by the content of four or more copies of a 40-60 amino 

acid long sequence motif ending with the conserved dipetide tryptophan-

aspartate (WD). Their common fold is defined as a β-propeller and consists 

entirely of anti-parallel β-strands (Smith et al., 1999). Interestingly, the interaction 

of TRiC with protein domains enriched in β-strands was also noted for several 
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other TRiC substrates, including the well characterized tumor suppressor protein 

VHL (Feldman et al., 2003). Based on these results it is tempting to speculate that 

β-strands constitute a possible chaperonin-recognition motif and that TRiC plays 

a role in folding of β-sheet-containing domains or participates in their 

stabilization during de novo synthesis (Spiess et al., 2004). 

1.3.4 TRiC-substrate interaction 

By analogy to group I chaperonins, substrate recognition by TRiC is 

believed to occur at the apical domains of individual subunits. However, the 

nature and exact location of substrate binding sites are still undefined. One 

hypothesis suggested the flexible α-helical protrusions to contain the substrate 

binding site (Klumpp et al., 1997; Heller et al., 2004). However, these protrusions 

seem not to be essential as their deletion in an archaeal chaperonin did not 

impair substrate binding efficiency (Iizuka et al., 2004). Based on cryo-EM and 

evolutionary analyses, binding sites were also proposed to reside in the region 

lining the inner face of the cavity, consisting mostly of charged and polar amino 

acids (Pappenberger et al., 2002; Gomez-Puertas et al., 2004). Finally, recent data 

suggest substrate binding to be facilitated by hydrophobic interactions in an 

α-helical region (Spiess et al., 2006), analogous to the binding site defined in the 

distal region of the GroEL apical domains (Sigler et al., 1998; Chen and Sigler, 

1999). Although quite diverse, all mentioned substrate binding sites are not 

mutually exclusive. Instead, given the sequence diversity in the apical domains 

of TRiC, it is feasible that different subunits recognize different types of motifs in 

a substrate protein, including hydrophobic as well as polar sites (Rommelaere et 

al., 1999; Hynes and Willison, 2000; Spiess et al., 2004). Additionally, this may 

provide TRiC with the versatility of fine-tuning its interactions with certain 

proteins, in a manner not possible for homo-oligomeric group I chaperonins. 

The specific interactions between actin and individual TRiC subunits 

were initially investigated by cryo-EM analyses (Llorca et al., 1999a; Llorca et al., 

2000). Thereby, actin was shown to bind across the chaperonin cavity by 

interacting with apical domains of two TRiC subunits via the tips of its two 

subdomains (Figure 9B). Moreover, actin:TRiC complexes were found in either of 
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two different 1:4 arrangements: TRiC δ-TRiC β and TRiC δ-TRiC ε, based on the 

proposed clockwise subunit orientation within the ring (Llorca et al., 1999a).  

 

 
 
Figure 9: Interaction between actin and TRiC. 
 
(A) Atomic structure of actin (Kabsch et al., 1990). The two topological domains of actin, 
historically named the large and small domain, are colored in red and blue. The putative 
TRiC-binding site on the tip of both domains is highlighted in yellow. (B) Three-
dimensional reconstruction of the TRiC:actin complex in the nucleotide-free, open 
conformation. Top: top view; bottom: side, cut view. (C) Three-dimensional reconstruction 
of the TRiC:actin complex in the presence of ATP, generating the closed chaperonin 
conformation where folding occurs. The actin molecule in (B) and (C) has been colored 
as in (A). The yellow arrow indicates the sequential conformational change in the TRiC 
subunits induced by ATP binding, as proposed by Lin and Sherman (1997). The subunit 
arrangement within one ring of the chaperonin is depicted according to Liou and Willison 
(1997). Adapted from Gomez-Puertas et al. (2004). 

 

Thus, unlike for GroEL, actin binding to TRiC was proposed to be both subunit-

specific and geometry-dependent. Interestingly, in both bound orientations, actin 

was observed opened up across its nucleotide-binding cleft, presumably in a 

quasi-native and nucleotide-free state. The importance of the opening of the actin 

molecule during its interaction with TRiC was confirmed by an actin mutant, 

G150P, located in the hinge region between the small and large domains 

(Figure 9A). This point-mutation was proposed to block the opening of the actin 

molecule, hence, the interaction with the two sides of the TRiC cavity and 

consequently prevents its folding (McCormack et al., 2001). In contrast, recent 

photo-crosslinking studies demonstrated TRiC to contact newly synthesized 

actin with multiple chaperonin subunits while the chain emerges form the 

ribosomal tunnel (Etchells et al., 2005). Additionally, the interactions between the 
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polypeptide substrate and the chaperonin were suggested to be highly dynamic 

and to follow a preferred “interaction pathway”, depending on the chain length 

of the substrate protein. 

1.3.5 Role of TRiC in protein folding both in vitro and in vivo 

Shortly after its discovery, TRiC was demonstrated to be the only 

chaperone necessary and sufficient to mediate refolding of actin and tubulin 

upon dilution from denaturant (Tian et al., 1995). After several cycles of folding, 

the native product was generated with a half-time of approximately 15-30 min. 

Strikingly, these proteins cannot be folded by group I chaperonins such as GroEL 

or Cpn60, even after multiple rounds of binding and release in an 

ATP-dependent manner and regardless of the presence or absence of their 

respective co-chaperonins (Tian et al., 1995). Interestingly, the interaction 

between TRiC and its substrate proteins was shown to differ considerably during 

refolding and the situation engaged throughout de novo synthesis (Frydman and 

Hartl, 1996). When chemically denatured actin was allowed to refold in a 

eukaryotic cell lysate, the protein partitioned freely between the Hsp70/40 

system, the bulk cytosol, and the chaperonin TRiC. In contrast, during in vitro 

translation, Hsp70/40 and TRiC were sequentially recruited to the elongating 

actin chain, similar to the mechanism shown for firefly luciferase (Frydman et al., 

1994), in order to protect it from exposure to the bulk cytosol during folding 

(Frydman and Hartl, 1996). 

Subsequently, a hetero-oligomeric chaperone complex, termed Prefoldin 

(PFD) or GimC (for genes involved in microtubule biogenesis complex), was 

shown to participate in the maturation pathway of cytoskeletal proteins (Geissler 

et al., 1998; Vainberg et al., 1998). PFD (~90 kDa in size) consists of six subunits 

and has a unique quaternary structure resembling that of a jellyfish (Siegert et al., 

2000). The distal regions of the six α-helical coiled-coil tentacles emanating from 

a β-barrel body are partially unwound and expose hydrophobic residues 

responsible for substrate binding. In vitro, PFD was shown to bind nascent (or 

non-native) actin chains in an ATP-independent manner and promotes their 

transfer to TRiC for folding (Vainberg et al., 1998; Hansen et al., 1999). In the 



Introduction   31                                  

yeast cytosol, PFD and TRiC were proposed to form an integrated “folding 

compartment” which functions in close cooperation with the translation 

machinery and facilitates the post-translational completion of actin folding 

sequestered from the bulk cytosol (Siegers et al., 1999). Interestingly, single 

PFD-deletions resulted in reduced speed and efficiency of actin folding with 

non-native chains being released into the cytosol. Moreover, actin folding in vivo 

was determined to proceed with an apparent half-time of ~1 min and most likely 

requires only a few chaperonin cycles. Thus, de novo folding is at least 20-times 

faster than chaperonin-assisted actin refolding out of denaturant (see above). 

Recently, photo-crosslinking experiments confirmed the co-translational 

interaction of TRiC with nascent chains, as proposed earlier (Frydman et al., 

1994; Dobrzynski et al., 1996; Frydman and Hartl, 1996; McCallum et al., 2000; 

Etchells et al., 2005). Hence, these data do no longer support the theory of TRiC 

binding its substrate proteins in a strictly post-translational manner (Hansen et 

al., 1999). However, the exact mechanism of how TRiC is recruited to nascent 

chains and whether further components (e.g. Hsp70/40 and PFD) are necessary 

to assist in this process remains to be elucidated. Given these findings and the 

structural divergence of group II compared to group I chaperonins, TRiC is 

suggested to mediate the co-translational folding of multi-domain proteins which 

are too large for their entire encapsulation (Young et al., 2004). Thus, discrete 

protein domains might be folded upon their sequestration in the central cavity, 

whilst the rest of the protein remains outside and extends through a gap in the 

apical domains (Frydman et al., 1994; Llorca et al., 2001). A TRiC mediated 

domain-wise folding of proteins in the eukaryotic cytosol (Netzer and Hartl, 

1997) would be in line with the large proteins (100-120 kDa in size) observed to 

transiently associate with the chaperonin (Thulasiraman et al., 1999). 

1.4 Cell-free protein synthesis 

Cell-free protein synthesis is a concept that is decades old and was 

already utilized to decipher the mechanism coupling the information stored in 

polynucleotides to the production of functional proteins in living cells (Nirenberg 

and Matthaei, 1961). Later, cell-free systems became a useful technique for 
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investigating the function of chaperones in the context of de novo protein 

synthesis, as mentioned previously (1.2.1). 

Cell-free systems are generally prepared from crude cell extracts, 

containing all the enzymes and factors necessary for protein synthesis. For 

increased efficiency, the lysates are additionally supplemented with essential 

nucleotides, amino acids, salts and energy-regenerating systems. Nowadays, the 

most commonly used systems are derived from E. coli extracts (S30 fraction: 

soluble fraction when centrifuged at 30,000 g), rabbit reticulocyte lysates (RRL) 

and wheat germs (WG). Cell-free protein translation is routinely performed by 

programming such extracts with either mRNA (uncoupled reaction) or DNA 

(coupled transcription-translation reaction), following incubation in the test-tube. 

In addition to the gene of interest, the DNA template must contain specific 

regulatory elements including promoter, ribosomal binding site, start codon, and 

transcription/translation termination regions. Typically, standard in vitro 

translations (performed in small scale batch reactions) yield several micrograms 

of a particular protein and are suitable for the expression of a variety of different 

protein families. 

Compared to the limitations faced by using traditional cell-based protein 

expression methods, cell-free protein synthesis offers a wide range of possible 

applications. Firstly, cell-free systems provide a simple and robust tool to rapidly 

convert genes into proteins, thereby leaving room for various application specific 

modifications. Since access to these systems is not restricted by a cell wall, 

reaction supplementation with additives and rapid sampling is feasible at any 

desired time. In this regard, synthesis conditions for each individual protein can 

be adjusted and controlled by the addition of particular helper molecules (e.g. 

molecular chaperones or crowding agents) to provide a defined environment 

supporting correct protein folding. Furthermore, cell-free translation systems are 

applicable to modifications which are usually not physiologically tolerated by 

living cells. This includes the incorporation of non-natural amino acids as well as 

the functional expression of toxic and/or unstable proteins. Upon 

supplementation with microsomes, RRL and WG are even capable of 

accomplishing several co- and post-translational modifications such as 
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phosphorylation, glycosylation or signal peptide cleavage. In recent years, 

improvements to cell-free protein synthesis resulted in milligram quantities of 

functional protein, thus, making these systems more suitable for protein 

consuming applications like NMR and X-ray crystallography. In summary, 

in vitro protein synthesis is a powerful technology, which contributes to a wide 

range of scientific and biotechnological questions. 

1.5 Aim of the study 

In vivo, a substantial fraction of newly synthesized proteins requires the 

assistance of molecular chaperones for efficient folding (Hartl and Hayer-Hartl, 

2002). Despite the evolutionary conservation of the major chaperone families, 

eukaryotic multi-domain proteins often fold with low yield upon recombinant 

expression in bacterial hosts (Baneyx and Mujacic, 2004). In view of the 

biotechnological interest in the production of recombinant proteins, the 

examination of this particular phenomenon is of great importance, since the 

folding requirements for each protein are quite distinct. 

The primary goal of this research project was to determine the role of 

molecular chaperones in the folding of modular eukaryotic proteins upon in vitro 

translation in an E. coli-based cell-free transcription/translation system. The well 

studied eukaryotic multi-domain proteins firefly luciferase and cytoskeletal actin 

served as model proteins. Importantly, correct folding of these proteins can be 

directly monitored by using an enzymatic luciferase assay or the interaction of 

actin with specific actin binding partners (e.g. DNase I and phalloidin), 

respectively. To accomplish the aims of this study, the bacterial lysate was 

supplemented with purified chaperones of bacterial (e.g. TF, DnaK/DnaJ/GrpE, 

and GroEL/GroES) or eukaryotic (TRiC) origin, and their effect on efficiency and 

mechanism of de novo folding of luciferase and actin analyzed. 

Secondly, the eukaryotic chaperonin TRiC was examined with regard to 

a possible domain-wise folding mechanism, suggested previously (Frydman et 

al., 1994). Therefore, various N- and C-terminal actin-fusion proteins, conceivably 

too large for complete encapsulation in the TRiC folding cage, were generated 

and served as multi-domain model substrates for chaperonin assisted folding. 
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Upon expression of these modular proteins in S. cerevisiae, their ability to fold 

correctly and to integrate into endogenous actin cytoskeleton structures (cortical 

patches and actin cables) was examined. Additionally, the native state of actin 

within the fusion proteins was assessed by binding to DNase I upon in vitro 

translation in a eukaryotic cell-free system. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Laboratory equipment 

Abimed (Langenfeld, Germany): Gilson Pipetman (2 to 1000 µl). 

Amersham Pharmacia Biotech (Freiburg, Germany): ÄKTA Explorer; SMART-
System; chromatography columns: Mono-Q, HiTrap-Heparin, HiTrap-Chelating, 
Superdex 200, Superose 6; resins: CNBr-activated Sepharose 4B, Sephadex-G50, 
Source 30-Q; electrophoresis power supplies: EPS200, EPS600. 

Amicon (Beverly, MA, USA): concentration chambers: Centriprep, Centricon. 

Avestin (Mannheim, Germany): EmulsiFlex C5 homogenizer. 

Beckmann (Munich, Germany): centrifuges: Avanti J-25, Avanti J-20 XP, J-6MI, 
GS-6R; ultracentrifuges: Optima TLX, Optima LE-80K; DU 640 UV/VIS 
Spectrophotometer. 

Berthold (Bad-Wildbad, Germany): luminometer Lumat LB 9507. 

Biometra (Göttingen, Germany): T3 PCR-Thermocycler. 

Bio-Rad (Munich, Germany): electrophoresis chambers: MiniProtean 2 and 3, 
Sub-CellGT; electrophoresis power supply Power PAC 300; GelAirDryer; Micro 
BioSpin desalting columns. 

Eppendorf (Hamburg, Germany): centrifuges: 5415C, 5417R; Thermomixer 
Comfort. 

Fuji (Tokyo, Japan): Phosphoimager FLA-2000; ImageReader LAS-3000. 

Getinge (Getinge, Sweden): autoclave. 

Heraeus (Hanau, Germany): incubator B12. 

Hoefer Scientific Instruments (San Francisco, USA): SemiPhore blotting transfer 
unit. 

Kinematica AG (Littau, Switzerland): Polytron PT3100 tissue homogenizer. 

Mettler Toledo (Gießen, Germany): balances: AE160, AG285, PB602. 

Millipore (Eschborn, Germany): deionization system MilliQ plus PF; Millex-HA 
filters (0.22 µm); vacuum filtration unit (0.22 µm). 

MWG BiotechAG (Göttingen, Germany): gel documentation system BioCapt.  

New Brunswick Scientific (Nürtingen, Germany): orbital shaker and incubator 
Innova 4430. 

Raytest (Straubenhardt, Germany): AIDA gel imaging software version 3.5. 
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SA-Instruments (New Jersey, USA): fluorescence spectrometer Fluorolog-3. 

Savant (New York, USA): Speedvac DNA110. 

WTW (Weilheim, Germany): pH-Meter pH538. 

Zeiss (Jena, Germany): microscopes: Standard25, fluorescence microscopes: 
Axiovert200, Axio ImagerA.1 equipped with Metamorph 6.3 software. 

Philips (Amsterdam, Netherlands): electron microscope CM20. 

 

2.1.2 Chemicals 

Chemicals and biochemicals used in this work were of pro analysi grade 

and purchased from Fluka (Deisenhofen, Germany), Calbiochem (Bad Soden, 

Germany), Merck (Darmstadt, Germany), Sigma-Aldrich (Steinheim, Germany), 

Roth (Karlsruhe, Germany), and Roche (Mannheim, Germany) unless stated 

otherwise. 

Amersham Pharmacia Biotech (Freiburg, Germany): western blotting detection 
systems: ECL, X-ray film; gel filtration HMW und LMW calibration kit; native 
electrophoresis HMW calibration kit; radiolabeled amino acids: [35S]-Met. 

BioMol (Hamburg, Germany): IPTG, HEPES. 

BioRad (Munich, Germany): ethidiumbromide; Bradford Protein-Assay. 

Clontech (Mountain View, USA): herring testes carrier DNA. 

Difco (Heidelberg, Germany): Bacto tryptone, Bacto yeast extract, Bacto agar, 
Bacto peptone, Bacto yeast nitrogen base without amino acids. 

Fermentas (St. Leon-Rot, Germany): GeneRuler 1kb DNA Ladder. 

Invitrogen (Karlsruhe, Germany): protein marker for SDS PAGE. 

Molecular Probes (Eugene, USA): rhodamine phalloidin. 

National Diagnostic (Hessle, England): Protogel (AA:BA=30:0.8). 

New England Biolabs (Frankfurt a. Main, Germany): restriction enzymes; calf 
intestinal alkaline phosphatase (CIP); T4 DNA ligase; prestained protein marker 
for SDS PAGE. 

Promega (Mannheim, Germany): Luciferase Assay System; Pfu DNA 
polymerase; TNT Coupled Reticulocyte Lysate System. 

Qiagen (Hilden, Germany): QIAprep Plasmid Mini and Midi kits; QIAquick PCR 
purification and gel extraction kit; Ni-NTA agarose. 

Roche (Mannheim, Germany): RTS in vitro translation systems: RTS 100 E. coli 
HY Kit, RTS 100 Wheat Germ CECF Kit. 
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Schleicher & Schuell: protran nitrocellulose transfer membrane; fluted paper 
filter 595-1/2 (270 mm). 

 

2.1.3 Media and buffers 

Media and buffers were prepared with demineralized water and 

autoclaved or sterile filtered unless stated otherwise. Concentrations are given in 

(v/v) for liquids and (w/v) for solids, respectively. 

2.1.3.1 Media 

LB medium: 10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl, (+15 g/l agar for 
solid medium). 

YPD medium: 10 g/l yeast extract, 20 g/l peptone, 20 g/l glucose, (+20 g/l 
separately autoclaved agar for solid medium). 

SC-Drop-out medium: 6.7 g/l yeast nitrogen base without amino acids, 20 g/l 
glucose, 2 g/l Drop-out mix, (+15 g/l agar for solid medium). 

Drop-out mix: 0.5 g adenine hemisulfate, 0.2 g para-aminobenzoic acid, 4 g 
leucine, and 2 g alanine, arginine, asparagine, aspartic acid, cysteine, glutamine, 
glutamic acid, glycine, histidine, inositole, isoleucine, lysine, methionine, 
phenylalanine, proline, serine, threonine, tryptophan, tyrosine, uracil, valine, 
respectively. For selective reasons, media lacking uracil, tryptophan, histidine or 
leucine were used for strains prototrophic for these amino acids. 

Carbon sources: 20% glucose; 20% raffinose; 20% galactose. All solutions were 
sterile filtered and added separately to the autoclaved media to the final 
concentrations indicated. 

2.1.3.2 Buffers and stock solutions 

PBS: 137 mM NaCl, 2.7 mM KCl, 8.4 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.4. 

PonceauS: 0.2% PonceauS, 3% trichloracetic acid. 

TAE: 40 mM Tris-Acetate, 1 mM EDTA, pH 8.0. 

TBS: 50 mM Tris, 150 mM NaCl, pH 7.5. 

TBS-T: 0.1% Tween20 in TBS. 

All other buffers and solutions were prepared as convenient stock solutions and 
either autoclaved or filter sterilized before usage, if applicable. 
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2.1.4 Bacterial and yeast strains 

2.1.4.1 E. coli strains 

Strain Genotype Reference 
BL21(DE3) B F- dcm ompT hsdS(rB- mB-) gal (DE3) Novagene 

DH5αF’ F'/endA1 hsdR17(rK-mK+) supE44 thi-1 recA1 gyrA 
(Na1r) relA1 D(lacZYA-argF)U169(m80lacZDM15) Novagene 

2.1.4.2 Yeast strains 

Strain Genotype Reference 

YPH499 MATa ura3-52 lys2-801amber ade2-101ochre trp1∆63  
his3∆200 leu2∆1 

(Sikorski and 
Hieter, 1989) 

∆reg (KSY355) MATa ura3-52 lys2-801amber ade2-101ochre trp1∆63 
his3∆200 leu2∆1 ∆reg1::loxP Katja Siegers 

 

2.1.5 Plasmids and Oligonucleotides 

2.1.5.1 Plasmids 

Plasmid Description Reference 

pET3a luciferase firefly luciferase (FL) 
for expression in S30 and RRL lysate 

Suranjana 
Guha 

pET3a TFwt trigger factor wild type (TF) 
for expression in BL21(DE3)  

Suranjana 
Guha 

pET3a TFmt trigger factor FRK/AAA mutant  
(TFFRK/AAA) for expression in BL21(DE3) 

Suranjana 
Guha 

pJMBiA1 yeast actin   
for expression in S30 and RRL lysate 

José M. 
Barral 

pRSET6a mouse actin mouse β-actin 
for expression in BL21(DE3), S30 and RRL 

(Siegers et al., 
1999) 

pCHAct-L16-cGFP 
yeast actin-L16a)-GFP (AG) 
in pCHORF-L16-cGFP vector for expression 
in S30 and RRL lysate 

(Chang et al., 
2005) 

pMS BA BFP-L16b)-yeast actin (BA) 
for subcloning this work 

pMS BG BFP-L15c)-GFP (BG) 
for expression in S30 and RRL lysate this work 

pMS GA GFP-L18d)-yeast actin (GA) 
for expression in S30 and RRL lysate this work 

pMS BAG BFP-L16b)-yeast actin-L16a)-GFP (BAG) 
for expression in S30 and RRL lysate this work 

pMS BA-TEV BFP-L16TEVe)-yeast actin (BA-TEV) 
for subcloning this work 

pMS BTAG BFP-L16TEVe)-yeast actin-L16a)-GFP (BTAG) 
for expression in S30 and RRL lysate this work 
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pMS BTAG-G150P 
BFP-L16TEVe)-yeast actinG150P-L16a)-GFP 
(BTAG-G150P) for expression in S30 and  
RRL lysate 

this work 

pMS CAG mCherry-L16b)-yeast actin-L16a)-GFP (CAG) 
for expression in S30 and RRL lysate this work 

pMS LA firefly luciferase-L17f)-yeast actin (LA) 
for subcloning this work 

p415 yeast actin yeast actin 
for expression in yeast 

Hung-Chun 
Chang 

p415GAL1 GFP GFP 
for expression in yeast 

(Chang et al., 
2005) 

p415 BAG BFP-L16b)-yeast actin-L16a)-GFP (BAG) 
for expression in yeast this work 

p415 BTAG BFP-L16TEVe)-yeast actin-L16a)-GFP (BTAG) 
for expression in yeast this work 

p415 BTAG-G150P BFP-L16TEVe)-yeast actinG150P-L16a)-GFP 
(BTAG-G150P) for expression in yeast this work 

p415 CAG mCherry-L16b)-yeast actin-L16a)-GFP (CAG) 
for expression in yeast this work 

p415 CG mCherry-L15c)-GFP (CG) 
for expression in yeast this work 

p415 GA GFP-L18d)-yeast actin (GA) 
for expression in yeast this work 

p415GAL1Act-L16-cGFP 
yeast actin-L16a)-GFP (AG) in  
p415GAL1ORF-L16-cGFP vector for  
expression in yeast 

(Chang et al., 
2005) 

p415 LA firefly luciferase-L17f)-yeast actin (LA) 
for subcloning this work 

pIVEX1.3WG CAG mCherry-L16b)-yeast actin-L16a)-GFP (CAG) 
for expression in WG this work 

pIVEX1.3WG CG mCherry-L15c)-GFP (CG) 
for expression in WG this work 

 
The linkers in all fusion proteins were designed according to the L16-linker described 
previously (Chang et al., 2005). Minimal differences in length and amino acid sequences 
are due to the restriction endonuclease sites used for cloning. Amino acids identical in all 
linkers are highlighted in gray: 
 
a) L16:   TSGSAASAAGAGEAAA 
b) L16:   SGSAASAAGAGEAAAH 
c) L15:   SGSAASAAGAGEAAA 

d) L18:   GASGSAASAAGAGEAAAH 
e) L16TEV:  SGSAASAAGAGENLYFQGEAAAH (ENLYFQG: TEV protease cleavage site) 
f) L17:  ASGSAASAAGAGEAAAH 
 
Construction of pMS GA: The coding region of GST in pCHGFP-L16-GST 
(Hung-Chun Chang) was excised with Nde I and Nhe I restriction endonucleases 
and replaced by the coding region of yeast actin from pCHAct-L16-cGFP excised 
with Nde I and Spe I. 
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Construction of pMS BA: The coding region of BFP was amplified by PCR 
(primer #1 and #2) from pGEMEX2BFP (Heim et al., 1994) and inserted into 
pMS GA at the Xba I and Not I restriction endonuclease sites, replacing GFP. 
 
Construction of pMS BAG: The coding region of GFP (including parts of yeast 
actin and the linker region) from pCHAct-L16-cGFP was excised with Kpn I and 
Dra III restriction endonucleases and inserted into pMS BA. 
 
Construction of pMS BG: The coding region of yeast actin from pMS BAG was 
excised with the double cutting Not I restriction endonuclease. The resulting 
backbone was religated. 
 
Construction of p415 BAG: The coding region of BA from pMS BAG was excised 
with Xba I and Spe I restriction endonucleases and inserted into p415GAL1Act-
L16-cGFP, replacing yeast actin. 
 
Construction of pMS CAG and p415 CAG: The coding region of mCherry was 
amplified by PCR (primer #3 and #4) from pRSETB mCherry (Shaner et al., 2004) 
and inserted between Xba I and Nde I restriction endonuclease sites in pCHAct-
L16-cGFP and p415GAL1Act-L16-cGFP, respectively. 
 
Construction of pIVEX1.3WG CAG: The coding region of CAG was amplified by 
PCR (primer #5 and #6) from p415 CAG and inserted into pIVEX1.3WG (Roche) 
at the Nco I and Sal I restriction endonuclease sites by partial digestion. 
 
Construction of pIVEX1.3WG CG and p415 CG: The coding region of yeast actin 
from pIVEX1.3WG CAG and p415 CAG, respectively, was excised with the 
double cutting Not I restriction endonuclease. The resulting backbone was 
religated. 
 
Construction of p415 GA: The coding region of yeast actin was at first excised 
from pMS GA and inserted into pCHLuc-L16-cGFP (Chang et al., 2005) at the 
Not I and Dra III restriction endonuclease sites (replacing GFP) resulting in 
pMS LA. Secondly, actin was amplified by PCR (primer #7 and #8) from pMS LA 
and inserted into p415GAL1Luc-L16-cGFP (Chang et al., 2005) at the Not I and 
Nhe I restriction endonuclease sites (replacing GFP) resulting in p415 LA. 
Thirdly, the coding region of actin was excised with Not I and Sal I restriction 
endonucleases from p415 LA and inserted into p415GAL1nGFP-L16-Luc (Chang 
et al., 2005), replacing firefly luciferase. 
  
Construction of pMS BA-TEV: The coding region of BFP was amplified by PCR 
(primer #1 and #9) from pMS BA and inserted back into the same plasmid at the 
Xba I and Not I restriction endonuclease sites. Thereby, a TEV protease cleavage 
site (ENLYFQG) was introduced into the linker between BFP and yeast actin. 
 
Construction of pMS BTAG and p415 BTAG: The coding region of BA-TEV was 
amplified by PCR (primer #1 and #10) from pMS BA-TEV and inserted between 
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Xba I and Spe I restriction endonuclease sites in pMS BAG and p415 BAG, 
respectively. 
 
Generation of pMS BTAG-G150P and p415 BTAG-G150P was performed by 
site-directed mutagenesis using pMS BTAG and p415 BTAG as template 
plasmids. PCR reactions were carried out in presence of primer #11 and #12, 
respectively. 
 

2.1.5.2 Oligonucleotides 

Primer Sequence  Direction 

#1 BFPup2 
5´ CTA GTC TAG AAA TAA TTT TGT TTA ACT TTA 
AGA AGG AGA TAT ACA TAC CAT GAG TAA AGG 
AGA AGA ACT TTT C 3´ 

forward 

#2 BFPdn 
5´ TTT TCC TTT TGC GGC CGC TTC GCC AGC ACC 
AGC AGC GGA GGC AGC GGA TCC ACT TTT GTA 
TAG TTC ATC CAT GCC ATG 3´ 

reverse 

#3 LimChf 
5´ C TAG TCT AGA AAT AAT TTT GTT TAA CTT 
TAA GAA GGA GAA TTC ATG GTG AGC AAG GGC 
GAG GAG GAT AAC 3´ 

forward 

#4 mChLir 
5´ GGG AAT TCC ATA TGC GCG GCC GCT TCG CCA 
GCA CCA GCA GCG GAG GCA GCG GAT CCA CTC 
TTG TAC AGC TCG TCC ATG CCG CCG GTG 3´ 

reverse 

#5 CAGf 5´ CAT GCC ATG GTG AGC AAG GGC GAG 3´ forward 

#6 CAGr 5´ TCC GCG GCC GCT ATG GCC GAC GTC GAC GGT 
ATC GAT AAG CTT TAG 3´ reverse 

#7 LiyAf2 5´ AGG AGC GGC CGC GCA TAT GGA TTC 3´ forward 

#8 yAr2 5´ CTA GCT AGC ACC GAA ACA CTT GTG GTG 
AAC G 3´ reverse 

#9 B-TEV-Ar 
5´ TTT TCC TTT TGC GGC CGC TTC GCC CTG AAA 
ATA CAG GTT TTC GCC AGC ACC AGC AGC GGA 
GGC AG 3´ 

reverse 

#10 yASper 5´ GG ACT AGT GAA ACA CTT GTG GTG AAC 3´ reverse 

#11 G150Pf  5´ CT TCC GGT AGA ACT ACT CCA ATT GTT TTG 
GAT TCC GGT G 3´ forward 

#12 G150Pr 5´ C ACC GGA ATC CAA AAC AAT TGG AGT AGT 
TCT ACC GGA AG 3´ reverse 

 

2.1.6 Antibodies 

Antibody Species Reference 
Primary Antibodies 

anti-Actin mouse, monoclonal Amersham N350 
anti-Act1p rabbit, polyclonal Katja Siegers 
anti-Adh1p rabbit, polyclonal Katja Siegers 
anti-CCTα rat, monoclonal StressGen CTA-191 
anti-GFP mouse, monoclonal  Roche 1 814 460 
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Secondary Antibodies 
anti-mouse IgG-HRP goat, polyclonal Sigma A4416 
anti-rabbit IgG-HRP goat, polyclonal Sigma A9169 
anti-rat IgG-HRP rabbit, polyclonal Sigma A5795 

 

2.1.7 Proteins 

2.1.7.1 Special enzymes 

Invitrogen (Karlsruhe, Germany): TEV protease. 

Roche (Mannheim, Germany): Benzonase, creatine kinase, DNase I, RNase A. 

Sigma-Aldrich (Steinheim, Germany): apyrase, lysozyme, firefly luciferase. 

2.1.7.2 Chaperones 

The following chaperones (purified according to the protocol 

referenced) were obtained from the laboratory collection of the Department of 

Cellular Biochemistry, Max Planck Institute of Biochemistry: 

DnaK (Jordan and McMacken, 1995) with modifications, 

DnaJ (Zylicz et al., 1985), 

GrpE-(His)6, 

GroES (Hayer-Hartl et al., 1996), 

GroEL (Hayer-Hartl et al., 1994) with modifications. 

 

2.2 Molecular biology methods 

All experimental methods used throughout this work were performed 

according to “Molecular Cloning” (Sambrook et al., 1989) unless stated 

otherwise. 

2.2.1 Plasmid purification 

A single E. coli colony containing the plasmid of interest was inoculated 

in LB medium (supplemented with the appropriate antibiotic) and shaken 

overnight at 37 °C. Plasmid DNA was purified using the QIAprep Plasmid kits 

according to the manufacturer’s protocol. 
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2.2.2 DNA analytical methods 

DNA concentrations were measured by UV absorption spectroscopy at 

λ=260 nm. An optical density of OD260=1 corresponds to approximately 50 µg/ml 

double stranded DNA and 31 µg/ml oligonucleotides, respectively. 

Agarose gel electrophoresis was performed with 1-2% TAE-buffered 

agarose gels (TAE, 2.1.3.2) supplemented with 10 µg/ml ethidiumbromide. Size 

fractionation of DNA fragments was carried out at 80-100 V in TAE buffer. Prior 

to electrophoresis, loading buffer (6x loading buffer: 60% glycerol, 0.25% 

bromphenol blue, 0.25% xylene cyanol FF) was added to the DNA samples to a 

1x concentration. 

Primers were purchased from Metabion (Martinsried, Germany), DNA 

sequencing was performed by Medigenomix GmbH (Martinsried, Germany) or 

Sequiserve (Vaterstetten, Germany). 

2.2.3 PCR amplification 

DNA was amplified using PCR (polymerase chain reaction) according to 

a standard protocol. Modifications in the reaction setup and the running 

conditions were made when necessary. 

Typical PCR reaction: 

DNA template     <0.2 µg/50 µl 
Primers      0.5 µM each 
dNTPs      200 µM each  
Pfu DNA Polymerase  3 U/50 µl 
Polymerase buffer   1x 
DMSO      10% 
 

Typical PCR cycling conditions (30 cyles): 

Initial denaturation  95 °C for 2 min 
Cycle denaturation   95 °C for 30-60 s 
Annealing     50-55 °C for 30-60 s 
Extension     72 °C for 2-6 min (2 min/kb of DNA) 
Final extension    72 °C for 10 min 
Pause      4 °C indefinite 

Following the PCR reaction, the amplified DNA was purified using the QIAquick 

PCR purification and gel extraction kit. 
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2.2.4 DNA restriction digestions and ligations 

DNA restriction digestions were performed according to the product 

instructions of the respective enzymes. Typically, a 20 µl preparative reaction 

containing the purified PCR product or plasmid DNA, 0.1 mg/ml BSA and 1 µl 

of each restriction enzyme in the appropriate reaction buffer was used. In order 

to avoid religation, dephosphorylation of vector DNA cohesive ends was carried 

out using calf intestinal alkaline phosphatase (CIP) following subsequent 

purification with QIAquick PCR purification and gel extraction kit according to 

the manufacturer’s instructions. 

DNA ligations were performed in the presence of T4 DNA ligase. 

Typically, for a 10 µl reaction containing 1 µg DNA consisting of 

dephosphorylated vector DNA and an insert fragment in a molar ratio between 

1:3 and 1:10, 1 µl T4 DNA ligase (400 U/µl) and 1x ligase buffer was used. The 

ligation was carried out for 1 h at 25 °C or, for increased efficiency, overnight at 

16 °C. The complete reaction was used to transform chemically competent E. coli 

DH5α cells. 

2.2.5 Preparation and transformation of competent E. coli cells 

Competent E. coli DH5α cells for standard cloning reactions were 

prepared as described (Nishimura et al., 1990). In brief, a 50 ml culture, 

inoculated with 0.5 ml of an E. coli DH5α overnight culture, was grown in 

medium A (LB medium supplemented with 10 mM MgSO4 and 0.2% glucose) to 

mid-logarithmic phase of growth. The cells were kept on ice for 10 min and then 

pelleted at 1,500 g for 10 min at 4 °C. After the cells were gently resuspended in 

0.5 ml of prechilled medium A, 2.5 ml of storage solution B (36% glycerol, 12% 

PEG-7500, 12 mM MgSO4 added to LB medium and filter sterilized) was added 

and mixed well without vortexing. Cells were divided in 50 µl aliquots and 

stored at -80 °C. 

For transformations, competent cells were thawed on ice, immediately 

mixed with 1 µl plasmid DNA or 10 µl of a ligation reaction and incubated on ice 

for 30 min. Cells were then subjected to a heat shock at 42 °C for 45 s and 

immediately chilled on ice for 2 min. 800 µl of prewarmed LB medium was 
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added and upon phenotypical expression for 60 min at 37 °C, the transformation 

reaction was plated on selective LB-agar plates and incubated at 37 °C overnight 

or until colonies had developed. 

2.2.6 Site-directed mutagenesis 

Plasmid DNA, encoding the gene of interest, was isolated from E. coli 

DH5α (supporting dam methylation of DNA) as described (2.2.1). The template 

DNA was amplified using PCR in the presence of complementary primers 

containing the mutation to be introduced. In contrast to a regular PCR reaction, 

the extension temperature was reduced to 69 °C and only 12-15 reaction cycles 

were performed. After reaction completion, the parental DNA was digested by 

Dpn I (20 U/50 µl PCR reaction, 1 h at 37 °C), an endonuclease specific for 

methylated DNA. Finally, 1 µl of the reaction was transformed in competent 

E. coli DH5α cell and the mutation of the isolated plasmid DNA confirmed by 

DNA sequencing. 

2.2.7 Yeast culture methods 

All experimental yeast techniques were performed according to “Yeast 

Protocols” (Evans, 1996) unless stated otherwise. 

2.2.7.1 Cultivation of yeast cells 

S. cerevisiae strains were grown in YPD or synthetic complete 

SC-Drop-out medium (2.1.3.1) at 30 °C on agar plates or in liquid culture. For 

short term storage, cells were streaked on agar plates and stored at 4 °C. For long 

term storage, liquid cultures were mixed in a 1:1 ratio with 50% glycerol and 

stored at -80 °C. 

The yeast strains used throughout this study contained a point mutation 

in the ade2-101 gene, thus, the media used for cultivation were additionally 

supplemented with 0.01% adenine. 
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2.2.7.2 Transformation of yeast cells 

Yeast transformations were performed with modifications to the 

protocol described (Gietz et al., 1992). In brief, 1-2 ml of exponentially growing 

cells (OD600~1.0) were pelleted at 2,500 g for 3 min and washed with TE/LiAc 

(made fresh from 10x stock solutions: 10x TE [0.1 M Tris, 10 mM EDTA, pH 7.5] 

and 10x LiAc [1 M LiAc]). Cells were resuspended in 100 µl TE/LiAc and mixed 

thoroughly with 50 µg of denatured herring sperm carrier DNA, 1 µg 

transforming DNA and 300 µl of a 40% PEG solution (40% PEG 4000, 1x TE, 

1x LiAc, made fresh from stocks of sterile 50% PEG, 10x TE, and 10x LiAc). After 

incubation at 30 °C for 30 min with gentle agitation, cells were subjected to heat 

shock for 15 min at 42 °C and subsequently pelleted at 4,500 g for 1 min. 

Transformation reactions were plated on selective agar plates and incubated at 

30 °C until colonies developed. 

2.2.7.3 Lysis of yeast cells 

For the preparation of yeast crude protein extracts under denaturing 

conditions approximately 2 OD600 units of cells were harvested (2,000 g for 5 min 

at 4 °C) and washed with H2O. The pellet was resuspended in H2O and 

incubated with 240 mM NaOH and 1% β-mercaptoethanol for 15 min on ice. TCA 

was added to a final concentration of 6.5% and incubated for 10 min on ice. The 

denatured proteins were pellet by centrifugation (20,000 g for 30 min at 4 °C) and 

the pellet resuspended in HU-buffer (8 M urea, 5% SDS, 200 mM Tris (pH 6.8), 

0.1 mM EDTA, 1% bromphenol blue). Prior to loading on SDS gels, samples were 

incubated at 65 °C for 10 min. 

For the preparation of cytosolic extracts under native conditions, an 

appropriate amount of yeast cells was harvested (2,000 g for 5 min at 4 °C) and 

resuspended in 250 µl glass-bead lysis buffer (PBS, 5 mM EDTA, EDTA-free 

Complete protease inhibitors, 10 µM Antipain, 10 µM Leupetin, 1 µM Aprotinin, 

0.3 µM Trypsin-inhibitor, 0.4 µM Pepstatin, 10 µM Chymostatin, 0.5% Tween20). 

Cell lysis was performed by agitation with glass-beads for 6x 30 s at 4 °C. Upon 

lysis, beads were washed twice with 250 µl yeast lysis buffer and combined with 
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the crude lysate. Non-lysed cells were separated from the lysate by centrifugation 

(2,000 g for 5 min at 4 °C). 

2.3 Protein biochemical methods 

2.3.1 Protein analytical methods 

2.3.1.1 Determination of protein concentrations 

Protein concentrations of complex protein mixtures and cell lysates were 

determined spectrophotometrically at λ=595 nm using Bradford reagent 

(Bradford, 1976) and BSA calibration curves. 

Concentrations of purified proteins were determined on the basis of the 

Beer-Lambert law and their theoretical extinction coefficients at λ=280 nm (Gill 

and von Hippel, 1989), as calculated by the ProtParam tool at the ExPASy 

proteomics server (http://www.expasy.ch) unless mentioned otherwise. Molar 

concentrations of chaperones are expressed for the native state oligomers. 

2.3.1.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was performed using a discontinuous buffer system  under 

denaturing and reducing conditions (Laemmli, 1970). Typically, gels were 

poured with a 5% polyacrylamide stacking gel on top of a 9-15% polyacrylamide 

separating gel, depending on the required resolution. SDS sample buffer was 

added to the protein samples to a 1x concentration. Prior to loading, samples 

were boiled at 95 °C for 5 min following a short centrifugation step at 20,000 g for 

2 min. Electrophoresis was carried out at a constant current of 30 mA/gel in 

running buffer. 

Stacking gel: 5% acrylamide/bisacrylamide (30:0.8), 130 mM Tris (pH 6.8), 0.1% 
SDS, 0.1% TEMED, 0.1% ammonium persulfate. 

Separating gel: 9-15% acrylamide/bisacrylamide (30:0.8), 0.75 M Tris (pH 8.8), 
0.1% SDS, 0.1% TEMED, 0.05% ammonium persulfate. 

4x SDS sample buffer: 240 mM Tris (pH 6.8), 8% SDS, 40% glycerol, 1.4 M 
β-mercaptoethanol, 0.02% bromphenol blue. 

Running buffer: 50 mM Tris-Base, 380 mM glycine, 0.1% SDS. 
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Coomassie stain: 0.1% Coomassie Brilliant Blue R250, 30% methanol, 10% acetic 
acid. 

Destain solution: 30% methanol, 10% acetic acid. 

SDS gels not intended for further immunodetection analysis were fixed 

and stained in Coomassie stain. Unspecific background stain was removed by 

incubation in destaining solution. Radiolabeled proteins were visualized and 

quantified by phosphoimaging (Fuji FLA-2000) and AIDA software. 

2.3.1.3 Bis-Tris native polyacrylamide gel electrophoresis (native-PAGE) 

The discontinuous native gel system utilized was performed essentially 

as described (Schagger and von Jagow, 1991). Gels were composed of two layers 

(5.5% polyacrylamide on top of 12.5%). The cathode buffer consisted of 50 mM 

Tricine and 15 mM Bis-Tris (pH 7.0). The anode buffer contained 50 mM Bis-Tris 

(pH 7.0). Reaction mixtures were adjusted with native gel loading buffer to final 

concentrations of 50 mM Bis-Tris (pH 7.0), 5% glycerol, 2 mM DTT, 0.01% 

bromphenol blue. The gels were initially run at 150 V for 45 min followed by 

300 V at 4 °C until the dye front migrated to the bottom of the gel. Proteins were 

visualized as mentioned previously (2.3.1.2). 

2.3.1.4 Western blot analysis of SDS-PAGE gels 

Western blotting was carried out in a semi-dry blotting unit. Upon 

separation by SDS-PAGE, proteins were transferred to nitrocellulose membranes 

by applying a constant current of ~1 mA/cm2 gel size in 25 mM Tris, 192 mM 

glycine, 20% methanol for 1.5 h. 

Prior to blocking the membranes with 5% skim milk powder in TBS 

(2.1.3.2) for 1 h, transfer efficiency was verified by PonceauS (2.1.3.2) staining. 

The membranes were then incubated with primary antibodies (diluted to a 

suitable concentration in 5% milk-TBS) for 1 h at RT or overnight at 4 °C, 

followed by the incubation with HRP-conjugated secondary antibodies (diluted 

1:1000 in milk-TBS) for 1 h at RT. Extensive washing between the incubation 

steps was performed with TBS-T (2.1.3.2). 
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Immunodetection was carried out with the ECL system and exposure to 

X-ray films or the ImageReader (Fuji LAS-3000), followed by quantitative image 

analysis with AIDA software, if required. 

2.3.1.5 Dot blot analysis 

Dot blots were performed for fast and qualitative protein detection in 

column fractions during protein purification. Typically, 2-5 µl of each fraction 

were applied to a nitrocellulose membrane and air-dried for 10 min. 

Immunodetection was carried out as described for western blotting analysis of 

SDS-PAGE gels (2.3.1.4) with the exception that all incubation times were 

reduced to half. 

2.3.2 TCA precipitation of proteins 

Protein solutions were concentrated by TCA precipitation, when 

necessary. Therefore, the protein sample was mixed 1:1 with 25% TCA and 

incubated for 15 min on ice. The precipitated proteins were pelleted by 

centrifugation (20,000 g for 15 min at 4 °C). After washing twice with acetone 

(-20 °C), pellets were resuspended in SDS sample buffer and boiled at 95 °C for 

5 min. 

2.3.3 Protein purification 

All protein purification steps were performed at 4-8 °C unless stated 

otherwise. 

2.3.3.1 Purification of TRiC from bovine testis 

The eukaryotic chaperonin TRiC was purified according to the protocol 

described by Ferreyra and Frydman (2000) with modifications. Fresh bovine 

testes (~200 g) were skinned, cut up in small pieces and subsequently 

homogenized using a Polytron tissue homogenizer in an equal volume of 

buffer A (50 mM HEPES pH 8.0, 2 mM EGTA, 10 mM NaCl, 5 mM MgCl2, 

10% glycerol, 2 mM DTT, 1 mM PMSF, EDTA-free Complete protease inhibitors). 

The homogenate was incubated with 5 U/ml Benzonase for 30 min and clarified 

by centrifugation (40,000 g for 45 min followed by 130,000 g for 1 h). The 
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supernatant was passed through a fluted filter paper and subsequently applied 

to a 250 ml Source 30-Q column equilibrated in buffer B (20 mM HEPES pH 8.0, 

2 mM EDTA, 5 mM MgCl2, 10% glycerol, 2 mM DTT). Elution was carried out by 

an NaCl gradient (0-300 mM) in buffer B. TRiC-containing fractions were pooled 

after identification by dot blot analysis with an antibody specific for the 

α-subunit of TRiC (anti-CCTα, 2.1.6). The NaCl concentration of this pool was 

adjusted to 200 mM prior to loading on a 20 ml HiTrap Heparin column 

equilibrated in buffer C (20 mM HEPES pH 7.4, 2 mM EDTA, 5 mM MgCl2, 10% 

glycerol, 2 mM DTT) containing 200 mM NaCl.  TRiC-containing material was 

eluted by an NaCl gradient (200-700 mM) in buffer C. TRiC fractions were 

pooled, diluted with buffer C to reach an NaCl concentration of 50 mM and 

applied to a 20 ml Mono-Q column equilibrated in buffer C containing 50 mM 

NaCl. After protein elution with a NaCl gradient (50-500 mM) in buffer C, TRiC-

containing fractions were concentrated with Centriprep devices (MWCO 

100,000 kDa) and passed through a HiLoad Superdex 200 column (XK 16/60) 

equilibrated in 20 mM HEPES pH 7.4, 1 mM MgCl2, 100 mM NaCl, 10% glycerol, 

1 mM DTT. Fractions eluting at ∼900 kDa were pooled and concentrated (as 

above) to ∼25 mg/ml, aliquoted and snap-frozen in liquid nitrogen. The protein 

yield was determined by Bradford analysis and was typically ~8 mg per 100 g of 

starting material. SDS-PAGE followed by Coomassie blue staining revealed TRiC 

purity to be >95%. Functionality of the TRiC complex was assessed by an actin 

refolding assay as described in section 2.4.4. 

2.3.3.2 Purification of Trigger Factor 

TF and TFFRK/AAA (residues 44FRK46 were replaced by alanines) were 

purified according to the protocol described by Hesterkamp et al. (1997) with 

modifications. E. coli BL21(DE3) cells harboring the expression vector pET3a 

encoding the C-terminally His6-tagged wild-type or FRK/AAA TF mutant were 

grown to OD600~0.5 in LB medium (supplemented with 100 µg/ml ampicillin). 

Expression was induced with 1 mM IPTG for 3 h at 37 °C. Cells were harvested 

by centrifugation (4,000 g for 1 h) and resuspended in buffer D (25 mM KPi 

pH 8.0, 300 mM NaCl, 10 mM imidazole, 10% glycerol) containing 0.5% 
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TritonX-100 and EDTA-free Complete protease inhibitors. The suspension was 

frozen in liquid nitrogen and thawed before incubation with lysozyme 

(0.5 mg/ml) for 30 min. Following Benzonase treatment (5 U/ml) for 30 min on 

ice, cell debris was removed by centrifugation for 30 min at 100,000 g. The 

supernatant was applied to a 15 ml Ni-NTA agarose column equilibrated in 

buffer D. After a washing step with buffer D containing 20 mM imidazole, 

protein elution was performed with 250 mM imidazole in buffer D. Fractions 

containing trigger factor were pooled and diluted with buffer E (20 mM HEPES 

pH 7.4, 1 mM DTT, 10% glycerol) to reach a final NaCl concentration of 50 mM. 

The diluted protein solution was loaded on an 8 ml Mono-Q column equilibrated 

in buffer E containing 50 mM NaCl. Protein elution was achieved by applying a 

shallow NaCl gradient from 50-500 mM in buffer E. Trigger factor containing 

fractions were pooled and dialyzed against 20 mM HEPES pH 7.4, 100 mM NaCl, 

1 mM DTT, 10% glycerol. Protein aliquots were snap-frozen in liquid nitrogen 

and stored at -80 °C. The accurate protein concentration of trigger factor samples 

was determined at 280 nm (theoretical extinction coefficient ε=15,930 M-1cm-1). 

2.3.3.3 Purification of mouse β-actin 

E. coli BL21(DE3) cells transformed with the bacterial expression vector 

pRSET6a encoding mouse β-actin (Siegers et al., 1999) were grown to OD600∼0.5 

in LB medium (supplemented with 100 µg/ml ampicillin). Expression of actin 

was induced with 1 mM IPTG for 3 h at 37 °C. Cells were harvested by 

centrifugation (2,000 g for 15 min) and the resulting pellets resuspended in lysis 

buffer (50 mM Tris pH 7.4, 100 mM NaCl, 10 mM MgCl2, 1 mM DTT, EDTA-free 

Complete protease inhibitors). Lysis was performed by freeze-thawing and 

incubation with 2 mg/ml lysozyme for 20 min. The lysate was incubated with 

5 U/ml Benzonase for 30 min and clarified by centrifugation (22,000 g for 

45 min). The pellet was washed extensively with IB-buffer (10 mM Tris pH 7.4, 

150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1.0% TritonX-100) followed by wash 

buffer (50 mM Tris pH 7.4, 100 mM NaCl, 1 mM DTT). The remaining actin 

inclusion bodies were resuspended in 20 mM Tris pH 7.4, 8 M urea, 2 mM DTT. 

SDS-PAGE followed by Coomassie blue staining revealed actin purity to be 
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>95%. Protein concentration of denatured mouse β-actin was determined at 

280 nm (theoretical extinction coefficient ε=42,320 M-1cm-1). This material was 

used as a protein standard for quantitative western blotting. 

2.3.3.4 Enrichment of the actin fusion protein CAG from yeast 

YPH499 S. cerevisiae cells were transformed with the yeast expression 

vector p415 encoding the C-terminally His6-tagged CAG actin-fusion protein and 

grown to OD600∼0.3 in SC-Leu medium. Expression was induced with 2% 

galactose for 24 h at 30 °C. Cells were harvested by centrifugation (4,000 g for 

30 min) and lysed in PBS, 300 mM NaCl, 5% glycerol, 1% TritionX-100, 

EDTA-free Complete protease inhibitors, 1 mM PMSF, 10 mM imidazole using 

an EmulsiFlex high-pressure homogenizer according to the manufacturer’s 

instructions. The lysate was cleared by centrifugation (40,000 g for 1 h) and the 

supernatant applied to a HiTrap metal-chelating column (pre-charged with 

Ni2+-ions) and equilibrated in buffer F (PBS, 5% glycerol, 300 mM NaCl) 

containing 10 mM imidazole. The column was washed with a gradient of 

10-50 mM imidazole in buffer F and the protein eluted with 500 mM imidazole in 

buffer F. CAG-containing fractions were concentrated with Centriprep devices 

(MWCO 30,000 kDa) and passed through a 120 ml HiLoad Superdex 200 column 

equilibrated in PBS containing 5% glycerol. Detection of CAG in the fractions was 

performed by SDS-PAGE and Coomassie blue staining followed by a 

concentration step as described above. Purity of the enriched CAG sample was 

estimated to be ~50% corresponding to ~0.5 µM CAG when compared to a 

purified standard protein of known concentration. Protein aliquots were 

snap-frozen in liquid nitrogen and stored at -80 °C. 

2.3.4 Protein synthesis using in vitro transcription/translation 

systems 

In vitro translations were performed from plasmids with a T7 promoter. 

For protein expression in a prokaryotic model system the coupled RTS 

E. coli 100 HY transcription/translation system from a bacterial S30 lysate (S30) 

was utilized. As a eukaryotic expression system the TNT coupled system from 
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rabbit reticulocyte lysate (RRL) or the coupled RTS 100 Wheat Germ CECF kit 

(WG) was used. S30 and RRL translation reactions were typically run for 1 h at 

30 °C. WG reactions were carried out for 24 h at 24 °C and 900 rpm in the CECF 

two-chamber device. The specific activity of [35S]-Met was identical in all 

reactions. For analysis of soluble and insoluble material, the reactions were 

centrifuged (22,000 g for 30 min at 4 °C) to separate supernatant and pellet 

fractions. For kinetic experiments, reactions were run for longer periods, as 

indicated. Unless indicated otherwise, chaperones were added to S30 translations 

in the following concentrations: TRiC: 5 µM; TF: 5 µM; DnaK/DnaJ/GrpE (KJE): 

10, 2 and 6 µM; and GroEL/ES (EL/ES): 1 and 2 µM. Chaperones added to the 

bacterial S30 lysate were buffer-exchanged into RTS reconstitution buffer (Roche) 

by passing them through Micro BioSpin desalting columns, when necessary. 

2.4 Biochemical and biophysical methods 

2.4.1 Luciferase activity assay 

Firefly luciferase (FL) activity measurements were performed with the 

Luciferase Assay System according to the manufacturer’s protocol. Translation 

aliquots were diluted 100-fold into stopping buffer (25 mM Tris-Phosphate buffer 

pH 7.4, 2 mM CDTA, 2 mM DTT, 1% TritonX-100, 1 mg/ml BSA) before 

measuring activity in a luminometer. Relative specific activities were calculated 

by normalizing activity values with relative band intensities of full-length protein 

upon SDS-PAGE and phosphoimaging analysis (2.3.1.2). 

2.4.2 Firefly luciferase refolding assay  

In vitro FL refolding was assayed using the method of Terada (Terada et 

al., 1997) with the following modifications: native FL was denatured in 50 mM 

HEPES pH 7.4, 5 mM DTT, 6 M GdnHCl at 30 °C for 30 min at a concentration of 

10 µM and subsequently placed on ice. To begin refolding, FL was diluted 

100-fold into unsupplemented E. coli S30 lysate and in lysates supplemented with 

either TF (5 µM) or KJE (10, 2, 6 µM) or all of the above. At given time points, 

aliquots were removed and luciferase activity was measured as described (2.4.1). 
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In all experiments, the refolding yield was expressed as a percent of the native 

enzyme control. 

2.4.3 Post-translational folding assay for firefly luciferase 

Firefly luciferase S30 translations were stopped after 22 min by adding 

RNase A (50 µg/ml). FL activity was measured immediately before and at 

regular intervals after RNase A addition up to 60 min. The resulting activities 

were normalized by setting the initial value before RNase A addition to unity. 

Chaperone concentrations in afore mentioned reactions were as above (2.4.2). 

Apyrase was added to 10 U/ml final. 

2.4.4 Actin refolding assay 

Radiolabeled denatured mouse β-actin was prepared as follows: actin 

was synthesized in the S30 translation system supplemented with [35S]-Met 

according to the manufacturer’s instructions. After completion of the reaction, 

actin was pelleted by centrifugation (22,000 g for 30 min at 4 °C) and 

resuspended in an equal volume of urea-containing buffer (20 mM Tris pH 7.5, 

10 mM DTT, 7.5 M urea). The denatured actin (~4 µM) was diluted 100-fold into 

dilution buffer (20 mM MOPS pH 7.4, 2.5 mM MgCl2, 1 mM DTT, 0.2 mM CaCl2, 

EDTA-free Complete protease inhibitors, 1 mM PMSF) containing 1 µM TRiC. 

The sample was then divided into four equal aliquots (I-IV). Aliquot (I) was 

diluted into SDS-sample buffer and later run on a 12% SDS-PAGE for accurate 

determination of the total amount of actin in the refolding reaction. Whereas 

aliquot (II) and (III) both received an ATP-regenerating system (1 mM ATP, 

8 mM creatine phosphate, 50 µg/ml creatine kinase); aliquot (III) additionally 

received DNase I (2 µM). Aliquot (II) and (III) as well as the remaining, untreated 

control aliquot (IV) were then incubated for 1 h at 30 °C. Refolding reactions 

were stopped by dilution into native Bis-Tris gel loading buffer (supplemented 

with 15 mM CDTA). The reaction products were run on native PAGE as 

described previously (2.3.1.3). Actin bands on SDS- and native PAGE were 

quantified using phosphoimaging and AIDA software. The percentage of 

refolded actin was determined by comparing the total amount of synthesized 
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actin on the SDS-PAGE with the material bound to DNase I on the native PAGE 

(indicated by a mobility shift). 

2.4.5 DNase I mobility shift assay 

Supernatants from S30 and RRL translation reactions were diluted 5-fold 

into DNase I-containing buffer (20 mM MOPS pH 7.4, 10 U/ml apyrase, 1 mM 

DTT, EDTA-free Complete protease inhibitors, 1 mM PMSF, 5 µM DNase I) and 

incubated for 30 min at 30 °C. To ensure complete translation termination, the 

dilution buffer for S30 and RRL translations additionally received 200 µg/ml 

chloramphenicol or 200 µM cycloheximide, respectively. DNase I-bound actin 

was analyzed by its mobility shift on native PAGE and quantified as described 

(2.3.1.3). 

2.4.6 DNase I binding assay 

DNase I was crosslinked to CNBr-activated Sepharose 4B according to 

the manufacturer’s protocol. RRL reactions were carried as described previously 

(2.3.4). After a 90 min, reactions were treated with 10 U/ml apyrase for 2 min at 

30 °C following incubation with 500 U/ml TEV-protease for 30 min at 30 °C, if 

required. The reactions were then diluted into 400 µl glass-bead lysis buffer 

(2.2.7.3) and the actin bound to 40 µl of DNase I-beads (1:1 suspension in PBS) 

during a 2 h incubation at 4 °C (Lazarides and Lindberg, 1974). Prior to protein 

elution with SDS sample buffer, the beads were essentially washed as described 

(Ewalt et al., 1997). Protein analysis was performed using SDS-PAGE and 

phosphoimaging. 

Yeast ∆reg cells expressing actin fusion proteins (3 h at 30 °C in SC-Leu, 

supplemented with 2% glucose and 2% galactose) were lysed with glass beads in 

presence of 0.36 mM cycloheximide and 10 U/ml apyrase, as described (2.2.7.3). 

After removal of non-lysed cells, TEV-cleavage (500 U/ml) of actin fusion 

proteins was carried out for 30 min at 30 °C. After centrifugation (20,000 g for 

10 min at 4 °C), actin in the supernatant was bound to 60 µl of DNase I-beads (1:1 

suspension in PBS) and analyzed as described above. 
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2.4.7 Determination of actin folding kinetics in S30 and RRL 

Two identical S30 and two identical RRL translations were set up as 

described (2.3.4) and the appearance of total actin as well as actin bound to 

DNase I was followed over time, as reported above (2.4.5). At the time of 

mid-logarithmic protein translation in the different translation systems (at 30 min 

and 60 min for S30 and RRL, respectively), one out of the two translation 

reactions was stopped by addition of RNase A (100 µg/ml), and monitoring 

continued for 1 h. The final values of total as well as folded actin protein of 

untreated reactions were set to 100%. Time points of RNase A addition were set 

to the equivalent percentage values at the same time point as in untreated 

reactions. 

2.4.8 Fluorescence microscopy analysis 

Samples from RTS reactions were incubated with 10 µM rhodamine-

phalloidin (rPh) for 30 min at 37 °C, transferred to a microscope slide and 

air-dried to bind proteins to the glass surface. Upon removal of excess rPh by 

washing with PBS, actin filaments (F-actin) were analyzed by fluorescence 

microscopy (Axiovert200 equipped with filter set 15, an AxioCAM HRm digital 

camera and Axiovision 3.1 software). 

For fluorescence microscopy analyses in yeast, ∆reg cells were grown to 

OD600~0.5 in SC-Leu (containing 2% glucose) and protein expression induced 

with 0.5% galactose for 3 h at 30 °C. Fixation of the cells was performed by 

adding 3.7% formaldehyde into the medium, following incubation for 30 min on 

a rotor (Adams and Pringle, 1991). After washing the cells twice with PBS, the 

pellet was resuspended in 40 µl PBS, 0.3 µM rPh, 0.1% TritonX-100 and incubated 

in the dark for 10 min. The stained cells were washed with PBS and visualized by 

UV-illumination in an Axio ImagerA.1 fluorescence microscope (equipped with 

filter sets 15 and 38) and a CoolSnap HQ digital camera. To compare the location 

of rPh stained actin patches with those resulting from GFP-labeled actin fusion 

proteins, images from the red and green emission channels were merged with 

Metamorph 6.3 software. 
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2.4.9 Fluorescence measurements 

Emission spectra of purified proteins or proteins translated in vitro and 

diluted into PBS were acquired at 25 ºC on a Fluorolog-3 fluorescence 

spectrometer. GFP fluorescence was measured at an excitation wavelength of 

397 nm and emission spectra were collected from 450 to 575 nm. mCherry was 

excited at 585 nm and the emission was recorded from 595 to 700 nm. Band 

passes were set to 5 nm for all measurements. 

2.4.10 Quantitation of rPh-stained F-actin 

Actin was translated in the presence of 5 µM TRiC as described 

previously (2.3.4). The reaction was stopped after 60 min by the addition of 

RNase A (100 µg/ml). After incubation for 60 min at 37 °C with rPh (10 µM), the 

reaction was passed through a Sephadex-G50 size exclusion column equilibrated 

in F-actin stabilizing buffer (2 mM Tris pH 7.4, 1 mM ATP, 0.5 mM DTT, 0.2 mM 

CaCl2, 150 mM KCl, 2 mM MgCl2) to separate rPh-labeled actin filaments from 

free dye. Fractions were collected and the fluorescence was measured at 

540/572 nm (Excitation/Emission). 

2.4.11 Electron microscopy 

For negative staining, the protein sample was adsorbed onto a carbon-

coated copper grid (400x100 mesh) made hydrophilic by glow discharge for 

1 min. After removal of excess liquid by wicking to filter paper, staining was 

performed by incubation on a drop of 2% uranyl acetate for 1 min. The 

preparations were inspected in a Philips CM20 electron microscope. 
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3 Results 

3.1 Role of trigger factor and DnaK in multi-domain protein 
folding 

In the cell, a large number of newly translated proteins are dependent 

on the assistance of molecular chaperones to acquire their native state on a 

biologically relevant time scale (Ellis, 1987; Bukau et al., 2000; Frydman, 2001; 

Hartl and Hayer-Hartl, 2002). Interestingly, although the major chaperone 

families have been conserved throughout evolution, complex modular proteins 

of eukaryotic origin often fold with low efficiency upon recombinant expression 

in bacteria (Baneyx, 1999). Differences between bacterial and eukaryotic 

chaperones regarding their functional coupling to the translation process might 

contribute to this phenomenon (Netzer and Hartl, 1997; Netzer and Hartl, 1998; 

Hartl and Hayer-Hartl, 2002). 

This part of the work was performed in close collaboration with Drs. 

Vishwas Agashe and Suranjana Guha. 

3.1.1 Misfolding of eukaryotic firefly luciferase in E. coli lysate 

To investigate the effects of bacterial chaperones on the folding of 

modular eukaryotic proteins upon translation in an E. coli-based cell-free 

translation system, firefly luciferase (FL) was chosen as a model eukaryotic multi-

domain protein. FL from the North American beetle Photinus pyralis is a two-

domain protein of 62 kDa in size. Its structure has been solved to 2 Å resolution, 

showing a large N-terminal domain and a smaller C-terminal domain (Conti et 

al., 1996). FL catalyzes the oxidation of the heterocyclic compound luciferin with 

molecular oxygen in the presence of ATP and Mg2+. This reaction is very rapid 

and results in the emission of yellow-green light, which makes FL an ideal 

candidate for protein folding studies. FL is naturally located in specialized 

peroxisomes of the firefly and its uptake into the organelle is thought to occur 

after folding in the cytosol (McNew and Goodman, 1996). Importantly, the 

apparent folding rate of FL is strongly affected by the folding environment. 
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Refolding of fully denatured FL in the absence of cellular factors is exceedingly 

slow, reaching equilibrium after days (Herbst et al., 1998). This is due to 

kinetically trapped species imposed by intramolecular misfolding (Herbst et al., 

1998; Frydman et al., 1999). Refolding in the presence of the E. coli Hsp70 system 

DnaK, DnaJ, and GrpE (KJE) takes only ~10-15 min (Szabo et al., 1994). GroEL 

does not support FL refolding but can mediate its transfer to DnaK (Buchberger 

et al., 1996). In striking contrast, newly synthesized FL in eukaryotic cell lysates is 

fully active within seconds upon completion of synthesis (Kolb et al., 1994), 

resulting from co-translational folding assisted by the Hsp70/40 chaperone 

system and the cytosolic chaperonin TRiC (Frydman et al., 1994; Frydman et al., 

1999). 

In order to gain more information about the role of chaperones in the 

early stages of protein synthesis, FL was expressed to similar levels in bacterial 

(E. coli) and eukaryotic (S. cerevisiae) cells (Figure 10, left side). Upon expression 

in yeast, essentially all of the synthesized FL protein was soluble and 

enzymatically active. In contrast, expression of FL in E. coli revealed only 40% 

soluble and 5-10% active protein, respectively. Size exclusion chromatography 

analysis of soluble FL from E. coli showed that ~30-40% of the protein was 

monomeric but not functional. The remaining ~60-70% were found in higher 

molecular weight fractions, forming oligomeric structures (H.-C. Chang: personal 

communication). Expression of FL in coupled transcription/translation lysates of 

rabbit reticulocytes (RRL) and E. coli (S30) confirmed these findings (Figure 10, 

right side). These lysates support efficient protein synthesis (up to ~200 µg/ml 

per hour), but represent dilute cytosol preparations with low levels of 

endogenous chaperones (3.1.2). The translation reactions were typically run for 

1 h at 30 °C in the presence of radiolabeled [35S]-Met following separation of 

soluble and insoluble material by centrifugation. Quantitation of the 

radioactively labeled FL bands upon SDS-PAGE analysis revealed FL translated 

in RRL to be ~100% soluble (Figure 10, top panel).  FL activity of total 

synthesized protein was estimated to be approximately 55%. In contrast, the 

specific activity of FL translated in the S30 lysate was only ~5%, with ~45% of the 
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protein being in the soluble state. Thus, intramolecular misfolding followed by 

aggregation accounts for the low specific activity of bacterially expressed FL. 

 

 
Figure 10: Folding of FL is inefficient in bacteria compared to eukaryotes. 
 
FL was expressed to similar levels in vivo in E. coli and S. cerevisiae (Agashe et al., 
2004) and in vitro in E. coli (S30) and rabbit reticulocytes lysate (RRL) translation 
reactions. Top panel: Distribution of FL protein upon fractionation of total cell extracts (T) 
into soluble (S) and pellet fractions (P) by centrifugation. Bottom panel: FL relative 
activities (white bars) and amount of soluble FL in % of total (gray bars). The specific 
activity in yeast was set to 1. 
 

3.1.2 Cooperative effect of TF and DnaK on folding 

In general, misfolding of FL in the bacterial cytosol can result either 

from the lack of specific eukaryotic factors or the presence of inhibitory 

prokaryotic factors, or a combination of both. As shown in the past, TF and DnaK 

have partially overlapping functions in de novo protein folding in E. coli cells 

(Teter et al., 1999; Deuerling et al., 2003). Therefore, the contribution of TF and 

DnaK to FL folding in the in vitro S30 translation lysate was analyzed. The in vivo 

concentration of TF and DnaK under standard growth conditions in E. coli cells 

are ~40 µM and ~50 µM, respectively (Lill et al., 1988; Hesterkamp and Bukau, 

1998). In contrast, the S30 lysate used throughout this study represents a highly 

diluted cytosol with final concentrations of both TF and DnaK of ~0.5 µM as 

determined by quantitative western blotting (Agashe et al., 2004). In order to 

determine whether these residual amounts of TF and DnaK were still able to 
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successfully promote protein folding in vitro, refolding experiments of FL were 

performed (Figure 11). 

 

 
 
Figure 11: Refolding of chemically denatured FL. 
 
Time course of refolding of chemically denatured FL (final concentration: 100 nM upon 
100-fold dilution from 6 M GdnHCl) in unsupplemented bacterial S30 lysate (no 
chaperones, ) and in lysates supplemented with TF (5 µM, ), KJE (10, 2, 6 µM, ), 
and TF with KJE ( ) at 30 °C. The refolding yield is expressed as percent of a native 
enzyme control. 

 

Interestingly, ATP-dependent refolding of purified chemically 

denatured FL, diluted into the S30 lysate, was only ~10% efficient. In contrast, 

refolding in the S30 lysate upon supplementation with the purified bacterial 

Hsp70 chaperone system KJE (10, 2, and 6 µM) occurred with a half-time of 

~10 min and resulted in 80-90% native FL (Figure 11 and 12A). This effect was 

irrespective of the presence of TF (5 µM) (Figure 11 and 12A). Importantly, TF 

alone was not able to refold FL above background level. Together, the refolding 

efficiency of FL out of denaturant solely depends on the presence of KJE and 

cannot be further increased by the addition of TF. 

Next, the S30 lysate was supplemented with different combinations of 

purified bacterial chaperones (Figure 12A) and their effect on the specific activity 

of FL during de novo synthesis analyzed. In contrast to the results obtained for FL 

refolding (Figure 11), the sole addition of TF to the S30 lysate increased the 

specific activity of newly translated FL 2- to 3-fold (Figure 12B), while the 
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solubility improved from ~40% to ~60%. When the same experiment was 

performed in an S30 lysate that had been immunodepleted of DnaK to further 

reduce the DnaK concentration, TF had no effect (Agashe et al., 2004: 

Supplemental Figure S3). Thus, TF action is strongly dependent on the residual 

amounts of DnaK present in the lysate. Surprisingly, addition of purified KJE 

alone was without effect on FL activity, even though FL is maintained in an 

almost completely soluble state under these conditions (Figure 12B). Adding TF 

and KJE together resulted in a ~4-fold increase in specific activity. These findings 

lead to the assumption that, during de novo folding of FL, TF and KJE must 

cooperate in order to increase its folding efficiency while refolding of FL out of 

denaturant is TF independent (Figure 11). Thus, TF is critical in maintaining FL 

nascent chains competent for folding by the KJE system. 

 

 
 
Figure 12: Effect of purified chaperones on folding yields of FL during translation. 
 
(A) SDS-PAGE analysis of purified E. coli chaperones: Trigger factor wild-type (TF) and 
FRK/AAA-mutant (TFFRK/AAA), DnaK (K), DnaJ (J), GrpE (E), and the chaperonin GroEL 
(EL) with its co-chaperone GroES (ES). (B) Expression of FL in S30 translation reactions 
with and without chaperone supplementation, as indicated (TF, 5 µM; KJE, 10, 2, and 
6 µM; ELES, 1 and 2 µM). Specific FL activities after 1 h translation at 30 °C (white bars) 
are shown relative to the unsupplemented lysate (set to 1). Protein solubility (gray bars) is 
given as a fraction of total protein in the presence or absence of added chaperones, as 
indicated. 

 

However, the 4-fold increase in activity upon de novo synthesis of FL in 

the presence of TF and KJE (~20%, compared to ~5% in the unsupplemented S30 

lysate; Figures 10 and 12B) is lower than the yield obtained from FL refolding 
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(80-90% in presence of KJE alone; Figure 11). This finding suggests that TF 

functions inefficiently in stabilizing ribosome bound FL in a conformation 

productive for the interaction with DnaK. Moreover, a folding yield of ~20% with 

essentially all translated protein appearing in the soluble fraction indicates, that, 

similar to FL expression in E. coli, a large fraction of the protein must be in a 

misfolded sate. As expected, supplementation of the S30 lysate with purified 

GroEL/GroES (ELES; Figure 12A) at physiological concentrations (1 and 2 µM) in 

addition to TF and KJE did not further improve the yield of FL folding 

(Figure 12B). 

3.1.3 Chaperone enforced shift in folding mechanism 

As mentioned previously, refolding of denatured FL in the presence of 

the bacterial Hsp70 system takes approximately 10-15 min (Figure 11 and Szabo 

et al., 1994), whereas FL translated in a eukaryotic system is fully active within 

seconds upon completion of synthesis (Kolb et al., 1994). 

In order to find out whether the differences in FL folding efficiencies 

observed in eukaryotic and prokaryotic systems are based on different folding 

mechanisms, kinetics of FL translation and folding in the unsupplemented 

(chaperone diminished) S30 lysate were compared to those in RRL. In the latter 

system, folding of FL is assisted by mammalian Hsp70/40 and TRiC (Frydman et 

al., 1994). Surprisingly, despite the marked difference in folding yield (~5% in 

unsupplemented S30 versus ~60% in RRL; Figure 10), in both systems FL activity 

appeared virtually concurrently with the production of full-length protein 

(Figure 13A), indicative of the occurrence of co-translational folding. Further 

kinetic experiments were performed to test whether TF and KJE affect the 

mechanism of FL folding when present during translation at concentrations 

closer to physiological levels (3.1.2). Indeed, when TF (5 µM) was added to the 

S30 lysate, the kinetics of FL folding showed a significant deceleration 

(Figure 13B), indicative of a shift towards a post-translational mode of folding. 

Increasing amounts of added TF (up to 15 µM) did not cause a further delay in 

folding (S. Guha: personal communication). Importantly, upon addition of TF to 

the reaction, the speed of translation was not affected (Figure 13B). 
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Figure 13: TF and KJE delay folding relative to translation in vitro. 
 
(A) Apparent co-translational folding of FL in E. coli (S30) and rabbit reticulocytes (RRL) 
translation reactions. Appearance of full-length protein ( ) and activity ( ) were followed 
with time. Final values were set to 100%. (B) Appearance of FL activity during S30 
translation in the absence of added chaperones ( ) and presence of added KJE (10, 2, 
6 µM, ), TF (5 µM, ) or a combination of both ( ). The appearance of full-length FL in 
all translations was identical and is represented in red. 

 

Deceleration in FL folding was not observed when KJE was added in the absence 

of TF. However, concurrent with the increase in folding yield (Figure 12B), the 

post-translational component of folding became even more pronounced when 

the reaction was supplemented with TF and KJE together (Figure 13B). Thus, TF 

and the DnaK-system seem to cooperate in order to assure a post-translational 

folding mechanism. In contrast, the rapid folding observed in the 

unsupplemented S30 lysate apparently represents a co-translational but highly 

inefficient default-pathway. 

3.1.4 Shift in folding mechanism requires co-translational action of 

TF and DnaK 

A hallmark of co-translational folding is the immediate stop of the 

appearance of native, active protein after translation termination (Figure 14). In 

contrast, proteins following a post-translational folding mechanism typically 

continue to form native protein after translation is inhibited. This effect is due to 

the specific interaction of chaperones with the nascent polypeptide chain upon its 

release from the ribosome in order to mediate proper folding. The time necessary 

for post-translational completion of folding is thereby strongly dependent on the 

protein and the folding environment. 
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Figure 14: Co- versus post-translational protein folding model data. 
 
After a short lag phase, due to ribosome loading with mRNA, the appearance of 
enzymatically active protein in a coupled transcription/translation reaction in vitro typically 
occurs linear over time. Upon termination of protein synthesis by a translation inhibitor, 
the appearance of folded protein either stops concomitantly with translation termination 
(indicative for a co-translational folding mechanism) or increases further over time 
(indicative for a post-translational folding mechanism). 
 

To see whether the delay in folding caused by TF and KJE is dependent 

on the co-translational action of these chaperones, FL was translated in the 

S30 lysate. The appearance of FL activity was followed over time after the 

reaction was stopped by the addition of RNase A (an efficient translation 

inhibitor for both prokaryotic and eukaryotic systems), 22 min after translation 

initiation. Inhibition of translation in the unmodified S30 lysate was not followed 

by any further increase in FL activity (Figure 15; also see Figure 11), consistent 

with the virtually concurrent appearance of full-length protein and enzyme 

activity, reported previously (Figure 13A). In contrast, supplementation of the 

lysate with TF together with KJE resulted in a more than 2-fold increase of FL 

activity upon inhibition of translation (Figure 15). The kinetics for the 

post-translational appearance of FL activity (t1/2~10 min) was in good agreement 

to those observed for the ATP-dependent, KJE-mediated refolding of denatured 

FL (Figure 11; Szabo et al., 1994). Depletion of ATP by apyrase concomitant with 

RNase A addition eliminated the post-translational phase, consistent with an 

ATP requirement for DnaK function (Figure 15). Although the sole addition of TF 
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showed a similar post-translational folding phase, the increase of FL activity was 

less pronounced when compared to the lysates supplemented with both TF and 

KJE. Addition of a triple-mutant form of TF, TFFRK/AAA (Figure 12A), defective in 

ribosome binding (Kramer et al., 2002), did not result in post-translational FL 

folding (Figure 15) or an increase in FL folding efficiency (data not shown). 

 

 
 
Figure 15: Co-translational actin of TF and KJE changes the mechanism of FL 
folding. 
 
Post-translational changes in FL activity were followed after translation inhibition with 
RNase A (22 min after initiation). S30 lysate without added chaperones ( ) and with 
chaperones added at the beginning of translation: TF (5 µM, ) and TFFRK/AAA (5 µM, ), 
KJE (10, 2, 6 µM, ), TF and KJE ( ), TF together with KJE and apyrase ( ). In another 
reaction, TF and KJE were added together with RNase A at the time of stopping 
translation ( ). 

 

Thus, binding of TF to the ribosome is a prerequisite for both the switch in FL 

folding from a co- to a post-translational mechanism (Figure 13) and the resulting 

gain in FL activity seen with wild-type TF (Figure 12B). Strikingly, addition of TF 

and KJE after the translation was stopped with RNase A failed to produce any 

post-translational folding phase. These findings were corroborated by the lack of 

a post-translational folding phase upon translation of FL in a DnaK-

immunodepleted lysate, which contained TF from the beginning and received 

KJE after the translation was inhibited (S. Guha: personal communication). 

Hence, the co-translational action of TF and KJE, preventing misfolding or 

aggregation, is essential for productive, post-translational folding of FL. 
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Taken together, folding of the multi-domain protein FL in a 

chaperone-diminished S30 lysate occurs by a fast and co-translational default 

mechanism which is limited by misfolding and aggregation of the nascent chains. 

Although lysate supplementation with TF and KJE counteracts this off-pathway 

folding, directing nascent polypeptides to a post-translational folding route, the 

mechanistic shift applied cannot substitute for the efficient co-translational 

folding of FL in the eukaryotic system (Frydman et al., 1994). 

3.2 TRiC-assisted folding of actin upon bacterial translation 

The inability of the bacterial cytosol to support efficient folding of 

eukaryotic proteins results, among other factors, from the presence of 

incompatible molecular chaperones, as described for FL (3.1 and Agashe et al., 

2004). On the other hand, certain eukaryotic proteins, such as actin, are known to 

have specific chaperone requirements for efficient folding. In vivo folding and 

in vitro refolding of actin is strictly dependent on the eukaryotic chaperonin TRiC 

(Tian et al., 1995; Siegers et al., 1999). Although architecture and mechanism of 

TRiC function are thought to be similar to those of bacterial GroEL, the bacterial 

chaperonin cannot mediate actin folding. Indeed, recombinant expression of 

actins from multiple species (including Dictyostelium discoideum, S. cerevisiae and 

rabbit) in E. coli results in the generation of non-native species that aggregate into 

inclusion bodies (Frankel et al., 1990). 

Therefore, this part of the study focuses on the minimum chaperone 

requirements for the production of substantial amounts of native actin upon 

synthesis in the bacterial S30 lysate. 

3.2.1 Purified TRiC is active and does not affect in vitro translation 

efficiency of S30 lysates 

In order to investigate the effect of TRiC on actin translation rates during 

de novo synthesis in the bacterial S30 lysate, the chaperonin was purified from 

bovine testes with the following modifications of the protocol published by 

Ferreyra and Frydman (2000): Only four chromatographic steps were necessary 

to obtain >95% pure TRiC (Figure 16A), in contrast to six steps and an 
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ammonium sulfate precipitation in the published protocol (2.3.3.1). The 

modifications applied did not lead to a decrease in the overall yield of purified 

material: routinely ~8 mg of purified TRiC per 100 g of starting material were 

obtained. Characterization of the purified chaperonin complex by analytical gel 

filtration analysis resulted in a single homogenous peak eluting at the 

appropriate size of ~900 kDa, indicative of TRiC being pure and fully assembled 

(Figure 16B). 

 

 
 
Figure 16: Characterization of purified TRiC from bovine testes. 
 
(A) SDS-PAGE analysis of TRiC purified from bovine testes according to the protocol of 
Ferreyra and Frydman (Ferreyra and Frydman, 2000) with modifications (2.3.3.1). (B) 
Absorption profile of the purified TRiC complex applied to an analytical Superose 6 gel 
filtration column (SMART system). Arrows indicate the position of marker proteins (in 
kDa). 
 

Examination of purified TRiC samples by negative stain electron 

microscopy revealed particles extremely regular in size and shape (Figure 17). 

The predominant view was of ring-shaped structures with a central stain-filled 

hole. Aggregates or individual subunits resulting from disassembled TRiC 

complexes were not observed. These findings are consistent with previously 

reported electron microscopy analyses of large barrel shaped double ring 

complexes, including TRiC and ELES (Frydman et al., 1992; Langer et al., 1992b). 
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Figure 17: Electron micrograph of negatively stained TRiC. 
 
Purified TRiC was negatively stained with uranyl acetate and examined by electron 
microscopy on a carbon coated copper grid. Size bar = 50 nm. Image was recorded by 
Karoline Bopp, Department of Molecular Structural Biology, MPI of Biochemistry). 
 

To test whether TRiC purified by this method was active, its ability to 

refold actin upon dilution from denaturant was examined. Denatured 

radiolabeled actin (~4 µM) was diluted 100-fold into buffer containing TRiC 

(1 µM) in the absence and presence of ATP and DNase I. The resulting complexes 

were analyzed by native PAGE and phosphoimaging (Figure 18A). Throughout 

this study, generation of native monomeric actin (G-actin) was monitored by its 

characteristic mobility on native PAGE and the shift in position of this band upon 

formation of a binary complex with DNase I (Hansen et al., 1999). In the absence 

of ATP, most of the material was stably bound to TRiC, whereas actin was 

released upon incubation with ATP (Figure 18A). The released actin was native, 

since it was able to form a stable complex with DNase I, as evidenced by the shift 

associated with the decreased mobility of this complex upon native PAGE 

analysis. Quantitation of the band corresponding to native actin demonstrated 

that TRiC purified by this method was able to refold ~50% of the diluted actin 

within a 1 h incubation at 30 °C (Figure 18B), a similar amount to that reported 

previously (Gao et al., 1992). 
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Figure 18: TRiC assisted actin refolding. 
 
(A) Native PAGE of TRiC assisted actin refolding upon dilution from denaturant. All 
reactions were performed in the presence of TRiC. Supplementation with ATP and 
DNase I is indicated above the panel. Filled arrowhead: actin:TRiC complex; empty 
arrowhead: actin:DNase I complex; empty arrow: native monomeric actin (G-actin). (B) 
Quantitation of phosphoimaging results: G-actin bound to DNase I (DNase I) as assessed 
in (A) relative to the total amount of denatured actin (Total) used for refolding. 

 

The bacterial S30 translation lysate used in this work is designed to produce large 

quantities of recombinantly expressed protein (~200 µg/ml per hour; 3.1). To 

make sure that supplementation of the bacterial lysate with purified TRiC did not 

lead to any detrimental effects on translation, the amount of total actin 

synthesized in translation reactions in absence and presence of 5 µM TRiC (the 

amount used throughout this study; Figure 21) were compared by quantitative 

immunoblotting (Figure 19). Importantly, the addition of purified TRiC to the 

S30 lysate had no effect on the actin translation efficiency, which typically 

resulted in the production of ~175 µg/ml (~4 µM) per hour when compared to 

purified actin standard protein (2.3.3.3). 
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Figure 19: Supplementation of bacterial lysates with purified TRiC did not affect 
translation efficiency. 
 
Quantitative immunoblotting of translated actin protein (42 kDa). Left: duplicate 
experiments of actin translations (1 µl of total reaction) in absence or presence of TRiC 
(5 µM), as indicated. Right: actin standard protein purified from inclusion bodies of E. coli 
(2.3.3.3). 
 

3.2.2 TRiC is capable to assist the folding of newly synthesized actin 

Next, the effect of TRiC on the behavior of actin synthesized in the 

S30 lysate was characterized. Actin translation reactions, supplemented with 

[35S]-Met, were performed in the absence and presence of TRiC (5 µM) and 

subsequently centrifuged to separate soluble and insoluble fractions (2.3.4). In 

absence of TRiC, quantitation of the corresponding actin bands upon SDS-PAGE 

analysis revealed ~90% of synthesized actin to be in the insoluble fraction. In 

contrast, lysate supplementation with TRiC turned approximately 80% of the 

translated actin into soluble protein (Figures 20A and 20B). The supernatants of 

these reactions were incubated with DNase I and the actin:DNase I complexes 

examined by native PAGE (Figures 20B and 20C; 2.4.5). Only the reaction 

supplemented with TRiC resulted in material that formed complexes with 

DNase I (Figure 20C). Quantitation revealed that ~40% of the total actin 

synthesized in the presence of TRiC bound to DNase I in form of monomeric 
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G-actin (a similar amount was present as F-actin, but incapable of binding to 

DNase; 3.2.5). 

 

 
 
Figure 20: TRiC supplementation of a bacterial translation lysate results in the 
production of native actin. 
 
(A) SDS-PAGE of total (T), supernatant (S) and pellet (P) fractions of actin (42 kDa) 
produced in unsupplemented and TRiC-supplemented bacterial S30 translation reactions, 
as indicated. (B) Phosphoimaging quantitation of actin translations as shown in (A) as 
well as DNase I-bound native actin (D) as assessed in (C). (C) Native PAGE of actin 
synthesized in absence and presence and of TRiC (5 µM), as indicated. After translations 
were stopped, DNase I was added to the supernatants of the reactions. Filled arrowhead: 
actin:TRiC complex; filled arrow: actin:GroEL complex (determined by comparing the 
mobility of a complex between purified GroEL and actin, data not shown); empty 
arrowhead: actin:DNase I complex; empty arrow: native actin. 
 

In order to determine the optimal TRiC concentration required for the 

folding of the substantial actin quantities synthesized in this lysate, translation 

reactions with increasing concentrations of TRiC were performed. The amount of 

actin capable of binding to DNase I was examined by native PAGE, as described 

above (Figure 21A). The yield of DNase I-bound actin (~40%) did not increase at 

concentrations >5 µM, which correlated well with the observed actin solubility 

(Figure 21B). Therefore, a concentration of 5 µM TRiC was used in subsequent 

experiments. 
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Figure 21: Titration of purified TRiC added to the bacterial translation lysate. 
 
(A) Native PAGE of actin S30 translations performed in presence of increasing amounts 
of supplemented TRiC (indicated above the panel). Reactions in lanes 2-6 received 
DNase I, as indicated. Symbols are as in Figure 20C. (B) Phosphoimaging quantitation of 
the actin:DNase I band as assessed in (A) (filled circles) and the material remaining in the 
pellet fraction as assessed by SDS-PAGE analysis (empty circles and data not shown). 
 

3.2.3 Bacterial chaperones are not able to fold actin nascent chains 

It is well known that recombinant expression of actin in E. coli cells 

results in the formation of insoluble aggregates (Frankel et al., 1990).  Moreover, 

the bacterial S30 translation lysate used in this study represents a dilute cytosol 

preparation functionally-depleted of endogenous chaperones and thus unable to 

support the efficient folding of the eukaryotic multi-domain protein FL, as 

mentioned previously (3.1). 

In order to examine the effects of bacterial chaperones on actin solubility 

and folding during de novo synthesis in the S30 lysate, translation reactions were 

supplemented with purified ELES (1 and 2 µM) and the major nascent chain 

binding chaperones TF (5 µM) and KJE (10, 2 and 6 µM) (Figures 22A and 12A). 

Addition of these chaperones did not affect translation rates when compared to 

unsupplemented lysate (Figure 22A). The reactions were centrifuged to separate 

soluble and insoluble material and examined as before (Figures 22A and 22B). 
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Figure 22: Supplementation of the S30 translation lysate with purified bacterial 
chaperones does not result in the production of native actin. 
 
(A) SDS-PAGE of total (T), supernatant (S) and pellet (P) fractions of actin (42 kDa) 
produced in unsupplemented (unsuppl.) and trigger factor- (TF, 5 µM), DnaK/DnaJ/GrpE- 
(KJE, 10, 2, and 6 µM) or GroEL/GroES- (ELES, 1 and 2 µM) supplemented S30 lysate 
reactions. (B) Phosphoimaging quantitation of actin translations as shown in (A) as well 
as DNase I-bound native actin (D) as assessed in (C). (C) Native PAGE of actin 
synthesized in absence and presence of bacterial chaperones or TRiC, as indicated. 
After translations were stopped, supernatants of all reactions received DNase I. Symbols 
are as in Figure 20C. 

 

Supplementation with ELES or KJE in the above mentioned concentrations 

resulted in ~90% of the synthesized actin remaining in the soluble fraction, 

whereas addition of TF did not improve actin solubility when compared to the 

unsupplemented reaction (~10%) (compare Figures 22A and 22B with Figure 20A 

and 20B). Higher chaperone concentrations did not lead to any further increase in 

actin solubility (data not shown). Next, actin present in the supernatants of these 
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chaperone-supplemented reactions was examined regarding the capability of 

forming a complex with DNase I as described above. In contrary to the 

production of native actin upon supplementation with TRiC, none of the 

bacterial chaperones tested were able to generate actin capable to bind to DNase I 

(Figure 22C). 

3.2.4 Folding of actin assisted solely by TRiC occurs more slowly than 

folding in the eukaryotic cytosol  

TRiC-mediated refolding of actin upon dilution from denaturant occurs 

with a half-time of ~15-30 min, which reflects the need for several cycles of actin 

binding and release from the chaperonin for the generation of native protein 

(Tian et al., 1995). In contrast, de novo folding of newly synthesized actin in the 

cytosol of wild-type eukaryotic cells is much faster, with half-times of ~1 min 

(Siegers et al., 1999). This finding suggests that actin translation and folding are 

normally efficiently coupled, and that actin leaves TRiC in a native or near-native 

state. This rapid folding process has been explained by the presence of a “folding 

compartment” in the eukaryotic cytosol, in which additional factors, such as 

PFD/GimC, sequester folding intermediates during TRiC-assisted folding and 

prevent their premature release into the crowded environment of the cytosol 

(Hartl and Hayer-Hartl, 2002). Indeed, when actin was synthesized in 

GimC-deficient yeast strains, the rate of actin folding was decrease 5-fold, with 

the overall yield of native actin being reduced by 40-50% (Siegers et al., 1999). 

Since the bacterial S30 translation system lacks all of the factors normally 

present in the eukaryotic cytosol and E. coli chaperones are unable to mediate 

actin folding, this provided the opportunity to investigate the folding kinetics of 

newly translated actin assisted solely by TRiC. Therefore, the appearance over 

time of total translated actin (monitored by SDS-PAGE, as above) versus 

DNase I-binding actin (monitored by native PAGE, as above) was followed in a 

translation reaction supplemented with TRiC and [35S]-Met (Figures 23A and 

23B). 



Results   76                                  

 
 
Figure 23: Folding of bacterially-translated actin assisted solely by TRiC occurs 
more slowly than actin folding in RRL. 
 
Appearance of total ( ) and DNase I-bound ( ) actin in TRiC-supplemented bacterial 
S30 translation lysates (S30) (A, B) or unsupplemented reticulocyte lysates (RRL) (C, D) 
that received no treatment (A, C; final values set to 100%) or that received RNase A 
treatment to stop translation at the time point indicated by the arrow (B, D; point of 
RNase A addition set to the equivalent percentage value at the same time point in A and 
C, respectively). Lower panels: SDS-PAGE and native PAGE used for quantitation. 

 

As can be observed, there is a delay of ~15 min in the appearance of native actin 

relative to full-length actin synthesized (Figure 23A). This finding suggests that 

translation is poorly coupled to TRiC-mediated folding in this system and that 

actin folds through a slow post-translational mechanism. If actin folding in the 

S30 lysate is not tightly coupled to translation, then addition of a translation 

inhibitor to an ongoing translation reaction should result in the accumulation of 
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native actin over the next few minutes after translation has stopped (for general 

information see Figure 14). Thus, RNase A was added to an ongoing reaction, 

supplemented with TRiC and [35S]-Met as above. Subsequently, the appearance 

of native protein after translation termination was monitored over time 

(Figure 23B). Strikingly, whereas RNase A addition resulted in an immediate 

cession of translation, DNase I-binding actin continued to increase over the next 

minutes with a half-time of ~10-15 min. This result was in good agreement to the 

delay in actin folding observed in the untreated S30 reaction (Figure 23A). Thus, 

TRiC-assisted actin folding in the bacterial lysate occurs with similar kinetics 

resembling that of actin refolding upon dilution from denaturant (Tian et al., 

1995). 

The slow kinetics of actin folding relative to translation observed in the 

TRiC-supplemented bacterial lysate could be due to intrinsic properties of 

coupled transcription/translation lysates (such as general dilution of cytosolic 

factors, decreased crowding, etc.) or to a lack of specific factors that promote 

efficient actin folding. To investigate these possibilities, actin was translated in 

RRL and the kinetics of folding analyzed as described for TRiC-supplemented 

S30 reactions (Figure 23C). After a characteristic phase associated with 

transcription of the actin mRNA and ribosome loading, DNase I-binding actin 

was detectable shortly after the appearance of full-length actin, with a delay of 

only ~2-3 min. The fast folding kinetics observed were in good agreement to 

those reported for actin mRNA translation in RRL (Frydman and Hartl, 1996). If 

the majority of actin nascent chains are folding rapidly after their release from the 

ribosome, the addition of a translation inhibitor should lead to no further 

substantial increase of native actin after cessation of translation (for general 

information see Figure 14). Therefore, RNase A was added to an ongoing actin 

translation in RRL, similar to the one described above (Figure 23D). As expected, 

the accumulation of DNase I-binding actin stopped concurrently with 

translation, in sharp contrast to the result obtained with the bacterial lysate 

(Figure 23B). Taken together, these results suggest that, in the absence of 

additional factors, TRiC-mediated folding of newly translated actin is a slow 

process that necessitates several cycles of TRiC binding and release. 
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3.2.5 Bacterial S30-translated actin folded by TRiC readily 

polymerizes into filaments 

A hallmark of actin that has reached its native state is its ability to 

polymerize into filaments (F-actin). Phalloidin, a bicyclic heptapeptide from the 

poisonous mushroom Amanita phalloides, binds specifically to F-actin and its 

fluorescent derivatives have been used extensively to visualize actin filaments 

in vivo and in vitro (Cooper, 1987). In order to find out whether actin that has 

been translated in the bacterial S30 lysate and assisted in its folding by TRiC is 

able to polymerize into filaments, products of a TRiC-supplemented actin 

translation reaction were stained with rhodamine-derivatized phalloidin (rPh) 

and examined by fluorescence microscopy (Figure 24A). 

 

 
 
Figure 24: Bacterially-produced actin in the presence of TRiC readily polymerizes 
into filaments. 
 
(A) Fluorescence microscopy of rhodamine-phalloidin binding actin filaments produced in 
bacterial S30 lysates containing a plasmid encoding actin (pActin) and/or supplemented 
with TRiC (TRiC), as indicated. Size bar = 20 µm. (B) SDS-PAGE of total (T), supernatant 
(S) and pellet (P) fractions of actin (42 kDa) produced in bacterial S30 lysates containing 
a plasmid encoding actin (pActin) and/or supplemented with TRiC (TRiC), as indicated. 
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Abundant rPh-binding structures of filamentous shape with diverse lengths and 

no evident branching or amorphous aggregation were visible. Thus, the observed 

structures are likely to represent bona fide rPh-binding F-actin since they were not 

observed in actin translation products of unsupplemented reactions (Figure 24A) 

(even though the amounts of actin synthesized were equivalent; Figure 24B), nor 

in TRiC-supplemented lysates devoid of the actin-encoding DNA plasmid 

(Figure 24A). Supplementation of actin S30 translation reactions with the 

bacterial chaperones ELES, KJE or TF at concentrations used in previous 

experiments (3.2.3) did not lead to the appearance of rPh-binding structures (data 

not shown). 

The equilibrium between monomeric actin (G-actin) and polymerized 

actin (F-actin) is strongly favored towards F-actin at salt concentrations 

>50 mM K+ or Na+ and >2 mM Mg2+ (Pardee and Spudich, 1982). Therefore, it is 

plausible that in the translation lysates, which contain physiological salt 

concentrations, a considerable fraction of the actin polymerizes soon after it is 

released from TRiC as a native species. Since DNase I forms stable complexes 

with G-actin but not with F-actin (Hitchcock et al., 1976; Blikstad et al., 1978), the 

use of DNase I binding to quantitate the total amount of folded actin (G-actin + 

F-actin) under physiological salt concentrations may result in underestimation. If 

saturating quantities of rPh are used to bind F-actin, fluorescence can be used as 

a quantitative measure of the amount of filamentous actin present in the sample 

(Howard and Oresajo, 1985). To this end, the yield of F-actin present in the 

TRiC-supplemented reactions was estimated by measuring the amount of bound 

rPh. As phalloidin is known to bind with a stoichiometry of 1:1 to each F-actin 

protomer (Steinmetz et al., 1998), and ~4 µM actin is produced in a translation 

reaction, the product of an actin S30 translation reaction was incubated with 

10 µM rPh. rPh bound to F-actin was separated from unbound material by gel 

filtration chromatography and fluorescence intensities of the individual fractions 

were measured (Figure 25). As a control, a similar experiment was performed 

upon translation of FL in an unsupplemented S30 translation reaction. Strikingly, 

since FL does not bind rPh, an increase of rPh-fluorescence in fractions eluting 

early from the gel filtration column (reflecting fractions containing high 
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molecular weight complexes) was only observed in the case of actin synthesized 

in presence of TRiC. Thus, the amount of F-actin produced in 

TRiC-supplemented translations was estimated to be ~1.6 µM, corresponding to 

~40% of total actin synthesized. 

 

 
 
Figure 25: Quantiation of F-actin produced in a TRiC-supplemented S30 reaction. 
 
Actin, translated in a TRiC-supplemented ( ) and FL, translated in an unsupplemented 
bacterial lysate ( ) and incubated with 10 µM rhodamine-phalloidin (rPh). Reactions 
were then passed through a Sephadex-G50 gel filtration column to separate rPh-labeled 
F-actin from unbound, free dye. Fractions were collected and rPh-fluorescence was 
measured at 540/572 nm (Excitation/Emission). 
 

Notably, phalloidin is known to have a stabilizing function, and thus 

can prevent F-actin against depolymerization (Low and Wieland, 1974). In order 

to make certain that the amount of TRiC-folded actin, capable of binding to 

DNase I, remained unaffected upon rPh-treatment, actin labeling with rPh was 

additionally performed prior to DNase I incubation (Figure 26A). Importantly, 

the amount of DNase I-bound actin remained constant at a level of ~40-50%, 

irrespective of the time point of rPh treatment (compare Figures 26B and 20B). 

Thus, the overall percentage of newly synthesized, TRiC-folded actin in the 

bacterial system is ~80%, which corresponds to ~140 µg/ml (~3.2 µM) per hour. 
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Figure 26: Incubation of actin with rPh does not affect DNase I binding efficieny. 
 
(A) Native PAGE of actin synthesized in the presence of TRiC. Actin translation was 
stopped with RNAse A after 1 h and incubated with rPh (10 µM) before addition of 
DNase I to the supernatant, as indicated. Filled arrowhead: actin:TRiC complex; empty 
arrowhead: actin:DNase I complex; empty arrow: native actin. (B) Phosphoimaging 
quantitation of actin bound to DNase I (DNase I) as assessed in (A) relative to the 
amount of total actin synthesized (Total). 
 

3.3 Role of TRiC in the folding of actin-fusion proteins 

Despite a uniform size distribution of protein domains throughout all 

three kingdoms of life (Blake, 1985), the number of complex proteins combining 

multiple domains is proportionally larger in eukaryotes than in bacteria. In 1998, 

Netzer and Hartl proposed most eukaryotic multi-domain proteins to fold 

co-translationally in a domain-wise and conceivably Hsp70-assisted manner, but 

independent of the interaction with the TRiC chaperonin. In fact, it was 

suggested that TRiC is specialized for the post-translational completion of 

folding of modular proteins (including actin), which are constructed of 

discontiguous or structurally unstable sequence segments and therefore 

incapable of forming native tertiary structures during translation (Netzer and 

Hartl, 1998). Support for TRiC being involved in domain-wise protein folding 

mechanisms came from previous studies using pulse-chase experiments, where 

the chaperonin was shown to transiently associate with large substrate proteins, 

clearly exceeding the ~50 kDa size limit of the TRiC folding cavity (Ditzel et al., 
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1998; Thulasiraman et al., 1999). Furthermore, cross-linking studies demonstrated 

that TRiC can interact co-translationally with actin nascent chains, soon after they 

emerge from the ribosomal exit site (McCallum et al., 2000; Etchells et al., 2005). 

These results strongly support a close association between the chaperonin and 

the translation machinery and strengthen the idea of TRiC being able to shield 

hydrophobic patches of discontiguously organized domains of modular proteins 

during synthesis (Netzer and Hartl, 1998). However, experimental evidence for a 

domain-wise mode of TRiC-mediated folding has not yet been provided. 

In the following section, various actin-fusion proteins were generated 

and served as model multi-domain chaperonin substrates to elucidate the role of 

TRiC in domain-wise protein folding. Upon expression of the individual 

actin-fusions in S. cerevisiae, the folding state of actin within the fusion protein 

was examined by its capability to incorporate into yeast cytoskeletal structures, 

such as cortical patches and actin cables. Additionally, the actin-fusions were 

expressed in RRL and analyzed with regard to their specific binding to DNase I. 

3.3.1 Actin-GFP fusions integrate into yeast actin cortical patches 

Green fluorescent protein (GFP), a ~27 kDa single domain protein from 

the jellyfish Aequorea victoria (Prasher et al., 1992), is a frequently utilized fusion 

partner to analyze the intracellular localization of proteins in various cells types 

(Stearns, 1995; Simpson et al., 2000). Recently, several multi-domain GFP-fusion 

proteins were generated by domain recombination and demonstrated to fold 

with high efficiency upon expression in yeast (Chang et al., 2005). Based on this 

observation, modular proteins consisting of yeast actin, N- and/or C-terminally 

fused to different fluorescent proteins, were generated in order to investigate the 

capacity of TRiC to fold multi-domain proteins in vivo (Figure 27A). Depending 

on the number of attached fluorescent proteins, the actin fusion proteins varied 

in size between ~70-100 kDa and thus clearly exceeded the upper size limit of 

~50 kDa, determined for group II chaperonin folding cavities (Ditzel et al., 1998). 

Individual domains between the fused proteins were connected by flexible linker 

regions as described previously (2.1.5.1; Chang et al., 2005). Upon recombinant 

expression of actin-GFP (AG) and GFP-actin (GA) in exponentially growing yeast 
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∆reg cells (theses cells allow regulated protein expression from GAL1-controlled 

plasmids in presence of glucose) both fusion proteins displayed punctate, 

fluorescent cortical patches, asymmetrically localized to the bud and mother-bud 

neck (Figure 27B). Visualization of the actin cytoskeleton by rPh-staining 

demonstrated a co-localization of GFP- and rPh-labeled cortical patches, 

indicative for AG and GA being properly incorporated into the cellular actin 

cytoskeleton as well as actin having acquired its native state in both fusion 

variants. Co-localization of AG and GA with rPh-stained actin cables aligning 

along the mother-bud axis was not observed. Importantly, expression of AG and 

GA did not affect the actin distribution within the cells as the staining patterns 

with rPh were similar to those obtained for control cells harboring an empty 

plasmid or solely expressing actin or GFP, respectively. 

In order to investigate whether TRiC is also able to fold actin when 

fused to both an N- and C-terminal fluorescent protein, an actin double-fusion 

was made. To this end, blue fluorescent protein (BFP: a GFP-variant with 

blue-shifted spectroscopic properties), whose fluorescence signal does not 

interfere with the detection of co-localized GFP- and rPh-labeled proteins in vivo, 

was N-terminally fused to the previously described AG, yielding the 

three-domain protein BAG (Figure 27A). Upon expression of BAG in ∆reg cells, 

the fluorescence signal resulting from the C-terminal GFP-moiety showed a 

diffuse cytosolic distribution, similar to that observed for GFP expression alone 

(Figure 27B). Incorporation of BAG in rPh-stained endogenous actin structures 

was not detectable. 
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Figure 27: Expression of actin-fusion proteins in yeast. 
 
(A) Actin-fusion proteins with the size (in kDa) of each protein being indicated on the 
scale depicted above the fusion constructs. (B, C) Fluorescence microscopy analysis of 
actin-fusions in fixed yeast ∆reg cells. (B) Cytoskeletal actin structures (cortical patches 
and actin cables) where visualized by staining with rhodamine-phalloidin (rPh). (C) 
Fusion-proteins containing both GFP and mCherry fluorescent proteins. Empty vector 
(Control), actin-GFP (AG), GFP-actin (GA), BFP-actin-GFP (BAG), mCherry-GFP (CG), 
mCherry-actin-GFP (CAG). Size bar = 4 µm. 
 

To assess whether this effect is due to the multi-domain structure of 

BAG and accompanying steric hindrances during the process of F-actin assembly 

or whether it is an intrinsic problem caused by BFP, a second three-domain 

fusion was made. Therefore, BFP at the N-terminus of BAG was replaced by the 

equally sized and similarly folded red-fluorescent protein mCherry (monomeric 

Cherry: an improved DsRed-variant from Discosoma sp.) which was recently 

demonstrated to properly incorporate into cytoskeletal structures when fused to 

β-actin (Shaner et al., 2004). Expression of the newly made double-fusion CAG in 

∆reg cells resulted in a diffuse cytosolic distribution of red and green 

fluorescence, similar to the GFP signal observed for BAG (Figure 27C). 

Essentially the same result was obtained upon expression of mCherry-GFP (CG), 

lacking the entire actin domain (Figure 27C). This supports the notion that, 

although both fluorescent protein domains in the actin-fusions are folded 
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correctly, CAG and BAG are not able to incorporate in preexisting cellular actin 

structures. 

The in vivo expression of all actin-fusion proteins to their correct size 

was verified by western blot analyses. After cell lysis, equal amounts of yeast 

crude protein extracts were run on SDS-PAGE followed by immunoblotting with 

antibodies directed against GFP, actin (Act1p), and alcohol dehydrogenase 

(Adh1p), with the latter serving as an internal loading control (Figure 28). All 

fusion proteins were correctly expressed with GFP being part of their multi-

domain structure. Furthermore, translation of the respective fusion proteins in 

RRL revealed the majority of synthesized protein to be in the soluble fraction 

(3.3.3). 

 

 
 
Figure 28: Western blot analyses of actin-fusion proteins upon expression in yeast. 
 
Yeast ∆reg crude protein extracts of recombinantly expressed proteins, as indicated, 
were analyzed by SDS-PAGE and immunoblotting with antibodies directed against GFP 
(top), actin (Act1p, middle), and alcohol dehydrogenase (Adh1p, bottom), respectively. 
Numbers 1 to 5 indicate the position of equally sized proteins on the respective western 
blots: BAG and CAG (1), AG and GA (2), CG (3), GFP (4), actin (5). The band marked by 
an asterisk was not analyzed further. Abbreviations of the individual proteins are as in 
Figure 27. 
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3.3.2 Actin does not affect folding of GFP and mCherry in actin 

double-fusion proteins 

In order to determine whether actin located between two fluorescence 

partners in a multi-domain protein imposes any constraints on their folding, 

in vitro fluorescence studies were performed. CAG was overexpressed in yeast 

and enriched to a semi-pure state by affinity purification (His-tag) and gel 

filtration (Figure 29A; 2.3.3.4). Additionally, CAG and CG (lacking the actin 

domain), were translated in cell-free wheat germ lysate (WG; Figure 29A) in 

order to reveal possible differences in the folding of multi-domain actin-fusions 

in vitro and in vivo. Notably, protein synthesis performed in the WG system is 

significantly more efficient than in RRL. Furthermore, the thus produced proteins 

are directly applicable to fluorescence analyses as WG does not contain 

hemoglobin, the iron-containing protein of red blood cells interfering with 

fluorescence measurements. The fluorescence emission spectra acquired for CAG 

(enriched from yeast) revealed an approximately 9-fold higher GFP-fluorescence 

intensity when compared to the signal obtained for mCherry (Figure 29B, top 

panel). Essentially the same ratios of GFP/mCherry-fluorescence were measured 

in the soluble fractions of CAG and CG upon expression in WG (Figure 29B and 

29C). These findings suggest that mCherry and GFP, N- and C-terminally fused 

to actin, are able to fold with similar efficiencies upon expression in vivo and 

in vitro. Thus, folding of the individual fluorescent proteins in CAG seems to 

occur independently and unimpaired by the folding state of actin. Furthermore, 

these results are in accordance to the previously reported in vivo fluorescence 

data (Figure 27). 
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Figure 29: Actin does not affect fluorescence intensities of GFP and mCherry in the 
double-fusion CAG. 
 
(A) SDS-PAGE (left) and Western blot analysis directed against GFP (right) of enriched 
CAG upon expression in yeast (Yeast) as well as samples of the soluble lysate fraction of 
CAG and CG upon expression in wheat germ lysates (WG). Full-length fusion proteins 
are indicated by arrowheads. (B) Combined fluorescence emission spectra of GFP 
(excited at 397 nm, solid line) and mCherry (excited at 585 nm, dotted line) acquired from 
CAG and CG upon expression in yeast (Yeast) or wheat germ lysates (WG), as indicated. 
(C) Ratios of GFP/mCherry-fluorescence intensities as assessed in (B), obtained at their 
fluorescence maxima at 506 nm and 606 nm, respectively. 
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3.3.3 TRiC is capable of assisting domain-wise protein folding   

Next, the ability of TRiC to facilitate the folding of discrete domains of 

large multi-domain actin-fusion proteins was investigated in vitro. To this end, 

the already existing actin fusion constructs (Figure 27A) were subcloned in 

in vitro expression vectors suitable for T7-promoter driven protein expression 

(Figure 30A). In addition to that, BAG variants containing a TEV-(Tobacco Etch 

Virus)-protease cleavage site in the linker connecting BFP and actin (referred to 

as BTAG and BTAG-G150P, respectively) were made. This allowed the specific 

protein processing upon translation, and subsequent evaluation of the folding 

state of actin in the remaining AG-fusion by binding to DNase I (see below). To 

assess whether actin can reach its native state when embedded between two 

fusion partners is of particular interest, since only AG and GA have been shown 

to properly integrate into yeast cortical patches upon expression in vivo 

(Figure 27B). 

In vitro translation reactions of individual actin-fusions were performed 

in RRL supplemented with [35S]-Met, as described (2.3.4). Examination of the 

translation products by SDS-PAGE analysis revealed all fusions to appear almost 

exclusively in the soluble fraction (Figure 30B). Since the folding cavity of 

group II chaperonins was reported to have an upper size limit of ~50 kDa (Ditzel 

et al., 1998), the ability of TRiC to interact with actin-fusion proteins ranging 

between ~70-100 kDa (thus, too large for complete encapsulation) was analyzed. 

Therefore, samples of total RRL translation products were run on native PAGE 

and the resulting complexes analyzed by phosphoimaging (Figure 30C). TRiC 

was found to interact with all fusions containing actin as part of their protein 

composition, irrespective of the actin position within the molecule. As expected, 

complex formation between TRiC and BG (BFP-GFP), lacking the actin domain, 

was not observed. BTAG-G150P, a BTAG variant with the highly conserved 

glycine-150 in actin being mutated to proline (1.3.4) did not display any 

abnormalities with regard to solubility and TRiC binding when compared to 

other fusion proteins (Figures 30B and 30C). Since this particular point-mutation 

was recently reported to cause impaired actin folding due to protein arrest on the 
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TRiC chaperonin (McCormack et al., 2001), BTAG-G150P was utilized as a 

control fusion-protein for subsequent in vitro experiments. 

 

 
 
Figure 30: Actin-fusions expressed in RRL are soluble and interact with TRiC. 
 
A) Actin-fusion constructs for in vitro expression in RRL with the size (in kDa) of each 
protein being indicated on the scale depicted above the fusion constructs. (B) SDS-PAGE 
of total (T), supernatant (S) and pellet (P) fractions of actin-fusions translated in RRL, as 
indicated. (C) Native PAGE of total protein samples from translation reactions as 
performed in (B) showing TRiC:substrate complexes (TRiC:substrate). actin-GFP (AG), 
GFP-actin (GA), BFP-actin-GFP (BAG), BFP-GFP (BG), BAG containing a TEV-protease 
cleavage site in the linker region between BFP and actin (BTAG), BTAG with actin amino 
acid 150 being mutated from glycine to proline (BTAG-G150P). 
 

If the eukaryotic chaperonin TRiC is indeed able to fold large modular 

proteins in a domain-wise manner, one would expect that TEV-cleavage of BTAG 
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and BTAG-G150P, upon translation in RRL, results in stable AG-fragments able 

to bind to DNase I. To ensure that actin had acquired its native state in the 

context of the fusion protein, TRiC function had to be efficiently abolished prior 

to protease treatment. Actin folding in desalted RRL was previously 

demonstrated to be dependent on the addition of hydrolyzable ATP (Frydman 

and Hartl, 1996). In analogy, refolding of denatured radiolabeled actin in 

untreated, ATP-containing RRL resulted in the production of native actin 

(Figure 31, lane 6) as evidenced by the characteristic mobility shift on native 

PAGE after addition of DNase I (Figure 31, lane 7). Similar results were obtained 

when actin was refolded in presence of purified TRiC (Figure 31, lanes 1-3; also 

see Figure 18) or upon de novo synthesis of actin in untreated RRL (Figure 31, 

lanes 8-9). Treatment of RRL with apyrase for 2 min prior to actin refolding 

efficiently inhibited TRiC function and did not lead to the formation of native 

actin (Figure 31, lanes 4-5). 

 

                   
 
Figure 31: Depletion of ATP in RRL efficiently inhibits TRiC-mediated actin folding. 
 
Native PAGE of actin refolding experiments performed with purified TRiC (lanes 1-3) or in 
rabbit reticulocyte lysate (RRL, lanes 4-7). Reactions were conducted in presence or 
absence of ATP and upon completion additionally received DNase I, as indicated. 
Lanes 8-9: actin synthesized in RRL as described (2.3.4). Bands marked with an asterisk, 
probably representing actin bound to PFD, were not analyzed further. 
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Based on these results, translation reactions of yeast actin as well as AG 

and GA fusion proteins were carried out in RRL for 90 min. Upon depletion of 

ATP by treatment with apyrase for 2 min, folded actin was precipitated with 

DNase I-Sepharose beads for 2 h in the cold. In every case tested, substantial 

amounts of radiolabeled material specifically associated with DNase I as 

analyzed by SDS-PAGE and phosphoimaging (Figure 32A). Thus, TRiC is able to 

meditate folding of newly translated actin even when the actin molecule is N- or 

C-terminally fused to GFP and hence is lager than the determined capacity of the 

chaperonin cavity (~71 kDa compared to ~50 kDa of the chaperonin cavity). 

Importantly, this result is consistent with the proper incorporation of AG and GA 

into actin cortical patches upon expression in yeast (Figure 27B). Next, the ability 

of TRiC to accomplish folding of actin when bilaterally fused to two fluorescent 

proteins was investigated. To this end, similar experiments to the ones described 

above were performed with actin double-fusion proteins (Figure 32B). In 

addition to treatment with apyrase, the translation reactions were subjected to 

TEV-protease cleavage for 30 min at 30 °C. As expected, cleavage only occurred 

in BTAG and BTAG-G150P containing a TEV-site in the linker between BFP and 

actin, liberating BFP from the remaining AG-fragment (Figure 32B: compare 

lanes 1, 3, 5, and 7 with lanes 9-12, respectively). Upon incubation with 

DNase I-beads, similar amounts of BG and AG-G150P (resulting from 

BTAG-G150P) relative to the input material were precipitated (Figure 32B and 

32C). Since BG does not contain actin, this was considered the background level 

of non-specific DNase I binding. Strikingly, complex formation with DNase I was 

~7-fold more efficient for AG (originating from BTAG) than for AG-G150P 

containing an actin-mutant with impaired folding properties. Interestingly, even 

though the AG-fragment of cleaved BTAG efficiently bound to DNase I, 

uncleaved BAG (Figure 32B, lane 4: arrow) did not show DNase I binding above 

background level (Figure 32C). Together, TRiC is not only able to facilitate the 

folding of AG and GA, with actin being accessible at least from one side of the 

protein, but also mediates the domain-wise folding of actin double-fusions, with 

actin embedded between two fluorescent partners. 
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Figure 32: TRiC is able to facilitate domain-wise folding of actin-fusion proteins. 
 
(A, B) DNase I-precipitations of actin-containing fusion proteins upon de novo synthesis 
in RRL and subsequent apyrase treatment, analyzed by SDS-PAGE and 
phosphoimaging. (A) Input (10% of total; odd numbers) and eluate fractions from 
DNase I-beads (even numbers). (B) Prior to DNase I-precipitation, reactions were 
additionally subjected to TEV-protease treatment, as indicated. Lanes 1-8: input (10% of 
total; odd numbers) and eluate fractions from DNase I-beads (even numbers). 
Lanes 9-12: untreated total protein fractions. (C) Phosphoimaging quantitation of 
DNase I-precipitates as assessed in (B: lanes 2, 4, 6 and 8); band used for quantitation of 
BAG (lane 4) is indicated by an arrowhead. Abbreviations of the individual proteins are as 
in Figure 30. 

 

In view of these observations and the inability of BAG to properly 

integrate into actin cortical patches (Figure 27B), the folding state of actin within 

BTAG and BTAG-G150P was further investigated in vivo. Upon protein 

expression in yeast ∆reg cells to similar levels, cell lysis under native conditions 

was performed in presence of cycloheximide and apyrase in order to inhibit 
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protein synthesis and TRiC function, respectively (2.4.6). Treatment with TEV-

protease (30 min at 30 °C) and subsequent DNase I-precipitation of the cleavage 

products for 2 h in the cold revealed a ~5-fold higher binding efficiency of AG, 

originating from BTAG, than for AG-G150P containing the actin mutant protein 

(Figure 33). 

 

          
 
Figure 33: TRiC facilitates the folding of multi-domain proteins in vivo. 
 
BTAG and BTAG-G150P were expressed to similar levels in yeast ∆reg cells. Following 
cell lysis in presence of cycloheximide and apyrase, the crude extracts were treated with 
TEV-protease and the resulting AG-fragments precipitated by DNase I-Sepharose beads. 
Upper panel: DNase I-bound AG-fragments (top) and endogenous yeast actin (bottom) 
analyzed by immunoblotting against GFP and yeast actin (Act1p), respectively. Lower 
panel: Quantitation of AG-fragments upon TEV-cleavage and precipitation by 
DNase I-beads as assessed by immunoblotting. 

 

As the in vivo experiment perfectly matched the data obtained in vitro (see 

above), TRiC was assumed to indeed facilitate the domain-wise folding of 

multi-domain fusion proteins, too large for complete encapsulation in the 

chaperonin cavity. 
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4 Discussion 

In this work, the role of molecular chaperones in the folding of 

eukaryotic multi-domain proteins was investigated upon translation in cell-free 

translation systems. Protein expression in a chaperone-diminished E. coli lysate 

allowed a detailed analysis of how chaperone intervention during de novo 

synthesis affects the mechanism of protein folding and its coupling to translation. 

In the case of FL, supplementation of the bacterial lysate with purified TF and the 

Hsp70 chaperone system KJE not only affected the efficiency but also the 

mechanism of de novo folding. 

Furthermore, the absence of eukaryotic chaperones in the E. coli lysate 

provided the possibility to determine the minimum requirements for the efficient 

production of native actin upon de novo synthesis. Formation of correctly folded 

actin was assayed in the absence and presence of the above mentioned E. coli 

chaperones as well as ELES or the eukaryotic chaperonin TRiC. Importantly, 

TRiC was found to be necessary and sufficient for the folding of actin without 

further manipulations. 

Additionally, using multi-domain proteins, the previously suggested 

role of TRiC in domain-wise folding of complex modular proteins was 

investigated. In yeast, the expression of actin fused to various fluorescent 

proteins not only allowed the exact location of these proteins within the cell, but 

also the detection of any incorporation into pre-existing actin structures. The 

formation of native actin within the fusion-proteins upon expression in vivo and 

in eukaryotic cell-free translation systems was verified by its ability to bind to 

DNase I. 

4.1 TF and DnaK affect the efficiency and mechanism of de 
novo protein folding in the bacterial cytosol 

The Gram-negative bacterium E. coli is the most extensively used 

prokaryotic organism for the recombinant expression of proteins for research and 

biotechnology. Unfortunately, overproduction of heterologous (eukaryotic 
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multi-domain) proteins in the bacterial cytosol is often accompanied by 

misfolding and subsequent segregation of non-native intermediates into 

insoluble aggregates, known as inclusion bodies (Marston, 1986; Baneyx and 

Mujacic, 2004). Although inclusion bodies mainly consist of highly concentrated 

and almost pure protein, hence simplifying purification, in vitro refolding yields 

of complex modular proteins are usually very low (Marston, 1986; Jaenicke, 

1987). A frequently used approach to improve the solubility of heterologous 

aggregation-prone proteins in E. coli involves the overexpression of molecular 

chaperones implicated in de novo protein folding. Since in many cases the 

“yield-limiting” step for the generation of native protein is folding, rather than 

synthesis, the beneficial effects of increased chaperone concentrations like that of 

TF, KJE as well as ELES were demonstrated multiple times  (Caspers et al., 1994; 

Dale et al., 1994; Thomas and Baneyx, 1996; Nishihara et al., 2000; Baneyx and 

Palumbo, 2003). On the other hand, E. coli cells lacking both TF and KJE 

(∆tig∆dnaKdnaJ) display fundamental defects in cytosolic protein folding 

(Genevaux et al., 2004). Notably, deletion of GroEL and/or its cofactor GroES is 

lethal since both protein complexes are absolutely essential for bacterial growth 

(Fayet et al., 1989). 

4.1.1 The bacterial cytosol does not support efficient folding of 

eukaryotic multi-domain proteins 

In order to investigate the effect of bacterial chaperones on the folding of 

eukaryotic multi-domain proteins, FL was expressed in a bacterial S30 lysate. 

Whereas the in vivo concentrations of TF, DnaK, and GroEL under standard 

growth conditions are ~40 µM, ~50 µM, and ~3 µM, respectively (Lill et al., 1988; 

Hesterkamp and Bukau, 1998; Hartl and Hayer-Hartl, 2002), the chaperone 

concentrations in this lysate were determined to by ~0.5 µM for both TF and 

DnaK, and ~0.1 µM for GroEL (Agashe et al., 2004). Hence, this lysate represents 

a dilute cytosol, drastically depleted of bacterial chaperones. 

Refolding of fully denatured FL in the absence of chaperones is known 

to be an extremely slow process (equilibrium is reached only after days). This 

phenomenon is attributed to kinetically trapped folding intermediates imposed 
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by intramolecular misfolding (Herbst et al., 1998; Frydman et al., 1999). In 

contrast, FL refolding in the presence of the Hsp70 system occurs with a half-time 

of ~10-15 min and with approximately 80% efficiency (Szabo et al., 1994). To 

assess whether the residual amounts of bacterial chaperones in this system are 

able to support protein folding in vitro, refolding experiments of chemically 

denatured FL were performed in the S30 lysate (Figure 11). Efficient refolding 

(up to ~80-90%) was only seen when the lysate was supplemented with purified 

components of the bacterial Hsp70 chaperone system KJE, irrespective of the 

presence of TF. Since neither the unsupplemented nor the TF-supplemented 

lysate could restore FL activity above background level (~10%), refolding of FL 

was demonstrated to depend solely on the presence of KJE as described 

previously (Schroder et al., 1993; Szabo et al., 1994). Refolding experiments in the 

presence of ELES were not performed, as the bacterial chaperonin does not 

support FL folding in vitro (Frydman et al., 1992). Given these findings, the S30 

lysate was considered to be a dilute bacterial cytosol preparation, functionally 

depleted of endogenous chaperones. 

As shown initially, FL expression in E. coli and S. cervisiae resulted in 

dramatic differences regarding protein solubility and enzyme activity (Figure 10). 

Whereas in yeast, FL was almost exclusively soluble and active, its solubility in 

E. coli was only ~40% with most of the protein being inactive due to 

intramolecular misfolding and/or interchain aggregation. This observation is 

astonishing, since the bacterial cytosol contains high amounts of KJE (see above), 

demonstrated to be the only chaperones necessary and sufficient for FL refolding 

in vitro (Figure 11). Together, these findings strongly suggest that the chaperone 

interaction of FL nascent chains during de novo folding differs considerably from 

that required for efficient refolding of FL out of denaturant. 

To elucidate the phenomenon of why eukaryotic multi-domain proteins 

fold inefficiently in the bacterial cytosol, FL was translated in cell-free lysates of 

eukaryotic (RRL) and bacterial (S30) origin. In accordance to the data obtained in 

yeast, folding of FL in RRL occurred with ~60% efficiency and essentially all the 

protein was recovered in the soluble fraction (Figure 10). Further, comparing the 

kinetics of translation and folding revealed that FL enzyme activity appeared 
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virtually concurrently with the production of full-length chains (Figure 13A), 

indicative of a co-translational folding mechanism. This observation was in good 

agreement to the co-translational folding of the N-terminal domain of FL during 

synthesis, and the rapid formation of native protein upon chain release from the 

ribosome (Frydman et al., 1994; Kolb et al., 1994; Frydman et al., 1999). Thus, 

efficient folding of multi-domain proteins in the eukaryotic cytosol may be 

facilitated by a mechanism of sequential, co-translational domain folding, similar 

to that observed for the artificial two-domain protein Ras-DHFR (Netzer and 

Hartl, 1997). Moreover, the eukaryotic Hsp70 system was suggested to play a 

critical role in stabilizing nascent chains of multi-domain proteins at early times 

of translation in order to prevent intramolecular misfolding and protein 

aggregation (Frydman et al., 1994). Unexpectedly, co-translational folding of FL 

was also observed in the unsupplemented S30 lysate (Figure 13A). However, 

under these conditions, the folding yield was very low (~5% compared to ~60% 

in RRL) and only ~45% of the protein was recovered in the soluble fraction 

(Figure 10). This supports the notion that successful folding of complex 

eukaryotic proteins in the bacterial cytosol not only depends on the applied 

mechanism but also on the availability of suitable chaperones promoting their 

effective folding. 

Although supplementing the lysate with bacterial chaperones improved 

the solubility of newly translated FL considerably, an increase in specific activity 

was only observed when TF was added alone or in combination with KJE. 

Moreover, the beneficial effect of TF on FL activity was demonstrated to strongly 

depend on the residual amounts of DnaK in the lysate, as the specific activity did 

not increase when DnaK levels were reduced further by immunodepletion 

(Agashe et al., 2004). These findings suggest that, in order to increase the folding 

efficiency of newly translated FL, TF and KJE have to cooperate, whereas 

refolding of denatured FL in the same lysate only depends on KJE. Further, given 

a refolding efficiency of ~80-90% in presence of KJE (Figure 11), and a recovery of 

only ~20% of active enzyme upon translation in the TF/KJE-supplemented lysate 

(3.1.2), TF seems to function inefficiently in stabilizing FL nascent chains in a 

conformation competent for folding by KJE. Together, the folding yield of newly 
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translated FL appears to be critically dependent on the ability of bacterial 

chaperones in order to prevent misfolding events in elongating chains as soon as 

they emerge from ribosomal tunnel. The validity of this assumption becomes 

obvious when looking at the expression of  bacterial β-galactosidase (β-gal; a 

tetrameric complex with five domains per subunit (Jacobson et al., 1994)) in the 

same chaperone supplemented lysate. In that case, translation in the presence of 

TF and KJE resulted in ~90% soluble and active protein (Agashe et al., 2004). This 

strongly indicates that β-gal utilizes the E. coli chaperone system with high 

efficiency, whereas TF and KJE seem to be incompatible with the co-translational 

mechanism observed for FL folding in the eukaryotic cytosol. 

4.1.2 Post-translational folding improves protein solubility and 

folding yield 

FL folding in both in vitro systems, RRL and the unsupplemented S30 

lysate, occurs rapidly and via a co-translational folding mechanism (Figure 13A). 

However, the tight coupling of translation and folding is only highly efficient in 

the eukaryotic lysate (~60%, compared to ~5% in the bacterial lysate; Figure 10), 

where FL folding is assisted by the mammalian Hsp70 system (Frydman et al., 

1994). Strikingly, supplementing the S30 lysate with purified TF increased the 

amount of active FL 2 to 3-fold and concurrently imposed a significant 

deceleration in the kinetics of FL folding without affecting the actual speed of 

translation (Figures 12B and 13B). The delay in FL folding relative to protein 

synthesis was even more pronounced when the system was supplemented with 

TF and KJE together. Under these conditions, the folding yield was 

approximately 4-fold higher compared to FL translation in the unsupplemented 

lysate, indicative for a functional cooperation between TF and KJE in the S30 

lysate. More generally, these findings suggest that in the presence of TF and KJE, 

de novo folding of FL is shifted from a rapid but inefficient folding pathway to a 

post-translational folding regime increasing both solubility and enzyme activity 

(Figures 12B and 13). However, with only ~20% of the protein being native, 

compared to ~60% or ~100% upon FL synthesis in RRL or yeast cells, 



Discussion   99                                  

respectively, folding in the chaperone supplemented S30 lysate is much less 

efficient than in the eukaryotic cytosol (Figure 10). 

Although previous data demonstrated that TF and KJE need to 

cooperate in order to improve the folding efficiency of FL in the bacterial lysate 

(3.1.2), their time of action during de novo folding remains unknown. Therefore, 

protein translations of ongoing FL reactions were terminated with RNase A and 

the appearance of FL enzyme activity was followed over time. In accordance to 

the TF/KJE-imposed delay in FL folding (Figure 13B), FL translation in the 

presence of these chaperones caused a more than 2-fold increase in enzyme 

activity upon inhibition of translation (Figure 15) Notably, the kinetics of activity 

increase were identical to that of KJE-mediated FL refolding out of denaturant 

(Figures 11 and 15). Since this post-translational folding phase was only observed 

when both chaperones were present from the beginning of the translation 

reaction, a functional cooperation between TF and KJE had to occur 

co-translationally (Figure 15). Thereby, TF binding to the large subunit of 

translating ribosome constitutes a prerequisite for its productive interaction with 

elongating nascent chains as post-translational FL activity was not observed with 

a triple-mutant form of TF, TFFRK/AAA, which does not bind to the ribosome 

(Kramer et al., 2002). Post-translational folding was also abolished upon 

depletion of ATP in the system, arguing for the important role of the 

ATP-regulated bacterial Hsp70 system in FL folding. Additionally, control 

experiments releasing ribosomal stalled FL nascent chains into unsupplemented 

or TF/KJE-supplemented lysate demonstrated that TF and KJE do not delay the 

completion of FL folding upon protein release from the ribosome, but instead 

cause a genuine switch in the folding mechanism (Agashe et al., 2004). Together, 

these findings suggest that the co-translational action of both TF and KJE during 

de novo synthesis of FL is essential for enforcing post-translational folding, 

accompanied by an increase in protein solubility and the amount of active 

enzyme synthesized. Interestingly, the default-pathway of both β-gal folding and 

assembly in active tetramers in the unsupplemented S30 lysate was shown to be 

co-translational with an efficiency of about 25% (Agashe et al., 2004). Further, 

addition of TF and KJE, separately or together, markedly delayed folding relative 
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to translation, thereby improving β-gal activity up to ~75% and ~100%, 

respectively. Thus, in contrast to the combined action required in order to delay 

FL folding, TF and KJE seem to have overlapping functions in the folding and 

assembly process of β-gal. Moreover, as refolding of denatured β-gal in the 

chaperone supplemented lysate occurred with only ~10% efficiency, de novo 

folding of the bacterial multi-domain protein was suggested to be critically 

dependent on the co-translational activity of TF and KJE (Agashe et al., 2004). 

4.1.3 How do TF and KJE delay protein folding? 

A possible mechanism of how the combined action of TF and DnaK, 

which both recognize similar hydrophobic regions in newly synthesized proteins 

(Rudiger et al., 1997; Patzelt et al., 2001), could cause delayed folding in the 

bacterial cytosol was suggested in the work of Agashe et al. (2004). By 

conducting recruitment experiments of radiolabeled TF to translating ribosomes, 

the number of recruited TF molecules was shown to correlate well with the size 

of the translated protein and/or differences in the occurrence of hydrophobic 

peptide regions, recognized by the chaperone (Patzelt et al., 2001). Furthermore, 

TF was suggested to delay folding and misfolding of nascent chains by a 

dynamic interaction cycle in which the initially ribosome bound TF leaves its 

docking site at the 50S subunit and maintains contact with the elongating 

polypeptide chain, thereby providing room for a new TF molecule to dock onto 

the then vacant ribosome. Importantly, the mechanism proposed above was 

recently confirmed and described in more detail (Kaiser et al., 2006). By using 

fluorescence spectroscopy, TF function was monitored on translating ribosomes 

in real-time. As TF does not form long-lived complexes with newly synthesized 

substrate proteins (Hesterkamp et al., 1996; Maier et al., 2003; Kaiser et al., 2006), 

retention of the folding competence in protein regions, distantly located from the 

ribosome, may thus require the engagement of DnaK, whose chaperone function 

is independent of the ribosome. Since several high affinity DnaK-binding sites 

were determined in each structural domain of both FL and β-gal (Agashe et al., 

2004) and DnaK binding/rebinding to non-native proteins occurs within seconds 

(Pierpaoli et al., 1997), rapid co-translational domain folding in each protein 
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would require the coordinated release of multiple DnaK molecules for which 

there is so far no experimental evidence.  Considering the translation speed to be 

~5-10 times faster in bacteria (~20 amino acids per second) when compared to the 

eukaryotic system (Bremer and Dennis, 1996), the functional cooperation 

between TF and KJE might be optimized for stabilizing nascent chains of 

complex modular architecture  in a state competent for efficient post-translational 

folding. Interference by TF with the post-translational completion of folding is 

supposedly not a problem, since TF-nascent chain complexes are only formed 

subsequent to TF binding at the ribosome (Kaiser et al., 2006). 

4.1.4 Default folding versus chaperone-assisted folding 

Based on the in vitro data obtained for FL folding in the bacterial and 

eukaryotic cell lysates in this study, and the body of work generated with a 

second model protein (β-gal) in the same lysates as well as in living cells (E. coli 

and S. cerevisiae) (Agashe et al., 2004), a model explaining the role of TF and 

DnaK in determining both the mechanism and yield of protein folding in the 

bacterial cytosol was suggested (Figure 34). In the absence of TF and KJE, a 

default co-translational pathway produces a small proportion of native or 

native-like domain structures which complete folding rapidly after chains are 

released from the ribosome (Figure 34, (1)); the majority of nascent polypeptides 

misfold due to intermolecular misfolding or interchain aggregation (Figure 34, 

(2)). TF and KJE delay any folding (or misfolding) events, until the chain is 

released from the ribosome (Figure 34, (3)). The capacity of the chaperones to 

prevent folding is sufficient for bacterial proteins of average size, but is limited 

for long nascent chains. For proteins such as FL, the chaperone-imposed delay in 

folding would result in a high proportion of misfolded molecules (Figure 34, (6)). 

Large bacterial proteins such as β-gal, on the other hand, are adapted to this 

chaperone mechanism and could initiate productive folding co-translationally 

(Figure 34, (4)). Following nascent chain release from the ribosome, 

post-translational folding would be completed by KJE through ATP-dependent 

binding and release cycles (Figure 34, (7)), or upon protein transfer to 

downstream chaperones such as GroEL. In this scheme, the inherent propensity 
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of a protein to undergo intramolecular misfolding (kinetic trapping), either co- or 

post-translationally, would determine the yield of the folding process. Inefficient 

folding (and aggregation) would occur for those eukaryotic proteins (Figure 34, 

(6, 8)) that are highly dependent on a mechanism of timely co-translational 

domain folding in order to avoid kinetic traps. Such a pathway is actively 

supported by the chaperones in the eukaryotic cytosol (Figure 34, (5)) (Frydman 

et al., 1994). 

 

 
 
Figure 34: Effects of nascent chain-binding chaperones on the folding of 
multi-domain proteins, a working model. 
 
The translating polypeptide chain is shown in pink with folded domains represented by 
hexagons and squares. Bacterial chaperones are given in blue and eukaryotic 
chaperones in green. Left: Default-pathway of co-translational domain folding (1) or 
misfolding (2) during rapid elongation in bacteria in the absence of nascent chain-binding 
chaperones. Right: Chaperone-assisted post-translational (3) or delayed co-translational 
folding (4) in bacteria, and efficient chaperone-assisted co-translational folding in the 
eukaryotic cytosol (5). Co-translational misfolding of proteins such as FL in the presence 
of bacterial chaperones (6). Folding (7) and misfolding (8) through post-translational 
chaperone cycling in the bacterial cytosol. 
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More generally, since TF only exists in bacteria which, on average, have 

smaller and fewer multi-domain proteins than eukaryotes (Netzer and Hartl, 

1997), this ribosome associated chaperone may reflect an evolutionarily ancient 

principle of assisted folding. On the other hand, the efficient co-translational 

domain folding, as it occurs in the eukaryotic cytosol, may have contributed to 

the evolution of the variety of complex modular proteins characteristic of 

eukaryotic cells (Netzer and Hartl, 1997). 

4.2 TRiC function is compatible with the bacterial translation 
machinery 

In the E. coli cytosol, the majority of proteins (>60%) consist of only a 

single folding unit (up to ~300 amino acids). It has been suggested that these 

proteins can fold rapidly and without further assistance upon release from the 

ribosome (Hartl and Hayer-Hartl, 2002). In contrast, larger bacterial proteins 

consisting of several domains (such as β-gal) are strongly dependent on the 

productive interaction of molecular chaperones in order to avoid intramolecular 

misfolding and/or aggregation (4.1.1). Although the bacterial chaperone 

machinery is highly effective in folding endogenous proteins, overexpression of 

modular eukaryotic proteins in the same systems often leads to misfolding and 

aggregation (Baneyx and Mujacic, 2004). The low folding yield of FL, for 

example, was shown to result from a reduced compatibility with bacterial 

chaperones (4.1). However, misfolding of actin in the bacterial cytosol is due to 

the lack of the eukaryotic chaperonin TRiC, the only chaperone able to direct 

actin to its native state (Tian et al., 1995). 

4.2.1 TRiC promotes efficient de novo folding of actin 

From its discovery, TRiC has been reported to be a molecular chaperone 

for actin and tubulin folding in the eukaryotic cytosol (Gao et al., 1992; Lewis et 

al., 1992; Yaffe et al., 1992). Many protocols for its purification have been 

described and the sources have varied from RRL (Gao et al., 1992; Yaffe et al., 

1992; Norcum, 1996; Cowan, 1998) to bovine and mouse testis (Frydman et al., 

1992; Liou and Willison, 1997; Ferreyra and Frydman, 2000), to guinea-pig and 
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rat brain (Roobol and Carden, 1993), to yeast (Miklos et al., 1994) as well as to 

different cell lines (Lewis et al., 1992; Roobol et al., 1995; Liou and Willison, 1997). 

Due to the complexity associated with expression, correct folding and proper 

assembly of the eight different TRiC subunits, attempts to obtain functionally 

active chaperonin complexes upon recombinant co-expression of all subunits 

have been unsuccessful so far. For this part of the work, TRiC was purified from 

bovine testis, where its expression is known to be highly upregulated during 

spermatogenesis (Willison et al., 1990). The purification was performed 

according to the protocol of Ferreyra and Frydman (Ferreyra and Frydman, 2000) 

with additional modifications as described in detail in the material and methods 

section (2.3.3.1). In brief, to avoid any adverse effects upon TRiC activity, the 

ammonium sulfate precipitation which applies high physical stress to the protein 

complex was omitted. Furthermore, the number of chromatographic steps was 

reduced to four, instead of five in the published protocol. Importantly, these 

modifications neither affected the overall yield of purified TRiC (~8 mg per 100 g 

testis) nor its activity and the ability to refold chemically denatured actin had a 

similar efficiency (~50%) to that reported previously (Gao et al., 1992; Ferreyra 

and Frydman, 2000) (Figures 16 and 18). 

Given the combination of purified and functional TRiC and a highly 

productive bacterial in vitro translation system, which did not contain eukaryotic 

chaperones, the effect of TRiC on the behavior of actin folding during de novo 

synthesis in a bacterial lysate was analyzed in detail. In accordance to actin being 

sequestered into inclusion bodies upon expression in E. coli (Frankel et al., 1991) 

and TRiC being the only chaperone known to support efficient actin folding 

in vivo and in vitro (Tian et al., 1995), actin synthesis in the unsupplemented 

lysate resulted in ~90% of the protein found in the insoluble fraction (Figure 20A 

and 20B). Approximately ~10% of translated actin remained soluble, probably as 

a result of transient binding to residual bacterial chaperones present in the lysate 

(Figure 20C). On the other hand, when actin translations were performed in 

presence of purified TRiC (5 µM), ~80% of total synthesized protein appeared in 

the soluble faction (Figure 20). By taking advantage of the fact that only native 

monomeric actin (G-actin) forms a stable binary complex with DNase I 
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(Lazarides and Lindberg, 1974), approximately half of the soluble actin was 

demonstrated to exist as actin monomers with a correctly folded 

three-dimensional structure. Strikingly, as will be discussed later (4.2.2), the 

remainder of soluble protein was also native, but had already polymerized into 

actin filaments (F-actin) which are incapable of DNase I-binding (Hitchcock et al., 

1976). Together, these findings clearly indicate that a bacterial translation system, 

functionally depleted of endogenous chaperones (3.1.2), is compatible with 

TRiC-assisted folding of a eukaryotic protein. Further, TRiC was demonstrated to 

be the only chaperone necessary and sufficient for the folding of substantial 

amounts of native actin (~140 µg/ml) without any further manipulation. More 

generally, since the bacterial cytosol did not contain any eukaryotic chaperones, 

the S30 lysate might thus constitute an ideal system to analyze the detailed 

mechanism of TRiC-mediated protein folding. 

In view of the chaperone-impoverished S30 lysate and the effect on 

protein solubility/activity of FL observed upon chaperone supplementation 

(Figure 12B), actin was translated in the presence of individual bacterial 

chaperones. Although actin overexpression in E. coli cells results in the formation 

of inclusion bodies (Frankel et al., 1991), its de novo synthesis in the KJE or ELES 

supplemented S30 lysate yielded almost completely soluble protein (Figures 22A 

and 22B). However, the thus produced actin was not native as it did not form a 

stable complex with DNase I (Figure 22C). On the other hand, lysate 

supplementation with TF neither affected actin solubility nor its folding when 

compared to the unsupplemented lysate. In the past, recombinant protein 

expression in bacterial hosts was demonstrated to be able to exceed >50% of total 

cellular protein (Baneyx and Mujacic, 2004). Thus, massive overexpression of 

actin in E. coli cells is likely to overwhelm the chaperone capacity of the KJE and 

ELES system. As a logical consequence, actin chains without access to the 

beneficial effects of chaperone binding might be susceptible to aggregation and 

directed into inclusion bodies. Hence, it would be interesting to know whether 

low level expression of actin in E. coli could increase its solubility. Assuming an 

in vivo concentration of DnaK and GroEL (under standard growth conditions) of 

~50 µM and ~3 µM, respectively (Hartl and Hayer-Hartl, 2002), a similar amount 
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of actin chains (~50 µM, corresponding to ~0.8 mg/ml) could principally be 

maintained in a soluble state. 

4.2.2 Coexistence of G-actin and bona fide F-actin in the bacterial 

lysate 

Actin constitutes the major component of the thin filaments of muscle 

cells and of the cytoskeleton of nonmuscle cells, taking part in a multitude of 

biological processes (Pollard et al., 2000). To accomplish these diverse set of 

functions inside the cell, actin molecules underlie a permanent turnover of 

polymerization into paired-helical F-actin microfilaments and dissociation into 

monomeric G-actin (Moseley and Goode, 2006). Under physiological salt 

concentrations, as observed in vivo and in cell-free translation systems, the 

equilibrium of this process is shifted towards F-actin formation (Pardee and 

Spudich, 1982). The critical G-actin concentration at which association and 

dissociation reactions are balanced at the fast growing end of the actin filaments 

(also called the “barbed end” or “(+)-end”) was determined to be ~0.1 µM 

(>12-fold lower than that of the slow growing end; also called the “pointed end” 

or “(-)-end”) (Wegner and Isenberg, 1983). 

The amount of soluble actin translated in the TRiC-supplemented S30 

lysate is approximately 3.2 µM, hence clearly exceeding the critical G-actin 

concentration (Figures 19 and 20). Since only half of the soluble actin (~1.6 µM) 

formed a stable complex with DNase I (Figure 20), the remainder was assumed to 

be readily polymerized into filamentous F-actin which does not bind to DNase I 

(Hitchcock et al., 1976). Indeed, staining of actin translation products with rPh, 

which tightly and specifically binds to F-actin (but not to G-actin) (Estes et al., 

1981; Vandekerckhove et al., 1985), revealed substantial amounts of filamentous 

shaped structures of diverse lengths and without evident branching (Figure 24A). 

Strikingly, these structures were only observed in TRiC-supplemented actin 

translations but not upon reaction supplementation with any of the bacterial 

chaperones. Thus, for the first time, supplementation of a cell-free bacterial 

translation lysate with the eukaryotic chaperonin TRiC could be demonstrated to 

be capable of producing sufficient amounts of de novo folded actin in order to 
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promote polymerization into bona fide F-actin filaments. Furthermore, as rPh 

binds at a stoichiometry of 1:1 to each F-actin protomer (Steinmetz et al., 1998), 

fluorescence was used as a measure to quantitate the amount of filamentous actin 

present in the sample (Howard and Oresajo, 1985; Cooper, 1987). It turned out 

that in the TRiC-supplemented reaction approximately 1.6 µM of the soluble 

actin had polymerized into filamentous F-actin. These finding correlated well 

with the previously determined 3.2 µM of soluble actin present in the system 

whereof ~1.6 µM could be shown to exist as monomeric G-actin (evidenced by 

binding to DNase I; Figure 20). Notably, phalloidin is well known to stabilize 

F-actin against depolymerization by preventing monomer dissociation at both 

the barbed and pointed ends of the filament (Estes et al., 1981). Thus, incubation 

of the actin translation product with rPh could potentially shift the equilibrium 

from G-actin towards actin filaments and therefore lead to a decrease in 

DNase I-binding material. Importantly, when TRiC-folded actin was incubated 

with rPh prior to DNase I treatment, the amount DNase I-bound actin was not 

affected and remained constant at a level similar to that observed for an 

untreated reaction (compare Figures 20 and 26). Hence, rPh addition to the 

translation product does not shift the equilibrium between F- and G-actin 

towards a decrease of monomeric actin. In summary, supplementation of the 

bacterial lysate with purified TRiC is sufficient to generate ~140 µg/ml (~3.2 µM) 

per hour of correctly folded actin, detectable either as monomers or actin 

filaments. 

4.2.3 Actin translation in the S30 lysate is poorly coupled to 

TRiC-mediated folding 

The lack of eukaryotic chaperones in the bacterial lysate provided the 

possibility to investigate the kinetics of actin in de novo folding solely assisted by 

the TRiC chaperonin in more detail (Figure 23). By comparing the kinetics of 

translation and folding in presence of TRiC, native actin appeared with a delay of 

~15 min relative to full-length actin synthesized (Figure 23A). This finding 

correlates well with the slow kinetics of TRiC-assisted actin refolding upon 

dilution from denaturant (t½ ~15-30 min) and thus may reflect a similar folding 
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pathway, which necessitates multiple cycles of binding and release from the 

chaperonin until actin acquires its native conformation (Gao et al., 1992; Tian et 

al., 1995). In contrast, de novo folding of actin in the eukaryotic cytosol is a rapid 

process tightly coupled to translation (Siegers et al., 1999). There, newly 

synthesized actin chains transit efficiently from the ribosome into the TRiC 

chaperonin and fold into their native structure with a half time of ~1 min upon 

synthesis. In accordance to these observations, native actin was detectable within 

2-3 min after the appearance of full-length actin upon translation in RRL 

(Figure 23C; Frydman and Hartl, 1996). It should be mentioned that due to its 

discontiguous sub-domain architecture (Figure 9A; Kabsch et al., 1990), actin can 

attain its native state only once its complete sequence has emerged from the 

ribosome. However, the rapid folding process in the eukaryotic cytosol has been 

explained by the existence of an integrated “folding compartment”, constituted 

by TRiC and the jellyfish-shaped chaperone PFD, in which actin nascent chains 

are allowed to fold unimpaired and sequestered from the crowded cellular 

environment (Siegers et al., 1999; Hartl and Hayer-Hartl, 2002). Although 

biochemical and genetic analyses revealed PFD to be dispensable for efficient 

TRiC-substrate interactions (Figure 20; Rommelaere et al., 1999; Siegers et al., 

1999), deletion of individual PFD genes caused a significant decrease in actin 

folding rates as well as the release of non-native actin chains into the bulk cytosol 

(Siegers et al., 1999). Furthermore, the co-translational action of PFD may allow 

actin nascent chains to be delivered to TRiC in a restricted set of particular 

conformations that the chaperonin is able to productively assist in folding. Since 

the bacterial lysate does not contain any of the eukaryotic nascent chain binding 

proteins, the delayed actin folding in the chaperone-supplemented lysate may be 

due to the inappropriate delivery of actin to TRiC. Consequently, if actin binding 

occurs in an unfavorable conformation relative to the subunit topology of the 

chaperonin ring, TRiC may have to release and re-bind actin repeatedly until the 

correct regions of the protein contact the appropriate chaperonin subunits. In 

agreement with this concept are the observations that in cryo-EM reconstructions 

or upon cross-linking of TRiC to actin nascent chains, specific chaperonin 

subunits appear to bind defined regions of the actin protein (Llorca et al., 2000; 
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Etchells et al., 2005). The significant amount of actin folding observed upon 

translation termination in the bacterial lysate may thus reflect a need for actin 

chains to occupy TRiC for a prolonged period during folding and/or the 

requirement of actin for multiple rounds of chaperone binding and release, as 

mentioned above. Together, de novo actin folding in the bacterial lysate solely 

assisted by TRiC is efficient but occurs via a slow post-translational mechanism 

poorly coupled to translation (Figures 23A and 23B). In sharp contrast, 

termination of protein synthesis in the eukaryotic lysate did not lead to any 

further increase in the amount of DNase I-bound actin (Figure 23D), validating 

the tight interconnection between folding and translation (Frydman and Hartl, 

1996; Siegers et al., 1999). Additionally, folding compartmentation and the 

proposed “proofreading” function of PFD in the eukaryotic cytosol (Siegers et al., 

1999) may reduce the need of actin cycles on and off the chaperonin to a 

minimum (possibly to only one cycle!) and prevent premature release of 

incompletely folded actin molecules that would otherwise be susceptible to 

aggregation, degradation and/or improper interactions with other components 

of the cytosol. However, the exact mechanism of how protein folding occurs in 

the eukaryotic cytosol remains to be elucidated. 

4.2.4 Implications for the cell-free protein synthesis of eukaryotic 

proteins  

 To date, the production of sufficient amounts of mutant forms of actin 

for biochemical and structural analysis is very limited. Purification of 

biochemical amounts of mutant actins from eukaryotic systems amenable to 

recombinant protein expression, such as S. cerevisiae, has been described for 

mutants that are compatible with cell viability (Kron et al., 1992). Expression of 

actin-mutants carrying more drastic mutations, such as sub-domain substitutions 

with parts of the prokaryotic actin homologue MreB (Carballido-Lopez, 2006), 

results in cellular toxicity and/or aggregation of the expressed protein in yeast 

(C. M. Kaiser and J. M. Barral, unpublished observations). The system described 

here, however, may circumvent these limitations and allow robust production of 

actin mutants for their subsequent characterization. Similar to actin, the 
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cytoskeletal protein tubulin is a major substrate of TRiC (Yaffe et al., 1992; Melki 

et al., 1993). Unlike actin, however, tubulin folding and polymerization into 

microtubules requires several cytosolic cofactors in addition to TRiC (Cowan and 

Lewis, 2001). Experiments, similar to those reported here for actin, may allow the 

assessment of the minimal requirements for de novo folding and assembly of 

tubulin. 

 The compatibility between a bacterial translation system and a 

eukaryotic chaperone, as described for actin and TRiC, may represent a more 

general solution for the efficient production of correctly folded eukaryotic 

proteins that otherwise misfold or lead to cellular toxicity upon recombinant 

expression. 

4.3 TRiC-mediated folding of actin fusion proteins too large 
for entire encapsulation in the chaperonin cavity 

The evolution of eukaryotes is characterized by an enormous increase in 

the diversity and structural complexity of proteins. Recent comparative studies of 

the proteomes from different organisms revealed that approximately two-thirds 

of eukaryotic proteins consist of two or more domains (Apic et al., 2001; Ekman 

et al., 2005). This observation was explained by the evolution of complex 

genomes where random gene fusion events led to the generation of modular 

polypeptides with novel functions (Kummerfeld and Teichmann, 2005). Previous 

work has demonstrated that during translation on eukaryotic ribosomes, 

modular proteins fold extremely efficient by sequential and co-translational 

folding of their individual domains (Netzer and Hartl, 1997). However, modular 

proteins whose domains are constructed of discontiguous sequence segments, 

including actin, are unable to form native tertiary structures co-translationally. 

Folding of these proteins was suggested to depend strongly on the shielding 

function provided by the TRiC cavity (Netzer and Hartl, 1998). Whether TRiC-

assisted folding requires the entire encapsulation of the substrate protein inside 

the folding cage (Meyer et al., 2003) or whether the chaperonin also facilitates 

sequential and domain-wise folding of modular proteins which cannot be 

accommodated as a whole and would therefore partially extend through a gap in 
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the apical domains  (Frydman et al., 1994; Ditzel et al., 1998; Thulasiraman et al., 

1999), remained to be elucidated. 

4.3.1 Localization of actin fusion proteins in yeast 

The yeast actin cytoskeleton consists of two types of F-actin containing 

structures: cortical patches, which are localized to sites of cell surface growth; 

and cables, running through the cytoplasm along the mother-bud axis. 

Visualization of these filamentous actin structures was accomplished in fixed 

cells using fluorescently labeled phalloidin or actin antibodies, respectively 

(Adams and Pringle, 1984; Kilmartin and Adams, 1984; Novick and Botstein, 

1985). In recent years, the generation of recombinant fusion proteins consisting of 

actin or actin-binding proteins and GFP provided the opportunity to perform live 

cell image analyses, revealing both actin structures to be motile and highly 

dynamic (Doyle and Botstein, 1996; Carlsson et al., 2002; Yang and Pon, 2002). 

Concurrently, these findings deomonstrated that actin fused to GFP is able to 

acquire its native three-dimensional conformation since it readily integrates into 

F-actin structures (Doyle and Botstein, 1996). Furthermore, by fusing GFP to 

either side of a robustly folding protein Chang et al. recently showed that 

expression of these proteins in S. cerevisiae resulted in correctly folded domains, 

corroborating the enhanced capacity of the eukaryotic system for co-translational 

folding (Chang et al., 2005). 

Based on these observations, actin fusion proteins, varying in size and 

position of the attached fluorescent proteins, were generated and their folding 

ability and proper integration into the yeast actin cytoskeleton investigated 

(Figure 27). Expression of the actin variants AG and GA in exponentially 

growing yeast cells produced a robust GFP-fluorescence signal that localized 

exclusively to actin cortical patches and had no obvious effect on cell growth or 

the overall organization of the actin cytoskeleton (Figure 27B). The appropriate 

integration of AG and GA into cortical patches was additionally confirmed by 

the subsequent visualization of F-actin containing cellular structures using rPh. 

Strikingly, the GFP signal of both fusion proteins co-localized with rPh-stained 

patches, asymmetrically situated in the bud and at the mother-bud neck, but was 
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not detectable in cables aligning along the mother-bud axis. These findings are in 

good agreement to the data obtained upon live cell image analyses of yeast cells 

expressing C-terminally GFP-tagged actin (Doyle and Botstein, 1996). There, AG 

was demonstrated to properly assemble into cortical patches, indicative of actin 

having acquired its native state, unimpaired by supposable constraints associated 

with the consecutive folding of the GFP moiety. Furthermore, similar to the work 

presented here, AG incorporation in actin cables was not detectable. 

Interestingly, expression of the ~100 kDa sized actin double fusion 

proteins did not result in the localization of these proteins to any actin 

cytoskeletal structures. Instead, the fluorescence signal of both mCherry and GFP 

in CAG showed a diffuse cytosolic distribution, comparable to that obtained for 

the expression of GFP alone (Figures 27B and 27C). In contrast to AG and GA, the 

bilateral occupation of actin with fluorescent proteins might lead to sterical 

hindrances which possibly interfere with the assembly process of G-actin into 

actin filaments. This hypothesis is further supported by the actin crystal 

structure, in which both the N- and C-terminus are located in close proximity in 

subdomain 1 of the small domain (Kabsch et al., 1990). Hence, fusion of a second 

fluorescent protein to actin may not only hinder interactions among actin 

monomers in order to from F-actin,  but may also affect the association with actin 

binding proteins, such as the Arp2/3 complex and profilin (Mockrin and Korn, 

1980; Mullins et al., 1998), which are involved in the formation of cortical patches 

or the acceleration of nucleotide exchange on G-actin, respectively. Importantly, 

full-length expression of all actin fusion proteins investigated was confirmed by 

western blot analysis (Figure 28). Therefore, fluorescence solely resulting from 

mCherry or GFP upon proteolytical cleavage from the double fusion and/or 

premature translation termination after synthesis of the N-terminal fluorescent 

partner is considered to be unlikely. 

Together, these results suggest that actin fused to GFP is capable of 

folding into its native state, as demonstrated by the localization to cortical 

patches, regardless of its actual position within the fusion protein. Expression of 

the large multi-domain actin double fusion proteins, however, did not result in 

the integration of these proteins into yeast cytoskeletal structures. Nevertheless, 
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since mCherry and GFP were shown to be correctly folded in CAG, assessed by 

their fluorescence signal (Figures 27C and 29), actin in between these proteins is 

likely to be also native. The exact folding state of actin in various fusion proteins 

will be discussed in detail in the following section. 

4.3.2 Domain-wise folding in the eukaryotic cytosol 

GFP fluorescence was recently utilized as a reliable indicator to monitor 

folding of proteins to which it was recombinantly fused (Waldo et al., 1999; 

Chang et al., 2005). In vitro refolding as well as de novo folding experiments of 

GFP fusion proteins in E. coli and S. cerevisiae suggested that, if the GFP domain 

is not able to acquire its β-barrel structure within a time-frame compatible with 

the synthesis of the partner domain, it may interfere with the folding of the latter 

(Chang et al., 2005). Notably, in contrast to the bacterial cytosol, folding of 

modular GFP-fusions in yeast was highly efficient. This phenomenon was 

explained by the existence of a sequential and co-translational folding 

mechanism in the eukaryotic cytosol (Netzer and Hartl, 1997), thus, reducing the 

interference between domains during folding. 

Since actin folding is strictly dependent on the chaperonin TRiC, and 

correctly folded fluorescent proteins are assessable by monitoring their 

characteristic fluorescence, fusion of these proteins to actin provided an ideal 

means to investigate a suggested role of TRiC in domain-wise protein folding 

(Frydman et al., 1994; Thulasiraman et al., 1999). First evidence for TRiC 

supporting such a mechanism came from the observation that AG and GA 

properly integrated into yeast cortical patches (Figure 27B). Furthermore, upon 

in vitro translation in RRL, both proteins formed a stable complex with DNase I 

(Figure 32A), indicative of correctly folded actin. As AG and GA exceed the 

upper size limit of the chaperonin cavity by ~20 kDa (Ditzel et al., 1998), it might 

well be that only the actin domain is enclosed inside the folding cage, while the 

GFP-moiety remains outside during folding. Such an action is mechanistically 

conceivable, as group II chaperonins lack a GroES-like cofactor and lid closure 

proceeds through the conversion of flexible, solvent exposed apical protrusions 
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into an ordered arrangement of β-strands following an iris-like mechanism 

(Llorca et al., 2001). 

In the case of AG and GA, TRiC could in principle interact with actin 

from at least one side of the fusion protein. To investigate whether the 

chaperonin was also able to facilitate actin folding when both termini of the 

protein were occupied by fluorescent fusion partners, the double-fusions BAG, 

BTAG, and BTAG-G150P were translated in RRL. Upon protein synthesis and 

subsequent inhibition of TRiC function by depletion of ATP (Figure 31), the 

translation products were subjected to TEV protease treatment. Thereby, BTAG 

and BTAG-G150P, containing a TEV-cleavage site in the linker region between 

BFP and actin, efficiently released their N-terminal BFP-moiety (Figures 32B and 

32C). Subsequently, the folding state of actin in the resulting truncations AG and 

AG-G150P as well as full-length BAG was monitored by its ability to form a 

stable complex with DNase I. In accordance to the inability of actin 

double-fusions to properly integrate into cortical patches in vivo (Figure 27; 4.3.1), 

DNase I-binding of unprocessed BAG occurred only at background levels, 

similar to those observed for the control protein BG (Figure 32C). These findings 

suggest that either TRiC is simply not able to fold actin when embedded between 

two proteins or that both fusion partners restrain actin in DNase I-binding due to 

steric hindrance in a defined actin region, known as the DNase I binding-loop 

(residues 39-51 in actin subdomain 2). An answer to these speculations was 

provided by the result obtained for AG, originating from the double-fusion 

BTAG. Upon secession of BFP from BTAG, AG was freed from steric hindrances 

and bound to DNase I with 5-fold higher efficiency when compared to BAG 

(Figures 32B and 32C). In contrast, AG-G150P, containing an actin mutant with 

impaired folding properties, did not bind to DNase I above background level 

(Figure 32C). Thus, actin in BTAG must have acquired its native state prior to 

protease treatment, as TRiC function and therefore folding was abolished by 

depletion of ATP before TEV cleavage. Essentially the same result was obtained 

when BTAG and BTAG-G150P were expressed in yeast ∆reg cells (Figure 33). In 

turn, the amount of AG (originating from BTAG) precipitated by DNase I-bead 

was ~5-fold higher compared to AG-G150P originating from BTAG-G150P. 
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Together, these data strongly support the notion that TRiC is indeed able to assist 

in the domain-wise folding of large multi-domain proteins which cannot be 

accommodated in the chaperonin cavity as a whole. 

4.3.3 Model for TRiC-assisted folding of large modular proteins 

Lately, ATP-induced lid closure and subsequent confinement of actin 

inside TRiC was proposed to be essential for the production of native actin 

(Meyer et al., 2003). However, TRiC-mediated folding of large modular proteins 

was suggested to occur in a domain-wise manner outside of the cavity, by a 

mechanism which does not require encapsulation of the whole substrate protein 

(Thulasiraman et al., 1999; Spiess et al., 2004; Young et al., 2004). The exact 

modus operandi of how and when TRiC interacts with its putative substrate 

proteins and which additional chaperones might be involved in this process is 

still controversial (Farr et al., 1997; Siegers et al., 1999; Etchells et al., 2005). 

In this work, various actin fusion proteins were utilized to investigate 

the possibility of TRiC being able to efficiently bind to and fold actin when fused 

to either an N-/C-terminal fusion partner or both. The data obtained are 

summarized in a working model, illustrating how TRiC might facilitate the 

de novo folding of multi-domain proteins during protein synthesis in the 

eukaryotic cytosol (Figure 35). Considering an artificial three-domain protein, 

such as BAG, only the intermediate actin domain would require TRiC for folding. 

Thus, folding of the N- and C-terminal fluorescent proteins is likely to occur 

spontaneously during translation and without further assistance of chaperones 

(Figure 35, (1), (2), and (6)). On the other hand, proteins consisting of 

discontiguous or structurally unstable protein domains, such as actin, are 

strongly dependent on the productive interaction with TRiC and can only fold, 

once their sequence has completely emerged from the ribosome (Netzer and 

Hartl, 1998). In principle, TRiC binding to the growing actin chain in BAG is 

virtually feasible at two stages. Firstly, co-translationally (Figure 35, (5)), as 

suggested by recent cross-linking studies (McCallum et al., 2000; Etchells et al., 

2005), while the remainder of the fusion protein is still synthesized. Secondly, 

post-translationally (Figure 35, (3)), upon completion of synthesis and 
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subsequent transfer of BAG to the chaperonin. The latter might be accomplished 

by a so-called “folding compartment”, closely coupled to the translation 

machinery (Siegers et al., 1999). However, the final conversion of actin into its 

native state is considered to occur by the sole encapsulation of the actin domain, 

while the rest of the BAG fusion remains outside and extends through a gap in 

the apical domains (Figure 35, (3) and (5)). This assumption is consistent with the 

determined size of the folding cavity of group II chaperonins which can only 

accommodate proteins with less than 50 kDa (Ditzel et al., 1998). 

 

 
 
Figure 35: TRiC-mediated domain-wise protein folding in the eukaryotic cytosol, a 
working model. 
 
The individual domains of the translating polypeptide chain are shown in blue (BFP), red 
(actin), and green (GFP), with the folded domains represented by circles and squares. 
The ribosome and TRiC are represented in gray and black, respectively. For reasons of 
simplicity, ribosome-associated and cytosolic chaperones were omitted. (1, 2) Upon 
translation, the N- and C-terminal domains fold spontaneously and without assistance of 
chaperones. (3, 4) Specific encapsulation and post-translational folding of the TRiC-
dependent actin domain, while BFP and GFP remain outside of the chaperonin. (5) 
During translation, TRiC interacts co-translationally with the intermediate actin domain 
and facilitates its folding. (6) Upon chain release from the chaperonin and completion of 
protein synthesis, folding of the C-terminal GFP-moiety occurs spontaneously. 
 

Interestingly, the above mentioned model bears a striking resemblance 

to the degradation of proteins facilitated by the 20S proteasome (Pickart and 

Cohen, 2004). In analogy to the enclosure of protein domains for TRiC-assisted 
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folding, the multi-chambered proteasome complex uses a similar mechanism to 

catalyze the endoproteolytical cleavage of disordered polypeptide loops 

embedded between stable proteins segments (Liu et al., 2003). 

4.4 Perspective 

At present, the genomes of many organisms have been sequenced. 

Following this success, the detailed characterization of previously unknown 

proteins requires a highly efficient and reliable protein expression system able to 

generate versatile native proteins. Since chemical protein synthesis is not 

practicable for the production of long polypeptides, and in vivo expression is only 

applicable to proteins that do not affect host cell physiology, cell-free translation 

systems overcoming both limitations are becoming increasingly popular (Spirin, 

2004; Endo and Sawasaki, 2006). Up to now, in vitro protein synthesis systems are 

available from several organisms (Jackson et al., 2004). 

In this study, cell-free translation systems have proven to be an ideal 

tool for addressing a multitude of highly interesting aspects in the field of 

biochemistry and biotechnology. Besides the insights gained into existing 

differences in the coupling of translation and folding of multi-domain proteins in 

the bacterial and eukaryotic cytosol, TRiC was found to be able to facilitate 

domain-wise folding of large modular proteins which do not entirely fit into the 

folding cavity. Additionally, the compatibility between bacterial translation 

systems and eukaryotic chaperones, as described for actin and TRiC, may 

provide a more general solution for the efficient production of correctly folded 

eukaryotic proteins (Baneyx and Mujacic, 2004). 

Notably, in parallel to this work, first promising attempts were made to 

utilize cell-free translation systems to determine the structure of large oligomeric 

complexes. Following subunit synthesis and in vitro assembly, the multi-subunit 

complexes were subjected to cryo-EM microscopy analysis without preceding 

purification. In the future, such a strategy may prove especially useful in gaining 

fast access to medium resolution structures of short lived or semi-stable 

macromolecular assemblies. 
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6 Abbreviations 

Units are expressed according to the international system of units (SI), including 

outside units accepted for use with the SI. Amino acids are abbreviated with their 

one or three letter symbols. 

 
ADP    adenosine 5'-diphosphate 
AG    actin-GFP fusion protein (→ GFP) 
ATP    adenosine 5'-triphosphate 
AU    arbitrary unit 
bp     base pair 
BAG    BFP-actin-GFP fusion protein (→ BFP; → GFP) 
BFP    blue fluorescent protein 
BG     BFP-GFP fusion protein (→ BFP; → GFP) 
β-gal    β-galactosidase 
BTAG    BAG containing a TEV-cleavage site (→ BAG; → TEV) 
CAG    mCherry-actin-GFP fusion protein (→ GFP) 
Cα     alpha carbon atom 
CCT    chaperonin containing TCP1 (→ TRiC) 
CDTA    trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid 
CECF    continuous exchange cell-free 
CG     mCherry-GFP fusion protein (→ GFP) 
CIP    calf intestinal alkaline phosphatase 
cryo-EM   cryoelectron microscopy 
C-terminus  carboxy-terminus 
Da     Dalton 
DMSO    dimethylsulfoxid 
DNA    deoxyribonucleic acid 
DNase I   deoxyribonuclease I 
dNTP    didesoxy-nucleoside triphosphate 
DTT    dithiothreitol 
E     GrpE (bacterial nucleotide exchange factor of DnaK; → K) 
ECL    enhance chemiluminescence 
E. coli    Escherichia coli 
EDTA    ethylenediaminetetraacetic acid 
EGTA    glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid 
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EL     GroEL (bacterial Hsp60 chaperonin) 
ES     GroES (bacterial Hsp10 co-chaperonin) 
F-actin    filamentous actin  
FL     firefly luciferase 
FPLC    fast performance liquid chromatography 
g     acceleration of gravity, 9.81 m/s2 
GA    GFP-actin fusion protein (→ GFP) 
G-actin   monomeric actin 
GdnHCl   guanidinium hydrochloride 
GFP    green fluorescent protein 
GimC    genes involved in microtubule biogenesis complex (→ PFD) 
HEPES   N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid 
HMW    high molecular weight 
HRP    horseradish peroxidase  
Hsp    heat shock proteins 
HU    high urea 
HY     high yield 
IB     inclusion body 
IPTG    isopropyl-β-D-1-thiogalactopyranoside 
J     DnaJ (bacterial Hsp40 chaperone) 
K     DnaK (bacterial Hsp70 chaperone) 
KJE    DnaK, DnaJ, and GrpE (→ E; → J; → K)  
LB     Luria Bertani 
LMW    low molecular weight 
mCherry   monomeric Cherry 
MOPS    3-(N-morpholino)propanesulfonic acid 
MW    molecular weight 
MWCO   MW cut-off (→ MW) 
mRNA   messenger RNA 
NAC     nascent chain-associated complex 
Ni-NTA   nickel-nitrilotriacetic acid 
N-terminus  amino-terminus 
OD    optical density 
PAGE    polyacrylamide gel electrophoresis 
PBS    phosphate-buffered saline 
PCR    polymerase chain reaction 
PDI    protein disulfide isomerase 
PEG    polyethylene glycol 
PFD    prefoldin (→ GimC) 
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pH  reverse logarithm of relative hydrogen proton (H+) 
concentration 

Pi     inorganic phosphate 
PMSF    phenylmethylsulfonyl fluoride 
PPIase    peptidyl-prolyl cis/trans isomerase 
PK     Proteinase K 
RAC     ribosome-associate complex  
RNA    ribonucleic acid 
RNase A   ribonuclease A 
rPh    rhodamine-phalloidin 
RRL    rabbit reticulocyte lysate 
RT     room temperature 
RTS    rapid translation system 
[35S]    sulfur isotope 
S30     soluble cell lysate fraction when centrifuged at 30,000 g 
SC     synthetic complete 
S. cerevisiae  Saccharomyces cerevisiae 
SDS    sodiumdodecylsulfate 
sHsp    small heat shock protein 
TAE    Tris-acetate-EDTA (→ EDTA; → Tris) 
TBS    Tris-buffered saline (→ Tris) 
TBS-T    TBS containing Tween20 (→ TBS; → Tween20) 
TCA    trichloroacetic acid 
TE     Tris-EDTA (→ EDTA; → Tris) 
TEMED   N,N,N',N'-tetramethylethylenediamine 
TEV    Tobacco Etch Virus 
TF     trigger factor 
TFFRK/AAA   TF with residues 44FRK46 replaced by alanines (→ TF) 
TNT    coupled transcription and translation 
TRiC    TCP1 ring complex (→ CCT) 
Tris    tris(hydroxymethyl)aminomethane 
TritonX-100  octyl phenol ethoxylate 
Tween20   polyoxyethylen-sorbitan-monolaurate 
UV/VIS   ultraviolet/visible 
VHL    Von Hippel-Lindau tumor suppressor protein 
v/v    volume/volume 
WG    wheat germ 
w/v    weight/volume 
YPD    medium containing yeast extract, peptone, and dextrose 


