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Über den Nachweis von Galaxienhaufen
Zusammenfassung

In dieser Arbeit präsentieren wir eine Studie über statistische Eigenschaften von Galaxienhaufen, die

wir mit verschiedenen Filtern in kosmologischen Simulationen detektiert haben. Als Signal wurde sowohl

die Scherung, hervorgerufen durch den schwachen Gravitationslinseneffekt, benutzt, als auch simulierte

Beobachtungen des Sunyaev-Zel’dovich-Effektes (SZ) und von Röntgenemmissionen.

Wir testeten verschiedene Filter zur Verwendung mit dem schwachen Gravitationslinseneffekt und un-

tersuchten ihre Leistung mit Hilfe von simulierten Scherungskarten, auf denen die Positionen der Halos

genau bekannt waren. Wir entdeckten, dass großräumige Strukturen eine wichtige Kontaminationsquelle

darstellen. Dies ist insbesondere der Fall für räumlich tiefe Beobachtungen. Wir sind überzeugt, dass sie

die Quelle für viele Scherungsmaxima sein können, die keine Entsprechung im optischen oder Röntgen-

bereich haben. Wir bestätigten, dass Filter, die dazu konstruiert sind, um große räumliche Strukturen zu

unterdrücken, ein besseres Ergebnis erzielen.

Wir untersuchten die statistischen Eigenschaften von SZ- und Röntgendetektionen und ihre Korrela-

tionen. Zu diesem Zweck verwendeten wir eine kosmologische hydrodynamische Simulation. Wir stell-

ten fest, dass SZ-Multibandfilter die Vollständigkeit von Detektionen verbessern und den Grad an Kon-

tamination, verglichen mit Einzelbandfiltern, deutlich verringern. Röntgenkataloge sind im Vergleich zu

SZ-Katalogen vollständiger, und die korrelierten Detektionen zeigen Eigenschaften, die ähnlich denen der

Multibandbeobachtungen sind.

On the Detection of Galaxy Clusters
Abstract

In this Thesis we present the study of statistical properties of galaxy clusters detected via filtering

techniques in cosmological simulations, using lensing shear maps or Sunyaev-Zel’dovich (SZ) and X-ray

simulated observations.

We tested different weak-lensing filters and studied their performance on simulated shear maps where

the positions of the halos were known precisely. We found that large-scale structures are an important

contaminant to be taken into account especially for deep surveys. We suggest that they can be the origin of

many shear peaks that do not have an optical or X-ray counterpart. We confirmed that filters constructing

to suppress large scale structures (LSS) contribution perform better.

We studied the statistical properties of SZ and X-ray detections in maps simulating observations and

the correlation between SZ and X-ray detections. To this purpose, we used a hydrodynamical cosmolog-

ical simulation. We found that the SZ multi-band filter improves the completeness of the detections and

decreases the contamination compared to the single-band filter. X-ray catalogues are more complete than

SZ catalogues and the correlated detections show properties analogous to the multi-band filter detections.





I’ve seen things you people wouldn’t believe.

Attack ships on fire off the shoulder of Orion.

I watched C-beams glitter in the dark near the Tannhauser gate.

All those moments will be lost in time, like tears in rain.

Time to die.

Blade Runner
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Introduction

In the last few years observational techniques improved enormously allowing the scien-

tific community to define a ”standard model” for cosmology: we live in a low density

Friedmann universe whose evolution is now driven by a dark component that makes the

expansion accelerate. The simplest hypothesis is that it is the cosmological constant (in

other words the vacuum energy) or a scalar field, in analogy with the inflationary phase.

Indications in this sense come from observations and precise measurements of high-

redshift supernova spectra (Perlmutter et al., 1999; Riess et al., 1998) and these predic-

tions were spectacularly confirmed by the observations of the anisotropies in the CMB

pattern (Spergel et al., 2007).

Owing to space-based telescopes, many new objects were observed at high-redshift

and deep optical surveys provided the three-dimensional distribution of matter in the uni-

verse (Hawkins et al., 2003), either the luminous one (baryonic matter) or the dark matter

component, detectable only via its gravitational effects. It is thus possible to measure

correlations and mass functions.

A wealth of information on baryonic matter distribution comes from radio (SZ effect

for example) and X-ray observations. Combining them permits astronomers to determine

the density of the object observed and its content in terms of electron density.

Nevertheless, observations in a single band are not enough, as there is a strong de-

generacy in the parameter space (see e.g. Tegmark et al., 2004), only combining different

observations together it is possible to obtain reliable constraints on the cosmological pa-

rameters.

The most massive objects, and therefore the youngest ones according to the hierar-
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chical model for structure formation, are galaxy clusters. They play an important role in

cosmology, in particular for gravitational lensing. As they are very massive, they are likely

to behave as strong lenses producing tangential and radial arcs, whose shape depends on

the internal structure of the cluster. In this way it is possible to obtain information on the

density profile or on the mass of the core regions. If the distances between the cluster

and the sources are large, then we are in the weak lensing regime, whose main effect is

to slightly distort the image of background sources. In this case, as the distortion is tiny,

only a statistical study over many sources is possible.

Galaxy clusters are also a good indicator for the underlying cosmological model, as they

form earlier in a low-density universe than in an high-density universe. Their evolu-

tion and characteristics depend also on the particular dark energy model considered: in

particular they are more concentrated in an early dark energy (EDE) universe (see e.g.

Bartelmann et al., 2006), where also in very early times the contribution of dark energy is

not negligible but of the order of few percent (Wetterich, 2004; Doran & Robbers, 2006).

This has the consequence for example of producing more gravitational arcs (Fedeli &

Bartelmann, 2007).

Many authors showed that in weak-lensing surveys, several massive peaks in the shear

field appear and it is not possible to identify them with optical or X counterparts (see e.g.

Erben et al., 2000, 2003). A similar situation occurs for observations of the hydrogen

21-cm line, but the peaks correspond to halos with mass of the order of 1011 M¯/h,

much smaller than for the weak lensing case (Minchin et al., 2005). This is not surprising

because the lensing signal, besides geometrical effects determined by the distances of the

objects involved, depends on the mass of the lens. It is expected to observe through weak

gravitational lensing only halos with mass at least 1013 M¯/h.

The question whether these peaks originate from dark halos or LSS is of fundamental

importance as with the growth of the fields observed an automatic analysis is required

and it is important to know with which reliability they represent real structures to then use

them for studies based on shear-selected clusters.
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Previous studies (see e.g. Reblinsky & Bartelmann, 1999; White et al., 2002) showed that

the LSS is an important contaminant for weak-lensing surveys and that it can affect weak-

lensing mass determinations (Hoekstra, 2001). With the evolution of the techniques, this

problem can be partially overcome using the benefits of tomography, where also redshift

information are taken into account. This was shown to improve the reliability of the peaks

observed.

Due to the enormous amount of data made available by present and future weak-lensing

surveys, an automatic search for the structures in the field observed is strongly required.

It is thus necessary to know what surveys are expected to find.

Nowadays, many observations are multiband, so it is possible to gain more informa-

tion from the same object. This is also useful because from observing the same area of

the sky in different bands it is possible to improve the identifications of objects. With the

orbiting satellites that do not suffer from the influence of the atmosphere, it is possible to

make deep observations to study distant objects. There is a rich literature on simulations

of the SZ effect and many linear matched filters were developed to detect clusters using

this effect. Simulations carried out to develop the filters reach a high level of realism and

accuracy and are required for planning pipelines for satellites observations.

On the other hand, most of the studies on the detection of X-ray sources from simulations

were based on idealized semi-analytical models for the gas physics involved. Also the

angular distribution and abundance of the halos on the sky were based on analytical esti-

mations.

Even if these kinds of studies prove to be really useful as it is possible to cover quite

rapidly a very broad range in the parameter space, they are somehow too simplified and

they do not take into account many elements that are possible to study in the framework

of cosmological simulations. As several studies showed that halo properties are modified

by the inclusion of baryonic physics, we performed a realistic simulation of the X-ray sky

and of the SZ effect using a large hydrodynamical cosmological simulation where several

phenomena related to gas physics were included.
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This thesis is structured as follows. In Chapter 1 we introduce the basics concepts

of cosmology that are important for the following discussion of weak lensing and dark

energy models. As already said before, galaxy clusters are an important tool in modern

cosmology and we therefore review theories about structure formation and evolution in

Chapter 2. In Chapter 3 we briefly discuss properties of galaxy clusters, like density pro-

files and X-ray emission and SZ effect. All these aspects are important for the discussion

on the detectability of clusters due to thermal emission.

In Chapter 4 we review the theory of gravitational lensing and we focus on those quanti-

ties, like gravitational potential, deflection angle, shear, effective convergence and flexion

that will turn out to be useful for further discussions on several aspects connected to

gravitational lensing.

In Chapter 5 we compare different lensing filters used in the literature to detect galaxy

clusters out of shear maps using realistic raytracing simulation maps and afterwards we

compare our results with observations currently done. The results are also published in

Pace et al. (2007).

In Chapter 6 we study the detections of galaxy clusters combining a matched filter using

X-rays emission and the SZ effect. We also compare the filter for the detection of X-ray

sources with what it is found with real observations.

Finally in the appendix we briefly summarize the main characteristics of the different

types of N-body algorithms and different interpolation schemes to assign particles on a

regular grid.
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Chapter 1

Cosmological background

In this chapter we review some basis of cosmology which are relevant for the following

discussion on weak gravitational lensing and on dark energy models.

In section 1.1 we introduce the current cosmological model based on the cosmological

principle and on the theory of general relativity which allow to derive the metric de-

scribing the space-time geometry and to define the concept of gravitational redshift (sec-

tion1.2). Then we describe the dynamics of the evolution of the universe by means of

Friedmann’s equations in section 1.3 and the parameters (section 1.4) characterizing the

cosmological models (section 1.5). Section 1.6 is devoted to the definition of distance in

cosmology.

Finally, in section 1.7 we introduce models characterized by the presence of the cosmo-

logical constant and dark energy. They arise because from observational evidence the

universe has a flat geometry, but radiation and matter are not enough to reach the density

required from the theory, moreover according to supernova data, the expansion of the uni-

verse is accelerating and these two quantities are candidates to explain these phenomena.

1.1 The Robertson-Walker metric

The basic assumption of modern cosmology is that the universe is homogeneous and

isotropic on large scales, i.e. on scales larger than the visible structures of galaxy distri-

bution. This assumption goes under the name of Cosmological principle.
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Evidence in this sense come from observations in several spectral bands (radio, infrared,

optical and X-rays): they all show that the radiation sources are distributed uniformly.

The most convincing proof of the homogeneity of the universe comes from the cosmic

microwave background radiation (CMBR), a photon background with a temperature of

T = 2.726 K (Mather et al., 1999) and fluctuations ∆T/T' 10−5.

General relativity describes space-time properties by means of a 4×4 tensor (metric ten-

sor gµν) obtained solving the field equations. This tensor is used to write the line element

ds2 = gµνdxµdxν, (1.1)

where dx represents the space-time coordinates. The index 0 refers to the time component,

x0 = ct, while the xi, with i = 1÷ 3 are the space components. The convention on the

summation over repeated indexes is used.

Because of the synchronization of clocks, g00 = c2 where c is the speed of light and g0i = 0

(from the isotropy condition), using spherical coordinates (r, θ, φ) the most general metric

can then be written as

ds2 = c2dt2−a(t)2
[

dr2

1−Kr2 + r2(dθ2 + sin2θdφ2)
]
, (1.2)

where r is the radial coordinate and θ and φ are the angular variables, t the proper time

of a comoving observer, a(t) the scale factor which only depends on time, K the curva-

ture parameter with dimension of the inverse of an area. K can be scaled in such a way

that it assumes, according to the different geometries, only the values 1 (closed space

with spherical geometry), 0 (flat space with euclidean geometry) or -1 (open space with

hyperbolic geometry).

1.2 Redshift

If the universe expands or shrinks, then the scale factor a(t) will change in time and the

photons emitted by a source will be redshifted or blueshifted while they propagate towards

the observer.
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If we consider a source at comoving distance r emitting radiation with a wavelength

λe and this radiation is observed with a wavelength λ0, then the redshift z is defined as

z =
λ0−λe

λe
. (1.3)

As photons travel along null geodesics, ds2 = 0, then from Eq. 1.2:

Z t0

te

c dt
a(t)

=
Z r

0

dr√
1−Kr2

= f (r), (1.4)

f (r) is constant in time because expressed in comoving coordinates, therefore the deriva-

tive of Eq. 1.4 brings to the following relation:

dt0
dte

=
a(t0)
a(te)

. (1.5)

In particular, if dte,0 = 1/νe,0, where ν0 and νe represent the frequencies of the ob-

served and of the emitted light, one can write

(
ν0

νe

)−1

=
ae

λe
=

a0

λ0
, (1.6)

and the relation between the redshift and the scale factor is

1+ z =
a0

ae
. (1.7)

1.3 Friedmann Equations

The metric tensor introduced in the previous section obeys the following Einstein’s field

equations:

Gµν = Rµν− 1
2

Rgµν =
8πG
c4 Tµν +Λgµν, (1.8)

where Gµν is the Einstein tensor, Rµν and R are the Ricci tensor and the Ricci scalar, G

the Newtonian gravitational constant, Λ the cosmological constant, a term introduced by

Einstein to generalize his equations and to allow static solutions.
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Tµν is the stress-energy tensor and represents the source of the field. For a perfect fluid

characterized by pressure P(t), energy density ρ(t) and four-velocity u(t), Tµν reads as

Tµν = (P+ρc2)uµuν−Pgµν, (1.9)

where the four-velocity is defined as uµ = gµν
dxν

ds .

Using the metric 1.2, Einstein’s equations 1.8 reduce to the following set of ordinary

differential equations:

(
ȧ
a

)2

=
8πG

3
ρ− Kc2

a2 +
Λc2

3
, (1.10)

ä
a

= −4πG
3

(
ρ+

3P
c2

)
+

Λc2

3
(1.11)

These two equations go under the name of Friedmann equations (Friedmann, 1922, 1924);

the scale factor is uniquely determined once an initial condition is specified. We choose

a(t0) = 1, where t0 is the present epoch.

Friedmann’s equations can be combined to yield the adiabatic equation stating energy

conservation:

d
dt

(a3ρc2)+P
d
dt

(a3) = 0. (1.12)

1.4 Cosmological parameters

A cosmological model is characterized by several parameters, in this section we describe

the most relevant for the following discussion.

The relative expansion rate of the universe H(t) is called Hubble function and it is

defined as H = ȧ/a, its value at the present time, H(t = t0)≡ H0 is the Hubble constant.

As its value is not known precisely, usually the Hubble constant is parametrized as H0 =

100h km/s/Mpc. The most recent measurements, done by the HST Key Pro ject team

using Cepheids for calibration and secondary methods like supernovae and the Tully-

Fisher relation give h = 0.72± 0.08 (Freedman et al., 2001). The Hubble constant was
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also inferred analyzing WMAP data (h = 0.732+0.031
−0.032, see Spergel et al. (2007)) and from

lensing (h = 0.61÷0.65, Fassnacht et al. (2002)) or with the SZ effect (Udomprasert et al.

(2004) give a value of h = 0.68+0.21
−0.14).

The Hubble parameter is very important because it allows to establish a distance scale

lH = c/H0 ≈ 3000 h−1 Mpc, and a time scale for the expansion of the universe tH =

1/H0 ≈ 9.8 h−1 Gyr.

The density required to close the universe is called critical density and it is defined as

ρcr,0 =
3H2

0
8πG

≈ 2.7722×1011 h2M¯/Mpc3. (1.13)

There are several contributions to the density of the universe: radiation, vacuum (for

example the cosmological constant) and matter (either baryonic or non-baryonic). The

density parameter of a given component i is defined as Ωi,0 = ρi,0/ρcr,0.

In cosmology the matter density parameter Ωm,0 = ρm,0/ρcr,0 is very important as we

will see later. The density parameter for the cosmological constant is defined as ΩΛ,0 =

Λc2/(3H2
0 ), from this definition it is possible to derive an expression relating the density

parameters to the spatial curvature:

H2
0 (1−Ωm,0−ΩΛ,0) =−Kc2, (1.14)

if K = 0, the universe has a flat geometry and Ω0 = Ωm,0 + ΩΛ,0 = 1, K is positive or

negative according to Ω0 > 1 or Ω0 < 1.

Another important parameter is the deceleration parameter, defined as:

q(t = t0)≡ q0 =− äa
ȧ2 , (1.15)

if q > 0 then the expansion rate of the universe is slowing down, otherwise it increases.

1.4.1 Parameter values

According to the most recent measurements, CMB in particular (Spergel et al., 2007),

the geometry of the universe is flat, as is also expected from inflationary models. From
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Figure 1.1: The upper panel shows the Hubble diagram used by the HST Key Project team to de-
termine the value of H0 using the Cepheid as calibration. The solid line shows H0 = 72 km/s/Mpc.
The lower panel shows the value of H0 as a function of distance.(Freedman et al., 2001)

primordial nucleosynthesis baryonic matter can account for Ωb = 0.04, while the total

matter density (including baryonic and dark matter) is Ωm,0 ≈ 0.3. This implies that there

should be another component covering the remaining 70% of the energy density of the

universe, this additional component is parametrized as cosmological constant or as dark

energy. We will discuss these models more in detail in section 1.7.

In table 1.1 we summarize the values of the cosmological parameters together with

the values used in the following, unless otherwise stated.
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Figure 1.2: Marginalized likelihood functions for several cosmological parameters from three
years of WMAP data. The red (black) curve is without (with) the SZ amplitude taken into account.
The model is assumed to be spatially flat (Spergel et al., 2007).

1.5 Friedmann models

We now describe the cosmological models associated with equations 1.10 and 1.11. These

models are based on the assumptions that the universe can be approximated as a perfect

fluid with density ρ and pressure P and that these two quantities are related by the equation

of state P = wρc2 where w is a parameter (depending on time or not) characterizing the

equation of state.

The use of a perfect fluid is justified by the fact that a real fluid can be considered as

perfect in many situations of cosmological interest, for example if the collision length

scale is much smaller than the physical scale of interest. It is also worth noting that the
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Parameter Symbol Value Determination Used value
Hubble constant h 0.73±0.02 WMAP3+2dFGRS 0.7

0.72±0.08 HST Key Project
Matter density Ωm,0 0.24±0.02 assuming ΩK = 0 0.3

0.26±0.02 free ΩK

Cosmological constant ΩΛ,0 0.76±0.02 assuming ΩK = 0 0.7
0.76±0.02 free ΩK

Baryon density Ωb,0 0.042±0.002 0.042
Curvature ΩK −0.09±0.1 free ΩK 0

Radiation density Ωr,0 (4.67±0.26) ·10−5 CMB temperature 2.494 ·10−5

Table 1.1: Summary table with the measured and adopted values for the different cosmological
parameters. The first column refers to the parameter, the second column the symbol used to
indicate the parameter, the third column shows the measured value and the fourth column the
method used to determine the given value. In the last column we report the adopted value.

form of the stress-energy tensor in equation 1.9 is necessary for compatibility with the

cosmological principle.

To solve equation 1.12 it is necessary to specify the equation of state and thus finding

the value of the parameter w. Normally it lies in the interval 0 ≤ w ≤ 1, an exception

are the cosmological constant or the dark energy, whose values are negative, in particular

for a cosmological constant term w = −1. We will discuss this aspect in more detail in

section 1.7.

For a pressureless material, usually called dust, w = 0. This approximation is good

also for non-relativistic matter. Even if gas exerts pressure due to its temperature T , this

would be negligible as P ∝ kBT
mpc2 ≈ 0.

Relativistic matter and radiation as neutrinos and photons (radiative fluid) have w =

1/3.

For ordinary matter, it is not possible to have w > 1 or w < 0, because in this case the

sound speed of the fluid vs will exceed the speed of light or be imaginary, this happens

because

vs =
(

∂P
∂ρ

)1/2

S
, (1.16)
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where S is the entropy.

Inserting these relations into equation 1.12, we can solve it to find the time evolution

of the different components, in general we will have

ρ = ρ0

(a0

a

)3(1+w)
, (1.17)

if w is constant. So for dust ρm = ρm,0(1 + z)3, for radiation ρr = ρr,0(1 + z)4 and for

cosmological constant ρΛ = constant. The difference in the time evolution is explained

as follows: for dust, the only relevant quantity is density and if the universe expands,

it will change proportionally to the volume, so like the third power of the scale factor;

for radiation, the number density of particles decreases as a3, but their energy is also

diluted by a factor a as the energy is inversely proportional to the wavelength. Due

to the different time evolution, there is an epoch in the past when radiation dominates

matter, the time when the two energy densities are equal is called equivalence time

aeq = Ωr,0/Ωm,0 ≈ 3.2×10−5 h−2Ω−1
m,0.

Assuming that either dust or radiation are perfect fluids, it is possible to derive their ther-

mal evolution as a function of the scale factor, in particular for dust Tm = Tm,0/a2 (if the

adiabatic index is γ = 5/3) and for relativistic matter Tr = Tr,0/a, before the equivalence

time these two temperatures had the same value, indicating a common evolution for dust

and radiation.

Using the time evolution for all the cosmological components, equation 1.10 becomes

(
ȧ
a

)2

= H(t)2 = H2
0 E(a)2, (1.18)

where

E(a) =

√
Ωr,0

a4 +
Ωm,0

a3 +
ΩK,0

a2 +ΩΛ,0. (1.19)

Equation 1.18 has generally not an analytical solution, qualitatively it shows that there

is an early phase dominated by radiation, followed by a matter-dominated period and at

the end an era dominated by the cosmological constant.
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Figure 1.3: Time as a function of the scale factor for a flat model with Ωm = 0.3 and ΩΛ = 0.7.

From equation 1.18 it is easy to derive a relation between the scale factor and the

cosmic time, solving the differential equation one gets

t =
1

H0

Z a

0

da′

a′E(a′)
(1.20)

In figure 1.3 we plot the evolution of the cosmic time as a function of the scale factor

for a flat model dominated by the cosmological constant term.

A Friedmann model without any cosmological constant term and made of fluids with

w >−1/3 has a point in time where a = 0, this is the so-called Big Bang and it represents

a singularity of the model that is unavoidable if w >−1/3 and it is not a consequence of

the symmetries of the system. It is possible to show that this also holds for more general

conditions.

1.6 Distances in cosmology

Since in general relativity the space-time is not necessarily flat, there is not anymore a

unique definition of distance, this implies that there will be different definitions of dis-

tances according to different measurement prescriptions.
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In this section we will describe five different distance scales, namely the proper dis-

tance, the absorption distance, the comoving distance, the angular diameter distance and

the luminosity distance. We suppose that the observer is placed at the origin of the coor-

dinate system.

The proper distance is defined as the distance covered by a light beam propagating

from a source at z2 to an observer at z1, with z1 < z2, from Eq. 1.2 the expression of the

proper distance is

dpr =
Z r

0

a(t)dr′√
1−Kr′2

= a(t) f (r) =
c

H0

Z a1

a2

da
aE(a)

, (1.21)

where f (r) is

f (r) =





arcsinr K = 1
r K = 0 .
arcsinhr K =−1

(1.22)

As a(t) changes in time, also dpr will change in time, therefore the radial velocity of the

object will be

vr = ȧ(t) f (r) =
ȧ(t)
a(t)

f (r) = H(t)dpr, (1.23)

which represents the Hubble Law.

The absorption distance is a modified redshift distance used to remove the redshift

dependence in a sample and put everything on a comoving coordinate scale. Therefore

if the population of absorbers is not evolving (in other words if their space density times

their cross section does not change with redshift), they have a constant number density

per unit absorption distance. The relation between the absorption distance and the scale

factor is

dab =
c

H0

Z a1

a2

da
a4E(a)

. (1.24)

The comoving distance is the distance on the spatial hypersurface at a constant time t

between two points following the cosmic expansion flow.
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It is the coordinate distance between the two points, or in other words the proper distance

normalized over the scale factor:

dc =
dpr

a
= f (r) =

c
H0

Z a1

a2

da
a2E(a)

. (1.25)

The angular diameter distance is defined in such a way that the relation ∆θdA = ∆A

where ∆θ is the angle subtended by the object and ∆A its proper length, valid for a Eu-

clidean space, holds also for a curved space. As from equation 1.2 ∆A = a f (r)∆θ, then

the angular diameter distance is

dA = ar, (1.26)

where r is the radial coordinate distance, in general the angular diameter distance can be

written as dA = a f (r).

The luminosity distance is the distance preserving the Euclidean relation between the

luminosity L and the flux F of an object. The photons emitted by the source are redshifted

due to the expansion of the universe by a factor a and their time arrival is also delayed by

a factor a, so

F =
L

4πr2 a2, (1.27)

which implies

dL =
(

a0

ae

)2

dA. (1.28)

where a0 and ae are the scale factors at receiving time and emission time.

This relation goes under the name of Etherington relation (Etherington, 1933) and is valid

in any arbitrary space-time.

Other measures of distance, less often used are the parallax distance dµ =

a0r/
√

1−Kr2 and the proper motion distance dM = a0r.
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For z ¿ 1 all distances follow the Hubble law and will coincide in an euclidean ge-

ometry:

d =
cz
H0

+O(z2). (1.29)

In figure 1.4 we show the main five distances defined above as a function of redshift

for a spatially-flat universe.

1.7 Quintessence models

According to the standard model on the origin and evolution of the universe, after the

Big Bang, the singularity from which everything probably originated, the universe under-

went a period of exponentially accelerated expansion, phase usually called inflation. This

model explains why the universe is so uniform on large scales and one of its predictions

is that the spatial geometry should be flat. As we saw before, (see upper right panel in Fig
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Figure 1.5: Best fit of the CMB temperature angular power spectrum for a ΛCDM model (Ωm +
ΩΛ = 1). Different lines refer to WMAP three-years data (black line), one-year data (red line) and
a combination of WMAP one-year data, CBI and ACBAR. From (Spergel et al., 2007)

1.2), matter can only account for about 30% of the total density of the universe. More-

over, starting from supernova observations (Riess et al., 1998; Perlmutter et al., 1999)

which show an acceleration in the expansion of the Universe, up to the three-year data

from the satellite WMAP (Spergel et al., 2007) for the observed CMB temperature power

spectrum (see Fig 1.5), it is clear that the geometry of the Universe can be flat because of

the presence of a contribution given by the cosmological constant or dark energy whose

energy density is comparable to that of the matter today.

1.7.1 The cosmological constant

The cosmological constant Λ was first introduced by Einstein into his fields equations to

allow static solutions.

It has an equation of state with w =−1, PΛ =−ρΛc2 where

ρΛ =
Λc2

8πG
, (1.30)

with Λ positive.
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From elementary particle physics it is possible to relate the cosmological constant to

the vacuum pressure and density, and the related stress-energy tensor is

Tµν =
Λc4

8πG
gµν. (1.31)

Observational constraints on the cosmological constant come from the curvature pa-

rameter K and from the measurements of the deceleration parameter that in presence of

the cosmological constant assumes the form

q0 =
1
2

Ωm,0−ΩΛ,0, (1.32)

The upper limits are |Λ|< 10−55 cm2 and mΛ < 10−42 GeV. Such small values are difficult

to explain in the framework of the current physical theories. A possible solution are the

dark energy models, treated in the next section.

1.7.2 Dark energy

In this section we give a basic introduction to the dark energy models, a more complete

description can be found in the reviews by Peebles & Ratra (2003); Wetterich (2002);

Sahni (2005).

A possible solution to the fact that the value of cosmological constant is so small, even if

its energy density is constant in time comes from the dark energy models which represent

a generalization of it with a time varying equation of state. Also for dark energy models,

the time evolution is of the type an, where in this case n = exp(3
R a0

a (1+w(a))d lna).

Usually the dynamical evolution of dark energy is studied modelling it with a scalar

field φ, whose kinetic energy is Tkin = 1
2 φ̇2 and the potential is V (φ).

In the rest frame in which an observer moves in such a way that the universe appears

isotropic, the stress-energy tensor of the scalar field φ is diagonal and the time-component

and the space-components are associated respectively to the density and the pressure of
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the field, whose expression in terms of the field is

Pφ =
1
2

φ̇2−V (φ), ρφ =
1
2

φ̇2 +V (φ), (1.33)

and the equation of state parameter becomes

w =
1
2 φ̇2−V (φ)
1
2 φ̇2 +V (φ)

. (1.34)

If φ̇2 ¿ V (φ) (slow-rolling condition) then w ' −1 and the dark energy reduces to the

cosmological constant, in any case, whatever w is, it must be w <−1/3 to have an accel-

erated expansion.

Dark energy can recover the cosmological constant during the inflationary phase (accel-

erated expansion phase), when the slow rolling condition is satisfied.

The dynamics of the scalar field is governed by the following equation of motion,

valid if the curvature is negligible:

φ̈+3Hφ̇−∇2φ+
dV (φ)

dφ
= 0, (1.35)

the term ∇2φ is zero if the scalar field is spatially homogeneous.

The mass of the field is related to the potential: mφ = V ′′(φ).

The interaction between the scalar field and the gravity can be studied either in the

Jordan frame with a Lagrangian of the type L =− f (φ)R+Lm(m) or in the Einstein frame

with a Lagrangian of the type L = −R + Lm(m,φ); both approaches lead to the same

modification of the original metric.

If the scalar field interacts with matter, then dark energy can be considered as a dark

force, this implies that matter is not conserved anymore and the matter feels an additional

contribution to gravity that can be parametrized modifying the gravitational constant with

the expression

G(r) = G(1+βe−r/λ). (1.36)
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Different behaviours of the scalar field correspond to different choices of the potential.

In the literature many different potentials were suggested, like power laws (Lucchin &

Matarrese, 1985; Peebles & Ratra, 1988), inverse power laws (Ratra & Peebles, 1988),

exponential (Ratra & Peebles, 1988; Wetterich, 1988; Ferreira & Joyce, 1998).

A common characteristic of quintessence models is that they can be attractors (Ra-

tra & Peebles, 1988) or trackers (Steinhardt et al., 1999), this implies that they are the

asymptotic solutions of a wide range of initial conditions at high redshifts. The tracker

behaviour is a very desirable feature because it can alleviate the coincidence problem.

We saw that w =−1 for a cosmological constant term, as observations allow slightly

more negative values for this parameter, a wealth of phantom (or ghost) models are also

under investigation. Their characteristic is to have today w < −1, this is possible only

having a negative definite kinetic energy. We do not enter into details, but we remand

to the papers Caldwell (2002); Johri (2004); Faraoni (2005); Kujat et al. (2006) for an

overview.

Recently, great attention has been devoted to a class of models called early dark energy

models, in which the contribution of dark energy at early times is not negligible.

While usually the time evolution of quintessence models is given with the parametrization

of w(a), for early dark energy models is more convenient to give explicitly Ωd(a), where

Ωd represents the amount of dark energy at early times.

A possible parametrization is (see Doran & Robbers, 2006)

Ωd(a) =
Ω0

d−Ωe
d(1−a−3w0)

Ω0
d +Ω0

ma3w0
+Ωe

d(1−a−3w0), (1.37)

where Ω0
d and Ω0

m are the fractional densities of dark energy and dark matter today, Ωe
d

is the amount of early dark energy and w0 = w(a = 1) is the equation of state parameter

today. The amount of early dark energy is a few per cent. Direct consequences of these

models are a decrease of the distance measurements and of the age of the universe com-

pared to a ΛCDM model, halos are more concentrated so strong lensing is enhanced, as

well as the weak lensing on small scales.
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Early dark energy affects also non-linear structure growth. In particular, as the linear den-

sity contrast is lowered compared to a ΛCDM model, than the mass function will increase

as it depends exponentially on it (as shown in section 2.3.2). Therefore it is expected to

find more halos in a early dark energy cosmologies than in a ΛCDM model. For the same

reason also the number of major mergers will be enhanced in these kind of models.

More quantitative details and observational constraints on early dark energy models can

be found in Wetterich (2004); Doran et al. (2005); Doran & Robbers (2006); Bartelmann

et al. (2006).
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Chapter 2

Structure formation

In the previous chapter we considered the universe as homogeneous and isotropic on

scales larger than 100 Mpc/h, on smaller scales this condition does not apply anymore

and it is populated by galaxies, clusters and superclusters. It is believed that these struc-

tures originated from gravitational instability of primordial fluctuation seeds whose ori-

gin is still uncertain. A possible explanation might come from inflationary theories. It

is believed that these fluctuations have a random Gaussian distribution and it is on this

assumption that all the theory on structure formation and perturbation growth is based.

Density perturbation growth undergoes two different regimes, that can be classified

into linear regime and non-linear regime. The two phases differ by the value of the density

contrast δ(~x, t) = (ρ(~x, t)− ρ̄(t))/ρ̄(t): for δ(~x, t) < 1 the perturbations can be studied in

the framework of the linear regime, for δ(~x, t) > 1 the regime becomes non-linear and

an analytical treatment is generally not possible and usually numerical techniques are

employed. Linear evolution holds just for a limited period of time, followed by the non-

linear evolution.

The evolution of cosmological structures takes place in a scenario where the dominant

matter component is cold dark matter (CDM), a non-relativistic fluid interacting only

gravitationally, a small fraction of baryonic matter, whose main contribution comes from

diffuse gas, a quintessence component driving the accelerated expansion of the universe

and that in the simplest case interacts only gravitationally with other components. The

spatial geometry of the universe is flat (as supported also by inflationary theories) and
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the amplitude of primordial fluctuations at recombination are of the order of δ(~x)≈ 10−3.

Due to the collisional nature of baryonic matter, CDM will collapse first, followed then by

baryons. In section 2.1 and 2.3 we describe respectively the linear and non-linear theory

with their consequences. The linear evolution of the density power spectrum is introduced

in section 2.2. In section 2.4 we briefly report the consequences when a small contribution

of early dark energy is taken into account.

2.1 Linear theory

To study the evolution of density perturbations, taking into account also the Hubble ex-

pansion, can be done coherently with a full relativistic analysis. In order to do so, one has

to consider the perturbed Einstein’s field equations:

δGµν =
8πG
c4 δTµν +Λδgµν, (2.1)

where δGµν, δgµν and δTµν are the perturbed quantities. The solutions of this equation

will provide a complete description of scalar, vectorial and tensor perturbations. For our

future discussions only the evolution of scalar quantities will be relevant, in this case the

perturbed metric can be written as

δgµν = a(t)2
(

2ψ(~x, t) ∇ws
∇ws 2Φ(~x)δi, j

)
, (2.2)

where ψ, ws and Φ represent the perturbations (with a modulus smaller than unity) and

the off-diagonal terms can be removed after a gauge transformation. In general the two

potentials ψ and Φ will be different. In a weak field approximation, justified by the fact

that also for the most massive structures Φ/c2 ¿ 1, the two potentials are equal and it is

possible to recover the same equations of the Newtonian approach.

In a classical study of the evolution of the perturbations, the relevant quantities are

the density ρ, the pressure P, the entropy S, the velocity ~u and the potential Φ. They are

related to each other through a system of equations

24



∂ρ
∂t

+∇~r · (ρ~u) = 0,

∂~u
∂~t

+(~u ·∇~x)~u+
∇~rP

ρ
+∇Φ~r = 0, (2.3)

∇2Φ−4πGρ = 0,

∂S
∂t

+~u ·∇~rS = 0,

that in this order represent the continuity equation, the Euler equation, the Poisson equa-

tion and the entropy conservation equation,~r is the physical coordinate. In an expanding

universe, the previous equations become

∂ρ
∂t

+3
ȧ
a

ρ+
1
a

∇~x · (ρ~u) = 0,

∂~u
∂~t

+
1
a
(~u ·∇~x)~u+

ȧ
a
~u+

∇P
aρ

+
1
a

∇~xΦ = 0, (2.4)

∇2
~xΦ−4πGa2(ρ−ρb) = 0,

∂S
∂t

+
1
a
~u ·∇~xS = 0,

where~x is the comoving coordinate of the fluid (~r = a~x) and ρb the average density of the

universe. The velocity is expressed as

~u =~̇r = ȧ~x+a~̇x = H~r +~v, (2.5)

where~v is the peculiar velocity of the fluid.

We suppose that all the processes are adiabatic and we consider small perturbations

as we want to study the evolution of the perturbations in the linear regime. Using the

substitution for the perturbed solutions
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ρ = ρb(1+δ),

P = Pb +δP,

~u = H~r +~v, (2.6)

Φ = φ+δφ,

S = Sb +δS

in the previous set of equations, we obtain the equations describing the evolution of the

perturbations:

∂δ
∂t

+3Hδ+ρb∇~x ·~v = 0,

∂~v
∂t

+H~v+
∇~xP

ρ
+∇~xδφ = 0, (2.7)

∇2
~xδφ−4πGa2ρbδ = 0,

∂δS
∂t

= 0.

The solution to these equations can be decomposed into plane waves, δi(~x, t) =

∑∞
k=1 δk(t)exp(i~k~x), because all the modes are decoupled and the gaussianity of the field

is preserved. Inserting the plane waves into equation 2.7 and combining them together

leads to the equation describing the linear evolution of the density perturbation:

δ̈k +2
ȧ
a

δ̇k +
[

v2
s

k2

a2 −4πGρb

]
δk = 0, (2.8)

where k is the comoving wave number, vs =
√

δP/δρ the sound speed. It is valid for

a single non-relativistic matter component on scales λ < RH , where RH indicates the

cosmological horizon.

In case of a multi-fluid system, equation 2.8 becomes

¨δk,i +2
ȧ
a

δ̇k,i +δk,iv2
s,i

k2

a2 −4πG∑
j

ρb, jδk, j = 0, (2.9)
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Epoch δR δDM δB

a < aeq

λ > RH ∝ a2 ∝ a2 ∝ a2

λ < RH oscillation oscillation stagnation
aeq < arec

λ > RH ∝ a ∝ a ∝ a
λ < RH oscillation ∝ a oscillation
a > arec

λ > RH ∝ a ∝ a ∝ a
λ < RH oscillation ∝ a δDM(1+ aeq

a ) (before catch-up)
δDM (after catch-up)

Table 2.1: Summary of the solutions for the perturbation growth for radiation, dark matter and
baryons (δR, δDM and δB respectively). The first column refers to the epoch and the perturbation
scale λ considered, the second, the third and the fourth column show the quantity under investiga-
tion.

where the index i refers to the different components. Similar equations apply to relativistic

matter and scales larger than the cosmological horizon.

Applying equation 2.9 to baryons after decoupling and on scales where pressure terms

can be neglected, we find the following relation:

δ̈k,b +2
ȧ
a

δ̇k,b−4πGρk,DMδk,DM = 0, (2.10)

since radiation and baryons densities are much smaller than the dark matter density, and

the solution is

δk,b = δk,DM

(
1− adec

a

)
. (2.11)

Equation 2.11 shows that after the decoupling baryon fluctuations grow faster than the

dark matter fluctuations because they fall in the potential well already formed by dark

matter, this effect is called baryonic catch-up.

In table 2.1 we give a summary of the time evolution of the perturbations relevant for

structure growth.

From the density contrast it is possible to study peculiar velocities and accelerations.
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Defining the quantity

f (Ω) =
d lnδ
d lna

, (2.12)

the solution for the peculiar velocity field is

~v(t) =
2 f (Ω)
3aHΩ

∇δφ. (2.13)

For models with Λ = 0, an excellent approximation for f (Ω) is f (Ω) = Ω0.6 (Peebles,

1980), for a model with cosmological constant a better fit is f (Ω) = Ω0.6 + ΩΛ
70 (1+ 1

2Ω).

The Jeans wavelength is defined as

λJ =

√
πv2

s
Gρ

, (2.14)

perturbations with λ > λJ are unstable and their growth depends on the geometry of the

universe, the others behave as sound waves. To the Jeans length is associated the Jeans

mass MJ = 4π
3 ρλ3

J , as before, perturbations with M > MJ will growth.

As equation 2.8 is a second-order differential equation, there will be two solutions, a

growing and a decaying one. We will consider only the growing solution.

In an Einstein-de Sitter (EdS) model, linear theory shows that before the equivalence

time δ(a) ∝ a2 and after δ(a) ∝ a; when this limit does not hold anymore, the linear

evolution of density contrast follows

δ(a) = δ0D(a), (2.15)

where D(a) is the growth factor and for an EdS universe D(a) = a and for other models

it is expressed as a function of the relative growth factor g(a), D(a) = ag(a)/g(a = 1).

In the case of non-dynamical dark energy, the expression giving the relative growth factor

is

g(a) =
5
2

Ωm(a)E(a)
Z a

0

da′

(a′E(a′))3 , (2.16)
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it could be expressed in terms of elliptical functions (Eisenstein, 1997), but it is more

convenient giving an approximate parametrization (Carroll et al., 1992):

g(a)≈ 5
2

Ωm(a)

Ωm(a)4/7−ΩΛ(a)+(1+ Ωm(a)
2 )(1+ ΩΛ(a)

70 )
. (2.17)

This expression is valid for open or Λ-dominated flat universes.

In figure 2.1 we show the evolution of g(a) for different cosmological models

The relative growth factor is constant for an EdS model, while for small Ωm it is higher

for a ¿ 1 and smaller for a ≈ 1. This implies that in a low-density universe structures

form earlier than in high-density universe and at late times the expansion is faster and it

reduces the speed of structure formation. For a flat universe with cosmological constant,

the epoch where the cosmological constant starts to dominate is a≈ (Ωm/ΩΛ)1/3.

The scales of density perturbations can exceed the size of causally connected regions;

this size goes under the name of cosmological horizon RH = c/H(a). The mass enclosed

in a sphere of radius RH , MH = 4/3πρR3
H is called horizon mass. Perturbations with M <

MH can experience dissipation processes, that are briefly described in the next section.
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2.1.1 Dissipation processes

Till this point, the cosmological fluids were considered as ideal, if this approximation

breaks down, the energy is drained away by dissipative processes. They have different

origins in dark matter and baryons because dark matter feels only gravitational effects,

while baryons are a collisional fluid that can couple to other species, such as radiation.

For a < aeq the evolution of the universe is dominated by radiation and non-relativistic

matter perturbations do not growth until aeq even if λÀ λJ . This effect of freezing-in or

stagnation in perturbations goes under the name of Meszaros effect (Meszaros, 1974) and

it is very important in models of galaxies formation originating from primordial fluctua-

tions in an universe dominated by cold dark matter. In this scenario, the free-fall time is

larger than the expansion, this means that perturbations can not grow because the expan-

sion is too fast. The solution to equation 2.8 for the growing mode is δ = 1+ 3
2

a
aeq

.

Radiation drag is due to the coupling between baryonic matter and radiation after the

recombination: perturbations are frozen because of the viscous friction of baryons with

photons. This effect is relevant if the viscous friction force dominates the self-gravitating

force. Solving equation 2.8 shows that the perturbations remain practically constant till

recombination. Radiation drag is different from the Meszaros effect as this last effect is

purely kinematic and does not require any collisional interaction between the two fluids.

Before recombination, the cosmological fluid can be considered as a plasma of pho-

tons, electrons and protons that experiences dissipative effects due to the diffusion of

photons. The region affected by photon diffusion changes in time as RD ∝ (c2τγet)
1/2

where τγe is the time scale for the collisions between photons and electron-proton pairs.

The dissipation mass or Silk mass (Silk, 1967) is the mass of a sphere of radius RD,

perturbations with M < MS will not grow. This effect lasts till recombination.

Dark matter perturbations can undergo a dissipation effect called free-streaming which

consists in the diffusion of particles from overdense to underdense regions. Perturbations

are completely washed out when their mass is equal to the free-streaming mass MFS =
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4/3πρR3
FS where

RFS = a
Z t

0

v(t ′)
a(t ′)

dt ′. (2.18)

For cold dark matter MJ ≈MFS ≈ 103M¯/h at recombination, this means that struc-

tures with low mass will form first.

2.2 Density power spectrum

As said in the previous section, it is convenient to express the solution of the equation

describing the time evolution of the density contrast as superposition of plane waves. As-

suming that the perturbation field follows a Gaussian statistics, then its statistical aspects

are completely described by the power spectrum, a second order moment related to the

variance of the field.

The density contrast is defined as

δ(~x) =
ρ(~x)−ρb

ρb
, (2.19)

where ρb is the background density, from the definition is clear that 〈δ〉= 0. Defining the

Fourier transform as

δ̂(~k) =
Z +∞

−∞
d3x δ(~x) eı~k~x, (2.20)

the variance of δ in Fourier space defines the power spectrum:

〈δ̂(~k)δ̂(~k′)∗〉= (2π)3P(k)δD(~k−~k′), (2.21)

where the asterisk ∗ denotes the complex conjugate and δD(~k−~k′) the Dirac’s delta func-

tion. The variance of the field is related to the power spectrum by the equation

σ2 =
1

2π2

Z ∞

0
P(k)k2dk. (2.22)
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With this definition, the variance contains no information on the relative contributions of

the different modes, and there is no guarantee that the integral in equation 2.22 converges.

For this reason it is useful to define a variance that depends on the scale considered and

that will represent the variance of a filtered power spectrum. Usually this quantity is called

mass variance and it is defined as

σ2
M =

1
2π2

Z ∞

0
P(k) k2 W 2

F (kR) dk, (2.23)

where R is the scale under consideration, WF(kR) the Fourier transform of the filter. The

most commonly used filter windows are the top-hat filter and the Gaussian filter. Most

recent estimates for σ8 (the variance in a radius of 8 Mpc/h) give (even if with a large

scatter) σ8 ≈ 0.8 (Spergel et al., 2007).

Inflation predicts an almost scale-free initial power spectrum P(k) = Akn, where A is

a normalization constant that can be inferred from observations of the local abundance of

galaxy clusters (White et al., 1993; Eke et al., 1996b; Viana & Liddle, 1996; Tegmark &

Zaldarriaga, 2002) and n is the spectral index n≈ 0.95 (Spergel et al., 2007), very close to

n = 1 as predicted by inflationary models. If n = 1, then the primordial spectrum is called

Harrison-Zel’dovich spectrum (Harrison, 1970; Zel’dovich, 1970; Peebles & Yu, 1970).

As explained in section 2.1.1, the growth of density fluctuations is affected by several

dissipative processes that ultimately change the shape of the primordial power spectrum.

The power spectrum at a generic time a is then given by

P(k,a) = P(k,ai)T 2(k)D(a)2, (2.24)

where D(a) is the growth factor, P(k,a) and P(k,ai) are the power spectrum at a generic

time a and the power spectrum at an initial time ai and T (k) is the transfer function and,

taking into account all the physical dissipative processes, shows how much the initial

power spectrum is suppressed. It is defined as

T (k) =
δk(a f )D(ai)
δk(ai)D(a f )

, (2.25)
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Figure 2.2: The transfer function T (q) for different cosmological models. The red curve shows an
EdS model (Ωm = 1 and ΩΛ = 0), the blue curve an open model with Ωm = 0.3 and ΩΛ = 0, the
green curve a flat model with cosmological constant.

where i and f stand for initial and final. A common parametrization used for cold dark

matter models is given by Bardeen et al. (1986):

T (q) =
ln(1+2.34q)

2.34q
[1+3.89q+(16.1q)2 +(5.46q)3 +(6.71q)4]−0.25, (2.26)

where q≡ k/Γ h/Mpc and the shape parameter Γ is defined as (Sugiyama, 1995)

Γ = Ωm,0 h exp(−ΩB,0 (1+
√

2h/Ωm,0)). (2.27)

As shown in figure 2.2 the transfer function is unity for large scales where the fluctu-

ation evolution is not affected by local phenomena, and zero for small scales where the

local and suppression phenomena are most relevant.

2.3 Non-linear theory

As said before, the linear theory holds only as long as δ < 1, after this value it breaks

down and a non-linear analysis is needed. Typical examples for the non-linear density
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fluctuations are galaxy clusters, for which δ ≈ 103. Once the field enters into the non-

linear regime, it becomes non-Gaussian and its probability distribution assumes a skewed

shape towards high values of δ.

To find analytical results in this section of the theory, it is necessary to study systems

with a particularly simple symmetry, like a system with spherical or ellipsoidal symmetry.

The collapse of such systems is described in the next section.

2.3.1 Spherical and elliptical collapse model

In these models it is assumed the existence of an overdense perturbation (with spherical

or elliptical symmetry) that disentangles itself from the general expansion of the universe.

The expansion rate of the overdense region will be smaller than the expansion rate of the

rest of the universe and if it is dense enough the expansion will stop reaching a maximum

size (turn-around) after which it will start to collapse and eventually form a bounded

object. As the theory only includes gravitational interactions, the collapse ends in a sin-

gularity; in reality, because of scattering and the pressure of gas the overdense region will

stop its contraction before reaching the singularity and it will be considered virialized

when the virial theorem holds.

Even if the geometries taken into account are really easy and quite idealistic (in general

the collapsing structures have an irregular shape), the equations describing the evolution

of the infalling object can not be solved analytically for a generic cosmological model.

Moreover, the contribution of quintessence in the equations of motions is still under de-

bate. If quintessence reduces to the cosmological constant, then it does not affect the

treatment of the system considered without it, otherwise if quintessence is a dynamical

scalar field, it enters directly into the equations and two cases must be distinguished.

Caldwell et al. (1998) showed that quintessence cannot be perfectly smooth, but it is

generally believed that the clustering of the field should be negligible for scales smaller

than ≈ 100 Mpc/h and Maor (2006) argued that including the quintessence explicitly in

the equations could lead to a non-conservation of energy. So including or not including

quintessence clustering will lead to different results.
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To sketch the basis of the spherical collapse, we will refer to an EdS model for scales

smaller than the cosmological horizon. Of other models we shall give fitting formulae.

The equation of motion for the radius R that a spherical infalling mass shell satisfies is

R̈ =−GM
R2 =−4π

3
ρR3 G

R2 , (2.28)

(if dark energy is included then ρ represents the total density of the system) and an integral

of motion (energy conservation) is

1
2

Ṙ2− GM
R

= E, (2.29)

where E is the total energy of the system. If E < 0 then the mass shell will collapse.

The object reaches R = Rmax with a density ρ ≈ 5.5ρback (where ρback is the density

of the unperturbed background) and then collapses. The virialization condition gives

Rvir = Rmax/2 and the overdensity is ∆v = 18π2 ≈ 178. At the same time, an extrapolation

from the linear theory would give a density contrast δc = 3
5

(3π
2

)2/3 ≈ 1.68.

Approximate formulae for an open model and a model with cosmological constant are:

δc =
3
5

(
3π
2

)2/3 {
(1+0.0406log10 Ωm) ΩΛ,0 = 0
(1+0.0123log10 Ωm) Ωm,0 +ΩΛ,0 = 1 (2.30)

and

∆v = 18π2
{

(1+0.1210(Ωm−1)+Ω0.6756
m ) ΩΛ,0 = 0

(1+0.7076(Ωm−1)+Ω0.4403
m ) Ωm,0 +ΩΛ,0 = 1

(2.31)

where Ωm is the matter density parameter at the redshift of the halo collapse.

More technical details on the spherical collapse model can be found in several articles,

(see e.g. Lahav et al., 1991; Wang & Steinhardt, 1998; Mota & van de Bruck, 2004;

Horellou & Berge, 2005; Maor & Lahav, 2005).

As we will see in the next section, if instead of assuming a spherical collapse model

one uses an ellipsoidal collapse model, the mass function is closer to what is found in

the numerical simulations. Therefore we briefly sketch the framework of the ellipsoidal
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collapse. More details can be found in Peebles (1980), Eisenstein & Loeb (1995), Bond

& Myers (1996).

While in the spherical collapse model the evolution of the perturbations is described by

the initial density field, for the aspherical model it is better described by the initial shear

field and virialization is defined as the time of the third axis collapse. The collapse along

each axis is stopped after it has shrunk by some critical factor and it is chosen in such

a way that at the virialization the density contrast has the same value as in the spherical

model.

The collapse is described by the three eigenvalues of the deformation tensor or equiva-

lently by the initial ellipticity e, the prolateness p and the density contrast δ. In general

virialization takes place later as e increases and fixing e, if p decreases and δec > δsc

where ec and sc mean respectively ellipsoidal and spherical collapse.

It is possible to relate the two density contrasts through the relation (Sheth et al., 2001)

δec(σ,z) = δsc

{
1+β

[
σ2

σ2∗

]γ}
, (2.32)

where σ∗ ≡ δsc(z), σ is the variance of the field, β≈ 0.47 and γ≈ 0.615. This expression

is approximately valid for EdS, open and flat models with cosmological constant. For

massive objects, as σ ¿ σ∗, δec ≈ δsc. The utility of this relation can be understood

noticing that δec can be used instead of δsc in the excursion sets theory (discussed in

section 2.3.2).

In figure 2.3 we show the behaviour of δc and ∆v as a function of redshift for different

cosmologies, namely an EdS model, an open model and a ΛCDM model for a collapsing

sphere.

In section 2.2 we studied the evolution of the linear power spectrum. The power spec-

trum is affected by the non-linear evolution of the structures and computing the non-linear

evolution of the spectrum is really hard. Normally numerical methods are required and it

is possible to fit the non-linear power spectrum from cosmological simulations. Analyt-

ical formulae are obtained under simplifying assumptions. Supposing that the two-point
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Figure 2.3: Virial overdensity as a function of redshift (upper panel) and density contrast at the
collapse time tc for three different cosmological models. In red we show the EdS model, in green
an open model and in red a flat model with cosmological constant.

correlation functions for the linear and non-linear regimes are related by a scaling relation

(Hamilton et al., 1991) allows to find analytical formulae for the non-linear evolution

of the power spectrum (see e.g. Jain et al., 1995; Peacock & Dodds, 1996; Smith et al.,

2003).

In figure 2.4 we show the linear (red line) and non-linear matter (green line) power spec-

trum at z = 0 for a ΛCDM model. The non-linearity affects the small scales (large k)

because the small structures are the first to enter into the non-linear regime.
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2.3.2 Mass function

Much information on the distribution of the halos are contained in the mass function, a

quantity representing the number of halos per mass interval at a given redshift.

The first attempt of computing the halos mass function traces back to the work of Press

& Schechter (1974). Press-Schechter theory asserts that after smoothing the linear theory

density field on some mass scale M (corresponding to a certain scale R) the fraction of

space in which the smoothed density field exceeds a given threshold δc is in collapsed

objects whose mass exceeds the smoothing mass M; assuming a density field following a

Gaussian statistics it is easily possible to compute this quantity.

For a Gaussian field, the distribution of fluctuations is

P(δM)dδM =
1

(2πσ2
M)1/2 exp

(
− δ2

M

2σ2
M

)
dδM, (2.33)
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where σM is the variance on a mass scale M. The probability that the fluctuation δM

exceeds the threshold δc is given by

P(M) =
Z ∞

δc

P(δM) dδM, (2.34)

this quantity depends on the filter mass and through the variance on time and it is propor-

tional to the number of structures characterized by a density perturbation greater than δc.

At this point the problem is that halos in underdense regions will not be counted. This

problem, called the cloud-in-cloud problem, was originally solved by Press & Schechter

multiplying by two to obtain the correct normalization. Then the mass function will be

N(M)MdM = 2ρm(P(M)−P(M +dM))dM that leads to the expression

N(M,z) =

√
2
π

ρcritΩm,0

M
δc

D(z)σ2
M

∣∣∣∣
dσM

dM

∣∣∣∣exp
[
− δc

2D(z)2σ2
M

]
. (2.35)

The number density of objects with mass above M is then

N(> M,z) =
Z ∞

M

dN(M,z)
dM

dM (2.36)

An alternative approach is the theory of density peaks proposed by Peacock & Heav-

ens (1985) and by Bardeen et al. (1986). In this theory the objects with at least mass M are

identified by the number of peaks in the smoothed density field above a given threshold

and it was shown that the two theories agree very well, but they tend to differ for high

masses.

Before we quoted the problem of normalization in the mass function. This problem

can be overcome and fully justified in the theory of excursion sets (see e.g. Bond et al.,

1991) that is based on a statistical approach according to which the evolution of dark

matter halos is described by Brownian random motions in a two-dimensional space (σ2,δ)

and in this space it is considered the motion of a point ~x and the density field is filtered

with a filter of scale R; a halo is formed at~x if δ(~x) > δc for some radius R.
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The Brownian motion is described by the diffusion equation

∂P
∂σ2 =

1
2

∂2P
∂δ2 , (2.37)

where P is the probability distribution for a point having a density contrast δc < δ <

δc + dδ and for a Gaussian random field coincides with the expression given in equation

2.33 and then, including all the trajectories leading to the formation of a halo, the mass

function, as given in equation 2.35, is recovered. In terms of the random walk, we intro-

duce an absorbing barrier at δc such that points with trajectories δ(~x) hitting the barrier

are removed from counting them as not being part of halos.

Equation 2.35 is in good agreement with mass functions from numerical simulations,

but for small and large masses it is inaccurate. A better agreement with simulations was

found by Sheth & Tormen (1999):

N(M,z) =

√
2aA2

π
ρcritΩm,0

M
δc

D(z)σ2
M

[
1+

(
D(z)σM√

aδc

)p]∣∣∣∣
dσM

dM

∣∣∣∣×

exp
[
− δc

2D(z)2σ2
M

]
, (2.38)

where a = 0.707, A = 0.3222 and p = 0.3. Equation 2.38 reduces to the Press-Schechter

formula for a = 1, A = 0.5 and p = 0.

This expression can also be recovered analytically assuming an ellipsoidal collapse and a

moving barrier in the excursion set frame (see Sheth et al., 2001; Sheth & Tormen, 2002).

Jenkins et al. (2001) found a fitting formula from N−body simulations whose shape

is almost indistinguishable from equation 2.38, their fit is

N(M,z) = 0.315exp(−| lnσ−1 +0.61|3.8). (2.39)

In figure 2.5 we show the three different mass functions at two different redshifts. The

Press-Schechter mass function overpredicts the number of small halos and underpredicts

the number of massive halos. The other two differ in the very high mass tail.
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2.3.3 Merger rate

The excursion set model or extended Press-Schechter theory allows to compute several

quantities describing the merging properties of the halos, the halo-survival times and so

on.

In the theory the relevant quantity appearing is the ratio δc/σM, thus we can consider the

barrier moving towards zero as time passes; this can be interpreted with the fact that the

halo collapse becomes more probable as the halo evolves.

The conditional probability that a halo of mass M1 at a time t1 creates a halo of mass

M2 > M1 at the time t2 > t1 is given by

P(σ2
1(M1),δc(t1)|σ2

2(M2),δc(t2)) =
(δc(t1)−δc(t2))√

2π(σ2
1(M1)−σ2

2(M2))3/2

×exp
[
− (δc(t1)−δc(t2))2

2(σ2
1(M1)−σ2

2(M2))

]
, (2.40)

with σ2
1(M1) > σ2

2(M2) e δc(t1) > δc(t2).
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Taking the limit of equation 2.40 for t2 → t1 leads to the merger rate, this expression can

be interpreted as the probability that in time interval dt a halo of mass M1 merges with a

halo of mass ∆M = M2−M1 to form a halo of mass M2:

d2P
d ln∆Md ln t

(M1 →M2|t) =
(

2
π

)1/2 ∣∣∣∣
d lnδc(t)

d ln t

∣∣∣∣
(

∆M
M2

)∣∣∣∣
d lnσ(M2)

d lnM2

∣∣∣∣
δc(t)

σ(M2)
1

(1−σ2(M2)/σ2(M1))3/2

× exp
[
−δc(t)2

2

(
1

σ2(M2)
− 1

σ2(M1)

)]
. (2.41)

This expression was found by Lacey & Cole (1993) and then used to compute the halo-

survival times in Lacey & Cole (1994).

2.4 Structure formation in early dark energy models

Up to now, all the models were assumed with the implicit condition that at early times,

after the radiation-dominated era, the only important contribution comes from the matter

density. In early dark energy models this condition breaks down and all the previous

calculations should be done taking into account the early dark energy density.

If early dark energy is included then all the quantities involved in the calculations explic-

itly depend on the dark energy equation of state. One consequence of considering early

dark energy models is an increasing of the expansion rate at early times and therefore

a decrease in the linear growth factor. This implies for example that the linear density

contrast δc is lower than in a ΛCDM model.

As δc appears in the mass function, this quantity will be largely affected by the behaviour

of the early dark energy; in particular Bartelmann et al. (2006) found that, compared to

a ΛCDM model, these models predict more massive halos. This effect occurs when the

merger events are studied. Also for the merger rates a similar result is found, due to earlier

structure growth, mergers start earlier and are more frequent at higher redshifts than for a

cosmological constant model.
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The fact that halos form earlier, reflects also on the concentration that will be higher than

for a ΛCDM model.

For more detail we refer to Bartelmann et al. (2006).
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Chapter 3

Galaxy clusters and their emission

Galaxy clusters are the largest gravitationally bound structures in the universe and there-

fore, according to the bottom-up model of structure formation, also the last to form. They

have masses in the range 1014−1015 M¯ and a dimension of some Mpc. Approximately

1013 M¯ are in stars, 1014 M¯ in galaxies (including dark matter). Diffuse, hot and ion-

ized baryons are about 1014 M¯ and they constitute the intracluster medium (ICM) which

emits in the X-ray band via thermal bremsstrahlung with a temperature of the order of

107÷ 108 K. The rest, about 90 %, is dark matter, that interacts only gravitationally with

the other forms of matter and it can be considered as non-collisional. Also the motion

of the galaxies can be considered non-collisional in the gravitational potential of the cold

dark matter, excluding the very central regions.

As said before, galaxy clusters form late (z≤ 1), so they could be used to distinguish

between different cosmological models. In fact all the models tend to approximate an

EdS universe at high redshifts, while they differ substantially at lower and intermediate

redshifts. They can also be useful to study the non-linear structure formation, the nature

of dark matter, the behaviour of dark energy, the thermal evolution of the universe.

To first approximation, the dynamics of galaxy clusters is ruled by gravity, a powerful

tool to study their evolution is the analysis of the density profiles that are the subject of

section 3.1, the properties of the ICM and its emission are briefly discussed in section 3.2.
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3.1 Density profiles

In this section we briefly describe some of the most common density profiles used to

parametrize the mass distribution in clusters.

Clusters can be considered as self-gravitating systems, but they are intrinsically un-

stable (according to the virial theorem), so any density profile just reflects a long-lived

transient period in the life of the galaxy cluster. Due to the high number of objects form-

ing a cluster, it is not possible to study analytically its time evolution, so for a complete

description one needs N-body simulations. Nevertheless it is possible to use a statistical

approach based on Boltzmann equation or more precisely on the Vlasov equation that

represents the collisionless variant of the Boltzmann equation:

∂ f
∂t

+~v · ~∇~x f −~Φ · ~∇~v f = 0, (3.1)

where f is the particle distribution function in phase space, Φ the gravitational potential

and~v the particle velocity. It is easier to study this equation through its moments, for ex-

ample the first moment corresponds to the continuity equation, while the second moment

leads to the Jeans equation.

Supposing the system is static and with spherical symmetry, the potential has a de-

pendence only on the radial coordinate and the mass enclosed in a sphere of radius r

is

M(r) =−rσ2
r (r)
G

[
d lnρ(r)

d lnr
+

d lnσ2
r (r)

d lnr
+2β(r)

]
, (3.2)

where σr(r) is the radial velocity dispersion, ρ(r) the density and β(r) = 1−σ2
r (r)/σ2

t (r)

is the ratio between the radial and the tangential velocity dispersion σt(r). For a purely

radial motion β =−∞ and for a pure tangential motion β = 1.

If in equation 3.2 the motion is considered isotropic and isothermal, i.e. β = 0 and σr =

const, then one solution of the resulting differential equation is the singular isothermal
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sphere (SIS) profile

ρ(r) =
σ2

2πGr2 . (3.3)

The profile is divergent in the origin and the total mass resulting from this profile diverges.

Despite these problems the SIS profile is very often used to model the mass distribution

in galaxy clusters also because has the advantage of reproducing the observed flat rota-

tional curve of galaxies. A better approximate solution to equation 3.2 is the non-singular

expression

ρ(r) =
ρ0

1+
(

r
r0

)2 , (3.4)

where ρ0 and r0 are constants and represent the density and the radius of the core.

A rigorous and self-consistent truncated density profile can be obtained using the

phase-space density suggested by King (1966), but it is not possible to use simple an-

alytical functions. Therefore it is often used an approximation suggested by King (1962)

(King’s profile):

ρ(r) =
ρ0[

1+
(

r
r0

)2
]3/2 . (3.5)

Also this profile gives a divergent mass, but it diverges more slowly than the SIS profile.

While the density profiles just described have a physical interpretation, the profile

found by numerical simulations fitting the cluster profiles better has not. Using numerical

simulated structures, Navarro et al. (1997) (NWF) found that the following profile fits

quite accurately the simulated clusters:

ρ(r) =
ρcritδc

(r/rs)(1+ r/rs)2 , (3.6)

where ρcrit is the critical density of the universe at redshift z as defined in equation 1.13,

47



rs the scale radius and δc is a dimensionless quantity defined as

δc =
∆v

3
c3

[ln(1+ c)− c/(1+ c)]
, (3.7)

where c≡ r200/rs is the concentration parameter and ∆v was defined in equation 2.31; r200

is the radius of a sphere in which the average density is 200 times higher than the critical

density. Equation 3.6 is valid in a broad range of masses 3×1011 . M(M¯/h) . 3×1015.

The NFW profile then just depends on one parameter, the mass or the concentration. There

are different prescriptions for determining the concentration parameter (see e.g. Navarro

et al., 1997; Bullock et al., 2001; Eke et al., 2001). Even if different, the different ways of

computing c have in common the fact that concentration increases towards lower mass as

consequence of the higher collapse redshift of less massive structures.

The origin of the inner slope is still unclear and other authors suggested steeper slopes

(Moore et al., 1998; Jing & Suto, 2000).

Observations of the ICM show that a good profile can be obtained assuming that the

gas is relaxing in an already formed potential well. The resulting profile is called β-profile

(Cavaliere & Fusco-Femiano, 1976, 1978)

ρ(r) =
ρ0

[1+(r/rs)2]3β/2 , (3.8)

with β = µmPσ2

kT , where µ is the mean molecular density of the gas and T the temperature.

This profile has as basic assumption that both dark matter and gas follow a static and

isothermal distribution and that dark matter follows a King profile. Despite the incomplete

fulfillment of the hypothesis, this profile is in very good agreement with what is found via

X-ray observations and hydrodynamical simulations.

3.2 Intracluster medium

Because of the baryon catch-up, baryons fall into the potential well of the already col-

lapsed dark matter. Therefore they will be adiabatically compressed and heated also by
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shocks thus emitting in the X-ray band via free-free emission reaching luminosities of

1045 erg/s that allow to find clusters also at relatively high redshifts. For the thermal

history of the gas, also radiative cooling is important because it explains the formation of

dense and cold gas (T . 105 K) that is at the origin of star formation regions.

3.2.1 Sunyaev-Zel’dovich effect

In this section we briefly describe the thermal and kinematic Sunyaev-Zel’dovich (SZ)

effects in the non-relativistic approximation.

The thermal SZ (tSZ) effect is due to the inverse Compton scattering between the electrons

of the intracluster medium and the CMB photons while the kinematic SZ (kSZ) effect is

due to the peculiar motion of the cluster and usually it is an order of magnitude smaller

than the tSZ effect.

The tSZ effect distorts the CMB spectrum, in particular at low frequencies the inten-

sity decreases, while at high frequencies the intensity of the spectrum increases (see Fig.

3.1). These distortions in the spectrum intensity can be described as variation of the CMB

temperature (Sunyaev & Zeldovich, 1972, 1980a,b, 1981) according to the following re-

lations

∆TtSZ

TCMB
= y

[
x

tanhx/2
−4

]
, (3.9)

∆TkSZ

TCMB
= −w, (3.10)

where x = hν/kT is the dimensionless frequency and y and w are the thermal and kine-

matic Comptonization parameters whose expressions are

y =
kσT

mec2

Z
dl neTe, (3.11)

w =
σT

c

Z
dl nevr (3.12)

where σT is the Thomson cross section, Te the electron temperature, ne the electron num-

ber density and vr the radial velocity along the line of sight. In the Rayleigh-Jeans regime
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x¿ 1 and for the tSZ effect ∆T/T ≈−2y. Due to the peculiar frequency dependence of

the tSZ effect, for a frequency ν ≈ 218 GHz, ∆T/T = 0 and the CMB spectrum is not

distorted, so it is possible to study the kSZ effect on CMB.

The total amount of anisotropy induced by the SZ effect on the CMB can be quantified

through the integrated SZ (ISZ) effect and it is defined as the integral of y and w over the

solid angle

Y =
kσT

mec2D2
a

Z
dV neTe, (3.13)

W =
σT

cD2
a

Z
dV nevr, (3.14)

with Da the angular diameter distance. Assuming both Te and vr slowly varying along the

line of sight, then the kSZ effect is directly related to the y parameter through the relation

∆ TkSZ

T
=−vr

mec
kT

y. (3.15)

According to the spherical collapse model discussed in paragraph 2.3.1, the temperature

of the gas depends on the mass M and the redshift z of the cluster (Eke et al., 1996a)

Tgas = Te =
7.75
kβ

(
6.8

5X +3

)(
M

1015M¯/h

)2/3

(1+ z)
(

Ωm,0

Ωm(z)

)1/3 (
∆v

178

)1/3

. (3.16)

Typical values for the tSZ effect are between 10−6 for cold and under-dense regions

and 10−4 for clusters.

The SZ effect is very important in cosmology because it allows an estimation of the

matter distribution as it depends on the electron density and it is approximately indepen-

dent of redshift, so it can be studied also at early times. From the kinematic effect it is

possible to study cluster peculiar velocities that are useful to understand the large scale

matter distribution, the thermal effect gives an estimation of the cluster density and of

the thermodynamical state of the cluster as it is related to the electron pressure. With the

tSZ effect it is possible to infer also a value for H0, even if more precise techniques are
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Figure 3.1: Comparison between the CMB spectrum and the SZ-distorted CMB spectrum (the
distortion is highly magnified for easier visualization). The straight line is the integrated radio
emission from Cygnus A. The SZ effect causes a fractional decrease in the low-frequency intensity
of the CMBR that is proportional to y at an increase at high frequency. Figure from Birkinshaw
(1999).

available.

More details, both theoretical and observational can be found in several reviews (see e.g.

Rephaeli, 1995; Birkinshaw, 1999; Caldwell, 2002; Rephaeli et al., 2005).

3.2.2 X-ray emission

Thanks to the improvements in satellite observations (ROSAT, XMM-Newton, Chandra

for X band and Compton Gamma-Ray Observatory (CGRO), SWIFT for γ-band) the

diffuse and almost isotropic background radiation in X-ray and γ-bands is resolved in

discrete sources.

The discrete X-ray radiation is not the only one contributing to the formation of the X-ray

background, but there is also another component, characterized by a continuum emission

typical of hot ionized gas given by the interaction between the free electrons and the

nuclei. This emission, called free-free emission, has an emissivity given by (Eke et al.,
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Figure 3.2: Bolometric correction for the three bands described. The red curve shows the bolo-
metric for the soft band (0.5keV÷2keV), the green curve for the hard band (2keV÷4keV) and
the blue curve for the hardest band (4keV÷10keV).

1998)

ε f f ≈ 1.2×10−24T 1/2n2
P (erg/s/cm3), (3.17)

where T is the gas temperature in keV and nP the proton density in g/cm3.

Equation 3.17 gives a value integrated over all frequencies, but to study its contribution to

the X-ray band one needs to define how this energy is distributed within a given frequency

interval.

For the Bremsstrahlung, the emission spectrum has a frequency dependence of

f (ν) = e−hν/kBT g(ν,T ) , (3.18)

where g(ν,T ) =
(

hν
kBT

)−γ
is the Gaunt factor and γ = Z/Z¯ a parameter depending on the

metallicity (Z ≈ 0.3Z¯).
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Given an energy (frequency) interval [E1,E2], the band-function is defined as

F [E1,E2]
band (T ) =

Z x2,0(1+z)

x1,0(1+z)
C e−x x−γ dx , (3.19)

where x = E/(kT ) (E = hν) and C is a normalization constant defined as 1 =
R ∞

0 C e−x x−γdx. The subscript 0 in the integration boundaries means that the band limits

are taken at the observer rest-frame, so the 1+ z term represents the K-correction.

Knowing the value of Fband , the luminosity in a given band is given by the relation

Lband = Lbol
X Fband , where Lbol

X = ε f fV and V is the volume.

The K-correction is equivalent to a cooling, this implies that, together with the smaller

number of dense structures, the emissivity will decrease if the redshift increases.

Usually three bands are considered: soft band (E1 = 0.5keV, E2 = 2keV), hard band

(E1 = 2keV, E2 = 4keV) and hardest band (E1 = 4keV, E2 = 10keV).

In figure 3.2 we show the bolometric correction for three bands defined above for

systems at redshift z = 0. The bolometric correction is defined as the inverse of the band

function. The emission in the soft band is always higher than the hard band while the

emission in the hardest band dominates only for very high temperatures.
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Chapter 4

Gravitational lensing

In this chapter we review the foundations of gravitational lensing.

According to general relativity, light propagates on the null geodesics of the space-time.

Solving the full equations for an arbitrary curved space-time is too complex because of

the non-linearity of the relativistic equations. However, in cosmology, simplified assump-

tions are considered and a much simpler approximate description of photon trajectories is

possible. This approximated analysis is known as gravitational lensing theory.

To be applied, gravitational lensing theory requires that the dimensions of the objects

acting as lenses are much smaller than the line-of-sight distance between the source and

the observer (thin screen approximation). If mass is distributed on cosmological scales

along the line-of-sight, then a more general description is required. In addition to this,

another assumption is considered, namely the weakness of the gravitational field of the

lens Φ ¿ c2 and vlens ¿ c. These assumptions are very well justified in all the cases of

astrophysical interests, they break down only in proximity of compact objects.

According to gravitational lensing theory, the travel of photons can be subdivided

into three parts: a first part from the source to the massive objects (lens) where the light

rays travel in an unperturbed space-time, a second part where they are deflected by the

gravitational field of the lens and the last part from the lens to the observer where they

travel again in an unperturbed space-time. The amount and the direction of the deflection

depend on the mass distribution of the lens and on the impact vector of the light rays.

Here we just refer to the concepts and equations relevant for the present work. A broader
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and more exhaustive treatment of gravitational theory can be found in the books by

Schneider et al. (1992, 2006) and in the reviews by Narayan & Bartelmann (1996), Bartel-

mann & Schneider (2001) and Wambsganss (1998).

4.1 Deflection angle

In presence of the gravitational field Φ of the lens, the perturbed Minkowski metric is

ds2 =
(

1+
2
c2 Φ

)
c2 dt2−

(
1− 2

c2 Φ
)

(dx2 +dy2 +dz2). (4.1)

As light follows null geodesics, ds2 = 0 and light will propagate with an effective speed

c′ ≈ c
(

1+
2
c2 Φ

)
, (4.2)

this means that in a gravitational field light propagates more slowly than in an empty

space because of the effect of the curvature of the space-time geometry. This effect can be

expressed in terms of an optical description introducing the diffraction index (Schneider

et al., 1992):

n =
c
c′

= 1+
2
c2 |Φ|> 1. (4.3)

Due to the slowing down, a time delay in the propagation of light arises as a consequence

of the presence of the perturbing gravitational field. The total amount of the time delay

(called Shapiro delay (Shapiro, 1964)) is given by

∆ t =
Z s

o

2
c3 |Φ|dl, (4.4)

the time delay will be larger closer to the lens because of the deeper potential well through

which lights propagate.

In complete analogy with optics, light passing near a massive object will be deflected

from the straight line and the amount of deflection depends on the diffraction index. The
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deflection angle is given by

~̂α =−
Z

∇⊥n dl =
2
c2

Z
∇⊥Φ dl. (4.5)

For a point mass lens with mass M, the deflection angle is α̂(ξ) = 4GM
c2ξ . This expres-

sion can be generalized to a general lens using the thin lens approximation according to

which, considering extended object with a size small compared to the distances involved,

the deflection arises only along a short section of the light path and the three-dimensional

matter distribution ρ can be projected along the line of sight and the lens is approximated

with a two-dimensional matter distribution, called lens plane. A lens with a projected

mass density

Σ(~ξ) =
Z

ρ(~ξ,z)dz, (4.6)

where~ξ is the vector in physical units on the lens plane, will give rise to a deflection angle

~̂α(~ξ) =
4G
c2

Z Σ(~ξ′)(~ξ−~ξ′)
|~ξ−~ξ′|2

d2ξ′. (4.7)

The geometry of a typical lensing system is shown in figure 4.1

Introducing angular coordinates on the lens plane,~ξ = Dl~θ where Dl is the angular di-

ameter distance of the lens from the observer, and introducing the reduced deflection angle

~α = ~̂αDls/Ds where Dls and Ds are respectively the angular diameter distance between

the lens and the source and between the source and the observer, equation 4.7 becomes

~α(~θ) =
4G
c2

DlDls

Ds

Z Σ(~θ′)(~θ−~θ′)
|~θ−~θ′|2

d2θ′. (4.8)

The critical surface mass density is defined as

Σcrit ≡
(

4G
c2

DlDls

Ds

)−1

(4.9)
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Figure 4.1: Illustration of a typical gravitational lensing system. The angles are exaggerated for
better understanding. Figure taken from Bartelmann & Schneider (2001)

and the convergence as

κ(~θ)≡ Σ(~θ)
Σcrit

. (4.10)

The distance combination De f f = DlDls/Ds acts as a lensing efficiency function, ap-

proaching zero close to the source and the observer and it has a maximum roughly in

the middle. The redshift dependence of the lensing effective distance De f f (z) is shown in
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Figure 4.2: Lensing efficiency distance for a ΛCDM model as a function of redshift of the lens for
a source at redshift zs = 1.5.

figure 4.2.

Using equations 4.9 and 4.10, the reduced deflection angle definition reduces to

~α(~θ) =
1
π

Z
κ(~θ′)

~θ−~θ′

|~θ−~θ′|2
d2θ′. (4.11)

4.1.1 Lens equation

From figure 4.1 it is possible to derive the fundamental equation of gravitational lensing.

It is easy to see that the following relation holds (in the approximation that~β,~θ,~α¿ 1):

~β =~θ− Ds

Dd

~̂α(~θ)≡~θ−~α(~θ), (4.12)

where ~β is the angular position on the source plane, ~θ the angular position on the lens

plane and ~α is the reduced deflection angle as defined above. Equation 4.12 is called

lens equation. This equation is non linear, so it can have more than one solution, that is

the lens can create multiple images of the source. For this to happen, the lens should be

strong, and this is quantified by the convergence κ: if a lens has in some point κ≥ 1, then
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it can produce multiple images. This a sufficient but not necessary condition.

4.2 Lensing potential

An extended lens can be characterized by the effective lensing potential, the projected and

rescaled Newtonian potential

Ψ(~θ) =
2
c2

Dls

DlDs

Z
Φ(Dl~θ,z)dz. (4.13)

The lensing potential has the properties that its gradient is the reduced deflection angle

~∇~θΨ(~θ) =~α, (4.14)

and its Laplacian is twice the convergence

∇2Ψ(~θ) = 2κ(~θ). (4.15)

The inversion of equation 4.15 allows to write the lensing potential as a convolution of

the convergence with the Green’s function of the two-dimensional Laplacian:

Ψ(~θ) =
1
π

Z
κ(~θ′) ln |~θ−~θ′|d2θ (4.16)

4.3 Magnification and distortion

Because of Liouville’s theorem and the conservation of the physical number of photons,

gravitational lensing conserves the surface brightness. One of the main properties of grav-

itational lensing is the distortion of the images that becomes evident if they are extended.

If the size of the sources is smaller than the angular scale on which the physical properties

of the lens change, than the lensing equation can be locally linearized

~β =~θ−~α(~θ)≈~β0− ∂~β
∂~θ

(~θ−~θ0). (4.17)
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The local properties of the lens mapping are described by the Jacobian matrix A

A(~θ)≡ ∂~β
∂~θ

=

(
δi, j− ∂2Ψ(~θ)

∂θi∂θ j

)
= M −1, (4.18)

where M −1 is the magnification tensor, this holds because the solid angle element δβ2 of

the source is mapped into the solid angle element δθ2. From now on we indicate ∂Ψ
∂θi

as

Ψi.

The Jacobian matrix can be written as

A =
(

1−κ− γ1 −γ2
−γ2 1−κ+ γ1

)
(4.19)

where κ is the convergence and

γ1 =
1
2
(Ψ11−Ψ22) = γ cos(2φ) (4.20)

γ2 =
1
2
(Ψ12 +Ψ21) = γ sin(2φ), (4.21)

are the two components of the complex shear tensor γ = γ1 + iγ2.

The effect of the convergence is to scale the dimensions of the source and the effect of

the shear is to distort the shape of the source. This is shown in figure 4.3.

The magnification µ of the source is given by the determinant of the tensor M , µ =

[(1− κ)2 − γ2]−1. Where the determinant of A vanishes, critical curves occur on the

lens plane and these are mapped into caustics on the source plane. In real situations

magnification does not diverge, but it reaches very high values and images are highly

distorted.

4.4 Flexion

Up to now we just considered the effects of lensing to first order. If the convergence and

the shear are not constant in the field, than it is useful to go on with the Taylor expansion

up to the second order. Indicating with~θ′ and~θ the unlensed and lensed coordinates, the
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Figure 4.3: Illustration of the effect of the convergence and on the shear on a circular source.
Figure taken from Narayan & Bartelmann (1996).

Jacobian can be written as A = ∂~θ′
∂~θ

and expanding~θ′ to the second order, equation 4.17

becomes

~θ′ '~θ′0 +
∂~θ′

∂~θ
(~θ′−~θ′0)+

1
2

∂2~θ′

∂~θ2
(~θ′−~θ′0)

2 (4.22)

Introducing the tensor D≡ ∂2~θ′
∂~θ2 , equation 4.22 reads now

θ′i ' Ai jθ j +
1
2

Di jkθ jθk (4.23)

with Di jk = ∂kAi j. As the Jacobian matrix is proportional to the second derivative of the

lensing potential, the tensor D will be proportional to the third derivative of the lensing
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potential. Using the results of Kaiser (1995), it can be shown that

D1 =
( −2γ1,1− γ2,2 −γ2,1

−γ2,1 −γ2,2

)
and D2 =

( −γ2,1 −γ2,2
−γ2,2 2γ1,2− γ2,1

)
. (4.24)

From the matrices above defined, it is possible to construct two complex quantities, the

first flexion F and the second flexion G:

F = F1 + iF2 = (γ1,1 + γ2,2)+ i(γ2,1− γ1,2) (4.25)

G = G1 + iG2 = (γ1,1− γ2,2)+ i(γ2,1 + γ1,2). (4.26)

It is also possible to show that ~F = ∇κ and ~G = ∇γ, so the first flexion can be used to

obtain the convergence field and the second flexion the shear field.

The flexion is responsible for introducing a curvature and other higher-order distortions

in the images.

The effects of the convergence, the shear and the flexion on a Gaussian image are shown

in figure 4.4. The convergence κ, a spin-0 field, just rescales the dimension of the image,

the first flexion F , a spin-1 field, leads to a skewness, the shear γ, a spin-2 field, distorts

the shape of the image and the second flexion G, a spin-3 field, leads to a threefold shape.

More details on the formalism and the applications of the flexion can be found in Goldberg

& Bacon (2005) and Bacon et al. (2006).

4.5 Weak cosmological lensing

Gravitational lensing shows two regimes, strong lensing when κ > 1 and weak lensing

when κ < 1. Strong lensing is characterized by strong magnifications, high distortions

and sometimes the formations of arcs and multiple images. In the weak lensing regime it

is only possible to determine the statistical properties of the lensing system by averaging

over the field of view because distortions and magnifications are tiny.

As the number density of distant galaxies is high (ranging from 10-20 galaxies per square
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Figure 4.4: Weak lensing distortions on an unlensed gaussian galaxy with radius θ = 1′′ with
10% convergence/shear and 0.28 arcsec−1 flexion. The flexion values are high for visualization
purposes. Figure from Bacon et al. (2006).

arc-minute for ground-based observations to 80-100 galaxies per square arc-minute with

space-based observations galaxy clusters distort the background galaxies in a very char-

acteristic way. This is the subject of the next section.

4.5.1 Lensing on background galaxies

Source sizes are unknown individually but it is possible to measure source shapes that,

although intrinsically irregular, can be averaged due to the high number of sources. As-

suming background galaxies are randomly oriented, the average over their shapes is ex-

pected to be circular. In the weak lensing regime a circular source of radius r appears to

be elliptical with axes a = r
1−κ−γ and b = r

1−κ+γ . The ellipiticity ε is defined as

ε =
a−b
a+b

=
γ

1−κ
= g (4.27)

where g is the reduced shear. Equation 4.27 shows that the reduced shear is an estimator

of the ellipticity and 〈ε〉 = 〈γ〉 if the ellipticities are averaged over a large sample, this is

64



because, assuming the galaxies are randomly oriented, their averaged intrinsic ellipticity

vanishes.

The intrinsic (εs) and observed (ε) ellipticities are related by the following relation:

ε =

{ εs+g
1+g∗εs

|g| ≤ 1
1+gε∗s
ε∗s +g∗ |g|> 1

(4.28)

where the asterisk denotes the complex conjugate.

The intrinsic ellipticities follow a distribution approximated by

p(|εs|) =
exp |(1−|εs|2)/σ2

εs
|

πσ2
εs|exp(1/σ2

εs)−1| , (4.29)

where σεs = 0.3.

4.5.2 Light propagation in an inhomogeneous universe

Given a homogeneous and isotropic universe, light propagates along the null geodesics,

but now it is necessary to take into account that the dimensions of the lenses can be com-

parable with the curvature scale of the universe. Several authors, as Zel’dovich (1964),

Gunn (1967), Bartelmann & Schneider (1991) and Kaiser (1992), studied light propaga-

tion in an inhomogeneous universe. Non-linear effects were included by Jain & Seljak

(1997) and Bernardeau et al. (1997). For a review we refer to Bartelmann & Schneider

(2001).

The equation describing the propagation of thin light bundles through arbitrary space-

times is the geodesic deviation equation

d2~ξ
dλ2 = J~ξ, (4.30)

where ~ξ is the transverse physical separation and J is the optical tidal matrix which

describes the influence of the space-time curvature on the propagation of light and

dλ =−cadt. The optical tidal matrix

J =
(

R (λ)+R[F (λ)] I[F (λ)]
I[F (λ)] R (λ)−R[F (λ)]

)
(4.31)
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is symmetric and its components depend on the curvature of the space-time, R(z) and I(z)

are the real and imaginary parts of a complex number z, R (λ) is the source of convergence

and F (λ) is the source of shear. Replacing the affine parameter λ by the comoving

distance, equation 4.30 becomes very simple

d2~x
dw2 +K~x = 0, (4.32)

where K is the spatial curvature as defined in equation 1.14 and ~x =~ξa−1 the comoving

separation vector. Solutions of equation 4.32 are trigonometric or hyperbolic functions,

according to the value of K. Given the initial conditions

~x|w=0 =~0,
d~x
dw

∣∣∣∣
w=0

=~θ, (4.33)

the solutions of equation 4.32 are

~x(~θ,w) = fK(w)~θ, (4.34)

and fK(w) is given by

fK(w) =





1√
K

sin(
√

Kw) K = 1
w K = 0 .

1√−K
sinh(

√−Kw) K =−1
(4.35)

Equation 4.32 holds in an unperturbed space-time, to add perturbations two assumptions

are taken into consideration: the gravitational field is weak and the density perturbations

are localized. This implies that the light rays are deflected according to the equation

d2~x
dw2 =− 2

c2 ∇⊥Φ(~x,w), (4.36)

where the right-hand term represents the contribution from the local inhomogeneity, so

the geodesic deviation equation becomes

d2~x
dw2 +K~x =− 2

c2 ∆
{

∇⊥Φ
[
~x(~θ,w),w

]}
, (4.37)
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where the difference on the right-hand side has to be evaluated between two light rays

having comoving separation ~x(~θ,w) at comoving distance w from the observer. The so-

lution of equation 4.37 is given by the sum of the solution of the homogeneous equation

and the convolution of its Green’s function with the inhomogeneous source term

~x(~θ,w) = fK(w)~θ− 2
c2

Z w

0
dw′ fK(w−w′)∆

{
∇⊥Φ

[
~x(~θ,w),w

]}
, (4.38)

and the integral has to be evaluated along the true photon paths. To actually compute this

integral, the Born approximation for small scattering angles is used and it is given by the

relation

|~x(~θ,w′)− fK(w′)~θ|
| fK(w′)~θ|

¿ 1, (4.39)

and in the integrand~x(~θ,w′) can be replaced by fK(w′)~θ.

An important consequence of the Born approximation is that the Jacobian matrix remains

symmetric also in the case of cosmological weak lensing, but in a general multiple lens-

plane this is no longer true (see Schneider et al., 1992).

4.5.3 Effective deflection angle and effective convergence

The effective deflection angle and the effective convergence can be defined in analogy

as before. The effective deflection angle is defined as the difference at the distance w

between the separation vector of two light rays propagating through an unperturbed space-

time, ~x′(~θ,w) = fK(w)~θ and the comoving separation vector of the perturbed light rays,

~x(~θ,w), divided by the angular diameter distance to w:

~α(~θ,w) =
fk(w)~θ−~x(~θ,w)

fK(w)
=

2
c2

Z w

0
dw′

fK(w−w′)
fK(w)

∇⊥Φ[ fK(w′)~θ,w′]. (4.40)

In analogy to the convergence κ, an effective convergence κe f f (w) is defined by:
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κe f f (~θ,w) =
1
2

∇~θ ·~α(~θ,w) = (4.41)

=
1
c2

Z w

0
dw′

fK(w−w′) fK(w′)
fK(w)

∇2
~xΦ[ fK(w′)~θ,w′], (4.42)

where the Laplacian is two-dimensional. Poisson’s equation relates the three-dimensional

Laplacian of the potential to the density contrast ∇2Φ = 3H2
0 Ω0
2a δ and supposing that the

derivative along the third dimension (∂2Φ/∂z2) averages to zero (approximation verified

with numerical simualtions by White & Hu (2000)), the expression for the effective con-

vergence becomes

κe f f (~θ,w) =
3H2

0 Ω0

2c2

Z w

0
dw′

fK(w−w′) fK(w′)
fK(w)

δ[ fK(w′)~θ,w′]
a(w′)

. (4.43)

Equation 4.43 gives the effective convergence in case of a fixed source redshift placed at

a comoving distance w; when the sources are distributed in comoving distance (in red-

shift) the effective convergence needs to be averaged over the normalized source-distance

distribution G(w)

κ̄e f f =
3H2

0 Ω0

2c2

Z wH

0
dwW̄ (w) fK(w)

δ[ fK(w)~θ,w]
a(w)

, (4.44)

where wH is the horizon distance and W̄ (w) is given by

W̄ (w)≡
Z wH

w
dw′G(w′)

fK(w′−w)
fK(w′)

. (4.45)

4.5.4 Power spectra and correlation functions

While cosmological density perturbations refer to a three-dimensional space, lensing

quantities are defined in a two-dimensional space (the sky), so a relation between the

three-dimensional power spectrum and its two-dimensional projection is needed. In par-

ticular we will find a relation between the density contrast power spectrum and the power

spectrum of some lensing quantities.
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The two-point correlation function or auto-correlation function of a possibly complex

function g(~x) is defined as

ξgg(|~x−~y|) = 〈g(~x)g∗(~y)〉 (4.46)

and the Fourier transform of g(~x) is

ĝ(~k) =
Z

dnx g(~x)ei~k~x. (4.47)

Indicating with g(~θ) the weighted projection of the three-dimensional density contrast

g(~θ) =
Z wH

0
q(w)δ[ fK(w)~θ,w], (4.48)

where q(w) is the weight function and inserting its Fourier transform into the correlation

function of g(~θ) we find

ξgg(|~θ−~θ′|) =
Z

dw q(w)
Z

dw′ q(w′)
Z d3k

(2π)3

Z
d3k′(2π)3〈δ̂(~k,w)δ̂(~k′,w′)〉

exp(−i fK(w)~k⊥ ·~θ)exp(i fK(w)~k′⊥ ·~θ′)exp(−iksw)exp(ik′sw
′), (4.49)

where the vector ~k has been split up into a parallel component ks and a perpendicular

component~k⊥ to the line of sight. Replacing the average with the power spectrum (see

eq. 2.21) and carrying on the integral over ks leads to the following expression for the

correlation function

ξgg(φ) =
Z

dwq2(w)
Z kdk

2π
Pδ(k)J0[ fK(w)φk], (4.50)

where φ = |~θ−~θ′| and J0(x) is the Bessel function of the first kind. So the power spectrum

for the projected quantity g(~θ) is

Pg(l) =
Z

dφξgg exp(ı~l ·~φ) (4.51)

=
Z

dw
q(w)2

f 2
K(w)

Pδ

(
l

fK(w)
,w

)
. (4.52)
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This approximate equality goes under the name of Limber’s equation (Limber, 1953).

Using Limber’s equation with the weight function

q(w) =
3H2

0 Ω0

2ac2 W (w) fK(w), (4.53)

the power spectrum and the correlation function for the effective convergence are

Pk(l) =
9H4

0 Ω2
0

4c4

Z ws

0
dw

W 2(w)
a2(w)

Pδ

(
l

fK(w)
,w

)
(4.54)

ξk(φ) =
Z ∞

0

ldl
2π

Pk(l)J0(lφ). (4.55)

Trasforming into the Fourier space these relations hold: Pk(l) = Pγ(l), P~α = 4
l2 Pk(l),

PF(l) = PG(l) = l2Pk(l) and PΦ(l) = 4
[l(l+1)]2 Pk(l).

4.5.5 Multiple lens plane theory

All the equations relative to the light deflection by a single lens plane derived before can

be easily extended to the general case in which, between the observer and the source, the

matter distribution is discretized into several lens planes.

The lens planes are perpendicular to the line-of-sight and the distance between two planes

is much larger than the distance of two potential wells in the planes. The approach of mul-

tiple lens planes allows a great simplifications in the calculations of gravitational lensing:

as in the single lens plane case, light feels the gravitational potential only on the lens plane

and before and after it, light rays propagate on a straight line. This implies that all lensing

quantities can be found iterating the previous derived equations.

In the following we will consider N lens planes, i = 1÷N, with angular diameter distance

Di(ai) and ordered in such a way that if i < j then ai > a j. We will also assume that the

sources lie on the (N +1)-th plane and we indicate with Ds the angular diameter distance

of the source from the observer. More details can be found in Schneider et al. (1992).
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Lens equation

Following Schneider et al. (1992) we define ~ξi as the position of the light ray on each

single plane i, ~̂αi the deflection angle caused by the i-th lens plane and with~η the position

on the source plane.

According to figure 4.5, the following relation holds:

~η =
Ds

D1

~ξ1−
N

∑
i=1

Dis~̂αi(~ξi), (4.56)

where Dis are the angular diameter distances between the lens planes i and the source

plane.

The impact vectors~ξi on each lens plane are given by

~ξi =
Di

D1

~ξ1−
i−1

∑
k=1

Dki~̂αk(~ξk), (4.57)

where Dki represent the angular diameter distances between the k-th and i-th lens planes.

It is more convenient to work with dimensionless quantities and with the lensing potential

of each lens plane.

Introducing, as before, the reduced deflection angle ~α = Dis
Ds

~̂αi, the multiple lens plane

equation 4.57 becomes

~θi =~θ1−
i−1

∑
k=1

DkiDs

DiDks
~αi(~θi), (4.58)

where the approximation ~θi =~ξi/Di was used. A more practical expression can be

obtained if, instead of the angular diameter distance, comoving distances are used (be-

cause of their additive property) and the reduced deflection angle is replaced by the ef-

fective potential. The angular diameter distance is related to the comoving distance by

Dang(a,a0) = a fK(w(a)) and~α = fK(w(a))∇~xΨ where~x is the comoving orthogonal dis-

tance on the lens plane and Ψ the lensing potential. With these substitutions, equation
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Figure 4.5: Positions and trajectories of the light rays for a two-lens-planes system.
From http://www.strw.leidenuniv.nl/∼rijkhors/pmwiki/index.php?n=Research.
ThickGravitationalLenses.

4.58 becomes

~θi =~θ1−
i−1

∑
k=1

fK(wi−wk)
fK(wi)ak

∇~xΨ̃(~x), (4.59)

where Ψ̃(~x) is the unscaled lensing potential, defined as the projection of the Newtonian

potential along the line of sight.
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Jacobian matrix

For each lens plane two matrices are defined, the Jacobian matrix Ai ≡ ∂~θi
∂~θ1

and the tidal

matrix Ui ≡ ∂~αi
∂~θi

, so from equation 4.58 the following recursive relation follows:

Ai = I −
i−1

∑
k=1

DkiDs

DiDks
UkAk, (4.60)

that, using as before comoving angular diameter distances and the unscaled lensing po-

tential, becomes

Ai = I −
i−1

∑
k=1

fK(wk) fK(wi−wk)
fK(wi)ak

ŨkAk, (4.61)

where

Ũk ≡
(

Ψ̃k,11(~x) Ψ̃k,12(~x)
Ψ̃k,21(~x) Ψ̃k,22(~x)

)
.

On the source plane, we define the Jacobian matrix AN+1 by

AN+1 =
(

1−κ− γ1 −γ2 +ω
−γ2−ω 1−κ+ γ1

)
. (4.62)

This is not necessarily symmetric since it is the product of two symmetric matrices. The

asymmetry is given by the rotation term ω that appears only in the multiple lens-plane

theory because the Jacobian matrix is symmetric for a single lens plane. The terms κ

and γ appearing in Eq. 4.62 are now the effective convergence and the effective shear,

respectively.

Flexion

From the definition of the tensor D whose components give rise to the first and second

flexion, differentiating equation 4.60 with respect to~θ, we find a recursive relation for the

flexion tensors D1,i = ∂Ai
∂θ1

i
and D2,i = ∂Ai

∂θ2
i
:

Di =
∂Ai

∂~θi
=−

i−1

∑
k=1

fK(wi−wk) fK(wk)
fK(wi)ak

[
fK(wk)G̃U Ak + ŨkDk

]
, (4.63)
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where G̃U ≡ ∇~xŨ is the gradient of the tidal matrix:

G̃1
U =

(
Ψ̃k,111(~x) Ψ̃k,121(~x)
Ψ̃k,211(~x) Ψ̃k,221(~x)

)
and G̃2

U =
(

Ψ̃k,112(~x) Ψ̃k,122(~x)
Ψ̃k,212(~x) Ψ̃k,222(~x)

)
.

As before for the Jacobian matrix AN+1 on the source plane, also DN+1,1 and DN+1,2 are

not symmetric anymore, so now they read

DN+1,1 =
( −2γ1,1− γ2,2 −γ2,1 +ω1

−γ2,1−ω1 −γ2,2

)
, DN+1,2 =

( −γ2,1 −γ2,2 +ω2
−γ2,2−ω2 2γ1,2− γ2,1

)
.

(4.64)

where the two terms ω1 and ω2 show the asymmetry of the previous matrices.

4.6 Lensing of the CMB

All the previous machinery can be applied to study the gravitational lensing of the CMB

for which the source is set to zs ≈ 1100.

According to the lens equation, temperature fluctuations at position ~β are shifted to the

new position~θ =~β+~α, so as a consequence the CMB power spectrum and the correlation

function will be affected by gravitational lensing.

Indicating with τ(~θ)≡ T (~θ)/〈T 〉 the relative temperature fluctuations of the CMB, where

〈T 〉= 2.726 K, the temperature autocorrelation function without lensing is 〈τ(~θ)τ(~θ+~φ)〉
and with lensing it becomes 〈τ(~θ−~α)τ(~θ′ −~α′)〉, where ~α = ~α(~θ), ~α′ = ~α(~θ′) and

~θ′ =~θ+~φ.

Carrying out the calculations for the lensed autocorrelation function in sufficient approx-

imation leads to

ξT (φ) =
Z ∞

0

ldl
2π

PT (l)exp(σ2(φ)l2/2)J0(lφ), (4.65)

where J0(x) is the Bessel function of order zero, σ2(φ) ≡ 1
2〈(~α−~α′)〉 and PT (l) the

unlensed power spectrum. Equation 4.65 shows that the effect of lensing is to smooth

fluctuations on scales smaller than σ(φ).
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Figure 4.6: CMB angular power spectrum l(l +1)/(2π)Cl as a function of the multipole l. The red
line shows the intrinsic power spectrum, the green line shows the lensed power spectrum. They
refer to a ΛCDM model. The graph is produced with the code CMBEASY, see Doran (2005).

The lensed power spectrum will be the Fourier transform of the lensed autocorrelation

function, so also in this case the effect of the lensing will be that of smoothing.

In more detail, carrying out the Fourier transform of equation 4.65, the lensed CMB power

spectrum P′T (l) reads as

P′T (l) =
Z

d2φ
Z d2l′

2π2 PT (l′)exp
(
−σ2(φ)l′2

2

)
exp [i~φ(~l−~l′)] (4.66)

In figure 4.6 we show the intrinsic and the lensed CMB angular power spectra for a ΛCDM

model.
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Chapter 5

Testing the reliability of weak lensing
cluster detections

In the previous chapters we described the evolution of structures and how they give rise to

weak gravitational lensing and therefore it is possible to detect them through their lensing

signal.

Several methods have been proposed, but how reliably can dark-matter halos be detected

by means of weak lensing, and what selection function in terms of mass and redshift can

be expected?

This questions are important to be addressed as ongoing and expecially future wide field

optical surveys start providing such observational data.

The subject of detecting dark matter halos covers several scientific questions, in partic-

ular as to how the non-linear growth of sufficiently massive structures proceeds through-

out cosmic history, whether galaxy-cluster detection based on gas physics agrees with

or differs from lensing-based detection, whether dark-matter concentrations exist which

emit substantially less light than usual or none at all, what cosmological information can

be obtained by counting dark-matter halos, and so forth.

Due to increasing performance of lensing surveys which cover substantial fractions of

the sky, such as the CFHTLS survey, the upcoming Pan-STARRS surveys, or the planned

surveys with the DUNE or SNAP satellites, automatic searches for dark-matter halos will

routinely be carried out, see for example Erben et al. (2000) and Erben et al. (2000). It is
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important to study what they are expected to find.

Several different methods for identifying dark-matter halos in weak-lensing data have

been proposed in recent years. They can all be considered as variants of linear filtering

techniques with different kernel functions. Particular examples are the aperture mass with

the radial filter functions proposed by Schneider et al. (1998) and modified by Schirmer

et al. (2004) and Hennawi & Spergel (2005), and the filter optimised for separating the

weak-lensing signal of dark-matter halos from that of the large-scale structures (LSS) they

are embedded in (Maturi et al., 2005).

The non-negligible contamination by the large-scale structure was already noted by

Reblinsky & Bartelmann (1999) and White et al. (2002), and Hoekstra (2001) quantified

its impact on weak-lensing mass determinations. Hennawi & Spergel (2005) showed

that the redshift of background galaxies can be used to improve the number of reliable

detections. An approach alternative to matched filters is based on the peak statistics of

convergence maps (Jain & Van Waerbeke, 2000), e.g.õbtained with the Kaiser-Squires

inversion technique (Kaiser & Squires, 1993; Kaiser et al., 1995) or variants thereof.

We evaluate three halo-detection filters in terms of their performance on simulated

large-scale structure data in which the dark-matter halos are of course known. One of the

filters is specifically designed to optimally suppress the LSS contamination (Maturi et al.,

2005). This allows us to quantify the completeness of the resulting halo catalogues, the

fraction of spurious detections they contain, and the halo selection function they achieve.

In particular, we compare the performance of the three filters mentioned in order to test

and compare their reliability under a variety of conditions.

We describe the numerical simulation in Section 5.1; the weak-lensing filters are dis-

cussed in Section 5.2 and in Section 5.3 we present the result of the statistical analysis.

Section 5.4 is dedicated to the comparison of suitably adapted simulation results to the

GaBoDS data and we summarise in Section 5.5.
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5.1 The numerical simulation

The time evolution of large-scale structures and galaxy clusters is impossible to solve

analitycally, so numerical techniques must be used. To do so, N-body simulation codes

are intensively used. More details on N-body codes are given in the appendix A.

5.1.1 The cosmological box

The cosmological simulation used in this study is the result of a hydrodynamical, N-body

simulation, carried out with the code GADGET-2 (Springel, 2005, for the details of the

implementation of the code). It has been described and used in several previous studies

(Murante et al., 2004; Roncarelli et al., 2006). We only briefly summarise here some of

its characteristics. A more detailed discussion can be found in the paper by Borgani et al.

(2004).

The simulation represents a concordance ΛCDM model, with matter density parame-

ter Ωm = 0.3 and a contribution from the cosmological constant ΩΛ = 0.7. The Hubble

parameter is h = H0/100 = 0.7 and a baryon density parameter Ωbar = 0.04 is assumed.

The normalisation of the power spectrum of the initial density fluctuations, given in terms

of the rms density fluctuations in spheres of 8h−1Mpc, is σ8 = 0.8, in agreement with

the most recent constraints from weak lensing and from the observations of the Cosmic

Microwave Background (e.g. Hoekstra et al., 2006; Spergel et al., 2007).

The simulated box is a cube with a side length of 192h−1Mpc. It contains 4803 par-

ticles of dark matter and an equivalent number of gas particles. The Plummer-equivalent

gravitational softening is set to εPl = 7.5kpc/h comoving between redshifts two and zero,

and chosen fixed in physical units at higher redshift.

The evolution of the gas component is studied including radiative cooling, star forma-

tion and supernova feedback, assuming zero metalicity. The treatment of radiative cooling

assumes an optically thin gas composed of 76% hydrogen and 24% of helium by mass,

plus a time-dependent, photoionising uniform UV background given by quasars reion-

ising the Universe at z ≈ 6. Star formation is implemented using the hybrid multiphase
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model for the interstellar medium introduced by Springel & Hernquist (2003b), according

to which the ISM is parameterised as a two-phase fluid consisting of cold clouds and hot

medium.

The mass resolution is 6.6× 109M¯/h for the cold dark matter particles, and 8.9×
108M¯/h for the gas particles. This allows resolving halos of mass 1013 h−1M¯ with

several thousands of particles.

Several snapshots are obtained from the simulation at scale factors which are logarith-

mically equidistant between aini = 0.1 and a f in = 1. Such snapshots are used to construct

light-cones for the following ray-tracing analysis.

5.1.2 Construction of the light-cones

Aiming at studying light propagation through an inhomogeneous universe, we construct

light-cones by stacking snapshots of our cosmological simulation at different redshifts.

Each snapshot consists of a cubic volume containing one realization of the matter distri-

bution in the ΛCDM model at a given redshift. However, since they are all obtained from

the same initial conditions, these volumes contain the same cosmic structures in different

stages of their evolution. Such structures are approximately at the same positions in each

box. Hence, if we want to stack snapshots in order to build a light-cone encompassing the

matter distribution of the universe between an initial and a final redshift, we cannot simply

create a sequence of consecutive snapshots. Instead, they must be randomly rotated and

shifted in order to avoid repetitions of the same cosmic structures along one line-of-sight.

This is achieved by applying transformations to the coordinates of the particles in each

cube. When doing so, we consider periodic boundary conditions such that a particle

exiting the cube on one side re-enters on the opposite side.

One additional problem in stacking the cubes is caused by the fact that, as they were

written at logarithmically spaced scale factors, consecutive snapshots overlap with each

other by up to two-thirds of their comoving side-length (at the lowest redshift). Thus, we

have to make sure to count the matter in the overlapping regions only once. For doing

so, we chose to remove particles from the later snapshot. The choice of the particles to
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Figure 5.1: Sketch illustrating the construction of the light cones. A sequence of N lens planes
(vertical lines) is used to fill the space between the observer (O) and the sources on the (N + 1)-
th plane. The aperture of the light cone depends on the distance to the last lens plane. At low
redshifts, only a small fraction of the lens planes enters the light-cone (dark-gray shaded region).
This fraction increases by reducing the redshift of the sources, increasing the aperture of the light
cone (light-gray shaded region).

remove from the light cone is not critical, since snapshots are relatively close in cosmic

time. Several tests have confirmed this expectation. Hence, the light-cone to a given

source redshift zs is constructed by filling the space between the observer and the sources

with a sequence of randomly rotated and shifted volumes. If the size of the volumes is

small enough, we can approximate the three-dimensional mass distribution in each vol-

ume by a two-dimensional mass distribution as explained in chapter 4. This is done by

projecting the particle positions on the mid-plane through each volume perpendicular to

the line-of-sight. Such planes will be used as lens planes in the following ray-tracing

simulations. The opening angle of the light-cone is defined by the angle subtending the

physical side-length of the last plane before the source plane. For sources at zs = 1 and

zs = 2, this corresponds to opening angles of 4.9 and 3.1 degrees, respectively. In prin-

ciple, tiling snapshots at constant cosmic time allows the creation light-cones of arbitrary

opening angles. However, this is not necessary for the purposes of the present study.
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If the size of the light-cone is given by the last lens plane, increasingly smaller frac-

tions of the remaining lens planes will enter the light cone as it approaches z = 0 (a = 1,

see Fig.5.1).

5.1.3 Halo catalogues

Each simulation box contains a large number of dark-matter halos. For our analysis, it is

fundamental to know the location of the halos as well as some of their properties, such as

their masses and virial radii. Thus, we construct a catalogue of halos for each snapshot.

The procedure is as follows. We first run a friends-of-friends algorithm to identify the

particles belonging to a same group. The chosen linking length is 0.15 times the mean

particle separation. Then, within each group of linked particles, we identify the particle

with the smallest value of the gravitational potential. This is taken to be the centre of the

halo. Finally, we calculate the matter overdensity in spheres around the halo centre and

measure the radius that enclosing an average density equal to the virial density for the

adopted cosmological model, ρvir = ∆c(z)ρcrit(z), where ρcrit(z) is the critical density of

the universe at redshift z, and the overdensity ∆c(z) is calculated as described in Eke et al.

(2001).

We end up with a catalogue containing the positions, the virial masses and radii, and

the redshifts of all halos in each snapshot. The positions are given in comoving units in

the coordinate system of the numerical simulation. They are rotated and shifted in the

same way as the particles during the construction of the light-cone. The positions of the

halos in the cone are finally projected on the corresponding lens plane.

In Fig.5.2, we show the mass functions of the dark-matter halos normalised to one

square degree and contained in the light-cones corresponding to zs = 1 (solid line) and

zs = 2 (dashed line). Obviously the light-cones contain a large number of low-mass halos

(∼ 1011−1013 h−1M¯) which are expected to be undetectable through weak lensing. On

the other hand, a much lower number of halos with mass M & 1013 h−1M¯ are potential

lenses. We note that the numbers of haloes with masses larger than 5× 1013M¯ are

approximately equal in both light cones, because such haloes are mainly contained in the
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Figure 5.2: Number of halos per mass bin per square degree. The red and green curves show the
halo mass distribution for sources at zs = 1 and zs = 2, respectively.

low-redshift portion of the volume which is common to both light cones.

We ignore the intracluster gas here because it contributes about one order of magnitude

less mass than the dark matter and therefore does not significantly affect the weak-lensing

quantities.

5.1.4 Ray-tracing simulations

The multiple-plane lensing simulations are carried out using standard ray-tracing tech-

niques. Starting from the observer, we trace a bundle of 2048× 2048 light rays through

a regular grid covering the first lens plane. Then, we follow the light paths towards the

sources, taking the deflections on each lens plane into account.

In order to calculate the deflection angles, on each lens plane, the particle positions are

interpolated on regular grids of 2048×2048 cells using the triangular-shaped-cloud (TSC)

scheme, this allows to avoid sudden discontinuities in the lensing mass distributions, that

would lead to anomalous deflections of the light rays (Meneghetti et al., 2000; Hamana

& Mellier, 2001).The resulting projected mass maps, Mi
lm, where l,m = 1, ...,2048 and
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i = 1, ...,N, are then converted into maps of the projected density contrast,

δpro j,i
lm =

Mi
lm

Aiρ̄
−Li , (5.1)

where Ai and Li are the area of the grid cells on the i-th plane and the depth of the i-th

volume used to build the light cone, respectively.

The lensing potential at each grid point, ψi
lm, is then calculated using the following

equation

∇2
~xψi(~θ) =

8πGρ̄
3c2 δpro j

i (~θ) = 3Ω
(

H0

c

)2

δpro j
i (~θ) , (5.2)

such that the deflection angle is

~̂αi = ~∇~xψi . (5.3)

Owing to the periodic boundary conditions of the density-contrast maps, this is easily

solvable using fast-Fourier techniques. Indeed, equation 5.2 becomes linear in Fourier

space,

ψ̂(~k) =−3Ω
(

H0

c

)2 δ̂pro j(~k)
k2 , (5.4)

where ~k is the wave vector and ψ̂ and δ̂pro j are the Fourier transforms of the lensing

potential and of the projected density contrast, respectively. Using finite-differencing

schemes, we finally obtain maps of the deflection angles on each plane, αi
lm (Premadi

et al., 1998).

The arrival position of each light ray on the source plane is computed using equa-

tion 4.59 which incorporates the deflections on all preceding N lens planes. However, the

ray path intercepts the lens plane at arbitrary points, while the deflection angles are known

on regular grids. Thus, the deflection angles at the ray position are calculated by bi-linear

interpolation of the deflection angle maps. Again using finite differencing schemes, we

employ equations 4.61 and 4.62 to obtain maps of the effective convergence and shear.
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5.1.5 Testing our ray-tracing code

We test the reliability of the ray-tracing code by comparing the statistical properties of

several ray-tracing simulations with the theoretical expectations for a ΛCDM cosmology.

In these tests, we assume that all source redshifts are zs = 1.5. For this source redshift,

the light cone spans a solid angle of roughly 3.62 ' 13 square degrees on the sky. We

perform ray-tracing through 60 different light-cones in total.

In Fig. 5.3, we show in the upper panel the power spectra of the effective convergence

and the shear and in the lower panel the power spectrum of the deflection angle, obtained

by averaging over all different realizations of the light-cone. These are given by the solid

and by the dotted lines, respectively. The theoretically expected power spectrum is shown

as the dashed green line. As expected, the convergence and the shear power spectra are

equal. We note that the numerical power spectra agree with the corresponding theoretical

expectation over a limited range of wave numbers. Indeed, the effective convergence

and shear power spectra deviate from the theoretical power spectrum for k . 200 and for

k & 20000, while the deflection angle power spectrum starts to deviate already at k≈ 2000.

These values of the wave vector define the reliability range of these simulations and are

determined by numerical issues. On angular scales & 1◦, we miss power because of the

small size of the simulation box, while on angular scales smaller than . 1′ we suffer from

resolution problems due to the finite resolution of the ray and the mass grids.

The different behaviour of the power spectra of the effective convergence and of the

deflection angle are explained through numerical issues due to the different weighting

functions. From equations 4.59 and 4.61 we notice that the weighting functions for the

deflection angle and for the effective convergence are

W~α =
fK(ws−wl)

fK(ws)
(5.5)

Wκ =
fK(wl) fK(ws−wl)

fK(ws)
, (5.6)

where ws and wl represent the comoving distance of the source and of the lense.
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Figure 5.3: Numerical power spectra of the effective convergence (solid line) and of the shear
(dotted line) (upper panel) and of the deflection angle (bottom panel) obtained by averaging over
60 different light cones corresponding to a solid angle of∼ 13 square degrees. The power spectrum
expected for a ΛCDM model with the same cosmological parameters as the simulation is given by
the dashed line. The errorbars are shown only for the effective convergence power spectrum, but
are of equivalent size for the shear power spectrum.

As it appears clear in figure 5.4, for the deflection angle the major contribution comes

from the lensing planes at low redshifts where the resolution is quite poor, while for

the effective convergence the weighting function is represented by the effective lensing
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Figure 5.4: Weighting functions for the deflection angle (black solide curve) and for the effective
convergence (blue dottoed line) for sources at redshift zs = 1.5. Both curves are normalized to
unity. The maximum of Wα is for small values, while Wκ reaches the maximum at intermediate
redshifts between the observer and the source.

distance, so most of the contribution comes from the planes at intermediate where the

resolution effects are not so important as for the case of the deflection angle.

5.1.6 Lensing of distant galaxies

Using the effective convergence and shear maps obtained from the ray-tracing simula-

tions, we are now able to apply the lensing distortion to the images of a population of

background sources. As already said in section 4.5.1, the distorsion to the galaxies shape

can be inferred from the reduced shear g.

In order to generate a mock catalogue of lensed sources, galaxies are randomly placed

and oriented on the source plane. Their intrinsic ellipticities are drawn from the dis-

tribution shown in equation 4.29. We assume a background galaxy number density of

ng = 30 arcmin−2. Observed ellipticities are obtained from equation 4.28 by interpolating

the effective convergence and shear at the galaxy positions. This procedure results in

catalogues of lensed galaxies for each source redshift chosen, where galaxy positions and

ellipticities are stored.
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5.2 Weak lensing estimators

We investigate the performances of three weak-lensing estimators which have been used

so far for detecting dark-matter halos through weak lensing. These are the classical aper-

ture mass (Schneider, 1996; Schneider et al., 1998), an optimised version of it (Schirmer

et al., 2004), and the recently developed, optimal weak-lensing halo filter (Maturi et al.,

2005). More details on these three estimators are given below.

All of them measure the amplitude of the lensing signal A within circular apertures of

size θ̄ around a centre~θ. Generalisations are possible to apertures of different shapes. In

general, A is expressed by a weighted integral of the tangential component of the shear

relative to the point~θ, γt . The weight is provided by a filter function Ψ, such that

A(~θ, θ̄) =
Z

d2θ′γt(~θ′,~θ)Ψ(|~θ′−~θ|) , (5.7)

and the integral extends over the chosen aperture. The variance of the weak-lensing esti-

mator is given by

σ2 =
1

(2π)2

Z
|Ψ̂(~k)|2PN(k) d2k, (5.8)

where Ψ̂(~k) is the Fourier transform of the filter, and PN(k) the power spectrum of the

noise.

5.2.1 Aperture Mass

The aperture mass was originally proposed by (Schneider, 1996) for measuring the pro-

jected mass of dark-matter concentrations via weak lensing. It represents a weighted

integral of the convergence,

MAPT (~θ) =
Z

d2~θ′κ(~θ′)U(|~θ′−~θ|) . (5.9)

The weight function U(θ) is symmetric if the aperture is chosen to be circular, and it is

compensated, i.e. Z θ

0
dθ′θ′U(θ′) = 0 . (5.10)
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Since the convergence is not an observable, the aperture mass is more conveniently

written as a weighted integral of the tangential shear,

MAPT (θ) =
Z

d2~(θ′)γt(~θ′,~θ)ΨAPT (|~θ′−~θ|) , (5.11)

where the function ΨAPT is related to the filter function U by the equation

Ψ(θ) =
2
θ2

Z θ

0
dθ′θ′U(θ′)−U(θ) . (5.12)

The variance σ2
MAPT

of MAPT is defined as

σ2
MAPT

=
πσ2

εs

ng

Z θ

0
dθ′θ′Ψ2

APT (|~θ′−~θ|) , (5.13)

which takes into account the shot noise due to the finite number and the intrinsic elliptic-

ities of the sources (Bartelmann & Schneider, 2001).

The shape of the filter function Ψ is usually chosen to have a compact support and to

suppress the halo centre because the lensing measurements are more problematic there.

Indeed, the weak-lensing approximation may break down and the cluster galaxies may

prevent the ellipticity of background galaxies to be accurately measured.

Schneider et al. (1998) propose the polynomial function

ΨAPT =
(1+ l)(2+ l)

πθ2
max

x2(1− x2)lH(1− x) , (5.14)

where H(x) is the Heaviside step function, and x = θ/θmax is the radial angular coordinate

in units of the radius, θmax, where ΨAPT vanishes. l is a free parameter which is usually

set to l = 1. Note that this filter function was designed especially for measuring cosmic

shear. However, several authors have used it for searches for dark matter halos (Erben

et al., 2000; Schirmer et al., 2004).

More recently, other filter functions Ψ have been proposed which maximise the signal-

to-noise ratio MAPT /σMAPT . Schneider et al. (1998) show that this is the case if Q mimics

the shear profile of the lens. For example, Schirmer et al. (2004) propose a fitting formula

that approximates the shear profile of a Navarro-Frenk-White (NFW) halo (Navarro et al.,
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1997). Their filter function is

ΨOAPT (x) =
1

1+ e6−150x + e−47+50x
tanhx/xc

x/xc
, (5.15)

where xc is a parameter controlling the shape of the filter (see also Padmanabhan et al.,

2003; Hetterscheidt et al., 2005). From now on, we will refer to this implementation of

the aperture mass as to the “optimised aperture mass”.

Hennawi & Spergel (2005) included the photometric redshifts of background sources,

increasing the halo-detection sensitivity at higher redshifts and for smaller masses. Aim-

ing at a comparison of different filters, we neglect this additional information here. We

can therefore not apply their tomographic approach, which is based on an NFW fitting

formula. They also suggested using a Gaussian profile which found application in actual

weak-lensing surveys (see e.g. Miyazaki et al., 2002), but here we focus on the filter pro-

posed by Maturi et al. (2005) whose shape is statistically and physically well motivated.

5.2.2 Optimal Filter

Maturi et al. (2005) have recently proposed a weak-lensing filter optimised for an unbi-

ased detection of the tangential shear pattern of dark-matter halos. Unlike the optimised

aperture mass, the shape of optimal filter is determined not only by the shear profile of

the lens, but also by the properties of the noise affecting the weak lensing measurements.

The measured data D is composed of the signal from the lens S and by the noise N,

and can be written as

D(~θ) = S(~θ)+N(~θ) = Aτ(~θ)+N(~θ) , (5.16)

where A is the total amplitude of the tangential shear and τ(~θ) is its angular shape. The

noise N comprises several contributions that can be suitably modeled.

The optimal filter accounts for the noise contributions because it is constructed such as

to satisfy two conditions. First, it has to be unbiased, i.e. the average error on the estimate

of the lensing amplitude,

Aest(~θ) =
Z

d2θ′D(~θ′)Ψ(|~θ′−~θ|) (5.17)
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has to vanish:

b≡ 〈Aest −A〉= A
[Z

Ψ(~θ)τ(~θ)d2θ−1
]

= 0 . (5.18)

Second, the noise

σ2 ≡ 〈(Aest −A)2〉= b2 +
1

(2π)2

Z
|Ψ̂(~k)|2PN(k)d2k (5.19)

has to be minimal with respect to the signal.

The filter function Ψ satisfying these two conditions is found by combining them with

a Lagrangian multiplier λ. The variation L = σ2 +λb is carried out, and the filter function

Ψ is found by minimising L. In Fourier space, the solution of this variational minimisation

is

Ψ̂OPT (~k) =
1

(2π)2

[Z |τ̂(~k)|2
PN(k)

d2k

]−1
τ̂(~k)

PN(k)
, (5.20)

where the hats denote the Fourier transform. The last equation shows that the shape of the

optimal filter Ψ is determined by the shape of the signal, τ, and by the power spectrum of

the noise, PN .

Maturi et al. (2005) model the signal by assuming that clusters are on average axially

symmetric and their shear profile resembles that of an NFW halo (see e.g. Bartelmann,

1996; Wright & Brainerd, 2000; Li & Ostriker, 2002; Meneghetti et al., 2003). Conse-

quently, this filter is optimised for searching for the same halo shape as the optimised

aperture mass, even if the filter profile is different.

The noise is assumed to be given by three contributions, namely the noise contribu-

tions from the finite number of background sources, the noise from their intrinsic elliptic-

ities and orientations, and the weak-lensing signal due to the large-scale structure of the

universe.

The first two sources of noise are characterised by the power spectrum

Pε(k) =
1
2

σ2
εs

ng
, (5.21)

which depends on the dispersion of the intrinsic ellipticities of the sources, σεs , and on

the number density of background galaxies, ng.
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The statistical properties of the noise due to the lensing signal from the large-scale

structure of the universe are described by the power-spectrum of the effective tangential

shear. This is related to the power-spectrum of the effective convergence by

Pγ(k) =
1
2

Pκ(k) . (5.22)

Thus, the total noise power spectrum is

PN(k) = Pγ(k)+Pε(k) , (5.23)

where Pγ is determined by the linear theory of structure growth. Using the linear instead

of the non-linear power spectrum avoids suppressing a substantial fraction of the signal

from the non-linear structures we are searching for. To further reduce any loss of signal in

the filtering process, it would be possible to cut Pγ off at angular scales typical for galaxy

clusters. Doing so, we found that this approach has a negligible impact on the final result.

In Fig. 5.5, we compare the filters studied here and in the literature. They are scaled in

such a way as they are typically discussed or applied in the literature (see also the figure

legend and caption for more detail). At first sight, the scales are surprisingly different.

When the optimal filter is constructed including the linear matter power spectrum such

as to best suppress the LSS contribution, it shrinks considerably. It is reassuring that

the truncated NFW-shaped filter (THS) proposed and heuristically scaled by Hennawi &

Spergel (2005) to yield best results almost exactly reproduces the optimal filter. They are

therefore expected to perform similarly well. The optimised aperture-mass filter (OAPT)

also peaks at fairly small angular scales, but shows the long tail typical for the NFW

profile. The aperture mass has its maximum at comparatively large radii, explaining why

the APT filter yields results most severely affected by the LSS.

For completeness we report the truncated NFW-shaped filter proposed by Hennawi &

Spergel (2005):

ΨT HS =
(

2ln(1+ x)
x2 − 2

x(1+ x)
− 1

(1+ x)2

)
exp

(
θ2

2θ2
out

)
, (5.24)

where x = θ/θs.
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Figure 5.5: Comparison of the different filter shapes used here and in the literature. The filter scales
rs are those typically used in the literature. Note how the optimal filter (black solid curve) shrinks
when the linear matter power spectrum is used to suppress the LSS contribution (red dashed curve).
Interestingly, Hennawi & Spergel (2005) found experimentally that the truncated NFW-shaped
filter (cyan curve) performs best when scaled to the green curve (THS), which approximates the
optimal filter (OPT, red curve) almost precisely. The advantage of the optimal compared to the
other filters is that its shape and scale are physically and statistically well motivated such that it
needs not be experimentally rescaled.

5.3 Statistics of halo detections

5.3.1 Signal-to-noise maps

We now use the above-mentioned weak-lensing estimators to analyse our mock catalogues

of lensed galaxies.

In practice, the integral in equation 5.7 is replaced by a sum over galaxy images.

Moreover, since the ellipticity ε is an estimator for γ, we can write

Aest(~θ) =
1
ng

∑
i

εti(~θi)Ψ(|~θi−~θ|) , (5.25)
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where εti(~θi) is the tangential component of the observed ellipticity of the galaxy at ~θi,

with respect to the point~θ. Similarly, the noise estimate in Aest is given by

σ2(Aest)(~θ) =
1

2n2
g
∑

i
|εi(~θi)|2Ψ2(|~θi−~θ|). (5.26)

Computing Aest and σ2(Aest) on a grid covering our simulated sky, we produce maps

of the signal-to-noise ratio for all the weak lensing estimators. We use three different

filter sizes for each estimator in order to test the stability of the results achieved. These

have been calibrated among the different filters to allow the optimal detection of similar

objects. For the optimal filter, we used sizes of 1′, 2′ and 4′. These correspond to 2.75′,

5.5′ and 11′ for the aperture mass, for the optimised aperture mass we used the values 5′,

10′ and 20′ that are widely used in literature.

In Fig. 5.6 we show examples of the signal-to-noise iso-contours of the weak lensing

signal, superimposed on the corresponding effective convergence maps of the underlying

projected matter distribution for sources at redshift zs = 1 (left panels) and zs = 2 (right

panels). The iso-contours start at S/N = 4 with a step of 3. From top to bottom, the maps

refer to the results obtained using the aperture mass (APT), the optimised aperture mass

(OAPT) and the optimal filter (OPT) with sizes of 11′, 20′ and 4′, respectively. The circles

identify halos with mass M≥ 7×1014h−1M¯ present in the field-of-view. The side length

of each map is one degree.

The images show that, for sources at high redshift, all three estimators can successfully

detect the weak-lensing signal from clusters in the mass range considered. However,

spurious detections, corresponding to high signal-to-noise peaks not associated with any

halo, also appear. Their significance and spatial extent is larger in the case of the APT

and the OAPT filters. This confirms the results of Maturi et al. (2005).

For lower-redshift sources, the OPT detects five out of the seven halos present in the

field, while the APT and the OAPT detect substantially fewer halos. For the OPT, the

number of spurious detections is roughly the same or slightly smaller than for sources

at higher redshift, while it is strongly reduced for the APT and the OAPT. The natural

explanation of these results is that the detections with the APT and the OAPT are strongly
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Figure 5.6: Maps of the effective convergence for sources at redshift zs = 1 (left panels) and zs = 2
(right panels) for a region of simulated sky. Superimposed are the iso-contours of the signal-
to-noise ratio of the weak-lensing signal measured with three estimators, namely the APT (top
panels), the OAPT (middle panels) and the OPT (bottom panels). The iso-contours start from
S/N = 4 with a step of 3. The positions of the halos contained in the field-of-view having mass
M > 7×1013h−1M¯ are identified by circles. The filter sizes are 11′, 20′ and 4′ for the APT, the
OAPT and the OPT, respectively.
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contaminated by the noise from large-scale structure lensing, which becomes increasingly

important for sources at higher redshift. This noise is efficiently filtered out by the OPT.

5.3.2 True and spurious detections

In the following, we call a detection a group of pixels in the S/N maps above a threshold

S/N ratio. Its position in the sky is given by the most significant pixel, i.e. that with the

highest S/N ratio.

A true detection is obviously a detection that can be associated with some halo in the

simulation. A spurious detection is instead mimicked by noise, in particular by cosmic

structures aligned along the line-of-sight.

The association between weak-lensing detections and cluster halos is established by

comparing their projected positions on the sky. This causes a problem, because the simu-

lation boxes contain plenty of low-mass halos that are not individually detectable through

lensing but happen to be projected near the line-of-sight towards a detection. Thus, spu-

rious detections could easily be erroneously associated with these low-mass halos on the

basis of the projected position only.

As pointed out earlier, we describe the lensing effect of the matter contained in the

light cone with a stack of lens planes. Cluster halos are localised structures, i.e. their

signal originates from a single lens plane. Thus, any detection should disappear when

its plane is removed from the stack. Conversely, spurious detections are not caused by

localised structures and should remain even after removing an individual lens plane. This

is illustrated by the S/N maps shown in Fig. 5.7. The map in the left panel includes all

lens planes, while one plane was removed for the right panel. Both maps were obtained

with the OAPT estimator with a filter size of 20′ and a source redshift of zs = 1. Clearly,

the highest peak in the left panel, which is in fact produced by a massive halo, disappears

in the right panel, after removing the lens plane from the stack which contains the halo.

All other features in the left upper map remain unchanged.

This allows us to verify the reliability of detections associated with some halo in the

catalogue. For each positive match, we estimate the lensing signal before and after re-
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Figure 5.7: Map of the S/N ratio corresponding to a region of 3 square degrees. The map was
created using the OAPT estimator, with a filter scale of 20′ and assuming a source redshift of
zs = 1. The left panel shows the S/N ratio map including all lens planes, while the right panel
shows the same map obtained after removing the lens plane containing the cluster responsible for
the highest S/N peak in the left panel.

Figure 5.8: Maps of the S/N ratio corresponding to a region of 3 square degrees. The maps were
created with the APT estimator, with a filter scale of 11′ and assuming a source redshift of zs = 2.
The left panel shows a true detection, while the right panel shows a spurious detection.

moving the plane containing the candidate lensing halo from the lens-plane stack. If

this causes a significant decrease in the S/N ratio, we classify the detection as true, and

otherwise as spurious. We estimate through several checks of detections associated to the

halos that S/N fluctuations of order 25% of the initial value are possible due to different

properties of the noise. Thus, we set this limit as our threshold for discriminating between
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true and spurious detections.

This method also shows its power when pixels identifying a true detection are com-

pared with pixels associated to a spurious detection. This is shown in Fig. 5.8. The map

in the left panel represents a true detections, while the map on the right panel shows a

spurious detections. The maps refer to different regions of a S/N map created with the

APT estimator with a filter size of 11′ and a source redshift of zs = 2. As it is clearly seen,

it is impossible a priori to distinguish which of the two is spurious.

5.3.3 Statistical analysis of the detections

In Fig. 5.9, we show the number of detections per square degree in S/N ratio bins, ignor-

ing for now the distinction between true and spurious detections. Left and right panels

refer to simulations with sources at redshifts zs = 1 and zs = 2, respectively. From top

to bottom, we show the results for the APT, the OAPT and the OPT estimators. In each

panel, we use solid, dashed and dotted lines to display the histograms corresponding to

increasing filter sizes.

For low source redshifts and small filter sizes, the APT and the OPT estimators lead to

similar numbers of detections. Instead, for the OAPT, the number of detections is larger

by up to a factor of two for S/N & 4. Increasing the filter size, the number of detections

generally increases for all estimators, especially for large S/N ratios and in particular for

the OPT.

We notice, however, that for small S/N ratios, larger filters produce lower numbers of

detections for the APT and for the OAPT. This behaviour is more evident for sources at

higher redshifts. For example, we find that the number of detections with S/N = 4 drops

by a factor of 4 for the APT and by a factor of ∼ 7 for the OAPT, when increasing the

filter size from 2.5′ to 11′ and from 5′ to 20′, respectively. Increasing the filter size, the

weak-lensing signal is estimated by averaging over more background galaxies. Thus, high

S/N peaks are smoothed, and some detections may be suppressed. This affects mainly the

detections with the APT and the OAPT filters. On the other hand, the OPT filter shrinks

in response to the noise introduced by the large scale structure, largely reducing this effect
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Figure 5.9: Number of detections as a function of the S/N ratio obtained by using the APT (top
panels), the OAPT (middle panels) and the OPT weak lensing estimators. Results for sources at
redshift zs = 1 and zs = 2 are shown in the left and in the right panels, respectively. Different line
styles refer to three different filter sizes. For the OPT, these are 1′, 2′ and 4′. They correspond to
2.75′, 5.5′, and 11′ for the APT and to 5′, 10′ and 20′ for the OAPT.

compared to the APT and the OAPT.

The fractions of spurious detections are shown in Fig. 5.10. Clearly, the OPT estimator
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performs better than the APT and the OAPT. For sources at redshift zs = 1 and zs = 2,

the fraction of spurious detections with the OPT is less than 20% and 30% at S/N ∼ 4.

This fraction decreases below 10% for S/N & 5 and drops rapidly to zero for higher S/N

ratios. Results are very stable against changes in the filter size. Conversely, the APT and

the OAPT estimators yield similarly low fractions of false detections only for the smallest

apertures.

Depending on the filter shape, its size and on the source redshift, a S/N threshold

can be defined above which there are no spurious detections and thus all detections are

reliable. For the OPT estimator, this minimal signal-to-noise ratio is between 5 and 8.

It increases above 10 for the APT and the OAPT estimators if large filter sizes are used.

These results agree with the results of Maturi et al. (2005), using numerical simulations,

and of Maturi et al. (2007), regarding the analysis of the GaBoDS survey.

Here, we studied the contaminations by the LSS, the intrinsic ellipticity and the finite

number of background galaxies all together. To gain an idea which of those is the main

source for spurious detections, we used the APT with rs = 11′ to analyse a catalogue

of galaxies with intrinsic ellipticities set to zero. In this case, the S/N ratio is enhanced

by a factor of four uniformly across the whole field, but the morphology of the map is

not affected. The same should apply to the finite number of background sources. We

thus conclude that the main source of spurious detections is the LSS, as already noted by

Reblinsky & Bartelmann (1999) and White et al. (2002).

5.3.4 Sensitivity

We shall now quantify which halo masses the weak-lensing estimators are sensitive to.

Figure 5.11 shows the lowest mass detected in each redshift bin. This is defined as the

mean mass of the ten least massive halos detected in this bin. Again, results are displayed

for all weak-lensing estimators, for different filter sizes and for two source redshifts.

We note that the performance of the three filters is very similar for sources at redshift

zs = 1 (left panels). The OPT (bottom panels) is only slightly more efficient in detecting

low-mass halos than the APT (top panels) and the OAPT (middle panels). The minimal
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Figure 5.10: Fraction of spurious detections as a function of the S/N ratio obtained by using the
APT (top panels), the OAPT (middle panels) and the OPT weak-lensing estimators. Results for
sources at redshift zs = 1 and zs=2 are shown in the left and the right panels, respectively. Different
line styles refer to three filter sizes. For the OPT these are 1′, 2′ and 4′. They correspond to 2.75′,
5.5′, and 11′ for the APT and to 5′, 10′ and 20′ for the OAPT.
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Figure 5.11: Minimum detected halo mass as a function of redshift for the APT (top panels), the
OAPT (middle panels) and for the OPT (bottom panels) estimators. Results for sources at redshift
zs = 1 and zs = 2 are shown in the left and in the right panels, respectively. Different line styles
refer to three filter sizes. For the OPT, these are 1′, 2′ and 4′. They correspond to 2.75′, 5.5′, and
11′ for the APT and to 5′, 10′ and 20′ for the OAPT. Results for each redshift bin are averaged
between two planes.

mass detected depends on the lens redshift. All filters allow the detection of low-mass

halos more efficiently if these are at redshifts between 0.2 and 0.5, i.e. at intermediate
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distances between the observer and the sources. This obviously reflects the dependence of

the geometrical lensing strength on the angular-diameter distances between the observer

and the lens, the lens and the sources, and the observer and the sources. The lowest

detected masses fall within ∼ 1013h−1M¯ and ∼ 1014h−1M¯ for the OPT estimator.

For sources at higher redshift, the region of best filter performance shifts to higher lens

redshift, between 0.5 and 0.8. We note that due to the increasing importance of lensing

by large-scale structures, the differences between the estimators are more significant. The

OPT estimator allows the detection of halos with masses as low as . 1013h−1M¯, almost

independently of the filter size. Similar masses are detected with the OAPT only for the

smallest apertures. With the APT and the OAPT, the results are indeed much more sensi-

tive to the filter size than with the OPT. Increasing the filter size pushes the detectability

limit to larger masses. Again, as discussed in Sect. 5.3.3, this is due to the fact that the

signal from low-mass halos is smeared out by averaging over an increasing number of

galaxies entering the aperture. For example, the minimal mass detected with the OAPT

filter at z ∼ 0.8 changes by one order of magnitude by varying the filter scale from 5′ to

20′.

5.3.5 Completeness

We now discuss the completeness of a synthetic halo catalogue selected by weak lensing.

Figure 5.12 shows the fraction of halos contained in the light cone that are detected

with different weak lensing estimators as a function of their mass. Again, we find that the

OPT filter yields the most stable results with respect to changes in the filter size. This is

particularly evident for sources at redshift zs = 2 (right panels), while the differences are

smaller for zs = 1 (left panels). As discussed earlier, the APT and the OAPT become less

efficient in detecting low-mass halos when the filter size is increased.

For the OPT estimator, the completeness reaches 100% for masses M & 3 ×
1014h−1M¯ and M & 2× 1014h−1M¯ for sources at redshift zs = 1 and zs = 2, respec-

tively. For lower masses, the completeness drops quickly, reaching ∼ 50% already at

M ∼ 2× 1014h−1M¯ for low-redshift sources, and at M ∼ 7× 1013h−1M¯ for high-
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Figure 5.12: Fraction of detections as a function of the halo mass. Each plot contains results
obtained with the three filter radii used in this work. The panels on the left show curves for
sources at zs = 1, the panels on the right for sources at zs = 2. From top to bottom we have the
APT, the OAPT and the OPT.

redshift sources. Similar results are obtained with the APT and the OAPT only for small

apertures.

Figure 5.12 gives a global view of the halos detected, regardless of the their redshift.
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In Fig. 5.13, we selected three mass bins (M = 2.5× 1013M¯/h, M = 5× 1013M¯/h,

M = 1014M¯/h) and determined the fraction of halos detected as a function of the redshift.

To reduce the noise, we binned together two lens planes as in Fig. 5.11. Yet, the results

are still noisy, there is much variation for all the filters when the filter radius is changed,

and the performance of the filters is quite similar in this respect. We see from the figure

that the detected halos are preferentially located at low and moderate redshifts, due, as

already said, to the geometry of the lensing strength.

5.3.6 Comparison with the peak statistics

The peak statistic counts peaks in convergence maps, e.g. obtained with the Kaiser-

Squires inversion (see Kaiser & Squires, 1993; Kaiser, 1995), usually smoothed with a

Gaussian kernel. Even though they used a different set of numerical simulations, we can

safely compare our results with the peak-statistic analysis by Hamana et al. (2004), whose

Gaussian kernel has a FWHM of 1 arcmin.

Fixing a detection threshold of S/N > 4 (5), Hamana et al. (2004) found N ≈ 6 (2.5)

detections per square degree, 60% (76%) of which correspond to real haloes with masses

larger than 1013 h−1M¯. In our simulations, with the same S/N threshold and the optimal

filter by Maturi et al. (2005), we found N ≈ 10 (7), with an efficiency in detecting real

haloes of 85% (95%). For halos with masses M > 2×1014 h−1M¯ (M≈ 1×1014 h−1M¯),

the Hamana et al. (2004) sample is complete at the 70% (50%) level, which is virtually

identical to the completeness of 70% (50−60%) achieved with the optimal filter.

5.4 Comparison with observations

The results outlined above show interesting differences between the performances of the

filter functions. The discrepancies are particularly significant for high-redshift sources,

indicating that the noise due to the LSS should become important only for deep observa-

tions. We can now attempt a quick comparison of our simulations with the observational

results existing in the literature. In particular, we focus here on the searches for dark
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Figure 5.13: Fraction of halo detections with the APT, OAPT and OPT (from top to bottom) as
a function of the halo redshift for three particular masses. The red line corresponds to a mass of
M = 2.5×1013M¯/h, the green line to M = 5×1013M¯/h and the blue line to M = 1014M¯/h.
The panels on the left show the results for sources at zs = 1 and those on the right for sources at
zs = 2. From top to bottom, the filter radii are r = 5.5′ (for APT), r = 10′ (for OAPT) and r = 2′

(for OPT). Results for each redshift bin are averaged between two planes.
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matter concentrations in the GaBoDS survey (Schirmer et al., 2003; Maturi et al., 2007).

To this goal, we perform a new set of ray-tracing simulations, where a realistic red-

shift distribution of the sources is assumed. In particular, we draw the sources from the

probability distribution function

P(z) = N exp[−(z/z0)β] , (5.27)

where N is chosen such that Z ∞

0
P(z) dz = 1 . (5.28)

We adapt P(z) to the redshift distribution of the sources in the GaBoDS survey by setting

z0 = 0.4 and β = 1.5 (Schirmer et al., 2003). In order to mimic the number density of

galaxies in the GaBoDS observations, we assume ng = 10arcmin−1.

By repeating the same analysis outlined above, we find results that are compatible with

the results of Maturi et al. (2007). In particular, the number of detections with S/N = 3.5

per square degree in our GaBoDS simulations (in GaBoDS data) are ' 5 (' 4) for the

OPT with r = 2′, ' 3 (' 3) for the OAPT with r = 10′ and ' 1.5 (' 2) for the APT with

r = 5.5′ (r = 4′) respectively. A comparison between the detections with different weak

lensing estimators is shown in Fig. 5.14.

The fraction of spurious detections is large for all filters, but it is generally smaller

for the OAPT and the OPT. As expected, the OAPT and the OPT estimators have similar

performances, because of the small density of background galaxies. Indeed, the noise due

to the intrinsic shape of the sources is dominant with respect to that due to the LSS and

thus, according to Equation (5.20), the two filter functions have a very similar shape.

5.5 Summary and conclusion

We studied the performance of dark-matter halo detection with three different linear

filters for their weak-lensing signal, the aperture mass (APT), the optimised aperture

mass (OAPT), and a filter optimised for distinguishing halo signals from spurious signals

caused by the large-scale structure (OPT). In particular, we addressed the questions how
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Figure 5.14: Total number of detections per square degree (left panels) and fraction of spurious
detections (right panels) for sources distributed in redshift as in the GaBoDS survey (Schirmer
et al., 2003). From top to bottom, we show the APT (for r = 2.75′, r = 5.5′ and r = 11′), the
OAPT (r = 5′, r = 10′ and r = 20′) and the OPT (r = 1′, r = 2′ and r = 4′).

the halo selection function depends on mass and redshift, how the number of detected

halos and of spurious detections depends on parameters of the observation, and how the

filters compare.
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To this end, we used a large N-body simulation, identified the halos in it and used mul-

tiple lens-plane theory to determine the lensing properties along a fine grid of light rays

traced within a cone from the observer to the source redshift. Halos were then detected as

peaks in the filtered cosmic-shear maps. By comparison with the known halo catalogue,

spurious peaks could be distinguished from those caused by real halos. Our main results

are as follows:

• We confirm that among those tested, the optimised filter (OPT) proposed by Maturi

et al. (2005) performs best in the sense that its results are least sensitive to changes

in the angular filter scale, it produces the least number of spurious detections, and it

has the lowest mass limit for halo detection (cf. Figs. 5.10, 5.11 and 5.12).

• With the OPT filter, the fraction of spurious detections is typically . 10% for a

signal-to-noise threshold of S/N ≈ 5. It increases with source redshift due to the

larger contamination by large-scale structure lensing (cf. Fig. 5.10).

• The number of halos detected per square degree by the OPT filter with S/N & 5 is a

few if the sources are at redshift zs = 1, and ∼ 20 for zs = 2 (cf. Fig. 5.9).

• The minimum detectable halo mass starts at a few times 1013 h−1 M¯ at redshifts ∼
0.1, drops to ∼ 1013h−1 M¯ near the optimal lensing redshift and increases towards

∼ 1014h−1 M¯ approaching the source redshift (cf. Fig. 5.11).

• The fraction of halos detected reaches ∼ 50% at ∼ 2× 1014h−1 M¯ and 100% at

∼ 4.5×1014h−1 M¯ with sources at zs = 1. With more distant sources at zs = 2, half

of the halos with∼ 7×1013h−1 M¯ are found, and all halos above∼ 3×1014h−1 M¯

(cf. Fig. 5.12).

• Adapting parameters to the GaBoDS survey (Schirmer et al., 2003), and distributing

sources in redshift, our simulation yields a number of significant detections per

square degree which is in good agreement with what was found applying the OPT

filter to the real GaBoDS data (Maturi et al., 2007).
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Thus, the OPT filter, optimised for suppressing contaminations by large-scale struc-

tures, allows the reliable detection of dark-matter halos with masses exceeding a few times

1013 h−1 M¯ with a low contamination by spurious detections.
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Chapter 6

Statistical properties of SZ and X-ray
cluster detections

Galaxy clusters provide a unique tool for cosmology. They trace efficiently the struc-

ture of the Universe on large scales (Eisenstein et al., 2005; Hütsi, 2006) and their mass

function strongly depends on cosmological parameters (Weller & Battye, 2003; Sefusatti

et al., 2007; Fang & Haiman, 2007). They can be studied at different frequencies, ranging

from microwaves to X-rays and via weak and strong gravitational lensing (Clowe et al.,

2004; Hennawi & Spergel, 2005; Tang & Fan, 2005). In particular, in the last years a

strong effort has been devoted to study the SZ effect. SZ clusters can be observed up to

high redshifts as the SZ effect is essentially redshift-independent. The physics behind this

effect is well known. SZ observations can be carried out up to large distances from the

cluster centers and are less sensitive than observations in the X-ray to the physical pro-

cesses affecting the gas, like cooling, feedback, metal enrichment and so on (Carlstrom

et al., 2002).

In the literature many different methods have been proposed to detected clusters

through the SZ effect. Diego et al. (2002) used a method designed for Planck based

on SExtractor (Bertin & Arnouts, 1996) while López-Caniego et al. (2006) and Herranz

et al. (2002a,b) used a Scale Adaptive Filter. Methods based on wavelet filtering (Pier-

paoli et al., 2005) or Monte Carlo Markov chains (Hobson & McLachlan, 2003) were

also suggested. Schäfer et al. (2006) generalized scale adaptive and matched filters on the
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sphere to apply them to Planck data.

The statistical properties of SZ detections in simulated maps have been investigated

by several authors (López-Caniego et al., 2006; Melin et al., 2006; Vale & White, 2006;

Schäfer & Bartelmann, 2006). All these works were based on semi-analytical models

applied to cosmological N−body simulations to trace the distribution of matter. However

the gas physics was not included in past studies. This is known to affect several cluster

properties, such as density profiles and shape (Kazantzidis et al., 2004; Puchwein et al.,

2005).

X-ray surveys provide important information on the central regions of galaxy clusters

and on the intracluster medium (ICM). They are also a good instrument to study the

universe between z = 0 and z = 1, the period during which the expansion of the universe

began to accelerate. Physical and statistical properties of galaxy clusters in the X-ray

band are extensively studied employing hydrodynamical cosmological simulations where

many gas-related physical effects are included.

In this chapter, we study the statistical properties of the detections of clusters in sim-

ulated maps via single- and multi-band matched filters. The multi-band filter is applied

to SZ maps, while the single-band filter is applied to both SZ and X-ray maps. We study

the completeness, the contamination and the sensitivity to the minimum detected mass of

cluster catalogues. Then we cross correlate the cluster detections through both their X-ray

and SZ signal.

In section 6.1 we describe the analytical model used to describe the signal, in section

6.2 we explain the procedure for creating SZ and X-ray maps and for adding noise. The

single- and multi-band filter are described in section 6.3. In section 6.4 we analyze the

properties of the synthetic catalogues for the single- and multi-bands filters while results

on the correlation between SZ and X-ray detections are presented in section 6.5. Finally

we summarize our main results in section 6.6.
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6.1 A simple model for galaxy clusters: SZ and X-rays

To model the signal of galaxy clusters, we assume that the gas distribution follows a

truncated King profile

ρ(x) =
1

1+ x2

√
|(rt/rc)2− x2|

1+ x2 for x≤ rt , (6.1)

where rc is the core radius, rt is the truncation radius defined as ten times the virial radius

rv and x = r/rc. As described in Chapter 3, although based on the simple assumption that

dark matter and gas follow a static and isothermal distribution, this profile is justified by

simulations and X-ray observations.

The tSZ effect (equation 3.11) is proportional to the density ρ. It is normalized ac-

cording to the integrated Compton parameter (equation 3.13) where the electron number

is related to the cluster mass.

The X-ray luminosity is given by (Eke et al., 1998)

LX ≈ 1.2×10−24T 1/2n2
PV (erg/s), (6.2)

where T is the gas temperature in keV, nP the proton density in g/cm3 and V the volume

of the cluster in cm3. As shown in Eq. 6.2, it is proportional to the square of the elec-

tron density and thus to the square of Eq. 6.1. It is normalized such that the bolometric

luminosity follows the empirical relation by Kitayama & Suto (1997)

LX ,bol = 2.99×1044h−2
(

T
6 keV

)
erg/s , (6.3)

where T = Tvir(rs) is the X-ray temperature. The luminosity in a given band is finally

computed as

F [E1,E2]
band (T ) =

Z x2,0(1+z)

x1,0(1+z)
C e−x x−γ dx , (6.4)

where x = E/(kT ) (E = hν) and C is a normalization constant defined such that
R ∞

0 C e−x x−γdx = 1. The subscript 0 in the integration boundaries means that the band
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limits are taken in the observer rest-frame. The 1+z term is required for the K-correction.

The function Fband represents the fraction of the flux in a given energy (frequency) inter-

val.

6.2 The simulations

6.2.1 The cosmological simulation

To create a fairly realistic mock catalogue of SZ and X-ray halos, we use the outputs of a

hydrodynamical cosmological simulation carried out using the code GADGET-2 (Springel,

2005). The SZ effect and X-ray properties of objects identified in this simulation have

been studied in several works (e.g. Diaferio et al., 2005; Roncarelli et al., 2007; Ettori

et al., 2004; Murante et al., 2004; Rasia et al., 2005; Roncarelli et al., 2006). The main

characteristics of the simulation were described in Chapter 5. Here we briefly describe

the implemented gas physics that turns out to be relevant for this study.

In order to study gas particles evolution, the simulation takes into account not only

gravity, but also several physical processes that influence the physics of the intracluster

medium. The implemented physics consists of:

• an hybrid multiphase model for the star formation in the interstellar medium that

is parametrized as a two-phase fluid consisting of cold clouds and hot medium

(Springel & Hernquist, 2003a);

• radiative cooling within an optically thin gas consisting of 76% hydrogen and 24%

of helium by mass;

• supernova feedback to model galactic outflows;

• heating by a time-dependent, photoionising uniform UV background given by

quasars reionising the Universe at z≈ 6 (Haardt & Madau, 1996).

The adopted supernova feedback includes the generation of metals from Type-II Su-

pernova explosions. It is assumed that metals are instantaneously released during the
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formation of new stars. Thus the effect of stellar life-times is neglected (for more details

see Tornatore et al., 2004).

The output of the simulation consists of one hundred snapshots, logarithmically equi-

spaced in redshift between zini = 19 and z f in = 0. We use these snapshots to create our

simulated light-cones.

To create a catalogue of halos from all snapshots, we run a friend-of-friend algorithm

with a linking length of 0.15 times the mean particle separation. The complete description

of the procedure was already given in Chapter 5.

To build a realistic three-dimensional distribution of matter, we construct several light

cones stacking the snapshots of our cosmological simulation at different redshifts. Doing

this, we pay attention to two aspects that were largely discussed in Chapter 5. Here we

only summarize the most important points.

First of all we shift and rotate each snapshot to make it completely independent from

the others. Second, since contiguous snapshots partially overlap in redshift, we resize the

boxes such as to avoid to include the matter from more than one snapshot.

To create the maps, we proceed in two steps. We first project gas particles on a two di-

mensional grid and then we stack the resulting planes summing the contribution from each

individual plane to get the final map. The opening angle of the light-cone is determined

by the last plane of the stack. We consider light cones including matter up to redshift

z = 1 and z = 2, corresponding to opening angles of 4.9 and 3.1 degrees, respectively.

To project gas particles on a regular grid, we use a method that takes into account the

smoothing length of each particle and the SPH interpolating kernel used in the simulation.

The method will be described in detail in appendix B. As the number of pixels onto which

a particle is projected is not constant, the map has a smooth distribution and it is also

consistent with the SPH formulation used in the N-body code. This same algorithm was

applied by Puchwein et al. (2005) to study the impact of gas physics on strong lensing by

clusters and by da Silva et al. (2000) to create simulated SZ-maps.

We construct our light-cones as done in Chapter 5, e.g. projecting all the box on a
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regular grid and then selecting only the portion of plane embedded in the light cone. In

other words, our planes have all the same number of pixels with constant comoving size,

but the pixels contributing to the final map are only those entering the light cone. Thus

the closest planes contribute very little. Other authors (see e.g. da Silva et al., 2000;

Roncarelli et al., 2006), construct the light-cones keeping constant the angular resolution

of the pixels, so each plane contributes the same amount of pixels, but in this way, due to

the high number of pixels (2048× 2048) the map resolution would exceed the physical

resolution of the cosmological simulation.

As explained above, the SZ effect does ideally not depend on redshift, thus clusters can

be observed up to moderately high redshifts through this effect. The X-ray luminosity of

massive clusters (M ∼ 1015M¯/h) is of the order of 1044÷1045 erg/s, thus these emitters

can be observed up to intermediate redshifts.

To create a map for the SZ effect we convert the integrals along the line of sight of

Eq. 3.11 and 3.12 into a sum over gas particles. The contribution to the tSZ and kSZ

effects of the i-th particle is thus

yi =
1

L2
pix

kBσT

mec2 ne,iTi (6.5)

bi =
1

L2
pix

σT

c
ne,ivr,i , (6.6)

where Lpix is the physical length of the pixel at the distance of the particle from the

observer. We approximate the radial velocity vr,i with the velocity component along the

z-direction and relate the temperature of gas particles T (in Kelvin) to their internal energy

per unit of mass (U in km2/s2), by assuming that they form a monoatomic perfect gas

T = 106× 2
3kB

mpµU , (6.7)

where mp is the proton mass, yHe ≈ 0.08 represents the mass ratio between the helium
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and the hydrogen and the mean molecular weight is

µ =
1+4yHe

1+ yHe +ne
. (6.8)

The SZ contribution from each particle is given by Eq. 6.5 and 6.6. We project it using

the same SPH kernel of the simulation (Monaghan & Lattanzio, 1985):

W (x) =
40

7πh2





1−6x2 +6x3, 0≤ x≤ 0.5,
2(1− x)3, 0.5 < x≤ 1,
0, x > 1,

(6.9)

where x = r/l is the ratio between the distance (r) from the center of the particle and

particle smoothing length (l).

We create the light-cone maps for the X-ray emission in the following three bands:

soft (0.5÷2 keV), hard (2÷4 keV) and hardest (4÷10 keV). We model the contribution

from each particle to the X-ray emission in the soft and hard band with the MeKaL model

(Mewe et al., 1995), as implemented in XSPEC. For the hardest band we use the model

described in Borgani et al. (1999): since the influence from metal lines in the hardest band

is negligible, a simple power-law parametrization is a good approximation. The MeKaL

model parametrizes the emission spectrum from the hot diffuse gas and it is particularly

suited for the soft band where the influence of the metal line emission is important. Using

this model, the X-ray luminosity is

LX ,i = (mpµ)−2miρixeΛ(Ti,Zi,E ′1,E
′
2) , (6.10)

where xe = ne/nH is the ratio between the number density of free electrons and hydrogen

nuclei. The cooling function Λ depends on the particle temperature, on the metallicity

and on the energy band interval [E1,E2].

The model described in Borgani et al. (1999) parametrizes the band function given in

Eq. 6.4 for each particle so that the i-th particle X-ray luminosity in the hardest band is

Lhardest
X ,i ≈ 1.7×1042 miρi

√
Ti

µ2 erg/s , (6.11)
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where mi, ρi and Ti are the mass, the density and the temperature (in keV) of the i-th

particle and µ is the mean molecular weight given in Eq. 6.8.

For each gas particle, the X-ray flux is defined as

IX ,i =
LX ,i

4πdL(z)2 erg/s/cm2 , (6.12)

with dL(z) being the luminosity distance of the particle from the observer. As for the SZ

maps, we project the X-ray flux on a regular grid using the same SPH kernel.

We repeated this procedure for each snapshot of the simulation, and then we sum up

the contributions from all planes to obtain the final map. We create eleven different maps

including matter up to redshift z = 1 and z = 2 with a resolution of 2048× 2048 pixels.

Indicating with pi the value of a given quantity (SZ effects or X-ray flux) on each plane,

the integrated value along the line of sight is ∑N
i=1 pi, where N is the number of planes.

6.2.2 Simulating observations

We simulate observations with the Atacama Cosmology Telescope (ACT) for the SZ ef-

fect and with the space telescopes XMM-Newton and Chandra for the X-ray emission.

We assume two different integration times, 30 ks and 100 ks.

Noise inclusion for the SZ map

In Fig. 6.1 we show the function gν(x) describing the frequency dependence of the tSZ

effect. The crosses indicate the three frequencies at which ACT works. The ν = 225GHz

channel is close to the frequency where the function gν(x) vanishes, so the major source

of the signal will be due to the kSZ effect.

The noise in tSZ observations is given by three terms: the CMB radiation, the instru-

mental noise and the kSZ effect. The noise due to the CMB primary anisotropies and

to the instrument are modelled as two independent Gaussian random fields. We used the

CMB power spectrum as computed with the package CMBEASY (Doran, 2005) and the
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Figure 6.1: Frequency dependence of the tSZ effect. The three crosses show the frequencies at
which ACT works. The frequency at which the tSZ effect is null is given by the interception
between the horizontal line and the function gν(x).

instrumental noise power spectrum as given by

Cnoise
l = w−1 exp

[
l(l +1)FWHM2

8ln2

]
, (6.13)

where FWHM is the full width at half maximum of the instrument in arcmins, l is the

multipole order and w−1 ≡ (∆T/T FWHM)2. ∆T/T gives the sensitivity of the instru-

ment on the scale of the beam (Knox, 1995). Finally the maps are convolved with the

instrumental beam. Table 6.1 summarizes some parameters used to mimic observations

with ACT.

Band FWHM ∆T /beam
(GHz) (’) (µK)

145 1.7 2
225 1.1 3.3
265 0.93 4.7

Table 6.1: Parameters used to mimic observations with ACT. In the first column we show the
frequencies at which ACT works. In the second and in the third column we list the corresponding
FWHM and sensitivity.

In the left panel of Fig. 6.2 we show a simulated tSZ map. In the right panel we
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Figure 6.2: Maps of the SZ effect including cosmic structures up to redshift z = 1. On the left, we
show the simulated map of the tSZ effect. On the right we show the same field as observed with
ACT in the 145 GHz channel, including the kSZ effect, the CMB and the instrumental noise.

display the simulated observation with ACT in the ν = 145 GHz channel, including the

kSZ effect, the instrumental noise and the CMB primary fluctuations.

Noise inclusion for the X-ray maps

In order to transform our X-ray flux maps into X-ray count-rates, we first multiply the

flux maps by the energy conversion factor of the instrument. For each energy band,

the energy conversion factor is computed by assuming a spectral model, consisting of

a thermal bremsstrahlung with kBT = 4 keV . The spectral model is then convolved with

the response matrices of the EPIC-PN detector on board of the X-ray telescope XMM-

Newton and the ACIS-I array on board of Chandra. By assuming a certain exposure time

(30 and 100 ks), we transform our count-rate maps into count maps. The background of

a X-ray observation is given by the sum of the detector noise and the unresolved X-ray

background. We added this quantity to the photon count maps. Finally we convolved the

resulting maps with the point spread function (PSF) of the instrument (5 and 0.5 arcsec

120



Figure 6.3: Left panel: map of the X-ray flux in the soft band for the same structures shown in
Fig. 6.2. Right panel: simulated observation with XMM-Newton, assuming an exposure time of
30 ks.

for XMM-Newton and Chandra, respectively). In order to reproduce the noise of the

observations, we added Poissonian noise.

In table 6.2 we summarize the noise levels used in the simulated observations with

XMM-Newton and Chandra.

Instrument Band Noise
(counts/sec/deg2)

XMM-Newton Soft 24.624
Hard 11.

Hardest 19.64
Chandra Soft 2.96

Hard 2.47
Hardest 7.4

Table 6.2: XMM-Newton and Chandra noise levels.

A simulated X-ray map for the soft band is shown in the left panel of Fig. 6.3. The

simulated observation with XXM-Newton, including background, instrumental and Pois-
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sonian noise is shown in the right panel. An exposure time of 30 ks is assumed. The maps

assume the same underlying mass distribution as in Fig. 6.2.

6.3 Filtering method

In this section we describe the matched filter used to detect clusters in the simulated maps.

In the X-ray observations, the noise in a given band is not correlated with the noise in other

bands or with the noise in SZ observations, therefore the multi-band filter will be applied

only to the SZ observations.

6.3.1 Single-band filter

The single-band filter we use is analogous to the optimal filter described in section 5.2.2.

Here we only give the basics concepts.

As in Eq. 5.16 we suppose that the observed data D(~θ) is given by the signal from the

source S(~θ) = Aτ̂(~θ) and the noise N(~θ). The estimate of filtered signal is given by

Eq. 5.17. The optimal filter has to satisfy two conditions: it has to be unbiased (Eq. 5.18)

and the variance, defined in Eq. 5.19, has to be minimal with respect to the signal. The

filter is given as solution of a variational problem with the two previous described con-

straints (see Haehnelt & Tegmark, 1996):

Ψ̂(~k) =
1

(2π)2

[Z |τ̂(~k)|2
PN(k)

d2k

]−1
τ̂(~k)

PN(k)
, (6.14)

where the hats denote the Fourier transform. Eq. 6.14 shows that the shape of the filter Ψ

is determined by the shape of the signal, τ, and by the power spectrum of the noise, PN .

Eq. 6.14 is completely analogous to Eq. 5.20.

6.3.2 Filter dependence on the template

In Fig. 6.4 we show the profile of the filter used in the SZ observations at 145 GHz (upper

panels) and in the X-ray observations for the soft band (lower panels). In the left plot,

we assume a template with mass M = 1013 M¯/h and we show the filter dependence on
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Figure 6.4: In the left figure we show the profile of the matched filter for different redshifts assum-
ing a fixed mass of the template of M = 1013 M¯/h. The right figure shows the profile of the filter
for different masses M = 1013 M¯/h (red line) and M = 1014 M¯/h (green line) of the template,
assuming a fixed redshift of z = 0.5.

the cluster redshift. In the right panel, we fix the redshift of the template at z = 0.5 and

we show the profile of the filter for two different masses: M = 1013 M¯/h (red line) and

M = 1014 M¯/h (green line). The upper right panel shows that the profile of the SZ filter

is insensitive to the mass of the template, while the left panel shows that the amplitude of

the damped oscillations increases by increasing of the cluster redshift, although its shape

remains essentially the same. This implies that the filter shape, and thus its sensitivity, are

independent on the particular choice of the template.

This property depends on the shape of the power spectrum of the noise, which is

due to the instrument and to the CMB. Since their power spectra are both redshift- and

mass-independent, the minimum of the noise (and therefore the maximum of the filter)
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Figure 6.5: Noise power spectra. The red curve shows the CMB power spectrum, the green line
the white noise, the blue line the instrumental noise and the violet curve the inverse of the total
noise (opportunely scaled), given by the sum of the CMB noise and of the instrumental noise. The
filter is proportional to the inverse of the total power spectrum.

is always at the same wave number, as shown in Fig. 6.5. Consequently the filter selects

these frequencies for each cluster model assumed.

Differently from the SZ filter, the X-ray filter (lower panels in Fig. 6.4) is proportional

to the template because the noise is white. Thus, changing the template, the filter changes

more dramatically.

6.3.3 The multi-band matched optimal filter

In this section we briefly describe our multiband matched filter. This filter allows to

combine information from different bands. For a more complete derivation we refer to

Schäfer et al. (2006) and Melin et al. (2006) and references therein. Generalizing the

single-band case, the data obtained at a given frequency ν are written as

Dν(~θ) = Sν(~θ)+Nν(~θ) , (6.15)
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where Sν(~θ) and Nν(~θ) are the signal and the noise component at the band ν. The signal

is modelled as

Sν(~θ) = A fντν(~θ) , (6.16)

where A is the (band independent) amplitude, fν is the frequency dependence of the am-

plitude and τν(~θ) is the spatial profile normalized to unity. The index ν runs from one

to M, where M is the number of available bands. We assume that the background noise

has zero mean in each band and that its statistical properties are fully characterized by the

correlation function

Cν1ν2 = 〈n̂ν1(~k)n̂ν2(~k
′)∗〉= (2π)2δ(~k−~k′)Pl,ν1ν2(k) , (6.17)

where Pl,ν1ν2(k) is the cross-power spectrum.

To measure the signal amplitude A, we define a linear estimator for each band

Aest,ν(~θ) =
Z

d2θ′Dν(~θ′)Ψν(|~θ′−~θ|) , (6.18)

so that the final estimate is given by

Aest =
M

∑
ν=1

Aest,ν(~θ) . (6.19)

Here Ψ(~θ) =
[
Ψν(~θ)

]
is the optimal filter which is constructed such that the estimated

variance

σu = 〈(Aest−〈A〉)2〉 , (6.20)

is minimal and such that the estimated amplitude is unbiased, i.e. the average error on the

estimate amplitude must vanish

b≡ 〈Aest −A〉= 0 . (6.21)
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When deriving the filter we define vectors where each band corresponds to a vector

element. We thus define the filter vector Ψ̄ =
[
Ψν(~θ)

]
and the signal vector F̄ = [Fν]. We

further define the cross power spectrum matrix C = [Cν1ν2].

The filter which satisfies these conditions is the one which minimizes the Lagrangian

L = σ2 +αb

Ψ = αC−1F , (6.22)

where C−1 is the inverse of the matrix C and α is a Lagrangian multiplier given by

α−1 = FTC−1F . (6.23)

The estimate variance is given by

σ2 =
Z d2k

(2π)2 ΨTPΨ . (6.24)

Eq. 6.22 shows that the matched filter depends on the noise, taking advantage of its

correlation between all the bands. In the particular case Pν1ν2 = Pν1δ(ν1−ν2), i.e. in the

case of non correlated noise, the matrix C, and therefore its inverse, is diagonal and the

optimal filter for each band would have the same shape of the single-band filter defined in

Section 6.3.1. Only the normalization would differ.

6.4 Statistics of the detections

We now analyze a set of eleven SZ and X-ray simulated maps with the single-band and

the multi-band filters described in section 6.3.1 and 6.3.3, respectively and we perform a

statistical analysis of the obtained sample.

In analogy with Chapter 5, we define a detection as a group of pixels in the SN map

whose values are above a certain threshold. The position of the detection on the sky

is associated to the most significant pixel. A true detection is a detection that can be

associated to a halo of the Λ-CDM simulation, while a spurious detection is a detection

caused by noise due to the LSS, to the CMB or the to X-ray background.
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Again we distinguish the true from the spurious detections by searching for those

detections that are caused by mass concentrations confined on a single plane (see Chapter

5 for more details).

6.4.1 SZ single-band detections

Due to the oscillatory behaviour of the single band filter (see upper panels in Fig. 6.4),

detections consist of positive SN peaks surrounded by negative and positive ring-like

structures. Typically, those rings are fragmented by noise and show up as secondary

SN peaks surrounding the most prominent detections. These secondary peaks can be

easily confused with true detections. Some examples can be seen in the upper left panel

of Fig. 6.6. Consequently we need to model and include in our noise estimate these

correlated noise structures. This is possible because we can easily estimate their expected

shape and amplitude, which results from the convolution of the signal with the oscillatory

pattern of the filter (see Fig. 6.4).

The noise map is thus obtained with an iterative approach. First we compute the

SN maps by applying the filter and estimating the noise through Eq. 5.19. Second we

detect the most prominent detection, compute the correlated noise pattern as explained

and include it in the noise map. Then we use this new noise estimate to compute the

updated SN map, detect the second most prominent detection and reiterate the procedure.

The noise map resulting from this procedure is shown in the lower panel of Fig. 6.6. The

upper right panel of Fig. 6.6 shows the same detections displayed in the left panel after

removing the filter artifacts.

In upper panel of Fig. 6.7 we show the total number of detections per square degree

in our ACT simulations. Results are shown in all three channels and for both the light-

cone limiting redshifts. The fractions of spurious detections are shown in the bottom

panels. Results are averaged over eleven maps corresponding to 24.5deg2 and 9.5deg2

for limiting redshifts z = 1 and z = 2 respectively.

As expected, at ν = 225 GHz we find few detections. At this frequency, the tSZ effect

is indeed very modest, while the kSZ dominates the signal. As the SZ effect does ideally
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Figure 6.6: SN ratio maps (upper panels) and noise (lower panel) illustrating the procedure to
suppress artificial structures from the filtered SZ maps. The upper left panel shows detections
at SN ≥ 2 as obtained by the filter and the upper right panel shows the same SN map after the
removal of the spurious ring artifacts. The lower panel shows the resulting noise map that takes
into account the damped oscillations of the filter. The side of the maps 2.5 degrees.

128



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 3  4  5  6  7  8  9  10

S
+

N
 (

pe
r 

sq
ua

re
 d

eg
re

e)

S/N

ACT_145GHz_z=1
ACT_225GHz_z=1
ACT_265GHz_z=1

 0

 2

 4

 6

 8

 10

 12

 3  4  5  6  7  8  9  10

S
+

N
 (

pe
r 

sq
ua

re
 d

eg
re

e)

S/N

ACT_145GHz_z=2
ACT_225GHz_z=2
ACT_265GHz_z=2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 3  4  5  6  7  8  9  10

S
pu

rio
us

 d
et

ec
tio

ns
 [%

]

S/N

ACT_145GHz_z=1
ACT_225GHz_z=1
ACT_265GHz_z=1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 3  4  5  6  7  8  9  10

S
pu

rio
us

 d
et

ec
tio

ns
 [%

]

S/N

ACT_145GHz_z=2
ACT_225GHz_z=2
ACT_265GHz_z=2

Figure 6.7: Number of total detections per square degree (upper panels) and fraction of spurious
detections (bottom panels) as a function of the S/N ratio. Results are shown for redshift z = 1
(left panels) and z = 2 (right panels). Different line styles refer to the different bands used, ν1 =
145 GHz, ν2 = 225 GHz, ν3 = 265 GHz. The plots are obtained averaging over eleven maps.

not depend on redshift, but only on the time evolution of the sources, we also see that

we find more objects for a light-cone extending up to redshift z = 2 than for a light-cone

with objects till redshift z = 1. At frequencies ν = 145 GHz and ν = 265 GHz we find at

least 30% more detections in the deepest light-cone. The major differences in these two

bands are for low signal-to-noise ratios, where we notice that more structures are detected

in the highest-frequency band. This is due to the higher sensitivity of the instrument. For

S/N ≥ 5, the number of detections is similar in both bands.

Because of the small tSZ effect amplitude, the fraction of spurious detections at

ν = 225 GHZ is very high (≈ 80% for SN ≈ 3), practically independent from the limiting

redshift of the light-cone. For the maps at ν = 145 GHz and ν = 265 GHz at z = 1 (z = 2)
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we find that respectively 20% and 40% (30% and 40%) of the detections at S/N ≈ 3 are

spurious. Once again, for relatively high SN ratios, the two bands perform similarly. For

S/N > 4, the fraction of spurious detections is of the order of few percent. Including mat-

ter up to redshift z = 2 in the light-cone, the slightly higher fraction of spurious detections

increases due to the overlapping of structures not resolved. In addition, the number of

large S/N detections does not increase with the depth of the light cone (as the massive

structures responsible for the them are localized at low redshifts), but the number of small

S/N detections is enhanced (up to a factor of five for the least massive halos).

In Fig. 6.8 we show the fraction of halos in the light cone detected in different bands

as a function of the mass (upper panels) and the sensitivity of the catalogue, i.e. the

minimum mass detected at each redshift (lower panels). In the left and in the right panel

we show the results for light-cones up to z = 1 and z = 2, respectively. The values given

are averaged over eleven realizations. The sensitivity is computed by combining two

planes together to reduce the noise. It is defined as the mean mass of the ten least massive

halos detected in the redshift bin.

As the SZ effect does ideally not depend on the redshift on the source, the complete-

ness for detections up to z = 1 and z = 2 is essentially the same. The two channels

at 145 GHz and 265 GHz perform equally well, while for the channel at 225 GHz the

completeness is much lower. The minimum detected mass is M ' 7×1013M¯/h and the

completeness reaches 100% for masses M ' 3× 1014M¯/h. The slope of the curve is

quite steep, therefore the degree of completeness decreases rapidly. Already for masses

of M ' 1.5×1014M¯/h the completeness is approximately 50%.

The sensitivity (lower panels of Fig. 6.8) reflects the fact that the SZ effect does not

depend on the object redshift, in fact the minimum mass detected is basically redshift

independent. The results on the sensitivity agree with those on the completeness, as ex-

pected, at 225 GHz the method is less sensitive than in the other two channels. In addition

we see that the filter finds halos with a lower mass at 265 GHz than for the filter at 145

GHz (blue and red curve respectively), explaining the larger completeness of the former
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Figure 6.8: Upper panels: Fraction of detected halos as a function of the halo mass. Bottom
panels: sensitivity of the method. The panels on the left and on the right refer to the results for
limiting redshifts of the light-cones of z = 1 and z = 2, respectively. Different curve styles refer to
the three different band of ACT. The curves are averaged over eleven maps.

band.

Similar results were found by López-Caniego et al. (2006) using the same approach to

detect clusters in simulated Planck observations. For low detection limits (corresponding

to low S/N ratios), López-Caniego et al. (2006) found a very high fraction of spurious

detections, that decreases quite fast by increasing the flux limit. The comparison of the

results can be done only in a statistical sense, since the instrument and the frequencies

are very different. In particular, only two channels used by López-Caniego et al. (2006)

have a frequency range close to those of ACT. Moreover, we consider S/N ratios and not

fluxes, and we include in the noise map the correlated ring patterns due to the oscillatory

filter behaviour.
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6.4.2 Statistics of SZ multi-band detections

We discuss now the application of the multi-band filter described in Section 6.3.3 to the

simulated observations in the three channels of ACT.

In Fig. 6.9 we show the S/N maps obtained by applying each component of the multi-

band filter to the three channels at 145 GHz (upper left panel), 225 GHz (upper right

panel) and 265 GHz (bottom left panel). The final result is obtained by combining them

using Eq. 6.19 to give the S/N map in the bottom right panel.

Compared to the results from using a single band filter, the S/N ratios are now en-

hanced by at least a factor of three.

The S/N peaks in the map have been identified using SExtractor (Bertin & Arnouts,

1996), that allows to easily deblend nearby detections. We analyze the results similarly to

what done for the single band filter. First, we count the detections above a minimal S/N

ratio, starting from S/Nmin = 3. The number counts per squared degree as a function of the

minimal S/N are shown in the upper left panel of 6.10. The solid and the dashed lines refer

to the simulations including matter up to z = 1 and z = 2, respectively. Comparing with

the previous results, the multi-band filter performs similarly to the single-band filter in the

265 GHz channel. The number of detections is only slightly less (∼ 15%). This might

be caused by the larger area of the multi-filter detections which cause a larger blending

which is not entirely removed by SExtractor and by the fact that the sample contamination

is lower as we are going to see. Similar results are found for the two redshift limits of the

light cones.

In the top-right panel of Fig. 6.10, we show the fraction of spurious detections in the

final catalog. Comparing again with the previous results with the single band filter, we

clearly see the great advantage of combining multiple observations. While the fraction of

spurious detections in the 265 GHz channel is ∼ 40% at S/N = 3 and was dropping to

∼ 5% at S/N ∼ 5, by filtering the observations simultaneously in the three channels, the

fraction of spurious detection is now at the level of few percent already at very low S/N

ratios. Thus, the vast majority of the detections in the top-right panel are true.
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Figure 6.9: Example of the reconstruction of a SN map for the matched filter starting from the
noisy map. The upper panels show the filtered maps for the frequency of 145 GHz (left panel) and
225 GHz (right panel). The lower panels show the filtered map at 265 GHz (left panel) and the
final SN map, obtained summing together the other three maps. The region of sky shown here is
the same as in Fig. 6.2 and 6.3.

The completeness of the catalogue is shown in the bottom left panel of Fig. 6.10.

We find that 20%, 50% and 80% of the halos of mass larger than 7× 1013 M¯/h, ∼
1014 M¯/h and 2×1014 M¯/h contained in the light cones are detected by the multi-band
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Figure 6.10: Upper-left panel: total number of detections per square degree as a function of the
minimal S/N ratio, using the multi-band filter. Upper-right panel: fraction of spurious detections
as a function of the minimal S/N. Bottom left panel: fraction of detected halos as a function of
their minimal mass. Bottom right panel: minimal mass detected as a function of redshift. The red
and the green curves shows the results for light cones extending to z = 1 and z = 2 respectively.

filter, respectively. In contrast, in the previous analysis based on the single-band filter,

we were able to detect only ∼ 20% of the halos with mass larger than 1014 M¯/h in the

145 GHz and in the 265 GHz channels.

White & Kochanek (2002) used a dark matter-only cosmological simulation to model

the spatial distribution of clusters and the galaxies they look for are added according to

a variant of the halo model. A luminosity drawn from a Schechter function is associ-

ated to each galaxy. This was done so that galaxies could trace the cluster distribution.

White & Kochanek (2002) found that their catalogues are complete for masses above

M ∼ 2× 1014 M¯/h using in addition information based on photometric redshifts. The

matched filter we used shows better performance as we found similar values but without
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any additional information.

Finally, the minimal masses that could be detected using the multi-band filter are

shown as a function of redshift in the bottom right panel of Fig. 6.10. As expected,

the curves show a very weak dependence on redshift, although the values seem to in-

crease weakly until redshift one. The minimal mass per redshift bin ranges between

∼ 6×1013 M¯/h at z = 0 and ∼ 9×1013 M¯/h at z = 1.8. We notice again that using a

multi-band filter also improves the sensitivity of the method. Indeed, using a single-band

filter, masses larger than 5×1013 M¯/h could be detected only in the 265 GHz channel.

We conclude this section by comparing our results to an other independent work em-

ploying multi-band filtering. Melin et al. (2006) used a multi-band matched filter for

analyzing Monte-Carlo simulations. Assuming to observe the SZ effect with the South-

Pole-Telescope (SPT), they made a statistical study of the detections similar to the one

we described above. Since the frequencies at which the SPT works and the FHWM of its

beam are similar to those of ACT, a fair comparison between our and their results can be

attempted. They found 17 detections per square degree at S/N > 3 and 6 detections per

square degree at S/N > 5, very close to the values we find (9.5 and 8 detections per square

degree at S/N > 3 and S/N > 5, respectively). The smallest masses that they can detect

is a factor of three larger than those found by our filter in the simulated observations by

ACT. This is fully expected, given the larger noise level of SPT compared to ACT. Finally,

the contamination by spurious detections in the catalogs by Melin et al. (2006) is similar

to the one we measure in our catalogs of detections.

6.4.3 X-ray detections

We now analyze the statistical properties of the X-ray detections obtained with the single-

band filter.

In Fig. 6.11 we show the total number of detections per square degree found in the

simulated X-ray maps. Results for limiting redshifts of the light-cones of z = 1 and z = 2

are shown in the left and in the right panel, respectively. From top to bottom we report

detections in the soft, hard and hardest bands. The results are averaged over eleven dif-
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Figure 6.11: Total number of detections per square degree as a function of the S/N ratio obtained
by filtering the Xray maps. Results are shown for three different bands analyzed: soft band (upper
panels), hard band (middle panels) hardest band (bottom panels). Left and right panels refer to
limiting redshifts of the light cones for z = 1 and z = 2, respectively. Different line styles refer to
the two different instruments (XMM-Newton and Chandra) and to the two integration times (30
and 100 ks).In particular the red and green lines correspond to observations with Chandra of 30 and
100 ks, respectively; the blue and the violet line correspond to observations with XMM-Newton
of 30 and 100 ks, respectively. The results are averaged over eleven realizations.
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ferent realizations. The detections found simulating observations with XMM-Newton are

at least a factor of five more numerous than for Chandra. Although XMM-Newton has

a background level higher than Chandra, the better performance is due to the different

effective area of the instrument. The number of detections decreases quite fast by the

increasing of the minimal SN ratio. We find objects with high signal-to-noise ratios also

in the high-energy band.

The fraction of spurious detections is presented in Fig. 6.12. We notice that the per-

centage of spurious detections below S/N ≈ 3 is relatively small, always below 30% for

all bands, and that it decreases to a constant value (about 5% independent on the integra-

tion time and the instrument).

In Fig. 6.13 we show the completeness of the detections which is only slightly de-

pendent on the light-cone depth. For the soft and hard bands the detection catalogues

obtained with XMM-Newton are always more complete that those obtained with Chan-

dra. In the soft band the completeness as a function of the mass decreases much more

slowly than for the higher frequencies bands. The completeness reaches 100% for masses

M & 2× 1014 M¯/h. It is ∼ 50% at M ∼ 3× 1013 M¯/h for XMM-Newton with an

exposure time of 100 ks (while for Chandra it is of the order of few percent). In the hard

band with Chandra it is possible to detect only halos with mass M > 2÷3×1014 M¯/h,

the lower limit of detectability drops below by a factor four with XMM-Newton. A similar

situation takes place for the soft band, but in this case, given the photons are less energetic,

the lower limit to detect a halo is M ≈ 1013 M¯/h. Indeed only halos with a mass larger

than few times 1014 M¯/h are detected in the hardest band. In this band the completeness

for Chandra is slightly larger than for XMM-Newton (for an integration time of 100 ks)

because the background noise is almost three times smaller (see table 6.2).

In Fig. 6.14 we show the sensitivity for the X-ray detections. In the soft band we

see that the sensitivity of Chandra is smaller than for XMM-Newton, consequently higher

masses are needed to be detected. In the hard and in the hardest bands the sensitivity at

low redshifts is essentially the same for both observatories, even if we notice that Chandra
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Figure 6.12: Fraction of spurious detection as a function of the S/N ratio for three different X-ray
bands: soft band (upper panel), hard band (middle panel), hardest band (bottom panel). In the left
and in the right panels we show results for limiting redshifts of the light-cones of z = 1 and z = 2,
respectively. The values are obtained by averaging over eleven different realizations.

performs slightly better again due to the lower background noise. With Chandra, we can

observe objects only up to z∼ 0.4 in the hard band, (for an integration time of 30 ks), while

with XMM-Newton we can detect objects at z∼ 0.9. As expected only the most massive
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Figure 6.13: Fraction of detected halos as a function of the halo mass. The panel on the left and
of the right show curves for limiting redshift of the light-cones up to z = 1 and z = 2, respectively.
Different curve styles refer to different instruments and integration time. From bottom to top we
show the soft band, the hard band and the hardest band. The curves are averaged over eleven maps.

clusters can be detected at high redshifts. In particular with Chandra, with an exposure

time of 100 ks, the smallest masses detected are 1013M¯/h at z ∼ 0.1 and 1014M¯/h at

z∼ 1. With XMM-Newton halos of mass M > 5×1012M¯/h and M > 2×1013M¯/h can

be detected at z∼ 0.1 and z∼ 1, respectively.
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Figure 6.14: Sensitivity of the method for the X-ray detections. Results are shown for three dif-
ferent bands analyzed: soft band (upper panels), hard band (middle panels) hardest band (bottom
panels). Left and right panels refer to limiting redshifts of the light cones for z = 1 and z = 2, re-
spectively. Different line styles refer to the two different instruments (XMM-Newton and Chandra)
and to the two integration times (30 and 100 ks).In particular the red and green lines correspond to
observations with Chandra of 30 and 100 ks, respectively; the blue and the violet line correspond
to observations with XMM-Newton of 30 and 100 ks, respectively. The results are averaged over
eleven realizations.
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6.4.4 Comparison with observations

We now compare our results with cluster detections in real observations. Finoguenov

et al. (2006) analyzed the statistical properties of galaxy clusters in the COSMOS field,

observed with XMM-Newton. In a field of view of 2.1 square degrees they identify 72

clusters in the soft band by using a wavelet scale-wise reconstruction of the image. The

wavelet scale-wise reconstruction consists of a selection of the area with detectable flux

on large angular scales and of the removal of the area where the flux can be explained by

contamination of embedded point-like sources, using also optical identifications. More

details can be found in Vikhlinin et al. (1998). Since our approach does not include

optical identifications, we find more contamination in our sample than what expected

with the wavelet scale-wise reconstruction. We found an amount of X-ray detections

with S/N > 3 similar to the total number of photo-z galaxy concentrations (see Fig. 6 in

Finoguenov et al. (2006)), taking into account the different integration time of our maps

compared to the field of Finoguenov et al. (2006).

Vikhlinin et al. (2006) studied extensively 13 nearby clusters between z ≈ 0.01 to

z ≈ 0.23 with Chandra. They derived their masses assuming hydrostatical equilibrium.

The resulting masses enclosed in a radius where overdensities are 500 times the critical

density of the universe at the redshift of the cluster range between M ∼ 7× 1013M¯/h

and M ∼ 1015M¯/h. The minimum mass we could detect with Chandra is 1013M¯/h and

5×1013M¯/h for exposures of 100ks and 30 ks, respectively. We notice that our range is

narrower of a factor approximately three compared to Vikhlinin et al. (2006).

6.5 Correlation between the X-ray and multi-band SZ detections

We now describe the spatial correlation between the detections in the X-ray and in the

SZ maps. For the former, we consider the detections in the soft band, where the largest

number of detections was found. For the latter, we use the results obtained by using

the multi-band filter. A major difficulty is caused by the different angular scales of the

detections in the maps. The X-ray detections have much smaller extension, since the X-
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Figure 6.15: Fraction of common detections as function of the minimal S/N ratio. The red and
the green line show the results for Chandra (30 and 100 ks of integration time, respectively),
while the blue and the violet lines show results for XMM-Newton (30 and 100 ks of integration
time, respectively).In the left and in the right panel we show results for limiting redshift of the
light-cones of z = 1 and z = 2, respectively.

ray emission is more concentrated than the SZ effect. Consequently, several detections in

the SZ maps overlap a large number of detections in the X-ray maps. For XMM-Newton

with an integration time of 100 ks, we found that on average a SZ detection overlaps

at least 10 X-ray detections. Therefore we correlated only the most significant X-ray

detection of all the detections enclosed by the SZ detection. Moreover the number of

detections in both the XMM-Newton and the Chandra observations strongly depends on

the exposure time.

In Fig. 6.15 we show the fraction of common detections respect to the total number of

X-ray detections as a function of the signal-to-noise ratio of the X-ray detections. Results

are shown for limiting redshifts of the light-cones of z = 1 and z = 2 in the left and in the

right panel, respectively and for XMM-Newton and Chandra with exposure times of 30

and 100 ks. The values are obtained averaging over eleven realizations.

Since Chandra has a low number of detections, we see, as expected, that the fraction of

common detections is higher than for XMM-Newton. Moreover, as the number of X-ray

detections increases with the exposure time, the corresponding fraction of common detec-

tions decreases. Surprisingly, the fraction of common detections is largely independent

of the S/N ratio. We interpret this as due to the fact that the number of X-ray detections
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is much higher than the one of SZ detections. When they are comparable (for example

for Chandra with an exposure time of 30 ks), the scatter is much higher, of the order of

15%. For the same reason, we find very similar results for the two limiting redshifts for

XMM-Newton, while for Chandra the scatter is enhanced.

In the top panels of Fig. 6.16 we show the correlation between a set of 11 X-ray

and SZ maps directly obtained from the Λ-CDM simulation. On the x-axis we report

the value of X-ray surface brightness and on the y-axis the Compton y-parameter. The

contour levels enclose 50 to 99 per cent of the total number of pixels. We show results

only in the soft band for XMM-Newton and for an exposure time of 100 ks. Since both

the single-band and the multi-band filters returns an unbiased estimate of the y-parameter

and of the X-ray surface brightness, we can repeat the same exercise by correlating the

detection catalogues. This is shown in the middle panels of Fig. 6.16. The correspondence

between the top and middle panels confirms that the filters do not introduce any bias in

the estimates. The cut off at lower values of the Compton y-parameter and of the X-

rays estimates reflects the combined sensitivity of the two observations. In the bottom

panels of Fig. 6.16 we show the correlation between the X-ray and SZ maps using only

the common detections in the two catalogues. Also in this case we note correspondence

with the upper and middle panels.

In Fig. 6.17 we show the percentage of true detections in the X-ray observations that

correspond to some detection in the SZ observations. We show the cumulative percentage

as a function of the mass (top panels) and a differential distribution as a function of the

redshift of the detected clusters (bottom panels). The left and the right panels refer to

the two limiting redshifts of the light cones (z = 1 and z = 2, respectively). Different

line styles correspond to different instruments in the X-ray observations and to different

integration times. The curves are normalized to the total number of the clusters that are

present in both the X-ray and the SZ catalogs.

The figures show two obvious results. First, the mass distribution of the common

detections reflects the mass distribution of the clusters detected through the SZ effect (see
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Figure 6.16: Distribution of the pixels values for X-ray (x-axis) and SZ (y-axis) maps. Upper
panels show the distribution for the original maps, middle panels for the filtered maps, lower
panels for the filtered map using only the common detections. In the left panel we show results for
z = 1, in the right panel for z = 2.

Fig. 6.10). Indeed, many low mass halos that are detected in the X-ray maps, as shown

in Fig. 6.14, are not detected in the SZ maps. Second, the redshift distribution of these

clusters peaks at low redshifts. Indeed, high redshift clusters can not be detected through
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Figure 6.17: Top panels: cumulative mass distribution for halos detected in both the X-ray and
the SZ maps. Results are shown for light cones up to z = 1 (left panels) and z = 2 (right panels).
Bottom panels: redshift distribution for the same halos. The red and the green line show the results
for Chandra (30 and 100 ks of integration time, respectively), while the blue and the violet lines
show results for XMM-Newton (30 and 100 ks of integration time, respectively).

their X-ray emission.

6.6 Conclusions

We use a large N-body simulation for constructing light cones representing the distribu-

tion of matter in the universe up to a given redshift. This simulation is used to reproduce

observations of the X-ray emission (XMM-Newton and Chandra) and of the SZ effect

(ACT) produced by the matter contained in the light cones. Our simulations cover a total

area of ∼ 264 deg2 for limiting redshift z = 1 and ∼ 106 deg2 for limiting redshift z = 2.

We use single-band and multi-band matched filters to detect galaxy clusters in the
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simulated images. We detect halos as peaks in the filtered images and we compared the

detections with the distribution of dark matter halos contained in the light cones. The

halos are identified using standard friends-of-friends algorithms and SExtractor.

Regarding the detections in the SZ maps, we find that the use of the multi-band filter

instead of the single-band filter strongly reduces the number of spurious detections and

increases the fraction of halos in the light cones that are efficiently identified. In particular,

50% of the halos with masses M ' 1014M¯/h are found when using a multi-band filter

against the 30% found with the single band filter. As expected, we do not notice a strong

redshift dependence of the sensitivity of the method.

For the X-ray observations we found that the fraction of spurious detections is gen-

erally low, and it is largely constant (about 5%) over a large interval of signal-to-noise

ratios. In general the X-ray catalogues are more complete than the SZ catalogues, even

when multi-band filters are used. However, the redshift distribution of the halos detected

through their X-ray emission is strongly peaked at low redshifts, since the X-ray luminos-

ity is inversely proportional to the square of the luminosity distance. Thus, only massive

halos can be detected at high redshift. This shows the complementarity of the two meth-

ods.

When studying the correlation of the SZ and X-ray detections, we found that the mass

distribution of the common detections follows the mass distribution of the SZ detections,

however the redshift distribution has a peak at low redshifts, as X-ray objects can not be

detected at high redshifts.
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Appendix A

Simulations

As said in chapter 5, in order to perform a realistic study of the formation and evolution of

cosmic structures, N-body simulation codes are needed. In this section we briefly present

the main characteristics of the different kinds of available codes.

Most N-body codes are based on the approximated description of the volume of the uni-

verse where the desired cosmic structures will form as a cubic box with N particles of

mass Mi, position ~xi and velocity ~vi. When hydrodynamics is not included, particles

interact only via gravity, otherwise the baryonic particles will be subject to other physical

effects.

The initial conditions are constructed in such a way that particles, initially distributed

on a regular grid or following a glass distribution, are perturbed using the Zel’dovich

approximation to reproduce the required initial power spectrum. The time and space evo-

lution is obtained by solving, for each particle in the gravitational potential Φ, the usual

equations of motion. The time evolution of this simulated volume of universe is discre-

tised into finite time steps and for each one the force acting on the particles is computed

and positions and velocities are updated according to the computed force.

Different N-body codes exist and they differ each other only for the method used to com-

pute, at each time step, the gravitational force at the particle position.
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A.1 The Particle-Particle (PP) method

In this case, the force per unit mass acting on the i-th particle is computed summing the

contribution from all other particles

~Fi =
N

∑
j 6=i

Gm j~ri j

(ri j + εs)3 , (A.1)

where~ri j is the distance between the i-th and j-th particles and εs represents the so-called

softening length, necessary for avoiding small-scale divergences in the force computation.

In other words, the particles acquire a physical size.

The gravitational interaction is Newtonian only for ri j > εs, while for smaller distances

different expressions must be used. Usually the softening length is given in terms of the

Plummer softening length, in practice the particle is replaced by a sphere following the

Plummer density profile (Plummer, 1911):

ρPlummer(r) =
3m

4πε3
s (1+ r2/ε2

s )5/2 . (A.2)

The PP method achieves a very high accuracy, but it requires an high computational time,

being of the order of O(N2), so it is used only for small particle numbers (N ∼ 104÷5).

A.2 The Particle-Mesh (PM) method

In the PM method, density, gravitational potential and forces are computed on a regular

mesh (grid of points). The actual values of these quantities at the particle positions are

obtained adopting interpolation techniques that will be described in Appendix B. In this

way the computation is faster, but the maximum resolution achieved correspond to the

mesh size. Given the density at each mesh point, the potential can be easily computed

via fast Fourier techniques, the Poisson equation is then solved in the Fourier space and

the force is obtained by exploiting the properties of derivative in the Fourier domain.

An inverse Fourier transform gives the force and the potential at each grid point in the

real space and adopting the same interpolating schemes used to compute the density,
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their values at the particle positions are derived. Due to the fast Fourier transform (FFT)

technique, the required computational time is of the order of O(N logN), so it is suitable

for systems of ∼ 108÷9 particles.

A.3 The Particle-Particle-Particle-Mesh method P3M

The P3M method represents a combination of the two previously described methods. The

total force experienced by the particle is given by two contributes: ~F = ~Fsr + ~F lr. The

term ~Fsr is the short-range contribution and it is computed using the PP method, while

the term ~F lr represents the long-range contribution that is obtained with the PM method.

A particle is included in the short-range regime if its distance from the particle the force

is computed on is smaller than a given value. To improve the accuracy of the code, in the

regions where the density is high, adaptive grids are often used.

A.4 The Tree code

Tree codes belong to the family of hierarchical codes, based on the multipole expansion

and were introduced by Barnes & Hut (1986).

A group of distant particles exerts almost the same force as a particle having the total

mass of the group and located at the center-of-mass of the group itself. This is equivalent

to the use of monopole term only in the expansion. Better accuracy is achieved using

higher multipoles. The region containing the particles is divided into cubes and each one

is subdivided into eight subcubes (hence the name oct-tree). The division continues until

the subcubes contain only one or zero particle and each subcube (leaf) can be reached

walking through the tree starting from the root node. The force is computed by walking

the tree and summing the contributions of the individual nodes.

If a node has size l and if r is the distance between its center-of-mass and the point where

the force needs to be computed, then the multipole expansion is used if l/r < θ, where

θ is the opening angle and sets the accuracy of the calculation. When this condition is

fulfilled, the walk along the branch of the node is stopped, otherwise it is opened and the
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walk continues through the subnodes. The contributions from the nearest particles are

computed with the PP method.

In this case the computation time scales as N logN.

A.5 Hydrodynamical simulations

The codes described before are only gravity solvers and they can be applied properly when

the dark matter component only is considered. But in the universe there are also baryons

that undergo more complex physical phenomena, in particular the physics related to gas

and intergalactic medium, like heating, cooling, energy feedback, etc. These phenomena

are difficult to be implemented in numerical codes, due to their complexity and the crude

knowledge of the details of the physics involved.

To appropriately describe the interparticle interactions, many methods have been sug-

gested. Among them, a very powerful technique traces back to the work by Lucy (1977)

and Gingold & Monaghan (1977) and it is called Smoothed Particle Hydrodynamics

(SPH).

The fluid is discretised into particles and the field quantities are computed at position~r by

mean of a kernel function W (~r−~r′;h) where h represents the smoothing length, which is

related to the number of particles used for the computation, usually between 30 and 50.

One of the most widely used kernel is the one proposed by Monaghan & Lattanzio (1985)

(also used in the GADGET Tree-SPH code):

W (r,h) =
8
π





1−6u2 +6u3 0≤ u < 0.5
2(1−u)3 0.5≤ u≤ 1

0 u > 1
(A.3)

Higher order smoothing functions permit an higher accuracy.

More details on the SPH method can be found in the review by Monaghan (1992).
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Appendix B

Interpolation schemes

Whenever a quantity defined on a mesh has to be evaluated on a point located between

two grid points, an interpolation is necessary.

In literature, many different smoothing schemes have been described and differ mainly

on the number of points used for the interpolation: obviously the higher is the number of

points, the higher is the accuracy that can be reached. Nevertheless, usually no more than

three points (per dimension) are used as the accuracy gained is too modest compared to

the required increase of computational time.

If w(xi)i represents the smoothing function in the i-th dimension, the total interpolating

function can be written as simple product of all the functions, W (~x) = ∏N
i=1 w(xi)i; d

represents the number of dimensions of the system.

The most widely adopted smoothing functions are, in increasing order of accuracy

(Hockney & Eastwood, 1988):

• Nearest Grid Point (NGP), where the particle mass is assigned to one grid point

only. The smoothing function is therefore

w =
{

1 for |δx|< ∆/2
0 for |δx|> ∆/2.

(B.1)

• Cloud-in-Cell (CIC), where the particle mass is assigned to the 2d nearest points.

The smoothing function is

w =
{

1−|x|/∆ for |δx| ≤ ∆
0 for |δx|> ∆.

(B.2)
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Scheme Order Number of points Scheme Shape Force
NGP 0 1d δ Stepwise
CIC 1 2d Π Continuous piecewise linear
TSC 2 3d Λ Continuous value and first derivative
PQS 3 4d Λ∗Π Continuous value, first and second derivatives

Table B.1: Table summarizing the characteristics of the different interpolation schemes. The first
column refers to the name of the interpolating scheme; the second column to the order of the
scheme; the third column to the number of points used for the interpolation; the fourth to the
shape of the scheme and the fifth to the characteristics of the resulting computed force. Here δ is
the delta function, Π the step function and Λ the triangular function and the asterisk represents the
convolution of the functions. Table adapted from Hockney & Eastwood (1988).

• Triangular Shape Cloud (TSC), where the particle mass is assigned to the 3d nearest

points. The smoothing function is

w =





3/4− (δx/∆)2 for |δx| ≤ ∆/2
(3/2−|δx|/∆)2/2 for ∆/2≤ |δx| ≤ 3∆/2

0 for |δx| ≤ 3∆/2.
(B.3)

where the smoothing functions are normalized such that the mass of the system is con-

served. The described interpolation schemes can be extended to an arbitrary number of

points, increasing thus the precision and the number of derivatives of the force that result

continuous at the end. An example is the interpolation scheme PQS, that uses the nearest

4d points.

In table B.1 we summarize the characteristics of the different interpolation schemes.

As clear from table B.1, a new scheme can be obtained iterating the smaller-order

schemes. AS Λ = Π ∗Π, an interpolation scheme with order n > 3 can be obtained

convolving the Π function n times.

A more suitable interpolation scheme for gas particles in simulations, is an SPH

scheme, that takes into account the smoothing length of the particles. The number of

points involved varies according to the smoothing length and the size of the grid; the

smaller is the grid, the higher is the accuracy. With this scheme, the function and all the

derivatives are continuous. The fraction of the particle associated to each grid point is

given by the values of the smoothing kernel.
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Conclusions

In this thesis we have discussed applications of filtering techniques to the study of detec-

tion of halos from numerical simulations.

Many weak-lensing observations showed that many, approximately half of the peaks in

the shear field can not be associated to any optical or X-ray counterpart. With the im-

provements in the observational techniques that lead to precise cosmological studies, it

is of fundamental importance to know what these dark peaks correspond to, either dark

halos or LSS, because of the cosmological consequences one intends to infer.

Multi-band observations are always more common, because they allow to combine dif-

ferent pieces of information from the same object. The advantage of this is that on one

side it is thus possible to have a better understanding of the objects under investigation,

on the other side multiband observations are required to remove the strong degeneracy in

the parameter space.

Exploiting that the masses and the positions of the clusters from the simulation are

known precisely, it is possible to clearly identify whether a detection corresponds to a

halo or if it is caused by some source of noise present in the simulated maps.

With hydrodynamical cosmological simulations, it is possible to perform realistic studies

taking into account also very complex physical phenomena that baryonic matter experi-

ences.

They are therefore required to have an accurate study of cluster emission that does not

rely on too simplified assumptions.

The main goal of this thesis was to improve the study of filtering techniques employed

to detect galaxy clusters.
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We obtained the following results:

I We created realistic shear and convergence maps to simulate weak-lensing obser-

vations and we used them to study the performance of three different linear filters

often used to detect halos from shear field in weak-lensing surveys. The filter tested

are the aperture mass, the optimised aperture mass and the optimal filter, designed

to distinguish halo signals from spurious signals caused by the large-scale structure.

We showed that the optimised filter proposed by Maturi et al. (2005) successfully

reduces the contribution of the large-scale structures, therefore it performs better

than the aperture mass. In particular its results are largely insensitive to changes in

the angular filter scale and the number of spurious detections is reduced. We also

showed that, compared to the other filters analyzed, the halos detected have a lower

mass limit.

I Two factors contribute to yield an appreciable lensing signal: the mass of a clus-

ter and its relative position between the observer and the sources. We found that

the minimum detectable mass is ∼ 1013 M¯/h where the lensing effective dis-

tance reaches the maximum (approximately half way between the observer and the

sources) and that it increases approaching the observer (few times 1013 M¯/h) or

the source redshift (∼ 1014 M¯/h).

I A very important aspect of a survey is the degree of completeness it can reach.

Detecting halos from raytracing simulations, we showed that the curve describing

the completeness as a function of the mass is very steep and strongly depends on

the mass of the object. We found that generally catalogues are complete only for

masses above ∼ 4.5×1014 M¯/h if sources are around zs = 1 and for masses above

∼ 3×1014 M¯/h for more distant sources at zs = 2. For objects only twice smaller,

the completeness has already dropped to 50%.

I We created SZ and X-ray maps from a large hydrodynamical simulation to detect

halos in it with a matched filter and to study the properties of the common detections
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between the SZ and X-ray catalogues. For the SZ we used a single-band and a multi-

band matched filter, while for the X-ray analysis we used only the single-band filter.

I We found that using multi-band instead of single-band filters the number of spurious

detections reduces strongly and more halos are identified. We found that 50% of the

halos with masses M ' 1014M¯/h are found when using a multi-band filter.

I For the X-ray detections we found that the fraction of spurious detections is low and

largely constant over a large interval of signal-to-noise ratios. X-ray catalogues are

more complete than the multi-band SZ catalogues. We also found that the redshift

distribution is peaked at low redshifts, therefore only massive halos can be detected

at high redshift.

I Halos in common bwtween the SZ catalogues and the X-ray catalogues show the

same mass distribution of the SZ detections, but the redshift distribution of the X-

ray detections. This is due to the fact that halos detected with the SZ filter have

higher masses than for halos detected with the X-ray filter and that X-ray objects

can not be detected at high redshifts.
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