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Zusammenfassung / Abstract

Magnetfeldmikroskopie mit ultrakalten Atomen. In dieser Arbeit werden
die Ergebnisse der ersten systematischen Anwendung von Magnetfeldmikroskopie
mit ultrakalten Atomen vorgestellt. Die Eigenschaften des Ladungstransports in
polykristallinen Dünnschicht-Golddrähten werden in einem bisher nicht zugänglichen
Regime untersucht. Mit Hilfe des Feldsensors auf der Basis ultrakalter Atome wird
eine mikroskopische Abbildung von Richtungsänderungen des lokalen Stromverlaufs
über Längenskalen zwischen 10µm und 600µm bei einer Winkelauflösung besser
als 10−5rad erreicht. Die Messungen zeigen eine Orientierungspreferenz der Rich-
tungsfluktuationen, welche innerhalb eines Ohmschen Defektmodels erklärt wird.
Die Absolutgröße der Fluktuationen (rms Winkelflukutationen zwischen 60µrad
und 160µrad) wird durch unterschiedliche Beiträge von Oberflächendefekten und
solche des Volumenmaterials interpretiert. Die notwendige Methodik zur Imple-
mentierung und Interpretation einer quantitativen Magnetfeldmikroskopie mit ul-
trakalten Atomen wird eingehend dargestellt.

Magnetic Field Microscopy using Ultracold Atoms. In this thesis the re-
sults of the first systematic application of magnetic field microscopy using ultracold
atoms are presented. The properties of charge transport in thin film polycrystalline
gold wires are examined in a previously not accessible regime. The field sensor based
on ultracold atoms facilitates a microscopic mapping of directional fluctuations in
the local current direction at an angle resolution of 10−5rad over length scales be-
tween 10µm and 600µm. The measurements show an orientational preference in
the directional fluctuations which is explained within an ohmic defect model. The
absolute magnitude of the fluctuations (rms angle fluctuations between 60µrad and
160µrad) are interpreted by different contributions of surface and bulk defects. The
methods that are necessary for the implementation and interpretation of a quanti-
tative magnetic field microscopy using ultracold atoms are described thoroughly.
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1 Overview

1.1 Magnetometry and Electronic Trans-
port

Any electric current distribution necessarily produces a magnetic field around it. The
spatially resolved acquisition of field data is therefore exploited in many different
environments for the non-invasive investigation of charge transport. The range of
systems being approached by this technique covers many orders of magnitude in
both spatial size and field magnitude.
Changes in the earth’s magnetic field on a scale of 250nT in five years [1] accompany
the evolution of the inner liquid core. Processes in the human body from muscle
contraction to brain activity can be traced by minute magnetic fields that range
between (10−5 − 101)nT[2]. The extension down to microscopic scales is commonly
implemented along the scanning microscope paradigm. Miniature Superconducting
Quantum Interference Devices (SQUIDS) [3] and Giant Magneto Resistance (GMR)
sensors [4, 5] have been used as precision sensors for electronic device testing and
failure analysis. In this work, a recently demonstrated [6, 7] technique has been
used where trapped ultracold atoms are used as a scanning sensor. The method
has been applied systematically to tackle the problem of electronic transport in thin
polycrstalline gold wires.
Metallic thin films are a well established testing ground for fundamental questions
of transport and scattering in the presence of static defects [8, 9, 10]. As can be seen
in figure 1.1 there are two basic kinds of defects: grains inside the bulk material and
surface roughness. The classical experimental technique towards the characterization
of this system has been the measurement of the low temperature residual resistivity
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Figure 1.1: Grain orientation and surface structure in a polycrystalline gold wire
[11]. The picture shows a view onto the side of a typical polycrystalline gold wire as
used in this work. In the right half of the picture the edge has been polished by a
focused ion beam. For imaging, a focused ion beam of lower energy has been scanned
over the sample and the backscattered electrons are focused to yield the image. The
contrast reflects the local orientation of the gold grains. In the lower part of the
wire up to a height of approximately 1µm, the film grows up in columns. Above
this height, larger three dimensional grains start to form which are also visible on
the surface.

[12]. Scattering by phonons, which usually makes the dominant contribution to the
resistivity at room temperature, is freezed out and the remaining resistance gives
the overall contribution of static defect scattering. The first detailed microscopic
description, of the scattering process at single grains, has been given by Landauer
[13] and subsequently triggered the very successful field of transport in mesoscopic
systems. He introduced the idea, that a charge dipole builds up around a static
scatterer and the electric field caused by this dipole in turn allows the current to pass
around the defect. This dipole charge can be directly resolved in scanning tunnelling
potentiometry [14] by the accompanying step of the electrostatic potential.
Despite the ongoing interest in the field, no measurement of the primary transport
quantity, namely the current density itself has been made until today. Long range
correlations in the current flow, which extend well beyond the scattering source have
never been addressed. Microscopy with magnetically trapped ultracold atoms offers
exactly this possibility.
In the absence of any defect, the current through a straight wire just follows the
wire direction. A defect however, causes a small deflection of the current density.
Figure 1.2 schematically depicts the current distribution around a small disc shaped
defect. The current component that is perpendicular (transverse) to the incident
current direction is that quantity which is most directly related to the presence of the
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Figure 1.2: Current flow around a small defect. (a) Streamlines of the current flow
around the defect. The current flows from left to right. When impinging on the
defect in the center, a charge dipole builds up that causes a small deviation in the
current density. (b) The current component perpendicular to the incident current
flow has the typical behavior of an electric dipole field. This component vanishes in
the absence of a defect.

defect. It is proportional to the change in conductivity and vanishes in the absence
of a defect. The magnetic field that is generated directly above the wire exactly
follows this characteristic behavior of the current density. For a defect in the x-y
plane and a mean current flowing along the x-direction the magnetic field component
along the wire Bx(x, y) is approximately given by Bx(x, y) = µ0jy(x, y)d/2. This
approximation is valid in the thin film limit, where the thickness of the film d is
small. If also Bx is small, the change of the magnetic field direction is given by the
angle

β(x, y) ≈ Bx(x, y)/B0 = jy(x, y)/j0 (1.1)

where B0 and j0 are the absolute values of the field and the current density in the
absence of a defect.
In order to apply this magnetic defect detection in the case of a thin gold film,
the sensing scheme has to comply to several restrictive conditions. The two most
important are the need for an angle resolution of β which has to be on the order of
10−5rad and a spatial resolution preferably in the micrometer range.
In this work, gold films with a thickness of d = 250nm and d = 2µm have been used.
In order to avoid local heating in the material, which results from ohmic losses and
the successive material transport by electro-migration, the current density has to
be kept significantly below 1011A/m2. For a save value of 1010A/m2, the absolute
field amplitude above the unperturbed film ranges therefore between 16G and 130G
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(1G = 10−4T ). The expected variations in the field component perpendicular to this
main field are then between 160µG to 1.3mG. In principle, there are at least two
state of the art detectors that are capable of achieving a field resolution in the 100µG
regime at the required spatial resolution. Figure 1.3 shows a comparison of several
different detector types. When operated at a bandwidth of 1 Hz, at least SQUID and
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Figure 1.3: Sensitivity versus spatial resolution in magnetometry. The sensitivity s
denotes the magnetic field standard deviation per unit bandwidth. d is the effective
sensor diameter and therefore the maximal obtainable spatial resolution. The values
for the scanning SQUID microscope (SQUID) are taken from [15, 16, 17]. For the
optical magnetometer (SERF) from [18], for optical magnetometry at a spinor Bose
Einstein Condensate (BEC) from [19], for commercially available giant magneto
resistive sensors (GMR) from [20] and for room temperature and cold Scanning Hall
Probe Microscopy (SHPM) from [22, 23].

GMR sensors should be capable of the necessary field sensitivity. However, in order
to achieve the required angle resolution the stability of the sensor orientation has
to be significantly better than the required 10−5rad which is at least a challenging
task. In the present work, the intrinsic stability of magnetic traps has been used to
avoid this problem. The basic principle is presented in the following section.
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1.2 Magnetically Trapped Ultracold Atoms
as a Sensor

Ultracold 87Rb atoms in their F = 2 groundstate have a magnetic moment of µ = µB.
By this magnetic moment, the atoms couple to a magnetic field by the typical dipole
potential V = µB|B| (this Formula assumes adiabatic spin dynamics). In magnetic
wire traps, implemented on atom chips [24, 25], the gradient field around the current
through a straight wire is used, to build a confining potential for the atoms.
When the homogenous part of the magnetic field is compensated at some specific
position above the wire center by the help of an additional homogenous bias field,
the remaining quadrupole provides a cylindrically symmetric confinement in the
plain perpendicular to the wire axis. This principle is shown for a wire of circular
cross section in figure 1.4. In order stay in the regime of adiabatic spin dynamics,

Figure 1.4: Magnetic wiretrap. The picture shows a magnetic trap above a wire of
circular cross section. The absolute field value is encoded by the colormap. The
orientation of the field, as indicated by the arrows, shows the typical quadrupole
character around the trap center at z = −25µm, y = 0.

a homogenous field Bi is added along the wire axis to avoid a zero in the absolute
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value of the magnetic field. The total potential in the vicinity of the minimum is
then given by

V ≈ µBBi

(
1 +

1
2

g2

B2
i

r2

)
=

m

2
ω2r2 (1.2)

. In this equation, g denotes the gradient of the magnetic field along one of the
quadrupole’s main axes, r =

√
(y − y0)2 + (z − h)2 is the distance from the trap

center at (y = y0, z = h) and ω =
√

µB/Bim g is the harmonic oscillator frequency.
Ultracold atoms only occupy a narrow range around the minimum of the potential
so that the harmonic approximation around the trap center is usually adequate.
A perturbative analysis, of how the potential changes with small variations in the
magnetic trapping field, reveals that wiretraps may be operated as highly directional
field sensors. If a small variation ∆B = (∆Bx,∆By, ∆Bz) is added to the trapping
field, the potential changes to leading order at the trap center by ∆V = µB∆Bx +
O(∆B2/B2

0). For typical variations of ∆B/B0 ≈ 10−6 − 10−4 which have been
encountered in the measurements of this thesis, the quadratic term in the expansion
can be neglected, and all variations in the potential are directly related to a change
of the magnetic field’s x-component [26]. Under these conditions, the total potential
is given by

V =
m

2
ω2

(
(y − y0)2 + (z − h)2

)
+ µBBx(x, y0, h) (1.3)

When such a trap is filled up by ultracold atoms, the cloud typically extends over
several 100µm along the x-direction and about 1µm in the y-z plane.
Variations due to the field Bx(x) cause small modulations in the density along the
long axis of the cloud. In a non-degenerate ideal gas the atoms occupy a potential
according to the Boltzmann distribution ρ ∝ exp−V/kBT . An illustrative example
of this relation is depicted schematically for a corrugated potential in figure 1.5. The
sensitivity of the atomic density to small variations in the potential is set by the
thermal energy kBT . More quantitatively, a small variation in the field ∆Bx causes
a relative change of the density ∆ρ by

∆ρ

ρ
=

µB

kBT
∆Bx (1.4)

. It is apparent, that for atoms at room temperature magnetic fields of reason-
able size have nearly no influence on the density. The enormous variation of 1T
causes a relative change of only ∆ρ/ρ = 2 10−3 in the density. At 100nK however,
which is the typical temperature scale for ultra cold atoms, the situation is much
more favorable. The sensitivity increases by more than nine orders of magnitude to
∆ρ/ρ = 6 106.

Once the field variation ∆Bx is translated to a density variation it can be read
out optically by absorption imaging. When illuminated by resonant laser light, the
atomic distribution casts a shadow, where the absorption signal is readily converted
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Figure 1.5: Atoms in a random potential. The upper panel shows, how an atomic
cloud fills up a potential according to the Boltzmann distribution. The gray level
is proportional to the number of atoms. The lower bar plot shows the shadow that
such a distribution would cast, when illuminated by resonant laser light from the
top.

to a particle density. By scanning the trap center position (y0, h) over the wire sur-
face, the magnetic field component along the wire axis Bx(x, y0, h) can be mapped
out via the resulting changes in the density. An example scan implementing this
scheme is depicted in figure 1.6.
In conclusion, magnetically trapped atoms are uniquely adapted to the measurement
of small directional variations of the magnetic field. In comparison to other tech-
niques, no active feedback is required to keep the sensor at its working point. Cold
atoms automatically gather at the trap center. There, the potential is intrinsically
sensitive to variations of the field component along the wire direction only. This
assures the high angular sensitivity and stability.
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Figure 1.6: Scan example above a thin film sample wire. The pictures show sequen-
tially acquired density measurements, 3.5µm above a 250nm thick wire, carrying
a current of 180mA. The measurements have been performed using atomic clouds
at a temperature of approximately 140nK. The gray level is proportional to the
density. The picture is composed from 200 single rows that each present a separate
measurement. The variations in the density correspond to an rms angle deviation
in the current density of 7 · 10−4rad
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1.3 Outline of this Thesis

In order to apply the ultracold magnetometry method, introduced in the last sec-
tion, to the investigation of the current flow in polycrystalline gold films, precision
fabricated thin film wires have been integrated on an atom chip. This chip has been
realized in a collaboration with Ron Folman at the Weiss Family Laboratory for
nano-Scale Systems, Ben Gurion University, Israel. A picture of the mounted chip,
before its integration into the cold atoms measurement setup is shown in figure 1.7.

The remaining part of this thesis describes measurements on this sample chip,
their interpretation and the detailed methodology for the implementation of a quan-
titative magnetic field microscopy using ultracold atoms. The chapters are organized
as follows.
Chapter two presents the main experimental results of a systematic study on the
current flow deviations in thin film metallic gold wires. The field scans are analyzed
phenomenologically and interpreted with respect to different static defect scenarios
of the wires. A non trivial symmetry is found in the fluctuation patterns which is
explained in the context of an ohmic conductor. To the knowledge of the author
these measurements present the first application of an atom chip technique to a
problem outside the field of atomic physics.
Chapter three covers a systematic treatment of the imaging theory of magnetic
fields on the basis of wave propagation in the near field regime. After the general
considerations on field propagation, the theoretical background for the analysis and
interpretation of current flow fluctuations in thin films is given.
Chapter four gives an overview of the experimental techniques that have been used
directly or indirectly for the characterization and manipulation of the cold atomic
clouds. They present a standard toolbox in the work with ultracold atoms.
Chapter five examines in detail the process of absorption imaging close to a metal-
lic surface. This technique is fundamental for the precise positioning of the atomic
sensor above the current carrying layer. Fundamental difficulties that are caused by
the presence of the mirror plane are analyzed.
Chapter six finally is a loose collection of topics related to spin dynamics and
magnetic trapping. This chapter is widely independent of the rest of this work.
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Figure 1.7: Mounted atom chip, hosting the test wires. The chip consists of micro-
fabricated gold wires of different crystalline grain size (40 nm and 120 nm) and
thickness (2 µm and 250 nm). The sample region is enclosed within the circled
region. The wires that have been used for the precision scans presented here, are
straight over at least 1 cm along the x-direction.
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2 Transport through Thin Metal
Films

2.1 Introduction

Thin metal films are the classic environment for studying the effect of geometric
constraints[1, 2] and crystal defects [3, 4] on the transport of electrons. At ambient
temperature, perpetual scattering by lattice vibrations (phonons) quickly diffuses
the electronic motion so that dominant effects of static defects are usually observed
only on a length-scale of several nanometers [5, 6]. Here, using ultracold atom
magnetometry[7] it is shown that correlations in the current flow through poly-
crystalline metal films exist even at room temperature and at length scales that
are orders of magnitude larger then the diffusion length or the grain size. Despite
the random structure inside the films, fluctuations in the local current direction
form patterns oriented at 45◦ relative to the mean current flow, independent of film
thickness or grain size. The amplitude of the current direction fluctuations scales
contrary to what is naively expected. The thinnest film with the largest grains shows
the smallest directional variations, much too small to be explained by the measured
top surface roughness of the gold film alone. This study shows that directly probing
the spatial current flow pattern in thin or quasi-2D structures by ultracold atom
magnetometry can find long range current correlations. It might be able to shed
new light on the interplay between disorder and coherent transport in a variety of
other systems, ranging from high-Tc superconductors[8] to 2D electron gases[9] and
nanowires[10].
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Figure 2.1: Magnetic field angle fluctuations β[mrad] above three different polycrys-
talline gold films. This angle directly maps the current direction within the films
at a resolution of approximately 8µm. The magnetic field direction is measured
at a distance above the surface of za = (3.5 ± 0.8)µm, zb = (3.8 ± 0.4)µm and
zc = (4.0 ± 0.6)µm for films a to c respectively. The pictures show the central
680µm × 100µm of each of the 200µm-wide gold wires.
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2.2 Preferred 45◦ Fluctuations

In a perfectly straight wire that is free from structural defects the DC current strictly
follows the wire direction. The magnetic field that accompanies this current is con-
tained in the plane perpendicular to the wire. However, an obstacle that causes the
current to change its direction will also locally rotate the magnetic field by an angle
β in the plane parallel to the wire. Ultracold atom magnetometry allows a very sen-
sitive microscopy of this angle β with µrad resolution. This allows to study minute
current direction variations with µm spatial resolution over mm length scales. In
this work, this technique is applied to study the current deflection in three different
precision fabricated polycrystalline gold wires[11] with a rectangular cross section
of 200µm width, different thicknesses and crystalline grain size, as summarized in
table 2.1 The measured maps of the magnetic field angle β(x, y) = δBx(x, y)/By are

wire a b c
thickness H [µm] 2.0 0.28 0.25
grain size [nm] 40 40 120
δzrms/H[10−3] 0.62 1.8 2.0
βrms[µrad] 157 82 58

Table 2.1: Sample wire properties The standard variations of the height corrugation
δzrms and the angle fluctuations βrms have been computed for k vectors within
2π/250µm < |k| < 2π/10µm (See section 2.6.2 for details on the Fourier transform).

shown in figure 2.1.

The two main observations are: First, there is a peculiar tendency to form elon-
gated regions inclined by ±45◦ to the wire axis. This orientational preference is
present in all the measurements, independent of wire thickness or grain size. In
order to quantify the angular preference of the measured magnetic field patterns,
the normalized angular power spectrum p(θ) =

∫
dkk |β(k, θ)|2/max(p) has been

analyzed. Figure 2.2 clearly shows the preference of features oriented at angles of
±45◦ for all three wires. As will be shown, this correlation is not the result of a
structural preference but of selective scattering at an isotropic distribution.
Second, a significant difference in the magnitude and spectral composition of the
magnetic field variations above wires with different thicknesses are observed. The
magnitude of the fluctuations scales contrary to the magnitude of the surface corru-
gations relative to the thickness (table 2.1). The 280 nm thin film with the largest
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Figure 2.2: Normalized angular power density p(θ)/max(p) for wires a to c (top to
bottom). The red bars indicate the error range based on the maximum deviations
between the results obtained for periodically continued and zero padded samples.
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gains (grain size 120 nm) shows the smallest directional variations of βrms = 58µrad,
much too small to be explained by a simple corrugation of the top surface that has a
measured roughness of δzrms/H = 210−3. This observation is an indication that the
top surface roughness is not the dominant mechanism causing the irregular current
flow.
In order to understand the underlying mechanism for the current direction varia-
tions, a simple example of a small local perturbation in the conductivity is considered
first. Imagine a cylindrical volume of radius R extending from the top to the bottom
surface of the wire, in which the conductivity is reduced from its bulk value σ0 to
σ0 + ∆σ. The continuity equation for the current density ∇ · j = 0 together with
Ohms’s law j = σE gives rise to the following equation for the electric field

∇ ·E = −∇σ

σ
·E (2.1)

This equation is equivalent to the Maxwell equation ∇·E = ρ
ε0

, where ρ is the charge
density. It follows that the gradient in the conductivity causes a charge density that
is formed on the interface separating the regions of homogenous conductivity. This
mechanism builds up a charge dipole around the defect, where the dipole moment d
is aligned with the incident current. If the conductivity change ∆σ is small compared
to the average conductivity σ0 the total field is made up of the main field E(0)ex

and a small perturbation. The dipole moment per unit length

d = − ε0
σ0

E(0)∆σR2π (2.2)

generates an electric field E(1) around the defect. By Ohm’s law, this field causes in
turn an additional current component j(1) which is, to the first order in ∆σ

σ0
given by

j(1) ≈ 1
2

j0

σ0

∆σR2

r2
(cos 2θex + sin 2θey) (2.3)

The effect of the defect on the current density is depicted in figure 2.3. The maximal
transverse current component appears at an angle of θ = ±45◦ measured towards
the axis of main current flow.
This simple example is in fact a paradigmatic case that can be generalized easily to
an arbitrary perturbation of the conductivity. If the limit of vanishing radius R → 0
is taken while keeping the product s = ∆σR2 constant, the above formulas can be
used for a point defect. As any random distribution of scatterers, which may be in-
terpreted as conductivity noise, can be viewed as a superposition of point like defects
the effect of a general conductivity variation may be regarded as an interference of
many dipole fields. Whether the effect of this interference can be directly observed
in the real space distribution of the current density, mainly depends on the corre-
lation length of the conductivity noise. Figure 2.4 shows simulated noise patterns
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Figure 2.3: Current flow around a small defect. (a) Streamlines of the currentflow
around the defect. The current flows from left to right. When impinging on the
defect in the center a charge dipole builds up that causes a small deviation in the
current density. (b) The current component perpendicular to the incident current
flow has the typical behaviour of an electric dipole field. This component vanishes
in the absence of a defect.

of the transverse current component jy for Gaussian conductivity noise of different
correlation lengths. A necessary condition for the observation of a 45◦ preference in
real space is, that the correlation length l of the conductivity noise is large compared
to the resolution limit of the detection method. The length l gives the typical size
of fluctuations so that one may say alternatively, that individual fluctuations in the
conductivity noise need to be resolved.
Within a small area that has a diameter smaller than the correlation length, con-
ductivity fluctuations can be assumed in a first approximation to have the same
sign and amplitude i.e. they are perfectly correlated. A simple model case for this
regime is an array of equally spaced defects that can have different orientations rel-
ative to the incident current flow. This model case is pictured in figure 2.5. The
large difference in amplitude of the resulting transverse current amplitude is a result
of the interference between the single defects. For the orientation of θ = ±45◦ the
currents interfere constructively. For θ = 0◦/90◦ the interference is destructive. This
interference effect is the mechanism, that causes a high transverse current density
to occur at random conductivity fluctuations that have a 45◦ orientation.
The collective effects that occur for a random conductivity distribution may be an-
alyzed more clearly when the variations are viewed as an independent superposition
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Figure 2.4: Effect of directional filtering on noise with different correlation lengths.
The pictures show the normalized conductivity noise (left column) and the y-
component of the current density jy (right column) for conductivity noise that follows
a Gaussian distribution σk

σ0
= exp

(−k2l2/(2
√

2)2
)

(see section 2.6.3). The rms width
of the correlation function g(r) = exp

(−r2/l2
)

is given by l. This parameter adjusts
the typical spatial size of fluctuations. The values are (a) l = 10µm, (b) l = 50µm
and (c) l = 200µm. The 45◦ preference of the current noise is clearly visible to the
eye in the regime where the size of the observation region is large compared to l but
small enough that individual fluctuations can be resolved.
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Figure 2.5: Array of coherent defects. The pictures show the transverse current
density jy (relative units) in the central region of an array of 65 equally spaced
defects having all the same amplitude. The mean current density j0ex enters from
the left.

of plain Fourier modes
∆σ =

∑

k

∆σ(k)eik·x (2.4)

. Each harmonic term ∆σ(k)eik·x produces a response in the transverse current
density that has a similar orientational behavior as for the case of an array of defects.
The current direction fluctuations α(x) = jy(x)/j0 may be written in a similar way
as

α(x) =
∑

k

α(k)eik·x (2.5)

where the substitution of this ansatz into equation 2.1 determines the Fourier coef-
ficients

α(k) = −1
2

∆σ(k)
σ0

sin 2θ (2.6)

A major advantage of this Fourier approach is, that the computation of the magnetic
field above the wire assumes a particular simple form. The angle variations of the
magnetic field direction at a height z above the wire surface are, in the limit of a
thin film, directly related to the directional fluctuations of the current density α(k)
by

β(k, z) = e−kzα(k) = −e−kz 1
2

∆σ(k)
σ0

sin 2θ (2.7)
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which follows the angular dependence β(k) ∝ sin 2θ. The exponential term e−kz is
reminiscent of the fact that the imaging of static electromagnetic fields is inherently
a near field technique. Wavelengths that are shorter then typical scale of 2πz are
significantly suppressed by the exponential and limit the resolution that is obtainable
with magnetic field imaging.
In order to quantify the angular preference of the measured magnetic field maps,
the normalized angular power spectrum

p(θ) =
∫

dk k|β(k, θ)|2/max p(θ) (2.8)

is presented in figure 2.2. Using equation 2.7, this quantity is expected to behave as

p(θ) = sin2 2θ (2.9)

for an isotropic noise distribution where ∆σ(k) = ∆σ(k). The deviations from the
ideal sin2 2θ behavior in the measured data can be attributed to two sources.
The first is the limited statistics that is caused by the finite sample area. This
effect is most prominent for the wire (a) as the the spatial extent of the fluctuations
is largest there. For wavelengths that are comparable to the sampling window the
spectrum estimation is complicated by edge effects. An estimate of their importance
has been derived by computing the Fourier spectrum once for periodic and once for
zero padded boundary conditions. The resulting error is indicated by the red bars.
Another statistical effect is due to the distribution itself. Even if σ(k) is isotropic
in the limit of a large sample size, fluctuating anisotropies necessarily occur if the
sampled area is comparable to the correlation length. This effect has been tested
numerically for the already mentioned Gaussian distribution. The result is shown
in figure 2.6. Besides these statistical error sources, additional anisotropic noise is
introduced by the scanning technique itself. As each column in the pictures of figure
2.1 represents a separate measurement, slight variations in temperature and the
total number of the atoms in the cloud lead to a statistical potential offset between
the columns. This contribution is visible in the pictures as a stripe impression. The
corresponding noise spectrum makes an exclusive contribution to Fourier modes that
have a wave vector along the 90◦ direction. This shot to shot noise explains the finite
value of p(θ) at θ = 90◦.
In order to exclude the possibility that the observed directional preference is caused
by an anisotropy in the wire structure, the topography of the top surface has been
measured with a Zygo interferomter (see figure 2.12). The same analysis as for the
magnetic field maps showed no preferred orientation on the surface.
The interpretation and the model that has been introduced up to this point, focused
exclusively on the case where changes in the current flow are caused by changes in the
bulk conductivity of the film. The presented symmetry is however not specifically
linked to this perturbation. For example, a variation of the wire thickness by δH/H
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Figure 2.6: Isotropy fluctuations. An isotropic Gaussian distribution of variable
correlation length l has been sampled on a finite window of size L × L. The rms
anisotropy < (p(θ)− < p(θ) >)2 >1/2 / < p(θ) > is found to scale inversely propor-
tional to the sample size L/l which is indicated by the green line.

has the same effect as a relative change in the conductivity by δσ/σ. In order
to find the specific origin of fluctuations the magnitude and finally the spectral
composition of the measured β spectrum has to be compared to some model, based
on independently measured material properties. The details of the defect models
can be found in section 3.3.

2.3 The Origin of Fluctuations

There are two immediate observations that are apparent without any further anal-
ysis. First, the spatial size of fluctuations above wire (a) is significantly larger
compared to wires (b) and (c) and second, the rms amplitude of fluctuations above
wire (a) is significantly larger then above wire (b) and (c) (see table 2.1). In order
to emphasize that these observations are not artefacts, introduced by some experi-
mental inaccuracy either in the height positioning above the wire surface or errors in
the temperature calibration for the thermal clouds, two microscopy measurements
using Bose-Einstein Condensates will be presented now.
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2.3.1 Exact Statements from Qualitative Scans

According to equation 2.7 the spatial resolution that is obtained in magnetometry
depends on the distance of the measurement plane to the current carrying layer.
A series of microscopy scans using condensates at different height levels above wire
a have been conducted to exclude a low pass filtering of the image by this effect.
Figure 2.7 shows for comparsion the β map and the condensate density at the same
height of z = 4µm above the wire. The condensate fills up the minima of the po-
tential i.e. the regions of negative β (see section 4.3). This density does not easily
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Figure 2.7: Condensate Density. (a) Condensate density in arbitrary units (b)
Corresponding map of β in units of rad. The condensate fills up the regions of low
potential i.e. small β.

allow to reconstruct a full potential, because there are large regions, where the den-
sity vanishes and no information on the potential is gathered. It allows however a
better resolution of small local features. Approximately, the response of the density
n to the potential is given by V − µ ∝ √

n, where the chemical potential µ can be
different for each separated condensate.
Using a series of condensate scans, the effect of different measurement height levels
on the observed patterns above wire a is shown in figure 2.8. As the inaccuracy in
the determination of the absolute position above the surface is about 0.5µm− 1µm,
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Figure 2.8: Condensate density at different heights above wire (a).The colormap
and scaling of the axis are the same is in figure 2.7 (a)

.
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the first picture of this series, which has been acquired at a nominal distance of
z = 1µm above the surface, is actually to interpreted as the closet possible mea-
surement distance above the surface, before the atomic cloud is attracted by the
van-der-Waals potential. Even at this distance of closest approach, first local losses
may be observed that are presumably due to a local protrusion like a grain of dust.

The important qualitative information from this series of pictures is that even at
the closest accessible height level, the potential is dominated by the same large scale
perturbations that are already visible at a distance of around h = 10µm. The large
scale structures are therefore inherent to the specific current distribution of wire a
and can not be caused by low pass filtering due to a positioning error of the cloud.

A second qualitative test with condensates has been performed to compare the
magnitude of fluctuations between the different wires. Figure 2.9 shows the result of
condensate scans that have been acquired with the same parameters as the thermal
scans of figure 2.1. The total number of atoms is approximately equal for all the
scans. For the wires b and c the condensate covers a much larger area nearly
continuously then for wire a. At the same total number of atoms, trap frequency
and height above the surface, this is a clear qualitative indication that the current
fluctuations in wires b and c are significantly smaller than in wire a.

2.3.2 Surface Corrugations and Bulk Defects

The sample wires have been carefully implemented to show extremely low surface
and edge roughness. The edge roughness as determined from SEM pictures (see
figure 2.10 for an example) is on the level of few nanometers. As the magnetic field
measurements are conducted only in the central half of the wire, close to its surface,
this roughness has negligible influence. Edge effects would be revealed by an increase
of the fluctuations towards the wire edge. Such a behavior is not visible in the scans
of figure 2.1.
However, the surface roughness of the wires, together with bulk defects, is expected
to make a major contribution in the observed current density (see section 3.3). The
bulk structure of a typical wire can be seen in figure 2.11. The picture shows the
local crystal orientation for a cross section of a 2µm thick wire. The orientational
sensitivity makes it possible to obtain high contrast differences between single crys-
talline grains. The transition between two different growth regimes is visible in this
picture. Up to a thickness of approximately 1µm the grains grow up as columns.
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Figure 2.9: Condensate density above the test wires. The scan conditions are the
same as for the thermal scans. The colormap encodes the atomic density in relative
units. The total number of atoms is the approximately equal for all the scans.
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Figure 2.10: Polycrytalline test wire: SEM picture of a test wire under a tilt angle
of θ = 24◦. The picture has been acquired at Ben-Gurion-University for a test wire
fabricated by a similar process as wire a.

Figure 2.11: Typical grain structure of the polycrstalline test wires. Secondary
electron Image from Focused Ion Beam etching. The image shows the grain structure
of a wire as seen from the side. The contrast is proportional to the local ion etching
rate which depends on the angle between grain surface and incident ion beam. The
grains grow up in columns up to a maximum height of approximately 2µm. Beyond
this height bulk effects set in and tend to break the two dimensional symmetry.
The picture shows a test wire on a different atom chip that has been produced by a
process similar to wire a. It has been acquired at the ISIS, Universite Louis Pasteur,
Strasbourg.
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Above this thickness the two dimensional symmetry starts to break and the grains
grow in all spatial directions.
Transferring this picture to the test wires used for the magnetometry scans, wire a
with a thickness of 2µm already has a large contribution of bulk grains. The thin
wires b and c, with a thickness of 250 nm are on the other hand in the thin film
regime of columnar grain growth.
A different type of defect is presented by surface roughness. It influences the current
flow mainly by variations in the wire thickness that are induced by the corrugations
(see section 3.3). In order to allow a direct comparison of the surface roughness with
the measured field maps, it is necessary to know the surface topography not on the
level of single grains, as can be easily obtained by AFM, but over the same length
scales that are sampled by the atoms.
The most suitable method for this purpose is optical interferometry. A Zygo white
light interferometer with a transverse resolution of approximately 0.5µm and a field
of view of about 50µm has been used for this task. The sample chip hosting the test
wires has been analyzed after the atom magnetometry measurements at Ben Gurion
University. Each wire has been scanned in 15 overlapping frames. The resulting
pictures, stitched together into a single view for each wire are shown in figure 2.12.
From the difference of two pictures in the overlapping regions the noise level of the
method has been estimated to an rms height resolution of hrms = 3.5A. The height
histogram above all three wires follows a Gaussian distribution (figure 2.13). From
these, the rms height variations of wires b and c are seen to be approximately 6A
and 16A for the thick wire a. After correcting for the noise contribution by the
Zygo, the net rms height variations of the thin wires are approximately 5A. The
relative rms thickness variations for the thin wires b and c are therefore by a factor
of approximately 2.5 larger than for the thick wire a. This tendency clearly contra-
dicts the behavior of the rms β variations. These are largest for the thick wire (see
table 2.1 for the comparison). This discrepancy can be resolved, if a variation of the
wires’ bottom surface is taken into account. If the top surface follows exactly the
movement of the bottom surface, there is no net thickness variation of the wire and
the influence of the corrugations on the current flow becomes negligible (see section
3.3). Such a mechanism is likely to be the more efficient the thinner the wires are.
In the beginning of the wire growth, the gold film follows the large scale fluctuations
of the substrate. With growing thickness, the top surface looses correlation with the
substrate. This loss of coherence can be expected to be even stronger when the film
enters the bulk growth regime above the 1µm thickness. In order to give further
support to this idea, the topography data has been analyzed quantitatively in two
different ways as will be explained now.
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Figure 2.12: Interferometric height profiles. The pictures show the surface profile of
the three wires (a to c from left to right) that have been examined before by atomic
magnetometry. Each picture is stitched together from 15 separate acquisitions. The
color scale is labeled in units of A. The data have been acquired at Ben-Gurion-
University by a Zygo interferometer after the magnetometry scans.
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Figure 2.13: Height variations on wires (a) to (c) as measured by interferometry.
For wires (b) and (c) the gaussian part of the histogram covers over 95% of the data
points. The small islands that are visible in the real space pictures of figure 2.12
are not included into the standard deviation. The noise level of the measurements
has been estimated from two successive images with an overlapping region. The
difference of the two images gives a gaussian distribution which corresponds to a
height error of σ = 3.5A
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2.3.3 Real Space Correlation Based on Surface Roughness

Assuming, that the top surface roughness makes some finite contribution to the cur-
rent fluctuations by inducing thickness variations on the wires, a certain correlation
between the surface topography and the magnetometry data has to exist. If only
the surface roughness would exist, the magnetic field angle variations induced by
these corrugations are described analogously to equation 2.7 by

β(k) = f(k) sin 2θδz(k). (2.10)

(See also equation 3.53 for the exact result.) Here, f(k) denotes some filter function
that depends on the measurement height above the surface and the thickness of the
wire. δz(k) is the spectrum of the surface corrugations. This equation is in fact
much more general then required by a simple thickness modulation model. As can
be induced from figure 1.1, the top surface corrugations may also be linked to the
internal growth structure of the wire. If this is the case, there will still be a linear
dependence between the surface corrugations and the current fluctuations. The filter
function f(k) will however depend on the range over which the defects extend into
the wire and on the exact details of the scattering mechanism.
In order to allow for the most general linear model, where the structure on the
top surface is still linked to the current fluctuations, the amplitude of the Fourier
coefficients β(k), calculated on the basis of the surface structure, has been replaced
by the amplitude of the measured fluctuation spectrum βmeas(k)

β′(k) = |βmeas(k)|eiφz(k) (2.11)

where φz(k) = arg δz(k). After applying an inverse Fourier transform (see 2.6.2),
the expected fluctuations β′(x) have been correlated with the measured fluctuations
β(x). As there have been no explicit alignment marks on the wires, the correlation
coefficient c has been calculated for different shifts along the x axis ∆x by

c(∆x) =
∫

dx
∫

dyβmeas(x + ∆x, y)β′(x, y)
βmeas

rms β′rms

(2.12)

In figure 2.14 the resulting correlation functions are shown for the different wires.
The significance of the correlation values has been evaluated by comparison with a
phase noise model. The simulated β′ spectrum has been generated by adding to the
measured phase φmeas(k) a certain relative amount r of white phase noise φrand(k)

β′(k) = |βmeas(k)| exp [i ((1− r)φmeas(k) + rφrand(k))] (2.13)
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Figure 2.14: Correlation function between βmeas and β′. The correlation coefficient
c is computed between β′ and a copy of βmeas that has been shifted by ∆x along the
x-axis. The only correlation value which is significantly larger then 0 (probability
99.5%) occurs for wire b where cmax = 0.26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

relative phase noise 

co
rr

el
at

io
n

 c
o

ef
fi

ci
en

t

w=0.53±0.03

Figure 2.15: Correlation dependence on phase noise. The correlation coefficient is
calculated between the measured data βmeas and the same data after a phase noise
contribution of relative amount r has been applied. The errorbars indicate the range
of ± one rms variation between several realizations of the same noise amplitude
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For the spectra β′ simulated in this way, the correlation coefficient with the mea-
sured data βmeas has been calculated. Figure 2.15 shows the result of this simulation
for wire b. The curves are however similar for all the wires. The errorbars indicate
the range of ± one rms variation between several realizations of the same noise am-
plitude. This simulation shows, that a measured correlation value of approximately
0.2 is needed to establish a correlation significantly different from 0 ( the propability
for c to be larger then zero is than 99.5%). This criterion can only be met for wire
b. However, the absence of a correlation for the other two wires does not firmly
establish the absence of correlation between the magnetic field fluctuations and the
surface structure. As there have been no explicit alignment marks on the wires, the
absolute position of the regions scanned by the atoms and by the interferometer is
not known exactly.
Figure 2.16 shows the measured fluctuations βmeas, the expected fluctuations based
on the Zygo measurements β′ and the original wire topography for the region of
maximum correlation above wire b.

2.3.4 Power Spectrum

In a different approach, that does not rely on the exact positioning of the topogra-
phy data relative to the magnetic field maps, the surface measurements are used to
extract not the phase information but the power spectrum. Detailed calculations of
the spectra, assuming a combination of top/bottom surface corrugations and bulk
fluctuations have been carried out by Y.Jaffa at Ben Gurion University [12]. The
results are summarized in figure 2.17 which shows a comparison of measured and
calculated Fourier spectra. In contrast to the two dimensional approach presented
above, the longitudinal power spectrum P1(kx) =

∑
ky
|β(kx, ky)|2 is used here.

Two main results can be deduced from these calculations. For the thick wire a pure
surface corrugations alone can not explain the observed magnitude of field fluctua-
tions. Some bulk contribution has to be assumed to explain the spectra measured by
the atoms. For wires b and c on the other hand, the observed fluctuations are sig-
nificantly smaller then what would be expected from pure top surface corrugations
and significantly larger then expected for a model where the top surface follows the
bottom surface without thickness modulations of the wire.
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Figure 2.16: Correlated regions of field fluctuations and surface topography. The
pictures show the region of maximum correlation coefficient cmax = 0.26 between
measured and expected angle variations for wire b. b1: measured angle variations
βmeas in units of rad. b2: expected angle variations β′ based on the surface topog-
raphy . b3: measured surface topography in units of A.
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Figure 2.17: Longitudinal power spectrum P1(kx). (Summary of the calculations by
Y.Jaffa at Ben-Gurion -University [12]) Solid line: a fit to a model assuming bulk
conductivity fluctuations δσ(k)/σ0 = (δσ(k0)/σ0) (k0/k)ν , with ν = 1 for wire a
and ν = 1/2 for wires b and c, δσ(k0)/σ0 for k0 = 2π/680µm is 3.33 10−4,4.32 10−5

and 2.32 10−5, for wires a,b and c respectively. The shaded area represents a one
standard deviation range obtained by varying the relative phases of different spectral
components δσ(kx, ky). Dashed line: expected power spectrum from the measured
top surface δz+ = δz and flat bottom surface δz− = 0. Dotted line: Expected power
spectrum for the case where the bottom surface varies exactly in the same way as the
top surface δz+ = δz− (no thickness variations). Dashed-dotted line: a combined
model assuming δz−(k) = Aδz+(k)e−(k/kc)2 , where A = 0.998 and kc = 0.764µm−1

for wire b and A = 0.999 and k0 = 1.548µm−1 for wire c. For the thick wire a it is
assumed that the spectrum of the bottom surface (substrate) δz−(k) is similar to that
of wire b. The line with circles in figure (a) represents a model assuming uncorrelated
top and bottom surfaces δz+ and δz−. All the surface models underestimate the
measured magnetic field fluctuations for the thick wire a.
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2.4 Conclusion

In conclusion it has been shown in this study that cold atom magnetometry is a
sensitive tool that is ideally suited to study long range transport phenomena in
quasi-two-dimensional solid state systems.
It has been found that angle variations of the current density in thin polycrstalline
gold films tend to form correlated patches that are oriented by ±45◦ towards the
axis of main current flow. This phenomenon has been explained in terms of selective
scattering at an isotropic defect distribution. The origin of defects has been shown
to have at least two different contributions, namely bulk and surface defects. For the
case of the 250nm thin wires a quantitative comparison with the measured surface
corrugations forces one to assume that the top surface follows the bottom surface
of the wire to a significant extent. For the 2µm thick wire, all surface effects taken
together cannot explain the observed significantly larger fluctuation magnitude. In
this case bulk defects have to make a contribution.
Taken together, the results may be interpreted within a picture of thin film growth,
where the top surface of the film initially follows the substrate surface, and than
slowly looses correlation to the bottom layer. Starting from a thickness of about
1µm the wire enters a bulk growth regime where the two dimensional symmetry of
columnar grain growth is broken. This effect may be connected to the significant
bulk defect contribution in the thick wire.
This study has been the first real space observation of long range current scattering
at static defects. It complements the information that can be obtained from low
temperature conductance measurements [5] and scanning tunneling potentiometry
[6]. It gives direct insight into the collective effect of Landauer’s residual resistivity
dipoles [4].
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2.5 Experimental Scan Parameters and
error Estimates

The ultra cold atomic samples used to probe the magnetic field landscape above the
sample wires are prepared in the setup described in [13]. 87Rb atoms are first laser
cooled, then optically pumped into the |F = 2,mF = 2 > state and in 20s of forced
evaporation in a magnetic trap of transverse and longitudinal trapping frequency
ω⊥ = 2π × 840Hz and ωx = 2π × 21Hz (see section 4.5 for measurements) cooled to
a temperature ∼ 1µK. From this trap which is situated at 100µm above the chip
surface, the atoms are transferred within a typical time of 800ms to the measurement
location and further cooled to the final temperature selected to optimally measure
the magnetic field variations. The resulting atom cloud is then typically 600 µm long
trapped in a quasi one dimensional geometry with a transverse trapping frequency
of ω⊥ = 2π × 500Hz and longitudinal trapping frequencies of ωx = 2π × 2.5Hz for
wire a and ωx = 2π×0.9Hz for wire b and c. The current through the sample wires
has been adjusted to 180mA in each case. The atomic density has been detected
by resonant absorption imaging after ≈ 1ms time of flight. For imaging (see section
4.2), a 50µs pulse of linear out of plane polarized light at an intensity below 10%
of the saturation intensity has been used. Employing diffraction limited optics, an
optical resolution of ∼ 3µm is achieved. The magnetic field angle variations have
been extracted from a measurement of potential variations, through changes in the
density of a Boltzmann distributed thermal cloud (see section 1.2). Expressed by
the experimentally accessed parameters, the field angle fluctuations of a single scan
line are determined by

β(x) = − (kBT/µBBy) log n1(x) (2.14)

where n1 is the line density (atoms/m) of the atomic cloud, By the transverse mag-
netic field produced by the homogenous part of the current density in the wire and
T the temperature of the cloud. Small fluctuations in the total number of atoms
between single scan lines result to first order only in a constant offset of the whole
line. If the density is normalized separately for each line this effect can be largely
suppressed. The most critical parameter that contributes to the noise and system-
atic uncertainty in this expression is the temperature. The homogenous magnetic
field on the other hand is not particularly sensitive and presents no further difficul-
ties.
A second quantity that is crucial in magnetic field microscopy is the exact height
level above the chip surface. As the Fourier components of β drops off exponentially
with e−kz the exact positioning is very important for the exact quantification of high
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spatial frequencies.
The calibration measurements for the temperature and the height level above the
chip surface will now be presented. The estimated errors are summarized in table
2.2.

wire a b c
Temperature T [nK] 286± 15 173± 2 92± 7
Scan height [µm] 3.5± 0.8 3.8± 0.4 4.0± 0.6
y center offset[µm] ±2µm ±2µm ±2µm

approx. y scaling error ±10% ±10% ±10%

Table 2.2: Error estimes for the magnetometry scans.

2.5.1 Temperature measurements

The temperature has been determined by a series of time of flight measurements(see
section 4.4). Figure 2.18 shows the atomic density distribution at increasing time
intervals after turning off the trapping potential. From such a series of measurements
two parameters can be extracted. The center of mass motion follows a free fall
parabola trajectory. Comparison with the known gravitational acceleration allows
the calibration of the length scale independently of any knowledge about the imaging
optics. The second parameter is the expansion speed of the cloud i.e. the increase
of the cloud’s width. The kinetic energy that is contained in this relative motion
allows to directly measure the temperature by

kBT =
m

2
v2
⊥ (2.15)

where v⊥ = dw⊥
dt and w⊥ is the Gaussian width of the density distribution d(z) =

d0 exp− z2

w2
⊥

. An error estimate on the length scale calibration can be directly ob-
tained from the center of mass motion and is taken into account in all the calibra-
tions. Figure 2.19 shows the estimated parameters from a least square fit to the
transverse density profile averaged over a small region of the cloud. In order to
estimate the influence of noise and possible density induced interaction effects, the
temperature has been extracted from the expansion series in two different ways. As
the cloud extends over a larger range in the x-direction, the Gaussian fit can either
be applied to the mean profile, averaged over the longitudinal direction, or to each
separate section at a fixed x position. A typical result of these two methods is shown
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Figure 2.18: Temperature and length scale from time of flight expansion. A series of
density distributions are acquired for different expansion times (time after switching
of the trapping potential). The center of mass motion follows a free fall parabola,
while the transverse expansion speed of the cloud is a measure of the temperature.
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Figure 2.20: Fit of the mean profile in comparison to fitting separate sections. Tem-
perature from mean profile Tm = (173.5 ± 5)nK, average temperature for single
section fits Ts = 169nK

in figure 2.20. These two methods agreed within the statistical error range. As no
larger deviations in the two methods have been observed, density and noise effects
are assumed to have no significant influence on the temperature estimation.
For the energy calibration of the microscopy scans the temperature has been mea-
sured at least at five equally space transverse positions within the scanned area to
exclude variations of the temperature with the scan position. The resulting values
are shown for wire a to c in figure 2.21 to 2.23. The red lines show the average
temperature, based on fits along single sections where as the blue lines indicate the
temperature due to a fit to the average profile. The adopted temperature value is an
error weighted average (see section 2.6.4) of these two values. The results for wires
a to c are T = 286± 15nK, T = 173± 2nK and T = 92± 7nK respectively.
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Figure 2.21: Wire a. Mean temperature from mean profile Tm = (290± 24) nK,
max/min values 307nK,281nK. Mean temperature from single shots Ts =
(284± 19), max/min values 311nK, 254nK Adopted Value: 286± 15nK
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Figure 2.22: Wire b. Mean temperature from mean profile Tm = (174± 3) nK,
max/min values 185nK, 168nK. Mean temperature from single shots Ts = (171± 3),
max/min values 182nK, 164nK Adopted Value: 173± 2nK
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Figure 2.23: Wire c. Mean temperature from mean profile Tm = (77± 11) nK,
max/min values 90nK, 62nK. Mean temperature from single shots Ts = (102± 9),
max/min values 117nK, 90nK Adopted Value: 92± 7nK
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2.5.2 Positioning and Height calibration

For the scanning microscopy the magnetic gradient field, produced by the homoge-
nous part of the current density has been used to provide the magnetic trapping
potential. A minimum in the absolute value of the magnetic field is established
by compensating the homogenous part of the wire field by homogenous external
bias fields. The spatial position of the minimum in the y − z plane is adjusted by
compensating the wire field at exactly the demanded scan position (y0, z0). For
the gradients used in this work, the additional influence of gravity is negligible. In
this way the two orthogonal homogeneous bias fields By and Bz have been used to
position the trap minimum. Initially, the absolute magnitude of these bias fields is
not known. They are however proportional to the current Iy/Iz through the coils so
that By/z = Bo

y/z +αy/zIy/z. The scan position in the y−z plane is then determined
in terms of the experimental parameters by

Bw
y (y0, z0) = Bo

y + αyIy

Bw
z (y0, z0) = Bo

z + αzIz

. By these equations the position calibration is reduced to the calibration of the
bias field parameters. For a scan height h close to the wire surface z = 0 and a
symmetric scan range around the wire center y = 0 the equations can be linearized
and the response between the change in the position coordinates and the bias field
currents is seen to be diagonal

gz + By(z = 0) = Bo
y + αyIy

gy = Bo
z + αzIz

Here, g is the gradient strength of the quadrupole field g = ∂By

∂z = ∂Bz
∂y above the

wire center. The trap position is therefore given in terms of the experimentally
determined parameters by

z =
(
Bo

y −By(z = 0)
)
/g + αy/gIy

y = Bo
z/g + αz/gIz

The determination of the field constants has been done in three steps.
First, the center position y = 0 is determined at a height z of ≈ 20µm. As the
imaging setup that has been used only had a view on the y − z plane, a direct
measurement of the y position is not possible. Instead, the change of the gradient
strength g with the y position has been used. Due to the mirror symmetry of
the rectangular wire, the magnetic field gradient g(y) is a symmetric function. As
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the gradient is directly proportional to the transverse oscillator frequency of the
trapping potential ω⊥, small changes in the gradient can be probed by transverse
center of mass oscillations of a trapped condensate(see section 4.5). This oscillation
mode has an extremely high quality factor and is therefore well suited for precision
measurements. In order to resolve small changes in the oscillator frequency ω(g)
an oscillation has been excited at different positions y and the amplitude A(T ) has
been detected after a fixed time T . A change in the amplitude A(T ) is then related
to a change in the frequency by A(T, g) = A0 cos (ω(g)T ). The phase change of the
cosine function can be directly related to the trap frequency

ω(g) =
1
T

arccos
A(T, g)

A0
(2.16)

The experimental result of this procedure is shown in figure 2.24.
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Figure 2.24: Change in amplitude of a transverse oscillation due to a change of the
y position. The signal encoded by the colormap is obtained from an average of the
atomic column density over the longitudinal direction after ≈ 8ms time of flight.
The oscillation time is T = 9ms at a distance of h ≈ 20µm above wire a which was
driven with 400mA.

From a quadratic fit to the phase change of the oscillation amplitude, the center
position above the wire can be determined. The fit to the data of figure 2.24 is shown
in figure 2.25. By this analysis the position of the wire center has been determined
with an accuracy of ±2µm.
In the second step of the position calibration, the absolute height above the wire cen-
ter has been measured for a series of different magnetic bias fields By by a reflection
measurement, using the gold surface as a mirror (see chapter 5). When illuminating
the absorbing cloud by a collimated beam that is slightly inclined towards the mirror
plane, an imaging system after the mirror that is focused on the plane containing
the atomic cloud and the center of the test wire will generate two focused images
of the object. The relevant beam paths are sketched in figure 2.26 a. For the first
image, the illuminating wave is first reflected by the mirror surface and then passes
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Figure 2.25: Quadratic phase change.Model fitted to the center of mass position
(blue line) of the data (red crosses) in figure 2.24: A(y) = cos a+by+cy2. Obtained
parameters a = −8.72± 0.06, b = (−7.4± 1.46)10−3µm−1, c = (4.5± 0.3)10−3µm−2

. Resulting error in the center position ±2µm.

through the absorber (blue rays). For the second, the illuminating wave first passes
the absorber and then reflects from the surface (black rays). Of these two images,
one shows the cloud at a distance h above the surface, the other at a distance h
below. The separation between the two corresponds to twice the distance of the
atomic cloud above the surface.
However, as this procedure measures the position of the cloud relative to the surface

height level, where the mirror image is reflected, the topography of the chip surface
has to be taken into account. The changing height level between adjacent wires
results in a discontinuous jump of the image position when the point of reflection
moves over such an edge. This transition occurs for wires a and b in the situation
sketched by figure 2.26 a and b (black beam paths). Additionally, shadowing and
diffraction by wire edges causes blind areas where the beam that is reflected by
the surface before passing the cloud is blocked by the obstacles. This situation is
encountered for wires a and c in the geometry sketched by 2.26 a and c (blue beam
paths). A height calibration scheme taking into account all these complications has
been implemented as follows.
Absorption images have been acquired for a series of distances h above the chip sur-
face. The normalized difference c(x, z) between an image with I ′(x, z), and without
I0(x, z) the cloud is calculated c = (I0 − I ′) /I0. A transverse section through such
a picture clearly shows two maxima in the absorption signal resulting from the two
images of the cloud. A typical section is shown in figure 2.27. The peaks around the
maxima do not necessarily have a Gaussian shape. As the chip surface acts as an
aperture which blocks an entire half space diffraction cannot be avoided for imaging
close to the mirror surface. Instead of assuming a particular model that predicts the
exact peak shape, an intuitive and largely model free approach may be used for the
determination of the distance between the two maxima. The left half of the cross
section data is moved over the right half of the same data set until the two subsets
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Figure 2.26: Reflection imaging above different wires. The figure shows a side view
onto the cloud which is colored in red. The x axis (longitudinal scan direction)
runs into the depicted cross-sectional plane. The wire layout of the chip is drawn in
yellow. The imaging beam enters from right and is detected by an imaging system
on the left.
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Figure 2.27: Transverse section of an absorption picture and its autocorrelation
function. Top panel: Transverse cross section through an absorption picture. The
absorption contrast c = (I0 − I ′) /I0 is scaled to a maximum value of one. bottom
panel: Autocorrelation signal of the absorption signal in the top panel.

have the best overlap. This procedure only relies on a symmetry of the left and the
right half of the data which is secured by the mirror geometry. Formally, the au-
tocorrelation function of the signal is computed. Figure 2.27 shows this function in
the lower panel for the signal which graph is shown in the panel above. In contrast
to the absorption signal itself the autocorrelation function has a nearly Gaussian
shaped maximum, also in the presence of diffraction. A Gaussian fit has been used
to determine the position of the side maximum which then corresponds to the height
of the cloud.
The autocorrelation method fails however as soon as the the two peaks in the ab-
sorption signal start to overlap. A transverse section in this regime is shown in figure
2.28. In this regime a sum of two Gaussian functions has been fitted to the double
peak structure.
The transverse profile data for different height levels above the three test wires are
shown, assembled into three pictures, in figure 2.29. In these pictures there are two
different kinds of breaks visible in the straight lines that are formed by the absorp-
tion maxima. The maxima on the left hand side of the pictures correspond to the
beam path, where the imaging light is reflected by the surface before encountering
the cloud. For such a path only shadowing of the image, but no jump in the max-
imum position occurs. The breaks in the lines of the top and bottom picture are
consistent with the surface structure depicted in figure 2.26 for an incident beam
that hits the surface under an angle of θ = 6.5◦ measured towards the chip sur-
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Figure 2.28: Overlapping absorption maxima. In the regime of overlapping peaks a
sum of two Gaussian curves has been fitted to the data.

face. (Expected break points from geometric optics at h = 21µm for wire a and at
h = 56µm and h = 23µm for wire c). The maxima on the right hand side belong the
imaging geometry, where the imaging beam enters the cloud before being reflected.
In this situation a jump in the apparent height occurs when the point of reflection
moves across a discontinuity in the surface height. (Expected jumps at h = 11µm
for wire a, at h = 26µm and h = 6µm for wire b.)
These data sets have been used for the height calibration of the microscopy scans.
For each wire, the height has been extracted by the autocorrelation procedure in
the regime where the maxima are clearly separable. A straight line has been fitted
to the and the resulting slope has then been used as a constraint for a straight
line fit in the regime where the double Gaussian method has been used. By this
combined procedure the position of the magnetometry scans has been determined
to be h = (3.5± 0.8)µm, h = (3.8± 0.4)µm and h = (4.0± 0.6)µm for wires a to c.
The indicated errors are 1σ ranges taking into account statistical errors only. The
combined result of both methods is shown in figures 2.30 to 2.32.

In the third and last step of the position calibration, the full magnetic field for-
mula above a rectangular wire has been implemented (see section 2.6.1) to compute
the appropriate bias field values also far from the constant gradient regime in the
trap center. The bias field constant αz which controls the scaling of the z axis has
been determined indirectly by adjusting it to a value that the scan height of ≈ 4µm
does not differ close to the wire edge (≈ 90µm from the center) from the value at
the wire center. This procedure uses the fast rotation of the quadrupole axis close
to the wire edge. Directly above the edge the height is determined nearly entirely
by the z component of the bias field which translates a change in Bz into a mea-
surable response of the height level. The error in the magnetic field ∆Bz can be
determined there from the error in the height level ∆z by ∆Bz = ∂Bz

∂z ∆z. Assuming
the magnetic field of a rectangular wire the computed gradients g′ = ∂Bz

∂z close to the
wire edge and g = ∂Bz

∂y above the wire center have been used to estimate a relative
error of the y position in the center of the wire to about 10%. A more precise error
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Figure 2.29: Transverse absorption profile for a series of different distances above the
three test wires. The colormap encodes the absorption contrast c in arbitrary units.
The h coordinate is the experimentally controlled parameter that adjusts the height
of the magnetic trap by appropriate homogenous magnetic fields. The z coordinate
is the length scale in the acquired absorption pictures. The images correspond to
the wires a to c from top to bottom.
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Figure 2.30: Wire a. Autocorrelation height h = aha + b, a = 0.72 ± 0.07,b =
(6.6 ± 0.3)µm. Gaussian height h = aha + b, b = (−0.1 ± 0.3)µm. Scan position
(adjusted height 5) h = (3.5± 0.8)µm (statistical error).
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Figure 2.31: Wire b. Autocorrelation height h = aha + b, a = 0.59 ± 0.01,b =
(7.5 ± 0.3)µm. Gaussian height h = aha + b, b = (0.8 ± 0.1)µm. Scan position
(adjusted height 5) h = (3.8± 0.4)µm (statistical error).
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Figure 2.32: Wire c. Autocorrelation height h = aha + b, a = 0.68 ± 0.01, b =
(3.88± 0.5)µm. Gaussian height h = aha + b, b = (−0.07± 0.05)µm. Scan position
(adjusted height 6) h = (4.0± 0.6)µm (statistical error).
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estimation is not possible by this method, as g′ depends sensitively on the y position
close to the wire edge.

2.5.3 Magnetic Field

The last quantity that is needed for a calibrated magnetometry is the magnetic field
value By which is produced by the homogenous part of the current density. Two
possible error source for the exact determination of this quantity have been taken
into account. An inaccuracy in the positioning of the cloud will lead to a wrong
estimate. Figure 2.33 shows the relative change of the magnetic field magnitude
with the displacement from the central scan position at h = 3.5µm above the wire
center. Over the whole scan range, the field changes by less than 5%. As this error
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Figure 2.33: Relative field strength variation at the scan height. ∆B/B for the scan
center at h = 3.5µm above the center of a 2.5µm thick wire. The relative change
is approximately the same for a 0.250µm thick wire. The absolute field values at
the scan center are 5.48G 5.52G respectively for IChip = 180mA. (For the magnetic
field of the rectangular wire see section 2.6.1)

does significantly deteriorate the total error of the magnetic field angle the the bias
field has been assumed to be a constant.
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2.6 Appendix

2.6.1 Magnetic field of a rectangular wire

The magnetic field produced by a wire of rectangular cross section may be directly
computed by Biot-Savart’s law. This is equivalent to partitioning the wire into many
thin wires and summing up their contributions to the total field. For a wire of width
w and height h centered at x = 0, y = 0 and running along the z direction the
magnetic field calculated from

B(y, z) =
µ0j

2π

∫ h
2

−h
2

dz′
∫ w

2

−w
2

dy′
−(z − z′)ey + (y − y′)ez

(y − y′)2 + (z − z′)2
(2.17)

yields the two components

Bx(x, y) =
µ0I

4πwh

(
2

(
y − h

2

)(
arctan

x + w
2

y − h
2

− arctan
x− w

2

y − h
2

)
− (2.18)

2
(

y +
h

2

)(
arctan

x + w
2

y + h
2

− arctan
x− w

2

y + h
2

)
+

(
x− w

2

)
log

(x− w
2 )2 + (y + h

2 )2

(x− w
2 )2 + (y − h

2 )2
+

(
x +

w

2

)
log

(x + w
2 )2 + (y − h

2 )2

(x + w
2 )2 + (y + h

2 )2

)

and By(x, y) which is obtained from Bx by the following substitution rule

x → y (2.19)
y → x

Bx → −By
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. The gradient components of the field are

∂Bx

∂y
=

µ0j

2π

(
arctan

x− w
2

y − h
2

− arctan
x + w

2

y − h
2

(2.20)

− arctan
x− w

2

y + h
2

+ arctan
x + w

2

y + h
2

)

∂Bx

∂z
=

µ0j

4π

(
log

(w − 2x)2 + (h + 2y)2

(w − 2x)2 + (h− 2y)2
(2.21)

+ log
(w + 2x)2 + (h− 2y)2

(w + 2x)2 + (h + 2y)2

)

from which the quadrupole strength can be extracted by

g =

√(
∂Bx

∂x

)2

+
(

∂Bx

∂y

)2

(2.22)

In the limit of a thin wire (h → 0) the field reduces to

Bx(x, y) = − µ0I

2πw

(
arctan

x + w
2

y
− arctan

x− w
2

y

)
(2.23)

By(x, y) =
µ0I

2πw

1
2

log
(x + w

2 )2 + y2

(x− w
2 )2 + y2

(2.24)

2.6.2 Fourier Spectrum

The function β(x, y) defined on the rectangle [−Lx/2 < x < Lx/2]× [−Ly/2 < y <
Ly/2] can be expanded into a sum of plain waves

β(x, y) =
LxLy

(2π)2

∫ π/∆x

−π/∆x
dkx

∫ π/∆y

−π/∆y
dky exp [i (kxx + kyy)]β(kx, ky)(2.25)

β(kx, ky) =
1

LxLy

∫ Lx/2

−Lx/2
dx

∫ Ly/2

−Ly/2
dy exp [−i (kxx + kyy)]β(x, y)

.

In the case of a bandwidth limited function, f(x, y) is completely defined by its
values at x = ∆xn and y = ∆yl with −Nx/2 < n < Nx/2 − 1 and −Ny/2 < l <
Ny/2− 1 and the Fourier transform is given by the discrete sum

β(m, k) =
1

NxNy

Nx/2−1∑

n=−Nx/2

Ny/2−1∑

l=−Ny/2

exp
[
−i

(
∆x2π

Lx
mn +

∆y2π

Ly
kl

)]
β(x, y) (2.26)
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The total variance β2
rms of β(x, y) can be computed equivalently in Fourier and

real space (Parseval’s theorem)

β2
rms =

1
LxLy

∫ Lx/2

−Lx/2
dx

∫ Ly/2

−Ly/2
dy |β(x, y)|2 (2.27)

=
1

NxNy

Nx/2−1∑

n=−Nx/2

Ny/2−1∑

l=−Ny/2

|β(n, l)|2

=
Nx/2−1∑

m=−Nx/2

Ny/2−1∑

k=−Ny/2

|β(m, k)|2

=
LxLy

(2π)2

∫ π/∆x

−π/∆x
dkx

∫ π/∆y

−π/∆y
dky |β(kx, ky)|2

2.6.3 Gaussian Noise

The current density is determined by

jy(k)/j0 = −1
2

σk

σ0
sin 2θ (2.28)

assuming the noise model σk
σ = exp

(−k2(l/2
√

2)2
)
, the normalized correlation func-

tion is given by

g(r) = exp
(
−r2

l2

)
(2.29)

which has the correlation length
(∫

d2xg(|x|)|x|2
)1/2

= l (2.30)

2.6.4 Error weighted mean value

Assume a set of N measurements xi of known error σi. From these an estimate of
the mean value that has the smallest error shell be constructed. The general mean
value

x̄ =
∑

i

cixi (2.31)
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has the error
σ2 =

∑

i

c2
i σ

2
i (2.32)

where the coefficients ci are restricted by
∑

ci = 1. In order for the total error to
be minimal the equation

∂

∂ci

(
σ2 − λ

∑

i

ci

)
= 0 (2.33)

has to be fulfilled which amounts to

ci =
λ

2σ2
i

=
1
σ2

i

/
∑

i

1
σ2

i

(2.34)

. For this choice of coefficients the error of the mean value is given by

σ2 =
∑

i

1
σ4

i

σ2
i /

(∑

i

1
σ2

i

)2

= 1/
∑

i

1
σ2

i

(2.35)
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3 Current Imaging and Defect Sens-
ing

3.1 Introduction

Any oscillating charge or current distribution radiates electromagnetic waves that
carry characteristic information about the source distribution. In general, imaging
is nothing but the reconstruction of the generating charge or current density from
the radiated wave-field. This concept and the underlying principles cover a much
broader range than just the optical frequency domain. Even static sources produce
an electromagnetic field that can be treated within the same framework as the fields
in the optical case. Major differences come into play only with the availability of
optical elements like lenses or mirrors and detectors.
In this spirit the imaging of static currents in a thin metallic film will be examined
in this chapter. The first section is concerned with the generation of the magnetic
field, its free space propagation and the question what information may be retrieved
from a field measurement outside the metallic film. The treatment has been inspired
by [1]. The picture presented here is however much more general and substantially
different from this early treatment.
In the second section, several models for the sources of current deviations in a grainy
film will be developed. These models allow to link magnetic field measurements to
those material properties that influence the charge transport. For the thin (1-D)
wire geometry treatments taking into account boundary corrugations have already
been given by [2, 3]. However, here the focus is on the thin films, which are the
relevant case for spatially resolved current microscopy. An extension to the model
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presented here that also takes into account the finite width of the thin film wires
has been developed by [4].

3.2 Magnetic Field Propagation

A quasi-static current density flowing inside a metal-sheet can be traced from outside
in two possible ways. By scanning the surface with a voltage probe information on
the local charge distribution may be obtained. Assuming a diffusion driven transport
the current density can be linked to gradients in the charge density. Such a procedure
is indirect and relying on a specific transport model. The most immediate connection
to the current density is provided by the magnetic field. Any current distribution
generates a characteristic field independently of the material and its specific kind of
transport mechanism. This very favorable property provokes the question in how
far a complete reconstruction of the current density is possible once the magnetic
field outside the conductor is known. The quantitative answer to this question will
be given in the following section.

3.2.1 Wavepropagation: Near and Far Field

Maxwell’s equations imply that each magnetic field B is generated by a current
density j according to the wave equation

∇2B− 1
c2

∂2B
∂t2

= −µ0∇× j (3.1)

As any time dependence of the fields may be represented by a linear superposition of
harmonic functions it is no restriction to assume a harmonic time dependence from
the beginning

B(x, t) = B(x)eiωt

j(x, t) = j(x)eiωt

Substitution of this specific form into the wave equation reduces it to the Helmholtz
equation

∇2B + κ2B = −µ0∇× j (3.2)
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where κ = ω
c . The main emphasis in the treatment will be put on the thin film

geometry. It is assumed that the current density is confined to a thin conductive
layer of thickness d that is centered around the z = 0 plain. The magnetic field is
measured in the detection plain at z = h. The propagation process from the source
to this plain can be formulated most clearly if both field and current density are
decomposed into a superposition of plane (2D) Fourier modes

j(x, z) =
1
2π

∫
d2k jk(z)eik·x

B(x, z) =
1
2π

∫
d2k Bk(z)eik·x

. x and k are two-component vectors, specifying position and wavevector in the
x-y plain. In order to find the relation between current and field modes the Fourier
decomposition is substituted into the Helmholtz equation

(
κ2 − k2 +

∂2

∂z2

)
Bk(z) = −µ0

(
ik× jk(z) + ez

∂jk(z)
∂z

)
(3.3)

. This is a linear, ordinary, inhomogeneous differential equation. Its solution can be
formulated in terms of a Greens function G(z, z0) that is determined by the response
to a delta function source term(

κ2 − k2 +
∂2

∂z2

)
G(z, z0) = −δ(z − z0)

and appropriate boundary conditions. For z 6= z0 the right hand side vanishes and
the Greens function must be a linear superposition of exponentials. If we further
restrict the solutions to those physically meaningful cases where G(., .) remains finite
for any k and |z| → ∞ the Greens function must be of the form

G(z, z0) =

{
ake

i
√

κ2−k2(z−z0) for z ≥ z0

bke
−i
√

κ2−k2(z−z0) for z < z0

These two solutions have to be joined at z = z0 in a way that results in the demanded
δ-function of the second derivative. This can be accomplished by

G(z, z0) = −ei
√

κ2−k2|z−z0|

2i
√

κ2 − k2
(3.4)

Using this Greens function the solution to (3.3) for a general source term can now
be written in terms of the linear superposition of shifted Greens functions

Bk(z) = − µ0ik
2i
√

κ2 − k2
×

∫ d
2

− d
2

dz0jk(z0)ei
√

κ2−k2|z−z0|

− µ0ez

2i
√

κ2 − k2
×

∫ d
2

− d
2

dz0
∂jk(z0)

∂z0
ei
√

κ2−k2|z−z0|
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Integration by parts in the second term allows the simplification

Bk(z) = − µ0ik
2i
√

κ2 − k2
×

∫ d
2

− d
2

dz0jk(z0)ei
√

κ2−k2|z−z0|

− µ0ez

2
×

∫ d
2

− d
2

dz0jk(z0)sign(z − z0)ei
√

κ2−k2|z−z0|

For an observation point above the slab (z > z0) the sign-function in the second
term may be skipped and the expression further simplifies to

Bk(z) = −µ0d

2

(
k√

κ2 − k2
+ ez

)
× j̄kei

√
κ2−k2(z− d

2
) (3.5)

where the effective two dimensional current density has been introduced as

j̄k =
1
d

∫ d
2

− d
2

dz0jk(z0)ei
√

κ2−k2( d
2
−z0) (3.6)

. These are the key equations that relate the detected field to the source current
density. They are the starting point for a spatial reconstruction or imaging of a
current density.
Considering the spatial dependence of Bk(z), the connection from the current den-
sity to the magnetic field can be viewed as a two step process. First, a local magnetic
field is generated directly above the current layer

Bk(d/2) = −µ0d

2

(
k√

κ2 − k2
+ ez

)
× j̄k

and second, this field propagates from the source to the detection plain

Bk(z) = Bk(d/2)ei
√

κ2−k2( d
2
−z0)

Both, generation and propagation show two different regimes depending on
whether the plain wave modes have a wave vector |k| < κ or |k| > κ. For the
first case, the propagation is described by a pure phase factor. For the second, the
exponential turns into a real valued damping term.
This qualitative difference marks the border between propagating waves that travel
away from the source and evanescent waves that are bound to the near field. The
usual optical imaging is performed in the far field. In this regime the propagation
just results in a unitary transformation of the wavefront. Such a transformation has
a unique inverse and the propagation can be reversed by a lens or mirror system. In
the near field case, the propagation process is non unitary. The exponential decay
term performs an irreversible low pass filter on the wavefront. Spatial information is
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lost with increasing distance to the source plain. The cross over point between the
two regimes is tuned by the angular frequency ω. The case of static fields is obtained
by the limiting procedure ω → 0 which has the consequence that all modes become
evanescent. Figure (3.1) depicts the cross over between the near and far field regime
for the magnetic field above a thin rectangular wire. As the near field regime is

λ =0.010 µ m

λ =0.100 µ m

λ =1.000 µ m

λ =10.000 µ m

−50 −25 0 25 50
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) 
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.u
.]

Figure 3.1: Imaging from near to far field domain. The series of figures shows the y
component of the magnetic field 2µm above a thin rectangular wire of 5µm width
that runs along the x direction. By changing λ = 2π

κ at a fixed observation height,
the detected field crosses from the far to the near field regime from top to bottom.

approached the typical diffraction pattern disappears where the phase factor turns
into a real valued damping term.
It has been shown now that the imaging of static currents may be conceived as a
special kind of near field microscopy. As this domain will be of exclusive concern in
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the following discussions the imaging relations are restated for this case explicitly

Bk(z) =
µ0d

2

(
i
k
k
− ez

)
× j̄k e−k(z− d

2
) (3.7)

where

j̄k =
1
d

∫ d
2

− d
2

dz0jk(z0)e−k( d
2
−z0) (3.8)

Returning to the question of the feasibility of a complete current reconstruction from
the measured magnetic field, one can make out three potential obstacles.
The exponential decay term, introduced by the propagation process, can be, at least
in principle, avoided by measuring the magnetic field close enough to the source
plane that it can be neglected for the length scales of interest. A more fundamental
limit is set by the thickness of the metallic film. As the magnetic field can only be
probed outside the material the detected signal is always an average over the fields
produced by the current at different height levels z within the wire. In order to
resolve this ambiguous situation a specific model for the current flow inside the wire
has to be assumed. This modelling that connects the effective current density to
the real current density will be the concern of section 3.3. The third problem for a
reconstruction is the appearance of the cross product between the effective current
density and the vector

(−ikk + ez

)
. A current component parallel to this vector

does not generate a magnetic field. The next section shows how this problem can
be resolved.

3.2.2 Uniqueness of the Effective Current Reconstruction

Judging from equation (3.7) alone one could be let to the conclusion that the con-
nection between the magnetic field and the effective current density is not a one
to one correspondence. This would mean that there are current distributions that
result in no magnetic field. These zero field currents j̄0k would be parallel to the
vector

(
ikk − ez

)
. However, any current distribution has the additional restriction

that it has to fulfill the charge conservation

∇ · j = 0

. Translating it into Fourier space results in

ik · jk(z) +
∂jz

k(z)
∂z

= 0
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which can be integrated to yield the corresponding expression for the effective current
density (

i
k
k
− ez

)
· j̄k = 0 (3.9)

A zero field current density j̄0k does therefore not exist.

This shows that the unique reconstruction of the effective current density is
possible, if the magnetic field directly above the source plain is known. It is explicitly
given by

j̄k =
2

µ0d

ik
k
×Bk(d/2) (3.10)

Which can by checked by substitution into equation 3.7 and using the Maxwell
equation ∇ ·B = 0.
The only fundamental ambiguity of the current detection by magnetometry that
can not be resolved in principle is the averaging procedure that reduces the current
density to the effective two dimensional current density. In order to invert this
relation and to obtain information on the transverse distribution of the current
density inside the thin film, additional model assumptions on the current flow have
to be made. In this spirit, the influence of different defects on the current density
will now be presented in the following section.
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3.3 Magnetometric Defect Detection

In a straight completely homogenous wire the current flow follows uniformly the wire
direction. However, such a completely homogenous system is rarely encountered in
the real world. Faults in the crystal structure and corrugations of the surface cause
the current to deviate from its ideal path. The straight wire geometry is ideal to
study such material defects. In the absence of any fluctuations in the current density,
the magnetic field, generated by a straight wire points strictly perpendicular to the
wire axis. A magnetic field sensor that is only sensitive to the field component along
the wire axis can therefore detect a background free signal that is directly related
to a local change of the current direction.
In the following section different perturbation scenarios will be discussed in detail
and their influence on the local current direction is considered.
The adopted geometry that is assumed in this treatment is depicted in figure 3.2. A
flat wire of thickness d is centered at z = 0 and runs along the x-direction. The width

Figure 3.2: Choice of axis directions for the modelled chip wire.

of the wire shell be large compared to the thickness, so that the wire approximates
the limiting case of a thin film. Effects that are connected to the finite width are
assumed to be small and will be neglected throughout.

3.3.1 General properties

On macroscopic length scales the collective effect of many defects may be described
by an effective ohmic conductivity that shows small spatial variations around the
value of the homogenous bulk material. The current flow in such a system is deter-
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mined by three equations:

j = σE (3.11)
∇ · j = 0

∇×E = 0

the first is Ohm’s law, the second expresses charge conservation and the third is
a static Maxwell equation. In order to illustrate the interplay of these equations
two simple examples will now be presented, before the general defect models are
discussed.

Maybe the simplest non trivial situation is that of a sudden jump in the conduc-
tivity across a plane surface. In this model the conductivity of the material plays
a similar role for the current density as the index of refraction does for an electro-
magnetic wave. The geometry of the problem is depicted schematically in figure 3.3.
A thin plane parallel layer of conductivity σ + ∆σ is embedded into the otherwise

Figure 3.3: Refraction of the current density. Two regions of bulk conductivity σ are
separated by a thin layer of lower conductivity σ + ∆σ. This results in a refraction
of the current density.

unperturbed bulk material of conductivity σ.
The equations 3.11 enforce certain continuity conditions on the current density and
the electric field that have to hold across the discontinuous change in conductiv-
ity. Charge conservation demands continuity of the current density component that
is normal to the interface j⊥ and the static Maxwell equation forces the parallel
component of the electric field E‖ = j‖/σ to be continuous :

j⊥ = j′⊥ (3.12)
j‖/σ = j′‖/ (σ + ∆σ)
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The quantities within the perturbed layer are denoted by primed symbols in these
equations. As the normal component of the current density is continuous, the normal
component of the electric field experiences a jump E′

⊥ = σ/σ′E⊥ which is caused
by surface charge on the interfaces. These charge layers produce an electric field
that is perpendicular to the interface and that causes by Ohm’s law a deflection
of the current. Using the surface normal vector n, the continuity conditions may
be combined into a single vector equation for the change of the current density
∆j = j′ − j

∆j =
∆σ

σ
n× (j× n) (3.13)

If the current variation is small the dominant effect of the conductivity perturbation
is to induce a change in the current direction. Assuming an incident current flowing
along the x-axis j = jex and a normal vector in the x-y plane n = cos θex + sin θey

the deflection angle of the current density α ≈ ∆jy/j is approximately given by

α ≈ −1
2

∆σ

σ
sin 2θ (3.14)

Depending on the direction of the normal vector, the defect layer has a different
efficiency for deflecting the current density. The direction of a current that impinges
upon the layer under normal incidence or parallel to it will not be altered. The
defect is most efficient for θ = ±45◦.
The same kind of symmetry can be directly visualized when a cylindrical defect in
the film is considered. A small localized change in the conductivity leads to a pile up
of charge in front of the obstacle and a depletion behind it. Assume the homogenous
current j0 = j0ex impinging on a cylindrical shaped defect of radius R, where the
conductivity is reduced from its bulk value σ to σ + ∆σ. The potential produced
by the defect is that of a charge dipole, which is aligned along the axis of incident
current flow j0 = σE0. The electric field of this dipole induces by Ohms’ law a small
deflection α ≈ jy/j0 of the current density. The angle can be expanded to first order
in ∆σ/σ as

α =

{
1
2

R2∆σ
σ

sin 2θ
r2 for r > R

0 for r ≤ R
(3.15)

(See section 3.4.1 for the exact result.) This distribution is depicted in figure 3.3.1.
As the cylindrical surface combines all possible directions of the surface normal vec-
tor n one can interpret the observed symmetry in the current flow as showing the
response to plane like defects of different orientation.

In order to develop a formalism that is able to treat the general case of an
arbitrarily varying conductivity one can proceed along the same physical picture
that has been followed in the example cases. A change in the conductivity induces
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Figure 3.4: Angle deviation of the current density β in the flow around a cylindrical
defect. The current impinges on the hole from the left. The length is measured
relative to the defect radius R, and the angle β in arbitrary units.

a charge density ρ which can be computed from the Maxwell equation ∇ ·E = ρ/ε0
and Ohm’s law

ρ = −ε0
∇σ

σ2
· j ≈ −ε0

∇σ

σ2
· j0 (3.16)

In the approximation, the exact current density j is replaced by the homogenous
part j0 which is the current density in the absence of defects. This perturbative
treatment is well justified for the measurements of this thesis, as the fluctuations
in the current density are extremely small. Using this charge density, the electric
potential φ due to the perturbation may be computed from the Poisson equation

−∇2φ = −∇σ

σ2
· j0 (3.17)

so that the angle deflections αy = jy/j0 and αz = jz/j0 are given by

αy/z = −∇φ/E0 (3.18)

.
Using this approach the effect of surface roughness and bulk defects will now be
analyzed.
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3.3.2 Surface Defects

The conductivity model that has been introduced in the last section also covers
the effect of surface corrugations. The boundary surface is nothing but a sharp
jump in conductivity and is therefore included by the model. However, the current
density may be found more easily for this case by directly considering the boundary
conditions on the electric potential. It is assumed that the dominating part of the
electric field is the homogenous component along the wire direction E0 = j0/σ. The
total electric field can be decomposed into the homogenous part and the fluctuating
part that is described by the electric potential φ

E =
j0

σ
ex −∇φ (3.19)

The normal component of the current density is continuous across the boundary
surface. As there is no current flow on the outside the normal component also
has to vanish on the inside of the boundary. By Ohm’s law the current density
is proportional to the electric field. Therefore, also the normal component of the
electric field has to vanish on the boundary

n ·E = 0 (3.20)

The surface normal n itself is not directly accessible by the standard methods of
surface characterization, like interferometry or scanning probe techniques. In these
cases the surface topography of the top and bottom surface ht/b(x) can be used for
the calculation of the normal vector. For small variation amplitudes, the normal is
given by

n ≈ ez −∇h (3.21)

The leading order effect on the electric field and therefore on the current density
is contained in the changing surface normal. The actual variations in the surface
position are small and its influence will be neglected compared to the effect of the
changing normal vector. It will therefore be assumed that the boundary surfaces
are sill positioned at z = ±d/2.
The boundary condition on the electric field can now be translated to the electric
potential φ

∂φ

∂z
(z = ±d/2) = −∂ht/b

∂x
E0 +∇ht/b · ∇φ ≈ −∂ht/b

∂x
E0 (3.22)

the term that has been skipped in the last approximation contains a product of two
small amplitudes and is therefore neglected.
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Inside the bulk of the wire where no perturbations are assumed, the potential has
to fulfill the Laplace equation

−∇2φ = 0 (3.23)

In a similar way as for the calculations of the magnetic field in the previous section,
the problem is greatly simplified by using a decomposition of the potential into plain
Fourier modes

φ(x, z) =
∑

k

Ekfk(z)eik·x (3.24)

In order for this Ansatz to fulfill the Laplace equation, the transverse mode function
fk(z) has to be a linear combination of exponentials

fk(z) = a+ekz + a−e−kz (3.25)

The coefficients a± allow to accommodate for different boundary conditions. As-
suming that the corrugations of the top and bottom surface are represented by the
Fourier decomposition

ht/b(x) =
∑

k

h
t/b
k eik·x (3.26)

the boundary condition of equation 3.22 translates into an equation for the Fourier
coefficients

Ek
∂fk

∂z
(z = ±d/2) = −E0ikxh

t/b
k . (3.27)

Assuming two transverse mode functions f
t/b
k (z) that fulfill

∂f t
k

∂z
(z = d/2) = 1

∂f t
k

∂z
(z = −d/2) = 0 (3.28)

∂f b
k

∂z
(z = d/2) = 0

∂f b
k

∂z
(z = −d/2) = −1

the Fourier coefficients for the potential and the corresponding transverse mode
functions can be written as

Ek = −ikxdE0 (3.29)

fk(z) =
ht
k

d
f t
k(z) +

hb
k

d
f b
k(z)

By construction, this combination fulfills the boundary conditions on both, top and
bottom surface.
Alternatively it is possible to write the height corrugations in terms of thickness and
center modulations of the wire which correspond to symmetric and antisymmetric
combinations of the top and bottom layer roughness

hs
k

d
=

1
2

(
ht
k

d
+

hb
k

d

)
(3.30)

ha
k

d
=

1
2

(
ht
k

d
− hb

k

d

)
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Thickness variations ∆d of the wire are related to the asymmetric amplitude by
∆d = 2ha. The four different fundamental cases of top surface corrugations only
(hb = 0), bottom surface corrugations only (ht = 0), symmetric modulations of both
top and bottom layer (ht = hb) and antisymmetric thickness modulations (ht = −hb)
are summarized for comparison in figure(3.5).

top surface corrugation

x

bottom surface corrugation

symmetric modulation antisymmetric modulation

Figure 3.5: The different basic types of surface modulation.(top left) Top surface
corrugations. (top left) Bottom surface corrugations.(bottom left) Wire center
modulations. (bottom right) Thickness modulation

Using the description in terms of thickness and center modulations, the Fourier
coefficients and the mode functions of the potential become

Ek = −ikxdE0 (3.31)
fk(z) = hs

kfs
k(z)ha

kfa
k(z)

where

f s
k(z) = f tk(z) + f bk(z) (3.32)

fa
k(z) = f tk(z)− f bk(z)

In principle both, the separate description of the surfaces or of the wire thickness and
center position are equivalent pictures. The latter however is more convenient as it
decomposes the modulations in terms of quantities that are immediately connected
to the average response of the current density.
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The symmetric and antisymmetric mode functions are given explicitly by

f s
k(z) =

d

κ
tanh

κ

2
sinhκ z

d

sinh κ
2

fa
k(z) =

d

κ
coth

κ

2
coshκ z

d

cosh κ
2

(3.33)

where κ = kd. The spatial dependence of the various mode functions is compared
in figure (3.6) for different values of k. Two qualitatively different regimes can
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Figure 3.6: Transverse mode functions fk(z). The symmetric, antisymmetric and
top mode function are shown for different values of kd. (top panel): Small kd
regime. Only the symmetric contribution of the mode functions makes a significant
contribution to the average current. (bottom panel): Large kd regime. The modes
behave like surface waves where the current is localized close to the boundaries.

be discerned according to the degree of localization of the functions. For small
wavevectors kd << 1, the current extends over the full thickness of the wire. In the
opposite limit of kd >> 1 the current is localized to the source of the perturbation i.e.
at the surfaces and drops off exponentially into the bulk. In this regime the modes
behave like typical surface waves. For the experiments that have been performed in
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this work this regime cannot be resolved. As the thickness of the wires is ≤ 2µm the
optical resolution of approximately 3µm is not good enough to resolve these length
scales.
It is a simple matter of taking the gradient of the potential, to obtain the electric
field and therefore also the current fluctuations

∆j = −σ∇φ = j0

∑

k

ikxd

(
∂fk

∂z
(z)ez + ikfk(z)

)
eik·x (3.34)

. The explicit expressions in terms of symmetric and asymmetric modulations are
given by

∆jsk = j0ikxd
hs
k

d

[
coshκ z

d

cosh κ
2

ez + i
kd

κ
tanh

κ

2
sinhκ z

d

sinh κ
2

]
(3.35)

∆jak = j0ikxd
ha
k

d

[
sinhκ z

d

sinh κ
2

ez + i
kd

κ
coth

κ

2
coshκ z

d

cosh κ
2

]
(3.36)

These expressions now characterize the current flow inside the wire in terms of
measurable surface variations. The magnetic field that is produced by them can be
calculated using equation 3.7. Substituting the current density into this equation
results in the magnetic field angle deviations Bx/B0

β(x, z) = −
∑

k

eik·x kxky

k2

2hs
k

d
ws(κ) e−k(z−d/2) (3.37)

β(x, z) = −
∑

k

eik·x kxky

k2

2ha
k

d
wa(κ) e−k(z−d/2) (3.38)

where the weight factors are given by ws(κ) and wa(κ) are given by

ws =
1
d

∫ d
2

− d
2

dz′e−k(d/2−z) κ

2

(
coshκ z′

d

cosh κ
2

+ tanhκ/2
sinhκ z′

d

sinh κ
2

)

=
1
2

(
1− e−κ

)
(3.39)

and

wa =
1
d

∫ d
2

− d
2

dz′e−k(d/2−z) κ

2

(
sinhκ z′

d

sinh κ
2

+ cothκ/2
coshκ z′

d

cosh κ
2

)

=
1
2

(
1 + e−κ

)
(3.40)
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3.3.3 Bulk Defects

In the same way as corrugations in the external boundaries can induce deviations in
the current path, internal boundaries between different crystalline regions can act
in a similar way. Depending on how the single grains group together, the electrical
contact between them may change. On a larger scale, the accumulated effect of
many grain defects may be described by the effective conductivity σ(x).
It will be assumed that all the defects reach down straight from the top to the
bottom surface. The situation is depicted schematically in figure (3.7). As only

Figure 3.7: Symmetry of the grain structure in thin film wires.

bulk effect defects are considered now, the boundaries are assumed to be completely
flat which forces the z-component of the current density to have a zero at the surface.
In contrast to the case of boundary corrugations, the source for the fluctuations sits
now inside the bulk material and may be incorporated explicitly by a source term
in the poisson equation 3.17.
As in the case of boundary corrugations the situation may be analyzed most easily
by a decomposition of the electrical potential in terms of plain Fourier modes

φ(x, z) =
∑

k

Ekfk(z)eik·x (3.41)

. In the present case however, a source term is added to the Laplace equation in the
bulk

∇2φ =
j0

σ2
0

∂σ

∂x
(3.42)

In general, any conductivity may be decomposed into plane Fourier modes on
each vertical section

σ(x, z) =
∫

dz0

∑

k

σk(z0)δ(z − z0)eik·x (3.43)
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Once the Poisson equation is solved for a single mode in this decomposition, the
general solution may be composed by superposition. Let’s consider therefore the
equation for the generic source mode

∇gk,z0 =
j0

σ2
0

ikxσkδ(z − z0)eik·x (3.44)

the particular solution to this equation is given by

gi
k,z0

(x, z) = − j0

σ2
0

ikxσk
e−k|z−z0|

2k
eik·x (3.45)

in order to fulfill the boundary conditions the normal derivative has to vanish on
the top and bottom surface. The boundary terms of the particular solution

∂gi
k,z0

∂z
(z = ±d/2) = ∓kgi

k,z0
(z = ±d/2) (3.46)

may be compensated by an appropriate homogenous solution. The total solution,
fulfilling the boundary conditions is therefore given by

gk,z0(x, z) = −i
j0

σ2
0

kx

2k
σk × (3.47)

[
e−k|z−z0| + e−kd/2

(
sinh kz0

sinh kz

cosh kd/2
+ cosh kz0

cosh kz

sinh kd/2

)]
eik·x

The potential for an arbitrary conductivity fluctuation is composed of these modes
by

φ(x, z) =
∑

k

∫
dz0 gk,z0(x, z)eik·x (3.48)

If the conductivity does not change along the vertical direction, the integral over the
transverse direction may be carried out separately. The formula simplifies then to

φ(x, z) = −i
j0

σ2
0

∑

k

eik·xkx

k2
σk (3.49)

which results in the current deviation

∆jy = −j0

∑

k

eik·xkykx

k2

σk

σ0
(3.50)

from this expression the magnetic field may be evaluated according to equation 3.7
as

Bx =
µ0dj0

2

∑

k

eik·xkxky

k2

σk

σ0
wb

k (3.51)

where the mode weighting factor is given by

wb
k =

1
d

∫ d
2

− d
2

e−k(d/2−z) =
1− e−kd

kd
(3.52)
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3.3.4 Comparison of Bulk and Surface Models

When comparing the formulas for the magnetic field that is produced by the different
defect types, it becomes apparent that all the models may be written in terms of an
effective conductivity

Bx(x, z) =
µ0dj0

2

∑

k

eik·xkxky

k2

σeff
k

σ0
wk (3.53)

Depending on the explicit model, the relative fluctuations of the conductivity are
either related to thickness fluctuations, center fluctuations or directly to real con-
ductivity variations. The only difference between the defect scenarios is the different
spectral weighting factor for each model.
A feature that all models have in common is the peculiar symmetry introduced by
the kxky/k2 factor. If the polar coordinates (kx, ky) = k(cos θ, sin θ) are introduced
in k space this factor equals the already familiar 1/2 sin 2θ dependence. For an
isotropic effective conductivity this factor leads to a power spectrum which is con-
centrated around the ±45◦ directions.
For a comparison of the model dependent properties the different parameters are
summarized in tabular 3.1. The graphs of the spectral weighting factors wk are

defect type σeff
k /σ0 wk

thickness 2ha
k/d

(
1 + e−kd

)
/2

bulk σk/σ0

(
1− e−kd

)
/kd

center 2hs
k/d

(
1− e−kd

)
/2

Table 3.1: Spectral weighting factors of different defect types. ( ha and hs are
related to the top and bottom surface corrugations ht, hb by ha = 1/2(ht − hb) and
hs = 1/2(ht + hb).)

plotted in figure (3.8). Experimentally most relevant is the limit of kd → 0. In this
regime bulk and thickness modulations converge to a single model equation if the
substitution σeff

k /σ0 = σk/σ0 = 2ha
k/d is made. The influence of modulations in the

wire center position however are strongly suppressed.
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Figure 3.8: Weighting factors of the various current modes wa: thickness modulation,
ws: wire center modulation, wb: bulk conductivity modulation.
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3.4 Appendix

3.4.1 Current-flow Around a Cylindrical Defect

A cylindrical defect of radius R, extending over the whole thickness of a thin film,
in which the conductivity is reduced from its bulk value σ to σ + ∆σ, causes a
deflection of the current density j0ex impinging on the defect. The current density
on the outside is given by

jx = j0

(
1 +

∆σ

2σ + ∆σ

cos 2θ

(r/R)2

)
(3.54)

jy = j0
∆σ

2σ + ∆σ

sin 2θ

(r/R)2
(3.55)

and on the inside by

jx = j0
2σ + 2∆σ

2σ + ∆σ
ex (3.56)

jy = 0 (3.57)

It is obvious that all components fulfill the two dimensional Laplace equation
∇2j = 0 separately. They also satisfy the charge conservation ∇ · j = 0 and the
static Maxwell equation ∇ × E = 0 in each domain of constant conductivity. In
order to show that the solution is also valid on the interface, the normal component
of the current density and the parallel component of the electric field have to be
continuous across the discontinuity. These conditions will be checked now.
The normal component of the current density is given on the outside by

jn = j0 cos θ

(
1 +

∆σ

2σ + ∆σ

1
(r/R)2

)
(3.58)

and on the inside by

jn = j0 cos θ
2σ + 2∆σ

2σ + ∆σ
. (3.59)

At the interface, where r = R the two expression coincide and the boundary condi-
tion is satisfied.
The parallel component of the electric field is given on the outside by

E‖ = −E0 sin θ

(
1− ∆σ

2σ + ∆σ

1
(r/R)2

)
(3.60)
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and on the inside by

E‖ = −E0 sin θ
2σ + 2∆σ

2σ + ∆σ

σ

σ + ∆σ
(3.61)

Also here both expressions coincide for r = R . The solution given above is therefore
valid everywhere.
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4 BASIC MEASUREMENTS ON
ULTRACOLD ATOMS

4.1 Introduction

An ideal gas consists by definition of atoms that do not interact with each other.
However, despite the absence of any physical interaction, the total quantum mechan-
ical state describing the gas must show a definite symmetry under the interchange
of any two particles in the system. It has to be either symmetric for Bosons, or
antisymmetric for Fermions. The symmetry makes it possible for many Bosons to
occupy a single energetically favorable quantum state, whereas for Fermions this
situation is forbidden by the Pauli principle. For a gas at room temperature a dis-
tinction between the two kinds of particles makes no large difference. The number
of states that are energetically allowed by the Boltzmann distribution is much larger
then the number of atoms competing for their occupation. If however both numbers
become close to equal Bosons start to condense in the same ground state. This
phase transition has already been predicted in 1925 by A. Einstein in analogy to
a novel treatment of the black body radiation introduced by S. Bose [1, 2]. This
mechanism is a key ingredient in the superfluidity of 4He [3] and superconductivity
[4]. However, as the phase transition is of second order, there is no separation of the
condensed from the uncondensed phase in homogenous solid state systems.
For dilute alkali gases, trapped by a harmonic potential, the situation is different. As
shown in the pioneering work of [5, 6] the two key techniques of laser and evaporative
cooling make it possible to cool down a small number of bosonic Rb or Na atoms
(usually 104− 106) to temperatures in the order of 100nK. As the gas is trapped by
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a harmonic potential, the different susceptibility of condensate and thermal atoms
to potential inhomogeneities results in qualitatively different density distributions
that allow a clear experimental distinction of the two phases.
Figure 4.1 shows this change in the density across the phase transition as observed
in the routine preparation of cold 87Rb atoms in the present work. The pictures
show a projection of the three dimensional density distribution onto the observation
plain. The thermal cloud smoothly covers a broad region of the potential, where as
the condensate shows up as a sharp peak growing in the center of the cloud. The

Figure 4.1: Bose-Einstein-Condensation of 87Rb atoms. The series of pictures show
the atomic density distribution projected onto the plain of observation after t = 7ms
of free expansion from a standard harmonic trap used in the experiments (trapping
frequencies ωx = 21×2πHz, ωy = ωz = 840×2πHz). The resulting column density is
encoded in the height level and the color map of the pictures. From left to right the
temperature is reduced from above to below the critical temperature Tc ≈ 660nK.

temperature regime where this transition takes place may be obtained by estimating
the number of thermally accessible states from the product of the number of states
below the energy E [7]

G(E) =
E3

6(h̄ω̄)3
(4.1)

(where h̄ω̄ = h̄(ωxωyωz)
1
3 ) and the thermally allowed energy range of approximately

kBT . Equating this product to the number of particles N results in the degeneracy
condition

kBTc ≈ h̄ω̄N
1
3 (4.2)

where factors of order one have been neglected. (This approximation is close the
exact result of kBTc = h̄ω̄N

1
3 /ζ(3)1/3.) For the trapping potentials and densities

employed in the experimental work to this thesis the critical temperature has been



4.2. DETECTION 81

in the range of Tc ≈ (50− 700)nK.

The different response behavior of thermal or condensate atoms to spatial changes
in the potential marks the two regimes of operation in which ultracold 87Rb atoms
can operate as a potential sensor. Both, the experimental handling and accessibility
of parameters, as well as the theoretical description is largely simplified when using
either completely thermal or completely condensed clouds.
For temperatures well above the critical temperature the density distribution of a
gas, confined by the potential V (x), is simply given by Boltzmann statistics

n(x) = exp
[
−V (x)− µ

kBT

]
(4.3)

In the other limit, all particles have condensed to the same single particle wave
function ψ which is described by the Gross-Pitaevskii equation

µψ =
(
− h̄2∇2

2m
+ V (x) + g|ψ(x)|2

)
ψ (4.4)

. The non-linear term that is added to a single particle Schrödinger equation ac-
counts for repulsive interaction in the mean field approximation. At the high densi-
ties achieved in the condensate this contribution to the energy cannot be neglected.
The interaction strength g is related to the s-wave scattering length a by g = 4πh̄2a

m .
For 87Rb in the F = 2 mF = 2 ground state the former has been measured to be
a = 5.6nm. The wavefuntion is normalized such that the absolute square yields the
particle density n(x) = |ψ(x)|2.
In the remainder of this chapter the fundamental experimental techniques and their
theoretical background to probe and characterize a cloud of ultracold atoms in either
regime will be presented.

4.2 Detection

All information on an atomic cloud is finally retrieved from a measurement of the
particle density distribution. The detection procedure is therefore an integral part
of any experiment. In the present work the detection scheme has been based on
resonant absorption imaging.
The underlaying idea of this technique is that an atom that is resonantly excited by
a weak laser beam decays back into its ground state by emitting the photon into a
random direction. Looking at the laser beam after it has passed through the atomic
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cloud this fluorescence light is missing in the beam i.e. the atoms cast a shadow.
Figure 5.1 shows how this principle is implemented in an imaging system. As long as

Figure 4.2: Absorption imaging of an atomic cloud.

the shadow covers a solid angle that is much smaller than the full 4π into which the
fluorescence light is emitted, the two signals can be discerned by its different angle
spread. A telescope, that is used for imaging the plain containing the atomic cloud,
effectively images the shadow and the laser light only, as long as the accepted solid
angle is small compared to 4π. In the presented experiments the first lens, having
the atoms in its focus, has been a f = 100mm lens with a diameter of D = 30mm.
The captured solid angle is Ω = 5%4π so that even for the smallest resolved objects
of approximately 3µm the fluorescence contribution makes only a small effect.
The strength of the shadow is linked to the parameters of the atomic transition that
is used for imaging. In general the amount of power Psc scattered by a single atom
is quantified by the absorption cross section σ

Psc = σI (4.5)

where I is the intensity of the exciting light field. If the atomic number density
is denoted by n(x) the intensity of the beam after travelling a small distance dy
through the cloud is attenuated by

∆I = −σIn(x)∆y (4.6)

. As long as the scattering cross section does not depend on the intensity, this
equation can be integrated to give Beer Lambert’s law

I(x, z) = I0 exp [−σd(x, z)] (4.7)

where d(x, z) is the projected particle or column density

d(x, z) =
∫

dy′n(x, y′, z) (4.8)

and I0 is the intensity of the incident beam. By this fundamental relation the shadow
can be related quantitatively to the traversed column density.
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In order for the assumption of a constant scattering cross section to hold, the in-
tensity may not exceed a certain limit that is determined by the properties of the
atomic transition. In general, for a resonant transition between two levels it has the
form

σ = σ0
1

1 + I
Isat

= σ0

(
1− I

Isat
+

(
I

Isat

)2

− . . .

)
(4.9)

where Isat is the saturation intensity. In this work the intensity has been kept around
I = 10%Isat and the nonlinear terms have been neglected. The parameters σ0 and
Isat depend on the transition used for imaging. For a 87Rb cloud prepared in the
F = 2 groundstate there are three dipole allowed transitions to the excited states
F ′ = 1, F ′ = 2 or F ′ = 3. The level scheme of the D2 line is shown in figure 4.3.
Out of these possibilities, the F = 2 → F ′ = 3 transition has the major advantage

Figure 4.3: Transitions within the 87Rb D2 line. The values for the excited and
ground state are according to [8] and [9]. The Lande factors are taken from [10]

that is closed. An atom in the F ′ = 3 state can only fall back into the initial F ′ = 2.
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A single atom can therefore participate in a large number of fluorescence cycles.
The largest cross section occurs for circular polarized light where Isat = 1.669mW

cm2 ,
and σ = 2.90710−9cm2. However this line cannot be used for imaging close to a
metallic surface. Only for linear polarization, the polarization state can be adjusted
to be equal, before and after reflection by a mirror surface. For this reason, plane
polarized light with Isat = 2.503mW

cm2 and σ = 1.93810−9cm2 has been used.
Apart from the limit on the usable intensity also the exposure time cannot be made
arbitrarily long. During each fluorescence cycle a recoil momentum is transfered to
the atom. On the average this leads to a diffusive motion of the atoms where the
rms distance rrms after the absorption of N photons is given by [11]

r =

√
N

3
vrec∆t (4.10)

The recoil velocity due to a single photon for 87Rb on the D2 line is given by
vrec = 5.89mm

s . For an imaging intensity I = 0.1Isat the number of scattered photons
is given by N = 0.1Γ

2 ∆t
3
2 which leads to

r =
√

0.1

√
Γ
6

vrec∆t (4.11)

The imaging duration has been chosen to yield a diffusion radius that is smaller then
the optical resolution of approximately 3µm. For the applied value of ∆t = 50µs
the radius is rrms = 1.7µm.
The detection of the imaged shadow has been performed by a CCD camera (Andor
DV 435-BV958). With such a detector there are two different sources of noise that
imply a limit for the achievable atomic sensitivity. One part is given by the dark
noise level that exists independently of whether the detector is illuminated or not.
With the camera used in this work this noise is only connected to the readout of the
CCD bins. The dark current that would lead to a noise that is proportional to the
acquisition time, is neglegible as the detector has been cooled down to T = −45◦C.
The measured dark noise level is σD = 3.3cts on each pixel.
The dominating noise source is due to the photon detection process. In each detec-
tion event of a photon an electron is generated on the CCD pixel. This detection
is an all or nothing process. With the probability e = 0.75 a photon is converted
into an electron. However, it is not possible to generate a non integer number of
photo-electrons. This leads to Poissonian noise, where the standard deviation σe is
proportional to the square root of the mean number of photoelectrons Ne

σ2
e = Ne = eNph (4.12)

In order to use the full resolution of the following AD converter, the photo-electron
signal is scaled by the gain G to yield the count signal. The noise level for the count
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signal is thereby scaled to

σ2
c = G2σ2

e = G2Ne = GNc (4.13)

This noise model has been checked by extracting noise and mean value from the
difference and mean of two successive pictures showing a nearly constant intensity
distribution. The resulting linear dependence of the standard deviation on the mean
number of counts is shown in figure 4.4. The validity of the Poissonian noise model

100 200 300 400 500 600 700 800 900 1000 1100

200

400

600

800

N
c

σ2

Figure 4.4: Photon detection shot noise. Noise and standard deviation extracted
from two successive pictures. For each pixel, the difference and mean value between
the two pictures have been computed. An estimate of mean value and standard
deviation is then extracted by computing a local standard deviation and averaging
over many distinct 20 by 10 pixel regions. The resulting noise value is by a factor
of
√

2 larger than that of a single picture. From the slope of the straight line a gain
of G = 2 has been extracted.

for the difference of two successive pictures shows that vibrations or fluctuations in
the imaging beampath have no significant influence. Otherwise a noise contribution
that is proportional to the intensity would appear.
By using the gain G = 2, the quantum efficiency e = 0.75, the acquisition time
∆t = 50µs and the pixel size in the imaged plain ∆x = 1.70 10−6µm, the number of
detector counts can be converted to an intensity.

I = Nc ×G/
(
e(∆x)2∆t

)
= 0.47

mW
cm2cts

Nc (4.14)

When acquiring two successive pictures in a row, one with and one without
atoms, Beer-Lambert’s law (4.7) can be used to extract the column density from the
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ratio of the two pictures

d = − log [I/I0] /σ = − log [N/N0] /σ (4.15)

where N and N0 denote the counts per pixel acquired by the camera. In order
to estimate the influence of shot noise on the thereby calculated column density a
gaussian error propagation my be used

∆d =
1
σ

(
∆N2

0

N2
0

+
∆N2

N2

) 1
2

(4.16)

=
1

σ
√

N0

(
1 +

N0

N

) 1
2

=
1

σ
√

N0
(1 + exp [σd])

1
2

The errors ∆N and ∆N0 have been associated with the standard deviation. The
important experimental figure of merit is the signal to noise ratio which is given by

SNR =
d̄

∆d
=

d̄√
N0

(
1 +

√
N0

N

)−1

(4.17)

Figure 4.5 shows the approximate analytical result together with a monte carlo
simulation for N0 = 400cts. This count level corresponds to the typical imaging
situation of the experiments, where the countrate corresponds to an intensity of
approximately 8%Isat. As can be seen from this comparison, the analytical formula

2 4 6 8 10 12 14
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R

monte carlo
analytic

Figure 4.5: Signal to noise ratio for density detection. 400cts, σ for the unsaturated
linear polarized case.The 400 cts correspond approximately 8%Isat.

gives an excellent estimate of the error. A possible statistical bias of the estimated
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mean value has been found in the simulation to be smaller than 1%.
The typical column density for absorption images in the magnetometry scans has
been around d ≈ 105/(600µm× 10µm) ≈ 15/µm2 which results in a signal to noise
ratio close to the maximum value of about d̄/∆d = 13.

4.3 Density distribution

As shown in the introduction, the atomic density is qualitatively different for a
harmonically trapped thermal cloud and a condensate. The two types of the distri-
bution will now be deduced.

The trapping potential produced by a static magnetic field necessarily shows a
cylindrical symmetry (see section 6.3). The harmonic oscillator potential therefore
has to be of the form

V (x) =
m

2
(
ω2
⊥r2 + ω2

xx2
)

(4.18)

where r2 = y2 + z2. The distribution of a thermal cloud in this potential is given by
the Gaussian distribution

n(x) = n0 exp
[
− r2

w2
⊥
− x2

w2
x

]
(4.19)

where the width parameters are

w⊥ =
(

2kBT

mω2
⊥

) 1
2

wx =
(

2kBT

mω2
x

) 1
2

(4.20)

and the constant n0 is determined by the normalization condition
∫

d3xn(x) = N

n0 =
1

π
3
2

N

w2
⊥wx

(4.21)

.
For the condensate distribution the situation is more difficult. In the cases of either
very small or very large densities, the interaction energy can either be neglected or
becomes completely dominant. In the first case, which is the single particle regime,
the ground state is like in the thermal case given by a Gaussian distribution. The
width of the cloud however is not determined by thermal energy but by the ground
state energy of the oscillator

w⊥ =
(

h̄

mω⊥

) 1
2

wx =
(

h̄

mωx

) 1
2

(4.22)
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. In the opposite regime of the Thomas-Fermi limit, the quantum mechanical ground
state energy can be neglected compared to the interaction energy. Under these
conditions the density distribution becomes an inverted parabola

n(x) =

{
n0

(
1− r2

w2
⊥
− x2

w2
x

)
for r2

w2
⊥

+ x2

w2
x
≤ 1

0 else
(4.23)

where the width of the cloud is now caused by the repulsive interaction energy

w⊥ =
(

2gn0

mω2
⊥

) 1
2

wx =
(

2gn0

mω2
x

) 1
2

(4.24)

. The normalization condition delivers again the maximum density n0

n0 =
µ

g
=

(
15
π

) 2
5 1

2 2
4
5

(
m

g

) 3
5

N
2
5
(
ω2
⊥ωx

) 2
5 (4.25)

The Thomas-Fermi density profile opens up the possibility to clearly discern a ther-
mal cloud from a condensate.
In between these two limiting cases, an approximate expression that nicely repro-
duces the radially integrated line density n1(x) =

∫
dy

∫
dzn(x) for elongated clouds

can be found by a variational procedure.
Following [12] one makes the Gaussian Ansatz

ψ(r, x) =
√

n1

πw2
⊥

e
− r2

2w2
⊥ (4.26)

for the ground state wave function and neglects kinetic energy terms connected with
derivatives of the wave function along the x-direction. The remaining kinetic energy
due to the transverse confinement is given by

ψ∗∇2ψ

ψ∗ψ
=

ψ∗
(

∂2

∂r2 + 1
r

∂
∂r

)
ψ

ψ∗ψ
=

r2 − 2w2
⊥

w4
⊥

(4.27)

For finding the approximate ground state, the energy functional

µ[n1] = 2π
∫

rdr

(
− h̄2

2m

r2 − 2w2
⊥

w4
⊥

+
m

2
ω2
⊥r2 + V (x)

)
ρ + gρ2 (4.28)

=
(

h̄2

2mw2
⊥

+
m

2
w2
⊥ω2

⊥ + V (x)
)

+
g

2πw2
⊥

n1

has to be minimized. The smallest value is obtained for

w⊥ = a0 (1 + 4an1(z))
1
4 (4.29)
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where a0 =
√

h̄
mω is the harmonic oscillator length of a single particle and a is the

s-wave scattering length. Using this optimized width, the equation of state that
relates the line density to the potential is given by

n1(x) =
1
4a

[(
µ− V (x)

h̄ω⊥

)2

− 1

]
(4.30)

4.4 Time of flight measurements

Under usual trapping conditions the width of the density distributions is too small
to monitor the density reliably inside the trap. A way to circumvent this problem
is to allow the gas to expand for some time after turning off the trapping poten-
tial. For an ideal gas, each particle just keeps the initial velocity that it had at the
moment when the potential was removed and travels on in a straight trajectory. If
the switching process is fast compared to the characteristic time scales of the gas’
internal motion the energy is conserved during this process and can be measured
from the expansion speed of the cloud. This is also true if the trapped gas is not
in the classical ideal gas limit. If the initial density is high, some energy may be
stored in the form of interactions between the atoms. Also the quantum mechanical
ground state energy may give a significant contribution if the confinement is strong.
As long as the expansion characteristics are measured after a long enough time that
these effects do not play a role anymore, all the energy will be converted to kinetic
energy of the expansion.

4.4.1 Expansion of a thermal Cloud

For an ideal classical gas collisions between particles are neglegible. Each particular
atom follows a straight line trajectory

x(t) = xi + vit (4.31)

where xi is the initial position and vi the initial velocity. The particle density at the
point x and time t after switching off the potential is given by all atoms that have
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the right velocity v to move from the initial point x−vt to the observation point x

n(x, t) =
∫

d3vp(v)n(x− vt, 0) (4.32)

The probability p(v) = p(vx)p(vy)p(vz) to find a particle of velocity v is given by

p(vi) =
√

m

2πkT
e−

mv2
i

2kT (4.33)

For the Gaussian distribution of a thermal cloud the integral can be calculated
directly with the result that the expanded distribution is just a scaled version of the
initial distribution. The scaled width parameters are given by

w2
i (t) = w2

i (0)
(
1 + ω2

i t
2
)

(4.34)

where i indicates either the transverse or the longitudinal coordinate. For an expan-
sion time that is long compared to the respective transverse or longitudinal oscillator
period, the different initial positions of the particles may be neglected and the ex-
pansion speed can be directly related to the temperature of the initial configuration

m

2

(
dwi

dt

)2

≈ m

2
w2

i ω
2
i = kBT (4.35)

As already mentioned above, the detection by absorption imaging gives only
access to the column density d(x, z) =

∫
dy n(x, y, z). Due to the factorization

property of the Gaussian function the column density is also a Gaussian

d(x, z) =
(
n0

√
πw⊥

)
exp

[
− z2

w2
⊥
− x2

w2
x

]
(4.36)

The width of the optical density can be easily detected and may be used for the
measurement of the temperature (see section 2.5.1).

4.4.2 Expansion of a Thomas-Fermi Condensate

In the Thomas-Fermi limit all quantum mechanic contributions to the kinetic energy
are neglected and the condensate therefore very much behaves like a classical fluid.
Following [13] the evolution after switching off of a harmonic trap can be described
by the scaling ansatz

n(x, t) =
1

λ2
⊥(t)λx(t)

n

(
xi

λi
, t

)
(4.37)
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where the scaling factors have to obey the equations

λ̈⊥ =
ω2
⊥

λ3
⊥λx

λ̈x =
ω2

x

λ2
⊥λ2

x

(4.38)

which result in

λ⊥(t) ≈
√

1 + (ω⊥t)2 (4.39)

λz(t) ≈ 1 +
(

ωx

ω⊥

)2 [
(ω⊥t) arctan(ω⊥t)− log

√
1 + (ω⊥t)2

]
(4.40)

These expressions are valid in the limit of ωx/ω⊥ << 1 which is fulfilled in the
experiments for all the potentials that have been used (ωx/ω⊥ < 2.5%).
The transverse expansion follows the same scaling law as for a thermal cloud. In this
case however, the asymptotic expansion speed is related to the chemical potential
instead of a temperature

m

2

(
dw⊥
dt

)2

≈ m

2
(w⊥ω⊥)2 = µ (4.41)

The width parameter can be extracted again from the column density which is given
now by

d(x, z) =
4
3
w⊥n0

(
1−

(
z

w⊥

)2

−
(

x

wx

)2
) 3

2

(4.42)

The expansion dynamics that has been just derived can be used as an experimentally
accessible standard for the energy scales of a condensate. As the internal energy
is dominated in the Thomas-Fermi regime by the density dependent interaction
energy this measurement also allows the determination of the number of atoms in
the atomic cloud. Figure 4.6 shows a series of pictures of an expanded condensate for
increasing time of flight after the switch off of the trap. By a two dimensional fit of
the Thomas-Fermi density model to the data the transverse width and the center of
mass position can be exracted. These parameters and fitted model curves are shown
in figures 4.7 and 4.8. The observed expansion speed corresponds to a chemical
potential of µ = (6.6± 0.7) 2πh̄kHz. Using equation 4.25 and the trap frequencies
ω⊥ = 838×2πkHz and ωz = 21×2πHz this chemical potential corresponds to a total
number of N = (1.7± 0.5) 105 atoms. This is a typical value for the clouds that
have been used in the scanning experiments. The center of mass evolution shows a
free fall parabola in the gravitational field. A comparison of this curve with the well
known gravitational acceleration can be used for a calibration of the length scale.
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Figure 4.6: Expansion of a Thomas Fermi condensate. The series shows the density
evolution with increasing expansion time.

2.5 3 3.5 4 4.5 5 5.5 6 6.5

25

30

35

40

45

50

55

w
⊥
 [

µ 
m

]

Figure 4.7: Exanding width. Transverse Thomas Fermi width with a linear fit. The
extracted expansion speed is dw⊥

dt = 7.8± 0.4µm
ms .
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Figure 4.8: Center of mass position. Free fall center of mass motion. The fitted
parabola gives a gravitational constant of g = 9.6± 0.5m

s2 .
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4.5 Oscillations

One of the most fundamental parameter for a harmonically trapped cloud is the
oscillator or trapping frequency. In a cylindrically symmetric magnetic trap both,
transverse and longitudinal frequencies can be measured by exciting an oscillation
through a small time dependent change in the trap parameters. A transverse center
of mass oscillation can be directly excited by slightly displacing the trap center. The
longitudinal frequency has to be inferred from width oscillations that are excited by
a small change in the transverse trap frequency.

4.5.1 Center of mass oscillation

According to [14] the center of mass motion in a harmonically shaken trap is decou-
pled from the relative motion. The solution to the Gross-Pitaevskii equation for a
condensate in a harmonically shaken potential

V (x, t) =
∑

i=x,y,z

m

2
ω2

i (xi − xi0(t))2 (4.43)

can be written as

ψ(x, t) = ψ0(x−R(t), t) exp (i[P(t) · x/h̄− φ(t)) (4.44)

where R̈i + ω2
i (t) (Ri − xi0(t)) = 0. For a cloud initially at rest at the trap center

position, velocity and the total energy are determined from this equation by

R(t) =
∫ t

0
dωt′ x0(t′) sinω(t− t′) (4.45)

Ṙ(t) = ω

∫ t

0
dωt′ x0(t′) cos ω(t− t′)

E =
m

2
ω2

[(∫ t

0
dωt′ x0(t′) sin ω(t− t′)

)2

+
(∫ t

0
dωt′ x0(t′) cos ω(t− t′)

)2
]

These expressions allow to calculate the response of the condensate motion to a
shift in the cloud center. Experimentally, the excitation of an oscillation can be
performed most easily by moving the trap center position in a linear ramp. This
movement is performed by a change of the homogenous bias field that adjusts the
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trap center. Using two linear ramps, half a period of a harmonic excitation can be
approximated by a triangle excitation

x(t) =

{
a 4t

T ′ for0 < t < T ′/4
a 4t

T ′ for0 < t < T ′/4
(4.46)

The oscillation energy that is transferred to the cloud by this scheme is shown in
figure 4.9 in comparsion to a harmonic excitation of the same length. Usually the
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Figure 4.9: Transfered energy after a T/2 excitation pulse.

The efficiency of the triangle excitation is nearly as high as that of a real harmonic
excitation.
In an experiment the resulting center of mass oscillation can be best resolved after
time of flight. The periodic change in the velocity is then translated to a periodic
change in position. The figure 4.10 shows a typical example of such an oscillation
measurement with a condensate in the standard magnetic trap used for the pre
cooling of the atomic clouds. The extracted transverse oscillator frequency of this
trap is ω = (838± 3)2πHz.

transverse oscillation mode has an extremely high quality factor. This is a conse-
quence of the exact decoupling of the center of mass degree of freedom from the
relative motion even for a many body system that is confined by a harmonic trap
[14]. This high quality permits several precise test measurements of parameters that
directly influence the transverse trap frequency. As one example, the position of the
wire center has been detected in the magnetometry scans by the small symmetric
change of the trapping frequency with the distance to the wire center (see section
2.5.2).
A different example is the minute change of the transverse frequency with modu-
lations in the magnetic Ioffe field Bi along longitudinal trap direction. The trap
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Figure 4.10: Center of mass oscillation. Top: Column density after time of flight for
increasing oscillation time. Bottom: Extracted center of mass position, together
with a harmonic fit ∆z = A sin (sinωt + φ) to the data. A = 34 ± 1µm, ω =
(838± 3)2πHz, φ = (−0.35± 0.01)2π, σ = 3µm
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frequency depends on this parameter by

ω⊥ =
√

µB

Bim
g (4.47)

, where g is the gradient strength of the trap quadrupole. For the magnetometry
scans this change has been neglected as a second order effect. And indeed, it has
no measurable influence on the density distribution. However, if two condensates
are separated in small regions of slightly different Ioffe field Bi and Bi + ∆Bi this
difference can be measured by a phase change between two concurrently excited
oscillations. Figure 4.11 shows the result of an experiment where this sensitivity
has been used. Two separated clouds have been excited in phase and the oscillation
amplitude has been measured after T = 90ms which corresponds to ≈ 82 periods
of oscillation. Then, the mean value of the Ioffe field (Bi = 2hνrf/µB) has been
increased and the phase of both oscillations has been measured at a fixed oscillation
hold time of 90ms. By this technique changes of about 10mG are directly resolved
by the changing oscillation phase.
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Figure 4.11: Phase change with the Ioffe field. The two panels show the center
of mass position (a.u.) after 90ms of oscillation for two separated condensates in
slightly different Ioffe fields. The increase of the mean Ioffe field Bi = 2hνrf/µB shows
up as a harmonic variation of the oscillation phase at fixed oscillation time. The
absolute calibration of the frequency scale is ∆ν = ±10kHz the linearity is better
than 0.01. The model model a cosων − φ has been fitted to the center of mass
positions upper panel: a = 1.28 ± 0.1, ω = (5.75 ± 0.05)10−2 2π

kHz , φ = −437 ± 7,
lower panel: a = 1.3 ± 0.1, ω = (5.76 ± 0.04)10−2 2π

kHz , φ = −443 ± 3. Hold time
90ms.
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4.5.2 Width oscillation

As already noted, the longitudinal frequency ωx can not easily measured by a center
of mass oscillation. In order to shake the magnetic trap in the longitudinal direction,
an additional gradient field in this direction that can be controlled separately would
be needed. However, the ratio of transverse and longitudinal frequency can be
deduced from a width oscillation of the condensate.
Like in the treatment of a free expansion the width oscillation can be described in
terms of a scaling solution [13] where the scaling parameters are determined by

λ̈⊥ =
ω2
⊥(0)

λ3
⊥λx

− ω2
⊥λ⊥ (4.48)

λ̈x =
ω2

x(0)
λ2

xλ2
⊥
− ω2

xλx (4.49)

Linearizing this set of equations for small amplitudes λ = 1 + δλ results in

d2

dt2

(
λ⊥
λx

)
= −ω2

⊥

(
4 1

2ε2 3ε2

)(
λ⊥
λx

)
−

(
ω⊥(t)− ω2

⊥ 0
0 0

)(
λ⊥
λx

)
(4.50)

where the ratio ε = ωx/ω⊥ has been introduced. The eigenmodes and frequencies
of this system can be determined by substituting the ansatz λ⊥/x = a⊥/x exp [iΩt]
in the equations. To leading order in ε the resulting modes and frequencies Ω are

given by (a⊥, ax) = (1, 0) for Ω = 2ω⊥ and (a⊥, ax) = (1,−4) for Ω =
√

5
2ωx.

In the slow mode the scaling parameters along the transverse and the longitudinal
mode are coupled. This means that this mode can be excited by a modulation
of the transverse trapping frequency. The oscillation frequency of the slow mode

is however directly related to the longitudinal trapping frequency by Ω =
√

5
2ωx.

As the transverse trapping frequency depends on the Ioffe by ω⊥ ∝ 1/
√

Bi the
excitation of the oscillation can be accomplished in a similar way to the transverse
center of mass oscillation by a small triangular excitation pulse now on the Ioffe
field. The resulting width-oscillation is shown in figures 4.12 and 4.13. From the
observed frequency Ω = (33.7 ± 0.3)2πHz the longitudinal trapping frequency is
deduced ωx =

√
2/5 Ω = (21.3± 0.2)2πHz.
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Figure 4.12: Cloud deformation during a width oscillation. The pictures show the
column density d in relative units of an excited condensate after expansion.
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Figure 4.13: Relative width during a quadrupole oscillation. Relative width (w −
w̄)/w̄, where ∆w =

√
< (w − w̄)2 > = 2.8µm. w̄ = 15.4µm. Fitted model ∆w

w̄ =
A sin (sin Ωt + φ). Extracted parameters A = 1.3 ± 0.1, Ω = (33.7 ± 0.3)2πHz,φ =
(−0.43± 0.03)2π
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4.6 Rf-Spectroscopy

In the previous section it has been shown, that the Ioffe-field Bi can be measured by
its direct influence on the transverse oscillator frequency. A different independent
method for this purpose that is usually more precise is rf-spectroscopy.
Close to the trap center, the magnetic field direction is dominated by the Ioffe
field Biex that is aligned with the longitudinal trap axis. In the adiabatic trapping
scheme the atoms occupy the |F = 2, mF = 2 > state in a local coordinate system
that is aligned with the Ioffe-field. If now an additional rf-field is applied, which is
linearly polarized in the plane perpendicular to the Ioffe field direction, an NMR-
configuration is realized. If the rf-frequency νrf is close to the Lamor frequency
νL = gF µBB/h, where gF = 1/2 is the Lande-factor, a resonance condition occurs
and a small rf-amplitude is able to rotate the spin direction into an untrapped state
where the atom is repulsed by the field. Not all the atoms of cloud sit directly at
the trap center where B = Bi. Some occupy positions of higher potential energy
and therefore of higher magnetic field. Therefore, there is not a unique resonance
condition for all the atoms but a whole range that corresponds to the occupied field
magnitudes.

There are two slightly different ways how such a resonance scheme can be used
to measure the Ioffe field. In the first, the rf is swept from frequencies far above the
resonance condition of the Ioffe field νrf >> µBBi/2h to some final frequency νf

closer to it. Depending on the value of the final frequency the resonance condition
has been met during this sweep for a certain part of the cloud. If the rf-amplitude is
adjusted to be large enough, that all the atoms are lost during such a sweep over the
resonance condition, only those atoms will remain trapped that occupy magnetic
field values below B < hνf/gF µB. Setting the final frequency closer and closer to
the resonance condition of the Ioffe field, the corresponding resonance frequency
can be extrapolated as the point, where all atoms are lost by the rf sweep. Figure
4.14 shows how the total number of atoms in the trap decreases with decreasing
rf-frequency. The absolute accuracy in the Ioffe field that has been obtained by this
method is ∆Bi = 5kHz× 2h/µB.
In a second slightly different variant of this method, the rf-amplitude is adjusted
low enough that not all the atoms are lost from the trap, once they have met the
resonance condition. In this way a complete rf-sweep down to the Ioffe field couples
out a continuous beam from the condensate. Such an atom laser experiment [15]
is shown in figure 4.15. For the determination of the Ioffe-field this method has
no immediate advantage compared to the first one. In principle a higher frequency
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Figure 4.14: Rf-Spectroscopy. The rf-frequency is swept from a value far above the
resonance condition of the Ioffe field to some final value ν closer to it. The remaining
number of atoms in the trap N is plotted in arbitrary units. During this sweep the
cloud is cooled evaporatively from a thermal regime (a) to a condensate (b)/(c).
The images show the density distributions that respectively correspond to the total
atom number values.
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resolution can be achieved, but it can only realized if the interaction energy of the
atoms remaining inside the trap is properly taken into account. For the calibrations
in this work the first method has therefore been used.
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Figure 4.15: Atomlaser for increasingly weaker outcoupling rf. The pictures show
the column density 8ms after turning off the trapping potential. In all pictures the
frequency was swept at approximately 0.5kHz

ms over the trap bottom (B = Bi). The
trap bottom was on average at 785kHz. Its typical shot to shot fluctuations where
around 1kHz. The rf-amplitude is decreased from left to right.(In relative units
1,0.7,0.6,0.4)
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5 Imaging Close to a Mirror

5.1 Introduction

Magnetic microtraps [1] opened up the possibility to exploit the sensitivity of ul-
tracold alkali atoms as a probe for surface related potentials and magnetic noise
[2, 3, 4, 5, 6]. Some of these applications depend very critically on a precise mea-
surement of the atoms height above the surface. In the usual case where most of the
surface is covered by a reflective metal film, the standard technique to determine the
height [7] uses the distance between image and mirror image of the atomic cloud.
Here it is shown, that close to the surface two effects may lead to a departure from
what is expected by geometrical optics.
The basic mechanism of absorption imaging has already been introduced in section
4.2. Atoms that are illuminated by a collimated, resonant laser beam absorb a cer-
tain fraction of the incident intensity and re-emit it with equal probability into any
spatial direction. This scattered light is missing from the laser beam and produces
a shadow on it, after it has passed the atomic cloud. When a lens system (see figure
5.1) is used to image the laser beam with its focus in the plane containing the atomic
cloud, an image of the wavefront, directly after passing through the atoms can be
retrieved. From the intensity, that is reduced from the value I0 to I ′ the column
density d(x, z) =

∫
dyn(x, y, z) can be extracted by Beer-Lambert’s law

I ′(x, z) = I0 exp [−σd(x, z)] (5.1)

. In the imaging of atoms close to a mirror the ideal conditions, where the imaging
beam propagates in free space before and behind the absorbing cloud, can not be
implemented. For the analysis of the problem, the propagation of the light wave in
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Figure 5.1: Absorption imaging of an atomic cloud.

presence of mirror boundary conditions has to be considered. In the propagation of
a wave, the fundamental quantity obeying the wave equation is not the intensity,
but the electric field. As the superposition principle holds for waves, the electric
field E′ directly behind the cloud may be represented as the difference of the electric
field E0 that would be there in absence of the atoms and some scattered field Esc

that describes the shadow cast by the absorber. However, care has to be taken
when performing such a decomposition. In general

√
ε0c/2Esc 6=

√
I0 − I ′. For

assuring consistency between intensities and electric field amplitudes the following
requirements have to be met

I ′ = I0 − Isc (5.2)
E′ = E0 − Esc

1
2
ε0cE

2
0 = I0

1
2
ε0cE

′2 = I ′

From these, the scattered field can be computed to be

Esc = E0

√
1 + (1− a)− 2

√
1− a, (5.3)

where the relative absorption a = Isc/I0, that can assume values between 0 and 1, has
been introduced. The complicated form of the scattered field is due to the presence
of interference terms between the two electric fields used in the decomposition. In
particular, the square of the scattered field is in general not proportional to the
intensity computed from this field alone

Isc 6= ε0c

2
E2

sc for 0 < a < 1 (5.4)

Isc =
ε0c

2
E2

sc for a = 0 or a = 1

Two exceptions are found for complete absorption or complete transmission. These
special are known as Babinet’s principle. In the case of a weak absorber, that will
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be of concern in the following analysis, the expression for the scattered electric field
may be simplified to

Esc ≈ 1
2
aE0 for a << 1 (5.5)

5.2 Absorption Imaging Close to a Mirror

When applying the scheme of absorption imaging close to a mirror surface, some
changes to this method necessarily have to be made. The illumination by a beam
running parallel to the surface and having its focus centered on the atoms quickly
becomes impossible. At a height h above the surface, the length of the mirror l lim-
its the usable numerical aperture to NA = 2h/l. The minimum spot radius on the
other hand should be smaller than h to avoid a beam that is touching the surface.
For a Gaussian beam this leads to the limit of h ≥

√
λl/π. In the case of 87Rb

atoms (λ = 780nm) and l = 1cm the limit is reached already at h = 50µm.
In order to allow a controlled illumination below this height, the simplest solution is
to incline the beam by a small angle θ to the mirror surface. This setup is depicted
schematically in figure 5.2 (a). In contrast to the usual absorption imaging setup
there are now two beam paths that traverse the cloud. Beam (1) is being reflected
before passing through the cloud and beam (2) afterwards. A lens system that is
used to form an image from the reflected light images the shadow cast on beam (1)
to a real image and that of beam (2) on the mirror image. Such an image is shown
in 5.2 (b). The distance between the cloud and the mirror cloud equals twice the
height above the on surface. As the absorbing clouds usually are very elongated
in the experiments, the imaging problem may be simplified by assuming a slowly
varying absorption profile along the long axis (y) and treating only the change in
absorption along the transverse direction (x).
The simple geometrical picture neglects two important wave effects. First, in the
overlap region, where the incoming and the reflected part of the imaging beam inter-
fere, a standing wave field with its wavefront parallel to the chip surface is formed.
Second, the mirror acts as an asymmetric aperture and the image formed by the
lens may differ significantly from the original distribution. These two effects will
now be estimated for the simplified case of an infinitely long, perfectly reflecting,
plane mirror surface.

The electric field of the incoming wave Ei and the wave reflected at x = 0 Er
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Figure 5.2: Mirror imaging. (a) Reflection imaging above a mirror surface. The
absorbing cloud (blue disc) is passed by two different beam paths. For (1) the in-
coming is reflected before passing through the cloud for (2) it is reflected afterwards.
Path (1) is mapped by a focused lens to a real image, path (2) to a mirror image. In
addition to this geometric effect, the reflected beam forms a standing wave pattern
in the overlap region with the incident beam. (b/c) (c) shows a focused image of
the absorbed intensity Isc. The modulation in intensity is caused by diffraction from
the mirror geometry and is not a defocus. The distance between image and mirror
image is equal to twice the height above the surface. In (b) a cross section of the
image in (c) is shown. Due to the longitudinal symmetry, it is sufficient to treat
only the variations along the transverse direction .
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may be adequately approximated by the plain waves

Ei = E0 exp [i (k(sin θix− cos θiz)− ωt)] (5.6)
Er = −E0 exp [i (k(sin θix + cos θiz)− ωt)] .

The total field E = Ei+Er vanishes at the surface and therefore fulfills the boundary
condition for an ideal metallic mirror. The two components interfere in a region of
overlap, to form a standing wave pattern.

Isw(x) = 4I0 sin2(kxx) (5.7)

where I0 = ε0cE
2
0/2 is the intensity of a single beam and kx = sin θi 2π/λ the

wavevector component perpendicular to the surface.
This illumination by a standing wave is highly inhomogeneous and in stark contrast
to the usual absorption imaging. The effect of this inhomogeneity very much de-
pends on the size of the absorber. If the scattered intensity Isc behind the cloud is
approximated by a Gaussian profile

Isc(x) = IswA exp
[−(x− h)2/w2

]
(5.8)

the total power scattered out of the standing wave is given by

Psc =
∫

dxIsc(x) = 2P0

[
1− cos 2kxh e−k2

xw2
]

(5.9)

where P0 is the power that would be scattered by the same absorber in a single plain
wave of intensity I0. As the cloud is moved through the standing wave, it probes the
local intensity. Depending on the size of the cloud, it truly samples the intensity, or
averages over a broader range. The fringe visibility V reflects this size dependent
spatial resolving power of the cloud

V =
Psc,max − Psc,min

Psc,max + Psc,min
= e−k2

zw2
. (5.10)

There are basically two different regimes depending on the width of the cloud.
For kxw >> 1 the scattered power is twice the amount obtained from plain wave
illumination. This is the regime of geometric optics that has been addressed in [7].
The light passing through the cloud can be thought of as coming from two beams
(see figure 5.2 (a)) where one is hitting the cloud directly and the other one is first
reflected by the mirror. For a cloud size much larger than 1/kz this setup is equiva-
lent to an incoherent illumination by two beams, which explains the doubling of the
scattered power compared to a single plain wave. In the other extreme limit, where
the cloud is small compared to the standing wave (kzw << 1) the scattered power
is determined by the local intensity at the position of the atoms. This intensity is
modulated between complete darkness and twice the mean intensity, depending on
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the position within the standing wave. As the phase of the standing wave is fixed
by the surface, this modulation of the scattered power could be used as a reference
ruler for the distance to the mirror surface.
By varying the position z0 and counting the minima and maxima of the detected
scattered power it is possible in principle to determine the absolute position above
the surface. Figure 5.3 shows the result of such an experiment. The total scattered
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Figure 5.3: Standing wave. The total scattered power is shown for trapped conden-
sates at different heights above wire a. The blue and green curve shows the result
for in plane and out of plane linear polarization of the imaging beam. These have
a small relative phaseshift which is caused by the different boundary conditions of
the standing wave at the mirror surface. The inclination of the imaging beam is
θ ≈ 4.2◦.

power has been measured for trapped condensates at different height levels above
the surface of wire a. The blue curve shows the result for an imaging beam which is
linearly polarized in the plane of incidence, where as the green curve corresponds to
perpendicular polarization. As can be seen clearly, the power does not simply follow
a harmonic modulation on the large scale. Several phase shifts and changes in the
modulation amplitude appear. These artefacts are caused by the wire structures on
the chip surface. The dominant effects can be explained by the different height levels
of the wires. These cause a phase shift of the reflected beam that is proportional to
the local surface corrugation. As the reflected beam has to propagate a significant
distance to reach the position of the atomic cloud, diffraction has a large influence
on the observed patterns.
A second effect that is independent of the surface structure is connected to the
non-ideal boundary conditions of a real gold surface. The phase shift that occurs
during reflection is not exactly equal to π and depends on the polarization of the
reflected wave. Different phaseshifts of the reflected beams translate into a phase-
shift of the standing wave. It can be observed between the curves for linear in-plane
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and out-of-plane polarization. (The experimental findings have been compared to
numerical calculations using the methods of section 5.4.1 and 5.4.2 and found to be
consistent with a phaseshift-model based on the known chip structure. However, as
the full presentation of these calculations is very lengthy and no additional physical
information may be obtained from them, they will not be presented here.)
All the effects taken together make the idea of using the standing wave periodic-
ity for an exact height determination impractical. For the microscopy scans of this
work, the imaging beam has been inclined by a large enough angle, that the typical
standing wave periodicity is much smaller then the transverse sizes under interest.
Under this condition the fringe visibility is very low and the detection efficiency
becomes independent of the height position above the surface.
A different effect, that is largely independent of the modulation on the total scattered
power is a kind of diffraction that is present even for an ideal mirror. Difficulties
arise because the mirror plane acts similar to an aperture.
For an ideal metallic mirror, the wave amplitude is zero at the mirror surface. This
boundary condition may always be imposed by complementing an arbitrary wave-
front above the surface by its mirror image. The principle of this procedure is
depicted graphically in figure 5.4. A symmetric absorber that is illuminated by a

Figure 5.4: Method of mirror image. (a) The imaging beam is reflected from the
mirror and forms a standing wave in the overlap region. The absorber is modulated
by this pattern. (b) The mirror can be replaced by an antisymmetric mirror image
of the wavefront above the surface.

standing wave may be modelled in the plane of the absorber by

ψ(z) = [a(x− h) + a(x + h)] sin(kxx) (5.11)

where a(x) is a symmetric, real valued function and the mirror surface is assumed
to be at x = 0.
If a lens would be able to collect all the light from the real and the mirror source,
it would just produce a focused image of the initial wavefront. However, as the
lens can in reality never have access to plain wave components staying below the
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mirror plane these are effectively blocked as by an edge. Within the Fraunhofer
approximation, diffraction due to this effect can be easily computed in Fourier space.
When decomposing the initial wavefront into plain waves, only those components
will finally propagate out from the mirror that have a wavevector component kz > 0.
The effect of the mirror can therefore be described by setting ψ(kz < 0) = 0.
A comparison of this simple model with the observed diffraction above wire a is given
in figure 5.5. The model calculation does not include the shadowing and apparent
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Figure 5.5: Diffraction by the mirror. The pictures show the scattered intensity
Isc for trapped condensates at different height above the surface compiled into a
single picture. The colormap encodes Isc in arbitrary units. (a) Simulation of the
diffraction assuming a Gaussian absorber Esc ∝ exp−(x−h)2/w2 of width w = 3µm
and an imaging angle of θ = 4.2◦. (b) Measured intensity above wire a.

jump of the cloud position which is caused in the measured pictures by reflection
from wires of different surface height. If these artefacts are neglected, there is a
good qualitative agreement between the two pictures. Diffraction smears out the
scattered wavefront Esc over a range that is inversely proportional to the linear
size of the absorbing cloud. The illuminating plain wave however is unaffected. In
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the total intensity I ∝ |E0 − Ed
sc|2 the diffracted wave Ed

sc interferes with the plain
imaging wave E0. This leads to the typical interference fringes around the central
maxima. Their spatial extent is consistent with an effective width of the cloud of
approximately 3µm. In reality, the width is smaller. The finite aperture of the
imaging telescope however limits the spatial resolution to ≈ 3µm.

5.3 Extraction of the Cloud Position

The modulation of the scattered power by the standing wave can be sufficiently sup-
pressed by using a high enough angle of incidence. When the standing wave period
becomes significantly smaller then the transverse size of the cloud the modulation
practically vanishes. Diffraction effects however, can not be suppressed easily in this
way. Therefore, they have to be taken into account for an exact determination of the
cloud’s center position. The problem, that has to be addressed can be understood
by the drawing of figure 5.6. Here, the light path that leads to the mirror image

Figure 5.6: Angular aliasing. The atomic absorber (red disc) is illuminated by a
plain wave that is reflected from the mirror surface before passing through the cloud
(blue lines). The scattered wave Esc propagates into a cone where the opening angle
depends inversely proportional on the width of the cloud. If a plain wave component
is reflected by the surface (dotted line), it exits the mirror under an angle that is
already occupied by a wave component the directly travels away from the mirror.

of the atomic cloud is sketched. The discussion for the direct image can than be
inferred analogously.
The illuminating plain wave is reflected by the mirror surface and then passes
through atomic cloud. If the size of this cloud is large, there is only a geomet-
ric shadow that propagates along the same direction as the plain wave. However,
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as the cloud becomes smaller, the scattered wave Esc occupies a larger and larger
angle spread around the direction of the plain wave. As long as this spread is small
compared to the angle of incidence, all the light directly propagates away from the
mirror. A lens will reconstruct the true wavefront in the object plane. This situation
changes when the angle spread of the scattered wave becomes large enough, that a
significant amount is propagating in a direction towards the mirror surface. This
part of the wave is reflected and thereby wrongly mapped to an angle under which
another part of the wave travels directly away from the mirror. This aliasing effect
is most important in the regime of large scattering angles. For small angles, the
spectrum more and more resembles that of the correctly mapped image.
This understanding can now be used for the extraction of the cloud position. An ex-
perimentally determined profile of the scattered intensity Isc(x) can be decomposed
into its plain wave components Isc(x) = 1

2π

∫
dkxeikxxIsc(k). For each plain wave
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Figure 5.7: Position extraction in Fourier space. top panel: Fourier transform of the
scattered intensity profile I(x). The transverse wavevector kx has been translated
to the propagation angle of the corresponding plain wave component, measured
relative to the plain wave direction. The green curve shows a fit of the model
cos kxh exp−k2

xw2/4 to the data. bottom panel: Scattered intensity profile I(x)
together with the transform of the Fourier space fit (green line).

component the relative angle that the outwards propagating wave includes with the
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illuminating plain wave can be computed by θ = arcsin kxλ/2π. For relative angles
θ that are small compared to the incident angle of the plain wave θi the spectrum
is well approximated by that of two Gaussian curves, separated by the distance 2h.
This spectrum is given by

Isc ∝ cos kxh exp−k2
xw2/4 (5.12)

From a fit of this modulated Gaussian model, the distance h can be extracted, using
only the small kx component of the spectrum that is little affected by the aliasing
problem of angles. Figure 5.8 shows a typical example of a scattered intensity profile
I(x) and its Fourier transform. An alternative, but essentially equivalent way of
extracting the height, proceeds by using the autocorrelation function of I(x). This
function is just the Fourier transform of the spectral power density |I(k)|2. As the
latter is well approximated by a modulated Gaussian, the correlation function can
be fitted by a shifted Gaussian function. This formulation has been used for the
height calibration in the magnetometry scans (see section 2.5.2).
In comparison to a simple evaluation of the center of mass position of the peaks
corresponding to image and mirror image, the correlation method is significantly
more stable. Figure 5.8 shows a direct comparison of these two methods. The
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Figure 5.8: Comparison of methods for the height estimation. The blue curve has
been obtained by taking the distance between the center of mass position of the
image an mirror image. The green curve is the result of the Fourier space method.
The height parameter h is an experimentally adjusted parameter that is nearly linear
in the actual height.

height parameter h is an experimentally adjusted parameter that is nearly linear
in the actual height. Histograms of the residuals obtained from a quadratic fit to
the data are shown in figure 5.9. Both histograms follow a Gaussian distribution.
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Figure 5.9: Comparison of residuals. The residuals are obtained from a quadratic
least square fit to the data of figure 5.8 top panel: Residuals for the Fourier space
analysis. bottom panel: Residuals for the center of mass based analysis.

However, the rms statistical uncertainty of a single height measurement is reduced
from 0.95µm for the center of mass based analysis to 0.21µm for the correlation
based analysis method. This clearly demonstrates the advantage of the presented
scheme.

5.4 Appendix

5.4.1 Wavefront-Propagation

In free space, the propagation of an electromagnetic wave may be carried out most
easily in Fourier space. The implementation will be presented here for the two
dimensional case, the generalization to the 3D case is however obvious.
The wavefront is assumed to be known in the plain z = 0 and denoted there by
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E0(x). For a plain wave, the propagation is extremely simple. The wave

Ake
i(kx+

√
κ2−k2z) (5.13)

fulfills the Helmholtz equation for κ = 2π
λ and is therefore a valid wave function. As

any wavefront can be decomposed into its plain wave contributions, the propagation
of a general wave function can be formulated using this decomposition

Ez(x) =
1√
2π

∫
dk E0(k)ei(kx+

√
κ2−k2z) (5.14)

It fulfills the Helmholtz equation and for z = 0 reduces to the initial field field E0(x).
For the practical implementation, the Fourier transform can be evaluated using the
FFT-algorithm.

5.4.2 Reflection by a Corrugated Mirror

A plain wave E = E0e
−ik0z that is incident on a mirror with small surface corru-

gations h(x) will acquire a phaseshift ∆φ(x) ≈ φ0 + 2h(x)k0 during the reflection.
The outgoing wave at z = 0 is given by

E = E0e
ik0za(x) (5.15)

where a(x) = ei∆φ(x). When propagated upwards from the surface, the phase mod-
ulation on the reflected wave leads to diffraction. At a distance z from the surface
the field of the reflected wave is given by

E(x, z) = E0

∫
ei
√

κ2−k2xa(k − k0)e−ikzdk (5.16)

, where κ = 2π/λ. Some care has to be taken when performing this diffraction
integral under the special circumstances of grazing incidence. The spectrum of
the surface phase profile a(k) will not be propagated out completely. As k0 is
close to κ, a significant part of the spectrum is propagated as evanescent modes.
For an observation point far from the surface, these modes can be neglected. The
propagating field is given therefore in the z = 0 plain by

Er(x, z = 0) = E0

∫ κ

−κ
ei
√

κ2−k2xa(k − k0)dk (5.17)
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In order to facilitate the numerical evaluation, the integral can be cast into the form
a Fourier transform by the substitution k′2 = κ2 − k2

Er(x) = E0

∫ κ

0
dk′ eik′x k′√

κ2 − k′2
(5.18)

×
(
a(−

√
κ2 − k′2 − k0) + a(−

√
κ2 − k′2 − k0)

)
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6 Magnetic Trapping and Spin Dy-
namics

6.1 Classical Motion of a Spin Particle

87Rb in the F = 2 groundstate have a magnetic moment of m = gF µB which is
intimately connected to the angular momentum h̄F of the hyperfine state

m = µBgFF (6.1)

In this equation µB is the Bohr magneton and gF = 1
2 the Lande factor for this

specific ground state. When placing the atom into an external magnetic field, the
magnetic moment can interact with the field by the usual dipole potential. For a
single, atom the Hamiltonian including this interaction is given by [1]

H =
p2

2M
−m ·B (6.2)

The magnetic field dependent term acts in two ways on the dynamics of the atom.
On the one hand it controls the evolution of the magnetic moment, which is the
internal dynamics. On the other hand it acts as an effective potential for the center
of mass motion. This interplay between the two aspects becomes clearer when the
time evolution of the position and magnetic moment operators is considered within
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the Heisenberg picture

dm
dt

=
i

h̄
[H,m] = m× Ω (6.3)

dp
dt

=
i

h̄
[H,p] = ∇ (m ·B)

dx
dt

=
i

h̄
[H,x] =

p
M

where Ω = µBgF
h̄ B.

For the first equation, the relation (6.4) and the usual angular momentum com-
mutation rules

[Fx, Fy] = iFz; [Fz, Fx] = iFy; [Fy, Fz] = iFx

have been used. The center of mass equations use the momentum position commu-
tator [x,p] = ih̄ and [m,p] = 0.
Taking the expectation values of each equation a closed system for the evolution of
the center of mass and the magnetic moment can be obtained

d < m >

dt
= < m > ×Ω (6.4)

d2 < x >

dt2
=

1
M
∇ < m > ·B

It has to be mentioned that the existence of a closed system of equations for the
expectation values is non trivial. This property makes it possible to treat the reduced
dynamics in the way of a classical system.
In the equations (6.4) magnetic moment and center of mass are still linked in a very
complicated way. The evolution of the magnetic moment depends on the center of
mass trajectory as the movement goes through regions of changing magnetic field.
On the other hand, the orientation of the magnetic moment sets the sensitivity of
the effective potential

V (x, t) = − < m(t) > ·B(x, t) (6.5)

to the magnetic field. In order to use the magnetic interaction for the control of the
center of mass motion a situation has to be achieved where the effective potential
becomes independent of the history of the motion and where it is only a function of
the momentary local state of the magnetic field

V (x, t) != − < m(B) > ·B(x, t) (6.6)
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6.2 The effective potential

6.2.1 Adiabatic Potential

The most simple case where a decoupling of the spin from the center of mass motion
is possible, is that of a constant magnetic field B = B0n, where n is a unit vector
that indicates the direction of the field vector. The spin evolution of such a system
is described by a pure rotation around the constant magnetic field direction. The
effective potential for this case can be computed equally easily in the classical and
the quantum picture.
The expectation value of the magnetic moment describes according to equation (6.4)
a rotation around the magnetic field axis at the angular frequency ωL. During this
rotation, the projection of the magnetic moment onto the field axis does not change

d < m > ·Ω
dt

= (< m > ×Ω) · Ω = 0 (6.7)

the effective potential is therefore constant

V = − < m >0 ·B (6.8)

where < m >0 is the initial value. The same situation can be analyzed in the quan-
tum mechanical picture. The time evolution of any operator O may be calculated
from the time evolution operator U by O(t) = U(t, t0)†O(t0)U(t, t0). This operator
is calculated from

i
dU

dt
=

1
h̄

HU = −F · ΩU (6.9)

For the case of a constant magnetic field this equation can be directly integrated by
the exponential

U(t, t0) = exp (iF · Ωt) = exp (iF · nωLt) (6.10)

. Also a pure change of the field magnitude makes no major difference. Only the
acquired phase ωLt has to be replaced by an integral

U(t, t0) = exp
(

iF · n
∫ t

t0

dt′ωL(t′)
)

(6.11)

Like in the classical case, this evolution operator performs a rotation around the
magnetic field axis n with the angular velocity ωL [2].
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Difficulties start to arise when the direction of the magnetic field changes with time.
The adiabatic approximation [3] handles this case in the limit of a slowly changing
direction. The idea is to consider the spin evolution in a co-moving coordinate frame
where the z axis is always aligned with the momentary magnetic field direction. This
picture can be expressed by describing the spin Hamiltonian as the combined action
of a rotation R and the Lamor precession in the rotating frame

ωL(t)F · n(t) = ωL(t)R†(t)FzR(t) (6.12)

the spin evolution in the co moving frame is then described by U ′ = RUR† according
to

i
dU ′

dt
= ωL(t)FzU

′ + i

(
dR

dt
R†U ′ + U ′R

dR†

dt

)
(6.13)

= ωL(t)FzU
′ + i

[
dR

dt
R†, U ′

]

The adiabatic limit is the case where the commutator can be neglected. This is
justified as long as the angular velocity associated with the rotation of the coordinate
axis ωC is small compared to the Lamor frequency. To see this one can assume that
the rotation of the coordinate frame can be described for a small time interval by a
constant angular velocity nCωC . The derivative term of the rotation matrix is then
given by

i
dR

dt
R† = ωCnc · F (6.14)

. This term makes a small contribution as long as ωC
ωL

<< 1.
In the adiabatic limit, the projection of the magnetic moment on the instantaneous
magnetic field stays constant.

V =< m > ·B(x, t) (6.15)

This relation decouples the spin evolution from the center of mass motion, that is
an explicit function of position and time.

6.2.2 Floquet Potential

An additional degree of freedom for the effective potential can be introduced by
using a periodic magnetic field

B(t + T ) = B(t) (6.16)
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Similar to the quasi-momentum conservation in a potential that is periodic in space,
there exists a conserved quasi energy for the time periodic case. The states that
correspond the Bloch-states in the spatially periodic case are the Floquet states in
the time periodic case.
In Floquet theory, the time is not treated as a parameter but on the same footing
as the other coordinates. One defines the Hamiltonian [5]

H = i
d

dt
+ F · Ω (6.17)

This operator on the product space of time and spin coordinates is again Hermitian.
In analogy to the stationary states of a time independent Hamiltonian there exist
the so called Floquet states φn(t) that are the eigenfunctions to H

(
i
d

dt
+ F · Ω

)
φn(t) =

εn

h̄
φn(t) (6.18)

The φn form an orthogonal basis and are periodic φn(t + T ) = φn(t). Each of these
functions corresponds to a solution

Ψn(t) = φn(t)e−
i
h̄

εnt (6.19)

of the Schrödinger equation. As φn(t) is periodic Ψn(t) and Ψn(t + mT ) only differ
by a phase factor. Any expectation value calculated on such a state and especially
the magnetic moment will be periodic functions. If the period T is small compared
to the typical time scales associated with the center of mass motion of the atom,
only the average value of the effective potential has an effect on it. For a Floquet
state φn this average potential can be obtained from the quasienergy εn by [7]

V̄n =
1
T

∫ t0+T

t0

dt′ < Ψn(t′)|m|Ψn(t′) > ·B(t′) (6.20)

= εn(ω)− ω
∂εn(ω)

∂ω

This relation allows a simple application of the Floquet formalism to the computation
of effective potentials.
There are two possible routes towards the computation of the quasienergies. The
classical strategy [6] is to expand the periodic Floquet states into its Fourier modes.
This results into an eigenvalue equation for an infinite dimensional matrix which
can be treated by the standard techniques of time independent perturbation theory.
However, for the numerical evaluation the matrices have to be truncated in some way.
Such a truncation in Fourier space can introduce badly controllable errors. Therefore
a time domain approach following [8] will be used here for practical applications. It
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relies on the property that Floquet states may be obtained as eigenvectors to the
single period time evolution operator

U(t0 + T, t0)Ψn(t0) = Ψn(t0 + T ) = Ψn(t0)e−
i
h̄

εnT (6.21)

. The following section shows how this relation may be conveniently implemented.

6.2.3 Computation of quasi energies

If no analytic solution for the single period time evolution operator is known, a simple
quasi analytical method that approximates the time dependence of the magnetic field
by piecewise constant sections can be applied.
As has been shown above, the evolution in a constant magnetic field is given by

U(t2, t1) = exp [iF · nωL(t2 − t1)] (6.22)

A time dependent field may be approximated by piecewise constant parts within the
time intervals [tn; tn+1] of the subdevided period tn = n

N T and n = 0 . . . N − 1

ωL(t) ≈ ω(tn+1) + ω(tn)
2

for tn < t < tn+1 (6.23)

n(t) ≈ n(tn+1) + n(tn)
|n(tn+1) + n(tn)| for tn < t < tn+1

The corresponding approximation of the time evolution is then given by the product
of the single time-interval operators

U(T, 0) =
N−1∏

n=0

exp
[
iF · n(tn)ωL(tn)

T

N

]
(6.24)

In comparison to standard integration schemes for differential equations, this ap-
proach has the large advantage that the approximated time evolution is by con-
struction unitary.
If only the eigenvalues and the quasi energies shell be calculated the particular
dimension of the specific spin state is unimportant. The single period evolution op-
erator is itself as a product of successive rotations a rotation operator. In the Eigen
system of this operator it has therefore the form

U(T, 0) =




eiFφ

ei(F−1)φ

. . .
e−iFφ


 (6.25)
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The angle φ itself depends not on a specific spin system. This makes it possible to
calculate it for the simplest possible case namely for a spin 1/2 particle. From a
knowledge of the trace alone φ can be calculated by

φ = 2 arccos
(

1
2
Tr

[
U 1

2
(T, 0)

])
(6.26)

This angle is related to the quasi energies of the F = 2 case by

εmF = mF
h̄φ

T
(6.27)

For calculations within the spin 1/2 system the spin matrices are given explicitly by

Sx =
1
2

(
0 1
1 0

)
Sy =

1
2

(
0 −i
i 0

)
Sz =

1
2

(
1 0
0 −1

)
S0 =

1
2

(
1 0
0 1

)
(6.28)

where the matrix S0 has been included additionally as this set of matrices is an
orthogonal basis for all 2 × 2 matrices. The expansion coefficients for an arbitrary
matrix m can be calculated as

m = 2
∑

i=0,x,y,z

Tr[Sim]Si (6.29)

6.2.4 Resonant Rf Potential

The paradigm for a non trivial cyclic spin evolution is the nuclear magnetic res-
onance (NMR) configuration. In this situation a static magnetic field induces a
Lamor precession around the field axis. A small second field that is applied period-
ically perpendicular to the static field is able to rotate the precessing spin around
its own axis if the rotation is applied in phase with the Lamor precession. This
phase matching condition produces a resonant behavior in the coupling to the time
dependent field and introduces an independent parameter to influence the effective
potential.
The magnetic field consists of a static part B0 = B0ez = β h̄

gF µB
ez along the z-

direction and a harmonic circular polarized field in the x− y plain

Ω(t) = β (ex cosωt− ey sinωt) + ω0ez (6.30)

The classic solution [4] for the spin evolution caused by this field uses a co-moving
frame that rotates together with the circular polarized field around the z axis. The
rotation

U ′ = e−iωtFzUeiωtFz (6.31)
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transforms the spin equation into

i
dU ′

dt
= − (

e−iωtFzΩ(t) · FeiωtFz − ωez

)
U ′ = − (

Ω′ − ωez

) · SU ′ (6.32)

where
Ω′ = βex + (ω0 − ω) ez (6.33)

. In the co-rotating frame the time evolution is given by an effective constant
magnetic field. The complete single period time evolution in the non-rotating frame
is then given by

U(T ) = e−iωSzT exp
[
iΩ′ · ST

]
eiωSzT (6.34)

from which the rotation angle

φ = |Ω′|T =
√

β2 + (ω − ω0)2T (6.35)

and the quasienergy
εm = mF h̄

√
β2 + (ω − ω0)2 (6.36)

are obtained. Finally the mean potential can be extracted

V̄ = ε− ∂ε

∂ω
= mF h̄

β2 − ω0 (ω − ω0)√
β2 + (ω − ω0)2

(6.37)
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Figure 6.1: Comparison of quasi energy and mean energy: The curves show the
dependence of quasienergy (blue lines) and mean potential (red lines) on the rf-
frequency (top panel) and rf-amplitude (bottom panel). All energies are converted
to an angular frequency by the normalization factor 1/mF h̄
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6.3 Gradient Fields On An Atom Chip

The idea behind integrated wire traps is to use the high gradient magnetic fields close
to thin wires to provide a strong trapping force and flexible design. On an atom chip
such wires are integrated by a micro-structured gold film on a silicon waver. The
two dimensional symmetry that is enforced by the chip geometry induces certain
restrictions for the magnetic field.

6.3.1 Symmetries the field

The magnetic field outside a current distribution has zero divergence and curl.
From the latter it follows, that the field can be derived from a scalar magnetic
potential

B = −∇φM (6.38)

The zero divergence condition implies a Laplace equation for the magnetic potential

∇2φM = 0 (6.39)
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In order to characterize those field configurations that are possible close to a min-
imum in the absolute field value B, the potential and magnetic field will now be
expanded into a power series.
As the magnetic potential fulfills the Laplace equation it can be approximated locally
by a combination of spherical Harmonics [9, 10, 11]

φM =
∑

l=0

l∑

m=−l

clmYlm(θ, φ)rl (6.40)

each term rlYlm(θ, φ) fulfills the Laplace equation separately and therefore also the
total sum. Using this expansion the magnetic field may be written as

B =
∑

l=0

l∑

m=−l

clm∇
(
Ylm(θ, φ)rl

)
(6.41)

This expansion still contains modes that are not allowed in a current free region of
space. The reason is that despite the property

∇×B = 0 (6.42)

is fulfilled by construction, the stronger integral form
∫

C
ds ·B = 0 (6.43)

where the integral runs over a closed curve that includes no current is not necessarily
fulfilled yet. For a circle of radius r around the origin in the x− y plain reads

∫
ds · ∇

(
Ylm(θ, φ)rl

)
= rl+1

∫ 2π

0
dφ

∂

∂φ
Ylm(θ, φ) (6.44)

= rl+12πm

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos θ)

apart from the case m = 0 the integral does not vanish. However as the expression
is antisymmetric with respect to m an expansion in terms of the symmetrized modes

Zlm(θ, φ)rl = ∇
[
rl 1

2
(Ylm(θ, φ) + Yl−m(θ, φ))

]
(6.45)

B =
∑

l=0

l∑

m=0

slmZlm(θ, φ)rl (6.46)

will also respect the zero curl condition in its integral form. The first two non-
constant sets l = 2 and l = 3 are tabulated in table (6.1) in cartesian coordinates.
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l m Zlm(θ, φ)rl

2 2 xex − yey

1 xez + zex

0 2zez − xex − yey

3 3 (x2 − y2)ex − 2xyey

2 2xzex − 2yzey + (x2 − y2)ez

1 (−3x2 − y2 + 4z2)ex − 2xyey + 8xzez

0
(
z2 − 1

2(x2 + y2)
)
ez − zxex − zyey

Table 6.1: Expansion polynomials for the magnetic field.

In the design of atom chip potentials it is very convenient to think of the separate
action of different current density components. For the plain geometry of an atom
chip, the current is restricted to only two current components in the chip plane.
This plane is assumed to be the x− y plain. As can be seen from

∇2B = µ0∇× j (6.47)

the current component along the x-direction can produce a field that has y and z
components and a current density along the y direction will result into x and z
components of the magnetic field.
In the polynomial expansion of a field due to an unidirectional currentdensity along
the x direction j = jxex only two different types of modes can make a contribution.

l |m| Zlm(θ, φ)rl

2 2 r (cosφey − sinφez) yey − zez

3 3 r2 (cos 2φey − sin 2φez) (y2 − z2)ey − 2yzez
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6.4 The Stern Gerlach Beam Splitter

In their seminal 1922 paper [12] Stern and Gerlach experimentally verified the spin
quantization. In their experiment, a beam of unpolarized, thermal silver atoms has
been split by the strong gradient of a permanent magnet into two clearly separated
beams. Where as this experiment showed the existence of a discrete internal degree
of freedom, it does not directly proof that this splitting process is coherent. The
outcome is the same for an incoherent mixture of particles and a beam that is coher-
ently prepared in a superposition state. In this section, the result of an experiment
is presented, where a succession of two orthogonal stern Gerlach splittings is used
to implement an interferometer that uses the spin degree of freedom. The observed
interference contrast directly proofs, that the Stern-Gerlach experiment presents a
coherent beam splitter.
The complete state of an atom in the F = 2 ground-state can be described by a
product wavefunction of center of mass state φ(z) and the spin state |χ >

ψ(z) = φ(z)|χ > (6.48)

If a wavepacket, that has been initially prepared in the mF = 2 state is exposed
to a gradient field B(z) = gzey which is polarized orthogonally to the z-direction
in which the spin polarization points the spin starts to rotate locally around the
y-direction. After a certain time T , that is assumed to be small compared to the
time scale of any center of mass motion, a spatial gradient in the rotation angle
γy = αz has been imprinted on the wavepacket

ψ(T, z) = φ(z)




cos4 γy/2
1/2(1 + cos γy) sin γy

1/2
√

3/2 sin γ2
y

2 cos γy/2 sin3 γy/2
sin4 γy/2




(6.49)

When expanding the different harmonic functions into exponentials it can be seen
that each component of the wavefunction is a superposition of five different wavepack-
ets that each have a different linear phase imprint. For the mF = 2 component for
example, the explicit form is given by

ψ2(z) = φ(z)
1
16

(
ei2αz + 4eiαz + 6 + 4e−iαz + e−i2αz

)
(6.50)

After an appropriate time-span of free evolution, the different momentum compo-
nents separate and give rise to the typical Stern-Gerlach splitting. Interestingly, the
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Figure 6.2: Stern-Gerlach interferometry with Thermal atoms and condensates. Im-
plementation of the double Stern-Gerlach pulse scheme described in the text, for
different cloud temperatures. The interference contrast vanishes with increasing
temperature.
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separated momentum components do not directly map to the spin components of
the original state. Each of the mF components is a superposition of five different
momentum states. By the expansion process, the state is projected onto the mo-
mentum eigenstates, which are not at the same time spin eigenstates.
The local spin rotation can however be visualized not only in momentum space, but
also directly in real space. For this purpose two gradient pulses are applied. The
first induces a small spin rotation where the associated momentum transfer is very
small compared to that of the second pulse. The second pulse has a magnetic field
that is orthogonal to the first, which converts the spin rotation to an amplitude
modulation in the basis of this second pulse. After an interval of free expansion, the
amplitude modulated mF components are separated in real space.
An experimental realization of this scheme is shown in figure 6.2. The same pulse
scheme has been applied to clouds of different temperature from above, to below the
critical temperature. It can be clearly observed that below the transition tempera-
ture, typical interference fringes appear on each of the separated components. The
phase gradient of these modulations directly relates to the gradient in the angle of
the spin rotation, induced by the first pulse.
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