
 1 

 
        

 

       Dissertation  

submitted to the  

  Combined Faculties for the Natural Sciences and for Mathematics  

of the Ruperto-Carola University of Heidelberg, Germany  

for the degree of  

Doctor of Natural Sciences  

 

 

 

 

 

 

 

 

presented by 

Diplom-Biol. Oğuz Kanca 

Born in Đstanbul, Turkey 

Oral-examination:: ................................................ 

 

 



 2 

 

 

 

 

Regulation and targets of Mal-D during border cell 

migration in Drosophila melanogaster oogenesis 

 

 

 

 

 

 

 

Referees:  

Prof. Dr. G. Elisabeth Pollerberg  

Dr. Darren Gilmour 

 

 

 

 
 
 
 



 3 

Acknowledgement 
 

I would like to thank first of all to Pernille Rørth who shared with me her never 

ending enthusiasm about science, for giving me the chance of working in this project and 

believing in my potential even in times that I had hard time to believe in it my self. I want 

to thank to my TAC members Steve Cohen, Jan Ellenberg and Elisabeth Pollerberg who 

helped me with their valuable comments and time during the TAC meetings. Also I am 

indebted to Darren Gilmour and Stefan Wiemann who at the last moment agreed to 

become my thesis examiners. 

I would like to thank Kalman Somogyi immensely for doing all the pioneering 

work on Mal-D and for always being there whenever I need help, for sharing reagents 

and data with me. You are the best ‘educated’ Hungarian person that I have known and it 

was a great pleasure to work side by side with you. 

The whole Microarray part of my project would be impossible without the FACS 

expertise and heroic effort of Andrew Riddell. I am thankful for his company on the 

crazy days of dissections and sortings. I am indebted to Tomi Ivacevic and Vlademir 

Benes from Genomics core facility for their expert help on Microarrays and for greeting 

me with a friendly face whenever I needed anything.  

I thank many people who were very generous in sharing material, resources and 

knowledge with me: Natalie Daigle for 3xGFP construct, Christian Lehner for Ftz 

antibody, Mark Krasnow for sty antibody, Nicholas Brown for if antibody and mutant 

stocks, Susumu Hirose for SCF antibody, Richard Mann for vismay antibody. I also am 

indebted to Michal Karzynski and Laurence Ettwiller for their help in bioinformatics. 

Without your valuable help I would be incredibly lost.    

I thank to all past and present members of Rørth Lab for making work fun and for 

valuable comments and contributions in the project: Adam, Ahmet, Ambra, Andreea, 

Anne, Carlos, Celine, Gaspar, Georgina, Hsin, Isaac, Jan, Juliette, Kalman, Katrien, 

Lodo. Luis, Minna, Na-Chen, Smitha, Tudor. I also want to hug Lodovica Borghese for 

helping me during the set up of my Microarray experiments but more than that for being 

a great friend and a sister to me. Also I want to thank my most favorite Taiwanese couple 

in the world Hsin and Yawen for sharing their immense wisdom with me.  I also want to 

thank Georgina Fletcher for the in situ protocol and for keeping up with my constant 



 4 

heckling in the lab. On the same note I would like to specially thank to Andreea Gruia 

who was always an excellent friend to trust. I thank especially Andreea and Minnola for 

sharing their bench with me without complaints, well with minor complaints... I also 

thank Smithadjan and Jishydjan for their friendship and their valuable advices in my 

difficult situations. I offer my sincerest gratitude to Adam, Ambra, Minna, Celine, 

Katrien and Smitha who helped me to bring my samples to and from FACS sorter. I want 

to thank to Aynur, Florence and Minna for reading my thesis and giving me critical 

comments. Also I thank Helena very much for translating my Summary part in German 

which would sound like an elementary school composition if I tried to do it, and for being 

very positive and helpful all the time. Moreover I would like to thank Peter Bieling who 

although barely knows me, agreed to help me do some changes in my summary part in 

the middle of an EMBL night. In case you need anything translated in Turkish at an odd 

hour you know whom to call. You really helped me tremendously.   

I had many inspiring discussions and learned many useful information in the Fly 

room. I warmheartedly thank to everyone who shared fruit fly experience with me 

especially Sonia, Sandrine, Sebastien, Alexandra, Jean Baptiste, Piyi, Florence, Andres, 

Aynur, Ville, Smitha, Jishy, Janina, Barry and Adam for enlightening discussions.  

EMBL would definitely not be the same without the nice people who make life at 

EMBL more colorful. I thank all of my EMBL friends for making everything more alive. 

Especially I thank Dilem, who is a true friend and a master of Togis, Caroline, who is the 

most hyperactive and selfless person that I have seen, Fabien, for being a great person to 

have nice conversations with, Melpi, for countless lifts and valuable advices that she gave 

me, Fay, for having enough enthusiasm to share with everyone, Andres, Janus and 

Eughenio for being eternal rivals. I want to express my thanks to all the Turkish 

connection in Heidelberg, especially to Özgür, Özlem Şahin, Özgür Karaçam, Onur, Ali, 

Đbrahim, Tuğçe, Cihan, Zeynep, Bahadır, Gülçin, Yaşar, Aynur, Dilem and of course 

Sevil for making my time in Heidelberg some of the best years of my life.    

Sevgili annem ve babama en içten teşekkürlerimi sunuyor ve bu tezi onlara 

adıyorum. Sizlerin sevgisini ve desteğini her zaman hissetmeseydim hiç bir şey 

yapamazdım. Sizleri çok seviyorum. Đyi ki varsınız.  

I would like to thank Sevil for making my life complete and for making me the 

happiest person alive with her presence. Đyi ki varsın... 



 5 

And I thank all of you, who are reading this page and not finding your name, 

cursing me, a bit offended and heart broken. The reason for me forgetting you is not that 

you are not worth mentioning, it is that I am too dumb to remember. So thank you 

everyone...   

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 6 

 

Table Of Contents 
 

 

Acknowledgement ............................................................................................. 3 

Table Of Contents ............................................................................................... 6 

Summary .................................................................................................................. 10 

Zusammenfassung .......................................................................................... 10 

List of Abbreviations...................................................................................... 11 

1 Introduction ....................................................................................................... 14 

 

    1.1 The overview of cell migration............................................................ 15 

1.2 The Mechanism of Migration................................................................ 16 

1.2.1 The Actin cytoskeleton ........................................................................ 18 

   1.2.1.1 The General organization of the Actin cytoskeleton ................................. 18 

   1.2.1.2 The regulation of the Actin cytoskeleton in migration .............................. 19 

   1.2.1.3 Rho family of small GTPases in Actin regulation ..................................... 25 

1.2.2 The Regulation of the Cell Adhesion ............................................. 27 

1.2.3 Pulling the cell body by contractile forces .................................. 28 

1.2.4 Sensing directionality........................................................................... 29 

1.2.5 The Role of Transcription and Cell signaling in migration ... 32 

1.3 Differences between cell migration in cell culture and in 

vivo cell migration.............................................................................................. 35 

1.4 Border cell migration................................................................................ 37 

1.4.1 Overview of border cell migration...................................................37 

1.4.2 Role of Mal-D and DSRF in border cell migration..................... 39 

1.5 SRF and MAL ................................................................................................ 39 

1.5.1 SRF and MRTFs in vivo........................................................................ 43 



 7 

1.5.2 DSRF and Mal-D ...................................................................................... 47 

1.5.3 Phenotype of Mal-D loss of function in the border cell 

migration............................................................................................................... 48 

1.5.4 What is known about the regulation of Mal-D in border cell 

migration? ............................................................................................................ 49 

2. The Aim of the Project ............................................................................ 51 

 

3 Results ................................................................................................................... 52 

Part I MAL-D Regulation ............................................................................. 52 

3.1 Tools for Visualizing Mal-D Subcellular Localization ............ 52 

3.1.1 Transgenic approaches ....................................................................... 52 

3.1.2 Knock-in approach ................................................................................ 54 

   3.1.2.1 Construction of Mal-D9HA ....................................................................... 54 

   3.1.2.2 The phenotype of Mal-D 9HA................................................................... 57 

   3.1.2.3 Visualizing nuclear Mal-D 9HA by immunofluorescence. ....................... 60 

3.2 Regulation of Mal-D ................................................................................... 64 

    3.2.1 High levels of nuclear accumulation of Mal-D 9HA is       

regulated by migration related signal ........................................................... 64 

3.2.2 Strategy to identify genes important for Mal-D regulation ... 69 

3.2.3 Rho and Diaphanous are not essential for the nuclear 

accumulation of Mal-D in border cell or follicle cell nuclei ............. 70 

3.2.4 Profilin is important for nuclear localization of Mal-D in 

border cells, follicle cells and stretched cells. ..................................... 73 

3.2.5 DSRF mutation causes Mal-D to accumulate in the nuclei of 

border cells, but not in follicle cells or stretched cells ..................... 75 

Part II Function of Mal-D ......................................................................... 78 

3.3.1 Transcriptional output of Mal-D and DSRF.................................. 78 

3.3.2 Mal-D activity towards Actin in vivo goes through DSRF ..... 79 

3.3.3 Designing in vivo reporters................................................................ 80 



 8 

3.3.4 Expression profiling with mal-D mutant border cells ............. 84 

   3.3.4.1 Isolation of Mutant border cells................................................................. 85 

   3.3.4.2 Isolation and quality control of RNA......................................................... 87 

   3.3.4.3 Linear amplification, labeling and hybridization of arrays........................ 88 

3.3.5 Attempt to find direct targets of Mal-D .......................................... 88 

   3.3.5.1 Promoter and enhancer analysis................................................................. 88 

   3.3.5.2 In situ analysis by over expressing Mal-D ∆N .......................................... 90 

3.3.6 CG30440 ..................................................................................................... 94 

   3.3.6.1 CG30440 encodes for a rhoGEF................................................................ 94 

   3.3.6.2 CG30440 RNAi causes border cell migration phenotype when it is highly 

expressed................................................................................................................... 95 

3.3.7 Integrin PS2α (inflated) is not required for border cell 

migration............................................................................................................... 99 

4. Discussion ......................................................................................................100 

4.1 Different means of Mal-D regulation.............................................. 100 

4.1.1 Profilin effect .......................................................................................... 100 

4.1.2 Rho effect ................................................................................................ 101 

4.1.3 shg and slbo ........................................................................................... 103 

4.1.4 DSRF effect ............................................................................................. 104 

4.2 Mal-D function ............................................................................................ 106 

     4.3 Conclusion and Future Perspectives............................................109  
 

5. Materials and Methods ......................................................................... 109 

5.1 Cloning ........................................................................................................... 109 

5.1.1 Primers and oligos............................................................................... 109 

5.1.2 Cloning Mal-D 3XGFP ......................................................................... 110 

5.1.3 Cloning Mal-D 9HA............................................................................... 110 

5.1.4 Cloning of SRE repoters.................................................................... 111 

5.1.5 Clonining of CG30440 RNAi ............................................................. 112 

5.2 Drosophila Genetics ............................................................................... 113 



 9 

5.2.1 Fly Husbandry........................................................................................ 113 

5.2.2 List of Fly strains.................................................................................. 113 

5.2.3 GAL4/UAS system................................................................................ 114 

         5.2.4 Generation of mosaic clones ......................................................... 115 

 5.2.5 Generation of Mal-D 9HA with homologous recombination

................................................................................................................................. 117 

5.3 Staining protocols.................................................................................... 119 

5.3.1 X Gal staining......................................................................................... 119 

5.3.2 Phalloidin DAPI staining.................................................................... 119 

5.3.3 Antibody staining ................................................................................. 119 

5.3.4 In situ Hybridization ............................................................................ 121 

5.4 Microarray experiments ........................................................................ 122 

5.4.1 Isolation of mutant larvae ................................................................. 122 

5.4.2 Dissection................................................................................................ 124 

5.4.3 Fluorescently Activated Cell Sorting (FACS) ........................... 125 

5.4.4 Total RNA extraction from sorted border cell collections .. 126 

5.4.5 Assessing the quality and quantity of the RNA....................... 126 

5.4.6 Linear RNA amplification and labeling with Biotin ................ 127 

5.5 Tissue Culture ............................................................................................ 129 

5.5.1 General Maintenance .......................................................................... 129 

5.5.2 Transfection............................................................................................ 129 

5.5.3 β Gal Activity read out........................................................................ 130 

6.References ....................................................................................................... 131 

 

Appendix ................................................................................................................ 142 

 
List of Genes that were more than 2 Fold Down regulated in 

mal-D ∆7 border cells in all repeats ....................................................... 142 



 10 

Summary 
 

Cell migration is an important process in the life of many organisms. In 

multicellular organisms it is tightly regulated by the action of cell signaling pathways and 

their transcriptional outputs. Although cell signaling and transcriptional changes that lead 

to the induction of migratory behavior are relatively well studied, transcriptional changes 

that occur during the migratory behavior and the signaling pathways that get activated in 

response to mechanical interactions between cell and substrate are largely unknown.  

Border cells, a group of specialized follicle cells that commit collective migration 

during the oogenesis of Drosophila, constitute a useful migration model. Previous work 

in our laboratory by Kalman Somogyi identified Mal-D, a transcriptional co-activator of 

DSRF, is important for border cell migration. mal-D mutation causes decrease of F-Actin 

levels and loss of cellular integrity in border cells. Moreover Mal-D was found to 

accumulate in the nucleus of some border cells while the cluster is migrating and only if 

the cluster is migrating. A suggested mechanism was that the border cells receive a 

migration related signal, such as an increase of cellular tension and send Mal-D to the 

nucleus.  

The first part of my project was to understand how Mal-D is regulated by the 

migration. In order to visualize subcellular distribution of Mal-D I generated a tagged 

version of the endogenous protein by using homologous recombination. Analysis of 

subcellular distribution of Mal-D with this tool showed that the increase in nuclear levels 

of Mal-D in migrating cells is the result of an overall increase in the level of Mal-D 

protein and not redistribution of a fixed amount of protein. Furthermore I identified that 

mutations in Profilin or DSRF affect the nuclear levels of Mal-D.       

In the second part of my project I focused on the targets of Mal-D. I isolated 

border cell mutant for Mal-D or wild-type, and I compared their gene expression profiles 

by using microarrays. This analysis identified 171 genes down-regulated more than two 

fold in mal-D mutant border cells reproducibly in all three biological repeats. I analyzed 

three genes that could be relevant for the observed phenotype of mal-D mutants, namely 

CG30440, CG1344 and if further. Preliminary data suggests that CG30440 and CG1344 

may play role in mal-D phenotype in border cell migration.   
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Zusammenfassung 
 

Zellmigration ist ein wichtiger Schritt im Lebenzyklus vieler Organismen. In 

mehrzelligen Organismen wird die Zellmigration über Signaltransduktion und die 

Auswirkungen dieser Signale auf die Transkription kontrolliert. Die Signalkaskaden und 

Transkriptionsereignisse, welche die Induktion der Zellmigration regulieren, sind vielfach 

untersucht worden. Im Kontrast dazu sind sowohl die durch mechanische Interaktionen 

aktivierten Signalkaskaden, als auch die Veränderungen der transkriptionellen Aktivität 

migrierender Zellen zum Zeitpunkt der Migration vielfach noch unbekannt. 

 

Ein geeingentes Modelsystem für die Analyse von migrierenden Zellen sind die 

sogenannten Border Cells, eine Gruppe von speziallisierten Follikelzellen die in der 

Oogenese von D.melanogaster als Zellcluster migrieren. In vorangehenden 

Experimenten, welche von Kalman Somogyi durchgeführt wurden, hat unser Labor Mal-

D als einen transktioptionellen Co-Aktivator von D-SRF identifiziert, mit einer wichtigen 

Funktion in der Migration von Border Cells. Die Mutation des mal-D Gens führt zur 

Reduktion von filamentösem Aktin und dadurch zum Verlust der zellulären Integrität der 

Border Cells. Darüber hinaus akkumuliert das Mal-D Protein im Nucleus einiger 

migrierender Zellen des Zellclusters. Es wurde hypothesiert, dass die Akkumulation von 

Mal-D durch ein migrationsvermitteltes Signal, wie beispielsweise eine mögliche 

Zunahme der Zellspannung, ausgelöst wird.   

 

Der erste Teil meiner Doktorarbeit behandelt die Regulation von Mal-D in Abhängigkeit 

von der Zellmigration. Um die intrazelluläre Lokalisation von Mal-D zu untersuchen, 

habe ich eine getaggte Variante des endogenen Proteins durch homologe Rekombination 

hergestellt. Die Analyse der intrazellulären Lokalisation anhand dieser Methode zeigte, 

dass die Akkumulation von Mal-D im Nukleus migrierender Zellen auf eine Stimulation 

der Mal-D Pruduktion und nicht auf eine Relokalisation einer konstanten Menge an Mal-

D Protein zurückzuführen ist. Weiterhin konnte ich zeigen, dass Mutationen von Profilin 

oder DSRF die Menge an nukleär lokalisiertem Mal-D beinflussen. 
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Der zweite Teil meiner Doktorarbeit beschäftigt sich mit den Zielgenen, welche in 

Abhängigkeit von Mal-D reguliert werden. Ich konnte eine Mal-D Mutante isolieren und 

mit dem korrespondierenden Wildtyp in Bezug auf Veränderungen der 

Transkriptionsaktivität der Border Cells mittels DNA-Microarrays charakterisieren. 

Durch diese Analyse konnten 171 Gene identifiziert werden, die reproduzierbar um 

mindestens um einen Faktor von 2 unterschiedlich in Mutante und Wildtyp exprimiert 

wurden. Drei dieser Gene, welche für den primären Phänotyp der mal-D Mutanten 

relevant sein könnten, nämlich GC30440, GC1344 und if wurden von mir näher 

untersucht. Vorläufige Daten zeigen, dass GC30440 und GC1344 eine Rolle bei der 

Regulation der Migration von Border Cells durch Mal-D spielen könnten. 
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1 Introduction 

1.1 The overview of cell migration 
 
Many biological systems ranging from prokaryotes to multicellular organisms show cell 

migration behavior. Cell migration is an essential process both in the life of unicellular 

and multicellular organisms. Unicellular organisms use cell migration to move towards 

the light or towards better food supplies in a process called taxis. Thus the ability of 

migration is very important for the fitness of the unicellular organism and for giving the 

organism a means to respond to changing environment.  

In multicellular organisms, migration is important both during development and in 

adulthood. Migratory behavior in multicellular organisms can be divided in two general 

categories; migration of constitutively migratory cells or induced migration of stationary 

cells. Leukocytes are a good example of constitutively migratory cells. For them, 

migration is not just a phase of their life that they have to pass in order to function in their 

final destination but it is part of the function that they should perform in order to be 

effective in protecting the organism against pathogens.  

 

Multiple different cell types on the other hand commit induced cell migration. During 

development many different cell types are born in places different from the places where 

they are needed. Those cells need to actively migrate in order to reach their final 

destination and fulfill their function. Induced cell migration is important in adult life too 

such as in the case of epithelial wound healing. The cells in the opposite sides of the 

wound need to migrate towards each other in order to constrict over the wound tissue and 

close it.    

 

Induced cell migration is tightly regulated. Both the failure and excess of migration cause 

great problems. Unwanted cell migration is tightly associated with a pathogenic process 

of metastasis of cancer tissue, where gaining the ability to migrate helps a benign tumor 

to become malignant. In the cases of failure of migration, the organism faces problems 

like congenital nervous system defects, problems in morphology.  
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There are many fundamental issues about cell migration that have been addressed by 

scientists over the years. The main issues are 1) How do cells become migratory? 2) 

What is the mechanism of cell migration? 3) How do cells decide where to go?  

 Different cell signaling pathways have been shown to be important for all those different 

aspects of cell migration. This thesis is focused mainly on the second question and on a 

particular question that has in large extend not been addressed so far: What is the 

response of the cell to the migration process, what is the signaling mechanism that is 

activated during the migration event and what are the transcriptional changes that occur 

during the migration?  

1.2 The Mechanism of Migration           
 

Most of the knowledge about the motility of the cells and the mechanism of cell 

migration comes from the analysis of single cells crawling on a substratum. Observation 

of single cultured cells indicated some underlying principles for cell migration. Many cell 

types are able to crawl towards a source of an attractant molecule. They do so by 

polarizing towards the ligand source. They start to show a leading edge and a trailing 

edge. This polarization is in turn reflected in initiating exploratory membrane protrusions 

in the leading edge. The initial membrane protrusions are stabilized by forming strong 

adhesions that generate traction force to pull the cell body forward. Meanwhile the cell 

lowers the adhesion strength in the back, and contracts the uropod to move forward. 

(Figure 1.1) This complex sequence of events occurs by coupled action of membrane 

protrusions, cytoskeletal dynamics and cell adhesion (Ananthakrishnan and Ehrlicher, 

2007). Although there are subtle differences in the speed of migration such as fibroblasts 

being slow and keratocytes being fast migrators, and there are other migration modes 

such as the axon growth cone where the cell body does not move, still the underlying 

principle of regulated formation and breakage of adhesions holds.  

In the following sections I will briefly mention the regulation of Actin cytoskeleton, cell 

adhesion and generation of traction force.  
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1.2.1 The Actin cytoskeleton 

1.2.1.1 The General organization of the Actin cytoskeleton 
 

The Actin cytoskeleton is an intertwined network of Actin filaments. It is a very 

important cell component for the structural organization and morphology of the cell. 

Actin filaments need to be nucleated from Actin monomers called G-Actin. G-Actin 

forms filamentous Actin (F-Actin) by polymerizing in a head-to-tail fashion. This gives 

the Actin filaments an inherent polarity. Actin monomers bound to ATP are added 

preferentially to the plus end of the filament. Upon addition to the filament after a short 

delay ATP is hydrolyzed to ADP. Actin monomers bound to ADP are released from the 

minus end of the filament.  

 

In a cell Actin is found in form of a mix population of G-Actin and F-Actin. Most of the 

G-Actin is bound to Actin binding proteins such as Profilin and a small protein called β 

Thymosin 4 that keep the G-Actin levels high while preventing spontaneous, 

uncontrolled polymerization (Kaiser et al., 1999).    

 

In a cell plus end of the filament, called barbed end , due to their shape observed in 

electron microscopy of myosin decorated filaments, faces the membrane whereas the 

minus end of the filament is called pointed end is distal to the membrane (Pollard and 

Borisy, 2003). The dynamic addition of subunits in the barbed end and subtraction of 

subunits from pointed end makes the filament intrinsically mobile but the rate of this 

motility in vitro is too low to account for the motility of the cells. In vivo the processes of 

nucleation, polymerization and depolimerization are temporally and spatially controlled 

by the activity of Actin regulators.  
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1.2.1.2 The regulation of the Actin cytoskeleton in 
migration 

 

Actin cytoskeleton plays role in several of the steps of the migratory behavior. It is 

important for the formation of protrusions, stabilization and strengthening of the adhesion 

in the front.     

 

The main types of protrusions that are sent are large and wide membrane ruffles named 

lamellipodia and rod like structures called filopodia (Mitchison and Cramer, 1996). Both 

of those structures are Actin rich structures. The organization of Actin filaments in 

lamellipodia and filopodia are different. Whereas in lamellipodia Actin filaments form a 

branched, intertwined mesh like structure, in filopodia Actin filaments are bundled by the 

action of multiple Actin bundling and cross-linking proteins (Figure 1.2)(Mitchison and 

Cramer, 1996). 

 

The cell has a variety of Actin regulators in order to regulate the Actin polymerization 

rate and position and orchestrate 

the assembly of Actin filaments 

into defined structures. Those 

structures in turn push the 

surrounding membrane forward to 

generate the protrusions.  

 

A system that is used as a model 

for Actin polymerization 

organization for generating 

protrusions is the rocketing 

movement of Listeria and Shigella 

to move in the living cells that they 

infect. Those bacteria can hijack 

the Actin machinery of the host 



 20 

cell in order to generate Actin comets that they use as a propulsion force. This force 

generation by the Actin polymerization does not require myosin (Loisel et al., 1999). It 

has been shown that localized polymerization of Actin can generate enough force to 

move those bacteria. Although there are over 60 different Actin regulator classes, the 

minimal requirements for assembling Actin to generate movement of bacterial particles 

can be reconstituted in vitro by using purified proteins. (Loisel et al., 1999) The minimal 

components are G-Actin, Arp2/3 (which is activated in this system by bacterial factors 

that mimic the activity of WASP/SCAR family of Arp2/3 activators), Actin 

Depolymerizing Factor (cofilin/ADF), and capping protein (Loisel et al., 1999). Adding 

Profilin and VASP further increased Actin polymerization based motility of the bacteria. 

I will introduce those factors and how they act in the following paragraphs.          

 

Actin filaments can be nucleated by Arp2/3 family Actin nucleators as a branch of an 

existing filament. Arp2/3 is a complex of 7 subunits that contain the Actin related 

proteins 2 and 3, which mimic an Actin dimer and 5 more subunits that keep them 

stabilized in the inactive state, ARPC1-5 (Pollard, 2007). The activity of Arp2/3 factors is 

regulated by WASp family of proteins or SCAR/WAVE family of proteins (Figure 1.3). 

WASp family is consisting of Wiscott Aldritch Syndrome Protein (WASP) and SCAR.  

 

Although most of the nucleation in a lamellipodium goes through Arp2/3, it is not the 

only Actin nucleator in the cells and there are other classes of Actin nucleating factors 

that may be important for Actin regulation. Formins for instance are a class of Actin 

nucleators that can form Actin filaments from soluble G-Actin pool without the 

requirement for a prior Actin filament (Pollard, 2007). There are multiple members of the 

Formin family which can be identified by three regions of homology called Formin 

Homology 1,2 and 3 (FH1, FH2, FH3) domain (Goode and Eck, 2007). FH1-FH2 

domains can form dimers and bind to Actin dimers and stabilize this thermodynamically 

unstable nucleation intermediate which helps to continue the nucleation in vitro (Pring et 

al., 2003; Pruyne et al., 2002). Moreover when nucleation occurs and filament elongation 

starts FH1-FH2 dimer remains associated to the barbed end of the filament and prevents 

the binding of capping proteins meanwhile allowing addition of more Actin subunits 

(Zigmond et al., 2003). This way of action is called processive capping or leaky capping 
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and results in unbranched Actin filament elongation (Figure 1.3).  FH1 domain which is 

situated next to FH2 domain can bind to Profilin and incorporate the G-Actin bound to 

Profilin to the growing F-Actin (Romero et al., 2004).  

 

One of the formins that have been implicated to have a role in cell migration is 

Diaphanous (mDia) (Watanabe et al., 1999; Watanabe et al., 1997). mDia localizes to the 

leading edge of a migrating cell (Watanabe et al., 1997) and has role in the formation of 

unbranched Actin filaments that form filopodia. Other than that mDia is important for the 

formation of stress fibers in response to Rho GTPase (Watanabe et al., 1999). 

Diaphanous can be divided into two parts: C terminal part which harbors FH1 and FH2 

domains which activate the nucleation and elongation of F-Actin, and Diaphanous Auto-

inhibitory Domain (DAD); and N terminal part which is the regulatory part, consisting of 

Diaphanous Inhibitor Domain and GTPase Binding Domain (GBD). In default state 

diaphanous is auto-inhibited due to binding of its N terminal region to its C-Terminal 

region (Watanabe et al., 1999). When active Rho GTPase binds to GBD it relieves the 

auto-inhibition and activates the protein (Jaffe and Hall, 2005; Watanabe et al., 1999; 

Watanabe et al., 1997). In fact Diaphanous which lack auto-inhibitory domain is 

constitutively active. Another factor that nucleates Actin filaments from G-Actin is Spire, 

which binds to four Actin monomers and aligns them, forming the start of a new filament 

backbone(Quinlan et al., 2005).  

 

Profilin is a small protein that directly binds to G-Actin. Moreover it facilitates both the 

addition of ATP bound G-Actin to F-Actin plus end, and it exchanges ADP to ATP in 

ADP bound G-Actin, thus activating it. Profilin is recruited to the plus end of the 

filaments by the interaction with Formin proteins too.  

 

Capping protein binds to the plus end of F-Actin and prevents further actin 

polymerization in that filament (Cooper et al., 1984; Isenberg et al., 1980). Actin polymer 

growth occurs as a competition between elongation and capping. There are proteins such 

as Formins and Ena/VASP which actively compete with the capping protein in order to 

continue the elongation without capping in regions where elongation is favored. (Bear et 

al., 2002; Zigmond et al., 2003) 
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Cofilin is an Actin severing factor. It binds to F-Actin and twists it, which causes the 

tension in the filament to increase and at the end leads to the breakage of the filament. 

The activity of cofilin is inhibited by direct phosphorylation of the protein by a protein 

called LIMK (Yang et al., 1998). LIMK in turn is activated by the action of Rho family 

small GTPases. Inactive, phosphorylated cofilin is reactivated by dephosphorylation by 

the action of cofilin phosphatase (Nishita et al., 2005; Niwa et al., 2002). Cofilin’s role in 

Actin based force generation is two fold. One is that it severs Actin filaments that are 

bound to capping protein thus that cannot grow any more, and generates free barbed ends 

that can be used for further Actin polymerization. Two is that it replenishes G-Actin pool 

that eventually would get depleted if all the F-Actin generated would stay stable. It is 

believed that the aged filament would get chopped by the activity of cofilin in order to 

replenish G-Actin pool. 
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Arp2/3, WASP, Profilin, Capping Protein, Cofilin function in the formation of 

lamellipodia as well,(Reviewed in Pollard and Borisy 2003). (Figure1.4)   
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  In addition to those proteins that regulate Actin polymerization, branching, 

depolymerization and capping, there are other Actin ultrastructural organizers that cross 

link the Actin cytoskeleton. For example cross linking of Actin filaments in 

Dictyostelium by myosin II has been shown to be important for cortical integrity of the 

cell migrating under differing concentrations of agar, directly affecting how much the cell 

can deform the surrounding while maintaining its cortical integrity (Laevsky and Knecht, 

2003).  Interestingly the motor activity of myosin is not required for this organizational 

role since myosin light chain mutants can deform the substrate as much as the wild type 

cells (Laevsky and Knecht, 2003). 

   

Although Actin role in lamellipodium formation is well established, the involvement of 

microtubules is more complex. Through disruption of microtubules and observing 

whether the migration still occurs it has been shown that microtubules are important for 
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the migration of big and complex cells such as fibroblasts or epithelial cell layers in 

response to wounding but not required for the migration of specialized migrating cells 

such as keratocytes and leukocytes (Waterman-Storer and Salmon, 1999).   During the 

polarization of the cell, Microtubule Organizing Center (MTOC) gets repositioned 

between the leading edge and the nucleus of the cell (Gomes et al., 2005). Some views on 

the role of microtubules in cell migration include the involvement of microtubules in 

disrupting focal adhesions and tail retraction. (Ballestrem et al., 2000) 

 

1.2.1.3 Rho family of small GTPases in Actin regulation    
Small GTPases are proteins that are in general considered as molecular switches. They 

bind to Guanosine triphosphat (GTP). GTP bound GTPases are active and they activate 

diverse downstream effectors to engage diverse processes such as cell cycle progression, 

phagocytosis, cell morphology and Actin cytoskeleton dynamics (Etienne-Manneville 

and Hall, 2002). GTPases have an intrinsic GTP hydrolysis activity that is slow, that 

convert bound GTP to GDP, rendering it inactive again. There are multiple regulators of 

this cycle of activation and inhibition (Figure 1.5A) (Luo, 2000; Raftopoulou and Hall, 

2004). 

 

GTP hydrolysis activity of a GTPase can be boosted by the action of GTPase Activating 

Proteins (GAP)s. GAPs therefore promote turning off of GTPases. There is a second 

family of proteins called GTP Exchange Factors (GEF)s that promotes the exchange of 

GDP to GTP on an inactive GTPase, thus activating it. A third family of GTPase 

regulators are called GDP Dissociation Inhibitors (GDI)s that inhibit the release of GDP 

from a GDP bound inactive GTPase, thus keeping it inactive for longer time (Figure 

1.6A)(Etienne-Manneville and Hall, 2002).  
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Several processes that are triggered by the activity of GTPases and Actin cytoskeleton 

dynamics is one of them. Members of the Rho family of small GTPases are implicated in 

multiple Actin driven processes to coordinate the activity of key effectors such as 

Formins and Arp2/3 through the activation of WASP as discussed below (Figure 1.5 B).  

 

There are three main members Rho GTPases: Rho, Cdc42 and Rac. Rho has been 

implicated to be important for the formation of stress fibers, filaments of Actin that are 
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localized in the adhesion sites and are thought to be important for cell rigidity. Moreover 

one of the effectors of Rho GTPase called ROCK phosphorylates Myosin light chain 

phosphatase (MLCP) and causes increase in myosin II phosphorylation, thus activates 

myosin II (Amano et al., 1996; Essler et al., 1998; Matsui et al., 1996). Another effector 

of Rho GTPase is Diaphanous (Watanabe et al., 1999). Rho GTPase has been shown to 

be important in diverse cell types to sense the extracellular matrix and the forces that the 

cell is submitted to.    

 

Cdc42 is important for induction of filopodia, thus probing the environment. Cdc42 has 

been shown to activate WASP that activates Arp2/3 family of nucleators. Rac was 

proposed to be important for the formation of lamellipodia. Its effectors PAK and LIMK 

are important for inhibiting cofilin (Arber et al., 1998) and to activate SCAR, which in 

turn activates the Arp2/3 complex. (Ng and Luo, 2004) 

1.2.2 The Regulation of the Cell Adhesion 
 

Migrating cells need to stabilize their protrusions in the front of the cell in order to 

generate traction force to pull the cell body forward. This is accomplished by assembling 

new adhesion complexes in the front of the cell. Concomitantly cells need to release their 

adhesion in the back of the cell. This is achieved through internalization of adhesion 

molecules or dissociation of adhesion complexes at the back of the cell. Many cells use 

Integrins to bind to extracellular matrix and use it as a substrate on which they migrate. 

Integrins are formed by heterodimerization of two single-pass transmembrane subunits 

called α and β subunits (Brown et al., 2000). There are several α and β subunits and the 

association of different α and β subunits causes the binding to different ligands in the 

extracellular matrix. The binding specificity is regulated by the large extracellular 

domains of integrin subunits. These subunits have a short intracellular domain important 

for association with the Actin cytoskeleton and for regulation of adhesion by different 

kinds of regulators such as kinases, phosphatases and adaptor molecules. Upon binding to 

their ligands, integrins recruit multiple cytoplasmic proteins, forming focal complexes 

(Hynes, 2002). Those focal complexes either maturate into large supra molecular 

assemblies called focal adhesions or disappear (Laukaitis et al., 2001). Focal adhesions 

bind the adhesive complex to the Actin cytoskeleton and strengthen it. Furthermore, they 
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are involved in the subsequent maturation steps of the adhesion. In many migrating cells 

it has been shown that the leading edge has more integrins than the trailing edge does. 

This is in part established by the endocytosis and recycling of the integrin complexes 

(Caswell and Norman, 2006). Different integrin heterodimers are internalized and 

recycled by using short or long endosomal recycling pathways and blocking  recycling 

routes of transmembrane molecules causes the asymmetrical distribution of integrins to 

disappear and the cells to slow down. (Strachan and Condic 2004; Caswell and Norman 

2006). There are other regulators of integrin signaling including Rho GTPases, different 

kinases and phosphatases that either act directly on focal adhesion constituents or their 

regulators.  

 

Integrins are not the only adhesion molecules that are used in cells for migration. There 

are other classes of adhesion molecules that are used by different kinds of cells for their 

migration. For example neurons use Neural Cell Adhesion Molecule for their migration 

on rostral migratory stream and border cells use cadherin in their migration 

(Niewiadomska et al., 1999). The process and the mechanism of formation of the cell 

adhesion in the leading edge and dissociation of it in the rear of the cell is still the 

underlying mechanism required for migration.                         

1.2.3 Pulling the cell body by contractile forces 
 

The contractile forces are generally generated by the activity of myosin II in the 

migrating cells. Myosin II activity is spatially regulated during migration. The protein is 

activated in the back and on the sides of the cell but not in the leading edge (Xu et al., 

2003). Myosin II is a hexamer that is formed by two heavy chains and four light chains. 

They assemble to form a long tail and two large heads that bind to Actin 

filaments(Bresnick, 1999). Myosin hydrolyzes ATP to generate a cyclic movement that 

causes a stroke on the Actin filament. First the head region binds the filament, then pulls 

it and releases the filament which makes a new round of the cycle possible. In the cell, 

the activity of Myosin II is regulated mainly by the activity of ROCK (Rho kinase) that 

phosphorylates and activates myosin II, and the activity of myosin light chain 

phosphatase (MLCP) which dephosphorylates and inactivates myosin II (Bresnick, 

1999). ROCK phosphorylates myosin phosphatase and inactivates it which stabilizes the 
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activation of myosin. ROCK in turn is activated by Rho. In migrating cells Rho is 

activated in places other then the leading edge which may account for the localized 

activation of Myosin II. (Explained in more detail in the following section) 

1.2.4 Sensing directionality  
 

The initial directionality of the migration and cell polarity is in most cases a direct 

consequence of extracellular signaling molecules. Cells are very successful in sensing 

even very shallow gradients of attractors and are able to polarize and move towards them. 

The initial small change of concentration of attractant over the length of the cell is first 

sensed and then amplified intracellularly in order to give a robust migration trajectory. A 

migration system that was studied in this regard is Dictyostelium discodeum. cAMP is a 

potent chemoattractant for this organism and Dictyostelium cells are very sensitive in  

determining the gradient. Indeed they can sense a change as little as 2% of cAMP 

concentration over their cell bodies. The mechanism that allows them to be that sensitive 

can be summarized as localized activation and global inhibition. (Figure1.6) (Jin and 

Hereld 2006; Willard and Devreotes 2006) 
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In this model cAMP binds to a G Protein Coupled Receptor (GPCR). This causes 

dissociation of Trimeric G protein into Gα and Gβγ subunits. Gβγ, through activation of 

Ras causes Phosphatidylinositide 3-Kinase (PI3K) to get activated on the site of receptor 

activation. PI3K is an enzyme that phosphorylates Phophatidylinositol (PtdIns) to form 

PtdIns(3,4,5)3 Phosphate (PIP3). The activation of PI3K causes polarization of the cell 

into a clear leading edge and a rounded trailing edge by the accumulation of PIP3 locally, 

which in turn recruit proteins with Pleckstrin homology domain, PH domain, PX domains 

and FYVE domains, towards the leading edge. In the rest of the cell surface the ectopic 

action of PI3K is counteracted by a phosphatase called PTEN (Funamoto et al., 2002). 

The initial activity of the PI3K in the leading edge and the removal of PTEN from the 

leading edge in turn activates a relay of events, amplifying the initial signal thus making 

the response more robust.  
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Another migration system that uses localized PIP3 as a polarization means is neutrophils. 

The initial polarization of PIP3 leads to the activation of Rac GTPase specifically in the 

leading edge (Xu et al., 2003). That in turn causes increase of Actin polymerization in the 

leading edge. Increased Actin polymerization causes further increase of PIP3 in the 

leading edge by means that are not fully understood but may be caused by aggregation of 

membrane micro domains. On the other hand at the back of the cell Rho GTPase and 

ROCK cause myosin contractility (Xu et al., 2003). Rho activity and Rac activity are 

mutually exclusive which causes a robust polarization of the cell, limiting the myosin 

contractility in the back and Actin polymerization in the front. (Xu et al., 2003). 

Moreover Cdc42 has been shown to be activated in the leading edge. This goes through 

recruitment of a complex of PIX (A GEF for Cdc42), and PAK1 (an effector of Cdc42) 

by Gβγ in the leading edge. Interestingly in this situation PAK1 which is an effector of 

Cdc42 acts as an activator of it as well. (Li et al. 2003). There are several negative and 

positive feedback loops that are suggested to make the initial polarity more robust. For 

example transport of exogenous PIP3 is able to increase the activity of endogenous PIP3 

generating machinery and polarize PIP3. This behavior was shown to require PI3K, Rac 

activity and was shown to depend on Actin cytoskeleton dynamics and it is important to 

make migration in one direction persistent.(Wang et al., 2002; Weiner et al., 2002)   

 

Border cells migration is another system in which guidance is studied in detail. Border 

cells differentiate in the anteerior pole of the developing egg chamber and migrate 

posteriorly towards the oocyte  (discussed in detail in the following chapters). Border cell 

migration is guided by the activity of two receptor tyrosine kinases (RTKs), PVR and 

EGFR (Duchek and Rorth 2001; Duchek et al. 2001) (Figure 1.7). PVR is the Drosophila 

single orthologue for two separate growth factors in mammals Platelet Derived Growth 

Factor Receptor/Vascular Endothelial Growth Factor receptor. EGFR is the Drosophila 

orthologue of EGF receptor. In the part of the migration which starts at the anterior pole 

where the border cells specify, and it ends at the border between nurse cells and the 

oocyte PVR and EGFR behave in a redundant way. Over expression of either of the 

ligands within the cluster abrogates the migration (Duchek et al. 2001). Moreover ectopic 
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over expression if the ligand on the sides of the egg chamber can misguide the border cell 

cluster to the ectopic expression location (McDonald et al., 2003) 

The second part of the migration, dorsal migration towards the oocyte nucleus which 

happens after reaching the border between oocyte and nurse cells, EGFR has been shown 

to provide guidance (Figure 1.7 B) (Duchek and Rorth, 2001). The ligand for EGFR, 

Gurken, is expressed in the anterior dorsal side of the oocyte and forms a gradient that 

attracts border cells. 

Polarization of the signal transmitted 

by those RTKs has been shown to be 

important for the regulation of 

guidance of the border cells, and 

there are some genes that are acting 

to keep the activity of those RTKs 

polarized (Jekely et al., 2005). 

Activated RTKs in turn activate 

diverse downstream effectors, such 

as Rac GTPase that induces Actin 

cytoskeletal changes, and signaling 

components such as MAP kinase 

signaling pathway, PI3K, PLCγ 

(Duchek et al. 2001; Bianco et al. 2007).        

 

1.2.5 The Role of Transcription and Cell signaling in migration 
 

The roles of transcriptional changes in cell migration are mostly associated with the 

induction of cell migration. Many transcription factors have been implicated to be 

important for making the cell migratory. In the following paragraphs I will give some 

examples.  

 

Transcription factors Twist and Snail have been shown to be important inducing factors 

in the mesoderm to start invaginating during gastrulation (Leptin and Grunewald, 1990). 
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The direct hierarchical action of diverse transcription factors is responsible for the 

migratory fate decision. Interestingly Twist has been shown to be important for induction 

of metastasis in diverse mammalian cancer types (Yang et al., 2004). Moreover ectopic 

expression of Twist in MDCK cells, which are normally not migratory in response to 

serum, renders them migratory (Yang et al., 2004). This establishes Twist as a potent 

inducer of migratory behavior.  

Snail on the other hand was the first factor to be shown to be an important factor for the 

migration of Neural Crest Cells and has been shown to be important for the induction of 

Eptihelial Mesenchymal Transition (EMT) in all the EMT systems where it has been 

analyzed (Reviewed in (Barrallo-Gimeno and Nieto, 2005).. EMT process is a sequence 

of events that overall leads the epithelial cells to loose their epithelial morphology and 

become more loosely shaped like a fibroblast. Epithelial cells break their apical basal 

polarity, they loosen the cell-cell contacts, decrease the expression of epithelial 

components (Such as E-cadherin, α and γ catenin) express mesenchymal components 

(such as vimentin, N-Cadherin, smooth muscle Actin and fibronectin), rearrange their 

cytoskeleton and become migratory at the onset of EMT (Thiery, 2002). EMT is a 

recurrent theme in the development of the organism, from gastrulation to organogenesis 

(Hay, 2005) One of the hallmarks of many EMT events is the repression of E-cadherin 

expression, albeit it is not enough per se for EMT, and the cells should still start to 

express mesenchymal components (Yang et al., 2004). Snail performs its role in EMT at 

least partly by directly repressing the transcription of E-Cadherin (Cano et al., 2000).  In 

addition to Snail two more transcription factors were shown to be important for NCC 

migration, Sox9 and FoxD3 (Cheung et al., 2005). Sox9 is important for making the cell 

competent to become NCC, and to promote survival, whereas FoxD3 is mostly important 

for the down-regulation of N cadherin and expression of integrin (Cheung et al., 2005).     

 

In tissue culture cells TGF β was shown to be an important regulator of EMT in epithelial 

cells of diverse origins. Interestingly in this context TGF β causes induction of 

transcriptional repressor Hey1 directly and this has been shown to be required for EMT 

onset (Zavadil et al., 2004). TGF β signaling induces the actication of Mitogen Activated 

Protein Kinase (MAPK) signaling as well (Zavadil et al., 2001).  Moreover TGF β 
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signaling induces indirectly Notch signaling on a longer timescale and this induction is 

required for EMT process as well (Zavadil et al., 2004).  

 

An analysis of mutations in Elongator complex which is suggested to be important for 

elongation step of transcription, showed that mutation or RNA interference (RNAi) 

mediated knock-down of a key factor of this complex, IKAP/hELP1 in fibroblasts 

decreases transcript levels of multiple cell motility related genes and decreases migratory 

behavior of mutated fibroblasts (Close et al., 2006). 

 

Work on Caenoharbiditis elegans anchor cell migration showed that FOS-1 transcription 

factor is essential for the invasive migration of anchor cells during the development by 

providing the means of breaking the basal lamina through which those cells migrate 

(Sherwood et al., 2005). 

 

Janus Kinase/ Signal Transducer and Activator of Transcription (JAK/STAT) pathway 

was shown to be another signaling/transcription factor couple important for multiple cell 

migration systems. It was first implicated to have a role in induction of migration in the 

Border Cell migration system (Discussed more in detail later) (Beccari et al., 2002; Silver 

and Montell, 2001). Border cells differentiate among the anterior follicle cells with the 

action of two specialized follicle cells called polar cells. Polar cells induce border cell 

fate in the cells surrounding them by activating JAK/STAT pathway. Polar cells express 

the ligand Unpaired and border cells express the receptor Domeless (Beccari et al., 2002; 

Silver and Montell, 2001). In response to signals from polar cells, border cells start to 

express slbo, the Drosophila CAAT Enhancer Binding Protein (C/EBP) transcription 

factor homologue in Drosophila (Montell et al., 1992). Slbo in turn activates transcription 

of many genes that are important for migratory behavior. Slbo is absolutely essential for 

border cell migration, since border cells mutant for slbo are not even motile and are stuck 

in the anterior pole of the oocyte (Montell et al., 1992; Rorth et al., 2000). Overall, border 

cell fate is gained by transcriptional activation of multiple genes including transcription 

factors, cytoskeletal regulators and muscle specific genes (Borghese et al. 2006; Wang et 

al. 2006). Interestingly temperature sensitive alleles of STAT showed that if STAT 

function is impaired after border cell specification, border cells still have migration 
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delays which suggests that JAK/STAT pathway is important not only for the specification 

of the border cells but also during the border cell migration (Silver et al., 2005). 

JAK/STAT signaling is important for the induction of migration of Primordial Germ 

Cells in Drosophila as well at the end of germband retraction (Kunwar et al., 2006).    

 

1.4 Differences between cell migration in cell culture and in vivo 
cell migration 
 

Cell culture migration systems give clear advantages in terms of amenability to 

manipulations and the ease of imaging. Although the key cellular mechanism for motility 

are most likely the same between migrating cultured cells and in vivo migration systems, 

there are clear differences. First of all the migration substrate of in cell culture migration 

systems is two dimensional whereas for the in vivo migration the substrate most of the 

time is three dimensional. This causes significant limitations for the membrane 

movements compared to the cell culture situation where the cell membrane is not 

hindered from one side. 

A further difference is that the in vivo, both the start and the end of migration should be 

tightly regulated. Cells need to stop moving when they reach their target.  

An important difference arises for collective migration. Some of the migration systems, 

such as the one I am interested in, undergo collective migration, meaning that the cells 

actively migrate together while they are part of a cluster or tissue. In cell culture 

migration models generally focus on the movement of a single cell in response to a 

motility cue. The difference between the collective migration and single cell migration is 

even more important while thinking about forces that are applied on a migrating cell in 

vivo during collective migration. Both pulling and pushing within the cluster of cells 

generate intra cluster forces. A nice example is the dorsal closure in the Drosophila 

embryo. This is a migration system where an entire epithelial sheet migrates collectively 

to close over the dorsal hole that is created over amnioserosa, the extra embryonic 

epithelial tissue covering the dorsal side of developing embryo, at the end of germ band 

retraction in embryogenesis (Jacinto et al., 2002). Elegant experiments with laser 

ablations showed that those cells are pulling each other and are thus under 

tension(Kiehart et al., 2000). If one makes a laser cut in the epithelium, cells retract, 
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reminiscent of a string under tension that is cut. Surrounding cells find a new equilibrium 

and then continue to migrate (Kiehart et al., 2000). Myosin II contractility is the driving 

force of this closure. Myosin II is localized specifically in the leading edge of the 

migrating epithelium along with a strong, organized, Actin cable (Franke et al., 2005). 

The driving force comes from both the constriction of this actomyosin cable in the 

leading edge and the constriction of the amnioserosa (Kiehart et al., 2000). 

 

In some collective migration models guidance cues are sensed by leader cells and the 

action of leader cells organize the rest of the cluster to follow. One tissue where it is 

analyzed is the tracheal migration in Drosophila. Tracheal branches form by budding of 

an epithelium and migration of the cells forming the epithelium as a group of cells 

(Ghabrial et al., 2003). They are guided through the activity of an RTK where ligand is 

expressed in the surrounding tissue. In this system the cell that receives the most FGF 

signal becomes the leading cell and directs the follower cells in the migrating group 

(Ghabrial and Krasnow, 2006). It sends a secondary signal to the follower cells to make 

them differentiate into tubes. It has been shown that the presence of the receptor only in 

the leading cell is enough to direct the migration (Ghabrial and Krasnow, 2006). Another 

system with this kind of cluster dynamics is the lateral line migration in zebrafish. In this 

system, a large cluster of cells migrate along the dorsal side of the developing fish to drop 

lumps of cells that will form the mechanosensors of the fish. The guidance has been 

shown to be established by SDF1 and its receptor CXCR4 (a GPCR). In this system 

elegant mosaic analysis showed that a whole cluster that is mutant for the receptor, thus 

unable to get the guidance cue, can be rescued by the presence of a few cell with the 

receptor (Haas and Gilmour, 2006).  

 

One suggested mechanism for the signaling from the leader cell to the follower cells is 

mechanical signaling. In this model, the leading cell pulls the follower cells and this 

pulling force is perceived by the follower cells and makes them know they are followers. 

This type of signaling does not need to be unidirectional and the follower cells can cause 

stretching and mechanical tension on the leader cells as well.  
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1.5 Border cell migration 

1.5.1 Overview of border cell migration 
 

Border cell migration is a collective migration of about 8 cells that happens during the 

stage 9 to stage 10 of oogenesis of Drosophila melanogaster. Developing drosophila egg 

chamber consists of 15 germline derived giant cells called nurse cells, an oocyte, and 

about 1000 somatic cells that cover them called follicle cells (Figure 1.8).  

 

After getting specified at the anterior pole of the egg chamber, border cells form a cluster 

that surrounds the polar cells at the anterior pole, send a long cellular extension (Fulga 

and Rorth, 2002), and start their migration process at stage 9 of oogenesis (Figure 1.9). 

At this stage of oogenesis follicle cells start to undergo a morphogenetic movement as 

well. Most of the follicle cells move towards the oocyte and form a columnar epithelium 

covering the oocyte, leaving a group of about 50 extremely flattened cells that cover the 

nurse cells, called stretched cells (Horne-Badovinac and Bilder, 2005)(Figure 1.8).  
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Border cell migration is a stereotypical migration. At a given time one can predict how 

much they should have migrated. Accordingly one can assess whether they are delayed or 

not delayed. One can score border cell migration by looking at their position relative to 

retracting centripetal cells (Figure 1.8). In wild type situation they are seen in the same 

distance to the border between oocyte and nurse cells.  

 

Border cell migration is an invasive migration since border cells invade in between nurse 

cells. It has been shown that border cells migrate on nurse cells by using DE-cadherin, a 

well established cell-cell adhesion molecule (Niewiadomska et al., 1999). If border cells 

or nurse cells are mutant for DE-cadherin, border cells cannot migrate. How adhesion in 

border cells is regulated is not fully understood however the link between the Actin 

cytoskeleton and DE-cadherin is required but not regulated in the level of DE-Cadherin –

α catenin, and constitutively binding DE-cadherin with α-catenin can replace the function 

of the endogenous protein. (Pacquelet and Rorth, 2005) A possible mechanism of 

adhesion regulation is the turnover of adhesion complexes by endocytosis.  
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Throughout the migration process border cells remain attached to each other. Indeed, if 

one generates a border cell cluster consisting of wild-type cells and cells mutant for an 

essential factor like slbo, mutant cells are pulled into the migrating cluster (Rorth et al., 

2000). Mutant cells always trail behind and the more cells are mutant in the cluster the 

more delayed the cluster is. This suggests that those cells are not contributing to 

migration and are pulled by the wild-type cells that attempt to migrate. The identity of the 

adhesion molecule that binds them is still not known but it is known that it is not only 

DE-cadherin since border cell clusters composed of DE-Cadherin mutant cells and wild-

type cells keep their cluster morphology (Niewiadomska et al., 1999).  

 

Both laser ablation of border cells and genetic manipulation of border cells to stop their 

migration caused defective morphology of the sperm channel. At the end of the 

migration, border cells differentiate and form the pore leading to micropyle, the sperm 

channel that is crucial for the fertilization of the oocyte (Montell et al., 1992). Another 

role of border cell migration is the induction of the gene torso-like in the oocyte which is 

important for patterning of the resulting embryo after fertilization (Savant-Bhonsale and 

Montell, 1993). Thus, a mutation that completely blocks border cell migration causes 

sterility of the females.    

1.5.2 Role of Mal-D and DSRF in border cell migration 
 

Mal-D has been identified by the work of Kalman Somogyi in our laboratory because of 

impaired border cell migration and decrease in F-Actin levels in cells mutant for this gene 

(Somogyi and Rorth 2004). Sequence analysis identified the gene as the only Drosophila 

member of MRTF family of SRF coactivator. Before going into detail about the 

phenotypes of Mal-D I would like to introduce Mal-D and DSRF and the knowledge that 

we have from their analysis in different systems.  

1.6 SRF and MAL 
 

Serum Response Factor (SRF) has been studied in mammalian cell culture system for a 

long time. In mammalian cell culture system, it was identified as the transcription factor 

crucial for the expression of immediate early genes (Norman et al., 1988; Treisman, 
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1987). Immediate early genes are a group of genes that are activated if serum is added 

after serum starvation. Their expression level increases within 30 minutes of serum 

addition and this increase does not require prior protein synthesis. This list of genes 

includes cell proliferation and survival factors such as c-Fos, c-Myc and c-Jun. The 

sequence motif that renders SRF responsiveness has been identified. The motif is 

CC(A/T)6GG (Treisman, 1985).  

 

SRF is a member of the MADS (MCM1, Agamous, Deficiens, SRF) family of 

transcription factors. Those transcription factors share homology in a 57 amino acid 

region called the MADS box (Shore and Sharrocks, 1995). Although there are many 

members of MADS box proteins in plants the only members of the family in animals are 

Mef2 (myocyte enhancer factor 2) subfamily that has role in muscle differentiation and 

SRF. The conserved MADS box contains sequences important for homodimerization and 

DNA binding of those proteins. SRF has an extension of this motif that can bind to its 

transcriptional coactivators. MADS box is highly conserved in SRF from different 

species and it is 93% identical from Drosophila to human SRF (Affolter et al., 1994).    

 

Analysis of SRF activity showed that by itself SRF is a poor activator of transcription. 

The activity of SRF depends on binding to different transcription coactivators. There are 

two major classes of coactivators that activate the transcription of two separate groups of 

targets (Gineitis and Treisman, 2001) (Figure 1.10). The first group of targets has been 

shown to be responsive to growth factor signaling and they are inhibited by using MAP 

kinase pathway inhibitors. The transcription coactivator family responsible for the 

activation of this class of targets is Ternary Complex Family (TCF). This family is 

composed of Sap1, Elk-1 and Net. They are phosphorylated directly by MAPK signaling 

and bind to SRF and a consensus sequence on the DNA next to the SRE and activate a 

group of SRF targets (Gineitis and Treisman, 2001). 
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(Posern and Treisman, 2006) 

In addition to its regulation by MAPK signaling it has been known that serum induction 

of a different subset of SRF target genes was blocked by blocking Rho small GTPase 

using C3 transferase or by inhibiting Actin polymerization (Hill et al., 1995). Using drugs 

that bind to G-Actin such as cytochalasin D or swinholide A on the other hand activates 

the transcription of  those targets in NIH3T3 cells. (Hill and Treisman, 1995; Mack et al., 

2001; Sotiropoulos et al., 1999). 

 

The link between Actin polymerization and transcriptional activation remained elusive 

until the identification of MAL as potent transcription coactivators of SRF. I will mention 

the other members of the MRTF family and how they are regulated in the following 

sections.  MAL is cytoplasmic when NIH3T3 cells are serum starved, and shifts to the 

nucleus in a rapid manner in response to serum (Miralles et al., 2003). Moreover this 
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shifting to the nucleus can be inhibited by either blocking Rho or Actin polymerization 

(Miralles et al., 2003).  

 

MAL has three Actin binding motifs called RPEL motifs in its N terminus. Deletion or 

point mutation of those motifs causes Mal to accumulate constitutively in the nucleus 

without the requirement to serum activation (Miralles et al., 2003). This led to the 

hypothesis that MAL is kept cytoplasmic by the action of G-Actin. Growth factors in 

serum activate Rho, which in turn causes G-Actin to form F-Actin with the action of Rho 

effector Diaphanous. This accumulation of F-Actin causes G-Actin depletion in the cells, 

thus rendering MAL free of cytoplasmic retention. This causes MAL to go to the nucleus 

where it binds to SRF and causes the upregulation of Actin, Vinculin and other factors 

that increase the F-Actin levels. (Miralles et al., 2003; Morita et al., 2007). On the other 

hand the regulation of MAL by Actin cytoskeleton may be more complex. An Actin point 

mutant that binds strongly to MAL was shown to drive MAL into nucleus showing that 

Actin may have a more active role in MAL regulation rather than cytoplasmic retention 

(Posern et al., 2004). A recent study indicated that in cells that are not stimulated with 

serum MAL continuously rapidly shuttles between nucleus and cytoplasm since blocking 

nuclear export causes rapid accumulation of MAL in the nucleus and photo activation of 

a photoactivatable GFP fused to MAL in the nucleus shows dispersal of the signal in the 

cytoplasm (Vartiainen et al., 2007). Suggested mechanism is that in cells that are serum 

starved the nuclear export of MAL is so rapid that MAL can only be seen in the 

cytoplasm, (Vartiainen et al., 2007). 5 minutes after blocking nuclear export MAL was 

accumulated in the nucleus, which is a rate that is faster than serum induced nuclear 

accumulation of MAL indicating that basal shuttling rate of MAL is higher than induced 

nuclear transport meaning that the effect of serum activation goes through at least partly 

by blocking nuclear export (Vartiainen et al., 2007). Continuous shuttling in the serum 

starved cells is dependent on cytoplasmic Actin dynamics, and nuclear Actin pool, since 

treating the cells with Actin sequestering drugs or Rho inhibitors prior to inhibiting 

nuclear export abrogates nuclear accumulation in response to nuclear export inhibition 

(Vartiainen et al., 2007). Actin regulates MAL by binding to it in the cytoplasm and 

inhibiting nuclear import, binding to MAL in the nucleus and leading to its nuclear export 
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and binding to MAL in the nucleus to prevent it to stimulate SRF target genes. 

(Vartiainen et al., 2007) 

   

 

1.6.1 SRF and MRTFs in vivo 
 

SRF has been shown to be important in many processes in the mouse development and 

adult life. Homozygous mutation in SRF causes the embryos to die as early as 

gastrulation, due to a defect in mesoderm specification (Arsenian et al., 1998). 

Conditional disruption of SRF in different tissues indicated roles of SRF in cardiac 

development (Niu et al., 2005), skeletal muscle development (Li et al., 2005), postnatal 

skeletal muscle growth and regeneration(Charvet, Houbron et al. 2006), neural circuit 

assembly (Knoll, Kretz et al. 2006), learning (Etkin et al., 2006; Lindecke et al., 2006) 

and lymphocyte development (Fleige et al., 2007) in mouse. Moreover in mouse SRF has 

been implicated to be important for the migration of new born neurons from the 

subventricular zone to the olfactory bulb, along rostral migratory stream. (Alberti et al., 

2005). Additionally SRF mutant Embryonic Stem cells (ES) have less Actin, lamellipodia 

and focal adhesions. (Schratt et al., 2002) 

 

There are three members of the MRTF family of transcription factors. The founding 

member, Myocardin, has been identified because of its restricted expression domain. 
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Myocardin is specifically expressed in smooth muscle, and cardiac muscle. Ectopic 

expression of Myocardin is sufficient to express smooth muscle and cardiac muscle 

markers in non muscle cells in Xenopus (Small et al., 2005). Moreover mice mutant for 

myocardin dies during embryonic development due to problems with vasculature, 

showing again the importance of myocardin in smooth muscle differentiation (Li et al., 

2003). In contrast to other members of the family myocardin is constitutively nuclear in 

the cell types it has been analyzed (Wang et al., 2001).  

 

In contrast to tight tissue specific expression of myocardin, MAL and MRTF-B are 

ubiquitously expressed in mouse. A knock out of MAL is viable and fertile, but shows a 

phenotype that is specific for lactating females. The mothers that are homozygous mutant 

for MAL fail to feed their pups.(Li et al., 2006; Sun et al., 2006b) There was a problem 

with embryonic heart development as well but it was not fully penetrant meaning MAL is 

not essential for embryonic heart development but may have roles according to 

environmental stress. (Sun et al. 2006) Knock-out of MRTF-B on the other hand causes 

problems in development of neural crest derived smooth muscle cells in branchial arteries 

and causes embryonic lethality in mid gestation. (Oh et al., 2005) Although MAL and 

MRTF-B are similar and are expressed ubiquitously they do not act in a fully redundant 

manner meaning they may have diverged in roles. Other possibility is that the proteins 

are redundant and removing either MAL or MRTF-B in the affected cells causes the total 

level of SRF dependent transcription of targets to go down. The gene causing the 

phenotype may be the one higher expressed in that tissue that can compensate the 

mutation in the other family member. Generation of double mutant mice would clarify 

this issue.       

 

Members of MRTF family of transcriptional coactivators have similar domain structure. 

They contain RPEL motifs in their N-Terminus, 2 in the case of Myocardin and 3 for 

MAL and MRTF-B that is essential for the regulation of MAL and MRTF-B. They all 

contain a SAP domain, a leucine zipper and a very potent C terminal transcription 

activator domain (Figure 1.12)(Wang et al., 2001). SAP domain is important for binding 

to SRF and is important for the activity of the protein. MAL and myocardin form 

homodimers and this dimerization is important for the activity of the proteins (Miralles et 
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al., 2003). Myocardin related transcription factors share homology in their SAP domain 

as well. SAP motif is a motif of 35 amino acids, named after SAF-A/B, Acinus and PIAS. 

SAP motif is rich in positive residues, which may work for binding the backbone of the 

DNA. In different proteins that have SAP domain it has been suggested to conduct 

diverse roles such as chromosome organization, nuclear breakdown and apoptotic DNA 

fragmentation. (Aravind and Koonin, 2000; Pipes et al., 2006) The role of SAP domain of 

MRTF family is vague since its deletion affects the expression of some of the target 

genes and not others, suggesting that there might be locus specific interactions between 

MRTF family of transcriptional co-activators SAP motif and target DNA sequences 

(Wang et al., 2001). 

 

All members of the MRTF family of transcription factors contain a basic region that 

resembles structurally to the B box of TCF family of SRF coactivators. Indeed 

replacement of basic regions with the B box of Ets protein, a member of TCF family, 

does not perturb the activity of Myocardin (Wang et al., 2004). Thus MRTF family of 

transcriptional coactivators competes for the same region on SRF for binding and 

activating the protein. This kind of competition causes the formation of a binary switch in 

cell fate decision. Binding of SRF to activated Elk-1 causes SRF to activate growth 

associated targets whereas association with myocardin causes the execution of muscle 

differentiation program (Wang et al., 2004). A further role for the basic domains is for 

MAL nuclear transport in response to serum induction. (Miralles et al., 2003) 
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The C terminus of members of MRTF family of transcription factors harbors the 

transcription activator domain. Members of MRTF family of transcription factors are not 

well conserved in this transcription activator domain and replacing this domain by an 

exogenous transcription activator domain (TAD) such as VP16 TAD does not cause 

problems in the activity of the proteins (Wang et al., 2001). Moreover the domain can be 

fused to Gal4 DNA binding domain and boost transcription in Gal4 responsive sites. If 

one removes the C-Terminal TAD from MRTF family of transcription factors one 

generates a dominant negative factor which presumably binds and sequesters SRF  

(Wang et al., 2001) (Figure (Pipes et al., 2006)).         
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Proteins of MRTF family of transcriptional coactivators do not bind directly to DNA. 

This differential behavior of different coactivator families of SRF is thought to give 

target specificity to the activity SRF in response to TCF family and MRTF family.  

1.6.2 DSRF and Mal-D 
In Drosophila there is one homologue of SRF, namely DSRF encoded by the gene 

blistered. It is an essential gene and many mutants have been identified. DSRF was 

shown to be important for the terminal branching of the trachea, the outgrowth of the 

terminal branches (Guillemin et al., 1996), and the differentiation of inter-vein cells in the 

wing (Fristrom et al., 1994). In the absence of intervein cell differentiation dorsal and 

ventral sides of the wing do not adhere strongly and wings show blisters, hence the gene 

is called blistered in flies. The targets that are up-regulated by DSRF activity are not 

known, and coactivators of DSRF were not known, specifically there is no TCF gene in 

the sequenced fly genome. Mal-D is the only identified DSRF coactivator in Drosophila 

melanogaster (Figure 1.13). Mal-D is the only orthologue of MRTF family of 

transcription factors in flies and it shares the highest homology to MAL. 

 

 

 

Mal-D is an essential gene in Drosophila (Han et al., 2004; Somogyi and Rorth, 2004). 

Hypomorphic allelic combinations of Mal-D showed kinked bristles on the notum of the 

mutant flies (Somogyi and Rorth, 2004). Bristles are actin based structures and many 

actin regulators have been found to cause kinked bristle phenotype in Drosophila. RNAi 

mediated Mal-D knock-down showed problems with tracheal out branching similar to 

DSRF loss of function (Han et al., 2004). Moreover over expression of a dominant 
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negative form of Mal-D that lacks the C terminal TAD (Mal-D ∆C) in wings causes 

blisters in the wing epithelium the same way as DSRF does. When overexpressed in the 

developing mesoderm Mal-D ∆C causes the ventrodorsal migration of muscle cells and 

subsequent organization of the heart tube. (Han et al., 2004) However neither the wing 

phenotype nor the migration problems in the mesoderm are observed in the mutant 

embryos meaning that over expression of a dominant negative form meaning the 

dominant negative Mal-D may generate phenotypes unrelated to the loss of Mal-D 

(Kalman Somogyi Personal communication). 

1.6.3 Phenotype of Mal-D loss of function in the border cell migration  
 

Mal-D mutant border cells have severely delayed migration.  Most of the Mal-D mutant 

border cells migrate very poorly (Figure 1.14 B). DSRF mutant border cells show the 

same phenotype as well. (Figure 1.14 B) 
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Moreover during the onset of migration F-Actin levels increase in the wild-type 

migrating border cell clusters, compared to the follicle cells, prior neighbors of border 

cells. In Mal-D mutant border cell clusters this increase is not seen (Somogyi and Rorth, 

2004) (Figure 1.14A-A’). Another phenotype associated with Mal-D loss of function is 

that the border cells mutant for Mal-D cannot keep their cellular integrity, and they tend 

to shed blobs of cytoplasm that continue their migration, separated from the main cell 

body (Somogyi and Rorth, 2004)(Figure 1.14C). This breaking apart phenotype is 

specific to border cells that undergo an invasive migration. Although there is a decrease 

in the level of F-Actin in follicle cells as well mal-D mutant follicle cells do not break 

(Somogyi and Rorth, 2004).  This result indicates that the border cell guidance and 

migration mechanics can go in a transcription independent way with the local activity of 

proteins that are in the leading edge. This kind of migratory behavior was previously 

identified in pieces of leukocytes that can generate fragments of cytoplasm that do not 

contain the nucleus, centrosomes, microtubules and majority of organelles, but continue 

to migrate in response to chemo attractants. (Keller and Bessis, 1975) 

1.6.4 What is known about the regulation of Mal-D in border cell 
migration?  
 

An antibody raised against Mal-D shows that Mal-D can be observed nuclear in some of 

the cells of the migrating border cell cluster (Somogyi and Rorth, 2004). The level of 

nuclear accumulation is variable in the border cell clusters from cell to cell. There are 

some cells that show nuclear Mal-D signal whereas other border cells of the same cluster 

do not show the nuclear accumulation (Somogyi and Rorth, 2004). The probability of a 

cell showing nuclear Mal-D, to be in the front positions in the migrating cluster is the 

same as it being in the back positions of the cluster, thus there is no prototype of nuclear 

accumulation of Mal-D in the border cells. A border cell cluster that is stretched has more 

chance of having some border cells with nuclear Mal-D than a rounded up border cell 

cluster (Somogyi and Rorth, 2004).  

 

The nuclear accumulation of Mal-D has been shown to be regulated by migration of the 

border cells. If one generates a border cell cluster consisting only of border cells mutant 

for slbo the cluster (Full clone) does not move and stays in the anterior pole of the egg 
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chamber. In this situation Mal-D is not seen to accumulate in the nucleus (Somogyi and 

Rorth, 2004). On the other hand if one generates border cell clusters consisting of wild-

type cells and cells mutant for slbo (Partial clone), wild-type cells attempt to migrate and 

as they are bound to the mutant cells, they pull the mutant cells in the migrating cluster 

(Rorth et al., 2000). In this situation the mutant border cells can accumulate nuclear Mal-

D (Somogyi and Rorth, 2004). The mutant cells that are part of a full clone cluster or a 

partial clone cluster are genetically identical and the difference mainly arises from the 

fact that mutant cells that are part of a full mutant clone are not incorporated into a 

migrating cluster whereas mutant cells that are part of a partial clone are pulled into the 

migrating cluster by the action of wildtype cells. This suggests that there is a migration-

related signal that promotes nuclear accumulation of Mal-D (Somogyi and Rorth, 2004). 

This migration-related signal may be the pulling force of the other cells, or stretching of 

the cells in response to this pulling force, or the increase of cell tension. An attractive 

scenario is that the cells sense the migration-related signal, they accumulate Mal-D in the 

nucleus where it binds to DSRF, and transcribes factors that are needed for the increase 

F-Actin levels of the cells, thus increasing the robustness of the cell to counteracting the 

tension. In the absence of Mal-D the cells cannot increase their F-Actin levels and loose 

their integrity, as they cannot counteract the forces related to migration.           
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2. The Aim of the Project 
 

Mal-D is an interesting factor that has an important role of making the cells more robust 

for the migration. Moreover it is regulated by the migration event. Understanding how 

Mal-D is regulated by the migration event will provide information about how, and what 

the cells perceive during the migration. The first aim of my project is to find out which 

factors are required for the regulation of Mal-D during the border cell migration. This 

way I plan to understand the nature of the signal perceived by the migrating cell that 

leads to transcriptional output form Mal-D/DSRF complex.  

 

On the other hand Mal-D gives a peculiar phenotype which is the breaking of the cells.   

The other aim is to identify targets of Mal-D/DSRF by using whole genome expression 

arrays on border cells mutant for Mal-D or wild-type. Unraveling the targets of Mal-D 

that lead to the phenotype can help to understand what the cells are missing in the 

absence of Mal-D and would be telling about what the cells need to become more robust 

in order to counteract the hardship of migrating and invading through another tissue.  
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3 Results 

 

Part I MAL-D Regulation 

 

3.1 Tools for Visualizing Mal-D Subcellular Localization 

 
Previous antibody staining results in fixed samples showed that Mal-D can be seen 

nuclear in some border cells of the migrating border cell cluster (Somogyi and Rorth, 

2004). This nuclear accumulation depends on the migration process and if the border 

cells are rendered non migratory by mutating them, nuclear accumulation of Mal-D is 

lost. Number of cells with nuclear Mal-D as well as the position of those cells within the 

cluster varies form eggchamber to eggchamber, suggesting that there is a dynamic 

regulation of subcellular localization of Mal-D. For understanding this regulation it is 

important to have a means of observing localization of Mal-D.  

 

I needed to generate new tools to visualize nuclear localization of Mal-D since the 

previous antibody staining was not robust, and had a high background and since the 

affinity purified antibody ran out and further attempt to do affinity purification failed. 

 

3.1.1 Transgenic approaches 
 

One common way to visualize the subcellular localization of a protein in vivo is to tag 

that protein with Green Fluorescent Protein (GFP) and express it exogenously. It gives 

further advantage of possibility of doing live imaging, which was one of my plans but 

was not pursued later on. In the case of Mal-D when the protein was over expressed 

protein accumulated in the cytoplasm (Somogyi and Rorth, 2004), thus it was very 

difficult to observe any nuclear accumulation. I needed to find a means of expressing the 

protein in amounts low enough to not to accumulate in the cytoplasm, but high enough to 

be detectable. For addressing this technical difficulty I cloned 3 GFPs in tandem at the C 
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terminus of Mal-D (Mal-D-3XGFP). This way I was planning to have higher signal for 

every overexpressed molecule of Mal-D, thus increase my detection with lower over 

expression levels. I cloned this construct in Drosophila transgenesis vectors with 

different promoters. I used Tubulin promoter (a ubiquitous promoter), Armadillo 

promoter (weaker ubiquitous promoter), UAS promoter (weak basal activity that can be 

very much enhanced by expression of GAL4 enhancer) and heat shock promoter (weak 

basal activity that can be increased with heat shock (See materials and methods)). I tested 

multiple transgenic fly lines that carry those constructs, since the site of insertion of the 

transgenic construct on the genome greatly affects its expression levels.  

 

While expressing a tagged protein one should make sure that the modified protein is still 

functional, and regulated in a similar way to the endogenous protein. This transgene 

driven by different promoters were crossed to mal-D lethal allelic background mal-D s2/ 

mal-D f2 and it could rescue lethality of those mutant alleles. Border cells could migrate 

normally in the flies overexpressing this transgene. Over expressing constitutive active 

diaphanous which lacks its auto inhibition domains in the C terminus, along with Mal-D-

3XGFP induced strong nuclear accumulation of Mal-D-3XGFP in follicle cells and 

border cells (Figure 3.1 A and B), the same way that it causes wild-type Mal-D  to 

accumulate in the nucleus. (Somogyi and Rorth, 2004)   
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Only problem with this approach is that I could not find a level of expression low enough 

for the overexpressed protein not to accumulate in the cytoplasm (Figure 3.2). This made 

it hard to see nuclear accumulation of Mal-D.  

 

 

In all combinations of driver and transgenic lines, cytoplasmic accumulation was a 

problem. One important conclusion with this approach is that the protein is tolerant to 

modifications on its C-terminus, as fusing a large tag such as 3XGFP does not completely 

perturb the functionality.  

3.1.2 Knock-in approach 

3.1.2.1 Construction of Mal-D9HA 
 

Low levels of staining on the endogenous protein with different antibodies show that the 

protein is not highly expressed. Over expression increases the detection but disturb the 

subcellular distribution of the protein. To circumvent both of these problems I knocked-in 

9 Hemagglutinin (HA) tags in the endogenous mal-D locus by using homologous 

recombination technique (Gong and Golic, 2003). This technique makes it possible to 

modify genomic sequences specifically by using homologous recombination. This would 

give me 9 copies of a good epitope fused directly to the endogenous protein, thus 

expressed in the endogenous levels. I targeted the C terminus of the protein because the 

results of transgenic approach showed that C terminus of the protein was tolerant to 

modifications. I added a fragment that contains 9 HA tags to the 5' homology region 

leaving the rest gene mostly unmodified (Figure 3.3 A). One feature of the technique is 
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the insertion of an eye color marker (white) in the chromosome that underwent 

homologous recombination. Although having the eye color marker was helpful in order 

to select the initial recombination event it might cause problems in the expression levels 

since it was situated between coding region of the gene and the 3’UTR of the gene. This 

marker was flanked by LoxP sites which can be removed by using site specific 

recombinase Cre. For minimizing the amount of modification made to the endogenous 

locus I removed the White marker by using hs-Cre. After removing selection marker, the 

sole difference to the endogenous gene is an addition of a LoxP foot of 22 nucleotides in 

the 3' untranslated region of the gene, and the presence of 9 HA Tags (Figure 3.3 A). The 

correct insertion of the construct was confirmed by PCR (Figure 3.3 B,C,D and refer to 

Materials and Methods 4.2.4) and sequencing.  
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Figure 3.3 (A) Knock in strategy. White cassette is removed by cre mediated excision after the 

confirmation of the event. Arrows indicate primer sets used for PCR to confirm the event. (B) PCR from 

the white gene to genomic region outside homology region confirms the location of the knock-in (C) PCR 

from one homology region to another in w118 flies generates a 4 Kb band whereas this amplicon is too big 

to amplify in homozygous flies harboring knock-in because of the presence of white cassette. (D) After the 

removal of white cassette PCR from a region before 9HA to the other homology arm shows that 

homozygous 9HA flies have 9HA amplicon whereas w118 flies have a shorter band.    
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Flies carrying the modification in the endogenous locus are viable and fertile. Moreover 

they do not have any kinked bristles which is a phenotype seen even very mild Mal-D 

allelic combinations. Homologous recombination may cause complex genomic 

rearrangements that may result in duplications of the endogenous locus. For testing 

whether Mal-D 9HA was the only mal-D locus, and whether the insertion event caused a 

duplication, I used different PCR primers in homozygous flies. First I showed that a 4kb 

amplicon that could be amplified in the wild-type flies was disrupted when the knock in 

construct with white cassette is homozygous. (Figure 3.3 C). In the presence of this 

construct the amplicon is more than 7 Kb which was too long to be amplified in those 

conditions. Second I showed that after the removal of the white cassette, the only 

amplicon that could be amplified  by using a set of primers located near 3’end of 

5’homology region and 5’end of 3’ homology region (reverse), was shifted equal to the 

size of 9HA fragments in knock-in flies compared to wild-type flies (Figure 3.3 D). 

Those PCR results along with sequencing results showed that the Mal-D 9HA insertion 

did not cause a complex genomic reorganization.       

 

3.1.2.2 The phenotype of Mal-D 9HA 
 

In flies homozygous for Mal-D 9HA there was an unexpected border cell migration 

phenotype. At stage 9 the border cells started their migration later than their wild-type 

counterparts (Figure 3.4 A). At stage 10 although more than 70% of the border cell 

clusters reached their destination there was about a population of 20% of border cells that 

migrated only half way (Figure 3.4 B). This phenotype could have different reasons. One 

possible reason is that the new construct was a hypomorphic allele of mal-D. The 

function of the protein might be compromised in a partial way so that the protein was 

functional enough to cause only a mild phenotype. I tested whether the border cell delay 

phenotype I had with homozygous Mal-D 9HA flies would get worse when Mal-D 9HA 

was trans-heterozygous with different alleles of Mal-D. I used mal-D s9, s2, s5 and ∆7 
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alleles. S alleles are EMS mutants that cause stop codons in the coding region of mal-D 

that generate lethal mutations in the gene, and mal-D ∆7 removes regulatory regions, that 

result in viable flies with no detectable Mal-D protein in ovaries with Western Blot 

(Material and Methods 4.2.2, (Somogyi and Rorth, 2004)). Mal-D 9HA or mal-D alleles 

were crossed to Oregon R wild-type stock as a control. The migration delay was 

quantified in stage 9 and stage 10 of oogenesis (Figure 3.4 A and B). For s2 and s9 alleles 

heterozygous mal-d mutant alleles gave the same migration delay as trans-heterozygous 

mal-D mutant alleles over Mal-D 9HA. For mal-D ∆7 and mal-D s5 heterozygous mal-D 

mutant border cells migrated better then the trans-heterozygous mutant alleles over Mal-

D 9HA.  

A 
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Figure 3.4 (A) Stage 9 and (B) Stage 10 migration delays of Mal-D 9HA in homozygous or 

transheterozygous to Mal-D mutant alleles genotypes 
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The migration delay caused by homozygous mutant border cells for the mentioned alleles 

is equal, meaning that for border cell migration all the alleles are equally penetrant 

(Somogyi and Rorth, 2004).  

A different approach that I pursued was to rescue the migration phenotype of Mal-D 9HA 

homozygous flies by over expressing wild-type Mal-D exogenously with a transgene that 

rescues the phenotypes of null allelic combinations of mal-D (Somogyi and Rorth, 2004). 

This did not rescue the border cell migration delay in stage 9 of the migration (Figure 

3.5).  

  

The reason for the mild migration delay is not clear. Mal-D 9HA does not behave as a 

clear hypomorph, since in trans-heterozygous situations the phenotype was not worse 

than homozygous Mal-D 9HA, and since the phenotype that I observed in homozygous 

Mal-D 9HA flies could not be rescued by over expressing a wild-type transgene. On the 

other hand the phenotype of Mal-D 9HA over some, but not all mutant alleles of Mal-D 

gave stronger phenotype than the heterozygous situation of those alleles. Remaining 

possibilities are that the protein is a neomorph or there is a background mutation, 
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proximal to knock-in site on the knock-in chromosome. In either case Mal-D 9HA can 

replace endogenous function of the protein to a large extend, since the migration delay 

that was observed was mild and at stage 10 of oogenesis most of the border cell 

homozygous mal-D 9HA or trans-heterozygous with Mal-D 9HA over mal-D mutant 

alleles complete their migration (Figure 3.4 B).    

3.1.2.3 Visualizing nuclear Mal-D 9HA by immunofluorescence.  

  
Staining with Anti HA antibody showed the nuclear Mal-D 9HA population in a manner 

reminiscent of previous results obtained by affinity purified antibody. Mal-D 9HA was 

seen to be nuclear in a fraction of migrating border cells. (Figure 3.6A) Moreover the 

nuclear accumulation pattern in border cells was reminiscent to the old antibody staining 

pattern meaning it was more readily seen during the migration event and was no longer 

nuclear at stage 10 of oogenesis when border cells finish their posterior migration. The 

staining results were specific for Mal-D 9HA since staining of w118 flies that did not 

have Mal-D 9HA did not give such staining patterns (Figure 3.6 B).  
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I could observe nuclear Mal-D 9HA in different cells as well I could detect low nuclear 

Mal-D 9HA signal in follicle cells both at stage 9 and stage 10 of oogenesis as well 

(Figure 3.6 A inset). There was a specific nuclear Mal-D 9HA signal in stretched cells 

during the early stage 9 of oogenesis, while the centripedal cells migrate to cover over the 

oocyte and cause the stretching of the stretched cells (Figure 3.7). This staining 

disappeared at late stage 9 and at stage 10.     

These staining patterns were not observed before with the old antibody, most likely due 

to the lower detection limit. The follicle cell staining was to be expected because of the 

fact that there was a decrease of F-Actin phenotype in the follicle cells mutant for Mal-D 

9HA in the follicular epithelium, showing that the protein had a function in follicle cells 

(Somogyi and Rorth, 2004). 

These results show that the staining that I have is comparable qualitatively to the old 

antibody staining, meaning Mal-D 9HA is regulated similar to the endogenous protein.  
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. 

 
Figure 3.7 Nuclear Mal-D is seen in stretch cells at early stage 9 of oogenesis.  Stretched cells are indicated 

by white arrow heads 

 

Other than the staining in the ovary, I could detect Mal-D 9HA in the nuclei of muscle 

cells both in the muscle sheet surrounding the ovary and the developing embryo somatic 

muscles. (Figure 3.8) The significance of Mal-D in the muscle development remains to 

be addressed. The work of Kalman Somogyi showed that the embryos mutant maternal 

and zygotic mutant for neither mal-D nor bs caused a change in gross morphology of the 

embryonic muscles, but this analysis was not done in great detail and maybe there was a 

subtle phenotype that we could not observe. Moreover larvae zygotic mutants for mal-D 

cause the larvae to have a sluggish appearance which is reminiscent of a muscle defect 

phenotype (Kalman Somogyi personal communication). Another possibility is that there 

may be a differential splicing in the muscle or a redundant protein that can replace for 

loss of Mal-D. The role of Mal-D in muscle development if there is any, remains to be 

determined. 
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3.2 Regulation of Mal-D 

3.2.1 High levels of nuclear accumulation of Mal-D 9HA is 
regulated by migration related signal 
 

There seems to be different levels of nuclear accumulation in different cells. In follicle 

cells there is the low accumulation. In border cells there is sometimes very high 

accumulation, sometimes higher than follicle cells accumulation and sometimes about the 

same level as the follicle cell accumulation. By using Photoshop software I quantified the 

nuclear levels of Mal-D 9HA in border cells and in follicle cells in the same egg 

chamber, the same picture and quantified the ratio between the signals. The pictures were 

taken in non saturating conditions. If the ratio of border cell nuclear/follicle cell nuclear 

signal was between 1 and 1.5 I called it the nuclear Mal-D index (NMI) of 1 (border cells 

that had about the same nuclear levels as follicle cells), if 1.5 to 2 fold NMI 2  (border 

cells that had higher nuclear Mal-D 9HA than follicle cells) and more than 2 fold as NMI 

3 (The border cells that had very high nuclear Mal-D 9HA accumulation) (Figure 3.9). 
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I quantified this index for stage 9 egg chambers of 10 independent staining days of Mal-

D 9HA homozygous ovaries so that I have a general idea about the behavior of wild-type 

Mal-D 9HA border cells. (Figure 3.10) 

 

In order to define whether the nuclear staining levels that I observed in NMI 2 and 3 

correspond to the migration induced nuclear accumulation I generated slbo or shg (gene 

encoding DE-Cadherin) mutant border cell clusters by inducing mitotic clones with slbo 
8ex2 or shg R69 alleles (Materials and methods 4.2.3). Both of them are deletion of most of 

the coding regions of the genes and are loss of function alleles. If all of the cells that form 

the cluster were mutant for either of those factors (Full mutant clone), border cells did not 

move at all and remained in the anterior pole of the egg chamber. In this situation all the 

border cells that were quantified for NMI showed NMI 1 (Figure 3.11, figure 3.12). If the 

border cell clusters were consisting of a mixed population of wild-type and homozygous 

mutant border cells (partial mutant clone), wild-type border cells attempted to migrate 

and pulled the mutant border cells along to the migrating cluster. In this situation mutant 

cells that were pulled into the migrating cluster, thus received the migration related 

signal, accumulated NMI 2 and 3 nuclear Mal-D levels (Figure 3.12). This indicated that 

NMI 2 and 3 levels of nuclear accumulation of Mal-D corresponded to migration induced 

levels or Mal-D.        
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These results indicated that Mal-D 9HA gives the same staining pattern as the old 

antibody and that Mal-D 9HA behaves similar to the endogenous protein. The differences 

that could be observed such as different nuclear accumulation levels and follicle and 

stretched cell nuclear accumulations result from the increased sensitivity of Mal-D 9HA 

detection. The nuclear staining that we could observe with the old antibody corresponded 

to the NMI 2 and 3 with the new antibody. NMI 1 was blending to the background noise 

with the old antibody and was not detected over the background. In the following parts I 

will mention Mal-D and Mal-D 9HA interchangeably. 

 

With the increased detection it was possible to detect nuclear and cytoplasmic signal. In 

order to understand subcellular distribution of Mal-D I quantified this ratio for the border 

cells and follicle cells from a set of samples stained on the same day (Figure 3.13 A). I 

stained egg chambers of w118 females in parallel in order to determine the background 

signal. I then wanted to determine if nuclear accumulation of Mal-D results from a 

difference in subcellular distribution of a constant level of the protein or higher nuclear 

levels results from overall increase in the cellular level of the protein. For determining 

this correlation I plotted average nuclear/ cytoplasmic ratio of the cells to their NMIs 

(Figure 3.13 B).  

  

 

Average nuclear/cytoplasmic ratios of border cells and follicle cells seem to be very close 

in the wild-type samples (Figure 3.13 A). On the other hand the cytoplasmic Mal-D 

signals in follicle cells are very close to staining background in the w118 follicle cells, 
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which makes it hard to quantify it reliably. The average nuclear/ cytoplasmic levels of 

Mal-D in border cells with different NMIs show that although there is a mild increase of 

average nuclear/cytoplasmic ratio according to increasing NMI this is not statistically 

significant. (Figure 3.13 B) This may indicate that the thing that changes in the border 

cells accumulating high levels of Mal-D is the level of Mal-D in total and not the 

distribution. In other words nuclear levels increase in border cells because the overall 

levels increase.    

3.2.2 Strategy to identify genes important for Mal-D regulation 
  

The strategy that I used for assessing whether a candidate gene is important for Mal-D 

regulation is summarized in figure 3.14. 

 

This strategy gave me a possibility to discriminate candidate genes that I wanted to test 

according to either being important for perceiving migration related signal and increasing 

nuclear Mal-D levels or not being related to Mal-D regulation.   
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3.2.3 Rho and Diaphanous are not essential for the nuclear 
accumulation of Mal-D in border cell or follicle cell nuclei 

 
Rho and diaphanous are important factors for the migration of border cells. (Bastock and 

Strutt, 2007; Beccari, 2003). Moreover those factors were previously implicated for the 

regulation of Mal in mammalian system. I tested whether they had a role in the regulation of 

Mal-D in Drosophila. I used rho 72O and dia 5 alleles, which are null alleles. In partial clones 

of either rho 72O or dia 5, Mal-D can accumulate strongly nuclear (Figure 3.15 A and 3.16 A) 

and in the same frequency as strong nuclear Mal-D accumulation of wild-type clusters 

(Figure 3.17). This shows that Rho and Diaphanous are not essential for strong nuclear 

accumulation of Mal-D in migrating border cells. 

 

For determining if Rho or Diaphanous are important for the nuclear accumulation of Mal-D 

in follicle cell and stretched cells I analyzed mutant clones in those cell types. Follicle cells 

mutant for rho or dia could accumulate Mal-D the same level as their wild-type counterparts, 

meaning that Rho and Diaphanous were dispensable for nuclear accumulation of Mal-D in 

follicle cells (Figure 3.15 C and 3.16 C). In stretched cells homozygous for rho 72O I observed 

a decrease in nuclear Mal-D levels (Figure 3.15 B) in 10 different egg chambers where I 

could find a mutant stretch cell clone together with a wild-type counter part. This decrease 

was not seen in the dia 5 mutant stretched cells suggesting that a different effector of Rho had 

a role in this nuclear accumulation (Figure 3.16 B).  One surprising finding from this analysis 

is that the nuclear accumulation of Mal-D in those related cell types goes through genetically 

dissectible pathways.  
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3.2.4 Profilin is important for nuclear localization of Mal-D in 
border cells, follicle cells and stretched cells. 

 

I then generated chic (the gene encoding Profilin) mutant clones in order to investigate 

the relation between Mal-D and Actin cytoskeleton. Profilin is a protein that binds to 

monomeric Actin and presents it to the growing tip of Actin filaments. Its function has 

been analyzed in border cell migration and in oogenesis. (Geisbrecht and Montell, 2004; 

Verheyen and Cooley, 1994) It is an important factor for border cell migration, and in 

follicle cells, cell mutant for Profilin have been shown to have lower F-Actin levels. 

Moreover most of the free G-Actin in the cells are bound to Profilin in order to prevent 

spontaneous polymerization (Kaiser et al., 1999).   

 

Chickadee is an essential gene in Drosophila. I used a loss of function allele, chic 221.In 

chic 221 partial clones mutant cells did not accumulate strong nuclear Mal-D levels 

(Figure 3.18A , Figure 3.19). Even the heterozygous cells in the same border cell clusters 

accumulated nuclear Mal-D poorly. Moreover in 14 out of 32 cases Mal-D could be seen 

excluded from nucleus and accumulated in cytoplasm of the mutant cells (Figure 3.18A).  

The cytoplasmic accumulation of Mal-D was not observed in wild-type border cells.  

 

In chic 221 mutant follicle cells, mutant cells did not have nuclear Mal-D and Mal-D could 

be seen more cytoplasmic than in the wild-type cells (Figure 3.18B). Moreover cells 
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heterozygous for profilin mutation have higher nuclear Mal-D than mutant cells but lower 

nuclear Mal-D levels than the twinspot wild-type cells (For details See material and 

methods)(Figure 3.18 B). This suggests that chic has a phenotype on Mal-D localization 

even in the heterozygous situation. Stretched cells mutant for Profilin do not accumulate 

nuclear Mal-D either (Figure 3.18 C).       
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. 

  

 

In order to understand the altered subcellular distribution of Mal-D in chic mutant border 

cells I quantified nuclear/cytoplasmic ratio for chic mutant border cells and follicle cells.  

(Figure 3.20) 

 

In chic mutant border cells and follicle cells nuclear/cytoplamic levels of Mal-D decrease 

meaning that the protein is redistributed to the cytoplasm (Figure 3.20)  

3.2.5 DSRF mutation causes Mal-D to accumulate in the nuclei of 
border cells, but not in follicle cells or stretched cells 
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DSRF is the partner of Mal-D in transcription. It is the factor that binds to DNA and 

regulates the transcription of the target genes. I used a loss of function allele bs14 which 

causes appearance of an early stop codon that results in the formation of a truncated 

protein that end before the MADS domain. In order to analyze the behavior of Mal-D in 

the abscence of its partner I generated border cell clusters partial mutant for bs14 and 

quantified NMI. 

 

In bs 14 partial clones, border cells mutant for bs 14 accumulated high levels of nuclear 

Mal-D more frequently than the wild-type border cells (Figure 3.22 A). NMI in     bs 14 

mutant border cells was more skewed to NMI 2 and 3. (Figure 3.21) Moreover at stage 10 

of migration, the stage where border cells reach the oocyte border and finish their 

migration, border cells mutant for bs 14 continued to have higher nuclear Mal-D than their 

wild-type counterparts in the same cluster. (Figure 3.22 B) 

 

 

 

Those phenotypes were seen only in the border cells. Follicle cells accumulated same 

amount of nuclear Mal-D no matter whether they were bs 14 mutant or wild-type (Figure 

3.22 C). The persistence of signal at stage 10 did not occur in stretch cells either (Figure 

3.22 D). Those results indicate that bs 14 causes nuclear accumulation of Mal-D 

specifically in border cells.     
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Part II Function of Mal-D 

 

3.3.1 Transcriptional output of Mal-D and DSRF 
 

3.3.1.1 Designing a reporter in S2 cells 

 

SRF is a factor that has been studied in mammalian cell culture system for a long time. Its 

binding consensus site and its targets are known. Mammalian SRF binds to a consensus 

site named CATG boxes or SREs that consist of CC(A/T)6 GG. Three copies of this motif 

upstream a basal promoter and a reporter gene is enough in the mammalian cell culture 

system to render the reporter gene responsive to the transcriptional activity of SRF (Hill 

et al., 1993). As Drosophila SRF is 90% identical in the DNA binding domain to the 

mammalian SRF (Affolter et al., 1994) I decided to adapt this reporter approach to fly 

proteins.  

 

In order to test whether the same site could function in Drosophila I cloned a block of 3 

SRF binding sites (SREs) cloned in tandem, upstream a basal promoter driving β Gal 

reporter gene. This construct was transfected to Drosophila S2 cell line along with DSRF 

and either  Mal-D full length cDNA or Mal-D ∆N which behaves as a constitutive active 

form of the protein. (Miralles et al., 2003; Somogyi and Rorth, 2004) As control I 

transfected the construct alone or with only DSRF. I used the reporter gene with the basal 

promoter, without SREs, in order to confirm the specificity of activity.  The activity of 

the reporter was measured by doing a β-gal activity test (See materials and Methods). 

Transfection of the reporter alone or reporter with DSRF did not activate the β gal 

activity (Figure 3.23 A). Over expressing full length Mal-D which can still be regulated 

together with DSRF increased the reporter activity and this increase was specific to the 

presence of SREs since a reporter without those sites was not activated (Figure 3.23 A). 

Over expressing Mal-D ∆N, constitutive active form of Mal-D together with the reporter 

increased the activity of the reporter in a SRE dependent manner. This coul be explained 

by the presence of endogenous DSRF in the S2 cells as could be seen with Western Blot 

analysis with DSRF antibody with S2 cells either overexpressing DSRF or wild-type 
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(Figure 3.23 B).  The combined activity of DSRF and Mal-D ∆N over expressed together 

on the other hand was enough to activate the reporter gene more than 100 fold. 

 

 

This result showed that Mal-D and DSRF can cooperate on SREs in our system as well.  

3.3.2 Mal-D activity towards Actin in vivo goes through DSRF 
 

Over expression of Mal-D ∆N in follicular epithelium, causes over accumulation of F-

Actin (Somogyi and Rorth, 2004). On the other hand DSRF loss of function in a clone of 

cells causes the F-Actin level to decrease in a cell autonomous manner (Somogyi and 

Rorth, 2004). I performed an epistasis experiment to understand whether the activity of 

Mal-D over expression on F-Actin goes through DSRF, thus through transcriptional 

activation of target genes. I over-expressed constitutive active Mal-D in a field of 

follicular epithelium, while removing DSRF in clones of cells. I over expressed Mal-D 

∆N by using UAS/Gal4 system (See materials and methods). I used slbo Gal4 driver that 

is expressed in border cells and a subset of follicle cells. I generated bs 14 homozygous 

clones in this combination so that I had wild-type cells over-expressing UAS Mal-D ∆N 

as controls next to bs14 mutant cells that over express the same transgene.  
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I could observe that the F-Actin level in the bs14 cells goes down even though they over 

express Mal-D ∆N (Figure 3.24). If the action of Mal-D went through another factor, I 

should have observed accumulation of F-Actin no matter whether I have DSRF or not. As 

over-expressing Mal-D while removing DSRF caused the phenotype of DSRF loss of 

function, which is decrease of F-Actin, Mal-D ∆N activity on F-Actin levels requires the 

presence of DSRF, indicating that work together in vivo in the fly ovary.   

   

 

3.3.3 Designing in vivo reporters  
 

Having a reporter gene that reflects the activity of Mal-D and DSRF would be very useful 

for monitoring the activity of the protein in vivo. Subcellular localization read out for 

Mal-D is an important read out for Mal-D activation but it only gives an indirect means 

of monitoring the activity of the Mal-D/DSRF complex. A reporter gene which is 

activated by Mal-D/DSRF transcriptional activity would give me different and more 

direct activity readout.  

Initial results with reporters in cell culture experiments encouraged me to try this 

approach in vivo. Previous studies have used this kind of approach successfully to 

generate in vivo reporter constructs for Notch activity read out (Furriols and Bray, 2001),  

JAK/STAT signaling activity read out (Gilbert et al., 2005), bicoid dependent 
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transcription read out (Ochoa-Espinosa et al., 2005), but still the number of such reporters 

are limited showing that it is not easy to generate a good in vivo reporter.   

I generated transgenic flies with the reporter construct in order to get an in vivo activity 

read out. The way I tested them was by looking at the border cells. In flies mutant for 

Mal-D the border cells get delays in the beginning of migration, suggesting that the 

protein activity is required in the early phases of the migration, and the protein is active at 

those stages in wild-type situation.  

 

With this first reporter construct with 3 SREs I could not get any activity in the flies. In 

order to increase the sensitivity of the reporter I tried a different approach. I generated 

reporters with more SRF binding sites, hoping that this would increase the sensitivity of 

the reporter. 14 Lines were tested by dissecting ovaries with those reporters. Only two 

lines gave staining in the border cells in late stage 10 of oogenesis. Three independent 

reporter lines were tested whether they can get activated with constitutive active Mal-D. 

They all could be activated by over expression of constitutive active Mal-D, meaning that 

inherently they were responsive to the transcriptional activity of Mal-D and DSRF but 

they were not sensitive enough to detect the endogenous level of activity in the migrating 

border cells. The line that was giving better signal was tested in Mal-D mutant 

background. I generated flies that are mutant for mal-D F2/ mal-D ∆7 and that had the 

reporter construct. mal-D F2 is a strong hypomorphic allele of Mal-D and in this allelic 

combination there should be very little Mal-D activity. I dissected those flies along with 

flies that were wild-type and had the reporter only. I stained them in parallel with X-Gal 

staining. The reporter did not show activity in Mal-D mutant flies (Figure 3.25). This 

means that the activity of the reporter was Mal-D dependent.  
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Although the observed specific activity was promising it was still too low to be useful. I 

needed to have the reporter homozygous to have a decent signal and even in this situation 

reporter was giving the signal quite later than the actual migration process.     

 

There is a possibility that I might be unwillingly introducing a silencing element with the 

sequences bridging the SREs. Those sequences were taken directly from the reporter in 

the mammalian reporter, and not tested in Drosophila for any effect they might be 

causing. Furthermore I decided to boost the basal activity of all reporters by adding a 

known enhancer site in them, namely Grany head binding element (Gbe). I replaced the 

bridging sequences, with a different sequence that has been used before to generate a 

reporter construct for Notch Pathway (Furriols and Bray, 2001). I cloned different 

reporter vectors with differing number of SREs (3,6,9,12) and differing number of Gbes 

(0,1,2) and with new spacing. (Figure 3.26A) I tested lines coming from those constructs. 

Many reporter lines showed a weak activity at late stages of oogenesis (Figure 3.26B and 

C). None of the reporter lines showed stage 9 activity.     
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One last approach that I tried was to use a region in if gene (integrin PS α). This gene was 

seen to be regulated in my expression profiling approach (See below). There is a stretch 

of highly conserved 3 SREs in one of the introns of if. Moreover there is suggestion that 

if is regulated by DSRF in the wing. (Montagne et al., 1996) I cloned this stretch of 1 Kb 

upstream the basal promoter driving β gal gene. One of the lines that I tested gave me a 

strong activity at stage 9 of oogenesis in the border cells. It was getting stronger in the 

further stages of oogenesis. I tested whether that reporter could get activated by ectopic 

expression of constitutive active Mal-D ∆N. It gave activity in the patches of cells over 

expressing Mal-D ∆N in the follicular epithelium meaning it could respond to increasing 

amounts of signal. (Figure 3.27)  
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I tested whether the activity that I was seeing was dependent on DSRF/ Mal-D action. I 

crossed the reporter construct in the background of flies where I generated clones of cells 

lacking DSRF. The reporter was still giving activity in the clones of cells lacking DSRF 

meaning that the staining that I observed was due to an enhancer trap effect and was not 

due to the activity of DSRF/ Mal-D. This makes that reporter unusable. (Figure 3.28)  

 

          3.3.4 Expression profiling with mal-D mutant border cells  
 

Finding the transcriptional targets of Mal-D in border cells would be very helpful for 

understanding the role of the protein and the reasons of the phenotype I observe in the 

absence of Mal-D. An added bonus would be to find a gene that is transcribed by the 
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activity of Mal-D, that can be used as an activity readout for Mal-D. For tackling this 

problem I undertook an expression profiling approach. I isolated border cells mutant for 

mal-D or wild-type by using Fluorescent Activated Cell Sorting (FACS) technique. This 

method was optimized and used by a previous PhD student in our laboratory, Lodovica 

Borghese.(Borghese et al., 2006).  

3.3.4.1 Isolation of Mutant border cells 
 

Mal-D is an essential protein for Drosophila. This creates a challenge since I needed to 

dissect adult flies in order to collect the border cells. One possibility was to generate 

homozygous mutant cells in an otherwise heterozygous fly and mark them with GFP by 

using MARCM system, and sorting those cells with FACS. The problem with this 

approach was that even one mutant cell in a cluster would incorporate this cluster in my 

mutant population no matter whether the rest of the cluster is mutant or not. This would 

contaminate my mutant sample. For this reason I decided to use a different approach. I 

made use of the UAS/Gal4 system in order to label the border cells specifically with 

GFP. I expressed UAS GFP Actin with a border cell specific Gal4 driver c522. (Figure 

3.29) 

 

 

Both of those constructs were recombined to a semi-viable ovary null allele of mal-D, 

namely mal-D ∆7. Semi viability means that if I set up a cross with heterozygous parents 

and leave the progeny in the same vial, homozygous mutant progeny does not come in 

the expected ¼ Mendelian ratio. Presumably the competition with the wild-type siblings 
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prevents the development of those mutant larvae, since isolating the mutant larvae in a 

separate vial results in a better viability of the mutant flies. (Kalman Somogyi personal 

communication) In order to isolate the mutant flies in their early larval stages I used the 

leakiness of this Gal4 driver in the salivary gland of the larvae. (See Materials and 

Methods) 

 I dissected 200 flies in an hour, dissociated the egg chambers by trypsin EDTA and 

collagenase treatment (Materials and methods) and sorted the resulting cells in FACS 

sorter (Figure 3.30). I sorted the GFP positive cells in the lysis buffer of the RNA 

extraction kit and froze them in this solution until I had enough cells to pool and extract 

RNA from. I pooled the border cells collected in different days both for wild-type and 

mutant samples in order to have enough material.  
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3.3.4.2 Isolation and quality control of RNA 
 

I proceeded to RNA extraction when I had 50000 events per sample. I could get an 

average of 50 ng of total RNA from 50000 events (See Materials and methods). I tested 

for the quality of RNA by running the RNA on Agilent Bioanalyzer. For conducting good 

amplification and labeling of RNA it is of critical importance to have intact RNA. 

Bioanalyzer is sensitive enough to give an estimation of integrity of RNA with using only 

a few picograms of total RNA. RNA was intact and comparable in quantity for each 

repeat (Figure 3.31).  
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Bioanalyzer analysis and further amplification and labeling were conducted by Genecore 

facility in EMBL by Tomi Ivacevic. The shift in the band sizes in the first repeats RNA 

sample resulted from an error of the software’s analysis mode (Tomi Ivacevic personal 

communication). The important information from this result was that RNA was intact and 

there was no smearing. 18S/28S RNAs are the most abundant RNA species in the cells 

and are used as an indicator of RNA quality. If RNA was degraded one would expect 

ribosomal RNA bands to be degraded and smeary as well.     

 

3.3.4.3 Linear amplification, labeling and hybridization of 
arrays  

Linear 2 step RNA amplification was conducted by using the Genechip 2 step RNA 

amplification kit by Tomi Ivacevic. I conducted 3 biological repeats. In order to 

determine how reproducible different repeats were I determined the correlation of the 

different WT samples. Unfortunately the correlations that were obtained were not as tight 

as what Lodovica Borghese obtained using the same method for unknown reasons 

(Borghese et al., 2006). First and second wild-type samples have a correlation coefficient 

0.82, first and third 0.77 and second and third 0.88. Low correlation between different 

biological repeats made conducting statistics very difficult. I decided to focus on the 

genes that were at least 2 fold down regulated in mal-D ∆7 mutant border cells compared 

to the wild-type border cells in each repeat. There were about 171 genes that were 

consistently more than two fold down regulated in the mutant border cells. (See 

Appendix)  

 3.3.5 Attempt to find direct targets of Mal-D 

3.3.5.1 Promoter and enhancer analysis 
Some of the genes that were down regulated in mal-D ∆7 border cells compared to wild-

type border cells are expected to be direct transcriptional targets of Mal-D/DSRF 

complex.   

I tested whether there was a bias to have more serum response factor binding sites in the 

upstream region of those genes. I analyzed upstream 10000 bps of those genes and 

searched for the presence of serum response elements in those regions. There was no 

statistically significant overall enrichment for SREs. I proceeded with those genes to test 
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whether they may be directly regulated by Mal-D. I went on to analyze the genes that 

have SREs in their promoter/enhancer regions. With the help of Michal Karzynsky I got 

the sequences orthologous to these upstream regions in different drosophila species in 

order to determine whether those SREs are conserved. The species that were used were 

Drosophila simulans, Drosophila ananassae,Drosophila  yakuba, Drosophila 

mojavensis, Drosophila pseudoobscura and Drosophila virilis (Figure 3.32).   

 

  

Laurence Ettwiller helped me to analyze the conservation of those sequences. The 

program that she wrote took those aligned sequences form different species and gave a 

conservation score to the sequence according to the number of conserved sites in 

different species (Figure 3.33). I selected a subgroup of genes with good conservation 

score as possible direct targets of Mal-D.  
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             3.3.5.2 In situ analysis by over expressing Mal-D ∆N 
 

I selected genes that have many SREs in their upstream region, and with high 

conservation score to test whether they can be directly regulated by Mal-D. In order to 

test whether those genes were direct targets of Mal-D I tried to ectopically over express 

constitutive active Mal-D by using slbo Gal4 driver in the follicular epithelium and in 

border cells and  conduct in situ hybridization for those selected genes. The idea behind 



 91 

this was that if a gene is direct target of Mal-D, it should get up regulated ectopically in 

response to constitutive active Mal-D. I added two additional criteria in order to filter the 

list of genes with SREs. The first criterion was that the gene should be strongly down 

regulated in mutant border cells. The second criterion was that the gene should not have 

maternal expression (I used BDGP in situ database to get the information about the 

maternal expression). A high maternal expression would create high basal signal in the 

germline which would make it harder to observe the signal from follicular epithelium.  I 

selected 6 genes to conduct in situ hybridization analysis.  

I have not observed an increase of signal in the follicular epithelium which was the 

region of ectopic expression in none of the samples but in many samples high 

background was problematic to give a conclusive result (Figure 3.34 A). 

 

I proceeded by doing antibody staining with 4 genes that have available antibodies: 

Vismay, Supercoiling Factor (SCF), Sprouty (sry) and Integrin αPS2 (inflated, if) to test 

whether the decrease that I see on the RNA level in mal-D ∆7 border cells is cell 

autonomous. The way I did this was to generate border cell clusters that consist of both 
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wild-type and mal-D mutant cells and I tested whether the antibody staining goes down in 

the cells mutant for mal-D compared to wild-type cells.  For if I could not detect the 

expression of the protein with the monoclonal antibodies that I had. Other proteins did 

not show a decrease in expression in mutant cells (Figure 3.35).  
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This may have several reasons. First of all in the mal-D ∆7 mutant flies that I used to 

collect the border cells for array analysis all the cells in the ovary are mutant for mal-D. 

The effect that I saw in the border cells could result from the effect of mutation in the 

germline or in the follicle cells, meaning the effect could be non cell-autonomous. 

Second possibility is that the reason that I see those genes down-regulated in mal-D ∆7 

border cells is that those border cells do not migrate the full migration path, and 

compared to the wild-type cells on average they end up in positions further from the EGF 

and Pvf sources, which is the oocyte. sprouty and argos are two genes regulated by EGF 

signaling in a negative feed back fashion (Golembo et al., 1996; Reich et al., 1999). The 

presence of sprouty and argos in my list of genes downregulated more then two fold in 

each repeat can indicate this.    

 

Some of the genes in my list are good candidates for explaining the phenotype that I 

observe in Mal-D mutant border cells. I focused on those genes to test whether they may 

explain the phenotypes observed in Mal-D mutant border cells.  

3.3.6 CG30440 

 3.3.6.1 CG30440 encodes for a rhoGEF 
 
Rho family small GTPases are well known regulators of Actin cytoskeleton. They are 

active when they are bound to GTP and when they hydrolyze their GTP to GDP, they 

become inactive. GTP Exchange Factors (GEFs) catalyze the exchange of GDP to GTP, 

thus activate the GTPases. Thus the loss of function of a GEF for Rho family GTPases 

may cause decrease in F-Actin levels. Because of the F-Actin decrease phenotype of Mal-

D, I focused on CG30440 which encodes a putative RhoGEF and was down-regulated 

about 6 fold in each repeat in mutant border cells.  

There were no available mutants for this gene, so I generated an RNAi construct in flies 

by cloning part of this gene in inverted repeats linked by a hairpin. (Bao and Cagan, 

2006).  
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3.3.6.2 CG30440 RNAi causes border cell migration phenotype when 
it is highly expressed. 

 

In order to test whether CG30440 has a role in border cell migration, I overexpressed the 

RNAi construct that I generated with Actin Flipout Gal-4 system (AFG4) and analyzed 

border cells that are expressing RNAi, marked with the presence of GFP. (See materials 

and methods). When I overexpressed three copies of my UAS RNAi construct I observed 

a migration delay phenotype. (Figure 3.36) It is a mild phenotype that is not seen in the 

flies expressing UASGFP only with AFG4 system that were treated in parallel (Figure 

3.36). Moreover this phenotype got more severe in sensitized flies having one copy of the 

endogenous gene removed by using a deficiency, Defnap8 (Figure 3.36). An important 

point to be made here is that this deficiency contains two of the genes from my list of 

interesting genes that are down-regulated in mal-D mutant border cells according to my 

array results, CG30440 and CG1344, mentioned more in detail later. Deficiency alone 

did not cause any migration delay phenotype.  

Moreover both the deficiency alone and the RNAi with the deficiency caused breakage of 

border cells, albeit with low frequency, which is a phonotype that is specific for mal-D 

mutant border cells (Figure 3.37). RNAi with defficiency caused cytoplasmic blobs in 3 

out of 20 border cell clusters that were analyzed and defficiency alone caused 

cytoplasmic blobs in 5 out of 50 border cell clusters that were analyzed. Over expression 

of GFP, without deficiency or RNAi construct did not cause any blobbing in 50 border 

cell clusters analyzed. It should be indicated that since the deficiency alone did not cause 

border cell migration defect, the assignment of blebbing versus cytoplasmic protrusions 

that still were bound to cell body was more challenging. I counted cytoplasmic extensions 

without any discernible connection to the cell body with high magnification imaging in 

Deficiency alone sample as blobs.     
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The fact that the border cells heterozygous for deficiency have the breaking border cells 

phenotype but not the delay may indicate that this process is more easily perturbed than 

the whole migration process. Moreover the fact that RNAi alone causes the migration 

delay but does not cause the breakage of border cells indicate that the two processes can 

be caused by different genes.  

In order to analyze if CG30440 RNAi caused any defects in F-Actin level I over-

expressed that construct in follicle cells and analyzed apical F-Actin levels. mal-D 

mutation causes decrease in the F-Actin levels in follicle cells (Somogyi and Rorth, 

2004). In follicle cells over-expression of CG30440 RNAi did not cause any F-Actin 

decrease. (Figure 3.38) 

  

 



 98 

 

 

 

I currently generate an RNAi construct against CG1344 the other gene in the deficiency. 

This way I may test whether the knock down of this gene by itself can cause the border 

cells to break. CG1344 supposedly expresses a kinase. The mammalian homologue of 

CG1344 has been shown to interact with Ezrin protein (Sullivan et al., 2003). 
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3.3.7 Integrin PS2α (inflated) is not required for border cell migration 
 

One of the genes that was seen to be regulated by Mal-D according to my transcriptional 

profiling was Integrin PS2α. Integrins are well known adhesion molecules that are 

important for cell- extracellular matrix adhesion. They are known to play role in different 

migration systems in Drosophila and in mammalian models. Inflated is a gene that was 

identified because of the mutation effect that causes separation of dorsal and ventral 

surfaces of the wing, thus causing blisters in the wing surface, reminiscent of DSRF 

mutant phenotype.  

 

I decided to test whether if was important for border cell migration and if the loss of 

function of if can mimic Mal-D mutant phenotypes. I selected if b4 allele for generating 

loss of function situation. if B4 is a null allele of inflated which results from a deletion of 

the coding region of the gene. if B4 is a homozygous lethal mutation. I recombined ifB4 

allele with FRT19A chromosome which would give me the chance of generating 

homozygous mutant cells in an otherwise heterozygous animal. I generated mutant clones 

with Mosaic analysis with a repressible cell marker (MARCM) technique. With this 

method, I mark the mutant cells by the over expression of GFP. This would give me the 

chance of looking both for the integrity and for migration phenotype of the border cells. 

When I generated mutant clones of if B4 I did not observe any delay either in stage 9 or in 

stage 10 of oogenesis. Moreover there was no blobbing of border cells, meaning that the 

integrity of the clusters was not perturbed.                      
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4. Discussion  

4.1 Different means of Mal-D regulation 
Border cells undergo a developmentally regulated invasive migration during the 

oogenesis of Drosophila melanogaster. During their migration process they accumulate 

Mal-D in the nucleus (Somogyi and Rorth, 2004). The accumulation of nuclear Mal-D 

has been previously shown to be regulated by a migration related signal, since border 

cells mutant for slbo do not accumulate nuclear Mal-D on their own, but if they are 

pulled in a migrating cluster by wildtype cells they then can accumulate nuclear Mal-D 

(Somogyi and Rorth, 2004). In this study I analyzed the requirements for the migration 

related signal and nuclear accumulation of Mal-D by using an antibody against HA tag 

that is added at the C-terminus of endogenous protein. This approach made it possible to 

have a lower detection limit compared to our old antibody results and unraveled the 

presence of nuclear Mal-D accumulation in follicle cells and stretched cells, albeit in 

lower levels than migration related signal induced nuclear accumulation of Mal-D in the 

nuclei of border cells. 

4.1.1 Profilin effect   
 

In our system chic mutation causes an interesting phenotype in Mal-D accumulation. chic 

mutant border cells not only have decreased nuclear Mal-D levels but also half of the 

cases have increased cytoplasmic signal. In wild-type cells most of the border cells show 

either low staining all over the cell body of the cell, mildly increased in the nucleus or 

strong nuclear staining with low staining in the nucleus. The accumulation in the 

cytoplasm is not observed in wild-type border cells. This brings further questions such as 

whether the shifting of subcellular localization of Mal-D in our system is the critical step 

of the regulation, or the regulation by enlarge goes through the levels of Mal-D, in other 

words goes through the stabilization of Mal-D protein in migrating cells. It is noteworthy 

that in wild-type border cells in half of the cases one observe strong nuclear accumulation 

of Mal-D (NMI 2 and 3). Myocardin is regulated by its tissue specific expression and is 
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nuclear in the cells where it is expressed (Wang et al., 2001). Interestingly Mal-D 

behaves like Myocardin in the muscle context where it is observed nuclear in 

differentiated muscle. Mal-D is the only MRTF family orthologue in Drosophila. One 

possibility is that either by alternative splicing (although there is no annotated alternative 

splicing events) or through its association with different factors Mal-D behaves like MAL 

or Myocardin in different cells of Drosophila.   

 

chic causes a decrease in nuclear Mal-D levels in follicle cells and stretched cells  too. 

Thus Profilin does not seem to have a direct role in migration-related signal processing. 

Presence of Profilin is a general requirement for the cell to have nuclear Mal-D. The 

effect of Profilin on SRF has been shown in mammalian cell culture system (Sotiropoulos 

et al., 1999). There, it has been suggested that Profilin sequesters most of the G-Actin in 

the cell. When there is no Profilin, G-Actin level that can bind to Mal-D and keep it 

cytoplasmic increases. Alternatively Mal-D nuclear export rate increases when G-Actin 

level increases. There is another actin sequestering protein in the cells called β thymosin 

4 (or ciboulot in Drosophila). It was shown to act together with Chickadee in the 

Drosophila brain morphogenesis (Boquet et al., 2000). It would be interesting to test 

double mutants of ciboulot and chic to test whether exclusion from the nucleus phenotype 

can get more dramatic.    

 

Although the accumulation of over expressed Mal-D in the cytoplasm suggests that in 

overexpression scenarios nuclear transport can be the limiting factor, there is no evidence 

that shows that in endogenous levels nuclear translocation of Mal-D is limiting. 

Alternatively there may be two different pathways that act on Mal-D concomitantly. One 

effect stabilizes the protein therefore increasing its concentration and the other one 

increasing the nuclear accumulation of the protein. The fact that we do not see only 

cytoplasmic accumulation in the wild-type situation suggests that those two pathways 

should be tightly coupled.  

4.1.2 Rho effect  
 

Unlike the need for Rho GTPase activity in tissue culture cells, border cells were not 

found to require Rho for accumulating nuclear Mal-D (Miralles et al., 2003). Rho is not 
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required for follicle cells to accumulate nuclear Mal-D either. On the other hand stretched 

cells fail to accumulate nuclear Mal-D when they are mutant for rho. This can be caused 

by different reasons. One probable reason is the presence of a different GTPase that acts 

redundantly to Rho in the border cells in terms of Mal-D nuclear localization, and the 

absence of this factor in stretched cells. In fact it is known that Rac GTPase is important 

for actin polymerization downstream of activated RTKs in border cells (Duchek et al., 

2001). Over expression of constitutive active PVR causes an over accumulation of F-

Actin and this effect can be reversed if Myoblast city (mbc) which is a Rac GEF is 

mutated at the same time (Duchek et al., 2001). Interestingly Rac has been suggested that 

to regulate Mal-D activity in the tracheal terminal cell outbranching event (Han et al. 

2004). Looking at Mal-D localization in mbc mutant border cells may be informative.  

 

Although over-expression of constitutive active Diaphanous can drive Mal-D to the 

nucleus in border cells and follicle cells it looks like the endogenous protein is not 

essential for the nuclear accumulation of Mal-D in those cells. Again the possibility that 

there is redundancy in terms of Mal-D regulation remains. Moreover although stretched 

cells require Rho for the nuclear accumulation of Mal-D they do not require Diaphanous 

which suggests that the signaling pathway may go thorough the activity of ROCK. Indeed 

in fibroblasts, application of force can drive MAL to the nucleus and induce the 

expression of smooth muscle specific genes in MAL dependent way, and this is disrupted 

by usage of Rock inhibitor drugs (Zhao et al., 2007).   Rock has been shown to be an 

important regulator of myosin II in many contexts. It would be interesting to see whether 

myosin II signals to Mal-D in stretched cell in the stage where Mal-D goes to the nucleus. 

It would be interesting to analyze stretched cell mutants where stretched cell fate 

specification occurs normally but stretching or adhesion remodeling in response to 

stretching is defective such as in fringe mutants (Grammont, 2007).   

 

The stage specificity of stretched cell nuclear Mal-D is interesting. Stage 9 of oogenesis 

is the stage where the main body follicle cells move towards oocyte and change their 

morphology from cuboid to columnar epithelial morphology and cause stretching of the 

stretched cells. An interesting speculation is that this change of morphology and pulling 

force coming from the migration of main body follicle cells cause the nuclear 
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accumulation of Mal-D. Further analysis for determining whether Rho-ROCK-Myosin II 

pathway has a role in regulating Mal-D in stretched cells would give interesting results on 

the regulation means of Mal-D. 

4.1.3 shg and slbo 
 

Border cell clusters that are formed by wild-type and slbo mutant cells do not accumulate 

high nuclear Mal-D levels with the same frequency as wild-type cells. This may mean 

that some of the genes activated by Slbo may in part be important for the processing of 

migration-related signal. In fact Slbo activates the transcription of multiple genes 

important for Actin remodeling, cell adhesion, and cell signaling. (Borghese et al., 2006). 

Cadherin mutant clones which only lack the adhesion on the substrate can accumulate 

high levels of nuclear Mal-D in frequencies comparable to wild-type, showing the 

importance of migration-related signal.   

 

What is sensed by the migrating border cells to increase nuclear Mal-D levels is still not 

clear. One possibility is the increase of cytoskeletal tension due to pulling from other 

cells of the cluster. In fact this kind of mechanism has been suggested to change behavior 

of cells in different contexts. Mechanical tension can be sensed by the cells by the 

changes in focal adhesions and focal complexes (reviewed in (Bershadsky et al., 2003),  

by stretching in adherens juctions, or by specialized mechanosensor ion channels 

(reviewed in (Gillespie and Walker, 2001).  Tension on the cells can drastically influence 

the cell signaling. Experiments with human mesenchymal stem cells showed for instance 

that plating them on micro patterned substrates, to force them to stretch or get round can 

influence their differentiation in osteoblast or adipocyte fate. Moreover this effect goes 

through regulation of RhoGTPase. (McBeath et al., 2004) Differing matrix elasticity on 

which hMSCs are plated can be inductive in the differentiation of those cells as well. In a 

series of experiments plating hMSCs on soft matrices caused them to differentiate in 

neurons, on stiffer matrices caused them to form muscles and most rigid matrices caused 

them to become bone tissue (Engler et al., 2006). Inhibiting non muscle myosin II is 

enough to block the instructive role of the matrix on the cell fate specification, meaning 

that the signaling goes though the activity of myosin (Engler et al., 2006). A recent paper 

showed that applying force on fibroblast through elastic beads coated with integrin 
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substrate can activate Rho and cause Rho-Rock-LIMK cofilin pathway which in turn 

sends MAL to the nucleus (Zhao et al., 2007).    

4.1.4 DSRF effect 
 

bs mutant border cells, but not other cell types, show increased nuclear Mal-D. There 

may be several reasons for this. Many transcription factors are regulated by 

ubiquitination of active transcription factor and subsequent degradation executed by 

Proteosome. In fact myocardin has been shown to be sumo modified and this sumoylation 

has been shown to be important for its regulation (Wang et al., 2007). Moreover MAL is 

sumoylated in three sites and it causes it to be less stable and slightly less nuclear 

(Nakagawa and Kuzumaki, 2005). On the other hand the effect of bs mutation on nuclear 

localization of Mal-D is seen in border cells specifically. We know that the protein is 

active in the follicle cells, since there is a decrease of F-Actin levels in the absence of it 

in this tissue (Somogyi and Rorth, 2004). A mutation that uncouples possible activation 

induced degradation should in principle increase Mal-D levels in follicle cells as well. 

Another finding that is contradictory to the idea of lack of degradation of Mal- D in bs 

mutants comes from the fact that the levels of the protein in bs mutant cells is not over 

accumulated and in the same cluster sometimes a border cell that is wild-type can have 

the same amount of nuclear Mal-D as bs mutant border cell. In other words in bs mutant 

border cells Mal-D seems to be stuck in the high nuclear state.  

An attractive idea for explaining the border cell specificity is the presence of a feedback 

loop. In this scenario what may happen is that the border cells start their migration and 

get the migration-related signal. They send Mal-D to the nucleus in order to counteract 

the effect of migration by increasing the F-Actin levels. Then Mal-D and DSRF activate 

some key factors that increase F-Actin levels and quench the signal. In bs mutant Mal-D 

goes to the nucleus because of the migration-related signal but as there is no DSRF it 

cannot transcribe those key factors, and the signal is not quenched. For the moment I do 

not know whether the increase in the frequency of border cells with high nuclear Mal-D 

is dependent on the presence of the migration-related signal. Another alternative scenario 

that can explain why the increase of the frequency in nuclear Mal-D accumulation in bs is 

border cell specific is that border cells are different from follicle cells. Maybe there are 

some transcription factors, or Mal-D interactors present in border cells but absent in 
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follicle cells. One key experiment to test whether border cell specific increase in 

frequency of higher nuclear Mal-D comes from the border cell fate or from the presence 

of the migration-related signal is to make border cells where all the cells lack both DSRF 

and DE-cadherin. In this situation border cells are fully differentiated as border cells, but 

they do not receive the migration-related signal. Thus if they still have more frequent 

nuclear Mal-D accumulation it means that the effect we see is border cell fate specific. If 

on the other hand we do not see accumulation of Mal-D in the nucleus, this would mean 

the effect is migration-related signal dependent and there is a feedback loop. 

 

 

 

My experiments showed that Mal-D can be recruited to the nuclei of different cell types 

in the developing Drosophila egg chamber. Border cells accumulate the highest amount 

of nuclear Mal-D while they are migrating, where as stretched cells accumulate nuclear 

Mal-D transiently while the egg chamber is growing, and follicle cells accumulate 

nuclear Mal-D in all stages of oogenesis. The results of different mutant clone 

experiments pointed out that the nuclear accumulation of Mal-D in those different cell 

types can be genetically dissected (Figure 4.1).  
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  4.2 Mal-D function 
 

My results showed that Mal-D/ DSRF can form a transcriptional couple in Drosophila 

both in S2 cells and in vivo over a reporter gene. Moreover in follicle cells Mal-D ∆N 

activity on F-Actin levels goes through DSRF. Judging from both loss of function and 

gain of function experiments Mal-D and DSRF seem to express together some actin 

regulating proteins (Somogyi and Rorth, 2004). In fact in other organisms MRTFs and 

SRF were shown to collaborate to induce actin regulating factors suggesting that the 

ancestral role of MAL and SRF was related to actin regulation (Morita et al., 2007; Sun et 

al., 2006a).   

There are other tissues where I can see the nuclear accumulation of Mal-D. In muscle 

cells the protein is always strongly nuclear. This is reminiscent of the myocardin protein.  

On the other hand Mal-D maternal and zygotic mutant embryos do not show any obvious 

muscle morphology defects, but the hatched larvae are sluggish which can be caused by a 

functional defect in body wall muscles (Kalman Somogyi personal communication). I 

observed nuclear Mal-D staining in the germ line as well. As germline mutant 

eggchambers develop normally without problems (Kalman Somogyi personal 

communication) the function of nuclear accumulation of Mal-D in germline cells is 

unclear.  

 

The reason for Mal-D mutant phenotype is not very clear. Among the targets that I got 

from profiling analysis there were no genes that could directly explain the phenotype. In 

a previous genome wide expression profiling approach, comparing border cell 

transcriptome to follicle cells, Lodovica Borghese found that there was a group of muscle 

related genes that were up regulated specifically in border cells compared to follicle cells 

(Borghese et al., 2006). Due to the role of MRTF Family of transcription factors in 

muscle development in the mammals one possibility was that those genes could be 

targets of Mal-D. In my expression profiling experiment I could not find this group of 
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genes down regulated in Mal-D mutant egg chambers. Probably the effect that Lodovica 

observed goes through a different border cell specific transcription factor such as Six4.  

 

The upstream regions of the genes that were down-regulated by Mal-D in my expression 

profiling experiments did not show an enrichment of SREs. This may indicate that many 

of the genes that I found are due to secondary effects. This is to be expected. The 

transcriptional changes that are resulting from the lack of a single transcription factor is 

masked by the fact that the border cells are mutant and cannot migrate to their final 

destination in Mal-D mutant. In fact the expression profiling comparing wild-type and 

slbo mutant border cells was not enriched for direct targets of slbo. (Borghese et al., 

2006)  Moreover there is a technical problem about the expression profiling experiments, 

reflected by the fact that even in the wild-type border cell collection, different repeats do 

not show strong correlation. This means that there may be false positive genes in my list 

of potential Mal-D, DSRF targets. This technical problem was not seen in prior 

expression profiling experiments done with border cells in our laboratory. The 

differences between the two experiments were the usage of a different FACS machine 

(although the parameters are kept the same), the usage of a different kit for doing two 

step amplification, and the usage of Affymetrix Drosophila Version 2 arrays intead of 

version 1. Maybe those changes increased the background signal of different genes and 

caused the observed problems.  

 

The fact that decreasing the level of some of my putative targets gives rise to border cell 

migration delays and more specifically to border cell blebbing is encouraging and may 

indicate that my list has really direct targets of Mal-D. The lack of antibodies against 

those proteins makes it difficult to address whether those are direct targets of Mal-D.  

4.3 Conclusions and Future Perspectives 

Mal-D/DSRF cooperation in border cell migration is important for the cells to keep their 

cellular integrity. Their joint activity is regulated by a migration related signal in border 

cells. My results indicated that bs mutant border cells keep Mal-D nuclear longer and 

have higher nuclear Mal-D accumulation frequency. This may indicate a feed back loop. 

A detailed analysis of Mal-D expression profiling results in order to determine a factor 
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that can regulate Mal-D in a feed back loop would be important. Profilin on the other 

hand is important for nuclear Mal-D localization in all cells. It suggests that actin is a 

permissive factor for nuclear accumulation of Mal-D and when it is free of Profilin it can 

block Mal-D entry to the nucleus. Identification of more genes that have roles in this 

regulation would be the key in order to understand clearly the mechanism of Mal-D 

regulation. 

 

The presence of a good tag in the endogenous levels of the protein is a very powerful 

tool. The presence of a perfect control which is the same starting sample from flies 

without the tag makes Mal-D 9HA ideal to do biochemistry experiments with. Mal-D 

9HA can be used both for understanding the regulation of Mal-D and for determining its 

targets. Using HA antibody in combination with Mal-D 9HA in co-immunoprecipitation 

experiments one can identify the kinds of posttranslational modifications on Mal-D and 

binding partners of Mal-D. One particular cell type where it can be particularly 

interesting is the muscle where Mal-D is seems to be constitutively nuclear. One can 

isolate Mal-D 9HA from muscle cells in order to identify how Mal-D is regulated to be 

always nuclear in those cells. For determining direct targets of Mal-D, Mal-D 9HA can 

be used for chromatin immunoprecipitation experiments. 

 

Mal-D regulation in border cell migration is a dynamic process. It would be exciting to 

analyze this process live. With the recent advancement in real time imaging of border cell 

migration, it is now possible to visualize border cell migration. Generating GFP knock-in 

in the Mal-D locus may provide means to observe Mal-D dynamics in the migrating cells. 

Particular questions are how fast the accumulation of Mal-D is and how many times a 

given cell gets increased Mal-D during the migration. 

     

Live imaging of mal-D mutant border cells can be rewarding too. Observation of the 

kinetics of blob formation in mal-D mutant would be key to answer questions about the 

factors that are missing. After determining the factors regulated by Mal-D, in order to 

prevent lost of integrity of border cells, one can visualize the localization and kinetics of 

that factor in order to understand better the nature of strengthening of the protrusion.   
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5. Materials and Methods 
 

5.1 Cloning 

5.1.1 Primers and oligos 
Primer name Sequence (5' to 3') Length TM 
    
CG30440BHI-for ATT AGG ATC CAG CAA CTA CAT TGC GTC 27mer 63.4 ˚C 
CG30440RI_rev GAT TGA ATT CCG CCA GCC GCA G 22mer 64.0 ˚C 
    
CG30440RNAi_for ATT ATC TAG AAT GTC TGC TCC CAA GAT GC 29mer 63.9 ˚C 
CG30440RNAi_rev TAA TTC TAG AGC TCG CGA TTG AAT TCC G 28mer 63.7 ˚C 
    
IfHomshXba_for ATT ATC TAG ACG GTG CAG CTG AAG GAG 27mer 65.0 ˚C 
IfHomshXba_rev TAA TGA ATT CGG ATC  CGT AGG CTT AGC TGG AC 32mer 68.2 ˚C 
    
MalCtermSalTerm_for TTG CAA TGG ATC CAT TGA ATC CTC G 25mer 61.3 ˚C 
MalCtermKpnTerm_rev ATT AGG TAC CGA CTG TAA AAT CTC CCG 27mer 63.4 ˚C 
    
XhoHAAmp_for ATT ACT CGA GAT GGA TCT CCA CCG CG 26mer  66.4 ˚C 
SalHAAmp_rev ATT AGT CGA CTC CGC CAT GAG C 22mer 62.1 ˚C 
    
KpnMultHAs_for ATT AGG TAC CGG AGG TAG CTT ATC GAT AC 29mer 65.3 ˚C 
KpnNotMultHAstp_rev ATT AGG TAC CGC GGC CGC CTA CCC CTC GAG GTC GA 35mer >75 ˚C 
    
AscMal3UTR_for  TTT GGC GCG CCT AGG CGG TTT TAT GTA TTC ATA TGG  36mer 70.6 ˚C 
AscMal3UTR_rev AAT TAG GCG CGC CAC ACC AAA GCC AGA TGG 30mer 70.9 ˚C 
    
MalCtermseq GAG GAG GAA TGG GCG TGG ACA A 22mer 64.0 ˚C 
    
MALDKI_UTR CGC GAG TGC CAT TGT TTG GCT TGT TTT CG 29mer 68.1 ˚C 
MALDKI_EX CAG CGA TCT GCT GAA GGC  18mer 58.2 ˚C 
    
pW25_F_wto3'flank GCA AAC ACA ATC ACA CAA ATG TGC 24mer 68.4 ˚C 
pW25_R_wto5'flank AGT GAG AGA GCA ATA GTA CAG AGA GG 26mer 62.5 ˚C 
    
SREamp_Not ATT ATG CGG CCG CTA GTG GAT CAG ATG TCC 30mer 69.5 ˚C 
SREamp_Pst ATT ACT GCA GCT AGT GGA TCA GAT GTC C 28mer 65.1 ˚C 
    
SREamp_Spe TTA TTA CTA GTC CGG GGG ATC GGA TG 26mer 64.8 ˚C 
SREamp_Sal TTA TTG TCG ACC CGG GGG ATC GGA TG 26merr 68.0 ˚C 
    
GbeSense AAT TAT TGG AAC CGG TTA TGC GAG GAA TTC ATT A 34mer 64.7 ˚C 
GbeAsense AGC TTA ATG AAT TCC TCG CAT AAC CGG TTC CAA T 34mer 67.1 ˚C 
    
SreNotchSpsense CTA GTA TTG TCC ATA TTA GGA CTT ACT TTC AGC TCG GCC ATA  85mer > 75 ˚C 
 TTA GGG CCA CAT TGT CCA TAT TAG GGC CAG TCT AGA TTA CAT A   
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SreNotchSpAsense GAT CTA TGT AAT CTA GAC TGG CCC TAA TAT GGA CAA TGT GGC  85mer > 75 ˚C 
 CCT AAT ATG GCC GAG CTG AAA GTA AGT CCT AAT ATG GAC AAT A   

 

5.1.2 Cloning Mal-D 3XGFP 
 

pRm-Mal-D-GFP (Pernille Rørth) vector was cut with Not I enzyme and relegated with a 

self ligating short oligo that destroys NotI site and generates a KpnI site. 

(GGCCGGTACC) Oligo was heated to 95 ˚C for 5 minutes and let cool in the room 

temperature. 1:10 diluted oligo was added to the ligation of NotI digested pRm-mal-D-

GFP plasmid. Insertion of the oligo was tested by cutting with Asp718I. Modified pRm-

Mal-D-GFP plasmid was cut with Asp718I and XbaI along with pEGFP-NI 3XGFP (kind 

gift from Natalie Daigle, Ellenberg Laboratory). 3XGFP cassette was ligated to cut pRm-

Mal-D-GFP plasmid. The whole construct was subcloned with EcoRI and NotI sites to 

pUAST, pCasper4 Tub, and pCasper4 Arm vectors.  

5.1.3 Cloning Mal-D 9HA 
 

3 Hemagglutinin tag (HA tag) was PCR amplified from pHW vector and cloned in SalI, 

XhoI sites of the pBsIISK vector by using XhoHAAmp_for, and SalHAAmp_rev. SalI 

and XhoI sites are compatible to ligate to one another, for this reason cut vector was 

dephosphorylated for 10 minutes after restriction enzyme digestion with Alkaline 

Phosphatase. Resulting vector was ran on gel for isolation. pBsIISK vector was used as 

an intermediate vector as it is an easy vector to manipulate. I generated this way 

pBsIISK-3HA vector. I cloned PCRed 3HA, cut with XhoI and SalI to pBsIISK-3HA 

vector cut with SalI and Alkaline phosphatase treated. This way when SalI SalI ligation 

occured it created a new SalI site and when SalI XhoI ligation occured it killed the SalI 

site there, making it possible to use the resulting vector for another round of 3HA 

addition. Directionality of the construct was tested with restriction enzyme digestion. I 

repeated this step in order to get pBsIISK-9HA and pBsIISK-12HA. I continued with 

9HA plasmid. 9HA cassette was PCR amplified with primers that added a stop codon at 

3’ end of the construct, KpnNotMultHAstp_rev and KpnMultHAs_for. This amplified 

cassette was cloned into a new pBsIISK plasmid that contained the last 100 base pairs of 

Mal-D cDNA (before stop codon). This region was PCR amplified and cloned into SalI 
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KpnI sites of pBsIISK with primers MalCtermKpnTerm_rev and MalCtermSalTerm_for. 

The rest of the 5’ homology arm was prepared in another pBsIISK vector. BglII/ SalI 

region of pBs-Mal-D cDNA (From Pernille Rørth) was subcloned to pBsIISK vector 

BamHI/SalI sites. cTerminal 100 bps fused to 9HAs with a stop codon was subcloned to 

the remainder of the homology arm with SalI/KpnI digestion and the whole cassette wais 

cubcloned in NotI site in pW25 vector. 3’ Homology arm was directly PCRed from 

genomic DNA with AscMal3UTR_rev and AscMal3UTR_for primers and subcloned in 

AscI site of pW25 vector. 

5.1.4 Cloning of SRE repoters        

Annealing oligos containing 3 serum response factor binding sites were used. Oligos 

were: Sense : 

GATCGGATGTCCATATTAGGACATCTGGATGTCCATATTAGGACATCTGGATG

TCCATATTAGGACATCT 

Antisense: 

GATGAGATGTCCTAATATGGGACATCCAGATGTCCTAATATGGACATCCAGA

TGTCCTAATATGGACATCC 

Oligos were annealed by mixing equal amount of oligos (2 milimoles), heating them to 

95 ˚C and letting them slowly cool. This ligated oligo was cloned into the BamHI site of 

pBsSKII plasmid. Blue white selection was done on Amp+ plates coated with 40 µl 2% 

X-Gal. As the number of nucleotides in the oligo that I used (71) was not divisible by 3 

this caused a frame shift in the β Gallactosidase gene of pBsIISK vector. β Gallactosidase 

gene creates a blue non soluble product by using X-Gal. Whereas bacteria transformed 

with plasmid that self ligated had a functional β Gallactosidase gene, thus created blue 

colonies on X-Gal coated plates, bacteria transformed with plasmid with insert did not 

have a functional β Gallactosidase gene, and created white colonies on X Gal coated 

plates. I selected three white colonies for Miniprep. 3SREs were subcloned in 

pCasperAUGβGal plasmid as NotI/XhoI fragment from pBsIISK-3SRE.  

 

New Notch reporter with notch reporter spacing sites was cloned with annealing the 

oligos SreNotchSpAsense and SreNotchSpsense the same way. This oligo was cloned in 

the BamHI XbaI sites of pBsSKII. This approach killed BamHI site in the binding region. 
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I continued to clone new trimers of the SREs with XbaI digestion and cloning in the XbaI 

cut alkaline phosphorylated pBsIISK with multiple SREs in it. This way I generated 

multimers of SREs in pBsSKII vector. Gbe region was annealed the same manner from 

the oligos GbeAsense and GbeSense, Gbe was cloned in pBsIISK vector in EcoRI/ 

HindIII region. This step was repeated to get 2 repeats of Gbe. Different numbers of 

SREs were cloned in NotI/PstI of the resulting pBsIISK Gbe (1 or 2) plasmids. Resulting 

fragments were subcloned in NotI/XhoI sites of pCasperAUGβGal vector.  

 

if enhancer reporter was cloned by PCR with IfHomshXba_rev and IfHomshXba_for into 

EcoRI/XbaI site of pBsIISK. It is subcloned into pCasperAUGβGal with SpeI and 

BamHI.  

 
 

 

5.1.5 Clonining of CG30440 RNAi 
 

cDNA for CG30440 was obtained from Drosophila Genomic Research Consortium 

(DGRC) cDNA library from Genecore facility. The clone number is LD43457. For 

cloning RNAi construct I used Cagan Lab protocol (Bao and Cagan, 2006). I used PCR 

to amplify the first 500 nucleotides of the cDNA with primers that introduce XbaI sites, 

CG30440RNAi_for and CG30440RNAi_rev. Then I used TOPO cloning to have this 

fragment into pCRII TOPO vector. This fragment was cut with XbaI to clone in pGEM-

WIZ vector cut with AvrII and alkaline phosphatase treated for 10 minutes, generating 

pGEM-WIZ-1X30440repeat. pGEM-WIZ vector contains bipartite multiple cloning sites 

that are separated with white gene intron. Expression of inverted repeats with this intron 

causes splicing of the intron this forming a double stranded RNA which then generates 

RNAi effect. Second copy of 500bps was ligated in NheI cut and alkaline phosphatese 

treated pGEM-WIZ-1X30440repeat plasmid, generating pGEM-WIZ-2X30440repeat. 

The directionality of repeats was confirmed with restriction enzyme digestion with 

EcoRI. Head to head oriented inverted repeats were chosen for subcloning into pUAST 

vector in XbaI/XhoI sites.           
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5.2 Drosophila Genetics 

 5.2.1 Fly Husbandry  

Flies were grown on standard corn meal molasso agar prepared in the Fly Kitchen facility 

in EMBL (12g agar, 18 g dry yeast, 10 g soy flour, 22g tunip syrup, 80 g malt extract, 80 

g corn powder, 6.25 ml propionic acid, 2.4 g methyl 4-hydroxybenzoate (Nipagin) per 

liter) All crosses were set in 25 degrees unless indicated otherwise, in vials containing a 

few grains of dry yeast in order increase the fertility. Approximately 18 hours prior to 

dissection, female flies were put in vial containing wet yeast along with a few male flies 

in order to boost the oogenesis.   

 

For larval heat shock experiments the vials were submerged in water bath set to 37 ˚C 

(1hr for mitotic recombination clones, 30 minutes to induce flip out clones). For larval 

heat shocks to induce mitotic recombination larvae were heat shocked on days 3, 4 and 5 

after egg laying, once per day. For adult heat shocks flies were put in vials with wet yeast 

over night prior to the day of adult heat shock. Flies were transferred into empty vials and 

heat shocked in those empty vials in order to boost heat transfer. Adult heat shocks were 

done by submerging flies in empty vials in 37˚C water bath. Flies were transferred in 

vials containing wet yeast afterwards in order to optimize oogenesis. 2,5 days after the 

adult heat shock flies were dissected. 

5.2.2 List of Fly strains 
 

The list of used fly strains can be found below. Most of the fly strains that were used 

were inherited from Kalman Somogyi. Some of the used stocks were present in our 

laboratories stock collection and were neither requested nor recombined to FRT by me.  

 

mal-D∆7, c522 Gal4 and mal-D∆7, UAS-Actin-egfp stocks that were used for generating 

mutant border cells for transcriptional profiling analysis were recombined by Kalman 

Somogyi.   

Fly stock Description Source 
   
mal-D S2 Amino acid replacement: Q675@ Pernille Rorth 
  (Somogyi and Rorth, 2004) 
mal-D S9 Amino acid replacement: L659@. Pernille Rorth 
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  (Somogyi and Rorth, 2004) 
mal-D S5 Amino acid replacement: Q736@. Pernille Rorth 
  (Somogyi and Rorth, 2004) 
mal-D F2 Frameshift mutation at position A1364 Pernille Rorth 
  (Somogyi and Rorth, 2004) 
mal-D ∆7  Imprecise excision of the P element deleting  sequences Pernille Rorth 
  from -257 to +1066 relative to the transcription start site. (Somogyi and Rorth, 2004) 
   
UAS mal-D-∆N UAS drive expression of a 5' truncated Mrtf  protein starting at Pernille Rorth 
 a.a. 171 immediately downstream of the three RPEL motifs. (Somogyi and Rorth, 2004) 
   
Tub mal-D Tubulin promoter driving expression of Mal-D cDNA Pernille Rorth 
  (Somogyi and Rorth, 2004) 
UAS-Actin-egfp UAS drive expression of Actin-EGFP Pernille Rorth 
  (Fulga and Rorth, 2002) 
slbo gal4 Gal4 driver downstream of slbo enhancer Pernille Rorth 
  (Rorth et al., 1998) 
slbo 8ex2 Deletion, null mutant of allele of slbo Pernille Rorth 
  (Rorth, 1994) 
shg R69 Deletion, null mutant of allele of shg Ulrich Tepass 
  (Godt and Tepass, 1998) 
chic 221 Deletion, null mutant of chic Bloomington 
   
bs 14 Amino acid replacement: Q102@. Mutation lies before MADS 

domain. Markus Affolter 
  (Fristrom et al., 1994) 
UAS dia CA UAS driving the expression of dia with  the C-terminal a.a.1029-

1091  Simone Becarri 
 (the predicted autoinhibitory domain) have been removed. (Beccari, 2003) 
   
GawCc522 Gal4 Gal4 Driver Specific for border cells Bloomington 
   
hsFLP hsISCE-I Stock required for excision of pW25 and creating double 

stranded breaks Bloomington 
   
dia 5 Loss of function allele of dia Bloomington 
   
rho 72O Deletion removing translation start site Bloomington 
   
Defnap 8 Defficiency that removes region 41D2-42A7 Bloomington 
   
if b4 Deletion that removes part of Integrin PSα2 resuting a suggested 

frameshift  Nick Brown 
  (Brown, 1994) 

 

 

5.2.2 GAL4/UAS system 
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Adapting yeast Gal4  transcriptional activator into fly made it possible to over-express 

any transgene that is cloned downstream of Upstream Activator Sequence (UAS) (Brand 

and Perrimon, 1993). Expression of Gal4 gene in a given enhancer makes it possible to 

have spatial control on gene expression (Figure 5.1).  

    

 

Actin flipout Gal4 System is a modification of UAS Gal4 system that provides temporal 

specificity to the Gal4 UAS induction. In this system Actin promoter drives a cassette 

containing stop codon and that is flanked by FRT sites, followed by GAL4 gene. 

Expression of FLIP gene under heat shock promoter, by switching the flies to 37˚C for 

thirty minutes induces the flipping of the cassette containing the stop codon, thus 

permitting the expression of GAL4 gene. The flies that start the expression of the Gal4 

gene are marked by the expression of GFP with UASGFP construct. This system 

provides temporally specific high over expression. 

5.2.3 Generation of mosaic clones 

In flies it is possible to induce cells homozygous for a mutation in an otherwise 

heterozygous animal FLP/FRT system was used (Golic, 1991). The mutant was 
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recombined onto a suitable FRT chromosome according to the genomic location of the 

mutation (Xu and Rubin, 1993). This generated FRTxx m chromosome (xx=19 for genes 

on 1st chromosome, 40 and 42 for genes in left and right arm of 2nd chromosome 

respectively and 80 and 82 for genes in left and right arm of 3rd chromosome 

respectively). Flies harboring FRTxx m could then be crossed to flies with hsFLP; FRTxx 

UbiGFP. UbiGFP encodes GFP ubiquitously in flies. The progeny of this cross has 

hsFLP; FRTxx UbiGFP/ FRTxx m genotype. If the progeny is subjected to heat shock in 

either larval or adult stages (see 4.2.1) it causes the induction of FLP gene which 

recognizes FRT sites and induces recombination between them. If this happens during 

mitosis some of the events result in the formation of a homozygous mutant daughter cell 

and a homozygous wild-type daughter cell, which can be discerned by GFP expression. 

Wild-type cell will have 2 copies of GFP, and thus have high GFP expression whereas 

mutant cell will have no GFP and will look devoid of GFP. (Figure 5.2)   

Alternatively this system was used by losing not the GFP, but Gal80 which binds and 

neutralizes the action of Gal4, in a technique called Mosaic Analysis with A Repressible 

Marker (MARCM) (Lee and Luo, 1999). Using Tub Gal4, UAS GFP in this background 

gave possibility of marking the mutant cells with the presence of GFP.   
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5.2.4 Generation of Mal-D 9HA with homologous recombination 
 

The homologous recombination technique in Drosophila aims to generate linear 

homology regions that flank White selection marker in order to generate homologous 

recombination and simultaneously mark the event by expression of White (Gong and 

Golic, 2003). Linear fragments are generated by the activity of FLP and I-SCEI enzymes. 

pW25 vector that was used for the homologous recombination, has two distal FRT sites 

that are positioned so that the induction of recombination between those sites causes 

excision of the construct from its genomic insertion site and generate a round plasmid. I-

SCEI is a sequence specific endonuclease that cuts the plasmid resulting from the action 

of FLP, and generate double stranded breaks that in low frequency can attract the DNA 
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repair machinery and drive the formation of homogous recombination. Cloning of the 

pW25 vector was explained in section 4.1.2. Transgenic flies were generated with this 

vector. One transgenic line in first chromosome was obtained. This line is crossed to 

hsFLP,hsISCE-I, e/TM2 flies and the progeny was larval heat shocked. Virgins with 

mosaic eye color, because of the activity of hsFLP, from this cross that hatched form this 

cross that were heat shocked were collected and crossed with TM2/TM6 males, in about 

150 single fly crosses. (Figure 5.3)  This generated 9 independent events. Males resulting 

from those vials were crossed to 

TM2/TM6. 2 of those events mapped 

to 2nd chromosome that indicates non 

homologous jumps, since Mal-D is 

located in 3rd chromosome. 7 

independent alleles were generated. I 

focused on one allele that was 

verified by PCR from the white gene 

embedded in the knock-in construct 

to the region flanking the homology 

arms with primer pairs 

MALDKI_UTR, pW25_F_to3’flank 

and MALDKI_EX, 

pW25_R_wto5’flank . (Figure 3.3) 

Moreover the white cassette was excised from this line by using hs-Cre transgenic flies 

generated by Lodovica Borghese. White cassette in pW25 vector is flanked by LoxP sites 

which are targets of Cre site specific recombinase. Induction of Cre in the fly results in 

the excision of the White cassette. The region where White cassette was removed was 

PCRed and sequenced. Sequencing did not show any mutations in the coding region. It 

showed that removal of white cassette did not cause any mitations. It left one copy of the 

loxP site which was to be expected.   
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5.3 Staining protocols 

5.3.1 X Gal staining 
 

Ovaries were dissected in ice cold PBS and fixed for 10 minutes in 0.5% Glutaraldehyde. 

After 3 brief washes with PBS + 0.1 Triton X100 (PT) and a further wash of 30 minutes 

in PT, ovaries were incubated in staining buffer containing 0.4% X-Gal. Incubation was 

done at 37˚C in dark until the signal was apparent which was usually overnight for 

endogenous reporters and about 2-4 hours for reporters in Mal-D ∆N over expression 

conditions. Ovaries were then washed once with PBS and then mounted in 50% glycerol 

in PBS. Images were then taken with a digital camera attached to a Zeiss Axiopod 

microscope.    

5.3.2 Phalloidin DAPI staining 
 

Ovaries were dissected in ice cold PBS and fixed with 4% Paraformaldehyde (PFA) for 

15 minutes on a rotator in room temperature. Ovaries were then briefly rinsed three times 

with PT and washed for an additional 30 minutes in PT. Then they were pipetted several 

times first with blue pipette tip and then yellow pipette tip in order to separate the egg 

chambers and remove them from muscle sheet. Ovaries were then incubated in PT with 

Rhodamine conjugated Phalloidin (1:500 from Molecular Probes), and DAPI (1µg/ml) 

for 1 hour in room temperature on a rotator in dark. After the incubation samples were 

washed twice with PT and twice with PBS. The samples were then mounted in 80% 

Glycerol in PBS containing 0.4% n-propyl gallate (NPG). All images were scanned with 

confocal microscopy. 

5.3.3 Antibody staining 
 

For detecting Mal-D9HA I used either mouse monoclonal Antibody (HA.11) or rat 

monoclonal antibody (3F10). Both of them gave similar results and staining patterns. For 

mouse anti HA the primary and secondary antibodies are preadsorbed by dissecting about 
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50-100 flies without the epitope, fixing and processing them as I would do for the Mal-

D9HA samples (explained below) until the addition of antibody. Antibody was applied 

1:25 in 500 µl overnight in blocking buffer at 4˚C on a rotator. Next day the preadsorbed 

antibody is recovered by centrifugation at 14000 Rpm of the readsorbing sample for 30 

minutes at 4˚C and isolating the supernatant.  Preadsorbed antibody would be used for 

1:1000 final dilution (1:40 further dilution) on the samples to be stained. For stainings 

with either of the antibodies, secondary antibody (Cy5 conjugated anti mouse or anti rat 

antibodies from Jackson Scientific) was preadsorbed the same way as well. The final 

dilution for secondary antibody on the sample is 1:300 (1:12 further dilution).  

 

For staining of Mal-D9HA samples I used a staining method optimized by Katrien 

Janssens. Samples were dissected in Grace’s cold medium (Invitrogen) with 4% PFA in it 

for 10 minutes. Then ovaries were punctured with forceps in order to let the fixative enter 

the sample for 5 minutes and samples were incubated on a rotator at room temperature 

for 15 minutes. After fixation samples were rinced briefly three times with washing 

buffer (WB) (50mM Tris-HCl pH 7.4 and 150 mM NaCl (TBS), 0.1% NP-40 (Igepal), 

1mg/ml Bovine Serum Albumin ( 99% purity, Sigma Aldrich)) The washing buffer was 

prepared fresh each day for dissections. After three rinses samples were washed 30 

minutes in WB. Then samples were pipetted up and down several times in order to 

dissociate them. Then they were blocked on blocking buffer (BB)(same as WB except for 

5mg/ml BSA rather than 1mg/ml) for 30 minutes. Primary antibody was added overnight 

at 4˚C on a rotator. The next day samples were washed 4 times 30 minutes in WB. Then 

blocked again 15 minutes in BB. Secondary antibody was then applied along with 

Rhodamine-Phalloidin (1:500) and DAPI (1µg/ml) for 2 hours in dark at room 

temperature on a rotator. At the end of incubation with secondary antibody sample was 

washed 4 times 10 minutes in WB and rinsed twice with WB and twice with TBS and 

mounted in 80% Glycerol in PBS containing 0.4% n-propyl gallate (NPG).  

Guinea pig α-Achi antibody was used 1:1000 (Gift from Richard Mann), Rabit α-Sty 

antibody was used Rabit 1:1500 (Gift from Mark Krasnow), α βGal antibody (Cappel) 

was used 1:1000, Rabit α SCF (Gift from Susumu Hirose) antibody was used 1:300. 2˚ 

antibodies were Cy5 conjugated antibodies against the species IG chains (Jackson 

Scientific)     
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5.3.4 In situ Hybridization 
 

In situ hybridization method was optimized by Georgina Fletcher and Juliette Mathieu 

(Borghese et al., 2006). DGRC Genomic clones for CG30440 (LD43457), CG10966 

(rdgA, GH23785), CG9623(if, GM12416), CG1921(sty, RH67029), CG3217 (LD32354) 

and CG31015 (prolyl-hydroxylase 4, RE70601) were obtained from Genomics Core 

Facility. 6µg of plasmids were digested with 3µl of SalI and BglII in the case of 

CG30440, MunI and BglII in the case of rgd A, BglII in the case of if, XhoI and NotI in 

the case of sty, HindIII and BglII in the case of CG3217, HindIII and NotI in the case of 

Prolyl-hydroxylase4 in order to generate linearized constructs to use in probe synthesis.  

Linearized DNA was isolated using phenol chloroform extraction and precipitation.  

1 µg of linearized DNA was mixed with 2.5 µl 10X DIG (Roche), 2.5 µl 10X buffer 

(Roche, preheated to 37 ˚C) 1µl Rnase block and 1.5 µl polymeraze (Sp6 for CG30440, 

rgd A, if and CG3217 and T3 (Roche) for sty and Prolyl-hydroxylase) and filled up to 25 

µl with DEPC H2O. This mixture was incubated at 37 ˚C for 3 hours. At the end of 3 

hours 1µl of RNAse free DNAse (Quiagen) was added on the reactions to stop them and 

they were incubated for another 45 minutes in 37 ˚C. RNA probe was precipitated by 

using LiCl (Ambion) precipitation method. RNA was resuspended in 20 µl 2X SSC 50% 

formamide. One day prior to hybridization day preHybridization buffer was prepared. 

10% Boehringer Block (BB) was thawed along with torula RNA in a separate tube. 5ml 

of 10% Boehringer Block, 25 ml Formamid, 12.5 ml 20XSSC (3 M NaCl; 0.3 M Na-

citrate), 1ml DEPC H2O, 5 ml Torula RNA (10mg/ml), 100 µl Heparin (50 mg/ml), 250 

µl 20% Tween, 500µl 10% CHAPS, 500µl 0.5 M pH8 EDTA were mixed to generate 

preHybridization buffer. 

 

Flies were dissected in DEPC PBS on ice, and fixed 20 minutes with DEPC PBS+ 

4%PFA + 0.1% Tween. Samples were 4 times rinsed with DEPC PBS+ 0.1% Tween. 

Samples were incubated with 100% MeOH at -20 ˚C for 1.5 hours. Then ovaries were 

rehydrated by sequential addition of buffers with decreasing MeOH concentrations (75%, 

50%, 25% and last 2 washes with PBS Tween) 5 minutes for each wash. After washes 10 

µg/ml Protease K in PBS was applied 8 minutes in room temperature. Samples were 

washed twice with PBS + 0.1% Tween and refixed for 20 minutes with PBS + 0.1% 
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Tween. Samples were washed 5 times with PBS + 0.1% Tween. Meanwhile 

preHybridisation buffer was placed in 65 ˚C water bath. 300 µl of preHybridization 

buffer was added on samples and they were incubated 1.5 hours in 65 ˚C water bath. 1.5 

µl probe per sample was added at the end of incubation. Samples were incubated 

overnight in 65 ˚C water bath. On second day samples were washed at 65 ˚C 2 times 30 

minutes with 50% Formamide (FA), 5XSSC, 0.1% CHAPS, once 15 minutes with 

2XSSC, 01.% CHAPS, 2 times 30 minutes 0.2 X SSC, 0.1% CHAPS. Then samples were 

passed to room temperature and washed 3 times 5 minutes with MAB + 0.1%Tween (1 

mM maleic acid, 1.5 mM NaCl pH 7.5). Samples were blocked with 5% BB in MAB + 

0.1% Tween for 1 hour. α-Dig antibody was applied in MAB + 0.1% Tween in 1:4000 

dilution for 2 hours. Samples were washed 6 times 20 minutes with MAB+ 0.1% Tween. 

Meanwhile fresh AP buffer was prepared (100mM Tris-HCl, 100mM NaCl, 50 mM 

MgCl2, 0.1% Tween 20, pH 9.5). Samples were washed 3 times with AP buffer and 

stained in BM Purple 1:1 in AP buffer. Samples were incubated until signal develops.  

5.4 Microarray experiments         

5.4.1 Isolation of mutant larvae 

Heterozygous mutant mal-D ∆7 (recombined to UAS-Actin-GFP or c522-Gal4) virgins 

and males were crossed in large cages. In the progeny only homozygous mutant larvae 

would have both the driver and UAS construct and have green signal in the salivary 

glands due to the leakiness of Gal4 driver (Figure 5.4). Plates were collected overnight 

and kept one day at 18˚C to let the embryos develop to 1st instar stage. Then embryos 

were collected by using meshes and were put in 2% Tween 20 in PBS. GFP positive 

population was sorted by using Union Biometrica COPAS embryo sorter 500 events/ fly 

bottle (Figure 5.5). Daily extinction, time of flight and parameters were set each day and 

tested by sorting 20 larvae on a slide that was observed under microscope for expected 

GFP expression.  

This method gave good purity and yield of mutant flies to dissect 10 days later when the 

pupae hatch.  

I collected the flies that are 3 days old and dissected them. All the flies resulting from 

mutant collection had kinked bristles, serving as an internal control, showing the flies 

were homozygous mal-D∆7. 
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5.4.2 Dissection 
Ovaries from 3-4 day old females incubated for 18 hours at 25˚C were dissected on ice, 

in cold Serum Free Medium (SFM) (GIBCO-Invitrogen). 200 females were dissected in 

one hour. Ovaries were then dissociated by 30 minutes of incubation in 0.9 ml of 

Trypsin/ EDTA (0.5%) (Sigma) + 0.1 ml of a collagenase solution in PBS (67 mg/ml). 

Sample was shaken every 2 minutes in order to increase dissociation efficacy. 

Supernatant was filtered through a nylon mesh with 62 µm grid size (Small Parts 

Incorporated) into tubes containing ice cold SFM + 10% FCS to a final volume of 1 ml. 

Cells were pelleted by centrifugation at 1300 RPM for 7 minutes and a 7 second short 
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spin. Pellet is resuspended in SFM + 10% FCS and kept on ice until start of sorting  

protocol. 

5.4.3 Fluorescently Activated Cell Sorting (FACS)  
  

The protocol to use FACS for obtaining border cells was optimized by Lodovica 

Borghese. The same settings were applied by Andrew Riddell in the Flow Cytometry 

Core Facility. Maximum of 4 sorts per day were performed.    

 
The GFP Border cells from clusters that resolve as brightly fluorescing population in the 

flow Cytometer. The overall pressure was kept low with the assumption that it will 

maintain the cells as clusters during the sorting procedure.  

 

The Assay was performed on a DAKO MoFlo Flow Cytometer (Dako GmbH, 

Hamburger Str. 181,22083, Hamburg) with  Enrich 1.0 sort mode.  

The primary laser was a Coherent Innova 90-6 argon ion laser (Coherent Inc., 5100 

Patrick Henry Drive, Santa Clara, CA 95054 USA) tuned to 488nm. The aperture was set 

at 5. The beam quality was checked visually by expanding the beam with a 10X 

microscope objective and projecting the beam onto a wall. TEM00 mode was observed. 

The beam was carefully aligned, using an in-house alignment tool, to the MoFlo’s 

primary optical path. The stream was carefully aligned to be perpendicular to the beam at 

the laser intercept point. A medium width obscuration bar was used in wide-angle light 

capture. The optical path was then optimised using FLOW-CHECK beads (Beckman 

Coulter Inc Fullerton, CA 92835 Cat No.6605359). 

Low background noise from sheath is important. Becton Dickinson FACS Flow sheath 

was used (Becton Dickinson GmbH, Tullastrasse 8-12, 69126, Heidelberg, Germany, –

Cat No 322003-). It was filtered in-line through a PALL Fluorodyne II filter O.2µm (Part 

No. MCY4463DFLPH4). 

 

The sample rate was approximately 100-1000 events/sec-1. The differential pressure was 

low to confine the border cells in the centre of the co-axial flow. 

 

The data was analysed using DOKO Summit software.  
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5.4.4 Total RNA extraction from sorted border cell collections 
 

Total RNA was isolated by using PicoPure RNA isolation kit (Arcturus, Mountain View, 

CA) according to manufacturers protocols. Briefly the border cells were directly sorted in 

an eppendorf tube containing the lysis buffer of the kit at a 1:4 volume of buffer. After 

the sort the sorted volume was estimated and if needed was readjusted to have 1:4 ratio. 

The collected samples in lysis buffere were heated at 42 ˚C for 30 minutes. The final 

extract was kept frozen at -80˚C until the time of pooling of different collections to obtain 

enough material. Pooling was done with approximately 10000 border cell cluster events  

(580 flies dissected) for wild-type and 12500 border cell cluster events for ∆7 (700 flies 

dissected) for the first array,  13400 border cell cluster events (560 flies dissected)  for 

wild-type, 17500 events (719 flies dissected) for ∆7 for second array, and 30000 for ∆7 

(1043 flies dissected), 24000 events (1100 flies dissected)  for wild-type for the last array. 

Events correspond to single border cells or clusters of cells. Dissociation rate may change 

from day to day which gives difference in the number of flies dissected to number of 

events collected. RNA purification was performed according to the protocol of the kit. 

The optional DNAse treatment was performed. Total RNA preps were eluted with 11 µl 

of Elution Buffer and kept at -80˚C. 0.7 µl of the sample was always used to measure 

quantity of RNA and 0.3 µl was used to assess the quality of the RNA with bioanalyzer 

tool. Remaining 10 µl of the sample was used for the hybridizations on Drosophila 

Genome 2.0 Arrays.  

5.4.5 Assessing the quality and quantity of the RNA 
RNA quantity was measured by using Quant-it reagent kit (Molecular Probes) according 

to manufacturers instructions with a Tecan Fluorometer (Tecan Group, Switzerland) in 96 

well plates (Thermo Labsystems, Finland). Briefly a standart curve was constructed by 

using the RNA that is provided in the kit and the quantity of the RNA was determined by 

comparing the signal of the sample to the corresponding point in the linear standard 

curve. 

The quality of RNA was measured by using Bioanalyzer according to manufacturers 

instructions. This step is performed by Tomi Ivacevic in Genomics Core Facility. 

Bioanalyzer (Agilent Technologies, Palo Alto CA) is a very sensitive apparatus that can 

test the integrity of RNA in as low amounts as picograms.  
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5.4.6 Linear RNA amplification and labeling with Biotin 
Two cycle linear RNA amplification and labeling was conducted in Genomics Core 

Facility by Tomi Ivacevic by following the manufacturers protocols for GeneChip 

Expression Arrays (Affymetrix, Santa Clara, CA). Genechip 2 cycle cDNA synthsis kit 

claims to amplify RNA in linear way starting from total RNA amounts between 10-100 

ng. Starting total RNA amounts were 43.2 ng wild-type, 39.6 ng ∆7 for the first array, 45 

ng wild-type, 37 ng for ∆7 for second biological repeat and 50 ng for both samples for 

third biological repeat. The steps that are carried out by using the kit are summarized in 

figure 5.6.  
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The quantity and quality of Biotinylated RNA was assessed by using UV-Spectrometer 

and Bioanalyzer respectively by Tomi Ivacevic. 10 µl of fragmented, labeled RNA was 

placed in a hybridization cocktail and hybridized to Affymetrix Drosophila Genome 2.0 

Array. Those arrays contain 18880 probe sets, measuring  expression of about 18500. 
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Each probe set contains 14 Perfect Match, Mismatch probe pairs that are used to detect 

the level of abundance of a given RNA.  

Images of each scanned chip were processed with the default settings of GeneChip 

Operating Software 1.4 (GCOS). Raw data was normalized over all the probe sets and 

converted to numerical data sets that were used to assign a Present, Absent or Marginal 

flags on each transcript. Genespring GX Software (Agilent) was used in order to analyze 

the data set and detect samples that were differentially regulated.                

 

5.5 Tissue Culture  

5.5.1 General Maintenance 
S2 Schneider cells, which are hemocyte derived cells, were kept in flasks in SFM 

supplemented with 100 U/ml Penicilin-Streptomycin (Gibco) 2 mM L-Glutamine (Gibco)  

Cells were splitted in every 10 days by diluting 1 to 1 with fresh medium. Cells were 

incubated in 25 ˚C cell incubator.  

5.5.2 Transfection 

Transient transfections were conducted by using Lipofectin reagent (Gibco) following the 

supplied protocol. Briefly confluent cells from a flask were mixed 1:1 with fresh medium 

and plated on 6 well plates 4 ml per well. Cells are let to adhere for 1 hour. Meanwhile 

Plasmids were prepared by mixing them with 60 µl of SFM per sample. In a separate tube 

60 µl SFM/ Sample was mixed with 1/10 of Lipofectin. The content of second tube waas 

added 60 µl/ sample to the content of the other tube and DNA was incubated for 30 

minutes to form complexes with Lipofectin. After the incubation medium was washed 

away and cells were washed once with medium without antibiotics. 480µl SFM without 

antibiotics was added on the DNA Lipofectin mixture to make the total volume 600µl per 

sample. This mixture was applied on the cells. Cells were incubated 6 to 8 hours in this 

mixture and then medium with antibiotics was added on cells. Cells were left overnight 

for recovery. The following day induction was done with 700 µM final concentration 

CuSO4 for 12 hours.  
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5.5.3 β Gal Activity read out 
 

After 12 hours of induction of the constructs cells were scraped and pelleted by 

centrifugation at room temperature at 5000 RPM for 1 minute. Pellet was resuspended in 

cold 300 µl / sample Grinding Buffer ( 0.1 M Tris pH 7.8, 0.1 mg/ml BSA, 1 mM DTT, 

0.03% sodium deoxycholate (Sigma)) Samples were vortexed in order to resuspend them 

and left on ice for 10 minutes. 50 µl of this mixture was taken for Western Blot analysis. 

The rest was spinned 5 minutes at 14000 RPM at cold room. 50 µl of supernatant was 

mixed with 750 µl PM2/ONPG( 39 mM NaH2PO4, 60 mM Na2HPO4, 3mM MgSO4 , 

2mM EDTA, 0.2 mM MgCl2, 2mg/ml ONPG (Sigma), 100 mM β mercaptoethanol)  for 

the detection of β Gal activity. The reaction was stopped with the addition of 250 µl 1M 

Na2CO3. 
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Appendix 

List of Genes that were more than 2 Fold Down regulated in mal-
D ∆7 border cells in all repeats  

Gene Name Common Transcript ID_Affymetrix WT Averge D7 Average Average Change 
1627869_at Ser4 CG8867-RA 3471.3 578.9 6.0 
1638872_at Hsp68 CG5436-RA 3065.8 1039.2 3.0 

1635125_a_at CG6206 CG6206-RA 2873.2 871.4 3.3 
1639196_at CG8869 CG8869-RA 2246.0 490.0 4.6 
1636040_at CG10527 CG10527-RA 2076.2 200.7 10.3 

1623364_at CG4250 CG4250-RA 1956.6 461.1 4.2 

1635819_at sty CG1921-RC 1861.2 683.8 2.7 
1628840_at ken CG5575-RA 1802.2 597.1 3.0 
1634186_a_at CG17119 CG17119-RA 1600.8 372.3 4.3 
1629476_at CG7542 CG7542-RA 1570.8 214.5 7.3 
1630258_at GstD2 CG4181-RA 1554.5 414.6 3.7 

1639036_at CG8857 CG8857-RC 1457.3 518.6 2.8 

1623027_s_at CG6277 CG6277-RA 1384.0 111.7 12.4 
1634240_at CG5107 CG5107-RA 1313.5 324.0 4.1 

1624506_at CG8871 CG8871-RA 1228.0 124.4 9.9 
1624067_at CG6704 CG6704-RA 1153.5 488.1 2.4 
1630291_at MtnB CG4312-RA 1146.6 281.0 4.1 
1627088_at fit CG17820-RA 1105.5 148.1 7.5 
1636762_a_at scf CG9148-RA 1072.5 292.6 3.7 
1640170_at CG10311 CG10311-RA 1053.0 342.9 3.1 
1630842_s_at CG32641 CG32641-RA 1007.5 285.1 3.5 
1632974_s_at CG30015 CG30015-RA 967.3 357.3 2.7 
1629843_s_at  CG2257-RA 946.5 406.3 2.3 
1629313_at CG8661 CG8661-RA 939.6 113.2 8.3 
1639256_at CG5676 CG5676-RA 881.2 303.4 2.9 
1636800_at CG13610 CG13610-RA 852.5 313.9 2.7 
1629844_s_at rap CG3000-RA 792.4 295.5 2.7 
1638929_at CG8920 CG8920-RA 710.2 197.2 3.6 
1635677_a_at sty CG1921-RB 707.1 162.6 4.3 
1636174_at GstD9 CG10091-RA 688.5 245.6 2.8 
1630051_at Tsp42Ec CG12847-RA 661.0 111.8 5.9 
1640329_s_at CG6391 CG6391-RA 651.5 248.1 2.6 
1641326_at CG30118 CG30118-RA 647.9 206.5 3.1 
1626011_at CG17834 CG17834-RB 620.7 273.2 2.3 
1632530_s_at CG8776 CG8776-RD 618.9 121.5 5.1 
1636240_at CG7678 CG7678-RA 571.4 90.1 6.3 
1633763_at  CG2855-RA 533.9 169.2 3.2 
1639262_at CG11669 CG11669-RA 525.4 59.1 8.9 
1634549_at CG11750 CG11750-RA 509.8 190.2 2.7 
1633532_at CG5767 CG5767-RA 508.2 127.4 4.0 
1625985_at CG31446 CG31446-RA 474.8 68.7 6.9 
1641634_at Lsp2 CG6806-RA 449.6 66.3 6.8 
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1626147_s_at CPTI CG12891-RA 427.1 107.1 4.0 
1638377_x_at CG30025 CG30025-RA 423.1 109.4 3.9 
1633946_at CG31955 CG31955-RA 403.3 47.8 8.4 
1625332_at CG14764 CG14764-RA 395.3 120.3 3.3 
1634012_at CG5002 CG5002-RA 392.0 90.1 4.4 
1630187_a_at CG6299 CG6299-RB 391.8 151.1 2.6 
1625249_at ld14 CG12664-RB 391.7 142.1 2.8 
1635343_a_at  CG3217-RA 379.5 82.5 4.6 
1628446_at MtnC CG5097-RA 373.6 80.4 4.6 

1639306_s_at CG17090 CG17090-RB 368.8 49.5 7.5 
1630411_at CG9945 CG9945-RB 367.2 129.6 2.8 
1636764_at CG31075 CG31075-RA 363.6 87.8 4.1 
1629842_at Gap1 CG6721-RB 362.9 141.1 2.6 
1631555_at CG10062 CG10062-RA 360.3 36.8 9.8 
1633849_at CG31559 CG31559-RA 358.1 140.7 2.5 
1624793_at GstD7 CG4371-RA 356.8 144.3 2.5 
1635007_at Sulf1 CG6725-RA 351.9 153.1 2.3 
1627040_at CG1344 CG1344-RA 349.1 95.1 3.7 
1629625_at CG13211 CG13211-RA 348.4 136.5 2.6 
1623425_at Buffy CG8238-RA 340.0 107.6 3.2 
1633294_at CG2812 CG2812-RA 338.4 78.0 4.3 
1636976_at CG5322 CG5322-RA 323.3 41.3 7.8 
1640386_at wbl CG7225-RA 321.6 96.8 3.3 
1641554_at CG16728 CG16728-RA 319.1 128.7 2.5 
1634125_at CG30440 CG30440-RA 317.5 44.5 7.1 
1632461_at CG31233 CG31233-RA 317.0 43.4 7.3 
1627284_at PH4&agr;PV CG31015-RA 315.9 82.4 3.8 
1628628_at CalpA CG7563-RB 311.3 122.1 2.5 
1631962_at MtnD CG33192-RA 296.8 67.1 4.4 
1639597_at Obp44a CG2297-RA 276.1 105.0 2.6 
1635518_at nonA CG4211-RA 269.8 100.6 2.7 
1640002_at CG4586 CG4586-RA 239.1 83.2 2.9 
1627405_at CG14966 CG14966-RA 236.4 93.9 2.5 
1640896_at CG4462 CG4462-RA 230.1 51.0 4.5 
1639469_a_at Pu CG9441-RB 226.2 83.0 2.7 
1640217_at CG30154 CG30154-RA 223.7 82.6 2.7 
1641578_at argos CG4531-RA 223.3 53.9 4.1 
1628655_at CG4476 CG4476-RB 216.6 54.9 3.9 
1631834_at CG31098 CG31098-RA 216.5 81.6 2.7 
1640236_at CG4325 CG4325-RA 216.1 71.2 3.0 
1626253_at GstD4 CG11512-RA 212.8 78.0 2.7 
1630218_at CG13227 CG13227-RA 206.1 60.9 3.4 
1624914_at CG8690 CG8690-RA 203.9 55.4 3.7 
1632372_at CG31076 CG31076-RA 199.2 65.5 3.0 
1625017_at CG3732 CG3732-RA 198.9 57.0 3.5 
1636287_at CG10592 CG10592-RA 196.7 35.5 5.5 
1638051_at CG17323 CG17323-RA 189.0 69.7 2.7 
1637420_a_at  CG6706-RA 182.7 52.4 3.5 
1641232_s_at CG6999 CG6999-RA 163.4 49.3 3.3 
1630725_at CG14572 CG14572-RA 162.5 24.3 6.7 
1634213_at CG13139 CG13139-RA 161.8 57.9 2.8 
1636826_at CG14072 CG14072-RA 155.9 5.4 28.9 
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1639454_at CG10912 CG10912-RA 153.5 54.3 2.8 
1629694_at Pabp2 CG2163-RB 149.9 56.1 2.7 
1625275_at CG32037 CG32037-RA 146.4 45.6 3.2 
1641327_at CG9416 CG9416-RA 146.0 25.4 5.7 
1638730_at Hsp67Ba CG4167-RA 145.3 34.6 4.2 
1637534_at  CG11430-RC 143.8 37.0 3.9 
1641646_at CG5677 CG5677-RA 138.1 43.5 3.2 
1634076_at CG12057 CG12057-RA 137.4 17.6 7.8 
1625366_at rst CG4125-RA 135.6 35.0 3.9 
1637644_at CG13813 CG13813-RA 134.7 41.2 3.3 
1634139_at Cyp301a1 CG8587-RA 133.1 11.7 11.4 
1637660_at CG5150 CG5150-RA 127.2 29.9 4.3 
1628699_at Lsp1&bgr; CG4178-RA 126.8 27.6 4.6 
1627834_a_at aret CG31762-RD 126.2 27.3 4.6 
1635446_at CG15043 CG15043-RA 121.5 36.0 3.4 
1632744_a_at if CG9623-RB 120.5 33.0 3.7 
1624448_at CG6356 CG6356-RA 112.0 20.8 5.4 
1640279_at CG31869 CG31869-RA 110.7 36.7 3.0 
1639110_at CG4484 CG4484-RA 107.6 19.3 5.6 
1632070_at Ugt58Fa CG4414-RA 105.3 31.7 3.3 
1636664_at CG1077 CG1077-RA 104.8 15.5 6.8 
1638811_at Sug CG7334-RA 103.5 33.4 3.1 

1635769_at CG8773 CG8773-RA 101.1 16.2 6.2 
1636906_s_at CG13320 CG13320-RA 100.5 24.0 4.2 
1630441_at CG12716 CG12716-RA 99.9 9.7 10.3 
1638592_at CG6560 CG6560-RA 91.5 37.5 2.4 
1628393_at CG10039 CG10039-RA 87.9 26.5 3.3 
1627946_at CG12068 CG12068-RA 76.4 24.6 3.1 
1629566_at CG8834 CG8834-RA 75.7 9.7 7.8 
1641671_at CG2183 CG2183-RA 75.6 20.3 3.7 
1625325_s_at CG32067 CG32067-RB 75.1 7.4 10.2 
1639903_at Ser6 CG2071-RA 74.4 15.3 4.9 
1636970_at CG9394 CG9394-RA 70.7 14.2 5.0 
1630124_at CG5514 CG5514-RA 67.1 24.0 2.8 
1629264_at CG13025 CG13025-RA 64.2 24.1 2.7 
1627020_at CG11110 CG11110-RA 61.2 18.6 3.3 
1625493_at HLHm7 CG8361-RA 61.2 15.0 4.1 
1639098_s_at CG2837 CG2837-RB 61.2 10.0 6.1 
1635674_at CG6901 CG6901-RA 59.2 10.7 5.5 
1634239_at CG14205 CG14205-RA 59.2 8.2 7.2 
1641039_at CG1397 CG1397-RA 58.4 8.6 6.8 
1641349_at rdgA CG10966-RA 55.6 18.4 3.0 
1636460_at CG10475 CG10475-RA 55.2 1.9 29.6 
1629362_at mthl8 CG32475-RA 54.1 3.7 14.5 
1632582_at CG9270 CG9270-RA 53.9 7.5 7.2 
1633047_at CG1809 CG1809-RA 51.6 13.5 3.8 
1624704_at CG4741 CG4741-RA 51.0 18.9 2.7 
1632360_s_at CG31038 CG31038-RB 49.7 11.1 4.5 
1637462_at CG13833 CG13833-RA 49.5 9.1 5.4 
1631016_at CG32822 CG32822-RA 46.2 10.7 4.3 
1628503_at CG30424 CG30424-RA 45.1 17.2 2.6 
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1636865_at  CG3250-RA 43.2 15.8 2.7 
1632400_at CG3841 CG3841-RA 39.3 8.4 4.7 
1638211_at CG10933 CG10933-RA 37.5 7.8 4.8 
1629201_at CG5550 CG5550-RA 35.3 6.9 5.1 
1630768_s_at vis CG8821-RA 34.5 13.3 2.6 
1630333_at CG13338 CG13338-RA 28.6 2.2 12.8 
1628656_at CG12654 CG12654-RA 28.6 9.0 3.2 
1631165_at CG4688 CG4688-RA 26.4 1.8 14.4 
1632531_at CG5770 CG5770-RA 26.2 5.8 4.5 
1636393_at CG15005 CG15005-RA 23.9 1.8 13.0 
1626922_at CG31876 CG31876-RA 22.5 7.6 2.9 
1634510_at CG17324 CG17324-RA 22.3 4.5 4.9 
1639859_at CG15753 CG15753-RA 21.5 5.8 3.7 
1632447_at B52 CG10851-RD 20.7 5.0 4.1 
1633089_a_at lola CG12052-RJ 19.0 5.9 3.2 
1636780_at meso18E CG14233-RA 17.7 4.9 3.6 
1626627_at CG11718 CG11718-RA 17.6 6.5 2.7 
1641674_at  S.C3L000093 31.3 10.9 2.9 
1634534_at  CG30132-RA 29.5 6.9 4.3 
1626887_at  Stencil:X:13639537:13636195:GENSCAN 35.1 13.9 2.5 
1634247_at  HDC08957 51.1 12.1 4.2 
1633386_s_at  CT37020 67.6 5.4 12.4 
1628444_at  HDC18647 125.3 45.5 2.8 
1638469_s_at  AY180918 224.1 71.5 3.1 
1629160_s_at  GM02923 443.8 155.7 2.9 

 


