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Abstract

Detailed quantitative understanding by modeling and the possibility for specific

external control of cellular behavior are general long-term goals of modern bioscience

research activities in systems biology. Self-organization might be a general principle in

cellular organization as many dynamic properties of cellular structures are consistent with

a role for self-organization in their formation, maintenance, and function. Controlling

self-organized dynamics provides an avenue for exploring dynamical behavior as well as

generating particular desired behavior. Towards realizing this goal the central aim of this

thesis is on target oriented manipulation of these systems by optimal control methods.

The optimal control approach offers a great deal of flexibility in formulating objective

functions, and we use a direct multiple shooting based numerical optimization approach,

which is particularly suitable for nonlinear self-organizing systems. Here, we demonstrate

how model-based optimal control methods can be exploited for inducing desired system

dynamics which is not system inherent by time varying control parameters in the case of

Circadian rhythms and the Belousov-Zhabotinsky (BZ) reaction as model systems.

Circadian rhythms governed by the oscillating expression of a set of genes based

on feedback regulation by their products have become an important issue in biology and

medicine. Here, we study a circadian oscillator model of the central clock mechanism

for the fruit fly Drosophila and show how model-based optimal control allows for optimal

phase resetting, design of chronomodulated pulse-stimuli schemes for achieving circadian

rhythm restoration in mutants and optimal phase synchronization between the clock and

its environment. We refer to both open-loop and feedback optimal control approaches.

Circadian rhythms can significantly affect the timing and entry of the cell cycle. A de-

tailed coupled circadian cycle and the cell cycle model has been developed in a mammalian

system, for investigating the model-based optimal control scenarios. Initial numerical sim-

ulation results for the coupled circadian cycle and the cell cycle model are shown here.

Easily accessible test-tube chemical systems like the BZ reaction are particularly

well suited for studies of controlling self-organized dynamics, and they offer a means for

characterizing behavior that is relevant to more complex biological systems. Here, we

develop a novel detailed model for the photosensitive BZ reaction based on an elemen-

tary step reaction mechanism and reduce the model explicitly with quasi-steady-state

(QSSA) and partial-equilibrium-approximations (PEA). Systematic analysis and model-

based control for stabilizing unstable steady states, and obtaining periodic orbits with a

desired time period are carried out. The results are analyzed and compared with a very

simple 3-variable Oregonator model from the literature.

Keywords:

Self-organization; optimal control; direct multiple-shooting; nonlinear model predic-

tive control (NMPC); mixed-integer optimal control; bang-bang controls; periodic control;

circadian rhythms; BZ reaction; Cell cycle; phase resetting; phase tracking and entrain-

ment.
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Zusammenfassung

Ein ausführliches, quantitatives Verständnis, welches durch Modellieren erzielt wird,

sowie das Ermöglichen einer spezifischen externen Steuerung des zellularen Verhaltens

sind allgemeine langfristige Ziele der modernen biowissenschaftlichen Forschung in der

Systembiologie. Selbstorganisation ist möglicherweise ein allgemein gültiges Prinzip für

die zelluläre Organisation, da viele dynamische Eigenschaften zellulärer Strukturen sowohl

hinsichtlich ihrer Bildung, Aufrechterhaltung und Funktion diesem folgen. Die Steuerung

selbstorganisierter Dynamiken eröffnet einen Weg zur Untersuchung von dynamischem

Verhalten sowie zur Generierung des gewünschten Verhaltens. Um dieses Ziel zu ver-

wirklichen, konzentriert sich diese Dissertation in erster Linie auf die gezielt orientierte

Beeinflussung dieser Systeme durch optimale Steuerungsmethoden. Der Ansatz opti-

maler Steuerung bietet große Flexibilität hinsichtlich der Bestimmung der Zielfunktionen.

Wir verwenden eine direkte, auf den Multiple-Shooting-Ansatz basierende numerische

Optimiermethode, welche insbesondere auf nichtlineare selbstorganisierende Systeme ver-

wendbar ist. Die vorliegende Arbeit zeigt, wie auf Modellen basierende optimale Steuerungs-

methoden zum Erzeugen der gewünschten Systemdynamiken verwertet werden können.

Im Fall des Circadischen Rhythmus und der Belousov-Zhabotinsky (BZ) Reaktion als

Modellsysteme sind diese bezüglich der zeitabhängigen Steuerungsparameter nicht system-

immanent.

Wir analysieren ein Circadisches Oszillatormodell des zentralen Uhrmechanismus

für die Fruchtfliege Drosophila und zeigen, wie auf Modellen basierende optimale Steuerung

Phasenneueinstellung, Design von chronomodulierten Puls-Stimuli-Schemata zur Wieder-

herstellung des Circadischen Rhythmus in den Mutanten und optimale Phasensynchronisie-

rung zwischen der Uhr und ihrer Umgebung erlaubt. Wir beziehen uns sowohl auf die

optimalen Open-Loop- als auch auf die Rückkopplungssteuerungsmethoden. Circadische

Rhythmen können das Timing und den Eintritt des Zellzyklus erheblich beeinflussen. Zur

Untersuchung der auf Modellen basierenden optimalen Steuerungsszenarios sind ein de-

taillert gekoppelter Circadischer Zyklus und das Zellzyklusmodell für ein Säugetiersystem

entwickelt worden. Erstergebnisse der numerischen Simulationen für den gekoppelten Cir-

cadischen Zyklus und das Zellzyklusmodell werden gezeigt.

Insbesondere leicht zugängliche chemische Testrohrsysteme wie die BZ Reaktion

sind für Untersuchungen der Steuerung selbstorganisierter Dynamiken sehr gut geeignet.

Denn sie bieten ein Mittel für die Charkterisierung des Verhaltens, das für kompliziertere

biologische Systeme relevant ist. Wir entwickeln ein ganz neuartiges detaillertes Modell für

die lichtempfindliche BZ Reaktion, das auf einem Elementarreaktionsmechanismus beruht

und reduzieren dieses aufgrund der Quasi-Steady-State- (QSSA) und partielle Gleich-

gewichtsnäherungen (PEA) explizit. Zur Stabilisierung instabiler stationärer Zustände

sind systematische Analysen und auf Modellen basierende Steuerungen durchgeführt wor-

den, woraus periodische Bahnen mit einer gewünschten Periode resultieren. Die Ergebnisse

werden diskutiert und mit einem sehr einfachen 3-Variablen-Oregonator-Modell aus der

Literatur verglichen.
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Chapter 1

Introduction and Overview

Living organisms are thermodynamically open systems that continuously exchang-

ing energy and matter with their environment. They are characterized by a complex

organization, which results from a vast network of molecular interactions involving

a high degree of nonlinearity, giving rise to variety of dynamical behavior. In phys-

ical and biological systems alike, properties such as openness and nonlinearity may

express themselves through spontaneous formation of long-range correlated, macro-

scopic dynamical patterns in space and time - the process of self-organization [1].

The concepts of self-organization and dissipative structures goes back to Schrö-

dinger and Prigogine [2, 3, 4, 5]. In open systems, mechanisms such as positive or

negative feedback, auto catalysis and time delays might generate self-organized dy-

namical behavior. Energy is continuously dissipated during the generation of such

self-stabilizing states or dissipative structures. In cells, these dissipative structures

and openness prevents the biochemical reactions reaching thermodynamic equilib-

rium [5] as formulated by Schrödinger [4] ‘living matter evades the decay to equilib-

rium’. The research in nonlinear dynamics has substantially contributed to a more

detailed understanding of self-organization phenomena far from equilibrium [6].

Although the self-organization of macroscopic patterns, including temporal

oscillations and spatiotemporal wave patterns, was first studied and theoretically

understood in physical and chemical systems, numerous examples are now known at

all levels of biological organization [7,8]. For example, calcium waves [9], oscillations

in neuronal signals [10], oscillations in cyclic AMP in the slime mould Dictyostelium

discoideum [11], yeast glycolytic oscillations [12], circadian rhythm [13] and cell

cycle [14,15]. A very good overview concerning oscillatory phenomena in cells and

biological rhythms is given in [7]. These periodic oscillatory phenomena can be a

function of time (glycolytic oscillations), space (striping in Drosophila melanogaster

embryos), or both (D. discoideum, calcium waves, neuronal oscillations) depending

on the mechanism of the oscillator [16]. Some of these oscillatory phenomena (for

example, neuronal oscillations which reflects the temporally precise interaction of

neural activities – is a likely mechanism for neural communication [17]; calcium and

endocrine oscillations appear to function as information-transfer pathways [18,7,19])

are crucial in living systems in which they occur. External forcing and nonlinear
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control of these self-organizing oscillating biosystems might be of great benefit [1],

for example in drug development to cure diseases caused by dynamical malfunction

of cellular systems or to understand which molecular defects result in pathological

disturbance in oscillations.

The study of self-organizing biological systems increasingly requires the appli-

cation of modeling, mathematical methods and interdisciplinary approaches. The

new research area of systems biology [20, 21] aims at a system level understanding

of these biological processes, how the interactions between the components give rise

to the function and behavior of that system. These studies are based on detailed

reaction mechanisms with nonlinear couplings, feedforward, feedback loops between

components, can serve for a quantitative study of system behavior in numerical

simulations and control tasks. Model-based external control allows us to explore

the response of a self-organizing chaotic or non-chaotic system to a defined stim-

ulus, and gain insight on how information is encoded and decoded and associated

inherent control mechanisms in these systems. Such studies are particularly impor-

tant to understand the behavior of natural systems subjected to external driving

forces. Bifurcation and sensitivity analysis might reveal the qualitative and quanti-

tative changes in the behavior of these systems to external perturbations that can

be exploited for practical purposes. Controlled perturbations by pharmacological

intervention are promising approaches here, that might be used to further advance

our understanding and control of these self-organizing biological systems.

Literature on external control of self-organizing dynamical systems in space

and time is rich in content [22,23,24,25]. Many different approaches for controlling

such behavior have been pursued. Some, such as those based on feedback tech-

niques, make use of the system sensitivity to perturbations displayed by nonlinear

dynamical systems [26, 23]. Global feedback, for example gives rise to a rich va-

riety of spatiotemporal dynamics, including behavior not observed in autonomous

systems [25]. Local feedback, such as variations of excitability gradients, allows

directional control of propagating waves to yield a desired pattern [24]. However,

systematic approaches, strictly aiming at control of self-organizing systems with re-

spect to general predefined control aims and subject to constraints, are rare [27,28]

and optimal control is considered to be a promising approach here.

An optimal control problem formulates the control aim as an objective func-

tional to be minimized for a given system dynamics described by ODE or DAE sub-

ject to system constraints (e.g. bounds on controls, positive concentrations). This

particular formulation offers a broad flexibility for formulating different control ob-

jectives that are treated in this thesis. The present work is focused on modeling of

self-organizing systems based on detailed reaction mechanisms and its response to

the time varying external control inputs. The objective essentially is manipulating

the desired functional behavior (generally properties of the system) by changing the
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parameter values. In context of this thesis, ‘control’ refers to excitation or suppres-

sion of oscillations, entrainment and synchronization, or transitions from simple to

aperiodic oscillations and vice-versa. Here, chemical model systems are suitable to

provide insight into similar mechanism in the biochemical context. In the present

work, we treat circadian rhythms and Belousov-Zhabotinsky (BZ) reaction system

as two prototypical examples for controlling the self-organized dynamics.

The circadian clock is found in different organisms, from unicellular [29] to

mammals [30]. It enhances the fitness of various organisms by improving their ability

to adapt to external influences, specifically daily changes in environmental factors,

such as light and temperature. The central circadian clock is an autonomous bio-

chemical oscillator with a period close to 24 hours. Clock-controlled genes facilitate

the modulation of many physiological properties during the course of one day. In

human beings, blood pressure, mental performance, and hormone levels are some

of the properties that change during the day. Although the existence of a circadian

clock in humans had been postulated for decades, an understanding of the molecular

mechanisms are becoming clear only recently in case of Drosophila [31] and more

recently in case of mammals [30]. Mass-action kinetics models have been popular

and successful for simulating bio(chemical) systems, though there are certain limi-

tations. Several mathematical models with different levels of complexity have been

proposed recently to describe different clock systems [32, 33, 34, 35]. As most of the

interesting properties of the circadian systems are directly related to their oscilla-

tory behavior, sensitivity analysis of these oscillations is an active area of research,

in particular for limit cycle oscillators [36, 37, 38].

A prominent example of a pattern forming chemical system is the BZ re-

action [39], which is a homogeneously catalyzed reaction in aqueous solution. It

involves several reagents and various intermediate species; the central reaction step

is the oxidation of malonic acid by bromate, catalyzed by metal ions. Chemical

oscillations in the BZ system were first reported by Belousov (in 1951) and then by

Zhabotinsky (in 1961) in a continuously stirred reactor. A decade later, Zhabotin-

sky and Winfree observed traveling waves of chemical activity in an unstirred re-

actor [40, 41]. Since then, the BZ reaction has became paradigmatic for pattern

formation in chemical systems [39, 42]. The behavior of the Ru-catalyzed BZ re-

action [43] is affected by exposure to visible light. The excitability is reduced in

proportion to the illumination intensity, which leads to the inhibition of oscillatory

behavior in reaction mixtures with appropriate reactant concentrations. This effect

provides a useful tool for studies of self-organized dynamics of BZ system in presence

of light [44] as an external control parameter which can be conveniently suppressed

either locally or globally.
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Organization of the thesis.

The thesis is divided into four parts. The first part (chapter 2-3) of this thesis

deals with the mathematical background necessary for the application of numerical

optimization and optimal control. In chapter 2, we introduce the basic terminology

of nonlinear dynamics and fundamental mathematical background for optimal con-

trol problems. All problem types relevant for this thesis, their characteristics and

solution concepts are briefly discussed. In chapter 3, we review a powerful numerical

approach to optimal control problems which is based on the direct multiple-shooting

method. The multiple-shooting structure reduces the effects of nonlinearity and in-

stability by breaking down the global optimal control problem into several localized

problems, which is crucial for optimal control of highly unstable systems. The latter

approach is applied for the numerical solution of all kinds of optimal control prob-

lems arising in this thesis.

In chapter 4, we introduce the basic clock architecture of the circadian rhythms

in Drosophila and mammals. Similarities between the basic clock mechanism be-

tween mammals and Drosophila are drawn. Medical implication of the circadian

rhythms are immense and are briefly reviewed. In this chapter, we treat the first

comprehensive application of various types of optimal control problem formula-

tion and their numerical solution for external control of the self-organized circadian

rhythms. In particular, here we study circadian rhythms in Drosophila as a model

organism. Restoration of altered rhythms for therapeutic purposes can generally

be viewed as an open-loop control problem. We show how a model-based optimal

control allows the design of chronomodulated stimuli schemes achieving circadian

rhythm restoration from altered rhythms; optimal recovery of phase synchronization

between the clock and its environment; suppression and subsequent restoration of

rhythms by optimal light pulses. Both open-loop and closed-loop control of circadian

rhythms are treated. Insight gained from such model-based specific manipulation

may be promising in biomedical applications.

In chapter 5, we introduce another important oscillator in biology, the cell

cycle. Several links are reported in literature between the circadian cycle and the

cell cycle, however there are no detailed molecular models available coupling these

two cycles. As a first step, we try to model a coupled circadian cell cycle model via

WEE1 kinase [45]. Initial simulation results are shown for coupled circadian cell

cycle oscillator model.

In chapter 6 we treat another example of oscillatory phenomena in chemi-

cal systems, the Belousov-Zhabotinsky (BZ) system. A novel detailed model for the

photosensitive BZ reaction is developed based on an elementary reaction mechanism.

However, mathematical analysis and numerical simulations particularly for spatially

non-homogeneous systems, are difficult tasks with detailed mechanistic models. So,

model reduction techniques are widely applied to obtain representations in lower-
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dimensional phase space which is more suitable for mathematical analysis, efficient

numerical simulation, and model-based control tasks. In this chapter, we exploit

a recently implemented numerical algorithm [46] for error-controlled computation

of the minimum dimension required, to represent the detailed full scale model to a

reduced model. The algorithm is based on automatic time scale decomposition and

relaxation of the fast modes. The algorithm is applied to the detailed model for

Ru-catalyzed BZ reaction and the results are exploited in combination with quasi-

steady-state and partial-equilibrium approximations for explicit model reduction of

a novel chemical mechanism. We derive such a maximally reduced model from the

detailed elementary-step mechanism and demonstrate that, it reproduces quantita-

tively the dynamical features of the full model within a given accuracy tolerance.

Induction of specific oscillatory behavior characterized by amplitude, frequency and

mean value of the oscillating species; stabilizing unstable steady states; finding the

periodic orbits with desired period are some of the control scenarios that are inves-

tigated in the BZ reaction system. Control results in case of the reduced model of

BZ system are compared with a classical 3-variable Oregonator model.
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Chapter 2

Introduction to Nonlinear Dynamics and

Optimal Control

In this chapter, we briefly discuss some basic concepts in nonlinear dynamics and

introduce terms like bifurcation, limit cycle oscillations which arise in later chap-

ters. Different optimization methods are reviewed in later sections of this thesis with

special emphasis on the choice of method used for controlling the self-organized dy-

namics modeled by differential algebraic equations (DAE).

2.1 Basics of nonlinear dynamics

The coupled rate equations that govern the dynamics of a homogeneous and isother-

mal chemical reaction follow from its reaction mechanism. In compact form, they

are written as

dx

dt
= F (x; p) (2.1)

where F is the rate function, x(t) = (x1(t), x2(t), · · · , xn(t)) is the vector of dynamic

variables in n-dimensional phase space, and p = (p1, p2, · · · , pm) is the vector of

control parameters. In a chemical context, x(t) represent concentrations and p the

parameters (i.e., rate constants, temperature, reactant composition, flow rate, etc.).

2.1.1 Limit sets, linear stability, and bifurcations

The concepts of phase space and phase portrait are important tools for visualiz-

ing the evolution of system (2.1). Phase space is the n-dimensional space with

coordinates (x1, x2, · · · , xn). A phase portrait is a geometric representation of the

trajectories of a dynamical system in the phase plane. A dissipative system (e.g.,

where conservation laws for energy do not exist) is characterized by the contrac-

tion of flow in phase space and by the convergence of all initial conditions to the

same region. The subsets of phase space that are approached by the trajectories

as t −→ ±∞ are called limit sets. Of particular importance are the limit sets for

t −→ +∞, which are called attractors. Examples of attractors are the stable steady

states or stable fixed-point x∗ (zero-dimensional manifold), the stable limit cycle

(one-dimensional manifold), and the strange attractor (a fractal, with a higher di-

mensional manifold) [47, 48].
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2.1 Basics of nonlinear dynamics

The stationary limit sets (fixed points) x∗ of the system (2.1) fullfill the con-

dition
dx

dt
= 0. A linear stability analysis of a given fixed point x∗ reveals whether

it is stable or unstable by perturbing it slightly, x = x∗ + δx, this means whether

perturbations from the fixed points decay or grow. After linearization at x∗, the

pertubration then evolves according to the equation

˙δx = J(x∗)δx, with Jij =
∂Fi

∂xj

(2.2)

The eigenvalues λi(i = 1, · · · , n) of the Jacobian J evaluated at the fixed point x∗

determines the stability of the system given by Eq. 2.1. The fixed point is stable if

the real parts of all eigenvalues λi are negative and is unstable if the real part of at

least one eigenvalue is positive.

Figure 2.1: Fixed points in two-dimensional phase space: (a) stable node, (b) saddle point, (c)

unstable node, (d) stable focus, and (e) unstable focus.

In two-dimensional phase space, the eigenvalues λ1 and λ2 may either be real

or complex conjugated. Thus, the fixed points that can occur in such a system are

either stable and unstable foci, stable and unstable nodes, and saddle point (see

Figure 2.1). Two real negative eigenvalues correspond to a stable node and positive

eigenvalues corresponds to a unstable node. A saddle point is a combination of real

eigenvalues with different signs. Complex conjugated eigenvalues correspond to a

focus, whose stability depends on the real parts.

The type of limit sets (fixed points) depends on the chemical kinetic term

F (x; p) and on the dimension n of phase space. While fixed points are the only pos-

sible attractor in one-dimensional phase spaces, another important type of attractor
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2.1 Basics of nonlinear dynamics

is possible in two-dimensional phase spaces, namely the limit cycle. A limit cycle on

a plane or a two-dimensional manifold is a closed trajectory in phase space having the

property that at least one other trajectory spirals into it as time t −→ +∞. In case

where all the neighboring trajectories approach the limit cycle as time t −→ +∞, it

is referred as a stable limit cycle (see Figure 2.2). Stable limit cycles imply self sus-

tained oscillations. Any small perturbation from the closed trajectory would cause

the system to return to the limit cycle, making the system stick to the limit cycle.

Figure 2.2: Phase space portrait of the stable limit cycle.

The stability of a fixed point may be changed when at least one of the eigen-

values changes its sign, this event is called bifurcation. The simplest example of

bifurcation leading to time periodic behavior is the supercritical Hopf bifurcation

(see Figure 2.3). As an appropriate parameter p is varied beyond its critical value pc,

a stable focus becomes unstable and simultaneously a stable limit cycle is born. Suf-

ficiently close to the bifurcation point, the oscillations are harmonic and amplitude

follows a square root dependence A ∼ √
p− pc. Far from the Hopf bifurcation, the

amplitude may become large and strongly anharmonic depending on the properties

of the system. Supercritical Hopf bifurcation does not depend on the direction of

the parameter change.

Figure 2.3: Phase space portraits in the vicinity of a supercritical Hopf bifurcation.
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2.1 Basics of nonlinear dynamics

Further examples of local bifurcation include the subcritical variant of Hopf

bifurcation. Supercritical and subcritical Hopf bifurcations are displayed in Figure

2.4. In the subcritical case, the oscillations are born suddenly with finite amplitude

at one critical parameter value. Figure 2.4(b) illustrates the situation when an

unstable limit cycle born in a subcritical Hopf bifurcation and is stabilized in a

saddle-node bifurcation (a stable node and a saddle point appear at the bifurcation

point) of limit cycles. In subcritical Hopf bifurcation, when the parameter is scanned

in the opposite direction, the oscillations disappear at another critical parameter

value: hysteresis occurs. More detailed discussions of limit sets and their stability

can be found in [49].

Figure 2.4: The amplitude |A| of the limit cycle is shown as a function of the control parameter

p in supercritical Hopf bifurcation (a), and subcritical Hopf bifurcation with stabilized limit cycle

(b). Solid line (dashed) lines denote stable (unstable) states.

2.1.2 Excitable, bistable and oscillatory systems

Depending on the number and kind of limit sets, the dynamical behavior of many

systems of the form Eq. 2.1 can be classified as monostable, bistable, excitable, or

oscillatory [50]. This can be illustrated by considering nullclines of a two dimensional

system with variables x1 and x2. Nullclines are defined as the lines in phase space

obeying
dx1

dt
= 0 and

dx2

dt
= 0. The steady states are defined by the nullcline

intersections, while the flow field in the phase space (x1, x2) can be identified by

analyzing the signs of the derivatives,
dx1

dt
and

dx2

dt
. Schematic drawings of the

phase space in case of excitable, bistable, and oscillatory dynamics are shown in

Figure 2.5.

Excitable systems are characterized by two properties: (1) it has a unique,

globally attracting stationary state, and (2) a large enough stimulus can send the
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2.1 Basics of nonlinear dynamics

Figure 2.5: Schematic phase space drawings illustrating (a) excitable, (b) bistable, and (c) oscil-

latory dynamics.

system on a long excursion through phase space before it returns to the stationary

state. The trajectory of such an excitation is shown in Figure 2.5(a). The rising

branch of the nullcline
dx1

dt
= 0 acts as excitation threshold. The time needed to re-

cover from excitation is called the refractory period of the system. Typically, within

this period excitable elements cannot be excited again.

In bistable systems, nullclines typically possess three intersection points, which

corresponds to two stable fixed points separated by a saddle point as illustrated in

Figure 2.5(b). The direction of flow is indicated by small arrows. The declining

branches of the nullcline
dx1

dt
= 0 are stable and rising middle branch is unstable

with respect to changes in x1. The straight nullcline
dx2

dt
= 0 is attracting with

respect to x2; the value of x2 decreases above the nullcline, whereas it increases

below. A sufficiently strong perturbation that crosses the middle branch of the null-

cline
dx1

dt
= 0 is needed to carry over the system state from one stable fixed point

to another.

Periodic oscillatory systems are characterized by an unstable fixed point and

a stable limit cycle (dashed line) as shown in the Figure 2.5(c). For a limit cycle

to exist, the chemical mechanism should have at least one autocatalytic stage and

a negative feedback [3]. Autocatalysis provides accelerating growth of one species,

and the negative feedback terminates the autocatalytic reaction. In oscillations,

this sequence repeats periodically. More complex dynamics like deterministic chaos

is possible in systems with three or more variables [47, 48]. Throughout this work,

only homogenous systems which display periodic oscillations are considered.
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2.2 DAE-Constrained Optimal Control Problems

2.2 DAE-Constrained Optimal Control Problems

Differential-Algebraic Equation Models

Let us assume that a general DAE that we would like to control is of the following

form:

ẋ(t) = f(x(t), z(t), u(t), p, t)

0 = g(x(t), z(t), u(t), p, t),

where, x and z denote the differential and algebraic state vectors respectively, u is a

vector-valued control function and p is a vector of constant system parameters such

as reaction rates. We assume that the Jacobian ∂g

∂z
is invertible, so that the DAE is

of index-one. Numerical methods for the solution of index-one DAE will be briefly

discussed in Section 3.4.2.

Objective Functional

The general Bolza-type objective functional on a time horizon [0,T] is given by

Φ =

T∫

0

L(x(t), z(t), u(t), p, t)dt+ E(x(T ), z(T ), p, T )

L is called Lagrange term, and E the Mayer term. This objective functional is

to be minimized in optimal control problems and allows to formulate most optimal

control problems arising in applications treated in this thesis.

Least Square Minimization and Tracking Problems

An important subclass of optimal control problems are tracking problems that aim

at driving the system close to some reference state or trajectory (xr(t), zr(t)) on

the interval t ∈ [0, T ] (e.g. phase tracking of a system to the predefined reference

trajectory). Here, the distance from the reference trajectory is often measured by

the geometrically motivated L2-norm in the Lagrange term, Mayer term or both:

T∫

0

‖(x(t), z(t), u(t), p, t) − (xr(t), zr(t), u(t), p, t)‖2
2dt+ ‖e(x(T ), z(T ), p, T )‖2

2

with a vector-valued residual function e(x(T),z(T),p,T) at the end point.
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2.3 Optimal control methods

Path Constraints and Boundary Conditions

Sometimes the state and control trajectories are required to satisfy additional path

constraints which are often physically motivated in the case of (bio)chemical kinetic

models (e.g. positive concentrations):

h(x(t), z(t), u(t), p, t) ≥ 0, t ∈ [0, T ],

as well as terminal equality and/or inequality constraints

re(x(T ), z(T ), p, T ) = 0,

ri(x(T ), z(T ), p, T ) ≥ 0.

In particular, for periodic boundary value problems, which are involved in our opti-

mal control applications to (bio)chemical oscillators, similar equality constraints of

the form x(0) = x(T) are particularly important.

2.2.1 Problem Formulation

A general class of optimal control (OC) problems which covers all problem types

treated in this thesis can be formulated as

Poc : min
u(·),x(·),z(·),(T )

T∫

0

L(x(t), z(t), p, u(t))dt+ E(x(T ), z(T ), p) (2.3a)

subject to

ẋ(t) − f(x(t), z(t), p, u(t)) = 0, t ∈ [0, T ], (2.3b)

g(x(t), z(t), p, u(t)) = 0, t ∈ [0, T ], (2.3c)

x(0) − x0 = 0, (2.3d)

re(x(T ), z(T ), p) = 0, (2.3e)

ri(x(T ), z(T ), p) ≥ 0, (2.3f)

h(x(t), z(t), p, u(t)) ≥ 0, t ∈ [0, T ]. (2.3g)

The time horizon length T may be either fixed or enter the optimization as an

additional degree of freedom. Solving the above optimal control problem (2.3) for

an initial value x0, we obtain optimal trajectories x∗(t, x0) and z∗(t, x0) and an

open-loop optimal control u∗(t; x0), for t ∈ [0, T (x0)]. In the following Section 2.3,

we introduce different solution strategies available in the literature for solving the

optimal control problem (2.3).

2.3 Optimal control methods

The techniques available to solve optimal control problem (2.3) fall into two broad

categories: direct and indirect methods. Extensive solution strategies for both ap-

proaches are available in literature [51, 52, 53, 54].
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2.3.1 Indirect Method

The indirect or variational approach is based on the optimal control theory and can

be classified into three basic strategies. Calculus of variations developed by Euler,

minimum principle developed by Pontryagin [51], and dynamic programming devel-

oped by Bellman [52] and are closely related to each other.

In optimal control terminology, Pontryagin’s Maximum Principle (PMP) states

that a minimizing path must satisfy the Euler-Lagrange equations (i.e. first order

necessary conditions for a stationary solution) where the optimal controls maximize

the Hamiltonian H within their bounded region at each point along the path

H(x, z, λ, u, t) = λT (t) · f(x, z, u, t) + L(x, z, u, t)

where, the constraints on the system dynamics can be adjoined to the Lagrangian

L by introducing time varying Lagrange multiplier vector λ(t), whose elements are

called the adjoint states of the system. The necessary optimality conditions for-

mulated in PMP lead to a multi-point boundary value problem. Several numerical

schemes like multiple shooting, collocation and gradient methods are available to

solve the resulting problem. Despite the availability of these methods, multipoint

boundary value problems (MPBVP) are demanding problems with limited robust-

ness with respect to changes in the problem formulation (e.g., modification of the

model equations or low differentiability properties of the model function). Suitable

initial guesses of the state and adjoint variables must be provided at the start of

iterative methods and initial values for adjoint variables do not always have physical

significance making it arbitrary to guess.

The Hamilton-Jacobi-Bellman (HJB) equation is a partial differential equa-

tion based on the theory of dynamic programming developed by Bellman [52]. The

solution of the HJB equation is the so called value function V (x, z, t), which gives

the optimal feedback control u∗(x, z, t) for a given dynamical system with an asso-

ciated objective functional. Hence, another name for dynamic programming might

be nonlinear feedback control. The partial derivative of V (x, z, t) with respect to x

are identical to Lagrange’s multipliers, and a very simple derivation of the Euler-

Lagrange equations can be made using dynamic programming [55].

The PMP is inherent in dynamic programming since the HJB equation in-

cludes finding controls that minimize the Hamiltonian at each point in the state

space. The PMP deals with one extremal at a time, while dynamic programming

deals with families of extremals. However, in practice the HJB partial differential

equation can be solved numerically for very small state dimension only (“curse of

dimensionality”). The inequality constraints on the state variables as well as dynam-

ical systems with switching points lead to discontinuous partial derivatives which

are hard to be included. Because of these practical drawbacks, indirect methods are

difficult to apply in practice especially for large-scale systems.
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2.3.2 Direct Method

Direct methods are simple to set up and has considerable practical advantages

when compared to indirect methods. In direct methods, the original infinite di-

mensional problem is approximated by a finite dimensional nonlinear programming

problem [56,54]. It is based on parameterization of the original optimization prob-

lem and can be classified basically into two approaches. A sequential approach,

where simulation and optimization are carried out in a sequential manner and the

simultaneous approach, where simulation and optimization are carried out simulta-

neously. In case of sequential methods, the control inputs alone are parameterized,

while both states and control inputs are parameterized in the simultaneous approach.

Sequential Approach

This method is also referred to as control vector parameterization in literature [57],

as the control inputs alone are parameterized using a finite set of decision variables.

The infinitely many degrees of freedom of u(t) are reduced by a control parame-

terization (e.g., by polynomial approximation or piecewise constant representation)

that depends upon a finite dimensional vector, say q. Given the initial conditions

and the parameter vector q, the system of DAEs is solved numerically. This gives

the value of the objective functional, which the optimization routine then iteratively

uses to find the optimal parameters in the control parameterization. The sequen-

tial method is of feasible path type, as in every iteration the system equations are

feasible during the calculation of objective functional value.

The solution of the NLP requires sensitivity information of the states with

respect to the control parameters q. Many DAE solvers exist that can efficiently

compute sensitivities according to the principle of internal numerical differenti-

ation (IND) (see Section 3.4.1) [58, 59, 60]. Given the sensitivity of the system

states with respect to the parameters, the derivative of the objective functional and

the constraints with respect to parameters are easily calculated. Several efficient

optimization algorithms for sequential methods are available in literature [61, 62].

Sequential methods can use efficient state-of-the-art ODE or DAE solvers for nu-

merical simulations, but for highly unstable systems (i.e. initial value problems

with strong dependence on initial conditions) the optimization algorithm inherits

the ill-conditioning of the initial value problems. While the sequential approach is

straightforward to implement, it tends to be slow due to the fact that it requires

repeated and expensive solution of the DAEs even when the control values are far

from optimal. The numerical effort to solve the NLP is determined to a large extent

by the type of parameterization of the control vector. A piecewise constant param-

eterization with an uniform mesh length might not be the best for general problems

such that adaptive parameterization schemes should be employed to resolve the tra-

jectory at the right place. However, it is not trivial to generate such a problem
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adapted meshes a priori, i.e. before the actual optimal solution is known [63].

Simultaneous Approach

In simultaneous approaches the continuous time problem is parameterized into

a NLP by approximating both the state and control variables as a family of polyno-

mial on finite elements. Various polynomial representations are used in the literature

for differential and algebraic profiles [64]. As a result, this method directly couple

the solution of DAE system with the optimization problem; the DAE system is

solved only once, at the optimal point, and therefore can avoid intermediate solu-

tions that may not exist or may require excessive computational effort.

Full parameterization of both the state and control variables leads to a large

scale NLP problem which usually require special solution strategies [65, 66]. These

NLPs are usually solved using variations of Successive Quadratic Programming [67],

which exploits the sparsity and the special block diagonal structure of the DAE op-

timization problems. A very good review of dynamic optimization methods using

simultaneous methods is provided by Biegler et al. [66]. Simultaneous method has

several advantages; control variables can be parameterized at the same level of ac-

curacy as the differential and algebraic state variables and finite elements allow for

discontinuities in control profiles. It also has advantages for problems with path

constraints and with instabilities that occur for a range of inputs. Because they

can be seen as extensions of robust boundary value solvers, they are able to pin

down unstable modes by enforcing the appropriate boundary condition. On the

other hand, there are some disadvantages to the simultaneous approach. First, for

optimal control problems where control variables are discretized at the same level

as the state variables, there are number of open questions related to convergence to

the solution of the original variational problem [68]. Several studies report stability

problems due to poor discretization and singular arcs. A second disadvantage arises

from the need to solve large nonlinear programs; specialized methods are required

to solve them efficiently.

2.3.3 Direct Multiple Shooting (DMS)

The direct multiple shooting method [53] serves as a bridge between sequential and

simultaneous approaches. In this approach, the total time is divided into several

shooting intervals along with control vector parameterization. Except for the first

interval, the initial conditions of the various intervals are considered as decision

variables along with continuity constraints stating that the initial values of every

interval should match the final values of the preceding interval. This is an infea-

sible path method as in simultaneous methods, where the continuity of the system

trajectory is only fulfilled at the solution, while the integration is accurate as in

sequential methods.
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The original optimal control problem can be formulated as a large-scale non-

linear programming (NLP) problem with a favorable block sparse structure. The

resulting NLP problem can be solved with a specifically tailored sequential quadratic

programming (SQP) method which fully exploits the inherent structure [69]. The

optimization of highly unstable or even chaotic systems is possible by this ap-

proach [70]. For self-organizing oscillating systems studied here, the aspect of re-

ducing the effects of nonlinearity and instability by introducing multiple-shooting

time intervals is crucial for the numerical computation of optimal control funci-

tons [27,28,53]. This method can be easily parallelized as the initial value problems

and derivative computations can be decoupled on each multiple shooting interval.

Initial guesses on each of these multiple shooting nodes are required and can be

pre-specified if the desired state trajectory is known a priori. This aspect is useful

especially in case of stabilizing an arbitrary trajectory in phase space for oscillating

systems or for highly unstable systems.

Due to above reasons, we chose the direct multiple shooting based optimiza-

tion method for solving the optimal control problem Eq. (2.3). A mathematical

overview of the problem formulation in a multiple-shooting context is described in

Chapter 3. An efficient implementation of the described method is the software

package MUSCOD-II [69], which is used for the results presented in this work. The

main difference to the other all-at-once approach, i.e. simultaneous method, lies in

the fact that the differential equations are still solved by integration. This allows

the usage of state-of-the-art error controlled DAE integrators. Efficient generation

of derivatives of the differential equation model is crucial for the successful imple-

mentation of this method, and is done according to the principle of IND (see Section

3.4.1). A comparison of the above direct methods is given in Table 2.1.

Sequential Simultaneous Direct multiple

method method shooting

States continuous parameterized parameterized

Control inputs parameterized parameterized parameterized

Use of DAE solvers yes no yes

Initial guess initial state all nodes all multiple

for system states shooting nodes

Applicability to highly no yes yes

unstable systems

Table 2.1: Comparison of direct methods

2.4 Optimal Feedback Control

Optimization methods discussed in the previous Section 2.3, involve one underly-

ing assumption: the mathematical model used in the method and the parameters
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associated with the model are accurate and truly represent the system under con-

sideration. However, such accurate models are seldom available in reality, especially

for biological systems. Parameters involved with the modeling, kinetics and ther-

modynamics are not completely established for most biological systems and their

dynamic nature is often not very well understood. For this reason, the optimal

solution obtained by using the mathematical models may not remain valid. When

applied to the real process/system, in addition to inaccurate model parameters due

to errors in measuring signals, there may also be some variations in operating con-

ditions contributing to the uncertainty. In order to overcome these uncertainties

in measurements and modeling errors, one needs to incorporate a feedback control

mechanism into the system. Feedback control might help in stabilizing unstable

processes, reduces the sensitivity of parameter variations and improves reference

tracking performance.

Let us assume that for all x0, we can precompute the optimal control tra-

jectories u∗(·; x0) and corresponding optimal state trajectories x∗(·; x0), z
∗(·; x0), of

problem Poc(x0) on t ∈ [0, T (x0)] . Here, T is regarded as free parameter open to

optimization and T (x0) denote the optimal time for Poc(x0). According to Bellman’s

principle of optimality, if a decision forms an optimal solution at one stage in a pro-

cess, then any remaining decisions must be optimal with respect to the outcome of

the given decision [71]. From the above principle of optimality, for t1 ∈ [0, T (x0)]

and the corresponding state x1 := x∗(t1; x0) it holds T (x1) = T (x0)− t1, and the op-

timal solution trajectory and optimal control of Poc(x1) coincide with the remaining

part of the solution of the original problem Poc(x0) after t1, i.e.,

u∗(t; x1) = u∗(t1 + t; x0)

By choosing t = 0, we can get the optimal control trajectory u(·; x0) for all t1 ∈
[0, T (x0)] by

u∗(t1; x0) = u∗(0; x∗(t1; x0))

Thus, a precomputed optimal feedback control [72] function uf for a closed-loop

optimal control of DAE systems can be defined as:

uf(x0) := u∗(0; x0) (2.4)

In principle, this function could be pre-calculated off-line on a sufficiently fine

grid for all relevant x0 and store the optimal control function u∗(t; x0), t ∈ [0, T (x0)]

for Poc(x0), thus eliminating the need for any on-line calculations. Computation

of such a feedback control is provided by dynamic programming [52] or a related

approach using the Hamilton-Jacobi-Bellman (HJB) equation [73]. However, the

number of state variables in these methods is restricted to a very small number,

say 3 or 4 or less, even for moderate state dimensions (nx=10 in case of circadian

rhythms treated here) this would require a prohibitively large computational effort
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and is therefore usually not feasible for large scale models [57].

It is possible to approximate the optimal feedback control uf(x(t)) in the

vicinity of a reference trajectory by linearized neighboring feedback control [72]).

The approximation holds good if the distance ||x(t) − x∗(t; x0)|| of the real trajec-

tory x(t) to the reference trajectory x∗(·; x0) remains small. However, if the real

system has moved farther away from the reference trajectory during process dy-

namics, the approximation of the optimal feedback control may become very poor

and even drive the system into directions opposite to what is desired [74].

In contrast to the above approaches, the applications treated in this work are

based on an efficient way to calculate optimal feedback control via model predictive

control (MPC) in real time.

2.4.1 Model Predictive Control

Model Predictive Control (MPC) is a methodology that refers to a class of control

algorithms in which a dynamic model of the system is used to predict and optimize

the future behavior of the process. This is done by estimating the uncertain param-

eters and the actual states of the system from measurements and incorporating it

in future control moves.

MPC is based on iterative, finite horizon optimization problem subject to a

process model. At time t, the current system state is sampled and a cost mini-

mizing control strategy is computed (via a numerical minimization algorithm) for

a relatively short-time horizon in the future: [t, t + T ]. Specifically, an online cal-

culation is to explore state trajectories that emanate from the current state and

find a cost-minimizing control strategy until time t + T . In closed loop framework,

only the first step of the control strategy is implemented, then the system states

are sampled again and the calculations are repeated starting from the now current

state, yielding a new control and new predicted state path. The prediction horizon

keeps being shifted forward and for this reason MPC is also called receding horizon

control. MPC has been used in chemical industry for more than 30 years, and has

become an industry standard (mainly in the petrochemical industry [75]) due to

its intrinsic capability for dealing with constraints and with multivariable systems.

Most commercially available MPC technologies are based on a linear process models.

In general, linear models are often inadequate to describe the process dynam-

ics (e.g. many bio(chemical) systems are inherently nonlinear). This has motivated

the development of Nonlinear Model Predictive Control (NMPC), where a more ac-

curate (nonlinear) model of the plant is used for prediction and optimization. Since

our applications of self-organizing systems with inherent unstable dynamical modes

require the ability to deal with larger perturbations and nonlinear effects online

during the process runtime, our approach is based on a real-time iteration scheme
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for nonlinear model predictive control (NMPC) that has recently been introduced

by Diehl [74, 76]. For the state-of-the-art and future directions on NMPC, we refer

Refs. [77, 78] for further reading.

2.5 Mixed-Integer Optimal Control

Many problems in plant operation and design involve variables that are not contin-

uous but instead have integer values. This means that some of the control functions

are restricted to take integer values from the set {0, 1} or Z respectively. The most

general case is a mixed-integer programming (MIP) problem, in which the objective

functional depends on two sets of variables, νi and pi; νi is the vector of integer vari-

ables and pi denotes the continuous variables. If only integer variables are involved

(pi =0), we have an integer programming (IP) problem. A special case of IP is binary

integer programming (BIP), where all variables νi are either 0 or 1. Variables that

switches values from one extreme to the other extreme at certain times are referred

to as bang-bang control problems. Many MIP problems are linear in the objective

functional and constraints, are subject to solution by linear programming. These

problems are called MILP problems. Several algorithms exist for mixed integer and

integer programming (linear problems) and we refer to Ref. [79] for a comprehensive

review.

2.5.1 Mixed-Integer Nonlinear Programming

Finite-dimensional static optimization problems that involve continuous as well as

integer variables are referred to as mixed-integer nonlinear programs (MINLPs).

Most of the techniques that have been proposed for nonlinear discrete optimization

are centered around one or more of the following basic concepts [57]: (1) rounding-

off the continuous problem, (2) adaptation of nonlinear optimization techniques,

(3) linear approximation, (4) binary representation of variables, (5) direct search.

The relative effectiveness of any technique is quite problem-dependent and no single

procedure can claim a uniform advantage over all others or all problems, or even

claim to be generally effective. The most common approach to solving nonlinear

discrete-value problems in practice has been to treat the variables as continuous

ones. Once the continuous optimum has been determined by one of the methods

outlined in earlier sections, you select a feasible set of values of the discrete variables

near the optimal point for the continuous variables.
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Chapter 3

Direct Multiple shooting (DMS)

In this chapter, we review the direct multiple shooting (DMS) method which was

introduced by Bock and Plitt [53] in the context of optimal control problem Eq.

(2.3). The direct multiple-shooting parameterization projects the original infinite

optimal control problem Poc(x0) Eq. (2.3) to a finite dimensional nonlinear program

(NLP), which can then subsequently be solved by a finite NLP solver, e.g. using

sequential quadratic programming methods. The DMS method has been imple-

mented in the optimal control package MUSCOD-II by Leineweber [80], which is

used for simulations and controlling the oscillatory dynamics addressed in this thesis.

3.1 DMS Parameterization

As discussed in Section 2.3.3, direct multiple shooting method reformulate the orig-

inal infinite dimensional optimization problem Eq. (2.3) as a finite NLP problem

by the parameterization of both control functions and states.

3.1.1 Control Parameterization

The continuous problem Eq. (2.3) has to be replaced by a discretized one, where

the control functions are approximated by a suitable parameterization using a finite

set of parameters, whose optimal values can then be found by NLP techniques. In

principle, one can think of global representation of the controls on the whole interval

[0, T ] by higher order control parameterization like linear or cubic polynomials, but

this approach restricts the flexibility (one should know too much about how the

solution look) and makes very difficult to deal with discontinuities especially in

case of bang-bang control problems treated in this thesis. It is crucial that these

control parameterizations have a local influence only and does not change the partial

separable structure of the problem that can be efficiently exploited numerically

[81]. Therefore, a piecewise representation of the control functions is sought on the

horizon [0, T ] with N subintervals and can be introduced as

0 = t0 < t1 < t . . . tN = T, (3.1)

The control vector u(·) is approximated on every subinterval by a finite set of param-

eters using a basis function (e.g., piecewise constant approximation qi, see Figure

3.1)
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Figure 3.1: Illustration of DMS method (control discretization) with N multiple shooting intervals

with piecewise constant controls.

u(t) := qi for t ∈ [ti, ti+1], i = 0, 1, . . .N − 1, u(T ) := qN = qN−1 (3.2)

where the vector qN is introduced for notational convenience only and will not be

regarded as a new parameter. In case of variable time horizon T , it can be treated

as a free parameter by introducing an additional differential equation Ṫ (t) = 0 with

free initial value.

3.1.2 State Parameterization
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Figure 3.2: Illustration of DMS method (state discretization) with N multiple shooting intervals.

The approach of simple-shooting plus nonlinear programming frequently fails

even with very good initial values [81]. The key reason for these difficulties is that

the problem Eq. (2.3) has to be integrated over the whole interval [0, T ]. Thus, the

error introduced by the poor initial data, discretization, or roundoff errors may be

propagated by inherent instabilities of the DAE system and grow very large. The sit-

uation can be considerably improved by using the multiple-shooting method instead

of simple-shooting. We decouple the DAE solution on the N intervals [ti, ti+1] by
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3.1 DMS Parameterization

introducing the initial values sx
0 , s

x
1 ,. . . ,s

x
N and sz

0, s
z
1,. . . ,s

z
N (combines into vectors

si := (sx
i ,s

z
i )) of differential and algebraic states as additional optimization variables

(see Figure 3.2). On each subinterval [ti, ti+1] we compute the trajectories xi(t) and

zi(t) as the solution of an initial value problem:

ẋi(t) = f(xi(t), zi(t), p, qi), (3.3)

0 = g(xi(t), zi(t), p, qi) − α(t)g(sx
i , s

z
i , p, qi) (3.4)

xi(ti) = sx
i (3.5)

Here, the term -α in Eq. 3.4 is deliberately introduced to allow an efficient

DAE solution for initial values and controls sx
i , s

z
i , qi that may violate temporarily

the consistency conditions in Eq. 2.3c. Therefore, we require for the scalar damping

factor α that αi(ti) = 1. For more details on the relaxation of the DAE we refer to

Schulz et al. [82] and Leineweber [80].

The trajectories xi(t) and zi(t) on interval [ti, ti+1] are functions of the ini-

tial values, controls and parameters si, qi and p only. By substituting the inde-

pendent trajectory pieces xi(t), zi(t) into the Lagrange term L in Eq. 2.3a, we

can simultaneously calculate the integral objective contributions Li(si, p, qi) on each

multiple-shooting interval

Li(si, p, qi) :=

ti+1∫

ti

L(xi(t), zi(t), p, qi)dt. (3.6)

The introduction of the values sx
i and sz

i on each multiple-shooting point during

discretization generates artificial degrees of freedom that have to be removed in order

to obtain an equivalent problem by corresponding equality constraints in the NLP.

The relaxation terms in the Eq. 3.4 should also vanish, i.e., algebraic consistency

has to be assured for the optimal solution

g(sx
i , s

z
i , p, qi) = 0, i = 0, 1, . . . , N, (3.7)

and continuity of the differential state is enforced by formulating matching conditions

which require that each differential node value sx
i+1 should equal the final value of

the preceding trajectory xi:

sx
i+1 = xi(ti+1; si, p, qi), i = 0, . . . , N − 1, sx

0 = x0. (3.8)

The constraints in Eq. (3.7) and (3.8) removes the additional degrees of freedom.

These constraints do not have to be satisfied during the optimization iterations and

thus the direct multiple-shooting method is an infeasible path method, which can

deal with and typically uses infeasible initial guesses of the variables si [69].
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3.2 The Nonlinear Programming Problem (NLP)

3.1.3 Path Constraints in DMS

Control and path constraints are imposed pointwise at the multiple shooting nodes

h(sx
i , s

z
i , p, qi) ≥ 0, i = 0, 1, . . . , N. (3.9)

as well as the terminal point

re(sx
N , s

z
N , p) = 0, (3.10)

ri(sx
N , s

z
N , p) ≥ 0, (3.11)

For bio(chemical) systems the conditions of the type in Eq. 3.9 can be used to

enslave concentrations of the system variables to remain positive.

3.2 The Nonlinear Programming Problem (NLP)
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Figure 3.3: Illustration of direct multiple shooting during SQP iterations. The controls are

discretized, the corresponding states obtained by piecewise integration. The matching conditions

are violated in this scheme — the overall trajectory is not yet continuous.

The parameterization of the problem Eq. (2.3) as shown in Figure 3.3 using

multiple-shooting nodes and piecewise constant control representation leads to the

following structured NLP problem :

min
q0,...,qN−1,s0,...,sN

N−1
∑

i=0

Li(s
x
i , s

z
i , p, qi) + E(sx

N , s
z
N , p) (3.12a)

subject to

sx
i+1 − xi(ti+1; s

x
i , s

z
i , p, qi) = 0, i = 0, . . . , N − 1, (3.12b)

g(sx
i , s

z
i , p, qi) = 0, i = 0, . . . , N, (3.12c)

sx
0 − x0 = 0, (3.12d)

re(sx
N , s

z
N , p) = 0, (3.12e)

ri(sx
N , s

z
N , p) ≥ 0, (3.12f)

h(sx
i , s

z
i , p, qi) ≥ 0, i = 0, . . . , N. (3.12g)
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3.3 Sequential Quadratic Programming (SQP)

The NLP can be summarized as

min
w
F (w) subject to

{

G(w) = 0,

H(w) ≥ 0.

}

(3.13)

where w contains all the multiple-shooting state variables and controls as well as

the model parameters:

w = (sx
0 , s

z
0, p, q0, s

x
1 , s

z
1, p, q1, · · · , sx

N , s
z
N , p, qN)

and F (w) :=
∑N−1

i=0 Li(si, p, qi) + E(sN , p). The discretized dynamic model is in-

cluded in the equality constraints G(w) = 0.

The above NLP problem (3.13) is solved by a Sequential Quadratic Program-

ming (SQP) method tailored to the multiple-shooting structure [83, 84].

3.3 Sequential Quadratic Programming (SQP)

SQP method is an iterative technique to find a Karush-Kuhn-Tucker (KKT) (KKT

conditions are the necessary first order optimality conditions for a solution of the

NLP to be optimal) point of an NLP. Starting with an initial guess w0, the SQP

algorithm iterates

wk+1 = wk + αk∆wk, k = 0, 1, . . . , (3.14)

with step directions ∆wk and relaxation factor αk ∈ (0, 1] until a prespecified con-

vergence criteria is satisfied. The method evaluates the NLP functions (i.e. F (wk),

G(wk) and H(wk)) and their derivatives with respect to w at k-th SQP iteration.

Linearizations of the original nonlinear NLP are used to build a quadratic program-

ming (QP) subproblem. The QP subproblem solved at the k-th SQP iteration can

be written as

min
∆w∈Ωk

∇wF (wk)
T∆w +

1

2
∆wTAk∆w (3.15)

subject to

{

G(wk) + ∇wG(wk)
T∆w = 0,

H(wk) + ∇wH(wk)
T ∆w ≥ 0.

}

Where Ak denotes an approximation of the Hessian matrix of the Lagrangian func-

tion L of the NLP.

L is defined as

L(w, λ, µ) := F (w) − λTG(w) − µTH(w). (3.16)

where λ and µ are lagrange multipliers. The QP problem is then solved and re-

sults in a direction ∆wk that helps to determine next iterate wk+1 = wk + αk∆wk.

SQP methods mainly differ in the choice of the step-length αk, the choice of the

(approximations of) the Hessian matrix Ak and the choice of the set Ωk. For the
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3.4 Numerical Integration

new values of the multiple-shooting variables, all NLP functions and derivatives are

again evaluated, a new approximation for the Hessian matrix is provided and a new

QP problem is solved for the next SQP iteration. The iterations form a sequence

that is expected to converge towards a KKT point of the NLP. In practice, the iter-

ations are stopped when a pre-specified convergence criterion, the KKT tolerance,

is fulfilled. For a detailed description of implementation of the SQP algorithm used

in the framework of MUSCOD-II, we refer to [80, 81] for further reading.

3.4 Numerical Integration

In this section, we briefly describe the numerical methods used for sensitivity gen-

eration and numerical integration in the optimal control software MUSCOD-II.

3.4.1 Numerical Differentiation

Currently, three different numerical approaches are employed in practice in order

to compute sensitivity functions for DAE systems. These are numerical differen-

tion (finite difference approximations) [85], integration of the adjoint equations [86],

integration of the sensitivity equations [87]. Numerical algorithms for the approxi-

mations of sensitivity matrices can be divided into two classes [58].

1. External numerical differentiation methods (END):

The sensitivity functions for END method are basically obtained independent

from the numerical integration of the original state variable trajectories (for

example, the sensitivity equations may be integrated independently from the

model equations). This approach has the advantage that the integrator may

be used as a black box. However, such an integrator contains many adaptive

components which usually cause non differentiabilities or discontinuities of

the numerical result of an integration. For this reason, the results of END are

generally inaccurate, unless a very low integration tolerance is imposed.

2. Internal numerical differentiation method (IND):

An approach which avoids the drawbacks of END is the so called Internal Nu-

merical Differentiation (IND) described by Bock [88]. In the IND approach,

the integrator scheme employed for the numerical integration of the model

equations is differentiated. This allows for suitable approximation to the sen-

sitivities of the numerical solution even for low accuracy integration.

IND is implemented in the code DAESOL that is used for all numerical inte-

gration and sensitivity computations performed in this work, which is integrated in

the optimal control package MUSCOD-II.

3.4.2 Backward Differentiation Formulae (BDF)

backward differentiation formulae (BDF) methods are implicit linear multi-step

methods for the numerical solution of DAEs. The BDF method offers particular
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3.5 Nonlinear Model Predictive Control

advantages when dealing with stiff and unstable dynamical systems when compared

to explicit methods like explicit Runge-Kutta and extrapolation methods. In par-

ticular, BDF methods have superior stability properties [89], which allow them to

take much larger step sizes than would be possible with explicit methods. A BDF

method with variable order and variable step-size has been implemented in the code

DAESOL which is used for numerical solution of stiff differential equations arise in

modeling the self-organizing systems here.

3.5 Nonlinear Model Predictive Control

In many applications of feedback control, the process runs for infinitely long (T =

∞), but these infinite horizons problems are difficult to treat in case of nonlinear

constraints like that arise in chemical and biological modeling. Therefore, a moving

horizon approach is often used in practice where the final time T progresses with ini-

tial time t0 with control horizon (Tc) fixed for all subsequent optimization problems.

This approach is called a optimal moving-horizon feedback control [63] or Nonlinear

Model Predictive Control (NMPC).
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Figure 3.4: The principle of nonlinear model predictive control (NMPC) on a moving time horizon

for the state x(t), T: prediction horizon, δ: sampling time horizon, ui: piecewise constant control

function parameterized on multiple-shooting intervals of length δ.

In general, the model predictive control problem is formulated as solving on-

line a finite horizon open-loop optimal control problem subject to system dynamics

and constraints involving states and controls. Figure 3.4 shows the basic principle

of model predictive control. Based on the measurements obtained at time t, the

controller predicts the future dynamical behavior of the system over a prediction

horizon (Tp) and determines the input such that a predetermined open-loop perfor-

mance objective functional is optimized. The open-loop manipulated input function

will be implemented until the next measurement becomes available and the mea-

surement will take place every δ sampling time units. Using the new measuremts at

time t+ δ, the cost function over a certain prediction horizon is minimized and the
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3.5 Nonlinear Model Predictive Control

procedure is repeated to find a new input function with the control and prediction

horizons moving forward. The inputs can be approximated as piecewise constant

over the sampling time δ.

Here, we consider an finite horizon open-loop control problem as of the form

min
(x,z,u)

t0+T∫

t0

L(x(t), z(t), u(t))dt+ E(x(t0 + T ), z(t0 + T )) (3.17a)

subject to

ẋ(t) − f(x(t), z(t), u(t)) = 0, t ∈ [t0, t0 + T ], (3.17b)

g(x(t), z(t), u(t)) = 0, t ∈ [t0, t0 + T ], (3.17c)

x(t0) − x̃(t0) = 0, (3.17d)

re(x(t0 + T ), z(t0 + T )) = 0, (3.17e)

ri(x(t0 + T ), z(t0 + T )) ≥ 0, (3.17f)

h(x(t), z(t), u(t)) ≥ 0, t ∈ [t0, t0 + T ]. (3.17g)

The Mayer-term in Eq. 3.17a plays an important role in the theory of stabi-

lizing NMPC schemes [90]. Solving the open loop control problem Eq. (3.17) with

a current initial value x̃(t0) yields an optimal control trajectory u∗(t0, x(t0)) on the

horizon [t0, t0 + T ]. For a perfect model without any disturbances it would suffice

to apply this control trajectory to the process. In NMPC closed-loop framework,

only a first part of the solution u∗ with the length of the sampling time is applied to

the process. Then the optimal control problem (3.17) is solved again with another

new initial value from the process. The time between the advent of a new x̃ and

the response of the NMPC algorithm in the form of feedback control u∗ creates a

feedback delay. Generally a feedback delay of one sampling time cannot be avoided

even with the fastest and most efficient algorithms. In the following, we define

Diehl’s algorithm [74,76] scheme for NMPC that delivers feedback control law very

quickly. It is based on the DMS algorithm as explained for the problem (2.3) in this

chapter. DMS approach offers several advantages in the context of real-time process

applications [91]. It allows to exploit solution information in controls, states and

derivatives in subsequent optimization problems by suitable embedding techniques.

3.5.1 Real-time Iteration Scheme

The conventional approach in NMPC is to solve the NMPC problem (3.17) to de-

sired accuracy at every time t0 with initial value x0 ≡ x̃(t0) and the optimal control

solution of problem (3.17) is instantaneously given to the real process at t0. Unfortu-

nately, this is not possible with finitely fast computers. In the following, we describe

a scheme for nonlinear model predictive control that delivers feedback quickly based
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3.5 Nonlinear Model Predictive Control

on a real-time iteration scheme [74].

In real-time iteration scheme, one exploits the fact that in NMPC optimiza-

tion a sequence of neighboring optimization problems has to be solved, which differ

only by the estimated state x0 and parameter vector p, and possibly by a change

in the reference trajectory xr(t). Solution information of the previous problem can

be exploited for initialization of the following problem by an efficient initial value

embedding strategy [74]. This initialization procedure in conjunction with the DMS

method is so efficient for neighboring problems that it allows to perform only one

single optimization iteration per optimization problem, without sacrificing much so-

lution accuracy. A more detailed description of the real-time iteration scheme and

its convergence properties can be found in Ref. [74].

The NLP is solved by a SQP algorithm as described in Section 3.3. The nec-

essary computations during real-time iterations are divided into two phases. A long

preparation phase in which the calculations are performed without the knowledge

of x̃ and a shorter feedback phase which can be computed once the measurements

are available. The computation time is reduced significantly between measurement

x̃ and feedback control response u∗ by performing only one SQP iteration for each

new optimization problem. Thus the feedback delay between measurement of x̃

and control u∗ is typically smaller than the sampling time δi and can be neglected.

Derivative generation is the most expensive part in SQP procedure and we use ad-

vanced DAESOL [59] based on BDF method for efficient sensitivity calculations.

The least square structure of the objective functional can be exploited within the

optimization procedure to provide an excellent Hessian approximation at negligible

computational cost [74]. This modification of the SQP procedure is equivalent to

a Gauss-Newton method. The particular choice of the least square objective func-

tional (L2-norm) is crucial for the application of the highly efficient Gauss-Newton

approach.

3.5.2 Extended Kalman Filter

The Kalman filter is a stochastic filter that allows the estimation of the states of a

system based on a linear state space model. The Extended Kalman Filter (EKF)

uses local linearization to extend the scope of the Kalman filter to systems described

by nonlinear differential equations [92]. The main advantages of the EKF are its

simplicity, the fact that it is a recursive algorithm and so its computational load is

modest when compared to moving horizon estimation [93]. The EKF is suitable for

many real-time applications. For this reasons, we selected EKF for estimating the

states from measurements in our work. The state estimation problem for nonlinear

DAEs using the Kalman filter has been studied by Becerra et al. [94]. Here we use

the variant of the Extended Kalman Filter (EKF) algorithm developed by Diehl

in [74] for the state estimation in the numerical experiments in Section 4.9.1. In

contrast to the standard EKF, this variant EKF allows us to treat bounds on the
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3.6 Integer Control Functions

systems states. Given the measurement sequence at each sampling time for the op-

timization problem (2.3) with additional knowledge on system bounds, the problem

here is to infer the actual states from this given information.

3.6 Integer Control Functions

The DMS concept for control and state discretization presented in Section 3.1.1 is

based on fixed discretization of controls giving a constant number of optimization

variables which is insufficient for bang-bang solutions if the switching points are not

known a priori. However, DMS-based optimal control can be adapted to the needs

for finding a bang-bang solution.

In the next section, we briefly present a novel algorithm implemented by

Sager [79] for mixed-integer optimization based on DMS approach for treating the

problems presented in this thesis (Sections 4.6,4.7 and 4.8).

3.6.1 Mixed Integer Optimization Algorithm

If the optimal control problem (2.3) under consideration contains control functions

w(·) with a restriction to values in a disjoint set, say to {0, 1}nw , then the methods

in Sections 3.1-3.3 have to be extended. We say that a trajectory T = (x, w, u, p) is

binary admissible, if all constraints are fulfilled and w(t) ∈ {0, 1}nw for all t ∈ [0, T ].

For the application treated in this thesis, we apply the novel algorithm MSMINTOC

introduced in [79] that can be sketched as follows. We relax the control functions

to w(·) ∈ [0, 1]nw . We solve the relaxed problem for a given control discretization

G0 and obtain the grid–dependent optimal function value ΦRL
G0 . We iterate on a

refinement of the grid for next steps with the idea to extrapolate towards nms 7→ ∞.

We obtain ΦRL = ΦRL
Gnext as the objective function value on the finest grid Gnext .

This objective function value serves as a lower bound that can be approximated up

to any user–specified tolerance ε > 0 by a binary admissible trajectory, for a proof

see [79]. If the optimal trajectory on Gnext is already binary admissible then stop.

Otherwise, apply a rounding or penalty heuristics on the grid. If the trajectory is

binary admissible, obtain an upper bound ΦROU . If ΦROU < ΦRL + ε then stop.

Otherwise, optimize the switching times for a fixed switching structure, initialized

with the trajectory obtained by heuristics. Again, if the obtained trajectory is binary

admissible, obtain an upper bound ΦSTO and if ΦSTO < ΦRL + ε then stop. For

most practical problems and the model under consideration in our study, a modest

iteration on next is sufficient to obtain a binary admissible trajectory that is within

a certain tolerance to the reachable objective function value. For details, proofs and

applications of the algorithm we refer to the work of Sager (see Ref. [79]).
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Chapter 4

Circadian Rhythms

In this chapter, we present an application of advanced optimal control methods

for target-oriented manipulation of circadian rhythms. A brief introduction of the

molecular mechanisms of circadian rhythms is presented along with mathematical

analysis of the model considered in this study. We discuss the results related to

nonlinear model based external control aimed at suppressing, phase resetting, phase

tracking and restoration of altered circadian rhythms. Both open and closed-loop

control results are presented in this work.

4.1 Introduction

What we experience as time is related to a reference point and hence, relative.

Living on earth has made us use the sun as reference and the 24-hour succession

of light and darkness is probably the most pervasive epigenetic influence in the

evolution from a single cell organism to man. This periodic succession of light and

darkness provided the base for relative timing of biological processes over the 24

hours of a day. As energy supply is the limiting parameter for survival, a system

for optimal timing of energy expenditure and uptake is developed. The mechanism

of this system took the shape of a cycle reflecting the recurrence of sunrise and

sunset, and is termed as “circadian clock” - a clock with a period of about one day

(latin: circa diem). The internalization of environmental time within the organism

not only allows organization of biological processes along the 24-hour time scale but

also prediction of recurring events, such as availability of food and emergence of

predators.

The underlying principle of circadian clocks is successive gene activation in

form of a cycle. The initial gene activation is regulated by the last one in the

sequence, making up an auto-regulatory feedback loop for which one cycle takes

about 24 hours. This principle is illustrated in Figure 4.1. Positive elements ac-

tivate the expression of negative elements, which in turn stop the activity of the

positive elements. Although the genes involved in this mechanism can differ in

various organisms the principle illustrated in Figure 4.1 is common to all of them

(reviewed in Bell-Pedersen et al., [96]; Young and Kay [97]).
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4.1 Introduction

Figure 4.1: General mechanism of the circadian clock. Positive elements activate expression

of negative elements that inhibit the action of positive elements, thereby establishing an auto-

regulatory feedback loop. The positive elements of the clock additionally activate clock-controlled

genes transmitting time information to the whole organism.

The earth’s orbit around the sun leads to seasons that manifest themselves,

besides the temperature changes, in an altered length of a day’s light period. To

adapt to these changes the circadian clock is connected to mechanisms that allow it

to stay in tune with nature. Temporal information coded in this clock mechanism

is only of use for the organism if it is translated into a physiological meaning. This

is achieved through coupling of the clock mechanism to biological pathways that

are themselves composed of sequential gene activation. Sensory organs communi-

cate environmental time information via signaling pathways to the clock, thereby

synchronizing the internal circadian oscillators with the environment [95]. The ex-

istence of such an input pathway in the circadian system (Figure 4.2) is the reason

why humans can adapt to different time zones and overcome jet lag. The circadian

timing system of mammals influences most physiological activities, including sleep

and wakefulness, body temperature, intestinal peristaltics, hepatic activity, cardio-

vascular activity, hormonal secretion and precision of the sensory system (reviewed

in Schibler et al. [98]) which will be discussed in detail in next Section 4.1.1.

4.1.1 Health issues

In this section, we discuss the medical implications of circadian rhythms that are

immense, and can be broadly classified into the following three groups [31].

Effects imposed by external conditions on otherwise healthy individu-

als:

This group can be further divided into symptoms that arise from acute changes in

external time cues, such as transmeridian flight (jet lag), and those that result from

continual changes in lightdark cycles, most notably arising from shift work. Per-

forming tasks during times in the day when psychomotor capabilities are suboptimal
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4.1 Introduction

Figure 4.2: The mammalian circadian timing system. The light/dark cycle resets the activity

of the master pacemaker located in the suprachiasmatic nucleus (SCN) via the retina and the

retinohypothalamic tract. Other environmental stimuli such as temperature and hormone secretion

can also entrain the central oscillator. The SCN then processes environmental inputs and, in turn,

provides timing cues that will synchronize other slave oscillators located in peripheral tissues

(heart, liver, and kidney). Control of the peripheral clocks by the central pacemaker occurs via a

combination of neural and hormonal signals. Peripheral oscillators can also be reset by changing

the feeding time. As an ultimate result of this synchronization, mammals will display circadian

rhythms in physiology and behavior. Cellular metabolism and cell proliferation also show circadian

coordination in tissues, which can largely modulate the tolerability and the efficacy of cancer

treatments (The figure is taken from the Ref. [95].)

is associated with many serious consequences. For example, nurses on a repetitive

shift work schedule are two-to three fold more likely to misdiagnose and wrongly

treat patients than their daytime counterparts [99].

The effects of transmeridian flight and shift work on the human circadian

timing system likely occur at two levels. The photic input to the circadian tim-

ing system is transduced via the retinohypothalamic tract (RHT) to the SCN (as

shown in Figure 4.2 and reviewed in Ref. [100]), which in turn conveys time-of-day

information to peripheral clocks that have tissue-specific regulatory features (e.g.,

see Ref. [101]). Desynchronization not only occurs between the external environ-

ment and the SCN rhythm generator but also affects phase alignments between the

different peripheral clocks [102]. Different rates of resynchronization amongst the

cellular clocks in the SCN and those found in the various tissues likely contribute

to the dysfunction associated with jet lag and other abrupt changes in light-dark

cycles [102].

Melatonin, a naturally produced hormone that is under circadian regulation,

has been used to alleviate disorders associated with jet lag and shift work (reviewed
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4.2 Molecular biology of circadian rhythms

in Ref. [103]). Another successful approach to treat health problems associated with

jet lag and shift work has been the use of phototherapy ( [104,105]). An explanation

for this noninvasive treatment is based on earlier work in model organisms showing

that depending on when during the night a short pulse of light is administered, it

can evoke either a delay or advance in the phase of the clock. Ideally, by correctly

timing the phototherapeutic treatment, the rate of resynchronization to local time

can be accelerated.

Issues related to diagnosis and treatment:

Many physiological and behavioral variables change in a rhythmic manner over the

course of a day. Sampling at different times of the day and knowing the natural

rhythm of the variables in question would allow physicians a more precise account of

the status of the patient. However, in addition to the inherent problem of feasibility

in round-the-clock sampling, other factors such as exposure to “unnatural” light

conditions or malfunctions in circadian timing system might lead to rhythms that

are altered, rendering the observed variables unreliable as a diagnostic indicator.

Efficacy of certain drugs is dependent on time of delivery (e.g. in treatment

of cancer (reviewed in Ref. [106])). It is possible to increase the therapeutic poten-

tial and minimize toxic side effects by optimizing schedules for administering drugs.

Many drugs used in chemotherapy affect the function and replication of normal and

malignant cells. By targeting times when normal cells are less likely to perform DNA

synthesis, higher levels of chemotherapeutic drugs can be tolerated, increasing the

effectiveness of the treatment ( [107, 15]). Rates of absorption, metabolism, target

susceptibility, and excretion vary throughout the day, contributing to time-of-day

differences in the beneficial and toxic effects of drugs.

Disorders or disease states that appear to be causally linked to mal-

functions in the circadian timing system:

Malfunctions in the circadian timing system are associated with several disorders

such as chronic sleep disturbances, manic-depression and seasonal affective disorders

(SAD) or winter depression (reviewed in Ref. [108]). Many of the symptoms asso-

ciated with certain chronic sleep problems and affective disorders can be alleviated

by alterations in light-dark schedules [109].

4.2 Molecular biology of circadian rhythms

There has been remarkable progress in understanding the molecular underpinnings

governing circadian rhythms of cynobacteria, Neurospora, Arabidopsis, Drosophila,

zebrafish, amphibians and mammals in the last few years. Drosophila and mice are

the two best studied animal model systems for understanding the neural circadian

pacemakers. Both organisms show remarkable similarities in clock components and

overall molecular mechanisms.
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4.2.1 Drosophila circadian clock

Like many other organisms, the fruit fly Drosophila melanogaster operates on a 24-

hour schedule maintained by environmental input to an internal body clock. The

molecular basis of the clock relies on oscillations in the activation of particular

genes at certain times of the day. The key feature of these molecular oscillations

is a negative feedback loop in which the protein products of genes actually turn

off production of more protein. This process is possible in all cells of Drosophila;

however, the highest concentrations of the essential molecules are found in lateral

neurons of the central nervous system. These lateral neurons, or pacemaker cells,

are the Drosophila equivalent of mammalian neurons in the suprachiasmatic nucleus

(SCN). The first clock gene to be identified and molecularly characterized was the

period (per) gene in that species [110] and later several other genes like tim, dClock

(dClk) and cycle (cyc) have been identified [111,112,113].

The identification of these genes resulted in the following model (see Figure

4.3) for the generation of molecular and the resultant behavioral rhythmicity. The

negative feedback loop that forms the basis of the Drosophila molecular clock occurs

at the level of gene transcription (reviewed in Panda et al., [30]). The basic-helix-

loop-helix (bHLH)-PAS heterodimeric pair, dCLK and CYC, reside in the nucleus

on the E-box elements in the per and tim structural genes, positively regulating

their transcription. PER and TIM protein levels continue to rise throughout the

day to their peak levels in the early evening - a few hours after the peak level of

per and tim mRNAs. The two proteins heterodimerize and translocate into the

nucleus where they inhibit the transcriptional activity of the dCLK/CYC complex,

thus repressing their own transcription. As both PER and TIM proteins are de-

graded before dawn, this process is relieved, lifting repression of the dCLK/CYC

complex, thereby starting another cycle of PER and TIM accumulation. This core

mechanism and several of the above mentioned components are conserved between

flies and mammals [112, 111].

4.2.2 Mammalian circadian clock

The fundamental anticipatory and light-responsive properties of the circadian pace-

maker are conserved among flies and rodents, raising the possibility that the underly-

ing timekeeping mechanism might also be conserved. A combination of forward mu-

tagenesis screening in mice and the use of sequence comparisons with known compo-

nents of the fly clock has produced a picture of the functional clock in mammals that

is highly similar to that in flies (see Figure 4.4). The most similar components are

CLOCK and BMAL1/MOP3, which are mammalian orthologues of fly dCLK and

CYC, respectively [30]. CLOCK and BMAL1/MOP3 were shown to heterodimerize,

bind the E-box element (functionally conserved between flies and mammals), and
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4.2 Molecular biology of circadian rhythms

Figure 4.3: Model of circadian clock in Drosophila melanogaster showing photic input pathway

(light; CRY) and two downstream effector pathways (ccgs, clock-controlled genes; PDF, pigment-

dispersing factor). During the late day/early night, the levels of PER (indicated by large P) and

TIM (indicated by T) reach critical concentrations that favor dimerization, an event that stabilizes

PER and stimulates the nuclear entry of the PER-TIM complex. The enhanced degradation of

monomeric PER in the cytoplasm as a result of DBT-mediated phosphorylation events and the

light-induced degradation of TIM, contribute to a delay in the nuclear accumulation of PER and

TIM. In the nucleus, PER, TIM, or both 1) interact with dCLK:CYC, blocking its ability to

stimulate transcription of per, tim, vri, and possibly ccgs and 2) by a mechanism that is not clear,

upregulate expression of dClk and cry. Green lines, pathways leading to upregulation; red lines,

pathways leading to downregulation; dashed lines, uncertain pathways. Small black boxes indicate

E-box elements; small P, phosphorylation; ub, ubiquitin (The figure is taken from the Ref. [31]).

transactivate mammalian genes that harbor this element [114]. The Clock mutant

(a splice-site mutation resulting in a deletion of a portion of the transactivation sur-

face) reduces mPer expression and lengthens the overt activity rhythm eventually

turning arrhythmic [115], whereas a loss-of-function Bmal1/MOP3 mutant abol-

ishes mPer expression and eliminates activity rhythms altogether [116]. Mutation of

two of the three PER orthologues, mPer1 and mPer2, results in aberrant circadian

activity, and the double mutant abolishes rhythmicity [117, 118]. Table 4.1 shows

different clock gene mutations in mice and the corresponding alteration in circadian

rhythmic behavior.

Although the clock components are conserved across species, their genetic and

biochemical roles have diverged. For example, in the mouse mPER2 seems to ac-

tivate transcription of Bmal1, and exactly opposite to that in flies, BMAL1 cycles

in mice whereas CLOCK does not. Therefore, PER positively regulates the rhyth-
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Figure 4.4: Model of circadian clock in an individual SCN neuron. Three different mPERs

(mPER1, P1; mPER2, P2;and mPER3, P3) interact with each other and with two different mCRYs

(only one is shown for simplicity). These presumed heterodimers regulate the nuclear entry and/or

stability of the mPERs (much like the effect of TIM on PER in Drosophila). Casein kinase I ep-

silon (CKIe) phosphorylates the mPERs, leading to increased degradation of the mPERs (much

like the effect of DBT on PER in Drosophila) and also presumably influencing the nuclear entry

of the mPERs. Once in the nucleus, mCRY1, mCRY2, or both interact with CLOCK:BMAL1,

blocking its ability to stimulate transcription. Light evokes rapid increases in the levels of mPer1

and mPer2 transcripts, an event likely relevant for photic entrainment of circadian pacemakers in

the SCN. Green lines, pathways leading to up regulation; red lines, pathways leading to downreg-

ulation; dashed lines, uncertain pathways. Small black boxes indicate E-box elements; small P,

phosphorylation; CLK, mCLOCK (The figure is taken from Ref. [31]).

mic production of CLOCK/BMAL1 complexes in both mice and flies, although its

target has switched. Finally, PER protein products have been shown to weakly

suppress CLOCK/BMAL1-dependent mPer1 transcription in cultured mammalian

cells [115]. These results would seem to support a role very similar to that seen

for PER (PER/TIM complex) in Drosophila, as a negative regulator of its own

transcription and a positive regulator of the dCLK/CYC complex. The putative or-

thologue of Drosophila timeless, mTim, was found to be a closer orthologue of a sec-

ond fly gene, timeout, which is apparently not involved in maintenance of circadian

rhythmicity. Instead, deletion of the mTim gene in the mouse causes lethality [120].

Finally, better repressors of CLOCK/BMAL1 molecular activity were isolated with

the orthologues of a Drosophila photoreceptor called cryptochrome (CRY).

36



4.3 Modeling of circadian rhythms in Drosophila

Clock gene mutations

Gene Type Behavioral type

Clock Deletion Long period to arrhythmic

BMAL1 Null Arrhythmic

Per1 Null Var. period to arrhythmic

Per2 Null Var. period to arrhythmic

Per3 Null Short period

Per1/2 Null/Null Arrhythmic

Cry1 Null Short period

Cry2 Null Long period

Cry1/2 Null/Null Arrhythmic

Table 4.1: Mutations alter circadian behavioral rhythms in mice. For the Period and Crytochrome

gene families, partial redundancy of function is apparent. (Adapted from Reppert et al. [119]).

4.2.3 Resetting the clock

The stability of TIM protein is light sensitive – even a brief light pulse can trigger

its degradation – and this change in TIM level can reset the molecular clock and

result in resetting of activity rhythm [121]. During early subjective night when

TIM protein levels rise, light-induced TIM degradation promoted by dCRY delays

the accumulation of TIM, which in turn delays the subsequent molecular events of

the oscillator machinery, resulting in a phase delay. Conversely, light pulses admin-

istered during the late night, when TIM levels are decreasing, facilitates the rapid

decline in TIM protein, and causes phase advances. This clock function of cryp-

tochromes may be conserved in mammals [30, 122, 123]. Although dCRY and its

interacting partner TIM are not functionally conserved among flies and mammals,

their activity in flies elucidated the integration of two simple molecular mechanisms

– a feedback loop and a simple light response to produce a seemingly complex time-

of-day-dependent response of circadian behavior to light. This also establishes a

model for circadian photoresponses in mammals.

4.3 Modeling of circadian rhythms in Drosophila

Model organisms such as the fly offer readily available genetic tools, rapid generation

(or acquisition from public stock centres) of mutants, RNA interference technolo-

gies, and automated, quantitative phenotypic assay to rapidly go through these

hypotheses. The exciting possibility that complex behavior can be described at the

molecular level, and is well conserved across species, underscores the importance of
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4.3 Modeling of circadian rhythms in Drosophila

the use of model organisms and comparative behavioral genomics. In view of the

Figure 4.5: Model for circadian oscillator in Drosophila involving negative regulation of gene

expression by PER and TIM. per (MP ) and tim (MT ) mRNAs are synthesized in the nucleus

and transferred into the cytoplasm, where they accumulate at the maximum rates νsP and νsT ,

respectively. There they are degraded enzymatically at the maximum rates, νmP and νmT , with the

Michaelis-Menten constants, KmP and KmT . The rates of synthesis of the PER and TIM proteins

are proportional to MP and MT characterized by the apparent first-order rate constants ksP and

ksT . Parameters ViP (ViT ) and KiP (KiT ) (i = 1,...4) denote the maximum rate and Michaelis

constant of the kinases and phosphatases involved in the reversible phosphorylation of P0 (T0)

into P1 (T1) and P1 (T1) into P2 (T2), respectively. The fully phosphorylated forms (P2 and T2)

are degraded by enzymes with maximum rate νdP and νdT and Michaelis-Menten constants KdP

and KdT and reversibly form a complex C (association and dissociation are characterized by the

rate constants k3 and k4), which is transported into the nucleus at a rate characterized by the

apparent first-order rate constant k1. Transport of the nuclear form of the PER-TIM complex

(CN ) into the cytoplasm is described by the apparent first-order rate constant k2. The negative

feedback exerted by the nuclear PER-TIM complex on per and tim transcription is modeled by

a Hill-type equation. For the full kinetic model equations see Eqs. 4.1. (The figure is redrawn

following Ref. [33]).

large number of variables involved and of the complexity of feedback processes that

generate oscillations, mathematical models and numerical simulations are needed to

fully grasp the molecular mechanisms and functions of biological rhythms. These

models could be used to explore syndromes or pathological conditions resulting from

disorders of circadian rhythms like familial advanced sleep phase syndrome (FASPS).

Disorders of the circadian system may be viewed as “dynamical disease” [124], i.e.
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4.3 Modeling of circadian rhythms in Drosophila

physiological dysfunctions resulting from changes in dynamic behavior because of a

shift outside the physiological range of control parameters. Simulations will allow

rapid determination of the qualitative and quantitative effects of each parameter,

and thereby can help to identify key parameters that have most profound effect

on system’s dynamics. Molecular mathematical models in case of Drosophila are

readily available in literature [32,33], and we choose the model proposed by Leloup

et al. [33](see Figure 4.3) for our numerical studies.

4.3.1 Drosophila model-equations and rate-constants

Molecular models for circadian rhythms were proposed initially for circadian oscil-

lations of the period (PER) protein and its mRNA in Drosophila [32]. It is governed

by a set of five kinetic equations based on the negative control exerted by the PER

protein on the expression of per. This early model did not account for the effect of

light on the circadian system. An extended, 10-variable model in which the negative

regulation is exerted by PER-TIM complex has been proposed [33] (schematized in

Figure 4.3) is centered around negative auto-regulation of gene expression.

dMp

dt
= vsP

KIP
n

KIP
n + CN

n − vmP
MP

KmP +MP

− kdMP (4.1a)

dP0

dt
= ksPMP − V1P

P0

K1P + P0

+ V2P
P1

K2P + P1

− kdP0 (4.1b)

dP1

dt
= V1P

P0

K1P + P0
− V2P

P1

K2P + P1
− V3P

P1

K3P + P1

+V4P
P2

K4P + P2
− kdP1 (4.1c)

dP2

dt
= V3P

P1

K3P + P1
− V4P

P2

K4P + P2
− k3P2T2 + k4C

−vdP
P2

KdP + P2
− kdP2 (4.1d)

dMT

dt
= vsT

KIT
n

KIT
n + CN

n − vmT
MT

KmT +MT

− kdMT (4.1e)

dT0

dt
= ksTMT − V1T

T0

K1T + T0

+ V2T
T1

K2T + T1

− kdT0 (4.1f)

dT1

dt
= V1T

T0

K1T + T0

− V2T
T1

K2T + T1

− V3T
T1

K3T + T1

+V4T
T2

K4T + T2

− kdT1 (4.1g)

dT2

dt
= V3T

T1

K3T + T1

− V4T
T2

K4T + T2

− k3P2T2 + k4C −

vdT
T2

KdT + T2

− kdT2 (4.1h)

dC

dt
= k3P2T2 − k4C − k1C + k2CN − kdCC (4.1i)

dCN

dt
= k1C − k2CN − kdNCN (4.1j)

39



4.3 Modeling of circadian rhythms in Drosophila

The total (nonconserved) quantities of PER and TIM proteins, Pt and Tt are given

by

Pt = P0 + P1 + P2 + C + CN

Tt = T0 + T1 + T2 + C + CN

Kinetic parameter Parameter value Kinetic parameter Parameter value

vsP 1 nMh−1 kd 0.01h−1

vsT 1 nMh−1 kdC 0.01h−1

vmP 0.7 nMh−1 kdN 0.01h−1

vmT 0.7 nMh−1 V1P 8 nMh−1

KmP 0.2 nM V1T 8 nMh−1

KmT 0.2 nM V2P 1 nMh−1

ksP 0.9 h−1 V2T 1 nMh−1

ksT 0.9 h−1 V3P 8 nMh−1

vdP 2 nMh−1 V3T 8 nMh−1

vdT 2 nMh−1 V4P 1 nMh−1

k1 0.6 h−1 V4T 1 nMh−1

k2 0.2 h−1 K4T 2.0 nM

k3 1.2 nM−1h−1 K4P 2.0 nM

k4 0.6h−1 K3T 2.0 nM

KIP 1.0 nM K3P 2.0 nM

KIT 1.0 nM K2T 2.0 nM

KdP 0.2 nM K2P 2.0 nM

KdT 0.2 nM K1T 2.0 nM

n 4 K1P 2.0 nM

Table 4.2: Rate constants for the Drosophila model.

The model takes into account nuclear transcription of the per and tim genes

and transport of the per and tim mRNAs into the cytoplasm, where they are trans-

lated into PER and TIM proteins. The latter can be multiply phosphorylated and

form a complex that enters the nucleus and represses per and tim transcription.

The model incorporates degradation of the PER and TIM proteins and their mR-

NAs. Light influences the Drosophila clock by triggering TIM degradation [97], the

maximum rate of TIM degradation νdT increases with increasing light intensity. (In

mammals, where per and tim genes are also found, light acts by enhancing the rate

of per expression νsP.) The Drosophila model is described by a set of 10 ordinary

differential equations (ODE) that govern the time evolution of per and tim mRNAs

and of the various forms of PER and TIM proteins and the PER-TIM complex [33].

The model can reproduce circadian oscillations in continuous darkness, entrainment

by light-dark cycles, and phase shifting by light pulses (see Figure 4.9 and 4.11).
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4.4 Mathematical analysis of the circadian model

4.4 Mathematical analysis of the circadian model

4.4.1 Characteristics of circadian oscillators
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Figure 4.6: Characteristics of circadian oscillators.

Three key properties of a circadian oscillator are its period, amplitude and

phase [125]. Period may be expressed as the time interval between peak state values

(see Figure 4.6). The amplitude of the circadian oscillations relates to the difference

between maximum and minimum values of mRNA or protein concentrations (see

Figure 4.6). The phase of a circadian rhythm reflects where the peak and the trough

occur, for example, the peak and trough of performance within the 24 hour. Phase

shift is defined as the measure of time capturing a system’s advance or delay relative

to a nominal reference (see Figure 4.7).

Starting from an unstable steady state, the trajectory of the state variables

towards limit cycle is shown in Figure 4.8 as a projection onto the plane spanned by

the concentrations of per mRNA and total PER protein. For a given set of parame-

ter values, the limit cycle shown in Figure 4.8 is generally unique regardless of initial

conditions. As perturbations do not change the circadian period or amplitude in

the long run, limit cycle oscillations represent particularly stable mode of periodic

behavior. Such stability is in accordance with the robust nature of circadian clocks

which have to maintain their amplitude and period in a changing environment while

retaining the capability of being phase shifted by light or temperature.
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4.4.2 Control of circadian oscillations by light

Circadian rhythms are necessarily endogenous. By definition, these rhythms persist

with stable 24 hour periods even in the absence of daily environmental cues but

importantly can be synchronized (or entrained) by these cues, most notably the

day-night cycles. Accordingly, the model schematized in Figure 4.3 predicts the oc-

currence of sustained oscillations in constant darkness (DD) and is taken hereafter

as the nominal circadian oscillations. The left panel of Figure 4.9 shows the oscilla-

tions of total PER protein (Pt), per mRNA (Mp), and nuclear PER-TIM complex

(CN ) observed in conditions corresponding to DD; such conditions are achieved in

the Drosophila model by holding the parameters νdT , which measures the maximum

rate of TIM degradation, at a constant low value (see Figure 4.9 (left)). Although

the environmental conditions remain constant, the PER-TIM control system gener-

ates autonomous oscillations with a period close to 24 hours for the set of parameter

values considered as observed experimentally [110]. As expected from mechanisms
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Figure 4.9: Oscillations in continuous darkness and entrainment by LD cycles for circadian

rhythms in Drosophila. The left panel corresponds to continuous darkness and the right panel

corresponds to entrainment by a light-dark cycle of 24 hour period (12:12LD). The LD cycle is

symbolized by the alteration of white and black bars. The curves are obtained by numerical

integration of the 10 kinetic equations governing the dynamics of the model schematized in Figure

4.3; the equations are listed in (4.1). The temporal variations in per mRNA (Mp) and in the total

amount of PER protein (Pt) are shown, together with the variation in nuclear PER-TIM complex

(CN ). Parameter values are taken from Table 4.2. νdT remains constant and equal to 3 in the left

panel and is equal to 3 and 6 in the middle panel during dark and light phases, respectively.

in which a protein represses the transcription of its gene [126], the Drosophila model

predicts that the peak in mRNA levels precedes the peak in protein by several hours.

Moreover, the peak in total PER and TIM precedes the peak in nuclear PER-TIM

complex (Figure 4.9 (left) panel).

Light triggers degradation of the TIM protein in Drosophila [121, 127]. In-

cluding a periodic variation of the light-controlled parameter into the model of the

Drosophila circadian clock allows us to simulate the entrainment of circadian oscil-

lations by light-dark (LD) cycles, which is shown in Figure 4.9 (right panel). In

such conditions, the maximum TIM degradation rate νdT varies in a square-wave

manner. The duration of both the light and dark phases is equal to 12 hours in the

case considered (this particular light-dark cycle is denoted by 12:12 LD), the system

is entrained precisely to the 24 hours external periodicity. The effect of continuous

light (LL) is simulated by holding νdT at a constant high value. As observed experi-

mentally [128], the oscillations in the model are readily damped in LL by increasing

νdT to a sufficiently high value (Figure 4.10).

The induction of a phase shift by light pulses represents one of the most con-

spicuous properties of circadian rhythms. Biological oscillators are generally stable

within a defined parameter space, a finite stimulus will force the oscillator’s trajec-

tory to deviate from its periodic orbit and return to the limit cycle asymptotically
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Figure 4.11: Open loop circadian dynamics with forced perturbations. The plot (left) depicts the

nominal behavior of the circadian 10-state model over a three-day period. The heavy-weight line

denotes concentrations of the PER-TIM complex within the nucleus, CN . This complex is tracked

in the plot (right) as a light pulse is applied to the system at 10-hours and 18-hours respectively.

This disturbance temporarily represses the complex by increasing the maximum degradation rate

of the TIM protein. The first perturbation recovers from the repression by gaining the amplitude

and delaying its relative phase; in other words, by acquiring a negative phase shift. The second

perturbation decreases amplitude, gains a relative advance, and acquires a positive phase shift.

with a phase shift. If this initial stimulus of light is applied at different times

throughout the period, the resulting change in phase will vary accordingly. As de-

picted in Figure 4.11, a stimulus applied at 10-hours results in different change of

phase relative to the same stimulus applied at 18-hours.
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4.4.3 Sensitivity analysis of the circadian model

Sensitivity analysis plays an important role in the study of biochemical systems

[36, 37, 129]. Parameter sensitivities yield a quantitative measure of the deviations

in characteristic system properties resulting from the perturbation of system param-

eters. Analysis of parameter sensitivities can, hence, provide clues on the importance

of individual regulatory processes on the function of clock.

For a circadian clock model described by ordinary differential equations of the

form
dx

dt
= f(x(t), p, t) with t ≥ t0, the nS-dimensional vector of state variables x,

the nP -dimensional vector of model parameters p, and initial conditions x(t0) = x0,

parameter sensitivity of the system’s states along a specific trajectory S ∈ R
ns×np

matrix of state sensitivities) with respect to a parameter is defined by

Si,j =
∂yi

∂pj

where Si,j is the sensitivity coefficient of the ith system output yi with respect to

the jth parameter pj . Considerable work has been done on sensitivity analysis of

the selected 10-variable Drosophila model (see Ref. [37]). The robustness analysis

for the model shows that parameters could be segregated into two broad groups:

“Global” parameters, like transcription and translation rates, that affect many pro-

cesses in addition to the circadian clock and “local” parameters that pertian to

the clock exclusively [130]. In addition, a third category of “mixed” parameters,

which are neither entirely global nor local, are identified [37]. It has been found

that the 10-variable Drosophila model is sensitive to perturbations in its global pa-

rameters but less sensitive to perturbations in its local or mixed parameters. The

sensitivity analysis identified phosphorylation/dephosphorylation rates as insensi-

tive parameters when compared to rates of degradation, transport, translation and

transcription [131]. In general processes of gene regulation, transcription, and trans-

lation turned out to influence predominantly the amplitude of circadian rhythms.

These sensitive elements have evolved as natural control inputs which will be used

in control scenarios in Section 4.5.

4.4.4 Bifurcation Analysis

To explain the underlying dynamics of the described model with respect to sensi-

tive control parameters and for a better understanding of our control approach, we

use a bifurcation analysis with respect to the light-sensitive parameter νdT, which

is shown in the Figure 4.12. It represents the dynamic behavior of the oscillatory

system by a single state variable, the fully phosphorylated form of the TIM protein

(T2), as a function of νdT. At low values of νdT, a stable steady state is obtained.

As νdT increases, the steady state becomes unstable at νdT = 2.02226, and sustained

limit cycle oscillations occur. In Figure 4.12 the envelope of oscillations giving the

minimum and maximum levels of T2 at different values of νdT are shown. Beyond
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4.5 Control of circadian rhythms

Figure 4.12: Bifurcation diagram showing the range of sustained oscillations as a function of

the light-controlled parameter in the molecular model for the circadian clock [33]. The diagram

represents the stable (solid line) or unstable (dashed line) steady-state value of a state variable

(phosphorylated TIM form), as well as its envelope (maximum and minimum oscillation value) in

the course of stable (solid circles) or unstable (open circles) sustained oscillations, as a function

of νdT. Numerical computations for the bifurcation diagram were performed with the software

package AUTO [132].

a second bifurcation point at large νdT = 5.27036, the steady state recovers its sta-

bility. For some parameter values, coexistence of a stable steady state and a stable

regime of limit cycle oscillations is observed. This situation is important to obtain

stability in our open-loop control scenarios aimed at switching between the periodic

and stationary states.

4.5 Control of circadian rhythms

An inability to entrain circadian rhythms to the environment causes many functional

disorders [124]. Circadian disorders include non-24-hour sleep-wake syndrome, sea-

sonal affective disorders (SAD) or winter depression, general malaise associated

with jet-lag and shift-work, advanced or delayed phase sleep syndrome, and irregu-

lar sleep-wake pattern syndrome [133]. Many researchers have studied the clock in

an attempt to both understand and correct for existing discrepancies. Analysis of

the circadian clock demonstrates that control inputs, such as light can be used to
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manipulate the system dynamics. The use of such light pulses as artificial entraining

agents along with natural light/dark cycles may help to reduce the recovery time

of circadian rhythms when they are disturbed due to rapid time-zone change be-

cause of traveling and shift work. Boulos et al. performed experiments establishing

bright light treatment as a means to accelerate circadian re-entrainment following

trans-meridian travel [134]. Daan et al. discussed light-induced phase shifts as

a function of circadian time and the role phase response curves play in achieving

entrainment [135, 136]. Watanabe et al. confirmed Daan et al. work through ex-

perimental procedures proving that the basis for phase adjustment involves rapid

resetting of both advance and delay components of the phase response curve [137].

Entrainment and robust properties of circadian rhythms with respect to environ-

mental cues (light/dark cycles) are studied by Takeuchi et al. in a molecular model

for Drosophila [138]. Despite decades of work put forth in understanding circadian

phase and entrainment properties, the idea of optimally controlling circadian prop-

erties via open and closed-loop control algorithms for molecular models is a recent

area of interest (e.g. see Refs. [139, 140,141,142,130]).

4.5.1 Formulation of optimal control problems

The aim of our approach is to change the behavior of the dynamical system by

a time variant external control such as the maximum rate of protein degradation

(νdT), translation frequency (ks) or transcription rate (νs). We will denote the

corresponding functions νdT, ks and νs by u(t). We want to minimize the integrated

difference between the state trajectory x(t) of the system and a reference trajectory

xr(t). This reference trajectory is obtained by solving a boundary value problem

that includes a periodicity constraint

xr(0) = xr(T )

with T = 24. Under free running conditions, the oscillations has a period of about

23.8 hours, which is different from the entrained period of 24 hours. However, we

fix the parameters to the values given in Table 1, which corresponds to a “dark-

ness scenario” except νdT for obtaining the reference trajectory with a period of 24

hours as in case of entrained conditions. We apply the optimal control software

package MUSCOD-II [143] that implements the direct multiple-shooting method,

see Chapter 3. As a result of the numerical optimization we obtain the value of the

parameter νdT = 3 for which the system shows the desired periodic behavior with

a period of exactly 24 hours. The number of multiple-shooting nodes N = 1 here,

with final time T and initial conditions as free parameters. As can be seen in Figure

4.12, for the value νdT = 3 the system is characterized by an unstable steady state

surrounded by stable limit cycle oscillations respresented in solid dots. Therefore

the calculated reference orbit xr(t) corresponding to νdT = 3 is stable.
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4.5 Control of circadian rhythms

Our optimization problem now consists of minimizing the deviation from this

reference trajectory for given initial values x(0) = x0 over a given time horizon,

min
u,x

T∫

0

‖x(t) − xr(t)‖2
2 dt (4.2)

subject to ẋ = f(x, u, p),

x(0) = x0,

umin ≤ u ≤ umax.

The function f represents the differential equation model given in Eq. 4.1;

control constraints u ∈ [umin, umax] and concentrations xi(t) ≥ 0. ‖.‖2 denotes the

Euclidean norm and p a parameter vector. Problem (4.2) is a standard optimal-

control problem and can be solved by direct multiple-shooting (DMS) method with

a piecewise-constant control parameterization u(t) = ui, t ∈ [ti, ti+1], i = 1, · · · , N
on multiple-shooting intervals [ti, ti+1] ⊂ [0, T ], where T is total time of simula-

tion. For numerical integration we use the BDF method implemented in the solver

DAESOL [59]. We have investigated the control scenarios for circadian rhythms

with three different control parameters.

In the first two control scenarios, for phase resetting and phase tracking of

circadian rhythms, we use νdT as a control parameter and other parameter values

are fixed to the values given in Table 1. In the third control scenario, for restoration

of altered rhythms, we use translation frequency (ks) of PER and TIM proteins or

transcription rates (νs) of per and tim mRNA as the control parameters. We choose

translation frequency/transcription rates as control parameter because the system

dynamics turned out to be very sensitive with respect to ks and νs [37]. In practice,

the light sensitive parameter νdT, and the translation frequency/transcription rates

are easier to control as a switching off-on-off control function than a function with

continuous values over time. Mathematically this means that we have to restrict the

control function u(t) to take values in {umin, umax} only. This can be reformulated

via u(t) = umin+w(t)(umax−umin) into a binary valued control function w(t) ∈ {0, 1}.

The solution that minimizes the objective function for a given differential

equation model, set of initial conditions and constraints is solved with the optimal

control software package MUSCOD-II [143, 80]. MUSCOD-II implements an SQP

method for solving the NLP problem that arise after discretizing problem 4.2 as

discussed in Section 3.3. A DAE solver DAESOL is used with the BDF method for

the solution of the DAEs and the generation of derivatives and accuracies of 10−6

for the KKT condition and 10−7 for the integration.
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4.6 Optimal phase resetting of circadian rhythms by critical

light pulses

One of the most intriguing observations on circadian rhythms is that they can

be suppressed in a prolonged manner by a single pulse of light. Long-term sup-

pression has been reported for a variety of organisms including insects [144] and

mammals [145, 146]. The abolished rhythm can often be restored by a second light

pulse [145]. For limit cycle attractors surrounding a steady state, Winfree has proven

via topological arguments under very general assumptions that a critical stimulus

with appropriate timing, length and strength corresponding to a so called phase

singularity must exist which takes the system immediately to steady state, meaning

instantaneous suppression of the oscillations [147].

The model considered here allows us to address this issue explicitly, given

that the effect of light in this model is included in the molecular mechanism of cir-

cadian oscillations. The situation schematized in Figure 4.12 has distinct dynamical

consequences regarding the possibility of suppressing the circadian rhythmicity by

light pulses. In the situation when the control parameter νdT lies between the two

critical values 1.25 nM/h and 2 nM/h, a stable steady state coexists with a stable

limit cycle. An unstable limit cycle separates the basins of attraction of these two

stable regimes. Such a situation, observed in the model for circadian rhythms in

Drosophila [33] is schematized in the upper left panel in Figure 4.13. The arrow

from the stable limit cycle (solid curve) symbolizes the effect of a light pulse that

brings the system across the unstable limit cycle (dashed curve) into the basin of

attraction of the stable steady state. The consequence of such a light pulse applied

at the appropriate phase with the appropriate duration and magnitude is illustrated

in the left bottom panel of Figure 4.13. The light pulse has suppressed the rhythm

permanently. The analysis of the Drosophila model indicates that the phases at

which the light pulse permanently suppresses the rhythm correspond roughly to the

portion of the limit cycle associated with the rise in TIM.

In the more common situation, in which a stable limit cycle does not coexist

with a stable steady state (see Figure 4.12 in the interval νdT between 2 nM/h and

5.2 nM/h), the effect of a light pulse is different. As illustrated in the upper right

panel of Figure 4.13, a light pulse applied at the appropriate phase with the appro-

priate duration and magnitude can bring the system into the close vicinity of the

steady state, but because the latter is unstable the system will eventually return to

the limit cycle, possibly after skipping a number of oscillations, as illustrated for a

higher value of νdT in the Drosophila model in the bottom right panel of Figure 4.13.

In such conditions, suppression of the circadian rhythm by the light pulse is only

transient. Both transient and permanent suppression of circadian rhythms by single,

critical perturbations have been observed experimentally [128]. However, neither the

phase at which the stimulus have to be applied nor the characteristics of the critical

stimulus strength for suppression or restoration of oscillations are a priori clear.
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Figure 4.13: Permanent and transient suppression of circadian rhythmicity by light pulses in the

Drosophila clock model. The upper left panel schematically depicts to the coexistence between a

stable limit cycle (solid curve) and a stable steady state (dot) which are separated by an unstable

limit cycle (dashed line). The upper right panel portrays the situation of a stable limit cycle

surrounding an unstable steady state. The (stable or unstable) steady state is often referred to

as singularity. The curves in the bottom panels have been obtained by numerical integration of

kinetic equations governing the evolution of the Drosophila circadian clock model 4.1. Lower left

panel: permanent suppression of the circadian rhythm. Parameter νdT is increased, at the time

indicated by vertical arrow, during a 2-hour from the basal value of 1.3nMh−1 upto 4.0nMh−1.

Lower right panel: transient suppression of the circadian rhythm in the Drosophila clock model.

At the time indicated by the arrow, parameter νdT is increased during a 3.8-hour from the basal

value of 3.5nMh−1 up 6.7nMh−1. The basal value of 1.3nMh−1 and 3.5nMh−1 correspond to the

situations depicted in the upper left and right panels, respectively. Other parameter values are

taken from the Table 4.2

Winfree proposed an approach to determine these parameters by probing the phase

resetting response for various stimulus intensities and corresponding phase relations

between stimulus and system state and construction of so-called phase resetting

curves [147]. However, in complex multi-component systems occurring in biology,

the overwhelming variety of the kind, strength and timing of possible stimuli make
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4.6 Optimal phase resetting of circadian rhythms by critical light pulses

simulation based approaches via phase resetting curves impractical [28]. For this

reason, a systematic and automatic algorithmic procedure for identification of the

phase singularities is attractive. Here, we demonstrate how model-based optimal

control of mixed-integer type can be exploited for the task of systematically find-

ing appropriate strength and timing of critical external stimuli leading to specific

suppression and restoration of circadian rhythms [140]. It is crucial that we use

the underlying direct multiple-shooting method for our numerical studies, a method

that has shown to be suitable for complex self-organizing behavior before in Lebiedz

et al. [27, 148, 149,150].

On the basis of the Drosophila model presented in Section 4.3, we consider

suppression of circadian rhythmicity by directly controlling the light-sensitive pa-

rameter νdT. We address this problem by model-based mixed-integer optimal con-

trol via formulation of the control objective as the minimization of the system state

deviation from the desired steady state integrated over time. The corresponding

mixed-integer optimal control problem is

min
w(t)

J(x, w(t)) :=

T∫

0

10
∑

i=1

(xi(t, w(t)) − xs
i )

2dt (4.3)

subject to the ODEs in Eq. (4.1), the integer constraints w(t) ∈ {0, 1}, positive

valued concentrations xi(t) and initial conditions. The vector xs
i denotes the steady

state coordinates and is obtained by using the XPPAUT software [132]. The objec-

tive functional (4.3) is minimized for suppressing the circadian rhythms with control

parameter νdT . For restoration of suppressed circadian rhythms, the maximization

of the same objective functional (4.3) turned out to be suitable.

We apply a novel approach based on the DMS method [53] which can treat

bang-bang control scenarios with a piecewise constant control parameterization to

obtain such an optimal light stimulus to suppress and subsequently restore the cir-

cadian rhythmicity in the Drosophila model at a priori defined time points. We

compute an optimal control νdT(t) as a solution of problem (4.3) via convex relax-

ation of the integer constraints (see Section 3.6.1). The result is shown in Figure

4.14, (left). Obviously the rhythm can be suppressed and restored by adjustable

time-varying light pulses (see Figure 4.15 left). However, these are difficult to re-

alize in practice, therefore, we go on to compute a bang-bang solution of problem

(4.3) (see Figure 4.14, right). Figure 4.15 shows the corresponding controlled sys-

tem state trajectory for the TIM protein concentration. Obviously, it is possible

to achieve a desired optimal switching between stationary and oscillatory states on

the basis of the circadian rhythm model. Figure 4.16 shows the bang-bang control

solution and corresponding state trajectories for permanent suppression of circadian

rhythms with a single light pulse.
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Figure 4.14: Optimal control for the relaxed problem (left): and the bang-bang problem (right):

of circadian rhythm suppression by light and subsequent restoration of the rhythm based on the

Drosophila model. Control input: light-sensitive maximum rate of protein degradation νdT as a

function of time.
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Figure 4.15: Rhythm suppression and restoration by a light stimuli corresponding to the opti-

mal control functions in Figure 4.14, (left): relaxed control scenario, (right): bang-bang control

scenario. The plot shows the TIM protein in nM as a function of time.

4.7 Optimal phase tracking of circadian rhythms

Circadian rhythm desynchronization and disruption are the result of a living sys-

tems being out of sync with the environmental cycles. Depending on at what time

an organism is exposed to the entraining agent, one can set the clock forward, set

back, or not changed at all. In case of light as entraining agent, during the middle of

subjective day when light is expected, it has no effect on circadian phase. However,

a light pulse administered around subjective dusk (or early night) causes a phase

delay, whereas a light pulse near subjective dawn (or early morning) causes a phase

advance. Plotting the direction and magnitude of the phase shift as a function of
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Figure 4.16: Bang-bang control solution (left) for permanent suppression of circadian rhythms

and the corresponding TIM protein accumulation(right). Control input: light-sensitive maximum

rate of protein degradation νdT as a function of time.

the phase of the rhythm, when the perturbation is timed, yields the phase-response

curve. In nature, this property allows the clock to function as a timing device to

measure day length, enabling organisms to synchronize their physiology with chang-

ing seasons (it also enables jet travelers to adjust to new time zones). Molecular

models have been used to obtain theoretical phase-response curves that can be com-

pared with experimental observations [33, 151].

Instead of using the phase response curves, here the aim of our optimal control

approach is to automatically identify strength and timing of the light-induced pa-

rameter changes for TIM degradation which synchronize the system with a desired

reference trajectory. We use the light-sensitive control parameter νdT(t) as a control

function. Our optimization problem now consists of minimizing the deviation of ac-

tual circadian rhythm x(t) from a reference trajectory xr(t) with a phase difference

with respect to x(t) for given initial values x(0) = x0 over a given time horizon,

min
νdT(t)

72∫

0

‖x(t) − xr(t)‖2
2dt (4.4)

subject to

ẋ = f(x, νdT, p),

x(0) = x0,

νdTmin
≤ νdT ≤ νdTmax

.

The function f represents the differential equations of the model given in Eq. 4.1;

control constraints νdT ∈ [νdTmin
, νdTmax

] and concentrations xi(t) ≥ 0. Two cases of
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reference trajectories xr(t) are considered here, one with a phase advance of 6 hours

and another with 12 hours with respect to x(t). A more relevant issue would be to

achieve total PER protein level restoration rather than mRNA level approximate

restoration. So in our objective function Eq. (4.4), we tracked all the variable

concentrations in the model. For simplicity, we show only the results of PER-TIM

complex in nucleus (CN ) here, but as formulated in objective function (4.4), we

tracked all the variable concentrations to the reference trajectory.
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Figure 4.17: Optimal control functions for the relaxed problem (left) and the bang-bang problem

(right) of circadian rhythm tracking with a 6-hour phase difference by light based on the Drosophila

model. The control input is the light-sensitive maximum rate of protein degradation (νdT) as

a function of time. The values of the control function νdT are required to be in the interval

νdT ∈ [3, 9].

We compute a relaxed optimal control νdT(t) as a solution of problem (4.4)

using piecewise linear control parameterization. Total simulation time in this case

is T=72 hours with 36 multiple shooting points i.e. with 2 hours time on each

shooting interval. The result is shown in Figure 4.17 (left). The controller is able to

recover a maximum 6-hours phase difference within 23-hours with 0.5 hours accuracy

(see Figure 4.18). Obviously the rhythm can be successfully tracked by piecewise

constant time varying light stimuli. However, these are difficult to realize in practice

and therefore, like in previous section, we go on to compute a pulse control in terms

of a bang-bang solution of problem (4.4) as in the case (4.3) that switches between

a maximal and minimal value of the control parameter. We reformulate the optimal

control problem as

min
w(t)

J(x, w(t)) :=

72∫

0

(xi(t, w(t)) − xir(t))
2dt (4.5)

by setting νdT(t)=νdTmin+w(t)(νdTmax-νdTmin), this can be formulated assuming a

binary-valued control function w(t) which can take only boundary values low or up
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of a relaxed feasible domain [0, 1]. xir is the reference trajectory for ith variable

corresponding to xi. The value of νdT is restricted in the interval of [3,9], νdT=3

corresponds to the continuous darkness case and νdT=9 is a 50% increase in the

value νdT=6 under continuous light. In Figure 4.17 (right) shows the bang-bang

problem computed via mixed-integer optimal control. Figure 4.18 (right) shows the

corresponding controlled system state trajectory of the PER-TIM protein complex

in the nucleus for the pulse control. Solid lines symbolize reference trajectories while

dashed lines symbolize the controlled and uncontrolled PER-TIM complex. From

Figure 4.18, it is obvious that there is hardly a difference between the tracked system

trajectories in relaxed and the mixed integer results but the corresponding control

inputs differ significantly from each other in Figure 4.17. It is easier to implement

in practice, a pulsatile solution obtained from bang-bang control problem than the

relaxed solution which can take any value inbetween minimum and maximum, which

is evident from the Figure 4.17.
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Figure 4.18: Phase tracking by light stimuli corresponding to the optimal control functions in

Figure 4.17, left: relaxed control scenario, right: bang-bang control scenario. The plot shows the

PER-TIM protein concentration as a function of time.

Optimization problem (4.5) is solved with xr(t) having a initial phase differ-

ence of 12 hours with 36 multiple shooting points on total time T=72. The results

for tracking a 12 hours phase difference are shown in Figure 4.19. The controller is

able to recover a maximum 12-hours initial phase difference within 28-hours with 0.5

hours accuracy (see Figure 4.20). In Figure 4.19 (left) shows the protein degradation

parameter νdT as function of time for relaxed control for recovering the 12 hours

phase difference and bang-bang solution (right) computed via mixed-integer opti-

mal control. The corresponding controlled state trajectories for tracking a rhythm

with initial phase difference of 12 hours with respect to x(t) is shown in Figure 4.20

with relaxed solution (left) and bang-bang solution on (right). The plot depicts

the concentrations PER-TIM protein complex in the nucleus for uncontrolled and
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Figure 4.19: Optimal control for the relaxed problem (left) and the bang-bang problem (right)

of circadian rhythm tracking of 12-hour phase difference by light based on the Drosophila model.

The control input is the light-sensitive maximum rate of protein degradation νdT as a function of

time. The values of the control function νdT are required to be in the interval νdT ∈ [3, 9].
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Figure 4.20: Phase tracking by light stimuli corresponding to the optimal control functions in

Figure 4.19, left: relaxed control scenario, right: bang-bang control scenario. The plot shows the

PER-TIM protein concentration as a function of time.

controlled cases along with the reference trajectory. Similar to the above phase ad-

vance tracking examples, one can calculate the recovery time required for tracking

the system with initial phase delay. However, the maximum phase advance one can

obtain with a 1 min light pulse is about 4.5 hours when compared to the maximum

phase delay of 3.2 hours with the same light pulse [152,142]. Due to this asymmetric

property of phase response curve for phase advance and phase delay with the same

light pulse, the time required to track a phase advanced curve and phase delayed

curve for the same phase difference may differ and it also crucially depends upon

the initial conditions of the system.
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4.8 Restoration of altered circadian rhythms

Chronotherapy can be viewed as a therapeutic control operated through drug injec-

tion schedules or modifications of the environment (e.g., exposure to light or feed-

ing). Cancer is one field of medicine where chronotherapeutic approaches have been

developed and tested [153]. Chronomodulated injection for example allows to lower

considerably the side effects of highly toxic anticancer drugs [154] in chemotherapy.

Clinical observations indicate that circadian rhythms may be altered in many types

of cancer [155]. It has also very recently been established that the circadian clock

plays a key role in tumor suppression [156] and that rhythm alteration itself might

even cause cancer. Thus an additional goal of cancer therapy beyond the destruction

of tumor cells might be the restoration of the endogenous circadian time structure

because such a restoration could improve the prospects of patient recovery [157].

The issue of restoring normal rhythmic behavior by means of external pertur-

bations has been addressed in models admitting sustained oscillations of the limit

cycle type. An abstract nonlinear model has been proposed for the rhythmic evo-

lution of vasopressin and cortisol. Two sets of conditions are considered, yielding

oscillations characterized by the same circadian period but corresponding to differ-

ent relative levels of the two hormones [158]. The model was used to determine the

type of periodic perturbation by which “pathological” oscillations could be reverted

optimally to the “normal” pattern of oscillation. A simplified Drosophila model

has recently been studied from a control point of view in [159], where the authors

theoretically investigate periodic activation/inhibition schemes of the translation

frequency of messenger RNA of a clock gene. Flatness based control methods have

been applied to control protein concentration oscillations in [160]. However the use

of optimal pulsatile activation/inhibition schemes have not been studied so far. We

use mixed-integer optimization for obtaining such pulsatile solutions for restoration

of altered rhythm.

The Drosophila circadian rhythm model studied here can be used for study-

ing possibilities to modify pathological rhythms, e.g. to restore the normal char-

acteristics of the circadian time structure, bearing in mind possible applications in

pharmacokinetics. In this case, the aim of our control problem is to determine the

type of perturbation by which pathological oscillations could be reverted optimally

to the normal pattern of oscillation.

We model the altered pathological rhythm by changing the parameters νdP =

2.4nMh−1 and νdT = 2.4nMh−1, the maximal degradation of PER and TIM pro-

teins. These parameter values represents the nonmutant or “wild-type” Drosophila,

with an oscillation period of close to 24 hours. By changing the parameter values

to νdP = 4.5nMh−1 and νdT = 4.5nMh−1, we model the mutant Drosophila, called

perl, and with νdP = 1.25nMh−1 and νdT = 1.25nMh−1, mutant Drosophila, called
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pers, with altered amplitude and endogenous oscillation period of 29 hours and 19

hours respectively. Such mutants with long period of about 29 hours and short

period of about 19 hours are well known in case of Drosophila [110].

For optimal control, we consider the problem of shifting a mutant Drosophila

PER cycles towards a wild-type Drosophila PER cycle, setting its period precisely

back to 24 hours. We assume that the alteration, caused by changing the parameters

cannot be recovered by direct pharmacological access of νdP and νdT, and that we

have to find an indirect way to change the period and geometric characteristics of

the limit cycle characterzing the the wild-type Drosophila PER cycle. Progress in

gene manipulation techniques make it reasonable to think of modifying transcription

rates by constant activation or inhibition. However translation rates can be acted

upon by more conventional means: drugs like antibiotics, substances like interferons

or toxines are known to have influence on translation frequency. Here we use both

translation frequency ksP and ksT of PER and TIM proteins and transcription rates

νsP and νsT of per and tim mRNA as control parameters which may be influenced

by suitable drugs. It is possible to achieve the objective of a 24-hour periodicity

for mutant rhythms by activation/inhibition of translation/transcription rates to a

constant value. However, other circadian characteristics like amplitude and phase of

oscillations cannot be recovered well for the mutant rhythms by constant stimulation

strategy. So we use translation/transcription rates as time varying controls. Time

varying drug injecting pumps with constant inputs could be used for the purpose

of chronomodulated drug administration. The control objective here is to restore

the nominal 24 hours period and the characteristics of the oscillations (shape and

amplitude) close to the wild-type Drosophila PER cycle by activation/inhibition of

translation/transcription rates.

4.8.1 Restoration of altered perl mutant rhythm

perl mutant rhythm is characterized by large amplitude long period oscillations with

a period of about 29 hours. Starting from the mutant Drosophila perl, we focus on

changing the translation frequency ks of mRNAs into the nonphosphorylated form

of proteins. Here we assume the translation frequency of PER ksP and TIM protein

ksT are the same and equal to ks. In our case the constraints on ks are minimum

and maximum values of the parameter, as ks is supposed to switch between kmin

and kmax.

min
w(t)

J(x, w(t)) :=

72∫

0

(xi(t, w(t)) − xir(t))
2dt (4.6)

The mixed-integer optimal control problem Eq. (4.6) is solved with piecewise con-

stant control inputs ks(t) after relaxing the integer constraints is shown in Figure

4.21 (left). The rhythm can be tracked by suitable variation of the translation fre-

quencies of PER and TIM proteins. The controller is able to restore a period of
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4.8 Restoration of altered circadian rhythms

24 hours, phase and amplitude of nominal oscillations very well for the long period

mutant perl. The parameter value of ks is allowed to vary in the interval of [0.8,1.6].

In Figure 4.21 (right), the mixed integer solution of the optimal control problem

Eq. (4.6) is shown, which has been computed starting from the relaxed solution as

discussed in Section 3.6.1. The corresponding controlled state trajectories are shown

in Figure 4.22 for the mixed-integer solution. In Figure 4.22 (left) accumulation of

per mRNA is plotted as a function of time for controlled, non mutant wild type

xr(t) and uncontrolled mutant type perl. The controller is able to restore both the

period and amplitude of the mutant oscillations close to the desired trajectory xr(t)

with bang-bang controls. We plotted per mRNA vs PER-TIM complex in nucleus

on right side of Figure 4.22, to visualize the control result in a state space projection.
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Figure 4.21: Optimal control inputs for the relaxed problem (left) and the bang-bang problem

(right) of circadian rhythm restoration of mutant perl in Drosophila by varying the translation

frequency ks as control input.

We studied control of transcription rates of per and tim mRNAs in our control

scenarios for restoration of perl mutant rhythm. The transcription rates of per (νsP )

and tim (νsT ) are not the equal in this case and we have two control parameters

for the optimal control problem Eq. 4.6. The constraints on transcription rates

are minimum and maximum values of individual parameters νsP and νsT , and are

supposed to switch between their minimum and maximum for mixed-integer case.

The mixed-integer solution of the optimal control problem Eq. (4.6) is shown in

Figure 4.23 with transcription rates (νsP and νsT ) as control parameters. By vary-

ing the transcription rates of per and tim we are able to achieve the same results

for perl mutant rhythm restoration as in case of using translation rates as control

parameters.
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Figure 4.22: Rhythm restoration of mutant Drosophila perl by the optimal bang-bang control

functions from Figure 4.21. The (left) plot shows the per mRNA protein as a function of time in

case of above control scenarios and (right) plot shows the corresponding limit cycles for the perl

mutant restoration in a state space projection.
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Figure 4.23: Optimal control inputs of bang-bang problem for circadian rhythm restoration

of mutant perl in Drosophila model by varying the transcription rates νsP and νsT as control

parameters.

4.8.2 Restoration of altered pers mutant rhythm

pers mutant rhythm is characterized by small amplitude short period oscillations

with a period of about 19 hours. Our control objective is again to restore the nomi-

nal 24 hours period and the characteristics of the oscillations (shape and amplitude)

close to the nominal values by inhibition of translation rates of PER and TIM. In

Figure 4.24 (left), the control input ks(t) as a solution of problem (4.6) with relax-

ation of the integer constraints is shown. The parameter value of ks is allowed to

vary in the interval of [0.2,1.2].

60



4.8 Restoration of altered circadian rhythms

time, [h]

tr
an

sl
at

io
n

fr
eq

ue
nc

y
(k

s)
[1

/h
]

0 12 24 36 48 60 72
0

0.2

0.4

0.6

0.8

1

1.2

time, [h]

tr
an

sl
at

io
n

fr
eq

ue
nc

y
(k

s)
,[

1/
h]

0 12 24 36 48 60 72
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 4.24: Optimal control inputs for the relaxed problem (left) and bang-bang control solution

(right) for circadian rhythm restoration of mutant pers in Drosophila by varying the translation

frequency ks as a function of time.
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Figure 4.25: Restoration of pers mutant rhythm by optimal relaxed solution (left) and bang-bang

control solution (right) by varying the translation frequency ks as a function of time. The plot

shows the corresponding per mRNA as a function of time.

The rhythm can be tracked by suitable variation of the translation frequencies.

The controller is able to restore a period of 24 hours, phase and amplitude of nominal

oscillations very well for the short period mutant pers and the corresponding state

trajectory of per mRNA concentration is shown in Figure 4.25 (left). Starting with

the relaxed solution we tried to calculate the bang-bang solution for the problem

(4.6) for pers case. But a bang-bang numerical solution within the control intervals

of ks ∈ [0.2,1.2] cannot be achieved, which is evident from the structure of the relaxed

solution of Figure 4.24(left). We modified the control intervals of ks ∈ [0.8,2.0] for

obtaining a bang-bang numerical solution.
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Figure 4.26: Optimal control inputs for the bang-bang problem of circadian rhythm restoration

of mutant pers in Drosophila by varying the transcription rates νsP and νsT as control parameters.
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Figure 4.27: Restoration of pers mutant rhythm with bang-bang control solution by varying the

transcription rates (νsP and νsT ) as a function of time. The plot shows the corresponding per

mRNA concentration as a function of time.

The mixed integer control inputs ks(t) for restoration of pers mutant rhythm

is shown in Figure 4.24 (right) and controlled per mRNA concentration as a func-

tion of time in Figure 4.25 (right). The controller is able to restore the period of

oscillations to 24 hours but the amplitude of oscillations are not restored well within

the control limits of ks ∈ [0.8,2.0]. This might be due to the fact that one has to

inhibit the translation rates in order to recover the amplitude and period of pers

mutant rhythm. But the choice of control intervals ks ∈ [0.8,2.0] for mixed-integer

solution allows very little freedom for the controller to inhibit the translation rates

from its nominal value of ks = 0.9.

We also studied the control of transcription rates of per and tim mRNAs
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4.9 Optimization based Feedback: Nonlinear Model Predictive Control

in our control scenarios for restoration of pers mutant rhythm. The mixed-integer

solution of the optimal control problem Eq. (4.6) is shown in Figure 4.26 with tran-

scription rates (νsP and νsT ) as control parameters. By varying the transcription

rates of per and tim we are able to achieve a better restoration results for pers mu-

tant rhythm when compared to using translation frequency as control parameter.

The corresponding controlled state trajectory for per mRNA is shown in Figure 4.27.

4.9 Optimization based Feedback: Nonlinear Model Pre-

dictive Control

In this section, we present the NMPC real-time iteration scheme [74,76,91] for restor-

ing the altered circadian rhythms online using circadian rhythms in Drosophila as a

model system. We extend the concept of offline control approach presented in Sec-

tion 4.8, to restore the characteristics of mutant rhythms at a given time points in

real time by feedback tracking of such altered rhythms. The optimization problem

is numerically solved by the real-time iteration scheme realized within the software

package MUSCOD-II [80] as discussed in Section 3.5. NMPC real-time iteration

scheme along with an EKF state estimation algorithm allows us to estimate the

actual state values from noisy measurements of system states and parameters. The

algorithm has been successfully applied for NMPC of a real pilot-plant distillation

column modeled by a large scale DAE systems [161].

4.9.1 Control of circadian rhythms with NMPC

Mott et al. used model predictive control to shift the biological clock within a con-

strained environment (maintaining an astronaut’s rhythm in space) by finding a set

of optimal light pulses [162]. Their methods were applied to a modified Van der Pol

oscillator with a free-running period of just over 24 hours. The Van der Pol system

was transformed into a linear model through use of both a nonlinear state feed-

back compensation block and a nominal linear approximation. Bagheri et al. used

model-specific data which was calculated a priori (i.e. through phase and transient

response curves) and used in combination with a cost function to determine the

next control move, simulating an iterative closed-loop look-up table problem [142].

Recent studies again by Bagheri et al. showed how to effectively reset the circadian

rhythms in a model of mammalian circadian system using NMPC [141]. Laroche

et al. used a flatness-based control method for controlling the PER protein oscil-

lations in a five variable Drosophila model using translation frequency as control

parameter [160]. Most of these methods are based either on linear approximation

of the model or assume that there is no mismatch between the actual process and

the model considered, which is clearly not the case in reality. In the present work

here, we demonstrate exemplarily the application of an efficient nonlinear model

predictive control (NMPC) algorithm for real-time optimal feedback control of al-

tered circadian rhythms in a Drosophila model system in case of measurement noise

and process-model mismatch.
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4.9 Optimization based Feedback: Nonlinear Model Predictive Control

Here we use translation frequency as the control parameter u(t) = ks as in

case of open-loop control in Section 4.8, which is assumed to be piecewise constant

on small intervals and can be controlled online by a drug delivery pump. By con-

trolling the translation frequency rates via NMPC, we show numerically how one

can restore the amplitude and period of mutant circadian rhythms back to the non-

mutant rhythms online.

The objective functional here is the minimization of deviation of the mutant

rhythm from that of the desired reference trajectory xr(t) (nonmutant wild-type

rhythm). Here we choose the L2-norm to quantify the deviation leading to the

following Lagrange-type objective function:

Φ =

t0+T∫

t0

(‖xi(t) − xir(t)‖2
2 + ‖ks(t) − ksr(t)‖2

2) dt (4.7)

where xir(t) is the desired reference trajectory corresponding to xi to be induced by

the control function ks. We added an additional term (‖ks(t) − ksr(t)‖2
2) to our ob-

jective functional in order to penalize the control moves with reference to a set point

ksr(t). The least-squares form of this type of objective function can be exploited for

an efficient solution of the optimization problem by using a Gauss-Newton approach

of the constrained nonlinear optimization problem [74]. Due to low computational

cost, the later approach is particularly useful for real-time optimization. At time t

= t0 the system is assumed to be in the initial state with the following structure,

ẋ(t) = f(x(t), ks(t), p), (4.8)

x(t0) = x̃(t0). (4.9)

ksmin
≤ ks ≤ ksmax

(4.10)

where x̃(t) denotes the current differential states that are either measured or esti-

mated. Objective functional (4.7) has to be solved with respect to the constraints

(4.8-4.10).

In biology the operating conditions for the model organisms varies from one

experiment to other experiment and it is reasonable to include a feedback strategy

for incorporating the model inefficiencies into an online optimal control algorithm.

This could be done by real-time measurements of concentrations of mRNA and pro-

teins involved in circadian system together with system estimation techniques. At

every sampling time t, the concentrations of mRNA and proteins are measured and

the actual values are updated accordingly in the optimization algorithm. We sim-

ulate numerically disturbances and uncertainties in measurements of actual system

states by adding a Gaussian white noise at each sampling point, there by simulating

the system under more realistic conditions.
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4.9 Optimization based Feedback: Nonlinear Model Predictive Control

Solving the NLP resulting from direct multiple-shooting reformulation of Eqs.

4.7-4.10 as in Section 3.5 with a current initial value x̃(t0) yields an optimal solution

u∗(t0, x̃(t0)) on the horizon [t0, t0 +Tp], where Tp is the prediction horizon (Tp =120

hour in the present case). In the closed-loop framework, however only a first of u∗

with the length usually depending on the sampling time (δ = 1 hour) is applied to

the process. Based on the measurements at t + δ, the concentrations of variables

are estimated with the variant of EKF (as discussed in Section 3.5.2) and the new

values of states and control moves are updated. Then the optimal control problem

Eq. (4.7) is solved again with the new initial values obtained from the estimator.

The time between the advent of a new x̃ and the response of the NMPC in form

of a corresponding u∗ creates a feedback delay which can be minimized by real-

time iteration scheme with initial value embedding strategy as described in Section

3.5.1. The control horizon (Tc) and the prediction horizon (Tp) both have the same

time length in our applications treated here. In general one can have a prediction

horizon which is longer than the control horizon. In this case, the controls u for

any time beyond the control horizon are fixed to the last value of the control horizon.

In the following sections, we present the results aiming at restoration and

feedback tracking of a mutant rhythms in a Drosophila model to that of nonmutant

rhythms. We present and discuss NMPC results for two scenarios: (1) Restora-

tion of perl mutant rhythm; (2) Restoration of pers mutant rhythm. The NMPC

schemes are simulated within a Matlab control environment that calls the DAE

solver, DAESOL [59], to simulate the process for one sampling time and delivers the

current states and parameters to the controller. The control environment is waiting

for the results of the dynamic optimization performed by MUSCOD-II. It reads the

available results from a communication file and gives the new controls to the DAE

solver for the simulation of the next sampling period. This procedure is repeated

for each sampling interval until the end of simulation time is reached.

4.9.2 Restoration of altered perl mutant rhythm by NMPC

We assume the translation frequency of PER/TIM proteins are equal in this case as

well(i.e. ksP = ksT = ks) for restoring the circadian periodicity and amplitude of the

perl mutant rhythms. An approximate choice of bounds for control values (ks) are

taken from offline solution of perl mutant rhythm restoration from Section 4.8.1. In

order to recover the high amplitude long period oscillations, translation frequency

(ks) of PER/TIM proteins has to be activated from its nominal value of ks=0.9. So,

we set the control set point ksr(t) = 1h−1 which is higher than the nominal ks value

for nonmutant rhythm.

We assume that the measurements of two differential variables x1, x10 are

available at each sampling instant with a sampling time of 1 hour. We have imple-

mented a variant of an EKF in order to estimate the differential states x from these

two measurements x1, x10. We added a normally distributed random perturbation
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Figure 4.28: Rhythm restoration of mutant Drosophila perl by nonlinear model predictive con-

trol. The (top) plot shows the per mRNA (Mp) concentration and (bottom) plot shows PER-TIM

complex (CN ) protein concentration as a function of time. Solid line: Reference trajectory of a

nonmutant rhythm. Dash-dot line: Long period mutant rhythm with a period of about 29 hrs.

Small ×-symbols: System states after Gaussian perturbations of the actual predicted states. Dot-

ted line: Model-based numerical prediction of the states for the controlled model system. Dashed

line: Controlled mutant rhythm with NMPC.

(Gaussian white noise) of 1% mean and 4% variance to the numerically simulated

concentration values of x1, x10 on each sampling interval in this application. It is

important that the process model assumed is perfect, i.e. there is no process-model

mismatch. However, this assumption is clearly not satisfied in most cases as the pa-

rameters in modeling of biological systems are not quantitative enough. A remedy

is to additionally estimate a sufficient number of model parameters along with the
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Figure 4.29: Optimal control inputs for circadian rhythm restoration of mutant perl by NMPC

in Drosophila model system by varying the translation frequency ks of PER/TIM proteins as a

function of time.

system states or use EKF formulation including process noise. Here, we incorporate

such process noise in our system for parameters νdP , νdT and νsP with Gaussian

white noise of zero mean and 3% variance of actual values of model parameters.

This process noise along with measurement noise is updated to the EKF estimation

algorithm at each sampling interval of 1 hour.

The control and EKF state estimation results are summarized in Figure 4.28.

The numerical NMPC scheme needs a relatively constant computation time of less

than one sec for delivering the feedback control. It compares the measured (Small

×-symbols), estimated (dotted line) and true states (dashed line) of per mRNA

and nuclear PER-TIM protein complex (CN) under controlled conditions. Despite

the noise levels in measurements and process, the NMPC scheme tracks the con-

centrations of per mRNA and nuclear PER-TIM protein complex very well, which

demonstrate good filtering properties of the EKF algorithm. In Figure 4.28, it also

depicts reference trajectory nonmutant rhythm (“wild-type”) (solid line) and the

mutant uncontrolled rhythm (dash-dot line), so that one can view how much we

steered the system from its original behavior. To visualize the results in state space,

we plotted per mRNA vs PER-TIM complex (CN) in Figure 4.30. The NMPC con-

troller is able to react very well to the process and measurements noise, and follows

a desired limit cycle closely. The necessary piecewise constant change in translation

frequency of PER/TIM proteins for restoration altered long period mutant rhythm

is shown in Figure 4.29. By activation of translation rates of protein PER and TIM

from its nominal value of ks = 0.9, one can decrease the period of oscillations and
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Figure 4.30: The corresponding limit cycles for the perl mutant restoration in a phase space

projection of per mRNA and nuclear PER-TIM protein complex. Solid line: Reference trajectory

of a nonmutant rhythm. Dash-dot line: Long period mutant rhythm with a period of about 29

hrs. Dashed line: Controlled limit cycle oscillations under measurement and process noise.

restore the circadian characteristics like amplitude and phase very well within the

control limits of ks ∈ [0.8,1.6] for perl mutant rhythm.

4.9.3 Restoration of altered pers mutant rhythm by NMPC

In order to recover the period and amplitude of pers mutant rhythms, one need to

inhibit the translation rates of PER/TIM proteins. We fix the control set point

ksr(t) at 0.44, where the system actually recovers the circadian period in pers mu-

tant rhythm. We assume that the measurements of the two differential variables x1,

x10 are available at every sampling interval in this case as well. All measurements

are perturbed with Gaussian white noise of 1% mean and 4% variance to the nu-

merically simulated concentration variables x1, x10 and with zero mean 3% variance

for the parameters νdP , νdT and νsP on each sampling interval.

The results in case of pers restoration are summarized in Figure 4.31. It

compares the measured (Small ×-symbols), estimated (dotted line) and true states

(dashed line) along with reference trajectory of nonmutant rhythm (solid line) and

pers mutant rhythm (dash-dot line) of per mRNA and nuclear PER-TIM protein

complex (CN) under controlled conditions. Like in previous case for restoration of

perl mutant rhythm, the NMPC algorithm here for pers mutant rhythm reacts well

to the process and measurement noise and tracks the concentrations of mRNA and
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Figure 4.31: Rhythm restoration of mutant Drosophila pers by nonlinear model predictive con-

trol. The (top) plot shows the per mRNA (Mp) concentration and (bottom) plot shows PER-TIM

complex (CN ) protein concentration as a function of time. Solid line: reference trajectory of a

nonmutant rhythm. Dash-dot line: Short period mutant rhythm with a period of about 19 hrs.

Small ×-symbols: System states after Gaussian perturbations of the actual predicted states. Dot-

ted line: Model-based numerical prediction of the states for the controlled model system. Dashed

line: Controlled mutant rhythm with NMPC.

proteins very well with in control limits ks ∈ [0.4, 0.6]. In Figure 4.33, it depicts the

results of pers mutant rhythm restoration in state space of per mRNA vs PER-TIM

complex (CN). The controller is able to react well to the noise levels and follows a

desired limit cycle closely. The necessary piecewise constant changes in translation

frequency of PER/TIM proteins for restoration of altered pers mutant rhythm with

noise levels is shown in Figure 4.32. By inhibiting the translation rates from its

nominal value of (ks=0.9), one can increase the oscillation period in pers mutant

case and restore its circadian characteristics like amplitude and phase.
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Figure 4.32: Optimal control inputs for circadian rhythm restoration of mutant pers calculated by

NMPC in Drosophila model system by varying the translation frequency ks of PER/TIM proteins

as a function of time.
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Figure 4.33: The corresponding limit cycles for the pers mutant restoration in a phase space

projection of per mRNA and nuclear PER-TIM protein complex. Solid line: Reference trajectory

of a nonmutant rhythm. Dash-dot line: Short period mutant rhythm with a period of about 19

hrs. Dashed line: Controlled limit cycle oscillations under measurement and process noise.

NMPC controller allows restoration of approximate level of mRNA and protein

concentrations in case of both perl and pers mutant rhythms under measurement

and process noise in the present study.
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Chapter 5

Circadian Cycle and Cell Cycle

Circadian cycle and the cell cycles are two global regulatory systems that have

pervasive effects on organismal and cellular physiology. It has been quite clear

for many years that there is an interaction between the cell division and the cir-

cadian cycles [45, 163, 164, 165]. Disruption of the circadian rhythm may cause

defects in regulation of cell proliferation. Model studies addressing the mechanisms

through which the circadian clock regulates the cell cycle might help Chronotherapy.

Chronotherapy takes into account the biological time to improve cancer treatments

caused by the malfunction of the cell cycle, by optimizing the chronomodulation of

drugs into the system. A detailed molecular level model between the circadian cycle

and the cell cycle might help to understand the timing of the cell cycle events. In

this chapter, we try to model the coupled mammalian circadian cycle with cell cycle

at molecular level linking via WEE1 kinase. We briefly describe different phases of

the cell cycle and the mathematical models of cell cycle and circadian cycle consid-

ered here with some experimental evidences of links between these two cycles.

5.1 Cell Cycle

Cell cycle is the period of time that is needed for a cell to double its genetic content

and distribute it to its two daughter cells. In most cells, this time is coupled to

the duplication of other cell contents and cells can divide only after doubling their

size [166]. A typical cell goes through a precise DNA replication and mitosis (dou-

bling and distributing genetic information) while its ribosome number and cell mass

approximately doubles. Duplication of cell mass is usually the slower process, which

creates special phases into the cell cycle. Between S-phase (DNA replication) and

M-phase (mitosis) growing, genetically resting phases G1 and G2 are incorporated.

So the typical somatic eukaryotic cell cycle is ordered in G1, S, G2 and M-phases.

Special checkpoints of the cell cycle coordinate cell growth with the DNA cycle,

the cells have to reach a critical size to start S-phase and have to complete DNA

replication and might need to reach another critical size to initiate mitosis. Before

subsequent S-phase, the proper finish of M-phase is also checked. In homeostasis,

cell growth and the DNA cycle, balance each other with the help of extended G1

and G2 phases, hence individual cell cycle times in a population of cells will be

equal to the mass doubling time (MDT) of the population. Molecular mechanisms
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5.1 Cell Cycle

Figure 5.1: The phases of the cell cycle

that ensure the correct progression of the cell cycle have been described. Interlocked

feedback loops constitute an essential pre-requisite for the regulation of molecular

components of the cell cycle machinery [167, 168]. As a result of this tight regula-

tion, defects in cell cycle check-points may be responsible for an uncontrolled and

continuous proliferation leading to cancer development [169].

5.1.1 A Computational model for the cell cycle

The molecular controls of cell division are fundamentally similar in all eukary-

otes [171]. Major events of the eukaryotic cell cycle are choreographed by peri-

odic activation of several cyclin-dependent kinases (Cdks) and the enzymes and

inhibitors that effect their activities. Unlike unicellular organisms, like yeast, the

cells of multicellular organisms proliferate only when permitted by specific growth

factors (GFs). If GFs are deprived, cells early in G1-phase leave the cycle and enter

a resting state (G0); older cells finish the ongoing cycle and enter the resting state

after mitosis. The point in G1, before which cells enter directly into the resting

state is called the restriction point [172].

Here we use the model proposed by Novák and Tyson on restriction point

control of mammalian cell cycle [170]. A schematic wiring diagram of the cell cycle

model is shown in Figure 5.2. For a detailed description of the reaction mechanisms

and different processes involved, we refer to the Novák and Tyson article [170]. The
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5.1 Cell Cycle

Figure 5.2: Schematic diagram of molecular network regulating the progression of mammalian

cells through the cell cycle (The figure is redrawn following the Ref. [170]).

model consists of a set of nonlinear differential equations (Eq. A.2-A.27) based on

realistic molecular events underlying progression through different phases of cell cy-

cle. In this part of the thesis, we will be concentrating more on coupling aspects of

this cell cycle model with circadian cycle through WEE1 in G2-M phase.

Figure 5.3 and 5.4 show numerically simulated cell cycles of normal mam-

malian cells, growing exponentially in the presence of GFs, based on the differential

equations (A.2-A.27). The parameter values are tabulated in Table A.1 and dimen-

sionless constants in Table A.2.
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5.2 A Computational model for the mammalian circadian clock

time, [h]

C
dh

1,
ce

ll
m

as
s,

[u
ni

ts
]

C
yc

B
/C

dk
1,

[u
ni

ts
]

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1

2

3

4CycB/Cdk1
Cdh1
cell mass

time, [h]

C
yc

E
/C

dk
2,

C
yc

A
/C

dk
2,

K
ip

1 to
ta

l,
[u

ni
ts

]

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

CycE/Cdk2
CycA/Cdk2
Kip1 total

Figure 5.3: Numerical simulations of the mammalian cell cycle. Three full cycles are shown. Cells

are accumulating cytoplasmic mass exponentially (left: dashed line) and dividing when Cdc20 and

Cdh1 are activated at the end of the cycle. The curves in the (right) panels represent the cellular

concentration of different cell-cycle regulators, total Kip1 level(free and in complex with cyclins A,

D and E), and the active forms of CycA and CycE associated kinase (not in complex with Kip1).

(Results are reproduced following [170])
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Figure 5.4: Numerical simulations of the mammalian cell cycle. The curves in the plot represent

the cellular concentration of different cell-cycle regulators. Total CycA and CycE levels (dimers

with Cdk2 and trimers with Cdk2 and Kip1) and the hypophosphorylated form of Rb.

5.2 A Computational model for the mammalian circadian

clock

Overview of how the mammalian molecular clock works is described in Section 4.2.2.

A family of closely related models can be built based on the mechanisms described

in Figure 4.4. Here, we focus on one particular model proposed by Leloup and
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5.2 A Computational model for the mammalian circadian clock

Goldbeter [34] which is schematized in Figure 5.5 . The model for circadian oscilla-

tions in mammals involves interlocked negative and positive regulations of Per, Cry,

Bmal1 genes by their protein products. For a detailed description of molecular pro-

cesses involved in the considered model, we refer to the original article (see Ref. [34]).

Figure 5.5: Model for circadian oscillations in mammals involving interlocked negative and pos-

itive regulations of Per, Cry, Bmal1 genes by their protein products. Per, Cry, and Bmal1

mRNAs are synthesized in the nucleus and transferred into the cytosol. There they are degraded

and translated into the PER, CRY, and BMAL1 proteins, which undergo reversible phosphoryla-

tion that leads to their degradation. The complex formed by the cytosolic unphosphorylated forms

of PER and CRY, and the cytosolic BMAL1 protein are reversibly transported into the nucleus.

It assumes that once in the nucleus, unphosphorylated BMAL1 immediately forms a complex with

CLOCK. Nuclear BMAL1 activates Per and Cry transcription and inhibits Bmal1 transcription.

These regulations are counteracted by the reversible formation of an inactive complex between the

nuclear, unphosphorylated PER-CRY and CLOCK-BMAL1 complexes. The effect of light is to

increase the rate of expression of the Per gene. (The figure is redrawn following the Ref. [34])

Figure 5.6 numerically simulates circadian oscillations based on the differential

equations (Eqs. B.1- B.16) and parameter values in Table B.1. The model accounts

for the occurrence of sustained oscillations, in the conditions corresponding to con-

tinuous darkness. This is achieved by keeping the νsP value at a constant low level

of 1.5nMh−1. In agreement with experiments, the model predicts an antiphase rela-
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5.3 Coupling the circadian cycle and the cell cycle

time, [h]

m
ol

ec
ul

ar
co

nc
en

tr
at

io
n,

[n
M

]

0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

Per mRNA (MP)
cry mRNA (MC)
Bmal1 mRNA (MB)
PER protein (PC)
CRY protein (CC)
phosphorylated PER protein (PCP)
phosphorylated CRY protein (CCP)

Figure 5.6: Circadian oscillations

in continuous darkness. Time evolu-

tion of mRNAs, phosphorylated and

non-phosphorylated proteins in cy-

tosol and nucleus are shown in the

figures. Per, Cry and Bmal1, phos-

phorylated and non-phosphorylated

proteins PER and CRY in the cy-

tosol are shown in the (side) fig-

ure. Plot in the bottom (left) panel

shows the phosphorylated and non-

phosphorylated form of PER-CRY

complex and BMAL1 protein in cy-

tosol. Plot in the bottom (right)

panel shows the phosphorylated and

non-phosphorylated form of PER-

CRY complex and BMAL1 protein

along with inactive complex in nu-

cleus respectively. The curves are

obtained by the numerical integra-

tion of Eqs. (B.1-B.16) for the pa-

rameters listed in Table B.1

time, [h]

m
ol

ec
ul

ar
co

nc
en

tr
at

io
n,

[n
M

]

0 10 20 30 40 50 60 70

2

4

6

PER-CRY in cytosol (PCC)
phos. PER-CRY in cytosol (PCCP)
BMAL1 protein in cytosol (BC)
phos. BMAL1 protein in cytosol (BCP)

time, [h]

m
ol

ec
ul

ar
co

nc
en

tr
at

io
n,

[n
M

]

0 10 20 30 40 50 60 70
0

2

4

6 PER-CRY in nucleus (PCN)
phoS. PER-CRY in nucleus (PCNP)
BMAL1 protein in nucleus (BN)
phos. BMAL1 protein in nucleus (BNP)
Inactive complex (IN)

tionship between the oscillations of Per and Cry mRNAs on one hand, and Bmal1

mRNA on the other. When incorporating the light-induced gene expression of the

Per gene, the model accounts for entrainment of the oscillations by the light-dark

cycles.

5.3 Coupling the circadian cycle and the cell cycle

The circadian cycle and the cell cycle are regulated by common factors like metabo-

lites, hormones, or nutrients, that affect food intake [173] (see Figure 5.7). For ex-

ample, glucose is able to reset peripheral clocks and regulate genes involved directly
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5.3 Coupling the circadian cycle and the cell cycle

in cell cycle progression [174]. Melatonin is a chronobiotic regulator that relays the

circadian rhythm to the peripheral organs for physiological regulations [175]. While

Figure 5.7: Common elements shared by biological clocks and cell cycle. (The figure is taken

from the Ref. [95]

these two regulatory systems involve distinct mechanisms, there is some evidence

that these cycles are linked. Most mammalian diploid cells exhibit an approximately

24-hour cell cycle period, and the circadian clock has been implicated in regulation

of the phases of cell division [176]. For example, in humans, the major peak of

per1 expression coincides with the G1 phase, whereas the peak of bmal1 expression

coincides with M-phase [177, 178]. Of special interest was the demonstration that

the cell proliferation and apoptosis in rapidly renewing tissues are circadianly syn-

chronized [176, 179]. It has been observed that phase shifting of mice leads to a

corresponding shift in the timing of the cell cycle events in both gut and bone mar-

row [180]. Such phase shifting is associated with a shift in the circadian expression

of per1 in the rat SCN and in peripheral tissues [102].

Matsuo et al. [45] measured the expression of proteins involved in the cell

cycle mechanism at different hours of the day in regenerating liver cells, especially

the WEE1 kinase and its target, the cyclin-dependent kinase cdc2. According to

them, mutations of circadian genes have a direct impact on wee1 mRNA and protein

patterns (e.g. a cry deficient mutant exhibits high levels of wee1 mRNA throughout

regeneration) suggesting that WEE1 is regulated by some components of the cir-

cadian cycle. The change in CDC2 activity might be a consequence of the change

in WEE1 [181]. The wee1 gene promoter is believed to be activated by the com-

plex CLOCK/BMAL1 and inhibited by CRY. The WEE1 kinase seems to be a

good candidate to establish a link between the cell and circadian cycles during the

G2-M transition (see Section 5.3.1). Other links are also reported in literature by

which circadian rhythms influence the cell cycle, for example, PER2 regulates the
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5.3 Coupling the circadian cycle and the cell cycle

transcription of c-myc, and in a moderate way that of mdm2 [165], links through

tim (timeless) are also hypothesized [163, 164]. However, the precise mechanisms

involved are still not completely clear and require a very detailed description of the

cell cycle and circadian cycle that distinguishes between PER1, PER2 and PER3,

etc. All of these data thus suggest the existence of complex indirect influences of

circadian rhythms on the mechanisms controlling cell proliferation. In this work,

we restrict our study to the link established through WEE1, which will allow us to

rely on a simpler and more generic models of the cell cycle and circadian cycle.

5.3.1 Linking the cell cycle and the circadian cycle via WEE1 kinase

Many models have been developed to describe both of these cycles, but only a few

have described a real interaction between them [181,182]. In the coupled circadian

cycle and cell cycle model proposed by Calzone et al. [181], the focus is on a single

phase of the cell cycle i.e. the G2-M transition. The model proposed by Zámborszky

et al. [182] is based on full cell cycle model but the circadian model they considered

doesnot distinguish between different genes and proteins. Here, we try to couple

the two numerical models presented in the previous sections, one for the circadian

cycle in Section 5.2 and other for the generic cell cycle model in Section 5.1.1. We

will try to establish a relation at molecular level through WEE1 kinase. In a way,

the present model is an extension to the model proposed by Zámborszky et al. [182]

with detailed molecular level model for the circadian clock.

Figure 5.8: Linking the circadian and the cell cycles via WEE1.

The two models are linked through the transcription of WEE1. In addition to

the equations of both models (Eq. A.2-A.27) and (Eq. B.1-B.16) a set of equations

for WEE1, WEE1P protein, phosphorylated form of Cdk1/CycB and CDC25 are
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5.3 Coupling the circadian cycle and the cell cycle

added. We didn’t consider the equation for wee1 mRNA as in case of cell cycle

model under the assumption of rapid message turnover [170], such that mRNAs in

cell cycle are always in steady state. The proteins chosen to illustrate in coupling

these two models are shown in Figure 5.8.

d[Wee1]

dt
= (kw5′ + kw5′′[BN ]) − kw6[Wee1] +

kw1[Wee1p]

(Jw1 + [Wee1p])

−((kw2′ + kw2′′[CycB])[Wee1])

Jw2 + [Wee1]
(5.1)

d[Wee1P ]

dt
=

(kw2′ + kw2′′[CycB])[Wee1]

Jw2 + [Wee1]

− kw1[Wee1P ]

Jw1 + [Wee1P ]
− kwd[Wee1P ] (5.2)

d[cycBP ]

dt
= (kwee1′ + kwee1′′[Wee1])[cycB] − V2[CycBP ]

−(kcdc25′ + kcdc25′′[Cdc25a])[cycBP ] (5.3)

d[Cdc25a]

dt
=

(kc3′ + kc3′′[CycB])(1 − [Cdc25a])

Jc3 + 1 − [Cdc25a]
− kc4[Cdc25a]

Jc4 + [Cdc25a]
(5.4)

time, [h]

m
ol

ec
ul

ar
co

nc
en

tr
at

io
ns

,[
un

its
]

0 12 24 36 48 60 72
0

0.5

1

1.5

2

2.5

Wee1
cell mass
BMAL1 N

time, [h]

ce
ll

m
as

s,
C

dh
1,

[u
ni

ts
]

C
yc

B
/C

dk
1,

[u
ni

ts
]

0 12 24 36 48 60 72
0

0.5

1

1.5

2

2.5

0

1

2

3

4

CycB/Cdk1
Cdh1
cell mass

Figure 5.9: Numerical simulation of coupled circadian cell cycle model. Plots shows the variation

of WEE1 concentration along with cell mass and circadian BMAL1N concentration (left). Cells

accumulate cytoplasmic mass exponentially and divide when Cdh1 crosses 0.2 from below (right:

dashed line).

Early in the cycle, Cdk1/CycB is kept inactive because the cyclin is not syn-

thesized and WEE1 is present. As the cyclin is slowly synthesized, Cdk1/CycB acti-

vates and reaches a threshold that both inactivate WEE1 and activate CDC25 which

maintains Cdk1/CycB in its active state [181]. The model is composed of two pos-

itive feedback loops (CDC25 activates Cdk1/CycB which in turn activates CDC25,
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5.3 Coupling the circadian cycle and the cell cycle

and WEE1 inactivates Cdk1/CycB which in turn inactivates WEE1). The produc-

tion of WEE1 is a function of the nuclear form of the complex BMAL1/CLOCK

(BN) and the unphosphorylated nuclear form of the complex PER/CRY(PCN ). The

negative effect of PER/CRY(PCN ) does not need to appear in the equation as it

already has an influence on the activity of BMAL1/CLOCK (BN). The degradation

of proteins are considered to be linear for WEE1, WEE1P. The parameter values

for the coupled circadian cell cycle model are chosen from the Refs. [181,182,34,170].

Figure 5.9 shows the numerical simulation results in case of coupled circadian

cell cycle model. For the selected values of parameters the model has mass doubling

time = circadian oscillation time period of 24 hour revealing an entrainment of the

cell cycle through WEE1 activity. As observed in experiments [183] after the DNA

replication is complete, the G2 cells must await a circadian time window when the

WEE1 protein is expressed at low levels before they can enter the mitosis. When

expressed at higher cellular concentrations, WEE1 inactivate the Cdk1/CycB com-

plex there by preventing the transition from G2 to M. BMAL1/CLOCK (BN) and

Cdk1/CycB show a stable limit cycle behavior but with antiphasic behavior.
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Chapter 6

Belousov-Zhabotinksy (BZ) reaction

Introduction

Oscillating chemical reactions are among the most important examples for the pres-

ence of nonlinear dynamic laws in chemical systems [184]. The famous Belousov-

Zhabotinsky (BZ) reaction [185] is a thoroughly investigated model system for many

kinds of complex dynamical behavior ranging from simple oscillations to chaotic be-

havior in continuously stirred tank reactor (CSTR) and to spatiotemporal pattern

like propagating waves in un-stirred media [40]. The BZ systems is often referred

to as a chemical prototype for complex self-organizing dynamics in biological sys-

tems which are seldom directly accessible to direct experimental investigation and

manipulation. In this chapter we present the numerical results for target-oriented

manipulation of self-organized dynamics in BZ reaction. Firstly, we developed a

novel detailed model for BZ reaction based on elementary reaction mechanism and

applied nonlinear control techniques aiming at, stabilizing unstable steady states

and induction of specific oscillatory behavior characterized by amplitude, frequency

and mean value of the oscillating species. Control results of the newly developed

model are compared with a simple 3-variable Oregonator model available in litera-

ture for BZ reaction.

The BZ reaction system typically consists of malonic acid or a similar organic

compound which is oxidized by an acidified bromate solution in the presence of a

metal ion catalyst. Ru(bpy)2+
3 as a catalyst [43] plays an important role in the

investigation of self-organizing dynamics in the presence of light [44] as an exter-

nal control parameter. This ruthenium-catalyzed system has become increasingly

important during the last years, particularly in studies related to external control

of the system dynamics by modifying the medium’s excitability through adjusting

the illumination intensity [24]. Detailed kinetic models are required for quantitative

numerical simulation of experimental results and an in-depth understanding of the

underlying mechanism.

6.1 Construction of a detailed photo-BZ model

Several mechanisms have been proposed to account for the light sensitivity of the

Ru(bpy)2+
3 -catalyzed BZ reaction [186, 187, 188]. These consist of number of el-
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6.1 Construction of a detailed photo-BZ model

ementary reaction steps for most of which kinetic parameters are available from

experimental data. The primary photochemical process is absorption of visible light

by the Ru(bpy)2+
3 complex [189]. The excited state of the complex Ru(bpy)2+∗

3 , is

an extremely strong reducing agent, for the inorganic part of the BZ reaction the

main effect of the light is the production of BrO·
2 via (R1)-(R3) [190].

Ru(II)+hν →Ru(II)∗ ν (R1)

Ru(II)∗ →Ru(II) k2 (R2)

Ru(II)∗+BrO−
3 +2H+ → Ru(III)+BrO·

2+H2O k3 (R3)

which is coupled to the auto catalytic cycle

Ru(II)+ BrO·
2+H+ → Ru(III)+HBrO2 (R4)

BrO−
3 +HBrO2 +H+ → 2BrO·

2+H2O (R5)

A complete list of the reactions for the photosensitive BZ system with corre-

sponding kinetic parameters we use here can be found in Table 6.1. The concentra-

tion of water molecules is taken into account in the rate constants of the reactions

R16, R22, R23, R24 and R30. The rate of reaction R1 depends on the intensity and

power spectrum of light used to illuminate the reagents. For the xenon lamp, an

approximate expression derived in [191] has the form

ν = νmax

[Ru(II)]

(k1 + [Ru(II)])
(6.1)

where νmax contains information on the characteristics of the light source. As in [191]

we use the values k1 = 4.0 × 10−5M and H = 0.5M . Building on the core mecha-

nism described in [191] we included also the role of dibromomalonic acid (Br2MA)

in the photo sensitivity of the BZ system (R9). According to Försterling [193],

the concentration of Br2MA can be quite high if the sum of the initial bromide and

bromate concentrations are comparable with those of malonic acid (MA) which is

the case in many pattern formation experiments.

Modern experimental techniques with high spatiotemporal resolution, increas-

ingly allow the construction of detailed, quantitative kinetic models on a firm data

basis. There are numerous models available in literaure based on the above mech-

anisms [194, 195, 188], However from model based control point of view, they are

far from accurate. Here we model the complete reaction system using the detailed

elementary-step mechanism given in Table 6.1 in a CSTR case which leads to a set

of ordinary differential equations. We have 20 chemical species but due to the fact

that CO2 is only produced and not consumed in the BZ system the dimension of

the state space reduces to 19.

dci
dt

= ri + kf(cmf − ci) (6.2)

ci=1...19: concentration of species, ri=1...19: reaction rates, cmf : mixed feed concen-

tration, kf : flow rate.
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6.1 Construction of a detailed photo-BZ model

Reaction Rate constants Reference

(R1) Ru(II) + hν −→ Ru(II)∗ k1 = 4.0 × 10−5Mb [191]

(R2) Ru(II)∗ −→ Ru(II) k2 = 1.7 × 10+6s−1 [191]

(R3) Ru(II)∗ + BrO−

3
+ 2H+ −→ Ru(III) + BrO·

2
+ H2O k3 = 2.105 × 108M−3s−1 [187]

(R4) Ru(II) + BrO·

2 + H+ −→ Ru(III) + HBrO2 k4 = 4.0 × 106M−2s−1 [192]

(R5) BrO−

3
+ HBrO2 + H+ −→ 2BrO·

2
+ H2O k5 = 48M−2s−1 [192]

(R6) Ru(II)∗ + BrMA −→ Ru(III) + MA· + Br− k6 = 1.9 × 107M−1s−1 [191]

(R7) Ru(III) + BrMA −→ Ru(II) + BrMA· + H+ k7 = 55M−1s−1 [191]

(R8) Br2 + BrMA −→ Br2MA + H+ + Br− k8 = 53M−1s−1 [191]

(R9) Ru(II)∗ + Br2MA + H+ −→ Ru(III) + Br2 + MA· k9 = 1.48 × 108M−2s−1 [191]

(R11) Br2 + MA −→ BrMA + H+ + Br− k11 = 29M−1s−1 [191]

(R12) Ru(III) + MA −→ Ru(II) + MA· + H+ k12 = 0.2M−1s−1 [191]

(R15) 2Br· −→ Br2 k15 = 1.0 × 108M−2s−1 [191]

(R16) Ru(III) + Br2MA + H2O −→ Ru(II) + Br· + H+ + BrTA k16 = 0.2M−1s−1 [191]

(R17) Ru(III) + Br− −→ Ru(II) + Br· k17 = 0.17M−1s−1 [191]

(R18) BrTA −→ MOA + Br− + H+ k18 = 1s−1 [191]

(R20) Br· + MA· −→ BrMA k20 = 1.0 × 109M−1s−1 [191]

(R21) Br· + BrMA· −→ Br2MA k21 = 3.0 × 109M−1s−1 [191]

(R22) 2BrMA· + H2O −→ BrMA + BrTA k22 = 5.0 × 107M−1s−1 [191]

(R23) 2MA· + H2O −→ MA + TA k23 = 4.2 × 108M−1s−1 [191]

(R24) MA· + BrMA· + H2O −→ MA + BrTA k24 = 1.0 × 109M−1s−1 [191]

(R25) MA· + Br2 −→ BrMA + Br· k25 = 1.5 × 108M−1s−1 [191]

(R26) MA· + Br2MA· + H2O −→ BrMA + BrMA· k26 = 2.0 × 105M−1s−1 [191]

(R27) MA· + BrMA −→ MA + BrMA· k27 = 1.0 × 105M−1s−1 [191]

(R28) Br· + MA −→ Br− + MA· + H+ k28 = 2.0 × 105M−1s−1 [191]

(R29) Br· + BrMA −→ Br− + BrMA· + H+ k29 = 1.0 × 105M−1s−1 [191]

(R30) Br· + MOA + H2O −→ Br− + OA +· COOH + H+ k30 = 2.0 × 103M−1s−1 [191]

(R31) Br· +· COOH −→ Br− + CO2 + H+ k31 = 1.0 × 109M−1s−1 [191]

(R32) Br· + OA −→ Br− +· COOH + CO2 + H+ k32 = 2.0 × 103M−1s−1 [191]

(R33) Ru(III) +· COOH −→ Ru(II) + CO2 + H+ k33 = 1.0 × 108M−1s−1 [191]

(R34) ·COOH +· COOH −→ OA k34 = 1.0 × 109M−1s−1 [191]

(R35) Br2 −→ HOBr + H+ + Br− k35 = 80s−1 [191]

(R36) HOBr + H+ + Br− −→ Br2 k36 = 8.0 × 109M−2s−1 [191]

(A2) HBrO2 + Br− + H+ −→ 2HOBr ki2 = 2.5 × 10−6M−2s−1 [191]

(A3) 2HBrO2 −→ HOBr + BrO−

3
+ H+ ki3 = 3.0 × 103M−1s−1 [191]

Table 6.1: Reaction mechanism of the photosensitive BZ reaction and corresponding rate con-

stants, bAn approximate rate expression for R1 is given in Eq. 6.1.

Ẋ=-R5+R4-2A3-A2+A1-Ai1+kf (Xmf -X)

Ẏ =-R36+R35-A1+Ai1-A2+R6+R18+R11+R8+R28+R29+R30+R31+R32+kf (Ymf -Y)

Ṗ=A3+2A2+A1-Ai1+R35-R36+kf (Pmf -P)

Ȧ=-R3-R5+2*A3-A1+Ai1+kf (Amf -A)

V̇ =-R6-R7+R11-R8+R20+R22+R25+R26-R27-R29+kf (Vmf -V)
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6.2 Control of BZ reaction system

Ġ=-R1+R2-R4+R12+R7+R16+R17+R33+kf (Gmf -G)

Ė=R1-R2-R3-R6-R9+kf (Emf -E)

Ż=R3+R4+R6+R9-R12-R7-R16-R17-R33+kf (Zmf -Z)

Ẇ=R3-R4+2R5+kf (Wmf -W)

Q̇=-R9-R16+R8+R21-R26+kf (Qmf -Q)

Ṡ=R6+R9+R12-R20-2*R23-R24-R25-R26-R27+R28+kf (Smf -S)

Ṫ=R7-R21-2*R22-R24+R26+R27+R29+kf (Tmf -T)

Ḟ=R16+R17-2*R15-R20-R21+R25-R28-R29-R30-R31-R32+kf (Fmf -F)

ṀA=-R12-R11+R23+R24+R27-R28+kf (MAmf -MA)

İ=R15-R11-R8-R25-R35+R36+kf (Imf -I)

J̇=R16-R18+R22+R24+kf (Jmf -J)

L̇=R18-R30+kf (Lmf -L)

Ṁ=R30-R31+R32-R33-R34+kf (Mmf -M)

Ṅ=-R32+R34+kf (Nmf -N)

where X=HBrO2, Y=Br−, P=HOBr, A=BrO−
3 , V=BrMA, G=Ru(II), E=Ru(II)∗,

Z=Ru(III), W=BrO·
2, Q=Br2MA, S=MA·, T=BrMA·, F=Br·, MA (malonic acid),

I=Br2, J=BrTA (tartronic acid), L=MOA (mesoxalic acid), M=·COOH, N=OA

(oxalic acid) denote the species concentrations ci, kf=flow rate and cmf refers to

mixed feed concentrations, the dots meaning time derivative ċi = dci

dt
. R1-R9a, R11-

R12, R15-R18, R20-R36 and A1-A3 are rate expressions for the reactions listed in

Table 1. The concentrations in the mixed feed stream are zero for intermediate

species and products, only Amf ,Vmf ,Gmf ,Qmf and MAmf have non-zero initial val-

ues. The parameter values of light intensity and inflow rate are chosen such that

the system is in oscillatory mode, advanced DAESOL [59] based on BDF method is

used for accurate error-controlled numerical simulation.

By varying the parameters flow rate (kf) and level of illumination (here

νmax= φ), different kinds of dynamical behavior are found which correspond semi-

quantitatively well with experimental results [191]. Figure 6.1 shows numerically

simulated uniform oscillation behavior of the variables HBrO2, Br−, Ru(III) and

Br2 in the full model based on the set of differential equations and parameter values

from Table 6.1. The model reaches a stable limit cycle after initial transient response

starting from arbitrary initial conditions. Figure 6.2 shows the simulated time se-

ries of bromide ion concentration for parameter values (φ = 3.8 × 10−8Ms−1, 3.8 ×
10−6Ms−1) and kf = 0.1s−1. By increasing φ the system undergoes a Hopf bifur-

cation and reaches a steady state. The commonly observed steady state at high

φ-value is due to the excessive production of Br− ion, which acts as an effective

inhibitor for the auto catalytic reaction.

6.2 Control of BZ reaction system

In this study, we examine the control of temporal oscillation patterns by controlling

the light intensity and flowrate in the Ru-catalyzed BZ system. For our numerical

simulations, we employ the system of differential equations listed in Eq. 6.2 as a
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Figure 6.1: Numerical simulation of BZ reaction with the Eq. 6.2. For φ= 3.8 ×10−8 Ms−1 and

kf = 0.01s−1 the system exhibits uniform oscillations. Plot shows the time varying concentrations

of HBrO2 [M], Br− [M], Ru(III) [M] and Br2 [M] respectively.

model system. We treat light intensity (φ) and flow rate (kf) as control parameters

to compute time varying control inputs which gives rise to a particular output

behavior of the system. This output behavior xr(t) is a predetermined desired

temporal dynamics of the system. The corresponding input signals φ and kf are

numerically computed as solutions of the optimal control problem to minimize the

deviation of the actual system behavior from that of the desired reference trajectory.

In a mathematical formulation the optimal control problem here is

min
u

:=

T∫

0

‖x(t) − xr(t)‖2dt (6.3)

subject to ẋ = f(x, φ, kf , p),

x(0) = x0,

φmin ≤ φ ≤ φmax

kfmin
≤ kf ≤ kfmax
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Figure 6.2: Simulated time series of bromide concentration in the BZ reaction system model as

specified in Table 6.1. For the chosen inflow rate kf=0.1/s the system dynamics is characterized

by uniform oscillations(solid line) at light intensity φ=3.8×10−8M/s and steady state behavior(-

dashed line) at φ = 3.8 × 10−6M/s.

where xr(t) : predetermined desired temporal dynamics, (φ, kf) : Control functions,

and the dynamic constraints are given by the ODE system (6.2). The ODE sys-

tem (6.2) is highly nonlinear with unstable parts of its dynamics and multiple time

scales that become obvious in the relaxation oscillations. The aspect of reducing

the nonlinearity and instability in highly nonlinear systems by multiple-shooting

structure is crucial for the sensitive generation required in gradient based optimiza-

tion. Therefore MUSCOD-II is a suitable tool for numerical control of complex

self-organizing oscillating system like BZ reaction.

6.2.1 Stabilization of unstable steady states

The aim here is to stabilize the unstable steady states by the optimal control ap-

proach. We use φ and kf as our control parameters, and the optimal control problem

here is

min
phi,kf

:=

800∫

0

(xi(t) − xs
i )

2dt (6.4)

subject to ẋ = f(x, φ, kf , p),

x(0) = x0,

φmin ≤ φ ≤ φmax.

kfmin ≤ kf ≤ kfmax.
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Figure 6.3: Stabilization of unstable steady states in BZ reaction corresponding to Br− concen-

tration of 2.32× 10−7M. Plot shows the stabilized unstable steady state of Br− ion concentration.
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Figure 6.4: Stabilization of unstable steady states in BZ reaction corresponding to Br− concen-

tration of 2.32× 10−7M. Plot shows the piecewise constant control functions φ and kf obtained as

the solution of the optimal control problem (6.4).

The vector xs
i denotes the unstable steady state coordinates for the system of equa-

tions 6.2. As a first control scenario we try to stabilize unstable steady state corre-

sponding to bromide ion concentration of 2.32 × 10−7M. For the given initial con-

ditions x0, the optimal control problem (6.4) is solved by direct multiple-shooting

method [53] implemented in MUSCOD-II [143]. Here the final T for optimization

is 800 seconds and we used N = 25 multiple shooting points.

In the model of BZ reaction studied here, small multiple shooting time in-

tervals are crucial for efficient numerical computation of optimal control functions
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for φ and kf . Figure 6.3 shows the stabilized unstable steady state of Br− ion con-

centration in the BZ system and corresponding step changes in control functions φ

and kf for obtaining the desired trajectory are shown in Figure 6.4. The minimum

and maximum values of the control parameters φ ∈ [0, 2 × 10−7]Ms−1 and kf ∈
[0, 0.3]s−1 are chosen such that the system remains in oscillatory domain.

6.2.2 Driving the BZ system at a desired frequency and amplitude

Self-organized dynamical systems offer a great flexibility for encoding complex in-

put responses in nonlinear chemical and biochemical systems. Lebiedz and Brandt-

Pollmann has shown how tuning of temporal self-organization in a model of CO

oxidation on Platinum catalyst by input signals in a simple nonlinear chemical re-

action exhibiting oscillations can be used for both processing complex information

and specific control of dynamical behavior [148]. In the following, we analyze this

aspect for the complex BZ reaction as an example by using ideas from optimal con-

trol theory. As discussed in Chapter 1, the more interesting and demanding control

tasks would be to drive the system to arbitrary regions in phase space which are

not stable attractors. One such a case is to formulate the objective functional for

obtaining a desired trajectory with a shape of a sinusoidal harmonic oscillator with

certain frequency and amplitude in the BZ system. Forced or tuned oscillators for

example are not only considered to be important in cellular rhythms, but also in

technical applications involving chemical reaction systems [196].

The optimal control problem here is

min
phi,kf

:=

T∫

0

‖x(t) − xr(t)‖2dt (6.5)

subject to ẋ = f(x, φ, kf , p),

x(0) = x0,

φmin ≤ φ ≤ φmax.

kfmin
≤ kf ≤ kfmax

.

where xr(t) = xa +Asin(2πνt) is the reference trajectory with xa , A, and ν as the

predetermined parameters corresponding to the bromide ion concentration, ampli-

tude and frequency of a desired sine function.

The objective essentially here is to compute input controls, which tune the

oscillatory behavior such that the resulting bromide ion concentration is a harmonic

sine function with predetermined fixed parameters: A, and ν. The resulting prob-

lem is solved using MUSCOD-II [143] with 25 multiple shooting points on total

T=100 seconds. In the first case as shown in Figure 6.5, we try to induce a sinu-

soidal shape for Br− ion with xa = 5 × 10−5, A = −5 × 10−5, and 2πν =0.05. The

controller is able to induce the desired dynamics into the system. Under constant

illumination of light with φ = 3.8 × 10−6M/s and kf=0.3s−1, the oscillations in the
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6.2 Control of BZ reaction system

Figure 6.5: Control inputs φ and kf (top) for the desired oscillatory output behavior xr(t) =

xa+Asin(2πνt) (bottom) characterized by the three parameters xa, A, and ν. There are computed

as solutions of the optimal control problem (6.5) for different parameter value xa = 5 × 10−5,

A = −5× 10−5, and 2πν =0.05. Plot on (bottom left) shows actual Br− concentration profile and

(bottom right) after the control.

BZ system reaches the steady state. However, the maximum values of the control

parameters required to induce the desired sine function dynamics in bromide ion

concentration are higher than the values at which the system reaches steady state.

In our optimal control problem (6.5), the maximum values of control parameters

used are φ = 1.0× 10−3M/s and kf=1.0s−1, which means that the system does not

remain in the oscillatory regime alone to induce such a dynamics. Figure 6.6 shows

another example of inducing sine function dynamics in Br− ion concentration in BZ

system with different oscillation frequency. Here xa = 5×10−5, A = −5×10−5, and

2πν =0.075. Parameters in xr(t) can be varied arbitrarily within a certian range
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6.3 Reduction of the detailed model

Figure 6.6: Control inputs φ and kf (top) for the desired oscillatory output behavior xr(t) =

xa+Asin(2πνt) (bottom) characterized by the three parameters xa, A, and ν computed as solutions

of the optimal control problem Eq. 6.5 for different parameter value xa = 5×10−5, A = −5×10−5,

and 2πν = 0.075.

for obtaining the desired oscillatory behavior in bromide ion concentration by using

light intensity and flow rate as control parameters.

6.3 Reduction of the detailed model

In many situations the high spatiotemporal resolution of modern experimental tech-

niques provides an accurate data basis for the construction of detailed chemical re-

action mechanisms for systems with highly complex dynamical behavior. However,

both mathematical analysis and numerical simulations are difficult tasks in high

dimensional phase space associated with detailed mechanistic models. In particular

for spatially non-homogeneous systems, numerical treatment of the underlying large

scale and mostly stiff partial differential equations is still a challenge [197].
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Therefore, model reduction techniques are commonly applied to reduce the

dimension of the reaction mechanism by eliminating chemical species and elemen-

tary reaction steps [198, 199]. The aim is to construct a reduced model which can

be treated much easier numerically and if small enough may allow even an analytic

investigation of phase space topology, bifurcation behavior, attractor geometry and

generally incorporation into numerically expensive simulation of spatially extended

reaction-diffusion systems. Since quite a long time the well known quasi-steady-state

assumption (QSSA) and the partial-equilibrium-approximation (PEA) are used for

model reduction [200]. Both of them implicitly exploit intrinsic multiple time scales

in the system under consideration. The QSSA eliminates intermediate species by

approximating their rate of change to be zero if it is very small compared to the

overall system dynamics, whereas the PEA assumes some fast elementary reaction

steps to be relaxed to equilibrium immediately. Both assumptions are justified to

some extent if the corresponding time scales are very slow in the QSSA case and

very fast in the PEA case. However, for large-scale mechanisms their identification

is extremely difficult and time consuming. Therefore, many automatic numerical

methods have been developed for the purpose of model reduction in chemical kinet-

ics (see Ref. [201] for a comprehensive review of model reduction techniques).

A central problem of these common approaches is that the validity of the

approximations usually changes dramatically with the actual system state. More-

over, one does not have an a priori estimate of the error that is introduced by these

assumptions and the extent to which the original detailed model can be reduced

to yield still quantitatively accurate results for the dynamical behavior. In fact,

the error can be estimated a posteriori by comparing numerical simulations of the

full and reduced system, but a lower bound for the minimal dimension required for

a still accurate reduced model is difficult to obtain. Nevertheless, in many cases

the systems are reduced to two or three dimensions in order to make use of an-

alytic and geometric methods exploiting the well characterized topology of these

low dimensional phase spaces. However, in this case both quantitative relation to

the original detailed model and physical significance of parameter values often get

obscured and one is restricted to the rather qualitative study of dynamical behavior.

In practical applications relying on quantitative models like for example model

based system control and optimization, the latter approach is often prohibited if

the model is supposed to serve as a basis for process controller design which re-

quires quantitative results and accurate physical modeling of the control input [91].

Therefore, an a priori estimate of the error introduced by reduction and the mini-

mal dimension required for preserving quantitative consistency with the full model

is desirable. Former validation approaches for reduced models are often restricted to

error estimations for steady state behavior, but for systems with complex nonlinear

behavior it is crucial to take dynamical aspects into account. Here, we exploit a

novel numerical algorithm [46] based on the concept of Intrinsic Low Dimensional
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Manifolds (ILDM) proposed by Maas and Pope [202] which is able to compute dy-

namically (during numerical integration) the minimal reduced dimension required

for error-controlled consistency with the full model. For detailed description and

implementation of the algorithm can be found in [201]. The algorithm uses an

automatic time scale decomposition of the full system into a “slow” and a “fast”

part of dynamical modes and applies an error criterion proposed by Deuflhard and

Heroth which is derived from singular perturbation theory for ordinary differential

equations to identify the dimension of the slow part [203].

The algorithm is applied to the detailed model for the photosensitive Belousov-

Zhabotinsky reaction including 19 species and 36 elementary reaction steps pre-

sented in Section 6.1. The results are exploited for an error control motivated

application of classical QSSA and PEA approaches to construct a quantitatively

accurate reduced model.Our aim is to reduce the presented detailed model as much

as possible while maintaining quantitative accuracy. For this purpose we apply the

algorithm and analyze the time-scale decomposition results for the BZ reaction sys-

tem in the oscillatory regime. The minimum dimension computed by the algorithm

with an error tolerance of TOL = 10−4 as a function of time is shown in Figure

6.8. From these results we conclude that the minimum dimension required for still

accurate representation of the full model dynamics is 7-9 depending on the actual

system state in the oscillatory regime. Further reduction is not possible without

severe loss of such quantitative agreement.

We know try to reduce the model explicitly as much as possible to come

close to the minimum dimension of 7. The first step of reduction is to eliminate

those variables which are constant or decrease by only 1 or 2 % during numerical

simulation of the model on the chosen time horizon. We identify three such variables

A(BrO−
3 ), Q (Br2MA), MA whose values are quasi-constant.

We exploit the information provided by the component analysis output of the

algorithm (see Ref. [204] for detailed component analysis of the algorithm). The

analysis of the individual species contributions to the active (slow) modes shows

that they are negligibly small in some cases over the complete time horizon (see

exemplarily Figure 6.7 for comparison with other species sharing significant contri-

bution). The relative contribution of Ru(II)∗ for example is orders of magnitude

smaller than that of Ru(II) and Br− suggesting that a quasi-steady-state approx-

imation can be applied here. In sum, we were able to identify seven such species

P, E, S, T, F, M and N whose contribution to the active modes is extremely low.

In a subsequent step the outlined model reduction is carried out explicitly by ap-

plying quasi-steady-state assumption (QSSA) and solving the resulting algebraic

equation system. When solving the equations explicitly using the computer algebra

software package MAPLE we got huge expressions (2 GB of memory) for a represen-

tation of the seven variables in terms of remaining active ones. We tried to simplify
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Figure 6.7: Analysis of a selection of chemical species i with respect to their contributions rslow
i

to the active modes in the BZ reaction system. The plots exemplarily show the contribution for

i=Ru(II), Br−,Ru(II)∗,MA·,Br· and ·COOH under conditions as in Figure 6.8.
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these expressions by considering only important reactions which significantly con-

tribute to the dynamics for these variables from the Table 6.1 and deleting all higher

order terms. In fact, we deleted (R20,R23,R24),(R21,R22,R24,R26,R27,R29) and

(R15,R20,R30,R31,R32) from equations for Ṡ, Ṫ and Ḟ respectively and confirmed

their minor contribution to the overall rates by checking the values of these terms at

maximum concentration of the individual species. The remaining equations can be

solved simultaneously quite easily. Finally, we come up with an explicitly reduced

set of 9 differential equations with A, Q, MA as constants and values E, T, S, F, M,

N and P algebraically expressed in terms of the remaining variables X, Y, V, G, Z,

W, I, J and L.

X′=-R5+R4-2*A3-A2+A1-Ai1+kf (Xmf -X)

Y′=-R36+R35-A1+Ai1-A2+R6+R18+R11+R8+R28+R29+R30+R31+R32+kf (Ymf -

Y)

V′=-R6-R7+R11-R8+R20+R22+R25+R26-R27-R29+kf (Vmf -V)

G′=-R1+R2-R4+R12+R7+R16+R17+R33+kf (Gmf -G)

Z′=R3+R4+R6+R9-R12-R7-R16-R17-R33+kf (Zmf -Z)

W′=R3-R4+2*R5+kf (Wmf -W)

I′=R15-R11-R8-R25-R35+R36+kf (Imf -I)

J′=R16-R18+R22+R24+kf (Jmf -J)

L′=R18-R30+kf (Lmf -L)

E=-νmaxG/(-k2-0.5k9aQ-0.25k3A-k6V-kf )(k1+G)

T=(-kf+sqrt(k2
f+8k22k7VZ))/4k22

S=-(k16QZ+k17YZ)/(k25I)+(-kf -k21T-k28MA-k29V(k25I(Hk9aQE+k6VE+k12MA.Z)-

(-kf -k26Q-k24T-k25I-k27V)(k16QZ+k17YZ)))/(k25I(k25k28MAI-(-kf -k26Q-k24T-k25I-

k27V)(-kf -k21T-k28MA-k29V)))

F=-(k25I(Hk9aQE+k6VE+k12MA.Z)-(-kf -k26Q-k24T-k25I-k27V)(k16QZ+k17YZ))/(k25k28MAI-

(-kf -(k26Q)-k24T-k25I-k27V)(-kf -(k21T)-k28MA-k29V))

M=k30FL/(k31F+k33Z+kf )

N=k2
30k34FL2/(k32(k31F+k33Z+kf )(k31F+k33Z+kf))

P=-(-2ki3X
2-k35I-2Hki2XY-H2ki1YA)/(kmi1X+Hk36Y+kf )

A dimension of 9 has been predicted by the algorithm if the model is supposed to be

accurate with a tolerance of 10−4 on the full time horizon (see Figure 6.8). However,

in large parts an even smaller dimension of 7 has been proposed. We observe in nu-

merical integrations that the value of the variable L increases almost linearly with

time and remains constant after an initial phase. For short integration times we can

approximate this variable with the linear expression L=5.714×10−6t, where t is the

integral time. The value of the constant naturally depends on the initial conditions

of the system. This linear approximation is valid for time horizons smaller than
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Figure 6.8: Minimum dimension of the reduced model for the BZ reaction with inflow rate

kf=0.1/s and light intensity φ=3.8×10−8 computed by the algorithm [201]. The analysis is per-

formed in the oscillatory dynamical regime. The plot shows the number of active, ’slow’ modes.
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Figure 6.9: Simulated time series of bromide concentration in the BZ reaction system model,

comparison between the full model(– dashed line) and the reduced 7 variable model(·) under

conditions as in Figure 6.8.
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T=6000s. Thus, we have an 8 variable reduced model which has effectively only

7 degrees of freedom since Ru(II)+Ru(III)+Ru(II)∗=constant is obvious from the

mass balance of the catalyst. The maximally reduced model shows dynamical be-

havior quantitatively very close to the full model in the oscillatory dynamic regimes

(Figure 6.9).

6.3.1 Complex oscillations in the 8-variable model
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Figure 6.10: Complex oscillations in reduced 8-variable model. Initial concentrations are:

[HbrO2]=2.2882864×10−5 M; [Br−] = 1.5652838×10−6 M; [BrMA] = 1.1788022×10−2 M; [Ru(II)]

= 2.0209202×10−6 M; [BrO∗

2] = 2.0675897×10−5 M; [Br2] = 3.5778697×10−5 M; [BrTA] =

3.4178939×10−5 M; [MOA] = 3.0875×10−1 M; parameters: φ = 7.5 × 10−6 Ms−1; kf = 1.06

× 10−4s−1

Parameters φ and kf are varied through their phase space for finding a region

where complex oscillations can be found in the BZ system. Under appropriate initial

conditions and for parameter values of φ = 7.5 × 10−6Ms−1 and kf = 1.06 × 10−4s−1,

the 8-variable reduced model (without the linear assumption for L) exhibits complex

oscillations near Hopf bifurcation point. An oscillation time series with rich inter-

nal structure that ranges from high-amplitude and relatively high-frequency regular
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Figure 6.11: Aperiodic and uniform oscillations in the reduced 8-variable model. Ini-

tial concentrations are: [HbrO2]=2.2882864×10−5 M; [Br−] = 1.5652838×10−6 M; [BrMA]

= 1.1788022×10−2 M; [Ru(II)] = 2.0209202×10−6 M; [BrO∗

2
] = 2.0675897×10−5 M; [Br2] =

3.5778697×10−5 M; [BrTA] = 3.4178939×10−5 M; [MOA] = 3.0875×10−1 M; parameters val-

ues for (top): φ = 7.9 × 10−6 Ms−1; kf = 1.06 × 10−4s−1 and (bottom) φ = 7.3 × 10−6 Ms−1; kf

= 1.06 × 10−4s−1

oscillations; a domain of highly irregular “intermittent” oscillations; low amplitude

oscillations with gradual vanishing of their amplitude and finally to the cessation of

oscillations.

Figure 6.10 shows one such scenario where high frequency small amplitude

oscillations are followed by low frequency high amplitude oscillations. The reaction

starts with an induction period during which no oscillations takes place, followed

by sudden birth of small amplitude oscillations, followed by large amplitude low

frequency oscillations. By slightly varying the parameter φ to 7.9 × 10−6Ms−1 one

gets aperiodic oscillations as shown in Figure 6.11 (top). Each large amplitude peaks

are separated by one or more small amplitude spacer peaks, whose number appears

to be randomly distributed. If one decrease the value of φ to 7.3 × 10−6Ms−1, the

aperiodic oscillations gives way to high frequency uniform oscillations as shown in

97



6.4 Control scenarios for reduced 8-variable model

Figure 6.11 (bottom).

6.4 Control scenarios for reduced 8-variable model

6.4.1 Finding a periodic orbit
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Figure 6.12: BZ system dynamics under dark conditions having a time period of 32 seconds in

case of the 8-variable model. Plots shows the time varying concentrations of HBrO2 and Br− for

φ =0; kf =0.2s−1; [BrMA]in = 0.05 M; [Ru(II)]in = 1.0 × 10−4 M.

The control aim here is to induce the periodic orbits in the BZ system with a

desired time period by using light intensity as control parameter. We formulate it as

a boundary value problem with coupled constraints i.e. the residual of the starting

point and the end point is equal to zero by varying light as a control parameter.

The initial conditions of the BZ system are left as free parameters along with end

time T for the optimization problem.

The objective functional here is of the form

min
phi

:=

T∫

0

(ts − t)2dt (6.6)

subject to ẋ = f(x, φ, p),

x(0) = x(T ),

φmin ≤ φ ≤ φmax.

where ts: predetermined desired time period; φ: control function and the

dynamic constraints are given by ODE system (6.2). The periodic solution is com-

puted using offline variant of MUSCOD-II [143] imposing periodicity conditions for

a given ts in the objective function (6.6). This periodic reference solution is denoted

by xr(t) and is defined for all the t ∈ (0,∞) and satisfies the periodicity condition

xir(t+ T ) = xir(t) and ur(t+ T ) = ur(t), where xir represents the reference trajec-

tory corresponding to variable xi.
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Figure 6.13: Periodic orbit with the desired time period of 20 seconds by using light intensity

as control parameter. Plot shows the desired time period in Br− ion concentration and piecewise

constant control of light intensity (φ) to obtain the desired 20 seconds period in case of 8-variable

model. The control values of φ are obtained by solving the boundary value problem Eq. (6.6) with

ts=20 seconds.

The effect of constant illumination of light on the reaction medium is the

production of bromide ion which acts as an inhibitor, there by suppressing the

oscillations. For a critical value of φ= 5.8 × 10−6Ms−1 one can completely suppress

the oscillations under constant illumination conditions. Under constant illumination

of light, period of oscillations can only be increased but cannot be decreased less than

that of the period under dark conditions. For the fixed values of φ=0, kf=0.2s−1,

[BrMA]in = 0.05 M and [Ru(II)]in = 1.0 × 10−4 M oscillations have a period of

T=32 seconds, as shown in Figure 6.12 under dark conditions. One can actually

increase or decrease the period of oscillations by changing the flowrate kf , but in

our case studies we fix the value of kf and use light intensity as the only control

parameter available for the dynamic control.

In case of the 8-variable model, we would like to induce an oscillation period of

20 seconds in BZ system. We formulate the objective functional (6.6) with ts = 20

seconds and light intensity(φ) as a control parameter. The resulting boundary value

problem is solved with MUSCOD-II with 20 multiple shooting points. Results are

shown in Figure 6.13(left) with time varying concentration of Br− ion with the de-

sired time period of 20 seconds satisfying the condition Br−(0) = Br−(20). The

corresponding piecewise constant control parameter light intensity required to im-

pose such a dynamics is shown in Figure 6.13 (right). Please make note that the

maximum value of light used for obtaining the optimal soultion is 1.0 × 10−4Ms−1,

which is approximately 20 times the order of magnitude of light intensity used for

suppressing the oscillations completely under constant illumination. The system is

driven into the steady state and back to oscillatory regime for obtaining the desired

oscillation time period. The amplitude of 20 seconds period oscillations are slightly
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Figure 6.14: Periodic orbit with a time period of 10 seconds by using light intensity as control

parameter. Plot shows the desired time period in Br− ion concentration and piecewise constant

control of light intensity (φ) to obtain the desired period in case of 8-variable model. The control

values of φ are obtained by solving the boundary value problem Eq. (6.6) with ts=10 seconds.

smaller in magnitude when compared to that of oscillations under dark conditions.
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Figure 6.15: Periodic orbit with a time period of 1 second by using light intensity as control

parameter. Plot shows the desired time period in Ru(III) [M] concentration and piecewise control

of light intensity φ [Ms−1] to obtain the desired period in case of 8-variable model. The control

values of φ are obtained by solving the boundary value problem Eq. (6.6) with ts=1 second.

By a similar formulation as in case of obtaining a 20 second periodic orbit,

one can obtain a reduced 10 seconds oscillation period by solving problem (6.6)

with ts=10 seconds. Figure 6.14 shows the piecewise constant control values of

light intensity (φ) and the corresponding concentration of Br− ion for obtaining

the desired 10 second oscillation period. The boundary value problem Eq. (6.6)

is solved with MUSCOD-II with 15 multiple shooting points. One can reduce the

period of oscillations subsequently as small as 1 second as shown in Figure 6.15.
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Figure 6.16: Limit cycles of different time periodic orbits obtained with time varying light

intensity as control parameter. Plot shows the concentrations of logarithmic scale of HBrO2 [M]

vs Ru(III) [M] for different desired time periods (ts) in case of 8-variable model.

The resultant amplitude of this short period oscillations is also reduced when com-

pared to oscillations under dark conditions. The maximum value of light intensity

φmax required for obtaining the reduced time period oscillation gets higher as the

period gets shorter. Figure 6.16 plotted on logarithmic scale of HBrO2 on x-axis

and Ru(III)(i.e. Ru0-Ru(II)) on y-axis shows the limit cycle oscillations obtained

with different time periods in case of the 8-variable model. The plot shows 7 such

different periods from T=32 seconds to T=1 second. Large limit cycle oscillation

(open circle) corresponds to the BZ system concentrations under dark conditions

with T=32 seconds. As the oscillation period decreases to T=1 second, the ampli-

tude of the oscillations also decreases and so does the size of limit cycles.

6.4.2 Response to optimal periodic stimuli in case of 8-variable model

In Section 6.4.1, in order to obtain oscillations with a desired period, we left the

initial conditions as free parameters for the optimizer. In case of repetitive optimal

stimuli (i.e. with the control values of light intensity obtained as in Section 6.4.1 for

obtaining reduced period oscillations), irrespective of initial conditions, the system

eventually reaches the stable limit cycle after initial transient response with the

desired time period. Figure 6.17 shows the BZ systems response to the repetitive

optimal stimuli for obtaining a desired oscillation period of 20 seconds. The control
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6.4 Control scenarios for reduced 8-variable model

values of the light intensity in Figure 6.17 (right) are calculated by offline solution

of problem (6.6) by imposing a periodic constraint of ts=20 seconds. Figure 6.17

(left) shows the response to the periodic optimal controls. After the initial transient

response, the system eventually reaches a stable periodic orbit with a time period

of 20 seconds. Initial conditions in this case are chosen randomly.
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Figure 6.17: Long term simulation under the repetitive periodic forcing of control parameter light

intensity with random initial conditions in case of 8-variable model. Plot shows the concentraion

of HBrO2 [M] with time and the corresponding variation of repetitive light stimuli [Ms−1]. The

control values of light intensity for 20 seconds period solution are obtained with a periodicity

constraint of ts=20 seconds in the boundary value problem Eq. 6.6.
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Figure 6.18: Long term simulation under the repetitive periodic forcing of control parameter light

intensity with random initial conditions in case of 8-variable model. Plot shows the concentraion

of HBrO2 [M] with time. The control values of light intensity [Ms−1] for 10 seconds period solution

are obtained with a periodicity constraint of ts=10 seconds in the boundary value problem Eq.

6.6.

We simulated the ODE system (6.2) with random initial conditions for ob-

taining a 10 second oscillation period, which is shown in Figure 6.18 with optimal
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6.4 Control scenarios for reduced 8-variable model

repetitive stimuli calculated by solving the optimal control problem Eq. (6.6) with

ts=10 seconds. The transient response in this case is very clear, nevertheless the

system eventually reaches a 10 second periodic orbit. As the oscillation period to

be induced in the BZ system gets smaller, the dependence of BZ system’s dynamics

on initial conditions gets more sensitive. For obtaining a 1 second oscillation pe-

riod with repetitive stimuli, not only the control values are important but also the

initial conditions of all the variables. Having a good initial condition is crucial in

this case and by trial and error, we found some initial conditions for which the BZ

system’s dynamics is stable. Figure 6.19 (left) shows the concentration of HBrO2

with 1 second period oscillations and Figure 6.19 (right) shows the corresponding

repetitive periodic stimuli needed to induce such dynamics.
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Figure 6.19: Long term simulation under the repetitive periodic forcing of control parameter light

intensity with random initial conditions in case of 8-variable model. Plot shows the concentraion

of HBrO2 [M] with time. The control values of light intensity [Ms−1] for 1 seconds period solution

are obtained with a periodicity constraint of ts=1 seconds in the boundary value problem Eq. 6.6.

6.4.3 Comparions with 3-variable modified Oregonator model

Control results in Section 6.4.1 and Section 6.4.2 for the 8-variable reduced model

are compared with a simple 3-variable modified Oregonator (MO) model. The 3-

variable Oregonator model has been modified to include the photosensitivity of the

Ru-catalyzed BZ reaction medium [205]. The kinetic part of the model is given

by the following equations for the concentrations of bromus acid HBrO2(u), the

oxidized form of catalyst Ru(III)(v), and bromide(w).

ǫ
du

dt
= u− u2 − w(u− q) (6.7a)

dv

dt
= u− v (6.7b)

ǫ′
dw

dt
= fv − w(v + q) + φ (6.7c)

where ǫ = 0.08547, ǫ′ = 9.4428 × 10−4 and q = 0.002 are scaling parameters, f =

1.4 is the stoichiometry parameter, and φ represents the photochemically induced
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bromide flow which is assumed to be proportional to the applied light intensity.
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Figure 6.20: 3-variable modified Oregonator model for BZ system dynamics under dark conditions

having a time period of 6.25 units. Plots shows the time varying uniform oscillations in non-

dimensionalized variables v and w respectively.

In case of the 3-variable MO model, under dark conditions (φ=0) and at con-

stant flowrate value of kf=0.01, the oscillations have a period of about 6.25 units

(Tdark=6.25) (as shown in Figure 6.20). By increasing the light intensity to a value

φ=0.0038, one can suppress the oscillations completely. For obtaining the reduced
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Figure 6.21: Periodic orbit with a time period of 3.90625 units by using φ as control parameter.

Plot shows the desired time period in v and piecewise constant control of φ to obtain the desired

period in case of 3-variable modified Oregonator model.

period oscillations in case of modified 3-variable Oregonator model, a similar control

analysis as in Section 6.4.1 is done. Here, we would like to reduce the oscillation

period till α = 0.03125 (α = T/Tdark), which corresponds to T=1 second in case of

8-variable model. Control results are shown in case of 3-variable MO model in the

Figure 6.21 for α=0.625 (i.e. with a time period ts=3.90625 which corresponds to

T=20 seconds in case of reduced 8-variable model). Figure 6.21 (left) shows the non-

dimensionalized variable v and the corresponding piecewise constant control values

of parameter φ required for obtaining ts=3.90625 oscillations on Figure 6.21 (right).

Amplitude of these oscillations obtained are significantly smaller when compared
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Figure 6.22: Periodic orbit with a time period of 1.953125 units by using φ as control parameter.

Plot shows the desired time period in v and piecewise constant control of φ to obtain the desired

period in case of 3-variable modified Oregonator model.

to dark period oscillations as in case of the 8-variable model. Figure 6.22 shows

another periodic orbit of v for α=0.3125 (i.e with ts=1.953125) with time varying

control parameter φ. Amplitude of oscillations gets even smaller in this case. In

case of 3-variable MO model we could not reduce the oscillation period less than

T=1 unit. Figure 6.23 shows the plot drawn between u and v on a logarithmic

scale, the bigger limit cycle corresponds to the oscillations under dark conditions

and the smaller limit cycle corresponds to the solution obtained with ts=1.953125 as

periodicity constraint. Interestingly, in case of 3-variable MO model one can obtain

these reduced period oscillations even with constant illumination of light. In case of

8-variable model for obtaining the reduced period of oscillations, the light intensity

in all the results is time dependent.

Response of BZ system to the optimal periodic stimuli in case of 3-variable

MO model is carried out as in Section 6.4.2. The objective functional here for the

boundary value problem is same and is given by optimal control problem Eq. (6.6)

and has to solved with respect to constraints given by Eq. 6.7 along with new

bounds on φ. The BZ system’s response in case of 3-variable MO model to the

repetitive optimal stimuli obtained, as a solution of the above control problem is

not stable, even if one starts the simulation with initial conditions obtained from

the optimal solution.

We computed the fundamental solution and the sensitivity of the final state

with respect to its initial values in case of 3-variable MO model for ts=3.90625 and

ts=1.953125 periodic oscillations, which is called the monodromy matrix. A numer-

ical computation of the monodromy matrix for these periodic orbits and eigenvalue

decomposition yields one eigenvalue, i.e. Floquet multiplier that is greater than one

in both cases. A Floquet multiplier greater than one confirms that the optimal so-

lutions obtained in case 3-variable MO model for reduced period oscillations are not

stable. Where as in case of the 8-variable model, for repetitive stimulus, irrespec-

tive of initial conditions, the system eventually reached the desired limit cycle with
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Figure 6.23: Limit cycles of different time periodic orbits obtained with time varying φ as control

parameter. Plot shows the variables u and v on logarithmic scale for different desired time periods

(ts) in case of 3-variable modified Oregonator model.
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Figure 6.24: Long term simulation under the repetitive periodic forcing of control parameter

light intensity with optimal initial conditions in case of 3-variable modified Oregonator model.

Plot shows the variable u with non-dimensionalized time. The control values of φ for 3.90625 units

period solution are obtained according to boundary value problem Eq. (6.6) with equation (6.7)

as constraints.

a reduced oscillation period. By trail and error, we found some initial conditions

in case of 3-variable MO model for obtaining the desired period oscillations with

repetitive stimuli. Figure 6.24 and Figure 6.25 shows the u and the corresponding

time varying repetitive φ required for obtaining the reduced period oscillations of

ts=3.90625 and ts=1.953125 respectively.
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Figure 6.25: Long term simulation under the repetitive periodic forcing of control parameter

light intensity with optimal initial conditions in case of 3-variable modified Oregonator model.

Plot shows the concentraion of HBrO2 with time. The control values of light intensity for 1.953125

units period solution are obtained according to boundary value problem Eq. (6.6) with equation

(6.7) as constraints.
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Chapter 7

Summary, Conclusion and Outlook

Applications of control theory to complex self-organized biological systems and

model-based specific manipulation of system dynamics are promising visions in

biomedical applications for systematic design of chronomodulated therapeutics. Here,

we demonstrate the value of numerical optimal control for such tasks exploiting the

fundamental optimization idea to force the system to desired behavior with the best

possible results. As an example to demonstrate optimal control of models for circa-

dian rhythms in Drosophila and BZ reaction systems to manipulate the dynamics

in a systematic way.

In chapter 2, we present basic concepts of nonlinear dynamics and different

approaches to solve the optimal control problems. Our optimal control problems

are solved numerically using a direct multiple-shooting approach (chapter 3) imple-

mented in MUSCOD-II [53, 69]. This method allows to efficiently treat unstable

systems that arise in modeling self-organized dynamics.

In chapter 4, we considered circadian rhythms in Drosophila as an example

of a self-organized biological system. Analysis of the circadian clock model demon-

strates that control inputs, such as light that directly influences the parameter

νdT and translation/transcription rates can be used to manipulate the system dy-

namics. The use of such artificial light pulses or drugs that activate/inhibit the

translation/transcription rates, as entraining agents, may help to reduce the recov-

ery time of circadian systems when they are disturbed by significant changes in

day light patterns or malfunctioning of the cells. The results obtained here for the

Drosophila model demonstrate that, we can successfully identify critical phase re-

setting stimuli, leading to the suppression and restoration of limit cycle oscillations

by mixed-integer optimal control. A closed-loop nonlinear model predictive control

algorithm can deal with model uncertainties and is effective at providing optimal

control inputs for recovering the altered rhythms. Phase resetting, phase tracking

and restoration control algorithms described in this thesis can be applied to biolog-

ical oscillators in general.

The model presented in chapter 5 serves as a starting point towards a detailed

modeling of the coupling between cell cycle and circadian cycle. The model should
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account for the phase shifts, entrainment conditions between these two cycles and

would allow to simulate both healthy and cancerous cells. Circadian rhythms can

affect significantly the metabolism, the clearance, and the very action of medica-

tions on target cells. Recent research in cancer chronotherapies by Lis et al. has

pointed out that circadian rhythms can have a very strong effect on toxicity and

the efficacy of anti-tumor drugs [206]. A possible explanation is that the effect

of anti-cancer drugs on a (healthy or tumorous) cell is dependent on the phase of

the cell cycle in which that cell lies. It is possible to drastically reduce the toxic-

ity of antitumor drugs by injecting them when they harm as few healthy cells as

possible. The coupled cell cycle / circadian cycle model might allow to set the con-

ditions for entrainment in phase and period by improving the efficacy/toxicity ratio.

In chapter 6, the BZ reaction, which often serves as a prototype for many

biological phenomena is considered as another example oscillatory chemical system

for controlling the self-organized dynamics. A new model has been developed based

on detailed elementary reaction step mechanisms for photo-sensitive BZ reaction.

Quantitative minimum models have computational advantage in terms of reduced

stiffness and decreased simulation time in particular in spatiotemporal simulations

of (bio)chemical reaction systems while retaining the accuracy of a detailed reaction

mechanism. In the context of model-based control, such quantitatively accurate

minimal models are of great benefit in online-controller design, in particular, if

severe real-time constraints have to be fulfilled. By applying a recently developed

algorithm [201], the BZ system is automatically decomposed according to time scale

separation. We exploit the information provided by the component analysis of the

algorithm [201] in carrying out explicit model reduction by quasi-steady-state and

partial equilibrium assumptions.

We demonstrate numerically for the BZ system by use of advanced numerical

optimal control strategies that a simple nonlinear chemical model system exhibiting

oscillations can be forced to a particular desired and predetermined behavior by

external dynamic nonlinear control. In particular, we present results on how to sta-

bilize an unstable steady state and drive the system from arbitrary regions in phase

space into a desired target state that is not a stable attractor in the uncontrolled

case.

Based on the detailed kinetic models, such control strategies for complex self-

organizing systems may turn out to be of great benefit in various applications rang-

ing from physicochemical systems in technical process [196], to drug development

and biomedical treatment strategies of dynamical diseases [1].
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Appendix A

Cell cycle model equations and rate con-

stants

d[ERG]

dt
= ε

k15

1 + ([DRG]/J15)2
− k16[ERG] (A.1)

d[DRG]

dt
= ε(k′17[ERG] +

k17([DRG]/J17)
2

1 + ([DRG]/J17)2
) − k18[DRG] (A.2)

d[cycD]

dt
= εk9[DRG] + V6[CycD : Kip1] + k24r[CycD : Kip1]

−k24[CycD][Kip1] − k10[CycD] (A.3)

d[cycD : Kip1]

dt
= k24[CycD][Kip1] − k24r[CycD : Kip1] − V6[CycD : Kip1]

−k10[CycD : Kip1] (A.4)

d[cycE]

dt
= ε(k′7 + k7[E2FA) − V8[cycE] − k25[CycE][Kip1]

+k25r[CycE : Kip1] + V6[CycE : Kip1] (A.5)

d[cycE : Kip1]

dt
= k25[CycE][Kip1] − k25r[CycE : Kip1] − V6[CycE : Kip1]

−V8[CycE : Kip1] (A.6)

d[cycA]

dt
= εk29[E2FA][mass] − k30[Cdc20][cycA] − k25[CycA][Kip1]

+k25r[CycA : Kip1] + V6[CycA : Kip1] (A.7)

d[cycA : Kip1]

dt
= k25[CycA][Kip1] − k25r[CycA : Kip1] − V6[CycA : Kip1]

−k30[Cdc20][CycA : Kip1] (A.8)

d[Kip1]

dt
= εk5 − V6[Kip1] − k24[CycD][Kip1] + k24r[CycD : Kip1]

−k25[Kip1]([CycE] + [CycA]) + k25r([CycE : Kip1]

+[CycA : Kip1]) + V8[CycE : Kip1] + k30[Cdc20][CycA : Kip1]

+k10[CycD : Kip1] (A.9)

d[E2F ]

dt
= k22([E2FT ] − [E2F ])

−(k′23 + k23([CycA] + [CycB]))[E2F ] (A.10)
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d[Cdh1]

dt
= (k′3 + k3[Cdh20])

1 − [Cdh1]

J3 + 1 − [Cdh1]
− V4

[Cdh1]

J4 + [Cdh1]
(A.11)

d[Cdc20T

dt
= ε(k′11 + k11[CycB]) − k12[Cdc20T] (A.12)

d[Cdc20]

dt
= k13[IEP ]

[Cdc20T] − [Cdc20]

J13 + [Cdc20T] − [Cdc20]

−k14
[Cdc20]

J4 + [Cdc20]
− k12[Cdc20] (A.13)

d[PPX]

dt
= εk33 − k34[PPX] (A.14)

d[IEP ]

dt
= k31[CycB]

1 − [IEP ]

J31 + 1 − [IEP ]
− k32[PPX]

[IEP ]

J32 + [IEP ]
(A.15)

[GM ]

dt
= k27[mass]H(

[Rbhypo]

[RbT]
) − k28[GM ] (A.16)

d[mass]

dt
= εµ[GM ] (A.17)

d[cycB]

dt
= ε(k′1 +

k1([CycB]/J1)
2

1 + ([CycB]/J1)2
)[mass] − (kwee1′ + kwee1′′[Wee1])[cycB]

+(kcdc25′ + kcdc25′′[Cdc25a])[cycBP ] − V2[CycB] (A.18)

Steady state relations

[PP1A] =
[PP1T]

1 +K21(φE([CycE] + [CycA]) + φB[CycB])
(A.19)

Rbhypo =
[RbT]

1 +
k20(λD[CycDT] + λE[CycE] + λA[CycA] + λB[CycB])

k′19([PP1T] − [PP1A]) + k19[PP1A]

(A.20)

E2FA =
(E2FT] − [E2F : Rb])[E2F ]

[E2FT]
(A.21)

E2F : Rb =
2[E2FT][Rbhypo]

[E2FT] + [Rbhypo] + L+
√

([E2FT] + [Rbhypo] + L)2 − 4[E2FT][Rbhypo]

(A.22)

V2 = k′2(1 − [Cdh1]) + k2[Cdh1] + k′′2 [Cdc20] (A.23)

V4 = k4(γA[CycA] + γB[CycB]) (A.24)

V6 = k′6 + k6(ηE[CycE] + ηA[CycA] + ηB[CycB]) (A.25)

V8 = k′8
k8(ψE([CycE] + [CycA]) + ψB[CycB])

J8 + [cycET]
(A.26)

L =
k26r

k26
+
k20

k26
(λD[CycD] + λE[CycE] + λA[CycA] + λB[CycB]) (A.27)
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Kinetic parameter Value(h−1) Kinetic parameter Value(h−1)

k′1 0.1 k1 0.6

k′2 0.05 k2 20

k′′2 1 k′3 7.5

k3 140 k4 40

k5 20 k′6 10

k6 100 k′7 20

k7 0.6 k′8 0.1

k8 2 k9 2.5

k10 5 k′11 0

k11 1.5 k13 5

k14 2.5 k15 0.25

k16 0.25 k′17 0.35

k17 10 k18 10

k′19 0 k19 20

k20 10 k22 1

k′23 0.005 k23 1

k24 1000 k24r 10

k25 1000 k25r 10

k26 10 k26r 200

k27 0.2 k28 0.2

k29 0.05 k30 20

k31 0.7 k32 1.8

k33 0.05 k34 0.05

µ 0.061

Table A.1: Rate constants for cell cycle model for Equations A.2-A.27. All the rate of synthesis

terms for proteins have a factor ǫ; which represents the translation efficiency of the ribosomes. ǫ is

a number between 0 and 1; its value is influenced by growth factors and by translation inhibitors

like cycloheximide. In all our numerical simulations we used the value of 1. The model assumes

that a cell divides, [mass]= [mass]/2, when Cdh1 crosses 0.2 from below.
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Dimensionless constants Value

J1 0.1

J3 0.01

J4 0.01

J8 0.1

J13 0.005

J14 0.005

J15 0.1

J17 0.3

J31 0.01

J32 0.01

K21 1

[E2FT] 5

[PP1T] 1

[RbT] 10

φE 25

φB 2

γA 0.3

γB 1

ηE 0.5

ηB 1

λD 3.3

λE 5

λA 3

λB 5

ψE 1

ψB 0.05

ε 1

Table A.2: Dimensionless constants for cell cycle model for Equations A.2-A.27
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Appendix B

Circadian mammalian model-equations and

rate-constants

(a) mRNAs of Per, Cry and Bmal1:

dMP

dt
= νsP

Bn
N

Kn
AP +Bn

N

− νmP
MP

KmP +MP
− kdmpMP, (B.1)

dMC

dt
= νsC

Bn
N

Kn
AC +Bn

N

− νmC
MC

KmC +MC
− kdmcMC, (B.2)

dMB

dt
= νsB

Km
IB

Km
IB +Bm

N

− νmB
MB

KmB +MB
− kdmbMB (B.3)

(b) Phosphorylated and non-phosphorylated proteins PER and CRY in the cytosol:

dPC

dt
= ksPMP − V1P

PC

Kp + PC
+ V2P

PCP

Kdp + PCP
+ k4PCC

−k3PCCC − kdnPC, (B.4)

dCC

dt
= ksCMC − V1C

CC

Kp + CC

+ V2C
CCP

Kdp + CCP

+ k4PCC

−k3PCCC − kdncCC, (B.5)

dPCP

dt
= V1P

PC

Kp + PC

− V2P
PCP

Kdp + PCP

− νdPC
PCP

Kd + PCP

− kdnPCP, (B.6)

dCCP

dt
= V1C

CC

Kp + CC
− V2C

CCP

Kdp + CCP
− νdCC

CCP

Kd + CCP
− kdnCCP. (B.7)

(c) Phosphorylated and non-phosphorylated PER-CRY complex in cytosol and nucleus:

dPCC

dt
= −V1PC

PCC

Kp + PCC

+ V2PC
PCCP

Kdp + PCCP

− k4PCC + k3PCCC

+k2PCN − k1PCC − kdnPCC, (B.8)

dPCN

dt
= −V3PC

PCN

Kp + PCN

+ V4PC
PCNP

Kdp + PCNP

− k2PCN + k1PCC

−k7BNPCN − k8IN − kdnPCN (B.9)
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dPCCP

dt
= V1PC

PCC

Kp + PCC
− V2PC

PCCP

Kdp + PCCP
− νdPCC

PCCP

Kd + PCCP

−kdnPCCP, (B.10)

dPCNP

dt
= V3PC

PCN

Kp + PCN
− V4PC

PCNP

Kdp + PCNP
− νdPCN

PCNP

Kd + PCNP

−kdnPCNP. (B.11)

(d) Phosphorylated and non-phosphorylated protein BMAL1 in the cytosol and nucleus:

dBC

dt
= ksBMB − V1B

BC

Kp +BC
+ Vrm2B

BCP

Kdp +BCP
− k5BC

+k6BN − kdnBC (B.12)

dBCP

dt
= V1B

BC

Kp +BC
− V2B

BCP

Kdp +BCP
− νdBC

BCP

Kd +BCP

−kdnBCP (B.13)

dBN

dt
= −V3B

BN

Kp +BN
− V4B

BNP

Kdp +BNP
+ k5BC − k6BN − k7BNPCN

+k8IN − kdnBN, (B.14)

dBNP

dt
= V3B

BN

kp +BN
− V4B

BNP

Kdp +BNP
− νdBN

BNP

Kd +BNP
− kdnBNP. (B.15)

(e) Inactive complex between PER-CRY and CLOCK-BMAL1 in nucleus:

dIN
dt

= −k8IN + k7BNPCN − νdIN

IN
Kd + IN

− kdnIN. (B.16)
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Kinetic parameter Parameter value Kinetic parameter Parameter value

k1 0.4h−1 n 4

k2 0.2h−1 V1B 0.5nMh−1

k3 0.4nM−1h−1 V1C 0.6nMh−1

k4 0.2h−1 V1P 0.4nMh−1

k5 0.4h−1 V1PC 0.4nMh−1

k6 0.2h−1 V2B 0.1nMh−1

k7 0.5h−1 V2C 0.1nMh−1

k8 0.1h−1 V2P 0.3nMh−1

KAP 0.7nM V2PC 0.1nMh−1

KAC 0.6nM V3B 0.5nMh−1

KIB 2.2nM V3PC 0.4nMh−1

kdmb 0.01h−1 V4B 0.2nMh−1

kdmc 0.01h−1 V4PC 0.1nMh−1

kdmp 0.01h−1 Vphos 0.4nMh−1

kdn 0.01h−1 νdBC 0.5nMh−1

kdnc 0.12h−1 νdBN 0.6nMh−1

Kd 0.3nM νdCC 0.7nMh−1

Kdp 0.1nM νdIN 0.8nMh−1

Kp 0.1nM νdPC 0.7nMh−1

KmB 0.4nM νdPCC 0.7nMh−1

KmC 0.4nM νdPCN 0.7nMh−1

KmP 0.31nM νmB 0.8nMh−1

ksB 0.12h−1 νmC 1.0nMh−1

ksC 1.6h−1 νmP 1.1nMh−1

ksP 0.6h−1 νsB 1.0nMh−1

M 2 νsC 1.1nMh−1

νsP 1.5nMh−1

Table B.1: Rate constants for the mammalian circadian model.
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shooting based reduced SQP strategy for large-scale dynamic process optimiza-

tion. Part 1: theoretical aspects. Comput Chem Eng 27, pp 157–166, 2003.

121



Bibliography

[70] J. Kallrath, H. G. Bock, J. P. Schlöder. Least square parameter estimation in

chaotic differential equations. Celestial Mechanics and Dynamical Astronomy

56, pp 353–371, 1993.

[71] B. D. O. Anderson, J. B. Moore. Optimal control: linear quadratic methods.

Prentice-Hall, New Jersey, 1989.

[72] A. E. Bryson, Y. C. Ho. Applied optimal control: Optimization, estimation,

and control. Hemisphere Publ. Corp., New York, 1989.

[73] E. B. Lee, L. Markus. Foundations of optimal control theory. Wiley, New

York, 1968.

[74] M. Diehl. Real-time optimization for large scale nonlinear processes. Phd

thesis, University of Heidelberg, Germany, 2001.

[75] S. J. Qin, T. A. Badgwell. An overview of industrial model predictive control

technology. Fifth International Conference on Chemical Process Control- CPC

V, pp 232– 256, 1996.
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