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Zusammenfassung

In dieser Dissertation präsentiere ich eine neue Methode zur Inversion der Linsen-

gleichung. Der präsentierte Algorithmus basiert auf dem Modifizierten Hausdorff-

Abstand zwischen beobachteten und modell- erzeugten Bögen als eine Funktion der

Fit-Güte. Die Minimierung dieser Funktion der Fit-Güte hat sich als sehr erfolgreich

zur Auffindung des Linsenpotentials herausgestellt, da sie relativ einfach zu berech-

nen ist und die volle Information nicht nur der Bogenpositionen sondern auch ihrer

Form enthält. Weitere Minimierungs- Schemata, darunter Powell, Markov Chain Monte

Carlo und Genetische Algorithmen, werden untersucht, und es wird gezeigt, dasz sie

kombiniert die besten Resultate liefern. Die entwickelte Methode wird mit groszem Er-

folg auf den Starklinsen-Galaxienhaufen RCS0224-0002 angewandt. Das resultierende

Modell ist in der Lage, alle beobachteten Starklinsen-Eigenschaften dieses Haufens im

Detail wiederzugeben, be- vorzugt das NIS radiale Profil gegenueber NFW und sagt

eine verblüffende Verschiebung um fuenf Bogensekunden zwischen dem Massenschw-

erpunkt und dem Zentrum der Roentgenemission voraus. Zum Abschlusz wird die

Doku- mentation des Softwarepakets (C++ und IDL) zur Implementierung der Inver-

sionsmethode praesentiert.

Abstract

In this dissertation I present a novel method of inverting the lensing equation. The

presented algorithm is based on Modified Hausdorff Distance between observed and

model produced arcs as a goodness of fit function. Minimizing this goodness of fit

function has proven to be very successful in finding the lensing potential, since it is

relative simple to compute and contains the full information about not only the arcs

positions, but also their shapes. Further various minimization schemes, including Pow-

ell, Markov Cain Monte Carlo and Genetic Algorithms, are investigated and proved to

give the best results if combined together. The developed method is applied, with great

success, to the strong lensing galaxy cluster RCS0224-0002. The resulting model is able

to reproduce, in detail, all the observed strong lensing features of this cluster, favors the

NIS radial profile over NFW, and predicts an intriguing 5 arc sec shift between center

of the mass and the X-ray emission. Finally the documentation of the software package

(C++ and IDL) implementing the inversion method is presented.
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Chapter 1

Introduction to Gravitational Lensing

To mistrust science and deny the validity of the scientific

method is to resign your job as a human. You’d better go look

for work as a plant or wild animal.

P. J. O’Rourke

Abstract

This chapter presents the introduction to the gravitational lensing. After a brief historical

note we focus on the physical origins and properties of this phenomenon. We start from in-

vestigating how a matter (energy) over density affects the light ray path in the framework of

the General Relativity. Then we introduce and justify a number of simplifications which, to-

gether with the thin lens approximation allow us to derive many simple and useful equations

and to describe some crucial properties of gravitational lensing.

1.1 Introduction

G
ravitational lensing is an effect that arises due to the fact that gravity influences

the paths of light rays. The more massive an object is, the more it will change the

trajectory of a light ray passing by. This effect is properly described in the framework

of General Relativity. Gravitational lensing is a very rapidly developing branch of as-

trophysical research. It receives much attention since it allows for the most direct study

of the dark matter on different astrophysical scales, regardless of its component and

dynamical state (Peacock and Schneider 2006). Depending on the degree to which the

light rays trajectories are changed by the presence of the lensing object (hereafter called

lens), and on the nature of the lens and the background source (hereafter called source)
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being lensed, three “regimes” of gravitational lensing might be distinguished: strong

lensing, weak lensing, cosmic shear, pixel lensing and microlensing.

Strong lensing is when there is enough distortion caused by the lens in the path of

the light rays from the source to the observer, to produce easily visible features such

as Einstein rings, arcs, and multiple images. It is most often observed in the cores of

galaxy clusters (with a source being a distant galaxy) and in galaxies (with the source

being a distant quasar). However, there are cases of quasar being lenses by a galaxy

cluster, or galaxies being lenses by another galaxy. When the distortion of the back-

ground sources is so small that statistical methods need to be used to detect it, then we

are in the weak lensing regime. This kind of lensing is commonly observed in the outer

regions of galaxy clusters. The cosmic shear is the weak distortion to the shape and

luminosity of high redshift objects, caused by the large scale structure of the Universe.

The third type of lensing, microlensing, is a time dependent variation of the observed

flux of the source due to the change in the alignment of the lens and the source. The

common example of microlensing is lensing of stars in another galaxy by stars from the

Milky Way.

In this dissertation I will mainly focus on the strong gravitational lensing caused by

the clusters of galaxies, and on methods of lenses mass profiles reconstruction based on

the observed strong lensing features.

There are a number of works available, containing general information on gravita-

tional lensing, for example a book by Schneider, P. and Ehlers J. and Falco E. (1992), or

the review by Meylan et al. (2006). Most of the cosmology books, also have chapters

dedicated to lensing effects (see e. g. Peacock 1999, chap. 2).

1.1.1 Importance of lensing

All types of lensing have very interesting applications to astronomy, cosmology, and

astrophysics. The most direct usage of gravitational lensing is the measurement of mass

and mass profiles. Observations of the positions of multiple images (arcs) allow a rough

estimate of the mass enclosed by those images. When more than one arc system is

observed and additional constrains are taken into account (like arc shapes, fluxes, and if

available, time delays among images), than a more precise mass distribution estimate is
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possible. In the case of galaxy clusters, this combined with the weak lensing constrains

results in a detailed maps of dark matter, both in the core and in the outer regions of the

clusters (see e. g. Cacciato et al. 2006).

Determination of the H0

The Observation of more than one arc system with known redshift, and/or time dilata-

tion between images, allows the calculation of the Hubble constant. The values of H0

obtained from lensing are usually below 72 km s−1 Mpc−1 and have significant errors

associated with them, mostly due to uncertainties in the lenses modeling. The recent

result obtained by Saha et al. (2006) is that the Hubble constant is

H−1
0 = 13.5+2.5

−1.2Gyr (H0 = 72+8
−11km s−1 Mpc−1) (1.1)

at 68% confidence level. The Fig. 1.1 shows the ensemble of Hubble times obtained by

investigating 10 different lenses with measured time delays. The lenses were modeled

with PixeLens software (see Sect. 2.1.1), which resulted in a large number of produced

models, that were later averaged.

Cosmological parameters

Other cosmological parameters can also be obtained from lensing, for example weak

lensing caused by large scale structure is sensitive to the matter density parameter ΩM

and to the density fluctuations normalization parameters σ8. The results based on 22

deg2 of CFHTLS1 Wide Synoptic Survey data analyzed by Hoekstra et al. (2006) are

presented in Fig. 1.2. The study puts the upper limit of -0.3 on the dark energy state

parameter with 99.7% confidence. The degeneracy between Ωm and σ8 is not parallel

to the one that arises in the WMAP(Spergel et al. 2007) data analysis. This technique

of cosmological parameters estimation is promising, especially in the perspective of the

new surveys that will provide researchers with coverage of the big portions of the sky

in many bands, which is important for the photometric redshift measurements.

1http://www.cfht.hawaii.edu/cfhtls/
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Figure 1.1: Histogram of the ensemble of H−1
0 values. The unbinned distribution gives H−1

0 =

13.5+2.5
−1.2Gyr at 68% confidence level and 13.5+5.6

−1.6Gyr at 90% confidence level (Saha et al. 2006).

Figure 1.2: (a): Dark energy constraints using the measurements from the W1 and W3 fields of

CFHTLS. The contours indicate the 68.3%, 95.4%, and 99.7% confidence limits on two parame-

ters jointly. (b): Join constrains on Ωm and σ8 (Hoekstra et al. 2006).
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Mass distribution over different scales in the Universe

The lensing cross-section being the probability that a source from a defined sample

(galaxies, stars, quasars, etc...) will be multiple imaged or stretched beyond a given

threshold, puts a strong constrains on the abundance of objects of different masses in

the Universe. The lack of lensing systems without a visible lens proves that there is no

significant amount of mass in compact dark objects. The number of lensing events pre-

dicted by theories is usually much higher then the one observed. However we do not

yet, fully understand the selection effects and the impact that the substructure have on

number of arcs. For the in-depth discussion on the lensing cross-section see Bartelmann

(1995) or Meneghetti et al. (2003) and references within.

Lensing as a natural telescope

Gravitational lenses, act as a natural telescopes, giving us the possibility to study very

faint and distant objects, that would otherwise be out of the reach of current instru-

ments. A recent study of a z = 4.87 galaxy has been carried out by Swinbank et al.

(2007) using the galaxy cluster RCS0224-0002 as a lens. The strong lensing modeling

allowed for the source reconstruction, presented in Fig. 1.3, which in turn revealed in-

teresting properties of this hight redshift galaxy. Its mass and size were determined,

together with the velocity gradient. More interestingly, the spectral analysis showed

that there is a galactic-scale bipolar outflow which has recently bursted out of the sys-

tem. Such a detailed spectroscopic study of a galaxy at z ≈ 5 would not be possible

with today’s class telescopes if strong lensing was not involved.

Dynamical history of clusters

The comparison of the lensing inferred dark matter maps with the luminous and X-ray

component gives us the possibility to study the dynamical history of the lens (cluster).

Two interesting examples of such a studies are the IE 0657-558 cluster (aka “The Bullet

Cluster”) (see e.g. Clowe et al. 2006; Bradač et al. 2006), and the Cl 0024+17 cluster (Jee

et al. 2007). In both cases the discrepancy between the dark matter, X-rays and luminous

matter distributions is observed. This is a hint for the collision (merger) of two or more
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Figure 1.3: Source-plane observations of the z = 4.88 galaxy from the HST, VIMOS and SINFONI

observations. Top left-hand panel: [O II] emission-line intensity of the galaxy (dark regions rep-

resent regions of highest intensity). Top right-hand panel: [O II] emission-line velocity structure

of the galaxy which shows a maximum velocity shift of 60 ± 20 kms−1 along the long axis of

the galaxy. Bottom left-hand panel: reconstructed true clour HST VI image of the z = 4.88 arc.

Inset: reconstructed HST image after a smoothing scale of 0.8 arcsec has been applied to the

sky-plane image. Bottom right-hand panel: reconstructed Lyα emission-line map of the z = 4.88

arc (Swinbank et al. 2007).

clusters. Its also one of the most direct proofs for the existences of the dark matter

component in galaxy clusters. The Bullet Cluster (Fig. 1.4) is supposed to undergo an

collision seen from the side, while the Cl 0024+17 (Fig. 2.2) is a merger seen face on. The

significance of those results is however still controversial, and not widely accepted in

the community.

1.2 Historical note

The possibility that gravity can interact with light was already noted by Sir Isaac

Newton in his Optics (Newton 1704). In the first query Newton asks: “Do not

Bodies act upon Light at a distance, and by their action bend its rays, and is not this
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Figure 1.4: The Bullet Cluster. The Dark Matter (blue) and X-ray emission (red) over plotted

on the luminous component. Image credit: X-ray: NASA/CXC/CfA/M.Markevitch et al.; Opti-

cal: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScI; ESO WFI;

Magellan/U.Arizona/D.Clowe et al. .

action (cteris paribus) strongest at the least distance?” However, for the nearly next

80 years the problem was not investigated any further. In 1783 John Michell discussed

in the letter to Henry Cavendish, the existence of object so dense that the light can

not escape their gravity. He also stated that those “black” objects could be detected

by observation of the companion stars revolving around these invisible objects. At the

beginning of 19th century, the Munich astronomer J. Soldner investigated the error in

determination of the positions of starts due to the deflection of light by massive objects

(Soldner 1804). The result he obtained, within the framework of Newtonian gravity,

was that the light ray passing close to the surface of the Sun, would be deflected by the

angle

α ≈ 2GM⊙
c2R⊙

≈ 0.83 arcsec .
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More than a century later, Einstein, unaware of Soldner work, derived tha same

equation and noted that it would be important if astronomers tested it (“Es wäre drin-

gend zu wünschen, daß sich Astronomen der hier aufgerollten Frage annähmen, auch

wenn die im vorigen gegebenen Überlegungen ungengend fundiert oder gar abenteuer-

lich erscheinen sollten.”, Einstein 1911). In 1913 Einstein contacted the director of the

Mount Wilson Observatory, George Ellery Hale, and asked him if it would be possible

to measure the positions of the stars close to the Sun in order to measure the deflec-

tion angle. Freundlich of the Royal Observatory in Berlin got sufficiently interested in

Einstein ideas that he organized an expedition to Russian Crimea peninsula, where the

total solar eclipse was expected in 1914. However, a few weeks after the expedition ar-

rived the World War I broke off, and the scientists were arrested before they could carry

out the observations.

After the completion of the General Relativity, Einstein was the first one to use it to

derive the deflection angle α of a light ray passing at a distance r from the center of

spherical object of mass M . He obtained the value

α ≈ 4GM

c2r
,

which is twice bigger than the value resulting from the Newton’s theory of gravity

(Einstein 1915). For the light ray grazing the Sun, Einstein predicted the deflection angle

of 1.74 arcsec. Confirmation of this prediction, with 20% accuracy, by Eddington and

his group in 1919 during the solar eclipse was the second observational confirmation of

General Relativity (the first one was the explanation of Mercury’s perihelion shift) and

it brought attention to Einstein and his new theory2.

In the following decades the influence of gravity on light rays was not part of the

mainstream research. Mainly because extragalactic astronomy was just beginning to

develop and gravitational lensing effects within our Galaxy were beyond the reach of

observational techniques (except for the already discussed effect of the displacement of

the angular positions of stars by the Sun). However, some theoretical works has still

2In 1995 the value of the deflection angle predicted by General Relativity was confirmed, with radio-

interferometric methods, to an accuracy better than 0.02% (Lebach et al. 1995)
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been carried out. Eddington investigated the conditions under which multiple images

of a lensed star (by another star) could appear. He also calculated (wrongly) the fluxes

of the multiple images (Eddington 1920). The possibility of appearance of ring-shaped

images (now days called Einstein Rings) was first discussed by Chwolson (1924). In this

paper he considered the situation where a distant background star is lensed by a fore-

ground star, what leads to formation (depending on the two stars alignment) of two

images of the background star, one of witch might be very close to the foreground star

– this would form a fictitious double star, which would not be resolved specially, but

its spectrum should consist of a superposition of two (probably) different spectra. He

noted that if the two stars are aligned perfectly, than the ring-like image will occur. After

talking to a Czech engineer Mandl, Einstein published the results of his calculations of

the star on star lensing (Einstein 1936). He was however, very skeptical about observa-

tional feasibility of this effect, and he noted that “there is no great chance of observing

this phenomenon.”

The breakthrough was done by Fritz Zwicky in 1937, when he published two pa-

pers in which he considered the galaxies (“extragalactic nebulae”) as lenses (Zwicky

1937a,b). Those papers were truly insightful and described many of the most impor-

tant properties and applications of gravitational lensing. Remarkably Zwicky noticed:

“The discovery of images of nebulae which are formed through the gravitational fields

of nearby nebulae would be of considerable interest for a number of reasons.

(1) It would furnish an additional test for the General theory of Relativity.

(2) It would enable us to see nebulae at distances greater than those ordinarily reached

by even greatest telescopes. Any such extension of the known parts of the Universe

promises tho throw very welcome new light on a number of cosmological problems.

(3) The problem of determining nebular masses at present has arrived at a stale-

mate... Observations of the deflection of light around nebulae may provide the most

direct determination of nebular masses.” All of those three points are nowadays the

main focus of the gravitational lensing research.

Lack of observations resulted in not much interest of the researchers in gravitational

lensing. This situation changed with the advent of radio astronomy and the discovery of

quasars (Schmidt 1963). Quasars being a distant point like objects with strong emission
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Figure 1.5: The HST image of the galaxy cluster Abell 1689. It is the richest gravitational lens

discovered up to date. Many giant luminous arcs and arclets are visible around the two cluster

cores.

lines and hight luminosity were an ideal source candidates for gravitational lensing.

This new discovery coincided with further theoretical work in the subject. Liebes (1964)

considered the lensing of stars in Andromeda galaxy by stars in the Milky Way, and

Refsdal (1964b) derived the basic equations of the gravitational lens theory. Refsdal also

gave a detailed description of the properties of point-like gravitational lens, and showed

how a time dilatation between two images of one source can lead to the determination

of the Hubble constant (Refsdal 1964a). At the same time Sachs (1961) and Kantowski

(1969) studied the propagation of light ray bundles in inhomogeneous universe.

Finally, in 1979 the first observational confirmation of the gravitational lensing effect

was done. In that year Walsh, Carswell and Weymann (1979) announced the detection

of a double lensed quasar Q0957+561, with the source being at z ≈ 1.4 and the lensing

galaxy at z = 0.36. The two optical images were separated by approximately 6 arcsec-

onds (Fig. 1.6). Seven years later the detection of giant luminous arcs was reported by

Lynds and Petrosian (1986). Those new “objects” were described as located in the clus-

ters of galaxies, elongated, narrow, arc-shaped features, with luminosities comparable
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Figure 1.6: The I band image of the double lensed quasar Q0957+561 (Fischer P. 1997). The

two images are clearly visible (one to the north and one to the south), together with the lensing

galaxy (above the souther image).

to those of giant elliptical galaxies. From that point on gravitational lensing become

one of the main-stream fields of astrophysical research, and one of the most important

cosmological tools. In 1990 the first case of weak lensing was observed by Tyson, Wenk

and Valdes (1990), and three years later Alcock et al. (1993) reported the detection of the

first microlensing event. Now there are many gravitational lens systems known, and

each year new ones are discovered. I will mention here two of them – Abell 1689 and

J1004+411. Abell 1689 is the galaxy cluster with the most lensing features up to date

Fig 1.5. Broadhurst et al. (2005) identified more than 100 extended images of more than

30 sources in the.field of this cluster. J01004+411 on the other hand has both the multi-

ple images of a normal background galaxy and multiple images of a background quasar

(Sharon et al. 2005).
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1.3 Physics behind lensing

I
nthis section we use the notation where the repetitive indexes on different levels are

summed over, and a comma followed by an index denotes a partial differentiation

with respect to the variable labeled by that index. Also, we use the orthogonal coor-

dinates x0 = ct ,x = (xi). In General Relativity light rays travel along null-geodesics,

which are determined by the underlying metric gαβ. The metric is, in turn, defined by

the distribution of energy in the Universe through Einstein gravitational field equation

Rαβ − 1

2
Rgαβ =

8πG

c4
T αβ , (1.2)

where Rαβ is the Ricci tensor with the trace R, T αβ is the stress-energy tensor, c is the

speed of light in vacuum, and G is the gravitational constant. The Ricci tensor is ob-

tained by contracting the Riemann tensor

Rαβ = Rγ
αγβ , (1.3)

which is defined by connection coefficients (Christoffel symbols)

Rmu
αβγ = Γµ,β

αγ − Γµ,γ
αβ + Γµ

σβΓσ
γα − Γµ

σγΓ
σ

βα . (1.4)

And finally, the connection coefficients can be expressed in terms of the metric

Γα
βγ =

1

2
gαδ(gδβ,γ + gδγ,β − gβγ,δ) . (1.5)

Therefore, by defining the distribution of mass (energy) in the space through the stress-

energy tensor T αβ , it is possible to use the Einstein equation (1.2) to calculate the metric,

which is enough to describe gravitational lensing effect. In practice the solution of the

field equation is possible only for very simple forms of the stress-energy tensor. If we

assume that the space is empty everywhere, except for a small local concentration of

matter (energy), then we can linearize the filed equation (1.2). The empty space is de-

scribed by a flat Minkowski metric ηαβ = diag(1,−1,−1,−1). We can write the metric

gαβ in the form of
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gαβ =

(

1 − 1

2

)

ηαβ + hαβ , (1.6)

h = ηαβhαβ . (1.7)

Assumption that the space is empty everywhere, except for a small local over-density

of energy (weak field approximation) means that ‖hαβ‖ ≪ 1. Due to the symmetries

(energy conservation and Bianchi identity see e. g. Peacock 1999, chap. 1) the Einstein

field equation (1.2) has four degrees of freedom, and therefore we are free to choose a

Lorenz gouge

hαβ
,β = 0 . (1.8)

Applying (1.6) to the (1.2) and noticing that in the weak field approximation we can use

the background Minkowski metric ηαβ , instead of the full gαβ metric, to transform the

coordinates from covariant to contravariant, results in the linearized form of the field

equation

(

△− 1

c2
∂2

∂t2

)

hαβ =
16πG

c4
T αβ . (1.9)

This is a wave equation that has a retarded solution in the form of

hαβ(t,x) = −4G

c4

∫ T αβ
(

t− |y|
c
,x + y

)

|y| d3y . (1.10)

To proceed further some form of the stress-energy tensor needs to be assumed. For most

astrophysical cases it is enough to model the matter as a perfect fluid, and write T αβ, as

T αβ =
(

ρc2 + p
)

uαuβ − pgαβ . (1.11)

Here ρ donates the matter density and p the pressure (both in the comoving reference

frame), and uα = γ(c,v) is the four-velocity, normalized to one uαu
α = 1. If we further
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assume that matter moves slowly in the xα coordinate system, i. e. vi := dxi

dt
obeys

|v| < c, and |p| ≪ ρc2, then the stress-energy tensor simplifies to

T 00 = ρc2 , T 0i = cρvi , T ij = ρvivj + pδij , (1.12)

where the terms of order v2/c2 and p/(ρc2) have been omitted. By applying those ap-

proximations and by introducing the retarded potentials

U(t,x) = −G
∫ ρ

(

t− |y|
c2
, x + y

)

|y| d3y , (1.13)

V (t,x) = −G
∫ ρv

(

t− |y|
c2
, x + y

)

|y| d3y , (1.14)

we can calculate the metric and the length element ds from (1.10) and (1.6)

ds2 = gαβdx
αdxβ =

(

1 +
2U

c2

)

c2dt2 − 8cdt
V · dx
c3

−
(

1 − 2U

c2

)

dx2 . (1.15)

The weak filed approximation holds if and only if |U | ≪ c2, which also implies
∣

∣

V
c3

∣

∣ ≤
∣

∣

v
c

∣

∣

∣

∣

U
c2

∣

∣≪ 1. This allows us to write the metric (1.15) in the form of

ds2 = e
2U

c2

(

cdt− 4Vi

c3
dxi

)2

− e
−2U

c2 dx2 . (1.16)

Since light rays travel along null curves ds2 = 0, then

cdt = e
−2U

c2 dl +
4Vi

c3
dxi , (1.17)

where dl is the length element dl = |dx|. If the light emitted at t = 0 travels along the

null path γ parameterized by λ (xi = xi(λ), then the arrival time is

t =

∫

γ

(

e
−2U

c2 dl +
4Vi

c3
dxi

)

. (1.18)
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ξ

ein

eout

M

Figure 1.7: Deflection of the light ray, passing by a mass M , with the impact vector ξ. The

deflection angle is defined as α̂ = ein − eout.

Light will travel the spatial path given by the Fermat’s principle

δ

∫

γ

(

e
−2U

c2 dl +
4Vi

c3
dxi

)

= 0 . (1.19)

This means that, in the weak field approximation, gravity acts as a “medium” with a

effective index of refraction n

n = 1 − 2U

c2
+

4

c3
V · e , (1.20)

where e = dx
dl

. By applying the Euler-Lagrange equation to the variational principle
∫

γ
ndl = 0 we find the spatial path of the light rays

de

dl
=

−2

c2
(∇U − e(e · ∇U)) +

4

c3
e × (∇× V ) . (1.21)

The first term in Eq (1.21), −2
c2

(∇U − e(e · ∇U)) = ∇⊥U , is the projection of the ∇U onto

a plane perpendicular to the direction e of the light ray propagation, and represents an

attractive “force” towards the deflecting mass. The second term, 4
c3

e × (∇× V ), is due

to the gravitomagnetic field produced by moving matter, it is related to the famous

“dragging of inertial frames” effect, which has been lately measured by Ciufolini et al.

(2007), and is an important test for general relativity. The second term is however much

smaller than the first one, and therefore we will neglect it in our further considerations.

If we define the defection angle α̂ as

α̂ := ein − eout , (1.22)
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then from (1.21) we obtain

α̂ =
2

c2

∫

(∇U − e(e · ∇U)) dl . (1.23)

Since in most astrophysical situations the deflection angles are small, we can integrate

Eq (1.23) along the unperturbed path x(l) = le, instead of the real one (see Fig. 1.7).

Also, the light ray undergoes most of the deflection in the small region around the min-

imum distance between the ray and the deflecting mass. Those simplifications allow us

to calculate the deflection angle for a point mass, with the potential U(x) = −GM
|x| ,

α̂ =
4GM

c2
ξ

|ξ|2 . (1.24)

If the deflecting mass in not point like but has some spatial distribution, then (in ad-

dition to small α̂), we have to assume that the extent of mass in the direction of the

incoming ray is so small that the ∇⊥U along the unperturbed ray deviates little from

that on the actual one. This assumption holds very well since in all the astrophysical

cases the distance from the source to the lens and from the lens to the observer is orders

of magnitude bigger than the size of the deflecting mass distribution. Under those as-

sumptions we can again integrate along the unperturbed path, and since all the mass

elements along the incoming ray direction have the same impact parameters ξ, then we

can project them onto one plane (so called lens plane) and use their surface mass density

Σ(ξ) to calculate the deflection angle. This is the thin lens approximation. The resulting

deflection angle will be a sum of “point mass” like deflection angles form each element

of the lens plane

α̂ =
4G

c2

∫

R2

(ξ − ξ′)Σ(ξ′)

|ξ − ξ′| d2ξ′ . (1.25)

The integral in the above equation is carried out in the lens plane and ξ is a two-

dimensional vector in that plane. Eq. (1.25) gives the value of a deflection angle for

a light ray passing by an arbitrary (within the above assumptions) mass density distri-

bution, and is the basic equation of the gravitational lensing theory.
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Since in the presence of the deflecting mass light travels a different trajectory then

it would in absence of it, an interesting effect of a time delay arises. The time it takes

the light ray to travel from the source to the observer will be longer in the presence of

the lensing effect, due to two factors. The first one is purely geometrical - the path SLO

is longer than the direct, unperturbed path SO (see Fig. 1.8). The second one is due to

time dilatation in the presence of gravitational filed - the Shapiro Effect (Shapiro 1964).

From Eq. (1.18), after neglecting the movement of the matter, we get the time needed

for a light ray traveling along path SLO to reach the observer

t = c−1

∫
(

1 − 2U

c2

)

= c−1l − 2c−3

∫

Udl , (1.26)

where l is the length of the path SLO. In the thin lens approximation one can substitute

the deflected light ray with the asymptotic path - light travels along a straight line from

source to the lens plane SL, then it undergoes the rapid, non smooth, deflection , and

then it again travels in a straight line to the observer LO. From Fig 1.8 one can calculate

the length of the deflected light path l

l =

√

(ξ − η)2 +D2
ls +

√

ξ2 +D2
l (1.27)

≈ Dls +Dl +
1

2Dls
(ξ − η)2 +

1

2Dl
ξ2 , (1.28)

where the Dl, Ds, and Dls denote angular distances from the observer to the lens plane,

from the observer to the source, and from the lens plane to the source, respective. The

unperturbed direct path from the source to the observer has the length of l0 ≈ Ds +

1
2Ds

η2. Therefore, the geometrical time delay caused by lensing is

c∆t = l − l0 =
DlDs

2Dls

(

ξ

Dl
− η

Ds

)2

+ const.. (1.29)

To calculate the time delay in the Eq. (1.26) caused by Shapiro effect, we need to calculate

the integral of the potential U along the path SLO. First we assume the point mass

potential and calculate the integral along the partial path SL is
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∫

SL

Udl = GM

(

ln
|ξ|
Dls

+
ξ(η − ξ)

D2
ls

+
|ξ| − |η|
D2

ls

)

, (1.30)

since Dls ≫ |ξ| then we can use only the first term, which does not depend on η

∫

SL

Udl = GM

(

ln
|ξ|
Dls

)

= GM ln
|ξ|
ξ0

+ const , (1.31)

where ξ0 is an arbitrary length scale in the lens plane. The integral along the full path

SLO is , within precision of an additive constant, equal to two times the partial integral

∫

SLO

Udl = 2GM ln
|ξ|
ξ0

+ const . (1.32)

Using the linearity of U in the mass distribution we can write the time delay caused by

Shapiro effect in the form of

−2

c3

∫

Udl =
−4G

c3

∫

Σ(ξ′) ln

( |ξ − ξ′|
ξ0

)

+ const , (1.33)

where Σ(ξ′) is the surface mass density in the source plane. Adding the two effects

together we get an expression for the time delay of a lensed light ray in respect to the

direct one

c∆t = φ̂(ξ,η) + const , (1.34)

where φ̂(ξ,η) is called the Fermat potential and it is given by

φ̂(ξ,η) =
DlDs

2Dls

(

ξ

Dl
− η

Ds

)2

− ψ̂(ξ) , (1.35)

and the deflection potential ψ̂(ξ) is defined as
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lens plane source plane

O

L

Sξ

η

Dl

Ds

Dls

Figure 1.8: The basic geometry of gravitational lensing. The light emitted by a source at the

position η in the source plane, travels along the path SL to the lens plane, where it is deflected

at the position ξ and then travels along the path LO to the observer.

ψ̂(ξ) =
4G

c2

∫

Σ(ξ′) ln

( |ξ − ξ′|
ξ0

)

. (1.36)

According to the Fermat’s principle, the actual light ray path is the one, for which

the arrival time is stationary in respect to the variation of the deflection point ξ

∂(c∆t)

∂ξ
= ∇ξφ̂(ξ,η) = 0 . (1.37)

The above condition is fulfilled if

η =
Ds

Dl
ξ −Dlsα̂(ξ) . (1.38)

The obtained equation is called lens mapping, and it is a basic equation in gravitational

lensing theory, that binds the position of the source η, the position of the image ξ, and

the properties of the lens α̂(ξ). It is important to note that given a source position one

needs to invert this equation to obtain the position of the image. This inverted equation

might have more than one solution in which case lensing leads to the appearance of

multiple images on one source. Also in general case of surface mass density distribution

Σ(ξ′) in the lens plane, it is impossible to find solutions to the inverted lens mapping

equation analytically.
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1.4 Basic Lensing Theory

The lensing mapping equation (1.38) obtained in the previous section, is the starting

point for the discussion om many interesting properties of gravitational lensing.

We begin by introducing the scaled variables

x =
ξ

ξ0
, (1.39)

y =
ηDl

ξ0Ds
, (1.40)

together with the dimensionless surface mass density

κ(x) =
Σ(ξ0x)

Σcr
, (1.41)

where Σcr is a critical surface mass density defined as

Σcr =
c2Ds

4πGDlDls
. (1.42)

If we also introduce the scaled deflection angle and the scaled deflection potential

α(x) =
DlDls

ξ0Ds
α̂(ξ0x) =

1

π

∫

R2

κ(x′)
x − x′

|x − x′|2d
2x′ , (1.43)

ψ(x) =
DlDls

Dsξ2
0

ψ̂(ξ0x) =
1

π

∫

R2

κ(x′) ln(|x − x′|)d2x′ , (1.44)

then we can rewrite the lensing mapping equation (1.38) in a simple form of

y = x − α(x) . (1.45)

The lensing equation (1.45) provides a mapping from the image (lens) plane to the

source plane. This mapping is characterized by the Jacobian matrix

Aij(x) =
∂yi(x)

∂xj
=

(

δij −
∂2ψ(x)

∂xi∂xj

)

=

[

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

]

, (1.46)
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where we have introduced the components of the complex shear γ = γ1 + iγ2 = |γ|e2ıϕ,

γ1 =
1

2

(

∂2ψ(x)

∂2x1
− ∂2ψ(x)

∂2x2

)

, γ2 =
∂2ψ(x)

∂x1∂x2
, (1.47)

and the convergence κ has been already defined by Eq. (1.41). We list here some proper-

ties of this matrix, that will be useful later:

detA = (1 − κ)2 − |γ|2 , (1.48)

trA = 2(1 − κ) , (1.49)

a1,2 = 1 − κ∓ |γ| , (1.50)

(1.51)

where a1,2 are the eigenvalues of A.

Because of the Liouville’s theorem and the lack of production/absorption of photons

during the process of gravitational lensing, the surface brightness is conserved i. e. the

resolved images have the same surface brightness as the unlensed source. The flux is

however not conserved. If in the absence of lensing the source occupies d2y portion of

the sky, and has the surface brightness of I , then the flux S0, of this unlensed source

is S0 = Id2y. In the presence of lens between the source and the observer, the source

will be starched to the size of d2x, and thus its flux will be S = Id2x. Assuming d2x is

small compared to the scale on which the properties of the lens change, we can use the

Jacobian matrix A of the mapping (1.45) to calculate the distortion caused by lensing

d2y = |detA(x)|d2x . (1.52)

If we define the magnification µ as S/S0, then from Eq. (1.52), we get

µ(x) =
1

detA(x)
. (1.53)

Therefore the flux of the source is increased/decreased by a factor of |µ(x)| and the sign

of the Jacobian gives the information about the parity of the image. The magnification

of the resolved images is a weighted mean of the magnification across the image area
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µ =

[
∫

I(y)d2y

]−1 ∫

I(x)µ(x)d2x , (1.54)

however the size of the source in usually not known, therefore one can only obtain

relative magnifications between multiple images of a given source. It is possible that

detA(x) = 0, the points in the lens plane for which this occurs form smooth, closed

curves, called critical curves. If we map those curves back to the source plane using

Eq. (1.45) then we obtain closed, but not necessary smooth curves in the source plane

called caustics.

If the source is point-like and located on the caustic, then it will produce image(s)

close to the critical curves with infinite magnification. In reality the infinite magnifi-

cation does not occur because of two reasons 1) All physical sources are not point-like

and then Eq. (1.54) leads to finite magnification. 2) Close to the critical curves the geo-

metrical approach to light propagation in space, used to derive the mapping equation

(1.45), brakes down and the proper treatment of the problem within the framework of

wave optics is needed. Nevertheless if the source is on (or close) to the caustic, then its

image(s) will be highly magnified and located close to the critical curve.

The lens mapping equation is invertible everywhere except on critical curves. There-

fore the only possibility to increase/decrease number of images of a given source is to

move this source through a caustic. This will change the number of images by ±2 (be-

cause wavefronts are continues), depending on the direction of crossing. If we assume a

lens with a smooth potential and a deflection angle that goes to 0 as we move to a large

distance from the lens center (which is the case for all real gravitational lenses), then we

can conclude that the number of images produced by the lens is always odd. Indeed if

the source is far away from the center of the lens then only one image will be produced

(since deflection angle approaches 0), then if we start moving the source closer to the

center of the lens, each time we cross the caustic the number of images will change by

±2, so the total number of images is always odd. Moreover the images produced by

crossing the caustic will have different parities, since they will appear on the opposite

sides of the critical curves and the magnification Eq. (1.53) changes sign when we cross

the critical curve.
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If we assume that the source is not on the caustic, and X and W are two displace-

ment vectors in the source plane, center of the source, then we can define the handed-

ness of the source as the sign of X × W . The handedness of the image of this source

will be then the sign of Y × Z, where Y = AX ,and Z = AW . Since

Y × Z = AX ×AW = det

[(

A11 A12

A21 A22

)(

X1 W1

X2 W2

)]

k̂ = detA X × W ,

(1.55)

then we indeed see that negative detA will result in the change of the parity of the image

in respect to the parity of the source.

Not only the parity of the images but also their shapes are locally distorted by lens-

ing. To see that, let us consider the circular source centered at the position y, and with

radius R, bounded by the curve c(t),

c(t) = y +R(cos t, sin t) . (1.56)

If R is small compared to the scale on which the lensing properties change, then the

corresponding bounding curve d(t) in the image plane will be

d(t) = x + A−1R(cos t, sin t) . (1.57)

Applying Eq. (1.46) leads to the conclusion that the resulting image is an ellipse centers

on x with semi-axis of length

Λ± =
R

|1 − κ∓ |γ|| , (1.58)

parallel to the principal axes of A, given by the position angles

tanϕ± =
±|γ| − γ1

γ2

. (1.59)
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If the source is located close to the caustic, then at least one of the eigenvalues of A
is close to 0, which will lead to very hight stretching of the image in the direction of

corresponding eigenvector. This explains the appearance of giant luminous arcs close

to the critical curves. As expected, the area of the image is bigger then the area of the

source by a factor |Λ−Λ+| = |detA|−1 = |µ|.
One of the most important applications of gravitational lensing is the determination

of the mass profile of the lens, based on shapes, relative brightness and positions of the

multiple images. There is however a fundamental degeneracy that allows us to deter-

mine this profile only up to an additive constant. This is called the mass-sheet degeneracy.

Indeed, lets assume we have found a mass density distribution κ(x), of the lens, that is

able to perfectly reproduce all the features of the observed images. If we substitute this

mass density with a one of the form

κλ(x) = (1 − λ) + λκ(x) , (1.60)

where λ is an arbitrary constant, then the new lensing equation will become

y = x − αλ(x) , (1.61)

with

αλ(x) = (1 − λ)x + λα(x) , (1.62)

which results from Eq. (1.43) and α(x) is a deflection angle caused by the κ(x) mass

distribution. Combining the Eq. (1.61) and Eq. (1.62), leads to the equation

y

λ
= x − α(x) . (1.63)

The above relation between y and x is identical to the lensing equation of a lens with

mass density profile κ(x), with the exception of the length in the source plane being

scaled by a factor λ−1, which leads to the scaling of the magnification by a factor λ−2.
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In general however, the sizes in the source plane and fluxes of undistorted sources are

not directly observed. Therefore, if nothing sets an absolute scale in the source plane

(size of flux) and there are no indicators of the total mass of the lens (dynamics, X-ray,

etc..), then it is impossible to distinguish the lens with mass density profile κ and κλ.

The work around this problem might be the use of the fundamental plane of elliptical

galaxies to fix the fluxes of lensed galaxies, as proposed by Bertin and Lombardi (2006).

Another possibility arises if the source has flux that varies in time, the measurement of

the time delays between images can lead to the breaking of the mass-sheet degeneracy.

Indeed, if we consider the scaled Fermat potential (with ξ0 = Dl)

φ(x,y) =
Dls

DlDs
φ̂(xDl,yDs) =

1

2
(x − y)2 − ψ(x) , (1.64)

then we notice that with a transformation κ→ κλ it scales as

φλ(x,y) =
1

2
(x − y)2 − ψλ(x) = λφ(x,y/λ) + const . (1.65)

Since the Fermat potential is proportional to the time delay between images, then if the

source is variable in time, it is possible to break the mass-sheet degeneracy by measuring

those time delays. Another possible way to break the mass-sheet degeneracy is when

there is more then one source being lensed and the sources have different redshift, then

since κ depends on the redshift of the source (through Σcr) the degeneracy is broken.





Chapter 2

Computational methods

It is unworthy of excellent men to lose hours like slaves in the

labour of calculation which could safely be relegated to anyone

else if machines were used.

Gottfried Wilhelm Leibniz

Abstract

In this chapter we introduce two parametric lens models – Non-Singular Isothermal Ellip-

soid, and NFW profile. Those profiles are basic building blocks out of which one can create

more complex lenses. We also introduce the three different goodness of fit functions used to

determine how well the lens model reproduces the observed strong lensing features.

2.1 Introduction

Atypical problem in gravitational lensing analysis is determination of the mass den-

sity distribution of the lens (galaxy, galaxy cluster, etc...) based on the observed

features, such as the positions and shapes of arcs, their fluxes, and if available the time

delays between different images. The mass measurement of various astrophysical ob-

jects based on gravitational lensing is very important, and often superior to other meth-

ods (like Sunyev-Zel’dovich effect, galaxy dynamics or X-ray temperature) because it

probes directly the total mass content of a given object and it does not need any as-

sumptions about its state or composition (see e.g. ESA-ESO Working Groups, Report No.

3, Peacock and Schneider 2006).

For any realistic case the analytical solution for κ(x) of the set of lensing equations

(one for each image) (1.45) does not exist, therefore finding appropriate mass distribu-



28 2. Computational methods

tion is based on numerical methods. The usual method is to parameterize the mass dis-

tribution (the lens model) with a set of parameters, and then change those parameters

using one of the minimization algorithms, in such a way that a predefined distance (or

goodness of fit) between the observed arcs and those produced by the model becomes

minimal.

There are two major approaches to the parameterization of the lens mass density.

The first one is based on the assumption that the mass distribution is approximated by

the sum of components that have a straight physical interpretation, like the isothermal

profile or the NFW (Navarro et al. 1996) profile. Each component in this approach is

assigned a number of free parameters (scale, position of the center, ellipticity, position

angle etc...) and then those parameters are changed to reproduce the observed lensing

features. This approach is often refereed in the literature as the parametric one. The

other method is to discretise the lens plane into a grid of pixels of often variable size,

and then to assign a single parameter (the mass) to each of those pixels. The advantage

of this “non-parametric” method is that we do not assume a priori any profile the mass

distribution should follow, as it is th case with the parametric approach. The disad-

vantage is that the number of “parameters” – pixels – is much higher then in the first

method. This is more computationally demanding and what is more important often

leads to the problem of mass distribution finding being heavily under constrained (the

number of constrains we get from the observations is much smaller then the number

of parameters). The “non-parametric” algorithms also suffer from a problem of find-

ing non-physical solutions. In the following subsection, the commonly used inversion

techniques will be presented.

2.1.1 Inversion Methods

Generally, inversion techniques can be divided in to four domains, presented in Fig. 2.1.

The method can take into account the full information about the shapes (and luminos-

ity distribution) of the observed arcs (Extended arcs methods), or work in the point like

images approximation (point-like images methods). Each of those approaches can ei-

ther use the parameterization or, be parameter “free” and perform the inversion on a

grid. There is one more class of algorithms, used mostly for weak lensing, which is a
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Figure 2.1: The inversion methods. Behold Claudio Grillo’s artism!

“non-parametric” reconstruction of the lensing potential, based on statistical properties

of (weakly) distorted images.

Parametric approach with point images

This is the simplest, and fastest technique of inverting the lens. It has two main varia-

tions – one can minimize the chi-square in the image plane or in the source plane. Since

this approach is used as the first step of minimization used in our scheme, it is described

in details in the Sects. 2.3.1 and 2.3.2. It is also an underlying method of the GravLens

software package (Keeton 2001b).
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Non-parametric approach with point images

This technique is implemented in the PixeLens software Read (2007). The algorithm

works by reconstructing a pixelised mass map for the lens, an idea first implemented

by Saha and Williams (1997). PixeLens generates the whole ensemble of models rather

then just one best fit model, and this helps to address the uniqueness problem that many

strong lensing studies very often face. The parameter space mapping is done using the

Monte Carlo Markov Chains (see Sect. 3.3.1). The main advantages of PixeLens is that it

allows a modeling of several lenses simultaneously, enforcing consistency of H0 across

different time-delay lenses. As a result the lenses can be used to constrain other lenses in

a interesting way. The main disadvantage is that the modeling is based on point images

(together with magnifications and time delays if measured), which results in the model

being often under constrained. This is however, somehow compensated by the MCMC

approach.

Another interesting algorithm of this class was presented by Trotter et al. (2000),

where the lens potential is expressed as a series of multipole expansion. The benefit

of this approach is that one can utilize the whole mathematical apparatus already de-

veloped to study multipoles, the disadvantage is however that one needs to use very

high order expansion to be able to reconstruct the small scale structure, or extraordinary

features like rings (see next subsection).

Non-parametric approach with extended images

This class of algorithms is the most promising one, since one uses the full informa-

tion bout the observed arcs and arclets shapes, and luminosity distribution, to produce

the mass model that is not confined to any composition of “predefined” analytic mod-

els. This allows for a spectacular discoveries, like the ring of dark matter (Fig. 2.2)

discovered in the cluster Cl 0024+17 by Jee et al. (2007). One of the lately presented

non-parametric methods is the one proposed by Koopmans (2005), where the author

proposes to reconstruct not only the lenses potential, but also the sources brightness

distribution in a non-parametric way. The method is shown schematically in Fig. 2.3.

The figure illustrates how the surface brightness of each image pixel can be represented
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Figure 2.2: Ring of dark matter discovered through combined strong and weak lensing studies

of the Cl 0024+17 cluster (Jee et al. 2007)

through a weighted linear superposition of the (unknown) surface brightnesses at four

source pixels. Hence, one can represent this as a simple linear equation (see Koopmans

and Treu 2002) and because this holds for each of the M × N images pixels, one ob-

tains a set of M × N coupled linear equations. This set of equations is constrained by

the M × N observed surface brightness values and has K × L free parameters (the un-

known surface brightness values on the source grid). The advantage of this method is
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Figure 2.3: A schematic overview of the method of non-linear image (i.e. source) reconstruc-

tion, as implemented by Koopmans (2004). In the absence of blurring or averaging inside the

pixels, the position (x) of each pixel (m, n) in the image plane corresponds to a position in the

source plane (y), through the lens equation y = x−α(x). The surface brightnesses at these cor-

responding points – conserved through lensing – are the same. Because the source brightness

distribution is reconstructed on a fixed grid, the surface brightness at y, i.e. Σ(y) = Σ(x), is

represented by a linear superposition of the surface brightnesses at the four pixels that enclose y

(open circles). The weights for each of these source pixels are the bilinear interpolation weights,

whose sum add to unity to conserve the flux (higher-order interpolation is also possible; Koop-

mans (2004, see)). This way – because of the multiple nature of the lensed images – there can be

more than one constraint on a single source pixel (depending on its size and the number of mul-

tiple images). In addition, because there are multiple solutions of four weighted brightnesses

adding to the observed brightness at x, regularization is often required to ensure a relatively

smooth and more physical source brightness distribution for lower S/N ratio data (Koopmans

2004).

that after a successfully minimization one obtains not only the lens mass distribution

but also the reconstructed source, which then might be the subject of further studies.

The disadvantage is that the solution is usually under constrained, and one needs to
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choose the regularization (a priori properties of lens potential, and source brightness)

very carefully.

Another, more advanced, method of non-parametric inversion of lensing problem

was recently introduced by Liesenborgs et al. (2006). The two key properties of this

method are the usage of the adaptive grid in the image plane, and the usage of genetic

algorithm for minimization. The lens mass distribution is reconstructed on a dynamic

grid as a sum of basis functions, one per grid cell. A genetic algorithm then determines

the mass distribution of the lens by forcing images of a single source, projected back on

to the source plane, to coincide as well as possible (similarly to the method described

in Sect. 2.3.2). Averaging several tens of solutions removes the random fluctuations

that are introduced by the reproduction process of genomes in the genetic algorithm

and highlights the features common to all solutions. Fig. 2.4 shows the reconstruction

of a simulated data. One see that the algorithm is able to reproduce the positions of

all the images fairly well. The disadvantage of this approach is that it does not uses

Figure 2.4: Left-hand panel: the average of 25 individual solutions for the simulation. Right-

hand panel: the positions of the back-projected images within the source plane for the averaged

solution of the simulation. The true source positions are marked with crosses (Liesenborgs et al.

2006).

the information encoded in the shapes of the observed images, and that it uses a very

simple metric in a source plane to calculate the goodness-of-fit for a given model. On
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the other hand, however, it shows that genetic algorithms can be successfully used in

inverting the lensing problems.

Non-parametric reconstruction in weak lensing regime

This method presented by Bartelmann et al. (1996) is based on the idea of minimizing

the difference between observed and model produced, statistical lensing properties over

a large portions of the field of interest. The area where the mass is to be reconstructed

is divided into a small (10× 10) number of cells. In each cell the lensing properties such

as shear and magnification are calculated from averaged measurements of ellipticities

of images in that cell and then compared with the shear and magnification predicted by

the model for this cell. The quantity being minimized is:

χ2 =
∑

k,l

{

(
1

σ2
g(k, l)

[gi(k, l) − ĝi(k, l)]
2 +

1

σ2
r (k, l)

[r(k, l) − r̂(k, l)]2
}

, (2.1)

where the gi(k, l) = γi

1−κ
is the reduced shear in the cell (k, l) calculated from the data,

the r(k, l) is the inverse of magnification in the call (k, l), and the corresponding hatted

variables are the quantities as predicted by the model (the summation over the two

components of g is implied). The use of magnification and image distortions at the

same time, to fit the model, brakes the mass-sheet degeneracy (Broadhurst et al. 1995).

The Fig. 2.5 shows the effect of reconstruction of a simulated lensing potential.

The inversion method introduced in this work

The inversion method introduced in this work, is somehow complimentary to the ones

presented in the previous paragraphs. The most important innovation presented in

this work is the usage of Modified Hausdorff Distance (see Sect. 2.3.3) as a goodness-

of-fit function, instead of simple chi-square based on image positions. This new metric

however, might be easily incorporated into any of the inversion methods that have been

developed by other researchers. The advantage of using it is that the fitting is based

on full information available through the shapes of the observed images, and can be

modified to also take into account the light distribution within observed luminous arcs

(see Sect. 2.3.3).
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Figure 2.5: Four contour plots showing (a) the original cluster model, (b) the reconstruction, (c)

the difference between the two, and (d) the dimensionless, two-dimensional potential. Contours

in (a) and (b) are spaced by 0.1, and the heavy contour follows κ = 0.5. In (c), contours are

spaced by 0.05 and the heavy contour follows ∆κ = 0. The potential is kept fixed at ψ = 0 at

three corners. The heavy line in (d) follows the arbitrary contour ψ = −5, and the contours are

spaced by 1.5. The side length of the fields is 5’ (Bartelmann et al. 1996).

2.2 Parameterization

I
n this section the parameterization used in this work will be described. The more

complete set of possible models may be found in the work of Keeton (2001a). We

have already seen the deflection angle for the simplest parametric model - the point

mass. This model has one parameter (the mass) and can by used to model small compact

objects like starts or black holes.

Before discussing specific models let us first notice some general properties that arise

from symmetries. If the mass distribution is axial symmetric then the deflection angle

vector is radial and has an amplitude given by
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α(r) =
2

r

∫ r

0

uκ(u)du =
1

πΣcr

Menc(r)

r
, (2.2)

where r =
√

x2 and Menc(r) is the total mass enclosed within the radius r. More gener-

aly, in the case of elliptical symmetry, when the surface mass density can be written in

the form of

κ = κ(ξ) ξ2 = x2
1 + x2

2/q
2 , (2.3)

where q is the projected axis ratio (the ellipticity), the lensing properties may be ex-

pressed as a set of equations (Schramm 1990)

ψ(x) =
q

2
I(x) (2.4)

α1(x) =
∂ψ

∂x1
= qx1J0(x) (2.5)

α2(x) =
∂ψ

∂x2
= qx2J1(x) (2.6)

κ(x) + γ1(x) =
∂2ψ

∂2x1

= 2qx2
1K0(x) + qJ0(x) (2.7)

κ(x) − γ1(x) =
∂2ψ

∂2x2

= 2qx2
2K0(x) + qJ1(x) (2.8)

γ2(x) =
∂2ψ

∂x1∂x2

= 2qx1x2K1(x) , (2.9)

where the integrals are given by

I(x) =

∫ 1

0

ξ(u)

u

α(ξ(u))

|1 − (1 − q2)u|2du (2.10)

Jn(x) =

∫ 1

0

κ(ξ(u)2)

|1 − (1 − q2)u|n+ 1

2

du (2.11)

Kn(x) =

∫ 1

0

uκ′(ξ(u)2)

|1 − (1 − q2)u|n+ 1

2

du (2.12)

where ξ(u)2 = u

(

x2
1 +

x2
2

1 − (1 − q2)u

)

, κ′(ξ2) =
dκ(ξ2)

dξ2
(2.13)

Now we discuss the two parametric models I used in this work.
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2.2.1 Generalized Isothermal Ellipsoid

This model has a projected surface mass density

κ(ξ) =
1

2

b2−a

(s2 + ξ2)1−α/2
, (2.14)

which represents a profile with a core with a scale size s, and a power low decline with

an exponent α for ξ ≫ s defined in such a way so that the Mencl(r) ∝ rα. In the case of

spherical symmetry, the lensing properties of this model are found to be

ψ(r) =
1

α2
b2−αrαF 2

1

[

−α
2
,−α

2
; 1 − α

2
;−s

2

r2

]

− 1

α
b2−αsα ln

(r

s

)

(2.15)

− 1

2α
b2−αsα

[

e − Ψ
(

−α
2

)]

=
1

α2
b2−αrα (α > 0, s = 0) (2.16)

α(r) =
∂ψ(r)

∂r
=
b2−α

αr

[

(s2 + r2)α/2 − sα
]

(α 6= 0) (2.17)

=
b2

r
ln

(

1 +
r2

s2

)

(α = 0) , (2.18)

where the F 2
1 [a, b; c; x] is a hypergeometrical function (see e. g. Gradshteyn and Ryzhik

1994), e is the Euler constant, and Ψ(x) = d[ln Γ(x)]/dx is the logarithmic derivative of

the gamma function Γ(x). Analytical solutions for the elliptical transformations Eq. (2.4)

exist for α = −1, 0, 1. The model with α = 1 represents an isothermal sphere, which is

very often used to describe gravitationally relaxed systems like globular clusters. It is

however, often used to model the smooth dark matter particles distribution inside the

galaxy clusters based on the assumption that those particles are relaxed. The lensing

potential ψ(r) and the radial amplitude of the deflection angle α(r) for this model are

given by

ψ(r) = r
∂ψ(r)

∂r
− bs ln

(

s+
√
s2 + r2

2s

)

, (2.19)

α(r) =
∂ψ(r)

∂r
=
b

r

(√
s2 + r2 − s

)

. (2.20)

The elliptical generalization given by Keeton and Kochanek (1998) has the form of
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ψ(x) = x1
∂ψ(x)

∂x1

+ x2
∂ψ(x)

∂x2

− bqs ln
[

(Ω + s)2 + (1 − q2)x2
1

]1/2

+bqs ln [(1 + q)s] , (2.21)

α1(x) =
∂ψ(x)

∂x1

=
bq

√

1 − q2
arctan

[

√

1 − q2x1

Ω + s

]

, (2.22)

α2(x) =
∂ψ(x)

∂x2

=
bq

√

1 − q2
arctanh

[

√

1 − q2x2

Ω + q2s

]

, (2.23)

Ω =
√

q2(s2 + x2
1) + x2

2 . (2.24)

In the particular case of singular sphere (s = 0, q = 1), the scale factor b has the phys-

ical interpretation of the Einstein radius of the mass distribution, and is related to the

velocity dispersion σ of the isothermal sphere by

b = 4π
(σ

c

)2 Dls

Ds
. (2.25)

2.2.2 Generalized NFW

Another important model used in this work is the generalized NFW profile (Moore et al.

1998). It has the 3D density in the form of

ρ(r) =
ρs

(r/rs)β(1 + r/rs)3−β
, (2.26)

where rs is the length scale and the ρs is a characteristic density. The projected 2D mass

density of this model can not be expressed analytically even for the spherical model, in

which case it has a form of

κ(r) = 2κsu
1−β

[

(1 + u)β−3 + (3 − β)

∫ 1

0

(y + u)β−4(1 −
√

1 − y2)dy

]

. (2.27)

where u = r/rs and κs = ρsrs/Σcr. The radial amplitude of the deflection angle also can

not be calculated explicitly and is equal to
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α(r) = 4κsrsu
2−β

{

1

3 − β
F 2

1 [3 − β, 3 − β; 4 − β;−u]

+

∫ 1

0

(y + u)β−31 −
√

1 − y2

y
dy

}

. (2.28)

For β = 1 generalized NFW reduces to the generic NFW profile introduced by Navarro

et al. (1996) as a result of N-body simulations of the cosmic structure growth. In this

case the spherical projected 2D mass density, lensing potential, and deflection angle can

be expressed as (Bartelmann 1996)

κ(r) = 2κs
1 − F(u)

u2 − 1
, (2.29)

ψ(r) = 2κsr
2
s

[

ln2 u

2
− arctanh2

√
1 − u2

]

, (2.30)

α(r) = 4κsrs

ln u
2

+ F(u)

u
, (2.31)

where F is defined as

F(u) =















1√
u2−1

arctan
√
u2 − 1 (u > 1)

1√
1−u2

arctanh
√

1 − u2 (u < 1)

1 (u = 1)

(2.32)

Due to the need of numerical integration, the elliptical NFW models are slow to com-

pute.

2.3 Goodness of fit

After we have chosen the components of the lens model and their parameterization,

we need to define a “goodness of fit” function that will describe how good our

model reconstructs the observed lensing features.

2.3.1 Distance in the image plane

In the case of point-like images (e. g. multiple lensed quasars) the most straight forward

function is the chi-square
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χ2
img =

∑

i

δxT
i · S−1

i · δxi , (2.33)

δxi = xobs,i − xmod,i , (2.34)

where we sum over all images, the xobs,i is the observed position of the image i and the

xmod,i is the corresponding image position as predicted by the model. The uncertainties

in the measurement of the image positions are described by the covariance matrix (as-

suming that the measurement errors in x1 and x2 directions are the same, ant that there

is no correlation between them)

Si =

[

σ2
i 0

0 σ2
i ,

]

= σ2
i I , (2.35)

where, σi is the error on the i-th image position. Now, we can find the model that repro-

duces best the observed images position by minimizing the Eq. (2.33). This approach,

requires however, solving the Eq. (1.45) for the image position(s) x. This equation is a

two dimensional and non-linear, therefore it needs to be solved numerically and it is

not guaranteed that the numerical algorithm will find all the solutions. The common

method (used for example by gravlens package Keeton 2001b) of inverting the lensing

equation is based on the tiling concept. The image plane is divided into triangular tiles

Ii. The lensing equation (1.45) maps every image tile Ii into a corresponding tile Si in the

source plane and thus defines a tiling in the source plane. After the tiling is performed,

finding all the image positions of a given source is straight forward. We need to find all

the source plane tiles Sj that cover the source position, and the corresponding tiles in

the image plane Ij will give us the positions off all the images of this source. The size

of the tiles gives the upper bounds on the accuracy with which we are able to predict

the positions of all the images. To improve this accuracy the adaptive size of the tiles is

often introduced.
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2.3.2 Minimal source size

The computationally less demanding alternative to the goodness of fit presented in

the previous section is based on the assumption that the size of the source produc-

ing observed images should be as compact as possible (for point like images the source

needs to be point like as well). If we have N images at positions {xi} corresponding to

one source, then we define the χ2 as

χ2
src =

∑

i

δuT
i µ

T
i S

−1
i µiδui , (2.36)

where

δui = uobs,i − umod , (2.37)

uobs,i = xobs,i − w∇φ(xobs,i) . (2.38)

In the previous equations, uobs,i is the source position (as predicted by the model) corre-

sponding to the image xobs,i, φ(xobs,i) is the lensing potential at image i, w is the cosmo-

logical weight of the source (see e.g. Lombardi and Bertin 1999), and µi is the magnifica-

tion matrix at the image i. The magnification matrix µi is included because µiδui ≈ δxi,

so that χ2
src is an approximation of χ2

img in the image plane. However, this also intro-

duces a weight in the χ2 term, as images for which µiδui are small do not contribute

significantly to the sum. It is possible to write an analytical expression for the source

position that minimizes χ2
src:

umod = A−1b; , (2.39)

A =
∑

i

µT
i S

−1
i µi , (2.40)

b =
∑

i

µT
i S

−1
i µiuobs,i . (2.41)

The calculation of this goodness of fit function is much faster than the one presented

in the previous section, because it requires the computation of the deflection angle only
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at the points where the observed images are located. The resulting model however,

obtained by minimizing the Eq. (2.36), usually produces more images then there are

observed.

2.3.3 Modified Hausdorff Distance

Since many observed multiple images caused by gravitational lensing are not point

like but have well defined shapes, it is important to define a goodness of fit between

observed extended images and the ones produced by the model. If we call all the pixels

that reassemble the observed arc system the set A, and all the pixels of the same arc

system reproduced by the model the set B, then we can define a distance between those

two sets:

HD = max(h′ab, h
′
ba) , (2.42)

h′ab = max
a∈A

min
b∈B

‖a− b‖ , (2.43)

h′ba = max
b∈B

min
a∈A

‖a− b‖ . (2.44)

this is the Hausdorff definition of a distance between sets. If the observed and predicted

arcs overlap perfectly, then the HD is 0, and tends to infinity with the misalignment of

the two sets - this is the behavior we want from the goodness of fit function. However,

in the situation when the model predicted arcs overlap the observed ones perfectly,

and there is one small (few pixels) image predicted by the model but not included in

the observed arcs set (because it was too faint to be detected) then the HD will be far

from zero and model that reproduced this image configuration will be rejected. This is

not what we expect from our goodness of fit function, since we would like to be able

to predict the positions of the faint images. To solve this problem, we introduce the

Modified Hausdorff Distance (MHD, Dubuisson and Jain 1994) between the modeled

and observed image sets
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MHD = max(hab, hba) , (2.45)

hab =
1

‖A‖
∑

a∈A

min
b∈B

‖a− b‖ , (2.46)

hba =
1

‖B‖
∑

b∈B

min
a∈A

‖a− b‖ . (2.47)

By summing over all elements of the first set (instead of taking the maximum) and

then normalizing with the power of this set, we assure that the small additional images

do not have a significant impact on the total MHD, therefore the hypothetical model

presented in previous paragraph would be accepted and we would be able to predict a

faint image.

It is worth noticing that the Hausdorff distance Eq. (2.42) is a metric, e.g. it fulfills

the four requirements:

HD(A,B) ≥ 0 , (2.48)

HD(A,B) = 0 iff A = B , (2.49)

HD(A,B) = HD(B,A) , (2.50)

HD(A,B) ≤ HD(A,C) + HD(C,B) . (2.51)

The modified Hausdorff distance Eq. (2.45), fails however to fulfill the last condition

(triangle inequality). This does not impact the model fitting process, and the advantage

of possibility to predict faint images is not questionable.

Modified Hausdorff Distance with luminosity

The possible way of including the luminosity information into the (modified) Hausdorff

distance is to threat it as a third dimension. That is, each point in sets A and B would

have three coordinates – x1, x2 and l. Where x1, x2 are the spatial coordinates of a given

pixel, and l its luminosity. This approach would require careful estimation of the errors

in measurement of position and luminosity, to weight properly the contribution to the

distance from spatial misplacement and luminosity mismatch for pixels. This problem

requires further attention.





Chapter 3

Minimization methods

We must believe in luck. For how else can we explain the

success of those we don’t like.

Jean Cocteau

Abstract

In this chapter the minimization algorithms, used by the accompanying software, are intro-

duced. This includes the Powell algorithms, the basic theory of Monte Carlo Markov Chains,

together with the Metropolis algorithm, and an introduction to the Genetic Algorithms.

3.1 Introduction

After defining the lens model with a set of parameters, the goal is to find a minimum

of the goodness of fit function in the space spanned by those parameters. Since the

dimension of the parameters space is often high, and the goodness of fit function is not

linear in those parameters, one need to use one of numerical minimization algorithms.

Here three algorithms used in this thesis will be presented. Each of those methods are its

strengths and weaknesses and is most suitable for a different stage of the model finding

process.

3.2 Powell algorithm

The Powell algorithm is the improved “cab driver” algorithm, which is the sim-

plest, non gradient, method for finding a minimum of a multidimensional func-

tion. Let X0 be the initial guess for the minimum of the function f , where f = f(X) =
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Figure 3.1: The progress of the “cab driver” method in 2D

f(x1, x2, ..., xn). The next approximation X1 to the minimum point may be constructed

by finding the minimum Pi of the function f along each standard base direction sequen-

tially e.g.

X0 = P0,P1,P2, ...,Pn = X1 . (3.1)

Since along each base vector the function F is a function of only one variable, it is easy

and fast to find the sequence of Pi vectors. The iteration is then repeated to generate

a sequence of points {Xk}inf
k=0 which is assumed to converge to the minimum of the

function f . Unfortunately, this method is in general not efficient and performs espe-

cially badly (in the sense of the convergence of {Xk}inf
k=0 to the global minimum) when

the function f has steep gradients in a direction not corresponding to any of the base

directions (Fig. 3.1).

The Powell algorithm is an improved version of the idea just presented that assures

a faster convergence to the minimum of the function f . We notice that in the previous

method the vector Pn − P0 represents the average direction in which the minimization

proceeds in the given step. Therefore now we define X1 as vector that minimizes the
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Figure 3.2: The progress of the Powell method in 2D

function f along the direction Pn − P0. Since this direction was the direction in which

the minimization was most efficient, we also replace one of the base vectors (which

define the direction of the minimization for the next step) with Pn − P0 (see Fig. 3.2).

Powell algorithm is a fast method of finding a minimum in a multidimensional

search space, since it does not require the calculation of the partial derivatives. How-

ever, even if the minimum is found, there is no guarantee that it is the global mini-

mum of the function in question. This, together with the freedom to parameterize the

lens model in many different ways, gives rise to an important problem of the “solution

uniqueness” that all the studies based on the strong lensing face. An attempt to solve

this problem involves the usage of Monte Carlo Markov Chains.

3.3 MCMC

M
arkov Chain Monte Carlo (MCMC) methods are a class of algorithms for gener-

ating a probability distributions based on constructing a Markov chain that has

the desired distribution as its stationary distribution. The MCMC methods find appli-

cations in the situations where the problem at hand is computationally too demanding
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to calculate the probability distribution on a regular grid in the parameters space.

3.3.1 Basic theory of Markov chains

The theory of Markov Chains is well established. For detailed reviews on the subject

please see for example Feller (1968) or Kemeny and Snell (1960) and references within.

Here only the essential parts needed to understand the Metropolis algorithm for MCMC

sampling, will be presented. In this section we will follow the theorems and proofs

presented in §3.3 and §4.2 of Neal (1993). Before we proceed, we need to define what a

Markov Chain is.

Markov Chain is a series of random variables, X(0), X(1), X(2), ..., in which the influ-

ence of the variables X(0), ..., X(n) on the distribution of X(n+1) is mediated entirely by

the value of X(n). This can be expressed more formally,

P (x(n+1)|x(n), {x(t) : t ∈ Ω}) = P (x(n+1)|x(n)) , (3.2)

where Ω is any subset of {0, ..., n − 1}. The indexes t = 0, 1, 2, 3, ... are often viewed

as successive “times”. If the allowed values of X(t) are finite then the chains is said to

operate in finite state space.

Since the next link of the chain depends only on the previous one, then the full chain

can be specified by giving the marginal distribution for X(0) – the initial probabilities of

the various states – and the conditional distribution forX(n+1), given the possible values

for X(n) – the transition probabilities for one state to follow another state. Let us denote

the initial probability of the state x as p0(x), and the transition probability for state x′

at time n + 1 to follow state x at time n as Tn(x,x′). The Markov Chain is said to be

stationary or homogeneous if the transition probabilities do not depend on time, in which

case the transition probability between states x and x′ is denoted as T (x,x′). Using the

transition probabilities one can find the probability of state x occurring at time n + 1,

denoted as pn+1(x)

pn+1(x) =
∑

x′

pn(x′)Tn(x′,x) . (3.3)
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This, together with the initial probabilities p0 determines the behavior of the chain at all

times.

An Invariant distribution over the states of a Markov chain is a one that persists

for ever once it is reached. Formally, the distribution given by the probabilities π(x) is

invariant with the respect of the Markov chain given by transition probabilities Tn(x,x′),

if for all n,

π(x) =
∑

x′

π(x′)Tn(x,x′) , (3.4)

Often, we will use time invariant homogeneous Markov chains that satisfy the more

restrictive condition of detailed balance – that is if the transition occurs from a state picked

according to the probabilities given by π, then the probability of that transition being

from state x to x′ is the same as the probability of it being from state x′ to x,

π(x)T (x,x′) = π(x′)T (x′,x); . (3.5)

The detailed balance implies that π is an invariant distribution, since

∑

x′

π(x′)T (x,x′) =
∑

x′

π(x)T (x′,x) = π(x)
∑

x′

T (x′,x) = π(x) . (3.6)

Note that it is possible that the distribution is invariant without the detailed balance

holding. For example, the uniform distribution on the state space {0, 1, 2} is invariant

with respect to the homogeneous Markov chain with transition probabilities T (0, 1) =

T (1, 2) = T (2, 0) = 1 and all other zero, but the detailed balance does not hold.

An Ergodic Markov chain is a chain from which the probabilities at the time n, pn(x),

converge to the invariant distribution as n → ∞, regardless of the choice of the initial

probabilities p0(x). Obviously, an ergodic Markov chain can have only one invariant

distribution, which is often called equilibrium distribution. The transition probabilities of

an homogeneous Markov chain are often decomposed in to a mixture of base transitions

Bk

T (x,x′) =
∑

k

αkBk(x,x
′) (3.7)
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where αk > 0,
∑

k

αk = 1 and each of the Bk transitions leaves the distribution invariant,

but may not be ergodic individually.

3.3.1. THEOREM. (Fundamental theorem) If a homogeneous Markov chain on a finite state

space with transition probabilities T (x,x′) has π as an invariant distribution and

ν = min
x

min
x′:π(x)>0

T (x,x′)/π(x′) > 0 , (3.8)

then the Markov chain is ergodic, i. e. regardless of the initial probabilities, p0(x)

lim
n→∞

pn(x) = π(x) , (3.9)

for all x. A bound on the rate of convergence is given by

|π(x) − pn(x)| ≤ (1 − ν)n . (3.10)

Furthermore, if a(x) is any real-valued function of the state, then the expectation of a, with

respect to the distribution pn, written En[a], converges to its expectation with respect to π,

written < a >, with

| < a > −En[a]| ≤ (1 − ν)n max |a(x) − a(x′)| . (3.11)

Proof The basis of the proof is the demonstration that the distribution at time n can be

expressed as a “mixture” of the invariant distribution and another arbitrary distribu-

tion, with the invariant distribution’s proportion of the mixture approaching one as n

approaches infinity. This growth occurs because the invariant portion can never shrink,

while the non-invariant portion keeps producing extra invariant bits, due to the condi-

tion (3.8).

Specifically, we will see that the distribution at time n can be written as

pn(x) = [1 − (1 − ν)n]π(x) + (1 − ν)nrn(x) , (3.12)

with rn being a valid probability distribution. Note that ν < 1, since π(x′) can not be

smaller that T (x,x′) for all x′. The proof of the (3.12) is based on induction. The can
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formula obviously hold for n = 0 – just put r0(x) = po(x). If it holds for n = n′ then,

pn′+1(x) =
∑

x′

pn(x)T (x′,x) (3.13)

= [1 − (1 − ν)n′
∑

x′

π(x′)T (x′,x) + (1 − ν)n′
∑

x′

rn′(x′)T (x′,x) (3.14)

= [1 − (1 − ν)n′

]π(x) + (1 − ν)n′
∑

x′

rn′(x′)[T (x′,x) − νπ(x) + νπ(x)]

(3.15)

= [1 − (1 − ν)n′

]π(x) + (1 − ν)n′

νπ(x) + (1 − ν)n′
∑

x′

rn′(x′)[T (x′,x) − νπ(x)]

(3.16)

= [1 − (1 − ν)n′+1]π(x) + (1 − ν)n′+1
∑

x′

rn′(x′)
T (x′,x) − νπ(x)

1 − ν
(3.17)

= [1 − (1 − ν)n′+1]π(x) + (1 − ν)n′+1rn′+1(x
′) , (3.18)

where rn′+1(x
′) =

∑

x′

rn′(x′)T (x′,x)−νπ(x)
1−ν

. From (3.8), we find that rn′+1(x) ≥ 0 for all

x. One can also easily show that
∑

x

rn′+1(x) = 1. The rn′+1(x) is therefore a valid

probability distribution, establishing (3.12) for n = n′ + 1, and, by induction, for all n.

Using (3.12), we can now show that (3.10) holds,

|π(x) − pn(x)| = |π(x) − [1 − (1 − ν)n]π(x) − (1 − ν)nrn(x)| (3.19)

= |(1 − ν)nπ(x) − (1 − ν)nrn(x)| (3.20)

= (1 − ν)n|π(x) − rn(x)| (3.21)

≤ (1 − ν)n . (3.22)

Similarly we can prove (3.11),

| < a > −En[a]| = |
∑

x′

a(x)π(x′) −
∑

x′

a(x)pn(x′)| (3.23)

= |
∑

x′

a(x′)[(1 − ν)nπ(x′) − (1 − ν)nrn(x′)]| (3.24)

= (1 − ν)n|
∑

x′

a(x′)π(x′) −
∑

x′

a(x′)rn(x′)| (3.25)

= ≤ (1 − ν)n max
x,x′

|a(x) − a(x′)| . (3.26)

This completes the whole proof of the fundamental theorem.
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3.3.2 The Metropolis algorithm

The Metropolis algorithm was first introduced by Metropolis et al. (1953). Suppose that

we wish to sample from a joint distribution for X = {X1, X2, ..., Xn}. The Metropo-

lis algorithm does this by repeatedly considering randomly generated changes to the

components of X , accepting or rejecting these changes based on how probability of the

state. This process can be seen as the operation of a Markov chain built from a set of

base transition probabilities, Bk, for k = 1, 2, ..., n. The way transition Bk operates to

generate a new state, x′, from the current state, x, can be described as follows:

1. Select a candidate state, x′, in which all the components other than k-th are the same

as in the current state x, while x′k is picked at random from a proposal distribution,

which may depend on x, given the probabilities Sk(x,x
′
k).

2. Accept this candidate state with probability A(x,x′); otherwise, reject it, and retain

the current state. In detail, this can be done by generating a random number, u,

from the uniform distribution on [0, 1), and then setting the next state as follows:

x′ =

{

x′ u < A(x′,x)

x otherwise
(3.27)

For simplicity let us assume that the proposal distribution is symmetric e. g.

Sk(x,x
′
k) = Sk(x

′,xk) . (3.28)

Note that when the candidate state is rejected, the current state becomes the new

state, and is included again in any averages that are being computed. Formally, the

transition probabilities can be written as

Bk(x,x
′) = Sk(x,x

′)A(x,x′)
∏

i6=k

δ(xi,x
′
i) (3.29)

+δ(x,x′)[1 −
∑

x̃

Sk(x, x̃k)A(x, x̃)
∏

i6=k

δ(xi, x̃i)] . (3.30)

The first term is the probability of proposing a change in component k from xk to vecx′k,

and then accepting the proposed change. The second term accounts for the possibility

of rejecting the candidate state, and therefore remaining in the current state.
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The Metropolis acceptance probability has a for of

A(x,x′) = min(1, P (x′)/P (x)) . (3.31)

We can prove that P (x) is an invariant distribution for the Markov chain used in the

Metropolis algorithm by showing that the detailed balance (3.5) holds for each of the

Bk, with respect to any two states x, and x′. If xi 6= x′
i for some i 6= k, then the detailed

balance certainly holds, since both transition probabilities are zero. If x = x′ , the

detailed balance also holds. Otherwise, detailed balance can be verified as follows, for

symmetric Sk and the Metropolis acceptance function (3.31):

P (x)Bk(x,x
′) = P (x)Sk(x,x

′)A(x,x′) (3.32)

= Sk(x,x
′) min(P (x), P (x′)) (3.33)

= Sk(x,x
′) min(P (x′), P (x)) (3.34)

= P (x′)Sk(x
′,x)A(x′,x) (3.35)

= P (x′)Bk(x
′,x) (3.36)

The Markov chain will be ergodic as long as Sk(x,x
′) is non-zero for all x′

k and P (x) is

non-zero for all x. This guarantees that new value for Xk has a non-zero probability of

being proposed and then accepted. In n steps , there is thus a non-zero probability of

moving from any state to any other. The Metropolis algorithm is often used when these

criteria are not satisfied, however. Ergodicity must then be shown by somewhat more

specific arguments.

3.3.3 Finite Markov Chains

MCMC chains calculated numerically are obviously finite. This causes some problems

that are not present in the case of infinite chains. Two most distinct difficulties are

the choice of a scale defining the average distance to probe in each step of the chain

construction, and the problem of chain falling into a local minimum and not probing the

whole parameter space. The scale must be chosen empirically so that the resulting chain

points do not have a multiplicity higher then a few, and the parameters space should be

probed smoothly and should not bare any sings on a random walk (see Fig. 3.3).
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Figure 3.3: Two examples of 2D MCMCs. The one on the left has a proper scale, while the one

on the right has a scale that is too small, which results in a new point in almost every step – the

MCM “crawls” through parameters space.

The problem of local minimums is partially solved by starting multiple chains from

different starting points and then combining them into the final chain.

3.4 Genetic Algorithms

G
enetic algorithms (GA) are the search techniques used in computing to find true or

approximate solutions to optimization and search problems. Genetic algorithms

are a particular class of evolutionary algorithms that use techniques inspired by evolu-

tionary biology such as inheritance, mutation, selection, and crossover (recombination).

The basis of genetic algorithms is the parallelism with biology, natural selection, and

evolution (Holland 1975).

Most organisms living on Earth are characterized by their chromosomes, where each

chromosome is a sequence of genes. Genes are responsible for particular features of the

organism, like for example color of the eyes, or height. When two organisms mate,

the child organism contains genes from both their parents, which are occasionally per-

turbed by mutations. Then “life” evaluates how well the child organism is prepared

to the environment. If the genes the child has, give it some particular advantage to

survive, its chances of living long enough to mate are higher then the ones of another

organism with poorer genotype. Therefore the “good” genes (or genes combinations)
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have higher chances of being transfered to the next population. This leads to the whole

population of organism being better adopted to the environment its living in.

A similar concept has been adopted in the genetic algorithms. Let us assume we

want to find a minimum of a function f(X), where X might be a set of parameters.

We threat each point in the parameters space as an “organism” described by a string

of genes (chromosome) – the binary coding is the most common one. In this coding

each gene can have only value of 0 or 1, therefore each point in the parameter space

is described with a binary string (a proficient way of converting a set of real valued

parameters in to binary strings is described in the next section). The genetic algorithm

proceeds as follows:

• A large random population of organisms is generated - each is represented by a

binary string.

• The fitness of each organism is evaluated on the basis how well it minimizes the

function f .

• The parents for the next generation of organisms are chosen - with the probability

of being chosen depending on the fitness function.

• The children generation is created from the parents by combining the genes of the

parents, and applying crossover and mutation.

• The worst N organisms of the old population are replaced by the children.

• The process continues until the minimum of the function f is found or the maxi-

mum number of populations is created.

3.4.1 crossover

Crossover is performed by randomly selection a position along the parents chromo-

somes, and then swapping all the genes before and after that position. For example if

the chosen parents are:

0101010111001010101010 (3.37)

1101001001110100100101 (3.38)
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and the crossover position was chosen to be 10, then the children would have the fol-

lowing chromosomes (before the mutation occurs)

0101010111010100100101 (3.39)

1101001001101010101010 (3.40)

3.4.2 mutations

After the crossover is performed, random mutations in the genotype can occur. The

probability of a gene mutation, which is flipping a given gene from 0 to 1 or vice versa,

should be set to a low value – typically it is around 0.0001%. Mutations are important

for the overall performance of the genetic algorithm since they allows exploration of

otherwise not accessible parts of the parameters space. However, if the mutation rate

is too high then the information encoded in the parents chromosomes is lost and the

genetic algorithm converges poorly to the optimal solution.

3.4.3 Real-valued parameters encoding

We want to find a set of (real-valued) parameters defining a lens, that minimizes the

Hausdorff distance between observed and model reproduced arcs. The usual way of

applying genetic algorithms to real-parameters problems is to encode each parameter

as a bit string using a standard binary coding. The bit strings for the parameters are

concatenated together to give a single bit string – a chromosome – which represents

the entire vector of parameters. If x is the parameter vector, we will denote the corre-

sponding bit string by corresponding uppercase letter X . In this section we follow the

arguments presented in Wright (1991).

If a single parameter xi has a lower and upper bounds ai and bi respectively, then the

standard way of binary coding xi using n bits is to let the real values between ai +k bi−ai

2n

and ai + (k + 1) bi−ai

2n , correspond to the standard binary code for the integer k for 0 ≤
k ≤ 2n. For example if ai = 0 and bi = 8 and n = 6, then the real values between 5/8 and

6/8 would be encoded as 000101. To avoid talking about intervals, we will refer to the

binary code for integer k above as corresponding to the left end of the interval, namely
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ai + k bi−ai

2n . Thus, in the above example we would assign the binary code 000101 to the

real number 5/8.

crossover

Now we will investigate the impact of a binary crossover on the real value of the pa-

rameters. First let us consider a special case in which the crossover point falls between

the codes for two parameters. In this case, one child gets some of its parameters from

one parent, and some of its parameters from the other one. For example, if the parents

are represented by binary strings X and Y , corresponding to the real-valued vectors

x = (x1, x2, ...xm) and y = (y1, y2, ...., ym), and the crossover point is between xi and

xi+1., then one child corresponds to the parameter vector (x1, x2, ...xi, yi+1, ...ym), and

the other one (y1, y2, ...yi, xi+1, ..., xm). Thus in this special case, the binary crossover is

exactly the same as real crossover – the crossover applied at the real parameter level.

Next, suppose that a crossover point is chosen within the code for a parameter. Then

the part of the binary code of the parameter to the left of the crossover point will corre-

spond to the more significant bits, and the part to the right will correspond to the less

significant bits. Thus, a child gets the more significant part of the parameter from one

parent, and the less significant part from another parent. The child might be viewed as

a “perturbation” of the first parent, where the size of the perturbation is determined by

the difference in the less significant bits of the parents. If the crossover point is between

bits k and k + 1, then the perturbation corresponds to changing some of the k bits on

one parent to the corresponding values of the other parent. If Ri = bi − ai is the size of

the range for this parameter, then the maximum perturbation is Ri2
−k. This observation

might be put in a form of a theorem, which has a significant practical use.

3.4.1. THEOREM. Let X and Y be the bit strings corresponding to real parameter vectors x

and y. Let Z be obtained from X and Y by one-point crossover where the crossover point lies

between bits k and k + 1 of the parameter xi and yi. We assume that Z gets the bits to the left

of the crossover point from X , and those to the right from Y . Then the real parameter vector

z corresponding to Z can also be obtained from x and y by real one-point crossover, where the

crossover point is between xi and xi+1, followed by a perturbation of parameter xi of size at most

Ri2
−k.
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This theorem allows us to perform the crossover in the real parameter space without a

need to convert parameters to binary strings.

mutation

Mutation can be viewed in the same way, with the difference that we know exact value

of the perturbation. Mutating the kth bit (flipping it from 0 to 1) will produce the per-

turbation of the xi parameter of the size Ri2
−k, where Ri is again the size of the range

for the parameter xi.
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Chapter 4

Strong Lensing Analysis of the cluster

RCS0224-0002

If scientific reasoning were limited to the logical processes of

arithmetic, we should not get very far in our understanding of

the physical world. One might as well attempt to grasp the

game of poker entirely by the use of the mathematics of

probability.

Vannevar Bush

Abstract

We present a detailed mass reconstruction of the cluster RCS0224-0002 at z = 0.773 from

the strong lensing features observed with HST/WFPC2. The mass profile is obtained using

a parametric approach. We introduce a novel technique to fit extended multiple images

based on the Modified Hausdorff Distance between observed arcs and the arcs reproduced

by the model. We perform a detailed error analysis of the lens parameters using the MCMC

method. Our model reproduces all the observed strong lensing features of the RCS0224-0002

and predicts the redshift of one of the arcs systems to be z ≈ 2.65 (the other system has a

spectroscopic redshift of z = 4.87). The reconstructed inner mass profile is well fitted by a

non-singular isothermal sphere, rather than with an NFW model. Dark matter substructure,

derived from the light distribution of the most luminous cluster members, is crucial for

reproducing the complexity of the quadrupole image system, which could not be achieved

otherwise. The reconstructed mass distribution closely follows the light, however it has a

significant shift from the X-ray emission of the gas. The mass of RCS0224-0002 derived

from the lensing model, ≈ 2 × 1014 M⊙ is in a very good agreement with the one obtained

from the X-ray temperature measured with deep Chandra observations.
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4.1 Introduction

In this chapter we present a strong lensing study of the cluster RCS0224-0002 at z =

0.773 which was discovered as a part of the Red-Sequence Cluster Survey (RCS, Glad-

ders et al. 2002). After the identification of the main strong lensing features of this

cluster with VLT imaging, follow-up observations were carried out with HST-WFPC2

by Gladders et al. (2002), in X-rays with the Chandra observatory (Hicks et al. 2005),

and in sub-mm using SCUBA on the JCMT (Webb et al. 2005).

We construct a parametric model of the projected mass density distribution of RCS0224-

0002 based on its strong lensing features, one of which with secure redshift. The method

used to construct the best mass model is based on the methodology described in the pre-

vious chapters.

When I was finalizing this work, a lensing model of the same cluster has been in-

dependently presented by Swinbank et al. (2007). However, these authors focus their

work on the properties of a highly magnified z = 4.87 galaxy observed in the field;

moreover, their lensing model, which is based only on the constraints provided by a

single arc system (the giant arc labeled A in Fig. 4.3), is significantly different from the

one presented here.

In this chapter we use a standard cosmological model with Ωm = 0.3, ΩΛ = 0.7, and

H0 = 72 km s−1 Mpc−1. We give all the magnitudes in the AB system, if not otherwise

specified.

4.2 Observations

The HST observations of the RCS0224-0002 were taken on the 2001/08/20 in two filters,

F606W and F814W using the WFPC2 camera (PI: Gladders, Proposal ID: 9135). The tar-

get coordinates were RA: 02:24:30.82, DEC: −00:02:27.8 and the exposure time for each

filter was 1100 seconds. The WFPC2 data reduction was performed by Associations

Science Products Pipeline.1

The X-ray data were taken on the 2002/11/15 with the ACIS-S instrument on the

1http://archive.eso.org/archive/hst/wfpc2 asn/wfpc2 products.html
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Chandra observatory (PI: Gladders, Proposal No: 03800013). The target coordinates

were RA: 02:24:34.10, DEC: −00:02:30.90 and the exposure time was 14560 seconds. On

the 2004/12/09, RCS0224-0002 was observed with the ACIS-S again (PI: Ellingson, Pro-

posal ID: 05800899) with exposure time of 90150 seconds. The two ACIS-S observations

were combined with CIAO 3.3, using CALDB 3.2.1, leading to 100.8 ksec of effective

exposure time. Details on the reduction and spectral analysis, whose results are given

below, can be found in Balestra et al. (2007).

4.3 Arc identification and cluster members

RCS0224-0002 has seven prominent luminous arcs and arclets marked as A1, A2, A3,

B1, B2, B3, and B4 in Fig. 4.3. Unfortunately, out of those seven arcs, only one arc sys-

tem (A) has a confirmed spectroscopic redshift of 4.87 (Gladders et al. 2002), based on

a spectacular Lymannα emission seen in Fig. 4.1 and 4.2. The same authors estimated

the redshift of system B within the range 1.4 to 2.7 based on the lack of emission lines

in their spectra. Since the redshifts of arcs B1, B2, B3, and B4 are not known, an as-

sumption needs to be made of whether all those arcs are images of one source or more

sources. Based on very similar color, structure and distance from the center of the clus-

ter we suppose that arcs B1, B2, B3, and B4 are images of one source and we call it

system B. This conjecture is supported by the lensing model described below, since by

assuming the existence of two separate systems (B1–B2, B3–B4) our model predicts rel-

atively bright multiple images which are not observed. We excluded that the feature D

is a radial arc, despite its elongated morphology, since no tangential counter images are

visible and because its position and morphology makes this hypothesis unlikely. Our

model suggests that feature C is a central demagnified image, which is clearly visible in

Fig. 4.6 showing the F606W image after subtracting the two cD galaxies. There is also a

very faint red arc, labeled E, which was not included in our analysis.

Since mass is known to follow light in galaxy clusters (see e.g. Sand et al. 2002), the

distribution of color selected cluster members is often used to model substructure of the

underlying dark matter. Besides to the two brightest central galaxies (BCGs), there is no

public spectroscopic information available in the field, we then used the red sequence
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Figure 4.1: VIMOS IFU data on RCS0224, the arc system A is clearly visible as a strong Lα

emission at the redshift of 4.8786

to identify likely cluster members. In Fig. 4.4 we show the color-magnitude diagram

over the whole WFPC2 field, highlighting red sequence objects lying withing 15 arcsec

from the cluster core. Photometry was performed using SExtractor software (Bertin and

Arnouts 1996), by detecting sources in the F814W band and measuring F606W−F814W

colors with aperture of 1” diameter2. The solid and dot-dashed lines represent our best

fit to the red sequence and the best fit found by Best et al. (2002) for the cluster MS1054

at z = 083 for the same filters, after applying a K-correction of 0.07 mag. Red sequence

objects were defined as those within ±0.25 mag of the best fit line.

2The WFPC2 zero points were calculated according to: ZPAB = −2.5 log (PHOTFLEM ) − 21.1 −
5 log (PHOTPLAM ) + 18.6921
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Figure 4.2: Final average rest-frame Lyα line profile. The nominal zero flux value was estab-

lished as the median of the profile in the 1000-1100Å region, rather than attempting to interpolate

sky values across the extremely wide slit spectrum. Effectively, all flux blueward of Lyα appears

suppressed, and the region or method selected makes a minimal difference on, for example, the

continuum level seen redward of Lyα (Gladders et al. 2002).

4.4 X-ray emission

The X-ray emission traces the hot gas trapped in the cluster potential well. The gas it-

self contributes about 15% to the total mass of the cluster and for relaxed systems traces

closely the total mass density distribution. We overlay the X-ray contours of RCS0224-

0002 from the 100 ksec Chandra observations in the 0.5–2 keV band onto the WFPC2

image in Fig. 4.7. The overall X-ray emission is not symmetric, with a plume extending

NW, and its peak shifted ∼ 5 arc seconds north from the two central BCGs. To mea-

sure the X-ray temperature, we used and extraction region of 36.7 arcsec (or 265 kpc),

which encompasses most of the X-ray emission by maximizing the signal-to-noise. The

background subtracted, unfolded spectrum is shown in Fig. 4.8. We used Xspec v.12.3.0

Arnaud (1996) to fit the data with a single temperature Mekal model (Kaastra 1992;

Liedahl et al. 1995) and model the Galactic absorption with tbabs (Wilms et al. 2000),

fixing the Galactic neutral Hydrogen columns density to the Galactic value obtained

with radio data (Dickey and Lockman 1990). Since the signal–to–noise ratio in each
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Figure 4.3: The RCS0224-0002 cluster with labeled arcs. Color image composed from F814W

and F606W WFPC2 HST images. The image is 40 arcsec across.

energy bin is low, we used the C-statistics for the best fit model, over the energy range

0.6-8.0 keV (excluding low energy photons due to uncertainties of ACIS calibration). We

used 742± 35 total net counts in the fit (514± 23 in the soft 0.5-2 keV band) and found a

best fit temperature of kT = 5.26+1.14
−1.07 keV (1-sigma error). The de-absorbed flux within

the extraction aperture, in the (0.5 - 2.0) keV band, is 1.84 × 10−14erg cm−2 s−1 and the

rest-frame X-ray luminosity LX(0.5− 2keV) = (0.38± 0.02)× 1044 erg s−1. The bolomet-

ric luminosity returned by the best fit model is LBOL = (1.28 ± 0.06) × 1044. With these

values of X-ray luminosity and temperature, we note that RCS0224-0002, which is an

optically selected cluster, lies on the LX − T relation determined from large samples of

X-ray selected clusters (e. g. Rosati et al. 2002) We can use the measured cluster temper-

ature to estimate the cluster mass assuming the hydrostatic equilibrium and isothermal

distribution of the gas, with a polytropic index γ = 1. Using the standard β-model for
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Figure 4.4: The color-magnitude diagram of RCS0224 with the WFPC2 F606W/F814W filters.

The dots represent all objects in the field. The squares represent the cluster red sequence (galax-

ies within 15 arcsec from the cluster center), the stars mark two central galaxies. The solid and

dot-dashed lines are our best fit to the red sequence and the one of MS1054 at similar redshift.

the gas density profile, ρgas(r) = ρ0/[1 + (r/rc)
2]3β/2, the mass within the radius r can be

written as (Sarazin 1988):

M(< r) ≃ 1.11 × 1014βγ
T (r)

keV

r

h−1Mpc

(r/rc)
2

1 + (r/rc)2
h−1M⊙ , (4.1)

A fit to the X-ray surface brightness profile with the corresponding β-model SB(r) ∝
[1 + (r/rc)

2]−3β+1/2 yields a core radius rc = (253 ± 72)kpc and β = 0.97 ± 0.3. Therefore

the mass within R200 = 0.4 Mpc is (1.7 ± 1.1) × 1014M⊙.

4.5 Model

We constructed the mass model of RCS0224-0002 by fitting the position and shapes of

the multiple image systems A, B, and C. Based on the light distribution of most lu-
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Figure 4.5: The red sequence galaxies visible on the F814W filter WFPC2 HST image (objects

that are marked here correspond to the squares in Fig 4.4).

minous red-sequence galaxies, our model consists of several mass components: two

isothermal non-singular ellipsoids to reproduce global cluster properties (NIE1, NIE2);

eight isothermal non-singular spheres fixed at the position of cluster members (NIS1..8)

- refereed to as the substructure; one non-singular ellipsoid, corresponding to the elon-

gated object marked D in Fig. 4.3 (NIE3). In order to reduce the number of free pa-

rameters, we fixed the positions and the relative masses of the galaxy cluster clumps

using the optical data available. In summary, we have 17 adjustable parameters in our

model, including sources positions and unknown redshifts. All parameters are listed in

Tables 4.1 and 4.2. The seven observed extended images are enough to constrain those

17 parameters due to the fact that we base our goodness of fit function not only on the

position of the images but on the full information encoded in their shapes. Models in-
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Figure 4.6: RCS0224-0002 in the F606W filter with subtracted cD galaxies. The central radial

feature C is clearly visible.

cluding the radial feature D as a counter-image give the worst results, but as mentioned

in Sect. 4.3, it is probably an foreground edge-on galaxy. Arc E was not used in the

model since its redshift is unknown and it is too faint to provide any further constraint.

We would like to emphasize that we do not assign any physical meaning to the two

distinct smooth components (NIE1&NIE2), and we are interested in the properties of

the overall, combined profile. We have also tried to fit the data with only one smooth

component (NIE1) and the substructure, however in that case we were not able to fit the

arcs system B accurately.
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Figure 4.7: The X-ray emission contours of RCS0224-0002 (smoothed with a Gaussian with σ =

5arcsec) over-plotted on the F606W WFPC2 HST image.

4.5.1 Mass profiles

Although the N-body simulations of dark matter halo formation suggest NFW profiles

rather than isothermal ones, recent strong lensing studies do not exclude and in some

cases even prefer isothermal profile over NFW Halkola et al. (2006); Gavazzi et al. (2003).

We model here all mass components as non-singular isothermal ellipsoids, simple gen-

eralizations of non-singular isothermal spheres often used as a physical representation

of a gravitationally relaxed system. The use of isothermal profiles has also the advan-
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Figure 4.8: X-ray spectrum of RCS0224-0002 from 100ksec Chandra observations, with the best

fit Mekal model, for kT = 5.26+1.14
−1.07 keV.

tage of being computationally less demanding. The associated gravitational potential

φ, projected mass density ρ, and deflection angle α are given by Eq. (2.21) in Sect. 2.2.1.

4.5.2 Minimization method

Source plane minimization

In order the get a first, approximated solution, we perform model fitting minimization

on the source plane. As described in Sect. 2.3.2 this technique is computationally very

efficient, since there is no need to solve the inverse problem of the lensing equation and

the deflection angle is only computed at the position of the images. We also assume that

sources are small compared to the scale of variations of the lensing potential. If we have
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N images at positions {xi} corresponding to one source, then we define the χ2 as

χ2
src =

∑

i

δuT
i µ

T
i S

−1
i µiδui + P , (4.2)

The covariance matrix of position measurement is diagonal and takes the form (as-

suming that the measurement errors in x1 and x2 directions are the same, ant that there

is no correlation between them)

Si =

[

σ2
i 0

0 σ2
i ,

]

= σ2
i I , (4.3)

where σi is estimated to be ∼ 0.05′′. In the definition of our χ2 [Eq. (4.2)] we introduced

also a “penalty” function P , which was not used in the Eq. (2.36) in Sect. 2.3.2. This

function, is used to bound some of the free parameters to certain intervals, and is chosen

to have the functional form

P = P
N
∑

p=0

[atan
(

107(bdown,i − pi)
)

(4.4)

+ atan(107(pi − bup,i))] + Pπ ,

where N is the number of bounded parameters in our model, pi is the i-th bounded pa-

rameter, which is required to be in the range [bdown,i, bup,i]. Note that the penalty function

P behaves similarly to a “square potential well”, i.e. the sum of two Heaviside func-

tions; however, the use of analytic functions ensures that P is differentiable and makes

our minimization numerically stable. In order to effectively bound our parameters, we

used a large number for the coefficient P ≈ 105.

4.5.3 Extended images

The best fit model provided by Eq. (4.2) is used as starting point for the image plane

analysis. This step is based on a new χ2 minimization, with a χ2 composed of two

terms: the Modified Hausdorff Distance between the modeled and observed image sets

introduced in the Sect. 2.3.3 and the “plain difference” between the same sets. For com-

putational speed, we modify the MHD presented in the Sect. 2.3.3 – we do not sum the
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Euclidean distances between points in sets A and B, but their squares. Therefore the

MHD between two sets A and B we use has the form

MHD = max(hab, hba) , (4.5)

hab =
1

‖A‖
∑

a∈A

min
b∈B

‖a− b‖2 , (4.6)

hba =
1

‖B‖
∑

b∈B

min
a∈A

‖a− b‖2 . (4.7)

In addition, the “plain difference” between the observed and modeled arcs is computed

as follows. All pixels3 in each observed arc system, generically called O, are assigned a

value of 1; other pixels are assigned a value of −1. The same procedure is applied to the

corresponding modeled arcs (M) and the difference diff(O,M) = |O −M | is calculated.

In summary, the expression to minimize in the image plane is

X2 = MDH(D,M) + ω diff(M,D) + P . (4.8)

The factor ω was chosen to be ∼ 0.1, since this value resulted in the fastest convergence

to the minimum. The penalty function P is used to bound some of the model parameters

and it is defined in Sect. 4.5.2. By using two distance components, we ensure an efficient

convergence of the minimization since when the modeled and the observed images start

to overlap, the MHD becomes less sensitive to small variations then the plain difference.

The Powell algorithm (Powell 1964) is used for all the minimization procedures.

4.6 Results

The best fit model (with MHD as defined by Eq. (4.5) equal to 30.3) is presented in

Fig. 4.9. The values of corresponding parameters are given in Tables 4.1 and 4.2. The

model reproduces fairly well all the observed strong lensing features. The giant arc A

includes a counter-image 7 arcsec to the west of the BCGs (A3). The model also repro-

duces the quadrupole system B (B1,..B4). The central feature C is also predicted fairly

close to the observed one, although with different morphology. None of the models we

3the selection of pixels belonging to the system is performed using a graphic program like GIMP
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analyzed could reproduce the radial feature D, a fact that further supports the hypothe-

sis that it is probably a foreground edge-on galaxy. In addition, inclusion of D to the lens

model (NIE3) significantly improved our fits and allowed us to “break” the arcs system

B into two arcs B1 and B3. The best fit redshift of the source for the system B is 2.65±0.08;

a spectroscopic redshift of these blue arcs, as well as object D, would provide a strong

validation of our lensing model and could also be used to better constrain the mass

distribution. Estimates of the statistical errors are discussed in the following section.

Figure 4.10 and Tab. 4.3 show the results of some tests performed to assess how well the

best fit model is able to reproduce the morphology of the multiple image systems A and

B. For this purpose, we ray-traced a given image for each system (A2 and B1, marked

with green boxes in Fig. 4.10) into the source plane by using its HST color image. This

gave us the reconstructed source image. We then ray-traced back all the pixels from

the source plane into the image plane, thus finding all counter-images of the given im-

age. These reconstructed counter-images were finally compared with the observed ones

(A1,3 and B2,3,4). In general, we found a good agreement, especially the knots in the A1

arc are very well reconstructed. The overall shapes of all the arcs in the system B are also

accurately predicted. The mass of the cluster within R200 = 0.4Mpc obtained from the

model is 1.9 ± 0.1 × 1014 M⊙ and its distribution is shown in Fig. 4.11. This is in a good

agreement with an mass derived above from the X-ray temperature. Since we do not

know all the cluster member galaxies, we cannot reliably estimate the mass-to-light ratio

of the whole cluster. For the substructure (the mass associated with the luminous cluster

component - NIS1..8), we find an average mass-to-light ratio M/LB,vega ≈ 3.6 M⊙/L⊙,B.

We converted the observed F814W filter flux to the rest frame B filter flux, by calculating

a k-correction for a template elliptical galaxy from Kinney et al. (1996). The center of the

mass of the best fit model follows the light distribution. NIE1 is found to be a diffuse

(core radius ≈ 15 arcsec) mass component close to the peak of the X-ray emission. The

latter is shifted ≈ 5” from the NIE2 component, which corresponds to the center of the

potential well and the position of the BCGs. This may indicate the presence of a merger.

The radial average profile of the best fit surface mass density is shown in Fig. 4.12. This

can be well approximated by a power law profile with a slope γ = 0.74+0.03
−0.04, which is

closer to the isothermal profile (γ = 1) than results obtained in other clusters. For ex-
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ample, the analysis of the cluster J1004-4112 yielded γ ≈ 0.5 (Sharon et al. 2005) and

0.3 < γ < 0.5 (Williams and Saha 2004), whereas Broadhurst, Benı́tez, Coe, Sharon,

Zekser, White, Ford, Bouwens, Blakeslee, Clampin, Cross, Franx, Frye, Hartig, Illing-

worth, Infante, Menanteau, Meurer, Postman, Ardila, Bartko, Brown, Burrows, Cheng,

Feldman, Golimowski, Goto, Gronwall, Herranz, Holden, Homeier, Krist, Lesser, Mar-

tel, Miley, Rosati, Sirianni, Sparks, Steindling, Tran, Tsvetanov and Zheng (2005) found

γ = 0.5 in A1689 using a large number of identified multiple images. Note that the flat

core of the mass profile we have found, being a result of a hight value of the rc of the

NIE1 component, is well constrained by the position of the central arc C. The change of

the rc by 50% causes the shift in the C arc position of ≈ 1 arc sec.

By approximating the mass density distribution with NFW-like profile of the form

ρ(r) =
ρ0

(r/rc)β(1 + r/rc)(1−β)
, (4.9)

we find a slope 0.69+0.09
−0.13, flatter then the canonical NFW model (β = 1), however

in good agreement with other studies which obtained β < 1. For example, Sand et al.

(2002) finds β = 0.35 for the galaxy cluster MS1237-23, and β < 0.57 (at 99% confidence

level) from the analysis of a large sample of clusters (Sand et al. 2004).

In addition, we have tried to fit a model based the universal NFW profile rather

than NIE. The result, presented in the Fig. 4.13, shows that an NFW model performs

significantly worse then the NIE one. The arcs A1 and A2 are reproduced fairly well,

but the counter image A3 is found much too far from the cluster center. Moreover, in

the NFW model feature B4 is split into two arcs (the second of which is not observed)

and the reproduced arc B2 is shifted with respect to the observed one. This is reflected

by the value of MHD, which is ten times bigger then the corresponding value for the

best-fit NIE model. We note, however, that this bad performance might be due to the

approximated NFW elliptical model used in our code, where the ellipticity is achieved

by perturbing the potential of the spherical NFW profile instead of its density. This

approximation holds for potentials close to spherical, and therefore we need to impose

additional restrictions on the ellipticity of the NFW components.
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4.7 Error analysis

Our method involves the minimization of the MHD whose expression (Eq.18) is not a

formal χ2 and includes a number of penalty functions (weights) to limit the range of

some parameters. As a result, it is difficult to obtain reliable errors on the best fit pa-

rameters. In the presence of many parameters, the Monte Carlo Markov Chain (MCMC,

see for example Neal 1993) method is an efficient way to estimate the likelihood associ-

ated to our best fit model. MCMC is used as a third step of our minimization process

by reconstructing the probability distribution function of our model parameters. We

start the construction of Markov chain using the Metropolis algorithm (Metropolis et al.

1953) from the best fit solution of the MHD minimization. We use a number of chains

with seeds randomly distributed around the best fit point. We discard the first 10 points

from each series to give the chain the time to reach the equilibrium. The resulting chain

being the composition of all those partial chains provides an approximate probability

distribution function for our parameters, from which we estimate the confidence levels

shown in the Fig. 4.14. Also by randomly probing the parameters space, the MCMC

algorithm helps to fine tune our best fit parameters returned by the previous step of

minimization. Most of the parameters are well constrained (within 10 - 20 percent). The

unknown redshift of the arc system B appears to be well constrained, zB = 2.65 ± 0.08.

The mass to light ratio of the substructure is however poorly constrained to be 3.6+3.3
−1.8.

We estimated the errors of a single power law and NFW-like profile parameters by

drawing a random sample of models from our Markov Chain, and then fitting a single

power law and NFW-like profile to that sample. The resulting error estimates are pre-

sented in Fig. 4.15. This shows that isothermal and NFW profiles are excluded with 99%

confidence level.

4.8 Conclusions

We have performed a strong lensing analysis of the cluster RCS0224-0002 using HST/WFPC2

images in F814W and F606W bands. We used two arc systems: a red giant tangential

arc 14 arcsec , from the center, with measured redshift of 4.87, for which we identified
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an inner counter image, and a system of blue arcs at smaller radii with no spectroscopic

information.

We have modeled the mass distribution with with three mass components: isother-

mal spheres associated with the most luminous cluster members to model the substruc-

ture, and two isothermal ellipsoids to model the underlying smooth mass component.

Since spectroscopic information is available in the literature only for two cD galaxies,

we identified likely member galaxies in the cluster core from the red sequence, which

is clearly detected in the F606W-F814W color distribution. To infer the mass distribu-

tion from the position and shapes of the strong lensing features we used a three-step

approach: (i) minimization of the size of the two sources on the source plane, (ii) mini-

mization of the difference between the observed and modeled arcs on the image plane,

based on the Modified Hausdorff Distance, and (iii) a refined estimate of the best fit pa-

rameters and errors analysis with the Monte Carlo Markov Chain. The resulting mass

density reproduces all the strong features fairly well. The redshift of the blue arc system

is predicted to be 2.65 ± 0.08.

We find that the substructure made of nine isothermal components centered on the

brightest cluster members, with M/LB,vega ≈ 3.6M⊙/L⊙,B is crucial to exactly reproduce

the shapes and positions of all the arcs.

By fitting a single power-law or NFW-like halo to the radial average mass density

distribution we have found that both profiles are far from canonical isothermal and

standard NFW: we have found the power-law parameter γ to be 0.74+0.03
−0.04 (γ = 1 for

an isothermal profile) and steepness parameter for NFW-like profile β to be 0.69+0.09
−0.13

(β = 1 for a NFW profile), with the upper boundary very well constrained. Both those

values are consistent with the results obtained by studying the strong lensing proper-

ties of other clusters (see Sand et al. 2002, 2004). The best fit NIS has σv = 925 km/s and

rc = 11 kpc; the best fit NFW hasR200 = 0.4Mpc and concentration parameter c = 3.4+0.4
−0.5,

similarly to other massive clusters (c ≈ 4 for a z = 0.18 cluster Halkola et al. 2006, c ≈ 5

for z = 0.68 cluster Williams and Saha 2004). However, a wide range of concentration

parameters are found (e.g. for c > 10 see Broadhurst, Takada, Umetsu, Kong, Arimoto,

Chiba and Futamase 2005). We have measured the total mass of the cluster within R200

to be 1.9 ± 0.1 × 1014 M⊙ and its main component may be well described by a two NISs
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with a σv1 = 945+30
−23 km/s, a rc1 = 112+13

−14 kpc, a σv2 = 702+31
−28 km/s, and a rc2 = 12+4

−2 kpc.

The mass of RCS0224-0002 derived from the lensing model is in a very good agreement

with the one obtained from the X-ray temperature measured with deep Chandra obser-

vations (M200 = (1.7 ± 1.1) × 1014M⊙).

This analysis shows that even with a limited number of identified multiple images

we could constrain the mass distribution fairly accurately. This was possible, in the case

of RCS0224-0002, because the two arcs systems are at very different angular diameter

distances and probe significant fraction (≈ 20% for the arcs system A, and ≈ 60% for the

system B) of the Einstein rings. Further spectroscopic observations of the system B, as

well as cluster members, will allow a very robust constraint of the mass density profile

of the inner core of this cluster and its substructure.
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Table 4.1: Parameters defining our model (see equation ??–??) after minimization. Parameters in parenthesis were allowed to

change during minimization

NIE1 NIE2 NIS1 NIS2 NIS3 NIS4 NIE3 NIS5 NIS6 NIS7 NIS8

x1 (16.834) 19.413 18.039 20.578 24.799 23.494 17.621 22.389 23.614 25.296 14.097

x2 (18.502) 20.307 20.834 20.147 7.336 15.330 10.253 12.612 12.005 32.969 16.076

z 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782 0.782

b (19.196) (10.086) (0.116)* (0.191)* (0.027)* (0.032)* (0.417) (0.081)* (0.075)* (0.087)* (0.037)*

q (0.396) (0.597) 0.3

θ (2.994) (1.409) 0.873

s (15.539) (1.778) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

x1, x2 : central position in arc seconds in the coordinate system of the Fig. 4.11, z : redshift, b : scale factor in arc seconds, q : ellipticity, θ :

position angle in radians, s : core radius in arc seconds

* – for the substructure the M/L ratio has been used as the variable for the minimization

Table 4.2: Parameters defining sources after minimization. Parameters in parenthesis were allowed to change during minimiza-

tion
SOURCE1 SOURCE2

u1 (15.979) (18.892)

u2 (19.204) (19.412)

z 4.878 (2.648)
U1, U2 : source position in arc seconds, z : redshift
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Figure 4.9: Images reproduced by our best fit model over-plotted on the combined

F606W/F814W WFPC2 HST image. The closed lines show the critical curves and caustics for a

source at z = 4.87. The center of the image is at RA 02:24:34.218, Dec -00:02:31.64.

4.9 The Way to Perfection

Before reaching the best fit model described in the previous section, the ensemble of

different models have been tried out, varying in the number of components and con-
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Figure 4.10: Result of image plane – source plane – image plane mapping. Panel to the left shows

the arcs (marked by boxes) used to reproduce the arc systems. Middle and right panels show

the arc systems as reproduced by the best fit mass model (the box marks the original image).

strains. In this section we will present some of those models, often they have interesting

properties not seen in the model presented in the previous section.

4.9.1 Single Isothermal Ellipsoid

The simples model that have chances of reproducing the general strong lensing prop-

erties of the cluster is a single isothermal ellipsoid. Therefore that parameterization has

been tried out at the beginning. The lens has 6 free parameters (position of the NIE,

position angle, ellipticity, and core radius s). The result of the minimization is presented

in the Fig. 4.16.

This model has the mass of 1.4×1014M⊙, theR200 = 0.38Mpc, and the redshift of the B

system is found to be 2.79. It has difficulties with reconstructing accurately the observed

strong lensing features. In particular the A1 and A2 arcs merge, and the position of arc

A3 is shifted 5 arc seconds in respect to the observed position. The B arcs system also

does not fit the observation well. The B1 and B3 arcs merge into one arc positioned in

between the observed arcs B1 and B3, the arc B2 is too small, and finally the B4 is shifted

by 4 arcsec in respect to the observed position.
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Figure 4.11: Mass density produced by our best fit model. The closed lines are the critical curves

for a source at z = 4.87. The crosses (+) mark the positions of our model components. The big

cross (X) gives the position of the peak of the X-ray emission. The center of the image is at RA:

02:24:34.218 Dec: -00:02:31.64, the orientation as in Fig. 4.7

4.9.2 Single Isothermal Ellipsoid with Substructure

To improve the ability of the model to reproduce accurately the observed strong lensing

features, we add the substructure – isothermal spheres centered on the bright galaxy

members selected using the red sequence. We keep the mass to light ratio for the sub-
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Figure 4.12: Radial average profile of the surface mass density of our best fit model (solid line)

versus power law profile with γ = 0.74 (dotted line) and NFW-like profile with β = 0.69 (dashed

line).

structure constant, therefore this lens has only one more parameter in respect to the

previous one. The resulting model is presented in Fig. 4.17. Much of the improvement

can be noticed. In particular the positions of arcs A3 and B4 are now accurately repro-

duced. The whole arc system B is reconstructed much more precisely, together with the

break between arcs B1 and B3. Unfortunately the arcs A1 and A2 are still merged. The

mass predicted by this model is 3.5 × 1014M⊙, the R200 = 0.54Mpc, and the redshift of

the B system is found to be 3.14. Note that the central arc C is much more extended

here than in the best fit from Sect. 4.6, its shape however does not correspond to the

observation.
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Figure 4.13: Images reproduced by our best fit NFW model over-plotted on the combined

F606W/F814W WFPC2 HST image. The closed lines are the critical curves for a source at

z = 4.87. The center of the image is RA: 02:24:34.218 Dec: -00:02:31.64

4.9.3 Two Isothermal Ellipsoids with Four Sources

Since the redshifts of arcs B1, B2, B3, B4 and central feature C is not known it is pos-

sible, that those features belong to separate arcs systems. The best fit model based on

two isothermal ellipsoids and the substructure centered on bright galaxy members is

presented in Fig. 4.18. This lens has been however, obtained using different constrains

than the previous ones. The arcs B1 and B2 were assumed to be one system, B3 and B4

the second, A1, A2, and A3 – the third, and finally the feature C – the fourth.

The model reproduces the arc system A very well. The arc B2 is also precisely recre-
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Figure 4.14: MCMC error estimates. The contours correspond to 68%, 90% and 99% confidence

levels. Marks on vertical and horizontal axis give the same confidence levels for 1D projected

variables. The cross marks the position of the best fit point.

ated, B1 however is shifted by ≈ 1 arc second with respect to the observed one. The sys-

tem B3-B4 is accurately reproduced, together with an additional image that falls within

arc B1. The central arc C is recreated, as well as three not(clearly) visible images. In

summary this parameterization suffers from creation of additional images that are not

observed. The total mass of the cluster predicted by this model is 5.9×1013M⊙, the virial

radius R200 = 0.35Mpc, and the redshifts of arcs systems B1-B2: 2.24, B3-B4: 2.59 and C:

2.41.
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Figure 4.15: MCMC error estimates of the parameters of the single power law and NFW-like

profiles fit. The contours correspond to 68%, 90% and 99% confidence levels. Marks on vertical

and horizontal axis give the same confidence levels for 1D projected variables. The cross marks

the position of the best fit point.

4.10 Preliminary Results from Genetic Algorithm Mini-

mization

This section presents preliminary results obtained, when genetic algorithm (Sect. 3.4)

was used as a minimization method. Since I have implemented this scheme recently, I

did not gain much experience in using it yet. The first results presented in Tab. 4.4 are

however very promising, especially that the cpu time needed to run genetic algorithm

minimization was about one third of the time needed by the Powell algorithm. The
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Table 4.3: Images reproduced under image plane – source plane – image plane mapping

Image
Counter Images

Reproduced Images

A2 A1 A3

x2

x2

B1 B2 B3 B4

First column shows images used to construct sources. Second column shows both original and model

reproduced images.

average Hausdorff distance between model produced, and data arcs seen in Tab. 4.4 is

350. This is ten times more then the result of the best model obtained using Powell algo-

rithm in Sect ??. The performance of the genetic method will be however improved by

better adjustment of various parameters (number of generations, mutation probability,

crossover place etc...). It is also worth to investigate the possibility of combining the

genetic algorithms with MCMC method.
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Figure 4.16: The best fit model based on only one isothermal ellipsoid and no substructure
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Figure 4.17: The best fit model based on only one isothermal ellipsoid and substructure centered

on bright cluster members
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Figure 4.18: The best fit model based on two isothermal ellipsoids, substructure, and four dis-

tinct arc systems
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Table 4.4: Four examples of the genetic algorithm based minimization. The model produced

arcs, caustics and critical curves are over-plotted on the RCS0224-0002 cluster data.
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Chapter 5

The Summary

The goal of my PhD project was to develop a general framework for modeling of a mat-

ter distributions in cosmological objects (especially galaxy clusters) based on the ob-

served strong lensing features. The created software package has been build around the

parametric approach described in Sect. 2.2, and makes use of advanced minimization al-

gorithms presented in Chap. 3. The three step model construction, described in Chap. 4,

has proved to be a very efficient and robust way of inverting the lensing problem. The

first step – source size minimization (Sect. 2.3.2) gives the good first approximation of

the solution, which is then a starting point for the second step – minimization of the

Hausdorff distance between observed and model produced arcs in the image plane.

Finally the solution space is explored by the Monte Carlo Markov Chains to give an

estimated likelihood of the best solution (Sect. 3.3).

The novel method of using a Modified Hausdorff Distance as a goodness-of-fit func-

tion (Sect. 2.3.3) has proved to be a very elegant and successful method to make use

of the information about matter distribution encoded in the shapes of giant arcs. This

metric is general enough to be easily used by other strong/weak lensing reconstruction

algorithms, that would greatly benefit from it.

The developed method was successfully applied to the galaxy cluster RCS0224-0002.

The modeled mass distribution was capable of reproducing in great details, all the

strong lensing features observed in this high-redshift cluster (see Chap. 4). The shapes

and morphologies of all the arcs has been accurately reconstructed, and the prediction

about the unknown redshift of one of the arcs systems has been given. The properties

of the reconstructed mass profile show interesting features, including a very flat core

(see Sect. 4.6). The substructure centered on the bright galaxy members has been crucial

for accurate reconstruction of observed strong lensing features. Obtained radial average
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profile is significantly different from both NFW and Isothermal profiles, proving that the

galaxy clusters can not, in general, be modeled by those simple density distributions.

The MCMC analysis (see Sect. 4.7) showed that most of the model parameters are well

constrained. The analysis has also showed a significant ( 5 arc seconds) shift between

X-ray emission and the peak of mass profile – this should be further investigated.
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Appendix A

Software

Power does not corrupt. Fear corrupts... perhaps the fear of a

loss of power.

John Steinbeck

Abstract

This appendix presents the documentation for the software package that implements the

strong lensing modeling methods presented in this thesis. The package consists of two ver-

sions, one written in IDL and one written in C++. Both versions have similar functionality,

the IDL version however also provides a GUI. For simplicity all the classes diagrams in this

appendix refer to the C++ version.

A.1 Introduction

The software package implements all the methods presented in this thesis. The

package consists of two versions, one written in IDL and one written in C++.

Both versions have similar functionality, the IDL version however also provides a GUI.

For simplicity all the classes diagrams in this appendix refer to the C++ version. The

package has four main components:

• Classes to support model construction

• Classes to support data holding

• Classes to support the minimization methods

• Helper functions and utility functions
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• GUI1

A.2 Classes to support model construction

The classes described here are meant to support the creation of the composite lens-

ing model. The most top object is the LensesContainer, which has a collection of

LensesSystem objects and an interface calculate the properties of the model (deflection

angle, mass, viral radius etc...). The LensesContainer is presented in Fig. A.1, and it hasLensesContainer
mLensesSystemVector:std::vector<LensesSystem*>
mpPointsX:std::vector<double>*
mpPointsY:std::vector<double>*
mMapAnglesXtoSystemId:std::map<int,std::vector<double>>
mMapAnglesYtoSystemId:std::map<int,std::vector<double>>+LensesContainer()+~LensesContainer()+AddLensesSystem(pLensesSystem:LensesSystem*)+ComputeDeflectionAngle()+SetPoints(new_PointsX:std::vector<double>*,new_PointsY:std::vector<double>*)+GetAnglesX(LensesSystemId:int):std::vector<double>*+GetAnglesY(LensesSystemId:int):std::vector<double>*+GetLensesSystemVector():std::vector<LensesSystem*>*
Figure A.1: The LensesContainer class.

following methods

• AddLensesSystem – adds a new LensesSystem object to the container

• ComputeDelflectionAngle – calculates the total deflection angle of all the componenets

of the container

• SetPoints – sets the points (x, y) at which the deflection angle should be calculated

• GetAnglesX – returns the x component of the calculated deflection angles

• GetAnglesY – returns the y component of the calculated deflection angles

1implemented only in the IDL version
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• GetLensesSystemVector – returns all the LensesSystem objects of the container

Since, LensesSystem can (and should) have different redshifts then all the methods that

calculate the physical properties of the lens work on the LensesSystem level and not on

the LensesContainer level.

The LensesSystem object is the container for all the lenses belonging to one “system”

– all those lenses should have the same redshift. Therefore usualy we will have only one

system, however if we have for example two clusters in the line of sight, then we will

define one LensesSystem for the first cluster and the second LensesSystem for the second

cluster. The LensesSystem is presented in Fig. A.2,LensesSystem�mId:int�mRedshift:double�mR200:double�mMass:double�mRadialAverageDensity:std::vector<double>�mLensesVector:std::vector<Lens*>+LensesSystem()+~LensesSystem()+ComputeR200()+ComputeMass()+ComputeRadialAverageDensity()+ComputeDeflectionAngle(pPointsX:conststd::vector<double>*,pPointsY:conststd::vector<double>*,rAnglesX:std::vector<double>&,rAnglesY:std::vector<double>&)+AddLens(pLens:Lens*)+SetId(new_id:int)+SetRedshift(new_redshift:double)+GetLensesVector():std::vector<Lens*>*+GetId():int+GetRedshift():double+ComputeCosmologicalWeigh(source_z:double):double
Figure A.2: The LensesSystem class.

and has following methods

• ComputeR200 – computes the R200 of the system

• ComputeMass – computes the mass of the system within R200

• ComputeRadialAverageDesnity – computes the radial average density profile of the

system

• ComputeDeflectionAngle – calculates the total deflection angle caused by this sys-

tem. The deflection angle is calculated at points PointsX and PointsY and it is

stored in AnglesX and AnglesY

• AddLens – adds a Lens object to the system
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• SetId – sets a unique Id of this system

• SetRedshift – sets the redshift of this system

• GetLensesVector – returns the vector of all the Lenses objects belonging to this sys-

tem

• GetId – returns the Id of this system

• GetRedshift – returns the redshift of this system

• ComputeCosmologicalWeight – calculates the cosmological weight of a given Source

in respect to this system

The Lens class is the parent for all the specific realizations of the parametric models.

It provides a common interface to interact with all the models. Therefore all the para-

metric models should inherit from this base call and implement all its virtual methods.

The Lens class is presented in Fig. A.3 and provides the following interface:Lens#mType:string#mId:int#mParameters:std::vector<double>#mParametersVariable:std::vector<int>#mParametersBound:std::vector<std::pair<double,double>>#mR200:double#mMass:double#mRadialAverageDensity:std::vector<double>+Lens()+~Lens()+ComputeR200()+ComputeMass()+ComputeRadialAverageDensity()+ComputeDeflectionAngle(pPointsX:conststd::vector<double>*,pPointsY:conststd::vector<double>*,rAnglesX:std::vector<double>&,rAnglesY:std::vector<double>&)+SetParameters(new_var:std::vector<double>)+SetParametersVariable(new_var:std::vector<int>)+SetParametersBound(new_var:std::vector<std::pair<double,double>>)+SetId(newId:int)+SetParameterAt(index:int,new_value:double)+SetParameterVariableAt(index:int,new_value:int)+SetParameterBoundAt(index:int,new_value:std::pair<double,double>)+GetId():int+GetParameters():std::vector<double>*+GetParametersVariable():std::vector<int>*+GetParametersBound():std::vector<std::pair<double,double>>*+SetScale(new_B_ref:double)
Figure A.3: The Lens class.

• ComputeR200 – computes the R200 of the model

• ComputeMass – computes the mass of the model within R200
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• ComputeRadialAverageDesnity – computes the radial average density profile of the

model

• ComputeDeflectionAngle – calculates the deflection angle caused by this model. The

deflection angle is calculated at points PointsX and PointsY and it is stored in An-

glesX and AnglesY

• SetParameters – sets the vector of parameters defining the model (ellipticity, posi-

tion angle etc...)

• SetParametersVariable – defines which of the parameters should be allowed to change

during the minimization process (0 – fixed, 1 – changeable)

• SetParametersBound – defines the bounding limits for the changeable parameters

• SetId – sets an unique id for this lens

• SetParametersAt – changes the parameter at a given position in parameters vector

• SetParametersVariableAt – changes the variability of a parameter at a given position

in mParametersVariable

• SetParametersBoundAt – sets the bounding limits for a parameter at a given position

in mParametersBound

• GetId – returns the id of this lens

• GetParameters – returns a vector of parameters describing this lens

• GetParametersVariable – returns a vector which defines which parameters are al-

lowed to change during the minimization process

• GetParametersBound – returns the vector defining the bounding limits for this lens

parameters

• SetScale – sets the new “scale” for the lens. It is equivalent with SetParameter-

sAt(2,scale)



98 A. SoftwareNis�mpLensX_1:double*�mpLensX_2:double*�mpLensB_ref:double*�mpLensR_c:double*+Nis()+~Nis()+ComputeR200()+ComputeMass()+ComputeRadialAverageDensity()+ComputeDeflectionAngle(pPointsX:conststd::vector<double>*,pPointsY:conststd::vector<double>*,rAnglesX:std::vector<double>&,rAnglesY:std::vector<double>&)+SetScale(new_B_ref:double)
Figure A.4: The NIS class.

The NIS class implements the Non-Singular Isothermal Sphere lens model. It is de-

rived from the basic Lens class and is presented in the Fig. A.4. It has the following

methods

• ComputeR200 – computes the R200 of the NIS model

• ComputeMass – computes the mass of the NIS model within R200

• ComputeRadialAverageDesnity – computes the radial average density profile of the

NIS model

• ComputeDeflectionAngle – calculates the deflection angle in the NIS model. The de-

flection angle is evaluated at points PointsX and PointsY and it is stored in AnglesX

and AnglesY

• SetScale – sets a new “scale” for the lens. It is equivalent to SetParametersAt(2,scale)

The NIE class implements the Non-Singular Isothermal Ellipsoid lens model. It is

derived from the basic Lens class and is presented in the Fig. A.5. It has the followingNie5mpLensX_1:double*5mpLensX_2:double*5mpLensB_ref:double*5mpLensQ:double*5mpLensPa:double*5mpLensR_c:double*+Nie()+~Nie()+ComputeR200()+ComputeMass()+ComputeRadialAverageDensity()+ComputeDeflectionAngle(pPointsX:conststd::vector<double>*,pPointsY:conststd::vector<double>*,rAnglesX:std::vector<double>&,rAnglesY:std::vector<double>&)+SetScale(new_B_ref:double)
Figure A.5: The NIE class.

methods
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• ComputeR200 – computes the R200 of the NIE model

• ComputeMass – computes the mass of the NIE model within R200

• ComputeRadialAverageDesnity – computes the radial average density profile of the

NIE model

• ComputeDeflectionAngle – calculates the deflection angle in the NIE model. The de-

flection angle is evaluated at points PointsX and PointsY and it is stored in AnglesX

and AnglesY

• SetScale – sets a new “scale” for the lens. It is equivalent to SetParametersAt(2,scale)

The FixedScaleRatioGroup class supports the substructure realized by a set of isother-

mal spheres with positions fixed on the cluster galaxy members. The scale of each

isothermal sphere is proportional to the brightness of the galaxy it is centered on. There-

fore the whole substructure is parameterized by one global parameter corresponding to

the M/L ratio. The class is presented in Fig. A.6 and implements the following methodsFixedScaleRatioGroup�mpLensB_ref:double*�mMembersVector:std::vector<Lens*>�mRatiosVector:std::vector<double>+FixedScaleRatioGroup()+~FixedScaleRatioGroup()+ComputeR200()+ComputeMass()+ComputeRadialAverageDensity()+ComputeDeflectionAngle(pPointsX:conststd::vector<double>*,pPointsY:conststd::vector<double>*,rAnglesX:std::vector<double>&,rAnglesY:std::vector<double>&)+AddMember(pNewMember:Lens*,ratio:double)+SetScale(new_B_ref:double)
Figure A.6: The FixedScaleRatioGroup class.

• ComputeR200 – computes the R200 of the model

• ComputeMass – computes the mass of the model within R200

• ComputeRadialAverageDesnity – computes the radial average density profile of the

model

• ComputeDeflectionAngle – calculates the deflection angle in the model. The deflec-

tion angle is evaluated at points PointsX and PointsY and it is stored in AnglesX

and AnglesY
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• SetScale – sets the new “scale” for the whole group. It is equivalent to SetParame-

tersAt(2,scale)

• AddMember – adds a new isothermal sphere member to the group

The above methods make use of the NIS implementation.

Other models including NFW and King Model are implemented in the IDL version

of the software. Implementation of a new model in the C++ version requires the cre-

ation of a model class derived from the basic Lens class and providing all the required

methods. One can use the new model by adding it to the LensesSystem container.

The sources are organized is a similar fashion as the lenses. The SourcesContainer

class is the global container that holds all the sources. Each particular source object is

derived from the basic Source class. The SourcesContainer class is presented in Fig. A.7

and has the following methodsSourcesContainer�mNextFreeId:unsignedint�mSourcesVector:std::vector<Source*>+SourcesContainer()+~SourcesContainer()+GetNextFreeId():unsignedint+AddSource(pSource:Source*)+GetSourcesVector():std::vector<Source*>*
Figure A.7: The SourcesContainer class.

• GetNextFreeIs – returns the next free id of the source

• AddSource – adds a new source to the container

• GetSourcesVector – returns a vector of all the sources in the container

The basic Source class is used to derive all the realizations of the sources. It is pre-

sented in the Fig. A.8 and provides following interface

• IsWithinSource – virtual method that need to be implemented by the derived source

model. Defines whether a given pixel in the source plane is within the source or

not.



A.2. Classes to support model construction 101Source#mType:string#mId:int#mParameters:std::vector<double>#mParametersVariable:std::vector<int>#mParametersBound:std::vector<std::pair<double,double>>+Source()+~Source()+IsWithinSource(x_1:double,x_2:double):int+SetParameters(new_var:std::vector<double>)+SetParametersVariable(new_var:std::vector<int>)+SetParametersBound(new_var:std::vector<std::pair<double,double>>)+SetId(newId:int)+SetParameterAt(index:int,new_value:double)+SetParameterVariableAt(index:int,new_value:int)+SetParameterBoundAt(index:int,new_value:std::pair<double,double>)+GetId():int+GetParameters():std::vector<double>*+GetParametersVariable():std::vector<int>*+GetParametersBound():std::vector<std::pair<double,double>>*+GetRedshift():double*+SetX_1(new_x_1:double)+SetX_2(new_x_2:double)
Figure A.8: The Source class.

• SetParameters – sets the vector of parameters defining the source (position, radius,

etc...)

• SetParametersVariable – defines which of the parameters should be allowed to change

during the minimization process (0 – fixed, 1 – changeable)

• SetParametersBound – defines the bounding limits for the changeable parameters

• SetId – sets an unique id for this source

• SetParametersAt – changes the parameter at a given position in parameters vector

• SetParametersVariableAt – changes the variability of a parameter at a given position

in mParametersVariable
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• SetParametersBoundAt – sets the bounding limits for a parameter at a given position

in mParametersBound

• GetId – returns the id of this source

• GetParameters – returns a vector of parameters describing this source

• GetParametersVariable – returns a vector which defines which parameters are al-

lowed to change during the minimization process

• GetParametersBound – returns the vector defining the bounding limits for this source

parameters

• GetRedshift – (virtual) gets the redshift of the source (equivalent to getting the value

of the second parameter)

• SetX 1 – (virtual) sets the x1 coordinate of the source position (equivalent to getting

the value of the zeroth parameter)

• SetX 2 – (virtual) sets the x2 coordinate of the source position (equivalent to getting

the value of the first parameter)

The SourceCircular class is a realization of the source. It represents a disk with a given

radius and positioned at a given position – it is the most simple not point-like source. It

is presented in Fig. A.9 and implements the virtual methods of the basic Source classSourceCircular
mpSourceX_1:double*
mpSourceX_2:double*
mpSourceZ:double*
mpSourceR:double*+SourceCircular()+~SourceCircular()+IsWithinSource(x_1:double,x_2:double):int+GetRedshift():double*+SetX_1(new_x_1:double)+SetX_2(new_x_2:double)
Figure A.9: The SourceCircular class.
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• IsWithinSource – method that need to be implemented by the derived source model.

Defines whether a given pixel in the source plane is within the source or not.

• GetRedshift – gets the redshift of the source (equivalent to getting the value of the

second parameter)

• SetX 1 – sets the x1 coordinate of the source position (equivalent to getting the

value of the zeroth parameter)

• SetX 2 – sets the x2 coordinate of the source position (equivalent to getting the

value of the first parameter)

A.3 Classes to support data holding

The DataContainer class is used to read in and store data about available arcs – their po-

sitions, redshifts, and shapes. It is accompanied by a ArcsSystem class used to represent

each arc system – all the images of the same source. The ArcsSystem class is presented in

the Fig. A.10. Its purpose is to hold the x1 and x2 coordinates of all the pixels belonging

to one arc system. Since each arc system is binded to one source, then the constructor

of ArcsSystem takes a Source as a parameter. ArcsSystem class provides the following

methods

• GetImagesX – returns the vector of x1 coordinates of all the pixels belonging to the

arc system

• GetImagesY – returns the vector of x2 coordinates of all the pixels belonging to the

arc system

• GetRedshift – returns the redshift of this arc system

• GetSigma – gets the error of the position measurement of this arc system

• GetSource – returns the source responsible for creation of this arc system

• GetId – gets the unique id of this arcs system



104 A. SoftwareArcsSystem	mpArcsSystemZ:double*	pSource:Source*	mImagesX:std::vector<double>	mImagesY:std::vector<double>	mSigma:double+ArcsSystem()+ArcsSystem(pSource:Source*)+~ArcsSystem()+GetImagesX():std::vector<double>*+GetImagesY():std::vector<double>*+GetRedshift():double+GetSigma():double+GetSource():Source*+GetId():unsignedint+SetImagesX(new_imagesX:std::vector<double>)+SetImagesY(new_imagesY:std::vector<double>)+AddImageX(new_imageX:double)+AddImageY(new_imageY:double)+SetSigma(new_sigma:double)
Figure A.10: The ArcsSystem class.

• SetImagesX – sets the x1 coordinates of all the pixels belonging to this arc system

• SetImagesY – sets the x2 coordinates of all the pixels belonging to this arc system

• AddImageX – adds a new pixel to this arc system (x1 coordinate)

• AddImageY – adds a new pixel to this arc system (x2 coordinate)

• SetSigma – sets the error of position measurement for this arc system

The DataContainer class holds information about arc systems – both extended and

point like. It also provides a method to read in the information about extended arcs

from a png file. The class is presented in the Fig. A.11 and has the following methods

• GetArcsSystemVector – returns a vector of all the available arcs systems (point like)

• GetArcsSystemExtendedVector – returns a vector off ale extended arcs systems

• AddArcsSystem – adds a new point like arc system



A.4. Classes to support the minimization methods 105DataContainer+mExtendedSizeX:unsignedint+mExtendedSizeY:unsignedint�mArcsSystemVector:std::vector<ArcsSystem*>�mArcsSystemExtendedVector:std::vector<ArcsSystem*>+DataContainer()+~DataContainer()+GetArcsSystemVector():std::vector<ArcsSystem*>*+GetArcsSystemExtendedVector():std::vector<ArcsSystem*>*+AddArcsSystem(new_arcs_system:ArcsSystem*)+AddArcsSystemExtended(new_arcs_system:ArcsSystem*)+LoadExtendedArcs(filename:char*)+GetArcsSystemExtended(source_id:unsignedint):ArcsSystem*+GetExtendedSizeX():unsignedint+GetExtendedSizeY():unsignedint
Figure A.11: The DataContainer class.

• AddArcsSystemExtended – adds a new extended arc system

• LoadExtendedArcs – reads in the informations about extended arc systems from

a png file. The file should be in indexed mode and each index (color) should

correspond to an arc system

• GetArcsSystemExtended – returns an arc system binded to a given source

• GetExtendedSizeX – returns the x dimension of the read in file

• GetExtendedSizeY – returns the y dimension of the read in file

A.4 Classes to support the minimization methods

The classes described here are meant to provide an interface to the model fitting process.

In order to work they need an input data provided by the DataContainer class, and the

model – LensesContainer and SourcesContainer. There are two minimization classes de-

rived from the base Minimizer class. The first one, MinimizerPointsSourcePlane, performs

the model fitting under the assumption that the sources (and images) are point-like.

The second one, MinimizerExtendedImagePlane, performs the model fitting based on the
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full information about arc shapes and make use of the Modified Hausdorff Distance as

a metric for fitting. Each minimizer class can use a different algorithm for finding a

minimum. Currently the Powell, MCMC and Genetic2 methods are implemented.

The basic Minimizer class is presented in Fig. A.12 and it has the following methodsMinimizer#mMinimizationMethodName:string#pLensesContainer:LensesContainer*#mParametersLenses:std::vector<double*>#mParametersLensesBound:std::vector<std::pair<double,double>*>#pSourcesContainer:SourcesContainer*#mParametersSources:std::vector<double*>#mParametersSourcesBound:std::vector<std::pair<double,double>*>#mParametersAll:std::vector<double*>#mParametersAllBound:std::vector<std::pair<double,double>*>#pDataContainer:DataContainer*#Minimize()+Minimizer()+~Minimizer()+PeneltyFunction(pParameters:std::vector<double*>*,pParametersBound:std::vector<std::pair<double,double>*>*):double+SetLensesContainer(pNewLensesContainer:LensesContainer*)+SetSourcesContainer(pNewSourcesContainer:SourcesContainer*)+SetDataContainer(pNewDataContainer:DataContainer*)+InitializeVariableParameters()+GetParametersLenses():std::vector<double*>*+GetParametersLensesBound():std::vector<std::pair<double,double>*>*+GetParametersSources():std::vector<double*>*+GetParametersSourcesBound():std::vector<std::pair<double,double>*>*+GetParametersAll():std::vector<double*>*+GetParametersAllBound():std::vector<std::pair<double,double>*>*+GetDataContainer():DataContainer*+GetLensesContainer():LensesContainer*+SetMinimizationMethodName(s:string)+GetMinimizationMethodName():string
Figure A.12: The Minimizer class.

• Minimize – a pure virtual method implemented in all derived classes

• PeneltyFunction – the function used to bound parameters to certain intervals.

• SetLensesContainer – sets the lenses container (the lenses model)

• SetSourcesContainer – sets the sources container

• SetDataContainer – sets the data container

• InitializeVariableParameters – construct a vector of all variable parameters and cor-

responding bounding vectors

• GetParametersLenses – returns a vector of the parameters describing the lens model

• GetParametersLensesBound – returns the bounds vector for the lens parameters

2implemented only in the IDL version
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• GetParametersSources – returns a vector of the parameters describing the sources

• GetParametersSourcesBound – returns the bounds vector for the sources parameters

• GetAllParameters – returns a composite vector of all the parameters (lenses + sources)

• GetAllParametersBound – returns a bounds vector of the composite parameters

(lenses + sources)

• GetDataContainer – returns the data container

• GetLensesContainer – returns the lenses container

• SetMinimizationMethodName – sets the name of the algorithm to be used for the

minimization (“Powell” or “MCMC”)

• GetMinimizationMethodName – returns the name of the minimization algorithm to

be used

The MinimizerPointsSourcePlane is a class derived from Minimizer that implements

the minimization described in Sect. 2.3.2. It is presented in Fig. A.13 and implementsMinimizerPointsSourcePlane+nNparam:int+nNArcsSystems:int+MinimizerPointsSourcePlane()+~MinimizerPointsSourcePlane()+Minimize()
Figure A.13: The MinimizerPointsSourcePlane class.

the minimize method.

The MinimizerExtendedImagePlane is a class derived from Minimizer that implements

the minimization described in Sect. 4.5.3. It is presented in Fig. A.14 and implements

the minimize method.
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Figure A.14: The MinimizerExtendedImagePlane class.

A.5 Helper functions and utility functions

The package requires also some additional functions and tools that will be described in

this section. Those are usually small specialized routines dedicated to perform a specific

task.

• mcmc – contains routines needed to perform MCMC analysis of a function

• ToolBox – contains various useful routines

– DistanceAngular – calculates the angular distance to an object at a given red-

shift

– DistanceLuminosity – calculates the luminosity distance to an object at a given

redshift

– MagMatrix – calculates the magnification matrix at a given position in lens

plane

A.6 GUI

Before starting the GUI, one needs to define the model as a array of lens structures –

lenses, and array of source structures – sources. In addition the background image and

header file of the fits file corresponding to the background image are needed. Then one

can start the GUI by committing an command:

gui main, lenses, sources, dimx, dimy, resolution, xscale, yscale, background image,

header
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In the above statement the dimx and dimy are the x and y dimensions of the background

image in pixels, resolution is the resolution in which all the calculation will be carried out

(e.g. resolution = 2 means that the positions of arcs will be calculated on the grid that

has twice the resolution of the background image). xscale and yscale define a conversion

factor from pixels to arc seconds in x and y direction. The path to the background im-

age is given by background image, and the header is the fits header. The Fig. A.15 shows

the overview of the GUI. The window is splited into two main areas: the bigger one to

Figure A.15: The general GUI overview

the left is the plotting area, and the smaller one to the right is the control area. Most of

the interaction is done thought the control area; the plotting area however, allows some

degree of interaction as well.

The top of the control area has two lists – one for all the lenses defined for the model,
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and one for all the sources. Choosing one of the members of those lists brings the win-

dow showed in Fig. A.16. This table allows one to modify of all the parameters of a

given lens or source component.

Figure A.16: The window to modify the model parameters

Below the lenses list there is an Options box. This box is used to enable/disable

different plotting options. The following choices are possible

• coustics: Enable/disable plotting of caustics

• cr curves: Enable/disable plotting of critical lines

• images: Enable/disable plotting of images (arcs)

• sources pos: Enable/disable plotting of sources positions

• lenses pos: Enable/disable plotting of center of lenses model positions

• point img: Enable/disable plotting of point like images

• point src: Enable/disable plotting of point like sources

• kappa: Enable/disable plotting of kappa contours

• picture: Enable/disable plotting of background image

• arrows: Enable/disable plotting of North/East arrows

• smass: Enable/disable plotting of the surface mass density

Since many of the components to be plotted depend on the redshift (caustics, kappa,

etc...) then one need to define a redshift for which to plot them. This is done thought a

Main Redshift box, below the Options box.

Once all the options are set up one can choose to draw the picture on the screen

(Draw button) or save it in the PostScript file (Save to PS button).
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Under the sources list there is a Radial Profile button. Pressing it brings a window

showed in the Fig. A.17. This window is used to control and plot the radial average

Figure A.17: The window to plot the radial average mass profile

profile of the mass distribution. It allows plotting (Plot button) or saving to a PostScript

file (Save to PS button) of the radial average mass profile. One can also choose to over

plot the best NIS and/or NFW fit to the profile.

The plotting area also allows a simple interaction. When a mouse click is registered

in this area, then the lens that is centered closest to the mouse position is selected, and

can be moved by clicking on the new position. This is useful when one investigates the

impact of the substructure, or want to fine tune the model a little bit by hand.

A.7 Example program usage

In this section the usage of the package will be presented. The full process of finding a

best fitting model to observed strong lensing features of the cluster RCS0224-002 will be

discussed. Both the IDL and C++ code will be explained.

A.7.1 IDL Example

First we reset the session, load necessary paths, then we set the error sensitivity and

finally we load a nice color table.
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. R e s e t S e s s i o n

r e t a l l

! path =! path+ p a t h t o g e n e r a l i d l r o u t i n e s

! path =! path+ p a t h t o t o o l s

! path =! path+ p a t h t o p s c o n f i g

! EXCEPT=2

loadct , 3 9

Now we load the physical, astrophysical and cosmological constantes

constants ; d e f i n e c o n s t a n t s

COMMON COSMO CONST

COMMON ASTRO CONST

COMMON PHYS CONST

Read background image, and fits header

cl image = read bmp (” rcs0224−cut−indexed246 .bmp” , R ,G, B )

h= h e a d f i t s (” r c s 0 2 2 4 r e d c u t . f i t s ” )

Set the pixel to arc seconds conversion factors

x s c a l e = 0.0995528

y s c a l e = 0.0995431

Then the source structure is defined, together with the array of two sources. The

sources are given some starting values for the parameters. Also the variability and

bound of parameters are set up.

; d e f i n e t h e s o u r c e s t r u c t u r e

source = { source , id : 0 , type : ” c i r c u l a r ” , x 1 : 1 8 2 . 1 3 2 ,

x 2 : 1 5 3 . 0 2 6 , z : 1 . 2 5 5 , e l l i p c i t y : 0 . 0 , pos angle : 0 . 0 ,

p0 : 0 . 0 5 , p1 : 0 . 0 , p2 : 0 . 0 , p3 : 0 . 0 , p4 : 0 . 0 , c o l o r : 0}
; a l l o c a t e a two e l e m e n t a r r a y f o r t h e two s o u r c e s

sources = r e p l i c a t e ( source , 2 )
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; t h e f i r s t s o u r c e

sources [ 0 ] . id = 2 ; t h e i d

sources [ 0 ] . x 1 =16.3027 ; t h e p o s i t i o n ( in a r c s e c o n d s )

sources [ 0 ] . x 2 =19.3914

sources [ 0 ] . z = 4 .87860 ; t h e r e d s h i f t

sources [ 0 ] . p0 =0.15 ; t h e r a d i u s

sources [ 0 ] . c o l o r =251 ; c o l o r

var s0 = [ 0 ] ; s e t t h e r e d s h i f t o f t h i s s o u r c e as

; f i x e d f o r m i n i m i z a t i o n

; ( known s p e c t r o s c o p i c r e d s h i f t )

bound s0 = [ 0 . 0 , 0 . 0 ] ; i g n o r e t h e bounds

; t h e s e c o n d s o u r c e

sources [ 1 ] . id = 1 ; t h e i d

sources [ 1 ] . x 1 =19.0781 ; t h e p o s i t i o n

sources [ 1 ] . x 2 =19.5253

sources [ 1 ] . z = 2 .35084 ; t h e s t a r t i n g r e d s h i f t

sources [ 1 ] . p0 =0.1 ; t h e r a d i u s

sources [ 1 ] . c o l o r =248 ; t h e c o l o r

var s1 = [ 1 ] ; t h i s r e d s h i f t s h o u l d be a l l o w e d t o

; change dur ing m i n i m i z a t i o n

bound s1 = [ 1 . 0 , 8 . 0 ] ; r e a s o n a b l e bounds f o r t h e r e d s h i f t

Now the lensing model needs to be defined. It consists of 12 parametric lenses (NIEs

and NISs). The starting values of the parameters are initialized and the bounds for

variable parameters are set up.

; d e f i n i t i o n o f t h e l e n s s t r u c t u r e

l ens = { lens , id : 0 , type : ” i s o t h e r m a l e l l i p s o i d e l l i p t i c a l ” ,

x 1 : 1 . 0 , x 2 : 2 . 0 , z : 0 . 7 8 2 , b r e f : 4 . 1 8 5 7 , e l l i p c i t y : 0 . 7 5 ,

pos angle : 4 5 . 0 ∗ ! Pi /180 .0 , p0 : 0 . 0 , p1 : 0 . 0 , p2 : 0 . 0 , p3 : 0 . 0 ,

p4 : 0 . 0 }
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; t h e l e n s e s a r r a y

l e n s e s = r e p l i c a t e ( lens , 12 )

; t h e f i r s t l e n s

; t h e i d

l e n s e s [ 0 ] . id = 0

; t h e t y p e

l e n s e s [ 0 ] . type=” i s o t h e r m a l e l l i p s o i d e l l i p t i c a l ”

; t h e v e l o c i t y d i s p e r s i o n

l e n s e s [ 0 ] . p1 = 403000 .0D

; s c a l e f a c t o r

l e n s e s [ 0 ] . b r e f = 1 0 . 0

; p o s i t i o n a n g l e

l e n s e s [ 0 ] . pos angle = 1 7 0 . 0 ∗ ! Pi /180 .0

; e l l i p t i c i t y

l e n s e s [ 0 ] . e l l i p c i t y = 0 . 8

; t h e p o s i t i o n

l e n s e s [ 0 ] . x 1 = 195 .0

l e n s e s [ 0 ] . x 2 = 204 .0

; t h e s p a r a m e t e r

l e n s e s [ 0 ] . p0 = 1 . 0

; t h e v a r i a b i l i t y o f p a r a m e t e r s

; p o s i t i o n , s c a l e f a c t o r , p o s i t i o n ang l e , e l l i p t i c i t y , and s

; w i l l change dur ing m i n i m i z a t i o n

var0 = [ 1 , 1 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ]

; t h e bounds f o r v a r i a b l e p a r a m e t e r s

bound0 = [ [ 1 5 . 0 , 2 5 . 0 ] , [ 1 5 . 0 , 2 5 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 3 , 0 . 9 9 ] , [ 0 , ! Pi ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

; t h e s e c o n d l e n s

l e n s e s [ 1 ] . id = 1
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l e n s e s [ 1 ] . type=” i s o t h e r m a l e l l i p s o i d e l l i p t i c a l ”

l e n s e s [ 1 ] . p1 = 510000

l e n s e s [ 1 ] . b r e f = 5 . 0 ;

l e n s e s [ 1 ] . pos angle = 1 .52668

l e n s e s [ 1 ] . e l l i p c i t y = 0 . 7

l e n s e s [ 1 ] . x 1 = 195 .0 ; 181 .2

l e n s e s [ 1 ] . x 2 = 204 .0 ; 209 .3

l e n s e s [ 1 ] . p0 = 1 .778 ; 1 . 0

var1 = [ 0 , 0 , 0 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ]

bound1 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 3 , 0 . 9 9 ] , [ 0 , ! Pi ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

; t h e t h i r d , f o u r t h , . . . l e n s

l e n s e s [ 2 ] . id = 2

l e n s e s [ 2 ] . type=” i s o t h e r m a l e l l i p s o i d e l l i p t i c a l ”

l e n s e s [ 2 ] . p1 = 510000

l e n s e s [ 2 ] . b r e f = 0 . 0

l e n s e s [ 2 ] . pos angle = 1 .46156

l e n s e s [ 2 ] . e l l i p c i t y = 0 . 7

l e n s e s [ 2 ] . x 1 = 206 .7

l e n s e s [ 2 ] . x 2 = 202 .4

l e n s e s [ 2 ] . p0 = 1 . 0

var2 = [ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

bound2 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 9 , 0 . 9 9 ] , [ 0 , ! Pi ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

l e n s e s [ 3 ] . id = 193

l e n s e s [ 3 ] . type=” i s o t h e r m a l e l l i p s o i d c i r c u l a r ”

l e n s e s [ 3 ] . p1 = 510000

l e n s e s [ 3 ] . b r e f = 2 . 0

l e n s e s [ 3 ] . pos angle = 5 0 . 0 ∗ ! Pi /180 .0 ;
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l e n s e s [ 3 ] . e l l i p c i t y = 1 . 0

l e n s e s [ 3 ] . x 1 = 181 .2

l e n s e s [ 3 ] . x 2 = 209 .3

l e n s e s [ 3 ] . p0 = 0 . 1

l e n s e s [ 3 ] . p3 = 2 . 5

; ’ ’ 2 ’ ’ in p l a c e o f v a r i a b i l i t y means t h a t t h i s w i l l b e a

; group o f c o n s t a n t mass−to− l i g h t r a t i o l e n s e s

; p3 i s t h e s t a r t i n g r a t i o o f M/ L

; a l l t h e l e n s e s wi th ‘ ‘ 2 ’ ’ in t h e p l a c e o f v a r i a b i l i t y

; o f t h e s c a l e f a c t o r b e l o n g t o one group

; and a r e t h e r e f o r e d e s c r i b e d by on p a r a m e t e r

var3 = [ 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

bound3 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 . 1 , 3 . 0 ] , [ 0 . 0 , 0 . 0 ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

l e n s e s [ 4 ] . id = 184

l e n s e s [ 4 ] . type=” i s o t h e r m a l e l l i p s o i d c i r c u l a r ”

l e n s e s [ 4 ] . p1 = 510000

l e n s e s [ 4 ] . b r e f = 2 . 0

l e n s e s [ 4 ] . pos angle = 5 0 . 0 ∗ ! Pi /180 .0

l e n s e s [ 4 ] . e l l i p c i t y = 1 . 0

l e n s e s [ 4 ] . x 1 = 206 .7

l e n s e s [ 4 ] . x 2 = 202 .4

l e n s e s [ 4 ] . p0 = 0 . 1

var4 = [ 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

bound4 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

l e n s e s [ 5 ] . id = 182

l e n s e s [ 5 ] . type=” i s o t h e r m a l e l l i p s o i d c i r c u l a r ”

l e n s e s [ 5 ] . p1 = 510000
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l e n s e s [ 5 ] . b r e f = 0 . 1

l e n s e s [ 5 ] . pos angle = 0 . 0

l e n s e s [ 5 ] . e l l i p c i t y = 1 . 0

l e n s e s [ 5 ] . x 1 = 249 .1

l e n s e s [ 5 ] . x 2 = 7 3 . 7

l e n s e s [ 5 ] . p0 = 0 . 1

var5 = [ 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

bound5 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

l e n s e s [ 6 ] . id = 210

l e n s e s [ 6 ] . type=” i s o t h e r m a l e l l i p s o i d c i r c u l a r ”

l e n s e s [ 6 ] . p1 = 510000

l e n s e s [ 6 ] . b r e f = 0 . 1

l e n s e s [ 6 ] . pos angle = 0 . 0

l e n s e s [ 6 ] . e l l i p c i t y =1.0

l e n s e s [ 6 ] . x 1 = 236 .0

l e n s e s [ 6 ] . x 2 = 154 .0

l e n s e s [ 6 ] . p0 = 0 . 1

var6 = [ 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

bound6 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

l e n s e s [ 7 ] . id = 7

l e n s e s [ 7 ] . type=” i s o t h e r m a l e l l i p s o i d e l l i p t i c a l ”

l e n s e s [ 7 ] . p1 = 510000

l e n s e s [ 7 ] . b r e f = 0 . 1

l e n s e s [ 7 ] . pos angle = 5 0 . 0 ∗ ! Pi /180 .0

l e n s e s [ 7 ] . e l l i p c i t y = 0 . 3

l e n s e s [ 7 ] . x 1 = 177 .0

l e n s e s [ 7 ] . x 2 = 103 .0
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l e n s e s [ 7 ] . p0 = 0 . 1

var7 = [ 0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

bound7 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

l e n s e s [ 8 ] . id = 205

l e n s e s [ 8 ] . type=” i s o t h e r m a l e l l i p s o i d c i r c u l a r ”

l e n s e s [ 8 ] . p1 = 510000

l e n s e s [ 8 ] . b r e f = 0 . 1

l e n s e s [ 8 ] . pos angle = 5 0 . 0 ∗ ! Pi /180 .0

l e n s e s [ 8 ] . e l l i p c i t y = 1 . 0

l e n s e s [ 8 ] . x 1 = 224 .9

l e n s e s [ 8 ] . x 2 = 126 .7

l e n s e s [ 8 ] . p0 = 0 . 1

var8 = [ 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

bound8 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

l e n s e s [ 9 ] . id = 185

l e n s e s [ 9 ] . type=” i s o t h e r m a l e l l i p s o i d c i r c u l a r ”

l e n s e s [ 9 ] . p1 = 510000

l e n s e s [ 9 ] . b r e f = 0 . 1

l e n s e s [ 9 ] . pos angle = 7 0 . 0 ∗ ! Pi /180 .0 ;

l e n s e s [ 9 ] . e l l i p c i t y = 0 . 6

l e n s e s [ 9 ] . x 1 = 237 .2

l e n s e s [ 9 ] . x 2 = 120 .6

l e n s e s [ 9 ] . p0 = 0 . 1

var9 = [ 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

bound9 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]
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l e n s e s [ 1 0 ] . id = 346

l e n s e s [ 1 0 ] . type=” i s o t h e r m a l e l l i p s o i d c i r c u l a r ”

l e n s e s [ 1 0 ] . p1 = 510000

l e n s e s [ 1 0 ] . b r e f = 0 . 1

l e n s e s [ 1 0 ] . pos angle = 5 0 . 0 ∗ ! Pi /180 .0

l e n s e s [ 1 0 ] . e l l i p c i t y = 1 . 0

l e n s e s [ 1 0 ] . x 1 = 254 .1

l e n s e s [ 1 0 ] . x 2 = 331 .2

l e n s e s [ 1 0 ] . p0 = 0 . 1

var10 = [ 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

bound10 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

l e n s e s [ 1 1 ] . id = 243

l e n s e s [ 1 1 ] . type=” i s o t h e r m a l e l l i p s o i d c i r c u l a r ”

l e n s e s [ 1 1 ] . p1 = 510000

l e n s e s [ 1 1 ] . b r e f = 0 . 1

l e n s e s [ 1 1 ] . pos angle = 5 0 . 0 ∗ ! Pi /180 .0

l e n s e s [ 1 1 ] . e l l i p c i t y = 1 . 0

l e n s e s [ 1 1 ] . x 1 = 141 .6

l e n s e s [ 1 1 ] . x 2 = 161 .5

l e n s e s [ 1 1 ] . p0 = 0 . 1

var11 = [ 0 , 0 , 0 , 2 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

bound11 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 , 0 ] ,

[ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] , [ 0 , 0 ] ]

; end o f t h e group d e f i n i t i o n

convert the position of lenses from pixels to arcseconds

l e n s e s [ 0 : 1 1 ] . x 1 = l e n s e s [ 0 : 1 1 ] . x 1 ∗ x s c a l e

l e n s e s [ 0 : 1 1 ] . x 2 = l e n s e s [ 0 : 1 1 ] . x 2 ∗ y s c a l e
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calculate how much dimmer the members of the substructure group are in respect

to the brightest member of the group

; t h e l e n s e s i d s

s u b s t r i d = [ 1 8 2 , 184 , 185 , 193 , 205 , 210 ,

243 , 346]

; and c o r r e s p o n d i n g m agni tudes o f t h e g a l a x i e s

substr mag = [ 1 5 . 8 3 8 8 , 1 3 . 6 9 5 9 , 1 4 . 7 0 7 1 , 1 4 . 2 4 1 4 , 14 .6008 ,

1 5 . 6 2 2 4 , 1 5 . 4 9 1 8 , 1 4 . 5 5 1 6 ]

r a t i o s = 10ˆ(− substr mag /2.5)/10ˆ( − substr mag [ 1 ] / 2 . 5 )

; s a v e t h e ‘ ‘ l i g h t ’ ’ o f e a c h member in p4 p a r a m e t e r

for i =0 , n elements ( s u b s t r i d )−1 do l e n s e s [ where ( l e n s e s [ ∗ ] . id

eq s u b s t r i d [ i ] ) ] . p4 = r a t i o s [ i ]

Not we define the data. First the position of point-like images

; p r e p a r e t h e a r r a y s t o h o l d t h e p o s i t i o n s o f a r c s

a r c s e c x = findgen ( 3 7 )

a r c s e c y = findgen ( 3 7 )

a r c s e c x [ 0 ] = 7 4 . 0

a r c s e c y [ 0 ] = 273 .0

a r c s e c x [ 1 ] = 6 6 . 0

a r c s e c y [ 1 ] = 258 .0

a r c s e c x [ 2 ] = 5 9 . 0

a r c s e c y [ 2 ] = 240 .0

a r c s e c x [ 3 ] = 5 4 . 0

a r c s e c y [ 3 ] = 220 .0

a r c s e c x [ 4 ] = 5 3 . 0

a r c s e c y [ 4 ] = 210 .0

a r c s e c x [ 5 ] = 5 3 . 0

a r c s e c y [ 5 ] = 200 .0
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a r c s e c x [ 6 ] = 5 7 . 0

a r c s e c y [ 6 ] = 155 .0

a r c s e c x [ 7 ] = 5 8 . 0

a r c s e c y [ 7 ] = 145 .0

a r c s e c x [ 8 ] = 145 .0

a r c s e c y [ 8 ] = 118 .0

a r c s e c x [ 9 ] = 157 .0

a r c s e c y [ 9 ] = 110 .0

a r c s e c x [ 1 0 ] = 166 .0

a r c s e c y [ 1 0 ] = 107 .0

a r c s e c x [ 1 1 ] = 176 .0

a r c s e c y [ 1 1 ] = 106 .0

a r c s e c x [ 1 2 ] = 181 .0

a r c s e c y [ 1 2 ] = 101 .0

a r c s e c x [ 1 3 ] = 206 .0

a r c s e c y [ 1 3 ] = 102 .0

a r c s e c x [ 1 4 ] = 222 .0

a r c s e c y [ 1 4 ] = 105 .0

a r c s e c x [ 1 5 ] = 236 .0

a r c s e c y [ 1 5 ] = 110 .0

a r c s e c x [ 1 6 ] = 247 .0

a r c s e c y [ 1 6 ] = 127 .0

a r c s e c x [ 1 7 ] = 253 .0

a r c s e c y [ 1 7 ] = 135 .0

a r c s e c x [ 1 8 ] = 261 .0

a r c s e c y [ 1 8 ] = 147 .0

a r c s e c x [ 1 9 ] = 265 .0

a r c s e c y [ 1 9 ] = 155 .0
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a r c s e c x [ 2 0 ] = 266 .0

a r c s e c y [ 2 0 ] = 162 .0

a r c s e c x [ 2 1 ] = 267 .0

a r c s e c y [ 2 1 ] = 165 .0

a r c s e c x [ 2 2 ] = 176 .0

a r c s e c y [ 2 2 ] = 296 .0

a r c s e c x [ 2 3 ] = 187 .0

a r c s e c y [ 2 3 ] = 297 .0

a r c s e c x [ 2 4 ] = 197 .0

a r c s e c y [ 2 4 ] = 298 .0

a r c s e c x [ 2 5 ] = 210 .0

a r c s e c y [ 2 5 ] = 295 .0

; r a i d a l f e a t u r e D

a r c s e c x [ 2 6 ] = 0 . 0

a r c s e c y [ 2 6 ] = 0 . 0

a r c s e c x [ 2 7 ] = 0 . 0

a r c s e c y [ 2 7 ] = 0 . 0

; A3

a r c s e c x [ 2 8 ] = 242 .0

a r c s e c y [ 2 8 ] = 194 .0

a r c s e c x [ 2 9 ] = 246 .0

a r c s e c y [ 2 9 ] = 194 .0

a r c s e c x [ 3 0 ] = 252 .0

a r c s e c y [ 3 0 ] = 192 .0

; p a r t o f B4

a r c s e c x [ 3 1 ] = 0 . 0

a r c s e c y [ 3 1 ] = 0 . 0
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a r c s e c x [ 3 2 ] = 117 .0

a r c s e c y [ 3 2 ] = 169 .0

a r c s e c x [ 3 3 ] = 121 .0

a r c s e c y [ 3 3 ] = 160 .0

; r a d i a l a r c in t h e c e n t e r

a r c s e c x [ 3 4 ] = 189 .5

a r c s e c y [ 3 4 ] = 199 .5

a r c s e c x [ 3 5 ] = 195 .5

a r c s e c y [ 3 5 ] = 199 .0

a r c s e c x [ 3 6 ] = 201 .0

a r c s e c y [ 3 6 ] = 199 .5

; c o n v e r t from p i x e l s t o a r c s e c o n d s

a r c s e c x = a r c s e c x ∗ x s c a l e

a r c s e c y = a r c s e c y ∗ y s c a l e

Now we load the extended arc information from the png file

a r c s d a t a = f i x ( read png (” rcs0224−with−c e n t r a l −B . png ” ) )

Before the minimization in the source plane (minimum source size) can start, we

have to organize the point images into multiplets – each multiplet represents one arc

system. The information about the flux of each point like image and the error of the

position measurement are also embedded into the multiplet structure.

; p r e p a r e d a t a s t r u c t u r e f o r m i n i m a l i z a t i o n r o u t i n e

sigma 1 = r e p l i c a t e ( 0 . 0 5 , 1 1 )

m u l t i p l e t 1 = {m u l t i p l e t 1 , n images : ptr new ( 1 1 ) , r e d s h i f t :

ptr new ( 4 . 8 7 8 6 ) , sigma : ptr new ( sigma 1 ) , image x :

ptr new ( [ a r c s e c x [ 0 : 7 ] , a r c s e c x [ 2 8 : 3 0 ] ] ) , image y :

ptr new ( [ a r c s e c y [ 0 : 7 ] , a r c s e c y [ 2 8 : 3 0 ] ] ) , f l u x : ptr new ( [ 0 ] ) ,



124 A. Software

s igma flux : ptr new ( [ 0 ] ) }

sigma 2 = r e p l i c a t e ( 0 . 0 5 , 2 3 )

m u l t i p l e t 2 = {m u l t i p l e t 2 , n images : ptr new ( 2 3 ) , r e d s h i f t :

ptr new ( 2 . 4 5 0 8 4 ) , sigma : ptr new ( sigma 2 ) , image x :

ptr new ( [ a r c s e c x [ 8 : 1 1 ] , a r c s e c x [ 1 6 : 2 1 ] , a r c s e c x [ 3 2 : 3 3 ] ,

a r c s e c x [ 1 2 : 1 5 ] , a r c s e c x [ 2 2 : 2 5 ] , a r c s e c x [ 3 4 : 3 6 ] ] ) , image y :

ptr new ( [ a r c s e c y [ 8 : 1 1 ] , a r c s e c y [ 1 6 : 2 1 ] , a r c s e c y [ 3 2 : 3 3 ] ,

a r c s e c y [ 1 2 : 1 5 ] , a r c s e c y [ 2 2 : 2 5 ] , a r c s e c y [ 3 4 : 3 6 ] ] ) , f l u x :

ptr new ( [ 0 ] ) , s igma flux : ptr new ( [ 0 ] ) }

data =[ m u l t i p l e t 1 , m u l t i p l e t 2 ]

We are now ready to lunch the minimization routine. We need to pass the lenses and

sources arrays, the data and the vectors indicating which variables should be allowed

to change, and if so to what limits.

P = f i t p o i n t s o u r c e s ( lenses , sources , data , [ var0 , var1 , var2 , var3 ,

var4 , var5 , var6 , var7 , var8 , var9 , var10 , var11 , var s0 ,

var s1 ] , [ [ bound0 ] , [ bound1 ] , [ bound2 ] , [ bound3 ] , [ bound4 ] ,

[ bound5 ] , [ bound6 ] , [ bound7 ] , [ bound8 ] , [ bound9 ] , [ bound10 ] ,

[ bound11 ] , [ bound s0 ] , [ bound s1 ] ] , / v i o l a t e )

the violate keyword means that the lenses and sources will be overwritten with the

best fit model. The routine returns a structure that has three members

• minimum – the parameters that minimize the chi square

• minimum value – the chi square at the minimum

• penelty – the penalty (Eq. (4.4))

Now we can proceed to the model fitting based on the exact shapes of arcs. First we

need to create a grid of appropriate resolution. The deflection angle will be calculated

at each point of the grid, therefore the more points the more memory and CPU time is
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needed. Then we change the variability vector of the source position (since it is a free

parameter now and was fixed (calculated) in the previous minimization)

; p r e p a r e g r i d

dimx = 401L

dimy = 402L

r e s = 2

dim x = dimx∗ r e s

dim y = dimy∗ r e s

p o i n t s x = reform ( findgen ( dim x ) # r e p l i c a t e ( 1 . 0 , dim y ) ,

dim x∗dim y )

points y = reform ( r e p l i c a t e ( 1 . 0 , dim x ) # findgen ( dim y ) ,

dim x∗dim y )

p o i n t s x = p o i n t s x ∗ x s c a l e /r e s

points y = points y ∗ y s c a l e /r e s

; t h e same r e s o l u t i o n as background ( d a t a ) image . . .

p o i n t s x e i = reform ( findgen ( dimx ) # r e p l i c a t e ( 1 . 0 , dimy ) ,

dimx∗dimy )∗ x s c a l e

p o i n t s y e i = reform ( r e p l i c a t e ( 1 . 0 , dimx ) # findgen ( dimy ) ,

dimx∗dimy )∗ y s c a l e

; change t h e s o u r c e s p o s i t i o n v a r i a b i l i t y

var s0 = [ 1 , 1 , 0 ]

var s1 = [ 1 , 1 , 1 ]

bound s0 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] ]

bound s1 = [ [ 0 . 0 , 0 . 0 ] , [ 0 . 0 , 0 . 0 ] , [ 1 . 0 , 8 . 0 ] ]

The fit extended images routine takes the lenses, sources, data, and variability and

bounds vectors as parameters. It returns a structure that has four members

• minimum – the set of parameters that minimizes Eq. (4.8)

• minimum value – the value of Eq. (4.8) at the minimum
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• penelty – the value of panelty (Eq. (4.4)) at the minimum

• dist hd – the value of Eq. (4.5) at the minimum

P = f i t e x t e n d e d i m a g e s ( lenses , sources , p o i n t s x e i /xsca le ,

p o i n t s y e i /yscale , reform ( arcs data , dimx∗dimy ) ,

p o i n t s x e i , p o i n t s y e i , dimx , dimy , [ var0 , var1 , var2 ,

var3 , var4 , var5 , var6 , var7 , var8 , var9 , var10 , var11 ,

var s0 , var s1 ] , [ [ bound0 ] , [ bound1 ] , [ bound2 ] , [ bound3 ] ,

[ bound4 ] , [ bound5 ] , [ bound6 ] , [ bound7 ] , [ bound8 ] , [ bound9 ] ,

[ bound10 ] , [ bound11 ] , [ bound s0 ] , [ bound s1 ] ] , / v i o l a t e )

A.7.2 C++ example

In this section a program of similar functionality to the one presented above, written in

C++ however, will be presented.

First we include needed header files and define a global graphic module.

# include <png . h>

# include <iostream>

# include <c a s s e r t>

# include ”Nie . h”

# include ”Nis . h”

# include ” FixedScaleRatioGroup . h”

# include ”LensesSystem . h”

# include ” LensesContainer . h”

# include ”ToolBox . h”

# include ” MinimizerPointsSourcePlane . h”

# include ”MinimizerExtendedImagePlane . h”

# include ” SourceCircular . h”

# include ” SourcesContainer . h”

# include ” DataContainer . h”

# include ” Constants . h”
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# include ” ./ graphic/SDLGraphicsModule . h”

# include ”mcmc. h”

SDLGraphicsModule∗ graphic ;

In the main function, we initiate the graphics module

/ / i n i t t h e g r a p h i c s

graphic = new SDLGraphicsModule ( ) ;

graphic−>SetScreenDim ( 4 0 1 , 4 0 2 ) ;

graphic−>I n i t ( ) ;

and then we define the lenses components, be creating appropriate lenses objects,

and suppling a starting parameters, variability for each parameter and the bound for

the variable parameters.

/ / ∗∗∗∗∗∗ l e n s c o n f i g u r a t i o n s t a r t ∗∗∗∗∗∗∗∗∗∗
/ / f r e e b i g clump

std : : vector<double> Nie1 param ;

Nie1 param . push back ( 1 9 5 ) ;

Nie1 param . push back ( 2 0 4 ) ;

Nie1 param . push back ( 1 0 0 ) ;

Nie1 param . push back ( 0 . 8 ) ;

Nie1 param . push back (170∗M PI / 1 8 0 . ) ;

Nie1 param . push back ( 1 ) ;

s td : : vector<int> Nie1 var ;

Nie1 var . push back ( 1 ) ;

Nie1 var . push back ( 1 ) ;

Nie1 var . push back ( 1 ) ;

Nie1 var . push back ( 1 ) ;

Nie1 var . push back ( 1 ) ;

Nie1 var . push back ( 1 ) ;

s td : : vector< std : : pair<double , double> > Nie1 bound ;

Nie1 bound . push back ( std : : make pair ( 1 5 0 . 0 , 2 5 0 . 0 ) ) ;
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Nie1 bound . push back ( std : : make pair ( 1 5 0 . 0 , 2 5 0 . 0 ) ) ;

Nie1 bound . push back ( std : : make pair ( 0 . 0 , 1 0 0 0 0 0 0 . 0 ) ) ;

Nie1 bound . push back ( std : : make pair ( 0 . 3 , 0 . 9 9 ) ) ;

Nie1 bound . push back ( std : : make pair ( 0 . 0 , 3 . 1 4 1 5 9 2 6 ) ) ;

Nie1 bound . push back ( std : : make pair ( 0 . 0 , 1 0 0 0 0 0 0 . 0 ) ) ;

Nie∗ nie1 = new Nie ( ) ;

nie1−>Set Id ( 1 ) ;

nie1−>SetParameters ( Nie1 param ) ;

nie1−>SetParametersVar iab le ( Nie1 var ) ;

nie1−>SetParametersBound ( Nie1 bound ) ;

/ / f i x e d p o s i t i o n b i g clump

std : : vector<double> Nie2 param ;

Nie2 param . push back ( 1 9 5 ) ;

Nie2 param . push back ( 2 0 4 ) ;

Nie2 param . push back ( 5 0 ) ;

Nie2 param . push back ( 0 . 7 ) ;

Nie2 param . push back ( 1 . 5 2 6 6 8 ) ;

Nie2 param . push back ( 1 ) ;

s td : : vector<int> Nie2 var ;

Nie2 var . push back ( 0 ) ;

Nie2 var . push back ( 0 ) ;

Nie2 var . push back ( 1 ) ;

Nie2 var . push back ( 1 ) ;

Nie2 var . push back ( 1 ) ;

Nie2 var . push back ( 1 ) ;

s td : : vector< std : : pair<double , double> > Nie2 bound ;

Nie2 bound . push back ( std : : make pair ( 1 5 0 . 0 , 2 5 0 . 0 ) ) ;
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Nie2 bound . push back ( std : : make pair ( 1 5 0 . 0 , 2 5 0 . 0 ) ) ;

Nie2 bound . push back ( std : : make pair ( 0 . 0 , 1 0 0 0 0 0 0 . 0 ) ) ;

Nie2 bound . push back ( std : : make pair ( 0 . 3 , 0 . 9 9 ) ) ;

Nie2 bound . push back ( std : : make pair ( 0 . 0 , 3 . 1 4 1 5 9 2 6 ) ) ;

Nie2 bound . push back ( std : : make pair ( 0 . 0 , 1 0 0 0 0 0 0 . 0 ) ) ;

Nie∗ nie2 = new Nie ( ) ;

nie2−>Set Id ( 2 ) ;

nie2−>SetParameters ( Nie2 param ) ;

nie2−>SetParametersVar iab le ( Nie2 var ) ;

nie2−>SetParametersBound ( Nie2 bound ) ;

/ / t h e e l i p t i c a l f e a t u r e . . . D

std : : vector<double> Nie3 param ;

Nie3 param . push back ( 1 7 7 ) ;

Nie3 param . push back ( 1 0 8 ) ;

Nie3 param . push back ( 1 0 ) ;

Nie3 param . push back ( 0 . 3 ) ;

Nie3 param . push back ( 5 0 . 0∗ M PI / 1 8 0 . ) ;

Nie3 param . push back ( 1 ) ;

s td : : vector<int> Nie3 var ;

Nie3 var . push back ( 0 ) ;

Nie3 var . push back ( 0 ) ;

Nie3 var . push back ( 1 ) ;

Nie3 var . push back ( 0 ) ;

Nie3 var . push back ( 0 ) ;

Nie3 var . push back ( 0 ) ;

s td : : vector< std : : pair<double , double> > Nie3 bound ;

Nie3 bound . push back ( std : : make pair ( 0 . 0 , 1 0 0 0 0 0 . 0 ) ) ;

Nie3 bound . push back ( std : : make pair ( 0 . 0 , 1 0 0 0 0 0 . 0 ) ) ;
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Nie3 bound . push back ( std : : make pair ( 0 . 0 , 1 0 0 0 0 0 0 . 0 ) ) ;

Nie3 bound . push back ( std : : make pair ( 0 . 0 , 0 . 9 9 ) ) ;

Nie3 bound . push back ( std : : make pair ( 0 . 0 , 3 . 1 4 1 5 9 2 6 ) ) ;

Nie3 bound . push back ( std : : make pair ( 0 . 0 , 1 0 0 0 0 0 0 . 0 ) ) ;

Nie∗ nie3 = new Nie ( ) ;

nie3−>Set Id ( 3 ) ;

nie3−>SetParameters ( Nie3 param ) ;

nie3−>SetParametersVar iab le ( Nie3 var ) ;

nie3−>SetParametersBound ( Nie3 bound ) ;

/ / t h e s u b s t r u c t u r e . . .

Nis∗ sub nis1 = new Nis ( ) ;

sub nis1−>Set Id ( 1 1 ) ;

s td : : vector<double> sub nis1 param ;

sub nis1 param . push back ( 1 8 1 . 2 ) ;

sub nis1 param . push back ( 2 0 9 . 3 ) ;

sub nis1 param . push back ( 1 . 0 ) ;

sub nis1 param . push back ( 1 . 0 ) ;

sub nis1−>SetParameters ( sub nis1 param ) ;

Nis∗ sub nis2 = new Nis ( ) ;

sub nis2−>Set Id ( 1 2 ) ;

s td : : vector<double> sub nis2 param ;

sub nis2 param . push back ( 2 0 6 . 7 ) ;

sub nis2 param . push back ( 2 0 2 . 4 ) ;

sub nis2 param . push back ( 1 . 0 ) ;

sub nis2 param . push back ( 1 . 0 ) ;

sub nis2−>SetParameters ( sub nis2 param ) ;

Nis∗ sub nis3 = new Nis ( ) ;
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sub nis3−>Set Id ( 1 3 ) ;

s td : : vector<double> sub nis3 param ;

sub nis3 param . push back ( 2 4 9 . 1 ) ;

sub nis3 param . push back ( 7 3 . 7 ) ;

sub nis3 param . push back ( 1 . 0 ) ;

sub nis3 param . push back ( 1 . 0 ) ;

sub nis3−>SetParameters ( sub nis3 param ) ;

Nis∗ sub nis4 = new Nis ( ) ;

sub nis4−>Set Id ( 1 4 ) ;

s td : : vector<double> sub nis4 param ;

sub nis4 param . push back ( 2 3 6 . 0 ) ;

sub nis4 param . push back ( 1 5 4 . 0 ) ;

sub nis4 param . push back ( 1 . 0 ) ;

sub nis4 param . push back ( 1 . 0 ) ;

sub nis4−>SetParameters ( sub nis4 param ) ;

Nis∗ sub nis5 = new Nis ( ) ;

sub nis5−>Set Id ( 1 5 ) ;

s td : : vector<double> sub nis5 param ;

sub nis5 param . push back ( 2 2 4 . 9 ) ;

sub nis5 param . push back ( 1 2 6 . 7 ) ;

sub nis5 param . push back ( 1 . 0 ) ;

sub nis5 param . push back ( 1 . 0 ) ;

sub nis5−>SetParameters ( sub nis5 param ) ;

Nis∗ sub nis6 = new Nis ( ) ;

sub nis6−>Set Id ( 1 6 ) ;

s td : : vector<double> sub nis6 param ;

sub nis6 param . push back ( 2 3 7 . 2 ) ;

sub nis6 param . push back ( 1 2 0 . 6 ) ;
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sub nis6 param . push back ( 1 . 0 ) ;

sub nis6 param . push back ( 1 . 0 ) ;

sub nis6−>SetParameters ( sub nis6 param ) ;

Nis∗ sub nis7 = new Nis ( ) ;

sub nis7−>Set Id ( 1 7 ) ;

s td : : vector<double> sub nis7 param ;

sub nis7 param . push back ( 2 5 4 . 1 ) ;

sub nis7 param . push back ( 3 3 1 . 2 ) ;

sub nis7 param . push back ( 1 . 0 ) ;

sub nis7 param . push back ( 1 . 0 ) ;

sub nis7−>SetParameters ( sub nis7 param ) ;

Nis∗ sub nis8 = new Nis ( ) ;

sub nis8−>Set Id ( 1 8 ) ;

s td : : vector<double> sub nis8 param ;

sub nis8 param . push back ( 1 4 1 . 6 ) ;

sub nis8 param . push back ( 1 6 1 . 5 ) ;

sub nis8 param . push back ( 1 . 0 ) ;

sub nis8 param . push back ( 1 . 0 ) ;

sub nis8−>SetParameters ( sub nis8 param ) ;

FixedScaleRatioGroup∗ substructur e =

new FixedScaleRatioGroup ( ) ;

substructure−>AddMember( sub nis1 , 0 . 6 0 5 0 6 3 ) ;

substructure−>AddMember( sub nis2 , 1 . 0 0 0 0 0 0 ) ;

substructure−>AddMember( sub nis3 , 0 . 1 3 8 9 4 4 ) ;

substructure−>AddMember( sub nis4 , 0 . 1 6 9 5 9 0 ) ;

substructure−>AddMember( sub nis5 , 0 . 4 3 4 5 5 1 ) ;

substructure−>AddMember( sub nis6 , 0 . 3 9 4 0 2 2 ) ;

substructure−>AddMember( sub nis7 , 0 . 4 5 4 6 9 5 ) ;
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substructure−>AddMember( sub nis8 , 0 . 1 9 1 2 6 7 ) ;

s td : : vector<double> substructure param ;

substructure param . push back ( 2 . 5 ) ;

substructure−>SetParameters ( substructure param ) ;

std : : vector<int> s u b s t r u c t u r e v a r ;

s u b s t r u c t u r e v a r . push back ( 1 ) ;

substructure−>SetParametersVar iable ( s u b s t r u c t u r e v a r ) ;

s td : : vector< std : : pair<double , double> >

substructure bound ;

substructure bound . push back ( std : : make pair ( 0 . 0 ,

1 0 0 0 0 . 0 ) ) ;

substructure−>SetParametersBound ( substructure bound ) ;

We add the newly created lenses to a LensesSystem and then we add this system to the

LensesContainer

LensesSystem∗ lSystem1 = new LensesSystem ( ) ;

lSystem1−>AddLens ( nie1 ) ;

lSystem1−>AddLens ( nie2 ) ;

lSystem1−>AddLens ( nie3 ) ;

lSystem1−>AddLens ( substruct ur e ) ;

lSystem1−>S e t R e d s h i f t ( 0 . 7 8 2 ) ;

lSystem1−>Set Id ( 1 ) ;

LensesContainer∗ lConta iner = new LensesContainer ( ) ;

lContainer−>AddLensesSystem ( lSystem1 ) ;

/ / ∗∗∗∗∗∗∗∗∗ l e n s c o n f i g u r a t i o n end ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

In a similar fashion we create two sources and then add them to the SourcesContainer

/ / ∗∗∗∗∗∗∗∗∗ s o u r c e c o n f i g u r a t i o n b e g i n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
/ / c r e a t e a s o u r c e #1

SourceCircular ∗ s r c 1 = new SourceCircular ;
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std : : vector<double> src1 param ;

src1 param . push back ( 1 9 0 . 7 8 1 ) ;

src1 param . push back ( 1 9 5 . 2 5 3 ) ;

src1 param . push back ( 2 . 3 5 0 8 4 ) ;

src1 param . push back ( 1 . 0 ) ;

src1−>SetParameters ( src1 param ) ;

std : : vector<int> s r c 1 v a r ;

s r c 1 v a r . push back ( 0 ) ;

s r c 1 v a r . push back ( 0 ) ;

s r c 1 v a r . push back ( 1 ) ;

s r c 1 v a r . push back ( 0 ) ;

src1−>SetParametersVar iab le ( s r c 1 v a r ) ;

s td : : vector< std : : pair<double , double> > src1 bound ;

src1 bound . push back ( std : : make pair ( 0 . 0 , 4 0 0 . 0 ) ) ;

src1 bound . push back ( std : : make pair ( 0 . 0 , 4 0 0 . 0 ) ) ;

src1 bound . push back ( std : : make pair ( 1 . 0 , 4 . 0 ) ) ;

src1 bound . push back ( std : : make pair ( 0 . 0 , 1 0 0 . ) ) ;

src1−>SetParametersBound ( src1 bound ) ;

/ / c r e a t e a s o u r c e #2

SourceCircular ∗ s r c 2 = new SourceCircular ;

s td : : vector<double> src2 param ;

src2 param . push back ( 1 6 3 . 0 2 7 ) ;

src2 param . push back ( 1 9 3 . 9 1 4 ) ;

src2 param . push back ( 4 . 8 7 8 6 0 ) ;

src2 param . push back ( 1 . 5 ) ;

src2−>SetParameters ( src2 param ) ;

std : : vector<int> s r c 2 v a r ;
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s r c 2 v a r . push back ( 0 ) ;

s r c 2 v a r . push back ( 0 ) ;

s r c 2 v a r . push back ( 0 ) ;

s r c 2 v a r . push back ( 0 ) ;

src2−>SetParametersVar iab le ( s r c 2 v a r ) ;

s td : : vector< std : : pair<double , double> > src2 bound ;

src2 bound . push back ( std : : make pair ( 0 . 0 , 4 0 0 . 0 ) ) ;

src2 bound . push back ( std : : make pair ( 0 . 0 , 4 0 0 . 0 ) ) ;

src2 bound . push back ( std : : make pair ( 1 . 0 , 1 0 . 0 ) ) ;

src2 bound . push back ( std : : make pair ( 0 . 0 , 1 0 0 . ) ) ;

src2−>SetParametersBound ( src2 bound ) ;

SourcesContainer ∗ sContainer = new SourcesContainer ;

sContainer−>AddSource ( s r c 1 ) ;

sContainer−>AddSource ( s r c 2 ) ;

/ / ∗∗∗∗∗∗∗∗∗∗∗ s o u r c e c o n f i g u r a t i o n end ∗∗∗∗∗∗∗∗∗∗

After having defined the sources and lenses objects we need to introduce the data.

First we input the positions of point-like images.

/ / ∗∗∗∗∗∗∗∗∗∗∗∗ t h e d a t a ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
/ / c r e a t e t h e d a t a

DataContainer ∗ dContainer = new DataContainer ( ) ;

/ / f i r s t a r c s sys t em

ArcsSystem∗ arcsystem1 = new ArcsSystem ( s r c 2 ) ;

/ / s e c o n d a r c s sys t em

ArcsSystem∗ arcsystem2 = new ArcsSystem ( s r c 1 ) ;

/ / f i r s t a r c s sys t em

std : : vector<double> arcsystem1 x ;

arcsystem1 x . push back ( 7 4 . 0 ) ;
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arcsystem1 x . push back ( 6 6 . 0 ) ;

arcsystem1 x . push back ( 5 9 . 0 ) ;

arcsystem1 x . push back ( 5 4 . 0 ) ;

arcsystem1 x . push back ( 5 3 . 0 ) ;

arcsystem1 x . push back ( 5 3 . 0 ) ;

arcsystem1 x . push back ( 5 7 . 0 ) ;

arcsystem1 x . push back ( 5 8 . 0 ) ;

arcsystem1 x . push back ( 2 4 2 . 0 ) ;

arcsystem1 x . push back ( 2 4 6 . 0 ) ;

arcsystem1 x . push back ( 2 5 2 . 0 ) ;

s td : : vector<double> arcsystem1 y ;

arcsystem1 y . push back ( 2 7 3 . 0 ) ;

arcsystem1 y . push back ( 2 5 8 . 0 ) ;

arcsystem1 y . push back ( 2 4 0 . 0 ) ;

arcsystem1 y . push back ( 2 2 0 . 0 ) ;

arcsystem1 y . push back ( 2 1 0 . 0 ) ;

arcsystem1 y . push back ( 2 0 0 . 0 ) ;

arcsystem1 y . push back ( 1 5 5 . 0 ) ;

arcsystem1 y . push back ( 1 4 5 . 0 ) ;

arcsystem1 y . push back ( 1 9 4 . 0 ) ;

arcsystem1 y . push back ( 1 9 4 . 0 ) ;

arcsystem1 y . push back ( 1 9 2 . 0 ) ;

arcsystem1−>SetImagesX ( arcsystem1 x ) ;

arcsystem1−>SetImagesY ( arcsystem1 y ) ;
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arcsystem1−>SetSigma ( 0 . 5 ) ;

/ / s e c o n d a r c s sys t em

std : : vector<double> arcsystem2 x ;

arcsystem2 x . push back ( 1 4 5 . 0 ) ;

arcsystem2 x . push back ( 1 5 7 . 0 ) ;

arcsystem2 x . push back ( 1 6 6 . 0 ) ;

arcsystem2 x . push back ( 1 7 6 . 0 ) ;

arcsystem2 x . push back ( 1 8 1 . 0 ) ;

arcsystem2 x . push back ( 2 0 6 . 0 ) ;

arcsystem2 x . push back ( 2 2 2 . 0 ) ;

arcsystem2 x . push back ( 2 3 6 . 0 ) ;

arcsystem2 x . push back ( 2 4 7 . 0 ) ;

arcsystem2 x . push back ( 2 5 3 . 0 ) ;

arcsystem2 x . push back ( 2 6 1 . 0 ) ;

arcsystem2 x . push back ( 2 6 5 . 0 ) ;

arcsystem2 x . push back ( 2 6 6 . 0 ) ;

arcsystem2 x . push back ( 2 6 1 . 0 ) ;

arcsystem2 x . push back ( 1 7 6 . 0 ) ;

arcsystem2 x . push back ( 1 8 7 . 0 ) ;

arcsystem2 x . push back ( 1 9 7 . 0 ) ;

arcsystem2 x . push back ( 2 1 0 . 0 ) ;

arcsystem2 x . push back ( 1 1 7 . 0 ) ;

arcsystem2 x . push back ( 1 2 1 . 0 ) ;

arcsystem2 x . push back ( 1 8 9 . 5 ) ;

arcsystem2 x . push back ( 1 9 5 . 5 ) ;

arcsystem2 x . push back ( 2 0 1 . 0 ) ;

s td : : vector<double> arcsystem2 y ;

arcsystem2 y . push back ( 1 1 8 . 0 ) ;
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arcsystem2 y . push back ( 1 1 0 . 0 ) ;

arcsystem2 y . push back ( 1 0 7 . 0 ) ;

arcsystem2 y . push back ( 1 0 6 . 0 ) ;

arcsystem2 y . push back ( 1 0 1 . 0 ) ;

arcsystem2 y . push back ( 1 0 2 . 0 ) ;

arcsystem2 y . push back ( 1 0 5 . 0 ) ;

arcsystem2 y . push back ( 1 1 0 . 0 ) ;

arcsystem2 y . push back ( 1 2 7 . 0 ) ;

arcsystem2 y . push back ( 1 3 5 . 0 ) ;

arcsystem2 y . push back ( 1 4 7 . 0 ) ;

arcsystem2 y . push back ( 1 5 5 . 0 ) ;

arcsystem2 y . push back ( 1 6 2 . 0 ) ;

arcsystem2 y . push back ( 1 6 5 . 0 ) ;

arcsystem2 y . push back ( 2 9 6 . 0 ) ;

arcsystem2 y . push back ( 2 9 7 . 0 ) ;

arcsystem2 y . push back ( 2 9 8 . 0 ) ;

arcsystem2 y . push back ( 2 9 5 . 0 ) ;

arcsystem2 y . push back ( 1 6 9 . 0 ) ;

arcsystem2 y . push back ( 1 6 0 . 0 ) ;

arcsystem2 y . push back ( 1 9 9 . 5 ) ;

arcsystem2 y . push back ( 1 9 9 . 0 ) ;

arcsystem2 y . push back ( 1 9 9 . 5 ) ;

arcsystem2−>SetImagesX ( arcsystem2 x ) ;

arcsystem2−>SetImagesY ( arcsystem2 y ) ;

arcsystem2−>SetSigma ( 0 . 5 ) ;

/ / add a r c s sys t em f o r p o i n t s o u r c e s minimi

dContainer−>AddArcsSystem ( arcsystem1 ) ;

dContainer−>AddArcsSystem ( arcsystem2 ) ;

/ / ∗∗∗∗∗∗∗∗∗∗∗∗ d a t a end ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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and add them to the DataContainer. Next we read in the shapes of the arcs from the png

file.

/ / add a r c s s y s t e m s f o r e x t e n d e d image minimi ;

dContainer−>AddArcsSystemExtended (new ArcsSystem ( s r c 2 ) ; ) ;

dContainer−>AddArcsSystemExtended (new ArcsSystem ( s r c 1 ) ; ) ;

/ / r e a d a r c s d a t a

dContainer−>LoadExtendedArcs ( ”Data/rcs0224−with−c e n t r a l −B . png” ) ;

Now, we can start the minimization process. First we use only the point like images to

find a first approximation to our lensing model.

/ / ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ t h e m i n i m i z a t i o n ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
/ / POINT LIKE IMAGES

MinimizerPointsSourcePlane ∗ minimizer =

new MinimizerPointsSourcePlane ;

minimizer−>SetLensesContainer ( lConta iner ) ;

minimizer−>SetSourcesContainer ( sContainer ) ;

minimizer−>SetDataContainer ( dContainer ) ;

/ / i n i t i a l i z e p a r a m e t e r s t o m i n i m i z a t i o n

minimizer−>I n i t i a l i z e V a r i a b l e P a r a m e t e r s ( ) ;

minimizer−>SetMinimizationMethodName( ”Powell ” ) ;

minimizer−>Minimize ( ) ;

Then we use the previously found model as a starting point for the routine that searches

for the bast fit model, based on the full shapes of arcs.

/ / EXTENDED IMAGES MINIMIZATION

/ / now t h e s o u r c e p o s i t i o n s a r e v a r i a b l e

src1−>SetParameterVariableAt ( 0 , 1 ) ;

src1−>SetParameterVariableAt ( 1 , 1 ) ;

src2−>SetParameterVariableAt ( 0 , 1 ) ;

src2−>SetParameterVariableAt ( 1 , 1 ) ;
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/ / e x t e d e d im ages m i n i m i z a t i o n t e s t

MinimizerExtendedImagePlane∗ minimizer ex =

new MinimizerExtendedImagePlane ;

minimizer ex−>SetLensesContainer ( lConta iner ) ;

minimizer ex−>SetSourcesContainer ( sContainer ) ;

minimizer ex−>SetDataContainer ( dContainer ) ;

/ / i n i t i a l i z e p a r a m e t e r s t o m i n i m i z a t i o n

minimizer ex−>I n i t i a l i z e V a r i a b l e P a r a m e t e r s ( ) ;

minimizer ex−>SetMinimizationMethodName ( ” Powell” ) ;

minimizer ex−>Minimize ( ) ;
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