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Summary 
The work presented here demonstrates new insights into the assembly mechanisms of the 

nuclear lamina. By generation and expression of several lamin mutants in mammalian cells it 

was possible to analyze the influence of distinct lamin domains on cellular localization and 

their assembly properties. Both partial and complete head deleted lamin B2 localized to the 

nuclear rim but highly impaired nuclear shape indicating that the head domain is dispensable 

for nuclear envelope localization and however, important for efficient lamin assembly. In 

contrast, tail deleted lamin B2 mutants did not incorporate into the nuclear rim and were 

distributed throughout the cytoplasm and the nucleoplasm. This suggests that the tail 

domain contains those elements that are necessary for effectively guiding these lamins to 

the nuclear envelope. However, tailless mutants did not impair the formation of a nuclear 

lamina. An exhaustive mutation trial of the individual mitotic phosphoacceptor sites flanking 

the central rod domain from serine to aspartic acid was performed in order to test if this 

would still allow the integration of these mutants into the nuclear lamina and if this would 

lead to the disassembly of the nuclear lamina. Notably, the mutant proteins were not 

incorporated into the lamina at all but instead they formed intranuclear aggregates when 

expressed in U2OS cells. Interestingly, the effect of nuclear aggregate formation was 

independent of both the position of the mutated site and the number of sites mutated. Live 

cell imaging experiments showed that the aggregates are rather dynamic structures that are 

able to fuse and occupy single large lamin territories. Co-transfection studies of “mitotic” 

lamin B1, “mitotic” lamin B2 and NLS-vimentin suggest that the aggregates are deposited in 

the interchromosomal domain compartment (ICD). However, intermingling of the proteins 

was not observed. Extraction experiments revealed that the aggregates were rather loosely 

connected to the nuclear matrix. Although the mechanism underlying aggregate formation of 

“mitotic” lamin B1, “mitotic” lamin B2, and NLS-vimentin remains elusive, our results strongly 

suggest the existence of nuclear “protein processing centers”. Their functions may relate to 

the prevention of macromolecular crowding as well as to the organization and distribution of 

nuclear proteins in general.  

Wild type and mutant lamins were also expressed in mouse embryonic stem (ES) cells. Their 

ability to differentiate into all specialized cell types found in the adult mouse and the 

exhibition and maintenance of a normal diploid complement of chromosomes make them a 

valuable tool for cell biological studies. As expected, both wild type lamin B1 and wild type 

lamin B2 localized to the nuclear rim. The stem cell status of the cells was not affected. 

Expression of lamin B2 deletion mutants in mouse ES cells showed similar effects as those 

observed in U2OS cells suggesting that lamin proteins are similarly processed and assembled 

into the nuclear lamina in both differentiated and ES cells.  

Additionally, a novel nonsense mutation in the lamin A gene (pR321X) cosegregating with 

dilated cardiomyopathy and cardiac rhythm disturbances was analyzed in both cultivated 

cells and cardiac tissue of affected patients. Neither nuclear abnormalities nor reduced 



 

 

expression of the wild type protein was observed. In line with a strong nonsense-mediated 

mRNA decay (NMD), i.e. the NMD-dependent reduction in the relative amount of mutant 

mRNA, the truncated protein was not found. The potential transient presence of this mutant 

protein could be uncovered, however, by inhibition of the proteasomal system. It is therefore 

suggested that NMD is not sufficient to completely prevent the expression of truncated lamin 

A and that even trace amounts of it may negatively interfere with structural and/or 

regulatory functions of lamin A/C eventually leading to the development of cardiomyopathy.  



 

 

Zusammenfassung 

Die Ergebnisse der vorgelegten Arbeit liefern neue Einblicke in die Assembly-Mechanismen 

der Kernlamina. Die Herstellung und Expression verschiedener Lamin-Mutanten in 

Kulturzellen ermöglichte es, den Einfluss bestimmter Lamin-Domänen auf Assembly-

Eigenschaften und  zelluläre Lokalisation der Proteine zu untersuchen. 

Lamin B2 mit teilweise oder komplett deletierter Kopfdomäne lokalisierte an der Kernhülle. 

Dennoch ließ die veränderte Kernmorphologie in diesen Zellen vermuten, dass die 

Kopfdomäne zwar für eine Lokalisation an der Kernhülle entbehrlich, jedoch für ein intaktes 

Lamina-Assembly notwending ist. Schwanz-deletierte Lamin B2 Mutanten hingegen wurden 

nicht in die Kernhülle eingebaut und verteilten sich sowohl über Zytoplasma als auch 

Nukleoplasma. Diese Schwanz-Domäne enthält also vermutlich jene Sequenzen, die wichtig 

sind für den Transport des Proteins an die Kernhülle. Die Schwanz-deletierten Mutanten 

beeinflussten jedoch nicht die Bildung der Lamina.  

Wir vermuteten, dass Mutationen der Phosphoakzeptor-Stellen vor und hinter der „Rod“-

Domäne von Serin nach Aspartat (die die mitosespezifischen Phospho-Serin-Gruppen 

imitieren) entweder die Integration der Mutanten in die Kernlamina verhindern oder zu deren 

Auflösung führen würden. Tatsächlich konnten diese Mutanten nicht in die Kernlamina 

eingebaut werden, und bildeten anstatt dessen intranukleäre Aggregate in U2OS Zellen aus. 

Erstaunlicherweise war diese Aggregatbildung unabhängig sowohl von der Position der 

Mutation als auch von der Anzahl mutierter Phosphoakzeptor-Stellen. 

Mit Lebendbeobachtung konnte gezeigt werden, dass diese Aggregate sehr dynamische 

Strukturen darstellen, die fusionierten und große Lamin-Territorien bildeten. 

Kotransfektionen dieser „Mitose“-Lamine B2 und B1 mit NLS-Vimentin ließen darauf 

schließen, dass die Aggregate im Interchromatin-Kompartiment abgelagert werden. Dennoch 

konnten wir keine Vermischung der transfizierten „Mitose“-Lamine mit NLS-Vimentin 

beobachten. Zwar sind die Mechanismen, die zur Aggregation und getrennten „Deponierung“ 

dieser Proteine führen, unbekannt, unsere Ergebnisse lassen aber auf die Existenz nukleärer 

„Protein-Prozessierungs-Zentren“ schließen. Diese könnten das lokale Entstehen zu hoher 

Proteindichten (aufgrund der starken Überexpression) verhindern, oder auch generell mit der 

Organisation und Verteilung von Kernproteinen in Beziehung stehen.  

Sowohl Wildtyp als auch mutierte Lamine wurden ebenfalls in embryonalen Stammzellen der 

Maus exprimiert. Die Fähigkeit zur Differenzierung in alle möglichen Zelltypen und ihr 

intakter diploider Karyotyp machen diese Zellen für zellbiologische Studien sehr wertvoll. Wie 

erwartet lokalisierten Wildtyp Lamin B1 und Lamin B2 an der Kernhülle, und der 

Stammzellcharakter der Zellen wurde durch ihre Expression nicht beeinflusst. Die Expression 

von Lamin B2 Deletionsmutanten in Mausstammzellen zeigte sehr ähnliche Ergebnisse wie in 

U2OS Zellen. Vermutlich liegen daher in Stammzellen wie in differenzierten Zellen die 

gleichen Prozessierungs- und Assembly-Mechanismen für die Kernlamina vor.  



 

 

Des Weiteren wurde eine neu charakterisierte Mutation des Lamin A/C Gens (pR321X) 

untersucht, die mit dilatierter Kardiomyopathie und Herzrhythmusstörungen einhergeht. 

Kulturzellen und Herzgewebe betroffener Patienten zeigten weder Veränderungen der 

Zellkerne, noch eine verminderte Expression des Wildtyp-Lamin A Proteins. In 

Übereinstimmung mit der Theorie des „Nonsens-mediated decay“ (NMD) wurde kein 

mutiertes Protein nachgewiesen. Dennoch konnte mit Hilfe von Proteasomen-Inhibitoren 

gezeigt werden, dass das mutierte Protein kurzzeitig angereichert wurde. Wir vermuten, dass 

der NMD nicht effizient genug ist, um die trunkierte Lamin A-Mutante vollständig abzubauen. 

Vermutlich sind auch Spuren dieser Mutante ausreichend, um strukturelle und/oder 

regulatorische Funktionen von Lamin A/C zu beeinträchtigen, was letztlich zur Ausbildung der 

Kardiomyopathie führt. 
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1 Introduction 

1.1 The nucleus 

The cell nucleus was first described in the 17th century by A. van Leeuwenhoek. In 

1831 R. Brown made the first detailed morphological description of the nucleus, and 

the “cell doctrine” of Matthias J. Schleiden und Theodor Schwann in 1839 claiming 

that all tissues are aggregates of individual cells marked the beginning of cell biology 

(described in Franke, 1988). Since these early days a lot more is known about the 

composition and the structure of the nucleus, but understanding the principles of the 

functional organization is still one of the major goals in cell biology. 

The eukaryotic nucleus is a complex organelle that contains the chromosomes and is 

the site of DNA replication, RNA transcription and processing, and ribosome 

assembly. It is about 10 µm in diameter and is surrounded by a double membrane 

layer punctured in intervals by nuclear pore complexes (NPCs). Many activities are 

concentrated in subnuclear foci called nuclear bodies. In contrast to the cytoplasmic 

compartments the nuclear compartments are not surrounded by membranes and are 

usually characterized by specific antigens that are generally in rapid exchange with 

non-bound species. The most prominent nuclear compartment is the nucleolus. It is 

the site of RNA polymerase I-mediated rDNA transcription and ribosome subunit 

assembly. Other nuclear substructures include nuclear speckles, Cajal bodies, and 

PML bodies (Lamond & Sleeman, 2003; Spector, 2003). 

The nucleus contains the chromosomes, consisting of highly condensed chromatin in 

mitosis and being organized into large scale domains called chromosome territories. 

Each chromosome territory occupies a predominantly distinct space in the 

nucleoplasm, even in interphase when they are in their most decondensed state. 

According to the level of compaction, one can distinguish between most condensed 

heterochromatin and less condensed euchromatin. In general, condensed 

heterochromatin domains tend to cluster preferentially at the nuclear periphery and 

around nucleoli, whereas the less condensed euchromatin is located within the 

nuclear interior (Lamond & Sleeman, 2003). 
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Figure 1: Proposed molecular interactions between components of the peripheral 
lamina, the nucleoskeleton and chromatin. INM, inner nuclear membrane; ONM, outer 
nuclear membrane; NPC, nuclear pore complex. Figure modified from Vlcek et al, 2001. 

 

The existence of a biochemically distinct nuclear compartment depends on the 

presence of a selective barrier, the nuclear envelope (NE), which separates nuclear 

and cytoplasmic cellular activities. The NE is a double membrane layer composed of 

two concentric bilayers, the outer nuclear membrane (ONM) which is continuous with 

the endoplasmatic reticulum (ER) and the inner nuclear membrane (INM). Outer and 

inner membranes are separated by a luminal space and are joined at sites, where 

nuclear pore complexes (NPCs) are inserted into the double membrane system. NPCs 

are large macromolecular assemblies that form aqueous gated channels across the 

NE and mediate the transport of macromolecules. The ONM has ribosomes attached 

to its outer surface and is biochemically and functionally similar to the ER. The INM, 

by contrast, is enriched in a distinctive set of membrane proteins. Associated is the 
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underlying lamina, consisting of lamin proteins, and chromatin (Aebi et al, 1986; 

Gerace & Burke, 1988). A proteomics analysis has suggested that as many as 80 

transmembrane proteins are localized to the INM in mammalian interphase cells 

(Schirmer et al, 2003). To date, only few of these proteins are characterized in detail. 

The lamina associated polypeptide (LAP) 2 family members, emerin and MAN1 

belong to a family of proteins that is defined by the presence of a so-called LEM 

domain. The LEM domain is exposed to the nucleoplasm and interacts with BAF 

(barrier-to-autointegration-factor), an abundant chromatin-associated protein 

(Shumaker et al, 2001). In this way, BAF might function as a link between certain 

INM proteins and chromatin. In addition, emerin, LAP1 and LAP2 family members 

and lamin B receptor (Holbrook et al) also interact with lamins. 

Metazoans contain another NE structural element called the nuclear lamina. In 

mammalian cells, this appears as a thin protein meshwork underlying the INM 

(Fawcett, 1966). The most prominent proteins in the nuclear lamina are lamins and 

associated proteins (Aaronson & Blobel, 1975; Gerace et al, 1978). Currently there is 

no molecular proof of a nuclear lamina outside the metazoa (Erber et al, 1999). The 

nuclear lamins are largely resistant to extraction, when cells are treated with high 

concentrations of non-ionic detergents and ionic strength (Aebi et al, 1986; Gerace & 

Burke, 1988; Goldman et al, 1986). Electron microscopic images of cells extracted in 

this way show an electron dense layer at the nuclear periphery which is in close 

association with the NPCs (Schneider et al, 1995).  

 

Figure 2: Field emission scanning electron micrographs showing lamina organization 
in Xenopus oocyte germinal vesicle. Manually isolated oocyte germinal vesicle envelopes 
were spread on silicon chips and either extracted with Triton X-100 (A) or fixed directly (B). Figure 
adapted from Broers et al, 2006. 
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It is still little known about the higher order structure of lamins in situ. In Xenopus 

oocytes and Necturus, both amphibian species, the lamina was shown to consist of a 

near-tetragonal meshwork of 10-nm-diameter lamin filaments (Aebi et al, 1986; 

Akey, 1989; Stuurman et al, 1998). These filaments attach directly to the NPCs, most 

likely to the spoke ring complex of nuclear pores (Aaronson & Blobel, 1975; Dwyer & 

Blobel, 1976; Goldberg & Allen, 1996; Scheer et al, 1976). Although the appearance 

of lamin filaments in other cell types is similar, a near-tetragonal meshwork of lamin 

filaments has not been visualized in other cells than the above mentioned (Goldberg 

et al, 1995).  

 

1.2 Lamins 

Nuclear lamins were initially identified as the major components of the nuclear 

lamina. In lesser amounts, lamins are also located throughout the nucleoplasm 

(Bridger et al, 1993; Goldman et al, 1992; Moir et al, 1994; Sasseville & Raymond, 

1995). Sequencing of lamin cDNA clones from different species revealed that nuclear 

lamins belong to the intermediate filament (Lenz-Bohme et al) protein family 

(McKeon et al, 1986). Lamins have been identified in numerous eukaryotic species, 

including Hydra, Caenorhabditis elegans, Drosophila melanogaster, and all 

vertebrates (Erber et al, 1999). Analysis of the complete genome sequence of both, 

yeast and Arabidopsis has revealed that these species do not have nuclear lamins. 

This suggests that these proteins may have evolved in animal cells during the 

transition from a closed to an open mitosis (Cohen et al, 2001). The number and 

complexity of lamins has increased during metazoan evolution. While Caenorhabditis 

elegans has only one lamin gene and protein, vertebrates have three lamin genes 

(LMNA, LMNB1, LMNB2) encoding at least seven distinct isoforms (Cohen et al, 

2001). In humans the LMNA gene is localized on chromosome 1q21.2 (Wydner et al, 

1996) and encodes the A-type lamins. It gives rise to four splice variants, lamin A, 

AΔ10, C, and C2 (Fisher et al, 1986; Furukawa et al, 1994; Machiels et al, 1996; 

McKeon et al, 1986). Three B-type lamins have been reported in humans so far. 

Lamin B1 is the unique product of the LNMB1 gene located on chromosome 5q23.3 

(Lin & Worman, 1995). LMNB2, localized at chromosome 19p13.3, has two 

alternatively spliced products, lamin B2 and B3 (Biamonti et al, 1992; Furukawa & 
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Hotta, 1993). B-type lamins are constitutively expressed in somatic cells throughout 

development and all vertebrates express at least on B-type lamin. In contrast, lamins 

A, C, and AΔ10 are developmentally regulated and are expressed primarily in 

differentiated cells (Machiels et al, 1996; Rober et al, 1989). Expression of lamin C2 

and lamin B3 is restricted to male germ-line cells (Furukawa & Hotta, 1993; 

Furukawa et al, 1994). Expression of B-type lamins is essential for nuclear integrity, 

cell survival and normal development. In contrast to B-type lamins, A-type lamins are 

dispensable for development. Despite the differences in the expression pattern of A- 

and B-type lamins, lamin isoforms are classified based on biochemical and structural 

criteria. A-type lamins are characterized by a neutral isoelectric point, while B-type 

lamins are more acidic (Gerace & Burke, 1988; Nigg, 1989; Peter et al, 1989). During 

mitosis when the lamina transiently disassembles, A-type lamins are completely 

solubilized and dispersed, whereas B-type lamins remain associated with remnants of 

nuclear membranes (Stuurman et al, 1998). Analyses of lamin and cytoplasmic IF 

genomic sequences indicate that nuclear lamins are the progenitors of all IF, with 

cytoplasmic IF arising through gene duplication (Riemer et al, 2000). 

 

1.2.1 Functions of nuclear lamins 

Since its discovery, the nuclear lamina has been thought to play primarily a structural 

role, supporting the nuclear membranes and the NPCs. It has been shown that 

mouse cells lacking lamin B1 have severely abnormal nuclear morphology (Vergnes 

et al, 2004). Depletion of A-type lamins leads to abnormalities in nuclear architecture 

and mislocalization of integral membrane proteins of the inner nuclear membrane 

(Harborth et al, 2001; Muchir et al, 2003; Nikolova et al, 2004; Sullivan et al, 1999). 

Such cells also have increased nuclear deformability, decreased mechanical stiffness, 

and decreased viability when subjected to mechanical strain (Broers et al, 2004; 

Lammerding et al, 2004). The lamina also plays a role in the spatial arrangement of 

nuclear pore complexes in the nuclear envelope (Aaronson & Blobel, 1975; Dwyer & 

Blobel, 1976; Smythe et al, 2000). Nuclear lamins may also be involved in the 

biogenesis or maintenance of the nuclear envelope membranes, as overexpression of 

prenylated lamins in cells induces excessive nuclear membrane formation and growth 

(Prufert et al, 2004; Ralle et al, 2004). The complex interactions of lamins and lamin-
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binding proteins with whole chromatin, DNA, and histones suggest functions of these 

proteins in higher order chromatin organization by providing specific chromatin 

docking sites at the NE and by structurally organizing chromatin fibers in the 3-

dimensional nuclear space (Glass et al, 1993; Goldberg et al, 1999; Luderus et al, 

1992; Stierle et al, 2003; Taniura et al, 1995). However, there may be much more to 

lamins than just a scaffolding function. Since higher order chromatin organization is 

ultimately linked to control of gene expression, lamina proteins might also be 

involved in this process. In addition, lamins may directly influence transcription by 

interacting with transcription factors and/or chromatin remodeling complexes 

(Mattout-Drubezki & Gruenbaum, 2003). There is significant amount of evidence that 

lamins play a role in DNA replication. Nuclei assembled in vitro in Xenopus egg 

extracts lacking a functional lamina fail to replicate DNA (Ellis et al, 1997; Moir et al, 

2000; Newport et al, 1990; Spann et al, 1997). Lamins have also been implicated in 

DNA replication at the cellular level by the finding that DNA replication sites or 

replication foci co-localize with nuclear lamins (Kennedy et al, 2000; Moir et al, 

1994). However, the precise spatial coincidence between the intranuclear pool of 

lamins and DNA replication sites is a matter of debate (Barbie et al, 2004; Dimitrova 

& Berezney, 2002; Kennedy et al, 2000). Recent studies provided direct evidence for 

nuclear lamin involvement in RNA polymerase II (Pol II)-dependent transcription 

(Kumaran et al, 2002; Spann et al, 2002). Some studies have also implicated lamins 

in RNA splicing (Jagatheesan et al, 1999; Kumaran et al, 2002). However, recent 

evidence indicates that formation of nuclear splicing compartments is independent of 

lamins A and C (Vecerova et al, 2004). Since lamins or domains of lamins have not 

been studied in in vitro assays of DNA replication, DNA transcription, and RNA 

splicing, their roles in these processes may be indirect, resulting from secondary 

effects of the pleiotropic functions of lamins. Finally, there is strong evidence now 

that lamina proteins are also involved in apoptosis, since inhibition of lamin cleavage 

delays apoptosis (Rao et al, 1996; Ruchaud et al, 2002), and conversely, inhibition or 

downregulaton of lamin B triggers apoptosis (Harborth et al, 2001; Steen & Collas, 

2001). 

 



  Introduction 

7 

1.2.2 Laminopathies 

Mutations in genes encoding the nuclear lamins and associated proteins cause a wide 

spectrum of diseases commonly designated laminopathies. These diseases comprise 

a group of heterogeneous genetic disorders that have been associated with 

mutations in LMNA and, most recently, LMNB1 and LMNB2. More than 230 different 

mutations in the lamin A/C gene alone have been associated with at least twelve 

different heritable disease phenotypes (Mattout et al, 2006). These include diseases 

affecting muscle tissues (autosomal and recessive Emery-Dreifuss muscular 

dystrophy (EDMD), autosomal dominant limb girdle muscular dystrophy and dilated 

cardiomyopathy, all of which include cardiac conduction defects), adipose tissues 

(autosomal dominant Dunnigan-type familial partial lipodystrophy), and axonal 

neurons (recessive Charcot-Marie-Tooth disorder type 2) (Capell & Collins, 2006; 

Worman & Courvalin, 2005). Recently, the premature aging diseases Hutchinson-

Gilford progeria syndrome (HGPS), atypical Werner’s syndrome and mandibuloacral 

dysplasia have also been linked to mutations in LMNA (Broers et al, 2006; Worman & 

Courvalin, 2005). 

 

Figure 3: Schematic representation of LMNA mutations identified in the various types 
of laminopathies. Dominant disorders due to heterozygous LMNA mutations are depicted on the 
top of the protein scheme, whereas recessive disorders due to homozygous mutations are 
presented below. Figure adapted from Broers et al, 2006. 
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Heritable disease-causing mutations, including missense and nonsense mutations, 

frameshifts and splice site mutations, are distributed over almost the entire LMNA 

gene (Figure 3). Different patients carrying a single mutation may suffer multiple 

laminopathies, and the phenotype of any given LMNA mutation can vary between 

individuals and between siblings (Mattout et al, 2006). However, despite the 

knowledge of both type and position of these gene defects, the cellular mechanisms 

underlying the development of the various disease phenotypes are still largely 

unknown. There are three, not mutually exclusive models that try to explain 

laminopathic diseases. The structural model suggests that mutations in lamina 

proteins cause defects in lamin assembly and lamina structure leading to nuclear 

fragility or loss of nuclear organization. The gene expression model suggests that 

lamin complexes are important control elements of gene expression such that their 

absence is fatal. Finally, the cell fate model suggests that their mutation is linked to 

early apoptosis or premature aging (Herrmann & Foisner, 2003).  

 

1.2.3 Structure of nuclear lamins 

Nuclear lamins are type V intermediate filaments. Analyses of lamin and cytoplasmic 

IF genomic sequences indicate that nuclear lamins are the progenitors of all IF, with 

cytoplasmic IF arising through gene duplication (Riemer et al, 2000).  

Similar to cytoplasmic IFs, lamins have a characteristic tripartite organization 

consisting of a short N-terminal head domain, a central α-helical rod domain and a 

long C-terminal globular tail domain (Figure 4). The rod domain comprises four 

coiled-coil forming domains (1A, 1B, 2A, 2B) separated by more or less flexible linker 

regions (L1, L12, and L2). The hydrophobic residues in the first and fourth position of 

a heptad in a α-helical subdomain drive the interaction between two lamin protein 

chains, to form a parallel, in register coiled-coil dimer, the basic structural unit of 

lamin assembly (Stuurman et al, 1998). The α-helical rod domain is flanked by highly 

conserved phosphoacceptor sites which are phosphorylated with the onset of mitosis 

and thereby causing morphological changes involving the disassembly of the lamina 

meshwork (Heald & McKeon, 1990; Peter et al, 1990). 
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Figure 4: Structural model of cytoplasmic and nuclear intermediate filament protein 
dimers (Herrmann et al, 2007). 

 

The non α-helical head and tail domains play an important role in lamin assembly 

(Moir et al, 1991). The C-terminal tail domain contains a nuclear localization 

sequence (NLS) which is necessary for nuclear import of lamins (Loewinger & 

McKeon, 1988). Mammalian lamins, except for lamin C and C2, possess at the very 

C-terminus a CAAX box motif. 

 

1.2.4 Lamin filament assembly 

Studies of nuclear lamin assembly in vitro have revealed interesting differences 

relative to cytoskeletal IFs. Lamins are obligate dimers, although it is still not clear 

whether lamins form homodimers or heterodimers (Gruenbaum et al, 2005). 

Dimerization occurs through in register parallel associations within the coiled coil 

domains of the central rod region (Aebi et al, 1986). At their next level of structural 

organization, lamin dimers associate longitudinally to form polar head to tail 

polymers. In a further step, lamin head to tail polymers associate laterally, probably 

in an antiparallel, approximately half-staggered fashion. However, at least in vitro 

these protofilaments are not stable over time and, instead, further associate laterally 

into large paracrystalline structures (Stuurman et al, 1998). These paracrystals do 

not exist in vivo under normal circumstances. Elimination of the head, and to a lesser 

extent, tail domains inhibits the formation of head-to-tail polymers (Heitlinger et al, 

1992).  
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1.2.5 Modifications of nuclear lamins 

The CAAX box motif (a cysteine (C), two aliphatic residues (AA), and any residue (X)) 

at the very C-terminus of lamins is the target for a sequence of posttranslational 

modifications. Initially, the cysteine is farnesylated followed by proteolytic cleavage 

of the last three amino acids (AAX). After this cleavage the cysteine undergoes 

methyl esterification (Moir et al, 1995). The farnesylated modification is important 

but not sufficient for targeting and anchoring the protein to the INM (Moir et al, 

1995). While B-type lamins remain farnesylated throughout their lifespan, prelamin A 

undergoes another maturation step in which the 15 C-terminal amino acids, including 

the farnesyl group, are cleaved off by the ZMPSTE24 zinc metalloproteinase 

(Corrigan et al, 2005; Weber et al, 1989). Therefore, B-type lamins are more tightly 

associated with membrane structures than A-type lamins in mitosis and interphase 

and are less stably incorporated into the lamina (Gerace & Burke, 1988; Izumi et al, 

2000). 

Lamins contain a great number of putative phosphorylation sites (serine/threonine). 

Highly conserved serine residues flanking the rod domain are phosphorylated with 

the onset of mitosis by a cdc2 kinase (Heald & McKeon, 1990; Nigg, 1992; Peter et 

al, 1990). This hyperphosphorylation leads to the depolymerization of the lamina in 

vivo concomitant with NE breakdown. In vitro studies showed that phosphorylation 

of lamin dimers inhibited the formation of higher order assemblies such as polar 

head-to-tail polymers (Nigg, 1992; Peter et al, 1991). These findings have led to the 

conclusion that lamina disassembly follows a similar principle in vivo and that the 

formation of head-to-tail polymers is influenced by the degree of phosphorylation at 

sites flanking the rod domain. Mitotic A-type lamins solubilize and are dispersed 

throughout the cytoplasm, while B-type lamins remain associated with nuclear 

membrane structures due to their C-terminal farnesyl modification (Nigg et al, 1992). 

Following mitosis, lamins are dephosphorylated by phosphatase PP1 (Steen et al, 

2000) and bind on the periphery of decondensing chromosomes. B-type lamins are 

suggested to be incorporated into the reforming NE in earlier stages whereas A-type 

lamins are incorporated only after the nuclear membranes and pores are formed.  
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1.2.6 Lamins in the nuclear interior 

Lamins were traditionally regarded as the major building blocks of the peripheral 

nuclear lamina underneath the inner nuclear membrane. After many years of debate, 

the idea that lamins exist also in the nuclear interior is mostly accepted (Dechat et al, 

2000; Moir et al, 2000). Since the nuclear membrane forms extensive tubular 

invaginations extending into the nucleoplasm (Fricker et al, 1997) it is likely that at 

least some of the intranuclear foci observed are still in direct contact with the nuclear 

envelope. Two different manifestations of intranuclear lamins have been reported: 

1.) intranuclear spots (Bridger et al, 1993; Goldman et al, 1992; Moir et al, 1994) 

that contain either A- or B-type lamins; and 2.) lamins distributed in a diffuse fashion 

throughout the nucleus (Hozak et al, 1995). It remains unclear whether intranuclear 

lamins form filaments as detected in some electron microscopic preparations (Hozak 

et al, 1995). However, free vimentin-type 10-nm filaments within the nucleus, as 

observed upon ectopic expression of NLS-modified vimentin (Goldman et al, 1992; 

Herrmann et al, 1993), have not been described for intranuclear lamins (Herrmann & 

Foisner, 2003). It is also unclear whether lamins in the nucleoplasm represent 

transient structures during lamina assembly (Bridger et al, 1993; Goldman et al, 

1992) mediating their posttranslational processing, or whether they fulfill specific 

functions in the nucleus. Nucleoplasmic lamin A/C has been shown to interact with 

lamina-associated polypeptide 2α (LAP2α), a LAP2 isoform exclusively located 

throughout the nucleoplasm (Dechat et al, 2000; Markiewicz et al, 2002). LAP2α-

lamin A/C complexes have further been shown to interact with the tumor suppressor 

retinoblastoma protein pRB (Markiewicz et al, 2002), implicating a function in 

transcriptional control. As lamins are often associated with nuclear bodies 

(Jagatheesan et al, 1999; Moir et al, 1994) they may represent nucleoplasmic 

functional units involved in DNA replication, transcription, chromatin organization and 

gene expression (Moir et al, 2000; Spann et al, 2002).  
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1.3 Aim of the thesis  

The aim of this thesis was to investigate basic steps in the mechanism of lamin in 

vivo assembly and the “cross-talk” of lamin assembly processes with nuclear 

morphology. For this reason, we wanted to follow a dominant negative type 

approach by use of different lamin mutants. 

In the first part of the project, the impact of distinct domains of the lamin protein on 

lamin assembly was analyzed. Human lamin B2 is the least studied lamin and 

therefore, several human lamin B2 mutants fused to YFP were generated carrying 

head and/or tail deletions. In a next step, we generated lamin B1 and lamin B2 

mutants, in place of the highly conserved mitotic serine residues exhibiting aspartic 

acids. All mutants should be expressed in different cancer cell lines and their cellular 

localization and influence on the lamina and on inner nuclear membrane proteins 

should be analyzed by confocal microscopy. In addition, we wanted to analyze all 

mutants biochemically with regard to their solubility properties. Beside the use of 

different cancer cell lines, we aimed to analyze wild type lamins and lamin mutants 

both fused to YFP in mouse embryonic stem (ES) cells. Their ability to differentiate 

into all specialized cell types found in the adult mouse and the exhibition and 

maintenance of a normal diploid complement we of chromosomes make them a 

valuable tool for cell biological studies. Therefore, we wanted to establish ES cell 

culture in our laboratory and establish the conditions for transfection of these cells 

and further processing for microscopy.  
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2 Material 

2.1 Biological material 

2.1.1 Bacterial strains 

E. coli TG-1, sure, and XL10 gold (Stratagene, Germany) strains were used for 

amplification and preparation of plasmid DNA.  

 

2.1.2 Cultured cell lines 

Table 1: Cell lines used in this thesis. 

 

2.1.3 Stably transfected culture cell lines 

Table 2: Properties of the used stably transfected cell lines. 

 

 

 

 

 

designation. ATCC no. organism/tissue characteristics 

HeLa ACC 57 human cervix 
carcinoma 

adherent monolayer 

SW13-F8 CCL-105 human primary 
small cell carcinoma 
adrenal gland; cortex 

adherent monolayer 

U2OS HTB-96 human osteosarcoma adherent monolayer 

HM1 ES Magin et al., 
1992 

mouse embryonic stem 
cells 

adherent 

designation origin stably transfected expression 
plasmid 

eukaryotic 
resistance

U2OS H2A-CFP U2OS cells human histone H2A-CFP Neomycin 

U2OS LB2 S407D-YFP U2OS cells human lamin B2 S407D-pEYFP-C1 Neomycin 

U2OS LB2 S37+407D-YFP U2OS cells human lamin B2 S37+407D-pEYFP-C1 Neomycin 

ES LB2-YFP HM1 ES 
cells 

human lamin B2-pEYFP-C1 Neomycin 

ES LB1-YFP HM1 ES 
cells 

human lamin B1-pEYFP-C1 Neomycin 
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2.2 Expression vectors 

Table 3: Expression vectors used for transfection of cell cultures. 

 

2.3 Expression plasmids 

Table 4: Origin of the used expression constructs. 

plasmid vector size in bp resistance reference 

  prokaryotic eukaryotic  

pEGFP-C1 4700 kanamycin neomycin Clontech, Germany 

pEYFP-C1 4700 kanamycin neomycin Clontech, Germany 

pECFP-C1 4700 kanamycin neomycin Clontech, Germany 

mCherry-C1 4700 kanamycin neomycin Tsien et al., 2004 

construct reference 

Human Lamin B2-pEYFP-C1 this study 

Human Lamin B2 Δ32head-pEYFP-C1 this study 

Human Lamin B2 headless-pEYFP-C1 this study 

Human Lamin B2 tailless-pEYFP-C1 this study 

Human Lamin B2 Δ32head/tailless-pEYFP-C1 this study 

Human Lamin B2 rod-pEYFP-C1 this study 

Human Lamin B2 S37D-pEYFP-C1 this study 

Human Lamin B2 S405D-pEYFP-C1 this study 

Human Lamin B2 S407D-pEYFP-C1/-pEGFP-C1/-mCherry this study 

Human Lamin B2 S37+405D-pEYFP-C1 this study 

Human Lamin B2 S37+407D-pEYFP-C1 this study 

Human Lamin B2 S405+407D-pEYFP-C1 this study 

Human Lamin B2 S37+405+407D-pEYFP-C1 this study 

Human Lamin B1-pEYFP-C1 this study 

Human Lamin B1 S23D-pEYFP-C1 this study 

Human Lamin B1 S391D-pEYFP-C1 this study 

Human Lamin B1 S393D- pEYFP-C1/-pEGFP-C1/-mCherry this study 

Human PCNA-CFP (Leonhardt et al, 2000) 

Human histone H2A-CFP T. A. Knoch 

Human lamin A p.R321X-pEGFP-C1 this study 

Xenopus laevis NLS-vimentin-pEGFP (Reichenzeller et al, 2000) 



  Material 

15 

2.4 Antibodies 

2.4.1 Primary antibodies 

Table 5: Origin, properties and dilution of the used primary antibodies. 

 

2.4.2 Secondary antibodies 

Species specific antibodies conjugated with Alexa 488, Alexa 568 (Molecular Probes, 

Netherlands) or Cy5 (Dianova, Germany) were used for immunofluorescence.  

Membrane bound antigen-antibody complexes were detected by use of horseradish 

peroxidase coupled antibodies raised against mouse, rabbit or guinea pig 

immunoglobulins (Dianova, Germany).  

 

2.5 Size markers 

2.5.1 DNA size markers 

As DNA size markers EcoRI and HindIII digested λ-DNA (λ/E/H marker) or HinfI 

digested pBluescribe DNA (BsHinf marker) were used. Digestion yields the following 

discrete fragments (in base pairs): 

 

λ/E/H marker: 24.700, 5148, 4973, 4268, 3480, 2027, 1904, 1584, 1375, 

947, 831, 564, 125 

 

BsHinf marker 1400, 517, 396, 356, 247, 75 

antibody antigen type origin IF WB reference 

X223 lamin B2 monoclonal mouse undiluted 1:5 (Hoger et al, 
1991) 

X167 lamin A monoclonal mouse undiluted 1:5 (Hoger et al, 
1991) 

LA-Z1 lamin A monoclonal mouse undiluted 1:5 (Geiger et al, 
2008) 

5-1-3 LBR monoclonal rabbit undiluted - Epitomics INC 

EM-N-term Emerin polyclonal guinea pig 1:300 - (Dreger et al, 
2002) 
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2.5.2 Protein size markers 

As protein size marker the Broad Range P7702L marker (New England Biolabs, 

Germany) was used. It comprises the following fragments (in kDa): 

 

Broad Range P7702L marker 212, 158, 116, 97.2, 66.4, 55.6, 42.7, 34.6, 27, 20, 

14.3, 6.5, 3.4, 2.3 

 

2.6 DNA oligonucleotides 

All oligonucleotides used for PCR amplification, cloning, and DNA sequencing were 

synthesized by Dr. Wolfgang Weinig (DKFZ, Heidelberg). Primers used for 

mutagenesis were bought in HPLC grade from MWG Biotech (Germany).  

 

2.7 Chemicals and enzymes 

The used chemicals and reagents were purchased in analytical quality from the 

following companies: Invitrogen (Germany), Fluka (Germany), Merck (Germany), 

Pharmacia (Germany), Roche (Germany), Roth (Germany), Serva (Germany), Sigma 

(Germany), Qiagen (Germany). 

Enzymes were purchased from Roche (Germany), Stratagene (Germany), and New 

England Biolabs (Germany). 

 

2.8 Cell culture material 

1-thioglycerol Sigma-Aldrich, Germany 

BMP-2 (bone morphogenic protein ) kindly provided by T. Magin, Bonn 

Bovine albumin fraction V Invitrogen, Germany 

DMEM (High Glucose) Invitrogen, Germany 

DMEM-F12 Invitrogen, Germany 

DMSO Sigma-Aldrich, Germany 

Epoxomicin Sigma-Aldrich, Germany 

Fetal calf serum Biochrom, Germany 
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Gelatine swine skin type I Sigma-Aldrich, Germany 

Geniticin Sigma-Aldrich, Germany 

Insulin, human recombinant, zinc Invitrogen, Germany 

L-glutamine Invitrogen, Germany 

LIF (leukemia inhibitory factor) kindly provided by T. Magin, Bonn 

Neurobasal medium Invitrogen, Germany 

Penicillin and Streptomycin Invitrogen, Germany 

Progesteron Sigma-Aldrich, Germany 

Putrescin Sigma-Aldrich, Germany 

Sodium selenite Sigma-Aldrich, Germany 

Supplement B27 Invitrogen, Germany 

Transferrin, bovine (APO form) Invitrogen, Germany 

Trypsin inhibitor Sigma-Aldrich, Germany 

Trypsin solution Invitrogen, Germany 

 

2.9 Media and solutions 

 

 

 

 

 

LB-medium (pH 7.2) 1% Bacto tryptone (w/v) 
 0.5% yeast extract (w/v) 
 86 mM NaCl 
 10 mM MgSO4 

LB-media with antibiotics Appropriate antibiotics were added after 
autoclaving of LB-medium. The 
concentration of ampicillin was 100 µg/ml 
and of kanamycin 50 µg/ml. 

LB-agarplates with antibiotics 15 g agar was added to 1000 ml LB-
medium and autoclaved. Antibiotics were 
added to the cooled, autoclaved medium. 

TAE (pH 8.0) 40 mM Tris/HCl 
 0.12% acetic acid 
 1 mM EDTA 
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6x DNA loading dye 200 mM EDTA 
 100 mM Tris/HCl (pH 7.5) 
 0.01% bromophenol blue (w/v) 
 0.01% xylencyanol 
 30% ficoll (w/v) 

PBS (pH 7.4) 2.7 mM KCl 
 1.7 mM KH2PO4 
 137 mM NaCl 
 10 mM Na2HPO4 

TE 10 mM Tris/HCl (pH 7.5) 
 1 mM EDTA 

Laemmli electrophoresis buffer 25 mM Tris/HCl 
 192 mM glycine 
 0.1% SDS (w/v) 

Lower Tris 1.5 M  Tris/HCl (pH 8.8) 
 0.4% SDS (w/v) 

Upper Tris 0.5 M  Tris/HCl (pH 6.8) 
 0.4% SDS (w/v) 

3x Laemmli sample buffer 30% glycerine 
 0.2% bromophenol blue (w/v) 
 9% SDS (w/v) 
 187.5 mM Tris/HCl 
 150 mM DTT 

Coomassie stain 40% isopropanol 
 7% acetic acid 
 0.2% Coomassie Brilliant Blue R-50 

Coomassie destain 20% isopropanol 
 7.5% acetic acid 
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2.10 Kits 

 

2.11 Instruments 

 

Borate transfer buffer (pH 8.8) 20 mM boric acid 
 1 mM Na2-EDTA 
 4 mM DTT 

TBST (pH 8.0) 10 mM Tris/HCl 
 150 mM NaCl 
 0.05% Tween 20 

ECL Kit PerkinElmer Life Sciences, USA 

FuGene6  Transfection Reagent Roche, Germany 

Lipofectamine 2000 Transfection Reagent Invitrogen, Germany 

Qiaquick PCR-Purification Kit Qiagen, Germany 

QIAprep spin Miniprep Kit Qiagen, Germany 

Qiaex Agarose Gel Extraction Kit Qiagen, Germany 

Qiagen Plasmid Maxi Kit Qiagen, Germany 

QuikChange II XL Site-Directed Mutagenesis Kit Stratagene, Germany 

Agarose gel electrophoresis apparatus Cti-GmbH, Germany 

Centrifuges Heraeus, Germany 

 Beckmann, Germany 

CO2 incubator Thermo Life Sciences, Germany 

Fluorescence microscope Zeiss, Germany 

Gel documentation system DNR Bio-imaging systems 

Gel electrophoresis power supply Biotech Fischer, Germany 

Laser scanning microscope Leica TCS SP2 Leica Microsystems, Mannheim 

NanoDrop spectrophotometer NanoDrop Technologies, USA 

PCR cycler MJ Research, Biozym, Germany 

pH-meter Schott, Germany 



  Material 

20 

 

 

Refrigerated centrifuge Eppendorf, Germany 

SDS-PAGE gel apparatus Cti-GmbH, Germany 

Vortex mixer Neolab Migge, Germany 

Water baths Julabo, Germany 

Western blot apparatus Bio Rad, Germany 
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3 Methods 

3.1 DNA techniques 

3.1.1 Preparation of competent bacteria 

The treatment of E.coli cells with calcium chloride solution leads to an increased 

uptake of DNA from the solution into the bacteria.  

An over night culture (5 ml) of E.coli was diluted 1:100 to a final volume of 400 ml 

LB-medium and grown in a shaker at 37°C to an optical density of OD600 = 0.5-0.6. 

Subsequently, the culture was centrifuged for 5 minutes at 0°C at 5000 rpm 

(Beckmann J2-HS-centrifuge, rotor JA-14). The cell pellet was resuspended in 100 ml 

ice cold sterile 0.1 M CaCl2 solution and incubated on ice for 30 minutes. Cells were 

again centrifuged as described above. The pellet was resuspended in 2 ml freezing 

solution (0.1 M CaCl2, 15% glycerine (v/v)) and stored at -80°C. 

 

3.1.2 Transformation of competent bacteria 

The term transformation describes the uptake of plasmid DNA into competent 

bacteria using a heat shock. 

Competent E. coli cells were thawed on ice. 4-10 ng plasmid-DNA was added, 

followed by incubation for 20-30 minutes on ice. Depending on the bacterial strain 

heat shock temperature was adapted (42°C for XL gold and 37°C for TG-1 and sure). 

The heat shock duration was 3 minutes. Cells were immediately cooled on ice for 1 

minute. After addition of 400 µl LB-medium, cells were incubated at 37°C for 60 

minutes. According to the antibiotic resistance of the transformed plasmid DNA, cells 

were plated on agar plates with the respective selection marker and incubated over 

night at 37°C. 

 

3.1.3 Isolation of plasmid DNA ( ̒Miniprep ̓, ̒Maxiprep ̓) 

E. coli containing the plasmid of interest were grown on agar plates. Colonies were 

picked from the plates and grown for minipreps in 2 ml LB-medium containing the 

appropriate antibiotic in a shaking incubator at 37°C over night. For maxipreps a 5 
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ml preculture in LB-medium was grown for 6 hours and transferred to an overnight 

culture (100 ml for low-copy and 500 ml for high-copy plasmids). Isolation of plasmid 

DNA was performed according to the manufacturers protocol (QIAprep Spin Miniprep 

Kit and Qiagen Plasmid Maxi Kit; Qiagen, Germany).  

 

3.1.4 Agarose gel electrophoresis 

DNA fragments can be separated in an electric field according to their size by 

agarose gel electrophoresis. The used concentration of the agarose is dependent on 

the size of the DNA fragments. 

 

Table 6: Agarose concentration and separation range in kb for DNA fragments 

 

 

The agarose was melted by boiling in 1x TAE buffer. After cooling to 60°C, ethidium 

bromide was added to a final concentration of 1 µg/ml. The solution was poured into 

a horizontal casting tray and was allowed to harden. For electrophoresis, the gel was 

placed in a gel chamber and was covered with 1x TAE buffer. The samples mixed 

with 6x DNA loading buffer and a DNA size marker (see  2.5.1) were loaded onto the 

gel. Electrophoresis was run at 70-90 V. After the run, the separated DNA bands 

were visualized with a transilluminator at 280 nm.  

 

3.1.5 Determination of DNA concentration 

The concentration of DNA was measured in a spectrophotometer (NanoDrop 

Technologies, USA). The absorbance of the nucleic acid solution was measured with 

a wavelength of λ = 260 nm.  

 

agarose concentration separation range in kilo bases (kb) 

0.5% 1-30 

1% 0.5-10 

1.5% 0.2-3 

2% 0.05-2 
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3.1.6 Restriction digestion 

3.1.6.1 Analytical restriction digestion 
Analytical restriction digestion was used to check for the correct orientation and 

length of the inserted DNA fragment into the plasmid vector. 

1-2 µg of plasmid DNA was digested with 5 units of restriction enzyme. Buffer was 

used as recommended by the manufacturer. Digests were normally incubated for 1 

hour at 37°C. The DNA fragments were analyzed by agarose gel electrophoresis (see 

 3.1.4).  

 

3.1.6.2 Preparative restriction digestion 
The preparative restriction digestion was used to isolate specific DNA fragments. 2-4 

µg of plasmid DNA was digested with 5-10 units of restriction enzyme in the 

appropriate buffer for 1-2 hours at 37°C. The DNA was separated by agarose gel 

electrophoresis (see  3.1.4) on a low melting agarose gel. The DNA bands were cut 

out with a disposable scalpel as precise as possible on a transilluminator at 366 nm 

and put into a reaction tube. Gel slices were washed for 5 minutes in 500 µl band 

washing buffer. After removal of the washing buffer, the reaction tube was incubated 

for 3-5 minutes at 70°C. The melted gel slice was directly used for ligation or was 

stored at -20°C until use. Alternatively, DNA was extracted from the gel with a gel 

extraction kit (Qiaex Agarose Gel Extraction Kit; Qiagen, Hilden) according to the 

manufacturer’s instruction. 

 

3.1.6.3 Partial restriction digestion 
4-5 µg of plasmid DNA was digested with 5-10 units of the single cutting enzyme at 

37°C in a final volume of 40 µl. After 1-2 hours, 5-10 units of the multi cutting 

enzyme were added and the final volume was adjusted to 85 µl. Digests were 

incubated at 37°C. 10 µl samples were taken after 2, 5, 10, 15, 20, 25, 30, and 40 

minutes and mixed with 2 µl of 6x DNA loading buffer with 100 mM EDTA and kept 

on ice. Subsequently, 2 µl of each sample were subjected to agarose gel 

electrophoresis (see  3.1.4). Samples containing the desired DNA fragment were 
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pooled and loaded onto a low melting agarose gel. The DNA band of interest was cut 

out with a scalpel and processed as described in section  3.1.6.2. 

 

3.1.7 PCR 

In order to amplify a specific DNA target sequence, a forward and reverse primer 

were designed. They contained ~20 bases complementary to the target sequence 

and recognition sites for restriction enzymes at the 5 ̓ and 3̓ end. The target 

sequences were amplified with Pfu DNA polymerase (Stratagene, Germany).  

A standard PRC reaction contained: 5 ng template DNA, 170 ng of each primer, 5 µl 

dNTP mix, 5 µl 10x polymerase buffer, 1 µl DNA polymerase and was adjusted with 

ddH2O to a final volume of 50 µl. In some cases 3, 6, or 9% DMSO were added to 

the reaction in order to lower the DNA melting temperature.  

The following PCR cycling program was used: 

 

 

The annealing temperature was modified according to the used primer pairs. PCR 

products were then analyzed on a 1% agarose gel. 

 

3.1.8 Purification of PCR products 

The PCR products were purified from primers and nucleotides before restriction 

digestion. Purification was performed according to the protocol of a PCR purification 

kit (Qiaquick PCR Purification Kit; Qiagen, Hilden).The purified fragments were finally 

dissolved in 30 µl TE buffer. 

 

1 cycle initial denaturation 3 minutes 94°C 

35 cycles denaturation 20 seconds 92°C 

 annealing 30 seconds 58°C 

 extension 1 minute 72°C 

1 cycle final extension 10 minutes 72°C 
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3.1.9 Site-directed Mutagenesis 

In order to replace single amino acids the QuikChange II XL Site-Directed 

Mutagenesis kit (Stratagene, Germany) was used according to the manufacturer’s 

instructions. The site-directed mutagenesis method is performed using a high-fidelity 

DNA polymerase for mutagenic primer-directed replication of both plasmid strands. 

The basic procedure utilizes a supercoiled double-stranded DNA vector with an insert 

of interest and two synthetic oligonucleotide primers, both containing the desired 

mutation. The primers used were between 25 and 40 bases in length and were 

designed so that they annealed to the same sequence on opposite strands of the 

plasmid. Both mutagenic primers contained the desired mutation in the middle of the 

primer flanked by sequences complementary to the template sequence.  

The primers are extended during temperature cycling by the DNA polymerase, 

without primer displacement. Extension of the primers generates a mutated plasmid 

containing staggered nicks. Following temperature cycling, the product is treated 

with DpnI endonuclease, which is specific for methylated and hemimethylated DNA 

and is used to digest the parental DNA template and to select for mutation-

containing synthesized DNA. The nicked vector DNA incorporating the desired 

mutation is then transformed into E. coli XL10 Gold cells. 

 

3.1.10 Removal of 5 ̓-phosphate residues from DNA fragments 

In order to prevent re-ligation of a linearized vector, the phosphate groups which 

deliver the reactive phosphor required for the sugar-phosphate bonds of the DNA, 

were removed by an alkaline phosphatase (Shrimp alkaline phosphatase, SAP). 

The digested vector DNA was dephosphorylated for 1 hour with 1 unit SAP at 37°C 

and subsequently inactivated for 15 minutes at 70°C. 

 

3.1.11 Phosphorylation and annealing of DNA oligomers 

In order to insert DNA oligomers into plasmids by ligation, the complementary 

oligomers have to be phosphorylated at the 5 ̓ end and have to be annealed.  

For phosphorylation, 0.5 nM oligomers were incubated in 2 µl 10x polynucleotide 

kinase buffer in a final volume of 18 µl for 10 minutes at 70°C. After denaturation,  
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1 µl 10 mM ATP and 1 µl (=10 units) polynucleotide kinase were added and 

incubated for 30 minutes at 37°C. The reaction was stopped by incubation for 10 

minutes at 70°C. 100 ng of each oligomer were used for the annealing reaction and 

incubated in 50 µl TE with 50 mM NaCl for 10 minutes at 70°C and for 30 minutes at 

37°C. For ligation, 4, 10, and 20 ng were used. 

 

3.1.12 Ligation 

For ligation and the following transformation into E. coli cells, the ratio of insert to 

vector was ranging from 5:1 to 10:1. Either purified PCR products or DNA fragments 

isolated from low melting agarose gels were ligated. The reaction was carried out in 

a final volume of 20-30 µl by addition of 10x ligase buffer and 1 µl (=1 unit) T4 DNA 

ligase and was either incubated for 2 hours at 16-18°C or over night at 4°C.  

 

3.1.13 DNA sequencing 

All cloned expression plasmids were sequenced by Andreas Hunziker (DKFZ, 

Heidelberg) to verify the DNA sequence.  

 

3.2 Generation of expression plasmids 

The full-length human lamin B2 cDNA clone BC006551 (NCBI data bank) in pOTB 

was obtained from the RZPD (Germany). The full-length human lamin B1 cDNA in 

pBluescript was provided by E. Tan (The Scripps Research Institute, La Jolla, USA).  

 

3.2.1 Human lamin B2 

The coding sequence of the human lamin B2 cDNA in pOTB was partially amplified by 

PCR. A fragment encoding amino acid 1-77 was amplified using a forward primer 

(SG96: 5’-GAGAGATCCGGAATGAGCCCGCCGAGCCCG-3’) inserting a BspEI restriction 

site and a reverse primer (SG97: 5’-CTTCTCTGAGATCTTGAGCAGGAGCCGGTCG-3’). 

The PCR product was digested with BspEI/BglII and was inserted into the multiple 

cloning site of pEYFP-C1. Human lamin B2 headless cDNA in pEYFP-C1 (see below) 
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was digested with BglII/EcoRI and was ligated into cloned lamin B2 [1-77] in pEYFP-

C1 digested with the same enzymes. The resulting cDNA construct was validated by 

sequencing. 

 

3.2.2 Human lamin B2 deletion mutants 

For generation of human lamin B2 deletion mutants the coding sequence of the 

human lamin B2 cDNA in pOTB was partially amplified by PCR and cloned comprising 

the following fragments:  

 

a) LB2[33-309]  

Amplified with a forward primer (SG8: 5’-GAGAGAGGATCCATGGCCACGCCGCTGTCG 

CCCACG-3’) introducing a start codon and a NcoI restriction site and a reverse primer 

(SG4: 5’-CTCCCCGGCCATGGCCTCCTCCAGCTCCCGAATGC-3’). The PCR product was 

digested with NcoI and ligated into the multiple cloning site of a modified pBluescript 

cut with the same enzyme. The construct was validated by sequencing. 

 

b) LB2[46-309]  

Amplified with a forward primer (SG3: 5’-GAGAGAGGATCCATGGAGAAGGAGGAGCTGC 

GCGAGC-3’) introducing a start codon and a NcoI restriction site and a reverse 

primer (SG4: 5’-CTCCCCGGCCATGGCCTCCTCCAGCTCCCGAATGC-3’). The PCR 

product was digested with NcoI and ligated into the multiple cloning site of a 

modified pBluescript cut with the same enzyme. The construct was validated by 

sequencing. 

 

c) LB2[310-402]  

Amplified with a forward primer (SG5: 5’-CGGGAGCTGGAGGACGCCATGGCCGGGG 

AGC-3’) and a reverse primer (SG6: 5’-GAATTCTTACAGCCTCTCCTCCTCGCC-3’) 

introducing a stop codon and a EcoRI restriction site. The PCR product was digested 

with NcoI/EcoRI and ligated into the multiple cloning site of a modified pBluescript 

cut with the same enzymes. The construct was validated by sequencing. 
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d) LB2[310-620]  

Amplified with a forward primer (SG5: 5’-CGGGAGCTGGAGGACGCCATGGCCGGGG 

AGC-3’) and a reverse primer (SG7: 5’-GAGAGAGAATTCTTACATCACGTAGCAGCCTC 

TTG-3’) introducing a EcoRI restriction site. The PCR product was digested with 

NcoI/EcoRI and ligated into the multiple cloning site of a modified pBluescript cut 

with the same enzymes. The construct was validated by sequencing. 

 

3.2.2.1 Human lamin B2 Δ32head 
Cloned LB2[33-309] cDNA in pBluescript was digested with NcoI and ligated into 

LB2[310-620] in pBluescript cut with the same enzymes. The resulting LB2 Δ32head 

cDNA in pBluescript was then cut out by partial restriction digestion with BspEI/EcoRI 

and was ligated into the multiple cloning site of pEYFP-C1. The construct was 

validated by sequencing.  

 

3.2.2.2 Human lamin B2 headless 
Cloned LB2[46-309] cDNA in pBluescript was digested with NcoI and ligated into 

LB2[310-620] in pBluescript cut with the same enzymes. The resulting LB2 headless 

cDNA in pBluescript was then cut out by partial restriction digestion with BspEI/EcoRI 

and was ligated into the multiple cloning site of pEYFP-C1. The construct was 

validated by sequencing.  

 

3.2.2.3 Human lamin B2 tailless 
Cloned LB2 rod cDNA in pEYFP-C1 (see below) was digested with BglII/EcoRI and 

ligated into full-length lamin B2 cDNA in pEYFP-C1 cut with the same enzymes. The 

construct was validated by sequencing.  

 

3.2.2.4 Human lamin B2 Δ32head/tailless 
Cloned LB2[33-309] cDNA in pBluescript was digested with NcoI and ligated into 

LB2[310-402] in pBluescript cut with the same enzymes. The resulting LB2 

Δ32head/tailless cDNA in pBluescript was then cut out by partial restriction digestion 



  Methods 

29 

with BspEI/EcoRI and was ligated into the multiple cloning site of pEYFP-C1. The 

construct was validated by sequencing.  

 

3.2.2.5 Human lamin B2 rod 
Cloned LB2[46-309] cDNA in pBluescript was digested with NcoI and ligated into 

LB2[310-402] in pBluescript cut with the same enzymes. The resulting LB2 rod cDNA 

in pBluescript was then cut out by partial restriction digestion with BspEI/EcoRI and 

was ligated into the multiple cloning site of pEYFP-C1. The construct was validated 

by sequencing.  

 

3.2.3 Human lamin B2 S→D mutants 

3.2.3.1 Human lamin B2 S37D 
The human lamin B2 cDNA in pEYFP-C1 was used as a template for the mutagenesis 

reaction. The S37D (TCG>GAC) mutation was introduced by site-directed 

mutagenesis with the QuikChange II XL Site-Directed Mutagenesis kit (Stratagene, 

Germany) according to the manufacturer’s protocol (forward primer SG41: 5’-GCC 

ACGCCGCTGGACCCCACGCGCCTG-3’; reverse primer SG42: 5’-CAGGCGCGTGGGGTC 

CAGCGGCGTGGC-3’). The resulting cDNA sequence was verified by sequencing.  

 

3.2.3.2 Human lamin B2 S405D 
The human lamin B2 headless cDNA in pBluescript was used as a template for the 

mutagenesis reaction. The S405D (TCC>GAC) mutation was introduced by site-

directed mutagenesis with the QuikChange II XL Site-Directed Mutagenesis kit 

(Stratagene, Germany) according to the manufacturer’s protocol (forward primer 

SG45: 5’-GAGGCTGAAGCTGGACCCCAGCCCATCC-3’; reverse primer SG46: 5’-GGA 

TGGGCTGGGGTCCAGCTTCAGCCTC-3’). The resulting cDNA construct was verified by 

sequencing. The human lamin B2 headless S405D cDNA was then digested with 

BglII/EcoRI and cloned into the human lamin B2-pEYFP-C1 plasmid cut with the 

same restriction enzymes.  
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3.2.3.3 Human lamin B2 S407D 
The human lamin B2 headless cDNA in pBluescript was used as a template for the 

mutagenesis reaction. The S407D (AGC>GAC) mutation was introduced by site-

directed mutagenesis with the QuikChange II XL Site-Directed Mutagenesis kit 

(Stratagene, Germany) according to the manufacturer’s protocol (forward primer 

SG13: 5’-CTGAAGCTGTCCCCCGACCCATCCTCGCGCGTC-3’; reverse primer SG14: 5’-

GACGCGCGAGGATGGGTCGGGGGACAGCTTCAG-3’). The resulting cDNA construct 

was verified by sequencing. The human lamin B2 headless S407D cDNA was then 

digested with BglII/EcoRI and cloned into the human lamin B2-pEYFP-C1 plasmid cut 

with the same restriction enzymes.  

 

3.2.3.4 Human lamin B2 S37+405D 
The human lamin B2 S405D cDNA in pEYFP-C1 was digested using BglII/EcoRI and 

cloned into the human lamin B2 S37D-pEYFP-C1 plasmid cut with the same 

restriction enzymes. The construct was validated by sequencing. 

 

3.2.3.5 Human lamin B2 S37+407D 
The human lamin B2 S407D cDNA in pEYFP-C1 was digested using BglII/EcoRI and 

cloned into the human lamin B2 S37D-pEYFP-C1 plasmid cut with the same 

restriction enzymes. The construct was validated by sequencing. 

 

3.2.3.6 Human lamin B2 S405+407D 
The human lamin B2 headless S407D cDNA in pBluescript was used as a template for 

the mutagenesis reaction. The S405D (TCC>GAC) mutation was introduced by site-

directed mutagenesis with the QuikChange II XL Site-Directed Mutagenesis kit 

(Stratagene, Germany) according to the manufacturer’s protocol (forward primer 

SG75: 5’-GAGGCTGAAGCTGGACCCCGACCCATCC-3’; reverse primer SG76: 5’-GGA 

TGGGTCGGGGTCCAGCTTCAGCCTC-3’). The resulting cDNA construct was verified by 

sequencing. The human lamin B2 headless S405+407D cDNA was then digested with 

BglII/EcoRI and cloned into the human lamin B2-pEYFP-C1 plasmid cut with the 

same restriction enzymes.  
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3.2.3.7 Human lamin B2 S37+405+407D 
The human lamin B2 S405+407D cDNA in pEYFP-C1 was digested with BglII/EcoRI 

and cloned into the human lamin B2 S37D-pEYFP-C1 plasmid cut with the same 

restriction enzymes. The construct was validated by sequencing.  

 

3.2.4 Human Lamin B1 

The human lamin B1 cDNA in pBluescript was amplified by PCR with a forward 

primer (SG73: 5’-GAGAGATCCGGAATGGCGACTGCGACCCC-3’) introducing a BspEI 

restriction site and a reverse primer (SG74: 5’-GAGAGACTCGAGCATAATTGCAC 

AGCTTC-3’) introducing a XhoI restriction site. The PCR fragment was digested with 

BspEI and XhoI and inserted into the multiple cloning site of pEYFP-C1. The 

construct was validated by sequencing. 

 

3.2.5 Human lamin B1 S→D mutants 

3.2.5.1 Human lamin B1 S23D 
The human lamin B1 cDNA in pBluescript was used as a template for the 

mutagenesis reaction. The S23D (AGC>GAC) mutation was introduced by site-

directed mutagenesis with the QuikChange II XL Site-Directed Mutagenesis kit 

(Stratagene, Germany) according to the manufacturer’s protocol (forward primer 

SG57: 5’-CACCACGCCGCTGGACCCCACGCGCCTG-3’; reverse primer SG58: 5’-

CAGGCGCGTGGGGTCCAGCGGCGTGGTG-3’). The resulting cDNA construct was 

verified by sequencing. The human lamin B1 S23D cDNA was then amplified by PCR 

with a forward primer (SG73: 5’-GAGAGATCCGGAATGGCGACTGCGACCCC-3’) 

introducing a BspEI restriction site and a reverse primer (SG74: 5’-GAGAGA 

CTCGAGCATAATTGCACAGCTTC-3’) introducing a XhoI restriction site. The PCR 

fragment was digested with BspEI and XhoI and inserted into the multiple cloning 

site of pEYFP-C1. The construct was validated by sequencing. 
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3.2.5.2 Human lamin B1 S391D 
The human lamin B1 cDNA in pBluescript was used as a template for the 

mutagenesis reaction. The S391D (TCT>GAT) mutation was introduced by site-

directed mutagenesis with the QuikChange II XL Site-Directed Mutagenesis kit 

(Stratagene, Germany) according to the manufacturer’s protocol (forward primer 

SG53: 5’-GAGGTTGAAGCTGGATCCAAGCCCTTCT-3’; reverse primer SG54: 5’-

AGAAGGGCTTGGATCCAGCTTCAACCTC-3’). The resulting cDNA construct was verified 

by sequencing. The human lamin B1 S391D cDNA was then amplified by PCR with a 

forward primer (SG73: 5’-GAGAGATCCGGAATGGCGACTGCGACCCC-3’) introducing a 

BspEI restriction site and a reverse primer (SG74: 5’-GAGAGACTCGAGCATAAT 

TGCACAGCTTC-3’) introducing a XhoI restriction site. The PCR fragment was 

digested with BspEI and XhoI and inserted into the multiple cloning site of pEYFP-C1. 

The construct was validated by sequencing. 

 

3.2.5.3 Human lamin B1 S393D 
The human lamin B1 cDNA in pBluescript was used as a template for the 

mutagenesis reaction. The S393D (AGC>GAC) mutation was introduced by site-

directed mutagenesis with the QuikChange II XL Site-Directed Mutagenesis kit 

(Stratagene, Germany) according to the manufacturer’s protocol (forward primer 

SG49: 5’-GAAGCTGTCTCCAGACCCTTCTTCCCGTG-3’; reverse primer SG50: 5’-CAC 

GGGAAGAAGGGTCTGGAGACAGCTTC-3’). The resulting cDNA construct was verified 

by sequencing. The human lamin B1 S391D cDNA was then amplified by PCR with a 

forward primer (SG73: 5’-GAGAGATCCGGAATGGCGACTGCGACCCC-3’) introducing a 

BspEI restriction site and a reverse primer (SG74: 5’-GAGAGACTCGAGCATAAT 

TGCACAGCTTC-3’) introducing a XhoI restriction site. The PCR fragment was 

digested with BspEI and XhoI and inserted into the multiple cloning site of pEYFP-C1. 

The construct was validated by sequencing. 

 

3.2.6 Human lamin A p.R321X 

The cloned full-length cDNA of human lamin A (McKeon et al, 1986) in pEYFP-C1 was 

used as a template for the mutagenesis reaction. The p.R321X (CGA>TGA) mutation 

was introduced by site-directed mutagenesis with the QuikChange II XL Site-Directed 
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Mutagenesis kit (Stratagene, Germany) according to the manufacturer’s protocol 

(forward primer SG112: 5’-CACCACGCCGCTGGACCCCACGCGCCTG-3’; reverse primer 

SG113: 5’-CAGGCGCGTGGGGTCCAGCGGCGTGGTG-3’). The resulting cDNA construct 

was verified by sequencing. 

 

3.3 Cell culture techniques 

3.3.1 Cultivation of culture cell lines 

Adherent cultured cells were grown in cell culture flasks in an incubator with 95% 

relative air humidity and 5% CO2 in DMEM medium supplemented with 10% FCS, 20 

mM L-glutamine and 100 µg/ml antibiotics. According to their doubling time, cells 

were split every 3 – 5 days to keep them in the logarithmic growth phase. For 

splitting, the culture medium was removed and the cells were washed with 1 x PBS. 

Cells were detached from the culture flask surface by incubation at 37°C in trypsin 

solution for 3 – 5 minutes. Trypsinized cells were resuspended in fresh, pre-warmed 

medium and transferred into new flasks, thereby diluted 1:5 to 1:10.  

 

3.3.2 Cultivation of embryonic stem cells 

The murine embryonic stem cells were cultured in DMEM-F12/Neurobasal medium 

supplemented with 1x Supplement B27, 50 µg/ml BSA fraction V, 100 µg/ml APO-

transferrin bovine,  25 µg/ml human recombinant insulin, 6 ng/ml progesterone, 16 

µg/ml putrescin, 30 nM Na-selenite, 2 mM glutamine, 0.15 mM 1-thioglycerol, 10 

ng/ml BMP-2 and LIF. Cells were routinely grown in an incubator with 95% relative 

air humidity and 5% CO2 on gelatinized flasks. Culture medium was changed every 

other day as long as the culture was thin; later on it was changed daily. Cells were 

split twice a week between 1:6 and 1:12. For splitting, the culture medium was 

removed and the cells were washed once with ES trypsin solution (0.025% trypsin/1 

mM EDTA) before they were incubated in ES trypsin solution at 37°C until they 

detached. Trypsin activity was stopped by adding a trypsin inhibitor and the cells 

were resuspended in fresh culture medium. Subsequently, cells were centrifuged for 



  Methods 

34 

2 minutes at 1200 rpm, the cell pellet was resuspended in fresh culture medium and 

the cells were transferred to new gelatinized flasks.  

 

3.3.3 Freezing of cells 

Cells were stored at -80°C or in liquid nitrogen. 

After trypsinization, the cells were resuspended in DMEM and centrifuged at 1000 

rpm for 5 minutes. The cell pellet was resuspended in 1.5 ml complete growth 

medium with 10% DMSO and transferred to 1.8 ml cryo tubes. After incubation for 

20 minutes at -20°C, the tubes were transferred to -80°C or liquid nitrogen. 

ES cells were trypsinized as usual. After centrifugation, the cell pellet was 

resuspended in culture medium and freezing medium (complete ES medium with 

20% DMSO) was added drop wise. 0.5-1 ml aliquots with approximately 2-4 million 

cells per cryo vial were placed in a “Mr. Frosty” container filled with isopropanol and 

placed at -80°C over night. The following day, the cryo tubes were transferred to 

liquid nitrogen. 

 

3.3.4 Thawing of cells 

Cryo tubes were thawed in a 37°C water bath. Cells were immediately transferred 

into a 50 ml Falcon tube with 10 ml pre-warmed (37°C) culture medium and 

centrifuged at 1000 rpm for 5 minutes. The cell pellet was resuspended in culture 

medium and transferred into a 5 ml cell culture flask and placed in the incubator. 

The following day the medium was replaced to remove dead cells and cell debris.  

 

3.3.5 Transfection of cells 

3.3.5.1 Transient transfection of cells 
Transient transfection of cultured cells was performed with FuGene6 transfection 

reagent (Roche, Germany). After transfection, cells were incubated under the normal 

growth conditions.  

For transient transfection of embryonic stem cells, Lipofectamine2000 (Invitrogen, 

Germany) was used according to the manufacturers instructions.  
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3.3.5.2 Stable transfection of cells 
Culture cell lines were transfected with FuGene6 transfection reagent (Roche, 

Germany) in 60 mm cell culture dishes. Cells were further incubated under normal 

growth conditions. After 2 days, cells were split onto two 10 cm cell culture dishes. 

For selection for stably integrated neomycin resistance genes, G418 was added to 

the culture medium the next day in a concentration of 0.5 mg/ml for SW13 cells and 

1 mg/ml for U2OS cells. 

ES cells were transfected with Lipofectamine2000 (Invitrogen, Germany) in 60 mm 

cell culture dishes. ES cells were further handled as described for culture cell lines. 

For selection for stably integrated neomycin resistance genes, G418 was added to 

the culture medium in a concentration of 350 µg/ml.  

 

3.4 Fixation of cells 

3.4.1 Methanol / Acetone fixation 

Methanol and acetone were cooled down to -20°C. Cells grown on coverslips were 

washed twice in PBS with 2 mM MgCl2 at room temperature and then fixed in ice cold 

methanol for 5 minutes. Cells were then transferred to acetone for 30 seconds and 

air dried.  

 

3.4.2 Formaldehyde fixation 

Fixation of cells with formaldehyde was used in order to better preserve the cell 

structure. Cells grown on coverslips were washed twice in PBS with 2 mM MgCl2 at 

room temperature and then fixed for 7 minutes in ice cold 4% formaldehyde in PBS 

(pH 6.8). After fixation, cells were washed three times in PBS with 2 mM MgCl2 and 

incubated in ice cold 0.1% Triton in PBS for 5 minutes. After permeabilization, cells 

were washed three times with PBS with 2 mM MgCl2. 
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3.5 Indirect immunofluorescence 

Coverslips with fixed cells were placed with the cell layer on the top side into a humid 

plastic chamber and incubated for 10 – 15 minutes with 10% goat serum in PBS to 

block unspecific antibody binding. After removal of the blocking solution, the cells 

were incubated with 20 µl of the appropriate primary antibody adequately diluted in 

PBS for 30 – 60 minutes. Coverslips were rinsed in PBS with 2 mM MgCl2 and 

afterwards put back into the humid incubation chamber. The secondary antibody was 

diluted in PBS. A total volume of 20 µl was applied to the cells and incubated 30 – 60 

minutes. Subsequently, DAPI stain was applied to the cells for 5 minutes. After 

rinsing three times in PBS with 2 mM MgCl2, the coverslips were dipped briefly into 

ddH2O and were either directly mounted or incubated for 1 minute in ethanol and air 

dried. Coverslips were mounted with Fluoromount G (SouthernBiotech, USA) on 

microscope slides. Slides were stored at 4°C. 

 

3.5.1 Double immunolocalization 

For simultaneous detection of two proteins in the same cell, the cells were prepared 

as described above. The two primary antibodies were selected to have no cross 

reactivity with each other, diluted and incubated together. The fluorescently labelled 

secondary antibodies were chosen in a way to have no overlapping emission spectra.  

 

3.6 Confocal laser scanning microscopy 

For a detailed 3D analysis, the cells were imaged with a LEICA TCS SPII confocal 

laser scanning microscope. The used fluorophores were excited using the respective 

laser in combination with the filter of the suitable wavelength. The fluorescence 

signal was detected using a photomultiplier (PMT). The detection range was adjusted 

manually. Before imaging, the offset of each PMT was controlled. During imaging the 

photomultiplier setting was constantly at 750 Volt and the laser excitation was 

minimized to keep photobleaching at a minimum and to avoid oversaturation of the 

images. The pinhole was constantly kept at 1 Airy. All images were made with the 

63x/1.3 oil objective. The digital images were processed using Adobe Photoshop 

(Adobe, San Jose, CA), ImageJ software, or Leica LSM software, respectively.  
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Table 7: Laser lines of the Leica TSC SPII confocal microscope 

 

3.7 Protein techniques 

3.7.1 Protein extraction of heart muscle tissue 

Frozen heart muscle tissue was disrupted and homogenized in ice cold lysis buffer 

(20 mM Tris/HCl, pH 7.4, 1% Triton X-100, 10% glycerol, 150 mM NaCl, 1 mM PMSF, 

1 μg/ml leupeptin, 1 μg/ml antipain, 1 μg/ml chymostatin, 1 μg/ml pepstatinA) and 

subjected to SDS-PAGE.  

3.7.2 Differential protein extraction 

All volumes are adjusted for protein extraction from a 10 cm cell culture dish. 

Confluently grown cells were washed twice with PBS with 25 µM pefabloc and 76 mM 

PMSF. Subsequently, cells were incubated in 1 ml lysis low buffer (50 mM MOPS, 10 

mM EGTA, 100 mM MgCl2, 0.02% NP-40, 2.85 mM PMSF, 0.5 mM pefabloc in 0.5x 

PBS) at room temperature for 2 minutes. The supernatant was removed and a 200 µl 

sample of it was boiled in 100 µl 3x Laemmli sample buffer for 3 minutes (fraction 1: 

soluble and extractable cytoplasmic proteins). The remaining buffer was discarded. 

The cells were then incubated in 1 ml ice cold lysis high buffer (50 mM MOPS, 100 

mM MgCl2, 0.1% NP-40, 2.85 mM PMSF, 0.5 mM pefabloc, 0.25 mg/ml DNase in 0.5x 

PBS) on ice for 3 minutes and were carefully resuspended from time to time. 200 µl 

5 M NaCl were added and incubated for another 3 minutes. The cells were scraped 

off the dishes with a rubber policeman and transferred to an eppendorf tube. A 100 

µl sample was taken from the cell lysate and mixed with 100 µl ddH2O and 100 µl 3x 

Laemmli sample buffer and was boiled for 3 minutes (fraction 2: cytoskeletal 

fraction). The remaining cell lysate was centrifuged at 13.000 rpm and 4°C for 15 

minutes. Subsequently, 100 µl supernatant were removed and mixed with 100 µl 

laser type wavelength (nm) fluorochromes and respective excitation (nm)

diode laser 405  DAPI (405) 

cadmium laser 443 CFP (443) 

argon laser 458, 478, 488, 514 GFP (488), Alexa 488 (488), YFP (514) 

helium neon laser 543 Cy 3 (543), Alexa 568 (543/561) 

helium neon laser 633 Cy 5 (633) 
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ddH2O and 100 µl 3x Laemmli sample buffer (fraction 3: high-salt and high-detergent 

soluble cytoskeletal fraction). The sample was then boiled for 3 minutes. The cell 

pellet was resuspended in 200 µl 3x Laemmli sample buffer with 600 mg/ml urea and 

was boiled for 3 minutes (fraction 4: insoluble cytoskeleton proper).  

 

3.7.3 Western blot 

Western blotting is a method used for the qualitative and quantitative detection of 

proteins using specific antibodies. Proteins, e.g. from cell extracts, are first separated 

by SDS-PAGE, then transferred to a PVDF membrane, and the proteins are 

subsequently detected with specific antibodies. 

 

3.7.3.1 Discontinuous polyacrylamide gel electrophoresis (SDS-PAGE) 
For SDS-PAGE under reducing conditions, gel solutions with 10% acrylamide in the 

resolving part were prepared using an acrylamide/bis-acrylamide solution (37.5:1). 

Protein samples were boiled for 5 minutes in Laemmli sample buffer and were loaded 

onto the gel together with a protein size marker (Broad Range 7701S; New England 

Biolabs, Germany). Electrophoresis was run at 25 mA without restriction of the 

impressed voltage.  

 

Table 8: Composition of 10% acrylamide gels (adequate volume for 5 minigels) 

Stacking gel  Resolving gel  

acrylamide 1.32 ml acrylamide 10 ml 

ddH2O 6.2 ml ddH2O 13 ml 

upper Tris 2.5 ml lower Tris 7.5 ml 

10% APS 0.1 ml 10% APS 0.3 ml 

10% TEMED 0.1 ml 10% TEMED 0.3 ml 

 

After electrophoresis, the gel was either stained with Coomassie staining solution or 

was soaked in borate transfer buffer for Western blot analysis.  
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3.7.3.2 Transfer of proteins to PVDF membranes and detection 
Electrophoretic transfer of proteins from polyacryamide gels to a polyvinylidene 

fluoride (PVDF) membrane was performed by use of a wet blot apparatus. The 

membrane was briefly activated in 100% ethanol and soaked in borate transfer 

buffer for 10-15 minutes. Transfer was carried out for 2 hours at 500 mA at room 

temperature. After the transfer, the membrane was stained with Ponceau-S in order 

to verify the transfer efficiency and was subsequently dried or directly used for 

protein detection.  

For protein detection with antibodies, the activated membrane was incubated in 

blocking solution (TBST, 5% non-fat milk powder) for 1 hour at room temperature or 

over night at 4°C on a rocking platform. The membrane was then incubated with the 

primary antibody (diluted in blocking solution according to Table 5) for 1 hour at 

room temperature. To remove unbound antibody, the membrane was washed three 

times in TBST and was subsequently incubated with the secondary antibody 

conjugated to horse radish peroxidase (HRP) for 1 hour at room temperature. After 

washing the membranes three times in TBST, the membrane was incubated in ECL 

(Enhanced Chemiluminescence) solution (NEN, Germany) according to the 

manufacturer’s instructions. The solution was drained off the membrane and the 

membrane was exposed to an X-ray film (Kodak X-OMAT AR5) which was 

subsequently developed.  

 

3.7.4 Immunoprecipitation 

For immunoprecipitation, 50 µl protein G sepharose beads were washed three times 

in ice cold PBS. 50 µl beads were either incubated with 1 ml α-lamin B2 antibody 

(X223) or with 1 ml cell lysate in IP buffer (50 mM MOPS, 100 mM MgCl2, 0.4% 

Triton X-100, 2.85 mM PMSF, 0.5 mM pefabloc, 0.25 mg/ml DNase in 0.5x PBS) for 1 

hour. Antibody coated beads were washed twice with ice cold PBS and once with IP 

buffer and were subsequently incubated either with the precleared cell lysate or IP 

buffer in a final volume of 1 ml. Immunoprecipitation was carried out in an overhead 

rotator for 2 hours. Beads were washed three times with ice cold IP buffer and twice 

with ice cold PBS and were resuspended in 40 µl 3x Laemmli loading buffer. All steps 

were performed at 4°C.  
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Proteins were isolated from the beads and denatured by boiling for 5 minutes and 

separated by SDS-PAGE. After electrophoresis, the gel was either stained with 

Coomassie staining solution or was processed for Western blot analysis.  
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4 Results 

4.1 Influence of lamin B2 deletion mutants 

We wanted to investigate the mechanism of lamin in vivo assembly, its influences on 

nuclear morphology, and its behavior during mitosis. Therefore we generated a 

series of lamin B2 deletion mutants and tested the influence of the expression of 

these mutant proteins on nuclear morphology in several cell lines, including U2OS, 

HeLa, SW13 and mouse embryonic stem (ES) cells. In Figure 5 a schematic overview 

of the lamin B2 deletion mutants evaluated in this thesis is given.  

By recombinant DNA technology we removed either a part of the head domain (first 

32 amino acids, Δ32head), the complete head domain (headless), or the tail domain 

(tailless). In one case both, the first 32 amino acids of the head domain and the tail 

domain have been removed (Δ32head/tailless). Another mutant represents the rod  

domain (Walther et al). All protein coding sequences were constructed as N-terminal 

fusions with spectral variants of the green fluorescent protein (GFP). The detailed 

description of the cloning strategy of the expression plasmids is presented in section 

 3.2. 
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Figure 5: Diagram showing the domain structure of lamin B2 and the generated 
deletion mutants. (A) Amino acid sequences of the complete N-terminus and two progressively 
deleted mutants and of the C-terminal end of coil 2B with part of the tail domain and a tail 
deleted mutant. Conserved sequences are depicted in red. (B) Schematic overview of generated 
lamin B2 deletion mutants. 

 

4.1.1 Lamin B2 head deletions  

In order to investigate the influence of the lamin head domain on cellular localization 

and morphology, U2OS, HeLa and SW13 cells were transfected with YFP-tagged 

lamin B2 Δ32head and lamin B2 headless expression plasmids, respectively. After 48 

hours of incubation, cells were fixed and analyzed by confocal laser scanning 

microscopy (CLSM). Although lamin B2 headless is devoid of a conserved 
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sequencethat is still present in lamin B2 Δ32head both mutants showed the same 

effects. In U2OS cells, both YFP-lamin B2 Δ32head protein (Figure 6 A + A’) and 

YFP-lamin B2 headless (Figure 6 B + B’) became localized at the nuclear rim which 

was identified as the boundary of the DAPI staining region, but were also massively 

present in a dot-like distribution throughout the nucleoplasm (Figure 6). 

Furthermore, the nuclei were highly lobulated and irregularly shaped. Overall 

chromatin distribution was not altered (Figure 6 A’ + B’). Expression of the mutant 

proteins did not interfere with cell cycle progression and mitosis (data not shown). 

Transfection of HeLa and SW13 cells showed similar results. These observations 

suggest that the lamin B2 head domain is dispensable for nuclear envelope 

localization of the lamin B2 protein. However, its incorporation into the nuclear 

lamina appears to be less efficient and if integrated interferes with proper lamina 

assembly.  

 

 

Figure 6: Patterns of YFP-lamin B2 Δ32head and YFP-lamin B2 headless transiently 
transfected in U2OS cells. (A) U2OS cell expressing YFP-lamin B2 Δ32head, (B) U2OS cell 
expressing YFP lamin B2 headless, (A’, B’) double staining with DAPI. Extranuclear DAPI staining 
represents DNA which was not taken up by the cells and is often observed upon transfection of 
cells with FuGene6. All images are confocal sections. Bars 10 μm. 
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4.1.2 Lamin B2 tail deletions  

The influence of the lamin tail domain on cellular localization and nuclear morphology 

of U2OS, HeLa and SW13 cells was studied by transient transfection with lamin B2 

tailless, lamin B2 Δ32head/tailless or lamin B2 rod YFP-expression plasmids. All 

constructs are devoid of the NLS, which is in the tail domain. Confocal microscopic 

analysis revealed that YFP-lamin B2 tailless protein was distributed throughout the 

nucleoplasm and the cytoplasm (Figure 7 A). The cytoplasmic signal appeared as a 

rather filamentous structure. Localization to the nuclear rim could not be observed. 

DAPI staining showed that nuclear shape was not impaired by the mutant protein, 

neither was chromatin distribution altered (Figure 7 A’). Mutants lacking either part 

of the head domain and the tail domain (LB2 Δ32head/tailless) (Figure 7 B + B’) or 

the complete head domain and the tail domain (LB2 rod) (Figure 7 C + C’) displayed 

the same phenotype as the tail domain deletion alone. Both mutant proteins were 

distributed throughout the nucleoplasm and formed filament-like structures in the 

cytoplasm. Expression of YFP-lamin B2 tail deletion mutants in SW13 and HeLa cells 

exhibited the same effects as observed in U2OS cells. Although tailless mutants are 

devoid of the NLS, nucleoplasmic distribution could be observed. We explain this by 

the presence of a conserved sequence motif at the end of coil 2 of the α-helical rod 

domain mediating nuclear localization (Rogers et al, 1995). Hence, the tail domain 

was necessary to direct ectopic lamin B2 protein to the nuclear envelope. This 

experiment clearly demonstrates further that the endogenous wild type lamin B2 is 

not able to recruit the mutant proteins to the nuclear lamina.  
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Figure 7: Patterns of YFP-lamin B2 tailless, YFP-lamin B2 Δ32head/tailless and YFP-
lamin B2 rod transiently transfected in U2OS cells. U2OS cells expressing (A) YFP-lamin B2 
tailless, (B) YFP-lamin B2 Δ32head/tailless, and (C) YFP-lamin B2 rod (all shown in green). (A’, B’, 
C’) double staining with DAPI. All images are confocal sections. Bar 10 μm. 
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4.1.3 Effects of lamin B2 deletion mutants on the endogenous 

lamina 

To evaluate the effects of the head and/or tail deletions on the integrity of the 

nuclear lamina, U2OS cells were fixed 48 hours post transfection with the respective 

YFP-expression plasmids and were stained with antibodies specific for lamin B2 or 

lamin A/C. Immunofluorescence was analyzed by confocal microscopy. Lamin B2 

antibody staining co-localized with the YFP-signal of all tailless mutants in the 

nucleoplasm and the cytoplasm but additionally showed the expected rim stain 

(Figure 8). With the lamin B2 antibody used it was not possible to distinguish 

between endogenous lamin B2 and exogenous mutant lamin B2. It can thus not be 

excluded that at least part of the endogenous lamin B2 also localized to the 

cytoplasm and the nucleoplasm.  

Endogenous lamin A/C localization at the nuclear rim was not affected by any of the 

mutants except for YFP-lamin B2 tailless (Figure 9). In cells expressing this mutant, 

lamin A/C localized to the nuclear rim, but was also present in the cytoplasm (Figure 

9 D, see insert). The cytoplasmic lamin A/C staining was rather weak and co-

localized with the YFP signal of the tail deletion mutant. Since synthesis and 

posttranslational processing of lamins take place in the cytoplasm it is conceivable 

that newly synthesized lamin A forms heteropolymers with the mutant lamin B2 

protein in the cytoplasm. This observation suggests that the lamin B2 head domain is 

necessary for the formation of heteropolymers with lamin A. This experiment clearly 

demonstrates further that a functional lamina can be built up in the presence of 

tailless lamin B2 mutants.  
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Figure 8: Double labeling of YFP-lamin B2 deletion mutants and lamin B2. Confocal 
sections of U2OS cells (A) untransfected, expressing (B) YFP-lamin B2 Δ32head, (C) YFP-lamin B2 
headless, (D) YFP-lamin B2 tailless, (E) YFP-lamin B2 Δ32head/tailless, (F) YFP-lamin B2 rod (all 
shown in green), stained with an antibody specific for lamin B2 (red). Bars 10 μm. 

 

Figure 9: Double labeling of YFP-lamin B2 deletion mutants and lamin A/C. Confocal 
sections of U2OS cells (A) untransfected, expressing (B) YFP-lamin B2 Δ32head, (C) YFP-lamin B2 
headless, (D) YFP-lamin B2 tailless, (E) YFP-lamin B2 Δ32head/tailless, (F) YFP-lamin B2 rod (all 
shown in green), stained with an antibody specific for lamin A/C (red). Bars 10 μm. 
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4.1.4 Effect of lamin B2 deletion mutants on endogenous NE 

proteins 

Lamins have been shown to interact with several integral membrane proteins of the 

inner nuclear membrane (Gruenbaum et al, 2003). To study the effects of the lamin 

head and/or tail deletions on the organization of inner nuclear membrane proteins in 

the nuclear envelope, U2OS cells were fixed 48 hours post transfection with the 

respective YFP-expression plasmids and were stained with antibodies specific for LBR 

(Figure 10) or emerin (Figure 11). LBR localization was not disturbed by any of the 

tailless lamin B2 mutants (Figure 10 D, E, F). However, in cells expressing YFP-lamin 

B2 Δ32head and YFP-lamin B2 headless LBR was indeed mainly localized at the 

nuclear envelope but was in addition massively found at the ER (compare Figure 10 

A to  B + C). This suggests that incorporation of headless lamin B2 mutants into the 

nuclear envelope interferes with proper nuclear envelope organization and thus leads 

to a redistribution or retention after synthesis of LBR in the ER. In contrast, emerin 

distribution was not influenced neither by the presence of head deleted lamin 

mutants nor by tail deleted lamin mutants (Figure 11).  
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Figure 10: Double labeling of YFP-lamin B2 deletion mutants and LBR. Confocal sections 
of U2OS cells (A) untransfected, expressing (B) YFP-lamin B2 Δ32head, (C) YFP-lamin B2 
headless, (D) YFP-lamin B2 tailless, (E) YFP-lamin B2 Δ32head/tailless, (F) YFP-lamin B2 rod (all 
shown in green), stained with an antibody specific for LBR (red). Bars 10 μm. 

 

Figure 11: Double labeling of YFP-lamin B2 deletion mutants and emerin. Confocal 
sections of U2OS cells (A) untransfected, expressing (B) YFP-lamin B2 Δ32head, (C) YFP-lamin B2 
headless, (D) YFP-lamin B2 tailless, (E) YFP-lamin B2 Δ32head/tailless, (F) YFP-lamin B2 rod (all 
shown in green), stained with an antibody specific for emerin (red). Bars 10 μm. 
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4.1.5 Biochemical characterization of lamin B2 deletion 

mutants 

U2OS cells were transfected 48 hours prior to differential protein extraction (see 

section 3.7.1). The transfection efficiency was estimated to be 70-90%. The gained 

fractions 1-4 were subjected to SDS-PAGE in aliquot amounts and were analyzed in a 

Western blot by using an antibody specific for lamin B2 (Figure 12). In extracts of 

cells expressing YFP-lamin B2 wild type (WT) both, YFP-lamin B2 WT and 

endogenous lamin B2 protein were detectable in cytoskeletal fractions 2 and 4 

(Figure 12 A). In cell extracts of YFP-lamin B2 Δ32head (Figure 12 B) and YFP-lamin 

B2 headless (Figure 12 C) expressing cells the mutant protein was primarily 

detectable in fractions 2-4. However, a weak signal could also be detected in fraction 

1 indicating that a small amount of the mutant protein is cytoplasmic. It can be 

concluded that partial or complete deletion of the head domain of lamin B2 increases 

the solubility of the protein. Endogenous lamin B2 protein was primarily detectable in 

fractions 2 and 4 and to a smaller extent also in fraction 3 (Figure 12 B + C). Thus, 

expression of lamin B2 head deletion mutants increases the solubility of endogenous 

lamin B2 protein. The relative amount of the YFP-tagged fusion proteins was several 

folds higher than that observed for endogenous lamin B2 protein.  

Western blot analysis of extracts of cells expressing YFP-lamin B2 tailless (Figure 12 

D) and YFP-lamin B2 rod (Figure 12 E) revealed that the mutant proteins could not 

be separated from endogenous lamin B2 by the SDS-PAGE system used. It is thus 

not possible to make a statement about the solubility of tail deleted lamin B2 

mutants and its influence on endogenous lamin B2 protein. The lower band detected 

in the Western blots most likely represents a degradation product as it was also 

detected by an antibody specific for GFP (data not shown).  
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Figure 12: Western blot analysis of differentially extracted fractions from U2OS cells 
expressing YFP-lamin B2 deletion mutants using an antibody specific for lamin B2. 
Extracts of U2OS cells expressing (A) YFP-lamin B2 WT, (B) YFP-lamin B2 Δ32head, (C) YFP-lamin 
B2 headless, (D) YFP-lamin B2 tailless, (E) YFP-lamin B2 rod. Lane 1, soluble and extractable 
cytoplasmic proteins, lane 2, total cytoskeletal fraction, lane 3, high-salt and high-detergent 
soluble cytoskeletal fraction, lane 4, insoluble cytoskeleton proper. It should be considered that 
the signal intensities of the different immunoblots can not be compared directly, since the 
exposure times of the X-ray film varied between cell preparations. 

 

4.1.6 Expression of lamins in mouse embryonic stem (ES) cells 

Mouse embryonic stem cells are derived from the inner cell mass of the blastocyst 

stage of the embryo. They possess a unique characteristic distinguishing them from 

other cells: They have the dual abilities to self-renew and give rise to new pluripotent 

ES cells, and to differentiate into all specialized cell types found in the adult mouse. A 

further feature of ES cells is their exhibition and maintenance of a full (diploid), 

normal complement of chromosomes. In order to study localization of YFP-tagged 

wild type lamin B1 or lamin B2 respectively, and their influences on nuclear 

morphology, ES cells were transiently transfected with the respective expression 

plasmids. Before fixation, cells were dissociated into single cells and transferred on 

matrigel-coated coverslips, and were allowed to settle. Confocal microscopic analysis 

showed that both YFP-lamin B2 (Figure 13 A) and YFP-lamin B1 (Figure 13 C) protein 

localized to the nuclear rim as expected. However, the thickness of the nuclear 

envelope varied between cells, in some cells appearing as a rather thick structure. 

Chromatin distribution as revealed by DAPI staining remained unaffected.  
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In order to study the fate of ES cells stably expressing YFP-lamin B1 or YFP-lamin B2, 

respectively, stable cell lines were generated as described in  3.3.5.2 and were 

analyzed by confocal microscopy. Both, lamin B2 (Figure 13 B) and lamin B1 (Figure 

13 D) YFP fusion proteins localized to the nuclear rim as observed after transient 

transfection of the respective expression plasmid. Stably expressing cells showed no 

variation in the thickness of the nuclear envelope. Also chromatin distribution was 

not affected as revealed by DAPI staining. ES cells stably expressing YFP-lamin B2 or 

YFP-lamin B1 did not show a higher tendency to differentiate when compared to 

untransfected cells as analyzed by morphological criteria.   

 

 

Figure 13: Patterns of YFP-lamin B2 and YFP-lamin B1 in mouse ES cells. (A+B) 
localization of YFP-lamin B2 in (A) transiently transfected and (B) stably expressing ES cells 
(shown in green). (C+D) localization of YFP-lamin B1 in (C) transiently transfected and (D) stably 
expressing ES cells (shown in green). DAPI staining is shown in blue. All images are confocal 
sections. Bar 5μm. 
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4.1.7 Effects of lamin B2 head and/or tail deletion on their 

cellular localization and nuclear morphology in ES cells 

To evaluate the effects of lamin B2 head and/or tail deletions on their cellular 

localization and nuclear morphology in ES cells, cells were transfected with the 

respective expression plasmids and were transferred to matrigel-coated coverslips 

44-48 hours thereafter.  

 

 

Figure 14: Patterns of YFP-lamin B2 deletion mutants in ES cells. (A) YFP-lamin B2 
Δ32head, (B) YFP-lamin B2 headless, (C) YFP-lamin B2 tailless, (D) YFP-lamin B2 rod (all shown in 
green). DAPI staining is shown in blue. All images are confocal sections. Bar 5μm. 

 

The YFP-lamin B2 Δ32head mutant localized to the nuclear rim, as seen in confocal 

mid-sections (Figure 14 A). In some cells the mutant protein formed single small 

aggregates along the nuclear lamina. Nuclear shape remained unaffected. ES cells 

transfected with the YFP-lamin B2 headless construct also showed a clear nuclear rim 

staining (Figure 14 B). Nuclei were slightly less regularly shaped and in some cells 

invaginations of the nuclear envelope were observed. The tailless lamin B2 mutants, 
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YFP-lamin B2 tailless (Figure 14 C) and YFP-lamin B2 rod (Figure 14 D), were both 

diffusely distributed throughout the nucleoplasm and the cytoplasm. Nuclear rim 

stain was not observed. All four lamin deletion mutants did not affect overall 

chromatin distribution as revealed by DAPI staining. These results demonstrate again 

that the head domain is dispensable for nuclear localization and integration of lamin 

B2 protein into the nuclear envelope of ES cells. In contrast, the tail domain is 

necessary for nuclear envelope localization and integration.  

 

4.2 The effect of mutations at the phosphoacceptor sites of 

lamins 

With the onset of mitosis, lamins become phosphorylated and the lamina 

disassembles. In order to study the fate of cells expressing lamin mutants 

permanently mimicking the mitotic phosphorylated state, several lamin B1 and lamin 

B2 mutants were generated. Thereby we aimed to study if a nuclear lamina can be 

built up in the presence of these lamin mutants. Here, the three mitotic Cdk1 

phosphoacceptor sites flanking the rod domain in human lamin B1 and lamin B2 

were changed from serine (S) to aspartic acid (D) by site-directed mutagenesis. In 

Figure 15 a schematic overview of the lamin B1 and lamin B2 S→D mutants 

evaluated in this thesis is given. All protein coding sequences were constructed as N-

terminal fusions with spectral variants of the green fluorescent protein (GFP). For 

lamin B1 three different single mutants were generated, namely S23D, S391D, and 

S393D. For lamin B2 all single (S37D, S405D, S407D), double (S37+405D, 

S37+407D, S405+407D), and triple (S37+405+407D) mutants were generated. The 

detailed description of the cloning strategy of the expression plasmids is presented in 

section  3.2. In the following, lamin S→D mutants will be referred to as “mitotic” 

lamin mutants.  
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Figure 15: Schematic overview of mutated mitotic phosphoacceptor sites in lamins. 
Positions of amino acid exchanges are depicted in red for lamin B1 and in black for lamin B2, 
respectively. 

 

4.2.1 Influence of mitotic lamin B2 mutants on nuclear 

localization and morphology 

To evaluate the effects of lamin B2 mutants mimicking the phosphorylated state on 

localization and nuclear morphology, U2OS cells were transfected with the YFP-lamin 

B2 S407D expression plasmid and fixed 9 and 24 hours thereafter. In cells fixed after 

9 hours, the mutant protein localized to intranuclear aggregates (Figure 16 A + B). 

In few cells, the mutant lamin protein localized to the nuclear rim, similar to wild 

type lamin B2 (Figure 16 C). In these cells, nuclear shape was impaired since nuclei 

were lobulated and showed invaginations of the nuclear lamina. After 24 hours, YFP-

lamin B2 S407D also aggregated inside the nucleus, in most cells forming single large 

lamin territories (Figure 16 D – F). Some of these aggregations appeared to be 

attached to the nuclear envelope, whereas others were not as analyzed by confocal 

microscopy. Most of the aggregates were larger than those observed in cells fixed 

after 9 hours. Nuclear shape was not affected, neither after 9 hours nor after 24 

hours.  
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Figure 16: Pattern of YFP-lamin B2 S407D in U2OS cells. (A-C) cells fixed 9 hours post 
transfection, (D-F) cells fixed 24 hours post transfection. All images are confocal sections.       
Bars 10 μm. 

 

Cells transfected with YFP-lamin B2 S37D, S405D, S37+405D, S37+407D, 

S405+407D, or S37+405+407D expression plasmids were fixed 24 hours thereafter 

and analyzed by confocal microscopy (data not shown). Localization of all YFP-lamin 

B2 S→D mutants was indistinguishable from the lamin S407D mutant. Thus, a single 

amino acid exchange on mitotic phosphorylation sites from serine to aspartic acid 

seems to be sufficient to cause intranuclear and membrane associated aggregation 

of the mutant protein. This effect was independent of both, the position of the 

mutated site and the number of mutated sites.  

Long-term cultivation of transiently transfected cells under standard conditions 

showed that cells expressing “mitotic” lamin B2 mutants are viable and thus must be 

able to undergo mitosis (not shown). 
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4.2.2 Generation of stable cell lines 

In order to characterize whether the large aggregations formed by lamin B2 proteins 

mutated from serine to aspartic acid in mitotic phosphoacceptor sites, are due to 

overexpression of the protein and if cells expressing these mutants are still able to 

undergo mitosis, stable U2OS cell lines were generated and analyzed by confocal 

microscopy (Figure 17). YFP-lamin B2 S37+407D protein localized to the nuclear rim, 

but also aggregated along the nuclear lamina and in the nucleoplasm (Figure 17 A + 

B). Aggregations varied in size, but were not as large as observed upon transient 

transfection. Due to the clone heterogeneity, in some cells localization of YFP-lamin 

B2 S37+407D was restricted to the nuclear rim (Figure 17 C + D). Nuclear shape 

was impaired by YFP-lamin B2 mimicking the phosphorylated state. Some nuclei 

were kidney-like shaped or were highly lobulated (Figure 17 A + B), whereas others 

showed large invaginations and had a donut-like shape (Figure 17 C + D).  

 

 

Figure 17: Confocal sections of U2OS cells stably expressing YFP-lamin B2 S37+407D. 
Bars 10 μm. 
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4.2.3 Influence of “mitotic” lamin B1 mutants on nuclear 

localization and morphology 

In man almost all cells express another B-type lamin besides lamin B2, namely lamin 

B1. To investigate the localization of transiently expressed lamin B1 mutated in 

mitotic phosphoacceptor sites from serine to aspartic acid, U2OS cells were 

transiently transfected with YFP-lamin B1 S23D, S391D, or S393D and were fixed 24 

hours thereafter (Figure 18). 

 

 

Figure 18: Patterns of YFP-lamin B1 mutated in mitotic phosphorylation sites from 
serine to aspartic acid in U2OS cells. Confocal sections of cells expressing (A) YFP-lamin B1 
S37D, (B + D) YFP-lamin B1 S391D, (C) YFP-lamin B1 S393D. Bars 10 μm. 

 

The YFP-lamin B1 S37D protein localized to intranuclear aggregates (Figure 18 A). 

These aggregates were generally smaller than those observed for lamin B2 mutated 

in the corresponding mitotic phosphoacceptor sites. YFP-lamin B1 S391D (Figure 18 

B) and YFP-lamin B1 S393D (Figure 18 C) also localized to intranuclear aggregates. 

In some cells the YFP-lamin B1 S→D protein accumulated and aggregated also in the 
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cytoplasm (Figure 18 D). The nuclear morphology was not affected. As observed for 

YFP-lamin B2 S→D mutants, localization of YFP-lamin B1 S→D protein was 

independent of the position of the mutated site.  

 

4.2.4 Effect of “mitotic” lamin expression on the endogenous 

lamina 

In order to study the effects of lamin B1 and lamin B2 mutated in mitotic 

phosphoacceptor sites on the integrity of the nuclear lamina, U2OS cells were fixed 

16-18 hours post transfection with the respective expression plasmids and stained 

with antibodies specific for lamin B2 or lamin A/C (Figure 19). Since all “mitotic” 

lamin B2 mutants showed the same effects on nuclear localization and morphology 

representative examples will be shown in the following figures. “Mitotic” lamin B1 

mutants will be proceeded the same way. In cells expressing YFP-lamin B2 S407D 

the endogenous lamin B2 was absent from the nuclear rim. Instead, it localized at 

the rim of the aggregates formed by the mutant protein (Figure 19 A). In contrast, 

endogenous lamin A/C was still present at the nuclear rim but was also, to some 

extent, recruited to the aggregates formed by the mutant lamin protein (Figure 19 

B). In cells expressing YFP-lamin B1 S391D, nuclear rim localization of endogenous 

lamin B2 remained unaffected (Figure 19 C). The endogenous lamin A/C protein 

localized to the nuclear rim but also co-localized with the intranuclear aggregates 

formed by the mutant protein (Figure 19 D). The co-localization of lamin B2 and 

lamin B1 mutated in phosphoacceptor sites with lamin A/C suggests an interaction 

between these proteins that depends on the presence of the “mitotic” signal.  
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Figure 19: Double labeling of lamin B2 and lamin B1 phosphoacceptor mutants and 
nuclear lamins. Confocal sections of U2OS cells transfected with YFP-fusion proteins of lamin B2 
S407D (A) or S37+405D (B) or lamin B1 S391D (C + D) (shown in green), and stained with 
antibodies specific for lamin B2 (A + C) or lamin A (B + D) (shown in red). Bars 10 μm. 

 

4.2.5 Effect of “mitotic” lamin expression on endogenous NE 

proteins 

In order to investigate if the distribution of inner nuclear membrane proteins was 

affected by the presence of “mitotic” lamin proteins, U2OS cells were fixed 16-18 

hours post transfection with the respective expression plasmids and stained with 

antibodies specific for LBR, emerin, or Nup153 (Figure 20). In cells expressing YFP-

lamin B2 S37+407D both, endogenous emerin and LBR were localized at the nuclear 

rim (Figure 20 A + B). However, rim staining was not homogeneously and was 

interrupted at sites of lamin aggregates that appeared to be attached to the nuclear 

envelope. Nup153 also localized to the nuclear rim as expected but in contrast to 

LBR and emerin was accumulated at sites of aggregates formed by the mutant 

protein (Figure 20 C).  
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Cells transfected with the YFP-lamin B1 S391D expression plasmid showed no 

alterations in LBR, emerin, or Nup153 localization (Figure 20 E - F).  

 

Figure 20: Double labeling of lamin B1 and lamin B2 phosphoacceptor mutants with 
NE proteins. Confocal sections of cells transfected with YFP-lamin B2 S37+407D (A – C, shown 
in green) or YFP-lamin B1 S391D (D – F, shown in green) respectively, and stained with 
antibodies specific for LBR (A + D), emerin (B + E), Nup153 (C + F) (shown in red). Bars 10 μm. 

 

4.2.6 In vivo dynamics of aggregate formation 

The investigation of “mitotic” lamin B2 mutants in U2OS cells showed that these 

mutants formed large aggregates in the nucleus after about 24 hours post 

transfection of the respective expression plasmids. In order to analyze the process of 

the formation and the mobility of these aggregates in more detail, U2OS cells were 

transiently transfected with the YFP-lamin B2 S407D expression plasmid and directly 

processed for live cell imaging. The cells were observed by confocal imaging in 3D 

with a time lapse of 30 minutes. Formation and mobility of nuclear aggregates was 

analyzed in maximum projections of the 3D stacks (Figure 21). From about 4-5 hours 

on post transfection the mutant protein was observed to be expressed in significant 

amounts. At 11 hours after transfection the formed aggregates varied in size but 

were still relatively small (Figure 21 A). However, the aggregates grew over time and 
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fused when in spatial proximity (Figure 21: B - F, aggregates about to fuse are 

indicated by arrows). The number of aggregates decreased, resulting in some of the 

cells in the formation of single large lamin territories (Figure 21: compare E (18 

aggregates) to F (9 aggregates)). These reorganization events were very dynamic. 

The nuclei became very mobile and reversibly formed large lobulations (Figure 21 C).  

 

Figure 21: In vivo dynamics of YFP-lamin B2 S407D aggregate formation in U2OS 
cells. Maximum projections of 3D stacks. Time points indicated are post transfection. Arrows 
indicate aggregates about to fuse. Bar 10 μm. 

 

4.2.7 Aggregate formation leads to drastic chromatin 

reorganization 

Lamins are thought to be involved in chromatin organization (Bridger et al, 2007). In 

order to study changes in chromatin distribution due to aggregate formation in U2OS 

cells expressing YFP-lamin B2 S407D, fixed cells were stained with DAPI and 

analyzed by immunofluorescence. Confocal microscopy of the DAPI staining revealed 

that chromatin is excluded from areas where YFP-lamin B2 S407D aggregates are 

formed (Figure 22 A). The aggregates are spatially confined from chromatin, thus 

occupying a chromatin-free nuclear space. Chromatin distribution was also analyzed 
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in U2OS cells stably expressing a CFP fusion protein of histone H2A (Figure 22 B). 

For this purpose a U2OS cell line stably expressing a CFP fusion protein of histone 

H2A was generated and was transiently transfected with the YFP-lamin B2 S407D 

expression plasmid. Confocal microscopy showed that CFP-H2A was eliminated from 

areas of aggregate formation. Thus it is concluded that YFP-lamin B2 S407D 

accumulation takes place in the interchromosomal domain (ICD) compartment, 

eventually occupying a chromatin-free nuclear space. 

 

Figure 22: Chromatin organization in U2OS cells expressing YFP-lamin B2 S407D. (A) 
chromatin distribution revealed by DAPI staining (blue), (B) chromatin distribution in U2OS cells 
stably expressing CFP-H2A (blue). All images are confocal sections. Bars 10 μm. 

 

4.2.8 Co-transfection of lamin B1 and lamin B2 

Both, lamin B1 S→D mutants as well as lamin B2 S→D mutants formed intranuclear 

aggregates upon expression in U2OS cells. In order to study the spatial relationship 

of lamin B1 S→D mutants with lamin B2 S→D mutants and to find out whether the 

aggregates co-localize, co-transfection with both constructs was performed. U2OS 

cells were co-transfected with GFP-lamin B2 S407D and mCherry-lamin B1 S393D, 

fixed 24 hours thereafter and analyzed by confocal microscopy (Figure 23). The 

aggregates formed by the mutants were similarly distributed throughout the nucleus 
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and appeared to occupy the same nuclear space. However, analysis of confocal 

stacks in z showed that the GFP-lamin B2 S407D and mCherry-lamin B1 S393D 

signals did not co-localize completely (see insets Figure 23). Hence, both proteins 

were rather in very close proximity to each other, overlapping on the borders of the 

aggregates. These observations suggest that both proteins occupy the same nuclear 

space but they do not intermingle.  

 

Figure 23: Single confocal sections of a U2OS cell co-expressing GFP-lamin B2 S407D 
(green) and mCherry-lamin B1 S393D (red).  Bar 10 μm. 

 

4.2.9 Co-transfection of “mitotic” lamins with NLS-vimentin 

Several of the “mitotic” lamin B mutants fused to mCherry were also investigated 

concerning their co-localization to other ectopically expressed proteins. To this aim 

mCherry-lamin B1 S393D and GFP-Xenopus laevis NLS-vimentin were co-transfected 

in U2OS cells and fixed 24 hours thereafter (Figure 24 A). mCherry-lamin B1 S393D 

assembled into larger intranuclear aggregates, whereas GFP-Xenopus laevis NLS-

vimentin was visible as small intranuclear dots. The GFP-Xenopus laevis NLS-

vimentin dots surrounded the mCherry-lamin B1 S393D aggregates but could also be 
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observed apart from the aggregates. Hence, they co-localized but were not 

deposited into the same aggregate.  

Co-transfection of mCherry-lamin B2 S407D and GFP-Xenopus laevis NLS-vimentin 

showed similar results (Figure 24 B). mCherry-lamin B2 S407D appeared as irregular 

aggregates throughout the nucleus. These aggregates co-localized with GFP-Xenopus 

laevis NLS-vimentin, but did not intermingle. These results indicate that ectopically 

co-expressed mCherry-lamin B2 S407D or mCherry-lamin B1 S393D respectively, and 

GFP- Xenopus laevis NLS-vimentin occupy the same nuclear space, i.e. the ICD but 

are processed and sorted differently.  

 

Figure 24: Confocal sections of U2OS cells co-expressing (A) mCherry-lamin B1 S393D 
(red) and GFP-Xenopus laevis NLS-vimentin (green), (B) mCherry-lamin B2 S407D 
(red) and GFP-Xenopus laevis NLS-vimentin (green). Arrows point to GFP-Xenopus laevis 
NLS-vimentin dots lying next to lamin aggregates. Arrowheads indicate single GFP-Xenopus laevis 
NLS-vimentin dots. Bars 10 μm. 

 

4.2.10 Effects of mitotic lamin expression on PCNA localization 

Nuclear lamins are thought to play a role in DNA replication. Several laboratories 

have demonstrated that nuclear lamin proteins are essential for DNA replication in 

Xenopus egg extracts. Without lamin proteins, nuclear membranes assemble around 

Xenopus sperm chromatin but do not initiate replication. In one case it was shown 
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that the replication fork protein PCNA (proliferating cell nuclear antigen) is relocated 

from replication centers to intranuclear lamin aggregates (Spann et al, 1997). Izumi 

et al. (2000) showed in mammalian cells that dominant negative lamin B1 mutants 

trapped PCNA into intranuclear aggregates. In order to investigate whether “mitotic” 

lamin B2 sequesters PCNA from replication centers, fixed cells were analyzed by 

confocal microscopy. U2OS cells transiently transfected with YFP-lamin B2 S407D 

were fixed 24 hours thereafter and stained with an antibody specific for PCNA 

(Figure 25 A). YFP-Lamin B2 S407D trapped PCNA into intranuclear aggregates. In 

cells co-expressing YFP-lamin B2 S407D and CFP-PCNA, PCNA protein was also 

recruited into the aggregates formed by YFP-lamin B2 S407D (Figure 25 B).  

 

Figure 25: Double labeling of YFP-lamin B2 S407D and PCNA. (A) U2OS cell expressing 
YFP-lamin B2 S407D (green in merge) stained with an antibody specific for PCNA (red in merge), 
(B) U2OS cells co-transfected with YFP-lamin B2 S407D (green in merge) and CFP-PCNA (red in 
merge). All images are confocal sections. Bars 10 μm. 

 

4.2.11 Biochemical analysis of cells expressing mitotic lamin 

mutants 

In order to characterize the solubility of “mitotic” lamin B2 mutants, transiently 

transfected U2OS cells were subjected to differential protein extraction (see  3.7.2). 

Cells have been transfected with the respective expression plasmid about 18-22 
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hours before the extraction procedure, with an estimated transfection efficiency of 

about 80-90%. Fractions 1-4 were analyzed in a Western blot by detection with an 

antibody specific for lamin B2 (Figure 26).  

 

Figure 26: Western blot analysis of differentially extracted fractions from U2OS cells 
expressing YFP-lamin B2 mutants mimicking the mitotic phosphorylated state using 
an antibody specific for lamin B2. Extracts of U2OS cells expressing YFP fusion proteins of (A) 
lamin B2 WT, (B) lamin B2 S37D, (C) lamin B2 S405D, (D) lamin B2 S407D, (E) lamin B2 
S37+405D, (F) lamin B2 S37+407D, (G) lamin B2 S405+407D, (H) lamin B2 S37+405+407D. 
Lane 1, soluble and extractable cytoplasmic proteins, lane 2, total cytoskeletal fraction, lane 3, 
high-salt and high-detergent soluble cytoskeletal fraction, lane 4, insoluble cytoskeleton proper. It 
should be considered that the signal intensities of the different immunoblots can not be compared 
directly, since the exposure times of the X-ray film varied between cell preparations. 

 

In contrast to YFP-lamin B2 WT which was detectable in fractions 2 and 4 (Figure 26 

A), YFP-lamin B2 proteins mutated from serine to aspartic acid in mitotic 

phosphoacceptor sites was detectable in fractions 2-4 (Figure 26 B-H). This higher 

solubility could be observed in extracts of all mutants analyzed, independent of both 

the position of the mutated site and the number of mutated sites. Endogenous lamin 

B2 protein was detectable in fractions 2 and 4 and its solubility was thus not affected 

by the expression of YFP-lamin B2 proteins mutated in mitotic phosphoacceptor sites. 

The relative amount of the YFP-fusion proteins was several folds higher than 

endogenous lamin B2. These results clearly demonstrate that “mitotic” lamin B2 

mutants do not form co-polymers with endogenous lamin B2. 
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4.2.12 Identification of interaction partners of soluble lamins 

Lamin B2 YFP-fusion proteins mimicking the mitotic phosphorylated state have been 

shown to be more soluble than wild type lamin B2 or endogenous lamin B2 protein. 

Furthermore, they are localized in a chromatin-free nuclear space. In order to 

identify possible interaction partners of these so-called soluble lamins, which might 

be responsible for the formation and sorting of the protein into intranuclear lamin 

aggregates, a co-immunoprecipitation assay was performed followed by MALDI 

analysis. To optimize the cell extraction conditions for the subsequent co-

immunoprecipitation, U2OS cells transfected with the YFP-lamin B2 S407D expression 

plasmid were sequentially extracted with an extraction buffer containing 10 mM 

MgCl2 and 0.2, 0.4, 0.6, 0.8, and 1% Triton X-100, respectively. The gained fractions 

were analyzed in a Western blot by detection with an antibody specific for lamin B2 

(Figure 27 A). A certain amount of YFP-lamin B2 S407D protein with a size of about 

97 kD could already be solubilized with 0.2% and 0.4% Triton X-100. In contrast, 

endogenous lamin B2 could not be extracted with any of the applied Triton X-100 

concentrations and resided completely in the insoluble pellet fraction. Western blot 

analysis with an antibody specific for lamin B2 of extracts of untreated cells, cells 

expressing wild type YFP-lamin B2, and cells expressing YFP-lamin B2 S407D showed 

that 0.4% Triton was sufficient to extract a high portion of YFP-lamin B2 S407D 

protein being thus present in the supernatant (Figure 27 B). On the contrary, wild 

type YFP-lamin B2 and endogenous lamin B2 (control) remained unaffected and 

resided completely in the insoluble pellet fraction. These results suggest that wild 

type and endogenous lamin B2 are in a membranous state.  
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Figure 27: Western blot analysis of Triton X-100 extracted U2OS cells expressing YFP-
lamin B2 S407D. (A) Sequential Triton X-100 extraction (0.2%, 0.4%, 0.6%, 0.8%, 1%, 
insoluble Pellet (P)) of cells expressing YFP-lamin B2 S407D. (B) Extracts of wild type cells, cells 
expressing wild type YFP-lamin B2, and cells expressing YFP-lamin B2 S407D were treated with 
0.4% Triton X-100 and processed for soluble and cytoskeletal fractions, P pellet, S supernatant. 

 

Figure 28: Co-immunoprecipitation of Triton X-100 extracted U2OS cells expressing 
YFP-lamin B2 S407D using an antibody specific for lamin B2. (A) Immunoprecipitation 
with an antibody specific for lamin B2, (B) Coomassie staining of immunoprecipitation. Numbers 
1-7 indicate the bands cut out for MALDI analysis. PC preclearing sample, IP immunoprecipitation 
sample, AC antibody control sample. 

 

For the co-immunoprecipitation assay cells expressing YFP-lamin B2 S407D were 

extracted as described above and the supernatant containing the soluble lamin 

complexes was subsequently subjected to immunoprecipitation with an antibody 

specific for lamin B2 as described in  3.7.4. The immunoprecipitation sample (IP), the 

preclearing sample (PC) and the antibody control sample (AC) were analyzed in a 

Western blot by detection with an antibody specific for lamin B2 (Figure 28 A). YFP-

lamin B2 S407D protein could not be detected in the preclearing sample, thus 

excluding unspecific binding of the protein to the protein G sepharose beads. 
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Immunoprecipitation targeted against lamin B2 precipitated YFP-lamin B2 S407D. 

Western blot analysis with an antibody specific for lamin B2 revealed two additional 

bands with a size of ~66 kD and ~55kD, respectively. These bands most likely 

represent degradation products as they are also detected with an antibody specific 

for GFP (data not shown). An additional band detected was also detected in the 

antibody control sample, and thus probably corresponded to the heavy chains of the 

antibody.  

For MALDI analysis, preclearing sample, immunoprecipitation sample, and antibody 

control sample were subjected to SDS-PAGE and the gel was subsequently stained 

with Coomassie staining solution (Figure 28 B). Seven bands (1-7) were cut out of 

the gel and MALDI-TOF analysis was performed. The results are listed in Table 10 in 

the appendix. The lMALDI-TOF analysis was performed in cooperation with Dr. M. 

Schnölzer, DKFZ Heidelberg. 

 

4.3 Characterization of a laminopathy causing lamin A mutant 

Zeller et al. (2006) recently published a novel mutation in the lamin A gene, a 

p.R321X nonsense mutation, found in a family with dilated cardiomyopathy. Three 

family members were heterozygous for the mutation and revealed variable degrees 

of cardiac contractile dysfunction in addition to severe rhythm disturbances. In order 

to characterize the mutation on a cellular level, explanted cardiac tissue and 

cultivated skin fibroblasts from two patients carrying this mutation were analyzed. 

Patient IV-1 required heart transplantation at the age of 34, and his sister (IV-3) 

suffers from mildly reduced left ventricular systolic function and first degree 

atrioventricular conduction block. The pedigree of the affected family is shown in the 

appendix (Figure 34).  

 

4.3.1 Downregulation of the mutant LMNA allele by nonsense-

mediated decay (NMD) 

An allele specific Taqman assay was employed to determine the ratio of wild type to 

mutant transcripts in patient samples (Table 9). In cultured skin fibroblasts of both 

patients IV-1 and IV-3, the wild type transcripts exceeded the mutant transcripts 
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about 30-fold. Similarly, the wild type transcripts were ~7- and ~9-fold higher in the 

left and right ventricular myocardium, respectively, of patient IV-1, than the mutant 

transcripts. In control fibroblasts, a wild type to mutant mRNA ratio of 304:1 was 

obtained, demonstrating negligible unspecific recognition of the wild type allele by 

the Taqman probe for the mutant allele.  

 

Table 9: Allele specific quantitation of LMNA transcripts. 

1The Δ CT value (CTwt-CTmut) at equal quantities of both alleles, as is the case in the 
genomic DNA of patient IV-1 and IV-3, was ~1. Accordingly, the 2- Δ CT values have to be 
corrected by a factor of 2. 

 

4.3.2 Biochemical characterization of cardiac tissue and skin 

fibroblasts 

In order to investigate the expression levels of wild type and mutant p.R321X protein 

a specimen of left ventricular myocardium obtained from patient IV-1 at the time of 

cardiac transplantation and cultured skin fibroblast cells from patients IV-1 and IV-3 

were analyzed by Western blotting. For control, primary skin fibroblasts obtained 

from a healthy person and cardiac muscle tissue from a patient, who underwent 

cardiac transplantation due to ischemic cardiomyopathy and harbored no LMNA 

mutation, were used. Cardiac tissue was disrupted and homogenized as described in 

Sample Allele CT Δ CT  

(CTwt-CTmut)
2- Δ CT Corrected ratio1  

wild type/mutant 

Patient IV-3 
fibroblasts 

wild type 

mutant 

28.03 

31.94 
-3.91 15.0 30.0 

Patient IV-1 
fibroblasts 

wild type 

mutant 

27.73 

31.60 
-3.87 14.6 29.2 

Patient  IV-1 
left ventricle 

wild type 

mutant 

32.86 

34.57 
-1.71 3.3 6.6 

Patient  IV-1 
right ventricle 

wild type 

mutant 

29.13 

31.35 
-2.22 4.7 9.4 

Wild type 
control 
fibroblasts 

wild type 

mutant 

27.80 

35.05 
-7.25 152.2 304.4 
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section  3.7.1 and cell lysates were subjected to SDS-PAGE. Equal protein amounts of 

control and patient cardiac tissue were loaded onto the gel as validated by 

Coomassie staining (Figure 29). Cultured skin fibroblast cells from patients IV-1 and 

IV-3 were analyzed by differential protein extraction (see  3.7.2). Western blots of 

cardiac tissue and skin fibroblasts were detected with an antibody raised against the 

amino-terminal domain of lamin A/C. No differences between the relative amounts of 

wild type lamin A/C protein could be observed, neither in the controls and in cardiac 

muscle from patient IV-1 (Figure 29 A), nor in the cytoskeletal fractions 2 and 4 of 

cultured fibroblast cells from both patients examined (IV-1 and IV-3; exemplified for 

patient IV-1, Figure 29 B). These data suggest that the single wild type LMNA allele 

in the heterozygous patient is sufficient to produce ‘normal’ quantities of lamin A/C 

protein. In agreement with the finding of down regulation of the mutant LMNA allele 

at the mRNA level, the truncated p.R321X lamin A protein with an expected 

molecular weight of ~37 kDa could not be detected in all patient tissues analyzed at 

our level of sensitivity (Figure 29 A + B).  

 

 

Figure 29: Western blot analysis of patient and control samples using an antibody 
specific for lamin A. (A) Whole cell lysate of left ventricular myocardial tissue. Coomassie 
staining (two lanes on the right), (B) Differential protein extraction of fibroblasts. Lane 1, soluble 
and extractable cytoplasmic proteins, lane 2, total cytoskeletal fraction, lane 3, high-salt and high-
detergent soluble cytoskeletal fraction, lane 4, insoluble cytoskeleton proper. 
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4.3.3 Inhibition of the proteasome uncovers the truncated 

LMNAR321X protein 

We have demonstrated that the mutant LMNA allele was significantly down regulated 

but not completely shut off. This leaves the possibility that the truncated message 

could be translated into a short-lived protein. Since such misfolded proteins are 

particularly prone to proteasomal degradation, the proteasomal function in cultured 

fibroblasts was suppressed with the proteasome inhibitor epoxomicin. The cells were 

treated for 24 hours with 100 nM epoxomicin and subjected to differential protein 

extraction. The isolated fractions 1-4 were analyzed in a Western blot by detection 

with an antibody specific for the N-terminal segment of lamin A/C. The truncated 

p.R321X protein was readily detectable in the cytoskeletal fractions 2 and 4 of 

patient IV-1 but not in control fibroblasts (Figure 30). In fibroblasts derived from 

patient IV-3, however, no truncated p.R321X protein was detected. This indicates 

that NMD may not fully prevent the synthesis of the truncated protein in patient IV-

1. Moreover, the relative amount of lamin A to lamin C in epoxomicin treated 

fibroblasts of patient IV-1 was reduced compared to control fibroblasts. The reason 

for this reduction in lamin A is at present completely elusive. 

 

 

Figure 30: Western blot analysis of detergent-extracted fractions from patient and 
control fibroblasts treated with epoxomicin using an antibody specific for lamin A. Left 
panel: patient IV-1, right panel: control patient. Lane 1, soluble and extractable cytoplasmic 
proteins, lane 2, total cytoskeletal fraction, lane 3, high-salt and high-detergent soluble 
cytoskeletal fraction, lane 4, insoluble cytoskeleton proper. 
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4.3.4 Nuclear morphology, chromatin distribution and 

localization of nuclear proteins in patient tissues 

The nuclear morphology and the distribution of nuclear proteins were examined in 

cardiac tissue of patient IV-1 and in cultured fibroblasts of patient IV-1 and IV-3 

(Figure 31). The fixed cells or tissues were labeled with a lamin A/C specific antibody 

and chromatin organization was investigated by DAPI staining. Lamin A/C staining 

patterns and nuclear morphology of patient IV-1 fibroblasts and cardiac tissue was 

indistinguishable from those obtained for the healthy controls. DNA staining revealed 

a normal heterochromatin distribution (Figure 31). 

 

 

Figure 31: Confocal sections of control fibroblasts (upper row), patient fibroblasts 
(middle row) and patient left ventricular myocardium (lower row) stained with an 
antibody specific for lamin A (shown in green). Note the typical rim staining for lamin A in 
all cells and the normal heterochromatin distribution as indicated by DAPI staining (shown in 
blue). Bars 10 μm. 
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Immunofluorescence staining of fibroblasts obtained from patient IV-1 and IV-3 for 

lamin B2, emerin, and LBR (exemplified for patient IV-1 fibroblasts; Figure 32) 

showed staining patterns indistinguishable from those obtained for healthy controls. 

The same was true for immunofluorescence studies done after treatment with 

epoxomicin for 24 hours (data not shown). 

 

 

Figure 32: Representative immunofluorescence staining of lamin B2 (upper row), 
emerin (middle row), and lamin B receptor (LBR, lower row) in control (left column) 
as well as in patient (right column) cultured fibroblasts. All images are confocal sections. 
Bars 10 μm. 
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4.3.5 Transfection of the lamin A p.R321X mutant 

In order to reveal potential toxic effects of the truncated protein on the nuclear 

morphology and chromatin distribution, an EGFP-tagged expression construct for 

both wild type LMNA and mutant p.R321X was generated. Transient transfection of 

HeLa cells with the wild type LMNA cDNA revealed a typical “rim-staining” at the 

nuclear periphery. The mutant lamin A was found to be partially targeted to the 

nucleus, where it accumulated in the nucleoplasm and, to some extent, in the 

nuclear lamina (Figure 33). Additionally, the mutant protein was distributed 

throughout the cytoplasm. The heterochromatin distribution, the nuclear shape and 

the distribution of lamin B2 and emerin appeared not to be affected by transient 

overexpression of the truncated lamin A variant.  

 

Figure 33: Transient transfection study of EGFP-tagged p.R321X in HeLa cells. Note the 
diffuse cytoplasmic and nucleoplasmic distribution of the truncated protein (green, left column) in 
transfected cells. Some mutant protein is also recruited to the nuclear lamina as indicated by the 
rim staining. Immunofluorescence stainings with antibodies specific for lamin B2 or emerin 
respectively are shown in red (middle column). DNA is detected with DAPI (blue, right column). 
All images are confocal sections. Bars 10 μm. 
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5 Discussion 

5.1 Topogenesis of lamins/lamina 

5.1.1 Role of the lamin head and tail domains in cellular 

localization 

To determine the influence of the distinct head and tail domains on lamin filament 

organization and cellular localization, human cultured cells were transfected with 

cDNAs coding for the Δ32head, headless, tailless, Δ32head/tailless, and the rod of 

human lamin B2 fused to YFP. Deletion of the head domain or the tail domain was 

essential for the formation of a dominant negative lamin mutant. Mutants with partial 

(LB2 Δ32head) or complete deletion of the head domain (LB2 headless) localized to 

the nuclear rim but nuclear shape was highly impaired. Double mutants exhibiting 

both head domain deletions and tail domain deletions (LB2 Δ32head/tailless and LB2 

rod) were effective as dominant negative mutants and their effects were almost 

identical to those of the mutants carrying only the tail deletion (LB2 tailless).  

 

Tailless lamin B2 mutants 

We could show that the lamin B2 tail domain is indispensable for targeting the 

protein to the nuclear rim and its proper integration into the nuclear envelope. 

However, it seems to be dispensable for nuclear localization. Lamin B2 mutants 

devoid of the tail domain were not only distributed throughout the cytoplasm but 

were also found in the nucleoplasm. Furthermore, tailless lamin mutants could not be 

integrated into the nuclear rim. These observations are in agreement with previous 

studies. The C-terminal tail domains of lamins contain several motifs that are 

essential for their correct localization: a nuclear localization signal (NLS) and a CAAX 

box motif, which are thought to be required for proper targeting of lamins into the 

nucleus and nuclear envelope, respectively. Although tailless lamin B2 mutants are 

devoid of the NLS a significant portion of the mutant protein localized to the 

nucleoplasm. The nuclear localization of tailless lamin B2 can be explained by the 

presence of an evolutionary conserved motif at the end of coil 2 of the α-helical rod 

domain. This motif has been shown to direct vimentin, a cytoplasmic IF protein, to 
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the nucleus when its tail domain is deleted (Rogers et al, 1995). The inability of 

tailless lamin B2 to incorporate into the nuclear lamina is suggested to be due to the 

lack of the CAAX motif. Chicken lamin B2 CAAX-less mutant proteins were reported 

to be distributed diffusely throughout the nucleoplasm (Nigg et al, 1992). B-type 

lamins are permanently farnesylated and this modification, although necessary, is not 

sufficient for anchorage at the nuclear envelope, and a prenyl receptor is required for 

this association. Two nuclear membrane proteins bind to B-type lamins in domains 

that are not deleted in any of the tail deleted lamin B2 mutants reported here, 

namely LBR (Mical & Monteiro, 1998) and LAP2β (Furukawa & Kondo, 1998). 

Although it has been concluded previously that the LBR binding domain is not 

sufficient for nuclear envelope localization of lamin B (Mical & Monteiro, 1998), 

LAP2β does appear to have an important role in lamin filament assembly (Yang et al, 

1997). We conclude from our results that the tail domain of lamin B2 contains those 

elements that are necessary for effectively guiding these lamins to the nuclear 

envelope.  

 

Lamin B2 head deletion mutants 

A major result of our study was that the lamin B2 head domain is dispensable for 

localization of the protein to the nuclear rim. Wild type lamin B2 contains in its head 

domain a highly conserved sequence. This is deleted in lamin B2 headless but not in 

lamin B2 Δ32head. Interestingly both, lamin B2 protein deleted in the N-terminal 32 

amino acids (LB2 Δ32head) and lamin B2 protein deleted in the complete head 

domain (LB2 headless) localized to the nuclear rim. It is thus clear that the 

conserved sequence in the lamin B2 head domain is dispensable for nuclear envelope 

targeting. However, nuclear shape was highly impaired by both mutants. This finding 

suggests that headless lamin B2 protein interferes with proper lamina assembly and 

thus impairs the structural function of the nuclear lamina. Several important studies 

have highlighted the role of the lamina in determining the shape of the nucleus. In 

mouse spermatocytes, nuclei are hook shaped rather than spherical, and a 

spermatocyte-specific lamin - lamin B3 – is expressed in these cells. Indeed, 

exogenous expression of lamin B3 in somatic cells resulted in their nuclei adopting a 

hook-shaped morphology (Furukawa & Hotta, 1993). Schirmer et al. (2001) 

constructed a dominant-negative mutant of lamin B1 that lacked four-fifths of the 
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rod domain (B1Δrod). This mutant was still able to self-assemble into filaments in 

vitro and, when transfected into cultured cells, was incorporated into the lamina. 

However, its incorporation into the lamina caused massive deformation of the 

nuclear envelope. In support of this, deletion of the head domain of both lamin B1 

(Ellis et al, 1997) and lamin A (Spann et al, 1997) lead to the formation of very 

fragile nuclei when used to assemble artificial nuclei using detergent extracted sperm 

nuclei in the presence of Xenopus egg extracts. 

 

5.1.2 “Mitotic” lamins  

The amino acid sequence of three phosphorylation sites of human lamin B2 and 

lamin B1 were altered and the mutated proteins were expressed in U2OS cells. The 

mutations affected three highly conserved serine residues flanking the α-helical rod 

domain. These serine residues (i.e. serine 37 and serine 405 or 407 in the human 

lamin B2 sequence; serine 23 and serine 391 or 393 in the human lamin B1 

sequence) have been shown to be phosphorylated in response to a cdc2 kinase in 

mitosis (Heald & McKeon, 1990; Nigg, 1992; Peter et al, 1990). 

If the phosphorylation of Ser-37/23, Ser-405/391, and Ser-407/393 participated in 

the active disassembly of higher order lamin associations, it would be expected that 

an amino acid exchange of these serine residues to negatively charged aspartic acid 

residues would either prohibit the integration of these mutants into the nuclear 

lamina or lead to the disassembly of the nuclear lamina. Indeed, the mutant proteins 

were not incorporated into the lamina but formed intranuclear aggregates when 

expressed in U2OS cells. Both, lamin B1 mutants and lamin B2 mutants localized to 

nuclear aggregates. The aggregates varied in size, and those observed for lamin B1 

mutants were in general smaller than mutant lamin B2 aggregates. Some of these 

aggregates appeared to be associated with the nuclear membrane whereas others 

were not as judged by confocal microscopy. Interestingly, the effect of nuclear 

aggregate formation was independent of both the position of the mutated site and 

the number of mutated sites. Early on, using polymers reconstituted in vitro from 

bacterially expressed chicken lamin B2 proteins, it could be shown that 

phosphorylation of mitotic phosphoacceptor sites caused disassembly of longitudinal 

head-to-tail polymers into dimers but not dissociation of dimers (Nigg, 1992; Peter et 
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al, 1991). A molecular description of the effects of phosphorylation on lamin 

assembly remains to be established: what is the structure of the non-helical regions 

surrounding the mitotic phosphoacceptor sites before phosphorylation and how do 

these sites change in response to phosphorylation? It is conceivable that the major 

effects on lamin disassembly are not directly mediated by the placement of negative 

charge but rather through conformational changes of the surrounding regions.  

The observed nuclear aggregates might represent a deposit for excess/surplus 

produced proteins, or proteins which might interfere/are harmful with cellular 

integrity. About the ultrastructure of the aggregates it can only be speculated. It is 

not clear whether the aggregates represent accumulations of the mutant protein or if 

they represent intranuclear membrane assemblies. Previous electron microscopic 

analysis demonstrated that the exogenous expression of CAAX-containing lamin 

proteins in Xenopus A6 cells, Xenopus oocytes, and COS-7 cells lead to the formation 

of intranuclear membrane assemblies (Prufert et al, 2004 2004). It has been shown 

that in Xenopus oocytes these intranuclear membranes are covered by single lamin 

filament layers (R. Stick, personal communication). It has been proofed to be difficult 

to solubilize intranuclear NLS-vimentin aggregates (H. Herrmann, personal 

communication) which have been shown to consist of loose protein accumulations. 

The higher solubility of “mitotic” lamin B2 mutants compared to wild type lamin B2 

would argue for intranuclear membrane assemblies.  However, as observed in 

immunofluorescence stainings with antibodies specific for inner nuclear membrane 

proteins, LBR and emerin were not localized to the nuclear aggregates. They were 

furthermore excluded from the nuclear rim at the sites of “mitotic” lamin B2 

aggregates. In contrast, Nup153 was enriched at the sites of nuclear aggregates but 

did not relocalize from the nuclear rim. These results argue against the formation of 

intranuclear membrane assemblies. It will be necessary to analyze cells expressing 

“mitotic” lamin B mutants by means of electron microscopy to clarify the 

ultrastructure of the aggregates observed.  

The structure and the mobility of lamin proteins in these aggregates is not 

characterized so far. Fluorescence recovery after photobleaching (FRAP) analysis of 

the nuclear lamina in interphase cells revealed that both lamin A and lamin B1 are 

almost immobile in the lamina (Broers et al, 1999; Daigle et al, 2001). However, in 

our study extracts from differentially extracted cells expressing mutant lamin B2 
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showed an increased solubility of mutant proteins compared to endogenous lamin B2 

suggesting a higher mobility of the proteins in the aggregates. In live cell imaging 

experiments we could show that the nuclear aggregates are rather dynamic 

structures. The aggregates fused, forming single large lamin territories. Preliminary 

data from FRAP analysis suggest a higher mobility of lamin mutants in the 

aggregates as in the nuclear lamina (data not shown). Further FRAP analysis will be 

performed to verify this observation.  

The mechanism underlying aggregate formation is yet unknown. Upon co-

transfection, aggregates of “mitotic” lamin B1 did not co-localize completely with 

“mitotic” lamin B2 aggregates but rather showed an overlap of aggregates on the 

borders. Similar results were obtained when co-expressing Xenopus NLS-vimentin 

and “mitotic” lamin B1 or “mitotic” lamin B2 protein. Xenopus NLS-vimentin formed 

nuclear dots localizing next to mutant lamin aggregates but were also found in 

separate locations. Nuclear Xenopus NLS-vimentin accumulations have been 

suggested to represent deposit structures for proteins produced in excess or proteins 

incapable of filament formation (Reichenzeller, 2002). However, in stable cell lines 

NLS-vimentin formed few and very small aggregates indicating that this ectopically 

expressed protein is recruited to specific loci within the nucleus (Bridger, 2005). The 

nuclear space occupied by NLS-vimentin has been shown to be the interchromosomal 

domain (ICD) compartment (Bridger et al, 1998). Mutant lamin aggregates were also 

clearly separated from chromatin and in close spatial proximity to vimentin-NLS 

accumulations. This suggests that both aggregates formed from mutant lamin 

proteins and NLS-vimentin accumulations are deposited in the ICD. Although all of 

the above mentioned ectopic or mutant proteins are localized to nuclear aggregates 

occupying the same nuclear space, intermingling could not be observed. Although 

the mechanism underlying aggregate formation of “mitotic” lamin B1, “mitotic” lamin 

B2, and NLS-vimentin remains elusive, our results strongly suggest the existence of 

nuclear “protein processing centers”. Their functions may relate to the prevention of 

macromolecular crowding as well as to the organization and distribution of nuclear 

proteins in general.  

In a recent study it was demonstrated that EGFP and EGFP fusion proteins inhibit 

polyubiquitination, a posttranslational modification that controls a wide variety of 

cellular processes, like activation of kinase signaling or protein degradation (Baens et 
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al, 2006). Thus proteasomal degradation of the aggregate forming mutants might be 

inhibited by the presence of their tag.  

 

5.2 Influence of lamin B mutants on the endogenous lamina 

and lamina assembly 

Several studies indicate that there might be a hierarchy of lamin-lamin associations 

at the INM. In this hierarchy, the B-type lamins are assembled into lamina filaments 

first, followed by lamin A and then by lamin C (Hutchison et al, 2001). In Xenopus 

egg extracts, recombinant lamin A is assembled at the NE of in-vitro-assembled 

sperm pronuclei only in the presence of the endogenous lamin B3, indicating that 

lamin A might be incorporated into existing B-type lamina filaments (Dyer et al, 

1999). In tissue culture cells, lamin A remains in the nucleoplasm until B-type lamin 

filaments are assembled in the telophase nuclei (Dechat et al, 2000; Moir et al, 

2000). Finally, dominant negative lamin mutants that have altered lamin-assembly 

properties have distinctively different effects on A-type and B-type lamins (Izumi et 

al, 2000; Schirmer et al, 2001; Vaughan et al, 2001) indicating that the two types of 

lamin might be incorporated into the lamina in different ways.  

 

Lamin B2 head deletion mutants 

Both lamin B2 head deletion mutants localized to the nuclear rim and did not 

influence endogenous lamin A and lamin B2 distribution. However, in cells expressing 

lamin B2 head deletion mutants nuclear shape was highly impaired. Biochemical 

fractionation showed that lamin B2 headless and lamin B2 Δ32head were more 

soluble than transfected YFP-tagged wild type and endogenous lamin B2. These 

results are in support of previous studies which suggested that the head domain is 

required for efficient lamin assembly. In vitro analysis of headless lamin mutants 

demonstrated that the mutant proteins loose their ability to associate head to tail 

(Heitlinger et al, 1992; Stuurman et al, 1996). Other support for the role of the head 

domain in lamin assembly comes from experiments of nuclei assembled in Xenopus 

extracts, in which the nuclei failed to establish a normal organization of lamin B3 in 

the presence of headless lamin mutants (Moir et al, 2000; Spann et al, 1997). In 

mammalian cells, deletion of the head domain in lamin A lead to the formation of 
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nuclear aggregates, which resulted in the disruption of endogenous lamins A/C. In 

contrast, headless lamin B1 was shown to localize to the nuclear rim without any 

detectable effect on the nuclear lamina (Izumi et al, 2000). Therefore, the large 

majority of the results obtained from experiments with headless lamins demonstrated 

that their non-helical amino-terminal head domains are required for the formation of 

the head to tail interactions necessary for normal lamin assembly. They also showed 

that the function of the head domain in filament assembly is evolutionary conserved. 

The discrepancies in the behavior of headless lamin B2 protein and headless lamin 

B1 could reflect genuine differences between lamin B2 and lamin B1. We conclude 

from our results that the head domain of human lamin B2 is necessary for efficient 

lamin assembly. It is however not possible to decide from light microscopy data 

whether the shortened lamin B2 is only targeted correctly but not assembled 

properly, or if the head domain of lamin B2 is not engaged in lamina formation but 

the organization of other factors within the nuclear envelope.  

 

Tailless lamin B2 mutants 

The tailless lamin mutants LB2 tailless, LB2 Δ32head/tailless, and LB2 rod did not 

localize to the nuclear rim and were distributed throughout the cytoplasm and the 

nucleoplasm. Immunofluorescence stainings with antibodies specific for lamin A and 

lamin B2 showed that the tailless lamin B2 proteins were not incorporated into the 

nuclear rim. However, endogenous lamin A and at least a portion of endogenous 

lamin B2 protein resided in the nuclear lamina. These findings indicate that a 

functional lamina can be assembled in the presence of tail deleted lamin B2 mutants. 

In cells expressing lamin B2 tailless, a fraction of lamin A co-localized with the 

mutant lamin B2 in the cytoplasm. It is conceivable that lamin B2 tailless forms 

heteropolymers with lamin A already in the cytoplasm and thus restrains it from 

being transported into the nucleus. However, it is also conceivable that LB2 tailless 

protein in the nucleus recruits lamin A from the nuclear lamina (see below) and is 

transported as heteromeric complex into the cytoplasm. Both possibilities suggest an 

important role of the lamin B2 head domain in heteropolymer formation and in the 

latter case also in the recruitment of lamin A from the nuclear envelope.  
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“Mitotic” lamins 

The effect of lamin proteins mutated in the mitotic phosphoacceptor sites on the 

endogenous lamina has been analyzed by confocal laser scanning microscopy with 

antibodies specific for lamin A and lamin B2. Endogenous lamin A was localized at 

the nuclear rim but was also co-localizing with “mitotic” lamin B1 and “mitotic” lamin 

B2 at nuclear aggregates. Endogenous lamin B2 remained unaffected by the 

expression of mutant lamin B1 and localized at the nuclear rim. These findings are 

consistent with the fact that several dominant negative A-type and B-type lamin 

mutants that form nucleoplasmic aggregates cause the relocation of A-type lamins 

from the NE to the aggregates but do not affect the distribution of B-type lamins 

(Izumi et al, 2000; Vaughan et al, 2001). These findings suggest distinct differences 

in the organization of A-type and B-type lamins within lamina filaments. One 

explanation for this difference is related to the way in which the different lamin types 

are anchored to the nuclear envelope. B-type lamins remain farnesylated throughout 

their lifespan (Moir et al, 1995). The farnesylated modification is important but not 

sufficient for targeting and anchoring the protein to the INM, and a prenyl receptor is 

required for this association. In addition, the integral membrane protein LAP2β also 

binds specifically to B-type lamins (Foisner & Gerace, 1993). Therefore it seems likely 

that B-type lamins are anchored to the nuclear envelope by interactions with integral 

membrane proteins at two separate points along the axis of the lamin dimer. In 

contrast, A-type lamins are not anchored through their tail domains and although 

there are integral membrane proteins that bind to A-type lamins (LAPs 1A, 1B, and 

emerin) these proteins also bind to B-type lamins (Gruenbaum et al, 2003). 

Therefore, specific associations between A-type lamins and integral membrane 

proteins may either not occur or may be less stable than associations between 

integral membrane proteins and B-type lamins. In light of the large number of 

integral membrane proteins, many more proteins may bind at the same time. Hence 

these are all preliminary speculations and it will be important in the future to define 

the network of interactions that tether lamins to the nuclear envelope. It has been 

suggested previously that dominant negative lamin mutants exert their effects by 

trapping lamins that are in a dynamic equilibrium between filamentous and soluble 

nucleoplasmic state (Ellis et al, 1997; Schmidt et al, 1994). Presumably in somatic 

cells A-type lamins are more mobile than B-type lamins for the reasons stated above. 
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Indeed, a significant proportion of A-type lamins is readily extracted from the lamina 

of a range of cell lines, whereas B-type lamins are completely insoluble (Hutchison et 

al, 2001). Thus, a combination of the greater affinity of A-type lamins for the mutant 

proteins and the greater solubility of A-type lamins means that these proteins are 

readily sequestered from the lamina to nucleoplasmic lamin aggregates, whereas B-

type lamins are not.  

In cells expressing “mitotic” lamin B2, the lamin B2 antibody staining was visible as 

rim-like structures surrounding the intranuclear aggregates. This effect might be due 

to sterical hindering of the lamin B2 antibody. It is conceivable that the lamin B2 

antibody used first binds massively on the surface of the nuclear aggregates and 

thus hinders antibody penetration into the aggregates. 

Biochemical fractionation showed that a portion of “mitotic” lamin B2 protein is more 

soluble as wild type lamin B2 protein. The solubility properties of endogenous lamin 

B2 were not influenced by the expression of “mitotic” lamin B2 mutants. This 

indicates that “mitotic” lamin B2 mutant proteins probably do not form 

heteropolymers with wild type lamin B2 due to their “mitotic” signal. We conclude 

from our results that a lamina structure can be assembled in the presence of both 

“mitotic” lamin B1 and “mitotic” lamin B2, however, “mitotic” lamin B2 segregates 

from endogenous lamin B2 protein.  

 

5.3 Organization of the nuclear envelope 

The lamina has important functions in anchoring the elements of the NE to their 

correct position, and the lamins as major elements of the lamina are crucial in this 

process. Anchorage functions of the lamins include the spacing of NPCs and the 

recruitment of proteins to the INM (Lenz-Bohme et al, 1997). In Xenopus sperm 

pronuclei B-type lamins interact with the nuclear pore protein nucleoporin 153 

(Nup153). Moreover, disruption of lamina filaments with dominant negative lamin 

mutants causes a selective loss of Nup153 from NPCs (Smythe et al, 2000). Nup153 

is located within the nucleoplasmic ring of NPCs (Walther et al, 2001). Hence it is in 

good proximity to lamin filaments and therefore it was proposed that lamina 

filaments interact with the nucleoplasmic ring of NPCs via Nup153, thereby anchoring 

NPCs within the NE. We could show that in cells expressing “mitotic” lamin B2 
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mutants Nup153 was accumulated at sites of membrane associated aggregates 

formed by the mutant protein. This suggests that the lamina filament structure 

necessary for correct positioning of the NPCs is interrupted by the presence of 

“mitotic” lamin B2 causing the observed rearrangement of Nup153.  

Emerin and LAP1 are thought to be anchored at the INM through interactions with 

lamin A/C (Manilal et al, 1996; Nagano et al, 1996; Senior & Gerace, 1988; Sullivan 

et al, 1999). In contrast, members of the LAP2 family of INM proteins and LBR are 

believed to be anchored at the INM through interactions with lamin B (Harris et al, 

1995; Ye & Worman, 1994). However, it was shown recently, that CAAX motif 

deleted lamin B protein fractionated independently of LBR, indicating that these two 

proteins do not bind directly to each other (Mical & Monteiro, 1998). We could show 

that deletion of the head or tail domain of lamin B2 does not interfere with proper 

emerin localization. In contrast, LBR was partially localized to the ER by the 

expression of head deleted lamin B2 mutants. Deletion of the lamin B2 head domain 

may lead to a weakening of a structural support network and thus LBR may either be 

partially retained in the ER after synthesis or be partially redistributed from the 

nuclear envelope to the ER. Further experiments will be needed to clarify whether 

the lamin B2 head domain is involved in a direct interaction with LBR. In cells 

expressing “mitotic” lamin B2 mutants, both emerin and LBR localized to the nuclear 

rim. However, LBR and emerin distribution was interrupted at sites where membrane 

associated “mitotic” lamin B2 aggregates occurred. These results clearly demonstrate 

that proper lamin filament assembly is a prerequisite for proper nuclear envelope 

organization.  

 

5.4 The role of lamins in DNA replication 

It is widely accepted that lamins play a role in DNA replication, but the mechanism 

how lamins take part in this process is elusive. Several laboratories have 

demonstrated that nuclear lamin proteins are essential for DNA replication in 

Xenopus egg extracts. Without lamin proteins, nuclear membranes assemble around 

Xenopus sperm chromatin but do not initiate replication. This has been observed 

when lamin-free nuclei are assembled either from extracts that were 

immunodepleted for lamins (Jenkins et al, 1993; Meier et al, 1991; Newport et al, 
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1990) or by supplementing extracts with dominant negative, i.e. headless lamin 

mutants (Ellis et al, 1997; Spann et al, 1997). When purified lamin B (but not lamin 

A) is re-added to depleted extracts, DNA replication is initiated, indicating that lamins 

might have a direct role in DNA replication (Goldberg et al, 1995). Further 

experiments employing dominant negative lamin mutants showed that intranuclear 

lamin aggregates formed by the mutant proteins had recruited endogenous B-type 

lamins to the aggregates as well as proliferating cell nuclear antigen (PCNA) and 

replication factor complex (RFC) (Ellis et al, 1997; Moir et al, 2000; Spann et al, 

1997). This strongly suggests that lamins are involved in the elongation phase of 

DNA replication. In somatic cells, similar mutants still formed intranuclear 

aggregates. However, whereas A-type lamins were recruited to the aggregates, B-

type lamins were not. In this case PCNA and prereplication complex Mcm proteins 

localized to mutant lamin aggregates demonstrating that, in mammalian cells, the 

association of nuclear proteins with dominant negative lamin mutants is not 

restricted to proteins exclusively present at the replication fork. Furthermore, DNA 

replication was not inhibited by the presence of the mutant proteins (Izumi et al, 

2000). The interaction of “mitotic” lamin B2 mutant with PCNA is consistent with the 

observation of Moir et al. (Moir et al) and Izumi et al. (2000) that B-type lamins 

associate with late replication centers. Further studies are needed to clarify whether 

DNA replication is influenced by the presence of “mitotic” lamin proteins and whether 

other replication proteins are recruited to the intranuclear aggregates.  

Although it appears clear that B-type lamins associate with sites of DNA replication 

and replication proteins, the role of lamins in DNA replication is still far from being 

resolved. The prospect of using RNAi to knock down the expression of specific lamins 

in mammalian cells probably provides the best opportunity to address this important 

issue (Harborth et al, 2001).  

 

5.5 Role of lamins in chromatin organization 

Due to the intimate spatial relationship between lamins and chromatin, it has been 

suggested that chromosomes are anchored, at least to some extent by the nuclear 

lamina. Indeed, all lamin subtypes have affinity for chromosomes, chromatin and/or 

DNA (Mattout-Drubezki & Gruenbaum, 2003). Several studies indicate that lamins 
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influence chromosome position in interphase (Bridger et al, 2007; Malhas et al, 

2007). Further support for a role of lamins in chromatin organization comes from 

studies in laminopathy cell lines whereby chromatin is disorganized and observed 

coming away from the nuclear periphery (Columbaro et al, 2005; Filesi et al, 2005; 

Sewry et al, 2001). It is, however, not clear how changes in chromosome positioning 

take place and what the consequences for genome function are, i.e. gene 

expression. It is plausible that lamins are not purely anchorage sites for the genome 

but that they are involved in signaling pathways. In diseased cells these pathways 

may be perturbed, eliciting a reorganization of the genome and thereby changing the 

normal status of the cells. Heterochromatin, including centromeres, telomeres and 

repetitive DNA, is preferentially positioned near the nuclear envelope. Several studies 

suggest that the nuclear periphery may be a repressive environment for transcription 

of many genes (Mattout-Drubezki & Gruenbaum, 2003). Indeed, a growing number 

of transcription factors, including the transcriptional repressor germ-cell-less (GCL), 

Oct-1 and pRb either co-localize with the nuclear lamina or interact with proteins 

anchored to the lamina (Shaklai et al, 2007). Despite of this circumstantial evidence, 

still little is known about the molecular mechanisms responsible for nuclear-lamina 

dependent gene regulation. Although expression of lamin B2 deletion mutants in 

U2OS cells did not influence overall chromatin distribution as revealed by DAPI 

staining, it is possible that gene expression is altered by their presence. This issue 

should also be addressed in cells expressing “mitotic” lamin mutants, as chromatin 

distribution is massively affected by the formation of “mitotic” lamin nuclear 

aggregates. Lamin mutants together with the remarkable sensitivity of gene chip 

technology may provide the means to directly test if normal lamin organization is a 

requirement for transcription.  

 

5.6 Lamins in ES cells 

Only a few aspects of nuclear architecture have been characterized in detail in ES 

cells, but cursory observations indicate that many nuclear features, including the 

nuclear lamina, the nucleolus, heterochromatin structure and nuclear speckles, 

undergo morphological changes during the differentiation process (Meshorer & 

Misteli, 2006). In both mouse and human ES cells, lamin B1 and lamin B2 are 
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expressed in high levels (Constantinescu et al, 2006). In contrast, ES cells do not 

express A-type lamins. The absence of lamin A even serves as a specific stem cell 

marker in both mouse and human ES cells (Constantinescu et al, 2006). So far, there 

is no report about exogenous expression of lamins in ES cells and the influence of 

lamin mutants on cellular integrity. We have expressed YFP-lamin B1 and YFP-lamin 

B2 in mouse ES cells. As expected, both proteins localized to the nuclear periphery. 

In some cells transiently transfected with the respective expression plasmids, the 

nuclear envelope appeared as a rather thick structure. The variation of the thickness 

of the nuclear envelope might be explained by different expression levels of the 

proteins. It could further be shown that cells stably expressing YFP-lamin B1 and 

lamin B2 respectively, did not have a higher tendency to differentiate than 

untransfected cells. This indicates that exogenous expression of YFP-lamin B1 and 

YFP-lamin B2 fusion proteins does not influence the stem cell status of the cells. ES 

cells stably expressing YFP-lamin B1/B2 may provide the means to follow possible 

changes in lamina morphology during ES cell differentiation by time-lapse 

microscopy.  

Expression of lamin B2 deletion mutants in mouse ES cells showed similar effects as 

those observed in U2OS cells. Both the YFP-lamin B2 Δ32head and YFP-lamin B2 

headless protein integrated into the nuclear rim. In some cells small aggregates 

along the nuclear envelope or invaginations of the nuclear lamina were observed. In 

contrast, YFP-lamin B2 tailless and YFP-lamin B2 rod were diffusely distributed 

throughout the cytoplasm and the nucleoplasm. These results suggest that lamin 

proteins are similarly processed and assembled into the nuclear lamina in both 

differentiated and ES cells. To date we can not make any statement about the 

influence of lamin B2 deletion mutants on differentiation.  

ES cells are a valuable tool for further cell biological studies. They can be 

differentiated into all specialized cell types found in the adult mouse and exhibit and 

maintain a normal diploid complement of chromosomes. A complete characterization 

of the nuclear landscape in pluripotent ES cells will be a useful basis for a cell-

biological understanding of these cells.  
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5.7 Identification of novel putative lamin interaction partners 

With co-immunoprecipitation and mass spectrometry-based methodology we have 

identified new proteins potentially interacting with the soluble lamin B2 protein 

mutated from serine to aspartic acid in mitotic phosphorylation sites. Among the 

putative “mitotic” lamin B2 partners were found several ribosomal proteins (L4, L17, 

L18, S5, and S9). Ribosomal proteins are synthesized in the cytoplasm and are 

imported into the nucleolus where they, together with rRNA, are assembled to the 

ribosomal subunits. On their way to the nucleolus they might be trapped by the 

“mitotic” lamin B2 aggregates. Immunofluorescence stainings with antibodies specific 

for the ribosomal subunits could give further proof of this interaction. 

Another putative “mitotic” lamin B2 interaction partner was identified as the heat 

shock protein 70 (Hsp70) family member mortalin which is heat-uninducible. 

Members of the Hsp70 family have been reported to be localized in almost all 

subcellular compartments including the nuclear matrix (Jethmalani & Henle, 1997; 

Pouchelet et al, 1983). Moreover, a recent study suggested that Hsp70 may play a 

role in the protection of nuclear lamins within the nuclear matrix (Willsie & Clegg, 

2002). All Hsps70, regardless of location, bind proteins, particularly unfolded ones. 

The molecular chaperones of the Hsp70 family recognize and bind to nascent 

polypeptide chains as well as partially folded intermediates of proteins preventing 

their aggregation and misfolding. The binding of ATP triggers a critical 

conformational change leading to the release of the bound substrate protein (Fink, 

1999). The universal ability of Hsp70 to undergo cycles of binding to and release 

from hydrophobic stretches of partially unfolded proteins determines their role in a 

great variety of vital intracellular functions such as protein synthesis, protein folding 

and oligomerization and protein transport. Mortalin is the major mitochondrial protein 

and it plays a central role in the elaborate translocation system for efficient import 

and export of proteins (Kaul et al., 2007). The biological function of mortalin is not 

restricted to its mitochondrial locale. Subcellular fractionation and 

immunofluorescence microscopy have revealed that mortalin is not only present in 

mitochondria but also in other extra-mitochondrial sites (Ran et al, 2000). Mortalin 

might keep “mitotic” lamin B2 in aggregates, thus preventing its refolding and 

assembly to its native oligomeric state.  
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It was recently suggested that mortalin is a regulator of oxidative stress and 

apoptosis, and contributes to aging and old-age pathologies (Kaul et al, 2007). 

Interestingly, overexpression of mortalin resulted in lifespan extension of normal 

human fibroblasts (Wadhwa et al, 2005). Hsp70F siRNA caused reduction in C. 

elegans lifespan and early appearance of progeria-like phenotype and age pigments 

(Yokoyama et al, 2002). So far nothing is known about a role of Hsp70/mortalin in 

HGPS, a disease caused by a mutation in the lamin A gene, which is characterized by 

accelerated aging. Whether this interaction is functional has to be tested by the use 

of different antibodies specific for mortalin.  

Beside the above mentioned putative “mitotic” lamin B2 partners, other proteins 

were identified with which interaction seems very unlikely. Further experiments will 

be necessary to verify these interactions and to reduce unspecific interactions. One 

attempt would be to increase the buffer stringency and/or to perform the extraction 

of the cells in two steps, with the first one removing all cytoplasmic proteins and thus 

reducing cytoplasmic impurities. Furthermore, antibodies specific for the respective 

proteins will be needed to verify putative interactions by microscopical and 

biochemical methods.  

 

5.8 Laminopathy 

Transcripts with premature termination codons are rapidly degraded by NMD, if the 

premature stop locates 50-55 nucleotides 5’ of a splicing-generated exon-exon 

junction (Nagy & Maquat, 1998). NMD is considered to be a surveillance pathway to 

prevent accumulation of potentially harmful truncated proteins and to properly 

regulate the expression of alternative splice products (Maquat, 2005). In a growing 

number of studies, modulating and protecting effects of NMD on the phenotype of 

hereditary disorders have already been demonstrated (Holbrook et al, 2004). 

Here, a p.R321X nonsense mutation in the LMNA gene discovered in a family with 

cardiac conduction system disease and dilated cardiomyopathy was examined by 

immunhistochemistry, immunoblotting and quantitative PCR analysis. The mutation 

was most likely responsible for the disease for four reasons: i) the mutation clearly 

segregated with the disease: among eight family members examined, three 

members were affected and mutation carriers, while five members were healthy and 
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exhibited the wild type genotype; ii) screening of 434 control individuals only 

revealed the wild type genotype; iii) the mutation is not listed as a polymorphism in 

public databases, despite extensive screening of LMNA in many laboratories; iv) 

mutation screening of 24 additional known or novel candidate genes for DCM in 

patient III-5, including those for β-myosin heavy chain (MYH7), cardiac myosin 

binding-protein C (MYBPC-3) and cardiac troponin T (TNNT2), did not reveal extra 

mutations (Zeller et al, 2006). 

Since the p.R321X nonsense mutation resides within the sixth of twelve LMNA exons, 

it was a likely target for NMD. In fact, quantitative analysis of LMNA transcripts in 

myocardial tissue and cultured fibroblasts clearly indicated significant downregulation 

of the mutant allele by NMD. Correspondingly, a truncated LMNA protein could not 

be detected at standard sensitivity of Western blotting, neither in myocardial tissue, 

nor in cultivated patient fibroblasts. Moreover, no indication of gross nuclear 

abnormalities or an aberrant cellular distribution of lamin A/C or its interaction 

partners LBR, emerin and lamin B2 could be observed: nuclei exhibited a normal 

ovoid shape, the heterochromatin appeared to be distributed normally, and all 

proteins investigated were properly targeted to the nuclear envelope. Similar 

observations of normal nuclear morphology and protein distribution have been made 

in a large number of patients heterozygous for missense mutations in the LMNA 

gene. In contrast, cells obtained from patients harbouring other LMNA mutations 

displayed a spectrum of nuclear abnormalities such as excess lobulation, extra 

nuclear speckles or even disruption of the nuclear membrane as well as dislocation of 

lamin A/C and associated proteins (Sylvius & Tesson, 2006). In a recent study, a 

comparable LMNA nonsense mutation, p.Y259X, was discovered in a heterozygous 

patient who suffered from autosomal dominant limb-girdle muscular dystrophy 

associated with conduction disturbances (LGMD1B) (Muchir et al, 2003). This 

mutation resided in the same region of lamin A/C’s central α-helical coiled-coil rod 

domain, i.e. coil 2B, as the nonsense mutation described here. Like in our study, the 

heterozygous patient displayed normal nuclear morphology and protein distribution. 

In contrast, a newborn homozygous for the respective mutation died at birth. Cells of 

this patient displayed aberrant lobulation of nuclei and absence of lamin A/C and 

several of its interaction partners. Apparently, the wild type allele was sufficient in 

the heterozygous situation to prevent the dramatic phenotype and the cellular 
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abnormalities documented in the homozygote. The authors proposed 

haploinsufficiency as a likely explanation for the LGMD1B phenotype of the 

heterozygote, as they detected reduced levels of wild type lamin A/C in the affected 

patient. Haploinsufficiency, however, is not a likely explanation for the cardiac 

phenotype in patients analyzed in this study, as no obvious reduction in the absolute 

amount of wild type lamin A/C protein both in cardiac tissue and in cultured patient 

fibroblasts was observed. 

Instead, insufficient NMD as the most likely reason for the observed disease 

phenotype is proposed. It was demonstrated a significantly reduced amount of 

mutant LMNA mRNA in both cardiac tissue and cultivated fibroblasts of affected 

patients. Although the mutant protein could not be detected in these specimens, the 

truncated protein was readily detectable after inhibition of the proteasomal protein 

degradation pathway in cultured fibroblasts of the more severely affected patient. 

Even though any obvious changes in nuclear shape or distribution of major inner 

nuclear membrane proteins such as emerin and LBR were not observed, a potential 

dominant negative effect of this mutant protein is likely to be responsible for the 

development of cardiomyopathy in the patients analyzed. Interestingly, the truncated 

protein was not detectable in another patient harbouring the mutation after 

treatment with epoxomicin at the level of sensitivity employed here, suggesting a 

more effective NMD and/or proteasomal degradation of the truncated mutant protein 

in this patient. Correspondingly, the disease phenotype in this patient is markedly 

less pronounced. 

The question why patients with mutations in the LMNA gene develop distinct disease 

phenotypes, despite the lack of readily detectable nuclear abnormalities, still awaits a 

conclusive answer (Sylvius & Tesson, 2006). Presumably, gross structural 

abnormalities are not the primary pathogenic event in various types of 

laminopathies, but rather a reflection of disturbances in the more subtle regulatory 

functions of lamin A/C. A possible clue to explain the cardiac phenotype in the 

patients analyzed in this study may be derived from apparent tissue-dependent 

differences in the efficiency of NMD. A relatively weak reduction of mutant transcripts 

was observed in the left and right myocardium as compared to skin fibroblasts which 

displayed an up to 5-fold stronger reduction of mutant transcripts. It may therefore 

be suspected that NMD is not efficient enough in affected tissues to prevent the 
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deleterious effects of the expressed mutant p.R321X allele. Because of the lifelong 

high stress and intricate mechanical coupling of myocytes, the myocardium is 

apparently an especially critical tissue and, hence, particularly prone to disturbances 

by even weak cellular imbalances. 

In summary, a family with DCM and conduction system disturbances most likely due 

to a nonsense mutation in the lamin A/C gene was described. It is proposed that 

NMD, though clearly measurable, cannot completely prevent the expression of 

truncated lamin A which may negatively interfere with structural and/or regulatory 

functions of lamin A/C, thus leading to the disease phenotype. 
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7 Abbreviations 

aa amino acid 

Acc. No. accession number 

APS ammonium persulfate 

BSA bovine serum albumin 

cDNA complementary DNA 

DAPI 4’, 6-diamidin-2’-phenylindol-dihydrochloride 

DCM dilated cardiomyopathy 

ddH2O double distilled water 

DMEM Dulbeccos modified Eagle Medium 

DMSO dimethylsulfoxide 

DNA deoxyribonucleic acid 

DNase deoxyribonuclease 

dNTP 2’-deoxyribonucleoside 

DTT dithiothreitol 

E. coli Escherichia coli 

ECFP enhanced cyan fluorescent protein 

ECL electro-chemo luminescence 

EDTA ethylendiaminotetraacetate-disodium salt 

EGFP enhanced green fluorescent protein 

EGTA ethylenglycoltetraacetate 

EDMD Emery-Dreifuss muscular dystrophy 

ER endoplasmatic reticulum 

EYFP enhanced yellow fluorescent protein 

FCS fetal calf serum 

H2A histone H2A 

HGPS Hutchinson-Gilford progeria syndrome 

IF immunofluorescence 

INM inner nuclear membrane 

IP immunoprecipitation 
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kDa kilo Dalton 

LA/C lamin A/C 

LB “Luria Bertani”, full medium for bacteria 

LB1 lamin B1 

LB2 lamin B2 

LBR lamin B receptor 

LMNA lamin A gene 

MCS multiple cloning site 

MOPS morpholinepropanesulfonic acid 

mRNA messenger ribonucleic acid 

NLS nuclear localization sequence 

NMD nonsense mediated decay 

NPC nuclear pore complex 

ONM outer nuclear membrane 

PBS phosphate buffered salt solution 

PCR polymerase chain reaction 

PFA paraformaldehyde 

PVDF phenylmethylsulfonylfluoride 

rpm rotations per minute 

RT room temperature 

RZPD German Resource Center for Genome Research 

SDS sodium dodecyl sulphate 

Tris N, N, N-tris[hydroxymethyl]aminomethan 
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8 Appendix 

 
Sample Acc. Nr. Protein Descriptiom Protein 

score 
Protein 
Mass 

matches

1 gi|31621305 leucine-rich PPR motif-containing protein 1767 159003 40
gi|27436951 lamin B2 1297 67762 292 

gi|14595132 Raichu404X 218 85646 5
gi|27436951 lamin B2 1143 67762 26
gi|12653415 Heat shock 70kDa protein 9 (mortalin) 1045 73967 20

3 

gi|14595132 Raichu404X 232 85646 6
gi|27436951 lamin B2 583 67762 17
gi|14595132 Raichu404X 234 85646 8
gi|425518 anti-colorectal carcinoma heavy chain 66 51254 3
gi|5031753 heterogeneous nuclear ribonucleoprotein H1 55 49484 3

4 

gi|1710248 protein disulfide isomerase-related protein 5 49 46512 1*
gi|27436951 lamin B2 281 67762 14
gi|34234 laminin-binding protein 204 31888 8
gi|16579885 ribosomal protein L4 168 47953 8
gi|425518 anti-colorectal carcinoma heavy chain 120 51254 5
gi|2695641 mammary tumor-associated protein INT6 68 52443 3
gi|21361809 RNA binding motif protein, X-linked-like 1 62 42173 1*

5 

gi|870743 heterogeneous nuclear ribonucleoprotein D 43 30523 3
gi|27436951 lamin B2 911 67762 24
gi|28336 mutant beta-actin (beta'-actin) 200 42128 6
gi|1706611 Elongation factor Tu, mitochondrial precursor (EF-Tu) 120 49852 3
gi|16579885 ribosomal protein L4 66 47953 3

6 

gi|4506649 ribosomal protein L3 isoform a 39 46365 1*
gi|27436951 lamin B2 282 67762 6
gi|4506607 ribosomal protein L18 189 21735 3
gi|14141193 ribosomal protein S9 163 22635 6
gi|14595132 Raichu404X 139 85646 3
gi|13904870 ribosomal protein S5 98 23033 3
gi|4506617 ribosomal protein L17 79 21611 2
gi|403009 PHAPII (Putative HLA DR Associated Protein II) 79 32084 1*
gi|23308579 unactive progesterone receptor, 23 kD 63 18971 1*

7 

gi|793843 ribosomal protein L29 44 17713 1*

Table 10: List of proteins identified with MALDI-TOF. (*) a single sequenced peptide is not 
regarded as a explicit proof for a definite identification. Protein scores greater than 78 are 
significant. 
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Figure 34: Pedigree of the affected family with the nonsense mutation CGA>TGA in 
codon 321 (pR321X) of the LMNA gene. Open and black symbols represent unaffected and 
affected individuals, respectively. (+) and (-) symbols indicate presence and absence of the 
mutation, respectively. Slanted bars denote deceased individuals. Deceased family members 
considered affected died of sudden cardiac death at the age of 48 (I-1), 59 (II-3) and 49 (II-5). 


