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Abstract

Testing is one of the most time-consuming and cost-intensive tasks in softisaetopment
projects today. A recent report of the NI ] estimated the costs for the economy of the
Unites States of America caused by software errors in the year 2000ge fram$22.2 to $59.5
billion. Consequently, in the past few years, many techniques and toashesn developed to
reduce the high testing costs. Many of these techniques and tools atedievautomate various
testing tasks (e.g., test case generation, test case execution, anduksthecking). However,
almost no research work has been carried out to automate the testinghafstaggoplications (e.g.,
an E-Shop application) and relational database management systems $DBWS testing of a
database application and of a DBMS requires different solutions bet¢hespplication logic of
a database application or of a DBMS strongly depends on the contents dditditzase (i.e., the
database state). Consequently, when testing database applications @sDBM problems arise
compared to traditional software testing.

This thesis focuses on a specific problem: tdg database generatiofhe test database genera-
tion is a crucial task in the functional testing of a database application andtiestitey of a DBMS
(also called test object further on). In order to test a certain behaktbedest object, we need to
generate one or more test databases which are adequate for a gigétesecases. Currently, a
number of academic and commercial test database generation tools arelaviltavever, most
of these generators are general-purpose solutions which createtthatiEsases independently
from the test cases that are to be executed on the test object. Hencenénatgd test databases
often do not comprise the necessary data characteristics to enable ¢bhéaxef all test cases.

In this thesis we present two innovative techniquRsverse Query ProcessingdSymbolic Query
Processing, which tackle this problem for different applications (i.e, the functionatimg of
database applications and DBMSSs). The idea is to let the user specifyribgasots on the test
database individually for each test case in an explicit way. These aoristare then used directly
to generate one or more test databases which exactly meet the needs sifthede that are to be
executed on the test object.



Zusammenfassung

In heutigen Softwareentwicklungsprojekten ist das Testen eine demkastd zeitintensivsten

Tatigkeiten. Wie ein aktueller Bericht des NIM} zeigt, verursachten Softwarefehler in
den USA im Jahr 2000 zwisch@2, 2 und 59, 5 Milliarden Dollar an Kosten. Demzufolge wur-
den in den letzten Jahren verschiedene Methoden und Werkzeuge ketiiwien diese hohen

Kosten zu reduzieren. Viele dieser Werkzeuge dienen dazu die ienieden Testaufgaben (z.B.
das Erzeugen von Testfallen, die Ausfiihrung von Testfallen und Basptlifen der Testergeb-
nisse) zu automatisieren. Jedoch existieren fast keine Forschueigsarhur Testautomatisierung
von Datenbankanwendungen (wie z.B. eines E-Shops) oder von nal@mDatenbankmanage-
mentsystemen (DBMS). Hierzu sind neue Ldsungen erforderlich, dd/etaslten der zu tes-

tenden Anwendung stark vom Inhalt der Datenbank abhéangig ist. Fokgiggben sich fur den

Test von Datenbankanwendungen oder von Datenbankmanagenemesyseue Probleme und
Herausforderungen im Vergleich zum traditionellen Testen von Anwegetuohne Datenbank.

Die vorliegende Arbeit diskutiert ein bestimmtes Problem aus diesem UmfeldSé&nerierung

von TestdatenbankenDie Generierung von Testdatenbanken ist eine entscheidende Tatigkeit
fur den erfolgreichen Test einer Datenbankanwendung oder egtesankmanagementsystems
(im weiteren Verlauf auch Testobjekt genannt). Um eine bestimmte FunktidrddisdTestob-
jekts zu testen, mussen die Daten in den Testdatenbanken bestimmte Chéiaksarfaveisen.

Zur Erzeugung einer Testdatenbank existieren verschiedene Bogsgrototypen wie auch kom-
merzielle Datenbankgeneratoren. Jedoch sind die existierenden Datgebaratoren meist Uni-
versalldsungen, welche die Testdatenbanken unabhéngig von deifitdrenden Testfallen erzeu-
gen. Demzufolge weisen die generierten Testdatenbanken meist nichatdiendigen Daten-
charakteristika auf, die zur Ausfihrung einer bestimmten Menge voréllesthotwendig sind.

Die vorliegende Doktorarbeit stellt zwei innovative Ansatze \Re\(erse Query Processingd
Symbolic Query Processinglie dieses Problem fiir unterschiedliche Anwendungen (d.h. fur das
funktionale Testen von Datenbankanwendungen und Datenbanknmaeatggstemen) Idsen. Die
generelle Idee beider Ansétze ist, dass der Benutzer explizit fir jestfall die notwendigen
Bedingungen an die Testdaten formulieren kann. Diese Bedingungelenvdann dazu genutzt,
um eine oder mehrere Testdatenbanken zu generieren, die die gbteinBatencharakteristika
aufweisen, welche zur Ausfiihrung der Testfélle notwendig sind.
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Chapter

Introduction

| think and think for months and years, ninety-nine times,dbnclusion is false.
The hundredth time | am right.

— Albert Einstein, 1879-1955 —

1.1 Motivation

Testing is one of the most time-consuming and cost-intensive tasks in the sottesselopment
projects today. A recent report of the Nlm estimated the costs for the economy of the
Unites States of America caused by software errors in the year 2000ge fram$22.2 to $59.5
billion (or about 0.6 percent of the gross domestic product). While oneoli#iffese costs result
from error avoidance and mitigation activities of the users, the other hatfrisebby software
developers due to inadequate testing techniques and tools. Anothev@}'ih the E-Business
sector stated that roughly 90 percent of the total software costs are@psgystem maintenance
and evolution which includes development costs to identify and corretwtaaf defects.

Consequently, in the past few years many techniques and tools havededoped by industry
and academia to reduce the costs caused by software errors and thestntfesgesting activities.
Many of these techniques and tools are devoted to automate various teskingetas, the test
case generation, the test case execution, and the test result che@&dngjding to , the
worldwide market for Automated Software Quality Tools was about $948 milli@D0b and will
be higher than $1 billion in 2006, and $1.8 billion in 2010.

However, almost no research work has been carried out to automatstihg t# database applica-
tions and relational database management systems (DBMSSs). The testoteatbase application



1.1 MOTIVATION

or of a DBMS needs different solutions because the application logic afabdse application or
of a DBMS strongly depends on the content of the database (databssg. s@onsequently,
when testing database applications or DBMSs, new problems and oppogamnise compared to
traditional software testing. For exampl ] showed that traditional test case scheduling
technigues in the test execution phase do not work optimally for databpbeagipns. Moreover,

] illustrated that specialized scheduling strategies can reduce the totalgumme of the
test execution phase dramatically.

This thesis focuses on another specific problem:téise database generatiomhe test database
generation is a crucial task in the functional testing of a database applicatoBBMS (called
test object further on). In order to test a certain behavior of the tg¢stphve need to generate a
database state that satisfies certain data characteristics.

A simple example is dogin function of an E-Shop like Amazon which rejects users to log in
after having tried to log in more than three times with an incorrect passworarder to test
that function thoroughly, the test database should comprise a user whwhget tried to log in
wrongly more than three times to test the positive case where the user igaudéde Moreover,
the test database should also comprise another user who has alreaeg antecorrect password
more than three times, to test the negative case where the user is rejectedbigyntfunction.

Another example is the testing of a DBMS. Most of the functionality of a DBM8ngjly de-

pends on the data characteristics of the stored data; e.g., the optimizer efyaegacution en-
gine chooses the physical execution plan depending on the data chatiastef the underlying
database and the data characteristics of the intermediate query resuétsvdinto test the func-
tionality of the query optimizer thoroughly, it is necessary to vary the dateactexistics which
are used to calculate the costs of the alternative query plans.

Currently, a number of academic and commercial tools are available whiehajenest databases.
These tools can be classified into two categories: either the test databasadted from a live
database, or a synthetic test database is generated according to aajalease schema. The
existing tools which extract the test database from a live database Boffevarious problems:
One problem is that using a live database may not always be possibdeiseenf data protection
regulations; another problem is that a live database often does notiserafpthe necessary data
characteristics to enable the execution of all interesting test cases (ergisthe user in the live
database who has tried to log in more than three times with the incorrect pdsswor

Consequently, generating a synthetic test database seems to be thapasabe these problems.
However, existing tools which generate synthetic test databases suffierttie same problem;
i.e., the generated test databases do not comprise all the data charastesistissary to execute
a given set of test cases. The reason is that the existing tools aralgemerose solutions which
take constraints on the complete database state as input (e.g., table sizatuardistributions

n this thesis we use the terrdatabase statelatabase instang@ndtest databases synonyms.
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Figure 1.1: Test Database Generation Problem

of individual attributes). However, these constraints are not suitablepi@es the relevant data
characteristics necessary to execute each individual test case.

Consequently, the test databases are usually generated independemtlyef needs of the individ-
ual test cases. We call these approaches which generate the teasdatatependently from the
test case®Random Test Database Generatigchniques. Conceptually, this problem is demon-
strated in Figur8.1 (a): This figure shows a test database which is generated indepenfiemtly

a set of given test case&, 1», T3, 14}. Using this randomly generated test database, only some
test cases (e.gl; andT3;) can be executed, while the other test cases (E;cqand7y) cannot be
executed at all.

In order to deal with this problem in practice, the generated test databesedgten modified
manually in order to fit to the needs of all test cases. As a result, the maineeohra test
database becomes hard because a manual modification of the test ditahaswv or a modified
test case often corrupts the test database for other test cases tttabarexecuted on the same
test database.

In this thesis we present two innovative techniques which tackldesiedatabase generation
problem in a different way by enablingl@st Case Aware Database Generatioa., one or more

test databases are generated which exactly fit to the needs of the &ssthasare to be executed

on the test object (as shown in Figldl (b), the generated test databases enable the execution of
all test cases).

The main idea of thdest Case Aware Database Generatisro let the user specify constraints
on the database state individually for each test case in an explicit wage Toastraints are then
used directly to generate one or more test databases which exactly saisbniraints specified
by the test cases that are to be executed on the test object.

For example, when testing a database application, it is necessary to forecusteaints on the
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values of individual tuples (and not on the complete database state); eggt tioclogin function
of the E-Shop application, the tester needs to specify that two differems exist in the test
database (i.e., one who is allowed to log in and one who is not allowed to log like, Avhen
testing a DBMS, it is important that the data characteristics of the intermediatg rgseilts of a
test query, and not only the characteristics of the base tables, camtoelleal explicitly in order
to test a particular behavior of the DBMS.

1.2 Contributions and Overview

The main contributions of this thesis are the formal concepts and prototymptdmentations

of two new test database generation frameworks (cdRederse Query Processi

BKLO6al, BKLO?B] and Symbolic Query Processn@KLO?gL BKLOOZ||) which generatetest
case aware databasdsr the functional testing of OLAP applications (e.g., a reporting applica-
tion) and for the functional testing of DBMS components (e.g., the cardinalitpason compo-
nent). Both frameworks are extensible and thus not bound to a spegificaon, even though
they are motivated by the particular applications mentioned above.

As a further contribution, we discuss two more applications of Reversey@uecessing in detalil;
i.e., the functional testing of OLTP applications (like an E-Sh&KILL08] as well as the functional
testing of a query Ianguag@i]. Moreover, we also present the required extensions of
RQP to support these two applications. Furthermore, we show how thesexteof RQP for the
functional testing of a query language can be used in an industrial anvenat. Finally, we sketch
some other applications of Reverse Query Processing which need addiéeearch.

For both frameworks we carried out a set of experiments to analyze tf@mpance and the ef-
fectiveness of our prototypical implementations under a variety of wodkloa

The remainder of the thesis is structured as follows:

¢ In the next chapter, we present the background in software testinigjsichte the state of
the art in the testing of database applications and DBMSs as well as the stateanf in
test database generation.

e In Partllll of this thesis, we discuss the first framework which enables a test case aw
database generation (called Reverse Query Processing or RQPIf)r Jine main appli-
cation of RQP is the functional testing of OLAP applications.

¢ In Partllllwe illustrate two further applications of RQP in detalil (i.e., the functional testing
of OLTP applications as well as the functional testing of a query languatgelliscuss the
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extensions of RQP which are necessary to support these applicationsowdr, we sketch
other potential applications of RQP.

e Subsequently, in Pdi¥]we describe the second framework which enables a test case aware
database generation (called Symbolic Query Processing or SQP for S©QP is designed
to generate test databases for the functional testing of individual DBWtponents.

e Finally, PartV] contains the conclusions (i.e., the current state of this work and its limita-
tions) as well as suggestions for future work (i.e., research problednsaantial improve-
ments for a better industrial applicability).

A more detailed discussion of the individual contributions and a detailed owtiilhéde given
separately for each part.



Chapter

Background

Knowledge is of two kinds. We know a subject ourselves, onaw kvhere we can
find information upon it.

— Samuel Johnson, 1709-1784 —

2.1 Software Testing: Overview and Definitions

Software Testings the execution of a component or a system using combinations of input and
state to reveal defec )| by verifying the actual output. The component or system under test
is called thetest object Depending on théest levelthe test object is of different granularity: In
Unit Testingthe test object is usually a method or a clasdniegration Testinghe test object is

the interface among several units, andSiystem Testinthe test object is a complete integrated
application.

In software testing the terminology is very often not clear. In this thesis fee t@the terminol-
ogy defined inm. Especially, the terms failure, defect, and error are often used asgyrs
while a having a different meaning: failure is the inability of a test object to perform a function
within certain limits; i.e., the system or component returns an incorrect outpuintes abnor-
mally, or does not terminate within certain time constraintsdefectis the missing or incorrect
code that caused the failure of the test object.efor is the human action that produced a defect
(e.g., by coding). Testing can only show the presence of defects in alfjest but never their
absence.

Software testing activities can have differéegting objectivesOne possible objective is to reveal
defects through failures (which is calléault-directedtesting). Another objective is to demon-
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strate the conformance of a test object to the required capabilities (whiaeliégl conformance-
directedtesting). A conformance-directed test typduactional testingvhich checks the confor-
mance of the test object with the specification of the functionality. Anothdiocarance-directed
test type is usability testing which checks the conformance of the user ceddaome usability
guidelines or performance testing which checks the conformance to someesirietions etc.

A test caseusually specifies the test object, the inputs that are used to exercise tlobjeedt
as well as the state of the test object before the test case is executed goadlenditiorn); e.g.,
external files, contents of the database. Moreover, a test casesdéiinexpected output and the
expected state of the test object after the test case execution (oafiEmbnditio). The expected
output and the postcondition are often caltest oracle A test suiteis a set of test cases that are
related; e.g., by a common test objective.

A test runis the execution of a test suite which comprises a set of test cases. Adest eaecuted

as follows: First, in aset-upphase the precondition is used to the set the state of the test object.
Afterwards, thetest object is exercisedsing the given input. Finally, the actual output and the
state after the execution of the test case are compared to the expectddadtthe expected state
(postcondition) in order toerify the test resultand decide whether a test case passes or not.

Executing all possible test cases (which is cab&tlaustive testingyy using all combinations of
input values and preconditions to execute the test object is practically ifhfgdsscause the num-
ber of all combinations of input values and preconditions is usually too.Htmeexample assume
that we want to test a method that takes&duit integer values as input. The possible input space
would be(2%)1°. If we could execute 1000 test cases per second then it would takexapptely
41.2'0 days which is roughl8334786263782 years to run all test cases for exhaustive testing.

In order to deal with that problem variotesst design techniquesn be used to derive and select
the test cases that shall be exercised on a test olijéatk-boxtest design techniques are based
on an external view of the test object, and not on its implementation; i.e., btackekt design
techniques analyze the external behavior to derive test cases. @melexof a black-box test de-
sign technigue are equivalence classes. Equivalence classes p#rétimmain of the individual
input values into sub-domains for which the behavior of the test objecsisvad to be the same.
The idea of equivalence classes is that the tester can pick one valueeaghcaclass instead using
all possible input values.

In contrast to black-box test design techniquehjte-boxtest design techniques are based on
the internal structure of a test object which can be the result of a scode analysis. One
example of a white-box test design techniqueasitrol-flowtesting which uses the information
about the control-flow to execute different code paths of the test ob#tile white-box test
design techniques are more often used for fault-directed testing (e.g.dta division by zero),
black-box test design techniques are more often used for conforrdirected testing (e.g, to
check whether the test object behaves as specified or not).
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The coverageof a test suite is measured bycaverage metric A typical coverage metric for
white-box testing is thetatement coveragehich defines the percentage of executable statements
that have been exercised by a test suite. A coverage metric for bladledtong is theequivalence
class coverageThe equivalence class coverage is defined as ratio of the numbeteaf &zgiiv-
alence classes and the number of all equivalence classes; i.e., the mmirictbh percentage of
equivalence classes that have been exercised by a particular tem.

The goal oftest automations to minimize the manual overhead necessary to execute certain test
activities; e.g., test case generation, test case execution and testheskihg. In most cases test
automation can be seen as a system engineering problem to implement aldpdaélsoftware
which executes the test activity automatically.

Test automation has several benefits compared to manual testing. Folextmm@automation of

the test case execution helps to run more test cases in a certain time spansadriorease the
test coverage. Moreover, test automation makes testing repeatablsdécenans tend to vary
the test cases during manual execution. Thus, automating the test castoexis a precondition

for effectiveregression testingvhile the goal of regression testing is to execute one or more test
suites after the test object has changed and compare its behavior dnedficréter the changes.

2.2 State of the Art

This section gives an overview of the state of the art related to this thesss$; W& discuss some
general problems that arise when testing a database application or a DiBMEB@v several solu-
tions to these problems. Afterwards, we study the problem of generatindgtedases in Section
[2.2.2in detail. While some of these approaches deal with a similar problem statenthbis te-
sis (i.e., the generation of test case aware databases), some othecchpprdiscuss orthogonal
aspects (i.e., efficient algorithms for generating huge data sets or algoftthgenerating various
data distributions).

2.2.1 Testing Database Applications and DBMSs

In the past years many techniques and tools have been developeddeyrnéeand industry to
automate the different testing activiti@]. Surprisingly, relatively little attention has been
given to developing systematic techniques to support the individual testikg fiar database ap-
plications and DBMS . In the following, we discuss specific problems and opportunities
that arise when testing database applications and DBMSs. Moreoveriefg tlustrate some of
the existing work.
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Test Database Generation: Before a test suite of a database application or a DBMS can be
executed, it is necessary to create an initial database state that is éqtprfgpreach test case. For
example, as mentioned in the introduction, in order to execute a test case-laop application
which executes thimgin function, different types of users need to be created.

Currently, some industrial tools (e.dlBM|; DTM,; dbl\_/l]) and research prototypes (e.

|S_P_0_J4 [I:ILALO_é; [NMJ.Qd; k;DIiO_Jf; [MRB_d; |ZX§_Q:II; |3ALED_é]) are available which generate test

databases. However, most of these tools generate the test databapesdsmt from the test

cases that are to be executed on the test database. Consequently, tasesithe generated test
databases are not appropriate to execute all intended test casesa3dmis that the existing tools
are general-purpose solutions which offer only very limited capabilitiesrietcain the generated
test database (i.e., most tools take only the database schema as inputexategandom data over
that schema). However, these constraints are not adequate to ekgreseds of the individual
test cases which should to be executed on the database application orNt& DB

Consequently, as the test databases are generated independethieftiesst cases there has also
been no work on the evolution of the test database if the test suite changeséw test cases are
added or existing test cases are modified). Currently, the only way taviteathe evolution of a
test suite is to regenerate the test database completely.

As this thesis focuses on the problem of generating test case awarastetalve present some of
the existing tools in more detail separately in the next Se@iarf

Test Case Generation: In order to generate test cases for database applications and DBMSs,
new test design techniques need to be developed because existinguestoagnot deal with the
semantics of database applications and DBMSs.

When testing a DBMS, for example, a test case usually comprises one oiS@argqueries that
are issued against the test database. Traditional test design techikigueguivalence classes
are hardly applicable to automatically create test cases (i.e., SQL queri@B S systems and
the huge domain of possible SQL queries. Thus, different tools like R% and QGEN

have been developed to quickly generate SQL queries that coversiiterguery classes
for a given database schema and other input values (e.g., a parsgatisécal profiles). In order
to extend a given test suite with further interesting test ca@ devises some mutation
operators for SQL queries to generate new test queries from a giveftest queries.

Another work @Jﬂ (which was used to test the SQL Server 2005) presents a genetic ap-
proach to create a set of test queries (i.e., a test suite) for DBMS testhmginifial set of test
queries is created randomly; e.g., by using approaches like RAGS andNQ@&ieover, each
time before a test suite is executed, a new test query is generated by mutatingeties of the
existing test suite. Afterwards, the queries of test suite and the new quemrxecuted on the
DBMS and execution feedback (e.g., query results, query plan, tilaaesxpose internal DBMS

10
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state) is collected. Based on the execution feedback a fitness functiomuiete whether a newly
created test case will be added to the test suite or not. For example, ths fitneson could use

existing code coverage metrics to decide whether the new test querysesitba coverage of the
test suite or not.

When testing database applications instead of DBMSs, a test suite shoeldtestvcases that
exercise the different execution paths of the application. Howevedatdtest design techniques
do not work properly because they do not consider the database skatet@st cases are created.
As a result, the test cases may not cover all interesting execution pattexdrople, when testing
the login function of an E-Shop application then not all interesting test cases migértelaged
(e.g., to test different users where one user has already tried to log enthwor three times with
the incorrect password and another user has not).

In the authors argue that existing white-box test design techniques ¢ethesacases
that do not cover all interesting code paths because the semantics ot&&nents that are em-
bedded in a database application are rarely considered. Thus, thesaubgest to transform the
declarative SQL statements into imperative code and then to apply existinghalxitest design

techniques to create test cases. The objective of the transformation isutdeinice semantics of
the SQL statements into the imperative code so that more test cases ar¢agbtivemreveal defects
that result from different internal database states.

For example, a function of an E-Shop application that displays the bookgafticular author
could use a 2-way join query on authors and books that is embedded indkea extract the
necessary data from the database. In order to test that functionyihg @in is transformed into

a nested loop statement in the application code. Using the transformed ciogheitasvhite-box
design techniques will generate test cases that cover different datatades: one test case could
execute the function for an author with no books which means that the nesteid not executed
at all, and another test case could execute that function for an authonwitloks which means
that the nested loop is executedimes.

Another drawback of many existing test design techniques is that theie de=st cases which

do not specify the database state before and after the execution ofcagesti.e., as pre- and
postconditions). Consequently, the test cases cannot be used to database state before the
execution and to check the database state after the execution.

The work in M] presents a framework for the black-box testing of database applications
called AutoDBT. AutoDBT takes a specification of the user navigation (asta ftate machine),

a data specification which defines constraints on the database for easitidrein the user navi-
gation, as well as an initial database state as input and generates teshafsan be executed on
the given database state. Using the data specification, AutoDBT can teag&ttibase changes of
each test case (i.e., AutoDBT can calculate a set of pre- and postcorditidhe database state).
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Consequently, AutoDBT can decide whether the precondition of a testhedds (i.e., if the test
case can be executed on the current database state) and whethstd¢badtiton is satisfied when
the test case was executed (i.e., if the database is in the expected stagpriple, for a test case
which deletes a given book of an E-Shop, AutoDBT will check (1) if thekexists before the
test case is executed and (2) if the book was deleted successfully aftestitase was executed.

Coverage metrics: As we discussed in Secti@l the coverageof a test suite is measured by
a coverage metric However, existing test coverage metrics cannot deal with the semantics of
database applications and DBMSs.

In order to tackle that shortcomin@ proposed a new family of coverage metrics for the
white-box testing of database applications which capture the interactiondaibbase applica-
tion with a database at multiple levels of granularity (attribute, tuple, relationbaséd . The
test coverage metric uses the dataflow information that is associated withfdrertifentities in

a relational database (i.e., how many percent of the attributes, tuplesatiorre are read or up-
dated by a given test suite). The empirical stud)@ confirms that a significant number of
important database interactions are overlooked by traditional coveragesne

Another work proposed a new coverage metric for testing SQL statements. The idea is to
apply an existing coverage metric, the multiple condition covem, to SQL statements.
This coverage metric analysis if a given predicate is evaluated thorougallygossible ways for

a given test database. For a SQL query, the metri analysis if the join and selection
predicates of a given SQL query are evaluated to true and false foiftbesdt tuples in the test
database. If a predicate is a complex predicate with conjunctions and dispsithen the cov-
erage metric analysis each simple predicate. For example, if a SQL quaainsotine predicate
b_aid = a_id N a_name = ‘Knuth' then the coverage metric checks if the complete predicate
evaluates to true and false for different tuples of the test database eadhfsimple predicate
(b_aid = a_id anda_name = ‘Knuth') does so, too. Based on that information the value of the
coverage metric is calculated.

Test Case Execution: When executing test cases for database applications and DBMSs a par-
ticular database state has to be reset before each test case canubedeixeorder to guarantee a
deterministic behavior of the test object. For example, assume that we waeciate a test case

Ty of an E-Shop application that lists all books of a particular author (whavinidgn 100 books)

and the test cases passes if all 100 books are displayed. Howevasthitatest casé, (which
deletes all books of that author) is executed before testasbenT; will fail because no books

are displayed (i.e., the expected result is different from the actudt).e$tus, a trivial solution

to avoid this problem is to set the appropriate database state each time beftestitase is ex-
ecuted. However, this can take very long if the test database is hugeit algeady takes about
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two minutes to reset &200MB databaseM]. Moreover, traditional execution strategies do
not consider that fact when scheduling the test cases for a test nmseQuently, if a test suite
should be used for nightly regression tests, then not all test cases reighe¢buted because of the
unexpected long running time.

Consequently, the authors ] devised several scheduling algorithms which try to find an
optimal order of the test cases in a test suite with the goal to minimize number badateesets.
This work assumes that all test cases of a test suite can use the samesalatatea Consequently,
if no test case of a test suite updates the test database, then the datatedsassto be reset only
once at the beginning of a test run.

Thus, the basic idea of the algorithms M] is to apply the database reset lazily; i.e., a
test case of a test suite is executed without setting the appropriate dattdiasdf the test case
execution fails, then the database state is reset and the test case isuteexdf the test case
passes afterwards, then the test case has a conflict with a previoesiytex test case which
updated the database state. Otherwise, the test case detected a faiturg.aRest run (i.e., the
execution of a test suite), the algorithms learn which test cases are passilfiigting with each
other (i.e., which test case might have updated the database state so that tasi case fails).
As a result, the scheduling algorithms reorder the conflicting test caseesif suite for the next
test run with the goal to reduce the number of necessary database resets

For example, the following test suite is executed in the given orfle {77,715, 75} . Assume
that onlyT3; fails because of a “wrong” database state (which was caused by ateugd’; and/or
T5). Then for the next test run, the scheduling algorithms would reordeestsuite to avoid the
conflict of the test casé; with test case§; and/orTy. A new order could b& = {75, T, T3 }.

Test Result Verification/Test Oracle: When executing a test case on a database application or
a DBMS, the actual test results (actual output and state of the test datalbas to be verified in
order to decide whether a test case passes or fails.

In the regression testing of database applications, the expected outptestfsuite is created by
executing the test cases on the test object and recording the behathertet objec]
(called recording phase). During the recording phase, the test ébgqiected to work correctly.
After modifications of the database application, the test suite is re-execatéti(playback phase)
and the actual results are compared to the expected (recorded) r&ghits.regression testing
needs a running application to create the test oracle, other test techdigpies the expected
results from specifications of the test object (e.g., as discuss).

Another idea for verifying the result when testing the query processigine of a DBMS is
illustrated in @ In order to verify the actual results of the test queries, the auth
propose to execute the test queries on a comparable DBMS which reteregibcted results for
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verification. This idea can be generalized and used for the test resifiltatton of other kinds of
test objects (not only DBMSS), too.

2.2.2 Generating Test Databases

In this section we present several test database generation tools.tdbksscan be classified into
two categories: either a synthetic test database is generated or the teasdaseextracted from a
live database.

Synthetic Test Databases: Currently, there are a number of commercial tools available (e.g.,
[[LB_MJ; [MML [dmd]) which generate a random test database over a given databasss@eside

the database schema, some tools also support the input of the table siaegpdaitories and
additional constraints used for data instantiation (e.g. statistical distributialug ranges). Most

of the commercial tools are not extensible (e.g., the set of supported dizifaudicns is fixed).

Additionally, a number of academic tools are available which generate tesiadata Some of
them are designed to be extensible in a few aspects. For exa [tackles the problem that
most existing tools support only a fixed set of data distributions. How#verder to thoroughly
evaluate new DBMS techniques (e.g., new access methods, histogranoptiamdation strate-
gies) varying data distributions need to be generated. Consequentlyaitkipresents a flexible
framework to specify and generate test databases using rich data distrisbas well as intra-
and inter-table correlations for a given database schema. The fralknsdzased on composable
iterators that generate data values, whereas the set of iterators ceprimee by the user.

[@ presents another test database generation framework (called MUBD)&h also be ex-
tended by complex user defined data distributions. MUDD was designedeoaje test databases
for the TPC-DS benchmar and thus is intended for use in the performance evaluation of
DBMS decision support solutions. MUDD also supports varying databasemes.

Moreover, ] also developed a database generator which is also intended to be used in th
performance evaluation of DBMS decision support solutions. Again,$be ean easily add new
data types and distributions. In addition, their tool takes a graph modebanel data dependen-
cies as input: The graph model specifies the database schema and thes thefiorder how the
tables are populated. The data dependencies (e.g., foreign-keyanais$tiurther constrain the
database state.

A different tool which takes a set of user defined predicates as inmérterate the test database
is presented iM]. The tool supports a subset of the first-order-logic and thus allows the
definition of more complex constraints as the tools discussed before wHhicta&a the database
schema and some data distributions as input. How] showed that their approach to
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generate a test database which meets a set of arbitrary constraints fedmnlérst-order-logic
does not scale for large test databases and complex constraints.

All the tools discussed before generate test databases independentedt cases that are to be
executed on the test object. The tools that we illustrate in the sequel try to thiskfgoblem by
taking some information about the test cases as input (i.e., the applicationsquietie database
application or the test queries that are to be executed on the DBMS).

In a set of tools for testing database applications (called AGENDA) is prede@ne
tool of AGENDA is a database generator which takes a database schethanfegrity con-
straints), an application query and some sample values as input. The seteetaate of the ap-
plication query is used to partition the domains of all attributes that participate preldecate into
equivalence classes. For example, if a SQL query defines a filter ptetlic < b_price < 100
then three partitions are generated for the attribupeice: | —oo, 10, [10, 100], and]100, oco[. For
other attributes not in the selection predicate, the user can define thalegu® classes manually.
The database generator offers different heuristics to guide the tabbda generation process: one
heuristic is to generate boundary values for the specified equivaléagses; another heuristic is
to generate NULL values if possible, etc.

Another work which also takes a SQL query as input is presentel@]. The goal of this
work is to generate a test database for a given relational query (limited téessmlect-project-
join queries) so that the query result is unique for the given test queryno other non-equivalent
query exists that returns the same result for the generated test datébtest database which
satisfies this criteria can be used for the testing of a query language;ri.gucfoa test database it
is easier to decide whether the actual result of a test query is the expestdtcbr not because the
expected result can be returned for only one particular test quentfieenon-equivalent queries
must have different expected results).

In M] the authors study the generation of test databases for the white-box tefstiatabase
applications. The goal of this work is to generate a test database whichsetuesult that has
certain characteristics for a given SQL query in order to execute a plarticode path of the
application. The tool supports only select-project-join queries as ingltteuser can specify
that the result of such a query should be empty or not and she can alsioathin constraints
on the result attributes (e.g., all values of therice attribute should be greaté). In order to
generate the test database, all the constraints on the query resulinataté@ into a constraint
satisfaction problem which can be solved by existing constraint solvers.

A similar tool is presented i@. The only difference to] is that the constraint
formula which is used to generate the test database for a given databaseasis constructed
more systematically; i.e., the SQL query is translated into a relational algebrassign and
the query operators transform the constraints on the query result insbramts on the database
schema. For example, a projection operator adds the deleted attributes tms$t@iot formula
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to let the constraint solver instantiate values for those attributes. Againseldgt-project-join
queries are supported as input.

In contrast to all tools discussed befo@] focuses on particular problems that arise when
huge synthetic databases need to be generated. This work is orthegaiiatools presented
above. In particular, this work discusses how parallelism can be useat tegeration speed-up
and scale-up and presents algorithms to generate huge data sets thavéoltayg distributions
(e.g., uniform, exponential, normal). Moreover, solutions to generatx@sdeoncurrent to the
base table are discussed, too.

Extracts from Live Databases: Another alternative to generate test databases is to extract the
data from a live database. However, extracting data from a live databig$t be problematic be-
cause the use of data from live databases has the potential to expsi@eseiata to an unautho-
rized person. Moreover, a live database may not cover all interestilagctiaracteristics adequate

to test a particular behavior of the test object.

In [WSWZ04, the authors investigate a method to generate a so caltek databasbased on
some a-priori knowledge about the live database without revealinganfidential information of
the live database. The techniques of this work guarantee that the mobtlasktaill have almost
identical statistics compared to the live database. Consequently, the molesiatan be used to
evaluate the performance of a database application.

A similar approach can be found . The authors of this work devise a formal framework
for database sampling. Their initial motivation was to generate a test datraesting new
features of a database application. The framework extracts a test siataba a live database
that meets the same integrity constraints as the live database and includesadtahdiversity”
found in the live database. The resulting database is expected to befiertdhe development of
new features of a database application than a synthetic test database.

2.2.3 Resume

Some approaches for generating test databases that we presenteatdion [3€.2 [@;

MR8§; ZXQQJ[; WEQé] discuss the same problem statement as this thesis; i.e., generating test
case aware databases. However, all these approaches fall shmhynaspects tackled by this
work:

e The main drawback of all these approaches is that they generate tdsisistdor only a
small subset of the SQL queries (IillMBB_d; ;MLEQ_é]) or they only consider certain
fragments of the test query like the selection and/or the join predicates]).
Consequently, these approaches cannot deal with all classes fl@&3L queries not to
mention the complex semantics of database applications in general.

16



2.2 STATE OF THE ART

e Moreover, these approaches give ad-hoc solutions for the sugpquesy classes so that
the presented solutions cannot be extended easily.

e Another problem is that these approaches are not designed to gehnegatemounts of
data. For examplel;lLC_Oj] and MO_&] first create one constraint formula and then in-
stantiate this formula to generate the complete test database. However,nimg time of
a constraint solver is exponential to the input size of the constraint forrdaasequently,
these approaches cannot deal with test databases for many praaitdeinps when huge
amounts of data are necessary (e.qg., for the testing of OLAP applications).

All other approaches discussed in SecfibB.1and in Sectio?.2.2focus on orthogonal prob-
lems.
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Chapter

Motivating Applications

All our dreams can come true — if we have the courage to puitsemt

— Walt Disney, 1902-1966 —

When designing a completely new database application or modifying suchphcagipn (e.g., a
reporting application or an E-Shop) it is necessary to generate one ertesbidatabases in order
to carry out all the necessary functional tests on the application logic rawgteg a certain quality
of the application under test. As discussed in Se@&R2 there are a number of commercial and
academic tools which enable the generation of a test database for a giabask schema. Beside
the database schema, those tools usually take value ranges, data riggosit@ome constraints
(e.g., the table sizes, statistical distributions) as input and generate attdsiskaaccordingly.

However, these tools generate test databases which do not refleetrthrtis of the application
logic that should be executed by a certain test case. For example, if aasestar a reporting
application issues a complex SQL query against such a synthetic testagtalmlikely that the
SQL query returns no or non-meaningful results for testing that guemyexample of a typical
reporting query is shown below. The query lists the total sales of ordieeedems per day, if the
discounted price was less than a certain average and more than a candihesdatabase schema
of the application is given in Figu#&2(a)):

SELECT o_orderdate, SUMI| pricex(1-1_discount)) as suml
FROM | ineitem orders WHERE | _oid=o_id

GROUP BY o_orderdate

HAVI NG AVGE | _price*x(1-1_discount))<=100

AND SUM'| pricex(1-1_discount))>=150;
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The following tables show a real excerpt of the test database gendnataccommercial test
database generation tHcﬁbr the example application:

|_id |_name |_price |_discount| | oid o_id ‘o_orderdate
103132| Kclcgzlf | 810503883 0.7 1214077 1214077| 1983-01-23
126522 | hcTpT8ud34| 994781460 0.1 1214077 1297288| 1995-01-01

397457| 5SwWn9qg3 | 436001336 0.0 1297288

Tablelineitem Tableorders

Obviously, the query above returns an empty result for that test datdlaause none of the gen-
erated tuples satisfies the comphVI NGclause (including different aggregations on arithmetic
functions). Even though some tools allow the user to specify additionalirutgsler to constrain
the generated databases (e.g., constraining the domain of the atfribiserunt), those con-
straints are defined on the base tables only and there are no means tbtbergreery results of

a certain test query explicitly. Therefore, those tools can hardly dealowitiplex SQL queries
used for reporting not to mention the complex semantics of database appbdatigeneral.

In order to generate meaningful test databases, this thesis propasgsexhnique calleReverse

Query Processingr RQP, for short. RQP takes a SQL query and the expected quelly (iasu
addition to the database schema) as input and generates a databadertimathat result if the

query is executed on that database. More formally, given a QRenyd a Table?, RQP generates
a Databasé (a set of tables) such thet(D) = R.

One application of RQP is the regression testing of reporting applications@LAP applica-
tions): The main use case of a reporting application is that a user exedti®s aeports on the
business data. In order to test various types of reports, the testeredrddt the SQL queries
which implement the different reports from the application. Furthermoretgter provides one
or several sample results for each report that are interesting forribgdoal testing. A combina-
tion of a SQL query (i.e., a report) and a result of that report specifgtactese for the reporting
application. Such a test case can then be used to generate a test dayaR&¥e which is ade-
quate for that test case. The thus generated test databases cad as asmsis for the regression
testing of the reporting application: i.e., if the reporting application is modifiedqtiegies (i.e.,
reports) defined by the test cases can be re-executed on the codigptest database and it can
be checked if the actual result of a particular report is the same as teetegpesult that is defined
by the test case.

Another important use case of a reporting application is that the user wadlitgptay the results
of a report in different formats by executing some actions like pivotingaséquently, the func-
tionality which shows the results of the reports on the screen strongly dementhe data that

We do not disclose the name of the tool for legal reasons.
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should be displayed. Consequently, in order to test the display functiotfaditgughly, we can
use RQP to generate different test databases for various reporissaittd of these reports that are
to be displayed.

There are also several other applications of RQP: One application thatliekescribe in detail

in Part[II] of this thesis is the generation of a test database for the functional testi@gTdé?
applications. While one SQL query and one result is usually sufficienteoifypthe database
state to execute a test case for a reporting application, we usually needhauoi@ne SQL query
to specify the characteristics of the test database to execute a test Gas®©DbTP application.
The reason is that OLTP applications usually implement use cases whidbtafreequences of
actions whereas each action reads or updates different entities oftdbasa (e.g., a use case of
an E-Shop application that creates a new order would first read thamél@vstomer and product
data from the database and then insert a new order using that data).

Another application that will be presented in Hidiiitis the functional testing of a query language
where it is important to verify the actual query result of an arbitrary tastyto reveal defects
in the query processing functionality. For that application we extend RQRriergte also an
expected result for a given test query following certain input paraméseg., the result size). The
expected result and the corresponding test query can then be usedetaig a test database by
RQP which returns the expected query result. During the test executise pihe expected result
of a test query is used to verify the actual result of executing the tesy gnethe generated test
database.

Contributions:  The main contribution of this part is the conceptual framework for RQP and a
prototype implementation called SPQRy§&em for Pocessing Qeries_Reversely) which takes
one SQL query and one expected result as input to generate a testsgatebrthermore, this part
gives the results of some performance experiments for the TPC-H beﬂc[@j using SPQR

in order to demonstrate how well the proposed techniques scale for cogqueers coming from
typical OLAP applications. The other applications (i.e., functional testing @1ar P applications
and functional testing of a query language) will be discussed sepaimatehrtllll

Outline: The remainder of this part is organized as follows: Chagkeefines the problem
statement and gives an overview of the solution. ChdtiErscribes the reverse relational algebra
(RRA) for RQP which is used to generate test databases for arbitrdryg8€¥ies. Chaptdf to

[B present the techniques implemented in SPQR, our prototype implementation RorGk@pter
describes the results of the experiments carried out using SPQR and @kl Benchmark.
ChapteflQdiscusses related work.
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RQP Overview

My way is to seize an image that moment it has formed in my n@ndhp it as a
bird and to pin it at once to canvas. Afterward | start to tarhda master it. | bring
it under control and | develop it.

—Joan Mir6, 1893-1983 —

In the last thirty years, a great deal of research and industrialt éfés been invested in order
to make query processing more powerful and efficient. New operatata,structures, and algo-
rithms have been developed in order to find the answer to a query foea database as quickly
as possible. This thesis turns the problem around and presents methodisritocefficiently find
out whether a table can possibly be the result of a query or not and \ifred the corresponding
database might look like.

Reverse query processing is carried out in a similar way as traditionay quecessing. At
compile-time, a SQL query is translated into an expression of the relationdralghis expres-
sion is rewritten for optimization and finally translated into a set of executab&ta .
At run-time, the iterators are applied to input data and produce ou@. What makes
RQP special are the following differences:

e Instead of using the relational algebra, RQP is based on a reversenalaigebra. Log-
ically, each operator of the relational algebra has a correspondingtopef the reverse
relational algebra that implements its reverse function.

e Correspondingly, RQP iterators implement the operators of the revdesmmal algebra
which requires the design of special algorithms. Furthermore, RQP iteizdge one input
and zero or more outputs (think of a query tree turned upside down)cdssequence, the

23



CHAPTER 4: RQP OVERVIEW

best way to implement RQP iterators is to adopt a push-based run-time motkding a
pull-based model which is typically used in traditional query procesBrg93.

e An important aspect of reverse query processing is to respect integristraints of the
schema of the database. Such integrity constraints can impact whethet ddtgmse
instance exists for a given query and query result. In order to implentegtity constraints
during RQP, this work proposes to adopt a two-step query processprgach and make
use of a model checker at run-time in order to find reverse query rdbalisatisfy the
database integrity constraints.

e Obviously, the rules for query optimization and query rewrite are diffdsenause the cost
tradeoffs of reverse query processing are different. As a resfiéireht rewrite rules and
optimizations are applied.

As will be shown, reverse query processing for SQL queries is cluatign For instance, reverse
aggregation is a complex operation. Furthermore, model checking is ansxe operation even
though there has been significant progress in this research area iecdrg past. As a result,
optimizations are needed in order to avoid calls to the model checker and/ersuek calls as

cheap as possible.

4.1 Problem Statement and Decidability

As mentioned before, this thesis addresses the following problem for redatiatabases. Given
a SQL QueryQ, the Schemsb of a relational database (including integrity constraints), and a
expected resulk (called RT'able), find a database instanéesuch that:

R=Q(D)

andD is compliant withS and its integrity constraints.

In general, there are many different database instances which camémted for a give®y and

R. Depending on the application some of these instances might be better thesy dtherder

to generate test databases for functional testing a reporting applicatidnsfance, it might be
advantageous to generate a sniallso that the running time of test cases is reduced. While
the techniques presented in the following chapters try to be minimal, they daiacdrgee any
minimality. The purpose of this thesis is to find any viable solution. Studying tegbgithat
make additional guarantees is one avenue for future work.

Theorem 4.1 Given an arbitrary SQL query), a result R, and a database schenf§ it is not
possible to decide whether a database instabcexists that satisfie§ and returnsQ(D) = R
or not.
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Proof (Sketch) 4.2 In order to show that RQP is undecidable, we reduce the query equoslen
problem to RQP. However, as shown )], the equivalence of two arbitrary SQL queries
is undecidab@ As a result, RQP for SQL must be also undecidable; that is, in generahdtis
possible to decide whetheria exists, if() does not follow the rules discussed |}£11T3§].

An arbitrary instance of the query equivalence problem can be rediecad instance of RQP as
follows. Let®; and Q)2 be two arbitrary SQL queries. In order to decide whetligrand Q-
are equivalent, we can use RQP to decide whether a database instaesésts for the query
Q = Xcount(x (@1 — Q2) U (Q2 — Q1)), a result R of Q which definesCOUNT (x) > 0.
Moreover, D should meet the constraints of the database sch8maf RQP can find such a
database instanc®, then@; and Q- are not equivalent (i.e., if); and Q- would be equivalent,
the result ofQ) must be empty). Otherwise, if RQP can not find such a database instgriben
it immediately follows thaf); and Q- are equivalent.

Furthermore, there are obvious cases wherénexists for a givenk and(@ (e.g., if tuples in
R violate basic integrity constraints). The approach presented in this thesisfdie, cannot be
complete. Itis a best-effort approach: it will either fail (returnearor because it could not find a
D) or return a validD.

4.2 RQP Architecture

Figureld. 1 gives an overview of the proposed architecture to implement reversg proeessing.
A query is (reverse) processed in four steps by the following comgsnen

Query Compilation: The SQL query is parsed into a query tree which consists of operators of
the relational algebra. This parsing is carried out in exactly the same wayaasaditional SQL
processor. What makes RQP special is that that query tree is translatedenerse query tree

In the reverse query tree, each operator of the relational algebraséated into a corresponding
operator of thaeverse relational algebra The reverse relational algebra is presented in more
detail in ChapteBl In fact, in a strict mathematical sense, the reverse relational algebra is no
an algebra and its operators are not operators because they allogditdeitputs for the same
input. Nevertheless, we use the teralgebraandoperatorin order to demonstrate the analogies
between reverse and traditional query processing.

Bottom-up Query Annotation: The second step is to propagate schema information (e.g., data
types, attribute names, and integrity constraints) to the operators of thetgeer Furthermore,

Two arbitrary SQL querie§); and Q. are equivalent, iffQ, and Q. return the same resuR for all possible
database instancés.
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Figure 4.1: RQP Architecture

properties of the query (e.g., predicates) are propagated to the oparbtioe reverse query tree.
As a result, each operator of the query tree is annotated with constrainspéuify all necessary
conditions of its output. Chapt@&describes this process in more detail. That way, for example,
it can be guaranteed that a top-level operator of the reverse quergdes not generate any data
that violates one of the database integrity constraints.

Query Optimization: In the last step of compilation, the reverse query tree is transformed into
anequivalentreverse query tree that is expected to be more efficient at run-time. amp& op-
timization is the unnesting of queries. Unnesting and other optimizations anebsekion Chapter

tel

Top-down Data Instantiation: At run-time, the annotated reverse query tree is interpreted us-
ing the resultkR (RTable) as input. Just as in traditional query processing, there is a physical
implementation for each operator of the reverse relational algebra thatdsfasreverse query
execution. In fact, some operators have alternative implementations whicldepayd on the
application (e.g., test database generation involves different algorithmseting data security,
see Palfll). The result of this step is a valid database instalcés part of this step, we propose

to use a model checker (more precisely, the decision procedure of d oimbder) in order to

26



4.2 RQP ARCHITECTURE

CREATE TABLE i neitem (
| _id I NTEGER PRI MARY KEY,
_name VARCHAR( 20),

o nlsUM(I_price)

SUM(I_price)

120
(i) RTable

|
| _price FLOAT, o_orderdatd SUM(_price) | AVG(l_price)
| _di scount FLOAT 1990-01-02) 100 ‘ 100
— ; N 2006-07-31| 120 60
CHECK ( 1>= di scount >=0) s (”)G-lAVG(I price)<100 (ii) Output of = —*; Input of o+

| _oid I NTEGER);

‘ g o_orderdate] SUM(Iiprice)\ AVG(I_price)
= 1990-01-02 100 100
(iii) -1 w 2006-07-31 120 60
CREATE TABLE order s( o_orderdatX SUM(_price), AVG(L price) | & (i) Output of &~ Input of !
o_id | NTEGER PRI MARY KEY, ‘ o | | | | |
- . I_id | |_name | |_price | I_discount| |_oid | o_id | o_orderdate
o_orderdate DATE); W) T | productA | 100.00 | 0.0 1 T | 1990-01-02
Ml oid=o id 2 | productB| 80.00 0.0 2 2 2006-07-31
. - - 3 | productC| 40.00 0.0 2 2 2006-07-31
SELECT SUM | _pri Ce) /\ (iv) Output of y~!; Input of !
F Li ne! tem A Orders I_id | |_name | I_price | |_discount| |_oid 0 id| o orderdate
WHERE | _oid=o_id lineitem orders T | productA| 100.00 | 0.0 T ot
GROUP BY o_orderdate 2 | productB| 80.00 ) 0.0 : 2006-07-31

3

productC| 40.00 0.0

orders

HAVI NG AVE | _pri ce) <=100;

lineitem

(a) Example Schema and Query (b) Reverse Relational Algebra Tree (c) Input and Output of Operators

Figure 4.2: Example Schema and Query for RRA

generate dat@. How this Top-down data instantiation step is carried out is described in
more detail in Chaptén

In many applications, queries have parameters (e.g., bound by a hiagtl@ar In order to pro-
cess such queries, values for the query parameters must be prosidgalato Top-down data
instantiation. The choice of query parameters again depends on the tipplifar test database
generation, for instance, it is possible to generate several test degabils different parameter
settings derived from the program code. In this case, the first thraseplof query processing
need only be carried out once, and the Top-down data instantiation eaheisame annotated
reverse query tree for each set of parameter settings.

Itis also possible to use constraint formulas on variables iltheble R. That way, it is possible
to specify tolerances. For example, a user who wishes to generate atedsage for a decision
support application could specify an example report for sales by pto®ather than specifying
exact values in the example report, the user could say that the salegyiadermis rackets are
with 90K < z < 110K. This additional constraint for variable would be considered during
the execution of Top-down data instantiation. Specifying such tolerarasesilo important ad-
vantages. First, depending on the SQL query it might not be possible ta fiest database that
generates a report with the exact value of 100K for the sales. Tha¢iRQ@ instance might sim-
ply not be satisfiable. Second, specifying tolerances (if that is acdeptatihe application) can
significantly speed-up reverse query processing because it gvesdtiel checker more options
to find solutions.
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4.3 RQP Example

Figureld. 2 gives an example of reverse query processing. Figilee shows the database schema
(definition of thelineitem andorders tables with their integrity constraints) and a SQL query
that asks for the sales (.57 M (I_price)) grouped byo_orderdate. The query is parsed and
optimized and the result is a reverse query tree with operators of theseeradational algebra.
The resulting reverse query tree is shown in Figi. This tree is very similar to the query tree
used in traditional query processors. The differences are thapéadimrs of the reverse relational
algebra (Sectiof) are used and (b) that the data flow through that tree is from the top to the
bottom (rather than from the bottom to the top).

The data flow at run-time is shown in Figld&l (c). Starting with anRT able that specifies that
two result tuples should be generated (Table (i) at the top of Fi§Zéc), each operator of the
reverse relational algebra is interpreted by the Top-down data instantiatioponent in order to
produce intermediate results of reverse query processing. In thig,pR@P uses the decision
procedure of a model checker in order to guess appropriate valgesp@ssible order dates). Of
course, several solutions are possible and the decision procedtive wfodel checker chooses
possible values that match all constraints discovered in the Bottom-up annctorandomly:
depending on the application, alternative heuristics could be used intorgenerate values that
are more advantageous for the application. The final result of RQP inxaisme are possible
instantiations for théineitem andorders tables. It is easy to see that these instantiations meet
the integrity constraints of the database schema and that (forward iexgitie SQL query using
these instantiations gives tli&l able as a result.

Figureld.2 does not demonstrate how the Bottom-up query annotation component asrib&ate
reverse query tree using the integrity constraints of the database schenmaoperties of the
query. The example, however, does show the effects of that stepex@anple, the result of
reverse projection (Table (ii) in Figuike2 (c) generates values for th8/ G (price) column which
are compliant with the predicate of th&\VI NG clause of the query. This process is described in
more detail in Chaptésl
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Chapter

Reverse Relational Algebra

Algebra is generous; she often gives more than is asked of her

— Jean Baptiste le Rond d’Alembert, 1717-1783 —

The Reverse Relational Algebra (RRA) is a reverse variant of the traditi@lational algebra
and its extensions for group-by and aggregat]; i.e., each operator of the
relational algebra has a corresponding operator in the reverse ralagebra. The symbols of
the operators are the same (eayfor selection), but each operatagp of the RRA are marked as
op~! (e.g.,c~1). Furthermore, the following equation holds for all operators and all walites
R:
op(op™'(R)) = R

However, reverse operators in RRA should not be confused imi#trseoperators because the
following formula isnot necessarily true for some valid tabl§sop—!(op(S)) = S

In the traditional relational algebra, an operator has 0 or more inputsraddiges exactly one
output relation. Conversely, an operator of the RRA has exactly oneamguproduces 0 or more
output relations. Just as in the traditional relational algebra, the operaftdthe RRA can be
composed. As shown in Figui#eZ (b), the composition is carried out according to the same rules
as for the traditional relational algebra. As a result, it is very easy taeans reverse query plan
for RQP by using the same SQL parser as for traditional query progessin

The close relationship between RRA and the traditional relational algebriavbaconsequences:

e Basic Operators:The reverse variants of the basic operators of the (extended) relationa
algebra (selection, projection, rename, cartesian product, unionegeggm, and minus)
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CHAPTER 5: REVERSE RELATIONAL ALGEBRA

form the basis of the RRA. All other operators of the RRA (e.g., reveuser goins) can be
expressed as compositions of these basic operators.

e Algebraic Laws: The relational algebra has laws on associativity, commutativity, etc. on
many of its operators. Analogous versions of most of these laws apply ®RAe Some
laws are not applicable for the RRA (e.qg., applying projections before)jdimsse laws are
listed in Klu8Q] and must be respected for RQP optimization (Sed@on

The remainder of this Chapter defines the seven basic operators ofi¢hsereelational algebra,
which form the basis for a complete implementation of a reverse query gaceA physical
implementation (e.g., algorithms) of the RRA operators for generating testedaisis described
in Chaptefzl

5.1 Reverse Projection

The reverse projection operator! generates new columns according todtgput schemaThe
output schema of an operator is defined as the set of attributes andagusgtirom the database
schema and the query) of the output relation generated by the opetagasuiput schema of each
operator is created in the Bottom-up annotation phase (CH8pt#&wgain, as for all operators of
the reverse relational algebra(r—!(R)) = R must apply for all validR.

In Figure[d.2 the reverse projection creates therrderdate and AV G(I_price) columns. In
order to generate correct values for these columns, the reversetmogeator needs to be aware of
the constraints imposed by the aggregati@idandAVG) and theHAVI NG clause of the query.
That is, the values in thedV G(I_price) column must be smaller or equal to 100 so thatthé
does not fail. Furthermore, the value of theorderdate column must be unique and the values
in the AVG(I_price) and SUM (I_price) columns must match so that the reverse aggregation
(x~1) does not fail. In this specific example, there are no integrity constraios fine database
schema or functional dependencies that must be respected as patrefiénse projection. In
general, such constraints must also be respected in an implementationrof thperator.

An algorithm to implement the—! operator is presented in Chapi@r This algorithm is based
on calls to the decision procedure of a model checker in order to fulfilbataints or falil (i.e.,
returnerror), if the constraints cannot be fulfilled.

5.2 Reverse Selection
The simplest operator of the reverse relational algebra is the revdestiae (') It either

returnserror or a superset (or identity) of its inpukrror is returned if the input of the reverse
select operator does not match the selection predicate. For example, ifighe apks for all
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employees with salary greater than 10,000 and Rffé:ble contains an employee with salary
1,000, thererror is returned. Another example of ! is given in Figurdd.2 (c). Table (ii) in
Figured.2(c) (the output ofr 1) is the input ofs—!. Since the input of~! is compliant with its
output schema, the output ef ! (Table (iii) in Figurd4.2c) is the same as its input.

5.3 Reverse Aggregation

Like the 7—! operator, the reverse aggregation operatot generates columns. Furthermore,
the reverse aggregation operator possibly generates additional rosvgldnto meet all con-
straints of its aggregate functions. Again, as for all RRA operators, dla¢ ig to make sure
that x(x~!(R)) = R and that the output is compliant with all constraints of the output schema
(e.g., functional dependencies, predicates, etc.). If this is not podsietethe reverse aggregation
fails and returngrror. An algorithm to implement thg —! operator using the decision procedure
of a model checker is presented in Secffon

Tables (iii) and (iv) of Figuréd.2 (c) show the input and output of reverse aggregation for the
running example. In that example, the values ofithd, [ name, andl_discount columns are
generated obeying the integrity constraints ofilthe:itemn table (top of Figur@.2(a). The value

of thel_price column is generated using the input (the result of the reverse selectidrihan
intrinsic mathematical properties of the aggregate functions. The valueg bfdhl ando_id
columns are generated obeying the constraints imposed by the join preditaejoery and the
primary-keyconstraint of therders table.

5.4 Reverse Join, Cartesian Product

The reverse join operatos ! completes the running example. It takes one relation as input and
generates two output relations. Like all other operators, the reversm@kas sure that its outputs
meet the specified output schemata (the database schemalffordiiern andorders tables in the
example of Figur@.2) and that the join of its outputs gives the correct result. If it is not possible
to fulfill all these constraints, then atror is raised. Really, the only thing that is special about
the x—! operator is that it has two outputs. Again, an efficient algorithm to implemesterse

join is presented in Chapt@r The reverse Cartesian product is a variant of the reverse join with
true as a join predicate.

5.5 Reverse Union

Like the reverse join, the reverse union operator() takes one relation as input and generates two
output relations. According to the constraints of the output schemata of theutgut relations,
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Figure 5.1: Reverse Union (left); Reverse Minus (right)

the reverse union distributes the tuples of the input relation to the cormdisigooutput relations.
An example is given in the left part of FiguEel Both relationsk and .S have an attribute
a. Let the input for the reverse union be three tuplé&), (12), (8)}. In this case, the reverse
union must output2) to the left reverse selection operator and outfi@} to the right selection
operator.(8) can be output to either the left or the right selection operator. If the ifputeverse
union involves a tuple that does not fulfill the constraints of any brands i@mot possible in the
example of Figur&.]), then the reverse union fails and retuamsor.

5.6 Reverse Minus

An example of a reverse minus operater (') is shown in the right part of Figu&1 Input tuples
are always routed to the left branch or result in an error. Furtherritasepossible that the-—!
generates new tuples for both branches in order to meet all its constrairttis example, the
reverse minus would output an input tup® (or any other input witlx < 5) to its left branch, and

it would returnerror if its input contains a tuple witlh > 5. No new tuples need to be generated
in this example.

5.7 Reverse Rename

The reverse rename operator has the same semantics as in the traditidioalaledaodel. Thus,
only the output schema is affected; no data manipulation is carried out.
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Chapter

Bottom-up Query Annotation

The more constraints one imposes, the more one frees otfe’dise the
arbitrariness of the constraint serves only to obtain psemn of execution.

— lgor Stravinsky, 1882-1971 —

The bottom-up query annotation phase in Fiddir®annotates each operatgy—' of a reverse
query tree with aroutput schema“Y” and aninput schemas’". This way, each operator can
check the correctness of the input and ensure that it generates viglid data.

Definition 6.1 (Input/Output Schem&:) A schema$ (input and output) in RQP is formally
defined as the following four-tuple:

S =(A,C,FJ)

The tuple defines (1) the attributds (2) the integrity constraint€’, (3) the functional dependen-
cies F' and (4) thejoin dependencied (as well as multivalued dependencies as special cases of
J).

The set of attributes! defines the attribute namesme(a), the data typeype(a), and the fre-
quency|a| for each attribute: € A.

Definition 6.2 (Attribute Frequencyal|:) The frequencya| of an attributea € A defines how

often the same attribute instance (i.e. value of a tuple) can be used in a relastamae that
satisfiesS. The frequency is either given by a constafite.,|a| = ¢) or as|a| > 1.
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Notation || Description
S SchemaS

S.A Attributes

S.C Integrity Constraints
S.F Functional dependencigs

S.J Join dependencies
Cok Check constraints

Cun Unique constraints
Cprk Primary-key constraints
CNN Not null constraints
Caca Aggregation constraints

Table 6.1: Notations used in the bottom-up phase

For example, the frequency of the attributed in the input schema of the reverse union operator
of the reverse query expressitmrders U~! orders) is two (i.e.,|orders.o_id| = 2) because the
same value will be used twice in the result of the reverse query expression

Thejoin dependenciessed in that work are a generalization of those known from textbooks like

].
Definition 6.3 (Join Dependency D:) A join dependency D in that work is defined as follows:
J-D — (Ala AQup)

A JD defines that the projection of the relatidn to the attributes in4; U A, must represent
a lossless join on of the two projections Bfto A; and R to A, usingp as join predicate:
TAuA, (R) = (ma,(R)) X, (m4,(R)). Join dependenciesith more than two sets of attributes
can be represented as a recursive combination of ti@sedependenciesMore details on how
thejoin dependencieare calculated for each reverse operator will be given in the correspand
sections.

Moreover, RQP considers the integrity constraints of SRinjary-Key Unique Foreign-keyNot
Null, andChech as well a%ggregationconstraintsﬁ In order to denote the different
constraint types in a schentg we useS.Cek, S.Cyn, S-Cpr, S.Cnyny andS.Caae . The
notations used in this chapter are summarized in Tadle

Obviously, a unary operator (e.g:;'!) in the RRA has only one output schenf’¢’”) whereas

a binary operator (e.gx ~!) has two output schemata. In a reverse query tree, the output schema
of an operator must match the input schema of the reverse operator winistinoes the data from

that operator in in a reverse query tree. For example, the input schetha of ! is the same

as the output schema of the! in the example of Figuré.2 (b) because the reverse selection
consumes data from the reverse projection in the reverse query tree.
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In order to annotate each operator of a reverse query tree the anngtadise operates in a bottom-
up way. It starts with the output schemata of the leaves of the reversetgee(e.g., the operators
that read théineitem andorders in Figureid.2 (b)). Consequently, the output schemata of these
leaves are defined by the database schema (e.g., the SQL DDL code &fi&R)(a). Then, for
each operator, the input schema is computed from the output schema giettaon. This input
schema is then used to initialize the output schema of the operator at the méxidev

[IM] showed that the problem of calculating constraints that hold on the intertaedsults
of arbitrary relational queries is undecidable. In this chapter, we diszget of best-effort rules
to calculate the constraints that hold on the intermediate resifits 4nd S°UT) of an arbitrary
relational query.

The remainder of this chapter defines the set of best-effort rulesfasélte annotation of each
RRA operator and shows how the bottom-up phase works for eachtopefahe example re-
verse query tree in Figu@2 Furthermore, we also show how the bottom-up phase works for
nested queries. In this regard, our work is an extension of the wodepted in ]; that
work describes hovunctional dependenciesidcheckconstraints expressing the equality can be
propagated for expressions of the relational algebra. We extend thiafev all elements 4, C,

F andJ) contained in a schem& and add rules for the aggregation operatM] did not
discuss the aggregation operator). As shown lateptineary-keyand theuniqueconstraints irC'
can be derived fron#’, the attribute frequency, and thet null constraints inS. Furthermore, the
rules introduced in the sequel use full qualified attribute names (relation aadrettribute name)
instead of the position of an attribute in a relation (which is use ]) in order to identify
the attributes uniquely. Another extension is that we assuegsemantics, as in SQL.

6.1 Leafinitialization

As stated above, the output schemata of the leaves of the reverse geaetinitialized using the
database schenta We assume that a database schema which is used as input of the bottom-up
annotation phase (see Figlel) defines a schemér = (A, C, F, J) for each relationk. For

each attribute € A we sefla| = 1if a has auniqueor aprimary-keyconstraint. Otherwise we set

la| > 1. In order to initialize a leaf of a RRA expression representing a relaticthe bottom-up
phase must extract the corresponding sch&maut of the database scherfia

Foreign-key constraints defined in the output schema are treated specthlybottom-up phase.
They are rewritten as a reverse equi-join with a join predicate represéinéipgmary-keyforeign-
key relationship.

Example: Assume the tabléneitemn in the example of Figurd.2 (a) defines doreign-keyon
the attribute_oid which refers thgrimary-keyattributeo_id of the relationorders and we want
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to reverse process the following query:

SELECT | _nane
FROM | i nei tem
VWHERE price>100

This query would then be rewritten as:

SELECT | _nane
FROM | i neitem orders
VWHERE | _price>100 and | _oid=o_id

For the rest of the input schema elements of a leaf, they are the same asibetslef the leaf’s
output schema. For example, the input and output schemata bfihiéern andorders table in
Figureld.2 (b) can be represented in the following way (there areimigue no foreign-key and
no not null constraints in this example): the attributésof both schemat®);,citerm aNd Sy aers
define the attribute name, the type and the frequency of each attribute.

A: 1id; | NTEGER; |I_id| =1, A: o_id; | NTECGER; |o_id| =1
I_name; VARCHAR( 20) ; |l_name| > 1, o_orderdate; DATE; |o_orderdate| > 1
C: PRI MARY KEY(0id)
_oid; | NTECGER; |l_oid| > 1 {o_id} — {o_orderdate}
C: PRIMARY KEY(I_id) J. 0
CHECK(1 > | _di scount > 0)
F: {l_id} — {i_name,l_price,...,l_oid}
J: 0

=

Slmm',tam Sn'rd(irs

6.2 Reverse Join

The reverse join has two output schemata cafigé," and S50 . Its input schema ' is com-

puted from these two output schemata by the following rules:

(1) S'N.A=S2UT. AU ST A;

right

— If p is an equi-join predicate; = ay (a1 € SQF".A anday € SP%7.A) and there is a
primary-keyconstraint or ainiqueconstraint in the database schefan the attribute:; (or

as), then for eactu € S™N. AU SGUL. A (or for eachu € SN AU SPYT. A) set|a] > 1

— Else for eactu € STV . A set|a| > 1

(2) SIN.F= closure(Sg%T.F U Sgg,?;.F U createF D(p));

— p denotes the join predicate

— createF D(p) is a function to creattunctional dependencidsom predicates (see Figuée]).
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— the functiorclosure is the function to compute the closure of a given sdtottional depen-
denciesn [@].

(3) STN.J=SQUT.JUSQUL.T U JD(SQYT. A, SOUL. A, p)

right ' Mright

(4) STN.C is defined for each type as follows:

(4.1) SN Cox = SQ%T.CCK u Sf,?g,?;.CCK Up;
— p denotes the join predicate;
4.2) SN Cyn = SZQ%T.CNN U sgg,g;.om;
4.3) O™V .Cpk, S™.Cyy) = createPK AndUnique(S™ .F, ST™N .Cyn, STV . A)
— createPK AndUnique is a function to creatgrimary-keyanduniqueconstraints from
functional dependenciespt null constraints, and attributes (see Figard).

(4.4) SIN.CAGG = Sg%T.CAGG U Sgg,;l;.CAGG;

The set of attribute§’" . A of the input schema is the union of the set of attributes from the reverse
join’s output schemata (rule 1). The frequency of each attributeS’™ . A is set to|a| > 1 if the

join predicatep is not an equi-join predicate on an attributedfi%," (or SGL/T) with a primary-
keyor auniqueconstraint in the database schefaOtherwise, we setz| > 1 only for those
attributes inS’". A that come froms$U% (or SP7/7).

Thefunctional dependencie®’" . F of the input schema are defined as the closure of the union of
thefunctional dependencieas the reverse join’s output schemata andftimectional dependencies
computed from the join predicate by the functierate F'D in Figureg.d (rule 2). The function
createF' D takes a predicatg as input and outputs a set of derivalfilectional dependencies
This function deals with arbitrary predicates by transforming the givedigage into conjunctive
normal form (Line 3 in Figur&.J). The conjunctive normal form of a predicate consists of one or
more conjuncts, each of which is a disjunction (OR) of one or more literals [sipnpdicates with

no boolean operator). Afterwards, each conjunct is analyzedaepa(Line 5 in Figurd.J). In
case that the conjunct only consists of a simple predicate expressinguléyed is transformed

into a set of functional dependencies (Line 9 to 15).

Thejoin dependencieS’"..J of the input schema are defined as a union oftiredependencies

in the reverse join’s output schemata and a j@w dependencgomputed from the attributes of
both output schemata and the join predigafeule 3). Thus we are able to express joins on joined
relations.

The checkconstraints (rule 4.1) are the union of tbleeckconstraints from the output schemata
and the join predicate. Theot null constraints (rule 4.2) are the union of thet null constraints
of the output schemata. Thumiqueconstraints angrrimary-keyconstraints can be derived from
F, thenot null, and the attributes i$’" (rule 4.3). The functiorereate PK AndUnique (see
Figurel6.2) used by that rule takes tHenctional dependencieB, the not null constraintsV 1V,
and the of attributes! as input and outputs ghirimary-keyanduniqueconstraints implied by,
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createFD(Predicate p)

Output:
-Set F' /] Set of functional dependencies
(1) //transformp to conjunctive normal form
(2) I'lenf_p=pori A... NPorn
(3) enf_p = CNF(p)
(4) //Analyze each conjunct por;:
(5) FOREACH pogr in enf p
(6) //domain equality: a;=aq;
(7) [/lvalue equality a; =c¢;
(8) [/laja; are attributes; c is a constant
(9) | F(por 1S domain equality)
(100  /le.g. add ({a;} —{a;}), ({a;} — {a:})
(11) F. add({por-leftAtt()} — {por-right Att()})
(12) F. add( {por.rightAtt()} — {por-leftAtt()})
(13) ELSE I F(por is value equality)
(14) /le.g. add (0—{a;})
(15) F.add( 0 — {por.leftAtt()})
(16) //ELSE do nothing for conplex predicates
(17) END IF
(18) END FOR
(19) RETURN F

Figure 6.1: FunctiorcreateFD

NN, andA. A functional dependency expresses aniqueor primary-keyconstraint on the set
of attributesA, if all attributesA appear in the right side gf and all attributes in the left side g¢f
have a frequency of one (Line 6 in FiglB&)). When there araot null constraints on the left side
of f, then aprimary-keyconstraint is added for the attributes; elssn&gueconstraint is added for
the attributes (Line 7-10 in in Figul@2).

Theaggregatiorconstraint (rule 4.4) is a new type of constraint which is explained in the failpw
section. These constraints are also computed as union afggregationconstraints of the two
output schemata.

Going back to the example of Figu#eZ the two output schemata of the ! are given by the
input schemata of the relatiohsieitern andorders. Following the complete set of rules fer?,
the resulting input schema of the~! can be represented as follows:
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createPKAndUnique(Functional dependencies  F',Not null constraints NN,

Attributes  A)
Output:
-Set PK /I Set of primary-key constraints
-Set UN [/ Set of unique constraints
(1) PK=UN=10
(2) //lanalyze F
(3) FOREACH f in F
(4) //if all attributes A are in right side of f

(5) //and each attribute a in left side has |a] ==1

(6) IF(A-f.rightAtts() == 0 & |a|==1 for each attribute a€ A)
(7) IF(NN has a constraint for f.leftAtts())

(8) PK.add(PK(f.leftAtts()))

(9) ELSE

(10) UN.add(UNI QUE( f.left Atts()))

(11) ENDIF
(12) END IF
(13) END FOR
(14) RETURN ( PK, UN)

Figure 6.2: FunctiorreatePKAndUnique

A: 1id; | NTEGER; |I_id| = 1,

I_oid; | NTEGER |I_oid| > 1,
o_id; | NTECER; |o_id| > 1,
o_orderdate; DATE; |o_orderdate| > 1
C: PRI MARY KEY(I_id), I*from lineitem*/
CHECK(1 > | _di scount > 0),/*from lineitem*/
CHECK(o_id = I_oid) [*join predicate*/
F: {l_id} — {I_name,...,o0_id,o_orderdate} ,
{o_id} — {o_orderdate} ,
{l_oid} — {o_id},
{o_id} — {l_oid}
J:  JD({l_id,...,l_oid},{o_id,o_orderdate}, (I_id = l_oid)) ,

6.3 Reverse Aggregation

The input schema of a reverse aggregation operator is defined bylltveirig rules:

1) SIN A=Ay U Aggy;

— A, denotes th&ROUP BY attributes,
— Aq.44 denotes the attributes of the new aggregate columns @Eh&CT andHAVI NGclause

— If Ay, # 0 then for eachu € A, set|a| = 1 and for eaclu € A, set|a| > 1; Else for each
a€ Ayggsetjal =1
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(2) SIN.F =closure(cleanFD(SOUT . F, Ay) U{Ayr — Aagg});

— cleanF D is a function to filter unrelated FDs (see Figltg).
(3) SIN.J=cleanJD(SOUT . J, A,,)

— cleanJ D is a function to filter unrelated JDs (see Figirg).
(4) S™ .C is defined for each type as follows:

(4.1) SN .Cok = cleanConstraints(SOVT.C, (SN . AU Ayyy.atts()), CK);
— cleanConstraints is a function to clean constraint (see Figiar).

(4.2) SIN.Cnn = cleanConstraints(SOUT.C, (STN.AU Aygq-atts()), NN)U
createNot Null(Aagg, SOUT Cn);

— createNotNull is a function to creataot null constraints (see Figui&d).

(4.3) SN .Cpge = cleanConstraints(SOUT.C, (STN . AUA,y,.atts()), AGGREGATION)U
AGGREGATION (Ayr, Aagg)

(4.4) (S™N .Cp, S™.Cyyn) = createPK AndUnique(ST™N . F, STN .Cyn, STV . A);

— createPK AndUnique is a function to creatprimary-keyanduniqueconstraints from
functional dependencigsot null constraints, and attributes (see Figard).

The attributes4 of S’V are given by the attributes in tf@ROUP BY clause of the query plus
the aggregate columns specified in BELECT andHAVI NG clause of the query (rule 1). The
frequency for each attribute in tHeROUP BY clause is set tda| = 1 and to|a| > 1 for the
aggregate columns. If the query has@OUP BY clause, then the frequency for the aggregate
columns is set tda| = 1.

The computation off' is listed in rule 2. It first uses the functiatiean FDs (Figurel6.d to
keep onlyfunctional dependencieswith at least one of the attributes of the left sidefah the
input schema (Line 5 to 6). Then a néwnctional dependenayhich expresses that all aggregate
columns are functional dependent from the attributes inGREUP BY clause is added. If no
GROUP BY clause exists, an empty set is used as left side of thefurestional dependency

The computation off is shown by rule 3. It uses the functietean.J D (Figurele.4) to keep only
those attributes in pin dependency with at least one of the attributes in tROUP BY clause.

The checkand not null integrity constraints (rule 4.1 and rule 4.2) are inherited from the out-
put schema only if they are correlated to any attribute in the input schema ofria at&ibute
Aqgq-atts() of the aggregation functiond,,,. The functioncleanConstraints (Figurele.5)
takes a set of integrity constrainf&’U”, a set of attributest, and the constraint type as input
and outputs those integrity constraiité" of the given type which are correlated to any attribute
in A. In order to find correlated integrity constraints, the functidgeunConstraints invokes

a functioncreateConstraintGraph (Figure[6.6) to create a constraint graph (Line 2 in Figure
6.9 whose vertices represent the given integrity constrainS9q” and whose edges show if
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cleanFD(Functional dependencies  Foyr, Attributes  A;ry)
Output:
-Set Fy /l Cleaned functional dependencies

(1) Fin=0

(2) //analyze FDs in FOUT

(3) FOREACH f in FOUT

(4) //if left attributes of f are in AN
(5) IF(f.leftAtts() n AN 1= ()

(6) f.rightAtts() = f.rightAtts() n AN
(7)  F'N.add(f)

(8) END IF

(9) END FOR

(10) RETURN FIN

Figure 6.3: FunctiorleanFD

cleanJD(Join dependencies  Joyr, Attributes  A;pn)
Output:
-Set J;n // Cleaned join dependencies

(1) Jin=0

(2) //analyze each JDs in JOUT

(3) FOREACH j in JOUT

(4) [/lanalyze A; and A; in j given by j.atts()
(5) FOREACH set A in j.atts()

(6) //renove attributes not in A™Y fromj
(7) J.AL = A NAIN, Ay = 5. Ay N ATV

(8) /ladd j to J;y if Ay and Ay is not enpty
(9) IF(j. AL #0 && jAs #0) Jin=JinUj

(10) END FOR

(11) END FOR

(12) RETURN JIN

Figure 6.4: FunctiorleanJD
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cleanConstraints(Constraints ~ CUT, Attributes A, Type t)

Output:
-Set CN /I Cleaned integrity constraints

(1) //create constraint graph of COUT
(2) GOUT = createConstraint Gaph(CfUT)
(3) GV = (0, 0)

(4) /lanalyze attributes A

(5) FOREACH a in A

(6) //analyze constraints of GOUT

(7) FOREACH c in GOUT Y

(8) /1if ais in attributes of ¢

(9) | F(a € c.atts())
(10) /I subgraph cal cul ates all constraints
(11) //connected to vertex ¢ in GOUT
(12) GSUB = GOUT subgraph(c)
(13) //add constraints to GV
(14) GIN. add( G°UB)
(15) GOUT  remove( GOUB)

(16) END IF

(17) END FOR

(18) END FOR

(19) //the vertices of G'V are the constraint
(20) CIN = gINYy

(21) 1F(t!=f) RETURN CIN

(22) ELSE RETURN CTV

Figure 6.5: FunctiorleanConstraints

two constraints refer to at least one common attribute. The function keeptegility constraints
which are connected to an integrity constraint, which refers to at leasattritsute inA’~ (Line
9to 16).

The aggregationconstraint (represented /" .C1g¢) in Rule 4.3 is a new type of constraint
introduced in An aggregation constraint specifies the requirements of the aggnegatio
functions and th&ROUP BY clause. They are also computed by the functieanConstraints.
Additionally, a new aggregation constraint for that operator is added, too

Theprimary-keyanduniqueconstraints (rule 4.4) can be derived frdmas already described for
the reverse join.

In the example of Figurd.2 the output schema of the~! is given by the input schema of the
x~!. The input schema of the! is specified as follows.
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(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)

createConstraintGraph(Set ()

Output:
-Graph G = (V, E) Il Graph of correlated constraints

V=2=0
E =10
/lintegrity constraints in set C
FOREACH ¢ in C

FOREACH ¢ in V
/1if ¢ and ¢ have common attributes
| F( catts() N .atts()! = 0)
E.add(c¢, (¢)
END | F
END FOR
V.add(c)
END FOR
RETURN G = (V, E)

Figure 6.6: FunctiorcreateConstraintGraph

A:  o_orderdate; DATE; |o_orderdate| = 1,
SUM(_price); FLOAT; |SUM (I_price)| > 1,
AVE(_price); FLOAT; |[AVG(I_price)| > 1

C: PRI MARY KEY (o_orderdate),
AGGREGATI ON( GROUP BY o_orderdate,

{SUMI_price), AVEI_price)})

. {o_orderdate} — {SUMI_price), AVI_price)}
Jo 0

6.4 Reverse Selection

The input schema of a reverse selection inhetité’, C, andJ from its output schema. The only
difference between the output and input schema is that the selectiongiesidiadded to theheck
constraints of the input schema. The selection predicate is translated iregsgmmdingunctional

dependencieim the same way as for the predicates of a reverse join (see fBglre

In the example of Figuid.2, the input schema of the~! is almost identical with the input schema
of the x~! (previous paragraph): only tteheckconstraint with the predicatdV G (I_price) <
100 is added to the constrainf& .

6.5 Reverse Projection

Ther~! operator has similar rules as the! operator. The rules are as follows:
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(

createNotNull( Aggregation constraints Cacas, Not null constraints Cy )

Output:

/INot null constraints for aggregation functions
-Set Cy -

(1) Cnn =0

(2) [//lanalyze aggregation functions in AGGS
(3) FOREACH agg in Cacas

(4) //if all netrics are NOT_NULL
(5) I F(agg.atts() - Cuyn.atts() = 0)
(6) Cynr. add( NOT_NULL( agg) )

(8 ENDIF

(9) END FOR

10) RETURN Cyn

Figure 6.7: FunctiorreateNotNull

(1) S™N. A= Aproj;

- A,; denotes the projected attributes.

(2) SIN.F = cleanF D(SCUT .F, SN A);

— cleanF D is the same function as before (see Fido®

(3) S™.J = clean D(SCVT.F, SN A);

— cleanJ D is a function to filter unrelated JDs (see Figirg).

(4) S™.C = cleanConstraints(S°VT.C, ST™N A, 0);

The attributes of the input schema (rule 1) are derived from the attributee BELECT clause
(the projection does not change the frequency). flinetional dependenciesmnd thejoin depen-
dencieqrule 2 and 3) are calculated by the functiathsan F'D andclean.J D just like in reverse
aggregation. Also, the integrity constraints (rule 4) are calculated by ticedmcleanConstraints

— cleanConstraints is the same function as before, see FidgLi

which keeps all constraints correlated to the attributes in the input schema.

In the example of Figurid.2, the input schema of the~! is as follows.

A:
C.

SUM(_price); FLOAT; |SUM (I_price)| > 1
CHECK(AVE_price) < 100),
AGGREGATI ON( GROUP BY o_orderdate,

0
0

{SUMI_price), AVHI_price)})
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In the example, theheckconstraint is correlated to treggregationconstraint. Thus, it is kept

in the input schema, although the attribut® G (I_price) itself is not kept. The reason is that
the functioncreateConstraintGrapkwvhich is used in order to calculate the correlated constraints
calls a methoditts() of each integrity constraint in the output schema (see FigeLine 7).
This method call on aaggregationconstraint returns all aggregated columns (eAd/G (price))

plus all metrics of the aggregation functions (elgprice). Thus constraints correlated to all
aggregation functions and metrics are kept in the input schema.

6.6 Reverse Union

The reverse union has two output schemata like the reverse join. Its icipeina is computed
from the two output schemata by the following rules.

(1) S'N.A=SQUT.4;

— Foreachu € S™ A set|a| = SOFT [a| + SOUT |al. 1f S2FT.a or SOUT .o has a frequency
> 1thenseta| > 1.

(2) SIN.F = SQUT F 1 SOUL F;

(3) SIN.J=10;
(4) SN .C'is defined for each type as follows:

(4.1) S™.Cor = (SRFT -Cox) V (SO0 -Cox);

(4.2) SN Cyn = SQ%T.CNN N SggU}Z;.CNN;

(4.3) S™N.Cage = SQ%T.CAGG N Sgg,g;.C’AGG;

(4.4) (S™N.Cp, S™.Cyy) = createPK AndUnique(ST™N . F, STN Oy, STV . A); (see Figure
0.4)

The set of attributed of the input schema is equal to the set of attributes of its left output schema
(rule 1), if the attribute types of both output schemata match. The frequéniog attributes ilA
is the sum of the input frequencies. An example is given in the introductidms€thapter.

Thefunctional dependencigs the input schema (rule 2) are computed by the intersection of the
functional dependencias the two output schemata. Rule 3 states thafdiredependencieare
initialized with an empty list. Obviously, at this point i@sesome constraints (i.e., our rule set
is not complete) as we discussed before.

The derivation of thecheckconstraints is more complex (rule 4.1): the setbéckconstraints

of the input schema is computed by combining the seathefckconstraints from the left output
schema with the set aheckconstraints from the right output schema disjunctively. However, as
the attribute names could be different in the right output schema they haeerémamed to the
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corresponding attribute of the left output. Tihet null andaggregationconstraints are computed
by an intersection of these constraints of both output schemata (rule 4@eadd3). Therimary-
keyanduniqueconstraints (rule 4.4) are again derived fréimas already described for the reverse
join.

Example: In the reverse union example in FiglB€l, the newcheckconstraints with the pred-
icate (R.a < 10) V (R.a > 5) of the input schema of the reverse union is derived from the
predicates of theheckconstraints in the two output schemat& (@ < 10) and(S.a > 5)). We
can see that the attributes of ttlgeckconstraint of the right output schema are renamed.

6.7 Reverse Minus

The reverse minus operator has also two output schemata. To derivpilhedhema we generally
consider its left output schema only. The schema computation for the inpernscof the reverse
minus operator is given by the following rules:

(1) S'™N.A=S2UT.A
(2) SIN.F = SQUT.F
(3) SIN.J =10

@) SIN.C = SS%T.C A ﬁSgghTt.CCK;

The set of attributes of the input schema as well atualttional dependenciemd other integrity
constraints are equal to the left output schema (rule 1, 2 and 4)joirhdependencieare again
initialized with an empty list (rule 3). In addition to these rules, (rule 4) statesatbheckcon-
straint which is the negation of the conjunction ofaieckconstraint predicates of the right output
schema is added. In the reverse minus example in H@gdira checkconstraint with the predicate
I(b > 5) is added to the input schema of reverse minus.

6.8 Reverse Rename

To derive the input schema we only rename the corresponding attribpecieely relation names
of the output schema id, C, ' andJ.
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6.9 Annotation of Nested Queries

In order to reverse process a nested query, SPQR uses the cofwested iterations (sometimes
called apply operators) which are known from traditional query pising , in a reverse
way (see Sectioid.10). A nested query has the following general structure:

QUTER QUERY

bi nd predicate

I NNER QUREY

correl ation predicate

In many cases, the bottom-up phase can be applied to the outer and inneblgo& separately.
However, if the inner query is a query connected by equatityd predicate to the outer query,
then the reverse apply operator adds an additiumadtional dependency the outer query. In
case that the inner query is correlated to the outer quergathielation predicatanust express the
equality, otherwise néunctional dependendg added to input schema of the reverse selection of
the outer query. Thiunctional dependen@dded by the reverse apply operator has the following
structure ¢orrelation attributeandbind attributeare the attributes of the outer query used in the
correlation predicateand thebind predicatg:

{correlation attribute} — {bind attribute}

Example: Assume the following query is given:

SELECT s_age, s_salary
FROM St udent
WHERE s_age =

SELECT MAX(p\ _age)

FROM Pr of essor

WHERE p_sal ary=s_sal ary

In that example, &nctional dependendlys_salary} — {s_age} is added to the input schema of
the reverse selection operator of the outer query.
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Chapter

Top-down Data Instantiation

I'd like our software somehow automatically recognizingiydata and your
situation and respond to that without you having to set it up.

— Scott Cook —

The Top-down data instantiation component in Figdu®interprets the optimized reverse query
execution plan using aRT'able R and query parameters as input. It generates a database instance
D as output. The generated datab@sdulfills the constraints of the database schema and the
overall correctness criterion of RQP under the decidability concerngeasioned in Sectiod. 1

If this is not possible, thearror is returned.

A reverse query execution plan consists of a set of physical RRAatpsr As in traditional
guery processing, the set of physical RRA operators is called thégahysverse relational alge-
bra. Each logical RRA operator may have different counterparts intigsigal RRA. The choice
may be application dependent; for example, different physical implemergatierused for SQL
debugging and for scalability testing. This chapter presents the phykjesdra of SPQR, a pro-
totype of RQP. The physical algebra of SPQR tries to keep the generatigiade as small as
possible.

Moreover, there is a limitation on implementing some physical RRA operators:elséme
database table is referenced multiple times in a reverse query tree, therysieapmplemen-
tations ofo~!, x—! and——! are not allowed to generate additional tuples for that table. This
limitation does not affect the physical RRA in this thesis as these operatoesage no additional
tuples in order to kee@ as small as possible. But this limitation does affect physical algebras
which generate additional tuples (e.qg., a physical algebra for perfaeartanting).
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Example: That problem can be shown by the following example query which shoulevaese
processed disregarding the rule above (Tebleas the attributesl, B). We see that tablé' is
referenced multiple times.

SELECT S1.A,S1.B,S2. A, S2.B
FROM S as S1, S as S2
WHERE S1. B=S2. B AND

S1. A>5 AND S2. A<=5;

Assume that a resul® is given which has only one tupke, 1, 5, 1>. The reverse query tree
for that query contains two reverse selections (oné&'dmmand one onS2). The reverse selection
A > 50nS1 pushes6, 1> down toS1 and creates an additional tuple which satisfies> 5),
e.g. <b, 2> for S1.4, S1.B. The reverse selectioA <= 5 on S2 pushes<5, 1> down t0.52
and creates an additional tuple which satisfigs<= 5), e.g.<6, 2> for S2.4, 52.B. So at the
endS would contain four tuple§ <6, 1>, <5, 2>, <5, 1>, <6, 2>} . If we run the query above
on the generated tuples fthe result would contain two tuplg¢s<6, 1, 5, 1>, <6, 2, 5, 2>}
and not only one tuple as defined By

The remainder of this chapter is organized as follows. At the beginningtnalirce the general
architectural model used to implement the physical RRA operators. Aftdsywa non blocking
implementation is shown for each RRA operator which can be used in most Game special
cases which need a blocking implementation, as well as the reverse [imgoafssested queries
are discussed afterwards. Finally, optimizations for some RRA operatmmesented.

7.1 Iterator Model

As in traditional query processing, each operator is implemented as an ﬁt@. Unlike
traditional query processing, the iterators are push-based. Thatesiewer an operator produces
a tuple, it calls theoushNeximethod of the relevant child (output) operator(s) and continues pro-
cessing once the child operator(s) is (are) ready. Thus, the wholendédatiation is started by
scanning theRT'able R and pushing each tuple & one at a time to the root operator of the re-
verse query plan. A push-based model is required because ogarttioe RRA can have multiple
outputs; the alternative would be to implement a pull-based model with buffetinch is signif-
icantly more comple@]. All iterators have the same interface which contains the following
three methods:

e open prepare the iterator for producing data (as in traditional query psotgs
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e pushNext(Tuple): (a) receive a tuple, (b) check ift satisfies the input scheml " of
the operator, (c) produce zero or more output tuples, and (d) for @atput tuple, call the
pushNextnethod of the relevant children operators.

e close clean up everything (as in traditional query processing).

The following subsections show how the operators produce tuples inpiheiNexmethod. All
other aspects (e.gopenandclosg are straightforward so that the details are omitted for brevity.

7.2 Reverse Projection

In SPQR, the reverse project operator produces exactly one ougpetftn each input tuple. In
order to generate values for new columns, the reverse project opeaisathe decision procedure
of a model checker. The idea is to create a constraint formula whichsesethe constraints
which have to be satisfied by the output. These constraints represeraltles known from the
input tuple on the one hand and the output schema on the other hand. drgplexif the input
schema has one columd), the input tuple is<3>, and the output schema has two columAds (
and B) and an additional constraint that+ B < 30, then the following constraint formula is
generated:

A =3 & A+tB < 30

This constraint formula is passed to the model checker which in turn geseralues for all
variables orerror if no instantiations that satisfy the formula can be found. In this example, the
model checker would return, say, = 3, B = 20 and these values would be used to generate an
output tuple.

FigurdZ.Ashows the pseudocode of how the! operator which generates an output tuple from an
input tuple. The most important statement is the call ofitiseantiateDatgunction (Line 2) which
does the actual work. Since this function is also used by the implementation pf theperator,

it has two return parameters: one which defines the instantiated data [@avialoe pairs) and
another which indicates how many tuples are used to solve aggregatiors migiat be part of
the formula (see below). The second return value is only needed fortheperator so that it
can be ignored for the moment. If the callitstantiateDatawas successful (i.el,# NULL in
Line 3), then a new output tuple is created according to the output schetmarof! operator and
passed to the next reverse operator (Lines 6 to 8). Othereris®,is returned (Line 4).

The pseudocode of a simplified version of thetantiateDatgunction is shown in Figurig.2 This
function creates a constraint formula(Line 9) following the semantics of the reverse operator
and executes the decision procedure of the model checker(bime 10). As part of the creation
of the constraint formula, restrictions of the model checker need to be tak® account. For
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7~ 1.pushNext (Tuple t)

(1) //lnstantiate output data

(2) (I, count) =i nstanti at eDat a(t, S°UT)

(3) IF(I/=NULL) //no instantiation found

(4) RETURN error;

(5) ELSE

(6) tou=Creat eTupl e( I, SOUT, 1)

(7) /I push down the new tuple t,;
(8) next Qper at or. pushNext ( tyy¢)

(9) END IF

Figure 7.1: MethoghushNexof 7!

instantiateData(Tuple ¢, Schema S°UT)

Output:

-Instantiation I //data instantiation

-int n //number of tuples for aggregation

(1) //nunber of tuples for aggregation
(2) IF tincludes COUNT of aggregation

(3) count, maxcount=COUNT val ue in t
(4) ELSE //USER THREHOLD=1 if no aggregation
(5) count=1; mazxzcount=USER_THRESHOLD
(6) END IF
(7) FOR(n=count TO maxcount)
(8) /Il Create constraint formula L
(9) L=cr eat eConstrai nt (t, S°UT, n)
(10) I=deci si onProcedure( L)
(11) | F(I' =NULL) RETURN (1, n)

(12) END FOR //Trial -and-error
(13) RETURN (NULL, 0)

Figure 7.2: FunctiomstantiateDatasimplified)

example, the model checker used in the performance experiments (S8ctiors not support
SQL numbers and dates. As a result, all SQL numbers and dates mustveetedrinto (long)

integers and the constraints must be adjusted accordingly. Furthermithejedic expressions
(e.g0.,A + B) which might appear in the input and output schema of the reverse projeutist

be taken into account.

The most complex part of thHastantiateDatafunction deals with the generation of columns that
involve aggregations. In Figue2, for example, ther—! operator needs to generate values for the
AV G(I_price) column. In order to generate correct values, ittstantiateDatafunction needs

to guess how many tuples are aggregated by the aggregate functionsttorde, two tuples are
aggregated for the second tuple of tR&able R in Figureld.2 The two tuples are generated by
they~! operator, but the—! operator which only generates one output tuple per input tuple must
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be aware of this fact in order not to generate values that cannot beedatgithey—! operator.
Unfortunately, today’s publicly available model checkers have not besigned for aggregation
so that this guessing must be carried out as part afigtantiateDatgunction in a trial and error
phase (Lines 6 to 11). The guessing iteratively tries different values(thfe number of tuples
aggregated) and calls the decision procedure for each value until tieotheprocedure of the
model checker was successful and able to instantiate data.

Continuing the example of Figul&2 for the second tuple of th&T'able R (SUM (I_price) =
120), the following formula is generated far= 1

sum| _price=120 &
o_orderdate! =19900102 & avg_| _price<=100 &
sum| _price=l_pricel & avg_| _price=sum]| _price/l

This formula is given to the decision procedure of the model checker bvidusly, the model
checker cannot find values for the variabescel andavg_price that meet all constraints. In the
second attempt far = 2, the following formula is passed to the decision procedure:

sum| _price=120 &
o_orderdate! =19900102 & avg_| _price<=100
sum | _price=l_pricel+l _price2 & avg_| _price=suml| _price/2

This time, the decision procedure finds an instantiﬂion:

sum | _price=120, avg_ | _price=60,
| _pricel=80, | _price2=40,
o_orderdat e=20060731

From this instantiation, the values oforderdate, avg_I_price, andsum_I_price are used in
order to generate the output tuple of the reverse project operatoe BRQR prototype, the max-
imum number of attemptsi{axzcount in Figure[Z.2) can be constrained by the user in order to
make sure that the whole process does not run for ever. Morediibg guessing is not necessary

if the query involves £OUNT aggregation because the values (or constraints) of the corresponding
COUNT column in the tuplet) can be used (Lines 2 and 3 of Figlf&). Furthermore, in order

to avoid the guessing, several optimizations can be applied (SEfdnh These optimization
techniques work very well such that in practice not much guessing isreglyin fact, the experi-
mental results in ChaptBshow that no guessing is required for the whole TPC-H benchmark.

The constraint onr der dat e is generated becauseorderdate is theprimary-keyattribute of the output schema
and, thus, a differeni_orderdate value must be generated for the tuple Wity M (I_price) = 120 than for the tu-
ple’with SU M (I_price) = 100. 19900102 is the integer representation for the date January 2, 1990, théerdate
value of the tuple with6U M (I_price) = 100.

220060731 is the integer representation of the date July 7, 2006.
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x~'.pushNext (Tuple t)

(1) //lnstantiate data

(2) (I, count) =i nstanti at eDat a(t, SOUT)

(3) IF(I/=NULL) //no instantiation found

(4) RETURN error;
(5) ELSE
(6) FOR(n=1 TO count)
(7) tows =CreateTupl e(I, SOUT, n)
(8) next Qper at or. pushNext (tyy¢)
(9) END FOR

(10) END I F

Figure 7.3: MethogbushNexbf y !

The pseudocode of Figuféd is a simplification for the special case that there are no nested
aggregations (e.gSUM AV pri ce)) ) and no joins on aggregated values (e.g., aggregations in
several subqueries). However, the code can easily be generalizatidases. This generalization

is not shown because it is fairly straightforward. SPQR indeed implemeoktsasgeneralized
version of thenstantiateDataunction.

7.3 Reverse Aggregation

The reverse aggregation operator can be implemented in an analogotss tivayreverse projec-
tion. The difference is that while the~! operator only guesses how many tuples are potentially
involved in an aggregation, the~! operator actually generates these tuples. The key idea to use
the decision procedure of a model checker, however, is the same.

Figure[Z.3 shows the pseudo-code. TimstantiateDatafunction is called in the same way as for
7~ The only difference is that the return parametetnt is now initialized (Line 2) which
defines the number of output tuples. If timstantiateDatafunction was successful, theount
tuples are generated (Lines 6 to 9) using the values returned bydtaatiateDatafunction. If

not, thenerror is generated (Lines 3 and 4). Again, an example that shows this code in eatio

be seen in Figurd.2(c) (Tables (iii) and (iv)).

7.4 Reverse Join

The reverse join operator can be implemented in different ways, degeadithe join predicate.
The simplest (and cheapest) implementation is the implementation of an equi-joinviblaes
a primary-keyor an attribute with auniqueconstraint. Such joins are the most frequent joins
in practice. They can be implemented as a simple projection with duplicate eliminatios. T
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U~!.pushNext (Tuple t)

(1) //Create constraint formulas

(2) Lies=createConstraint(t, ng’{tT

(3) Lyigne=createConstraint(t, sgg,};

(4) //lcall nodel checker

(5) I F(decisionProcedure( L) ! =NULL)

(6) left_operator. pushNext ()

(7) [I//call nodel checker

(8) ELSE | F(decisionProcedure( Lyign:) ! =NULL)
(9) right_operator. pushNext (t)

(10) ELSE
(11) return error
(12) END IF

Figure 7.4: MethoghushNexof U~1

implementation of general joins and Cartesian products is more complex; ttedgotithms are
given in SectiofiZ.9.1 In any event, the implementation of reverse joins and Cartesian products
do not involve calls to a model checker so that these operators are meapeshthan reverse
projections and aggregations.

7.5 Reverse Selection

The simplest implementation of tle ' operator would return its input (i.e., implement the iden-
tity function). For example in Figuid.2 (c), thec—! implements the identity function such that
its output relation (Table (iii) in Figuld.2(c)) is identical to its input relation (Table (ii) in Figure
4.2 (c)). If any input tuple is not compliant with the output schema, thear is returned.

7.6 Reverse Union

Like the reverse join, the reverse union operator takes one relation atsang generates two
output relations. According to the output schemata of the two output relatitomseverse union
operator distributes the input tuples to the correct output relation.

FigurdZ.4shows a implementation of the reverse union. The implementation checkslfidnpat
tuple if it is complaint with the output schema of the left output relation by creatingnstraint
formula representing the input tuple and the constraints imposed by the ook@mma (Line 1
to 3); and pushes the tuple to the left output relation if they are compatible @lin@therwise,
the reverse union checks the compatibility of the input tuple with the right ougpation (Line
8). If an input tuple is not complaint with any output relations, tleeror is returned (Line 11).
Obviously, the reverse union implementation is cheap: its complexity is Linear toghesize.
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7.7 Reverse Minus

The implementation of the reverse minus operator is similar to the reverse udmatamp It checks
for each input tuple if it is compliant with the left output schema but not the Bgkput schema;
and pushes the input tuple to the left output if possible. Otherwise, it seturor. Again, the
complexity of this implementation is Linear to the input size just like the reverse wmerator.

7.8 Reverse Rename

Since the reverse rename operator does not have any data manipulatioplétaentation is the
same as the reverse selection: it returns identity.

7.9 Special Cases

The implementations of the operators discussed so far are all non-blockivgg is, whenever

an operator takes in a tuple, the operator can push the result tuple(s)dailtheutput operator

immediately after processing. However, in some very special cases, B&R to use blocking

RRA operators in order to guarantee correctness and they are @ddossetails in this section.

These special cases, however, are very rare in practice. For kxaheTPC-H benchmark used
in the experiments does not have any of the special cases and all ranbloperators described
above were used in the experiments.

7.9.1 Reverse Join

As discussed before the reverse equi-join that involvasraary-keyor an attribute with ainique
constraint is trivial. However, all other reverse joins need more compdeking implementations
which are shown in the following.

Case 1: If the join predicate expresses the equality of two attributes=( a;) and botha; and
a; are not theprimary-keyor an attribute with ainiqueconstraint of the output schemata, then a
blocking implementation of the reverse join operator is needed.

The blocking implementation is shown in Figifé First, the complete input relation is grouped
by the attributes of the left output schema (Line 1). Afterwards eachpgsoanalyzed (Line 3 to
24). If the group does not fulfill the join predicate aror is returned (Line 5 to 7). Afterwards,
the left and right output are created for that group (Line 10,11). yf@nboth outputs (in the
algorithm we use the left output) of the previous group has the same valtigefgin attribute
as the current group, then the current right output must be the same pethious right output;
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else anerror is returned (Line 14 to 19). If the input is correct, then the current ledt @ght
outputs are propagated to the next operators and they are savediaspritputs for the next
loop execution (Line 21 to 24).

Moreover, if one of the output schemata allows duplicates, the reversegemator has to find out
the correct cardinality of the outputs out of different possibilities. In taate duplicate elimina-
tion is needed in Line 10 and Line 11. However, this extension is straigtdfdrand not shown
in this thesis.

Example: An example of that case can be shown by the following query:

SELECT c_id, c_age, s_id, s_age
FROM cust oner, supplier
VWHERE c_age=s_age

Both relations ¢ustomer and supplier) have aprimary-keyattributeid. The input is given by
the following two tuples:<1, 27, 1 , 27> and<2, 27, 2 , 27>. Both tuples are in
separate groups because the attributes of the left outpditndc_age have different values. As
the reverse join produces different supplier tuples for the right owdpbbth groups, although
they have the same attribute value for the join attribuigge, the input is incorrect. A correct
input should have four tuple€:<1, 27, 1, 27>, <1, 27, 2, 27> <2, 27, 1

, 27>, <2, 27, 2, 27>}.

Case 2: If the join is not an equi-join and the join predicate is in the fornupf> a; or in the
form of a; > a;, then the blocking version of the reverse join operator is needed, too.

Example: Consider the following query and the given input:

SELECT c_id, c_age, s_id, s_age
FROM cust oner, supplier
WHERE c_age > s_age

c_id | c_age| s_id | s_age

1 27 1 25 [*1st group*/
1 27 2 26

2 28 1 25 [*2nd group*/
2 28 3 27
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x~!.pushNext (Relation r)

(1)
(2)
(3)
(4)
(5)
(6)
(7
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

r_groups = groupby(r, Sl(z}]tT.A)
/1 anal yze each group in r_groups
FOREACH r_group in r_groups
/I check join predicate
I F(r_group not fulfills x—!l. p)
RETURN error
END I F
[lprojection (with dupl. elimnation)
//to attributes of output schenata
leftowr = r_group[SlOeJ[{tT.A]
rightous = r_group[Sgg}?;.A]
[1if join values of previous group
/lare equal to current group
| F(leftpre[x ™ p.att()] == leftou[x ™! .p.att()])
/lthen right outputs nmust be the sane
| F(rightout! = right,rey)
RETURN error
END | F
END I F
| eft _operator. pushNext (leftout)
ri ght _operator. pushNext ( right,.;)
leftpre = leftout
rightpre = Tightout
END FOR

Figure 7.5: Case 1: MethqaushNexbf »x !
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x~!.pushNext (Relation r)
(1) r_groups = groupby(r, Sg%T.A)
(2) r_groups = sortbyatt (r_groups, SQ%T.AH x}~ 1 p.atts(), x~t.p)
(3) [/lanalyze each group in r_groups
(4) FOREACH r_group in r_groups
(5) //check join predicate
(6) | F(r_group not fulfills x—!l. p)
(7) RETURN error
(8 ENDIF
(9) [//projection (with dupl. elimnation)
(10) [//to attributes of output schenata
(11) leftow = T_group[Sg}JtT.A]
(12)  rightoy: = T_group[STOig,f’;.A]
(13) //right output of successor group
(14) //nust be contained in previous group
(15) | F( rightprey — Tightou:! = 0)
(16) RETURN error
(17) END | F
(18) END IF
(19) left_operator. pushNext (leftou:)
(20) right_operator. pushNext (righty.:)
(21) rightpre = Tightous
(22) END FOR

Figure 7.6: Case 2: MethqaishNexbf » !

With a careful look on the input, it can be seen that the input is not a valid wiptne reverse
joinsince atuple<2, 28, 2, 26>is missinginthe second group. As a result, the reverse join
operator has to examine all the input before it produces the first result.

The implementation for that case is given in Figidr& It is similar to the implementation of case

1 - the differences are marked bold. In particular, the reverse join alsadhgroup the input by
the attributes of the left output schema (e@id, c_age), and additionally has to sort the input
by the join attribute (e.gg_age) in ascending order (descending order is used if the comparison
operator is< or <) (Line 1 and 2). This way, the set of output tuples which is producedhtor
right output (e.g. tableupplier) of the first group must be contained completely in the set of
output tuples which is produced for the second group (Line 15). If thislition holds among all
adjacent groups, then the input is valid; otherwas®r should be returned (Line 16).

Case 3: If the join is not an equi-join and the join predicate is in the form(af = «;), then
a blocking version of the reverse join operator is needed. The blocldrgjon is implemented
similar to the first case: the input tuples are grouped by the left outputrecaed the join operator
checks if each group produces the same set of output tuples for tighito
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Case 4: In order to process more complex join predicates, the algorithms introdiwefedeb
must be combined. For example, to check the input of a reverse join opefittica conjunctive
predicate likea; > a; A a;, < a;, the input must be grouped iy anda; and the groups must
be sorted ascending hy and descending by,. Moreover, to check the input of a reverse join
operator with a disjunctive join predicate the tuples of the input must be divitte different
input groups each fulfilling one predicate element. E.qg. for a join predicaelik a; VvV a; < a;
we divide the input into two groups - one which fulfills the predicate> a; and another which
fulfills the predicaten;, < a;. If a input tuple fulfills more than one predicate the tuple is added
to all corresponding input groups. Afterwards, each input groupshecked separately by the
algorithms introduced for the previous cases. As each join predicate ec@rarisformed into
disjunctive normal form, we are able to process arbitrary reverse j@'ratmr.

7.9.2 Reverse Projection and Reverse Aggregation

In two special cases, the top down phase of RQP needs the blocking impléoreafahe reverse
projection operator and the reverse aggregation operator.

Case 1: If the output schema of a reverse projection (or reverse aggregaj@nitor contains
acheckconstraint in the form of; < a; < ay or in the form ofa; < a; < c or in the form of

c < a; < aj (alternatively the predicate could use thénstead of the< operator), where; and

ay, are attributes in the input schema ands an attribute in the output schema but not in the input
schema and is bound byumiqueor primary-keyconstraint, the data instantiation phase should
use the blocking implementations of the operators.

Example: An example of this special case is a query like the following one:

SELECT b
FROM R
VWHERE b<a and a<10

The relationR consists of attributea andb; anda is a primary-keyattribute. If there are two
input tuples<7> and<8>, then the reverse projection may genere®e 7> for the first input

tuple<7>. If that is the case, the reverse projection could not find an instantiattadhdsecond
tuple<8> because&9, 8> is the only possible instantiation (&s< a < 10) but this instantiation
violates theprimary-keyconstraints imposed by the first output tugle, 7> on the attributex.

As a result, a blocking implementation is needed such that the reverse pmojectdhe reverse
aggregation operator consider all input tuples and generates the outpng ibatch. For the

3This thesis does not discuss the details of this algorithm.
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example above, the reverse projection has to buffer all the input in twdaoduce the output
<8, 7>and<9, 8>.

FigureZ.dshows a generalized version of the functinstantiateDatavhich is used by the block-
ing implementation of both operators. This version takes a complete relationuasimgpreturns

an instantiation of the output for the complete input, as well as an array of memvh&h represent
the number of tuples, which have to be used for each input tuple in ord&sstolek aggregations
(n[i] is the number of output tuples which have to be created foi-tha@nput tuple). Therefore
the function guesses the right number of output tuples for each inputhiygieating all possible
combinations of count values for all input tuples (Line 1 to 13). Aftersatak function tries to

find an instantiation of the output for each possible combination of countsdliline 14 to 20). In

case that the function finds an instantiation, it returns this instantiation andriletcombination

of count values. If none of the combinations is satisfidNé/ L L, NU LL) is returned.

This function is more expensive than the simipistantiateDatafunction, because of several rea-
sons: One is that the constraint formula is more complex for the complete induihas the
model checker needs more time; another reason is that the trial-andvasrto be carried out for
the complete input and thus the size of combinations grows exponential withutthigen of input
tuples.

Case 2: If areverse projection (or reverse aggregation) operator gesdtaties which are pro-
cessed by a reverse join operator (implied by a join dependency in thet satpema) and its join
predicate does not express the equality grimary-keyattribute of one of the output schemata,
then blocking versions of the operators are needed during the datatimstaphase. Otherwise
these operators may generate incorrect values which do not satisfyirin@gperties. The im-
plementation of the blocking versions for these two operators in this spedalreeds similar
algorithms as the blocking version of the reverse join operators in SEEBohin order to check
the input. The algorithms can be adapted easily from that section and asleavat here.

Additional algorithms are needed in order to produce the output. First, thiénmgst be grouped

as described for the different join predicates in Sediidhl Afterwards, the output generation
is carried out for each group of the input separately in order to geneatues which respect the
join properties.

In the following we explain the output generation for join predicates whictakip those of case
2 in SectioriZ.9.1 For illustration purposes we use the following example.

Example: Consider the following query and the given input. The query is similar to thenple
query of case 2 in Sectiéfi9.1 However the join attribute_age is not given by the input:
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instantiateData(Relation r, Schema S°UT)

Output:
//data instantiation
-instantiation
/Inumber of tuples to ungroup each tuple
-int[] n
(1) //nunber of tuples to ungroup r
(2) int[] count, mazxcount
(3) i=1
(4) /lanalyze each tuple ter
(5) FOREACH t in r
(6) IF tincludes COUNT of aggregation
(7) countli] = mazcount[{]=COUNT val ue in t
(8) ELSE //USER THREHOLD=1 if no aggregation
(9) count[i|=1; maxcount[i]=USER_THREHOLD
(10) i=i+1
(11) END FOR
(12) //create conbinations of count domains
(13) comb=cr eat eConbi nat i ons( count, maxcount)
(14) FOREACH n in comb /[In is a k—array; k is the cardinality of r

(15) /Il Create constraint formula L
(16) L=creat eConst rai nt (r, S°UT, n)
(17) I=deci si onProcedure( L)

(18) | F(I' =NULL) RETURN (I, n)

(19) END FOR //Trial -and-error
(20) RETURN ('NULL, NULL)

Figure 7.7: Case 1: FunctionstantiateData
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SELECT c_id, c_age, s_id
FROM cust oner, supplier s
VWHERE c_age>s_age

c_id | c_age| s_id

1 27 1 /*1st group*/
1 27 2

2 28 1 /*2nd group*/
2 28 2

2 28 3

First, the operator analyzes which join attributes are given by the inputlelést one join attribute

is given by the input (e.gc_age), the input is grouped by the attributes of that output schema
of the corresponding reverse join operator which contains that join atrileug. ¢_id, c_age).
Afterwards, the input groups are sorted by that join attribute (e @ye) ascending or descending
depending on the relational operator of the join predicatgiéq or <, leq). If both join attributes

are not given by the input, then the input is grouped by the attributes offtheutput schema of
the corresponding reverse join and sorted ascending by the cardifadiéglo group. If the value
for the join attribute of the output schema we grouped by is not given by the {i8.g.c_age),

then the operator has to generate one distinct value per group wherauks for all groups are
sorted ascending or descending depending on the join predicate (¢.88)2M™owever, in our
example the attribute_age is given by the input and thus no values have to be generated. Other
values which must be generated for that output schema must be distireadiorgroup, too. If
the value for the join attribute of the other output schema is not given by the (e@. s_age),

then the attribute values generated for the first group must be reusee $gabnd group (e.g. we
generate 25, 26 for the tuples withid = 1 ands_id = 2). Values generated for other attributes of
that output schema (not in the join predicate) must be reused, too. Neesvalust be generated
for those tuples which are in the second but not in the first group (e.gewerate 27 for the tuple
with s_id = 3). The new values for the join attribute have to be greater than the maximum value
of the join attribute (e.gs_age) used in the first group in case that the join operatas isr geq

or smaller than the minimum value of the join attribute in case that the join operatooiigeq.
Moreover, all generated join attribute values have to fulfill the join predicetese steps have to
be carried out for all adjacent groups.

The algorithms for other join predicates are straightforward. As the prsvédgorithm, these
algorithms generate values for the join attributes in a similar way such that takss vulfill the
properties of the particular join predicate shown in the different casBectfori7.9.1
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7.9.3 Reverse Union

If both output schemata of a reverse union operator hgunaary-keyor auniqueconstraint on
the same attribute; and there is @heckconstraint on another attributg in the output schema,
then a blocking version of the reverse union is needed in the top down dédatiation phase.

Example: An example can be shown by the query in Fight# (left side). Assume attribute
is the primary-keyattribute of both relatior and.S and the two input tuples are6, 6> and
<2, 6>. Using the non-blocking version of the reverse union operator, thetdijpte <6, 6>
might be distributed to the relatioR. Then, the second tupk2, 6> cannot be distributed to
relation.S becauser = 2 cannot not fulfill the selection predicate> 5. Alike, this tuple also
could not be distributed to relatiaR because of thprimary-keyconstraint. Therefore, a blocking
implementation of the reverse union operator is needed which buffers atigheand distributes
<6, 6>toSand<2, 6>toR.

Figure[Z.8 shows the implementation of the blocking version of the reverse union opefatst,

the method analyzes which tuple must be distributed to the left, right, and whitshdap be
distributed to both outputs in a similar way as the non-blocking reverse unionrmeptation
(Line 1 to 20). Afterwards those tuples which can by distributed to both ¢&ifpath,,,.;) must be
divided into two relations, one for each output (by method dilribute (Line 22). The method
distribute(not shown as algorithm) analyzes possible combinations to distribute tugleshis,

to leftout andright,,:. In order to check if a combination satisfies the output schemata, two
constraint formulas have to be constructed (onéd¢t,,; and one foright,..). These formulas
have to be checked by the model checker if they are satisfiable. If nobetttecombination is
tried. If no combination is found, thdistributemethod returns an error (Line 24), else the output
is propagated to the left and right branch (Line 26, 27) as specified itotieination.

7.10 Processing Nested Queries

As mentioned in Sectidfl, SPQR uses the concept of nested iterations (sometimes called apply
operators) which are known from traditional query proces , In a reverse way: The
inner subquery can be thought of as a reverse query tree whoddsngarameterized on values
generated for correlation variables of the outer query.

Example 1: Assume that théneitem table (from Figur@.3a)) has an extra columinshipdate.
Then, the following nested query is processed reversely as follows:
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uU~!.pushNext (Relation r)
(1) leftout = @
(2) 7ﬂightout = @
(3) bOthaut = (Z)
(4) FOREACH t in r
(5) [//Create constraint fornulas
(6)  Lis=createConstraint(t SP%"
(7)  Lyigne=createConstraint (¢, S,Ozg,?;
(8) //call nodel checker
(9) | F(deci si onProcedur e( Liest A Lyignt) ! =NULL)
(10) bothyy:. add( t)
(11) //call nodel checker
(12) ELSE | F(deci sionProcedure( L) ! =NULL)
(13) leftoy. add(t)
(14) [//call nodel checker
(15) ELSE | F(deci si onProcedure( Lyign:) ! =NULL)
(16) right o @dd( 1)
(17) ELSE
(18) return error
(19) END IF
(20) END FOR
(21) (leftouts rightow) =
(22) di stribute(bothour, leftous, Tightout)
(23) 1 F(leftout, mightew=( NULL, NULL))
(24) return error
(25) END IF
(26) |eft_operator. pushNext (leftout)
(27) right_operator. pushNext (righty,.)

Figure 7.8: MethoghushNexbf U~! in special case
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SELECT o_id FROM orders

VWHERE orderdate IN
(SELECT | _shi pdate FROM | i neitem
WHERE | _oid = o_id)

First, the reverse query plan of the outer query is executed giveR7arble R. The values
generated for the bind variabdeorderdate and the correlation attribute id are used to initialize
the input for the reverse query tree of the inner subquery. Proceasisted queries is, thus,
expensive: it has quadratic complexity with the size offiféuble R. Sectiori@shows how almost
all nested queries can be unnested for reverse query processinteint@improve performance.

In those cases where the bind or the correlation predicate does nessxtpe equality, the reverse
apply operator has to be implemented as blocking operator. This is obv®aach nested RRA
expression can be unnested, e.g. by using reverse join operatsheyasin Sectio). In the case
that the reverse join operator uses a inequality predicate, it also mudbakimb implementation.
Thus, the algorithms for the blocking reverse apply operators are similag tevhrse join and not
shown in this technical report. The only difference is that the revergly gignerates new input
values for the inner subquery.

7.11 Optimization of Data Instantiation

The previous subsections showed that reverse query processiityrelies on calls to a model
checker. Unfortunately, those calls are expensive. Furthermorep#tef a call grows with the
length of the formula; in the worst case, the cost is exponential to the sthe érmula. The re-
mainder of this section lists techniques in order to reduce the number of calésriwtltel checker
and reduce the size of the formulae (in particular, the number of variabtas fiormulae). The
optimizations are illustrated using the example of Fiddi

Definition 7.1 (Independent attribute:) An attribute is independentvith regard to an output
schemas®UT of an operator iffS°UT has no integrity constraints limiting the domainoénda
is not correlated with another attribut€ (e.g. bya > a’) which is not independent.

Definition 7.2 (Constrictive independent attribute:) An attributeis constrictive independent
if it is independent with regard to an output scheid”” disregarding certain optimization-
dependent integrity constraints.

The following optimizations use these definitions:
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OP 1: Default-value Optimization

This optimization assigns a default (fixed) value to an independent attributbe default value
assigned t@ depends on the type of the attribute. Attributes which use this optimization are not
included in the constraint formula. An example attribute which could use this optiioiis the
attributel_name of lineitem. This attribute could use a default value; e.g.,'product’.

OP 2: Unique-value Optimization

This optimization assignsuniqueincrement counter value to a constrictive independent attribute
a which is only bound byuniqueor primary-keyconstraints. Here, the optimization-dependent
integrity constraints which are disregarded in the definition of constrictidegandent attribute
areuniqueand primary-keyconstraints. Attributes which use this optimization are not included
in the constraint formula. In the running example, values forl thé attribute could be generated
using this optimization. If another attributé of the same schema exists which is correlated by
equality (e.g.a = o’ from an equi-join) and:’ is an independent or a constrictive independent
attribute which is only bound byniqueor primary-keyconstraints, then attribui€ is set to the
sameuniguevalue asa and constraints involving’ need not be included in calls to the model
checker either.

OP 3: Single-value Optimization

This optimization can be applied for a constrictive independent attribwggich is only bound
by checkconstraints. An example of such an attribute is the attribuiéscount of lineitem.
Such attributes are only included in a constraint formula the first time the top-ghase needs
to instantiate a value for them. Afterwards, the instantiated value is reused.

OP 4: Aggregation-value Optimization

This optimization can be applied for constrictive independent attrikutgdsch are only bound by
an aggregation constraint. If the attributés used in an aggregation function, e.§{/ M (a) and

a result value for the aggregation function is given, then differentiigcies to instantiate values
for a can be used. Some possibilities are shown below:

1. If SUM(a) is an attribute in the operator’s input schema/ N (a) and M AX (a) are not
in the operator’s input schema, anchas type float: Instantiate a value f@ey solving
a = SUM (a)/n with n the number of tuples used to solve the aggregation constraint in the
instantiateDataunction. In this case, no variables, ao, . . . , a,, need to be generated and
used in the constraint formula passed to the model checker.
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2. Same as (1), but/ IN(a) or M AX (a) are in the operator’s input schema, an¢ 3: Use
values forM I N (a) or M AX (a) once to instantiate. Instantiate the other values fatby
solvinga = (SUM (a) — MIN(a) — MAX(a))/(n — 2).

3. Same as (1), but is of data type integer: Again, we can directly computby solving
SUM (a) = ny X a1+ na X az, wherea; = [sum(a)/n], ag = [sum(a)/n], n1 = n—ny
andny = (SUM (a)%n).

4. If COUNT(a) is in the operator’s input schemagcan be set using the Default-value opti-
mization (OP 1) becauseis independent in this case.

OP 5: Count Heuristic

Unlike the previous four optimizations, this optimization does not find instantiatloegead, this
optimization reduces the number of attempts for guessing the number of tugre&igure7.2)
to reverse process an aggregation by constraining the vahue Difie heuristics for this purpose
are shown below. The theoretical foundations for these heuristicsvameig

1. If SUM(a) and AV G(a) are attributes of the operator’s input schema,
thenn = SUM (a)/AVG(a).

2. If SUM (a) andM AX (a) are attributes of the operator’s input schema,
thenn > SUM (a)/MAX (a) (if SUM(a) > 0andMAX (a) > 0;if SUM(a) < 0 and
MAX(a) <0usen < SUM(a)/MAX(a)).

3. If SUM (a) andM 1IN (a) are attributes of the operator’s input schema,
thenn < SUM (a)/MIN (a) (if SUM(a) > 0andMIN(a) > 0; if SUM(a) < 0 and
MIN (a) <0usen > SUM (a)/MIN (a)).

OP 6: Tolerance on precision

As mentioned in Sectidd, tolerances can be exploited in order to speed up model checking. That
is, rather than, say, specifying= 100, a more flexible constrairit0 < a < 110 can be used.

Of course, this optimization is only legal for certain applications. Our progtgPQR has a
user-defined tolerance range which is set to O percent by default.

OP 7: Memoization

Another general optimization technique is to cache calls to the model ché&ckezxamples !
and ! often solve similar constraints and carry out the same kind of guessinggunef.2,
for instance, the results of guessing for the! operator can be re-used by tike'! operator.
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Memoization at run-time has been studied] for traditional query processing; that work
is directly applicable in the RQP context.
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Chapter

Reverse Query Optimization

Efficiency is doing better what is already being done.

— Peter Drucker, 1909-2005 —

The job of the reverse query optimizer is to transform a reverse queryrite a moreefficient
reverse query tree (Figufel). As part of such a rewrite, the input and output schemes need to be
adjusted (Chapté). Depending on the application, different optimization goals can be of sttere
(e.g., running time and or database size). The RQP framework allows theaiiegof different
query optimizers for different goals. In this work we present someiflests on a RQP optimizer
that tries to minimize the running time of reverse query processing. E.g., degigptimizers

with other optimization goals (e.g., minimizing the size of the generated databaseemtare
beyond the scope of this thesis.

Just as in traditional query optimization, the reverse query optimizer revaritegerse query tree
into anequivalentreverse query tree that satisfies a certain optimization goal. There amlsev
possible definitions of equivalence:

Definition 8.1 (General RQP-equivalence:) Two Reverse Query Tigeand 75 are generally
RQP equivalent for a Query Q iff for aRT'ables R: Q(T1(R)) = Q(T>(R)) = R.

Definition 8.2 (Result-equivalence:) Reverse Query Tréeand T, are result-equivalent iff for
all RT'ables R: T\ (R) = T»(R).

Traditional query optimization is based on result-equivalence: after dteethe same results
should be produced. Query optimization for RQP can be much more aiygrassl thus allows
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more rewrites. A rewrite is correct if the new reverse query tree geeradifferent database
instance (in fact, it might even be desired); the only thing that matters is thaivdrall RQP
correctness criterion (Secti@hl) is met. That is why general RQP-equivalence is used in the
optimizer of the SPQR prototype.

8.1 Optimizer Design

The most expensive operators of RQP are andy ! because these operators call the decision
procedure of the model checker. The exact cost of these operatdifficult to estimate for a
specific query because there are no robust cost models for modiechedefining such cost
models is a research topic in its own right in that community. Nevertheless, itds ttiat the
simpler and shorter the constraints, the better. One consequence is tiapibitant to minimize

the number ofr—! andy ! operators in a reverse query tree. Therefore, the canonical tiansla
of a SQL query into an expression of the relational alg ] is already good because

it results in at most one~! operator at the root of the reverse query tree. Optimizations that
add projections and group-by operations as devised for traditionay guecessing need not be
applied.

In addition tor—! and !, the execution of nested queries is expensive because’tis),

with n the size of the input (i.e.RTable or intermediate result). Therefore, it is important to
unnest queries. Rules that make it possible to fully unnest almost all guemgegiven in the
next subsection. Furthermore; ' and——! operators can be expensive because they potentially
involve calls to the model checker. As for ' andy —! operators, therefore, the goal is to minimize
the number of)~! and——"! operators in a reverse query plan. Again, the canonical translation of
SQL queries is good enough in practice for this purpose.

All other operators are cheap. They are linear in the size of their inpdtslamot require any
calls to the model checker. In particular, the reverse equi-join that insay@imary-keyor

an attribute with auniqueconstraint is cheap. As a result, it is not important to carry out cost-
based join ordering or worry about different reverse join methodsirAghe canonical relational
algebra expression can be used for simple rewrites that eliminate unagcepgrators (e.g.,
o~ s in certain cases) and/or simplifies the expressions in the reverse meerySuch rewrites
are presented in the last subsection of this chapter.

8.2 Query Unnesting

There are three rewrite rules that can be used to fully unnest most S€ieguOnly some queries
that involve the same table in the outer and in the inner query cannot betedf@sRQP. This
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very aggressive unnesting is possible because of the relaxed leqewariterion presented at the
beginning of this chapter.

Rule 1: A subqueryQ;,..-1 nested inside &OT | N operator can be removed if (1) the inner
and outer queries refer to different tables and (2) no other sub@ugry.» exists which refers to
the same table a3;,..2 and is not nested insidéOT | N.

As a result, in the following example que€y; can be rewritten td)s:

@Q1: SELECT | _nanme FROM | ineitem WHERE | _oid NOT IN
( SELECT MAX(o_id) FROM orders
GROUP BY o_orderdate);
Q2 : SELECT | _name FROM lineitem

To check the correctness, consideri{fiable R with only one tuplex<* pr oduct A>* . 9, and
Q- are obviously not result-equivalent with respecfoRQP for@Q); would generate at least one
lineitem tuple and onerders tuple; in contrast, RQP faf); would only generate &neitem
tuple. The queries are general RQP-equivalent, however, beappsgng (), to both database
instance would return the required result; i.e. a single row with Vapireoduct A" .

Rule 2: Aninner query in a nested query can be removed if (1) the columns useslSELHECT
clause of the inner query are also used in 8 ECT clause of the outer query and (2) the two
queries are correlated by an equality predicate or blyMpredicate.

For example, the following Quer§; can be rewritten to Queng,:

Qs: SELECT | _nanme, | _price FROMIineitem
WHERE price=(SELECT M N(I _price) FROM lineiten)
@Qy: SELECT | _nanme, | _price FROMIineitem

Rule 3: If Rule 1 and Rule 2 are not applicable, all methods proposem to unnest
queries for traditional query processing can be applied to reversg pgrezessing, too.

The proof is straightforward because result-equivalence for traditigmery processing implies
general RQP-equivalence for reverse query processing. Hamatle optimizer has to take care of
the operator order mentioned ] in order to preserve the general RQP-equivalence.
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8.3 Other Rewrites

At the begin of this chapter, we would like to mention the following (somewhatr&ing) rewrite
rule:

Rule 4: Remove reverse select operators from the reverse query plan.

ChaptefZl showed that this operator can be implemented using the identity function &trrein-
Only a reverse select at the root of the plan must not be removed in tordeake sure that its
predicate is checked.

There are several other rewrite rules that help to simplify expressioms éiminatel| KE and
other SQL functions from predicates). One such rewrite rule is:

Rule 5: A LI KE predicate can be rewritten as a equality predicate without the wildcards (e.g.
%) if (1) the attributes included in thiel KE predicate are not given by the input and (2) these
attributes do not have@niqueconstraint.

It is obvious, that the instantiated values for the rewritten equality preditsiddfills the L1 KE
predicate; e.g., all values which fulfilame =  A* also fulfill name LI KE %A%.
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Chapter

Experiments

No amount of experimentation can ever prove me right; a siegperiment can
prove me wrong.

— Albert Einstein, 1879-1955 —

This chapter presents the results of performance experiments with dotyp® system SPQR
and the TPC-H benchma. These experiments show the running times of reverse query
processing and the size of the generated databases.

9.1 Experimental Environment

The SPQR system was implemented in Java (Java 1.4) and installed on a LirixOfkdron 2.2
GHz Server with 4 GB of main memory. In all experiments reported here, SF&3Ronfigured

to allow O percent tolerance; that is, OP 6 of Seclfofl was disabled. As a backend database
system, PostgreSQL 7.4.8 was used and installed on the same machine. Asom ¢beocedure,
Cogentl@ij was used. Cogent is a decision procedure that is publicly availablezsldden
used in several projects world-wide. Cogent was written using the Gamoyging language. For
our purposes, it was configured to geneeter if numerical overflows occurred.

The TPC-H benchmark is a decision support benchmark and consis® lmfisthess oriented
gueries and a database schema with eight tables. The queries have adriggh af complexity:
all of them include at least one aggregate function with a complex formuthjremy queries
involve subqueries. Some queries (e.g., Q11) are parametrized anceudis and running times
depend on random settings of the parameters. The experiments wéee carrin the following
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[ I 100M I 1G I 10G |
Query || RTable | Generated|| RTable | Generated|| RTable | Generated

1 4 600,572 4 6,001,215 4 59,986,052
2 44 220 460 2,300 4,667 23,335
3 1216 3,648 11,620 34,860 114,003 342,009
4 5 10,186 5 105,046 5 1,052,080
5 5 30 5 30 5 30
6 1 1 1 1 1 1
7 4 24 4 24 4 24
8 2 32 2 32 2 32
9 175 1,050 175 1,050 175 1,050
10 3767 15,068 37,967 151,868 381,105 | 1,524,420
11 2541 7,623 1,048 3,144 289,022 867,066
12 2 6,310 2 61,976 2 621,606
13 38 162,576 42 1,629,964 46 16,298,997
14 1 4 1 4 1 4
15 1 2 1 2 1 2
16 2762 23,264 18,314 236,500 27,840 | 2,372,678
17 1 3 1 3 1 3
18 5 15 57 171 624 1,871
19 1 2 1 2 1 2
20 21 105 204 1,020 1,968 9,840
21 47 2,325 411 20,705 4,009 197,240
22 7 1,282 7 12,768 7 127,828

Table 9.1: Size of Generated Databases &fdble (rows)

way: First, a benchmark database was generated usimtpgezfunction as specified in the TPC-
H benchmark. As scaling factors, we used 0.1 (100 MB database; 880%),r1 (1 GB; 8.6
million rows), and 10 (10 GB; 86 million rows). Then, the 22 queries wereagain as specified
in the original TPC-H benchmark. The query results were then usedas ifije., asR T ables) for
reverse query processing of each of the 22 queries. We measursddlué the resulting database
instance (as compared to the size of the original TPC-H database inséauct)e running time
of reverse query processing.

9.2 Size of Generated Databases

Table@.7 shows the size of the databases generated by SPQR for all queriestbhrethecaling
factors. For queries which include an explicit or implic@OUNT value in R, the size of the
generated database for different scaling factors depends oGGhiNT value. For example, Q1
generates many tuples (600,572 tuples for SF=0.1) from a si¥allble R because Q1 is an
aggregate query wherR explicitly defines bigCOUNT values for each input tuple. For those
gueries which do not define @OUNT value, only a handful of tuples is generated because the
trial-and-error phase starts from creating one output tuple per inpléet teg., Q6). In that case,
the size of the generated database is independent from the scaling fss@isummary, we see

Himplicit means that th€OUNT value can be calculated by the optimization r@e 5of SectiodZ.11
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9.3 RUNNING TIME (SF=0.1)

[Query[[ RQP | QP | DB [ MC [[ M-Invoke |
1 26:51 | 12:.01 8:42 6:06 4
2 0:24 < 1ms 0:21 0:02 44
3 19:20 0:14 0:11 18:55 1216
4 0:20 0:05 0:14 < 1lms 5
5 0:12 | <1ms | < 1ms 0:11 10
6 0:02 | <1lms | < 1ms 0:1 2
7 0:10 | < 1ms 0:01 0:9 8
8 0:15 < 1ms 0:02 0:13 12
9 4:23 0:02 0:03 4:17 175
10 56:33 0:42 0:37 55:13 3767
11 42:11 0:13 0:14 41:43 2541
12 7:25 0:16 0:11 6:57 3155
13 2:56 1:38 1:16 < 1lms 21
14 0:08 | < 1ms 0:01 0:07 6
15 0:03 | <1lms | < 1ms 0:03 3
16 0:29 0:15 0:14 < 1lms 0
17 0:02 <1Ims | <1ms 0:01 2
18 0:01 <Ims | <Ims | <1ms 15
19 0:02 < 1lms | <1ms 0:01 2
20 0:21 <1Ims | <1ms 0:20 42
21 1:43 0:04 0:05 1:34 465
22 0:26 0:01 0:01 0:23 641

Table 9.2: Running Time (min:sec): SF=0.1

that the generated databases are already as small as possible. Hbgsetatae only generated
by SPQR if the query result explicitly states the size.

9.3 Running Time (SF=0.1)

Table[9.2 shows the running times of RQP for the TPC-H benchmark with scaling factor®

the worst case, the running time is up to one hour (Query 10). Howevest queries can be
reverse processed in a few seconds. TEBalso shows the cost break-down of reverse query
processingQP is the time spent processing tuples in SPQR (e.g., constructing constraioifer
and calls to thegushNexfunction). For all queries (except Q1), this time is below a minute. Q1
is an exception because it generates many tuples and a great deakaéwecessary in order
to carry out the optimizations of Secti@fild for each tuple.DB shows the time that is spent by
PostgreSQL in order to generate new tuples (processingl NMIERT statements through JDBC).
Obviously, this time is proportional to the size of the database instance ¢gthasapart of RQP.
The MC column shows the time spent by the decision procedure of the model chéickan be
seen that this time dominates the overall cost of RQP in most cases; in payitaldaninates the
cost for the expensive queries (Q10 and Q11). This observationgadtife decision to focus all
optimization efforts on calls to the decision procedure (Secffoasd8). M | nvoke shows the
number of times the decision procedure is called. Comparing/thandM | nvoke columns,

it can be seen that the cost per call varies significantly. Obviously, ttiside procedure needs
more time for long constraints (e.g., Q10) than for simple constraints (e.g., @&2}ktill have
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[Query [ 100M [ 1G [ 10G |
1 26:51 | 207:11 | 2054:19
2 0:24 0:47 4:02

3 19:20 | 183:49 | 1819:48
4 0:20 2:26 24:15

5 0:12 0:12 0:12
6

7

8

9

0:02 0:01 0:01
0:10 0:10 0:09
0:15 0:17 0:14
4:23 4:33 10:20
10 56:33 | 566:45 | 5639:13
11 42:11 | 18:15 | 4472:00
12 7:25 83:09 719:56
13 2:56 27:47 276:05
14 0:08 0:08 0:15
15 0:03 0:03 0:04
16 0:29 4:04 36:37
17 0:02 0:02 0:08
18 0:01 0:10 1:54
19 0:02 0:02 0:02
20 0:21 3:24 32:27
21 1:43 14:44 140:47
22 0:26 4:08 42:00

Table 9.3: Running (min:sec): Vary SF

not found a way to predict the cost per call and we are hoping forpssgn this matter from the
model checking research community.

We also measured the number of attempts each TPC-H query neededdsingube number of
tuples in aggregations (Secti@h These results are not shown in T4BIg but the results are en-
couraging: in fact, none of the 22 required any trial-and-error. €asan is that the optimizations
proposed in Sectioff.1] effectively made it possible to pre-compute the right number of tuples
for all TPC-H queries.

9.4 Running Time: Varying SF

Table[@.3 shows the running times of reverse processing the 22 TPC-H queridsefdiree dif-
ferent scaling factors. In some cases, due to the nature of the gubgeasinning times (as the
size of the generated databases, TBbIp is independent of the scaling factor; example queries
are Q5 and Q6. For all those queries, for which the running times wererigha larger scaling
factor, the running time increased linearly. Examples are queries Q10 2hdAgain, these re-
sults are encouraging because they show that RQP potentially scalelylarehthat even large
test databases can be generated using RQP. Note that Q11 has a pataheteset randomly;
this observation explains the anomaly that the running time for SF=0.1 is higirefahSF=1 for
that query.
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Related Work

The work of the individual still remains the spark that moreskind ahead even
more than teamwork.

— lgor Sikorsky, 1889-1972 —

To the best of our knowledge, there has not been any previous workverse query process-
ing. The closest related work is the work on model checking which has a siguk: find
instantiations of logical expressions. Consequently, we use the restliatasearch commu-
nity in our design. However, the model checking community has not adgtéssues involv-
ing SQL or database applications. In addition, that community has not agdrasy scalability
issues that arise if millions of tuples need to be generated as for the TP@dHrhark. In or-
der to provide scalability, our design adopted techniques from traditioray qurocessing; e.g.,
[@ . All that work is orthogonal to our work.

As mentioned in Chaptd2.2 there has been significant related work in the area of generating
test databaseslM[@] shows how functional dependencies can be processed for giegeest
databases. The bottom-up phase of RQP (Seianakes use of the findings of the work in

and extends it for the complete SQL specification. Likewise, other worthergener-
ation of test databases (e. ; |Q_Dli0_ll]) focuses on one aspect only and falls short on
most other aspects of RQHAWL83] discusses a similar problem statement as RQP but only ap-
plicable to a very restricted set of relational expressions. There hadedn work on efficient
algorithms and frameworks to produce large amounts of test data forragjasestical distribution
[@; @ In the other potential application areas of RQP (e.g., sampling), to thebest
our knowledge, nobody has tried yet to apply techniques such as RQP.
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Applications of Reverse Query
Processing
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The first two chapters of this part discuss the extensions of RQP to kupmofurther applica-
tions: Chaptefl I presents the extensions that are necessary to support the testing RaPpll-
cations where RQP gets set of queries and results as input to genersttdaabase. Chap{&R
then describes the extensions of RQP to support the testing of a quenatanghere we need to
be able to verify the actual query result that is returned by executing @utesy on a particular test
database. These techniques are currently used in an industrial engimbfor the testing of the
Query Processing Functionality of the new ADO.Net Entity Framework of d&icft (Redmond,
USA). Finally, in the last chapter of this part we sketch some other applisatibRQP which
include the debugging of SQL queries and the testing of the confidentialitptafthat comes
from different views.
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Functional Testing of OLTP Applications

If | have seen further, it is by standing on the shoulders afts.

— |saac Newton, 1643-1727 —

In contrast to OLAP applications which implement reports that read a hugerdrabcorrelated
data from the database, OLTP applications implement use cases whichieegeseiquence of
actions whereas each action usually reads or updates only a small saesfituthe database. As
an example, think of an online library. One potential use case of suchpdicaton is that a user
wants to borrow a book. The sequence of actions which is implemented hysthatse could be
as follows:

1. The user enters the ISBN of the book (where the ISBN is unfqueach book of the library).
2. The system shows the details of that book.

e Exception 1: The book is borrowed by another user. The sydtmes the request.
e Exception 2: The book belongs to the closed stack of therljprahe system denies the
request.

3. The user enters personal data (username, password) @irdnsathat she wants to borrow the book.
4. The system checks the user data and updates the database.

e Exception 3: The user has entered an incorrect usernamesswped. The system denies the
request.

e Exception 4: There are charges on the user account thatadezceertain limit. The system
denies the request.
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Functional testing the implementation of such a use case means that we hagekohehconfor-

mance of the implementation with the specification of the functionM] (i.e., the use case).
Consequently, we need to create a set of test cases to test the cas@dtiine different execution
paths of a use case. In the following we show some test cases which naador the functional
testing of the implementation of the use case shown above:

e Test Case 1The user wants to borrow a book with a particular ISBN thatrisaaly borrowed by
another user.

e Test Case 2The user wants to borrow a book with a particular ISBN but tbekbbelongs to the
closed stack.

e Test Case 3The user wants to borrow a book with a particular ISBN andrsrdae incorrect user-
name or password.

e Test Case 4The user wants to borrow a book with a particular ISBN buteheme charges on her
account that exceed a certain limit.

e Test Case 5The user borrows a book with a particular ISBN successfully.

In order to execute all these test cases, one or more test databasés beereated which com-
prise different types of books (i.e., books which are already bowldweanother user or not, and
books which belong to the closed stack and other books which do not)féeréat user accounts
(i.e., user accounts with and without charges which exceed a certain limitgxBmple, in order

to executeTest Case Zhe database should include a book which belongs to the closed stack.

Currently, there are a number of commercial and academic tools availabldl_@d; |M|; [d_bM;
[B_C_O_i' |§P_Qh [HBALO.&; [NMLQ.C%; |§_DI10_4]) which generate test databases for a given database
schema. Beside the database schema, some tools also support the inputabldlsizes, data
repositories and additional constraints used for data instantiation (e.gticthtisstributions of
individual attributes, value ranges). Unfortunately, all the aforemeatidools suffer from the
problem that the generated test databases often do not comprise thbatataeristics sufficient

to execute a given set of test cases. The reason is that these toolsriakaiots on the complete
database state as input (e.g., table sizes and value distributions of intiatigilbaites) which are

not suitable to express the needs of the individual test cases. Cemslggthe generated test
databases are usually inadequate to support the execution of all gsteases.

A solution to tackle this problem was shown in HRwvhich discusses a new technique called
Reverse Query Processing (or RQP for short). The idea of RQP is teletser constrain the
database state by using one SQL qugtgnd a expected resuktof that query. The RQP processor
SPQR then generates a setliSERT statements which create a test databBs®or a given
schemas' (including integrity constraints) such thatreturns the expected resuttfor that query;
i.e.,Q(D) = R. The main application of RQP is the testing of the reporting functionality of an
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OLAP application. In order to create a set of test cases and the condisg test databases, we
suggested to extract the SQL queries which are defined by the indiviglumits and to manually

create one or several expected results for each of these repor@L Aury which implements a

report and a sample result of that report together represent a sestvbach can directly be used
as input of the RQP processor to generate a corresponding teststatabthat test case. For the
testing of the OLAP application, the SQL query (i.e., the report) which is defiyea test case is

executed on the generated test database and the actual result is abthpaaepected result for

verification.

However, one SQISELECT query and one expected result are usually not sufficient to specify
a test database that is adequate to execute a test case of an OLTP applidatioeason is that
most test cases of an OLTP application needetd or updatedifferent tuples in the database
that are not necessarily correlated. Therefore, in order to speeifsetavant values of the tuples
that are read or updated by a particular test case, in this chapter wessuhat a tester uses
SQL as a database generation language: i.e., the tester specifies thaaleaseldor one test
case bymanuallycreating a set of SQISELECT queries and their expected results (called test
database specification). A test database which returns these expesid for all the given
SQL SELECT queries enables the execution of a particular test case of an OLTP d#pplica
Compared to the approach discussed in [Bame do not provide a formal method to derive the
SQL SELECT queries for the test database specification from the code of the OLTieatjgm or

from the test cases because we think that using SQL as a databassgigananguage is intuitive.
Consequently, the SQBELECT queries in the test database specification are independent from
the SQL statements implemented by the OLTP application (i.eSELECT, | NSERT, UPDATE,
andDELETE statements).

For example, if we want to generate a test databaskefstrCase 4bove, the test database needs to
comprise a book with a particular ISBN which does not belong to the closeki(s&., the attribute
b_closedstack must have the valugfalse‘) and a user whose charges exceed a certain limit (e.qg.
$20E. The desirable database state, can be specified by multiple queries amdrédspanding
expected query results (e.g., the queries and expected results shovenfaliatving example).

By doing so, the tester can focus on the data that is relevarfiefsdrCase 4e.g., the values for
b_isbn andb_closedstack specified byQ, and R;) and she does not have to take care of the
irrelevant data (e.g., the values forprice andb_title). Unfortunately, RQP is not capable to
support multiple queries and the corresponding expected results as input.

The database schema for all examples in this chapter is shown in Eifid@) on Pag®8
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@1 : SELECT b_cl osedst ack FROM book
VWHERE b_i sbn=" 0130402648’
Ry: {< false >}
@2 : SELECT u_pasword, u_charges FROM user

VWHERE u_nane='test’
Ry: {<test, 20.0>}

Consequently, in this chapter we study the problem of Multi-RQP (or MRQ@RBHort). Unlike
RQP, MRQP gets aetof SQL SELECT queries and theorresponding expected query results
as input and tries to generate one test database that returns the expsuottdfor all the given
queries. However, we can show that MRQP is undecidable for arbif@ly SELECT queries.
Thus, as we suggest that the tester creates the queries manually to Hpeddygt database, we
can restrict the classes of queries to be supported by MRQP so that NMIB¢@Ifhes decidable.
Moreover, when defining the restricted classes of input queries b &e supported by MRQP,
we have to make sure that the tester can still specify any database instgriestalatabase for a
given OLTP application by only using these restricted query classes.

Contributions:  The contributions of this chapter can be summarized as follows: (1) We formu
late the problem statement of MRQP and prove that it is undecidable foraayb8QL SELECT
queries. (2) In order to generate test databases for a test cas©@dL.&rapplication, we propose
a new database generation language called MSQL. MSQL is a pure sfilss@L. Using MSQL

a tester can manually create a set of queries and the correspondimteeksults to specify the
test database state for one test case. MSQL is carefully designed: MSiQ4 the tester can
easily formulate queries that satisfy certain restrictions so that MRQP oa tjuesies is decid-
able and can be solved efficiently while the tester can still specify any tesbaise for a given
schema. (3) Using the specified queries and expected results, wesdisous test database can
be automatically generated by MRQP which is adequate to support the execlitigoarticular
test case. (4) As a last contribution we present an algorithm which esdhe number of test
databases for all test cases (MRQP initially generates one test dat&basstjgase). As a result
many test cases can use the same test database. Consequently, tisesesirthde executed more
efficiently igAA*QJf; HKLO Z|] and the management of the test databases becomes easier.

Outline: The remainder of this chapter is organized as follows: Sefdflofidiscusses the prob-
lem statement of MRQP and define some general restrictions on the inpigsjoeMRQP such
that MRQP becomes decidable under the assumption that RQP is decidaddeli@ingle query.
SectiorlIT.2then introduces the new test database generation language MSQL fdrwhican
easily check whether a set of given queries fulfills the aforementiorstdatéons or not. More-
over, we also show a complete example of MRQP using MSQL and discussfedher exten-
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sions of MSQL. Sectiofi1.3describes the algorithm which reduces the number of test databases
for all test cases. Finally, Sectifiid.4discusses related work.

11.1 MRQP Overview

In this section we first study the decidability of MRQP. Therefore, weanethe general problem
statement of MRQP and show that MRQP is undecidable for arbitrary S@Liegu Afterwards,
we introduce some restrictions on the input queries of MRQP such that MigQétnes decidable
(under the assumption that RQP is decidable for each individual querjtsuexpected query
result). Finally, we illustrate a procedure which solves MRQP under thessgations.

11.1.1 Problem Statement and Decidability

As mentioned before, this chapter addresses the following problem: @igenof arbitrary SQL
SELECT queries = {Q1, ..., @, }, a set of expected resulis = { R, ..., R,,} of these queries,
and the database schesiaf a relational database (including integrity constraints), find a database
instanceD so that

R; = Qi(D)

forall 1 < ¢ < nandD is compliant withS and its integrity constraints. There may exist many
different database instancésthat satisfy these criteria. In this chapter, it is the goal to find one
viable database instance.

The decision problem (based on the problem statement above) whichwhskiser a database
instanceD exists or not that satisfies the schemand returnsk?; = Q;(D) forall1 <i < n

is thus called theMRQP decision problemObviously, the MRQP decision problem cannot be
decidable because RQP is not decidable for arbitrary SQL queries @ideeBectiod.]).

11.1.2 MRQP Restrictions

As already mentioned in the introduction of this chapter, we suggest thar anasually creates

a set ofSELECT queries@ = {Q1,Q2, ..., Q,} and the expected results of these quefes
{R1, R, ..., R,} in order to specify the test database for one test case. By doing scrwe c
restrict the input queries iQ to be able generate a test database for many practical situations.

Consequently, in this section we first introduce a restriction on the que¢ys@ich requires that

@ must beRQP-disjoint Under that restriction and the assumption that RQP is decidable for each
individual SQL query®; € @, MRQP can be solved efficiently by first generating one individual
test database for each qué&py € @ using RQP and then taking the union over all these individual
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test databases to create the final test database that returns the exgsditediefined inR for all
queries inQ.

Despite that restriction, a tester can still specify any test database in$tauscgiven database
schema of an OLTP application. However, in some cases it is cumbersothe fester to define
such an RQP-disjoint query sét Therefore, we introduce a relaxation of that restriction which
enables a tester to specify the test database in a more elegant way bygayeatiy refinements

for the individual queries); € Q. Moreover, in this section we also show how to generate a test
database under that relaxation.

As already mentioned, we do not present a method how to derive the tabida specification

for one test case (i.e., an RQP-disjoint query set and some querymefit®) from the code of

the application or the test cases because we believe that it is intuitive to lsasS®Q)database

generation language. Moreover, compared to the manual creation df @gatabase, using our

approach the tester only needs to specify the relevant data for a tesirmishe does not have to
take care of the irrelevant data.

RQP-disjoint Queries

In order to solve MRQP we require that the input query@és RQP-disjoint

Definition 11.1 (RQP-disjoint Queries:) A set of queri€sis RQP-disjoint iff all possible pairs
(Q;, Q) with j # k are RQP-disjoint. Two queriegd; andQ)y, in Q with j # k are RQP-disjoint,
iff the view specified by quety; is update independent from any update (. &NSERT statement)
that could be generated by RQP for the quély and any possible expected resilf of that
guery and vice versa.

As an example, look at the following two SQL querigs and@- and the corresponding expected
resultsR; and Ry which specify the test database féest Case 3n Sectiordl This test case
requires a test database which comprises a book with a particular ISBNaé@sitnot belong to
the closed stack and a user with a distinct user name and a password wditterent from a
given password (that is used as input value for the test case). Tlgvies); and(@- are RQP-
disjoint becausé)- is update independent from ahiNSERT statement that could be generated by
an RQP processor fap, any expected result of that query (e. @, is update independent from
thel NSERT statement; which is generated faf); and R, by an RQP processor) and vice versa
(e.g., the view defined b§); is update independent froi).
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@1: SELECT b_cl osedst ack FROM book
VWHERE b_i sbn="0201485419’
Ry: {< false >}
I : I NSERT | NTO book
(b_id, b_title, b_price, b_isbn, b_closedstack)

VALUES (1, 'TitleB, 100.0, ’ 0201485419, 'fal se’)
Q»: SELECT COUNT(*) FROM user

WHERE u_nanme="test’ AND u_password!="test’
Ro: {<1>}
Ir: I NSERT | NTO user
(u_id, u_name, u_password, u_charges)
VALUES (1, 'test’, 'testl’, 0.0)
If the queries i are RQP-disjoint, then we can generate a test database by calling the 8&QP pr
cessor separately for each query and the corresponding expested(r.e.,RQP(Q1, R1,S) =
Dy, ..., RQP(Qn, Ry, S) = D,)1. Afterwards, we take the union of all the individual test
databases to create the final test database Qh.es D; U ... U Dnﬁ Continuing the example
above: In order to generate a test database for the two RQP-disjommesi(d¢ and (), and the
two expected result®; and Rs, we first generate two individual databades and D,. Conse-
quently, the test databade, comprises one book with the given ISBN and the value specified
for the attribute_closedstack (i.e., D is created byl;) and test databage, comprises the user
account with the given username and a password which is not equalitgpthiesalue‘test® (i.e.,
D is created byls). Subsequently, the final test databd@ses D = D1 U Ds.

Using an RQP-disjoint query set as input of MRQP, the user can spatyfydatabase instance

for a given schem&. In order to show that this is possible, we assume that a tester creates one
query per table which reads all tuples (eSELECT * FROM or der s) and the expected results

of these queries. Using these queries and the expected results thedasteriously control all
attribute values individually for each tuple in every table of the databaserss$hand thus specify

any database instance.

In order to make sure that the final databésevhich is generated for an RQP-disjoint query set
fulfills the primary-keyanduniqueconstraints in the database schethMRQP has to make sure
that the individual RQP calls assign unique values to the attributéstivat are bound by such
a constraint for all queries i) and the corresponding expected result&inHowever, if some
expected results iR define values that violate thgimary-keyor uniqueconstraint of an attribute
in S, then MRQP will return arerror if the union of the individual databases (i.&2, = D, U
Ds) violates such a constraint. This error handling can be implemented usirdasdastatabase
techniques for checking integrity constraints. For example, assume thegstiee specifies two
gueries and expected results where each query and its expectedegpdtydefines a user tuple

2In this chapter we call the RQP processor as an external function wikiet sequery?, an expected resulk, and
a database schensaas input and generates a databBsehich satisfiesS' and returns)(D) = R.
3TheU operator here creates the union over all tables of the database s6hema
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with the same username (i.e., the attributeame) but with different passwords (i.e., the attribute
u_password). Creating the union of the two test databases that are generated fotwlsgueries
and expected results would return an error because the attributene has auniqueconstraint

in the database schemyasee Figur@1.3(a)). One way for the user to avoid these kinds of errors
will be discussed in Sectidhl.Z.4

Query Refinements

Using only an RQP-disjoint query set to specify the intended test datdbasetest case can
sometimes be cumbersome for the tester. For example, assume the tester waetiymgest
database (for a test case not shown in Se@owhich should comprise five books with a total
sum of prices which i$1000 while one of these books should have the pfite0 and the title
‘TitleA.

Unfortunately, there is no elegant way to specify such a test databagsifyy only an RQP-
disjoint query set: (1) The first possibility is that the tester specifies oeeydlie, SELECT

b _price, b_title FROM book) and defines an expected result which holds the values for
the attributesh_price andb_title of all books (while the tester has to manually take care that
the total sum is$1000 and she also has to define the titles for four out of five books that are not
relevant for the test case). (2) Another possibility is that the tester sggetid individual SQL
gueries while one query specifies the one book which has the prig#ofand the titleT'itle A*

(as shown by the quer§; and the expected resuR; in the following example) and the other
query specifies the remaining four books (as shown by g@ergnd the expected resull, in the
following example). However, in that case the tester has to manually adjugtiéngQ, and the
expected resulR; so that the total sum for the four remaining book§990 and none of these
books uses the same ISBN as the book with the pricel @ (i.e., the selection predicate &f,
must beb_isbn! = ‘0130402648°).

@1: SELECT b_price, b_title FROM book

WHERE b_i sbn=" 0130402648’
Ri: {<100.0, 'TitleA >}

Q2: SELECT SUM b _price), COUNT(*) FROM book
WHERE b_i sbn! =" 0130402648’

Ry : {<900.0, 4>}
A more elegant solution to that problem is that in addition to the RQP-disjointf spiavies(
and the expected resuliswe allow the user to define at maximum aneery refinemerfor each
query@®; € Q. The intuition is that a query refinemehf for a queryQ; gives more information
(attribute values) about a subset of tuples that are re&g} byhat is, a query refinemet refines
a query(@;. In the following we give a more formal definition and show how MRQP caregate
the test database if some querigsc @ are refined by a query refinement.
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Definition 11.2 (Query Refinement:) A query refineméntfor a query@; € @ is a set of RQP-
disjoint queriesF; = {F;i,..., Fi,} plus the expected resuli3F; for each query inF;; i.e.,

RF; = {RF;,...,RF;,} whereQ); is update dependent (=opposite of update independent) of
all I NSERT statements that could be generated by RQP for any qlgrg F; and an arbitrary
expected resulkF;; € RF; of that query. Moreovebase Attr(R;) C baseAttr(RE;;) must hold

for all RF;; € RF; (R; is the expected result 6); andbase Attr(R;) is a function that extracts
the names of the attributes in the database schéntaat participate in the expected resutt).
Furthermore, for each query;; € F; the user can recursively specify further query refinements.

A simple query refinement for the example above is shown by the followingygie and the
refinement given by, = {F1;1}. While @; specifies the total sum of prices for all bools,
specifies the price and the title of one book with a particular ISBN number.ioD&ly, )1 is
update dependent from ahYNSERT statement that could be generated by RQP for each query in
Iy and some arbitrary expected results (&4.js update dependent from th&\SERT statement
1Fy; which is generated by RQP for the expected re&flt; and the queryr;;). Moreover,
baseAttr(Ry) = {b_price} is a subset obase Attr(RF11) = {b_price,b_title}. Thus,F; =
{F11} is a query refinement for query;.

Q1 : SELECT SUM b_price), COUNT(*) FROM book
Ry : {<1000. 0, 5>}
Fyy SELECT b_price, b _title FROM book

WHERE b_i sbn=' 0130402648’
RFy, : {<100, 'TitleA >}

IF;;: I NSERT I NTO book
(b_id, b_title, b _price, b_isbn, b _closedstack)
VALUES (1, 'TitleA , 100.0, ’'0130402648 , 'false’)

In the following we illustrate how MRQP can generate a test database farg Qu of an RQP-
disjoint query sety which is refined by a query refinemeht and its expected resuli®F;. A
general solution how to generate a test database for a RQP-disjoiptsgi@rwhere some queries

Q; € Q can be recursively refined by a query refinement is shown in the resticBI11.1.3

The idea presented here is similar to the one shown for an RQP-disjoinyt seierMRQP first
generates one test database@gand another one faf; by calling an RQP processor individually

for Q; andF; and taking the union of both test databases. However, before the taisaga for the
query@; and its expected resull; can be generated by an RQP processor, MRQP has to adjust
Q; andR; w.r.t. the query refinemert; and its expected resulf8F;. The details of this process
are described in the sequel.

Firstly, MRQP generates a test databdsg; for the query refinemenk; of query Q; and the
expected result® F; of the refinement; as described in Sectidil.T.2for any RQP-disjoint set
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of queries. Afterwards, MRQRdjuststhe expected resuR; of the queryQ; which is refined by

F; with respect to the generated test datallaseby executing?, = R;©Q;(DF;). The operator

& is called theAdjustoperator and its implementation depends on the type of querin general,
the© operator “removes” those tuples from the expected regulhat are already specified by the
gueries in the refinemett; and the expected resuli&F; and thus do not have to be generated for
the query; and the expected resul; anymore. Consequently, in some casesMtigistoperator

& can be implemented by the relational minus operator for bags-{i)elf an expected resulR;

is notadjustablethen this operator returns an error. Moreover, in addition to the expesseitt

R;, we also have to adjust the quefy; (which results inQ’) so that RQP generates no tuples
for Q; and the adjusted expected resliftthat would be returned by any query in the refinement
F;. A detailed description of the implementation of tAdjustoperator and the function which
adjusts the quer); will be given in SectioffI.2for all query classes supported in in the database
generation language MSQL. Subsequently, MRQP generates a tesistatglfor the adjusted
query@’; and the adjusted expected resijtby calling the RQP processor. The final test database
D; for the queryQ; and the query refineme; is created by taking the union @, and DF};
i.e.,D; = DU DF;.

For instance, in order to generate a test dataliagg for ()1 and F3 in the example above,
MRQP first generates a test databake for the query refinement; = {F1;} and the expected
resultsRFy, = {RF1,} as discussed in Sectii. 1.2 e.g., a minimal test databageF; com-
prises one book with the given values (i.e., one book with the values spefdfi¢he attributes
b_price, b_title andb_isbn by Fy; and RFy1). Afterwards, the expected resu is adjusted

by executingR] = R1 © Q1(DFy) = {< 900.0,4 >} and the queryy, is adjusted, too, which
returns the adjusted que€y,:

Q) : SELECT SUMb_price), COUNT(*) FROM book
WHERE b_i sbn! = 0130402648’
Subsequently, we generate the test datatigiséor the adjusted querg); and the adjusted ex-
pected result?] (i.e., four books with the total su$900 that have an ISBN value other than
‘0130402648). The final test databade, that returnsk; for Q1 and RFy; for Fyq is created by
taking the union ofD} andDF};i.e.,D; = D} U DF}.

11.1.3 MRQP Solution

The functionMRQPwhich is shown in Figur@1.limplements a general procedure for MRQP which
generates a test database for a RQP-disjoint query setere some querieg; € () can be re-
cursively refined by a query refinement.

The functionMRQPfirst creates an empty databalefor the query se) (Line 1). Afterwards,
the function checks for each quey;, € Q if there exists a query refinement for that query
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MRQP(Queries @, Results R, Schema S, Query Refinements ( F;, RF;))

Output: database D

(1) D=0 //Generate an enpty DB

(2) FOR EACH Query Q; in @

(3) R;= R.get(i) //Extract expected result

(4) DFL‘:@

(5) IF(Q; has a Query Refinenment (F;, RE))
(6) DF=MRQP(F;,RF;,S) I/ CGenerate DB for F;
(7) Ri=R;©Q;(DF;) I/ Adjust result

(8) Q;=AdjustQuery(Q;, F;) 11 Adjust query

(9) END IF

(10) //Try to create union

(11) 1 F(D=DURQP( Q;, R;, S)UDF; returns ERROR)
(12) RETURN ERROR

(13) END IF

(14) END FOR

(15) RETURN D

Figure 11.1: FunctioMRQP

(Line 5). If yes, then this function generates a test databasefor that query refinement and the
expected resultB F; by callingMRQPrecursively (Line 6). Subsequently, the function adjusts the
expected resulk; and the query); w.r.t. DF; (Line 7-8). Afterwards, the functioRlRQPcreates
the new test databade as a union of the existing test databdethe test database that is created
for the adjusted quer§; and the adjusted expected resh]f and the test databager; generated
for a potential query refinemeiit (Line 11). If the union does not satisfy the database sch&ma
because somgrimary-keyor uniqueconstraints inS are violated, then an error is returned (Line
12). If all queries inQ) are processed the final test databBs®r () and R is returned.

11.2 The DB Generation Language MSQL

As discussed in the Sectiid. 1.2 we allow a tester to specify a test database which is adequate to
execute a particular test case by manually creating a set of RQP-disjenggl and at maximum

one query refinement; for each queny); € Q. In order to support the tester in formulating an
RQP-disjoint query sef) and some query refinements, we have to decide whé&phisr RQP-
disjoint or not and whether a query refineméntefines a query); € @ or not. However, update
independence in general is undecida, which means that it is also undecidable whether a
set of arbitrary querie® is RQP-disjoint or not and it is also undecidable whether a given set of
arbitrary queries irf; refines a query); € (Q or not.

Consequently, in this section we define a database generation langliageMaQL (based on
SQL) and a Reverse Relational Algebra called MRRA which is used in MRQjenerate the
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test database (based on the Reverse Relational Algebra RRA of RQEtiimn@a. For a query
set@ and some query refinements for the quefigs= @ that are formulated in MSQL, we can
easily check whether the query $gis RQP-disjoint and if a query refinemeht refines a query
Q; € Q (if the MRRA is used to reverse process these queries). Moreoveman o enable the
generation of a test database using the function illustrated in SE&id® we designed MSQL
in such a way that RQP is decidable for individual queries. Howevedidaot prove that there
does not exist a more expressive language than MSQL that has the sgpedips.

Additionally, in this section we also illustrate an efficient solution for AdgustQueryfunction
and theAdjustoperatoro. Both are necessary to reverse process MSQL queries that ardrefin
by a query refinement (as discussed in the section before). Finallyregemt some extensions
(query and result variables) as well as some query rewrites to entt@asability of MSQL.

11.2.1 Query Classes and Algebra

In MSQL, a tester can formulate SQREELECT queries with and without aggregations in the
SELECT clause. Moreover, the queries supported by MSQL are not allowedltalm{oin state-
ments or subqueries and the predicate in\IHERE clause must be a conjunctive predicate in
propositional logic that satisfies certain restrictﬁ)rMore precisely, the supported query classes
in MSQL are:

(1) Non-Aggregation queries which can be mapped to the following reldtedgebra expres-
sion:
ma(op(T))

where A represents the attributes and arithmetic functions inSlBeECT clause,p is the
selection predicate in thH&HERE clause, and” is an arbitrary relation of the schensa

(2) Aggregation queries which can be mapped to the following relationabedgexpression:

04(XB,COUNT(+) as c,acc(D) (0p(T)))

where g is the selection predicate in tHdAVI NG clause, B represents th€&ROUP- BY
attributes, COU NT'(x) is the non-distinct count functiodGG(D) are the aggregation
functions AVG, MIN, MAX, SUM) in the SELECT clause on the attributes and arith-
metic functionsD, p is the selection predicate in tMHERE clause, and’ is an arbitrary
relation of the schem4.

“The RRA of RQP is the reverse variant of the relational algebra whichgsuthe expected query result from the
root of a query tree down to the leaves in order to generate the test sataba
SAll example queries shown in the previous sections are already sugyrfdSQL.
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The COUNT () function is obligatory for aggregation queries (query class (2) ablosejuse
the Adjustoperator= which is used in th&MRQPfunction to process query refinements relies on
that value (see Secti@i.2.2. Moreover, for both query classes the selection predjcatast be a
conjunctive predicate formulated in propositional logic. If a claps@ the conjunctive selection
predicatep comprises an attribute with a primary-keyconstraint, or aunique constraint, or a
foreign-keyconstraint in the database schefm#enp; is only allowed to be a simple predicate
expressing the equality of the attributend a constant value(i.e.,a = v).

The reverse relational algebra which is used to reverse processaieseclasses in MRQP is
called MRRA. MRRA is similar to the RRA defined in SectiBnThe only difference is that the
reverse selection operator (i.e;') and the reverse join operator (i.e¢; ) are not allowed to
generate additional tuples that satisfy the negation of the selection prealichéenegation of the
join predicate. Provided, that we use MRRA to generate a test databasehthfollowing two
theorems hold.

Theorem 11.3 Two arbitrary MSQL queries); and Q;, are RQP-disjoint iff); and Q);, specify
tuples for different relations op; A p;, is not satisfiable which is decidable for the selection
predicates in MSQLy; is the selection predicate representing INdERE clause ofQ); andp, is
the selection predicate representing INdERE clause ofQ);.).

Proof (Sketch) 11.41t is obvious that)); and @), are RQP-disjoint ifQ); and Q;, specify tuples

in different relations becaus@;. will be update independent from ahyNSERT statement which
is generated by RQP fap; and an arbitrary expected result; of that query and vice versa. It
immediately follows fron@ that Q; and Q;, are RQP-disjoint ifQ); and @}, read tuples

from the same relatiofl” andp; A py, is not satisfiable because aINSERT statements that could
be generated fof); and an arbitrary expected result; by RQP satisfy; and thus will not be

returned by, which has the selection predicagtg and vice versa.

Theorem 11.5 An arbitrary MSQL queny; refines another arbitrary MSQL queig;, iff the
queries@; and @}, read tuples from the same relatidh and (p; = py,) is valid which means
that we have to show thatp;j \ pk) is valid or the negatior{pjA!pk) is not satisfiable which is
decidable for the selection predicates in MSQL (againis the selection predicate representing
the WHERE clause of); andpy, is the selection predicate representing INdERE clause ofQ);).

Proof (Sketch) 11.6 It immediately follows from that Q; refinesQy, iff (p; = pi) is
valid, because all NSERT statements that could be generated @r and an arbitrary expected
result R; by RQP satisfy; and thus will be returned bg;. which has the selection predicaig.
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©(Relation R, Relation 5)

Output: Relation R’

(1) RR=0//Create an enpty result

(2) FOR EACH tuple r in R

(3) " =0 //Create enpty tuple 7

(4) //Extract tuple s fromsS

(5) s = S.get(B,R.B)

(6) | F(s==0) r'=r

(7) ELSE

(8) if(B'=0) +'(B) = r(B) //set B

(9) 1'(c) = r(c)-s(c) Ilset ¢
(10) //Init results of agg. functions
(11) FOR EACH attribute agg(D) in AGG(D)
(12) 1 F(agg==SUM
(13)  r'(agg(D))=r(agg(D))- s(agg(D))
(14)  ELSE | F( agg==AVG)
(15)  r'(agg(D))=(r(agg(D))* r(c)- s(agg(D))* s(c))l r'(c)
(16) ELSE I F(agg==M N || agg==MAX)
(17) I F(r(agg(D))! =s(agg(D))) 1'(agg(D))=r(agg(D))
(18) END FOR
(19) END IF
(20) R'.add(r’) //add new tuple ' to R’
(21) END FOR
(22) RETURN R’ //return result

Figure 11.2: Adjust operatas

11.2.2 Adjust Operations for Query Refinements

The AdjustQuenyfunction is used in thyRQPfunction (see Figur&1.]) to adjust the query;
so that calling RQP fof); does not generate any data for the expected résuithich is returned
by any query in the query refinemeft = {F}1, ..., F;,} for the query®,. The implementation
of this function is the same for both query classes of MSQL. We simply extinectelection
predicatep; of the query; and the selection predicatgs;; of each query;; € F; and create a
new selection predicajé for the adjusted querg’, asp, = p; A—ppi1 A+ - - A—prin. An example
for the AdjustQuenyfunction was shown at the end of Sectibh 1.2

The Adjust operatoro is used in theMRQP function (see Figurd1.]) to adjust the expected
result R; of a query@; w.r.t. the databas® F; generated for the query refinemeht The
implementation of> for a non-aggregation quer®; (query class (1) of MSQL) is a standard
relational minus operator for bags as described in any database textkadikonally, theAdjust
operator for non-aggregation queries check@;ifDF;) — R; = () holds. Otherwise the expected
result is not adjustable because the queries in the refineffspecify more tuples than the query
Q; which is not allowed by the definition. In that case thdjustoperator returns an error.

For an aggregation quefy; (query class (2) of MSQL) the implementation of thdjustoperator
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is given in Figurdl1.2 In that algorithm we refer to the group-by attribuf@sthe count value,

and the aggregation functionB=G (D) that are defined by the expected result of an aggregation
query. An example for that operator will be discussed in the next SEEAGA3 The Adjust
operator in Figur@1.2is a binary operator which takes two relatioRsand S as input: R is the
expected result of the querty; and S is the actual result of executing the qué&py over the test
databasé) F; that was generated for the query refineméngi.e., S = Q;(DF;)). The output of

this operator is the adjusted reshit

The implementation of thAdjustoperator is as follows: The operator first creates an empty result
R’ (Line 1) and then iterates over all tuples in the expected rds(ltine 2-21). For each tuple

r in R an empty result tuple’ is created that should hold the adjusted values frofhine 3).
Afterwards, the tuple is extracted front that has the same values for the group-by attribétes
inr. If query Q; does not define a group-by attribute (i.B.= ()) then the only tuple in resul is
returned (Line 5). If there does not exist such a tuplden theo operator uses as the adjusted
tupler’ and adds’ to R’. Otherwise, the> operator adjusts the expected query result (Line 7-19)
as follows: First, the group by attributésof ’ are initialized with the attribute value$B) (Line

8). Then, the new count value is calculated as the difference of thear@jiant value-(c) and the
count values(c) (Line 9). Finally, the adjusted expected resultggg(D)) for each aggregation
functionagg(D) € AGG(D) is created according to the type of the aggregation function (Line
10-18):

e Line 12-13: The adjusted expected result @@Mfunction is calculated as the difference
of the original expecte@UMvaluer(agg(D)) and the one i3 (i.e., s(agg(D))).

e Line 14-15: The adjusted expected result oAG function is calculated as the differ-
ence of the original expecte®VG valuer(agg(D)) multiplied with the original expected
count valuer(c) (which results in the original expect&UMvalue) minus theAVG value
s(agg(D)) multiplied with the count value(c) divided by the adjusted expected count
valuer’(c).

e Line 16-17: The adjusted expected result dla\N'MAX function has the same value as
r(agg(D)) if r(agg(D)) is different froms(agg(D)). Else, theM N'MAX value is not
added tor’ (which means thatgg(D) has to be removed from the adjusted qu€Xyas
well).

Finally, the adjusted tuple’ is added to the resuR’ (Line 20). If all tuplesr in R are processed
the adjusted resulk’ is returned (Line 22). An example of that algorithm is given in the next
subsection.
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CREATE TABLE user ( Q,; SELECT COUNT(*) D, b_id [b_isbn b_closedstackb_aid
u_id I NTEGER PRI MARY KEY, " FROM book - 0130402648 fal 1
u_name VARCHAR(20) UNI QUE, VWHERE b ai d=1 17
u_passwor d VARCHAR( 20), - 2 0130402649true 1
u_charges FLOAT NOT NULL Ry <5> 3 |0130402650false 1
CHECK(u_char ges>=0)); 4 |013040265]true 1
Q,; SELECT u_password 5 0130402652true 1
FROM user book
G?_EATE TABLE book ( VWHERE u nane = 'test' a_id [a_name |a_fname
b_id I NTEGER PRI MARY KEY, AND u cﬁarges<:20 1 a_namel [a_fnamel
b_i sbn VARCHAR(20) UNI QUE, - - -

. ' ith
b_cl osedst ack BOOLEAN NOT NULL | R, < test'> quiner

b aid | NTEGER FOREl GN KEY Dy: u_id [u_name|u_password |uicharges

REFERENCES aut hor (a_i d)); 1 st Lf;t 0.0
Fp SELECT b_cl osedst ack Dg: b_id |b_isbn |b_c|osedstac<b_aid
CREATE TABLE aut hor ( FROM book 1 |0130402648false 1
a_id | NTEGER PRI MARY KEY, WHERE b_i sbn=' 0130402648’ book
a_name VARCHAR(20) UNI QUE, AND b_ai d=1 aid |a name |a fame
a_fname VAR (20) ) ; RFl: <fal se> 1_ a_namel |a_fname1

author

(a) Database Schema (b) Example Query Set Q={(QQ,}  (c) Generated Test Database D = D,
and Query Refinement F={F}

Figure 11.3: MSQL Example

The Adjust operatorS for aggregation queries returns an error if the expected résist not
adjustable w.r.t. the resuli , if one of the following cases occurs (this error handling is not
implemented in Figurd1.2):

e The expected count valug(c) is less tharb(c)

e SUM(D)in RislesstharbUM (D) in S andD can only have positive values 8t/ M (D)
in R is greater thatbU M (D) in .S and D can only have negative values

o AVG(D)in RislessthamdVG(D) in S andD can only values greater thati’G(D) in R
or AVG(D) in R is greater thalV G (D) in S and D can only values less thatV' G(D)
in R

e MIN(D)in Ris greater thad/IN(D)in S or MAX (D) in Ris less tham\/ AX (D) in
S

e S has a tuples that has values for the group-by attributBsand R does not have a tuple
with the same values for the attributBs

11.2.3 MSQL Example

FigureII.3gives a complete example of MRQP: FiglI&.3(a) shows the database schema and
FigurelI1.3(b) shows the RQP-disjoint query s@tand a query refinemei#f; which specify the
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test database for Test Case 5 of the online library (see S&jtidme query), € Q specifies the
total number of all books in the test database. The other dqidery Q specifies the password and
the charges of a particular user with a certain password. The qugriend@)- are RQP-disjoint
because they specify tuples for different tables. The qdarys refined by a query refinement
Fy, = {F11} and its expected resuli8F; = {RF11}. The queryFi; and the resulfz,; specify
the value of the attributé closedstack of one book in the test database with a particular ISBN
(i.e.,b_isbn = ‘0130402648°).

If we call the functionMRQP in Figure[11.1 for the RQP-disjoint query s&, then the test
databasé F for the query refinemenf, is generated firstff F; is shown in Figur81.3(c)). Due
to the foreign-key handling in RQP a tuple for the author witlid = 1 is created, too. As a next
step in MRQP, the adjusted expected result for qugrys calculated ag?] = Ry © Q1(DF}):
The queryQ; is an aggregation query arigh (D Fy) returns a count value df. Following the
algorithm of& for aggregation queries (see FiglIrEd) the adjusted expected restlf has one
tuple with the count value of. Afterwards, the query); is adjusted which results i@ :

Q,: SELECT COUNT(*) FROM book
WHERE b_i sbn! =’ 0130402648’

Afterwards, the test databag®, for the adjusted querg)’ and its adjusted expected resit

is generated which means that four tuples in the tabdé are created which satisty isbn! =
‘0130402648° (D] is not shown separately in Figufd.3(c)). The databas®; which is shown
in FigurellT.3(c) is the union ofD] and the test databageF; generated for the query refinement
Fi.

Finally, the test databade; is generated fo)» and R, (Q2 is not refined by a query refinement).
As a last step, the final test databd3és created as the union éf; andD- (i.e.,D = Dy U D).

11.2.4 Queries and Result Variables

For a test case of an OLTP application it is common that a tester needs to/spéigiidual tuples

in the test database that have certain values (e.g., an author with a centearona book with

a certain ISBN) in order to enable the execution of that test case. Thastea often needs to
formulate queries that specify single tuples usingnauevalue for an attribute in the selection
predicate with grimary-keyconstraint or a with aniqueconstraint in the database schema (e.g.,
the predicaté_id = 1 on the tabléook). However, defining unique values for such an attribute
in the selection predicates or in the expected query results over diffgueries (of one test case
or even over different test cases) that are used as input of MRQR tsuial for the tester.

Consequently, we extend MRQP so that the user can define variablggageholders for unique
values and let MRQP instantiate the variables so that the constraints of thasatcheméd are
satisfied. A variable has a name that starts witrs&@gn (e.g.$b_id1 could be use as a variable in
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the selection predicate above which resultg i = $b_id1). In general a variable can be used
as a placeholder in the following cases:

(1) As aplaceholder for a constant valuef a primary-keyattribute, an attribute with anique
constraint, or doreign-keyattribute in the expected result of a MSQL query.

(2) Asaplaceholder for a constant valuim a clause; (i.e., a simple predicate) of the conjunc-
tive selection predicatg of a MSQL query@; where the clausg; expresses the equality
of aprimary-keyattribute, or an attribute with @aniqueconstraint, or doreign-keyattribute
and a constant value(e.qg.,b_id = $b_id1).

However, RQP does not support variables as placeholders foreimajues. Consequently, in
order to instantiate these variables, we add a pre-processing phas€XB Miich creates unique
values for these variables defined by an MSQL query and its expecald rEhis pre-processing
phase instantiates the variables using the following rules:

e For variables specified by the queries and expected results of onataisade specification
for one test case (i.e., an RQP-disjoint query, some query refinemeutsha expected
query results) which have the same name and which are assigned to thettsdouie athe
pre-processing phase instantiates the same value.

e For variables specified by the queries and expected results of onataisade specification
for one test case which have different names and which are assigtiezlsame attribute,
the pre-processing phase instantiates different values.

e For variables specified by the queries and expected results of diftestrdatabase speci-
fication for different test cases which are assigned to the same attribeliferetfprocessing
phase instantiates different values (This is useful if we want to merge stdaéabases of
different test cases; see SectihJ).

An example of the pre-processing phase is given for the following Ri§BhHat query set) =
{Q1,Q2} which is used in a test database specification for one test case. A validtiatten of
the variables that could be produced by the pre-processing phasBRQPNMk: $b_idl = 1 and
$b_id2 = 2.

@Q1: SELECT b_title Q>: SELECT b title
FROM books FROM books
VWHERE b_i d=$b_id1l VWHERE b_i d=$b_i d2

As the pre-processing phase does not analyse all queries andezkpesults of one or even all test
database specifications before it instantiates the unique values for idlglesyrthe pre-processing
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phase requires that either all test database specifications define teg ehluparticular attribute
as variables or as constants. Otherwise, this phase may generate val wasldle the constraints
of the database schen$a(e.g., different tuples with the same value fop@mary-keyattribute
might be generated). For example, assume that one test database afpmtifar on test case
defines an expected resut; of a query@, holding a variable for a result attribute (e.g., the
variable$b_id1 for the attributeb_id) and another expected resiity of a query@- holding a
constant value (e.gl, for the attributeb_id). If MRQP first generates a test databd3efor Q¢
andR;, then the pre-processing phase could instantiate the constant ahtée variablesd_id1

in R1. If MRQP subsequently generates the test databader the Q> and Ry which defines the
constant valud for the attributeb_id, then the union of); and D- will return an error because
the primary-keyconstraint on the attribute id in the database schemais violated.

11.2.5 Query Rewrites

The query classes of MSQL that can be used by the tester to specify tiuataisase (i.e., non-
aggregation and aggregation queries on one relation) are limited becauspgaoations or nested
gueries are not supported. However, some of these queries cawritéereso that they are sup-
ported by MSQL. A rewrite of a quer§; € @Q (Q is a RQP-disjoint set of MSQL queries which
specifies the test database in MRQP) into one or more quirievalid if (1) all queries inP are
supported by MSQL and (2) the query set consisting@f— @, U P} is still RQP-disjoint. In
this section we discuss rewrites of queries using equi-joins, nested sju@rtequeries using view
definitions.

Rewrites for Equi-Join Queries

A non-aggregation querg; (i.e., query class (1) of MSQL) wherE is the result of a 2-way
equi-join on the relation§y; and7s can be rewritten as follows if the selection predicatis a
conjunctive predicate where each clause uses attributes from &jtloe(l:

(1) If T'is the result of an equi-join on the primary attributes of the two input relatigrend
T4, then we splitQ); into two queries);; andQ;»: ;1 IS a new non-aggregation query on
the relationT; and@);» is a new non-aggregation query on the relation The projection
attributes forQ;; areA; = A Nattr(T7) (A are the attributes in th8ELECT clause ofQ;,
attr(Ty) is afunction that returns all attributes of the relatin. The selection predicaje
of @;1 is a conjunction of all clauses in the selectjpaf Q; that uses attributes tr(7;).
The expected result @);; is R;1 = ma1(R;) (WhereR; is the expected result 6§; and the
m operator deletes duplicates);» and R;» can be created analogously.

571 andT% could represent one entity that was vertically split into two relations folopexdnce reasons.
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(2) If T is the result of an equi-join along thereign-keyrelationship from7; to 77 (e.g., an
equi-join on theforeign-keyattributeb_aid in the tablebook and theprimary-keyattribute
a_id in the tableauthor), then we creaté);; and(@Q;> as well as the expected resuRs;
and R;, as described in (1). Additionally, we add tpemary-keyattribute of 7} to the
projection attributesd; (e.g., the attribute._id of the tableauthor) and theforeign-key
attribute of 75 to the projection attributeds (e.g., the attributé_aid of the tablebooks).
We also have to add these attributes and the corresponding values to duteexpesults
R;1 and R;» to implement theforeign-keyrelationship explicitly (e.g., by using the same
variables or constants for thimary-keyandforeign-keyattributes that are to be joined).
Moreover, if there is an equality-predicate on firamary-keyattribute of 7} in p; of Q1
(e.9.,a_id = $a_idl, where$a_idl is a variable), then we add the same simple equi-
predicate tgs of Q;2 replacing theprimary-keyattribute in7; by theforeign-keyattribute
of Ty (e.g.,b_aid = $a_id1). In that case we do not need to add ghranary-keyattribute
and theforeign-keyattribute to the projection attributes (i.e.,Ag andAs) of the querie$);;
and@);» as well as to the expected resullts andR;,. Alike, if there is an equality-predicate
on theforeign-keyattribute of 5 in ps of Q2 (€.9.,b_aid = $b_aidl, where$b_aidl is a
variable) then we can add a simple equality-predicate ormptimeary-keyof T to p; that
uses the value of thiereign-keyattribute fromT defined inps (e.9.,a_id = $b_aidl) .

A complete example of the rewrite (2) is given by the following 2-way join qugryvhich selects
all book titles, prices and the author name of one particular author:

@1: SELECT b_title, b_price, a_nane
FROM book JO N author ON b_aid=a_id
WHERE a_i d=$a_i d1
Ry: {<TitleB ,b64.80, 'Hector Garcia-Mlina >}
This query can be rewritten into the two queri@s, and Q12 below. The selection predicate
of Q11 (i.e., a_id = $a_idl) is used directly as selection predicate &1, on theforeign-key
attributedb_aid (i.e., b_aid = $a_idl). Following the rule (2) above, therimary-keyattribute
a_id is not added to the expected reshlt; of query@:1 and theforeign-keyattributeb_aid is
not added to the expected resHlt, of query@is:

Q11 : SELECT a_nanme FROM aut hor

WHERE a_id=%$a idl
Ry1: {<' Hector Garcia-Mlina >}

Q12: SELECT b_title, b_price FROM book

WHERE b_ai d=$a_i d1
Riz: {< TitleB ,64.80>)

N-way equi-joins can be rewritten by applying the above rules recuysive
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Reduce(List of Test Cases T, Database Schema S)
Output: Map D_T

(1) //Generate one Test DB per Test Case T;:
(2) /1T; specifies Queries T;.Q + Results T;.R
(3) D = Enpty List of Test DBs

(4) FOREACHT; in T

(5) Di=MRQX(T;.Q, Ti.R, S)

(6) D.add(D;) //add D; to D

(7) END FOR

(8) //Reduce the nunber of Test DB

(9) D_T=Enpty Map(Key: DB, Val ue: Test Cases)
(10) FOR(i=1...D.length())
(11) D;=D.get (i) //Test DB D;
(12) T;=T.get(:) //Test Case T;
(13) FOR EACH Dj; in D_T. keys()
(14) IKF(D;y; =D;UD; returns error) continue
(15) Ty=D_T.get(D;) //Test Cases for D;
(16) //Test if nmerge was successful
(17) IKQ(D;)=R for all T; and T;)
(18) D_T.renove(D;) //Renmove D; and T;
(19) /1 Add D;; and all Test Cases to D_T
(20) D_T. add( D7J' Ty UTI)
(21) BREAK // Continue with next D; €D
(22) END IF
(23) END FOR
(24) D_T.add(D;, T;)
(25) END FOR
(26) RETURN D_T

Figure 11.4:Reducd-unction

Other Rewrites

A nested query or a query that involves a view definition is supported b@ MiSthe query can
be rewritten by unnesting techniques discuss or view unfolding if the rewrite is valid
as discussed at the beginning of this subsection.

11.3 Reducing the Test Databases

In this section, we present a greedy algorithm which first generatesladunal test database for
each test database specification of test case (of a given set ofges) ead then tries to reduce
the number of test databases that are necessary to execute all testidaseémplementation of
this algorithm is given by the functioReducein Figure[IT.4 This function takes a set of test
cased’ (where each test ca8é € T defines a set of querids.@ and the corresponding expected
resultsT;.R as test database specification) and a database schieasanput and generates a
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Input; T ={T1,T5,T3,T4}
Output: D_T = {D1a4 — {Th, T2, T4}, D3 — {T3}}
Line 7: D ={Dy, Dy, D3, Dy}

Line 25,D;: D_T ={D, — {T}}}

Line 25,Dy: D_T = {D1y — {T1,T5}}

Line 25,D3:  D_T = {D12 — {T1, Tz}, D3 — {T3}}
Line 25,D4: D_T = {D1o4 — {T1,T5, T4}, Dy — {T3}}

Figure 11.5: Example of theeducd-unction

map D_T that assigns test cases to a test database that could be used to exseutestheases.
This algorithm does not guarantee to find the minimal number of test dataioaseset of test
cases. This would be an avenue for future work to find an efficientighgo which guarantees
minimality.

As discussed before, the functi®educdirst generates a list of test databagesvhich contains
one test database; for each test casg;, € T using MRQP (Line 1-7). Afterwards, the function
reduces the number of test databases required to execute all teshcEgeme 8-26): Therefore,

a mapD_T is created which assigns a list of test cases to individual test datalhases9j.
Then, the function iterates over all generated test datablases D and tries to merge each test
databasd); with the test databases saved as keys in the mdp. Obviously, for the first test
database iD the lines 13-23 are skipped becau3el is empty and the test databaSgand the
corresponding test cagé are just added as a new entry to the niagl” (Line 24). For all other
test cases, the function tries to create a merged datdbgdeeratively for each key inDr and
checks if the following conditions hold for the merged databse (1) the union does not return
an error because it violates the scheth@.ine 14) and (2) the queries of all test cases that should
be executed on the merged test dataliagee., the list of test caseél; and the test casg) return

the expected results for all queries of those test cases (Line 17). kuthent implementation

of the Reducdunction we use DBMS to merge the databases and to check whether thedmerge
database satisfies the given database schfenifthese conditions hold, then the databdse
and the corresponding test caggsare removed fromD_7" and the list of test casés; for D;
together with the test cagé for D; are assigned to the merged test dataliag€Line 18-21). At

the end of the function, the mdp_T" is returned (Line 26).

Figure[I1.3 shows an example for the functidkeduce The input is a list of four test cases
T = {T1,T»,T5,T,} and the output is a map that assigns the list of test aed%, 7, } to a test
databasd),,4 and the test casg; to a test databasPs. The example shows the lig2 and the
mapD_T in different stages of the algorithm. At the beginning (functieduceLine 7) a list of
test databaseb is created that contains one test database for each test cAg&e queries and
expected results of each test case are not shown). Afterwardsirttioh Reducemerges these
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test databases:

e Function Reduce, Line 23n the first iteration the test datababg and the test casg is
added to the empty map_T without merging.

e FunctionReducelLine 25:In the next iteration, the test databd3eis successfully merged
with Dy which results in a new test databale, that can be used to execute the test cases
T andTg.

e Function Reduce, Line 28n the third iteration the merge of the test databBseand D1,
fails, e.g. because the queries of one test cadd'inT5, 74} do not return the expected
results for the merged test databd3gs. Thus, the test databage; and test casés are
added as anew entry f0_T'.

e Function Reduce, Line 25inally, in the last iteration the test databd3gis successfully
merged withD5.

11.4 Related Work

The closest related work to MRQP is the work on Information Disclosure ligetie in @]
This work addresses the question which information is disclosed by a s&tves that are pub-
lished over the same database instance. Moreover, there has alscobeewark on efficient
algorithms and frameworks to produce large amounts of test data forragiaéstical distribution
[IG_S_E*_9A; [B_C_0$ This work is orthogonal to our work. All other existing approachegest
databases generation (e.@,MLﬁ; CDF+O4]) focuses on other particular aspects not directly
relevant for MRQP.
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o 1.2

Functional Testing of a Query Language

The whole of science is nothing more than a refinement of ésghinking.

— Albert Einstein, 1879-1955 —

Functional testing of a query language like SQL, or more precisely furaitiesting the execution

of a query, is a challenging task in practice. A basic problem is to creatmprebensive set of
test queries and test databases which enable a high test coveraggudmherocessing function-
ality (e.g., of a relational DBMS). Consequently, many existing approaehes [ ,
[|§P_O_h, [G_SE*_9A], [[I:ILALO_é] [[B_C_O_%]) focus on the generation of test queries and test databases
with various query and data characteristics. These approachestaneused to find errors by
simply executing the generated test queries on different test datablasesver, these approaches

do not address the problem of automatically verifying the actual resuledest queries over the
test databases which is a crucial task to reveal errors in the quergsing functionality.

For instance, if we want to use the following SQL query for functional tgstie query processing
functionality of a relational DBMS, then the execution of the query overtaldse may only
reveal some abnormal behavior such as a very long execution time oteansgiash. However,
functional errors like defects in the filter operation or in the aggregati@natipn can only be
found by the verification of the actual query result.

SELECT o_orderdate, SUM| _price) as sunil
FROM orders, lineitem

WHERE o_id=l oid

AND o_or derdat e>=dat e ' 2005-01- 01’
GROUP BY o_orderdat e;
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In order to verify the actual result of a test query over a certain dagglihe actual result has to
be compared to the expected (correct) result. If the actual result isrtieeasathe expected result,
then the verification succeeds, otherwise the verification fails.

The problem of automatically computing the expected result of an arbitranihplex test query
over a given test database is not trivial. One solution is to first genersde af test databases
as well as test queries and then to compute the expected query resulélfiorest query over
the individual test databases by executing the test query on an altergagvy processor with
comparable capabilities (like the previous version, or a implementation of aatitfeendor) as
proposed in@é{h. However, this solution is not feasible for the testing of the new features o
a query language which are not yet supported by another quer or to test a new query
language like Entity SQL of the ADO.Net Entity Framewolﬁ'?cwhere no comparable
implementation exists. Another problem of this solution is that many test queries reigihn
empty results which are of no interest for the functional testing of a quegukge.

In this chapter, we discuss a solution that addresses the verification attiled query result in
a different way. Instead of first generating a set of test databaseslhas test queries and then
computing the expected results, we first create one or more expectéd fesa given test query
and then generate a test database individually for each combination bfja¢egand an expected
result which returns the expected result if the test query is executesttgr

In order to generate a database instance for a given test query ardexied result of that query,
we use the RQP framework discussed in BarOur approach to verify the actual query result is
based on the assumption that the implementation of RQP is ¢orrect

The main benefit of our approach is that we have full control of the arpleresults of each test
query. Thus, we can define the test cases for the functional testinguérg language from a
totally different angle. For example, we can explicitly create two test dataldas the same test
guery with a filter operation where the first test database returns a minisudd amd the second
test database returns a huge result with interesting boundary valuegetliatent to use for the
functional testing of the filter operation of the test query.

A drawback of our methodology is that it is expensive to generate onédtgiase individually

for each combination of a test quefyyand an expected result. Mutating a test query) into a

test query’ with the condition thaty)’(D) = R still holds, allows us to reuse the test database
D in order to test query)’ and verify the actual result of that query with the help of the same
expected resulkz. An example mutation of a SQL query which does not change the expected
result, is to add a self join on thimary-keyof a relation which is used in tHfeROMclause of the
guery. Mutations are not discussed in this thesis.

LIn functional testing, it is a general assumption that the testing tool isatoiee a failed test run primarily indicates
a bug in the application under test and not in the testing tool itself.
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Contributions: In order to generate a test database for an arbitrary test querypptoagh
needs to automatically create a valid expected result for that test quéryfingever, generating
a valid expected query result for an arbitrary test query (like the exaquaey at the beginning
of this Section) is not a trivial task. As a first contribution of this chapter,extend RQP so
that it automatically creates a valid result for a given test query. Moreaxeepresent a method
which efficiently compares the actual with the expected result. As a thirdet@nontribution, we
discuss the implementation of our approach for the query language EntityB5Q& ADO.NET
Entity Framework and particularly focus on the extension of RQP for theedeslational data
model in order to support this query language.

Outline: The remainder of this chapter is organized as follows: Sefffifblidiscusses our new
approach for the functional testing of the query language SQL. Sé&i@then gives an overview
of the ADO.Net Entity Framework and the query language Entity SQL. Sulesgigiu Section

[IZ3describes the extensions of RQP in order to support that query laa@irdiy SQL instead
of SQL only. Finally, SectioffiZ.4discusses related work.

12.1 Functional Testing of SQL

Our approach for the functional testing of a query language like SQLbeaglivided into three
phases which will be discussed in detail in this section: (1) In the firstgqpaasxpected query
resultR is generated for a given test quépyand a database scheifiaThe test query which must
be provided as input to this phase can either be created manually by theotestegenerated by
using an existing approach like RA or QGen . The database schema is usually
created manually by the tester. (2) Afterwards, a test databasgenerated for the given database
schema which returns the expected regulgenerated in step 1), if the test quépyis executed
correctly over the database instarigei.e. Q(D) = R. This step is completely based on RQP
(3) The last step carries out the actual functional testing: the test quésyexecuted over the
databasé) and the actual resul’ is compared to the expected resilfor verification. If both
results are the same, the verification succeeds.

12.1.1 Generating the Expected Query Result

The basic idea to generate a valid result for an arbitrary test query i®tthasnput schema of
the root operator of the reverse query tree (catkslilt schempwhich is computed during the
bottom-up query annotation phase of RQP. The input schema of the retopdescribes all
possible instantiations of a result of a query. To guide the result instantiti®nser can provide

2As future work, we want to explore different knobs for RQP which allasvto vary the characteristics of the
generated test database.
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values for theesult sizeand aset of constantfor each attribute which participates in the query
result. If these values are not provided by the user, then the expestdtigeneration use a default
value for the result size and the complete domain of the attributes to instantidick r@salt which
fulfills the constraints of the result schema.

Generating a query result which satisfies the result schema can be impldingatiing a reverse
projection with an empty attribute list on top of the reverse query tree dapilegy compilation
of RQP. Thus, the result generation can reuse the algorithms of theegu&jection operator for
the top-down data instantiation phase.

The top-down data instantiation phase of RQP is changed to get the resuinsia set of con-
stants as input instead of a valid resHlt In a first step, this phase generates a reBfiltvhich
consists of a set @mpty tuple@ The number of empty tuples i#? is given by the result size. The
resultR? is used as input for the rewritten reverse query tree with the additioreriseprojection
on top. During reverse query execution, the additional reverse piajegenerates the expected
result R of the original reverse query tree as output. The constants which evaled as input
to the top-down data instantiation phase are used to instantiate the val@dg possible). The
necessary modifications in the system architecture of RQP (Query Compilatiprdown Data
Instantiation) which implement these changes are shown bold in Figuie

For example, assume that we want to generate a valid expectedRdsulthe reverse query tree
in Figured.2(b) (i.e., values for the attribute€l/ M (price)): The user inputs the result size of two
tuples and gives the set of constafiisM AX_FLO AT} for the attributeSU M (price). Follow-

ing the solution described before, thaery compilatiorphase of RQP adds a reverse projection
on top of the reverse aggregation. During reverse query proceskaipp-down data instanti-
ation phase creates two empty tuples as reg&ilt R? is used as input for the additional reverse
projection which generates a valid query resRilas output using the set of constants provided by
the user in order to instantiate the values for the attrilSiifél/ (price).

12.1.2 \Verifying the Actual Query Result

To verify the actual resulk’ of a test queryy over a databasP we compare?’ with the expected
result R which was used to generate the databh@sén a first step, we check if both results have
the same result size. If they do not have same size, then the verificatiom attiiial query result
fails. Otherwise, we have to compare the actual and the expected resludtibsesult values.

If the test query contains aBRDER BY statement on therimary-keyattribute(s) of the result
schema of a reverse query tree, then it is guaranteed that the tuplesactuaéand the expected
result are in the same order. Otherwise, it makes sense to sort both bysikssame sort criteria
(either ascending or descending). If the result schema of the rayeesgtree containsarimary-

3An empty tuplds a dummy tuple which defines no attribute values.
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Figure 12.1: Modified RQP Architecture

keyconstraint, then we can use the key attributes to sort both results. Othengi$ave to sort
both results by all result attributes.

After sorting both results, we can compare the results tuple-by-tuple, i.eomvpare the first tuple
of the actual result with the first tuple of the expected result, then the ddapte of the actual
result with the second tuple of the expected result and so on. If oneffaiples has a different
number of result attributes or a different result value for one attribués, tifne verification fails. If
all tuples have the same value for each attribute, then the verification sisccee

For example, if we want to verify the actual result of the SQL query in L@ (b) which was
used to generate the database instance (fabtétem andorders) in Figureld.2 (c), then we
first execute that query on the generated database instance. Assantketactual result of that
test query over that database instance contains the following two fuplEa0>, <100>}. In
order to verify the actual result, we first check if the expected resudte(ta in Figure[4.2 (c)
has the same size as the actual result. As the result size is the same, we soitith and the
expected result ascending by the attrib8{é M (I_price) of the query result and compare both
results tuple-by-tuple. The verification succeeds because the expectdide actual result are the
same.
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Figure 12.2: Entity Framework — Mapping

12.2 The ADO.NET Entity Framework

The ADO.NET Entity Framework is a data-access layer which enables gevseltb model and
access their data on the client using a conceptual schema called Entity Dadéh Mbie upper
part of Figurdl2.2 shows an example Entity Data Model. The Entity Data Model is a concrete
implementation of the entity-relationship mod€l 3.

The Entity Data Model defines entity types (e@r,ders, Lineitem) and their associations. En-
tity types represent a structured record consisting of one or morentieserhe properties of an
entity type have a simple or a complex data type. A simple data type represeataraygee (e.g.,
int, string), while a complex data type represents a structured property ¢@dy.ess which is
not shown in the example). A complex data type is composed of one or maverpes, which
again have a simple or complex data type. Associations are used to relateqenibe relation-
ships between) two or more entity types (e.g., the associafighrder in Figurell2.2relates the
Lineitem entity type with theDrder entity type). Moreover, the Entity Data Model also supports
inheritance; i.e., an entity type can be derived from another entity type i igure[I2.2 the
entity type RushOrders is derived from the entity typ@rders).

Entities are instances of entity types. An entity is uniquely identified by a keyhaikitormed
out of one or more properties of the entity type (e.g., the key of the entity kypeitem is the
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propertyid), just like a key in the relational data model. The entities are organized iis{@grs
collections called entity sets. An entity set of tyjpeholds entities of typd™ or any type that
derives fromT".

The ADO.NET Entity Framework does not materialize the entities and associatitreclient.
The Entity Data Model is mapped to a relational data model via a flexible mappimg ddtails

of the mapping can be found i. An example mapping is shown by the arrows in
FigurelIZ2.2 The Entity Data Model and the relational data model in the example contaihlyoug
the same elements. One difference is that the attributes in the relational datausedéghtly
different names than the properties of the Entity Data Model. Another diftar is that the entity
typeOrders and the derived entity typRBushOrders are mapped to one and not two tables in the
relational data model. The tabdeders holds the properties of both entities and has an additional
column with the name_type which stores information about the entity type of the tuple (e.g.,
the string'Orders* or ‘RushOrders‘). Moreover, the associations of the Entity Data Model are
implemented as an additional attribut@:d and aforeign-keyin the tablelineitem.

Entity SQL is the data manipulation language for the Entity Data Model. An Entity Seiryq
retrieves entities from one or more entity sets. The following query is an dranhan Entity
SQL statement which queries the entity Béteitem. For convenience, we assume that the entity
set has the same name as the entity types in FILZ.2

SELECT | .price, |.MOder.orderdate
FROM Li nei tem |
WHERE | . MyOrder is of RushOrders

Entity SQL supports expressions to navigate from one entity to a one or mutiesereachable
via a given association (e.d., MyOr der is the navigation from d.ineitem entity to the corre-
spondingOrders entity). Moreover, filter operations support type interogation by usind te
OF expression (e.gl,S OF RushOr der s checks if an entity is of the typBushOrders).

Query execution in the Entity Framework is delegated to the relational stores, Tie Entity
Framework translates an Entity SQL query into an equivalent SQL queichvelan be executed
by the query processor of the underlying relational database. Thadtiam is based on the so
called query and update views which are derived from the mapping ofritiy Bata Model to
the relational data model. These views are used to translate queries atdsupd instances of
the Entity Data Model to queries and updates on the relational data.

The following query shows the translation of the Entity SQL query above irdorgesponding
SQL statement for the mapping which is defined in FiglPe2 The navigation.MyOrder
in the Entity SQL query is translated into a join on the tallles:item andorders. Thel S
COF predicate of the Entity SQL query is translated into a filter operation with a simpialigg
predicate on the columm type.
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SELECT | _price, o_orderdate
FROM lineitem JON orders ON| _oid = o_id
VWHERE o_t ype=" RushOrder’

After executing the SQL query on the relational store, the result is reshapthe ADO.Net Entity
Framework according to the structures of the Entity Data Model (e.g., cgeatsociations from
foreign-keyalues) and returned to the client.

12.3 Reverse Query Processing Entity SQL

12.3.1 Discussion and Overview

Section12.2 showed that an Entity SQL query is executed over a given databasecestsimg
the following three steps:

(1) An Entity SQL query is translated into a SQL query
(2) The SQL query is executed over the relational database

(3) The result of the SQL query is mapped into a result of the Entity Data Mode

Functional testing of Entity SQL should be able to reveal errors in all the thteps of the query
execution. The main steps of our approach for the functional testing akey danguage (see
SectiorfIZ.]) are the generation of an expected regtbind of a test databade for a given test
guery@ and a database schemsiaising RQP. However, the existing RQP prototype supports only
SQL and the relational data model but not Entity SQL and the Entity Data Models&gjuently,

in order to reverse process an Entity SQL query, we either use the S&l i which is the
output of step (1) above and the relational database schema which iousgece the data of the
Entity Data Model as input for RQP or we extend RQP to support Entity S@Ltts Entity Data
Model directl@.

The problem of using the SQL quety as input for RQP is that the step (1) of processing an
Entity SQL query could be erroneous and thus the output SQL query magbg Consequently,
RQP would generate a test databastor that wrong SQL query which means that the correctness
criterion@(D) = R does not hold anymore for the generated test databaeed the Entity SQL
queryQ.

In this thesis, we describe a solution where RQP takes an Entity SQL queérgraBntity Data
Model directly as input in order to avoid this problem. Implementing RQP for ES@y. and the

*We do not discuss the verification of a result of an Entity SQL query Isectis is a straightforward extension to

SectiorflIZ.1.2
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Entity Data Model needs some extensions in the data model and the algel@PofTRe Entity
Data Model and the algebra for Entity SQL (called Command TIME)_E']) are similar to

the nested relational model and the nested relational algebra. In the fajl@eictions1Z.3.2
and[IZ2.3.3 we define arExtendedNested Relational Data Model as well as a Reverse Nested
Relational Algebra for RQP and discuss the mapping of the Entity Data Modketree query
language Entity SQL to that data model and that algebra.

Based on that algebra and that data model an Entity SQL gieis/reverse-processed in the
following way: In the first step, the Entity Data Modglis mapped into a corresponding Extended
Nested Relational Data Mod#l. UsingS’, thequery compilatiorphase of RQP translates a given
Entity SQL query into an equivalent nested relational algebra expreaswbithen replaces each
forward operator by the correspondimgverseoperator. During théop-down data instantiation
phase, an expected query reshlis generated which satisfies the nested result schema (that is
computed by théottom-up query annotatigohase using’) and the input constraints of the user
(e.g., the result size). Then, this nested re&ul pushed down the reverse query tree operator by
operator to the leaves. The data model of the input and output of theseewperators are nested
relations of the extended nested relational data model. The only excepgidinealeaf operators
which take a nested relation as input and create a set of entities and isee@a output which
satisfy the given Entity Data Model.

Afterwards, as an additional step, the generated entities and assocatomapped back to re-
lational data model which is used to store the data of the Entity Data Model. Adfaigard
solution to implement this step is to use the update views which are provided bytiheFEame-
work. Using the update views is not problematic because our goal is ttdoattest the query
execution (phases 1-3 above) of the Entity Framework and not the ugalzdbilities.

For example, in order to reverse process the Entity SQL query showrctioSg2.2 the given
Entity Data Model (see Figuig2.? is translated into a extended nested relational data model
(see structure of tables in Figuf€.3and Figurdl2.d). Subsequently, RQP compiles the given
test query into a reverse query tree using the reverse nested relalgabta and then com-
putes the nested result schema of that reverse query tree (whichtsarfsibe two attributes
Lineitem.price and Lineitem.MyOrder.orderdate). In the next step, RQP generates an ex-
pected result which satisfies the nested result schema and pushestittaloe/n to the leaves
of the reverse query tree which generate a sgtidish)Orders as well asLineitem entities
and their associations for the given Entity Data Model (shown in Fi@dr3. These entities and
associations are then mapped back to the tadldsrs andlineitem (defined by the mapping
in Figure[IZ.2 in order to generate the test database, which means that e.g., the vathes of
foreign-keycolumni_oid must be created from the associations betweeritheh)Orders and
Lineitem entities.
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Orders

type: entity

keys: {Orders.id, Orders.MyLineitems.id}

predicates{Orders.Qtype = ‘Orders‘||Orders.Qtype = ‘RushOrders‘}

id orderdate | arrivaldate | fee MyLineitems @type

type: int | type: date | type: date | type: float| type: ref(Lineitem)| type: string
cardinality: *
id
type: int

1 2005-01-01] NULL NULL 1 Orders

2 2005-01-02| 2005-01-03| 10 2 RushOrdersg
3

Figure 12.3: Nested Relatiold%-ders

Lineitem
type: entity
keys: {Lineitem.id}
predicates{ Lineitem.price >= 0&& Lineitem.Qtype = ‘Lineitem*}
id price MyOrder @type
type: int | type: float| type: ref(Orders)
cardinality: 1
id
type: int
1 999 1 Lineitem
2 1000 2 Lineitem
3 215 2 Lineitem

Figure 12.4: Nested Relatiodsneitem

12.3.2 Extended Nested Relational Data Model

We define theExtended Nested Relational Data Mo@eal an extension of the standaxested
Relational Data Mode]. The standard nested relational data model allows the type of an
attribute which is defined by schema of a nested relatido be a set of records (e.g., an attribute
Orders inside a schema of a nested relatioimeitem which represents the order that a line-item
belongs to) or a simple data type (liket, string), rather then requiring it to be a simple data
type only. Anested relatioris an instance of a schema of nested relation andsted tuplés

a row of such a nested relation. path expressioidentifies an attribute inside a nested relation
(e.g.,Lineitem.Orders.orderdate is a path expression which points to the attribwtéerdate
nested inside a@rders attribute of the nested relatidnineitem). The extensions of the standard
nested relational data mod#lat are necessary to map the Entity Data Model are discussed in this
section when necessary.

An Entity typeT of the Entity Data Model is mapped to the extended nested relational data model
as follows: a base entity type is mapped to a nested relation with the same name ayjeth
entity. A property of an entity type which either has a simple or a complex data type isadap
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to an attribute with the same name and a corresponding simple data type or a @avzhigh
represents set of records. Derived entity types and their propertiesapped to the same nested
relation as the base entity type. Thus, a nested relation which represemtstaypeT’ defines

all attributes of the entity typ& and the attributes of entity types that derive from T. An example
of two nested relations which represent instances of the entity typésrs, RushOrders, and
Lineitem of the Entity Data Model in Figur@Z.2is shown in the Figurg§2.3andI2.4 Each
base entity type@rders, Lineitem) is mapped to one nested relation with the same name. The
properties of the two entity types are mapped to the attribite&rs.id, Orders.orderdate, as
well as Lineitem.id, Lineitem.price with the same data types. The properties of the derived
entity type RushOrders are also mapped to the nested relatiorders. A tuple of that nested
relation which represents an entity of tyPeders (e.g., the nested tuple withrders.id = 1 in
Figure[1Z.3 holds aNU LL value for all attributes which are defined by the derived entity type
RushOrders.

A nested relation defines an additional attrib@itgpe which holds a string value that indicates the
entity typeT’ of the nested tuple. The value of this column is restricted to the entity types which
are represented by that nested relation (e.g.@thge column of the nested relatioDrders in
FigurellZ.3is restricted to the valué®rders* and‘ RushOrders®).

Mapping associations of the Entity Data Model to the extended nested relataaanodel is also
straightforward. The associations are implemented by an attribute (eaetiationattribute)
with the same name and the tyeé (e.g., the associatiol yOrder is implemented as an attribute
with the same name in the nested relatiomeiter). Moreover, the association attribute (e.g.,
Lineitem.MyOrder) holds a set of nested attributes (calteterenceattributes) with the names
of the key attributes of the referred entity (e.§ineitem.MyOrder.id). The typeref of the
association attribute can be seen dsraign-keywhich constrains the values of this attribute to
the key values of the referred entity. Toardinality of the association attribute is an extension of
the standard nested relational data model and is used to representiihalitsirof an association.
For instance, dineitem entity refers to exactly on@rders entity. Thus, the cardinality of the
association attribut&ineitem.MyOrder is 1.

Moreover, a schema of a nested relational must be able to hold the cotsstifaine Entity Data
Model (keys, predicates) in order to be suitable forlibtom-up query annotatigphase of RQP.
Thus, we extend the standard nested relational data model in such a waydsted schema can
also hold a set ofeys andpredicates of a nested relation. For instance, theys of the nested
relationOrders are on the attribute@rders.id andOrders. My Lineitems.id. This means, that
the values of these attributes must be unique in the nested retatidirs.
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12.3.3 Reverse Nested Relational Algebra

The operators of the Reverse Nested Relational Algebra that arefwé$e this section allow the
reverse processing of a subset of possible Entity SQL queries. Ebrezerse operator of that
algebra, we first discuss the Entity SQL expressions that are mapped epénaor duringjuery
compilationof RQP. Analog to the reverse relational algebra in Hanthere the definition, e.g.

of thereverseselection operator is based on floeward selection operator of the relational alge-
bra, we first define théorward operator of the Nested Relational Algebra which implements the
forward processing capabilities of certain Entity SQL expressions and then we diefireverse
operators of thdReverseNested Relational Algebra based on the definition of the correspond-
ing forward operator. The implementation details of the bottom-up query annotation phase an
top-down data instantiation phase of RQP for that algebra are omitted fotybre

Reverse ScanEntity GcanEntity, ! . .

During query compilation, RQP maps an entity set which is listed ifFR@Viclause of an Entity
SQL query to aeverse ScanEntitgperator.

Theforward ScanEntityoperator of the nested relational algebra scans an entity set with a given
name and produces a nested relation as output (the mapping was describection 8&8.3.2.

The output nested relation has the name of the scanned entity set. Forenstenoutput of a
forward ScanEntity operator which scans the entity®eters of the Entity Data Model in Figure
[IZ.2could be a nested relation that is shown in FigliPe3 Moreover, the forward ScanEntity
operator implements the renaming of an entity set to an optidnas.

Accordingly, thereverse ScanEntitgperator gets a nested relation as input and creates a set of
entities as well as the associations of a given Entity Data Model as output. Witheth of the
column@type in the input, the reverse ScanEntity operator instantiates the correct engtgrtgp
initializes the property values of the entities using the attribute values of thedrteglies. The
associations are created by dereferencing the attribute values whiglseepthe associations.
For example, a reverse ScanEntity operator which gets the nested refdfigui@IZ.3as input,
creates on@rders and oneRushOrders entity of the Entity Data Model in Figulg@Z.2 as
output. The associatioh y Lineitems is instantiated by dereferencing the values of the attribute
Orders.MyLineitems.id (e.g., for the entity which is created for the-ders tuple withid = 1,

an association to &ineitem entity withid = 1 is instantiated).

Reverse Ref-Key Join 64{7,11 =)

Navigations along associations inside an Entity SQL query are mappe@verae Ref-Key Join
operator during the compilation phase of RQP. An association of the EntityNdadal| is rep-

115



CHAPTER 12: FUNCTIONAL TESTING OF A QUERY LANGUAGE

Orders

id | orderdate | arrivaldate | fee MyLineitems @type
id | price [ ... | @type

1 | 2005-01-01| NULL NULL |1 | 999 | ... | Lineitem | Orders

2 | 2005-01-02| 2005-01-03| 10 2 11000 | ... | Lineitem | RushOrderg
3 [ 215 | ... | Lineitem

Figure 12.5: Output/Input of the Forward/Reverse Ref-Key Join

resented by a set of reference attributes (., ) in the extended nested relational data model
which point to thekey attributes g1, ..., k,,) of a nested relation.

The forward Ref-Key Joiroperator gets the two nested relations which participate in the associ-
ation as input: the input which defines the reference attributes is callegfgrence inputind

the other input which defines the key attributes is calleck#heinput The forward Ref-Key Join
operator joins the two input relations in the following way: it replaces the gatighe refer-
ence attributes of all tuples in the reference input by the nested tuples &yhmput which
have the same value for the key attributes. Thus, the forward Ref-Kémilaisto an equi-join

with a join predicate which expresses the equality of the reference andeyhatkibutes, i.e.

r = k1&&.. .&&ry, = k.

For example, the navigatiaDrders. My Lineitems in the following Entity SQL query is imple-
mented as a forward Ref-Key Join with the reference attributéers. My Lineitems.id and the
key attributeLineitem.id.

SELECT Orders. MyLineitens as lineitens
FROM Or ders

If this join gets the nested relations of Figlig.3 and FigurdlZ.4as input, then it replaces the
values of the attribut€rders.MyLineitems.id with tuples of the nested relatiohineitem
which have the same value for the attributéncitem.id, i.e. Orders.MyLineitems.id =
Lineitem.id is true in the output. Figuf€2.3shows the output of that join.

Correspondingly, theeverse Ref-Key Joisplits a given input into two nested relations to create
its output (called theeferenceand thekey output Thekey outputis created by extracting the
nested tuples in the input relation which are identified by the reference &ttribor example,
the reverse Ref-Key Joilsn{‘olr ders. MyLineitems.id}—{ Lineitem.id} which gets the nested relation
in Figure[I2.5 as input, extracts the nested tuples which are identified by the refereribatattr
(Orders.MyLineitems.id) in order to create thi&ey output Afterwards, the reverse Ref-Key
Join operator deletes all attributes in the input relation which are at the saehasee reference
attribute, but not the reference attribute itself, in order to produce tleeerate output. In our
example, the attribute@rders.MyLineitems.price, ..., andOrders. My Lineitems.Qtype in

the input relation (Figurd2.5) are deleted to create theference outputThe two output relations
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lineitems

id | price | ... | @type
1 1999 | .. | Lineitem
2 | 1000 | ... | Lineitem
3 | 215 ... | Lineitem

Figure 12.6: Output/Input of the Forward/Reverse Projection

of that reverse join are shown by the nested relation in FiffZ8 (reference outpQtand the
nested relation in FiguE2.4key outpul

-----

The compilation phase of RQP maps BELECT clause of an Entity SQL query to theverse
projectionoperator. The projection lisp(, ..., p,) of this operator defines a set path expres-
sions Optionally, aliasesd, ..., a,) can be given for each path expression in the projection list.

The forward projectionof the extended nested relational algebra is similar to the projection op-
erator of the relational algebra. It pulls up the attributes in the nested iefaiion which are
identified by the path expressions to the top-level and renames these adtdbateding to the
given aliases to create the output. All attributes in the input that are not irrefecpion list are
deleted in the output.

For example, a forward projection which implements 8 ECT clause of the Entity SQL query
shown for the reverse nested selection operator, pulls-up the attribitk isHdentified by the
given path expressio®rders.MyLineitems to the top-level of relation and renames this at-
tribute by the aliadineitems. All other attributes (e.g.Orders.id, Orders.orderdate, ...,
Orders.Qtype) are deleted in the output. If this projection operator gets the nested relation in
Figure[IZ.5 as input, then the output consists of two nested tuples shown Higu@e the first
tuple holds theLineitem with id = 1, and the second tuple holds the tWiéneitems with

id ={2,3}.

Thereverse projectioroperator reverts the forward projection: It takes the attributes in the input
relation that are identified by the aliases.(..., a,,) and initializes the attributes in the output rela-
tion which are identified by the corresponding path expressions.(, p,) of the projection list.
The values of all other attributes that are deleted by the forward projeuntishbe generated by the
reverse projection. For instance, the reverse projection operg%%m' MyLineitems} {lincitems}
which gets the nested relation [[2.8 as input, creates its output by initializing the attribute
Orders.MyLineitems in the output with the values of théneitems attribute in the input. Af-
terwards, the values are generated for the attributes which are deleted fmyward projection
(e.g.,0rders.id, Orders.orderdate, ...,Orders.Qtype in Figurel2.5).
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id | orderdate | arrivaldate | fee | MyLineitems | @type
id

2 | 2005-01-02| 2005-01-03| 10 | 2 RushOrders
3

Figure 12.7: Output/Input of the Forward/Reverse Selection

Reverse Selectiond;,*):

The WHERE clause of an Entity SQL query is mapped teeaerse selectionperator during the
compilation of RQP. The selection predicatis an arbitrarily complex predicate which uses path
expressions instead of attributes to express the filter condition (&:deys.price >= 100). An

I S OF predicate in th®HERE clause of a Entity SQL query is also mapped to a reverse selection
operator with a simple equality predicate. For example WHERE clause of the following Entity
SQL query is implemented by the predicat@type = ‘ RushOrders:.

SELECT o
FROM Orders o
VWHERE o0 IS OF RushOrders

As in the relational algebra, tferward selectioroperator filters all tuples in the input which do
not satisfy the predicate. The path expressions which are used in tiiegteemust point to a
scalar value and not a set of records; e.g., a forward selection withieédeate
Orders.MyLineitems.price > 100 on the input (Figur@2.5) is not allowed because the path
expressions points to a set of integer values. However, a forwardtiselevith the predicate
0.Qtype = ‘RushOrders‘ which gets the nested relation in Figl@Z.3 as input would be al-
lowed. The output of this operator is shown by Figliee#

In the simplest case, threverse selectiooperator can be implemented as the identity function.
However, the reverse selection can also add some additional nestediduifdesutput which sat-
isfy the negative selection predicate. The number of tuples which arel dgdbe reverse selec-
tion could be another parameter which is provided by the user as inpueftopidown data instan-
tiation phase. For example, if theverse selectiowith the predicate.Qtype = ‘ RushOrders'

is executed on the input nested relation in FigliE] then it could add some nested tuples
to the output which satisfy.@type! = ‘RushOrders‘ and the constraintsirders.Qtype =
‘Orders‘||Orders.Qtype = ‘ RushOrders‘) of the schema of the nested relation in FidliZe3
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12.4 Related Work

To the best of our knowledge, there has been almost no work on the digoesalt verification for

the functional testing of a query Ianguam suggested the method to execute the test query
on a comparable query processor to obtain the expected query regitaan be compared to the
actual result for verification. The software engineering community hasaldressed this problem
(known as the computation oftest oracl¢ for the testing of different applicatior@] but not

for the testing of a query language.

The work in @] tackles the problem of controlling some characteristics like the cardinality
of the (intermediate) query results for a given test query by generatieny garameters for a given
test query. This approach could be used to partially verify the actuay gesults by comparing
the controllable characteristics of the expected query result with the saanactdristics of the
actual result. However, that approach is not as powerful as ouoagip.

Most existing approaches for the functional testing of a query langioagsed on the generation
of test queries and test database instances (see SB&i@n These approaches are often used to
first generate a set of test database instances and test queriesreexkitigte these test queries on
the generated database instances to find some errors without verifyiagttizé query result.
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Other Applications

Science never solves a problem without creating ten more.

— George Bernard Shaw, 1856-1950 —

Apart from test database generation, RQP has also a lot of other pbégpii@ations. As its main
contribution this section sketches how RQP can be useful for those djpigaHowever, much
additional research is required in order to further explore these apptisa

Data Security: One future application of RQP is to study the query-view security problens. Th
problem addresses the question if a set of views that are publishethewsame database instance
disclose any information about a query that a potential attacker wants ¢atexdRQP could be
used to generate different test databases from the published viewgdatéeé and query results)
in order to test the confidentiality of the view d

SQL Debugging: Another practical application of RQP is to debug database applications with
embedded SQL code. If a query produces the wrong query resultsRIQE can be used to step-
wise reverse engineer the query based on its query plan and find tfeapehat are responsible
for the wrong query results; e.g., a wrong or missing join predicate.

Program Verification: RQP can also be an important component for Hoare’s Grand Challenge
project of program verificatioM]. In order to prove the correctness of a program, all possible
states of a program must be computed. In order to compute all states obaskamogram (e.g.,
Java plus embedded SQL), RQP is needed for finding all necessatificos of the database in
order to reach certain program states.
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Updating Views: The SQL standard is conservative and specifies that only views ortdides
without aggregates are updatable. Many applications make heavy usgLo¥i®n definitions
and, therefore, require a more relaxed specification of updatable. viewexample, Microsoft’s
ADO.NET allows the client-side update of data, regardless of the kind of thetvwas used
to generate that data. The reason why SQL is conservative is that sifidatertain views are
ambiguous. RQP could be used in order to find all possible ways to applpdaieu(possible
infinitely many). Additional application code can then specify which of théseratives should
be selected.

Database Sampling, Compression: Some databases are large and query processing might be
expensive even if materialization and indexing is used. One requirement b@gb provide a
compressed, read-only variant of a database that very quickly gpmeximate answers to a pre-
defined set of parametrized queries. Such database variants candratgd using RQP in the
following way: First, take a sample of the queries (and their parameter&xaedte those queries

on the original (large) database. Then, use RQP on the query resdltceasample queries in
order to find a new (smaller) database instance.
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Part IV

Symbolic Query Processing
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Motivating Applications

Logic will get you from A to B. Imagination will take you ewahere.

— Albert Einstein, 1879-1955 —

The complexity of database management systems (DBMS) makes the additiew d¢atures
or the modifications of existing features difficult. The impact of the modificatmmsystem
performance and on other components is hard to predict. Therefteegath modification, it is
necessary to run tests to evaluate the relative system improvements andrddesystem quality
under a wide range of test cases and workloads.

Today a common methodology for testing a database system is to generateratwamsjve set of
test databases and then study the before-and-after system belyaex@ciiting many test queries
over the generated data. Current database generation tools allowta deéne the sizes and the
data characteristics (e.g., value distributions and inter/intra-table corralatbithe base tables
(see Sectiof2.2.2. Based on the generated test databases, the next step is to eithetaskeate
gueries manually, or stochastically generate many valid test queries by gemeeration tools
such as RAG@ or QGEN , and then execute them to test the DBMS.

Unfortunately, the current testing methodology is inadequate to test individatures of the
database systems because very often it is necessary to control theutpguitaf the intermediate
operators of a query during a test. For example, assume that the ted¢bainadf a DBMS product
wants to test how a newly designed memory manager influences the peréeroiamulti-way
hash join queries (i.e., how the per-operator memory allocation strategy ofeéhmry manager
affects the resulting execution plans). FigliZedshows such a sample test case (figure extracted
from [@). A test case is a parametric queiyp with a set of constraints defined on each
operator. In Figur@4.] the test query of the test case first joins a large filtered t&bléth a
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Figure 14.1: A test case: a query with operator constraints

filtered tableR to get a small join result. Then the small intermediate join result is joined with
a filtered tablel’ to obtain a small final result. Since the memory requirements of a hash join is
determined by the size of its inputs, it would be beneficial if the input/outpuaich éndividual
operator in the query tree can be controlled/tuned according to the tegements. For example,

the memory allocated t& g 4t —7.qttr, DY the memory manager, can be studied by defining the
output cardinality constraint on the jon(R) x o(S) and the output cardinality constraint on
o(T) in the test case. However, even though the tester can instruct the ca¢alggse to evaluate

the test query by a specific physical execution plan (e.g., fixing the joier @ forcing the use

of hash-join as the join algorithm), there is currently no easy way to conteo(ithermediate)
results of a query because those results depend arotiientof the test database.

Testing the features of DBMS requires the execution of a test query @&t datbase. Usually
the test query is given by the testers (e.g., the one in Fipdi®. In general, a good test database
should cover the test cases (i.e., the database content is possible toegilesited intermediate
query results for a test query when the query is executed on it). Howexisting test database
generators do not take the test query as part of the inputs. Therefitess with intensive manual
tuning on the database content, it is hard to guarantee that executing tl@deston the test
database can obtain the desired (intermediate) query results that aesldetime test case. Figure
[14.2 (a) shows this problem. In the figure, there are two test cdeasnd7T: (denoted by dots)
and there are three generated test database instances (denotedreg)sqlihe three generated
test databases (Databases 1, 2, and 3) do not cover tegtcaisall (i.e., executing test quefyp

of T, on Databases 1, 2, and 3 can never fulfill the constraints that arediefing). Even if a test
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Figure 14.2: The DBMS Feature Testing Problem

database covers a test case (e.g., Database 1 dyeisis difficult to manually find the correct
parameter value® of test queryQ p such that the query results match the constraints in the test
case. For instance, it is unlikely that instantiating test qugsyin FigurelI4.2(a) with three sets

of parameter valueg’, P”, P”” manually can match the requirements of test Ggse

Given a test database, query generation tools such as RAGS and (EBENig many queries in
order to cover a variety of test cases. However, RAGS and QGEN natréesigned for testing

an individual DBMS component. To test an individual DBMS componentdésired test query

is usually given by a tester (e.g., the query in Fidlilel). In this situation, RAGS and QGEN
may need to generate many queries in order to match the test query anduiemeqts of the

test case (see Figul&.2(b)). In addition, RAGS and QGEN also rely on what databases they are
working on or otherwise they never can generate a test query that redbehtest case (e.d.3).

The problem of testing DBMS features has been pointed o@. Given a test database
D, a parametric conjunctive que€yp, and cardinality constraintS over the sub-expressions of
Qp, they studied how to find the parameter valuesf Q) p such that the output cardinality of
each operator iid) p fulfills C. In their pioneering work, they found that their formulation of the
problem isNP-hard. Their approach is illustrated in Figlfd.2 (c). Given the predefined test

126



databases (e.g., Databases 1, 2, and 3), it may be possible that theoeparameter values that
can let test query) p match the requirements in test caSe Even if a test database covers a
test case (e.g., Database 1), since the solution space is too large, only s#hegteproject-join
queries with single-sided predicates (ejg.,< a or a < ps) or double-sided predicates (e.g.,
p1 < a < p2) (Wherea is an attribute angy andp, are parameter values) can be supported.

We observe that the test database generation process is the main cutpftesftive DBMS fea-
ture testing. Currently, test databases are generated without takingtteeeass as input. Thus
the generated databases cannot guarantee that executing the testoiiem can obtain the de-
sired (intermediate) query results that are specified in the test caseefdreerthe only way for
meaningful testing is to do a painful trial-and-error test database gerepaocess (i.e., gener-
ating test databases one-by-one, or manually tune the database camiénte dind a good test
database that matches the test case), and execute queries geneREEGIFIPGEN, or execute
test queries with parameters instantiated.

In this thesis, we address the DBMS feature testing problem in a diffenémavel way: Instead
of first generating a test database and then seeing if it is possible forsthquiery to obtain
the desired query results that match the test case (otherwise use a tr&kanadpproach to find
another test database), we propose to generate a specific testd&baleash test case (see Figure
[I4.2(d)). To that end, we propose a new technique cefigehbolic Query Processimg SQP, for
short. Given a database schefiaa logical query plar@), and a set of user-defined constraints
C on each query operator, SQP directly generates a datdbasech that executing) on D
guarantees that the user requirements imposed on the query operationfilked.

Consequently, SQP implements fhest Case Aware Database Generationthe testing of indi-
vidual DBMS components. Traditional database generators (see SE@i@nallow constraints
to be defined only on the base tables (e.g., a join key distribution is definect drasle tables).
As a result, a tester cannot specify operator constraints (e.g., the oatgutality of a join) in an
explicit way. SQP allows a user to annotate constraints on each operdtonarach base table
directly, and thus the users can easily get a meaningful test databasdi$tinct test case.

The test databases generated by SQP can be used in a number of mthgstésting of DBMS
components. For example, in addition to testing the memory manager, testersec&QR to
generate a test database that guarantees the size of the intermediateljtinaésst the accuracy
of the cardinality estimation components (e.g., histograms) inside a query opthyifiging the
join ordev@ As another example, testers can use SQP to generate a test databasardrgegs
the input and the output sizes (the number of groups) for an aggreggqt@ator (GROUP-BY)
in order to evaluate the performance of the aggregation algorithm undeieof cases such as
in multi-way join queries or in nested queries.

"However, it is inapplicable to test the join reordering feature of a quetiyniger directly because in this case the
physicaljoin ordering should not be fixed by the tester; and the intermediate chtigsmguaranteed by SQP may affect
the optimizer to return a different physical execution plan with differet@rimediate results.
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Contributions:  The main contribution of this part is the conceptual framework for SQP and a
prototype implementation called QAGen {&y-Aware Database Gemator). QAGen can gen-
erate test databases for a variety of complex queries such as T@j[quenes efficiently.
In some cases, the test database generation process still involves soiviig-hard problem
such that QAGen generates a test database in which the test queryiexgais approximate
cardinalities instead of exact cardinalities as defined on the test casexdmple, QAGen may
generate a test database in which executing the test query in Eifdrgets a join result with 12
tuples rather than 10 tuples in the jadtuttrg x T.attr;. In practice, this relaxation is desirable
because for testing the feature of a DBMS, it usually does not matter wieethet the final join
result size exactly matches the test case requirements. In many cased,appgmximate answer
is sufficient and it turns out that such relaxation allows QAGen to efficiesghport a much richer
class of SQL queries.

Sometimes it would be advantageous to add new kinds of constraints to aiasperaddition

to the cardinality constraint during testing. For instance, the aggregatR®(P-BY) operator
may not only need to control the output size (i.e., the number of groupsinéw also need to
control how to distribute the input to the predefined output groups (i.e., spoups have more
tuples while others have fewer). Thus, QAGen is designed to be exteimsidriger to incorporate
new operator constraints easily.

The final contribution of this part is the design and implementation of a semi-atitoBBMS
testing framework. The framework automates the step of manually constridiilt test cases
like the one in Figur@4.1 As a result, testers may not need to explicitly specify the constraint
details (e.g., the cardinality constraiite = 500 in Figure[I4.J), but let the framework to auto-
matically create and execute a set of test cases which cover differeng texjuirements.

Outline: The remainder of this part is organized as follows: ChdphEgives an overview of
SQP. Chaptdfgto[I8describe the prototype implementation for SQP called QAGen. CHa8ter
presents the semi-automatic DBMS testing framework that generates antesdest cases. This
framework is built on top of QAGen. Chap{gd presents the experimental results. Chagir
discusses related work.
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SQP Overview

We can'’t solve problems by using the same kind of thinkingsed when we created
them.

— Albert Einstein, 1879-1955 —

15.1 Problem Statement and Decidability

This thesis addresses the following problems: (1) The first problem is tuifig@ subset of
constraints”' in a given set of constraints (e.g., output cardinality, distribution of aiceat&ibute)
that could be controlled for each sub-expression (i.e., output of aatmpeof a logical query plan
Q, and a database scherfigincluding integrity constraints). (2) Given a valuatidhfor each
constraint inC' (e.g., concrete values for the output cardinality or a concrete distribufian o
attribute), the second problem is to find a test database instaritat satisfied” and S. In
general, there are many different database instances which can émtgeinfor a given logical
query plan@ and the constraint valuatiovi. The purpose of this thesis is to find any possible
database instande.

Theorem 15.1 Given a logical query plaid), a valuationV of the constraintg’, and a database
schemas, it is undecidable whether there exists a database instdhteat satisfied” and S or
not.

Proof (Sketch) 15.2 We can use the same argument as in Se@idifior RQP. In order to show

that SQP is undecidable, we reduce the query equivalence problem toS862E the query equiv-
alence problem is undecidab, we prove the theorem.
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Let @1 and Q- be two arbitrary SQL queries. In order to decide whetliarand Q)5 are equiv-
alent, we can use SQP to decide whether a database instBnegists for the quen) =
Xcount(x) (@1 — Q2) U (Q2 — Q1)), a cardinality constraint on the query result, and a
valuation of that constraint which defines that the cardinalif R must satisfy: > 0. Moreover,
D should meet the constraints of the given database scheniiaSQP can find such a database
instanceD, then@; and (@, are not equivalent (i.e., if); and Q> would be equivalent, the result
of @ must be empty). Otherwise, if SQP can not find such a database indtancenmediately
follows that@; and Q- are equivalent.

Furthermore, there are obvious cases wherénexists for a giverl/ and(@ (e.g., if values in
v violate each other; e.g., when the output cardinality of a selection operajogdger than the
output cardinality of its child). Again, the approach presented in this themisiot be complete. It
is a best-effort approach: it will either fail (return arror because it could not find &) or return
avalidD.

15.2 SQP Architecture

SQP is a framework that gives a best effort solution for the problemnseatediscussed before.
The data generation process of SQP consists of two phases: (1) thelgymlery evaluation
phase, and (2) the data instantiation phase. The goal of the symbolic epguoation phase is
to capture the user-defined constraints on the query into the target skatafiaprocess a query
without concrete data, SQP integrates the concept of symbolic exe[ from software
engineering into traditional query processing. Symbolic execution is a wellk program ver-
ification technique, which represents values of program variables witthalc values instead
of concrete data, and manipulates expressions based on those symhag: Borrowing this
concept, SQP first instantiates a database which contains a set of synsbedsliaf concrete data
(thus the generated database in this phase is calssthaolic databage Figure[I5.1 shows an
example of a symbolic database with thssenbolic relationsR, S andT. Essentially, a sym-
bolic relation is just a normal relational table which consists of a ssyofbolic tuples Inside
each symbolic tuple, the values are representedyinybolsrather than by concrete values. For
example, symbat1 in symbolic relation? in FigurelI5.drepresents any value under the domain
of attributea. The formal definition of these symbolic database related terms will be given in
ChapteflZ For the moment, let us just treat the symbolic relations as normal relationseand tr
the symbols as variables. Since the symbolic database is a generalizatitatiohat databases
and provides an abstract representation for concrete data, this all@®soSontrol the output of
each operator of the query.

The symbolic query evaluation phase leverages the concept of tradifjo@l processing. First,
the input query is analyzed byqaiery analyzerThen, the user specifies her desired requirements
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Figure 15.1: Example of pre-grouped input data

on the operators of the query tree. Afterwards, the input query isue@dby asymbolic query
enginejust like in traditional query processing; i.e., each operator is implementeul iésrator,
and the data flows from the base tables up to the root of the quer . However, unlike in
traditional query processing, the symbolic execution of operators déisywmbolic data rather
than concrete data. Each operator manipulates the input symbolic datdiagdorthe operator’s
semantics and user-defined constraints, and incrementally imposes thaiothslefined on the
operators to the symbolic database. After this phase, the symbolic datatmsgiésy-aware
database that captures all constraint on the intermediate query resuitxidafthe test case (but
without concrete data).

The data instantiation phase follows the symbolic query evaluation phasepfdse reads the
tuples from the symbolic database that are prepared by the symbolic gakrgstéon phase and in-
stantiates the symbols in the tuples by a constraint solver. The instantiatedaxgthen inserted
into the target database.

To allow a user to define different test cases for the same query, thedopty of SQP is in
the form of a relational algebra expression. For example, if the inputygsea 2-way join
query (oqgesp, customer x orders) X lineitem, then the user can specify a join key distri-
bution (e.g., a Zipf distribution) between the line items and the orders that join wittomers
with an age greater thgm. On the other hand, if the input query (isrders x lineitem) X
Tage>p, customer, then the user can specify the join key distribution between all ordersland a
lineitems.

Figure[I5.2 shows the general architecture of SQP. It consists of the following coemts: a
Query Analyzer, a Symbolic Query Engine, a Symbolic Database and amamtiator.
15.2.1 Query Analyzer

In the beginning of the symbolic query evaluation phase, SQP first takesrg glan() and the
database schenfaas input. The query) is then analyzed by the query analyzer component in
SQP. The query analyzer has two functionalities:
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Figure 15.2: SQP Architecture

(1) Correct knob selections: The query analyzer analyzes the input query and determines which
constraints Knobg are available for each operator. A knob can be regarded as a pgarayhan
operator that controls the output. A basic knob that is offered by SQP mutipeit cardinalit)@.
This knob allows a user to control the output size of an operator. Haywetiether such a knob is
applicable depends on the operator and its input characteristics. This &éty simple and the
query analyzer can accomplish it without analyzing the input data of geafatwr. Thus,the query
analyzer essentially annotates the appropriate knob(s) to each op&storesult, the output of
the query analyzer is an annotated query tree with the appropriate kool€ach operator. As an
example, for a simple aggregation qu&gLECT MAX(a) FROM R, the cardinality constraint
knob should not be available for the aggregation operathri{ecause the output cardinality is
always one ifR is not empty or zero if2 is empty. Chaptdfgwill present the details of this step.

(2) Assign physical implementations to operators: As shown above, different knobs are avail-
able under different input characteristics. In general, differeasrhf@nations of) knobs of the same
operator need separate implementation algorithms. Moreover, even fantiee(sombination of)
knobs of the same operator, different implementation algorithms are cabéifthis is akin to
traditional query processing where an equi-join operation can be impledhbeynta hash-join or
a sort-merge join). Consequently, the other function of the query andly/ieassign the correct
(knob-supported) implementation to an operator. As a result, the output gfuitry analyzer is

1The output cardinality of an operator can be specified as an absoluteorsés a selectivity. Essentially they are
equivalent.
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a knob-annotated query execution plan. Chalfigwill present the implementation algorithms
for each symbolic operation implemented in QAGen. In general, the job of they gunalyzer
is analogous to the job of the query optimizer in traditional query processilogvever, in the
current version of QAGen, only one implementation algorithm for each (@uatibn of) knob is
available. If there are more than one possible implementation of the same synyeiation,
then the query analyzer can be extended to be a query optimizer.

15.2.2 Symbolic Query Engine and Database

The symbolic query engine of SQP is the heart of the symbolic query miogeghase and it is
similar to a normal query engine. However, before the symbolic query erggarts execution,
the user can specify the value(s) for the available knob(s) of eadhtopén the knob-annotated
execution plan. It is fine for a user to fill up values for some but not atiblsn In this case,
the symbolic query engine will evaluate those operators by using defaalit kalues which are
defined by the creator(s) of those knob(s).

The symbolic query execution is also based on the iterator model. That ipeaatar reads in
symbolic tuples from its child operator(s) one-by-one, processesepleh and returns the result-
ing tuple to the parent operator. Similar to traditional query processing, afitiseé operators in
symbolic query processing can be processed in a pipelined mode, butaom#. For example,
the equi-join operator is a blocking operator under a special case. da tases, the symbolic
query engine materializes the intermediate results into the symbolic databases$aigc More-
over, the table in a query tree is regarded as a special operator. Disringn() method, the
table operator initializes a symbolic relation based on the input scittarad the user-defined
constraints (e.g., table sizes) on the base tables.

During processing, a symbolic operation evaluates the input tuples augdodts own semantics.
On the one hand, it imposes additional constraints to each input tuple intorcedtect the con-
straints defined on the operator. On the other hand, it controls its output @réstmperator so
that the parent operator can work on the right tuples. As a simple exarsplena the input query
is a simple selection quewy,>,, R on symbolic relationk in Figure[I5.dand the user specifies
the output cardinality as 1 tuple. Then, if the getNext() method of the seleqiiemator iterator is
invoked by its parent operator, the selection operator reads intufrlem R, annotates positive
constraintja; > p;] to symbola; and returns tupléa;, b;) to its parent. When the getNext()
method of the selection operator is invoked a second time, the selection opeeats in the next
tuplet2 from R, and annotates megativeconstraintas < p1] to symbolas. However, this time
it doesnot return this tuple to its parent, because the cardinality constraint (1 tuple)eedsr
fulfilled.
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Figure 15.3: QAGen Framework

It is worth noting that sometimes a user may specify some contradicting knadswatthe knob-
annotated query tree given by the query analyzer. For instancer anasespecify the output
cardinality of the selection in the above example as 10 tuples even if she spealfler to have
only two tuples. In the following sections of this chapter, we assume that #ne are experienced
testers and the test case has no contradicting knob values.

15.2.3 Data Instantiator

The data instantiation phase starts after the symbolic query engine of S@Ridteed processing.
The data instantiator reads in the symbolic tuples from the symbolic databasestmdiates the
symbols inside each symbolic tuple by a constraint solver. In SQP, we teeabiistraint solver
as an external black box component where it takes a constraint formytaopositional logic)
as input and returns a possible instantiation on each variable as outp@xdrople, if the input
constraint formula i9d0 < a1+ b1 < 100, then the constraint solver may return= 55, b1 = 11
as output (or any other possible instantiation). Once the data instantiatoohected all the
concrete values for a symbolic tuple, it inserts a corresponding tuple (atbrete values) into
the target database.

15.3 Supported Symbolic Operations

In the following chapters, we consider only a limited class of relational aggekpressions that
are able to be processed by our current SQP prototype implementationrQAGearticular, we
consider expressions that use the following relational algebra opgratdection ), projection
(7), equi-join (x), aggregationy), union (J), minus () and intersectionrf). The set of com-
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15.3 SUPPORTED SYMBOLIC OPERATIONS

parison operators is restricted$q £, <, >, <, >, <>. Furthermore, we assume the number of
possible values in the domain of a group-by attribute is greater than the noftogles to be
output for an aggregation operator.

As shown in the previous section, in many cases, the available knobs dpeaator depend on its
input characteristics. Details about the input characteristics and fogfialtibns will be given in
Chaptefl8@ Figurell5.3shows a summary of the class of SQL queries that QAGen supports. The
solid lines denote the cases or operators supported by the curreinnvefrQAGen. The dotted
lines show the cases or operators that the future version of QAGeldstuqport. According to
FigurelI5.3 the current version of QAGen already suffices to cover 13 out afo@2plex TPC-H
gueries. In general, supporting new operators (e.g., theta join), oxgadew knobs (which may
depend on new input characteristics) to an operator is straightforwapd@en. For example,
adding a new knob to an operator simply means incorporating the new QAG&Miemtation of
that operator into the symbolic query engine and then updating the qudyganabout the input
characteristics that this new knob depends on.
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Query Analyzer

The information encoded in your DNA determines your uniqakegical
characteristics, such as sex, eye color, age and SocialrBeoumber.

— Dave Berry, born 1947 —

The query analyzer has two functionalities: (1) the correct knob setefiothe operators of
a given relational algebra expression, and (2) the assignment of ytlsecahimplementation to
each operator of the relational algebra expression. QAGen currempogs only one physical
implementation for each possible combination of knobs per relational algpbrator. As a result,
(2) is straightforward and we do not focus on it. This chapter focus€&)o which describes how
to analyze the query and determine the available knob(s) for each apirdte input query.

Figurell5.3shows the knobs of each operator offered by QAGen under diffepses.

The general procedure for the correct knob selection is as followst, Ehe query analyzer de-
termines the input characteristics of each operator of the relational alggpression in order to
decide what kinds of knobs are available for each operator. To deteth@rinput characteristics
for each operator in the query tree, the query analyzer computes tbéfaattional dependen-
cies that holds in each intermediate result of the input query in a bottom-hipfasn Parfll], we
presented how to compute the functional dependencies for queries ih détas, starting from
the base tables, the query analyzer computes the set of functionabéepess that holds in each
intermediate result in a bottom-up fashion. Since the definition of the inpuacteaistics of an
operator solely depends on the functional dependencies, the typelud kxailable for an operator
can be easily determined according to FidliBe3 In symbolic query processing, there are four
types of input characteristicgre-groupednot pre-groupegdtree-structure andgraph-structure
Let A be the set of attributes of the input of an operator. The input charaatetéginitions are as
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follows:

Definition 16.1 (Pre-grouped / Not pre-grouped:) Let be the set of attributes of the input of an
operator. Then the input of an operatornst pre-groupedvith respect to an attribute € A, iff
there is a functional dependenay— {A — a} (which means that is distinct) that holds in the
input. Otherwise, the input of the operatomige-groupedvith respect to attribute.

Definition 16.2 (Tree-structure / Graph-structure:) A set of attributés C A of the input of an
operator has aree-structureiff either the functional dependenay — a; or a; — a; holds in
the input of the operator (for alt;, a; € A" anda; # a;). Otherwise, the set of attributes C A

of the input of the operator hasgraph-structure

For example, look at the base tablBsand S in Figure[1I5.1 As we will see in the next chapter,
all symbols in the base tables are distinct initially. As a result, the initial set atifural depen-
dencies for the base tables can be determined easily; e.g., the base aBligurel5.1contains
two functional dependencie$u} — {b}, and{b} — {a}. Following the rules in Palllland the
definitions above, the intermediate reshllt«,_. S (wherec is a foreign-key referring té) of the
query(R Mp—. S) xq— T has thregre-groupedattributesa, b andc (whereb = ¢) and has one
attributed that is not pre-grouped. This is because:

e Initially, the set of functional dependencies Bfis {{a} — {b},{b — a}} and the set of
functional dependencies 6fis {{c} — {d},{d} — {c}}.

e According to the functional dependency calculation rule for joining, two nfienetional
dependencie$b} — {c} and{c} — {b} for the equi-join predicaté = c are added, and
{¢} — {d} is removed because one tuple frdincan join with many tuples fron$ (due
to the foreign-key front referring tob) and the attribute is initialized with the values of
a in the output of the equi-join. The final set of functional dependencdieg,g of the
intermediate join resulR x,—. Sis {{a} — {b,c},{b} — {a,c},{c} — {a,b},{d} —
a,b, c}.

e Among the set of attributed = {a,b,c,d} in the intermediate result, attributefunc-
tionally determines all attributes iA whereas the others do not. As a result, according to
the definition of pre-grouping] is notpre-groupedanda, b, andc are pre-grouped in the
intermediate result.

We use another example to illustrate the concept of tree and graph inpatthatics. Assume
the following table is an intermediate result of a query:
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albjc|d

al|bljcl|dl
a2|bljcl|d2
a3 | b2|cl|d2
ad| b3 |cz2|dl

Assume the following functional dependencies hold on the above intermed&aik: {{a} —
{b,c,d},{b} — {c}}. Following the definitions ofree- and graph-structure the attribute set

A = {a, b, c} has dree-structurebecause all attributes are functional dependent on each other. On
the other hand, the attribute sét= {a, b, d} has agraph-structurebecause there is no functional
dependency betweénandd (i.e., neither{b} — {d}, nor{d} — {b} holds on the intermediate
result).

After the input characteristics are determined, the query analyzer aesndbee correct knob(s)
according to Figurd5.3 As an example, the available knob(s) of an equi-joir) epends on
whether the input ipre-groupedor not on the join keys. If the input is pre-grouped, the equi-join
can only offer the output cardinality as a single knob (FidIBe3 case (d)). If the input is not
pre-grouped, the user is allowed to tune the join key distribution as well (&figii3 case (c)).

For example, consider a 2-way join quéil x,—. S) x,—. T on the three symbolic relations
R, S, andT in Figure[I5.1 When symbolic relatiorz first joins with symbolic relationS on
attributesh andc, it is possible to specify the join key distribution such as joining the first ttiple

of R with the first three tuples of (i.e., 3, t4, t5); and the last tuple2 of R joins with the last
tuplet6 of S (kind of like Zipf distribution ]). However, after the first join, the intermediate
join result of R x S is pre-groupedw.r.t. attributess, b andc (e.g., symbokl is not distinct on
attributea in the join result). Therefore, if this intermediate join result further joins witinisglic
relation’l” on attributesa ande, then the distribution cannot be freely specified by a user. That
is because if the first tuplel1 of T joins with the first tuplef7 of the intermediate results, this
implies thatel = a1 and thug11 must join witht8 andt9 as well.

The above example shows that it is necessary to analyze the query inamadier the right knobs

to the users. For this purpose, the query analyzer parses the inpytiquebottom-up manner
(i.e., starting from input schem#) and incrementally pre-computes the output characteristics of
each operator (e.g., annotates an attribute of the output of an operpterg®uped if necessary).

In the example, the query analyzer annotates attribytgsandc aspre-groupedn the output of

R x S. Based on this information, the query analyzer disables the join key distmbkriob on

the next equi-join that joins witff'.
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Symbolic Query Engine

And | also trust that there’s more than one way to do something

— Dennis Muren, born 1946 —

In this chapter, we first define the data model of symbolic data and disous®iphysically store
the symbolic data. Then we present the algorithms for the operators in symjoelig engine
through a running example.

17.1 Symbolic Data Model

17.1.1 Definitions

Definition 17.1 (Symbolic Relation:) Asymbolic relationconsists of arelation schemand a
symbolic relation instancél' he definition of a relation schema is exactly the same as the classical
definition of a relation schem@. Let R(ai:dom(ay), ..., a;: dom(a;), ..., an: dom(ay,))

be a relation schema with attributes; and for each attribute;, let dom(a;) be the domain of
attribute a;.

Definition 17.2 (Symbolic Relation Instance:) gymbolic relation instances a set ofsymbolic
tuplesT'. Each symbolic tuple € T'is an-tuple withn symbols (s, s2, ..., s,,). As a shorthand,
symbols; in tuplet can be referred by.a;. A symbols; is associated with a set giredicates
P;, (where P;; can be empty). The value of symBglrepresents any one of the values in the
domain of attributes; that satisfiesall predicates inP;,. A predicatep € P;, of a symbols;

is a propositional formula that involves at least and zero or more other symbols that appear
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CHAPTER 17: SYMBOLIC QUERY ENGINE

in different symbolic relation instances. Therefore, a symbakith its predicatesP;, can be
represented by a conjunction of propositional logic formulas.

Definition 17.3 (Symbolic Database:) Aymbolic databasis defined as a set of symbolic rela-
tions and there is a one-to-many mapping between one symbolic datafseaamy traditional
relational databases.

17.1.2 Data Storage

Symbolic databases are a generalization of relational databases aitt @Eoabstract represen-
tation of concrete data. Given the close relationship between relationéladataand symbolic
databases, and the maturity of relational database technology, it mayynoffga re-design
another physical model for storing symbolic data. QAGen opts to leverdgéng relational
databases to implement the symbolic database concept. To that end, a idarfalr storing
symbolic data is to store the data in columns of tables, introduce a user-dgfpee@JDT) to
describe the columns, and use SQL user-defined functions to implemegtribel& operations.
However, symbolic operations (e.g., a join that controls the output sizeiaftribdtion) are too
complex to be implemented by SQL user-defined functions. As a result, weggdo store sym-
bols (and associated predicates) in relational databases by simply uswgrtbhar SQL data
type and let the QAGen symbolic query engine operate on a relational datdivactly. For that
reason, we integrate the power of various access methods broughktrgjational database engine
into symbolic query processing.

The next interesting question is how to normalize a symbolic relation for effisignbolic query
processing. From the definition of a symbol, we know that a symbol maydoeiased with a set
of predicates. For example, symhal may have a predicatel > p,] associated with it. As we
will see later, most of the symbolic operations impose some predicates (fneromave use the
term predicate instead of constraint) on the symbols. Therefore, a synalydbe associated with
many predicates. As a result, QAGen stores the predicates of a symboépate relational
table calledPTable. Reusing Figur@5.1 again, symbolic relatio? can be represented by a
normal table in a RDBMS nameg with the schema: R(avarchar, b: varchar and a table
namedPT able with the schema: PTable(symbalarchar, predicate:varchar). After a simple
selectiono,>,, R on tableR, the relational representation of symbolic tailés:

a|b symbol‘ predicate
al | b1 al [al > p1]
a2 | b2 a2 [a2 < p1]

(i) Table R (2 tuples) (i) PTable (2 tuples
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17.2 Symbolic Operations

The major difference between symbolic query execution and traditionay guecessing is that
the input (and thus the output) of each operator is symbolic data but noteterdata. The
flexibility of symbolic data allows an operator to control its internal operatiahthos its output.
As in traditional processing, an operator is implemented as an iterator. fdrestiee interface of
an operator is the same as in traditional query processing which congiste@methodsopen()
getNext(Jandclose()

Next, we present the knobs and the algorithms for each operator theoughning example.
Unless stated otherwise, the following subsections only show the details gétiNext()method
of each operator. All other aspects (eapen()andclose() are straightforward so that they may
be omitted for brevity. The running example is a 2-way join query which canotstrate the
details of the symbolic execution of selection, equi-join, aggregation andagian. We also
discuss some special cases of these operators. Egutéa) shows the input query tree (with all
knobs and their values given). The example is based on the following sirdplif€-H schema:

CREATE TABLE custoner (
c_id | NTEGER PRI MARY KEY, c_acctbal FLOAT

)

CREATE TABLE orders (
o_id I NTEGER PRI MARY KEY, o_date DATE,
0 _cid | NTEGER REFERENCES Custoner.c_id

)

CREATE TABLE lineitem (
| _id INTEGER PRI MARY KEY, | _price FLOAT,
| _oid | NTEGER REFERENCES Orders.o_id

)

17.2.1 Table Operator

Knob: Table Size (compulsory)

In QAGen, a base table in a query tree is regarded as an operator.gBheimpen() method, it
creates a relational table in a RDBMS with the attributes specified on inpunschieAccording
to the designed storage model, all attributes are in the SQL datargpehar . Next, it fills up
the table by creating new symbolic tuples until it reaches the defined tableEszh. symbol in
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(a) Input Query Tree

c_id | c_acctbal o_id | o_date | o_cid Iid | I_price | I_oid symbol | predicate
c_idl | c_acctball o_idl | o_datel | o_cidl l_idl | I_pricel | l_oidl ‘
c_1d2 | c_acctbal2 0_id2 | o_date2 | o_cid2 [_id2 | I_price2 | l_oid2
c_id3 | c_acctbal3 o_id3 | o_date3 | o_cid3 l_id3 | l_price3 | l_oid3
c_id4 | c_acctbald e e e
0_1d6 | o_date6 | o_cidb

1_id10 | I_pricelO | I_oid10

(i) Customer (4 tuples) (ii) Orders (6 tuples)

(b) Initial Symbolic Database

(iii) Lineitem (10 tuples)

(iv) PTable

c_id | c_acctbal o_id | o_date | o_cid lid | I_price || oid symbol | predicate
c_idl | c_acctball o_idl | o_datel | c_idl [_idl | 1_pricel | o_idl c_acctball | [c_acctball > pq)
c_1d2 | c_acctbal2 0_id2 | o_date2 | c_idl [_id2 | I_pricel | o_idl c_acctbal2 | [c_acctbal2 > py)
c_id3 | c_acctbal3 0_id3 | o_datel | c¢_id2 1_4d3 | 1_pricel | o_idl c_acctbal3 | [c_acctbal3 < pi)
c_id4 | c_acctbald o_td4 | o_date2 | c_id2 l_id4 | I_pricel | o_idl c_acctbald | [c_acctbald < p1)
o_id5 | o_dateb | c_id3 I_id5 | I_priceb | o_id2 I_pricel | [aggsuml =5 x I_pricel]
0_id6 | o_date6 | c_id3 [_id6 | I_priceb | o_id2 I_priced | [aggsum2 = 3 x [_price5]
1_id7 | I_pricel | o_id3 aggsuml | [aggsuml > p2]
[_id8 | I_priceb | o_id4 aggsum?2 | [aggsum2 < p2]
1_id9 | l_price9 | o_idb
[_4id10 | I_pricel0 | o_id6

(i) Customer (4 tuples) (i) Orders (6 tuples) (iii) Lineitem (10 tuples)
(c) Final Symbolic Database

Figure 17.1: Running Example
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the newly created tuples is named using the attribute name as prefix and a igeigtifécation
number. Therefore, at the beginning of symbolic query processimg, ®anbol in the base ta-
ble should be unique. FigulEZ] (b) shows the relational representation of the three symbolic
relationscustomer, orders andlineitem for the running example. ThgetNext()method of the
table operator is the same as the traditional Table-Scan operator thas r@tuple to its parent or
returns null (an end-of-result message) if all tuples have been sgtuNDte that if the same table

is used multiple times in the query, then the table operator only creates and filss#symbolic
table once.

Primary-keysuniqueandnot nullconstraints are already enforced because all symbols are initially
unique.Foreign-keyconstraints related to the query are taken care of by the join operatatlyirec

17.2.2 Selection Operator

Knob: Output Cardinalitye (optional; default value = input size)

Let I be the input and be the output of the selection operatoand letp be the selection pred-
icate. The symbolic execution of the selection operator controls the cardinalftyhe output.
Depending on the input characteristics, the difficulty of the problem anddhgions are com-
pletely different. Generally, there are two different cases.

Case 1: Input is not pre-grouped w.r.t. the selection attribute(s)

This is case (a) in Figulgb.3 and the selections in the running example (Fidlirela operator
(i) and (vi)) are in this case. This implementation is chosen by the query aralfen the input
is not pre-grouped w.r.t. the selection attribute(s) and it is the usual caseokt queries. In this
case, the selection operator controls the output as follows:

1. During its getNext() method, read in a tupley invoking getNext() on its child operator and pro-
cess with [Positive Tuple Annotation] if the output cardityahas not reached. Else proceed to
[Negative Tuple Post Processing] and then return null tparent.

2. [Positive Tuple Processing] If the output cardinality Imt reached, then (a) for each symbelin
t that participates in the selection predicaténsert a corresponding tuple, p) to the PTable; and
(b) return this tuplée to its parent.

3. [Negative Tuple Post Processing] However, if the outurtimality has reached, then fetch all
the remaining tupleg— from input /. For each symbot of tuplet in I~ that participates in the
selection predicatg, insert a corresponding tuple, —p) to the PTable, and repeat this step until
calling getNext() on its child has no more tuples (returné)nu
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c_id | c_acctbal symbol | predicate
c_idl | c_acctball c_acctball | [c_acctball > p1]
c_id2 | c_acctbal2 c_acctbal2 | [c_acctbal2 > p1]
c_acctbal3 | [c_acctbal3 < p1]
c_acctbald | [c_acctbald < p1]
(i) Output of o; 2 tuples (i) PTable

Figure 17.2: Symbolic Database after selection

Each getNext() call on the selection operator returqmsitivetuple to its parent that satisfies
the selection predicate until the output cardinality has been reached. Moreover, to ensure that
all negative tuples (i.e., tuples obtained from the child operator after theitocdpdinality has
been reached) would not get some instantiated values later in the data itistapti@se that ends
up passing the selection predicate, the selection operator associategdtiemef predicate

to those negative tuples. In the running example, attributectbal in the selection predicate
[c_acctbal > p1] of operator (ii) is not pre-grouped, because the data comes direatitf®base
customer table. Since the output cardinalityof the selection operator is 2, the selection operator
associates the positive predicéteacctbal > p1] to symbolsc_acctball andc_acctbal2 of the
first two input tuples and associates the negated predicatectbal < p;] to symbolsc_acctbal3
andc_acctbald of the rest of the input tuples. Figul&/.2 (i) shows the output of the selection
operator and Figulg7Z.2(ii) shows the content of th€T able after the selection.

Case 2: Input is pre-grouped w.r.t. the selection attribute(s)

This is case (b) in Figulg5.3 This implementation is chosen by the query analyzer when the
input is pre-grouped with respect to any attribute that appears in theisel@cedicatep. In

this case, we can show that the problem of controlling the output cardinaligdigible to the
subset-sum problem.

The subset-sum problerjﬁT&h takes as input an integer sumand a set of integer§ =
{c1, ¢, ..., cm }, @and outputs whether there exists a sulisét C C' such thatzciem ¢ = c
Consider Figur@7.3 which is an example of pre-grouped input of a selection. Idpdéfines
one attributek and has in tota} | ¢; rows. The rows irY are clustered im» groups, where théth
group has exactly; tuples using the same symbolic valig(i < m). We now search for a subset
of thosem groups inl such that the output has the sizeAssume, we find such a subset, i.e., the
symbolic values of those groups which result in the output with siz€he groups returned by
such a search induce a solution for the original subset-sum problem.
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k1 }eg.cp =5times
ko } e.g.co = 4times
ks }e.g.c3 =3times
ky }e.g.cy =1times

km } ¢ times

Input 7
Figure 17.3: Pre-grouped selection

The subset-sum problem is a weall§P-complete problem and there exists a pseudopolynomial
algorithm which uses dynamic programming to solv . The complexity of the dynamic
programming algorithm i€®(cm), wherec is the desired output cardinality amdis the number

of different groups in/. Whenc is large, the dynamic programming algorithm runs very slow.
Furthermore, it is also possible that there is no subset in the input whosexactly meetg as
well. As a result, when the query analyzer detects that the input of a seléstiwe-grouped, it
allows the user to specify the following knob in addition to the output cardinatipbk

Knob: Approximation ratice

The approximation ratio knob allows the selection to return an approximate mwhleples
rather than the exact number of tuples that is specified by the testers,iwhdeptable in DBMS
feature testing.

There are several approximation schemes in the literature to solve thé-subsproblem (e.g.,
[Iﬁé], [IPLOJQ [KMPSQ;{}). However, these approximation schemes are not directly applicable
in our case. We illustrate this problem using the test case in Fiilie The test query in the
test case is a two-way join query with an aggregation. In Fififé the tester defines that
the output cardinality of the selection istuples with an approximation ratio ®f1. Assume

that the input of the selection in Figul&.4 has eight tuples but they are pre-grouped into three
clusters (a clustet; consists of four tuples, and two clustessandcs consist of two tuples each)
with respect to both attributegtr; andattrs after the two-way join. In order to pick the right
subset of pre-grouped tuples with a total cardinality-g8 = 5 in the example), the selection

operator needs to solve the subset-sum problem by an approximatiomeschénfortunately,
all existing approximation schemes would return a subset whose samakber than(or equal
to) the target sum. For example, it is possible that the approximation schemessuigicking
clustersc, andces from the pre-grouped input, such that the selection returns a total ofuples
(which is actually the optimal solution) as output. However, if the selection reatlyns four
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Figure 17.4: A test case with the approximation ratio knob

tuples, then the upper aggregation operatan Figure[I7.4would experience a “lack-of-tuple”
error (it expects to have five or more input tuples). Even though thettasges of QAGen are
experienced testers and we assume there are no contradicting knabiuaheinput test case, it
is often difficult for the testers to specify a semantically correct test chsa the system allows
tolerances on the operator’s cardinality constraint. This practical protiteve us to develop an
approximation scheme that returns a subset with gteater than or equal tthe target suna and
has an approximation ratio We call this new problem as th@verweight Subset-Sum Problem
and it requires non-trivial modifications to the current approximationreeise

Our new approximation scheme is based on the “quantization met][ and consists of
two phases. It takes a list of sorted numbers as input. Then, it first separates the input list of
numbers into two lists: large number listand small number lisy. In the first phase, it tries to
quickly come up with a set of approximation solutions by only considering theeus with large
values (i.e., only elements ih). Then, in the second phase, it tries to fine tune the approximation
solutions by the set of small numbersSn

FigurelI7.3 shows the pseudocode of the approximation scheme. In the beginning, itrtgots
list C' if it contains more than one number which has a value greater than or eqihal target
sume. For example, assume input li6tis [1,2,5,6, 13,27, 44,47, 48], the target suna is 30,
and the approximation ratiois 0.1. After Line (1-2)C becomedl, 2,5, 6, 13,27, 44] because
the number 47 and 48 cannot be part of the answer. Then it tries to qrirgifarge subset-sum
values into different buckets (Line 4-7) in order to minimize the number adegilent operations
from Line 11 to Line 24. Essentially, based on the quantization fatttire algorithm quantizes

146



17.2 SYMBOLIC OPERATIONS

Algorithm APPROXIMATE_OVERWEIGHT_SUBSET_SUM(P)
Input: (a) A list of sorted integer§' = [c1, ca, ..., ¢, | Wheree; < ¢4 (b) Target sune, (c) Approximation

ratioe

Output: A subset of integer§’* C C such that < Zciem ¢; with approximation ratie

if 3c; € C,¢; > ¢
then Trim C by removing elements, 1, ..., ¢,
Set the largest possible optimal solutipasp = ¢; +c¢2 + ... +¢. > cwherec; +co+ ...+ ¢, < c.
If ¢, > ¢, return {c,}. If no suchr exists,return “no solution exists".
Set quantization factet = (¢/2)?p
Set number of buckets= [p/d| + min{r, [2/€]}
Initialize g + 1 approximate answer buckefs= { By, Bi, ..., By}
Initialize a subset-sum array of sizeg + 1 where X [i] stores the subset-sum of the element8jn
SetX[0] =0andX[i] =-1(1<i<g)
SetlistS = [¢q, ¢a, ..., ¢, ] Wheree, < (e/2)p
SetlistL = [cut1, Cut2s .-y €] Wherec, 11 > (e/2)p
ReturnS as the answer if. is empty

. for each numbet; € L

Set the quantized value of of ¢; as|¢;/d]
for eachj = g — v; down-to O
if X[j] # —1
thenif X[j +v;] < X[j] +
thensetB;,,, = B; U{c},
setX[j + ’Ui} = X[]] + ¢

. for each buckeB; € B with X[i] # —1

sety =0
while X[i] < ¢
setB; = B; U {c;}, wherec; is thej-number in listS,
setX[i| = X[i] + ¢;
Jj=7+1
return B;, whereX[i] = min(X[j]) forall0 < j < gandX[j] > ¢

Figure 17.5: Approximation scheme for the Overweight Subset-Sum Pnoble
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the input list of numbers intg buckets. The quantization factdrs carefully chosen such that it
is large enough to give a manageable number of buckets and at the samespising the error
bound given by the approximation ra’ei]. The quantization factaf is computed based on
the approximation ratie and one of the possible subset-sym&uch ap value is found (Line 3)
by addingey, co, . . . until the sum is at least the target sunif no such value is found, the sum of
all values inC must be less thany and we can conclude that there is no solution for the overweight
subset-sum problem. An interesting special case is that, if the last valuesiric,., is at least,

we immediately know{c, } is the desire@ptimalsolution to the overweight subset-sum problem.
X is a subset-sum array. Entfy[i] stores the subset-sum of the elements in buékdt.ine 7).
Initially, X[0] is set to O as a boundary condition akdi| (where: # 0) is set to -1 to make sure
a subset-sum cannot excees d in any case.

Inthe examplep = 1+2+5+6+ 13+ 27 = 54, and thus the quantization leveand the number
of bucketsy are 0.135 and 406, respectively. Afterwards, the algorithm createsapproximate
answer bucketf and a subset-sum arrady, where each approximate answer buckewill hold

a set of numbers whose sum is close to a factirthe quantization factaf (i.e., the subset-sum
is close toi x d) and X [i] represents the total sum of numbersin

As mentioned, the input list of humbers is separated into two ksend L according to the
numbers’ value (Lines 8-9). In the example, the smalldistonsists of the first two numbeis
and2 in the input listC' and the large lisL. consists of all the rest of the numbg5s6, 13, 27, 44].
Then, the first phase (Lines 11-17) begins by examining each numbee iarfe number list
L and tries to assign the number into different buckets. For example, thadirdter inL is 5
and its quantized values [$/0.135| = 38. Therefore, the algorithm sef3;s = {5} and the
corresponding subset-sum array en¥{38| has a value of 5. Similarly, for the second number 6
in L, its quantized value i§6/0.135] = 44. As a result, the algorithm sef$,, to be{6}, updates
X[44] to be 6, setd3g, to be{5, 6} and updates([82] to have a value of 11 5 + 6). If a bucket
is non-empty, the algorithm only updates the bucket (and its correspoadb®pt-sum inX) if
the updated subset-sum is larger than the current subset-sum ofc¢kat fLines 15-17).

In the second phase (Lines 18-23), the algorithm tries to fine tune epibxapate answer bucket

B by adding the numbers in the small liSt one-by-one, until it exceeds the target samAf-
terwards, the algorithm scans arrdyand identifies the subset which has the smallest subset-sum
that is greater than the target sumFinally, it returns the corresponding subsetfras the final
result.

The complexity of our proposed approximation schen@(is:/¢?). We put the correctness proof
and the complexity analysis in Append® We now reuse Figuf@7.3to illustrate the overall
algorithm of the selection operator. Assume that the input has 13 tuples atecblustered
into 4 groups with symbok;, ko, k3, andk, respectively. Furthermore, assume that the output
cardinality and the approximation ratio is defined as 7 tuples and 0.2 reghgclitie pre-grouped
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input selection controls the output as follows:

1. [Subset-sum solving] During its open() method, (a) malige input/ of the selection operator; (b)
extract the pre-group size (e.gs3, = 5,¢c2 = 4,¢c3 = 3,¢4 = 1) of each symbok; by executing
“Select Count(k) From | Group By k Order By Counit(&h the materialized input; (c) invoke the
approximation scheme in Figule B with the pre-group sizes (the set of numbers), the output car
dinality (the target sum), and the error toleramcas input. The output of this step is a subset of
symbolsK ™ in I such that the output cardinality (approximately) matctesrequirement (e.g.,
KT = {k1,k3} because; + c3 = 5+ 3 = 8 > ¢). If no such a subset exist, then stop processing
and report this error to the user.

2. [Positive Tuple Processing] During getNext(), (a) fockeaymbolk; in K, read all tupled + from
the materialized input of which havek; as the value of attributé&; (b) for each symbok that
participates in the selection predicatén tuple ¢ of 7, insert a corresponding tuplg, p) to the
PTable; (c) return tuplée to the parent.

3. [Negative Tuple Post Processing] This step is the sanmfeedsdgative Tuple Post Processing step in
the simple case (SectifiY.Z.2case 1) that annotates negative predicates to each netygtiee

Note that, in this case, the selection is a blocking operation because it needs tll the tuples
from input I first in order to solve the subset-sum problem. One optimization for this césatis

if ¢ is equal to the input size df, then all input tuples must be returned to its parent and thus the
subset-sum solving function can be skipped even though the input datagsquped.

17.2.3 Equi-Join Operator

Knob: Output Cardinality: (optional; default value = size of the non-distinct input)

Let R and.S be the inputs© be the output, ang be the simple equality predicaje= k where
j is the (non-pregrouped) join attribute @) andk is the join attribute ort' that refers toj by
a foreign-key relationship. The symbolic execution of the equi-join opeeatsures that the join
result size isc. Again, depending on whether the input is pre-grouped or not, the saodudice
different.

Case 1: Input is not pre-grouped w.r.t. join attribute %.

This is case (c) in Figuig5.3 where join attribute: in input.S is not pre-grouped. In this case, it
is possible to support one more knob on the equi-join operation:

Knob: Join Key Distributiornb (optional; choices = [Uniform or Zipf]; default = Uniform)
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The join key distributiorh defines how many tuples of inpi$t join with each individual tuple
in input R. For example, if the join key distribution is uniform, then each tupléijoins with
roughly the same number of tupless$h Both join operators in Figuf&Z.1(a) fall into this case.
In this case, the equi-join operator (which supports both output cardinaditd distributionb)
controls the output as follows:

1. [Distribution instantiating] During its open() methadstantiate a distribution generatby, with the
size of R as domain (denoted by), the output cardinality as frequency, and the distribution type
as input. This distribution generatbrcan be the one that has been proposed earlier 4],

) or any statistical packages that generateumbersny, mo, ..., m, following Uniform or
Zipf [] distribution with a total frequency af. The distribution generatdp is an iterator with
a getNext() method. For thieth call on the getNext() method (< i < n), it returns the expected
frequencym; of thei-th number under distributioh

2. During its getNext() call, if the output cardinality hastiyet reached, then (a) check ifn; = 0 or
if m; has not yet initialized, and, if so, initialize; by calling getNext() onD and get a tuple™
from R (m; is the total number of tuples frowi that should join with-*); (b) get a tuples™ from S
and decreaser; by one; (c) join tuple-™ with s according to [Positive Tuple Joining] below; (d)
return the joined tuple to the parent. However, during thé&lget() call, if the output cardinality has
reached: already, then process [Negative Tuple Joining] below, &tgrn null to its parent.

3. [Positive Tuple Joining] If the output cardinality hastmeached:, then (a) for tuples™, replace
symbols™.k, which is the symbol of the join key attributeof tuple s™, by symbolr™.j, which
is the symbol of the join key attributgof tupler™. After this, tupler™ and tuples™ should share
exactly the same symbol on their join attributes. Note thatreplacement of symbols in this step
is done on both tuples loaded in the memory and the relatdestiip base table as well (using an
SQL statement like Updatek. BaseTable Set k=+.7 WHERE k=T.k” to update the symbols on
the base table where join attributecomes from); (b) perform an equi-join on tuplé ands™.

4. [Negative Tuple Joining] However, if the output carditydhas reached, then fetch all the remaining
tuplesS— from input.S. For each tuple™ in S—, randomly look up a symbgl~ on the join key;
in the set minus between the base table where join attribatéginates from and? (using an SQL
statement with th&1 NUS keyword), replace ™.k with symbolj~. This replacement is done on the
base tables only because these tuples are not returnedgartg.

In the running example (FigulEZ.J), after the selection on table.stomer (operator ii), the next
operator is a join between the selection output (Table (i) in Figit® and tableorders (Table

(i) in Figure[IZ.1 (b)). The output cardinality: of that join (operator iii) is 4 and the join key
distribution is uniform. Since the input of the join on the join key:id is not pre-grouped, the
query analyzer uses the algorithm above to perform the equi-join. Fiestiskribution generator

D generates 2 numbers (which is the size of ingitwith total frequency of 4 (output cardinal-
ity), and uniform distribution. Assum® returns the sequence {2, 2}. This means that the first
customer_id1 should take 2 orders(id1 ando_id2) and the second customerid2 should also
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c_acctbal | o_id | o_date | c_id=o_cid o_id | o_date | o_cid
c_acctball | o_idl | o_datel c_idl 0 idl | o datel | ¢ idl
c_acctball | o_id2 | o_date2 c_idl 0 id2 | o date2 | ¢ id1
c_acctbal2 | o_id3 | o_date3 c_id2 o id3 | o date3 | ¢ id2
c_acctbal2 | o_id4 | o_dated c_id2 o idd | o dated | ¢ id2

o_idb | o_date5 | c_id3

0_id6 | o_date6 | c_id4

(i) Output of (¢ (Customer) x Order); 4 tuples (i) Orders (4 pos, 2 neg)

Figure 17.6: Symbolic Database after join

c_id | c_acctbal| o _date | o _cid | Iid | | _price | o_id=1_oid Iid | I_price | I_oid
c_idl | c_acctball | o_datel | o_cidl | [_idl | I_pricel o_idl Lidl | I _pricel | o_idl
c_idl | c_acctball | o_datel | o_cidl | I_id2 | I_price2 o_idl 1id2 | I_price2 | o_idl
c_idl | c_acctball | o_datel | o_cidl | [_id3 | I_price3 o_idl 1 id3 | 1_price3 | o_idl
c_idl | c_acctball | o_datel | o_cidl | [_id4 | I_priced o_idl 1 idd | 1_priced | o_idl
c_idl | c_acctball | o_date2 | o_cidl | 1_id5 | I_priceb o_id2 1id5 | 1_price5 | o_id2
c_idl | c_acctball | o_date2 | o_cidl | 1_id6 | I_price6 o_id2 L id6 | I price6 | o_id2
c_id2 | c_acctbal2 | o_date3 | o_cid2 | I_id7 | |_price7 o_id3 1id7 | I_price7 | o_id3
c_id2 | c_acctbal2 | o_dated | o_cid2 | [_id8 | I_price8 o_id4 1 id8 | I price8 | o_id4

[_id9 | I_price9 | o_id5

1_id10 | I_pricel0 | o_id6

i) Output of (o(Customer) x Order) x Lineitem. 8 tuples (ii) Lineitem (8 pos, 2 neg)

Figure 17.7: Symbolic Database after 2-way join

take 2 ordersd_id3 ando_id4). As a result, symbols_cidl ando_cid2 from the Orders table
should be replaced by id1 and symbols_cid3 ando_cid4 from the Orders table should be re-
placed byc_id2 (Step 3 above). In order to fulfill the foreign-key constraint on thopéetiwhich
do not join, Step 4 above (Negative Tuple Joining) replacesd5 ando_cid6 by customers that
did not pass through the selection filter (i.e., customed3 andc_id4) randomly. Figuré7.6(i)
below shows the output of the join and Figré 8 (ii) shows the updatedrders table (updated
join keys arebold).

After the join operation above, the next operator in the running exampleotbemjoin between
the above join results (FigufEZ.&(i)) and the baséineitem table (FigurdIZ.o(iii)). Again,
the input of the join on the join ke oid of the lineitem table is not pre-grouped and thus the
above equi-join algorithm is chosen by the query analyzer. Assume thdisthniéution generator
generates a Zipf sequence {4,2,1,1} for the four tuples in Fifté (i) to join with 8 out of 10
line items (where 8 is the user-specified output cardinality of this join opejatibnerefore it
produces the output in Figufie 7 (i) (updated join keys arkold):

Finally, note that if the two inputs of an equi-join are base tables (with fork@yneonstraint),
then the output cardinality knob is disabled by the query analyzer. This@ike in that case, all
tuples from inputS must join with a tuple from inpuf? and thus the output cardinality must be
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j k

Jl k1 }e.g.c; =5times
Jj2 k2 }e.g.c; =4times
J3 k3 }e.g.c3 = 3times

k4 }e.g.cs = 1times
jl km } ¢, times

()Table R (ii) Table S
Figure 17.8: Pre-grouped equi-join

same as the size ¢f.

Case 2: Input is pre-grouped w.r.t. join attribute k.

This is case (d) in Figui@5.3and this implementation is chosen by the query analyzer when input
S is pre-grouped w.r.t. join attribute This sometimes happens when a preceding join introduces
a distribution onk as in the example in FigufEs.1 In the following we show that if the input

is pre-grouped w.r.t. join attribute of an equi-join, then the problem of controlling the output
cardinality (even without the join key distribution) is also reducible to the dedag®m problem.

Consider table? and S in Figure[I7.8 which are the inputs of such a join. Tahkehas one
attribute; with [ tuples all using distinct symbolic valugs (i < [). TableS also defines only one
attributek and has in totap | ¢; rows. The rows inS are clustered inten groups, where théth
group has exactly; tuples using the same symbolic valie(i < m). We now search for a subset
of thosem groups inS that join with arbitrary tuples irR so that the output has size Assume
that we find such a subset, i.e., the symbolic values of those groups wisigh irethe output
with sizec. The groups returned by such a search induce a solution for the drsgibset-sum
problem.

For testing the feature of a DBMS, again, it is sufficient for the equi-joiretorn an approximate
number of tuples that is close to the user specified cardinality. As a reswh thle query ana-
lyzer detects that one of the equi-join inputs is pre-grouped, then it allevssér to specify the
following knob in addition to the output cardinality knob:

Knob: Approximation Ratic

Again, this is a blocking operator because it needs to read all the inpus tiupie.S first (to solve
the subset-sum problem). Similar to the optimization in the selection operatas, équal to the
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input size ofS, then all tuples ofS must be joined with? and the subset-sum solving function
can be skipped even though the data is pre-grouped.

We reuse FigurdZ.8to illustrate the algorithm. Assume the join is on Talleand TableS and
the join predicate i3 = k. Assume Tabld? has three tupleg{1), (j2), (3)), and TableS has 12
tuples which are clustered into 4 groups with symbialsk2, k3, k4 respectively. Furthermore,
assume the join oz and S is specified with an output cardinality as= 7. The pre-grouped
input equi-join controls the output as follows:

1. [Subset-sum solving] During its open() method, (a) maliee input.S of the join operator; (b)
extract the pre-group size (e.g¢; = 5, co = 4, c3 = 2, ¢4 = 1) of each symboki by execut-
ing Sel ect Count (k) From S Group By k Order By Count (k) Desc onthe ma-
terialized input; (c) invoke the approximation scheme igufe[l7.3 with the pre-group sizes (the
set of numbers), the output cardinality (the target sumj,the approximation ratie as input. The
output of this step is a subset of symbdls™ in I such that the output cardinality (approximately)
matches the requirement (e.§;" = {k1,k3} because; +c; = 5+ 3 = 8 > ¢). If no such subset
exists, then stop processing and report this error to the use

2. [Positive Tuple Joining] During getNext(), (a) for eagimbol ki in K, read all tupless™ from the
materialized input of which haveki as the value of attribute; (b) afterwards, call getNext() oR
once and get a tuple join all tuples inS* with r by replacing the join key symbols isi* with the
join key symbols in-. For example, the first five1 symbols inS are replaced with1 and the three
k3 symbols inS are replaced with2 (again, these replacements are done on symbols loaded in the
memory and the changes are propagated to the base tables jveretk originate from); (c) return
the joined tuples to the parent.

3. [Negative Tuple Joining] This step is the same as the Megatple Joining step in the simple case
(SectiodIZ.Z.3case 1) that joins the negative tuples in infRuvith the negative tuples in inpu.

17.2.4 Aggregation Operator

Knob: Output Cardinality: (optional; default value = input size)

Let I be the input and) be the output of the aggregation operator ghtle the aggregation
function. The symbolic execution of the aggregation operator controlszé@fthe output.

Simple Aggregation

This is the simplest case of aggregation where there is no grouping opefia¢io no GROUP-
BY keyword) defined on the query. In this case, the query analyzablgis the output cardinality
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knob because the output cardinality is either 1 (not-empty input) or O (empty)inp SQL, there
are five aggregation functions: SUM, MIN, MAX, AVG, COUNT. For simplggaegation, the
solutions are very similar for both pre-grouped or non-pre-groupgation the attribute(s) irf.
The following shows the case of hon-pre-grouped input:

Let expr be the expression in the aggregation functfowhich consists of at least a non-empty
set of symbolsS in ezpr and let the size of input ben.

1. SUM(xpr). During its getNext() method, (a) the aggregation operedasumes alk tuples from/;
(b) for each symbot in S, adds a tuplés, [aggsum = expri+expro+...+expr,]) tothePTable,
whereexpr; is the corresponding expression on i input tuple; and (c) returns symbolic tuple
(aggsum) as output. As an example, assume there is an aggregatiatiofustJM(I_price) on top
of the join result in Figur€ 7.7 (i) of the previous section. Then, this operator returns timde
(aggsum,) to its parent and adds 8 tuples (e.g., the 2nd inserted taple price2, [aggsum =
I_pricel +1_price2 + ...+ _price])) to the PTable.

In fact, the above is a base case. If there are no additionati@nts that will be further imposed on
the predicate symbols, the aggregation operator will agérthe number and the size of the above
predicates by inserting only one tuple pricel, [aggsum = I_pricel x 8]) to the PTable and
replacing symbol$_price2, ..., [_price8 by symboll_pricel on the base table. One reason for
doing that is the size of the input may be very big, if that is tase, the extremely long predicate
may exceed the SQizar char size upper bound. Another reason is to insert fewer tuplekan
PTable. However, the most important reason is that the cost of ati@nssolver call is exponential
to the size of the input formula in the worst case. Thereftmis, optimization reduces the time of
the later data instantiation phase. However, there is @1odfd for each input tuple, the operator has
to update the corresponding symbol in the base table whisreytinbol originates from.

2. MIN(expr). The MIN aggregation operator also uses similar predioatémization as SUM ag-
gregation if possible. During its getNext() method, (a)dgards the first expressian:pr, as
the minimum value and returngzpr,) as output; and (b) replaces the expressiopr; in the
remaining tuples (wher@ < ¢ < n) by the second expressianxpr, and inserts two tuples
(expry, [expry < exprs]) and (expra, [expr1 < exprs] ) to the PTable. Note that the above
optimization must be aware of whether the input is pre-gedugr not. If it is, not only the first but
all tuples withexpr; are kept and the remaining are replaced with synabpt-.

As an example, assume that there is an aggregation functiid Ndrice) on top of the join result in
Figurel74i). Then, this operator returng pricel) as output and inserts 2 tuples to tR& able:
(I_pricel, [I_pricel < I_price2]) and({l_price2, [[_pricel < I_price2]) to thePTable. Moreover,
[_price3, _priced, ..., l_price8 are replaced by price2 on the base table.

3. MAX(expr). During its getNext() method, (a) it regards the first esgienczpr, as the maximum
value and returngexpry) as output; and (b) replaces the expressiopr; in the remaining tuples
(where2 < i < n) by the second expressiempr, and inserts two tuple&apry, [expry > expra])
and(expra, [expry > exprs] ) to the PTable.
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4. COUNTExpr). The aggregation operator handles the COUNT aggregatiwstibn similar to tradi-
tional query processing. During its getNext() method, {apuints the number of input tuples, (b)
add a tuplgaggcount, aggcount = n) to the PTable; and (c) returns a symbolic tupleggcount)
as output.

5. AVG(expr). It is the similar to the case of the SUM aggregation. DuiiisggetNext() method,
(a) the aggregation operator consumesnatuples from7; (b) for each symbok in S, it adds
a tuple (s, [aggavg = (expry + exprs + ... + expry,)/n]) to the PTable, whereexpr; is the
corresponding expression on thth input tuple; and (c) returns symbolic tugleggavg) as output.
The optimization can be illustrated by our example: It addly @ne tuple(l_pricel, [aggavg =
[_pricel]) to the PTable and replaces symbolsprice2, ..., I_price8 by symboll_pricel on the
base table.

In general, combinations of different aggregation functions in oneadpe(e.g. MINexprl) +
MAX( expr2)) need different but similar solutions. Their solutions are straightfahaad we do
not cover them here.

Single GROUP-BY Attribute

When the aggregation operator has one group-by attribute, the outgdirtaddy ¢ defines how to
assign the input tuples intooutput groups. Ley be the single grouping attribute. For all algo-
rithms we assume thgthas no unique constraint in the database schema. Otherwise, the grouping
is predefined by the input already and the query analyzer disablesaddslon the aggregation
operator for the user. Again, this symbolic operation of aggregationedivited into two cases:

Case 1: Input is not pre-grouped w.r.t. the grouping attribute In addition to the cardinality
knob, when the symbols of the grouping attribytie the input are not pre-grouped, it is possible
to support one more knob:

Knob: Group Distributionb (optional; choices = [Uniform or Zipf]; default = Uniform)

The group distributiord defines how to distribute the input tuples into theredefined output
groups. In this case, the aggregation operator controls the outputaagsfo

1. [Distribution instantiating] During its open() methaddstantiate a distribution generatbr, with the
size ofI (denoted by) as frequency, the output cardinalityas domain, and the distribution type
as input. The distribution generator is the same one as théooing equi-join (Sectidh7.2.3. It
generates numbersny, mo, ..., m., and thei-th call on its getNext() methof < i < ¢) returns
the expected frequeney; of thei-th number under distributiob
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2. During getNext(), calD.get Next() to get a frequencyn;, fetchm; tuples (let them bd;) from I
and execute the following steps. If there are no more tuptes fts child operator, return null to the
parent.

3. [Group assigning] For each tuplén I;, except the first tupl¢’ in I;, replace symbal.g, which is
the symbol of the grouping attribugeof tuplet, by symbolt’.g. t’.g is the symbol of the grouping
attributeg of the first tuplet’ in thei-th group. Note that, the replacement of symbols in this Eep
done on both tuple loaded in the memory and the related tiptbe base table as well.

4. [Aggregating] Invoke the Simple Aggregation Operatathi@ previous section (Sectifiif.Z.9 with
all the symbols participated in the aggregation functioi; ias input.

5. [Result Returning] Construct a new symbolic tupleg, agg;) to its parent wheregg; is the sym-
bolic tuple returned by the Simple Aggregation Operatortii@ri-th group. Return the constructed
tuple to its parent.

Sometimes, during the open() method, the distribution genefatoray return 0 when the dis-
tribution is very skew (e.g., Zipf distribution with high skew factor). In thisegat may happen
that an output group does not get any input tuple and the final numloertpfit groups may less
than the output cardinality requirement. There are several ways to htnsllease. One way
is to regard this as an runtime error which let the user know that she shougpecify such a
highly skewed distribution when she asks for many output groups. Anotag is to adjust the
distribution generatoP such that it first assigns one tuple to each output group (which consumes
c tuples), and then it starts assigning the rest c tuples according to the distribution generation
algorithm. This way, it ensures that the cardinality requirement is fulfilledH®iinal distribution
may not strictly adhere to the original distribution. Here, we assume the assmbt specify any
contradicting requirements, therefore QAGen uses the first approach.

Case 2: Input is pre-grouped w.r.t. the grouping attribute When the input on the grouping
attribute is pre-grouped, it is understandable that this operation dossmodrt the group distri-
bution knob as in the above case. But if the input is pre-grouped w.r.t.rthpigg attribute and
the output cardinality is the only specified knob, it is not a hard problem.

The aggregation operator (v) in the running example (Fidtd (a) falls into this case. Referring

to FigurellZ.1 (i), which is the input of the aggregation operator in the example. The grgup
attribute in the example is_date, after several joins, the datadndate is pre-grouped into 4 pre-
groups ¢_datel x4; o_date2x2; o_date3x1; o_dated x1). In this case, the aggregation operator
controls the output by assigning tuples from the same pre-group to the s&poe group and each
pre-group is assigned intooutput groups in a round-robin fashion. In the example, the output
cardinality of the aggregation operator is 2. The aggregation operaignaghe first pre-group
(with o_datel) which includes 4 tuples into the first output group. Then the secondnoig
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o_date | SUM(I_price) symbol | predicate

o_datel | aggsum_1 c_acctball [c_acctball > p1]

o_date2 | aggsum_2 c_acctbal2 [c_acctbal2 > p1]
c_acctbal3 [c_acctbal3 < p1)
c_acctbald [c_acctbald < p1)

I_pricel | [aggsum_1 =5 X I_pricel]
[_priced | [aggsum_2 = 3 x I_priceb]

(i) Output of x (2 tuples) (i) PTable

Figure 17.9: Symbolic Database after aggregation

o_date | SUM(I_price)

o_datel ‘ aggsuml

Figure 17.10: Output of HAVING clause (1 tuple)

(with o_date2) which includes 2 tuples is assigned to the second output group. Whelirtherd
group (witho_date3) which includes 1 tuple is being assigned to the first output group (becdus
round-robin), the aggregation operator replacesite3 with o_datel in order to put the 5 tuples
into the same group. Similarly, the aggregation operator replacése4 from the input tuple
with o_date2. For the aggregation function, each output grguimvokes the Simple Aggregation
Operator in Sectiod7.2.4with all the symbols participated in the aggregation function as input,
and gets a new symbalgg,, as output. Finally, for each group, the operator constructs a new
symbolic tuple(g;, aggy,) and returns it to the parent. Figufg.9 (i) shows the output of the
aggregation operator, and Figuf&.9 (ii) shows the updated®Table after the aggregation in
the running example. Furthermore, since the aggregation operator isnaitvidutes date and
_price, the orders table and thdineitem table are also updated (Figui&.1 (c) shows the
updated tables).

HAVING and Single GROUP-BY Attribute

In most cases, dealing with a HAVING clause is the same as having a seleoticatar on top of
the aggregation result.

FigurelI7.3 (c) shows thePTable content after the HAVING clause. It imposes two more con-
straints: pggsum1 > p2] which is the positive tuple andifjgsum?2 < p2] which is the negative
tuple, and it returns FigufEZ.I0to the parent.

Special case of GROUP-BY with HAVING: There is a special case for the aggregation opera-
tor together with the HAVING clause. When there are more than one paraim#terquery which

157



CHAPTER 17: SYMBOLIC QUERY ENGINE

influences the number of tuples of each output group implicitly, it is necgssask the user to
define the count of each output group explicitly. The following is an example

SELECT o_date, SUMI price)
FROM Orders, Lineitem
WHERE o id =1 _oid

AND | _price>=:pl

GROUP BY o_date

HAVI NG SUM | _price)<=:p2

In this query, the parameteit andp2 implicitly affect the number of tuples that can pass through
the HAVING clause. For example, during data instantiation phaga, giets a value of 50 angR
gets a value of 200, then only groups with less than 4 tuples can passhtineugAVING clause.

In other words, if the user wants to control the output cardinality of the & clause, she has
to first control the number of tuples of each group. When the query asatietects this case, it
prepares the following knobs for the user:

Knobs: (a) positive group-counjc™ and number of positive output groups
(optional; defaultge™ >= 1, ¢™ = input size)
(b) negative group-couniz— and number of negative output groups
(optional; defaultge™ >= 1, ¢~ =0)

The knobc™ defines the number of groups which should pass through the HAVINGte®ie
and its coexisting knolgc™ defines the number of tuples for every positive group. The knob
¢~ defines the number of groups which should not pass through the HAB®&I&:tion and its
coexisting knolyc— defines the number of tuples for every negative group. The positougogr
count gct) and the negative group-coumiz(") can be given in terms of a lower or a upper bound.
The number of positive and negative groups together must be the saneecasibt cardinality of
the aggregation operator (i.€t + ¢~ = ¢).

In the following, we discuss the algorithms to implement this special case. Tdadss of the
problem depends on whether the input is pre-grouped w.r.t. the gnpapibute or not. Note
that, in both cases the user cannot control how to assign the input tupledifietent output
groups because this would conflict with the above knobs.

Special case of GROUP-BY with HAVING, sub-case 1: Input is not pre-gouped w.r.t. the
group-by attribute  Assume that the aggregation operator of the query above gets an irfdut of
tuples which is not pre-grouped w.r.t. the group-by attrileuté:te. Furthermore, the user defines
the following knob valuesyc™ > 2, ¢t = 3, gc= < 1, ¢~ = 2. Thus the output cardinality of the
aggregation operator is= 5 in the example. The following illustrates the desired output:
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gct > 2
gct > 2
gct > 2
gc <1
gc <1

In this special case, the symbolic execution of the aggregation operattolsothe output as
follows:

1. [Assigning tuples to output groups with a upper bound groount] During its open() method, it
first assigns one tuple to each output group with upper boumapgcount.

2. [Assigning tuples to output groups with a lower bound graount] Assign the minimum number
of tuples to each output group with lower bound group-count.

3. [Post-processing] If there are still some tuples in tipaitrwhich are not assigned to an output group,
then assign these input tuples to the output groups as fell¢a) if there are some output groups
with lower bound group-count, then assign all remaininddsippo one of these output groups; (b) if
there are only output groups with upper bound group-cobat) aissign tuples to those output groups
until its upper-bound has been reached.

4. [Aggregating] During each getNext() call, get an outprdup O;, invoke the Simple Aggregation
Operator (Sectiofi7.2.93 like the normal case does.

5. [Result Returning] Construct a new symbolic tupley, agg;) and returns this tuple to its parent,
whereagg; is the symbolic tuple returned by the Simple Aggregationm@jue for the group); and
t.g is the symbol of the group-by attribute 6f. Return the constructed tuple to its parent.

In the example, the negative output groups uges < 1 as the knob value. Therefore, each of
the two negative group gets one tuple during Step 1. The positive outpupgusesgct > 2

as the knob value. Thus each of the three positive output groups getsples during Step 2.
The two remaining tuples out of the 10 input tuples are distributed to the fsgty@ooutput group.

Special case of GROUP-BY with HAVING, sub-case 2: Input is pre-groupd w.r.t. the group-

by attribute  This sub-case contains tié7P-complete Group Assignment Problem defined in
AppendixBl and is therefore\VVP-hard. In fact, this special case rarely happens in practice.
Nonetheless, we present an efficient heuristic that solves most of thades that arise in prac-
tice. In case there are some group-count constraints that canndidfiedathe system alerts the
user and suggests her to change the knob values.

The heuristic is inspired by the best fit decreasing algorithm (BFD) fobihgacking problem
. The basic idea of the BFD algorithm is that it considers the items in the ofdesm
increasing item sizes. Among the possible bins for an item, the algorithm atkaypses the one
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that would have minimum leftover space after addition of that item. If an item fite lnim a new
bin is opened.

In our context, we treat a resulting output group as a bin and a prexgrbk input tuples as
an item in sizek. When all group constraints are upper bound constraints @79.,< 2 and
gc~ < 2), we have a classical bin packing problem with different bin sizes anxed fiumber

of bins. Basically, the resulting problem asks for a feasible packing &giten bin sizes. For
this case we propose to execute the BFD algorithm as sketched abovel(Witis &eing initially
open).

When the group constraints consist of mixed greater equal and lowal egpstraints (sub-case
1 above is in this case), we have a bin packing and filling problem whcking(lower equal
constraints) and covering(greater equal constraints) bins. It becomes trivial to fulfill all lower
equal constraints. Without loss of generality, for ghiewer equal constraints we can assign the
i-th smallest item (pre-group) to thigh smallest packing bin (output group) for< i < p.

It remains to clarify how to deal with the covering bins. For this problem voppse to iteratively
search for a solution that satisfies as many constraints as possible. Tadhigeesearch for
solutions that cover the’ < ¢ w.l.o.g. smallest covering bins, starting@t= c. Although
theoretically a binary search would be faster for finding the maximuwe expect that for real
instanceg’ will be very close ta;, which justifies a linear search. For a givéithe algorithm relies
on the observation that a good cover of the bins overpacks these as Ipibssible. Therefore,
we propose an analogous approach to best fit decreasing. Exezbtesttit decreasing algorithm
to fill the bins as good as possible.

Multiple GROUP-BY Attributes

If there is a set of group-by attributés (with multiple attributes), then the implementation of the
aggregation operator depends not only on whether the input is pugeplpbut also depends on
whether the group-by attributes in the input have a tree-structure orehgv@ph-structure (see
Chaptefl8). QAGen currently supports queries with tree-structure group-by atisi(see Figure
[15.3. Studying the problem of controlling the output cardinality of an aggregatferator with
graph-structure group-by attributes is part of the future work.

The aggregation operator treats aggregation with multiple group-by attrilbuties same way as

the case of a single group-by attribute (SecflohZ.d. Assume attribute:,, is the attribute in

G which is functional dependent on the least number of other attributés ifihe aggregation
operator treats,, as the single group-by attribute and set the rest of attributelstmma constant
valuew (attributea,, is selected because it has the largest number of distinct symbols in the input
comparing to the other attributes).

As an example, assume the following table is an input to an aggregation aperato
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SUM(I_price)

aggsuml

Figure 17.11: Output of (1 tuple)

Assume the set of group-by attributdsis {b, ¢, d}, and the functional dependencies which hold
on the input of the aggregation operator afé} — {c,d} and{c} — {d}. According to the
definition in Chaptefl, the set of group-by attributés has a tree-structure.

In the input above, attributeis functional dependent on least other attribute§'itb is functional
dependent on no attributes whetés functional dependent alnandc). As a result, the aggre-
gation operator treats attribubeas the single group-by attribute and invokes the single group-by
aggregation implementation. Other attributes use the same symbol for all infag (am., set all
symbols for attribute to becl).

Since the aggregation operator with multiple-group attributes essentially iseldamgdthe aggre-

gation operator that supports a single group-by attribute, it sharestieesgeecial cases (HAVING
clause on top on an aggregation where the parameter values controbtipecgunt) as the case
of aggregation with a single group-by attributes.

17.2.5 Projection Operator

Symbolic execution on a projection operator is exactly the same as the tradifi@mglprocessing,
it projects the specified attributes and no additional constraints are addeda result, the final
projection operator in the running example takes in the input from FarEdand ends with the
result shown in Figur@7.11

17.2.6  Union Operator

In SQL, the UNION operator eliminates the duplicates if they exist. On the o#imet,the UNION
ALL operator does not eliminate the duplicates. In SQP, the query analgesr not offer any
knob to the user to tune the UNION ALL operation. Therefore, the symbakcwion of the
UNION ALL operation is straightforward to implement: it reuses the UNION Adperator in
RDBMS and unions the two inputs into one.
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For the UNION operation, in SQP, the query analyzer offers the followimap to the user:

Knob: Output Cardinalitye (optional; default value = size a@t + size of5)

Let R and S be the inputs of the UNION operation which are not pre-grouped. The aljenb
execution of the UNION operator controls the output as follows:

1. During its getNext() call, if the output cardinality hasttyet reached, then (a) get a tuplé from
R (or from S alternatively); and (b) returnto its parent. However, during the getNext() call, if the
output cardinality has reachedalready, then process [Post-processing] below, and retulfro its

parent.

2. [Post-processing] Fetch the remaining tugles from inputs R and S, set the symbols in tuple
t~ € T to have the same symbol as one of the returned tujpl¢he previous step.

17.2.7 Minus Operator

In SQL, the MINUS operator selects all distinct rows that are returnethéyuery on the left
hand side but not by the query on the right hand side.

Let R and S be the non-pregrouped inputs of the MINUS operation. In this case, ubg/q
analyzer offers the following knob to the user:

Knob: Output Cardinalitye (optional; default value = size at)

The symbolic execution of the MINUS operator controls the output as follows

1. During its getNext() call, if the output cardinality hastiyet reached, then (a) get a tuple™ from
R, and; (b) return™ to its parent. However, during the getNext() call, if theputtcardinality has
reached: already, then process [Post-processing] below, and retulfto its parent.

2. [Post-processing] Fetch a tupte from R, fetch all tuplesS— from S, set the symbols in tuple
s~ € S~ to have the same symbol as.

17.2.8 Intersect Operator

Knob: Output Cardinality: (optional; default value = size at)
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In SQL, the INTERSECT operator returns all distinct rows selected by goeries. Currently,
QAGen supports INTERSECT with non-pregrouped inputs. Reand .S be the input of the
INTERSECT operator, the symbolic execution of the INTERSECT opeis@s follows:

1. During its getNext() call, if the output cardinality hastiyet reached, then (a) get a tuple™ from
R, and get a tuple™ from S; (b) set the symbols of ™ as same as™ and return-* to its parent.
However, during the getNext() call, if the output cardihahas reached already, return null to its
parent.

17.2.9 Processing Nested Queries

Nested queries in symbolic query processing reuses the techniquedtiondjuery processing
because queries can be unnested by using join ope . In order to allow a user to have
full control on the input, the user should give the input query in its unddstenat. If the inner
query and the outer query refer to the same table(s), then the quergemdilyables some knobs
on operators that may allow a user to specify different constraints onpr@tors that work on
the same table in both inner and outer query.
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Data Instantiator

Logic takes care of itself; all we have to do is to look and sas h does it.

— Ludwig Wittgenstein, 1889-1951 —

The final phase of the data generation process is the data instantiatien pihasdata instantia-
tor fetches the symbolic tuples from the symbolic database and uses a ictrsstheer (strictly
speaking, the constraint solver is the decision procedure of a modﬂd@) to instanti-
ate concrete values for them. The constraint solver takes a proposfoomailla (remember that
a predicate can be represented by a formula in propositional logic) asandueturns a set of
concrete values for the symbols in the formula that satisfies all the inputptesl and the actual
data types of the symbols. If the input formula is unsatisfiable, the conss@lver returns an
error. Such errors, however, cannot occur in this phase begaisssume there are no contra-
dicting knob values. A constraint solver call is an expensive operatiathe worst case, the cost
of a constraint solver call is exponential to the size of the input fornlm?E[_Qb. As a result,
the objective of the data instantiator is to minimize the number of calls to the consthiet if
possible. Indeed, the predicate size optimizations during symbolic quarggsiog (e.g. reducing
aggsum = I_pricel + ...+ 1_price8 to aggsum = I_pricel x 8) are designed for this purpose.
After the data instantiator has collected all the concrete values of a symbdkg ifupserts the
instantiated tuple into the final test database. The details of the data instarsasrfallows:

1. The process starts from any one of the symbolic tables.
2. ltreads in atupleé, say(c_idl, c_acctball), from the symbolic tables.

3. [Look up symbol-to-value cache] For each symbai tuplet, (a) it first looks ups in a table called
SymbolV alueCache in the symbolic database. TgmbolV alueCache is a table in the symbolic

164



database that stores the concrete values of the symbolsatrabeen instantiated by the constraint
solver; (b) if symbols has been instantiated with a concrete value, then the syimimitialized with
the same cached value and then proceeds with the next symbol i

In the running example, assume the constraint solver ralydmstantiates theustomer table (4
tuples) first. Since symbal id1 is the first symbol to be instantiated, it has no instantiatede
stored in theSymbolV alueCache table. However, assume later when instantiating the first tw
tuples oforders table (witho_id1, o_id2), theiro_cid values will use the same value as instantiated
for c_id1 by looking up theSymbolV alueCache.

4. [Instantiate values] Look up predicatésof s from the PTable. (a) If there are no predicates
associated withy, then instantiate by a unique value that matches the actual domaisiofinput
schemas.

In the example¢_id1 does not have any predicates associated with it [&Eeble in Figurell7.J).
Therefore, the data instantiator does not instantiatih a constraint solver but instantiates a unique
valuev (because:_id is a primary-key), say, 1, te_idl. Afterwards, insert a tuplés,v) (e.g.,
(c_id1,1)) to the SymbolV alueCache.

(b) However, ifs has some predicatésin the PTable, then compute thpredicate closur®f s. The
predicate closure of is computed by recursively looking up all the directly cémted or indirectly
correlated predicates of

For example, the predicate closure gbricel is [aggsuml =5 x I_pricel AND aggsuml > p2].
Then the predicate closure (which is in the form of a formualgiiopositional logic) is sent to the
constraint solver (symbols that exist in tRgmbolV alueCache are replaced by their instantiated
values first). The constraint solver instantiates all syimbothe formula in a row (e.gl, pricel =
10, aggsum1 = 50, p2 = 18).

For efficiency purposes, before a predicate closure is sefhtet constraint solver, the data instan-
tiator looks up another cache table callBdedicateV aluesCache in the symbolic database. This
table caches the instantiated values of predicates. Siaog predicates in th&T able essentially
share the same pattern, the predicates stordeirlicateV aluesCache are in the predicate pat-
tern format. For example, predicates dcctball > pl] and [c_acctbal2 > pl] in Figure[I7Z.1
(c) share the same patternc_fcctbal > pl]. As a result, after the instantiation of predicate
[c_acctball > pl], the data instantiator inserts an entliy_acctbal > pl], c_acctball, pl) into
the PredicateV aluesCache table. When the next predicate closutedcctbal2 > pl] needs to be
instantiated, the data instantiator looks up the predicai&-edicateV aluesCache by its pattern; if
the same predicate pattern isitredicateV aluesCache, then the data instantiator skips the instan-
tiation of this predicate and reuses the instantiated vaflueacctball in the SymbolV alueCache
table for symbok_acctbal2 (same fompl).

The number of constraint solver calls is minimized by the introduction a$trebol V alueCache

and PredicateV aluesCache tables. Experiments show that this feature is crucial or otherwise
generating a 1G query-aware database takes weeks instead of Emaily, note that in Step 4
(a), if a symbols has no predicate associated with it, the data instantiator assigns a value to
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according to its domain and its related integrity constraints (e.g., primary-Keygg¢neral, those
values can be assigned randomly or always use the same value. Hoivesafso possible to
instantiate some extra data characteristics (e.g., distribution) for those syimbeds certain as-
pects of the query optimizer even though those the values of symbols walddfect the query
results.
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Semi-Automatic DBMS Testing

The first rule of any technology used in a business is thatraation applied to an
efficient operation will magnify the efficiency.

— Bill Gates, born 1955 —

So far, the discussion of QAGen is restricted to having a complete testsagmiaand generating

a query-aware test database as output. A test case, as shown in[Hdliieas to consist of a
logical query plan of a SQL querg p» and a set of knob values defined on each query operator.
In practice, the most tricky job is to determine different sets of interestingy kiatues for the
test query in order to form different useful test cases. Currentyktiob values of a test case are
manually chosen by the testers. In this chapter, we discuss the possibildig®nfating this step.

In software engineering, there exist different test design technigm@soverage metrics which
assist the tester in creating a useful test suite for a program (test dipjeg&nerating test cases
with different combinations ointerestingparameter value@ﬂ. One way of choosing the
interesting values of a parameter is called the Category Partition (CP) m [ The CP
method suggests the tester first partitions the domain of a parameter into $oakedpartitions)
based on the assumption that all points in the same subset result in a similapb&boan the test
object. The tester should select one value from each partition to formttb&iateresting values.

Consider a simple queri x S joining two tablesk and.S. Assume tablg? has 1000 tuples and
tableS has 2000 tuples and the two tables are not connected by foreign-k&lyaioh In this case,
the interesting values for the output cardinality knob for the join could badarby partitioning
the possible knobs values into, say 4 partitions: Extreme case partition (§, tMiphemum case
partition (1 tuple), Normal case partition (500 tuples), and Maximum casii@ai1000 tuples).
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T :{A=al,B=01,C =cl}

Ty :{A=al,B=102,C =2}

T :{A=al,B=51,C =cl} T5:{A=al,B=>51,C =c2}
Ty : {A=a2,B=102,C =2} Ty:{A=a2,B=01,C =cl}
T5:{A=a2,B=102,C =2}

T6:{A=a2,B=102,C =cl}

(a) Each-used Coverage (b) Pair-wise Coverage

Figure 19.1: Coverage Example

In addition, Uniform distribution and Zipf distribution can be regarded asgantitions of the join
key distribution knob.

Having decided the set of interesting values for each parameter (kKhelnext step is to combine
those values to form different test cases (i.e., a test suite). Therdferert algorithms (known

as combination strategies) to combine the interesting values and form diffes¢suites. Each
algorithm will result in a test suite that achieves certzinerage The following are some well-
known coverage criteria for combination strategies:

e Each-used The Each-usedcoverage is also known dswisecoverage. It is the simplest
coverage criterion that requires every interesting value of everynpea to be included
in at least one test case in the test suite. Consider a program with thesagiarsA,

B and C and the interesting values (selected from each partition) of each paraaneter
{al,a2},{b1,02} and{cl, c2} respectively. An example test suite that satisfiesEheh-
usedcoverage is shown in Figuf.1 (a), which includes two test casés andTs.

e Pair-wise ThePair-wisecoverage is also known as 2-wise coverage. It requires that every
possible pair of intersecting values of any two parameters is included in seineates
in the test suite. Consider the same example program as above, an examglétdehat
satisfies théPair-wisecoverage is shown in Figui9.1 (b), which includes six test cases.

e T-wise Thet-wisecoverage is a generalization of the above two coverages which
requires that every possible combination of intersecting valuegarameters to be included
in some test cases in the test suite.

e Variable strength The Variable strengthcoveragem allows different coverages
on different sets of parameters. For example, it requires a higherageée.g.2-wise
among the parametet and B and a lower coverage (e.d.;wisg on the parametef’ in
our example program.

e N-wise TheN-wisecoverage requires if there ahé parameters, then all possible combina-
tions of interesting values should be included in some test cases in the test suite
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T : {o1 = 1(min), 1(min), o9 = 1(min)}

Ty : {o1 = 1(min), 1(mazx), 09 = 1(min)}

T5 : {o1 = 1(min), x= 2000(max), oy = 2000(mazx)}

Ty : {o1 = 1000(mazx), x= 1(min),os = 1(min)}

T5 : {o1 = 1000(maz), x= 2000(min), oo = 2000(mazx)}
Ts : {o1 = 1000(mazx), x= 1(mazx), o2 = 1(min)}

X
X

Figure 19.2: A pair-wise test suite generated by current combinationgigate

Each coverage criterion has its own pros and cons and they servtdogit types of applications.
There are different combination strategies to generate test suites thigtdiffttsent coverage cri-
teria. For example, the AETG algorith[g(i[SFPQ { is a non-deterministic algorithm that generates
test suites which satisfy th%air-wisecoverag«ﬂ As another example, teach Choicealgorithm

is a deterministic algorithm that generates test suites which satisfigabl-usedover-
age. However, these algorithms cannot be directly applied to our automéitig) teamework.

The first problem is that the knobs are correlated to each other in admudtated QAGen exe-
cution plan. As a result, it is not easy to do category partitioning. As an eeamfs difficult to
partition the cardinality of the root (aggregation) operator of TPC-H Q8dsee Figur@0.2(a))
because the interesting value of the maximum case patrtition (i.e., the maximum rafrobgyut
groups) depends on the cardinalities of its child operators.

The second problem is that the correlation of operators in a knob-aadd@@AGen execution

plan causes existing combination strategies to generate test suites that rsatysfpthe coverage

criterion. For example, consider a select-join queryR) x o2(.S) whereR has 1000 tuples and
S has 2000 tuples, anl has a foreign-key referring t& on the join attribute. Assume that we
are able to determine the minimum and the maximum cardinality of each operator:

‘ min  max
o1 | 1 1000
oy | 1 2000
X 1 2000

Then, according to the existifRpir-wisetest suite combinational strategies, a test suite like the one
in Figurd19.2would be returned. However, if we look closer to the test suite in F[§Br2 we can

find out that the generated test suite actually does not strictly fulfilPdiewisecriterion. For test
casel andTs, the selections o and.S return 1 tuple (minimum case partition). Consequently,
no matter the output cardinality of the join is defined as the minimum case parfitipro the
maximum case partitiorig), the join can only return 1 tuple. As a resuli,and?’ are essentially

the same and the final test suite does not make sure every possible ptéredting values of any
two knobs is included.

'Non-deterministic algorithms means that it may generate different titss ®very time.
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11. Next Test Case

. Symbolic
Query 2 Test Suite 4 6. Data 9. Test
b e e ; .
Analyzer | Knob- ") Generator |Test Case EQnugeir% Invoke | Instantiator |“\Invoke " Reporting
annotated
Execution Plan 5. Symbolic 7. Symbolic g _|nstantiated 10. Qutt_ary
Data Tuple Tuple xeeution
1. Query Qp,

3. Base

Schema § Table Size(s)

Symbolic Generated
Database Database

Figure 19.3: Semi-automatic Testing Framework

19.1 The Framework

To automate the task of creating a set of meaningful test cases, it is agcasslevise a new
set of combination strategies for each coverage that are aware obtieenaitioned correlations
in a logical query plan. In the next section, a simple method for generatingetest suites

is presented. Discussion on how to design different combination stratbgiesatisfy different

coverages would be an interesting research topic for the softwareeenigio community but is

out of the scope of this thesis.

Figure[19.3 shows the semi-automatic DBMS feature testing framework. It is an extenkion o
the QAGen architecture in Figuis.2 As usual, the tester gives a parametric qu@gyand the
schemaS as input. After the query analyzing phase, the tester specifies the sizelmdgh tables,
and a test suite that satisfies thevisecoverage is generated from the test suite generator. Each
test case is then processed by the Symbolic Query Engine and the Datdi&tstaand a query-
aware test database is generated as usual. Finally, the test query dft ttasteis automatically
executed against the generated database, and the execution detailegexgecution plan, cost,
time, etc) is inserted into the test report.

Note that, in general, testers use their domain knowledge in order to createt@sp queries.
However, this step can also be automated by query generation tools (e@S and
QGEN ). In this case, the framework is a fully-automatic testing framework whickésul
to do some higher level testings such as regression test or integration tastsystem.

19.2 Test Case Generation

The current testing framework can generate a test suite that satisfidsatise coverage. One
reason for usind-wisecoverage in the framework is that there may be many knobs available in
a QAGen query execution plan. Defining coverage stronger tharse(e.g.,2-wisg may then
result in a very large test suite. In addition, basedlemisecoverage, it is possible to design an
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19.2 TEST CASE GENERATION

algorithm so that the knob values are not affected by the correlation® afutput cardinalities
between operators in a query.

The following shows the test case generation algorithm that is used insidestiseite generator.
It takes a knob-annotated query plan as input and returns a set catest as output.

1. [Creating a test case for each cardinalitwisepartition] For each partitiop of the output cardinal-
ity knob, create a temporary test case

2. [Assigningl-wisevalue to distribution knob] For each temporary test cAgecreate a test case,q
from T}, using one distribution knob valué The valued should not be repeated until each value is
used once at least.

3. [Assigning real values to the cardinality partition] E@ch test casg,,, parse test quer§) of 7,4 in
a bottom-up manner and assign cardinality valueg tpaccording to TablE9.1 This table shows
the minimum and maximum partitions for each symbolic operatThe notation used in the table
follows the discussion of Chapt&il For example? denotes the input of an unary operator &Rl
denotes its cardinality.

Figure[19.4 shows the test case generation process of a simple gé&y x S. In the current
framework, we only consider the minimum and the maximum partitions for the céitdikaob
and only Zipf and Uniform distribution for the distribution knob. Although thet ggsneration
algorithm is simple, experimental results show that the generated test suitdfectively gen-
erate different query-aware test databases that show differstensypehaviors of a commercial
database system. In this thesis, we regard this simple SQL test case genalgaiithm as a
starting point for this new SQL test case generation problem. In fact, therntuesting frame-
work has several restrictions. First, it requires that the same tabletda@mosed twice in the input
of a binary operator, for example, the queRyx R is prohibited. Second, TabE3.1does not
capture the cases of pre-grouping input and the cases of having tjmmblimbqueries@]
for a binary operator. Therefore, the computed knob value may natdugate in these cases. As
aresult, in the current framework, if the query analyzer detects tha #rersome operators with
pre-grouped input or with disjoint subqueries in the query execution fledll prompt the tester
to verify that automated computed test case before QAGen starts exedsipart of the future
work, we plan to further improve the framework in order to eliminate thesectsirs.
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|

Operator \ Minimum Partition | Maximum Partition

Selection 1 |R|
Aggregation 1 |R|
Join 1 5|
Union maz(|R|,|S|) |R| + S|
Minus R — 5] kil
Intersect 1 min(|R],[S])

Table 19.1: Knob value table.
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e 20

Experiments

The true method of knowledge is experiment.

— William Blake, 1757-1827 —

We have run a set of experiments to test a prototype implementation of QAGenmplemen-
tation is written in Java and is installed on a Linux AMD Opteron 2.2 GHz Server4WHB of
main memory. The symbolic database and the target database use Post@réBQind they are
installed on the same machine. As a constraint solver, a publicly availableaiohsolver called
Cogent is used. During the experiments, if the approximation ratio knob is enabled by
the query analyzer, the value 0.1 is used.

We execute three sets of experiments with the following objectives: Thefipsriment (Section
[20.9) studies the efficiency of the symbolic execution of individual operafbn& second exper-
iment (Sectio20.2) studies the scalability of QAGen for generating different database firzes
different queries. The last experiment (Secfffhd uses the semi-automatic testing framework
to generate different test databases for the same query in order tafdhelgenerated test cases
could effectively affect the behavior of a commercial database.

20.1 Efficiency of Symbolic Operations

The objective of this experiment is to evaluate (1) the running time of indiVisgrabolic oper-

ators, (2) their scalability, and (3) the running time of the data instantiatioredhagenerating
three query-aware databases in different scales (10M, 100M, @hdThe input query is query
8 in the TPC-H benchmark. Its logical query plan is shown in Fi@@0€l We have chosen
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TPC-H query 8 because it is one of the most complex queries in TPC-H witay7oins and
aggregations. This query has various input characteristics to thetogeeaabling us to evaluate
the performance of different operator implementations (e.g., the normajaéqand the special
case of equi-join that needs solving the subset sum problem). Thererpés are carried out as
follows: First, three benchmark databases are generateddisiggifrom the TPC-H benchmark.
As a scaling factor, we use 10 MB, 100 MB, and 1GB. Then, we exeawgey@ on top of the
three TPC-H databases, and collect the base table sizes and the cardingdigh intermediate
result under the three scaling factors. The extracted cardinality ofiei@cmediate result of query
8 is shown in Tabl@0.1 (Output-size) columns. Next, we generate three TPCH-query-8-aware
databases with the collected base table sizes and output cardinalities aardpueasure the
efficiency of QAGen for generating databases that produces the sadieality results. For this
experiment, the value distribution between two joining tables is the uniform distmbu

Table20.1 shows the cost breakdown of generating query-aware databaseR@eH query 8 in
detail. QAGen only takes about 10 minutes for generating a 10MB queayeaglatabase. The
symbolic query processing phase is fast and scales linearly. It tabes Abminute for 10MB
and less than 3 hours for 1G database. The longest SQP operatidhs amnitialization of the
large symbolic tablelineitemn (Line 10 in Tabld20.Q), and the join between the intermediate
result R5 and Lineitem (Line 11). That join requires a long time because it accesses the large
Lineitem table frequently to update the symbolic values of the join attributes. In quehe8,
input is pre-grouped on the last join (Line 17 in TaBl&1and operator (17) in Figui20.2) and

the approximation ratio knob is enabled. Nevertheless, the equi-join finisiddygbecause the
input size is not big. Tab[B0.J1also shows that the symbolic execution of each individual operator
scales well.

The data instantiation phase dominates the whole data generation protadsss #bout 9 minutes
to instantiate a 10M query 8 aware database and about 17 hours to instardi@iguery 8 aware
database. Nevertheless, about 40% of time is the overhead of readibglgytuples and inserting
concrete tuples (not shown in the Table). In the experiments, the numlmemsfraint solver
(cogent) calls is small —there are only 14 calls for 3 scaling factors. Timbauof calls is constant
because the data instantiator caches the patterns of the predicatesthetcunicrete predicates.
We indeed repeat the same experiment by turning off the caching fedt@®&&en, but it ends
up that the data instantiation phase for a 1G database cannot finish withiek® Wwecause the
constraint solver takes a lot of time. It proves that the predicate optimizati®@®Qi and the
caching in the data instantiator work effectively.
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# | Symbolic operation size = 10M size = 100M size = 1G
Output-size| Time | Output-size| Time | Output-size] Time
1| Region 5| <l1s 5| <ls 5| <l1s
2 | o(Region) = R1 1] <1s 1| <1s 1] <1s
3 | Nation 25 | <1s 25 | <1s 25| <1s
4 | (R1 w Nation) = R2 5| <l1s 5| <1s 5| <1s
5 | Customer 1.5k | <1s 15.0k 5s 150k 49s
6 | (R2 x Customer) = R3 0.3k 1s 3.0k Ts 299.5k 75s
7 | Orders 15.0k 4s 150.0k | 45s 1.5m | 553s
8 | o(Orders) = R4 4.5k 8s 45.0k | 67s 457.2k | 709s
9| (R3x R4) =R5 0.9k 3s 9.0k 22s 91.2k 277s
10 | Lineitem 60.0k 26s 600.5k | 237s 6001.2k | 2629s
11 | (R5 x Lineitem) = R6 3.6k 34s 35.7k | 348s 365.1k | 4694s
12 | Part 2.0k | <1s 20.0k 5s 200k 60s
13 | o(Part) = R7 12| 1s 147 | 8s 1451 | 72s
14 | (R7 x R6) = R8 29 3s 282 27s 2603 533s
15 | Supplier 0.1k | <1s 1k | <1s 10k 3s
16 | (Supplier x R8) = R9 29 | <1s 282 1s 2603 6s
17 | (Nation x R9) = R10 29 | <1s 282 | <1s 2603 3s
18 | x(R8) = R11 2 <1s 2 1s 2 10s
| Symbolic Query Processing 01m : 20s | 12m : 53s | 161m : 13s |
| Data Instantiation (# Cogent-cal) ~ 09m : 31s (14) | 96m : 03s (14) | 1062m : 54s (14) |
| Total 10m : 51s | 108m : 565 | 1224m : 07s |

Table 20.1: QAGen Execution Time for TPC-H Query 8

20.2 Scalability of QAGen

The objective of this experiment is to evaluate the scalability of QAGen foerging a variety
of query-aware test databases. Currently, QAGen supports 13 @atPC-H queries. It does
not support some queries because those queries either fall into thal spses of QAGen (e.g.,
query 5 (Q5) falls into the special case of the selection operator in SECT@N2 case 2); or
because some of them use non-equi-joins (e.g., Q16, Q22). Nevesthelegenerate query-
aware databases for the rest of the queries in three different scatitags 10M, 100M and 1G.
Table[20.2 shows the detailed results. These results show that both phases scdier aiIlL3
TPC-H queries and the data instantiation (DI) phase is still the time dominating.phas

20.3 Effectiveness of the Semi-Automatic Testing Framework

The objective of this experiment is to show how the test databases thatragmated by the semi-
automatic testing framework can show different behavior of a commerdaibdse. In this exper-
iment, the target database size is fixed at 100MB and the input query i guerTPC-H. The
experiments are carried out in the following way: First, we generate foerygaware databases
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| Query | Phase] 10M | 100M | 1G |
1 SQP 02m:40s 26m:45s 321m:27s
DI 07m:42s 78m:35s 844m:52s

Total 10m:22s| 105m:10s| 1166m:19s

2 SQP 00m:09s| 01m:32s 16m:47s
DI 02m:27s 24m:55s 249m:50s

Total 02m:36s 26m:27s 256m:37s

3 SQP 01m:35s 16m:18s 185m:21s
DI 09m:34s 97m:07s| 1016m:59s

Total 11m:09s| 113m:25s| 1202m:20s

4 SQP 02m:32s 23m:23s 221m:17s
DI 06m:10s 67m:22s 627m:11s

Total 08m:42s 80m:45s 848m:28s

6 SQP 01m:52s 64m:36s 180m:22s
DI 10m:36s| 333m:31s| 1121m:06s

Total 12m:28s| 398m:07s 1301:28s

9 SQP 03m:08s 31m:59s| 445m:16s
DI 09m:01s 92m:16s 967m:24s

Total 12m:09s| 124m:15s| 1412m:40s
10 SQP 01m:16s 12m:56s 156m:22s
DI 09m:42s 98m:13s| 1107m:10s
Total 10m:58s| 111m:09s| 1263m:32s
12 SQP 02m:11s 21m:32s 244m:07s
DI 12m:01s| 123m:04s| 1387m:27s
Total 14m:12s| 144m:36s| 1631m:34s
14 SQP 01m:39s 08m:47s 95m:49s
DI 17m:15s 94m:50s| 1023m:39s
Total 18m:54s| 103m:27s| 1119m:28s
15 SQP 00m:58s| 09m:10s 98m:07s
DI 05m:40s 92m:24s 966m:10s
Total 06m:38s| 101m:34s| 1064m:17s
16 SQP 00m:14s 01m:42s 27m:01s
DI 05m:38s 05m:19s 52m:40s
Total 06m:52s| 07m:01s 79m:41s
18 SQP 00m:55s| 08m:20s 86m:30s
DI 08m:41s 86m:53s 861m:11s
Total 09m:36s 95m:13s 947m:41s
19 SQP 04m:14s 41m:45s 411m:12s
DI 97m:23s| 973m:03s| 9707m:1lls
Total | 101m:37s| 1014m:48s| 10118m:23s

Table 20.2: QAGen Scalability
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| Result | TPC-H(Uniform/Zipf) [ MIN-Uniform | MAX-Zipf |
R1 1 1 5
R2 5 1 25
R3 3k 1 15k
R4 45k 1 150k
R5 9k 1 150k
RG6 36k 1 600k
R7 147 1 20k
R8 282 1 600k
R9 282 1 600k
R10 282 1 600k
RI11 2 1 2

| Execution Plan| Figure20.2(a) | Figure20.2(b) | Figure20.2(c) |

Table 20.3: Knob Values and Resulting Execution Plans

for TPC-H query 8. Then, we execute query 8 on the four generatdadses (on PostgreSQL)
and study their physical execution plans. The first database [MINenifis automatically gen-
erated by the testing framework using the minimum case partition. The databbks guery

8 to have the minimum cardinality on each intermediate result during executiotine IfMIN-
Uniform] database, the key values between two joining relations have arbnifistribution. Fur-
thermore, during a grouping operation, tuples will be uniformly distributeddifferent groups
in the [MIN-Uniform] database. The second database [MAX-Zipf] is ajeaerated by the test
framework using the maximum case partition with a Zipf distribution. The third da@&prPCH-
Uniform] is manually added to the test suite and is generated by QAGen usimng¢nmediate
result sizes extracted from executing query 8 on TP@bgendatabase (as in the first experiment
above). The last database [TPCH-Zipf] is generated by QAGen usirgptine intermediate result
sizes as [TPCH-Uniform] but with a Zipf distribution. Tali#€.3 shows the intermediate result
sizes of the above set up.

Figure[20.2 shows the physical execution plans of executing TPC-H query 8 on therated
guery-aware databases. By controlling the output cardinalities of thetopg, it causes Post-
greSQL to use different join strategies. For example, when the cardinfbyob output is mini-
mum [MIN-Uniform], PostgreSQL tends to use a left-deep-join order (f&@0.2 (b). When the
cardinality of each output is maximum [MAX-Zipf], PostgreSQL tends to ubeishy-tree join
order (Figurd20.2 (c). The output cardinalities also strongly influences the choice of pdilysic
operators; when the output cardinality is large, PostgreSQL tends t@akegdins (Figur20.Z).
However, when the output cardinality is small, PostgreSQL tends to use sk joins but used
sort-merge-joins and nested-loop-joins (Figlfg2 (a), (b)). The input and output cardinality
also influence the choice of physical aggregation operators. Whengbetmthe aggregation
(i.e., R10 in Table 2) is minimum or same as the TPC-H size, then PostgreSQL tends tmuge gr
aggregation (Figur20.2 (a), (b)). However, when the input to is maximum, then PostgreSQL
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Figure 20.1: TPC-H Query 8: Logical Query Plan

tends to first do a hash aggregation and then sort it (FBO2Y(c)).

Controlling the distributions of the query operators shows that the opsiiatBostgreSQL are less
sensitive to the data distribution. For example, when the cardinality is sameCi$ SiPe (Figure
[20.2(a)), the distribution knob does not influence the execution plans. Mergihe distribution
knob also has less influences on the choice of physical operators.

In this experiment, we attempt to use other database generation tools tagénesame set of test
databases which can produce the same intermediate query results. Weumythéesrexperiment
with two commercial test database generators, DTM Data Generator an®EMest Database
Generator, and one research prototM]ﬂ. However, these tools only allow constraining
the base tables properties and we fail to manually control the intermediate siees for the
purpose of this experiment. Another attempt is to use the query paramegsatien tool from

to generate query parameters on top of the generated databases/eldineat tool can
only support select-project-join queries (with single-sided or double{siddicates) which is not
suitable for the complex TPC-H queries (which include aggregations angleg predicates) in
this experiment.

We also attempt to evaluate DGL from Micros [05, however their tool is not publicly available.
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P = Part, R = Region, S = Supplier
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Figure 20.2: Physical Execution Plans of TPC-H Query 8
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Related Work

Math and music are intimately related.
Not necessarily on a conscious level, but sure.

— Stephen Sondheim, born 1930 —

The closest related work in DBMS testing is the Worklm which studies the generation of
query parameters for test queries with given test databases. Hoerigting database generation
tools such as IBM DB2 Database Generator and others (L&@E*_[QA], [[I:ILALO_d] [[B_C_O_E]) were
designed to generate general-purpose test databases without aeyncfam the test queries, and
thus the generated databases cannot guarantee sufficient covéiggezific test cases. As a
consequence@ can hardly find a good database to work on and eventually only a very
limited subset of SQL is supported.

QAGen extends symbolic executi@] and proposes the concept of symbolic query process-
ing (i.e., SQP) to generate query-aware databases. SQP is related trmiobstabases (e.g.,

]); however, constraint databases focus on constraints that egprieéinite concrete data
(e.g., spatial-temporal data) whereas SQP works on finite but absttact da

The semi-automatic testing framework in this part is related to a number of softesiieg re-

search work. For examplé@] first states the test case selection problem for traditional
program testing. Some solutions for the traditional test case selection prehie be found in

[AO9; CDFP97/CGMCO3 WPOZ GOAS.
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Summary
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e 2.2

Conclusions and Future Work

What is now proved was once only imagined.

— William Blake, 1757-1827 —

This thesis presented two innovative techniques for specifying andajemngtest case aware
databasesind discussed several applications of these technigues.

Partll] presented a new technique called Reverse Query Processing or ®Q@Roit. RQP com-
bines techniques from traditional query processing (e.g., query reavrit¢he iterator model) and
model checking (e.g., data instantiation based on constraint formulaepufgtional logic). The
main application of RQP is the generation of databases for the testing of OpgiRations. It
could be shown that a full-fledged RQP engine for SQL (called SPQR}pedmilt and that it
scales linearly with the size of the databases that need to be generatesl T®@GHH benchmark.

Part[lll] discussed two more applications of RQP in detail (i.e., the functional testind-BP O
applications as well as the functional testing of a query language) aséniesl the necessary
extensions of RQP. RQP for the functional testing of a query languagdrisntly used in an
industrial environment at Microsoft for the testing of the query praogssapabilities of the new
ADO.Net Entity Framework.

For many other applications of RQP (e.g., Update of Views, Program \&rdit) significant
additional research is needed in order to exploit the potential of RQPseqaently, the most
important avenue for future work is to further explore these applicatiemghermore, additional
work is required in order to develop techniques for RQP which guararggein properties of
the generated data (e.g., minimality). In addition, it is going to be important to pyveexent
developments of the model checking community.
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Finally, ParflV]l presented another technique called Symbolic Query Processing or @G@Roft.
SQP combines the techniques from traditional query processing (e.g., th®itenodel) and
symbolic execution from software engineering (e.g., representing eendata by symbols). The
main application of SQP is to generate test case aware databases for thg déstidividual
DBMS components. A prototype system QAGen which implements a symbolic guacgssing
engine for a subclass of SQL queries was presented. It could benghatvQAGen is able to
generate query aware databases for complex SQL queries and thele# Boearly. Moreover,
a semi-automatic test case generation framework was proposed, whictigsra good starting
point for building a fully-automatic DBMS testing framework.

One of the most important avenues for future work is to support morey qlesses in QAGen.
Additionally, in order to support further applications, we also plan to ex®Qe to take a set of
annotated query plans as input to generate one test database thabrates@ll the constraints
of these annotated query plans. Alike, it is also important to study the possddilitgtantiating
many symbolic tuples in parallel during the data instantiation phase in order eagethe effi-
ciency of QAGen. Another interesting future work is to extend the cuitesitcase generation
framework so that it supports more coverage criteria. For example, ldvimuinteresting if the
framework can generate test cases where an operator (e.g., selgeti®@ maximum partition
input but returns a minimum partition output. Finally, we believe that the workQ@® $an be
integrated with traditional symbolic execution so as to extend program véoficand test case
generation techniques to support the testing of database applications.as we

For both frameworks, RQP and SQP, we have shown that they are at@eatgetest case aware
databases which satisfy complex constraints and that our prototype impl¢ioenhtdready scale
well for huge amounts of data. Consequently, we can generate tesasesalor many practical
situations which is a basic requirement for an industrial application of bathdworks. However,
both frameworks also have some limitations:

e For a better industrial acceptance it would be helpful to enhance théitysabthe frame-
works; e.g., by implementing graphical tools which simplify the specification ottme
straints on the test databases.

e Another drawback of both frameworks is that initially one test databasenergied per test
case, which is very expensive and makes it difficult to manage the dedeest databases
for industrial applications where many thousands of test cases aresaegeTherefore, in
this thesis we already sketched several solutions to tackle this problem;yemgerging the
test databases or by mutating the test cases so that more than one teahdasexecuted
on the same test database. However, we did not analyze this problemiin deta
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e Moreover, we also have not considered the evolution of the generatedatabases when
the test cases that are to be executed on a database application or onSadb®Modified.
Consequently, it would also be an important avenue for future work tpastiphe evolution
of the generated test databases without having to regenerate the congildegdbases in
order to make both frameworks even more interesting for practical appheatio

In general, we believe that this thesis is only the first steps into a new casdiagction.
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Appendix

Analysis of the Approximate Overweight
Subset-Sum Problem

A.1 Correctness

As explained in the Sectidfi/.2.2and Figur€l7.5 if our algorithm returns an answer after Line 3,
the answer must be optimal. Thus, in the following, we shall assume that thittalgproceeds
after Line 3, so that, < c,andY /_/ ¢; < c< 31 ¢ =p.

Let OPT denote the optimal subset sum. Suppose thaf’ is the sum of some subsets@fthat
consists of: values inL andb values inS, say,{¢1, {o, ..., ¢, } and{sy, s2, ..., sp}. Immediately,
we have the following facts:

FactA.1l p/2 < ¢ < OPT < p.

Proof A.2 Sincer;l1 ¢ < cande, < ¢, we havep < 2¢. On the other handOPT is the
optimal subset sum value, 8a< OPT < p.

FactA.3 a <.

Proof A.4 Since the sum of the smallestalues inC' is already at least the target susmO PT
cannot contain more thanvalues. Thusg + b < r and soa < r.

Fact A5 a < 2/e.

Proof A.6 Since each large valug is at least(e¢/2)p, we havel; > (¢/2)c asp > ¢ (by Fact
A.1). Thus, the sum of ar?y'c large values is at least, so thatO PT' cannot contain more than
2/e large values. This implies < 2/e.
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CHAPTER A: ANALYSIS OF THE APPROXIMATE OVERWEIGHT SUBSETSV
PROBLEM

LetL* =01 +la+. ..+ 4, Letv* = [41/d]+ [l2/d] +. ..+ [{,/d] be the sum of the quantized
values of eacld;. Note thatv* is at mostL* /d + a, which is at mos{p/d]| + a < g. Thus, there
is a bucketB,- and a valueX [v*] corresponding te*. We now claim that when we execute Line
24 in Figurdl7.3 the valueX [v*] satisfies the condition below:

ClaimA.7 ¢ < X[v*] < (14 €)OPT.

If the claim is true, then after the execution of Line 24 in Fidliied the setB; returned must
have a value of at leastand at most1 + ¢) OPT, so that it is a desired approximate solution to
the overweight subset-sum problem. So, it remains to prove @afn

Let L' be the value ofX[v*] at the end of Phase 1 (Line 11-17 in Figlré3), so thatl' is
the sum of the “large" numbers iB,-. By our choice of updating the buckets, it is easy to
prove by induction thaf,’ > L*. (Without loss of generality, assunfe < /5 < --- < /,.
Then, inductively, after we have finished processing lines 13-17, the valu&'[j] with j =
[01/d] + [l2/d] + --- + [4;/d] is at least/; + f2 + -- - + ¢;.) On the other hand,’ is at most
dv*, so that

L' < ([t1/d] + [lo/d] + ...+ [la/d])d < L* + ad.

By FactdA.]] [A3and we havend < (2/e)d = (¢/2)p < eOPT. Thus, the value oX [v*]
at the end of Phase 1, whichis, satisfies:

L* <L <L*+€eOPT.

Now, there are two cases:

Case 1:If L' > ¢, then Phase 2 (lines 18-23 in Figlré.5 will not change the value ok [v*],
so thatX [v*] < L* 4+ eOPT < (1+¢)OPT.

Case 2:1f L’ < ¢, after the fine-tuning in Phase 2, the valueXfv*] must be at least (other-
wise, L’ plus the sum of all numbers in the small $eis less thare. However,L’ > L*, so this
will contradict the fact thaOPT, which is L* plussomenumbers in the small sét, is at least.)
and at most+ (¢/2)p. Thus, after Phase 2, the valueXfv*| satisfies: < X [v*] < (1+¢)OPT.

This completes the proof of the claim, which leads to the following theorem:

Theorem A.8 Suppose there exists an optimal solution for the overweight subset sbiaermpron
a setC and a target sumaz. Suppose further that the optimal solution has sA7". Then, on
given any, our algorithm always returns a feasible subsefoivhose sum is at mogt+¢) OPT'.
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A.2 TIME AND SPACE COMPLEXITIES

A.2 Time and Space Complexities

A breakdown of the time complexities is as follows. Firstly, Line 1-6 and Line i8-@one in
O(m) time. Then, the value of is bounded byl + 4 /€% + 2/e = O(1/¢?), so Line 7 is done in
O(1/€%) time. In Phase 1, the loop (lines 11-17) is executed at md@ines, and each execution
requires an update of at magtvalues (by careful implementation with a standard trick, so that
when we process;, € L, we storeB; ,, by a triple (j, k, ¢;) in Line 16 instead). Thus, Phase
1 in total takesO(m/€?) time. In Phase 2, the loop (lines 18-23) is executéines, and each
execution require®(m) time. So Phase 2 in total also take$m /<) time. Therefore, the time
complexity of the algorithm i©)(m/€?).

Next, the algorithm requires two arraygsand X. Each bucket oBB can store up ten numbers,
so in total it occupie®)(gm) space. Each entry of stores one integer, so in total it tak@$g)
space. Together with the space to st6tethe space complexity i©(gm). Thus, we have the
following:

Theorem A.9 The algorithm runs irO(m/?) time, and require®)(gm) space.
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Appendix

Complexity of the Group Assignment
Problem

Problem Definition: The combinatorial problem that we call tBroup Assignmenproblem is
non-trivial to define. Therefore, we begin by defining the major entitiethefinput and then
define the problem itself.

Definition B.1 (Group Assignment Problem (GA), input) The input(G, C, m) consists of a ground
setG of n itemswhere each item represents a pre-group of the input of an aggregapierator, as
well as aconstraint se€’ of m group-count constrainishich result from the positive and negative
group-count knob values (and is the output cardinality of the aggregation operator) and of an
instantiation restriction vectarwhich results from domain constraints on the group-by attributes.

We first describe the ground set and the associated variable set: Eawla ite G has anitem
sizes(a) € N and an associated-dimensionalvariable vectorv(a). A variable vectorv =
(v1,...,vq) is taken from the Cartesian product édisjoint variable setsy, ..., X;. Thus, the
variable vectorv(a) represents the symbolic values of the group-by attributes of the prgsgro
which is represented by and the sizes(a) represents the size of that pre-group. In case that the
input is not pre-grouped w.r.t. the group-by attributes, the siz¢d$ = 1 for all itemsa € G.

The goal of the GA is to partition the items into groups(v1, . . ., vm), Wherel), v; = G, such
that each groupy meets the associated group constraifit) € C'. Each itemu € G is associated
with a size value(a). Each group constraint(-y;) is of one of the following three types:

> s(a) < rhs(i) > s(a) = rhs(i) > s(a) > rhs(i)

acy; acy; acy;

A last part of the input is the instantiation restriction vecior Part of the problem is to assign
values from finite sets to the variables. More precisely, for each dimengich: < d there is a
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separate finite domain sé?; = 1,...,r; from which the variables iiX; can be instantiatedI?;
can be created from the domain constraints ondthie group-by attribute). The instantiation can
be seen as amstantiation mapping : X x,..., x3; — Dix,..., xD, such thatf(v(a)) is
the instantiated variable vector(a). Thus,r specifies the cardinalities of these domains.

Definition B.2 (GA problem) Given an inpu{G, C, m) to the GA problem, partition the ground
set intom groups(~i, . . ., 7m) Such that the constraints given Byhold and find an instantiation
mappingf such that the following property holds:

Two items are in the same group if and only if they have componentwiskiesfaatiated variable
vectors:3i : a,b € v; < f(v(a)) = f(v(b)).

Itis not surprising that the GA-problem is NP-complete.

Lemma B.3 The GA-problem is strongly NP-complete for varying sizes of groungisetie and
multiple group-by attributes) and constraint set, an arbitrary single caistrtype and a single
fixed right hand side for the constraints.

Proof B.4 The problem is obviously in NP, as one can guess and verify a solutiothé&oeduc-
tion we reduce to the 3-partition problem, problem SP1

3-partition asks for a given set of 3m elements of sizes(a’) for o’ € A and a boundB

(with B/4 < o(a’) < B/2 as well as}_ ., 0(a’) = mB) whetherA can be partitioned into
m disjoint setAy, ..., A, such that for eachd;, >, 4. o(a’) = B. Note that eachd; must
therefore contain exactly three elementsdof

This problem can be formulated by the grouping part of the above proalene: Each element
a’ € Amapstoanitem € G with s(a) = o(a’) andv(a) = a,. In this transformation each item
gets a separate variable. The constraint set consists ebnstraints that impos®_ . s(a) =
B. Note that it is possible to replace all equal constraints together by loweagreater equal
constraints.
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