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Digitale in-line röntgenholographische Mikroskopie mit
Synchrotronstrahlung
In-line Holographie kann als eine linsenlose Mikroskopietechnik verwendet werden,
welche dreidimensionale Bilder des Objektes liefert und deren Auflösung nur von der
verwendeten Wellenlänge und der numerischen Apertur des Systems abhängt. In der
vorliegenden Arbeit wurde Holographie in der in-line Geometrie mit Wellenlängen
im vakuum-ultravioletten und weichen Röntgenbereich verwendet. Durch Beugung
der Synchrotronstrahlung an Lochblenden mit geeignetem Durchmesser wurden di-
vergente Wellenfronten erzeugt. Das holographische Interferenzmuster wurde mit
einer CCD-Kamera aufgenommen, und die Bilder wurden mit Hilfe der Kreuzer-
Implementierung der Kirchhoff-Helmholtz-Transformation numerisch rekonstruiert.
Mit dieser Mikroskopietechnik wurden lithographische Strukturen in Photolack, Mi-
schungen aus Polystyrolkugeln und Eisenoxidpartikeln, und getrocknete biologische
Proben wie Rattenfibroblasten, die Grünalge Ulva linza und menschliche Chromo-
somen abgebildet. Die erreichte Auflösung wurde über verschiedene Kriterien be-
stimmt und mit den theoretischen Vorhersagen verglichen. Es konnte gezeigt wer-
den, dass durch Erhöhung der numerischen Apertur mittels kleinerer Lochblenden-
durchmesser und durch nachträgliche Korrektur des Abdriftens der Probe die exper-
imentell erreichte Auflösung von δexp = 1.13 ± 0.35 µm auf δexp = 0.37 ± 0.04 µm
verbessert werden konnte. Dieser Wert entspricht den theoretischen Erwartungen.
Desweiteren konnte durch Aufnahmen bei verschiedenen Wellenlängen ein Kontrast
zwischen unterschiedlichen chemischen Elementen erzeugt werden.

Digital in-line X-ray holographic microscopy with synchrotron radiation
In-line holography is a lensless microscopy method yielding three-dimensional im-
ages of the object, where the resolution limit depends on the illuminating wavelength
and the numerical aperture of the system, only. In this work, an in-line holographic
setup was implemented with radiation in the vacuum-ultraviolet and soft X-ray re-
gion. Diverging wavefronts were generated by diffraction of the synchrotron radia-
tion from a pinhole with suitable diameter. The holographic interference pattern was
recorded with a CCD camera, and the images were numerically reconstructed using
the Kreuzer implementation of the Kirchhoff-Helmholtz transform. With this mi-
croscopic technique, lithographic structures in photo resist, mixtures of polystyrene
beads and iron oxide particles, and dried biological samples such as rat embryonic
fibroblast cells, green algae Ulva linza, and human chromosomes were imaged. The
achieved resolution was determined via different criteria and was compared to the
theoretical expectations. It was shown, that by increasing the numerical aperture
with smaller pinholes and by correcting for drift effects, the experimental resolution
could be improved from δexp = 1.13± 0.35 µm to δexp = 0.37± 0.04 µm, meeting the
theoretical prediction of δtheo = 0.34 µm. Furthermore, by recording holograms at
different energies, element contrast was obtained.
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1 Introduction and Context

For a broad range of natural sciences, foremost physics, biology, medicine, and
material sciences, optical imaging of smaller and smaller structures becomes more
and more essential. Therefore various techniques, each with its own advantages
and disadvantages and fields of application, have been developed.

With approximately 400 years the oldest and still most common technique is
optical light microscopy. It is easily applicable and the only requirement is suf-
ficient transparency, so thin samples (up to the mm range) are preferred. Also,
living systems can be examined in solution without damaging them. But with
the discovery of the so called diffraction limit by the German mathematician and
physicist Ernst K. Abbe [1], it became clear that even with perfect lenses objects
less than

δlat ≈
λ

2n sin θ
(1.1)

apart cannot be resolved. Here, λ is the wavelength of the light used, n is the
refractive index of the medium, and the semi aperture angle of the lens is denoted
as θ. Since up to now the best numerical apertures (NA = n sin θ) range from
0.95 for dry to 1.42 for oil immersion objectives (noil = 1.52) [2, 3], structures
smaller than 200 nm are not discernible using visible light. To circumvent this
barrier, great efforts have been taken and numerous different techniques arose.

The next popular far-field method, Fluorescence Microscopy, does not yield better
spatial resolution, but since most dyes bind specifically to certain tissue in cells,
the identification of cells and sub-microscopic cellular components with a high
degree of specificity even down to single molecule level is achieved. Therefore,
the sample must be intrinsically fluorescent or must be stained with a fluorescent
dye, which is sometimes difficult with living cells. Normally, the cell has to be
permeabilized so that the dye can be introduced. In addition to that, since the
fluorescence photons must be able to leave the sample and reach the detector,
thin samples are preferred.

An important step toward better depth resolution was the development of Con-
focal Laser Microscopy. By introducing two pinholes at the two focal spots of the
microscope and thus blocking the light that arrives at the detector from planes
in the sample other than the focal plane, depth resolutions of 500 to 900 nm are
attained with lateral resolution of 200 nm [4]. This does not yet break the diffrac-
tion barrier, but improves the depth resolution, since noise effects are lessened.
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1 Introduction and Context

Taking images at several focal depths provides full 3D information. However,
this makes Confocal Laser Microscopy a scanning method, so dynamics cannot
be observed. Additionally, when using it as a Confocal Fluorescence Microscope,
the sample is exposed to high energy radiation which might damage it, because
of the low quantum efficiency of fluorophores and since a major part of the light
is blocked by the pinhole.

A different approach to better resolution is abandoning visible light in favor of
smaller wavelengths as probes. As it becomes clear from equation (1.1), resolution
is linearly dependent on the wavelength of the probe. Therefore, using soft X-rays
(λ =0.1 to 10 nm) or even electrons (E =20 to 200 eV [5]) structures as small as
30 nm (X-rays) [6] down to 0.2 nm (electrons) can be resolved.

There are two types of Electron Microscopes, surface sensitive Scanning Electron
Microscope (SEM) or Transmission Electron Microscope (TEM). Both variants
require high vacuum to prevent signal losses through collisions with the remaining
gas. Therefore dehydrated or frozen samples are needed. Moreover, SEM needs
conductive samples, and in TEM only thin slices up to 100 nm can be penetrated
[6]. However, resolutions down to 2 nm can be achieved. Charging effects and
impairment by energy exposure are possible disadvantages [7].

In X-Ray Microscopy, the specimen can be observed in solution and at atmo-
spheric pressure, sample thicknesses up to 10 µm are possible. Operating at the
so called water window (λ =2.34 to 4.38 nm), the different absorption cross sec-
tions yield good contrast between water (oxygen) and proteins (carbon) without
staining [6, 8]. Additionally, a 3D tomographic setup is possible, where several
2D projections are recorded and later digitally combined to a full 3D object [9].
But the price of longer acquisition times has to be paid, and high exposure doses
might damage biological samples. A means to minimize the radiation damage is
cryogenic preparation [6].

Compared to electron microscopy, an important advantage of X-rays is their large
penetration depth. Thus, biological samples can be observed without preparation
in thin slices [10]. A second advantage is that the photon energy of synchrotron
radiation can be varied over a large energy region. With spectroscopic methods it
is therefore possible to obtain chemical information of a sample with high spatial
resolution down to 15 to 50 nm [8, 10, 11, 12, 13, 14]. The limiting factor for the
achievable resolution is the quality and the focal length of the zone plates [15].

Other scanning non-optical techniques, so called Near-Field Microscopy, as Atomic
Force Microscope (AFM) and Scanning Tunneling Microscope (STM), reach atomic
resolution but are purely surface sensitive [16, 17, 18, 19]. (Scanning) Near-Field
Optical Microscopy (SNOM) combines those non contact methods with near-field
optical measurements, so that not only the topography but also the optical prop-
erties of the sample can be determined with resolutions as small as 20 nm [20].
Yet, those methods are bound to the surface of the sample and the technical
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demands are high.

In light microscopy, there are two principle approaches to achieve resolution be-
low the diffraction limit using interference techniques. Firstly, at M. Gustafssons
lab at University of California, San Francisco, the image of a fluorescent sample
is detected by two opposing object lenses that are focused on the same plane
within the sample. The light of both beams interferes on the CCD camera form-
ing an interference pattern that holds high resolution information about the axial
position of the respective molecule. They named this method ‘image interference
microscopy’, I2M [21]. If, instead, the sample is illuminated through both lenses,
the intensity varies along the axial direction, enabling more selective excitation
similar to standing wave microscopy. This is referred to as ‘incoherent interfer-
ence illumination’, I3 [21]. Combining both techniques, that is illuminating and
detecting through both lenses, gives I5M, a wide field fluorescence microscopy
method with axial resolution better than 100 nm. Since the full plane of focus
can be recorded in a single image, the acquisition of a 512× 512× 160 pixel data
set only takes 10 to 20 min [21].

In the second approach, a major breakthrough in bypassing the diffraction limit
was achieved by the group of Stefan Hell at the Max Planck Institute for Bio-
physical Chemistry in Göttingen. In 2005, they attained spatial resolution down
to 16 nm in the focal plane [22]. They achieve this by combining two methods:
4Pi Microscopy and Stimulated Emission Depletion (STED) [23]. 4Pi Microscopy
is similar to I5M, with the difference that it is in a confocal setup [24]. STED
restricts fluorescence to spot sizes of 16 nm in the focal plane and 33 nm axial
resolution [25] by exciting molecules with a laser pulse and then depleting the
vicinity of the focal spot by a doughnut shaped redshifted pulse inducing stimu-
lated emission. While pure 4Pi Microscopy is compatible with living cells [24, 26],
the high intensities demanded in STED inflict photostress on the dye that leads
to bleaching and live cell incompatibility [23]. On the other hand, STED is not
restricted to fluorescence, but any photostable three-level system with adequate
excited state lifetimes and considerable cross-sections for stimulated emission
qualifies [25].

Recapitulating one can say, of those methods mentioned above, one part has the
capability to measure in-situ with high temporal resolution, but lacks high spatial
resolution, the other part achieving good spatial resolution, but does not work
under in-situ conditions and images are often taken in scanning mode.

Demand is there for a technique that combines the following important criteria:

� Simultaneous capture of the whole image with high acquisition frequency

� 3D information in one picture

� High spatial resolution in three dimensions

� In-situ capability
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1 Introduction and Context

Figure 1.1: Gabor’s original holography setup
This is Gabor’s drawing of his setup as published in his article ‘A New Microscopic
Principle’ [27]. A diverging reference wave (primary wavefront) illuminates an
object. Part of the wave is scattered by the object. This secondary wave interferes
with the reference wave, and the interference pattern is recorded on a photographic
plate.

Almost 60 years ago D. Gabor proposed ‘A New Microscopic Principle’ capa-
ble to circumvent the diffraction barrier due to being completely lensless [27].
Therefore, the resolution is limited only by the wavelength and the numerical
aperture of the setup. Additionally, though unintended by Gabor, all 3D infor-
mation of the mapped object is contained in one single image. What he named
‘electron interference microscope’ is now known as holography (from Greek: holos
= complete, integral and graphein = to write) due to its property to record all
3D information in one single image. But how does it work?

Image recording devices such as photo plates or modern CCD cameras only record
the amplitude but not the phase of the light impinging on it. But the phase is cru-
cial for complete 3D information. However, the interference pattern generated by
superimposing two components of coherent light—one fraction interacts with the
object (object wave) while the other part reaches the detector undisturbed (ref-
erence wave)—contains amplitude and phase information in its intensity profile.
The image can be optically or digitally reconstructed revealing full 3D informa-
tion of the object. Originally suggested for electrons [27, 28, 29, 30], holography
can also be performed with photons [31, 32], neutrons [33], X- [34, 35, 36, 37],
and γ-rays [38, 39], if only the coherence length is sufficiently large.

Three basic setups can be distinguished, off axis, in-line and Fourier geometry
[40, 41]. Gabor’s initial proposal used in-line geometry (see figure 1.1) [27].
An electron beam is brought to a fine focus, then diverges, one part interacts
with the object and interferes with the primary wavefront at the detector, a
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photographic plate, where the interference pattern is recorded. This pattern does
not necessarily resemble the object since it is recorded in great distance to it. The
only required properties for the sample are a preferably small size and mounting
on a transmittive support, so that a considerable part of the reference wave
reaches the detector. For reconstructing the image one develops the photograph
by reversal and then illuminates it with an optical imitation of the electronic
wave. An observer looking through the slide sees the original object behind it,
but will also see a second image of the object at the same distance in front of
the hologram. This undesired twin image superimposes the reconstructed images
and disturbs it since it is out of focus leading to a poor image quality. Another
drawback is the strong coherent background from the directly transmitted beam.
Those disadvantages were the reason that Gabor’s method did not find much
attention. Until 14 years later, when E.N. Leith and J. Upatnieks introduced an
off axis setup [42]. In this configuration the object beam is spatially separated
from the reference beam, resulting in image and twin image sufficiently far apart
from each other and from the reference beam. Additionally, with the invention
of the laser in 1960 coherent light sources were available, an important step was
done to developing holography as an imaging technique.

One also distinguishes between applying parallel or spherical waves as probes
[40]. While plane waves are used in the off axis as well as in the in-line geometry,
spherical waves are used exclusively in the in-line setup. For producing a spherical
wavefront, a small pinhole is placed in the beam path of the probe beam. If the
diameter of the pinhole is of the order of the wavelength of the light, a spherical
wave propagates behind it. Although using plane waves is experimentally slightly
easier, spherical waves have one big advantage. Because of the radial propagation
of the light a magnifying effect occurs, so holography with spherical waves can
be considered a microscopy technique [40, 41].

Digital in-line holography with spherical waves at optical wavelengths has been
impressively demonstrated in the group of Kreuzer at Dalhousie University, Hal-
ifax [43]. Three dimensional imaging of biological samples like diatom, Dity-
lum brightwellii, and the head of the fruit fly, Drosophila melanogaster, is rou-
tinely performed with lateral and depth resolution at least at the micron level
[29, 43, 44]. The three dimensional positions of microspheres can be determined
within an accuracy of a few hundred nanometers [45]. Due to the large focal
depth of the technique, volumes up to several cubic centimeters can be recorded
in one single hologram, and by collecting several holograms over an extended
time period, particle tracking in four dimensions is possible [31, 32]. In analogy
to optical microscopy, oil immersion techniques can be applied to enhance the
achievable resolution [46].

As mentioned above, in holography the resolution is not limited by diffraction,
since no lenses are needed, it only depends on the wavelength λ and the numerical
aperture NA of the setup. Therefore, the lateral and depth resolution are given
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by [31]

δlateral ≈
λ

2NA
and (1.2)

δdepth ≈ λ

2NA2 , (1.3)

with NA =
D/2

L
. (1.4)

As can be seen from equation (1.4), the numerical aperture is only constrained
by the ratio of the detector size D to the distance L between source and detec-
tor. Otherwise, any desired resolution should in principle be achievable. Already
in 1987, it could be shown, that spatial resolution as small as 40 nm using an
synchrotron radiation can be achieved [47], although exposure times of one hour
or longer were needed. In the same year, the applicability of X-ray lasers in
holography has been demonstrated [48], where a resolution of 10 µm was demon-
strated. So the problem of sufficiently coherent X-ray sources was solved. Al-
most one decade later, holograms from complex biological specimen recorded with
soft X-rays in the water window generated by synchrotron radiation achieved a
resolution of 40 nm [49]. Those holograms were recorded in a photoresist and
reconstructed after readout with atomic-force micrsocsopy (AFM). By digitally
recording several holograms from various positions and using tomographic princi-
ples for reconstruction, three dimensional images with a resolution of 1 µm were
achieved with soft X-ray holography [34]. Soft X-rays with full spatial coherence
can be generated by high-order harmonics [50]. Employing them in digital in-line
holographic microscopy, 800 nm resolution was obtained [50].

Concerning the Fourier approach to X-ray holography, experiments have been
performed in the groups of McNulty [51] and Eisebitt [52, 53]. Both groups
use the lensless geometry, and spatial resolutions down to 50 nm and below
are reported for gold patterns [51] and magnetic nanostructures [52, 53]. Also
in this geometry, holographic tomography is possible, yielding three-dimensional
imaging of gold-bar pattern [10]. In the optical implementation, color holographic
images have been presented [54].

A new development is off-axis holography with hard X-rays [35]. Coherent cone
beams are formed by a pair of X-ray waveguides, the obtained hologram is dig-
itally reconstructed. Spatial resolution of about 100 nm has been achieved, and
the approach of the fundamental limit of 10 nm is predicted [35].

On the other hand, X-ray holography with atomic resolution is reported [55].
This technique, also called X-ray fluorescence microscopy (XFM), differs from
the ones introduced above. It was first proposed by A. Szöke almost 20 years
ago [56]. In this case, the atoms in a periodic structure like a singlecrystal
are exited by an X-ray source. The atoms themselves serve as internal sources
when emitting coherent fluorescence radiation during the relaxation process. Part
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of this wavefront will reach the detector directly forming the reference wave,
while the other part will interact with the surrounding atoms on the way to
the detector and there interferes with the reference wave. Moving the detector
around the sample, an angle-dependent intensity distribution is recorded which
is the hologram. The reconstruction reveals the average vicinity of one atom in
real space. A very similar method, the so called ‘inverse’ XFM, switches the
positions of source and detector [39, 57]. External radiation reaches the atoms
in the sample either directly or after scattering elastically off neighboring atoms,
interfering at the place of the atom. Hence, the strength of the fluorescence
emitted by an atom depends on the intensity of the interference, and is recorded
by the detector. The detector stays fixed, while the radiation source is moved
around the sample. Using those two methods, the atomic structure of several
crystals was reconstructed [57, 58], even light atoms could be imaged [59].

Today, all those methods employ numerical means of image reconstruction rather
than optical means. Probably all reconstruction algorithms use the Kirchhoff-
Helmholtz formula, which is a Fourier transformation of the hologram, as pre-
sented by J.J. Barton [60]. In the same paper, Barton suggests recording holo-
grams at several wavelengths, since properly phased combinations of these recon-
structions will yield better twin image suppression and resolution enhancement,
especially in axial direction. Experiments testing this Multiple-Energy X-Ray
Holography (MEXH) were performed and confirmed the predictions [57, 58, 59].

Another method, which is related to holography, has been developed in the past
years, which is called diffraction microscopy. It corresponds to an implementation
of holography without a reference wave. Therefore, the image cannot be recon-
structed via the Kirchhoff-Helmholtz transform, but an iterative phase retrieval
is necessary. Nevertheless, three-dimensional reconstruction of a noncrystalline
nanostructured material at 50 nm resolution [61] and two-dimensional imaging
of a biological sample at 30 nm [62] have been reported. Even 7 nm resolution
was obtained for non-periodic test pattern [63].

With the realization of sources for extremely brilliant, coherent and ultrashort
X-rays such as free electron lasers (for example FLASH at DESY, Hamburg), new
possibilities for those imaging methods arise. Due to the ultrashort pulses, diffrac-
tion pattern of biological samples without radiation damage may be recorded
before the sample explodes and turns into a plasma [64]. Test structures have
been imaged with 62 nm resolution [64]. Also, the dynamics of the explosion of
polystyrene spheres have been examined with time-delay X-ray holography [65].

Altogether, the field of holography has widely spread in the past 60 years, such
that the overview given above is far from exhaustive.

In summary, X-ray holography is a method which is capable of contributing to life-
science investigations in the future [10], since it has the potential of low spatial
resolution, provides a means for three-dimensional imaging, and is suitable to
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1 Introduction and Context

flash exposures—at least in its two-dimensional form [10].

The experiments presented in this thesis were performed in in-line geometry with
spherical waves. Coherent X-rays generated by synchrotron radiation were used
as probe. The divergent wavefronts were obtained by diffraction from a pinhole
of appropriate diameter. The holograms were recorded digitally on a CCD-chip,
and the images were reconstructed numerically on a computer using a Kreuzer
implementation of the Kirchhoff-Helmholtz transform.

In the following chapter, an introduction to the basic theory of holography will
be given. Details of the experimental setup as well as the generation of X-rays
by synchrotron radiation will be the topic of the subsequent chapter. Since the
resolution limit is an important parameter for imaging systems, the resolution
limit of digital in-line holography will be derived and the parameters, which in-
fluence this limit will be discussed in chapter 4. The pinholes and the samples
which were used in the experiments are described in the next two chapters. Ex-
perimental results obtained in the course of this thesis are presented in chapter 7
to chapter 9, and the achieved resolution will be determined. Finally, an outlook
to future experimental development concludes this work.
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2 Theory of Holography

In this chapter, the fundamental theory of digital in-line holography shall be
introduced. The main focus will be put on the formation of holograms and the
reconstruction of the image from the hologram. Other experimental geometries
than the in-line setup will be briefly discussed. This introduction is based on
corresponding chapters in common textbooks [40, 41, 66, 67, 68, 69, 70].

Since the basic mechanisms for holography—interference and diffraction—are
wave phenomena, first a short overview over the properties of light waves neces-
sary for the subsequent theory of holography will be given. A more detailed intro-
duction can be found in most optics textbooks, the one presented here coarsely
follows [40, 41, 69, 70].

2.1 Properties of light waves

2.1.1 Wavefunction and complex amplitude

Light as an electromagnetic wave can be described by a complex wavefunction.
A monochromatic wave can be represented by the harmonic wavefunction [41]

U(~r, t) = A0(~r) exp{iϕ(~r)} exp{iωt}, (2.1)

where A0(~r) is the amplitude, ϕ(~r) the phase, and ω = 2πν the angular frequency.
This wavefunction describes the wave completely and satisfies the wave equation
[41, 69]

∇2U − 1

c2

∂2U

∂t2
= 0. (2.2)

Here, ∇2 is the Laplace operator [41, 69],

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (2.3)

and c the speed of light. Inserting equation (2.1) in the wave equation (2.2) leads
to the time-independent Helmholtz equation [69]

∇2A(~r) + k2A(~r) = 0, (2.4)

9



2 Theory of Holography

where k = ω/c = 2πν/c is called the wavenumber, and A(~r) is the time-
independent factor in equation (2.1)

A(~r) = A0(~r) exp{iϕ(~r)}, (2.5)

which is referred to as complex amplitude [69]. Wavefronts are surfaces of equal
phase, that is where ϕ(~r) = const..

Physical quantities as for example the modulus of the electric field vector E(~r, t)
are given by the real part of the corresponding complex wavefunction [41]

E(~r, t) = <{U(~r, t)}
= A0(~r)<{exp{iϕ(~r)} exp{iωt}}
= A0(~r) cos{ωt+ ϕ(~r)}. (2.6)

However, this quantity is not observable. The human eye as well as recording
media only perceive intensities.

The optical power per unit area, the intensity I(~r, t), is calculated by averaging
the squared wavefunction over a time interval which is much longer than the
period T = 1/ν [69]. It is thus given by

I(~r) =
1

2
ε0c |A(~r)|2 =

1

2
ε0cA

∗(~r)A(~r), (2.7)

with A∗(~r) being the complex conjugate of A(~r). For a monochromatic wave, the
intensity does not vary with time [69]. The constant factor 1/2ε0c, where ε0 is
the vacuum permittivity, is usually neglected in practical calculations [41].

2.1.2 The plane wave and the spherical wave

Two simple solutions of the Helmholtz equation (2.4) are the plane wave and the
spherical wave. The plane wave is described by the complex amplitude [69]

A(~r) = A0 exp{−i~k · ~r − ϕ0}. (2.8)

A0 is called amplitude, and ϕ0 is a phase offset. The wavefronts are parallel planes
perpendicular to the wavevector ~k = k~n, where ~n is a unit vector in propagation
direction. The distance between two wavefronts λ = c/ν is named wavelength
[69]. So the modulus of the wavevector, the wavenumber k, and the wavelength
λ are connected via

k =
2π

λ
. (2.9)

The intensity of a plane wave, I(~r) = |A0|2, is constant in space [69].

10



2.1 Properties of light waves

A spherical wave is given by the complex amplitude [69]

A(~r) =
A0

r
exp{−ikr − ϕ0}, (2.10)

where r is the distance from the origin. The wavefronts are concentric spheres
separated by the radial distance λ, the intensity I(~r) = |A0|2/r2 decreases with
increasing distance from the origin.

2.1.3 Interference

In general, more than one wavefunction is present in a certain region of space and
time. Since the wave equation 2.2 is a linear differential equation, the resulting
total wavefunction is the sum of the individual functions. This superposition is
called interference [41]. Here, monochromatic waves with equal frequency (and
polarization) are regarded.

Two waves with complex amplitudes

A1(~r) = a1 exp{iϕ1} and

A2(~r) = a2 exp{iϕ2} (2.11)

result again in one monochromatic wave with the same frequency and the complex
amplitude [41]

A(~r) = A1(~r) + A2(~r). (2.12)

According to equation (2.7), the total intensity now is [41]

I(~r) = |A1(~r) + A2(~r)|2 = (A1(~r) + A2(~r))∗(A1(~r) + A2(~r))

= A∗1(~r)A1(~r) + A∗2(~r)A2(~r) + A∗1(~r)A2(~r) + A∗2(~r)A1(~r)

= a2
1 + a2

2 + 2a1a2 cos{ϕ1 − ϕ2}
= I1 + I2 + 2

√
I1I2 cos{ϕ}. (2.13)

The individual intensities are I1 = a2
1 and I2 = a2

2, and the phase difference is
ϕ = ϕ1−ϕ2. So the total intensity is not just the sum of the individual intensities,
but the so called interference term 2

√
I1I2 cos{ϕ} has to be added, which can be

positive or negative. This term causes a modulation of the intensity visible as
dark and bright fringes depending on the phase difference ϕ. At points where ϕ
is an even multiple of π,

ϕ = 2nπ, n ∈ Z, (2.14)

the intensity reaches its maximum, Imax = I1 + I2 + 2
√
I1I2. This is called

constructive interference [41, 69]. At points where ϕ is an odd multiple of π,

ϕ = (2n+ 1)π, n ∈ Z, (2.15)

11



2 Theory of Holography

the intensity reaches its minimum, Imin = I1 + I2 − 2
√
I1I2. This is called de-

structive interference [41, 69]. The visibility of the interference fringes is defined
as [41]

V =
Imax − Imin

Imax + Imin

=
2
√
I1I2

I1 + I2

. (2.16)

It is a measure for the contrast of the interference pattern.

2.1.4 Coherence

The prerequisite for interference phenomena is a constant correlation of the phases
of the contributing waves. The correlation of a wave with itself at different points
in time is described by temporal coherence, while the correlation of different parts
of the same wavefront is described by spatial coherence.

Temporal coherence

Light emitted from a single source does not consist of a single wave but of different
wave trains with finite length L and statistical phase difference. Only partial
waves belonging to the same wave train have a constant phase correlation and
can interfere with each other. Therefore, the length of the wave train, L, is called
coherence length. The corresponding time

τ =
L

c
(2.17)

is named coherence time [41]. A wave train of length L corresponds to light with
spectral width ∆ν, so the coherence length can be expressed as [41]

L =
c

∆ν
=

λ2

∆λ
. (2.18)

Monochromatic light, that is having a narrow bandwidth, therefore has a long
coherence length.

The coherence length of a light bulb is in the range of some micrometers, while the
coherence lengths of lasers can be from some millimeters (e. g. a multi-mode diode
laser) up to several hundred meters (e. g. a stabilized single mode Nd:YAG-laser)
[41].

Spatial coherence

In the considerations above, a point source was assumed. However, real light
sources are extended sources, and the size of the source influences the interference

12



2.1 Properties of light waves

Figure 2.1: Young’s interferometer
Light emitted by an extended light source passes an aperture with two holes sep-
arated by a distance a. The resulting interference pattern is observed on a screen.
If the distance of the holes exceeds a critical distance ak, the path difference is
larger than λ/2, and the interference pattern vanishes. After [41].

phenomena. In figure 2.1 the schematic of a Young’s interferometer is depicted.
With this interferometer, the coherence distance of the extended light source can
be measured. Light emitted by the source passes an aperture with two holes
separated by a distance a. The resulting interference pattern is observed on a
screen. If the distance of the holes exceeds a critical distance ak, the interference
pattern vanishes. This distance is called coherence distance [41].

Every point of the source emits light incoherently with respect to the other points,
so an interference pattern is only visible, if for every point of the source the optical
path difference r2 − r1 satisfies [41]

r2 − r1 <
λ

2
. (2.19)

The optical path difference is largest for the edges of the source. If the source is
of width h in a distance R to the aperture, for a point at the edge follows

r2
1 = R2 +

(
a− h

2

)2

and

r2
2 = R2 +

(
a+ h

2

)2

. (2.20)

Assuming that a� R and h� R it follows [41]

r2 − r1 ≈
ah

2R
. (2.21)
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2 Theory of Holography

Figure 2.2: Coordinate system for the Fresnel-Kirchhoff integral
A spherical wave emitted by the source lying in the source plane illuminates an
aperture. The resulting diffraction pattern is observed in the observation plane.
After [41].

Inserted in equation (2.19), this leads to

ah

2R
<
λ

2
. (2.22)

So the relation for the coherence distance ak is [41]

akh

2R
<
λ

2
. (2.23)

The spatial coherence thus not only depends on the properties of the light source,
but is also influenced by the geometry of the interferometer.

2.1.5 Diffraction

Besides interference, light waves show another interesting phenomenon, diffrac-
tion. If the dimensions of an obstacle hit by a light wave are in the range of the
wavelength, effects differing from geometrical optics occur. For example, a light
wave illuminates an opaque screen with a small transparent hole, and the result
is examined on a screen on the other side. From geometrical optics, one would
expect a uniformly bright spot of the size of the hole surrounded by shadow. A
closer look however reveals a pattern of bright and dark regions. This effect is
due to diffraction.

A qualitative explanation is given by Huygens’ principle, stating that “every
point of a wavefront can be considered as a source point for secondary spherical
waves. The wavefront at any other place is the coherent superposition of these
secondary waves.” [41]
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2.1 Properties of light waves

A quantitative description is given by the Fresnel-Kirchhoff integral [41]

Γ(x, y, z) =
i

λ

∞∫
−∞

∞∫
−∞

A(ξ, η)
exp

{
−i2π

λ
ρ
}

ρ
Qdξdη (2.24)

with
ρ =

√
(x− ξ)2 + (y − η)2 + z2. (2.25)

This integral can be derived from the Kirchhoff-Helmholtz integral theorem, as
shown in [71]. The underlying coordinate system is depicted in figure 2.2. A(ξ, η)
is the complex amplitude of the wave in the aperture plane. Since according
to Huygens, every point (ξ, η) within the hole in the aperture is a source of a
spherical wave, the wavefront Γ at any point (x, y) in the observation plane is the
superposition of all those spherical waves. This superposition is expressed by the
integral. The amplitude of each spherical wave is proportional to the amplitude
A(ξ, η) of the original wave at the aperture plane. The inclination factor Q is
introduced to exclude the propagation of the secondary spherical waves back in
direction towards the source. For most practical situations Q ≈ 1.

If z is much larger than |x− ξ| and |y− η|, based on Taylor series expansion [72]
ρ can be approximated as [69]

ρ ≈ z +
(x− ξ)2 + (y − η)2

2z
. (2.26)

Since behind the obstacle the wave is not disturbed, it is

Γ(x, y, z) = Γ0(x, y, z) exp

{
−i2π

λ
z

}
. (2.27)

Furthermore, it can be approximated

A(ξ, η)

ρ
≈ A(ξ, η)

z
. (2.28)

Then equation (2.24) can be written as

Γ0(x, y, z) =
i

λz

∞∫
−∞

∞∫
−∞

A(ξ, η) exp
{
−i π
λz

[
(x− ξ)2 + (y − η)2

]}
dξdη

=
i

λz

∞∫
−∞

∞∫
−∞

A(ξ, η) exp
{
−i π
λz

[
x2 + y2

]}
× exp

{
−i π
λz

[
ξ2 + η2

]}
× exp

{
i
2π

λ
[ξx/z + ηy/z]

}
dξdη. (2.29)
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2 Theory of Holography

Figure 2.3: Coordinate system for the Fraunhofer integral
When the propagation distance z of the wave is sufficiently long, only one plane
wave contributes to the complex amplitude at each point (x, y) in the image plane.
This wave travels at angles θx, θy. After [69].

This equation is known as Fresnel integral [69, 70].

Regarding the wave in the far field, that is for

z � b2

λ
>
ξ2 + η2

λ
, (2.30)

the second exponential factor is close to unity. This condition is known as Fraun-
hofer condition, the parameter

NF =
b2

λz
(2.31)

is named Fresnel number [69]. Thus the Fresnel integral can be further simplified
to the Fraunhofer integral [40, 70]

Γ0(x, y, z) =
i

λz
exp

{
−i π
λz

[
x2 + y2

]}
×

∞∫
−∞

∞∫
−∞

A(ξ, η) exp {i2π [ξx/(λz) + ηy/(λz)]} dξdη (2.32)

=
i

λz
exp

{
−i π
λz

[
x2 + y2

]}
×

∞∫
−∞

∞∫
−∞

A(ξ, η) exp {i2π [ξνx + ηνy]} dξdη

=
i

λz
exp

{
−i π
λz

[
x2 + y2

]}
A(νx, νy). (2.33)
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2.1 Properties of light waves

Here,

νx =
x

λz
≈ θx

λ
and

νy =
y

λz
≈ θy

λ
(2.34)

denote spatial frequencies, andA(νx, νy) is the two-dimensional Fourier transform
of A(ξ, η). This means, that the complex amplitude in the observation plane is a
Fourier transform of the complex amplitude in the aperture plane, multiplied by
a spherical phase factor.

According to Fourier optics, any arbitrary wave with complex amplitude A(ξ, η)
in free space can be analyzed as a superposition of plane waves [69]. The Fraun-
hofer integral can now be interpreted such, that only one of these plane waves in
the aperture plane contributes to the complex amplitude at each point (x, y) in
the observation plane. As can be identified in equation (2.32), this plane wave
has the wavevector components kx ≈ 2πx/(λz) and ky ≈ 2πy/(λz) and travels
at angles θx ≈ x/z, θy ≈ y/z, as sketched in figure 2.3. Due to destructive
interference, all other waves cancel out.

Under the condition

z � a2

λ
>
x2 + y2

λ
, (2.35)

that is for points in the observation plane close to the optical axis, the exponential
term in equation (2.33) is also close to unity. With equation (2.27), the Fraunhofer
integral for the complex amplitude Γ(x, y, z) can be written as [69]

Γ(x, y, z) = Γ0(x, y, z) exp

{
−i2π

λ
z

}
=

i

λz
exp

{
−i2π

λ
z

}
A(νx, νy). (2.36)

Instead of placing the observation plane at infinity, one can introduce a lens with
focal length f at a distance L behind the aperture plane [68, 73]. Now, the plane
wave arriving at small angles θx and θy is focused into a point in the focal plane
at (x, y) = (θxf, θyf) (compare figure 2.4). If furthermore L = f , equation (2.36)
changes to

Γ(x, y, z) =
i

λf
exp

{
−2πi

λ
2f

}
A
(
x

λf
,
y

λf

)
. (2.37)

This means, that the image in the focal plane of a lens corresponds to the Fourier
transform of the complex amplitude in the aperture plane [69].
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2 Theory of Holography

Figure 2.4: Fourier transformation in the focal plane of a lens
The plane wave arriving the lens at small angles θx and θy is focused into a point
in the focal plane at (x, y) = (θxf, θyf). After [69].

2.2 Examples for diffraction pattern

With the formulas derived above, the complex amplitude of a plane wave diffracted
from different apertures can be calculated.

2.2.1 Pinhole

The complex amplitude in the plane of an infinitesimal small pinhole at coordi-
nates (a, b) can be expressed as a Dirac delta function

A(ξ, η) = δ(ξ − a, η − b) with δ(τ − t) =

{
0 for τ 6= t
∞ for τ = t

(2.38)

According to the Fresnel-Kirchhoff formula [41], equation (2.24), the complex
amplitude of the diffracted wave Γ(x, y, z) can be calculated as

Γ(x, y, z) =
i

λ

∞∫
−∞

∞∫
−∞

δ(ξ − a, η − b)
exp

{
−i2π

λ

√
(x− ξ)2 + (y − η)2 + z2

}
√

(x− ξ)2 + (y − η)2 + z2
dξdη

=
i

λ

exp
{
−i2π

λ

√
(x− a)2 + (y − b)2 + z2

}
√

(x− a)2 + (y − b)2 + z2

=
i

λr
exp

{
−i2π

λ
r

}
(2.39)

with r =
√

(x− a)2 + (y − b)2 + z2.
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2.2 Examples for diffraction pattern

This is a spherical wave originating from the pinhole. Hence, a spherical wavefront
can be generated by illuminating a pinhole with a plane wave. In this case, the
Fresnel-Kirchhoff integral could be solved without approximations, therefore the
solution is valid in the near field as well as in the far field. For points in the far
field close to the optical axes, both Fraunhofer conditions (equations (2.30) and
(2.35)) are satisfied and the approximations equation (2.26) and equation (2.28)
are valid. So the spherical wave, equation (2.39), can be written as

Γ(x, y, z) =
i

λz
exp

{
−i2π

λ
z

}
. (2.40)

The amplitude i/(λz) varies slowly with z, so the wavefronts eventually approach
a plane wave [69]. This fact also means that a plane wavefront can be generated
by any arbitrary source if the observation plane is sufficiently far away.

2.2.2 Rectangular slit

When a plane wave of unit amplitude illuminates a rectangular slit of width a
and height b centered at the origin, the complex amplitude in the aperture plane
is

A(ξ, η) =

{
1 for − a

2
< ξ < a

2
and − b

2
< η < b

2

0 else
(2.41)

For the complex amplitude in the far field (z � ξ2+η2

λ
, equation (2.30), and

z � x2+y2

λ
, equation (2.35)) follows with the Fraunhofer integral (equation (2.32)

and (2.36)) [40, 69, 70]

Γ0(x, y, z) =
i

λz

∞∫
−∞

∞∫
−∞

A(ξ, η) exp {i2π [ξx/(λz) + ηy/(λz)]} dξdη

=
i

λz

a/2∫
−a/2

b/2∫
−b/2

exp {i2πξx/(λz)} exp {i2πηy/(λz)} dξdη

=
i

λz
(i2πx/(λz))−1 [exp {iπax/(λz)} − exp {−iπax/(λz)}]

× (i2πy/(λz))−1 [exp {iπby/(λz)} − exp {−iπby/(λz)}]

=
iab

λz
(πax/(λz))−1 sin (πax/(λz))

× (πby/(λz))−1 sin (πby/(λz))

Γ0(x, y, z) =
iab

λz
sinc (a/λ sin θx) sinc (b/λ sin θy) , (2.42)
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2 Theory of Holography

Figure 2.5: Intensity pattern behind a rectangular aperture
A slit with width a = 500 nm and height b = 300 nm is illuminated with a plane
wave of wavelength λ = 5 nm, the diffraction pattern is viewed in a distance
z = 800 mm.

with θx = x/z, θy = y/z, and sinc(x) = sin(πx)/(πx). The intensity distribution
in a plane at a distance z is then given by

I(x, y, z) = |Γ(x, y, z)|2

= I0

[
sin
(
πa
λ

sin θx

)(
πa
λ

sin θx

) ]2 [
sin
(
πb
λ

sin θy

)(
πb
λ

sin θy

) ]2

I(x, y, z) = I0 sinc2
(a
λ

sin θx

)
sinc2

(
b

λ
sin θy

)
, (2.43)

where I0 = (ab/(λz))2 is the peak intensity [69]. This intensity distribution
creates an equidistant grid pattern with rapidly decreasing intensity aside the
axes, as displayed in figure 2.5.

2.2.3 Circular aperture

As last example and with relevance for holography with soft X-rays (chapter 4
and chapter 5), a circular aperture of diameter a is considered. Illumination with
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2.2 Examples for diffraction pattern

Figure 2.6: Intensity pattern behind a circular aperture
A circular aperture with diameter a = 500 nm is illuminated with a plane wave of
wavelength λ = 5 nm, the diffraction pattern is viewed in a distance z = 800 mm.
The colormap is the same as in figure 2.5.

Figure 2.7: Coordinate system for the Fresnel-Kirchhoff integral
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a plane wave results in a complex amplitude in the aperture plane as

A(ξ, η) =

{
1 for ρ =

√
ξ2 + η2 < a

2

0 else
(2.44)

The underlying coordinate system is depicted in figure 2.7. Again, the resulting
intensity pattern is regarded in the far field, so both Fraunhofer conditions (z �
(a/2)2

λ
> ξ2+η2

λ
, equation (2.30), and z � x2+y2

λ
, equation (2.35)) are satisfied.

Since it is a problem of circular symmetry, polar coordinates are used to simplify
the equations. It is

R =
√

(x− ξ)2 + (y − η)2 + z2

ρ =
√
ξ2 + η2 r =

√
x2 + y2

ξ = ρ cos θ x = r cos θ′

η = ρ sin θ y = r sin θ′

The Fraunhofer integral can then be written as

Γ0(x, y, z) =
i

λz

2π∫
0

∞∫
0

A(ρ, θ) exp

{
i2π

λz
ρr [cos θ cos θ′ + sin θ sin θ′]

}
ρ dρ dθ

=
i

λz

2π∫
0

a/2∫
0

exp

{
i2π

λz
ρr [cos θ cos θ′ + sin θ sin θ′]

}
ρ dρ dθ (2.45)

With the sum and difference formulas it is [74]

cos θ cos θ′ + sin θ sin θ′ = cos(θ − θ′), (2.46)

and it follows for equation (2.45)

Γ0(x, y, z) =
i

λz

a/2∫
0

2π∫
0

exp

{
i2π

λz
ρr [cos(θ − θ′)]

}
dθ ρ dρ. (2.47)

Due to the radial symmetry of the problem, the integral cannot depend on θ′,
therefore one can set θ′ = 0 [66]. The inner integral is of the form [68, 75]

1

2π

2π∫
0

exp {i(x cos θ − nθ)} dθ = Jn(x), (2.48)

where Jn(x) is a Bessel function of the first kind of order n. Bessel functions are
solution for the differential equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 (2.49)
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and can be written as

Jn(x) =
∞∑
ν=0

(−1)ν

ν! Γ(n+ ν + 1)

(x
2

)n+2ν

, (2.50)

where Γ(x) is the gamma function [74]. It is also [74, 75]

xnJn(x) =

∫
xnJn−1(x) dx. (2.51)

Hence, equation (2.47) yields

Γ0(x, y, z) =
i

λz

a/2∫
0

2πJ0

(
2π

λz
ρr

)
ρ dρ

=
i

r

a/2∫
0

2πr

λz
ρ J0

(
2πr

λz
ρ

)
dρ

=
i

r

λz

2πr

a/2∫
0

2πr

λz
ρ J0

(
2πr

λz
ρ

)
2πr

λz
dρ. (2.52)

With the substitution α(ρ) = 2πrρ/(λz) and equation (2.51) it follows

Γ0(x, y, z) =
i

r

λz

2πr

α(a/2)∫
α(0)

αJ0(α) dα

=
i

r

λz

2πr
[αJ1(α)]πra/(λz)0 . (2.53)

It is J1(0) = 0 and lim(J1(x)/x) = 1/2 for x→ 0 [75], therefore

Γ0(x, y, z) =
i

r

λz

2πr

πra

λz
J1

(πra
λz

)
= i

λz

πra

2π(a/2)2

λz
J1

(πra
λz

)
Γ0(x, y, z) = i

π(a/2)2

λz

2 J1(πra/(λz))

(πra/(λz))
. (2.54)

For the intensity distribution in a plane at a distance z then follows

I(x, y, z) = |Γ(x, y, z)|2

=

∣∣∣∣π(a/2)2

λz

2 J1(πra/(λz))

(πra/(λz))

∣∣∣∣2
I(x, y, z) = I0

(
2 J1(πra/(λz))

(πra/(λz))

)2

, (2.55)

23



2 Theory of Holography

with I0 = (πa2/(4λz))2 being the peak intensity. This pattern is known as Airy
pattern, named after the English astronomer George Biddell Airy [66, 68]. It
results in a bright central disc surrounded by rings with decreasing intensity, as
displayed in figure 2.6. As it will be discussed later, this diffraction pattern limits
the resolution of optical systems.

For smaller aperture diameters a, the Airy pattern gets broader, so for sufficiently
small diameters, the Airy distribution converges to a spherical wave front.

2.3 Holographic principle

Images, such as photographs and paintings, are widely used to conserve moments.
However, they are only two-dimensional projections of the three-dimensional
world. Since conventional recording media only respond to the intensity of the
light waves, all phase information is lost. But the phase contains information
about the optical paths and hence the three-dimensional arrangement of the
scene. If it is possible to reproduce the amplitude as well as the phase of a wave-
front, the result cannot be distinguished from the original. A perfect illusion is
created.

2.3.1 General principle of holography

As described above, it suffices to know the complex amplitude in one plane (for-
merly called the aperture plane) to determine the complex amplitude in any
other plane in space (the observation plane). Considering a transparency, in
which the complex amplitude of a wave in a certain plane is recorded, for exam-
ple A0(x, y, 0). The transparency then has the complex amplitude transmittance
t(x, y) = A0(x, y, z). Illuminated by a uniform plane wave with unit ampli-
tude, the transmitted wave has a complex amplitude in this aperture plane of
A(x, y, z) = 1 · t(x, y) = A0(x, y, z). It propagates in space just like the original
wave and cannot be distinguished from it. But how can such a transparency be
created? And how can the phase of the complex amplitude be preserved?

The preservation of the phase can be done by mixing the original wave, that is
the object wave Aobj, with a reference wave Aref. If the waves are sufficiently co-
herent, the phase difference between object wave and reference wave is encoded in
the intensity distribution of the resulting interference pattern (compare equation
(2.13)). This intensity distribution can be recorded with a photographic plate,
from which a transparency with an amplitude transmittance proportional to the
intensity can be developed. With equation (2.13), the transmittance t(x, y) is

24



2.3 Holographic principle

then given by [41, 69, 70]

t(x, y) ∝ |Aref + Aobj|2

= A∗refAref + A∗objAobj + A∗refAobj + A∗objAref

= Iref + Iobj + 2
√
IrefIobj cos(ϕref − ϕobj). (2.56)

Illuminated by the reference wave Aref, the complex amplitude of the wave behind
the transparency is [40, 41, 69, 70]

A = Aref · t(x, y)

∝ Aref

(
A∗refAref + A∗objAobj + A∗refAobj + A∗objAref

)
= ArefIref + ArefIobj + IrefAobj + A2

refA
∗
obj. (2.57)

The first two terms represent the reference wave modulated by the intensities Iref

and Iobj, and the third term contains the desired information about the object
wave, while the last term contains the conjugate complex of the object wave. In
this way, a method is found to preserve the whole complex amplitude of a wave
in a two-dimensional image.

As already said before, the first person to develop this method was the Hungarian
physicist Dennis Gabor [27] in 1947 while trying to improve electron microscopy.
In figure 1.1, a schematic drawing of his setup is depicted. A diverging reference
wave (primary wavefront) illuminates an object. Part of the wave is scattered
by the object. This secondary wave interferes with the reference wave, and the
interference pattern is recorded on a photographic plate. He called the trans-
parency containing the interference pattern a hologram (from Greek: holos =
complete, graphein = to write), and the method “microscopy by reconstructed
wavefronts”. Throughout the years, the term holography established. It should
be emphasized, that holography is a two step process; first the hologram is cre-
ated by interference of the object wave with a reference wave, then the object
wave is reconstructed by diffraction of the reference wave from the interference
fringes of the hologram.

Holography is usually performed with either plane reference waves or spherical
reference waves. Different setup geometries are possible, too. Gabor himself used
the so called in-line geometry. However, other geometries like the off-axis and
the Fourier geometry were also developed. These three types will be introduced
in the following.

2.3.2 In-line holography

When the object is placed on the optical axis that connects the source of the
reference wave with the center of the recording screen, the arrangement is called
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2 Theory of Holography

Figure 2.8: In-line holography setup
left: The object is placed on the optical axis that connects the source of the
reference wave with the center of the recording screen. It is illuminated with a
plane wave. The resulting interference pattern is recorded on a screen.
right: When the developed hologram is illuminated again with the reference wave,
a virtual image of the object appears at the original position of the object. In
the same distance on the other side of the hologram, a real image occurs, the
twin-image. After [69].

in-line geometry. Usually, the screen is perpendicular to the optical axis. A
schematic drawing of an in-line setup is depicted in figure 2.8, left. The object
placed in a distance d to the screen is illuminated with a plane reference wave
propagating in z-direction with complex amplitude

Aref(z) = A0 exp{−ikz}. (2.58)

The amplitude of the plane wave A0 is a real constant with I0 = A2
0. The

hologram is recorded on the screen. After removing the object, the developed
hologram transparency is again illuminated with the same plane reference wave.
With equation (2.57), the complex amplitude behind the hologram then is [69]

A ∝ A0I0 + A0Iobj + I0Aobj + I0A
∗
obj. (2.59)

The first two terms reflect the reference wave with altered amplitude. For obvious
reasons, the first term is called source term. Since it results from interaction of
the object wave with itself, the second term is the so called self-interference term.
The last two terms contain the original object wave and its conjugate. Therefore,
the third term is the hologram term, while the last one is named twin-image term
[40, 70]. The reason for this denomination becomes clear in the following.

Looking through the illuminated hologram like looking through a window, the
observer sees an illusion of the object as if it were still present at its original
location. Perspective and depth of field are preserved. When changing the angle
of view (within the dimension of the reference wave), the object can be viewed
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2.3 Holographic principle

from different sides. The observer also has to refocus his eyes when looking at
parts of the object in a different distance. Since the image is created behind the
hologram, and the object wave seems to diverge from it, it is a virtual image
(compare figure 2.8, right) [40, 68, 70].

However, the image is disturbed by the remaining three terms in equation (2.59).
Due to the source term, the bright transmission of the reference wave superim-
poses the image of the object. The self-interference term adds to this transmis-
sion. It can be neglected, if the amplitude of the object wave is much smaller
than the one of the reference wave, A0,obj � A0. This condition is satisfied, if the
object is small and therewith permits a high transmission of the reference beam
[40].

The last term, the twin-image term, represents a converging wave, forming a real
image of the object at a distance d in front of the hologram. However, the phase
is inverted with respect to the original object wave. This fact has the effect,
that the parts of the object which were in the back now appear in the front.
However, the parts, which were obscured by the parts in the front, still cannot
be seen, since no wavefronts from there could reach the screen. When focusing
on the virtual image of the object, the unfocused twin-image contributes to the
coherent background [40].

An additional property of the hologram should be mentioned here. Every part of
the hologram contains the whole information about the object. As the complete
landscape can still be viewed when looking through a small opening in the win-
dow curtains, the whole object wave can be reconstructed from each part of the
hologram, though maybe with limited resolution [66].

There are two ways to achieve a magnifying effect in in-line holography. If the
hologram is reconstructed with a wavelength λrec different from the reference
wavelength λref used for the recording of the hologram, the image will be magni-
fied by a factor [67]

M =
λrec

λref

. (2.60)

The second possibility is to use a spherical reference wave for recording and a
plane wave with the same wavelength during the reconstruction of the hologram.
If the distance of the point source to the recording screen is L, and the object is
placed in a distance d = L− l to the screen, the magnification is [41, 67, 70]

M =
L

L− d
=
L

l
. (2.61)

With this approach, in-line holography can be used as a microscopy technique.
The major drawback in in-line holography, however, is the superposition of the
unfocused twin-image and the transmitted reference wave on the image. So it
was until the 1960s, when E. N. Leith and J. Upatnieks developed a geometry to
overcome this problem [42], that holography established as imaging method [40].
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2 Theory of Holography

Figure 2.9: Off-axis holography setup
left: The plane reference wave is split, and part of it directly illuminates the
recording screen. The other part impinges on the object, and the object wave
travels at an angle θ with respect to the z-axis.
right: In the reconstruction, the different parts of the reconstructed wave are
spatially separated. The wavefront of the object wave propagates in a direction
including an angle θ with the z-axis, while the twin-image propagates in direction
−θ. After [69].

2.3.3 Off-axis holography

Leith and Upatnieks succeeded in spatially separating the four terms that occur
in the reconstruction. Their idea was to introduce an angle between the direction
of travel of the reference wave and of the object wave [42]. The plane reference
wave is split, and part of it directly illuminates the recording screen, while the
other part impinges on the object. The complex amplitude of the plane wave at
the screen is

Aref = A0, (2.62)

with A0 being a real constant. Assuming the object wave travels in the x-z-plane
at an angle θ with respect to the z-axis, its complex amplitude can be written as

Aobj(x, y) = aobj(x, y) exp{−ikx sin θ}. (2.63)

When the hologram is again illuminated by the reference wave, it follows with
equation (2.57) for the complex amplitude at the transparency [69]

A(x, y) ∝ A0 I0 + A0 |aobj(x, y)|2

+I0 aobj(x, y) exp{−ikx sin θ}
+I0 a

∗
obj(x, y) exp{+ikx sin θ}. (2.64)

Again, the first term is the source term, a plane wave traveling in z-direction, and
the third term is the reproduced object wave. The last term contains the phase-
inverted image of the object. This wavefront propagates in a direction including
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2.3 Holographic principle

an angle −θ with the z-axis. If the angle θ is chosen large enough, these three
parts are now well-separated [69].

The second term can be neglected, if the object is small enough. If this is not
the case, this term produces a halo surrounding the reference wave with approx-
imately twice the angular spread θs of the object. So the angle θ has to be large
enough to ensure the separation of the waves, what is satisfied for θ > 3θs [69].

With respect to the in-line holography setup, the off-axis geometry imposes higher
demands concerning the coherence of the reference wave. But with the invention
of the laser, sufficiently coherent light sources were available, and nowadays holo-
graphic recordings are routinely taken in the off-axis geometry.

Both methods presented above share the same problem. The spacing of the inter-
ference fringes decreases with increasing distance from the center of the screen.
This can be best understood in the example of a point scatterer as object. The
interference pattern of the spherical object wave with the plane reference wave
then results in a pattern of concentric fringes. The radius of the nth bright ring
is given by

rn =
√
ndλ, (2.65)

where d denotes the distance of the point scatterer from the screen. This equation
also describes the radii of the zones in a Fresnel zone plate [69, 70]. So the
hologram of a point scatterer illuminated with a plane reference wave corresponds
to a Fresnel zone plate. As obvious in the equation, the distance between two
rings is

∆r(n) =
√
dλ
(√

n−
√
n− 1

)
. (2.66)

Any recording medium, however, has a lower limit, down to which it can resolve
structures. So this size poses an inherent resolution limit. A solution for this
problem is Fourier holography, since it records the interference pattern of the
respective Fourier transforms and not of the object and reference waves.

2.3.4 Fourier holography

As was introduced in section 2.1.5 in the first part of this chapter, the image of a
wave with complex amplitudeA(x, y) at the other focal plane of a lens corresponds

to its Fourier transform A
(
x
λf
, y
λf

)
, where f is the focal length of the lens, and λ

is the wavelength. In general, the Fourier transform is a complex-valued function,
so it cannot be recorded directly. But it can be recorded holographically [69].

A sufficiently transparent and flat object is placed in the front focal plane of a
lens. It is then illuminated with a plane wave, resulting in an object wave A(x, y)
with Fourier transform A(η, ξ). A small pinhole in the same plane at a distance
−b to the object produces the reference wave. The complex amplitude of this
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2 Theory of Holography

Figure 2.10: Fourier holography setup
left: The Fourier transform of the object wave interferes with the Fourier of a
point source at the recording screen forming the hologram.
right: The developed hologram is illuminated by a plane wave. The inverse Fourier
transform carried out by the lens reproduces the image and the conjugate image,
both in the back focal plane, at a distance b and −b,respectively, to the optical
axis. After [40].

wave is a delta function Aref = δ(x+ b, y), the Fourier transform of which can be
calculated to be [40]

Aref(η, ξ) = exp {−i2πξb} . (2.67)

Hence the intensity pattern at the screen due to the interference of these waves
is given by [40]

I(η, ξ) = 1 + |A(η, ξ)|2 +A(η, ξ) exp {i2πξb}+A∗(η, ξ) exp {−i2πξb} . (2.68)

The developed hologram is then placed in the front focal plane of the same lens
and illuminated by a plane wave of unit amplitude. At the back focal plane
the Fourier transform of I(ξ, η) is reproduced, that is displaying an intensity
distribution [40]

I(x, y) = δ(x, y) + A(x, y) ? A(x, y) + A(x, y − b) + A∗(−x,−y + b). (2.69)

Here, the symbol ? denotes the correlation operation, which is defined as [40]

c(x, y) =

∞∫
−∞

∞∫
−∞

g∗(u, v)h(x+ u, y + v)du dv

= g(x, y) ? h(x, y),

and which defines the autocorrelation of a function g(x, y) as

c(x, y) = g(x, y) ? g(x, y). (2.70)
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The first term in equation (2.69) is the focused reference wave, the second term
forms a halo around it. The image of the object is produced by the third term,
now at a distance −b to the optical axis, and the conjugate image formed at a
distance b to the axis. The conjugate image is rotated by 180◦ with respect to
the image. As in the off-axis geometry, both images are spatially separated from
each other and from the reference beam. In contrast to the other geometries,
both images are virtual images in Fourier holography [40].

A lensless Fourier holography setup is possible, too. In this case, the lens between
object and recording screen is removed, the rest of the setup stays unaltered. The
difference in the reconstruction is, that instead of a plane wave a spherical wave
with the same average curvature as the reference wave is used to illuminate the
hologram [40].

In the last 40 years, various applications of holography such as holographic inter-
ferometry have been developed [40, 41, 66]. A description of only parts of them
would go beyond the scope of this thesis.

2.4 The holographic setup

For all holographic geometries, the basic setup consist of three major components:

� a source of coherent radiation,

� the sample,

� a recording screen.

The arrangement of these parts then determines the geometry. All three geome-
tries presented above are performed in transmission with an adequate sample.
This sample has to be sufficiently transparent, in order to permit the major part
of the illuminating wave to pass undisturbed and form the reference wave. As
a secondary effect, the self-interference term can be neglected, if the amplitude
of the object wave is much smaller than the amplitude of the reference wave,
A0,obj � A0. On the other hand, A0,obj must be large enough to assure a suf-
ficient visibility of the interference fringes. According to equation (2.16), the
visibility is given by

V =
2
√
I1I2

I1 + I2

=
2
√
A0,objA0

A2
0,obj + A2

0

. (2.71)

In practice, a ratio A0,obj : A0 of 1 : 3 to 1 : 5 was found to be a good value.
Therefore, small opaque samples on a transparent backing can be holographically
recorded, but not vice versa.

In off-axis holography a reflection setup is also possible, where the part of the
object wave reflected from the sample can be brought to interference with the
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2 Theory of Holography

reference wave. In this way, images of the surface of opaque samples can be
recorded.

Holography can be performed with any type of coherent radiation. The only re-
quirement is, that the coherence length L (see equation (2.18)) exceeds the largest
path differences occurring between object wave and reference wave [47]. Gabor
himself did his first experiments with electrons. Today, electron holography is
a well-established technique in transmission electron microscopy [70]. With the
invention of the laser in 1960, light sources with long coherence lengths were avail-
able. This development paved the way for off-axis holography. In this setup the
path differences are larger than for in-line holography, so the requirements con-
cerning the coherence of the radiation increase. Today, laser wavelengths ranging
from the infrared down to X-rays can be generated [48].

Another source for coherent X-rays is synchrotron radiation [47]. First generated
as a byproduct of electron storage rings, this kind of radiation is now widely
used—not only in holography—since it is highly brilliant, monochromatic, polar-
ized, and the photon energy can be varied over a wide range. The generation and
the properties of synchrotron radiation are described in the following chapter.

As discussed in equation (2.40), any wave will approach a plane wavefront if
the propagation distance is sufficiently large. In order to generate a spherical
wavefront, two possibilities exist. Firstly, the diffraction of a plane wave from
a pinhole results in a spherical wave, as derived in equation (2.39). For finite
pinhole diameters, the emission cone decreases and the intensity distribution is
described by the Airy distribution (equation (2.55)), but the wavefront is still a
good approximation of a spherical wave if the pinhole is small enough. However,
for decreasing wavelength it gets more and more difficult to provide pinholes
of appropriate diameter. The second alternative is to use a lens with a short
focal length to focus a wavefront. Behind the focus, the wavefront diverges and
forms a quasi-spherical wavefront. The shorter the focal length, the larger is
the divergence. But also in this method, with decreasing wavelength, it becomes
increasingly difficult to fabricate appropriate lenses. For X-rays, diffractive optics
like Fresnel zone plates have to be used, since refractive effects are too small.

Concerning the recording screen, the material has to fulfill two major require-
ments. First, it has to respond linearly to the intensity of the radiation, and sec-
ond, its spatial resolution has to be high enough to resolve the interference fringes.
Photographic films, photoresist, and photopolymers are among the widely used
materials [40]. With the rise of the computer, digital recording devices like CCD
cameras have established. To satisfy the prerequisites for holography, the dy-
namic range of the CCD must be sufficient to ensure the linear intensity de-
pendence, and the pixel size has to be small enough to resolve the interference
fringes. Digital holography has the advantage, that the wavefronts do not have
to be reconstructed optically, but the backpropagation of the object wave can
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be calculated numerically from the digital hologram using the Fresnel-Kirchhoff
formula, equation (2.24).

2.5 Numerical reconstruction of digital holograms

As derived previously, to optically reconstruct the image from a hologram, the
hologram transparency with transmittance t(ξ, η) (equation (2.56)) is illuminated
with the reference wave Aref. The complex amplitude behind the hologram is
then given by A(ξ, η) = Aref(ξ, η) · t(ξ, η) (equation (2.57)), and the wavefront
propagates as described by the Fresnel-Kirchhoff formula (equation (2.24)).

In digital holography, the complex amplitude of the wave is calculated from the
digital hologram, and the propagation of the wave is computed numerically. The
derivation of the wavefront in a specific plane is therefore called numerical recon-
struction [76]. Each of this reconstructed planes corresponds to one in-focus image
in conventional compound microscopy. A combination of various two-dimensional
planes results in a three dimensional image of the object.

Numerical reconstruction has two major advantages compared to the optical
method. Firstly, since it is the complex amplitude Γ(x, y, z) which is computed,
not only the intensity I(x, y, z) = |Γ(x, y, z)|2 of the wave can be calculated,
but also the phase ϕ(x, y, z) = arctan(={Γ(x, y, z)}/<{Γ(x, y, z)}) [41]. And
secondly, it is possible to remove the reference wave from the reconstruction by
subtracting its contribution Iref from the hologram t(ξ, η) [28]. The resulting
intensity pattern I(ξ, η) is then given by

I(ξ, η) =
t(ξ, η)− Iref√

Iref

=
A∗objAobj + A∗refAobj + A∗objAref√

Iref

. (2.72)

In the following, this normalized intensity distribution shall be referred to as
difference hologram.

The Fresnel-Kirchhoff integral can be solved in the Fresnel approximation (equa-
tions (2.26) and (2.28)) [41]. Then, the Fresnel integral (equation (2.29))

Γ0(x, y, z) =
i

λz
exp

{
−i π
λz

[
x2 + y2

]}
×

∞∫
−∞

∞∫
−∞

A(ξ, η) exp
{
−i π
λz

[
ξ2 + η2

]}
× exp {i2π [ξx/(λz) + ηy/(λz)]} dξ dη (2.73)

can be understood as an inverse Fourier transformation of the function

F (ξ, η) = A(ξ, η) exp
{
−i π
λz

[
ξ2 + η2

]}
. (2.74)
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Fourier transformations can be efficiently computed with a Fast Fourier Trans-
form (FFT) algorithm. But the approximation in the argument of the exponential
function (equation (2.26)) might lead to artifacts [29]. The full implementation
of the Fresnel-Kirchhoff integral however requires long computation time, due
to the non-linearity in the phase factor. Therefore, Kreuzer developed an algo-
rithm which removes this non-linearity, yielding a fast and accurate evaluation
of the Fresnel-Kirchhoff integral without approximations [76]. Since the images
presented in this thesis are reconstructed with an algorithm using the Kreuzer
Implementation, its design will be described in the following.

For a spherical reference wave emerging from the origin, the Fresnel-Kirchhoff
integral can then be written as [28, 77]

Γ(x, y, z) =

∫∫
S

I(~ξ) exp

{
−i2π

λ

~ξ~r

ξ

}
d~ξ, (2.75)

where ~ξ = (ξ, η, L) denotes the coordinates on the screen at distance L to the
point source, ~r = (x, y, z) is the position vector to a point in the observation plane,

λ is the wavelength, and I(~ξ) is the intensity pattern of the difference hologram
(equation (2.72)). The integral extends over the surface S of the screen. Since it
is derived from the integral theorem of Helmholtz and Kirchhoff, it is referred to
as Kirchhoff-Helmholtz integral. In the derivation of the formula it is assumed,
that the sample of dimension a is sufficiently far from the point source, such
that the Fraunhofer condition a2 � lλ (equation (2.35)) is satisfied, and that the
distance l from the point source to the sample is much smaller than the distance
L to the screen. The phase factor in front of the integral can be neglected, since
it only results in a constant factor when calculating the intensity.

Unlike a photographic plate, a CCD chip is not continuous but consists of discrete
pixels. So the coordinates in the equation have to be expressed as a discrete grid.
Usually [41, 76] this is done using

ξ = ξk = k∆ξ
η = ηl = l∆η
x = xm = m∆x = m λL

N∆ξ

y = yn = n∆y = n λL
N∆η

(2.76)

with k, l,m, n = 0, 1, . . . , N − 1

where N is the number of pixels in one direction on the CCD chip. In order to
remove the non-linearity in the phase factor, the coordinate system is transformed
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as [76]

ξ′ = ξ
L

R

η′ = η
L

R
(2.77)

R =
√
L2 + ξ2 + η2

(2.78)

This transformation corresponds to a projection of the intensity pattern from a
flat screen onto the surface of a sphere and gives a non-equidistant barrel shaped
coordinate system. That means, the intensity values are now located at non-
integer positions on a plane. Fast Fourier Transforms however work on equidis-
tant grids, so the intensity values have to be interpolated onto an equidistant
coordinate system. To avoid boundary effects which occur in Fourier transforms
when sharp edges are present, a cosine filter is subsequently used to smooth the
edges of the hologram. Up to now, no alterations to the Kichhoff-Helmholtz for-
mula itself have been made, only the coordinate system has been changed [76].
In a last step, the integral (or sum, in the discretized notation) is rewritten as a
convolution, which has the general form [69]

h(x, y) = (f ∗ g)(x, y) =

∞∫
−∞

∞∫
−∞

f(u, v)g(x− u, y − v) du dv. (2.79)

According to the convolution theorem, the Fourier transform of the convolution
of two functions is equal to the product of the Fourier transform of the individual
functions [41]

H(u, v) = F{h(x, y)} = F{(f ∗ g)(x, y)}
= F{f(x, y)} · F{g(x, y)} = F (u, v)G(u, v). (2.80)

Since the Fourier integral theorem says, that any function can be written as the
inverse Fourier transform of its Fourier transform, that is [41]

FF−1{h(x, y)} = F−1F{h(x, y)} = h(x, y), (2.81)

the complex amplitude can be expressed as [41]

Γ(x, y, z) = F−1F{(I ∗ K)(x, y)}
= F−1{F{I}F{K}}. (2.82)

Here, I is the intensity distribution of the hologram and K the convolution kernel,
both expressed in the transformed coordinate system. Thus, the computation of
the Kirchhoff-Helmholtz integral is broken down to three Fourier transforms.
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The Fourier transform of the hologram has to be carried out only once per image
since it does not depend on the coordinates of the reconstruction plane. With
this implementation, a fast reconstruction of the wavefront at various distances
from the detector is possible [76].
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Digital in-line holography experiments with synchrotron radiation have been car-
ried out at the 3rd generation synchrotron source BESSY II in Berlin, Germany.
In the course of this thesis, measurements have been performed on three beam-
times, each lasting one week, and the results have been analyzed. The generation
of synchrotron radiation and the digital in-line X-ray holography setup at BESSY
are introduced in this chapter.

3.1 Generation of synchrotron radiation

In nature, synchrotron radiation occurs when charged particles spiral around
magnetic field lines in space, as the light coming from the Crab Nebula, for
example. However, the generation of this kind of radiation in the laboratory is
only 60 years old. From the discovery of X-rays in 1895 by Röntgen, it has taken
half a century until the first synchrotron light could be observed at the General
Electric Research Laboratory in Schenectady, New York, on April 24th, 1947.
More details of the historical development of synchrotron radiation can be found
in [78].

The generation of X-rays in classical X-ray tubes as depicted in figure 3.1 is based
on the interaction of high energy electrons with the material of the anode1. Two
different processes contribute. One process is the ionization of the anode atoms
in inner shells. These holes are filled by electrons from higher shells, while the
excess energy is emitted leading to the characteristic line spectrum [80]. The
second process is the Coulomb interaction of the electrons with the nuclei of
the anode material, by which the electrons are decelerated. Those decelerated
electrons emit a continuous spectrum, the bremsstrahlung [80]. The emission
is isotropic and the efficiency of the X-ray tube η ≈ 10−9cZU is less than 1%,
where c is a factor of dimension V−1, Z is the atomic number, and U is the
voltage accelerating the electrons. Most of the power is lost as heat[80, 81].

An important quantity for sources of radiation is their spectral brightness or
brilliance B [70, 78]

B =
N/t

dΩdF (dλ/λ)
. (3.1)

1Depending on the literature, the anode is sometimes called anticathode.
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Figure 3.1: Schematic drawing a classical X-ray tube
A hot cathode K with a heating voltage Uh produces electrons which are ac-
celerated onto the anode A by the voltage Ua. When decelerated by the anode
material, they emit X-ray radiation X perpendicular to the direction of deceler-
ation. To avoid heating of the material, the anode is water cooled (water inlet
Win, outlet Wout, cooling water volume C). From [79].

It is the number of photons N per time interval t and per source area dF emitted
into the solid angle dΩ and related to the relative bandwidth dλ/λ.

While in a timespan of 70 years the peak brilliance of X-ray tubes could be
improved from about 107 to 1012 (compare figure 3.2), which is more than the
brilliance of a candle (5 · 104) or a light bulb (5 · 107), it is still less than that of
the sun (1011) [83] .

X-ray sources with a brilliance orders of magnitude higher than classical X-ray
tubes are synchrotron sources. Similar to X-ray tubes, where the electrons emit
X-rays during deceleration, they exploit the fact that any accelerated charged
particle emits radiation. In order to maintain the acceleration a of the charge
q the energy radiated per unit time dE/dt has to be compensated for. With ε0
being the vacuum permittivity and c the speed of light, it is given by [84]

dE

dt
=

q2a2

6πε0c3
. (3.2)

For a particle with mass m, velocity v, and momentum p on a circular orbit
with radius r, the centripetal acceleration is a = v2/r = p2/m2r and therefore
equation (3.2) can be written as [84]

dE

dt
=

q2

6πε0c3r2

( p
m

)4

. (3.3)

That equation implies that the radiation increases with decreasing radius and
increasing momentum, and a light particle emits more radiation than a heavy
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3.1 Generation of synchrotron radiation

Figure 3.2: Brilliance of X-ray
sources
The peak brilliance is approximately
three orders of magnitude higher
than the average brilliance.
From: [82]. Copyright: DESY,
Hamburg

one. Therefore, electrons or positrons at high energies are used in storage rings
to produce synchrotron radiation.

At the Berliner Elektronenspeicherring für Synchrotronstrahlung (BESSY II),
electrons are extracted from a hot cathode and accelerated by a voltage of 100 kV,
as sketched in figure 3.3. In a microtron, which the electrons pass ten times with
rising orbit radius, a high frequency linear accelerator brings them to an energy of
50 MeV. Afterward, the electrons pass the synchrotron, where the magnetic field
increases synchronously with the energy of the particles, until they reach their
final energy of 1.7 GeV and are injected into the storage ring. The whole cycle—
from electron extraction to injection—lasts 50 ms, and is repeated 10 times per
second. Each of the 400 electron bunches in the ring contains about 1010 electrons
and circulates with a frequency of 1.25 MHz. In the end, the total ring current
amounts to 800 mA. The beam pipes themselves are evacuated to a pressure of
< 10−10 mbar to prevent the electrons from colliding with air molecules, leading
to a lifetime2 of the electron bunches of 8 to 10 hours.

The storage ring itself is not a perfect circle but consists of 16 units, each com-
prising of bending magnets to keep the bunches in orbit, quadrupole magnets
for focusing, sextupole magnets as correcting elements, and a linear part, as de-
picted in figure 3.3, left. One of the sixteen linear parts contains the injection
system. A second part houses the cavities needed for the compensation of the

2The lifetime is defined as the time interval, after which the number of particles has dropped
to 1/e of the initial number, e being Euler’s number [75].
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3 BESSY

Figure 3.3: Schematic drawing of BESSY II and an undulator
left: Electrons are extracted from a hot cathode and are accelerated in several
stages until they are injected in the storage ring. From [85].
right: Undulator principle. The electrons undergo sinusodial oscillation in the
magnetic field and emit radiation. From [86].

energy loss, which is lost in the bending magnets due to synchrotron radiation.
The radiated spectrum is continuous ranging from the long wave terahertz region
(λ = 100 µm) to hard X-rays (λ = 10 pm), linearly polarized in the plane of the
electron orbit, and circularly polarized below and above. Since the electrons are
arranged in bunches, the radiation is pulsed with a pulse length of 18 ps and a
pulse spacing of 2 ns [70, 85]. In addition, because of the high velocity of the
electrons, the produced electromagnetic field reminds less of a point dipole field,
but the radiation is concentrated in the general direction of motion [70, 80]. The
divergence is Θ = m0c

2/E = 0.3 mrad for electrons (m0c
2 = 0.511 MeV) at an

energy of E = 1.7 GeV. The source area, which is the diameter of the electron
bunches, is dF ≤ 0.1 mm2. With equation (3.1) this leads to a spectral bright-
ness of B ≥ 1014 photons/(s mm2 10-7 sr) at dλ/λ = 0.1% for photons in the keV
range [70].

In equation (3.3), the radiated power dE/dt depends inversely on the square of the
radius r of the electron orbit. A decrease in r thus leads to stronger synchrotron
radiation. However, this power loss has to be compensated. As a consequence, the
maximum energy of the electrons is limited and scales inversely to the square of
the radius of the synchrotron ring. So smaller synchrotrons are not desirable. In
order to create electron orbits with small curvature, magnetic devices are added in
the remaining fourteen linear parts of the storage ring. In these structures, dipole
magnets are linearly arranged with periodically alternating magnetic fields (see
figure 3.3, right). When traveling through the magnetic field, the electrons are
forced to undergo sinusoidal oscillations with small r. Hence they are accelerated
and emit radiation.

The magnetic devices are called insertion device magnets, because they are placed
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3.1 Generation of synchrotron radiation

in the straight section of the storage ring between the bending magnets. Depend-
ing on the strength of their magnetic field, they are named wiggler or undulator.
The dimensionless deflection parameter K characterizes the electron motion and
determines whether the device is a wiggler (K � 1) or an undulator (K ≤ 1). K
depends on the electron charge e, the peak magnetic field B, the period length
of the magnetic structure λU, the electron mass me, and the speed of light c
[70, 86, 87]:

K = αγ =
eBλU
2πmec

= 0.934λU[cm]B[T]. (3.4)

Here, α is the maximum deflection angle, and γ = E/m0c
2.

Wigglers have stronger magnetic fields and deflect the electrons stronger from
their straight paths than undulators. A wiggler consisting of n magnetic periods
has a length L = nλU, and imposes 2n turns on the electrons. The radiation from
those turns adds incoherently, and the intensity of the generated synchrotron ra-
diation is 2n times larger than that of a bending magnet. The radiated spectrum
is broad, but shorter wavelengths are reached than in the bending magnets.

The magnetic field of undulators is weaker compared to that of wigglers (K ≤ 1),
thus the deflection of electrons is less and the different radiation lobes interfere
coherently. As consequence, the spectrum becomes discrete, consisting of har-
monics of the wavelength [70]

λi =
λU

2iγ2

(
1 +

K2

2
+ γ2θ2

)
. (3.5)

Here, i is the order of the harmonic (odd natural number), and θ is the angle to
the forward direction in the plane of the electrons. For the first harmonic (i = 1)
on the axis (θ = 0), the wavelength generated by electrons with energy E is [87]

λ1[Å] =
13.056λU [cm]

E2[GeV]

(
1 +

K2

2

)
. (3.6)

According to Planck’s law, wavelength λ and energy Ephoton of photons are related
via

Ephoton = hν = h
c

λ
, (3.7)

with h being Planck’s constant and c the speed of light. Inserting the numbers
leads to a conversion from a wavelength λ in nm to a photon energy Ephoton in
eV of

Ephoton[eV] =
1240

λ [nm]
. (3.8)

Hence the photon energy corresponding to the wavelength λi is given by [87]

Ephoton,1[keV] = 0.950
E2[GeV](

1 + K2

2

)
λU [cm]

. (3.9)
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The relative bandwidth at the ith harmonic is [87]

∆λi

λi

∼=
1

i n
, (3.10)

so the longitudinal coherence length L follows (compare equation (2.18)) [87]

L =
λ2

i

∆λi

= i nλi. (3.11)

The photon intensity now scales with a factor n2, since the emission angle is
simultaneously reduced by 1/n. Additionally, the spectral brilliance is three to
four orders of magnitude higher than for bending magnets. The synchrotron radi-
ation is linearly polarized in the plane of the orbit and circularly polarized above
and below. By using permanent magnets in addition to the periodic magnetic
structures in the undulators, the trajectories of the electrons can be altered to a
helix, and the polarization in the plane of the orbit can be changed to circular or
elliptical.

The synchrotron radiation originating from the bending magnets, wigglers, and
undulators is guided in 46 beamlines to the different experimental stations. Our
experiments were carried out at the beamline UE52-SGM, a schematic drawing of
this beamline is shown in figure 3.4 [88]. Synchrotron radiation with the chosen
energy and polarization generated in the undulator passes the cylindrical mirror
M1, which deflects the beam horizontally and vertically demagnifies the source
on the entrance slit. The plane mirror M2 deflects the beam onto the spherical
deflection grating G, where it is monochromatized. The following cylindrical
mirror M3 demagnifies vertically and images the exit slit on the focus spot, while
the plane elliptical mirror M4 gives a horizontal demagnification of the source.
By varying the width of the entrance slit, one can trim the synchrotron beam
in its horizontal extent, and enhance the spatial coherence [87]. Full width at
half maximum (FWHM) of the horizontal dimension of the focal spot is 17.4 µm,
while the size of the exit slit determines the vertical size of the focal spot (compare
figure 3.5). The divergence at the focus position is 6 mrad in horizontal direction
and 1 mrad vertically.

Since the undulator consists of n = 77 poles [85], equation (3.11) gives a longi-
tudinal coherence length of L = 77 iλi = 77 · 12.4nm = 0.95 µm for a photon
energy E = 100 eV generated in the first harmonic. This value is not sufficient
for holography since it is in the range of the occurring path differences . Behind
the monochromator, the resolving power is E/∆E = λ/∆λ = 30000 at a photon
energy E = 100 eV [88]. Thus it follows for the longitudinal coherence length

L =
λ2

λ
= 30000 · 1240

100
nm = 372 µm. (3.12)
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3.1 Generation of synchrotron radiation

Figure 3.4: Schematic lay-out of the beamline UE52-SGM at BESSY II
Synchrotron radiation generated in the undulator is monochromatized by a spherical de-
flection grating and horizontally and vertically focused by mirrors. From [88].

Figure 3.5: Focus spot of the beamline UE52-SGM at BESSY II
The spot size at the experiment is 17.4 µm x exit slit size (horizontally x vertically).
From [88].
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As discussed in chapter 2, equation (2.23), the spatial coherence distance ak also
depends on the size h of the source. At the synchrotron, the source size is given
by the size of the electron bunches, which is 100 µm.

3.2 The digital in-line X-ray holography setup

The DIXH setup consists of a pinhole, the sample and a CCD camera as detector.
Figure 3.6 is a photo of the setup taken by Florian Staier during the beamtime in
February 2006. For our holography experiments, the ALICE scattering chamber
of the group of Prof. Zabel, Ruhr-Universität Bochum, Germany, was used. The
beamline coming from the storage ring is situated on the left. The pinhole is
placed in the focus of the synchrotron beam so that as little intensity as possible
is discarded by the small aperture. Nonetheless only about 2·10−3 of the total flux
passes the pinhole (400 nm diameter) [37]. To adjust the position of the pinhole,
it is mounted on translation stages which enable movement in three directions
with sub-micrometer precision. For the first experiments, the samples were glued
onto the pinhole in a distance of approximately 10 mm. In later experiments,
the samples were attached to separate manipulators which allow independent
movement of pinhole and sample. Also, the sample can be retracted completely
from the optical path, so that the diffraction pattern of the pinhole alone can be
recorded. Recording of the scattering patterns is done by a CCD camera (Roper
Scientific PI-SX-2048, back-illuminated Marconi CCD42-40 chip, 2048×2048 pix-
els, pixel size: 13.5×13.5 µm2). For the given photon energy (90eV), the quantum
efficiency of the CCD chip is about 45% [89]. A mechanical shutter prevents the
CCD chip from damage by the direct beam and from saturation during readout.
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3.2 The DIXH setup

Figure 3.6: The digital in-line holography setup at BESSY II
top: Photograph of the setup. The essential parts are indicated.
bottom: Schematic drawing of the setup.
The synchrotron beam indicated by the violet line comes from the left and impinges
on the pinhole which generates the Airy disc (yellow cone). The sample is mounted
on a manipulator between pinhole and CCD camera. A mechanical shutter prevents
the CCD chip from damage by the direct beam.
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4 Resolution limit of digital in-line
holography

An important parameter for imaging systems is their limit of resolution, which
is given by the minimal distance two point objects may have so that they are
still resolved as separate points. Sir John William Strutt, third Baron Rayleigh,
was the first to develop a criterion for the resolving power of spectroscopes and
telescopes [90, 91]. How this criterion leads to the commonly used Rayleigh limit
of resolution and some other definitions for the resolution limit shall be introduced
in the first section of this chapter. In the second section, a criterion for the
resolving power of digital in-line holography will be derived and the parameters
that influence this value will be discussed.

4.1 Resolving power and resolution limits

Due to the diffraction-limited nature of imaging systems, a point source is imaged
as a broadened intensity distribution even in the perfect case without aberrations.
The exact form of the intensity distribution depends on the geometry of the
aperture, and which is also denoted as impulse response function or point spread
function (PSF) [69, 70]. The formation of this distribution is described using
wave optics.

In the Fraunhofer diffraction theory, the transmission of light through an aperture
is calculated by multiplying the incident wave with the aperture function. The
propagation beyond the aperture is then determined by the Fraunhofer integral,
as discussed in chapter 2.1.5. So the parameter b in the Fraunhofer condition
(equation (2.30)) is given by the largest radial distance within the aperture.

As shown in chapter 2.2, the transmission of a plane wave of wavelength λ through
a single slit with width A results in an intensity distribution in the observation
plane (compare equation (2.43)) which is given by [69, 73, 80]

I(x) = I0

[
sin
(
πA
λ

sin θ
)(

πA
λ

sin θ
) ]2

= I0 sinc2

(
A

λ
sin θ

)
. (4.1)

Here, I0 is the peak intensity, and θ is the angular radius. Minima occur when
the argument of the sine is an integer multiple of π, so the angular radius of the
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4 Resolution limit of digital in-line holography

Figure 4.1: Fraunhofer diffraction from a circular aperture
The intensity in the far field is given by the Airy distribution, with the angular
radius of the central maximum sin θ = 1.22 λA .

central maximum is given by [90, 91, 92, 93]

πA

λ
sin θ = π ⇔ sin θ =

λ

A
. (4.2)

In the case of a circular aperture of diameter A, the intensity distribution changes
to the Airy distribution, as introduced in chapter 2.2 (compare equation (2.55))

I(θ) = I0

[
2 J1

(
πA
λ

sin θ
)

πA
λ

sin θ

]2

, (4.3)

where J1(z) is the Bessel function of order 1 [69, 94]. Here, the minima occur at
the roots of the Bessel function, at which the argument takes the values {3.832,
7.016, 10.173, 13.323, 16.470 . . . } [74]. This leads to an angular radius of the
central maximum of [90, 92]

πA

λ
sin θ = 3.832 ⇔ sin θ = 1.22

λ

A
. (4.4)

This central maximum is commonly referred to as Airy disc.

4.1.1 The Rayleigh resolution limit

Rayleigh proposed, that two equally bright points can be distinguished, if their
angular distance is at least such, that the maximum of the intensity distribution
of one coincides with the first minimum of the other [90, 94]. In the case, where
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4.1 Resolving power and resolution limits

Figure 4.2: Rayleigh criterion for the resolution of two points
Two equally bright points can be distinguished, if the maximum of the intensity
distribution of one coincides with the first minimum of the other.

the point objects are imaged with a lens, the aperture diameter A equals the
diameter of the lens. For small angles θ, the sine can be approximated [72]:

sin θ ≈ θ ≈ tan θ. (4.5)

If the image is produced in the focal plane of the lens, it follows with equation
(4.4) for the minimum distance δ, where the point sources can be resolved

δ

f
= tan θ = 1.22

λ

A
⇔ δ = 1.22

λf

A
. (4.6)

To determine the resolving power of an optical instrument like a microscope, one
considers two points in the object plane, a distance δ apart, as depicted in figure
4.3. According to Rayleigh (equation (4.6)), they are resolved as distinct points,
if their distance in the image is at least

δ = 1.22
λS

A
. (4.7)

Typically, the objective has a high magnification, so the distance S from object to
objective will be much smaller than the distance S ′ from objective to the image,
S � S ′, and even though the opening angle of the objective α might be large, α′

can be considered small [67]. Therefore, the approximation

α′ ≈ A/2

S ′
(4.8)
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4 Resolution limit of digital in-line holography

Figure 4.3: Schematic drawing of an objective
The paths of the rays needed to determine the resolving power of a microscope are
depicted schematically. The size of the limiting aperture is given by the diameter
A of the lens. After [67].

is valid and with equation (4.7) follows

δ′ = 0.61
λ

α′
. (4.9)

In order to get a relation between the dimension α′ and δ′ and α and δ on the
objective side, one needs the Abbe sine condition. An optical system must fulfill
this condition, if the magnitude of the spherical aberrations should not increase
linearly with the distance to the optical axis [67]. It is fulfilled, if

δn sinα = δ′n′ sinα′, (4.10)

where n′ and n are the refractive indices of the media on the respective side of
the system [67, 73]. If medium with n′ 6= 1 is present, λ has to be replaced by
λ/n′ in equation (4.9), and (4.10) can be written as

δn sinα ≈ δ′n′α′ = 0.61λ. (4.11)

The minimal resolvable distance of two points can be now expressed as

δ = 0.61
λ

n sinα
= 0.61

λ

NA
, (4.12)

where NA = n sinα is called the numerical aperture of a system. This Rayleigh
limit was first developed by H. v. Helmholtz [70], and is valid for incoherent,
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4.1 Resolving power and resolution limits

Figure 4.4: Sum of two Airy intensities
Two Airy distributions I(z) = I0[J1(z)/z]2 (red), whose centers are a distance
∆z apart, and their sum (blue).
a: ∆z = 3.832. The first minimum of one distribution coincides with the maxi-
mum of the other, which corresponds to the Rayleigh resolution criterion.
b: ∆z = 3.20. The maxima of the total intensity move closer together, the dip
in the intensity is shallower but still recognizable.
c: ∆z = 3.00. The dip in the total intensity just flattens out.
d: ∆z = 2.80. The dip has vanished, only one maximum is visible.

equally bright points. Due to its simplicity, it is widely used in optics to deter-
mine the limit of resolution of optical systems, although Rayleigh himself realized,
that this criterion is quite arbitrary. However, he wrote: “This rule is convenient
on account of its simplicity; and it is sufficiently accurate in view of the neces-
sary uncertainty as to what exactly is meant by resolution. Perhaps in practice
somewhat more favourable conditions are necessary to secure a resolution that
would be thought satisfactory.” [66, 90, 94]

The Rayleigh criterion can also be formulated such that it determines whether
two points are being resolved or not. Looking at figure 4.4 (a), where two Airy
distributions just fulfilling the Rayleigh criterion (red curve) and their sum (blue
curve) are depicted, a clear dip is visible in the total intensity curve. The intensity
in the middle is 73.5% of the maximum intensity. So two points can be considered
resolved, if the intensity in a linecut shows a modulation of at least 26.5% of the
maximum intensity [95, 96]. In this formulation, the Rayleigh criterion can be

51



4 Resolution limit of digital in-line holography

Figure 4.5: Sum of two Gaussian
intensities
Two Gaussian distributions I(z) =
I0 exp(−z2/(2σ2)) (red), whose
centers are a distance z =

√
8 ln 2σ

apart, and their sum (blue).

extended to partially and fully coherent illumination [95].

4.1.2 The Sparrow resolution limit

However, C. M. Sparrow was not content with Rayleigh’s criterion [97]. He
observed the intensity distribution created by two slits at various distances and
stated that the slits can be resolved even if they are closer than given by the
Rayleigh criterion. When the distance between the slits decreases, the central
minimum in the intensity distribution becomes shallower (compare figure 4.4),
until it disappears. The distance a of the slits is then given by his “undulator
condition”

d2I

dx2

∣∣∣∣
x=0

= 0. (4.13)

If the distance decreases further, a single intensity maximum develops and the
slits are no longer resolved. This condition leads to a resolving power which is
about 26% greater than obtained by the Rayleigh criterion [97]. The Rayleigh
limit, equation (4.12), can then be adapted to

δ ≈ 0.5
λ

n sinα
=

λ

2NA
. (4.14)

The Sparrow resolution criterion can also be employed in the case of unequally
bright points and can be generalized for coherent or partially coherent illumina-
tion [95, 98].

4.1.3 Generalization of the resolution limit

Using the above formulation of the resolution criterion considering the intensity
variation, a resolution limit can be derived for point spread functions that have
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Figure 4.6: Image formation according to Abbe

no zero in the neighborhood of their central maximum as for example a Gaussian
[99]

I(x) =
1√
2πσ

exp

{
− x2

2σ2

}
. (4.15)

Two Gaussian functions with variance σ with a distance δ of their centers equal
to their full width at half maximum, δ =

√
8 ln 2 σ, are plotted in figure 4.5. The

resulting intensity distribution exhibits a dip in the middle, the value of which is
about 93% of the maximum total intensity. So this distance fulfills the Sparrow
resolution criterion, and in analogy to the above, the resolution limit of a system
with a Gaussian point spread function can the be determined as [99]

δ =
√

8 ln 2σ. (4.16)

4.1.4 The Abbe resolution limit

A slightly different argumentation concerning the resolution limit of microscopes
than the one presented above was carried out by Ernst Abbe. As a coworker
of Carl Zeiss, he occupied himself with the theoretical and experimental devel-
opment of microscopy [68]. In contrast to Helmholtz, where the objects were
assumed to be incoherent sources of light, he considered the case of a coherently
illuminated object as for example a slit grating. If the distance between the slits
is δ, this grating produces a diffraction pattern with main maxima occurring at
angles [70]

sin θk =
kλ

δ
, (4.17)
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where k is an integer. The maximum of zeroth order only contains information
about the light source and not about the object. Therefore, to obtain information
about the object, at least the first diffraction order has to contribute to the image
formation. (In order to get a perfect image of the object, all diffraction orders
are required.) Considering figure 4.6, this means that the aperture angle α of
the objective must be equal to or greater than the diffraction angle θk, since in a
microscope, the object is placed nearly in the focus of the objective. If the object
is immersed in a medium with a refraction index n different from 1, λ changes to
λ/n in equation (4.17) and it follows [68, 70, 75]

sinα ≥ sin θ1 =
λ

nδ
⇔ δ ≥ λ

n sinα
=

λ

NA
. (4.18)

This value is a factor 2 greater than the Rayleigh resolution limit, equation (4.12)
(if calculated for a slit instead of a circular aperture, the coefficient 0.61 is replaced
by 1/2).

It has to be kept in mind, that the resolution limit as introduced by Rayleigh
does not pose an ultimate limit, but was rather intended to be a means to enable
a comparison between different imaging systems. Rayleigh himself emphasized
“the necessary uncertainty as to what exactly is meant by resolution.” [90] Fur-
thermore, the Abbe resolution limit was derived for coherent illumination and
periodic objects, while the others hold for incoherent illumination, hence it is
difficult to directly compare the results [69]. And lastly, it is possible to lower
the Abbe resolution limit by a factor of 2 on the cost of contrast. If the light
source is not centered on the optical axis, but is placed such that it is aligned with
the edge of the objective, the negative diffraction orders are discarded (compare
figure 4.6), but the acceptance angle for the positive diffraction orders is doubled,
leading to [67]

δ ≥ λ

2n sinα
=

λ

2NA
. (4.19)

However, the loss of the negative diffraction orders conveys a decrease in contrast
and might also cause other unwanted effects [67].

Altogether, the theoretical resolution limits present a guideline and lower limit
for the achievable resolution since they are under the assumption of perfect con-
ditions, which are not met in most experiments.

4.2 Resolution in digital in-line X-ray holography

From the findings above, a resolution limit for DIXH shall be derived, which
is expressed in terms of the experimental parameters like pinhole diameter A,
pinhole-detector distance L, wavelength λ and the like.
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Figure 4.7: Schematic drawing of the in-line holography geometry
The sample is positioned in a distance l from the pinhole with diameter A. The
pinhole-detector distance is L, and the detector has the size D. x denotes the
linear distance from the center of the CCD chip.

4.2.1 Resolution in analogy to the Rayleigh limit

In analogy to the resolution limit of conventional microscopy, the resolution limit
in digital in-line holography can be defined as

δ = 0.61
λ

NA
. (4.20)

Then, the question arises, how the numerical aperture is determined. This can
be done regarding different parameters like the size of the CCD chip, the radius
of the Airy disc on the detector, and the spacing of the interference fringes in
relation to the pixel size. These criteria and the resulting total numerical aperture
as well as the corresponding resolution limit will be discussed in the following.

Geometrical approach

As can be seen in figure 4.7, from the position of the sample, the CCD chip is
seen under the half opening angle

α = arcsin
D/2√

(D/2)2 + (L− l)2
. (4.21)

As the synchrotron experiments are carried out under ultra high vacuum condi-
tions, the refractive index of the surrounding medium n = 1, and the geometrical
numerical aperture can be written as [100, 31]

NAgeom = n sinα =
D/2√

(D/2)2 + (L− l)2
≈ D/2

(L− l)
. (4.22)
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The approximation is valid, if the pinhole-sample distance l is small and the
pinhole-detector distance L is much larger than the detector size D. These con-
ditions are given in the synchrotron setup. So with equations (4.20) and (4.22)
the obtainable resolution is given by

δgeom = 0.61
λ(L− l)
D/2

. (4.23)

An upper limit for the resolution limit independent from the pinhole-sample
distance l is given by

δgeom, approx = 0.61
λL

D/2
. (4.24)

According to this relation, a small pinhole-detector distance and a large detector
size are desirable in order to achieve a small resolution limit.

Effective detector size

In the above definition for the numerical aperture, it is with the tacit understand-
ing, that the detector is completely illuminated by the reference wave. However,
since the divergent wavefront is formed by a pinhole of finite size A > λ, the
opening angle of the central intensity maximum is given by equation (4.4), and
the radius q of the Airy disc at the detector at distance L can be calculated as

sin θ =
q√

q2 + L2
≈ q

L
⇔ q = L sin θ = 1.22

Lλ

A
. (4.25)

The farther the detector is positioned from the pinhole, and the smaller the
pinhole diameter, the larger is the Airy disc. So the above equation implies,
that large pinhole-detector distances are favorable, in contrast to the findings of
equations (4.22) and (4.24). But if the Airy is larger than the detector size, it
cannot be recorded completely, and the excess photon intensity is lost. So in the
ideal case, the radius q just matches half the detector size D, q = D/2. Regarding
a two dimensional quadratic detector, one could also argue that the Airy radius
should match half the diagonal of the detector in order to fully illuminate it. But
then the outermost interference fringes would not fit completely on the CCD chip
and therefore would not contribute to the reconstruction. An optimal relation
between the pinhole diameter and the pinhole-detector distance in dependence of
the wavelength can be derived from equation (4.25) to be

A

L

∣∣∣∣
opt

= 2.44
λ

D
. (4.26)

In the experiments carried out at BESSY, however, the pinhole-detector distance
L was dictated by the geometry of the scattering chamber and therefore fixed.
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Furthermore, although up to five different pinholes can be mounted on the pinhole
holder, a change of the pinhole always leads to a slight change in the field of view,
since the pinhole position cannot be reproduced with a sub-micrometer accuracy.
So, when a sample is to be recorded at various wavelengths, one chooses a pinhole
with a diameter that is an average of the optimum diameters and therefore might
lead to an over-illumination of the detector at shorter wavelengths and an under-
illumination at higher wavelengths.

In the first case, the numerical aperture is given by the geometrical one, equation
(4.22). In the latter case, the effective usable detector size is limited by the
position of the first minimum in the intensity distribution on the CCD chip.
Therefore, if the Airy radius q (equation (4.25)) is smaller than half the detector
size, the term for the numerical aperture in equation (4.22) has to be altered to

NAeff =
q√

q2 + (L− l)2
≈ q

(L− l)
= 1.22

λ

A

L

L− l
, (4.27)

and for the resolution follows

δeff = 0.61
λ(L− l)

q
=
A

2

L− l
L

=
A

2

(
1− l

L

)
. (4.28)

Again, the approximation
√
q2 + (L− l)2 ≈ L − l is valid for the synchrotron

setup. The pinhole-object distance l will always be much smaller than the pinhole-
detector distance L, not only, because of the experimental setup, but also because
the magnification M is determined by the ratio M = L/l [67], which should be
high in a microscope. As a consequence, the effective resolution limit depends in
first order on the pinhole diameter, and—quite surprisingly—not on the wave-
length.

Fringe spacing

Up to now, the finite pixel size p of the CCD chip was not taken into account,
but the recording media was assumed to be continuous. However, the effects of
a quantized detector cannot always be neglected.

As introduced in chapter 2, equation (2.13), the intensity distribution of the
interference pattern on the detector is given by

I(~r) = A2
ref(~r) + A2

obj(~r) + 2Aref(~r)Aobj(~r) cos (ϕref − ϕobj) . (4.29)

For an ideal point source emitting a spherical wave (compare equation (2.10))
with wavevector k = 2π/λ and complex amplitude

Aref(~r) =
A0

r
exp{−ikr}, (4.30)
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4 Resolution limit of digital in-line holography

Figure 4.8: Schematic drawing of the in-line holography geometry
The sample is positioned in a distance l from the pinhole with diameter A. The
pinhole-detector distance is L, and the detector has the size D. x denotes the
linear distance from the center of the CCD chip.

and a point object at position ~robj creating a scattered spherical wave

Aobj(~r) =
A1

|~r − ~robj|
exp {−ik |~r − ~robj|} , (4.31)

equation (4.29) rewrites as

I(~r) =
A2

0

r2
+

A2
1

|~r − ~robj|2
+ 2

A0A1

r |~r − ~robj|
cos {k (r − |~r − ~robj|)} . (4.32)

The first two terms result in a smoothly varying background intensity, while the
last term, the hologram term, describes the interference pattern. If the object is
positioned on the optical axis at a distance l from the point source as illustrated
in figure 4.8, the pattern consists of concentric circular fringes symmetric to the
optical axis with decreasing spacing toward periphery as plotted in figure 4.9.
The fringe spacing s is the distance on the detector on which the argument of
the cosine experiences a phase difference of 2π. Since the pattern exhibits radial
symmetry, it suffices to calculate the fringe spacing for one dimension on the
detector. With x being the radial distance from the center of the CCD chip, the
absolute values in equation (4.32) can be expressed as

r =
√
L2 + x2 and (4.33)

|~r − ~robj| =
√

(L− l)2 + x2, (4.34)

so the argument of the cosine in equation (4.32) is a function of x of the form

ϕ(x) = k (r − |~r − ~robj|) = k
(√

L2 + x2 −
√

(L− l)2 + x2
)
. (4.35)
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4.2 Resolution in digital in-line X-ray holography

Figure 4.9: Fringe pattern of a single point scatterer
The sample is positioned in a distance l = 5 mm from the pinhole. The pinhole-
detector distance is L = 800 mm, the detector has the size D = 27.6 mm, and
the wavelength is λ = 5 nm. x denotes the linear distance from the center of the
CCD chip. The interference pattern consists of concentric circular fringes with
decreasing spacing for larger x.

The fringe spacing condition is

|ϕ(x+ s)− ϕ(x)| = 2π. (4.36)

Since for the fringes farther from the center the assumption s � x is valid, the
difference can be approximated with a derivative [100]

ϕ(x+ s)− ϕ(x) = s
ϕ(x+ s)− ϕ(x)

s
≈ s ϕ′(x). (4.37)

It is

ϕ′(x) = k

(
x√

L2 + x2
− x√

(L− l)2 + x2

)
(4.38)

and thus equations (4.36) and (4.37) give for the fringe spacing [32]

s =
λ

x

√
L2 + x2

√
(L− l)2 + x2

√
L2 + x2 −

√
(L− l)2 + x2

= λ

√
1 + (L/x)2

√
1 + ((L− l)/x)2√

1 + (L/x)2 −
√

1 + ((L− l)/x)2
. (4.39)

According to the Nyquist-Shannon sampling theorem [101], which says, that a
function which contains frequencies up to fmax “is completely determined by
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4 Resolution limit of digital in-line holography

Figure 4.10: Fringe spacing s in dependence on L and l
In this example, the detector size A = 27.6 mm, the pixel size p = 13.5 µm, the
pinhole diameter A = 500 nm, and the wavelength λ = 5 nm.
left: The pinhole-sample distance is l = 5 mm. With increasing pinhole-detector
distance L the fringe spacing s increases.
right: For a fixed detector distance L = 800 mm the fringe spacing s decreases
with increasing sample distance l.

giving its ordinates at a series of points spaced [. . .][2fmax] apart” [102], the
fringe spacing s must be at least twice the pixel size p in order to be resolved
by the CCD chip [103]. By setting s = 2p and solving equation (4.39) for x, one
gets the maximum radius within which the fringes can be resolved. Outside this
circle, the fringes are too narrow, the signal is not sampled sufficiently, and the
intensity on the detector contains no information about the hologram. So this
radius limits the numerical aperture to

NAfringe =
x√

x2 + (L− l)2
≈ x

(L− l)
. (4.40)

However, equation (4.39) cannot be solved analytically. But if x � L and
x� (L− l)—what is again valid in the synchrotron experiments—it can be ap-
proximated as [100]

s =
λ

x

L(L− l)
l

, (4.41)

the maximum radius is

x =
λ

2p

L(L− l)
l

, (4.42)

and equation (4.40) has the form

NAfringe =
λ

2p

L

l
. (4.43)

The resolution limit is then

δfringe = 0.61
λ

NAfringe

= 1.22
pl

L
. (4.44)
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4.2 Resolution in digital in-line X-ray holography

Again quite surprisingly, this resolution limit also does not depend on the wave-
length, but only on the pixel size p and the magnification M = L/l. It however
confirms the Nyquist-Shannon sampling theorem, that structures can be resolved
only if their size δ is—after magnification by the factor M = L/l—larger than
the pixel pitch p.

Total numerical aperture and total resolution limit

In total, the resulting actual numerical aperture is given by the minimum of
equation (4.22), equation (4.27), and equation (4.43)

NAtotal = min {NAgeom,NAeff,NAfringe}

= min

{
D/2

(L− l)
, 1.22

λ

A

L

L− l
,
λ

2p

L

l

}
, (4.45)

while the total resolution limit is the maximum of equation (4.23), equation
(4.28), and equation (4.44)

δtotal = max {δgeom, δeff, δfringe}

= max

{
0.61

λ(L− l)
D/2

,
A

2

L− l
L

, 1.22
pl

L

}
. (4.46)

In figure 4.11 a comparison of the different numerical apertures for fixed object
distance l and varying detector distance L is illustrated. The fixed parameters
are the detector size D = 27.6 mm, the pixel size p = 13.5 µm, the pinhole
diameter A = 500 nm, the pinhole-sample distance l = 5 mm, and the wavelength
λ = 5 nm. These values are typical for our synchrotron experiments. The actual
numerical aperture at a certain distance L is given by the minimum of NAgeom

(black), NAeff (red), and NAfringe (blue). For small pinhole-detector distances L
and constant pinhole-sample distance l the magnification M = L/l is small, and
according to equation (4.43) the numerical aperture with respect to the fringe
spacing is small, since the interference fringes cannot spread properly and thus
are resolved only very close to the optical axis. At longer detector distances, the
fringes can be resolved within the first minimum of the Airy intensity distribution,
but the radius of the Airy disc is smaller than half the detector size D, since it
scales with the detector distance L (equation (4.25)). Only at distances L >
(AD)/(2.44λ) the size of the CCD chip limits the numerical aperture and the
total numerical aperture is limited by the geometrical one.

Since the total resolution limit δtotal depends inversely on the numerical aperture
NA, it is given by the maximum of δgeom (black curve in figure 4.12), δeff (red
curve), and δfringe (blue curve), depending on which numerical aperture is the
smallest at the respective detector distance.
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4 Resolution limit of digital in-line holography

Figure 4.11: Comparison of the different NA for fixed l and varying L
The actual numerical aperture is given by the minimum of NAgeom (black), NAeff

(red), and NAfringe (blue). In this example, the detector size D = 27.6 mm, the
pixel size p = 13.5 µm, the pinhole diameter A = 500 nm, the pinhole-sample
distance l = 5 mm, and the wavelength λ = 5 nm. For small pinhole-detector
distances L the interference fringes cannot spread properly and thus are resolved
only very close to the optical axis. This radius x limits the numerical aperture. At
longer detector distances, the fringes can be resolved within the first minimum of
the Airy intensity distribution, but the radius of the Airy disc is smaller than half
the detector size D. Only at distances L > (AD)/(2.44λ) the size of the CCD
chip limits the numerical aperture.

Figure 4.12: Comparison of the different δ for fixed l and varying L
The actual resolution limit is given by the maximum of δgeom (black), δeff (red),
and δfringe (blue). At low pinhole-detector distances, the fringe-spacing criterion
limits the resolution. With increasing distance, the fringe spacing increases and
the resolution is limited by the size of the Airy disc on the detector. When
L > (AD)/(2.44λ), the limiting factor is the size of the CCD chip.
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4.2 Resolution in digital in-line X-ray holography

Figure 4.13: Comparison of the different NA for fixed L and varying l
The actual numerical aperture is given by the minimum of NAgeom (black), NAeff

(red), and NAfringe (blue). Here, the parameters are the same as in figure 4.11,
with the difference that the pinhole-detector distance is fixed to L = 800 mm
and the pinhole-sample distance l varies. For small distances, the magnification
M = L/l is high and the limiting radius x, where the fringe spacing is smaller
than two pixels, is large. The numerical aperture is limited by the geometrical
or the effective one, depending on the pinhole-detector distance being larger or
smaller than the optimum L = (AD)/(2.44λ). For larger sample distances l, the
fringe spacing decreases, and the usable detector size is limited by the radius x.

Figure 4.14: Comparison of the different δ for fixed L and varying l
The actual resolution limit is given by the maximum of δgeom (black), δeff (red), and
δfringe (blue). At low pinhole-sample distances, the resolution is limited by either
the geometrical or the effective numerical aperture, depending on the pinhole-
detector distance being larger or smaller than the optimum L = (AD)/(2.44λ).
For larger sample distances l, the fringe spacing decreases, and the usable detector
size is limited by the radius x.
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4 Resolution limit of digital in-line holography

For a constant pinhole-detector distance L and varying pinhole-sample distance
l two cases can occur; either L > (AD)/(2.44λ) and the geometrical numerical
aperture is smaller than the effective one or L < (AD)/(2.44λ) and NAeff <
NAgeom. In either case, the smaller of the two limits the total numerical aperture
at small sample distances l, while at larger sample distances the minimal numer-
ical aperture is given by the fringe resolution criterion NAfringe. In figure 4.13
the pinhole-detector distance L = 800 mm, which is smaller than the optimal
distance Lopt = (AD)/(2.44λ) = 1131.1 mm. As in figure 4.11, it is the detector
size D = 27.6 mm, the pixel size p = 13.5 µm, the pinhole diameter A = 500 nm,
and the wavelength λ = 5 nm. So the effective numerical aperture (red curve)
poses the limit up to a sample distance l = 12.0 mm, where NAeff = NAfringe.
At larger sample distances, the fringe spacing decreases and becomes to small to
be resolved throughout the whole Airy disc. In this range, the total numerical
aperture is determined by NAfringe (blue curve).

The corresponding resolution limits are depicted in figure 4.14. Although not
discernible in the drawing but what becomes clear looking at equations (4.23)
and (4.28), both resolution limits δgeom as well as δeff have a negative slope. So
the minimal total resolution is reached at a pinhole-sample distance, where the
larger of those two resolution limits intersects the resolution limit δfringe. By
equating δgeom = δfringe (equations (4.23) and (4.44)) and δeff = δfringe (equations
(4.23) and (4.44)) respectively, an optimal pinhole-sample distance can be found:

lgeom,opt =
L

pd
Lλ

+ 1
≈ L2λ

pD
and (4.47)

leff,opt =
L

2.44p
A

+ 1
≈ LA

2.44p
. (4.48)

Both approximations are valid in the synchrotron setup.

A global resolution minimum is reached, when the experimental parameters
match in a way, that all three curves in figure 4.14 intersect in a single point. At
this point, the pinhole-detector distance Lopt is (compare equation (4.26))

Lopt =
AD

2.44λ
, (4.49)

the optimal pinhole-sample distance is [100]

lopt =
L

pD
Lλ

+ 1
=

L
2.44p
A

+ 1
, (4.50)

and for the resolution limit follows [100]

δopt =
A

2

L− l
L

=
A

2

1

1 + A
2.44p

≈ A

2
and (4.51)

δopt = 1.22
pl

L
=

1
2
A

+ 1
1.22p

≈ A

2
, (4.52)
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4.2 Resolution in digital in-line X-ray holography

respectively. That means, the best achievable resolution equals the pinhole radius!
In the experiments presented in this thesis, however, the pinhole-detector distance
was dictated by the geometry of the scattering chamber, and pinholes in certain
sizes only were available. So by choosing the pinhole diameter, the achievable
resolution and the accessible wavelength range are predefined.

According to Kreuzer [29, 43, 44], the sample has to be positioned at a distance
l to the pinhole such that the Fraunhofer condition δ2 � lλ (compare equation
(2.30)) is fulfilled, in order to achieve a resolution of δ. This condition is easily
met in the synchrotron experiments for lopt, where the resolution δ is in the sub-
micrometer range and the wavelength is between 2 nm and 14 nm. From equation
(4.20) Kreuzer also derives a maximal allowed detector distance: Since

δ = 0.61
λ

NA
= 0.61

λ

sinα
(4.53)

and
D/2

L
= tanα =

1√
1

sin2 α
− 1

(4.54)

it follows for the maximal detector distance

Lmax =
D

2

√(
δ

0.61λ

)2

− 1 ≈ Dδ

1.22λ
. (4.55)

These considerations are based on perfectly spherical waves, which always provide
a homogeneous illumination of the detector. But taking into account the finite
size of the pinhole and the resulting finite size of the Airy disc, this distance
Lmax should not be smaller than the detector distance, where the Airy disc fully
illuminates the CCD chip, equation (4.26) and equation (4.49). Thus it follows
for the resolution limit

D

2

√(
δ

0.61λ

)2

− 1 =
DA

2.44λ
⇔ (4.56)

δ =

√(
A

2

)2

− (0.61λ)2 ≈ A

2
. (4.57)

This result confirms the total resolution limit expressed in equation (4.52). All
the above considerations were carried out for point scatterers on the optical axis.
For points off the axis, the interference fringes will be cut off asymmetrically by
the finite detector, which will lead to a higher resolution limit [100].

4.2.2 Resolution in analogy to the Abbe limit

In analogy to the consideration leading to the Abbe resolution limit (equation
(4.18)), one can also observe the interference pattern produced by two objects. In
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4 Resolution limit of digital in-line holography

Figure 4.15: Schematic drawing of the in-line holography geometry
Two samples are positioned separated by a distance t symmetrically to the optical
axis in a distance l from the pinhole. The pinhole diameter is A, the pinhole-
detector distance is L, and the detector has the size D. x denotes the linear
distance from the center of the CCD chip.

figure 4.15, two samples are positioned separated by a distance t symmetrically
to the optical axis in a distance l from the pinhole. To describe the intensity
distribution on the detector for two point scatterers, equation (4.32) has to be
extended to [31, 32]

I(~r) =
A0

2

r2
+

A1
2

|~r − ~r1|2
+

A2
2

|~r − ~r2|2

+

[
2

A0A1

r |~r − ~r1|
cos {k (r − |~r − ~r1|)}

+ 2
A0A2

r |~r − ~r2|
cos {k (r − |~r − ~r2|)}

]
+2

A1A2

|~r1 − ~r2|2
cos {k (|~r − ~r1| − |~r − ~r2|)} . (4.58)

The first three terms result in a smoothly varying background intensity, while
the last term describes the interference pattern of the two objects. Since for
holography the amplitudes A1 and A2 must be smaller than the amplitude of the
reference wave A0, this interference term can be neglected. So the term in the
squared brackets remains as hologram term.

Since the separation t between the two identical point scatterers is small, it is
|~r − ~r1| ≈ |~r − ~r2| [31, 32]. Furthermore holds A1 = A2 and |~r1| = |~r2|. With the
sum formula for the cosine [74]

cosu+ cos v = 2 cos
u+ v

2
cos

u− v
2

(4.59)
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the hologram term can then be rewritten as [31, 32]

IH(~r) = 4
A0A1

r |~r − ~r1|
cos

{
k

2r − |~r − ~r1| − |~r − ~r2|
2

}
× cos

{
k
|~r − ~r1| − |~r − ~r2|

2

}
. (4.60)

Similar expressions appear in acoustics, when two harmonic waves with slightly
different frequencies f1 and f2 add. The result is a harmonic wave with frequency
fsum = (f1 + f2)/2 with a harmonic modulation of the amplitude. This so called
beating has a frequency of fbeat = (f1 − f2)/2 and can be heard as the sound
periodically growing louder and softening. The same effect applies in equation
(4.60); the first cosine term describes the fringe pattern, while the second cosine
term imposes the modulation.

Using the experimental parameters, the absolute values of the vectors in equation
(4.60) can be expressed as

r =
√
L2 + x2 and (4.61)

|~r − ~r1| =
√

(L− l)2 + (x− t/2)2, (4.62)

|~r − ~r2| =
√

(L− l)2 + (x+ t/2)2, (4.63)

and the hologram term is [31, 32]

IH(x) = 4
A0A1√

L2 + x2
√

(L− l)2 + (x− t/2)2

× cos

{
k

2
√
L2+x2−

√
(L−l)2+(x−t/2)2−

√
(L−l)2+(x+t/2)2

2

}
× cos

{
k

√
(L−l)2+(x−t/2)2−

√
(L−l)2+(x+t/2)2

2

}
. (4.64)

In figure 4.16, the one-dimensional fringe pattern resulting from the two cosine
terms is plotted for various separations t. The amplitudes are not taken into
account since they vary only slowly over the whole detector range. The point
scatterers are positioned at a distance l = 5 mm from the pinhole. The pinhole-
detector distance is L = 800 mm, the detector has the size D = 27.6 mm, and
the wavelength is λ = 5 nm. All those values are typical for the synchrotron
experiments. For t = 0, what is equivalent to a single object, the interference
pattern consists of concentric fringes with equal intensity. When the separation t
increases, the fringe spacing does not change significantly. However, the modula-
tion frequency increases and more and more maxima of the beat pattern appear
on the detector. So obviously, the information about the separation distance t is
contained in the modulation of the fringe pattern [32]. In order to capture infor-
mation on the separation of the point scatterers, it is—in analogy to the Abbe
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4 Resolution limit of digital in-line holography

Figure 4.16: Fringe modulation for two point scatterers
Two samples are positioned separated by a distance t symmetrically to the optical
axis in a distance l = 5 mm from the pinhole. The pinhole-detector distance is
L = 800 mm, the detector has the size D = 27.6 mm, and the wavelength is
λ = 5 nm. x denotes the linear distance from the center of the CCD chip.
top left: t = 0. Fringe pattern produced by a single point scatterer. The fringe
spacing itself does not change significantly for small t 6= 0.
For increasing separation t the modulation frequency increases and more and more
maxima of the beat pattern appear on the detector.
top right: t = 0.125 µm.
bottom left: t = 0.250 µm.
bottom right: t = 0.500 µm.
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4.2 Resolution in digital in-line X-ray holography

criterion discussed in section 4.1.4—therefore necessary to have the first modula-
tion maximum on the detector. Nodes in the modulation occur, when the cosine
equals zero, that is when the argument is an odd multiple of π/2. Modulation
maxima occur in between, when

k

√
(L− l)2 + (x− t/2)2 −

√
(L− l)2 + (x+ t/2)2

2
= nπ, (4.65)

where n is an integer. If the first maximum is just at the edge of the CCD chip,
then n = 1 and x = D/2. Hence it follows for the resolvable distance [31, 32]

δKreuzer = t = λ

√
(L− l)2 + (D/2)2

D/2
=

λ

NAgeom

, (4.66)

where the numerical aperture NA is defined as in (4.22). In the derivation of
this expression it was assumed that the separation t is small compared to the
object-screen distance L− l. This result is the same as the Abbe resolution limit,
equation (4.18), although the derivation was quite different.

Again, the considerations above were under the assumption of a perfect spherical
reference wave. In the case of a pinhole with finite size A, the effective detector
size might be limited by the radius of the Airy disc q < D/2. Then the geometrical
numerical aperture NAgeom in equation (4.66) has to be replaced by the effective
one, NAeff (equation (4.27)).

Due to the lacking definition of resolution itself [90] it cannot be said with cer-
tainty, which of the two approaches for the resolution limit, equation (4.46) or
equation (4.66), presents the ultimate limit. To enable a comparison with optical
light microscopy, the first equation has to be applied. However, since the Abbe
limit was derived for coherent illumination, what is certainly the case in holo-
graphy, the second equation should not be neglected. So in the following part of
this thesis, both numbers will be given as a guideline and to allow a comparison
of the different predictions with each other and with the experimental results.

4.2.3 Depth resolution

For most imaging systems only a small range along the optical axis exists, over
which two points can be simultaneously imaged in focus. This range is denoted as
depth resolution δdepth. How it depends on the parameters of the imaging system
will be derived in the following.

As illustrated in figure 4.17, a displacement of the object of ∆g along the optical
axis leads to a displacement of the object plane of ∆b. Hence the point object is
imaged as a spot with diameter ∆x in the original object plane.
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Figure 4.17: Geometry of depth resolution
A displacement of the object of ∆g along the optical axis leads to a displacement
of the object plane of ∆b. Hence the point object is imaged as a spot with
diameter ∆x in the original object plane. The size of the limiting aperture is given
by the diameter A of the lens. After [68].

If the displacement ∆g is small compared to the object distance g, it is [68]

∆b

b
= −∆g

g
. (4.67)

And the theorem of intersecting lines gives for the diameter of the spot

∆x =

∣∣∣∣A∆b

b

∣∣∣∣ =

∣∣∣∣A∆g

g

∣∣∣∣ ≈ ∣∣∣∣A∆g

f

∣∣∣∣ . (4.68)

The image is unchanged if the spot size ∆x is smaller than the diameter of the
diffraction limited Airy disc of the point object. The radius of the Airy disc was
introduced in equation (4.6). Hence it follows for the allowed displacement [68]

δdepth = ∆g = ∆x
f

A
< 2 · 1.22

λf

A

f

A
= 0.61λ

(
f

A/2

)2

= 0.61
λ

NA2 . (4.69)

So the depth resolution limit depends quadratically on the numerical aperture of
the system. It should be noted that in literature, instead of the factor 0.61 also
the values 0.5 [31, 32] and 1 [68] can be found, corresponding to the respective
value in the definition of the lateral resolution limit. Since for the numerical
aperture holds NA = sinα ≤ 1, the depth resolution is always larger than the
lateral resolution, equation (4.12).

70



4.2 Resolution in digital in-line X-ray holography

By inserting the expression for the numerical apertures developed in section 4.2.1,
equations (4.22),(4.27), and (4.43), it leads to an expression for the depth resolu-
tion limit in terms of the experimental parameters. The same considerations as
were carried out above result in a total depth resolution of

δdepth =
A2

2.44λ
. (4.70)

So for an improved depth resolution, the size of the pinhole is even more crucial
than for the lateral resolution limit. As an example, to achieve a depth resolution
better than 1 µm at a wavelength of λ = 2 nm, a pinhole diameter smaller than
A = 70 nm is necessary.

In the synchrotron experiments, the largest numerical aperture obtained is NA =
D/(2L) = 0.017 (L = 800 mm, D = 27.6 mm). With the shortest used wave-
length of λ = 2.48 nm (E = 500 eV), equation (4.69) leads to a depth resolution
of at least δdepth = 5.2 µm. The smallest pinhole, A = 250 nm, used at wave-
lengths up to λ = 5.6 nm gives with equation (4.70) a total depth resolution of
δdepth = 4.5 µm. Since these values are larger than the thickness of most of the
examined samples, no three dimensional information was obtained in the exper-
iments. Thus, in the following chapters, the depth resolution will not be taken
into account.
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As discussed in chapter 4, the achievable lateral and depth resolution depends
on the pinhole diameter. Therefore, for given experimental parameters—that is
pinhole-detector distance, detector size, and wavelength—an ideal pinhole size
exists. Additionally, when working with X-rays, the pinhole material has to be
of a certain thickness in order to block the part of the synchrotron beam that
impinges on the aperture and does not pass the pinhole. In the following chapter,
these specifications will be discussed and it will be explained, how the pinholes
used in this thesis were produced by Focused Ion Beam (FIB) milling. The
different pinhole types used in this thesis are introduced in the last part of this
chapter.

5.1 Pinhole requirements

Holographic microscopy in the Gabor geometry requires a divergent wavefront,
which is in the perfect case a spherical wave. One way to produce a spherical
wavefront is to use a pinhole with a diameter in the order of the wavelength of
the light used. For laser based holography diameters of about 500 nm are ideal.
Apertures of those sizes can be produced by laser drilling in nickel substrates of
about 2.5 µm to 5.0 µm thickness and are commercially available [104, 105]. For
experiments with synchrotron radiation in the Vacuum-Ultraviolet (VUV) or soft
X-ray regime1 pinhole sizes of few nanometers are required to generate spherical
wavefronts. As will be explained below, it is not absolutely necessary to have such
small pinholes, and larger pinhole diameters are sometimes even advantageous.

When a wave is diffracted from an aperture which is larger than the wavelength,
the intensity distribution in the far field is described by the Airy distribution,
equation (2.55), as introduced in chapter 2.2. So the pinhole diameter A de-
termines the opening angle α of the divergent beam for a given wavelength λ
(compare equation (4.4))

sinα = 1.22λ/A. (5.1)

But it also influences the photon current through the pinhole npinhole, that is
the number of photons N that pass the clear aperture in a certain time interval

1The VUV region is defined having wavelengths from 200 nm down to 10 nm, followed by the
soft X-ray region from 10 nm down to 0.1 nm [69, 80, 106].
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∆t. At the beamline UE52-SGM at BESSY, where the experiments were carried
out, the synchrotron beam can be focused only to a spot size of about 20 µm
[88] (compare figure 3.5), which is much larger than the pinhole opening. So the
major part of the photons impinges on the pinhole material and is lost.

The photon beam has a Gaussian profile (compare figure 3.5). But since the
synchrotron beam is large compared to the pinhole diameter, the photon flux
ρbeam, which is the number of photons N per area F and time interval2 ∆t, can
be assumed constant over the area of the pinhole:

ρbeam =
N

F∆t
= const. (5.2)

So, the photon current npinhole passing the pinhole per unit time is proportional
to the aperture area Fpinhole

npinhole =
N

∆t
= ρbeam · Fpinhole ∝ A2, (5.3)

where Fpinhole = π(A/2)2 is the area of the pinhole. Therefore, on the one hand,
the diameter should be large, to accept as many photons as possible. On the
other hand, it should be as small as possible, to provide a large opening angle (see
equation (5.1)) and thereby a large effective numerical aperture NAeff (compare
equation (4.27)). The ideal pinhole diameter represents a compromise between
these contradictory requests.

In the experiments carried out in the course of this thesis, the pinhole-detector
distance L was dictated by the size of the UHV chamber. So the geometrical
numerical aperture NAgeom = D/2

L
(equation (4.22)) was fixed. The radius q of

the Airy disc at a given pinhole-detector distance L as a function of the pinhole
diameter A and the wavelength of the photons λ is (equation (4.25))

q = 1.22
L · λ
A

. (5.4)

If the Airy disc is larger than the detector, 2q ≥ D, then the effective numerical
aperture NAeff = q/L, equation (4.27), is larger than the geometrical one. A part
of the photons is not recorded and intensity is lost. If the Airy disc is smaller
than the detector, the effective numerical aperture NAeff ≤ NAgeom limits the
resolution, as explained in chapter 4. In an ideal case, the effective NA matches
the geometrical one. Consequently, it is only necessary to expand the synchrotron
beam such that it illuminates the whole detector. Then the Airy radius ideally
equals half the detector width q = D/2, which leads to the following relation for
the ideal aperture size Aideal (compare equation (4.26)):

Aideal = 2.44
L · λ
D

. (5.5)

2This time interval ∆t is much larger than the synchrotron pulse length in the picosecond
regime, therefore the photon current can be considered constant.
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Figure 5.1: Ideal pinhole diameter versus wavelength
The ideal pinhole diameter Aideal according to equation (5.5) is plotted as a func-
tion of the wavelength λ for a given pinhole-detector distance L and detector size
D = 27.6 mm. black: L = 1000 mm red: L = 800 mm

In figure 5.1, the ideal pinhole diameter Aideal is plotted as a function of the
wavelength for two different pinhole-detector distances L.

In the paragraphs above, we stated, that the pinhole diameter limits the number
of photons that pass the clear aperture per unit time. Another reason, why
the pinhole diameter should be as large as possible, is an area argument. For a
constant pinhole-detector distance L, larger opening angles of the divergent beam
result in a lower photon flux on the detector3. The photons passing the pinhole
are spread over the area of the Airy disc FAiry, leading on the detector to a flux
per unit area of

ρAiry =
npinhole

FAiry

. (5.6)

FAiry is proportional to the square of the radius of the Airy disc. With equation
(5.4) follows

ρAiry ∝
npinhole

q2
∝ npinholeA

2. (5.7)

Inserting equation (5.3) gives the dependence of the flux on the detector on the
pinhole diameter

ρAiry ∝ A4. (5.8)

This proportion emphasizes the influence of the pinhole size on the flux on the
detector for a given pinhole-detector distance L and constant wavelength λ, and
by that on the necessary exposure times. So the ideal pinhole is large enough to
permit a photon flux as high as possible through the aperture but small enough

3The number of photons per detector area N/F is related to the flux ρAiry and the exposure
time T via N/F = ρAiryT .
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Figure 5.2: Transmission of the direct synchrotron beam
A schematic drawing of how the beam is influenced by the pinhole (not to scale)

to fully illuminate the detector in a certain pinhole-detector distance. For the
wavelength range used in the presented experiments, that is from λ = 2 nm up
to λ = 14 nm, and a pinhole-detector distance L of about 800 mm equation (5.5)
leads to ideal pinhole diameters A of 140 nm to 1000 nm, what is also illustrated
in figure 5.1.

The second important parameter regarding pinhole design is the thickness of the
pinhole material. A perfect pinhole must be thick enough to block the direct
synchrotron beam, that means absorb the part of the beam that impinges on the
material and does not form the Airy disc. In figure 5.2, a schematic drawing
illustrates how the synchrotron beam is influenced by the pinhole. The part
of the beam that passes the clear aperture forms the Airy disc, while the rest
penetrates the material and gets attenuated. If the pinhole material is too thin
to completely absorb the X-rays, this direct transmission is visible as a bright
spot on the detector. Figure 5.3, left, shows an image of an Airy disc recorded
at 220 eV photon energy. A pinhole of 400 nm diameter in a 700 nm thick
gold membrane was used. The transmitted beam is visible as a bright spot in
the center of the image. This spot not only overlays the hologram pattern and
disturbs the reconstruction but also limits the exposure time since its intensity
might be orders of magnitude larger than the intensity of the Airy disc. Below
the bright spot, a dark line can be seen, which appears to leak toward the lower
border of the CCD chip. This effect is due to an area of destroyed pixel, where
the unattenuated synchrotron beam once hit the chip, hence it will appear in all
holograms recorded with that CCD camera. In figure 5.3, right, a linecut through
the Airy disc is displayed. The transmitted spot can be easily identified due to
it intensity that exceeds the maximum intensity of the Airy disc by a factor of 5.
Consequently, the pinhole membrane has to be of a certain thickness—depending
on the membrane material and the photon energy—in order to absorb the direct
transmitted radiation sufficiently (compare figure 5.4).
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Figure 5.3: Transmission of the direct synchrotron beam
left: Image of an Airy disc with transmitted beam visible as bright spot, recorded
at 220 eV, 400 nm pinhole in 700 nm thick gold foil. The size of the CCD chip is
D = 27.6 mm.
right: Linecut through the Airy disc. The intensity of the transmitted beam is a
factor 5 higher than the intensity of the Airy disc.

Figure 5.4: Transmission as a function of the photon energy
left: Transmission for different materials (thickness 0.7 µm)
right: Transmission through gold as a function of energy for different membrane
thicknesses
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Figure 5.5: Acceptance angle of a pinhole
The maximum acceptance angle depends on the pinhole diameter A and the
thickness of the membrane d.

As our experiments have shown, a gold layer of 700 nm sufficiently blocks the
synchrotron beam only for energies up to 100 eV. In order to measure at higher
energies, thicker membranes are needed. As figure 5.4, right, indicates, a thickness
of 2 µm should suffice so that even at the maximum transmissivity of gold between
145 eV and 165 eV measurements without direct transmission are possible. For
pinhole diameters of 400 nm down to 100 nm, that thickness corresponds to an
aspect ratio of 1:5 to 1:20, which is a challenge concerning the fabrication.

Besides the high aspect ratio and the decreasing photon current through the pin-
hole, a decreasing pinhole diameter poses another experimental difficulty, namely
a decrease in the maximum acceptance angle of the pinhole. If the pinhole is
tilted by an angle α with respect to the optical axis given by the direction of the
synchrotron beam, the effective pinhole diameter decreases. If the membrane was
infinitely thin, the effective diameter would be the projected area

Aproj = A cosα. (5.9)

However, since the membrane is of finite thickness, part of the beam through this
projected area impinges on the wall of the pinhole and is shadowed (compare
figure 5.5). This area can be expressed as

As = d sinα. (5.10)

So the effective pinhole diameter is given by

Aeff = Aproj − As = A cosα− d sinα. (5.11)

The maximum permissible tilt angle αmax is reached, when the pinhole wall com-
pletely shadows the beam and the effective diameter is zero. αmax can the be
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calculated as

Aproj = As

⇔ A cosα = d sinα

⇔ A

d
=

sinα

cosα
= tanα

⇔ α = arctan
A

d
.

In figure 5.5, right, the acceptance angle αmax is plotted as a function of the
membrane thickness d for various pinhole diameters A.

5.2 Pinhole fabrication by Focused Ion Beam
Milling

Figure 5.6: LEO 1540 CrossBeam®

Pinholes with the specifications men-
tioned above can be produced by Fo-
cused Ion Beam (FIB) milling. Alter-
native techniques to fabricate structures
in the nanometer range with a high as-
pect ratio are Reactive Ion Etching (RIE)
[70, 107], and LIGA (German acronym for
“Lithographie, Galvanoformung und Ab-
formung” = (X-ray) lithography, electro-
plating, and molding) [108], for example.

The LEO 1540XB CrossBeam® system
from Carl Zeiss STM AG as it is available
at the Nanofabrication Laboratory at the
University of Western Ontario, Canada,
can be used for removing, modifying,
and depositing material on the nanometer
scale. Positively charged gallium ions from
a liquid gallium source are accelerated and
focused onto the workpiece. When hitting

the sample surface, material is sputtered away. This process can be accelerated
with the help of etch gases like iodine or chlorine [109], which can be injected
close to the surface by a multichannel gas-injection system. It is also possible
to add organometallic precursors, which contain platinum or tungsten, for ex-
ample. The ion beam then dissociates the precursor, and the metal is deposited
on the substrate [109, 110]. Both, sputtering and deposition can be done with
nanometer precision. The Ga+-ions and secondary electrons which are produced
in the sputtering process can be used for imaging. The major advantage of the
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Figure 5.7: Cross section of two holes
The left hole is milled all through the
membrane, while the right hole does not
punch through. The tapering walls are visible
in the cross section.

CrossBeam® system over other dual beam instruments is, that the milling pro-
cess can be monitored in real time with a LEO GEMINI® field emission scanning
electron microscope (SEM). Additionally, an Oxford Instruments X-ray system
allows for elemental mapping and analysis of the milled sections. Rapid sample
changes without disrupting the vacuum of the main chamber are possible because
of a sample transfer airlock system.

For FIB milling, the sample has to be positioned at the coincidence point of the
electron and the ion beam to make sure, that the machined spot can be live
imaged with the SEM. When milling a hole, the ion beam is not just pointed
statically to one spot until it has punched through. This procedure only leads to
success if the membrane is sufficiently thin. For thicker membranes it results in
a V-shaped crater with an aspect ratio of about 1:3 (see figure 5.7), since from
a certain milling depth on, the sputtered material cannot escape from the hole
but is redeposited on the walls, therefore a steady state is reached. To avoid
this effect, a finite entrance hole size has to be chosen. Also, sputtering is fastest
under grazing incidence due to forward scattering.

When milling holes, first, the punchthrough dose has to be determined. For this
purpose, a test array is designed and drawn in the NPGS (Nanometer Pattern
Generation System) lithography software. Here, the nominal hole diameter in-
creases from left to right, while the dose increases from top to bottom (see figure
5.8, left). In order to keep one parameter fixed to facilitate the comparison of the
milling results, the area dose for each hole is assigned such that the total dose
is kept constant within each line. In this example, the area dose for the 200 nm
hole is 10000 µC/cm2, while for the 140 nm hole it is 20408 µC/cm2, giving a
total dose of 3 pC for each hole in the first line. A milling current of 50 pA
provides a good focused beam with reasonable milling rate. Lower currents give
a better focus but longer milling times. Here, the milling time for the first line
was 18 s. From line to line the dose is increased by the exposure scale factor,
by which the exposure time and therewith the total dose is multiplied. Once the
milling is finished, the sample is flipped and SEM imaged to determine the size
of the exit holes. As can be seen in figure 5.8, right, the holes in the first line,
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Figure 5.8: Test array to determine the punchthrough dose
left: Entrance side of gold membrane
right: Exit side of the membrane
The nominal hole diameter increases from left to right (white numbers, sizes in
nm), while the total dose increases from top to bottom (scale factor in black
numbers). The horizontal distance between two holes is 2 µm.

that is with the lowest dose, do not go through at all, while in the second line
the holes start to open up. Also quite obvious is, that the 140 nm hole in the
second line differs strongly from the rest. The reason for that is, that this hole
was accidentally milled twice. The ideal diameter and dose values are such, that
the hole just punches through so that the sputtered material can escape from the
exit hole, but the hole is not yet widened.

Once the punchthrough values are found, the generally tapered holes are reamed
open to the desired size. This procedure also leads to parallel walls. In this
step, the hole is opened from inside to outside by milling circles with increasing
radius (see figure 5.9, left). The last circle is written repeatedly in order to
get smooth walls. Parameters that are to be varied are the radius of the first,
innermost circle, which should be smaller than the initial exit hole, the radius of
the outermost circle, which determines the final hole size, the step size by which
the radius is increased from circle to circle (which is connected to the number
of reaming circles), and the line dose. Looking at figure 5.9, right, where the
line dose increases from left to right while the other parameters are kept the
same, the influence of the reaming dose becomes evident. Without reaming the
beam punches through the membrane as expected, but if the line dose is chosen
to small, material is redeposited and the hole is filled up as in the second hole
from the left. Therefore, a higher line dose is needed. It is also useful to keep in
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Figure 5.9: Testing the reaming parameters
left: Reaming pattern
First, the beam has to punch through the membrane (red circle), then the hole
is opened up from inside to outside (blue circles) to the final diameter. The last
reaming radius (yellow circle) is written repeatedly for polishing.
right: Exit side of reaming test array
This image was taken by Dr. Todd Simpson. The white numbers give the assigned
line dose. The diameter of the first and the last exit hole are measured.

mind, that gravity has no influence on such tiny structures. A piece of material
attached to the wall as in the third hole would not ‘fall to the ground’ when cut
loose but would still stick to the membrane due to van-der-Waals forces acting
on those length scales.

Figure 5.10: Cross section of
a milled hole

The diameter is measured to be

A = 250 nm.

The holes can be analyzed either by turning
the sample over and measuring the size of the
exit holes as done in figure 5.8, or by cutting
open a rectangular section of the membrane,
so that the cross section of the milled hole
becomes visible (compare figure 5.10). This
also allows to examine whether the walls are
parallel or tapered.

When the milling parameters are found, the
hole sizes reproduce, and pinholes with di-
ameters of 450 nm, 320 nm and 250 nm in
2 µm thick gold have been produced. Smaller
hole diameters are not feasible in such thick
membranes because of the high aspect ratio.
In order to be able to access shorter wave-
lengths on the cost of transmitted intensity,

a pinhole of 150 nm in size has been milled in a 700 nm membrane. This pinhole
fully illuminates the detector in a distance L = 800 mm for wavelengths down to
λ = 2.1 nm, what corresponds to photon energies of E = 583.6 eV.
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5.3 Pinhole generations

One major aim of this thesis was the adaptation of the pinhole design to meet
the requirements mentioned above for the use in digital X-ray holography. In
this process, three different types of pinholes were tested and used for the mea-
surements presented in this thesis. These different types are introduced in the
following.

5.3.1 Commercial pinholes

The first generation of pinholes were commercially available pinholes purchased
from National Apertures, Inc. These apertures consist of a stainless steel backing
of 127 µm thickness on which a 2.5 µm thick nickel foil is attached. Into this foil
the final pinhole is laser drilled. Pinholes with two different nominal diameters
were used: A = 1 µm and A = 0.5 µm. Scanning Electron Microscopy (SEM)
images as shown in figures 5.11 and 5.12 reveal the actual diameter being A =
1.22± 0.06 µm and A = 0.74± 0.07 µm.

Although those pinholes are large compared to the wavelength of soft X-ray pho-
tons of few nanometers, they produce reasonably divergent beams and sufficiently
illuminate the detector for photon energies of 90 eV and up to 140 eV respec-
tively. Also, they are a good compromise between spatial resolution and photon
intensity.

The diameter A of the aperture can also be determined via the radius of the Airy
disc q on the detector (see figure 5.11 and 5.12) at pinhole-detector distance L
for a given wavelength λ (compare equation (2.55) and (4.25)):

A = 1.22
L · λ
q

. (5.12)

In that way, after measuring the Airy disk on the detector (see figure 5.11 and
5.12) the actual pinhole size was calculated to be A = 1.42 ± 0.04 µm, which
is only slightly larger than the value above, and A = 0.71 ± 0.06 µm. This
small difference is due to the fact that scanning electron microscopy is a surface
sensitive method, so the information about the cross section of the pinhole within
the membrane is limited. Thus, the value determined via the diameter of the Airy
disc on the detector is the relevant one for the experiments, since it expresses the
effective diameter for the X-ray beam.

As can be seen in figure 5.11 and 5.12, the nickel foil does not block the direct
synchrotron beam completely, as a bright spot is visible in the images, which
were recorded at E = 90 eV and E = 140 eV, respectively. This spot limits the
exposure times and must be numerically suppressed in order not to disturb the
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Figure 5.11: Commercial pinhole with 1.0 µm diameter
left: SEM image of a commercial pinhole showing an actual diameter of
A = 1.22± 0.06 µm.
right: Hologram of a cell sample recorded at E = 90 eV in a pinhole-
detector distance of L = 100 cm with a CCD chip D = 2.76 cm in size.
The intensity is in a logarithmic scale. The radius of the underlying Airy
disc gives a pinhole diameter of A = 1.42± 0.04 µm.

Figure 5.12: Commercial pinhole with 0.5 µm diameter
left: SEM image of a commercial pinhole showing an actual diameter of
A = 0.74± 0.07 µm.
right: Airy disc recorded at E = 140 eV in a pinhole-detector distance
of L = 80 cm with a CCD chip D = 2.76 cm in size. The intensity is in
a logarithmic scale. The radius of the Airy disc gives a pinhole diameter
of A = 0.71± 0.06 µm.
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Figure 5.13: Determination of pinhole diameter via Airy pattern
A linecut across the intensity distribution on the detector (black dots) is fitted
with an Airy distribution (red curve), and the pinhole diameter A is determined
through the fit parameter k. In this case, the photon energy was E = 287 eV,
and k = 1/70 pixel. With a pinhole-detector distance L = 1000 mm this leads to
A = 1.45 µm.

reconstruction. In figure 5.12, the effect of the destroyed pixels is visible. It does
not appear in figure 5.11, since this image was recorded earlier.

Instead of considering only the radius of the Airy disc, a linecut across the whole
detector can be fitted with the theoretical Airy intensity distribution (compare
equation 2.55 and figure 5.13)

I(x) = I0

[
J1

(
πA
λL
x
)

πA
λL
x

]2

= I0

[
J1(kx)

kx

]2

. (5.13)

From the fit parameter k the pinhole diameter A can be calculated for known
wavelength λ and pinhole-detector distance L. The results gained via this method
confirmed the values found via the determination of the Airy radius on the de-
tector.

5.3.2 Pinholes in thin gold membranes

In order to access higher photon energies, especially the carbon K-edge at 284.2 eV
[111], and improve the spatial resolution, smaller pinholes were designed. The
principal concept was maintained: The backing consists of a stainless steel disc of
50 µm thickness and 10 mm diameter with a hole of 1.5 mm, manufactured at the
mechanical workshop of the Department for Physical Chemistry at the University
of Heidelberg. A metal foil is glued onto this backing. In this case, gold leaf was
chosen, since the final pinhole is fabricated by FIB milling, and gold shows very
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Figure 5.14: Thickness of the gold foil
A rectangle was cut into the gold foil by FIB milling to get a cross section of the
membrane. Now the thickness of the membrane can be determined. In this way,
the thickness of the membrane was determined to be d = 0.804± 0.036 µm (thin
gold membrane, left) and d = 2.01± 0.08 µm (thick gold membrane, right). The
images were taken by Dr. Todd Simpson from the Nanofabrication Laboratory at
the University of Western Ontario, Canada.

good sputtering behavior. Additionally, the attenuation length of gold in the
envisaged energy range is satisfying. The gold foil was purchased from Friedrich
Busse Blattgoldfabrik GmbH+Co. KG, Schwabach, Germany, and has a purity
of 24 carat (99.9%).

The thickness of the foil was determined via the weight of the sheets to d =
0.677 ± 0.048 µm, direct measurement with a SEM resulted in d = 0.804 ±
0.036 µm (compare figure 5.14, left). Into this membrane a pinhole of diameter
A = 400 nm was FIB milled by Dr. Todd Simpson from the Nanofabrication
Laboratory, University of Western Ontario, Canada. The size of the Airy disc
confirms an aperture of A = 410 ± 30 nm. With this pinhole reconstructable
holograms were recorded in an energy range from 90 eV up to 330 eV. However,
a direct transmission was present at energies higher than 100 eV, as can be seen
in figure 5.15.

5.3.3 Pinholes in thick gold membranes

As our experiments have shown, a gold layer of 700 nm sufficiently blocks the
synchrotron beam only for energies up to 100 eV. In order to measure at higher
energies without direct transmission, thicker membranes are needed. As figure
5.4, right, indicates, a thickness of 2 µm should suffice so that even at the max-
imum transmissivity of gold between 145 eV and 165 eV the intensity of the
direct beam is attenuated to the level of the Airy disc and measurements without
a transmitted spot are possible. For pinhole diameters of 400 down to 100 nm,
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Figure 5.15: Pinhole in thin gold membrane with 0.4 µm diameter
left: SEM image of a FIB milled pinhole showing an actual diameter of
A = 0.39± 0.01 µm.
right: Airy disc recorded at E = 220 eV in a pinhole-detector distance
of L = 80 cm with a CCD chip D = 2.76 cm in size. The intensity is in
a logarithmic scale. The radius of the Airy disc gives a pinhole diameter
of A = 0.41± 0.03 µm.

that thickness means an aspect ratio of 1:5 to 1:20. The fabrication of these
pinholes was described in chapter 5.2. Such pinholes were produced during a
three weeks stay at the Nanofabrication Laboratory at the University of Western
Ontario, Canada.

Like the pinholes mentioned above, the membrane of the third generation pinholes
consists of a 700 nm thick foil of gold leaf which is glued onto the stainless steel
backing material with CrystalbondTM. This time, after cleaning the gold surface
under UV light for one hour, an additional layer of approximately 1.3 µm gold
is vapor-deposited on the foil, leading to a total thickness of 2 µm. By milling
open a rectangle and taking an image with the SEM as depicted in figure 5.14,
right, the structure of the membrane becomes visible—the transition between
the gold layers is imaged as a dark line—and the thickness of the gold can be
determined. In this way, the total membrane thickness of d = 2.01 ± 0.08 µm
could be confirmed.

In this gold layer, a pinhole with diameter A = 250 nm was milled by Focused
Ion Beam. As figure 5.16 shows, the diameter could be confirmed with SEM
measurements, which give A = 254 ± 20 nm. The determination of the pinhole
diameter via the size of the Airy disc on the detector gives a maximum value
of A = 220 ± 4 nm. This value might not be very reliable, because finding
the position of the Airy minimum was not straightforward, since the intensity
minimum was not well-pronounced. The Airy disc in figure 5.16 is elliptical, a
fact that suggests, that the pinhole is tilted with respect to the beam, leading
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Type commercial FIB milled

Name NAI1.0 NAI0.5 TB3L T2

Size

nominal 1.0 µm 0.5 µm 0.4 µm 0.25 µm
SEM 1.22 ± 0.06 µm 0.74 ± 0.07 µm 0.39 ± 0.01 µm 0.25 ± 0.02 µm
Airy 1.42 ± 0.04 µm 0.71 ± 0.06 µm 0.41 ± 0.03 µm 0.220 ± 0.004 µm

Membrane Ni Au
Thickness 2.5 µm 2.5 µm 0.7 µm 2.0 µm

Energy range 90 eV 90 to 140 eV 90 to 330 eV 220 to 500 eV

theoretical
Resolution

δeff 0.70 µm 0.37 µm 0.20 µm 0.11 µm
δKreuzer 1.15 µm 0.61 µm 0.33 µm 0.18 µm

Table 5.1: Overview over pinhole types
The nominal and experimental sizes, the accessible energy range as well as the
theoretical resolution as discussed in chapter 4 are listed.

to an effective pinhole diameter smaller than the actual one. Despite of that,
measurements with photon energies up to E = 500 eV were possible. As can be
seen in figure 5.17, the membrane is thick enough to attenuate the transmitted
synchrotron beam such that its intensity is in the order of the intensity of the
Airy disc.
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Figure 5.16: Pinhole in thick gold membrane with 0.25 µm diameter
left: SEM image of a FIB milled pinhole showing an actual diameter of
A = 0.25± 0.02 µm.
right: Airy disc recorded at E = 500 eV in a pinhole-detector distance of
L = 82 cm with a CCD chip D = 2.76 cm in size. The intensity is in a
logarithmic scale. The smallest radius of the Airy disc gives a maximum
pinhole diameter of A = 0.220± 0.004 µm.

Figure 5.17: Airy disc of a pinhole in thick gold membrane with 0.25µm diameter
Airy disc recorded at E = 500 eV in a pinhole-detector distance of L = 82 cm with a CCD
chip D = 2.76 cm in size. The intensity is in a linear scale. The intensity of the transmitted
beam is attenuated to the level of the Airy disc.
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To evaluate the contrast and resolution properties of digital in-line X-ray holo-
graphic microscopy (DIXH), different sample types were used. Lithographic
structures, particle mixtures, and biological cells consist of different materials
and contain structures with sizes ranging from several micrometers down to a
few nanometers. All samples are prepared on 100 nm thin Si3N4 membrane win-
dows with a window size of 1 mm2 purchased from Silson Ltd., Northampton.

6.1 Lithography structures

For electron beam lithography, SU-8 2025 negative tone photo resist by Micro
Chem was spin coated on a Si3N4 window in a Spin Coater (TT200-8, LP-
Thermtech, Volkertshausen) at 4000 rpm to achieve a film thickness of 700 nm. In
order to evaporate the solvent and compact the film, the substrate was first soft
baked on a level hot plate at 65◦C and 95◦C for 1 min at each temperature. Struc-
tures with different line widths were written with a scanning electron microscope
(SEM, LEO 1530 with a Raith Elphy Quantum lithography unit) at an area dose
of 25 µC/cm2. The structures consisted of dots and lines (compare figure 6.1).
An irregular pattern was chosen, since periodic structures might cause strong
artifacts during the Fourier transformation in the reconstruction algorithm. The
maximal width of the lines was 1.5 µm, with some of the lines tapered toward
one end to check the sensitivity of the technique toward structural sizes below
the resolution limit. Subsequently, the sample was post exposure baked on a hot
plate to selectively cross-link the exposed film at 65◦C and 95◦C for 2 min each
before developing it by immersion in SU-8 developer by Micro Chem for 1.5 min.
The structures were produced by Martina Schürmann (Angewandte Physikalis-
che Chemie, Universität Heidelberg). A detailed description of the process can
be found in her PhD thesis [112].
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Figure 6.1: Lithography structures in SU-8
left: Array of random structures imaged with the SEM (Leo 1530). The Si3N4

membrane appears as a darker square.
right: Close-up view of a structure. The line width is 1.5 µm, some lines are
tapered toward the end.

6.2 Mixtures of polystyrene beads and magnetic
pigment

For the preparation of particle mixtures on the Si3N4-surface, first a droplet of
magnetic pigment (Magnetpigment 025 BASF, average particle size: 4-6 µm) was
suspended in distilled water and dispersed onto the membrane. After evaporation
of the water, a second droplet with polystyrene beads (Polystyrene micro spheres,
Polysciences) was added and the sample subsequently air-dried. The concentra-
tion of both particle types was chosen such that a sub-monolayer coverage was
obtained.

For the polystyrene particles, two different sizes were employed. Since the diam-
eter of the magnetic pigment was stated to be 4-6 µm, polystyrene particles of
size 6 µm (10% variance) were chosen for the mixture to match the size of these
iron oxide particles. However, optical microscopy as well as SEM images showed
that the iron oxide pigment exhibits a rather broad size and shape distribution
with the largest particles having a diameter of only about 2 µm (compare figure
6.2, left). Therefore, for the second set of bead samples polystyrene beads with
diameter of 2.2 µm ± 0.1 µm were chosen (compare figure 6.2, right).

6.3 Biological cells

Apart from the obvious biological interest in imaging cells—preferably in situ or
cryo-fixed—the capability of DIXH to image biological samples and the sensitivity
of the technique to resolve small structures inside these extended objects was
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Figure 6.2: Mixture of polystyrene beads and magnetic pigment
The uniform round objects are polystyrene particles, while the iron oxide pigments
show a broad distribution in size and shape. (SEM Leo 1530)
left: The polystyrene beads in the particle mixture have a diameter of 6 µm.
right: To match the size of the largest iron oxide particles, polystyrene beads of
2.2 µm in size were used in the second bead sample.

tested. Another goal was to better understand the wavelength dependent material
contrast properties, which differ for X-rays compared to light microscopy. The
following biological samples were used.

6.3.1 Rat embryonic fibroblasts

Rat embryonic fibroblast (REF 52WT) cells are cultivated on fibronectin coated
Si3N4 membranes for 24 h in Dulbecco’s Modified Eagle’s Medium (DMEM) sup-
plemented with 10% Fetal Bovine Serum (FBS), all purchased at Gibco. After
rinsing with Phosphate Buffered Saline (PBS), the cell structure is fixated in glu-
taraldehyde (4% in PBS) for 30 min at room temperature. To avoid damage to
the delicate structures inside the cell arising due to surface tension during evapo-
ration of the water, the cell water is slowly exchanged against ethanol by six dif-
ferent ethanol/water concentrations (50%/50%, 60%/40%, 70%/30%, 80%/20%,
90%/10%, and 100%/0%, where the last step is repeated twice). Finally, the
cells are critical point dried (Bal-Tec CPD 020)[113]. During this procedure, the
ethanol is exchanged stepwise by liquid CO2 under high pressure and low tem-
perature. Then, the CO2 is heated such that temperature and pressure exceed
the critical point, and the liquid and the gaseous phase coexist without under-
going a phase transition. The now gaseous CO2 can be released slowly through
a valve and the sample is dried. These samples were prepared by Xinyu Cao
(Angewandte Physikalische Chemie, Universität Heidelberg).
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Figure 6.3: Biological cell samples cultivated on Si3N4 membranes
left: Critical point dried Rat Embryonic Fibroblasts. The scale bar is 100 µm long.
Zeiss Axioplan2, 40× Neofluar, NA0.75
right: Undifferentiated Mesenchymal Stromal Cells. Here, the scale bar is only
10 µm long. Zeiss Axiovert 200M, 40× Plan-Neofluar, NA 0.75

Figure 6.4: Biological samples on Si3N4 membranes
left: Chromosome spread of HeLa cells. Zeiss Axiovert 200M, 40× Plan-Neofluar,
NA 0.75
right: Spores of the green alga Ulva linza settled on a membrane. Zeiss Axiovert
200M, 40× Plan-Neofluar, NA 0.75
The scale bars indicate 10 µm in both pictures.
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6.3.2 Mesenchymal Stromal Cells

Mesenchymal Stromal Cells (MSCs) are undifferentiated connective tissue cells
extracted from human bone marrow. External stimuli promote their differenti-
ation into osteoblasts (cells responsible for bone formation), chondrocytes (they
produce and maintain the cartilaginous matrix), myocytes (muscle fibers), and
adipocytes (fat cells) [114]. Like the above mentioned fibroblasts, the undiffer-
entiated MSCs are cultivated on Si3N4 membranes and fixated in Trifluoroacetic
Acid (TFA) for 10 min at room temperature. After dehydration via the ethanol
series, the samples are critical point dried. The cells were cultivated by Dr. Rainer
Saffrich at the Universitätsklinikum Heidelberg, Heidelberg. The drying process
was done by Xinyu Cao.

6.3.3 HeLa cell chromosome spreads

HeLa TK- cells (human epithelial cell line derived from a cervix carcinoma,
thymidine kinase-deficient) are cultivated in Eagle’s Minimal Essential Medium
(EMEM) supplemented with 10% Fetal Bovine Serum (FBS), 5% Glutamine,
penicillin, and streptomycin at 37◦C and 5% CO2 for 24 hours. Afterwards, col-
cemid is added to inactivate the spindle fibre mechanism and arrest the cells in
metaphase. After incubation for 2 hours and washing with PBS, Trypsin-EDTA
is added to detach the cells from the flask. The Trypsin-EDTA is exchanged by
EMEM, and the suspension is centrifuged at 1000 g for 10 min. Now, the EMEM
is replaced by a hypotonic solution (35 mM KCl in HEPES) and the resuspended
cells are put in the incubator for 30 min, where they swell due to the osmotic
pressure. Then follows another centrifugation step, after which the cells form a
pellet and the solution can be extracted completely. The pellet is slowly resus-
pended in fixation buffer (methanol:pure acetic acid as 3:1 at −20◦C), and the
last two steps are repeated. Last, a droplet of 10 µl of the suspension is dropped
with a pipette from about 10 cm distance onto a Si3N4 membrane where some of
the swollen cells burst and the chromosomes spread. Finally, the membranes are
air dried. The detailed cultivation protocol can be found in the forthcoming PhD
thesis of Zuhal Kaya (Anorganisch-Chemisches Institut, Universität Heidelberg)
[115], who prepared these samples.

6.3.4 Ulva linza spores

Commonly known as sea lettuce, the green algae Ulva linza lives primarily in
marine environment and is one of the organisms responsible for biofouling of
surfaces. For reproduction, the alga releases its spores, either quadriflagellated
zoospores, which settle on surfaces like rocks or ship hulls and form new plants,
or biflagellated gametes [116]. Since the gametes are positively phototactic and
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swim toward the light source and the zoospores are negatively phototactic and
swim towards darker regions, the two types can be separated. For our samples,
droplets of artificial sea water with zoospores are applied onto the Si3N4 win-
dows, these are left in a dark environment for 45 minutes, and the algae settle
on the membrane. Then, the algae are fixated with glutaraldehyde, and the salt
water is slowly exchanged with distilled water. The following dehydration is done
via an ethanol series, completed by critical point drying. The samples were ob-
tained from Dr. Michala Pettitt from the University of Birmingham, Birmingham,
UK, and critical point dried by Christof Christophis (Angewandte Physikalische
Chemie, Universität Heidelberg).

96



7 Experiments with
vacuum-ultraviolet radiation and
determination of the achieved
resolution

The following chapter deals with the proof of principle experiments carried out
during the first beamtime and how the achieved resolution can be determined in
the reconstructed images.

To test the applicability of in-line holography to X-rays, proof of principle experi-
ments with lithography structures, particle mixtures, and biological cells (REFs)
were performed in the vacuum-ultraviolet (VUV) region. These samples were
prepared as described in chapter 6. For all experiments presented in this chap-
ter the setup was identical. Commercial pinholes of a nominal size of 1.0 µm
were chosen to form the divergent beam since they allow relatively high pho-
ton flux but are small enough to completely illuminate the detector at energies
up to 110 eV. As already discussed in chapter 5.3, the recorded Airy discs as
well as SEM images showed a real pinhole diameter of A = 1.42 ± 0.04 µm
and A = 1.22 ± 0.06 µm, respectively. The sample was mounted 10 mm down-
stream of the pinhole on the same manipulator, the distance to the detector was
L = 1000 mm. With these parameters, the numerical aperture is limited by the
size of the Airy disc on the detector, what leads with equation (4.28) to a the-
oretical resolution δeff = 0.70 µm. The resolution in analogy to the Abbe limit
(equation (4.66)) is then δKreuzer = 1.15 µm.

7.1 Lithographic structures

The first test was performed with lithographic structures as well defined test
samples. Figure 7.1 (a), shows a hologram of the structure recorded at a photon
energy of 90 eV (λ = 13.8 nm). Five single exposures were added up to im-
prove the photon statistics, the total acquisition time was T = 2000 s. The first
minimum of the Airy distribution can be seen as a dark oval near the borders
of the CCD chip, confirming sufficient divergence of the reference wave. Also,
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Figure 7.1: Lithographic structures in photoresist
(a): Hologram recorded at E = 90 eV. The first minimum of the Airy pattern can
be seen as dark oval. The interference fringes are well pronounced.
(b): Difference hologram of (a). Subtraction of the Airy pattern leads to a flat
background intensity.
(c): Reconstruction of (b). The photoresist structures are well resolved.
(d): Optical microscopy image. Zeiss Axioplan2, 40× Neofluar, NA 0.75
(e): Scanning electron microscopy image. Leo 1530
(f) to (h): Magnified region of interest of (c) to (e).
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7.1 Lithographic structures

Figure 7.2: Comparison of Point
Spread Functions
The intensity distribution behind
a rectangular slit (black) and the
diffraction pattern from a circular
aperture (red) are compared to a
Gaussian function (blue).

Figure 7.3: Knife-edge criterion
A perfect knife-edge function (step-
function, black) and a broadened
edge (red), gained through a convo-
lution with a Gaussian function with
variance σ = 0.4.

the interference pattern shows well resolved, pronounced fringes. This indicates
adequate coherence of the synchrotron radiation as well as enough material to
provide good contrast. The spot due to direct transmission in the center of the
image is barely brighter than the maximum of the Airy pattern, which means
that the nickel foil is thick enough to block the direct VUV synchrotron beam.

The difference hologram (after subtraction of the source image, compare equa-
tion (2.72)) is depicted in figure 7.1 (b), image (c) shows the corresponding re-
construction. The reconstructed structures slightly left of the center are well
resolved while the ones on the lower right seem blurred. A comparison with an
optical microscopy image (d) and a SEM image (e) of the same field of view re-
veals that the apparent smearing is real and due to a resist drop edge across the
lithographic structure. Taking a closer look at the part of the structure, which is
not influenced by the drop, it can be seen in figures (f) to (h) that all details are
reproduced in the reconstruction. Even the tapered lines, where the line width is
smaller than the theoretical resolution of δeff = 0.70 µm, are completely visible.

Assuming the structures have a rectangular cross section, the achieved resolution
can be determined via the so called knife-edge criterion. Here, a linecut across the
edge of the structure is taken in the image and the width over which the intensity
rises from 10% to 90% gives the resolution δedge [6, 35, 52]. In an ideal case, the
edge is an infinitely steep step function and the resolution limit goes towards zero.
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In reality, the transition is broadened in the image by the diffraction-limited point
spread function (PSF) of the imaging system. So the image wave is described by
the convolution of the object wave with the point spread function of the system
[70], and the resolution of the system is limited by the resolution of the point
spread function.

As already stated in chapter 2.2, for a single rectangular slit with width A illumi-
nated with a wavelength λ and observed in a distance L, the intensity distribution
of this PSF varies with the position x on the screen as [69, 80] (compare equation
(2.43))

I(x) = I0
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Here, I0 is the peak intensity. In the case of a circular aperture of diameter A,
the PSF changes to the Airy distribution (compare equation (2.55))

I(r) = I0

[
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(
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λL

)
πAr
λL

]2

, (7.2)

where J1(z) is the Bessel function of order 1 and r is the radial distance to the
optical axis [69]. Both distributions can be approximated by a Gaussian function,
as illustrated in figure 7.2, what will be done in the following analysis for practical
purposes.

In numerical simulations a theoretical knife-edge, represented by a step-function,
was convoluted with a Gaussian function with variance σ. The result is illustrated
in figure 7.3. The resolution δedge, given by the finite width of the intensity rise,
was found to be 8.8% larger than the corresponding resolution determined by the
variance of the gaussian δgauss =

√
8 ln 2 σ. However, this deviation should be in

the range or smaller than the experimental errors and therefore negligible.

Analyzing the linecuts of the reconstruction displayed in figure 7.4 with this
criterion results in δedge= 1.13±0.35 µm. This value is larger than the theoretical
effective resolution of δeff = 0.70 µm but matches the Kreuzer-resolution δKreuzer

= 1.15 µm [32]. Mechanical or thermal drift is not a resolution limiting factor in
this setup, since the sample is fixed relative to the pinhole. A lateral translation
of the pinhole/sample manipulator results in a shift of the scattering pattern by
the same distance on the CCD detector. So drift only leads to changes in the
recorded image if the drifted distance is larger than the pixel size, which is in
our case 13.5 µm. Even more, a linecut in the recorded hologram as displayed in
figure 7.5 reveals that the fringe to fringe spacing of the smallest fringes is about
10 pixels. Since the fringes are leveled out if the drift is of the order of the fringe
spacing, it is only a limiting factor if it is larger than 135 µm. Therefore, these
holograms can be considered drift free and the resolution limiting factor is the
numerical aperture.
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Figure 7.4: Linecuts of a lithographic structure
(a) to (f): Linecuts taken in the reconstruction of the lithographic structure
(figure 7.1 (c)). The finite width over which the intensity rises from 10% to
90% gives the resolution δedge= 1.13± 0.35 µm.
(g): Positions of the linecuts.
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Figure 7.5: Linecuts of a hologram
(a) Linecut taken in the hologram of the lithographic structure (figure 7.1 (a)).
The oscillations of the fringes are superimposed on the slope of the Airy disc.
(b): Magnified section from (a). The smallest fringe spacing is 10 pixel, which
equals 135 µm.

7.2 Particle mixtures

As another test sample, a mixture of polystyrene beads (size 6 µm) and magnetic
pigment was chosen in order to probe whether organic and metal oxide materials
show material specific contrast differences at this wavelength. Figure 7.6 (a)
shows the corrected hologram. While all other parameters were the same as for
the lithographic sample, this hologram consists of only a single exposure with an
exposure time of T = 400 s. Also here, the interference fringes are well visible,
while a direct transmission can barely be seen.

In the reconstruction (figure 7.6 (b)), particles appear which have diverse shapes
and sizes but exhibit nearly the same contrast properties. The different species
cannot be distinguished by their absorption at this photon energy. Only a com-
parison with an optical microscopy image (figure 7.6 (c)), where the magnetic
pigment appears dark and the polystyrene beads appear brighter, confirms that
both types of particles are present in the field of view.

Also for this kind of sample, the resolution was determined via the knife-edge
criterion. The linecuts are displayed in figure 7.7. The experimental value is
δedge = 0.90± 0.20 µm, which is in good agreement with the value found for the
lithographic structures. Although beads are round and do not have sharp edges,
the attenuation length of polystyrene at E = 90 eV of datt = 0.306698 µm [117] is
much smaller than the average bead diameter of d = 6µm. Therefore, the beads
almost work as knife-edge structures for soft X-rays. However, to better verify
the results, the resolution was determined via two additional methods.

For the first alternative, one chooses a feature that is smaller than the predicted
resolution and determines the apparent full width at half maximum dFWHM [50].
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Figure 7.6: Particle mixture of polystyrene beads and magnetic pigment
(a): Hologram recorded at E = 90 eV. The interference fringes are well pro-
nounced.
(b): Reconstruction of (a). Both particle types appear in the reconstruction and
cannot be distinguished by their contrast.
(c): Optical microscopy image. The iron oxide particles are dark, the polystyrene
particles appear brighter. Zeiss Axioplan2, 40× Neofluar, NA 0.75
(d): Scanning electron microscopy image. Leo 1530
(e) to (g): Magnified region of interest of (b) to (d). Two small structures are
indicated by arrows A and B.
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Figure 7.7: Linecuts of polystyrene beads
(a) to (e): Linecuts taken in the reconstruction of the polystyrene beads
(figure 7.6 (b)). The finite width over which the intensity rises from 10% to
90% gives the resolution δedge= 0.90± 0.20 µm.
(f): Positions of the linecuts.
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Figure 7.8: Determination of resolution via apparent Full Width at Half
Maximum
Linecuts through the structures A and B denoted in figure 7.6 (e) to (g).
black: Reconstruction
red: Optical microscopy image
blue: SEM image
The FWHM of the structures in the reconstruction gives an achieved resolu-
tion of δFWHM = 1.12± 0.10 µm.

The point spread function of a linear imaging system is the convolution of the
point spread functions of the contributing elements. Assuming that the con-
stituent point spread functions are Gaussian, the result is a Gaussian, too, and
the total variance is the sum of the variances [99]

σtot =
∑
i

σi. (7.3)

As discussed in chapter 4, the variance σ of a Gaussian PSF is related to the
resolution δ as

δ =
√

8 ln 2σ. (7.4)

If the chosen feature is much smaller than the resolution limit, it can be approx-
imated by a delta function. A convolution of a Gaussian with this function gives
again a Gaussian with unchanged width, which means that the measured FWHM
equals the attained resolution.

In figure 7.6 (e) to (g), the chosen particles are indicated by arrows A and B.
The SEM image gives a true width d = 0.33 µm for particle A and d = 0.65 µm
for particle B, while the linescans from the reconstructed image show dFWHM =
1.05 µm for particle A and dFWHM = 1.19 µm for particle B (compare figure 7.8),
this results in an actual resolution of δFWHM = 1.12± 0.10 µm.
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Figure 7.9: Determination of resolution via convolution with Gaussian function
The width σ of the Gaussian is varied until the fit (red curve) matches the data (black
dots). With this method, the resolution was determined to δconv = 0.95± 0.08 µm.
(a) to (e): Linecuts and fits.
(f): Position of the linecuts in the reconstruction.

106



7.3 Biological cells

The second alternative is the determination of the width of the Gaussian PSF by
fitting its convolution with the theoretical transmission of a bead to experimental
linescans (compare figure 7.9) [11]. According to Lambert-Beer’s law [70, 80], the
theoretical transmission of a bead as a function of its thickness d can be written
as

T (d) = exp
d

datt

, (7.5)

with the attenuation length datt as a fixed parameter. In a linescan, the thickness
of a bead with radius r varies with the position x as

d(x) = 2
√
r2 − x2, (7.6)

when the origin is in the center of the bead. The resulting theoretical transmission
T (x) is now convoluted with a Gaussian g(x) yielding in a broadened transmission

B(x) = (T ∗ g)(x) =

∞∫
−∞

T (t)g(x− t) dt (7.7)
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1

σ
√

2π
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−(x− t)2

2σ2

)
dt. (7.8)

By varying σ until the fit matches the experimental linecut the best, a resolution
of δconv= 0.95 ± 0.08 µm is found (compare equation (4.16)). This value is in
agreement with the values above and the theoretical limit of δKreuzer = 1.15 µm
is within 2∆δ.

The three methods for the determination of the resolution gave consistent values,
resulting in an experimental resolution of about 1 µm, what is in the range of
the theoretical prediction. Concerning the application of the different methods,
the knife-edge criterion is probably the most practical one. The FWHM criterion
requires objects much smaller than the predicted resolution limit and becomes
unreliable when applied to larger structures. For the application of the convo-
lution method, the exact shape of the object and the attenuation length must
be known, so irregular structures with position dependent attenuation length are
complicated to model. The knife-edge criterion, however, can be applied to any
feature which provides an abrupt intensity variation.

7.3 Biological cells

Imaging biological cells with high resolution is a prerequisite for life sciences. To
test the imaging properties of cells with digital in-line X-ray holography, dried
rat embryonic fibroblast cells (REFs) were chosen. These cells are relatively
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Figure 7.10: Rat embryonic fibroblast cell
(a): Hologram recorded at E = 90 eV. The interference fringes are well pronounced.
(b): Reconstruction of (a). The cell membrane appears in the reconstruction, and even
structures within the cell are visible.
(c): Optical microscopy image. The membrane as well as structures within the bright
nucleus are resolved. Zeiss Axioplan, 40× Neofluar, NA 0.75
(d): Scanning electron microscopy image. Only the outline of the cell is visible. Leo 1530
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modest to cultivate and adhere to the Si3N4 membranes. When adhered, they
are several ten micrometers in size. The main question is whether small structures
inside these extended objects such as nucleoli can be resolved by DIXH. Since the
reference wave is essential to produce a distinct scattering pattern, it has to be
tested if the remaining primary wave outside the object suffices for a reasonable
reconstruction of the hologram.

The difference hologram (5 exposures, 2000 s total acquisition time) in figure 7.10
looks promising since well pronounced interference fringes can be seen. In the
reconstructed image the cell membrane is imaged with great detail. Obviously,
the thin layer of carbon rich material provides sufficient contrast for soft X-rays.
Additionally, remarkable intracellular structures like the cell nucleus and filament
arrangements1 in the cytoskeleton are resolved. That means, either the reference
wave present outside the object is sufficient, or thinner parts within the cell allow
enough transmission for the reference wave.

A comparison with a SEM image (compare figure 7.10 (d)) shows that the out-
line of the cell reproduces in the reconstruction. Since SEM is a surface sensitive
technique, no details within the cell can be resolved. Additionally, electrostatical
charging effects lead to bright artifacts in the image. Optical microscopy (com-
pare figure 7.10 (c)) reveals internal features which match with those visible in
the reconstruction. But it also shows that the nucleus of the cell, which appears
bright in the optical microscopy image, is not clearly resolved in holography.
Here, only a dark region reproduces. Obviously, the mass absorption coefficient
for carbon containing material of µ = 104 cm2/g [111] at 90 eV is high enough
to provide good contrast in holography, but is probably too high to allow sig-
nificant transmission through the dense material within the nucleus. However,
the strong contrast especially of the filament arrangements and other structures
within the cell proved VUV digital in-line holography having significant potential
as microscopy technique of cell biological applications.

1In the cytosceleton, three types of fibers are present: microtubules, intermediate filaments,
and actin filaments [118].
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8 Development of resolution with
pinhole generations

The dependence of the theoretically achievable resolution on the experimental
geometry, especially the pinhole diameter, was discussed in chapter 4. In the fol-
lowing chapter, the resolution attained experimentally with the different pinholes
is determined and compared to the theoretical expectations. An overview over
the experimental parameters and achieved resolution is given in table 8.1.

8.1 Commercial pinholes

Commercial pinholes of two different nominal sizes were used for the experiments,
both types were purchased from National Apertures, Inc.

8.1.1 Pinholes with nominal diameter A = 1.0 µm

As discussed in the previous chapter, the first experiments were carried out in
the VUV region at 90 eV. The next three paragraphs present a brief summary of
the results gained there.

A commercial pinhole of nominal diameter A = 1.0 µm was used to illuminate
the detector 1 m downstream. The size of the Airy disc on the CCD chip as
well as SEM images showed a real pinhole diameter of A = 1.22 ± 0.06 µm and
A = 1.42±0.04 µm, respectively. The size of the CCD chipD = 27.65 mm and the
pinhole-detector distance lead to a geometrical numerical aperture of NAgeom =
D/2
L

= 0.0138, while the effective numerical aperture NAeff = q/L = 0.0118 given
by the radius q of the Airy disc on the detector and the pinhole-detector distance
is slightly smaller.

The resolution was determined using a mixture of polystyrene beads (6 µm diam-
eter) and magnetic pigment on a Si3N4 membrane, which was mounted in 10 mm
distance to the pinhole. The expected effective resolution is δeff = 0.70 µm, while
the resolution in analogy to the Abbe limit is δKreuzer = 1.15 µm. Determin-
ing the resolution via the knife-edge criterion gives δedge= 0.90 ± 0.20 µm. The
achieved resolution was also determined by comparing the broadened full width
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at half maximum (FWHM) in the image with the real FWHM gained from high
resolution SEM images. This method results in δFWHM = 1.12 ± 0.10 µm. As
a last comparison, the theoretical transmission of a bead was convoluted with a
Gaussian, and the variance σ was varied until the resulting fit best matched the
experimental linecut. In this way, the resolution is δconv= 0.95 ± 0.08 µm. All
experimental values are in good agreement with each other but are larger than
the theoretical expectation.

Mechanical drift is not a resolution limiting factor in this experimental setup,
since the sample is fixed relative to the pinhole. Therefore, only a lateral shift
larger than 135 µm leads to a loss of the smallest interference fringes and conse-
quently to a worse resolution.

8.1.2 Pinholes with nominal diameter A = 0.5 µm

Further experiments were performed with a slightly altered setup. First of all, the
pinhole was placed in the focus of the synchrotron beam, which was not possible
in the previous setup. A higher photon flux is mandatory for shorter exposure
times, especially when smaller pinholes should be employed. The pinhole-detector
distance was reduced to L = 800 mm, and the sample was mounted on a sepa-
rate manipulator. This change has several advantages. Now, the field of view as
well a the magnification can be changed during the experiments, since the ma-
nipulator is movable independently from the sample holder in three dimensions.
Furthermore, the sample can be retracted completely from the beam path, such
that the diffraction pattern of the pinhole alone can be recorded. This so called
source image (Airy disc) is subtracted from the recorded hologram to eliminate
the image of the source in the reconstruction (compare equation (2.72)). The
cost for these benefits is a higher sensitivity to vibrations and drift. A lateral
displacement ∆x of pinhole or sample relative to each other is projected onto the
detector with a magnification depending on the pinhole-sample distance l and
the pinhole-detector distance L resulting in a shift of the scattering pattern by
the distance

∆X =
L

l
∆x. (8.1)

In other words, a recognizable drift is present, if the shift of the scattering pattern
on the detector is larger than the pixel size, in our case p = 13.5 µm, therefore,
pinhole and sample must not move more than

∆x =
l

L
∆X =

6mm

800mm
· 13.5µm = 0.1µm. (8.2)

Here, an average pinhole-sample distance of l = 6 mm was assumed.

As in the VUV experiments (chapter 7), mixtures of polystyrene beads and mag-
netic pigment were chosen as test samples. Since the previously used polystyrene
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8.1 Commercial pinholes

beads with a diameter of d = 6 µm showed sufficient contrast, smaller particles
with a diameter of d = 2.2± 0.1 µm were chosen. These polystyrene beads were
thus matched to the average size of the magnetic pigment.

A commercial pinhole with a nominal diameter of A = 0.5 µm was used. Again,
SEM images and the size of the Airy disc on the detector gave a larger pinhole
diameter of A = 0.74±0.07 µm and A = 0.71±0.06 µm respectively. The optimal
relation between pinhole diameter A, detector distance L, and wavelength λ is
given by equation (4.26). Since the pinhole diameter was halved with respect
to the one used in the first experiments, but the pinhole-detector distance was
reduced by only 20%, shorter wavelenghts—that is higher photon energies—can
be accessed compared to the previous experiments.

The hologram of the particle mixture in figure 8.1 (a) was recorded at E = 220 eV
photon energy. Since a bright spot originating from the direct transmission of
the synchrotron beam through the pinhole membrane was present in the images
and limited the exposure time to T = 2 s, 100 single exposures were added up to
get sufficient photon statistics in the scattering pattern. In the corrected holo-
gram, the spot was numerically suppressed and pronounced interference fringes
are visible. However, the interference fringes in the vicinity of the spot are partly
lost due to the suppression. It also becomes clear in figure 8.1 (a), that the Airy
disc was too small to fully illuminate the detector, since the contrast strongly
decreases toward the edges.

A comparison of the reconstructed image (figure 8.1 (b)) with optical microscopy
(8.1 (c)) and SEM (8.1 (d)) images confirms, that both particle types appear
in the reconstruction. The pinhole-sample distance is l = 4.0 mm. The par-
ticles reconstructed in the vicinity of the transmitted spot seem blurred, as a
consequence of the suppression process. Also, since the contrast in the hologram
decreases toward the edges of the CCD chip, a similar gradient is visible in the
reconstruction. A closer look (figures 8.1 (e) and (f)) reveals, that the polystyrene
beads in the reconstruction exhibit a doughnut shaped intensity profile similar to
their appearance in optical microscopy, indicating that for this energy they are
rather phase objects than absorption objects.

Resolution determination was done with the same three methods as before. The
respective linecuts are displayed in figure 8.2 (a) to (e) (red curves). The knife-
edge criterion gives δedge= 0.69±0.18 µm, while the FWHM gives δFWHM= 1.02±
0.35 µm. In this case, the second method is not very accurate, since it only applies
to structures smaller than the resolution limit. The beads through which the
linecuts were drawn are 2 µm in diameter, which is significantly larger than the
theoretical resolution limit of δeff = 0.37 µm and δKreuzer = 0.61 µm, respectively.
But the convolution method can be applied to objects of any size and gives
δconv= 0.70±0.17 µm. All the above values match with each other and especially
with the theoretical prediction, but the large errors indicate the uncertainties
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8 Development of resolution with pinhole generations

Figure 8.1: Particle mixture imaged with a pinhole of diameter A = 0.71± 0.06 µm
(a): Hologram recorded at 220 eV. The direct transmission is numerically suppressed. The
contrast decreases toward the edges due to the limiting size of the Airy disc.
(b): Reconstruction of (a) at a pinhole sample distance l = 4.0 mm. Both particle types are
visible. The particles reconstructed in the vicinity of the transmitted spot appear blurred,
since the interference fringes are partly lost in the suppression process.
(c): Scanning electron microscopy image. Leo 1530
(d): Optical microscopy image. The iron oxide particles are dark, while the polystyrene
particles appear brighter. Zeiss Axioplan2, 40× Neofluar, NA 0.75
(e) and (f): Magnified sections of (b) and (d), respectively. In both images, the polystyrene
beads exhibit a doughnut shaped intensity profile.
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8.1 Commercial pinholes

Figure 8.2: Linecuts of polystyrene beads
(a) to (e): Linecuts taken in the reconstruction of the polystyrene beads
recorded with a pinhole of diameter A = 0.71± 0.06 µm (figure 8.1 (b), red)
and A = 0.41±0.03 µm (figure 8.3 (b), black). The knife-edge criterium gives
the resolutions δedge= 0.69±0.18 µm and δedge= 0.80±0.14 µm, respectively,
while the FWHM gives δFWHM= 1.02±0.35 µm and δFWHM= 0.88±0.20 µm.
(f): The positions of the linecuts were identical in both reconstructions.
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8 Development of resolution with pinhole generations

Figure 8.3: Particle mixture imaged with a pinhole of diameter
A = 0.41± 0.03 µm

(a): Hologram of the same sample as in figure 8.1 recorded at 220 eV.
(b): Reconstruction of (a). Compared to figure 8.1, the field of view is larger due
to a slightly lower magnification.

underlying the applied methods.

8.2 Pinholes in thin gold membrane

Various experiments were performed with FIB milled pinholes in a thin gold
membrane. Due to the smaller pinhole diameter compared to the commercial
pinholes, higher photon energies are accessible. However, a decrease in the pinhole
diameter necessitates longer exposition times, as discussed in chapter 5. Hence,
drift effects, which were negligible in the experiments presented above, become
of importance.

8.2.1 Drift-limited resolution

To test the influence of the pinhole diameter on the resolution, the same sample
as in section 8.1.2 was imaged at the same photon energy and detector distance
with a pinhole of 0.4 µm diameter, which was FIB milled in a 700 nm thick
gold membrane. The gold membrane blocks the direct synchrotron beam better
than the nickel foil, which is used as backing in the commercial pinholes. So
exposition times of T = 75 s for one exposure were possible at a photon energy
of E = 220 eV. Since the pinhole diameter is smaller than for the commercial
pinhole, fewer photons pass the aperture per unit time, and the total acquisition
time had to be increased, leading to 20 single exposures of T = 75 s each.
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8.2 Pinholes in thin gold membrane

Comparing the hologram from figure 8.3 with the one in figure 8.1, one can see
that the magnification has changed, which is due to a slightly increased pinhole-
sample distance from l = 4.0 mm to now l = 6.4 mm. Therefore, the magnifica-
tion changed from M = 200 to M = 125. The reconstruction itself is similar to
the one before, as expected, since sample and photon energy are the same. As
theoretical resolution limit, δeff = 0.20 µm and δKreuzer = 0.33 µm are calculated.
With experimental values of δedge= 0.80± 0.14 µm, δFWHM= 0.88± 0.20 µm (see
figure 8.2 (a) to (e), black curves), and δconv= 0.88± 0.08 µm, this expectation is
not met.

The most probable reason for the worse resolution is mechanical drift. As the total
exposure time of T400nm = 20 · 75 s = 1500 s is much longer than T710nm = 200 s
for the commercial 500 nm pinhole as described in section 8.1.2, the influence
of a constant drift between pinhole and sample onto the resolution drastically
increases.

In two consecutive images that were recorded under the same conditions but
with 15 min in between, a lateral translation of the interference pattern of ∆X =√

42 + 42 pixels=̂76.4 µm was observed. This corresponds to a movement of the
sample of

∆x

∆t
=

6.4mm

800mm

76.4µm

900s
=

611nm

900s
= 6.8Å/s. (8.3)

Although this absolute value is very small, the drift effects are visible due to
the long exposure times and the huge magnification. With equation (8.1) and
the total exposure time of T400nm = 1500 s, this value leads to a drift on the
detector of ∆X400nm = 127.5 µm during exposure. This corresponds to 9.4 pixel
and is about three times as large as the calculated minimal fringe spacing of
s400nm = 3.2 pixel (compare equation (4.39)). So the smallest fringes are lost and
the resolution gets worse.

In the case of the commercial pinhole, the same motion over the shorter expo-
sure time of T710nm = 200 s leads to a shift of the interference pattern of only
∆X710nm = 27.2 µm, which corresponds to 2 pixels. Since the closest fringe spac-
ing with those settings is s710nm = 9 pixels, the drift does not effect the resolution
in those experiments.

8.2.2 Drift-corrected holograms

To minimize the effects of drift, it is advisable to record multiple single images
with rather short exposure times, correct them for drift, and then add them up
to get reasonable photon statistics in the hologram. This method was applied
to a sequence of 20 holograms of a chromosome spread sample, each having an
exposure time of T = 180 s. The photon energy was E = 260 eV. With a pinhole-
detector distance of L = 700 mm, a pinhole-sample distance l = 1.78 mm, and a
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8 Development of resolution with pinhole generations

pinhole diameter of A = 0.41 µm, a theoretical resolution of δeff = 0.20 µm and
δKreuzer = 0.34 µm, respectively, follows.

To minimize the vibrations in the setup, an edge welded bellows was built in
between the turbo pump near the sample manipulator and the beamline, and the
cooling water of the pump was turned off during the measurements. Analyzing the
images for the amount of drift, a lateral shift of ∆X =

√
82 + 42 pixels=̂120.7 µm

over a period of t = 1620 s was observed, resulting in a movement of the sample
of ∆x/∆t = 1.9 Å/s. This is only 28% of the value calculated in equation
(8.3). However, integrated over the total exposure time of Ttotal = 20 · 180 s,
it would lead to a drift on the screen of ∆Xtotal = 270.0 µm, corresponding to
20 pixel. The smallest fringe spacing calculated for these experimental parameters
is s = 9.8 pixel. Hence, the drift would massively influence the resolution.

Since the single exposures are recorded as separate images, it is possible to correct
them for the drift before accumulation. In a single image, the drift only amounts
to Xsingle = 13.5 µm, which corresponds to one pixel. Hence, the accumulated
drift-corrected image can be considered free of drift.

A single exposure hologram, where only the direct transmitted beam is numer-
ically suppressed, is shown in figure 8.4 (a). The first minimum of the Airy
pattern can clearly be seen, while the interference fringes are quite faint. From
each such image, the source image is subtracted, then the drift is corrected, and
the 20 difference holograms are added up. The resulting drift corrected hologram
is displayed in figure 8.4 (b). Now the photon statistic has improved and the
interference fringes are clearly visible.

The resulting reconstruction and the corresponding microscopy image can be
compared in figure 8.4 (c) and (d). Three chromosomes appear in the field of view.
Since the cell cycle was stopped in the metaphase of mitosis, the chromosomes
exist in the condensed form. In each chromosome, a pair of sister chromatids
is attached to each other at the centromer [119]. According to literature, the
chromatid pair has a width of 1.4 µm [7]. Determining the width w via the full
width at half maximum in linecuts taken in both images (compare figure 8.5),
gives wFWHM= 1.55 ± 0.17 µm for the reconstruction and wFWHM,opt= 1.67 ±
0.18 µm for the optical microscopy image. These values match the theoretical
expectations. However, variations in the separation of the chromatids may occur,
as can be seen in figure 6.4, so the theoretical value can be considered a lower
border. The variations influence the measured width and lead to large errors.

In the same linecuts, the resolution was determined via the knife-edge criterion.
Since the optical microscopy images were taken with a 40× Plan-Neofluar ob-
jective with a numerical aperture of NA = 0.75 at a wavelength λ = 543 nm,
the theoretical resolution is δopt = 0.61λ/NA = 0.442 µm. The knife-edge crite-
rion gives a resolution of δedge,opt= 0.41 ± 0.05 µm, which is in good agreement
with the theoretical value. For the reconstruction, the theoretical values are
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8.2 Pinholes in thin gold membrane

Figure 8.4: Chromosome sample imaged with a pinhole of diameter
A = 0.41± 0.03 µm

(a): Single hologram recorded at 260 eV. The direct transmission is numerically
suppressed. The interference fringes are barely visible.
(b): Drift corrected sum of 20 difference holograms. Now the fringes are visible.
(c): Magnified section of the reconstruction of (b). Three chromosomes appear
in the field of view.
(d): Optical microscopy image showing the same section as (c). Zeiss Axiovert
200M, 40× Plan-Neofluar objective, NA 0.75
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8 Development of resolution with pinhole generations

Figure 8.5: Linecuts through chromosome
sample
(a) to (f): Linecuts taken in the reconstruc-
tion (red) and the optical image (black) of
the chromosome sample (figure 8.4 (c) and
(d)). The finite width over which the intensity
rises from 10% to 90% gives the resolution
δedge= 0.37 ± 0.04 µm. The width of the
chromatid pairs is wFWHM= 1.55 ± 0.17 µm.
The corresponding results for the optical
image are δedge,opt= 0.41 ± 0.05 µm and
wFWHM,opt= 1.67± 0.18 µm.
(g): Positions of the linecuts.
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8.2 Pinholes in thin gold membrane

experimental parameters
sample

E [eV] L [mm] l [mm] A [µm] T [s] drift

lithography 90 1000 10 1.42 2000 acc

beads 90 1000 10 1.42 400 acc

beads 220 800 4.0 0.71 200 acc

beads 220 800 6.4 0.41 1500 acc

chromosomes 260 700 1.78 0.41 3600 dc

resolution limit [µm]
sample

δgeom δeff δfringe δKreuzer δedge δFWHM δconv

lithography 0.60 0.70 0.16 1.15 1.13± 0.35 — —

beads 0.60 0.70 0.16 1.15 0.90± 0.20 1.12± 0.10 0.95± 0.08
beads 0.20 0.37 0.08 0.61 0.69± 0.18 1.02± 0.35 0.70± 0.17
beads 0.20 0.20 0.13 0.33 0.80± 0.14 0.88± 0.20 0.88± 0.08

chromosomes 0.15 0.20 0.04 0.34 0.37± 0.04 — —

Table 8.1: Comparison of the experimental and theoretical resolution limits
An overview over the experimental parameters, the resulting theoretical resolution
limits and the experimental values for the experiments presented in the preceding
and the present chapter is given. The theoretical resolution was determined as
discussed in chapter 4. Concerning the drift effect, it is distinguished between
accumulated (acc) and drift corrected (dc) summation of the holograms.

δeff = 0.20 µm and δKreuzer = 0.34 µm, respectively. The experimental value is
found to be δedge= 0.37± 0.04 µm, which also matches the theoretical prediction.
So in this measurements, the resolution limit achieved with DIXH is smaller than
in optical microscopy.

An overview over the experimental parameters, the resulting theoretical reso-
lution limits and the experimental values for the experiments presented in the
preceding and the present chapter is given in table 8.1. Summarizing, by in-
creasing the numerical aperture with smaller pinholes and by correcting for drift
effects, the experimental resolution could be improved by a factor of 2.5, meeting
the theoretical predictions.
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9 Intrinsic Contrast Mechanisms in
digital in-line X-ray holography

A major advantage of synchrotron radiation is the tunability of the photon energy,
since the absorption of radiation of a certain material strongly depends on it.
Three major effects contribute to the absorption mechanism of X-rays in material:
photo effect, Compton scattering, and pair production [80].

When the photon energy exceeds twice the rest mass of an electron (mec
2 =

0.511 MeV), an electron-positron pair can be created by which the energy of the
photon is consumed. This process only occurs in a material, since the conservation
of momentum is not satisfied in vacuum. The cross section for pair production is
proportional to the square of the atomic number Z of the material and increases
proportional to the logarithm of the photon energy [80]. In our experiments, this
effect does not contribute, since the threshold energy is much higher than the
photon energy used in the experiments.

The scattering of photons in material can be elastic or inelastic. In elastic pro-
cesses, the energy of the photons is conserved, merely their momentum, that is
their direction of travel, is altered. However, most scattering processes are in-
elastic and referred to as Compton scattering. The photon transfers energy and
momentum onto an electron, that leads to a decrease in energy and a change in
the direction of motion. Even back scattering is possible.

The dominating process in the energy region, in which our experiments were per-
formed, is the photo effect [111]. In the X-ray region, the photons possess enough
energy to excite electrons from a core level of the atoms to higher unoccupied
shells or even vacuum level. In this process, the photon is absorbed. The created
vacancy is filled with electrons from higher shells. The energy difference is radi-
ated via fluorescence or is consumed by another electron which escapes the atom.
This electron is called Auger electron. When the photon energy is increased and
exceeds the binding energy of the next core level, those electrons can be excited,
and the absorption increases abruptly. This sudden rise of the absorption is called
absorption edge [80, 120]. Absorption and attenuation length datt are related via
Lambert-Beer’s law [80]

I(z) = I(0) exp

{
z

datt

}
, (9.1)

123
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where z is the covered distance, and I(z) is the intensity of the radiation. So a
rise of the absorption leads to a drop in the attenuation length. In figure 9.1, the
attenuation length datt of polystyrene and iron oxide as a function of the photon
energy E is plotted. While the attenuation length of iron oxide rises slowly,
polystyrene exhibits an absorption edge at E = 284.2 eV [117] due to the carbon
present in the polymer.

The energy of those absorption edges is element specific because the energy levels
of the electrons depend on the charge in the nucleus. So it is possible to deter-
mine the elemental composition of a material by determining the position of its
absorption edges.

It is even possible to distinguish between different chemical states of one ele-
ment by near edge X-ray absorption fine structure (NEXAFS) spectroscopy [121].
When the photon energy is just below or above the absorption edge of an ele-
ment in a material, electrons can be excited into unoccupied molecular levels,
leading to a fine-structure of the absorption, which is characteristic for the bond-
ing structure of the element [122]. In this way, the presence of specific bonds in
molecules can be detected, the lengths of these bonds can be determined, and
the orientation of molecules on surfaces or in solids can be derived [121].

A combination of such a technique which is sensitive for the chemical composition
of the sample with high spatial resolution enables detailed insights in the probed
material. Two of these methods are scanning transmission X-ray microscopy
(STXM) and X-ray photoemission electron microscopy (X-PEEM), which enable
the determination of the distribution of chemical elements in a sample at better
than 50 nm spatial resolution [123, 124].

To test the applicability of intrinsic contrast properties on digital in-line holog-
raphy, experiments were carried out, which will be explained in the following
chapter.

9.1 Elemental contrast experiments

As stated above, elements show characteristic X-ray absorption edges. By record-
ing images on and off resonance of an absorption edge of a certain element and
comparing the images with each other, it is possible to map the concentration
of this element in the sample [123], since it shows much weaker absorption at
energies below the edge than above the edge, while the contrast of the other
constituents stays nearly constant (compare figure 9.1).

To explore whether this effect also occurs in holography, holograms of a mixture of
polystyrene beads and iron oxide particles with an approximate particle diameter
of d = 2 µm were recorded at energies below, right at and above the carbon-K-
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9.1 Elemental contrast experiments

Figure 9.1: Attenuation length of
Polystyrene and Iron Oxide as a
function of photon energy
At the carbon K-edge, the absorp-
tion of polystyrene rises abruptly,
while the absorption of iron oxide
stays nearly constant.

absorption edge at E = 284.2 eV, namely at E = 220 eV, E = 283 eV, and
E = 330 eV. The reconstructed images are displayed in figure 9.2.

At E = 220 eV, the attenuation length of iron oxide (Fe2O3, ρ = 5.25 g/cm2 [125])
is datt = 0.09 µm, constantly rising to datt = 0.19 µm at E = 330 eV [117], which
is much smaller than the particle size of about 2 µm. Therefore, these particles
should give strong absorption contrast for all three wavelengths. The attenuation
length for polystyrene (ρ = 1.1g/cm2) of datt = 2.48 µm at E = 220 eV, however,
is in the range of the particle diameter, until it drops to datt = 0.19 µm at the
carbon edge and slowly rises to datt = 0.27 µm at E = 330 eV. So one would
expect the polystyrene particles to exhibit little contrast for energies below the
absorption edge and strong contrast for higher energies. The attenuation length
as a function of the photon energy is plotted in figure 9.1.

Looking at figure 9.2, all the particles visible in the reconstruction at 220 eV,
figure 9.2 (a), also appear in image 9.2 (c), while some do not show up in image
9.2 (b). The decrease of intensity toward the corners of image 9.2 (c) are due
to the Airy disc being smaller than the detector size, while the blurring in the
center of the image is an artifact from the numerical suppression of the direct
beam. A comparison with the optical microscopy image 9.2 (d) confirms, that
those particles which show up in all three images consist of iron oxide, while
the polystyrene beads become invisible at the carbon edge. This behavior is in
contrast to the considerations above. According to the attenuation length, one
would expect the polystyrene particles to exhibit similar contrast for both photon
energies below the absorption edge, and much stronger contrast for the higher
energy. Consequently, the explanation for this effect cannot be the attenuation
length alone. But which other parameter influences the contrast?

In figure 9.3, sections from the reconstructions in figure 9.2 are magnified. The
upper row shows predominantly iron oxide particles, while in the bottom row
the major part of the imaged particles consists of polystyrene. At 330 eV, the
attenuation length for both particle types is small compared to the particle di-
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Figure 9.2: Particle mixture imaged at different energies
(a): 220 eV (b): 283 eV (c): 330 eV
(d): Optical microscopy image. Zeiss Axioplan2, 40× Neofluar, NA 0.75
(e) Scanning electron microscopy image. Leo1530
In the optical microscopy image, the iron oxide particles appear dark, the polystyrene
beads appear brighter. While both types of particles appear in the reconstructions
(a) and (c), the polystyrene particles become invisible for a photon energy at the
carbon K-edge and only the iron oxide particles reconstruct in (b).

ameter (compare figure 9.3 (d)), so the particles strongly absorb the X-rays and
give good contrast as expected.

Taking a closer look at the polystyrene particles at the lowest energy (figure 9.3
(a) and (f)), the particles appear as a dark ring with a brighter spot in the middle.
Such a doughnut-shaped intensity profile is an effect that usually occurs for phase
objects in optical microscopy. This fact is an indication, that at this energy, the
polystyrene beads rather act as phase objects than as amplitude objects. Phase
objects barely absorb the illuminating radiation, but their refractive index nobj

differs from the one of the surrounding medium n. Within the object, the wave-
length of the radiation is altered to λobj = λ/nobj. Therefore a phase difference
between the part of the wave that travels though the object and the part that
passes the object is induced. When the parts of the wave brought to interference,
this phase shift causes a phase contrast that makes the particles visible. Consid-
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Figure 9.3: Dependence of contrast on photon energy
Magnified regions of interest of figure 9.2
(a) and (f): 220 eV (b) and (g): 283 eV (c) and (h): 330 eV
(d): Attenuation length of polystyrene and iron oxide as a function of the photon energy
(e): Refractive index of polystyrene and iron oxide as a function of the photon energy
At the carbon K-edge, the refractive index of polystyrene approaches the refractive index
of vacuum n = 1, the particles become invisible for the X-ray beam.
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Figure 9.4: Color coded chemical information with high spatial resolution
False color images of the reconstructions in figure 9.3
(a) and (d): The reconstructions at different energies were color coded. Now the
carbon rich material is represented in red, the iron oxide particles appear blue.
(b) and (e): Scanning electron microscopy images of the regions of interest. Leo
1530
(c) and (f): Overlay of the color coded reconstructions and the SEM images,
unifying high spatial resolution imaging with chemical information.

ering sources for phase differences, the Si3N4-membrane can be neglected, since
it induces a uniform phase shift on the whole wavefront and therefore no phase
differences occur.

Now it can be explained, why the polystyrene beads become invisible at 283 eV
(figure 9.3 (b) and (g)). Firstly, the attenuation length doubles with respect to
E = 220 eV, resulting in even lower absorption. Secondly, and most importantly,
toward the absorption edge, the refractive index of polystyrene approaches n = 1,
the refractive index of vacuum, as plotted in figure 9.3 (e). Hence, the particles
become transparent for the X-rays and cannot be imaged.

By comparing the reconstructed image of the hologram recorded at 283 eV, an
energy right below the carbon K-absorption edge, with the one recorded above
that energy at 330 eV, the different types of particles can be distinguished due
to their different contrast behavior, and real elemental contrast is obtained [37].

With the reconstructions above, false-color elemental maps of the sample can
be created. The reconstruction at 283 eV is assigned to the blue color channel,
while the one at 330 eV is assigned to the red. A combination of both results in
an image, where the pixel color indicates the predominant chemistry. The areas
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where the carbon-containing material dominates appear red, and the non-carbon-
containing material, that is in this case the iron oxide since no other material is
present in the sample, appears blue, as can be seen in figure 9.3 (a) and (d).

In order to emphasize the elemental information in electron microscopy images
with high spatial resolution (figure 9.3 (b) and (e)), the elemental maps obtained
from holography as described above can be combined with the SEM images. The
result is a color-coded composite image (figure 9.3 (c) and (f)), in which the
additional element information enables the discrimination of the particle types,
that cannot be distinguished by their shape alone. Correlative microscopy like
this combines the high spatial resolution of electron microscopy and the element
contrast of DIXH.

It should be emphasized here, that the advantage of digital in-line holography
toward other X-ray microscopy techniques is that no zone plates have to be
repositioned when the photon energy is changed. When the energy is altered, the
holography setup stays unchanged, so the magnification and the field of view are
maintained throughout the measurement. This is especially favorable for stack
analysis, as no additional mechanical alignment is necessary.

9.2 Wavelength-dependence of contrast in
biological samples

In cell biology, the localization of certain substances within a cell usually cannot
be done directly but the substance in question has to be marked with a fluores-
cent dye so that it becomes prominent in the microscopy image. This staining,
however, might influence the structure of the cell itself. Therefore, it is desirable
to use intrinsic contrast mechanisms rather than staining.

Since the fundamental sensitivity of DIXH to chemical contrast mechanisms could
be shown in the experiments described above, the applicability to biological sam-
ples was tested in the following experiments.

9.2.1 Rat Embryonic Fibroblast Cells

As first biological sample for energy-dependent contrast, critical-point-dried rat
embryonic fibroblast (REF) cells prepared by the protocol described in chapter 6
were used. In figure 9.5 reconstructions of holograms recorded at E = 100 eV,
figure 9.5 (a), and E = 220 eV, figure 9.5 (b), are displayed. The region of interest
showing the cell nucleus is magnified in figures 9.5 (d) and (e). The exposure
times for the holograms were T = 3 · 1000 s and T = 50 · 30 s, respectively, the
single holograms were automatically accumulated and not drift corrected.
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Figure 9.5: Reconstruction of a REF cell at different energies
(a) 100 eV (b) 220 eV
(c) Optical microscopy image. Zeiss Axioplan2, 40× Neofluar, NA 0.75
(d) to (f): Magnified sections of (a) to (c), respectively. The position of the cell
nucleus is highlighted.
With rising energy, the material becomes more and more transparent. The cell
membrane disappears, and details within the nucleus become visible.

A comparison with an optical microscopy image 9.5 (c) and (f) verifies, that at
the lower energy the outline of the cell is visible in the reconstruction while the
nucleus cannot be penetrated. Most likely this is because the high absorption
coefficient of the material causes a strong decay of the secondary wavefront scat-
tered from this part of the sample. With rising photon energy, the absorption of
carbon decreases, and the cell material becomes more and more transparent. The
membrane disappears in the reconstruction, while now details within the nucleus
and the cytoplasm are resolved.

Figure 9.6 shows images of another REF cell. In figure (a) the hologram (T =
30·40 s, automatically accumulated and not drift corrected) recorded at 220 eV is
shown, figure (b) is the reconstruction of (a). The nucleoli within the nucleus are
clearly visible as dark features and exhibit good contrast, while the reconstruction
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Figure 9.6: Reconstruction of a REF cell at different energies
(a) Hologram recorded at 220 eV
(b) Reconstruction of (a)
(c) The outline of the cell and some features in the nucleus are highlighted.
(d) Optical microscopy image. Zeiss Axioplan2, 40× Neofluar, NA 0.75
(e) Region of interest as in (b)
(f) Image (e) with highlighted features.
The structure indicated by the left arrows appears the same in the reconstruction
and in the optical microscopy, while the structure indicated by the right arrow is
not visible with DIXH at 220 eV.

of the membrane is fuzzy. In order to guide the eye, some main features visible
in figure 9.6 (b) were marked by a threshold and edge determination algorithm
(figure 9.6 (c)). Additionally, the general shape of the cell is emphasized as well as
the position of the nuclear membrane. For a comparison, an optical microscopy
image is displayed in figure 9.6 (d). Figure (e) is a magnification of (d) showing
the same section as (b). The highlighting shapes from figure (c) were directly
transferred on the optical microscopy image (e), and the result is shown in (f).

While the general outline of the nucleus is the same, some of the structures within
the nucleus exhibit different contrast properties in the reconstruction with respect
to optical microscopy. For example, the feature indicated by the left arrow in
figure 9.6 (f) appears similarly in both images, but the feature indicated by the
right arrow is not present in the reconstruction. Obviously, it has lower contrast
in X-ray holography at 220 eV than in optical microscopy. A cell nucleus might
contain several types of sub-organelles, like nucleoli, Cajal bodies and Gemini of
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9 Intrinsic Contrast Mechanisms in DIXH

coiled bodies (gems) (0.2–2.0 µm), and polymorphic interphase karyosomal asso-
ciations (PIKA) domains (5 µm) [7, 126], to name only those in the size range
of the observed structures, depending on the cell type and the state in cell cy-
cle. The different contrast behavior expressed by various sub-organelles therefore
might be due to different chemical composition, which leads to differences in the
absorption and refractive index for X-rays and optical light. Identification of
the different types is possible in fluorescence microscopy by specific staining. So
cross-correlation experiments will be carried out in future. Another explanation
might be a different material density in several sub-organelles, which consider-
ably affects the attenuation length for X-rays. Visible light has a lower power
to penetrate material, therefore even the sub-organelles with the least density
would absorb the radiation and give good contrast. So all sub-organelles would
appear dark in the optical image, while some of them do not absorb the X-ray
sufficiently and hence do not appear in the reconstruction.

A definite explanation is still to be found, so further experiments will be carried
out in our group with the goal of a more detailed biological interpretation. Cross-
correlation experiments comparing DIXH with fluorescence microscopy should
lead to a concept to translate material contrast in X-ray holography into the
dye-localization-based language of biology.

9.2.2 Ulva linza

To test the energy-dependent contrast mechanism for a second biological sample,
critical point dried zoospores of the green algae Ulva linza were imaged at various
photon energies. In figure 9.7 (a) and (d) drift corrected holograms recorded at
E = 220 eV (T = 15 · 5 min) and E = 500 eV (T = 6 · 10 min) respectively are
displayed. The attenuation length of carbon (ρ = 2.2 g/cm2 [125]) at 220 eV of
datt = 1.17 µm is a factor of 3.5 higher than at 500 eV with datt = 0.33 µm [117].
In the first case, this value is larger than the average thickness of a dried cell, in
the second case it is smaller. This fact explains why the second hologram shows
high absorption within the scattering pattern of the algae, while the intensity at
lower energy is more uniform throughout the hologram.

Figures 9.7 (b) and (e) are the corresponding reconstructions. At both energies,
the outline of the cell is clearly visible, and intracellular structures are resolved.
Obviously, even at an energy, where the attenuation length is higher than the
sample thickness, the transmission of the object wave is high enough to convey
sufficient information about internal structure. To facilitate the comparison of the
two images, some features were identically highlighted in figures 9.7 (c) and (f).
Those features appear in both reconstructions, however with inverted contrast
with respect to each other. The reason for this behavior is not yet found. But
an assumption is, that those areas consist of a material that has a much lower
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9.2 Wavelength-dependence of contrast in biological samples

Figure 9.7: Reconstruction of a Ulva linza at different
energies
(a) Drift corrected hologram recorded at 220 eV.
(b) Reconstruction of (a).
(c) Some features within the algae are highlighted.
(d) Drift corrected hologram recorded at 500 eV.
(e) Reconstruction of (d).
(f) The same features are highlighted as in (c).
(g) Optical microscopy image. Zeiss Axiovert 200M,
40× Plan-Neofluar, NA 0.75
For some structures within the algae, the contrast be-
havior inverts when increasing the photon energy from
220 eV to 500 eV.
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9 Intrinsic Contrast Mechanisms in DIXH

attenuation length at 220 eV than at 500 eV, possibly due to an absorption edge
in this energy range. Elements, which occur in biological tissue in a significant
amount and possess absorption edges in that energy region, are [111]

� carbon (K-edge at E = 284.2 eV),

� potassium (L-edge at E = 294.6 eV, E = 297.3 eV and E = 378.6 eV),

� nitrogen (K-edge at E = 409.9 eV), and

� calcium (L-edge at E = 346.2 eV, E = 349.7 eV and E = 438.4 eV).

The absorption edge of oxygen (K-edge at E = 543.1 eV) is beyond the probed
energy range. A series of reconstructions at various energies in this range should
make it possible to pinpoint the position of the edge and therewith the nature of
the element.

9.3 Conclusion

In experiments with mixtures of polystyrene and iron oxide particles, which were
imaged at energies below and above the carbon K-absorption edge, real elemental
contrast was observed. The next step will be probing chemical contrast mech-
anisms as it is already done in NEXAFS spectroscopy. Experiments exploring
intrinsic contrast mechanisms in biological cells were performed with rat embry-
onic fibroblast cells and zoospores of the green algae Ulva. Both samples showed
regions which exhibit different contrast properties depending on the wavelength
of the probing radiation. A probable reason is different chemical composition
and/or material density leading to differences in the absorption and refractive
index.

134



10 Conclusion and Outlook

In this thesis, the implementation of an in-line holographic setup with synchrotron
radiation in the vacuum-ultraviolet (VUV) and soft X-ray region was successfully
demonstrated. In the VUV region at a photon energy of E = 90 eV, lithographic
structures in photo resist, mixtures of polystyrene beads and iron oxide particles,
and dried rat embryonic fibroblast cells were imaged. All samples provided good
contrast and led to reconstructable holograms. The achieved resolution was de-
termined via the knife-edge criterion, giving a resolution of δedge,L= 1.13±0.35 µm
for the lithography structure, and δedge,P= 0.90±0.20 µm for the particle mixture.
In the reconstruction of the particle mixture, the resolution was also determined
via two alternative methods. First, a feature that is smaller than the predicted
resolution was chosen and the apparent full width at half maximum dFWHM was
determined. This number equals the attained resolution δFWHM = 1.12±0.10 µm.
As second alternative, experimental linescans were fitted with a convolution
of the theoretical transmission of a bead with a Gaussian point spread func-
tion. The width σ of the Gaussian function then gave an achieved resolution
of δconv=

√
8 ln 2σ = 0.95 ± 0.08 µm. This value is consistent with the values

above and the theoretical limit of δKreuzer = 1.15 µm is within 2∆δ. The recon-
structed image of the REF cell displays the cell membrane as well as intracellular
structure, both in great detail. Thus, also extended objects can be imaged with
DIXH.

As derived in chapter 4 the theoretical resolution limit for DIXH depends on
the diameter of the pinhole used for the generation of the diverging wavefront.
But not only the diameter determines whether a pinhole is suitable for DIXH. In
order to sufficiently block the transmission of the synchrotron beam, a minimal
thickness of the pinhole membrane is required. Hence, suitable pinholes were
designed and fabricated by Focused Ion Beam milling.

A decrease in the pinhole diameter however leads to an increase in the exposure
times required for hologram recording, therefore the influence of a constant drift
between pinhole and sample onto the resolution increases, too. By application of
smaller pinholes and correction for drift effects, the achieved resolution could be
improved by a factor of 2.5, resulting in δexp = 0.37± 0.04 µm. This value meets
the theoretical prediction of δtheo = 0.34 µm.

It could also be shown that by recording holograms on and off resonance with
absorption edges, element contrast can be obtained. Also in biological samples,
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10 Conclusion and Outlook

a wavelength dependent contrast was observed.

For future developments, probing chemical contrast mechanisms similar to NEX-
AFS spectroscopy is planned. Also, a more detailed biological interpretation
of the contrast differences observed in the images of the biological samples is
aspired. Cross-correlation experiments comparing DIXH with fluorescence mi-
croscopy should lead to a concept to translate material contrast in X-ray holog-
raphy into the dye-localization-based language of biology.

Another development is the application of DIXH to ultrashort pulsed, brilliant
X-ray sources as free electron lasers. First experiments have been carried out in
our group and the preliminary results look promising.

The introduction of an off-axis reference wave presents the possibility to enhance
the resolution and simultaneously minimize the twin-image effect. In DIXH,
the implementation can be realized by a double pinhole design. Also here, first
promising experiments were performed.

In order to be able to access higher wavelengths and to further decrease the
resolution limit, the concept for the creation of diverging wavefronts might have
to be modified. The high aspect ration which is necessary in the current pinhole
design already poses a challenge concerning pinhole fabrication. Waveguide based
designs have been implemented for hard X-rays [35] and might be an alternative
for the pinhole-based sources.
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Beiträge zur Theorie des Mikroskops und der mikroskopischen

Wahrnehmung.
Arch. Mikrosk. Anat., 9:412–468, 1873.

[2] D. Wilkens.
Einblick in den Mikrokosmos.
http://www.biokular.de/1999_2/Mikroskop.html.
Accessed September 8th, 2005.

[3] Carl Zeiss AG.
Mikroskopie/Objektive für Forschung.
http://www.zeiss.de, retrieved September 8th, 2005.

[4] M. Schrader, K. Bahlmann, G. Giese, and S.W. Hell.
4Pi-Confocal Imaging in Fixed Biological Specimens.
Biophysical Journal, 75:1659–1668, 1998.

[5] H.J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, and H. Schmid.
Theory of the point source electron microscope.
Ultramicroscopy, 45:381, 1992.

[6] W. Meyer-Ilse, D. Hamamoto, A. Nair, S.A. Lelièvre, G. Denbeaux,
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Tschentscher, Jochen R. Schneider, Eberhard Spiller, Thomas Möller,
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Hilfe während der Strahlzeiten am BESSY.
. . . an Prof. Dr. Silvia Mittler und ihre Familie für die Einladung nach London
(Canada!).
. . . to Dr. Todd Simpson for everything he taught me about FIB milling.
. . . an Reiner Dahint, Alex Küller, Fanny Liu, Sören Schilp, Martin Schmid und
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. . . an Reiner Dahint fürs Unterschreiben der Urlaubsanträge.
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habe, in der Hoffnung, dass sie mir das nachsehen.
. . . an meine Familie, die immer für mich da ist und auf die ich mich immer ver-
lassen kann.
. . . an Dennis — ohne Worte.


	1 Introduction and Context
	2 Theory of Holography
	2.1 Properties of light waves
	2.1.1 Wavefunction and complex amplitude
	2.1.2 The plane wave and the spherical wave
	2.1.3 Interference
	2.1.4 Coherence
	2.1.5 Diffraction

	2.2 Examples for diffraction pattern
	2.2.1 Pinhole
	2.2.2 Rectangular slit
	2.2.3 Circular aperture

	2.3 Holographic principle
	2.3.1 General principle of holography
	2.3.2 In-line holography
	2.3.3 Off-axis holography
	2.3.4 Fourier holography

	2.4 The holographic setup
	2.5 Numerical reconstruction of digital holograms

	3 BESSY
	3.1 Generation of synchrotron radiation
	3.2 The DIXH setup

	4 Resolution limit of digital in-line holography
	4.1 Resolving power and resolution limits
	4.1.1 The Rayleigh resolution limit
	4.1.2 The Sparrow resolution limit
	4.1.3 Generalization of the resolution limit
	4.1.4 The Abbe resolution limit

	4.2 Resolution in digital in-line X-ray holography
	4.2.1 Resolution in analogy to the Rayleigh limit
	4.2.2 Resolution in analogy to the Abbe limit
	4.2.3 Depth resolution


	5 Pinholes
	5.1 Pinhole requirements
	5.2 Pinhole fabrication by Focused Ion Beam Milling
	5.3 Pinhole generations
	5.3.1 Commercial pinholes
	5.3.2 Pinholes in thin gold membranes
	5.3.3 Pinholes in thick gold membranes


	6 Samples
	6.1 Lithography structures
	6.2 Mixtures of polystyrene beads and magnetic pigment
	6.3 Biological cells
	6.3.1 Rat embryonic fibroblasts
	6.3.2 Mesenchymal Stromal Cells
	6.3.3 HeLa cell chromosome spreads
	6.3.4 Ulva linza spores


	7 VUV Experiments and resolution
	7.1 Lithographic structures
	7.2 Particle mixtures
	7.3 Biological cells

	8 Development of resolution with pinhole generations
	8.1 Commercial pinholes
	8.1.1 Pinholes with nominal diameter A = 1.0 µm
	8.1.2 Pinholes with nominal diameter A = 0.5 µm

	8.2 Pinholes in thin gold membrane
	8.2.1 Drift-limited resolution
	8.2.2 Drift-corrected holograms


	9 Intrinsic Contrast Mechanisms in DIXH
	9.1 Elemental contrast experiments
	9.2 Wavelength-dependence of contrast in biological samples
	9.2.1 Rat Embryonic Fibroblast Cells
	9.2.2 Ulva linza

	9.3 Conclusion

	10 Conclusion and Outlook

